MAY 1984

Interested in Television Servicing? Try a ZED Pack. Effect Repairs at Minimum Cost.

GEMINI ELECTRONIC COMPONENTS

Dept. TV, 48, Deptford Broadway, London S.E.8.

Please quote ZED code where shown. Send cheque* or Postal Order. Add 60p P\&P and 15\% VAT. *Schools etc. SEND OFFICIAL ORDER. Allow up to 28 days for delivery. Most orders despatched same day. ZED PACKS now available for CALLERS at 50 Deptford Broadway, London, S.E.8.

Send large S.A.E. for list of Quantity, Prices and Clearance Lines etc.

Vol. 34, No. 7
 Issue 403

COPYRIGHT

- 9PC Magazines Limited, 1984, Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", King's Reach Tower, Stamford Street, London SE1 GLS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd, King's Reach Tower, Stamford Street, London SE1 9LS.

SUBSCRIPTIONS

An annual subscription costs $£ 11$ in the UK, £12 overseas (by surface mail). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.

BINDERS AND INDEXES

Binders ($£ 4.50$) and Indexes (45p) can be supplied by the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Prices include postage and VAT. In the case of overseas orders, add 60p.

BACK NUMBERS

Some back issues are available from the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF at $£ 1.20$ p inclusive of postage and packing.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. All correspondents expecting a reply should enclose a stamped addressed envelope. Requests for advice on dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

this month

353 Leader

354 Teletopics
News, comment and developments.

356 Letters

360 Problems with Older VCRs
Nick Lyons
Faults that arise as a VCR ages.

362 Service Briefs

364 What's Up Doc?
Les Lawry-Johns
Diagnosing human and TV troubles.
365 Next Month in Television
366 TV Test Pattern Generator, Part 1
Tony Jenkins, G8TBF A design based on the use of EPROMs, giving a colour test pattern similar to broadcast ones.
369 The Saticon Camera Tube David K. Matthewson, B.Sc., Ph.D. Single tube colour camera techniques.
370 TV Fault Finding
Reports on faults and servicing from Malcolm Burrell, Mick Dutton, Tony Thompson, John Coombes and G.R. Wilding.
372 VCR Servicing, Part 28
Mike Phelan Reel motor control in the 3 V 24 .
374 Vintage TV: The Mysterious Mullard
Chas E. Miller There were some strange features in this early Philips design.
375 N1500 Clock Repair
John de Rivaz, B.Sc. (Eng.) What to do when the motor winding goes open-circuit.
376 The Rediffusion Mk. 5 Chassis
H.K. Hills and A. Mole Circuitry used in this Sharp designed colour portable.
378 Test Report: The Altai DM6013 Capacitance Meter Eugene Trundle Assessment of this digital capacitance meter.
379 Classification of Sinewave Oscillators
S.W. Amos,
B.Sc., C.Eng., M.I.E.E.

Though there's a wide variety of sinewave oscillator designs, they all fall into three basic categories.
384 Long-distance Television
Roger Bunney
Reports on DX reception and conditions and news from abroad. Signals from the ECS-1 satellite have been resolved using relatively simple equipment.
387 VCR Clinic
Reports on VCR faults and servicing from Steve Beeching, T.Eng. (C.E.I.), Mike Phelan, Derek Snelling, Mike Sarre, Ian Hutton, Philip Blundell, Tech. (C.E.I.) and Les Harris.
389 Readers' PCB Service
390 Service Bureau
392 Test Case 257
OUR NEXT ISSUE DATED JUNE WILL
BE PUBLISHED ON MAY 16

MANOR SUPPLIES

NEW MKV PAL COLOUR TEST GENERATOR FOR TV \& VCR

$\star 40$ different patterns and variations.
\star Broadcast transmission accuracy (fully interlaced sync pulses with correct picture blanking).
\star EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red, blue and black.

* Chequerboard.
\star Mono outputs with border castellations, cross hatch, grey scale, vertical lines, horizontal lines and dots. UHF modulator output plugs straight into receiver aerial socket.
* Additional video output for CCTV \& VCR.
\star Facilities for sound output.
\star Easy to build kit. Only 2 adjustments. No special test equipment required.
\star Mains operated with stabilised power supply.
\star All kits fully guaranteed with back-up service.
\star Also available with VHF Modulator.
Price of Kit
$£ 80.50$
De Luxe Case ($\left.10^{\prime \prime} \times 6^{\prime \prime} \times 2 \frac{17}{\frac{1}{4}}\right)$
88.50

Optional Sound Module (6 MHz or 5.5 MHz)
Built \& Tested in De Luxe Case including Sound Module
$£ 120.75$

'TELEVISION
Post/Packing $£ 2.50$
${ }^{1}$ TELEV. 1982 - \rfloor All above prices include VAT 15%

PAL COLOUR BAR GENERATOR (Mk4)

\star Output at UHF, applied to receiver aerial socket.
\star In addition to colour bars R-Y, B-Y etc.
\star Cross-hatch, grey scale, peak white and black level.
\star Push button controls, battery or mains operated.
\star Simple design, only five i.c.s on colour bar P.C.B.
PRICE OF MK 4 COLOUR BAR GENERATOR KIT £34.50. DELUXE CASE £8.50. BATT HOLDERS £3.20. MAINS SUPPLY KIT $£ 4.80$ (Combined P\&P £2.20).
MK 4 DE LUXE (BATTERY) BUILT \& TESTED $£ 66.70+£ 2.20 \mathrm{P}$ \& P. MK 4 DE LUXE (MAINS) BUILT \& TESTED $£ 78.20+£ 2.20 \mathrm{P} \& \mathrm{P}$. VHF MODULATOR (CHI to 4) FOR OVERSEAS $£ 6.60$. EASILY ADAPTED FOR VIDEO OUTPUT \& C.C.T.V. (ALL PRICES INCLUDE 15\% VAT)

MANOR SUPPLIES TELETEXT ADAPTOR KITS

MK 1 (Texas XMII) remote control $£ 158.70$ p.p. $£ 3.00$.
Further details on request. Tel 01-794 8751/7346

[^0]
TV SERVICE SPARES

BACKED BY TWENTY YEARS EXPERIENCE \& STAFF OF TECHNICAL EXPERTS

TELEVISION MAGAZINE PROJECT PARTS

COLOUR PORTABLE TV
MONO PORTABLE TV, SMALL SCREEN MONITOR LISTS AVAILABLE, PANEL TEST SERVICE
THORN TX10 TYPE REMOTE \& TUNING CONTROL PANEL $£ 10.80$
p.p. £1.50.

MULLARD TELETEXT DECODER + INTERFACE suitable for Thorn, TX10 $£ 69.00$ p.p. $£ 1.80$. (Decoder only $£ 57.50$ p.p. $£ 1.80$).
SAW FILTER IF AMPLIFIER PLUS TUNER COMPLETE AND tested for T.V. SOUND \& VISION $£ 32.80$ p.p. £ 1.20 .
THORN TX9, TX10 SAW FILTER IF PANEL $£ 9.80$ p.p. 80 p .
PAL DECODER KIT FOR RGB MONITORS $£ 31.00$ p.p. $£ 1.00$.
SPECIAL OFFER TEXAS XMII TELETEXT DECODER NEW \& TESTED, AT REDUCED PRICE $£ 46.00$ p.p. $£ 1.60$.
TELETEXT 23 BUTTON DE-LUXE HANDSET WITH 5 YDS. CABLE £7.80 p.p. $£ 1.20$. XMII STAB. POWER SUPPLY $£ 4.40$ p.p. $£ 1.20$.
CROSS HATCH UNIT KIT, AERIAL INPUT TYPE, INCL. T.V. SYNC CROSS HATCH UNIT KIT, AERIAL INY OPERATED. ALSO GIVES
 PEAK WHITE \& BLACK LEVELS. CAN BE USED FOR ANY SET
$£ 13.80$ p.p. 80 p. (ALUM CASE $£ 2.90$ DE LUXE CASE $£ 7.85$ p.p. $£ 1.40$.) ADDITIONAL GREY SCALE KIT $\mathbf{£ 3 . 3 5}$ p.p. 45 p.
UHF SIGNAL STRENGTH METER KIT $£ 23.00$ (VHF version also available). ALUM CASE $£ 2.90$ DE LUXE CASE $£ 8.50$ p.p. $£ 1.80$.
CRT TESTER \& REACTIVATOR PROJECT KIT FOR COLOUR \& MONO £32.20 p.p. $£ 2.80$.
BUSH Z718 BC6100 SERIES IF PANEL 55.75 p.p. 90 p
BUSH A816 IF PANEL (SURPLUS) £1.90 p.p. 90 p.
DECCA 80, SERIES, IF, FRAME T.B. $£ 5.75$ each p.p. $£ 1.40$.

GEC 2040 Convergence panels, Decoder panels $£ 2.88$ each p.p. $£ 1.80$.
GEC 2040 IF PANELS $£ 3.22$ p.p. $£ 1.60$.
THORN TX9 PANELS ex factory for small spares. Includes I.C.s \& Semiconductors etc. $£ 5.75$ p.p. $£ 2.00$
THORN TX9 PANELS salvaged ex factory for spares incl. LOPT \& mains THORN TX9 PANELS salvage
transformers $£ 11.50$ p.p. $£ 2.80$. THORN TX9 PANELS ex actory salvaged complery $£ 17.25$ p.p. $£ 3.00$. THORN TX10 T.B. PANELS salvaged ex factory $£ 17.25$ p.p. $£ 3.00$.
THORN 3000 LINE T.B., PCB POWER PCB $£ .75$ each p.p. $£ 1.30$. THORN 3000 LINE T.B., PCB POWER PCB $£ 5.75$ each p.p. $£ 1.30$.
THORN $8000 / 8500$ IF/DECODER PANELS salvaged $£ 3.70$ p.p. $£ 1.80$.
THORN 8000/8500 IF/DECODER PANELS salvaged $£ 3.70$ p.p. $£ 1.80$.
THORN $8000 / 8500$ FRAME T.B. PANELS salvaged/spares $£ 2.88$ p.p. $£ 1.40$. THORN 8000/8500 FRAME T.B. PANELS salvaged/spares $£ 2.88$ p.p. $£ 1.40$.
THORN 9000 SERIES TOUCH TUNE REMOTE CONTROL UNIT THORN ${ }^{9000}$ SLERIES TOUCH TUNE REMRASONIC TRANSMITTER HANDSET $£ 19.32$ p.p. $£ 1.84$. THORN 9000 IF/DECODER PANELS Salvaged $£ 5.75$ p.p. $£ 1.60$. PHILIPS G8/G9 IF/DECODER Panels for small spares $£ 1.75$ p.p. $£ 1.40$. G8 Decoder panels salvaged $£ 4.25$. Panels for spares $£ 2.00$ p.p. $£ 1.40$. G9 Scan Panel. Basic PCB in fibreglass $£ 16.68$ p.p. $£ 1.80$.
GRUNDIG 8630 Series Varicap Tuners $£ 5.75$ p.p. $£ 1.00$.
GARICAP, U321, U322, ELC $1043 / 06$ ELC $1043 / 05$ \&7.82 p.p. 80p; G.I. type (equiv. $1043 / 05$) £4.00 p.p. 60 p. MAKERS VARICAP CONTROLS type (equiv. 1PSN £8.60, BUSH 3 4PSN £5.50, Decca 6PSN $\mathbf{8 6 . 7 0}$ p.p. 80 p Pye.
etc. SPECIAL OFFER ELEVEN POSITION VARICAP CONTROL UNIT UHF/VHF $£ 2.10$ p.p., $£ 1.00$.
BUSH "Touch Tune" Varicap Control Z179, Z718 types $£ 4.40$ p.p. 95 p.
VARICAP UHF-VHF ELC 2000S, ELC2060 111.30 p.p. 90 p.
VARICAP VHF MULLARD ELC 1042 , PHILIPS $£ 7.95$ p.p. 80 p.
UHF/625 Tuners, many different types in stock. DECCA Bradford 5 position
UHF/625 Tuners, many
$£ 2.88$ p.p. £1.80 etc.
TV SOUND IF Panels $£ 7.82$ p.p. $£ 1.00$.
T.V. SOUND IF Panels $£ 7.82$ p.p. $£ 1.00$.
LOPT TESTER Serivice Dept approved $£ 17.82$ p.p. $£ 1.20$.

LOPT TESTER Serivice Dept approved $£ 17.82$ p.p. $£ 1.20$.
LOPTS NEW \& GUAR. P/P Mono $£ 1.35$ p, Colour $£ 1.50$ p, Bobbins $\mathbf{8 0 p}$.

FERG., HMV, MARCONI, LLTRA $\mathbf{~ R . B . M . ~ 1 2 0 . ~} 122$ Bobbin 16.44

THORN $1600,1615,1690,1691$ £10.50 DECCA 80, 10070
GEC 2000 to 2038 series 1 \& 220.20 GEC 2110 Series £12. 20

$\begin{array}{ll}\text { MURPHY 1910 to } 2414 \text { (twin panel)E6.80 PYE 691-697..87.85 } \\ \text { PHILIPS 170, 210, } 300 \text { SERIES 88.80 } & \text { PYE 713, 715 }\end{array}$
PHILIPS 170, 210,300 SERIES 28.80 PYE 725 (90°) 731 to 741 $£ 10.60$
PYE, INVICTA, EKCO, FERR.
PYE, INVICTA, EKCO, FERR.
368, 169,569 , 769 series......... 88.80
DECCA 20124, $1700,2000,2401$

GEC 2114J/Junior Fineline ...

KB VC1 .. $\mathbf{£ 2 . 0 0}$ THOR THORN 9800 to 9600 .. $\mathbf{£ 1 4 , 8 0}$
OTHERS AVAILABLE, PRICES ON REQUEST. ALSO F.OPTS.
TRIPLERS Full range available. Mono \& Colour.
Special Offer: Thorn 14005 stick EHT Tray $£ 1.72$ p.p. 65 p.
TRANSDUCTORS suitable for G8, A823, Bradford etc. £1.72 p.p. 60 p.
6.3V CRT Boost Transformers for Colour \& Mono $£ 5.80$ p.p. $£ 1.20$.

CALLERS WELCOME AT SHOP PREMISES
THOUSANDS OF ADDITIONAL ITEMS, ENQUIRIES INVITED LARGE SELECTION TESTED COLOUR PANELS POPULAR MODELS

Telephone 01-794 8751, 7947346
MANOR SUPPLIES
172 WEST END LANE, LONDON, N.W.6.
NEAR: W. Hampstead Tube Stn. (Jubilee) Buses 28, 159, C11 pass door
W. Hampstead British Rail Stns. (Richmond, Broad St.) (St. Pancras, Bedford) W. Hampstead (Brit. Rail) access from all over Greater London.

Mail Order: 64 GOLDERS MANOR DRIVE, LONDON N.W.11.
ALL PRICES INCLUDE VAT AT 15\%

Switch to the biggest wholesaler of quality late model used TV's

- Thousands of Quality Sets always in stock - Colour/Mono/VCR's and Audios available - Murphy/Pye/Philips/Sony/National Panasonic and other big names
- We are big - we buy in bulk - we offer you the keenest prices
- Cash and Carry or we will deliver
- New and used stands always in stock

FREE CAREER BOOKLET

Train for success in Electronics Engineering, T.V. Servicing, Electrical Engineering-or running your own business!

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the fields of electronics, T.V., electrical engineering-now it can be your turn. Whether you are a newcomer to the field or already working in these industries, ICS can provide you with the specialised training so essential to success.

Personal Tuition and 80 Years of Success
The expert and personal guidance by fully qualified tutors, backed by the long ICS record of success, is the key to our outstanding performance in the technical field. You study at the time and pace that suits you best and in your own home.

You study the subjects you enjoy, receive a formal Diploma, and you're ready for that better job, better pay.

TICK THE FREE BOOKLET YOU

- WANT AND POST TODAY

P. V. TUBES HAVE MOVED
104 ABBEY STREET, ACCRINGTON, LANCS.

TRADE COUNTER OPEN MON-FRI 9 a.m.-5 p.m. SAT 9.30 a.m.- 5 p.m.

P. V. TUBES

PLEASE NOTE OUR NEW ADDRESS - COME AND SEE US 104 ABBEY STREET, ACCRINGTON, LANCS. TEL: 0254 36521/32611

HOW TO ORDER ADD 65p per order P+ cable, service aids, degaus. coils please allow £1. $20 \mathrm{P}+\mathrm{P}$ (U.K.). Export orders charged at cost. First Class Mail is use

Goods are despatched on the day we recorve your order. If tor any reason we are out of stock we will try to inform you as quicty as possible. We try our best to give a speady, dephoned in before $4 \mathrm{p} . \mathrm{m}$. will be despatcred the same day. .A.T. invoico on requast. Give us a ring - we'll give you velp. Prices are ask in what to you need is not isted -

U.K. Post Paid, Export orders welcome, please deduct V.A.T. and enquire for Overseas carriage cost. Barclaycard/Access orders welcome, or Cheque, Bank Draft, etc., with order please. Large S.A.E. for technical leaflets of complete range. Delivery normally with in 7 days.
B. K. ELEGTROXIGS Dent τ. ESSEX. SS2 6TR TEL: 0702-527572

EDITOR
John A. Reddihough
ASSISTANT EDITOR
Luke Theodossiou
ART EDITOR
Roy Palmer

ADVERTISEMENT MANAGER

Roy Smith
01-2616671

CLASSIFIED ADVERTISEMENTS

Barbara Blake
01-261 5897

COVER PHOTO

Please note that the pattern shown on our front cover was produced by an early version of the pattern generator featured in this issue. The EPRoms used were subsequently reprogrammed to produce a pattern more akin to those used by broadcast authorities.

Quality o.k., production lagging

There are at last some signs of economic recovery in the UK. Industrial production figures are quoted (in the Financial Times) as $101.8,102.9$ and 103.6 respectively for last November, December and January $(1980=100)$. Hardly the sort of thing of which booms are made, but then who wants one of those, with the inevitable bust to follow? One industry that's been doing well for some time is the TV/video industry. Not well enough however. The buoyant demand for colour sets in the UK last year had to be met to a substantial extent by imports - in fact nearly fifty per cent of deliveries consisted of imported sets. It's not easy to understand why this should be so. The usual explanation given is that the greatest increase in demand has been for small-screen sets. But these have been in quantity production in UK plants for some time. It seems however that with UK setmaking the larger screen models continue to predominate, with some emphasis on sets with various extras - remote control, fancy tuning systems, teletext, stereo and monitor facilities. One possible reason for this is that large screen tubes are produced in Europe (and the USA) while the smaller sizes are mainly produced in the Far East. It makes sense to produce sets close to tube sources rather than have tubes shipped one way across the globe and completed sets the other way. What we seem to need is for one of those helpful Japanese companies to start up a tube plant in the UK.

Though total UK CTV production leaves something to be desired at present, the reliability problem has been pretty well licked. A "fact report" issued by the Consumer Electronics Economic Development Committee presents some interesting information on the progress made in recent years. Back in 1975 the situation was bad: according to a Which? survey quoted in the report, over fifty per cent of UK produced colour sets then required at least one service call during their first year. The situation with continental TV sets was slightly worse, but nearly 90 per cent of Japanese sets achieved 100 per cent first year reliability. By 1982, the first year reliability of Japanese sets had reached 100 per cent while UK manufactured sets had achieved a 93 per cent reliability figure, with the corresponding figure for the rest of Europe 75 per cent. According to data collected by the major retail chains, the number of first year calls required by UK produced sets fell from five per set in 1977 to 0.58 per set in 1982. The 1982 figure doesn't in practice show the true position with UK manufactured sets, 37 per cent of which (in the larger tube sizes) were equipped for teletext reception, since the figure includes calls to adjust the aerial and controls and to replace the battery in remote control units (incorrect aerial alignment leads to teletext errors of course).

Two basic reasons for increased reliability are given in the report - improved manufacturing technology and better quality components. Reliability was poor indeed if you go back to the days of hand soldering and horrible things like waxed paper capacitors. We are still troubled by dry-joints in some new sets, but this problem was endemic with some earlier chassis. The strange thing is how long it has taken for manufacturing techniques to improve - there probably wasn't much incentive during periods like the Barber boom of 1973, when every set that could be got out of factories was snapped up by a colour receiver hungry public. That much quoted wonder of modern production, automatic component insertion, was used by Thorn as long ago as 1958 - in the production of the 406T, a 17 in . Band $\mathrm{I} / \mathrm{III}$ receiver. Apparently Thorn dropped the use of this early equipment, which used a line of auto insertion heads with precision controlled pneumatic rams to move the boards along from one head to the next, because it reduced manufacturing flexibility. You need to be able to switch from one model to another as demand varies. Computer control has overcome this drawback. Sophisticated production technology has been around for many years then, but it took the spur of competition from Japanese manufacturers to exploit the possibilites fully.

Probably the most dramatic cause of improvement however has been in component reliability. In 1977 the failure rate of UK made i.c.s used in colour sets was 37,000 per million. By 1982 the failure rate had fallen to 1,500 per million, a 25 -fold improvement. With tuners the improvement was even greater -37 fold. Tube failures have fallen from over 25,000 per million in 1980 (1977 figures not available) to 6,000 per million in 1982 , a figure that's a lot better than it seems since it includes yoke defects. The failure rate for UK made signal diodes was 1,740 per million in 1977: by 1982 the failure rate for power diodes was down to 15 per million - signal diodes were no longer quoted. For preset controls the failure rate has fallen from 1,100 per million to 180 per million. I recollect asking a TV production engineer back in 1977 why the failure rate for those notorious mains filter capacitors was so high. The rather surprising reply I got was that UK capacitor manufacturers didn't know how to make them - despite having turned out capacitors for the purpose since the early thirties if not before. That too has changed.

In 1977, an average of 2.5 faults per set were found on UK TV set assembly lines. By 1982 the number of on-line faults had fallen to an average of 0.4 per set. This doesn't include component faults arising during post-production soak testing. In 1977 a typical soak test took thirty hours, during which an average of five faults per hundred sets were found. By 1982 the time required for soak testing had fallen to ten hours while the number of component failures had fallen to an average of one in every hundred sets.

UK produced TV sets are now as reliable as those made anywhere - more reliable than those from most sources. The prospects look good, but for some reason total production figures have failed to take off in the way one might have hoped.

Teletopics

VCR PRODUCTION

Sharp is the latest Japanese VCR manufacturer to establish a production base in the UK. Work on the plant, at Wrexham, North Wales, has already started and will involve an investment of $£ 15$ million. Production is expected to start next February, at an initial rate of 60,000 machines a year, creating some 240 jobs. Output by 1990 is planned to reach 240,000 machines annually. Initial production will be from kits, with the local content rising to 45 per cent by the end of 1985 to meet the EEC/MITI requirement for the machines to be accepted as of European origin and thus exempt from import quotas. The plant will be run as a production subsidiary of Sharp Electronics (UK), which is at present a marketing company.

Between 1979 and 1983 the UK CTV market increased from two to three million sets a year (rising in total value from $£ 600$ million to $£ 840$ million) while the VCR market rose from 200,000 to two million machines (in value terms from $£ 110$ million to $£ 800$ million). The unsettling effect of price rises following the EEC/MITI agreement led to a fall in the rate of growth of the VCR market in 1983, but with a market penetration of 25 per cent at present there's still considerable potential for VCR sales in the UK especially as the working life of a VCR is considered to be much less than that of say a colour set. Once the present UK VCR plants (Mitsubishi, Sanyo, Sharp, Toshiba and JVC in conjunction with Thorn) attain maximum planned production levels the total output will still be less than half the current market requirement.

The local content of the VCRs produced by the J2T (JVC/Thorn/Telefunken) plants in Newhaven and W. Berlin is expected to reach 45 per cent by the end of this year, an increase of 12 per cent on the present figure. J2T will thus have reached the required EEC/MITI level a year ahead of schedule. At present, most of the local content parts are low-value items such as case and chassis fittings etc., but several board assemblies are to go into production in Europe by the end of the year. The tape deck mechanism is produced in France from a kit of Japanese components.

Philips, who obtained a manufacturing licence from Matsushita late last year, have announced that their VHS machines will be sold in the UK once production starts. There are no plans at present to sell Philips VHS machines in other European countries. It's understood that Philips V2000 format machines account for one per cent of the current UK market. The problem for both Grundig and Philips has been that demand for V2000 series machines has been insufficient to provide adequate factory load levels. Hence the decision by both firms to manufacture VHS machines.

Matsushita and W. German automotive components and electrical manufacturer Robert Bosch are considering a joint venture to produce VCR and TV components at their Oskrode plant, which at present assembles VHS VCRs. The plant is owned $65 / 35$ per cent by Matsushita and Bosch respectively. Matsushita plans to start component manufacture by this September: Bosch has yet to decide whether to take a stake in this development. Bosch

VCRs are sold under the firm's Blaupunkt brand name.
Sony, announcing much improved first quarter results, mentions that VCR production in its plants is currently running at a rate of three million units a year, representing 90 per cent of plant capacity. VCRs and video tape account for 43.2 per cent of Sony's profits at present. Sony recently announced an agreement to set up a Betamax VCR manufacturing plant in China.

PHILIPS TAKES CONTROL

Philips has taken control of Grundig following agreement by the two companies to the conditions laid down by the W. German Federal Cartels Office. Under the terms demanded by the Cartels Office, Philips will sell its 15 per cent interest in W. German TV setmaker Loewe Opta and Grundig will sell its Stenorette dictating machines operation, both sales to take place by the end of 1985 . Herman Koning, previously head of Deutsche Philips, has been appointed as chairman of the Grundig board of management in succession to the company's founder Dr. Max Grundig.

GEC-HITACHI JOINT PRODUCTION ENDS

Joint ownership of the CTV plant at Hirwaun, S. Wales by GEC and Hitachi has come to an end. The joint venture at the previously GEC owned plant started in 1979. Hitachi has bought out GEC's 50 per cent interest and will continue to run the plant, which has a production capacity of 300,000 sets a year. GEC will continue to market domestic TV equipment and for the time being will continue to buy sets from Hitachi. Joint operation of the plant never seems to have been very successful.

THOMSON TAKES CONTROL

The French state-owned electronics concern Thomson, which bought a 75 per cent interest in Telefunken from AEG when the latter faced bankruptcy just over a year ago, has acquired the remaining 25 per cent. The deal involves a share swap whereby AEG is expected to receive a three per cent stake in Thomson's consumer electronics subsidiary Thomson Grand Public, which already owns NordMende, Saba and Dual.

TRADE DEFICIT

The TV trade figures for 1983 make dismal reading. Nearly half the CTV sets delivered during the year were imported - a total of $1,424,100$ (value $£ 219,695,000$). Monochrome set imports were 953,300 ($£ 33,416,000$). We imported $2,467,400$ VTRs ($£ 587,751,000$). TV exports totalled 293,400 ($£ 60,039,000$) colour sets and $35,700(£ 1,776,000)$ monochrome receivers.

TV CHIPS

SGS-Ates has started small scale production of a 250 V RGB amplifier chip, the first such device in the world to reach this stage. About a thousand chips a month are being supplied to a small Italian TV company, and samples are being tested by Grundig, Philips and Thomson. Characteristics include a bandwidth of typically $5 \mathrm{MHz}, 100 \mathrm{nsec}$ rise and fall times and an output voltage swing of 180 V peak-to-peak. Flashover protection is built in and the device incorporates black-current control and a grid voltage generator.

The Siemens TDA4292 i.c. has been introduced for audio signal processing in TV sets with stereo sound. In addition to making provision for user controls (treble,
bass, volume, loudness and balance) the chip incorporates stereo wide and synthesised stereo circuitry and the necessary switching.

The TDA1027 i.c. available from MCP Electronics is intended as a low-cost video signal analogue-to-digital converter. A video input with a bandwidth of 5 MHz is converted to a seven-bit digital signal. The i.c. gives either true or inverted TTL compatible outputs in either binary or offset twos complementary coding.

JVC's SERVICE SCHOOL

JVC (UK) have opened a training school for video and hifi equipment service engineers at the company's North London head office - the Manpower Services Commission was involved in initiating the scheme and will fund six of the first intake of twelve students. The full-time course lasts for ten months and students are expected to have a grounding in electronics to start with. By the end of the course the students should be knowledgeable in servicing work, though no guarantee of employment is given. JVC's technical director Arjon Verdonkschot thought up the idea, fearing a lack of suitable engineers to handle the ever growing quantity of consumer electronics equipment in people's homes.

TV SET NEWS

Philips' latest introduction is the Matchline system, which is intended to offer a simple solution to the explosion in TV technology confronting the viewer. Initially there are three models, the 20 in . V6620, 22in. V6720 and 26 in. V6820. Each set is fitted with two SCART sockets as standard for permanent connection of equipment such as a VCR and a computer at audio/video frequencies. For improved contrast and minimum reflection, a lightly tinted glass plate covers the screen. The built-in 15 W per channel stereo amplifier feeds two side-mounted speakers at the rear of the cabinet behind adjustable, hinged flaps for sound direction - alternatively a pair of separate Matchline hi-fi speakers can be used or the sound can be replayed through the existing domestic audio system. There's also a headphone socket, with the added facility of splitting a dual channel sound source, i.e. feeding one channel via the speakers and the other via the headset. There's automatic tuning and teletext is standard, with the Philips' Supertext facility that enables twenty pages to be stored in the set's memory for access at the touch of a button. Another feature is remote control which, via the SCART socket, can control a V2000 VCR, LaserVision disc player or hi-fi system. The sets are based on the KT4 modular chassis. Suggested prices are in the range of $\mathfrak{£} 500-£ 650$ depending on tube size and $£ 70$ for the Matchline speakers - these prices are inclusive of VAT.

Sanyo showed a three-inch screen colour set with LCD display at the Japan Electronics Show late last year. The set is due for release this autumn at a price of around $\$ 425$.

Introduction of Fidelity's new CTV chassis has been delayed following the discovery that one of the i.c.s it had been intended to use is unreliable.
S. Korean consumer electronics concern Samsung is following the pattern established by Japanese manufacturers in setting up in the USA. The plant, at Roxbury, New Jersey, will have a production capacity of 450,000 colour sets annually (also 300,000 microwave ovens) and is expected to be in operation by the end of the year.

Michael Davis, chairman of cable company Windsor Television, predicts that cable will lead to a great increase in business for security firms - the idea would be to use
the interactive feature of cable TV to link homes to a security company. Windsor Television will be offering a cable security option.

Electrohome of Canada, a pioneer in the development of display systems for use in arcade/pub TV games units, has now adapted projection TV for data display purposes. The ECP 1000 colour data projector uses a single lens system for ease of setting up and incorporates a flexible interfacing system to enable most computers and video terminals to be connected to the unit. The image on the screen can be varied in size from five to seven feet (diagonally) without moving the projector itself.

The new, remote-controlled version of the Thorn TX90 portable CTV chassis differs in several respects from the initial version. While the main vertically-mounted PC1140 panel is basically the same as the PC1130, it has been reengineered to provide pluggable interfacing with the remote control receiver and voltage synthesis tuning section. The two extra boards required are mounted on the floor and front of the cabinet. These are the PC1139 remote/tuning and PC1138 infra-red preamplifier boards respectively. The heart of the remote control system is a TMS1000 microcomputer chip (Thorn house number T9005N). The SL486 chip used in the preamplifier incorporates a.g.c., photodiode gain tracking (by means of a gyrator feedback loop), internal supply regulation and a pulse stretching circuit.

VIDEO DISC SYSTEMS

In a move to stimulate sales, Philips have reduced the price of their LaserVision video disc players by $£ 100$ - the cheapest model should now be available at about $£ 230$, less than half the price when the system was launched two years ago. Sales of both the LaserVision and Hitachi CED players (the latter system was launched late last year) have been slow. Some estimates suggest that around 5,000 of each type have been sold to date. Hitachi's current sales promotion scheme is based on the offer of five free discs with each player. Both Philips and Hitachi have found that the main interest with discs lies in watching music items. The music content of the catalogues is being increased and Philips is to launch an 8 in . disc costing around $£ 8$ later in the year.

Pioneer have introduced a laser disc player in Japan using a solid-state laser instead of the helium-neon type previously employed. Since this eliminates the need for a complex power supply system, a substantial reduction in the price of the players has been achieved.

The coin-operated video jukeboxes we mentioned last month use VHD discs and players produced by ThornEMI. The VeeJay videodisc jukebox is fitted with two players and a control unit - it's hoped to instal the jukeboxes in 1,000 pubs and clubs throughout the country.

PANASONIC NAME CHANGE

National Panasonic (UK) have now dropped National from their name - from April 1st the correct name is Panasonic U.K. Ltd. The brand name National is being phased out on all products. The parent company is Matsushita Electric.

SIGNAL SCRAMBLING

Signal scrambling techniques to prevent the unauthorised reception of DBS signals were described by BBC and IBA engineers at a recent IEE conference on secure communications. The MAC-C system proposed for UK DBS
transmissions already introduces a degree of scrambling since the signals cannot be received by current TV sets without a good deal of additional processing - in the MAC-C system the line period carries first the sync and audio signals, then chrominance and finally luminance, both in compressed form. To increase the signal security, the first part of the line would be transmitted as an encrypted digital signal while the chrominance and luminance sections would be independently scrambled by splitting each section into two at some point and reversing the two parts for transmission. This split can be made at any of 256 points during the time duration of that section of the line and the point changed in pseudo-random fashion from line to line. To reconstruct the picture, the receiver would need information on this pseudo-random sequence. The required information could be transmitted in encrypted form during the sync/audio part of the line and decoded in conjunction with a key number sequence held in the receiver and rewritten periodically, say once a month. This rewriting could be done by broadcast transmission.

