

samierie
 THE DEGGATO SJilas GHasgis 4 CHE LOW MOISE AMPLIFIER
 paryiv druaition? QuGK GHEGHS C\&A

Interested in Television Servicing?
 Try a ZED Pack. Effect Repairs at Minimum Cost.

GEMINI ELECTRONIC COMPONENTS

Dept. TV, The Warehouse, Speedwell Street, London S.E.8.
Please quote ZED code where shown. Send cheque* or Postal Order. Add 60p P\&P and 15\% VAT
*Schools etc. SEND OFFICIAL ORDER. Allow up to 28 days for delivery. Most orders despatched same day.
ZED PACKS now available for CALLERS at 50 Deptford Broadway, London, S.E.8.
Send large S.A.E. for list of Quantity. Prices and Clearance Lines etc.

TELEOR5ROR

September 1983

Vol. 33, No. 11
Issue 395

COPYRIGHT

GIPC Magazines Limited, 1983, Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS.

SUBSCRIPTIONS

An annual subscription costs $£ 11$ in the UK, $£ 12$ overseas (by surface mail). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.

BINDERS AND INDEXES

Binders (£4.50) and Indexes (45p) can be supplied by the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Prices include postage and VAT. In the case of overseas orders, add 60p.

BACK NUMBERS

Some back issues are available from the Post Sales Department, IPC Magazines Ltd.,'Lavington House, 25 Lavington Street, London SE1 OPF at $£ 1 \cdot 10 p$ inclusive of postage and packing.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. All correspondents expecting a reply should enclose a stamped addressed envelope.
Requests for advice on dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

this month

569 Leader
570 Long-distance Television by Roger Bunney Reports on DX reception and conditions and news from abroad.
575 Teletopics News, comment and developments.
576 Next Month in Television
577 VCR Clinic Notes on VCR faults and servicing from Steve Beeching, T.Eng. (C.E.I.), Derek Snelling, Mick Dutton, Mike Sarre, Peter H. Dolman and Les Harris.
579 Vintage TV: Fernsehsender Paris by Alexander Wiese Forty years ago a unique TV station was in operation in Paris. It used a 441-line system.
580 The Passing Over of Tiny Tim by Les Lawry-Johns Considering his single-handed, thirty year war against inflation, shouldn't Tiny Tim have received at least a knighthood?
582 4GHz Low Noise Amplifier
by Hugh Cocks
A four-stage low noise amplifier for satellite TV reception in the 4 GHz band, using gallium arsenide f.e.t.s. You may not want to watch those Russian signals, but this is the type of technology you'll have to get used to with satellite TV.
585 The Ultimate Pattern Generator?
by Steve Beeching, T.Eng. (C.E.I.)
Steve Beeching finds the Grundig VG1000 the ideal pattern generator for VCR work - and probably too good for TV servicing. The signals are up to broadcast specification and include a sine squared pulse and bar, vector test pattern, and a comprehensive test pattern with circle.
588 TV Fault Finding
Reports on TV faults from Peter H. Dolman, T. J. Hawken, Tech. (C.E.I.), George R. Wilding and R. J. Fox.
589 VCR Servicing, Part 21 This time the operation of the 3 V 23 's tuner/timer board, which uses two more microcomputer i.c.s.
592 Quick Checks O and A, Part 1
by S. Simon A practical guide to tackling common TV faults quickly and efficiently.
594 The Betamax Video System, Part 2 by Eugene Trundle Luminance techniques, including the use of a comb filter to provide luminance crosstalk cancellation.
596 Servicing the Decca 70-90 Chassis
by Neil Dobson
The Decca 70, 90 and 110 series chassis have proved to be highly reliable. A run down on the few faults you can expect to encounter. With full power supply circuit.
598 Ayr Teletext Adaptor Review
by Vivian Capel
The Ayr adaptor brings remote control as well as teletext to
the domestic TV installation. Good value for money though you may have to make a couple of small adjustments.
599 Readers' PCB Service
600 Test Case 249
601

Service Bureau

OUR NEXT ISSUE DATED OCTOBER WILL BE PUBLISHED ON SEPTEMBER 21

MANOR SUPPLIES

NEW MKV CHEQUERBOARD \& PAL COLOUR TEST GENERATOR FOR TV \& VCR.

* 40 different patterns and variations.
\star Broadcast transmission accuracy (fully interlaced sync pulses with correct picture blanking).
\star EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red, blue and black.
\star Chequerboard.
* Mono outputs with border castellations, cross hatch, grey scale, vertical lines, horizontal lines and dots.
UHF modulator output plugs straight into receiver aerial socket.
\star Additional video output for CCTV \& VCR.
\star Facilities for sound output.
\star Easy to build kit. Only 2 adjustments. No special test equipment required.
\star Mains operated with stabilised power supply.
\star All kits fully guaranteed with back-up service.
\star Also available with VHF Modulator.
Price of Kit
Standard Case ($\left.10{ }_{2}^{\prime \prime} \times 6 \frac{1}{2}^{\prime \prime} \times 2 \frac{1}{2}^{\prime \prime}\right)$
De Luxe Case ($10^{\prime \prime} \times 6^{\prime \prime} \times 24^{\prime \prime}$)
58.50

Optional Sound Module (6 MHz or 5.5 MHz) $£ 4.50$
Built \& Tested in De Luxe Case including Sound Module

$£ 120.75$
TTELEVISION
Post/Packing $£ 2.50$
_DEC. ${ }^{1882}$ - 1 All above prices include VAT 15%
PAL COLOUR BAR GENERATOR (Mk4)

\star Output at UHF, applied to receiver aerial socket.
\star In addition to colour bars R-Y, B-Y etc.
\star Cross-hatch, grey scale, peak white and black level.
\star Push button controls, battery or mains operated.
\star Simple design, only five i.c.s on colour bar P.C.B.
PRICE OF MK 4 COLOUR BAR GENERATOR KIT
£34.50. DELUXE CASE £8.50. BATT HOLDERS $£ 3.20$ OR MAINS SUPPLY KIT $\mathbf{~} 4.80$ (Combined P\&P £1.80).
MK 4 DE LUXE (BATTERY) BUILT \& TESTED 866.70 + $£ 1.80 \mathrm{P}$ \& P .
MK 4 DE LUXE (MAINS) BUILT \& TESTED 580.50 + 11.80 P \& P.
VHF MODULATOR (CHI to 4) FOR OVERSEAS 86.60.
EASILY ADAPTED FOR VIDEO OUTPUT \& C.C.T.V.
(ALl PRICES INCLUDE 15\% VAT)
MANOR SUPPLIES TELETEXT ADAPTOR KITS
MK 1 (Texas XMII) Cable remote control $£ 170.20$ p.p. $£ 2.80$. MK 2 (Philips/Mullard) Infra-red remote control ${ }^{\mathbf{E} 227.70}$ p.p. £2.80.
Further details on request.
Goods available if in stock immediately over shop counter (Mail order between 3 days and 1 week from receipt of order).

TV SERVICE SPARES

BACKED BY TWENTY YEARS EXPERIENCE \& STAFF OF TECHNICAL EXPERTS

TELEVISION MAGAZINE PROJECT PARTS

 NEW COLOUR PORTABLE TVMONO PORTABLE TV, SMALL SCREEN MONITOR LISTS AVAILABLE, PANEL TEST SERVICE
MULLARD TELETEXT DECODER + INTERFACE suitable for use with TX10 869.00 p.p. $£ 1.80$.
THORN TX9, TX10 SAW FILTER IF PANELS $\mathbf{E 5 . 7 5}$ p.p. 85p.
SAW FILTER IF AMPLIFIER PLUS TUNER COMPLETE AND tested for T.V. SOUND \& VISION 232.80 p.p. $£ 1.20$ (SUITABLE FOR USE WITH TELEVISION SIGNAL BOARDS)
RGB DECODER KIT FOR COLQUR AQNITORS $£ 31.00$ p.p. $£ 1.00$.
SPECIAL OFEER TF
SPECIAL OFEER TEXA\& XIMII TELETEX DECODER NEW \& PESTED, AT REDUCED PRICE $£ 46.00$ p.p. $\mathrm{E1} 1.60$.
PHILIPS-PYE G11 TYPE TELETEXT DECODERS 234.50 p.p. 41.60 .
THLETEXT 23 BUTTON DE-LUXE HANDSET WITH 5 YDS. QABLE ع7.80 PR f $f 120$ XMII STAB. POWER SUPPL Y \&4A0 P.p. $£ 1.20$. CROSS HATCH UNIT KIT, AERIAL INPUT TYPE, INCT F. $\dot{\text { F. }}$. Y YNC AND UHF MODULATOR. BATTERY OPERATED. ALSO GIVES PEAK WHITE \& BLACK LEVELS. CAN BE USED FOR ANY SET £12.65 p.p. 60p. (ALUM CASE $£ 2.60$ DE LUXE CASE $£ 5.50$ p.p. £1.20.) ADDITIONAL GREY SCALE KIT £3.35 p.p. 45p.
able). ALUM CASE $\mathbf{2 2 . 6 0}$ DE LUXE CASE $£ 8.50$ p.p. $£ 1.80$ also available). ALUM CASE $£ 2.60 \mathrm{DE}$ LUXE CASE 88.50 p.p. $£ 1.80$.
CRT TESTER \& REACTIVATOR PROJECT KIT FOR COLOUR \&
MONO $£ 9.40$ p.p. $£ 2.00$. MONO $£ 29.40$ p.p. $£ 2.00$.
BUSH A823 POWER BASIC PCB. IN FIBREGLASS 86.40 p.p. $£ 1.00$.
BUSH Z718 BC6100 SERIES IFB.
BUSH $Z 718$ BC6100 SERIES IF PANEL $£ 5.75$ p.p. 90 p.
BUSH A816 IF PANEL (SURPLUS) $£ 1.90$ p.p. 90 p.
DECCA "Bradford"" T.B. POWER ex rental 55.75 each p.p. $£ 1.40$. DECCA 80, SERIES, IF FRAME T.B. £5.75 each p.p. £1.40.
DECCA 80, 100 LINE SCAN UNTT salvaged $£ 11.50$ each p.p. $£ 2.00$.
GEC 2040 Convergence panels $£ 2.88$ p.p. $£ 1.80$.
GEC 2040 DECODER PANEL $£ 2.88$ p.p. $£ 1.60$.
THORN TX9 PANELS ex factory for small spares. Includes I.C.s \& Semiconductors etc. $£ 5.75$ p.p. $£ 2.00$.
THORN TX9 PANELS salvaged ex factory for spares incl. LOPT \& mains transformers $£ 11.50$ p.p. $£ 2.80$.
THORN TX9 PANELS ex factory salvaged complete cond $\mathbf{2 3 . 0 0}$ p.p. $£ 2.80$.
THORN TX 10 T.B. PANELS salvaged ex factory $£ 17.25$ p.p. $£ 3.00$.
TX10 type Remote Receiver \& tuning control panel $\mathbf{8 8 . 5 0}$ p.p. $£ 1.50$
THORN 3000 LINE T.B., POWER PCB $£ 5.75$ each p.p. £1.30.
THORN $8000 / 8500$ IF/DÉCODER PANELS salvaged $\mathbf{~} 3.70$ p.p. $£ 1.80$.
THORN 8000/8500 FRAME T.B. PANELS salvaged/spares £2.88 p.p. £1.40. PLUS 900 SERIES TOUCH TUNE REROT 1932 Pp. $f 184$ THORN 9000 IFIDECODER PANELS Salvaged 55.75 p.p. f1. 60
PHILIPS 210, 300 Series Frame T.B. Panels $£ 1.15$ p.p. 80 p.
PHILIPS G8/G9 IF/DECODER Panels for small spares £1.75 p.p. £1.40.
G8 Decoder panels salvaged $\mathbf{4 4 . 2 5}$. Panels for spares $£ 2.00$ p.p. $£ 1.40$. G9 Scan Panel. Basic PCB in fibreglass $£ 16.68$ p.p. $£ 1.80$.
VARICAP, U321, U322, ELC $1043 / 06$ ELC $1043 / 05$ £ 7.82 p.p. 80 p; G type (equiv. 1043/05) £4.00 p.p. 60p. MAKERS VARICAP CONTROLS Pye CT200 4PSN $£ 8.60$, A823 4PSN $£ 5.50$, Decca 6PSN $\mathbf{~} 6.70$ p.p. 80 p. ITT CVCS 7 position $£ 7.82$ p.p. $£ 1.00$.
SPECIAL OFFER ELEVEN POSITION VARICAP CONTROL UNIT UHF/VHF £2.10 p.p. $£ 1.00$.
BUSH "Touch Tune" Varicap Control Z179, Z718 types $\mathbf{8 4 . 4 0}$ p.p. 95 p
VARICAP UHF-VHF ELC $2000 \mathrm{~S} £ 9.80$. BUSH TYPE $\mathbf{\varepsilon 7 . 8 2} \mathrm{p} . \mathrm{p} .85 \mathrm{p}$.
VARICAP VHF MULLARD ELC 1042 E7.95 p.p. 80p.
UHF/625 Tuners, many different types in stock. DECCA Bradford 5 position L2.88 p.p. £1.80 etc.
LOPT TESTER Service Dept approved $\mathbf{£ 1 7 . 8 2}$ p.p. $£ 1.20$.
LOPTS NEW \& GUAR. P/P Mono £1.35p, Colour $£ 1.45$ p, Bobbins $80 p$.

FERG., HMV, MARCONI, ULTRA \quad R.B.M. T20, T22 Bobbin......................... $\mathbf{2 0} 44$
$950,1400,1500,1580,1590,1591$.. $86.80 \quad$ DECCA Bradford (state Mod No.). \& 10.15
THORN 1600, 1615, 1690,1691 £10.50 DECCA 80, 100 $£ 10.15$

MURPHY 1910 to 2414 series58.80 86 ITT CVC 20 ... 30
$\begin{array}{ll}\text { MURPHY } 1910 \text { to } 2414 \text { Series } 86.86 & \text { ITT CVC25, CVC30 series } \mathbf{£ 1 1} .50\end{array}$

DECCA 2024 SPECIAL OFFER \quad PHILIPS G8, G9
DECCA 20/24, $1700,2000,2401 \ldots 54.40$
GEC 2114J/Junior Fineline, 2401 ... 84.40 PHILIPS 580 $\mathbf{8 1 0 . 1 5}$
PYE 40,67 THORN 3000/3500 SCAN, EHT 87.85

KB VC1 ..25 T2.25 THORN 9000 to 9600 ...15 $\mathbf{8 1}$
OTHERS AVAILABLE, PRICES ON REQUEST. ALSO F.OPTS.
TRIPLERS Full range available. Mono \& Colour.
Special Offer: Thorn 14005 stick EHT Tray $£ 1.72$ p.p. 65 p.
TRANSDUCTORS suitable for G8, A823, Bradford etc. £1.72'p.p. 60p.
6.3V CRT Boost Transformers $£ 5.80$, Auto Type $\mathbf{\aleph . 2 0}$, p.p. £1. 20 .

THORN 3000 Mains TX $£ 5.75$ p.p. $£ 2.00 .8000$ Mains choke $£ 6.78$ p.p. $£ 1.22$.
CALLERS WELCOME AT SHOP PREMISES Telephone $01.7948751 / 7346$
THOUSANDS OF ADDITIONAL ITEMS. ENQUIRIES INVITED
LARGE SELECTION TESTED COLOUR PANELS POPULAR MODELS

MANOR SUPPLIES

172 WEST END LANE, LONDON, N.W.6.
NEAR: W. Hampstead Tube Stn. (Jubilee) Buses 28, 159, C11 pass door W. Hampstead British Rail Stns. (Richmond, Broad St.) (St. Pancras, Bedtord) W. Hampstead (Brit. Rail) access from all over Greater London. Mail Order: 64 GOLDERS MANOR DRNE, LONDON N.W. 11.

ALL PRICES INCLUDE VAT AT 15%

INCREASE YOUR PROFITS - IMPROVE YOUR SERVICE WITH RELIABLE COST EFFECTIVE TEST EQUIPMENT

SAFGAN DT-520 DUAL TRACE SCOPE 20MHz-5" C.R.T.

SPECIFICATION

\star CH1, CH2: $5 \mathrm{mV} / \mathrm{div}-20 \mathrm{~V} / \mathrm{div}$
\star Time Base: $1 \mathrm{sec} / \mathrm{div}-100 \mathrm{~ns} / \mathrm{div}$

* Trigger: Level control, \pm slope
* Trigger:

Auto, normal, TV Triggering

* Z-Modulation
* CAL output 1 V 1 KHz
* Sweep output
* Graticule blue ruled $10 \times 8 \mathrm{~cm} \quad\left(5^{\prime \prime}\right.$ C.R.T.) Very sharp trace.
* Size: H235mm,W177mm, 0360 mm
* Weight: 6.5 Kgs .
\star Supply: $200-240 \mathrm{~V} .40-60 \mathrm{~Hz}$.
Price: $£ 210.00+£ 31.50$ V.A.T.
Optional Probes as Thandar below.

BRITISH - NEW MODEL - 12 MONTH GUARANTEE

LEADER LCT-910A

THE VERY LATEST SC110A LOW POWER, FULLY PORTABLE OSCILLOSCOPE.
The new Thandar SC110A represents a break-through in oscilloscope development. The SC110A is ONLY TWO INCHES thick and weighs under two pounds, yet retains the standard features and FITS IN A BRIEFCASE

One of the most useful and versatile instruments available. Full Sized Performance

* 10 MHz bandwidth. $\quad * 10 \mathrm{mV}$ per division sensitivity
* Full trigger facilities are provided including TV frame, or TV filtering.
* Runs on 4 to 10 V DC via disposable batteries, re-chargeable cells, or AC
adaptor.
- Size $255 \mathrm{~mm} \times 148 \mathrm{~mm} \times 50 \mathrm{~mm}$. Scope E149.00 + £ 22.35 V.A. T
$\begin{array}{ll} & \text { Carry Case } £ 5.95+£ 0.89 \text { V.A.T. } \\ & \times \text { Probe } £ 7.00+£ 1.05 \text { V.A.T. } \\ \text { BRITISH } & \times 10 \text { Probe } £ 8.00+£ 1.20 \text { V.A.T. }\end{array}$
MADE $\quad \times 1 / \times 10$ Switched Probe $. £ 9.50+£ 1.42$ V.A.T. $\times 1 / \times 10$ Switched Probe
Rechargeable Batteries $£ 11.00+£ 1.65$ V.A.T.

U.K. Post Paid. Export orders welcome, please deduct V.A.T. and include an additional $£ 5.00$ for Overseas carriage. Mail Order only. Callers by appointment. Barclaycard/Access orders welcome, or Cheque, Bank Draft etc., with order please. Large S.A.E. for technical leaflets of complete range.
B. K. ELECTRONICS, Dept. 'T',

Unit 5, Comet Way,
Southend-on-Sea, Essex, SS2 6TR.
Tel: (0702) 527572.

Delivery normally within 7 days

Tinctivet:
ALSO AVAILABLE
Anaiogue Multimeters Digital Mukimeters Oscilloscopes Digital Frequency Meters Pattem Generators CRT Tester/Rejuvenator Digital Capacitance Meter Digital Capacitance Mete LARGE S.AE. FOR COMPLETE LIST.
an m

Technical Training in Television, Radio and Electronics

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the field of electronics-now it can be your turn. Whether you are a newcomer to the field or already working in the industry, ICS can provide you with the specialised training so essential to success.

Personal Tuition and Guaranteed Success
The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed"

CITY AND GUILDS CERTIFICATES

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for
Basic Electronic Engineering (C\&G/ICS)
Radio Amateurs

CERTIFICATE COURSES

TV \& Audio Servicing
TV, Radio and Audio Engineering
Radio \& Amplifier Construction
Electronic Engineering*
Computer Electronics*
Industrial Electronics*
Radio Frequency Electronics*
Electrical Engineering*
Electrical Contracting \& Installation

- Quality for IET Associate Membership

Approved by CACC
Div National Education
Approved by Cac
POST OR PHONE TODAY FOR FREE BOOKLET

```
Please send me vour FREE School of Electronics Prospectus
```

Subject of Interest
Name
Address

Dept L285 ICS School

ICS School of Electronics
160 Stewarts Road

P. V. TUBES Just phone your order hrough, w through, we do the rest.

$38 A$ WATER STREET, ACCRINGTON, LANCS BB5 6PX.

QUALITY REBUILT CRTs

A SELECTION OF CRT's REBUILT BY TSR:-
All Monitor CRT's, All Sony CRT's, including projection systems S.D. 102 R/G/B - 510ABZB22, 510ACAB22, etc.

HITACHI QPF
510SWB22
510 VLB22
510VSB22
560CSB22
560DZB22
560EGB22 etc.

MITSUBISHI QPF
510TSB22
510TVB22
510TWB22
560DEB22
560DRB22
560DSB22 etc.

MATSUSHITA

470ESB22
470FGB22
470GMB22
510GJB22
510GLB22
510HSB22 560BCB22 etc

OTHER IN-LINES
$320 A R B 22$
370 AUB22
370 BDB22
370BRB22

370DLB22
370 FHB22 370 GYB 22 370 HVB 22 370ZB22 420DKB22 420ERB22 420GFB22 470CTB22 470ELB22 470ERB22 470ESB22 470ETB22 470FTB22 490DVB22 510CJB22

510HWB22 510JEB22 670XB22 510JGB22 A37-544x 510JKB22 A37-565x 510LDB22 A42-556x 510MXB22 A42-570x 510RJB22 A51-580x 510UFB22 A51-590x 560AKB22 A56-540x 560ATB22 A66-540x 560AWB22 A56-611 560DTB22 A56-612 560DYB22 A56-613 etc. 560ETB22 AXT37-001 560EUB22 AXT51-001 560HB22 AXT56-001

If your CRT is not above, please contact us and our Gun Department will make a gun for your CRT. Our many customers, including some of the National Rental Groups, have proved our quality.

T.S.R. VACUONICS LTD.,

Tom Stewart Lane,
St. Andrews, Fife,
Scotland.
Tel: (0334) 74035

Well done Scopex

${ }^{66}$ I experienced no jitter whatever, and discovered an inherent virtue of digital delay that no analogue delay system has. With a jittering signal such as comes from any mechanically reproduced video recording system, i.e. tape or disc, the counting system relies on the line numbers rather than the time, so that jitter-free traces are prociaced even after a delay of almost a fulifield. In fact the ten-turri vernier delay control, which is fitted with a locking device, is so stable and accurate that I found it possible to set it for a certain line number and come back two days later and find that same line would be reproduced on a different transmission and at a different room temperature.,
${ }^{66}$ The large screen, mains operation and the facilities it offers make it ideal for TV, video, text and much digital work. Technical colleges, polytechnics and similar establishments should also tind the $14 \mathrm{D}-10 \mathrm{~V}$ of interest-many of them have to work with a very restricted budget these days, and for demonstrating modern TV techniques this instrument is very useful."
${ }^{6}$ I can wholeheartedly recommend it, not only for its intrinsic virtues but as a piece of British innovation in a field which is being steadily encroached upon by the Oriental big boys. Well done Scopex!"

Sccipex instruments Limited Pixmore house Pismore Avenue Letinworth Hertforashire SC6 1 HZ

COLOUR TV SETS

Philips G8, Pye 222, Decca 30 series, ITT, Pye Chelsea, Thorn 3500/8000, GEC, many others including JAP.

Working hybrids from $£ 15$.
Working solid state from £25.
Non-working sets, working panels and tubes available.
Quantity Discounts
Delivery by arrangement.
SOUTHBRIDGE TV CENTRE
120, Selhurst Rd., London, S.E. 25.
Tel: 01-771 3535 .

TUNERS + TUNERS

\star If you repair sets regularly - phone us today and we will dispatch immediately - no need to send cash 'up front'.
\star All tuners dispatched by first class post for receipt by you the next day.
\star All popular tuners/tuner repairs supplied 'off the shelf'.
\star Unusual types repaired same day as received (subject to spares availability).

13 Worcester Street. Woiverhampton, WV24CJ Phone: (0902) 773122.

Switch to the biggest wholesaler of quality late model used TV's

- Thousands of Quality Sets always in stock
- Colour/Mono/VCR's and Audios available
- Murphy/Pye/Philips/Sony/National Panasonic and other big names
- We are big - we buy in bulk - we offer you the keenest prices
- Cash and Carry or we will deliver
- New and used stands always in stock

EDITOR

John A. Reddihough

ASSISTANT EDITOR

Luke Theodossiou

ART EDITOR

Roy Palmer

ADVERTISEMENT MANAGER
Roy Smith
01-261 6671

CLASSIFIED ADVERTISEMENTS

Barbara Blake
01-261 5897

COVER PHOTO

Our cover photograph this month is by courtesy of Sogitec of France. It shows a computer-generated image which is part of an animated film the company has produced for the petrochemical industry. In this particular photograph, ethylene molecules are displayed in a tridimensional universe.

CHANGE OF ADDRESS

The editorial office location has changed. Please note the new address which is: King's Reach Tower, Stamford Street, London SE1 9LS.

PCB SERVICE

Send orders to Readers' PCB Services Ltd. (TV), Fleet House, Welbeck Street, Whitwell, Worksop, Notts - see note on page 457 last month. A revised list of boards available will be published next month.

TELEOUSDOM

Research and Development

Apparently the Japanese Ministry of International Trade and Industry (MITI) has under its wing an Agency of Industrial Science and Technology which is trying to pinpoint the basic industrial technologies that will come to the fore in "the generation after next", i.e. in the twenty first century. The Agency started to consider the technologies that will be of practical importance in the nineties back in 1981 . One can't help but admire such a forward looking approach to ensuring that Japanese industry will be able to move in the right direction when the time comes. It's perhaps worth noting that the Agency is backed by substantial government funds - there's possibly a moral here for our own government, in view of its rather niggardly approach to public expenditure. It seems that MITI has been doing this sort of thing for quite a few years. The idea has been to identify products that will result in industrial growth, to ensure that adequate effort and funds are devoted to the relevant technology, and to follow this up by applying enough pressure on industry to ensure that at least two major firms are active in any field considerфd to be of strategic importance.
The process seems to have worked well enough so far. The era of advanced modern technology is probably too new however to be able to draw any very firm conclusions on the effectiveness of this approach. One hopes, for the Agency's sake, that it won't overlook the extraordinary importance of sheer accident (luck?) when it comes to technological advance. As a very simple illustration, blotting paper was discovered when someone forgot to put the size in a run of printing paper. Penicillin is another example of an important development discovered largely by accident. Perhaps more relevant to our own field is the fact that the transistor was also discovered by chance. No one was actually looking for a method of solid-state amplification. It just happened that in the course of research into solid-state matters the effect was discovered. We all know the outcome of that: probably no little device has had such a profound effect on human affairs. There were similar strokes of luck/genius with earlier technologies. The invention of the steam engine for example was rather stumbled upon - the power of steam was first noted, then an application was found.

This highlights the basic difference between research and development. The Japanese are supposed to be good at the latter but not so good at the former, though I wouldn't like to bet too much on it. If there is any truth in this, it's possibly because of the rather literal attitude induced by Japanese culture, as a result of which the element of chance is played down. Be that as it may, the fact that does stand out is the need for continuous research effort that's not necessarily devoted to specific objectives. Which brings us to the problem of funding it. Who's going to pay for work that's not concerned with the development of specific products or processes? There can be no ducking this question: it's the government's responsibility in a developed country to ensure that the funds are available to maintain an adequate level of basic research. This presents awkward problems of course. How do you assess the value of such work paid for by public money for example?
Despite the limited funds available, the UK is generally regarded as having a good record for research work - and a rather poor one for development. Several recent reports have underlined this view. Research work is carried out effectively, but exploitation of the results is all too often left to others - examples in recent times have included the liquid crystal effect and various other discoveries in materials technology. Perhaps something like that Japanese Agency is required to ensure a smooth transition from basic discovery to practical application. There's quite clearly a need for closer collaboration between industry and the educational system in this respect, and for the government to guarantee the provision of appropriate funds. The concentration of higher education expenditure cuts on centres with a technological bias has not been a very hopeful sign.
Development as opposed to basic research is where industry is supposed to come in, but there's a government role here as well in view of the amount of money required and the lengthy time scales often involved. It seems unfortunate in this respect that so much government development expenditure - something like two thirds - goes on defence projects. This is a far higher proportion than in any other comparable country. Commenting on the subject recently Sir Henry Chilver, chairman of the Advisory Council for Applied Research and Development, said that he "did not fully understand why there was not a greater spin-off to benefit the civil sector." Well, perhaps one reason could be that work carried out for defence purposes is classified, making it difficult to apply elsewhere. Whatever the reason, it's a fact that the more successful countries economically spend relatively little on military research - we are talking about W. Germany and Japan of course.

