

\qquad

 5
 Australia 31.60: New Zealand \$2,10: Malaysia 55.50 : (2)趶

Dxalgial deuscor/alaim

raichile

4y FiUh Flismia

Interested in Television Servicing? Try a ZED Pack. Effect Repairs at Minimum Cost.

GEMINI ELECTRONIC COMPONENTS

Dept. TV, The Warehouse, Speedwell Street, London S.E.8.
Please quote ZED code where shown. Send cheque* or Postal Order. Add 60p P\&P and 15\% VAT.
*Schools etc. SEND OFFICIAL ORDER. Allow up to 28 days for delivery. Most orders despatched same day.
ZED PACKS now available for CALLERS at 50 Deptford Broadway, London, S.E.8.
Send large S.A.E. for list of Quantity. Prices and Clearance Lines etc.

COPYRIGHT

9PC Magazines Limited, 1984, Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS.

SUBSCRIPTIONS

An annual subscription costs $£ 11$ in the UK, £12 overseas (by surface mail). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.

BINDERS AND INDEXES

Binders ($£ 4.50$) and Indexes (45p) can be supplied by the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Prices include postage and VAT. In the case of overseas orders, add 60p.

BACK NUMBERS

Some back issues are available from the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF at $£ 1 \cdot 20$ p inclusive of postage and packing.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. All correspondents expecting a reply should enciose a stamped addressed envelope. Requests for advice on dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

this month

241 Leader

242 Long-distance Television
Roger Bunney
Reports on DX reception and conditions and news from abroad
247 The CED Video Disc System
Derek Snelling
The RCA CED video disc system was the outcome of heavy research and development expenditure over many years. It's an elegant solution to the problem of how to store video signals on a disc, doing so by means of frequency modulated capacitance variations. A look at the techniques involved and the players released in the UK late last year
250 Teletopics
News, comment and developments.
252 Vintage TV: The Ferguson 841T
Vivian Capel
The UK's leading setmaker didn't enter the TV field at the very start. When they did, shortly after the war, this is what they came up with.
253 VCR Clinic
Notes on VCR faults and servicing techniques contributed by Steve Beeching, T.Eng. (C.E.I.), Derek Snelling, Mike Phelan, Les Harris and Mick Dutton.

256 Letters

257 Next Month in Television
258 Servicing the Sony KV1400UB
David Botto
Another popular small-screen Sony colour set. The
interrelationships between the switch-mode power supply and the line timebase mean that a systematic approach is called for in dealing with the dead set symptom. This and other fault conditions you may come up against.
260 TV Fault Finding
Notes on TV faults from Mick Dutton, P. Hardy, M. S.
Barakat and John Coombes.
262 VCR Servicing, Part 26
Mike Phelan
The Ferguson $3 \mathrm{~V} 24^{\prime} \mathrm{s}$ drum servo system.
265 The Card Game is Over
Les Lawry-Johns
Monthly report from that famed servicing centre.
DX Signal Detector/Alarm
G. R. Exeter

Two PLL i.c.s are used as a narrow-band filter to detect the presence of the signal's line sync component, producing an output to gate the video signal through to a simple audio amplifier to provide an audible indication.
269 A Question of Black Level
Malcolm Burrel/
A black-level signal is useful for servicing, for editing
video programmes and other purposes. A simple black-
level generator is described.
270 Service Bureau
271 Test Case 255

MANOR SUPPLIES

NEW MKV CHEQUERBOARD \& PAL COLOUR TEST GENERATOR FOR TV \& VCR.

* 40 different patterns and variations.
* Broadcast transmission accuracy (fully interlaced sync pulses with correct picture blanking).
\star EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red, blue and black.
\star Chequerboard.
* Mono outputs with border castellations, cross hatch, grey scale, vertical lines, horizontal lines and dots. UHF modulator output plugs straight into receiver aerial socket.
\star Additional video output for CCTV \& VCR
* Facilities for sound output.
\star Easy to build kit. Only 2 adjustments. No special test equipment required.
* Mains operated with stabilised power supply.
* All kits fully guaranteed with back-up service.
\star Also available with VHF Modulator.
Price of Kit
$£ 80.50$
De Luxe Case ($10^{\prime \prime} \times 6^{\prime \prime} \times 2 \frac{1}{\prime \prime}^{\prime \prime}$)
$£ 8.50$
Optional Sound Module (6 MHz or 5.5 MHz) $£ 4.50$
Built \& Tested in De Luxe Case including Sound Module
$£ 120.75$

'SPECIALTEST:

REPORT
'TELEVISION'
Post/Packing $£ 2.50$
I_DEC. ${ }^{1082}$ _ JAll above prices include VAT 15%
PAL COLOUR BAR GENERATOR (Mk4)

\star Output at UHF, applied to receiver aerial socket.
\star In addition to colour bars R-Y, B-Y etc.
\star Cross-hatch, grey scale, peak white and black level.

* Push button controls, battery or mains operated.
\star Simple design, only five i.c.s on colour bar P.C.B.
PRICE OF MK 4 COLOUR BAR GENERATOR KIT £34.50. DELUXE CASE £8.50. BATT HOLDERS $£ 3.20$. MAINS SUPPLY KIT $£ 4.80$ (Combined P\&P £1.80).

MK 4 DE LUXE (BATTERY) BULLT \& TESTED $\mathbf{6 6 6 . 7 0}+\mathrm{\varepsilon} 1.80 \mathrm{P}$ \& P.
MK 4 DE LUXE (MAINS) BUILT \& TESTED $£ 78.20+£ 1.80$ P \& P .
VHF MODULATOR (CHI to 4) FOR OVERSEAS 86.60.
EASILY ADAPTED FOR VIDEO OUTPUT \& C.C.T.V.
(ALL PRICES INCLUDE 19\% VAT)
MANOR SUPPLIES TELETEXT ADAPTOR KITS
MK 1 (Texas XMII) Cable remote control $£ 158.70$ p.p. $£ 2.80$.
MK 2 (Philips/Mullard) Infra-red remote control $£ 198.40$ p.p. £2.80.
Further details on request. Tel 01-794 8751/7346

[^0]
TV SERVICE SPARES

BACKED BY TWENTY YEARS EXPERIENCE \& STAFF OF TECHNICAL EXPERTS

TELEVISION MAGAZINE PROJECT PARTS
 COLOUR PORTABLE TV

MONO PORTABLE TV, SMALL SCREEN MONITOR
LISTS AVAILABLE, PANEL TEST SERVICE
PHILIPS UHF MODULATOR (AUDIO \& VIDEO INPUT) $£ 17.25$ p.p. $£ 1.00$. MULLARD TELETEXT DECODER + INTERFACE suitable for Thorn, TX10 $£ 69.00$ p.p. $£ 1.80$. (Decoder only $£ 57.50$ p.p. $£ 1.80$) SAW FILTER IF AMPLIFIER PLUS TUNER COMPLETE AND tested for T.V. SOUND \& VISION $£ 32.80$ p.p. $£ 1.20$
THORN TX9, TX10 SAW FILTER IF PANEL 99.80 p.p. 80 p.
PAL DECODER KIT FOR RGB MONITORS £31.00 p.p. £1.00. SPECIAL OFFER TEXAS XMII TELETEXT DECODER NEW \& TESTED, AT REDUCED PRICE $£ 46.00$ p.p. $£ 1.60$.
PHILIPS-PYE G11 TYPE TELETEXT DECODERS $£ 28.75$ p.p. $£ 1.60$ TELETEXT 23 BUTTON DE-LUXE HANDSET WITH 5 YDS. CABLE £7.80 p.p. £1.20. XMII STAB. POWER SUPPLY £4.40 P.P. f1.20.
CROSS HATCH UNIT KIT, AERIAL INPUT TYPE, INCL. T.V. SYNC AND UHF MODULATOR. BATTERY OPERATED. ALSO GIVES PEAK WHITE \& BLACK LEVELS. CAN BE USED FOR ANY SET £12.65 p.p. 60 p. (ALUM CASE $£ 2.90$ DE LUXE CASE $£ 5.50$ p.p. $£ 1.20$.) ADDITIONAL GREY SCALE KIT $£ 3.35$ p.p. 45p.
UHF SIGNAL STRENGTH METER KIT $£ 23.00$ (VHF version also available). ALUM CASE $£ 2.90$ DE LUXE CASE $£ 8.50$ p.p. $£ 1.80$.
CRT TESTER \& REACTIVATOR PROJECT KIT FOR COLOUR \& MONO $£ 32.20$ p.p. $£ 2.80$.
BUSH 2718 BC6100 SERIES IF PANEL 55.75 p.p. 90 p
BUSH A816 IF PANEL (SURPLUS) 11.90 p.p. 90 p.
DECCA 80, SERIES, IF, FRAME T.B. $£ 5.75$ each p.p. $£ 1.40$
DECCA 80, LINE SCAN UNIT salvaged $£ 11.50$ each p.p. $£ 2.00$.
GEC 2040 Convergence panels, Decoder panels $£ 2.88$ each p.p. $£ 1.80$.
GEC 2040 IF PANELS $£ 3.22$ p.p. $£ 1.60$.
THORN TX9 PANELS ex factory for small spares. Includes I.C.s \& Semiconductors etc. $£ 5.75$ p.p. $£ 2.00$.
THORN TX9 PANELS salvaged ex factory for spares incl. LOPT \& mains transformers $£ 11.50$ p.p. $£ 2.80$.
THORN TX9 PANELS ex factory salvaged complete cond $£ 23.00$ p.p. $£ 2.80$
THORN TX 10 T.B. PANELS salvaged ex factory $£ 17.25$ p.p. $£ 3.00$.
THORN TX10 SIGNAL BOARDS salvaged ex factory $£ 17.25$ p.p. $£ 2.00$
THORN 3000 LINE T.B., PCB $£ 5.75$ each p.p. $£ 1.30$
THORN 8000/8500 IF/DECODER PANELS salvaged $£ 3.70$ p.p. $£ 1.80$
THORN $8000 / 8500$ FRAME T.B. PANELS salvaged/spares $£ 2.88$ p.p. $£ 1.40$. THORN 9000 SERIES TOUCH TUNE REMOTE CONTROL UNIT PLUS ULTRASONIC TRANSMITTER HANDSET $£ 19.32$ p.p. £1.84 THORN 9000 IF/DECODER PANELS Salvaged $\mathbf{5 5 . 7 5}$ p.p. $£ 1.60$.
PHILIPS G8/G9 IF/DECODER Panels for small spares $£ 1.75$ p.p. $£ 1.40$.
G8 Decoder panels salvaged $£ 4.25$. Panels for spares $£ 2.00$ p.p. $£ 1.40$.
G9 Scan Panel. Basic PCB in fibreglass $£ 16.68$ p.p. $£ 1.80$.
GRUNDIG 8630 Series Varicap Tuners $£ 7.82$ p.p. $£ 1.00$.
VARICAP, U321, U322, ELC $1043 / 06$ ELC $1043 / 05 ~ £ 7.82$ p.p. 80p; G.I. type (equiv. 1043/05) $£ 4.00$ p.p. 60 p. MAKERS VARICAP CONTROLS Pye CT200 4PSN $£ 8.60$, A823 4PSN 15.50 , Decca 6PSN 86.70 p.p. 80 etc. SPECIAL OFFER ELEVEN POSITION VARICAP CONTROL UNIT UHF/VHF £2.10 p.p. £1.00.
BUSH "Touch Tune" Varicap Control Z179, Z718 types $£ 4.40$ p.p. 95p
VARICAP UHF-VHF ELC 2000S, ELC2060 £11.30 p.p. 90p.
VARICAP VHF MULLARD ELC 1042, PHILIPS, BUSH $£ 7.95$ p.p. 80 p.
UHF/625 Tuners, many different types in stock. DECCA Bradford 5 position
$£ 2.88$ p.p. $£ 1.80$ etc.
T.V. SOUND IF Panels $£ 7.82$ p.p. $£ 1.00$

LOPT TESTER Serivice Dept approved $£ 17.82$ p.p. $£ 1.20$
LOPTS NEW \& GUAR. P/P Mono £1.35p, Colour £1.45p, Bobbins 80p.
BUSH 161 to 186 (twin panel)........ 86.80
BUSH, MURPHY 774 senes 89.80
FERG., HMV, MARCONI, ULTRA.
$950,1400,1500,1580,1590,1591$.. $\varepsilon 6.80$
THORN 1600, 1615, 1690, $1691 \quad$ \&10.50
GEC 2000 to 2038 series $\mathbf{8 7}$.80
GEC series $1 \& 2$.......................... $\mathbf{E 9 . 2 0}$
INDESIT 20/24EGB........................... E8.80
ITT/KB VC 200, 300
414 (twin panel) 88.80
6.80

PHILPS 170
PYE, INVICTA, EKCO FERR
368, 169, 569, 769 series.
DECCA 20124, 1700, 2000, 240

PYE 40, 6700
KB VC ELEVEN (003)........................00
O HER 23.23 THORN 9800 121.80
OTHERS AVAILABLE, PRICES ON REQUEST. ALSO F.OPTS
TRIPLERS Fuil range available. Mono \& Colour.
Special Otter: Thorn 14005 stick EHT Tray £1.72 p.p. 65p.
TRANSDUCTORS suitable for G8, A823, Bradford etc. $\mathbf{£ 1 . 7 2}$ p.p. 60 p.
$\mathbf{6 . 3 V}$ CRT Boost Transformers $\mathbf{£ 5 . 8 0}$, Auto Type £3.20, p.p. $£ 1.20$
CALLERS WELCOME AT SHOP PREMISES
THOUSANDS OF ADDITIONAL ITEMS, ENOUIRIES INVITED LARGE SELECTION TESTED COLOUR PANELS POPULAR MODELS Telephone 01.794 8751, 7941346

MANOR SUPPLIES

172 WEST END LANE, LONDON, N.W.6.

NEAR: W. Hampstead Tube Sun. (Jubilec) Buses 28, 158, C11 pass door W. Hampetead British Rail Strs. (Richmond, Broad St.) (St. Pancrus, Bedford) W. Hampstead (Brth. Rall) access from all over Greater London.

Mail Order: 64 GOLDERS MANOR DRIVE, LONDON N.W.11.
ALL PRICES INCLUDE VAT AT 15\%

Top quality sets to set you up for the winter televiewing boom. Brighten your winter profits with better sets from BTC.

DECCA BFD 30 TELPRO KORTING
PYE 697, GEC 2040
PHILIPS G8's
2.CHIP BUSH/MURPHY
GEC 2110,8500
3500 VARICAPS
PIBUTHON HITACHI's
18" PHILIPS
1.CHIP BUSHIMURPHY

THORN 3000, THORN 8000 18" PYE's ROTARY JAPS
LATER SETS ie. THORN 9000 TOUCH TUNE SETS etc.

HYBRIDS

UNTESTED ONE TO TEN

$£ 20.00$ $\begin{array}{ll}\text { ONE TO TEN } & £ 20.00 \\ \text { OVER TEN } & £ 18.00\end{array}$ $\begin{array}{ll}\text { ONE TO TEN } & £ 20.00 \\ \text { OVER TEN } & £ 18.00\end{array}$ SOLID STATES UNTESTED ONE TOTEN ONE TOTEN OVERTEN OVER TEN ONETOTEN UNTESTED ONE TO TEN ONE TOTEN OVER TENS UNTESTED ONE TO TEN ONE TOTEN OVER TENS

WORKING

ONE TO TEN	$£ 28.00$
ONE TO TEN	$£ 28.00$
OVER TEN	$£ 25.00$

OVERTEN £25.00
WORKING
ONE TO TEN £45.00
ONE TOTEN £45.00
OVER TEN $£ 40.00$
OVER TEN £40.00
OVERTEN $£ 40.00$
WORKING
ONE TO TEN $£ 35.00$
ONE TO TEN $£ 35.00$
OVERTENS $£ 40.00$
WORKING
ONE TO TEN $£ 55.00$
ONE TOTEN $£ 55.00$
OVER TENS

SINGLE STANDARD MONO TV's
IN BATCHES OF $20 @ £ 4.00$ EACH

SPARES PANELS, TUNERS, LOPTS, TUBES, STANDS, INDOOR AERIALS.
ALWAYS IN STOCK - NEW OR S/HAND ABOVE SPARES INCLUDE BRITISH \& CONTINENTAL TV's. PLEASE RING OR WRITE FOR QUOTES.

0274~306018

CASH \& CARRY SPECIAL SERVICE TO THE TRADE OR ASK ABOUT SPECIAL DELIVERIES ON LARGE QUANTITIES.

BRIARWOODTRADINGCOMPANY

OPENING TIMES MON-FRI 9.00-12.00/1.00-5.45 (CLOSE 4.30 SAT)

BRIARWOOD TRADING COMPANY LEGRAMS MILL, SUMMERVILLE ROAD, BRADFORD BD7 1NH

P. V. TUBES Buy with Just phone your order
 hrough, we

 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">enctarctari</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left: none !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">Visa</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| enctarctari |
| :---: |
| Visa |</table-markdown></div>

38A WATER STREET, ACCRINGTON, LANCS BB5 6PX. OF TELEVISION COMPONENTS TRADE COUNTER OPEN MON-FRI 9 am.-5 p.m. SAT 9.30 a.m.-5 p.m.

P. V. TUBES

REPLACEMENT ELECTROLYTICS	
PYE 169 (200/200/100/32)	3.40.
PHHLIPS 320 (400/400/200V)	2.07
DECCA 30 (400/400/350V)	3.40
DECCA 80 (400/350V)	3.00
DECCA $100(800 / 250 \mathrm{~V})$	3.97
DECCA I700 (200/200/400/350V)	4.83
PHILIPS 68 (600/300V)	2.30
PHILIPS 69 (1800) 300 V)	221
PHILIPS G11 (170/250V)	2.90
PYE 691/ $/ 200 / 300 / 350 \mathrm{~V}$	2.70
PYE 731 (800/300V)	2.31
RBM A823 (2500/2500/30V)	1.66
RBM A823 ($8000 / 300 \mathrm{~V}$)	2.83
RBM 2146 (300/300/350V)	3.55
RR1 T20A (200/400V)	2.00
ITT CVC5/9 (200/200/75/25)	2.98
ITT CVC 20 (220/400V)	2.00
GEC 2110 (600/250V)	1.94
GEC 2040 (1000/2000/36V)	1.19
GEC 2040 (300/500/150/100/50)	4.10
THORN 3500 (400/40V	30
THORN 950 (100/300/100/16/275V)	1.83
THORN 1400 (150/100/100/100/150/320V	279
THORN 1500 (150/150/100/300V)	220
THORN 15500127300 O	31
THGRN 3500 (175/100/100/400/350V)	278
THORN 3500 (1000 133 V)	${ }^{36}$
THDRN $3500(1000 \mathrm{O} / \mathrm{V}$)	86
THORN 8000/8500 (2500/2500/63V)	3.38
THORN 8000/8500 (700/250V	2.31
THORN 8000/8500 (400/350V	2.56
THORN 9000 (400/400V)	328
GEC (200/200/750/501	2.64
PHILIPS 69 2200/E®V	125
THORN 4700 P/C 25 V	120
PHILIPS 320 400/400/200V	2.74
THORN 1591/16914700/25V	120

\section*{| CAPACITORS |
| :--- |
| AXIAL |}

Vats MAL

ELECTRONIC TUNERS AND ASSEMBLIES	
Multerd Elciou30s	8.0
Multerd Elcious 08	. 40
$4 \mathrm{P/B}$ DECCA GEC/IT	6.1
$6 \mathrm{P} / \mathrm{B}$ DECCA GEC/IT	1.50
$4 \mathrm{P/B}$ PYE	9.00
$6 \mathrm{P} / \mathrm{B}$ PYE	16.00
PHILIPS G8 Tuner	10.50
PHILIPS G8 Ass. (Square Emin)	13.50
PHILIPS G8 Ass. (Sloping'Late)	13.50
PHILIPS G9 Tuner	10.50
PHILPS G 11 Tundr	9.00
IT/PYE/GEC 7 Button P/B	13.55
GEC 21106 way P/B	7.80
U321 UHF Tunar	1.50
THORN 8800 SELECTOR	
(HMV Model 2725 [6 wey mund button)	1.50
THORN 9000 SELECTOR	13.50
U322	120
HTTACH 4 way Chen. Solector (Also Rank A823)	
	10.75
RR1 T20A 6 wey Chen. Solector	9.75
PHLLIPS 8 way TIP Switch Unit (suitable for all G11)	
IT CVCS (5 wheal modified)	E12
IT 6 wey with VCR (Also Slim GEC)	850
PHILIPS KT3	14.50
PHILIPS KT30	1030
PYE 697 Repoir Kits	6.97
ELC 2003	116.50
4A Double Pole ONVOff SwitchGeneral Purpose Push'Push	
	138
4 A Double Pole Rotary On/ Off 66	
GEC 2110 A1 Control (M) (Red, Blue, Green) 58	
GEC 2040 ON Off Switch	${ }^{8}$
On/ Off Switch G11/G12	158
On/ Dff Swith GEC/TCE TXS/10	106

Price	
10	3 SpFF 200 pF asach
10	$\begin{aligned} & 150 \mathrm{pF} 220 \mathrm{pF} \quad 40 \mathrm{p} \\ & 180 \mathrm{pF} 250 \mathrm{pF} \end{aligned}$

Multhrd ECIOM30
 $4 \mathrm{P} / \mathrm{B}$ PYE
$6 \mathrm{P} / \mathrm{B}$ PYE
PHILIPS GB Tuner PHILIPS G8 Aes. (Squaring Earty ${ }^{\text {PHILLPS }}$ GS Tuner iTT/PYE/GEC 7 Button P/B GEE 21106 way P/ THORN 8800 SELECTOF HMM M Model 27256
THORN 9000 SELECTOR HITAC

RR1 TraA 6 wey Chan. Selector RR1 T20 2226
PHILIPS 8 way ITT CVCA (5 wheel modified) PHILIPS KT3 PYE 697 Repoir Kits ELC 2003

4A Double Pole ON Off Swith
General Purpose Push/ Push
Philips G8 Push On Off Switch A1 Beam Switch THORN 3500) GEC 2110 A1 Control IM5 (Red, Blue, Green)

613
10 V
16 V

2300

U.K. Post Pald, Export orders welcome, please deduct V.A.T. and enquire for Overseas carriage cost. Barclaycard/Access orders welcome, or Cheque, Bank Draft. etc., with order please. Large S.A.E. for technical leaflets of complete range. Delivery normally within 7 days.

SPECIAL PROMOTIONAL OFFER

BUY 3 OR MORE

A56-120X
 ONE YEAR GUARANTEE IOPTIONAL EXTENSION UP TO THREE YEARS) only $£ \mathbf{2 3 . 8 0}+$ VAT OFFER ENDS 31st MARCH

Callers only. To Luton or any of the stockists Please phone first. - Send for a fully comprehensive price list and a wall chart of approx. 1800 colour tube types (including Base Connection Diagrams) that can be reprocessed by us.

WELL VIEW

114-134 Midlend Rd. Luton, Beds.
Open Mon-Fri Bam-6pm, Sat 9am-5pm. Tel. 0582-410787
Your Local Tube Stockist:
Well View, Southampton. Tel. 0703331837.
Retach Ltd., Northwood, Middx. Tel. 09274-27019
West One Distributors Ltd., Chesham, Buckinghamshire. Tel. 0494-778197
Rushden Rentals Ltd,, Rushden, Northants. Tel. 0933-314901
Daventry Rentals, Daventry, Northants. Tel. 0327277436
Please note that we have no connections whatsoever with any other business having similar name to ours.

20AX APOLLO 30AX

HIGH TEMPERATURE PUMPED COLOUR TUBES

Fast Mail Order service to any part G.B. Delivery 2.3 days.
Just phone for a quotation. Delivery Manchester area free same day. Two year guarantee. Fiting while you wait or in vour home $£ 20$
$18^{\prime \prime}$ A47-342×343 470 BEB22 ($£ 45.00$) $£ 37.00$
19" A49-120×/192× £37.00
$20^{\prime \prime} \quad$ A51 - $220 \times / 110 \times / 161$ - 510JKB22 ($£ 45.00$) $£ 38.00$
$22^{\prime \prime} \quad$ A56-120 $\times / 123 \times / 140 \times / 41^{\prime \prime} 0$ £38.00
$25^{\prime \prime}$ A63-120× £39.00
$26 \times \quad$ A66 - $120 \times$ A67 - $120 \times / 140 \times / 150 / 200 \quad £ 39.00$
20AX 56-510 £48.00
30AX 56/66-540 £48.50
$20^{\prime \prime}-22^{\prime \prime}$ SOLID STATE COLOUR TVs FULLY SERVICED \& SOAK TESTED. VERY RELIABLE WITH GOOD TUBE $£ 61.00$ WITH NEW TUBE $£ 83.00$ inc DELIVERY

061799085424 hour answering service. 43 Clarke Cres, Little Hulton. Nr. Manchester M28 6XM.

CENTREVISION

For Video, Television, Audio MANUFACTURERS SECONDS

Plus selection of modern TV's: T20 9000 etc.
Hybrids at give-away prices.
Also:
Tubes, Parts, Stands etc, plus working sets.
Sloper Road, Cardiff.
Telephone: 022244754

Swich to the biggest wholesaler of quality late model used TV's

- Thousands of Quality Sets always in stock

Colour/Mono/VCR's and Audios available

- Murphy/Pye/Philips/Sony/National Panasonic and other big names
We are big - we buy in bulk - we offer you the keenest prices
- Cash and Carry or we will deliver
- New and used stands always in stock

Campion House, Franchise Sireet, Kidderminster, Worcestershire DY11 6RE

SCOTTS

THE TELEVISION CENTRE
8-10 RHODA STREET, (Off Bethnal Green Road) LONDON E2 Telephone: 01-739 3123
Working/Serviced Philips $22^{\prime \prime}-26^{\prime \prime} \mathrm{G} 8520$....... $£ 35.00$
Working/Serviced Philips 550's £45.00
Working/Serviced Bush 22" s/state £30.00
Working/Serviced Pye $18^{\prime \prime}$ Chelsea $£ 49.00$
TV

STANDS
£2.50

LONDON'S LARGEST SUPPLIER OF GOOD WORKING TV's
*FREE DELIVERY TO THE GREATER LONDON AREA
TELEPHONE NOW 01-739 3123

13 WORCESTER ST. WOLVERHAMPTON, WV2 4LJ
Telex: 336810

Telepart Pattern Generator

- Exceptionally light and durable
- Pocket size for outside service
- Pocket size for outside service * PP3 battery power source - Five difterent test patterns for colour and mono TV "Cross hatch grid - Dot matrix - White raster
-Horizonta/s -Verticles
A lightweight, extremely portable and versatile pattern generator for black/white and colour T.V. alignment and service at the customers home. At the turn of a switch, the generator can provide five essential test patterns for
correct installation, fast checks and repairs. Pattern stability is first class and compares favourably with other more costly bulky generators only suitable for bench work. The generator is pocket size measuring $10 \times 7.5 \times 4 \mathrm{~cm}$ and weighs only 190 grams.
PRICE £14.95 (Subject to V.A.T.) POST \& PACKING £1.15

FREE CAREER BOOKLET

Train for success in Electronics Engineering, T.V. Servicing, Electrical Engineering-or running your own business!

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the fields of electronics, T.V., electrical engineering - now it can be your turn. Whether you are a newcomer to the field or already working in these industries, ICS can provide you with the specialised training so essential to success.
Personal Tuition and 80 Years of Success
The expert and personal guidance by fully qualified tutors, backed by the long ICS record of success, is the key to our outstanding performance in the technical field. You study at the time and pace that suits you best and in your own home.

You study the subjects you enjoy, receive a formal Diploma, and you're ready for that better job, better pay.

TICK THE FREE BOOKLET YOU WANT AND POST TODAY

EAST CORNWALL COMPONENTS

EDITOR

John A. Reddihough
ASSISTANT EDITOR
Luke Theodossiou
ART EDITOR
Roy Palmer

ADVERTISEMENT MANAGER

Roy Smith
01-261 6671

CLASSIFIED ADVERTISEMENTS

Barbara Blake
01-261 5897

Investment decisions

The Tele-Jector story is an intriguing one. It seems that the directors of a firm called London and Liverpool Trust, whose main operation is the distribution of business equipment (photocopiers, computers, etc.), got this bright idea for making money. A subsidiary, Tele-Jector, would instal projection TV equipment in pubs and clubs and would generate a substantial revenue from hire agreements. The clever bit is that it wouldn't cost anyone anything. The publican would be able to recover the cost of his Tele-Jector through the advertising revenue it would produce, and with enough TeleJectors out on lease the whole exercise would soon pay for itself so far as London and Liverpool Trust were concerned. Only it didn't work out like that.

