R Charloston. X.

Interested in Television Servicing?
 Try a ZED Pack. Effect Repairs at Minimum Cost.

GEMINI ELECTRONIC COMPONENTS

Dept. TV, 48, Deptford Broadway, London S.E.8.

Please quote ZED code where shown. Send cheque* or Postal Order. Add 60p P\&P and 15\% VAT
*Schools etc. SEND OFFICIAL ORDER. Allow up to 28 days for delivery. Most orders despatched same day ZED PACKS now available for CALLERS at 50 Deptford Broadway, London, S.E.8.

Send large S.A.E. for list of Quantity, Prices and Clearance Lines etc.
 1984

COPYRIGHT

alpC Magazines Limited, 1984, Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS.

SUBSCRIPTIONS

An annual subscription costs $£ 11$ in the UK, £12 overseas (by surface mail). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.

B/NDERS AND INDEXES

Binders ($£ 4.50$) and Indexes (45p) can be supplied by the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Prices include postage and VAT. In the case of overseas orders, add 60p.

BACK NUMBERS

Some back issues are available from the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF at $£ 1 \cdot 20 \mathrm{p}$ inclusive of postage and packing.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. All correspondents expecting a reply should enclose a stamped addressed envelope. Requests for advice on dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

this month

297 Leader

298 Notes on the Rigonda VL100
Malcolm Burrel/
Large numbers of these 6 in . Russian monochrome portables were imported into the UK. They are robustly constructed but tend to be put on one side when anything goes wrong because of the Russian transistors etc. used. Notes on the circuitry employed, transistor substitutes and possible fault conditions.
300 Next Month in Television
303 Wideband UHF Preamplifier
Roger Bunney
The emphasis in this design is on low noise, which for best results
is more important than a high gain figure.
304 Teletopics
News, comment and developments.
306 VCR Clinic
Reports on VCR servicing and fault conditions from Steve Beeching,
T.Eng. (C.E.I.), Derek Snelling and Mike Phelan.

308 All About Field Strength
Harold Peters
How field strength is measured, how to make use of the measurements and how to convert them to voltage at the aerial socket. Covering both terrestrial and satellite transmissions and the relationship between field/signal strength and receiver performance.

312 Sensing out Faults
Tony Thompson
How to make maximum use of your senses in seeking the causes of fault conditions.

313 Book Notice
Recent books on the techniques used in VCRs.
314 Letters
316 This Little Ting Here
Les Lawry-Johns The customers decided to wait and have a fag whilst Les sorted out the Z 718 whose tuning was up the creek.
VCR Servicing, Part 27
Mike Phelan
The 3V24's capstan servo, still/slow and edit start systems.
The B \& K 467 CRT Tester/Reactivator
Eugene Trundle
Test report on this impressive instrument that even boosts Trinitron tubes.

TV Fault Finding
Notes on TV faults and servicing procedures from Richard Roscoe, John Coombes, Tony Thompson and M.S. Barakat.

Long-distance Television
Reports on DX reception
Roger Bunney
Reports on DX reception and conditons and news from abroad.
Plus how to receive ATV transmissions.
327 Service Bureau
328
Test Case 256
OUR NEXT ISSUE DATED MAY WILL
BE PUBLSHED ON APRIL 18

MANOR SUPPLIES

NEW MKV PAL COLOUR TEST GENERATOR FOR TV \& VCR

$\star 40$ different patterns and variations.
\star Broadcast transmission accuracy (fully interlaced sync pulses with correct picture blanking).
\star EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red, blue and black.
\star Chequerboard
\star Mono outputs with border castellations, cross hatch, grey scale, vertical lines, horizontal lines and dots
UHF modulator output plugs straight into receiver aerial socket.

* Additional video output for CCTV \& VCR
\star Facilities for sound output.
\star Easy to build kit. Only 2 adjustments. No special test equipment required.
\star Mains operated with stabilised power supply.
\star All kits fully guaranteed with back-up service
\star Also available with VHF Modulator.
Price of Kit
£80.50
De Luxe Case $\left(10^{\prime \prime} \times 6^{\prime \prime} \times 22^{1 \prime \prime}\right) \quad \mathbf{8 8 . 5 0}$
Optional Sound Module (6 MHz or 5.5 MHz) $£ 4.50$
Built \& Tested in De Luxe Case including Sound Module
$£ 120.75$

R REPORT
TELEVISION' Post/Packing $£ 2.50$

PAL COLOUR BAR GENERATOR (Mk4)

\star Output at UHF, applied to receiver aerial socket.
\star In addition to colour bars R-Y, B-Y etc.
\star Cross-hatch, grey scale, peak white and black level.
\star Push button controls, battery or mains operated.
\star Simple design, only five i.c.s on colour bar P.C.B.
PRICE OF MK 4 COLOUR BAR GENERATOR KIT £34.50. DELUXE CASE $£ 8.50$. BATT HOLDERS $£ 3.20$. MAINS SUPPLY KIT $£ 4.80$ (Combined P\&P £1.80).

MK 4 DE LUXE (BATTERY) BUILT \& TESTED $£ 66.70+81.80 \mathrm{P}$ \& P . MK 4 DE LUXE (MAINS) BUILT \& TESTED $£ 78.20$ + $£ 1.80$ P \& P. VHF MODULATOR (CHI to 4) FOR OVERSEAS 86.60 EASILY ADAPTED FOR VIDEO OUTPUT \& C.C.T.V.
(ALL PRICES INCLUDE 15\% VAT)

MANOR SUPPLIES TELETEXT ADAPTOR KITS

MK 1 (Texas XMII) Cable remote control $£ 158.70$ p.p. $£ 2.80$. MK 2 (Philips/Mullard) Infra-red remote control $£ 198.40$ p.p $£ 280$.
Further details on request. Tel 01-794 8751/7346

Goods available if in stock immediately over shop counter (Mail order between 3 days and 1 week from receipt of order)

TELEVISION MAGAZINE PROJECT PARTS
 COLOUR PORTABLE TV
 MONO PORTABLE TV, SMALL SCREEN MONITOR LISTS AVAILABLE, PANEL TEST SERVICE

PHILIPS UHF MODULATOR (AUDIO \& VIDEO INPUT) $£ 17.25$ p.p. $£ 1.00$. MULLARD TELETEXT DECODER + INTERFACE suitable for Thorn, TX10 $£ 69.00$ p.p. $£ 1.80$. (Decoder only $\mathbf{£ 5 7 . 5 0}$ p.p. $£ 1.80$)
SAW FILTER IF AMPLIFIER PLUS TUNER COMPLETE AND tested for T.V. SOUND \& VISION $£ 32.80$ p.p. $£ 1.20$
THORN TX9, TX10 SAW FILTER IF PANEL $£ 9.80$ p.p. 80 p.
PAL DECODER KIT FOR RGB MONITORS $£ 31.00$ p.p. $£ 1.00$
SPECIAL OFFER TEXAS XMII TELETEXT DECODER NEW \& TESTED, AT REDUCED PRICE $£ 46.00$ p.p. 11.60 .
PHILIPS-PYE G11 TYPE TELETEXT DECODERS $£ 28.75$ p.p. $£ 1.60$
TELETEXT 23 BUTTON DE-LUXE HANDSET WITH 5 YDS. CABLE $\mathbf{£ 7 . 8 0}$ p.p. $£ 1.20$. XMII STAB. POWER SUPPLY $£ 4.40$ p.p. $£ 1.20$
CROSS HATCH UNIT KIT, AERIAL INPUT TYPE, INCL. T.V. SYNC AND UHF MODULATOR. BATTERY OPERATED. ALSO GIVES PEAK WHITE \& BLACK LEVELS. CAN.BE USED FOR ANY SET £12.65 p.p. 60p. (ALUM CASE $£ 2.90$ DE LUXE CASE $£ 5.50$ p.p. $£ 1.20$.) ADDITIONAL GREY SCALE KIT $\mathbf{E 3 . 3 5}$ p.p. 45 p
UHF SIGNAL STRENGTH METER KIT $£ 23.00$ (VHF version also available). ALUM CASE $£ 2.90$ DE LUXE CASE $£ 8.50$ p.p. $£ 1.80$.
CRT TESTER \& REACTIVATOR PROJECT KIT FOR COLOUR \& MONO $£ 32.20$ p.p. $£ 2.80$.
BUSH 2718 BC6100 SERIES IF PANEL 15.75 p.p. 90p
BUSH A816 IF PANEL (SURPLUS) $£ 1.90$ p.p. 90 p.
DECCA 80, SERIES, IF, FRAME T.B. $\mathfrak{£ 5 . 7 5}$ each p.p. $£ 1.40$.
DECCA 80, LINE SCAN UNIT salvaged $\mathbf{£ 1 1 . 5 0}$ each p.p. $£ 2.00$
GEC $\mathbf{2 0 4 0}$ Convergence panels, Decoder panels $\boldsymbol{£ 2 . 8 8}$ each p.p. $£ 1.80$
GEC 2040 IF PANELS $£ 3.22$ p.p. $£ 1.60$.
THORN TX9 PANELS ex factory for small spares. Includes I.C.s \& Semiconductors etc. $\mathbf{£ 5 . 7 5}$ p.p. $£ 2.00$
THORN TX9 PANELS salvaged ex factory for spares incl. LOPT \& mains transformers $£ 11.50$ p.p. $£ 2.80$.
THORN TX9 PANELS ex factory salvaged complete cond $£ 23.00$ p.p. $£ 2.80$
THORN TX 10 T.B. PANELS salvaged ex factory $£ 17.25$ p.p. $£ 3.00$.
THORN TX 10 SIGNAL BOARDS salvaged ex factory $\mathbf{£ 1 7 . 2 5}$ p.p. $£ 2.00$.
THORN 3000 LINE T.B., PCB 55.75 each p.p. $£ 1.30$.
THORN 8000/8500 IF/DECODER PANELS salvaged $£ 3.70$ p.p. $£ 1.80$
THORN 8000/8500 FRAME T.B. PANELS salvaged/spares $£ 2.88$ p.p. $£ 1.40$. THORN 9000 SERIES TOUCH TUNE REMOTE CONTROL UNIT PLUS ULTRASONIC TRANSMITTER HANDSET $£ 19.32$ p.p. $£ 1.84$.
THORN 9000 IF/DECODER PANELS Salvaged $£ 5.75$ p.p. $£ 1.60$.
PHILIPS G8/G9 IF/DECODER Panels for small spares $£ 1.75$ p.p. $£ 1.40$ G8 Decoder panels salvaged $\mathbf{£ 4 . 2 5}$. Panels for spares $\mathbf{£ 2 . 0 0}$ p.p. $£ 1.40$. G9 Scan Panel. Basic PCB in fibreglass $£ 16.68$ p.p. $£ 1.80$
GRUNDIG 8630 Series Varicap Tuners $£ 7.82$ p.p. $£ 1.00$
VARICAP, U321, U322, ELC $1043 / 06$ ELC $1043 / 05$ £7.82 p.p. 80p; G.I.
type (equiv. 1043/05) $\mathbf{~ 4 . 0 0}$ p.p. 60p. MAKERS VARICAP CONTROLS
Pye CT200 4PSN $£ 8.60$, A823 4 PSN $\mathbf{5 5} .50$. Decca 6PSN $\mathbf{1 6 . 7 0}$ p. 80 p etc SPECIAL OFFER ELEVEN POSITION VARICAP CONTROL UNIT UHF/VHF £2.10 p.p. £1.00.
BUSH "Touch Tune" Varicap Control Z179, Z718 types $\mathbf{£ 4 . 4 0}$ p.p. 95p.
VARICAP UHF-VHF ELC 2000S, ELC2060 £11.30 p.p. 90 p.
VARICAP VHF MULLARD ELC 1042, PHILIPS, BUSH \& 7.95 p.p. 80p.
UHF/625 Tuners, many different types in stock. DECCA Bradford 5 position $£ 2.88$ p.p. $£ 1.80$ etc.
T.V. SOUND IF Panels $£ 7.82$ p.p. $£ 1.00$.

LOPT TESTER Serivice Dept approved $£ 17.82$ p.p. $£ 1.20$.
LOPTS NEW \& GUAR. P/P Mono £1.35p, Colour £1.45p, Bobbins 80p. BUSH 161 to 186 (twin panel)......... $\mathbf{E 6 . 8 0}$ R.B.M. A823 -
BUSH, MURPHY A816 series $\mathbf{8 9 . 8 0}$
FERG., HMV, MARCONI HUTRA
950,1400 , $1500,1580,1590,1591$
$950,1400,1500,1580,1590,1591$.. 86.80
THORN $1600,1615,1690,1691 \quad \$ 10.50$
GEC 2000 to 2038 series
GEC series $1 \& 2$
TT/KB VC $200,24 \mathrm{EGB}$...................... $\mathbf{5 8 . 2 0}$
MURPHY 200,300 88.80
URIW 1910 to 2414 (twin panel) $\mathbf{£ 6 . 8 0}$
PYE, INYICT 210,300 SERIES
368 ,
68, 6
DECCA 20124, 1700, 2000. 2401.
GEC 2114J/Junior Fineline 210 ... 54.40

PYE 40,67 . \quad| 3.00 |
| :--- |

KB VC ELEVEN (003).................................00
ICES ON REQUEST. ALSO F.OPTS.
TRIPLERS Full range available. Mono \& Colour.
Special Offer: Thorn 14005 stick EHT Tray $£ 1.72$ p.p. 65 p
TRANSDUCTORS suitable for G8, A823, Bradford etc. £1.72 p.p. 60 p.
6.3 V CRT Boost Transformers $\mathbf{£ 5 . 8 0}$, Auto Type $£ 3.20$. p.p. $£ 1.20$.

CALLERS WELCOME AT SHOP PREMISES
THOUSANDS OF ADDITIONAL ITEMS, ENQUIRIES INVITED LARGE SELECTION TESTED COLOUR PANELS POPULAR MODELS Telephone 01-794 8751, 7947346

MANOR SUPPLIES

172 WEST END LANE, LONDON, N.W.6.
NEAR: W. Hampstead Tube Str. (Jubilee) Buses 28, 159, C11 pass door W. Hampstaad British Rail Stns. (Richmond, Broad St) (St. Pancras, Bedford) W. Hampstead (Brit. Rail) access from all over Greater London.

Mail Order: 64 GOLDERS MANOR DRIVE, LONDON N.W.11. ALL PRICES INCLUDE VAT AT 15%

P. V. TUBES

Just phone
your order your order do the rest.

38A WATER STREET, ACCRINGTON, LANCS BB5 6PX.

OF TELEVISION COMPONENTS

TRADE COUNTER OPEN MON-FRI 9 a.m. -5 p.m. SAT 9.30 a.m. -5 p.m.

SCOTTS
 THE TELEVISION CENTRE

8-10 RHODA STREET, (Off Bethnal Green Road) LONDON E2 Telephone: 01-739 3123
Working/Serviced Philips 22"-26" G8 520 $£ 35.00$
Working/Serviced Philips 550's $\mathbf{£ 4 5 . 0 0}$
Working/Serviced Bush 22" s/state $\mathbf{£ 3 0 . 0 0}$
Working/Serviced Pye 18" Chelsea £49.00

$\substack{\text { TV } \\ \text { STANDS } \\ \text { E2.50 }}$	TRADE
ONLY! AND MANY	
ONE MAKES	
ON STOCK!	

LONDON'S LARGEST SUPPLIER OF GOOD WORKING TV's \star FREE DELIVERY TO THE GREATER LONDON AREA * TELEPHONE NOW 01.739 3123

U.K. Post Paid, Export orders welcome, please deduct V.A.T. and enquire for Overseas carriage cost. Barclaycard/Access orders welcome, or Cheque, Bank Draft, etc., with order please. Large S.A.E. for technical leaflets of complete range. Delivery normally within 7 days.

CUSTOMER CAN'T PAY? DONT LOSE HIM FIT A TV METER

COMPLETELY VARIABLE TIMINGS

MANUFACTURERS OF TV COIN OPERATED METERS CONTACT (0202)674272 87-89 Sterte Avenue,
Poole, Dorset. BH15 2AW.
Telex: $\mathbf{4 1 8 2 5 3}$ LUMIC G

Switch to the biggest wholesaler of quality late model used TV's

- Thousands of Quality Sets always in stock - Colour/Mono/VCR's and Audios available - Murphy/Pye/Philips/Sony/National Panasonic and other big names
- We are big - we buy in bulk - we offer you the keenest prices
- Cash and Carry or we will deliver
- New and used stands always in stock

EDITOR

John A. Reddihough

ASSISTANT EDITOR
Luke Theodossiou

ART EDITOR
Roy Palmer

ADVERTISEMENT MANAGER
Roy Smith
01-261 6671

CLASSIFIED ADVERTISEMENTS

Barbara Blake
01-261 5897

COVER PHOTO

Our cover photo this month shows the aerials in use on Roger Bunney's lattice mast at Romsey, Hants. At the top a double stacked Triax BB u.h.f. grid system which is also at present being used for ATV reception. Lower down there's a 13 -element wideband Triax Band III array, an omnidirectional Triax $88-108 \mathrm{MHz}$ f.m. array and a three-element wideband Band I array.

NEXT MONTH

Watch out for next month's bumper issue - see page 300 for details.

The Skills Required

At the end of last month's leader I commented that there's probably no harm in manufacturing under licence rather than undertaking the original research. The subject deserves to be kicked around a bit more, since it has great relevance to the UK's present industrial condition and where we go from here.

The point l wished to make was that there's no advantage to be gained from a boneheaded insistence on being scientifically or technologically self-sufficient. At the other extreme, to abandon research and come to rely entirely on imported technology, becoming in the process a nation of odd-jobbers for multinational companies based elsewhere, won't do either. To cut ourselves off from original technological development would in the long run be asking to cease to be a country with a substantial industrial base. The problem is what sort of balance to strike, how to allocate funds, resources and know-how, and in deciding what's worth doing and what's best left to others. There is also the interesting business of joint venture efforts, which can be quite different from simply manufacturing under licence.

The history of the UK's television industry has been a rather mixed one. There's been plenty of research and development, but not quite the same degree of success with applied technology for mass production. The UK did not develop a colour TV system, neither has it developed a VCR system. It did however pioneer TV development initially, played a major role in the application of solid-state technology to TV receiver use, developed teletext and viewdata and, more recently, the MAC system for satellite transmission. Plenty of R and D then, but not all atong the line. This is as it should be. The world would have been no better a place with a UK colour or VCR system to add to the confusion in these fields. The basic technology here can be had under licence agreement. It's beneficial however if one has something to offer in return.

Joint venture agreements in the fullest sense involve two-way collaboration, with both sides contributing to the technology involved. Merely assembling bought in kits on the other hand means opting out of the technology concerned. An interesting example of a joint venture with technological commitment on both sides was highlighted last month RCA and Hitachi's collaboration over the CED disc system. Joint venture arrangements that involve technical collaboration end up with both sides having a foot in the research department door.
It's not always easy to get at the full details of such joint ventures - they must, after all, be subject to a degree of commercial secrecy. But this sort of arrangement is an important way in which a country with limited means and technological resources can keep in touch with technical development. Provided of course one is in a position to offer technological collaboration. What one needs here above all else is qualified manpower. And this seems to be something of a problem.
UK universities are at present producing some 2,000 electronics and electrical graduates a year. This is nothing like enough, and is appalling in view of the hopes placed on the electronics industry in particular for future industrial regeneration. Plessey alone is on record as stating that it would like to employ another 700 graduates "in the electronics and other numerate disciplines". The company has reached the point where it has had to send recruiting officers to Australia and New Zealand and advertise on the continent. Plessey's personnel director Parry Rogers thinks that "the situation of skill shortages will get worse, and threatens to become the major limiting factor in our growth".

There is something deeply disturbing about this. Shortage of trained manpower affects not only companies like Plessey, which tend to do much of their own R and D work: it also affects the prospects for joint venture operations, whose importance for a country such as the UK we've just noted. A recent paper on foreign investment in the UK, produced by the Royal Institute of International Affairs, pointed out that one of the main attractions of the UK has been the availability of "scientific skills". It seems that this means much more to a foreign multinational company contemplating investment in the UK than the offer of hand-outs to locate plants in depressed areas. It may be that we have a just adequate pool of skilled people to meet current needs, but it's quite clear that the government and the educational authorities have been doing nothing like enough to ensure an adequate supply of trained personnel to meet future needs.
Unfortunately the problem doesn't stop with the need for a few more new graduates and technicians. The skills required are increasingly of a wider variety than numeracy and a specialist degree or certificate. Creative engineering ability tends to come with experience and means the ability to see opportunities in business and production terms as well as basic technological ones. How many engineers are there who've taken a course in business studies? The need is possibly for some restructuring of higher education. We need only look to certain other countries to see how it can be done. There are also some perhaps less obvious aspects of the need for a wide range of skills. There's been a fascinating correspondence recently in the Financiol Times on the need for engineers to be able to speak Japanese. We tend to think of English as the international language of electronics, as indeed it is, but if you have to talk business to a senior Japanese engineer you will soon appreciate the importance of being able to do so in his own tongue. The significance of this in making joint venture agreements work is clear enough. But how many engineering degree courses include Japanese as an option? It's not entirely unknown, but hardly commonplace!

Notes on the Rigonda VL100

Malcolm Burrell

These small (6in. tube) monochrome portables have been around for many years and were imported in considerable quantities. I've not had a lot to do with them but recently I wanted a small set for use as a simple video monitor. I bought a couple of VL100s in pieces and set about getting one of them going. Whilst most shops are reluctant to handle these sets, you quite often come across one in the corner of a workshop. The problem is lack of information and the Russian components with markings that tend to cause confusion. This is a bit of a pity. Although the design is very basic, they are interesting sets that can in most cases be repaired quite economically provided the tube is known to be good. The Television Tube Shop advertises the tubes at $£ 14$ plus VAT, and even this major replacement could still be a viable proposition.

The first point to note when servicing these sets is the Russian symbols for the transistor connections. As near as we can get, K is the collector, b the base and 3 the emitter (sometimes the shield as well).

Power Supply Circuits

The mains unit screws to the rear and supplies about 14 V d.c. to the input socket at the back. If you haven't got one, it should be a fairly straightforward item to build. Alternatively a 12 V car battery can be used.

The input from the mains unit or battery is fed to a series regulator which provides a 10.5 V supply to operate the set. The bulk of this circuit lives on the top panel, with adjustment provided by R132. This is set for 10.5 V at the collector of T27 (later version, see Fig. 2), which is mounted on a heatsink at the rear.

The main difference between the two versions of this chassis (Models VL100 and VL100M) lies in the power supply, see Fig. 1. In the earlier version a simple emitterfollower T26, with feedback to its base, drives the series regulator transistor T27. Three transistors are used in the later version. T30 provides sensing, driving the emitter of T26 by emitter-follower action. T27 is the series regulator as before.

Excessive voltage with a hum bar may well indicate a fault in the regulator. Check the transistors - the types don't seem to be very critical and things like the BC142 or

BFY50 (npn) and the BC143 or 2N2905 (pnp) work well for the smaller types while a TIP32 can be used for T27 with modifications to the mounting.

The Signals Side

On the r.f. side, the rotary u.h.f. tuner can be one of two or three types and tends to occupy quite a large area within the set. In some versions there's a separate preamplifier stage. The main i.f. strip employs three transistors followed by a diode detector. The sound signal is extracted at the collector of the video driver transistor. There are two intercarrier sound amplifier transistors followed by a ratio detector. The five-transistor audio circuit uses a two-transistor class A output stage. While the video driver/output transistors, the audio driver and the a.g.c. transistors are npn types, the rest of the signal transistors are pnp : types with their collector circuits returned to chassis.

One of the vision i.f. transistors in my rebuilt set was open-circuit. An AF117 put that right. The audio output transistors T28/29 were missing and, after replacing the bias diode D21 which was short-circuit, acceptable audio was obtained by inserting a pair of AC128s. One of the a.g.c. transistors was missing while the other was shortcircuit. That good old standby the BC 107 worked a treat in both positions.

A BF337 can be used in the video output transistor position (T5).

Timebase Circuits

The line output transistor T25 is mounted inconspicuously alongside the top regulator panel, which also houses the line output transformer. I was interested to see what might happen if you need to replace the line output transistor, so I wired in a TIP32 - it worked! An AU1 10 is reputed to work here, with possibly some alteration required to the values of the flyback tuning capacitors $\mathrm{C} 81 / 2$. The deflection power requirements are very low, due to the 70° tube with its extremely narrow neck. One bonus from this is the lack of heat developed, and I would think that most line output transistor failures are likely to be the result of the inherent problems with germanium

D832
Fig. 1: Mains unit, with battery charging socket, and the earlier two-transistor series regulator circuit.

Fig. 2: Later three-transistor regulator circuit.

Fig. 3: Line output stage circuit.
types rather than overwork.
The field timebase is a bit unusual. The first stage T13 is an emitter-follower used to apply the negative-going field sync pulses to the emitter of T14. When they occur, T14 switches off and T15 switches on to discharge the field charging capacitor C57. This gives the flyback. During the scan, C57 charges via T14 and T16. Linearity feedback is applied to the emitter of T16. In the absence of field sync pulses T14 will switch off when the negative charge on the left-hand plate of C57 exceeds the fixed bias applied to the base. R78 acts as the hold control. The oscillator section is followed by a complementary-symmetry driver stage and a totem-pole output stage. AC188s with heatsinks can be used in the output stage. I found that field sync was weak due to T13 being open-circuit base-to-collector: fitting a BC 212 in this position gave marvellous locking.

Out of curiosity I tried a BC 107 in the sync separator position (T21). It worked quite successfully. The sync separator feeds T13 in the field timebase, via a double

The Rigonda VL100M with cabinet shell removed.
integrating network, and the phase-splitter transistor T22 in the flywheel line sync circuit. A BC212 was tried in the line oscillator position (T23) but it was necessary to reduce the value of R108 to restore the correct frequency. The line driver is T24.

Faults and Servicing

Whilst soak testing the rebuilt set a sound fault put in an appearance - there was intermittent volume variation, crackle and sometimes excessive intercarrier buzz. Probing and voltage checks were unhelpful, but a replacement AF117 in the T8 position put an end to the trouble. It seems that the transistors used in the intercarrier sound channel are prone to be noisy.

Several hours elapsed before the set eventually went dead, with a puff of smoke from the power unit. R156 was the source of the smoke and C93 was found to be shortcircuit. Replacing these components restored normal operation.

Since the panels hinge outwards for service, sudden loss of sound, vision or odd effects should direct attention first to the wire connections, which have a habit of fracturing close to the board.

The earphone jack socket was not present in the sets I had, though one was used as the aerial connector. Removing this and drilling a larger hole enabled me to use a

Fig. 4: Field timebase circuit.

next month in

- BUMPER ISSUE

The May Television will be another of our larger, 68 -page issues.