SCOPEX SERVICE BACK-UP

Scopex Electronics Ltd., 63-65 High Street, Skipton, N. Yorkshire BD23 1EF announce the availability of an extensive range of spares for all Scopex instruments from current models right back to the very first - even front panels and individual components. In addition, Scopex oscilloscopes can be factory serviced or repaired - instruments returned for service or repair will be tested to ensure compliance with the original specification, and a six-monṭh guarantee will be given.

ACCOLADE FOR UK CTVs

Colour TV sets manufactured in the UK are now amongst the most reliable in the world, though Japanese produced sets still have a slight edge, according to the Consumer Goods Economic Development Committee of the

DEALING WITH UNKNOWN PANELS

Since the introduction of printed circuits many years ago now, constructors and service engineers have been required to work on two interconnected planes and to develop what could be called a mirror mentality. This is, sadly, quite beyond some people - as you may observe from their efforts to reverse a car into a tight parking

As components get smaller and PCBs become much more crowded it can be quite a problem tracing out a circuit, particularly when the panels are not marked with component reference numbers. Even when these are provided, it's not unusual to discover that they are incorrect, that various items have been deleted, and sometimes that quite radical modifications have been made. Having encountered this problem in TV sets and other items of consumer electronics, I've devised a procedure which, though more thorough than quick, will give you what you need to know without wasting too much time. It applies where you don't have any official data.

The first step is to reproduce the printed panel on tracing paper. Some sort of transparent grid is helpful. Examine the panel one square inch at a time, reproducing
space.

Letters

National Economic Development Organisation. The Committee is so impressed with the progress made by UK setmakers over the last five years that a lavishly illustrated, twelve-page review of the subject has been produced with export markets much in mind. The review adds that the repair call-our rate would be lower still but for the fact that 37 per cent of sets are equipped for teletext reception. Firms mentioned in the report are Fidelity, GECMcMichael, Panasonic, Rediffusion, Sanyo, Tatung, Thorn and Toshiba.

ATV MICROWAVE REPEATERS

Licences for five ATV repeater stations in the $1 \cdot 2$ 1.3 GHz band have been granted. Details are as follows:

Station	Location	Channel
GB3GV	Leicester	RMT1
GB3TV	Luton	RMT2
GB3UD	Stoke-on-Trent	RMT2
GB3UT	Bath	RMT1
GB3VR	Worthing	RMT2

Channel frequencies are as follows: RMT1 1.2765 GHz vision in, 1.3115 GHz vision out; RMT2 1.249 GHz vision in, $1 \cdot 3185 \mathrm{GHz}$ vision out. Sound frequencies 6 MHz higher in each case. The RTM1 stations will receive a.m. or f.m. signals, transmitting with a.m. only; RTM2 stations will probably be f.m. only. Aerial polarisation is horizontal.

NEW CCTV TUBES

Mullard announce the introduction of two new CCTV tubes, a $\frac{1}{2}$ in. vidicon and $\frac{1}{2}$ in. Newvicon, both with much reduced heater power consumption. The XQ1600 vidicon is suitable for routine visible light applications: the XQ1601 Newvicon has a sensitivity enabling it to be used at down to twilight conditions. There is also a version of the Newvicon, type XQ1602, made of radiation-resistant quartz glass. The tubes weigh 12 g , are electrostatically focused, have a resolution of 450 lines and a power consumption of 300 mW .
each section on the tracing paper. With a very crowded panel it's useful to scale up the reproduced image to twice or three times the size of the original. After drawing the panel outline to the selected scale, note and identify all flexible connections, marking the soldering points on the paper. Finally insert the tracks. To clarify the image, I colour the paths with an orange-coloured felt pen. This colour doesn't obscure the other details.

Having completed the track layout, turn both the panel and the tracing over. At this stage it's helpful to have available a decently sized mirror and a source of light to shine through the panel. A magnifying glass can also be helpful. Care is needed for the next step - marking the various components on the rear side of the tracing. In the interests of clarity it's best to use symbols rather than physical outlines. The main thing is to ensure that the component leads and tags coincide with the appropriate points on the print - this is where the mirror and light come into play. While doing this it will save time to include component values and identify the windings of coils and transformers, using a resistance tester and noting the values. It's best to insert these so that they can be read from the print side of the tracing, as testing will normally be done from that side of the panel. There may be occasions where it's necessary to remove screening cans to inspect the internal arrangements, but if the alignment might be affected this should be done only as a last resort.

On completion of the drawing, check all connections to

I/Cs SEE ALTERNATE ADVERT
 108 SCOTLAND ROAD, CARLISLE, CUMBRIA CA3 9EY PHONE (0228) 20358/39693

BUY WITH C

the panel concerned, as flexible connections tend to break off.

The final stage is to draw out the circuit diagram. This is best done roughly to start with, commencing at the signal input and working through to the output and power supplies. It may then be possible to rearrange the circuit diagram to produce one with a more logical layout.
Bob Walker,
Aberdeen.

PHYSICAL REPAIR PROBLEMS

Your TV fault finding articles tend to concentrate on diagnosis rather than repair. It's the latter aspect that often presents the main problems however. Television sets seem to have become more difficult to deal with in recent years, what with components glued in, the number of i.c. pins it's necessary to unsolder to extract the device, and in particular subassembly boards soldered into the main board at right angles. The construction of some sets from the Far East is so poor that it's impossible even to test them without stripping the set down.

It all sounds so easy - all one has to do is to use a soldering iron and a solder sucker. Until one tries it, that is. We're not all dextrous with our hands, and inevitably we break some components and lift some print due to the flimsy and awkward layout so often found.

The designers of many sets should be sentenced to six months' removing faulty components in the sets they've laid out!
K. J. Treeby,

Plymouth.

DRIFT FAULT

I had an awkward tuning fault recently on a Thorn set fitted with the 9600 chassis. Every time the set was switched on there was only grain on the screen with noise on the sound - except for Ch. 4. Retuning was necessary with all the other channels, and within a few minutes the set would slowly drift again or suddenly drop out. The tuner was blamed, but why was Ch. 4 o.k.? A new Mullard tuner was fitted - I've had some problems with Thorn tuners, curing three with nothing more than a soldering iron around the joints - but the same thing happened a day later. Replacing the TAA550 voltage stabiliser made no difference.

I had a go at the tuner, putting the soldering iron round it, but did more harm than good. After fitting another tuner the set was found to be firmly locked to the channel five position, with no picture and the sound motor-boating. The BTT6018 touch-tuner chip was pushing 34 V out of every pin. Getting a new chip was a bit of a problem - they kept sending BTT6218s, which is apparently the correct replacement. After this was fitted I still had the mistuning problem, which was eventually traced to the 1 S 44 diode in series with the tuning slider in the Ch . 4 position. When checked for reverse leakage it was found to behave like a leaky capacitor, slowly shorting out. Replacing this finally restored normal operation.
J. D. Stephens,

Wigan, Lancashire.

OSCILLOSCOPE PROBLEMS

My experiences with a Safgan Model DT420 scope may be of interest to other users. The problem began with a blown fuse. Replacement appeared to clear the fault, but
no! About a week later the same thing happened again, only this time with disastrous consequences. It appeared that a 6.3 V heater winding had leaked to chassis: the transformer had burnt out several resistors and, worst of all, had blown the tube heater. I was able to get in touch with Brimar, who still had D10-239GH tubes in stock and were willing to supply one. Whilst waiting for this I investigated the scope with a view to preventing any further problems.

The first step I decided to take was to fit a separate heater supply. This was done as follows. A separate PCB was made to hold an RS 3VA 6 V printed circuit mains transformer, a mains fuse, and a 1Ω resistor in series with the secondary winding to limit the switch-on current. Two spare tags were included to isolate the old 6.3 V winding. As I never use the scope's Z modulation, I connected one side of the heater to the cathode, then replaced the other damaged components. The secondary of the new transformer is thus at 1.5 kV , which is within the RS specification: a check revealed that all was o.k. This transformer need not be fitted if the original is not suspect for leaks, but be warned!

Secondly, the tracks of both the brightness (intensity) and focus controls are at about 1.5 kV with the bodies at chassis potential, which seems a poor arrangement to my mind. I moved them out of the way to the back of the scope, which wasn't such a problem as there was no tube in the unit at the time. To carry out this modification, remove the tube then the rear tube support by drilling out the two rivets on the back and withdrawing the screw on the top support. Drill two new 2BA holes on the upright of this support to mount another PCB (without copper) to these two holes and refit the bracket. I used two new potentiometers with long plastic spindles, $250 \mathrm{k} \Omega$ linear and $1 \mathrm{M} \Omega$ logarithmic.

I decided not to use a mains switch as the scope is on most of the time, but there's plenty of room for one if required, as in the original design.

The new wiring used is rated at $6 \mathrm{kV}-1 \mathrm{~m}$ was plenty. The old potentiometer bushes through the front panel were used to support the spindle extensions $-7 \times \frac{1}{4} \mathrm{in}$. steel rod with couplers.

The scope now works well.

K. D. Bunting,

Huntingdon, Cambs.

THE GREAT PLUGTOP MYSTERY

Since the advent of transistor power supplies this magazine has devoted much space to fuse blowing and the destruction of expensive output transistors, particularly the problem of the whole thing happening again shortly afterwards. The causes of these problems within particular chassis have been covered, for example the main reservoir electrolytic in the G11 and pitted on/off switches, and reference has been made to faulty house wiring. The predominant cause however is a loose connection in the 13A mains plug, and the blame largely rests with the setmakers themselves. Why? Well, they tin the ends of the wires, turning them into single conductors. Strip this tinning off, twist the bare copper strands well, reconnect and your troubles in the plug will be gone.

Many of you know this already, so what's the mystery? Simply this: why is the loose connection always the neutral one?
Harold Peters,
Lowestofi.

Problems with Older VCRs

Nick Lyons

The first domestic VCR to appear in the UK was the Philips N1500, back in 1974. This format was superseded by the N1700 in 1977, but it wasn't until VHS and Betamax machines started to appear in the UK in 1978 that the market began to take off. There are nevertheless quite a few N1500 and N1700 series machines around: they are useful for those who require only time shifting, and can often be picked up cheaply. Many Betamax and VHS machines have by now seen several years' service. There will obviously be run of the mill and various stock faults with equipment as complex as a VCR, but problems of a different nature begin to appear as machines age. It's this sort of problem we're going to consider here: a machine bought as a well-used second-hand unit may exhibit several of these problems.

Belt Arrangements

With faults that look like servo problems it's always advisable to change the belts. Early machines of all formats used belts extensively. They give good service, but not forever: never mind how long they are reputed to have been in the machine, change them. Whilst doing this, clean all the pulleys with a lint-free cloth moistened with alcohol. Dry them off before putting the belts on, or you may partially dissolve the new belts. If there's a piece of ingrained dirt that can't be removed with alcohol on one of the pulleys, forming a small pimple, use a very small amount of Brasso, again on a lint-free cloth. Polish the dirt off, then clean off the Brasso.

Drum and Capstan Drive

After restoring the belt arrangements to their former glory, try the machine again. Have you got capstan or drum hunting? Is it in fact hunting, or is the capstan or drum running at the wrong speed? Let's take incorrect speed first. Is it too fast or too slow? If you're not sure, apply slight pressure to the top rim of the head drum or to the capstan flywheel to slow it down. If this improves matters, the relevant item is running too fast and the chances are that you've got servo trouble. Before delving into the servo circuitry however check that the supply lines are correct. Exactly right, as there's little margin for error here, tens of millivolts only. Check at the servo board as well as at the power supply panel.

It's advisable to check the presence and amplitude of the off-tape control pulses as they progress through the relevant servo circuit, as without them the servo won't lock. We'll assume that they are o.k. for the moment.

On the older Philips machines motor control was achieved by the use of eddy current brakes. It's a very simple matter to disconnect one wire from the brake coil and note the effect. If the motor was running too slowly before the wire was disconnected and then speeds up, you've servo trouble. If the motor continues to run too slowly the chances are that the relevant motor (gramophone type shaded-pole unit) has bearing trouble. Often no amount of oil will improve matters. The bearing may not seem stiff to you, but it may to the motor. With
the belt removed and the power off, spin the fan blade: if the motor stops after about two revolutions or less, it's too stiff. I can't understand why, but the motor shaft seems to swell with age! An otherwise useless motor can sometimes be revived by polishing the rotor shaft with Brasso. Remember to clean the shaft thoroughly and lightly oil it before reassembling into the bearing. If this fails to provide a cure, a rather expensive new motor will be required. If a motor consistently runs too fast, check that the brake coil is not open-circuit or has a loose wire. Then if necessary check for output stage failure.

Let's assume that the off-tape control signal is missing. The result more often than not is that the motor runs at almost the correct speed but the servo fails to lock, the tracking control having no effect. Loss of the off-tape control signal is a common problem with N1500 and N1700 machines, particularly with the N1500 series as the control track is narrower and is interleaved with the edge of the video tracks. The audio/control track head assembly on these machines swivels out on the capstan pinch roller assembly, and a frequent cause of the trouble is fractured connecting leads - there's usually enough spare to trim and remake the ends. The head seems to be a particularly soft type, and considering that with this format most of the tapes are of the chrome type maximum head wear is to be expected. Not only is there the half inch wide groove across the main head face, the actual head area is even softer, wearing to a hollow dimple. As a result, head-tape contact is lost and there's no signal. The only cure is to fit a new head.

These heads need replacement every eighteen months to two years if the machine is used a lot. Poor tape interchange or misalignment of the head will also cause loss of output, the track being very narrow considering the poor mechanical stability of this format. Listening to the off-tape audio signal may well provide a useful clue. There's plenty of head adjustment range, and a special signal is recorded on the alignment tape to ensure correct adjustment. Failing this you'll have to use a recording made on a reasonably well set up machine. Make the adjustment gradually - it's unlikely to be miles out.

Loss of the control track signal due to faulty electronics is very rare with these Philips machines, but the simple amplifier circuit makes signal tracing easy.

The head itself is less likely to be suspect with VHS and Betamax machines, though bad interchange, i.e. tape misalignment, may well be the cause of minimal output from the control head. Betamax machines seem to be more prone to this trouble than VHS ones, probably due to the longer tape path. With both formats gross audio/ control head azimuth or position inaccuracy may be the cause. If this is the case, why is it so? Has the machine been dropped or tampered with by less than expert hands?
It's been my experience with VHS and Betamax machines that very little goes far out of adjustment on the mechanical side provided it's been left alone. As regards head adjustment, if you haven't got an alignment tape, record a test card and tone on a known good machine. Replay this on the faulty machine and adjust the head for best audio response. Also monitor the control signal
output with a scope. Go for the maximum control signal output commensurate with good audio azimuth.

It's again quite simple to follow the control signal through the amplifier in early Japanese machines.

Servo problems can often be cured by careful setting up. Where the speed discrepancy is great, just examine the transistor(s) that drive the motor. Has it latched up or down to a supply rail?

Even the early "dead-finger" VHS machines (3320/ 3 V 00) used d.c. motors. These generally give very little trouble, but the manufacturers recommend replacement every 2,000 hours. This seems to be showing excessive caution as I see it, being virtually on a par with the head replacement recommendation, but obviously original motors in an old machine must be suspect where servo trouble is experienced.

Tape Speed Wobble

A very common fault on these dead-finger machines is a cyclic tape speed wobble, a slow wow really though not generally obvious on the sound, the main effect being cyclic displacement of the colour - it sways from side to side over the luminance. If rebelting and a complete servo set up hasn't cured the problem, the chances are that changing the capstan and its bearing will do so. Don't forget to oil the new assembly or it won't be long before the fault recurs.

If the fault is not too pronounced, you might get away with dismantling the capstan assembly. Withdraw the flywheel assembly, clean the shaft and look for any marks. If it's badly "ringed" it's a gonner. If it's just slightly shaded, use a little Brasso to take the worst off. Reclean and reassemble, using a good spindle or thick general purpose oil. Oil the capstan shaft all the way along, and twist it as you push it back into the bearing to avoid scratching - gently does it - while supporting the weight of the flywheel. Remember also to clean the surplus oil from the exposed part of the capstan, using a paper towel or something similar, before playing a tape or letting it come into contact with the pinch roller. On the subject of pinch rollers, a drop of oil down the centre will not go amiss. If the roller is at all mishapen or scarred, it must be replaced. On the Philips format machines, swollen (barrel shaped) pinch rollers are the cause of much tape misguiding and creasing.

Threading Problems

Sticking whilst threading and unthreading, or refusing to thread/unthread on starting or after a timer recording, can usually be solved by applying a good grease to the bits of sliding metalwork in the threading mechanism. This is located (3320 etc.) beneath the tin cover adjacent to the capstan flywheel. Grease is applied initially, but tends to dry up and is then more akin to candlewax. The problem is particularly bad with timer recordings as the machine is often at its coldest and the motors have to start under the best conditions for stalling, i.e. with a heavy load preengaged and the power rails still coming up.

Threading difficulties with early Philips machines (1500, 1501,1520) can be something of a trial. During threading the whole drum assembly, complete with the lower drum and most of the guides, rotates. In the later 1502 and 1700 this rotation is done with a worm gear that engages in the lower drum assembly: this gives little trouble. With the early machines however threading is done with a
"tuning cord" type of system: the cord wraps around the lower drum assembly, then over the pulley wheel of the threading motor's gear train. This gear train also carries the cams that operate limit switches to switch off the motor when threading or unthreading is completed. In operation, the cord is tensioned by what are basically two Biro refill springs. Surprisingly, the cord itself gives little trouble, the main problems being with the gears.

In this train there are gears consisting of toothed plastic mounted on splined metal shafts. These plastic gear wheels tend to split and consequently get out of mesh and synchronism with the rest of the train, putting the limit switches out of sync as well. This will result in the motor over winding, stretching the springs and in extreme cases snapping the cord. The worst offender is the threading motor's own gear. It's a sleeved extension to the motor's shaft, and can be replaced separately. Any other damaged gear wheels will necessitate replacement of the whole gear train assembly. It's a waste of time trying to repair this unit as it operates under far too much strain. The cord should also be replaced, mainly because the springs will have been stretched beyond their limit. Later versions of the cord have strings and eyes fitted as spring protectors.

The threading motors in these Philips machines can also be faulty, and great care is required when a new motor is to be fitted. This is because Philips decided to change the speed and direction of rotation of this motor during production. The speed change is not significant but the direction is. Check the machine and ascertain the required direction of rotation of the motor and which type you have: failure to do so is costly, because if the motor turns the wrong way or switches on, the cord springs will be damaged and the gear train may be chewed up. The modification required is simple - connect the wires the wrong way round so that the new motor goes backwards (two wrongs make a right, I suppose!). Philips did get around to putting a note in with most motors, telling us to swap over the wires, but the first few didn't and I can tell you I've looked more than bewildered more than once on this account. The first time I thought I'd a freak motor, wired wrongly internally, till it happened again. Remember that your machine might have the later motor fitted already - if the red wire doesn't go to the red dot terminal on the motor, the later motor has been fitted.

Failure to Latch

Back to VHS machines. The dead fingers themselves can be a cause of trouble. If one or more fingers won't stay down or keep on unlatching themselves, first check the stop solenoid. If the solenoid isn't operating spuriously, the problem lies elsewhere. In this case the chances are that the notch in the finger assembly (inside the machine, where it engages with the stop bar) is worn. With the flat edge of the notch worn away, the key will refuse to latch or be so poorly latched that the vibration and movement caused by threading may shake it free. It's quite easy to refile the notch: a look at the stop or pause keys will show you the pattern. In badly worn cases you can interchange the worn key with another in which the notch is not used or gets little use, i.e. the stop, pause or audio dub keys.

Mechanical Alignment

It's necessary to check the mechanical alignment of any VCR from time to time. This can be satisfactorily done only by using the proper alignment tape. Prerecorded
tapes from libraries definitely won't do. Before disturbing any alignment adjustment, ensure that the tape path and the heads have been thoroughly cleaned and are free of debris. Similarly make sure that all the rollers are actually rolling. The older VHS machines have an additional roller before the sound head. The speed stability and alignment will suffer if the machine is trying to drag the tape over stuck rollers.
If the lower drum is particularly dirty, remove the upper drum. This will give much better access and enable you to clean the top rim of the lower drum assembly. It's quite remarkable how much debris can collect here.

When all this has been done, check the alignment again and if necessary adjust. I know that an alignment tape is expensive, but if you're a dealer you should have one. If you're not and you haven't, what then? The best thing I can suggest is to find a friend or a friendly TV shop that will record for you a tape of a test card on a new machine. This will not be perfect, but most new machines are now pretty close to specification.

Though capable of giving perfect results, many of the older machines were often not as well or consistently set up when new as the latest machines. This is particularly so
with Betamax VCRs. I would not advise therefore that you record this makeshift alignment tape on an old machine, no matter how reliable or well cared for it's been, unless you know it's been properly aligned fairly recently.
Actual adjustments should be made in accordance with the service manual for the particular machine, using an oscilloscope to view the f.m. output from the tape. Be warned that any random tweaking of guides and the like will definitely end in tears. If you don't have a scope it's still possible, with care, to align the machine by watching the picture on a TV screen - by mistracking the VCR and adjusting for uniform noise over the whole field. A set with underscan is useful here, as the level of noise around the head switching point, i.e. near the field sync pulse area, must be as nearly uniform as possible with the rest of the field if field jitter is to be avoided. In any case, when you think the adjustment is complete, turn down the height on the TV set or mislock the field hold control and just check that all is well around the field sync pulse area.

Finally, stick to the manual and remember that with alignment discretion is the better part of valour: if it's near enough, leave it alone!

Service Briefs

The following notes are based on information given in recent issues of Ferguson Feedback and in the ITT Service Bulletin issue no. 14.

Thorn TX9 Chassis

In sets fitted with main panel PC1044 (chopper power supply) R92 in the brightness control network is $18 \mathrm{k} \Omega$. As a result, the background presets should be turned fully towards the rear when setting up the grey scale, not to mid-position as in previous versions of the chassis.

The values of R942 and R970 on infra-red preamplifier panel PC1527 have been modified on a couple of occasions for best sensitivity with immunity from external interference. The final values are R942 $18 \mathrm{k} \Omega, \mathrm{R} 97082 \mathrm{k} \Omega$.

Thorn TX9/TX10 Chassis

The value of R32, connected to pin 8 of the SL1432 i.f. preamplifier i.c., has been changed to $10 \mathrm{k} \Omega$ to avoid top pulling at certain signal levels.
Refusal to switch on from cold, going into the standby mode when the on/off switch is actuated, or failure to switch on from standby via remote control, has been traced during production to tolerances in the ceramic resonator circuit associated with the SAA5012 i.c. on panel PC1536. It has been overcome by reducing the value of R1131 to $56 \mathrm{k} \Omega$. This change might be worth trying where similar difficulties are encountered in the field.

Thorn TX10 Chassis

A new type of focus unit which differs from the original physically is now being supplied. Two hardware fitting kits with instructions for their use come with each unit.

C781 ($100 \mu \mathrm{~F}$) in the $1500 / 1550$ series can be responsible for field foldover though reading all right on test.

The position of the i.f. output coil in the tuner unit has been changed. In earlier tuners the coil was mounted vertically on the tuner's board, with access at the side of
the tuner casing. In the later tuner the coil is mounted in parallel with the board, with access through the top of the casing. A shorting link replaces R504 with the later tuner. The tuners are interchangeable provided this modification is carried out.

No vision can be caused by failure of the biasing LED D657 on the c.r.t. base panel. After replacement, check that the current flowing through the LED is approximately 20 mA . If excessive, check the transistors on the panel for shorts.

C656 on the c.r.t base panel is shown dotted as an optional item in the circuit given in the manual. The capacitor is fitted as standard in later production to avoid slight video instability in a minority of sets, its value being 220 pF (250 V disc). $0.01 \mu \mathrm{~F}$ and 150 pF capacitors have been fitted in earlier production.

C783 (240pF) was added, between pins 5 (output) and 4 (chassis) of the TDA3652 field output chip used on the later PC1560 main panel, to remove slight field instability that took the form of a band of interference across the middle of the scan. Two different types of mains filter choke have been used on mains input panel PC1565. The later, larger type can be fitted incorrectly: the correct position is with the winding closest to the mains fuse and filter capacitor. To prevent an unlocked picture at switch on from cold, C 742 is now $100 \mu \mathrm{~F}$ and $\mathrm{C} 745220 \mu \mathrm{~F}$. If this trouble is experienced, check the values of these capacitors before adjusting RV742 or RV741.

Thorn TX90 Chassis

In later production the h.t. rectifier diodes have been changed to type BY133GP in place of type BY127 or 1N4004GP.

A modified mains transformer is being fitted to improve the regulation performance under low mains voltage conditions. If vertical bending is experienced under high beam current conditions and the mains supply is known to be at the low end of the range, the new transformer (type 90D3-035-002) may help.

R213 in the trip circuit was changed from $47 \mathrm{k} \Omega$ to $51 \mathrm{k} \Omega$ to eliminate tripping under no signal/low brightness conditions.

RV174 (field hold control) is now $100 \mathrm{k} \Omega$.
R157 and R151 in the chroma feed to the decoder chip were changed to $1.5 \mathrm{k} \Omega$ and 390Ω respectively to prevent colour breakthrough on monochrome due to the presence of a spurious residual burst component.

The mounting of R203 in the field output stage is being altered to prevent it shorting to the adjacent transistor clip. As an interim measure a piece of insulated sleeving was added to the clip.

Two different channel tuning/selector switch assemblies have been used. With the 001 version the value of R101 should be $22 \mathrm{k} \Omega$; with the later 002 version it should be $47 \mathrm{k} \Omega$. An incorrect combination can cause a.f.c. problems.
$\mathrm{C} 12(0.01 \mu \mathrm{~F}, 50 \mathrm{~V}$ ceramic disc) was added between the 18 V line and chassis in battery converter TA127 to prevent random dot patterning or swirling lines of dots.

C 131 has been changed to $0 \cdot 22 \mu \mathrm{~F}$ (polyester) to eliminate buzz on sound on ch. 8 with certain VCRs.

To avoid sound buzz when used with signals having an incorrect sound-vision ratio, e.g. from a TV games unit or microcomputer, C200 (68 pF) is being fitted in place of R122.
To overcome difficulties experienced with the Sinclair Spectrum, R171 has been changed to $270 \mathrm{k} \Omega$ and R167 to $22 \mathrm{k} \Omega$. This change alters the duration of the burst gating pulse.

Thorn 1790 Chassis

Line output transformers and deflection coil assemblies from two different sources are being used in this chassis. The original types have a white line output transformer moulding and rectangular yoke tag panel holder. The later line output transformer has a black moulding. The later yoke can be recognised by the absence of the metal clips that hold the two halves of the ferrite core of the original coils together. The units are interchangeable in pairs provided that LK17 is fitted and LK18 removed with the later units and vice versa.

ITT CVC1100 Series Chassis

With the introduction of c.r.t. base panel CMB1100, the focus control has been changed to part no. 3722.20 .63 and R1004 ($2 \cdot 2 \mathrm{M} \Omega$) in series with the focus electrode has been deleted. The new focus control can be used with both panels - the old one must not be used with the new panel.

The over-voltage protection zener diode D658 should be replaced whenever it has operated, blowing the h.t. fuse Si651.

To operate the switch-mode power supply with no h.t. load, connect a $60 \mathrm{~W}, 240 \mathrm{~V}$ bulb across the 115 V output.

ITT CVC1200 Series Chassis

If the switch-mode power supply fails to start, check for 13 V across C703. If the voltage here is low or absent, check the start-up resistor R716 ($150 \mathrm{k} \Omega$) for being opencircuit or high in value. If necessary check the voltagelimiting diode D702 by substitution (it may appear satisfactory when checked with a meter). The switch-mode power supply may try to start with an audible chirp when D702 is faulty. Also check that the h.f. unit is plugged in correctly as this forms part of the power supply isolated earth path via pins TZ13 and TZ32. These two pins are linked via the metal screening shroud on the h.f. unit. Dryjoints here can cause shut-down, possibly intermittent. The power supply shuts down when the h.f. unit is removed - this does not apply to the later CVC1212 and CVC1217.

If the picture is dark, check the c.r.t. first anode decoupling capacitor $\mathrm{C} 1001(0 \cdot 01 \mu \mathrm{~F})$ for leakage.

CVC1210/CVC1215

Link 639 in the beam limiter circuit is fitted in 26in. sets and omitted in 22 in . sets. If pulling on peak whites is experienced with a 22 in . set, check that link 639 has been removed.

A fluttering picture, particularly noticeable at peak white, can occur with stereo Model ST3493 when there is no $A V$ input. The cure is to add a $10 \mathrm{k} \Omega$ resistor from the emitter of transistor T 3702 to the 12.5 V rail - this transistor will otherwise be in an indeterminate state of operation due to ab́sence of a switching voltage. For an over bright display LED when using the video input socket, increase the value of $R 622$ to $3.3 \mathrm{k} \Omega$ or $3.9 \mathrm{k} \Omega$ as necessary.
Sound drop out when playing a poor-quality tape can occur with Models 3432 and 3732 that have a discrete component interface board. This is due to the distorted sync pulses from the VCR not synchronising the line timebase correctly, as a result of which the coincidence circuit mutes the sound channel. To minimise this problem, reduce the value of C 1061 on the interface board from 470 pF to 220 pF .

Brightness

The tubes used in some ITT sets produced during 1983 had a longer than normal settling down period. This may result in a rather bright picture. To compensate, reduce the setting of the first anode preset control by a small amount, then check the grey scale setting. If the viewer normally uses a remotely controlled set in near darkness, it may be advisable to alter the range of the preset brightness control for a darker picture. Change R1447 to $5 \cdot 6 \mathrm{k} \Omega$ and R 1449 to $18 \mathrm{k} \Omega$. These two component value changes must be made at the same time.

VCR Model VR3905

Intermittent or complete loss of the clock/function displays can be caused by the material used to coat the clock display board - it appears to be hygroscopic. The remedy is to peel off the coating carefully, taking care not to damage the board. If the symptoms persist, clean the board with a solvent such as RS 555-207. The same plastic coating has been used on other panels, including the mechacon board, and is suspect for other fault symptoms.

ITT CVC25 Chassis

Failure of the EW correction transformer L22/L23 can be the result of $\mathrm{C} 701(100 \mu \mathrm{~F})$ which decouples the 12 V supply on sync/line oscillator panel CMS30 going low in value. This usually results in the line oscillator squegging audibly at switch on. EW correction transformer part no. 06575 must be used in this chassis. If the width is unchanged when the driver transistor T13 is shorted across from emitter to chassis, suspect the EW modulator diodes D24/5: if these are o.k., the transformer is probably faulty.

ITT CVC30/32 Chassis

When servicing sets fitted with these chassis, check scan correction panel CMZ30 or CMZ31 in the vicinity of connection pin Y10 for signs of overheating. This pin carries the line scan current and a poor solder joint here will result in arcing and burning. Problems in this area
usually result in power supply tripping and eventual failure of the BU208 line output transistor.

Control Panels

Operation of the on/off switch over a period of time in sets fitted with control panels CMC50/54/63/67, i.e. some versions of the CVC25/30/32 chassis, can result in stressed solder joints at the junction of the switch connections and the copper pads on the board. Sets where the switch is soldered directly to the panel without any other form of
mechanical support should be carefully checked when serviced. If damage to the copper or base material has occurred, it's best to hard wire the four unused connections on top of the switch to the appropriate copper pad farthest from the switch on the underside of the board, using $16 / 0.2 \mathrm{~mm}$ wire with insulation thickness of at least 0.5 mm . Two brown and two blue insulated leads approximately 12 cm long will be required. The problem does not arise with later sets that have additional mechanical support for the on/off switch.

What's Up Doc?

We get so used to our own ways of going about things diagnosing troubles in errant TV sets, putting things right after a preliminary examination or not putting them right after jumping to a wrong conclusion - that I thought my recent experiences of another sort might make an interesting çmparison.

The Swelling

Over a year ago I noticed that the right side of my stomach was larger than the left. I didn't take much notice, and the months went by. Then niggardly pains started, and so did Honey Bunch.
"You've got to get something done about it."
"Yes dear."
The pains got worse so I eventually went to the doctor, who said I'd better see a consultant. This I did.
First a nurse weighed me and measured my height.
"Aren't you tall?" she smiled.
"And good looking with it" I smiled back.
"Now take your clothes off and lie down."
The things these girls say nowadays. But I did as I was told. Next the consultant's understudy came along to ask a few questions.
"Why did you leave it so long?"
"Because I thought it would go away."
"Where does it hurt? Put your finger on the place."
"Mainly about here."
So he pressed and probed and I jumped about a bit.
Then he explored my private parts, holding my testicles.
"How many have you got?"
"How many of what?"
"What I'm holding."
To say I was put out would be to put it mildly. I'd always assumed one had two, and here was a man asking whether I'd any more.
"Just two" I said in a small voice. "How many am I supposed to have?"
"Two of course. But sometimes one gets lost inside you see."

I couldn't, so I settled back so that my mind could assume its usual blankness.
"Turn on your side" I was told briskly. As I did so I snatched a glance at what was going on. The nurse had handed the doctor a long chrome stick with a bulb at the end of it, and he was coming towards me. "Hang on" I panicked. "What are you going to do with that?"
"Examine your rectum of course. Now keep quiet and relax. It won't hurt all that much."

Les Lawry-Johns

But it did. I never knew what heaven was. It was when he'd finished.
"There" said the nurse. "That wasn't too bad was it? Mr. X will be in to see you in a second."

I heard the consultant consulting with his assistant who described something as a trifle strange.

Mr . X came across and prodded and probed but fortunately didn't go through the whole procedure again. "Hum" he said when he'd finished his examination. "You'll have a blood test and an X-ray, then we'll see you again."

So I visited various departments and eventually went home to await instructions. H.B. wanted every detail of what had transpired. I told her most, in hushed tones.
"You poor dear. It must have been terrible, being the first time."

