SERVICIIGG-VIDEOCCONSTRUCTION•DEVELOPMENTS

THORN'S NEW TXOO GHASSIS

VGR GLINIG TV FAULT REPORT

Interested in Television Servicing? Try a ZED Pack. Effect Repairs at Minimum Cost.

GEMINI ELECTRONIC COMPONENTS

[^0]Send large S.A.E. for list of Quantity, Prices and Clearance Lines etc.

Vol. 33, No. 9 Issue 393

COPYRIGHT

© IPC Magazines Limited, 1983, Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF.

SUBSCRIPTIONS

An annual subscription costs $£ 11$ in the UK, £12 overseas (by surface mail). Send orders with payment to IPC Services, Oakfield House, Perrymount Road, Haywards Heath, Sussex.

BINDERS AND INDEXES

Binders ($£ 4.50$) and Indexes (45p) can be supplied by the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street; London SE1 OPF. Prices include postage and VAT. In the case of overseas orders, add 60p.

BACK NUMBERS

Some back issues are available from the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF at 85 p inclusive of postage and packing.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. All correspondents expecting a reply should enclose a stamped addressed envelope. Requests for advice in dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

this month

457 Leader

459 Teletopics
News, comment and developments
460 Service Briefs - ITT Servicing notes on recent ITT chassis.
463 Letters
464 Aerial Systems and Faults by Peter Richards
A review of basic types of aerial installation and fault conditions.
466 Laura's Dead Decca
by Les Lawry-Johns
The darling of the telephone department has Les running around. Amongst other matters, faults experienced with the Fidelity CTV14.
467 Next Month in Television
468 Light on Servicing by Eugene Trundle
The Ledu magnifier turns out to be the ideal solution for
bench lighting. A couple of other optical aids have also been found useful.
469 The New Thorn TX90 Chassis
This new chassis for 14 in . colour portables has been designed to compete in price, performance and reliability with anything produced in the Far East. How Thorn managed to achieve this price breakthrough and a description of the circuitry used, including the novel switch-mode boost supply.
472 VCR Clinic
Reports from Steve Beeching, T.Eng. (C.E.I.), Mike Sarre, Michael J. Cousins, T.Eng. (C.E.I.) and Mick Dutton.
474 Long-distance Television
by Roger Bunney
Reports on DX reception and conditions and news from abroad. Also a note on how the performance of coaxial cable can deteriorate.
477 Less Common TV Faults
by S. Simon
Following on from the Routine TV Receiver Tests series, some less common faults worth knowing about. Plus a note on interpreting voltages.
478 AD Conversion for VCR Control by Richard Roscoe
Some of the latest VCRs use AD conversion in the user control circuitry. How a typical system works.
480 TV Fault Finding
Fault finding notes from Richard Roscoe, John Coombes and George R. Wilding.
482 Exhibition Report: Cable 83
by Dave Lauder, B.Sc.
482 VCR Servicing, Part 19 by Mike Phelan
This time the 3V23's capstan servo, which incorporates edit control, and the reel servo used in the fast search mode.
Teletext Decoder Update
by Steve A. Money
Modifications to the Television teletext decoder to deal with the increased number of teletext data lines and Oracle interleaving.
488 Test Case 247
489 Service Bureau

OUR NEXT ISSUE DATED AUGUST WILL BE PUBLISHED ON JULY 20

MANOR SUPPLIES

NEW MKV CHEQUERBOARD \& PAL COLOUR TEST GENERATOR FOR TV \& VCR.

$\star 40$ different patterns and variations.
\star Broadcast transmission accuracy (fully interlaced sync pulses with correct picture blanking).
\star EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red, blue and black.
\star Chequerboard.

* Mono outputs with border castellations, cross hatch, grey scale, vertical lines, horizontal lines and dots.
UHF modulator output plugs straight into receiver aerial socket.
* Additional video output for CCTV \& VCR.
\star Facilities for sound output.
* Easy to build kit. Only 2 adjustments. No special test equipment required.
* Mains operated with stabilised power supply.
* All kits fully guaranteed with back-up service.
* Also available with VHF Modulator.

Price of Kit
$£ 80.50$
Standard Case $\left(10 \frac{1}{2} \times 6 \frac{1}{2}^{\prime \prime} \times 2 \frac{1}{2}^{\prime \prime}\right)$
De Luxe Case ($10^{\prime \prime} \times 6^{\prime \prime} \times 2 \frac{t^{\prime \prime}}{}$)
$\$ 8.50$
Optional Sound Module (6 MHz or 5.5 MHz)
14.50

Built \& Tested in De Luxe Case including Sound Module 'SPECIALTEST'
$£ 120.75$

PAL COLOUR BAR GENERATOR (Mk4)

\star Output at UHF, applied to receiver aerial socket

* In addition to colour bars R-Y, B-Y etc.
\star Cross-hatch, grey scale, peak white and black level.
\star Push button controls, battery or mains operated.
* Simple design, only five i.c.s on colour bar P.C.B

PRICE OF MK 4 COLOUR BAR GENERATOR KIT £34.50. DELUXE CASE $£ 8.50$. BATT HOLDERS $£ 3.20$ OR MAINS SUPPLY KIT $£ 4.80$ (Combined P\&P £1.80).
MK 4 DE LUXE (BATTERY) BULLT \& TESTED $£ 66.70+£ 1.80$ P \& P. MK 4 DE LUXE (MAINS) BUILT \& TESTED $E 80.50+£ 1.80 \mathrm{P}$ \& P. VhF MODULATOR (CHI to 4) FOR OVERSEAS $\$ 6.60$.
EASILY ADAPTED FOR VIDEO OUTPUT \& C.c.T.V.
(ALL PRICES INCLUDE 15\% VAT)
MANOR SUPPLIES TELETEXT ADAPTOR KITS
MK 1 (Texas XMII) Cable remote control $£ 170.20$ p.p. $£ 2.80$. MK 2 (Philips/Mullard) Infra-red remote control $£ 227.70$ p.p £2.80.
Further details on request.
Goods available if in stock immediately over shop counter (Mail order between 3 days and 1 week from receipt of order)

TV SERVICE SPARES

BACKED BY TWENTY YEARS EXPERIENCE \& STAFF OF TECHNICAL EXPERTS

TELEVISION MAGAZINE PROJECT PARTS

NEW COLOUR PORTABLE TV
MONO PORTABLE TV \& SMALL SCREEN MONITOR LISTS AVAILABLE \& PANEL TEST SERVICE
THORN TX9, TX10 SAW FILTER IF PANELS 55.75 p.p. 85 p.
SAW FILTER IF AMPLIFIER PLUS TUNER COMPLETE AND tested SAW FILTER IF AMPLIFIER PLUS TUNER COMPLETE AND tested
for T.V. SOUND \& VISION $£ 32.80$ p.p. $£ 1.20$ (SUITABLE FOR USE for T.V. SOUND \& VISION £32.80 p.p.
WITH TELEVISION SIGNAL BOARDS).
TV SOUND IF PANELS, FULLY TESTED $£ 7.82$ p.p. $£ 1.00$
SPECLAL OFFER TEXAS XMII TELETEXT DECODER NEW \& TESTED, AT REDUCED PRICE £57.50 p.p. f1.60.
PHILIPS-PYE G11 TYPE TELETEXT DECODERS $\mathfrak{e 3 4} .50$ p.p. £1. 60 TELETEXT 23 BUTTON DE-LUXE HANDSET WITH 5 YDS. CABLE $£^{27.80}$ p.p. £1.20. XMII STAB. POWER SUPPLY £4.40 p.p. £1.20.
CROSS HATCH UNIT KIT, AERIAL INPUT TYPE, INCL. T.V. SYNC AND UHF MODULATOR. BATTERY OPERATED. ALSO GIVES PEAK WHITE \& BLACK LEVELS. CAN BE USED FOR ANY SET £ 12.65 p.p. 60 p. (ALUM CASE $£ 2.60$ DE LUXE CASE $£ 5.50$ p.p. $\mathfrak{f} 1.20$.) ADDITIONAL GREY SCALE KIT $£ 3.35$ p.p. 45 p.
UHF SIGNAL STRENGTH METER KIT 221.60 (VHF version also avail able). ALUM CASE $£ \mathbf{2} .60$ DE LUXE CASE $£ 8.50$ p.p. $£ 1.80$.
able). ALUM CASE $£ 2.60$ DE LUXE CASE 88.50 p.p. $£ 1.80$,
CRT TESTER \& REACTIVATOR PROJECT KIT FOR COLOUR \& CRT TESTER \& REAC
MONO $£ 9.40$ p.p. $£ 2.00$.
MONO $£ 29.40$ p.p. $£ 2.00$.
BUSH A823 POWER $£ 1.00$ BASIC PCB. IN FIBREGLASS 66.40 p.p.
BUSH Z718 BC6100 SERIES IF PANEL $£ 5.75$ p.p. 90 p
BUSH A816 IF PANEL (SURPLUS) £1.90 p.p. 90 p.
DECCA "Bradford"' T.B. POWER ex rental £5.75 each p.p. £1. 40
DECCA 80, SERIES, IF FRAME T.B. 55.75 each p.p. £1. 40.
DECCA 80, 100 LINE T.B. salvaged £II. 50 each p.p. £2.00.
GEC 2100 Decoder, RGB panels (ex rental) $£ 5.75$ each p.p. $\mathfrak{f} 1.00$.
GEC $\mathbf{2 0 4 0}$ Convergence panels $£ 2.88$ p.p. $£ 1.80$.
GEC 2040 DECODER PANEL 2.88 p.p. £1.60.
THORN TX9 PANELS ex factory for small spares. Includes I.C.s \& Semiconductors etc. $£ 5.75$ p.p. $£ 2.00$.
THORN TX9 PANELS salvaged ex factory for spares incl. LOPT \& mains transformers $£ 11.50$ p.p. $£ 2.80$.
THORN TX9 PANELS ex factory salvaged complete cond $\mathbf{2 3 3 . 0 0}$ p.p. $£ 2.80$
THORN TX 10 T.B. PANELS salvaged ex factory $£ 17.25$ p.p. $£ 3.00$.
THORN 3000 LINE T.B., POWER PCB $£ 5.75$ each p.p. f1. 30 .
THORN 8000/8500 IF/DECODER PANELS salvaged $£ 3.70$ p.p. $£ 1.80$.
THORN $8000 / 8500$ FRAME T.B. PANELS salvaged/spares $£ 2.88$ p.p. $£ 1.40$.
THORN 900 SERIES TOUCH TUNE REMOTE CONTROL UNIT PLUS ULTRASONIC TRANSMITTER HANDSET £19.32 p.p. £1.84. THORN 9000 IF/DECODER PANELS Salvaged $£ 5.75$ p.p. £1. 60 PHILIPS 210, $\mathbf{3 0 0}$ Series Frame T.B. Panels $£ 1.15$ p.p. 80 p
PHILIPS G8/G9 1F/DECODER Panels for small spares $£ 1.75$ p.p. $£ 1.40$ G8 IF PANELS for small spares $£ 1.15$ p.p. 95 p.
G8 Decoder panels salvaged $\$ 4.25$. Panels for spares $£ 2.00$ p.p. $£ 1.40$.
G9 Scan Panel. Basic PCB in fibreglass $£ 16.68$ p.p. $£ 1.80$.
VARICAP, U321, U322, ELC $1043 / 06$ ELC $1043 / 05$ 玉 7.82 p.p. 80 p; G.I. type (equiv. $1043 / 05$) $\$ 4.00$ p.p. 60p. MAKERS VARICAP CONTROLS Pye CT200 4PSN 88.60, A823 4PSN 5.50 , Decca 6PSN 86.70 p.p. 80 p. ITT CVC5 7 position $£ 7.82$ p.p. £1.00.
SPECIAL OFFER ELEVEN POSITION VARICAP CONTROL UNIT UHF/VHF £2.10 p.p. $£ 1.00$.
BUSH "Touch Tune" Varicap Control Z179, Z718 types $£ 4.40$ p.p. 95p. VARICAP UHF-VHF ELC 2000S 99.80 . BUSH TYPE $£ 7.82$ p.p. 85p. VARICAP VHF MULLARD ELC 1042 £ 7.95 p.p. 80p.
UHF/625 Tuners, many different types in stock. DECCA Bradford 5 position £2.88 p.p. f1. 80 etc.
LOPT TESTER Service Dept approved $£ 17.82$ p.p. £1.20.
LOPTS NEW \& GUAR. P/P Mono $\mathbf{£ 1} . \mathbf{3 5 p}$, Colour $£ 1.45 \mathrm{p}$, Bobbins 80 p .
BUSH 161 to 186 (twin panel) $\mathbf{£ 6 . 8 0}$ R.B.M. A823. $£ 5.60$
$\begin{array}{llll}\text { BUSH, MURPHY } 774 \text { series } \mathbf{8 9 . 8 0} & \text { R.B.M. Z179..................................... } \mathbf{£ 1 1 . 3 0}\end{array}$
FERG., HMV, MARCONI, ULTRA \quad R.B.M. T20. T22 Bobbin $\mathbf{E t}_{6.44}$
$950,1400,1500,1580,1590$. 1591 .. $£ 6.80$ DECCA Bradford (state Mod No). $£ 10.15$
THORN $1600,1615,1690,1691$ £ 10.50 DECCA 80. 100 $\mathbf{1 1 0 . 1 5}$
GEC 2000 to 2038 series $\mathbf{£ 7 , 8 0} \quad$ GEC 2040 ..70

TTT/KB VC 200,300
MURPHY 1910 , 2014 series $\quad \mathbf{8 8} \mathbf{8 0}$
PHILIPS 19TG 170 210 300 $\mathbf{5 8 . 8 6} 80$
PYE INVICTA EKCO, FERR
368. 169.569 .769 series
368. 169. 569 . 769 series....

DECCA 20/24. 1700, 2000. 2401.

GEC $2114 \mathrm{~J} / \mathrm{Junior}$ Fineline............	$\mathbf{3} .25$

PYE 40, 67 …... 2.00
KB VC ELEVEN (003)
KB VC1 ... $\mathbf{\Sigma 3} 25$
£3.25 THORN 9000 to 9600 $£ 10.15$
OTHERS AVAILABLE, PRICES ON REQUEST. ALSO F.OPTS.
TRIPLERS Full range available. Mono \& Colour.
Special Offer: Thorn 14005 stick EHT Tray $£ 1.72$ p.p. 65 p.
TRANSDUCTORS suitable for G8, A823, Bradford etc. £1.72 p.p. 60p.
6.3V CRT Boost Transformers $£ 5.80$, Auto Type $£ 3.20$, p.p. $£ 1.20$.

THORN 3000 Mains TX $£ 5.75$ p.p. $£ 2.00 .6 .3 \mathrm{~V}$ CRT Boost TX $£ 5.80$ p.p. $£ 1.40$.

CALLERS WELCOME AT SHOP PREMISES Telephone 01-794 8751/7346
THOUSANDS OF ADDITIONAL ITEMS. ENOUIRIES INVITED
LARGE SELECTION TESTED COLOUR PANELS POPULAR MODELS

MANOR SUPPLIES

172 WEST END LANE, LONDON, N.W.6.
NEAR: W. Hampstead Tubo Stn. (Jubilee) Buses 28, 159, C11 pass door W. Hampstead British Rail Stns. (Richmond, Broad St.) (St. Pancras, Bedford) W. Hampstead (Brit. Rail) access írom all over Greater London.

Mail Order: 64 GOLDERS MANOR DRIVE, LONDON N.W. 11.
ALL PRICES INCLUDE VAT AT 15%
CLOSED FOR HOLIDAYS JUNE. 6th to 18 th

B.K. ELECTRONICS

INCREASE YOUR PROFITS - IMPROVE YOUR SERVICE WTTH RELIABLE COST EFFECTIVE TEST EQUIPMENT

SAFGAN DT-520 DUAL TRACE SCOPE 20MHz-5" C.R.T.

SPECIFICATION

* CH1, CH2: $5 \mathrm{mV} / \mathrm{div}-20 \mathrm{~V} / \mathrm{div}$
* Time Base: $1 \mathrm{sec} /$ div- $100 \mathrm{~ns} / \mathrm{div}$
* Trigger: Level control, \pm slop selection
* Auto, normal, TV Triggering
* Z-Modulation
- CAL output iV 1 KHz
* Sweep output
* Graticule blue ruled $10 \times 8 \mathrm{~cm}(5)$ C.R.T.) Very sharp trace
- Size: $\mathrm{H} 235 \mathrm{~mm}, W_{177 m m}$ D360mm
* Weight: 6.5 Kgs .

Price: $£ 210.00+£ 31.50$ V.A.T
Optional Probes as Thandar below
BRITISH - NEW MODEL - 12 MONTH GUARANTEE

LEADER LCT-910A

C.R.T. TESTER-REJUVENATOR

Our top selling instrument is designed to readily test the various characteris-
tics and rejuvenation of both colour and B/W C.R.T's.
Tests for shorts and leakage between electrodes.

* Tests cathode emission characteris
tics.
* Separately checks condition of guns
- Removal of shorts and leakage be
tween electrodes.
- Checks heater warm-up characteris-
tics.
Rejuvenation of low emission cathodes with automatic timing.
* Super rejuvenation with manual con
tro.
- Complete with tube base adaptors.

Size: H 230 mm W 330 mm D 120 mm

THE VERY LATEST SC110A LOW POWER, FULLY PORTABLE OSCILLOSCOPE.
The new Thandar SC110A represents a break-through in oscilloscope development. The SC110A is ONLY TWO INCHES thick and weighs under two pounds, yet retains the standard features and controls of a bench oscilloscope.

FITS IN A BRIEFCASE

One of the most useful and versatile instruments available. Full Sized Performance
10 MHz bandwidth. * 10 mV per division sensitivity

* Full trigger facilities are provided including TV frame, or TV fittering

Runs on 4 to iOV DC via disposable batteries, re-chargeable cells, or $A C$ adaptor

- Size $255 \mathrm{~mm} \times 148 \mathrm{~mm} \times 50 \mathrm{~mm}$.

Scope $£ 149.00+£ 22.35$ V.A.T

AC Adaptor $£ 6.95+£ 1.04$ V.A. T
Overseas purchasers please state voltage.

ALSO AVAILABLE
Analogue Multimeter Digital Multimeters Oscilloscopes Signal Generators Digital Frequency Meters Pattem Generators CRT Taster/Rejuvenator Digital Capacitance Meter Digital Capacitanc LARGE S.A.E FOR COMPLETE LIST

> U.K. Post Paid. Export orders welcome, please deduct V.A.T. and include an additional $£ 5.00$ for Overseas carriage. Mail Order only. Callers by appointment. Barclaycard/Access orders welcome, or Cheque, Bank Draft etc, with mrder olease. Large S. A. E. for technical leaflets of complete range.

Delivery nomally within 7 days.
B. K. ELECTRONICS, Dept. ' T ',

Unit 5, Comet Way,
Southend-on-Sea, Essex, SS2 6TR
Tel: (0702) 527572.

Technical Training in Television, Radio and Electronics

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the field of electronics-now it can be your turn. Whether you are a newcomer to the field or already working in the industry, ICS can provide you with the specialised training so essential to success

Personal Tuition and Guaranteed Success

The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed

CITY AND GUILDS CERTIFICATES

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Basic Electronic Engineering (C\&G/ICS)
Radio Amateurs
CERTIFICATE COURSES
TV \& Audio Servicing
TV, Radio and Audio Engineering
Radio \& Amplifier Construction
Electronic Engineering*
Computer Electronics*
Industrial Electronics*
Radio Frequency Electronics*
Electrical Engineering*
Electrical Contracting \& Installation

- Qualify for IET Associate Membership

Approved by CACC
aiv National Educaton
POST OR PHONE TODAY FOR FREE BOOKLET

P. V. TUBES Just phone your order
 do the rest.

and PROJECTION SYSTEMS

ALL HITACHI CRTs

including the 560DZB22 and 510VLB22 series

Express T.V. Supplies 33 Fortescue Lane,

Rugeley, Staffs.
Tel: (08894) 77600

George Lawson Electronics
108 Scotland Rd.,
Carlisle, Cumbria,
Tel: (0228) 20358/39693

All In-Line CRTs whatever make. All monitor CRTs.
All gaming machine CRTs.
SONY, HITACHI,
DZB/VLB glass bought.
ONE YEAR GUARANTEE WITH A FOUR YEARANTEE REBANDED FOR MAXIMUM SAFETY SPECIALIST CRTS REBULT AT OUR
SCOTTISH FACTORY

Available NOW!

only from sole distributors

THE

TTV TUBE SHOP

LONDON \& HOME COUNTIES OTV House, 144 Lea Bridge Rd. London E5 9RB. Tel: 01-985 6111

Information on allother CRTs available on request

1000's OF COMPLETE

 TV'S TUBES \& PANELS ALWAYS IN STOCKGive us the opportunity to quote for all your requirements. Mixed loads delivered to your door directly from source - at unbeatable prices plus special discounts for bulk purchases.