- TV PATTERN GENERATOR

Now that off-air BBC and IBA test card transmissions are so infrequent, service engineers are having to rely increasingly on test pattern generators. Our latest design features a circle, crosshatch, grey scale, frequency gratings, colour bars, border and patterns for I.f. response and chroma delay checks etc. Most of the patterns are held in an EPROM. TTL, composite video and u.h.f. outputs are provided and construction is on PCBs.

-PROBLEMS WITH OLDER VCRs

Various things happen to a VCR as it gets older basically wear of one sort or another begins to cause problems. Many dealers and rental concerns simply suggest a new machine, but with a bit of insight much can be done to get a worthwhile second lease of life from a VCR. Nick Lyons describes test and repair procedures.

- CLASSIFICATION OF OSCILLATORS

Oscillators are fundamental to electronics but come in a bewildering variety of forms. Despite the profusion of circuit techniques, examination of the principles of operation shows that there are only three basic types of oscillator, employing positive feedback, negative resistance, or the selective amplification of noise.

- SERVICING FEATURES

More fault reports in VCR Clinic and TV Fault Finding, plus Service Briefs - notes on recent Thorn and ITT chassis.

- THE MYSTERIOUS MULLARD

Vintage TV this time takes a look at one of the earliest Mullard sets - the single-channel, 9in. Model MTS389. One odd feature was the strange selection of valves used in the set.

PLUS ALL THE REGULAR FEATURES

ORDER YOUR COPY ON THE FORM BELOW:

Fig. 5: The audio circuit.

Fig. 6: Video driver and output stages.

Fig. 7: A.G.C. circuit.
chassis-mounting coaxial socket - some difficulty was experienced as the tuner connections tended to foul this when the panel was hinged down. No isolation components are required.

Spare parts are available from Rigonda Supplies, 332 Cann Hall Road, London E11. Send a s.a.e. with enquiries.

These are quite nice little sets, soundly built and probably better than some small screen portables from other parts of the globe.

POST A PART ELECTRONICS 236 FURTHERWICK ROAD, CANVEY ISLAND, ESSEX Telephone 0268690868 Telex 99305 ROSSER G.

TRADE COUNTER NOW OPEN
ORDERS DESPATCHED SAME DAY
ADD 60p P\&P, THEN 15\% VAT
ADD POSTAGE FOR OVERSEAS ORDERS.
ORDERS WITH AEROSOLS, PLEASE ADD 25p PER CAN.

TELETRADERS
Forde Road, Brunel Industrial Estate, Newton Abbot, Devon Telephone: (0626) 60154
The Best Quality Sets Available Anywhere
All First Class working order and excellentcabinets.
Bush $\mathfrak{£} 25$
Philips G8 550 $\mathbf{E 4 0}$
Philips G11 £85
Decca Bradford £25
ITT CVC 58 £30
GEC Solid State £35
Thorn 3500 Electronic 22" £35
Full spares back-up of tubes and panels send for list e.g. PL509 £1, PY500 £1 Bulk terms to other wholesalers

THE NO. 1 WHOLESALERIN THE SOUTH

"'NORTH LONDON WHOLESALER'S' TV SALES

Example of working set prices:
GEC Hybrid £19, Decca 30 £27, $22^{\prime \prime}$ Philips 520 £26, $22^{\prime \prime}$ Philips 550 £ 38 , Thorn $3000 £ 27$,
$19^{\prime \prime}$ Thorn 8500 £36, Twin Chip Bush £24. Mono from $£ 4$ etc.
Prices for other models or non-workers on request. Re-gunned tubes available. 5 mins. M. 1. Please telephone us for details on:-

WATFORD 45590

MAIL ORDER ADVERTISING

British Code of Advertising Practice
Advertisements in this publication are required to conform to the British Code of Advertising Fractice. In respect of mail order advertisements where money is paid in advance, the code
requires advertisers te fulfill orders within 28 days, unless a longer delivery period is stated Where goods are returned undarnaged within seven days, the purchaser's money must be refunded. Please retain proof of postage/despatch, as this may be needed.

Mail Order Protection Scheme
If you order goods from Mail Order advertisements in this magazine and pay by post in advance of delivery. Television will co

1) You have not received the goods or had your money returned: and
2) You write to the Publisher of Television summarising the situation not earlier than 28 days from the day you sent your order and not later than two months from that day.
Please do nor wait until the last moment to inform us. When you write, we will tell you We puarantee to mjet claims from readers made in accorded.
as soon as possible atter Advertiser has ben the above procedure
This guarantee covers only advance payment sent in blinktupt or insolvent.
in this magazine not, for example, payment made in response to catalogues etc. . result of answering such advertisements. Classified advertisements are excluded."

Wideband UHF Preamplifier

Roger Bunney

For minimal displayed noise (snow) on the screen, a preamplifier for use with weak signals should have the lowest possible noise figure, lower than that of the tuner's first r.f. amplifier stage. The ubiquitous OM335 hybrid preamplifier is not good enough in this respect: despite its high gain, typically 27 dB , the noise figure of 6 dB is somewhat above that of a u.h.f. tuner's first stage. It's a sad fact that many enthusiasts go for an amplifier with a high gain figure without considering the noise level: a 20 dB gain with 5 dB noise will produce degraded performance compared to a gain of 10 dB with a 2 dB noise figure.

The unit described in the present article was constructed for indoor use as a first-stage amplifier. It has linear operation across the u.h.f. bands, freedom from overload or instability, a lowish gain (typically 11.5 dB) and a low noise figure (typically 2 dB). If the amplifier is used following a mast-head amplifier there will be little improvement in weak signal performance since the system noise figure will have been set up the mast. It's vital that the first stage of electronic amplification contributes as little noise as possible.

Fig. 1 shows the circuit, which uses a BFR91 low-noise wideband amplifier transistor capable of operating at over 1 GHz . With a collector current of 3 mA , the noise figure at 500 MHz is 1.8 dB . Between $2-5 \mathrm{~mA}$ the noise figure is under 2 dB . The circuit is arranged so that Trl passes 4.5 mA at 9 V . Trl's collector load consists of the u.h.f. choke L2 and the series damping resistor R3, the ratio of the turns to the value of R3 giving a slight lift towards the top of Band V. The value of R3 could be reduced to say 68Ω or 82Ω to flatten the response. Using an extra turn for

[827]
Fig. 1: Circuit diagram.

Component details

C1, C2	4.7 pF	L1, L2	
C3	56 pF	lin. diameter	
C4	$0.001 \mu \mathrm{~F}$	Tr1	
All 63 V ceramic plate		Available from Ambit	
	$0.001 \mu \mathrm{~F}$		
feedthrough		Box RS509-923.	
R1	10k	Coaxial sockets	
R2	15 k	RS455-539, surface	
R3	120	mounting	
All ${ }^{3}$ W, carbon	low-nois	Subminiature SPST switch	

L 2 will move the peak in the response to group A or B . The winding is made from one of R3's leadout wires. D1 provides reverse polarity protection.

Construction

The smallest RS diecast box (35 mm wide) was used, with the amplifier built across it on a small piece of copper-clad laminate held by the coaxial socket mounting bolts via 6BA tags soldered to the copper side. Use short lead lengths following normal u.h.f. practice. Since a 9 V battery cannot be accommodated within the box, 2 mm sockets are fitted for the supply.

Performance

I've found the design to be repeatable - the amplifier was originally conceived as part of a forthcoming DX-TV project. No alignment is required and the amplifier should work on completion.

For DX reception I use the ET021 series tuner, whose MOSFET amplifier has a very low noise performance. Because of this, many preamplifiers provide no improvement. With the present design however recognisable pictures are obtained with inputs as low as simply line syncs ($\mathrm{P} \frac{1}{2}$ to $\mathrm{P} 1 \frac{1}{2}-2$ on the ATV scale). There's complete stability across the spectrum with or without input termination. At 9 V the noise figure is typically 2 dB and the gain is as follows: 11.5 dB at $470 \mathrm{MHz} ; 11.5 \mathrm{~dB}$ at $500 \mathrm{MHz} ; 11 \cdot 2 \mathrm{~dB}$ at $600 \mathrm{MHz} ; 11.6 \mathrm{~dB}$ at 700 MHz ; $13 \cdot 8 \mathrm{~dB}$ at $800 \mathrm{MHz} ; 13 \mathrm{~dB}$ at 860 MHz . The unit will work happily at up to 12 V , but don't exceed this voltage.

Use of a tuned collector circuit, i.e. two turns tuned with a $2-10 \mathrm{pF}$ trimmer and with R3 deleted (and the value of R4 increased to compensate) would increase the gain and reduce the bandwidth. For increased wideband gain, C3 could be taken to the base of a second BFR91 transistor.

The amplifier is particularly useful where a nearby highpowered transmitter makes the use of a mast-head amplifier impractical.

Fig. 2: Constructional details.

Teletopics

SATELLITE PROSPECTS

Douglas Hurd, the Home Office minister responsible for broadcasting, is on record as saying that the government would like to see a UK satellite TV service using a UK satellite. Wouldn't we all? But progress towards this aim seems to be painfully slow following the collapse of the BBC's plans to start a service in 1986. The tripartite working party set up to investigate the possibility of a cooperative DBS project, with representatives from the BBC , the IBA and the Independent Television Companies Association, has completed its initial investigation and has reported back to Jeffrey Sterling, the chairman of P \& O and special adviser to industry secretary Norman Tebbit. Having identified the main problems, the working party has now set to work on a suggested plan of action.
Unfortunately, many of the problems are not of the sort that can be resolved quickly. There is in particular the problem of who should be authorised to spend money from which sources on setting up a DBS service? This is compounded by the fact that the present ITV companies' franchises will come up for review within the time scale of the establishment of a DBS system. Do we, this time round, ignore the elaborate legal requirements that were laid down to ensure the accountability of ITV companies to the public? Or do we alter the franchise system, as is being suggested? Whatever the answer, legislative action will be required and will introduce delays. This is something that can't be got round, as the government's recent problems over cable prove (see below).

Another problem is the likely cost of satellite receiving equipment. An official estimate that an installation could cost some $£ 500$, implying a monthly rental of around $£ 16$, is considered to be beyond what the public would find acceptable. The BBC's chairman Stuart Young has suggested a $£ 50$ subsidy for each adaptor and tax incentives to TV rental companies to enable them to keep their charges down. Sir Clive Sinclair has made a characteristic contribution to this aspect of the subject in announcing that Sinclair expect to be able to provide DBS installations, including the dish, down-converter and descrambling electronics, at around $£ 100$. The broadcasting authorities have welcomed this prospect, though other manufacturers expressed doubts. One wonders whether the idea would be to offer such units as loss leaders initially until production built up? Apparently however Sir Clive's main interest is in producing high-definition sets for DBS reception at around $£ 500$ each.

Douglas Muggeridge, managing director of BBC External Broadcasting, has suggested that an international satellite TV service should be established, i.e. a TV version of the BBC's world radio service. The BBC has been conducting an enquiry into the prospects for an international TV news service. Anything of this sort would require government funding of course.

In Japan, Mitsubishi have announced a DBS receiver system for use with the BS2a satellite, which is due to start transmissions this May. The satellite's main purpose is to eliminate areas of poor reception, but it's also expected to signal the start of the DBS age in Japan. Of particular interest is the use of digital pulse code modulation for the
sound channells, giving high-quality sound similar to that obtained from the new compact audio discs. Mitsubishi's receiver system consists of a 75 cm offset-type dish with low-noise converter and tuner. The use of Mitsubishi's dual-mode horn gives the aerial an aperture efficiency of over 70 per cent, which compares with $55-56$ per cent for a conventional parabolic dish.

CABLE TV

The eleven cable operators who were awarded interim franchises last December have been told that due to legal problems firm licences will not be granted until late this summer, nine months later than originally planned. The government has discovered that it doesn't have the legal authority to issue licences until the Cable Television Bill and the Telecommunications Bill receive royal assent. Instead, the government has offered to issue letters of intent or provisional licences under the 1981 Telecommunications Act. The problem the operators have is in raising finance to start developing their systems, which is in turn delaying prospective start-up dates for the services. Michael Storey, managing director of Westminster Cable, commented that "it's not clear what has been achieved by the whole frenetic business of the interim franchises".

British Telecom has been awarded a contract to supply its Gamestar cable TV games service to Rediffusion's one million subscribers in the UK. A connection fee plus $£ 9.95$ a month rent for a Sinclair Spectrum microcomputer will be charged: twenty games a month will be provided, five being changed each month. A British Telecom spokesman commented "we expect to supply a growing number of interactive services as the cable industry expands."

BLUE TUBES

A reader recently sent us a cutting on the subject of tubes with light blue screens. Not that you would expect to find them in use in the UK. The idea is to use a phosphor system that filters out light in the yellow/green spectrum to give sharper contrast and improved brightness under brilliant lighting or sun-drenched viewing conditions. The rare earth element that gives the screen the blue appearance when the set is switched off is neodymium oxide. Sets fitted with these tubes are on sale in Japan and the USA.

AYR AGAIN

GEC-McMichael have acquired Ayr Viewdata, the manufacturer of teletext and Prestel adaptors that went into voluntary liquidation just over a year ago, and have resumed production of the former range at Ayr's West Byfleet, Surrey factory. Dealers interested in stocking these adaptors should contact GEC-McMichael Ltd. at Sefton Park, Bells Hill, Stoke Poges, Slough SL2 4HD.

VIDEO

Mitsubishi and Sanyo are both to double assembly of VCRs in the UK, from the present rate of 5,000 machines a month to 10,000 . Sanyo has also announced plans to start production of VHS machines in Bavaria. Tatung and Binatone are expected to set up VCR assembly lines in the UK - Binatone is at present negotiating a licencing agreement with JVC. ITT's plans are to start production of VHS machines at their Bochum TV factory in W. Germany. The tape transport system will be imported but the electronics and control systems will be ITT designed, using some of ITT's digital TV electronics (Digivision).

Sharp is the latest firm to join the ranks of those who've announced their intention to introduce an 8 mm camcorder later this year.

A new edition of the Ferguson " 100 Questions and Answers on Video" has been published: 85,000 copies of the first edition were distributed. Copies can be obtained from the Ferguson Video Advisory Service, PO Box 121, Lea Valley Trading Estate, London N18 3BP. The new edition has been updated and revised to include the latest generation of video products.

New VCRs have been introduced by Mitsubishi, Hitachi and JVC. The Mitsubishi HS330 is a full-specification, two-speed machine with a suggested retail price of just under $£ 700$. Hitachi's VT33 front loader will replace the popular VT11 at a suggested price of around $£ 450$. JVC's new budget model HR110 is a non-remote control version of the HR120.

David Rozalla, managing director of Warner Home Video in the UK, has commented on the successes achieved against video piracy in the UK. He attributes this to the establishment of the Federation Against Copyright Theft in January 1983. Estimates suggest that piracy at present accounts for some 35 per cent of the UK market, down from a level of 65 per cent two years ago. Pirate cassettes with a street value of over $£ 1 \mathrm{~m}$ were seized in the UK last year. It seems that the pirates have moved to the continent, where they are said to be supplying some 70 per cent of the W. German, French and Benelux markets.
A somewhat contentious report on head wear with different brands of video tape has been released by 3 M . The tests were not carried out under normal operating conditions, and the scale of the investigation was so small as to be statistically worthless. Measurements were made by comparing photomicrographs obtained using a scanning electron microscope before, during and after exposure of the sample head assemblies to the tape, the accuracy of the measurements being limited by the resolution of the photographs and the repeatability of the measuring operator. For what it's worth, Scotch, Maxell, Fuji and Memorex tapes all came out well.

The latest suggestion for entertaining bored pub-goers is the coin-operated video jukebox. The idea is that you get a three-minute film along with the music you select.

SONY'S MOVE

Sony (UK) have moved to a new head office in Staines, after fourteen years at Pyrene House Sunbury with offshoots at Slough and Andover. The new address is Sony (UK) Ltd., Sony House, South Street, Staines, Middx TW18 4PF (Staines 61688).

AVO'S LCR METER

An LCR meter, Model B183, has been added to the AVO range - it's very similar in appearance to the 2001 digital multimeter reviewed in these pages last February, being a hand-held, 9 V battery-operated unit with LCD display. There are six inductance ranges from 2 mH to 2 H , seven capacitance ranges from 200 pF to $200 \mu \mathrm{~F}$ and seven resistances ranges from 20Ω to $20 \mathrm{M} \Omega$. Measurements are made using a sinewave test signal at a frequency of 1 kHz or 100 Hz depending on the range selected by the eightposition slide switch. Price to the trade is $£ 185$ plus VAT.

TV EQUIPMENT

At an expected inclusive retail price of around $£ 400$, Fidelity's latest introduction, the AVS1600 audio/TV rack
system, should be a considerable success. The AVS1600 incorporates a 16 in. colour set with remote control, eight preset channels, stereo sound capability and a spatial sound option to create a stereo effect through the separate, floor-standing speakers. It also incorporates a full monitor function for video and computer games sources via a 21 -pin SCART socket, an anti-glare glass front and a headphone socket with volume control. The threewaveband tuner covers stereo f.m. plus MW and LW with synthetic stereo. The belt-driven record turntable glides in and out from behind an automatic flip-up inspection window at the touch of a button. Above this is the cassette recorder which can record from any of the other items including the TV set. The amplifier provides 8 W r.m.s. output per channel (24 W total music power) and can be used with all the other items including the TV set. Its features include dynamic noise reduction on all inputs, headphone and microphone sockets, and a comprehensive set of controls. The speakers are of the bass reflex type, with separate tweeters.

Ferguson and ITT have both introduced infra-red remote control versions of their 14 in . colour sets. The Ferguson 37141 is fitted with the TX90 chassis and has voltage synthesis tuning with station memory.

The first Luxor models fitted with the new SX9 chassis (see article in our January issue) have now been released. These are the 22 in .5636 and the 26 in .6736.

FOCUS ADJUSTMENT

A new method of focus adjustment is being introduced at ITT's Basildon plant. It's based on the use of a meter to measure the light output from the tube phosophor in a way quite different from that employed by an ordinary photometer. A property of this measured light output has been found to coincide with optimum focus.

CRT REBUILDING EQUIPMENT

The Faircrest Engineering Ltd. range of c.r.t. rebuilding equipment is now being distributed by V.N. Barrett and Co., Ltd. of 1 Mayo Road, Croydon, Surrey CR0 2QP (01-684 9917). The company can supply all the equipment required for reprocessing both monochrome and colour tubes and in addition offers a full training scheme.

CCTV SYSTEM

Frowds Ltd. (4 Northarbour Road, Cosham, Portsmouth, Hants PO6 3TJ) have introduced a sophisticated CCTV surveillance system using a fully weatherproofed camera that can be fitted with various types of tube. The circuitry incorporates refinements to maintain performance over a wide range of lighting conditions, and an optional built-in telemetry system enables the camera to be remotely controlled via the coaxial cable at up to 1.7 km .

PHILIPS-GRUNDIG

Further details of Philips' plan to take control of Grundig (see page 177, February) have been announced. The scheme is a complex one in which Philips, while achieving effective day-to-day control of Grundig, will actually end up with a smaller stake in the company - a reduction from 24.5 per cent to 22.9 per cent. Philips will first take over a further $7 \cdot 1$ per cent of Grundig's nominal capital, but at the same time a group of banks led by Dresdner Bank will take over a block of Grundig AG profit participation rights certificates which will later be converted into ordinary voting shares, leaving the banks with a 27.5 per
cent interest in Grundig. The aims of these moves seem to be to satisfy the W. German Federal Cartels Office, provide Grundig with fresh investment funds, and ensure that joint Philips-Grundig administration is achieved whilst maintaining Grundig's operational independence. A Philips' nominee is to become chairman of the Grundig board of management on the retirement of Dr. Max Grundig, who will be 75 on April 1st.

HDTV

A new volume, "Compatible Higher-Definition Television", has been published by the IBA as the twenty first in the series of occasional engineering texts that have been provided as a service to broadcast engineers and students since 1972 . The profusely illustrated 48 -page book reflects interest in the development of TV systems capable of
providing significantly higher quality colour pictures than are possible using any of the present broadcasting standards. In particular the argument is put forward that the MAC system proposed by the IBA and accepted by the government for satellite TV broadcasting is also capable of providing higher definition displays with a wider aspect ratio. The suggested E-MAC (extended-definition MAC) system would make optimum use of the information handling capacity of European satellite channels to give results at least comparable in quality with the HDTV system proposed and developed by NHK (Japan), without incurring the severe bandwidth and non-compatibility problems inherent with the NHK system.

Enquiries about the book should be sent to the IBA Engineering Information Service, Crawley Court, Winchester SO21 2QA.

VCR Clinic

Ferguson 3V36

A Ferguson 3V36 was sent in by a dealer from another dealer, with a vague account that there was a servo fault and that the dealer of the first part had apparently contacted Ferguson who had suggested replacing the servo board. The dealer of the second part didn't know whether this had been done. So it was up to us to play "spot the fault", a game most readers in service departments will have played when customers or sales staff can't be bothered to give any more comprehensive details than "faulty".

The first symptom encountered was a spotty picture not unlike that caused by a dirty video head, but with my luck it would turn out to be more complicated. Andy was optimistic however and got on with cleaning the heads (regular readers will note Andy's promotion to Head Cleaner). This, amidst cries of "told you so", did little good, so the replay f.m. signal was checked. Only one output was evident, and the drum flip-flop signal was only a single pulse instead of the usual symmetrical squarewave. Misadjustment of the drum PG pulse level control R459 was the cause of the incorrect waveform, and after setting up the drum and capstan servos normal record/playback functions were restored. Great, on with the covers.

That was when Andy decided to check the still frame performance. The tape stopped dead in its tracks with a very spotty picture, showing that the frame advance circuits were not operating to give a clear picture. If that wasn't bad enough, we couldn't get back into play. In fact we couldn't select anything or even switch the machine off to standby. The little red lights for stop, fast forward etc. followed the buttons, but the operate light stayed on. The only way to restore operation was to unplug the machine at the mains supply. It then worked normally until we selected pause, when it again locked out.

Measurement showed that the microcomputer IC201 was holding the capstan motor forward/reverse selector IC206 fully off. In a vain attempt to restore operation, I applied a full reset to the microcomputer chip by earthing pin 22. Surprise, surprise, everything then worked correctly, including the still picture circuit. So the noise bar and anti-bounce potentiometers could be set up, giving a very good still frame. Andy remarked that one of our own customers had had the same problem, and that unplugging

Reports from Steve Beeching, T.Eng. (C.E.I.), Derek Snelling and Mike Phelan

the machine for a while at the mains had cured it. I wonder if this is a problem? Great, on with the covers.

Andy then suggested trying picture search and the timer before the machine went out. It was unlikely that picture search would be faulty, as it would have shown up whilst we were doing other things, but we tried it. Clang. Off with the covers. Selecting picture search is simple. The picture then broke up into horizontal lines which got bigger until there were no lines at all, indicating that the heads were not whizzing round. The safety circuit then operated and the tape unthreaded.

Various checks were made, including connecting one of the inputs (pin 12) to the servo operational amplifier IC406 to earth when picture search was selected. This stopped the drum servo. We're getting somewhere! The circuit back to pin 6 of the main servo chip (IC403) was then followed through (see Fig. 1). During playback there's a squarewave here. It was still present in picture search, but the output from the integrator (R456 etc.) was absent. R456 had a voltage at the IC403 end, but not at the IC406 end. Something was earthing the servo output between IC403 and IC406, and that something was IC405. By isolating pins 10 and 11 of IC405 we found that when pin 12 went high pin 10 would be earthed by an internal fault within the i.c. So the chip was changed to a CD4016.

Great. Now I can put the covers on. At least the timer worked!
S.B.

Mitsubishi HS700

Some Mitsubishi repairs this month. First a common fault with the HS700 portable. The symptoms are intermittent play with excessive rewind speed and possibly tape dam-

Fig. 1: Picture search fault, Ferguson 3V36.
age. This is caused by the small pinion wheel that drives the take-up spool. It's a push fit on the motor spindle, and has a tendency to come off slowly (see Fig. 2). Eventually the point is reached where it fails to mesh with the take-up spool. The result is intermittent play as the take-up spool stops rotating when the teeth slip. The drive from this motor is also used to provide back tension and some control of the other motor's rewind speed, so when there's failure to engage rewind becomes a bit frantic. The cure is to push the cog fully home and seal it in place with red paint.

Another common fault with Mitsubishi machines is intermittent failure to erase the previous sound recording. The cause is the plugs and sockets that connect the erase head to the bias oscillator: the official cure is to remove these and solder the wires directly to the full erase head and the board. We've had the fault about eight times in the last few weeks.
D.S.

Mitsubishi HS303

The problem with an HS303 was an intermittent clock. Every so often the clock display would blank out - if it reappeared it would be flashing, as though the power had been disconnected. Checks showed that all the power supply lines to the clock board were correct, but when we came to the clock chip the "init" pin was at 10.5 V instead of 4.7 V . This pin is fed from the 12 V rail via the tantalum capacitor C8F2 - the idea is that the capacitor charges at switch on, supplying the chip with a reset pulse. The capacitor was found to have a varying leak - when the voltage at this pin was high enough the i.c. would be held in the reset condition, blanking out the display. A new capacitor put matters to right.
D.S.

Ferguson 3V23

The tuner/timer board seems to be responsible for various obscure faults in this model. In a recent case the machine did everything except rewind and fast forward - it wouldn't even acknowledge these commands. We connected an oscilloscope to pin 16 of the serial-to-parallel converter IC38 to check whether the serial code was arriving from the keyboard. It was. The 8 -bit parallel outputs were also correct, i.e. in accordance with the truth table. These go via inverters in IC33 to the data selector i.c.s, so checks were carried out in this area. We found that bit D3 was permanently low after IC33 - it should be high in the rewind and fast forward modes. Five of the bits, which carry remote tuner/timer commands, go to the tuner/timer board as well as to the data selector i.c.s. The next logical step therefore was to disconnect this board by pulling out the interconnecting plug. Magic - we now had rewind and fast forward. The fault on the tuner/timer board was a short-circuit in one of the TA57 transistor array i.c.s.
M.P.

Ferguson 3V35/3V36

We've had a few faulty Ferguson 3V35/36s recently. In the first one the cassette couldn't be ejected. After studying the operation it became apparent that the flap on the front of the machine wasn't opening to let the cassette out, though the eject mechanism was doing its best to push the cassette through, flap or no flap. We eventually discovered that the cog which operates the flap had tripped out of mesh. This apparently happens on these

Fig. 2: Pinion wheel trouble with the Mitsubishi HS700.
machines for no apparent reason, and the cog has been modified in production to prevent the fault.

Unfortunately in its efforts to eject the tape the machine had, unknown to us, bent the loading switches. This had no immediate effect, but a couple of weeks later a call came that the machine "switched off on prerecorded tapes". Sure enough it worked perfectly on my cassette and all the customer's cassettes, but switched off after a few seconds when a prerecorded tape from the local library was inserted. This cassette couldn't be blamed since it apparently worked on a neighbour's machine and they'd had the same trouble with another cassette from the library.