I never really know whether such concern is genuine or not.

Back to Work

After a cup of coffee I started on the jobs that had come in during my absence. A Philips G8, a G11, a Bush T20 and a Pye 697. First the G8.

It was a late one with touch tuning, in a white cabinet. The 800 mA h.t. fuse on the line output stage panel had failed, so we looked at the line output transformer with suspicion. It seemed to be fairly new, so we made some other checks. One of the BU105 line output transistors was short-circuit. We replaced this, connected the meter across the fuseholder, and switched on. Nothing, except a reading of a few milliamperes. So we could fit a new fuse and then proceed to find out why there was no line drive.

The driver and trigger amplifier stages were in order, so we turned the set up to find out what was happening under the line oscillator section. A nice board crack had stopped the start-up system working. After repairing this a raster appeared - a very bright one with no control. To cut a long story short, a wirewound resistor in the 12 V supply was found to be dry-jointed. When this had been seen to a picture that only required converging appeared. We then had a very nice display.

A Headache

The T20 gave us a headache. It would go for a long time before it cut out. When it did everything reverted to normal. So no fault could be found because there wasn't one.

The next time it went off we hooked a $10 \mathrm{k} \Omega$ resistor across 4 C 19 to keep the line oscillator working. When it went off again we found that the line driver transistor's collector voltage was very low. We accused it of shorting intermittently and fitted a replacement, which didn't help. We then checked the voltages in the stage more carefully and changed this, that and the other. Eventually we found a burn mark on plug 4 Z 2 which links the timebase and line output panels. Pin 2 (black, earth lead) wasn't making good contact and this was the cause of the trouble. It's been reported in these pages before, for example by Mike Dutton in the March issue, but is one to watch out for as the results are so confusing.

The G11

The complaint with the G11 was a horizontal white line. The field timebase supply fuse was intact and after fitting a new TDA2600 chip a full raster appeared. It collapsed to a white line when the heatsink was touched. So we fitted a new holder for the chip and all seemed to be well.

No Picture

The complaint with the 697 was no picture. Our first move with these sets is to switch on and see what works and what doesn't. If the valves warm up we take tube base voltage readings to see whether it's a simple case of a lowemission PL802 luminance output valve. If the cathode readings are over 200 V , this could well be the case. The first anodes should be at around 400 V if the line output stage is working, and there should be some 100 V at the grids. If the grids are at a negative voltage we dive straight for the $200+300 \mu \mathrm{~F}$ main smoothing block. In this case we chose to read the green gun voltages. The cathode was high with the others normal. So we changed the PL802 and got a small green screen. Measurements were then made on the red and blue guns. Each grid was heavily negative. The main smoother was at fault after all. It seems we have to change one of these daily of late.

Monochrome Portables

Another common fault seems to be putting in an appearance more frequently. Lots of imported monochrome portables come our way with the complaint no raster and no e.h.t. due to no line drive. In each case the small resistor feeding the collector of the line driver transistor via the transformer has been found to be opencircuit. This is a small-wattage (for safety) resistor of some $20-47 \Omega$. It often stands clear of the panel and has sleeved legs, but not always.

ITT CVC30 Series

We've had a lot of CVC25/30/32s in recently. Although the faults have varied several have exhibited a common failing, field collapse. The easiest to cure cause of this is poor soldering to the metal frame earthing tags at the field output, top left centre, so this is what we look at first. If necessary we then let the main frame down and remove the small panel on top of the scan coils. Examination of this will nearly always show where overheating has taken place, and reversing the panel will show what has to be done by way of making good. One then has to decide whether to improve the plug-socket contact or wire the contacts directly.

next month in

- SCOPE COMPONENT TEST UNIT

Do you make full use of your scope? - for example, for component testing? David Botto has devised a simple unit that can be used with almost any oscilloscope to test bipolar transistors, diodes, thyristors, zener diodes, capacitors and even resistors, the actual condition of the component under test being displayed on the scope's screen. The tester really proves its worth when checking semiconductor devices - the slightest leakage or fault in a transistor or diode is revealed and the test method has proved to be completely reliable: in addition, only two test connections (except for thyristors) are required. This is a useful and time saving instrument that won't stand idly on the shelf! t's easy to build, requiring only a handful of components.

REPLACE AND IMPROVE!
Many otherwise sound TV chassis designs are let down by a particular panel or assembly that gives far more trouble than it shouid. Often there's no alternative to replacement of the unit concerned, due to the deterioration of the initial one. Fortunately improved assemblies are in many cases available from sources other than the original manufacturer. Tony Thomson on various alternative units and their availability.

- SYNC ADAPTOR

The Sony HV2000 video unit enables you to switch synchronously between two cameras, a colour and a monochrome one, and also provides other features. It's a good quality device considering its low price, but flexibility is limited by the unusual sync drive provided for Sony's own monochrome camera. The sync adaptor described in this feature allows the use of any camera needing horizontal and vertical drive pulses, such as the National WV421 and industrial cameras.

SERVICING FEATURES
John Coombes on the Körting series 9 chassis used in the 59571, 59671 and other receivers. Also Les, VCR Clinic, TV Fault Finding and VCR Servicing.

PLUS ALL THE REGULAR FEATURES
ORDER YOUR COPY ON THE FORM BELOW:
(Name of Newsagent)
Please reserve/deliver the June issue of TELEVISION ($\mathbf{I 1 \text {), on sale May 16th, and }}$ continue every month until further notice.

NAME
\qquad
ADDRESS
\qquad
\square

TV Test Pattern Generator

Tony Jenkins, G8TBF

Now that off-air BBC and IBA test pattern transmissions are so infrequent, service engineers are having to rely increasingly on test pattern generators. Several designs have already appeared in this and other journals. For this latest project we decided upon a generator that produces a single composite pattern similar to the broadcast ones. The main reason for this is that with the possible exception of full screen colour bars, which can be very useful for colour decoder setting up, a composite pattern is really all that's necessary in the workshop. Ideally, the pattern generator should be permanently wired up to a signal distribution system and left on all the time so that engineers have the pattern available constantly, needing only to plug in the TV set or VCR.

Use of EPROMs

Another consideration was that the unit should be simple to construct and set up, and be capable of being adapted to suit particular requirements if required. For this reason the pattern is coded and stored in a set of EPROMS (erasable, programmable read-only memories). This results in an extremely stable display, a comparatively simple circuit and the ability to alter the pattern simply by changing one or more of the EPROMs. In fact the main restriction on what can be put into the pattern is the imagination of the person devising the programme. A set of preprogrammed EPROMs will be made available to produce the pattern shown in Fig. 1 (though in colour of course). This differs quite markedly from the pattern shown on our front cover (that pattern was produced by the author's original programme), illustrating the sort of changes that can be made without any circuit modifications.

Arrangement of the Raster

The active area of the raster is divided into an array of character cells, 65 across by 35 down. Each of these has a

Fig. 1: The pattern produced by the generator - in colour of course. A grey scale is being added.
corresponding location in the control EPROM (IC12, Fig. 2) where a code for the character to be displayed in that particular location is stored. Each character is made up of 64 pixels (picture elements) in an eight by eight matrix. By appropriate programming of the relevant locations in the three (one each for red, green and blue) character generator EPROMs (IC16/17/18), each pixel can be set to any one of eight colours. Any character cell in the display can be set to any of the 256 possible programmed characters. In addition, the background level of each cell can be set to either black or grey.

Timing and Sync Signals

All the timing signals used in the unit are derived from the output of a 20 MHz crystal oscillator built around two sections of a 74LS04 hex inverter (IC1). This feeds two dividers, a 74LS92 (IC4) that produces outputs at $6.66 \mathrm{MHz}, 3.33 \mathrm{MHz}$ and 1.66 MHz , and half a 74 LS 393 (IC3) that produces outputs at $10 \mathrm{MHz}, 5 \mathrm{MHz}, 2 \cdot 5 \mathrm{MHz}$ and 1.25 MHz . These frequencies are all used in the frequency gratings circuit: the 10 MHz and 2.5 MHz signals are also used as clock signals for the rest of the circuit.
The $2 \cdot 5 \mathrm{MHz}$ output drives the clock input of a ZNA234E pattern generator i.c. (IC8) which is used in this circuit as a source of high-quality sync and blanking signals. A small amount of additional circuitry, using IC10 and IC11, provides field sync and an even/odd field signal.

Operation of the Control Circuitry

The 10 MHz output is used as a "dot clock", each pulse advancing the dot and column counters and shifting data out of the three 74LS166 shift registers (IC19/20/21) used for parallel-to-serial conversion of the data from the character generators. After every eight pulses, corresponding to one character cell, the dot counter gives a carry pulse which simultaneously clocks data from the control EPROM into the 74LS374 latch (IC13), loads the information for the pixels in this line of the next character into the 74LS166s, clocks the function latch and increments the column counters.
This rather complex sequence is necessary because a new character is required every 800 nsec (eight cycles at 10 MHz) but the EPROMs used have an access time, giving a delay, of about 450 nsec each. There's a total delay of about 900 nsec before the information required is available. To get round this problem, information is taken from the control EPROM two character locations in advance. At the end of each character cell, this information is stored in the data latch. The character generators thus get the data they need one character in advance, while the last lot is still coming from the shift registers. This sequence of operation enables the circuit to work with EPROMs having an access time of up to 800 nsec .

The dot and column counters are clocked continuously, not just during the displayed part of the line, and are preset by the line sync pulses from the ZNA234E to a number just under the maximum possible count. They then count during the back porch period, reaching char-

$$
+5 v
$$

Fig. 3: Column counter and character timings - not to scale.

Fig. 4: Field sync pulse generator waveforms.
acter 63 coincidentally with the end of the blanking pulse. Note that character location 63 is used twice on each line as the first character of the left-hand border and the last of the right-hand border.
The row counters are simpler in operation, being advanced one count by each line sync pulse and reset by the field sync pulse. The outputs R0, R1 and R2 from the row counter are fed to the character generators to control which of the eight lines of each character is to be displayed on the line being scanned. Outputs R3-R8 go to the control EPROM, giving the number of the character row being displayed.

To Follow

Next month we'll deal with the colour encoder and power supply sections of the unit.

Fig. 5: Oddleven field detector operation.

The Saticon Camera Tube

David K. Matthewson, B.Sc., Ph.D.

The initial stimulus to the development of single-tube colour cameras was the need for compact, lightweight units for ENG use. Once tubes for this purpose had been successfully developed, it became possible to produce colour cameras at a price suited to the domestic market. Colour tubes used in domestic colour cameras include the tri-electrode vidicon, the Trinicon (Sony) and the colour Saticon.

The Tri-electrode Vidicon

The most widely used tube is the tri-electrode vidicon. As with other vidicons, this has an antimony trisulphide photoconductive layer. The difference with the tri-electrode type is that the incoming light passes through a red, green and blue striped filter which is bonded to the tube's faceplate. A tri-electrode mesh is mounted behind the photoconductive layer with the electrodes arranged to correspond with the filter stripes. In this way separate RGB outputs are provided. Fig. 1 shows a very simple block diagram of the electronics required with a trielectrode tube.

Whilst vidicon tubes are inexpensive and robust, they suffer from various limitations. The dark current is high, the sensitivity low at low light levels, and there's a tendency to image lag - if a camera is left looking at a contrasty scene for a few minutes and then moved, the old image may briefly remain as a ghost image.

The Saticon

Like the vidicon, the Saticon, which was developed by Hitachi, is a photoconductive tube. The photoconductive layer consists of a selenium-arsenic-tellurium compound however. Advantages of this include very low lag, higher sensitivity and a spectral response that more closely approximates that of the human eye. The colour fidelity of a camera fitted with a Saticon tube is noticeably better than that achieved with a vidicon tube. There are one or two disadvantages, though these are not too important. The low lag can cause problems - fluorescent tube flicker that would be hidden by a vidicon's slow response can show up unless care is taken to avoid this. In addition the photoconductive target can be damaged by exposure to high temperatures - if you leave the camera in a car boot on a hot day for example. Exposure to $75^{\circ} \mathrm{C}$ for three hours will reduce the tube's sensitivity by 20 per cent.

Colour Version

The colour filter stripe system used with the Saticon tube is quite different from that used with the tri-electrode vidicon. It's based on the system originally developed by RCA for use with their Spectraplex tube. If the filter consists of clear sections (for the luminance signal) and two sets of colour stripes (to give two colour signals) and a single composite output signal is taken from the tube, this output will consist of three basic components (luminance plus two colour signals) that can be separated by filtering. The luminance signal is not much of a problem: it can be
separated from the higher frequency colour signals by means of a low-pass filter. The problem is to distinguish between the two colour signals.

The original RCA system used a two-carrier approach. Yellow (-B) filter stripes were laid down on the tube face vertically while cyan (-R) filter stripes were laid down diagonally - see Fig. 2(a). Since different spacings were used for the yellow and cyan stripes, the output contained two carrier frequencies, modulated by B and R respectively, corresponding to the stripe frequencies. These signals could be separated by using bandpass filters (the carrier frequencies were 3.5 MHz and 5 MHz with the original 525 -line Spectraplex tube).

The Saticon tube uses a single-carrier approach. As shown in Fig. 2(b), both sets of stripes, again yellow and cyan, are laid down diagonally. Several factors determine the actual carrier frequency with this technique, the main one being the pitch of the filter stripes. The exact formula is as follows:

$$
f=[W /(P \times T)] \times 10^{3}
$$

where f is the frequency carrier in MHz, P is the stripe pitch in $\mu \mathrm{m}, W$ the line scan width in mm and T the line scan time in μ sec.

As with the Spectraplex tube, the luminance signal can be separated by means of a low-pass filter. The two colour signals can be separated electronically since there's a phase difference between them. Fig. 3 shows a simple block diagram of the electronics required.

Let's consider the effect of the cyan filter - see Fig. 4.

Fig. 1: Block diagram of the electronics required with a trielectrode vidicon tube.

Fig. 2: Filter stripe arrangements used with electronic colour signal separation. (a) RCA Spectraplex tube. (b) Saticon colour tube. Arrangement (a) gives rise to two different colour carrier frequencies. Arrangement (b) introduces a 90° phase shift between the two colour signals.

Fig. 3: Block diagram of the electronics required with a Saticon colour camera tube.

Fig. 4: Effect of the cyan fitter in the Saticon tube.
Suppose the light source is white, which of course consists of red, blue and green light. The cyan sections of a line will block the red component of the light, passing the green and blue components. The clear sections will pass all the light. There will be no difference for blue and green therefore but there will for red. What we will get in theory is a squarewave corresponding to the red light present. The same applies to the yellow filter, only this time the output corresponds to blue. In practice the output will not be a squarewave. Due to the system limitations we end up with sinewaves corresponding to the red and blue light inputs. The carrier frequency is 3.6 MHz .

Fig. 5 shows how these two signals are separated. If two

Fig. 5: Colour signal separation with the Saticon tube. The use of a 90° phase shift, a $64 \mu \mathrm{sec}$ delay line and addition gives signal reinforcement or cancellation.
adjacent lines of an odd field are called L1 and L3, then as shown the output from the cyan filter area will be two signals S1 and S2 with a phase difference of 90°. The yellow filter will produce similar outputs, but since the stripe angle is reversed the phase shift is in the opposite direction.

The colour component of the composite signal is filtered out by a 3.6 MHz bandpass filter (see Fig. 4) with a bandwidth of 0.5 MHz . This is followed by phase shift and delay circuits which enable the signals to be separated the principle is similar to that used for PAL delay line signal separation.

The system works very well in practice, though problems can occur when shooting a finely patterned object where the pattern frequency approaches the filter pitch frequency. This can cause a beat signal that produces a false colour output - usually seen as a green fringe or patterning. To help overcome this problem, a crystal filter that reduces the system resolution can be incorporated in the faceplate. Even with this limitation, a respectable horizontal resolution of 260 lines is obtained.

TV Fault Finding

Philips TX2 Chassis

This monochrome portable suffered from field cramp. The voltages around the field output stage were correct, but we noticed that the field hold control was set to one end of its travel. So we moved over to the field oscillator circuit. Once again the voltages were correct, and the two transistors measured o.k. when checked with the AVO meter. For want of anything else to do we decided to try transistor substitution. When TS401 (BC558) was replaced the fault had gone and the field hold control provided locking at the centre of its range.
M.D.

Noisy Controls

There seems to be a common belief that the cause of a noisy control is always a faulty carbon track. This may of course be the case, but I tend to find that the usual cause of the trouble is that the slider has become oxidised and thus makes poor contact with its slip ring. Most controls

Reports from Malcolm Burrell, Mick Dutton, Tony Thompson, John Coombes and G. R. Wilding

are quite easy to dismantle, and it's well worth giving both the slider and slip ring a scrape then a smear of silicone grease before reassembly. Even though the carbon track still has score markes left by the slider, in most cases you'll find that the slider itself was the cause of all those crackles. And this method of cleaning, particularly when the correct replacement isn't to hand, is vastly preferable to the quick squirt of fluid that seems to go everywhere but inside the control.
M.B.

ITT CVC25/30/32 Chassis

For excessive height with these sets, check D2002 (ITT921) by replacement. It's part of the discharge circuit on field timebase modules CMF25 and CMF30.
J.C.

Fidelity FTV12

The customer who brought this set in didn't want to wait. Said it was dead, he was in a hurry, and would I phone
when it was o.k.? After I'd removed the cabinet I could see why he didn't want to wait. The scan coil clamp was missing, also the tubular bit that extends from the coils for clamping purposes. Very odd, I thought. After removing the Jubilee clip someone had unsuccessfully tried to use to secure the coils, and wondering why they'd not shattered the tube neck in the process, I noticed that the fuses were missing.

The problem was simple enough to deal with once the fuse had been replaced. No output from the series regulator transistor due to someone having removed the 120Ω resistor in parallel with it. Without this there's no start-up feed. That left the scan coils, which I managed to repair using a plastic self-clamping buckle, part of some scrap coils and adhesive. You can imagine the direction the conversation took when the customer returned. But no he'd not touched it.
T.T.

Philips G11 Chassis

The usual cause of field collapse in the G11 chassis is failure of the TDA2600 field timebase i.c. (IC2600), possibly in turn due to the h.t. reservoir capacitor C4029 $(470 \mu \mathrm{~F})$ - there can be a poor internal earth connection, or possibly on the board. If still in trouble, check the voltage at pin 16 of the TDA 2600 . The reading should be about 19 V . If low or intermittent, replace R2066 ($1 \cdot 5 \mathrm{k} \Omega$). J.C.

Rank T26A Chassis

Tripping or failure of the power supply fuse 7FS1 (1.6A H.R.C.), possibly intermittently, can be caused by the overvoltage crowbar thyristor 7THY2 (S2062D) or the diodes in its gate circuit going leaky - these are 7D12 (1N4148) and 7D13 (BZX79-C27). If still in trouble check $7 \mathrm{C} 5(47 \mu \mathrm{~F})$ by replacement - note correct polarity.

In the event of no sound or raster, check the EW modulator diodes D10/11 (type SKE2G2). They tend to go open-circuit. If replacement restores sound but there's still no raster, check whether D12 (BY228) is shortcircuit.
J.C.

Toshiba C1410B

For the dead set symptom (no sound or raster with the tube's heaters out) check the mains fuses F801/2 (1.6AT). If these are open-circuit, check the mains bridge rectifier diodes D801-4 (1 S 1887 s) for shorts. If the fuses are all right, suspect the mains transformer T802.
J.C.

Philips G11 Chassis

If the volume, brightness and colour controls don't operate either manually or remotely, check whether the 12 V supply is reaching pin 13 of the SAA5010 chip (IC1) on the remote control receiver panel. If missing, R49 (10) on this panel is probably open-circuit.
J.C.

.Thorn 1500 Chassis

This set worked normally for about a minute after switching on. There was then field collapse - the same symptom occurred after replacing the PCL805 field timebase valve. When the field collapse was present there was voltage at the triode anode and the anode and screen grid of the pentode section of the valve, but no voltage at the pentode cathode, indicating that this section of the valve was cut off. Placing the test probe on the pentode control grid
restored the vertical scan, but it would rapidly fall to zero after removal of the test probe. The meter resistance was clearly providing a d.c. path to chassis, thus discharging the coupling capacitor network C73/C76. The normal chassis return path is via a series chain consisting of R99, R98, R100, R104 (top linearity control), R105 and R106 (main field linearity control). The cause of the fault was found to be a hairline crack in the track of R104. G.R.W.

Mitsubishi CT2004B

Intermittent height variation in this model can be caused by several things. Check as follows. First the height control VR401 (500Ω) by replacement, secondly the HA11414 timebase generator i.c. (IC401), again by substitution. If the fault persists, check the 20 V rail at $\mathrm{R} 416(1 \mathrm{k} \Omega)$. Voltage variations here can be caused by fuse F572 (400 mA) developing a high resistance internally. J.C.

Saba H Chassis

There must be many of these solid-state sets around. They are unusual in employing a TBA500P luminance processing i.c. which can be responsible for spasmodic or drifting change of brightness level. Several component distributors can supply the TBA500, but only the TBA500P is suitable for use in this chassis. Saba themselves cannot supply it but have informed us that the i.c. is available from SEME Ltd., Units 2 E and F , Saxby Road Industrial Estate, Melton Mowbray, Leicestershire at $£ 1.60$ plus VAT and postage.
G.R.W.

GEC 20AX Chassis

There were severe, spasmodic brightness variations on this set, throwing suspicion initially on the TBA560C luminance/chrominance signal processing i.c. A check at the c.r.t. base connector however revealed that the brightness variations coincided with first anode voltage variations. R606 ($150 \mathrm{k} \Omega$) in the feed to the first anode presets was seen to be badly burnt: there was no partial short, and it seemed that the resistor had simply succumbed to the effects of heat and power dissipation. To be on the safe side we fitted a higher wattage replacement.
G.R.W.

Beovision Hybrid CTV Chassis

Although they use complex circuitry - there are two PL509s, a PY500 and a PY88 in the e.h.t. can - the Beovision hybrid colour chassis have proved to be reliable. A case of a very blurred picture was found to be due to zero voltage at the tube's focus pin, in turn due to zero voltage at the chassis mounted focus control. We then noticed that one of the high-value resistors in series with this control had unsoldered itself and was lying, badly discoloured, at the base of the cabinet. The other resistors in the chain were as new, so there was no apparent reason for just this single resistor burning up. A correctly focused picture was obtained after replacing the resistor, but within minutes there was defocusing as the replacement resistor cooked up. Although the material appeared to be all right, the only possible cause of the trouble was severe leakage across the greenish plastic plate on which the resistor chain and the associated reservoir capacitor are mounted. On cutting out the area adjacent to the burnt resistor - the first in the chain - and supporting a new replacement above it on stiff support wires, no further defocusing was experienced.

Some weeks later however the owner complained that there was no sound or raster. We found that one of the PL509s, the PY500 and the PY88 had grossly overrun heaters, while the heaters of the other valves had hardly visible glow. In addition the fusible resistor in the supply to the screen grids of the two PL509s was open-circuit. This was initially thought to be due to the overheated PL509 passing excessive screen grid current, the prime suspect being a heater-cathode short-circuit, but all the valves and the-t heater decoupling capacitor concerned were in order. We then thought that the heater circuit wiring insulation - bunched together with many other leads - might have deteriorated due to the heat from the valves. All leads proved to be perfect however when the insulation was tested.

The fusible resistor was next resoldered and the set switched on. Within a minute a strong and unusual burning smell arose from a small, round charred area between pins 5 (heater) and 6 (screen grid) of the underrun PL509's valveholder, on the green plastic board. By first forcing a small screwdriver blade, then a small file, through the charred spot all the carbonisation was removed. This restored normal operation.

Various types of plastic have been found to deteriorate progressively over the years when subject to high voltages and high temperatures, the insulation value falling. Discolouration usually shows this up, as on the board supporting the valveholders. The board that supported the focus components still appeared to be perfect however.
G.R.W.

VCR Servicing

Part. 28

Mike Phelan
This month we'll take a look at the arrangements used to drive the reel motor in the 3 V 24 - see Fig. 126. The reel motor is in operation in all modes except "stop". It's driven by the now familiar bridge configuration, this one containing nine transistors.

In the 3 V 23 the reel motor torque is controlled by a power transistor that supplies the bridge. On functions such as record and playback the torque required is low and the transistor dissipates considerable heat. This presents no problems in the 3 V 23 , but in a portable machine a different approach is required. The technique used is to drive the control transistor with a squarewave whose mark-space ratio can be varied in the different modes. Since the transistor will be either saturated or off, the heat dissipation will be minimised.

Control System

The mode is selected by a four-bit signal from the control microcomputer i.c.'s D port. This signal is decoded by IC7 on the servo board to provide ten output lines. Only eight of these are used, but as the microcomputer i.c.'s D0 output is high for all reverse modes and low for the forward ones, this output is taken directly to the reel motor drive bridge.

Outputs Q8 and Q9 from IC7 go to the head servo for speed correction on fast forward and rewind search. Output Q0 (stop) goes to the drive bridge for braking purposes. Q1 and Q2 (fast forward and rewind) are linked. This and the other three outputs are used to operate transistor switches that select reference voltages to control the chopper. In this way the chopper mark-space ratio and the motor torque are varied.

The three reel drive modes are play, (including audio dub, slow and record), unload (taking up slack tape when going from a laced-up mode to stop) and idler (the initial turning of the reel motor to move the reel idler across). It should be mentioned that when play is selected the idler mode is first entered: the reel motor stops, acting as a brake on the take-up reel - as the brake solenoid has been released, the reel is braked. The drum, capstan and loading motors then start, in that order. To avoid overloading the supply, they come in at 100 msec intervals.

When the after load switch closes, the reel motor restarts in its play mode, acting in place of a take-up clutch.

In the fast forward and rewind search (SFF and SREW) modes, the reel servo i.c. (IC5) acts as a frequency-tovoltage converter and X17 is switched on. Output Q8 or Q9 from IC7 goes high to apply speed correction to the head servo to compensate for the incorrect line frequency (plus 4.3 per cent in fast forward search, minus 5.3 per cent in rewind search).

Circuit Operation

Now to circuit details, see Fig. 127. The chopper transistor is X 49 , the variable mark-space ratio drive to the base coming from IC10. The two inputs to this i.c. consist of a d.c. control voltage, from IC8, and a 22 kHz sawtooth from IC9. The chopper transistor's on time is thus proportional to the d.c. voltage applied to pin 1 of IC10 - this varies with the mode selected.

In the search modes the d.c. control voltage is produced by the reel servo chip IC5. We've met this type of circuit several times before - it's simply a frequency-to-voltage converter that's in this case disabled in modes other than playback by removing the supply to the emitter of transis-

Fig. 126: Reel motor control system used in the 3V24.

Fig. 127: Circuit details of the reel motor control system.
tor X12. The input consists of pulses from the control track. X17 is used to bring the reel servo into operation. In the other modes, one of the transistors X18/19/20/21 supplies a reference voltage set by a preset control to pin 5 of IC8 and therefore pin 1 of IC10.

Since the motor-drive amplifier requires a d.c. supply, L1 and C69 are used to integrate X49's on/off current. The associated diode bypasses the flyback spike.

By now, someone must be wondering about the other bits and pieces connected to the collector of X17. Imagine what would happen if a few control track pulses went missing during fast search. The reel motor would instantly speed up and the reel servo would take a considerable time to relock. To prevent this, filtering is incorporated. In the play mode, X16 is switched on, the filter time-constant

Fig. 128: Reel motor drive amplifier circuit.
being R143/C66. When fast forward search is selected, the D3 output from the microcomputer i.c. goes high and X15 turns on: X16 then switches off, taking R143 out of circuit to lengthen the time-constant. When the search fast forward button is released, C105 charges via R139 so that the time-constant gradually falls to the playback value. In rewind search the same thing happens but we need to remove the time-constant momentarily while the reel motor's direction of rotation is reversed. To this end the Q9 output from decoder IC7 goes high to turn X14 on briefly: C66 is thus discharged until reversal of the motor's direction of rotation has taken place. C65 then discharges and X14 turns off.

Motor Drive Amplifier

Finally the reel motor drive bridge, see Fig. 128. The direction of rotation is set by switching X24 on or off. When it's on, X28 and X29 are off and X27/X30 are on. The opposite situation arises when X24 is off. Motor rotation reversal is thus achieved.

In the brake mode, i.e. during loading and when mode changing, forward rotation is selected (X24 off) and in addition D28 is forward biased. As a result the whole bridge turns on, placing a direct short-circuit across the motor. Won't the chopper transistor disappear in a puff of smoke? The microcomputer i.c. takes care of this by removing the chopper's supply while the short-circuit is present.

What Next?

The 3V24's signals circuitry doesn't deserve any special mention as it's a simplified version of that used in the 3V23 - this has already been covered. Next month we'll look at some common faults on the 3 V 24 and outline what to look for when buying a second-hand machine.

Vintage TV: The Mysterious Mullard

Chas E. Miller

For a short period after the war, the Philips organisation sold TV receivers under the Mullard brand name. An early example was the MTS389, a 9in. table model for use in the London area. It employed 21 valves plus the c.r.t. later versions used an extra valve for line sync pulse processing, "to improve performance in areas of weak signal strength". It was an a.c. only design, with mains isolating transformers, suitable for supplies of between 100 V and 200 V . Well, that's what the book says perhaps someone can confirm whether this was a misprint or 200 V was indeed the highest voltage in London at the time?

Unlike most of the sets of the day, the MTS389 was a superhet, with fairly high i.f.s $-13 \cdot 2 \mathrm{MHz}$ vision and 9.7 MHz sound. Seven of the valves were the dreaded EF50s, while a goodly proportion of the rest were types more commonly found in radio sets than TV receivers. Complication starts virtually at the aerial socket, which was for use with balanced-twin 75Ω screened feeder. This was followed by an EF50 r.f. amplifier, no doubt included to induce a false sense of familiarity. There were then two ECH35 frequency changers, one for the sound and one for the vision signal. The triode sections shared a common tuned circuit and were operated in push-pull, the oscillator frequency being 31.8 MHz .

The vision i.f. strip used three EF50s and a prodigious number of small components. It was terminated by one of the few genuine TV valves used in the set, an EB91 double diode. The video amplifier reached fresh heights of incongruity: of all the types of valve that could have been used, including the EF50, the designer chose an EBL31. This was a large, octal based double-diode pentode, commonly used in radio sets but even then verging on obsolescence. One of the diodes served as an interference limiter while the other one was used as a low-power rectifier in conjunction with a special winding on the mains transformer to produce a negative supply for the contrast control. The latter provided bias for the first two i.f. amplifier valves.

The pentode section of the EBL33 was operated as a class A amplifier of course, with its cathode earthed and negative bias applied to its control grid. The positive-going video output was a.c. coupled to the tube's grid, with d.c. restoration by means of the other section of the EB91.

An EF50 was used as the sync separator. The problem here was the same as that mentioned recently with the Ferguson 841 T - it had to operate with negative-going sync pulses at its control grid. This time the d.c. restorer acted for both feeds, a whopping $220 \mathrm{k} \Omega$ resistor being used in the feed to the sync separator to prevent it loading the video drive to the tube. The sync separator valve was used as a "grid current and anode saturation limiter", i.e. it was held hard on during the vision signal and was cut off by the sync pulses. This was achieved by cathode bias in conjunction with operating the anode at a much lower voltage than the screen grid (anode voltage 15 V , screen grid voltage 145 V , cathode voltage 1.7 V).

In the original version, the EF50 was followed by a pair of diodes (another EB91) that fed the two timebases. In later versions the EB91 was replaced by a tiny EA50
diode in the field sync feed, an EF91 being used in the line sync pulse feed. This was a strange change. Perhaps when the first service engineer saw an MTS389 he called out "give me strength!" and the request was misunderstood. The EF91 was possibly used more to clean up the signal than to provide amplification: its anode and screen grid were operated from a 10 V supply obtained from the cathode of the line ouput valve, with a $270 \mathrm{k} \Omega$ load resistor.

Maybe Mullard had a glut of ECH35s when this set was built. Two more were used as the timebase oscillators. These were straightforwardly connected as cross-coupled multivibrators, driving pentode output stages. The EL33 field output pentode was choke-capacitance coupled to the scan coils, the trick here being to connect the capacitor at the earthy end of the circuit to ensure that the coils themselves would have h.t. on them to trap the unwary engineer.
The EL38 line output valve was transformer coupled to the scan coils, using a simple two-winding transformer. But what's this? Flyback e.h.t.! The EL38's anode also drove a voltage-doubling rectifier circuit that produced some 7 kV for the tube's final anode. Don't go away with the idea that the high-voltage rectifiers used were TV types such as the EY51, with their heaters supplied by windings on the line output transformer. No, a couple of HVR2s were used, large, old-fashioned valves with British four-pin bases and 4 V 0.65 A heaters. To accommodate their heater requirements, a special highly-insulated transformer was used, with separate windings for each valve. The 6.3 V primary winding of this transformer was driven by a separate mains transformer that also supplied the tube's heater.

Focusing was done with an electromagnet, with current by courtesy of the h.t. smoothing network. The tube being a tetrode type (MW22-7 or MW22-14C), a supply of some 335 V was required for the first anode. It was taken from the unsmoothed side of the h.t. smoothing network. The h.t. supply used another hangover from the thirties, an FW4-500 directly-heated double diode with a $4 \mathrm{~V}, 3 \mathrm{~A}$ filament and an envelope rivalling a 500W floodlight. The circuit is shown in Fig. 1. Our kindly designer obviously felt that this powerful valve might find it too much if the

Fig. 1: The full-wave h.t. rectifier circuit used in the Mullard Model MTS389.
full reservoir capacitance was in operation before the set had fully warmed up. So he included a relay in series with part of the h.t. reservoir capacitance (C 113) to switch it out of circuit until this stage had been reached. The relay's operating coil was shunted across the line output valve's cathode bias resistor: to keep the capacitor polarised whilst the relay contacts were open, they were shunted by a $220 \mathrm{k} \Omega$ resistor.