The height of its fame came when Tele-Jector made an $£ 8 \mathrm{~m}$ bid, just over a year ago, to obtain exclusive rights to show Football League matches on its screens. London and Liverpool shares shot up to a high of 350 p . Unfortunately for Tele-Jector the bid fell through - the broadcasting authorities made a successful counterbid, and it transpired that not all League clubs would be prepared to participate. Even if they had, it would have taken some effort to recover the $£ 8 \mathrm{~m}$ and the cost of the other programme material provided in cassette form and the Tele-Jectors themselves. Looked at in this light the scheme looks rather less clever. It seems even less clever when you consider the underlying assumption - that pubs and clubs would be filled with avid Tele-Jector viewers. One wonders whether the directors of London and Liverpool Trust ever set foot in their local. If they had, they might have discovered that the box, when present, is seldom given much serious attention. At least the publicans appreciated that, and far fewer than were estimated to be necessary to make the venture pay decided to take it on.

At the end of the day London and Liverpool Trust were faced with the cost of providing programme material for an uneconomically small number of Tele-Jectors, and those publicans who had taken it on found that there was negligible advertising revenue. There was also some criticism of the leasing terms. London and Liverpool Trust's shares dropped to a low of 11 p , and liabilities of 18 m incurred by the project threatened the company's existence. A sad case of things going badly awry.

Is there a lesson to be learnt from this? Well, it could be an example of one of Parkinson's laws at work - that a group of people, in this case the directors, will often take a collective decision that each individually considers to be highly doubtful. It could also be an example of making an investment with a view to generating a quick profit. Of more relevance to television, doesn't it seem analogous to some of the headier notions of bonanzas to be made from developments such as cable and satellite TV? There was indeed a time when ITV was "a licence to print money", but it looks increasingly as if that was a once only state of affairs. The more TV there is, of one sort or another, the greater the competition and the harder the economic climate.

There has been much criticism that those responsible for investment in the UK seek too quick a return on their money. I'm not at all convinced that this is fair. In a highly uncertain world, is it reasonable to lock up funds in long-term projects whose outcome is difficult to foresee? We need industrial investment for sure, but investment in projects that don't turn out is worse than no investment at all.

In an interesting article in Electrical and Radio Trading, Erik Arnold argues that, amongst other things, the UK TV industry has reached its present sorry state due to lack of investment in new product technology. Those of us with fairly long memories might question this. For a start, successive governments through the fifties to the mid-seventies engaged in stop-go economic policies. Consumer taxes and credit control provided a simple means of putting such policies into effect, but meant that industries such as TV bore the brunt of the accelerator/brake business. This sort of thing hardly encouraged long-term planning - you can't be expected to undertake expensive investment when wondering how to finance a warehouse full of unsold TV sets awaiting the next "go". Firms nevertheless did invest in research and development, but if I read him right Erik Arnold argues that they didn't go about this in the right way. They left much of the technical research to component suppliers whilst concentrating on assembly. So we don't have integrated firms that can develop and produce their own tubes, i.c.s and systems through to the end product offered to the consumer.
This is largely due to the structure of the industry and is not necessarily a bad thing. It would hardly be sensible for every TV firm to produce its own types of tube - a case of reinventing the wheel time and again - while i.c. development is best left to those with semiconductor technology know-how. This doesn't mean that setmakers simply sit back and make use of whatever's on offer. That way does lead to disaster, in terms of unreliable consumer products. Developing reliable components that will survive in the stressful conditions of a TV set and the knock about home environment is a two way business between the component manufacturer and his customer, while UK setmakers have often taken the initiative in going to component manufacturers with their requirements and jointly working on the solution. Whether it would be better for component manufacturers and setmakers to be part of the same company is something that could be argued about endlessly. Provided they both have technical compentence it shouldn't really matter.

This does leave unanswered the criticism that the UK's industry has failed to come up with new product technology such as the VCR. For this you need a certain vision and confidence that perhaps we lack today. But really successful new products are not everyday occurrences. There is probably no harm in manufacturing under licence rather than undertaking the original research.

Please drop us a line to let us know your new address.

FRONT COVER

Our thanks to Hitachi Sales (UK) Ltd. who provided this month's cover photograph showing the Hitachi Model VIP101P CED video disc player.

Long-distance Television

Roger Bunney

Now that we're into the new year it's possible to summarise the conditions during 1983. They were pretty good! Sporadic E signal propagation continued after its usual ending in late August, and there was a little F2/TE reception as the sunspot cycle dwindled. More encouraging were the good tropospheric openings towards the end of the year - indeed December both started and ended with spells of enhanced tropospheric propagation. There were good tropospheric openings during all months from late August - my own most interesting catch was ORF-1 (Austria) ch. E9 on September 26th, a 20 kW transmitter at Bruck near the Hungarian border.

Reports from our Australian friends suggest that they are enjoying a good SpE season, and one must hope that this heralds a good season ahead for us in the UK. With the 405 -line transmitter closures, many will be able to enjoy Band I/III relatively clear of local transmissions. This could be the last year of Band I being free from interference, so make the most of it!

What with other activities during December, reports of reception normally slacken off. From the letters received however it seems that the main event was the good tropospheric opening on December 27-29th. Reception was mainly from the E./S.E., with signals from W./E. Germany, the Benelux countries and France. The prevailing high-pressure system first gave a signal lift on the 27th, with strong French u.h.f. signals and W. Germany (just). There was further improvement in Band III and at u.h.f. on the 28 th, with a peak on the 29 th when signals extended from W. Germany across the UK as far as Wales. Unusually, the emphasis was on W. German Band V signals, reaching as high as ch. E60. The in-vision teletext/scrambled information from Paris ch. 8 was present, but not the mystery ch. 5. RTL (Luxembourg) was widely seen, the PM5534 test pattern carrying the identification "RTL PLUS". We've a report that RTL have been using both PAL and SECAM at their ch. E7 outlet. ATV activity was high during the period. F3YX, to the S.W. of Paris, was seen here at Romsey - a new station for me and a most welcome bonus to see out 1983!

Meteor shower/scatter reception has been remarkably
good, with two prime showers during the period. The Geminids produced active conditions over the $10-14$ th, the peak on the 13 th producing signal pings and more sustained bursts throughout Band I, reaching into the lower end of Band III (chs. E5, E6 and R5) on occasions. In early January the Quadrantids again produced MS reception - the peak appeared to be on the evening of the 3rd.

There was little SpE reception over the period. The \log is as follows:
23/12/83 NRK (Norway) ch. E3.
30/12/83 Unidentified signals on chs. R1 and R2.
3/1/84 RAI (Italy) IA; unidentified signals on E3, 4.
4/1/84 RTVE (Spain) E2, 3, 4; RTP (Portugal) E2.
My thanks to Simon Hamer (Powys), Hugh Cocks (E. Sussex), Graeme Wilson (Cleveland), John Tellick (Surrey) and Ryn Muntjewerff (Holland) for reception reports.

Robert Copeman reports that December started off quietly in Australia so far as SpE reception is concerned, though conditions had opened up by the end of the month - with little evidence of double-hop propagation unfortunately. He mentions that the increasing number of Band II f.m. radio stations in operation there is giving greater scope for v.h.f. DXing. The Network $0 / 28$ (cultural service) is to loose most of its ch. 0 outlets with a move to u.h.f. operation only. This should ease DX reception by 1985.

Jim Maden reports a "lousy" season in S. Africa, with no sign of ZTV Gwelo ch. E2. This is most unusual and he wonders whether the transmitter is now off the air. Bulawayo ch. E3 has moved to Band III - due to interference from Europe! Jim views TSS-1 via the Ekran 714 MHz downlink, and comments on the flashing diamond caption previously mentioned - at TSS programme closedown. The translation of the Ekran caption reads "don't forget to switch off the television", with the words in red on a white diamond with a blue background. The centre words that flash are "switch off", and there's also an 800 Hz tone. During various October/November TE openings Jim received RTVE, RAI and RTP, the highest frequency signal being ch. E3/IA vision. Finally Jim mentions that TSS now use an African lady who speaks fluent Russian for the discussion of African affairs - so watch out for her on ch. R1 during the next SpE season. . .

Radio Receivers

In the January column I mentioned the Lowe Electronics AR2001 scanner, which covers $25-550 \mathrm{MHz}$. Revco Electronics have since told us that the professional version of their SX200n will shortly be available at some $£ 400$. It

Left: The new Rumanian test pattern (similar to DFF/GDR), received by Ryn Muntjewerff from Bucharest on ch. R2. Centre: ATV reception in Holland by Ryn Muntjewerff, at 435 MHz . G3RJM card (Newcastle) with G8PZF background. Right: Tropospheric reception by John Tellick (Surbiton) from Anderlues, Belgium, during the September opening.
covers $26-520 \mathrm{MHz}$, with the only gap being $88-108 \mathrm{MHz}$. A.M. and f.m. signals are catered for: the sensitivity is $0.5 /$ $1 \mu \mathrm{~V}$ (f.m./a.m.) at v.h.f., $0.5 / 2 \mu \mathrm{~V}$ (f.m./a.m.) at u.h.f. The image rejection is 50 dB at v.h.f., 40 dB at u.h.f., with sharp selectivity. The unit will interface with certain NEC computers for outboard control, for example to increase the channel memory and for high-speed reprogramming. Perhaps more interesting is the availability of a prescaler that gives operation at up to 3 GHz ! More details can be obtained from Garex Electronics, 7 Norvic Road, Marsworth, Tring, Herts HP23 4LS (0296 668684).

Perhaps more down to earth is a range of Tandy (USA) portables for TV.sound. Their 1984 catalogue features four receivers, one hand held, with full system M v.h.f. channel coverage - one receiver has full u.h.f. coverage as well. The Portavision 55 covers low and high bands (Bands I/III) and has a 70 channel u.h.f. tuner (click stops plus fine tuning). The price is $\$ 79.95$. The Portavision 5 has similar v.h.f. TV coverage plus air/PMR at 108175 MHz and is perhaps the best for general v.h.f. coverage at $\$ 59.95$. The Personal Portavision covers just the low/high TV bands at $\$ 44 \cdot 95$. All three models include MW and $88-108 \mathrm{MHz}$, give good sound reproduction and are sensitive (there's a tuned r.f. stage for each band).

I'm using the Portavision 5, which I've realigned from ch. A2 sound to ch. E2, i.e. from 59.75 MHz to 53.75 MHz . By shifting the coverage in this way a gap has appeared at the top end of the low band, but ch. R3 $(83.75 \mathrm{MHz})$ can still be received. Apart from this gap there's full coverage over $53-220 \mathrm{MHz}$. The radio has proved to be very useful during SpE openings since it will resolve both f.m. sound and the a.m. vision buzz. In addition to the integral whip aerial, there's a Motorola (car radio) socket for an external aerial. You can't obtain these sets from Tandy UK (in part due to the battery/ 115 V a.c. operation) but you can obtain them by mail order from Tandy Corporation, Export Sales, Fort Worth, Texas 76102, USA. Note that you may get involved with import duty/VAT - it may be easier to obtain sets secondhand via a friend.

News Items

Belgium: The French language ECS downlink channel "TV5" (uplink at a French station near Troyes) came into operation on January 2nd, with programmes from 19002200 nightly. TDF-A 2 is used on Monday and Thursday, SSR on Tuesday, TDF-TF1 on Wednesday and Sunday, TDF-FR3 on Friday and RTBF on Saturday. TV5 will not be scrambled until mid/late summer. The channel is for feeding via 12 GHz terminals to cable networks and is also available on ch. E56 (Brussels). There are rumours that BFBS propose to instal transmitters in Belgium.
UK: Mention was made of a pirate station, "Second City Vision", in the June 1983 column, operating in the Birmingham area on ch. 40 after the closedown of the local BBC-2 station. There have been press reports recently of activity over a five mile area, using the name Telstar Television. The authorities have been trying to close down the aspiring broadcaster, whose output includes current feature films etc. No reader has reported reception of the station, whose location appears to be the Edgbaston area. If it's still around, a good time to try would be at Easter - Bank holidays seem to be favourite times for this activity.
Luxembourg: The RTL-Plus channel came into operation on January 2nd. It's intended for W. Germany but is being carried on Belgian cable systems. Start of programmes is

SOUTH WEST AERIALS

This is the specification for the Post Office FS67A twin stop filter - just one of the expanded filter range carried by South West Aerials. Additional filters now supplied (to PO standard) are single notch (Bands 1 or 3); Low Pass; High Pass; Low/High Pass and the twin stop filter as above. The FS67A has an adjustable Low Band and similar High Band stop, ideal for preventing TV and breakthrough from adjacent PMR/mobile transmitters. Housed in a bright aluminium housing with V / p skt, o/p flying lead. Our range of filters covers channel pass/stop; Band pass/stop; single/double notches for all bands, di/triplexers; UHF/UHF combiners; all band aerial stackers; Group pass UHFs - to name a fewl
Our catalogue at 54 p covers these and more - aerials, amplifiers, Das, hardware. Extensive ranges of TV/FM DXing equipment (Band 1 DXing arrays), TVDX multi-standard mono/colour TVs and books.
Your one-stop mail order source for local fringe and TVDXing equipment. FS67A Twin stop (Low/High band PMR) filter @ 35dB stop depth
£ 8.70
Polytron Single channel 'in line' notch (Band 3, UHF Grp A or E) $+23 \mathrm{~dB}$
£6.30
Triax MTH13 wideband Band 313 el . 11.9 Bd gain. Very high quality $£ 33.10$ Hirschmann/Stolle R0250 aerial rotor/control consul (uses 3 core
cable)
BATC Publications - 'Amateur Television Handbook'. Vol $1 £ 2.40$; Vol $2 £ 2.75, ~$
£47.85 'TV for Amateurs' $£ 2.40$
The above prices include VAT, postage/large items Securicor. Access/Barclaycard accepted. Include SAE please with ALL enquiries and customer consultancy service. Delivery $10-14$ working days for stock items.
South West Aerials, 11 Kent Road, Parkstone, Poole, Dorset BH12 2EH. Tel. 0202738232

TV LINE OUTPUT TRANSFORMERS

ADD 15\% VAT to ALL prices. Delivery by return of post

If the Transformer you require is not listed please phone.	
RANK BUSH MURPHY	DECCA
Z146 A640 dual std mono 8.51	MS1700 200120202401 mono 8.00
Bush A792, A793 single std mono 8.51	MS2404 24202424 mono $\quad 8.00$
A774 single std mono $\quad 8.50$	121012111511 portable $\quad 11.50$
A816 solid state mono $\quad 9.00$	GYPSY portable $\quad 11.50$
2712 T16a T16b mono portable 9.00	CS1730 1733 colour 88.00
A823 A823b A823av colour - 10.00	CS1830 1835 colour 88.00
Z179 2722 series colour $\quad 10.00$	'30' series BRADFORD colour 88.00
T20a T22 series colour $\quad 10.00$	70,80, 100 series $\quad 8.00$
2718 P.O.A.	110, 130 series $\quad 8.00$
WINDING	PHILIPS
T20A T22 2179 T26 5.51	210300 series mono 8.00
FERGUSON HMY MARCONI	320 saries solid state mono 8.50
1590159115921593 mono 8.00	G8 series colour 8.00
161216131712 mono 8.00	G9 series colour $\quad 8.50$
16901691 mono 8.50	G11 series colour 14.58
16001615 series mono 9.74	KT2 Lopt 9
30003500 EHT or SCAN P.O.A.	KT3 Lopt $\quad 10.60$
800085008800 (11.70	KB-ITT
$\begin{array}{lr}900092009390 & 11.52 \\ 9500\end{array}$	VC200 VC205 VC207 mono $\quad 8.00$
950096009650	VC300 VC301 VC302 pertable $\quad 8.00$
9800 TX9 TX10 P.O.A.	CVC1 CVC2 colour $\quad 9.00$
G.E.C.	CVC5 CVC7 CVC8 CVC9 colour $\quad 9.00$
2047 to 21053112 to $3135 \quad 8.00$	CVC20 sarias colour $\quad 9.00$
"GAIETY" FINELINE 8.00	CVC30 CVC32 series colour $\quad 8.00$
2114 portable mono 1201H 8.00	CVC40 series 14.56
31333135 M 1501 H portable mono 8.00 DUAL STD hybrid colour $\quad 11.00$	L.O.P.T TESTER
SINGLE STD hybrid colour $\quad 10.00$	Total Price Including VAT. $\quad \mathbf{1 6 . 7 9}$
SINGLE STD solid state 90\% 8.50	Tidman Mail Order Ltd., 236 Sandycombe Road, Richmond, Surrey. Approx. 1 mile from Kow Bridge. Phone: 01-948 3702 Mon-Fri 9 am to 12.30 pm . 1.30 to 4.30 pm . Sat 10 am to 12 pm .
INDESIT, GRUNDIG, TANDBURG, TELEFUNKEN, FIDELJTY, KORTING, TYNE, $\mathbf{B + O}$. Price on application. HAMOND COMPONENTS (Midland) Ltd. 416, Moseley Road, Birmingham 812 9AX. Phone 021-440-6144	

Tropospheric reception from Denmark ch. E8 on December 4th, showing progressive reduction of the bandwidth from 6 to 3 to 2 MHz to reduce interference, using the equipment described in the February-April 1982 issues of Television.

1727 local time (1657 Sunday) with closedown at $2230 /$ 2300 (2400 Friday/Saturday). The system B PAL transmissions are on ch. E7, the test pattern carrying the identification "KANAL 7" at the top and "RTL PLUS" at the bottom. It's expected that ch. E24 will also shortly be used.
Denmark: The experimental South Jutland service TV Syd will continue until next year. If successful, this could lead to full regional Danish TV. The main transmitter is at Sonderjylland on ch. E7 with 60 kW e.r.p.

Satellite News

Luxembourg has applied to the ITU for permission to use four channels at $10.7,10.95,12.5$ and 12.75 GHz . The satellite would be privately funded and able to provide reception using 1 m dishes. Norway, Sweden and Finland have reached agreement on the Tele-X satellite project. Ireland is inviting organisations to tender to provide the proposed Irish satellite TV service. It's hoped that this will be on air in 1987, with five channels.
The Indian Insat 1 b satellite is apparently giving good results. There will eventually be two TV channels, with direct to community receivers as with the 1975-6 SITE experiment via ATS-6.

The North American conference on satellite services has confirmed eight slots for US DBS use in the 12 GHz band, between 61.5° and $175^{\circ} \mathrm{W}$. These include spot beam coverage of Alaska and Hawaii. The conference decided on a service area signal strength of $-107 \mathrm{dBW} / \mathrm{m}^{2}$ - the USA had sought $-105 \mathrm{dBW} / \mathrm{m}^{2}$. The USA had also hoped for more slots to cater for time zone variations. STC in the USA plans to commence a five-channel 12 GHz service this autumn covering the N.E., and hopes that domestic reception via 2 ft dishes will be possible. Due to congestion, domestic 4 GHz craft are to use a reduced orbital spacing of 2°. As a result, receiving dish specifications will need to be tightened. Domestic dishes in the USA range from 6-12 ft and are usually of the prime focus type, with a comparatively wide beamwidth. Whereas an 8 ft dish will work well with the present 4° spacing, with minimal adjacent satellite/channel interference, a 2° spacing could lead to problems, particularly with dishes of less than 8 ft diameter.
The US government has approved funds for the VOATV service to Europe from the TDRS- 1 satellite at $41^{\circ} \mathrm{W}$. Transmissions are expected to start this May/June. The Home Box Office company has apparently acquired the use of an ex-US DOMSAT which is being moved to approximately $40^{\circ} \mathrm{W}$, with test transmissions expected to be in progress by the time you read this and a service starting in March. The Television Entertainment Group, a
consortium consisting of Goldcrest (UK) and four US firms (including HBO), hopes to use this satellite to provide a 24 -hour programme of films, sport, pop music etc. The HBO/VOA services would be in the 4 GHz band, intended for cable distribution.

From our Correspondents . .

Bud Lloyd Bennett, now in Bahrain, is using two stacked long Yagi aerials - Dutch Kamco type assembled in Kuwait - and a 40 dB head amplifier to receive the 714 MHz signals from the Ekran satellite at $99^{\circ} \mathrm{E}$. He says that reception is weak, though improvements are being worked on - including a notch filter to remove Bahrain ch. 55 which causes interference.

Nick Harrold has built a 12 GHz unit, to the basic Chris Wilson/Grahame Harding design featured in the September 1982 issue, and has received OTS using an 8 ft . petal dish (who said a petal wouldn't work at 12 GHz ?). The Satellite plc programmes are scrambled, but with sync reinsertion a viewable picture can be received. The coded sound is impossible to decipher however. Some days after this reception the channel was transferred to the ECS-1 satellite. TDF-FR3 is still present via OTS, with the cogwheel type scrambling illustrated in the January 1984 issue (page 126) and noisy SECAM. For 4 GHz reception Nick is now using a commercial 110° LNA. He reports that AFRTS is received with good colour from the $1^{\circ} \mathrm{W}$ Intelsat. RTM (Morocco) has moved to the $31^{\circ} \mathrm{W}$ Intelsat (from $27.5^{\circ} \mathrm{W}$) and is much weaker.

We've received another letter from Mel Thurlbourne in the Falklands. He reports that TV signals are now being received, generally from 1800-2100 local time, with the aerial system pointed to the north. They are on chs. A2 and 3, most likely via SpE. Charlie's Angels and Kung Fu have both been seen - in colour and dubbed in Spanish! An Argentinian news programme has also been seen. The reference oscillator in the decoder needed a tweak to obtain correct colour lock, and since then things have been going well. Stanley residents use VCRs, to the UK system I. The Cable and Wireless Intelsat link is now in operation, but for communications only.

Bill Cotterill (Tipton, W. Midlands) received most of Europe, plus Jordan ch. E3, via SpE during the summer months, using the TV-DX system described in the Feb-ruary-April 1982 issues, a Hugh Cocks upconverter/ preamplifier, and a wideband Band I aerial (Ian Beckett's design, see June 1976 issue). For u.h.f. he uses a Jaybeam JBX21 array, also a system L-I converter (see February 1983 issue). The early December tropospheric opening produced excellent signals from France, Holland and Belgium.

POST A PART ELECTRONICS 236 FURTHERWICK ROAD, CANVEY ISLAND, ESSEX Telephone 0268690868 Telex 99305 ROSSER G.

TRADE COUNTER NOW OPEN
ORDERS DESPATCHED SAME DAY
ADD 60p P\&P, THEN 15\% VAT. ADD POSTAGE FOR OVERSEAS ORDERS ORDERS WITH AEROSOLS, PLEASE ADD 25p PER CAN.

UNIVERSAL PROGRAMME SELECTOR FOR VARICAP TUNING

6 way interlocked d.p. switch 100 K tuning potentiometers Top quality through hole plated pcb
Dimensions: $5^{\prime \prime}$ by $2 \frac{1}{2}^{\prime \prime}$ by $1^{\prime \prime}$ Ideal for replacement when original parts are obsolete or unobtainable
Template guide supplied for drilling of your own fascia design
Range of pre-cut and drillad fascia/ mounting kits for solected TV chassis enabling our unit to be fitted without further cutting drilling or modification
All orders despatched same
day
DIRECT REPLACEMENT FASCIA/MOUNTING KITS
Type 30-80 Replace 7 piano-key unit as fitted to Decca/Telefunken 30 and 80 chassis
Type 30-C Replaces 7 piano-key unit as fitted to Decca console using long perspex illuminated control panel
Type 100 Replaces 8 position touch tune selector (AEG SAS 660 SAS 670) as used in Decca/Telefunken 100 chassis
Type CVC8-9 Replaces 5 rectangular push button plus thumbwheel as used in ITT

UK Regd. Design No. 1006611

SEND LARGE S.A.E. FOR FREE CATALOGUE

We supply the following:
Programme Selectors, Tuners, Triplers, Transistors, Resistors, Capacitors, Integrated Circuits including European and Japanese types, Plugs, Sockets, Motors, Drive Belts, Audio and Video Connectors and MUCH, MUCH MORE.

ALL ORDERS DISPATCHED
WITHIN 24 HOURS

SELECTORE11 + VAT - FASCIA/MOUNTING KITS (each) E2 + VAT ALDERSON-JAMES LTD.
168 KINGS ROAD, HARROGATE, NORTH YORKS, HG1 5JG. TEL. 0423-60058

TELETRADERS
 Forde Road, Brunel Industrial Estate, Newton Abbot, Devon Telephone: (0626) 60154

The Best Quality Sets Available Anywhere

Philips G8 550

£35
GEC \& Pye Hybrid $£ 5$
Grundig Solid State $\quad \mathbf{£ 2 0}$
Decca Bradford $\quad \mathbf{£ 1 0}$
ITT CVC 5,8,9
Also Philips G9, G11, ITT CVC 35, 45, 50,
Thorn 9000, 9600, 9800, Bush T20.
All sets complete with excellent cabinets
Full spares back-up of tubes and panels -
send for list e.g. PL509 £1, PY500 £1 Bulk terms to other wholesalers
$\vec{\lambda} \hat{\lambda}$
THE NO. 1 WHOLESALER IN THE SOUTH

MONOLITH electronic products
BETAMAX Part No. PS3B £38.95 EX.
REPLACEMENT KIT (14 Pieces Boxed) £ 8.25 V.A.T.
PLEASE ADD 15\%. V.A.T. PLUS P. \& P. £1.50 PER ORDER
OUR FULL CATALOGUE AVAILABLE ON REQUEST.
AUOIO + VIOEO HEADS - MOTORS - PARTS
Suppliers to most U.K. Distrlbutor/Service Organizations
THE MONOLITH ELECTAONICS CO. LTO
5-7 Church Street, Creukerme, Sornersest TA1E 7HR, Englend
Telephone Crewkerne co450,74321 Terex 4E306 MONLTH G

MAIL ORDER ADVERTISING

British Code of Advertising Practice

Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requiras advertisers to fulfill orders within 28 days, unless a longer detivery period is stated. Where goods are returned undamaged within seven days, the purcheser's money must be
refunded. Please retain proof of postage/despatch, as this may be needed.

Mail Order Protection Scheme
If you order goods from Mail Order advertisements in this magazine and pay by post in advance of delivery, Television will consider you for compensation if the Advertiser should become insolvent or bankrupt, provided:
(2) You write to the Publisher of Television summarising the situation not earlier than 28 davs from the day you sent your order and not later than two months from that day.
Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of paymont is required.
We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiser has been declared bankrupt or insolvent. in this magazine not, for example, payment made in response to catalogues atc, advertisement result of answering such advertisements. Classified advertisements are excluded."

The CED Video Disc System

Derek Snelling

The RCA CED (capacitance electronic disc) video disc system was launched on the US market on March 22nd, 1981. It was said to have been the biggest product launch in business history, and was the outcome of substantial research and development expenditure by RCA over a period of many years - RCA are reputed to have invested more in their video disc system than in the development of the NTSC colour system (shadowmask tube and all). RCA's work on video disc systems started in the early sixties, and the decision to go ahead with the capacitance system was made in 1978.

Acceptance of video discs in the USA was slow to start with, though greater success has been achieved more recently following price reductions. The CED system was launched on the UK market last October, with discs manufactured by RCA and players produced by Hitachi.

Basic Principles

The information on the CED disc is carried in a Vshaped spiral groove and consists of frequency-modulated capacitance variations. These variations take the form of vertical undulations along the track. Fig. 1 shows the principle. The disc is 12 in . in diameter and is housed in a protective plastic caddy. It's removed from the caddy by the player and is never touched or removed from the caddy outside the machine. The caddy contains brushes that clean the record automatically upon insertion and removal.

The disc is conductive and is tracked by a diamond stylus (for durability) to which a metal electrode is attached. Thus the disc forms one capacitive plate and the metal electrode the other, the groove undulations producing capacitance variations of the order of $10^{-4} \mathrm{pF}$. These undulations are approximately $850 \AA$ deep (it's their frequency that varies). The electrode tip is typically $2,500 \AA$ thick and the diamond tip straddles several undulations at once - it's important to appreciate that the diamond tip is merely a carrier for the electrode and doesn't "play" the disc in the way that an audio stylus does. The plastic disc is made conductive by adding carbon to the compound from which it's pressed.

The stylus tip electrode is connected to a tuned line resonant at 890 MHz . This forms part of what is called the resonator assembly, which also includes an 896 MHz oscillator whose output is coupled to the stylus driven line. The circuit is shown in Fig. 2 and the action in Fig. 3. Q101/C105/C106/L105/C108 form the 896 MHz oscillator whose output is coupled by L103/4 to L102, the stylus driven line. The capacitance variations at the stylus tip alter the resonant frequency of this line slightly, as a result of which the position of the 896 MHz oscillator's signal shifts up and down the trailing slope of the 890 MHz response curve. The result of this is amplitude modulation of the 896 MHz carrier. Since the depth of the undulations in the groove is constant, the amplitude modulation is constant. But the rate of the amplitude modulation varies, thus producing an f.m. output.

L101 couples this amplitude modulated carrier to the peak detector diodes D101/D102. C103 filters out the
carrier and the result, at the base of the buffer transistor Q102, is an f.m. output carrying the information stored in the disc's groove.

This is fed to a preamplifier before being sent for splitting into audio, chroma, luminance and DAXI information - all the signals are f.m. An automatic fine tuning signal is taken from the preamplifier circuit to varicap diode D103 to maintain the average centre frequency, i.e. to ensure that the 896 MHz signal remains at the centre of the falling slope of the basic 890 MHz response. The detected output from the arm must now be processed.