On removing the top of the machine I found that the take-up spool wouldn't rotate with the prerecorded cassette in position, hence the switch off. This in turn was because the cassette wasn't going down the last quarter of an inch - it fouled the loading switches that had been bent by the previous fault. Why this cassette and not the others? The cassette was found to be about a millimetre longer, front to back, than the others - it was of the type where the flap is a different colour from the rest of the cassette.

The next machine was a 3 V 35 with a noisy take-up clutch. Replacement cured this - it appears to be of the same type as that used in the $3 \mathrm{~V} 29 / 30$.

Finally, if someone attempts to insert a cassette in one of these machines when it's switched off (at the operate button) and uses sufficient force a small plastic pip can be broken off. We've had orily one instance of this so far, but the problem is sufficiently common for Ferguson to have modified these machines in production - more than twice the force is now required to cause damage. One hopes that users will check that the machine is switched on before this point is reached.
D.S.

Ferguson 3V29

The colour was good with playback of a prerecorded tape, but on its own recordings the chroma was very noisy and broke up into horizontal lines. A check on the signal at the input to the colour converter (pin 16 of IC401) showed that it was of excessive amplitude. Clearly the preceding a.c.c. stage (between pins 1 and 17) was operating at maximum gain. A check at pin 3 then revealed that there were no burst gate pulses, and on moving back we found that L 407 in the ringing circuit was open-circuit.
M.P.

Ferguson 3V29

This machine had really fast search - in fact it was faster than the rewind speed. The supply to the reel motor goes via Q2, which is in turn controlled by Q16. This transistor receives commands at its base via diodes D15/16/17. Both transistors were being turned on hard - in fact the voltage at the base and emitter of Q16 was about 15 V . The diodes were tested first but proved to be o.k. That left Q16 which was found to have a $1 \mathrm{k} \Omega$ leak from collector to emitter.
M.P.

All About Field Strength

The set produced a snowy picture, the old Labgear fieldstrength meter read the incoming signal as $700 \mu \mathrm{~V}$ and the BBC's field-strength map showed us to be on the 60 dB $\mu \mathrm{V} / \mathrm{m}$ contour. In the workshop the signal generator had to be set at 1.5 mV to produce the same effect. Was it a poor signal, a dud tuner or both? Nothing seemed to tie up, or didn't until we chanced upon the BBC Engineering Information Department's sheet 2017, "Good TV reception, the professional way", which cleared up a lot of misconceptions for us. The following article is based on information given in this sheet.

What to Expect from the TV Set

To produce a good picture, today's colour set needs a clean input signal in excess of 1 mV but not above 5 mV . Below 1 mV , snow begins to appear and gets progressively worse. Above 5 mV , intermodulation between the sound and vision signals and adjacent channel signals produces patterning.

A plot of the signal-to-noise performance of typical receivers is shown in Fig. 1. The curves are the average taken from several samples. For a noise free picture, a ratio of 40 dB at the standard viewing distance (four times picture height) is expected. Since most people view at a greater distance than this, they will find a signal-to-noise ratio of 36 dB perfectly acceptable.

You will notice that the older type of set that uses a diode vision detector is less noisy than the current genera-
tion of TV sets that use synchronous detectors. Notice also that colour noise appears earlier than luminance noise. This is due to the double superhet effect with the chroma signal - the 4.43 MHz chroma demodulators beat with the higher frequency component of the incoming signal, converting this to a more visible and annoying lower frequency. This h.f. noise is not visible in the luminance signal as it's removed by the 4.43 MHz subcarrier trap. The chroma noise problem is worsened by the fact that only a small proportion of the total transmitter power is used for the chroma signal. You are in fact watching a very low power transmission radiated from the same mast as the luminance signal.

Some useful key points are shown in Fig. 1. Teletext errors begin to show at $150 \mu \mathrm{~V}$, the colour drops out at 35$50 \mu \mathrm{~V}$, and sync is lost at $10-15 \mu \mathrm{~V}$. Faults apart, the only adjustment that materially affects performance is the a.g.c. crossover control. This sets the signal level at which a.g.c. is applied to the r.f. amplifier stage in the tuner. Most of a set's self-generated noise is produced in the tuner's mixer stage, so to minimise this the r.f. amplifier is run at full gain until the crossover point at 1 mV is reached. As the input signal rises above 1 mV , the r.f. gain must be held in check by the a.g.c. circuit in order to prevent mixing taking place as well as amplification. Most r.f. stages overload and start to intermodulate (mix) at about 30 mV , but what is not always appreciated is that this is the sum of all the signals received, the r.f. stage being wideband tuned. In the average receiver situation, this means the presence

Fig. 1: Receiver noise performance at various signal strengths.
of four programmes with vision and sound: 30 mV is the sum of four 5 mV vision signals and four 2 mV sound signals, so overloading will take place at some 5 mV of wanted signal. The more signals there are, the earlier the a.g.c. crossover has to be set. With the advent of VCRs and TV games units, the ideal setting is coming to be around 2 mV . But 2 mV of what?

Measuring the Signal

Today's average colour set has as many as seven automatic control circuits whose action depends on some part of the composite vision signal, so there's little point in applying a known amount of plain r.f. signal from the generator. The answer you'll get will not be the same as that shown by the picture. During the line sync period however the transmitter is radiating at full power regardless of the scene (see Fig. 2). This is the reference point to which all signal levels are referred: thus the 1 mV (etc.) we've been quoting is "the r.m.s. value of the sync tips of a composite vision signal appearing across a terminated load". In our case the terminating load, i.e. the TV set, presents an impedance of 75Ω.

Signal generators, even if you can modulate them with a video signal, are misleading because their output is calibrated in e.m.f. - the voltage that appears across the unterminated (open-circuit) output terminals. To get this output into the set you have to connect a coaxial lead and then connect the set as the termination, so the true output drops to half $(-6 \mathrm{~dB})$ of what is shown by the output indicator, i.e. for the set to receive 1 mV of signal the generator needs to be set at 2 mV (see Fig. 3). The Philips series of pattern generators adopts a more realistic approach: their attenuators, though a little vague, do indicate the signal level appearing at the set.

Field Strength

Having dealt with workshop signals, we'll consider the situation outside.

Broadcasters have a totally different approach to signal levels. Their interest is in ensuring that there is an adequate level of signal available at your location. This open-circuit field strength is measured in microvolts per metre ($\mu \mathrm{V} / \mathrm{m}$) of free space - in other words the amount of signal picked up by a one metre long rod suspended in the signal path. It takes no account of the tuning effect of the rod, so some conversion is needed.

The BBC practice is to make measurements using a logperiodic aerial, whose response is substantially flat, mounted on top of a 10 m pole, i.e. at the chimney level of an average house. The measurement is made using an accurate millivoltmeter, and all known errors are corrected. The boundary of a primary service area is the $60 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}$ contour on the map, i.e. 60 dB above $1 \mu \mathrm{~V} / \mathrm{m}$, or $1 \mathrm{mV} / \mathrm{m}$ to us (see Table 1). As propagation varies

Table 1: Basic $d B \mu V / m$ to voltage conversion.

$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Voltage	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Voltage
20	$10 \mu \mathrm{~V}$	70	3.2 mV
30	$32 \mu \mathrm{~V}$	74	5 mV
40	$100 \mu \mathrm{~V}$	80	10 mV
48	$250 \mu \mathrm{~V}$	88	25 mV
54	$500 \mu \mathrm{~V}$	90	32 mV
60	1 mV	94	50 mV
68	2.5 mV	100	100 mV

Fig. 2: The sync pulse is the reference point to which all signal levels are referred. Note that 1 mV r.m.s. $=2.83 \mathrm{mV}$ peak-to-peak seen on an oscilloscope.

Fig. 3: Signal generators usually indicate their output as an e.m.f. at a certain impedance, as shown at (a). In use, the generator will be terminated by the $T V$ set. The e.m.f. then becomes a voltage of half the value (-6dB) stated on the generator.
throughout Bands IV and V, there is a variation from $58 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}$ on ch. 21 to $64 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}$ on ch. 68 .

Relating Field and Signal Strengths

Field strength is related to signal strength by the factor λ / π, where λ is the wavelength. On average this works out as follows:
$0.2(-14 \mathrm{~dB})$ in Band IV (aerial group A);
$0.15(-16 \mathrm{~dB})$ at the lower end of Band V (aerial group B);
$0 \cdot 12(-18 \mathrm{~dB})$ at the upper end of Band V (aerial group C/D).

The Manor Supplies signal strength meter.

To this has to be added the aerial's gain, which is typically 11 dB for a standard Yagi array. We then have to subtract the downlead loss (10 m of low-loss cable introduces a loss of -3 dB) and another 6 dB since the field strength is an open-circuit e.m.f. while signal strength is the voltage at the set.

The following two examples will make this conversion business clear. You'll then be able to use the BBC table (see Table 2) with ease.
(1) A London BBC-2 signal at a standard installation. Field strength $3 \mathrm{mV} / \mathrm{m}$.

$3 \mathrm{mV} / \mathrm{m} \Omega 70 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}$, i.e. 70 dB above	
$\quad 1 \mu \mathrm{~V} / \mathrm{m}$.	+70 dB
Receiving aerial gain (standard Yagi)	+11 dB
Downlead loss (10m cable)	-3 dB
Conversion factor 0.2 (ch. 33)	-14 dB
Less 6dB for set termination	-6 dB
	58 dB

i.e. 58 dB above $1 \mu \mathrm{~V} / \mathrm{m}$, or $790 \mu \mathrm{~V}$ input at the set.
(2) A weak Channel 4 signal in Norfolk. Field strength $500 \mu \mathrm{~V} / \mathrm{m}$.

$500 \mu \mathrm{~V} / \mathrm{m}=54 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}$	+54 dB
Fringe Yagi array	+17 dB
Downlead loss	-3 dB
Conversion factor 0.12 (ch. 65)	-18 dB
Less 6 dB for set termination	-6 dB
${-44 \mathrm{~dB}}$	

i.e. 44 dB above $1 \mu \mathrm{~V}$ or some $200 \mu \mathrm{~V}$ at the set.

Satellite TV

The same principles apply to satellite signals, but the quantities are different. Since the incoming signal is collected by a dish, which has area rather than length, square metres replace metres. And because the transfer of the signal from the dish to the set doesn't suppose the use of 75Ω coaxial cable, watts are used instead of volts. The term field strength is replaced by P.F.D., or power flux density, and the dB ratios are $10 \times \log \mathrm{P} 1 / \mathrm{P} 2$ instead of $20 \times \log$ V1/V2 as before. P.F.D. is thus expressed in dB $\mathrm{W} / \mathrm{m}^{2}$.

Think of the signal collected by a perfect dish of area $1 \mathrm{~m}^{2}$ ($1 \cdot 12 \mathrm{~m}$ diameter) and you'll see how convenient it is to stick to the chosen units. You'll want to be able to relate these s.h.f. signals to the u.h.f. ones with which you're familiar, and once more a worked example will make this clear.

The Russian Gorizont 7 satellite, which took over recently from Gorizont 4, has a P.F.D. in this country of about $-120 \mathrm{~dB} \mathrm{~W} / \mathrm{m}^{2}$, in other words one picowatt per square metre. Not a lot! Now watts $=V^{2} / \mathrm{R}$ (or Z), and Z , the transfer impedance of a dish, is given as $377 \Omega(120 \pi)$ per m^{2} of free space. So we have $1 \mathrm{pW}=\mathrm{V}^{2} / 377$. Crossmultiply, $\mathrm{V}=\sqrt{ }\left(377 \times 10^{-12}\right)$ or $19.4 \mu \mathrm{~V} / \mathrm{m}^{2}$ which looks a lot better!

Similarly the OTS signal P.F.D. of $-118 \mathrm{~dB} \mathrm{~W} / \mathrm{m}^{2}$ works out at $24.4 \mu \mathrm{~V} / \mathrm{m}^{2}$ and the projected BBC/ITV DBS signal P.F.D. of $-103 \mathrm{~dB} \mathrm{~W} / \mathrm{m}^{2}$ works out at $137.5 \mu \mathrm{~V} / \mathrm{m}^{2}$.

EIRP

Satellite signal strengths are often given in terms of E.I.R.P. (effective isotropic radiated power), in other words how many watts beamed our way leave the satellite.

To relate E.I.R.P. to P.F.D. you have to subtract the path loss, which is proportional to the square of the distance between yourself and the satellite, plus 0.5 dB for losses on route (more if it's raining hard). So the lower the satellite is to the horizon, the greater the path loss.

Noise

Noise performance is even more important with satellite TV than it is at u.h.f. Everything in the chain contributes to it - even the dish, which picks up noise from the ground and from outer space to pass on to the set. For satellite purposes, noise figures are given in degrees Kelvin. Zero ${ }^{\circ} \mathrm{K}$ is absolute zero, and the reference temperature of $290^{\circ} \mathrm{K}$ corresponds to a room temperature of $17^{\circ} \mathrm{C}$.

To convert noise in ${ }^{\circ} \mathrm{K}$ to dB , the following formula is used:

$$
\mathrm{dB}=10 \log \left({ }^{\circ} \mathrm{K} / 290+1\right)
$$

From this, 1 dB corresponds to $75^{\circ} \mathrm{K}$ and 3 dB to $290^{\circ} \mathrm{K}$. Noise figures, if given in dB , would give a very optimistic indication of performance. Hence the use of ${ }^{\circ} \mathrm{K}$.

Because of the use of f.m. for satellite video transmission, the signal-to-noise ratio required is much lower than for our a.m. u.h.f. signals. For results comparable to the 36 dB previously quoted, a satellite signal need have only a 10 dB carrier-to-noise ratio. Pictures are in fact quite watchable down to a ratio of 6 dB , when colour is lost. What counts, as with f.m. stereo radio, is the noise threshold. This is the level above which no further improvement can be seen or heard. Also the fact that f.m. noise is triangular, i.e. worse at the higher frequencies (which accounts for the hiss going when you switch the radio from stereo to mono).

With f.m. TV, up to 3 dB improvement can be obtained by reducing the receiver's bandwidth from 30 MHz to 15 MHz at the expense of some loss of definition and the appearance of "sparklies" on transients, an effect with which video engineers will be familiar.

So with an expected DBS receiver gain of around 110 dB and a predicted BBC/ITV satellite signal strength of $-103 \mathrm{~dB} \mathrm{~W} / \mathrm{m}^{2}$, it looks as if there will be some 7 dB to play with. Allowing for an aerial efficiency of about 55 per cent., most of us should get by with an 0.6 m diameter dish. The moral seems to be to save your old dustbin lids they might come in useful.

Measuring Signal Strength

When it comes to readily available equipment for measuring signal strength we come into a grey area, a need crying out to be filled. Most aerial riggers known to the writer treasure their ten year old Labgear meters like gold. The broadcasters' gear is well beyond our reach and is totally uneconomic unless used full time.

On the face of it all you have to do is to calibrate the a.g.c. voltage of a standard i.f. strip and you'll get an indication proportional to the incoming signal strength. Not so. The average i.f. strip takes about half an hour to settle down, during which time any meter linked to the a.g.c. line will show a gain reduction of as much as 6 dB . This can be tolerated in the workshop if the warm-up time occurs before work starts, but a better tool is the writer's panoramic monitor (see Television, November 1971) which shows the instant state of all four vision and sound carriers in the local group simultaneously.

The Siemens S43202MC signal strength meter has the right idea, at around $£ 1,500$. It has a small oscilloscope

Table 2: Terminated signal voltages in known signal fields.
Field strength in dB referred to $1 \mu \mathrm{~V} / \mathrm{m}$. Signal strengths are terminated voltages assuming a downlead length of approximately 10 m , taking account of the λ / π field strength/signal strength conversion facior.

Aerial	$\begin{gathered} \text { Gain } \\ \mathrm{dB} \end{gathered}$	Field strength/signal strength conversion						
		65dB	70 dB	75dB	80 dB	85dB	90 dB	95 dB
Group A								
Log-periodic	8.5	$330 \mu \mathrm{~V}$	$590 \mu \mathrm{~V}$	1 mV	1.9 mV	3.3 mV	5.9 mV	10 mV
Standard Yagi	11	$440 \mu \mathrm{~V}$	$790 \mu \mathrm{~V}$	1.4 mV	2.5 mV	4.4 mV	7.9 mV	14 mV
High-gain Yagi	15	$700 \mu \mathrm{~V}$	1.2 mV	2.2 mV	3.9 mV	7 mV	12 mV	22 mV
Fringe Yagi	17	$880 \mu \mathrm{~V}$	1.5 mV	2.8 mV	4.9 mV	8.8 mV	15 mV	28 mV
Group B								
Log-periodic	8.5	$250 \mu \mathrm{~V}$	$440 \mu \mathrm{~V}$	$780 \mu \mathrm{~V}$	1.4 mV	2.5 mV	4.4 mV	7.8 mV
Standard Yagi	11	$350 \mu \mathrm{~V}$	$630 \mu \mathrm{~V}$	1.2 mV	2 mV	3.5 mV	6.3 mV	11 mV
High-grain Yagi	15	$550 \mu \mathrm{~V}$	$980 \mu \mathrm{~V}$	1.75 mV	3.1 mV	5.5 mV	9.8 mV	
Fringe Yagi	17	$690 \mu \mathrm{~V}$	1.2 mV	2.1 mV	3.9 mV	6.9 mV	12 mV	22 mV
Group C/D								
Log-periodic	8.5	$200 \mu \mathrm{~V}$	$350 \mu \mathrm{~V}$	$630 \mu \mathrm{~V}$	1.1 mV	2 mV	3.5 mV	6.3 mV
Standard Yagi	11	$280 \mu \mathrm{~V}$	$500 \mu \mathrm{~V}$	$890 \mu \mathrm{~V}$	1.6 mV	2.8 mV	5 mV	8.9 mV
High-gain Yagi	15	$440 \mu \mathrm{~V}$	$790 \mu \mathrm{~V}$	1.4 mV	2.5 mV	4.5 mV	7.9 mV	
Fringe Yagi	17	$560 \mu \mathrm{~V}$	1 mV	1.8 mV	3.1 mV	5.6 mV	$10-\mathrm{mV}$	17 mV

tube to display the detected vision or sound signal, with a gap in the display in which a vertical bar can be moved up and down by adjusting an attenuator calibrated directly in dB above $1 \mu \mathrm{~V}$. When the test set is on tune, the bar is at its maximum, and is then set to lay alongside the sync tips with the attenuator. The cursor then gives the terminated signal strength into the set in accordance with the definition we gave earlier. The electronics consist of a high quality tuner/i.f. strip, to which a.g.c. is applied, and a stable oscillator whose output is fed via a variable attenuator and displayed in the gap. Thus drift in the i.f. strip doesn't affect the calibration.

At the other end of the scale, an inexpensive kit is marketed by Manor Supplies. This consists of an a.g.c. indicator with a conventional i.f. strip. The meter reads from $100 \mu \mathrm{~V}$ minimum to 10 mV maximum on a logarithmic scale. An LED provides indication that a vision carrier is present - it lights up in the presence of field sync pulses, which are detected by a TBA550 i.c. Tuner a.g.c. is applied at over 10 mV for overload protection. There's also the Unaohm EP730FM field strength meter which provides a c.r.t. panoramic display. Its cost is around $£ 640$ plus VAT. A test report by Eugene Trundle will appear in these pages shortly.

If you don't need a field strength meter, what other methods are available to enable you to calibrate a reciever or test set? As mentioned before, there is the Philips series of pattern generators - never spot on, but never far out. If you can get to meet any of the broadcasters' field strength measuring teams, they will usually be able to pinpoint a place close by where they've measured the field strength with precision. Alternatively you can check a batch of new receivers whose a.g.c. crossover point is given in the manual. Connect a meter to the tuner's a.g.c. line, check that the manual specifies a crossover at say 2 mV of input signal, then feed the output from a signal generator to the aerial socket, increasing the input until the meter connected to the a.g.c. line just begins to record a measurement. That's the crossover point, and implies that you are feeding 2 mV to the set. Take the average of as many sets as you can - factory people are always in a hurry, and this is a touchy adjustment to make.

It should seldom be necessary to those other than aerial
riggers to know the signal level. Your main interest lies in checking that with $800 \mu \mathrm{~V}$ applied at the aerial input a 34 dB signal-to-noise ratio (or a just snow free picture) is obtained on the c.r.t. The cheapest way of doing this is with a pattern generator of known output and a suitable Belling-Lee attenuator in series. There remains the need for something rugged for aerial riggers - and in due course a simple way of checking the 12 GHz output just behind an 0.6 or 0.9 m dish.

It's so easy and tidy to file your copies away using the Easibind binder. Each binder is designed to hold twelve issues and is attractively bound and blocked with the TELEVISION logo.
UK price $£ 4.50$ including postage, packing and VAT. For overseas orders add 60 p . Please allow three-four weeks for delivery. Why not place your order now? Send the completed form below with the remittance payable to: IPC Magazines Ltd., Post Sales Dept., Lavington House, 25 Lavington Street, London SE1 OPF.

Sensing out Faults

Tony Thompson

Just in case anyone's forgotten, our five senses are sight, hearing, taste, smell and touch. We use the first two constantly without giving them a second thought. As for taste, I can think of no occasion when I've licked a set into submission! It's a different matter with touch and smell however. The heated casing of a tripler, for example the Thorn 9000 type, will tell the tale to the fingertips of an engineer: as for the smell, that's an experience in itself - a really bad one will make your eyes water. This is not a very subtle piece of smell diagnosis, but with practice you'll find that you can sniff out too warm carbon and wirewound resistors, and sometimes leaky capacitors. Other wirewound components make their distress known as the varnished wire heats.
This sort of thing can save time in comparison with the testmeter before all else approach to servicing, enabling us at least to locate the area of the fault before delving in too deeply. In other cases our senses can provide confirmation, where our instruments and intellect already suggest to us the location of the fault.
Most experienced engineers do this sort of thing automatically. But to think about it can sharpen our minds and make the approach more useful. For the less experienced, attention to the signals our senses provide gives an insight into fault conditions rarely obtainable from technical college instruction.

Sense of Touch

The sense of touch is a great asset in TV servicing, but before I go any further a word of warning to the less experienced. Don't stick your fingers into a dead set without disconnecting it from the mains supply by removing the plug, and remember that an open-circuit dropper or h.t. wirewound resistor can leave smoothing and reservoir electrolytics fully charged, lying in wait for your finger. If in doubt, discharge the points you're likely to touch, using a resistor of say $1 \mathrm{k} \Omega$ to chassis. It's not a good idea to bridge across with a screwdriver - amongst other things, the electolytic won't like the spark you'll make.

With these words of warning in mind, let's suppose you are confronted with a dead set. The fuses seem o.k., so you disconnect, discharge as necessary, and feel along the dropper sections or wirewounds with your fingers. If current has been flowing, you'll sense the warmth. If there's been excessive current, you'll burn yourself - so tap lightly. Where a dropper is known to be a continuous winding but one section is cold while the next along is warm, you've got your culprit. In cases where the dropper has split windings and one set seems normal whilst another is cold, at least you've a clue where to start. It won't pinpoint the fault to a defective dropper section, but will tell you that for reasons yet to be determined there's lack of h.t. or l.t. here. The fact that droppers are often responsible for the dead set condition is something to bear in mind.
Still on the subject of power supplies, a bridge rectifier with common encapsulation should not feel more than warm. One that's hot after the set has been on for only a short time is likely to have a short-circuit diode. Single h.t.
rectifier or heater chain dropper diodes should also take time to warm up and should never attain a temperature that's uncomfortable to touch.

Imagine a potential divider network where the junction between the two resistors reads either very low or zero voltage. If a resistance check is inconclusive you may go on to unsolder components, including transistors, to remove parallel paths. There is no way round this unsoldering, though it should be limited to as few items as possible in order to save time and to avoid damaging delicate print and components. Before you attack with the soldering iron however, lick your fingertip and touch the upper resistor. In power circuits even a carbon resistor should be slightly warm if it's conductive, though the test is inconclusive in itself.

A wirewound resistor that's passing current will be just warm. A too-warm resistor of either type tells you that there's a leak at the junction, especially if the bottom one is cold. In this event it's profitable to disconnect bypass electrolytics for resistance checks or to suspect the valve or transistor being fed. A cold upper resistor on the other hand could well be open-circuit, or maybe of greatly increased value.

This example of the potential divider is just one of a number of checks that can be quickly carried out by hand, and I readily admit that diagnosis of this sort is likely to contain a goodly sprinkling of very likelies, probablies and possiblies. This doesn't detract from the usefulness of the exercise however. The chief benefit lies in saving time, enabling you to get to the source of the trouble before seeking additional information. There are also some instances where sensing methods reign supreme.

Line Output Stage Checks

Triplers have already been mentioned, but there's more to add on this subject. A tripler should run cool: a hot spot, especially localised on the casing, is a sign of trouble. A warm spot on the other hand cannot definitely be regarded as showing up a fault. This is a grey area where experience must be your guide. There are several variables such as the design of the tripler, its location within the set and the time it takes to warm up. It's fair to say that a tripler which heats up in a few minutes at most is likely to be faulty. Remember that, though rare, an internally shorting c.r.t. can result in a heavy current flowing via the tripler, giving the quick-heat symptom.

The best check is to disconnect the c.r.t.'s final anode connector, drape it carefully away from sensitive areas and the chassis, then run the set. This avoids placing a strain on the line output transformer etc. A neon tester held near the connector (don't touch!) will light up if there's an a.c. field present, confirming the tripler's demise. Keep the tester away from the line output transformer's field or you'll get a false reading.

The line output transformer is another touch-sensitive component. Take the no e.h.t. condition. If the line output stage uses valves, you'll have already ascertained whether they are being driven by making top cap spark checks and perhaps by switching off and touching the valve envelopes.

Where the line output valve and the boost diode are both cool, a finger check on the line output valve's screen grid feed resistor is a good test - it's likely that the stage is not being supplied with h.t. if all these items are cool.

If the valves etc. feel more or less o.k., try touching the transformer. I repeat - disconnect the set before doing any of this. If the transformer is cool, it's likely to be all right. Note the word cool, not cold: transformers vary, as do their operating conditions, but a warm transformer, especially one that warms up rapidly, is a bad sign.

This test works the same with transistor line output stages - touch the output transistor, which should be warm but definitely not hot. A very hot one suggests an internal short-circuit. In cases where all three major items in the line output stage - transistor, transformer and tripler - are overheating, the most likely cause of the trouble is the tripler, since a short-circuit transistor or shorting transformer will place no strain on the tripler (there are occasions when a faulty transistor will upset the transformer). When in doubt, it's always worth disconnecting the tripler at its input from the transformer: an internal fault can cause excess current in the stage even when the tripler's e.h.t. output is to all intents and purposes disconnected - triplers usually feed networks that remain in circuit when the c.r.t.'s final anode is disconnected.