The sound channel was straightforward, with two EF50 i.f. amplifiers, an EB91 detector/interference limiter and an EL33 output valve. A tone control in a complex negative-feedback circuit was provided.

Comparing the circuit with that of some of its contemporaries brings home the fact that for many design-
ers cost was not a primary concern in those days - the Mullard set had over twice the number of small components as some rivals. The old saying "you pays your money and you has your choice" certainly had truth in it then.

Service brain teaser for the MTS389. According to the components list, the screen grid feed resistor (R118) for the ECH35 frequency changer valves consisted of no fewer than twelve $27 \mathrm{k} \Omega$ resistors in parallel! Assuming that this was not a misprint, what value single resistor would you use to replace them? Answers please to the writer, on the back of a ten pound note. The first correct entrant will receive a mint copy of Health and Efficiency for December 1948.

N1500 Clock Repair

John de Rivaz, B.Sc. (Eng.)

In 1984 George Orwell refers to clocks striking 13. Barely had the new year arrived when the clock on one of my faithful N1500s - the subject of speed-reduction articles in this magazine some years back - stopped. A check with the AVO revealed that the clock's motor coil was opencircuit.

Nothing would be lost by attempting to repair it - a new one would probably be totally uneconomic to purchase. Being fastened by two screws, the motor was easily removed from the clock. It's held together through its fixing holes by two hollow rivets which were soon removed with an electric drill. The coil slots in, and was thus easily removed. It also came apart with no problems: there was no glue or mess, the whole assembly being made of plastic, with some yellow tape to secure the turns. As I was unable to find the break I took the existing coil off. There must have been thousands of turns of very fine wire.

Stamped on the motor was the information that it was a $220 \mathrm{~V}, 50 \mathrm{~Hz}$ type and required a $12 \mathrm{k} \Omega$ resistor in series. In the VCR however it's driven at 80 V , with no series resistor. I get the impression that Philips simply wound on as many turns of that fine wire as they could, said a rude word when they found that 220 V was too much, then specified the $12 \mathrm{k} \Omega$ resistor. The important thing about a coil is the number of ampere-turns, not the voltage across the coil. This fact enables some interesting calculations to be made. The current consumed by the motor is that which drops 140 V across $12 \mathrm{k} \Omega$, i.e. about 12 mA . Its power consumption, assuming a unity power factor, would be $12 \mathrm{~mA} \times 80 \mathrm{~V}=960 \mathrm{~mW}$, say 1 W .

The motor's power consists of flux reversals in the coil, and it's irrelevant whether these are produced by milliamperes flowing through thousands of turns or amperes flowing through a few turns. It would normally be inconvenient to power a clock by means of an ampere flowing through a few turns, as one would need a transformer to provide that ampere at a suitable voltage. In this case however a transformer is already used (T2). It's also of the type on which it's easy to wind a few turns to get a low voltage. If this clock was purpose-made for the VCR, it seems irrational that Philips didn't use say a 12 V winding on this transformer. It would have been cheaper and more reliable.

Having available a length of 0.5 mm diameter enam-elled-copper wire, I rewound the clock coil using twenty
turns of this, the number of turns being the most I could get on. A test with a low-voltage supply and a low-value variable resistor revealed that the clock ran when an ampere was flowing through the coil. The voltage across the clock read 0.1 V on the AVO, and this seemed to agree with the earlier calculations.

Ten turns on the transformer produced the desired current in the motor, which ran without any noticeable overheating. It's probable that there's quite a lot of series inductance in the circuit, due to the method of winding, but the required result of an ampere flowing through the clock was achieved. There was some slight noise from the clock however, probably due to slight misalignment of the motor during the violent surgery. This was not objectionable, and could be heard only when I put my ear to the clock. The thickness of the wire used means that the possibility of a further failure of the coil is about as near to zero as one can get!

Anyone wishing to carry out a similar repair should note the following points:
(1) Wind the ten-turn coil on top of the transformer. Take care to avoid any other wires going to the transformer, and don't scratch off the enamel when pushing the wires through the gap. It's not necessary to remove the transformer from the VCR to wind the coil. Push the wire through and catch the end with pliers: feed the wire through with the pliers used to take up the slack. Don't use the pliers to pull the wire through.
(2) Use a meter or other tester to make sure you've located the wires at the transformer coming from the clock. If you don't get the right wires and leave the 0.1 V clock coil connected to the 80 V winding on the transformer, you could burn the transformer out.

Physical details of the transformer and its position in the VCR are shown in Fig. 1.

Fig. 1: Transformer details.

The Rediffusion Mk. 5 Chassis

H. K. Hills and A. Mole

The Mk. 5 chassis is used in Rediffusion's 14 in . colour portable TV sets - also in models bearing the Doric brand name. It's been in production since 1981 and is based on a Sharp design - in fact similar circuitry is to be found in various Sharp sets sold in the UK. Most of the circuitry is on a single main panel. The class A RGB output stages are on the tube base panel, and in addition there are tuning and selector boards.

The main panel is held in position by mouldings in the cabinet and back cover. Once the latter is removed, the chassis can be withdrawn for servicing by sliding it backwards as far as the leads to the control panel will permit, after which it will stand upright on the three control knobs that normally appear just under the bottom of the tube.

Much of the circuitry is contained in five i.c.s. The design is mostly conventional, with a transistor line output stage and a series chopper circuit which provides a stabilised 115 V rail. The way in which the chopper transistor is controlled is rather unusual however, as we shall see.

Signal Processing

A Mullard U322 tuner unit is used. The output from this is coupled to a bandpass shaping SAWF via a single transistor preamplifier stage. There follows a single chip i.f. amplifier which also provides tuner a.g.c. and a.f.c. outputs. The chip complement is as follows:
I201 IX0064 I.F. strip
I301 IX0096CE Intercarrier sound channel plus audio amplifier and output
I401 IX0118CE Luminance signal processing
I501 IX0065CE Sync circuitry plus line and field generators

I801 IX0129CE Colour decoder.

The decoder i.c. provides $\mathrm{R}-\mathrm{Y}, \mathrm{B}-\mathrm{Y}$ and $\mathrm{G}-\mathrm{Y}$ colour-difference outputs which are mixed with the luminance signal in the RGB output stages - luminance goes to the emitters and the colour-difference signals to the bases of the 2 SC 2229 RGB output transistors.

The Switch-mode Power Supply

The heart of the set is the switch-mode power supply: a simplified circuit is shown in Fig. 1. It's not easy to puzzle out how the circuit works without some clues, as there are two chopper drive arrangements, one for start-up purposes and the other that comes into operation once the set is running normally.

The mains input is fed to a bridge rectifier circuit (so the chassis is at "half mains" potential) which produces some 310 V across the reservoir capacitor $\mathrm{C} 706(150 \mu \mathrm{~F})$. This is applied to the collector of the chopper transistor Q701. At switch on, the potential divider network R716/7/8 provides Q701 with a base bias voltage, via R715. As a result, Q701 starts to conduct, charging C711 and drawing current through the chopper transformer/energy storage inductance T701. By transformer action, a positive-going ramp is produced across pins 5 and 7 of T 701 , providing
positive feedback to the base of Q701 via R712/D710/ C712. D710 is included to prevent the bias voltage provided by R716 being shorted out. Q701 is thus driven into the fully on condition. Once this happens T701 no longer provides a base drive waveform. So Q701 switches off. The voltages then developed by T701 reverse: Q701's base is driven negatively and diode D706 conducts, providing the efficiency diode action and clamping Q701's emitter to chassis. When the energy in T701 has been transferred to C711, Q701's base is no longer held off and the circuit can start up again. In this initial mode of operation the circuit is self-oscillating.

Once the h.t. voltage has been built up, the line timebase comes into operation and Q701 is driven by a secondary winding on the line output transformer, via D705/R702/C707 - D705 is included for the same reason as D710. In fact in this mode Q701 is triggered instead of being wholly self-oscillating. By this time C 717 will have charged via R719/R720, turning Q704 on. R716 is thus shorted out, removing the initial chopper transistor base bias voltage. The trigger pulse from the line output transformer does not provide full drive: it initiates conduction of Q701 and holds it conductive for long enough for the positive feedback action via T701 to come into effect. It's necessary for the circuit to rely on this feedback so that regulation can be provided.

Q702 and Q703 are used for this purpose. The base of Q703 is fed with a sample voltage corresponding to the h.t. voltage. It drives Q702 which acts as a variable resistor across Q701's base-emitter junction. Q702 thus acts on the drive supplied to Q701, controlling its conduction time in accordance with any h.t. voltage variations.

All in all a neat and rather unusual arrangement. The 160 V zener diode ZD702 provides over-voltage protection, conducting and thus blowing the mains fuse in the event of the h.t. rising to 160 V .

Shut-down Circuit

Further protection is provided by a circuit (see Fig. 2) that comes into operation under either of three fault conditions: (1) excessive beam current; (2) field output stage failure; (3) excessive line flyback pulse amplitude. In any of these circumstances the voltage across R615, and thus at pin 9 of IC501, rises. IC501 contains the line generator circuit, whose output is inhibited when pin 9 goes high. The line timebase thus closes down, leaving the set in a safe condition. What happens when pin 9 goes low again? The effect of pin 9 going high is to switch the state of a bistable within IC501: so the line timebase inhibition continues when pin 9 goes low. The set has to be switched off for approximately one minute to restore line drive.

The beam current returns to chassis via R624 and R625. Excessive beam current will increase the negative veltage developed at the junction of these two resistors, with the result that zener diode ZD602 will conduct. Q603 in turn switches on to produce a positive voltage across R615.

Conditions in the field output stage are checked by monitoring the voltage at the collector of the "upper"

Fig. 1: The switch-mode power supply - simplified circuit.

Fig. 2: The shut-down protection circuit.
transistor Q501. In the event of excessive current flowing via R514, D602's cathode voltage will fall below its anode voltage. D602 and Q603 both conduct therefore. This means that a field timebase fault will give the no sound or raster symptom. Fig. 3 shows the field output circuit.

Fig. 3: The field output circuit.

The rectifier circuit D603/C626 produces a voltage proportional to the line flyback pulse voltage. In the event of excessive voltage zener diode ZD6'01 conducts and a positive voltage is produced across R615.

Timebases

The line driver and output stages are conventional, though it's worth noting that the efficiency diode and line output transistor share a common encapsulation (type 2SD868). The tube does not need EW correction and neither width nor linearity controls are required.

The field output stage looks like a class AB amplifier, but the operation is rather different. During the first part of the scan, i.e. from the top of the picture to the centre, the drive waveform from IC501 holds the lower transistor Q502 lightly conductive. The upper transistor Q501 is forward biased by R512/3, so that current flows through the scan coils, charging the coupling capacitor C514. During the second part of the scan, from the centre of the screen to the bottom, we want the current through the coils to reverse. The drive to Q502 is thus increased, the current through Q502 discharging C514. During this process the voltage across R515 increases: when Q501's base is negative with respect to its emitter it switches off. At the end of the scan, Q502 is saturated and Q501 is cut off. To initiate the flyback, the drive waveform switches

Q502 off. The energy in the coils then produces a half cycle of oscillation. As the voltage swings positive, D502 and the base-collector junction of Q501 conduct, clipping the flyback pulse at about 60 V . The beam has then returned to the top of the screen and the circuit action is repeated as the drive waveform switches Q502 on again.

C511 decouples the junction of R512/3 to the emitter of Q501 so that ripple on the supply doesn't affect the conduction of Q501. The 73 V line is derived from the line output transformer.

The Mk. 5 chassis is a neat design and consumes 60 W . There is also a version with infra-red remote control.

Test Report: Altai DM6013 Capacitance Meter

Eugene Trundle

We already have a capacitance checker in the workshop: it's of honourable and ancient (especially the latter) origin - a Hunt's Model CRB no less. Over the years it's been used to prove the virtues and vices of many hundreds of Hunt's and other makes of capacitors. It has a neon whose one flash per second will indicate $100 \mathrm{M} \Omega$ of leakage, and a rather nostalgic green magic-eye indicator to wink amiably at you when you've got the bridge balanced. In its old age it's developed a mains leak to the metal case, and our dealings with it now can be alarming - dangerous even, on a damp morning. It's a brave and determined man who will prove his diagnosis on our bridge!

In contrast to this, the Altai digital capacitance meter is a small, hand-held instrument measuring about $18 \times 8 \times$ 4 cm and working from an internal PP3 battery. It will check capacitors from about 2 pF to $2,000 \mu \mathrm{~F}$ in eight switched ranges, with an accuracy of 0.5 per cent (\pm one digit) on the $2,000 \mu \mathrm{~F}$ range. The readout is presented on a $13 \mathrm{~mm} 3 \frac{1}{2}$ digit LCD display. There's out of range indication and fuse protection against charged capacitors. Battery life is $100-200$ hours. The meter comes with two testclip leads, a spare fuse and an instruction book.

Trial

Unlike many of the instruments we review, this one would see little action if it was installed on the bench to live with us for a few weeks and be used as and when required. So for the purposes of our trial we armed ourselves with a large box of assorted capacitors, including some known bad ones, and put it through its paces.

This produced one or two surprises - relating to the capacitors, not the tester - and taught us something about the very wide tolerances of electrolytics. The closest tolerance capacitors we could find were some 1 per cent silver mica ones. These read within 1 per cent of their stated values, so no quibbles as to accuracy. We found that the 0.1 pF resolution on the lowest range enabled us to check very small capacitances such as those present in wiring and between valveholder pins: the capacitance of the test leads could be offset with the set-zero control, which has a range of about $\pm 20 \mathrm{pF}$.

For checking electrolytic capacitors a polarising voltage is present, though no test voltage exceeds 3 V peak, an important point when checking certain disc ceramic types. Oscilloscope checks on the waveform across the capacitor under test did not reveal the method of measurement used - various waveforms varying from 8 Hz to 800 Hz were seen, in the form of quasi-squarewaves and steps. One point that was appreciated was the fast sampling time: the reading stabilised within half a second of finding the right range, though on some ranges it took us several seconds more to work out the absolute value in terms of $\mathrm{pFs}, \mathrm{nFs}$ or $\mu \mathrm{Fs}$ (an LED indication of this would have been a help).

We next tried loading the test capacitor with parallel resistance to simulate leakage. On a typical check with an $0 \cdot 01 \mu \mathrm{~F}$ capacitor, leakage above about $1 \mathrm{M} \Omega$ made no perceptible difference to the reading - lower parallel resistance would reduce the indicated capacitance range and produce different readings as different scales were selected. We had to get below a few tens of ohms to get the over-range symbol (1), and decided that the instrument is not a good tool for detecting leakage. In all fairness, it doesn't pretend to be. Many of the capacitor faults we get are due to leakage rather than changed capacitance value however, so the need for an ohmmeter remains and in most cases this is the instrument we'd turn to first.
The readout is clear and legible, and the built-in prop convenient. The short test leads provided are easy to connect and are all that are needed in most cases - in situ testing is not really relevant with this instrument. The plastic case looks tough enough, and to check the meter's electrical robustness we connected it to a $220 \mu \mathrm{~F}$ capacitor charged to 100 V ; this blew the protection fuse, and no damage was apparent after the fuse had been replaced.

Replacing the fuse gave us an opportunity to inspect the innards. We found nine assorted chips, including a 40 -pin LSI decoder/display driver, and twelve transistors. A busy little ensemble! The operating instructions give no clue as to the circuitry, but are otherwise helpful and comprehensive.

Verdict

Capacitors frequently fail, but it's probably true to say that most of these failures will be found more quickly using a multi-range ohmmeter than a special capacitance checker. Certainly the manual bridge type of capacitor tester gave one the "feel" of a capacitor, and an indication of its Q by the sharpness of the balance null: many, including my oldie, could check leakage and power factor.

In view of this, the number of times per year when a tester such as this one will justify its presence in the workshop are likely to be rather few. For laboratory and design use however, and when confronted with boxes of unmarked capacitors, the DM6013 would be of greater use. It would really come into its own for factory quality control or in a goods acceptance department.

As a service practitioner however I have to conclude that the $£ 49$ plus VAT of my test gear budget this tester represents would be better spent on a more revenue earning instrument farther up the wanted list, good though the performance and accuracy of this tester are.
The Altai DM6013 digital capacitance meter is available from BK electronics, Unit 5, Comet Way, Southend on Sea, Essex SS2 6TR (telephone 0702 527572). The price includes post and packing.

Classification of Sinewave Oscillators
 S.W. Amos, C. Eng., B.Sc., M.I.E.E.

The oscillator, i.e. sinewave generator, is one of the most familiar of electronic circuits. There's a very large number of different types, ranging from the long-established Hartley to the newer tunnel diode oscillator. Despite this diversity, oscillators fall into a very small number of basic categories. In this article the principles of a wide variety of circuits are examined in order to develop a system of classification.

As Fig. 1 shows, all oscillators consist essentially of two sections, one that determines the frequency of oscillation and the other (the maintaining system) that supplies the power required to keep the first section going. The maintaining section requires a d.c. supply of course. With some types of oscillator the output is taken from the frequency-determining section while with others it must be taken from the maintaining section. The need for this distinction will be explained later.

LC OSCILLATORS

A low-frequency oscillator may employ a circuit consisting of a separate inductor and capacitor as the frequencydetermining section. At higher frequencies the inductance may consist of a length of transmission line, while at still higher frequencies the frequency-determining section may be a cavity resonator. All these are examples of lumped or distributed inductance and capacitance, and can therefore be grouped together for purposes of classification. A feature they all share is that any signal induced in them causes oscillation at the resonant frequency, i.e. they all ring when struck. Without the energy supplied by the maintaining section, the oscillation would then die away exponentially as a result of dissipation in the inevitable resistance present in any oscillatory circuit. '

In many oscillator circuits the maintaining section consists of a single active device acting as an amplifier. This is designed to feed regular pulses of energy to the frequencydetermining section of the circuit to ensure a constant amplitude oscillation. The way in which this is done can be seen from the skeleton circuit shown in Fig. 2, which shows an $L C$ circuit connected to a bipolar transistor. If we take point e as the reference point, when the tuned circuit oscillates the signal at c will be inverted with respect to that at b. If b is connected to the base of a commonemitter amplifier transistor, a magnified and inverted version of this input will appear at c, thus maintaining the oscillatory action. In practical versions of the circuit the transistor is often biased off for a large fraction of each cycle of oscillation, conducting for only a brief period on the peaks of the signal. Thus a once per cycle pulse is developed at c, in the right phase to maintain oscillation.

To the $L C$ circuit, the transistor acts as a source of energy to make up that lost in the circuit resistance. To the amplifier, the $L C$ circuit appears as a network that accepts the collector output, inverts it and returns it to the base as an input of sufficient amplitude to maintain the output. As the transistor inverts the signal, this is an example of positive feedback that enables the amplifier to supply its own input. This positive feedback is the distinguishing characteristic of our first main category of oscillators. The
$L C$ circuit performs the dual function of defining the frequency of oscillation and providing the positive feedback on which the oscillatory action depends. To accept the amplifier's output, the $L C$ circuit must have two terminals. Another two terminals are required to deliver the input to the amplifier. One of the terminals can be common to both sections of the circuit however, so that a minimum of three connections is required between the frequency-determining and the maintaining sections of the oscillator. This is true of all oscillator circuits that use an inverting amplifier as the maintaining section. The number of interconnections can be reduced to two if the amplifier section does not provide signal inversion: an example will be given later.

Many of the well-known oscillator circuits differ from each other only in the way in which the connection to the emitter (assuming the use of a transistor) is made. In the Hartley circuit (Fig. 2) the emitter connection is made to a tap on the tuning inductance: in the Colpitts circuit (Fig. 3) the tap is made on the capacitive side of the tuned circuit, using two capacitors connected in series.

In some oscillator circuits the amplifier section is connected to the resonant circuit via one or more inductively coupled coils. Fig. 4 shows three examples. There may appear to be four interconnections here between the oscillator's frequency-determining and maintaining sections, but as two of these are taken to supply lines and are thus at zero signal-frequency potential there are basically only three interconnections.

At v.h.f., u.h.f. and beyond, the internal base-emitter and collector-emitter capacitances of a transistor can provide the required tapping point for a Colpitts oscillator,

Fig. 1: Basic features of an oscillator circuit.

Fig. 2 (left): Basic form of Hartley oscillator.
Fig. 3 (right): Basic form of Colpitts oscillator.

Fig. 4: Oscillator circuits with inductive coupling. (a) Reinartz; (b) Meissner; (c) tuned collector.

Fig. 5 (left): Colpitts oscillator using a transistor's internal capacitances to provide positive feedback at v.h.f. or u.h.f. Fig. 6 (right): Tuned-collector, tuned-base oscillator with positive feedback via the transistor's internal collector-base capacitance.

Fig. 7 (left): Hartley oscillator circuit with automatic bias provided by Cb and Rb.
Fig. 8 (right): Basic Franklin oscillator circuit.
as shown in Fig. 5. Line AB suggests that only two interconnections between the two sections of the circuit are required. An ideal transistor has no internal capacitances however, and to use such a transistor in a Colpitts oscillator circuit it would be necessary to add external capacitors to provide the required positive feedback. Thus three interconnections as shown by line CD are involved, the internal capacitances here being shown as external.
Fig. 6 shows the tuned-collector, tuned-base oscillator. If both tuned circuits are resonant at the same frequency, the circuit will oscillate even though there is no inductive coupling between the two inductors. The coupling is again provided by internal capacitance, this time the transistor's collector-base capacitance (shown with broken lines) which links the output of the amplifier to its input to give positive feedback. This circuit is mentioned because it forms a useful analogy with the two-cavity klystron described later.

So far most of the circuits have been shown in basic form, sometimes without d.c. feeds, in order to concentrate on the essential oscillator connections. A practical circuit requires a d.c. supply for the active device and a bias supply for its control electrode. Often the oscillator's output is used to provide the bias. Such an automatic bias system has the advantage of stabilising the oscillator's output against changes in (a) the supply voltage, (b) external loading of the tuned circuit and (c) amplifier gain. The oscillator can function satisfactorily despite wide variations in the gain of the amplifier section, a factor which distinguishes this type of oscillator from the $R C$ type.

An example of automatic biasing is shown in Fig. 7. When the base of the transistor is driven positively by the oscillatory waveform, capacitor $C b$ will be charged by the transistor's base current. The resulting voltage across $C b$ will then bias the base negatively - it's quite normal for this bias voltage to be sufficient to cut the transistor off during much of each cycle of oscillation. In the intervals between charges, $C b$ discharges via $R b$, but provided the time-constant $R b C b$ is long compared with the cycle of
oscillation little of the charge across $C b$ is lost. Thus $C b$ provides a nearly constant base bias voltage which is dependent on the amplitude of the oscillatory waveform. The transistor operates in class C, taking a burst of base and collector current once per cycle. The tuned circuit is kept in oscillation by the succession of collector current pulses.

If the amplitude of the oscillations tends to fall, due for example to an increase in external loading, the bias voltage falls and the transistor's period of conduction increases. Thus more power is supplied to the tuned circuit, meeting the increased demand and minimising the fall in output amplitude. The bias can fall low enough for the transistor to conduct throughout the whole of each cycle, i.e. it operates in class A. Class C operation is more usual however, the amplifier current being in pulse form. If a sinusoidal output is required from the oscillator, it must be taken from the tuned circuit, for example via a coupling coil as shown in Fig. 7.
In the oscillators described so far, an $L C$ circuit (or equivalent) provides positive feedback in addition to defining the frequency of oscillation. (In some examples internal capacitances in the maintaining amplifier also play a part in providing the feedback but, as mentioned earlier, such capacitances can be regarded as external to the amplifier and part of the frequency-determining network.) It's possible to separate the two functions of the $L C$ circuit however, for example by transferring the positive feedback to the maintaining section. A resistive network could be used in the amplifier to give positive feedback: this, in the absence of a frequency-determining section, would result in relaxation oscillation. By including the tuned circuit in the feedback loop to eliminate feedback at any except its resonant frequency, the circuit is made to oscillate at this frequency.

In this type of oscillator (see Fig. 8) there's no need for the tuned circuit to provide signal inversion and only two connections are required to it. In Fig. 8 the parallel $L C$ tuned circuit is connected in shunt with the positive feedback path so that it short-circuits the feedback loop except at its resonant frequency. The amplifier is a twostage, common-emitter type with the feedback applied via capacitors C2 and C3. This circuit, devised by Franklin, was used many years ago with triode valves as a highly stable oscillator. The values of C 2 and C 3 were made as small as possible, consistent with the maintenance of oscillation, to minimise the effects of the maintaining amplifier on the tuned circuit.

In most of the oscillator circuits so far described a tuned circuit is stimulated into oscillation by the output current of an active device which usually operates in class C and delivers a pulse once per cycle. Such pulses could be obtained from a number of different sources, e.g. a multivibrator. At microwave frequencies the pulses can be produced by velocity modulation and a number of microwave oscillators use principles similar to those already descibed except for the method of pulse generation.

Klystron Oscillator

If an electron beam passes through two grids (grids 1 and 2 in Fig. 9) between which an r.f. signal is applied, the velocity of the electrons is modulated at the signal frequency. Beyond the grids the faster electrons overtake slower ones that passed through the grids earlier, and by suitable design it can be arranged that at a particular point the beam arrives in the form of well-defined bunches. If

Fig. 9: Two-cavity k/ystron used as an oscillator.

Fig. 10: Simple RC phase-shift oscillator circuit.

Fig. 11: Wien-bridge oscillator circuit, basic form.
two further grids (3 and 4) are included at this point and are connected to a second resonator tuned to the same frequency as the first, this second resonator can be kept in oscillation by the regular pulses of energy received from the beam. The signal in the second resonator can be many times that in the first, so that the device is an effective microwave amplifier - known as a two-cavity klystron. An r.f. feed from the output resonator to the input resonator can provide the positive feedback required to sustain oscillation. The principle of this' type of r.f. oscillator resembles that of the tuned-collector, tuned-base oscillator described earlier: both have an electron beam linking synchronous tuned circuits, and both have an r.f. path between the tuned circuits to provide positive feedback.

In the reflex klystron oscillator a single resonator is used in place of the two coupled synchronous resonators, the electron beam passing through it twice. After its first passage the beam is reflected back along its incident path by a negatively-charged electrode, the design being such that bunching occurs before the beam arrives at the resonator for the second time.

RC OSCILLATORS

In a second group of oscillator circuits the frequencydetermining section consists of a network of reactance and resistance, usually C and R. Such a network doesn't have a resonant frequency and doesn't ring when struck. Oscillators using such networks thus operate in a manner quite different from that of an $L C$ or equivalent oscillator.

One type of $R C$ oscillator relies for its operation on the fact that a sinusoidal signal subjected to a 180° phase shift is identical in shape to the initial waveform but is inverted. If therefore a 180° phase-shift network is fed from the
output of an inverting amplifier and the network's output is the amplifier's input, the amplifier sees this as positive feedback. The result is oscillation, provided the amplifier's gain is sufficient to offset the attenuation in the network at the frequency of oscillation.

A network consisting of a single resistor and capacitor can at most introduce a 90° phase shift between input and output signals, and at the frequency at which this phase shift occurs the attenuation is infinite. It's usual therefore to use three sections, each giving a 60° phase shift at the operating frequency. The current attenuation at this frequency for the network shown in Fig. 10 is 29, which can be made good by a single transistor amplifier, resulting in the simple oscillator circuit shown.

One of the disadvantages of this circuit is that to obtain a sinusoidal waveform the transistor's gain must be just sufficient to make up for the loss in the network. This can be achieved by critical adjustment of Re. If the gain exceeds the critical value, the oscillatory output increases to a point at which the transistor will cut off/saturate for an appreciable fraction of each oscillatory cycle. Ideally some means of amplitude limitation is needed to maintain the gain of the amplifier at the critical value. The need for such precise control over the maintaining amplifier's gain distinguishes this form of oscillator from the $L C$ types previously described. Another difference is that the output should be taken from the amplifier section, as shown in Fig. 10. A disadvantage is that any significant load applied to the $R C$ network affects the phase shift and thus prevents normal operation of the oscillator.

Wien-bridge Oscillator

Another disadvantage of this circuit is that it's difficult to vary the frequency of oscillation to any extent. This problem can be overcome by using a Wien-bridge network in place of the ladder network. Fig. 11 shows a Wienbridge oscillator. If $R=\mathrm{R} 1=\mathrm{R} 2$ and $C=\mathrm{C} 1=\mathrm{C} 2$, the Wien network gives zero phase shift and has a voltage attenuation of $\frac{1}{3}$ at the frequency $f=\frac{1}{2} \pi R C$. It's easy to alter the frequency by using a two-gang variable capacitor for C 1 and C 2 , while different frequency ranges can be selected by switching in different values of R1 and R2.
To obtain positive feedback, the maintaining amplifier needs to be non-inverting with a voltage gain of three not a difficult requirement, but the amplifier must in addition have a very high input resistance to minimise shunting R2, which is commonly several megohms to give oscillation at the lowest audio frequencies. In the circuit shown in Fig. 11 the f.e.t. provides the required high input resistance while the emitter-follower Tr 3 provides a low output resistance.

For a sinusoidal output the amplifier's overall gain must be kept down to three, otherwise the oscillatory amplitude will grow until limited by cut-off and/or saturation in the transistors. Gain limitation is generally achieved by including a negative feedback loop between the emitter of Tr 3 (effecively Tr 2 's collector as Tr 3 is an emitter-follower) and Trl's source. A linear resistive feedback potential divider would not be successful because it would be impossible to find feedback resistance values that would give exactly correct gain at all settings of the frequency controls. Gain control is therefore made automatic by making the ratio of the feedback potential divider dependent on the amplitude of the output signal. This can be done by using a resistor with a positive resistance/temperature coefficient for the lower section of the Wien

Fig. 12: Examples of current-voltage characteristics with a negative-resistance region. (a) Current controlled, (b) voltage controlled.

Fig. 13 (left): Dynatron oscillator circuit, basic form.
Fig. 14 (right): Transitron oscillator circuit, basic form.
network or a resistor with a negative resistance/temperature coefficient in the negative feedback loop. The second alternative is shown in Fig. 11.

A significant feature is that the thermistor is fed from the oscillator's output via a capacitor. Immediately after switch on, in the absence of an output, the thermistor's resistance is at maximum and the amplifier's gain is therefore very high. Oscillation thus starts immediately. The output reduces the thermistor's resistance, increasing the feedback and decreasing the gain - which falls until the critical figure of three is reached. It must not fall below this value, or oscillation would cease. So the gain is automatically maintained at a value that's just sufficient to sustain oscillation - the condition required for a pure output waveform.

NEGATIVE-RESISTANCE OSCILLATORS

Oscillations induced in a resonant circuit die away as a result of dissipation in the circuit resistance. As we've seen, the inclusion of a maintaining amplifier will make good this loss. An alternative approach is to connect the resonant circuit to a source of negative resistance. It's sometimes said that positive-feedback oscillators are nega-tive-resistance types, the argument being that positive feedback gives the maintaining amplifier an effective negative input or output resistance. But in such oscillators the $L C$ circuit is the means whereby the positive feedback is applied. Without the LC circuit the amplifier has a normal positive resistance. A true negative-resistance oscillator is one in which the negative resistance is an inherent feature of the maintaining system, and is present whether the $L C$ circuit is connected or not.

Two types of negative-resistance characteristic are shown in Fig. 12. In both, the negative-resistance region is confined to a limited range of voltage and current. With characteristic (a), a particular applied voltage could produce two or even three current values whilst a particular value of applied current can produce only one voltage value. Characteristic (a) is thus known as current-con-
trolled. Characteristic (b), which is by far the more familiar shape, is a voltage-controlled type. In both, the negative resistance is a differential, incremental or a.c. quantity. In other words, the characteristic that's negative is the ratio of a small change in voltage to the corresponding change in current.

To use this characteristic in an oscillator circuit, the negative resistance must clearly be sufficient to offset the positive resistance of the tuned circuit connected to it. Thus with characteristic (a), which would be used with a series tuned circuit, the negative resistance must be numerically greater than the tuned circuit's series resistance. And with characteristic (b), which is normally used with parallel tuned circuits, the negative resistance must be numerically less than the parallel (i.e. dynamic) resistance of the tuned circuit. If the negative resistance is much less than the dynamic resistance, the oscillation amplitude grows until it occupies a voltage range greater than the extent of the negative-resistance region. In fact, at the peaks of the oscillation the operating point enters the regions of positive resistance at each end of the negativeresistance region. These apply damping to the tuned circuit, taking power from it and limiting the amplitude of the oscillation. The oscillation amplitude grows until the average slope of that part of the characteristic over which the operating point moves during each cycle of operation is equal to the dynamic resistance of the tuned circuit. As a result, the amplitude of the ouput that can be obtained from such an oscillator is limited, and to obtain the maximum output the quiescent point must be accurately placed at the centre of the negative-resistance region.

There are many ways in which a negative-resistance characteristic can be obtained. We'll look at the most commonly used circuits.

In the dynatron oscillator (see Fig. 13) the negative resistance arises due to secondary emission from the anode of a tetrode valve. As a result, there's a region of negative resistance in the anode current/voltage characteristic over a limited anode voltage range below the screen grid voltage. A tuned circuit connected to the anode will therefore oscillate, provided its dynamic resistance is greater than the negative resistance. The secondary emission properties of a surface vary depending on its nature, geometry and the angle and speed of the primary electrons that strike it. It's thus likely that certain specimens of a particular type of tetrode will be better than others for use as a dynatron oscillator.