JUST ARRIVED!
Fresh stocks from our suppliers.

Mon-Fri $\quad 9-6 \mathrm{pm}$ Mon-Fri $10-5 \mathrm{pm}$ Saturday $9-3 \mathrm{pm}$

Wamers Mill, South St. Braintree, Essex. Tel; (0376) 43685 10 Shacklewell Rd. London N16. Telephone; 01-249 9265

Swich to the biggest wholesaler of quality late model used TV's

- Thousands of Quality Sets always in stock
- Colour/Mono/VCR's and Audios available
- Murphy/Pye/Philips/Sony/National Panasonic and other big names
- We are big - we buy in bulk - we offer you the keenest prices
- Cash and Carry or we will deliver
- New and used stands always in stock

JUST OUT!

OUR GREAT NEW CATALOGUE

Presented with a Frofessional Approach and Appeal to ALL who require Quality Electronic Components, Semiconductors and other Accessories ALL at realistic prices.
There are no wasted pages of useless information so often included in Catalogues published nowadays. Just solid facts i.e. price, description and individual features of what we have available. But remember, BI-PAK's policy has always been to sell quality components at competitive prices and THAT WE STILL DO.

We hold vast Stocks "in stock" for fast immediate delivery, all items in our Catalogue are available ex stock.
The Catalogue is designed for use with our 24 hours "ansaphone" service and the Visa/ Access credit cards, which we accept over the telephone

To receive your NEW 1983 BI-PAK Catalogue, send 75p PLUS 25p p\&p to:

EDITOR

John A. Reddihough

ASSISTANT EDITOR

Luke Theodossiou
ART EDITOR
Roy Palmer

ADVERTISEMENT MANAGER

Roy Smith
01-2616671

CLASSIFIED ADVERTISEMENTS

Barbara Blake
01-261 5897

FRONT COVER

Our thanks to Thorn EMI Ferguson who lent us the TX90 chassis and set featured in our cover and inside photographs.

PCB SERVICE

The Readers' PCB Service continues in operation. Send orders to Readers' PCB Services Ltd. (TV), Fleet House, Welbeck St., Whitwell, Worksop, Notts. The latest boards to become available are as follows: In-circuit Transistor Tester (see page 410, June 1983) f1. Frequency Counter-Timer main board $£ 15$, others $£ 1$ each. Prices include VAT, postage and packing. Send remittance with orders. For further details see page 211, February 1983.

TELEOR5NOM

The Real Lessons

The success of Japanese industry, in particular its achievements with consumer electronics products, make the methods and techniques used by the Japanese a subject of great interest. Just what makes them tick - those firms that seem to progress inexorably, and the Japanese people? Many suggestions are made, but very often one begins to have doubts when considering them more carefully.

It's said for example that there are no social barriers in Japan (I quote from an official Japanese source), managers and workers mixing freely and using the same canteen. Great emphasis is placed by Japanese management on the workshop as the hub of the tirm, the place where wealth is created and the tuture of the firm is assured or not as the case may be

This social barrier business calls for some interpretation however. The Japanese are by tradition both race and class conscious, perhaps more so than we are. Remember that Japan was a closed society for many centuries - until 1868. Japanese families go to great lengths to check whether possible in-laws are perhaps say Korean, or maybe part Korean. That doesn't do at all. There is also race consciousness within Japan. The Ainus of the northern island are considered to be a people apart. As for class consciousness, the Japanese know their exact position in the social structure - you simply wouldn't go to work in a car that was even in some superficial way possibly slightly superior to that of your boss. Perhaps the fact that the Japarese readily accept this state of affairs explains why social stresses don't seem to be a problem. There is also however the fact that social mobility is much greater than in many other class structured societies (also the pressure to achieve success). Possibly the very fact that the Japanese worker knows and accepts his current position is part of the success of the communal workplace and canteen. There is also undoubted mutual respect built into the system - provided you play your part, which of course you always do.
Another aspect of this business of the bosses mixing freely with the workforce is the emphasis placed by both on belonging to the firm, which is regarded as an extended family. But even here there's a class system of sorts at work. Those firms we hear so much about are the elite, who can pick and choose. It's an honour therefore to be taken on, and there's extraordinarily little changing from one firm to another - the exact opposite of silicon valley, where a sort of job musical chairs sometimes seems to be in operation. But beneath the well known names there's another layer, the smaller subcontractors who do the labour intensive bits. They can't guarantee jobs for life, neither can they provide the wages and conditions the major concerns can. Life for those at this level is less rosy. At a lower, underlying level there are the firms and organisations that provide basic services rather than branded goods. Life is tough here: the Japanese railways for example are as starved of capital as good old British Rail, and make much larger losses.

In some ways Japanese society is more akin to the Victorian ideals we've been exhorted to study of late. Paternalistic, with success breeding success, and a lot going on that's not exactly in the public eye.

All this leads one to suspect that emulating Japanese success is not going to be a simple matter. We obviously can't become Japanese any more than we can jump out of our skins. We can of course try to appreciave that wealth is created by successful manufacturing activities (amongst other things), to which all sides contribute. What else?
Frankly, the best UK firms appear to be as well run as their Japanese counterparts. Where appropriate investment is made and good labour relations exist, there is little to choose between them. After all, just as TV sets tend to look much the same nowadays whether they're made in Japan, Europe, S.E. Asia or the USA, so do many of the plants in which they are made. Much the same equipment is used, though sadly it comes from Japan or the USA rather than the UK. The fact that the best plants tend to be much of a muchness probably accounts for the fact that the Japanese can produce TVs in S. Wales or Scotland as effectively as in Japan. Maybe the managing director does use the canteen, but this seems unlikely to make much of a difference.

Is there no moral to be found in the Japanese success story then? It occurs to this observer that there are at least two points wor:h making. First an acknowledgement of the value of manufacturing activity and engineering generally. This never seems to have been quite accepted in the UK, where the captains of industry are apt to make out that they're really gentlemen farmers! We could do with a dose of industrial morale building (some profits would also help), though the politicians of all parties seem quite inept at this. It's strange how producing a specialist sparts car or motorcycle at a rate of two a week in a country estate outhouse tends to be more highly regarded than mass producing goods that offer good value for money.

Time and again one finds the captains of Japanese industry emphasizing the prime importance of the end product. We'll only get this right when we learn the second lesson Japan can offer - investment in appropriate education. The Japanese produce large numbers of well qualified engineers whose training is orientated to the needs of industry (tut, tut!). In addition you find engineers at the head of major Japanese firms, which must be part of their success in making the right investment decisions that lead to the production of the right goods at the right time. The example is there for us to see, and there can be no excuse for ignoring it.

Teletopics

VIDEO DISC SYSTEMS

Quite a lot to report on the subject this month. First, the RCA CED/Selectavision system is due to be launched in the UK this autumn. The move is to be spearheaded by Hitachi, who at present are the sole manufacturers of CED disc players. The discs themselves are produced by RCA in the US. Players are also expected to be marketed by GEC-McMichael and ITT, both RCA licensees, though ITT have expressed reservations unless an adequate range of discs, say 200 titles, is available. The problem here is that all discs are at present NTSC encoded and will have to be remastered for $625-l i n e ~ P A L$. The CED system was launched in the USA in 1981 and last year some 130,000 players were sold. Sales of discs were relatively more successful at 30 per player.

CED players are expected to retail in the UK at about $£ 230-£ 250$. This would be for a basic machine with wired remote control. Infra-red remote control might add something like $£ 35$ to the price. Provisionally suggested disc prices are $£ 13$ for a one-hour disc and $£ 22$ for a two-hour version. Technical details of the CED system have appeared in previous issues - CED stands for capacitance electronic disc, i.e. the signal is encoded in the disc in the form of capacitance variations, with the pickup linked to a resonant circuit.

Substantial reductions in the prices of Philips LaserVision disc players have meanwhile been announced, the aim being to take advantage of the rise in VCR prices recently as a result of the EEC-Japanese agreement on quotas. The basic VLP600 player now has a suggested price of $£ 299$ with the remote control VLP700 carrying a price tag of $£ 349$. The LaserVision disc catalogue is being expanded with the addition of a further 100 titles, and extensive promotion and advertising are planned. A more versatile player, the VLP830, is to be launched in the autumn at about $£ 575$. This machine will provide interactive features, i.e. preprogrammed stills and moving sequences from various sections of the disc, and pause operation with the long-playing (two hour) CLV discs. It will also incorporate the CX noise reduction system originally introduced on the Pioneer version of the player. A further player, Model VLP835, is to be introduced for commercial and educational use.

The JVC VHD disc system was launched in Japan last April. The latest VHD player comes from Mitsubishi - the VDP200 at 148,000 yen (approximately $£ 400$). The machine offers random access to any part of the programme on a disc plus a full range of reproduction modes including slow motion, picture search, reverse, still pictures, frame-by-frame advance and repeat. There's also Dolby noise reduction, full function infra-red remote control, and a microphone input to enable external sound to be mixed.
Matsushita's development of a record/playback optical disc has been mentioned in this column before. The system is now being introduced for computer use, offering a far higher storage density than conventional computer discs. Recordings are erasable - discs can be erased and re-recorded up to a million times, an 8 mW laser being used for record/playback and a 10 mW laser for erasure. During recording, the structure of the disc's recording layer is altered between crystalline and non-crystalline
states to vary the reflectivity, the process being reversible. Matsushita suggest that it will take five to eight years to develop the system as a consumer product.

VCR LATEST

The start of VCR production at Sanyo's Lowestoft plant has been brought forward by two months to August. Equipment for the assembly of the first machine, the midrange Betamax Model VTC5150, is at present being set up. Production during the remaining half of Sanyo's current financial year is expected to reach 60,000 , rising to an annual figure of 200,000 by 1985 . TV receiver production at the plant is now running at 96,000 sets a year. The start of production at Hitachi's Landsberg, Bavaria VCR plant is scheduled for this September. Plans are to start production at the rate of 180,000 machines a year with the prospect of doubling output. Meanwhile increasing criticism of the EEC-Japanese quota agreement is being made because of the inclusion of kits. This is at present hampering plans for increased assembly of VHS and Betamax machines in Europe. J2T are pressing for the removal of kit quotas next year, when the European content of their machines is expected to reach 35 per cent. J2T's production this year should be around $400,000 \mathrm{VCRs}$, and the group hopes to increase this to 700,000 in 1984 .

In an analysis of the total number of VCRs in use world-wide, the May issue of Screen Digest estimates that 4.4 million machines are now in use in the UK, a penetration of 22.2 per cent of households with a TV receiver. This compares with 22.8 per cent in Japan, 15.6 per cent in W. Germany, 8.1 per cent in the USA and 5.6 per cent in France. Screen Digest's estimate of the total number of VCRs in use world-wide is thirty million.

Any suggestion of reservations about the V2000 system's future has been discounted by the introduction of new models by Philips and Grundig. Philips' "next generation" V2000 VCRs, which will be available this August, are Models VR2334 and VR2340. The former has mono sound and is designed to sell at around $£ 540$, the latter being a stereo sound version. The new machines have been substantially reduced in size and represent a complete redesign both mechanically and electrically. The cassette housing is electronically controlled and extra microcomputer i.c.s have been introduced in the control system. Grundig's Video 2×4, which supersedes the 2×4 Super, is also a more compact redesign. More versatile, easier to use timer arrangements are incorporated in all these machines.

Another system that's sprung back to life is Funai's CVC portable system. Grundig are marketing it as Model VP100, which at around $£ 300$ makes it extremely competitive - cheaper than VHS-C machines, though the cassettes cannot be used with standard VCRs. Visual MarCam Systems Ltd. are the UK distributors of the "Microvideo Showcase", the Funai/Technicolour version. CVC cassettes are now available with $30,45,60$ and 120 minute playing times.

An important development of the VHS system has been announced by Matsushita, "stereo high-definition sound". This employs a principle used in a few non-PAL Betamax machines - recording the sound along with the helical video tracks. For this purpose two extra audio heads are mounted in the video head drum. The effect is to increase the relative tape running speed for the audio signal to the same speed as for the video signal, making high-density audio recording possible with sound quality equal to that of state-of-the-art audio equipment. A model using this
technique will be launched in the UK towards the end of the year, in the Panasonic range. An NTSC version of the machine is already on sale in Japan, at the equivalent of around $£ 800$.

The latest addition to the Mitsubishi range is the HS304, a compact, easy-to-use front loader designed to sell at around $£ 499$. Mitsubishi comment that they hope to start production "soon" at their Haddington plant in Scotland.

A new VHS cassette has been designed by Eko in Ireland. Production is expected to start at the rate of 3-4 million cassettes a year. Amongst the advantages claimed are a new, overhead tape braking system and anti-pirating features.

TX 10 CHANGES

In the latest version of the Thorn TX10 chassis the metalwork around the panels has been replaced by a plastic frame with moulded cableform retainers. In addition to offering better value, the plastic frame helps to reduce radiation from within the set. At the same time the main panel layout has been redesigned and two new i.c.s have been introduced in the sync/line oscillator and field timebase sections.

MINI TVS

The Sony Watchman Model FD210, a hand-held TV set measuring $8 \times 3 \frac{1}{2} \times 1 \frac{1}{2} \mathrm{in}$. and weighing $1 \frac{\mathrm{lb}}{} \mathrm{lb}$, has now gone on sale in the UK, with a suggested price of around $£ 250$. The heart of the set is a flat tube (the gun is mounted at the side of instead of behind the screen) giving a 2 in . picture.
Sony have thus entered the market ahead of the Sinclair flat-screen mini TV set, whose production has been delayed by some six weeks by a dispute at the Timex Milton plant in Dundee (the dispute was over the production of watches and had nothing to do with TV). Sinclair's set is designed to sell at around $£ 60$ and is appreciably smaller in size. Sinclair claim to use more advanced tube technology, giving longer battery life. There are similarities between the tubes, for example the phosphor screen is at the rear of the tube which is viewed via a transparent biasing electrode at the front. The main difference appears to lie in the deflection arrangements used.

SAMSUNG IN UK

Samsung colour sets are to be marketed in the UK by Heron Electronics. The initial models will have 14 and 20 in . tubes and are being produced at Samsung's Portuguese plant.

INTERNATIONAL INDUSTRIAL NEWS

Zanussi and Philips have signed a letter of intent relating to co-operation in the design and production of TV and video equipment. It's understood that talks between the two companies were initiated at the request of the Italian government, and that talks have also been held with the French concern Thomson-Brandt. Though the agreement between Philips and Zanussi is at this stage tentative, working groups are to be set up within the companies to discuss the possibilities of collaboration.

COMPACT, the Committee to Preserve American Colour Television, which has both company and union members, has filed a suit with the US Commerce Department claiming that S . Korea and Taiwan are dumping colour receivers on the US market. S. Korean manufactur-
ers are alleged to be selling CTVs in the USA at a discount of 46 per cent on the price of the same sets sold in S. Korea, while the discount with Taiwanese sets is said to be as high as 60 per cent.

Grundig have decided to close down their TV receiver plant in Taiwan. The plant was originally set up in 1977 and makes tuners and clock radios in addition to both monochrome and calour TV sets. Though production costs are low, the plant has made losses in the last two years and Grundig consider that best results can be achieved by concentrating production at the main plants in Austria and W. Germany.

MITSUBISHI'S NEW COLOUR TUBE

Mitsubishi have developed a new 21 in. shadowmask colour tube with a squarer, flatter faceplate. The former feature reduces loss of corner information whilst the latter reduces reflections. Improved magnetic and thermal characteristics have made it possible to obtain the increased display area whilst a gun with a multi-stage focus assembly gives improved resolution.

CCTV QUALIFICATION

Until recently there's been no formal national qualification in closed-circuit television. The Educational Television Unit of the West Bromwich College of Commerce and Technology has, in conjunction with the City and Guilds of London Institute, devised a course leading to the award of a $C \& G$ certificate entitled "The Special Certificate in Closed Circuit Television" C \& G 278. The course starts in September 1983 as a two-year part-time provision for those who already have C \& G 222, 224, 272 or sufficient electronics background. Details from the West Bromwich College of Commerce and Technology, Woden Road South, Wednesbury, Sandwell, W. Midlands WS10 0PE.

A51-570X REPLACEMENT

A cautionary tale in the latest issue of Ferguson Feedback draws attention to the fact that there are several versions of the Mullard A51-570X tube. The differences relate to the deflection yoke, which is bonded to the tube. Unless the correct type is obtained for a particular TV set, problems such as reduced width and excessive height can arise.

TELETEXT SET WITH BUILT-IN PRINTER

Due for release late this summer is the Philips Model 3890 , a top-of-the-range 26 in . set with teletext and a builtin printer. A $4 \times 3 \mathrm{n}$. paper copy of any teletext page takes less than thirty seconds to print. The printer uses thermo-sensitive paper to eliminate the need for chemicals, and each set comes with three rolls of paper - enough for 175 teletext pages. The printer is also useful for copying telesoftware transmissions for home computer use.

WAR ON PIRATES

The Copyright Amendment Act, which increases the penalties for video puracy very considerably, received the Royal Assent on May 13th. The new Act divides offences into two categories which can be summarised as follows: (1) Trading in pirate cassettes. Those who rent or sell pirate cassettes face a maximum fine of $£ 1,000$ per offence, and a further fine and up to two months' imprisonment for subsequent offences. (2) Making pirate
cassettes. This more serious offence is now triable before a Crown Court and carries an unlimited fine and up to two years' imprisonment per offence. It applies to the making of pirate cassettes for commercial gain. The previous penalty for both offences was a maximum fine of $£ 50$. The new Act takes effect from July 1st.

In addition to the increased penalties, the Act gives the police powers to search and seize.
Two men who admitted being involved in an organisation that mass produced and sold pirated and counterfeit tapes were recently ordered by the High Court to pay more than $£ 4$ million in damages. The court action was taken under previous legislation by seeking an injunction.

DBS

The IBA has informed the Home Office that whilst awaiting the legislative changes required it has earmarked funds for a satellite launch slot to be made available at the earliest possible opportunity for ITV use. The IBA feels that it should be made responsible for two of the five satellite TV channels allocated to the UK (the BBC has been given responsibility for providing services on the first two channels).

In the USA, the FCC has given approval to Satellite Television Corporation to start work on a DBS service in the $12-14 \mathrm{GHz}$ band. STC are expected to launch a satellite to serve the eastern time zone in 1986. Eight other companies have received preliminary FCC approval for DBS services. Channel allocations and satellite positions for the band are at present being discussed by the western hemisphere Regional Administrative Radio Conference.

RTE in Ireland have expressed the intention of running a satellite TV operation. The Irish Ministry of Posts and

Telegraphs is at present considering the situation. The five channels allocated to Ireland interleave with those allocated to the UK, and the polarisation and satellite positions are the same. It seems that Ireland could have services, which would of course overlap with the UK, in operation by 1987-8. Similar overlapping with satellite positions and interleaved channels applies to France and Luxembourg. The two governments have held talks on possible joint operations.
Wolsey Electronics have introduced a range of DBS dishes in sizes $0.7,0.9$ and 1.5 m , with Cassegrain feed. An advantage of this type of feed is that the downconverter can be easily mounted and can be replaced without disturbing the aerial's alignment. Wolsey's downconverter uses four gallium arsenide f.e.t.s, two in the lownoise preamplifier and the other two as mixer and local oscillator, followed by a two-stage i.f. amplifier using bipolar transistors. A.C. power is fed to the converter via the coaxial cable. The converter has an overall gain of 35 dB .

IPRE

The Incorporated Practitioners in Radio and Electronics (IPRE), which was founded in 1935 and came to a temporary end in 1982, has been officially relaunched as a division of the Society of Electronic and Radio Technicians. It will provide a complete range of professional services to staff holding non-ERB qualifications - entry is based on City and Guilds 224 or the previous 222 course, though similar qualifications may be accepted later. IPRE members will receive SERT's monthly journal Electronic Engineering and the fortnightly newspaper Electronics Engineer. Further details can be obtained from SERT at 57-61 Newington Causeway, London SE1 6BL.