What Valves Can Tell Us

There are some other useful points to remember about valves. We can always "test" a valve of the output type for evidence of stress: the sight of a dull, spreading redness on the anode structure is the telltale sign here. In such cases it's prudent to look before you touch, to prevent sore fingertips. Such problems are often apparent even before the set's back has been removed, as the overheating valve will singe the dust on its envelope.

Video output valves run hot or very hot. If cool they are either at fault or not receiving an anode or screen grid supply, or just possibly the cathode circuit is open. This also applies to colour-difference output valves, though these should run warm. A cool one gives the clue.

Valves used for other functions, i.e. in the i.f. stages and as oscillators, don't lend themselves so easily to this kind of testing, the results at best being inconclusive.

Remember that valves are active devices of an inherently fragile nature, and are thus the most likely cause where a fault occurs, particularly in a hard working output stage. Modern valves don't seem to be as reliable as those in days gone by.

Transistor Video Output Stages

With transistor RGB output stages, fingertip checks on the heatsinks or, where possible and perhaps more accurately, on wirewound load resistors, aids diagnosis. These items should all be warm.

Listening for Faults

There are many ways in which our hearing helps with fault finding, the obvious one being no sound. Take field collapse. If you can hear the field output transformer buzzing and can increase this buzz by adjusting the height control, you've immediately narrowed down the cause of the collapse to a few items at the output end of the field timebase - the scan coils, secondary components around the transformer, or an open-circuit connection between
the two. All this without lifting a test prod!
Sound distortion at low volume levels, clearing as the volume is increased, points towards a faulty loudspeaker one with an off-centre speech coil. Gently pressing the cone whilst the set is working will prove the point.

Audible whistles from wound, cored components such as line output transformers can be very annoying, though nowadays it's mostly the case that components other than the line output transformer whistle - at an annoying submultiple of the line frequency. Gentle pressure on suspects with an insulated prod will help to identify the offending part: tighter core clamping or a dab of sealant may then help. Otherwise the cure must be replacement. The effect is due to magnetostriction: the core buzzes in sympathy with the coil's field. It follows that air-cored components cannot suffer from this malady. Some mains transformers are notorious for buzzing, which the customer often mistakenly attributes to the loudseaker.

A dead set with a heavily buzzing mains transformer is a warning of possible excessive load on the h.t. supplies or, less likely, a leak such as a faulty electrolytic in the power supply.

In Conclusion

We use our senses in many diverse ways when fault finding: the back of the hand brushed across the c.r.t. face to sense the presence of e.h.t.; sniffing for ozone when we suspect corona discharge; touching i.c.s to see if they are warm when they shouldn't be (other than specific output types, they should remain fairly cool - a hot one is definitely a sign of trouble); taking the temperature of a decoupling capacitor which we know should be cold; or looking for the split in the casing of a mains filter capacitor that's saying "change me, don't waste your fuses". Ours is a sensitive trade. Use yours to the full, read the signs, and maybe you'll be the next one to apparently possess an ability that others speak of reverently as a gift.

Book Notice

BEGINNER'S GUIDE TO VIDEOCASSETTE RECORDERS by Eugene Trundle, published by The Butterworth Group, Borough Green, Sevenoaks, Kent TN15 8PH at $£ 4 \cdot 50$.
Q \& A: VIDEOCASSETTE RECORDERS by Eugene Trundle, published by The Butterworth Group (address above) at $£ 2.65$.
Our friend Eugene Trundle, who writes regularly for this magazine, has been busy! I read the beginner's guide through from start to finish and found it an excellent technical introduction to the subject. It cleared up a number of points about which I'd been uncertain, which is always to me proof of a book's usefulness. Don't be put off by the "beginner's guide" bit - it goes into the subject in enough depth to meet the needs of technicians.

The Q and A doesn't go into the subject in quite the same depth, being intended for "salespeople, bosses, prospective VTR owners, equipment reviewers and technical people whose present knowledge is in other fields". It's main concern is nevertheless the techniques used in VCRs.

Both books cover the three formats at present in use. I have no hesitation in recommending them to readers who want to get their teeth into the subject.
J.A.R.

Letters

GRUNDIG GREMLINS

Mick Dutton provided a comprehensive list of faults experienced with the Grundig CUC series chassis in the February issue (page 202). One component not mentioned however was R646 ($270 \mathrm{k} \Omega$) in the power supply it's the equivalent of R165 in the later Thorn TX9 chassis, mentioned in my letter last month. In the Grundig chassis it goes open-circuit, with the result that the chopper transistor goes short-circuit at switch on.

On the theme of Grundigs, the h.t. smoothing resistor R607 ($91 \Omega, 17 \mathrm{~W}$) in the 1510 has a habit of disintegrating. It also forms part of the excess current limiting arrangement (see Fig. 1). This works as follows. The mains rectifier thyristor Ty604 is triggered at its gate via the $R C$ network R615/C611. In the event of excess current the voltage at the junction of R607/R608 will fall and transistor Tr612 will conduct, short-circuiting the gate and cathode of the thyristor which is thus cut-off. The circuit is designed to trip at approximately 8 Hz , R608 going opencircuit in the event of a sustained overload.
Our experience has been that in the event of failure of R607 it's necessary to replace the following items for a nocomeback repair: Ty604, Di604, Tr612, R614, Di614, the main smoothing block C607/608/616/617 and of course R607.
Some time back we had this fault and replaced the components listed above. The set was given a soak test but after two hours R607 again disintegrated. The fault was eventually traced to the screened wire that couples the line drive to the gate of the flyback thyristor Ty501. This wire is routed below the power resistors, and had carbonised at this point, thus upsetting the operation of the thyristor line output stage. Since then it's been our policy always to check this length of wire visually and if in any doubt to replace it.
Brian Francis, Tech. (C.E.I.),
Plympton, Plymouth.

SHARP C2072

A Sharp Model C2072 came in for repair recently, the symptoms being as follows: during bright scenes the colour would disappear, accompanied by a loud whistling at a frequency which seemed to be below the usual 15.625 kHz . There would also be severe line pairing and picture break-up, particularly at the edges. The symptoms would still appear, but much less frequently, if the contrast and brightness controls were turned down to give a dark, washed-out picture.

Fig. 1: H.T rectifier circuit, Grundig 1510 series.

The customer told us that the set had started to go wrong about a year ago, but he could restore the picture to normal by either changing channels or turning the brightness down. As the problem had become progressively more frequent, he decided to have the set repaired. Another engineer had quoted $£ 95$ to replace the chopper and line output transformers, the tripler, and the chopper and line output transistors, but the customer decided to seek a second opinion.

We recalled that similar symptoms occur with the Thorn 9000 chassis when the 90 V supply smoothing capacitor C715 deteriorates. The Sharp C2072 is not quite the same - it uses a series chopper circuit to produce a 120 V h.t. line - but it seemed worthwhile trying the h.t. smoothing capacitor C 717 , which is a $47 \mu \mathrm{~F}$ radial electrolytic rated at 200 V . We extracted it and sure enough the telltale sign of a faint white powdery deposit was present near one of the leads. A replacement $47 \mu \mathrm{~F}, 250 \mathrm{~V}$ electrolytic immediately restored normal operation. Incidentally the faulty capacitor read all right on the meter - the best course is to check by substitution. We wondered what the other engineer would have done after replacing all those innocent components!

T. Barrett,

London E17.

VIDEO AMPLIFIER TRANSISTORS

I've received several letters asking about the transistors used in the video amplifier circuit shown in my article in the February issue (Fig. 1, page 189). Any small-signal npn/pnp/npn transistors will do, but those actually used were two BC548s and a BC558.
Harold Peters,
Oulton Broad, Suffolk.

METER REPAIR?

Many years ago, when Lisle Street was occupied by tarts and electronics shops rather than Chinese restaurants and blue movie shows, I bought a "faulty" meter for $£ 1$ from the collection of odds and ends on display outside one of the shops. It seemed to be in working order apart from reading 25 per cent low on all ranges. I was using it recently to check a faulty rear lamp on a vehicle parked on a slope: unfortunately the vehicle ran a foot or so down the slope and over the meter. The back of the case was shattered and the internal battery was squashed. Apart from that there appears to be little damage - and what's more the meter now reads accurately!
D.B., Tunbridge Wells.

BEOVISION BLANKING MODIFICATION

Those readers who keep their old 2600 and 3200 series Beovision colour sets going may be interested in the following method of improving the field flyback blanking. The problem arose when I noticed teletext signals flashing at the top of the picture. It seems that the use of more lines for teletext results in their showing up on receivers that have either slow flyback or inadequate blanking. Rather than trying to speed up the flyback, I thought it would be better to attempt to improve the blanking.

The original circuit is shown in Fig. 2. After inversion by the strapped triode sections of two ECL84 valves the flyback blanking pulses are fed via a screened cable to the "earthy" ends of the tube's first anode decoupling capaci-

Fig. 2: Flyback blanking in the B and O 2600/3200 chassis.

Fig. 3: Modification to remove teletext signals.
tors. One way of increasing the amplitude of the pulses would be to increase the value of the anode load resistor R202. Unfortunately this slows down the circuit's recovery time on the positive-going edges of the pulses, since the capacitance of the cable etc. has to charge via the anode load resistor. The result is a brightness gradient on the left-hand side of the screen.

Fortunately there's a third, unused ECL84 triode section - it's in the middle ECL84 of the colour-difference output trio. The circuit can easily be modified, on the back of the panel, to that shown in Fig. 3. Using a cathode-follower in this way ensures a quick pull up, the initial pull down being via the $2.2 \mathrm{k} \Omega$ resistor. Sufficient blanking pulse amplitude is obtained to blank out the offending teletext lines. There are no tracks going to pins 1,2 and 3 of the cathode-follower, so the necessary connections can be made without having to "hack and bodge".

Note the change in the value of the bias resistor R201 from $1 \mathrm{k} \Omega$ to $3.9 \mathrm{k} \Omega$.
Keith Cummins,
Shirley, Southampton.

LOPT TESTER

I've made up the line output transformer tester featured in your February issue (page 180), having etched a board and using components from the junk box. It works well, but the emitter-follower transistor Tr 3 got warm - the whole board took 38 mA on load (connected to a trans-

Fig. 4: LOPT tester modifications.
former), 8 mA off load (with Tr3 cold). Adding an $0.047 \mu \mathrm{~F}$ output coupling capacitor as shown in Fig. 4 provided the cure, the board taking 9 mA on load with the transistors cold and the output reading unaffected. The addition of this coupling capacitor also saves Tr 3 's emitter resistor from being shorted out by either a faulty transformer or accidental contact between the line output valve anode/ transistor collector lead and the negative lead of the 9 V battery - this does $\operatorname{Tr} 3$ no good, and sometimes stops the circuit oscillating until switched on a second time.

Adding a small capacitor across Tr3's base resistor increases the output reading a little - the value I used was $0 \cdot 0056 \mu \mathrm{~F}$.
H. Owens, N. Ferriby, Yorks.

HOMES WANTED

Due to shortage of space, I must jettison from my collection of vintage and semi-vintage TV sets and radio receivers three Murphy V310s and a V320. The V320 and one of the V310s are workers, the other two requiring new line output transformers. Any takers?
W. J. Knight,

532, Rochester Way, London SE9 ISQ.

SATELLITE/CABLE TV

I've been following recent editorials concerning satellite and cable television with very great interest. These two transmission systems make strange bedfellows, the first being the ultimate in providing wide geographical coverage, the second a strictly limited method of distribution. Much publicity has been given to their marriage recently, a TV service in one UK town receiving the satellite signals and passing them on to viewers via cables. Despite all the ballyhoo about the high technology involved, a dispassionate consideration of the scheme must lead one to the conclusion that it's the definitive example of the use of a sledgehammer to crack a walnut. Since the programme matter apparently consists of taped or filmed offerings, the object of the exercise could have been achieved at a tiny fraction of the cost by simply installing a VCR and maybe telecine equipment at the cable company's distribution centre. Indeed even more money could have been saved by ignoring cables altogether and employing a low-power local TV transmitter. Other reports have mentioned a pirate TV station, whose backers seem to wish to dispel the contrived belief that only the combination of a government agency and huge finance can make such services possible.

The objections to the use of cheap, purely local TV transmitters are two-fold. On the one hand the establishment wishes to preserve the present $\mathrm{BBC} / \mathrm{IBA}$ control of public broadcasting. Satellites provide a means of getting round this, distributing technically foreign programmes. On the other hand all programmes sent out via the existing terrestrial transmitter network are in effect free to the viewer once he's bought his set and his licence, whereas cable distribution makes it possible to charge him for every minute of screen time he watches. There's nothing much wrong with this, provided it's optional and doesn't affect the quality of the present services. The danger is that if cable TV ever achieved the coverage desired by its promoters, it might well corner the market in popular TV material, leaving off-air viewers very much poor relations. It must not be forgotten that very large
areas of the country will never be served by cable, due to the sparse or scattered population.
The BBC would in this event hope to raise its licence revenue so that it could fight back, but what of ITV? Already saddled with the burden of financing Channel 4, faced with the growth of VCR use, and anxious to maintain viewing figures so as to sustain advertising revenue, the independent companies could find themselves very hard pressed. For the BBC and the IBA, either
separately or jointly, to finance a superfluous DBS service is in these circumstances as appropriate as a bankrupt third-world nation operating its own prestige air line. High technology is all very well, but not for its own sake. The BBC and the IBA have virtually complete coverage with their present transmitter network: they should swallow their pride and forget about DBS services.
Chas E. Miller,
Woodseaves, Staffs.

This Little Ting Here

Les Lawry-Johns

I suppose we all get a trifle confused over the various Bush models and chassis, and it's not till we take a closer look that our spirits rise or fall. So when these two rather elderly men puffed into the shop carrying a 22 in . Bush colour set I immediately thought it was a late 823 chassis.
"There's a white line across the screen" said the tall one.
"No it isn't, it's a red line" said the short one.
"Fret not" I assured them, "'twill be put right in a trice."

The Bush 2718

I whipped the back off and my spirits fell. Seeing the swing down panel across the rear section I thought it was a T20. Then I saw the two line output transistors on the right-hand side and realised it was a Z718. My spirits fell further.
"Umm, it won't be put right in a trice."
"Don't worry. We've all the time in the world" said the tall one.
"Sure it's only a little ting" said the short one.
"That's because you don't have to find the little ting" I growled.
"Oh you'll find it in no time at all" he continued. "We'll just have a cigarette while you're doing it. Just carry on John."
Honey Bunch smiled and chatted to them about the weather while I delved into the field timebase. The transistors appeared to read right on a cold check, except for one of the output transistors, VT7. It gave a low reading from collector to emitter, the same on reversing the prods. Out came VT7, off its heatsink. In went a new 16905. Switch on and we had a nice, full-sized raster.
"There" said the short one, "didn't I tell you it was just a little ting you'd find in no time at all?".

I growled to myself something about what would happen to his little ting if he wasn't careful, then plugged in the aerial. No signals, just noise. None of the touch sensors were alight, so I touched the first one and dropped down the flap to tune it in. Wind the red pointer up and down but there was nothing except for a few flutters to reward my efforts. I then touched sensor two and with slight adjustment BBC-2 showed a news sheet. I felt better. Touch sensor three and the news sheet remained, even when I ran the number three red pointer up and down. It was still there in positions four and five, even though the pointers were in different positions. Position six could be tuned and I ran it up to BBC-1. Select sensor
two and BBC-1 is still present.
"You didn't tell me this lot was up the creek" I moaned.
"It's not up the creek" said the short one, "it's just a little ting here."

Whilst I was trying to read the tuner voltages on the connecting plug, looking for the tuning voltage in particular, he was spinning the little wheels and thus making me angry.
"See John, you have to get all these little pointers on the same line. Then they work."

I was fast loosing my cool.
"All right then, if that's all there is to it you can take the set away now."
"No need to get upset over such a little ting."
The tall one saw how the wind was blowing and intervened.
"Leave it to Mr. Johns, Paddy. It's not working right and he'll sort it out if we leave him alone."
"Yes, leave it to him to tink out."
I chose my words carefully. "That's what I'm here for, tinking tings out all day long".
Honey Bunch fled to the kitchen. I heard her talking to Ben. "He's out there tinking. He'll need a bath tonight or he'll be tinking tomorrow too." It didn't help. My logic, fragile at the best of times, had gone.
I removed the three nuts and took out the touch tuner panel, then accused the ETT6016 of buggering about. I took it out, having earthed myself to the live mains, and sustained a bleeding hand. "Calm down now. Try to think logically like ET does."
That little brass image still looks down at me, his finger pointing. Always pointing. Saying "you're not doing it right Les. Get the voltages right." But I didn't listen. I fitted another ETT6016 and what do you know - the neons started to work. They lit up when touched, and I was sure I was there. I wasn't.
Although they lit when touched, only six was tunable and tuned the other five for God's sake.

Shorty moved in again. "It's this little ting here", pointing to the a.f.c. button. Out he moved, and ET's finger continued to point at me.

I checked the voltages against those given in the circuit. There should have been 188 V at 9R39 on the touch tuning panel (Fig. 1). The reading was more like $30 \mathrm{~V}-\mathrm{I}$ 'd previously taken this to be the tuning line, but it wasn't, it

Fig. 1: Supplies to the touch tuning panel.
was the supply to the ETT6016. I traced the line back to the tuner panel, where I promptly got confused between 1 R113 and 1R116. Like a fool I first accused 1R113, but it was 1 R116 that was open-circuit of course. Replacing it restored normal channel selection and tuning.

Shorty looked at the faulty resistor. "Just a little ting. . ."

Having disposed of the comedy duo, we can consider the circuit briefly. 1 R116 takes 260 V at one end and drops 72 V , providing a 188 V supply at the other end for 9R37 and 9R39, the latter feeding the ETT6016. Hence the crazy behaviour when this supply is absent. I should have gone straight to it. Like you would, but I don't tink like you.

Sparko's Return

I was just settling down for five minutes' read of the magazine when the door crashed open and in fell Mr. Sparks. Till that moment he'd been carrying his Thorn 8500. "Nice of you to drop in" we greeted him.
"Get this bloody set off my foot, Len" he bawled.
First it's John from Paddy, now it's Len from Sparko. What it is to be well known.
So I lifted the set off his foot and he hopped around like a wounded kangaroo.
"Why do I have to bring this bloody thing to you each time? Why can't you call out like civilised people do?"
"Because I'm too lazy and don't want to work too hard, that's why. Now what do you want me to do for you?"
"Just fix it for me Len. I don't care how much it costs as long as it's not more than a fiver."

I ignored that because Sparko never argues about the
bill. Mind you he does like to stop and watch and murmer every now and again "thank gawd it's not me with my hand in there."

So we took the back off, plugged the set in, and switched on. A blurred picture with no sound appeared. We switched off and checked the speaker, which was o.k. We then removed the power panel which, as you know, is where the MJE340 audio output transistor VT701 lives. It had base-emitter leakage, so out it came. I looked in my little drawer marked MJE340 and took one out. It was of entirely different construction, and I stared at it in disbelief. The one from the set was of the TO126 type, like the BD131. The one in my hand was of the TO220 type. The base and emitter leads were reversed, so it had to go in on the reverse side of the heatsink to get the connections right. When fitted, the sound was loud and clear, so the voltage rating was right. Later investigation proved that the transistors in the drawer should have been marked MJE340K (30W rating). Ho hum.

The blurred picture didn't respond to adjustment of the focus control, so the e.h.t. rectifier unit came under suspicion (the built in resistor goes high in value). Smiling at Mr. Sparks, we removed the suspect unit and fitted a new one. The focus was now good and the sound loud and clear. "Did you say a fiver Sparko?"
"Just joking Len."

Hallo Stan!

Hardly had Sparko left than Mr. Murray walked in. He's been coming in for seventeen years.
"Hallo Stan, how's your luck?"
"My name's Hilda Mr. Murray . . ."

TOP TWENTY T.V. SPARES

stock no.

001 Philips 68 Loptx (Genuine Philips)	7.50
002 Decca 30 series Loptx (Genuine Decca)	7.00
003 Decca 100 series Loptx (Genuine Decca)	6.50
004 ITT CVC 25/30/32 Loptx (Genuine ITT)	7.00
371 Pye 713/731 Vision Gain Module (replaces expensive 212-27327)	6.50
$27010 \times$ BU208A	8.50
050 ITT CVC 5/9 EHT Tray	3.00
051 Decca 1730/1830 Doubler	2.00
053 GEC 2040 Hybrid EHT Tray	3.00
054 Thorn 1500 (5 Stick) EHT Tray	3.50
056 Thorn 1400 EHT Tray	2.00
057 Philips G9 EHT Tray	3.50
058 ITT Universal EHT Tray	5.00
011 Thorn 1690/91 Loptx	7.00
012 Thorn 1615 Loptx	6.50
085470 MFD 250V Philips G11	1.50
$33550 \times$ BY127 Diodes	3.00
$27010 \times$ BU326	10.00
$28025 \times 2 N 3055$	7.50

All components are A1 quality from prime manufacturers, and are dispatched by post same day as order received together with any refund due. All goods should be delivered within 4 working days.
Please add 15% VAT and 900 P \& P

MUXTON HOUSE, MUXTON, TELFORD, SALOP.

VCR Servicing

Part 27

Mike Phelan
The 3V24's capstan servo has provision for still frame and slow motion, the latter by remote control. We'll look at normal record and playback operation first.

Capstan Servo

A block diagram of the capstan servo is shown in Fig. 122. It's a dual-loop arrangement, i.e. with both speed and phase control. The speed control loop uses a VC1029, as in the drum servo, but this time operating at 126 Hz . If the capstan speed increases, the voltage at pin 10 of the VC1029 falls. There's no inversion in the motor drive amplifier, so the capstan motor speed falls to compensate for the initial rise. Stable conditions are obtained at about 3.8 V . The phase control loop is mainly contained in IC1, where the 32.768 kHz oscillator is shared with the drum servo.

On record, the only need is for close control of the speed. So the phase control loop compares the 21 Hz trapezoid derived from the crystal oscillator with the 21 Hz pulse train obtained by dividing the FG signal by six. Test point TP5 is included to enable the trapezoid and pulse to be viewed simultaneously. The error voltage of about 4.5 V at pin 25 goes positive to decrease the motor's speed, because the inverting input of IC15 is used. C101, C102, R223 and R224 form the loop filter.

On playback the oscillator and divider produce a 25 Hz trapezoid which is gated by the amplified pulses from the control head. The pulses are passed through monostable multivibrator IC6 which provides a delay of about 20 msec .

In record and playback (also audio dub) two sections (S1 and S2) of IC14 are closed because pins 5 and 6 are high (inverter X40's output is high). S3 and S4 are both open. The loop filter is thus in operation. In stop, fast forward and rewind, X42 turns the motor off. In search fast forward, search rewind, slow and still D40 or D41 conducts, S3 and S4 close, and X40 opens S1 and S2. This removes the phase error voltage from the motor drive input, connecting the latter to the junction of R225 and R226 instead to give the correct free-running speed. This point is also connected to the junction of C 101 and C 102 in the loop filter to maintain the charge on these capacitors - otherwise the lock-up time on returning to normal play would be excessive. If the off-tape control pulses are lost during playback (or audio dub) D39 conducts, producing the same effect, i.e. S3/4 closed and S1/2 open. Severe hunting would occur if it were not for this.

Fig. 123 shows the control pulse detector circuit. During playback and audio dub, C99 and D38 d.c. restore the pulses, biasing X38 on. The after-load switch is closed, biasing X9 on. C100 charges to 9V, holding X39 and D39 off. The servo then works normally. If the control pulses are interrupted, due to mechanical shock for example, C100 discharges, X39 turns on, D39 receives forward bias and the servo switches to the free-running condition. We don't want this part of the circuit to operate in record, when servo control is essential. This condition is met by supplying the emitter of X39 from the PB 9V line.

Though the motor is stopped via X42 in the stop, fast forward and rewind modes we want the free-run condition to maintain the charge on the loop filter. The after-load switch is open in these modes, so X9 is off. X39 is still powered from the PB 9V line however, so D39 conducts to give the free-running condition.

Still and Slow Drive

The still and slow capstan drive system is shown in Fig.

Fig. 122: Block diagram of the capstan servo.
124. It may look a bit complicated, but is not too bad if split into two sections. As in the previous machines we've dealt with, a BA841 i.c. is used for slow motion/still frame capstan control, though the circuit is less complex than that used in the 3 V 23 .

In modes other than playback, record, audio dub and shuttle search, X42 is on, removing the control voltage from the motor drive amplifier by turning off D45. This turns X45 on and the Darlington X47 off, stopping the motor. X46 and X48 are used in slow/still as a brake, normally being off. D46 ensures that X47 is off when X46 is on, otherwise the 12 V rail would be shorted out.

When D45 is off, we can drive the motor with a slow pulse as in the 3 V 23 - a large amplitude pulse to overcome the inertia, followed by a smaller pulse. D33, D34, X33 and X34 form an OR gate to supply 9 V to the slow-pulse network in the slow or still modes. Pin 30 of the BA841 is the FF2 output - we don't use FF1 here. Pin 30 goes high to move the motor, low to stop it. During normal running it's high, so that X41 is on and X43 is off: the path to chassis via X41 forward biases D45 and X45, closing the servo loop.

The internal workings of the BA841 have been dealt with in previous articles on the 3 V 23 and 3 V 16 . Suffice it to say that flip-flop FF2 is set by the drum FF signal and reset by the control head pulses, so that the tape stops at an exact position with reference to the latter. The process is repeated four times, as the tape position at the start of the process is indeterminate. For slow motion further single pulses are generated to drive the capstan, the interval between the pulses being set by the slider control on the remote hand unit.

When still is selected (or the camera trigger is released), X42 turns on, stopping the motor, and FF2 resets. FF2 next sets, turning X41 on and X43 off so that R229 supplies X45 with some 9 V . The motor starts. X44 is off at this point, because when FF2 sets X36 is turned on, triggering the monostable connected to pin 26 of IC11. This gives a high at pin 27 after 18 msec , turning on X44 and reducing the drive pulse to 2.3 V due to the network

Fig. 123: The control pulse detector circuit.

R229/R243. The pulses at the collector of X36 are also applied to the vibrate circuit in the drum servo to minimise sideways movement of the picture in slow motion. The tape moves until a control pulse arrives from the tape. This resets FF2, turning X41 off and X43 on, X46 and X48 conducting to brake the motor. R189 and R191 adjust the width of the slow pulse.

Pin 37 of the BA841 provides dummy field sync pulses, as in the 3V16, one of the pulses being user adjustable to minimise jitter.

Edit Start System

Before leaving the capstan servo to look at the reel servo we must explain the edit start system. If you read the articles on the 3 V 23 , you will recall that when record pause is selected the tape winds back by approximately 30 fields and then stops. When restarted, the capstan goes into the playback mode to lock to the previous recording's control pulses, the record capstan reference (FG) being synchronised to the control track pulses by resetting the counter before the record mode is entered. In addition, if

Fig. 124: Still and slow drive system.