There's been a tendency amongst some commentators to criticize British industry and the City for failure to invest sufficiently in research and development work. It's said for example that a profit is expected too soon. This hardly seems fair, since the overall economic climate has to be taken into account. In Japan inflation and interest rates have been low: so it's made sense to invest funds on a long term basis. Where profitability is low and inflation and interest rates are high, who can afford to invest money in research work that may lead nowhere? Getting these things right could make a big difference. Let's hope it will: continuous industrial regeneration is vital in a developed country, and this in turn depends on research and the funds to enable it to be undertaken.

Long-distance Television

Roger Bunney

 After the rather belated start of the 1983 Sporadic E season there were plenty of signals on most days during June, though with perhaps some tailing off at the start of July. Tropospheric reception has also been good at times details later. In many cases SpE signals seen earlier in the day would subsequently reappear, but to save space only one sighting is given in the following log.7/6/83 RAI (Italy) ch. IA, B; RTP (Portugal) E2, 3; RTVE (Spain) E2-4; MTV (Hungary) R1, 2; TSS (USSR) R1; NRK (Norway) E2.
8/6/83 RTVE E2-4; RAI IA, B; MTV R1; NRK E2.
9/6/83 RAI IA, B; RTVE E2, 3; RTP E2; TVR (Rumania) R2.
10/6/83 RTVE E2-4; RAI IA; TSS R1, 2; SR (Sweden) E2; NRK E2, 3; RTP E2; RUV (Iceland) E4.
11/6/83 RAI IA, B; RTVE E2-4; MTV R1, 2; SR E2; ORF (Austria) E2a; TVR R2; RTP E2, 3.
12/6/83 RAI IA, B, C; JRT (Yugoslavia) E3, 4; RTVE E2-4; MTV R1, 2; TSS R1-3; NRK E2; TVR R2.
13/6/83 RAI IA; RTVE E3.
15/6/83 RAI IA, B; RTVE E2-4; JRT E3, 4; ARD (W. Germany) E2; RTP E2, 3.
16/6/83 ARD E2; ORF E2a, 4; CST (Czechoslovakia) R1; TSS R1, 2; TVR R2; MTV R1, 2; RTVE E2-4 plus RTVE-2 Santiago E2 and RTVE Canary Isles E3; RUV E4; TDF (France) F2 (819 lines); JTV (Jordan) E3 at 1340 BST.
17/6/83 RAI IA, B; RTVE E2-4; TDF F2, 4; PTT (Switzerland) E2, 3; ORF E2a, 4; ARD E2; TVR R2; MTV R1, 2; JRT E3, 4; DFF (E. Germany) E4; RTP E2, 3; SR E2; TVP (Poland) R1-3; RUV E4.
18/6/83 RAI IA, B; ORF E4; MTV R1, 2; TSS R1, 2; ARD E2, 4; PTT E2, 3; CST R1; TVP R1, 2 ; TSS R1, 2; SR E2, 3; DFF E4; JRT E4; RUV E3, 4; unidentified signals on chs R1-4.
19/6/83 TSS R1, 2; RAI IA; JRT E3, 4; PTT E2, 4; MTV R1, 2; CST R2; ARD E3; ORF E2a; TVP R1, 2; RTP E2, 3; RTVE E2-4.
20/6/83 RTVE E2-4 all carrying Teletexto information;

RTP E2, 3; RUV E3, 4; RAI IA, B; ARD E2, 3; CST R2; TVP R1, 2 (with NTD identification on the PM5544 pattern); TSS R1, 2; SR E2-4; ORF E4; PTT E2; MTV R1, 2; NRK E2-4; DR (Denmark) E3, 4; a really chaotic day!
21/6/83 ORF E2a, 4; ARD E2; PTT E2, 3; RAI IA, B; RTVE E2-4; RTP E3; JRT E3, TSS R1, 2.
22/6/83 TSS R1, 2; TVR R2, 3; MTV R1, 2; RTS (Albania) IC; PTT E2, 4; RAI IA, B; RTVE E2-4; JRT E3, 4; RUV E4.
23/6/83 NCT (Italian free station) E3; RAI IA, B; RTVE E2-4; JRT E3, 4; RTP E3; PTT E2, 3; MTV R1, 2; SR E2.
24/6/83 RAI IA; JRT E3, 4; MTV R1, 2; TVR R2; RTS IC.
25/6/83 RAI IA, B; RTVE E2-4.
26/6/83 ARD E2; ORF E2a; PTT E2; TSS R1.
28/6/83 JRT E3, 4; RAI IA, B; ORF E2a; RTVE E2-4; TVR R2, 3; JTV E3 at 1755 BST; RTP E3; TSS R1, 2; NRK E3.
29/6/83 RAI IA; MTV R1.
30/6/83 RTVE E2-4; RTP E3; RAI IA, B; MTV R1; TSS R1; plus Spanish cordless phones!
1/7/83 RTVE E2-4; RTP E2-4; MTV R1, 2; RAI IA; JRT E3, 4; TSS R1, 2; SR E2; RUV E3, 4.
2/7/83 RTVE E2-4; RAI IA, B; MTV R1; CST R1; TSS R1-3; JRT E3, 4; NRK E2, 3; RUV E3, 4; JTV E3 at 1210 BST.
3/7/83 TSS R1; CST R1; NRK E2-4; JRT E3, 4; MTV R1; RAI IA, B; ORF E2a; JTV E3 at 1100 BST.

June/early July was thus an eventful month for SpE reception. Apart from the Jordanian reception on several days the only exotic signal of note was Hugh Cocks' reception of Sokoto ch. E3 at 1600-1730 BST on June 7th, with typical Nigerian dancing. An unidentified ch. E2 Arabic signal, possibly Dubai, was noted by Hugh on the 28 th at 1800 , from the south east. Cyril Willis noted Band II SpE on June 7th at up to 106 MHz , with AFRTS programmes: the 144 MHz band was similarly affected during the late aftemoon.

Tropospheric Reception

There was excellent tropospheric reception on June 6/7th, with v.h.f./u.h.f. signals from W./E. Germany reaching the midlands, and even better reception on many Band III/u.h.f. channels on the $18 / 19$ th, with reports of BFBS u.h.f. TV signals amongst many W. German ones reaching the midlands and the east and north east coasts.

Left: Veronica, a Dutch TV pirate active in Amsterdam. Centre: Clermont Ferrand ch. F6V received by Ryn Muntjewerff in Holland via tropospheric propagation in December 1982. Right: Vilnius USSR ch. R8, another tropospheric reception by Ryn
Muntjewerf, this time in September 1982.

BFBS was noted as far west as New Radnor, at v.h.f./f.m. During this period Cyril Willis noted many Belgian, Dutch and W . German ATV stations in the 435 MHz band, with powers down to a few watts (PE1DWQ Holland was in colour). There was yet another tropospheric lift on June $23 / 24$ th, with many u.h.f. signals and extensive loggings of Band I signals, including DR E3 and ARD E4.

It seems that the French are at present carrying out tests of the new system L standard during the daytime, using existing E channel carriers, converting at night to 819 lines.

My thanks to the following for supplementing my own \log during one of the most active months for some years: Cyril Willis (Ely); Iain Menzies (Aberdeen); Reg Roper (Torpoint); Ian Johnson (Bromsgrove); Simon Harmer (New Radnor); Mark Baldwin (Rugby); Arthur Milliken (Wigan); Graeme Wilson (Middlesbrough); Hugh Cocks (E. Sussex); Tim Anderson (Stroud); James BurtonStewart (Milton Keynes).

News Flash!

Finally a news flash. Hugh Cocks reports reception of system M signals on chs. A2, 3 and 4 via SpE on July 6th, with Spanish language sound. This is thought likely to be Puerto Rica, or possibly a central American country. Further details next month.

News /tems

Luxembourg: RTL has been testing on ch. E7 at higher power, using system B , in preparation for the new German service due to start next January 2nd.
Denmark: Approval for a second TV network has been given, to start in 1985.
Norway: There's a proposal to use the Norwegian ECS capacity for a pay-TV service to be run by NRK from January 1985.
Holland: There's every intention to start a Pay-TV service via the ECS craft next year.
ECS: The ECS-1 satellite has been successfully launched. It carries twelve 20 W transponders with outputs in the 11 GHz band. There are three spot beams and a wideangle Eurobeam with two TV programme capacity.
India: The Indian Apple satellite is now providing eighthour daily TV linking. The Soviet Stat- 3 craft is also being used: a translator takes uplink signals from Delhi for distribution to the remoter parts of the country.

UK 4GHz DBS?

Reports have appeared suggesting that a consortium proposes to provide a satellite TV channel, featuring recently released films, early next year. The Home Office at present has official limitations on 4 GHz TV reception. How the arrival of an American down-link craft will be viewed remains to be seen. A well known UK aerial manufacturer is developing 4 GHz equipment for release by the end of the year. All very intriguing.

Amateur $50-52 \mathrm{MHz}$ Allocation

I can only assume that the idea of allocating $50-52 \mathrm{MHz}$ to amateur radio is for compatibility with the USA, where there's a $50-54 \mathrm{MHz}$ allocation. The US TV spectrum starts with ch. A2 $(55.25 \mathrm{MHz}$ vision) however, unlike Europe where the TV allocations start with ch. E2 at 48.25 MHz and ch. R1 at 49.75 MHz - the new French

SOUTH WEST AERIAL SYSTEMS

The Labgear CM7122/00 'Televerta' is the improved successor to the famed CM6022/RA upconverter. With an input band of $40-240 \mathrm{MHz}$, the unit converts to an equivalent bandwidth at UHF (local oscillator adjustable $500-600 \mathrm{MHz}$) and is intended for VHF relay system use or for TVDXing on a UHF only receiver. The wideband unit needs no tuning for DXTV operation, is very low noise (5 dB @ maximum gain) with a throughput gain of +6 dB max. $\quad \mathbb{E} 39.25$ As the leading UK aerial mail order company we offer a vast range of equipment As the leadig for all requirements in the TV/FM manufacturers - and at competitive prices.
Our 1983 catalogue (54p) features extensive listings of aerials, amplifiers, filters etc. - and with honest performance figures detailed throughout.
SWASWB 1 - wideband Band $1(48-68 \mathrm{MHz})$ dipole array (tree leafler SAE) £24.25 Triax MTH 13 - wideband Band $3(175-230 \mathrm{MHz}) 13$ element
array - 11.9 dBd gain, ruggedised quality
Wolsey Sapphire 41 Distribution amplifier, $40-860 \mathrm{MHz}$,
$11 / P, 40 / P @+3 d B ; 1 O / P @+23 d B$. Supplies $24 v$ to
$\mathrm{m} /$ head amp. 240v AC 38.85 $18 \mathrm{O} / \mathrm{P}$ version of above $\mathrm{E40} .70$)
Teldis Diplexing twin input (VHF, UHF) masthead amplifier. Gain 18dB
Teldis DF, 22dB gain UHF from 2 stage amplifier. Noise figure 5dB. Max. (Matching PSU. £11.70)
The above prices include VAT, postage/Securicor carriage. Access/Barclaycard Icome. Customer consultancy service available, include SAE and with ALL enquiries please. (Allow 10-14 working days for delivery of stock items).
Note our NEW address:- South West Aerial Systems, 11 Kent Road, Parkstone, Poole, Dorset BH 12 2EH. Tel. 0202738232.

TV LINE OUTPUT TRANSFORMERS

ADD 15% VAT to ALL prices. . Delivery by return of pos

If the Transformer you require is not listed please phone.	
RANK BUSH MURPHY	DECCA
Z146 A640 dual std mono 8.51	MS1700 200120202401 mono 8.00
Bush A792, A793 single std mono 8.51	MS2404 24202424 mono 8.00
A774 single std mono 8.50	121012111511 portable $\quad 11.50$
A816 solid state mono 9.00	GYPSY portable $\quad 11.50$
2712 T16a T16b mono portable 9.00	CS1730 1733 colour 8.60
A823 A823b A823av colour 10.00	CS1830 1835 colour 8.00
2179 Z722 series colour 10.00	'30' series BRADFORD colour 8.00
T20a T22 series colour $\quad 10.00$	80 series colour 8
	100 series colour 8
WINDING	PHILIPS
T20A T22 5.51	210300 series mono 8
	320 series solid state mono 8.50
G.E.C.	G8 series colour $\quad 8.00$
2047 to 21053112 to 3135	G9 series colour $\quad 8.50$
"GAIETY" FINELINE 8.00	G11 series colour $\quad 14.98$
2114 portable mono 8.00	KT2 Lopt 9.00
31333135 M 1501 H portable mono 8.00	KT3 Lopt $\quad 10.60$
11.00 DUAL STD hybrid colour 10.00 SINGLE STD hybrid colour 10.0 SINGLE STD solid state 90° 8.50 or 110°	KB-ITT
	VC200 VC205 VC20]-monto 8.00
	VC300 yczer VC302 portable $\quad 1.00$
	cyel CVC2 colour
FERGUSON HMV MARCONI	CVC5 CVC7 CVC8 CVC9 colour 9.00
	CVC20 series colour 9.00
1590159115921593 mono 8.0 CVC30 CVC32 series colour m-80	
161216131712 mono	
16901691 mono	
16001615 series mono . 9.7	Total Price Including VAT. £16.79
800085008800 l 11.70	Tidman Mail Order Ltd.,
900092009300	236 Sandycombe Road,
950096009650	
9800 TX9 TX10 P.0.A.	Richmond, Surrey
INDESIT,GRUNDIG, TANDBURG. TELEFUNKEN, FIDELITY, KORTING, TYNE, B + O. Price on application.	Phone: 01-948 3702
	Mon-Fri 9 am to 12.30 pm .
	130 to 4.30 pm .
	Sat 10 am to 12 pm .

Left: Six-turn helical aerial used by Chandra de Silva in Sri Lanka. Centre: John Abbott's stacked Colour King/Super Prince aerials for Ekran reception. Right: Typical Ekran reception at 714 MHz by John Abbott in South Africa.
channel B covers $49-56 \mathrm{MHz}$. Having seen the patterning that a low-level 50 MHz experimental amateur transmission can cause on a relatively strong $(0.5 \mathrm{mV}) \mathrm{ch} . \mathrm{R} 1 \mathrm{SpE}$ signal, I must conclude that giving this band to the amateurs will present the European broadcasters with quite unnecessary problems during the summer months (see this month's log!). The segment $56-58 \mathrm{MHz}$ would provide less interference on a shared basis with the Europeans, though losing the possibility of transatlantic communication. I've written to the Home Office to make these points and have been promised a "substantive" reply. In the meantime, I'd be interested to hear the views of other readers on this subject.

ATV Activity

I've been carrying out modifications to the main u.h.f. aerial to receive 435 MHz signals without an aerial dedicated to this band. These have proved very successful, with 1 W signals being received over a severely obstructed path. Further details will be given next month.

From our Correspondents . . .

Lots of letters this month! Nanda Kumar (Madras) reports receiving Dubai ch. E2 using a newly developed aerial and amplifier system - it's proved to be a difficult signal in the past. Conditions at the end of June were apparently quiet, with the Ekran (Orbita III) satellite providing the usual programmes from 1145-2130 Indian time.

Jim Maden (S. Africa) reports that Zambia has shuffled transmitters around. Kitwe has moved to ch. E9 (from E4), the Kasama ch. E3 transmitter has moved to Mongu, Kabwe ch. E2 has been reduced to 75 W e.r.p., while Bulawayo is now on ch. E6 as well as E3.

Anthony Mann (Baton Rouge, Louisiana) reports that the US SpE season wasn't too good up to June 15th. He received Mexico ch. A3 on May 23rd, NY State and the Great Lakes at up to 92 MHz on May 26 th, Cuba ch. A3 plus NY and the Great Lakes and Canadian f.m. transmitters as far as Northern Ontario on June 8th, and Dakota at up to 95 MHz on June 15th. That's all there was to June 19th. There's been confirmation that the ch. A7 spurious emissions have been measured at 26.29 and $26 \cdot 39 \mathrm{MHz}$. Since they've been received in NZ/Australia, there's no reason why they shouldn't be received in Europe given suitable conditions.
Robin Crossley (St. Albans) experienced problems in
attempting to use an ET021 tuner with his Thorn 1691 chassis and has now fitted a more conventional tuner with bipolar transistors instead. This has proved to be very successful, and the addition of a G8 selectivity module has sharpened the i.f. response. Further modifications include a tunable i.f. and the recent idea from Ian Moody for use with positive-going video modulation. Robin has heard that there are proposals for a PMR allocation in sub-bands within a future re-engineered Band III. We hear that the 47 MHz cordless phone allocation will be moved out of Band I. PMR in Band I is less than attractive due to the longer whip aerials and the problems of SpE during the summer.

Ekran Statsionar-T

The Ekran satellite at $99^{\circ} \mathrm{E}$ (invisible from the UK) provides a u.h.f. downlink to the northern parts of the USSR with a very wide beam, 9 MHz peak video deviation centred on 714 MHz , and a 6.5 MHz sound subcarrier. It's perhaps the most powerful satellite transmitter, using two 200W klystrons and 96 helical arrays - the equivalent in TV terms to the BBC's World Service! The footprint (shown in Steve Birkill's satellite book) covers almost a third of the world's surface.

Although aimed towards the north, it's evident that good reception can be obtained elsewhere, as two letters received this month confirm. Chandra de Silva (Sri Lanka) has constructed a six-turn helix and is using this system indoors with a Visi head amplifier feeding an unmodified Tatung portable TV set. This is giving him fair quality programmes (approximately P3 $\frac{1}{2}$ on the ATV scale). The amplifier uses three BFR91 transistors to provide a u.h.f. gain of 36 dB .
John Abbott (Vereeniging, S. Africa) is using two Wolsey Colour Kings which with a domestic type lownoise head amplifier gives him P4 quality pictures. The Colour Kings are locally manufactured by Carlton Engineering incidentally, and are known there as Super Princes! A photograph he's sent shows the remarkable results with a standard monochrome set realigned for the $6 \cdot 5 \mathrm{MHz}$ intercarrier sound of system D - both sound and vision are received with good quality. The aerial system provides a gain of some 15.5 dB . Elevation is at 10° above the horizon, and well "behind" the Ekran.
It's interesting that some years ago a report suggested that the Ekran on ch. 51 could just be seen at Lahti, Finland, with the characteristic f.m. video, during good tropospheric conditions.

POST A PART ELECTRONICS 236 FURTHERWICK ROAD, CANVEY ISLAND, ESSEX Telephone 0268690868
Telex 99305 ROSSER G.

NORTHERN T.V. DISTRIBUTORS

NEW TRADE WAREHOUSE NOW OPEN!!

GOOD QUALITY SETS AT GOOD PRICES

Pye Chelsea $18^{\prime \prime}$ Pye Solid State Philips G8 550 Philips G8 520
Decca Bradford
ITT Hi Brid
ITT Solid State
G.E.C. Solid State

Jap. sets from
I.E.: Hitachi \& Mitsi. etc

26" sets from
OFF THE PILE
922.00 525.00
523.00
£14.00
E 13.00
£18.00
$\$ 40.00$
525.00
$£ 25.00$
£10.00
Mono sets from

WORKING
828.00 $\$ 35.00$ 830.00 822.00 $E 20.00$ 828.00 E60.00 835.00 $\mathbf{8 3 5 . 0 0}$

Some Inline sets also available I.E. ITT, C.V.C. 25 \& 30 Bush T20 \& T22, Thorn 9000 etc All prices subject to availability of stock
Quality discount available. Hundreds of sets to choose from. Price list for new TV's \& VCR's available on request, ie. Colour portables from $\mathbf{\Sigma 1 3 0}$ and $20^{\prime \prime}$ Teletext from 225 . All prices subject to 15\% VAT.
Sets also available at our Birmingham Branch:

811 WASHWOOD HEATH ROAD, WARD END BRMMNGHAM 8 2NP Tel: 021-784 2561

13 WORCESTER ST WOLVERHAMPTON', WV2 4LJ
Tel: (0902) 773122
Telex: 336810

Telepart

Pattern Generator

- Exceptionally light and durable * Pocket size for out side service - Five different test patterns for colour Crosshatch grid * Dot matrix
White raster *Horizontals *Verticles
A lightweight, extremely portable and versatile pattern generator for the turn of a switch, the generator can provide five essential test patterns. At correct installation, fast checks and repairs. Pattern stability is first class and compares favourably with other more costly bulky generators only suitable for bench work. The generator is pocket size measuring $10 \times 7.5 \times 4 \mathrm{~cm}$ and
weighs only 190 grams. weighs only 190 grams.
PRICE £14.95 (Subject to V.A.T.)
POST \& PACKING $£ 1.15$
Telepart
Colour Bar Generator
"Exceptionally light \& durable
"Compact $13 \times 17.5 \times 5.5 \mathrm{cms}$ *Battery powered for moobility *Cross hatch "White rast
*Grey scale * Colour bars
A Versatile Generator for Servicing or aligning mono or colour TV receivers.
Lightweight and very compact for outside service. Features sound facility Lightweight and very compact for outside service. Features sound facility
often not found on more costly generators. PRICE
PRICE £49.95 (Subject to V.A.T.)
POST \& PACKING £1.15

Power Supply

A Power Supply can be supplied for the Telepart COLOUR BAR GENERATOR. This compact unit mounts by 2 screws into the Battery compartment and converts the unit to a bench instrument
PRICE £5.50 (Subject to V.A.T.) Supplied by return, off the shelf

A.B.C. ELECTRONICS

Rear of 20, HANKINSON ROAD, WINTON, BOURNEMOUTH. TEL: 519542
TRADE TV's BEST PRICES
Colour From $\mathbf{£ 1 2 . 0 0}+$ VAT B\&W From £2.00 + VAT

DISCOUNT ON QUANTITIES

ALL MAKES - ALL SIZES - ALL COMPLETE CALL IN OR RING FOR COMPETITIVE QUOTE FULLY REFURBISHED SETS AVAILABLE + Delivery Service

PRECISION VISION LTD.

For modern used colour TVs.
Working or untested. Most makes and tubel sizes available. All working TVs are refur-l bished to an extraordinary high standard.

USED VHS, BETA AND PHILIPS/PYE
2000 VIDEO MACHINES IN STOCK.
ALL IN GOOD WORKING ORDER.
PRECISION VISION LTD
67 London Road, Headington, Oxford
Phone: 0865750212

Teletopics

UK SATELLITE TV SERVICES

Growing concern is being expressed in BBC quarters over the financial aspects of the satellite TV service it's due to launch in 1986. Getting the satellite into operation is likely to involve capital costs approaching $£ 250$ million, and there is then the added cost of providing the programmes. It seems that subscription revenue and any extra licence fees could still leave the corporation saddled with considerable debt. The BBC is known to be keen to exploit the technology of satellite broadcasting, something the government has encouraged in view of the need to ensure that the UK's electronics industry is involved in this from the start, but may require rather firmer guarantees from the government on the future financial implications.

The News International Group (The Times, Sun etc.) has taken a controlling interest in Satellite TV Ltd. with a view to starting the first commercial satellite TV service to the UK. Satellite TV Ltd. at present provides programmes to cable TV operators in Scandinavia and Switzerland via the OTS-2 satellite, and has been allocated a channel on the European Space Agency satellite ECS-1. The initial aim is to increase the transmissions from two-three hours a night to seven hours daily by the end of the year. Cable distribution will be required in view of the low-power transponders on ECS-1, and SATV is engaged in talks with potential cable network operators. At present SATV's copyright agreements with UK and US programme suppliers cover only non-English speaking countries, but renegotiating such agreements should not present major problems.

ANTI NASTIES BILL

The problem of video nasties is being tackled by a bill which is to be introduced by Graham Bright, MP. Mr. Bright came first in the ballot for private members bills and his proposals have been warmly welcomed by the Home Secretary. The bill will be given government help in drafting and is expected to come into operation some time next year. Under the proposals, those dealing in horror video cassettes that have not been approved by a central censoring authority will face fines of up to $£ 10,000$ and possible imprisonment on summary conviction. Police will probably be given powers to search shops and seize unapproved cassettes. The penalties for distributors and importers could be even stiffer than those for dealers.

teletext - A MILLION UP

Deliveries of teletext equipped TV sets in the UK have now passed the million mark. To acknowledge the achievement, a ceremony attended by the Prime Minister was held at the Guildhall, London. Eighteen teletext sets were presented to organisations for disabled people.

Deliveries of teletext sets rose from 20,000 in 1979 to half a million last year, and now represent a market penetration of five per cent of UK households. Most sets are going out under rental agreements - the ratio is at present 70 to 30 per cent rentals to sales. Since many rental organisations are now offering only teletext equipped sets in the larger screen sizes, it's felt that there is still much to be done to promote sales interest. There
will be another National Teletext Month (the third) in October.

AND MORE LINES

The BBC is to carry out tests on a six-line teletext service to reduce the average waiting time for a page to between five-six seconds and enable the number of pages to be increased. The extra teletext lines would be 13 and 14. If the tests - to ensure that there will be no impairment to normal television pictures - are successful, the BBC will seek Home Office authority to start an extended service next spring.

SATELLITE TV EQUIPMENT

A 4 GHz TVRO comprising 90 cm dish aerial, downconverter and demodulator has been introduced by Magnetic Shields, Headcorn Road, Staplehurst, Kent TN12 0 DS at a VAT-inclusive price of $£ 1,000$. The DR90 aerial is fully adjustable and can be wall, roof or ground mounted.

Premier Industries (Cheltenham) Ltd., 343-5 High Street, Cheltenham, Gloucestershire GL50 3HS is handling the Vorta range of satellite aerials and downconverters and is running training courses for dealers on the installation of this equipment.

STEREO TV SOUND

TV sets with stereo sound have been on the market for some time - a detailed account of the techniques used by Thorn appeared in our July issue last year. In addition to the basic stereo signal processing, such sets usually feature synthetic stereo and stereo wide. The former is a technique whereby a stereo effect is obtained with a monophonic signal by introducing a phase shift in one channel. The latter feature makes use of a controlled amount of phase-reversed signal cross-coupling between the channels to compensate for the close spacing of the speakers in a stereo TV set. Mullard have now introduced an i.c., type TDA3810, to provide all these features and simplify stereo TV set circuitry. For the synthetic stereo effect, frequencies between 300 Hz and 2 kHz in one channel are delayed by an amount depending on frequency, e.g. $500 \mu \mathrm{sec}$ at 800 Hz . The low-pass filtering required has been kept off the chip to allow setmakers to use the circuit to their own specifications. Channel separation in the stereo mode is 60 dB , the signal-to-noise ratio 70 dB and the harmonic distortion less than -80 dB .

Another stereo TV sound system has been suggested, this time by Grumman Aerospace in the USA. The basic idea is to transmit $L+R$ in the existing sound channel and $\mathrm{L}-\mathrm{R}$ in digital form as a sound-in-sync signal. The receiver would need circuitry to separate, decode and expand the $L-R$ signal.

LATEST VCRs

A couple of replacement models have been introduced this month. First, the budget Ferguson machine, Model 3V29, has been replaced by the 3V35. The new model was originally intended as a same-price replacement but as a result of the EEC/Japanese agreement the price will be some $£ 90$ more at around $£ 489$. The specification has been improved however, with infra-red remote control as standard, front loading, a time elapsed indicator, frame advance, a picture sharpness control and an instant-record button.