A pentode valve can also provide a negative resistance characteristic when its suppressor and screen grids are coupled - the transitron oscillator, see Fig. 14. The coupling capacitor $C c$ must have a small reactance at the tuned circuit's frequency of oscillation. This circuit is more reliable than the dynatron since it's not dependent on the vagaries of secondary emission.
If the two regions of a pn junction are heavily doped, the device's forward characteristic has a shape (see Fig. 15) quite different from that of a normal junction diode. The depletion layer at the junction in such a device is so thin that electrons with very low velocities can cross it, the so-called tunnelling effect. Thus forward current in a tunnel diode starts at a very low forward voltage, after which there's a region of negative resistance for voltages between 0.1 V and 0.3 V . This negative resistance kink can be used in the design of an oscillator capable of working at up to 100 GHz . The amplitude of oscillation is very limited of course.

A negative-resistance characteristic can also be obtained

Fig. 15 (left): Forward voltage-current characteristic of a tunnel diode (shown in solid line) and a normal pn junction diode (shown in broken line).
Fig. 16 (right): Negative-resistance or push-pull oscillator using two transistors.
from a circuit using two active devices. An example is shown in Fig. 16. The circuit is basically that of an astable multivibrator which, in the absence of the $L C$ combination, would produce squarewave outputs at both collectors, the transistors switching between cut-off and saturation alternately. The presence of the tuned circuit modifies the action because the inductor provides a shortcircuit between the two collectors at low freqencies while the capacitor does the same at high frequencies. Operation is thus confined to the tuned circuit's resonant frequency. At this frequency, the effective resistance between the two collectors is approximately $-2 / g m B$, where $g m$ is the mutual conductance of the transistors and β the voltage attenuation of the inter-transistor coupling circuits. One such coupling circuit is $\mathrm{R} 1, \mathrm{C} 1$ - note that R1 is shunted by the internal base-emitter capacitance of $\operatorname{Tr} 1$, and this affects the attenuation. For oscillation, the dynamic resistance of the tuned circuit must be greater than this. The circuit is sometimes described as a push-pull oscillator.

SELECTIVE NOISE AMPLIFIER

A third major category of oscillators consists essentially of a tuned amplifier. The gain of the amplifier is made so high that the inevitable noise signal at the input produces a significant output with a wide and continuous frequency spectrum: selectivity is employed to confine this to a single frequency. The selectivity required can be obtained from an $L C$ combination included in the amplifier circuit or alternatively by use of frequency-discriminating negative feedback.

Fig. 17: Oscillator using selective amplification of noise, with the selectivity provided by a parallel-T RC network in a negative feedback path.

Fig. 17 shows a circuit based on the second approach. This employs an operational amplifier with a parallel-T network in the negative feedback loop. This network has a null in its transfer characteristic at the frequency $f=$ $\frac{1}{2} \pi R o C o$, where $\mathrm{R} 1=\mathrm{R} 2=2 R o$ and $\mathrm{Cl}=\mathrm{C} 2=C o / 2$. At this frequency there is thus no negative feedback and the amplifier operates at full gain. At all other frequencies the gain is reduced by feedback. The amplifier thus has a sharply peaked response curve similar to that of a tuned amplifier using a conventional $L C$ circuit, the peak frequency being determined by the feedback network component values. The peak frequency can be varied by adjusting the resistance and/or capacitance in the parallelT network. It's necessary to stabilise the output amplitude to avoid the transistors in the operational amplifier circuit being driven into saturation or cut off. An additional negative feedback loop can be used for this purpose, with one amplitude sensitive arm as discussed for $R C$ oscillators - in Fig. 17 a thermistor with a negative resistance/ temperature coefficient is used for this purpose.

The same principle is used in the backward-wave oscillator, a microwave tube in which amplification is achieved by interaction between an electron beam and a slow-wave structure (commonly a helix). If the tube's gain is increased, by increasing the beam current, the output from the amplified noise in the beam becomes narrower in frequency spectrum until it ultimately becomes a coherent oscillation at the frequency of maximum gain.

CLASSIFICATION TABLE

In conclusion, Table 1 summarises the oscillator classification presented in this article, and also lists the principal features of each category.

Table 1: Classification of sinewave oscillators.

Type of circuit	Principal features	
(1) Positive feedback.		
(a) Using an $\angle C$ circuit or equivalent.		
(i) $\angle C$ circuit giving feedback, e.g. Hartley, Colpitts.		
(ii) Separate feedback loop, e.g. Franklin.		
(iii). Velocity-modulated oscillators, e.g. reflex klystron.	Three connections to $\angle C$ circuit.	
(b) Using an $R C$ circuit, e.g. phase-shift or Wien-bridge oscillator.	Amput from $\angle C$ circuit.	
	Two connections to $\angle C$ circuit.	
(2) Negative resistance.	Output from amplifier.	
Dynatron, transitron, tunnel diode.	Amplifier gain critical.	
(3) Selective amplification of noise.		
(a) With resonant circuit selectivity, e.g. backward-wave oscillator.		
(b) With negative feedback providing selectivity, e.g. parallel-T oscillator.		

Long-distance Television

Roger Bunney

February was a depressing month for DX-TV reception in the UK. Meteor scatter propagation produced short duration Band I signals on most days, but tropospheric propagation was sadly lacking except for the period 12-14th when a prevailing high-pressure system produced a small lift, sufficient for West German u.h.f. and Danish Band III signals to reach the south and south east. Our colleagues in the Benelux countries fared a lot better, with v.h.f. and u.h.f. signals from Scandinavia and E. Europe. The ionospheric \log content is similarly poor, though one hopes that with the new season approaching by the time these words are read things will once again be humming!

4/2/84 Miscellaneous auroral induced SpE over most Band I channels.
5/2/84 ARD (W. Germany) ch. E2.
6/2/84 NRK (Norway) E2; TSS (USSR) R1, 2.
7/2/84 TSS R1, 2.
8/2/84 MTV (Hungary) R1.
13/2/84 SRG (Switzerland) E2; afternoon auroral activity.
15/2/84 ARD E2; ORF (Austria) E2a.
16/2/84 NRK E2.
4/3/84 DFF (E. Germany) E4.

Satellite Reception at $\mathbf{1 1 . 5 G H z}$

There's been rather more encouraging news on the satellite front. Both Nick Harrold (Essex) and Hugh Cocks (E. Sussex) have succeeded in resolving signals from the ECS-1 satellite at $13^{\circ} \mathrm{E}$, with Sky Channel $(11.66 \mathrm{GHz})$, TV- $5(11.49 \mathrm{GHz})$ and W. German $(11.575 \mathrm{GHz})$ downlinks. The Sky Channel signals are of good quality via both Nick's 8 ft petal and Hugh's 10 ft spun dishes, though the programme content is scrambled test transmission colour bars during the day are not scrambled. The French TV-5 service is also well received, though scrambling starts at 2100 (news time). The W. German channel is more interesting. It carries colour bars with a caption indicating that there are audio carriers at 5.5 and 5.75 MHz , and has been seen carrying a service
for "Allemagne Kable Kommunication" with a digital inlay identification "PK5" (PKS?). A PM5534 (PM5544 with digital clock) test pattern has also been seen with the identification "AKK PK5". Perhaps most significant is that both Nick's and Hugh's receiving systems were independently devised and neither includes an LNA, the signals being fed directly to the mixer via a waveguide. Positioning with both dishes proved to be very critical. Our congratulations are due on these achievements - I'm sure we'll be hearing of further progress soon!

G82MM on Air

I'm now transmitting pictures at 437 MHz , using my call sign G8ZMM. Signal sources consist of an ex-surveillance Ikegami camera and a modified Technalogics pattern generator, also test cards C and F . The transmitter is a 20W Fortop TVT435 with bandpass filter and an in-line demodulator (to extract video at the output for monitoring with a scope etc.). This feeds a Jaybeam 8 over 8 array at 56 ft via UR67 feeder. Noise-free reception at 15 miles has been reported, over an obstructed path under flat propagation conditions. Unfortunately there's been interference to neighbouring TV installations, mainly those using head amplifiers. Transmissions have had to cease until these installations can be dealt with by filtering. This is a group A area, with rather low-level signals from Rowridge.

News Items

Belgium: The Wavre u.h.f. mast collapsed last October. In early February vertical stripe test patterns were noted on ch. E25 and now Wavre BRT-2 ch. E25 is back on air no sign of ch. E28 at present. Mystery RTBF-2 transmissions on ch. E49 appear to originate from Riviere at 200 kW e.r.p. The EBU now lists Brussels RTBF-2 ch. E45 at 1 kW e.r.p. horizontal.
Norway: NRK hopes to run the second service at present being discussed. The EBU lists a further three u.h.f. relay stations, all under 100 W , using chs. E34, E35 and E52.
Holland: AFN Shape ch. E34 (NTSC system M) now calls itself "AFN-TV Europe", taking programme material from AFN-Germany with live Intelsat feeds of the ABC World News at 2200-2230. Cyril Willis logged either the Alkmaar or Hoorn pirate TV station (ch. E34) during a recent tropospheric opening.
Poland: New TVP-2 transmitters: Olstyn ch. R26; Poznan R27; Krakow R33 (all 1,000kW e.r.p.); Jelenia R30 300 kW e.r.p.
Tunisia: It's not often nowadays that there are prospects of a new Band I TV transmitter. RTT (Tunisia) has applied to the IFRB for the use of a ch. E4 transmitter at

Satellite TV. Left: TV5 signal relayed via satellite and received on a Belgian cable network. Centre: The same signal as received by Nick Harrold in Essex, using an 8t petal dish. Right: A TV5 test pattern as transmitted from Brussels on ch. E56 - the pattern varies slightly from time to time.

Remada, with 40 kW e.r.p. via omnidirectional, horizontally polarised aerials.
In brief: Laos has commenced colour tests, using system PAL-M at v.h.f. ...TSS (USSR) is currently experiementing with various forms of digital encoding with a view to eventual digital transmission to provide better quality signals with freedom from co-channel interference...The RTE (Eire) Donnybrook (Dublin) ch. C transmitter closed on April 4th... There are rumours that RTL (Luxembourg) is to increase the ch. E7 transmitter power to extend its international coverage.

Interference at Milton Keynes

The cable system at Milton Keynes uses a centre control frequency at $143-144 \mathrm{MHz}$. Distribution is via underground trunking but emerges at various points where poorly screened units are used for links to houses. Interference levels of typically 14 dBm have been measured at 100 m . If anyone is experiencing interference the DTI/Post Office should be contacted. The source of the problem was discovered after the RSGB became involved.

From our Correspondents .. .

Mike Gaskin is now established at Caterham, some 575 ft a.s.l. on a flat plateau with no obstructions. His aerial system consists of a Triax grid for u.h.f., a Premier log-periodic for Band II (f.m.) and a Band I dipole. He reports that under normal flat conditions Goes (Holland) is always present on 87.85 MHz , at some $10-30 \mu \mathrm{~V}$, though with aircraft scatter at times. The aerial feeders are short, but in view of the grid aerial's wide beamwidth and the close proximity of local u.h.f. transmissions a low-noise, low-gain preamplifier is being considered.
Gosta van der Linden reports that the following pirate TV stations are in operation in Holland:

> Ch. E23: Coenstad TV, Hoorn.
> Ch. E30: H.O.S., Heerhugowaard.
> Ch. E33: Paranoia, Hoorn.
> Ch. E34: Noorderkoggen, Medemblink.
> Ch. E35: Orion, Alkmaar.
> Ch. E50: Nova-1, Alkmaar.
> Ch. E55: A.O.S. Alkmaar.
> Ch. E63: Ciba, Heerhugowaard.
> Ch. E64: W.F.T., Midwoud.
> Ch. E65: Atlantic, Alkmaar.

The situation varies, with channel changes etc. depending on the activities of the Dutch PTT.

Wenlock Burton (Victoria, Australia) reports that the SpE season there is now fading away, with fewer and less intensive openings. There's a local ATV repeater (VK3RTV) and since the ATV band in Australia is at the centre of the broadcast u.h.f. band any viewer with a standard TV set can receive it. The sound-vision spacing is $5 \cdot 5 \mathrm{MHz}$.

Satellite News

A contract for the Scandinavian Tele-X satellite has been signed. It's due for launch by Ariane in 1986. The Japanese BS2a satellite has been successfully launched: a non-commercial NHK service is to start this month. New Zealand is considering a third service via an Intelsat craft, covering NZ and its Pacific Islands dependencies.

As mentioned last month, the FCC has agreed to the use of 2° orbital spacing for 4 GHz US satellites. Following

SOUTH WEST AERIALS

1984 sees the last year of the UK 405 line transmissions. 1984 will be the last year that Antiference manufacture their MH308, MH311 and MH473 wideband VHF aerials, favoured by many TVDXers in recent years. Batch production has always meant a restricted supply though South West carries stock of these items and repeat orders for this final year will be honoured. If you're thinking of one - act NOW!

South West Aerials supply all equipment - including TV receivers - for the TVDXer, FM DXer and for any and all types of aerial installation be it a remote fringe signal or a distribution system. We are the experts in aerial technology and with the knowledge and experience to back this claim. Customer consultancy is available to resolve difficulties (include SAE). Our catalogue costs 54p. Aerial ranges cover TV, FM, air, marine, UOSAT and for DXing. We even have egg insulators!
Antiference MH311 Wideband 1 (3 el); Wideband 3 (11 el) $\mathbf{E 5 1 . 8 5}$
Antiference MH473 Wideband 1, Wideband 3, a massive colinear
aerial
FU200 Japanese offset rotor, consul, 3 core control wire, takes a $\mathbf{2 " ~}^{\prime \prime}$
stub mast, large alignment bearings available
Aerialtech UC-1B upconverter (VHF to UHF), +5dB gain max, gain
control range 14 dB (internal preset), $220-240 \vee \mathrm{AC}$
Wolsey Supa Nova VHF $40-250 \mathrm{MHz}$ low noise (2.5dB) gain, 14 dB
$£ 17.00$ masthead amplifier (SWA modified)
(suitable PSU 240 V AC type $002 £ 11.50$)
The above prices include VAT, postage, carriage via Securicor (large parcels).
Access/Barclaycard accepted. Include SAE all enquiries please.
Delivery 10-14 working days. Comprehensive Catalogue 54p.
South West Aerials, 11 Kent Road, Parkstone, Poole, Dorset BH12 2EH. Tel. 0202738232.

TV LINE OUTPUT TRANSFORMERS

ADD 15\% VAT to ALl prices. Delivery by return of post

If the Transformer you require is not listed please phone.	
RANK BUSH MURPHY	DECCA
Z146 A640 dual std mono 8.51	MS1700 200120202401 mono 8.00
Bush A792, A793 single std mono 8.51	MS2404 24202424 mono 8.00
A774 single std mono 8.50	121012111511 portable 11.50
A816 solid state mono 9.00	GYPSY portable 11.50
2712 T16a T16b mono portable 9.00	CS1730 1733 colour 8.00
A823 A823b A823av colour 10.00	CS1830 1835 colour 8.00
Z179 Z722 series colour 10.00	'30' series BRADFORD colour 8.00
T20a T22 series colour 10.00	70,80, 100 series 8.00
2718 P.O.A.	110, 130 series 8.00
WINDING	PHILIPS
T20A T22 Z179 T26 5.51	210300 series mono 8.00
FERGUSON HMV MARCONI	320 series solid state mono 8.50
1590159115921593 mono 8.00	G8 series colour 8.00
161216131712 mono 8.00	G9 series colour 8.50
16901691 mono 8.50	G11 series colour 14.98
16001615 series mono 9.74	KT2 Lopt 9.00
30003500 EHT or SCAN P.O.A.	KT3 Lopt 10.60
800085008800 年 11.70	KB-ITT
900092009300	VC200 VC205 VC207 mono 8.00
950096009650	VC300 VC301 VC302 portable 8.00
9600 TX9 TX10 P.O.A.	$\text { CVC1 CVC2 colour } \quad 9.00$
G.E.C.	CVC5 CVC7 CVC8 CVC9 colour 9.00
2047 to 21053112 to 3135 8.00	CVC20 series colour 9.00
"GAIETY' FINELINE 8.00	CVC30 CVC32 series colour 8.00
2114 portable mono 1201H 8.00	CVC40 series 14.56
31333135 M 1501 H portable mono 8.00	
DUAL STD hybrid colour $\quad 11.00$	L.O.P.T TESTER Total Price including VAT. \quad f16.79
SINGLE STD hybrid colour 10.00	Totsi Price including VAT. $\quad \mathbf{1 6 . 7 9}$
SINGLE STD solid state 90° 8.50	Tidman Mail Order Ltd., 236 Sandycombe Road, Richmond, Surrey. Approx. 1 mile from Kew Bridga. Phone: 01-948 3702 Mon-Fri 9 am to 12.30 pm . 1.30 to 4.30 pm . Sat 10 am to 12 pm .
INDESIT, GRUNDIG, TANDBURG, TELEFUNKEN, FIDELTY, KORTING, TYNE, B+0. Price on application. HAMOND COMPONENTS (Midiand) Lid. 416, Moseloy Hoad, Birmingham B12 gAX. Phone 021-400-614	

More satellite TV. Left: Sky Channel signal received by Nick Harrold via the ECS-1 satellite. Centre: An example of scrambling - TV5 at 2100 with the news. Right: Amateur TV reception by Robin Crossley at Dunstable - G3DFL Warley on the 435 MHz Band.
a flood of applications to operate 12 GHz satellites, a 1° spacing is expected in this band. Special consideration will need to be given to hybrid satellites that use both bands. Ford Aerospace is planning a large satellite with 54 36 MHz wide channels in both the 4 and 12 GHz bands.

With the large number of US viewers that pirate services using illegal descramblers, the BBC/IBA have been giving thought to improved scambling methods, such as chopping each line into three parts with one section digitally scrambled and the other two sections compressed and otherwise distorted. Electronics companies in the USA openly offer descrambling kits, but these BBC/IBA proposals suggest that any such UK kits would be decidedly up-market!

Sporadic E Signals

We are approaching the annual SpE season in the UK. This mode of signal propagation, i.e. via reflection from ionised regions in the E layer of the ionosphere, can provide spectacular reception over long distances using minimal receiving equipment, at least as far as aerials are concerned. In the UK, the season usually starts in mid-

The Premier Pattern Company's four foot diameter petal dish with stand.

May and lasts until mid/late August, sometimes a little beyond at reduced intensity.

The E layer ionisation that reflects v.h.f. signals tends to be "patchy", the patches moving in both direction and angle. During a typical opening signals from as low as the 27 MHz CB band to some 70 MHz will be reflected. During a really good opening the MUF (maximum usable frequency) can rise to Band II and very occasionally Band III - during an extremely intense opening some years ago the MUF reached the high end of Band III, giving reception from the USSR on all Band III channels.

As the reflective patches move, so reception at a given site varies, bringing in new transmitters as others are lost. A wide patch can reflect signals from many transmitters on each channel at high strengths, typically 3 mV from a dipole. A single-hop reflection may produce signals from a transmitter some 1,200 miles away while a double reflection can give reception in excess of 2,000 miles. There's a minimum skip distance of normally 450 miles or so.

The signal path may introduce very little attenuation, and at a particular site the signals can arrive from more than one reflective area, resulting in time delay effects that produce ghosting. The fluctuating nature of the reflection in turn produces unstable signal conditions, though at high strength. Really distant signals may have characteristics more akin to tropospheric ones, i.e. slow-fading and relatively stable. Signal stability also tends to increase at higher frequencies. Where the sound signal is the higher one it may be poorly propagated though the vision signal is well received.

SpE Reception

Aerials can be simple - just a wideband dipole often suffices. For more distant signals a rotatable two- or threeelement array will increase the gain and provide directional discrimination against co-channel signals. Mast-head preamplifiers are generally avoided due to problems with local transmissions - it's better to use an indoor amplifier so that appropriate filtering can be inserted easily. With the increasing use of Band I for various types of transmissions, it seems that careful filtering will more and more be necessary.
In recent years SpE signals from Jordan, Syria, central USSR, Nigeria, the Canary Islands, Canada and Puerto Rico have been seen in the UK via multiple-hop reflection. Single-hop propagation gives signals from most of Europe. Remember that if the going is good and Band II is active it's worth taking a look on the lower Band III channels. Those who would like further advice on SpE reception should write in to me care of the magazine.

VCR Clinic

Sharp VC381

The complaint was that the recorder would not stay in record. A check revealed that the take up reel didn't rotate in record, which explained the symptom. I expected to find the same symptom on playback, but not so: the mechanism control operated correctly and the machine stayed in play with the spool happily rotating.
The playback picture was a disaster: very wobbly, with rippling verticals and intermittent jumping. It was extremely unstable. A look at the video output showed that synthesized field sync pulses were present on the signal during playback. This meant that some of the electronics thought visual search or still picture was operative during playback, an odd state of affairs. There's no circuit description in the manual, making it difficult initially to determine the meaning of some of the nomenclature used. I note from the March issue that D.S. had similar problems with a Mitsubishi manual. A certain signal line labelled VS-H seemed to mean that this point should be high in visual search however, and we found that it was also high in playback. A clue!
Neither the capstan nor the drum servo was locked. The capstan servo didn't produce a variable output from its sample and hold section. The drum servo produced an output but the motor didn't seem to take any notice of it. On the whole the servo panel seemed to be in a bit of a mess. The rogue high on the VS-H line was the likely culprit as it switches some of the servo functions.

Pin 59 of the mechanism control i.c. (IC801) feeds the VS-H line via a wire link. When this was lifted, pin 59 went low while the VS-H line remained high. I'll leave out a description of the time spent laboriously lifting and checking every component connected to the line to trace the source of the rogue voltage. It was finally traced to pin 1 of IC7754. When this was isolated, the VS-H line went low while pin 1 of the i.c. remained high. The i.c. consists of inverting gates, and the corresponding output at pin 16 was low. This shut off the tracking control voltage to pin 14 of IC703 in the capstan servo. The rogue 12 V also switched off the drum servo action, connecting a fixed voltage instead. So there was no feedback to the drum servo which was free-running, explaining the wobbly playback picture. With pin 1 of IC7754 isolated the VS-H

D850 (a) PNP

(b) NPN

Fig. 1 (left): Integrated transistor symbols used by Sharp.
Fig. 2 (right): Integrated transistor circuit.

Table 1: Integrated transistor types.

PNP	R1	R2	NPN	R1	R2
DTA114	$10 k$	$10 k$	DTC114	$10 k$	$10 k$
DTA124	$22 k$	$22 k$	DTC124	$22 k$	$22 k$
DTA144	$47 k$	$47 k$	DTC144	$47 k$	$47 k$
DTA144WF	$47 k$	$22 k$	DTC144WT	$47 k$	$22 k$
DTA114Y	$10 k$	$47 k$	DTC114Y	$10 k$	$47 k$
DTA114T	$10 k$	open	DTC143T	$4.7 k$	open

Reports from Steve Beeching, T. Eng. (C.E.I.), Mike Phelan, Derek Snelling, Mike Sarre, lan Hutton, Philip Blundell, Tech. (C.E.I.) and Les Harris
line went low and the drum servo locked. It took just over a week to get a new chip, set up the servo and visual search presets and restore the VC381 to full working order.

During our fault finding efforts on this machine we came across a new circuit symbol - at least it was new to us, see Fig. 1. We phoned Sharp and a nice man told us it was a digital transistor. Well, I wasn't going to leave it at that. I found it in a chart in a JVC service manual (you know, the ones that tell you things). Fig. 2 shows what's inside and Table 1 lists types.

Finally, Andy's piece. Did you hear about our so-called genius who spent fifteen minutes trying to find out why some new video heads produced no output? He was replaying a blank tape.
S.B.

Ferguson 3V29

There have been items before in this column on trouble with the sound mute circuit used in these machines. The symptom this time was odd - no sound on BBC-1, other stations o.k. As there was no output from the intercarrier sound chip in the fault condition we checked the voltage at the interstation mute pin 6 . It was high, which meant that the mute action was in operation. The circuit works by amplifying and rectifying the line sync pulses, using an $L C$ tuned circuit in the amplifier stage. In this case the coil (T4) was open-circuit, though the circuit just managed to work on all but the weakest channel.
M.P.

Philips N1501

If looked after, the Philips N1500 and N1501 machines can still give superb performance with excellent reliability. The other day our training officer came in with one under his arm. "There's no head servo Mike, and I've no ancient manuscripts, i.e. data." The servo in the N1501 is beautifully simple, with no i.c.s to confuse matters. A trapezium waveform and a sample pulse should be present at test point MP220. The ramp was there all right, with some sort of disturbance running up it, but there was no sample pulse. This is applied to the circuit via the switching transistor TS203 which turned out to be open-circuit. M.P.

Sanyo VTC9300

A problem with the Sanyo VTC9300 has reappeared here recently as ex-rental machines are sold off. This model does not have an aerial amplifier, the signal from the aerial being attenuated by some 3 dB before it reaches the TV set. Because of this these machines are not suitable for use in fringe areas, where a barely tolerable picture can become very poor. This is something that should be borne in mind by sales staff.

We've also had a couple of unusual problems recently on this model. One machine was at a video tape hire shop, the complaint being a black and white picture. Sure enough the playback was in black and white, with diagonal interference lines. Now the set-up was a bit unusual. The outputs from the Sanyo machine's video and audio output
sockets were fed to the input sockets of a Ferguson VCR whose u.h.f. output was fed to the TV set some 15 ft away on the other side of the shop. After sorting this lot out I decided to connect the Sanyo machine's u.h.f. output direct to the TV set. The black and white test signal appeared on the screen. That's handy I thought, the Sanyo and Ferguson VCRs are tuned to the same channel. Switch off the test signal, play back the tape, perfect. Reconnect everything as before, still perfect. Oh dear! Flicking switches here and there suddenly reproduced the fault. The switch concerned was the test signal switch. I then remembered that it was already on when I tried out the Sanyo machine direct. Now the test signal appears at u.h.f. only, not at video, and the Sanyo's u.h.f. output wasn't connected. The two VCRs were tuned to the same channel however, so the Ferguson machine was picking up the Sanyo machine's test signal output somewhere with the result that the picture was in black and white.
The fault with the other Sanyo machine was that it was dead except for the clock. Aha! I thought, the notorious 12 V regulator transistor. Whilst the symptoms were similar however the wait light didn't come on as it normally does when the machine was put in the timer mode. A quick check showed that one of the 2 A fuses had blown. A replacement didn't blow, but didn't improve matters either. I then noticed that R701 (100Ω) had burnt up. This resistor feeds the 17 V rail via the timer switch to Q704/5, the purpose of these transistors being to switch on the 12 V regulator for a timed recording. Replacing these transistors, the resistor and the 12 V regulator transistor Q702 restored normal operation. It transpired that the timer had been faulty for some time: we were called in only when the 12 V regulator transistor failed.
D.S.

Mitsubishi HS304

The complaint with an HS304 was patterning on channel 4 , though the picture was fine on the TV receiver. At first I thought it was co-channel or some similar type of interference - we've been getting a lot of it lately - but even a 30 dB attenuator didn't remove the effect (reception was good, as the picture wasn't affected either). I then tried tuning the VCR's output to all channels between 32 and 42, again to no avail. Still convinced that the machine was o.k., I took another one out to prove that it was the same. It wasn't. So the machine was taken back to the workshop where, I thought, the signal from our aerials would give correct operation. It didn't and, forced to admit defeat, a new tuner was fitted. This cleared the fault of course. Now I'm sure that even a novice would have diagnosed a faulty tuner from the outset. My excuse is that the more you write for Television the more like Les you get. Perhaps the editor should arrange a special group rate for us all at a rest home . . .
D.S.

Panasonic NV7000

The trouble we had with this machine was tuning drift. The relevant circuitry is shown (simplified) in Fig. 3. The voltages around the 33 V stabiliser transistor Q7007 and the tuning voltage control i.c. IC7001 were checked and seemed to be o.k., but the tuning voltage stabiliser D7013 was hot enough to fry an egg on. The obvious thing to do was to change D7013, even though the voltage across it was correct. The result was the same. A more careful check then showed that the voltage at the collector of Q7007 was 1 V high. So I changed the associated $5 \cdot 1 \mathrm{~V}$

Fig. 3: Tuning voltage circuit, Panasonic Model NV7000.
zener diode D7011. The voltages around Q7007 were now even farther out, but D7013 was running cool, the voltage across it was correct - and the machine worked correctly. Panasonic said the new voltage readings were o.k., so I can only assume that those given in the manual are not very accurate.
M.S.

Panasonic Preamplifier Fault

This Panasonic NV2000 had a common fault, failure of the aerial terminal board, but the symptoms were unusual. Failure of this item usually results in low gain in the E-to-E mode or low gain in the TV set. On this occasion however the fault was VCR operation normal with the TV set overloading. If the high/low gain switch was switched to the low position, the overloading was replaced by low gain. Similarly if a 6 dB attenuator was tried. Replacing the aerial amplifier cleared the problem.
D.S.

Sony C6

The capstan on this machine had stopped. As a first step the capstan motor voltage was checked. This comes from the emitter of the Darlington driver transistor Q022 which turned out to be off due to absence of drive at its base. The trail took me back to the CX143A capstan servo i.c. on the system control panel. The drive comes from pin 1 and there was no voltage here either. There's an operational amplifier behind this pin, the two inputs being at pins 2 and 3 . The voltages at these pins were both incorrect. Now pin 2 is fed from a potential divider across the supply line, and further checks revealed that the supply to the board was at 15 V instead of 12 V . This comes from a regulator circuit which is entirely within IC001 (STK5314) on panel TP16. Replacing this i.c. got the machine working again.
I.H.

Hitachi VT14

When the machine was switched to make a timed recording it would go straight into the record mode whatever the record time set. The control arrangement is shown in Fig. 4. As a first step, the voltages around IC904 on the system control board were checked. Pin 15 was high, though it

Fig. 4: Arrangement used to control the start of a timer recording, Hitachi Model VT14.
should have been low until the start of the recording time was reached. Pin 15 receives its input from pin 11 of IC101 on the timer board, so this i.c. then received attention. As expected pin 11 was high when it should have been low.

The next thing to check was the conditions at pins 3,4 and 5 of IC 102 . This i.c. acts as an electronic switch, linking the pulses from pin 37 to pin 9 of IC101. These pulses make IC101 go into the record stand-by mode and compare the present time with the programmed time. Everything here was in order, but pin 11 was still high. Clearly either IC101 on the timer board or IC904 on the system control board was faulty. To isolate the two, pin 15 of IC904 was open-circuited. The pin was still high, a new HD38702A25 i.c. curing the fault.
I.H.

GEC V4100/Hitachi VT11

A brand new V4100 (basically the Hitachi VT11E) was brought in for attention. On plugging in and pressing the operate button the operate LED failed to light. This switch connects an always 10 V line to pin 7 of IC904 on the system control panel. The data outputs from this i.c. were correct - they go to pins 40 and 41 of IC 902 . Checks around this i.c. showed that pins 23,24 and 25 were all in the high state. But pin 23 should have been low, as it's earthed by the mecha state switch when the machine is in the stop mode. The switch proved to be faulty, replacement restoring normal operation.
L.H.

Sharp VC9700

The article on the Sanyo machine that lost servo lock when there was an explosion in the programme material being recorded (February issue) reminded me of a similar fault I had with a Sharp VC9700. In this case the field sync would be interrupted in record, the cause being the value of C542 on the YC board. The machine was fitted with an $0.33 \mu \mathrm{~F}$ capacitor but the circuit specified $0.1 \mu \mathrm{~F}$.

Fitting the latter value produced correct operation.
If you come across a VC9700 that won't play - it almost laces up, then goes into the stop mode - look to see whether the drum motor is rotating. It should speed up as lacing starts. You could well find that the AT 13 V supply is missing due to L 701 being open-circuit.
P.B.

Toshiba V8600B - Corrosion Problem

The complaint was no colour. A test tape was played and the chroma signal was traced as far as the CX136A chroma processor chip IC203. Voltage checks here showed that pin 19 was very low at 0.7 V instead of 5.3 V . With a view to changing IC203, the bottom PCB was released. The cause of the trouble was then apparent water had entered the machine (here we go again!). The TA7637P luminance record processing chip IC201 and the burst transformer T251 had to be replaced - the i.c. had rotted pins and the secondary of T251 was shortcircuit to the screening can, hence the low voltage at pin 19 of IC203.

Whilst this VCR was in the workshop I met a computer technician (computers suffer from careless humans as well) who said that washing up liquid in a little water was good for cleaning PCBs. So I tried this on the Toshiba machine, using an old toothbrush and removing some of the i.c.s to clean between the pins. The result was a nice clean video board.
L.H.

Sanyo VTC5300

The complaint was white spots on the picture during playback. I tried several possible methods of dealing with this, including Steve Beeching's suggestion of earthing the head amplifier screening to the metal chassis supporting the PCBs, all to no avail. I then found that earthing the head cylinder assembly screening can to the r.f. modulator greatly reduced the spotting. This earthing modification has since been tried on a second machine with good results.
L.H.

| All | All boards are epoxy glassfibre
 and are supplied ready drilled and
 roller-tinned.
 Any correspondence concerning
 this service must be addressed to
 READERS' PCB SERVICES |
| :--- | :--- | :--- |
| LTD, and not to the Editorial | |
| offices. | |

Service Bureau

Requests for advice in dealing with servicing problems must be accompanied by a $£ 1.00$ postal order (made out to IPC Magazines Ltd.), the query coupon from page 391 and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the te/ephone.

PYE 725 CHASSIS

We've the same trouble with a couple of sets fitted with this chassis. When the brightness or contrast controls are turned up, the picture goes "over the top"' and the colour smears, making it look as though the tube is faulty or low emission. A new tube was tried in one of the sets without any improvement. A replacement decoder panel has also been tried.

All the chassis in this series are liable to this limiting, which is due to inadequate drive. You can improve matters a little by supplying the RGB output stages from a higher h.t. than the 185 V used, though the smoothing will be less. Move along the resistors below the tube, in the "bus shelter".

