JUNE 1984

Australia $\$ 180$, New Zealand $\$ 2$ 20. Malaysia $\$ 5.50$

SERVICING-PROJECTS-VIDEO-DEVELOPMENTS

Scope Component Test Unit

Improved Replacement Modules
HV2000 Sync Adaptor Unit
Servicing: Körting Chassis 9
VCR Clinic • TV Fault Finding
Long-distance TV • VCR Servicing

Teletopics • Service Bureau

What better way of ensuring your pleasure than to actually see your prints before you pay-and then to be charged only for the successful pictures within the price ranges quoted. That is the deal you get from our colour print service providing the best all-round value for money available.

Over the past ten years, hundreds of thousands of magazine readers have been delighted with our postal service. They have sent their films in to us again and again. So why not give it a whirl yourself? QUALITY
Every print is checked at every stage of processing to ensure accurate colour reproduction.

RELIABILITY

Processing and printing take up to 48 hours. Allowing for postal or peak-period delays, you should normally expect your prints after seven to ten days.
LARGER PRINTS
Our Superprints give you 30 per cent more picture area at no extra charge. EASY CREDIT
You pay only for your successful shots within the price ranges quoted-and then only after you have seen the prints. FREE FILM
When you order a replacement film, we send you a second film free.
COMIPARE PRICES
If you are invoiced for $£ 2.70$. plus 30 p postage and packing per film, that could be for as many as 24 successful prints.

See your prints before you pay

See our price range: No. of Superprints or standard prints 0-6
7-12
13-18
19-24
25-30
Price (inc.
5\% VAT
£1.20
£1.70
£2.20
30
£2.70
31-36
$£ 3.20$

LUXURY COLOUR PRINTS

You will be amazed at the beautiful colours and sheen finish of your prints. They have elegant rounded corners and are borderless to give you maximum picture area. Choose either standard prints or the larger Superprints by ticking the appropriate box on the enclosed envelope or on the coupon below.
Superprints Print size (approx.)
$35 \mathrm{~mm} \quad 110 \quad 126 \quad$ Disc $4^{\prime \prime} \times 53 / 4^{\prime \prime} 4^{\prime \prime} \times 51 / 8^{\prime \prime} \quad 4^{\prime \prime} \times 4^{\prime \prime} \quad 4^{\prime \prime} \times 51 / 8^{\prime \prime}$ Standard prints Print size (approx.) $31 / 2^{\prime \prime} \times 5^{\prime \prime} 31 / 2^{\prime \prime} \times 41 / 2^{\prime \prime} 31 / 2^{\prime \prime} \times 31 / 2^{\prime \prime} \mathrm{N} / \mathrm{A}$

NO MONEY-NO STAMP

Just send any good make of colour print film, including disc film, inside the Freepost envelope enclosed with this
issue. Or fillin the coupon below and send with your colour print film in a strong envelope to: Television Colour Print Service, FREEPOST. Reading,

RG1 1BR.

PERSONALISED SERVICE

Our valued readers know we care for their prints. If you have any queries about this highly-personalised service, contact Customer Service. Kenavon Drive, Reading, RG1 3HT, or ring Reading (0734) 597332.

YOU BENEFIT IN FOUR WAYS

1. Processing is free-you pay only for successful prints (plus p \& p).
2. You enjoy a highly personalised service with every care taken over each individual print.
3. You are not hampered with credit vouchers.
4. You get more prints for your money, so it is worth your while always having your camera action-ready. Compare the shop prices.

FREE COLOURPRINT FILM OFFER

For every $110,126,135$ (all 24 exp, ASA100) film you order from this Colour Print Service at our specially reduced price of $£ 1.20$, you receive in addition a FREE high-quality Colourprint film specially packed by one of the world's leading manufacturers. Offer excludes Black \& White transparency, sub-miniature. C22 \& Agfa CNS film. Superprints can be produced only from Kodacolour II, C41 cassette, cartridge and disc film, not half frame. Prices are correct at the time of going to press and are for UK readers only. Standard terms of business are available on request.

To: Television Colour Print Service,
FREEPOST, Reading, RG1 1BR

- Print my enclosed film (Please tick box) Superprint size
Standard size of $35 / 24$ \qquad of $110 / 24$

From: Television Colour Print Service, FREEPOST, Reading, RG1 1BR.

Name
Address
of $126 / 24$ at $£ 1.20$ each together with one FREE film for each film ordered

COPYRIGHT

alp Magazines Limited, 1984, Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS.

SUBSCRIPTIONS

An annual subscription costs $£ 11$ in the UK, £12 overseas (by surface mail). Send orders with payment to Quadrant Subscription Services L.td., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.

BINDERS AND INDEXES

Binders ($£ 4.50$) and Indexes (45p) can be supplied by the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Prices include postage and VAT. In the case of overseas orders, add 60p.

BACK NUMBERS

Some back issues are available from the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF at $\mathbf{£ 1 . 2 0 p}$ inclusive of postage and packing.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. All correspondents expecting a reply should enclose a stamped addressed envelope.
Requests for advice on dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

this month

417 Leader

418 Servicing the Körting Chassis 9

John Coombes

Körting's first CTV chassis to use a chopper power
supply and transistor line output stage was designed to drive the PIL, 20AX or 30AX tube.
423 What's Up Doc - 27
Les Lawry-Johns
Les returns for the verdict, while the flood of broken domestic electronics continues unabated.
424 Long-distance Television
Roger Bunney
Reports on DX reception - what little there was this month - and news from abroad.
426 Scope Component Test Unit
David Botto
A simple unit that enables the scope to be used to show on the screen the condition of diodes, transistors, thyristors, zener diodes, LEDs, capacitors and resistors.
429 VCR Clinic
Reports on VCR faults from Steve Beeching, T.Eng.
(C.E.I.), Derek Snelling, Hugh Allison, Les Harris and M.S. Barakat.

431 TV Fault Finding
Reports on TV faults and servicing from Jim Rainey, Malcolm Burrell, George R. Wilding, John Coombes and M.S. Barakat.

432 Improved Replacement Modules
Many of the weaker sections of older sets can
nowadays be replaced using improved modules from
sources other than the original manufacturer. A review of some of the useful modules at present available.
434 HV2000 Sync Adaptor Unit
The Sony HV2000 video unit is a useful and cheap method of switching between cameras. It can be used only with a Sony colour/monochrome camera
combination however. This simple circuit enables any monochrome camera that requires HD and VD pulses to be used.
435 Next Month in Television
436 TV Test Pattern Generator, Part 2
Tony Jenkins, G8TBF
The encoder, modulator and power supply sections of the generator.
438 Teletopics
News, comment and developments.
440 VCR Servicing
Mike Phelan
A run-down on common faults experienced with the 3V24 portable machine.
442 DX Amplifier Unit
Roger Bunney
A comprehensive modular unit that incorporates Band
I/II/III and u.h.f. amplifiers, gain control, masthead
amplifier powering and a distribution amplifier.
Complete with integral power supply.
444 Letters
446 Service Bureau
447 Test Case 258

OUR NEXT ISSUE DATED JULY WILL BE PUBLISHED ON JUNE 20

MANOR SUPPLIES

NEW MKV PAL COLOUR TEST GENERATOR FOR TV \& VCR

$\star 40$ different patterns and variations.
\star Broadcast transmission accuracy (fully interlaced sync pulses with correct picture blanking).
\star EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red, blue and black.

* Chequerboard.
\star Mono outputs with border castellations, cross hatch, grey scale, vertical lines, horizontal lines and dots.
UHF modulator output plugs straight into receiver aerial socket.
* Additional video output for CCTV \& VCR.
* Facilities for sound output.
\star Easy to build kit. Only 2 adjustments. No special test equipment required.
* Mains operated with stabilised power supply.
\star All kits fully guaranteed with back-up service.
\star Also available with VHF Modulator.
Price of Kit
$£ 80.50$
De Luxe Case ($10^{\prime \prime} \times 6^{\prime \prime} \times 24^{\prime \prime}$)
$£ 8.50$
Optional Sound Module (6 MHz or 5.5 MHz) $£ 4.50$
Built \& Tested in De Luxe Case including Sound Module
$£ 120.75$

'SPECTALTEST;
 REPORT

'TELEVIS1ON'
1
DEC
Post/Packing $£ 2.50$
_DEC. 1982 _ 1 All above prices include VAT 15%

PAL COLOUR BAR GENERATOR (Mk4)

\star Output at UHF, applied to receiver aerial socket.
\star In addition to colour bars R-Y, B-Y etc.
\star Cross-hatch, grey scale, peak white and black level.
\star Push button controls, battery or mains operated.
\star Simple design, only five i.c.s on colour bar P.C.B.
PRICE OF MK 4 COLOUR BAR GENERATOR KIT £34.50. DELUXE CASE £8.50. BATT HOLDERS $£ 3.20$. MAINS SUPPLY KIT £4.80 (Combined P\&P £2.20).
MK 4 DE LUXE (BATTERY) BUILT \& TESTED $£ 66.70+£ 2.20 \mathrm{P}$ \& P . MK 4 DE LUXE (MAINS) BUILT \& TESTED $£ 78.20+£ 2.20$ P \& P. VHF MODULATOR (CHI to 4) FOR OVERSEAS £6.60. EASILY ADAPTED FOR VIDEO OUTPUT \& C.C.T.V.
(ALL PRICES INCLUDE 15\% VAT)

MANOR SUPPLIES TELETEXT ADAPTOR KITS

MK 1 (Texas XMII) remote control $£ 158.70$ p.p. $£ 3.00$.
MK2 (Mullard) infra red remote control $£ 198.40$ p.p. $£ 3.00$
Further details on request. Tel 01-794 8751/7346
Goods available if in stock immediately over shop counter (Mail order between 3 days and 1 week from receipt of order).

TV SERVICE SPARES

BACKED BY TWENTY YEARS EXPERIENCE \& STAFF OF TECHNICAL EXPERTS

TELEVISION MAGAZINE PROJECT PARTS
 COLOUR PORTABLE TV
 MONO PORTABLE TV, SMALL SCREEN MONITOR

LISTS AVAILABLE, PANEL TEST SERVICE
THORN TX 10 TYPE REMOTE \& TÜNING CONTROL PANEL $£ 10.80$ p.p. $£ 1.50$. PHILIPS UHF MODULATOR (AUDIO \& VIDEO INPUT) $£ 17.25$ p.p. $£ 1.00$. SAW FILTER IF AMPLIFIER PLUS TUNER COMPLETE AND tested for T.V. SOUND \& VISION $£ 32.80$ p.p. $£ 1.20$.
THORN TX9, TX10 SAW FILTER IF PANEL 89.80 p.p. 80p.
PAL DECODER KIT FOR RGB MONITORS $£ 31.00$ p.p. $£ 1.00$ SPECIAL OFFER TEXAS XMII TELETEXT DECODER NEW \& TESTED, AT REDUCED PRICE £46.00 p.p. £1.60.
TELETEXT 23 BUTTON DE-LUXE HANDSET WITH 5 YDS. CABLE £7.80 p.p. £1.20. XMII STAB. POWER SUPPLY £4.40 p.p. £1. 20.
CROSS HATCH UNIT KIT, AERIAL INPUT TYPE, INCL. T.V. SYNC AND UHF MODULATOR. BATTERY OPERATED. ALSO GIVES PEAK WHITTE \& BLACK LEVELS. CAN BE USED FOR ANY SET £13.80 p.p. 80 p. (ALUM CASE $£ 2.90$ DE LUXE CASE $£ 7.85$ p.p. $£ 1.40$.) ADDITIONAL GREY SCALE KIT \&3.35 p.p. 45 p.
UHF SIGNAL STRENGTH METER KIT $£ 23.00$ (VHF version also available). ALUM CASE $£ 2.90$ DE LUXE CASE $£ 8.50$ p.p. $£ 1.80$.
CRT TESTER \& REACTIVATOR PROJECT KIT FOR COLOUR \& MONO £32.20 p.p. $£ 2.80$.
BUSH $Z 718$ BC6100 SERIES IF PANEL $£ 5.75$ p.p. 90 p.
BUSH A816 IF PANEL (SURPLUS) $£ 1.90$ p.p. 90 p.
DECCA 80, SERIES, IF, FRAME T.B. £5.75 each p.p. £1.40.
DECCA 80, LINE SCAN UNIT salvaged $£ 11.50$ each p.p. $£ 2.00$.
GEC 2040 Convergence panels, Decoder panels $£ 2.88$ each p.p. $£ 1.80$.
GEC 2040 IF PANELS $£ 3.22$ p.p. $£ 1.60$.
PYE 691-7 CDA PANELS. Makers tested stock $£ 6.90$ p.p. £1.45.
PYE 725 T.B. Unit. Makers tested stock $£ 23.00$ p.p. $£ 2.80$
THORN TX9 PANELS ex factory for small spares. Includes I.C.s \& Semiconductors etc. $£ 5.75$ p.p. $£ 2.00$.
THORN TX9 PANELS salyaged ex factory for spares incl. LOPT \& mains transformers $£ 11.50$ p.p. $£ 2.80$.
THORN TX9 PANELS ex factory salvaged complete cond $£ 23.00$ p.p. $£ 2.80$.
THORN TX10 T.B. PANELS salvaged ex factory $£ 17.25$ p.p. $£ 3.00$.
THORN 3000 LINE T.B., PCB POWER PCB $£ 5.75$ each p.p. $£ 1.30$.
THORN 8000/8500 IF/DECODER PANELS salvaged £3.70 p.p. $£ 1.80$.
THORN $8000 / 8500$ FRAME T.B. PANELS salvaged/spares £2.88 p.p. $£ 1.40$. THORN 9000 SERIES TOUCH TUNE REMOTE CONTROL UNIT PLUS ULTRASONIC TRANSMITTER HANDSET $£ 19.32$ p.p. £1.84. THORN 9000 IF/DECODER PANELS Salvaged $£ 5.75$ p.p. $£ 1.60$. PHILIPS G8/G9 IF/DECODER Panels for small spares £1.75 p.p. £1.40. G8 Decoder panels salvaged £4.25. Panels for spares $£ 2.00$ p.p. $£ 1.40$. G9 Scan Panel. Basic PCB in fibreglass $£ 16.68$ p.p. $£ 1.80$.
GRUNDIG 8630 Series Varicap Tuners $£ 5.75$ p.p. $£ 1.00$.
VARICAP, U321, U322, ELC 1043/06 ELC $1043 / 05$ £7.82 p.p. 80p; G.I. type (equiv. $1043 / 05$) $£ 4.00$ p.p. 60 p. MAKERS VARICAP CONTROLS type (equiv. 1 PSN $\mathbf{1 8 . 6 0}$, BUSH 4 PSN $£ 5.50$, Decca 4 PSN $£ 6.70$ p.p. 80 p. Pye CT200 4PSN 28.60 , BUSH 4PSN £5.50, Decca 4PSN 26.70 p.p. $80 p$.
SPECIAL OFFER ELEVEN POSITION VARICAP CONTROL UNIT SPECIAL OFFER ELEVEN
UHF/VHF £2.10 p.p. $£ 1.00$.
UHF/VHF £2.10 p.p." V1.00. BUSH "Touch Tune" Varicap Control Z179, $Z 718$ types $£ 4.40$
VARICAP UHF.VHF ELC 2000S, ELC2060 £11.30 p.p. 90p.
VARICAP VHF MULLARD ELC 1042, PHILIPS 27.95 p.p. 80 p.
UHF/625 Tuners, many different types in stock. DECCA Bradford 5 position £2.88 p.p. £1.80 etc.
T.V. SOUND IF Panels $£ 7.82$ p.p. $£ 1.00$.

LOPT TESTER Serivice Dept approved $£ 17.82$ p.p. $£ 1.20$.
LOPTS NEW \& GUAR. P/P Mono $£ 1.35$ p, Colour $£ 1.50$ p, Bobbins 80p.
BUSH 161 to 186 (twin panel) BUSH, MURPHY 774 series.
. 86.80 BUSH, MURPHY A816 series ...
FERG. HMV, MARCONI, ULT 950, 1400, 1500, 1580,1590, 1591 .. 56 THORN $1600,1615,1690,1691 \quad$ \&10.50 GEC 2000 to 2038 series................ 87.80 GEC series $1 \& 2 \ldots$ INDESIT 20/24EGB
\qquad
\qquad ITT/KB VC 200, $300 \ldots$....................... 88. PHILIPS $170,210,300$ SERIES PYE, INVICTA, EKCO, FERR. PYE, INVICTA, EKCO, FERR. 368, 169, 569, 769 series..... DECCA 20/24, 1700, 2000, 2401 ... 54.40 GEC $2114 \mathrm{~J} / \mathrm{Junior}$ Fineline $\mathbf{8 3 . 2 5}$ PYE 40, 67 82.00 KB VC ELEVEN (003)..
KB VC1

R.B.M. A823 £5.60	
R.B.M. Z179	
R.B.M. T20, T22	
R.B.M. T20, T22 Bobbin .	
DECCA Bradiord (state Mod No). $£ 10.15$	
DECCA 80,	
GEC 2028, 2040, 2100 E6. 70	
GEC 2110 Series	¢12.20
ITT CVC 5 to 9, CVC20 11.3	
ITT CVC25, CVC30 series $\mathbf{E 1 0 . 1 5}$	
PYE 713, 715	
PYE 725 (900) 731 to 741 $£ 10.60$	
PHILIPS G8 $\varepsilon 10.15$	
PHILIPS G9 811.70	
PHILIPS 570, 571 27.85THORN $3000 / 3500$ SCAN, EHT ... 27.85	
THORN 8000/8500/8800 514.80	
THORN 9000 THORN 9800	ع14.80

OTHERS AVAILABLE, PRICES ON REQUEST. ALSO F.OPTS. TRIPLERS Full range available. Mono \& Colour.
Special Offer: Thorn 14005 stick EHT Tray 11.72 p.p. 65p
Special Ofter: Thorn suitable for G8, A823, Bradford etc. $£ 1.72$ p.p. 60 p.
TRANSDUCTORS suitable for G8, A823, Bradford etc. \&1. 72 p.p. 60 p.
Coost Transformers for Colour \& Mono $£ 5.80$ p.p.
THOUSANDS OF ADDITIONAL ITEMS, ENQUIRIES INVITED LARGE SELECTION TESTED COLOUR PANELS POPULAR MODELS

Telephone 01-794 8751, 7947346
MANOR SUPPLIES
172 WEST END LANE, LONDON, N.W.6.
NEAR: W. Hampstead Tube Sm. (Jubilee) Buses 28, 159, C11 pass door W. Hampstead British Rail Sms. (Richmond, Broad St.) (St. Pancras, Bedford) W. Hampstead (Brit. Rail) access from all over Greater London. Mail Order: 64 GOLDERS MANOR DRNE, LONDON N.W. 11. ALL PRICES INCLUDE VAT AT 15\%

Interested in Television Servicing? Try a ZED Pack. Effect Repairs at Minimum Cost.

GEMINI ELECTRONIC COMPONENTS

Dept. TV, 48, Deptford Broadway, London S.E.8.

Please quote ZED code where shown. Send cheque* or Postal Order. Add 60p P\&P and 15\% VAT.
*Schools etc. SEND OFFICLAL ORDER. Allow up to 28 days for delivery. Most orders despatched same day.
ZED PACKS now available for CALLERS at 50 Deptford Broadway, London, S.E.8.
Send large S.A.E. for list of Quantity, Prices and Clearance Lines etc.

D HAVE MOVED
 Telephone: Accrington (0254) 36521
 Accrington (0254) 32611
 104 ABBEY STREET, ACCRINGTON, LANCS.

TRADE COUNTER OPEN MON-FRI 9 a.m.-5 p.m. SAT 9.30 a.m.-5 p.m.

P. V. TUBES

PLEASE NOTE OUR NEW ADDRESS - COME AND SEE US 104 ABBEY STREET, ACCRINGTON, LANCS. TEL: 0254 36521/32611

ADD VAT 15\% TO ALL PRICES
Goods are despatched on the day we receive your order. If for any reason we are out of stock we wifl try to inform you as quicky as possible. We ty our best to give a speedy, far and telephoned in before $4 \mathrm{p} . \mathrm{m}$. will be despatched the same day V.A.T. invoice on request. Give us a ring - we'll give you service. Please ask it what you need is not listed - we with ty to help. Prices are subject to change without notice.

... on the lowest priced TV's
Buy from the largest stock of used TV's in the U.K. More than 6,000 sets including high class refurbished colour sets; tested and un-tested mono sets. Many recent models, all from big name manufacturers including Phillips and Pye G11

. . . on domestic appliances

New products, end of line clearances and manufacturers' seconds, all at knock down prices

Big names, big quantities,

 big profits for you! us now.

Campion Thom Campion House.
Franchise Stree
kidderminster,
Worcestershire, DY11 6RE
Tel: (0562) 743735 (4 lines)

EDITOR

John A. Reddihough
ASSISTANT EDITOR
Luke Theodossiou

ADVERTISEMENT MANAGER
Roy Smith
01-261 6671

CLASSIFIED ADVERTISEMENTS

Barbara Blake
01-261 5897

A Flat Patch

Right now there seems to be growing pessimism on one front (cable TV), a deathly hush on another (DBS), and a subsidence in the frothy marketing conditions that characterised another (video) until recently. All this despite signs of increased economic activity in the UK. The world of TV appears to have got out of step with the rest of the economy: it peaked while most other sections were in the doldrums, and has now turned rather flat.
Two reports on cable prospects have appeared recently. Management consultants McKinsey see a bleak and unprofitable future if reliance is placed mainly on entertainment. Just how unprofitable can be seen from the following quotation: "total operating losses under optimistic assumptions will, for a 100,000 home franchise, reach $£ 10$ million by the late 1980 s , never to be recouped". That and other conclusions follow a fifteen month study.
McKinsey consider that the prospects would be very much better if greater emphasis was placed on cable as a medium for providing a number of services - in particular by incorporating telephony services from the outset. This seems strange. Why should laying expensive wideband cable to do what the current telephone lines do quite adequately make such a difference? The McKinsey researchers seem to think it would however. They suggest that telephony could add 40-45 per cent to total system revenues, making it possible to break even - by 1994! This is of course all a matter of conjecture, and there's no reason why we shouldn't hazard our own guess. We'd say that entertainment is primarily what people want and are prepared to pay for, and that if entertainment can't be relied upon to make cable pay, the prospects are dim indeed.

McKinsey comment that much work has been done on the office of the future but little on the home of the future. Unless we all turn into robots, we'd suggest that the home of the future is likely to be much as it is today, though hopefully providing greater comfort. The cat was rather let out of the bag officewise in a recent Financial Times survey on office automation. Ms Emma Bird, a senior consultant with an electronic office specialist firm, was quoted in this as saying that "managers generally say that the introduction of plans to acquire new technology can go ahead if significant staff savings or gains in productivity will result: in practice, such hard justifications are rarely achieved." If the great information technology revolution is so hard to justify in the office, how much more difficult will it be to justify it in the home? So much for all that home banking and so on. When it comes to the use of the computer in the domestic setting, one can't help but feel that it will be like the VCR - people selecting their own uses/programmes without need for a cable link to some central computer system. In fact entertainment is what home computers are at present mainly used for!
The other report on cable comes from CIT Research, an independent UK market research company. This organisation last published a study on pan-European cable prospects in late 1982. Its new study sharply downgrades growth forecasts - it now expects that at best 19.5 per cent of European households will be linked to cable TV by 1992 - the previous forecast was 27 per cent. Its conclusion is that cable TV will be a commercial failure in W . Europe unless government policies are radically changed, warning that most new cable systems planned under existing policies will lose money or be only marginally profitable - if they ever begin operating at all - and will find it hard to attract subscribers quickly. There is of course no particular reason why governments should leap in to assist something that doesn't seem to be wanted.

It's interesting that CIT Research's conclusions seem to be the opposite of McKinsey's. CIT Research comment that "too much emphasis is being placed on the design of the cable systems themselves and too little on the production of commercial programmes to be carried on them." Further, "there's little sign of a demand for interactive services providing information - except for details of television and radio programmes which could as easily be obtained from the press: most of the interactive services envisaged for cable could as well be provided on existing telephone networks."

Thumbs down it seems for cable. When it comes to DBS, the reason for the present hush is perhaps best summed up by a quote from Lord Thomson, chairman of the IBA, who commented during a recent speech at the Anglo-German Chamber of Commerce in Munich that "the economics have turned out to be chilling". This is the reason for ITV and the BBC suggesting a joint effort to try to get a UK DBS service going. The plan is that the BBC would have a 50 per cent interest in the venture and the ITV companies along with other outside commercial interests the other ' 50 per cent, the IBA being given the job of finding outside investors and recommending them to the Home Office. At the time of writing this the government has yet to give approval to such a deal, which would involve an extra eight years' guaranteed franchise for the ITV companies regardless of whether they participate in the scheme. The decision rests with the cabinet, and is likely to be introduced as an amendment to the Cable and Broadcasting Bill during the second reading.

Finally the video market. As figures quoted in Teletopics show, the momentum has come to a halt, with VCR sales/rentals stabilising and disc player sales failing to take off. There are one or two points that seem worth making on the technical front. The increasing dominance of the VHS system makes the introduction of 8 mm equipment look like being a very long term affair, while solid-state imagers seem to be out for the time being. As regards digital TV sets, the advantages are hard to see - just think of all those watts wasted in AD/DA conversion.

Servicing the Körting Chassis 9

John Coombes

The Körting Chassis 9, which was introduced in 1979, was designed to drive several different types of tube - PIL in the 20 in . size, and $20 \mathrm{AX} / 30 \mathrm{AX}$ in the 22 and 26 in . sizes. It was used in a range of models with serial numbers $40,000,41,000$ and 59,000 , e.g. the 22 in . Model 59571 and the 26 in . Model 59671 . There's a main vertical panel into which a number of subpanels are plugged - the arrangement is shown in Fig. 1.

A self-oscillating chopper circuit (Siemens type) provides various regulated supplies, also mains isolation. See Fig. 2. The line output stage employs a BU208 transistor and an e.h.t. tripler. It requires a 150 V h.t. supply with the 20AX tube, 155 V with the 30 AX - this is set with R623 on the chopper panel, at minimum brightness. Though they all look similar, different line output transformers are required with the different tube types. The tripler also differs, due to the different focus voltage requirements of the 20AX and 30AX tubes. A diode modulator is used for EW correction, driven by a BU125S transistor. The correction waveform is produced by an i.c., type TDA1082. See Fig. 4. The field timebase consists of a TDA1170 followed by a three transistor driver/output stage. There's also an output stage flyback voltage doubling circuit. See Fig. 3. Sync separation and line generation are carried out by a TDA2591 i.c. In later versions a different subpanel with a TDA2576A i.c. is used.

On the signals side there's a single i.c. (TDA2541) i.f. strip and a three chip (TDA2560/TDA2522/TDA2530) decoder. The RGB output stages are of the complementary symmetry type (BF715/BF716 or BF869/BF870 transistors). There are two alternative sound modules. The basic one uses a TBA120U intercarrier sound chip followed by a TDA2611 audio chip that provides an output of 3.5 W . For up-market models there's a board with TDA2790 and TDA2030 i.c.s delivering 15W and incorporating bass and treble controls.

No Sound or Raster

In a set of this type, the no sound or picture symptom can be caused by many things. First check the 3.15AT mains fuse Si 601 . If this is open-circuit, check the mains filter capacitors C601 and C603, the mains bridge rectifier G601 and the rectifier's protection capacitors C609-612.
If the mains input circuit is o.k., check R634 ($1 \mathrm{M} \Omega$) and D632 (1N4007) in the chopper's start-up circuit. R634 can also be responsible for intermittent failure to operate. It was subsequently reduced in value to $470 \mathrm{k} \Omega$. Next check for dry-joints on the chopper transformer Tr601 and the chopper panel, then check the rectifier panel where the usual offenders are the $150 / 155 \mathrm{~V}$ rectifier D651 (BY299) and its reservoir capacitor C651 ($47 \mu \mathrm{~F}$). They tend to go short-circuit.

If everything is in order up to this point, it's necessary to pay closer attention to the chopper circuit. Check for voltage at the collector of the BU326A chopper transistor T622. If this if missing, check the continuity between pins 7 and 1 of the chopper transformer. If voltage is present, check the chopper circuit fuse $\operatorname{Si} 621(1.6 \mathrm{~A})$. If this is open-circuit, check the chopper transistor and the switch-
off thyristor Th621 (BR303) for being short-circuit. These two items must be replaced in pairs.

If the power supply seems to be all right, move on to the line timebase. Check the 12 V supply to pin 1 of the TDA2591. If missing, check the filter resistor R434 (120 2) for being open-circuit. If R434 is o.k. and the voltage at pin 1 of the i.c. is missing or low, suspect the i.c. With the TDA2576A the supply pin is 16 and the filter resistor R453 ($56 \Omega, 1 \mathrm{~W}$). With both boards there should be 17.5 V at pin 6 of the panel.

Next check the line driver stage. There should be 150/ 155 V at pins $9 / 10$ of the line output subpanel. If there's no output from the driver, check the feed resistor R1005 ($1.8 \mathrm{k} \Omega$) for being open-circuit and its decoupler C1003 $(0.047 \mu \mathrm{~F})$ for being short-circuit. If necessary check the transistor (T1001, type BD232) for being short-circuit or teaky. Check for dry-joints at the pins of the line driver transformer U1001. On rare occasions you may find that the primary winding is open-circuit.

The most likely cause of a dead line timebase is failure of the BU208 (T1002) line output transistor however. It usually goes short-circuit, and in this event R1008 (1 Ω) in its base circuit is likely to be open-circuit. If the line output transistor is all right, disconnect the lead from the line output transformer to the tripler. If the set then bursts into life either the tripler or the transformer is faulty. It's usually the tripler.

Tripping

If the set is tripping, ensure that the line output stage h.t. voltage is correctly set (test point U4) for 150 V or 155 V depending on tube type. Adjust with R623. If R623 cannot be adjusted for the correct voltage, check transistor T621 (BC557) and zener diode D621 (BZX83C7.5) in the chopper control circuit. If the h.t. voltage is varying,

Fig. 1: Positions of the subpanels on the main board.

Fig. 2: The power supply circuit.
check the condition of R623's carbon track.
Next check the line output transistor which could be short-circuit or leaky, and the EW modulator diodes D1001 (BY223) and D1002 (BYX71-600R). Finally check the line output transformer and tripler by disconnection as previously described.

Focus Faults

The most likely cause of focus trouble is the control, which is mounted on the tripler. Less likely is the series resistor R 1218 ($1 \mathrm{M} \Omega$) on the tube base panel (this resistor is not present in all models), the spark gap FU1, or corrosion on the focus pin. A faulty tripler is another possibility. The focus spark gap can also be responsible for intermittent focus variations.

Collapsing Picture

A collapsing picture with the sound cutting in and out as the picture collapses could be tripping, see above, or a faulty line output transistor.

Line Timebase Faufts

For line collapse check the output transistor, the scan correction capacitor C 1021 ($1 \mu \mathrm{~F}$ - check for being opencircuit or for dry-jointed leads), the scan coils, plugs and sockets, and for dry-joints on the linearity coil L1023. The linearity coil is the usual cause of line whstle - check by replacement.

For excessive width check whether the width control R396 is set correctly, then check D1002 in the diode modulator circuit and if necessary the line output transis-
tor, both by replacement. If there's evidence of ballooning, suspect the tripler.

For EW correction faults, check the modulator diodes D1001/2 and the driver transistor T371, then suspect the TDA1082 chip (IS371).