Processing the Sound Signals

Two subcarriers, 711 kHz and 898 kHz , are used for the sound signals. A block diagram of the sound processing system is shown in Fig. 4. Filters separate the two signals, the first of which carries mono sound with a mono disc or $L+R$ (the same thing really) with a stereo disc and the second $\mathrm{L}-\mathrm{R}$ with a stereo disc. On bilingual discs or discs

Fig. 1: Cross-section showing the stylus resting on the base of the V-shaped groove. The groove undulations, which cause capacitance variations, vary in frequency.

Fig. 2: The resonant circuits and detector used to retrieve the f.m. signal from the disc.

Fig. 3: Principle of signal retrieval. The frequency of the 890 MHz resonant circuit varies with the disc capacitance variations, giving rise to an amplitude moduated carrier. The amplitude modulation varies in frequency.

Fig. 4: Block diagram of the sound processing system.
with two sound tracks the main track is at 711 kHz and the subsidiary one at 898 kHz . The bandwidth is $30-15,000 \mathrm{~Hz}$, and the signal-to-noise ratio can be improved by 20 dB by the use of CX noise reduction, which is a feature of some discs.

Video Signal Processing

The video signal processing system is shown in block diagram form in Fig. 5. A $1 \cdot 5-9 \mathrm{MHz}$ bandpass filter passes the composite chroma/luminance signal to the video f.m. detector. The bandwidth of the demodulated luminance signal is approximately 3 MHz , with the interleaved chroma signal on a 1.52 MHz subcarrier - near the centre of the luminance bandwidth. The non-linear aperture correction system is used to eliminate phase modulation of the video signal by the 711 kHz sound carrier. The technique used is to filter out the 711 kHz component, invert it and then add it back to the video signal to provide cancellation.

The dropout compensation can replace up to three lines before signal degradation becomes noticeable.

A CCD (charge-coupled device) comb filter is used to
separate the luminance and chrominance signals - this is the standard PAL delay line technique, though in solidstate form. Because of the wide bandwidth of the CCD filter the chrominance output contains low-frequency luminance information. This is separated by a 1 MHz lowpass filter and added to the luminance signal.
The 1.52 MHz chroma signal obtained from the 3 MHz low-pass filter is mixed with the output from a 5.95 MHz voltage-controlled crystal oscillator to obtain a 4.43 MHz chroma signal which is then phase altered to the PAL standard and added to the luminance signal for sending to the u.h.f. modulator. This produces an output for feeding to the TV set's aerial input socket.

A 4.43 MHz crystal oscillator and phase detector are used to control the 5.95 MHz oscillator. The phase detector's output is also used to operate the jitter servo circuit, whose purpose is to maintain a constant stylus-to-groove velocity in order to compensate for such things as warped or eccentric discs or an off centre hole. The result of such defects would otherwise be varying colour or horizontal instability of the picture. In addition, the outputs from the 4.43 MHz and 5.95 MHz oscillators are mixed to produce a 1.52 MHz clock signal for the CCD comb filter i.c.

Another output from the 3 MHz chroma low-pass filter. is the DAXI (digital auxiliary information) signal, which is recorded on lines 20 and 333 during the field blanking period. This information is used to tell the machine if the stylus is tracking correctly, whether a mono/stereo or bilingual disc is being played and also, by checking the field number, whether the stylus has kicked back one or more grooves or, in visual search, whether the stylus is kicking forwards or backwards correctly.

The Mechanics

The arm is a lateral tracking one driven by a d.c. motor. To ensure that the stylus remains centred in the groove, the position of the output signal coupling flylead is detected: if this moves off centre from the arm, due to the arm being ahead of or behind the stylus, an error signal to

Fig. 5: Block diagram of the video signal processing system.
correct the arm position is generated. Fig. 6 shows the arm servo system.

The disc rotates at 375 r.p.m. on a turntable driven by a three-phase direct-drive d.c. motor containing an eightpole rotor. The motor does not need to be locked to the mains frequency. Motor rotation is detected by a printed coil which generates a frequency proportional to the motor speed. This is used to control the motor speed three Hall elements generate the three-phase drive current.

The arm assembly with the cartridge and stylus is interesting. It contains the stylus position sensors and three coils - the kicker, lifter and jitter coils. The kicker coil makes the stylus jump one or more grooves either forwards or backwards. It works by pushing (electromagnetically) on a small permanent magnet mounted near the stylus. It's used during search, pause and to nudge the stylus if it sticks in the groove. The lifter coil is used to lower the stylus on to the disc - only the stylus is lowered on to the record, not the arm assembly, unlike an audio record player. The stylus is also lowered on to a cleaning pad each time a disc is removed from the player. Power is required to lower the stylus: in the event of power failure the stylus rises automatically to prevent possible damage to the stylus or disc. The jitter coil moves the stylus forwards or backwards slightly in the direction of the groove, momentarily altering the relative stylus-to-disc speed to compensate for wow and flutter.

Practical Points

So much for the basic player. Now for a few practical points on the Hitachi range of models. There are three machines, the VIP101P, VIP201P and VIP202P. The VIP101P provides mono sound reproduction only. Features include pause (without picture) and $\times 16$ forward search. The VIP201P and VIP202P provide mono, stereo or bilingual sound reproduction (depending on the disc) with $\times 120, \times 16$ and $\times 4$ forwards and backwards search, pause (without picture) and step (a sort of freeze frame). The VIP201P has eleven-function remote control while the VIP202P has an optional wired eleven-function remote control system.

The $\times 120$ visual search is not visual search in the same sense as with a VCR. In this mode the arm travels across the disc rapidly, the stylus being lowered at intervals to sample the picture for a few fields - a sort of peep search.

The position of the arm on the disc is indicated by an LED fitted to the end of the arm. It's viewed through a window along the front of the machine. There's a rough scale in minutes along the window, to give an idea of how much playing time has gone - the maximum playing time is 75 minutes per side. Whether side one or side two of the disc is being played is also shown on the front: this is detected by a microswitch at the rear of the machine and is necessary because the disc can be inserted in the caddy either way up.

Once the machine detects that a disc has been inserted and the caddy removed - by correct sequential operation

Fig. 6: The arm servo system.

Fig. 7: Some of the mechanical aspects of the player discussed in the text.
of the door flap microswitch and a microswitch at the rear of the machine - the disc is lowered to the playing position and the arm moves across to the start of the disc. A metal plate attached to the arm passes between the two halves of a photo-interruptor: the plate has a hole in it, the position of the hole determining the set-down point. This plate can be adjusted using a test disc.

The cartridge/stylus can easily be changed by removing a small plastic cover on the top left of the machine, unclipping the stylus cover, pulling out the old assembly and dropping in the replacement. Also housed beneath this cover is a transit screw and spacer. These must be fitted whenever the player is transported, and removed prior to its use. The arm assembly complete with coils, tuned line, oscillator and preamplifier is considered by Hitachi to be a non-serviceable item that should be replaced complete.

Apart from these components the rest of the electronics are mounted on a single large panel in the top of the machine - the top can be hinged up and locked in the vertical position for servicing. A word of caution here. If the machine is operated in this position with a disc in place, you could well drop something on the disc, ruining the disc and possibly the stylus. If it's necessary to operate the machine with the top off, remove the cartridge/stylus assembly and trick the machine into loading by operating the two microswitches and the photo-interruptor in the correct sequence.

When you press reset, the arm returns to the rest position and the disc unloads ready for removal. If the disc is not removed, it will be lowered back into the play position and rotated after a few minutes. This is done to prevent the disc warping due to heat in the machine. The disc can be unloaded by pressing reset again.

Sound and Picture Quality

What does all this technology give us by way of picture and sound? Well, the quoted bandwidth is not significantly different from that of a VCR, and having seen the picture quality I'd put it at about equal to the better VHS machines, no sharper but with perhaps slightly better noise performance. The sound is of course vastly superior, though I've not yet heard the new Panasonic machine with hi-fi, helically-recorded sound. Although the price is half that of a VCR, it doesn't of course record. Neither does it have the improvement in picture quality and the extra features available with LaserVision, though you have to pay extra for all that.

Teletopics

8 mm VIDEO

The 8 mm video system, which has been developed for use in light-weight camcorders, is to be introduced by a number of firms later this year. Several firms have released details of their plans following Kodak's worldwide announcement of its intention to enter the field with the Kodavision series 2000 video system. Kodak have also gone into the video tape market, with a comprehensive range of open-reel and cassette tapes. Kodak's tape is being produced by TDK while the camcorder and its associated equipment will be manufactured by Matsushita.

Matsushita camcorders will also be sold by General Electric (GE) in the USA, where RCA will be selling Hitachi manufactured camcorders. Sanyo have also announced their intention to enter the 8 mm camcorder market in the USA and have already exhibited prototypes. In Europe, Philips have brought forward plans to launch their VKR 85008 mm camcorder, with a possible launch date as early as June.

The Kodavision camcorders weigh about 5lb each (there are two models), are easy to carry and use, and share several features including a fast $f / 1 \cdot 2$ 6:1 power zoom lens, a $\frac{1}{3} \mathrm{in}$. Newvicon pickup tube, and automatic white balance to adjust for colour temperature variations. The two camcorders also feature fast forward and reverse, five times visual search, and an electronic viewfinder - the latter provides a miniature monochrome TV display. The review feature enables the user to replay the last four seconds of the previous recording, and both camcorders incorporate automatic exposure control. Model 2200 features manual focus, two record/playback heads and a stillframe capability. Model 2400 features an autofocus lens with manual override, three heads for jitter-free still frame and frame advance, and provision to "write" the date on the tape as it's being recorded. The 2400 also has pushbutton fade in/out control and backlight control.

A key item in the Kodavision system is the cradle, which turns the camcorder into an easy to use playback device. To play an 8 mm tape, the camcorder is inserted in the cradle which provides standard video and audio outputs. The cradle also serves the function of camcorder storage, and will charge the battery while the camcorder is in situ - the cradle can also be used to charge a separate battery to extend the equipment's recording time. In addition, the cradle is designed to include the optional

The Kodavision camcorder Model 2200.

Kodavision tuner/timer, which has 105 channel capability and offers twelve preset channel positions. The cradle is compatible with existing $\frac{1}{2} \mathrm{in}$. VCRs so that the material recorded on 8 mm tape can be transferred to $\frac{1}{2} \mathrm{in}$. tape and vice versa. Most cradle functions can be controlled by a remote control unit that comes with each cradle.

The Kodavision system is due for release in the USA this summer and in the UK this autumn. UK prices have not been decided, but on a rough conversion of the US prices announced you could expect to pay some $£ 850$ for the basic 2200 camcorder, $£ 1,000$ for the $2400, £ 120$ for the cradle and $£ 190$ for the tuner/timer.

JVC, who have also developed 8 mm equipment, maintain that the goal of compactness is easier to achieve using standard $\frac{1}{2} i n$. VHS tape. JVC's Video Movie VHS camcorder (not Victor Movie as we called it last December) is now in production and has been launched in Japan. Shipments to the USA are due to start this spring and to Europe during the summer. It uses a VHS-C E30 cassette, an ultra small drum and a new parallel loading system. The pickup tube is a $\frac{1}{2} \mathrm{in}$. Saticon.

It seems therefore that home video movie enthusiasts will soon have on offer at least two competing systems there's also Betamovie, which was first to appear. As regards price and weight, there will probably be little to choose between them.

DBS CO-OPERATION

Last month's leader discussed some of the problems of starting a UK satellite TV service for direct domestic reception. Since then, high level talks have been held at the Department of Trade with representatives from the BBC, the IBA, the Independent Television Companies Association and United Satellites with a view to saving the project from collapse. Senior government officials from both the Home Office and the DTI were present. The BBC has proposed a compromise plan under which the two broadcasting authorities would share the costs of a four-satellite system providing three TV channels. There are both legal and practical problems, which are being discussed by a tripartite working party headed by the managing director of the BBC's DBS operation Bill Cotton, the IBA's director general John Whitney and London Weekend Television's chairman Brian Tesler.

STEREO TV SOUND

The BBC's experimental stereo TV sound transmissions from the Crystal Palace transmitter have been mentioned before in this column. The outcome was that whilst a second f.m. sound carrier, as used in W. Germany, could provide a largely satisfactory stereo sound service with terrestrial TV a digitally modulated second sound carrier might prove to be a more attractive solution. The advantages of the digital approach have since been confirmed by tests carried out at the Wenvoe transmitter - this area was chosen because the nearby mountains can cause severe multipath propagation (ghosting) and it was considered important to establish that digital sound signals can be received satisfactorily under such conditions.

These tests have given very encouraging results. The effect of multipath reflections was found to be very small, the digital signal providing excellent stereo quality even in areas of extremely low signal strength where the picture was badly impaired by noise. It was also found that the additional signal passed satisfactorily through the fivestation relay chain used to feed one of the remote valleys. The conclusion is that the BBC's digital system is fully
viable. It uses a bit rate of about $700 \mathrm{kbit} / \mathrm{s}$ (sufficient for two high-quality sound signals), the phase modulated carrier being set at about -20 dB with a sound-vision carrier separation of about 6.55 MHz .

A further full scale trial from Crystal Palace on BBC-2 is planned to ensure that the system will not give rise to compatibility problems with the very wide range of monophonic TV sets in use. Discussions are being held with industry, the IBA and the Home Office to achieve an agreed UK standard, but it seems that regular stereo TV sound transmissions in the UK could be some four years away.

SKY CHANNEL

Subscribers to Radio Rentals' cable TV network at Swindon are now able to receive five hours a night of programmes from Satellite Television ple broadcast via the ECS satellite. The transmissions can be received on a 10 ft dish and the cable network operators pay Satellite Television ten pence a month per subscriber. It's expected that the service, which at present consists of mainly American programmes, will shortly be available via other pay-TV cable networks. Satellite Television's main source of income comes from advertisements carried on the transmissions, which are also taken by cable networks in Norway, Finland, Switzerland and Malta. The uplink is from the PO tower in London.

NAMES

Morphy-Richards is a well enough known brand name that's never before appeared on a TV set. There are now two Morphy-Richards 12 in . monochrome portables however, the T730 and T739. The latter in addition incorporates an LED clock with 59 -minute sleep feature. Some more brand names that might turn up on the service bench in the future. Saisho, sold by Dixons, uses Panasonic chassis; Triumph, sold by Currys, uses Toshiba chassis; Solarvox, sold by Comet, uses ITT chassis.

TRADE RESULTS

Figures for the third quarter of 1983 show CTV deliveries ahead of 1982 by 6.5 per cent. For the first time there was a fall in VCR deliveries, of 5.2 per cent, possibly reflecting the effects of the Japanese-EEC import limitation agreement. Monochrome portable deliveries increased by 23 per cent and an even greater increase in deliveries of teletext equipped sets occurred.

During the first nine months of 1983 CTV deliveries increasd by 20 per cent, with imports increasing from 31 to 35 per cent. It appears that there was a surge in imports towards the end of the year, consisting mainly of Grundig and ITT sets from W. Germany. There's been a change in the market, with imports accounting for a greater proportion of large-screen CTV deliveries than previously.

VCR NEWS

The VHS system has been given a significant boost with the announcement that leading US TV manufacturer Zenith Radio will in future be marketing VHS instead of Beta machines. Until now the VHS system has held 75 per cent of the US market.

Two keenly priced V2000 system VCRs have been released by Grundig. The 1600 is a basic, simple to operate top-loader with a suggested price of $£ 369$. The two-speed Model 2080 is able to provide up to 16 hours' recording/playback time in the half-speed mode. Features include instant record (single button operation), a go-to
facility, freeze frame with manual or auto advance, and an eight-programme capacity which can be set up to a year in advance. The suggested price is $£ 479$.

Heron Electronics have introduced a playback only VHS machine. It's manufactured by Funai and will be sold under the Ingersoll brand name at a suggested retail price of just under $£ 300$. Heron's managing director Ron Sulkin comments that with the large amount of prerecorded material now available there's a need for an inexpensive player-only machine.

The latest addition to the Ferguson range is the 3V38, a slim front-loader with a suggested price of $£ 429$. The specification is similar to the 3 V 35 ($£ 489$) but without remote control. ITT's latest Model VR3605 also retails at $£ 429$. Panasonic's latest models are the NV370 (£516.50) and the two-speed NV688 ($£ 633 \cdot 50$).

SCOPEX BACK IN PRODUCTION

Production of the Scopex Model 14D15 double-beam oscilloscope and the 14D10 model with TV delay system for line selection is now in full swing again, only a few weeks after the acquisition of Scopex assets by Bridage Scientific Instruments and the formation of the new company Scopex Electronics Ltd. Enquiries should be sent to Scopex Electronics Ltd., 63-65 High Street, Skipton, North Yorkshire BD23 1EF (0756 69511).

EXPANSION IN WALES

Matsushita (Panasonic) have announced a $£ 1 \mathrm{~m}$ investment plan for their Cardiff TV factory, where CTV production is being increased from 600 to 1,000 sets a day. About twenty per cent of the plant's output, which includes radio tuners marketed under the Technics brand name, is exported.

GEC-Hitachi are to start production of 14 and 16 in . colour sets at their Hirwaun plant. Two new production lines will be installed to produce the small-screen models. At present about a third of the UK CTV market of $3 \cdot 1$ million sets a year consists of the smaller screen models, a high proportion of which are imported.

EAST CORNWALL CATALOGUE

A new mail order/trade catalogue is available from East Cornwall Components. In addition to the usual items there's a comprehensive listing of i.c.s, multisection capacitors, test equipment and tools. A retail shop is also in operation at the mail order address - 119 High Street, Wem, Shropshire SY4 5TT (0939 32689).

HEAD CLEANING

A new head cleaning cassette for use with VHS machines has been introduced by Bib. It can be used wet or dry and incorporates a new non-abrasive spun-bonded polyester cleaning tape made to Bib's specification. The cleaning time is ten seconds and the cassette provides 35 cleanings, i.e. about four years' average use. Bib recommend regular head cleaning after 40-50 hours' playing time to remove dust and oxide particules. The new cleaner has a recommended retail price of $£ 9.98$ including VAT.

Issue 9 (December 1983) of Ferguson Feedback contains a detailed article on head cleaning. Thorn recommend cleaning by hand, using chamois leather and either isopropyl alcohol (IPA) or Isceon (MMV3601). The chamois leather should be wrapped tightly around a finger and moistened with the cleaning fluid. Then clean the heads and surrounding area by rubbing backwards and forwards across each head six or seven times (don't clean
in the vertical direction or with the heads in motion). Apply sufficient pressure for the head profile to be felt through the leather. Finally rub backwards and forwards six or seven times with dry chamois leather. Thorn comment that the main cause of poor head cleaning is the application of insufficient pressure to the head face.

MOVE TO REAR PROJECTION TV

Mitsubishi have added a 40 in ., rear-projection set, Model VS400R, to their range of projection sets on sale in the USA. The set features a wide viewing angle (120°), high picture brightness (180 foot lamberts) and a 139 -channel frequency-synthesis tuning system. A six-element glass lens is used instead of the conventional three-element plastic one. Mitsubishi officials are convinced that there will be a significant move from front-projection TV sets to rear-projection types.

Sanyo have launched a 46 in . rear projection set, Model CVP9110T, in the UK. The set features a stereo sound system delivering up to 10 W per channel and uses three 7in. tubes each with its own lens. A suggested price of $£ 2,700$ is quoted.

ITT RECEIVER-MONITORS

ITT have launched two new 14 in . colour receiver-monitors to meet the increasing demand from microcomputer
users. The basic RL2301/1 has RGBS inputs while the RL2301/M also has provision for a PAL composite video input and loop-through facilities. Both sets are equipped for off-air reception. ITT comment that the use of RGBS (RGB plus sync) inputs provides superior colour graphic displays since the video input does not have to be decoded.

DIGITAL TV TRANSMISSION

The BBC's Engineering Research Department has been carrying out tests on methods of reducing the information rate required for digital television. It is generally assumed that a basic information rate of 216 million bits per second ($216 \mathrm{Mbit} / \mathrm{s}$) is required for a TV signal consisting of separate brightness and colour components. The BBC has recently carried out a field trial using a system that reduces this rate to less $140 \mathrm{Mbit} / \mathrm{s}$ - the component signals were passed through the British Telecom $140 \mathrm{Mbit} / \mathrm{s}$ digital circuit between London and Birmingham. Two high quality stereo sound signals, using the BBC's NICAM-3 digital coding system, were also transmitted over the circuit. There was negligible loss of picture quality. During earlier experiments composite PAL signals were passed through a digital London to Birmingham circuit. The BBC's next target is a further bit rate reduction to $53 \mathrm{Mbit} / \mathrm{s}$, the eventual target being a bit rate less than $34 \mathrm{Mbit} / \mathrm{s}$.

Vintage TV: The Ferguson 841T

Vivian Capel

Thorn have for many years been the UK's leading indigenous TV manufacturer. The firm did not enter the TV field at the outset however, and the earliest model appears to have been the post-war Ferguson 841T. There were two versions, with 9 in . (MW22-7) and 12in. (MW31-7) tubes - the e.h.t.s were 5 and 6 kV respectively. They were single-channel, t.r.f. sets for reception of the Alexandra Palace transmissions. The design seems to have owed something to radar practice, with lots of EF50 valves (eleven) and a transitron oscillator as the field generator.

This was one of those models that had to be treated with respect by the service engineer, the e.h.t. being mains derived. Though the voltage was low by modern standards, it packed a hefty punch and could be lethal because of the high current that could be passed. The chassis was mains isolated however, by a single transformer that supplied all the chassis' power requirements. This had a centre-tapped h.t. secondary winding (see Fig. 1) which fed an FW4-500 full-wave rectifier. There was a 4 V filament winding for this and a separate 6 V winding for

Fig. 1: The Ferguson 84it's power supply circuit.
the parallel connected valve (plus c.r.t.) heaters. Then there was the e.h.t. winding, plus a bit for the HVR2 rectifier's filament. The arrangement of the e.h.t. rectifier circuit was a bit unusual. The rectifier was connected to the low-voltage end of the winding, with its anode returned to the h.t. line. Thus the h.t. voltage was added to that obtained from the e.h.t. winding. A string of $3.3 \mathrm{M} \Omega$ resistors was connected across the e.h.t. supply, providing a constant load to improve the e.h.t. regulation and also serving to discharge the $0.1 \mu \mathrm{~F}$ e.h.t. reservoir capacitor.

One of the reasons for the comparatively large valve complement (twenty plus c.r.t.) was the use of EF50s in the r.f. sections. These all-metal envelope valves did not have as much gain as the later r.f. pentodes that took their place. No fewer than five were used in the vision r.f. stages, the first two being common to the sound channel. A further two were used in the sound only r.f. circuits. In cases of low gain it was often necessary to replace most if not all the EF50s. They tended to suffer from loss of emission, and replacing one or two would make only marginal improvement. Another problem often encountered with this type of valve was noisy and intermittent pin contact. Fortunately in the 841 T the five vision r.f. pentodes were mounted in a row along the rear edge of the chassis, and were thus easily replaced.

An EA50 was used for vision demodulation, driving another EF50 that acted as the video amplifier (see Fig. 2). Since the c.r.t. was grid modulated, the video output at the anode of V11 was positive-going. The vision interference limiter circuit operated on a time-constant basis: large positive-going spikes caused the diode across R74 to conduct, thus short-circuiting the output. The diode used was part of an EBC33 whose triode section served as the line blocking oscillator.

An unusual feature was the use of d.c. restoration in both the video feeds, to the tube and to the sync separator. D.C. restoration in the latter path was required because the sync separator had to operate with negative-going sync pulses. This complicated the design of the sync separator quite a bit - it had to be saturated during the video part of the signal, then driven to cut-off by the sync pulses, thus producing positive-going pulses at its anode.
A.C. coupling without d.c. restoration means that the signal's d.c. conditions vary with the content of the video signal - a line with a predominantly white content will have a different mean level than one that's mainly dark, due to the different proportions of the negative- and positive-going portions of the waveform. Hence the brightness level will float and the sync pulses will move up and down. Another problem is the fact that the video amplifier must be able to accommodate larger signal excursions and be able to deliver about twice the output required with a stable d.c. level. With an EF50 used as the video amplifier, there was little gain to spare.

The use of a.c. coupling to the c.r.t.'s grid avoids the problem of tube damage in the event of failure of the video output pentode, and the inclusion of a d.c. restorer maintains the correct d.c. conditions at the grid. Many devotees in the early days maintained that grid rather than cathode modulation gave superior results, but the complications, both in the tube drive and sync separator circuits, led to the general adoption of cathode drive.

The sync separator stage used an EF50 and this was followed by a further EF50 which was used to amplify, invert and integrate the field sync pulses. Yet another EF50 was employed as the field oscillator. This was

Fig. 2: The video amplifier and sync separator circuits, with d.c. restoration in both feeds.
arranged as a transitron, with feedback between the anode and control grid and also between the screen and suppressor grids. The operation has been described before in this series. The EL33 field output valve was $R C$ coupled to a transformer driving the scan coils.

The line timebase was simple indeed in those preflyback e.h.t. days. The blocking oscillator's output drove an EL38 output pentode that operated as an amplifier rather than a switch, with simple transformer coupling to the scan coils.
The audio circuit was conventional, using an EBC33 and EL33 output pentode, but the negative feedback loop incorporated a tone control. Sound was considered important in those days!
One wonders whether there's anyone left at Thorn who can recall the 841 T . It's a far cry from the TX series!

VCR Clinic

JVC HR7700/Ferguson 3V23

The problem was no clock display. If the clock crystals on the tuner/timer board are red ones, the first step is to change them to blue ones. Other minor capacitor changes have been suggested but are not essential. In this case however these changes did no good despite the fact that the timer microcomputer i.c. was deprived of clock oscillations. The culprit was in fact the microcomputer i.c. itself.

S.B.

Sharp VC8300

It's not often that we get bounce backs, to adopt a phrase from the world of TV repair. A certain Sharp machine (VC8300) with a servo fault caused some concern however. The initial report was of a tracking fault after the machine had been in operation for a couple of hours. So it was soak tested, with the scope tied to the capstan servo. A small servo adjustment seemed to cure the problem, a fact that seemed to be confirmed by making a double check from cold the following day.
Some days later it was back with us again, this time with the complaint that the fault occurred just after switching on. Again we gave it a lengthy soak test, with the scope monitoring the capstan servo ramp and sample pulses at TP711 and TP712. This proved that long-term drift was present. The sample pulses started off high up the ramp,

Reports from Steve Beeching, T.Eng. (C.E.I.), Derek Snelling, Mike Phelan, Les Harris and Mick Dutton

then slowly moved down over a period of three-four hours. Further checks for capacitor or other component value drift proved inconclusive, so we came to the conclusion that the trouble was due to the capstan motor. A month or two later, when the customer was getting really upset, a replacement motor arrived. A further soak test confirmed that our diagnosis was correct.
S.B.

JVC HR7200/Ferguson 3V29

I'm not'sure whether this one has been covered before, but to avid VCR fault collectors, here's a beaut! This JVC HR7200 (Ferguson 3V29) machine had a replay colour fault: the colours were in horizontal bands, so they were obviously not phase locked. I did puzzle initially why the colour-killer didn't operate, then discovered that there isn't one fitted - pin 10 of IC403 is left open-circuit. The colour phase-locked loop is in IC403, which was soon eliminated. So was the 4.435571 MHz crystal as it measured correctly in the record mode. With the scope connected to certain points the colours would lock, giving normal playback colour bars. This proved that the a.p.c. loop could be locked. The question remained as to why it wouldn't do so.

There are two phase detectors in IC403, the a.p.c. and ident detectors. Both are fed with gated burst, at pins 14
and 13 respectively. The only difference is that the input to pin 14 goes via a 90° phase shift network. A scope comparison showed that the phase shift was correct, and the only discrepancy we could detect was in certain voltage readings. Pin 1 was at 5.9 V instead of 5.6 V while pin 14 was at 6.04 V instead of 6.4 V . These could be put down to tolerances. We eventually found that C462 $(15 \mathrm{pF})$, part of the 90° phase shift network in the feed to pin 14, was resistive, though of the correct capacitance value - it measured a few hundred $k \Omega$ on the AVO.

Note that the circuitry around pins 13 and 14 of IC403 is high-impedance. Thus readings here will be valid only if a $\times 10$ scope probe or a high-impedance digital voltmeter is used.
S.B.

JVC HR2650

The complaint was that when editing by either insert or audio dub the original sound was erased. Before starting on any repair work we had to make sure that the customer was doing the right thing. On this machine the camera records sound on ch. 1 or if stereo chs. 1 and 2 . The tuner records on both channels. Now when audio dubbing or insert editing it's possible to select to over record both channels or ch. 2 only. The customer complained that with the switch in the ch. 2 dub only position and then insert editing a title on to his tape all the original sound was erased, whereas the original sound on ch. 1 should have been left alone. A cross check with a stock machine confirmed that this should be so, the ch. 1 sound remaining untouched. In the customer's machine it was erased.