HITACHI CNP 190

The problem is no colour. The voltage at the collector of the colour-killer transistor TR28 is only 1 V instead of 4V. Overriding the colour-killer produces incorrect colours.

We suggest you check $\mathrm{C} 514(0 \cdot 047 \mu \mathrm{~F})$ which decouples the emitter of the burst amplifier transistor and C533 $(0.001 \mu \mathrm{~F})$ which couples the burst to the ident amplifier circuit. Then adjust the burst transformer T503 and the ident coils L508 and T503 as set out in the manual. The gain of the ident amplifier transistors TR26 and TR27 can be increased by reducing the values of R491 (43) and R495 (30) in their emitter circuits. It's possible that the burst detector diodes CR8 and CR9 are out of balance: check them by substitution if necessary.

SANYO 14-T402

The problem I have is in getting a replacement line scan coupling capacitor for use in this monochrome portable. It's listed as a $6.8 \mu \mathrm{~F} 50 \mathrm{~V}$ lacquer type. Any suggestions?

A pair of $10 \mu \mathrm{~F}, 63 \mathrm{~V}$ electrolytics connected in series (negative to negative) should do the trick, using the positive connections to wire into the circuit.

TELPRO C561

There's a bright vertical line down the centre of the screen, fluctuating between about an inch and two inches wide. The picture seems to be split into two and not holding. The PL509 line output valve then glows red and the raster disappears. Switch off and on and the PL509 cools down and the set seems to work all right. The line timebase valves have been replaced.

This set uses a version of the Decca Bradford chassis. The trouble is almost certainly in the line oscillator circuit, and could well be due to the coupling capacitor C427 $(470 \mathrm{pF})$. It would be advisable to replace this along with
the two $5 \mu \mathrm{~F}$ electrolytics $\mathrm{C} 419 / 425$ and the oscillator feed resistor R441 (220) .

GRUNDIG 6632

Resistor R607. on the power supply panel has overheated and gone open-circuit. The circuit is a bit unusual - any ideas?

R607 is designed to fail if the start-up conditions are maintained for too long. Any fault in the line output stage will cause this. Check for dry-joints on the large wound components, then check whether R506 (associated with the commutator transformer) is open-circuit, followed by the tripler (disconnect to check), Di511 (commutator circuit) which may be open- or short-circuit, the efficiency diode Di508 and other items in the line output stage as necessary.

THORN 3500 CHASSIS

When the set has been on for about four hours the colours in the top third/half of the screen become incorrect. The fault may disappear for a few seconds then reappear.

This problem is fairly common with the $3000 / 3500$ series. The cause is incorrect burst gating due to line drift confirm this by adjusting the line hold control when the fault is present. The cure is to replace the items that can cause line drift - C506, C508, C511, W501/2 and VT501 - then set up the line hold.

GRUNDIG 5010

The colour is at times predominantly green while at other times there's a blue haze. This seems to make the picture dark.

This sort of effect is often caused by poor contact between the c.r.t. pins and the base holder sockets. Clean or replace the c.r.t. base socket, then if necessary check for dry-joints around the colour-difference output transistors. It's also worth checking for worn or noisy controls - the gain controls on the CDA panel and the low-light potentiometers on the main panel.

THORN 8500 CHASSIS

The set would trip after it had been on for a while. This got worse until the e.h.t. went altogether, leaving sound but no raster. Voltage checks on the timebase panel show that there's a small positive instead of negative voltage at the base of the line driver transistor while its collector is at the full h.t. voltage.

The incorrect voltages in the line driver stage point to a stalled oscillator. Check that the 18 V supply is present at TP31, then check the line oscillator transistor VT403, its emitter decoupling capacitor $\mathrm{C} 414(10 \mu \mathrm{~F})$, the reactance transistor VT404, the flywheel sync filter capacitor C423 $(10 \mu \mathrm{~F})$ and the discriminator diodes W405/6, preferably by substitution.

PHILIPS G11 CHASSIS

The h.t. fuse keeps blowing, with the line output transistor dying at the same time. This has happened seven times in twelve months. The h.t. voltage is correct, the h.t. reservoir capacitor has been replaced, and the line output and power supply panels have been thoroughly checked for dry-joints.

The usual cause of unexplained fuse blowing in these sets is a coarse mains input. Check that the on/off switch contacts are not unduly pitted (look for flashes with the enclosed type when switching on), and fit resistors as
follows to cushion the effect. First remove mains fuse FS1 302 and solder in its place a $10 \mathrm{~W}, 1 \cdot 5 \Omega$ wirewound resistor, making sure that it doesn't heat up adjacent parts. Secondly fit a $5 \mathrm{~W}, 1 \Omega$ resistor in series with each of the two thyristor mains rectifiers, on the input side. This can be done on filter choke L4009, where two blank tags can take the transferred joints.

THORN 1600 CHASSIS

There's a strange effect on the left-hand side of the raster. The width is correct at the top, but is insufficient over most of the screen. The e.h.t. is a bit low at approximately 16 kV , and the width core has no effect on the distortion.

First make sure that the effect is not due to an overload effect upsetting the line sync - clean, rectangular sync pulses should be present at the collector of the sync separator transistor VT9. Next check C113 $(100 \mu \mathrm{~F})$ which decouples the supply to the line oscillator. If necessary make sure that the h.t. at the junction of C105 and R120 is 185 V . If it's low, check the e.h.t. rectifier stick W35 by substitution. Finally, suspect the scan coupling capacitor C136 ($0 \cdot 13 \mu \mathrm{~F}$).

PHILIPS G11 CHASSIS

There's slight bowing of the verticals on the left- and right-hand sides of the screen, and poor corner convergence. Have there been any official modifications?

Some of these sets have poor corner convergence due to tube tolerances. The bowed verticals suggest trouble in the EW correction circuit. Check the output transistor $\operatorname{Tr} 2150$ (BD238) and the injection choke L3134 (on the line output panel). If the choke has started to get warm and bend it's worth replacing D3132 (BYX55-600) in the diode modulator circuit and resoldering the loading transformer L3137.

FERGUSON 3V22

The picture is perfect apart from a band of clutter that oscillates across the screen during replay.
First check that the stationary lower drum is clean where the tape travels. If the noise bar is stationary, check that the back tension brake band on the left-hand reel disc has not broken, also that both tape loading arms are going fully home. If not, the screw under one of them is probably loose (below the deck, accessible when the drum flywheel is removed). If the noise bar moves up or down the screen continuously, the capstan servo is at fault. The most likely cause is that the pick-up head above the capstan flywheel is open-circuit. It should measure 500-700 Ω.

GRUNDIG 5010

The problem is colour dropout. This intermittent condition does not appear to be temperature dependent. The picture is sometimes in colour all evening, on other occasions it remains in monochrome. There are times when the colour flicks in and out a few minutes after switching on.

First ensure that the fault is not due to tuning drift, which is common with these sets. Then link MP13 and MP15 on the colour module when the fault is present. If there's still no colour, suspect the TBA510 and TAA630 i.c.s - voltage measurements at the pins should lead you to the cause. If bands of unlocked colour appear, check the burst amplifier transistor Tr845 and make sure that gated burst is present at pin 12 of the TBA510 i.c.

THORN 3000 CHASSIS

There are two problems with this set. First the convergence, which I cannot get right on the left-hand side. The lines, especially the blue ones, bow upwards. Secondly if you switch off and then on again the sound is low and distorted. The longer the set is left switched off, the better the sound on switching on again.

Assuming that the convergence controls have some effect, we suggest you increase the values of C703 and C 704 in the blue line convergence circuit from $10 \mu \mathrm{~F}$ to $22 \mu \mathrm{~F}$. This modification works very well. The sound fault is generally due to transistor trouble. Try replacing the audio output transistors VT403/4 along with C401 ($5 \mu \mathrm{~F}$) and C402 ($1 \mu \mathrm{~F}$).

ITT CVC3O CHASSIS

The trouble is intermittent loss of picture. It goes after a quarter to half an hour, leaving the sound. Switching off and on restores the picture for a couple of hours.

The continuation of the sound indicates that the line output stage remains operative. First check for first anode voltage when the fault is present. If o.k., check the cathode voltages, which should be around 160 V . If correct, suspect the tripler. If high (200 V or more), check that the 12 V supply is present at pin 9 of the TCA800 i.c. in the decoder. If this is in order, look for 2 V at pin 1 (luminance input). If o.k., suspect the TCA800. If not, suspect the TBA560C i.c., R518 (brightness preset) and check for stray flux on the decoder module pins.

TRANSISTOR SUBSTITUTES

We wish to replace the line output and series regulator transistors in a Teleton TW12EU monochrome portable. These are types 2 SC 508 and 2 SA 473 respectively, but don't seem to be readily available. Any ideas for substitutes?

The following can be used to replace the 2 SC508: BD193, BDX22, BUY63, 2N4240 and 2N6233. The 2SA743 can be replaced with a BD242, BD576 or BD586.

THORN 1690 CHASSIS

The line output and series regulator transistors had to be replaced (they'd gone short-circuit). After doing this the l.t. voltage was set up. As the voltage was increased, a vertical black line appeared in the top left section of the display, varying slightly as the voltage was adjusted. At the correct voltage the line had gone, but it now appears until the set has warmed up.

This mysterious effect is usually due to spurious com' ponents at line and field rate modulating the l.t. line and thus getting into the video stages. It happens when the l.t.

line's impedance is high. A cure might be to fit a $12 \Omega \Omega$ resistor in series with the supply to the line driver transformer T3, as in later production sets (R90). If necessary check the condition of $\mathrm{C} 69(220 \mu \mathrm{~F})$ in the regulator circuit, the boost reservoir capacitor $\mathrm{C} 88(220 \mu \mathrm{~F})$ and the line output stage supply decoupling capacitor C87 ($330 \mu \mathrm{~F}$).

257
Each month we provide an interesting case of television servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.
We don't see many Thorn 3000/3500 series chassis nowadays. They are getting rather long in the tooth, and the cost of maintaining them is increasing rapidly as they reach the right-hand section of their "bath-tub" reliability curve. One that had been spared the ignominity of the scrap heap came our way recently however. It belonged to a local hospital, and bore a plaque commemorating its presentation to Rosemary Ward by a local charity during the early seventies. It seemed to us a shame to have to scrap such a symbol of generosity, so we promised to do our best with it.
The symptoms were ominous. The red cutout button had popped out, and promptly did the same again when we reset it and switched on. Investigation with an ohmmeter revealed that the R2010B chopper transistor (VT604) was short-circuit and that the h.t. fuse F603 was open-circuit. Another R2010B was fitted and, after checking the two diodes in series with it and the "efficiency diode" W616, we tried again. Bang went F603. A further check showed that there was a short across the h.t. line: this was quickly traced to the line output transistor VT504, which was solidly shorted between all three leadouts. We found W507 in its collector supply circuit shorted as well, and added this to the growing pile of dead semiconductors. These items were replaced, also R907 on the beam limiter panel as it looked very tired - it's in series with the line output stage.
Having satisfied ourselves that no other obvious component failures were present, we connected the set to our bench (isolated) mains supply and switched on. The resulting fusillade frightened us no end, as it must have done the inmates of Rosemary Ward when it first happened! Tremendous fizzing and sparking occurred in the area of the e.h.t. transformer, and there were violent flashovers within the tube, lighting up the base-mounted spark gaps like a Brock's Benefit! Within a second a sickening buzz and a click from the cutout button termi-
nated the performance as we crept out from under the bench.

As we totted up the casualties (the same sorry list as before, plus R609 which is in series with the chopper transistor and the excess voltage sensing zener diode W617), we became increasingly worried that the batch of expensive new parts being fitted might go the same way at the next switch on. So we decided to disconnect the supply to the line output stage (at W507) and wire in a big 100Ω resistor as a dummy load while we checked to see whether the h.t. voltage was excessive. It wasn't - the correct 60 V was coming from the power supply module.

The next step was to disconnect the e.h.t. tripler, also W615 in the power supply module. The effect of the latter measure was to reduce the h.t. line to about 42 V . With these precautions taken, we restored the supply to the line output stage and gingerly switched on. No fireworks this time (and no picture of course), but the line output stage was very lively. We measured over 1 kV at the cathode of the tube's first anode supply rectifier W505, and could promote a healthy corona discharge at the tripler drive nipple on the e.h.t. transformer with an isolated screwdriver. It was plain that something was amiss in the line output stage.

The oscilloscope was then brought into action, and by merely waving its probe in the region of the line output transformer we had the trace that revealed all. Interpretation of this led to a diagnosis that tumed out to be correct. What was wrong, and what did the trace tell us? See next month.

ANSWER TO TEST CASE 256

- page 328 last month -

The Sony SLC6UB we were working on last month suffered from poor field sync on replay. Examination of the f.m. playback envelope showed the reason why: there was a severe reduction in the amplitude of the waveform at the beginning of each head's sweep across the tape.

After unsuccessful attempts at tape guide adjustment, our trainee re-established the original settings and began to have doubts about the tape penetration by the heads, i.e. head wear, reasoning that if the head tip penetration was insufficient the signal pickup would be most impaired at the point where the tape begins its wrap around the head drum. This can sometimes be true, but on this occasion the cause was less dramatic and was easily eradicated. The senior technician merely pushed the tape tension regulator pole a little away from the cassette: the picture rolling then stopped and the f.m. envelope filled out.

Poor head-tape contact was causing insufficient head penetration during the first part of the head wrap. Adjustment of the back-tension brake band position provided the cure, and a final test with the alignment tape showed that all was well with the tape path. Our learner now knows more about tape path and tension settings than he would ever have done by simply reading about it!

Published on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 gLS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by The Riverside Press Ltd., Thanet Way, Whitstable, Kent. Distributed by IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Sole Agents for Australia and New Zealand - Gordon and Gotch (A/sia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland £11, overseas (surface mail) £12 per annum, payable to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever.

CUSTOMER CAN'T PAY? DONT LOSE HIM FIT A TV METER

COMPLETELY VARIABLE TIMINGS

TV LINE OUTPUT TRANSFORMERS FAST RETURN OF POST SERVICE	
	EES INCLUDE
Adad 6 pence postage to all lopts and windings	

Delta Rebuilds

Up to $22^{\prime \prime}$ "........................ $\mathbf{£ 4 0}$
Up to $26^{\prime \prime}$
Bonded Coil $\mathbf{+ £ 5}$

Bonded Coil

IN LINE TYPES EX-STOCK SELECTION not rebuidos

370 HFB £45	560 DMB $\mathbf{£ 6 2}$
370 HUB...................... £45	AXT 56-001.................. $\mathbf{6 6 2}$
420 CSB $\mathbf{4 5}$	560 ATB $\mathbf{f 6 5}$
420 EDB $£ 45$	660 AB $\mathbf{£ 6 5}$
420 EZB....................... £45	A67-701 $\mathbf{6 6 5}$
420 ERB £45	670 CZB $\mathbf{6} 65$
510 UFB/A51-590 £55	H6817........................... $\mathbf{£ 6 5}$
A51-570 $\mathbf{£ 5 5}$	
A51-210 £55	CARRIAGE
510 VSB $\mathbf{f 6 0}$	¢5 Singles. 2-3 £10. 4 ¢12
AXT 51-001.................. $\mathbf{£ 6 0}$	10 f15. 10+ Carriage paid
560 DYB $\mathbf{f 6 2}$	
560 EGB $\mathbf{6 6 2}$	Cash with order
560 CGB $\mathbf{6 6 2}$	

[^1]* OUR TECHNICAL DEPT. WILL ADVISE YOU ON PROBLEMS YOU MAY ENCOUNTER ON FITIING INLINE TUBES

THE COMPANY WHO PUT HIGH STANDARDS FIRST CHIOTIDVIC

CHROMAVAC LTD. UNIT 7, BEAR BRAND COMPLEX, ALLERTON ROAD, WOOLTON, LIVERPOOL 25 ASK for MR BUTTERWORTH ON:051-428 8777L

INTRODUCING!

Midlands Newest Wholesalers HOCKLEY DISCOUNT TELEVISION

ALL MAKES IN STOCK AT COMPETITIVE PRICES

Philips, Pye, G.E.C., Decca, ITT, National, Hitachi, Mitsubishi, etc.

TRY US NOW AND BE SURPRISED!
Ring us NOW on:
0215512233 or visit us at: 94 Soho Hill, Hockley, Birmingham B19 1AD.

"NORTH LONDON WHOLESALER'S" TV SALES

Example of working set prices: GEC Hybrid £17, Decca $30 £ 24,22^{\prime \prime}$ Philips 520 £26, $22^{\prime \prime}$ Philips $550 £ 36$, Thorn $3000 £ 27$, $19^{\prime \prime}$ Thorn 8500 £33, Twin Chip Bush $£ 24$. Mono from $£ 4$ etc. Prices for other models or non-workers on request. Re-gunned tubes available. 5 mins. M. 1 . Please telephone us for details on:-

WATFORD 45590

13 WORCESTER ST WOLVERHAMPTON WV2 4L
Tel: (0902) 773122
Telex: 336810

Telepart

 Pattern Generator
-Exceptionally light and durable

- Pocket size for outside service - PP3 battery power source - Five different test patterns for colour Cross hatch grid "Dot matrix
- White raster Horizontals *Verticles
A lightweight, extremely portable and versatile pattern generator for black/white and colour T.V. alignment and service at the customers home. At the turn of a switch, the generator can provide five essential est patterns for compares favourably with other more costly bulky generators only suitable for bench work. The generator is pocket size measuring $10 \times 7.5 \times 4 \mathrm{~cm}$ and PRICE £14.95 (Subject to V.A.T.) POST \& PACKING £1.15

Mitsubishi,

\section*{BI-PAK SOLDER -} DESOLDER KIT Kit compises: OROER NO. VPBA Purpose Lighwweight Soldering Ir 240 V mains incl $3 / 16^{\prime \prime} 14.7 \mathrm{~mm} / \mathrm{bit}$ 1 Oublity Desoldering Pump High Suction with automatic ejection Knurled anicarosive casing and evion nozzle dispenser $2 \mathrm{yds}(1.83 \mathrm{~m})$ Resin Cored Solder on | Card |
| :---: |
| 1 Heat |

Total Retail Value over $£ 12.00$
OUR SPECLU KT PRICE 99.95

VALUE PACKS

ary Description
300 Assorted Resistors Mixed Types ${ }^{\text {P }}$
300 Carbon Resistors \& Wixatt Pre Formed
$\begin{array}{ll}\text { VP3 } & 200 \\ \text { VP4 } & 150\end{array}$
1 Watt Resistors 100 ohm-1M Mixed
00 Assorted Capacitors All Types 200 Ceramic Caps Minizture - Mixed 00 Mixed Ceramic Disc. Ipf -56pf 00 Mixed Ceramic Dise. $68 p$ - -015 pf Caps
vpio 60 C280 Type Caps Metal Foil Mixed VP11 100 Electrolytics - All Sorts
VP12 60 Bead Type Polystyrene Min Caps
VP13 50 Siver Mica Caps Ass. 56pi 150pf

Silver Mica Caps Ass. 180pf 470p
VP15 50 High Vollage Disc. Ceraic 750 -85 Kv Mixed
VP16 50 Wirewound Res. 9W (avg) Ass. 1 ohm - 12K
Ohm - 12 K
Metres
PV
Metres PVC Covered Single Merres PVC Covered Multi Strand Wire Mixed Colours Metres PVC Single/Multi Strand Hook-Up Wire Mixed
VP20 5 Rocker Switches 5 Amp 240V Sockets Matching Sizes Sockets Matching Sizes
VP22 200 Sq. Inches Total, Copper Clad Board Mixed Siees
VP23 20 Assonted Silider Pots. Mixed Values
Slider P
VP24 10 Slider Pots. $40 \mathrm{~mm} 22 \mathrm{~K} 5 \times \log .5$ \times Lin
VP25 10 Slider Pots. $40 \mathrm{~mm} 47 \mathrm{~K} 5 \times$ Log. 5 \times Lin
VP27 20 Small. $125^{\prime \prime}$ Red LED
VP28 10 Rectangular $2^{\prime \prime}$ Green LEDs
VP29 30 Ass. 10W Zener Diodes 250 mW 2W Mixed Vis. Coded
VP30 10 Ass. 10 W Zener Diodes Mixed Vis. Coded SP TO-66 50400 VP31 105 Amp. SCRs T0-66 50-400 VP32 $\quad 20 \quad 3$ Amp. SCRs T0 66 up To 400 N VP33 200 Uncoded
VP33 200 Sil. Diodes Switching Like INA148 D0.35
VP34 200 Sil. Diodes Gen. Purpose Like
VP35 50 IAmp IN4000 Seris
VP35 50 IAmp IN4000 Series Sil. Diodes
VP36 8 Bridge Rects 4 Amp Mixed Vts. Coded

BI-PAK PCB ETCHANT AND DRILL KIT
 collets \& $3 \times$ Twisi Bits 1 Sheet PCB Transfers 210 mm 150nmm
 cinstals
3 sheets copper clad board 2 sheets fibreglass copper clad board
full instructions for making your own PCB boards
Retail Value over f 15.00
OUR BIPAK SPECLAL KIT PRICE $\mathbf{£ 9 . 9 5}$ OROER NO VPBI

TECASBOTY

 miconouctor barcan semiconouctor bargain box This collection of Components \& Semiconductors packed selection ever offered, it consists of Resistors; carton \& wirewound of various values. Capacitors; All types sorts \& sizes inclucing electroftyics. Potentiometers; single, dual. slider \& preset. Switches, Fuses, Heatsinks, Wire, P.C. Board, Plugs, Sockets, etc. PLUS a selection of Semiconductors for everyday use in popular hooby Projects \&Diodes. Recuifers. Triacs \& Bridges as well as a first class mix of Transistors \& IC's.
In all we estimate the value of this BCSBB - in current rental catalogues to be over 25 So help yourself to a great surpise and order a Box today for just 66.50 ONLY at Bi-PAK. You can call us on 0920 3182/3412 and order it with your Barclaycard or Access Card - 24 h Asnwerphone Service Now. Order No. V.P. 85,

BI-PAK'S OPTO SPECIAL
A selection of large and small sized LED's in various shapes, sizes $\&$ colours, togeth er with 7 Segment Displays both anode \& cathode plus photo transistors emitters and detectors. Cadmium Cell ORP12 and Germ. photo transistor OCP71 included. In all a total of 25 Opto pieces valued ove £12 Normal Price
$\checkmark \quad$ Order No. VP57 Our Super Value Price Jus
f5.00

Value packs contid

\times T0.66 Siz

TRANSISTOR CLEARANCE
 All Sorts Transistors. A mixed Bag NPN

 PNP Silicon \& Germ. Mainly Uncoded100 You To Sort Pack. Includes Instructions For Making Simple Iransistor Tester

Super Value. Order No. VPSO. $\quad £ 1.00$

OUR GREAT NEW 1984 CATALOGUE
Presented with a Professional Approach and Appeal to ALL who require Quality Electronic Components, Semiconductors and other Accessories ALL at realistic prices. There are no wasted pages of useless information so often included in Catalogues published nowadays Just solid facts i.e. price, description and individual features of what e have available. But remember, B+PAK's policy has always been STl quality components at competitive prices and THAT WE Li

We hold vast stocks "in stock" for fast immediate delivery, al items in our Catalogue are available ex stock. The Catalogue and the Visa/Access credit cards, which we accept over the telephone.
To receive your NEW 1984 BLPAK Catalogue, send $75 p$ PLUS 25p p\&p to:

FREEWAY COMPONENTS

0934-419147

TRAMSISTORS	BC327............ 16	BU807	TBA120S 75		Pye 691, 697 ... 15.68	Rank $71812 .75$	IL TI-SECTIOM ELECTROLYTICS
C117........... 30	BC337 10	MJE340 50	TBA120T 1.10	TRANSFORMERS	Pye 731.........12.23	Decca 1730, 30, 80,	Rank 823 S 600/300v 2.05
AC127 30	BC338 10	R2008B 1.80	TBA1201 1.10	Autovox 90°.....11.70.	Pye 713, 715,	100, 6 way 9.08	Rank 823 2500+2500/30y
AC128 30	BC477 25.	R20108 1.80	TBA395 1.75	Autovox $110^{\circ} \ldots . .14 .48$	717 10.50	Decra 1730, 20, Mono	Rank $8232500+2500 / 30 \mathrm{v}$........ 1.30
AC141 26	BC479 30	R2540 2.40		Baird $26^{\prime} 90^{\circ} \ldots 13.13$	Pye 725..........11.78	4 way 7.43	Rank T20 220/400v...
AC142 27	BD124 60	TIP29C 46		Baird $28^{\prime \prime} 110^{\circ} \ldots 13.13$	Pye 169, 569,	Salora 5 way 8.78	PMG8/GEC $600 / 250 \%$
AC176 28	BD131............ . 32	TIP30С 45		B80 3100, 33000,	769 11.95	Salora 7 way12.75	PHG8/GEC $600 / 300 \mathrm{~V}$
AC181 28	BD132 32	TIP31C 50	TBA510 3.20	3400 EHT22.88	Rank A823.......13.58	Luxor 6 way.....13.95	PHG9 2200/63v
AC187 30	BD139 30	TIP32C 50	TBA520 1.30	B\&O 3100, 3300,	Rank A640, 79313.05	Skantic 6 way ...13.85	PHG11 470/250v
AC188 28	BD140 30	TIP41C 50	TBA530 1.45	$3400 . \ldots13 .60$	Rank A77412.55	Thom 90006 way	Pye $691200+300 / 350$
AD140 96	BD144 1.40	TIP42C 50	TBA540 1.35	B\&0 3000, 3200	Rank 14 Port ... 9.5016.73.	Pye $6911000+1000 / 40 \mathrm{~V}$
AD142 96	BD160 1.45		TBA550 1.50	EHT22.50	Rank T20A......12.55	TUMERS	Pye $731800 / 250 \mathrm{v}$.......
AD143 90	BD201 85	INTE	TBA560 1.50	B80 3500, 3600,	Rank $27181818 . .27 .00$	AFG 05 (1043/05) 95	GEC $2000200+200+150+50 \%$
AD149............ . 88	BD202 60	CIRCUITS	TBA570 1.40	4000, 5000,	Rank $271822 . .27 .00$		350 v
AD161 45	BD235 42	ET16016 1.80	TBA720A 2.60	6000............ 13.95	Saba T3715G ... 16.58	AEG 202 (U321) 8.00	GEC $20101000+2000 / 35 \mathrm{v}$
AD162 45	BD243 70	EITR6016..... 1.80	TBA750 1.50	Decca 30, 2230.10.05	Salora 90413.08	AEG 202 (U322). 9.00	Thorn $35001000 / 70 \mathrm{~V}$..............i. 1.00
AF117 40	BD244 70	HA1156W 1.25	TBAB00 1.05	Decca 80 10.05	Skantic 262114,00	Mitsumi Rotary 9.0	PHG9/Pye $731600 / 300 \mathrm{v}$ P.C.B. ... 3.00
AF124 50	BD379.......... 60	HA1166 3.50	TBAB10AS 1.35	Decca 100........ 9.38	Tandberg 9al...15.00	(Portables) 8.00	
AF126 40	BD380 60	HA1366W 1.70	TBA810S 1.35	Decca 1730,	Tandterg 1104 . 13.95		
AF127 40	BD441 60	LM1303P 4.95	TBA820 1.20	1830............. 12.30	TKK 711 \& 711A 13.50	VALVES	
AF139 48	BD442........... 60	MC1327P 1.20	TBA820M 1.95	Decca 1700.....10.80	Thom 1615 9.75	PCFB0 1.05	
AL102 1.80	BD535 50	MC1330P 1.00	TBA820M 1.95	Dymatron 731, 735,	Thom 1690 9.75	PCF82 1.65	
AL113 1.80	BD536 50	MC1351P 1.35	TBA920 1.70	737, $741 \ldots10 .50$	Thom 1590/91 . 10.90	PCL82 1.10	fit most sets including; Decca, GEC,
AU106......... 2.00	BD537........... 50	MC1358P 1.35	TBA950 ….... 1.80	Dynatron NV 202/3	Zanussi 291..... 13.08	PCL84 1.10	ITT, Pye, Philips, Rank, Telpro, Saba, Autovox, Bang \& Olufsen, Grundig
AU110......... 2.00	BD538 50 BDX32 1.60	NE5458 2.90		…............. 10.25		PCL85 1.15	Autovox, Bang \& Olutsen, Grundig, Doric, Skantic etc.
BC107 12	BDY20........... 80	SAA5000 3.50	TCA270SQ 1.30	226, $827 \ldots10 .50$		PFL200 1.65	
BC108............ 12	BF178 32	SAA5010 4.80	TCAB00 2.10	GEC Solid State .. 9.00	PRESS BUTTONS	PL504 1.55	
BC109 12	BF179 32	SAS560S 1.96	TCA940 1.80	Grundig 5010/UE,	Pye 715, 207	PL508 2.80	
BC140 35	8F196 11	SAS570S 1.96	TDA1002 1.15	6010 UE, 2222 . 17.63	Chelsea.......... 13.05	PL509 6.40	
BC141 35	BF197 12	SL901B - 6.20	TDA1003A 1.50	Grundig 5010 ...12.63	Pye 713, 715 ... 8.78	PL802T 3.45	
BC142 25	BF198 17	SL917/9188 ... 4.95	TDA1004A 2.50	Grundig 1500 ...16.20	Pye 691, 697 repair	PY500A 1.80	
BC143........... 25	BF199 15	SN760230 1.99	$\text { TDA1035T } 3.50$	Grundig 5010	kit 6.53		our sales office.
BC147 10	BF258 28	SN76033N 2.45	TDA1170S 2.70	EHT 22.88	Ptilips 68	FUSES (Packs of 10)	
BC148 10	BF259 28	SN76110N 95		Indesit 24" Mono12.75	550 sloping ... 14.75		
BC149 10	BF337 32	SN76131N 1.40	TDA1412 80	ITT CVC512.23	520 square ... 15.50	2A, 3A, 5A, 13A 1.00	Pecta
BC157 10	BF338 32	SN76226N 1.65	TDA2020 2.55	ITT CVC25, 30,	Telpro 4 way 9.50	20 mm ANTI-SURG	
BC158 10	BF458 32	SN76227N 1.10	TDA2030H 2.95	32.............. 8.90	GEC 2110 BBC	$80 \mathrm{~mA}, 100 \mathrm{~mA}$,	
BC159............ 10	BF459 36	SN76510N 90	TDA2190 3.50	ITT CVC20 8.75	ITA.............. 10.28	$160 \mathrm{~mA}, 250 \mathrm{~mA}$.	horn 90006 -way switchbank 1.50 each.
BC161 30	8FY50 27	SN76533N 1.80	TDA2522 2.00	ITT CVC45 9.00	GEC 2112.......14.33	$315 \mathrm{~mA}, 400 \mathrm{~mA}$,	2 for 2.50. Take one for 75 p when you
BC171 10	BU108......... 1.78	SN76660N 60	TDA2523 4.30	Korting 90°.....13.13	GEC 2136/7 $\ldots . .88 .70$	$500 \mathrm{~mA}, 630 \mathrm{~mA}$.	order other goods totalling $\mathbf{1 5 . 0 0}$ exct.
$8 \mathrm{BC172}$........... 10	BU126 1.75	SN76666N 75	TDA2530 2.20	Korting $110^{\circ} \ldots . .13 .13$	Hitachi 190 Nat. Pan.	600mA, 1A, 1.25A,	VAT.
8C177 18	BU204 1.55	TA7176P 1.00	TDA2532 2.50	Luxor 2221 14.00	4 way 8.50	1.6A, 2A, 2.5A,	
BC178 18	BU204......... 1.55	TA7205P 1.30	TDA2540 95	Luxar $26^{\prime \prime} 90^{\circ}$...13.13	ITT CVC8/9..... 13.95	3.15A, 4A, 5A ... 1.40	
BC179 18	BU205 1.40	TA7217AP 1.80	TDA2541 2.50	Nordmende13.95	ITT CVC511.93	20 mm OUICK-BLOW	
BC182 10	BU206......... 1.65	TA7611AP 3.45	TDA2560 2.00	Philips G8 9.68	1 TT CVC20, 30.	$100 \mathrm{~mA}, 150 \mathrm{~mA}$,	
BC187 20	BU208A 1.80	TAA350A 1.90	TDA2571A 3.50	Philips K7029.10	32................ 9.08	$250 \mathrm{~mA}, 315 \mathrm{~mA}$,	
BC12............ 10	(Pack of 10) ..12.00	TAA550 25	TDA2581 1.50	Philips G911.03	Rank T20A...... 10.73	$400 \mathrm{~mA}, 500 \mathrm{~m}$	T
BC237 10	BU326A 1.40	TAA621AX1 3.50	TDA2590/91 .. 2.50	Philips Mono11.55	Rank A823	$630 \mathrm{~mA}, 1 \mathrm{~A}$.	ESTON-SUPER-MARE
BC238 10	BU407D 2.49	TBA120A 95	TDA2593 2.50	Philips 570 9.38	4 way 9.38	1.6A, 2A, 2.5A, 3A,	AVON BS24 8RA
BC303 30	BU806D 2.00	TBA120AS 75	TDA2600 6.00	Philips K9........16.28	6 way 12.75	4A, 5A 0.60	AYON BS24 8RA

TV TUBE POLISHING

 AT
Your Own Premises with our DiY Polishing Kit

Everything you need to polish approx. 25* tubes to a high standard. Detailed instructions on how to do the polishing. All you require is an Electric Drill.