If the line shift control has no effect, check the control

Fig. 3: Field driver and output stage. Output transistor 1304 is on throughout the scan, the drive at its base Ifrom the TDA1170 i.c.) being negative going. During the first half of the scan, coupling capacitor C361 charges via T304, D306 and D305. Towards the centre of the scan the current flowing via T304 is insufficient to keep D306 in conduction. The rising voltage at its collector then drives the emitter of $T 306$ which begins to conduct, driving T305. The current in the scan circuit then reverses as C361 discharges via 1305. 7302 conducts during the flyback so that the voltage at the negative plate of C312 is 28V. During the scan, C312 is charged via D303. When T302 conducts, D303 is cut off and the supply to the output stage is doubled. T304 conducts during the flyback.

Fig. 4: EW diode modulator drive circuit. The switch stage in the i.c. is used to cut off the second amplifier during the field flyback.
itself and the resistor in series with its slider. With the TDA2591 these are R435 ($47 \mathrm{k} \Omega$) and R438 ($180 \mathrm{k} \Omega$) respectively. With the TDA2576A the control is R427 ($100 \mathrm{k} \Omega$) and the series resistor R423 ($100 \mathrm{k} \Omega$).

Field Collapse

In the event of field collapse, first check that the 28 V supply is reaching pin 2 of the TDA1170 i.c. If the voltage is very low, suspect the decoupling capacitor C310 or the chip. If there's no voltage, check back to the rectifier panel: D652 (BYW15200) could be open-circuit or C652 $(220 \mu \mathrm{~F})$ short-circuit. If the supply is correct, check the following items: the field output transistors T304 and T305 (both BD537); the height control R321 (100), and R317 ($6.8 \mathrm{k} \Omega$ or $5.6 \mathrm{k} \Omega$ depending on model) which is in series with it; the scan coupling capacitor C361 $(2,200 \mu \mathrm{~F})$; R951 ($2 \cdot 2 \Omega$) on the convergence board (20AX sets); finally, suspect the scan coils.

Sync Troubles

For no sync at all, check the TDA2591/TDA2576A i.c. For no field sync check the TDA1170, and C306 ($0.01 \mu \mathrm{~F}$) for being short-circuit.

Signal Faults

If the sound is all right but there's a blank raster, check the TDA2541 i.f. i.c.

In the event of tuning drift, check that the 50 V supply from the line output stage is not varying. If it is, replace D1039 (BA157). If the tuning voltage is varying, check R051 and R053 (both $2 \cdot 2 \mathrm{k} \Omega$) and D05 (ZTK33) by replacement. If the tuning voltage doesn't vary, suspect the tuner unit.

In the event of the loss of one colour, check the appropriate first anode preset control for being opencircuit and the condition of its track, then check the
relevant output transistors. If necessary check the voltages around the TDA2530 matrixing i.c. The TDA2522 demodulator i.c. is a less likely possibility.

If the brightness level rises when the set has warmed up, check the TDA 2560 chroma/luminance processing i.c. by substitution.

For no colour, first check the voltages around the TDA2522 demodulator/reference oscillator i.c. carefully. If necessary replace the i.c. Other causes we've had are the 8.8 MHz crystal and dry-joints on the chroma delay line. The TDA2560 is a less likely possibility. If it's suspect after making voltage checks, replace it.

We've had several cases of Venetian blinds. In this event check the setting of the amplitude control R755 and the condition of its track, then check that the phase coils L706/7 are set up correctly. If still in trouble, check the chroma delay line by substitution.

Sound, No Raster

If sound is present but there's no raster, check the e.h.t. and first anode voltages. Absence of e.h.t. points to the tripler while absence of first anode voltage is normally due to R1031 being open-circuit. It may be $560 \mathrm{k} \Omega$ or $270 \mathrm{k} \Omega$ depending on model.

If the c.r.t. heaters are out but the line timebase is operative, check R1208 $(2 \cdot 7 \Omega, 2 \mathrm{~W})$ on the tube base panel.

No Sound

We'll deal with the basic sound module as we've not had much experience with the 15 W one. In the event of no sound, check the following items: the loudspeaker for being open-circuit; the presence of the 28 V supply at pin 12 of the sound module and the 12 V supply at pin $7-$ if 12 V is not present at pin 11 of the TBA120U, check R504 (33Ω) for being open-circuit; the two chips; the coupling capacitor $\mathrm{C} 531(220 \mu \mathrm{~F})$.
\square
\square
\square

236 FURTHERWICK ROAD, CANVEY ISLAND, ESSEX Telephone 0268690868 Telex 99305 ROSSER G.

TRADE COUNTER NOW OPEN
ORDERS DESPATCHED SAME DAY
ADD 60p P\&P, THEN 15\% VAT. ADD POSTAGE FOR OVERSEAS ORDERS ORDERS WITH AEROSOLS, PLEASE ADD 25p PER CAN.

Thern Mains TX $3000 / 3500$
Thorn Mains TX $80000 / 8500$
Thern S.O.P.I 8000/8500
Thorn Scan TX 3000/3500
Thorn EHT TX $3000 / 3500$
Thorn LOPT 9600
Thorn LOPT 1615
Thern LOPT $1590 / 91$

Thotn LOPT $1690 / 9$
Thern LDPT 8000

Thorn LOPT TX9
Pye LOPT 713
Pye LOPT 725
Philips LOPT G9
Ptilips LOPT G11
GEC LOPT 3113
Diode Split LOPT AT2076/35
Sanyo LOPT AM-WM-21
Saryo LOPT AM-WM-4
Philips LOPT G8
Samp LOPT (CW21) 4-2751-44700
ITI LOPT CVC5-9
IT LOPT CVGO
Baird 8750
Korting AZ9100
Korting
Korting
KP2 2101
Korting A22103
Korting
IR1001
Korting $2 T 1001$
Siemens V1155
Siemens V1823
Siemens
Z
Zanussi BS2222
Zanussi BS2223
Salora PROO57
Salora R ROO 29

300 Mixed Resistors
300 Mixed Capacitors
150 Mixed Electrolytics
100 W/W Resistors
20 Mixed Conv Pots
40 Mixed Pots
20 Mixed Sliders
40 Mixed Presets 20 Mixed VDR \& Thermistors 20 Mixed Ferrite Cores 100 Mixed Ceramic Discs
20 Mixed Valve Bases

1.50
1.50
2.00
1.00
1.00
1.50
1.00
$60 p$
1.00
$50 p$
1.00
1.00 .50
.00
.00
.00
.00
0 p
.00
0 p
1.00 $\begin{array}{r}20 \mathrm{~A} \\ 10-16 \\ 100 \mathrm{M} \\ 50 \mathrm{M} \\ 300 \mathrm{M} \\ 10-16 \\ 50 \mathrm{E} \\ 50 \mathrm{M} \\ 30 \mathrm{M} \\ \hline \mathrm{BF} 16\end{array}$
\square

Delta only. Less $71 / 2 \% 5+$

Intine rebutios
Up to 22" $£ 40$
Up to 26"....................$£ 45$
Bonded Coil $\mathbf{+} \mathbf{5}$
ALL SIZES OF NEW MONO TUBES at competitive prices
Less 10\%. 10+ and over

IN LINE TYPES EX-STOCK SELECTION Not Rebuidos

[^0]* OUR TECHNICAL DEPT WILL ADVISE YOU ON PROBLEMS YOU MAY ENCOUNTER ON FITTING INLINE TUBES

THE COMPANY WHO PUT HIGH STANDARDS FIRST CHIOTMV

CHROMAVAC LTD. UNIT 7, BEAR BRAND COMPLEX, ALLERTON ROAD, WOOLTON, LIVERPOOL 25 AISK for MR.BUTTERWORTH ON:051-428 8777

What's Up Doc - 2?

Les Lawry-Johns

The indignities I suffered during the preliminary examination to find the cause of my lump and pains were described last month. I then had to await the X-ray appointment, which was twice postponed. During this time the problem got worse then started to improve. By the time I went for the X rays I was beginning to feel a bit of a fraud. On top of that I was hungry, because you're told not to eat or smoke after midnight on the previous day.

I arrived and reported. "Ah, Mr. Lawry-Jones. Will you just go through there, up there, turn right and take a seat?" So I went down there, through there and turned left, then asked someone for directions. I finally arrived where I should have been and sat down next to a man in a white robe and dressing gown. I thought he'd been cheating - there was this white mark around his mouth. A nurse then came and took me to a changing room where I had to put on just a white apron and a dressing gown. Next I had to take this drink, and realised what the white mark was. Barium meal. Made me appreciate what cathodes have to put up with.

When my turn came I went in and found all this interesting electronic gear. There was a monitor just beside the "inspection trolley", which was vertical. I was told to stand against it while the scanner was swung up against my stomach. This was followed by further indignities - why do they have to do so much pushing and shoving around? The man pushed a button and I was lowered to a horizontal position. Something was swung over and he said "don't breathe". I hadn't since the first bit, and was feeling rather puffed. Clonk went the machine and I was told to go and get dressed. I let my breath out with a gasp. "Can I breathe now?" "Of course, you fool. How did you manage to keep it up for so long?" "They call me windbag" I explained.

That bit over, the man who'd taken the pictures suddenly appeared and asked me to follow him. When we reached a secluded spot he told me he was going to talk about pain. If I was badly injured that would be ten. The dentist's drill would be five. Stubbing my toe one. Had I got the idea? What was the pain number when he pushed my stomach around?
"Zero" I said. He told me to go and I've not heard anything since. Perhaps I shouldn't have bothered.

Return to the Ranch

There was a man waiting outside when I got back to the shop. He started off before I'd even opened the car door. "That music centre you repaired last week . . . it's gone off again." I'd put my last pair of SN76003s in it and can't get any more. What a welcome! Inside there were more people waiting to tell me their troubles. No one wanted to hear about mine. Back to normal - but not quite. There followed three days of absolute agony as the barium meal clogged my innards.

What about the music centre with the SN76003 output chips? One was open-circuit and the other dead short, same as before. I studied the SN76023 and decided to try a couple of these with modifications to the feedback. Cut the print from pin 16 to the $100 \mu \mathrm{~F}$ capacitor and add a 100Ω
series resistor, then add a $27 \mathrm{k} \Omega$ resistor between pins 4 and 16. It worked. But I won't be paid . . .

The 3000

The next patient was an old Thorn 3000 that was suffering from various ailments. All but one of these responded to quick treatment. What we couldn't get was reliable line lock. It seemed that there were no feedback pulses to the flywheel line sync discriminator circuit. We checked for dry-joints, then ensured that the feedback/ integrating resistor R506 was intact. After this we decided to change the line timebase panel complete, to prove that the fault was on this and not in the sync separator circuit, which is on the video panel, or the interconnections. The fault was still present with the replacement panel fitted, so we chased through the wiring loom. This was intact and a replacement video panel failed to improve matters. I just didn't believe it. The field sync was perfect, but the line sync almost unlockable.

I fiddled with this, that and the other, then looked at a 3000 that was on soak test and working perfectly. I took the line timebase panel from this and fitted it in the set on the bench, removing our "reliable" test panel. Perfect lock. I shouted at the test panel and called it a traitor. A resistance check proved that R506 was not returned to the timebase earth at the transformer end - the earth lead was off at connection C on the e.h.t. transformer (T503). Only just off, so as not to call attention to itself. When resoldered, the earth connection was complete. Refitting the panel produced solid line lock.

Back to the original panel. Again no earth return path, this time due to a fault in the transformer. Scrape away the blue jelly and find the winding leadout disconnected from C. Two panels with the same fault condition. It could happen only to us?

A Moan

The PL802T solid-state replacements aren't what they used to be. The valves themselves are getting dearer and dearer - if you can get them at all - so we do use the T version. Of late the heater resistor section seems to keep springing open. The original versions didn't have this spring. After being let down on several occasions, we now make the spring an offer it can't refuse - we wrap a piece of wire around it prior to resoldering. Why the spring type is used beats me. Come back valves, all's forgiven.

Jenny's Visit

Jenny came in whilst I was busy with this music centre that wouldn't come apart. She's a nice middle aged lady who lives up the road. As an ex-hospital sister, she'd been interested in my problem. A strangulated hernia she called it, and commented that it would probably turn to gangrene. As I say, a real nice lady, now here to enquire about the X ray. So I told her about the barium meal and what it did to my guts and the effects on my piles.
"Oh yes it does happen. Take it easy and I'll be around
to help."
"Clear off and leave me be" I bawled, frightened out of my life.

The Music Centre

It was a Waltham music centre, and refused to be dismantled. Now when something refuses to come apart, I'm a firm believer that it knows best and doesn't have to be taken to pieces.

It's really that ET who stands above the desk and points
at me all day long. I swear he talks to me. That soft voice . . . "It doesn't have to come apart Les, just think for a moment."

Since the complaint was that the cassette section was making a funny noise (through the speakers), I decided that the record/playback switch needed exercise and cleaning. So I managed to squirt some Servisol on to the switchbank, then inserted a blank tape so that the button could be depressed a few times. Record stop, record stop, record stop. No more noise and no further action required. Thanks ET.

Long-distance Television

Roger Bunney

From the lack of reports from other enthusiasts and the fact that my own loggings, day after day, consisted of only MS pings (and these only average) I think we can say that March 1984 was just awful. The high-pressure system that persisted over March 7-14th failed to produce any activity, due in part to the penetrating easterly winds in the south. Sunday the 18th was relatively active, with short duration SpE propagation during the morning, mainly on chs. E2/ R1/E3. There was a short SpE opening on the 24th, with RTVE (Spain) present on chs. E2/3 at high levels. Colour was good, with sports programming, till lunch time. The only other notable event consisted of auroral activity on the evening of the 27th, with signal reception on chs. E2/ R1/E3. Perhaps the shortest \log on record...
I've been clearing up the interference problems associated with my ATV transmissions at 437 MHz . To date, all the households affected have either used a head amplifier or been coupled to a local distribution system. Suppression indoors has usually been sufficient, using a Teldis bandstop filter that provides a 34 dB rejection at 435 MHz . In one case it was necessary to fit a Labgear CM9034 group-pass filter between the aerial and a masthead amplifier, due to problems with the latter. This filter provides 30 dB attenuation at 435 MHz . The distribution system was dealt with by adding a front-end filter (in agreement with the operators).

New Products

A series of TV sound receivers has been introduced by Kingsbrook Marketing Co. Ltd. (92E Macadam Road, Earlstrees Industrial Estate, Corby, Northants NN17 2 JN). In addition to a UK system I u.h.f. version there are others for v.h.f./u.h.f. reception including French TV. The receivers are aimed at the hi-fi enthusiast and have six push-button tuning (UK version anyway). The specification looks good, with features such as dynamic noise reduction. Prices range from around $£ 100$ to over $£ 140$ for a model with a built-in hi-fi amplifier. The tuner is a Mullard MOSFET type.

Garex Electronics (7 Norvic Road, Marsworth, Tring, Herts HP23 4LS) have expanded the range of accessories to go with the famed SX200 v.h.f./u.h.f. scanner. The H01 frequency converter gives coverage of the $96-108 \mathrm{MHz}$ band (or $88-108 \mathrm{MHz}$ to order). It's a downconverter for
in-series connection and costs $£ 35$. A converter for $200-$ 400 MHz is promised. A signal strength meter kit drives either a meter or bar LED display: this costs $£ 13.75$ (meter and stand assembly $£ 16 \cdot 50$). Additional memory capacity (an expansion unit) is promised, also an auto a.m. selector for use as an airband monitor and a v.h.f./u.h.f. notch filter. Prices don't include VAT. The SX200 series has proved to be very popular with TV-DXers due to its $26-88 \mathrm{MHz}$ coverage - it's ideal as a video surveillance monitor, particularly on weak signals.

News Items

Holland: AFN-TV is now operating from Soesterberg on ch. E71, at some 25 kW e.r.p. (vertical). The standard AFN-TV pattern and a "simple" test card F are used.
Belgium: The ch. E25 transmitter reported as being a Wavre replacement last month is in fact located in central Brussels, near the Botanic Gardens. The e.r.p. is 5 kW and the station has been received by several DXers at various distances.

The impressive array of u.h.f. and Band III aerials on Ryn Muntjewerff's mast at Beemster, Holland. Details were given in the April issue (page 324).

A scrambled pay-TV service is being planned by RTBF, to start towards the end of the year, feeding cable networks and several low-power transmitters.
Eire: We've a sound cassette recording made in December 1983 referring to Nova TV, ch. 60, with a Dublin telephone number (606878). Reception reports are requested from viewers - the test transmissions apparently consisted of colour bars, with programe origination from video tape. Has any reader news of any progress with this station?
France: The new Paris ch. 1 (Band III) transmitter is in operation with test transmissions, normally from 1400 1800. These consist of the PM5544 test pattern with TDF identification at the top, RESEAU 4 at the bottom, cartoons and an identification slide. The cartoons carry their own sound, otherwise the TDF FIP radio programme is used. TF1 is radiated at 1200 , with scrambling. All times are local.
Czechoslovakia: A new 1 kW ch. R41 transmitter in Prague broadcasts the USSR Gorizont TSS-1 programme. The Czechoslovakian $66-73 \mathrm{MHz}$ f.m. radio band is to be closed, with a move to $88-108 \mathrm{MHz}$ by 1990 or soon after. A similar transfer is planned by Magyar Radio (Hungary). In recent years f.m. radios have been equipped for reception of both bands.
Satellite services: The Dutch Broadcasting authority NOS has decided to abandon plans for a DBS service via the ECS-1 satellite, on grounds of cost. The transponder allocated to NOS will be offered to private interests.

Miscellany

We understand that the French AFATELD DX-TV club has ceased operation for the present, due to lack of support.

The British Telecom Milton Keynes cable TV system mentioned last month has been closed down on instructions from the Department of Trade and Industry. The problem was interference centred on 144 MHz . A different frequency will be used.

From our Correspondents . . .

Not much reception, not many letters! Robert Copeman (Victoria, Australia) reports the loss of his aerial system when a severe storm, with winds up to $112 \mathrm{~km} / \mathrm{hour}$, hit the Melbourne area on March 26th. Conditions there during March were similar to those in the UK.
Robin Crossley (125 West Street, Dunstable, Beds LU6 1SG) has for sale a Thorn 1690 chassis in excellent condition with the following modifications: ET021 tuner, $4-7 \mathrm{MHz}$ tunable sound i.f., r.f. gain control and video detector polarity switching. Price is $£ 40$ - if interested, write to Robin directly. His present aerial system consists of a wideband Triax Unix 92 aerial for u.h.f., a wideband eight-element array for Band III, and a wideband fourelement system for Bands I/II.

Correction

A correction is required to my mention of Belgian cable charges in the April column. The 67 franc charge refers to the equivalent of the UK British Telecom fee to the cable company, not the payment made by cable viewers. The subscriber charge was some 3,588 francs (about UK $£ 45$) in 1983, before the addition of BBC and TV5. The charge to the cable company is for the microwave link between the coast and Brussels.

SOUTH WEST AERIAL SYSTEMS - TODAYS AERIAL TECHNOLOGY AT TTS BEST - AND WITH TOMORROW IN MIND.
We provide the consultancy and supply the equipment for ALL receiving installations in the VHF/UHF broadcasting spectra. Our EXTENSIVE RANGES of aerials, amplifiers, filters and allied components cover Western Europe's most respected companies including Antiference Jaybeam, Pye/Labgear, RS (Components), Wolsey, Fuba, Triax, Polytron, Teldis, Vorta, Aerialtech, Channel Master/CDE, Hirschmann and tron, Teldis, Vorta, Aeriatech, Channel Master/CDE, Hirschmann and
our own exclusive aerial ranges for various VHF options, including our own exclusive aeria
Wideband Band 1 DXing.
WHETHER YOUR NEED IS FOR LOCAL OR FRINGE RECEPTION, ALTERNATIVE CHANNELS, TV/FM DXING, OR FOR A DISTRIBUTION SYSTEM, SOUTH WEST IS THE 'ONE-STOP' ADDRESS FOR ALL EQUIPMENT.
We have the practical experience in resolving reception problems, interference reduction and DXing - our customer consultancy service will end your difficulty.
We can currently offer a 4 GHz Wolsey Satellite torminal package (12GHz system available shorty). To further complement our service to N-DXers, both mono \& colour multi-standard VHF/UHF TV's are stocked, ring for latest stock situation and prices!
SOUTH WEST AERIALS IS UNIQUE - TRY OUR COMPREHENSIVE CATALOGUE AT 54p. Please include an SAE with all enquiries, customer reception consultancies and for our own VHF aerial leaflets. (Access/Barclaycard welcome).

SOUTH WEST AERIALS 11, Kent Road, Parkstone, Poole, Dorset, BH12 2EH. Tel. 0202738232

TV LINE OUTPUT TRANSFORMERS

ADD 15\% VAT to ALL prices. Delivery by return of post

If the Transformer you require is not listed please phone.	
RANK BUSH MURPHY	DECCA
2146 A640 dual std mono 8.51	MS1700 200120202401 mono 8.00
Bush A792, A793 single std mono 8.51	MS2404 24202424 mono 8.00
A774 single std mono 8.50	121012111511 portable 11.50
A816 solid state mono 9.00	GYPSY portable $\quad 11.50$
2712 T16a T16b mono portable 9.00	CS1730 1733 colour 8.00
A823 A823b A823av colour 10.00	CS1830 1835 colour 8.00
21792722 series colour 10.00	'30' series BRADFORD colour $\mathbf{8 . 0 0}$
T20a T22 series colour 10.00	$70,80,100$ series 8.00
2718 P.0.A.	110,130 series 8.00
WINDING T20A T22 2179 T26	PHILIPS
FERGUSON HMV MARCONi	320 saries solid state mono $\quad 8.50$
1590159115921593 mono . 8.00	G8 series colour 8.00
161216131712 mono 8.00	$G 9$ series colour 8.50
16901691 mono 8.50	G11 series colour 14.98
16001615 series mono 9.74	KT2 Lopt 9.00
30003500 EHT or SCAN P.O.A.	KT3 Lopt 10.60
800085008800	KB-ITT
900092009300	
950096009650	VC200 VC205 VC207 mono 8.00
9800 TX9 TX10 P.0.A.	VC300 VC301 VC302 portable $\quad 8.00$
G.E.C.	$\begin{array}{ll}\text { CVC1 CVC2 colour } & \mathbf{9 . 0 0} \\ \text { CVC5 CVC7 CVC8 CVC9 colour } & 9.00\end{array}$
2047 to 21053112 to 3135	$\begin{array}{ll}\text { CVC20 series colour } & \mathbf{9 . 0 0}\end{array}$
"GAIETY' FINELINE 8.00	CVC30 CVC32 series colour $\quad \mathbf{8 . 0 0}$
2114 portable mono 1201H 8.00	CVC40 series $\quad 14.56$
31333135 M1501H portable mono 8.00	
DUAL STD hybrid colour 11.00	L.O.P.T TESTER
SINGLE STD hybrid colour 10.00	Total Price Including VAT. ¢16.79
SINGLE STD solid state $90^{\circ} \quad 8.50$	Tidman Mail Order Ltd., 236 Sandycombe Road, Richmond, Surrey. Approx. 1 mile firom Kew Bridge. Phone: 01-948 3702 Mon-Fri 9 am to 12.30 pm . 1.30 to 4.30 pm . Sat 10 am to 12 pm .
INDESIT, GRUNDIG, TANDBURG, TELEFUNKEN, FIDEUTY, KORTING, TYNE, B+0. Price on application. HAMOND COMPONENTS (Midand) Ltd. 416, Moseloy Road, Birmingham B12 9AX. Phone 021-40-6144	

Scope Component Test Unit

David Botto

In view of the increasing complexity of present day TV sets and VCRs, anything that makes life easier for the service engineer is welcome. You'll find the component test unit described in this article one of the most useful and time saving instruments on your bench - it won't stand idly on a shelf. It can be used with almost any oscilloscope to test transistors, diodes, thyristors, zener diodes, capacitors and even resistors, the condition of the component being displayed on the scope's screen.
The component tester really proves its worth when checking semiconductor devices. The usual method of checking a transistor or diode is with an ohmmeter. This is quite good, up to a point: as engineers know from hard and sad experience however, it's not a method that's one hundred per cent reliable. With the scope component tester the slightest leakage or fault in a transistor or diode is revealed - the test method has proved to be completely reliable. With the exception of thyristors, there's a further advantage - only two test leads are required. This is a lot easier than juggling with three test prods to check a transistor.

Basic Principle

A knowledge of how the tester works will help in getting the best results from it. Fig. 1 shows a simplified circuit. An a.c. voltage is applied to resistors R-low and Rhigh via terminals A and B. Experiments have shown that the frequency of this a.c. input can be anything between about 25 Hz and 20 kHz . For convenience, the tester uses the 50 Hz mains frequency. The scope's internal horizontal timebase is not used. Instead, the oscilloscope's external horizontal input (X input) is connected to point X . Point E goes to the scope's chassis and point Y to the vertical (Y) input. With the scope correctly set up, the screen display will consist of a horizontal line. This is because resistor R high has an ohmic value several hundred times that of resistor R-low. If test points E and T are joined together, a vertical line will appear on the screen.
If a semiconductor junction, for example a diode, is connected across points E and T with the cathode to E ,

External view of the unit.
the diode will conduct when the a.c. waveform is such that point T is positive with respect to point E. When the waveform swings negatively, the diode will cease to conduct. Fig. 2 shows the display on the screen. Reverse the diode and you get the waveform shown in Fig. 3.

Capacitors connected across test points E and T will produce ellipses of varying width depending on their capacitance value. A resistor produces a line set at an angle dependent upon its ohmic value.

Circuit

The complete circuit of the scope component test unit is shown in Fig. 4. Resistors R1 and R2 were not included in the original prototype but were added later. With no load connected to the transformer, the voltage across the primary winding is 240 V a.c. When a load is connected to the secondary winding, the a.c. voltage across the primary winding is considerably reduced. The power applied to the component under test is thus limited, protecting small diodes and transistors.
Preset resistor VR1 controls the voltage applied to the scope's Y input while VR2 controls the voltage applied to the X input.
The battery and variable resistor VR3 (level control) are used for thyristor testing. A battery rather than a diode fed from the transformer is used to turn on the thyristor under test as this produces a good, clean waveform. The battery lasts a long time - almost its shelf life.

Construction

There's nothing critical about the construction - the photographs show the finished appearance and the internal layout. The small board used was designed to hold two i.c.s but proved to be ideal for use in the tester. If you decide to make your own board, the only point to watch is that the a.c. mains input circuitry is spaced well away from the rest of the circuit. An on/off switch was not included as we always unplug the tester when it's not in use - one could be incorporated as shown in Fig. 4. Fuses can also be added.

The screened leads that feed the scope's X and Y inputs were fitted with $75 \Omega \mathrm{BNC}$ connectors, but this is not critical - fit connectors that suit the scope's input terminals.

The test leads have 4 mm plugs at one end and mini or micro clips at the other end - these are very useful for making in-circuit tests.

It's a sound policy to apply a very thin coat of circuit varnish to the print side of the board when the basic construction has been completed. Then use a small brush to apply a thin coat of circuit varnish to all solder tags, joints, etc. This will help to ensure trouble-free operation in the long term.

Setting Up

Set the two controls VR1 and VR2 to the mid-position and the level control VR3 to its minimum position

Fig. 1: Principle of the tester.

Fig. 2 (left): Diode offlon display.
Fig. 3 (right): Diode onloff display.

Fig. 4: Circuit of the test unit.

Fig. 5 (left): Double image obtained with a.c. coupling. Fig. 6 (right): Displays obtained with zener diodes.

Fig. 7: Silicon npn transistor displays. (a) Base-emitter. (b) Base-collector. (c) Collector-emitter.

Fig. 8: Silicon pnp transistor waveforms. (a) Base-emitter. (b) Base-collector. (c) Collector-emitter.
(maximum resistance). Switch the scope to external X drive and set the Y input to the least sensitive d.c. range. The tester will work if an a.c. input is used, but with some scopes a double image may be obtained - see Fig. 5.

Fig. 9: Displays obtained with germanium transistors. (a) Base-collector. (b) Base-emitter. (c) Collector-emitter.

Fig. 10: Transistor fault conditions. (a)-(c) Leakage in a transistor's base-emitter junction or a zener diode. (a) In or out of circuit check. (b)-(c) Out of a circuit check. (d) Transistor base-collector junction or diode leakage, out of circuit check.

Adjust the scope's controls for a centred horizontal line with slight over scanning. Short test leads E and T to produce a vertical line, then adjust the vertical gain control so that the line just scans the screen. VR1 is included for fine setting if needed.

Checking Zener Diodes

A very useful feature of the tester is the ability to check zener diodes and measure their voltage ratings against the scope's graticule. You'll need about four or five zener diodes for calibration, with voltage characteristics between 5 V and 38 V . With the cathode connected to E and the anode to T, a zener diode gives the waveform shown in Fig. 6: the higher its zener voltage, the wider the horizontal part of the trace. By using the scope's horizontal gain control to keep the width correct, at the same adjusting the preset VR2, the zener voltages can be calibrated against the graticule divisions. VR1 and VR2 should then be sealed with a tiny spot of sealant.

Transistor Tests

To check an npn transistor, connect lead E to its base and lead T to its emitter. The waveform displayed should be as in Fig. 7(a). Transferring lead T to the collector should produce the waveform shown in Fig. 7(b). With lead E connected to the emitter and lead T to the collector, the waveform should be as shown in Fig. 7(c). It's not usually necessary to make emitter-collector checks in day-to-day testing.

Use exactly the same procedure with a silicon pnp transistor to get the waveforms shown in Fig. 8(a-c).
The transistors used in power supplies and line output stages produce the same traces except that the horizontal section is wider. Germanium transistors give waveforms similar to those shown in Fig. 9.
Field effect transistors of either the junction or MOS type cannot be checked and could be damaged if you try.

A short-circuit device will produce a vertical line, an open-circuit device a horizontal line. Some other fault conditions are shown in Fig. 10.

Checking Thyristors

To check a thyristor, connect the E test lead to the cathode and the T test lead to the anode. The display

Fig. 11: Waveforms obtained with a BT 106 thyristor. (a) With VR3 at minimum. (b) Thyristor just starting to conduct. (c) Thyristor on. (d) Saturation.

Fig. 12: Testing a diode-thyristor combination. (a) Diode test only. (b) Thyristor turned on.

D888

Fig. Measurement of capacitance.
Fig. 13: Measurement of capacitance

Fig. 14: Tests on LEDs. (a) Waveform for a small LED. (b) Waveform from a seven-segment LED.

lead from socket G to the thyristor's gate. Some small thyristors, such as the TIC44, will then produce the waveform shown in Fig. 2. With larger thyristors such as the BT106, the level control must be turned slowly to obtain this waveform.

This test is also useful if you suspect that a thyristor is turning on too early or too late. Compare it with a known good thyristor of the same type.

On disconnecting the G lead, the horizontal line should reappear. Fig. 11 shows waveforms for the BT106.
The thyristors used in applications such as TV line output stages often have a diode incorporated in the same encapsulation, connected across the thyristor's anode and cathode. With the E lead to the cathode and the T lead to the anode, the waveform shown in Fig. 12(a) should be seen. This shows that the diode is o.k. Next connect the G test lead to the thyristor's gate and slowly turn up the level control. When the thyristor tums on, you'll see the waveform change as shown in Fig. 12(b).

Measuring Capacitance

Capacitors with values between about $0.22 \mu \mathrm{~F}$ and some hundreds of microfarads can be measured. With the capacitor connected to test leads E and T , an ellipse will be seen, the size depending on the capacitor's value - see Fig. 13.

Large value capacitors will produce an almost vertical line. With these, use either the scope's X times five (or ten) control or increase the setting of the X gain control. If you calibrate settings with capacitors of known value, you'll find this test extremely useful and reliable.

LED Tests

To test an LED, connect the E lead to the cathode (usually identified by a flat side or notch) and the T lead, with a 100Ω resistor in series, to the anode. The LED should light and the waveform shown in Fig. 14(a) should be seen. Reversing the leads will simply reverse the waveform - the LED will still produce light.