A tuner recording was made and a further check carried out using the audio dub facility. Ch. 2 was over recorded and ch. 1 fully erased - but a small amount of the original sound could still be heard on ch. 2! The fault? Well, the ch. 1 and ch. 2 audio erase heads had been reverse wired in production! As a result, when an audio dub was performed ch. 2 erase went to the ch. 1 erase head, thus wiping ch. 1 , and the ch. 2 record head erased and over recorded, thus explaining the residual sound that was left on ch. 2 .
S.B.

Defeat!

There are occasions when circumstances dictate a course other than investigative repair. Such an occasion arose just before Christmas. A local dealer sent around a Sony SLF1 portable which wouldn't thread up after inserting a cassette. Three microcomputer i.c.s control this function. One in particular scans the cassette detector switch and has an output for threading drive. Whilst it scanned the switch input, it didn't activate the threading output. Sony technical agreed that a replacement for this i.c. and/or one of the other two was in order, and after replacing two of them to no avail it became obvious that without any technical information on the starting routines a great deal of time would be required to sort the fault out. The dealer was not prepared to pay for this and I believe the machine went back to Sony. If any Sony engineer has sorted it out, I'd be glad to hear from him ...
S.B.

Toshiba V8600 with a Hangover

Being Christmas, I suppose it had to happen. Andy did say the customer suspected that someone had spilt white wine into the machine. The whole area around IC604 and IC602 was badly corroded. Most components had to be
removed for cleaning and the wire links had to be replaced. After a good clean up the machine was tried. The pinch solenoid didn't operate. This was traced to Q642 not providing IC602 with clock pulses (derived from the PG circuits). I wonder whether Andy reordered the foaming cleanser?
S.B.

VCR Supply Lines

The fault with a Mitsubishi HS700 (the portable machine with the built-in tuner) was that it wouldn't record. A check showed that it was working correctly so far as the E-to-E mode was concerned, but attempting a recording produced no results - not even erasure of the previous sound or picture. A point here - when dealing with a no record fault, always use a tape with a previous recording on it in order to check whether the erase circuits are working or not. This can aid diagnosis.

The fact that so much was defective, i.e. no recording, no erasure and both the sound and vision affected, led me to suspect that a voltage rail was missing - in this case the REC 9 V rail. A check showed that it started off at 9 V but over a few seconds fell to $7 \cdot 8 \mathrm{~V}$. Shorting across to the permanent 9 V , rail brought the voltage up to the correct level but didn't affect the problem in the slightest. The manual is not very well set out, as a result of which we had to spend some time trying to find the record voltage rail to the erase oscillator. Eventually a line labelled DREC 9V was found. This was at 0.2 V instead of 9 V . The problem was traced to IC 2 H 1 , which processes the sound, a replacement curing the fault. A DREC 9 V line is not found in many machines - it stands for delayed record 9 V , the purpose being to allow noise-free transitions between recordings. The sequence after record is selected is as follows:
(1) The machine laces up and REC 9 V appears.
(2) The machine winds tape back for a short period.
(3) The machine goes into the combined record/ playback mode. During this time the E-to-E mode is maintained, i.e. the machine doesn't playback the tape, the idea being to use the previously recorded control pulses while synchronising the motor speed to the incoming sync signals.
(4) The DREC 9 V line appears and the machine goes into the full record mode. With the heads synchronised to the previous picture, a noise-free transition occurs.

This fault prompted me to make a list of the various voltages found in VCRs and their purposes to help with fault diagnosis. I've used 9 V as the nominal voltage, but the rails may be at 12 V - the principle remains the same.

The basic lines are usually $18 \mathrm{~V}, 15 \mathrm{~V}, 12 \mathrm{~V}$ and 9 V . These are present all the time once the machine has been plugged in and the operate switch is on. They power such things as the clock, timer, microcomputer (usually a 5 V feed derived from one of the other rails), aerial amplifier and, in some models, the infra-red remote control receiver.

The not-PB 9 V line is present all the time during operation except during playback. It powers the tuner and i.f. strip plus associated changes to provide the E-to-E mode.

The PB 9 V line is present only during playback. It switches the signal processing circuits and the servos to the playback mode.

The REC 9V line is present only during record. In
addition to switching the signal processing and servo circuits to the record mode it switches on the bias oscillator/erase circuits.

The DREC 9 V line is present on record only, after a few seconds delay. Used for noise-free transitions between recordings.
Thus failure of the not-PB 9V line would give normal playback but no sound or picture in the E-to-E mode, and record via the video and audio input sockets only. Failure of the PB 9 V line would give normal operation except for no playback. This assumes that the relevant voltage disappears, but as regular readers will know this seldom happens. What usually occurs is that the voltage drops sufficiently to affect some parts of the circuit but not others, or enough to cause intermittent operation. Worst of all is a switching transistor that leaks, causing part of the voltage to be present all the time. This can give rise to some very obscure faults - as the machine tries to record and playback at the same time for example.
D.S.

Grundig 2×4 Super

A Grundig 2×4 Super arrived with the complaint that it chewed tapes. The machine worked all right on rewind and fast forward, though it was a bit sluggish. On record and playback however the take-up reel failed to rotate. This created a loop of tape, as a result of which the machine entered the alarm mode. We investigated without a tape in and discovered that the reel motors were deprived of power - there was only about 4 V at the emitters of the drive transistors instead of 12 V . A check back to the power supply revealed that the 2 V zener diode at the top centre was dry-jointed!

The power supply in this machine is liberally sprinkled with small safety resistors that tend to go open-circuit at the drop of a hat - R443, R453 and R485 are the favourites. With R443 (390Ω) open-circuit the machine will not switch on - the clock displays 8 s and the relay doesn't energise. This resistor is in the base circuit of transistor T443 that bypasses the relay contacts to power up the microcomputer i.c. so that the latter can give a "relay on" signal. R435 and R485 (both 100Ω) are in the 150 V and -150 V dynamic track following output stage supplies respectively - R435 will also remove the 33 V tuning supply when open-circuit. Lack of dynamic track following shows up as noise bars in fast search (like a VHS machine). Also the voltage at the brushes above the head will be $\pm 60-80 \mathrm{~V}$ instead of approximately zero volts $\pm 15 \mathrm{~V}$.
M.P.

Akai VS2

Failure to load was the problem. The tape would half load then retract, with the "breakdown" signal showing. We found that the brakes were not being released from either the take-up or the supply reel. The brakes are operated by a pin which is engaged in a fork on the underside of the mechanism, but the pin had disappeared - when the bottom cover was removed it dropped out of the bottom PCB. We had no further trouble after glueing it back in place.
M.D.

Sony SLC6

A customer phoned to say that his new VCR had already chewed up three tapes. We called and found a tape jammed inside the machine. After removing this we
inserted our own tape and found that the machine laced up correctly. When play was selected however the tape went slack and the slack sensor operated. Also the machine wouldn't go into fast forward, and in rewind the tape became very taught.
This suggested a problem with the take-up spool brake, so the machine was taken to the workshop for further examination. With the machine on the bench we inserted our dummy cassette so that we could see what was happening to the take-up wheel. There was plenty of takeup torque in play, and the brake was released correctly in rewind. Removing the cassette carriage enabled us to see what the problem was. There's a "cassette in" microswitch at the base of the cassette tray, and the wiring to this should be routed via plastic clips around the edge of the metalwork. This wire was not properly in place, and was getting trapped between the take-up wheel and the reel inside the cassette when the latter was in position. The problem didn't show with our dummy cassette because this doesn't contain tape reels.
M.D.

Ferguson 3V23

The problem was intermittent failure to eject the cassette. When the button was pressed you could hear the motor running, but there was no movement. We found that the middle cog wheel on the side of the cassette housing was quite sloppy. On removing the cassette housing we noticed that the screw which holds the spindle on which this cog wheel is mounted had worked loose: tightening the screw removed the cog wheel play and cured the eject problem.
M.D.

Sharp VC7300

The complaint was that the machine was stuck in play. Removal of the top cover revealed that the tape was loaded. When the machine was powered the tape unloaded. Play was selected, then stop: the machine remained loaded and the loading motor made a complaining noise - it was turning the wrong way, i.e. to load. I next noticed that the main solenoid did not release when the stop button was pressed. Pulling out the plunger enabled the machine to unload.
A switch which is activated by the main solenoid via a lever changes the polarity of the supply across the loading motor. Because the solenoid plunger had stuck, the switch was applying the wrong polarity supply to the loading motor. Lubricating the plunger solved the problem. This also solves the mystery about the VC8300H (VCR Clinic, November) with its thermal fuse open-circuit. Because the solenoid wouldn't pull in, the loading switch would be in the wrong position with the loading motor running in reverse.
L.H.

Bulbs

When checking ex-rental Ferguson 3V29/30 s̄eries machines in the workshop we've noticed that the cassette lamp seems to fail rather a lot. We eventually realised that it seems to happen if the machine is switched on at the mains with the operate switch in the on position. With the operate switch kept in the off position, the bulb failure rate was cut dramatically. A similar thing happens with the clock bulbs in the Toshiba V5470B. If the machine is unplugged for the first time in a couple of years to go into the workshop, the clock bulbs almost always fail: unfortunately there's no way to prevent this.

Letters

THORN TX9 CHASSIS

In the January issue TV Fault Finding feature there was mention (page 145) of chopper transistor (TR62) failure in the latest version of the Thorn TX9 chassis. My experience has been that when TR62 goes short-circuit the reason is that R 165 ($300 \mathrm{k} \Omega$) has gone high in value. This resistor forms part of a sawtooth generating network connected to pin 4 of the TDA4600 chopper control i.c., the sawtooth in turn affecting the drive to the chopper transistor. The result of R165 going high in value can also be intermittent blowing of TR62.
Brian Francis, Tech. (C.E.I.),
Plympton, Plymouth.

POOR AERIAL DESIGN

It's a sad fact that the majority of u.h.f. TV aerials installed are of the cheap (some would say cheap and nasty) variety. The average customer does not seem to be prepared to pay for the good quality aerials produced by the better known manufacturers, and I doubt whether this situation will change in the foreseeable future. There's one little thing that could be changed however, at very little cost to anyone. It would enormously improve the performance of many of these cheap aerials.

For some reason the smaller aerial manufacturers tend to make their group A arrays with a reflector that's too short and too close to the dipole. The length tends to be $260-270 \mathrm{~mm}$ when it should be 345 mm : the reflectordipole spacing is usually $70-80 \mathrm{~mm}$ when it should be 100 mm . A reflector of this sort is literally worse than useless, as it acts as a director on the lower channels.

The performance of some of these aerials at the bottom end of the channel group is disastrous. On channel 21 the polar diagram looks like a starfish: the gain drops to about 4 dB and the front-to-back ratio is $1: 1$! For vertical polarisation some aerial riggers throw the reflector away and mount the array about 200 mm from the top of the mast, thus using the mast itself as a reflector.

This situation is becoming acute as so many Channel Four transmitters use channel 21. Surely the offending manufacturers would find it in their own interests to make a small and cheap modification that would greatly diminish the quality gap between themselves and the "big boys"?
W. Wright, Wright's Aerials,

Micklebring, Nr. Rotherham.

TV FAULT REPORT

The following recent fault experiences may help some other readers. The first concerns an Hitachi P27FM 12in. monochrome portable - the one with the f.m. radio - the complaint being field roll when the set was first switched on. This could be corrected by adjusting the rear mounted hold control, but further drift would occur some minutes later. Eventually the end of the control's range would be reached. Well, field oscillator circuits are usually simple and easy to repair, so I gave the owner a ridiculously reasonable quote. On removing the set's case however I discovered that the entire field timebase is contained within a KC531C i.c. A spray with the freezer confirmed
that it was at fault, replacement curing the trouble. Unfortunately the repair was more expensive than originally envisaged. Ouch!

The Philips G8 chassis has been around for many years and rarely do I find anything that surprises me. This particular one came in for tube replacement plus a general service and set up. After carrying out the work, the h.t. control was set to minimum and the set was switched on. To my surprise the h.t. voltage at the two fuses on the power supply panel was 210 V . Increasing the control's setting increased the voltage, its stability indicating that the circuit was regulating - but at the wrong point. This sort of thing is usually caused by R1368 ($470 \mathrm{k} \Omega$), which is in series with the h.t. preset, or the feedback resistor R1372 ($390 \mathrm{k} \Omega$), but both were perfect.

The panel was removed and appeared to be an early version (the set itself was the later 550 series/BEAB/VCR compatible version), but not quite. The panel contained aspects of both versions - the panel went through several modifications. I decided to bring it up to the later standard. The h.t. preset was changed to $22 \mathrm{k} \Omega$, with $5.6 \mathrm{k} \Omega$ in parallel, and the chassis return resistor was changed to $10 \mathrm{k} \Omega$. R1384 was changed to $4.7 \mathrm{k} \Omega$ and a diode was added in parallel with the charging capacitor C1376-I used a BY207, with the anode to chassis. Some components were of the later values while others had the original values, and it seemed that the combination wouldn't do the job. Switching on with the later values fitted and the preset at minimum produced a regulated 150 V supply, with the correct 205 V when the control had been advanced to approximately mid-way.

Intermittently changing colours was the fault reported on an old GEC hybrid colour set. These receivers are now nearing the end of their useful life, but I occasionally still come across a good example. This was one such, in excellent condition throughout, with a crisp tube and polished, unmarked cabinet. The purity was appalling, but resetting this along with the convergence and grey-scale tracking produced a good picture. I switched off and on to check the operation of the degaussing circuit, and as everything appeared to be all right I left it at that. The owner had moved before the fault appeared, so I put the fault down to this.

A week later I was back. This time I switched off the blue and green guns and watched in red. This showed that the purity was continuously varying, drifting out and then back in. I've never seen a set do this before, but the circuit is simple enough, with a couple of thermistors - the usual VA8650 and a strange three-legged one with two sections. The VA8650 fell to pieces when I touched it, so I replaced it with confidence that the fault was now cured. All connections were checked, and the double thermistor had been replaced recently. Purity and convergence adjustment produced a good picture, and the red raster no longer varied.

After another week I was back again and, on removing the rear cover, saw it immediately. The double thermistor had a tiny hairline crack through the small end section. Replacing it put an end to my visits. Apparently the crack had been too small to see on previous visits, repeated thermal cycling eventually widening it.

A Philips TX 12in. monochrome portable (Model 12B711) gave croaky sound, reminiscent of crossover distortion, at low levels. At normal listening and high volume levels the output was normal and undistorted. Speaker replacement made no difference, and no transistor leakage could be measured. The TBA120AS was replaced
to make sure, but this didn't seem to have much effect. There's a modification to cure the condition, which is present with some of these portables. Change R300 from $27 \mathrm{k} \Omega$ to $18 \mathrm{k} \Omega, \mathrm{R} 311$ from 33Ω to $56 \Omega, \mathrm{R} 312$ from $2.7 \mathrm{k} \Omega$ to $3.3 \mathrm{k} \Omega$ and R 315 from $180 \mathrm{k} \Omega$ to $120 \mathrm{k} \Omega$. The modification increases the output stage quiescent current and provided a complete cure. My thanks to Philips Service for their advice.

Another common trouble with these sets is cracks in the print around the brightness/volume/contrast control potentiometers. They are usually very hard to see, but are easily found with an ohmmeter.
Stephen Leatherbarrow,
Middleton, Manchester.

KEEP AN EYE ON THE ROOF

Some four years ago I reported in these columns on some of the unexpected things that can happen during the course of servicing. One case I mentioned concerned a customer who'd installed his own u.h.f./v.h.f. aerial on the roof of the block of flats in which he lived. His reception gradually deteriorated over a period of time, and when he eventually went up on to the roof to try to discover why he found that no less than six other aerials had been fitted to his mast, all in extremely close proximity. They'd all been installed by bona fide aerial companies, but not one of them had asked for permission to install an aerial on his property. He had them all removed a bit sharpish!

The saga of this gentleman and his aerials is by no means over however. Some three months ago he decided that some streamlining of his array was due. Since the old v.h.f. aerials were no longer in use they were to be scrapped and, at the same time, it was decided to replace the existing mast with a sturdier one (a scaffold pole to be exact). Suitable reinforcement was carried out and the single u.h.f. array was mounted at the top of the pole, the space below being left clear for the future installation of a CB aerial and a v.h.f. stereo radio aerial. He then painted the complete pole with red and white stripes (barber shop style) to deter (he said) anyone from fitting anything to it in the interim period.

Eventually he gets his other aerials and up he goes to fit them. What does he see? Two lovely u.h.f. arrays smack in the middle of his mast! He traced one to a particular flat and, after speaking to the tenants, got the name of the firm who'd installed it. A fitter from the firm came round and said he'd resite it. That was on a Friday. On the following Monday our customer went up to trace the owner of the remaining aerial. He managed this and found it had been installed by the same firm. He also found that the first aerial had been resited on a lightning conductor, complete with a large lump of baton in the U of the clamp bolt to act as a spacer!

Now I'd expect this sort of thing from a cowboy outfit, but the firm concerned is a prominent member of the National Federation of Aerial Contractors... If a customer is given a quote for an aerial installation this will include all the fittings. If the aerial is then attached to someone else's mast this means that the bracket, pole, lashing wire etc. which have been paid for have not been used. In my previous communication I suggested that managers should take a greater interest in the way their firm's work is carried out. It seems that this suggestion has not been heeded.
Steve Knowles,
London N4.

next month in

- ALL ABOUT FIELD STRENGTH

A set's performance depends on the strength of the signal it receives, but how do you go about measuring this and assessing the results? There's much cause for confusion in this subject, with field strength being quoted in various ways and meters calibrated quite differently. Harold Peters explains what it's all about and how to relate and interpret the various figures - including satellite TV field strengths.

- THE RIGONDA VL100

Large numbers of these 6 in . monochrome portables were sold in the UK. Many repairers are reluctant to handle them because of the Russian markings and lack of information. Malcolm Burrell took a detailed look at the innards and tried out various transistor substitutions: notes to help others deal with these interesting sets.

WIDEBAND UHF PREAMPLIFIER

At many sites a lift in the signal fed to the set will help - the problem has become more widespread with Ch. 4 now being generally available. The important thing in most cases is low noise rather than high gain. This preamplifier, presented by Roger Bunney, uses a BFR91 transistor which is intended as a low-noise wideband device.

MORE THAN MEETS THE EYE

Full use of the senses rather than the meter can be a great help in speedy fault diagnosis. Robert Thompson tells you how to read the signs.

- TEST REPORT

In reviewing the B and K 467 .c.r.t. tester/ reactivator Eugene Trundle takes a look at c.r.t. failure mechanisms and the effects on these of c.r.t. design changes in recent years.

PLUS ALL THE REGULAR FEATURES

ORDER YOUR COPY ON THE FORM BELOW:

TO
(Name of Newsagent)
Please reserve/deliver the April issue of TELEVISION ($\mathbf{f 1}$), on sale March 21st, and continue every month until further notice.

NAME ...

ADDRESS

Servicing the Sony Model KV1400UB

David Botto

We've handled quite a few of these receivers, which are reliable, well designed and give excellent picture and sound. Just the same, you can get puzzling faults.

As with many modern sets, failure in either the power supply or the line timebase results in the dead set symptom. As the first logical step in this event is to determine in which section of the receiver the fault lies, we'll start by considering the operation of the power supply. We'll use the Sony board lettering identification system to identify sections of the chassis.

The Power Supply

The switch-mode power supply consists of a series chopper arrangement - though Sony choose to call it a choke-coupled flyback converter. The circuit is shown in Fig. 1. It's on board D, along with the line and field timebases.

The a.c. mains input is fed via the on/off switch S901, fuse F601 (3.15AT), choke T601 and the surge limiting resistor R601 ($3.9 \Omega, 10 \mathrm{~W}$) to a bridge rectifier consisting of two ERC04-06SU2 double diodes. The fuse sometimes goes open-circuit for no apparent reason, a new one restoring picture and sound. Before fitting a replacement, check whether the old one is blackened. If so, then the bridge rectifier is suspect. Note that D602's two anodes are returned to the h.t. line rather than chassis:

Q605 (2SC1942) is the chopper transistor and Q604 (2SC2230A) the driver. Q602/3 (both 2SC633A) form an astable multivibrator circuit which if left to run on its own operates at about 10 kHz . When the set is running normally, the multivibrator is triggered by pulses from the line output transformer. The frequency is thus 15.625 kHz . L603 is the reservoir inductor and C621 the h.t. filter capacitor. When Q605 switches off, the efficiency diode D606 (ERC25-06) conducts to maintain the current flow.

The control action is provided by transistor Q601 (2SA733) which senses the h.t. voltage at its base - D603 provides a stable reference at its emitter. If the h.t. voltage rises, Q601's base voltage will rise and its collector current will fall. Since the collector of Q601 is connected to the junction of R611/2 in the multivibrator circuit, the effect is to shorten the on period of Q602 and thus the on time of Q605 to compensate. The reverse occurs when the h.t. voltage falls.

Excess current protection is provided by transistors Q651/2 (2SA733 and 2SC633A respectively) which are connected together to act as a thyristor. The emitter of Q652 senses the voltage developed across R651. Excessive h.t. current will increase the negative voltage developed at this point with the result that Q651/2 will switch on, removing the drive to Q604. The circuit also provides over-voltage protection. In this event the output from D652, developed across C653, will be sufficient for D653 to conduct. Q651/2 will then switch on as before.

Dealing with a Dead Set

So there's a dead set sitting on your bench. Is the fault due to the power supply or an overload elsewhere? To
find out you'll need an 18 V d.c. supply - we always use two PP9 batteries in series, guaranteed absolutely ripple free! It's also vital - as with all Sony sets - to have a means of controlling the mains input voltage, i.e. a variac or tapped mains transformer. In addition, a $100 \mathrm{~W}, 240 \mathrm{~V}$ bulb is required.

Removing the link (see Fig. 2) right next to Q605's heatsink isolates the power supply. Connect the negative end of your 18 V supply to chassis and the positive end to the positive side of C609. Don't connect the mains supply at this stage. Connect a meter in series with the 18 V supply to measure the current drain - start on a high current range. The reading should be around 25 mA . A digital multimeter is best for all tests on the power supply.

With an oscilloscope connected via a 10:1 probe to the collector of Q602, a waveform similar to that shown in Fig. 3(a) should be seen - of about 12 V peak-to-peak. This tells you that the multivibrator is working. If the waveform is missing, disconnect the collector of Q651. If the waveform now appears, the fault is in the overload protection circuit. Check Q651/2 and capacitor C654 examine it for corrosion. Diode D651 (1S1555) can also fail.

If there's still no waveform with the collector of Q651 disconnected, it's possible that there's a fault in the error detector circuit. Check Q601, the zener diodes D607 (RD3.9E) and D603 (RD12E-B2) and capacitors C608 and C622 (also make sure they're not corroded). This leaves only the multivibrator circuit itself. We've found this to be reliable, but if necessary check $\mathrm{Q} 602 / 3$ and diode D604 (1S1555).

If the waveform at the collector of Q651 is correct, connect the scope - still via the $10: 1$ probe - to the collector of Q604 and the emitter of Q605. The waveforms shown in Fig. 3 (b) and (c) should be seen.
To avoid damage, two quick checks should be made before connecting the mains a.c. supply. First check the waveform at the collector of Q602 again, then momentarily short the anode of D653 to chassis. The waveform should disappear and won't come back until the 18 V supply has been disconnected for a minute or so. The second check is to connect the junction of R605/6 to the 18 V d.c. supply. As RV601 is adjusted the waveform will vary - in fact at one end of the control the multivibrator will stop. These checks confirm that the overload protection circuit is working and that the error detector circuit is in order.

Note that if Q605 fails, D606, Q651 and Q652 are likely to be faulty. Knowing how this power supply works is useful since similar circuits are used in other Sony sets.

Disconnect the batteries and remove the link from resistors R605/6, then connect the mains supply via the variac or tapped transformer. Monitor the waveform at the emitter of Q605 with the scope, via the $10: 1$ probe. Increase the a.c. input slowly, watching for smoke or signs of overheating. At about 40 V a.c. the scope should show a waveform of some $170-180 \mathrm{~V}$ peak to peak and the h.t. across C621 should be about 100 V . If all is well, switch off the mains input - without altering the a.c. voltage setting and connect the 100 W bulb between the h.t. line and

Fig. 1: Circuit diagram of the switch-mode power supply. The multivibrator's main time-constant network comprises R611/C610, the control transistor Q601 adjusting C610's charging time.

Fig. 2: Location of the power supply isolating link.
chassis.
Restore the a.c. input and check the waveform at the emitter of Q605 - see Fig. 3(d). As the a.c. input is increased to 150 V the h.t. line should reach $95-110 \mathrm{~V}$ depending on the setting of RV601. Slowly increase the input to the full 240 V . The h.t. voltage should remain at 105 V . If during these tests any of the waveforms don't seem to be clean, having a lot of "fuzz", replace C609 and check C606. On rare occasions C616 dries out and causes problems.

Switch off, remove the 100 W bulb and reconnect the link (Fig. 2). Switch on with the a.c. input at a low setting and gradually increase the input. At 40 V a.c. there should be a squarewave at the emitter of Q605 and at 60 V a.c. the frequency of this squarewave should increase because pulses should arrive from the line output transformer to trigger the multivibrator. If there's no change in the frequency of the waveform, find out why before increasing the a.c. input further.

Picture and sound should begin to appear when the a.c. input is about $80-90 \mathrm{~V}$. With the full 240 V a.c. mains input, an 18 V peak-to-peak line-frequency waveform

Fig. 3: Power supply check waveforms.
should be present at thermistor TH652 and at the anode of D652.

Timebase Troubles

If the line timebase is dead, check the output transistor Q503 (2SC1875) and the efficiency diode D503 (GH1F). If necessary, check the 12 V regulator transistor Q811 (2 SD 471) and the three rectifier diodes fed by the line output transformer T801. These are D811 (V09C), D802 (GH1F) and D801 (HF1), for the 12 V , first anode and 170 V supplies respectively. If all is well, apply a very low a.c. mains input and monitor the waveform at the collector of the line driver transistor Q502 (2 SC 2230 A) to see whether line drive is present. Check that it's reaching the base of Q503. Switch off as soon as line drive waveforms are seen.

Lack of line drive can be caused by failure of the line oscillator transistor Q501 (2SA677) or Q502, also the feed resistors R514 ($4 \cdot 7 \mathrm{k} \Omega, 2 \mathrm{~W}$) and R513 ($47 \mathrm{k} \Omega$, 1 W).

In earlier Sony receivers it was almost unknown for the line output transformer to fail. T801 in the KV1400UB does sometimes fail however. The only reliable test is by substitution. Note that the e.h.t. rectifier is encapsulated within the transformer. First make sure that R811 ($1 \cdot 2 \Omega$, $\frac{1}{4} \mathrm{~W}$ flammable) and the two diodes (D504/5, type SIB0102) in the centring circuit are o.k. Also examine all the small electrolytics in the line timebase for excessive leak-
age or signs of corrosion.
We've not had many problems with the field timebase. If diode D511 (1 S 1555) fails, field sync is lost. The output transistors are Q553 (2SD669A) and Q554 (2SB649A). They rarely fail. If the sides of the picture are bowed, suspect leakage or failure of the pincushion correction transistor Q581 (2SD571) and/or its emitter resistor R584 (82Ω).

The Signals Side

The audio circuit (board A) also rarely needs attention. If the sound does fail, the first thing to do is to measure the voltage at pin 6 of the intercarrier sound i.c. (IC251, type CX095C). It should be 5.4 V . If way off, check the sound mute stages on board M2 - test transistors Q182 (2SC634A) and Q181 (2SC733) for leakage, also diode D181 (1 S 1555). If the 5.4 V reading is correct, check the audio circuit. The output transistors Q252 (2SD669A) and Q253 (2SB649A) can fail. In this event check the emitter resistors R260/1 (both 33Ω, $\frac{1}{2} \mathrm{~W}$) and the driver transistor Q251 (2SC926A).

There are five i.c.s on the signals panel (board A). In addition to IC251 these are IC281 (M5135P) for a.f.c., the i.f. chip IC201 (CX177B) and the two decoder chips IC301 (CX108) and IC302 (CX109). IC301 contains the luminance amplifier, chrominance processing and reference oscillator stages (there's also an external transistor, Q305, in the oscillator circuit) while IC302 is mainly concerned with colour demodulation and matrixing. IC201 also feeds the intercarrier sound chip of course. These i.c.s are all very reliable.
A difficult fault to trace is intermittent loss of sound and picture with a peak white raster. A number of $0.0047 \mu \mathrm{~F}$
capacitors will be seen in the vicinity of IC201-C207, C208, C211, C213 and C216. Replace the lot!

In the event of colour problems, start by connecting the $10: 1$ scope probe to the junction of $\mathrm{C} 310(100 \mathrm{pF})$ and R313 ($1 \mathrm{k} \Omega$). With a colour bar input, chroma bars should be seen. It's handy to know how to disable the colour killer: this is done by applying 4 V (use one of your PP9 batteries and a $5 \mathrm{k} \Omega$ preset) to pin 24 of IC302. If there is still no colour, go straight to the oscillator transistor Q305 (2SC403C) - there should be a 4.43 MHz sinewave at its collector. If there isn't, check the transistor and the components in this area.