Fig. 125: The edit start system.
the signal is interrupted, as will happen with channel change or possibly when editing out adverts, the drum servo relocks to the sync before the machine recommences recording. The system is complicated but gives perfect edits.

A very much simpler system is used in the 3 V 24 (see Fig. 125). The circuit may not make much sense at first glance - there appear to be only two extra presets and capacitors. It works like this. If the tape is stopped at a precise point in time with reference to the incoming signal
(say when the drum FF changes state, as this is locked to the field sync) and is restarted at the same point, the control track pulses should be evenly spaced - they are derived from the field sync pulses. Adjustments are required because pinch wheel movement takes a finite time. This movement must be kept to a minimum, typically 0.1 mm clearance from the capstan to the pinch wheel in pause.
On the next positive-going excursion of the drum FF signal after record pause has been selected, IC5 produces a high at QA1. The microcomputer i.c. sorts this out. It coincides with the end of the ch. B head trace. Because of the presence of R14 and C3, input 2 of IC2 does not go high immediately. When it does, the data fed to A1 tells the pinch solenoid to release.

On pressing the play button or operating the camera trigger to restart the tape, the opposite sequence occurs the microcomputer waits for the drum FF to go positive, QA1 then goes low, C4 discharges through R13, the input to IC 1 goes low, the output to A0 changes and the pinch solenoid is re-engaged.
R13 and R14 are adjusted for the same delay at stop and start, subject to variables such as solenoid inertia and variation in the high and low logic threshold levels for IC1 and IC2.

We'll deal with the reel servo next month.

The B \& K 467 CRT Tester/Reactivator

Eugene Trundle

Fear of tube failure has been a dominant worry ever since the start of domestic TV services, and was if anything stronger in the monochrome-only era. It's probably been the main reason for the British habit of TV rental - only recently has there been a trend away from this. It's true to say that in 1984 few TV sets, either monochrome or colour, justify tube replacement on economic grounds. The reasons for this are the increasing cost of transport and labour, the diminishing (in real terms) price of new sets, and the fact that good second-hand sets are plentiful. I for one am reducing my expensive stockholding of spare tubes!

Over the years there have been any number of boosters, jackers, reactivators and rejuvenators, call them what you will, all serving the purpose of staving off the day of the picture tube's demise. Constructional projects and reviews of such devices have often appeared in these pages. All work on the same basic reactivation principle - passing a heavy forward current through the diode formed by the tube's cathode and control grid in order to disturb and break up the cathode's emissive surface. The operation can be likened to removing the skin of a rice pudding by bringing it to the boil! The process is rather crude, and needs to be carefully controlled to avoid stripping the emissive coating from the cathode's nickel surface.

Many early reactivators were rather heavy-handed in this respect. Some were probably responsible for killing almost as many tubes as they rejuvenated, especially when used by clumsy or inexperienced hands. Boosters vary in their degree of sophistication: I've come across most types, both gentle and brutal, in my servicing career.

The advent of colour saw the introduction of new types, basically similar but with gun-switching facilities and often clumsy base connector boxes to cater for the different pinning arrangements used in different tubes. Many of
these early boosters could not easily cater for the new tube types introduced in recent years - I never did find one that could do much for a Sony Trinitron tube, even with a suitable base socket in use.

Our faithful workshop reactivator gave up the ghost some months ago, and we took the decision to pension it off rather than patch it up again. Eleven years' service is not a bad record, and we've certainly had our money's worth during this time. Whilst looking at what's now available I found that the choice is somewhat limited. The main contenders come from Leader and B and K Japanese and American respectively. The latter is far more expensive, but after enquiring among several satisfied users I decided to try it out.

Features

The 467 is much more sophisticated than other tube testers/reactivators. The array of dials, lights, buttons and knobs is reminiscent of a helicopter's flight deck, and impresses the customer no end! The instrument is built into a tough polyethylene attache case, with carrying handle and lead storage. The operating panel is revealed when the lid is opened. There are three moving-coil meters at the top, one for each gun of the tube under test. The operating controls and indication lamps are grouped beneath these meters in a logical layout - setting controls on the left, checking and restoring controls on the right. A pocketed flap in the lid holds the operating instructions and set-up charts. Behind this there's a foam-moulded storage tray for the various base adaptors for monochrome and colour tubes.

The three meters enable the emission and warm-up times of the three guns to be assessed simultaneously. Each meter serves two purposes, so that the heater,
control grid and mains voltages can also be read accurately. The heater voltage $(0-14 \mathrm{~V})$ is set by a switch and a potentiometer: 2 A is available at up to $7 \mathrm{~V}, 600 \mathrm{~mA}$ beyond. Neon bulbs provide interelectrode leakage indication and, unusually, a continuity check to the focus electrode. Another uncommon feature is the "life test" which gives a prognosis at the press of a button. There's a remove-short facility for shifting grid-cathode leaks, and the rejuvenation process is available in two forms - a gentle clean-and-balance operation, or the more thorough type of routine. Each of these is a special timed process, as we shall see.

Testing Methods

There's not space here to provide a detailed account of the instrument's unique operating principles, so I'll confine myself to a brief description of the main functions.

In the emission test mode the tube's three guns are individually and sequentially addressed by a clocked digital logic system. Each gun is pulsed about twenty times a second, the peak current for each gun being indicated on its own meter. This pulsing technique allows a digitallyprogrammed first anode voltage regulator to set the cutoff point for each gun, even with a common anode assembly or the first anodes strapped together. During the tracking test, in which the gun characteristics are compared, the duty cycle of each gun is reduced and the resulting beam current indicated on the corresponding meter. Provided the best and worst guns have an acceptable emission ratio (less than $1 \cdot 5: 1$), the meter indications will stay within the yellow tracking segments.

The life test is a useful feature. It works by reducing the heater current by fifteen per cent - achieved by switching primary taps on the mains heater transformer. If the emission of all guns remains satisfactory under these conditions, it can be assumed that the tube has at least a year or two's life left.

Interelectrode leakage is indicated by five neons, one each for the cathodes, heater and commoned grids. Because of the sequential gun-addressing system, the position of any leak, including intercathode ones, can be ascertained. Shorts between grid and cathode are blown clear by a capacitor discharge initiated by the removeshorts button. A further neon is used in the focus electrode continuity test. This detects an open-circuit by reducing the first anode voltages and looking for an increase in the current flowing via the focus electrode. The increase is sufficient for the neon to strike, and by observing the emission meters during this test an opencircuit focus electrode in a strapped triple-gun assembly can be detected.

Reactivation

So we come to the B and K 467's main feature, its rejuvenation process. To prevent rupturing the cathode and thus ruining the tube, the current flowing during and also the duration of the "blasting" process must be precisely controlled. Two levels of reactivation current can be used, a low one for the clean/balance process, which can be safely used with any tube regardless of its condition and value, and a high one for rejuvenation.

So far so good, but cathodes can vary enormously, not only regarding contamination and wear but also in physical shape and size. Modern tubes use tiny quick-heat cathodes with a small emissive surface, whereas most
monochrome and delta-gun tubes have large cathodes with a considerable coated surface area. Plainly each case calls for a different degree of blasting, and the problem is to ensure that justice is done in all cases without over cooking things.

The 467 achieves this by making the cathode itself the arbiter of its treatment. The heater current is first automatically increased to bring the cathode to an abnormally high temperature. The heater is then turned off and the rejuvenation current is simultaneously applied. A heavy current flows initially, but as the cathode temperature drops so the current falls, soon decaying to zero. This means that a large, robust and thermally inert cathode will get (and withstand) a sustained rejuvenation cycle, whereas the more fragile Trinitron and quick-heat cathodes will be restored without being wrecked.

Use and Performance

To test any monochrome or colour tube, reference is first made to the set-up chart. This lists virtually all known tube types and gives the approximate heater voltage and adaptor socket number. Once the correct adaptor has been fitted the test procedure is fairly simple, involving initial setting of the heater, grid and first anode voltages, followed by the emission test and then push-button checks on the tube's various conditions. This becomes routine after using the instrument a few times, and I soon learnt the adaptor types and procedures for the limited number of tube types I have cause to test. It was necessary to order one optional extra adaptor, for the small Trinitron tubes, but all the other tubes I encounter are catered for by the six adaptors that come with the instrument.

The auto-timing feature made me feel more at ease when rejuvenating tubes, and as far as I can see the only way to wreck a tube would be to continually repeat the rejuvenation process until the cathode finally died - this would call for a conscious and determined effort! The instrument will not do anything for heater-cathode leaks (neither will any other I know of), but on the one occasion that I encountered a cathode-grid leak the remove-shorts procedure revealed all - in the red picture, since the short was in the red gun.

I was very pleased with the results of the reactivation process. Given that the tube has all three heaters alight and no mask or screen defects, a useful and long-lived boost can almost always be obtained - unless the tube is completely worn out or has been previously over cooked by another reactivator. Certainly this is the first instrument I've come across that can give a new lease of life to a Trinitron tube: I've dealt with several of these successfully, and only one (about twelve years old) subsequently died. I believed (and still do!) that Trinitron tubes are manufactured with some sort of anti-jack characteristic in their cathode coatings...

The life test and tracking check facilities enabled me to get a pretty good idea of the condition and performance of the tube under test, and a reasonable indication of how long it could be expected to last. This is particularly useful for those testing ex-rental or second-hand sets before buying them. I chose not to use the little guarantee cards packed with the tester for dispensing to the happy owners of tested and rejuvenated tubes!

As with any tube tester, it's important to unplug the set under test from the mains supply, and in particular to discharge any e.h.t. from the anode cavity of a tube being treated. The test procedure necessarily turns on the guns,
whereupon a conductive path is established to the tube's final anode. This conductive path will raise the instrument (and the operator!) to whatever e.h.t. level was stored in the Aquadag coating. Nasty . . .

I dismantled the instrument to assess its quality and the workmanship. The bottom deck consists of a fibreglass board containing a pair of 7400 series logic chips, ten transistors, lots of resistors and an army of diodes and rectifiers. Surprisingly, a lone valve sits on this board, a 12BH7A double triode. Elsewhere are a couple of heavy mains transformers and the potentiometers, pushbuttons and meters associated with the operating panel.

From long experience of commercial tube testers I find that the weak spots are the set-heater potentiometer, the function switch and particularly the multicore test cable and its terminations. I carefully examined all these items in the 467 . The heater potentiometer is very beefy, rated at 12 W , so I wouldn't expect any problems here. The function switch has scores of connections and would be difficult to change, but it looks reliable - a similar switch in my old tester has given no trouble during its many years' use. The test lead is terminated in a way that prevents stress or fatigue at either end, while the multipin flying plug (into which the base adaptors fit) looks rugged - it needs to be! I suspect that the most commonly used base sockets will eventually wear out, but these are available as spares at about $£ 8$ plus VAT each.

I'm told that all spares are available, in or out of guarantee, from the importers (address at end). They also
carry out guarantee service during the first year and operate a free updating service (on request) for new tube types as they appear. As new base adaptors become necessary, these will be made available from the same source.

Conclusion

In conclusion, the instrument is now a feature of our workshop. Three hundred and sixty pounds plus VAT is a lot of money, and there's less here than in $£ 360$'s worth of new colour TV set. There are many reasons for this however - and you can't rejuvenate tubes with a CTV! It may be difficu't to justify the expense in a situation where the instrument won't get a lot of use, say in a one-manband concern. In a busy workshop where a lot of servicing is carried out however my opinion is that the instrument is worth every penny! In an organisation such as mine it will probably pay for itself in a very few months. One of the crosses I have to bear is taking decisions on whether to continue maintenance contracts on old sets. The possession of this instrument has lately tipped the balance in favour of renewing many border-line contracts I might not have agreed to continue before. Let that speak for itself!

The B and K Model 467 is available to the trade at around $£ 360$ plus VAT from Radio Supplies Components Ltd., PO Box 27, Hartlepool, Cleveland TS24 7BR (telephone 0429 75750) and from various wholesale distributors.

TV Fault Finding
 Reports from Richard Roscoe, John Coombes, Tony Thompson and M.S. Barakat

A Plague of Portables

Down here beyond the Tamar, the tempo of service life alters subtly as the days lengthen and temperatures rise. Triplers and line output transformers are packed up and put away ready for next winter's onslaught of dampness and mains surges. In their place are set out the weapons for the summer campaign: fuses, diodes, thyristors, mains droppers and smoothing capacitors to deal with our warm weather foe - the annual Plague of Portables.

Each year swarms of summer visitors, or "Emmets" if you're stuck behind one in a country lane, descend on our county carrying with them all they think they'll need for a fortnight of fun. Along with the caravan, kids, dinghy, dog, brolly, bucket and spade, a large number of them bring the portable from the bedroom or kitchen. Unfortunately they rarely bring the instruction book, which they've never read anyway, so connecting the set to the car battery the right way round is a matter of luck for them - and work for us. Hence the fuses, diodes, etc.

Some get through this first hurdle only to falter at the next. They find that the set hasn't taken kindly to being torn from its warm, comfy shelf, pitched into a bucking caravan with a motley assortment of household items, driven 400 miles and then plugged into an alien power supply. Years of reliable service are wiped out at a stroke in an orgy of dry-joints, drifting tuner potentiometers, dirty presets or other, more expensive, acts of vengeance. The latter also come our way, usually on the last day of the family holiday. Like the Ferguson Colourstar portable we had to deal with recently.

It was a Model 3756, with 14 in. screen, and had gone
dead the night before. This proved to be because the 1.6 A mains fuse had blown, which is not an uncommon occurrence with these TX9 sets. Often there seems to be no cause, and Thorn have introduced several modifications to combat the problem, including an improved reservoir choke (L65), type 90D3-028-002, and over-voltage sensing zener diode (W85), type 02V4-718. So we decided to try a new fuse and if all seemed well advise the customer to consult his local dealer. We needn't have worried. The fuse popped off immediately, and a meter check at the mains bridge rectifier showed that two of the diodes were short-circuit. In went four new 1 N 4007 s just to be safe. This caution was wasted because the next fuse went the same way. This time the regulator thyristor SCR1 (Y1044) was short-circuit, so in went a replacement for that. Bang went the next fuse.

By this time we were getting a bit worried. Apart from anything else, we'd only one 1.6 A fuse left! So we did what we should have done in the first place and checked the resistance between the h.t. line and chassis. Not surprisingly there was a short, so we began to disconnect likely culprits. It wasn't the line output transistor, and it wasn't the crowbar thyristor. It turned out to be W77 (BY210-400), the "efficiency diode" in the power supply. Having made doubly sure that there were no further measurable shorts we tried our last fuse. Success! The set burst into life after the customary TX9 heart-stopping pause.

Another colour portable we've seen quite a bit of is the Hitachi CPT1471/CPT1473. They've all had the same fault. Indeed it's one of the few things akin to an old-

Fig. 1: Field output circuit, Hitachi CPT1471/CPT1473.
fashioned stock fault we've come across lately. The symptom is no results, sometimes intermittent but usually permanent. The first thing to do is to check Q681 (2SC1213A) in the field output stage (see Fig. 1). If this is faulty the following steps will have to be taken. Replace Q681 with the more robust 2SD401A. Also replace the switch-mode power supply chip IC901, type STR6020, part number 2366451 (it's a safety component). Hitachi say that when faulty this chip can produce excessive output, which leads to the demise of Q681. In addition, we would strongly recommend replacing R772 (10Ω), even if it seems all right. This is the surge limiter in the rectifier circuit that produces the supply for the field output stage and is also a safety component, part number 0119514. Hitachi comment that if R682 (15ת) fails the STA441C field output chip will also have failed, but we haven't had one go yet.
The bulk of the summer portables we have to deal with are little monochrome ones of course. They come with all kinds of weird and wonderful names on the front, though their backsides tend to be much the same - not unlike their owners we sometimes think. One of the more interesting faults we've had recently concerned a GEC 2114 Junior Fineline which had normal sound but a blank, noise-free raster. Now the fact that the sound signal, which is tapped from the collector of the final i.f. transistor, was all right would tend to throw suspicion on the video circuitry. Everything here was o.k. however. As the more experienced of you will know, the intercarrier sound signal often gets through despite the i.f. strip proper being faulty. In this instance voltage checks proved that the final i.f. transistor was not conductive, due to its 120Ω emitter resistor R122 being open-circuit.
R.R.

Amstrad CTV2000

We've had another case of no sound or raster with one of these sets. The STR451 switch mode power supply chip IC502 should produce 103 V at pin 2 . The fault was due to C509 $(0.0033 \mu \mathrm{~F}, 1.6 \mathrm{kV})$ which is connected to one end of the chopper transformer's secondary winding (T501). J.C.

ITT CD652

This set (CVC25 chassis with CMC60 remote control system) was stuck on channel one. We checked through the i.c.s in the control circuit and found that the command
went missing between IC3 and IC4. Replacing these two i.c.s failed to provide a remedy so I decided to check round IC3 with a meter. Unfortunately no pin voltages are given on the circuit, so guesswork is required. Pin 9 was found to read 16 V , which was clearly wrong (see Fig. 2). The $1 \mathrm{M} \Omega$ resistor R 21 is fed from a zener diode stabilised 8.2 V rail while C5 is connected to an 18 V line. So either C5 was leaky or IC3 was at fault. We'd already eliminated IC3, so a check was made on C5 which was found to read $80 \mathrm{k} \Omega$. Replacing this restored all functions to normal.
M.S.B.

GEC C2110 Series

This 20 in . solid-state set had come in for repair through the trade, the symptom being low gain. The picture had a washed out look, like me first thing in the morning... There was no observable graininess however, so I didn't suspect the tuner. Also the sound was o.k. One clue came when I removed the aerial, because instead of the expected visible and audible noise there was a blank raster and silence. Something was clearly amiss in the i.f. strip, so the next step was to check transistor voltages. This brought us to the emitter of the final i.f. transistor TR102 (BF197) where the reading was way out at more than 9V instead of 2.8 V . The cause was found to be a severe leak in Cl 13 (see Fig. 3). Replacing this restored full contrast and an excellent picture.
T.T.

Thorn 9000 Chassis

This set had flyback lires all over the picture and a distinctly tubey look about it. Increasing the contrast tended to produce slight smearing. The next thing I noticed was that the brightness control had been set well down to keep the level correct. This led to a check on the c.r.t. voltages, where the first anodes were found to be at around 1 kV instead of 700 V . The cause was R 722 ($2 \cdot 2 \mathrm{M} \Omega$) in the first anode supply potential divider network having gone high in value. Incidentally, if you get one of these sets with the complaint of flashovers (a hell of a crack at that) and the e.h.t. is correct it's probably the tripler - the casing tends to break down. I've had similar trouble with the 8500 recently.
T.T.

GEC C1401H

For a grainy picture with noisy sound, first check whether the programme indicator light is a little dark. If so check for 33 V at connector F5. If there's no voltage at this point $\mathrm{R} 334(10 \mathrm{k} \Omega)$ is probably open-circuit.
J.C.

Fig. 2 (left): Channel sticking, ITT Model CD652.
Fig. 3 (right): Final i.f. stage, GEC C2110 series.

Long-distance Television

Roger Bunney

January was disappointing with regard to reception though dramatic in respect of winter fury. We have news of at least four aerial structures being damaged. During hurricane force winds Arthur Milliken (Wigan) lost his complete system (though his XG21s may be repairable). Both Cyril Willis (Ely) and Robin Crossley (Dunstable) report bent poles, but perhaps with most dramatic report comes from David Martin at Shaftesbury, Dorset. A guy on his 30 ft mast snapped: this was followed by collapse of the mast when an anchoring bolt sheered, and destruction of the aerials. Fortunately the structure missed nearby buildings.

Tropospheric reception has been poor, which is hardly surprising in view of the weather. The Quadrantids meteor shower produced increased signal pings throughout Band I, with isolated bursts in Band III, January 4th being particularly active. Much of the MS activity occurred during the day, allowing positive identification of many of the signals. There's been some Sporadic E activity, the log being as follows:
8/1/84 TSS (USSR) chs. R1, 2; ORF (Austria) E2a.
9/1/84 TSS R1.
11/1/84 NRK (Norway) E2.
12/1/84 RAI (Italy) 1A, B; JRT (Yugoslavia) E3; RTVE (Spain) E2, 3, 4; RTP (Portugal) E3.
16/1/84 RTVE E2, 3, 4.
18/1/84 JRT E3, 4, RTSH (Albania) C; ORF E2a; RTVE E2; TVP (Poland) R1, 2; TSS R1.

2/2/84 RTP E3.

A glimmer of light during the winter gloom has come from Jim Maden (S. Africa) who confirms that ZTV (Zimbabwe) ch. E2 Gwelo is still in operation - he's received the station recently via SpE .

Following recent 405 -line transmitter closures, Band I is relatively clear for many enthusiasts. This is especially so in E. Anglia now that Tacolneston Ch. B3 is off air.

A further sixty experimental amateur 50 MHz transmitting licences have now been offered. Reports on any interference from this source on chs. E2/R1 during the coming season would be appreciated. Simple filtering should remove most problems, but those experiencing difficulties (or solving them!) are asked to write in!

News Items

France: The fourth channel Canal Plus has started to transmit an identification slide and a half hour film giving details of the service. Paris, Rhône-Alpes, Provence and the Côte d'Azur will be the first areas to receive signals. A twelve-hour daily service is expected to start on November 1 st , with mainly films.
S. Africa: A TV service (BOP-TV) has been started in Bophuthatswana. Details: ch.E37 vertical, 200W e.r.p. directional, modified PM5544 test pattern.
Spain: The authorities have closed down the pirate Band III transmitter at Fuenjirola, South Spain. It had been relaying the GBC (Gibralta) service.

Australia: The Aussat DBS is due to be launched next year. The two main spot beams will be used for the national ABS service. Lower-level broad beams will be used as a means of distributing commercial services to local stations.
Radio Amateurs: Mention has been made in previous columns of the possibility that the spectrum $50-52 \mathrm{MHz}$ will be allocated to ham use. No specific date for such an allocation has been officially announced and in a letter the RSGB general manager/secretary David Evans writes that "any view expressed as to a future allocation to UK amateurs at 50 MHz is purely speculation".

New EBU Listings

The height of the Maasser el Chouf, Lebanon mast has been increased from 45 m to 70 m . Transmissions are on ch. E4 at 60 kW e.r.p.
Considerable reductions in e.r.p. are given for various Syrian Band I transmitters - Abou-Kamal and Nabi-Saleh (both ch. E3) 400 W instead of 400 kW and Hassake (ch. E4) 95 W instead of 35 kW . I suspect that previously supplied information was incorrect - similar changes are given for a number of Band III transmitters.

1984 Meteor Showers

The main 1984 meteor shower dates are as follows: Quadrantids January 1st-6th.

Lyrids
May Aquarids
Delta Aquarids
April 19th-25th, peaking on the 21st/ 22nd. May 1st-10th, peaking on the 5th/6th.

Perseids July 25th-August 20th, peaking on August 11th/12th.
Orionids October 16th-26th, peaking on the 20th-23rd.
Taurids October 20th-November 30th, peaking on November 1st-10th.
Leonids November 15th-20th, peaking on the 17th-18th.
Geminids December 7th-15th, peaking on the 13th.
Ursids December 19th-24th, peaking on the 22nd.
Our thanks to George Spalding, Director of the BAA Meteor Section, for supplying these dates.

Ryn Muntjewerff

DX-TV reception by Ryn Muntjewerff at Beemster, Holland, has often been reported in this column. Ryn started - as so many do - after accidentally noting distant signals on his domestic TV set - in his case bull fights from Spain in the summer of 1961. After further reception he installed a roof-mounted mast and achieved some of the the first DX reception at u.h.f. In the spring of 1970 he erected a 22.5 m mast for tropospheric reception, leaving a wideband array (chs. E2-R4) mounted on the roof for SpE reception.

Due to the exposed location, Ryn has lost several aerial systems, mainly as a result of the U-bolt/clamp section of the diecast housing of bell-type rotors snapping. To prevent this trouble Ryn now uses an alignment bearing on top and an internal sleeved pipe inside the mast atop the rotor.
His achievements in Band I have been remarkable, with reception from Australia (ch. 0), Korea (AFKN Seoul ch.

A2), Malaysia (ch. E3) and southern Brazil (Port Allegre ch. A2) - in total some 47 countries. His farthest u.h.f. reception has been from Pajala, Sweden (SR-2 on ch. E34).

At present he has double stacked group A, C and E Fuba XC391 arrays on the mast plus horizontally and vertically mounted Wise 24 -element wideband Band III arrays and a nine-element Fuba v.h.f./f.m. array. Threeelement ch. E3 and ch. E4 arrays are mounted vertically and horizontally on the house along with a nine-element ch. E2-R4 BDXC system.

Satellite Location/Bearing Service

Neville Cresdee (14 Arminers Close, Clayhill, Gosport, Hants PO12 2HB) is now providing, on a commercial basis, print-outs for given locations showing all available TV carrying satellites. Here at Romsey for example some 48 craft are visible: at 4 GHz , signals from some 20 craft should be resolvable using a small dish. These craft are underlined in the print-out, the more powerful satellites, such as the Gorizont series, being underlined in red. Explanatory notes, including satellite leasing information, come with the print-out. The service costs $£ 10$ and if there's sufficient interest additional information such as E.I.R.P. levels will be included.

From our Correspondents ...

A letter from Brussels reports that both BBC TV services are now carried by the Coditel, Brutele and Radio-Public cable networks. The Coditel network provides 18 channels at 67 Belgian Francs annually. UK TV quality is "most satisfactory", though there have been occasional problems with the sound due to the need to change it from 6 MHz to $5 \cdot 5 \mathrm{MHz}$. Reception of UK teletext has still to be tried. Our contact also reports that the TV5 ECS downlink service is in Secam, with an f.m. sound carrier at 6.5 MHz . The terrestrial ECS downlink transmissions on ch. E56 in Brussels carry colour bars and the identification "CNCT Bruxelles".

Isik Yildirim (Turkey) is receiving signals from the $99^{\circ} \mathrm{E}$ Ekran satellite, though rather weakly, using a Fuba XC391D aerial and AKV145 junction box amplifier, a Teldis masthead amplifier and a standard v.h.f./u.h.f. Crown portable TV receiver. The latter has been fitted with an f.m. demodulator, and the results to date have been encouraging. It's now apparent that the side radiation from the Ekran satellite is very low in comparison with the high signal levels received in S. Africa from the rear.