Seven-segment LEDs can also be tested. This test is particularly useful when one segment is not lighting. Is it due to the LED or the complex drive circuitry? Connect the E lead to the common cathode (or anode) connection and the T lead, via a 100Ω series resistor, to each segment
control at minimum (maximum resistance), connect the
Fig. 15: Waveforms produced by various resistor values.
should then consist of a horizontal line. With the level

Components list

R1	4.7k 2W	VR1 1 k miniature horizontal preset
R2	4.7k 2W	VR2 100k miniature horizontal
R3	1.2k 1W	preset
R4	330k 1W	VR3 3 k wirewound potentiometer
R5	820k 1W	

T1 RS 207-661 mains transformer. N1 Tandy 272-708 or similar miniature 240 V a.c. neon.
PCB Tandy 276-159 experimenters' board.
Plastic case with feet - Tandy 270-9501 or similar. Two BNC 75Ω connectors, RS, or as required. Battery holder and 1.5 V battery - UM3 or equivalent. Screened audio lead, mini-clip test leads, etc. Three terminals, two red one black, Tandy 274-661. Optional: Double-pole on/off switch; two 630 mA 20 mm anti-surge fuses with holders.

Internal view of the unit.
connection in turn. The segments should light and the waveform shown in Fig. 14(b) should be displayed - an FND500 was used to get this trace.

Resistor Waveforms

The displays obtained when resistors of various values are connected across T and E are shown in Fig. 15. This test won't replace your ohmmeter, but is useful when making in-circuit checks.

In-circuit Tests

A helpful feature of the tester is its use for in-circuit tests. Many transistors, diodes, capacitors, etc. can be tested whilst still in circuit - disconnect the equipment from the mains supply of course! Also make sure that reservoir/smoothing capacitors and the c.r.t.'s final anode are discharged.

In some cases the waveforms will be affected by other
components in the circuit, i.e. those shunting the component being checked. In practice you'll soon get used to this. If you service particular TV sets or VCRs regularly, it's helpful to note various key waveforms you should obtain. If there's room, these can be drawn on or around the circuit diagram.

If it's necessary to isolate a transistor, unsolder only two of its leads and keep them clear of the print. Check the transistor, then resolder the two leads if it tests good. This saves time and also avoids the problems of finding the board unmarked after removing a transistor completely and perhaps putting it back the wrong way round...
The same principle applies with diodes, capacitors etc. with only one lead being unsoldered of course.

Continuity Testing

Continuity checks on print and transformer windings etc. can also be made. Doubtless you'll find many additional uses for your component tester.

VCR Clinic

Toshiba V8700

The fault on this machine was no colour in the still picture or picture search modes, though there was some evidence of flashes of colour. As the colour was perfectly stable in normal playback, attention was paid to the still chroma stabilisation circuit - Q228, IC204 and delay line X204. Direct and delayed $(64 \mu \mathrm{sec})$ signals are fed to pins 8 and 9 respectively of the i.c., the idea being that when a disturbance is detected the delayed signal is used. The output at pin 6 should be a 4.43 MHz chroma signal with a burst level of around 600 mV . If the burst is varying in amplitude, it can be balanced by the "still twiddler" R255. In this particular case however the burst level couldn't be stabilised. We've had this happen before, due either to the i.c. or the coupling capacitor C246. On this occasion the culprit turned out to be the delay line - proved by substitution. (The input at pin 9 of the i.c. was much lower than that at pin 8.)
S.B.

Ferguson 3V23/JVC HR7700

Interesting to note (April issue) that others have experienced problems with the tuner/timer board due to failure of one of the TA57 transistor logic gate arrays. In the last instance we had the machine would switch to "prog set" just after being powered and refused to have anything further to do with the T/T functions, though the mechanical functions were o.k. One of the gate transistors had a collector-base leak that dragged a data line high enough to cause trouble.
S.B.

Toshiba V9600

A couple of V9600s. The reported fault on the first one was noisy playback. So I inserted a tape which disappeared at a great rate of knots, followed by an all time record lace up. In playback there were horrible great straining noises, so the cassette was ejected - at about 90 miles an hour! It was obvious that all the motors involved were running somewhat fast, mainly due to the 14 V power

Reports from Steve Beeching, T.Eng. (C.E.I.), Derek Snelling, Hugh Allison, Les Harris and M.S. Barakat

rail being 22 V . This was traced to failure of transistor Q902 in the d.c./d.c. converter (regulated power supply to the likes of you and I) - panel U901. A BC328 was used as a replacement - it's getting a bit like the old days when a BC109 was used as a replacement in almost every conceivable circuit.

The next machine had almost the opposite fault - it could barely turn the cassette motor, which drives the lift in the cassette compartment. This time the 14 V rail was missing due to fuse F802 being high impedance. After replacing this there was very little drive, the culprit being transistor QL85 on the UT01 motor drive panel. We replaced it with a TIP31 - who was that shouted "bodge artist"?
S.B.

Sony SLF1

Finally . . After going on a Sony training course run by a nice guy called Rob I felt better able to tackle SLF1 faults. When ET rang up about that fault mentioned under the heading "defeat" in the March issue - the cassette wouldn't thread up - I was confidently able to tell him to change IC2 (which is the one I didn't change) instead of IC3 which issues the threading instruction. Needless to say it turned out to be IC3. You just can't win.
S.B.

Problem with a Drum

How to make a simple head change difficult - the machine in question was a Ferguson 3V22. The head needed replacement, so I fitted a new one, then did a recording and playback. The head switching was slightly out showing up as excessive foldover at the bottom of the picture. Out came the scope and we set the record and playback switching points. Lovely picture. Put the top on the machine and do a test card recording as a final check. Oh dear, the switching points are way off. This time they didn't want to set correctly, and even appeared to drift.

The problem had not been present prior to head change, so I thought the new head might be faulty. As
changing it was easier than thinking of another cause for the fault I went to remove the newly installed head. It was at this point that the deliberate mistake was discovered I'd forgotten to screw the head on. No wonder the switching points were varying - the head was slowly moving around on the spindle, thus constantly altering the position of the heads relative to the switching magnets beneath.
D.S.

Hitachi VT8500

Now to an Hitachi machine with a genuine fault - a VT8500 with no visual search. All other modes worked correctly, but when visual search in either direction was selected the machine went into the stop mode. It did this with both the front panel controls and the wired remote unit, so problems with the switches or the ladder network could be eliminated.

In cases like this I usually start at the microcomputer i.c. and work outwards. Not because this i.c. tends to be faulty - quite the opposite in fact. I just find it the easiest way to go about fault-finding. In this case pins 3 and 4 of the i.c., the search and reverse pins, were found to be high instead of low when visual search was selected. For once the HD44801A05 was responsible.

Ferguson 3V22

Our tea lady's grandson had posted a marble through the tape loading flap, then inserted a cassette and switched to play. The picture (after removal of the marble) and all the waveforms showed the classic symptoms of a broken head. A new drum was fitted, but the symptoms remained the same. An eagle-eyed colleague spotted that the slanted pole on the supply loading arm was not fully locating in the supply arm stopper (V-block). Although the gap was only about $1 / 16$ th of an inch, there was insufficient adjustment to take up this slack using the method described in the manual. No levers or anything seemed to be bent, and the problem was eventually solved by slackening the set screw on the take-up loading arm lever (underneath), pushing the supply loading arm slightly forward, then retightening. The tape has to run round the head properly of course!
H.A.

Hitachi VT14

This machine would intermittently fail, with the "operate" light not lit. Voltage checks during the fault condition revealed that the regulators Q101, Q102 and Q103 were all off. These regulators are controlled by IC902 on the system control panel, via an inverter. IC902's power

Fig. 1: Mecha state switch connections, Hitachi VT14.
control pin 3 was low instead of high as it should have been, but changing IC902 made no difference. Further checks with the machine in the stop mode under the fault condition revealed that pin 24 of IC902 was low instead of high (pin 23 should be low, pins 24 and 25 high, see Fig. $1)$. The mecha state switch was checked and found to be in the correct positon, the fault being due to D910 being leaky. Incidentally PG902/CN002 are numbered incorrectly in the official circuit - Fig. 1 is correct.
L.H.

Sony C5 and C7

The mother-in-law rang up to say that there was no sound coming out of the video (oh that it could be the other way about!). In fact the accompanying TV set produced sound when a prerecorded tape was played, but there was no sound in the E-to-E mode or with a recording made on the machine. Obviously the sound i.f. chip, a TBA120UB. A quick check with the AVO revealed that there was no voltage at pin 14 , one of the input pins. This should be biased up by an internal resistor. With the machine still on, hands were placed on the board to position it ready for removal of the chip when, guess what? - sound! Bung in a $10 \mathrm{M} \Omega$ resistor from pin 14 to the supply pin (11) and there we were. The next video in for repair was a C7. Same symptoms - and the same bodge worked again! H.A.

Remote Control Problem

I'd been handed this Ferguson infra-red remote control handset for repair during the weekend. When I opened it up on Monday I found a spare inch of wire shorting the infra-red LEDs to the supply. Remove wire and check waveform to LEDs with scope. This looked good but were the LEDs o.k.? Being infra-red, I couldn't see, and I'd nothing to try the unit out on. Suddenly a stroke of genius. Get out old monochrome TV camera and monitor and point the control unit at the camera. When it was activated, the monitor displayed white light, the TV camera's spectral response being wider than that of the human eye. Who's a clever boy then?
H.A.

ITT VR3905

This machine (basically the same as the Ferguson 3V35) would load, but the capstan motor wouldn't run - except for unloading (the capstan motor also drives the reels, as with the Hitachi VT11). Checks revealed that there was no voltage at pin 3 (motor drive) of IC206, due to the motor having gone short-circuit to its metal casing. L.H.

Hitachi VT14

This machine stopped displaying timer functions only a week after delivery. The supplies to the timer board were correct, and during our investigation plug/socket 703, which links the timer and programme panels, was disconnected. The timer display then came on and continued, even after reconnecting PG/CN703. All functions were fine except that there was no channel movement up or down. Voltage checks around the programme control chip IC721 revealed that pin 13 was at approximately $1 \cdot 2 \mathrm{~V}$ instead of 10 V , but the cause didn't seem to be due to anything connected with this pin. Eventually we found that C712, connected to pin 17 , measured 40 pF instead of $0 \cdot 01 \mu \mathrm{~F}$. Replacing this capacitor restored normal operation.
M.S.B.

TV Fault Finding

Reports from Jim Rainey, John Coombes, Malcolm Burrell, George R. Wilding and M.S. Barakat

Decca 100 Series Chassis

Intermittent mains fuse blowing on these sets can be due to the earth tag of the h.t. reservoir/smoothing block C801/2. We've had at least six cases recently. It can also cause the fusible resistor R282 on the decoder panel to go open-circuit, giving the white raster with flyback lines symptom.

Field collapse can be the result of resistors R361/8/9 in the field scan circuit going open-circuit. They are all 1Ω, $\frac{1}{2} \mathrm{~W}$ and are connected in parallel to provide the earth return path and develop a field feedback waveform.
J.R.

Grundig CUC220 Chassis

We've had several cases of field collapse due to D2764 (SKE2F1/01) going open-circuit. The clue is a voltage reading of about 7 V at pin 8 of the TDA2655B field timebase i.c. instead of 23.5 V .
J.R.

Philips G11 Chassis

The fault with this set was reduced field scan. It was found to be due to R2104 (1 Ω) going open-circuit. This is one of two parallel-connected resistors that provide the earth return path for the field scan current, their main purpose being to provide feedback waveforms. Since one resistor only was open-circuit, the amplitude of the feedback waveform increased - and since this is negative feedback, the field output was reduced. We discovered the cause of the trouble by scoping waveforms and finding the one concerned to be almost twice what it should have been in amplitude.
J.R.

Thorn 1690 Chassis

This set had an awkward fault: it would operate quite happily, then the sound and vision would suddenly vanish. It had been in a couple of times already. We'd changed the a.g.c. transistor and the video driver transistor and everything had seemed to be o.k., but back it would come. The problem was to pounce on the set before the fault cleared.
A.G.C. problems can be difficult. Is the fault in the a.g.c. circuit or the controlled stage(s)? A sort of chicken and egg situation. The a.g.c. gating was checked with a scope and was in order. Voltage checks weren't much help, so the scope was used to monitor the a.g.c. voltage at each of the two controlled transistors VT1 and VT2 (see Fig. 1). When the fault occurred, the voltage varied widely. The reservoir/smoothing capacitors in the a.g.c. circuit were suspect, but proved to be o.k.

I decided to try operating both controlled transistor's with bias from a battery/potentiometer combination instead of the a.g.c. line, whilst monitoring the a.g.c. voltage. The biasing of the controlled stages remained erratic but the a.g.c. voltage was stable. At least we'd cleared the a.g.c. circuit of suspicion. The a.g.c. was then reconnected to VT1 while VT2 was biased from the battery. The fault persisted. The biasing arrangements were then swapped over, with VT1 externally biased. The fault was less apparent, but the bias at VT1 still varied. I concluded that the fault was in the first i.f. stage. Having checked the
transistor, C10 was checked. It seemed o.k. when checked with a meter, but the fault went when it was disconnected. After fitting a replacement the set ran on soak test for several days and was then returned to the customer.M.B.

Thorn 1590 Chassis

As far as we could see, the picture on this monochrome portable was of about normal height and linearity. It was displaced however so that it filled mainly the top of the screen - as if there was a shift control that was turned to one extreme. The only possible reason for this unusual condition was an abnormal d.c. supply through the field scan coils. The cause was evident on removing the back. R95 $(6.8 \mathrm{k} \Omega)$, which feeds a small current from the 95 V rail to the field scan coils, was badly discoloured. On test it was found to have fallen to a very low value. Replacement restored normal conditions.
G.R.W.

Fidelity CTV14R

The contrast level was low, the control itself having negligible effect. This potentiometer varies the voltage, normally about 6 V , at pin 7 of the TDA1365 colour decoder i.c. We found that there was little voltage at pin 7 whatever the setting of the control, due to a leak in the electrolytic C116 which decouples its slider. The basic cause of the trouble was that the capacitor had been connected the wrong way round. It had managed to stand up to the effects of incorrect polarity for some time, but had eventually succumbed. We've since heard that this was not an isolated case of C 116 being inserted the wrong way round.
G.R.W.

Philips G11 Chassis

There was reduced height and width, but the most disturbing feature was the way in which the raster periodically varied in size and jumped about. Our first impression was that the h.t. supply was incorrect and unstable, but a check at TP1 produced a normal reading of 156 V . We've had cases of dry-joints on the line scan panel in this chassis, particularly on the oblong, green-cased capacitors. Applying pressure to one of them produced a distinct

Fig. 1: A.G.C. checks using a battery.
rocking movement, indicating an unsoldered connection. When this connection and one on the other similarly encased capacitor had been resoldered we had a stable, full-sized picture. Since the leadout wires of these capacitors fit straight into the PCB holes without bending, it seems that they may drop away from the board, thus leaving insufficient lead protruding for correct soldering during production.
G.R.W.

Toshiba C1480B

If there's no channel memory, check whether the indicator LED DA20 lights - note that it's shown as DA01 on the circuit diagram and DA20 on the panel. If it does light, check whether it goes out when the memory switch SA21 is operated. Replace DA20 or SA21 as necessary. If these items are all right, check the voltages around the TC9002P control i.c. (ICA01). Replace the i.c. if any discrepancies are found. If necessary check the TMM841P memory chip (ICA02) in the same way.
J.C.

Grundig 8610

The problem with this set was no colour. A replacement colour module was fitted, but still no colour. Next an RGB module was tried, this time restoring the colour. So where was the fault in the original module? This module contains
part of the colour decoder, including a rather unusual i.c. (IC941, type TCA660) which seems to be to do with Secam operation. Scope checks showed that the demodulated chroma signals were reaching pins 8 and 9 of this i.c., but there were no colour-difference outputs at pins, 7,10 and 12 . Voltage checks around this i.c. were then made. All voltages were present and correct except for pin 6 , which was at approximately 0.8 V instead of 5.5 V . This pin is associated with Secam operation, and the only thing connected to it in UK models is C904 $(0.01 \mu \mathrm{~F})$. It turned out that this capacitor was leaky, replacement restoring normal operation.
M.S.B.

Decca 110 Series Chassis

For a bright picture with flyback lines, check whether R913 ($220 \mathrm{k} \Omega$) on the tube base panel is open-circuit. It's in the earthy side of the tube's first anode supply network.
J.C.

Toshiba C2090B

The field output transistors TR306 (2SC2073) and TR307 (2SA940) can be responsible for field jitter on this model. Check them by substitution. If still in trouble suspect the TA7609P timebase i.c. (IC301). Again check by replacement.

Improved Replacement Modules

Tony Thompson

It's odd that some of us tend to have an irrational fondness for certain older TV chassis even though we know all too well that they suffer from various weaknesses due to poor design. Occasionally the illnesses to which they are prone become so acute that repair is impossible. An alternative in this case is replacement of the offending module. But this isn't always possible. Manufacture of the module concerned may have ceased, or a serviceable unit may be demanded before a working one is provided - an illogical requirement, since non-repairability is the usual reason for the need to fit a replacement!

We are fortunate nowadays in often having an alternative to the units supplied by the original manufacturers. Such panels and modules are generally of improved design, produced by enterprising smaller firms that are quick to spot a servicing need and can make the quantities required economically. The claim is that such units are not only as good as the originals but often capable of providing measurably better results.

The following notes cover various currently available tuners, tuner selector switches, convergence and colourdifference amplifier panels, i.f. gain modules, transistorised replacement units for valves and certain e.h.t. trays and line output transformers. I'm not claiming that the list is exhaustive: it should however give an idea of what's available, and the items mentioned have all been tried and found to be satisfactory. The chassis involved are getting on a bit, but the endemic faults that call for a replacement module will show up as a set ages.

GEC CTVs

I've been well served by the solid-state GEC C2110
series over the years. It's a chassis with no really bad features apart from the annoying double-sided print. The main problem arises in those models fitted with touch tuners. These are prone to sticking on one channel, or tend to return to the same channel despite the customer's efforts to watch his favourite programme. They can also vacillate between channels at a fair old speed, seemingly unable to decide which one to pick. It's mainly due to the neons, or to dirt or moisture on the touch pads. You sometimes come across a really troublesome one.

The problem can be eliminated by fitting a conversion tuner. These come complete with a new escutcheon with the station titles screened on - the touch pads are replaced by light-action switches. Fitting this conversion unit is in my experience well worthwhile, especially if you are renting the sets out or selling them under guarantee.

There are still some of the older hybrids with us. In this case I don't know of any alternatives, so it's out with the file, soldering iron and the thick copper wire and the hope that the burn-up on the timebase panel is not too severe!

The Philips G8

The later 550 version of the popular Philips G8 chassis suffers from three basic weaknesses: the tuner head switches, the line output transformer and the convergence panel.

The tuner control unit has six flap switches in two rows of three, the whole thing pivoting forwards for adjustment. It's often unreliable and is rather fiddly to tune - there's an uncertain quality that gives the conscientious engineer a guilt complex even when he's taken care, switch parts have been refitted and a new a.f.c. switch has been
installed. S.E.M.E. Ltd. (address later) can supply a new head that's a direct replacement for the original but has a radically different and more robust switch action and an easier to adjust potentiometer bank. The unit can be fitted without having to remove the back cover - a real bonus, as anyone who's struggled with the G8's awkward back will testify! I've not tried it on the earlier 520 version of the chassis, but it seems probable that with a little enlargement of the space the switch could also be used with this.
The 550 series convergence panel is troublesome, with a tendency to burn-ups and drift. The print will often be found in a badly charred state, making a satisfactory repair difficult. The alternative replacement panels available from the same source offer no great technological improvements but are better designed and give greater reliability with cooler running and generally better performance. They are direct plug-in units, requiring no soldering and needing only the minimum of adjustment.

I'm sorry to say that to date I know of no replacement for that infernal transformer! All I can suggest is careful balancing of the two-transistor output stage whenever the transformer or the transistors are replaced. This does seem to help, but I'm never without a couple of spare transformers in stock...

Pye CTVs

The Pye hybrid CTV series that's so popular with many engineers has long suffered from a colour-difference amplifier panel with a self-destruct tendency. This badly designed unit is crowded with heat generating valves and resistors and sits horizontally at the base of the cabinet, secured around its extremities by springy wire retainers in other words its support is inadequate! In addition there are numerous whisker thin print tracks. As a result of this, after the flexing and straining caused by many thousands of on-off cycles there's a tendency for lots of elusive intermittent faults to begin to show. Identical replacements were once available, but only on receipt of a repairable panel - a burnt one was not acceptable. Happily there's a solid-state replacement with transistorised output stages. Better definition is claimed, but you must decide for yourself. Some care is necessary in fitting the unit, with thoughtful dressing of the leads, if patterning and other instability problems are to be avoided.

Before splashing out on a replacement panel however the condition of the rest of the set should be assessed pay attention to the power supply, especially with the later line timebase/power supply panel which suffers from the same malady of thin print tracks and flexing due to the heat and the weight of components (it's also somewhat inaccessible).

The module that gives most trouble in the subsequent solid-state Pye chassis (the 713/725/731 series) is the i.f. filter/gain unit. I've found the replacement developed by LEDCo a useful alternative.

Tuner Control Conversions

The ITT CVC8/9 chassis have proved their reliability. Due to the fact that the tubes seem to last forever, they are deservedly popular. The problem here is the five-way, square button tuner bank. There's a conversion replacement (Alderson-James Ltd.) with six round buttons: well worthwhile.

Piano key versions of the Decca hybrid chassis can be
fitted with more reliable six- or eight-key units - some Telefunken sets were fitted with this chassis. The solidstate 70/90 series, which feature touch tuning, can be easily converted to light-action push buttons.

General Replacements for CTVs

There are two main items when it comes to general replacements rather than modules for particular chassis. First the universal e.h.t. tray. These are available from a number of sources to fit, with slight modifications, a whole range of UK and Continental chassis including those from Luxor, Decca, ITT, Telpro, Autovox and dozens more. The main exception is the Thorn range, from the 2000 onwards. Thorn went their own way in the matter of triplers, and you've just got to fit the proper replacement.

The second item relates to the luminance output stage. Most hybrid sets use the PL802 valve, which has been scarce and expensive for a long time. When a solid-state version came on the market many of us breathed a sigh of relief. The device works tolerably well, but I find that care is sometimes needed in adjusting the a.g.c. etc. I have to admit that I prefer the valve.

Monochrome Sets

"Solid-state" line output transformers are available for use in a number of monochrome chassis including the Pye 169/173 series, the Philips 210/300 series and the Rank A774 - they are solid-state in the sense that a stick e.h.t. rectifier is used in place of the troublesome thermionic diode type. They cost no more than the conventional type of transformer: I'd recommend the change if replacement is necessary.

The problem with some Rank portables is hard to obtain tuner units. Modified tuners based on standard electronic types are now available at prices that make the repair of these previously too costly to fix sets once more worthwhile.

Assess the Set First

Finally, a word of caution. These improved units can be tempting, but the general condition of the set should be carefully considered. A new tuner head or panel won't give the whole set a new lease of life and may cost a fair proportion of the set's market value. If the set is in generally good condition however it will often benefit from this updating.

Sources

The items that have been mentioned are available from various advertisers in this magazine. Other sources include:
S.E.M.E. Ltd., Unit 2E and F, Saxby Road Industrial Estate, Melton Mowbray, Leics. Tuner head conversions and convergence panels for the G8, solid-state CDA panels for Pye hybrid colour sets, universal triplers and the solid-state PL802 are available from this source.

Willow Vale Electronics, Old Hall Works, Arborfield Road, Shinfield, Reading can supply solid-state monochrome receiver line output tranformers, universal e.h.t. triplers, LEDCo i.f. filter/gain modules for the Pye 713-741 series, solid-state CDA panels for the Pye Hybrid chassis, and GEC C2110 series tuner head conversion kits from touch-tune to light-action switching.

HV2000 Sync Adaptor Unit

John Hammond

The Sony HV2000 provides a 12 V d.c. supply for a colour and a monochrome camera and enables the user to switch synchronously between the two cameras. In addition the monochrome signal can be faded or superimposed on the colour display, and can be synthetically coloured. A description appeared in the February 1981 issue of Television. It's a good quality unit, considering the low price, but its flexibility is limited by the unusual sync drive it provides for use with Sony's own monochrome camera. The simple circuit described in this article allows you to use any camera that requires HD and VD drive pulses, e.g. the National WV241 or various "industrial" cameras that can be bought cheaply secondhand.

Circuit Operation

The circuit is shown in Fig. 1. It produces HD and VD pulses directly from the HV2000's inverted mixed sync output. This means that there's a slight delay, and there are no syncs of any sort if there's no signal applied to the HV2000's colour camera input. The delay is no real problem, because the monochrome input is "cut" into the colour signal. The lack of syncs means that the camera's scan circuits must free run in the absence of any drive. The drive pulses provided are not to CCIR specifications or anything like it, but all the cameras tried have been quite happy.

Since we have to change only the form of the sync signal, the circuit is very simple. Regardless of what feeds the HV2000 unit, the mixed sync signal it provides is the same - all the separation and filtering have been done for us.

Vertical Drive Pulse Circuit

R2 and C2 form a low-pass filter that gives us a VD signal to feed to Tr 1 for amplification and inversion. Tr1
just about saturates, which helps to reduce any HD ripple on the VD signal. Diode D2 ensures that Tr2 turns off completely between sync pulses, giving a clean back edge. The VD pulse thus obtained is buffered by the emitterfollower $\operatorname{Tr} 3$ - a pnp device is used because current for a negative-going pulse is required.
If you compare the two pulses on a scope, you'll see that the VD pulse is slightly behind the incoming vertical component of the mixed syncs. Altering the value of C2 will reduce this delay if necessary, but the value of R7 will probably need to be changed as well to ensure that D2 operates correctly.

Horizontal Drive Pulse Circuit

The HD pulse is fed to the base of Tr4 by the coupling network C1, D1, R13. Tr4 is another saturating amplifier which inverts the pulse to obtain the correct polarity. The output is buffered by Tr5. The sync signal from the HV2000 unit swings nicely about earth potential once the operating conditions have settled after switching on hence R1. This means that on the negative swings (the VD pulse part) D1 conducts. C1 then sees a path to earth, whereas on the positive swings it sees R13. Thus adequate $R C$ filtering of the HD pulses and d.c. clamping are both obtained, providing a good operating point for Tr4.

Construction

Several types of transistors were used in the prototype and seemed to behave well. Avoid using very high or low gain types. Boxed versions of the BC107 and BC117 were finally used. The power supply required comes from the HV2000 which can also supply the camera if this is suitable for 12 V operation.

The original prototype was housed in a diecast box with a 10 -pin socket at the side for the camera cable. A BNC

Fig. 1: Circuit diagram of the sync adaptor unit.

The sync adaptor unit (left) in its diecast box connected to the Sony HV2000 video unit (right).

Internal view of the sync adaptor unit. The circuit is built on Veroboard and is not critical.
socket was also fitted as a video return feed to the camera. Cameras such as the WV241 have a camera/line switch in the viewfinder. By connecting the HV2000's monitor output to this socket, a caption can be lined up in the viewfinder to see how it looks.

A short multicored lead was fitted, with a K connector, to suit the HV2000. Separate leads could have been used of course. Suitable coaxial cable must be used for the video lead. The sync lead should be the same or at least an audio type screened lead.

The camera was tried with 10 -pin leads up to 50 ft long and no problems arose. Remember the sync delay however - this will mean that the caption or whatever will shift, so go by the centring as seen by the "lineview" position or any other monitor connected to the HV2000's monitor output.

Components list		
Resistors:	Capa	citors:
R1 1k	C1	0.0033
R2 4k7	C2	0.022
R3 22k	C3	$10 \mu \mathrm{~F}, 25 \mathrm{~V}$
R4 10k	C4	0.047
R5 10k	C5	1,000 $\mathrm{F}, 25 \mathrm{~V}$
R6 470	C6	1,000 μ F, 25 V
R7 10k	C7	$47 \mu \mathrm{~F}, 25 \mathrm{~V}$
R8 6k8		
R9 4k7	Semi	iconductor devices:
R10 1k	D1-2	1N4148
R11 47	D3	1N4001
R12 4k7	Tr1-2	BC107
R13 2k2	Tr3	BC177
R14 4k7	Tr4	BC107
R15 1k	Tr5	BC177
R16 56		
R17 5k6		

next month in

- VIDEO RECORDING ON TAPE

As the current generation of VCRs roll off Japanese production lines at the rate of millions a year, it's difficult to appreciate the problems the pioneers had, only some twenty or so years ago, in getting any sort of picture at all in their attempts to record video signals on tape. The evolution of video recording to its present highly successful state has been a magnificent engineering achievement. Perhaps we tend to take it too much for granted. Next month Eugene Trundle takes a look at the way in which a video signal is tailored and modulated so that the rape medium can handle it.

- SPECTRUM-MONITOR INTERFACE

The Sinclair Spectrum is one of the most popular low-cost home computers. John de Rivaz wanted to use it with a monitor that required RGB plus sync inputs. Unfortunately the nearest signals that could be found in the Spectrum were luminance plus PAL chominance. So an interface to produce the required signals had to be devised. It was found that the SL901B i.c. and a small number of extra components enabled a compact interface unit to be built.

- ELECTRONIC CIRCUIT BREAKER

One of the most difficult faults to deal with is the set that blows fuses intermittently. Finding the cause of the fault can be time consuming, and expensive in terms of blown fuses and other possible damage. This electronic circuit breaker was developed to assist with the problem. It uses a current sensing transformer and a relay to switch off the mains supply to the set.

- SERVICING FEATURES

Mike Phelan on the Grundig 2×4 Super. TV Fault Finding. VCR Clinic. Plus Service Talk by Malcolm Burrell - on various aspects of the servicing scene.

PLUS ALL THE REGULAR FEATURES
ORDER YOUR COPY ON THE FORM BELOW:
(Name of Newsagent)
Please reserveldeliver the July issue of TELEVISION (E1), on sale June 20th, and continue every month until further notice.
NAME ...
\qquad
ADDRESS

TV Test Pattern Generator

This month we'll look at the colour encoder section and the power supply. A separate printed circuit board has been prepared for both of these and details, along with constructional and setting up details, will be given next month.

Coder and Modulator

The colour encoder takes in separate sync, red, green and blue signals (also the grey-scale signal) and produces a composite video output. This is available at v.f. or, via the modulator, at u.h.f.

The encoder/modulator circuit is shown in Fig. 6. The heart of the encoder is a Mullard i.c. (IC3), type TEA1002. A block diagram for this device is shown in Fig. 7. It has an internal 8.86 MHz oscillator from which the $\mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ carriers are generated. Composite sync, burst gate enable, PAL switch and composite blanking timing signals are required in addition to the RGB and grey-scale inputs. The output is a 16 -colour (including black and white) composite video signal, based on 75 per cent colour bars.

The RGB, composite sync and composite blanking signals are fed directly to the i.c. from the logic board where they are generated and inverted as required. The burst gate enable and PAL switch signals are generated on
the colour encoder board from the composite sync signal. The grey-scale drive is also generated on the encoder board. The burst gate enable signal is derived from one half of IC4, type 4528, a dual retriggerable-resettable monostable. A CMOS device is used deliberately to introduce a small delay at the start of the signal. The $R C$ network R4/C2 sets the pulse width at around $2 \cdot 2 \mu \mathrm{sec}$. The output goes to pin 15 of the TEA1002.

The other half of IC4 is used to provide a line frequency trigger pulse for one half of the 4013 dual D-type flip-flop IC5. This produces the 7.8 kHz PAL switch signal which is fed to pin 12 of the TEA1002.