Secondly the Grundig 2×4 Super has been superseded

next month in

\author{

- VIDEO TAPE POSITION INDICATOR/
} COUNTER
The types of tape counter commonly used in VCRs have certain disadvantages - whether mechanical or electronic. First they have to be zeroed, secondly they tend to be inaccurate. Alan Willcox has come up with a simple but very effective unit which can be used with any VCR using a tachometer sensor - for example all Grundig machines, the JVC/Ferguson HR7700/3V23, the Sony F1 and C9, Sharp VC7700 and generally any machine that incorporates some kind of tape remaining indicator.
The unit is built on a small PCB and incorporates its own LED display. It's inexpensive to build, simple to construct and connect, and is considerably more linear than the usual counters found in most VCRs.

SERVICING THE SONY KV1340UB

This was one of the most popular of Sony's smallscreen colour portables. As with so many Sony sets, there's some unusual circuitry - this time a switched capacitance system in the power supply. Our Sony expert David Botto reports on the set and the procedures to adopt to ensure reliable repairs.

- SATELLITE TVRO SYSTEM

Nick Harrold's satellite TV receiver system has been very successful, giving good results at 4 GHz even with a 1.2 metre dish. A new series describes the system and provides circuit details for the indoor signal processing part of the installation.

RECORDING 405-LINE SIGNALS
With the 405-line network being rapidly closed down, vintage TV enthusiasts will soon find they've no signals to feed to their sets. Unless that is they record some, which as Gareth Foster points out is perfectly feasible.
plus all the regular features

ORDER YOUR COPY ON THE FORM BELOW:

TO.
(Name of Newsagent)
Please reserve/deliver the October issue of TELEVISION (90p), on sale September 21st, and continue every month until further notice.
NAME
ADDRESS \qquad
\qquad
\qquad
by the 2×4 Slimline, a front-loading machine with a competitive suggested price of around $£ 480$ and new features such as simplified record operation, an enhanced go-to facility, clean editing and an eight-event timer.

Sanyo's latest machine is the front-loading Model VTC6500 which features infra-red remote control and a 14-day, eight-event timer at a suggested price of around $£ 480$. Sanyo intend to start production of VCRs in W. Germany during the course of 1984. Whilst Sanyo's Lowestoft machines will be to the Betamax format, it's understood that W. German production will consist of VHS machines. Production at the two plants will be at the same rate.

Akai's Model VS4EK uses the TV set as a monitor to display the timed programme instructions given to the machine in order to make setting up simple and foolproof. The programming can be done via the infra-red remote control system. Suggested price is around $£ 550$.
The Sony Betamovie VCR/camera combination is to be launched in the USA, aimed at the 8 mm film user market. The machine uses a full-sized Betamax cassette and gives up to three hours, twenty minutes recording time though the battery has to be changed after an hour. The Betamovie weighs only $5 \frac{1}{2} l \mathrm{lb}$ but does not have playback capability.

The JVC Video Centre in Piccadilly, London, is holding courses for those wishing to know more about video programme techniques and production. There are two course levels, basic and advanced - special courses to suit particular needs can also be arranged. The basic course lasts for three days and is designed for beginners; the advanced course is intended as a follow on and lasts for two days. The courses are being held twice monthly.

8 mm VIDEO

Agreement has been reached between Japanese, US and European companies on the specification for the new 8 mm video system. This was originally intended as a simple, low-cost system for use in combined camera/ recorder units, giving a restricted recording time on a small cassette. There is now speculation however that if development of the system is successful it could become a new basic VCR standard: with new heads and new tape formulations, the system could turn out to be the next big step in increased video recording information density. Longer playing versions would probably take some three years to develop.

IN-CAR ENTERTAINMENT

US drivers are certainly being pampered by the consumer electronics industry. An experimental compact disc player with four-speaker system has been shown by Mitsubishi, and now there's a dashboard stereo radio/cassette player/ quartz clock/monochrome TV set. What, drive 'n watch? Not so: the unit is designed so that the screen is blacked out, though TV sound continues, when the ignition switch is on. The unit can also be installed at the rear of the car to provide viewing whilst the car is moving.

THAT VIDEO AGREEMENT

The EEC/Japanese VCR import restriction agreement has come in for severe criticism from the EEC consumer interest group BEUC, which calls it a "dangerous precedent" that takes into account the interests of European industry but not that of consumers. It argues that the net result will be to give Japanese producers extra
profit by aligning their prices with high-cost European factory prices, that if dumping was suspected it should have been proved or otherwise and sanctions applied as necessary, and asks the commission to consider the compatibility of the agreement with the Community's competition rules.

Thorn-EMI have increased the pressure on the EEC to get the J2T joint VCR production venture excluded from the kit quota part of the agreement. A Thorn-EMI spokesman has commented that the EEC has little or no understanding of the J2T operation, whose Newhaven and Berlin factories are being forced to work at an uneconomic level as a result of the agreement.

RECORD DELIVERIES

The first quarter of the year saw record trade deliveries of TV sets and VCRs. The increase in CTV deliveries compared to the first quarter last year was some 25 per cent, with imports up by over 50 per cent at some 313,000 . VCR deliveries increased by a startling 75 per cent, though a rush to beat the EEC/Japanese restriction agreement is thought to be partly responsible for this. In both cases however the figures emphasize the fact that any substantial increase in demand cannot at present be met by domestic production. The view of many of those on the
sales side of the industry is that demand for CTVs and VCRs has now reached some sort of plateau following the upswing in consumer spending late last year and early this year.

Here's an interesting aside from tube rebuilders TSR Vacuonics Ltd., whose managing director John Collins points out that of at least 138 different types of tubes used in the UK only some 32 could until recently be replaced by regunned tubes. TSR have invested over a quarter of a million pounds in machinery and training to tackle the problem. As John Collins says, one regunned tube bought means one less tube imported.

CABLE TIMETABLE

The cable TV bill is expected to be on the statute books early next year. Meanwhile the twelve pilot cable TV networks sanctioned by the government should receive their licences by November. Each network will serve some 100,000 households, the aim of the interim licence being to encourage the development of the technology during the period before the full legislation comes into force. Well, that's what they say: it's more likely to encourage the use of whatever happens to be to hand, since a delay of a couple of months will make hardly any difference at all.

VCR Clinic

Toshiba V8600

The problem with a Toshiba V8600 was that it was stuck on channel 1. After considering the relevant circuit we decided to check transistor QA03, which selects channel 1 when the power is applied at switch on. It was found to be leaky from collector to emitter.
S.B.

Hitachi VT8000 Series

Two Hitachi machines came along with sound faults. On the first the fault was in playback. The note attached to the second machine gave no further details. Testing the first machine revealed whistling and hissing with the odd buzz or two thrown in just to confuse the issue. The audio output waveform was covered with instability of an h.f. kind, but after a few moments it settled down to normal. Perhaps the second machine had the same fault? Not very likely. Wrong again! Time to have a word with Hitachi to find whether there's an easy way out.

The nice man at the other end of the phone chatted about a fault with some VT8000/VT8300 machines, along with some VT8700s, that have an audio head problem. But not on the VT8500 which has a modified head. So I asked what was the problem and the modification? The problem audio/control heads have metal spacing between the upper audio and the lower control track sections: as this metal wears, vibrations are set up when the tape passes over the head. Rather like the finger round a wine glass rim trick, sympathetic resonance, I suppose. Modified heads have a glass based spacing section. Of course the only two VT8500s in the world with metal spacing were the two I'd got.

The nice man also mentioned a relay problem. RL401 connects one side of the audio head to chassis during

Fault reports from Steve Beeching, T.Eng. (C.E.I.), Derek Snelling, Mick Dutton, Mike Sarre, Peter H. Dolman and Les Harris
replay, the signal to the preamplifier being taken from the other end of the winding. On record the output from the record amplifier is fed to the other end of the winding. If one end of the winding is not properly earthed during replay, the result is oscillation. Change RL401 or in dire emergency remove the cover and clean the contacts. S.B.

Panasonic NV333

Two Panasonic NV333s had the same complaint but different faults. In both cases the complaint was squeaking, very similar to that experienced with certain Hitachi machines fitted with a particular type of audio/control head. In one case this was in fact the cause - the symptom could be made to come and go by touching the head with a screwdriver. In the other case touching the head had no effect and the only way in which the squeaking could be affected was to move the pinch wheel. This didn't really help as it stopped the tape moving! After eliminating the take-up spool and ordering and fitting a new pinch wheel, we eventually traced the fault to a nylon roller on one of the loading arms - a squirt of Servisol cured it. We took care to remove any trace of Servisol from the surface of the loading arm before trying a tape of course.
D.S.

Sanyo VTC9300P

We had an unusual fault with a Sanyo VTC9300P - it would work all right until rewind was selected, whereupon the stop solenoid would operate and stay on until the machine was switched off and then back on again. Attention was directed to the end sensor circuit, where we found that the rewind os:illator was not working - the
operation of the forward oscillator was also incorrect. Replacing the CX141 control chip made no difference, and as there is very little else in the circuit the fault was soon traced to the rewind end sensor PCB. This is a flexible board and one of the tracks was open-circuit. D.S.

Panasonic NV333

No reverse search was the problem with a Panasonic NV333: playback, forward search and pause were fine, but in reverse search the picture broke up with the top half of the picture disappearing in noise. I've had this problem twice before on Hitachi VT8000 series machines, and in both cases slight adjustment of the leading loading arm was required. This is done with the machine in visual search, then checking playback and pause to ensure that too much adjustment has not been made (about an eighth of a turn is all that's necessary). Unfortunately adjustment made no difference with this Panasonic machine and the video heads had to be replaced. Checking them with the Panasonic head tester showed that one of the heads was badly worn.
D.S.

Ferguson 3V00/3V22

A problem that's becoming common with Ferguson 3 V 00 s and 3 V 22 s as they get older is failure to erase the sound and vision. So far this has always in our experience been caused by the smaller record/playback switch on the audio-servo board - cleaning with Servisol usually clears the problem. On two or three occasions recently however we've had to replace the switch to achieve a lasting cure.
D.S.

Hitachi VT9500

There appeared to be an alignment fault with an Hitachi VT9500 - the problem was that the picture jumped on its own recordings, rather as if the head switching points were off, while the tracking control had to be at one end with recordings made on other machines. This suggested misalignment of the audio/control head, but as the machine was only three months old and had not been previously touched we were loath to alter the alignment without checking a bit further.

A check on the head switching points with the alignment tape showed that they were correct, but when a check was made on one of the machine's own recordings one head switching point was found to be lost in noise. More in hope than anything else (and because it was easier than thinking), I tried a new video head. This provided a complete cure: the tracking was now in the centre on the alignment tape and the jumping had disappeared. The old head showed no signs of wear or damage, was perfectly clean and tested o.k. on the head tester. I can only assume that the alignment of one of the heads had altered slightly.

Whilst on the subject of Hitachi machines, readers might like to know that the VT9500 has a small switch inside, located next to the display, for switching from 12 to 24 hour operation of the clock/timer.

Ferguson 3V29

The complaint with a Ferguson 3V29 was that it wouldn't rewind automatically at the end of a tape, and when rewound it left a tape loop. This was because the tape end
sensors weren't working, so that the machine didn't know it had reached the end of the tape and should rewind, whilst on rewind it didn't know when the other end had been reached and didn't apply the brakes, the result being that the tape "bounced", leaving a loop.

The cause of the problem was simple but unusual. In this machine the cassette bulb is a push fit into a plastic holder, and is sealed in place by a small blob of rubbery compound. We found that the wires to the bulb had been pulled tight during assembly. The compound had subsequently stretched and the bulb had slipped down in the holder until it finally no longer lined up with the holes in the cassette and the end sensors failed to operate. This fault could have taken some time to trace if a colleague hadn't had the same trouble a few weeks previously, when he'd changed a bulb and failed to push it fully home in the holder (a point to note perhaps).
D.S.

NEC 740E

We've had two of these machines in for repair recently. The first suffered from an intermittent clock display. This turned out to be the filament in the fluorescent display device going open-circuit from time to time. The second machine produced very grainy pictures in the E-to-E mode and on its own recordings: the problem here was the r.f. booster unit.
M.D.

Sanyo VTC9300P

The problem with a Sanyo VTC9300 was that the tape would intermittently stop during play or record. When the fault eventually showed up for us, we noted that the pause solenoid was deactivated, causing the pause mode to apply although the button hadn't been pressed. As the reel motion stopped after three seconds, auto-stop was actuated. The supply to the pause solenoid was found to be low at 0.5 V , and on checking back to the 12 V line we found that D814 was high-resistance. Replacing this diode cured the fault - an easy one for a change!
M.S.

Hitachi VT11E

Sometimes the most involved problems turn out to be due to practical down-to-earth causes... The fault we had with an Hitachi VT11E was no deck functions (clock display normal). The tape was laced up, but there was no sign of any mechanism activity. Checks on the various power supply lines revealed that the stabilised 16 V line was missing. This is derived from a Darlington transistor, Q101 (see Fig. 1), the circuit incorporating an inhibit transistor, Q104, which is in turn controlled by the main microcomputer i.c. on the system control panel.

A check back to the microcomputer revealed that the clock pulse output was not present at pin 42 . Since these pulses are vital to the i.c.'s operation, nothing was happen-

Fig. 1: 16 V regulator circuit, Hitachi Model VT11E.
ing. Was the chip faulty, or could that spot of what looked like rust on a nearby component lead be a clue?! On swinging the board open we found that the print side appeared to be suffering from a nasty attack of "wet rot" in an area that included pin 42 of the microcomputer. It turned out that part of the contents of a flower vase had been spilt over the machine whilst it was in operation. Cleaning the contaminated area with copious amounts of RS solvent cleaner and replacing a few "rusting" resistors restored normal operation.
P.H.D.

Conversion for UK Use

A customer brought us a Metz 9918 he'd bought in W. Germany and enquired about converting it for use in the UK. It's similar to the Philips VR2021, and the main problem seemed to be the 5.5 MHz intercarrier sound. Philips were consulted but suggested it would be uneconomical.

We decided to have a go without Philips's help. First we removed the r.f. modulator and hooked up one of the type
used in the Hitachi VT9300. The machine would now replay prerecorded tapes. We found that it was impossible to retune the intercarrier circuit with the i.f. panel in situ, so we removed it and wired it under the main panel, then tuned the two cores for best sound.

Changing the mains transformer connections from 220 to 240 V and soldering the r.f. modulator on to the rear of the aerial amplifier completed the conversion. Test recordings were made and good results obtained.
L.H.

GEC V4001

A GEC V4001 was o.k. when playing back a prerecorded tape, but when a recording was made the capstan speed drifted. A check was made to see whether the control signal was reaching the head, but this was o.k. The capstan FG signal was next checked at pin 6 of IC504, where it's amplified before emerging at pin 8. It then passes to the base of Q522 via R542 and C529. The FG signal disappeared at the base of Q522, due to C529 being opencircuit - it had a hole in its side!

Vintage TV: Fernsehsender Paris

Alexander Wiese

Just forty years ago a unique TV station went on air - in mid-1943, when the Germans established in occupied Paris the only TV station to operate in Europe during the war. Broadcasting continued until August 1944.

The former chief of staff of the Fernsehsender Paris (Paris TV station), Kurt Hinzmann, today lives in a small town in southern Germany. It was he who had the energy to get a German TV station going in a foreign country under wartime conditions. It all began when the Germans unexpectedly found a TV transmitter in the Eiffel tower. The French had been intending to start a service and had installed a 30 kW transmitter there.

The occupying authorities decided to dismantle the transmitter. Some German civilians thought it rather pointless to dismantle a transmitter that had been properly installed however, and instead persuaded the military to allow the station to go ahead. They succeeded by arguing that the h.f. signals would disturb the equipment in enemy planes!

Kurt Hinzmann had been working on television in Berlin. He was sent to Paris to get the new station into operation and had high hopes - he expected the Paris station to be the first in a network that would cover all Europe in the post-war period. The Italians had already adopted the German 441 -line system, with negative vision modulation, and the first step was to convert the Paris transmitter from the French 180 -line system to the German system. The sound-vision spacing was to be $2 \cdot 8 \mathrm{MHz}$, with a.m. sound.

Only the transmitter was available initially, but after some asking around Kurt Hinzmann got the German post office to send cameras and the other equipment required for the station. It was all available in Germany, since a TV service covering the whole country had been planned before the war. In conjunction with the French authorities an old, unused theatre was found and was soon converted into a TV studio. Some months later the station went on air with regular programmes.

Some of the programmes were in sound only, full TV
being transmitted only during the peak hours. The service was intended to serve wounded and recuperating German troops in the Paris hospitals to start with, but some programmes were subsequently transmitted with French language sound for the "host" population. The material consisted of German films and live performances from the studio. The latter mainly consisted of musical shows with German actors, plus a few French plays (in French) adapted for television.

The service operated outside the control of the Nazi regime and played little part in propaganda exercises. The French industry produced some TV sets which were sold in the Paris area. The service was monitored in the UK and provided some useful information on conditions in Paris.

In August 1944 the Americans reached Paris and Fernsehsender Paris transmitted its final programme. A unique service had come to an end. Issue No. 14 of TELE-audiovision contains a complete history of the station, written in German and with several contemporary photos. It can be obtained from the author by application to Postfach 801965, D-8000 Munich 80, W. Germany.

Broadcasting from the Fernsehsender studio, Paris.

The Passing Over of Tiny Tim

Les Lawry-Johns

Tim lay awake in his little bed, wide awake, while his wife Tinker Bell slept soundly beside him. He couldn't sleep and had no idea what time it was. Then he did. The first blackbird started up the dawn chorus and chirped away, calling all the others to wake up and stop Tim from sleeping. It wasn't even dawn.
"That blackbird's got his clock wrong again" thought Tim angrily. He now knew what time it was. It was 3.40 a.m. What a time to start singing and soon to start work. Those birds must be daft. It always seems to be the same in June. Birds awake half way through the night.

Tinker Bell stirred, murmured sleepily, and promptly dropped back to sleep. Tim couldn't sleep though. It was June and the television had said last night that Clive Sinclair had been awarded a knighthood in the Queen's Birthday Honours list. What would Tim get? An OBE at least. Perhaps a peerage. You never know what the Queen might decide. After all, Tim had been a good boy for a long time, a very long time. Tim drifted into a troubled sleep, thinking about the times he'd been bad, very bad.

He woke to find his wife standing by the bed with his breakfast and the morning paper. Tim grabbed this eagerly. Pausing only to shovel some scrambled egg and toast into his mouth, he scanned the columns of names of those who were to receive honours. Lots of familiar names, some perhaps who deserved honours, but nowhere did he find mention of Tiny Tim.

Overlooked

At last he had to admit that he'd been overlooked for another half year. What could the Queen have been thinking about to overlook him yet again? As her father had thirty years earlier.

Tim sulked. He'd waged a thirty year war single-handed against inflation and this was his reward. Thirty years ago he had charged three pounds to repair the average telly. Then it was half the peasant's weekly wage. Now what did he get? He still charged them much the same, perhaps a little more here and there, but not a lot more. What if he charged them half their weekly wage now? He wouldn't get any work, that was for sure.

He lay in his bed fretting, while the rest of the working world went about its business. He heard the shop door open, and the sounds of a TV set being brought in. He panicked out of bed, pulled on his clothes, combed his little locks and strolled downstairs, trying to look as though he'd been about for hours.

Mr. Pedalcar's Bush

Mr. Pedalcar stood there patting his Bush T20. Before Tim could bid him good morning, Mr. Pedalcar launched into a tirade. "You put what you called a tripler in this set last month and ever since we've had white streaks coming from anything that's at all light. I'm going to take you before the race relations board. Ha, ha, ha."

Tim smiled weakly and put the set up on the bench. It was as Mr. Pedalcar said. Everything light had a thin white streak shooting over to the right. Something stirred in Tim's little mind, but it wouldn't come through.
"Only since you put that thing in" Mr. Pedalcar repeated.

So Tiny Tim fitted another tripler just to show him that it didn't make any difference. He then checked the 330Ω resistor connected to the tripler to ensure that it was the right value. It was.
"Call back later, Sir. I'll get at it as soon as I've taken the dog for a walk and had a think."

Left alone Tim thought awfully hard, but nothing happened. He tried this, that and the other, but the streaks remained. He then called his friend Geoff, who knows all about T20s and other funny things. "Buggered if I know" said Geoff helpfully. "Whenever I get trouble on a T20 signals board it always turns out to be a chip."

Tim was ever so grateful, and something stirred again in his wonky memory. He stared at the signals board and especially at the TCA800 demodulator/matrixing chip. He removed the suspect and found a replacement lurking in the i.c. cabinet. This was fitted in a trice, and Tim switched on confidently. "If the Queen could see me now" he thought.

On came the picture, completely free of nasty streaks as Tim knew (hoped) it would be. Then he remembered. He'd read in Television (Tim reads most of the articles in Television, apart from those that are too complicated for him) just this fault described, along with the advice to change several items including the chip. Funny how he can never remember before the agony, only afterwards. Tim swore an oath to read it more carefully in future, if he could.

Another Bush

The next one wasn't a confusing T20, merely an older A823. As everyone knows, these are no trouble at all to anyone with a grain of common sense. The owner described the symptoms and asked for an immediate diagnosis, which he got. Apparently at odd times the width would decrease, with curved edges and a bright kink (undulating) down the centre.
"It's going into overdrive" explained Tim. "With a possible loss of smoothing."
"Ah" said the owner, impressed with this display of expertise.
"Call back later" said Tim. "It'll be ready by five o'clock."
Left alone Tim fretted and sulked a bit, because he'd no idea what could cause the trouble so intermittently. He switched on and watched the picture appear with a foldover down the centre, just as he'd been told. Then the picture corrected itself and remained good until Tim changed channels. The fault then returned for a few seconds.

He clipped smoothers across smoothers, then decouplers across decouplers. Still the same. He remembered his first diagnosis (going into overdrive) and his eyes narrowed. If the damping components across the primary winding of the line driver transformer were to become open-circuit intermittently, the drive to the line output transistors would be distorted. This was it. The resistor seemed o.k. on test, but Tim noticed that the capacitor in
series with it leaned against the resistor, which normally runs hot. Ah, ha. He replaced the capacitor with a flourish and beamed at his expertise. There was no change. He crept into the corner and cried. Tinker Bell found him there and gave him a cuddle.

Feeling better, he had another try. What rules had he forgotten to follow? Ah yes, the colour prejudice rule. If capacitors are red or green and big, suspect them. If they are smaller and black, replace them. Tim looked and found a small, black $10 \mu \mathrm{~F}$ electrolytic that decouples the emitter of the line oscillator transistor 5VT6. He whipped it out and checked it. As it didn't seem to feel well he fitted a replacement which was also black. He applies the rule only when it's convenient you see. The picture stayed steady for an hour. So the job was deemed done and the set was collected and carried away.

It was carted back the next morning. Lacking moral courage, Tim changed the complete panel. This cured the problem and he resolved to have another go at the faulty one another time when he felt better. So far he's felt groggy every day, so he still doesn't know what caused it to go into overdrive.

Ups and Downs

Tim had been reading his Reader's Digest. He'd come across a snippet reprinted from the Daily Telegraph sent in by a Mr. J. W. Reid. It made Tim think, which is something he's not used to doing. So he thought he'd have a go at Tinker Bell.
"After you've washed down the breakfast things, you can go out and wash up the car." T.B. gazed at Tim for a long time.
"You've got that wrong dear. After you've washed up the breakfast things, you can go out and wash down the car."
Tim sulked a bit after this, then had another go.
"The cat hasn't eaten down her food." Tinker Bell joined in the confusion. "I think you're getting a little mixed down love." Tim saw that it was game down and gave . . "And don't forget to fill down the form that came yesterday."

The World's End

If you take your dog for a walk to the top of Windmill Hill and look across the river to Tilbury, you can see The World's End just to the right. Tiny Tim was talking to his dog. "In that pub over there, there's a dog even more queer looking than you."

Ben wagged his tail and Tim continued. "It's a cross between a Jack Russell and a Labrador. Since his father was the Jack Russell, the queerness doesn't stop at the dog's appearance. How could a little . . . ? Ben wagged on. He clearly knew the answer but wasn't saying anything. Tim rebuked his dog sternly.
"How can you look so knowing? When we tried to mate you with a very pretty Collie at the very height of her hotness, all you did was run around cocking your leg up everywhere until a dirty old mongrel jumped over the fence. We got a right old rollicking from the owner when the puppies were born."

Ben lowered his head and walked home on his own. Tim followed, saying how sorry he was, afraid that Ben would tell Tinker Bell who would no doubt put her hands on her hips and comment "he's a fine one to talk..."

4GHz Low Noise Amplifier

Hugh Cocks

Since my article describing a 4 GHz converter with imagefrequency rejection (May issue), there have been a number of requests for details of a relatively low-cost, lownoise amplifier for use with it. Commercial LNAs from the USA still cost upwards of $£ 230$ to import into the UK.

The amplifier described in the present article is based on the NEC/California Eastern Labs two-stage design which has been very popular with manufacturers and home constructors in the USA. The previously described converter calls for a minimum of three stages of amplification however, preferably four stages, to achieve a low system noise temperature. The cost of gallium arsenide field-effect transistors has fallen dramatically during the past two years. As a result, this four-stage LNA requires about $£ 70$ worth of parts. Add to this a few hours' work and you get a gain of around 43 dB with a noise figure of below 2 dB .

Circuit

The circuit is shown in Fig. 1. The input matching circuit in the first stage consists of a quarter-wave transformer with a series inductor. This matches the input impedance to the optimum source impedance, which is 50Ω. The transformer is of 33Ω stripline to transform the 50Ω source to 21Ω, the f.e.t.'s gate lead being used to series resonate its input impedance.

The interstage matching filter is less complex because the optimum source impedance and the load reflection coefficients are similar. A quarter-wave transmission line of 50Ω impedance is used to match the output impedance of the first stage to the input of the second stage. The second stage's output impedance is series resonated using the f.e.t.'s output (drain) lead as the inductor. This is followed by a quarter-wave 40Ω stripline which transforms the output resonated load impedance of 30Ω to 50Ω. Opencircuited 50Ω stripline stubs are also present - two in the input circuit and one between each stage - to compensate for the source lead inductance of the f.e.t.s and chip capacitor parasitics. The third and fourth stages are identical to the second. The circuit board material must be similar to that of the 4 GHz converter - Teflon with a dielectric constant of $2 \cdot 5$. It's unlikely that any other type of PCB material will give good results. 10pF interstage coupling chip capacitors are used, and the gate bias and drain supply inputs are brought on to pads (see Fig. 2) that connect to the stripline via small etched chokes. Each pad is decoupled to an outer pad, which is soldered to the case, by an $0.001 \mu \mathrm{~F}$ chip capacitor.

Power Supply

Now to the supply and biasing arrangements. Gallium arsenide f.e.t.s are similar to valves in that the gate must be negative with respect to the source, otherwise excessive current will flow. Unfortunately we can't use source bias resistors as our hard-won gain would be reduced (to say nothing of the noise added).
With both the Mitsubishi MGF and the NEC NE series
of gallium arsenide f.e.t.s the optimum noise figure is obtained with about 3 V at the drain and a current of 10 mA . Maximum gain (about another 5 dB) occurs with a current of $20-30 \mathrm{~mA}$ however. So the first two stages, where low noise is vital, are biased for minimum noise whilst the last two stages, which contribute most of the gain, are biased at the higher current level.

The power supply circuit is shown in Fig. 3. The positive side is simple, consisting of a 5 V regulator with a 5.6 V zener diode at the output to provide cheap insurance should the regulator go short-circuit. The drains of the first two f.e.t.s are fed via 200Ω resistors which drop 2 V at 10 mA , giving the required voltage and current. The final two stages are fed via 100Ω or 82Ω resistors for higher gain (the f.e.t.s will take 100 mA safely).
The negative supply is a high impedance one to provide the required gate bias. The supply is derived from an NE555 timer i.c. which runs at about $20-30 \mathrm{kHz}$. Its output, taken from pin 3, is fed to a voltage doubling rectifier ($\mathrm{D} 2 / 3$) whose output is smoothed by the electrolytics and regulated by zener diode D4. A 3.3 V zener diode is quite sufficient as the negative bias required will not exceed 1.5 V . The output then goes to four $100 \mathrm{k} \Omega$ presets which set the bias applied to each gate. In each case a $10 \mathrm{k} \Omega$ resistor is used to link the voltage to the feedthrough capacitor in the LNA's case.