Ronald Exeter (Bishopton), whose DX signal detector/ alarm was featured last month, uses mostly home-built equipment for DX reception. His receiving system consists of a home-built tuner and parallel vision-sound i.f. strip, a tunable intercarrier sound channel, a vision detector and a quartz-locked resync and blanking unit based on a ZNA134 chip. The output is fed to a VCR for remodulation back to u.h.f. and finally goes to a Barco PAL/Secam colour set. The detector also drives a CMOS logic board for recording on the VCR - the resync unit maintains VCR servo locking, which would otherwise be upset by "messy" DX signals, while the blanking is inserted to prevent the VCR's clamp pumping in the presence of interfering beat signals. An experimental SAWF i.f. strip is under development: results obtained so far show that a weak ch. R1 vision signal (49.75 MHz) can be viewed even when a very strong ch. E2 vision signal $(48.25 \mathrm{MHz})$ is present.

SOUTH WEST AERIALS

With the 1984 Sporadic E season nearly here, now is the time to consider new aerials for the Summer months. Our Band 1 wideband range covers $47-68 \mathrm{MHz}$ from a wideband dipole to a 4 element yagi, and omni directional/bi-directional switched options. South West quality ensures seamless hard drawn alloy tubing, all open ends plugged, bright Zinc plating and an overall high standard designed and made by DXers with the DXer in mind! Send an SAE for a leaflet describing this exclusive range. We even have TVDXing receivers both colour and monol South West Aerials provide an exclusive service for the DXer (TV and FM), the multiple channel installation, weal/fringe area and screened/deflector country. Our range of filters is unique, with the increasing numbers of $50-52 \mathrm{MHz}$ amateurs careful filter design should ensure continuence of ch.E2/R1 reception - we have suitable Band 1 notch filters ex stock!

Send now for our extensive catalogue (54p) detailing aerials, amplifiers - masthead and indoor, filters, rotors, installation/mounting hardware, cables and accessories. Our customer consultancy service will ensure correct units for your specific application.
WB 1 - SWAS wideband dipole, Band 1, 24' stub mast (incl. clamp) $\quad \mathbf{E 2 5 . 6 0}$ WB2 - SWAS wideband 2 element, Band 1, $47^{\prime \prime}$ long

E28.40 WB4 - SWAS wideband 4 element, Band 1, High gain, $113^{\prime \prime}$ long $£ 36.40$ WB5 - SWAS wideband crossed dipoles, Band 1, 24.' stub mast $£ 35.10$ WB6 - SWAS wideband crossed dipoles + spaced reflector screen £38.85 isuitable combining filter Triax 7200 for WE5, 6 giving omnidirectional coverage 59.85 , or swith each dipole for Ei-diractional coverage Hirschmann R0250 aerral rotor, control unit. 3 core control feader €47.85, (aligmment basing for above £16.90).
Plustron TVR5D dual standard $5^{\prime \prime}$ mono VHF/UHF TVDXing receiver $£ 91.40$ The above prices include VAT, postage/packing - large items Securicor. Access Berclaycard accepted. Include SAE with ALL enquires. Delivery 10-14 working days. Comprehensive catalogue 54 p.
South West Aerials, 11 Kent Road, Parkstone, Poole, Dorset BH12 2EH. Tel. 0202738232.

Left: The identification slide now in use by the French fourth channel Canal Plus. Centre: ATV reception by Ryn Muntjewerff (Holland) from Saintes, a distance of 871 km . Power just 2W. Right: ATV reception by Robin Crossley (Dunstable) from G6HMS at Lincoln.

Mel Thurlbourne is back at Leighton Buzzard after several months' duty and DXing in the Falklands. Whilst there he received signals on chs. A2 and A3, but nothing in Band III or at u.h.f. SpE signals from Argentina have been identified: other signals await identification from photographs. Argentina had delivered ch. A7 PAL N transmission equipment for the intended Port Stanley TV service.

Robin Crossley recently moved to Dunstable, which by all accounts is a much improved location. He's using a wideband, 92 -element Triax array at u.h.f., an eightelement Jaybeam ABM8 array for Band III, a fourelement Band II array and crossed dipoles for Band I. Belgian f.m. radio is always present, in stereo, and an f.m. radio pirate (Skyline Radio) is heard daily on 103.6 MHz at a distance of some 45 miles.

Amateur Television

Since I first started to mention ATV in this column several letters have arrived asking about reception. Transmissions are usually between $434-438 \mathrm{MHz}$, which in general terms is below the efficient operation of a group A or wideband array. For a start however it would seem best to press the normal DX-TV system into service. Experience shows that a stacked bowtie aerial system such as the Wolsey Colour King or Triax BB grid provides reasonable performance (in terms of gain and directivity) down to 435 MHz . A group A Yagi could be adapted by using 13in. reflector elements - something of a compromise as regards efficiency, though this should provide reception of local ATV signals. If interest develops, a 435 MHz array can be obtained - units are available in the Jaybeam and Tonna ranges. Since many ATV signals will be at a low level, a masthead amplifier is advisable - most wideband u.h.f. amplifiers will provide amplification at 435 MHz .

One problem is that the use of a standard u.h.f. array and a wideband amplifier can result in overloading, particularly with local group A broadcast signals. Suitable bandpass (or bandstop) filtering should minimise this problem - the overloading usually occurs in the tuner's r.f. amplifier rather than at the masthead. I've used both Labgear and Wolsey wideband u.h.f. amplifiers satisfactorily at 435 MHz .

Tuning over $434-438 \mathrm{MHz}$ is usually done with a standard u.h.f. tuner, possibly modified, or a frequency converter. Many u.h.f. tuners will cover the ATV band with no modification. The ET021, ELC1043 series, ELC2060 and the ELC2000 series will generally reach down to 435 MHz at minimum voltage on the tuning line. If a particular tuner won't reach 435 MHz , a slight increase in
the length of the mixer and oscillator tuned lines should be all that's required by way of modification. Many Japanese and Far Eastern portable sets tune down to 435 MHz , as do certain VCRs. In view of the cheapness of surplus tuners, it's reasonable to obtain one and tweak it for maximum output at 435 MHz .

The use of frequency conversion is simpler but more expensive. Upconverters that accept the 435 MHz band and provide an output in the ch. $37 / 38$ spectrum are available at about $£ 30$. They generally use bipolar transistors and if confronted with high-level group A signals can cause cross-modulation. I experienced this problem - the four local group A signals were at 40 mV each. Use of a simple two-pole bandpass filter for 435 mHz resolved the problem. Commercial converters are housed in diecast boxes and are untuned. ATV products are available from the following firms: Wood and Douglas, Aldermaston, Nr. Reading; Microwave Modules, Aintree, Liverpool; Fortop, Warrington, Stoke on Trent.

A standard system I receiver can be used. For those living near the south coast there's the bonus of French ATV signals, though a system L receiver (or converter) will be required. Many French amateurs switch to nega-tive-going video when in contact with UK stations however.

The emphasis is on test card/pattern transmission, though increasing enthusiasm for computer graphics is evident. Call signs, often with details of the transmission site, are given: otherwise the "locator" is shown - this is a code number that refers to a European reference grid and is sufficient to identify the approximate source of a transmission. Camera operation is also extensive.

Communication with ATV operators is usually done at 144.75 MHz , the main calling frequency in the UK. If you're not licensed and don't have a 144 MHz transceiver, the cheapest way of monitoring this frequency is to use a Daiwa SR9 receiver. This has continuous coverage at two metres with provision for crystal control - crystals can be obtained for 144.75 MHz and for each side of the calling frequency at a spacing of 25 kHz . It's not essential to hear the ATV talkback, but this is helpful in deciding whether there's any activity and if so where it's from.

I'd be pleased to assist with any queries on ATV reception (include a s.a.e. for a speedier reply). Anyone with a strong interest in the subject should join the British Amateur TV Club (BATC) which publishes a regular journal and also three guide books. For membership details send a 9×4 in s.a.e. to Mr. B. Summers, 13 Church Street, Gainsborough, Lincs. In good openings, signals should be received at up to 500 miles. Let us know how you get on, with details of equipment, aerials etc.

Requests for advice in dealing with servicing problems must be accompanied by a $£ 1.00$ postal order (made out to IPC Magazines Ltd.), the query coupon printed below and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

FERGUSON 3V22

A buzzing noise in the background on the sound has developed, increasing to a higher level when recorded programmes are played back. This sound is not so prominent with a commercial prerecorded tape. Tuning doesn't improve matters, except at the expense of the picture.

Remove the top and left-hand side of the machine, unsolder the two white leads from the servo (left-hand) panel, swing this out and clean both slide switches. Make sure that the switch bars don't go into the holes in the switches when replacing the board. If E-to-E buzz persists, try reducing the E-E level (bottom board).

TYNE 5224

The problem is line output transformer arcing - it's been rewound three times during the last six months. The last time the fault occurred $\operatorname{R502}(820 \mathrm{k} \Omega, 2 \mathrm{~W}$) associated with the tripler was found to be open-circuit.

It seems that either the h.t. is excessive or the line output transformer tuning is incorrect. Adjust P301 for 135 V at C348 and if necessary replace C353 $(5,100 \mathrm{pF}$, high-ripple pulse type).

THORN 1525 CHASSIS

There's a weak picture that goes negative when the brightness control is advanced. I've tried boosting the tube's heater voltage but this hasn't helped. Can't find any references to this chassis.

The 1525 chassis is a variant on the well-known 1500 . The symptom is not uncommon and is usually due to a fault in the video output stage. Suspects, in order of likelihood, are as follows: the video output transistor VT9 (a BF337 can be used); its collector load resistors R40 ($2 \cdot 2 \mathrm{k} \Omega$) and R41 ($5 \cdot 1 \mathrm{k} \Omega$); and the supply decoupler C38 $(12 \mu \mathrm{~F})$.

PHILIPS N1700

There is continuous flutter on prerecorded and recently recorded tapes, though the machine has recently been serviced, with a new pressure roller and belt amongst other things.
If the flutter is on sound, check the adjustment of R3 (capstan servo ripple) in the U320 module, using a scope or AVO and diode probe. If the flutter is on the picture, check that the tape is not wrinkling due to dirt on the guide near the audio/sync head and for severe wear in the latter - also check the head bearing for wear or lack of oil.

Finally adjust R2 (head servo ripple) in module U219. If neither ripple can be reduced to zero, the capstan or head motor could be faulty.

THORN 8000 CHASSIS

The problem with this set is vision buzz on sound. Is there a stock fault to check?

This chassis is not the best performer as regards vision buzz. First check C140 (47 pF) in the quadrature tuned circuit, then carefully tune the coil (L 110) for minimum buzz. If the buzz persists. check the intercarrier sound chip's supply decoupler $\mathrm{C} 133(80 \mu \mathrm{~F})$ and the ceramic input filter CF101. Finally try a very small (less than half a turn) adjustment of L102 in the i.f. passband filter circuit.

SONY KV1810UB

The trouble is pincushion distortion. The two controls VR585 (amplitude) and VR586 (bias) have been adjusted for optimum results, but there's still a half-inch bow-in at each side of the raster. VR585 is at one end of its travel.

The usual cause of this fault is that the coupling capacitor C585 ($4.7 \mu \mathrm{~F}, 100 \mathrm{~V}$) between the field output stage and the pincushion correction circuit has dried up.

THORN 3000 CHASSIS

There's a good, clean monochrome picture but this becomes increasingly noisy as the colour is turned up. At the correct colour control setting the noise gives the impression of a poor level signal from the aerial, but the signal strength here is first class.

If the colour is locked, check transistor VT110 and the a.c.c. smoothing capacitor $\mathrm{C} 173(2 \cdot 5 \mu \mathrm{~F})$ on the i.f. panel. If necessary, check the chroma amplifier transistor VT309 and the blanking diodes W316/7 on the decoder panel.

BUSH BM6514

The set is all right when first switched on, but the picture and sound deteriorate after ten-fifteen minutes, leaving a grainy picture and poor sound. Touching the aerial socket with a screwdriver restores the signals, but only for fiveten minutes.

The tuner is almost certainly faulty. Before replacing it, remove the sides and check carefully for dry-joints and solder blobs. A magnifying glass would help.

FERGUSON 3V31

Is it possible to convert the clock in this VCR to operate on a twelve-hour cycle?

You will have to gain access to the 08 display panel. Locate the display control chip IC401 (μ PD552C-079) and then link pins 40 and 41.

COMPUTER USE

I intended to use a Sinclair ZX Spectrum with my Grundig 1645GB colour portable (GSC200 chassis). This set gives an excellent off-air picture but won't resolve the Spectrum computer's colour, giving a perfect monochrome display instead. A large-screen Philips set with manual tuning gives a very good colour display however.

Sweep tuning is sometimes a mixed blessing. If this is the trouble and the fine tuning buttons won't get a grip on the chrominance signal, some other means of getting the signal into the set will have to be found. First try an attenuator (say 6dB) in the aerial lead. Alternatively adjustment of preset RV on the vision i.f. module may achieve the desired result.

256
Each month we provide an interesting case of television servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.
A great deal of on the job training takes place in our workshop on an informal basis, depending on the workload and the suitability of the items in for repair. These days the emphasis is mainly on VCR servicing - we find that a "hands on" session is much more valuable (though more time consuming!) than a verbal or written description of symptoms, diagnosis, practical repairs and adjustments.

A suitable recent case consisted of a fairly new Sony SLC6UB VCR. Although it's a Betamax machine, the story to be told would apply equally to other types and models. The symptom reported was that the picture was rolling and juddering vertically. This was bad on library tapes, and intolerable with self-recorded tapes. E-to-E and direct r.f. picture reproduction were faultless. After a test to confirm that the symptoms were as described, the machine was given to a trainee to ponder over - with the proviso that he checks with his colleague before doing anything drastic, either mechanically or electrically.

Off he went with his scope, making a start at the video output socket. By examining the field rate waveform here he found that the E-to-E signal was perfect whereas the off-tape signals had bad deficiencies in the field sync pulse train and during the first few lines of the picture. These lines were of low amplitude and noisy compared with the video signal during the rest of the field period. None of the playback waveform was as clean and sharp as the off-air signals, and further checking showed that during playback of the machine's own recordings the field sync signals were virtually obliterated by noise.

After some thought our trainee decided to check the r.f. envelope pattern (from the head preamplifiers) during playback, and demanded an alignment tape for the purpose. This was refused as the remains of a chewed up alignment tape (a sad story we won't recall here) had only recently been enshrined. He was told that he was on the right lines and given a known good prerecorded tape with colour bars.

Access to the relevant test points on the RF4 board is not easy on this model as the AD6 and RF4 panels have to be half-cocked over the whizzing head drum. When the waveform was displayed however a significant dent in the envelope pattern at the left of each head's trace was seen. Knowing that the field sync pulse comes at the start of each head sweep, our trainee correctly surmised that this was the cause of the symptoms. Adjusting the tracking control made little difference to the envelope shape - it reduced in amplitude without changing shape much when the control was adjusted.

Careful head, drum and tape guide cleaning made little improvement, and after consulting the adjustment manual and with the approval of his colleague our man cautiously adjusted the tape entry guides, after carefully marking their initial positions by scribing, then counting turns. The result of all this was disappointing. Screwing the guides up and down gave a "Christmas cracker" effect at the lefthand side of the signal envelope, with corresponding mistracking bars on the monitored picture, but the envelope's round shoulder shape remained. The senior technician had a good idea all along what the trouble was - have you? We'll come back to it again next month.

ANSWER TO TEST CASE 255 - Page 271 last month -

The incredible situation described last month concerned a 22 in . Tandberg colour set: the parts of the display that should have been red were blue, those that should have been green were red and the blue bits (!) came out green. Merely setting it out like this, and knowing that the tube's cathodes were being driven by the correct signals, gives the clue to the whole thing - especially in view of the fact that a purity error was present.

What our quack doctor had done of course was to grossly twiddle the purity rings, to a point where the beam landing was taking place on the wrong phosphor dots. Thus the red beam was bombarding the blue dots and so on. Thorough degaussing, alternating with purity adjustment, eventually produced correct purity. Adjustment of the drives and cut-off points then put the grey scale to rights. The root of the trouble seems to have been the proximity of the TV set to some large metal mass - our customer deals in scrap metal.

Our hope is that his friend with the screwdriver doesn't graduate to VCRs. The thought of taking our turn after him with say a Sony C9 is a daunting one. I hear that he mends lorries, oil tanks and chairs as well, which certainly indicates versatility..

[^0]
FREEWAY COMPONENTS
 0934-419147

TRANSISTORS	BC327............ 16	BU807 2.00	TBA120S 75		Pye 691, 697 ...15.60	Rank $2718 .-\ldots .12 .75$	ICS
AC117........... 30	BC337 10	MJE340 50	TBA120T 1.10	TRANSFORMERS	Pye 731.........12.23	Decca 1730, 3C, 80 ,	Rank 823 600/300N 2.05
AC127............. 30	BC338 10	R2006B 1.80	TBA120U 1.10	Autovox 90°.....11.70	Pye 713, 715,	100, 6 way 9.08	Rank 823 2500+2500/30v 1.30
AC128 30	BC477 25	R20108 1.80	TBA395 1.75	Autovox $110^{\circ} \ldots . .14 .48$	717 10.50	Decca 1730, 20, Mono	Rank 823 300+300/300 …...... 2.20
AC141 26	BC479 30	R2540 2.40		Baird $26^{\circ} 90^{\circ} \ldots 13.13$	Pye $72511 .78$	4 way 7.43	Rank T20 220/400 1.50
AC142 27	BD124 60	TIP29C 46		Baird $26^{\prime \prime} 110^{\circ} \ldots 13.13$	Pye 169, 569.	Salora 5 way 1.78	PHGB/GEC 600/250v 1.80
AC176 28	BD131........... 32	TIP30C 45		B80 3100, 3300,	$76811 .95$	Satora 7 way 12.75	PHG8/GEC 600/300v 2.20
AC181............ 28	BD132 32	TIP31C 50	TBA510 3.20	3400 EHT 22.88	Rank ${ }^{\text {a }}$ 23 $313 .58$	Luxor 6 way13.95	PHG9 2200/63v 1.25
AC187	BD139 30	TIP32C 50	TBA520 1.30	B80 3100, 3300,	Rank A640, 79313.05	Skantic 6 way ...13.95	PHG11 470/250v............... . 1.60
AC188 28	BD140 30	TIP41C 50	TBA530 1.45	$340013 .60$	Rank A774.......12.55	Thom 9000 of way	Pye $691200+300 / 350 \mathrm{v}$. 2.40
AD140 96	BD144 1.40	TIP42C 50	TBA540 1.35	3803000,3200	Rank 14" Port 9.50 16.73	Pye $6911000+1000 / 40 \mathrm{~N}$..... 80
AD142 96	BD160 1.45		TBA550 1.50	EHT 22.50	Rank T20A......12.55	TUNEAS	Pye $731800 / 250 \mathrm{v} . . .15 . . .2 .10$
AD143 90	BD201 85	INTEGRATEO	TBA560 1.50	B\&O 3500, 3600,	Rank 2718 18" . 27.00	AEG 05 (1043/35)9.95	GEC $2000200+200+150+50 \%$
AD149 88	BD202 60	CIRCUITS	TBA570 1.40	4000, 5000,	Rank 2718 22' . 27.00	AEG 06 (1043/06).9.05	350 w 2.50
AD161 45	BD235 42	ETT6016 1.80	TBA720A 2.60	$6000 \ldots \ldots13 .95$	Saba T3715G16.58	AEG 202 (U321) . . 000	GEC $20101000+2000 / 35 v$. 95
AD162 45	BD243 70	ETTR6016..... 1.80	TBA750 1.50	Decra 30, 2230.10.05	Salora $90^{\circ} \ldots13 .08$	AEG 204 (U322) . 9.00	Thorn 3500 1000/70v 1.00
AF117 40	8D244 70	HA1156W 1.25	TBAB00 1.05	Decca $8010 .05$	Skantic 2621 ... 14.00	Mitsumi Rotary	PHG9/Pye 731 600/300v P.C.B. ... 3.00
AF124 50	BD379 60	HA1166 3.50	TBAB10AS 1.35	Decta 100....... 9.38	Tandberg $90{ }^{\circ} \ldots . .15 .00$	(Fortables) 8.00	
AF126 40	BD380 60	HA1366W 1.70	TBA810S 1.35	decca 1730,	Tanoberg 110 . 13.95		
AF127 40	BD441 60	LM1303P 4.95	TBA820 1.20	1830 12.30	TFK $711 \& 711 \mathrm{~A} 13.50$	VALPES	T
AF139 48	BD442 60	MC1327P 1.20		Decca 1700......10.80	Thom 1515 9.75	P9780 1.05	
AL102 1.80	BD535 50	MC1330P 1.00	TBA920 1.70	Jynatron 731, 735,	Thom 1690 9.75	PCFB2 1.65	
AL113 1.80	BD536 50	MC1351P \ldots.... 1.35	TBA950 1.80	737, 741 . \ldots....10.50	Thom 1590/91 . 10.90	PCL82 1.10	Pye, Philips, Rank, Telpro, Saba,
AU106 2.00 AU110 2.00	BD537 50	MC1358P 1.35	TBA990 …..... 1.60	Dynatron TV 202/3	Zanussi 26"13.08	PCL 84 PCL P........... 1.10 1.15	Autovox, Bang \& Olufsen, Grundig.
AU113.......... 2.00	BDX32......... 1.60	NE555............ 45	TCA2700 1.50	Ekco CT 262, 862.		PCL86 1.05	Doric. Skantic etc.
BC107 12	BDY20 80	SAA5000 3.50	TCA270SQ 1.30	226, $827 \ldots \ldots . .10 .50$		PFL200 1.65	
BC108 12	BF178 32	SAA5010 4.80	TCAB00 2.10	GEC Solid State . 9.00	588 8UTTONS	Pl.504 1.55	
BC109 12	BF179 32	SAS560S 1.96	TCA940 1.80	Grundig 5010/UE,	Pye 715, 207	PL508 2.80	VHS (3HSS 5 mm centre nole)32.45
BC140 35	BF196 11	SAS570S 1.96	TDA 1002 1.15	6010 UE, 2222 .17.63	Chetsea.........13.05	P. 509 _ 6.40	VHS (4HSS 15 mm centre hote) ... 32.45
BC141 35	BF197 12	SL901B 6.20	TDA1003A 1.50	Grundig 5010 ...12.63	Pye 713, 715 ... 8.78	P1802T 3.45	Beta (PS3B Sony, Toshiba etc.) ... 41.75
BC142 25	BF198 17	SL917/918B ... 4.95	TDA1004A 2.50	Grundig 1500 ... 16.20	Pye 691, 697 repaair	PY500A 1.80	Any doubts which you need please ring
BC143 25	BF199 15	SNT6023D 1.99	TDA1035T 3.50	Grundig 5010	kit 6.53		our sales ottice.
BC147 10	BF258 28	SN776033N 2.45	TDA1170S 2.70	EHT............. 22.88	Philips G8	FUSE8 (Patks of 10)	
BC148 10	BF259 28	SN76110N 95	TDA1412	Indesit 24" Mono 12.75	550 sioping ... 14.75	MAINS 54.134100	
BC149 10	BF337 32	SN76131N 1.40	$\begin{aligned} & \text { TDA1412 } 80 \\ & \text { TDA2020 } 2.55 \end{aligned}$	ITT CVC512.23	520 square ... 15.50	2A, 3A, 5A, 13A 1.00	SPECIAL
BC157 10	BF338 32	SN76226N 1.65	TDA2020 2.55	$17 \mathrm{CVC25}, 30$.	Tepre 4 Way	20mm ANII-SURGE	
BC158............ 10	BF458 32	SN76227N 1.10	TDA2030H $\ldots . .2 .25$			80mA, 100 mA ,	
BC159 10	BF459 36	SN76510N \ldots.... 9.90	TDA2190 3.50 TDA2522	ITT CVC20 9.75	ITA............. 10.28	160ma. 250 ma ,	Thorn 90006 -way switchbank 1.50 esch.
BC161 30	BFY50 27	SN76533N	TDA2522 2.00	171	GEC $2112 \ldots14 .33$	315 mA .400 mA ,	2 for 2.50. Take one for 75p when you
BC171 10	BU108 1.78	SN76660N 60	TDA2523 $\ldots \ldots$. TDA2530 $\ldots . .20$ 2.20	Korting 90\% \ldots.... 13.13	GEC $2136 / 7$...... 8.70 Hitachi 190 Nat. Pan.	500mA, $10.14 .1 .25 A$,	order other goods totaling $\mathbf{1 5 . 0 0}$ excl.
BC172............ 10	BU126......... 1.75	SN76666N 75	TDA2530 2.20	Korting 1100 13.13 Luxar 2221.14 .00	Hitach 190 Nat. Pan.	600mA, 1A, 1.25 A ,	
BC17 BC178 18 18	BU204 $\ldots \ldots \ldots . . .1 .55$ BU204 BU. 1.55	TA7176P 1.00 TA7205P	TDA2540 2.55	Luxar $222114 .00$	IT CVCSi9......13.95		
BC179............ 18	BU205......... 1.40	TA7217AP 1.80	TDA2541 2.50	Nordmende 13.95	ITT CVC5 11.93	20 mm QUICK-BLOW	Add 60D carnige \& 15% VAT and send
BC182 10	BU206......... 1.65	TA7611AP 3.45	TDA2560 2.00	Philips G8 9.68	ITT CVCZ20, 30,	$100 \mathrm{~mA}, 150 \mathrm{~mA}$.	PEEWAY COMP
BC187 20	BU208A 1.80	TAA350A 1.90	TDA2571A 2.50	Philips K70 29.10	32............. 9.08	$250 \mathrm{~mA}, 315 \mathrm{~mA}$,	
8C212 10	(Pack of 10) .. 12.00	TAA550 25	TDA2581 1.50	Prilips G911.03	Rank T20A 10.73	$400 \mathrm{~mA}, 50 \mathrm{~mm}$	
BC237 10	BU326A 1.40	TAA621AX1 ... 3.50	TDA2590/91 ... 2.50	Philips Mono11.55	Rank A823 0.38	$630 \mathrm{~mA}, 1 \mathrm{~A}, 15 \mathrm{~A}$	ESTON-SUPER-MAR
BC238 10	BU407D 2.49	TBA120A 95	TDA2593 2.50	Philips 570 9.38	4 way 9.38	1.6A, 2A, 2.5A, 3A,	AVON BS24 8RA
BC303 30	BU806D 2.00	TBA120AS 75	TDA2600 5.80	Philips K9.......16.28	6 way 12.75	4A, 5A 0.60	AVON ES24 8RA

SPECIAL
 PROMOTIONAL OFFER
 buy 3 OR MORE

OPTIONAL EX TO THREE YEARS)
only $£ \mathbf{2 3 . 8 0}$ + Vat
OFFER ENDS 31st MARCH
Callers only. To Luton or any of the stockists - Please phone first. - Send for a fully comprehensive price list and a wall chart of approx. 1800 colour tube types (including Base Connection Diagrams) that can be repracessed by us.

TV TUBE POLISHING

 Your Own Premiseswith our DIY Polishing Kit

The Kit includes:
Everything you noed to polish approx. 2° tubes to a high standard. Detailed instructions on how to do the polishing. All you require is an Electric Drith
Practical instructions available to buyers of kit, please enquire for details.
Kit Price $£ 45$ inc P\&P and vat
Available from Luton only.
-Depends on depth and aroe to be polishad.
WELL VIEW 114-134 Midland Rd.