SERVICE BRIEFS: ITT

The latest issue of ITT's bulletin "Service Information" contains the following advice on particular problems with various ITT chassis.
CVC30 series chassis: In the event of tripping at switch on, check that the voltage across the mains bridge rectifier's reservoir capacitor C35 is 320 V . If low, suspect C35 or the bridge rectifier diodes D11-14.
CVC40 chassis: In the event of low output from the switch-mode power supply at switch on, progressively increasing to the correct 127 V , suspect the chopper output smoothing capacitor C11 $(22 \mu \mathrm{~F})$.

In the event of failure of the chopper transistor T807 (TE1233), check R833 which provides base bias for the driver transistor T806. The value should be $1.5 \mathrm{M} \Omega, 5 \%$. The recommendation is to change this resistor whenever a set is serviced.

Intermittent failure of the 1.6 A (delay) mains fuse F1001 is often due to the $5 \cdot 1 \Omega$ surge limiter resistor R1, which should be replaced even if it appears to be satisfactory.

If the set trips with the scan coils plug disconnected to isolate the line output stage and a 150 W lamp connected as a dummy load, check the value of R809 ($220 \mathrm{k} \Omega, 5 \%$) in the trip circuit (on module CMP40). If this item is o.k., suspect the two 1 N4148 diodes D8 and D10 associated with the chopper driver transformer.
ITT $80-110^{\circ}$ chassis: In the event of varying width and height after about a quarter of an hour, suspect R631
($82 \mathrm{k} \Omega$) - check by substitution. This resistor is in the potential divider chain that provides the sample h.t. feedback to the chopper control circuit.
CVC801 chassis: Low h.t. (110V rail) can occur due to zener diode D732 (type ZPD20) being defective - it stabilizes the 20 V supply used in the chopper control circuit. In later production two zener diodes (D732/3) are connected in parallel - in this case replace both.

No h.t. (switch-mode power supply shut down) is sometimes caused by a fault in the horizontal shift transformer L506.

In the event of weak sound, replace the $100 \mu \mathrm{~F}$ electrolytics C228 and C232 associated with the audio i.c. in the CMR800 r.f./i.f. module.
CVC802/1 chassis: This version of the CVC801 chassis features frequency-synthesis tuning (CMR803 r.f./i.f. module). Hunting and a noisy picture may be due to failure of the prescaler i.c. This is IC51, type U465B. The improved type U865B, fitted in current production, can be used as a replacement provided pin 7 is isolated either by cutting the copper on the panel as near as possible to the device, removing the copper pad, or alternatively cutting off the i.c. pin (take care to avoid damaging the i.c.).

CVC1200 series chassis: Modifications have been made to the base circuit of T703 in the start-up circuit. These should be carried out in the event of failure of the BU508A chopper transistor T713. Details will be given in an article on this power supply to appear in a forthcoming issue.

POST A PART ELECTRONICS

 236 FURTHERWICK ROAD, CANVEY ISLAND, ESSEX Telephone 0268690868 Telex 99305 ROSSER G.
TRADE COUNTER NOW OPEN

ORDERS DESPATCHED SAME DAY
ADD 60p P\&P, THEN 15\% VAT.
ADD POSTAGE FOR OVERSEAS ORDERS
ORDERS WITH AEROSOLS, PLEASE ADD 25p PER CAN

TOP TWENTY T.V. SPARES STOCK NO.
001 Philips G8 Loptx (Genuine Philips)
002 Decca 30 series Loptx (Genuine Decca)
003 Decca 100 series Loptx (Genuine Decca)
004 ITT CVC 25/30/32 Loptx (Genuine ITT)
371 Pye 713/731 Vision Gain Module
(replaces expensive 212-27327)
$27010 \times$ BU208A
050 ITT CVC 5/9 EHT Tray
051 Decca 1730/1830 Doubler 053 GEC 2040 Hybrid EHT Tray 054 Thorn 1500 (5 Stick) EHT Tray 055 Thorn 8000 Doubler 056 Thorn 1400 EHT Tray 057 Philips G9 EHT Tray 058 ITT Univarsal EHT Tray 011 Thorn 1690/91 Loptx 012 Thorn 1615 Loptx 085470 MFD 250V Philips G11
$33550 \times$ BY127 Diodes
$27010 \times$ BU326
$28025 \times 2 N 3055$

All components are A1 quality from prime manufacturers, and are dispatched by post same day as order received together with any refund due. All goods should be delivered within 4 working days.
Please add 15\% VAT and 90p P \& P

LIME OUTPUT TX 001 Philips $68 \quad 7.50$ 008 Decca 30 Series 7.00 003 Dacca 100 Series 6.50 004 ITT CVC 25/30/32 7.00					
	0068 Pye CT200 5 Lead 4.50				
	067 Korting Hyorid				
	068 Grundig $3010 / 5$	V.C.R. ${ }^{\text {den }}$			
	Capactors	123 Way R.R.I. AE23 Atc. 7.95			
${ }_{0}^{006}$ RIII T20 11.62					
007 RRI					
008 RR					
${ }_{26^{\prime \prime}}^{009}$ RRI $2718{ }^{\text {20/20) }}$		tegrated circuits			
${ }_{0} 010$ RRI A 774 Mono 10.98	$0033175+100+100$ Thorn				
hom		$1415 \times$ TBAIIAAS ${ }^{1.80}$			
012 Thom 1615		$1415 \times$ TBAIZAS			
013 IT CVC		$1435 \times$ T8A5400 4.000			
nir					
R1	$086400+400$ Decca 302.50 $087 \quad 200+200+75+25$	$1445 \times$ TBA5 5			
		$1465 \times$ TBAABASS			
017 Prilips E2 Chass. 5.00	0889000 $\mathbf{4 0 0}^{201400 \mathrm{~V}} \begin{gathered}\text { Thorn } \\ 1.50\end{gathered}$				
018 Thorn 9000 80028.50		$5 \times$ TBAS			
020 Podi		$1505 \times$ TBA5300			
	Elact \times O 0.50	$1515 \times$ TBA950			
	Poly $\times 4.04 \mathrm{MF} / 100 \mathrm{O}$	$1555 \times \mathrm{MCI}$			
022 Thorn 850011.0		160 TDA			
	$0945 \times 4.7 \mathrm{MF} / 100 \mathrm{~V} \mathrm{C} 514$ 1.25 13500 $0955 \times 0047 / 1500 \mathrm{RRI}$ AR 183				
		162 TDA1006A			
		164 TDA1035			
		165 TPA1044166 TDA1190			
		167 TPA1412			
		$3 \text { TOARODOO }$			
Stick) 3.00	USH BUTTON UNIT	178 TDA2523			
055 Thorn 8000	110 Pyg 7134 Way 7.87	179 toaz332			
55					
057 Phil					
$0581{ }^{1+}$ Universal 5.00		183 TDA2571			
5		184 TDA23			
1.00	(Sloping) 114 Thorn 90006 Wey 2.50 12.98				
$0803 \times$ TV45 7718	115 Thorn 16154 Wers 5.75116 Decca 6 Way 5.95	190 DAaz60			
1.00		191 TDA2311			
	116 Decca 6 Wey 5.95 117 Decca 4 Wey 6.50 118 GEC 21106 Way 7.95				
062 TVK52 Continental2.50		210 ETR 86016			
063 RRI $2179 \quad 3.00$	118 GEC 21106 Way 1.95	211 ETTB016212 日T 6018			
	119 GEC 2136/T Tapered (6 Wayl				

QUICK SAVE T.V. SPARES

MUXTON HOUSE, MUXTON, TELFORD, SALOP.
REG. OFFICE ONLY. CALLERS STRICTLY BY APPOINTMENT. UK ONLY. PLEASE QUOTE STOCK NO.

N. J. ELECTRONICS UNITS 82/83/84 STORFORTH LANE TDG. EST. HASLAND CHESTERFIELD, DERBYSHIRE S4I OSN. TEL CHESTERFIELD 209079				
PUSH BUTTON DECCA 306 button GEC 2110 GEC 21127 button GEC 2136/2137 ITT CVC 5 ITT CVC 8 G8 SQUARE (early) G8 SLOPING (later) PYE 7134 button PYE CHELSEA RRI 8234 button RRI 8236 button RRI Z718 6 button TELPRO 4 button	ITS	EHT TRAVS		
	£7.96			
	E9.00 $\mathbf{f 1 3} 10$	DECCA 100	E6.00	
	£13.10	SEIMENS UNIVERSAL	£6.30	
	¢8.35	GEC 20AX	£6.70	
	£10.50	GRUNDIG 5011	£6.10	
	£14.00	KORTING	£7.22	
	£12.50	PHILIPS KT3	£6.00	
	£13.55		£6.50	
	£9.15	PHILIPS 550	£6.50	
	£12.98		$\begin{aligned} & £ 6.00 \\ & £ 7.00 \end{aligned}$	
	£8.74	$\begin{aligned} & \text { ITT CVC5 } \\ & \text { CVC4T } \end{aligned}$		
	£9.45			
	$\begin{aligned} & £ 9.90 \\ & £ 8.75 \end{aligned}$			
		ICs		
LOTXs		TDA2522	£2.30	
		TDA2523	£2.40	
THORN 1590/91	£9.70	TDA2540	£2.00	
THORN 1615	f9.20	TDA2571	£2.20	
THORN 1690/91	f8.45	TDA2581	£1.70	
RRI T20/22	£11.95	TDA2600	£4.25	
RRI 774	£11.50	TDA2611	£1.75	
PHILIPS G8	£8.50	TDA2680	f1.85	
PHILIPS G9	f9.00	TDA2690	£1.80	
PHILIPS 210	£9.50	TDA2593	£2.75	
PHILIPS G11	£12.75	TDA1170	£1.80	
PHILIPS K30	£14.00	TDA1190	£2.00	
ITT CVC30/32	E8.50	MC11358P	£1.40	
ITT CVC45	¢8.50	MC1327 TBA920	£1.50	
			£1.90	

ADD 65 PENCE POSTAGE + 15\% VAT TO ALL ORDERS.
(See CONTRAST U.K. advertisement in this copy, all your component, panel and TV needs under one roof).

Please allow approx. 7 days for delivery.

COLOUR TV SETS

Philips G8, Pye 222, Decca 30 series, ITT, Pye Chelsea, Thorn 3500/8000, GEC, many others including JAP.

Working hybrids from $£ 15$.
Working solid state from $£ 25$.
Non-working sets, working panels and tubes available.
Quantity Discounts
Delivery by arrangement.
SOUTHBRIDGE TV CENTRE
120, Selhurst Rd., London, S.E. 25.
Tel: 01-771 3535.

A.B.C. ELECTRONICS
Rear of 20, HANKINSON ROAD, WINTON, BOURNEMOUTH. TEL: 519542
TRADE TV's BEST PRICES
Colour From $£ \mathbf{1 2 . 0 0}+$ VAT B\&W From £2.00 + VAT dISCOUNT ON QUANTITIES
ALL MAKES - ALL SIZES - ALL COMPLETE CALL IN OR RING FOR COMPETITIVE QUOTE FULLY REFURBISHED SETS AVAILABLE + DELIVERY SERVICE

Letters

THORN 9000 CHASSIS

Having serviced sets fitted with the Thorn 9000 chassis for several years, I found your article on it in the May issue full of interest. I'd like to make the following additional points.
(1) As you say, the mains filter capacitor can go shortcircuit. You didn't however mention the fact that it can often burn quite intensely - in one particular set I dealt with it seriously burnt the wiring loom, which had not been dressed back properly. In later versions of the chassis the filtering arrangements were altered.
(2) Diode W702 (in series with the Syclops transistor) can go short-circuit as well as open-circuit. When it goes short-circuit R7 (390Ω) on the tuner board usually burns up quite fiercely. This can cause confusion if you're not familiar with the chassis.
(3) As these sets get older I find more and more often that there's little or no first anode supply adjustment available from R721. This can usually be cured by replacing $\mathrm{R} 722(2 \cdot 2 \mathrm{M} \Omega)$ which is in series with R 721 on the earthy side.
M. L. Pattenden,

Headley Down, Nr. Bordon, Hants.

RANK Z718 LOPT

We would like to draw attention to a problem associated with line output transformer harmonic tuning in the Rank Z718 chassis. Looking back through the articles you've published on this chassis, it appears that the side effects of fifth harmonic mistuning have never been touched upon.

On taking over the Rank transformer operation in Dublin some months ago, we carried out an investigation into the high failure rate of these units. This revealed that the vast majority failed as a direct result of 5L3 being mistuned. Judging by the core position on previously returned units, it appears that service engineers had been tuning the coil to eliminate striations on the raster. This simple method is convenient but extremely subjective and should never be relied upon for accurate tuning of this transformer.

To overcome the problem, we now pretune these units on test. We can supply an information sheet entitled "Reliability and Harmonic Tuning" on receipt of a stamped, addressed envelope.
E. F. Phelan, Technical Manager, Woodsdale Components, 34 Field End Road, Eastcote, Pinner, Middx. HA5 2QT.

ION TRAPS

We recently had in for repair a small monochrome portable of the type that's very familiar these days - it had the almost obligatory shiny white case, and worked quite well after the repair had been carried out (a faulty voltage regulator).
The c.r.t. had a white label, with the familiar red lettering. In place of the usual name Toshiba however it had the name Samsung, made in Korea. The c.r.t. type number was not unusual, though the ten-digit serial number looked somewhat out of place on such a small
tube. Also present in red lettering were the usual warnings about high voltages and so on, and in small print there was the rather startling caution "do not use an ion trap".

Now as an old timer I can remember that ion traps were at one time a very necessary item in order to avoid screen damage from negative ions - since the ions are much heavier than the electrons given off by the tube's cathode, they are less affected by the magnetic deflection fields and thus tend to cause ion burn at the centre of the screen. Special gun arrangements were introduced to operate with an ion trap magnet, the idea being to separate the ions from the electron bearn and direct them to an intervening anode. After a period of time it was necessary to readjust the magnet - a deft twist would usually restore a bright picture, and produce the odd fast buck! The ion trap went out with the use of aluminised screens however.

Some later tubes featured a steering magnet, adjustment of which not only restored the picture but would centre it horizontally and vertically. Such memories brought back thoughts of triode tubes, 2 V heaters, heatercathode shorts, round screens, and isolation transformers. On one occasion in a moment of desperation an innocent, unsuspecting audio output transformer was pressed into service as a heater isolation transformer.

It seems odd that a very modern TV set, manufactured by inscrutible gentlemen in a far away country, should trigger off such a trip down memory lane - all due to a strange warning in small print on the c.r.t. label! Or am I missing something?
A. S. Foster,

Brixham, Devon.
Editorial comment: Samsung is one of the two major Korean TV manufacturers. The company started to manufacture TV sets in 1969, in collaboration with Sanyo (the partnership was subsequently terminated). You certainly can't use an ion trap magnet on a tube not designed for it - and ion trap tubes were obsolete long before 1969. We can only assume that the warning is one of those things that goes on being repeated long after it's necessary. How many Koreans would know what an ion trap magnet was?!

TOSHIBA C81B

Reference was made in the June Service Bureau to the problem of h.t. fuse blowing and the line output transistor Q404 going short-circuit in the Toshiba Model C81B. I've also had this fault, which was eventually traced to the 105 V h.t. series regulator transistor Q801 going leaky. It's mounted on a large, rather inaccessible heatsink and is type 2SC1195 - a BU126 can be used for improved reliability.
When Q801 goes leaky the h.t. rises and the line output transistor, which is operated with little margin, fails. Fuse F803 then blows.

The 2 SC 1172 transistor can be replaced with a BU208, which should also be a lot more reliable.
B. Knapp,

Cheltenham, Glos.

A NEW G8 FAULT?

A customer phoned to say that the picture was taking a long time to appear on his set, an old Philips G8 anything from five minutes to half an hour. The sound was o.k. Two months previously I'd fitted a new transductor as the old one had burnt out, and at the time I'd checked the
tube emission. This was low, so I'd given the customer a quote for a new tube. It seemed to be just a matter of a quick pick up, fit the new tube, and check for the fault.

I didn't bother to try the set before fitting the new tube, expecting the tube to solve all problems. All was indeed well when the set was switched on, so the convergence was set up and the receiver left on soak test. I later switched off whilst attending to another set, but when I switched on again for a final check before putting the back on there was no picture, no e.h.t., no blown fuses - in fact the set appeared to be just sitting there!
Out with the meter to check for drive and voltage at the line driver transistor, during which time the sound came on and within seconds there was e.h.t. and a picture - but the picture wasn't as bright as during the previous test. I stood back in amazement! Switch off, then on - no picture at all. So I was back to square one, though this time I'd a chance to look around. The line driver transistor's collector voltage was low but there was no fuse blowing, so as these sets are prone to faulty line output transformers a replacement was tried. Problem the same, and time to give up for the day.

The next day offered nothing more interesting than another G8, this time completely dead with a blown h.t. fuse due to shorted turns in the line output transformer always keep one in stock! I went back to the first set and
decided to try swapping over the line output units complete. The set now worked very well, so I looked around the first panel for the problem. One of the line output transistors had a collector-emitter leak - this has got to be it! Fitted two new BU208s, refitted the panel, but still no go, no e.h.t. or solnd.
Out with the scope. The h.t. was disconnected from the line output stage (link PC 1) and checks made on the driver stage. Plenty of drive on the primary of the transformer, and the voltages now correct. Replace PC1 and the collector voltage dropped. Attention was turned to the small subpanel which houses the line output transistors' base circuit components. Check all resistors and find that the two 10Ω damping resistors R527/9 are slightly high but within ten per cent tolerance. Tried fitting old scrap subpanel and everything came on smashing. For interest I interchanged the components one at a time and, would you believe it, it was the two damping resistors even though they were within tolerance.

Three days later the line output transformer died, but that's another story. I hope this tale may serve as a warning to others - what with all the running around I think I must have lost money on this one! Book it to experience.
K. D. Bunting,

Hartford, Cambs.

Aerial Systems and Faults

Peter Richards

There are many occasions when a service engineer finds that a fault he has been called to attend to is due to the aerial rather than the set. In this event it's a good idea to establish what's wrong with the aerial system so that the customer and/or aerial rigger can be told what needs to be done. A good aerial system will provide at least 1 mV of ghost-free signal at the set's aerial socket - this is particularly important for teletext reception.

The TV transmitters in the $\mathrm{BBC} / \mathrm{IBA}$ network range from very powerful to very weak - some relays are so weak that a line of sight location is no guarantee of good reception. For all transmitters however there's a "service area", which is defined as the area in which a reasonable aerial system will provide a 1 mV signal at the set. This is open to interpretation. We will consider the various types of aerial systems in turn and see what can go wrong with them.

Indoor Aerials

Simplest of all is an indoor aerial, though no selfrespecting salesman or engineer will suggest using one. Except for the odd special location, an indoor aerial will not give 1 mV , while the strength and number of ghosts always varies as you walk around the room. This means that justice cannot be done to a colour set's performance capability and the customer is never completely happy.

Simple Aerial Systems

The aerial's job is to gather sufficient signal to overcome the losses in the downlead and leave at least 1 mV at the end. For this purpose it must be large enough (depending on the field strength at the location), high enough (to overcome losses from obstruction in front),
and correctly aligned (to avoid ghosts due to signals reflected from trees, buildings, etc.).

A ten-element aerial will suffice in strong signal areas, larger aerials being required towards the edges of a transmitter's service area. It's important that the cable connection to the aerial is secure and watertight, and that the cable itself, which should be of the low-loss u.h.f. type, is fixed securely down the mast, down the roof (every three or four tiles) and into the house, where it should terminate in a good, clean coaxial plug, with the inner conductor soldered.
The faults that can occur with such an installation are not too complicated. The aerial may blow down, or round (giving ghosts). The aerial and/or its connections may become corroded over the years, reducing the system's efficiency. The cable may go open-circuit (with most aerials the cable should normally read short-circuit across the coaxial plug) or short-circuit, or sustain other damage from not being properly fixed. It may also deteriorate from old age.
Renewal is the best policy. It's important however to remember that the installation may not have been adequate in the first place. An aerial in the loft for example will not be high enough in the vast majority of cases, nor free from obstruction, and will thus not provide the required signal.

Aerial Plus Amplifier

An amplifier must be used where the largest practical aerial does not give 1 mV at the set. Amplifiers are available with different gains, according to requirements. To improve a slightly sub-standard signal in an otherwise good area, use a low-gain amplifier (gain 12 dB or four times). Medium-gain amplifiers (20 dB or ten times) are
used mainly as repeater amplifiers to make up for losses in cables or losses due to the use of splitters in the aerial system. High-gain amplifiers (30 dB or thirty times) are needed where the signal is poor, usually outside the service area.