The colour-difference and luminance outputs from board A can be easily checked with the scope at plug A5. The luminance signal should be present at pin 1, with $\mathrm{R}-\mathrm{Y}, \mathrm{G}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ at pins 3, 4 and 5 respectively.

The RGB output transistors Q701-3 (2SC2278) are on c.r.t. base panel C. Predominance or absence of one colour can be caused by leakage or failure of one of these transistors.

If the set is stuck on one channel, first clean the touch contacts then suspect the two i.c.s (IC151/2, both type M51231P) on touch sensor panel M1. This doesn't happen often.

We've not had problems with panel S (18V regulator, a.g.c. amplifier plus i.f. preamplifiers). If the tuner should fail it's best to obtain a new one from Sony rather than trying to repair the old one. If the tuning drifts off after the set has been on for some time, change D172 ($\mu \mathrm{PC} 574 \mathrm{~J}$), the 33 V regulator on panel M 2 .

It's best to obtain all replacement parts from Sony. After carrying out any soldering on the printed boards, spray on a very thin coat of circuit varnish in order to prevent future corrosion.

TV Fault Finding

Reports from Mick Dutton, P. Hardy, M.S. Barakat and John Coombes

Grundig 3402

The customer complained that the set would sometimes not switch on from cold. He mentioned that a faint hum could be heard from the back. This model is fitted with the CUC220 chassis, with full remote control. We made the set go into the fault condition by turning it on and off over a period of hours. The customer was correct in saying that a humming noise could be heard from the back - it was coming from the chopper transformer TR651. Voltage measurements showed that all the outputs derived from this transformer were present and correct, but we noticed that the standby relay. hadn't operated. Pin 13 on the tuning panel was shorted to chassis to prove that the fault was not in the remote control circuitry. This still produced no results, so we removed the relay's cover. The problem was now clear - the relay contacts were jammed open. Careful cleaning provided a cure, but to be on the safe side we decided to fit a new relay.
M.D.

Thorn TX9 Chassis

The problem was that the picture would intermittently flicker. This seemed to be due to a fault in the tuner unit, but was difficult to prove since it was so intermittent. A new tuner unit was fitted and the set given a long soak test. After several days the fault reappeared, but once again it was hard to decide upon a specific cause. Luckily
we had another set with the same chassis in the workshop, so we tried swapping over the i.f. modules. This cured the fault on the first set, and after a time it put in an appearance on the second set. Careful examination revealed that one leg of the a.g.c. reservoir capacitor C35 $(1 \mu \mathrm{~F})$ was loose. A replacement cleared the fault. M.D.

Philips K30 Chassis

The complaint with this K30 series set was that the background colour would change intermittently. On soak test we found that the red level was varying: with the blue and green guns switched off, it was possible to watch the red level gradually drifting up and down. With the use of freezer and a hairdryer the problem was traced to D4255 (BAV21) on the RGB output panel. The diode was going leaky when warm - it's in the red channel d.c. stabilising circuit.
M.D.

Grundig CUC720 Chassis

Picture jitter was the complaint with this set: a few minutes after switching on, the picture would become very unstable both vertically and horizontally. We suspected the switch-mode power supply, but the output voltages remained stable during the fault condition. We nevertheless tried reducing the output voltage (R647), which made
the jitter less prominent. We also noted that the control didn't seem to have much range. When we removed the plastic cover from the print side of the power supply the reason for the fault was obvious. The BU208A chopper transistor's base connection had a white deposit around it, causing a dry-joint. Someone had been very generous with the heatsink compound during manufacture, and this had pushed right through the base pin connection. We had to remove the transistor and file its pins clean before a satisfactory connection could be made.
M.D.

Rank T22 Chassis

The initial problem with this set was no results. This was soon traced to the 1Ω feed resistor in the BU208 line output transistor's base circuit being open-circuit. A few days later the customer complained that the set had once again gone dead. This time the $1.8 \mathrm{k} \Omega$ feed resistor 5 R 3 in the line driver transistor's collector circuit had sprung open. We thought we might have disturbed the soldering on this resistor during the previous repair, and after resoldering it the set seemed to work all right. A few days passed, then the same thing happened again.
This time we resoldered the resistor and left the set running. After scveral hours the picture went unstable horizontally, giving an effect similar to that produced by tripler breakdown. The problem was traced to pin two of plug 4 Z 2 having a bad connection. This pin makes the chassis connection between the line output and the scan drive panels.
M.D.

ITT 1611

This set, fitted with the ITT80 $\left(90^{\circ}\right)$ chassis, would intermittently go dead or fail to switch on from cold. We found that in the fault condition the mains supply was not present at the mains panel. After removing the remote control receiver assembly we found that the mains input was present at the relay-operated on/off switch but one side of this was open-circuit. Stripping the unit down and cleaning the contacts provided a complete cure.
M.D.

Tatung 120 Series Chassis

Loss of one colour is quite a common fault on these sets. Swapping over the RGB leads at the tube base will eliminate the decoder of suspicion. The RGB output stage transistors on the tube base panel may then need to be checked as appropriate, but the cause of the trouble is more often the feedback resistors R226 (red channel), R244 (green) and R251 (blue). They are $100 \mathrm{k} \Omega$ metal film resistors with a 2% tolerance rating, but tend to increase in value to something like $2 \mathrm{M} \Omega$.

In the event of field collapse, check the supply to the TDA1170 field timebase chip - there should be 23 V at pin 2. If this is missing, check rectifier diode D404 (BA159) and the surge limiting resistor R434 (10) in the line output stage. One or other is likely to be open-circuit. If there's a short-circuit in the i.c., R434 will burn and go open-circuit. This resistor is a metal film safety component (fusible) and must be replaced with the same type. J.C.

Thorn 1690 Chassis

The complaint with this set was a common enough one - a severe hum bar which also upset the field sync. The l.t. rail
was slightly low at 10.5 V , and adjustment to 11.3 V only made matters worse. The mains rectifier diodes W8/9 were changed, then the reservoir capacitor C 70 and the series regulator transistor VT10, but the fault persisted. The error amplifier transistor VT13 appeared to be sensitive to freezer spray so a replacement was fitted. Still no difference. The zener diode W5 was then changed, apparently clearing the fault. The l.t. rail was low at 10 V however, and when reset to 11 V the hum bar reappeared.

A scope was then used to check the ripple at the emitter of the series regulator transistor. It was higher than expected at about 4 V peak-to-peak, and of 20 msec duration instead of 10 msec . This revealed that the rectifier circuit was operating in the half-wave mode, and a quick check at the anodes of the two rectifier diodes confirmed that one of them was receiving no current from the transformer. A meter then showed that one half of the secondary winding was open-circuit - it had been poorly soldered at a tag. A clean up and some fresh solder restored normal operation.
P.H.

Bush TV350

This set came in with a faulty picture - going negative. On checking we found that the fault was in the a.g.c. circuit. The set worked o.k. with a weak signal, but with a strong signal overloading was seen. Checks on the transistors, diodes and capacitors in the a.g.c. circuit showed that they were all in order, but there was no gating pulse from the line output transformer. A resistance check showed that the pulse winding was open-circuit. Apparently the transformer is no longer available - from Mastercare anyway - so we decided to add a few turns to the existing transformer. About seven-eight turns of " 3000 " line oscillator coil wire were used, connected to terminals 2 and 3 of the transformer. As a safety measure, insulating tape was used before and after the winding. When the set was switched on it was found to be working normally. Note that if the winding is in antiphase the field locking is difficult - in this case reverse the connections of the new winding to pins 2 and 3.
M.S.B.

ITT CVC20 Chassis

In the event of excessive width, check whether C72 $(4 \cdot 7 \mu \mathrm{~F})$ is short-circuit then if necessary check the EW modulator diodes D23 (MR854) and D24 (BYX71-350) by substitution.
J.C.

Amstrad CTV2000

This set uses a chopper power supply with the control circuit and the chopper transistor in a single chip, IC502 (type STR451). In the event of no sound or picture, check for 103 V output at pin 2 . If this voltage is present, check the voltage at the collector of the line output transistor Q705 (2SD904). If correct at 102 V , check back to the collector of the driver transistor Q704 (2SC1756) where a reading of about 75 V should be obtained. If this voltage is absent the feed resistor $\mathrm{R} 726(1 \mathrm{k} \Omega, 1 \mathrm{~W})$ is probably opencircuit.
J.C.

Thorn 9000 Chassis

In the event of tripping with a loud hum, check for dryjoints or open-circuit print at the mains rectifier's reservoir capacitor C702 $(400 \mu \mathrm{~F})$.
J.C.

VCR Servicing

Part 26
Mike Phelan

The 3V24 uses dual-loop servos, like the 3V23, but in this case the phase control loops are both contained in an HA11711 i.c., as in the 3V16 mechanically controlled machine which we discussed earlier in this series. The drum motor is a direct drive, Hall effect type, also as in the 3V23.

Servo System on Record

Fig. 117 shows the basic drum and capstan servo arrangements in the record mode. Briefly, the drum servo is locked to the off-air field sync pulses after division by two. This is done by comparing the phase of the 25 Hz pulses with that of a trapezium waveform derived from pulses obtained from a pick-up head associated with the drum motor. The divided-by-two field sync output also provides the feed to the control head. The $1,500 \mathrm{~Hz}$ FG (frequency gear) signal produced by the drum motor assembly is converted to a control voltage for the speed control loop. The capstan servo is controlled by a 32.768 k Hz crystal oscillator whose output is divided down to 21 Hz and then converted to a trapezium. This is compared to the 126 Hz FG signal after division by six. The FG signal also operates the capstan speed control loop.

Servo System on Playback

On playback (see Fig. 118) the crystal oscillator provides a reference signal for the phase-control loops in both servos. It's divided down to 25 Hz (not 21 Hz this time). In the drum servo it's used to gate the sample trapezoid obtained from the feedback pulses provided by the pickup head. In the capstan servo the divided-down output from the oscillator is converted to a trapezoid which is gated by the pulse output from the control head. There are also shuttle search, still frame and (by remote control only) slow-motion facilities. The speed control loops operate in the same way in both the playback and the record modes.

The Drum Servo

Fig. 119 shows the drum servo in greater detail. We'll look at the drum motor drive amplifier later. Suffice it to say for now that it has a forward and a reverse input (the latter is used for braking - the head never goes backwards!), also a control input, switched by transistor X6, so that the motor is stopped in fast forward/rewind/stop. As in the 3 V 23 , the forward and reverse inputs are driven by two operational amplifiers so that the phase and speed control voltages can be added. When X6 is on, the two control lines are grounded via the isolating diodes D8 and D9 and the motor stops. Transistor X5 is included to ensure that only one control line goes high at one time otherwise the motor drive amplifier would be damaged. A similar arrangement was used in the 3 V 23 .
The speed control loop is mostly contained in IC3 (type VC1029). The $1,500 \mathrm{~Hz}$ FG input is amplified to approximately 1 V peak-to-peak. It emerges at pin 3 and is fed
back in at pin 4. It's then squared and converted to a sawtooth whose slope is constant, determined by the setting of the drum free-running speed control R13. If the drum speed decreases, the average ramp voltage falls. This is integrated within the i.c. to provide a d.c. voltage, and is also inverted to produce a rising output to speed up the motor. Note that with this type of system if a decrease in speed is called for the forward output to the motor drive amplifier goes low and the reverse output goes high, braking the motor until the correct speed is reached.
The phase control loop is the same as that in the 3V16, so we'll not go into detail. The network connected to pin 10 of CC 1 should by now be familiar. R1 is the customer's tracking control which gives $\pm 10 \mathrm{msec}$ phase shift (equivalent to a quarter revolution of the head drum) each side of the mean point set by R2 and the linear position of the control head. The latter is adjusted with an alignment tape while R2 is adjusted on the machine's own recording. D1 conducts on record, shorting out R1 and R2. This reduces the monostable multivibrator's time-constant, which is still adjustable by R4 to set the record head switching point. IC1 also contains the capstan servo, which is why the oscillator's output is divided down to 21 Hz on record.

Fig. 117: Block diagram of the record servo system.

Fig. 118: Block diagram of the playback servo system.

Fig. 119: Main features of the drum servo.

Pin 8 of IC2 is fed with a 4.6 V reference voltage, this being approximately the correct value for the drum to free run at the correct speed. C24 and C25 form a timeconstant to maintain this voltage against short-term variations. Pin 6 of IC2 is low in record and playback (switch open) while pin 12 is high (switch closed), thus enabling the phase control loop. If the sync pulses are lost during record, sync detector X4 drives pin 6 high to maintain the drum speed and prevent hunting. Pin 12 goes low in shuttle search (search fast forward and search rewind), opening the phase control loop: either pin 5 or pin 13 goes high, connecting the appropriate presets R26/R29. These are set to give the correct drum speeds (1,560 or 1,425 r.p.m.) to maintain the correct number of lines per field in the shuttle search modes. In stop, fast forward and rewind pin 6 goes high so that C24/5 are charged to the reference voltage to give the minimum lock-up time when record or playback is selected.
As in the 3V23, a "drum vibration" signal is fed to pin 5 of IC4 in slow motion to correct the sideways motion of the picture. This is necessary because the different writing speeds when the tape is alternately moving and still would cause a variation which has to be corrected. For this purpose a waveform obtained from the flip-flop in the slow-still i.c. is added to the loop error voltage.

Drum Motor Drive

Fig. 120 shows the drum motor drive amplifier circuit. As mentioned in Part 24, the resistors on this panel are of the chip type to conserve space. The motor has two sets of stator coils and a permanently magnetized rotor. Each coil is driven by a six-transistor bridge circuit. There are two Hall effect sensors (HG1 and HG2) which are switched on

Fig. 120: The drum motor drive amplifier circuit.

Fig. 121: Basic construction of the drum motor.
by the rotor magnets, also two control amplifiers (X1 and X 2) and a balance ciruit (X27). Only one bridge circuit is shown in Fig. 120 - the bridge circuit for stator coil 2 is identical.

As the motor rotates, HG1 produces two antiphase sinewave outputs that switch X6 and X8 on alternately. When X 8 is on, $\mathrm{X} 14, \mathrm{X} 19$ and X 22 are on: when X 6 is on X15, X18 and X23 are on. Thus the current through stator coil 1 is reversed smoothly as the motor rotates.

To increase the motor speed, X2's base current is increased. Its collector voltage falls, thus increasing the conduction of X6 and X8 (and the corresponding transistors in the stator coil 2 circuit). The output transistors X14/15/18/19 in turn conduct more heavily and the motor speeds up. To provide braking, X1 turns on and X2 off. X5 and X7 then turn on. These are connected in the same way as X6 and X8 but with reversed base connections to the Hall effect i.c. As a result, the rotating stator field reverses, and so would the motor if the process continued, but the servo action prevents this - "reverse" is just used to slow the motor.

The 0.68Ω resistor R 34 provides a convenient test point for scoping the motor current and also a slight amount of negative feedback as the earth return current for both
bridges passes through it.
This leaves the dual transistor X27 with its common emitter connection - it's a long-tailed pair. The Hall effect i.c.s are fed with approximately 5 V via R23 and R24, the output sinewaves sitting on about 4 V . Because the rotor pole fluxes are not necessarily equal, the two Hall effect i.c.s can give markedly different outputs. This would produce a rhythmic speeding up and slowing down of the head during each rotation - and bent verticals on the picture. To prevent this, the outputs from each Hall i.c. are fed to the bases of X27. As the outputs are in antiphase they cancel, leaving an average d.c. level which is what we need to monitor. If the d.c. tends to rise, the relevant half of X27 will turn on harder, reducing the supply to the i.c. Because of the common emitter resistor R31, an increase in the current flowing through one half of X27 will reduce the current flowing through the other half. This reduces the supply to the other i.c. and increases the output level from it. This balancing system ensures that the outputs remain the same. In practice the correction voltages are in the form of 25 Hz sinewaves, most of the errors coming from magnetic imbalance of the rotors.

Before we leave the drum servo, a few words on the construction of the motor (see Fig. 121). The lower drum assembly, including the motor centre, is a finely machined alloy casting containing the two ballraces for the spindle. Under this is the printed FG coil on a printed board which also carries the Hall effect i.c.s, disposed at 90°. The plastic encapsulated stator coils are mounted vertically on this. The assembly is covered by the cylindrical rotor, which is a steel pressing and also acts as a flywheel. The six-pole permanent magnet, of cyclindrical form, is inside the rotor, with the 60 -pole annular FG magnet on its upper end. The pick-up magnets (one N pole, one S pole) are mounted externally on the rotor, the pick-up head being mounted on the chassis. A word of warning - the ballraces are preloaded on assembly: don't dismantle the unit, as this preload is difficult to achieve on reassembly.

Next month we'll look at the capstan and reel servos.

The Card Game is Over

Les Lawry-Johns

Some time back I mentioned the card game we played at the Call Girl at lunchtime on Sunday. Honey Bunch's partner was Sean (John). For a long time Sean suffered from a bad heart and a damaged leg. Recently his leg got much worse and he was taken to hospital. He was found to have lung trouble and didn't survive long after an operation. H.B. took it upon herself to arrange the burial and all the other things that have to be done when there are no relatives to handle them. It's now over and done with, but we are left puzzled by the vacuum that Sean left behind him. No papers, no letters, nothing. He didn't talk much, and when he did he talked so softly that few heard all he said. We know that he had been resident in the Waterford or Wexford area and that he had served in the police force there for some ten years. We also know that the magazine has a number of readers in that area. He spoke of his father, brother and dog. Perhaps someone there knows a little more about John Joseph O'Leary? If so, we should like to hear from them. He was well known and liked here.

Testing Ultrasonic Handsets

Someone brought in a remote control handset that wasn't working. I checked it over, resoldered several suspect joints and fitted a new battery. I then realised that I didn't have a suitable set to check it on. All our new sets have infra-red remote control. The cat (Spock) was asleep on top of one of these sets. I pointed the unit at her and pushed the button. Her ears flicked. I waited a while then tried again, with the same result. This world shaking scientific test was carried out several times. We wrote: handset repaired and subjected to repeated tests on suitable receiver.

The Philips G11

The G11 can be a bit of a pain at times. One pained me the other day. A white line across the screen testified that all was not well with the field timebase circuit or the supply to it. Normally the TDA2600 field timebase chip goes short-circuit internally and blows the 800 mA fuse on the line output panel. So, finding the fuse blown, I removed the heatsink on the TDA2600 and fitted a new chip. I then checked for shorts and fitted a new fuse. Switch on and pop goes the fuse.

I checked again for shorts. None. So I removed the chip, replaced the fuse and tried again without fitting a TDA2600. The fuse held. Fit another TDA2600. Pop. Conclusion: the i.c. was in order, the short occurring only when it came into operation. I looked at the circuit diagram and tried this, that and the other. It took this idiot some time to find that one of the two parallel-connected $1,000 \mu \mathrm{~F}$ output coupling electrolytics was dead short. I should have found it in the first place.

Miss Spray

Miss Spray came in to tell me that her Pye 725 was playing up - the colours were constantly changing. We immediately diagnosed a faulty RGB output stage thick-
film resistor unit, and this proved to be correct. However... She had these two little dogs with her and they immediately caught the smell of Ben. They then tried to cover every vestige of such smell as best they could. After telling me her tale of woe she noticed what was going on. "You naughty boys" she snapped, "sorry Lorry".

I smiled weakly. Thank heavens they were small dogs. It took me about an hour to remove all traces of their visit.

Mrs Plunky's G8

Mrs Plunky phoned to say that her Philips TV (G8) had suddenly lost height. As she was on her own she couldn't bring it in. Not wishing to be away too long, I grabbed a G8 timebase panel and the rest of the boxes and sped to her house. I took in only the toolbox and the panel. She showed me the picture, and although the height was indeed lacking there was also a nasty curve inwards at the right-hand side. I decided against the panel and nipped out for the spares box. Removing the rear cover, I held a mirror to the front of the h.t. reservoir capacitor: there was severe deterioration, so out it came. Unfortunately I'd forgotten to put a $600 \mu \mathrm{~F}, 300 \mathrm{~V}$ electrolytic in the box. I'd several of the $470 \mu \mathrm{~F}$ type for the G11 and one $200+300 \mu \mathrm{~F}$ 350 V electrolytic can (Pye hybrid type). The latter was too long to fit in the original position, but it stood up nicely and the clip could be fitted to keep it there. The two positive tags were moved together, soldered to the red lead, then black to the negative tag and all was well. A nice picture with full height and width.
"Who's a clever boy then?" I squawked. "Who's the best boy in the world?" Unknown to me however Mrs Plunky had returned and was standing behind me. She was giving me an odd look.
"Do you always sound like a parrot?" she queried.
"Er, well. It't not so much a matter of parrots. My wife is trying to teach this young cockatiel to speak and it's sort of catching."
"She seems to be teaching it to be rather conceited" sniffed Mrs Plunky. "Do I owe you anything for this quick little job?"

Oh dear. No one seems to appreciate me any longer.

Round the Room Four Times

We get our share of strange tales. This young couple struggled in with their Ferguson 9600. The young man started the tale, which was eagerly taken up by the girl.
"The set goes all right for some time and then the picture goes funny" said he. "And we have to unplug it, wheel it round the room four times, then it's all right for the rest of the evening" said she. I looked at the set for some time, then asked the key question. "Clockwise or anticlockwise?"

She was struck dumb for once. "Clockwise" said he after a pause.

I turned the set up and, with the rear cover off, looked for a dry-joint under the centre section. "It curves in at the sides" he said helpfully. So I concentrated on the EW correction circuit and found one of the modulator diodes loose in its solder at one end. A quick dab of the iron with
the help of some fresh solder completed the job. When the set was turned the right way up the picture was slightly impure at one side - well, would you like being stood on end?
"Now listen" I said, with as straight a face as I could manage. "When you get back, wheel the set around the room four times anticlockwise. To unwind it, see?"

The girl nodded. The young man got the message but went along with the leg-pull. "Magnetism of the earth" he said.
"Exactly, and good luck to you both."
"When are you going to repair the set?" asked the girl.
"Already done dear. It had a cold and needed warming up..."

DX Signal Detector/Alarm

The circuit described in this article is capable of detecting very weak TV signals and providing an audible indication that a signal is present. It was developed primarily for use with rapidly changing sporadic E propagation. The basic idea is shown in Fig. 1. The video signal itself is used to provide the sound, giving an immediate indication of signal-to-noise ratio and interference. The filter section detects the $15,625 \mathrm{~Hz}$ line frequency component of the signal, producing a switching voltage to control the video feed to the audio amplifier. In use, the channel being monitored must initially be clear of 625 -line signals - the presence of some 405 -line information will not upset the circuit's operation. Two phase-locked loops are arranged as a narrow-band filter to generate the switching voltage. System M, 525 -line signals (line frequency $15,750 \mathrm{~Hz}$) are also detected.

Circuit Description

Fig. 2 shows the circuit. For the phase-locked loops, two TDA2591 (alternatives TDA2590 or TDA2593) i.c.s are used. These are fairly complex i.c.s intended for use as the sync separator and line generator sections of a TV receiver. Not all the internal circuitry is used. The sections that are used are shown in block diagram form in Fig. 3. These are the sync separator, oscillator and phase detector, i.e. the phase-locked loop, the coincidence detector whose output varies the gating of one input to the phase detector, and the pulse generator and output stages. Use is also made of the fact that the voltage at pin 4 can be employed to switch off the output at pin 3, while the burst gating/blanking pulse output at pin 7 is used for setting up.

It might at first sight appear that the output from the coincidence detector, at pin 11, could be used to indicate the presence of a signal without any further complication. The output here is similar whether the input consists of noise or a strong locked signal however. Instead, the two TDA2591s are run with slight frequency offsets: when a signal is present, an output is obtained once both circuits have locked in. The principle is shown in Fig. 4.

A negative-going video input should be used, though reduced performance will still be obtained with a positivegoing input. The video input is first filtered by R1 and C1 to reduce the noise bandwidth. As there's no need to worry about picture cogging, more filtering than usual is

Fig. 1: Principle of the DX signal detector/alarm.

G.R. Exeter

employed. This filtering also means that there's no need to make use of the noise-cancelling circuits within the i.c.s. The video signal is then buffered by Tr1 and fed via C2 and C8 to the sync separators in the i.c.s and via R23 and C 16 to a convenient input for the TBA120S i.c.

The external oscillator capacitors are connected to pin 14 of the two TDA2591 i.c.s while pin 15 is used to set the frequency. High quality components should be used here in the interests of long-term frequency stability. The phase detector output at pin 13 is filtered and fed back to pin 15.

The output obtained at pin 3 of IC1 is applied to pin 4 of IC2 so that the latter produces an output only when pin

Components List

Resistors:	Capacitors	
R1 1k	C1 1 n5	ceramic
R2 4k7	C2 0.47	polyester
R3 1M8	C3 0.1	polyester
R4 1k2	C4 4.7	63 V axial electro.
R5 82k	C5 10n	polyester
R6 12k	C6 4n7	polystyrene
R7 100k	C7 47	25 V axial electro.
R8 2k7	$\begin{array}{ll}\text { C8 } & 0.47\end{array}$	polyester
R9 2k7	C9 0.1	polyester
R10 108	C10 4.7	63 V axial electro.
R11 1M8	C11 10n	polyester
R12 1k2	C12 4n7	polystyrene
R13 82k	C13 47	25 V axial electro.
R14 12k	C14 47	10 V axial electro.
R15 100k	C15 47	25 V axial electro.
R16 108	C16 0.1	polyester
R17 1k	C17 1	63 V axial electro.
R18 10k	C18 0.1	polyester
R19 2k2	C19 in	ceramic
R20 100	C20 100	25 V axial electro.
R21 1k2	C21 0.1	polyester
R22 820Ω	C22 47	25 V axial electro.
R23 100k		
R24 10k		
R25 100k		
R26 10』		
R27 10,		
All $\frac{1}{4}$ W, 5\%		
Miscellaneous:		
D1	1N4148	
Tr1, 2	BC252B or equivalent	
IC1, 2	TDA2591	
IC3	TBA120S	
IC4	LM380	
RV1, 2	47k sub. min. horizontal preset 10 k 15 mm min. PCB mounting	
RV3		
Small speaker		

Fig. 2: Circuit diagram.

Fig. 3: Block diagram of the sections of the i.c.s used.

Fig. 4: Principle of the PLL narrow-band filter.

3 of each i.c. is high (with pin 4 at half the supply voltage, there's no output at pin 3). This output is integrated and buffered by $\operatorname{Tr} 2$, producing a control voltage which is typically less than 2 V with no signal and $3-5 \mathrm{~V}$ when a signal is present. This is an on/off output, though noise and phase jitter make the control voltage appear to
change more linearly.
The TBA120S is used to provide the switching action, the output from $\operatorname{Tr} 2$ being fed to pin 5 - in normal use, the d.c. volume control is connected to this pin. The i.c. smooths out the on/off transitions and avoids a jarring crash when a signal is detected. Another advantage of the TBA120S is the 70 dB attenuation possible, ensuring that there is no stray low-level output from the speaker.

The switched video output appears at pin 8 of the TBA120S and is then fed via a volume control potentiometer to pin 2 of a simple audio amplifier i.c. This in turn drives the speaker.

Construction

The prototype was constructed on a PCB (see Figs. 5 and 6) and has given satisfactory operation for many months. The following points should be noted however.

Fig. 5: Component layout.

Fig. 6: Track pattern, scale 1:1.

Fig. 7. Adjustment displays.

First, in all systems using two oscillators at the same frequency there's a tendency for them to lock together if the earthing and supply decoupling are inadequate. A small amount of coupling was present with the prototype when the input was grounded, but this was sufficient for only a few Hz of common lock-in range and didn't upset the setting-up procedure.

Secondly the input is very sensitive to 15 kHz signals. If
it's not connected directly to a low-impedance source of video in the i.f. strip, it should be screened from any nearby timebase radiation. Timebase currents should be kept separate from the receiving system.

Thirdly the TBA120S's volume control characteristic has a fairly wide spread. The values of the pot-down resistors linked to pin 5 may require optimisation therefore. The device used should have internal bias resistors connected to pins 7 and 9 . All devices examined, other than ITT ones, appeared to have these: the ITT i.c.s rely on the presence of a quadrature coil to provide d.c. bias at pin 9, a difference that doesn't show when the i.c. is used as an f.m. detector.
A miniature 8Ω speaker was used, with R27 included to restrict the maximum power. Any small speaker can be used. A 12 V regulated supply capable of supplying 140 mA is required. If not already available in the set, one can be built using any of the popular i.c. regulator circuits.