Your Local Tube Stockist:
Well Vlew, Southampton. Tel. 0703331837
Retach Ltd., Northwood, Middx. Tel. 09274-27019
West One Distributors Ltd., Chesham, Buckinghamshire.
Tel. 0494-778197
Rushden Rentals Lid., Rushden, Northants. Tel. 0933-314901
Daventry Rentals, Daventry, Northants. Tei. 0327277436
Please note that we have no connections whatsoever with any other business having similar name to ours.

> INTRODUCING! Midlands Newest Wholesalers

> ALL MAKES IN STOCK AT COMPETITIVE PRICES

> Philips, Pye, G.E.C., Decca, ITT, National, Hitachi, Mitsubishi, etc.

> TRY US NOW AND BE SURPRISED!
> Ring us NOW on: 0215572233 or visit us at: 94 Soho Hill, Hockley, Birmingham B19 1AD.

VIDEO CASSETTE RECORDER SERVICING COURSE

3 WEEKS

APRIL 24th to MAY 12th
(2 p.m.-6.30 p.m. Monday-Friday)

Intensive course intended for qualified TV Service Engineers who have a sound knowledge of Colour TV principles - some previous background of VCR principles would be advantageous.
Training includes theoretical concepts together with practical project and fault diagnosis work on state of the art VCR's using electronic test and mechanical alignment equipment.
On successful completion of the course a College Diploma will be awarded.
(Also courses of between 6 months and 15 months in Electronic Equipment Servicing - TV/Video, Computers, Microprocessors and Robotics leading to Business and Technician Education Council (BTEC) Certificate and/or Higher Certificate awards.

Further details from:
LONDON ELECTRONICS COLLEGE (Dept T3/4)
20 Penywern Road,
Earls Court, London SW5 9SU
Tel: 01-373 8721

TV LINE OUTPUT TRANSFORMERS

Delivery by return of post	
If the Transformer you req	is not listed please phone.
RANK BUSH MURPHY	DECCA
Z146 A640 dual std mono 8.51	MS1700 200120202401 mono 8.00
Bush A792, A793 single std mono 8.51	MS2404 24202424 mono 8.00
A774 single std mono 8.50	121012111511 portable 11.50
A816 solid state mono 9.00	GYPSY portable 11.50
Z712 T16a T16b mono portable 9.00	CS1730 1733 colour 8.00
A823 A823b A823av colour 10.00	CS 18301835 colour 8.00
21792722 series colour 10.00	'30' series BRADFORD colour 8.00
T20a T22 series colour 10.00	$70,80,100$ series 8.00
2718 P.0.A.	110,130 series $\quad 8.00$
WINDING T20A T22 2179 T26 5.51	PHILIPS
FERGUSON HMV MARCONI	320 series solid state mono 88.50
1590159115921593 mono 8.00	68 series colour 8.00
161216131712 mono 8.00	G9 series colour 8.50
16901691 mono 8.50	G11 series colour 14.98
16001615 series mono 9.74	KT2 Lopt 9.00
30003500 EHT or SCAN P.O.A.	KT3 Lopt 10.60
800085008800 (11.70	KB-ITT
900092009300	VC200 VC205 VC207 mono 8.00
$950096009650 \quad 9.56$	VC300 VC301 VC302 portable $\quad 8 \quad 8.00$
9800 TX9 TX10 P.0.A.	CVC1 CVC2 colour $\quad 9.00$
G.E.C.	CVC5 CVC7 CVC8 CVC9 colour $\quad 9.00$
2047 to 21053112 to 3135 (8.00	$\begin{array}{ll}\text { CVC20 series colour } & \mathbf{9 . 0 0}\end{array}$
"GAIETY" FINELINE 88	$\begin{array}{ll}\text { CVC30 CVC32 series colour } & \mathbf{8 . 0 0}\end{array}$
2114 portable mono 1201H $\quad 8.00$	CVC40 series 14.56
$\begin{array}{lr}31333135 \mathrm{M1501H} \text { portable mono } 8.00 \\ \text { DUAL STD hybrid colour } & \mathbf{1 1 . 0 0}\end{array}$	L.O.P.T TESTER
SINGLE STD hybrid colour 10.00	Total Price Including VAT. $\mathbb{1 6 . 7 9}$
SINGLE STD solid state 90\%	Tidman Mail Order Ltd., 236 Sandycombe Road, Richmond, Surrey. Approx. 1 mile from Kew Bridge. Phone: 01-948 3702 Mon-Fri 9 am to 12.30 pm . 1.30 to 4.30 pm . Sat 10 am to 12 pm .
INDESIT, GRUNDIG, TANDBURG, TELEFUNKEN, FIDELITY, KORTING, TYNE, B+0. Price on application. HAMOND COMPONENTS (Midland) Ltd. 416, Moseley Road, Birmingham B12 9AX. Phone 021-440-614	

TVs FOR EXPORT

BUSH, PHILIPS, DECCA AND PYE All with 6 button VHF/UHF Tuners suitable for countries using PAL system

TELE SPARES LTD.
Unit 113, Elm Road,
Western Industrial Estate, Dublin 12, Ireland. Telephone: Dublin 521211/521756

TUNERS + TUNERS
 \star If you repair sets regularly - phone us today and we will dispatch immediately - no need to send cash 'up front'.
 \star All tuners dispatched by first class post for receipt by you the next day.
 * All popular tuners/tuner repairs supplied 'off the shelf
 \star Unusual types repaired same day as received (subject to spares availability).

ALL SETS HAVE BEEN ENGINEERED
 AND ARE IN PERFECT WORKING ORDER

PRICES AVAILABLE ON THESE SETS NOW!!!

PYE CHELSEA's
 PYE 721s, 731s, 725s

PHILIPS 520s, 550s and G11s BUSH T20, T22, T24s (Remote Control)

THORN 8000 \& 8800s THORN 9000, 9200, 9600

(Remote Control)

ITT CVC 32/33/45 HITACHI \& NAT/PANASONIC Minimum 5 Sets

Big reductions for export orders over 100 sets

COLOUR TELEVISION \& MUSIC CENTRE

 35 Stafford Road, Weston Super MareOpening hours: 9-6 Mon-Sat, 9-1 Sundays
(15 minutes past Bristol Southward on M5)

HUSSAIN CENTRAL TV

No. 1 distributor in U.K.

Special sale for this month only

G8 520 26" £6. $52022^{\prime \prime} £ 9$. G8 550 26" £10. 550 22" $\mathbf{£ 2 0}$. G9 £18. Thorn $26^{\prime \prime} £ 5$. Thorn $22^{\prime \prime} £ 12$. Thorn 8500 £20. GEC Hybrid $£ 4$. GEC Solid State $£ 20$. Pye Hybrid $£ 4$. Pye Solid State $£ \mathbf{2 0}$. Chelsea $£ 20$. ITT Hybrid $£ 15$. Decca Hybrid $£ 15$. Also latest stock G11, ITT, Decca 80 and 100 series.

Guaranteed all T.V.'s are untouched off the floor. Buy now while stocks last.

Ring us today 021-622 1023 or 021-622 1517 48/52 Pershore St., Birmingham City Centre.

UNIVERSAL PROGRAMME SELECTOR FOR VARICAP TUNING
 UK Regd. Design No. 1006611

6 way interlocked d.p.

switch 100 K tuning
potentiometers
Top quality through hole plated pcb
Dimensions: $5^{\prime \prime}$ by $22^{\prime \prime}$ by $1^{\prime \prime}$
deal for replacement when original pars are obsolete or nobtainable
emplate guide supplied for
drilling of your own fascia
design
Range of pre-cut and drilled ascla/mounting kits for selected TV chassis enabling ur unit to be fitted withou modification

All orders despatched same
day
DIRECT REPLACEMENT FASCIAMMOUNTING KITS
Type 30-80 Replaces 7 piano-key unit as fitted to Decca/Telefunken 30 and 80 chassis
Type 30-C Replaces 7 piano-key unit as fitted to Decca console using long perspex illuminated control panel
Type 100 Replaces 8 position touch tune selector (AEG SAS 660 SAS 670) as used in Decca/Telefunken 100 chassis
Type CVC8-9 Replaces 5 rectangular push button plus thumbwheel as usad in ITT

selector $£ 11$ + vat

FASCIA/MOUNTING KITS (each) $£ \mathbf{£}$ + Vat
All orders despatched on day of receipt.
ALDERSON-JAMES LTD
160 KINGS ROAD © HARROGATE © N. YORKS TEL: HARROGATE (0423) 60058 HG1 5JG

SATELLITE RECEIVING EQUIPMENT
 1.9M, 2.5M and 5M Harrison Dishes Sat-Tec R5000 4GHz Receivers Avcom COM-2B 4GHz Receivers California Amplifier 4GHz LNAs Chaparral Feed Horns
 Demonstrations by appointment only Dealers wanted HARRISON ELECTRONICS 22 Milton Road
 Westcliff-on-Sea, Essex SS0 7JX.
 Telephone: Southend (0702) 332338

AA117	0.090	BC157	0.055	BD222	0.310	BU108	1.000	0 C 72	0.500	TIP29C	0250	3N. 128	0.550	2SA473	0370	28 pirı	0200	PCLB2	0.630	LM723 0320	LED 5 mm
AA119	0.090	BC159	0.055	BD225	0310	BU110	1.100	DC200	1800	TIP30	0.160	3N. 143	0.650	2§B54	0250	40 pin		PCLB4	0.500	LM741 Dil 0.150	YELLOW 0.100
AAY32	0.090	BC182	0.050	BD232	0310	BU111	1.400	OCP71	1.000	TIP31A	0240			2SB	0.320				0.550	LM741	LED 5mm
AC107	0.280	BC182L	0.060	BD237	0210	BU126	0.700	ORP12	1.000	TIP32	0240	IN. 914	0.020		1200			PCLOS	0.550	LM741	LED 5mm
AC126	0.170	BC183	0.060	BD238	0240	BU204	0.750	0RP60	1.000	TIP32A	0240	IN. 4001	0.040	258337	000	VAlVE		CL86	0550	450	GREEN 0.100
AC127	0.150	BC183L	0.060	BD433	0280	BU205	0700	ORP61	1.000	TIP33	0.500	IN. 4002	0.040	2SB405	02	DY87	0.530	PCL805	0.550	LM3900 0250	
AC128	0.150	BC184	0.060	B0437	0280	BU208	0.750			TIP34	0.500	IN. 4003	0.040	2SC460	0210	DY802	0.450	PF200	0850	NE555 0.150	BRIDGE
AC128K	0230	BC184L	0.060	BD535	0380	BU208A	0800			TIP41A	0.220	IN. 4004	0.040	2SC495	0.500	ECC8	0.400	PL36	0800	NE556 0.400	RECTFIERS
AC141K	0.230	BC212	0.050	BD536	0380	BU208D	1200			TIP4IC	0.250	IN. 400	0.040	2SC733	0.400	ECC83	0.430	PL504	0.950	BYX55	1 A 50 V 0.100
AC142K	0220	BC212L	0.050	BD537	0.400	BU326	0850	SAS560	1.100	TIP42A	0220	IN. 400	0.040	2SC1161	1.100	ECC84	0.400	PL508	1.900	3500300	IA 100V 0.180
AC153K	0230	BC213	0.060	BD538	0.400	B 1406	0850	SAS570	1.100	TIP42C	0250	IN. 4007	0.050	2SC1172Y	1.500	ECCAS	0.400	PY81	0.700	BYX55	1A200N 0.190
AC176	0.180	BC213L	0.050	BDX32	1.000	BU407	0.750	SN76003	1.400	TIP47	0.400	IN. 414	0.020	2SC1172Y	1.500	ECC85	0	PY81	500	BYX55 60	1A 200 V 0.190
AC176K	0290	BC214	0.050	BDX65	0800	BU408	1.000	SN76013	400	IIP48	0.400	IN. 544	0.080		024	H81	49	88	0.480	030	IN 400 V 0210
AC187	0.150	BC214L	0.050	BF180	0.150	BU500	1.100	SN76023N	. 400	TIP49	0.400	IN 54401	0.1	2SC1306	1.00	ECHE4	0.520	PY500A	1.600	B1x55	1ANE0V 0230
AC187K	0.200	BC237	0.070	BF181	0.100	BU526	0800	SN76033N	1.500	TIP110	0.470	IN. 5402	0.1	$2 \mathrm{SC1307}$	1.000	ECL80	0.570			6000300	1A800V 0200
AC188	0.170	BC238	0.070	BF183	0200	BY126	0.060	SN76110N	0.700	TIP112	0.540	IN. 5403	0.110	2SC1520	0.250	ECL8	0.590			B1X55 ${ }^{\text {d }}$	2N100N 0350
AC188K	0.230	BC300	0.160	BF_{184}	0200	BY127	0.080	SN76115	0.700	TIP115	0.450	IN. 5404	10	2SC1969	1.300	ECL84	0.570			8000332	2N200N 0360
ACY18	0.480	BC301	0.180	BF185	0200	${ }^{\text {BY133 }}$	0.080	SN76226	0.900	TIP117	0.560 0.430	IN. 5405 IN. 5406	0.120 0.130	2SC2029	120	ECL	0.5	400		B $\times 17$	2A 400V 0.420
ACY19	0.480	BC302	0.180	BF194	0.050	BYY64	0220	SN76227	0.800	TIP120	0.430 0.460	IN. 5407	0.130	2SC2078	1200	ECLR	0.490	BZYB8		$500 \quad 0290$	2A 600 0,500
AD149 AD161	0.220	BC382	0.000	BF196 BF199	0.060 0.060	BY179 BY182	0350	TAG06-60	0.220	TIP125	0.470			2SC2952	0270	EF85	0340	13W Z		$500 \quad 0310$	3A 200N 0 SE0
AD162	0220	BC337	0.050	BF200	0.160	BY184	0320	TAG521-		TIP 126	0.560							BZX61 Ra	nge	70	
AF 124	0250	BC328	0.050	BF257	0.150	BY187	0320	200	0.720	TIP127	0.560	7805						2 7 7039	0.12		
AF125	0250	BC557	0.050	BF258	0.150	BY196	0200	TAG4443	0.760	TIP2955	0340	05	0350	2 K 135	4.000	EF18	0.50			8000360	3A G00V 0.750
AF126	0250	BCr32	1.500	BF259	0.150	BY206	0.110	TAG4444	0.760	TIP3054	0380	12	0350	M83712	1.500	EF184	0.530			BXX71/	6A 200V 1000
AF127	0250	ВС>33	1.500	BF336	0200	BY207	0.110	TAA550	0.160	TIP3055	0340	15	0350	TA7205	1.500	EL34	1909	MEMOF		600 0800	6A 400 V 0800
AF139	0220	BCY34	1500	BF337	0200	BY223	0.720	TBAI20S	0.450	TIS61	0.150	7818	0350	UPC575	1.000	EY86	0310	2114	0.75		25A 100V 1.600
AF239	0.220	BCY42	0200	BF338	0.200	BYX10	0.150	TBA395	0.600	TIS90	0.150					EY87	0310	2716	2200		
AL112	0.700	BCY56	0.160	BF362	0300	CA270		TBA396	0.600	TIS91	0.180	7905	0350	ICS		PC97	1.000	2532	2.500		EEECTROLYTIC
AL193	0.800	8С770	0.160	BF422	0210	CA3086	0250	TBA520	0.750			7912	0400	Sackets		PCC,85	0.220	2732	2.900	O 3mm	4700UF-16V
ASZ15	1.000	BCY71	0.160	BF458	0.190	CA3089	1.500	TBA530	0.750			7915	0.400	8 pin	0.050	PCFEO	0.58	2764	5.000	RED 0.050	
ASZ17	1.000	8C772	0.160	BF459	0.150	CA3240	0.500	TBA540	0.750	2N. 2904	0.200	7918	0.400	14 pin	0.000	PCF200	1350	4116	5.00	LED 3mm	CAN 0200
AU106 AU110	1.000 1.100	BD115 BD124P	0260	BPX29 BFX84	0200	C1060	0230	TBA800	0.700	2N. 29006	0.180	7924	0.400	16 pin	0.090	PCFFAD1	1.100	6116	3.000	LOW 0.100	PIERS
AY102	1800	BD124	1.100	BFX85	0200	MC1327	0.700	TBA810S	0.600	2N 2907	0.180	78L05	0280	18 pin	0.120	PCFE02	0.5	. M324	0300		195
AY106	1860	80128	0350	BPX87	0.150	MJ2500	1.000	TBA820	0.750	2N. 2926	0.080	78L12	0280	20 pin	0.140	PCFE06	1.150	LM380	0.600	GREEN 0.100	(4000Ser) 2250
		8 B 131	0250	BFX88	0.150	MJ2501	1.100	tBAgzo	0800	2N. 3019	0280	78L15	0280	22 pin	160	PCHz	1.005	LM381	1.000	LED 5m	
BA145	0.100	BD132	0250	BFY50	0.140	M J 2955	0.550	TBA950	0800	2N. 3063	0.180	74418	0280	2							
BA148	0.100	BD135	0200	BFY51	0.140	M L 3000	1.150	TBA990	0800	2N. 3054	0.350	74124	0280	24 pin	0.180		0.540	LM708 0	030	RED 0.05	
BA154	0.060	BD136	0200	BFY52	0.140	M J3001	1.150	TCA800	0800	2N. 3055	0320										
BA157	0.120	BD137	0200	BFY56	0250	MJE29A	0300	TCA940	0.850	2 N .3055 H	0380	LM309K	1.000	Please add 40 p. P\&P and VAT at 15%. Govt. Colleges, etc.							
BB101	0.130	${ }^{8 D 138}$	0200	BYF57	0250	MJE30A	0300	TDA1170	0.900	2N344]	0.580	LM317K	2200								
B8103	0.160	BD139	0200	BFY64	0250	M JE340	0250	TOA1412	0.600	2N. 3442	0.850	LM317T	1800	orders accepted.							
B8105B	0.180	8D140	0200	8R100	0.140	M JE350	0800	TDA2002	0800	2N.371	08.850	LM323K	4200								
B8205B	0240	BD144	0.900	BSX19	0.150	MJE520	0300	TDA2003	1.500	2N 3772	0.900 1000	LM723	0320	Please allow 7 days for delivery.							
BC107 BC108	0.070 0.070	BD150 BD15	0300	BSX20	0.150	MJE2955K	0.900	TDAZERO	1.400 1.400	2N. 3773	1.000	78 HGKC	5.700	All brand-new Components. All valves are new and boxed.							
BC109	0.070	BD158	0380	BSX26	0.190	0447	0.060	TDA2522	0800	2N. 4036	0250	${ }^{78} \mathrm{~F}$ GUIIC	5200								
BC115	0.100	BD166	0300	BSX29	0.130	DA90	0.040	TDA2530	0.800	2N. 4037	0250	79GUIC	2.150	GRANDATA LTD.							
BC118	0.110	BD175	0300	BZX76	0.180	AD91	0.040	TDA2532	0.750	2N. 4443	0.760	79HGKC	6.700								
BC140	0.190	BD17	0300	BT106	0.900	OA200	0.070	TDA2540	0.700	2N. 4454	0.760										
BC141	0.190	BD179	0320	BT109	0.900	OA202	0.070	TDA2560	0.700	2N 5061	0200	JAPANESE TRANSETORS		9 THE BROADWAY, PRESTON ROAD,							
BC142	0.190	BD181	0.450	BT116	0800	OC28	1.000	TDA2593	0800	2N.5294	0.300										
BC143	0.190	80201	0330	BT119	1.000	0C29	0.800	TDA2640	0800	2N. 5296	0300	2SA73	0300	WEMBLEY, MIDDLESEX, ENGLAND.							
BC147	0.055	BD20	0330	BT120	1.000	0 C 35	1.000	TDA2690	0.700	2N.6106	0.400	${ }^{2}$ SA104	0320								
BC148	0.055	BD203	0.420	BU104	1000	0C45	0.500	T1P29	0.150	2N. 6107	0.400	2SA198	0220				-				
BC149	0.055	BD204	0.420	BU105	0800	0C71	0300	TIP29A	0220	2N. 6109	0.400	2SA203	0300	Telex No. 932885 (Sunmit)							

Some Inline sets also available I.E. ITT, C.V.C. 25 \& 30 Bush T20 \& T22, Thorn 9000 etc.
All prices subject to availability of stock
Quality discount available. Hundreds of sets to choose from.
Number One source of second hand T.V.'s in the North.
Winter stock clearance for one month only.
Thousands of spare panels and parts. Panels $\mathbf{E Z}$ - $\mathbf{E 5}$. Triplers 50p etc.
Large quantity of TVs to clear at giveaway prices.
All prices subject to $\mathbf{1 5 \%}$ VAT.
500 various different T.V.'s arriving this month
UNIT 2, PERTH COURT, 11th AVENUE TEAM VALLY IND. ESTATE GATESHEAD, TYNE \& WEAR Tel: Newcastle 875389
Sets also available at our Birmingham Branch: 811 WASHWOOD HEATH ROAD, WARD END BIRMINGHAM 8 2NP Tel: 021-784 2561

ALPHA TUBES NOW COVERS THE SOUTH

EXCHANGE COLOUR
A44.271X A47.342X \qquad £28
A47.343X A49.120X $f 28$
A51.110X A51.110LF \qquad 28

A55.14X A56-120X \qquad £28 A63-120X \qquad f28

A66.120X A66.140X £33

A67.120X A67.150X £34

EXCHANGE MONO
A44.120WR £11.00 A59.120WR £33

A47.25WR \qquad E12.00 A61.120WR \qquad £12.50

A50.120WR \qquad £11.00 A31-300 New f13.50 A34.100-500 New £16.00 Small charge for no exchange glass All above plus VAT at 15%, Carriage $£ 5$ 18 month guarantee on all tubes
IN LINE AND PIL TUBES REGUNNED
G11 $=9000$ from $£ 38.00$ plus VAT, including 20AX - 30AX
HITACH - SONY - MITSUBISHI - ETC. P.O.A.

BEDFORDSHIRE

53 Lowther Road, Dunstable. Tel. (0582) 68934 CORNWALL
23 Fore Street, Mevagissey. Tel. (0726) 843535 SOMERSET
Unit 1, Avalon Wks, Monmouth Street,
Bridgwater. Tel. (0278) 425690

TELEVISION TUBE SHOP LTD

BRAND NEW TUBES AT CUT PRICES

A31-19W/20W	19.95
A31-120W/300	.. 17.95
A $31-410 / 510 \mathrm{~W}$.17.95
A34-100W/510	18.50
A34-514W	24.25
A38-160W/170	...17.50
A44-120W/R	25.00
A50-120W/R	.19.00
A61-120W/R	21.00
$9 \mathrm{AGP4}$.	. 21.82
190AB4/C4	23.00
Some Rebuit 8 Europe Availab $£ 14.00$ +	

20AX APOLLO 30AX

HIGH TEMPERATURE PUMPED COLOUR TUBES
Fast Mait Order service to any part G.B. Delivery 2-3 days.
Just phone for a quotation. Delivery Manchester area free same day. Two year guarantee. Fitting while you wait or in your home 120

18	A47-342 343 (470 BEB22 ($\mathbf{E 4 5 . 0 0)}$	£37.00
19"	A49 - $120 \times / 192 \times$	£37.00
20"	A51-220 $/ 110 \times / 161$ - 510JKB22 ($£ 45.00$)	$£ 38.00$
22"	A56-120 $/ 123 \times / 140 \times / 410$	£38.00
25"	A63-120 \times	£39.00
$26 \times$	A66-120 \times A67-120 $\times / 140 \times / 150 / 200$	$£ 39.00$
20AX	56-510	£48.00
30AX	56/66-540	$£ 48.50$

$20^{\prime \prime}$ - $22^{\prime \prime}$ SOLID STATE COLOUR TVs FULLY SERVICED \& SOAK TESTED. VERY RELIABLE WITH GOOD TUBE $£ 61.00$ WITH NEW TUBE $£ 83.00 \mathrm{inc}$ DELIVERY

061799085424 hour answering service. 43 Clarke Cres, Littie Huiton. Nr. Manchester M28 6XM.

A.B.C. TRADE SALES COLOUR T.V.'s

Philips G8, Pye, Decca 30's,
Thorn's 3000's, 3500's, 8000's
Prices start from $£ 12$ - Working sets from $£ 20$
Hundreds of Mono T.V.'s from $£ 2.00$ Jap. sets from $£ 30.00$
Special prices for quantity
9,000 sq. feet Warehouse
83 SHOWELL ROAD, BUSHBURY, WOLVERHAMPTON, STAFFS.
Tel. Wolverhampton 722637

CENTREVISION

For Video, Television, Audio MANUFACTURERS SECONDS

Plus selection of modern TV's: T20 9000 etc. Hybrids at give-away prices.

Also:
Tubes, Parts, Stands etc, plus working sets.
Sloper Road, Cardiff.
Telephone: 022244754

IRISH T.V. DEALERS

Large quantity of working Colour \& B/W T.V. sets UHF-VHF. Nordmende, Bush, Philips, Ferguson, Pye, etc. at very competitive prices.

Working colour sets at $£ 70$
Fresh stocks weekly, quantity discount, delivery arranged.
(SPECIALISTS IN OVERSEAS ORDERS)
For further details ring:
J. HYDE at 01-264139 Extn. 11.
T.V. TRADE SALES, E.D.I. House, Kylemore Pk. West, Dublin 10. (Open 10 to 5.30 pm)

Prices exclude VAT.

EMCO - EUROSONIC - GRUNDIG - TELETON + ALL BRITISH MAKES ETC., ETC. - ALL SPARES READILY AVAILABLE -

IMMEDIATE CREDIT AVAILABLE - TRADE ONLY

If you are a trader simply phone for the part you require and we will send it - no quibble - no hold up for status check. Satisfy us over the phone that you are a trader and we will supply almost any TV component by return "off the shelf". e.g. LOPTX - EHT trays - droppers - OSC coils - switches - cans smoothers - I.C.'s, etc. etc.

YOU CAN BE 95\% SURE WE CAN SUPPLY ANY TV COMPONENT BY RETURN
 IF YOU NEED SPARES FAST - RING NOW!