An amplifier system usually consists of two parts, the amplifier itself and a power supply (see Fig. 1). The amplifier should be fixed to the mast near the aerial - but not too near as this can cause feedback. This position for the amplifier is important in order to minimise noise. The stronger the input signal, the more it will swamp the amplifier's noise. Hence mast mounting is preferable to the use of a set-back amplifier. The power supply will be in the house, usually behind the TV set. For safety reasons it must not be wired into the same plug as the television set.

Amplifier Faults

Faults with this sort of installation consist of those due to the amplifier in addition to those due to the aerial itself (see above). Power unit faults are easy to find simply by disconnecting the unit from the amplifier and making voltage checks. Alternatively the amplifier itself could be faulty: it may read open-circuit (usually an open-circuit powering choke or a connection), short-circuit (usually the zener diode or a connection), it may not be amplifying properly (possibly due to transistor failure), or it may simply be covered in water and corroded to bits because someone hasn't mounted it properly.

A more confusing fault is cross-modulation in the amplifier. This looks like either poor field interlace or one station in the background of another. The basic cause is excessive input signal, or a faulty amplifier. The signal levels in a particular area may be liable to fluctuation with weather conditions, and may have risen somewhat since the system was installed. Once more we must be on our guard against an inadequate installation. The installer may have skimped on the design of the system in a misguided attempt to save the customer money - the inevitable result of this is that when the system deteriorates a little, as all systems do, snow starts to appear on the screen and a service call is eventually made.

Multiple Amplifier Systems

Multiple amplifier systems are used when the aerial has to be sited some distance from the house - the distance may be some tens of metres to hundreds of metres up the side of a mountain. The system is similar to that previously

Fig. 1: Aerial amplifier and power supply. The power supply provides 12 V or 24 V according to type.

Fig. 2: Amplifier with through powering for use as a repeater in a multiple amplifier system.
described except that there will be repeater amplifiers every 80 metres or so - it may also contain attenuators and equalisers. This type of system is very difficult to design properly. Many are installed using rules of thumb. The results are generally not very good.

Faults are usually simple to identify. The amplifiers will be line powered as shown in Fig. 2. Power supply faults can be sorted out inatially by measuring the current taken from the power supply. This will give a clue to the total number of amplifiers taking current. Voltage checks at each amplifier will then probably lead to the fault. If the fault has not been found when you arrive at the aerial, a check on the signal at each amplifier on the way back will locate it.

Because of the accurate design and setting up required, this type of installation is prone to either cross-modulation or low output. The most difficult faults to find are those due to gradual deterioration and loss of performance in almost every item in the system.

Communal Aerial Arrangements

Communal systems are used to feed blocks of flats or even whole villages in mountainous areas. They are basically an expansion of the multiple amplifier system just described. The signal levels are usually much higher however, 30 mV to 100 mV being typical. Outlets to individual houses are through "tap-off boxes" which feed a small percentage of the total signal to each customer's house. Isolation is also provided to protect individuals and the system from the mains supply.

It's not unknown for outlets to individual houses to go faulty, generally due to corrosion, but most faults are of a communal nature. These faults are the same as those that affect a multiple amplifier system.

Conclusions

Finally some general comments. If the picture is snowy, check with a signal strength meter. Grain starts to show at about $400 \mu \mathrm{~V}$. The picture will be watchable at $200 \mu \mathrm{~V}$. If you haven't got a signal strength meter, you can make one very simply from a TV set reserved for test purposes. All that's needed is to connect a voltmeter to the set's a.g.c. line, calibrating this against a known source.

Don't be fooled or mislead by trying other sets - they may have slightly different gains or frequency responses. Use another set to prove the point, but not to make the initial diagnosis. Many a tuner has been changed in error!

Skimping on aerial work doesn't pay: remember that a wasted service call to look at a snowy picture can cost the dealer as much as the amplifier or a bigger aerial that should have been fitted in the first place.

The information above should enable an engineer to provide an accurate diagnosis of an aerial fault on any sort of system and advise the customer accordingly.

Laura's Dead Decca

Les Lawry-Johns

I'm sure you all remember Laura Lovitt, last reported as tampering with Titch the telephone man and giving me the old heave ho when she thought she was going to be busy one afternoon, and me going back to the shop to find another telephone chappie buggering about in the bedroom. Well, every dog has his day, he who laughs last, and all that.

The phone rang and it was Laura to say that her legs had at last given way and the Decca was now a damaged Decca. Could I call this afternoon?
"Are you sure your telephone's not tapped?" I asked.
Laura gave a gurgle. "He was only showing me how to fill in a football coupon. Very patient he was too."
"All right then. I'll be down this afternoon."

How to Oblige

And down I went to give the legs a close inspection before examining the Decca. The frame's woodwork had given way as though the legs had been asked to support an extra offset weight (perhaps the set had been shoved from the side?). I could see from the front of the Decca that the tube had lost is vacuum, and this was confirmed by the sight of the bowler hat on the rear cover. It was cracked and bowed in, the tube base was in pieces, and the tube's neck was beyond recall. I shook my head sadly. "Sorry Laura. It's right buggered."
"I know it's buggered" said Laura with no trace of sadness, "but it's also insured and I've been wanting a new set for a long time. Now I'm going to get it."

We discussed just what she wanted for some time, and as the bedroom was only a sliding door away I suggested that perhaps a smaller set with remote control would fill the bill, so that she could watch the late night programmes in bed, change channels and switch the thing off without getting up, then wheel it back into the lounge in the morning. This idea seemed to appeal to her, so I nipped back to the shop for a 20 in . remote control model and had it installed and working in no time.

She said the picture was good and she liked the remote control but the front presented a sort of blank, black appearance. Would she like to come back to the shop to see some others then? No. They don't look the same in the shop. So she wouldn't really be able to tell.

To cut a long story short, I had to do quite a bit of running around before she finally liked the Pye 3262 with full remote control, and of course she had to be sure that everything worked as she lay on the bed (it's not easy trying to satisfy some people ...). She said she'd let me have the cheque when the insurance had been settled. I'm still waiting.

Les the Bodger

I was asked to do a very quick job the other day. We'd had to write off Mr. Toolong's old 26in. Thorn 3500 as a dead loss. Until he bought a new set he was having to rely on his Philips 16 in. portable (KT3 chassis, with remote control). This was in urgent demand by the family there-
fore, but had "gone funny".
The "funny" bit was that the colour was at maximum and couldn't be turned down. The controls consist of plus and minus buttons, but the colour couldn't be turned down no matter how many times the minus button was pressed. I rather suspected i.c. failure, and the first suspect (to me) was the SAF1032P remote control decoder i.c. (IC807), but there wasn't one in stock. The relevant bit of circuitry is shown in Fig. 1. Voltage checks confirmed that the control voltage at the emitter of transistor TS840 was over 4 V and remained at this level instead of varying between 2 V and 4 V . This meant that TS 840 was being turned on excessively because its base voltage was high. The voltage at the collector of TS836 was in turn high because there was lack of turn-on bias at its base. This suggested that either IC807 or R832 was faulty. R832 was in order - as were both transistors - so our suspicion of IC807 deepened. Frantic phone calls were made. "Sorry Les." "Sorry Uncle Les." "I'll have to send for one Mr. Toolong."
"But we want it today. Now!"
I looked at the preset R838. It didn't vary the voltage at all, but could be made to do so by wiring a little resistor across C 839 . Try $22 \mathrm{k} \Omega$. Not really. Try $15 \mathrm{k} \Omega$. Nice variation as the preset was turned.
"Well now Mr. Toolong, this control here is the ideal colour preset, and once I set it to your liking that's it."

He was quite pleased with this bodge up, and carried the set away smiling.

I was relieved too. It didn't have to be that particular i.c., because it gets its input from IC761, and there are various other complications.

Minimatic, Big Wallop!

Here's a warning - be careful of those small Yugoslavian Minimatics. I was trying to sort out the print side position of a transistor and reached over to locate just where it was with my right hand. I must have jumped a couple of feet in the air (well, say two metres) or more. Whilst the e.h.t. stick is fully shrouded, the e.h.t. connection isn't - it's just a solder blob exposed to all and sundry, including me. You may say that it serves me right for not looking where I put my hands. Quite so. But I wouldn't like you to get the same.

Fun with Fidelity

We've sold quite a few of these Fidelity CTV14R (and S) sets during the past year or so. Some have required attention recently.

The weak link appears to be the line output transformer, though this is not immediately obvious. The symptoms are that the h.t. builds up after switching on and then collapses with a tick, the process repeating. This

Fig. 1: Preset colour control circuit, Philips KT3 chassis (remote control version).
could of course be due to various overload possibilities or to the TDA2581 chopper control i.c. playing about. When the set is switched off, you may find that e.h.t. is present under the e.h.t. connector cap. This tends to suggest that the line output transformer is working correctly. When a replacement is fitted however the set works normally (for us, so far).

Removal of the transformer in the earlier model is quite easy - unsolder the tags, turn the tag round for exit, and remove the two screws at the top frame. In later models there's an extra strut on the frame. This covers the tag and means that the panel screws have to be removed to allow the panel to be raised from the frame.

Another frequent fault is failure of the chopper transistor TR13 (type BUX84 or BUV46). The transistor tends to go short-circuit, as a result of which the h.t. rises and the set shuts down.

The front control panel is also a bit flimsy and can develop cracked print, dry-joints and the like.

Intermittent operation, with all the channel LEDs coming on for a brief second, is often due to a dry-joint on one of the two long wirewounds at the rear left side. A moment spent resoldering these connections can be very rewarding.

Bette's G8

Bette Hind is a lady with a lot of gusto. It's like a hurricane hitting the place when she comes in. "Hallo Les Luv. Will you get my set out of the car for me only I'm on double yellow lines and can't get away with it now they're all women."
"I can" I smirked. "You've only to rub them all over with soft soap."

Anyway, I got Bette's 20in. Philips G8 out of the car and on to the bench, and caught sight of the worried look on her normally alive with laughter face.
"I think it's had it this time Les. The picture went and there was a hell of a stink, then the lot went off, puff, just like that."
"Don't worry Bette. In five minutes it'll be as good as new."

So I took off the rear cover (a screw in each corner instead of the usual G8 struggle fit). Over on the right side I could see the transductor looking sick, so I removed plug H (the red one) to stop that nonsense and plugged the set in. Nothing. There was voltage at the bottom end of the top section of the "dropper", but nothing at the top. I switched off and decided to short the dropper tag to earth to get rid of the charge on the reservoir capacitor. Bang it went, because I'd not bothered to use a resistor, risking the screwdriver blade instead.
Bette jumped two metres in the air, just as I'd done earlier. "I told you the bloody thing was finished" she bawled. "It'll kill us all. Mrs. Seer said she saw it in the cards the night before last."
"Shut up for Gawd's sake" I snapped. "The thing's nearly done now."
"Done in more like it" she moaned.
I put in the new dropper and checked the fuses. The lower one on the left side $(800 \mathrm{~mA})$ had blown. With this replaced the set was switched on and a good picture appeared. Being a 20 in . model, the absence of raster correction (plug H out) was not noticeable.
"That's bloody marvellous" exclaimed Bette. "What about the smell?"
"It's Ben" I explained. "He's been a bit loose lately."

next month in

- THE BETAMAX SYSTEM

Most published material and courses on VCRs are based on the Fhilips N1500/N1700 or the JVC VHS systen, simply because the former was the first to appear on the market while the latter has been the marke: leader throughout. This means that the Sony Eetamax system is probably less well understood than the other systems, though some Beta machines have sold in large quantities. Next month Eugene Trundle sets out to redress the balance with a new series on Beta video. The emphasis will be on areas where there are fundamental differences between the Beta VCR system anc its better understood rivals.

- SERVICING THE PHILIPS TX CHASSIS

Pye and Philip; monochrome portables fitted with the TX chassis have been good sellers for several years. John Coombes provides a quick fault-findirg guide.

- VINTAGE TV - THE PILOT VS9

Pilot Radio was a well known name just before and after Worlc War 2, mainly because of the firm's innovatory radio sets. When the first Pilot TV set, the VS9. came along it too had unusual aspects. Chas E. Miller delves into another interesting bit ol TV history.

- A MATTER DF SAFETY

Those who deal with dozens of TV sets often tend to becomき blasé about safety matters. Nevertheless a TV se:, especially a defective one, can be a very dangerous object. Tony Thomson deals with the various aspects of the subject, both in the workshop and in the field.

- CTV BATTERY OPERATION

George Wildirg takes a look at various approaches to supplying colour portables from a 12 V or 24 V battery. The TA126 converter used with later versions of the Thorn TX9 chassis is considered in detail.

PLUS ALL THE REGULAR FEATURES

ORDER YOUR COPY ON THE FORM BELOW:

TO
(Name of Newsagent)
Please reservekdeliver the August issue of TELEVISION (90p), on sale July 20th, and continue every month until further notice.

NAME
ADDRESS \qquad
\qquad
\qquad

Light on Servicing

Eugene Trundle

IT's strange how the habits of a lifetime die hard. For years I've been using a conventional spring-arm bench lamp for close illumination while servicing TV equipment - the familiar type with a heavy base, cantilever arm system with compensating springs and a conical shade/ reflector. It never occurred to me that anything better might be available. The disadvantages of this type of lamp are several, and perhaps not appreciated until one thinks about it.

The light coming from the small glow area of a filament bulb tends to cast shadows, making it necessary to move the lamp about to get satisfactory illumination. Then the bulb and its shade get uncomfortably hot, which is fine for setting epoxy-resin joints, but inconvenient for the operator and disastrous if the lamp, forgotten for a few minutes perhaps, is allowed to dwell near the plastic cabinets and covers that are common on consumer equipment these days. My lamp seems to suffer more than most from "brewer's droop", and on three occasions lately the 75 W bulb has descended on to plastic TV backs and VCR deck covers with strange and fantastic, also expensive and smelly, results. The bulb always seems to fail at the crucial moment, and if a higher rated bulb than specified is fitted the result will be premature failure, often accompanied by an evil smell from the overheated bulbholder. Power consumption is yet another factor. This matters little in mains operated workshops, but I met a man who services radio-telephone equipment recently: he has to count the watts like Les counts the calories!
There are several types of illuminated magnifier on the market for close work on intricate equipment - they've long been used by watchmakers, factory operatives, dental technicians and so on. I found three listed in the catalogues of well known suppliers to our trade, and selected for review the Ledu type 271 which is available from Philips Service.

The Ledu Magnifier

It's the least expensive of the full size types, and seems to offer as much as the competition. The counterpoised cantilever arm stems from a "pod" at the base, in which the flourescent tube's control gear is housed. The arms are longer than the conventional bench/desk lamp, giving a wide arc of movement. At the business end a 24 cm . diameter circular plastic housing contains a ring type 22 W flourescent lamp. An on-off switch is incorporated in the housing, and inset in the middle is a 12 cm . diameter precision ground glass lens with a magnification factor of 1.75.

The flourescent tube is protected from damage by a plastic diffuser with a faceted surface to spread the light wide. The ensemble is fairly heavy, and is supported by means of a clamp-on bench socket. The sockets are available separately, so that one lamp can be used in several positions around the workshop, plugged in and supported wherever needed. The lamp itself has a vaguely medical or dental look about it, which may be daunting to some - especially when laid beside the syringe and scalpel that forms part of our tool kit!

The first thing that struck me in use was the brightness of the illumination provided by the 22 W tube. Because of the large source diameter and the action of the diffuser, no shadows are created. The light has a bluish quality - rather like the Gro-Lux tube in my fish tank at home. With the lamp poised over a TV chassis or VCR deck, I found that I could see all that was going on with the lamp a couple of feet away from the works. Used in this way, as a bench lamp, the device can be swung well away when not in use.

The focal length of the central lens is about 30 cm ., beyond which the defocusing effect is accompanied by a sort of blue/yellow misconvergence! The 30 cm . focus depth enabled me to work on panels, mechanics etc. while viewing through the lens - an ideal situation for soldering small assemblies, checking joints, and particularly servicing and adjusting audio and video decks. Some service manuals these days contain circuits in which the equivalent of about three TVis is crammed into a single page - these myopic diagrams are much more easy to read with the aid of this instrument. I found that the cantilever arm assembly is well balanced and well behaved - a couple of knobs are provided to adjust the friction.

A few words on safety. The lamp has a three-core lead, with the earth conductor connected directly to the metal arms and springs. I would have been happier with a twincore lead, with double insulation if possible, because a large and accessible earthed mass in such close proximity to live electrical equipment is not, so far as I am concerned, a good idea. A shock hazard can arise even when an isolating transformer is used, so I disconnected and insulated the earth wire at the plug end, after checking for good insulation resistance between the mains leads and exposed metalwork.

The other hazard, perhaps not immediately obvious, is the possible fire risk when the magnifier is left unattended with the sun shining on it. Experimenting in the garden one sunny day I had no problem in igniting a newspaper in five seconds flat! A lens cap is provided to prevent such happenings.

A good and worthwhile service aid then for the modern workshop. Good service aids are not cheap, but $£ 52-00$ plus VAT (net to the trade) is not excessive for this instrument. Its large physical size is a disadvantage only when one suddenly bobs up from a tape deck or whatever to find oneself crcwned and haloed! The Philips Service stock number is 395-37125.

Other Optical Aids

In conclusion it might be worth mentioning a couple of other optical aids I've found helpful for TV and VCR servicing. Both are from the expanding optical aids section of the RS Components catalogue, are relatively inexpensive and very useful.

The first is a watchmaker's eyeglass (stock no. 544-055) with a magnification factor of eight and a focal length of 31 mm . It's useful for inspecting video heads, tape guides and small electronic components, and works well for checking beam landing (purity) in shadowmask tubes.

The tape path in a domestic VCR is such that many critical mechanical and electrical deck components are difficult to see, clean and check. Cotton buds are very useful for cleaning, and a dental-style angled inspection mirror is almost indispensible when working on such equipment. The one marketed by RS Components (stock no. 549-319) has the useful feature of being fully insulated. I can heartily recommend it.

The New Thorn TX90 Chassis

The story behind the Thorn TX90 chassis is no less fascinating than the set itself, with its novel mechanical and electrical arrangements. The challenge was to produce a quality small-screen colour portable that could compete in price with anything likely to come from the Far East. A small-screen portable was seen by Thorn to be important for two reasons. First, this section of the market is expanding faster than any other - sales of colour portables in the UK exceeded 900,000 in 1982 and are expected to reach $1,100,000$ this year. Secondly, getting a competitive set into production would have important consequences for Thorn's TV plants in terms of the economies of largescale production.

Thorn have invested $£ 2.5$ million in production facilities for the TX90 at their Gosport plant, where CTV production is being built up from some 500,000 a year to 700,000 a year. Production of TX90 sets is already running at a rate of 150,000 a year and is being built up to 215,000 . The plant also produces the 1790 series monochrome portables, with production at present running at a rate of 300,000 a year. An additional 250,000 colour sets, using the TX10 chassis, are produced at the Enfield plant.

These figures give an idea of the importance in terms of scale of having a range of chassis to meet all requirements, from large-screen 110° models with full remote control and teletext to the TX 9014 in . portable. There is certainly a market for the TX90, and with its suggested price of around $£ 169$ for the initial Model 37140 it's evident that Thorn have got their costs right. Just how is production of sets to sell at this price possible? The answers relate to simple mechanical layout, reduced component count and, in particular, efficient manufacturing technology.

Production Aspects

The key to the latter is to make maximum use of the capabilities of the latest automatic component insertion equipment. To put it simply, the TX90 has been designed and laid out so that two complete chassis, including the c.r.t. base panels, occupy the space of a single standard panel (made from a $345 \times 375 \mathrm{~mm}$ Euroblank). Since the automatic component insertion equipment is designed to handle this size of panel, two TX90s can be produced simultaneously on the same panel and be separated at a later stage for testing and assembly into complete receivers. In comparison, you get just one TX9 or TX10 chassis from a Euroblank.

The electrical design of the TX90 was to a large extent determined by this need to get two sets out of one standard panel and thus make optimum use of the production facilities. Three factors enabled this requirement to be met. First the choice of suitable circuitry, to which we'll return. Secondly the use of a new i.c., type TDA4500, which incorporates all the signal processing circuitry, including the timebase generators, apart from the decoder. Thirdly much greater use is made of upright (radial) component mounting - there are 184 radially mounted components and 54 axially mounted components. A further constraint on the electronic design was imposed by
the fact that there's a limit to the number of different types of component that the automatic component insertion equipment can handle. This, together with cost considerations, explains the fact that the component count is not as low as theoretically possible, i.e. groups of small resistors are used in several places instead of one larger resistor. The limit to the number of component values that can be used imposes a further discipline on the electronic design.