Alignment, Testing and Use

To set up the system, ground the input and loosely couple pin 7 of IC1 (11V peak-to-peak burst gating/ blanking pulse output) via suitable attenuating resistors to the video channel of a system locked to a standard broadcast signal. Adjust RV1 for an offset of approxi-
mately 50 Hz (see Fig. 7). This, as shown, can be judged by the slope of the pulse output displayed on the screen. Repeat this step for IC2, setting the offset in the opposite direction. If available, a frequency counter can be used, adjusting for $15,625 \pm 50 \mathrm{~Hz}$. If the frequency difference is too large, IC1 and/or IC2 may not be able to pull in: if too small there may be false locking problems. The prototype worked well with 50 Hz and 100 Hz offsets. Pin 7 is used as the setting-up monitoring point rather than pin 3 as there will always be an output at pin 7 of IC2.

The unit should now be working. If there are problems, a further test can be made at the emitter of Tr 2 as video signals are applied and removed. The voltage here should vary from below 2 V to greater than 3 V . The audio control stages can be tested by varying the voltage at the base of Tr 2 between 0 V and 4 V (volume control midway) with an input signal present. The audio output should be present at 4 V .
The total supply current with no audio output should be
about 100 mA , and without IC 1 and IC 2 about 35 mA .
When two strong signals are received simultaneously, it's possible that IC1 may lock to one and IC2 to the other, giving a lock-out condition. Usually however a warning of improving conditions will already have been given, so the condition should not be troublesome.

As it stands the unit is capable of monitoring one channel continuously. To cover more channels, either more receiver systems and detectors are required or alternatively the tuner could be stepped through several preset channels at a rate slow enough for the detector to respond, say three-four seconds per channel. A method of doing this was described in the January issue. The system response time is set by the filtering at pin 3 of IC2, and is sufficiently fast to give a response with the stronger meteor-scatter signals.

Finally, a word of warning. Some Russian transmissions start at 4 a.m. our time. I can testify that SpE reception does occur at this time!

A Question of Black Level

Malcolm Burrell

Black level is quite a useful test signal: it's also useful for video purposes. When making a programme, presentation comes a close second to the actual content. Adding a little black level between programme segments improves the editing, and a minute of black at the start of the tape, where most of the wear occurs, removes picture dropouts here. Thus when the cassette is inserted dropout effects should clear before the programme begins. In addition, rolling noise bars at the start are not seen. Tape noise and dropouts tend to be more easily seen on a plain blank raster, enabling the tape quality to be more easily assessed.

Black level can be obtained in several ways. One source is a camera with the lens capped. Another is a broadcast transmission, though you will be lucky to find a transmitter broadcasting black when you want it - the days are passed when transmitter line-up consisted of perhaps an hour of black-level and tone signal. Yet another source is a workshop pattern generator. Some don't give true black level without modification, so you might have to make do with a red or blue raster with the colour removed - some VCRs have a monochrome/colour switch.

Black Level Generator

In the interests of convenience however I decided to make use of a Ferranti ZNA234 chip mounted in a compact case. This is basically a pattern generator i.c. that also provides fully interlaced sync pulses. It might seem a little wasteful, but only the mixed sync output is used. The 5 V supply required is obtained from a battery via a 78 M 05 UC stabilizer - the chip likes about 135 mA , which is more than mini-regulators can handle. The prototype uses a $2 \cdot 5 \mathrm{MHz}$ crystal, though this can be replaced with a single fixed capacitor of about 15 pF if you're not too concerned about stability.

The mixed sync output from the ZiNA234 drives a couple of gates in a TTL chip. The gate outputs are linked together via 27Ω resistors to give a 75Ω output. Connect the signal to the VCR via a short screened lead terminated
with a u.h.f., BNC or phono plug as required. You can thus record black level at any desired point by connecting the output to the video input socket and switching the machine to "aux" or "camera".

The unit can be easily constructed on Veroboard and accommodated in a small Vero box near the machine. Battery life will not be very long, but for short periods of use this is not very important. An LED indicator is useful next to the on/off switch.

You can't fade to black of course when using this blacklevel generator - it's much more of a cut to black level. Suppose however that you wanted to keep a selection of news items. You could judge the point at which the first is faded down, then add your black level for anything from three to ten seconds. You then edit in the next item as it is faded up.

This black-level facility is particularly useful with a VCR that doesn't have back-wind or insert-edit facilities, since most of the disturbance that arises will occur during black and thus be much less objectionable. It also makes a much cleaner distinction between the different items on the tape. The ZNA234 costs about $£ 8 \cdot 50$, so the total cost of construction need not be more than $£ 12$ or so. If you want to use the chip's other patterns, refer to the TV pattern generator article in the October 1981 issue.

Overseas readers with 525 -line signals can use this chip by connecting pin 2 to chassis instead of to 5 V and employing a $2 \cdot 52 \mathrm{MHz}$ crystal.

Fig. 1: Black level generator circuit.

Requests for advice in dealing with servicing problems must be accompanied by a $£ 1.00$ postal order (made out to IPC Magazines Ltd.), the query coupon on page 271 and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

FERGUSON 3V00

When playing back a recording the picture continuously moves from left to right by about three eights of an inch. The fault is more noticeable when the picture subject is stationary, and doesn't occur with prerecorded tapes.
It seems that the head speed is varying on record only. If the variation is erratic and random, suspect a dirty record/playback switch. This is the longer one of the two slide switches on the left-hand audio/servo board. Try cleaning it first. If the hunting is rhythmic and regular, the two head servo presets (discriminator and drum sample) probably need adjustment. Failing this the drum motor may be defective - check the ripple as described in the manual.

SABA F CHASSIS

There is slight cramping, about a quarter of an inch deep, across the centre of the picture. It's only apparent when the camera shot is moving up or down and when the credits roll.
This can be an awkward problem and is due to nonlinearity in the field oscillator circuit. Check by substitution capacitors C691 ($0 \cdot 1 \mu \mathrm{~F}$), C692 $(0.0022 \mu \mathrm{~F})$ and C693 $(0.022 \mu \mathrm{~F})$. They go slightly leaky and for some reason cause distortion at the centre of the field sawtooth waveform at pin 1 (triode anode) of the PCL805.

GEC HYBRID COLOUR CHASSIS

The flywheel sync diodes used in this chassis share a common encapsulation, but the FSY41A doesn't seem to be available any more. Any ideas for substitutes?
We've successfully used a pair of 1N914 or ITT2002 diodes in this position. A pair of 1N4148 or BY206 diodes should work just as well.

RANK A823A CHASSIS

The line output transistors have been replaced and I now want to balance the line output stage (6L4/5). It seems however that the balancing network has been removed. How do I monitor the adjustment?

6R6 and 6C5 were omitted in later production. To balance the stage, adjust the coils for minimum picture width: a "null" should be found, and this corresponds with correct balance.

ITT CVC25 CHASSIS

The problem with this set is vision interference - it takes the form of streaking horizontal lines on all channels. Removing the aerial input leaves a snowy raster with mushy sound: the interference remains but is not as bad.

The cause could be in the field timebase as there has been lack of height with top foldover on one or two occasions, though it lasted for only two-three seconds.
First check the connections between the printed panel and the mains switch - dry-joints can occur here. Then check the mains filter capacitor: replace this if it's of the cylindrical yellow type, as these are given to internal arcing. If the fault persists and no bad joints can be found around the power supply panel, in particular around the surge limiter resistors R76/7 and the BY133 h.t. rectifiers, concentrate on the field timebase. If the problem lies here it's more likely to be with the output transistor pair T8/9 than in the pluggable module.

THORN 3000 CHASSIS

There's a good, clean monochrome picture but this becomes increasingly noisy as the colour is turned up. At the correct colour control setting the noise gives the impression of a poor level signal from the aerial, but the signal strength here is first class.

If the colour is locked, check transistor VT110 and the a.c.c. smoothing capacitor $\mathrm{C} 173(2 \cdot 5 \mu \mathrm{~F})$ on the i.f. panel. If necessary, check the chroma amplifier transistor VT309 and the blanking diodes W316/7 on the decoder panel.

PHILIPS G11 CHASSIS

No sound or raster led to a check on the h.t. fuse which had blown. Tests in the line timebase failed to reveal anything amiss, but the only way of preventing fuse failure is to disconnect the h.t. supply to the line timebase. The h.t. is 180 V instead of 153 V .

The excessive h.t. is the cause of the problem and is likely to be due to failure of the BD201 active smoothing transistor. The 27 V zener diode D4021 usually fails as well. A common cause of this situation is the h.t. reservoir capacitor C4029 which develops loose internal connections at the rivets. Try gentle mains application via a 110 V transformer at first to save fuse blowing - a 100 W lamp will do if you don't have a transformer.

RANK T22 CHASSIS

There's no colour on this set except when the colour-killer override link is connected. With the set slightly off tune there are colour patches on the screen. Replacing the three decoder i.c.s has made no difference.
We've known electrolytic capacitors cause this sort of thing in the T130A decoder. Check C83 ($3 \cdot 3 \mu \mathrm{~F}$) and C85 ($1 \mu \mathrm{~F}$) by substitution and $\mathrm{C} 84(0 \cdot 22 \mu \mathrm{~F}$) by replacing it with a polyester type if you find it's a tantalum electrolytic. If necessary check $\mathrm{C} 87(4 \cdot 7 \mu \mathrm{~F})$ as well.

THORN 8500 CHASSIS

The problem is vertical black lines, about one eighth to a quarter of an inch wide, at roughly quarter inch intervals right across the screen: they are not straight but curve with the edge lines of objects on the screen. Neither changing channels nor cleaning the tuner contacts improves matters.
Check the condition and adjustment of the set tuner gain control R102. If this is o.k., suspect the tuner - we've known this effect to be caused by a form of tuner instability.

GEC C2110 SERIES

There's poor field linearity, with bottom cramping and a white line that moves rapidly up and down the bottom half of the screen. Field collapse sometimes occurs for a few seconds, then a full, normal picture appears for a while before the linearity faults return.

These sets are prone to problems due to poor earthing of the field timebase panel (at PL28/1). You can check this by using a screwdriver to link the panel's earth print to the metal chassis. If all's well here and capacitors C457/8 (field charging) and C462 (bootstrap) are o.k., the field output transistors are probably faulty.

255
Each month we provide an interesting case of television senvicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.

Good service costs money in the TV trade - the cost of service attention by a reputable and well organised firm can be considerable. In our part of the world (and most, we suspect) there are several rather shady operators who offer their services at very low rates and whose attention can be inexpert to say the least. From time to time we encounter the results of their efforts when a set owner, in desperation, brings us a set to sort out. Similar situations have been described in these pages by other contributors: here's one of our botch stories.

The set's owner, a rather shady character himself, brought in a dog-eared and frayed Tandberg 22in. TV set. He then went back to his van and brought out the back cover - always a bad sign. Without removing his handrolled cigarette from his mouth, he hissed in a conspiratorial whisper "give us an estimate mate, colour's all wrong". We switched the set on there and then so that if the tube was flat he could take it back with him. A quick check showed that all three colours were present, but the picture looked like a colour snapshot negative! We promised to contact him when we'd got to the bottom of the fault.

On the bench we started by turning the colour right down to check the grey scale tracking. It was reasonable, though marred by a degree of impurity on one side. We made a mental note to deal with that later. The set was then tuned to the local Channel 4 test pattern, and on advancing the colour control setting a strange sight met our eyes! In order, from left to right, the colour bars were magenta, yellow, red, cyan, blue and green. Someone had swapped the drive leads to the tube - but inspection proved otherwise. The leads were correctly positioned on the tube base panel and at the RGB output stages.

Tongue in cheek we interchanged the leads -R drive to the green cathode, G drive to blue and B drive to red. This produced reasonably good colour within the tracking and purity constraints previously mentioned. Suspecting some diabolical trickery in the decoder or RGB output stages we carefully examined the panel, but could see nothing amiss on either side.

With full colour bars still displayed, we made an oscilloscope check on the RGB drives. They were correct, with the right R, G and B primary colour waveforms coming from the right amplifiers! Back to the c.r.t. base panel. We could see no modifications or wiring alterations, and to confirm that we were not becoming unhinged we checked at the appropriate tube pins themselves - nos. 2, 6 and 11 for R, G and B respectively with this A56-120X tube. The waveforms were correct.

When the man returned for his set he had a considerable bill to pay, mostly down to time rather than components. It had taken us half an hour to find a means of refitting the set's back cover, and rather longer to sus out the cause of the colour problem. You needn't concern yourselves with the back screws, just the wrong colour effect: answer next month!

ANSWER TO TEST CASE 254 - page 217 last month -

The problem described last month was no field scan in a Doric colour portable fitted with the Rediffusion Mk. 5 chassis and our attempts at diagnosis, having twice convinced ourselves that the field oscillator/driver chip was faulty. The virtually zero d.c. voltage at pin 3 of the chip should have pointed us in the right direction, for if Q502 was not switching on - and it wasn't, without any drive there should have been a fairly high voltage at its collector and thus at pin 3 of the i.c., due to the conduction of Q501.

Q501 was not conducting however, for the very good reason that its base bias resistor (Q502's load resistor) was open-circuit. It looked all right, but there was 73 V at one end and nothing at the other. The design of the field timebase chip is such that with zero feedback at pin 3 it shuts down, which is what was happening. We must confess that we were happier with PCL805s and the like sometimes you got a dud spot on the height control, or the valve got broken...

Published on approximately the 22 nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by The Riverside Press Ltd., Thanet Way, Whitstable, Kent. Distributed by IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Sole Agents for Australia and New Zealand - Gordon and Gotch (A/sia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland £11, overseas (surface mail) £12 per annum, payable to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever.

						UPC 1366C UPC 1367C UPC 136	$\begin{aligned} & 3.00 \\ & 3.000 \\ & .300 \end{aligned}$	$\left.\right\|_{\text {BCIO9 }} ^{8 C 108}$ BC116	$\begin{aligned} & 0.11 \\ & 0.10 \\ & 0.13 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \frac{8}{8 F 274} \\ { }_{8 F F 33} \end{array}$		REGULATORS			
N J ELECTRONICS						UPCC $13380 \mathrm{C}^{\text {U }}$	4.00	8C140	${ }_{0} 0.30$	${ }^{\text {Presem }}$	0.56			50	
82-84 STORFORTH LANE TRADING ESTA						UPC	1.15 4.50	BC142	0.22	${ }^{88459}$	0.51			$33 \mathrm{M} \Omega$ $47 \mathrm{M} \Omega$ $\begin{array}{l}0.60 \\ 0.60\end{array}$	
HASLAND Chesterfield						UPC 1378H	4.00	${ }^{\text {BC143 }}$	0.27						
						UPCC 1332 C	$\begin{gathered} 1.97 \\ 570 \end{gathered}$	${ }^{\text {BCCL47 }}$	$\begin{aligned} & 0.09 \\ & 0.10 \end{aligned}$	BF51	0.23				
S41 OSN			TEL. (0246) 209079			UPC 1447 W UPC 1470H	$\begin{aligned} & 0.90 \\ & 0.080 \\ & 2.80 \end{aligned}$	BC149	0.09	Bulos	1.40			HEATSINKS	
INTEGRATED CIRCUITS									0.100.11						
					3.50	DIODES				${ }^{\text {Bu }}$					
Bד1 822	1.90	TA 7699P	4.00	UPC 544 C	1.34				0.13	8u204	1.40				
CA 3089	120	TA 7611AP	2.90	UPC 555	0.80	${ }_{88159}^{88148}$		- 72	0.10	8u205				INNED	0.60
ETT 8016	1.95	TA 75902 P	2.03	UPC 556 H	1.70			BC172	0.13	${ }^{18208}$	1.55	MODULE		T020	.34
ETR 6016	1.95	taA 32	1.30	UPC 557	0.92	${ }_{\text {BBIOSB }}$	020	${ }^{812}$	0.12	${ }^{\text {¢12280 }}$	230	PYE If GAIN		\$00 T0126	0.34
MC 13378	1.70	TAA 470	2.30	UPC 566H3	3.50	${ }_{8127}$	0.11	1	0.12	BU326					
. MC 1310P	120	TAA 550	0.39	UPC 574	0.55	8Y133									
MC 1327 P	1.10	TAA 691	1.95	UPC 57562	1.99		1.35	${ }^{\text {BCI }}$	0.09	${ }^{\text {Buazav }}$	1.70	SWITCHES		COMP	
MC ${ }^{1330}$	1.50	TAA 700	1.65	UPC 577	3.50	BY184	0.40	${ }_{\text {BC220 }}$	0.09						
MC 1349 P	1.10	TBA 120A	0.75		1.19		0.69	BC2121	0.09	E122					
MC 1351	120	tBA 12as	0.75	7419	0.95		0.60	BC213L	0.11	${ }^{\text {F33055 }}$	0.55	Pull	0.00	Decca 10	
MC 1332 P	1.50	TBA 1208	0.78	UPC 1009\%	2.11		0.29	BC23	0.10			Round Sheft			
MC 1388	120		0.75	PC 10	2.50		0.95	B22	. 10	,	1.75	Rund Start		nea	
ML 2368	3.00	tba l20SA	0.75	UPC 1018 C	1.19	${ }^{\text {BY}}$	0.21	BC250	0.11						
	1.00	tBA 1201	0.75	PC 1	0.63		0.31		. 11						
	3.00	tBA 231	1.55	UPC 10	0.63	8 P 295	0.25		0.10	R202					
SAA 1024	2.40	tBA	1.70	UPC 10	3.70	$8 \mathrm{Br26}$	0.25		. 11	R203	${ }^{\text {. }} 90$	1500 ootary			
	4.20	TBA 395	1.70	UPC 102		8Y298	0.25		\% 31	R2230		,otar			
	2.0		0.95	,	2.40	81299	0.25		3			Rank TCE	25		
SAA 130	3	TBA 510	. 20	103H2	2.00	81810	0.21		33	223				CRYSTAL	
${ }_{\text {SAS }}$ S50]	\% 10		1.50	PCC 1035 S	250		0.50	BC388	0.13	${ }_{\text {R2322 }}$	${ }_{0.70}$	Philips 611	1612		
	\% 0		. 1.5	Prc 1035	2.50	8xpl1350	0.50	BC327	0.11	${ }_{\text {R2354 }}$	0.78	Remote	1.30	${ }_{8.860 .4}^{4.4}$	\%
${ }_{\text {Sas }}$ SE8	1.00	${ }_{\text {TiAA 5 50 }}$. 10	UPC	1.28	Bx71.60	0.09	BC328	0.13			Thern 1615	wit		
SAS 670	230	TBA 500C	1.90	UPC 1022 C	2.60	${ }_{\text {BRILOO }}$	0.35	${ }_{81}^{8 C 3}$	0.11	${ }_{\text {R2461 }}^{\text {R241 }}$	2.00			Minitur	1.75
SL 9018	4.50	TBA 570	1.10	UPC 1033C	2.60	OA47	0.10	BC350	0.12	${ }^{82477}$	0.78	${ }_{35000}^{301}$			
SL. 9178	${ }^{6} 2.20$	TBA 750	1.50	UPC 1156\%	2.10	OAsO	0.08	析	0.30	${ }_{\text {R2501 }}^{\text {R2501 }}$		Veri Gun Su	witch 0.5	VIDEO	
SN 1168824 N	2.50	TBA 800	1.10	UPC 1158 H	0.78	OA91	0.00	${ }^{\text {BCa }}$	0.11	${ }^{\text {cherese }}$		(A1)		FILMS	
SN 23844	2.25	tiA 820	1.20	UPC 11133	0.9	${ }_{\text {INSO }}$	0.08	${ }_{\text {che }}^{\text {BCas60 }}$	0.52			Horiz			
SN 51108 AN	1.95	TBA 890	3.50	UPC 116772	1.58	114001	0.05	BC462	0.53	90055					
SN 76001 AN	1.60	TBA 920	2.00	UPC 1168 C	2.75	N4002	0.05	CC46	0.53						
SN 76003	220	TBA 950	2.65	UPC 11700	1.75	114003	0.05	C55	0.13						
SN 76013 N	2.50	TBA 990	1.60	UPC 1717c	1.62	Na04	0.06	${ }^{8}$	0.13			DELAY L	INES		
SN 76013ND	2.50	${ }^{\text {TBA }} 1440$	2.70	jPC 1173 Cl	2.14	N403	0.01	${ }^{8 C 5}$	0.10	${ }_{\text {HeP3IC }}$				FILTERS	
SN 18023 N	220	${ }_{\text {TBA } 1414}$	2.70		2.13	IN4006	0.01	${ }_{\text {BC548 }}$	0.09	${ }_{\text {T1P32 }}$	0.34	1.700			
SN 761312	1.35	TCa 270 s	1.90	UPC 117 m			0.07	${ }^{\text {cc5 }}$	0.10	T1P32					
	1.120	Tca 27050	${ }_{2} 20$	UPC 11180 C	2,14 300	1 Na	0.03		0.10			Luminanco	Imatches	sW154	220 220
SN 7653	2.00	TCA 650	2.40	UPC 1181н3	1.62	INS	0.15	${ }^{80131}$	0.30	${ }_{\text {TiPa }}$	${ }_{0} .58$				
	0.29		2.80	UPC 118	2.70	IN506	0.11	${ }_{80135}$	0.30	${ }^{\text {TPPP2AA }}$	0.45			SUNDRIE	
SN 76546	1.00	TCA 740	2.90	UPC 11	2.30	INS		1336		T1P30					
	0.90	800	2.00	UPC 118542	3.50	Y969	0.87	${ }^{8139}$	0.33	TITP3	${ }_{0}$	TUN			
SN 6866 N	1.10	tca 830 S	1.60	UPC 11886	0.10				0.60			PRESETS		Biock 2 A	
SN 7 T 706	li.70	TCA 4500A	1.80	UPC ${ }_{\text {U }} 11188 \mathrm{~g}$		ZENERS			0.70	${ }_{\text {T13P2A }}$					
TA 003 BP	3.50	TDA 1003	2.00		2.00	400 M		B02	0.40	${ }_{\text {T1P33 }}$	${ }_{0}^{0.75}$				
TA 70 gesp	3.30	TDA 1004 A	220	UPC 11919	1.70	${ }_{12 \mathrm{Na}}^{20}$	0.10	B02	0.35	TTP41A	${ }^{0} 4.45$			biad	
TA 7072 zr	230	TAA	2.50	190	1.70		0.18								
TA 074P	3	To	2	UPC 130\%	1.97	100V to 200 V	0.19	${ }_{\text {B0238 }}$	0.38	T1P42C					
TA 70	303	TOA	2		1.16	15 wat		8023	0.12	TiP100		EHT LE		GEC	
TA 7098P	2.40	TDA 1327	1.70	UPC 1208 C	2.00	BZVICCI2R		${ }^{\text {B02338 }}$	0.65	T1P2955	0.74			${ }_{\text {cosen }}^{3500}$ cuns	
TA 7osp	230	TDA 1412	1.00		4.00	${ }^{\text {BZVIICCOR }}$	1.18	8046	0.23			diode			
TA	2.4	ToA 2002	1.90		1.34			${ }^{80595}$	0.55	${ }_{\text {Tis91 }}$		EHT Cap		Hank Tu	
TA 7120 P	1.61	TOA 2522	2.80		2.10	BRIDGE		${ }^{8055}$	0.55	2N3055	0.73	10 M Pack	of EHT	Cams	
TA 7129AP	320	TDA 2523	2.20	UPC 1216 V	1.99	840			0.50	28835				5yds PvC	
TA 1330	1.30	ToA 2330	2.20		3.59		0.50								
TA 71375	2.00	TAA 2332	2		${ }_{2} .300$		0.70	${ }^{3 F 127}$	0.30	THYRIST			DIS	COUN	
TA 71468	2,75 2.00	TOA 1365	5.27	UPC 1223	${ }_{3.70}$	wos		${ }^{\text {BFIB0 }}$		KONIG 15/8	Universal				
TA 715P	3.20	ToA 2541	2.30	UPC 1225	3.00	TRANSIS			0.27	KONIG 15/8	Universal	sal $\quad 2.47$	ORD	ERS OV	
TA 717 T	320	ToA 2560	2.05	UPC 1226	2.96				0.23	BR101			£50	IN VA	
TA $1717 \mathrm{~S}^{\text {ap }}$	3.00	TOA 2581	2.10 1.30	UPC 1227	2000	${ }^{\text {ACL128 }}$	0.30 0.30	${ }_{\text {coser }}$	0.10			${ }_{0.56}^{0.62}$		5\%	
TA 7193P	5.20	TDA 2582	1.80	UPC 1230H	3.60	AC153\%	0.36	SFes	0.11	BYY49		0.65			
ta 7203P	330	TOA 2593	2.70		1.90	Ac176	0.30	${ }_{8 F 197}$	0.13	${ }^{\text {BrYY5 }}$			ORD	ERS OV	
	3.16 2	TDA 2661 A	1.15	UPC 1245	2.20	${ }_{\text {AC }}^{\text {Al187 }}$	0.30		0.16	${ }^{\text {BrIT50 }}$		${ }_{0} .30$	£120	IN VAL	
TA 7205P	1.40	TDA 2640	1.80	UPC 1350 C	4.50	AC188	0.30	FF20	0.31	${ }^{\text {BTITOG }}$		${ }^{55}$		\%	
TA 2 208P	2.70	tod 2633	2.10		2.80	A0149	0.88	${ }^{2} 240$	0.16	${ }^{\text {Br1166 }}$					
${ }_{\text {TA }}^{\text {TA } 21208}$	5.50	ToA 2680	2.10	UPCC 13556	3.00	A0162	0.05	8245	0.30	${ }_{\text {BTI20 }}$		2.00		Va	
TA 723 P	3.50	TOA 3560	5.10	UPC 1350 C	3.50	AF139	0.48	BF258	0.27	DEC1		. 70		ding VAT	
TA 7227P	5.10	TDA 3561	6.50		. 70		0.60	${ }^{\text {B2F299}}$. 32						
TA filiop					3.50	AU113	2.60	${ }^{\text {br273 }}$	0.13 0.0	OT121		1.55 1.55	CRTs	EXCLI	
TA 313 P	2.80	TDA	2.10	UPC 13	5.00										