ACCESS AND BARCLAYCARD ACCEPTED.
Applies to U.K. only

WOLVERHAMPTON (0902) 773122

SCOTTISH TV DEALERS
Working TV's from $£ 18.00$ BUSH 'A' \& THORN 3,500

TV PANELS WORKING \& SOAK TESTED

		Thorn
	Bush 'A'	3,500
Speaker	$5 p$	$5 p$
I.F. Panel	1.75	2.50
Field/Line drive	2.75	
Field/Sound output		2.75
Convergence	1.50	3.75
Power Supply	2.00	10.00
Tuner Mechanical	3.75	3.50
Tuner on panel complete	4.75	5.75
L.O.P. plug-in chassis, complete	5.75	
Line Output Panel		7.50
Video F'anel		4.00
2 Chip Decoder - Chroma	10.50	3.50
Other working parts available		

NO VAT just add $£ 1.50$ p\&p per 1 item and $75 p$ per each additional item
Cheques etc. payable to: "TV PANELS"
discount t.v. SERVICES "TV PANELS" Unit 11, Mayfield Industrial Estate, Maytield, Dalkeith, Midlothian, EH22 4AD. Tel: 031 -633 0380 9am-4pm other times 031-663 8940

SETS \& COMPONENTS

SCRATCHED TELEVISION TUBES. Don't despair, send for repair, 20 years experience. Retube Limited, North Somercotes, Louth, Lincolnshire. Phone 0507 85300.

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact COLES-HARDING \& CO, 103 South Brink, Wisbech, Cambs. 0945584188 . Immediate settlement

GRUNDIG MILLIVOLTMETERS $100 \mathrm{w} / 300 \mathrm{~V}$. Working order $£ 15+£ 3.00$ p\&p. Also P.S.U's isolating transformers, etc. S.A.E. Lists. S.H.E. 5 St. Josephs Park, Ballycruttle, Downpatrick BT30 7EN.

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.
The prepaid rate for semi display setting $£ 6.00$ per single column centimetre (minimum 2.5 cms). Classified advertisements 35 p per word

A.B.D. TELEVISION LTD.

100's Colour TV's in stock in excellent condition-working sets for the trade. Fresh stocks weekly Untested - complete (Majority working)
Mono TV's
£2
Bush $22^{\prime \prime}-26^{\prime \prime}$ CTV Solid State $£ 5$
Hybrid Decca - IT £12
Philips G8-550 £18
G.E.C.
£20
Philips G11, Bush T20, ITT CS 600
Prices on quotation
Many other makes to choose from Refurbished Sets - Showroom Condition Ready to Retail

BRC 9000

$£ 50$
Bush T20
£75
ITT CS 600
£85
WE ARE OPEN SEVEN DAYS A WEEK
Unit 3 \& 3A, Meadow Trading Estate, Meadow Lane, Nottingham, NG2 3HO.
Nottingham (0602) 864627

EX RENTAL C.T.V.'s \& REGUN TUBES

RBM, THORN, DECCA, PYE GEC, GRUNDIG, ITT, DHILIPS G8, G9, G11, JAPANESE From $£ 10$
Also all modules from $£ 4$ untested.
STARLITE ELECTRONICS,
80 Como St., Romford, Essex. Telephone Romford 752537 London Code 3.

WANTED

T.V.s, VIDEOS, HI FI, AUDIO
 $\mathbf{£ 1 0 0 , 0 0 0}$ то semo

If you have a surplus, we would be delighted to make an offer.
Contact:
Mr Fred Tuck (0934) 413537

* Britains most reliable source of quality TVs.
* Hundreds of working polished TVs.
* New adjustable TV stands.
* Pye 18" Chelsea's working \& polished $£ 35.00$ in quantity.

Krystal Marketing Ltil, Breedon Cross Storage, Dale Road, Selly Oak, Birmingham B296AO

> Phone $021-4713023$ Telex $335540-G$ Ask for Les

RANK BUSH MURPHY TV PANELS

Repair, exchange, sales service, prompt efficient service. All chassis covered. New PCB available to replace burnt T20 line Panel. We charge only $£ 16$ to repair switch mode power supply. Ring Monday to Saturday and ask for Mr. Kheli.
T. K. Panels Service,

31 Bronte Paths, Stevenage, SG2 OPG
Tel. (0438) 61567.

GRUNDIG. We sell complete working sets from $£ 40$. Reconditioning panels from $£ 4$. We buy remote control handsets. OCHREMILL 0785-814643.

SECOND HAND Colour TV spares and tubes. Most makes. Telephone Southport (0704) 74411. Anytime.
THORN SPARES AND PANELS. Nothing over $£ 5$. S.A.E. S. Knight, 2 Claremont, Hastings, E. Sussex.

SCHRADER TUNABLE UHF Masthead Amplifier RB45 A.S. MV. 30DB gain, 1.6 DB noise. CH. 17-65. P.S. inclusive $£ 39.50$ P\&P $£ 1.50$. R. VAN REYSEN, 28 Pemberton Road, East Molesey, Surrey

TpertTubes

31 RADCLIFFE ROAD WEST BRIDGFORD, NOTTINGHAM TELEPHONE (0602) 813329 "THE" QUALITY REBUILDER

Cash \& carry price list
TWO YEAR GUARANTEE FOUR YEAR OPTION EXTRA

ALL STANDARD DELTA TYPES ONLY £25.00

A51-161. A51-162. A51-163 £ 35.00

A51-510. A56-510. A66-510 etc.
560 AKB. 560 CXB22. A51-570
£40.00
A56-540. A66-540 (30AX)
$\mathbf{£ 4 9 . 0 0 (\begin{array} { c } { \text { COMPLETE WITH } } \\ { \text { MULTIPOLE } } \end{array})}$

SPECIAL OFFER 560 DZB22 £39.00

MONOS 20" \& 24"
only $£ 14.00$

LARGE discounts for quantity.
DELIVERY service available.
ALL TUBES picture \& electronically tested.
ALL tubes supplied on exchange basis \& all prices are plus VAT
1000's of other types available. AGENTS REOUIRED
TV's solid state from $\mathbf{£ 6 5 . 0 0}+$ VAT All working \& fitted with a Trent Tube.

SATELLITE TV RECEIVER

Receives 4 GHz band. Ideal for demonstration terminal in U.K. 100 degree Kelvin LNA. $\quad \mathbf{£ 3 9 2}+$ VAT (+ Carr). LNA/down converter PCB's stocked for the constructor. SAE data.
HUGH COCKS TV SERVICES,
Cripps Corner, Robertsbridge,
Sussex TN32 5RY. Tel. 058083317.

EEROICE PQGES

(minimum 12 words), box number 70 p extra. All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television Room 2612, IPC Magazines Limited, Kings Reach Tower, Stamford Street, London SE1 9LS. (Telephone 01-261 5846).

> We have moved into additional warehousing and are now offering MORE CHOICE AND BETTER VALUE

Guaranteed-Complete Sets from $£ 10.00$ Trade Workers
 from $£ 25.00$ Panels By Post Mono's from $£ 3.00$ from $£ 1.00$ Stands - Aerials - Accessories Etc.

Make '84 your most Profitable year with SCREENPLAY'S unbeatable Stocks and Prices OPEN 5 DAYS Phone: Hitchin 31644 Baldock 894905 SECTIONTHREE, UNITFOUR, SERL COMPLEX, LONDON ROAD, BALDOCK, HERTS

\star TELEBEST \star

We specialise in working sets.
BUSH DECCA G.E.C. GRUNDIG PYE PHILIPS THORN Etc.

From $£ 25$ plus VAT. Non workers available Panels, Tubes etc. available. Call Ronnie on: 01-514 1333 for stock availability 841 Romford Road, Manor Park, London E12.

REBUILT COLOUR TUBES

 DELTA TYPESExample Prices
All sizes up to $22^{\prime \prime}$ - $£ 28.00$
All sizes up to $26^{\prime \prime}$ - $\mathbf{£ 3 2 . 0 0}$
All In Line P.I.L. Mono Gaming Machine C.R.T.s

Fast U.K. Delivery Call or Phone:

RE-LIFE T.V. TUBES
PLANE STREET
OLDHAM, LANCS 061-665 2668
Big reductions on Contract Orders
Home or Overseas
Wholesalers Required
in certain parts of the U.K

WOODSDALE COMPONENTS RANK BUSH MURPHY TRANSFORMERS
 Line Quput
 Z718 (T703A, T706A)
 New (Complete) Less Focus Module and
 Rectifier
 $£ 20.50$ £10.50
 | T20, T22 (T705A) | $£ 9.00$ |
| :--- | :--- |
| T26 | $£ 9.50$ |
 Switch Mode
 T114A/B
 Genuine RBM Units
 AERIALS
 UHF Aerials P \& C Wideband 4 Bay
 Bowtie (12.5 dB)
 £20.00
 Above with built-in Broadband amp (27dB) plus stabilised power supply
 £45.00
 Prompt Postal Service. Add 15\% VAT to all prices. DISCOUNT for QUANTITIES
 34 Field End Road, Eastcote,
 Pinner, Middlesex. HA5-2QT.
 Tel: 01-868 5580 .
 N. Skehan
 Agents Office. Callers by appointment only.

Wetsted UBES PRESENTS AN UNBEATABLE OFFER
 $£ 26$ all deltas ONE PRICE
 £40 ALL PILL ONE PAICE
 * SPECIAL CRT POLISHING SERVICE
 WHILE U WAIT
 On
 - DISCOUNT FOR ORDERS OF 5 CRTS OR OVER
 * FREE DELIVERY WITHIN 20 MILE RADIUS OF MAIDSTONE
 Fing Now
 Maidstone 872400
 or visit our factory.
 Unit 32, Branhridges Ind Est. East Peckham, Kent.
 - Agents required in South Prices do not include VAT

GLOBETEL

Tel: 8076992
Les \& Phil - Ex. S.T.S. Colindale Rear of Globestone Ltd.,
1-7 CHURCH ST., EDMONTON.
We have now opened our own warehouse for used T.V.'s at very fair prices.
All popular makes in stock, eg: Philips, Pye, Grundig, Jap. sets, etc.
Look forward to seeing both old and new cust.
We also stock \& buy used videos
VHS only.

TV VALVES

COLOLR VALVES PY500/A-65p, PL509/519-E1.50 MONO VALVES ECC82, EF85, EF183, EF184, DY87 DY802, PCF80, PCF802, PCL82, PCL83, PCL84, PCL85 805, PCL86, PCC84, PCC89, PC92, PC97, PC86, PC88. PFL200, PL36, PL504, PY800, PY88 ETC.
MONOCHROME VALVES ALL 35p EACH
ALL VALVES EX-EQUIPNENT \& TESTED
P\&P 50p Per order, Aocess/Visa Cards welcome
Ramsbottom, Lancs, BLO 9AG. Tel. (070682) 3036

TELEVISION

Trade \& Retail supplies of s / h colour \& mono TVs. Most makes available, workers or non-workers

SOUTHPARK DISTRIBUTORS
 Unit 4 Rubastic Road,
 Brentpark Industrial Estate, Southall, Middx. UB2 5 5L. 01-574 4631, Ext 28

TVs WANTED FOR CASH IN EIRE

UHF/VHF colour and black and white, any quantity. Working or non working. Will collect any part of Eire. BOX NO TV 185.
TRADE TELEVISION SUPPLIES now available in Bournemouth. From £15. (Min 5 sets). Telephone Bournemouth 38081. Some working sets available $£ 20$.

```
JABCO LOPT TESTER
Used by Mullard, Plessey, Ministry of Defence, BBC,
    IBA, and worldwide etc. etc.
£16.50 inclusive. C.W.O. delivery 3}\mathrm{ days. £18 overseas
post by sea. &21 airmail.
                J. BAKER & CO.
    1 Old Shoreham Road, Southwick,
        Sussex BN4 4RD.
        Tel: Brighton 593315
```

Thorn 3000/3500
TRIPLERS
Thorn 9000
UNIVERSAL
$£ 4.50$
The UNIVERSAL TRIPLERcan be used in most
G.E.C.. I.T.T.. Pye. Rank. Decca \& Continental
sets. WING ELECTRONICS
15 Waylands, off Tudor Rd, Hayes End, Middlesex

COLOUR BAR GENERATOR

 Pal Colour Generator with 11 patterns plus sound Grey scale, Colour Bars, Red, Green \& Blue Raster Crosshatch, Dots, Chequer Board, Black Raster, White Raster, Half Black \& White $\mathbf{E 7 5 . 9 0}$

BLACK AND ẄHITE GENERATOR Crosshatch, Peak White, Dots, Half Black \& White and Grey Scale

Prices include P\&P \& VAT.
C.M.J. ELECTRONICS

Unit 8, 16 Union Mill Street, Horseley Fields. Wolverhampton WV1 3DW.

Tell: (0902) 871563

	0	$\begin{aligned} & \text { TOP } \\ & \text { QUALITY } \end{aligned}$
Makes Example Prices	Non-Workers	Working
Philips G8S, 2 chip Bush/Murphy	£16	£30
Thorn 3000, 3500, 8000, 8500	£18	£30
Thorn 8800, 9000, 9800, Touch Tune Sets etc.	£30	£45
Bush T20's, Philips G11's	£50	£70
GEC Solid State, all types	£25	£45
ITT CVC 5/8/9	£14	£30
MONO IN BATCHES Of 20 at $\mathbf{£ 2 . 0 0}$ EACH. Discount for quantity. Other makes available on request.		
Spare TV parts and panels available for the above sets mentioned at competitive prices. Please refer to last month's issue of Television for price list. MS ELECTRONICS Unit 1, Warwick Street, Earisdon Coventy. N.B. Note to give prompt service, telephone to order in advance to avoid disappointment.		

> COLOUR TV'S
> FROM £15.50 + VAT GUARANTEED COMPLETE GOOD CABINETS VHS VIDEOS PLUS VIDEO SPARES PYE CT205/CT200, BUSH A823, TH3500/8500 Phil G8. DECCA. BRAD. ITT. CVC5. GRUNDIG SMITHS ELECTONICS 43 PARK PARADE LONDON NW1O 01-965 1230 $01-9613997$

When replying to Television Classified Advertisements please ensure:
(A) That you have clearly stated your requireme.ts.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.

This will assist advertisers in processing and despatching orders with the minimum of delay.

CANVEY COLOUR TUBES

Unit 3, Charfleets House, Charfleets Industrial Estate, Canvey Isiand, Essex. Tel: Canvey Island (0268) 690577

CURRENT PRICE LIST

DELTA TUBE TYPE FROM $£ 27.50$ to $£ 31.50$
INLINE TUBE TYPE FROM £35.00 MONO TYPES P.O.A.

ALL PRICES EXCLUSIVE OF VAT.

All Tubes Guaranteed for 2 YEARS and Reprocessed to Original Manufacturers Specifications.

NORTHERN IRELAND DEALERS

We have the best value in second televisions. And our low, low prices are second to none. Phillips 550, Decca 100/80/302, Pye 741 series and many other makes available.

Prices: Non workers (complete) from $£ 20$.
 Guaranteed worker from $£ 38$.

We deliver bulk orders anywhere in Northern Ireland.
New loads arriving regularly so phone now for latest stocks.

SM ELECTRONICS

11 Sandholes Road, Cookstown N. Ireland. Tel: Cookstown (NI) 06487/64277.

TO ADVERTISE IN THIS SPACE

RING MANDI

01-261 5846

EERUICE POGES

 TUBES £29.00 INCLUSNE, REGUNS ONE YEAR GUARANTEE QUANTITY DISCOUNTS TUBES $£ 14.50$ SIX MONTH GUARANTEE SLIGHTLY USEDA56-120 A51-110 A49-191 A47-342 or 343 A44-270-1 A66-120 A67-120 (All 26" add $£ 5$) IN-LINE 51-161 From $£ 35$ plus 100 's more
Professional Stick DE-GAUSING COILS $£ 19.50$ inclusive of delivery. One year guarantee.
Delivery $£ 5$ per tube. British isles. No need to spend $£ 5$ returning old tube if you buy from us. U-VIEW TUBES, 29 WARMSWORTH ROAD, DONCASTER, YORKSHIRE DN4 ORP. Tel: 0302-855017

Callers ring first. Open every day including Sunday Local stockists. Cash \& Carry only at the above prices. Ring first. Please bring old tube if possible. DELTA TVs, Unit 5A, Union Mill, Union Mill Street, K. M. ELECTRONICS, 8 Hillield Place, Abergorth, WOLVERHAMPTON
0902870757

OTHER STOCKIST REQUIRED 0239810963

COLOUR T.V.s

THE BEST IN LONDON 200 + TVs WEEKLY

LOADS SMALL SCREEN WORKING SETS TO ORDER - ALL MAKES

WINDSOR WHOLESALE TEL: 01-968 8771.

BARRY TV SERVICES

(EAST ANGLIA)

Your friendly wholesalers. We cater for the smaller dealer who requires regular small supplies of quality used colour TV's. From $£ 25$ + VAT. Fully working with good tubes and cabinets, straight from our retail shelves, ready to sell or rent.
Delivery available
Contact John, Dave or Steve on Ely 61462
or Cambridge 69215

TELEVISION

Trade Supplies of Good Quality Colour \& Mono TV's. Most Makes available, suitable for Sale or Re-Rent.

GENERAL UNIonstraet
 FACTORS
 GOOD MOTORWAY ACCESS

TORBAY (TRADE) T.V.

For Good Quality Used Colour \& Mono T.V.'s, Popular Makes, Quantity Discounts, Trade Workers from 122.50 + VAT. (un-tested available)
6, CASTLE CHAMBERS, HIGHER UNION STREET

TORQUAY, DEVON Tel: (0803) 22767.

WIZARD DISTRIBUTORS

 MANCHESTERSPECIALIST DISTRIBUTORS TO THE TRADE OF T.V. \& VIDEO SPARES.
WE STOCK A FULL RANGE OF PARTS \& COMPONENTS INCLUDING C.R.T.'s, VIDEO HEADS ETC. RANK - THORN - PHILIPS - ITT DECCA - GEC ETC.

TRADE COUNTER OPEN: 9-4.30 CATALOGUE ON REQUEST. TRADE ONLY Mail Order Enquiries Welcomed EMPRESS STREET WORKS, EMPRESS STREET,
MANCHESTER M16 9EN. TEL: 061-848 0060.
T.V. . Spares. Panels - AND MANUALS

PHILIPS. GRUNDIG
TELEVIEW
01-994 5537
194, Acton Lane, London W.4.

TELEVISION TUNER REPAIRS ALL TYPES
 BRITISH, EUROPEAN JAPANESE ETC.

MEN-TU ELECTRONICS LTD. SALTERNS LANE, FAREHAM, HANTS. Tel: 0329-235116

TELEVISION SERVICE SHEET SPECIALISTS
 Thousands of British, European, and Japanese models in stock
 Colour $\mathbf{£ 2 . 0 0}$ Mono $\mathbf{£ 1 . 5 0}$ (post free)
 Manual prices on request.
 Send stamped envelope for free catalogue and enquiries
 SANDHURST PUBLICATIONS (MAIL ORDER) 49C Yorktown Road, Sandhurst, Camberley, Surrey GU17 7AG

30,000 SERVICE SHEETS IN STOCK. COLOUR MANUALS ALSO AVAILABLE

TV Monos, Radios, £3.00. Tuners £3.00. Tape Recorders, Record Players £3.00. Transistors £3.00. Car Radios $\mathbf{3 . 0 0}+$ SAE Stereograms \& Music Centres $£ 3.00$. Radiograms $£ \mathbf{8 . 0 0}$. Also Colour available. State if circuit will do if lengths. All Sheets $£ \mathbf{3}$ except colour. SAE please. Old Valve Radios $£ \mathbf{3}+$ SAE 9×3. Ensure payment with order.
C. CARANNA, 71 BEAUFORT PARK, LONDON NW11 6BX.
(MAIL ORDER)

Abstract

TECHNICAL INFO SERVICES 76 Church St-Larkhall-Lanarks Giant TV \& VCR DIAGRAM MANUALS 3 vols $£ 45$ Vol. 1 Decca G.E.C. ITT £17 Vol. 1 Decca G.E.C. 17 $\mathbf{£} 17$ Vol. 2 Philips Pye Redif. £17 Vol. 3 Rank Bush Thorn Foreign CTVs (now updated) 2 vols $£ 32$ Mono (Stand + Port) 2 vols $£ \mathbf{£} 2$ Early VCR (VHS/Philips) £17 VCR later models inc. Betamax $\mathbf{£ 1 7}$ Domestic Equipment Exploded Diagrams in 2 huge binders for $£ 32$ New T.V. Rep. Manuals $\quad \mathbf{£ 7 . 5 0}$ each 1983 Brit. CTV or Foreign CTV 4 Complete set of 15 TV Rep Mans for $£ 105$ Unique T.V. Repair course £9.50 The only practical radio servicing and repair course £9.50 Large SAE brings FREE 50p magazine inc. service sheet/details of unique T.V. publications. Any quotation plus price lists, etc. Full size service sheets $\quad \mathbf{£ 2}+$ l.s.a.e. CTVs/Music Centres

E 3 + l.s.a.e. Worlds largest collection of service manuals 1930 to date. From $£ 4.50$ to $£ 35$ each. e.g. Autovox/G8/A823 $£ 7.50$ each Integrated TV repair system £195. Contains over $£ 250$ normal prices.

> FOR FAST QUOTES RING 0698883334

COURSES

CONQUER THE CHIP... Master modern electronics the PRACTICAL way by SEEING and DOING in your own home. Write for your free colour brochure now to British National Radio \& Electronics School, Dept. C4, Reading, Berks RGl 1 BR

BELL'S TELEVISION SERVICES for service sheets on Radio, TV, etc. $£ 1.50$ plus S.A.E. Service manuals on colour TV and Video Recorders, prices on request. S.A.E. with enquiries to B.T.S., 190 Kings Road. Harrogate, N. Yorkshire. Tel. (0423) 55885.

BOOKS AND PUBLICATIONS

"RADIO AND TELEVISION SERVICING" books, new editions for the last 6 years always in stock. Prices on request. BELLS TELEVISION SERVICES, 190 Kings Road, Harrogate, N. Yorkshire. Tel. 0423 55885.

COMPLETE FULL-SIZE SETS any published service sheets $£ 2+$ LSAE except CTVs/Music Centres from $£ 3+$ LSAE. Manuals from 1930 to latest. Quotations, free 50 p magazine, price lists, unique technical publications for sale. Repair data/circs almost any named TV/ VCR $£ 8.50$ by return. TIST, 76 Church Street, Larkhall, Lanarks ML9 1 HE. Phone (0698 883334).

EARN CASH NOW

With New Published Manuals
Domestic appliance reconditioning and repair, Two volumes only $£ 12.50$ post free. Also, a professional guide to sewing machine repair for profit. Two vol guide onty $£ 8.50$ post free. Both with full repair and umes only $\in 8.50$ post free. B
fault guides. Leaflets available.

> MARCHANT (Dept TVT).
> 30 Chester Road East,
> Shotton, Clwyd, N. Wales.

FOR SALE

JAPANESE COLOUR TVs, Panasonic, Hisachi, Mitsubishi, Toshiba, Sharp. Fully refurbished - to trade only. J. M. PEARSON TELEVISION 0484 863489.

WORKING COLOUR £35. Top trade value. Delivery available. Telephone 0617973604.

WANTED

G11's WANTED in l's or 100's. Let us know what you have. Please telephone: TV SALES on Watford 45590.

COMPLETE TUBE RE-GUNNING plant. Electric ovens also Lopt winding machine. KELLEHER BROS, TV House, Kanturk, Cork, Ireland. Tel. 029 50046.

WANTED. QUANTITY G11's or other late colour T.V.s. No rubbish. Can collect Sussex/Kent. (0424) 439260.

WANTED PHILIPS PM5334 Television Sweep Generator. Telephone 01-328 7641 .

WANTED. We will clear any amount of colour sets from small Rental Companies, Hotels, etc. Please phone P \& R Domestic Electrical Clearance Supplies. Weston Super Mare (0934) 514047 .

WANTED TELEVISION MAGAZINES, Jan. 73 to May 81. State price. Telephone 0382817013 McGhee, 86 Haldane Terrace, Dundee.

WANTED - WANTED - WANTED TV's - TV's TV's Colour \& Mono. Also Videos (regular supplies if possible). Any quantity, any make. Telephone Bradford 0274 480281. Manchester 061-798 0037

WANTED

By established company, large or small quantities of Colour/Mono/Video Recorders from Rental Companies, Holiday Camps, Hotels etc. On local or national scale, contracts undertaken. Special prices.

Contact:
TV TRADE DISPOSALS
184 Cross Street, Sale, Cheshire
Tel. 0619628471

BUSINESS/PROPERTY FOR SALE

FOR SALE. Cardiff Established Video, Domestic TV shop. Main road, vacant flat above, freehold audit ACC's. Profitable. Ideal Owner/Engineer. £35,950 o.n.o. Please ring $0222372185 / 627878$.

FOR SALE

A small television repair business in East Devon seaside town. Considerable number of T/V, Radio Service Sheets 1934 to date.
Elderly Test, P.A. and similar gear
TELEPHONE
(0297) 20201

MISCELLANEOUS

BURGLAR ALARM EQUIPMENT. Latest discoun catalogue out now. Phone C.W.A.S. ALARM 0274 682674

ORDER FORM please write in block capitals

Please insert the advertisement below in the next available issue of Television for insertions. I enclose Cheque/P.O. for E
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd and made payable to Television)

NAME.
ADDRESS

TELEVISION

Classified Advartisament Dapt., Room 2612
King's Reach Tower, Stamford Sireet,
Telephone 01-2815846.
Rate
35p per word, minimum 12 words. Box No. 70p extra.
Company registered in England Registered No. 53626 Registered Office. King's Reach Tower, Stamford Street, Londen SE1 9LS

VISIONTEL

BEST QUALITY EX-RENTAL SETS FROM £10 HERE IN CENTRAL LONDON!

100's OF SETS ALWAYS IN STOCK COMPETITIVE PRICES

VIDEO RECORDERS
 (SUBJECT TO AVAILABILITY)

We also have PYE - DECCA GEC - ITT - GRUNDIG - JVC PHILIPS G9 - THORN 9000 and MANY - MANY - MORE!

FOR CURRENT STOCK DETAILS TELEPHONE 013283787

OR VISIT US AT
55 KILBURN HIGH ROAD NW6

COLOUR TV SETS

Philips G8, Pye 222, Decca 30 series, ITT, Pye Chelsea, Thorn 3500/8000, GEC, many others including JAP.

Working hybrids from $£ 15$.
Working solid state from $£ 25$.
Non-working sets from $£ 5$.
Working panels and tubes available.
REBUILT TUBES
Delta - In Line - PIL.
SOUTHBRIDGE TV CENTRE
120, Selhurst Rd., London, S.E. 25.
Tel: 01-771 3535.

ALL MODELS INC. NAT PAN. \& JVC. Prices From $£ 25.00$ Lots of Spares for All TV's, incl. Line Panels for 3000 each
THORN's - $£ 5.00$ ent

SENDZ
 COMPONENTS

TO ORDER SEE BACK PAGE

[^0]: Published on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by The Riverside Press Ltd., Thanet Way, Whitstable, Kent. Distributed by IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Sole Agents for Australia and New Zealand - Gordon and Gotch (A/sia) Ltd.: South Africa - Central News Agency Ltd. Subscriptions: Inland £11, overseas (surface mail) £12 per annum, payable to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex RH1G 3DH. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever.