It's advisable to use a decoupling resistor of about 22Ω (1 W minimum) to feed the power unit from the 12 V source. If this isn't done, the oscillator in the converter circuit can pick up signals from the NE555, producing an effect like radar interference on the picture.

The power unit has been in use for several months and no problems have been encountered with mains transients killing the f.e.t.s. If your local supply is dirty however it might be advisable to run the LNA from a 12 V battery. The unit has been tested with repeated on-off switching of electric drills and on one occasion the mains transformer arced to the case, blowing the winding open-circuit and also the supply fuse, though the f.e.t.s survived happily. In the unlikely event of the negative supply failing, the devices will survive as a result of the current limiting action of the drain resistors.

Mechanical Construction

The LNA board should be mounted in the middle of a tinplate box (see Fig. 4) open at the top and bottom. If the LNA is used in conjunction with the previously described converter (see Fig. 5) the tinplate may carry on to surround both of them. Ensure that a small strip of tin links the ground plane side of both boards. The input may be connected to a feedhorn via an SMA connector or to a helical pick-up (see later).

Solder the ground plane side of the board and the decoupling capacitor pads on the top of the board to the case. If excessive heat is used the whole assembly may warp. It's a good idea to arrange for everything to be kept rigid whilst doing this.

Feedthrough capacitors bring the d.c. through the wall

Fig. 1 (above): Circuit of the 4 GHz low noise amplifier.
Fig. 2 (right): Amplifier PCB. Note different track widths.

Fig. 3: Power supply for the low noise amplifier.
of the box and are linked to the pads via thin pieces of wire with a ferrite bead sleeved over each to reduce the likelihood of any stray microwave signal leaving via this route. At this stage it's a good idea to link the feedthrough capacitors on the outside of the case whilst awaiting the arrival of the f.e.t.s. The LNA power board has been designed to run along the outside of the LNA in the "well" formed by the converter board and the front reflector of the helix feed (if used). It can be spot soldered to the tinplate walls. The feed resistors are connected between the board and the feedthrough capacitors.

Electrical Construction

Once the mechancial construction of the LNA is complete, the electrical construction can be started by soldering in the chip capacitors. These require a delicate soldering technique! If possible clean the ends in a weak solution of ferric chloride, and attempt to tin them. Hold the capacitor on the board with a small screwdriver blade and lightly solder one end. Solder the other end properly, finally returning to the first joint to tidy it up. If excessive heat is applied the capacitor can crack. Mechanical stress can have the same effect. This is especially the case with the input chip. The signal may decrease by only a small

Fig. 4: Amplifier board in its case - "cut-away" view.

Fig. 5: Board layout of the complete down-converter.
amount when this happens, and one can spend a lot of time attempting to find the cause of the trouble as the crack is often invisible without a magnifying glass. The

Fig. 6: Power supply PCB track pattern and component locations.
feedthrough capacitors are best mounted at this stage, prior to installing the f.e.t.s.

A few precautions are required when handling/soldering gallium arsenide f.e.t.s. Earth the iron bit to the LNA case, then earth the entire system to a known good earthed source. It's not really necessary to earth yourself, provided a nylon carpet or a very dry atmosphere is not involved. If the air is very dry, it's advisable to increase the humidity by boiling a kettle in the room.

When the device is removed from its envelope you'll find that there are two thick source leads. These are taken through the board and soldered on the ground plane side. On the NEC devices the lead with the dot adjacent is the drain: with the Mitsubishi devices the lead with the diagonal cut is the gate. Solder the source leads first, then trim the other two leads to link on to the board. Solder these two with as little solder as possible. Repeat this with the other three f.e.t.s and the LNA is complete.

Alignment and Testing

It's advisable to power each individual stage on its own initially to check that all's well. The drain voltage should be measured only with an accurate meter. Don't connect the meter to the gate feedthrough capacitor, though the device isn't likely to die if you do. Make sure that the drain voltage varies smoothly when the negative bias is varied. The sign of a dead device is about 0.5 V all the time on the drain feedthrough capacitor with no negative

Fig. 7: Simple helical feed system.
bias on the gate feedthrough capacitor (yes, I have blown one!).

When all the stages are powered a lot of extra 4 GHz noise should be seen on the screen. An instability effect may be noted, not unlike intermittent carriers when tuning through the band. This can usually be cured by fitting a snug lid over the final two stages of the LNA, where the level of r.f. is at its highest. There should be a good cover on the microstrip side of the converter: this may need to be extended to cover the final stages of the LNA. A front cover may be fitted to the first two stages, but these may initially need tuning up (see below). Stubborn instability can usually be eradicated by placing a ferrite bead or two on the three-sided rectangular bias choke in the first or second stage.
If the LNA/converter is now connected to the horn and a suitable dish, signals should be seen. With a $1.8 \mathrm{~m} / 6 \mathrm{ft}$ dish Gorizont ch. $1(3.675 \mathrm{GHz})$ will be very strong. The weak transponder signals are ideal for tuning the LNA. Whilst watching the picture, turn the first stage's bias potentiometer. A peak in the signal should be clearly seen. Repeat with the second stage. The setting for the final two stages won't be too critical, especially the last one.
To fine tune the unit, place a small patch of copper (23 mm square) on the end of a plastic rod. Slowly move this around the edges of the stripline in the first two stages, taking care not to short anything out. Note the effect on the signals. If they increase at a certain point, a small amount of copper needs to be added (paint it on). If they fall, a small piece needs to be removed. Make sure that all signals behave similarly, i.e. don't just peak the response on one channel. I've found that the most common thing is that the end 2 mm of the first stage stubs needs to be removed. This can be done with a sharp knife, so that the dead section can be linked back with solder if required.

Having done this, you should have an LNA that provides a gain of about $42-44 \mathrm{~dB}$ with a noise figure of around 1.1 dB at best (possibly a little below) to 1.9 dB at worst. Various grades of gallium arsenide f.e.t.s are available. Finances permitting, a low-noise type should be used in the first stage. This will dictate the overall
performance, making a noticeable difference on weak signals.

My thanks to Dave Lewis for all his help with this project.

Simple Helical Feed System

It's a very simple matter to connect a helix feed to the LNA (see Fig. 7). This does away with the need for a copper pipe and PTFE polariser. An increase in signal has in practice been seen, probably due to the truly circular polarisation of the helix. All that's required for a prime focus feed is two and a half turns of 16 s.w.g. copper wire, with a diameter of one inch spaced over about 5 cm .

A rear ground plane/reflector is required. This should be of 8 cm or so diameter and can be part of the LNA case. The feed to the LNA may be via a PTFE bush or similar. The 50Ω impedance is set by taking the input from the circumference of the helix, with the distance from the first turn to the reflector about 1 cm . The number of turns can easily be adjusted and some experimentation here may prove beneficial. For right-hand
polarisation the coil should be wound anticlockwise looking from the dish into the head.

Component Sources

The NEC NE72089 (typical noise figure $1 \cdot 3 \mathrm{~dB}$) and NE21889 (typical noise figure 0.9 dB) are available from Microwave Modules, Brookfield Drive, Aintree, Liverpool L9 7AN (telephone 051-523-4011).

The Mitsubishi MGF1402 (typical noise figure 1•11.3 dB) and MGF1412 (typical noise figure $0.8-0.9 \mathrm{~dB}$) are available from either Harrison Brothers, 22 Milton Road, Westcliffe-on-Sea, Essex SS0 7JD (0702-332-338) or Aspen Electronics Ltd., 2 Kildare Close, Eastcote, Middx HA4 9UR (01-868-1188).

Teflon board is available from Walmore Electronics, 11-15 Betterton Street, Drury Lane, London WC2 (01-836-1228) -0.8 mm thick Teflon or PTFE/woven glass laminate.

Ready etched boards and chip capacitors are available from Hugh Cocks TV Services, Cripps Corner, Robertsbridge, Sussex TN32 5RY (058-083-317).

The Ultimate Pattern Generator?

Steve Beeching, T.Eng. (C.E.I.)

I was very pleased when my local Grundig technical liaison engineeer Peter asked me if I was interested in having a look at their VG1000 pattern generator. From the information given in the catalogue it seemed to provide every signal required for VCR servicing, and as I was looking around for a replacement for my Philips PM5509 it was an opportunity not to be missed.

Controls

The front has more knobs and pushbuttons than a Concorde's cockpit, and there's such a variety of functions that it's difficult deciding where to start.

At the extreme left there's an on/off switch, BNC connector and video level knob. The latter enables the video output level to be varied between $0-2 \mathrm{~V}$ peak-topeak when terminated at 75Ω, and by pulling the knob out the signal is inverted.

To the right of this there's an array of no less than 15 pushbuttons to select all manner of signals which we'll describe later. Next, almost central, come four more pushbuttons and another knob - these are the chroma controls, with variable chroma level control, again a pushpull switch. When the knob is pushed in the chroma is set at a specified fixed level: when pulled out, the chroma can be varied from 0 to 100 per cent (the fixed level). The pushbuttons provide chroma off, PAL switch off, R - Y off and B - Y off.

Farther along to the right comes the genlock section - if the relevant optional PCB is fitted (it wasn't in mine). This enables the VG1000 to genlock to an external composite signal such as one from a camera, for checking a mixer system for example. On the extreme right-hand side there's the r.f. output section, with sound carrier and modulation on/off switching.

At the rear there are more BNC sockets, arranged in a column. These provide 1.5 V peak-to-peak of chroma carrier, 4 V p-p of mixed sync, 4 V p-p of mixed blanking,
and 1 V p-p of composite video, when terminated at 75Ω. So there are two video outputs, one fixed and one variable, which is useful. The variable output can be used to check VCR a.g.c. circuits, and with two outputs one can be used to lock the scope while the other one feeds the VCR. A further optional panel provides RGB test pattern outputs.

Patterns

We'll now take a look at some of the waveforms and patterns the VG1000 can produce. Some will be familiar to you. Others may not seem too obviously useful until you know how to make the best of them.

Grid pattern: This has 19 squares horizontally and 15 vertically and can be used for CTV convergence, checking line jumping of the field syncs, picture bounce, linearity, focusing, pincushion distortion, etc. None of this has much to do with VCRs you may think. However there's ringing to check as well as the Q network response and limiter balance, which will respond to peak whites.

250 kHz bars: About twelve vertical black and white bars which can be used for white clip adjustments as the

The Grundig VG1000 pattern generator.

Fig. 1: Vector test pattern.

Fig. 2: Colour phase axes.

Fig. 3: Video amplifier response check.

Fig. 4: Sine squared pulse and bar signal.

Fig. 5: Chroma amplitude and phase checks.

Fig. 6: The composite test pattern.
waveform is a very nice video squarewave. Can also be used to set replay crispening circuits, aperture or video equaliser networks and limiters.

Cinamascope 100 per cent white block: This is called a

50 Hz black to white jump. It consists of a wide field blanking period followed by 100 per cent white level. Useful for checking l.f. response, and difficult faults in Sony C7s that play up when recording cinemascope films.

Multiburst: Six sets of sinewaves across the screen in vertical columns. Frequencies are $1 \mathrm{MHz}, 2 \mathrm{MHz}, 3 \cdot 5 \mathrm{MHz}$, $4.8 \mathrm{MHz}, 5 \cdot 8 \mathrm{MHz}$ and 10 MHz . What's so special? They start and stop at zero crossing, are locked at line rate so that they stay still and don't drift through, and you can set them yourself to whatever you want up to 10 MHz . I chose $1 \mathrm{MHz}, 2 \mathrm{MHz}, 2.8 \mathrm{MHz}, 3 \mathrm{MHz}, 3.8 \mathrm{MHz}$ and 4.8 MHz in order to check VCR response and luminance carrier modulation.

Colour bars: EBU bars with white at 100 per cent, colour saturation 100 per cent and colour amplitude 75 per cent.

White raster: A full level white raster for f.m. deviation.
White 30 per cent: Mid-grey raster for signal-to-noise checks.

Red raster: About 30 per cent white with red chroma. For purity and VCR chroma noise checks.

Grey scale: Eight linear steps from black to 100 per cent white. A second pushbutton allows chroma to be superimposed for differential chroma gain checks. The chroma is 215 mV at 180°, a sort of yellowy green colour.

Circle: This is digital and stored in a PROM, so it's not subject to drift or change and is a true circle. As it's digital it seems a bit raggy edged in parts on close inspection, but it's a good circle nevertheless. It can be superimposed on all the other test patterns with the exception of the multiburst. An intersting point is that superimposition is achieved by means of OR gating, so that the white level never exceeds 100 per cent, i.e. the white circle is not added to but gated with the other patterns.

Vector test pattern: This has five sections (see Fig. 1). The first section of each line consists of two sawtooth waveforms, which contain PAL-switched V and +U respectively. The V signal is slightly bluish red and the U signal bluish with a hint of red. Fig. 2 shows the basic colour phase axes. If the video amplifier system's response in the 4.43 MHz area is low the chroma-filled sawteeth will be as in Fig. 3, where the bottom edge is not level due to the reduced chroma amplitude. The top of the second half of the screen has zero $G-Y$, i.e. orange, and can be used to check the G-Y matrixing. Below this are two sections called achromatic vectors: a correctly set up PAL decoder should produce no output. The switched U signal will cancel, similarly the $+V$ signal. Such things as delay line phase and subcarrier phase can be adjusted easily.

Sine squared pulse and bar: This is a standard broadcast specification signal. There are two pulses followed by a bar. One pulse has a duration of 20 T and the other 2 T , where $T=100$ nsec. T is defined as 0.5 fg , where fg is the upper frequency limit of the TV system - taken to be 5 MHz . The line (see Fig. 4) contains a 20 T pulse ($2 \mu \mathrm{sec}$) which is filled with chroma followed by a 2 T pulse (200 nsec). Sine squared is simply a complicated way of saying that video pulses are not by nature a.c., starting from black and rising towards peak white. The 2T pulse is
followed by a step of T rise time to a 100 per cent white bar. Since it appears line by line its frequency is 15 kHz . As Peter so aptly put it, "try finding a VCR that can replay that!"

The TV screen shows a vertical, soft-looking greenish column followed by a sharp white line and then a white bar which is 200 lines in height and is referred to as a jump signal.

An extra button gives you the 2T pulse on one field followed by a broken line on the next field, enabling video heads to be identified.

A further use of the 20T pulse is illustrated in Fig. 5. The thing to examine is the base of the pulse, since this reveals chroma phase and amplitude problems. If the base has a single curve as shown at (a), there's a slight amplitude discrepancy: a baseline with a tendency to ripple, as shown at (b), indicates that there's a phase problem. It's a very sensitive signal that will show up the slightest errors.

Test pattern: This is shown in Fig. 6 and includes samples of all the full-screen test patterns in a single composite pattern.

Lines $16 / 17$ and $329 / 330$ at the beginning of each field carry a peak white 100 per cent level signal as a reference. Alternate black and white rectangles at the sides define the edges of the picture. The basic grid consists of 19 horizontal and 15 vertical squares, but the centre 12×10 section contains other singals, surrounded or not by the optional circle which can be switched in or out. The top of the insert section contains the sine squared pulse and bar. This is followed by colour bars then 250 kHz black/white squarewaves. Next comes the multiburst, with 4.43 MHz at 146° (flesh coloured) at the right. The grey scale beneath has five steps from 0 to 100 per cent. This is followed by switched and unswitched U and V and finally, at the bottom, yellow/red/yellow for phase position and amplitude ratios of the colours.

Test Cassettes

Now for an advert. I am producing test cassettes of thirty minute duration with this test signal on them, using a specially aligned centre tolerance recorder, at some $£ 30$ (check with the Newark Video Centre Ltd.). These can be used for general setting up prior to final alignment if necessary using a manufacturer's alignment cassette.

Table 1 provides further specification details. The output is to broadcast standard, with the correct four-field PAL burst sequence.

Conclusions

It's certainly the best pattern generator I've come across. The syncs have full half line equalising pulses and there's the correct burst sequence. It's as good as a Channel 4 test pattern in my opinion. The square wave signals have no discernible overshoots, the corners being nice and neat, far better than a received signal. I've never seen such a nice little 10 cycle burst: its overall shape is rectangular.

After I'd used the generator for several weeks I began to get concerned about the production alignment of some VCRs, something I've not noticed before. Colour record levels and crispening circuits for example. Visiting engineers have positively drooled over the waveforms displayed on my 50 MHz scope - the input to the scope has to

Table 1: VG1000 specification.
Chroma carrier: 4.433619 MHz . df/f less than $\pm 5 \times 10^{-8}$ between $5-40^{\circ} \mathrm{C}$.
Burst phase: $\pm 135^{\circ} \pm 2^{\circ}$ on the -U axis.
Burst amplitude: 300 mV p-p.
Burst position: $5.6 \mu \mathrm{sec}$ after the front slope of the line sync pulse.
Burst width: $2 \cdot 25 \mu \mathrm{sec}$.
Burst blanking: PAL quad sequence.
Line frequency: $15.625 \mathrm{kHz} \pm 1 \times 10^{-8}$.
Sync width: $4.7 \mu \mathrm{sec}$.
Sync pulse amplitude: 300 mV .
Line blanking: $12 \mu \mathrm{sec}$.
Front porch: $1.5 \mu \mathrm{sec}$.
Field frequency: $50 \mathrm{~Hz} \pm 1 \times 10^{-5}$.
Equalising pulses: 5 half line pulses, 5 half line broad (field) pulses, 5 half line.
Patterns: 15 basic patterns including the circle which can be added if required to 13 of the other patterns.

All grid lines are passed through a sine squared Thompson filter and are thus 2T pulses. The multiburst and circle are added after the sine squared filter: all other luminance signals, including the syncs, are shaped to a 2 T rise time.
be terminated of course or the signal will show the effects of an unterminated line - even with a cable only one metre long.

The VG1000 is almost too good for setting up TV sets and, here's the snag I've not mentioned before, the r.f. output is at v.h.f., though you can get an output at i.f. With Grundig TV sets the v.h.f. output is no problem as they can all receive v.h.f., while with VCRs it's immaterial as you can go in at video frequency. If you want a u.h.f. output, a suitable v.h.f.-u.h.f. converter is available from Philips. I found that this was fine for feeding individual sets but couldn't be linked to the workshop signal distribution system because the output is full of harmonics.

No one is ever completely satisfied and, having acquired the VG1000, I propose to make some modifications. First I intend to arrange for an audio output, which I miss. Secondly I don't think that the 30 per cent white is as useful as black. By changing this I'll be able to get a white circle on a black background. Switching from white to black and vica versa has helped me to solve many I.f. sync problems with VCRs. Another change I propose to make is the addition of RGB outputs, which will be useful for testing computer monitors.

VCRs are getting more and more sophisticated and there's a trend towards better picture quality. As a result, much more accurate alignment will be required. Already we have the Sony C9 which calls for a spectrum analyser, without which the result will be noisy pictures. Then there's the JVC HR7655 long-play machine that requires eccentricity setting up after changing heads. To be effective, a VCR service department will need substantial investment in specialised equipment. The VG1000 is not cheap at around $£ 1,200$, but it will last a long time and will not date. What's more, it is effective for VCR repairs when off-air transmissions will not suffice.

Availability

Any company wishing to purchase the VG1000 should contact their local Grundig technical liaison officer or myself at the Newark Video Centre, 108 London Road, Balderton, Newark, Notts.

TV Fault Finding

Reports on TV faults from Peter H. Dolman, T.J. Hawken, Tech. (C.E.I.), George R. Wilding and R.J. Fox

Thorn TX90

The owner of a set fitted with the TX90 chassis was delighted with its performance - but rather concerned when it broke down after two evenings' use. We found that the mains transformer's secondary side fuse FS2 was lightly blown, and on replacing this were presented with a picture of slightly reduced height, with slightly bent verticals, and no sound. Checks revealed that the 12 V supply was low at some 10.8 V , though there was plentiful input to the 12 V regulator i.c. At this point a fine wisp of smoke floated skywards to assist our search. The smoke was coming from R144 which provides the supply to pins $7 / 22$ of the all-singing, all-dancing TDA4500 i.c.

Replacing this resistor and the i.c. restored normal height and sound but the verticals were still bent. This bending was dependent on beam current - the brighter the display the less the bending. The cause was found to be the presence of a $5 \mathrm{~V}, 50 \mathrm{~Hz}$ ripple on the 95 V boost line, which was slightly high at 95.9 V , though the "set h.t." control was at minimum. Increasing the boost voltage slightly removed the hum but brought the set close to tripping. This high boost voltage gave us the clue: a check on the mains transformer revealed that it was wired for 220 V operation instead of 240 V . After rewiring the transformer the hum problem was solved and we were able to adjust the "set h.t." control for 95 V at the cathode of D109, with the slider near the centre of the track.
P.H.D.

Hitachi CTP202

The problem with this set (PAL-4 chassis) was top foldover, covering approximately one and a half inches diagnosis was complicated by the fact that the fault would appear ten minutes after switching on. The best approach seemed to be to check waveforms.

The waveform at the input to the vertical module (field preamplifier, driver and output stages) remained correct, but the output waveform was seen to change slightly, the lower part tending to become flattened. The d.c. voltages and the peak voltage of the output waveform remained correct however.

The module is not an easy item to check, since the four transistors and associated components are glued to an aluminium heatsink which is soldered at right angles to the main panel. The supply comes from the 128 V stabilised h.t. rail, via a filter consisting of R613 ($330 \Omega, 3 \mathrm{~W}$) and the smoothing electrolytic $\mathrm{C} 613(100 \mu \mathrm{~F})$, entering the module at pin 3. I decided to take a look here and discovered a large sawtooth signal at field frequency. C613 turned out to be open-circuit.
T.J.H.

ITT CVC8 Chassis

Slight smoke plus a burning smell had come from the back of this set. Fortunately this was found to be due to C306 $(330 \mathrm{pF}, 6 \mathrm{kV})$ being leaky, as a result of which excess current was flowing through R422 ($1.8 \mathrm{k} \Omega$) - these two series-connected components form a damping network in the line output valve's anode circuit. Since R422 is
mounted on one of the line output transformer's plastic cheeks, part of this cheek had scorched and carbonised. Removing the carbonised sections and resoldering the appropriate connections restored normal results, but whilst balancing the first anode presets the raster suddenly disappeared and the PL509 line output valve began to overheat visibly.
This is often due to lack of drive as a result of one of the capacitors in the line oscillator circuit going open circuit, but the possibility of a dry-joint in the PL509's control grid circuit couldn't be overlooked, especially in view of the initial fault. When making meter checks at the valve's control grid pin the negative bias suddenly appeared and the e.h.t. developed, but vanished just as quickly when the test prod was removed. The prod was then placed on the inch long strip of printed wiring leading to the grid stopper resistor R420. This failed to get the line output valve going, though returning the prod to the original test point started up the line output stage. There seemed to be a dryjoint between these two points therefore, but further tests showed that touching the control grid pin itself produced line output stage operation since the pressure was causing a break under the panel to make. This was soon cured by resoldering. Had the break been a fraction larger and failed to make on test prod pressure, finding the cause of the trouble would have taken a lot longer.
G.R.W.

Telpro CTV

The Telpro hybrid colour chassis was electrically almost identical to the Decca 30 series chassis. The board layouts, sizes and mounting arrangements differ however, so they are not interchangeable. Anyway, the fault we had with one of these sets was no colour. As a first step we checked the voltage at the collector of the colour-killer transistor (TP206). This point is normally at nearly the rail voltage. With the test prod applied, sweeping through the tuning position failed to produce any voltage reading.
The fault could have been in many sections of the decoder - burst channel, ident amplifier, colour-killer rectifier and so on. But as a second step we decided to check the first, controlled chroma amplifier stage, since the burst signal is tapped from the collector of the transistor concerned (TR205). The transistor itself was the main suspect, but due to its position near the bottom of the panel, virtually inaccessible to a test prod, we removed the panel to make resistance checks. This revealed that the transistor itself was o.k. We also found that there was a convenient test point (TP204) at which the base voltage could be checked. The reading was only about 3 V instead of the correct 10.3 V , so there was clearly a biasing problem.
A look at the circuit revealed a suspect for this loss of voltage, a miniature $5 \mu \mathrm{~F}$ smoothing electrolytic (C216) which actually forms the a.c.c. reservoir capacitance. The circuit diagram shows the value as $10 \mu \mathrm{~F}$ incidentally. An ohmmeter test in both directions, to eliminate the effect of the transistor's base-emitter junction, showed that it probably was leaky, and unsoldering one end confirmed this
suspicion. On unsoldering the other end however the electrolytic tested o.k. Nevertheless a replacement restored normal conditions - almost certainly the heat from the solder gun had affected the capacitor's innards.G.R.W.

National Panasonic Colour Portables

Those who, like us, operate in a holiday area - sunny Colwyn Bay! - get lots of colour portables brought in at this time of the year. The following fault reports may be of help to those not familiar with these National Panasonic sets.
Model TC492G (PIX-M11 chassis): The fault is an over bright, flat picture, with the customer brightness control at its minimum position and the contrast control having little effect. The preset brightness control will reduce the brightness to the normal level, but with a very poorly contrasted picture. You'll find that the collector voltages of the RGB output transistors are low due to the
h.t. line being low. This is derived from the line output transformer, by rectifier diode D555 which charges the $10 \mu \mathrm{~F}$ reservoir capacitor C555. The problem is that C555 goes open-circuit. Replacing this and adjusting the brightness preset restores the excellent pictures these sets give. Model TC371GM (PBX-M7A2 chassis): There was a peculiar "half moon" blanked off section of the raster over the bottom one third of the screen, with the curved edge very jagged (on a monochrome set it would have looked as though the phosphor coating had dropped off the bottom part of the c.r.t.). An examination of the flyback blanking pulses fed to pin 5 of the video processing i.c. (IC301) revealed that these were not clearly defined. The pulses come from TR471, which receives field and line flyback pulses at its base. The field pulses were o.k., but the line pulses were a bit messy. These come from the line output transformer via a non-polarised $0.47 \mu \mathrm{~F}$ tantalum capacitor (C857). Replacing this item solved the problem.
R.J.F.

VCR Servicing

Part 21

Mike Phelan
Time for us to look at the 3V23's tuner/timer board. This contains mainly logic circuitry, so if you managed to get to grips with the mechacon board the tuner/timer board should not present many problems. A block diagram is shown in Fig. 97. At first glance it may seem a bit fearsome, but it's not too bad once we break it down.

We'll look at the sweep tuning system first. To operate this, you press "ch set" and then "sweep". The tuning voltage increases from zero until a signal is reached, when the sweep stops. You then press "store" and "ch set" again if no more channels need to be tuned.

IC1 processes the sweep tuning information in conjunction with the DAC (digital to analogue converter) IC9, type MN1204A, and IC5/8, which are both type MN1208 EAROMS (electrically erasable read only memories). These two i.c.s store the tuning information so that channels can be selected without retuning, and retain their memory at switch off provided the power supplies to them are removed and reapplied in the right order. Each EAROM

Fig. 97: Tuner/timer board block diagram.

Fig. 98: Tuning system block diagram.

Fig. 99: Sweep tuning system.
has a read/write input to tell it whether to give or receive information.

The arrangement is shown in greater detail in Fig. 98. Port E of the microcomputer IC1 feeds four-bit parallel data to the DAC IC9 which produces a 6 V peak-to-peak pulse waveform with a basic 3.15 msec period. The markspace ratio of this waveform varies over 4096 steps (2^{12}) depending on the data from the E port. This waveform drives a transistor (X10) which is operated from the stabilized 30 V rail, amplifying the pulses to this voltage level. A low-pass filter (integrator) smooths out the bumps so that we end up with a smooth voltage which can be varied between 0 and 30 V depending on the data from port E of IC1, i.e. the more mark there is to space in the output from IC9, the higher the tuning voltage.

The four-bit code is also fed to IC5 and IC8, which will store this information if told to do so by taking pins 12 (read/write) low. This occurs when we press "store" and pins H0 and H3 of IC1 go low. When we wish to select a channel, port E gives an address to IC5 and IC8 where the relevant data is located. Pin I2 turns off the DAC so that the address information is not converted into a tuning voltage. IC5 and IC8 then read out the appropriate fourbit voltage code which goes to port A of the microcomputer, and internally to port E. The output at I2 then enables IC9 once more and the required tuning voltage is produced.