The three-bit binary-coded grey-scale information is fed to IC1 (a quad two-input OR gate) along with the greyscale enable signal. The outputs from these OR gates (when enabled) are fed to sections of IC2 (hex driver with open-collector outputs) and arrive, via the three presets VR1, VR2 and VR3, at a common summing point that drives the TEA1002's luminance input (pin 7). FC2 is the most significant bit, causing a single transition from black to white. FC1 is the next most significant bit, producing the "almost black" and "almost white" bars. FC0 is the least significant bit, filling in the greys. The background enable signal simply inserts a level of grey, set by VR4, to lift the crosshatch background out of black.

Since the current capability of the video output from the

Fig. 6: Circuit diagram of the encoder and modulator sections of the pattern generator.

Fig. 7: Block diagram of the TEA 1002 encoder i.c. The 3.54 MHz clock output is not used.

Components list: encoder

Resistors:	Capacitors:	
R1 470	C1	2-22pF trimmer
R2 1k	C2	330 pF ceramic
R3 1k2	C3	330 pF ceramic
R4 5k6	C4	$100 \mu \mathrm{~F}, 16 \mathrm{~V}$ radial el.
R5 150k	C5	$100 \mu \mathrm{~F}, 16 \mathrm{~V}$ radial el.
R6 680	C6	$0 \cdot 1 \mu \mathrm{~F}$ ceramic
R7 $1 \mathrm{k5}$	C7	$100 \mu \mathrm{~F}, 16 \mathrm{~V}$ radial el.
R8 470	C8	$0.1 \mu \mathrm{~F}$ ceramic
R9 220		
R10 68	Semiconductor devices:	
R11 1k5	D1	1N4148
R12 27k	D2	BZV46-2V0
All ${ }^{\text {W W, }}$, 5\%	Q1	BC550C
carbon film	IC1	74LS32
VR1 100k	IC2	7407
VR2 47k	IC3	TEA1002
VR3 10k	IC4	4528
VR4 1k	IC5	4013
miniature skeleton		
presets, horizontal		
mounting		

Miscellaneous:

XL1 8.8 MHz crystal with $\mathrm{HC} 18 / \mathrm{U}$ case
Astec UM1286 u.h.f. modulator. PCB.

TEA1002 is rather limited, a buffer transistor (Q1) is used. Resistors R6 and R7 reduce the input level at the base of this transistor to 2 V peak-to-peak. The output is a 75Ω signal which is reduced to the normal 1 V peak-to-peak when terminated at 75Ω. D2 is the equivalent of two diodes in series but giving a close-tolerance forward voltage drop

Components list: power supply

C1	$1,000 \mu \mathrm{~F}, 25 \mathrm{~V}$ axial el.
C2	$1,000 \mu \mathrm{~F}, 25 \mathrm{~V}$ axial el.
C3	$4,700 \mu \mathrm{~F}, 16 \mathrm{~V}$ axial el.
C4	$100 \mu \mathrm{~F}, 16 \mathrm{~V}$ axial el.
C5	$0.1 \mu \mathrm{~F}$ ceramic
C6	$100 \mu \mathrm{~F}, 16 \mathrm{~V}$ axial el.
C7	$0.1 \mu \mathrm{~F}$ ceramic

D1	1N4001
D2	1N4001
BR1	KLB02
IC1	7812
IC2	7802

$\begin{array}{ll}\text { IC1 } & 7812 \\ \text { IC2 } & 7802\end{array}$
C6 $100 \mu \mathrm{~F}, 16 \mathrm{~V}$ axial el.
C7 $0.1 \mu \mathrm{~F}$ ceramic
Mains transformer RS 208-333, 18VA.
Heatsink 50 mm length of RS 401-497 (for ICT/2).
of 2 V . Its purpose is to remove 2 V from the 2.6 V d.c. pedestal on which the video signal sits. Q1's base-emitter voltage drop removes the residual 0.6 V . In practice there's a very small residual d.c. voltage, though it's insignificant. D2 can be omitted if a 2 V pedestal can be tolerated.

Fig. 8: Power supply circuit.

Another potential divider, in Q2's emitter circuit, reduces the signal to the level required to drive the UM1286 u.h.f. modulator. R11 sets the modulator's d.c. working point. This should be 2.2 V : any significant departure from this voltage will cause sync crushing or even loss of sync. The value of R11 may need to be adjusted.

The modulator selected is a good-quality wideband type which also contains an intercarrier oscillator. If required, the frequency of this can be changed to $5 \cdot 5 \mathrm{MHz}$. An addon audio oscillator will be described later. Constructors can if they wish use a CMOS divider circuit fed from the 7.8 kHz output of IC5 to produce several frequencies, one
of which can be fed directly to the modulator's audio input pin.

Power Supply

The power supply is straightforward, using a 7805 regulator to produce the 5 V rail and a voltage doubler followed by a 7812 for the 12 V rail. This arrangement is an economical design requiring only one mains transformer providing one secondary voltage, without excessive dissipation in the 5 V regulator. Connect the transformer's primaries in series and the secondaries in parallel.

Teletopics

the fS tUBE

There have been several major developments in colour tube technology over the years. First, in the early seventies, came the self-converging, in-line gun tube. More recently there's been the development of tubes that require neither EW nor NS raster correction. The latest development is the FS (flat, square) tube, which has squared off edges and an almost flat faceplate. As with previous advances, the main improvements have been made possible by developments in yoke design - and in electron gun focusing arrangements. The advantages claimed for the new tubes include absence of display geometry distortion, reduced ambient light reflection as a result of the flat screen, and improved legibility at the corners of the screen. The new tubes have been under development for some time by Toshiba, Philips and Mitsubishi amongst others. They are expected to be used initially in up-market receivers and monitors.

The first domestic receiver in the UK to be fitted with such a tube has already been announced - the Fisher Model CFB2110STX. This is a full-specification 21 in . model featuring a SCART socket, stereo sound, remote control and a built-in teletext decoder. It's expected to retail at around $£ 530$.

1983 TRADE FIGURES

The official BREMA figures for TV and VCR deliveries during 1983 have now been released. Total CTV deliveries during the year were a record at $3,496,000$, an increase of 19.2 per cent on the 1982 figure. VCR deliveries showed a slight (0.05 per cent) decline at $2,234,000$. This decline was much sharper during the final quarter however, the fourth quarter figure of 546,000 being 40 per cent down on the total recorded during the final quarter of 1982. Various reasons for this decline have been suggested, including price rises. Whatever the cause, it appears that the boom is over for the present at any rate.

TV deliveries for 1983 break down as follows: Largescreen colour sets $2,240,000$ ($10 \cdot 7$ per cent increase); small-screen colour sets $1,256,000$ (37.9 per cent increase); teletext equipped sets $641,000(12 \cdot 3$ per cent increase); monochrome portables $1,131,000$ (11.8 per cent increase). Imports of large-screen colour sets increased by 44.2 per cent to 519,000 while imports of small-screen colour sets increased by 39.3 per cent to 787,000. Deliveries of UK manufactured small-screen
colour sets increased by 35.5 per cent to 469,000 : it's clear that UK capacity at this end of the range is still nowhere near adequate.

RCA ENDS DISC PLAYER PRODUCTION

RCA has decided to cut its losses and cease production of CED video disc players, leaving production entirely to Hitachi. Production of the discs will continue at RCA's Indianapolis plant. This seems to be a rationalisation measure since the system has not done as well as hoped and there is little point in having two player manufacturers at current rates of production. RCA, Hitachi and GEC have announced that the decision on player production will make no difference to current plans to promote the system in the UK. Greater emphasis is to be placed on selling the discs in competition with audio records rather than video cassettes.

THORN'S MOULDING INVESTMENT

Thorn EMI Ferguson is investing $£ 8$ million in a new plant to make high-quality plastic mouldings for consumer electronics and computer products - the largest single investment ever made by the company. The plant will occupy a seven acre site at High Wycombe and is expected to be in production by the end of the year. The aim is to meet Thorn's own needs for TV and VCR cabinets etc. and increase the sales of mouldings to other information technology companies. About 60 per cent of production will be used initially for Ferguson brand products. Thorn plan to increase production by 50 per cent within two years, when external sales should rise to 60 per cent of production. The present Elco Plastics plant at High Wycombe and a smaller plant at Gosport are to be closed. A statement from the company comments that "the decision to invest in high technology capital equipment, which includes robotics, follows a period of investigation into developments in consumer electronics and information technology and is in direct response to the recent National Economic Development Office report and recommendations." Thorn's investment should certainly help overcome the excessive dependence on imported smallscreen colour sets noted above - you can't produce sets without cabinets to put them in, and this seems to have been something of a production bottleneck in the UK in recent times.

TELEVISOR RENOVATED

Engineers and apprentices at Plessey Radar, Cowes, Isle of Wight have combined their talents - and patience - in restoring an antique Baird televisor dating from the early thirties. It had been found under a pile of rotting firewood in an Essex outhouse and has now been lent to the

National Wireless Museum at Arreton Manor, IOW. Only six televisors have survived: they are believed to be priceless. To operate the 30 -line televisor a household also had to own two radio sets. This lot gave them pictures that were described as "barely discernible". They were broadcast for two hours each evening, on the medium wave band. One radio provided the vision signal, the other the sound. It's hoped that with the aid of a scan converter the televisor may eventually be adapted to show current 625 line pictures. The greatest problem was presented by the aluminium Nipkow disc, which had been buckled and torn. It couldn't be restored, so a copy had to be made. Fortunately the televisor was complete, with no bits missing, but it was extremely tarnished and needed much cleaning up.

VCR LATEST

Philips have now released details of their plans to market VHS VCRs in the UK. The initial VCR, Model VR6520, will be imported from Matsushita. A subsequent model, the VR6460, will have Japanese mechanics and Philips' electronics. Later machines will be wholly produced in Philips' plants, starting this autumn. A new generation of lightweight V2000 machines is due to go into production at the same time.

Grundig (now controlled by Philips) appears to be ahead of its new parent company with its plans to launch European produced VHS machines. The initial Grundig VHS machines (the VS range), due for release this summer, are expected to be of almost entirely European design and manufacture.

An agreement has been reached between Sony and the Spanish Industry Ministry to establish a plant for the manufacture of Betamax VCRs in Spain. The plan is for production to start by 1987 at an initial annual rate of 125-150,000 machines.

Two VHS VCRs have been added to the Decca/Tatung ranges - Models VRH8400TK/VRH8400DK and VRH8500TK/VRH8500DK respectively.

A Betamovie camcorder, Model VCR100P, has been added to the Sanyo range. It's fitted with a $\frac{1}{2} \mathrm{in}$. SMF Trinicon tube and is expected to retail at around $£ 1,000$.

There are reports that a half-speed 8 mm video system is under development, giving a record/playback time of three hours.

The latest EIAJ figures, for February, show that Japanese VCR exports during the month rose to 1.49 million units, an increase of 55.5 per cent on February 1983. The main increase was in shipments to the USA: these rose by 167.4 per cent, accounting for 43.4 per cent of the total. Exports to the EEC fell by 14.7 per cent - by 47.1 per cent in the case of the UK.

12GHz CONVERTER

A low-noise 12 GHz downconverter has been announced by Wave Devices Ltd. (9 Betterton St., London WC2H 9 BF). Key to the light weight and compact size, which enable the converter to be mounted on a dish as small as 2 ft in diameter without excessive mechanical stress or shadowing of the reflector surface, is the use of microwave i.c.s. The $1.5 \times 1.5 \times 5.4 \mathrm{in}$. unit contains an ultra lownoise gallium arsenide f.e.t. preamplifier, a block downconverter, local oscillator and i.f. amplifier, and weighs only 160 z . There are two models, the ACA1170X which converts signals in the $10.95-11.75 \mathrm{GHz}$ band to an i.f. of $900-1,700 \mathrm{MHz}$, and the ACA1270X which accepts
signals at $11.7-12.7 \mathrm{GHz}$ and provides an output at $950-$ $1,950 \mathrm{MHz}$. Both have a 50 dB conversion gain with a maximum noise figure of 3 dB at $25^{\circ} \mathrm{C}$ and a typical output power of +7 dBm at the 1 dB gain compression point. The i.f. amplifier consists of three microwave i.c. modules occupying just 0.3 square inches of the board and providing a gain of 30 dB , the output power level being sufficient to minimize the possibility of noise pick up in the downlead.

The downconverters can be used to drive any number of receiver/demodulators by signal power division - additional signal amplification will in most cases not be required. A high or low local oscillator is available for either a normal or an inverted signal. Installation is easy, the units coming equipped with a standard WR75 waveguide flange and being self-supporting when bolted to the aerial's waveguide flange mount. A $15-28 \mathrm{~V}$ d.c. supply is required, fed in via the N output female connector. The converters can be factory preset to a number of international downlink bands.

DIGITAL TV TRANSMISSION

A two-way digital microwave link has been installed between the IBA's Engineering Centre near Winchester and the Isle of Wight for the investigation of digital transmission systems using frequencies above 10 GHz and a data rate of $140 \mathrm{Mbit} / \mathrm{second}$. The link will provide the IBA with a test bed for the evaluation of digital transmission techniques and the assessment of the effects of microwave terrestrial propagation on transmission performance. The video coders/decoders sample the composite TV signal at three times the colour subcarrier frequency, using eight bits per sample. Differential pulse-code modulation is then used to reduce the bit rate to give a difference signal with a five-bit resolution. The audio codecs use the NICAM system to code up to six highquality programme channels at $2 \mathrm{Mbit} / \mathrm{sec}$. This is added to the coded video signal to produce a $68 \mathrm{Mbit} / \mathrm{sec}$ channel carrying one vision and up to six audio channels. Two such $68 \mathrm{Mbit} / \mathrm{sec}$ data streams are multiplexed for transmission over the link at $140 \mathrm{Mbit} / \mathrm{sec}$.

The digital transmission system uses quadrature phaseshift keying (QPSK) at the carrier frequency. Two types of circuit are being used in the receivers and transmitters to permit direct comparisons to be made between coherent and differential demodulators and between solid-state and travelling-wave tube 250 mW transmitter amplifiers.

BBC experiments using a TV signal consisting of separate luminance and colour components were briefly mentioned in this column last March.

REDIFFUSION'S FOUR NEW CHANNELS

Rediffusion is now offering cable TV subscribers four additional channels, each catering for a particular interest - sport, music, films and general entertainment. Screen Sport is providing the sports programmes, Music Box the music-video channel, Sky Channel the general entertainment service and TEN (The Entertainment Network) the film service - at least 50 films per month, of which 15 will be new to television. The channels will be offered in two packages: Super at $£ 4.95$ a month provides Sky Channel, Screen Sport and Music Box; Super Plus at $£ 12.95$ a month includes the movie channel as well. Programmes are repeated to enable viewers to pick and choose their times of viewing, the scheduling being such that programmes can be seen at different times on different days.

Satellite links are being used to distribute the services from a central location to local stations. A Cabletext service provided by Oracle will be available on each channel between programme transmission times.

RANK HI-BEAM 250 PROJECTOR

Rank's new Hi-Beam 250 video/data colour projection system has been designed for educational, commercial or entertainment purposes where a display between five and ten feet horizontal is required. Many of the features of the Hi-Beam 800 , which provides displays up to 24 ft wide, are incorporated, including keystone correction ($\pm 20^{\circ}$), flat, curved or "white wall" projection, and video or RGB inputs as standard. In addition the Hi-Beam 250 has dualfocus high-resolution lenses giving improved edge definition.
Eighty per cent of the components are mounted on pluggable Eurocards, making replacement quick and easy and simplifying modification when tailoring the specification to interface with various computers. Rank Video Systems' sales manager Alex Taylor comments that "the projection of computer graphics and text is likely to be the biggest growth area for this type of product". The suggested price for the Hi-Beam 250, with remote control and ceiling or floor mount, is $£ 4,400$ plus VAT. The larger-screen Hi-Beam 800 system comes at $£ 7,200$ plus VAT. Stereo amplifiers and speakers and an input select/
enhance unit are available as extra accessories. The latter allows up to six video inputs to be connected.

IN BRIEF

Matsushita has announced the development of an 8-bit analogue-digital video signal converter i.c. whose high speed makes it suitable for use with high-definition TV systems. It appears to be intended for use with the 1,125 line system proposed by NHK for use in Japan.

GEC TV sets are to be distributed by the revived GEC Radio and Television instead of GEC McMichael, which will in future concentrate on professional broadcasting equipment. This change, following GEC's withdrawal from joint production with Hitachi (see last month), restores the marketing arrangements to the set up in operation until eighteen months ago.

The US International Trade Commission has at last ruled on the charges of dumping of colour sets from South Korea and Taiwan on the US market. The decision that US companies are being materially harmed means that the import duties already being imposed by the Commerce Department will become permanent (up to 16 per cent in the case of Korean CTVs and 23 per cent with Taiwanese sets). Duties were first imposed last October following a preliminary Commerce Department ruling. US companies and unions had charged that the imported sets were being sold at less than the fair market value.

VCR Servicing

Mike Phelan

Before we get down to fault finding in the $3 \mathrm{~V} 24 / 5 / 6$, I omitted last month to mention the operation of the sawtooth generator used with the chopper that controls the supply to the reel motor drive amplifier in this machine. It employs a BA222 i.c., which we've already met used as a monostable multivibrator. For it to operate as a free-running oscillator, the input pin 5 is connected to the timing capacitor pin 1 , the output being taken from this point. The squarewave that appears at pin 6 is not used.

We'll dismiss the 3 V 25 and 3 V 26 tuner/timer and charger briefly. They are very reliable but, like all portable equipment, they tend to get knocked about a bit. Nevertheless a $24 / 25$ or $24 / 26$ combination represents a good buy on the secondhand market if the price is right cabinet parts are easy to obtain and are not too expensive.

Cabinet Assembly

The 3 V 24 is, as we've seen, a very compact machine. Before doing any work it's best to remove the cabinet entirely. This is good practice when working on any equipment, to ensure that screws go back in the correct places. It's doubly important with the 3V24, as the chassis can be cracked by fitting wrong screws. Unfortunately if someone else has got there first the screws may not be correct to start with.

First remove the cabinet bottom. There are six selftapping screws (two also secure the front feet). The front screw is longer and the rear screw shorter than the other four. Don't loose the two rubber feet. Next remove the
handle, its attachment screws, the two plated screws and the side plates. The cabinet top slides off after removing the two screws at the rear and opening the cassette lift. The front unclips. Don't loose the eject knob or the flap that covers the rear sockets. The machine cannot be battery operated with the cabinet removed.

Alarm Mode

The most common fault symptom seems to be that the 3 V 24 goes into the alarm mode, i.e. all LEDs flashing in sequence. If this happens within six seconds or so of switching on, before any functions have been selected, check the cassette lamp. Most of the other causes of this condition relate to the solenoid control arrangements - as you'll recall, the brake and pinch solenoids are both held in by a permanent magnet and are driven electrically by a bridge circuit. Each also operates a switch to tell the microcomputer i.c. which position it's in. At switch on both solenoids are pulsed in the off direction irrespective of their initial states. If either the drive circuit is faulty or the switch doesn't operate, the alarm mode will be entered. Both the switches are rather flimsy, with open contacts moulded in a block of plastic. The metal loses its spring and the switch remains either open or closed. Usually the brake solenoid switch sticks in the closed position. Alarm is then entered when a function is selected. When the pinch solenoid switch sticks in the closed position the alarm mode is entered without a function being selected.
To gain access to the switches, take off the tracking knobs and remove the servo panel (front bottom). The brake solenoid switch is the one operated by the long bar at the front; the pinch solenoid switch is next to it, with an orange lead. Bending the contacts may work, but the switch will fail again. Replacement is best. Look out also for loose bits of mechanism due to broken plastic posts on the deck - caused by an attack of switch cleaner?

Both solenoid drive bridges give trouble. If any transistor is faulty, replace all four - X25-X28 in the case of the pinch solenoid, X21-X24 in the case of the brake solenoid. If these are defective the solenoid will be either permanently energised or repelled. The transistors are on the audio/microcomputer board and are rather inaccessible the two bottom boards and the front one must be removed first. These devices must all be replaced with the exact type.
If all these things are found to be in order, check the keyscan output waveforms at pins 2,4 and 6 of IC6 on the audio/microcomputer board - just to the left of the microcomputer i.c. (IC4). Each waveform should be 10 V peak-to-peak. If one is stuck at 10 V or chassis or is much reduced in amplitude, suspect IC6 - it's a buffer between the microcomputer i.c. and the keyboard.
The microcomputer i.c. itself can cause this fault, but this is unusual. Two types have been used, the μ PD553C066 and the later μ PD553C-159. They are completely interchangeable. The μ PD553C-159 has a revised program that gives certain benefits.

Common Faults

A blank screen with no sound in the E-E mode, plus a constantly running drum motor, means that the clock oscillator has stopped. This is common with the -066 microcomputer i.c., but check the ceramic resonator first.

IC4 can also be responsible for a permanently on audiodub LED.

If the alarm mode is entered on playback but the machine appears to be running normally, check at TP2 (drum flip-flop signal) on the servo panel. If this waveform is missing, try adjusting the pulse level control R82. Other causes are leaks in X1 and an open-circuit pickup head. A similar effect occurs when the take-up reel sensor goes open-circuit - it's located below the reel disc. Occasionally it doesn't fail completely but the machine packs up towards the end of an E120 or E180 tape, when the reel speed is slow.

Failure of the tape to take up at all points to the chopper transistor X49, the operational amplifier IC8 or the reel motor itself $-2 \mathrm{~V} \pm 0.3 \mathrm{~V}$ across the motor during playback is normal. Check that the reel idler is free to move.

A very strange set of symptoms arises when the 9 V fuse FS1 on the chroma panel goes open-circuit, as the 12 V rail is still present. Select play and the reel and capstan motors take off, alarm is entered and the flashing LEDs are accompanied by the sound of tape being mangled.

The Servos

Most drum servo and motor drive amplifier faults result in the drum rotating at a terrific speed (in either direction!). The most common cause is that C24 or C25 (both $4.7 \mu \mathrm{~F}$) in the loop filter circuit is leaky - remove them and the drum should run at the correct forward speed, though erratically. C 1 and $\mathrm{C} 2(0.022 \mu \mathrm{~F})$ on the MDA board can also cause this. IC3 (VC1029, back to the servo board again) can also be responsible for excessive forward speed, as can a couple of its associated components, namely C34 $(10 \mu \mathrm{~F})$ and $\mathrm{C} 35(0 \cdot 01 \mu \mathrm{~F})$. There should be $6 \mathrm{~V} \pm 0.2 \mathrm{~V}$ at pin 9 of a VCl 1029 , as it contains its own 6 V regulator.

The same remarks apply to IC5 (SFF and SREW speed control) and IC13 (capstan speed control). With these two VC1029s there will be excessive tape speed when the voltage at pin 9 is low - so much so that line lock is lost,
leading one to suspect the drum servo. The head speed is correct however, line lock being restored in the still frame and slow motion modes.

The HA11711 drum/capstan phase control i.c. can give problems but is generally reliable.

One other component in the capstan servo circuit causes trouble, C17 $(0.047 \mu \mathrm{~F})$. It can leak or go short-circuit. It's the trapezoid (TP5) integrating capacitor - the trapezoid will either disappear altogether or be severely distorted, with rounded slopes. The result is excessive tape speed or severe wow and a noisy picture.

Signal Circuits

The signal circuits are reasonably reliable. Picture quality with early models can be improved by changing C 47 to $22 \mu \mathrm{~F}, \mathrm{R} 52$ to 180Ω and replacing R62 with a shorting link. These components are on the luminance panel.

Any spillage of liquid into the machine ends up on the luminance and servo boards. Sometimes the only answer is to replace them both, as the component and i.c. leads corrode away. The $L C$ filters on the luminance board, LPF1 and EQ1 in particular, seem to be prone to corrosion after an accident, causing either complete loss of E-E video or a negative picture (because we've altered the d.c. conditions at X6 and thus the a.g.c. amplifier in IC2).

If there's no picture, or severe limiting in both E-E and playback, the fault must lie towards the "back" end - X14, X15 or the r.f. converter. We've also had C69 ($10 \mu \mathrm{~F}$) go open-circuit, causing cogging and field jitter, i.e. poor video 1.f. response. There are lots of electrolytics in video recorders and some of them are starting to age. Don't forget to check the E-E and PB 9 V rails with no picture faults - they are switched by X20/21 and, for E-E 9V, X22/23. We've actually had X22 going leaky to give E-E and playback at the same time - stereo pictures!

Most chroma faults are down to i.c.s or crystals. As always, scope the main converter first (IC2, pins 6, 8 and 9). Don't forget that if the signal is being lost at a later point on playback there'll be no gated out burst and no a.c.c. The input at pin 6 of the converter will thus be of excessive amplitude and the output at pin 9 will be severely distorted. BPF2 (4.43 MHz) going open-circuit is the favourite.

Scopes and Probes

We'll finish off by stating the importance of having a reliable, accurate scope with good probes that are correctly adjusted. X1 probes are not much use - even a 25 Hz trapezoid will end up with curved sides! X10 probes must be correctly adjusted each time they're used on a different instrument, or even changed to the other Y input of the same scope. It's no use trying to look at an f.m. signal at 3 or 4 MHz or so if the probe's frequency response takes a dive at 2 MHz - even with a super-duper 50 MHz scope. We use the Trio CS1830 scope which has a 30 MHz bandwidth - adequate for our needs (up to now!). We also have some nice probes by a firm called Coline. The plugs, tips, leads and earth leads are all removable and obtainable as spares.

Trailer

Next month a little chat on the Grundig 2×4 Super (V2000 system) by way of a change.

DX Amplifier Unit

Roger Bunney

Over the years I've built up quite a range of amplifiers, filters, switches, etc. for DX use, all housed in diecast cases. The February-April 1982 issues of Television featured a DX receiver system with i.f. bandwidth switching and an upconverter to enable the system to be used with an unmodified u.h.f. TV receiver. Later that year a converter for reception of French system L signals was featured. This pile up of diecast boxes led me to consider some rationalisation at the front end. Hence the present article.

Basic Requirements

There are certain conflicting factors when it comes to amplifiers for DX use. Ideally one wants high gain with linearity, low noise, freedom from interference and stability. Unfortunately high gain will with most receivers cause adjacent channel interference problems - when for example you're trying to receive a weak ch. 25 signal and there's a 500 kW BBC ch. 24 transmitter a few miles down the road! The problem of interference in fact seems to be the main constraint with weak signal reception, at least in

Fig. 1: Block diagram of the unit.
the populated areas where most of us live. Thus along with amplification there'll be a need for filtering.

The average DX enthusiast will have perhaps two or more v.h.f. aerials and at least one u.h.f. aerial. So one requirement is to minimise the amount of aerial lead plugging and unplugging needed. With a receiving system that's external to the main set, there'll be several stages without a.g.c. To prevent overloading, some form of gain control should be provided. This may be preset, but is better made available to the operator to adjust. The present unit meets these requirements and also incorporates a simple distribution amplifier with six outputs to enable several receivers to be used on various channels. The building block approach adopted will enable others to vary the design to suit their needs.

Block Diagram

A block diagram of the system is shown in Fig. 1. There are four preamplifiers, three for v.h.f. and one for u.h.f. The prototype was fitted with Wolsey Supa Nova v.h.f. amplifiers with the BFY90 transistor's biasing modified to give a slight increase in gain and a reduced noise figure of around $3-3 \cdot 5 \mathrm{~dB}$. For Band I use a noise figure of 4 dB will suffice - this equates with the general cosmic/terrestrial noise present. As the frequency increases, the amplifier's noise figure should fall: 2 dB is ideal in Band III. For u.h.f. the demand is yet more stringent -1.5 dB should be sought in Band IV. My own DX installation uses masthead amplifiers for Band III and at u.h.f., and these largely set the overall noise figure. For u.h.f. reception the unit incorporates the single-stage BFR91 preamplifier featured in the April issue (page 303).

The three v.h.f. preamplifiers receive inputs from the Band I, II and III aerials. In view of the future plans for Band I, it was decided that the provision of filtering in this channel should be made as simple as possible. To this end a single switch enables the incoming Band I signal to be routed via appropriately biased pin diodes to a varicap tuned notch filter (for example). In the straight through position there will be a loss of some 2 dB . The Band II input goes directly to the preamplifier while the Band III input is modified slightly to allow for masthead amplifier powering (24V). This provision is also made in the u.h.f. input. The masthead powering is switchable with LED indication (see Fig. 2).

All four preamplifiers have on/off supply switching with LED indication via a DPDT switch - the second pole is used to apply 12 V to the relevant gain control which operates by biasing a pin diode in the signal path. Placing the pin diode at the output of the amplifier minimises mismatching effects - having the pin diode at the low-level end would degrade the input matching.

A four-pole, two-way switch enables either the built-in or external gain controls to be selected. The remote unit I use is again diecast housed and simply duplicates the onboard controls. Each preamplifier's output is taken to a coaxial socket to enable it to be connected directly to other equipment, fed to a diplexer or linked to the integral distribution amplifier. The Labgear CM6032/BF is an

Fig. 2: Circuit diagram. Mains transformer RS type 207-649. Coil details: L1 11 turns 2/10in. diameter; L2 11 turns 1/10in. diameter; L3 8 tums 1/8in. diameter; L4/5/6 2 turns 1/10in. diameter.
ideal diplexer for DX-TV use (see later).
To minimise out-of-band interference, commercial inline bandpass filters are available for use at the inputs.
The power supply arrangements are conventional and the whole thing fits into an RS 509-254 diecast box.

Distribution Amplifier

The hybrid RS OM361 i.c. is used as the distribution amplifier, giving a single output with a gain of typically 28 dB and a noise figure of 6 dB . It requires 12 V at 50 mA . The advantage compared to the better known OM335 is the greatly improved signal handling characteristics. The output is split six ways, at 75Ω. This part of the circuit could be used as the basis of a domestic distribution system in view of its wide bandwidth $(40-860 \mathrm{MHz})$.

Gain Figures

The Supa Nova amplifiers were used because I had them in stock - they are no longer in production but might be available from some suppliers. As an alternative the simple BFY90 wideband amplifier circuit shown in Fig. 3 can be used.

Gain figures with Supa Nova amplifiers are as follows. Band I 11 dB at $50 \mathrm{MHz}, 12 \mathrm{~dB}$ at 65 MHz (pin diode attenuation 45 dB maximum at 60 MHz). Band II 13 dB at $76 \mathrm{MHz}, 13.5 \mathrm{~dB}$ at $90 \mathrm{MHz}, 12.5 \mathrm{~dB}$ at 108 MHz (pin diode attenuation 42 dB maximum at 99 MHz). Band III
12.5 dB at 170 MHz and $195 \mathrm{MHz}, 12 \mathrm{~dB}$ at 220 MHz , 11 dB at 230 MHz (pin diode attenuation 35 dB maximum at 200 MHz). The u.h.f. preamplfier gain figures are 6 dB at 470 MHz and $500 \mathrm{MHz}, 7.5 \mathrm{~dB}$ at 600 MHz and $700 \mathrm{MHz}, 11 \mathrm{~dB}$ at $800 \mathrm{MHz}, 7 \mathrm{~dB}$ at 860 MHz (pin diode attenuation 26 dB maximum at 650 MHz).
The u.h.f. gain figures for the BFR91 amplifier may look rather low, but in most installations a head amplifier will be in use - in my own case the masthead amplifier provides a gain of 30 dB with a noise figure of 1.8 dB and further gain simply isn't needed. If a head amplifier is not used, the gain could be increased by adding a second BFR91 stage in cascade.

If the simple BFY90 wideband amplifier circuit is used, gain figures of 14 dB at $60 \mathrm{MHz}, 13 \mathrm{~dB}$ at 100 MHz and 11 dB at 200 MHz are to be expected, with a typical noise figure of 3.5 dB .