Mechanical Arrangements

The other major factor contributing to the low cost of the TX90 is the mechanical arrangement. The moulded cabinet has just two sections, the cabinet itself and the back panel. The main printed panel is held by moulded runners on the left-hand side of the cabinet and is secured by the back panel and a single screw. The user controls are all mounted on the main panel, protruding through cutouts in the front of the cabinet. These arrangements were first used in the 1790 monochrome portable chassis (see Television, February 1983). Mounting the controls in this way eliminates the need for separate and costly control panel wiring and assembly work.

The 14in. tube is also a key element in the design. The tube/yoke assembly is of the pincushion distortion free type, eliminating the need of EW correction. The tube neck is of the "mini" type, i.e. the diameter is 22.5 mm . This enables a smaller yoke to be used, in turn reducing the scanning energy requirement by 20 per cent - in comparison with the TX9's 90° narrow-neck (29 mm) tube. There's a further advantage since the reduced glass weight simplifies the cabinet design.

The Electronics

So much for the production and mechanical aspects. We'll turn now to the electical design. Fig. 1 shows a block diagram of the electronics. Perhaps the most surprising feature at first sight is the use of a simple mains trans-

The first sets fitted with the new TX90 chassis - the Ferguson Model 37140, in silver or white.

Fig. 1: Block diagram of the TX90 chassis. The power consumption is less than 40 W at black level - this compares with 45 W for the TX9 chassis.

Fig. 2: Principle of the switch-mode boost supply circuit.

Fig. 3: The switching transistor's control circuit.
former which provides isolation and feeds two rectifier circuits. These provide outputs at 85 V and 18 V . The latter feeds a 12 V regulator that supplies the low-voltage stages in the receiver. This arrangement provokes the question "what no chopper?" The h.t. regulation required is in fact built into the line output stage, which employs what could be described as a switch-mode boost supply (95 V) circuit. The use of this novel arrangement instead of a conventional chopper system is part of the process of getting everything on to a small ($280 \times 172.5 \mathrm{~mm}$) main panel. One disadvantage of a chopper circuit is radiation prob-

Fig. 4: The audio circuit.
lems, which necessitate elaborate mains filtering plus antiradiation measures within the chopper power supply. Such problems are neatly avoided by the arrangement adopted. The mains transformer is mounted separately at the righthand side of the set.

With the exception of the TDA4500 i.c., most of the rest of the circuitry is reasonably conventional. Simple class A RGB output stages are used, with presets to control the black level only. There's provision on the c.r.t. base panel to include high-light controls if required, but the tolerances of the tubes at present being used make this unnecessary. A standard class B field output stage is used, fed from the 95 V rail. This is less efficient than the use of a flyback boost system but has the advantage of reduced circuit complexity. For similar reasons the field driver is fed from the 150 V rail, obviating the need for a bootstrap network. The lower output transistor and the driver transistor comprise a Darlington pair with a shared encapsulation. The sound output stage incorporates a novel feature to remove crossover distortion and regulate the quiescent current, enabling the output transistors to operate without heatsinks under a wide range of environmental conditions.
The 28 -pin TDA4500 was jointly developed by Thorn and Philips for the TX90 chassis, though it will be used in
other chassis at a later date. Basically it accepts the i.f. input from the SAWF and provides a composite video output at pin 16, a post volume control audio signal at pin 12, a field drive output at pin 2 and a line drive output at pin 27. Field feedback is applied to pin 3 and line feedback, for the flywheel sync circuit, to pin 5 . Only two adjustable coils are required in the i.f./intercarrier sound department: one is for the sound detector circuit while the other acts jointly for both the video detector and a.f.c. detector (in conjunction with an internal 90° phase shifter). This chip represents a major step in TV circuit integration. There's even sound muting between channels, a feature that was added to meet recent W. German statutory requirements.

Circuit Features

Fig. 2 shows the basic principle of the switch-mode boost circuit, which is designed to hold the 95 V boost rail constant against h.t. variations over the range $70-95 \mathrm{~V}$. Let's initially ignore the switching transistor TR107 and its control circuit. D114 is the boost diode which conducts (along with the efficiency diode D113) during the first part of the line scan, when the line output transistor TR112 is off. As a result, the reservoir capacitor C191 is charged to obtain the boost voltage. For the boost rail to be stabilised at 95 V , the voltage at the anode of D114 must be held steady at 70 V . This is the function of the switch-mode circuit - TR107 and its associated components. To take the extreme conditions, if the voltage at the collector of TR107 rises to 95 V, D109 conducts, TR107 is cut off and the boost circuit is shorted out; if the voltage at the collector of TR107 falls to 70 V , TR107 remains on, supplying 70 V to the anode of D114. At any voltage between $70-95 \mathrm{~V}$, TR107 is switched on and off at line rate to hold the voltage at the anode of D114 at 70 V , i.e. the control circuit supplies a variable mark-space ratio drive to the base of TR107 so that it's on/off times produce 70 V at the anode of D114.

The circuit is efficient in operation since when TR107 conducts the excess voltage (h.t. - 70V) appears across the $5 \mu \mathrm{H}$ choke L120. The energy stored in L120 is proportional to this excess voltage and the conduction time of TR107. When TR1 07 switches off, the voltage at the anode of D109 swings positively: D109 then conducts, charging C191.

The switching transistor's drive circuit is shown in Fig. 3. The error transistor TR111 sets the d.c. conditions at the base of the driver transistor TR108. TR111's emitter voltage is held constant by the 6.8 V zener diode D111 while its base senses the boost voltage. The driver transistor TR108 acts as a pulse-width modulator. The line flyback pulses appearing at the cathode of D114 are integrated by R222 and C186 to produce a sawtooth at the base of TR108. The point during the sawtooth when TR108 switches on (and TR107 switches off) is determined by the conduction of TR111 which is in turn determined by the boost voltage. In this way a variable mark-space ratio line-frequency drive waveform is produced to switch TR107 on and off and thus stabilise the voltages in the circuit.

The over-voltage trip consists of a pair of transistors in a regenerative switch configuration. In the event of excessive voltage on the 150 V line the transistors switch on to remove the line drive. The result is loss of sound and raster - the trip resets automatically when the over-voltage condition clears. In addition, the 12 V regulator incor-

Inside the Ferguson Model 37140.
porates overload, thermal and short-circuit protection the result will again be loss of sound and raster as the TDA4500 will close down.

The audio circuit is shown in Fig. 4. The driver is TR120, whose load resistor R185 is connected in the conventional bootstrap fashion, with C169 acting as the output coupling and bootstrap capacitor. The gain of this stage is set at 12 by the ratio of the feedback resistor R184 to the input resistors R181/2. Bias is supplied from the 95 V line via R183 and this, in conjunction with the feedback resistor R184, sets the midpoint voltage of the output stage.

The novel bit consists of transistors TR121 and TR124 which replace the conventional bias stabilising diode. When a transistor is operated with a low collector-emitter voltage, its gain is proportional to that voltage. The voltage across TR121 and TR124 cannot exceed 2.4 V (the 0.6 V base-emitter voltages of the stabilising and output transistors combined). Stabilisation is achieved since a rise in the voltage across one transistor will result in a compensating decrease in the voltage across the other one. When an audio drive signal is applied, the gains of the two stabilising transistors will change continuously over each cycle, thus maintaining the correct bias conditions in the output stage.

So much for the technical highlights of the chassis. The production time per set brings out the efficiency of the manufacturing process. The total time taken to produce, test and pack a TX90 set is only 1.4 hours. This compares with 3.5 hours in the case of a TX9 receiver and the six hours it took to produce a 9000 series set. During initial production of the TX 90,75 per cent of the components are being auto-inserted. This will rise to 90 per cent when further equipment has been installed.

On a more sombre note, in 1976/7 the Gosport plant required a labour force of 3,204 to produce a total of 600,000 colour and monochrome sets (mainly monochrome). In 1982/3 a reduced workforce of 1,945 will produce 900,000 sets, mainly colour. But as an interesting aside, it appears that there's a shortage of TV development engineers. It seems that newly qualified engineers are mainly interested in digital circuitry.

JVC/Ferguson HR3330/3V00

There are several causes, listed below, for the following fault on these machines - when play is selected the tape threads and starts to run, then the keys release and the tape unthreads.
(1) The AN318 drum servo i.c. not producing the flip-flop signal and/or connector problems, i.e. the flip-flop signal doesn't arrive at the mechacon panel.
(2) The take-up spool not rotating and/or the tape counter not rotating, thus no take-up spool signal.
(3) Defective cassette compartment lamp and/or tape end sensors.
(4) After loading switch not making contact.
(5) This one is more difficult - $\mathrm{C} 12(33 \mu \mathrm{~F})$ in the pause delay circuit on the mechacon panel low in value.

Our method of tackling the problem is to short-circuit to chassis the base of X5 on the mechacon panel to inhibit the key release relay and then check the above items. S.B.

Some Quickies

Hitachi VT9300: In the event of no E-E or playback, change units CP205 and CP206 (3MHz filter and phase delay equalizer). The fault is usually in the delay block.
Sharp VC9300: Poor replay on a machine only four months old was traced to one video head having an opencircuit winding.
Toshiba V8600: Inability to set the hours of the clock display - change the timer microcomputer i.c.
Sony C7 and C5: A couple of problems. First no E-E audio: change the TBA120U i.c. in the sound i.f. department. This fault is not uncommon. Secondly no rewind: fit new rewind kit. Lots of these machines will need modifying as it's a very common problem.
National Panasonic NV7200: No pushbutton functions can be due to the cassette compartment light. There are two infra-red LEDs wired in series. Check the switching pulses across them: if more than $3-4 \mathrm{~V}$, i.e. 12 V , change one of the LEDs.

For erratic system control on this range of machines check the voltage dropper diode that provides 5 V from the 6 V line.
S.B.

Ferguson 3V23

We've had a few cases where the remote control system operates the mechanical functions but not the tuner/timer, with no channel selection or tape counter. The remote control unit may be faulty, but the fault is more likely to be on the tuner/timer control panel. If there's no display, change the 400 kHz ceramic resonators CF1 and CF2. If there is a display, suspect the TA57 (TA1) remote control gating i.c. associated with the tuner control microcomputer ICI.
S.B.

Sanyo VTC5000/5300

We've had complaints of the playback being covered in white spots on several of these machines. The actual symptom is intermittent noisy pictures. This is not due to head clogging or tape damage - the solution is to solder a
short piece of wire to the casing of the video head preamplifier, connecting the other end to a solder tag on the adjacent earthed metal clamp, in order to link the preamplifier screen earthing to the main earth run. S.B.

Advance Warning!

(1) An eccentricity gauge will be required to fit video heads on the new long-play JVC/Ferguson machines Models HR7655 and 3V32 respectively.
(2) Don't take the covers off the VHS-C portable as an oxide wiring loom for the lower drum assembly can be damaged - a new lower drum assembly will then be required.
S.B.

Ferguson 3V23

A 3V23 sent in from another branch had a note attached saying "no sound". On inspection it was clear that various boards had been changed, so we proceeded with care. Prerecorded tapes could be played back with perfect sound, but there was no E-E sound. Selecting channel set and ramping in a station gave the first clue: as the station was approached, it ramped straight through and continued up the band. In the sweep mode the sound is muted until sync pulses are detected and compared with a linefrequency oscillator (IC15) on the tuner/timer control panel. Investigation showed that the sync comparator IC14 was in the no sync mode, due to X15 (between IC15 and the relevant part of IC14) being short-circuit collec-tor-to-emitter.

Unfortunately the no E-E sound fault was still present, though stations could now be ramped in and stored. Swapping boards revealed that the repaired board produced E-E sound in another machine, while the original fault was still present in the first machine.

An accident gave us the next clue - touching the audio head while in the E-E mode produced a hum through the monitor set, indicating that although the video was supposed to be in the E-E mode it was actually in playback all the time. Checks revealed that the playback line from the mechacon panel was high due to X36 having an emittercollector leak. When replacing this transistor produced only very low E-E sound we had to move over to the i.f. panel where the core of the 6 MHz transformer T 5 was found to be missing.
I can only assume that these faults originally came from different machines and were all lumped into one by panel swapping, since there cannot be a logical reason for three different faults all giving the same symptom! M.J.C.

JVC/Ferguson HR7200/3V29

There was no clock display (no illumination) on this machine. As a first step the voltage across the display device's filament pins $1 / 2$ and 25 was checked. It was correct at 2.4 V r.m.s. We next checked the supply to the microcomputer conırol i.c. on this panel, IC401. This was again correct at 10 V . Time to use the scope to check this i.c.'s clock oscillator at pins 1 and 42 - this is one of the first things to check, as the clock runs everything else here.

The microcomputer's heart you might say. Well, this one had had a heart attack! Replacing the 400 kHz ceramic resonator and the microcomputer failed to get things working, but changing the associated capacitor C407 (220pF) brought everything back to normal. M.S.

Sony C7

The fault on this machine was intermittent loss of colour on record - the playback and E-E colour were o.k. To speed things up I started by consulting the video block diagram. The point at which the record and playback chroma diverge is pin 4 of IC2, i.e. at the output from the frequency converter (or rather the following buffer stage). There was plenty of output here but no output from the following amplifier Q55/6, i.e. at test point 26. Tracing back from the base of Q55 brought us to the low-pass filter L30, L29 etc. The fault was that L29 was opencircuit.
M.S.

Sanyo VTC9300

The counter on this machine went forward in the reverse mode . . . The circuitry concerned is on timer panel W20, the count up/down input being at pin 4 of plug/socket S1602 - it goes high in the rewind modes. This input was o.k. The command is passed to the TMS1070 microcomputer i.c. via a $10 \mathrm{k} \Omega$ resistor (R 1605) and the switching transistor Q1602. A check at the base of this transistor showed that the voltage was increasing, but not sufficiently to switch it off. There's a smoothing capacitor here, C1618 ($0.47 \mu \mathrm{~F}$ electrolytic), and this turned out to be leaky.
M.S.

Ferguson 3V30

We've had several 3 V 30 s in with the fault that the machine threads up but won't play. Everything appears normal except that the pinch roller doesn't engage at the end of the threading cycle. The pin linking the mechanism and the play solenoid was in each case found to be hanging out, refitting and sealing providing a cure. M.S.

Panasonic NV8600

The complaint with a National Panasonic NV8600 was that the eject key was jammed. There was no tape in the machine, but we noticed that it was not fully retracted from the play mode - the two guide rollers were part way round the head drum assembly. When the key was pressed nothing happened and the cassette lamp didn't light. A check on the 4 A fuse showed that it had blown, due to one half of rectifier D105 being short-circuit. Replacing these items provided a cure.
M.D.

Cassette Fault

This one was a cassette rather than a VCR fault. The customer's complaint was that his machine sometimes wouldn't record in the timer mode. As the VCR was only a couple of weeks old we decided to take another machine along and swap them over in the interests of good customer relations. This we did but despite a long soak test we could find nothing wrong with the first machine. Then, after a couple of days, the customer phoned to say that he had the same problem with the second machine.

This time we tried doing a timed recording in the
customer's house. Sure enough the machine wouldn't go into record. Removing the tape and replacing it in the machine allowed record to be selected however. A close examination of the cassette then showed that the antirecord tab was weak. What had been happening was that the tab was giving under the push of the sensor arm after the cassette had been in the machine for a while. So the machine thought the anti-record tab was missing. If the tape was pushed into the machine and record was selected straight away the tab was strong enough to hold the sensor out.
M.D.

Toshiba V5250B

The problem with a Toshiba 5250B was that the motor wouldn't rotate: a quick check revealed that its supply was missing. Tracing back, we found that the stop solenoid switch 59503 was net making proper contact. Replacing this item restored normal operation.
M.D.

Sharp VC9300

A Sharp 9300 wouldn't wind the tape back into the cassette before ejecting it. We removed the lid and cassette holder and, after finding the appropriate microswitches, put the machine into play. This was o.k. so we pressed stop. The cassette arms retracted correctly, but no drive was supplied to the supply wheel to rewind the tape. This drive is obtained from the motor via a wheel which flips between the take-up and supply spools depending on the mode selected. The problem was that the wheel was slightly tight on its shaft, as a result of which it stuck and would not move over to provide the rewind during tape unthreading.
M.D.

Toshiba V5470B

The customer's complaint with a Toshiba 5470B was that the machine would intermittently stop playing and go into the stop mode. The problem when the machine reached us was that it was impossible to select play (or any other function) because the stop solenoid operated immediately. We removed the top cover and loaded the machine, without a tape, by pressing the two lever-operated switches in the cassette compartment. The loading system worked, but the head didn't rotate. Pressing play made the stop solenoid operate instantly, and there was still no head rotation.

The bottom cover was removed and the video board hinged out to gain access to the drum drive circuit. The head motor on these machines is of the brushless d.c. type, which requires a supply of 12 V and a control voltage of approximately 7.5 V to operate the electronic switches used instead of brushes. This latter is the servo-controlled voltage. The 12 V supply was present but the control voltage was absent.

We followed the circuit back through the amplifier stage and found that there was no output from the servo panel. In fact there was a short from the output of the servo i.c. to chassis. Removing plug P507 removed this short, and we then noticed that the servo i.c.'s output is also taken to one side of the stop solenoid microswitch. A check here revealed that the switch was permanently shorted to chassis. On dismantling the switch we found that a tiny thread of the brass contact was bridging the switch out. Cleaning it with a relay cleaning strip solved the problem, restoring normal operation.
M.D.

Long-Distance Television

Roger Bunney

April was rather a quiet month - too quiet for my liking. The good mid-April Sporadic E opening that indicates a good season in prospect was unfortunately missing, though early May produced an excellent SpE opening, so hopefully an active season will follow.

There was little tropospheric reception during April. A lift was noted over the 13-15th, with W. German u.h.f. signals being just received in the midlands, and a further enhancement occurred on the 30th. MS (meteor scatter) provided signals daily, though less so than in earlier months. F2 layer propagation improved around the $24-25$ th, reaching to 40 MHz (just) at mid-day on a southerly path, but by the 27 th had fallen to a struggling 35 MHz .

The depleted $\mathrm{SpE} \log$ is as follows:
8/4/83 SR (Sweden) ch. E2.
13/4/83 NOS (Holland) and NRK (Norway) ch. E4. Note the short skip distance - NOS was received in Anglesey.
21/4/83 TVP (Poland) ch. R1.
1/5/83 RTVE (Spain) chs. E2, 3, 4, mid-morning.
2/5/83 A good late morning/early afternoon SpE opening. TVP R1, 2, 3; TSS (USSR) R1, 2, 3; ORF (Austria) E2a; CST (Czechoslovakia) R1; DFF (E. Germany) E4 - a really strong signal here at 1345; BR (W. German Bayerischer Rundfunk network) E2; RTVE E2.
3/5/83 RTVE E2.
6/5/83 SR E2, 4, early morning.
Thanks to Iain Menzies (Aberdeen), Cyril Willis (Ely), Arthur Milliken (Wigan), Hugh Cocks (Sussex), Mel James (Anglesey) and Ryn Muntjewerff (Holland) for sending in reception reports.

Jim Maden (S. Africa) wrote to report an excellent TE (trans-equatorial evening skip) opening that occurred on March 20th, giving him RAI (Italy) ch. IA and RTVE ch. E2. Unfortunately a lightning strike ended his reception, and two replacement ET021 tuners are now on their way to S. Africa. Jim also reports that the Stat-T 714 MHz satellite at $99^{\circ} \mathrm{E}$ is now using the later USSR electronic pattern with identification "UT $=$ TSA TAY". The satellite is received at 0° elevation in S. Africa, with reasonable quality.

For QSL hunters YLE (Finland) have issued a picture postcard to confirm TV-DX reception. Write to Oy. Yleisradio Ab., Kesakatu 2, 00260 Helsinki 26, Finland with details (and preferably a photo) of your reception. Just for the record, the Tampere ch. E2 outlet has closed and we are left with Tervola ch. E3 20kW e.r.p., Ruka ch. E4 2 kW e.r.p. and Vuokatti ch. E4 4 kW e.r.p. These stations are all in the TV1 network.