Although we've made this appear as a two-stage oper-
ation, in fact pin I2 gives out a digital code which switches from "address" to "tuning data" at a high frequency. Also the input to IC5 and IC8 contains information on which of these two things is being fed in and whether or not to give an output to port A . This is necessary because the E port bus (nothing to do with public transport on the Wirral!) also contains data for the display - channel number, tuning indication (a bar-graph display, also used for TP, i.e. tape remaining, information during record/play), and the legends for channel lock and set. Obviously these latter signals must be ignored by IC5/8/9.

The key board scans six output bits from IC1 which receives four bits back - these represent the commands shown in Fig. 98. The remote data for these commands comes from the mechacon panel - remember the D0 to D4 bits from the serial to parallel converter IC38? The block marked "electronic switch" consists of two TA57 transistor arrays, which can be thought of as five-pole changeover switches. Each array contains five pnp transistors with a common emitter connection. When this goes high, signals can pass from the base to the collector. Normally they are switched on alternately by pins G2 and G3. When the remote handset is operated, D1 goes high, G3 goes high and the remote data is switched so that it goes to port A (which is also used for the stored tuning voltage data). When G3 is low, TP data from the mechacon panel is fed to port A - again these functions are time multiplexed so that the data arriving at port \mathbf{A} is a mixture of several things.

Sweep Tuning

So far so good, but how do we find stations by sweep tuning? See Fig. 99. Three detectors provide inputs to port B. Each gives a high when certain conditions are met. As we sweep the tuning voltage upwards we will come to the lower sideband of a signal. The a.f.c. S curve will go positive, fall to zero, go negative and then return to zero. It's then too late - we've gone past the station. Clearly it's necessary to modify the sweep rate depending on the outputs from the three detectors.

When we press sweep, the DAC is enabled and the code from port E starts to go through its 4096 steps, the tuning voltage rising. When we come to a station the output from the sync detector goes high. The microcomputer then slows the sweep rate to a third. The a.f.c. L detector next gives an output, as a result of which the sweep rate falls to an eighth. The correct tuning point is then passed and the a.f.c. H detector gives an output, slowing the sweep rate down to a thirtieth and reversing its direction. When the a.f.c. H detector's output once again changes, the sweep stops and the a.f.c. detectors apply any slight correction needed. "Store" is then pressed and the EAROMs store the voltage code present at the address input. This is time multiplexed on the same bus as the channel voltage code, and determines the channel number (1-16) which will give this voltage code.

The a.f.c. H and L detectors should be self-explanatory. The sync detector uses a standard TV sync/line oscillator chip along with transistors $\mathrm{X} 15 / 16 / 17$ as a coincidence detector.

Digital to Analogue Conversion

Before we leave IC1 and its operations, let's take a closer look at the DAC (Fig. 100) which is actually three DACs. Which DACs are in operation depends on the

Fig. 100: Digital to analogue converters and tuning voltage integrator.
address code from port E. DAC1 provides the 4096 step output when the band is being swept: when a channel is selected the output remains constant, as instructed by the code from port E. X10 amplifies the pulse output to 30 V peak-to-peak and the low-pass filter smooths the pulses to provide a d.c. output. The output from pin I2 goes high whilst band sweeping, muting the a.f.c. and audio between channels.
There are actually two sweep modes, manual and auto, operated by a switch (on the key board). On auto the sweep is automatic, ignoring weak stations: on manual, the sweep stops when the button is released, the countdown being operated if a station has been located. The fine tuning plus and minus buttons give a very precise control over the tuning point. DAC2 gives an output of four increments to every one from DAC1 - in auto only. This output is level shifted to 30 V and added to the DAC1 output from X10, giving 4×4096 steps of tuning voltage. On manual it varies only when fine tune plus or minus is pressed, remaining at a midpoint (50:50) mark-space ratio otherwise.

As we can't use this for fine tuning in the auto mode, this is where DAC3 comes in - the output is again level shifted and filtered and goes to offset the a.f.c. to the tuner. There are 16 steps and the output is $50: 50$ in the manual mode.

Round Up

The other microcomputer i.c., IC2, is much simpler. It's driven by a 1 Hz pulse from IC3, the real time clock. This is not just another buzz work - it's essential to differentiate between the various other clocks used in these circuits. The $4 \cdot 19 \mathrm{MHz}$ oscillator can be trimmed for regulation. Port G gives a four-bit output which goes to the clock display, together with the clock enable and counter enable lines. When in the counter mode, the counting is done on the display board, the tuner/timer board playing no part in this operation.
Next month we'll conclude our account of the tuner/ timer board with a look at the switched power lines that
prevent amnesia in IC5 and IC8, then look at fluorescent displays, display control boards and battery back-up.

Meanwhile a correction to Part 19 (July) - spotted by a reader whilst on the beach at Majorca (what dedicated readers we have!). The outputs from the 4017 i.c. (IC6) in the capstan servo go high (not low) for one clock cycle each. It's a CMOS device with totem-pole outputs.

Bind it
It's so easy and tidy to file your copies away using the Easibind binder. Each binder is designed to hold twelve issues and is attractively bound and blocked with the TELEVISION logo.
UK price $£ 4.50$ including postage, packing and VAT. For overseas orders add 60p. Please allow three-four weeks for delivery. Why not place your order now? Send the completed form below with the remittance payable to: IPC Magazines Ltd., Post Sales Dept., Lavington House, 25 Lavington Street, London SE1 OPF.

Quick Checks Q and A

Part 1

S. Simon

Over the past few months we've discussed the common faults than happen on popular colour sets and the simple checks that can be made to enable a quick repair to be carried out in most cases. If you've been following the series or are familiar with the various chassis you should have no difficulty in dealing with the following questions. If you don't know the answers, you've not been paying attention!

Bush A823 Chassis

(1) The set is apparently dead apart from the glow of the tube's heaters. There is 200 V at the top fuse on the power panel. What is the usual cause and why does this shut the whole thing down?

The l.t. fuse on the right side of the panel (rear) has probably failed due to a short in the bridge rectifier immediately above it. Check the bridge with an ohmmeter, whether it's a BYl64 (dodgy) or four separate diodes. A short will almost certainly be found. The whole thing is shut down because one of the l.t. lines feeds the line oscillator and driver stages, hence the line output stage is inactive.
(2) There's no voltage at either end of the top 600 mA fuse but the VA1104 thermistor at the bottom of the panel is intact and there's high d.c. at the cathode of the thyristor. What's happened?

The 68Ω wirewound h.t. filter resistor, left section under the tube, is open-circuit. The h.t. reservoir capacitor may remain charged after the set has been switched off if the $47 \mathrm{k} \Omega$ shunt resistor has deteriorated or been removed.
(3) The colour disappeared suddenly. Which item should be checked first?

The BC148 11V supply emitter-follower transistor 3VT2, which could well be open-circuit. There should be 11V at this trcnsistor's emitter. The chroma amplifier at the top left of the i.f. panel (three transistors in can) is also suspect and should be checked before making a more detailed investigation (if necessary) on the decoder panel.
(4) There is total field collapse, i.e. a white (or funny) line across the centre of the screen. The voltages on the field timebase transistors seem to be in order. Which item should receive attention first?

Open up the timebase board and check the soldering to the pincushion phase coil L2O at the top right of the scan control panel. Moving the coil will ofien restore the field scan to prove that a dry-joint is present. Also check the wirewound control immediately below the coil - it could have a dud spot on the track.

Bush T20 Chassis

(5) The complaint is a "dead set". What are the first steps to take?

You listen to how it "doesn't start" when switched on! If it tries to start but lapses into sudden silence, suspect the 910Ω resistor $4 R 16$ on the upper left of the swing-down timebase panel. The circuit will make it read about 50Ω one way, through transistor VT7, but high the other way (through the resistor). To be sure, remove it and check it out of circuit. If a 910Ω resistor is not to hand, use $1 \mathrm{k} \Omega, 2 \mathrm{~W}$.

If the start-up is completely dead, check the 200 V supply to the line output panel. If correct, check the following two
resistors. First $5 R 8(1 \Omega)$ in the line output transistor's base circuit. This small wirewound resistor often goes opencircuit. Secondly $5 R 3$ ($1.8 \mathrm{k} \Omega$) in the supply to the line driver stage. This could well be found unsprung.

Other common failures are the two diodes D6 and D7 in the EW modulator circuit at the front centre of the same panel. Check them out of circuit - any reverse leakage cannot be tolerated (though this wouldn't stop the set working). Use type BYX71 for replacement.

If the h.t. supply is low, check the BU208A line output transistor for leakage with the collector disconnected.

Before the set is even tried it's well worthwhile checking $5 R 8$ on the right side panel and $4 R 16$ on the swing-down panel. They could well be in order, but all too often one will be found faulty and you'll have the satisfaction of repairing the set without making any other tests.

Decca Bradford Chassis

(6) The line output stage is inoperative due to the 500 mA fuse being open-circuit. What's the first action?

Check the resistance reading from the top cap of the PY500 boost diode to chassis. If this reading is low, transfer attention to the lower panel, right side, and disconnect one end of the $0.22 \mu F, 1 \mathrm{kV}$ boost reservoir capacitor. It will nearly always be found short-circuit. If not, check the PY500 itself and the 150pF high-voltage disc capacitor on the top of the line output transformer.
(7) The set is suffering from lack of width and you're inclined to suspect the PL509 line output valve. What do you check first?

The width control (bottom right slider) which often develops a poor contact and needs to be moved only slightly to restore normal working.
(8) The 500 mA fuse has failed but there's no low reading from the top cap of the PY500 to chassis. What's the prudent course of action?
Replace the PL509 and PY500 valves, fit a new fuse, and watch closely how the new valves warm up (preferably with a meter on the PL509's control grid to record the line drive or lack of it). If there's no negative swing to denote the presence of line drive, the PL509 will overheat. Attention should then be directed to the PCF802 line oscillator valve and its associated components, in particular the 470 pF polystyrene and $5 \mu F$ electrolytic capacitors. If the PL509 doesn't overheat (line drive is not delayed), the right action was taken in replacing the valves. If the drive is proved to be absent or delayed, refit the old output stage valves.
(9) What are the weak links on the left side decoder panel?

The usual offenders are the small presets which set the operating levels of the top $R G B$ output transistors. Check them thoroughly and also suspect the small electrolytics mounted close to the wirewound resistors. The heat from the wirewound resistors tends to make the capacitors not only dry up but also suffer from leakage, upsetting the working conditions of the output transistors (mainly the right side blue drive).

GEC Hybrid CTVs

(10) The 3A supply fuse (in-line fuse, plastic holder, left
side) has blown. Examination shows that it's not blackened. What's the first move to make?

As with the Decca hybrids, check from the boost line to chassis (top cap of the PL509 or PY500) to see whether there's a short or partial short. Again the boost reservoir capacitor is the primary suspect - this time it's the large $0.47 \mu F, 1 k V$ capacitor to the left of the line output transformer, immediately behind the width control. Disconnect one end to check. If it's not shorted, look on the left side of the transformer for the secondary suspect, a high-voltage disc capacitor.
(11) What other weak links are there on this chassis?

Undoubtedly certain resistors, which tend to change value, particularly those associated with the boost voltage feed to the height control (a bit messy this one) and the sync separator transistor's collector load resistor R500 ($56 \mathrm{k} \Omega$) which is on the timebase panel, on the left edge about half way down.

GEC C2110 Series

(12) What's a snubber network?

These sets incorporate a snubber network consisting of an 0.22μ F capacitor and 270Ω resistor in series, wired on the top left of the main frame, to protect the mains rectifier thyristor from spiky transients. Although its position doesn't suggest this, it's actually wired from the anode of the thyristor to chassis. The point about this is that a glance at the resistor's condition shows whether the capacitor has gone short-circuit, thus blowing the 3.15A mains fuse. Failure of the $0.22 \mu \mathrm{~F}$ mains filter capacitor doesn't blow this fuse as it's connected elsewhere, in series with the $2 A$ degaussing circuit fuse.
(13) What does this tell us?

If the resistor in the snubber network looks well and the 3.15A mains fuse has blown violently, the most likely cause is a short-circuit thyristor, with the $600 \mu F$ h.t. reservoir capacitor C702 another possibility.
(14) If the 3.15 A fuse has failed but isn't blackened, what's the most likely cause?

The line output transistor is the most likely suspect, and a meter check may well show a direct short-circuit between the body (the collector of the BU108/BU208) and chassis. The reason for this is that the zener diode connected between the transistor's emitter and chassis is also shortcircuit. It's included to protect the circuits supplied from the emitter of the line output transistor, i.e. the set's l.t. lines. The replacement zener diode must be a small 400 mW type in order to preserve this protection.

The thermal resistor on the top dropper may or may not be open if the BU108 has gone short-circuit. The flyback tuning capacitor C52 (in parallel with the line output transistor) is also suspect: it may appear blameless when checked with a meter, but can still be capable of ruining every BU1 08 fitted.

ITT Hybrid CTVs

(15) If the customer complains of lots of smoke issuing from the set although it continues to perform normally, what item would you suspect?
The receiver is probably a CVC9 with a yellow mains filter capacitor rated at 220 V a.c. mounted on the front left mains input board. These capacitors tend to overheat and split without actually shorting (though they can do this as well).
(16) The h.t. supply fuse to the line output stage has failed. What's the first suspect?

The $0.47 \mu \mathrm{~F}, 1 \mathrm{kV}$ boost capacitor C310 situated just
below the line output transformer. If a 400 mA fuse is fitted, uprate this to $630 m A$. Check the PY500 for damage. The $210 p F$ harmonic tuning capacitor C308 is also suspect. Replace it with a disc type if it's short-circuit.
(17) The focus is very poor. Which resistor is most likely to be at fault and which should be checked first?

The $4.7 \mathrm{M} \Omega$ resistor $R 429$ feeding the top of the focus $V D R$ is most likely to be at fault, but as access to this requires lowering the chassis and removing the screening cover check the $2.2 M \Omega$ resistor $R 276$ on the tube base first (you may be lucky!).
(18) The valve heaters aren't glowing, neither are the tube's heaters. H.T. is present. Which feature explains this?

The valve heaters are fed from a tapping on the mains transformer's primary winding rather than via a dropper resistor. The tube's heaters are fed from a secondary winding. There's a 315 mA fuse to feed the transformer, located on the mains input panel. This fuse is open-circuit.

Philips G8 Chassis

(19) The tube's heaters are glowing but there are otherwise no results. Where do you start?

Note the vertical black dropper resistor on the front left. Use a voltmeter to check the voltages here (not an ohmmeter with the set switched off). There should be mains a.c on the bottom section (surge limiter) and d.c. at both ends of the top section (h.t. filter). There may be plenty of d.c. at the lower tag but not at the top. This d.c. voltage will still be present when the set is switched off, which is why an ohmmeter check is unwise.
(20) If the dropper is intact and there is some 200 V at the rear edge fuses, what do you look for on the stock shelf?

The right side 800 mA fuse feeding the line output stage is probably open-circuit. If so, it's highly likely that the line output transformer is responsible. The look on the shelf was to make sure you have one, as you should. If the 800 mA fuse is intact however, with 200 V at both ends, check the 47Ω wirewound anti-breathing resistor $R 5535$ on the front of the line output panel. There may be voltage at one end only. (21) Apart from the line output transformer, what other items are likely to cause failure of the 800 mA line timebase fuse?

Remove plug H (red plug to the lower right side, to the transductor) and check the current taken with this out. The set will function perfectly happily with this plug disconnected, the only effect being slight bowing of the raster, hardly noticeable on 20 in . sets. If the current doesn't exceed 500 mA with plug H removed, take a good look at the transductor and the 120Ω resistor $(R 4484)$ which is in series with it. If the current consumption is still excessive, disconnect the tripler. This is simply a matter of removing the plug from the nipple on top of the line output transformer. On rare occasions the tripler can be the cause of transformer failure. So after fitting a new transformer it's prudent to test with the tripler disconnected.
(22) If excess current flows with the tripler connected, does this necessarily mean that the tripler is faulty?

No. If there is no h.t. supply to the $R G B$ output transistors, or if the RGB output transistors are taking excess current which lowers the voltages at the tube's cathodes, the tube will draw excess current which will put an overload on the tripler and line output transformer. Check the tube's cathode voltages and the upper left side 250 mA fuse. This is oftien blown by a sparkover in the tube, something that's quite common when a rebuilt tube has been fitted.

The Betamax Video System

Part 2

Eugene Trundle

The techniques used on the electronics side in Betamax machines follow conventional practice for the most part. This is generally true of the luminance processing, system control and servo circuits, the receiver section and remote control arrangements. The colour department uses very similar principles to VHS and V2000 machines, though the crosstalk cancellation process is carried out in a somewhat different way, as we shall see. Betamax machines have used a number of purpose-designed chips in the past, many of them produced by the system's originator Sony.

The luminance frequency modulation characteristics for the Betamax system are black level 3.8 MHz , peak white $5 \cdot 2 \mathrm{MHz}$. Thus the total deviation is 1.4 MHz , representing a rather high modulation index (carrier frequency deviation ratio to the video frequency) of almost 0.5 , compared to 0.33 for the VHS system. A non-linear emphasis system is standard on Betamax machines.

As Fig. 10 shows, the azimuth offset of the heads (total difference 14° for Beta) ensures that crosstalk problems between adjacent tracks are mainly confined to the relatively low-frequency section of the signal spectrum, where the colour signal is recorded (centre frequency 687 kHz). Some form of crosstalk protection is obviously needed here. Whilst a degree of crosstalk takes place between the luminance signals on adjacent tracks, it becomes significant only at the lower end of the luminance sideband. First generation machines of all formats took no account of it. It's possible to provide compensation for luminance crosstalk however, and while high performance machines in other formats now incorporate the technique it first appeared in the Sony C7 Betamax machine. Let's see how it's done.

Track Correlation

All VCR manufacturers go to great lengths to ensure correlation of the video tracks on the tape. This is important for colour and luminance crosstalk cancellation, and is of significance during the trick-speed replay modes. The idea is to ensure not only that each recorded TV line

Fig. 10: Effect of azimuth offset at different frequencies.
lies on the tape physically adjacent to its companions on the preceding and succeeding fields, but that each picture element within each TV line is lined up alongside the corresponding picture elements in adjacent recorded lines. The idea is conveyed in Fig. 11.

This correlation depends on three factors - the transmitted half line offset between TV fields, the linear movement of the tape past the head drum (this has the effect of "stacking"tape tracks like a collapsed column of books, as shown in Fig. 5 last month) and, where applicable, an angular displacement of the position of one head on the drum. Only when the picture elements are lying adjacent to one another in this way will any form of electronic crosstalk cancellation work.

Luminance Energy Packets

In most TV pictures the bulk of the luminance information is present in bunches, or "energy packets", which are centred on multiples of the line scan frequency - as a spectrum analyser will show. Between these bunches

Fig. 11: Track correlation - the video signal shown is symbolic of course.

Fig. 12: How the positions of the luminance "energy packets" are interleaved on the tape. The f.m. carrier signal recorded by head A is at the nominal carrier $F c$, the sideband components spacing themselves on each side at multiples of the line frequency. Head B records an f.m. signal at 7.8 kHz below that of head A, so that the sidebands interleave with those recorded by head A. Thus the clear and shaded components in the diagram appear on alternate tape tracks.

Fig. 13 (left): Luminance signals with crosstalk. (a) Direct signal. (b) One-line delayed signal. (c) Crosstalk signal obtained at the output from matrix 1 (see Fig. 14). (d) The effect of subtracting (a) and (c) in the correct proportions - the crosstalk ripple is cancelled.
Fig. 14 (right): Luminance comb filter technique. Two demodulators are required, but the delay line doubles as part of the dropout compensation circuit.
there's relatively little information (advantage of this is taken in broadcast colour encoding systems, where the luminance and chrominance energy packets are interleaved so that the latter sit in the quiet spaces between the former, hence the carefully selected colour subcarrier frequency). This energy bunching effect is still present when the luminance signal is in f.m. form, the bunches in this case taking the form of sideband groups around the luminance carrier frequency.

Let's now consider the effect of changing the basic f.m. modulator frequency. Because the f.m. sidebands space themselves on each side of the carrier at multiples of the line frequency, a shift in the carrier frequency will alter the positions of the bunches recorded during a line. If we have head A recording at the nominal carrier frequency, the bunch spacings may be drawn as shown by the shaded sidebands in Fig. 12. Head B records the adjacent tracks, and if we offset its carrier frequency by half the line frequency the bunch sequence along head B's tracks will interleave with the bunches along head A's tracks on a line by line basis, as shown by the non-shaded sidebands in Fig. 12.
Why this is done will be explained shortly: let's first see how it's done. Very simply, a squarewave at 25 Hz (in fact the PG, or drum flip-flop, waveform) is added to the luminance signal before this is applied to the f.m. modulator on record. The squarewave is of course synchronised to the head sweeps, and its level is closely controlled so that it gives rise to a $7.8 \mathrm{kHz}(\mathrm{fl} / 2)$ difference in carrier frequency between the recording signals fed to heads A and B. Thus the signals are recorded on the tape in the manner depicted in Fig. 12, establishing the first part of the crosstalk cancellation scheme.

Crosstalk Cancellation on Replay

Assuming that the tracking is correct, the signal from the tape during replay will consist of a large wanted signal from the track being scanned and a small crosstalk component from adjacent tracks. Because of the half-line carrier offset introduced when recording, the crosstalk bundles from adjacent tracks become interleaved with the wanted signal over each line period, paving the way to the use of a comb filter cancellation system.
Fig. 13(a) shows the demodulated waveform for a plain
grey TV line, with crosstalk (greatly exaggerated) shown as a superimposed ripple. If we provide a second demodulator and arrange for it to produce a delayed signal exactly one line "old", the crosstalk ripple will be in antiphase to that from the first demodulator, as shown in Fig. 13(b). This odd-phase effect is due to the half-line carrier offset. The wanted signal after demodulation will be the same on both lines however. Clearly, by adding the outputs from the two demodulators the result will be reinforcement of the wanted signal and cancellation of the crosstalk ripple component.

Practical Cancellation Circuit

To implement the scheme in the way outlined above would call for a one-line delay line capable of handling a luminance signal with a bandwidth of 3 MHz . Such things do exist, but not in VCRs! By rearranging the crosstalk cancelling circuit however we can use the familiar narrowband glass delay line - in fact the one that's already present in the machine's dropout compensation circuit.

Fig. 14 shows the way in which it's done. The normal luminance replay arrangement is shown at the top - f.m. demodulator and low-pass filter, feeding out to a deemphasis network. The signal path at the bottom is concerned with the crosstalk signals. Demodulator two receives a replay signal one line "old", having passed through the $64 \mu \mathrm{sec}$ delay line. This ensures that the crosstalk component of its output is of opposite polarity to that of demodulator one. If we subtract (invert then add in matrix 1) the outputs from the two demodulators, the luminance signal will cancel out while the crosstalk components will be reinforced to produce a large output as shown in Fig. 13(c) - consisting of spurious noise and crosstalk components, representing all that we don't want in the replay signal coming from demodulator one. All that's now required is to invert this unwanted signal and add it to the main replay signal so that we are left with the wanted signal only. This is done in matrix 2 . The cleaned video waveform will then be as shown in Fig. 13(d).

We've made a dangerous assumption however in thinking that crosstalk components will always interleave exactly with the wanted signal. Where the correlation of TV lines is bad due to timing jitter, large changes in picture content between adjacent lines of alternate fields, or
during the field sync pulse train, the system will break down. "False" crosstalk signals will give rise to large cancelling signals fed to matrix 2 , deleting chunks of wanted signal so that the vertical definition is reduced and the field sync is impaired. To prevent this a limiter is included in the demodulated crosstalk signal path to restrain the amplitude of the cancelling signal.

This circuit is a useful addition to a VCR. It offers a degree of immunity to random noise and interference from the colour-under signals, as well as the considerable reduction in crosstalk. The net result is a precious $3-4 \mathrm{~dB}$ improvement in the signal-to-noise ratio. The f.m. frequency offset between fields will lead to a brightness difference in the reproduced fields from heads A and B however - after all, the carrier frequency defines the instantaneous picture brightness. This, if uncorrected, could lead to a noticeable flicker at 25 Hz on replayed pictures. Compensation for this during playback is effected
by adding a correctly phased drum flip-flop signal to the video signal after demodulation.

Another aspect of the luminance signal processing in Betamax machines is the mute circuit, which shuts off the replay signals until the servos are locked to the off-tape control track signals. This is done to prevent reproduction of unlocked or unstable pictures during the servo lock-up time, but can be confusing if the servos run out of sync for any other reason such as a servo PLL fault or loss of the control track pulses. Thus a dirty or worn control track head will mute the picture, as will a blank (unrecorded) or faulty tape. This means that instead of a wildly out-of-lock picture or a screen full of snow, a plain blank raster will be seen under these fault conditions unless the mute circuit is overridden to aid diagnosis. Fortunately the mute circuit is automatically overridden in the still frame and trick-speed modes, and by selecting one of these it's often possible to see what is or isn't going on.

Servicing the Decca 70-90 Chassis

Neil Dobson

The Decca 70 and 90 series chassis have been with us for several years, long enough for a few stock fault patterns to emerge. This is not to suggest that these sets are fault prone - in fact they are very good models indeed. It's just that because I deal with so many of them I'm able to report on various servicing aspects.

A feature of these sets is the mains-isolated switchmode power supply, which uses a Darlington chopper transistor (type BUW81A) and TDA2581 control i.c. The 70 series chassis are designed to drive a 14 in . tube, while the 90 series chassis are designed to drive 20 or 22 in . tubes, with 90° deflection in each case. There's a similar chassis (110 series) for 110° tubes - a note on this appears at the end. Fig. 1 shows the power supply circuit.
In roughly seven out of ten cases when a set comes in for repair it's completely dead. After removing the back, the first thing to do is to check the two fuses on the small mains filter panel (F701/2, 2A anti-surge). You'll probably find that they look o.k., and indeed they usually are. Next look on the main panel. You'll see another fuse (provided you've swung the panel up) next to the mains bridge rectifier's reservoir capacitor C624. This fuse (F601, 1A anti-surge) is in the feed to the chopper transformer. You'll usually find it blown - really blown!

In this event the thing to check is the BUW81A chopper transistor. These seem to go short-circuit for the least little thing or for no reason at all. If it is short-circuit, spend a few moments checking Tr604 (BSR59) in the chopper driver circuit - do this with the transistor out of circuit. This transistor sometimes bites the dust (or the print) when the chopper transistor goes short-circuit. The only other things I've had go faulty when the BUW81A pops off are the two rectifiers D608 and D610 (1N4003GP) in its emitter circuit. These produce a bias voltage across C627. Being in series with the BUW81A, they tend to be dealt a fatal dose of h.t. So when you've had to replace the BUW81A, check Tr604 and the two diodes, just in case.

The line output stage is extremely reliable and will probably be all right. Which means that you can plug the set in and switch on. If all is well the set will start up. If all is not well the set will start up and quickly cut out again as
the protection circuit comes into operation. This starting up and cutting off creates a rhythmic click-bonk. If the set does trip, switch it off and get out your Avo.

There's not a lot to check. Start with the three recifiers fed from secondary windings on the output side of the transformer. These are D614 which provides some 195V for the class AB RGB output stages, D615 which provides either 120 V (70 series) or 150 V (90 series) for the line output stage and, the most likely culprit, D616 which provides 18 V for the LM340T-12 12 V regulator i.c. (IC202) and the TDA1190Z intercarrier sound/audio output i.c. (IC102). Check D616 first if the set is tripping - it usually goes leaky. IC202 should also be checked if necessary - I've had to change it on several occasions because of tripping. Another possibility is C633.

Now to the less common faults. One I've had on a number of occasions is a very dark picture with no response from the brightness control. The cause is R910 ($270 \mathrm{k} \Omega, 1 \mathrm{~W}$) going open-circuit. It's connected in parallel with the first anode preset VR908.

As mentioned before, the line output stage gives very little trouble. In all the sets I've come across, I've had to change the e.h.t. tripler only once.