Practical instructions available to buyers of kit, please enquire for details.
Kit Price $£ 45$ inc P\&P and VAT.
Aveilable trom Luton onl:
-Dapends on depth and arce to be polished
TV TUBES TUBE POLISHING free delivery*
Quality, High Temperature Reprocessing

Quality, High Temperature Reprocessing		
Colour Tubes	One year guarantee	Two year guarantee
Detta	loptional extension up to three years)	(optional extension up to four years)
90° up to $20^{\prime \prime}$	± 26	$\underline{49}$
90° up to $22^{\prime \prime}$	¢30	f33
90° up to $26^{\prime \prime}$	E32	E35
$110^{\circ} 26^{\circ}$	E33	E36
(thest heat, narrow neck)		
In line \& PIL	936	
Up to $22^{\prime \prime}$	E38	f44
Up to $26^{\prime \prime}$	840	¢46

orking tubes with scratches or small chips, can be POLISHED with our purpose built polishing equipment. Only $£ 7$ per tube.
Delivery charge on colour tubes:

$$
1 \text { tube £4. } 2 \text { or more tubes FREE DELIVERY } \star
$$

Please add 15% VAT to all prices. Callers we/come. Please phone first
Send for a fully comprehensive price list and a wall chart of approx 1800 Colour Tube Types that can be processed by us.

WELL VIEW

114-13A Midtand Rd,
Open Monfri 8am-5pm. Sat gam-5pm. Tel. 0582-410787 Lution, Beds.

Your Local Tube Stockist:
Well Viow, Southampton. Tel. 0703331837
Retach Ltd., Northwood, Middx. Tel. 09274-27019
West Ona Distributors Lid., Chesham, Buckinghamshire. Tel. 0494-778197 Rushden Rentals Lid., Rushden, Northants. 0327277436
Please note that we have no connections whatsoever with any other business having similar name to ours.

SATELLITE RECEIVING EQUIPMENT

$1.9 \mathrm{M}, 2.5 \mathrm{M}$ and 5M Harrison Dishes Sat-Tec R5000 4GHz Receivers Avcom COM-2B 4GHz Receivers California Amplifier 4GHz LNAs Chaparral Feed Horns
Demonstrations by appointment only Dealers wanted HARRISON ELECTRONICS 22 Milton Road,
Westcliff-on-Sea, Essex SS0 7JX.
Telephone: Southend (0702) 332338

TVs FOR EXPORT

BUSH, PHILIPS, DECCA AND PYE
All with 6 button VHF/UHF Tuners
suitable for countries using PAL system

TELE SPARES LTD.
Unit 113, Elm Road, Western Industrial Estate, Dublin 12, Ireland.
Telephone: Dublin 521211/521756

COLOUR TELEVISIONS

 FIRST COME! FIRST SERVED!NOT EX-RENTAL
All in Excellent Cabinet Condition Many Working
Largest Selection of Makes \& Models FRESH STOCKS WEEKLY
Available in Singles or in Quantity Clearance Sale of Old Models PHILIPS G8 $\mathbf{£ 1 0 . 0 0}$ BUSH A823£10.00 HYBRID MIXED ..f5.00 THORN 3000 $\mathbf{£ 1 0 . 0 0}$
COMPETITIVELY PRICED AND AVAILABLE TO ORDER WORKING \star
RING US NOW!!!
COLOURTRADE
221 Bridge St West • Hockley Birmingham - B19 2YU Tel: 021-359 0449

UNIVERSAL PROGRAMME SELECTOR FOR VARICAP TUNING

UK Regd. Design No. 1006611

sway interlocked d.p.

potentiometers
Top quality through hole plated pcb
Dimensions: $5^{\prime \prime}$ by $2 \xi^{\prime \prime}$ by 1 Ideab for replacement when original parts are obsolete or unobtainable Template guide supplied for drilling of your own fascia design
Range of pre-cut and drilled fascia/mounting kits for selected TV chassis enabling further cutting drilling modification
All orders
All orders despatched same

Type 30-80 Replaces 7 piano-key unit as fitted to Decca/Telefunken 30 and 80 hassis
Type 30-C Replaces 7 piano-key unit as fitted to Decca console using long
Type 100 Replaces 8 position touch tune selector (AEG SAS 660 SAS 670) as used in Decca/Telefunken 100 chassis
Type CVC8-9 Replaces 5 rectangular push button plus thumbwheel as used in ITT

selector $\mathbf{f 1} 1$ + vat

FASCIA/MOUNTING KITS (each) $\mathbf{£ 2}+\mathrm{VAT}$
All orders despatched on day of receipt.
ALDERSON-JAMES LTD
160 KINGS ROAD - HARROGATE © N. YORKS TEL: HARROGATE (0423) 60058 HG1 5JG

ALL SETS HAVE BEEN ENGINEERED AND ARE IN PERFECT WORKING ORDER
PRICES AVAILABLE ON THESE SETS NOW!!!
PYE CHELSEA's
PYE 721s, 731s, 725s PHILIPS 520s, 550s BUSH T20, T22, T24s (Remote Control)

THORN 8000 \& 8800s THORN 9000, 9200, 9600
 (Remote Control)

Special Offer

SALORA 22"

£35 inclusive
Massive reductions for bulk Minimum 5 Sets

Big reductions for export orders over 100 sets
COLOUR TELEVISION \& MUSIC CENTRE

35 Stafford Road, Weston Super Mare Avon.
Opening hours: 9-6 Mon-Sat, Sundays by appointment
(Weston Super Mare 413537) (Note new address) (15 minutes past Bristol Southward on M5)

ELECTRONIC EQUIPMENT SERVICING

 (TELEVISION/VIDEO full-time College courses)- College Diploma or BTEC awards -

TRAINING INVOLVES A HIGH PERCENTAGE OF WORKSHOP FAULT DIAGNOSIS ON TELEVISION \& VIDEO CASSETTE RECORDERS

- 15 MONTHS COURSE for beginners to include Electronic Fundamentals
- 6 MONTHS COURSE for BSc, HND, CGLI, TEC and similar applicants
- 3 WEEKS INTENSIVE VCR COURSE for applicants with Colour TV trade experience
The above courses commence on April 24th and September 19th
Also courses in Computers/Microprocessors, and Robotics leading to BTEC awards.
LONDON ELECTRONICS COLLEGE (Dept T3/4)
Prospectus from: 20 Penywern Road, Earls Court, London SW5 9SU Tel: 01-373 8721
TELETRADERS
Forde Road, Brunel Industrial Estate,Newton Abbot, DevonTelephone: (0626) 60154
The Best Quality Sets Available Anywhere
All First Class working order and excellent cabinets.
Bush $£ 25$
Philips G8 550
Philips G8 550 £40 £40
Philips G11 £85
Decca Bradford £25
ITT CVC 58 £30
GEC Solid State £35
Thorn 3500 Electronic 22" £35
Full spares back-up of tubes and panels -send for list e.g. PL509 £1, PY500 £1Bulk terms to other wholesalers
THENO. 1 WHOLESALER IN THE SOUTH

CENTREVISION

For Video, Television, Audio MANUFACTURERS SECONDS

Plus selection of modern TV's: T20 9000 etc. Hybrids at give-away prices. Also:
Tubes, Parts, Stands etc, plus working sets.

Sloper Road, Cardiff.

Telephone: 022244754

TUNERS + TUNERS

* If you repair sets regularly - phone us today and we will dispatch immediately - no need to send cash 'up front'.
\star All tuners dispatched by first class post for receipt by you the next day.
\star All popular tuners/tuner repairs supplied ‘off the shelf'.
\star Unusual types repaired same day as received (subject to spares availability).

HUSSAIN CENTRAL TV

No. 1 distributor in U.K.

Special sale for this month only

G8 520 26" $\mathbf{£ 6} 52022^{\prime \prime} \mathbf{£ 9}$. G8 550 26" $\mathbf{£ 1 0} 55022^{\prime \prime}$ $\mathbf{£ 2 0} \mathbf{G 9} \mathbf{£ 1 8}$. Thorn $26^{\prime \prime} £ 5$. Thorn $22^{\prime \prime} £ 12$. Thorn 8500 £20. GEC Hybrid $£ 4$. GEC Solid State $£ 20$. Pye Hybrid £4. Pye Solid State $£ 20$. Chelsea $\mathbf{£ 2 0}$. ITT Hybrid $£ 15$. Decca Hybrid $£ 15$. Also latest stock G11, ITT, Decca 80 and 100 series.

VHS Videos plus Cameras available

Guaranteed all T.V.'s are untouched off the floor. Buy now while stocks last.

Ring us today 021-622 1023 or 021-622 1517 48/52 Pershore St., Birmingham City Centre.

TELEVISION TUBE SHOP LTD

BRAND NEW TUBES AT CUT PRICES
A31-19W/20W19.95
A31-120W/300W17.95
A31-410/510W17.95
A34-100W/510W18.50
A34-514W24.25
A38-160W/170W17.50
A44-120W/R25.00
A50-120W/R19.00
A61-120W/R21.00
9AGP4..................21.82
190AB4/C423.00
Some Rebuilt Japanese
\& European Types
Available from
$\mathbf{£ 1 4 . 0 0}+$ VAT $£ 2.10$

230DB4CT468........... 31.00
240DB4/240AB4A 22.00
CT507 equiv 21.95
310DGB4/DMB4....... 23.00

310EUB4................... 19.95
310EUB4A 18.50
310EYB4 18.75
310FXB4 17.50
310GNB4A.....................31.00
310HCB431.00
340AB4 22.50
340AYB4................... 30.00
340AXB4................... $\mathbf{3 0 . 0 0}$
340RB4/CB4..............26.00
340AHB4 26.00
RIGONDA 6"............ 14.00
COLOUR TUBES
(NEW \& MULLARD/THORN COLOREX)
12VARP2262.50 A56-120X54.00

VISIONTEL

BEST QUALITY EX-RENTAL SETS FROM £10 HERE IN CENTRAL LONDON!

100's OF SETS ALWAYS IN STOCK COMPETITIVE PRICES

VIDEO RECORDERS
 (SUBJECT TO AVAILABILITY)

We also have PYE - DECCA GEC - ITT - GRUNDIG - JVC PHILIPS G9 - THORN 9000 and MANY - MANY - MORE!

FOR CURRENT STOCK DETAILS TELEPHONE 013283787 OR VISIT US AT 55 KILBURN HIGH ROAD NW6

HOW DARE THEY!

If you see an advertisement in the press, in print, on posters or a cinema commercial which makes you angry, write to us at the address below. (TV and radio commercials are dealt with by the I.B.A.)

The Advertising Standards Authority. If an advertisement is wrong, we're here to put it right. ASA Lid, Brook House, Torrngton Place, London WCIE 7 HN .

20AX APOLLO 30AX

PHONE FOR TRADE PRICES ON PIL TUBES
Fast Mail Order service to any part G.B. Delivery 2-3 days Just phone for a quotation. Delivery Manchester area free same day. Iwo year guarantee. Fitting while you wait or in your home $£ 20$.
$18^{\prime \prime}$ A47 - 342×343 470 BEB22 ($£ 45.00$) $£ 37.00$

19" A49-120×/192x £37.00
$20^{\prime \prime} \quad$ A51 $-220 \times / 110 \times / 161-510 J K B 22 \quad(£ 45.00) € 38.00$
22" A56-120×/123×/140×/410 $£ 38.00$
$26 \times \quad$ A66-120×A67-120×/140×/150/200 £39.00
20AX $56-510$
30AX 56/66-540 £48.50
20" - $22^{\prime \prime}$ SOLID STATE COLOUR TVs FULLY SERVICED \& SOAK TESTED. VERY RELIABLE WITH GOOD TUBE £61.00, WITH NEW TUBE $\mathbf{f 8 3 . 0 0}$ inc DELIVERY

061799085424 hour answering service. 43 Clarke Cres, Little Hulton Nr. Manchester M28 6XM.

A.B.C. TRADE SALES
 COLOUR T.V.'s

Philips G8, Pye, Decca 30's,
Thorn's 3000's, 3500's, 8000's
Prices start from $£ 12$ - Working sets from $£ 20$
Hundreds of Mono T.V.'s from $£ 2.00$ Jap. sets from $\mathbf{£ 3 0 . 0 0}$ Special prices for quantity 9,000 sq. feet Warehouse
83 SHOWELL ROAD, BUSHBURY, WOLVERHAMPTON, STAFFS. Tel. Wolverhampton 722637

COLOUR TV SETS

Philips G8, Pye 222, Decca 30 series, ITT, Pye Chelsea, Thorn 3500/8000, GEC, many others including JAP.

Working hybrids from $£ 15$.
Working solid state from $£ 25$. Non-working sets from $£ 5$.
Working panels and tubes available.
REBUILT TUBES
Delta - In Line - PIL.
SOUTHBRIDGE TV CENTRE
120, Selhurst Rd., London, S.E. 25.
Tel: 01-771 3535.

MAIL ORDER ADVERTISING

British Code of Advertising Practice
Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requires advertisers to fulfill orders within 28 days. unless a longer delivery period is stated. Where goods are returned undamaged within seven days. the purchaser
refunded, Please retain proof of postage/despatch, as this may be needed.

Mail Order Protection Scheme
If you order goods from Mail Order advertisements in this magazine and pay by post in advance of delivery, Television will consider you for compensation if the Advertiser should become insolvent or bankrupt, provided:
(1) You have not received the goods or had your money returned; and
(2) You write to the Publisher of Television summarising the situation not earlier than 28 davs from the day you sent your order and not later than two months from that day
Please do not wait until the last moment to inform us. When you write, we will tell you
how to make your claim and what evidence of payment is required.
Ws soon as possible atter the Advertiser has peen declared bankrup with the above procedure
This guarantee covers only advance payment sent in direct response to an advertisement in this magazine not. for example, payment made in response to catalogues etc., received as a result of answering such advertisements. Classified advertisements are excluded.

IRISH T.V. DEALERS

Large quantity of working Colour \& B/W T.V. sets UHF-VHF. Nordmende, Bush, Philips, Ferguson, Pye, etc. at very competitive prices.

Working colour sets at $\mathbf{£ 7 0}$
Fresh stocks weekly, quantity discount, delivery arranged.
(SPECIALISTS IN OVERSEAS ORDERS)
For further details ring:
J. HYDE at 01-264139 Extn. 11.
T.V. TRADE SALES, E.D.I. House, Kylemore Pk. West, Dublin 10. (Open 10 to 5.30 pm)

Prices exclude VAT.

EMCO - EUROSONIC - GRUNDIG - TELETON + ALL BRITISH MAKES ETC., ETC. - ALL SPARES READILY AVAILABLE -

IMMEDIATE CREDIT AVAILABLE - TRADE ONLY

If you are a trader simply phone for the part you require and we will send it - no quibble - no hold up for status check. Satisfy us over the phone that you are a trader and we will supply almost any TV component by return "off the shelf". e.g. LOPTX - EHT trays - droppers - OSC coils - switches - cans smoothers - l.C.'s, etc. etc.

YOU CAN BE 95\% SURE WE CAN SUPPLY ANY TV COMPONENT BY RETURN IF YOU NEED SPARES FAST - RING NOW!

 ACCESS AND BARCLAYCARD ACCEPTED.Applies to U.K. only.

- LONDON'S LARGEST TELEVISION WHOLESALER...
with over $4 \frac{1}{2}$ thousand sq. feet
"TELEMANN"
8-10 RHODA STREET (OW Bethnal Green Road)
LONDON E.2. FREE CAR PARK
TEL: 01-739 2707
all makes in stock and guaranteed COMPLETE
PYE 22 C COLOUR FROM 8.50 PHILIPS 22" (Teak cabinet) PARCEL OF TEN £15 - MONO DUAL STANDARD PARCEL OF 20 £1 - SINGLE STANDARD £3

FREE DELIVERY TO THE LONDON AREA!
TELEPHONE 01.739 2707 - NOW!
WE CAN DELIVER ANYWHERE IN U.K. INCLUDING NORTHERN IRELAND VISIT OUR NEW LUXURY SHOWROOM FOR WORKING T/Vs FROM £25 TRADE TELEMANN - TELEMANN - TELEMANN

- e- e-

TVs FOR SALE Fully Working Sets from		
£18 to £58 No Extra VAT		
BUSH - MURPHY - THORN - GEC PHILIPS - ITT - DECCA - HITACHI		
Working \& Soak Tested SPECIAL STOCK TAKING		
CLEARANCE ON SELECTED		
Speakers Any Make 5p		
Tube Base Any Make 10p		
Scan Coils Any Make $£ 1.50$		
THORN BUSH		
I.F. Panel	£1.50	£1.00
Power		
Frame/Sound		
Output $\mathbf{E 1 . 5}^{\text {1 }}$		
Frame/Line Drive		
Convergence \quad ¢2.5		
complete		£4.00
Convergence. Philips Front		
Type \& GEC S/SNo VAT. Just add E 1.50 post and packing per 1 item		
DISCOUNT TV SERVICES,		
'TV PANELS',		
Unit 11,		
yfield Industrial E		
Midothian EH22 4A		
el: $031-6630380$		
other times		

TV VALVES
COLOUR VALVES PY500/A-65p, PL509/519-£1.50.
COLOUR VALVES PY500/A-65p, PL509/519-f1.50.
MONO VALVES ECC88, EF85, EF183, EF 184, DY87, OY802, PCF80, PCF802, PCL82, PCL83, PCL84, PCL.85)
805 PCL86, PCC84, PCC89, PC92 PC97, PC86, PC88. PFI 200 , PL36, PL504, PY800, PY88 ETC.
MONOCHROME VALVES ALL 35p EACH.
ALL VALVES EX-EQUIPMENT \& TESTED.
P\&P 50p Per order, Accesa/Visa Cards welcome.
ELECTRONIC MALLORDER, 62 Bridge St.,
Ramsbottom, Lancs, BLO 9A'G. Tel. (070682) 3036.

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.
The prepaid rate for semi display setting $£ 6.00$ per single column centimetre (minimum 2.5 cms). Classified advertisements 35p per word

CANVEY COLOUR TUBES

Unit 3, Charfleets House, Charfleets Industrial Estate, Canvey Island, Essex. Tel: Canvey Island (0268) 690577

CURRENT PRICE LIST

DELTA TUBE TYPE FROM $£ 27.50$ to $£ \mathbf{£ 1 . 5 0}$
INLINE TUBE TYPE FROM $£ 35.00$ MONO TYPES P.O.A.

ALL PRICES EXCLUSIVE OF VAT.

All Tubes Guaranteed for 2 YEARS and Reprocessed to Original Manufacturers Specifications.

TELEVISION

Trade \& Retail supplies of s / h colour \& mono TVs. Most makes available, workers or non-workers

SOUTHPARK DISTRIBUTORS

Unit 4 Rubastic Road,
Brentpark Industrial Estate, Southall, Middx. UB2 5LL. 01-574 4631, Ext 28

SECOND HAND Colour TV spares and tubes. Most makes. Telephone Southport (0704) 74411. Anytime.

A.B.D.
 TELEVISION LTD.

100's Colour TV's in stock in excellent condition-working sets for the trade. Fresh stocks weekly Untested - complete (Majority working)
Mono TV's
Bush 22"-26" CTV Solid State £2

Hybrid Decca - ITT £5

Philips G8-550 £12
G.E.C. £18

Philips G11, Bush T20, ITT CS 600 Prices on quotation
Many other makes to choose from Refurbished Sets - Showroom Condition Ready to Retail
BRC 9000 £50
Bush T20
ITT CS 600
£85
WE ARE OPEN SEVEN DAYS A WEEK Unit 3 \& 3A, Meadow Trading Estate, Meadow Lane, Nottingham, NG2 3 HO. Nottingham (0602) 864627

SCHRADER TUNABLE UHF Masthead Amplifier RB45 A.S. MV 30DB gain, 1.6DB noise. CH. 17-65. P.S. inclusive $£ 39.50$ P\&P $£ 1.50$, R. VAN REYSEN, 28 Pemberton Road, East Molesey, Surrey.

```
T SPARES, PANELS - AND MANUALS PHILIPS GRUNDIG
TELEVIEW • 01-994 5537
194, Acton Lane, London W. 4.
```


JABCO

SWITCH MODE POWER SUPPLY

MODEL A £32.00

VAT and postage inclusive.
Self oscillating with outputs isolated from mains 8 v . plus 18 V . plus either 125 v . or 150 v . smoothed outputs. Uses 1 i.c. and 1 BU208. Overload and o.p. vott protection within the i.c. without using thyristors etc. Very Reliable.
Apart from obvious usefullness on the bench capable of running up most modern T / Vs. independent of its own P.S. many of which need trigger pulses from the Line T.B.
Fit this P.S. DIRECT into SONY 1340, 1800, 2000 and others as a matter of Course and your troubles are over. Measures only $8^{\prime \prime} \times 3 \frac{1}{2}^{\prime \prime}$ with an output for degaus coils. The possibilities are endless.
MODEL B has a 200 v . optional output in addition. E34 inclusive, with Full circuit and instructions.

JABCO LOPT Tester
still $£ 16.50$ inclusive.
J. BAKER \& CO.,

1 Old Shoreham Road, Southwick, Sussex BN4 4RD.
Tel. Brighton 593315.
TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact COLES-HARDING \& CO, 103 South Brink, Wisbech, Cambs. 0945 584188. Immediate settlement.

TRADE SALES

Regular weekly supplies of good quality TVs, all with excellent cabinets, we look after our sets, we don't knock them about, as you'll see if you call, suitable for re-sale or rent. Working or off the pile. We're always happy to see you, whether its for one TV or one hundred and one.

MONDAY TO SATURDAY 9 to 5.30

EXCELLENT MOTORWAY ACCESS FROM MOST PARTS VIA M1 OR A1 WE'RE ONLY A SHORT DRIVE AWAY

EERUICE PAEES

(minimum 12 words), box number 70p extra. All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television Room 2612, IPC Magazines Limited, Kings Reach Tower, Stamford Street, London SE1 9LS. (Telephone 01-261 5846).

Wetsted TUBES PRESENTS AN UNBEATABLE OFFER
 £26 all deltas one price
 £40 ALL PIIL. ONE PRICE
 * SPECIAL CRT POLISHING SERVICE WHILE U WAIT Only $\mathbf{E 5}$
 * ALL DELTA SIZES FROM STOCK
 * DISCOUNT FOR ORDERS OF 5 CRTs OR OVER
 * FREE DELIVERY WITHIN 20 MILE RADIUS OF MAIDSTONE
 Ring Now
 Maidstone 872400
 or visit our factory.
 Unit 32, Branbridges Ind Est. East Peckham, Kent.
 * Agents required in South
 Prices do not include VAT

* Britains most reliable source of quality TVs.
* Hundreds of working polished TVs.
* New adjustable TV stands.
* Pye $18{ }^{\prime \prime}$ Chelsea's working \& polished $£ 35.00$ in quantity.

Krystal Marketing Ltul, Breedon Cross Storage, Dale Road, Selly Oak,

Phone 021-471 3023
Telex 335540-G Ask for Les

SATELITE TV RECEIVER

Receives 4 GHz band. Ideal for demonstration terminal in U.K. 100 degree Kelvin LNA. $\mathbf{e 3 9 2}+$ VAT (+ Carr). LNA/down converter PCB's stocked for the constructor. SAE data.
HUGH COCKS TV SERVICES, Cripps Corner, Robertsbridge,
Sussex TN32 5RY. Tel. 058083317.

COLOUR BAR GENERATOR
Pal Colour Generator with 11 patterns plus sound. Grey scale, Colour Bars, Red, Green \& Blue Rester, Crosshatch, Dots, Chequar Board, Black Raster,
Raster, Hatf Black \& White
$\mathbf{~} 75.90$

BLACK AND WHITE GENERATOR Crosshatch, Peak White, Dots, Half Black \& White and Grey Scale
£18.50
Grey Scale
In Circuit Transistor Tester
£14.25
Capacitance Meter measures 10pF to 1μ Fcomplete with moving coil meter

Prices include P\&P \& VAT.
C.M.J. ELECTRONICS

Unit 8, 16 Union Mill Street, Horseley Fields, Wolverhampton WV1 3DW. Tell: (0902) 871563

PANELS BY POST. Tested/Untested from $£ 3.00$. Everything stocked. Phone Baldock 894905.

WOODSDALE COMPONENTS RANK BUSH MURPHY TRANSFORMERS
 Line Ouput

Z718 (T703A, T706A)
New (Complete)
$£ 20.50$
Less Focus Module and
Rectifier
$£ 10.50$
T20, T22 (T705A) £9.00
T26 (T7058)
Switch Mode
T114A/B
Genuine RBM Units.
AERIALS
UHF Aerials P \& C Wideband 4 Bay
Bowtie (12.5 dB) $\mathbf{~} 20.00$
Above with built-in Broadband amp.
(27dB) plus stabilised power
supply
$\mathbf{£ 4 5 . 0 0}$
Prompt Postal Service.
Add 15\% VAT to all prices. DISCOUNT for QUANTITIES.
34 Field End Road, Eastcote,
Pinner, Middlesen. HA5-20T.
Tel: 01-868 5580
N. Skehan

Agents Office. Callers by appointment only.

TELEVISION TUNER REPAIRS ALL TYPES

BRITISH, EUROPEAN JAPANESE ETC.

MEN-TU ELECTRONICS LTD. SALTERNS LANE FAREHAM, HANTS.
Tel: 0329-235116

RANK BUSH MURPHY TV PANELS

Repair, exchange, sales service, prompt efficient service. All chassis covered. New PCB available to replace burnt T20 line Panet. We charge only $£ 16$ to repair switch mode power supply. Ring Monday to Saturday and ask for Mr. Kheli.
T. K. Panels Service,

31 Bronte Paths, Stevenage, SG2 OPG.
Tel. (0438) 61567

WANTED

T.V.s, VIDEOS, HI FI, AUDIO

$\mathbf{£ 1 0 0 , 0 0 0}$ то SPEnd

If you have a surplus, we would be delighted to make an offer.

Contact:

Mr Fred Tuck
(0934) 413537

> TRADE COLOUR TV's ALWAYS 200 IN STOCK

> Phillips G8 from f10
> Bush Twin Chip from \mathbf{f} : Pye Chelsea from $\mathbf{5 1 5}$
> Avo repairs prompt service scopes etc. Colour TV's in good working order from $\mathbf{£ 3 5}$. E.G. Philips G8's 22 E35.

> Ring us for spares and type availability
> Also Video
> All stock V2020 and V2023's etc.
> (0934) 514047/512792/27560 P\&R SUPPLIES, Unit 5, Worle Industrial Estate,
> Weston-Super-Mare. Exit 21 M5.

WIZARD DISTRIBUTORS MANCHESTER

SPECIALIST DISTRIBUTORS TO THE TRADE OF T.V. \& VIDEO SPARES.
WE STOCK A FULL RANGE OF PARTS \& COMPON ENTS INCLUDING C.R.T.'s, VIDEO HEADS ETC. RANK - THORN - PHILIPS - ITT DECCA - GEC ETC.
TRADE COUNTER OPEN: 9-4.30 CATALOGUE ON REQUEST. TRADE ONLY. Mail Order Enquiries Welcomed EMPRESS STREET WORKS, EMPRESS STREET,
MANCHESTER M16 9EN TEL: 061-848 0060.

NORTHERN IRELAND DEALERS

We have the best value in secondhand televisions. And our low, low prices are second to none. Philips 550, Decca 100/80/302, Pye 741 series and many other makes available.

Prices: Non workers (complete) from $£ 20$. Guaranteed workers from £38.
We deliver bulk orders anvwhere in Northern Ireland. New loads arriving regularly so phone now for latest stocks.

SM ELECTRONICS

11 Sandholes Road, Cookstown N. Ireland.
Tel: Cookstown (NI) 06487/64277.

THORN SPARES AND PANELS. Nothing over $£ 5$

When replying to Television Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That 1 have remitred the right emittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.

This will assist advertisers in processing and despatching orders with the minimum of delay
S.A.E. S. KNIGHT, 2 Claremont, Hastings, East Sussex.

EX RENTAL C.T.V.'s \& REGUN TUBES

RBM, THORN, DECCA, PYE GEC, GRUNDIG, ITT, DHILIPS G8, G9, G11 JAPANESE
From £10
Also all modules from $£ 4$ untested.
STARLITE ELECTRONICS. 80 Como St., Romford, Essex. Telephone Romford 752537 London Code 3.

$$
\begin{aligned}
& \text { COLOUR TV'S } \\
& \text { FROM £15.50 + VAT } \\
& \text { GUARANTEED COMPLETE GOOD CABINETS } \\
& \text { VHS VIDEOS PLUS VIDEO SPARES } \\
& \text { PYE CT205/CT200, BUSH A823, TH3500/8500 Phil G8. } \\
& \text { DECCA. BRAD. ITT. CVC5. GRUNDIG } \\
& \text { SMITHS ELECTONICS } \\
& 43 \text { PARK PARADE } \\
& \text { LONDON NWIO } \\
& \text { 01-965 } 1230 \\
& \text { 01-961 } 3997
\end{aligned}
$$

COLOUR T.V.s

THE BEST IN LONDON 200 + TVs WEEKLY

LOADS SMALL SCREEN WORKING SETS TO
ORDER - ALL MAKES
WINDSOR WHOLESALE TEL: 01-968 8771.

SUFFOLK T.V. TUBES

1 PARK ROAD, Hackbridge, Surrey SM6 7ER

Tel: 669 7825/7826
Suppliers of Mono and Colour Tubes to major rental companies. All Colour Tubes hot pumped at $385^{\circ} \mathrm{C}$ and rebanded to British Standard 4151972 clause 18.-2. 19" and $22^{\prime \prime}$ Tubes approved. Other types pending.
BRITAINS LARGEST INDEPENDANT MANUFACTURER. REBUILDERS SINCE 1958.

SPECIAL CLEARANCE

 of G8 22 inch from $£ 14.50$, G8 26 inch from $£ 15.00$
Guaranteed-Complete Sets from
 £10.00
 Trade Workers
 Panels By Post
 Mono's
 from from
 £25.00 from $£ 1.00$
 Stands - Aerials - Accessories Etc.

WORKING SETS
Phone us first for quantity, we can give an
UNBEATABLE PRICE! ! !
OPEN 5 DAYS -
Phone:
Baldock 894905, Hitchin 31644
SECTION THREE, UNIT FOUR, SERLCOMPLEX, LONDON ROAD, BALDOCK, HERTS.

Powar Line T/Base

Sush and Pholps please state early or late model
U-VIEW TUBES
29, WARMSWORTH ROAD
DONCASTER, YORKS. DN4 ORP.
Tel. 0302855017
Callers ring first. Open every day, including Sundav.

GRUNDIG. We sell complete working sets from $£ 40$. Reconditioning panels from $£ 4$. We buy remote control handsets. OCHREMILL 0785-814643

REBUILT COLOUR TUBES DELTA TYPES

Example Prices
All sizes up to $22^{\prime \prime}$ - $\mathbf{£ 2 8 . 0 0}$
All sizes up to $26^{\prime \prime}$ - $£ 32.00$
All In Line P.I.L. Mono
Gaming Machine C.R.T.s
$\begin{array}{ll}20 \mathrm{AX} \\ £ 38.00 & \text { Fast U.K. Delivery } 30 \mathrm{AX} \\ £ 48.00\end{array}$ Call or Phone:
RE-LIFE T.V. TUBES PLANE STREET, OLDHAM, LANCS. 061-665 2668
Big reductions on Contract Orders Home or Overseas. Wholesalers Required
in certain parts of the U.K.

BARRY TV SERVICES

(EAST ANGLIA)

Your friendly wholesalers. We cater for the smaller dealer who requires regular small supplies of quality used colour TV's. From $£ 25$ + VAT. Fully working with good tubes and cabinets, straight from our retail shelves, ready to sell or rent.
Delivery available
Contact John, Dave or Steve on Ely 61462
or Cambridge 69215

[^2]| Tharn 3000/3500 | |
| :---: | :---: |
| Thorn 9000 | |
| UNIVERSAL | |
| 1 year guarantee | |
| UNIVERSAL TRIPLERcan be used | |
| G.E.C.. I.T.T., Pye. Rank. Decca \& Continental sets. | |
| WING ELECTRONICS | |
| Waylands, | nd, |

BOOKS AND PUBLICATIONS

COMPLETE FULL-SIZE SETS any published service sheets $£ 2+$ LSAE except CTVs/Music Centres from $£ 3$ + LSAE. Manuals from 1930 to latest. Quotations, free 50 p magarine, price lists, unique technical publications for sale. Repair data/circs almost any named TV/ VCR $£ 8.50$ by return. TIST, 76 Church Street, Larkhall, Lanarks ML9 1HE. Phone (0698 883334).
"RADIO AND TELEVISION SERVICING" books, new editions for the last 6 years always in stock. Prices on request. BELLS TELEVISION SERVICES, 190 Kings Road, Harrogate, N. Yorkshire. Tel, 0423 55885.

COURSES

CONQUER THE CHIP.. . Master modern electronics the PRACTICAL way by SEEING and DOING in your own home. Write for your free colour brochure now to British National Radio \& Electronics School, Dept. C4, Reading, Berks RG1 1BR.

SITUATIONS VACANT

CANNES FILM FESTIVAL. Television, Video engineer required for 2 or 3 weeks in May. All expenses paid. Phone 0908641862.

MISCELLANEOUS

BURGLAR ALARM EQUIPMENT. Latest discount catalogue out now. Phone C.W.A.S. ALARM 0274 731532.

HOME SECURITY

FREE CATALOGUEI
Our Great New lliustrated Catalogue is Packed with Information on Superb Quality. Professional Burglar Alarm Equipment.
It TELLS YOU ALL YOU NEED TO KNOW
TRADE ENQUIRIES WELCOME

NO CHAROE FOR POST \& PACKING NO CHAROE FOR POST \& PACKING
SEND S.A.E. OR TELEPHONE NOW SEND S.A.E. OR TELEPHO
FOR YOUR FREE COPYI

Prop. J. Chadwick
 SECURITY MANUF ACTURERS 217 Warbreck Moor,
Aintree, Liverpool L9 OHU Tel: 051-5238440

WANTED

WANTED TA7153P I.C. for Toshiba colour TV Phone (evenings) Newcastle 860676.