AA117	0.050	BC157	0.055	80222	0.310	BU108	1000	0 C 72	0.500	TIP29C	0.250	3N. 128	0.550	2 SA473	0370	28 pin	0.200	PCLE2 0.830	LM723 0320	ED 5m
AA119	0.050	BC159	0.055	80225	0310	BU110	1.100	OC200	1800	TIP30	0.180	3N. 143	0.850	2SB54	0250	40	0250	PCLA 0.500	LM741 Dil 0.150	
AAY32	0.050	BC182	0.060	B0232	0.310	BUl11	1400	OCP71	1.000	TIP31A	0210								LM741 Di 0.150	0
AC107	0.230	BC182L	0.080	B0237	0210	BU128	0.700	ORP12	1.000	T1P32	0210	IN. 914	0.020	$2 \mathrm{SB77}$				PCL85 0.550	LM741	5 5mm
AC126	0.170	BC183	0.060	B0238	0240	BU204	0.750	ORP60	1.000	TIP32A	0210	IN.4001	0.010	258337	1200	VALVES		PCL86 0.550	Mot 0,450	GREEN 0.100
AC127	0.150	BC183	0.060	B0430	0280	BU205	0.700	ORP61	1.000	TIP33	0.500	IN. 4002	0.040	2SB405	0220	DY87	0.50	PCL805 0.550	LM3900 0.250	
AC128	0.150	BC184	0.060	B0437	0280	BU208	0.750			TIP34	0.500	IN. 4003	0.040	2SC480	0210	DYBCP	0450	PFL200 0850	NE555 0.150	BRIDE
AC128K	0.280	BC184L	0.060	80535	0300	BU208A	0.800	R2008B	0.800	TlP41A	0.220	IN. 4004	0.040	2SC495	0.800	ECC82	OACO	PL36 0800	NE556 0.400	RECTIFERS
AC141K	0.230	BC212	0.050	BD536	0380	BU2080	1200			T1P41C	0.250	IN. 4005	0.040	2SC733	0.400	ECCEs	0430	PL504 O.950	BYX55	1A50V 0.100
AC142K	0.220	BC212L	0.060	80537	0400	BU326	0.850	SAS560	1,100	TIP42A	0.220	IN. 4008	0.010	2SC1161		ECC84	0400	PL508 1.900	$350 \quad 0300$	IA 100V 0.180
AC153K	0.230	BC213	0.060	80538	0400	BU406	0.850	SAS570	1.100	TIP42C	0250	IN. 4007	0.050	2SC1172Y	1.100	ECCOA	0400	Pl508 1.500	$350 \quad 0300$	1A 100V 0.160
AC176	0.180	BC213L	0.080	80×32	1.000	BU407	0.750	SN76003	1.400	T1P47	0.400	IN. 4148	0.020	2SC1172Y	1.500	ECC8S	0400	PY81 0.700	BYX55/	1A200V 0.150
AC176K	0.200	BC214	0.060	BDX65	0800	BU408	1800	SN76013	1400	TIP48	0400	IN. 5400	0.050	2SC1279	0240	ECH81	0490	PY88 0.480	60000300	1 A 400 V 0.210
AC187	0.150	BC214L	0.060	BF180	0.160	BU500	1.100	SN76023	1400	TIP49	0400	IN. 540	0.100	2SC1308	1.000	ECH84	0.520	PY500A 1.600	81×55	1A 600 V 0.230
AC187K	0.200	BC237	0.070	BF181	0.180	BU526	0800	SN76033N	1.500	TIP10	0270	IN. 5402	0.100	2SC1307	1.000	ECLSO	0.570		6000300	1A B00V 0230
AC188	0.170	BC238	0.070	BF1E3	0200	BY126	0.060	SN76110N	0.700	TIP112	0.540	IN. 5403	0.110	2SC1520	0250	ECLB2	0.590		BYX55/	2A100N 0350
AC188K	0.230	BC300	0.160	BF194	0.200	BY127	0.080	SN76115	0.700	TIP115	0250	IN. 5404	0.110	2SC1969	1300	ECL84	0.570	ZENERS	80000320	2A 200V 0300
ACY18	0.480	BC301	0.180	BF195	0200	BY133	0.030	SN76226	0.500	TIP117	0.560	IN. 5405	0.120 0.130	2SC2029	1200	ECL85	050	400MV	80000300	2AN400V 0120
ACY19	0.480	BC302	0.180	BF194	0.050	BY164	0220	SN76227	0.800	T1P120	0.430	N. 540	0.130	2Sc2079	1200	ECL85	0.570	BZY88 Range	BYX70	2ANGONV 0132
AD142	0.600	BC303	0.180	BF195	0.050	BY176	0850	SN722	0.0	TIP121	0.460	IN. 54007	0.	2SC2078	120	EC	0	2V7 to 39V0.050	5000290	2AN600 0.510
AD149	0.450	BC327	0.060	BF196	0.050	BY179	0350	T28000	0.520	TIP 122	0470	IN. 5408	0.130	2SC2122A	2000	Ef80	0310	2V7	BYX70	2ABSOV 0.500
AD161	0.220	BC382	0.060	BF199	0.060	BY182	0320	TAG06-60	0820	TIP125	0470			2SC2952	0.270	EFP5	0.340		5000310	3A200N 0.5e0
AD162	0.220	BC337	0.060	BF200	0.160	BY184	0220	TAG521-		TIP126	0.560			2SD234	0.370	Ef89	0.330	-	BYX70	3A 400V 0.800
AF124	0250	BC328	0.060	BF257	0.180	BY187	0320	200	0.720	TIP127	0.560	REGU	Ons	2SK135	4.000	EF183	0450	2 V 7 to 39V0.12	B00 03	
AF125	0250	BC557	0.060	BF258	0.180	BYIs6	0200	TAG4443	0.760	TIP2955	0340	7805	0350	2 N 135	4.00				800	3A 600
AF126	0.250	BCY32	1.500	BF259	0.180	BY206	0.110	TAG4444	0.760	TIP3054	0380	7812	0350	337	1.500	EF184	0.5		84x71/	6 A 200 V 1.000
AF127	0250	ВС「33	1.500	8F336	0.200	BY207	0.110	TAA550	0.150	TIP3055	0340	715	0350	TA7205	1.500	El34	1.500	memories	60000.800	6A 400V 0.800
AF139	0.220	$8{ }^{8}$	1.500	BF337	0200	Br223	0.720	TBAI2OS	0.950	TIS61	0.150	818	350	UPC575	1.000	EY86	0310	21140.750		25A 100V 1.600
AF239	0.20	BCY42	0.200	8F338	0200	BYx10	0.150	TBA395	0.600	TIS90	0.150	7624	0350			EY87	0310	27162300		
AL112	0.700 0800	BCY56 BCY70 c-771	0.160 0.160	8 8362	0300	CA270	0400	T8A396	0.600	TIS91	0.180	7905	0350	cs		PC87	1000	$2532 \quad 2.500$		EIECTHOLYTIC
ASZ15	1.000	BCY71	0.160	8F458	0.190	CA3086	0250	TBA530	0.750			7912	0800	SOCXETS		PCC85	0.420	$2732 \quad 2.500$		4700UF-16V
ASZ17	1.000	BCY72	0.160	BF459	0.150	CA3089	1.500	TBA540	0.750	2N. 2904	0.200		0.400	8 pin	0.060	PCF\%	0.580	27645	LED 3 mm	CAN 0.200
AU106	1.000	80115	0250	BFX29	0200	CA3240	0.900	TBA560	0.700	2N. 2905	0200	7918	0400	14 pin	0.080	PCF200	1350	411600.750		
AU110	1.100	BD124P	0.500	BPX84	0200	C106D	0280	TBA800	0350	2N. 2906	0.180	75	0.400	16 pin	0.090	PCF801	1.100	61183.000		as
AY102	1800	80124	1.100	BFX85	0200	MC1327	0.700	TBA810S	0.600	2N. 2907	0.180	78.05	0230	18 pin	0.120	PCF802	0.570	LM324 0300	LED 3mm	LP1195
AY106	1800	BD128	0350	BPX87	0.150	MJ2500	1.000	TBAs20	0.750	2N. 2926	0.080	78L12	0.290	20 pin	0.140	PCF806	1.150	LM330 0.800	GREEN	2250
		BD131	0250	8FX88	0.150	MJ2501	1.100	TBAgzo	0.800	2N. 3019	0230	$78 L 15$	0.290	22 pin	0.150	PCH200	1.000	LM381		
BA145	0.100	8D132	0250	BFY50	0.140	MJ2955	0.550	TBAS50	0800	2N. 3053	0.180	74.18	0200	22 pin	0.180	PCI81	1.00	LM709	5mm	
BA148	0.100	BD135	0200	BFY51	0.140	M 33000	1.150	TBA990	0800	2N. 3054	0350	74124	0280	24 pin	0.180	PCL81	0.540	LM709 Dil 030	0.050	
BA154	0.050	8 B 136	0200	BFY52	0.140	M J3001	1,150	TCA800	0 000	2N. 3055	0230									
BA157	0.120	BD137	0200	BFY56	0250	MJE23A	0.300	TCA940	0850	2N.3055	0380	LM309K	1.000	Please add 40p. P\&P and VAT at 15\%. Govt. Colleges, atc.						
88101	0.130	${ }^{8 D 138}$	0200	BYF57	0250	MJESOA	0300	TDA1170	0.500	2N3440	0 0.800	LM317K	2200							
B8103	0.160	8D139	0200	BFY84	0250	MJE340	0.250	TDA1412	0.800	2N 3442	0.850	LM31T	1.800	orders accepted. Quotations given for Large Quantities.						
B81058	0.120	8 B 140	0200	BRI00	0.140	MJE350	0800	TDA2002	0800	2N3771	0850	LM323K	4.200							
882058	0240	8 B 144	0.500	8SX19	0.150	MJE520	0.300	TDA2006	1.500	2N 3772	0.800	LM723	0320	Please allow 7 days for delivery						
BC107	0.070	8 BD 50	0300	BSX20	0.150	MJE2965	0.500	TDA2000	1400	2N3773	1.000	78HGKC	5.700							
BC108	0.070	BD157	0300	85×21	0.180	M 7	0	TDA2050	1400	2N. 4031	0.250	78H05KC	5.200							
8C108 BC115	0.070	$8 \mathrm{8D} 58$	0380	BSX26	0.160	OA47	0.080	TDA2522	0800	2N. 4036	0250	78GUIC	1.900							
BC 115 $\mathrm{BC118}$	0.100	${ }^{8 D 168}$	03500	8SX29	0.180	OASO	0.010	TDA2530	0800	2N. 4037	0250	79GUIC	2.150	GRANDATALTD.						
BC118 BC140	0.110	88175	0300	82776	0.180	A091	0.040	TDA2532	0.750	2N. 4443	0.780	79HGKC	6.700							
BC140	0.150	8017	0300	BT106	0.500	OA200	0.070	TDA2540	0.700	2N. 4444	0.760	Japanese								
BC141	0.180	B0179	0320	BT109	0.900	OA202	0.070	TDA2580	0.300	2N. 5061	0200									
BC142	0.180	BD181	0950	BT116	0.200	OC2B	1.000	TDA25s	0.900	2N. 6294	0300	TRAN8ESTORS								
BC143	0.180	8D209	0330	BT118	1.000	OC29	0.800	TDA2840	0.800	2N. 5298	0300	2SA73	0300	WEMBLEY, MIDDLESEX, ENGLAND.						
BC147	0.085	8D20	030	BT120	1.000	OC35	1.000	TDA2680	0.700	2N.6108	0400	2SA104	0320	Telephone: 01-904 2093 \& 904-1115/6.						
BC148	0.050	3D203	0.420	8U104	1.000	0C45	0.500	T\|P29	0.150	2N. 6107	0400	2SA198	0220							
BC148	0.055	8D204	0820	BU105	0800	0C71	0.300	TIP29A	0.220	2N. 8109	0.400	2SA203	0300	Telex No. 932885 (Sunmit)						

ALL SETS HAVE BEEN ENGINEERED AND ARE IN PERFECT WORKING ORDER

PRICES AVAILABLE ON THESE SETS NOW!!!
 PYE CHELSEA's PYE 721s, 731s, 725s PHILIPS 520s, 550s BUSH T20, T22, T24s (Remote Control)
 THORN 8000 \& 8800s THORN 9000, 9200, 9600 (Remote Control) HITACHI \& NAT/PANASONIC Minimum 5 Sets

Big reductions for export orders over 100 sets

COLOUR TELEVISION \& MUSIC CENTRE
 35 Stafford Road, Weston Super Mare
 Opening hours: 9-6 Mon-Sat, 9-1 Sundays

TOP TWENTY T.V. SPARES STOCK NO.
001 Philips G8 Loptx (Genuine Philips) 002 Decca 30 series Loptx (Genuine Decca) 003 Decca 100 series Loptx (Genuine Decca) 004 ITT CVC 25/30/32 Loptx (Genuine ITT) 371 Pye 713/731 Vision Gain Module
(replaces expensive 212-27327) $27010 \times$ BU208A
050 ITT CVC 5/9 EHT Tray 051 Decca 1730/1830 Doubler 053 GEC 2040 Hybrid EHT Tray 054 Thom 1500 (5 Stick) EHT Tray
056 Thorn 1400 EHT Tray 057 Philips G9 EHT Tray 058 ITT Universal EHT Tray 011 Thorn 1690/91 Loptx 012 Thorn 1615 Loptx 085470 MFD 250V Philips G11
$33550 \times$ BY127 Diodes
$27010 \times$ BU326
28025×2 N3055

7.50

7.00
6.50 7.00 6.50 8.50 3.00 2.00 3.00 3.50 2.00 3.50
5.00

7.00

 6.50 1.50 3.00 10.00All components are A1 quality from prime manufacturers, and are dispatched by post same day as order received together with any refund due. All goods should be delivered within 4 working days.
Please add 15\% VAT and 90p P \& P

008 Pye CT200 5 Lead 4.50 067 Korting Hybrid 5.00 088 Grundig 3010/15003.00	123 R.R.I. A823 atc. 4 Way 124 Hitachi 4 7.95 125 R.R.I. T20 7.95 	$27010 \times 8 U 208 A$ $\mathbf{8 . 5 0}$ $27110 \times 8 U 208$ 7.50 $27210 \times$ BU326 10.00
		$2735 \times 8 \mathrm{U} 205 \sim 2.50$
		$28025 \times 2 N 3055$ (Texas)
		7.50
		(Equiv, 8C161/303) 0.50
	INTEGRATED CIRCUITS	$33550 \times \mathrm{BY} 127 \quad 3.00$
	$1405 \times$ T8A440 $\quad 3.00$	
	$1415 \times$ TBAIZDAS $\quad 1.80$	
	$1425 \times$ TBA540 4.00	
350001.50	$1435 \times$ TBA5400 4.00	
004 2000/100 Can 0.50	$1455 \times$ TBA560 $\quad 3.50$	SPECIFIC SPARES
085 470/250 Philips	$1465 \times$ TBA810S 3.00	350 Thom 1590/7
G11 1.50	$1475 \times$ TBAS200 4.50	$42 \times 27 \quad 2.00$
$086400+400$ Dacca 302,50	$1485 \times$ TBASs00 $\quad 3.25$	357 Thom 1590/1
$087 \quad 200+200+75+25$	$1495 \times$ TBA5200 $\quad 4.00$	$5 \times 27 \quad 2.00$
$1715 / 9$ 1090	$1505 \times$ TBA5300 4.25	352 Thorn 1800
${ }^{088} 800000 / 400 \mathrm{~V}$ Thom	$1515 \times$ TBA950 $\quad 4.50$	Dropper 0.50
9000×1.50	$1555 \times$ MC13270 $\quad 2.50$	$3585 \times$ Thorn $3500200 R$
$09210 \times 220 \mathrm{MF} 18 \mathrm{~V}$	160 TDA1170 1.35	Conv. Pot 1.00
${ }^{\text {Eloct }}$ O93 $10 \times 04 \mathrm{MF}$	161 TDA1190 1.90	$3595 \times$ Thom 3500 50R
$08310 \times 047 \mathrm{MF} 400 \mathrm{~V}$	162 TDA1006A 1.45	Conv. Pot. 1.00
Poly 0.50	164 TDA1035 1,83	370 Pya 731 Thick Film 1.50
$0945 \times 4.7 \mathrm{MF} / 100 \mathrm{~V} \mathrm{C} 514$	165 TDA1044 2.23	371 Pye $713 / 31$ Vis. Gain
T3500 1.25	166 TDA1190 1.90	Module 6.50
${ }^{096} 5 \times$ 91NF Philips	167 TDA1412 0.90	372 Pye 7313 B 350 W
G11 2.25	172 TDAzOCE 1.80	Metal clad 1.29
$09710 \times 1 / 2000 \mathrm{~V} \quad 2.00$	173 TDA2020 2.50	378 Grundig 5010/5010
$0985 \times 1 / 250$ Suppres-	174 TDA2030 2.15	Video Module $\quad 4.00$
sion ITT	178 TDA2523 2.35	$3845 \times$ Philips 68/10R
	179 TDA2532 2.40	Conv. Pot $\quad 2.40$
	180 TDA2540 $\quad 1.65$	$3855 \times$ Philips G8 2.40
PUSH BUTTON UNITS	181 TDA2541 2.67	$3865 \times$ Philips G8 2 k 2 Lin .
110 Pre 7134 Way 7.87	182 TDA2560 $\quad 3.29$	Bright. 2.50
111 Pre 7156 Way 11.95	183 TDA2571 2.15	$3875 \times$ Philips G8 10k
113 Philips G8	184 TDA2591 0.98	Log. Color 2.50
(Sloping) 12.98	185 TDA2593 $\quad 2.23$	$3885 \times$ Philips G9 47k
114 Thorn 90006 Way2.50	190 TDA2600 4.00	Log. Vol. 2.50
115 Thorn 16154 Way 5.75	191 TDA2211 $\quad 1.24$	389 Philips G8 Plastic
116 Decca 6 Way 6.95	192 TDA2640	Mains Sw. 0.75
117 Deccs 4 Way 6.50	210 ETR ${ }^{2}$	390 Philips G8 Matal
118 GEC 21106 Way 1.95	211 ETT6016 $\quad 2.28$	Mains Sw. 1.23
119 GEC 2136/7 Tapered 16	212 BTT6018 2.28	391 Philips G8 Line Eql/
Way) 7.95		Stor. Coil 2.25
120 ITT CVC5 $\quad 9.25$	TRANSISTORS - DIODES	4035 RRI T20 C.RT.
121 IT CVC8 11.45	$23550 \times 8 C 213 \mathrm{~L} \quad 2.50$	Base 4.35
122 ITT 6 Wey with	25010×80124	$43510 \times$ Dacca 3010 R
V.C.R. 7.95	(Metal) 9.00	Fusible 0.50

FREEWAY COMPONENTS

TEL:
0934-419147
 Now

Wh?

MULTI-SECTION ELECTROLYTICS Rank $823800 / 300 \mathrm{~V}$
Rank $8232500+2500$ Rank $823300+300 / 300$ N Rank T20 220/400V PHG8/GEC 600/250V
PHG8/GEC $600 / 300 \mathrm{~V}$ PHG9 2200/63v. Pye $691200+300 / 350 \mathrm{y}$ Pye $6911000+1000 / 40$ Pye 731 800/250v GEC $2000200+200+150+50 \%$
GEC $20101000+2000 / 35 \mathrm{v}$ Thorn 3500 1000/70v
PHG9/Pye 731 600/300 P.C.B.

EHT tray
TT Universal5.50 To fit most sets including: Decca, GEC,
ITT, Pye, Phillos. Rank, Telpro, Saba, Autovox, Bang à Olu'sen, Grundig. Doric. Skantic etc.

VhS (3IDEO MEADS VHS (3HSS 5 mm centre hole)... .32 .45 Beta (PSSB Sony, Tostiba etc.)....41.75
Any doubts which you need Any doubts which you need please ring
our sales office. our sales office.

SPECIAL

 OFFERThorn 90006 -way switchbank 1.50 each. 2 for 2.50. Take one for 75 p when you order other goods totalling 15.00 excl.
VAT.

Add 60 p carmage \& 15% VAT and send
cheque or P.O. to:
FREEWAY COMPONENTS THE AIRPORT WESTON-SUPER-MARE AVON BS24 8RA

"Colour Televisions"

FIRST COME! FIRST SERVED!
Not ex-rental . .
All in excellent cabinet condition. Many working.
Largest selection of makes and models. Fresh stocks weekly .. Available in singles or in quantity.

Many late models eg: G11, 9600, Decca 100 etc.

Clearance sale of old models:
Philips G8
£10.00
Bush A823 £10.00
Hybrid mixed
£5.00
Panels, Spares, Tubes etc. available.
H

RING US NOW!!!

COLOURTRADE
Tel: 021-359 0449 221, Bridge Street West, Newtown, Birmingham, B7.

HUSSAIN CENTRAL TV SALE

No. 1 in Midlands

Special Clearance to trade

G8, Philips from $£ 8$, Pye 205 from $£ 5$, GEC Hybrid from £5, Decca 1800 Series, G9, G11, Pye 223, Pye Chelsea, ITT CVC5, CVC9, CVC25 and 30, Thorn 8500, 9000, GEC, National, Hitachi, Mitsubishi, Toshiba, and black and white, 75p. Most makes and sizes available. Buy T.V., tubes and spares free.

Ring us today 021-622 1023 or 021-622 1517 48/52 Pershore St., Birmingham City Centre.

TELEVISION TUBE SHOP LTD

BRAND NEW TUBES AT CUT PRICES

A31-19W/20W 19.95	230DB4CT468..........31.00
A31-120W/300W17.95	240DB4/240AB4A ... 22.00
A31-410/510W 17.95	CT507 equiv 21.95
A34-100W/510W 18.50	310DGB4/DMB4......23.00
A34-514W24.25	310EUB4................. 19.95
A38-160W/170W17.50	310EUB4A 18.50
A44-120W/R25.00	310E YB4 18.75
A 50-120W/R19.00	310FXB4 $\ldots \ldots17 .50$
A61-120W/R21.00	310HCB4...................31.00
9AGP4£21.82	340AB4 22.50
190AB4/C423.00	340A YB4..................30.300
	340AXB4................ 30.00
Some Rebuilt Japanese	340RB4/CB4............ $\mathbf{2 6 . 0 0}$
8 European Types	340AHB4 26.00
Available from £14.00 + VAT E2. 10	RIGONDA $6^{\prime \prime}14 .00$

COLOUR TUBES

(NEW \& MULLARD/THORN COLOREX)*

330AB22	73		
42X	.61.00	A63	63.00
A47-343X		A66-120	65.0
A $49-191 \mathrm{X}$	53.00	A66-140	.50
A51-16	70	A66-500X/510X	
A51-220X	55.00	A67-120	50
A51-500X	64	A67-140X/2	
Old Bulb Required for 110° Colorex ADD 15\% VAT TO ALL THE ABOVE PRICES. Please allow 7 days for delivery ALL TUBES TESTED BEFORE SALE \& FULLY GUARANTEED TELEVISION TUBE SHOP LTD 52 BATTERSEA BRIDGE RD., LONDON, SW11. Tel. 228 6859/223 5088 CARRIAGE: Mono £3, Colour $£ 10$.			

TUNERS + TUNERS

\star If you repair sets regularly - phone us today and we will dispatch immediately - no need to send cash 'up front'.

* All tuners dispatched by first class post for receipt by you the next day.
\star All popular tuners/tuner repairs supplied 'off the shelf'.
* Unusual types repaired same day as received (subject to spares availability).

[^1]

TV LINE OUTPUT TRANSFORMERS

FAST RETURN OF POST SERVICE

RANK BUSH MURPHY		PHILIPS	
Z146 A640 dual std mono	7.00	170 series dual std mono 7.00	
Bush A792, A793		210300 series mono $\quad 7.00$	
single std m	7.00	PYE 169-1.73-569-368 $\quad 7.00$	
A774 single std mono $\quad 7.00$			
A816 solid state mono	9.00		
		EKCO RV305-769-725-741	
MS1700200120202401 mono 7.00		WALTHAM 125	
MS2404 24202424 mono	7.00		
CS1730 1733 colour CS1830 1835 colour ' 30 ' series Bradford colour 80 series colour 100 series colour	8.00 8.00		
	8.00		
	8.00		
	8.00		
	8.00		
FERGUSON HMV MARCONI 1600		WINDINGS	
		RANK BUSH MURPHY	
47 to 2105		T20a T22 Pry \& Sec	
2000 to 2064 dual std mono 7.00		2718 series primary $\quad 6.00$	
DUAL STD hybrid colour 8.00 SINGLE STD hybrid colour 10.00		2718 series EHT overwind	00
		ULTRA THORN	
Indesit 20EGB 24EGB mono 9.00		16901691 EHT overwind	7.00
KB - ITT		PYE	
VC200 VC205 VC207 monoCVC5 CVC7 CVC8 CVC9 col.8	7.00	691 to 697 EHT overwind	4.00
	8.00	691 to 697 primary	5.00
CVC20 series colour CVC30 CVC32 series colour CVC45	8.00 8.00	PRICES INCLUDE15% VAT	
	8.00		
Add 65 pence postage to all lopts and windings All lopts and windings are new and guaranteed			
Open Mon.-Fri. 9 to 5.30 pm Delivery normally by return. S.A.E. all enquiries			
PAPWORTH		Barclaycard and Access welcome	For orders placed at the post office Trans cash 5064856
TRANSFORMERS			
80 Merton High Street,London SW19 1BE		01-5403955	

ARE YOU

USING YOUR SPARE TIME PROFITABLY?

If not, you're losing money. Money that you could be making by selling used colour televisions from home in the evenings. In fact, provided you start correctly and know exactly how to operate, you can easlly earn a substantial CASH INCOME with a starting capital of less than $£ 20$. Our new unlque publicatlon "How to Deal Succesefully in Used Colour Televisions" enables experlence in the footsteps of many experts who have a great deal of combined knowledge to help you After all to follow the advle of someone who ha kravelled the ground before you is to be given the best posslble start. And the hundreds of valuable trade secrets, hints, tlps and suggestions In the gulde show exactly how anyone of average Intelligence can succeed immediately.

Every aspect. from securing the first televiston right through to rapid expansion of sales, is covered with the detailed knowledge of experts to ensure certein success. Indexed limation particular, the tlps on expanding the business are very practical, and are almos automatic when put into practice. Pages of unique advice on advertising ensure that maximum sales are secured, and sources of supply are described in detail - for both televisions and new/used spares. Monochrome sets are also covered, as are "invisible" cabinet repairs. Plus FREE on-going advice and FREE regular updating service.

You can start tomorrow - but you'll need our guide. The latest big illustrated edition is out now, and costs just $\mathbf{£ 4 . 9 5}$ - a small price to pay for financial independencel

ORDER TODAY FROM:
GLOBUS INDUSTRIES LTD., UNIT 18. DARLEY ABBEY MILLS, DERBY
Please allow up to $\mathbf{2 8}$ days for delivery
To: Globus Industrios Lid., Unis 18, Dariey Abbey Mills, Darby
Ptease send by return post "How to Deal Successfully in Used Colour Televisions
I enclose cheque/p. o. for $£ 4.95$.
NAME
ADDRESS

ELECTRONIC EQUIPMENT SERVICING

(TELEVISION/VIDEO full-time College courses)

- College Diploma or BTEC awards -

TRAINING INVOLVES A HIGH PERCENTAGE OF WORKSHOP FAULT DIAGNOSIS ON TELEVISION \& VIDEO CASSETTE RECORDERS

- 15 MONTHS COURSE for beginners to include Electronic Fundamentals
- 6 MONTHS COURSE for BSc, HND, CGLI, TEC and similar applicants
- 3 WEEKS INTENSIVE VCR COURSE for applicants with Colour TV trade experience
The above courses commence on April 24th and September 19th
Also courses in Computers/Microprocessors, and Robotics leading to BTEC awards.

LONDON ELECTRONICS COLLEGE (Dept T3/4)
Prospectus from: 20 Penywern Road,
Earls Court, London SW5 9SU
Tel: 01-373 8721

HOW DARE THEY!

If you see an advertisement in the press, in print, on posters or a cinema commercial which makes you angry, write to us at the address below. (TV and radio commercials are dealt with by the I.B.A.)

The Advertising Standards Authority. If an advertisement is wrong, wore here to put it right. ASA Ltd. Brook House. Tormington Place. London WCIE TMN.

SATELLITE RECEIVING EQUIPMENT

1.9M, 2.5M and 5M Harrison Dishes Sat-Tec R5000 4GHz Receivers Avcom COM-2B 4GHz Receivers California Amplifier 4GHz LNAs Chaparral Feed Horns
Demonstrations by appointment only Dealers wanted HARRISON ELECTRONICS 22 Milton Road,
Westcliff-on-Sea, Essex SS0 7JX. Telephone: Southend (0702) 332338

A.B.C. TRADE SALES COLOUR T.V.'s
 Philips G8, Pye, Decca 30's,

 Thorn's 3000's, 3500's, 8000'sPrices start from $£ 12$ - Working sets from $£ 20$ Hundreds of Mono T.V.'s from $£ 2.00$ Jap. sets from $£ 30.00$ Special prices for quàntity 9,000 sq. feet Warehouse 83 SHOWELL ROAD, BUSHBURY, WOLVERHAMPTON, STAFFS. Tel. Wolverhampton 722637

"NORTH LONDON WHOLESALER'S"
 TV SALES
 Constantly changing stock of most popular colour sets,
 Plus:-
 Large selection of working mono's from just $£ 4$ each.
 Re-gunned tubes available. 5 mins. M.1.
 Please telephone us for details on:-
 WATFORD 45590

VISIONTEL

BEST QUALITY EX-RENTAL SETS FROM $£ 10$ HERE IN CENTRAL LONDON!
100's OF SETS ALWAYS IN STOCK COMPETITIVE PRICES

VIDEO RECORDERS

(SUBJECT TO AVAILABILITY)
We also have PYE - DECCA GEC - ITT - GRUNDIG - JVC PHILIPS G9 - THORN 9000 and MANY - MANY - MORE!
FOR CURRENT STOCK DETAILS TELEPHONE 013283787

OR VISIT US AT
55 KILBURN HIGH ROAD NW6

SETS \& COMPONENTS
TELEVISION TUNER REPAIRS ALL TYPES
BRITISH, EUROPEAN JAPANESE ETC.

MEN-TU ELECTRONICS LTD.

 SALTERNS LANE, FAREHAM, HANTS.Tel: 0329-235116

WIZARD DISTRIBUTORS

MANCHESTER
SPECIALIST DISTRIBUTORS TO THE TRADE OF T.V. \& VIDEO SPARES
WE STOCK A FULL RANGE OF PARTS \&
COMPONENTS INCLUDING C.R.T.'s
RANK - THORN - PHILIPS - ITT DECCA - GEC ETC.
THANDER \& LEADER STOCKIST
TRADE COUNTER OPEN: 9-4.30 CATALOGUE ON REQUEST. Mail Order Enquiries Welcomed EMPRESS STREET WORKS, EMPRESS STREET, MANCHESTER M16 9EN. TEL: 061-848 0060

TV VALVES

COLOUR VALVES PY500/AL65D, PL509/519-f1.50. MONO VALVES ECC82, EF85, EF183, EF184, DY87, DY802, PCF80, PCF802, PCL82, PCL83, PCL84, PCL85)
805 PC 86 PCC84, PCC89, PC92 PC97, PC86, PC88,
 MONOCHROME VALVES ALL 35 P EACH.
AL VALVES EX-EOUIPMENT \& TESTED.
P\&P 50 p Per order, Access/Visa Cards welcome. ELECTRONIC MAILORDER, 62 Bridge St., Ramsbottom, Lancs, BLO 9A'G. Tel. (070682) 3036.

TELEVISION

Trade Supplies of Good Quality Colour \& Mono TV's. Most Makes available, suitable for Sale or Re-Rent.