Lack of contrast has been traced to R706/7. These two series-connected resistors are $82 \mathrm{k} \Omega$ in the 90 series, $120 \mathrm{k} \Omega$ in the 70 series, and are rated at $\frac{1}{4} \mathrm{~W}$. They link the contrast control to the 195 V rail and form part of the beam limiting arrangement. Unfortunately they can go open-circuit. The rating seems to be a bit low in view of the voltage across them, so I fit $\frac{1}{2} \mathrm{~W}$ types.

Distorted sound has always turned out to be due to the speaker itself. The varicap tuners are reliable - I've had to change only two.

Something that's not uncommon in earlier production sets is dry-joints in the switch-mode power supply, usually around the transformer T602 and the TDA2581 control chip (IC601). The usual symptom is intermittent tripping.

There's not a lot that goes wrong then. The 110 series chassis differ mainly in using a TDA1470 instead of a TDA1170 field timebase i.c., incorporating an EW diode modulator in the line output stage, and having separate first anode presets (VR909/10/11).

Fig. 1: Circuit of the switch-mode power supply used in the Decca 70, 90 and 110 series chassis. During normal operation IC601 is powered by the supply from D612/C628. At switch on a start-up supply is provided via R627 and Tr601. Once the circuit starts up, D604 and Tr602 switch on and Tr601 switches off. Tr603/4 form a complementary-symmetry driver highl, Tr604 switches on, reverse biasing Tr605 via D608, D610, C627. Excess voftage is monitored by D602 and excess current by R636, in either case operating the trip via pin 6 of the i.c. In later production D613 is type BA159.

Ayr Teletext Adaptor Review

Vivian Capel

OWNERS of non-teletext TV sets can receive the teletext services by fitting one of the several teletext adaptors that have appeared on the market. Some of these have required wiring into the receiver's video circuits, and prices hitherto have been in the region of $£ 200$. In addition, a first-class aerial installation has been considered to be essential. All this tends to be rather off putting, and it seems that demand has not been as great as had at first been hoped. There is also the fact that the price differential of new teletext-equipped sets has fallen considerably to something like $£ 70-80$.

Though not exactly tumbling, the prices of adaptors have been coming down. Fitting is easier, aerial installation is less critical, and useful bonuses are available on the latest models. One of these is the Ayr T11, which costs $£ 147.50$ including VAT. I had one of these for test over several weeks.

Description

The unit is housed in a $14 \frac{1}{2} \times 9 \frac{1}{2} \times 3$ in. wooden case which is finished in walnut and has a black front panel. The latter has a press on/off switch, indicator lamp and infra-red receiving sensor. The remote control pad measures $5 \times 2 \frac{5}{8} \times 1 \mathrm{in}$. Three leads come from the back of the main unit: a short coaxial lead with line socket to take the aerial feeder plug, a coaxial lead with plug to connect to the set's aerial socket, and a mains lead. Connecting up is simplicity itself therefore, the unit being left permanently between the set and the aerial. The mains lead can be fitted with a plug, but a better idea is to wire it to the receiver's on/off switch so that both are switched on and off together. Otherwise it's easy to forget to switch off the unit, as I did more than once.

There are six presets along the back of the main unit for tuning to individual stations. Setting up involves tuning the receiver to channel 36 : when correctly tuned, the legend "P100" appears on the screen. The presets are then adjusted to the local stations, which are selected numerically from the keypad, using the same buttons that select the teletext page numbers. When a station is selected, an inset with the station identification appears in the top lefthand corner of the picture for about four seconds. This inset can be recalled by pressing the button labelled status.

Features

Another button, inscribed CLK/CT, produces the time in 24 -hour format as an inset at the right-hand corner. It also clears the screen for newsflash and alarm clock functions. The latter is a rather complicated procedure in which the appropriate page number (160 or 260) is dialled, the time-on key pressed, the required time dialled and the CLK/CT button then pressed. If you've remembered to do all that correctly, the words Alarm Clock will come up superimposed on the picture at the appropriate time. If you become so engrossed with the programme that you need reminding of the time you'll consider this
function useful. Cancelling the clock requires the operation of another button, labelled time off.
Some teletext pages are known as rollers, i.e. they make up a series of two or more, each one being displayed until the page number comes round again whereupon the next page appears. The next in the series may come along before you've had an opportunity to digest the previous one. This can be prevented by pressing the hold key, which stops the page rotation until cancelled by pressing the TXT key.

Other features include reveal and double height. Changeover from the TV picture to teletext and back is carried out by two keys at the top right-hand side of the pad. A reset key to clear most of the teletext functions is some way below them.
A useful facility is remote volume control, which is governed by three buttons - increase, reduce and mute. A second operation of the mute button restores the sound.

Regular users of calculators may find the numeric keys confusing, as they run the opposite way, from top to bottom. Much thought has obviously gone into the key layout however, the ones generally most used being the easiest to find. An exception is the hold key - I found myself searching for it on several occasions, and by the time I found it the page had rolled on. A better position would have been between the reset and text keys.
Single-handed operation of the pad is possible by holding it on the fingers and palm, using the thumb to select the keys, but it's a bit too chubby to do this comfortably. It must be pointed at the main unit - the range is in excess of 16 ft , the farthest I could check.

Performance

So how well does it perform? I had some trouble initially on two counts. First poor colour and apparent loss of colour sync on teletext, and secondly vision buzz on sound. There's a note in the instruction manual on the first problem, though you could miss it (it consists of a few lines at the end, on an otherwise blank page). A small preset is accessible through a hole in the bottom (see Fig. 1). A fraction of a turn brought the teletext up in full colour. The second problem wasn't so quickly resolved as there's no reference to it in the manual. I tried the adaptor with three different sets, also at a different location, but the trouble persisted. Eventually, after removing the case, I found a slug-tuned coil in the output compartment. Gingerly tuning this whilst keeping a careful watch on the

Fig. 1: Basic layout of the Ayr T11 teletext adaptor.
screen enabled me to eliminate the buzz completely.
Whilst the cover was off I took a look at the general construction. The PCB supports some nineteen i.c.s plus a number of transistors and other components. All, including the presets, are identified. In all it's soundly engineered and constructed.

After overcoming the initial problems the adaptor was found to work very well. The colour rendering is good, and the alphanumerical characters are fully rounded and very easy to read. The TV picture itself is to no extent impaired as a result of being passed through an additional tuner - in fact it seemed marginally cleaner.
I tried experimenting with variations in the aerial orientation and discovered that the TV picture would become noticeably degraded before the teletext was seriously corrupted. The effect first of all was of a letter here and there dropping out or being incorrect, the incidence of this increasing as the aerial was progressively moved from its correct alignment. The lesson seems to be that if you have a reasonably clean picture the unit will given intelligible teletext, so there's no reason to be over concerned as to whether the aerial will be adequate.

Remote control aiming is not too critical either. It worked at up to 35° to each side of the true axis, giving a 70° acceptance angle both horizontally and vertically. The only thing to watch is that there's nothing in the way.

The Teletext Service

Whilst giving full marks to the adaptor and its performance, I'm not quite so happy about the teletext services themselves. The potential is considerable but by no means fully utilised. Much information is duplicated and triplicated between the services, particularly news and TV programme information. Yet programme details are sparse. Channel 4 is exemplary in giving a full page synopsis of each programme over the next few days, but the others are lacking in this respect. All radio programmes are compressed on to a single rolling page on

BBC-1, with very limited information. Local events appear on certain pages, but again with lack of detail. To know that a certain opera company is visiting a nearby town for example is of limited interest if the works they will perform are not listed. Yet many pages are unused and a considerable amount of trivia occupies others.

Weather, travel, financial and consumer information and the latest news items are generally well covered, though with duplication. There are also interesting features and scientific news. But the range of information could be expanded to embrace many more subjects and with more detail. If the potential was exploited the service would be valuable indeed. As it is, the novelty tends to wear thin after a while. Whether buying a teletext receiver or an adaptor, this is a factor to take into account.

Conclusions

Returning to the Ayr adaptor, I found the remote control facility a considerable asset. My trusty Thorn 2000 still gives needle-sharp, bright pictures with the original tube, but the reset accuracy of the mechanical tuner buttons is not as good as it could be, retuning generally being necessary on changing channels. It was a treat to be able to change channels accurately, without fuss and from the armchair too. The remote volume control was even more appreciated, enabling a major source of annoyance (excessive background music, loud pop tunes in variety programmes, etc.) to be removed. So if you've not already got remote control, this facility will prove a great benefit. In combination with the teletext reception the domestic TV installation will be truly enhanced.

Teletext adaptors are not cheap, though they cost less than they did. This is one of the lowest priced models, costing less than some kits. In view of its performance and construction I'd say it offers excellent value. The unit comes ready to fit and work, except for a mains plug and a PP3 battery for the remote control unit. The battery should last for up to two years with average use.

TEEENOSIOM READERS PCB SERVICE

Issue
Sept/Oct 1980
May 1981
June 1981
August 1981
August 1981
September 1981
September 1981
September 1981
October 1981
October 1981
December 1981
December 1981
March 1982
May 1982
May 1983
May 1983
June 1983
June 1983
June 1983

Project
New CTV Signals Panel
Switch-mode Power Supply
Simplified Signals Board
Timebase Board
CRT Base Board
Remote Control Preamplifier
Remote Control Interface
Channel Display Module
Remote Control Transmitter
TV Pattern Generator
Clock-timer Display Board
Clock-timer Main Board
TV Sound Tuner
LOPT Tester
Frequency Counter Main Board Frequency Counter Display Board Frequency Counter Prescaler - 1 Frequency Counter Preamplifier
In-Situ Transistor Tester

Ref. no.	Price
D077	$£ 9.50$
D089	$£ 6.75$
D088	$£ 10.00$
D091	$£ 9.00$
D087	$£ 2.00$
D085	$£ 1.00$
D090	$£ 7.00$
D095	$£ 1.00$
D084	$£ 4.00$
D094	$£ 6.50$
D092	$£ 6.50$
D093	$£ 10.00$
D098	$£ 6.00$
D099	$£ 2.50$
D0501/1	$£ 15.00$
D0501/2	$£ 1.00$
D0501/3	$£ 1.00$
D0501/4	$£ 1.00$
-	$£ 1.00$

All boards are epoxy glassfibre and are supplied ready drilled and roller-tinned.
Any correspondence concerning this service must be addressed to READERS' PCB SERVICES LTD, and not to the Editorial offices.

Send orders to:
Readers' PCB Services Ltd.
(TV),
Fleet House,
Welbeck Street,
Whitwell,
Worksop,
Notts.
Prices include VAT, post and packing. Cash with order.

249
Each month we provide an interesting case of television servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.

WHEN it comes to quality and reliability, there's no doubt that Sony sets are amongst the best. Most technicians are probably unfamiliar with the operation of current Sony TV circuits for the simple reason that they don't need to be! On the odd occasion when things do go wrong however, it's unlikely that it will be possible to repair the set in the field: even back at the bench, the service manual will have to be studied closely by way of a quick training course before you delve into the back of the set.

On the last occasion we were called to a Sony TV set under guarantee we found a KV2201UB and a rather distraught lady. She described two faults. First, three narrow shadows were occasionally visible across the picture. Secondly, the brightness had diminished over a few days to the point where she was unable to see any detail in the highlights. The fact that after four months she knew neither the function nor the whereabouts of the brightness and contrast controls is testimony to the picture stability of this Sony set.

We found that the brightness control had little effect on the picture, which seemed to remain at the same low mean brightness level regardless of the control's setting. This produced the "soot and whitewash" effect on a contrasty picture. For example, the pattern of the newsreader's dark jacket could not be discerned. Low contrast scenes were reproduced reasonably well however. We did not see any horizontal shadow bars.

Back in the workshop we dismantled the set and found the luminance department in one corner of the $\mu \mathrm{PC} 1365 \mathrm{C}$ decoder chip (see Fig. 1). The voltage at pin 4 sets the operating point of the luminance pedestal clamp, whose reservoir capacitor C311 is connected to pin 3. The luminance signal is clamped to the voltage developed here, and we found that this voltage varied little when the brightness control was adjusted. The sub-brightness potentiometer RV301 didn't do much either, the voltage at pin 4 remaining at around 8 V .

Several things determine the voltage at pin 4 - the user and sub-brightness controls, the ABL (auto beam limiter), and the video mute line. Resistance checks revealed that

QUERY COUPON
Available until 21st September 1983. One coupon, plus a $£ 1.00$ (inc. VAT) postal order, must accompany EACH PROBLEM sent in accordance with the notice on page 601.

TELEVISION SEPTEMBER 1983

RV301 was operating correctly, while voltage checks showed that the voltage at the slider of the main brightness control varied between 0 and 12 V as it should. R451 was checked for value and found to be correct, but there was precious little voltage change at the end that links to R329 (via pin 4 of plug A2). We tried replacing the two electrolytics C311 and C320 before directing our suspicions to the chip. Careful observation however showed that a sudden change in the setting of the brightness control had the desired effect, though for only a fraction of a second before the display reverted to its previous self-set level: this led us away from the chip.
It was almost as though some form of unwanted stabilizing loop was in action, cancelling the effect of the user brightness control. We found the cause of the trouble soon afterwards, and we can let on that the cost of the replacement component amounted to pence rather than pounds. We've since had another failure of the same component in a larger Sony colour set, a KV2207 viewdata model. So what's the offending device? See next month's issue.

ANSWER TO TEST CASE 248 - page 545 last month -

Last month's conundrum concerned a Thorn 1600 chassis with a small broken-up raster, a very hot line output transistor and a cold line driver transistor whose collector feed resistor R142 was also cold. An oscilloscope check at the collector of the line output transistor revealed that it was working under something very close to class A conditions, indicating that the base drive current was inadequate to switch it properly from off to on. This was in turn due to the line driver transistor not saturating on the positive-going half cycles of the output from the line oscillator. This output is a.c. coupled by $\mathrm{C} 117(0.1 \mu \mathrm{~F})$, and without any other influence the base-emitter junction of the line driver transistor would simply act as a clamp, charging C117 to the peak of the incoming waveform from the line oscillator. The other influence consists of R138 ($470 \mathrm{k} \Omega$), which provides forward base bias from the h.t. line and should ensure that the driver transistor is driven into saturation. This wasn't happening in our set, because R138 had gone virtually open-circuit.

The ITT CVC20 colour chassis has a similar resistor ($\mathrm{R} 80,150 \mathrm{k} \Omega$) which does the same sort of job in the chopper driver stage. It often goes high in just the same

Fig. 1: Luminance signal processing arrangement used in the Sony Model KV2201UB.
way, this time resulting in the destruction of the BU126 chopper transistor. You'll find the same situation in GEC sets that use this type of chopper circuit (with TDA2640 chopper control i.c.).

Service Bureau

Requests for advice in dealing with servicing problems must be accompanied by a $£ 1.00$ postal order (made out to IPC Magazines Ltd.), the query coupon from page 600 and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

PYE 725 CHASSIS

At switch on there's a perfect monochrome picture, but it takes some ten minutes before the colour appears sometimes gradually and sometimes suddenly. The set then works normally for some six hours, after which the colour gradually fades out. Most of the i.c.s on the decoder panel, also the crystal, have been changed without success. Colour can be made to come and go by heating the crystal, but a replacement gave monochrome only.

The reference oscillator (in IC376) is probably off tune. Disable the colour killer to produce colour (lift one end of R349), then adjust C372 for colour lock.

NATIONAL PANASONIC TC2203

Some hanky-panky seems to be going on in the decoder: sometimes there's normal operation but at other times there's no picture, with incorrect voltage readings around the TDA 2522 and TDA2530 i.c.s. The two i.c.s have been replaced, but the problem persists.

This is usually due to intermittent zener diode failure. We suggest you replace D818 and D819 (both type TVSQA106SBV) in the 12 V regulator circuit and also change R819 which biases them from 220Ω to 560Ω.

PHILIPS K80 CHASSIS

When a monochrome transmission is being received there's just a green raster present. The only way in which a monochrome picture can be obtained is to override the colour killer, i.e. short the junction of R1066/TS444 to chassis.

This symptom is caused by either slider C on R2256 (white setting) on the c.r.t. base - it's the long metal assembly with four knobs - or, more likely, contacts 2 and 3 on relay RE1496 (also on the tube base) not making. Check by shorting the three connections at the bottom left
of the relay base together. To clean, remove the relay (the can slides off) and then apply methylated spirit (don't use anything else). The tension can be adjusted by means of the small screw on the armature. Adjust sliders A and D of R2256 for a slightly "warm" white on a colour transmission with the colour control turned to minimum, then turn off the colour with switch SK3 and adjust sliders B and C for a bluish white (like the picture on a monochrome tube).

TELEFUNKEN 709 CHASSIS

The sound failed, followed shortly after by loss of picture, leaving an unsynchronised raster. There's a low hum from the speaker but the user controls have no effect.

The 24 V line is probably missing due to failure of the bridge rectifier GR521 - it often breaks down, blowing the $1 \cdot 25 \mathrm{~A}$ fuse Si521. The reservoir capacitor C521 ($500 \mu \mathrm{~F}$) has been known to fail on occasion, causing fuse and possibly rectifier failure. The 24 V rail can be monitored at test point M521 at the centre rear of the main PCB.

GEC C2110 SERIES

The picture would pulsate then eventually settle - it did this several times during an evening. Now there's no picture or sound, with R601 open.

R601 feeds the 12 V zener diode D602, so you've no 12 V supply. The first suspect must be D602, for leakage. Replace this, also R601, and check the value of the associated resistor R602. If necessary check the 12 V supply reservoir capacitor C401 for leakage - it's on the line oscillator panel. Finally make sure that the h.t. voltage is set correctly - for 190 V at the junction of R58/9 or R66/7, depending on set - by means of P701.

SONY KV1320UB

The problem with this set is chronic EW pincushion distortion. I've tried to correct it by adjusting the value of C808, as suggested in the manual, but without success.

This sort of thing in older Sony sets is usually due to dried up electrolytics. In this receiver the voltage developed across the field output stage feed resistor R806 is integrated by $\mathrm{C} 807 / 8$ and then fed to the line output stage via C809/R807. We suggest you check C809 ($220 \mu \mathrm{~F}$), also C806 ($47 \mu \mathrm{~F}$) which helps to shape the waveform.

THORN TX 10 CHASSIS

The colour decoder chip lasts for only a few weeks. When it fails it leaves a bright green raster with flyback lines, then a pulsating raster. The picture and colour are perfect once a new chip has been fitted.

Two possibilities occur to us. The early demise of the TDA3560 i.c. could be due to excessive supply voltage try replacing the LM340T12 12 V regulator IC621. Alternatively flashovers could be responsible: ensure that R668 ($3.3 \mathrm{M} \Omega$) and $\mathrm{C} 657(0.068 \mu \mathrm{~F})$ on the tube base panel are present and correct.

[^0]
N. ELECTRONICS 82 - 84 STORFORTH LANE TRADING ESTATE, Tel. CHESTERFIELD (0246) 209079

TELEVISIONS: We have over 600 Televisions is stock with prices from $\mathbf{£ 1 0 . 0 0}$, Please ring for price and availability on various models VIDEO PANELS: Ferguson 3V23 Panels (NEW) Price on application.					
PUSH BUTTONS		LINE TRANSFORM		PHILIPS 570 PHILIPS 210	$\begin{array}{r} £ 9.50 \\ £ 9.50 \end{array}$
DECCA 304 way	£6.00	AUTOVOX 90°	£9.75	PYE 691 P.C.	£13.00
DECCA 306 way	£7.96	AUTOVOX 110°	£9.75	PYE 725	£9.50
GEC 21106 way	£8.40	DECCA 1700	£9.80	YE 731	£9.50
GEC 21127 way	£13.10	DECCA 1830	£9.50	PYE 169 mono	£9.30
GEC 21366 way	£8.35	DECCA 2230	£8.30	RRI A640/793	¢9.90
ITT CVC5 7 way	£10.50	DECCA 80	£7.20	RRI 2774	£11.50
$17 T \mathrm{CVC8} / 9$	£14.00	DECCA 100	£7.50	RRI T20	£11.95
ITT CVC20/30	$£ 7.96$	GEC 2110	£9.65	SABA	£14.00
ITT CVC25	£8.05	GEC diode split	£12.00	SKANTIC $1590 / 1$	£ $\mathbf{f 9} 70$
PHILIPS 520	£12.50	GRUNDIG 1500	£13.70	THORN 1615	£9.20
PHILIPS 550	£13.55	GRUNDIG 6011	£11.50 $\mathbf{f 1 0} 0$	THORN 1690/1	£8.45
PHILIPS G11	£23.00	HFCVC20	£8.50	THORN $1500{ }^{2 \prime \prime}$	£7.00
PYE 7134 way	£9.15	ITT CVC30/32	f8.50	THORN 1500 24"	£7.00
PYE 7156 way	£12.98	ITT CVC40	£12.50	THORN 9600	£12.00
PYE 7256 way	£12.98	ITT CVC45	£8.50	THORN 9800	£19.10
RRI 8234 way	$£ 8.75$	INDESIT mono	£10.60	EHT TRAYS	
RRI 8236 way	£9.45	KORTING 90°	£11.00		
RRI T20 6 way	£9.35	KORTING 110°	£9.95	DECCA 1830	£4.30
RRI 27186 way	£9.90	PHILIPS G8	£8.50	DECCA 2230	£6.50
TELPRO 4 way	£7.90	PHILIPS G9	£9.00	DECCA 80	£5.95
THORN 3500	£3.50	PHILIPS G11	£12.75	DECCA 100	¢6.00
THORN 9000	£4.00	PHILIPS K30	£13.98	THORN 9000	£7.80
THORN 1615	£9.15	KT3	£6.60	SIEMENS Universal	£6.16

This is only a fraction of our stock, please send large SAE for our FREE Comprehensive Catalogue. Please add 65 pence post/packing plus 15% VAT to all orders. Goods are despatched on the same day that we receive your order by first class post and should be received within four days.

UNIVERSAL PROGRAMME SELECTOR FOR VARICAP TUNING

UK Regd. Design No. 1006611
6 way interlocked d.p.
switch 100 K tuning
potentiometers
Top quality through hole plated pcb
Dimensions: $5^{\prime \prime}$ by $2 \frac{2^{\prime \prime}}{}$ by $1^{1 \prime}$ Ideal for replacement when original parts are obsolete or unobtainable
Template guide supplied for
drilling of your own fascia design
Range of pre-cut and drilled fascia/mounting kits for selected TV chassis enabling
our unit to be fitted without our unit to be fitted withour modification
All orders despatched same day
DIRECT REPLACEMENT FASCIA/MOUNTING KITS
Type 30-80 Replaces 7 piano-key unit as fitted to Decca/Telefunken 30 and 80 chassis
Type 30-C Replaces 7 piano-key unit as fitted to Decca console using long Replaces 7 piano-key unit as ntted
perspex illuminated control panel
Type 100 Replaces 8 position touch tune selector (AEG SAS 660 SAS 670) as used in Decca/Telefunken 100 chassis
Type CVC8-9 Replaces 5 rectangular push button plus thumbwheel as used in ITT

SELECTOR P1 + VAT

FASCIA/MOUNTING KITS (each) $\mathbf{f 2}+$ VAT

ALDERSON-JAMES LTD

160 KINGS ROAD - HARROGATE © N. YORKS TEL: HARROGATE (0423) 60058 HG1 5JG

APOLLO

HIGH TEMPERATURE PUMPED COLOUR TUBES
Fast Mail Order service to any part G.B. Delivery 2-3 days Just phone for a quotation. Delivery Manchester area free same day. Two year guarantee. Fitting while you wait or in your home $£ 20$ extra. Also P/L types \& Toshiba.
$18^{\prime \prime} \quad \mathrm{A} 47-342 \times 343 \times 470$ BEB22 ($\left.£ 45.00\right) £ 37.00$
$19^{\prime \prime} \quad$ A49 - $120 \times / 192 \times \quad \mp 37.00$
$20^{\prime \prime} \quad$ A51 - $220 \times / 110 \times / 161$ - 510JKB22 (£45.00) $£ 38.00$
$\begin{array}{lll}20^{\prime \prime} & \text { A51 - } 220 \times / 110 \times / 161-510 J K B 22(£ 45.00) & £ 38.00 \\ 22^{\prime \prime} & \text { A56-120×/123×/140×/410 } & £ 38.00\end{array}$
25" A63-120x £39.00
$26 \times \quad$ A66 - $120 \times$ A67 - $120 \times / 140 \times / 150 / 200 \quad £ 39.00$
$20^{\prime \prime}-22^{\prime \prime}$ SOLID STATE COLOUR TVs FULLY SERVICED \& SOAK TESTED. VERY RELIABLE WITH GOOD TUBE £61.00, WITH NEW TUBE $£ 83.00$ inc DELIVERY

Philips Video Spares Available.
061799085424 hour answering service.
43 Clarke Cres, Little Hulton.
Nr. Manchester M28 6XM.