The OM361 distribution amplifier is stable in use, the

Fig. 3 (left): Suitable v.h.f. amplifier circuit.
Fig. 4 (right): Remote gain control arrangement.
gain at any output being 8 dB at $50 \mathrm{MHz}, 9.5 \mathrm{~dB}$ at $100 \mathrm{MHz}, 7.5 \mathrm{~dB}$ at $250 \mathrm{MHz}, 8 \mathrm{~dB}$ at 700 MHz . These figures are for a single output terminated at 75Ω. If all outputs are terminated at 75Ω, each will be loaded down by $2 \cdot 5 \mathrm{~dB}$.

Use

The end result is a compact amplifier system with head amplifier powering, a distribution amplifier and gain control on all channels. Should additional gain be needed, which is unlikely, further gain blocks could be added as an outboard facility prior to the input sockets. I have available v.h.f. and u.h.f. low-noise Mutek amplifiers should more gain be required. Note that in my own system ATV
signals in the $434-440 \mathrm{MHz}$ band are not passed through the amplifier, being routed via separate selective filtering circuits instead.

The Labgear CM6032/BF diplexer is ideal for combining several feeds in a DX installation. Of particular interest are the Band I/II input bandpass curves - the crossover is such that the Band II section picks up at $-2 \mathrm{~dB}(76 \mathrm{MHz})$, just below the ch. R3 vision frequency. Typical insertion loss is only 1 dB (confirmed by measurement). The -1 dB bandpass curve is $40-74 \mathrm{MHz}$ for Band I, $76 \cdot 5-110 \mathrm{MHz}$ for Band II and $164-240 \mathrm{MHz}$ for Band III. Adjacent band attenuation is claimed as -20 dB , though measurement showed isolation as -30 dB . The inputs and outputs are via standard Belling Lee 75Ω sockets.

Letters

FERGUSON FEEDBACK

In the April issue Service Bureau column there's mention of converting the Ferguson Videostar 3V31 so that the clock operates on a twelve-hour cycle. I agree that by linking pins 40 and 41 of IC401 a twelve-hour indication is obtained. This does not produce a corresponding a.m./ p.m. indication however. As a result, any atiempt to use the timer function could be abortive, since there will be no way of determining whether one is setting up for the morning or the afternoon.
Frank Pack,
Editor, Ferguson Feedback.

SPECTRUM PROBLEM

With reference to the Sinclair Spectrum/Grundig GSC200 chassis no-colour problem mentioned in Service Bureau (April), the cause is not to do with signal levels but the Spectrum's burst timing. Neither product is in any way faulty, but it's easier to modify the TV set. With decoder type 29301-024-61, a longer burst gating pulse is required. This can be obtained by changing the value of C843 from 1 nF to either $2 \cdot 2 \mathrm{nF}$ or $4 \cdot 7 \mathrm{nF}$ - choose the lowest value that gives stable colour.
The same problem occurs with the Network Model NWC1401 - the decoder design is very similar. In this case increasing the value of C29 to 4.7 nF will cure the problem.
Denis G. Mott,
Service Manager, Network Industries Ltd.

SONY KV1340UB

After servicing a couple of Sony KV1340UBs - the switching transistor Q601, the series regulator transistor Q604, and the converter and line output transistors Q801/ 2 had all gone short-circuit - I noticed that there was an unacceptable amount of teletext interference at the top of the screen. This couldn't be removed by adjustment. The cure, suggested by Sony, is to remove R568 ($56 \mathrm{k} \Omega$) on the VH panel and replace it with a $100 \mathrm{k} \Omega$ preset. This should be adjusted for minimum disturbance - I've found that it's best to do this with a low brightness picture and that the resistance remaining in circuit will be around $27 \mathrm{k} \Omega$. The preset fits nicely on the print side of the panel. It adjusts
the field flyback blanking pulse fed to the video/decoder panel.
G. Haigh,

Morley, Leeds.

BUZZING 3V22s

In connection with the 3 V 22 buzzing problem mentioned in the April issue Service Bureau column, I've found that a lot of buzzing with these VCRs can be cured by careful adjustment of the sound potentiometers in the r.f. converter - I think Steve Beeching first commented on the need to do this a year or so ago.
Derek Snelling,
Brownhills, W. Midlands.

THOSE BLUE TUBES

Your Teletopics column (April) slipped up in suggesting that sets fitted with tubes that have light blue screens would not be sold in the UK. In fact these tubes are used in the Mitsubishi Blue Diamond range which has been widely advertised in the UK.
P. M. Litler,

Stockport, Cheshire.

THE VL100 AND OTHER EXPERIENCES

I was interested to read Malcolm Burrell's article on the Rigonda VL100 (April issue) as I've serviced many of these receivers in the past and still see the odd one occasionally. In addition to the faults mentioned, a frequent cause of the no results symptom, with reduced voltage from a heavily loaded regulator circuit, is the line output transformer - it tends to develop short-circuit turns. When diagnosing this fault, experience has helped me to develop a feeling (usually of the sinking kind) for what's wrong. The relative ease with which a replacement transformer can be fitted makes hunch-proving a speedy process however. Incidentally the Vega 402D, a younger brother (comrade?) of the VL100, also suffers from this weakness: unfortunately the line output transformers are not interchangeable. Beware also of the high capacitance/ low voltage Russian electrolytics used in these sets, particularly the $500 \mu \mathrm{~F}, 6 \mathrm{~V}$ types in the audio and field output stages. I use a 10 V or $16 \mathrm{~V} 470 \mu \mathrm{~F}$ electrolytic as a more reliable replacement.

I'm fortunate in owning a successful radio and TV servicing business with no new set sales, offering repairs to equipment of all makes and ages and working by myself (with my own H.B. of course). In my more modest
moments I often think that this success is due less to my undoubted technical brilliance than to the appalling incompetence and indifference of the competition. Here's an example.

A new customer brought in a Teleton T12BS monochrome portable, saying that he'd been to two dealers who'd both examined the set before declaring it to be "not worth repair". The symptoms were an enlarged" picture severely distorted by 100 Hz hum bars, the cause being a hard-on series regulator transistor that produced an output at 15 V instead of the correct 12 V . Adjusting the relevant preset made no difference, so the series regulator transistor TR601 was checked. The circuit shows this to be a 2 SA 473 Y silicon pnp device, so what was a TIP136 Darlington pair doing in there?! In went a TIP32, on went the power, and up went the l.t. rail to $15 \mathrm{~V} \ldots$ I was preparing to make quick in situ tests on the other two transistors in the regulator circuit when I noticed that the reference zener diode had also been replaced - the wrong way round. Refitting this and adjusting the preset gave us 12 V and a surprisingly good picture considering the age of the set and the recent tube heater cooking. The tube's an NEC type - Not Easily Clobbered?

As one regular and much enjoyed contributor to the magazine frequently admits, TV servicing makes fools of us all from time to time - usually when a simple fault gets us chasing red herrings, condemning innocent chips and ending up with egg on our faces (if you'll forgive the mixed metaphor!). But even TV receiver designers can make mistakes, a comforting thought for us lesser mortals though it's the cause of many a discomforting headache. Those of us with higher grey hair counts can nostalgically recall the open-circuit $10 \mathrm{k} \Omega$ carbon composition oscillator

Fig. 1: Suggested modification to the Amstrad CTV1000.
load resistor in a certain turret tuner, the charred remains of an $18 \mathrm{k} \Omega$ EH90 sound detector feed resistor (and its $5.6 \mathrm{k} \Omega$ partner) in a certain TV chassis, the field oscillator feedback capacitor (PCL85 pentode anode to triode grid) rated at 400 V , and other such things!

More recently a customer brought in an Amstrad CTV1000 10in. colour portable with the complaint that the sound was severely distorted at low volume settings. Apparently the fault had been present from new, but the owner had got round the problem by using a high volume control setting and covering the speaker with a cushion! The obvious things were suspected - the speaker, the $\mu \mathrm{PC} 2002$ audio chip and the $\mu \mathrm{PC} 1382$ intercarrier sound i.c. - but these were all o.k. The circuit was then consulted and revealed a rather unusual volume control arrangement - see Fig. 1(a). It seemed reasonable to suppose that the changed d.c. conditions in the $\mu \mathrm{PC} 1382$ at low volume control settings were the cause of the distortion, and changing the circuit to that shown in Fig. 1(b) provided a complete cure. I wrote to Amstrad about this but didn't get a reply - maybe they were all at the Guardian offices receiving their awards...
Chris Avis,
RadioVision, Exeter.

TOP TWENTY T.V. SPARES sTOCK NO.

001 Philips G8 Loptx (Genuine Philips)	7.50
002 Decca 30 series Loptx (Genuine Decca)	7.00
003 Decca 100 series Loptx (Genuine Decca)	6.50
004 ITT CVC 25/30/32 Loptx (Genuine ITT)	7.00
371 Pye 713/731 Vision Gain Module (replaces expensive 212-27327)	6.50
$27010 \times$ BU208A	8.50
050 ITT CVC 5/9 EHT Tray	3.00
051 Decca 1730/1830 Doubler	2.00
053 GEC 2040 Hybrid EHT Tray	3.00
054 Thorn 1500 (5 Stick) EHT Tray	3.50
056 Thorn 1400 EHT Tray	2.00
057 Philips G9 EHT Tray	3.50
058 ITT Universal EHT Tray	5.00
011 Thorn 1690/91 Loptx	7.00
012 Thorn 1615 Loptx	6.50
085470 MFD 250V Philips G11	1.50
$33550 \times$ BY127 Diodes	3.00
$27010 \times$ BU326	10.00
$28025 \times 2 \mathrm{~N} 3055$	7.50

All components are A1 quality from prime manufacturers, and are dispatched by post same day as order received together with any refund due. All goods should be delivered within 4 working days.
Please add 15\% VAT and 90p P \& P

QUICK SAVE T.V. SPARES

Service Bureau

Requests for advice in dealing with servicing problems must be accompanied by a $\mathbf{£ 1 . 0 0}$ postal order (made out to IPC Magazines Ltd.), the query coupon from page 447 and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

PANASONIC NV7000

There's a slight but annoying colour playback problem, most noticeable on saturated reds. The effect is something like Hanover bars, i.e. cancellation of the colour in approximately one line in every three or four. The machine records all right - proved by trying its recordings on another VCR.
The problem is likely to be around the chrominance crosstalk-cancelling delay line DL8001. While the delay line or the AN6360 chroma amplifier/switching chip IC8001 could be responsible, dry-joints in the area are a more likely cause. Check also the condition and setting of the comb balance control R8021.

RANK T2O CHASSIS

The horizontals on a crosshatch pattern are o.k. but the verticals have loops where they meet the horizontals. In addition, the vertical edges of the picture are slightly irregular. Otherwise the picture is very good.
A degree of this sort of thing is present in many TV receiver designs and is quite normal. If the effect is worse at high brightness levels, check the earth strapping between the c.r.t.'s Aquadag coating and the base connector, and from there to chassis. If necessary, check the sync separator bias resistor $4 \mathrm{R} 50(1 \cdot 2 \mathrm{M} \Omega$) on the timebase panel.

PHILIPS KT3 CHASSIS (Mk. I)

The set works perfectly off air and with a VCR, but colour drop-outs occur when it's used with a camera. These happen on a change of scene, colour returning after a brief period when the syncs and burst have settled down. The problem seems to be to do with the colour-killer/ident system, since reducing the value of the colour-killer reservoir capacitor $\mathbf{C} 3231$ gives some improvement though not a cure.

On later boards the value of C3231 was reduced from $4 \cdot 7 \mu \mathrm{~F}$ to $1 \mu \mathrm{~F}$. A much greater improvement can be obtained by altering the values of the components in the relevant detector filter circuit as follows: increase the value of R 3128 from $1.5 \mathrm{k} \Omega$ to $5.6 \mathrm{k} \Omega$ and reduce the value of C 3219 from $4 \cdot 7 \mu \mathrm{~F}$ to $1 \mu \mathrm{~F}$.

GRUNDIG 6022

When the set is switched on, standby only is indicated it's necessary to bring the remote control unit into action to get results or alternatively to operate the on switch on the manual panel.

There's an auxiliary contact on the mains switch to connect, momentarily at switch on, pin B8 of the Telepilot receiver with D4 of the "electronic" module. Try linking these two points during standby. If the set switches on, a new mains switch is required.

REDIFFUSION Mk. I CHASSIS

I look after a number of these sets which have proved to be very reliable. There is however a tendency for teletext lines to be visible. Any suggestions? A recent case of ragged verticals was traced to the VA1038 thermistor TH430 which is used to stabilise the supply to the line oscillator - a new one to me!
We don't know of any official modification for the teletext problem, but would suggest that experimentation with the values of the components in the field flyback blanking pulse network - C242, C428 and R448 - should be fruitful. Thanks for the tip about the thermistor.

BOOST DIODE

The problem we had with a Toshiba monochrome portable was an open-circuit boost diode. Several replacements of different types have been tried but they all tend to overheat, though the picture and sound are o.k. Any suggestions?

Diodes such as the MR854, BYX71 and the "blob" type that Sony supply as a replacement for their SID30 type work well in this position. They tend to be a bit expensive for this application, but reliability is good.

SONY KV1300UB

The picture is perfect at switch on but after about five-ten seconds there's vision interference. This takes the form of striations across the screen, similar to the effect when the aerial is loose, though disconnecting the tuner fails to remove the fault. I've checked for dry-joints etc. The effect varies in intensity. The sound is perfect at all times.

We've known this effect to be caused by the i.f. transistors. The most common offenders are the two (Q751/2) in the i.f. preamplifier can. A dose of freeze and heat should sort out the culprit.

THORN 9800 CHASSIS

At switch on the picture is broken up. Adjusting the tuning and a.f.c. corrects this but drift can happen several times until the set has fully warmed up. Even then the picture is lost when changing channels and adjustment is necessary. A new tuner has been tried.

We suspect the ML237 channel selector i.c. on the touch-tune panel - this device has a certain notoriety. Before condemning it however try heat and freeze treatment on the BC212 35V stabiliser transistor on this panel and the two associated diodes.

ITT CVC30 CHASSIS

The problem is intermittent field collapse, preceded sometimes by a two inch foldover at the top of the screen. I've resoldered most earth points but the fault remains.

The problem you describe could well be due to transistor T8 (FT3055) or bias diode D10 (BY133) in the field output stage being faulty. Check also for flux on the pins of the CMF30 field timebase module. The symptom is occasionally caused by dry-joints around the raster correction transductor or its peripheral components.

CORRECTION

The burst transformer in the Hitachi CNP190 (page 390 last month) is T502, not T503. The no-colour symptom appears to be quite common on these otherwise reliable sets (CNP190/CNP192). Other things worth checking are the ident amplifier emitter decoupling electrolytics C535 and C538 (both $22 \mu \mathrm{~F}, 16 \mathrm{~V}$).

Each month we provide an interesting case of
258 *elevision servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.

We're sometimes bewildered by the sheer number of Grundig TV models! They all seem to be called Super Colour, but the colour is not necessarily super after a few years' use, and trying to relate model numbers to chassis types can be difficult.
The Super Colour Grundig entrusted to us for repair recently was a Model 2222GB. The chassis used in this receiver was designed in the mid-seventies when delta-gun tubes were giving way to in-line types, and variants on the basic chassis design were able to drive either type of tube with 110° deflection. All versions share decoder module 07247-072-00, and it's here that we focus attention this month.

Ironically enough, the problem was no colour. It was plain that the tuning was correct since with the set tuned "on the nose" to the Channel 4 test pattern a prominent dot pattern was visible on the colour bars. We gleaned another important clue from the pattern displayed - it told us that the colour killer was operative, but we'll leave you to puzzle that one out as a mini bonus! The options were to replace or repair the colour module, and as the modules in this chassis can be plugged into the print side of the mother board we decided to have a go at repair. There are two chips in the decoder module, a TBA510 for the chroma processing and burst gating stages and a TAA630 for demodulation, PAL switching and colour-difference signal matrixing and amplification. The burst detector, reference oscillator and ident stages use discrete component circuitry.
The first step in a case like this is to override the colour killer - this is conveniently done by linking pins 13 and 14 on the colour module. On doing this we were greeted with very bright unlocked colours that floated up and down, an indication that the reference oscillator was unlocked. For starters we hooked an oscilloscope to pin 13 of the TBA510 to check that the burst gating pulse was present. This was correct, and further confirmation that all was well within the chip was given by the emergence of correct-amplitude gated bursts at pin 12. A further check at the collector of the burst amplifier transistor Tr 845 showed that this transistor was working, so attention was turned to the reference oscillator circuit.

Adjustment of the RN (set frequency) control R871 had some effect on the bars of colour, but at no setting could we get a "zero beat" effect. Plainly the oscillator was
off frequency, and as a first move the 4.43 MHz crystal was replaced. Our suspicions of this item were strong, following several recent struggles with VCR under-colour circuits, where the crystals seem to be rather restless devices, but on this occasion we were wrong. Back went the old crystal, and we then spotted some high-value resistors $(220 \mathrm{k} \Omega)$ in the phase discriminator circuit. These are R863 and R864: we measured them carefully out of circuit. Both proved to be o.k., and since the d.c. voltages around the oscillator transistor $\operatorname{Tr} 881$ were correct at a certain setting of R871 we next tried the feedback capacitors C882 and C885. Once again we drew a blank, and we couldn't proceeed with our next intended check because we didn't have a BB109 varicap diode in our stores.

We didn't need one however! With so much of the relevant circuitry eliminated from the search, you shouldn't have too much difficulty in arriving at the answer! Full details next month.

ANSWER TO TEST CASE 257 - Page 392 last month -

Our ailing Thorn $3000 / 3500$ chassis last month had several short-circuit semiconductor devices on the power supply and line timebase panels (and elsewhere too, as we subsequently discovered!). In the second or two between switching it on and subsequent failure it had given a fair imitation of the Battle of Waterloo... We'd traced the source of the problem to the line output/e.h.t. department, and by taming the h.t. voltage and disconnecting the e.h.t. tray had got the set working in a way that enabled us to scope the line flyback voltage pulse.

This one reading was enough. It showed that the pulse was of far too short duration - it was very much less than the normal $12 \mu \mathrm{sec}$. The output voltage from a flyback transformer is proportional to the rate of change of current flowing in it: the rapid rate of change resulted in an enormous voltage pulse input at the e.h.t. tripler, and indeed to all other circuits fed from the line output and e.h.t. transformers T504 and T503. The flyback time is set by the tuned circuit consisiting of the output transformers and the tuning capacitor C518. As we suspected, C518 $(0.028 \mu \mathrm{~F})$ was virtually open-circuit, a replacement restoring normal operation. The fact that several other areas of the set had suffered when the sparks flew is a depressing corollary to our tale, but is one we needn't go into here.

Published on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by The Riverside Press Ltd., Thanet Way, Whitstable, Kent. Distributed by IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Sole Agents for Australia and New Zealand - Gordon and Gotch (A/sia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland £11, overseas (surface mail) £12 per annum, payable to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever.

WE WIL ONLY SUPPLY TOP OUALTY,
BRANDED COMPONENTS. REPUTATION
COUNTS WTM US COUNTS WITH US

REBUILT TUBES

Full range of tubes available. Range includes Deltas, PIL, 20AX/30AX inc. Quantity discounts available on request.

TV ELECTROLYTICS	
DECCA 30/400/400)350V	2.55
DECCA 80/100/400)350V	
(800)250V	2.90
PHILIPS G81600)300V	2.00
PHILIPS G9(2200)63V	1.15
PHILIPS G11(470)250V	2.20
PYE 691/7(200-300)350V	2.10
RBMA823(2500/2500)30V	1.10
THORN3500(175/100/100,	
4001350 V	
THORN3500(1000)70V	
THORN5000(400)400V	

PUSH BUTTONS/TUNERS	
DECCA/TT 4W	6.45
DECCA/ITT 6W	7.40
PYE201 6W	. 15.80
PHILIPS G8S/L	13.90
PHILIPS G8S/O	.12.00
HITACHI 4 W	. 8.50
ITT CVC5 7W	9.40
ITT CVC8/9	. 12.80
PHILIPS G11 (TIP SW.)	. 23.80
1043/05TFK	. 8.20
U321 TFK.	. 7.95
U322 TFK.	7.40

20AX APOLLO 30AX
 PHONE FOR TRADE PRICES ON PIL TUBES

Fast Mail Onder service to any part G.B. Delivery 2-3 days
Just phone for a quotation. Delivery Manchester area free same day.
Two year guarantee. Fitting while you wait or in your home $£ 20$.
$\begin{array}{lll}18^{\prime \prime} & \text { A47 }-342 \times 343 & 470 \text { BEB22 }(£ 45.00) £ 37.00 \\ 19^{\prime \prime} & \text { A49 }-120 \times 1192 \times & \end{array}$
$\begin{array}{ll}19^{\prime \prime} & \text { A49 - } 120 \times / 192 \times \\ 20^{\prime \prime} & \text { A5 }-220 \times / 110 \times\end{array}$ £ 37.00
$20^{\prime \prime} \quad$ A51-220×/110×/161-510JKB22 (£45.00) $£ 38.00$
22" A56-120×/123×/140×/410 £38.00
$25 \times$ A63-120x $£ 39.00$
$\begin{array}{lll}26 \times & \text { A66-120×A67-120×/140×/150/200 } \\ 20 A X & 56-510 & £ 39.00 \\ \text { 20AX } & 566-540\end{array}$
$20^{\prime \prime}-22^{\prime \prime}$ SOLID STATE COLOUR TVS FULLY SERVICED SOAK TESTED. VERY RELIABLE WITH GOOD TUBE £61.00, WITH NEW TUBE $£ 83.00$ inc DELIVERY

061799085424 hour answering service.
43 Clarke Cres, Little Hulton,
Nr. Manchester M28 6XM.

U.K. Post Paid, Export orders welcome, please deduct V.A.T. and enquire for Overseas carriage cost. Barclaycard/Access orders welcome, or Cheque, Bank Draft. etc., with order please. Large S.A.E. for technical leaflets of complete range. Delivery normally within 7 days.

$\square E B E$ BTAOM/HS Dent. 'T',

UNIVERSAL PROGRAMME SELECTOR FOR VARICAP TUNING

UK Regd. Design No. 1006611
6 way interlocked d.p
switch 100 K tuning
potentiometers
Top quality through hole
plated pcb
-Dimensions: $5^{\prime \prime}$ by $22^{\prime \prime}$ by 1 Ideal for replacement when original parts are obsolete or
Unobtainable
drilling of your supplied tor
driling
design
Range of pre-cut and drilled fascia/mounting kits for selected TV chassis enabling our unit to be fitted witheut further cutting drilling or
modification
All orders despatched sarme
day
DIRECT REPLACEMENT FASCIA/MOUNTING KITS
Type 30-80 Replaces 7 piano-key unit as fitted to Decca/Telefunken 30 and 80
chassis
Type 30-C Replaces 7 piano-key unit as fitted to Decca console using long
inated control pane

$$
\text { used in Decca/Telefunken } 100 \text { chassis }
$$

used in Decca/Telefunken 100 chassis
-

Type CVC8-9 Replaces 5 rectangular push button plus thumbwheel as used in ITT

selectorfin + vat

FASCIA/MOUNTING KITS (each) $\mathbf{f} \mathbf{Z}$ + VAT
All orders despatched on day of receipt.

ALDERSON-JAMES LTD

160 KINGS ROAD © HARROGATE © N. YORKS TEL: HARROGATE (0423) 60058 HG1 5JG

TV LINE OUTPUT TRANSFORMERS

FAST RETURN OF POST SERVICE

RANK BUSH MURPHY Z146 A640 dual std mono	7.00
Bush A792, A793	
ingle std mono	7.00
A774 single std mono	7.00
A816 solid state mono	9.00
DECCA	
MS17002001 20202401 mono	7.00
MS2404 24202424 mono	7.00
CS1730 1733 colour	8.00
CS1830 1835 colour	8.00
'30' series Bradford colour	8.00
80 series colour	8.00
100 series colour	8.00
FERGUSON HMV MARCONI	
1600	8.00
G.E.C.	
2047 to 2105	7.00
2000 to 2064 dual std mono	7.00
DUAL STD hybrid colour	8.00
SINGLE STD hybrid colour	0
Indesit 20EGB 24EGB mono 9.00	
KB - ITT	
VC200 VC205 VC207 mono	7.00
CVC5 CVC7 CVC8 CVC9 col.	8.00
CVC20 series colour	8.00
CVC30 CVC32 series colour	8.00
CVC45	8.00

PHILIPS	
170 series dual std mono	7.00
210300 series mono	7.00
G8 \& G9 series colour	8.00
PYE 169-173-569-368	7.00
EKCO RV305-769-725-741	8.00
WALTHAM 125	9.00
REWIND SERVICE - available for most continental types, i.e. Kuba, Luxor, Korting, Tyne, Berry Skantic, K80 £15.00 inc pp, VAT. Old lopt required.	
WINDINGS	
SOVEREIGN 14" colour overwind	
Y 13	15.00 15.00
RANK BUSH MURPHY	
T20a T22 Pry \& Sec	6.00
2718 series primary	6.00
2718 series EHT overwind	7.00
ULTRA THORN	
16901691 EHT overwind	7.00
1590	6.00
PYE	
691 to 697 EHT overwind	4.00
691 to 697 primary	5.00
PRICES INCLUDE	

All lopts and windings are new and guaranteed
Open Mon.-Fri. 9 to 5.30 pm Delivery normally by return.

PAPWORTH TRANSFORMERS

80 Merton High Street London SW19 1BE
S.A.E. all enquiries Barclaycard and Access welcome

01-540 3955

AA117	0.090	BC157	0.055	BD222	0310	BU108	1.000	0 C 72	0.500	TIP29C	0250	3N. 128	0.550	2SA473	0370	28 pin	0200	PCL82 0.650	LM723 0320	LED 5mm
AA119	0.090	BC159	0.055	B0225	0310	BU110	1.100	OC200	1800	TIP30	0.160	3 N .143	0.650	2S854	0250	40 pin	0250	PCLBA 0.500	LM741 Dill 0.150	YELLOW 0.100
A4Y32	0.090	BC182	0.050	BD232	0310	8U111	1.400	OCP71	1.000	TIP31A	0240			2SB77	0330			PC185 0.550	LM741	LED 5 mm
AC107	0.280	BC182L	0.050	BD237	0210	BU126	0.700	ORP 12	1.000	TIP32	0240	IN. 914	0.00	337	1000			PCL86 0.550	Met 0.450	GREEN 0.100
AC126	0.170	BC183	0.050	BD238	0240	BU204	0.750	ORP60	1000	TIP32A	0240	IN. 4001	0.040	37	1200	Valves		L86 0.5id	450	100
AC127	0.150	BC183	0.050	BD433	0280	BU205	0.700	ORP61	1.000	TIP33	0.500	IN. 4002	0.040	2SB405	02	DY87	0.530	PCLB05 0.550	LM3900 0250	
AC128	0.150	BC184	0.050	B0437	0280	BU208	0.750			TIP34	0.500	IN. 4003	0.040	2SC460	0.210	DY802	0.450	PFL200 0850	NE555 0.150	BRIDGE
AC128K	0.230	BC184L	0.050	BD535	0380	BU208A	0800	R2	0.800	TIP4IA	0220	IN. 4004	0.040	2SC495	0.600	ECC82	0.400	PL36 0800	NEE56 0.400	RECTIFIERS
AC141K	0.230	BC212	0.050	BD536	0330	BU208D	1200			TIP41C	0250	IN. 4005	0.040	2SC7	0.400	ECC	0.4	PL504 0.950	BYX55	1N50V 0.160
AC142K	0.220	BC212L	0.050	BD537	0.400	BU326	0.850	SAS560	1.100	TIP42A	0220	IN. 4006	0.040	2SC1161	1.100	ECC84	0.400	PL508 1.900	$350 \quad 0300$	1/N100V 0.180
AC153K	0.230	BC213	0.050	BD538	0.400	BU406	0.850	SAS570	1.100	TIP42C	0250	IN. 4007 IN 4148	0.050	2SC1172Y	. 500	ECC85	0.40	PY81 0.700	BYX55/	1-1200V 0.150
AC176	0.180	BC213L	0.050	BDX32	1.000	BU407	0.750	SN76003	1.400	T1P47	0.400	\|N. 4148	0.020	2SC1279	0240	ECH81		PY88 0.400	$600 \quad 0300$	1/ 400 V 0210
AC176K	0.200	BC214	0.050	BDX65	0.800	BU408	1.000	SN76013N	1.400	TIP48	0.400	IN. 5400	0.100	2SC1306		ECH4	0.50	PY500A 1600	BYX55 ${ }^{\text {ck }}$	1a giov 0230
AC187	0.150	BC2141	0.050	BF180	0.150	BU500	1.100	SN76C23N	1.400	TIP49	0.400	IN 5401	0.1	2SC1306	1000	ECH84	0.520	PY500A 1600	X55/	1A600V 0230
AC187K	0200	BC237	0.070	BF181	0.180	BU526	0.800	SN76033N	1.500	TIP110	0.470	IN. 5402	0.100	2SC1307	1000	ECL80	0.570		6000300	1A800N 0280
AC188	0.170	BC238	0.070	${ }^{\text {BF1 } 183}$	0200	${ }^{\text {BY126 }}$	0.060	SN76110N	0.700	112	0.540		0.110	2SC1520	0.250	ECLP2	0.590		BYX55/	2N100N 0350
AC188K	0230	BC300	0.160	BF184	0200	${ }^{\text {BY127 }}$	0.080	SN76115	0.700	TIP115	0.450		0.120	2SC1969	1300	ECLBA	0.570		80000	2AN200N 0360
ACY18	0.480	BC301	0.180	BF185	0200	${ }^{\text {BY133 }}$	0.080	SN76226	0.900	117	0.560	IN 5406	0.120	2SC2029	1200	ECL85	0.570		BYXVO	2N400V 0.420
ACY19	0.430	BC302	0.180	BF194	0.050	BY164	0220	SN76227	0800	TIP120	0.430	IN. 5406	0.130	2SC2078	1200		0.490	BZY88 Range	$500 \quad 0290$	2A600V 0510
AD142	0.600	BC303	0.180	BF195	0.050	BY176	0.850			IIP121	0.460	IN. 5407	0.130	2SC2078	120	ECL\%		2V7 to 39V0.060		
AD149	0.450	BC327	0.060	BF196	0060	BY179	0.350	T28000	0.50	TIP122	0.470	IN. 5408	0.130	2SC2122A	2000	Efbo	0.310	13W Zeners	BY7\%	2N800N 0.510
AD161	0220	BC382	0.060	BF199	0060	BY182	0320	TAG06-60	0.420	TIP125	0.470	Vol		2SC2952	0.270	EF85	0340		5000310	3AN200V 0.650
AD162	0220	BC337	0.050	BF200	0.160	BY184	0320	TAG521-		TIP126	0.560	REG	ORS	$2 \mathrm{SO234}$	0.370	Efb9	0.430		BYX70	3N400V 0.560
AF124	0250	BC328	0.060	8F257	0.180	BY187	0320	200	0.720	TIP127	0.560	7805	0350	2SK135	4.000	EF183	0.450	to 39 V .120	8000360	3N 600 0.720
AF125	0250	BC557	0.050	BF258	0.180	BY196	0200	TAG4443	0.760	TIP2955	0340	7812	0350	MB3712	1.500	EF184	0.530		BYX71/	6A 200 V 1.000
AF126	0250	BCY32	1.500	BF259	0.180	BY206	0.110	TAG4444	0.760	TIP3054	0380	7815	0350		1.50	EL3	1.500	MEMDPNES	$600 \quad 0800$	6A 400 V 0800
AF127	0250	BCY33	1.500	BF336	0200	BY207	0.110	TAA550	0.160	TIP3055	0340	7818	0350	UPC575	1.500	EL			6000000	
AF139	0220	8C134	1.500	BF337	0200	BY223	0.720	TBAI20S	0.450	TIS61	0.150	7824	0,350	UPC575	1.000	EY8	0.310	$\begin{array}{ll}2114 & 0.750 \\ 2716 & 2200\end{array}$		0
AF239	0.220	BCY42	0.200	BF338	0200	BY10	0.150	TBA395	0.600	TIS90	0.150					EY87	0.310	2716	LE	
Al112	0.700	BCY56	0.160	BF362	0300	CA270	0.400	TBA396	0.600	TIS	0.180	7905	0.350	ICS		PC97	1.000	25322.500	LED 3mm	ELECTROLTIC
AL113	0800	ВС70	0.160	BF422	0210	CA3086	0250	TBA520	0.750			7912	0.400	SOCxETS		PCC85	0.420	$2732 \quad 2.900$		4700UF-16V
ASZ15	1.000	BC771	0.160	BF458	0.150	CA3089	1.500	TBA540	0.750			7915	0.400	8 pin	0.060	PCF80	0.580	27645.000		CAN 0.200
ASZ17	1.000	BC772	0.150	$8 \mathrm{B459}$	0.190	CA3240	0.900	TBA540	0.750 0.700	2N2904	0200	7918	0.100	14 pin	0.080	PCF200	1.350	. 750	LED आmm	
AU106 AU110	1.000	BD115 BD124P	0.260 0.500	8FX29	0200	C1060	0230	TBA800	0.350	2N 2906	0.180	7924	0.400	16 pin	0.090	PCF801	1.100	61163.000	YELLOW 0.100	LEAS
AY102	1800	BD124	1.100	BFX85	0200	327	0.700	TBAB10S	0.600	2N 2507	0.180	78L05	0.280	18 pin	0.120	PCF802	0.570	LM324 0300	m	LP1195
AY106	1800	BD128	0350	BP887	0.150	MJ2500	1.000	TBA820	0.750	2N2926	0.080	78L12	0.280	20 pin	0.140	PCF806	1.150	LM380 0.600		(4000Ser) 2250
		BD131	0250	87x88	0.150	M J 2501	1.100	TBAS20	0800	2N. 3019	0280	78L15	0.280	22 pin	0.160	PCH200	1.000	LM381 1.000	LED 5 mm	
BA145	0.100	BD132	0250	BFY50	0.140	M J 2955	0.550	TBAS50	0800	2N.3053	0.180	74.18	0280	24 pin	0.180	PCL81	0.540	LM709 Dil 0300	RED 0.050	
BA148	0.100	8 B 135	0200	BFY51	0.140	M 33000	1.150	TBA990	0800	2N. 3054	0350	74124	0.280	24 pin	0.180			LM/0 0.asa	RED 0.00	
BA154	0.060	BD136	0200	BFY52	0.140	MJ3001	1.150	TCAB00	0800	2N 3055	0320									
BA157	0.120	BD137	0200	BFY56	0250	MJE29A	0.300	TCA940	08.850	2N 3055 H	0380	LM309K	1.000	Please add 40p. P\&P and VAT at 15\%. Govt. Colleges, etc.						
B8101	0.130	${ }^{80138}$	0200	BYF57	0250	MJE30A	0300	TDA1170	0.500	2N3440	0.580	LM317K	2200							
B8103	0.160	BD139	0200	BFY64	0250	MJE340	0250	TDA1412	0.600	2N. 3442	0850	LM31]	1800							
B81058	0.120	80140	0200	8R100	0.140	MJE350	0800	TDA2002	0800	2N 3771 2N 3772	0.850	LM323K	4200			ut	ns	ven for Larg	Quantities	
B8205B	0240	BD144	0.960	BSX19	0.150	MJE520	0300	TDA2003	1.500	2N 3772 2N 3773	0.900	LM723	0320				e	7 days fo	delivery.	
BC107	0.070	BD150	0300	BSX20	0.150	MJE2955	0.500	TDA2020	1.400	2N 3773 2N. 4031	1.000 0250	78HGKC	5.700							
BC108	0.070	BD157	0380	BSX21	0.150			TDA2030	1.400	2N. 4031 2N. 4036	0250 0.250	78H05KC	5200	W						
BC109 BC115	0.070 0.100	BD158 BD166 BD	0380 0300	BSX26 BSX 29	0.160 0.190	OA47	0.060 0.040	TDA2530	08.800	2N. 4037	0250	78GUIC	1.900	GRANDATA LTD.						
BC118	0.110	BD175	0300	B2076	0.180	A091	0.040	TDA2532	0.750	2N. 4443	0.760	79HGKC	6.700							
BC140	0.190	BD177	0300	BT106	0.960	OA200	0.070	TDA2540	0.700	2N. 4444	0.760	JAPANESE								
BC141	0.190	80179	0320	BT109	0.900	OA202	0.070	TDA2560	0.700	2N. 5061	0.200									
BC142	0.190	BD181	0.450	BT116	0800	OC28	1.000	TDA2593	0.800	2N. 5294	0300	TRANS	AS	WEMBLEY, MIDDLESEX, ENGLAND.						
BC143	0.190	80201	0330	BT119	1.000	DC29	0800	TDA2640	0.800	2N.5296	0.300	2SA73	0.300							
BC147	0.055	80202	0380	BT120	1000	OC35	1.000	TDA2680	0.700	2N.6106	0.400	2SA104	0.320	Telephone: 01-904 2093 \& 904-1115/6.						
BC148	0.055	BD203	0.420	BU104	1.000	0C45	0.500	TIP29	0.150	2N. 6107	0.400	2SA198	0220							
BC149	0.055	80204	0.420	8U105	0800	0C71	0.300	TIP23A	0.220	2N. 6109	0.400	2SA203	0.300	Telex No. 932885 (Sunmit)						