News Items

UK: In case you missed the note in Teletopics last month, the 405 -line network (system A) is to close on December 31st, 1984. The $97 \cdot 6 \cdot 102 \cdot 1 \mathrm{MHz}$ Band II spectrum at present used by various emergency services is to be
cleared gradually at about 1 MHz a year, starting in 1985 and continuing to December 31 st , 1989, to accommodate two additional national radio networks. The allocation $102 \cdot 1-104 \cdot 6 \mathrm{MHz}$ will eventually be given to local radio, extending to 105 MHz , while the remaining spectrum to 108 MHz will be used for BBC radio network extension.
Holland: A new law instructs all cable firms to switch off equipment dedicated to specific channels at close down. The purpose is to prevent pirate TV stations "squatting" on particular channels, reaching the cable subscribers through a network"s head-end electronics.
Italy: A new video signal transmission technique is being tested by RAI on the Milan-Rome link. To avoid system congestion at times, time-compression is used to enable two video signals to be carried in a common channel. The signals are first separated into their luminance and colourdifference components and then arranged in a timedivision multiplex as shown in Fig. 1. Note that the sync pulses are stripped out, a narrow ($0.8 \mu \mathrm{sec}$) line-frequency pulse being added. Signal compression and expansion are carried out digitally.

Coincidentally Bell Labs in the USA have been experimenting with a complex arrangement to enable two TV signals to be carried simultaneously in a single channel. Engineers think that a third signal could be carried in this way, though with some degradation of overall video quality. The intention is to use the system for satellite relay use. In the Bell system, only the differential information for every other field is transmitted; in an upper band by means of double-sideband suppressed-carrier modulation. Elaborate video signal processing is required, with field stores.
South Africa: The TV2 and TV3 networks commenced in January. The PM5544 test pattern is used for all three networks. In the case of the English/Africaans service from Johannesburg the identification "TV1" is carried at the top, with a centre right digital clock and "SABC/ SAUK JHB" at the bottom. The Zulu/Xhosa service has "TV2" at the top and the other identifications as TV1. The Iswana/Sotha service is the same but with "TV3" at the top. A South West African service started last year: the PM5544 pattern carries "Windhoek" at the top and a digital clock at centre right - the lower panel is blank.

Receiving Equipment

A new tunable head amplifier from Schrader, type RB45, has a gain of 26 dB and a noise figure of 1.6 dB . A Dutch enthusiast comments that the results are very good. It covers down to the 430 MHz amateur band.

Some enthusiasts who built the varicap tuning system featured in the March 1982 issue (page 236), with ET021 tuner unit, have experienced instability at approximately 50 MHz . This can be removed by adding a 10 or $22 \mu \mathrm{~F} 63 \mathrm{~V}$ electrolytic at the output pin of the 7824 voltage stabiliser IC1.

Issue no. 122 of the BATC magazine CQ-TV contains an

Fig. 1: Two channels in one: time-compressed signal system in experimental use by RAI (Italy).
article, with PCB, on an f.m. TV receiver. It's an ideal system for use as a satellite receiver, and includes sound tap-off facilities. Membership now costs $£ 4$ annually - an application form (include SAE) can be obtained from E. Summers, 13 Church Street, Gainsborough, Lincs. BATC interest in 1.3 GHz transmission and $\mathrm{f} . \mathrm{m}$. video is increasing; and further information is expected in future issues of the magazine - so now may be the time to join! The f.m. TV receiver circuit mentioned above has been used successfully for reception of the Gorizont 3.675 GHz signals.

Amplifiers and Feeders

A problem has become evident with the widely used Labgear CM7060/65/66 etc. series of amplifiers in round, plastic boxes for masthead mounting. If thick low-loss cable is used (as it should be), air flow within the box becomes restricted or the box may be air tight. Cable entry is via two holes in the bottom, through tightly fitting grommets. As a result, condensation can occur with a build up of water droplets inside the case. The solution is to drill a quarter inch hole in the recess between the two cable entry grommets.

The quality of the coaxial cable supplied for TV use has declined in recent years. The braid density has been reduced, and the PVC covering can be affected by exposure to sunlight. During manufacture, the PVC outer cover of domestic type coaxial cable has a plasticizer added to make it more flexible. After installation however a phenomenon called "plasticizer migration" occurs - the added chemical starts to leak through the braid to the polythene dielectric. After a few years the characteristics of the dielectric are altered and the result is increasing signal attenuation. The problem can be minimised by avoiding the use of cellular foam dielectric coaxial cable (air-spaced polythene cables, with four or five air cores, are less affected by this problem) and by routing the cable down the north side of the mast to reduce exposure to direct sunlight.

From our Correspondents . . .

Interference is becoming an increasing problem and Cyril Willis reports both success and gloom. A 49 MHz cordless phone was established recently at Ely, causing severe ch. R1 interference. The operator was recognised but denied using 49 MHz . A call from Cyril was monitored "on-air", using a Patrolman 50 Tandy/Taiwan receiver. Cyril then asked the operator to cease using 49 MHz and advised British Telecom - eventually contact was made with the "Illicit Attachment Dept."! Communication followed between BT and the operator, who has apparently decided to "go legal" at 47 MHz . BT can cut off the phone and press for a fine for the use of non-approved equipment - the new Telecommunications Bill will make the use of 49 MHz equipment an offence.

Both Cyril and Iain Menzies report problems as a result of 50 MHz amateur radio operation. I've not personally experienced this, though such transmissions will increase dramatically from the end of 1984.
Gosta van der Linden has sent details of the channels available to him in Rotterdam on cable TV - some fifteen in all, including Dutch, UK, French, Belgian and W. German services. The French system L and UK system I signals are converted to system G . The cable service also supplies 23 radio channels from W. European sources even the American Forces network.

SOUTH WEST AERIAL SYSTEMS

10 Old Boundary Road, Shaftesbury, Dorset. SP7 8ND tel. 07474370

As the leading UK aerial mail order company, we carry a comprehensive range of equipment for domestic, fringe, DXing and distribution systems. Satellite equipment (TVRO) is also available.
We supply aerials/equipment for all bands, from large aerials to small fiters and all the bits in between. Aerials for the new 50 MHz amateur band are just available.
We are active DXers - your guarantee of honest and accurate advice - efficient equipment at competitive prices.
We've listed just some of aur weak signal/DXing UHF aerials below - prices include VAT, packing and Securicor carriage.

Fuba. Gold anodised multielement bigh gain (17 dB), the legendary \times C39 (available Groups A,E,W) Ja $£ 59.50$ Jayloeam. JBX8 multi-element (14.5 elBd) E24.35
JBX21 JBX 29 High gain multi element $(18.5 \mathrm{dBd})$ (aveilable Grp. A,B,C/D) Wolsey. Budget high gain (18dBd) rmulti- $\mathrm{E47} 65$ element HG36 (Grps. A.B.C/D) Colour King. Wideband 4 bay bowtie (12.5 dBd)

Trisx. Unix 44 Gold anodised multielement (14 dBd gain), (Gros. A,K.E.W) Unix 92 . Golden anodised perfection,
high gain (17dBd) (Grps. A,K,E,W) high gain (17dBd) (Grps. A,K,E,W) Twin Grid kit, 15.3 dBd gain Quad Grid kit, THE ULTMMATE weak signal system 18.2 dBd gain NB. Grid kits include low loss combing NB. Grid kits include low loss combining filter,
clamps, cross support masts. Antiference (nllow 10-14 working davs for delvery of stock items)
Antiference XGs also available - send 54 p for our extensive 1983 catalogue detailing aerials, amplifiers, filters etc. etc. Include SAE for satellite leaflet or for our new 'Wideband UHF Aerials' leaflet - essential reading for fringe UHF enthusiasts. Access/Barclaycard welcome.

TV LINE OUTPUT TRANSFORMERS

If the Transformer you require is not listed please phone.		
RANK BUSH MURPHY	DECCA	
TzOa, T22 Pry \& Sec $\quad 5.51$	MS1700 200120202401 m	8.00
2718 Series primary $\quad 5.00$	MS2404 24202424 mono	8.00
2718 Series EHT overwind 5.00		8.00
A774 single std mono $\quad \mathbf{8 . 5 0}$	121012111511 portable GYPSY portable	11.50
A816 solid state mono $\quad 9.00$		1.50
2712 T16a T16b mono portable 9.00	CS1730 1733 colour	8.00
A823 A823b A823av colour $\quad 10.00$	CS1830 1835 colour '30' series BRADFORD colour	8.00
Z179 2722 series colour $\quad 10.00$. 00
$2718188^{\prime \prime}$ series $\quad 11.00$	80 series colour 100 series colour	
$271820^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ series $\quad 11.00$		8.00
T20a T22 series colour $\quad 10.00$	PHILIPS	
G.E.C.	210300 series mono 320 series solid state mono	8.00
2047 to 21053112 to $3135 \quad 8.00$		8.50
"GAIETY" FINELINE 8.00	G8 series colour	8.00
$2: 14$ portable mono $\quad 8.00$	G9 series colour	8.50
$31333135 \mathrm{M1501H}$ portable mono 8.00	G11 series colour	14.98
DUAL STD hybrid colour 11.00	KB-TT	
SINGLE STD hybrid colour $\quad 10.00$		
SINGLE STD solid state $90^{\circ} \quad 8.50$	VC200 VC205 VC207 mono VC300 VC301 VC302 portable CVC1 CVC2 colour	8.00
or 110°		8.00
FERGUSON HMV MARCONI	CVC5 CVC7 CVC8 CVC9 colour	9.00 9.00
1590159115921593 mono 8.00	CVC20 series colour	9.00
161216131712 mono 8.00		8.00
16901691 mono 8.50 16001615 series mono 9.74	CVC30 CVC32 series colour CVC40 series	14.56
30003500 EHT or SCAN 8.58	L.O.P.T TESTER Total Price	16.79
D 15\% VAT to ALL prices.		
Tidman Mail Order Ltd., 236 Sandycombe Road, Richmond, Surrey. Approx. 1 mile from Kew Bridge. Phone: 01-948 3702 Mon-Fri 9 am to 12.30 pm . 1.30 to 4.30 pm . Sat 10 ar to 12 pm .	Hamond Components (Midland) Ltd., 416 Moseley Road, Birmingham B12 9AX. Phone: 021-440 6144. Mon-Fri 9 am to 1 pm . 2 pm to 5.30 pm .	

Fig. 2: (a) Simple in-line pin diode variable attenuator, with through powering if required. The chokes have 8 turns close spaced 26 g at u.h.f., 14 turns at v.h.f. (b) The arrangement used by Seppo Pirhonen.

Neil Carnegie (Glasgow) has been on holiday in Ireland recently and reports on the "free" TV situation there. The only pirate station is at Trapmore, rebroadcasting UK services. "Nova TV" has equipment but is not yet in operation. Boyneside TV is now off-air due to transmitter failure. Dublin TV has ceased operation.

Seppo Pirhonen (Helsinki) has sent in some remarkable photos of his reception - using stacked Hirschmann aerials. One shot is of ZDF reception on ch. E21. Seppo has also received NDR (W. German) signals at u.h.f. The Russian Tallinn u.h.f. station presents a problem locally and Seppo is trying out a variable-gain system, with the gain at maximum when TSS is off-air. The simple circuit being tried is shown in Fig. 2 - it's fitted between the CM7066 head amplifier and the CM7080 cascade amplifier. Maximum attenuation should be around 30 dB , falling to an insertion loss of 1 dB .

Petri Pöppönen (Lahti, Finland) has sent in some shots of the UK Satellite TV Ltd. programmes which are now present for some two-three hours a night via the OTS-2 satellite at 11.6 GHz . The programmes are available on cable networks at Helsinki, Turku and Rovaniemi, and are shortly to become available at Vaasa and Lahti. Signals from the Gorizont craft at 4 GHz are being received successfully on dishes of diameter down to 1.2 m .

Finally a note on the installation here at Romsey. All the aerials on the main lattice mast, together with the now hardened cable, have been removed in readiness for a complete change of aerials. It's typical that as soon as derigging was completed on May 2nd, with only temporary aerials available, wide open SpE conditions occurred.

Band III European Channel Allocations

Last month we discussed reception of European signals in Bands I/II. Table 1 this month lists the Band III European channel allocations.

Long-distance reception in Band III relies mainly on the weather-related phenomenon known as tropospheric propagation - stable, slow-moving high-pressure systems give improved reception of distant v.h.f. and u.h.f. signals. The best times for reception are from dawn through to perhaps 1000-1100 - at sunrise and soon after, the heating effect of the sun often produces a characteristic temperature inversion, with the upper air warmer than the Earth's surface - the reverse happens at dusk. During such
inversion conditions tropospheric ducting can often carry Band III/u.h.f. signals over many hundreds of miles (this phenomenon is common in the Gulf area, where cochannel interference is a problem). Another weather condition helpful to tropospheric propagation is fog with high-pressure, particularly in the autumn. Also watch out for an approaching cold or warm front, which if approaching rapidly can give short-lived signal enhancement along the line of the front.
At times SpE reflection can occur in Band III, particularly when Band II is very active. MS reception also occurs in Band III, though a high-gain receiver with stable timebases and accurate channel frequency setting is essential. Patience is required for Band III MS reception, though it will appear given the right conditions and equipment - at distances akin to SpE .
Tropospheric signals are generally slow-fading and stable, unlike SpE with its characteristics of rapidly fluctuating signal levels and unstable polarisation.

Table 1: Band III Channel Allocations

Channel	Vision (MHz)	Sound (MHz)	System
B6	179.75	176.25	A
B7	184.75	181.25	A
B8	189.75	186.25	A
B9	194.75	191.25	A
B10	199.75	196.25	A
811	204.75	201.25	A
812	209.75	206.25	A
813	214.75	211.25	A
E5	175.25	180.75	B
E6	182.25	187.75	B
E7	189.25	194.75	B
E8	196.25	201.75	B
E9	203.25	208.75	B
E10	210.25	215.75	B
E11	217.25	222.75	B
E12	224.25	229.75	B
ID	175.25	180.75	B
IE	183.75	189.25	B
IF	192.25	197.75	B
IG	201.25	206.75	B
IH	210.25	215.75	B
IH 1	217.25	222.75	B
R6	175.25	181.75	D
R7	183.25	189.75	D
R8	191.25	197.75	D
R9	199.25	205.75	D
R10	207.25	213.75	D
R11	215.25	221.75	D
R12	223.25	229.75	D
F5	164	175.15	E
F6	173.40	162.25	E
F7	177.15	188.30	E
F8	186.65	175.40	E
F8A	185.25	174.1	E
F9	190.3	201.45	E
F10	199.7	188.55	E
F11	203.45	214.6	E
F12	212.85	201.7	E
ID	175.25	181.25	1
IE	183.25	189.25	I
IF	191.25	197.25	,
IG	199.25	205.25	1
IH	207.25	213.25	1
IJ	215.25	221.25	,
1*	176	182.5	L
2*	184	190.5	L
3*	192	198.5	L
4*	200	206.5	L
5*	208	214.5	L
6*	216	222.5	L

*New French channels
System A UK, System B W. Europe, System D E. Europe, System E old French, System I Ireland, System L new French.

Less Common TV Faults

S. Simon

Common faults in a wide range of popular CTV chassis were discussed in the Routine TV Receiver Tests series of articles. The aim was to assist those perhaps not too familiar with particular chassis. Nearly all these chassis have tricks which can cause most of us headaches from time to time however.

Thorn 9600 Chassis

For example, we mentioned last month that W810 in the EW diode modulator circuit in the Thorn 9600 chassis has a habit of decomposing and that it should be replaced with a more robust component. The effect when W810 decomposes is to cause the sides of the raster to bow inwards. The other diode in the circuit, W818, is also a BY298. Although it doesn't decompose, it does have the habit of occasionally going short-circuit. The effect of this is more drastic: it causes complete shut down of the chopper circuit, i.e. there's plenty of voltage at the collector of the chopper transistor VT512 but the driver transistor VTS11 is rendered inoperative, with a low collector voltage.

If the h.t. supply plug to the centre, horizontal timebase panel is removed (right side as viewed from the rear, i.e. PL801 in Fig. 3 last month), the chopper circuit may burst into life when the set is switched on again. This proves that the fault is on the centre panel, and although it could be due to several things the fact that the three fuses on the supply panel are intact suggests that the trouble is in the line output stage. It is prudent therefore to check this diode for being short-circuit at an early stage in the proceedings in order to save time. A BY298 can be used in this position as it doesn't lead such a strenuous life as W810. It's located more towards the centre of the board.

Rank T20 and T22 Chassis

The EW modulator diodes 5D6/7 in the Rank T20 and T22 chassis often give trouble. Though it's common to check the diodes in situ, this can be misleading. If 5D6 is leaky, the effect will be irregular edges with the width and pincushion correction controls not having the required effect. The rule should be to remove the diodes for a more accurate check on the reverse reading. The SKE4G type is more suspect than the BYX 71 .

GEC C2110 Series

One point we didn't mention when discussing the GEC C2110 series was the habit of the right side field timebase panel developing a poor contact at the earthing pin of the plug and socket. This gives rise to intermittent field roll which is easily mistaken for lack of sync. Locate the earth socket connection and solder a lead direct from this to the main frame (joining up with the other earthing lead).

Thorn 3000/3500 Chassis

When the chopper in the Thorn 3000/3500 series chassis fails to start and you've checked all the usual things, spare a thought for R620 in the monostable circuit.

If the colours are bright it's probably o.k. If they are not bright, take it out and measure it - you'll probably find that it's fallen in value to something like 500Ω. The correct value is $2.7 \mathrm{k} \Omega$. This is not terribly critical, but something like a few hundred ohms certainly won't do. It's under the rear of the power supply panel, towards the mains transformer.

GEC 20AX CTVs

Still on the subject of switch-mode power supplies, it would appear that many service engineers are still not aware of what causes the BU126 in the GEC 20AX series receivers to go short-circuit. It's been mentioned on various occasions, but in case you didn't notice them the point is to check the value of R 515 before replacing the BU126 chopper transistor if you find that this is shortcircuit. R 515 should be $150 \mathrm{k} \Omega$ (1W). It tends to go high in value, thus keeping the BU126 turned on for too long. The value of $150 \mathrm{k} \Omega$ is not too critical (up to $220 \mathrm{k} \Omega$ will do), but the wattage rating is important. Preferably fit a 2 W component for lasting reliability.

Pye 697 Chassis

There are still plenty of Pye hybrid colour sets around. In the event of intermittent loss of picture signals, remember that the front controls are connected directly to the printed panel. A dry-joint on any one control (mainly the contrast control it seems) can cause a lot of head scratching - particularly if the fault appears for only a brief period every few hours.

Also remember that the audio output i.c. (those sets using an i.c. instead of a module) has its own power supply rectifier at the bottom right side. This can go open-circuit, thus shutting off the sound completely without affecting the other l.t. circuits.

Thorn TX10 Chassis

Now to a more recent chassis, the Thorn TX10. Repeated failure of the BU208A line output transistor TR831 can well be due to intermittent leakage through the scan coupling/cornection capacitor $\mathrm{C} 831(0.33 \mu \mathrm{~F})$. The misleading thing about this is that C831 may appear to be 100 per cent when tested. An increase in the voltage rating to 1 kV would appear to be prudent. The main cause of chopper transistor failure was mentioned in the May letters column - a defective focus unit.

Interpreting Voltage Readings

These few snippets may have given the impression that normal servicing routines no longer hold good. This is far from true. In ninety cases out of a hundred, careful and painstaking voltage checks, carried out with the circuit in mind, will quickly reveal the source of the trouble. The circuit is the important point in that last sentence.

For example, if the cathode voltages are absent or very low when a tube tase check is made on say a Thorn 3500 chassis, you don't immediately chase the voltage supply. You carry on to check the other tube base
voltages, and shouldn't be surprised to find that the first anode supply voltages are also absent. This may well indicate that the basic cause of the trouble lies in the line output stage - because failure of the line output stage will remove the clamp pulses to the video stages, leaving these turned on hard all the time - hence the low cathode voltages.
If you encounter this fault and the h.t. fuse on the power supply panel is intact, remove the beam limiter panel (top right) and check the 60 V supply from the left side entry to the line timebase through coil L502. If you're lucky, you could well find that the cause of the trouble is a soldered connection to this coil, i.e. a lovely dry-joint which has probably been sparking for some time, with the
parallel 18Ω resistor R528 burnt out of course. If you're unlucky, the fault could lie deeper in the line output stage.
Whilst a few volts more or less are of little consequence when dealing with an h.t. line of say 200 V , such latitude cannot be allowed in low-voltage circuits. If the service manual says that the voltage on the a.g.c. line should be say 8 V , a reading of 6 V is a serious error and will make the difference between a clear picture and a very grainy one. If one failed to heed the voltage discrepancy, a fault in the aerial input or the tuner unit could be suspected, rather than trouble in say the first i.f. stage.

Small voltage changes can make a big difference when it comes to transistors and i.c.s -0.1 V is indeed a difference of potential!