GENERAL UNIoNSTREET FACTORS
 GOOD MOTORWAY ACCESS

REBUILT COLOUR TUBES DELTA TYPES

Example Prices
All sizes up to $22^{\prime \prime}$ - $£ 28.00$ All sizes up to $26^{\prime \prime}-£ 32.0$ C

All In Line P.I.L. Mono Gaming Machine C.R.T.s

Fast U.K. Delivery Call or Phone:
RE-LIFE T.V. TUBES
PLANE STREET, OLDHAM, LANCS. 061-665 2668
Big reductions on Contract Orders Home or Overseas. Wholesalers Required in certain parts of the U.K.

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.
The prepaid rate for semi display setting $£ 6.00$ per single column centimetre (minimum 2.5 cms). Classified advertisements 35 p per word

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact COLES-HARDING \& CO, 103 South Brink, Wisbech, Cambs. 0945 584188. Immediate settlement.

TELEVISION

Trade \& Retail supplies of s / h colour \& mono TVs. Most makes available, workers or non-workers

SOUTHPARK DISTRIBUTORS

 Unit 4 Rubastic Road,Brentpark Industrial Estate, Southall, Middx. UB2 5 LL. 01-574 4631, Ext 28

EX RENTAL C.T.V.'s \& REGUN TUBES

RBM, THORN, DECCA, PYE GEC, GRUNDIG, ITT, PHILIPS G8; G9, G11, JAPANESE From $£ 10$
Also all modules from $\mathbf{£ 4}$ untested.
STARLITE ELECTRONICS,
80 Como St., Romford, Essex.
Telephone Romford 752537 London Code 3.

SCHRadER TUNABLE UHF Masthead Amplifier RB45 A.S. MV 30DB gain, 1.6DB noise. CH. 17-65. P.S. inclusive $£ 39.50$ P\&P $£ 1.50$. R. VAN REYSEN, 28 Pemberton Road, East Molesey, Surrey.

NWIELECTRONICS Sale of the Year! Open 6 days Mon-Sat until 5.30
 2,000 Colour T..'s to Choose from
 BUSH 1 CHIP £10 BUSH 2 CHIP £15

(Excellent Cab condition. Change over sets - high percentage workers)
GEC 2010 PLASTIC AND WOOD CAB................... $£ 25$
PHILIPS G8 £15
PYE 223 £35
BUSH 718 TIL TUBE. £35
BUSH T22P.O.A. (dependent on quantity required) Other makes in stock include G11, HITACHI, SANYO ETC.

White Goods

FRIDGES, FRIDGE/FREEZERS, HOOVER TWINS, HOTPOINT TWINS, AUTOS etc.
SPECIAL OFFER - We need the room -
100 HOOVERMATICS MIXED 3174, 3334, 3301L £500 - DELIVERY ARRANGED. LARGE QUANTITY FRIDGES,FRIDGE/FREEZERS FROM $£ 10$ HOOVER AUTO'S FROM £14
Don't forget we are open all day Saturday $9-5.30$
CASH ONLY - WORKING TV'S FROM £29 - ASK FOR DETAILS.

UNTT 1, WHARFEDALE ROAD, M606, EUROWAY ESTATE,
BRADFORD. [0274] 688458
OPEN MON - SAT 9-5.30

EERONCE PAGEE

(minimum 12 words), box number 70 p extra. All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television Room 2612, IPC Magazines Limited, Kings Reach Tower, Stamford Street, London SE1 9LS. (Telephone 01-261 5846).

BARRY TV SERVICES

(EAST ANGLIA)
Your friendly wholesalers. We cater for the smaller dealer who requires regular small supplies of quality used colour TV's. From £25 + VAT. Fully working with good tubes and cabinets, straight from our retail shelves, ready to sell or rent.
Delivery available
Contact John, Dave or Steve on Ely 61462
or Cambridge 69215
COLOUR BAR GENERATOR
Pal Colour Generator whth 11 patterns plus mound. Groy scalo, Colour Bars, Red, Green \& Blue Ramter, Crosehutch, Dots, Chequer Board, Black Raster, Whte
Rester, Hal' Bleck \& White

BLACK AND WHITE GENERATOR Crosshatch, Peak White, Dots, Half Black \& White and $\begin{array}{lr}\text { Grey Scale } \\ \text { In Circult Transiator Testar } & \text { E18.50 } \\ \text { E14.25 }\end{array}$ CapacitanceMeter measures $10 \mathrm{pFto} 1 \mu \mathrm{~F}$ completewith moving coil meter

Prices include P\&P \& VAT.
C.M.J. ELECTRONICS

Unit 8, 16 Union Mill Streat, Horaeloy Fialds, Wolverhampton WV1 3DW.

Td: (0902) 871583

TRADE COLOUR TV's ALWAYS 200 IN STOCK Phillips 68 from 110 Bush Twin Chip from 88 Pye Chelsea from $\mathbf{C 1 5}$
 Avo repairs prompt service scopes etc Colour TV's in good working order from $£ 35$. E.G. Phillips G8's $22^{\prime \prime}$ E35.
 Ring us for spares and type availability
 Also Videos. V2020 and V2023's etc ALL STOCK CHANGES WEEKLY
 (0934) 514047/512792/27560 P\&R SUPPLIES, Unit 5, Worle Industrial Estate, Weston-Super-Mare. Exit 21 M5.

: NTELEBEST t
 We specialise in working sets.
 BUSH • DECCA • G.E.C. GRUNDIG • PYE • PHILIPS THORN Etc.
 From $£ 25$ plus VAT. Non workers available
 Mono $£ 1.00$ plus VAT Call Ronnie on: 01 -514 1333 for stock availability 841 Romford Road, Manor Park, London E12.
 SCRATCHED TELEVISION TUBES. Don't despair send for repair, 20 years experience. Retube Limited, North Somercotes, Louth, Lincolnshire. Phone 0507 85300.

GREYFIELD ROAD, HIGH LITTLETON, NEAR BRISTOL

(A. H. GORE LTD. EST)
"TELESCENE" BRISTOL
TRADE SALE OF T.V.s
COLOUR $\quad £ 18.00$ to $£ 30.00$ INC. VAT
MONO £4.50 EACH INC. VAT

ALL COMPLETE MOST WORKING

 ALL SIZESAll Enquiries Welcome
Tel TIMSBURY 72228
After 6pm BRISTOL 834548

TUBES $£ 29.00$ INclusve Reguns one vear guarantee. TUBES $£ 14.50$

QUANTITY DISCOUNTS
SIX MONTH GUARANTEE SLIGHTLY USED

A56-120 A51-110 A49-191 A47-342 or 343 A44-270-1 A66-120 A67-120 (All 26" add £5)
IN-LINE 51-161 From $£ 35$ plus 100 's more
Professional Stick DE-GAUSING COILS $\mathbf{£ 1 9 . 5 0}$ inclusive of delivery. One year guarantee.
Delivery $£ 5$ per tube. British Isles. No need to spend $£ 5$ returning old tube if you buy from us. U-VIEW TUBES, 29 WARMSWORTH ROAD, DONCASTER, YORKSHIRE DN4 ORP. Tel: 0302-855017 Callers ring first. Open every day including Sunday Local stockists. Cash \& Carry only at the above prices. Ring first. Please bring old tube if possible. DELTA TVs. Unit 5A. Union Mill, Union Mill Street, K. M. ELECTRONICS, 8 Hillfield Place, Aberporth, WOLVERHAMPTON OTHER STOCKIST REQUIRED DYFED O902870757

OTHER STOCKIST REQUIRED
0239810963

SATELLITE TV RECEIVER

Receives $3.65-4.2 \mathrm{GHz}$ band. Ideal for demonstration terminal in UK. 100 degree KELVIN LNA. £385 + Carriage.

SAE DATA, TVDX lists,

H. Cocks,

Cripps Corner, Robertsbridge, Sussex. Tel: 058083317.

GLOBETEL

Tel: 8076992
Les \& Phil - Ex. S.T.S. Colindale Rear of Globestone Ltd.,
1-7 CHURCH ST., EDMONTON.
We have now opened our own warehouse for used T.V.'s at very fair prices.
All popular makes in stock, eg: Philips, Pye, Grundig, Jap. sets, etc.
Look forward to seeing both old and new cust.
We also stock \& buy used videos - VHS only.

GRUNDIG. We sell complete working sets from $£ 40$. Reconditioning panels from $£ 4$. We buy remote control handsets. OCHREMILL 0785-814643.

The UNIVERSAL TRIPLERcan be used in most G.E.C.. I.T.T.. Pye. Rank. Decca \& Continental sets. WING ELECTRONICS
15 Waylands, off Tudor Rd, Hayes End, Midalesex

T.V.
 SPARES, PANELS - AND MANUALS

 PHILIPS. GRUNDIGTELEVIEW
01-994 5537
194, Acton Lane, London W.4.

WOODSDALE COMPONENTS RANK BUSH MURPHY TRANSFORMERS

Line Ouput

2718 (7703A, T706A)
New (Complete)
Less Focus Module and
Rectifier
£10.50
T20, T22 (T705A) £9.00
T26 (T705B)
Switch Mode
T114A/B $\varepsilon 9.50$
-
Genuine RBM Units.

AERIALS

UHF Aerials P \& C Wideband 4 Bay Bowtie (12.5 dB)
£20.00
Above with built-in Broadband amp. (27 dB) plus stabilised power supply

Prompt Posta/ Service. Add 15\% VAT to all prices. DISCOUNT for QUANTITIES.
34 Field End Road, Eastcote,
Pinner, Middiesex. HA5-20t.
Tel: 01-868 5580
N. Skehan

Agents Office. Callers by appointment only.

GRUNDIG MILLIVOLTMETERS $100 \mu \mathrm{~V} / 300 \mathrm{~V}$. Working order $£ 15+£ 3.00$ p\&p. Also P.S.U.s, isolating transformers, etc. S.A.E. Lists, S.H.E., 5 St Josephs Park, Ballycruttie, Downpatrick BT30 7EN.

CANVEY COLOUR TUBES

Unit 3, Charfleets House, Charfleets Industrial Estate, Canvey Island, Essex.
Tel: Canvey Island (0268) 690577

CURRENT PRICE LIST

DELTA TUBE TYPE FROM $£ \mathbf{2 7 . 5 0}$ to $£ \mathbf{£ 1 . 5 0}$ INLINE TUBE TYPE FROM $£ 35.00$ MONO TYPES P.O.A.

ALL PRICES EXCLUSIVE OF VAT.
All Tubes Guaranteed for 2 YEARS and Reprocessed
to Original Manufacturers Specifications.

COLOUR T.V.s

THE BEST IN LONDON 200 + TVs WEEKLY

LOADS SMALL SCREEN WORKING SETS TO
ORDER - ALL MAKES
WINDSOR WHOLESALE
TEL: 01-968 8771.

Wetsted Tubes PRESENTS AN UNBEATABLE OFFER
f26 ALL DELTAS ONE PRICE
E40 ALL PILL. ONE PRICE

* SPECIAL CRT POLISHING SERVICE

WHILE U WAIT Only 85

* ALL DELTA SIZES FROM STOCK
* DISCOUNT FOR ORDERS OF 5 CRTs OR

OVER

* FREE DELIVERY WITHIN 20 MILE

RADIUS OF MAIDSTONE Ring Now
Maidstone 872400
or visit our factory.
Unit 32, Branbridges Ind Est. East Peckham, Kent.

* Agents required in South

Prices do not include VAT

* Britains most reliable source of quality TVs.
* Hundreds of working polished TVs.
* New adjustable TV stands.
* Pye 18" Chelsea's working \& polished $£ 35.00$ in quantity.

Krystal Marketing Ltd,
Breedon Cross Storage
Dale Road, Selly Oak
Phone 021-471 3023 Telex 335540-G Ask for Les

COLOUR TV PANELS Fully Tested \& Working

	If	CDA	Decoder	LTB	Line Board	frame Board	Power			
DECCA 13/30	3.00	-	7.00	5.00	-	-	4.00			
BUSH 'A'	2.00	-	5.00	5.00	2.50	-	2.00			
THORN 8-8i ${ }^{\text {a }}$	-	-	10.00	5	-	-	5.00			
PYE 205	3.00	3.50	5.00	8.00	-	2.00	-			
THORN 3+31K	3.00	-	5.00	8.00	-	-	10.00			
G8	6.00	-	8.00	5.00	15.00	-	5.00			
BUSH twin chip decoder 10.00					fitted with brand new					
Post \& packing: 1 panel $£ 1.50 ; 2$ panels $£ 2.25 ; 3$ panels $£ 3.00$ etc. Hybrid panels do not include valves.										
	s cas	order.		s full	£10					

LAVITE LTD.,
Golcar C of E School, Church St, Golcar, Huddersfield. Tel. : 0484-643273 Callers by appointment only.

We have moved into additional warehousing and are now offering MORE CHOICE AND BETTER VALUE
Guaranteed-Complete Sets from $\mathbf{\Sigma 1 0 . 0 0}$Trade Workersfrom£25.00
Panels By Post from $£ 3.00$Mono's from $£ 1.00$Stands - Aerials - Accessories Etc.
Make'84 your most

Profitable year with
SCREENPLAY'S unbeatable Stocks and Prices
OPEN 5 DAYS -
Phone: Hitchin 31644
SECTION THREE, UNIT FOUR, SERL COMPLEX, LONDON ROAD, BALDOCK, HERTS.

EERUICE PQCES

YOUR NORTH EAST LONDON C.R.T. DEALER

Deltas from $\mathbf{£ 2 5}$
Philips G11 Tubes £37-£40
2 YEAR GUARANTEE
Phone
ANGUS 01-986 0702

```
[-------------
```


WANTED

WANTED - WANTED - WANTED TV's - TV's TV's Colour \& Mono. Also Videos (regular supplies if possible). Any quantity, any make. Telephone Bradford 0274 480281. Manchester 061-798 0037.

WANTED. Telequipment Oscilloscope Type S54 for parts. Telephone 0222797469 anytime.

WANTED PHILIPS PM5334 Television Sweep Generator. Telephone 01-328 7641.

WANTED. ET 021 Tuner, VHF-UHF. Phone Rob, (01) 3412642 mornings.

COMPLETE TUBE RE-GUNNING plant. Electric ovens also Lopt winding machine. KELLEHER bROS, TV House, Kanturk, Cork, Ireland. Tel. 029 50046.

WANTED. We will clear any amount of colour sets from small Rental Companies, Hotels, etc. Please phone P \& R Domestic Electrical Clearance Supplies, Weston Super Mare (0934) 514047.

WANTED. QUANTITY G11's or other late colour T.V.s. No rubbish. Can collect Sussex/Kent. (0424) 439260.

WANTED FOR CASH any videos, TV's, televertas, test equipment or tube plants. Ring Scott on 01-299 1234.

WANTED HITACHI CTV's, Model CTP210 \& CBP220. Phone Littlehampton 4717 anytime.

AERIALS

2 METRE PARABOLIC DISHES

Glassfibre Construction.
Suitable for 4 And $12 \mathrm{GHz} £ 290$
Polar Mounts And Feed Supports Available. Send S.A.E. for Details SP ANTENNA SYSTEMS,
3 Woolpack Corner, Biddenden, Ashford, Kent TN27 8BU Tel: 0580291090

AERIALS AND ACCESSORIES

North Londons Spacialist Aeriel Supplifer Whatesele and Mall Order.
VHF/UHF antennas, masts, brackets, cable, amplification and distribution equipment etc. All types of aeriai tion and distribution equipment etc. All types of aeria hardware and sortware suppled.
systems planned and installed.
Send 50p for our new 1983 catalogue and price list.
S.C.S. AERIALS

26-28 Port Vale, Hertford, Herts. SG14 3AB. Tel: 099250478.

AERIAL BOOSTERS
Next to the set fitting
B45H/G-UHF TV. gain about 200bs, Tunable over the complete UHF TV band. Price 88.70
BII-VHF/FM RADIO, gain about 14dbs, when on the off position connects the aerial direct to the radio. Price $£ 7.70$.
All boosters we make work off a PP3/006p/6F22 type battery or

encs Pio Mac. Tol (070
Access $N_{\text {isa }}$ Cards Welcome
SAE Leaflets

SERVICE SHEETS

30,000 SERVICE SHEETS IN STOCK. COLOUR MANUALS ALSO AVAILABLE

TV Monos, Radios, $\mathbf{~ 3 . 0 0}$. Tuners $\mathbf{2 3 . 0 0}$. Tape Recorders, Record Players $\mathbf{2 3 . 0 0}$. Transistors $\mathbf{8 3 . 0 0}$. Car Radios $\$ 3.00+$ SAE Stereograms \& Music Centres $\$ 3.00$. Radiograms $\$ 3.00$. Also Colour available. State if circuit will do if sheets are not in stock. Circuits $£ 3$-colour. All TV Sheets are full length 24×12 not in Bits and Pieces. All other Data ful lengths. All Sheets $\varepsilon 3$ except colour. SAE please. Old Valve Radios $\varepsilon 3+$ SAE 9×3. Ensure payment with order.
C. CARANNA, 71 BEAUFORT PARK, LONDON NW11 6BX.
(MAIL ORDER)

ORDER FORM please Write in block capitals
Please insert the advertisement below in the next available issue of Television for
insertions. I enclose Cheque/P.O. for $£$
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd and made payable to Television)

Send to: Classified Advertisement Dept.

NAME.
TELEVISION
Classifiod Advertisoment Dapt., Room 2812
King's Reach Tower, Stamford Streat,
London SE1 9LS. Telephone 01-281 5846.
Rate
35p per word, minimum 12 words. Box No. 70p extra.
Company registered in England. Registered No. 53626. Registered Office: King's Reach Tower, Stamford Street, London SE1 9LS.

FOR SALE

TOP QUALITY	OE	TOP QUALITY
Makes	Non-Workers	Working
Philips G8S, 2 chip Bush/Murphy	£16	£30
Thorn 3000, 3500, 8000, 8500	£18	£30
Thorn 8800, 9000, 9800, Touch Tune Sets etc.	£30	£45
Bush T20's, Philips G11's	£50	£70
GEC Solid State, all types	£25	£45
ITT CVC 5/8/9	£14	£30

MONO IN BATCHES OF 20 at $£ 2.00$ EACH. Discount for quantity. Other makes avallable on request.
Spare TV parts and panels available for the
above sets mentioned at competitive prices.
Please refer to last month's issue of Television
for price list.
N. B. Note to give prompt service, telephone to order in advance to avoid disappointment.

ONE METRE DISH for satellite T.V. Slight damage, hence $£ 60$ o.n.o. Peter 01-452-3292.

RADIO AND T.V. SERVICING 1965/66-1977/78. (Less 1967/68). 12 volumes £55. Tel. 0222372930.

JAPANESE COLOUR TVs, Panasonic, Hitachi, Mitsubishi, Toshiba, Sharp. Fully refurbished - to trade only. J. M. PEARSON TELEVISION 0484 863489.

JVC CX610GB VHF/UHF. PAL/SECAM. Colour TV/ Monitor. $5.5 / 6.0 / 6.5 \mathrm{mhz}$, sound I,F. as new $£ 135$. Telephone 01-5775355.

VINTAGE TELEVISIONS FOR SALE, (Pre-War sets wanted). For details Tel. 0889478416.

SECONDHAND HEATHKIT signal tracer for sale, fully assembled mode! IT-5283. Tel. 01-289 0598.

cOURSES

CONQUER THE CHIP... Master modern electronics the PRACTICAL way by SEEING and DOING in your own home. Write for your free colour brochure now to British National Radio \& Electronics School, Dept. C4, Reading, Berks RG1 1BR.

VIDEO

EUROLEC VIDEO SERVICES
 Tel: 01 665 2611 Telex: 893819 Eurlec Address for correspandence only:

 35 Sandy Lane South, Wallingten, Surrey SM6 9RF We still have a number of new LVC 60 and LVC 90 for 1700 format machines, Price $£ 5.50887 .50$ inc, p\&p and VAT. We also hold stocks of high and low density $\frac{1}{2 \prime \prime}$ tape on $7^{\prime \prime}$ spools, suitable for Sony and similar machines. Due to our increases sales of VHS tapes we can now offer the following lengths, E10, 15, 20, 30, 45, 90, 120 \& 180 (shorter lengths on reasonable quantity 1208 (shorter lengths on reasonable quantityorders). We also import a good grade of VHS cassette orders). We also import a good grade of VHS cassette
at $£ .50+$ VAT for E120, $£ 3.50$ for E180, (minimum quantity either type or mixed, 10 off. Allow 7 days for quantity either type or mixed, 10 off. Allow 7 da
delivery and add 25 p for postage per cassette).
The more professional user may be interested to learn that as a result of the change by meny companies and authorities to front loading machines, we are normaly in a position to offer a range of second user Umatic edit suites, prices start at $£ 1,900$ for a complete suite, checked and overhauled where necessary, Sony, JVC and National generally available. We can also offer used colour studios and portable cameras.
Finally, due to the transfer to colour systems by various major users, we aiso have two complete monochrome TV studios on offer for export of UK use.
For current stock availability, please telephone or telex numbers above.
STOP PRESS! Trade in units currently availablel JVC 2200 VHS portable recorder, charger and carrying JVC 2200 VHS portable recordar, charger and carrying
case $£ 250$ + VAT. Sony SLC 2000 camera in travelling case $£ 250$ + VAT. Sony SLC 2000 camera in travelling
case, SL 3000 UB portable Beta recorder with two case, SL 3000 UB portable Beta recorder with two
batteries, car power adaptor, TT3000 tuner timer $£ 700$ batteries, car power adaptor, TT3000 tuner timer $£ 700$

+ VAT. Current Philips prajection TV, 60CP 2605 integral tuner, no screen $£ 750$.
NTSC - PAL Transfers, ring for quote.
VAT Reg. No. 335709645

SITUATIONS VACANT

MASTERCARE is Europe's No. 1 in servicing Consumer Electronics for the Trade

WORKSHOP SUPERVISOR TV/VCR

Are you an experienced Service Engineer with a recognised trade qualification, proved field experience and a talent for motivating people?
Check out these advantages of joining Mastercare:-

- Active participation in a wide variety of assigriments
- Responsibility to lead a small team of Engineers
- Full parts and admin back-up by Mastercare professionals.
- Regular up-date training on new products
- Plus - naturally, staff status, a competitive eamings package and all the benefits you would expect from a large and successful Company

BUSINESS/PROPERTY FOR SALE

FOR SALE

A small television repair business in East Devon seaside town.
Considerable number of T/V, Radio Service Sheets 1934 to date.
Elderly Test, P.A. and similar gear.
TELEPHONE
(0297) 20201

SETS \& COMPONENTS

RANK BUSH MURPHY TV PANELS

Repair, exchange, sales service, prompt efficient service. All chassis covered. New PCB available to replace burnt T20 line Panel. We charge only $£ 16$ to repair switch mode power supply. Ring Monday to Saturday and ask for Mr. Kheli.
T. K. Panels Service,

31 Bronte Paths, Stevenage, SG2 OPG.
Tel. (0438) 61567

BOOKS AND PUBLICATIONS

"RADIO AND TELEVISION SERVICING" books, new editions for the last 6 years always in stock. Prices on request. BELLS TELEVISION SERVICES, 190 Kings Road, Harrogate, N. Yorkshire. Tel. 0423 55885.

COMPLETE FULL-SIZE SETS any published service sheets $£ 2+$ LSAE except CTVs/Music Centres from £3 + LSAE. Manuals from 1930 to latest. Quotations, free 50 p magazine, price lists, unique technical publications for sale. Repair data/circs almost any named TV/ VCR $£ 8.50$ by return. TIST, 76 Church Street, Larkhall, Lanarks ML9 1 HE Phone (0698 883334),

EARN CASH NOW

With New Published Manuals
Domestic appliance reconditioning and repair, Two volumes only $£ 12.50$ post free. Also, a professional guide to sewing machine repair for profit. Two volgumes only $\mathrm{f8.50}$ post free. Both with full repair and fault guides. Leaflets available.

MARCHANT (Dept TVT),
30 Chester Road East.
Shotton, Clusyd, N. Wales.

MISCELLANEOUS

BURGLAR ALARM EQUIPMENT. Latest discount catalogue out now. Phone C.W.A.S. ALARM 0274 682674

TOOL KITS

impress your customers with our smart executive type case, can be purchased with or without tools.
Size: $43 \times 32 \times 9 \mathrm{~cm}$
(Aluminium frame).
Tools: Seven nut spinners (B.A. and metric), soldering iron, crosspoint and screwdrivers, neon tester, inspection mirror, $5^{\prime \prime}$ cutters and pliers. Price with tools $£ 40.00$ (includes a component box). Price without tools $\mathbf{E} 25.00$ (includes a component box). Price of iools alone, no case $\mathbf{£ 2 0 . 0 0}$. Please add $\mathbf{E 2 . 5 0} \mathrm{p} \& \mathrm{p}$. (Money refund if dissatisfied).

KITONICS
7 The Meadows, Berwick Upon Tweed

COLOUR TV SETS

Philips G8, Pye 222, Decca 30 series, ITT, Pye Chelsea, Thorn 3500/8000, GEC, many others including JAP.

Working hybrids from $£ 15$.
Working solid state from $£ 25$. Non-working sets from $£ 5$.
Working panels and tubes available.
REBUILT TUBES
Delta - In Line - PIL.
SOUTHBRIDGE TV CENTRE
120, Selhurst Rd., London, S.E. 25.
Tel: 01-771 3535.

IRISH T.V. DEALERS

Large quantity of working Colour \& B/W T.V. sets UHF-VHF. Nordmende, Bush, Philips, Ferguson, Pye, etc. at very competitive prices.

Working colour sets at $£ 70$
Fresh stocks weekly, quantity discount, delivery arranged.
(SPECIALISTS IN OVERSEAS ORDERS)
For further details ring:
J. HYDE at 01-264139 Extn. 11.
T.V. TRADE SALES, E.D.I. House, Kylemore Pk. West, Dublin 10. (Open 10 to 5.30 pm)

Prices exclude VAT.

EMCO - EUROSONIC - GRUNDIG - TELETON + ALL BRITISH MAKES
 ETC., ETC. ALL SPARES READILY AVAILABLE

IMMEDIATE CREDIT AVAILABLE - TRADE ONLY

If you are a trader simply phone for the part you require and we will send it - no quibble - no hold up for status check. Satisfy us over the phone that you are a trader and we will supply almost any TV component by return "off the shelf". e.g. LOPTX - EHT trays - droppers - OSC coils - switches - cans smoothers - l.C.'s, etc. etc.

YOU CAN BE 95\% SURE WE CAN SUPPLY ANY
TV COMPONENT BY RETURN IF YOU NEED SPARES FAST - RING NOW!
ACCESS AND BARCLAYCARD ACCEPTED.
Applies to U.K. only.

DISPLAY ELECTRONICS

UNIT 4, SWAN WHARF, WATERLOO ROAD, UXBRIDGE, MIDDLESEX. UXBRIDGE 55800

Your Accessible CRT Rebuilders

UXBRIDGE
Constructional Work on the Poyle Nxbridge section of the M25 is now in progress and when completed we shall be less than 10 minutes from: M3 M25 junction $2 / 2$ M4/M25 junction 4/14 M40 M25 junction $1 / 15$

WATFORD STOCKIST	SOUTH LONDON STOCKIST
TV SALES	
WATFORD 45550	N \& ELECTRONICS
	$01-6720802$

1984 PRICE LIST Delta types
90° up to $19^{\prime \prime}$. $£ 33$
90° up to $22^{\prime \prime}$. $£ \mathbf{£ 3 6}$
90° up to $26^{\prime \prime}$. $£ 39$
110° up to $22^{\prime \prime}$. £42
110° up to $26^{\prime \prime}$. $£ 45$
In-Line types
Up to $22^{\prime \prime}$. $\mathbf{£ 4 6 * ~}$
Up to $26^{\prime \prime}$. £49*
*Multipole 30AX ADD $£ 5$.

QUALITY CHECK LIST
裓 BRAND NEW GUNS
$\dot{\star}$ HOT PUMPED
\& RF BOMBED
\& PULSE FLASHED
\& EMISSION STABILISED

BUDGET DISCOUNTS AVAILABLE
Ask for Green Label Prices

28 mm Monotubes available

CALLERS WELCOME

Please phone first to reserve your requirements.

LATE NIGHT THURSDAYS UNTIL 8 PM SATURDAY UNTIL MIDDAY

CRT REBUILDERS SINCE THE '60s TO MAJOR AIRLINES, M.O.D., UNIVERSITIES, INDUSTRY AND OF COURSE TO THE TV trade in general

[^0]: Goods available if in stock immediately over shop counter (Mail order between 3 days and 1 week from receipt of order).

[^1]:

 - PRECISION VISION LTTD.
 i 67 LONDON ROAD, HEADINGTON, OXFORD
 SPECIAL OFFER THIS MONTH:-
 in Large quantity of $18^{\prime \prime}$ Decca PIL Tube 80 Series, all in good working order.
 Im Limited quantity of Toshiba Colour Portables.
 In Used VHS, Beta, 2000 System Videos in excel
 - lent working order.
 - $\dot{\omega}$ Good selection of modern colour TV's.

 PLEASE PHONE FOR CURRENT STOCK POSITION
 (0865) Oxford 750212