"NORTH LONDON WHOLESALER'S" TV SALES

Example of working set prices:
GEC Hybrid £15, Decca $30 £ 24,22^{\prime \prime}$ Philips 520 £25, 22" Philips 550 £35, Thorn $3000 £ 25$,
$19^{\prime \prime}$ Thorn $8500 £ 30$, Twin Chip Bush $£ 24$. Thorn $8800 £ 39$. Mono from $£ 4$ etc.

Prices for other models or non-workers on request.
Re-gunned tubes available. 5 mins. M.1.
Please telephone us for details on:-
WATFORD 45590

SATELLITE RECEIVING SYSTEMS

1 m and 2 m glassfibre dishes other sizes available.

Feeds, support and mounting systems.
Low noise amplifiers, downconverters. Complete terminals for 4 Ghz , other frequencies available.

Demonstrations by appointment.

L \& S Bear Electronics Ltd. Yeo Lane, Colley Lane, Bridgwater, Somerset. Telephone: Bridgwater (0278) 421719

Thorn 3500 (Electronic) . . $£ 15.00$
Thorn 8000/8500 from . . £17.00
Thorn 8800 $£ 30.00$
Thorn 9000 $£ 35.00$
Philips from $£ 12.00$
Decca (Bradford) 6 Button $£ 20.00$ Grundig 5010 in 10's . . . £150.00 Also Jap. and other makes POA Mono TV sets from £2.00
New Trolly Stands $£ 4.95$

WORKING SETS TO ORDER

> 777 I79 Stockport Rd., Levenshulme, Manchester 29. Tel. $061-2247279$ or 2246521

DISCOUNT FOR QUANTITY

WIDE RANGE OF MAKES AND MODELS ARnivg Daily - ALL WITH GOOD CABNETS - MANY TO CLEAR FROM SETS DELIVERED TO YOUR DOOR DIRECTLY FROM SOURCE!
TELEPHONE NOW
021-359 0449 COLOURTRADE 221 Bridge Street West, Hockley, Birmingham B19 2YU

RATCHET SCREWDRIVER KIT
Comprises 2 standard screwdriver blades 5 \& 7 mm size. 2 cross point size 4 \& 6.1 Ratchet handle. 5 -in1 Kit $£ 1.45$ each. $0 /$ No $329 B$

BI-PAK'S OPTO SPECIAL A selection of large and small sized LED's in various shapes, sizes \& colours, together with 7 Segment Displays both anode \& cathode plus photo transistors, emitters and detectors. Cadmium Cell ORP12 and Germ. photo transistor OCP71 included. In all a total of 25 Opto pieces valued over $\mathbf{£ 1 2}$ Normal Price. Order No. VP57 Price Just $£ 5.00$

SILICON BRIDGE RECTIFIERS
Comprising $4 \times \frac{H_{2}}{2}$ Amp rectifiers
mounted on PCB.
VRM - 150 vlts
IFM - 1.5 Amps
Size: 1 inch square
10 off $£ 1.00$
50 off $£ 4.50$
100 off $£ 7.50$
OROER NO: 4R1 B Rect.

VP38 100 Silicon NPN Transistors - All Perfect. Coded Mixed Types With Oata And Eqvt. Sheet No Rejects. Fantastic Value $£ 3.00$ VP39 100 Silicon PNP Transistors - All Perfect. Coded Mixed Types With Data And Eqvt. Sheet No Rejects. Real Value $\mathbf{£ 3 . 0 0}$
HYBRID
LED
COLOUR
DISPLAYS
Red, Green,
Yellow $-.3 / .5 .6$
inch Mixed types
and colours
NUMERIC \&
OVERRLOW
Common Anode/
Cathode. GaAsP/
GaP.

Brand New, Full Data incl. 10 pieces (our mix) $\mathbf{f} .00$ Normal Retail Value Over $\mathbf{£ 1 0 . 0 0}$ Order No. VP58

GALUE PACKS

Pat No. Qty Description Price
 VP24 10 Shder Pots. 40 mm 22K $5 \times$

2510 Shider Pots. $40 \mathrm{~mm} 47 \mathrm{~K} 5 \times$
 (2)

ANSISTORCLEARANCE

 N Sorts fransistors, A moxed bag NPNPNP Silicon \& Germ0 Mank Uncoded You to Son
ark
Tester. Super Value. Order No
VPGO
E .00

Send your orders to Dept Ti
BIFAK Po sox 6
3. BALDOCK ST
WARE HERTS

ELECTRONIC EQUIPMENT SERVICING

(TELEVISION/VIDEO full-time College courses)

- College Diploma or BTEC awards -

TRAINING INVOLVES A HIGH PERCENTAGE OF WORKSHOP FAULT DIAGNOSIS ON TELEVISION \& VIDEO CASSETTE RECORDERS

- 15 MONTHS COURSE for beginners to include Electronic Fundamentals
- 6 MONTHS COURSE for BSc, HND, CGLI, TEC and similar applicants
- 3 WEEKS INTENSIVE VCR COURSE for applicants with Colour TV trade experience
The above courses commence on September 17th and January 7th. Also courses in Computers/Microprocessors, and Robotics leading to BTEC awards.

LONDON ELECTRONICS COLLEGE (Dept T3/4)
Prospectus from: 20 Penywern Road, Earls Court, London SW5 9SU Tel: 01-373 8721

HOW DARE THEY!

If you see an advertisement in the press, in print, on posters or a cinema commercial which makes you angry, write to us at the address below. (TV and radio commercials are dealt with by the I.B.A.)

The Advertising Standards Authority. If an advertisement is wrong, we're here to put it right.

ASA Ltd, Brook House. Torrng gon Place. London WCIE THN

SATELLITE RECEIVING EQUIPMENT

1.9M, 2.5M and 5M Harrison Dishes Sat-Tec R5000 4GHz Receivers Avcom COM-2B 4GHz Receivers California Amplifier 4GHz LNAs Chaparral Feed Horns
Demonstrations by appointment only Dealers wanted HARRISON ELECTRONICS 22 Milton Road,
Westcliff-on-Sea, Essex SS0 7JX.
Telephone: Southend (0702) 332338

CENTREVISION

For Video, Television, Audio MANUFACTURERS SECONDS
Plus selection of modern TV's: T20 9000 etc. Hybrids at give-away prices.

Also:
Tubes, Parts, Stands etc, plus working sets.

Sloper Road, Cardiff.

Telephone: 022244754

FREEWAY COMPONENTS
 TEL:
 0934-419147

TRANSISTORS	8С327 16	BU807 2.00	TBA120S 75	LINE OUTPUT	Pye 691, 697 ... 15.68	Rank $2718 \ldots . . .12 .75$	MULTI-SECTION ELECTROLYTICS
AC117........... 30	8C337 10	MJE340 50	TBA120T 1.10	TRANSFORMERS	Pye 731..........12.23	Decca 1730, 30, 80,	Rank 823 600/300v................ 2.05
AC127............ 30	8C338 10	R20088 1.80	TBA120U 1.10	Autovox 90°....11.70	Pye 713, 715,	100, 6 way 9.08	Rank $8232500+2500 / 30 \mathrm{v}$........ 1.30
AC128............ 30	8C47725,	R2010B 1.80	TBA395 1.75	Autovox $110^{\circ} \ldots . .14 .48$	717 10.50	Decca 1730, 20, Mono	Rank $823300+300 / 300 \mathrm{v}$.......... $2.20{ }^{\text {² }}$
AC141 26	8C479 30	R2540 2.40	TBA396 1.00	Baird $26^{\prime \prime} 90^{\circ} \ldots . .13 .13$	Pye $725111 .78$	4 way 7.43	Rank T20 220/400v 1.50
AC142 27	8D124 60	TIP29C 46	TBA480 1.95	Baird $26^{\prime \prime} 110^{\circ} \ldots 13.13$	Pye 169, 569.	Salora 5 way 8.78	PHG8/GEC 600/250v 1.80
AC176 28	BD131 32	TIP30C 45	TBA510	B80 3100, 3300,	769 11.95	Salora 7 way ... 12.75	PHG8/GEC 600/300v 2.20
AC181............ 28	BD132 32	TIP31C 50		3400 EHT 22.88	Rank A823....... 13.58	Luxor 6 way13.95	PHG9 2200/63v 1.25
AC187 30	BD139 30	TIP32C 50		B80 3100, 3300,	Rank A640, 79313.05	Skantic 6 way ...13.95	PHG11 470/250v . $71 .60$
AC188 28	BD140 30	TIP41C 50	TB	$340013 .60$	Rank A774...... 12.55	Thom 90006 way	Pye 691 200+300/350V 2.40
AD140 96	BD144 1.40	TIP42C 50	TBA540 1.35	B80 3000, 3200	Rank 144 Port 9.50	16.73.	Pye $6911000+1000 / 40 \mathrm{~V}$........... 80
AD142 96	8D160 1.45		TBA550 1.50	EHT22.50	Rank T20A......12.55	TUNERS	Pye $731800 / 250 \mathrm{v}$................ 2.10
AD143 90	8D201 85	INTEGRATED	TBA560 1.50	B80 3500, 3600 ,	Rank 2718 1迤. . 27.00	AEG 05 (1043/05) 9.95	GEC $2000200+200+150+50 /$
AD149 88	8D202 60	CIRCUITS	TBA570 1.40	4000, 5000,	Rank 2718 22 . 27.00	AEG 06 (1043/06) 9.95	350 v 2.50
AD161 45	BD235 42	ETT6016 3.00	TBA720A 2.60	6000 13.95	Saba T3715G16.58	AEG 202 (U321).8.00	GEC $20101000+2000 / 35 \mathrm{v}$.......... 95
AD162 45	BD243 70	ETTR6016..... 3.00	TBA750 1.50	Decca 30, 2230.10.05	Salora 90.	AEG 204 (U322).9.00	Thorn $35001000 / 70 \mathrm{~V}$.............. 1.00
AF117 40	BD244 70	HA1156W 1.25	TBAB00 1.05	Decca 80 10.05	Skantic 2621 14.00	Mitsumi Rotary	PHG9/Pye $731600 / 300 v$ P.C.B. ... 3.00
AF124 50	BD379...... 60	HA1165 3.50	TBA810AS 1.35	Decca $100 \ldots \ldots . .9 .38$	Tandberg 90, ... 15.00	(Portales) 8.00	
AF126 40	BD380 60	HA1366W 1.70	TBAB10S 1.35	Decca 1730.	Tandberg 110.		
AF127 40	BD441 60	LM1303P 4.95	TBAB20 1.20	1830............ 12.30	TFK 7118 \% 711A 13.50	PCEEO VALVES	BARGAIN
AF139 48	BD442 60 BD535.$~$ 0	MC1327P 1.20	TBA820M 1.95	Decca 1700.....10.80	Thom $1615 \ldots \ldots .9 .75$ Thom $1690 \ldots . . .9 .75$		CORNER
AL113 1.80	BD536............ . 50	MC1351P …... 1.35	TBA920 1.70	737, 741 10.50	Thom 1590/91 ..10.90	PCL821.10	Univeral E.H.T. Tray 5.50
AU106 2.00	BD537 50	MC1358P 1.35	TBA950 1.80	Dynatron TV 202/3	Zanussi 26. 13.08	PCL84 1.10	1/1250v Axial LC.R. Capactor 0.49
AU110 2.00	BD538 50	NE5458 2.90	TBA990 1.60 10.25		PCL85 1.15	Hi-Power De-solder Pump 5.50
AU\$13......... 3.00	BDX32 1.60	NE555........... 45	TCA2700 1.50	Ekco CT 262, 862,		PCL86........... 1.05	G8 Convergence Paned (Rear)25.00
BC107 12	BDY20.......... . 80	SAA5000 3.50	TCA270SQ 1.30	226, $827 \ldots10 .50$		PFL200 1.65	G8 A.F.C. Module (030) 8.80
8C108 12	BF178 32	SAA5010 4.80	TCAB00 2.10	GEC Solid State . 9.00	PRESS BUTTONS	PL504 1.55	G8 Gain Module (040) 8.75
8C109 12	BF179 32	SAS560S 1.96	TCA940 1.80	Grundig 5010/UE,	Pye 715, 207	PL508 2.80	Pye 691/697 C.D.A. Panel25.50
BC140 35	BF196 11	SAS570S 1.96	TDA1002 1.15	6010 UE, 2222 . 17.63	Chelsea.......... 13.05	PL509 6.40	G11 Power Panel 52.50
BC141 35	BF197 12	SL9018 6.20	TDA1003A 1.50	Grundig 5010 ... 12.63	Pye 713, 715 ... 8.78	PL802T 3.45	Thorn 9000 Overvolts Protection ...1.99
BC142 25	BF198 17	SL917/918B ... 4.95	TDA1004A 2.50	Grundig 1500 ... 16.20	Pye 691, 697 repair	PY500A 1.80	TX10 Focus Unit 12.50
BC143 25 BC147	BF199 BF258 …........ . 15	SN76023D SN76033N	TDA1035T 3.50	Grundig 5010 EHT	kit 6.53 Philips 68		G11 Line Scan Panel76.00
BC147........... 10 BC148 10	BF258 28	SN76110N 2.95	TDA1170S 2.70	EHT22.88	Philips so 550 sloping ...14.75		BC107 (Pack of ten) (with any order) FREE
BC149............ 10	BF337 32	SN76131N 1.40	TDA1412 80	IT CVC512.23	520 square ...15.50	2A, 3A, 5A, 13A 1.00	
BC157 10	8F338 32	SN76226N 1.65	TDA2020 2.55	ITT CVC25, 30 .	Telpro 4 way 9.950	20 mm ANTI-SURGE	
BC158 10	BF458 32	SN76227N 1.10	TDA2030H 2.95	32............... 8.90	GEC 2110 BBC	80mA, 100 mA .	
BC159 10	BF459 36	SN76510N 90	TDA2190 3.50	IT CVC20 9.75	ITA............. 10.28	$160 \mathrm{~mA}, 250 \mathrm{~mA}$,	horn 90005 -way switchbank 1.50 each.
BC161 30	BFY50 27	SN76533N 1.80	TDA2522 2.00	IT CVC45 9.00	GEC $2112 \ldots . . .14 .33$	$315 \mathrm{~mA}, 400 \mathrm{~mA}$.	2 for 2.50. Take one for 75p when you
8C171 10	BU108 1.78	SN76660N 60	TDA2523 4.30	Korting 90°......13.13	GEC 2136/7 $\ldots . .18 .70$	$500 \mathrm{~mA}, 630 \mathrm{~mA}$	order other goods totalling 15.00 excl.
BC172 10	8U126......... 1.75	SN76666N 75	TDA2530 2.20	Korting 110 0°....13.13	Hitachi 190 Nat. Pan.	$600 \mathrm{~mA}, 1 \mathrm{~A}, 1.25 \mathrm{~A}$,	VAT.
BC17 18	BU204 1.55	TA7176P 1.00	TDA2532 2.50	Luxor $222114 .00$	4 way	1.6A, 2A, 2.5 A ,	
BC178 18	BU204 1.55	TA7205P 1.30	TDA2540 95	Luxor $26^{\prime \prime} 90^{\circ}$... 13.13	IT CVC8/9..... 13.95	3.15A, 4A, 5A ..1.40	dd 60p carriage \& 15% VAT and send
BC179 18	BU205 1.40	TA7217AP 1.80	TDA2541 2.50	Nordmende 13.95	IT CVC511.93	20 mm QUICK-BLOW	cheque or P.O. to:
BC182 10	BU206 1.65	TA7611AP 3.45	TDA2560 2.00	Philips G8 9.68	$\min _{32} \text { CVC20, 30, } 9.08$	$100 \mathrm{~mA}, 150 \mathrm{~mA}$,	EEWAY COMPONENTS
BC187 20	BU208A 1.80	TAA350A 1.90	TDA2571A 3.50	Philips K70 29.10	Rank T20A 10.08	$250 \mathrm{~mA}, 315 \mathrm{~mA}$, 400 mA 500 mA	THE AIRPORT
BC212 10	(Pack of 10) .. 12.00	TAA550 25	TDA2581 1.50	Philips G911.03	Rank T20A....... 10.73	$400 \mathrm{~mA}, 500 \mathrm{~mA}$. $630 \mathrm{~mA}, 1 \mathrm{~A}, 15 \mathrm{~A}$	THE AIRPORT
BC237 10	BU326A 1.40	TAA621AX1 ... 3.50	TDA2590/91 ... 2.50	Philips Mono11.55 Philios $570 \ldots .3 .38$	Rank A823 4 way 9.38		WESTON-SUPER-MARE
8C238 10	BU407D 2.49	TBA120A 95	TDA2593 2.50	Philips 570 9.38	4 way $\ldots9 .38 ~$ 6 way12.75	$1.6 A, 2 A .2 .5 A, 3 A$, $4 A, 5 A \ldots \ldots \ldots \ldots 0.60$	AVON BS24 8RA
BC303 30	BU806D 2.00	TBA120AS 75	TDA2600 6.00	Philips K916.28	6 way 12.75	4A, 5A 0.60	

UNDER NEW MANAGEMENT

TRITELL EDMONTON LONDON

SPECIAL RE-OPENING OFFERS

EVERYTHING REDUCED TO LOW, LOW PRICES
Now in stock Philips G11 and ITT Solid State, Decca 80 and 100 series, Pye Solid State.
Trading as:
CENTRAL TV, 01-807 4090 HUSSAIN CENTRAL TV

No. 1 distributor in U.K.

Special sale for this month only

G8 $52026^{\prime \prime} £ 6.52022^{\prime \prime} £ 9$. G8 $55026^{\prime \prime} £ 10.55022^{\prime \prime} £ 20$. G9 £18. Thorn $26^{\prime \prime} £ 5$. Thorn $22^{\prime \prime}$ $\mathbf{£ 1 2}$. Thorn $8500 £ 20$. GEC Hybrid $£ 4$. GEC Solid State $£ 20$. Pye Hybrid $£ 4$. Pye Solid State $£ 20$. Chelsea $\mathbf{£ 2 0}$. ITT Hybrid $£ 15$. Decca Hybrid $£ 15$. Also latest stock G11, ITT, Decca 80 and 100 series.
VHS Videos plus Cameras available
Guaranteed all T.V.'s are untouched off the floor. Buy now while stocks last.

> Ring us today 021-622 1023 or 021-622 1517 48/52 Pershore St., Birmingham City Centre.

TELETRADERS

Forde Road, Brunel Industrial Estate, Newton Abbot, Devon
Telephone: (0626) 60154
The Best Quality Sets Available Anywhere

All First Class working order and excellent cabinets.

```
Philips G8 550 _ &40
```

Philips G8 550 _ \&40
Philips G11 \&85
Philips G11 \&85
GEC Solid State < < w35

```
GEC Solid State < < w35
```



```
Thorn 9000 &60
```

Thorn 9000 \&60
Thorn 8800 £45

```
Thorn 8800 £45
```


Full spares back-up of tubes and panelssend for list e.g. PL509 £1, PY500 £1 Bulk terms to other wholesalers

THE NO. 1 WHOLESALER IN THE SOUTH

TUNERS + TUNERS

* If you repair sets regularly - phone us today and we will dispatch immediately - no need to send cash 'up front'.
* All tuners dispatched by first class post for receipt by you the next day.
\star All popular tuners/tuner repairs supplied ‘off the shelf'.
\star Unusual types repaired same day as received (subject to spares availability).

Wolverhampton, WV2 4CJ. Phone: (0902) 773122.

MAIL ORDER ADVERTISING

British Code of Advertising Practice
Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code Where goods are returned undamaged within seven days. the purchaser's money must be refunded. Please retain proof of postage/despatch. as this may be needed.

Mail Order Protection Scheme
If you order goods from Mail Order advertisements in this magazine and pay by post in advance of delivery, Television will consider you for compensation if the Advertiser should become insolvent or bankrupt, provided:
(2) You write to the Publisher of Television summarising the situation not 日arlier than 28 days from the day you sent your order and not later than two months from that day.
Please do not wait until the last moment to inform us. When you write, we will rell you how to make your claim and what evidence of payment is required.
We garas as soon as possible after the Advertiser has been declared bankrupt or insolvent.
in this magazine not, for example, payment made in response to catalogues etc., received as a result of answering such advertisements. Classified advertisements are excluded."

VISIONTEL

BEST QUALITY EX-RENTAL SETS IN EXCELLENT WORKING CONDITION POLISHED CABINETS

FROM £22

MANY MANY MAKES IN STOCK

VISIONTEL

YOUR FRIENDLY SERVICE
FOR CURRENT STOCK DETAILS
TELEPHONE 013283787
OR VISIT US AT
55 KILBURN HIGH ROAD NW6
ALL SETS HAVE BEEN ENGINEERED AND ARE IN PERFECT WORKING ORDER

PRICES AVAILABLE ON THESE

 SETS NOW!!!> PYE CHELSEA's PYE 721s, 731s, 725s PHILIPS 520s, 550s BUSH T20, T22, T24s (Remote Control)

THORN 8000 \& 8800s THORN 9000, 9200, 9600
(Remote Control)

Special Offer SALORA 22"
f35 inclusive
Massive reductions for bulk Minimum 5 Sets
Big reductions for export orders over 100 sets

COLOUR

 TELEVISION \& MUSIC CENTRE
35 Stafford Road, Weston Super Mare Avon.

Opening hours: 9-6 Mon-Sat, Sundays by appointment
(Weston Super Mare 413537)
(Note new address)
(15 minutes past Bristol Southward on M5)

SETS \& COMPONENTS

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact COLES-HARDING \& CO, 103 South Brink, Wisbech, Cambs. 0945584188 . Immediate settlement.

SCHRADER TUNABLE UHF Masthead Amplifier RB45 A.S. MV 30DB gain, 1.6 DB noise. $\mathrm{CH} .17-65$. P.S. inclusive $£ 39.50$ P\&P $£ 1.50$. R. VAN REYSEN, 28 Pemberton Road, East Molesey, Surrey.

TELEVISION

Trade \& Retail supplies of s / h colour \& mono TVs. Most makes available, workers or non-workers

SOUTHPARK DISTRIBUTORS

 Unit 4 Rubastic Road,Brentpark Industrial Estate, Southall, Middx. UB2 5LL. 01-574 4631, Ext 28

* Britains most reliable source of quality TVs.
* Hundreds of working polished TVs.
* New adjustable TV stands.
* Pye 18" Chelsea's working \& polished $£ 35.00$ in quantity.

Krystal Marketing Ltud,
Phone 021-471 3023
Breedon Cross Storage Telex 335540-G
Dale Road, Selly Oak, Ask for Les

WIZARD DISTRIBUTORS

 MANCHESTERSPECIALIST DISTRIBUTORS TO THE TRADE OF T.V. \& VIDEO SPARES WE STOCK A FULL RANGE OF PARTS \& COMPON ENTS INCLUDING C.R.T.'s, VIDEO HEADS ETC. RANK - THORN - PHILIPS - ITT DECCA - GEC ETC.
TRADE COUNTER OPEN: 9-4.30 CATALOGUE ON REQUEST. TRADE ONLY. Mail Order Enquiries Welcomed EMPRESS STREET WORKS, EMPRESS STREET, MANCHESTER M16 9EN. TEL: 061-848 0060

TVVALVES

COLOUR VALVES PY500/A-65p, PL509/519-£1.50 MONO VALVES ECC82, EF85, EF183, EF184, DY87 DY802, PCF80 PCF802. PCL82, PCL83, PCL84, PCL85 805, PCL86, PCC84, PCC89, PC92, PC97, PC86, PC88, PFL200, PL36, PL504, PY800, PY88 ETC. MONOCHROME VALVES ALL 35p EACH. ALL VALVES EX-EQUIPMENT \& TESTED. P\&P 50p Per order, Access/Visa Cards welcome. ELECTRONIC MAILORDER, 62 Bridge St., Ramsbottom, Lancs, BLO 9AG. Tel. (070682) 3036.

IRISH DEALERS

Most brand names of UHV-VHF colour \& B/W working. Clean sets at very keen prices. Delivery arranged. Quantity Discount. (Specialists in Export Orders).

> T.V. TRADE SALES E.D.I. House, Kylemore Park West, Dublin 10. Tel. 01-264139 Ext. 11.

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.
The prepaid rate for semi display setting $£ 6.00$ per single column centimetre (minimum 2.5 cms). Classified advertisements 35 p per word

15 Waylands, off Tudor Rd, Hayes End, Middlesex

SATELLITE TV RECEIVER

Receives 4 GHz band. Ideal for demonstration terminal in U.K. 100 degree Kelvin LNA. $\quad \mathbf{3} 392+$ VAT (+ Carr). LNA/down converter PCB's stocked for the constructor. SAE data.
HUGH COCKS TV SERVICES,
Cripps Corner, Robertsbridge,
Sussex TN32 5RY. Tel. 058083317.

Regular weekly supplies of good quality TVs, all with excellent cabinets, we look after our sets, we don't knock them about, as you'll see if you call, suitable for re-sale or rent. Working or off the pile. We're always happy to see you, whether its for one TV or one hundred and one.

MONDAY TO SATURDAY 9 to 5.30

EXCELLENT MOTORWAY ACCESS FROM MOST PARTS VIA M1 OR A1 WE'RE ONLY A SHORT DRIVE AWAY

SERUICE PACES

(minimum 12 words), box number 70p extra. All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television Room 2612, IPC Magazines Limited, Kings Reach Tower, Stamford Street, London SE1 9LS. (Telephone 01-261 5846).

TUBES £29.00 TUBES $£ 14.50$
 INCLUSIVE, REGUNS TWO YEAR GUARANTEE,
 QUANTITY DISCOUNTS
 SIX MONTH GUARANTEE SLIGHTLY USED

A56-120 A51-110 A49-191 A47-342
or 343 A44-270-1 A66-120 A67-120
(All 26" add E^{5})
IN-LINE 51-161 From £35 plus 100's more
Delivery $\mathbf{£ 5}$ per tube. British Isles. No need to spend $\mathbf{£ 5}$ returning old tube it you buy from us
U-VIEW TUBES
29 WARMSWORTH ROAD DONCASTER, YORKSHIRE DN4 ORP
Callers ring first. Open every day including Sunday \qquad Tel: 0302-855017
THORN SPARES AND PANELS. Send s.a.e. for quo- \mid PROJECTION TV 60 inch screen, also projection TV tation examples. Good triplers, TX10 focus units $£ 5.00$. S. KNIGHT, 2 Claremont. Hastings, East Sussex.