AD Conversion for VCR Control

Richard Roscoe

The biggest problem facing the designer of a VCR's control circuitry is interfacing - that is, how to get all the necessary signals to and from the rest of the machine into and out of the microcomputer control chip. Modern largescale integration technology makes it possible to put the whole control system for even the most sophisticated machines into a single chip. The trouble is that this chip would require 80 to 100 pins. So various arrangements are used to make each available pin (about 40) do as many jobs as possible.

As an example, consider one major source of input signals, the customer controls - that ever increasing array of yummy buttons just waiting to be pressed. Many earlier VCRs used a scanning system in which all the buttons are connected to an arrangement of rows and columns. This technique was described in an article on microcomputer control in the October 1982 issue. The idea is that pulses are used to scan the row/column matrix to discover which switch has been closed by the user. The drawbacks to this are that quite a few pins are still required (sixteen switches require eight pins), and since the microcomputer has to be connected directly to the switches a simple remote control implementation is difficult to achieve. To overcome these problems, later designs have gone over to a system of AD
(analogue-to-digital) conversion.
With this system each button produces a unique analogue voltage when pressed. This voltage is then equated with a corresponding digital code. How this is done can be demonstrated by considering the circuit used in the Ferguson 3V29/30 machines (see Fig. 1). The arrangement is typical of many. It uses a type of analogue-todigital conversion known as a ramp or count-up converter. There are other types of AD converter, i.e. successive approximation and parallel types, which are faster and more expensive. The slowness of the ramp type is of little consequence for VCR use however, whilst its simplicity in terms of hardware is an advantage.

The operation of the circuit is as follows. Pins C $0,1,2$ and 3 of the microcomputer IC2 supply parallel four-bit pulse trains via the buffer stages in IC11 to the resistor ladder network in resistor pack RA6. The resistors in this network have values in the ratio $2: 1$. Fig. 2 shows the parallel pulse trains and the effect produced as these are added - a ramp or staircase with sixteen steps between about 0.1 V and 9.5 V is produced, with the voltage level of each step very precisely defined. Some machines, such as the Hitachi VT series, use a different ladder network called a weighted resistor network, in which each "rung"

Fig. 1: Ramp type AD conversion circuit used in the Ferguson Models 3V29 and 3V30.

Fig. 2: Scan pulse and staircase waveforms used for $A D$ conversion in the circuit shown in Fig. 1.
of the ladder has twice the value of its neighbour. The result is the same however.

Returning to Fig. 1, the staircase waveform is applied to the inverting input (-) of IC3, which acts as a comparator, i.e. it compares the voltages at its two inputs and sets its output high or low depending on which input is higher than the other. The non-inverting input (+) is initially at 10 V , which is applied via $\mathrm{R} 45 / 6$. Note that this voltage is above the level of any of the steps in the staircase applied to the inverting input. Consequently the comparator's output is high, which is read by the microcomputer's B2 input pin as an indication that no operation has been selected.

The function switches are connected between the junction of R45/6 and various points along another resistor chain whose bottom end is connected to chassis. When any switch is closed, R45 and the appropriate portion of the resistor chain in circuit form a potential divider so that the comparator's non-invert input is reduced accordingly. The value of the resistors in this chain are arranged so that each switch or combination of switches when closed produces a voltage that lies between the steps of the staircase waveform.

Fig. 3 shows what happens to the comparator's input and output waveforms when the play button is operated. The principle is the same for each user function. The play switch applies 2.99 V to the comparator's non-invert input. When the staircase waveform applied to the other input rises through this value, the output goes from high to low. The microcomputer detects the fact that a function switch has been closed, though at this stage it does not know which one had been operated, and resets the four-bit parallel data to 0000 . As a result the comparator's output goes high again and the up-count is restarted. When the comparator's output again goes low, the count is stopped in this example at 0101, which the microcomputer recognises as the play instruction. The microcomputer then repeats the count sequence as a double check and, if the instruction is verified, it acts accordingly to put the VCR into the play mode. The whole sequence takes between 10 and 20 msec .

This AD technique enables up to sixteen commands to be accommodated using just five microcomputer pins, C 0 , $1,2,3$ and B2. It's thus economical in the use of microcomputer pins while, because of the way in which the switches are connected, a remote control system using a two-wire cable is easy to arrange - a changeover jack socket is all that's needed.

Whilst the basic principles remain the same, the circuitry and voltage levels used in other VCRs may differ.

As to faults, we had one case (with an Hitachi VT8000) of an open-circuit resistor in the comparator circuit. This led the microcomputer i.c. to misinterpret the mode instructions and, apparently in total confusion, it switched the machine off! Since there's no one-to-one relationship between the switching and the action taken, various wierd and wonderful symptoms could be possible. The explanation given here however, with some scope checks around the comparator and ladder networks, should make it possible to ascertain whether the AD conversion is working properly or not.

All service engineers will by now be aware of the increasing use of digital techniques in TV/video equipment. Inevitably the need to come to terms with things like AD and DA conversion will become more pressing. Hopefully this short article, though dealing with only one aspect of the matter, will have thrown some light on this area of circuit operation.

Fig. 3: Operation of the circuit when the play switch is closed.

TV Fault Finding

Reports from Richard Roscoe, John Coombes and George R. Wilding

More often than not the process of repairing a TV set consists of simply changing the component or components that experience tells us are the usual cause of the fault. This means that servicing can be done speedily and cheaply, without the luxury of having to resort to true diagnosis. This is fine of course, but what happens when the usual culprit is not responsible? After fighting back the initial panic we then have to bring our considerable powers of deductive reasoning to bear upon the problem, i.e. where's the service manual? Having found that we can begin to think about the fault itself - but only if the manual has a clear circuit diagram and a sensible circuit description. All too often the manual seems to consist of a photo of the set, followed by fourteen pages of neatly tabulated part numbers and finally a fold-out sheet labelled circuit diagram, apparently produced by dipping mice in ink and letting them run about. Surely the priorities here are wrong? Who amongst us wouldn't swap the knowledge that a $100 \mathrm{k} \Omega 4 \mathrm{~W}$ resistor can be obtained by quoting the appropriate ten-digit code for a bit of a clue as to how the diode modulator or beam limiter is supposed to work?

Given the disincentives, it's hardly surprising that so many engineers can't or won't practice the art of logical fault analysis. Instead, they opt to extend the swap it and see principle until the faulty component is discovered by trial and error. Unfortunately a lot of perfectly good components get damaged or thrown away in the process, the printed tracks can suffer damage, and the quality of the soldered joints may be affected. Thus the whole area under investigation becomes a future trouble spot.
This is all leading up to a certain Pye 731 (later version) chassis that came our way recently. The fault was intermittent field jitter, and the customer told us she'd had it put right some six months ago before she'd moved to our area. When we switched the set on we found that the picture wasn't too bad, if a little flat. But if the scene changed the picture would become unsteady, jump slightly, then settle down again. It was not too bad, but enough to be annoying. Now the cause of this sort of trouble in sets that use a thyristor regulated power supply is usually in the power supply rather than the field timebase. The thyristor itself can be responsible, or its triggering may be defective. Alternatively if the regulation is faulty the h.t. can rise, as a result of which the over-voltage trip operates, producing a picture that flutters (in this chassis, at any rate).

When we removed the back we were appalled at what we discovered. Extensive and not very careful soldering had been carried out all over the power supply panel. Various diodes and capacitors were hanging off the print side, and jumper leads replaced damaged portions of track. The swap it and see policy had obviously been applied with a vengeance.

Without disturbing anything, we connected the meter to the h.t. line. It was continuously varying between about 190 V and 200 V , depending (or so it seemed) on the picture content. Thus little or no regulating action was taking place, though the h.t. was not far off - a bit on the high side. We next took a look at the presets. The h.t. controls (coarse and fine) were set at minimum. Carefully
advancing the setting of the coarse control increased the picture jitter, with the h.t. jittering in sympathy - clearly the over-voltage circuit was working. Tweaking the overvoltage preset allowed the h.t. to shoot up and we hurriedly backed it off again. It looked as if the previous repair had been no such thing but instead a bodge culminating in a desperate resetting of the presets to disguise the fault. Couple this with a judicious lowering of the contrast control setting (hence the flat picture) to smooth out the current demand and bob's your uncle (for a while).

After the board had been removed and tidied up as best we could we were ready to tackle the fault. We assumed that the obvious things - the thyristor and diac - had been replaced, and concentrated on the clue that there was little or no regulation. This led to a check on the feedback resistor $\mathbb{R} 897$, which should have a value of $470 \mathrm{k} \Omega$. It read over $10 \mathrm{M} \Omega$! Replace it and set up the adjustments and we'd an excellent picture. What a lot of trouble a little thought would have saved!
R.R.

Toshiba Model C2295B

We've sold many of these sets and have a number out on rental. Our fault experiences have been as follows.
Low gain: Check for 12 V at pin 2 of the tuner interface panel on which the a.g.c. amplifier and i.f. preamplifier stages are mounted. If the 12 V supply is present here but not at the collectors of the preamplifier transistors 1TR32/ $3,1 \mathrm{R} 56(4 \cdot 7 \Omega)$ is probably open-circuit. If the voltages are present, check the preamplifier transistors 1 TR32 (BF198) and 1TR33 (BF199).
Colour faults: The decoder module T146A consists mainly of the large decoder chip IC501, type TA7193P, which can be responsible for no colour, intermittent loss of colour, Venetian blind effect and no red, green or blue. Other things to check in the event of no colour are the 4.43 MHz crystal XL501 and the delay line driver transistor TR502 (BC557A).
Loud whistle: Several things can cause this, but the most likely culprit is the line driver transformer T401. Check by replacement.
Channel selector locked to one channel - signal tunable but memory inoperative: This is usually due to the digital control i.c. (ICA01, type TC9002AP) which must be handled with care to avoid damage. Other items to check if necessary are diode DE12 (1N4148) and zener diode DE11 (ZPD24) - by replacement.
Memory fails to operate: Check the memory i.c. (ICA02, type TMM841P) by replacement. If necessary check the clock oscillator tuning capacitors CA11 and CA12 (120 pF) and the coil (LA01) which can go open-circuit.
Audible noise when changing channels: Connect a $4.7 \mu \mathrm{~F}$ capacitor between pins 53 and 54 on the main panel, positive side to pin 54.
J.C.

Toshiba Model C2095B1

The Toshiba C2095B1 shares many panels in common with the C2295B, the information given above applying to
this set as well. One difference is the use of an overvoltage circuit which shuts down the line oscillator in IC301 (TA7609P). If the circuit comes into operation when the set is otherwise working normally, check the over-voltage transistor TR471 (BC557A) by replacement and its base bias components R476 (1M Ω) and D472 (BZX79-B6V2). The zener diode can leak and the resistor can change value.
J.C.

GEC Series 2

No sound or raster but a slight hum from the speaker confirmed that the valves had warmed up and that h.t. was present. There was ample voltage at the anode of the PL504 line output valve, but not the slightest suggestion of a spark. On touching the PL504's envelope we found that it was running cool. Likely causes were an internal valve defect or the screen grid feed resistor open-circuit. There was full h.t. at the screen grid pins, while the absence of a negative voltage at the control grid pins suggested that the valve was indeed defective. Surprisingly, a replacement failed to restore normal operation. The only possible remaining cause of the fault was an open-circuit connection to the valve's cathode: the print looked all right, but fitting a short jumper lead from pin 8 to an adjacent earthed point finally solved the problem.
G.R.W.

Saba H Chassis

A Saba Model TS6735 (H chassis) came our way recently with the complaint that while it would usually work for a few minutes after switching on it would then change channels spasmodically and erratically before going off to leave an unmodulated raster with only hiss from the speaker. After this, operation of the remote or on-set channel change controls had no effect.

As with all electronic tuning systems, the chips involved are the prime suspects. There's an SN74141 BCD decoder, an SN74190 BCD counter, and an SN7413 dualNAND Schmitt trigger. The latter could be ruled out since it's operational on remote control only. Before replacing the other two i.c.s we decided to check the l.t. supplies. The TBA625 5V regulator i.c. was found to be providing only some 3 V , though its 10 V input was correct. Replacing this i.c. restored normal channel selection, but a few days later the set was back with the complaint "no results" due to a short-circuit diode in the 20 V bridge rectifier blowing the associated fuse.

Replacing the diode and fuse restored the l.t. supplies, except that from the 5 V regulator. This time we didn't have a TBA625, but found that a 7805 was a satisfactory substitute.
G.R.W.

Capacitor Colour Codes

Miniature tantalum capacitors of various makes are found in continental TV sets. Whilst those manufactured by Bosch and NSF have the values and voltage ratings

Fig. 1: Colour coding systems used on ErolFrako (left) and SEL (right) miniature tantalum capacitors.

Table 1: Tantalum capacitor colour coding.

Capacitance (μ F)				
	Firgt Sige	Sigure		
Colour	figure	figure	Multiplier	DC voltage
Black	-	0	$\times 1$	10 V
Brown	1	1	$\times 10$	1.5 V
Red	2	2	-	-
Orange	3	3	-	-
Yellow	4	4	-	6.3 V
Green	5	5	-	16 V
Blue	6	6	-	20 V
Mauve	7	7	$\times 0.001$	50 V
Grey	8	8	$\times 0.01$	25 V
White	9	9	$\times 0.1$	3 V
Pink	-	-	-	35 V

printed on them, some Ero/Frako and SEL capacitors use a colour coding arrangement. Details are given in Fig. 1 and Table 1.
G.R.W.

Rediffusion Mk I Chassis

This hybrid colour set gave perfect results apart from the fact that the width would often vary erratically by about half an inch on either side. The $5 \mathrm{M} \Omega$ width control is connected to the usual VDR arrangement and looked decidedly the worse for wear, but replacing it made no difference. Attention was therefore turned to the associated high-value resistors. These sets are now several years old, and the small panel on which the width control and various other components are housed is mounted close to the line output stage valves. $\mathrm{R} 501(1.5 \mathrm{M} \Omega)$ in series with the width control's slider and R500 ($3 \cdot 3 \mathrm{M} \Omega$) which is in series with its track were replaced, completely curng the width variations - the heat from the valves was almost certainly responsible for the deterioration of these resistors over the years.
G.R.W.

B \& O 3400 Chassis

The problem with this hybrid colour set was bad NS raster distortion - being an early 110° set, the raster correction circuitry is quite elaborate. Anyway, replacing 12 C 2 $(0.1 \mu \mathrm{~F})$ in the NS output transformer tuning network and readjusting the four presets on the NS correction panel cured the trouble.

An almost equally annoying fault, though apparently not noticed by the set's owner, was the raster's tendency to balloon when the brightness was well advanced. Worse still, the focusing then deteriorated as the e.h.t. fell. The basic cause was poor e.h.t. regulation of course: changing the GY501 e.h.t. rectifier improved matters but didn't completely remove the effect. A new boost diode produced a further marginal improvement, and the trouble was finally resolved by bringing the boost voltage up to the correct figure of 840 V from 750 V (boost adjustment preset 8 R5) then readjusting the preset width control 6R24. In most hybrid sets there's a single preset width control which also sets the boost voltage, but in this chassis there are two independent controls. Measure the boost voltage at test point TPa4.
G.R.W.

Correction

Finally, our apologies for a printing error last month. R913 in the Decca 110 chassis' first anode control network is $220 \mathrm{k} \Omega$, not $22 \mathrm{k} \Omega$.

Exhibition Report: Cable 83

Dave Lauder, B.Sc.

The organisers of the "Cable 83 " exhibition and conference, which was held at the Wembley Conference Centre on May 10-12th, described it as "Europe's first major exhibition of cable TV products and services". It was actually two shows combined, the other one being the "London Satellite Television and Cable TV Show" which was due to have been held in July.

Although many exhibits were for cable operators and broadcasters, there was much to interest those of us at the receiving end. Satellite TV receiving systems were conspicuous on a number of stands, as were live displays of Soviet TV via the Gorizont satellite. The prices of such 4 GHz equipment have fallen steadily, and Megasat were offering a system comprising a 1.5 metre dish aerial with mount and electronics for $£ 1,250$, plus installation and VAT. For maximum enjoyment however a SECAM colour TV receiver and a knowledge of the Russian language would be an advantage!

As it was essentially a trade show, there was little aimed at the amateur constructor: some exhibitors could not even quote prices for individual parts of their systems. March Microwave however were exhibiting 4 GHz lownoise amplifiers (LNAs) and combined LNA/downconverters made by Dexcel Inc. in the USA. Although the prices are in the region of $£ 300$, some constructors are interested in them due to the difficulties of building a front end to work at these frequencies.

A potential problem for Gorizont viewers is that the satellite's orbit is becoming inclined, and the time may come when auto tracking or twice daily dish adjustment becomes necessary. It's not clear whether the orbit can or will be corrected, as the satellite is intended only as a link between studios and transmitters.

With direct broadcasting at 12 GHz due to start in Europe in 1985 there was surprisingly little DBS equipment to be seen. This could in part be due to the lack of any decisions so far about the type of transmission to use. While some dishes on display were suitable for frequencies up to 12 GHz , the surface accuracy of many was insufficient for use above 4 GHz . No European made equipment was evident in the field of 12 GHz electronics. The Japanese appear to have gained a lead in this area they have after all had a 12 GHz direct broadcasting satellite in use, though it's no longer in operation.

BBC Engineering were present and had information sheets mentioning the use of the MAC system for satellite broadcasting. The IBA, which developed MAC, was not represented however. This was somewhat surprising in view of the EBU's favourable view of MAC (despite that however governments and broadcasting organisations are still arguing about what system to adopt)

The cable TV aspects of the exhibition covered all the distribution hardware, much of which consisted of well established US products. There were machines to dig ditches, and even to install cables in sewers . . . Displays of advanced cable technology included switched stars and optical fibres, and there were simulations of the type of services that interactive cables could provide.

At the end of the day one cannot help but wonder how many viewers will be prepared to bear the cost of satellite receivers/decoders, or of connections to cable, bearing in mind the recurring cost of licences or subscription channels. Large audiences will be attracted only when high quality programmes are available at reasonable cost - but this in turn requires a large audience to start with, a typical chicken and egg situation.

VCR Servicing
 \section*{Part 19}

Mike Phelan

Having had a month to recover from the 3 V 23 's drum servo, we'll now take a look at the capstan servo (see Fig. 85). This is fairly conventional, with both a speed control loop and a phase control loop, as in the drum servo. The bulk of the circuitry is contained within IC12 (AN6341), but a BA841 is used for still/slow/frame advance/double speed - this operates in the same way as in the 3V16 (see Part 14). There are also facilities for assembly edit, i.e. successive recordings can be made without noise between them, which is essential for camera work.

Capstan Motor Drive

For a change we'll start at the motor end of the circuit, see Fig. 86. The motor is a conventional brush type d.c. motor, but unlike those used in previous models has ballraces instead of sintered bronze bearings. This gave rise to a little problem, more of which later.

The speed error voltage is applied to pin 6 of IC13, the operational amplifier's inverting input. The phase error
voltage is applied to the non-inverting input at pin 5 - the diodes etc. connected to this pin are for the usual limiting and filtering. There is also frequency-sensitive negative feedback. The output at pin 7 combines both error voltages and feeds the motor drive amplifier X21, X2 through D21, which is forward biased of course. The motor's other terminal is normally earthed due to X 4 conducting. X22, X3 and X1 are normally off.

When the capstan is rotating, the motor control output from pin 38 of IC14 is high. It goes low to stop the motor. This results in two things. First the two inverters (part of IC10) earth the anode of D21 so that it's cut off. This removes the input to the motor drive amplifier so that the motor comes to rest. Secondly X8 turns on, taking pin 6 of IC13 high and therefore pin 7 low. This prevents pin 7 rising to 12 V as the servo tries to correct for the fact that the motor has stopped.

This all happens when we press stop, rewind, fast forward, still or slow. In the latter two modes however the slow-drive circuit takes over. This operates almost exactly

Fig. 85: Simplified block diagram of the capstan servo.
as in the 3 V 16 , but with one slight difference. To recap. If we are in playback, FF2 (IC14 pin 30) is high so that X23 is on and X1 is off. FF1 (pin 29) is low and pin 38 (motor control) is high. When we press pause, pin 38 goes low, turning on X8 and also earthing the anode of D21 via IC10. FF2 also goes low, turning on X1 to brake the motor - as X 4 is already on, this effectively places a shortcircuit across the motor. With the motor used in the 3 V 16 this was fine, but the ball-bearing motor used in the 3V23 will not stop instantly even when shorted. This is where the circuit to the right of the motor, connected to pin 28 of IC14, comes in.