M W ELECTRICAL
 BROOK PARK AVE. (OFF MARINE RD.) PRESTATYN
 "'WE DO NOT BOOST TUBES'" COLOUR TV'S
 COMPLETE FROM $£ 10.00$
 TRADE WORKERS FROM $£ \mathbf{2 5 . 0 0}$ MINIMUM OF TEN

G8, DECCA, BUSH, THORN. ALSO MONOs ETC. NEW \& GRADED TVs ALSO AVAILABLE OPEN SAT MORN, LATE NIGHT THURS 8pm
TEL: PRESTATYN (07456) 89849/89970

TOP TWENTY T.V. SPARES	
STOCK NO.	
001 Philips G8 Loptx (Genuine Philips)	7.50
002 Decca 30 series Loptx (Genuine Decca)	7.00
003 Decca 10 (series Loptx (Gentume Decca)	6.50
004 ITT CVC 25/30/32 Loptx (Genuine III)	9.00
371 Pye 713/731 Vision Gain Module (replaces expensive 212-27327)	6.50
$27010 \times$ BU208A	8.50
050 ITT CVC 5/9 EHT Tray	3.00
051 Decca 1730/1830 Doubler	2.00
053 GEC 2040 Hybrid EHT Tray	3.00
054 Thorn 1500 (5 Stick) EHT Tray	3.50
055 Thorn 8000 Doubler	2.00
056 Thorn 1400 EHT Tray	2.00
057 Philips G9 EHT Tray	3.50
058 ITT Universal EHT Tray	5.00
011 Thorn 1690/91 Loptx	7.00
012 Thorn 1615 Loptx	6.50
085470 MFD 250V Philips G11	1.50
$33550 \times$ BY127 Diodes	3.00
$27010 \times$ BU326	10.00
$28025 \times 2 \mathrm{~N} 3055$	7.50

All components are A1 quality from prime manufacturers, and are dispatched by post same day as order received together with any refund due. All goods should be delivered within 4 working days.
Please add 15\% VAT and 90p P \& P

LINE OUTPUT TX	Dos6 Pye CT200 5 Lead 4.50	122 ITT 6 Way with
001 Philips G8 7.50	067 Korting Hybrid 5.00	V.C.R 7.95
002 Decca 30 Series 7.00 003 Decca 100 Series 6.50 004 ITT CVC 25/30/32 7.04	068 Grundig 3010/15003.00	123 R.R.I. A823 etc. 4
	CAPACITORS	Way ${ }^{124}$ Hitach 4 Wey 7.95
	080 220/400 CVL 32.	124 Hitach 4 Way 7.95
005 Philips G9 $\quad 7.50$	T20 20/400 CVI 1.20	125 R.R.I. T20 6 Woy 8.95
006 RRI T20 9.92	${ }^{1081} 200$ + 300 Pyo 691/	
007 RR1 A823 7.00	${ }_{697} 200+300$ Pre $^{6} 2.00$	INTEGRATED CIRCUITS
008 RRI $771818{ }^{\prime \prime} 18.18 .95$ 009	${ }_{082}^{6900} 3000$ Philips G8 1.90	$1405 \times \text { TBA440 } \quad 3.00$
009 RRI Z718 20/20/	$082600 / 300$ Philips G8 1.90 $083175+100+100$ Thiorn	$\begin{array}{ll}1415 \times \text { TBA1204S } & 1.80 \\ 1425 \times \text { TBA540 } & 400\end{array}$
$26^{\prime \prime} \quad 18.95$		$1425 \times$ TBA540 $\quad 4.00$
010 RRI AT74 Mono 10.87	085 2000	$1435 \times$ TBA5400 4.00
011 Thom 1690/91 7.00	084 2000 1000 Can 0.5	$1445 \times$ TBA5500 3.25
012 Thom $1615 \quad 6.50$	085 470/250 Philps	$1455 \times$ TBA560 $\quad 3.50$
013 ITT CVC $45 \quad 6.50$	G11 0800	$1465 \times$ T8A810S 3.00
014 Phil TX Chass. 5.00	$086400+400$ Decca 302.50	$1475 \times$ TBA9200 4.50
D15 RRI Ranger 1/2 5.00	$067{ }^{067500+200+75+25}$	$1485 \times$ TBAS900 3.25
016 ITT CVC 5/9 8.50	175/9 1.50	$1495 \times$ TBA5200 $\quad 4.00$
017 Philips E2 Chass. 5.00	0088 400/400V Thorn	$1505 \times$ TBA5300 4.25
018 Thorn 9000/9002 8.50		$1515 \times$ TBAS50 $\quad 4.50$
019 Thorn 9500/9500 8.50	Ose $10 \times 22 \mathrm{MF}$	$1555 \times$ MC13270 2.50
020 Polish 161 Mono	Elact $10 \times 047 \mathrm{MF}{ }^{\text {cos }} 400 \mathrm{~V}$	160 TDA1170 1.35
Loptx 6.00	OS3 $10 \times 047 \mathrm{MF} 400$	161 TDA1190 $\quad 1.90$
021 Thorn 3500 Scan 4.50	Poly	162 TDA1006A 1.45
	$0945 \times 4.7 \mathrm{MF} / 100 \mathrm{C} 514$	164 TDA1095 1.83
037 Split Diode EHT	13500	165 TDA1044 2.23
Lead 1.35	$0955 \times 0047 / 1500 \mathrm{~V}$	166 TDA1190 $\quad 1.90$
	${ }_{086}{ }_{08} \times 19$ 91NF Philips	167 TDA1412 0.90
RECTIFIER TRAYS		172 TDA2003 1.80
		173 TDA2020 2.50
050 ITT CVC 5/9 3.00	$09710 \times 1 / 2000 \mathrm{~V} 2.00$	174 TDA2050 2.15
O51 Decca 1730/1830 2.00	$0965 \times 1 / 250$ Suppres*	178 TDA2523 . 2.35
052 Decca 80 Saries 4.50	sion ITI 2.75	179 TDA2532 2.40
053 GEC 2040 Hybrid 3.00		180 TDA2540 $\quad 1.65$
054 Thorn $1500 \quad 15$	PUSH BUTTON UNITS	181 TDA2541 2.67
Stick) $\quad 3.00$	110 Pye 7134 Way 7.87	182 TDA2500 3.28
055 Thom 8000	111 Pye 7156 Way 11.95	183 TDA2571 2.15
Ooublar $\quad 2.00$	112 Philips G8	184 TDA2591 0.98
056 Thorn $1400 \quad 2.00$	(Square) 10.75	185 TDA2593 2.23
057 Philips G9 3.50	113 Philips G8	190 TDA2600 4.00
058 ITT Universal 5.00	(Sloping) 12.98	191 TDA2611 1.24
$0595 \times$ TV11 For	114 Thorn 90006 Way 2.50	192 TDA2640 2.35
PTV's $\quad 1.00$	115 Thorn 16154 Wey5.75	210 ETRR6016 2.28
$0603 \times$ TV45 7718	116 Decta 6 Way 6.95	211 ETT6016 2.28
REC $\quad 1.00$	117 Decce 4 Woy 6.50	212 ВTT6018 228
061 ITT CVC $45 \quad 4.00$	118 GEC 21106 Way 7.95	
062 TVK52 Continental 2.50	119 GEC 2136 $/$ Tapered 16	TRANSISTORS - DIOOES
063 RRI $2179 \quad 3.00$	Wayl 7.95	$23550 \times$ BC213L 2.50
064 Pye 691/697 $\quad 3.50$	120 ITT CVC5 $\quad 9.25$	$250 \times 10 \times 80124$
065 Pye CT200 4 Lead 3.50	121 ITT CVC8 11.45	(Metal) 9.00

MUXTON HOUSE, MUXTON, TELFORD, SALOP.
REG. OFFICE ONLY. CALLERS STRICTLY BY APPOINTMENT. PLEASE OUOTE STOCK NO.

TV LINE OUTPUT TRANSFORMERS

FAST RETURN OF POST SERVICE

PHILIPS

170 series dual std mono $\quad 7.00$ 210300 series mono .00 G8 \& G9 series colour

PYE I69-173-569-368 7.00
EKCO RV305-769-725-741 8.00
WALTHAM $125 \quad 9.00$
REWIND SERVICE - available for most continental types i.e. Kuba, Luxor, Korting, Tyne, Berry Skantlc,K80 £12. Old lopt required

WINDINGS

RANK BUSH MURPHY
T20a T22 Pry \& Sec $\quad 6.00$ $\begin{array}{ll}\text { Z718 series primary } & 6.00 \\ \text { Z718 series EHT overwind } & \mathbf{7 . 0 0}\end{array}$

ULTRA THORN

1690 I691 EHT overwind $\quad 7.00$
1590 overwind $\quad 5.00$
1615 winding 7.50

PHILIPS

G6EHT
8.00

G6 primary $\quad 6.00$
PYE
691 to 697 EHT overwind
4.00

691 to 697 primary
5.00

All lopts and windings are new and guaranteed
Open Mon.-Fri, 9 to 5.30 pm

Delivery normally by return.
PAPWORTH

TRANSFORMERS

80 Merton High Street
London SW191BE
S.A.E. all enquiries

Barclaycard and
Access welcome
For order
placed placed post the
poffice
Trans cesh 505456

ARE YOU

USING YOUR SPARE TIME PROFITABLY?

If not, you're losing money. Money that you could be making by selling used colour televisions from home in the evenings. In fact, provided you start correctly and know exactly how to operate, you can easily earn a substantial CASH INCOME with a starting capital of less than $£ 20$. Our new unique publication "How to Deal Successfully in Used Colour Televisions" enables you to follow in the footsteps of many experts who have a great deal of combined experience in this lucrative home business, and who have 'pooled' their knowledge to help you. After all, to follow the advice of someone who has travelled the ground before you is to be given the best possible start. And the traveleds of valuable trade secrets, hints, tips and suggestions in the guide show exactly how anyone of average intelligence can succeed immediately.

Every aspect. from securing the first television right through to rapid expansion of sales, is covered with the detailed knowledge of experts to ensure certain success. Indexed information on almost all makes of television is presented in ctear tabular form, describing performance, reliability, price and service. In particular, the tips on expanding the business are very practical, and are almost automatic when put into practice. Pages of unique advice on advertising ensure
that maximum sales are secured, and sources of supply are described in detail - for that maximum sales are secured, and sources of supply are described in detail - for
both relevisions and new/used spares. Monochrome sets are also covered, as are both televisions and new/used spares. Monochrome sets are also covered, as are "invisible" cabinet repairs. Plus FREE on-going advice and FREE regular updating service.

You can start tomorrow - but you'll need our guide. The latest big illustrated edition is out now, and costs just $£ 4.95$ - a small price to pay for financial independence!

ORDER TODAY FROM:
gLobus industries ltd., UNIT 18, DARLEY ABBEY MILLS, DERBY
Please allow up to 28 days for delivery.

[^1]NAME.
ADDRESS

ELECTRONIC EQUIPMENT SERVICING

 (TELEVISION/NIDEO full-time College courses)- Technician Education Council awards

TRAINING INVOLVES A HIGH PERCENTAGE OF WORKSHOP FAULT DIAGNOSIS ON TELEVISION \& VIDEO CASSETTE RECORDERS

- 15 MONTHS COURSE for beginners to include Electronic Fundamentals
(Next course commences on September 19th)
- 6 MONTHS COURSE for BSc, HND, CGLI, TEC and similar applicants
(Next course commences on September 19th)
- 3 WEEKS INTENSIVE VCR COURSE for applicants with Colour TV background
(Next course commences on October 10th)
Also courses in Computers/Microprocessors, and Robotics leading to TEC awards.
LONDON ELECTRONICS COLLEGE (Dept T3/4)
Prospectus from: 20 Penywern Road, Earls Court, London SW5 9SU Tel: 01-373 8721

- INTEGRATED CIRCUITS

(STOP PRESS) Hitachi and Sony tubes now rebuilt.

At SVC we've just supplemented our banks of VTR's with a new addition that will transfer Betacam to any system you choose. Hi-Band Umatic, $1^{\prime \prime} \mathrm{C}, 1^{\prime \prime} \mathrm{B}$ and $2^{\prime \prime}$. For only $£ 2.50$ per minute, including stock.

Call us on 01-734 1600 and we'll transfer you to bookings straight away.

SandersonVereCrane(Film Editors)Ltd, 142 WardourSt, LondonWiV3AU. Telephone:01-7341600.

All sets are Serviced with repolished cabinets ready for sale
Philips G8 550s 22/26 £45

Philips 18 " $£ 40$
Philips G8 520s 22/26 £35
GEC S/State
from $£ 35$
Thorn 17" 8000
Decca 30
Japanese
18/20/22/26 £30
(

Many other makes available from £25
unt on quantity

Some Examples of UNTESTED TVs available

Thorn	$\mathbf{1 0}$ for $\mathbf{£ 1 2 5}$
Philips	$\mathbf{6}$ for $£ 90$
Bush	$\mathbf{6}$ for $£ 80$
GEC	$\mathbf{6}$ for $£ 60$
Decca	$\mathbf{6}$ for $£ 60$
Mono TVs avail. s/s	$£ 4$ each
New TV trolly stands.	
All sizes	$£ 4.95$
All Prices subject to V.A.T.	

Ex Equipment Panels \& Tubes Available Deliveries may be arranged to the North and Scotland. Ring for quote. Callers welcome.

419 Barlowmoor Road, Chorlton, Manchester 21 2ER. Tel: 0618618501

TV TUBES TUBE POLISHING WORKING TV's WORKING PANELS FREE DELIVERY*
Quality, High Temperature Reprocessing

Colour Tubes	One year guarantee (optional extension	Two year guarantee (loptional extension
Up to three years)		
up to four years)		

Please add $£ 12$ plus VAT for optional guarantee on any type of colour tube.
MONO TUBES (One Year Guarantee)
A50-120W/R £12, A61-120W/R £13, Mono Portables $£ 16$
All tubes exchange glass required.
FOLOWING TTEMS CALLERS ONLY
Solid state working colour TV's, with well view tubes fitted 11 year guarantee on tubes) from Only $£ 45$
Working TV Panels at Reasonable Prices
Your good, working tubes with scratches or small chips, can be POLISHED with our purpose built polishing equipment. Only $£ 7$ per tube.
Delivery Service up to 40 miles from Luton. Fixed Charge £3. "Free Delivery for tube orders over $£ 50$ + VAT.
Please add 15\% VAT to all prices. Callers welcome. Please phone first. Send for a fully comprehensive price list and a wall chart of approx 1700 Colour Tube Types that can be processed by us.

114-134 Midland Rd
WELL VIEW Luton, Beds.
Open Mon-Fri 8am-6pm, Sat 9am-5pm. Tel. 0582-410787
Your Local Tube Stockist.
West One Distributors Ltd. Chesham, Buckinghamshire. Tel. 0494-778197
Rushden Rentals Lor., Rushden. Northants. Tel. 0933-31490
Rushden Rentals Lid., Rushoen, Nonhants.
S. and B. Electronics Services, Huddersfield, Yorks. Tel. 0484-36706

Please note that we have no connections whatsoever with any other business hoving similar name to ours.
Please allow 14 days for delivery

CENTREVISION

 NO. 1 IN WALES 9000 Sq Ft 2000+CTV* DECCA 18" $£ 20$ + VAT
\star KORTING 22-26 CTV £15 + VAT
\star HITACHI CTV FROM $£ 32$ + VAT
* THORN 900020 £ 48 + VAT
\star RANK Z719-Z718-T20 VARIOUS PRICES
* PHILIPS 550 22" REMOTE £35 + VAT
\star GEC SOLID STATE FROM £32 + VAT
\star THE TRADE SAY THE BEST QUALITY
SETS ON THE MARKET TODAY
* BULK TERMS TO OTHER WHOLESALERS
\star ALSO PANEL'S-STANDS AND TUBES
IN STOCK
DECCA 30 SERIES 22" IN 10’S £18 SELECTION OF WORKING SETS DONT DELAY PHONE TODAY

0222-44754 CENTREVISION HOUSE,

SLOPER ROAD, CARDIFF CF1 8AB.

COLOUR TELEVISION \& MUSIC CENTRE WE HAVE MOVED TO A NEW WAREHOUSE (NOTE NEW ADDRESS)

35 Stafford Road, Weston Super Mare, Avon.
(15 mins. past Bristol on M5)

$$
\begin{aligned}
& \text { COLOUR TELEVISIONS } \\
& \star \text { \& FANTASTITIACE OFFER } \\
& \text { ALL SETS IN PERFECT } \\
& \text { RUNNING ORDER }
\end{aligned}
$$

PYE CHELSEA

18", 6 Button, Sliding Controls,
Brilliant Condition
£39.50
Good sellers as computer monitors
THE ABOVE ARE WORKS MODIFIED FOR MOST PARTS OF THE WORLD VHF - UHF PYE 721 \& 731 THORN 8800
22"-26", could be mistaken for new All $£ 49.00$ each PYE 725
20" unmarked cabinet
£59 each
Also Thorn 9000 20". Remote Thorn 8000 17"
Minimum 5 sets
Prices subject to V.A.t.
BIG REDUCTIONS FOR EXPORT ORDERS OVER 100 SETS

$$
\star \quad \star \quad \star
$$

Ring Now: W.S.M. 413537
OPENING HOURS 9-6 MONDAY TO SATURDAY, 9-1 SUNDAYS

TELETRADERS
 ARE MOVING TO A SUPERB NEW WAREHOUSE

 FROM 1st SEPTEMBER OUR NEW ADDRESS WILL BE FORDE ROAD, BRUNEL INDUSTRIAL ESTATE, NEWTON ABBOT; DEVON Telephone: (0626) 60154
The Best Quality Sets Available Anywhere

G8 550
3500 Electronic
Bush Electronic
GEC \& Pye Hybrid

E35 Grundig Solid State
E30 GEC Solid State
$\$ 25$ Decca Bradford
E5 ITT CVC 5,8,9

530
E30
E15
$\$ 25$

Also Philips G9, G11, ITT CVC 35, 45, 50, Thorn 9000, 9600, 9800, Bush T20.

All sets complete with excellent cabinets Full spares back-up of tubes and panels - send for list Bulk terms to other wholesalers

THE NO 1 WHOLESALER IN THE SOUTH

${ }_{\text {AC1 }} 187$	0.150	BFY51	0.140	2N3773	1.000	LM3900	0.250
AD149	0.480	BT106	0.900	LM309k	1.000	7400	0.110
AD161	0.220	BT116	0.900	7805	0.350	7401	0.110
A0162	0220	BT119	1.100	7812	0.330	7402	${ }^{0.120}$
AF139	0.220	BT120	1.100	7818	0.380	7405	0.1200
AF239	0.220	BU126	0.700	7824	0.380 0.350	7407 7413	${ }_{0}^{0.190}$
AU106	1.000	BU205	0.750	79055	0.300	7414	0260
AU110	1.100	BU208	${ }^{0} 8800$	78812	${ }_{0} 0300$	7425	10
${ }^{\text {BCC10 }}$	0.070	BU2084	${ }_{0} 8.850$	7818	${ }_{0} .300$	7441	0.300
${ }^{8 C 108}$	0.070	${ }_{\text {BU4 }}$	0.750	78124	0.300	7442	0.300
${ }^{\text {BC109 }}$	${ }_{0}^{0.055}$	$8 \mathrm{BU526}$	0.800	$25 C 495$	0.700	7447	0.400
${ }^{8} \mathrm{BC148}$	0.055	$8 \mathrm{BY127}$	0.080	${ }_{2 S C 1306}$	1.000	7473	0.190
		8Y133	0.880	$2 \mathrm{SC1969}$	1.300	7474	
				$2 \mathrm{SC2029}$	1200	7475	150
		8164				7485	0.300
BCO^{159}	0.055	044	0.000	M83712	1.500	7486	0.160
80131	0.250	0 C 28	1.000	TA7205	1.500	7489	1.10
${ }_{80}^{80132}$	${ }_{0} 0200$	$0 \mathrm{OC35}$	1.000	UPC575	1.000	7490	220
BD136	0.200	R20088	0.800	LM380	0.500	7493	
80137	0.200	A20108	0.800	LM381A	0.600	74123	0.160
80138	0.200	TBA520				74141	0250
80139	0.200	IBA530	0.750			74393	0.500
BD140	0.200	IBA540	0.750			7415164	${ }_{0} .300$
80144	1.100	TBA550	0.750				
801	0.300	IBA560	0.750	ECC82	0.400	7415221	0.420
${ }^{80157}$	0.3880	TBAB80S	0.600	ECC83	0.430	7415240	0.580
8 B 159	0.400	tBA820	0.750	ECC84	0.400	74LS244	0.580
80166	0.300	TBA920	0.800	ECC85	0.400		
BD175	0.300	T8A950	0.800	ECH81	0.490	Ckt	
BDI7	0.300	TBA990	0.800	ECH84	0.520	8 P	0.070
8017	0320	тсab00	0.800	ECL80	0.55	14	
8018	0.450	TCA940	0.850	ECR82	0.590	18 PIN	0.120
${ }^{80} 433$	0.320	T0A1770	0.900	ECL85	0.570	20 PIN	0.140
80355	0.400	-	0.800	ECL86	0.490	22 PIN	0.160
80356	. 400	TDA2532	0.750	EF80	0310	24 PIN	180
	. 420	TDA2540	0.700	EF85	30	28 PIN	0200
	${ }_{0}^{0.800}$	IDA2560	0.700	EF89	0.430	40 PIN	0250
BF180	0.160	toaz593	0.800	EY86	0.310		
BF18	0.180	TDA22640	0.800	EY87	0.310	LEO	
BF194	0.050	T1P29	0.150	PCFF802 Prem	1.570	3 mmm ellow	0.100
${ }^{8 F 195}$	0.050	ITP41A	0.220	${ }_{\text {PCL } 81}$	${ }_{0} .540$	3 mm Green	100
${ }_{\text {BFI99 }}$	${ }_{0}^{0.060}$	T1P2955	0.340	PCL82	0.700	5 mm Red	0.050
BF200	0.160	TiP3055	0.340	PCL84	${ }^{0.5000}$	5 mm Yeliow	0.100
${ }^{\text {BF2258 }}$	0.180	2 N 3053	0.180	PCL85	0.550	5 mm Green	0.100
8 8F337	0.200	2N3054	0.400	PCL86		Electrol	ITIC
${ }_{\text {BFer }}{ }_{\text {BF362 }}$	0.200 0.300	${ }^{2} \mathrm{~N} \times 305450$	- 0.580	PL504	0.950	,	
${ }_{8 \times \times 87}$	0.150	2N3442	0.850	PY500A	1.600	16 C CAN	0.200
	Please add 40 p . P\&P and VAT at 15%. Govt. Colleges, etc. orders accepted. Quotations given for Large Quantities. Please allow 7 days for delivery. All brand-new Components. All valves are new and boxed.						
	SUNMIT ELECTRONICS 9 THE BROADWAY, PRESTON ROAD, WEMBLEY, MIDDLESEX, ENGLAND. Telephone: 01-904 2093						

'DO IT THE FREEWAY'			
LOPTS		PRESS BUTTONS	
$\mathrm{B}+03000+3200 \mathrm{EHT}$	17.00	Dacca $1730+20$ Mono 4 way	${ }^{6.60}$
$\mathrm{B}+03100+3300$		Decca $1730+30+80+1006$ way	8.40
3400 EHT	19.50	GEC 21106 way	8.40 800
$\mathrm{B}+03100+3300$		GEC $2136 / 76$ way GEC 2112 +neons 7 way	8. 2.50
$\begin{array}{r} B+03500+3500 \\ 4000+5000 \end{array}$		$2113+2119+2121+2144$	
6000	11.50	$2147+2148+2149$	14.20
Dacca 30	9.50	Hitachi 1904 way	50
Decca 100	8.00	$1 \mathrm{IT}^{\text {CVC }} 57$ way	50
Decca 1700	9.00	$17 \mathrm{CVC} 8 / 96$ way	12.50
Decca 1730+1830		$17 \mathrm{CVC} 20+30+326$ way	7.40
Dymatron TV202 +200	11.00	1π CVC 25 VCR 6 way	88.50
GEC 2623 Solid State	9.50	National TG85 4 way	8.50
Grundig 5010UE		Philips 68520 Square	10.50 16.50
$60100 \mathrm{E}+2222$	12.00	Philips G8 550 Sloping	8.00
Grundig 5010	12.00 15.00	Pye $713+7154$ way ${ }^{\text {Pye } 715+207 \text { Cheisea } 6 \text { way }}$	12.50
Grundig 1500 EHT	19.50	Pye 7256 way	13.50
Grundig 5010 EHT	9.60	Rank A823 4 way	9.00
$17 \mathrm{CVC} 25+30+32$	8.00	Rank A823 6 way	12.50
17 CVC 45	8.50	Rank T2OA 6 way	. 50
Philips 68	8.50	Rank 27186 way	12.50
Philips G9	9.00	Salora 5 way	10.00
Philips 210 Mono	10.75	Salora 7 way	12.00
Philips 570	9.50	Skantic/Luxor 6 way	
Pye $169+569+769$	10.00	Telpro 4 way	10.00
Pye $681+697$ PCB	14.25	Thorn 9000 Switchbank	1.50
Pye $713+715+717$	9.50		
Pye 725	10.20	TUNER	
Pye $731+735+737+741$	10.50	ELC 1043/06	6.00
Rank T204	11.50		
Rank A774	11.00	capacitor	
Rank $271818{ }^{\prime \prime}$	23.00	G11 470mfa/250\% Elco	1.60
Rank $271820+22+26^{\prime \prime}$	23.00		
Rank Mono Portable ${ }^{14 \prime}$	9.50	Integhated circuits	
Tendberg 110°	11.25	TA7607AP Pack of 10	5.00
Thom 1590+1591	10.90	TAA550 Pack of 10	1.50
Thorn 1615	9.00	TDA2540 Pack of 5	
Thorn 1690+1691	6.50	TDA9513 Pack of 10	
Add 15% V.A.T. and send cheque or P.O. to:			
FREEWAY COMPONENTS The Airport, Weston Super Mare, Avon BS24 8RA Tol: 0934419147			

VISIONTEL BEST QUALITY EX RENTAL SETS FROM £10 HERE IN CENTRAL LONDON!

Hundreds of sets always in stock AT VERY COMPETITIVE PRICES ! JUST ARRIVED ! VHS VIDEO RECORDERS

We also have PYE, DECCA, GEC, ITT, GRUNDIG, JVC, PHILIPS G9 + G11, THORN 9000 and MANY MORE FOR FURTHER DETAILS TELEPHONE 3283787 OR COME ALONG TO 55 KILBURN HIGH ROAD, NW6

"Colour Televisions"

FIRST COME! FIRST SERVED!
Not ex-rental...
All in excellent cabinet condition. Many working.
Largest selection of makes and models.
Fresh stocks weekly...
Available in singles or in quantity.
Many late models eg:
G11, 9600, Decca 100 etc.
Clearance sale of old models:
Philips G8 £10.00
Bush A823
£10.00
Hybrid mixed
£5.00
Panels, Spares, Tubes etc. available.幺

RING US NOW!!!

COLOURTRADE

Tel: 021-359 0449
Unit 3, Nechells House, Richard Street, Nechells, Birmingham.

TELEVISION TUBE SHOP LTD

BRAND NEW TUBES AT CUT PRICES

A31-19W/20W19.95	230DB4CT468......... $\mathbf{3 1 . 0 0}$
A31-120W/300W17.95	$240 \mathrm{DB} 4 / 240 \mathrm{AB} 4 \mathrm{~A} \ldots . .22 .00$
A31-410/510W 17.95	CT507 equiv 21.95
A34-100W/510W 18.50	310DGB4/DMB4......23.00
A 34-514W 24.25	310EUB4................ 19.95
A38-160W/170W17.50	310EUB4A 18.50
A44-120W/R25.00	310EYB418.75
A50-120W/R 19.00	310FXB4 $\ldots \ldots17 .50$
A61-120W/R 21.00	310HCB4....................31.00
9AGP4 $£ 21.82$	340AB422.50
190AB4/C423.00	340A YB4...................30.00
	340AXB4.................30.00
Some Rebuilt Japanese	340RB4/CB4.............26.00
\& European Types	340AHB4 26.00
Available from £14.00 + VAT $£ 2.10$	RIGONDA $6^{\prime \prime} \ldots \ldots14 .00$

COLOUR TUBES (NEW \& MULLARD/THORN COLOREX)*	
VARP22 $\mathbf{£ 6 2 . 5 0}$.£62.50 A56-120X $\mathbf{5 4 4 . 0 0}$
330AB2273.50	73.50 A56-410X64.00
A44-271X60.00	60.00 A56-500X/510X63.00
A47-342X61.00	.61.00 A63-120X63.00
A47-343X61.00	61.00 A66-120X65.00
A49-191X53.00	53.00 A66-140X/410X70.50
A51-161X...............70.00	70.00 A66-500X/510X65.00
A51-220X55.00	55.00 A67-120X65.00
A51-500X/510X64.50	64.50 A67-140X/200X69.50
A51-570X73.00	73.00 A67-150X75.00
Old Bulb Required for 110° Colorex ADD 15\% VAT TO ALL THE ABOVE PRICES.	
ALL TUBES TESTED BEFORE SALE \& FULLY GUARANTEED TELEVISION TUBE SHOP LTD	
52 BATTERSEA BRIDG Tel. 228 6859/223 5088 CARR	BRIDGE RD., LONDON, SWI1. 88 CARRIAGE: Mono $£ 3$, Colour $£ 10$.

SETS 8 COMPONENTS

SECOND HAND Colour TV spares and tubes. Most makes. Telephone Southport (0704) 74411. Anytime.

Thorn 3000/3500
 TRIPLERS Thorn 9000 UNIVERSAL
 I year guarante £4.50 The UNIVERSAL TRIPLERcan be used in mos sels. WING ELECTRONICS
 15 Waylands, of Tudor Rd, Hayes End, Middlesex

SCRATCHED TELEVISION TUBES, Don't despair, send for repair, 20 years experience. Phone 0507 85300.

L.O.P.T. TESTER ${ }^{\text {new, }}$

Uses built-in rechargeable battery (PP3) Pocket size $(8 \times 5.5 \times 3 \mathrm{~cm})$. Tests most types of LOPTs in and out of set. Safe and simple to use Money back if not satisfied (10 days). Instructions and tests included.
£23 inc. P\&P. Battery $£ 5$ extra,
MORLEY ELECTRONICS
1 Morley Place, Shiremoor Newcastle Upon Tyne, NE27 0QS.
Phone Whitley Bay 513883

GRUNDIG NORDMENDE. Reconditioned panel exchange, complete sets. Spares circuits. 0785814643 anytime.

PHILIPS 550s (Mark 5/Twin Panel/VCR Button) excellent cabinets. Regular supply of working sets. Box T.V. 181

CAMPBELL ELECTRONICS LTD.
COLOURT.V. PANEL EXCHANGE/ REPAIR SERVICE
THORN, RANK, PHILIPS, GEC, DECCA, TELPRO, GRUNDIG etc.
90 Day Guarantee on all repairs - same day postal service

Telephone Telford (0952) 502422
for catalogue and price list.
CAMPBELL ELECTRONICS LTD.,
Unit 5, Heath Hill Estate,
Dawley, Telford, Shropshire.

[^2]
EX RENTAL C.T.V.'s \& REGUN TUBES

RBM, THORN, DECCA, PYE GEC, GRUNDIG, ITT, PHILIPS G8, G9, G11, JAPANESE
From $£ 10$
Also all modules from $£ 4$ untested.
STARLITE ELECTRONICS,
80 Como St., Romford, Essex.
Telephone Romford 752537 London Code 3.