Wetsted ubes PRESENTS AN

 UNBEATABLEOFFER$f 26$ aLL deltas ONE PRICE
540 ALL PIIL. ONE PRICE

* SPECIAL CRT POLISHING SERVICE

WHILE U WAIT Only E5

* ALL DELTA SIZES FROM STOCK
* DISCOUNT FOR CRDERS OF 5 CRTs OR OVER
* FREE DELIVERY WITHIN 20 MILE

RADIUS OF MAIDSTONE
Ring Now
Maidstone 872400
or visit our factory
Unit 32, Branbridges Ind Est. East Peckham, Kent.

* Agents required in South Prices do not include VAT

REBUILT COLOUR TUBES DELTA TYPES

Example Prices
All sizes up to $22^{\prime \prime}$ - $\mathbf{£ 2 8 . 0 0}$
All sizes up to $26^{\prime \prime}-\mathbf{£ 3 2 . 0 0}$
A/l In Line P.I.L. Mono Gaming Machine C.R.T.s

20 AX
$E 38.00$
Fast U.K. Delivery 30 AX Call or Phone:
RE-LIFE T.V. TUBES PLANE STREET,
OLDHAM, LANCS. 061-665 2668
Big reductions on Contract Orders Home or Overseas. Wholesalers Required in certain parts of the U.K.

D.I.Y. kits. For details phone 0376519208.

GRUNDIG, working colour from $£ 40.00$. Reconditioned panels from $£ 4.00$. Remote control handset wanted. Reconditioned telequipment oscilloscopes. Repairs, spares, manuals. OCHRE MILL, 0785 814643

100 WORKING THORN 3500 G8 ITT, some remote control Thorn $£ 30.00$ each. Tel. Camborne 718043

SECOND HAND Colour TV spares and tubes. Most makes. Telephone Southport (0704) 74411. Anytime

COLOUR T.V.s

THE BEST IN LONDON 200 + TVs WEEKLY

LOADS SMALL SCREEN WORKING SETS TO ORDER - ALL MAKES

WINDSOR WHOLESALE TEL: 01-968 8771

EX RENTAL C.T.V.'s \& REGUN TUBES

RBM, THORN, DECCA, PYE GEC GRUNDIG, ITT, DHILIPS G8, G9, G11 JAPANESE From $£ 10$
Also all modules from $£ 4$ untested
STARLITE ELECTRONICS
80 Como St., Romford, Essex. Telephone Romford 752537 London Code 3.

NORTHERN IRELAND DEALERS

We have the best value in secondhand televisions. And our low, low prices are second to none. Philips 550, Decca 100/80/302, Pye 741 series and many other makes available.

Prices: Non workers (complete) from $£ 20$.
Guaranteed workers from $£ 38$.
We deliver bulk orders anywhere in Northern Ireland. New loads arriving regularly so phone now for latest stocks.

SM ELECTRONICS

11 Sandholes Road, Cookstown N. Ireland.
Tel: Cookstown (NI) 06487/64277.

TELE-MASTER

We are a good reliable supplier of QUALITY colour T.Vs.

We can DELIVER Try use for SIZE ($18^{\prime \prime}-26^{\prime \prime}$) PHILIPS, PYE, DECCA, BUSH
TELE-MASTER
Rotherham (0709) 863614
24hr Answering Service

TELEVISION TUNER REPAIRS ALL TYPES
 BRITISH, EUROPEAN JAPANESE ETC.
 MEN-TU ELECTRONICS LTD. SALTERNS LANE, FAREHAM, HANTS.
 Tel: 0329-235116

A.B.D.
 TELEVISION LTD.

100's Colour TV's in stock in excellent condition-working sets for the trade. Fresh stocks weekly Untested - complete (Majority working)
Mono TV's
Bush 22"-26" CTV Solid State £5
Hybrid Decca - ITT £12
Philips G8-550 £18
G.E.C.

Philips G11, Bush T20, ITT CS 600 Prices on quotation
Many other makes to choose from
Refurbished Sets - Showroom Condition Ready to Retail
BRC 9000 £50
Bush T20 £75
ITT CS 600 £85
WE ARE OPEN SEVEN DAYS A WEEK
Unit 3 \& 3A, Meadow Trading Estate, Meadow Lane,
Nottingham, NG2 3HO.
Nottingham (0602) 864627

COLOR PVANELS Fully Tested \& Working						
	IF	CDA/	Decoder	LTB	Line Board	Power
GEC 2040	3.50	3.50	4.00	5.00	-	
DECCA 13/30	3.00	-	7.00	5.00	250	4.00
BUSH A823	4.00*	-	10.00*	5.00*	2.50	5.00
THORN 8/81	-		10.00	5.00	-	5.00
PYE 205	3.00	3.50	5.00	10.00 800	-	10.00
THORN 3/31	5.00	5.00	5.00	8.00	15.00	10.00 5.00
G8 *Please specit	$\begin{aligned} & 6.00 \\ & 2 . \end{aligned}$		8.00	7.00	fitted with	5.00
Please add 15\% VAT to above prices, then add post + packing. Post + Packing: 1 panel $£ 1.50 ; 2$ panels $£ 2.25 ; 3$ panels $£ 3.00$ etc.						
Hybrid panels do not include valves.					Terms cash with ordec	

Also a vast selection of modern working and non-working TVs at low prices. Please ring for current stock
COLCAR . . School, Church Street, Golcar, Huddersfield. Tel.: 0484643273
Old C of E School, Church Street, Golcar, Hudd

CANVEY COLOUR TUBES

Unit 3, Charfleets House, Charfleets Industrial Estate, Canvey Island, Essex. Tel: Canvey Island (0268) 690577

CURRENT PRICE LIST

DELTA TUBE TYPE FROM $£ 27.50$ to $£ 31.50$ INLINE TUBE TYPE FROM $£ 35.00$ MONO TYPES P.O.A.

ALL PRICES EXCLUSIVE OF VAT.

All Tubes Guaranteed for 2 YEARS and Reprocessed to Original Manufacturers Specifications.

Order form Please insert the enclosed advertisement in the next available issue of Television Heading Signature .. Chq/PO Date No. of ins......... Classified Advertisement Department, Room 2612, King's Reach Tower, Stamford Street, SE1 9LS.	

NMEEETES	
25 YEARS SUPPLYING THE TRADE	
Sumew low	
HIGH QUALITY COLOUR TV'S	
PHILIPS 520	f_{15}
PHILIPS 550	¢28
GEC 2010 Plastic or Wood	£25
HITACHI 19' Push Button	£35
SANYO	£35
BUSH 2 CHIP	£15
BUSH 1 CHIP	£ 10
THORNE 900	\&45
BUSH 718	£35
BUSH T22 Exc.Cond.	$\delta 65$
OTHER MODELS IN STOC SONY, ITT, PYE, MITSU	
MONO TV's	
MIXED BUSH, GEC, PYE, PHILIPS, etc. 600 CAN BE SOLD IN ONE LOT £350 OR LOTS OF 10 . . $£ 2$ EACH (mainly $20^{\prime \prime}$)	

WORKING TV's TO ORDER

EXCELLENT CABINETS - READY TO SELL OR RENT
BUSH 2 CHIP £29
PHILIPS G8 550 £4
PHILIPS G11 £85
BUSH T20, T22 £65
GEC 210 Plastic or Wood Each
BUSH 718£45
ADJUSTABLE STANDS EACH £3
LATER MODELS: PHONE FOR QUOTATION
WHITE GOODS
HOOVER TWINS FROM £7
HOTPOINT 1460 FROM £10 AUTO's FROM £ 15
SPARES! SPARES! TV PANELS

		DECCOEER					
	$\begin{gathered} 3,100 \\ \hline \end{gathered}$	$\begin{aligned} & 8000 \\ & 4000 \\ & \hline, 00 \end{aligned}$	$\begin{gathered} 8 \\ \hline \\ \hline 800 \end{gathered}$	$\begin{aligned} & 3000 \\ & 8800 \\ & 8800 \\ & 800 \end{aligned}$	$\begin{gathered} 300 \\ 5 \\ 500 \end{gathered}$	5.00	
CE2119	$\begin{gathered} 1000 \\ \substack{1000 \\ 80010} \\ \hline 8010 \end{gathered}$	$\begin{gathered} 500 \\ 1500 \\ 1500 \end{gathered}$			cosm	500	

P\&P 1 panel $£ 1.50,2$ panels $£ 2.00,3$ panels $£ 2.50$ etc. Quick Despatch-C.W.O Please CASH ONLY - DELIVERY CAN BE ARRANGED yOU CAN REACH US EASILY FROM ANYWHERE

(0274) 688458

Unit 1. Wharfedale Road M6ilf Euroway Estate Bradford

OPEN MON-SAT 9-5.30 Don't forget! We are open all day Salurday!

When replying to Television Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

TESTED PANELS POST FREE NO V.A.T. Philips G8 Chroma £9.50. I.F. £7.50. Power £8.00. Front Conv. £4.50. 520 Tripler £2.00. Focus Unit £1.00. Knobs 10p. Signal Panel £20.00. Thorn 3-3500 Power Supply £12.00. Line $\mathbf{£ 1 2 . 0 0}$. I.F. £4.50. 3500 Convergence £7.50. 22" working Philips G8 520 £35.00. Bush A823 Power £5.00. I.F. £4.50. Mech. Tuner £4.00. Scan Panel $\mathbf{£ 7 . 0 0}$. Mains $\mathrm{T} / \times \mathbf{£ 4 . 0 0}$. Choke £3.00. Mains Dropper and Electrolytics Assembly $\mathbf{£ 5 . 0 0}$. McHUGH ELECTRONICS 16 Copperkins Road, Hednesford, Staffs. WS 125 NW. Mail Order Only. Enquiries Ring Hednesford 4567 avenings $26^{\prime \prime}$ Bush Colour TVs serviced and ready to sell £25.00 anch Ring Penkridge (Staffs) 3530 anytime

EAST ANGLIA SUPPLIES

Fully working colour TVs from $£ 25.00$ plus VAT straight from our retail shelves. Most makes are available and small regular orders are welcome. Personal services guaranteed and if we can help you boost your rental or retail trade we would be delighted.
Free delivery available (only petrol charged).
Contact John, Dave or Steve at
Barry T.V. Services
on Cambridge 69215
or Ely 61462
T. $\begin{aligned} & \text { SPARES, PANELS } \\ & \text { AND MANUALS }\end{aligned}$ PHILIPS •GRUNDIG
TELEVIEW
01-994 5537 194, Acton Lane, London W.4.

TRADE COLOUR TV's ALWAYS 200 IN STOCK
 Phillips G8 from E10
 Bush Twin Chip from $\mathbf{8}$: Pye Chelsea from $\mathbf{f 1 5}$
 Avo repairs prompt service scopes etc. Colour TV's in good working order from $\mathbf{E 3 5}$. E.G. Phillips G8's 22" £35. Ring us for spares and type availability
 Also Videos. V2020 and V2023's etc. ALL STOCK CHANGES WEEKLY
 (0934) 514047/512792/27560 P\&R SUPPLIES, Unit 5 Worle Industrial Estate
 Weston-Super-Mare. Exit 21 M5.

RANK BUSH MURPHY TV PANELS

Repair, exchange, sales service, prompt efficient service. All chassis covered. New PCB available to replace burnt T20 line Panel. We charge only E 16 to repair switch mode power supply. Ring Monday to Saturday and ask for Mr. Kheli.
T. K. Panels Service,

31 Bronte Paths, Stevenage, SG2 OPG. Tel. (0438) 61567.

BOURNEMOUTH COLOUR TVs

GOOD WORKING ORDER

THORN 22" 3500	From $\mathbf{£ 2 3}$
THORN 22" 3500 ELEC	From $\mathbf{£ 2 8}$
$\mathbf{(0 2 0 2)}$	$\mathbf{7 2 1 1 4 5}$

BOOKS AND PUBLICATIONS

COMPLETE FULL-SIZE SETS any published service sheets $£ 2+$ LSAE except CTVs/Music Centres from $£ 3$ + LSAE. Manuals from 1930 to latest. Quotations, free 50 p magazine, price lists, unique technical publications for sale. Repair data/circs almost any named TV/ VCR $£ 8.50$ by return. TIST, 76 Church Street, Larkhall, Lanarks ML9 1HE. Phone (0698 883334).
"RADIO AND TELEVISION SERVICING" books, new editions for the last 6 years always in stock. Prices on request. BELLS TELEVISION SERVICES, 190 Kings Road, Harrogate, N. Yorkshire. Tel. 0423 55885.

FOR SALE

For a good selection of used TV sets in good cabinets . . .

* Large stock of working sets.
\star U.K. Delivery Service.
\star Stands, Aerials, Tubes and Panels.

PETER CAMPION is now in business at UNIT 40, HARTLEBURY TRADING ESTATE, NR. KIDDERMINSTER, WORCS. DY10 4JB. Tel: Hartlebury 250161. Telex: 334155 MTV G. No conrection with MTV Trade Sevvices or Campion Thompson Lte.

TELEVISION SERVICE SHEET SPECIALISTS

Thousands of British, European, and Japanese models in stock.
Colour $£ 2.00$ Mono $\mathbf{£ 1 . 5 0 \text { (post free) }}$
Manual prices on request.
Send stamped envelope for free catalogue and enquiries
SANDHURST PUBLICATIONS (MAIL ORDER)
49C Yorktown Road, Sandhurst, Camberley, Surrey GU17 7AG

30,000 SERVICE SHEETS IN STOCK. COLOUR MANUALS ALSO AVAILABLE

TV Monos, Radios, $\mathbf{£ 3 . 0 0}$. Tuners $\mathbf{£ 3 . 0 0}$. Tape Recorders, Record Players $\mathbf{£ 3 . 0 0}$. Transistors $\mathbf{2 3 . 0 0}$. Car Radios $\mathbf{\$ 3 . 0 0}+$ SAE. Stereograms \& Music Centres $\mathbf{£ 3 . 0 0}$. Radiograms $\mathbf{£ 3 . 0 0}$. Also Colour available. State if circuit will do if sheets are not in stock. Circuits $\mathbf{£ 3}$-colour. All TV Sheets are full length 24×12 not in Bits and Pieces. Alh other Data tal
C. CARANNA, 71 BEAUFORT PARK, LONDON NW11 6BX.
(MAIL ORDER)

TECHNICAL INFO SERVICES

76 Church St-Larkhall-Lanarks
Giant TV \& VCR DIAGRAM MANUALS
Brit CTVs
3 vols $£ 45$
Vol. 1 Decca G.E.C. ITT
$\mathfrak{f} 17$
Vol. 2 Philips Pye Redif.
± 17
Vol. 3 Rank Bush Thorn £17
Foreign CTVs (now updated) 2 vols $£ 32$
Mono (Stand + Port) 2 vols $£ 32$ Early VCR (VHS/Philips) £17 VCR later models inc. Betamax
£17
Domestic Equipment Exploded Diagrams in 2 huge binders for
£32 New T.V. Rep. Manuals $£ 7.50$ each 1983 Brit. CTV or Foreign CTV 4 Complete set of 15 TV Rep Mans for $£ 105$ Unique T.V. Repair course
$£ 9.50$
The only practical radio servicing and repair course
£9.50
Large SAE brings FREE 50p magazine inc. service sheet/details of unique T.V. publications. Any quotation plus price ists, etc.
Full size service sheets $\quad \mathbf{£ 2}+$ I.s.a.e.
CTVs/Music Centres $£ \mathbf{£}+$ l.s.a.e
Worlds largest collection of service manuals 1930 to date. From $£ 4.50$ to $£ 35$ each.

e.g. Autovox/G8/A823 £7.50 each | e.g. Autovox/ | |
| :--- | ---: |
| Integrated TV repair system | $\mathbf{£ 7 . 5 0}$ each | Integrated TV repair system

Contains over $£ 250$ normal prices.

> FOR FAST QUOTES RING 0698883334

FOR SALE

WORKSHOP CLEARANCE. Audio/TV test gear, components and spares. 12 volumes Radio and Television Servicing 1970-82. Television magazines 1973 to date. Manufacturers manuals and circuits. Buyers collect. Reading (0734) 477339.

JAPANESE COLOUR TVs, Panasonic, Hitachi, Mitsubishi, Toshiba, Sharp. Fully refurbished - to trade only. J. M. PEARSON TELEVISION 0484 863489.

SATELLITE TELEVISION DISHES (1.2 dia) for home construction from sheet aluminium. Full drawings and details $£ 1.50$ inc post. W. N. JONES, 2 Ty'n Rhos, Gaerwen, Gwynedd LL60 6HL.

COSSOR 20mhz BANDWIDTH dual channels Oscilloscope £95. 169 Noakes Avenue, Great Baddow, Chelmsford.

SCOPEX 4D25 DC-25MHz Dual Trace $£ 150$. Murphy TPG11 $405 \mathrm{Pat} / \mathrm{Gem} £ 30$. Peterborough 78381.

TECHNICS SL150 Direct Drive, ADC arm, Revox A77 reel, Revox A78 amp, Griffin 27 speakers, the lot $£ 550$. Buyer collects. Cardiff 615518 .

BELL'S TELEVISION SERVICES for service sheets on Radio, TV, etc. $£ 1.50$ plus S.A.E. Service manuals on colour TV and Video Recorders, prices on request. S.A.E. with enquiries to B.T.S., 190 Kings Road, Harrogate, N. Yorkshire. Tel. (0423) 55885.

TANATON ELECTRONIC LTD.
 1A Courtenay Place, Walhamstow E17

Service sheets + manuals new pack of 10. Mixed radio/TV music centres $£ 5.00$. 3 K 5 convergence PCB blank $£ 2.50$. 8K5 power PCB blank $£ 1.50$. Mixed bag components R.C. TR $\mathbf{£ 2 . 0 0}$. Mixed bag coloured stereo knobs $\mathbf{£ 1 . 5 0}$. 2N3055 unmarked, 20 for $\mathbf{£ 1 . 5 0}$. High speed switching diodes ESM 181-800R, 10 for $\mathbf{£ 1 . 5 0}$.
Cheque or postal order made payable to: Tanaton Electronic Ltd.

Add $60 p$ P + P.

MISCELLANEOUS

bURGLAR ALARM EQUIPMENT, Latest discount catalogue out now. Phone C.W.A.S. ALARM 0274 731532.

WANTED

WANTED. We will clear any amount of colour sets from small Rental Companies, Hotels, etc. Please phone P \& R Domestic Electrical Clearance Supplies, Weston Super Mare (0934) 514047.
WANTED I.F. PANEL for National colour portable TC361GM. Lowestoft (0502) 81136.
WANTED, Television Servicing Equipment, Scope Manuals etc. REINA, 2A Boothferry Road, Hessle, Hull. 0482643142.

NOEL EDMONDS

"Late Late Breakfast Show" Is urgently looking for any bizarre funnies/ bloopers on Film or V.T. (any format). If you
have a gem please contact:
B.B.C. T.V. CENTRE

Wood Lane, W12
Telephone 01-576 1969
(Reverse Charges)

WANTED

T.V.s, VIDEOS, HI FI, AUDIO

$\mathbf{£ 1 0 0 , 0 0 0}$ то spend

If you have a surplus, we would be delighted to make an offer.
Contact:
Mr Fred Tuck
(0934) 413537

FOR SALE

A small television repair business in East Devon seaside town.
Considerable number of T/V, Radio Service Sheets 1934 to date.
Elderly Test, P.A. and similar gear.
TELEPHONE
(0297) 20201

COURSES

CONQUER THE CHIP. . . Master modern electronics the PRACTICAL way by SEEING and DOING in your own home. Write for your free colour brochure now to British National Radio \& Electronics School, Dept. C4, Reading, Berks RG1 1BR.

AERIALS

AERIALS AND ACCESSORIES. Terrific range of quality equipment including some off-beat items and some real clearance bargains. Keen prices. New catalogue 50p (refundable). WRIGHTS AERIALS, 43 Greaves Sike Lane, Micklebring, Rotherham.

AERIAL BOOSTERS Next to the set fitting B4SH/G-UHF TV, gain about Zodbs, Tunable over the complete UHF TV band. Price 58.70 . BII-VHF/FM RADIO, gain about 14dbs, when on the off position connects the aeriai direct to the redio. Price 17.70 . All boosters we make work off a PP3/006p/6F22 type battery or , 8V-18V DC. P8. 30 p per order. ELECTHONIC MAM ORDEA, 62 Bridee St hamebotiom, Lance BLo sacs. Tet. (07050) 3036 Access/Nisa Cards Welcome SAE Leaflets

2 METRE PARABOLIC DISHES
Glassfibre Construction
Suitable for 4 and $12 \mathrm{GHz} \mathbf{£ 2 9 0}$
Polar Mounts and Feed Supports Available. Send S.AE. for Details
SP ANTENNA SYSTEMS,
3 Woolpack Corner, Biddenden,
Ashford, Kent TN27 8BU
Tel: 0580291090

AERIALS AND ACCESSORIES
North Londons Spaciafist Aeriol Supplier
Whoiesme and Moil Order.
VHF/UHF antennas, masts, brackets, cable, amplifica-
tion and distribution equipment etc. All types of aerial
hardware and software supplied. Single and multipoint
systems planned and installed.
Send 50p for our new 1983 catalogue and price list.
S.C.S. AERIALS
(Aerial Distributors)
(Me-28 Port Vale, Hertord, Herts. SG14 3AB.
Tel: O992 50478.

[^1]LONDON'S LARGEST TELEVISION WHOLESALER...
with over $4 \frac{1}{2}$ thousand sq. feet

"TELEMANN"

8-10 RHODA STREET, (Of Bethnal Green Road) LONDON E.2. FREE CAR PARK TEL: 01-739 2707

ALL MAKES IN STOCK AND GUARANTEED COMPLETE

PYE 22" COLOUR FROM $\mathbf{£ 7 . 5 0}$ PHILIPS 22" (Teak cabinet) PARCEL OF TEN $£ 15{ }^{\circ}$ MONO DUAL STANDARD PARCEL OF $20 £ 1$ - SIMIGLE STANDARD £3

FREE DELIVERY TO THE LONDON AREA! TELEPHONE 01-739 2707 - NOW!

WE CAN DELIVER

 ANYWHERE IN U.K. INCLUDING REPUBLIC OF IRELAND VISIT OUR NEW LUXURY SHOWROOM FOR WORKING T/Vs FROM $£ 25$ ganeTELEMANN - TELEMANN - TELEMANN

T.V. SALE
 ALL TESTED WORKING

We would like to clear our stock due to moving to new premises nearby.

1500 Mono
Bush A Mechanical
Bush Electronic
3,500 Electronic
GEC Solid State
Bush 2718
Philips G8 (V.C.R.)
Hitachi 17"
Prices start from £10.00 £18.00 £28.00 £28.00 £35.00 £38.00

Thorn 9000 \& ITT $£ 48.00$
Any Stock Arriving Will Be Sold Untested Mono From $£ 3.00$
Solid State Colour From $\mathbf{£ 7 . 5 0}$
NO ADDITIONAL VAT
TV Legs $£ 1$ per set
TV Stands from $£ 2.50$
Video Stands from $£ 7.50$
See back issues for TV Panels \& Spares

DISCOUNT TV SERVICES

"TV PANELS"

Unit 11, Mayfield Industrial Estate, Mayfield, Dalkeith,
Midlothian EH22 4AD
Tel: 031-663 0380, 9 am - 4 pm
Other Times 031-663 8940

COLOUR TELEVISIONS

PYE CHELSEA - 6 button

 PYE 723PHILIPS G8 550 THORN 8000, 8800 THORN 9000, 9200, 9600 Remote Control

Working panels and tubes available.

REBUILT TUBES

Delta - In Line - PIL.
SOUTHBRIDGE TV CENTRE
120, Selhurst Rd., London, S.E. 25.
Tel: 01-771 3535.

EMCO - EUROSONIC - GRUNDIG - TELETON + ALL BRITISH MAKES ETC., ETC. - ALL SPARES READILY AVAILABLE

IMMEDIATE CREDIT AVAILABLE - TRADE ONLY

if you are a trader simply phone for the part you require and we will send it - no quibble - no hold up for status check. Satisfy us over the phone that you are a trader and we will supply almost any $\mathbb{T V}$ component by return "off the shelf". e.g. LOPTX - EHT trays - droppers - OSC coils - switches - cans smoothers - I.C.'s, etc etc

YOU CAN BE 95\% SURE WE CAN SUPPLY ANY TV COMPONENT BY RETURN

IF YOU NEED SPARES FAST - RING NOW!
ACCESS AND BARCLAYCARD ACCEPTED.
Applies to U.K. only.
THE TELECENTRE, WORCESTER ST., WOLVERHAMPTON (0902) 773122