WANTED CONTINUED

WANTED: Buy/borrow/copy - circuit/manual: Telequipment D53 scope, LAWRENCE, P.O. Box 4, Camborne, Cornwall.

WANTED. We will clear any amount of colour sets from small Rental Companies, Hotels, etc. Please phone P \& R Domestic Electrical Clearance Supplies, Weston Super Mare (0934) 514047.

WANTED CRT 510JGB22TC01 with bonded yoke for Sharp C2051, reasonable. Cheltenham 0242-517048.

COMPLETE TUBE RE-GUNNING plant. Electric ovens also Lopt winding machine. KELLEHER BROS, TV House, Kanturk, Cork, Ireland. Tel. 029 50046.

WANTED PHILIPS PM5334 Television Sweep Generator. Telephone 01-328 7641.

G11's WANTED in 1's or 100's. Let us know what you have. Please telephone: TV SALES on Watford 45590.

FOR SALE

TELEVISION Nov. 1973 to Dec. 1982 Complete. Best offer. Must sell (0379) 3222.
WORKING COLOUR £35. Top trade value. Delivery available. Telephone 0617973604.

SATELLITE TELEVISION DISHES (1.2 dia) for home construction from sheet aluminium. Full drawings and details $£ 1.50$ inc post. W N JONES, 2 Ty'n Rhos, Gaerwen, Gwynedd LL60 6HL.

SPECIAL OFFER PANEL CLEARANC	
Rest of panels, 3500 at .. Philips 68 Power supply	
Rest of panels, 68 at rap each, other makes available on request. All panels listed above are untested. For working	
paneld 10% VAT on goods, plus p8p. 1 panel E200; 2 panels $\mathbf{F 2} .50$; 3 panels $\mathbf{E D O}$ etc.	
For further details telephone: (0203) 714213	

ORDER FORM please Write in block capitals
Please insert the advertisement below in the next available issue of Television for
insertions. I enclose Cheque/P.O. for $£$
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd and made payable to Television)

NAME.

Send to: Classilied Advertisement Dept.

NAME..
TELEVISION
ADDRESS
Classified Advertisement Dept., Room 2812
King's Reach Tower, Stamford Street
London SE1 9LS. Telephone 01-281 5846.
35p per word, minimum 12 words. Box No. 70p extra.
Company registered in Engtand. Registered No. 53626. Registered Office: King's Reach Tower. Stamford Street, London SE 1 gLS.

EERUICE PAEES

FOR SALE - CONT.
110 MONO TELEVISIONS $£ 75$ the lot. Buyer collects. Telephone Lincoln 754280.

SCOPEX 14D - 10V little used £195. Manor Supplies MkV generator $£ 55$. Redbourn 2884

JAPANESE COLOUR TVs, Panasonic, Hitachi, Mitsubishi, Toshiba, Sharp. Fully refurbished - to trade only. J. M. PEARSON TELEVISION 0484 863489.

SPECIAL TV CLEARANCE	Discount for van load, direct from sources.	
MakesExample Prices	NonWorkers	Werking
Philips G8's, 2 chip Bush/Murphy	516	$\underline{125}$
Thorn 3000, 3500, 8500	E14	175
Thorn 8800, 9000, 9800,		
Touch tune sets etc.	5	810
Bush T20's, Philips G11's	550	870
GEC Solid State/Pye 18", 22"	¢19	130
ITT CVC 5/8/9	E14	E20
Decca/GEC/Pye-Hybrid	£ 5	f10

Mono in batches of 20 at $£ 2.00$ each. Discount for quantity. Other makes available on request.

SPECIAL OFER! MS ELECTRONICS Philips G8's, 26" Unit 1. Warwick Street, Earlsdon, Coventry. Tel. (0203) 714213

NB: Note to give prompt service telephone to order in advance to avoid disappointment.

BUSINESS/PROPERTY FOR SALE

TV RADIO ELECTRONIC SERVICING business for sale. Holmfirth, W. Yorkshire. Offers around $£ 5,000$. Telephone (0484) 686573i evenings.

FANTASTIC OPPORTUNITY
Shop \& Business busiest main road into Central London.
Low Rent + Rates, Long Lease. New shopfront, Grills, Alarm Bags of Space - Repairs + Sales
Quick Sale, Hence £9,950 OVNO 202-8866 Day, 907-9232 Eve.

VIDEO

VIDEO WEST

258 HICHER UNION STREET - TORRE - TOROUAY TO2 50 U Telephone (0306) 2:88s and 211880
V.H.S. VIDEO

RECORDERS
"EX RENTAL"
QUANTITY SUPPLIED
JV.C. FERGUSON
TRADE ONLY \star ALL GOOD \star
THE SPECIALISTS

EUROLEC VIDEO SERVICES

Tel: 016692611
Telex: 89319 Eurlec
Address for correspondence only:
35 Sandy Lawe South, Wallington, Surrey SM6 9RF
As forecast, further quantities of VCR cassettes have arrived, mainly Philips, some BASF. All prices quoted include VAT and postage.

N1700 Library Cassettes

New unused, some opened and erased with library labels removed.
LVC120 £10 LVC90 £7.50 LVC60 £5.
New and boxed LVC Cassettes LVC90 £8. 50

LVC60 6.50.
1500 Format Cassettes Used/Tested VC60 £6
VC30 $£ 4$
VC45 55
VC15 $\mathbf{f 2} .50$
Edit equipment currently available. JVC heavy duty edit suite
£ 9,500
Sony 2860
£ $£, 000$
Sony 28050 suite
£1,950
(plus VAT)
NTSC - PAL Transfers, phone for details VAT Reg. No. 335709645

SERVICE SHEETS

30,000 SERVICE SHEETS IN STOCK. COLOUR MANUALS ALSO AVAILABLE

TV Monos, Radios, E3.00. Tuners 83.00. Tape Recorders, Record Players $\mathbf{8 3 . 0 0}$. Transistors $\mathbf{E 3 . 0 0}$. Car Radios $\mathbf{3 . 0 0}+$ SAE Stereograms \& Music Centres 23.00. Radiograms 83.00 . Also Colour available. State if circuit will do if lengths. All Sheets $\mathbf{£ 3}$ except colour. SAF please Old Valve Radios $£ 3+$ SAE 9×3.
C. CARANNA, 71 BEAUFORT PARK, LONDON NW11 6BX.
(MAIL ORDER)

TELEVISION SERVICE SHEET SPECIALISTS

Thousands of British, European, and Japanese models in stock
Colour $\mathbf{£ 2 . 0 0}$ Mono $\mathbf{£ 1 . 5 0}$ (post free) Manual prices on request.

Send stamped envelope for free catalogue and enquiries
SANDHURST PUBLICATIONS (MAIL ORDER)
49C Yorktown Road, Sandhurst, Camberley, Surrey GU17 7AG

PLEASE MENTION TELEVISION
 WHEN REPLYING TO ADVERTISEMENTS

BELL'S TELEVISION SERVICES for service sheet on Radio, TV, etc. $£ 1.50$ plus S.A.E. Service manuals on colour TV and Video Recorders, prices on request. S.A.E. with enquiries to B.T.S., 190 Kings Road, Harrogate, N. Yorkshire. Tel. (0423) 55885.

TECHNICAL INFO SERVICES

76 Church St-Larkhall-Lanarks
Giamt TV \& VCR DIAGRAM MANUALS
Brit CTVs
3 vols £45
Vol. 1 Decca G.E.C. ITT £17
Vol. 2 Philips Pye Redif.
Vol. 3 Rank Bush Thorn £17
Foreign CTVs (now updated) 2 vols $£ 32$ Mono (Stand + Port) 2 vols $£ 32$ Early VCR (VHS/Philips)

VCR later models inc. Betamax $\quad \mathbf{1 7}$
Domestic Equipment Exploded Diagrams
in 2 huge binders for
£32
New T.V. Rep. Manuals $£ 7.50$ each
1983 Brit. CTV or Foreign CTV 4
Complete set of 15 TV Rep Mans for $£ 105$
Unique T.V. Repair course
$£ 9.50$
The only practical radio servicing and repair course
$£ 9.50$
Large SAE brings FREE 50p magazine
inc. service sheet/details of unique T.V. publications. Any quotation plus price lists, etc.
Full size service sheets
$\mathrm{E} 2+\mathrm{I} . \mathrm{s} . \mathrm{a} . \mathrm{e}$
CTVs/Music Centres
$\mathrm{f3}+$ l.s.a.e.
Worlds largest collection of service manuals 1930 to date. From $£ 4.50$ to $£ 35$ each.
e.g. Autovox/G8/A823 £7.50 each Integrated TV repair system £195. Contains over $£ 250$ normal prices.
£195.

FOR FAST QUOTES RING 0698883334

AERIALS

AERIALS AND ACCESSORIES. Terrific range of quality equipment including some off-beat items and some real clearance bargains. Keen prices. New catalogue 50 p (refundable). WRIGHTS AERIALS, 43 Greaves Sike Lane, Micklebring, Rotherham.

2 METRE PARABOLIC DISHES

Glassfibre Construction
Suitable for 4 and $12 \mathrm{GHz} \mathbf{£ 2 9 0}$
Polar Mounts and Feed Supports Available. Send S.A.E. for Details
SP ANTENNA SYSTEMS,
3 Woolpack Corner, Biddenden, Ashford, Kent TN27 8BU

Tel: 0580291090
AERIAL BOOSTERS
Noxt to the set fitting
B45H/G-UHF TV, gain about 20dts, Tunable over the complete UHF TV band. Price $£ 8.70$.
AMPLIFIED SET TOP AERIALS for UHF TV, trebles the gain,
Price $\mathrm{f11,70}$
All boosters we make work off a PP3/006p/6F22 type battery or
8V-18V DC. P\&P 30p par order
ELECTRONIC MAL ORDER, 62 Brides \$t Ramsbottom,
Access Nisa Cards Welcome
SAE Leaflets
AERIALS AND ACCESSORIES
North Londons Specinlist Aeriol Suppliar Whovesed and Mal Ordor.
VHF/UHF antennas, masts, brackets, cable, amplification and distribution equipment etc. All types of aerial hardware and software supplied. Single and multipoint
systems planned and installed.
Send 50p for our new 1983 catalogue and price list
S.C.S. AERIALS
(Aerial Distributors)
26-28 Port Vale, Hertiord, Herts. SG14 3AB. Tel: 099250478.

TO ADVERTISE
 IN THIS SPACE

 RING MANDI01-261 5846

SEND7 Components TO ORDER SEE BACK PAGE			Complete new GEC portable chassis v.cap/LOPTI Field + Jungle panel for GEC 3133/3 GEC 2110 line panel with transformer GEC 2110 tuner unit + IF Panel Pye/Chelsea Timebase panel with LOP Pye 731 line O/P panel with transform Pye 731 Chroma/lF		$\begin{aligned} & \hline 8 \mathrm{n} 2 / 2 \mathrm{KV} \\ & 20 \mathrm{n} / 2 \mathrm{KV} \\ & 0.0082 / 2500 \\ & 150 / 3500 \\ & 1800 / 4 \mathrm{KV} \\ & 4.7 \mathrm{ft} / 5 \mathrm{KV} \\ & 170 / 8 \mathrm{KV} \\ & 180 / 8 \mathrm{KV} \end{aligned}$	15 p 15 p 15 p 10 p 5p 10 p 10 p 10 p 10 p 10 p		
Thorn Spares 9000 tube base and panel	11.50	BY 210/600 ${ }^{\text {c }}$	Pye 731 IF panel + tuner Pye $607 / 205 \mathrm{Line}$ panel with transform	$\boldsymbol{1} 10.00$ $\mathbf{1} 10.00$	21018 KV $1000 / 10 \mathrm{KV}$	10p 10 p		
9000 Front Panel	1.5	BY 210/800 10p	Pye CDA/205 panel	${ }^{\text {¢ }} 8.00$	210712 KV	10p		
9000 Front Panel (remote)	18	BY 223 ${ }_{\text {BY } 224 / 600: 4.8 \mathrm{~A} / 600 \mathrm{v} \text { bridge } 50 \mathrm{f}}^{\text {f }}$	GEC portable chassis + 1. IOPTI 21 Thom $1613 / 1713$ chasis	¢4, 9.00	10000112 KV $1200 / 2 \mathrm{KV}$	10p		
	E6	$\begin{array}{ll}\text { BY } \\ \text { BY 226 } & \\ \text { BY } 227 & 15 \\ \text { B }\end{array}$	Hills 520 multimeter + case. 20,0000 /volt, fuse diode protected + logic test facility. $10 \mathrm{meg} / 200$ volt					
9000) Frame panel ¢8 Y0(0) Cyclops panel $\mathbf{¢ 1 . 5 0}$		BY 228 20p	NEW MULLARD TELETEX	3300/50 25p	Multi-Caps			
		BY 229/400 30p	Decoder Panel (VM6230) \quad ¢15.00	2.2/63 5p	KT3/200/25/25/385v	81.00		
8000/8500/9000 chroma pancl $£ 15$		BY 234 BY 237	Decodel Panel (M) Panel 6101	15/63	47/220/350v	${ }^{60} \mathrm{p}$		
		$\begin{array}{ll}\text { BY } 237 \\ \text { BY } 238 & 5 p \\ \text { PY }\end{array}$	$\begin{array}{ll}\text { Panel } \\ \text { Panel } 6330 & \text { ¢15.00 }\end{array}$	$47 / 63$ Bipolar ${ }^{\text {a }}$	$150150 / 100 / 100 / 100 / 320 \mathrm{v}$	2.00		
8500 convergence panel	¢6	$\begin{array}{ll}\text { BY 238 } & \\ \text { BY } 254 & \text { 15p } \\ \\ \text { BY }\end{array}$	G8 Tuner Unit + Panel $\mathbf{~} 9.00$ G8 IF Panel $\mathbf{~} 12.00$	$100 / 63$ $\mathbf{6 p}$ $\mathbf{2 2 0 0 / 6 3}$ $\mathbf{5 0 p}$	$2500 / 2500 / 63 \mathrm{v}$ $470 / 470 / 250 \mathrm{v}$	50 p 50 p		
		BY 255 30p BY 298 10 p BY		2200/63 DISPLAYS	470/470/250v $150 / 200 / 200 / 300 \mathrm{v}$	${ }^{50 \mathrm{p}}$		
	ES^{15}		G8 IF Panel G8 Convergence Panel	4040 Clock DISPLAYS		¢1.70		
	1600 Mains lead. switch 35006 push button + cable		BY 299 - 10 p	G8 Line O/P Panel \quad ¢12.00	7 seg Red Led	$\begin{aligned} & 400 / 400 / 200 \mathrm{v} \\ & 300 / 100 / 100 / 16 / 275 \mathrm{v} \end{aligned}$	$¢ 1.50$ 40 p	
			BY 527 20p	G8 Power Supply \quad ¢9.00	2 digit LED 8.8 8	$100 / 200 / 325 \mathrm{v}$	¢1.50	
$\begin{aligned} & 35006 \text { push button + cable } \\ & \text { form } \end{aligned}$		BY 407a	G8 6 Sloping PBU $£ 12.00$	2 digit LED $\div 1.8$ with panel	$\begin{aligned} & 150 / 150 / 100 / 375 \mathrm{v} \\ & 300 / 300 / 100 / 32 / 32 / 300 \mathrm{v} \end{aligned}$	2.00		
T605 IVNPN T066 80v/6A		BY 602 10p	G8IF \& Chroma \quad ¢15.00	MC14511	$\begin{aligned} & \text { 1500/2000/30v } \\ & \text { Jelly pot Thorn 00D } 4 / 013 \end{aligned}$	50 p		
$9(00)$ Sound output panel	¢1	$\begin{array}{ll}\text { F } 247 \\ \mathrm{XK} 3102 & \text { 10p } \\ \text { 50p }\end{array}$	G8 Chroma $\mathrm{E8.00}^{\text {en }}$	4700/63		$\begin{aligned} & \text { Jelly pot Thorn } \\ & 550 / 150 / 100 / 100 / 320 \mathrm{v} \\ & \hline 2.00 \end{aligned}$		
3500 Focus unit $\quad 1.50$		XK 3102 50 p XK 3123 50 p	G11 IF Detector $\quad \mathbf{5 3 . 0 0}$	$\begin{array}{ll}250 / 64 \\ 3300770 & 10 p \\ 50 p\end{array}$				
4090 thick film.		Hitachi $2 \mathrm{~A} / 1500 \mathrm{~V}$ metal case wire	C11 Selector gain module	$\begin{array}{ll}330070 \\ 1 / 100 & 50 p \\ 50\end{array}$	${ }_{275 \mathrm{v}}^{100 / 350}+300 / 200 / 100 / 16 / \mathrm{f2.00}$			
$00 \mathrm{~S} 1-010-\mathrm{EOO3}$ $00 \mathrm{~S} 1-012-\mathrm{EOO2}$ £1 \&1		end 20 p		$1 / 100 \times 10$	300+300)/300	¢1.00		
(081-012-0108 E1				$22 / 1000$		70 p		
$\begin{array}{ll} \text { O0S1-018D } & \text { £1 } \\ 3500 \text { Power Supply } & \text { £5 } \end{array}$		G8 Trans. Philips Gil Split Diodc	with IC SAS660 SAS670 \quad \% 3.00	$47 / \mathrm{M} / 100$ 40100	200/100/100/350v	51.50		
		CVC820 Split Diode ITT ${ }_{\text {E }}$	(e)	$\begin{array}{ll}\text { 4700100 } \\ 2000 & \text { 200 }\end{array}$		50p 75 p		
		Thorn B/W AD5308F + Stik +		47001100	$200 / 150 / 150 / 300 \mathrm{v}$	1.00		
3500 IF panel		Lead $\quad 11.50$	Z909B RANK IF Panels Export 5.5 MHz 2 I.C.'s	$47 / 160$ 800160				
3500 Frame panel	${ }^{4}$		TBA1205B TCA27050 $\quad \mathbf{2 . 5 0}$		ITT Panels			
3500 Video panel	${ }_{5} 5$	$\begin{array}{ll}\text { GEC 2110 } \\ \text { Mullard AT } 2036 & \begin{array}{l}\text { ¢7.00 } \\ \text { f. }\end{array} 00\end{array}$	Z743 RANK IF Pane!	$\begin{array}{lr}.1 / 250 \text { Pulse } & \text { Sp } \\ \text { G110.47/250 } & \text { 10p }\end{array}$	CMA 11	${ }^{\text {f2 } 2.00}$		
3500 Line panel	55	Pye mono		2.2250 v , 10p	CMA 30			
3500 Al Diode	20p		SC9503P	3n3/250 A.C. 10 p	CMC 10/2	£5.00		
Remote unit, Ilic, transformer. relay +5 volt unit			Pye Gll Front panel with transducer, pots. tuner pots, 6 pb switch + lead	$\begin{array}{ll}.391250 V \\ 4 \mathrm{~V} 7250 \text { tested } 5 \mathrm{KV} & 15 \mathrm{p} \\ & \\ 25 \mathrm{p}\end{array}$	CMC 16	E4.00		
		$\begin{array}{ll}\text { GEC Portable Line Trans. } & \mathbf{£ 3 . 0 0} \\ \text { EHT Split Diode Leads } & \mathbf{£ 1 . 0 0}\end{array}$		$\begin{array}{ll}4 \mathrm{n} / 250 \text { tested } 5 \mathrm{KV} & \\ 22 / 250\end{array}$	CMC 38	¢88.00 81.50		
IC board with set of SN74LS4000 Tube base	f1	EHT Cable/Metre 20 p	GEC V/cap VHF/UHF tuner and IF+ sound O/P PC: 706B3	$47 / 250$ 10p	CMC 47	f1.00		
	4060 Tube base	Ex panel " 14 " Fidelity portable ${ }^{\text {E5 }}$		100/250 20p	CMC 52	115		
Beam limiter panel	${ }_{\text {11.50 }}^{50}$	Triplers $£ 3.00$		G11470250V 51.75	CMC 57 $C M$	¢6.00		
		11 TEZ Rank ${ }^{\text {G3,00 }}$	GEC Power Supply		CMC 59	\&8. 00		
3500 Power panel complete f1 3 Way regulated adaptor 240 V		G9 Philips	(Export) $\quad \mathbf{1 1 0 . 0 0}$		CMC 67	${ }_{8}^{2} 3.75$		
		GEC 2110	G11 dynamic correction panel £6	800/250 ${ }^{\text {20p }}$	CMC 67/2	E4.00		
$6 \mathrm{~V} / 7.5 / 9 \mathrm{~V} / 300 \mathrm{~mA} \quad £ 3.50$		90000 Thorn ${ }^{56}$	CVC 20 Front panel with sliders +	32/300) 20p				
Rank/Toshiba preh unit ${ }^{\text {a }}$, 50		9500 Thorn ${ }^{\text {E4.50 }}$	${ }^{\text {mains input panel }}$ E4	4/350 5p	CMD 12	${ }_{510} 10$		
		2040 GEC [53.50	CVC 40 PUSH BUTTON ASSY	$8 / 350$ (${ }^{\mathbf{8 p}}$	CMD 33	¢5.00		
		GEC TVM25 Tripler $\quad \mathbf{8 2 . 0 0}$	${ }_{\text {with sliders: complete with lamp }}^{\text {cis }}$ (${ }_{\text {cols }}$	$12 / 300$ 10p	CMD 40	¢5.00		
4 Push button unit preh $\$ 1.00$		Universal Tripler TVK $76 / 9$			CMD 41	¢5.00		
			${ }_{\text {CVC }} 5$ Mains onjoff +5 pots ${ }_{\text {col }}$	$\begin{array}{ll}16 / 350 & \\ 3350\end{array}$	CMF 25	¢2.00		
v/cap. GEE-Deccatype $£ 7.00$		$\begin{array}{ll}\text { G8 Philips } & \begin{array}{l}\text { ¢4.50 } \\ \text { Decca } 80100\end{array} \\ \mathbf{8 4 . 5 0}\end{array}$	GEiversal Fergencts. Fits Pye, Thorn	$33 / 350$ $50 / 350$ 20p 10 p	CMF 26	${ }_{\text {c }}$		
7 Push bution for CVC5 ITT 88.00		$\begin{array}{ll}\text { Decca } 80 \text { 100 } \\ \text { Grindig TVK } 52 & \mathbf{£ 4 . 5 0} \\ \mathbf{£ 2 . 5 0}\end{array}$	and Decca Units.	$220 / 350$ 0 30p	${ }_{\text {CMF }}$ CMF	¢2.00		
$\begin{array}{lr}\text { KT3 (Export) 12 P.B.u } & £ 2 \\ 6 \text { Push button Unit Thorn } & \mathbf{£ 1 . 0 0}\end{array}$		11TBO	$\begin{array}{ll}\text { Large Type } & 75 \mathrm{p} \\ \text { Decca Small } & \\ \end{array}$	300/350 ${ }^{\text {a }}$	CMH 10	${ }^{\text {f1. }} \mathbf{5 0}$		
		11 THY ${ }^{\text {d.00 }}$	KT3 Focus Unit		CMH 31	${ }^{\text {¢1.00 }}$		
6 Push button unit for GEC 2040 and ELC' 1043/05 $£ 6.00$		D22 for Pye $18{ }^{\prime \prime}$ colour	CVC 32 Focus Unit	$10 / 375$ $22 / 375$	CMK 12 (untested)	E4.00		
			Focus Rod 25p	2201385 75p		E1.50		
Hearing aid unit £ 3 6 Push button unit PYE $713 \mathbf{8 7 . 0 0}$		$\begin{array}{ll}\text { LP } 1193 / 63 & \text { ¢4.00 } \\ \text { BG 100/41 } & \text { ¢3.25 }\end{array}$	G11 focus ${ }^{\text {22.00 }}$	$330 / 385$ CVC 820HT $\quad 60 \mathrm{p}$	CMN 21	${ }_{\text {¢ }} 1.50$		
		BG $100 / 61$ $\mathbf{£ 3 . 2 5}$ T/text ultrasonic rec'r panel $\mathbf{£ 1 4 . 0 0}$	Diode	O.17400 15p KT3 E $39 / 400$ $\mathbf{2 0 p}$ $.56 \mathrm{~K} / 400 \mathrm{v}$ $\mathbf{2 0 p}$	CMN 40	${ }^{1} 1.00$		
$\frac{71 \text { lamps for P.B./Unit }}{\text { Mains Droppers }}$					CMP 10	¢2.00		
Pye $7313+56+27 \mathrm{R}$	${ }_{50} 5$	Video cassette lamps on lead. 50 or 3 for 1.0012.14 V .	$\begin{array}{ll}\text { TV11 } \\ \text { Remo TVI2SP } & \text { S0p } \\ \text { TV13 }\end{array}$					
Pye 3R5/15R/45R					CMP 30	${ }_{\text {¢2 }}^{\text {¢2.00 }}$		
Thorn 50/17/1K5 120/20/20/48/117	£1.00		TV14 50p	8/400 15p				
	£1.00	with all I.C.'s + pots ${ }_{\text {G }}$	TV18 ${ }_{\text {TV20 }}$	33/400 ${ }^{\text {3 }}$	CMS 11	${ }_{\text {c }} \mathbf{8 2 . 0 0}$		
270/10/6 for Thom 4000	${ }^{50}$		TV20 ${ }_{\text {TV4 }}$	${ }^{4009400} \times 1400 \mathrm{~V}$				
	fl.10 SOP		Thorn 14/1500 rec stick ${ }^{\text {apm }}$	$\begin{array}{ll}324 \mathrm{~K} / 400 \mathrm{~V} & \text { 20p } \\ 20 / 450\end{array}$	CMU 14	${ }^{10.00}$		
Thern 50-40R-1K5Ae Socket \& Lead		G11 Scan Coils			CMU 30	¢7.00		
GEC, ITT, Philips. Pye	$\begin{array}{r} 25 \mathrm{p} \\ \mathrm{f1} \\ \mathbf{3 0 p} \end{array}$	G11 100K tuner pots 12 for $£ 1$			CMU 45	87.00 87,00		
$7 \times 31 \text { Thom }$		KT3 IF panel £6.00	Condensers	$.047 / 600$ $15 p$ $0.047 / 1000$ 10 p	CMZ 30	f5.00		
Speakers		KT3 line OSC transformer £1 KT3/K30 infra-red receiver						
		$\begin{array}{ll}1500016 & \\ 330016 \\ & \\ 1000000\end{array}$	$\begin{array}{ll}0.01 / 1000 \\ 0.171000 & 10 \mathrm{p}\end{array}$	$\text { GMC } 120$				
$\begin{array}{lrr} 6 \times 4 \mathrm{Gl1} & 25 \mathrm{ohm} & 70 \mathrm{p} \\ 5 \frac{1}{2} \times 2 \frac{1}{2} & 3 \mathrm{ohm} & £ 1.00 \\ 00 & 70 \end{array}$				$100000 / 16$ 1500016	$\begin{aligned} & .15 / 1000 \\ & .47 / 250 \mathrm{~V} \text { A.C. } \end{aligned}$	GMR ${ }^{\text {G4 }}$	${ }_{\text {c }}$	
	70 p	(home) $\quad 10$	$\begin{array}{lr}330118 \\ 47 / 25 & 20 \mathrm{p} \\ 4\end{array}$	$\begin{array}{ll} .47 / 250 \mathrm{~V} \text { A.C. } & 10 \mathrm{p} \\ .001 \mathrm{~K} / 1250 & 10 \mathrm{p} \end{array}$	VCA 20	${ }^{1810}$		
5×3 50 ohm 50 p		K30 drawer unit with 1C"s		(005/1500	VCA 21			
		(export) ll^{10}	470125 5 p 68025 5 p 1005		VMC 34	${ }_{85}$		
5×3 15 ohm 80 p $\mathbf{6 \times 4}$ 15 ohm $\mathbf{8 1 . 0 0}$		KT3 AF SocketsKT3 receiver panel	$1000 / 25$ Radial 10 p	$.0105 / 1500$ $\ln 8 / 1500$ 10 p 15 p		84.00		
		$1500 / 5$ Radial 10	VMC 51 + 5					
5×38						KT3 line driver transformer $\mathbf{5 0} \mathbf{p}$ Decca 80/100 IF panel		$2 \mathrm{nof1500}$ (15p
			$\begin{array}{ll}4700125 & \\ 500025\end{array}$	$\begin{array}{ll}\text { 2n2/500 } \\ \text { G11.11000/1500 } & \text { 15p }\end{array}$	Transducer Hand Set Insert.			
		Trans. ${ }^{\text {Nair }}$ 25p	3500130	.01/i600 15	crystal, transducer, SAA 11			
		5 button touch tuner $\mathrm{BBCl} / 2$ITV1/2video with ic $\mathrm{SAS} 560 \mathrm{~T} /$	4701035 220035	$\begin{array}{ll}\text { G11.8200/2KV } \\ 0.1 / 2 \mathrm{KV} & \text { 15p } \\ \\ \text { 20p }\end{array}$	Thorn 4000 insert with 7			
		100940	20, $10 \mathrm{n} / 2 \mathrm{KV}$ (15p	buttons	${ }^{55.00}$			
$\begin{array}{lll}\text { 23' dia } & 80 \mathrm{ohm} & 75 \mathrm{p} \\ 3^{\prime \prime} \text { dia } & 80 \mathrm{chm} & 75 \mathrm{p}\end{array}$			Control panel 5 sliders + mains	22040 40040 40		Decca RC 11	£14.00	
		lead	${ }^{4250 / 40}$ (1040	${ }_{5 \mathrm{n} 2 / 2 \mathrm{KV}}^{0.02 \mathrm{KV}}$	G11 Infra-red full teletext			
		Gil 8 touch button unit replaces old 6 P.B.U. e24		${ }^{6 n 2 / 2 \mathrm{KV}}$	C1t Ultrasonic full teletext for			
Diodes		Tube base + base unit for 820Euro chassisel.00	$\begin{array}{ll}2500740 \\ 1000150 & \\ \\ \end{array}$	20n/2KV	G26c 674/02 and G22c			
BY 127 120			1250550	2n ${ }_{\text {2n } 2 / 2 \mathrm{KV}}^{202}$	${ }^{66 / 02}$ Philips, 2 but	¢ 16.00 8.00		
			$2000 / 50$ 20 p $3000 / 50$ $\mathbf{2 5 p}$	${ }^{75000 \mathrm{P} / 2 \mathrm{KV}} 4$	Phank, Infra-red	¢10.00		
BY 164 $\mathbf{5 0 p}$ CVC $20 / 25 / 30 / 35 / 40$ decoder BY 176 $\mathbf{2 5 p}$ CVC			Infra Red and Ultrasonic G11 Teletext Decoder Panel		Dynatron-Full remote CTV	62.		
				${ }_{\text {¢ }}^{4289}$				
					RANK \& ITT Mains Remote Swich	2865 ohm	Phac934; 7228/7324; Ki2 2	
			RANK \& $\mathrm{Gl1}$ Mains Switch	${ }_{50}{ }_{50}$	$747 / 1 \mathrm{ST} 66 \mathrm{~K} 1820^{\circ}$	¢12.00		
BY 190	40 p	CVC 40/45 IF panel 55	4 amp Mains Switch	${ }^{25} \mathrm{p}$	G11. Full remote top button			
BY 196	30 p	40K Transducer	GEC Mains Switch 4 amp	${ }^{30}$	assy.	¢12.00		
${ }^{\text {BY }}$ BY 20814	${ }^{10} 8$			${ }_{\text {f1, }}^{\text {f0p }}$	G11, Full remote repair ser			
BY $204 / 4$ BY 206	$8 p$ $8 p$		${ }_{\text {G8 Mains }}$ THwiry Mains Swich	75p	le			
BY $210 / 400$	$5_{5 p}$	Gll Line Driver Transformer 35p		24 p 20 p	channel for 60 CP 2605	86.00		
			RANK TOSHIBA Transductor	$1{ }^{\text {cop }}$	Philips infra red full rem			
ternational Rectifier EHT	iodes	G770/HV34 6KV 3 for 8p			KT3/K30 T/Tex	18		
6Af600V Stud Diodes 6 A 1000 V Stud Diodes	${ }_{20}^{20 p}$	BTW 42/806R 25A43 PNP C/P	${ }^{\text {a }}+250 \mathrm{~K}+100 \mathrm{~K}+500 \mathrm{~K}+50 \mathrm{~K}+500 \mathrm{~K}$	on Panel converior for portable colour	KT3/K30 Full remote	¢16 12		
BTW 30/50	50p	25A43 PNPC/P 10p	T/V	$\underbrace{\text { E12.00 Post } \mathrm{E} 1}$	KT3 Power supply	c4		

[^0]: Goods available if in stock immediately over shop counter (Mail order between 3 days and 1 week from receipt of order).

[^1]: QUANTITY
 DISCOUNT
 AVAILABLE Ask for details

[^2]: TUBES £29.00 TUBES £14.50
 inclusive, reguns two year guarantee, QUANTITY DISCOUNTS SIX MONTH GUARANTEE SLIGHTLY USED TUBES £25.00 INCLUSIVE REGUNS ONE YEAR GUARANTEE A56-120 A51-110 A49-191 A47-342 or 343 A44-270-1 A66-120 A67-120 (All 26" add £5) IN-LINE 51-161 From $£ 35$ plus 100's more Professional Stick DE-GAUSING COILS $£ 19.50$ inclusive of delivery. One year guarantee.
 Delivery $£ 5$ per tube. British Isles. No need to spend $£ 5$ returning old tube if you buy from us.

 Callers ring first. Open every day including Sunday
 Tel: 0302-855017