TELEUUIFIOM
No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.
The prepaid rate for semi display setting $£ 6.00$ per single column centimetre (minimum 2.5 cms). Classified advertisements 35 p per word

CIIEARANCE SAIE
 LARGE QUANTTTY OF GOOD CLASS COLOURTELEVISIONS

BUSH, PYE, GEC, THORN, PHLIIPS ETC. Excellent Cabinet Condition
Genuine Change Over TV's and Repossessions

LARGE QUANTTTY SOLID STATE BUSH £8 Each

 [Minimum quantity 5] PHILIPS G8 ONLY £15 THORN 3500 ONLY £10 BUSH P.I.L. TUBES ONLY £35 [repos.]We export large quantites of TV's weekly. Can we help you?
Discount on Quantity Orders
Over 1,000 MONO TV's IN STOCK FROM $£ 3$
100 's colour tubes suitable for reconditioning. Working colour
T. V. 's to order i.e. Bush $20^{\prime \prime} / 22^{\prime \prime} 21$.C. excellent picture, ready to sell only $£ 39$ CALL AND SEE OUR SELIECTION White Goods
All types of Washing machines, Vacs, Fridges, Cookers, etc. Hoover Auto's,
Servis,Hotpoint, Hoover Uprights,Vacs. 500 always in stock. Fully reconditioned Hoover Twin Tubs and Upright Vacs, all models. Phone for details.

PAY US A VISIT, YOU WILL NOT BE DISAPPOINTED.

NWELECTRONICS
 WHARFEIAALE ROAD, EUROWAY ESTATE. O- [0274] 8984.58 [M603 DRECT LINK M62] BRADFORD.

TELEVISION TUNER REPAIRS ALL TYPES
 BRITISH, EUROPEAN JAPANESE ETC.

MEN-TU ELECTRONICS LTD. SALTERNS LANE, FAREHAM, HANTS.
Tel: 0329-235116

* Britains most reliable source of quality TVs.
* Hundreds of working polished TVs.
* New adjustable TV stands.
* Pye 18" Chelsea's working \& polished $£ 35.00$ in quantity.

Krystal Marketing Ltd,	Phone 021-471 3023
8 Breedon Cross Storage,	Telex 335540-G
Dale Road, Selly Oak,	Ask for Les
Birmingham B29 6A0.	

COLOUR PANELS Fully Tested \& Working							
	IF	CDA	Decoder	LTB	$\begin{aligned} & \text { Line } \\ & \text { Board } \end{aligned}$	Frame Board	Power
GEC 2040	3.50	3.50	4.00	5.00	-	-	-
DECCA 13/30	3.00	-	5.00	5.00	-	-	4.00
BUSH 'A'	2.00	-	5.00	5.00	2.50	-	2.00
THORN 8-8i"	-	-	7.00	5.00	-	-	3.00
$\text { PYE } 205$	3.00	3.50	5.00	8.00	-	2.00	0
THORN 3+31K	3.00	-	5.00	8.00	-	-	10.00
		-	8.00	5.00	15.00	-	5.00
BUSH twin chip decoder 10.00					fitted w		
					brand n		
Post \& packing: 1 panel £1.50; 2 panels £2.25; 3 panels £3.00 etc. transformer							
Hybrid panels do not include valves. 26. CRT's fully tested $£ 10$							

EERUICE PAEES

(minimum 12 words), box number 70p extra. All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television Room 2612, IPC Magazines Limited, Kings Reach Tower, Stamford Street, London SE1 9LS. (Telephone 01-261 5846).

Japanese Colour TVs, Hitachi, Sony, Panasonic, Mitsubishi, Toshiba, Sharp. Colourland TV. Trade Only. 0484863489

REYSTRONİCS: SCHRADER Tunable UHF Masthead Amplifier RB45 A.S. MV30DB gain. 1.6 dB noise. Ch. 17-65. £39.50, p\&p £1.50. Telephone $01-9797380$.

COLOUR TV's ram $£ 10$

IN

NORTH HERTS.

\star Weekly Stock
\star Working Sets to Order

* Bulk Discounts Available
\star Mountains of Spares
\star Friendly Service
\star Phone Call Preferred

SCREENPLAY rear of 28 sun street, HITCHIN, HERTS.
 Phone: Hitchin 31644

TUBES £29 inclusve

REGUNS

TWO YEAR GUARANTEE
A56-120 A51-110
A49-191 A47-342 or 3
A44-270 A67-120
A66-120 or 140 ($26^{\prime \prime}$ add 55)
IN-LINE IN STOCK
51-161 £48 56-500
Plus many more including Sony. Add $£ 5$ per tube for quick insured delivery. No need to spend $£ 5$ returning old glass if you buy from us (except in-line).
U-VIEN TUBES
29. WARMSWOATH ROAD, DONCASTER

YORKS. DN4 ORP. TEL 0302855017
Callers ring first. Open every day, including Sunday. These prices apply to 1983.

PROFESSIONAL STICK
 DE-GAUSSING COILS
 inclusive \& delivered, 1 ve
 U-VIEW TUBES
 These prices apply to 1983.

TUBES £19.50

Inclusive and delivered. Slightly used with a six month guarantee. Sizes available as above U-

VIEW (TUBES) $26^{\prime \prime}$ add $£ 5$.

IRISH T.V. DEALERS

(No. 1 for s/hand T.V.S)

1. 400 sets to choose from.
2. Most leading makes sold.
3. Fresh stocks weekly.
4. Delivery to any part of Ireland.
5. All sets with VHF/UHF tuners.
6. Colour from only $£ 70$ mono from $£ 15$.

Visit our new spacious warehouse:
TELE SPARES LTD.
Unit 113 Elm Road, Western Ind. Estate, Dublin 12.
Tel: 01 521756/521211.

RANK BUSH MURPHY TV PANELS

Repair, exchange, sale service, same day return where possible. 718 chassis lopt panel charges reduced. Also new boards available for T20/22 chassis. Genuine RBM technology.
T. K. Panels Service,

31 Bronte Paths,

41, Willesden Lane,
Stevenage, Herts. Kilburn, N.W.6.
Tol. (0438) 61567.
CAMPBELL ELECTRONICS LTD.
Distributors of specialist spares to radio and television service depts.
We stock semiconductors, I/Cs, special T.V. and audio spares, service aids, rebuilt CRTs etc.
Fast off the shelf delivery of stock items. Send S.A.E. or telephone for full catalogue and price list.

CAMPBELL ELECTRONICS LTD., Unit 5, Heath Hill Estate,
Dawley, Telford, Shropshire.
Telephone Telford (0952) 502422.

GOOD WORKING COLOUR $\mathbf{£ 2 5 . 0 0}$, Mono $£ 10.00$ No V.A.T! (070682) 7166. Cleaned, polished.

TOP QUALITY TELEVISIONS

Wide range CTV's in good working order from f25. Eg. Thorn 8500 , Philips G8 etc.
Plenty of working/non-working sets at competitive prices.
Spare parts and panels availabie.
for further details telephone
(0203) 714213/(041) 2212146

TRADE COLOUR TV's ALWAYS 200 IN STOCK

Phillips G8 from $£ 10$
Bush Twin Chip from $\mathbf{E 8}$
Pye Chelsea from $£ 15$
Colour TV's in good working order from £35.
E.G. Phillips G8's 22" £35.

Ring us for spares and type availability anytime.
(0934) 514047/512792/27560 P\&R SUPPLIES, Unit 5,
Worle Industrial Estate,
Weston-Super-Mare. Exit 21 M5.

ARE YOU OVERSTOCKED?

Turn your surplus stocks into cash £500,000 AVALLABLE
for any surplus electrical stocks ie. TV's, Video's, Washers etc.
Phone in strictest confidence : Mr R. Walker O BRADFORD [0274] 688458

TELEVISION

Trade Supplies of Good Quality Colour \& Mono TV's. Most Makes available, suitable for Sale or Re-Rent.

GENERAL unonstreet FACTORS 10302 49583-68416
 GOOD MOTORWAY ACCESS

TEST EQUIPMENT
UHF T.V. Pattern Generators
Crosshatch \& 4 patterns
$£ 17.25$
As above but with Greyscale
£18.50
Prices include P\&P and VAT. Also available:
pal colour bar generator
CAPACITANCE METER
TRANSISTOR TESTER
S.A.E. for prices and full details. The above items are not kits C.M.J. ELECTRONICS Unit 8, 16 Union Mill, St., Horseley Fields, Wolverhampton, WV1 3DW. Tel (0902) 871563

COLOUR VALVES PY500/A-75p, PL509/519-95p. MONO VALVES ECCB2, EF85. EF183, EF184, DY87 DY802, PCF80, PCF802, PCL82, PCL83, PCL84, PCL85) 805, PCL86, PCCB4, PCCB9,
PFL200, PL36, PL504, EIC.
ALL VALVES EX-EOUPMEL 35 EACH.
ALP 50 D Per order. Access/Viss Cards wel
ELECTRONIC MAlLORDER LTD, 62 Bridge. Ramsbottom, Lancs, BL0 9AG. Tel. (070682) 3036

T.V
 SPARES, PANELS - AND MANUALS
 PHILIPS. GRUNDIG
 TELEVIEW 01-994 5537
 194, Acton Lane, London W. 4.

BARRY TV SERVICES

(EAST ANGLIA)

Your friendly wholesalers. We cater for the smaller dealer who requires regular small supplies of quality used colour TV's. From $£ 25$ + VAT. Fully working with good tubes and cabinets, straight from our retail shelves, ready to sell or rent.
Delivery available
Contact John, Dave or Steve on Ely 61462
or Cambridge 69215
TURN YOUR SURPLUS capacitors, transistors, etc. into cash. Contact COLES-HARDING \& CO, 103 South Brink, Wisbech, Cambs. 0945584188 . Immediate settlement.

TRADE TV's

For the best quality at the cheapest prices in Nottingham.

CASTLE TV

100s of ex-rental sets in stock. S/S colour from $£ 12.50$ S/S mono from
£3.00
TV Sales \& Spares to the Trade.
346 Radford Road, Nottingham. Tel. Mr. Atkins Nottingham 785321.

N. W. ELECTRONICS

SUPPLIERS OF ALL ELECTRICAL WHOLESALE BROWN \& WHITE GOODS. SURPLUS, DAMAGED GOODS ETC. PURCHASED.

ATTENTION!
All Manufacturers, Exporters and Importers
PLEASE CONTACT US!! Reps. Welcome. Please telephone Mr R. Walker on BRADFORD (0274) 688458.
PLEASE NOTE OUR NEW ADDRESS
UNIT 1, WHAREFEDALE ROAD, EUROWAY ESTATE, (M606) BRADFORD. (M606 DIRECT LINK M62).

RANK BUSH MURPHY TRANSFORMERS
 LINE OUTPUT TRANSFORMERS
 Z718 (T703A, T706A)
 (1) New (Complete)
 (3) Less Focus Module and Rectifier
 £10.50

Z718 SPARES (T703A, T706A)
Pri. - £5.50, Sec. - £6.00,
Rectifier - $£ 3.00$, Lead - $£ 2.50$
$\mathbf{T 2 0 , ~ T 2 2 ~ (T 7 0 5 A) ~} £ 9.00$
T26 (7705B)
Switch-mode Transformers T114 A/B
£8.00
Genuine RBM Units
Prompt Postal Service. Add 15\% V.A.T. to all Prices. DISCOUNT For QUANTITIES
WOODSDALE COMPONENTS MR SKEHAN
34 Field End Road, Eastcote,
Pinner, Middlesex HA5 20T 01-868 5580
Agents Office, callers by appointment only.

UPCONVERTERS

NEW ITEM: Small VHF-UHF converter PC module. 12 V supply required. May be fitted inside TV. Ideal for Eire, overseas or Dxing. High sensitivity, $£ 13.50$.

SAE Data, TVDX/Satel/ite TV Lists. H. COCKS.

Cripps Corner, Robertsbridge, Sussex, TN32 5RY. Tel. 058083317.

FOR SALE

COMPLETE CONTENTS small TV/Electronic work- \mid PL802 SOLID STATE PLUG-IN Replacement Modshop for sale. Components, panels, equipment, ule. $£ 4.50$ each, inclusive post \& VAT. Accord ElecC/diagrams, TV’s $£ 600$. Farnborough (Kent) 61127 . tronics Ltd., 45 Stoke Road, Guildford GU1 4HT.

For a good selection of used TV sets in good cabinets ...

* Large stock of working sets. * U.K. Delivery Service.

UNIT 40, HARTLEBURY TRADING ESTATE, NR. KIDDERMINSTER, WORCS. DY10 4JB Tel. Hartlebury (0299) 250161

When replying to Television Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.

This will assist advertisers in processing and despatching orders with the minimum of delay.

SPECIAL OFFER

(1) L.E.D. Miniature $/ 3 \mathrm{~mm} / 5 \mathrm{~mm}-7$ colours available.
(II) Single and dual digits
display in lots of 1,000 and 5,000.
Ring 6880977 - Limited Stock
VOLS 1-5 Radio and T.V. Servicing $£ 5.00$. 'Television’ 1966-1980 (less Dec. 1970) $£ 40.00$ or $£ 42.00$ the lot. 0767-80154.

AERIALS AND ACCESSORIES
North Londons Spacialist Aarial Supplier Wholasele and Mail Order.
VHF/UHF antennas, masts, brackets, cable, amplification and distribution equipment etc. All types of aerial hardware and software supplied. Single and multipoint Send 50 p for our new 1983 catalogu and end 50 p for our new 1983 catalogue and price list
S.C.S. AERIALS

26-28 Port Vale, Hertford, Herts. SG14 3AB Tel: 099250478
AERIAL BOOSTERS
Next to the set fitting 845H/G-UHF TV, gain about 20dbs, Tunable over the complete UHF TV band. Price $£ 8.70$.
8JIVHF/FM RADIO, gain about 14dbs, when on the off position connects the aerial direct to the radio. Price $£ 1.70$.
All boosters we make work off a PP3/006p/6F22 type battery or ELECTRONIC MAll ORDER P8 30 p per order.
ELECTRONIC MALL ORDER LTID, 62 Bridge St, Ramsbottom,
Access Nise Lands BLo 9AG. Tel (070682) 3036
Access/Nisa Cards Welcome

SERVICE SHEETS

T.I.S. 76 CHURCH ST., LARKHALL, LANARKSHIRE ML9 1HE T.I.S.
 The only practical, comprehensive T.V. Repair Course devised - now bound in 1 manual $£ 8.50$.

 NEW RELEASES: Tunbridge T.V. Repair Manuals $£ 6.50$ ea. post free.Mono Portables 1, mainly Thorn, Bush, G.E.C. Mono Portables 2, mainly Philips \& Crown. Mono Standards, since 1973, British \& foreign.

1983 British Colour T.V. Repair Manual. Philips K80 \& KT3; Bush 6004 etc.; Decca 70-90-200 with mods; Modern G.E.C. types. The 5 new manuals for $£ 30$ - Save $£ 2.50$.

Complete sets TV Repair Manuals, 5 McCourt $£ 30$, 9 Tunbridge $£ 55$ British Colour TV Repair System, 3 huge binders of diagrams, 5 repair manuals, etc.

$$
\text { Foreign Colour TV Repair System, } 2 \text { newly revised binders plus } 3 \text { repair manuals, etc. }
$$

Mono TV Repair System, 2 updated binders of diagrams, 6 repair manuals, etc.
Complete Integrated TV Repair System, all above, plus other valuable publications, value $£ 220$

UNIQUE COLLECTION OF SERVICE SHEETS \& MANUALS

Manuals from early '30s to recent years. Copies of out of print data unobtainable anywhere else. We even produce all our manuals and service sheets as well as stocking all known published service sheets. Over $£ 5,000$ of video service manuals alone held in stock for immediate despatch. G8, A823, Autovox or Tyne only $£ 7.50$ each. Complete sets any full size published service sheets $£ 2$ + I.s.a.e. - Except G.T.V.s \& Music Centres from $£ 3$ + I.s.a.e.
VCR REPAIR SYSTEM 1 - early Philips 1500/1700 types + early VHS inc. portables, diagrams \& data $£ 24.50$
Large s.a.e. brings full details above offers, plus any requested quotations, plus free 50 p electronic magazine.

FOR FAST QUOTES - PHONE 0698-883334

30,000 SERVICE SHEETS IN STOCK. COLOUR MANUALS ALSO AVAILABLE

TV Monos, Radios, $\mathbf{£ 3 . 0 0}$. Tuners $\mathbf{6 3 . 0 0}$. Tape Recorders, Record Players $\mathbf{6 3 . 0 0}$. Transistors $\mathbf{6 3 . 0 0}$. Car Radios $\mathbf{~} \mathbf{3 . 0 0}+$ SAE. Stereograms \& Music Centres $\mathbf{£ 3 . 0 0}$. Radiograms $\mathbf{~} 3.00$. Also Colour available. State if circuit will do if sheets are not in stock. Circuits $£ 3$-colour. All TV Sheets are full length 24×12 not in Bits and Pieces. All other Data full
lengths. All Sheets $£ \mathbf{3}$ excell lengths. All Sheets $£ \mathbf{3}$ except colour. SAE please. Old Valve Radios $£ 3+$ SAE 9×3.
C. CARANNA, 71 BEAUFORT PARK, LONDON NW11 6BX.
(MAIL ORDER)

BELL'S TELEVISION SERVICES for service sheets on Radio, TV, etc. $£ 1.25$ plus S.A.E. Service manuals on colour TV and Video Recorders, prices on request. S.A.E. with enquiries to B.T.S., 190 Kings Road, Harrogate, N. Yorkshire. Tel. (0423) 55885.

SERVICES

VIDEO TRADE SERVICING. Own workshop and equipment. Free collection and delivery, 30 mile radius. Bristol 857735.

SANDHURST PUBLICATIONS

Television Service Sheet Specialists Workshop Manuals, large selection of Japanese and European TV Sheets. Callers $5.30-7.00 \mathrm{pm}$. Upper Floor. Send S.A.E. for Catalogue and Enquiries:

49C Yorktown Road,
Sandhurst, Camberley, Surrey GU17 7AG.

MISCELLANEOUS

TURGLAR ALARM EQUIPMENT. Latest discount :atalogue out now. Phone C.W.A.S. ALARM 0274 682674.

ORDER FORM please Write in block capitals
Please insert the advertisement below in the next available issue of Television for insertions. I enclose Cheque/P.O. for $£$.
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd and made payable to Television)

Send to: Classified Advenisement Dept

NAME.
TELEVISION
ADDRESS
Classified Advertisement Dept., Room 2612. King's Reach Tower, Stamford Street,
London SE1 9Ls. Telephone 01-261 5846.
Rate
35p per word, minimum 12 words. Box No. 70p extra.
Company registered in England. Registered No. 53626. Registered Office: King's Reach Tower, Stamford Street, London SE \dagger 9L.S.

WANTED

WANTED:- AUDIO SIGNAL TRACER. Tel. Colin Mitchell, Newcastle 0632761949 or 857997.

WANTED. Dual/Single Beam Oscilloscope. Derby 49229.

WANTED PHILIPS/PYE G11 Colour TVs. any quantities. Hornchurch 58513, Mr. Morris.

WANTED

SURPLUS, DAMAGED AND BANKRUPT ITEMS.
TV's, VIDEO, WASHERS ETC . . . Anything considered.
UP TO £500,000 CASH available
Phone in strictest confidence:
Mr. R. Walker Bradford (0274) 688458

Wanted for cash. Any Videos, TV's, Televertas, test equipment or tube plants. Ring Scott on 01-299 1087.
WANTED FOR GRUNDIG. Any model Telepilot remove control handset. 0785814643 anytime.

BOOKS \& PUBLICATIONS

"RADIO AND TELEVISION SERVICING" books, new editions for the last 6 years always in stock. Prices on request. Bells Television Services, 190 Kings Road, Harrogate, N. Yorkshire. Tel. 042355885.

COMPLETE FULL-SIZE SETS any published service sheets $£ 2+$ LSAE except CTVs/Music Centres from $£ 3+$ LSAE. Manuals from 1930 to latest. Quotations, free 50 p magazine, price lists, unique technical publications for sale. Repair data/circs almost any named TV/ VCR $£ 8.50$ by return. TIST, 76 Church Street, Larkhall, Lanarks ML. 9 1HE. Phone (0698883334).

COURSES

FULL-TIME COURSES IN

- Microprocessor Computers
- Video Cassette Recorders
- Colour TV.

Diploma - High Diploma or City and Guilds Qualifications.
Apply:

Registrar,

Reeswood College,
299A Edgware Road,
London W2 1BB.
01-402 9985.
Courses commence 21st September 1983 and 18th January 1984.

CONQUER THE CHIP.. . Master modern electronics the PRACTICAL way by SEEING and DOING in your own home. Write for your free colour brochure now to British National Radio \& Electronics School, Dept. C4, Reading, Berks RG1 1BR.

SELLING OR BUYING

A classified advertisement could solve your problem at very little cost
RING MANDI 01-261 5846

HOW DARE THEY!

If you see an advertisement in the press, in print, on posters or a cinema commercial which makes you angry, write to us at the address below. (TV and radio commercials are dealt with by the I.B.A.)

The Advertising Standards Authority. If an advertisement is wrong, we're here to put it right.

ASA Ltd., Brook House, Tornngton Place, London WCIE 7HN.

N.G.T. COLOUR TUBES

First Independent Rebuilder with

B.S.I. CERTIFICATION

(Certificate No. 004)
All Colour Tubes are debanded, high temperature pumped and rebanded using new adhesives and new tension band.
$19^{\prime \prime} £ 30,20^{\prime \prime} £ 32,22^{\prime \prime} £ 33$, and $26^{\prime \prime} £ 38$.
No exchange tube required on delta types.
Delivery U.K. mainland: $£ 7.50$.
N.G.T. ELECTRONICS LTD.,

120, SELHURST ROAD, LONDON S.E. 25
Phone: 01-771 3535.
20 years experience in television tube rebuilding.

A.B.C. TRADE SALES COLOUR T.V.'s

Philips G8, Pye, Decca 30's,
Thorn's 3000's, 3500's, 8000's Prices start from $£ 12$ - Working sets from $£ 20$
Hundreds of Mono T.V.'s from $£ 2.00$
Jap. sets from $\mathbf{£ 3 0 . 0 0}$
Special prices for quantity
9,000 sq. feet Warehouse
83 SHOWELL ROAD, BUSHBURY, WOLVERHAMPTON, STAFFS.
Tel. Wolverhampton 722637

LONDON'S LARGEST TELEVISION WHOLESALER.. with over $4 \frac{1}{2}$ thousand sq. feet.

"TELEMANN""
8-10 RHODA STREET,
(Off Bethnal Green Road)
LONDON E.2. FREE CAR PARK
TEL: 01-739 2707

ALL MAKES IN STOCK AND GUARANTEED
PYE $22^{\prime \prime}$ COLOUR FROM $\mathbf{£ 7 . 5 0}$
PHILIPS $22^{\prime \prime}$ G8 (Teak cabinet) PARCEL OF TEN $£ 12$ MONO DUAL STANDARD PARCEL OF 20 £1 - SINGLE STANDARD $£ 3$

FREE DELIVERY TO THE LONDON AREA! TELEPHONE 01-739 2707 - NOW!

VIDEO HEADS
 MONOLITH
 HIGH QUALITY UNIVERSAL VIDEO HEAD REPLACEMENTS FOR ALL VHS AND BETAMAX VCR MACHINES
 VHS Part No. 3HSS (5 mm Centre Hole) $\mathbf{£ 2 9 . 9 5 \text { PRICE }}$
 VHS Part No. 4HSS (15 mm Centre Hole) $£ 29.95$ EACH
 BETAMAX Part No. PS3B £38.95 EX.
 REPLACEMENT KIT (14 Pieces Boxed) $£ 8.25$ V.A.T
 PLEASE ADD 15% V.A.T. PLUS P. \& P. $£ 1.50$ PER ORDER
 OUR FULL CATALOGUE AVAILABLE ON REQUEST.
 Please allow between 14 and 28 days for delivery.
 AUDIO + VIDEO HEADS - MOTORS - PARTS
 Suppliers to most U.K. Distributor/Service Organizations
 THE MONOLITH ELECTRONICS CO. LTD
 5-7 Church Street, Crewkerme, Somerset TA18 7HR, Englend
 Telephone Crewkerne l0460] 743 e1 Telex 46308 MONLTH G

COLOUR SETS GALORE

Hundreds in Stock.
From $£ 20$. Guaranteed Complete.
Mono's and non-complete sets from $£ 3$.
Most makes available.
QUALITY COLOUR TUBES
Reconditioned and used tubes.
From $£ 10$ Guaranteed.
Don't delay, ring today.

ALPHA TUBES (DUNSTABLE)

53 Lowther Road, Dunstable.
Tel. (0582) 68934
TRADE

EMCO - EUROSONIC - GRUNDIG - TELETON + ALL BRITISH MAKES ETC., ETC. - ALL SPARES READILY AVAILABLE

IMMEDIATE CREDIT AVAILABLE - TRADE ONLY

If you are a trader simply phone for the part you require and we will send it - no quibble - no hold up for status check. Satisfy us over the phone that you are a trader and we will supply almost any TV component by return "off the shelf". e.g. LOPTX - EHT trays - droppers - OSC coils - switches - cans smoothers - I.C.'s, etc. etc.

YOU CAN BE 95\% SURE WE CAN SUPPLY ANY TV COMPONENT BY RETURN
 IF YOU NEED SPARES FAST - RING NOW!

1983 PRICE LIST
 DISPLAY ELECTRONICS

GOLD LABEL COLOUR TUBES

2 YEAR GUARANTEE

 90° up to $26^{\prime \prime} . ~ . ~ 539 ~$
The above prices are for standard 38 mm Delta Gun Types.
Add $£ 5$ Gun surcharge for 20AX Types Other in-line \& P.I.L. Types, prices on application.

GOLD LABEL MONO TUBES

 2 Year guarantee$19^{\prime \prime} / 20^{\prime \prime}$. 12
$23^{\prime \prime} / 24^{\prime \prime}$.. $£ 14$

GREEN LABEL COLOUR TUBES

12 MONTHS GUARANTEE

90° up to 19 .f28
90° up to $22^{\prime \prime}$.. 531
90° up to $26^{\prime \prime}$.. $\mathbf{6 3 4}$
Green Label Prices apply only to standard 38 mm Delta Gun Types. They will be of particular interest to customers refurbishing ex-rental sets.

BUDGET CORNER

Buy any 5 mixed types take 20% discount.
Buy any 3 mixed types take 10% discount.
Budget prices apply only to colour tubes. The mix can include Gold \& Green Label Types if required.

CALLERS WELCOME

Late night Thursdays until 8 p.m. Saturdays until Midday
N.B. Customers intending to collect orders are requested to telephone in advance:- even popular types may be out of stock for short periods.

UNIT 1

 SWAN WHARFWATERLOO ROAD
UXBRIDGE MIDDLESEX

Telephone: UXBRIDGE 55800

[^0]: Published on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by The Riverside Press Ltd., Thanet Way, Whitstable, Kent. Distributed by IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Sole Agents for Australia and New Zealand - Gordon and Gotch (A/sia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland £11, overseas (surface mail) £12 per annum, payable to Ouadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever.

[^1]: To: Globus Industries Ltd., Unh 18, Darley Abbey Milta, Derby.
 Please send by return post "How to Deal Successfully in Used Colour Televisions
 I enclose cheque/p.o. for $£ 4.95$.

[^2]: BULK BARGAIN T.V. SERVICE PACK Contains at least $£ 50$ worth of $T . V$. service components and accessories. Loads of hard to obtain T.V. Spares and components. Ideal for the service engineer. Only £12.50, carr. £2.50. Ref. Guar. HAVE YOU SEEN THE GREEN CAT? 1000 s of new components, T.V., radio, and electronic items at unbelievably low prices. Prob-
 ably the cheapest in the country. Send 40 p for GREEN CAT and reserve FREE RECORD SPEED INDICATOR. MYERS ELECTRONICS. Dept. TV2,
 Next to Union Jack Clothing Store, Leeds LS2 7EA. Callers welcome at our NEW retail premises. Open 9 to 5 Mon to Sat. Tel. 452045.