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \& \multicolumn{2}{|r|}{\multirow[b]{3}{*}{SEMD7}} \& \multicolumn{3}{|l|}{\multirow[b]{3}{*}{COMPONENTS}} \& \multicolumn{2}{|r|}{\multirow[t]{3}{*}{\begin{tabular}{l}
SAA5000 \\
SAA5000A \\
SAA5012
\end{tabular}}} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \mathbf{1 1 . 5 0} \\
\& \mathbf{1 . 5 0}
\end{aligned}
\]} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multicolumn{2}{|l|}{MJE2801} \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \multicolumn{2}{|l|}{MJE2955} \\
\hline \multicolumn{3}{|l|}{GEC or Hitachi 6 push button unit} \& \& \& \& \& \& \& \& \multirow[t]{2}{*}{E4.00} \& \[
\begin{aligned}
\& \text { SN76023N } \\
\& \text { SN76033 }
\end{aligned}
\] \& \[
\begin{aligned}
\& £ 1.50 \\
\& \varepsilon 1.50
\end{aligned}
\] \& \multicolumn{2}{|l|}{MJE13005} \\
\hline \multicolumn{3}{|l|}{ELC 1043/06 (AEG)} \& \multicolumn{5}{|c|}{63 Bishopatoignton.} \& \multicolumn{2}{|r|}{SAA5012A} \& \& SN76110N \& \({ }_{51}\) \& \multicolumn{2}{|l|}{Sanikron Diode
SKE2G2/04} \\
\hline \multicolumn{3}{|l|}{ELC1043/05 Mullard \(\quad \mathbf{6 6 . 0 0}\)} \& \multicolumn{5}{|c|}{Shoeburyness, ESSEX SS3 8AF} \& \multicolumn{2}{|r|}{\multirow[t]{2}{*}{SAA5020}} \& \[
\begin{aligned}
\& £ 3.50 \\
\& \mathbf{£ 5 . 0 0}
\end{aligned}
\] \& \multirow[t]{2}{*}{SN766131
SN7614} \& \multirow[t]{2}{*}{\({ }_{50 \mathrm{p}}\)} \& \multicolumn{2}{|l|}{Transi} \\
\hline ELCl043 (Ex \& Panel) \& £3.75 \& \multicolumn{5}{|c|}{SAME DAY SERVICE} \& \& \& \({ }_{85}^{25.50}\) \& \& \& \multicolumn{2}{|l|}{} \\
\hline ELC1042
ELCO000 \& \& \({ }_{\text {¢ }} \times 5.00\) \& \multicolumn{5}{|c|}{\multirow[t]{2}{*}{}} \& \& SAA5040A \& E4.40 \& SN76226 \& \({ }^{1} 1.00\) \& \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\(\mathrm{ACl24}^{\text {a }}\)}} \\
\hline ELC2000 \& - \& \(\underline{57.00}\)
\(\mathbf{1 0 . 0 0}\) \& \& \& \& \& \& \& SAA5050 \& \({ }^{2} 3.50\) \& SN76227N \& \({ }_{\text {cop }}^{60}\) \& \& \\
\hline ELC2006 \& \& £10.00 \& \multicolumn{5}{|c|}{Postal Order/Cheque with order} \& \& SAFI032p \& 22.50 \& SN76270 \& \&1.00 \& \multicolumn{2}{|l|}{AC137 15p} \\
\hline \multicolumn{3}{|l|}{GEC Tuner V/Cap Hitachi After} \& \multicolumn{5}{|c|}{Add 15\% VAT, then £1 Postage} \& \& SAF1039 \& £2.00 \& SN76532N \& 50p \& AC151 \& \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\({ }_{1}^{1979}\) U322 (UHF) £ ¢ 10.0}} \& \multicolumn{5}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Add Postage for overseas \\
Callors: To shop at 212 London Rd.,
\end{tabular}}} \& \& \({ }_{\text {SAS560 }}\) \& E2.00 \& \({ }^{\text {SN7 }}\) 765445 \& ¢2.00 \& \multicolumn{2}{|l|}{\(\begin{array}{ll}\text { ACl51 } \& \text { 15p } \\ \text { ACl31 }\end{array}\)} \\
\hline \& \& \& \& \& \& \& \& \& SAS570 \& ¢2.00 \& SN76545 \& 23.50 \& AC138 \& 15p \\
\hline \multicolumn{3}{|l|}{U322 (UHF) "
V314 (VHF)
.} \& \multicolumn{5}{|l|}{Southend. Tel. 0702-332992} \& \& SAS660
SAS670 \& ¢1.00
81.00 \& SN76546 \& 11.00
\(\mathbf{3 0}\) \& AC152 \& 15p \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{ll}
U341 UHF \& \(\mathbf{£ 7 . 0 0}\) \\
ELC1043/05 Thorn \& \(\mathbf{£ 5 . 9 0}\)
\end{tabular}}} \& \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Open 9-112.30-6. GVAT + school orders acceptod on official headings add 10\% handling charge.}} \& \& \& \[
\begin{aligned}
\& \mathbf{8 1 . 0 0} \\
\& \mathbf{E 5 . 0 0}
\end{aligned}
\] \& SN76550 \& \({ }^{30} \mathrm{p}\) \& AC153K \& 15p \\
\hline \& \& \& \& \& \& \& \& \& \({ }_{\text {SL918 }}\) \& \({ }_{\text {c6. } 20}\) \& \({ }_{\text {SN76570 }}\) \& \(\begin{array}{r}\text { ¢ } \\ \mathbf{5 0 p} \\ \hline 1.00\end{array}\) \& \({ }^{\text {ACl }}\) (22K \& 15p \\
\hline \multicolumn{3}{|l|}{Small V/Cap Mitsumi UHF} \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{THORN 1400 4P.B. Mech. Tuner
THORN 1500 4P.B. Mech. Tuner}} \& BRC-M-200 \& 40 p \& \& TA7122 \& 81.15 \& SN76620 \& \({ }_{50}^{50}\) \& AC176 \& 15 p
15 p \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{VHF "\#}} \& \& \& \& BRC-M-300 \& 50 p \& \& TAA470 \& ¢1.50 \& SN76660N \& \%p \& AC176K \& 15p \\
\hline \& \& \& \multicolumn{3}{|l|}{} \& BRC 1330 \& 75p \& \& TAA570 \& 75p \& SN76620A \& 50 p \& AC178K \& 15p \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{6004 Bush V/Cap Tuner \(\quad \mathbf{5 1 0 . 0 0}\)}} \& \multicolumn{2}{|l|}{THORN 1590 4P.B. Mech. Tuner
THORN 3500 4P.B. Mech. Tuner} \& \& BTT822 \& £1.00 \& \& TAA611B \& ¢1.50 \& SN76666 \& ¢1.00 \& AC179 \& 15p \\
\hline \& \& \& \multicolumn{3}{|l|}{} \& BTT6016 \& £1.20 \& \& TAA621 \& £2.00 \& SN76705N \& \({ }_{51}\) \& AC186 \& 15p \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{6004 Bush V/Cap Tuner \(\quad \mathbf{8 1 0 . 0 0}\) NSF-UHF/VHF Varicap (old}} \& \multicolumn{3}{|l|}{THORN 85004 P.B. Mech. Tuner} \& BTT6018/ML237 \& £1.50 \& \& TAA661 \& 81.75 \& SN76707N \& 75p \& AC187K \& 15p \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
type) \\
Mostit UHF/VHF (new
\end{tabular}}} \& \multicolumn{3}{|l|}{All new \& boxed. . EA.00 each} \& BTT6218 \& £1.50 \& \& TAA641 \& f1.50 \& SN76708AN \& 75p \& AC188 \& 15p \\
\hline \& \& \& \multicolumn{3}{|l|}{\multirow[b]{2}{*}{Delay Lines}} \& BTT8124 \& £1.00 \& \& TA7117 \& 50 p \& SN76720 \& £1.00 \& AC188K \& 15p \\
\hline \multicolumn{3}{|l|}{Mosfit UHF/VHF (new
yype)
SONY
1400KV Tuner unit} \& \& \& \& \({ }^{\text {BTTR8224 }}\) \& ¢1.00 \& \& TA7120P \& 50p \& UA783P3C \& 40p \& ACY21 \& 25p \\
\hline \multicolumn{3}{|l|}{SONY 1400 KV Tuner unit \(\mathbf{£ 3 . 5 0}\) Thorn Tuner PANEL with} \& \multicolumn{3}{|l|}{DL20A 80 p} \& CA270AEW \& \({ }_{50 \mathrm{p}}^{50 \mathrm{p}}\) \& \& TA7315AP \& \({ }^{50 \mathrm{p}}\) \& \({ }_{\text {BTIL00A/02 }}\) \& 40 p \& AD143 \& 50p \\
\hline \multicolumn{3}{|l|}{Thorn Tuner PANEL with \(6 \times 100 \mathrm{~K}\) pots + cursors NO TUNER} \& \multicolumn{3}{|l|}{} \& CA270CE \& S0p \& \& TA7609P \& 40p
50 p \& \({ }_{\text {BTIL }}\) \& 70 p
30 p \& AD149 \& 50 p \\
\hline \multicolumn{3}{|l|}{TUNER \(\mathbf{8 1 . 0 0}\)} \& \multicolumn{3}{|l|}{\begin{tabular}{l}
G8 (Old Type) \\
DI 700
\end{tabular}} \& Cayzate \& £1.00 \& \& TBA120A \& 40 p \& TBA5400 \& ¢1.50 \& AD161/162 \& pair 40 p \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{U321 on panel ITT 40 E6.00 Tuner unit VHS Sylvania GTR}} \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \& CA1310 \& \({ }^{50}\) \& \& tbaizoas \& 50 p \& TCA270 \& £1.00 \& AF139 \& 25p \\
\hline \& \& \& \& \& \& CA30650 \& \({ }_{50} 50\) \& \& TBA120SA \& 40 p \& TCA2700 \& £1.00 \& \({ }_{\text {AF181 }}\) \& 1.00 \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{(}} \& \(\begin{array}{lr}\text { UDL'1 } \\ \text { KT } 3 \text { Luminence } \& \text { 30p } \\ \text { 75 }\end{array}\) \& \multicolumn{2}{|l|}{} \& \({ }_{\text {CA }}\) CA 3099 O \& \({ }_{50 \mathrm{p}}^{5}\) \& \& TBA120B \& 40 p \& TCA640 \& £1.00 \& AF239 \& \({ }^{25} \mathrm{p}\) \\
\hline \& \& \& \multicolumn{3}{|l|}{Luminance Delay Line (CVC 45)} \& \(\mathrm{CA}^{\text {CA3094AE }}\) \& 50 p \& \& TBA120SB \& 40 p \& TCA660 \& £1.00 \& \({ }^{\text {AF367 }}\) \& \({ }^{25 p}\) \\
\hline \multicolumn{3}{|l|}{Thorn 3500 tuner panel with ELC
\(1043 / 05+\) pots
\(\mathbf{8 7 . 0 0}\)} \& \multicolumn{3}{|l|}{\(10 \times 2 \mathrm{~A}\) fuse} \& CA3123 \& 40 p \& \& TBA120SO \& £1.00 \& TCA270S \& £1.00 \& AL102 \& 1.75 \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Mullard Video Modulator. Application, video tape recorders,}} \& \multicolumn{3}{|l|}{\begin{tabular}{l}
\(10 \times 3.15\) fuse \\
50p
\end{tabular}} \& CA3146 \& \({ }^{11.00}\) \& \& tBaizou \& 75p \& TCA270SO \& £1.00 \& BC161 \& \({ }^{30} \mathrm{p}\) \\
\hline \& \& \& \multicolumn{3}{|l|}{Co-Ax Joint \(\quad 15 \mathrm{p}\)} \& \({ }_{\text {CAF1 }}^{\text {CA8 }}\) (\({ }^{\text {che }}\) \& \({ }_{50 \mathrm{p}}^{40 \mathrm{p}}\) \& \& TBA1200 \& \({ }^{30} \mathrm{p}\) \& TCA740 \& £1.00 \& BD507 \& \({ }^{50} \mathrm{p}\) \\
\hline Application, video tape recorders, TV cameras, video games, closed \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{circuit T/V, C.C.I.R. system. Data}} \& \multicolumn{3}{|l|}{Co-Ax Belling Lee Plug} \& \({ }_{\text {CBF16848 }}\) \& 50p
30 p \& \& TBA120C \& \({ }_{\text {¢ }}^{4000}\) \& TCA800 \& E2.00 \& BD509 \& 30 p \\
\hline \multicolumn{3}{|l|}{\multirow[b]{2}{*}{}} \& \multicolumn{2}{|l|}{Co-Ax Belling Lee Plug Co-Ax Spliner} \& \({ }_{\text {c3, }} \times 1.00\) \& DM7492 \& 50 p \& \& TBA231 \& \({ }_{75}{ }^{\text {P }}\) \& TCEP100 \& \({ }^{51} 21.00\) \& BD510 \& 30 p \\
\hline \& \& \& \multicolumn{3}{|l|}{UHF Modulator CCIR \(\quad \mathbf{8 3 . 0 0}\)} \& HA1196 \& 40 p \& \& TBA395Q \& 50p \& TCE120CQ \& \(\underline{81.00}\) \& BD517 \& 30 p \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Vosound The latest design in low noise firted with DNR, RF output}} \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \& HA1370 \& £2.00 \& \& TBA3960 \& £1.00 \& TDA4400 \& E1.00 \& \({ }^{\text {BDS }}\) - \({ }^{\text {B }}\) \& 30 p
30 p \\
\hline \& \& \& \& \& \& HA11223 \& 40 p \& \& TBA39\% \& 75p \& TDA1003A \& £1.00 \& BDS34
BD35 \& 30 p \\
\hline \multicolumn{3}{|l|}{and audio \(£ 30.00\)} \& \multicolumn{3}{|l|}{Mulard 5 Watt Amps. LP1 162} \& \({ }_{\text {HEFF }}{ }_{\text {Hel }}\) \& 10 p
10 p \& \& \({ }_{\text {TBA }}^{\text {TBA440 }}\) \& £1.00
£1.00 \& TDA1010 \& \({ }_{\text {¢ }}^{\text {¢ }} 1.00\) \& \({ }^{\text {BD } 544 \mathrm{D}}\) \& 30p \\
\hline \multicolumn{3}{|l|}{Rank)} \& \multicolumn{3}{|l|}{New 75p} \& HEF4053B \& 30 p \& \& TBA4800 \& £1.00 \& TDA1072 \& \({ }_{1} 1\) \& BD562 \& 30 p \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{T.V. Tubes}} \& M913 \& £2.00 \& \& tBasi0 \& £2.00 \& TDAl151 \& 30 p \& BD610 \& 40 p \\
\hline \& \& \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{12" A31/300 Hitachi}} \& M1024=SAA \& \({ }_{5} \mathbf{5 2 . 0 0}\) \& \& trasi00 \& ع2.00 \& TDA170 \& £1.00 \& BD646 \& \({ }_{50} \mathrm{p}^{\text {P }}\) \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Sylvania VHF 900 \\
Decca Bradford Tuner 5
\end{tabular}}} \& \& \& \& M1025 \(=\) SAA \& £2.00 \& \& TBA520 \& \(\underline{2.00}\) \& TDA1190 \& E1.00 \& BD676A \& 30p \\
\hline \& \& \& \multicolumn{3}{|l|}{\begin{tabular}{l}
15* A38/170W Hitachi \\
18" Hitachi PlL tube with scan
\end{tabular}} \& MC476p \& \({ }^{11.00}\) \& \& TBA530 \& ¢2.00 \& TDA1327A \& £1.00 \& BD678 \& 50 p \\
\hline \multicolumn{3}{|l|}{Small Tuner DX \(175-220 \mathrm{MHz}\)} \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{coils 525}} \& \(\mathrm{MC1307}\)
MCl 33 \& \(75 p\)
\(75 p\) \& \& TBA540 \& 11.00 \& TDA1412 \& 50 p \& BD681 \& 25p \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Auto Changeover \({ }_{\text {Onoo }}\)}} \& \& \& \& MC1349 \& \({ }_{50 \mathrm{p}}\) \& \& TBA560CO \& \({ }_{82} 2.00\) \& \& \({ }_{5}\) \& BD807 \& \({ }^{20} \mathrm{p}\) \\
\hline \& \& \& \& Integrated Circuis \& \& MC1352 \& 11.00 \& \& TBA570 \& E1.50 \& TDA2010 \& 81.00 \& \({ }^{\text {BDP226 }}\) \& 50p \\
\hline \multicolumn{3}{|l|}{D.P.D.T. switch Black knob:} \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{lr}
AC76003 \& \(\mathbf{1 1 . 5 0}\) \\
AM25LS23PC \& 10 p
\end{tabular}}} \& MC1358 \& £1.00 \& \& TBA625 \& 50 p \& TDA2140 \& £3.50 \& BD948
BDX75 \& \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Chassis or PCB mount
each or 40 for \(£ 1.00\)}} \& \& \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { 10p } \\
\& 40 \mathrm{p}
\end{aligned}
\]} \& MC14002 \& 15p \& \& TBA641 \& £2.00 \& TDA2522 \& \(\underline{1.00}\) \& BDX75 \& 20 p \\
\hline \& \& \& \multicolumn{2}{|l|}{\[
\begin{aligned}
\& \text { AM25LS23PC } \\
\& \text { BAV40 }
\end{aligned}
\]} \& \& MC14013 \& \({ }^{25 p}\) \& \& TBA651 \& E200 \& TDA2530 \& c1. 50 \& BDX32 \& \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{ll}
BF758 \\
BF760 \& \\
\hline 10 l \\
\hline
\end{tabular}}} \& 2SC2122A \& ¢1.00 \& BC365 \& 10 p \& MC14069 \& 15p \& \& TBA7500 \& f1.50 \& TDA2541 \& f1.00 \& BF127 \& 20 p \\
\hline \& \& 2SC2229 \& 15 p \& BC384 \& 10p \& MC14514 \& 50 p \& \& TBA780 \& \(\underline{1.50}\) \& TDA2571AO \& ¢2.50 \& BF137 \& 20p \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \& 2SC7350 \& 15p \& BC394 \& 10p \& MC1748 \& 80p \& \& TBA800 \& s0p \& TDA2575A \& E1.00 \& BF157 \& 20p \\
\hline \& \& 2SD180 TO \& \(380 \mathrm{v} /\) \& BC413 \& 10 p \& MCM2114 \& 75p \& \& tBa810AS \& 60 p \& TDA2581 \& ع2.50 \& BF160 \& 20p \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{BFTP4
BFW 11}} \& \({ }^{64}\) \& 15p \& BC414 \& 10 \& MEM4956 \& ¢1.00 \& \& TBA8ios \& 60 p \& TDA2590 \& \(\underline{81.00}\) \& BF161 \& 20p \\
\hline \& \& 2SD200 \& £2.00 \& BC416 \& 10 p \& ML. 231 \& £2.50 \& \& TBA820 \& 60 p \& TDA2593 \& \(\underline{1.00}\) \& BF164 \& 60 p \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\begin{array}{ll}\text { BFX29 } \& \\ \text { BFX84 }\end{array}\)}} \& \({ }^{\text {2SK }} 107\) \& 10 p \& BC440 \& 30 p \& ML.232 \& f1. 20 \& \& TBA890 \& ¢1.00 \& TDA2560 \& 50p \& BF179 \& 30p \\
\hline \& \& \({ }^{\text {BC107 }}\) \& 10 p \& BC454 \& 10p \& ML236E \& ¢1.50 \& \& TBA900 \& 1.50 \& TDA2600 \& E5.00 \& BF180 \& 20 p \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{ll}
BFYS0 \& \\
BFY52 \& \\
\hline BFP \\
\& 20p \\
\hline
\end{tabular}}} \& \({ }^{\text {BC108 }}\) \& \({ }^{10}{ }^{\text {p }}\) \& BC455 \& 10p \& ML237B \& ¢1.50 \& \& TBA920 \& ¢1.50 \& TDA2611 \& \(\underline{1.00}\) \& BF181 \& 20p \\
\hline \& \& BC109 \& 5 p \& BC456 \& 10p \& ML238B \& £4.00 \& \& TBa9200 \& f1.50 \& TDA2653 \& f1.00 \& BF182 \& 20p \\
\hline \multicolumn{2}{|l|}{BFY90} \& BC113 \& 10 p \& BC460 \& 25p \& ML239 \& \&3.00 \& \& tBa950 \& f1.50 \& TDA2002 \& £1.00 \& BF184 \& 20p \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\begin{array}{ll}\text { BPW41 } \\ \text { BRCLI6 } \& \\ \text { Bres }\end{array}\)}} \& \(\mathrm{BC1}\)
\(\mathrm{BC1}\)
8 \& 10 p \& BC462 \& \({ }^{10} \mathrm{p}\) \& MM5387 \& \({ }_{\text {c1.00 }}\) \& \& tBa9900 \& £1.00 \& TDA2640 \& \(\underline{52.00}\) \& BF194 \& 10p \\
\hline \& \& \({ }^{\text {BCl1 }}\) \& 10 p \& BC463 \& 10p \& MM5611 \& £1.00 \& \& TMSIOOONL \& E4.00 \& TDA2680 \& \(\underline{1.00}\) \& BF195 \& 10p \\
\hline \multicolumn{2}{|l|}{BRX43} \& BC116 \& 10 p \& BC478 \& 10p \& MM5840 \& 75p \& \& TMSI 943 \& \& TDA2690 \& \(\underline{1.00}\) \& BF196 \& 10p \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{BRX48X
BRY56}} \& \({ }_{\text {BC1 }} \mathrm{BC17}\) \& 20 p \& \({ }^{\text {BC5 } 27}\) \& 10 p \& \({ }^{\text {N64100 }}\) \& \({ }^{11.00}\) \& \& (clockchip) \& f1.00 \& TDA2593 \& 81.00 \& \({ }^{\text {BFF197 }}\) \& 12p \\
\hline \& \& \({ }^{\text {BC1 }}\) BC19 \& 20 p \& BC532 \& 10p \& \({ }^{\text {NES545B (}}\) (Dolby) \& \({ }^{75}\) \& \& TMS9980 \& E4.00 \& TDA3190 \& £1.00 \& BF198 \& 10p \\
\hline \multicolumn{2}{|l|}{BSS68} \& BC125 \& 10 p \& BC546 \& \(10^{p}\) \& NE555P \& 60 p \& \& TMS9901 \& ¢1.00 \& TDA3500 \& £2.00 \& BF199 \& 10p \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{俍}} \& \({ }_{\text {BC1 }}{ }^{\mathrm{BCl} 9}\) \& \({ }_{10 p}^{10 p}\) \& \begin{tabular}{l}
BC547 \\
\(\mathrm{BC548}\) \\
\hline
\end{tabular} \& 10 p \& NES55 \& 60 p \& \& TMS2716JL \& ¢1.00 \& TDA3560 \& £3.50 \& BF200 \& \({ }^{20} \mathrm{p}\) \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
BTY80 \\
BSX19
\end{tabular}} \& \& BC140 \& 30 p \& \({ }_{\text {BC556 }}\) \& \({ }_{10 \mathrm{p}}\) \& OPT600 \& 30 p
30 p \& \& TMS3529 \& 11.00
\(70 p\) \& \({ }^{\text {TDA35710 }}\) \& \({ }_{81.50}\) \& \({ }_{\text {BF22 }}\) \& \({ }_{10 \mathrm{p}}\) \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{ll}
BSX19 \& \(17 p\) \\
BSX20
\end{tabular}}} \& \({ }^{\text {BC14 }}\) \& 25 p \& BC557 \& 10 p \& OPT601 \& 30 p \& \& TX-012 \& \({ }_{\text {¢ } 1.00}\) \& TDA3651AQ \& \({ }_{5}\) \& BF238 \& 20 p \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\begin{array}{ll}\text { BSX20 } \\ \text { FT3055 } \& \\ \text { cesp }\end{array}\)}} \& BC143 \& 25p \& BC558 \& 10 p \& SAA611 \& £1.00 \& \& TMSY902 \& \({ }_{\text {¢ }} 1.20\) \& SN74LS 125AN \& 30 p \& BF240 \& 16p \\
\hline \& \& \({ }^{\text {BC147 }}\) \& 10 p \& \({ }^{\text {BC559 }}\) \& 10p \& SAA661 \& \({ }^{1.75}\) \& \& UPD2114C 4K \& AM \& SN74LS 248 \& 50p \& BF244 \& 40p \\
\hline \multicolumn{2}{|l|}{TCE82 \({ }_{2}\)} \& \({ }^{\mathrm{BCl}} 148\) \& 10 p \& BC635 \& 10p \& SAA1020 \& ¢4.00 \& \& 400 ms \& 75p \& SILA516 \& 50p \& BF245b \& 20p \\
\hline \multicolumn{2}{|l|}{\({ }_{\text {2N930 }}^{\text {2N221 }}\)} \& BC149 \& \({ }_{10 \mathrm{p}}^{10 \mathrm{p}}\) \& \({ }_{\text {BCX32 }}{ }_{\text {BCX }}\) \& \({ }_{75}^{25}\) \& SAA1021 \& ¢4.00 \& \& ULN2216 \& \({ }^{75}\) \& SN16861NG \& 50 p \& \({ }^{\text {BF256 }}\) \& \({ }^{10} \mathrm{p}\) \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{2N222}} \& BC154 \& 10 p \& \({ }_{\text {BCX }}{ }^{\text {B }}\) \& 25 p \& SAAIO25 \& E2.50 \& \& SN29848 \& 50p
f1.00 \& SN16862AN \& \({ }^{11.00}\) \& \({ }_{\text {BF258 }}\) \& 20 p \\
\hline \& \& BC157a \& 10p \& BD116 \& 25p \& SAA1073 \& ¢3.00 \& \& SN29771BN \& f1,00 \& SN29764AN \& \&1.00 \& \({ }_{\text {BF262 }}\) \& \({ }_{15 p}\) \\
\hline \multicolumn{2}{|l|}{2N3055} \& \({ }^{\mathrm{BC}} 158\) \& 10 p \& BD124 \& 50p \& SAA1074 \& 83.00 \& \& SN29772BN \& f1,00 \& UA721 \& 40 p \& BF263p \& 25p \\
\hline \multicolumn{2}{|l|}{2N3566} \& \({ }_{\text {BC159 }}^{\text {BC16 }}\) \& \({ }^{10 \mathrm{p}}\) \& BD124 (metal) \& 60 p \& SAA1075 \& \({ }_{5} \mathbf{5 3 . 0 0}\) \& \& SN7402N \& \(¢_{1}\) \& UA7300 \& 40 p \& \({ }^{\text {BF264 }}\) \& 15p \\
\hline \multicolumn{2}{|l|}{2N3711 10p} \& \({ }_{\text {BCI }}^{\text {BCII }}\) \& \({ }^{25 p}\) \& BD130Y
BDI 31 \& \({ }^{250}\) \& SAA1124
SAAI 130 \& \(\underset{\text { E2.50 }}{ }\) \& \& SN7472N
S74107 \& \(\underset{~}{¢ 1.00}\) \& \({ }^{\text {RGPP30G }}\) \& 10 p \& \({ }_{\text {BF271 }}\) \& \({ }^{10 \mathrm{p}}\) \\
\hline \multicolumn{2}{|l|}{2N353} \& \({ }^{\text {BCl172 }}\) \& 10 p \& BD132/238 \& 30 p \& SAA1174 \& \({ }^{\text {E3,00 }}\) \& \& N/4107
N74167 \& \({ }_{\text {¢ }}^{\text {¢ }} \mathbf{7 0 0}\) \& MPSA14 \& \({ }^{10 \mathrm{p}}\) \& \({ }^{\text {BF272 }}\) \& \({ }_{10 \mathrm{p}}\) \\
\hline \multicolumn{2}{|l|}{} \& \({ }_{\text {BCI73 }}\) \& \({ }_{10 \mathrm{p}}^{10 \mathrm{p}}\) \& BD135 \& 25p \& SAA1176 \& \({ }^{13.00}\) \& \& S7472N \& 20 p \& M 113005 \& 30 p \& BF324 \& 25p \\
\hline \multicolumn{2}{|l|}{2 N 4442 El} \& \({ }_{\text {BC1 }} 83\) \& 10 p \& BD136 \& 30p \& SAA1250 \& \({ }^{3} 3.00\) \& \& N75108AN \& £1.00 \& MJESIT \& 25 p \& BF337 \& 50p \\
\hline \multicolumn{2}{|l|}{2 N 4444 El} \& \({ }^{\text {BCl184 }}\) \& 10 p \& BD138 \& \({ }^{30} \mathrm{p}\) \& SAA 1272 \& \({ }_{\text {c }} \mathbf{8 3 . 0 0}\) \& \& N76001 \& \({ }^{\text {c1.00 }}\) \& MJE340 \& 28p \& BF355 \& \({ }^{30} \mathrm{p}\) \\
\hline \multicolumn{2}{|l|}{\({ }^{2} \mathbf{2 N 5 2 9 6}\)} \& BC204 \& \({ }_{10 \mathrm{p}}^{10 \mathrm{p}}\) \& BD175
BD176 \& \({ }^{350} \mathrm{p}\) \& SAAI276 \& \(\underline{3.00}\) \& \& SN76003 \& \({ }_{\text {c1. }}^{1.00}\) \& MJE660 \& \({ }_{25}^{25}\) \& BF362 \& \({ }_{\substack{20 p \\ 15 p}}^{\text {cop }}\) \\
\hline \multicolumn{2}{|l|}{\(2 \mathrm{~N} 6099 \mathrm{40p}\)} \& \({ }^{\text {BCC2 }}\) \& 10 p \& BD182 \& \({ }_{\text {¢ }} 1.00\) \& \& \& \& N76018 \& \({ }_{\text {c1.00 }} 11.50\) \& MJE305S \& ¢1.00 \& \({ }_{\text {BF367 }}\) \& \({ }_{15 p}\) \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\(\begin{array}{ll}2 N 6130 \& \mathbf{5 0 p} \\ \text { 2N6133 } \& \mathbf{2 0 p}\end{array}\)}} \& BC213 \& 10p \& BD183 \& 70p \& \& \& \& \& \& \& \& BF391 \& 15p \\
\hline \& \& 俍C214 \& 10 p \& BD202
BD204 \& \({ }_{60 \mathrm{p}}^{60}\) \& \({ }_{5-5 \mathrm{MHz}}\) Filters \& \& \& 3 Pin Blue \& istor \& TV Crystals \& \& \({ }_{\text {BFF394 }}\) \& 10 p \\
\hline \multicolumn{2}{|l|}{} \& \({ }^{\mathrm{BC} 238}\) \& \({ }_{8 p}\) \& \({ }_{\text {BD } 221}\) \& \({ }_{20 \mathrm{p}}^{60 \mathrm{p}}\) \& \& \& \(15 p\)
30 p \& \({ }^{\text {fits most }}\) \& \& 4 MHz \& \& \({ }_{\text {BF419 }}\) \& \({ }^{30 p}\) \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{2N6399 \({ }^{\text {2 }}\) 2N6099 on 10 p}} \& \({ }^{\mathrm{BC}} \mathrm{BC}^{39}\) \& 10 p \& BD222 \& 30 p \& \({ }_{\text {BFU }}\) 6M5SK \& \& Sp \& 1.C. Heat Sir \& 20 for \(\frac{51}{50 p}\) \& 4.433-619 \& \& \({ }_{\text {BFF448 }}\) \& \({ }_{30 \mathrm{p}}^{15 \mathrm{p}}\) \\
\hline \& \& \({ }^{8 C 550}\) \& \({ }^{8 p}\) \& BD228 \& 30 p \& \& \& \& \(20 \times\) TOS H \& Sink \(£ 1.00\) \& \({ }_{8}^{6866723}\) \& \& BF450 \& 20 p \\
\hline heat sink \& \[
\begin{aligned}
\& 50 \mathrm{p} \\
\& \mathbf{2 0 p}
\end{aligned}
\] \& \& \({ }^{10 \mathrm{p}}\) \& BD226 \& \({ }^{20}{ }^{20}\) \& \({ }_{\text {BTI }}{ }^{\text {a }}\) P6 Plastic \& \& \& CVC9 pow \& Ppply \& \& \& BF458 \& 30p \\
\hline \({ }_{\text {2SB407 }}{ }^{\text {2Sanyo }}\) \& \& \& 10 p \& BD233 \& 30 p
30 p \& BT106 Metal \& \& 20 \& board
CVC 2012 \& 11.50 \& Large or small \({ }^{\text {pop }}\) \& \& BF459
BF468 \& 30p \\
\hline \({ }_{\text {2SB474 }}\) \& \({ }_{30 \mathrm{p}}^{10 \mathrm{p}}\) \& \({ }_{\text {BC2 }}{ }_{\text {BC2 }}\) \& \({ }_{30}^{20}\) \& \({ }_{\text {BD2 }}\) \& 30 p \& \({ }^{\text {BTI } 19}\) \& \& 00 \& \({ }_{\text {cranel }}{ }^{\text {ce/2 m }}\) \& £2.00 \& \& \& \({ }^{\text {BFF468 }}\) BF469 \& 30 p
30 p \\
\hline 2SB566 \& 10 p \& BC298 \& 10 p \& BD239 \& 15p \& \({ }_{\text {BRCP444 }}\) \& \& \& ITT Mains \& .1/250v/ \& GEC Power Panel \& \& BF470 \& 20 p \\
\hline \({ }_{2}^{25 C 381}\) \& \({ }_{50} 10\) \& \({ }^{\mathrm{BC}} \mathbf{3} \mathbf{3 0}\) \& \({ }_{30} 30\) \& BD243c \& 30 p \& \({ }^{\text {GRC4443 }}\) \& \& 5p \& CVC 20 to 4 \& chassis 50p \& TV106 Thermistor \& \& BF480 \& 50p \\
\hline \({ }_{2}^{25 C 458}\) \& 50 p
10 p \& BC 301
BC 303 \& 30 p
30 p \& \({ }_{\text {BD2 }}{ }_{\text {BD } 240}\) \& \(5{ }_{50}\) \& Decca 80-100 \& \& \({ }^{0}\) \& Pots 10 k w \& Switch 25p \& PT34 New \& . 00 \& \({ }_{\text {BF594 }}\) \& 10 p \\
\hline \({ }_{2 S C 732}\) \& 10 p \& \({ }^{\text {BCC307 }}\) \& \(30 p\)
\(7 p\) \& \({ }^{\text {BD252 }}\) \& 30 p
20 p \& 2N4444 \& \& \& Pots 47 k w \& Switch 25p \& \& C. \& BF597 \& 10 p \\
\hline \({ }_{2 \text { SC733 }}\) \& 10 p \& \({ }^{\mathrm{BC}} \mathbf{}\) \& 7 p \& \({ }^{\text {BD253B }}\) \& 50 p \& Thermist \& \& \& Filter RW 1 \& Colour \& DIL - DIL \& \& DIL-Q1L \& \\
\hline \(2 S \mathrm{Cl} 28\)
\(2 \mathrm{SC1030}\) \& \({ }^{10} 1.00\) \& \& 10 p
10 p \& \({ }_{\text {BD332 }}\) \& \({ }_{20 \mathrm{p}}^{20 \mathrm{p}}\) \& VA1104 \& \& 50p \& TV Filler \& \({ }^{40 p}\) \& 40 Pin \(\times 4\) \& 81.00 \& 16 Pin \(\times 10\) \& \(\underline{11.00}\) \\
\hline \({ }_{2 S C 1172 A}\) \& \({ }^{10 \mathrm{p}}\) \& \({ }^{\text {BCC32 }}\) \& 10 p \& BD373b \& \& \& \& 5p \& \(\xrightarrow{\text { Mullard Surf }}\) Filter RW 15 \& Wave \& 42

28
Pin
$\times 5$

$\times 5$ \& $$
\mathrm{£} 1.00
$$ \& $18 \mathrm{Pin} \times 10$

$28 \mathrm{Pin} \times 4$ \&

\hline ${ }^{2 S C 1173}$ \& ${ }^{10 \mathrm{p}}$ \& - ${ }_{\text {BC328/338 }}^{\text {BC3 }}$ \& pair $\begin{aligned} & \text { 15p } \\ & \\ & 100\end{aligned}$ \& - ${ }^{\text {BDP416 }}$ \& ${ }_{25 p}^{25 p}$ \& | PTH451 AOR |
| :--- |
| | \& \& 5p \& | Filter RW 1 |
| :--- |
| TV Filter | \& ${ }^{\text {colour }}$ 40p \& \[

$$
\begin{aligned}
& 28 \operatorname{Pin} \times 5 \\
& 16 \operatorname{Pin} \times 10
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 80 \mathrm{p} \\
& 70 \mathrm{p}
\end{aligned}
$$
\] \& $\begin{aligned} & 28 \text { Pin } \\ & 8 \\ & \text { Pin }\end{aligned} \times 10$ \& $\underset{50 p}{\text { ¢1.00 }}$

\hline ${ }^{2 S C 1419}$ \& ${ }_{20 \mathrm{p}}^{20}$ \& BC337
$\mathrm{BC3} 38$
BC \& 10 p
10 \& BD433 \& ${ }_{25} 5$ \& Degausing Themis \& tor (fits \& \& G11 Line Sc \& \& ${ }_{24}{ }^{2}$ Pin $\times 5$ \& ${ }_{75 p}$ \& $8 \mathrm{Pin} \times 10$ \& ${ }^{50} \mathrm{p}$

\hline ${ }_{2} \mathbf{2 S C 1 7 2 5}$ \& 20p \& ${ }_{\text {BC3 }}$ \& ${ }_{10}{ }^{10}$ \& ${ }^{\text {BDP439 }}$ \& 50 \& most sets) \& \& 20p \& P.C.B. \& £1.00 \& $14 \mathrm{Pin} \times 10$ \& ${ }_{70 p}$ \& \&

\hline $2 \mathrm{SC2068}$ \& 20 p \& ВС349b \& 10p \& BDS01 \& 30p \& GEC Double Ther \& nistor \& \& ELC 1042 P \& 3. 30 p \& 18 Pin $\times 10$ \& ${ }^{80} \mathrm{p}$ \& \&

\hline
\end{tabular}

[^0]: QUANTITY
 AVAILABLE
 Ask for details

[^1]: FREE CATALOGUEI Our Great Now llustrated Catalogue is Packed with Information on Superb Ouality. Profossional Burglar Alarm Equipment.
 IT TELLS YOU ALL YOU NEED TO KNOW TRADE ENQUIRIES WELCOME.

 NO CHARGE FOR POST \& PACKING SEND S.A.E. OA TELEPHONE NOW FOR YOUR FREE COPYI