Every time FF2 goes low to brake the motor, pin 28 produces a 10 msec pulse. This turns on X22, X3 and X24 and turns off X 4 . So the normally negative end of the motor is connected to 22 V for 10 msec . As X 1 is now on,
this pulls up the motor instantly. To digress briefly, it's important not to fit this type of motor to the 3V16, which doesn't have the reverse brake circuit, as the stopping point will be badly defined, with noise bars on slow and still.

Back to the 3V23. The tape has now stopped and the machine waits for the third drum flip-flop pulse. This changes the states of FF1 and FF2, removing the brake by turning X1 off, and triggering the slow-pulse generator. This, as you may recall, produces a 20 msec pulse which is added to a lower amplitude pulse of variable length - the initial part overcomes the motor's inertia. The tape moves, typically for 60 msec , until 17 msec after an off-tape control pulse is read. FF1 and FF2 then both change state, ending the drive pulse and braking the motor with the 10 msec reverse braking pulse. This process is repeated

Fig. 86: Capstan motor drive arrangements.
four times, the tape transport then stopping completely, unless in the slow mode when further drive pulses are produced at intervals. The pulse length is adjustable by varying the amplitude of the second part of the pulse. This has the effect of altering the motor current and therefore its speed: the faster it goes, the sooner the next off-tape control pulse arrives, and as this makes the drive pulse end 17 msec later the pulse length is varied.

Capstan Servo - Playback

The "front end" of the capstan servo is shown in Fig. 87. During normal playback it operates as follows. First the speed control loop. The 225 Hz capstan frequency gear (FG) signal is amplified by IC7 and X5 and presented to pin 16 of IC12 which contains two divide by two flip-flops followed by a frequency-to-voltage converter that works on the same principle as the arrangement used in the drum servo. The speed error voltage is produced at pin 7 of IC 12 and then goes to pin 6 of IC 13 as previously mentioned. During normal playback D27 is biased off so that the second flip-flop is inoperative. In the double speed mode D27 is forward biased since pin 10 of IC11 goes low: the FG signal, now at 450 Hz , is divided by two a second time to restore the correct conditions in the servo.

The phase control loop compares the trapezoid from the drum servo at pin 13 of IC12 with the timing of the off-tape control pulses. The block marked "trapezoid" in IC12 alters the slope and timing of the drum trapezoid.

All the servo functions are controlled by the inputs applied to connections 51,55 and 58 . The latter is the double speed 12 V line. 51 and 55 are both low during playback. This sets IC9 so that its Q output (pin 15) is low while its inverted Q output (pin 14) is high. X6 is on, disabling IC8 (we'll see what this does later). The off-tape control pulses are amplified by IC1 and X1 and then fed to the monostable IC2 whose cycle time is 30 msec . As the control pulses are spaced by 40 msec , this simply alters their width. X2 inverts the pulses and IC3 shortens them to 13 msec , this time being fixed by the two resistors and capacitor connected to pins 1 and 2. X3 is off because pin 10 of IC11 is high, and thus has no effect. X4 inverts the pulses, which next pass through two NAND gates to pin 15 of IC12. The FG pulses from pin 10 of IC6 cannot get through as the first NAND gate (IC4c) is disabled by a low on its second input (from IC9's Q output). X10 and X11 are off while X13 is on, so the time-constant of the tracking MMV in IC12 is set by the manual and preset tracking controls and R120.
Two things occur in the double speed play mode. First, as we've seen, the now 450 Hz FG pulses are divided by two again in the speed control loop, since D27 is forward biased. Secondly X3 is turned on by pin 10 of IC11 going low. This shorts out part of the time-constant controlling IC3 so that its cycle period is now 7 msec . But, you say, the off-tape control pulses are now arriving at 50 Hz ! Not so, at least not after IC2: the 30 msec period of this MMV now effectively divides them by two, since the pulses are spaced by 25 msec at the input and IC2 is now triggered on every other pulse.

Capstan Servo - Record

On record, the 51 and 55 connections are both high, so that IC9's Q and inverted Q outputs are both changed - Q is high, inverted Q low. The speed control loop remains
the same, but the sample for the phase control loop is now the FG signal divided by nine to give 25 Hz . X6 is off, so IC8 is enabled, squaring up the control pulses and sending them to the control head via the noise trap D7/8. These pulses get as far as X4, but no farther, as NAND gate IC4a is blocked by a low input from the inverted Q output of IC9.

The FG signal, after being squared by the Schmitt trigger IC17, is fed to pin 14 of the 4017 IC6. The 4017 can be made to divide by any number up to ten. It has ten output pins, designated Q0-Q9. Each goes low in turn when we feed a pulse to pin 14, the clock input. When pin 15 (reset) is taken low, the count starts at Q0 again. In this application we want to divide by nine, so Q9 is connected to the reset pin via X7 and the NAND gate IC4d which is enabled. Thus every time Q 9 goes low so does the reset pin and we get division by nine. The other two NAND gates $\mathrm{IC} 4 \mathrm{c} / \mathrm{b}$ are enabled, so the output pulse goes to pin 15 of IC12. The Q4 output is used, but any would do. NAND gate IC4d is used as an inverter for the reset pulse - pin 2 is high since NAND gate IC4a is disabled. If one input of a NAND gate is low, the output is high: if one input is high, the gate acts as an inverter. The three gates in this part of the circuit are thus used to route the sample signals.

Finally X11 is on, cutting out the tracking controls. X10 and X13 are both off.

Edit Start Control

We now come to the interesting bit, the edit start control. If you're unsure what's meant by editing, consider the case where several recordings are made on one tape maybe by pressing the pause control during the commercials, or when using a camera (the VCR goes into pause every time the camera's trigger is released). When the tape is played back there will be lots of noise between each "take" as the servos lock up again. On this machine the drum servo would run free when the signal was interrupted, and would need time to lock up again. Even when pause is pressed during the advertisements and the signal is not interrupted, stopping the tape will alter the spacing between the control pulses on the tape, upsetting the capstan servo on playback. In the worst case there'll be a 20 msec space between the last pulse of the previous section of recording and the first pulse of the next section. Even without this, both servos will take a second or two to relock.

On the 3 V 23 however we can press pause during record, then restart by pressing the play button, or use a camera trigger to do this, the result on playback being perfect edits - just as if channels have been changed.

How is this magic performed? When record pause is selected, the pinch wheel comes out, the tape winds back through some 25 frames (assuming that there's already a recording on the tape), then stops. This is controlled by the microcomputer i.c. on the mechacon panel. When recording is restarted, the ESC (edit start control) routine starts. In this state connection 55 is high but 51 is low, unlike normal record. IC9's Q output is low and its inverted Q output is high, as in playback. Let's stop at this point to consider exactly what the problem we're trying to overcome is.

Having wound the tape back, we have 25-30 frames of the previous recording which can be used for comparison purposes and to stall for time while the drum servo locks up. We mustn't actually record during this time, because we don't want to erase anything, but the drum servo

Fig. 87: Capstan servo - the "front end".
must be in the record mode. This is not quite the whole story, because it's necessary to ensure even spacing of the last control pulse of the previous take and the first control pulse of the next take. This is done by putting the capstan servo into playback, so that it's locked by the control pulses, then somehow switching everything back to record before the 25 or so frames have been passed.

This is how it's done, using the items we've already considered in Fig. 87. Remember that the drum servo is unaltered, remaining in its normal record mode. We're recording and press pause. The tape winds back $25-30$ frames then stops. When we restart the recording, the ESC sequence starts - connection 55 stays high, but connection 51 stays low for 12 frames then goes high to put the machine back into normal record. Nothing is recorded on the tape during the ESC period. The drum servo locks up to the new input signal, so that it's well and
truly locked by the end of the ESC time. Remember that it's running at the correct speed all the time, even in the absence of an incoming signal.

It's in the capstan servo however that the interesting things occur. During the ESC period the FG divided by nine output from pin 10 of IC6 is blocked because pin 9 of IC4 (IC9's Q output) is low. IC9's inverted Q output is high, so gates IC4a and IC4b pass the off-tape control pulses to IC12. In other words the capstan servo is in the playback mode, locked to the final off-tape control pulses from the previous recording. IC6 is still fed with amplified FG signals, but can't at first divide by nine because pin 2 of IC4 is not held high as it is in playback, so there are no reset pulses from IC6's Q9 output to its reset pin. The result is division by ten instead, giving an output at 22.5 Hz . Pin 2 of IC4 (the reset gate) is fed with the offtape control pulses in the ESC mode, so this pin goes high

Fig. 88: The reel servo.

25 times a second. As the Q9 output is at $22 \cdot 5 \mathrm{~Hz}$, a control pulse will arrive at pin 2 of IC4 at the same time as the Q9 pulse within the 12 frame period (approximately half a second). IC4d will then pass a low output to the reset pin. If this occurs early in the ESC sequence the counter will divide by nine every time, since the Q9 bit and control pulse are coincident.

At the end of the ESC sequence the machine switches back to record, IC9's Q and inverted Q outputs change state, the gates of IC4 block the control pulses and the reset gate is permanently on. So the new recording starts with a slight overlap, but the clever bits with the reset gate and the counter ensure that there's no "glitch" between the control pulses on playback, while the drum servo has had plenty of time to lock up anyway. The edits are perfect and take place within a single frame.

To summarise, 12 frames of the previous recording are played back, with the drum servo in record and the capstan servo in playback, while the counter is synchronised with the off-tape control pulses being played back. After twelve frames both servos are stable and the machine starts to record.

The Reel Servo

We'll finally look at the third and simplest servo system, the reel servo - see Fig. 88. We've already seen that the microcomputer's D port (see Fig. 68) controls the reel motor. It does this in conjunction with a series of gates that switch various voltages to the reel motor via transistors. In fast search however the reel motor is servo controlled: the servo controls the speed, the microcomputer the direction.

As the tape is running at ten times the normal speed, the control pulses arrive at 250 Hz . After being squared by the Schmitt trigger, the other half of IC9 divides them by two. The 125 Hz pulses are then fed to the frequency-tovoltage converter IC15, whose error voltage output is applied to the motor drive amplifier via IC13.

IC16 forms a monostable whose time-constant is approximately 400 msec . Any pulse fed to pin 5 of this i.c. is thus stretched to 400 msec , unless X 9 conducts and shorts out C65, resetting the MMV. As the Q and
inverted Q outputs from IC9 alternately fire and reset the MMV, pin 6 produces a series of pulses whose width varies with frequency. Each pulse closes two switches in IC5, connecting C43 to the $8 \cdot 2 \mathrm{~V}$ zener diode D30. This arrangement prevents hunting. When not in search, D31 is forward biased so that D24 maintains the charge on C43 at 6.2 V . If C43 was fully charged or discharged when going from play to search, the reel motor would either stall or speed up, with unfortunate results for the tape.

Reverse Search

When reverse search is selected X14 momentarily conducts, discharging C43, with the result that the motor stops and restarts gradually in reverse as C43 charges this avoids snatch.

Edit Start Backspacing

The "record pause" input opens the first two switches of IC5 and closes the last one, setting the speed of the backspacing for the edit start with D30.

Correction

Next month we'll continue with the 3 V 23 's signal sections, starting with the audio department which has some interesting features. Before going any farther however a correction is required. Due to an editorial misunderstanding, there were several references to forward and reverse slow motion in Part 17 (see page 373). This is incorrect: the two controls are for faster or slower than the preset slow motion speed selected on going from normal play to slow motion.

Colour Supplement

Another point worth making relates to the photographic colour fault guide in the May issue. In some cases, particularly photos 10 and 13 , the fault condition is not easy to see. The reason for this is that it's necessary to use a camera exposure covering two complete fields or more. This unfortunately means that noise and other minor disturbances, being random, tend to be integrated out.

Teletext Decoder Update

Steve A. Money

The Television teletext decoder was updated in 1979 (see June-August 1979 issues) to provide colour. Since then some changes have taken place in the transmission of both Ceefax and Oracle and some modifications to the decoder are required to obtain correct operation. The main change has been the increase in the number of teletext data lines transmitted per field - four lines are now used instead of two, giving faster access to pages and the possibility of larger magazines.

A relatively simple modification will deal with the extra lines. All that's required is to alter the timing and width of the data gating signal. Fig. 1 shows the modification, which involves changing the values of the timing components for the two monostables in IC4 (74221). C5 is reduced to $0.033 \mu \mathrm{~F}$ to give a delay of about $650 \mu \mathrm{sec}$ so that data is accepted from about ten lines after the field sync pulse, while the value of C 4 is increased to $0.033 \mu \mathrm{~F}$ to allow eight-ten lines through to the decoding logic. Because of the relatively wide value tolerance of the capacitors, it's advisable to add a $10 \mathrm{k} \Omega$ trimmer potentiometer (RV1) in series with R4, which is reduced in value from $33 \mathrm{k} \Omega$ to $27 \mathrm{k} \Omega$.
To set up the decoder for four-line data operation, tune to a BBC channel, select page roll, and adjust RV1 until the text rows are all being displayed. If the delay is too short or too long, one or two lines in every four on the page will be lost.

Oracle Interleaving

Changes in the Oracle service present a further problem which involves a more complex modification. At the time of adding the extra data lines the transmission sequence of the Oracle data was also changed. Whereas with Ceefax all the lines for a page are sent as a single block, the Oracle data signals for several pages in different magazines are interleaved so that one set of four lines might be for say page 110 while the next four data lines could be for page 250 and so on. This scheme relies on the fact that the magazine code (hundreds in the page number) is sent at

the start of every data row though the complete page number is sent only on header rows. Since the Television teletext decoder carries out a page number check only during the header rows, it assumes that all the following data until the next header is for the same page. The result, when trying to receive Oracle, is a scrambled mixture of lines from several different pages.

It was initially thought that the input logic board might have to be virtually rebuilt to resolve the Oracle signals. Several different modification schemes were tried with varying degrees of success. Eventually a relatively straightforward modification involving the addition of just two i.c.s on the board was devised and seems to be successful. The additional logic is shown in Fig. 2.

The flip-flop IC25 (7474) detects a match in the magazine code as each data line is received. This is done by clocking the flip-flop when the magazine code is present on the data lines DB1 to DB8, and setting it to the output state of the code comparator IC24 (pin 6). This output goes to 1 when a match exists, so the Q output of IC25 will be set at 1 when the received data line is from the requested magazine. IC25's Q output is gated with the page accept signal from IC17b, and controls the writing of data into the page memory. Thus only lines with the correct magazine code are written into the memory.

Header rows for pages from other magazines may be interleaved with data for the selected page. To prevent these header rows from resetting the page accept flip-flop IC17b, its clear input from the row 0 detector gate IC20 is disconnected and its clock pulse is gated with the output of IC25. As a result IC 17 b responds only to page headers from the selected magazine.

Finally, to give correct rolling header operation the signal from IC25 is also fed to gate IC18a so that only header rows from the selected magazine are displayed when the decoder is searching for a newly selected page.

The additional logic shown in Fig. 2 can be mounted on a small piece of $0 \cdot 1 \mathrm{in}$. pitch Vero stripboard which can be wired directly to the input logic board so that it's supported directly above the i.c.s on the main board.

On the input logic board the tracks to pin 13 of IC17 (7474) must be cut so that pin 13 is isolated. One track is on the component side and the other on the reverse side of the board. A link must be used to bridge the separated parts of the track so that pin 2 of IC17 is still connected to pin 2 of IC15. If IC17 is in a socket, a simpler solution is to bend up pin 13 of IC17 so that it doesn't enter the socket. For reliable operation it's advisable to connect pin 13 of IC17 to the 5V rail. When the tracks are cut this can be done by bridging pins 13 and 14 of IC17.

The track from pin 8 of IC17 to pin 1 of IC18 and the link between pins 3 and 4 of IC18 (7410) must also be cut.

The additional logic circuits are wired into the board by making connections to IC5, IC17, IC18, IC19, IC21 and IC24 as indicated in Fig. 2. Note that 5V and chassis connections are required for the extra i.c.s.

No setting up is required. If the system is working, then with page roll selected only those pages with the selected magazine number will be displayed - i.e. if page 100 is selected, only pages 100 to 199 will appear. Because the decoder has no error detection and correction circuits for address decoding, any errors in the received data for page and magazine codes may cause parts of pages other than the selected one to be displayed. Provided reception is reasonably error free however this problem will be infrequent.

Each month we provide an interesting case of television servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.

For some years now colour receiver circuit design has varied little from chassis to chassis in many areas. For example, in most current colour sets you'll find a SAW filter to shape the i.f. passband, a one-chip colour decoder, and a diode-split e.h.t. rectifier system. The major exception to this seems to be the power supply, where a multiplicity of designs is to be found. As a result, when confronted with a dead set the circuit diagram has to be consulted - unless it's a chassis with which you are familiar.

This month's case concerns just such a situation - a dead ITT set fitted with the CVC40 chassis. On initial examination the 300 V h.t. output from the mains bridge rectifier was found to be present, but there was no sound, not a peep from the timebases, and no "pumping" effect at switch on. This symptom is often due to the chopper transistor T807 having gone short-circuit, betrayed by the fact that the tuning voltage supply feed resistor R3A has sprung open, but in this case both these items were intact while the 127 V line (chopper circuit output) was quite dead. It looked as if the chopper transistor was not being driven, which was confirmed by oscilloscope tests at the chopper driver transformer.

In this chassis the switch-mode power supply is driven at line rate by a pulse train generated by the TBA920 sync separator/line oscillator chip. The pulse train is taken from pin 5 of connector G on the sync/line oscillator panel to pin 1 of connector R on the switch-mode control panel (see Fig. 1). The pulses are shaped by T801 and its associated components and are then fed to a pulse-width modulator (T802/3) whose output in turn drives the base of the chopper driver transistor T806. The TBA920 and T801 are powered from the 12 V rail once the set gets going. Since the 12 V supply is derived from the line output transformer however, start-up feeds are required.

The TBA920's start-up supply comes from the 300 V rail via R4 and R3 (both $9 \cdot 1 \mathrm{k} \Omega$). In our set these two resistors were warm, indicating that current was flowing. A 15.625 kHz squarewave was present at the TBA920's output pin 2 , and was present at pin 1 of connector R on the switch-mode module (CMP40). T801's start-up

QUERY COUPON

Available until 20th July 1983. One coupon, plus a $£ 1.00$ (inc. VAT) postal order, must accompany EACH PROBLEM sent in accordance with the notice on page 489.

TELEVISION JULY 1983
supply comes from the 300 V line via connector R10 and R806 ($470 \mathrm{k} \Omega$). A meter check confirmed that 300 V was present at R10, so why didn't the set perk up?
We decided to check for an overload on the 127 V rail. Resistance readings were normal however and experimental disconnection of the 22 V rectifier diode D11, which is also fed from the chopper transformer, had no effect. Withdrawing the scan yoke plug (this isolates the line output/e.h.t. circuit) made no difference either. Back to the CMP40 module.
This is easy to work on when plugged into the print side of the mother board. Thus set up we scoped the unit to discover what was going on. The driver transistor T806 was dormant, and there was no activity around the transistors in the pulse-width modulator circuit (T802/3). The electrode voltages here were way out, but didn't suggest any problems with the transistors themselves, rather lack of drive. Moving back to T801, we found a small and strange waveform at its collector, while a triangular one was present at its base! Time to try fitting a new CMP40 panel. In it went, we switched on . . . and all was as quiet as before. Further checks showed that in both modules the voltages at T801/4/5 (the latter two transistors comprise an overload trip and are powered in the same way as T 801) were very low, with no more than 4 V at the emitter of T801. This gave us an idea which turned out to be correct. More next month!

ANSWER TO TEST CASE 246 - page 432 last month -

Our battered Ferguson 3V20 VCR, described last month, would persistently unthread and stop after about five seconds' operation. We'd investigated several of the sensors on the deck and confirmed that they were giving correct information to the MSM5830 mechanism control chip. There are two rotation detectors in this machine: that for the take-up spool was operating correctly, but the head drum rotation signal was missing.
This is fed to pin 7 of the MSM5830 in the form of the drum flip-flop pulse, a 25 Hz squarewave. No squarewave could we find however, either on the mechacon or the servo panel. The drum flip-flop pulse is generated within an i.c. on the servo panel - it comes from an internal bistable, which of course needs triggering pulses.
These are normally generated by a tachometer coil which is mounted close to the head drum flywheel. The coil is regularly exited by the passage of a small magnet mounted on the flywheel. What had happened of course was that on impact (remember that the machine had been

Fig. 1: Line oscillator and power supply start-up resistor feeds in the ITT CVC40 chassis.
dropped) the flywheel had jolted down the head drum shaft, taking the magnet out of range of the tachometer coil. So no triggering pulses and no squarewave. A couple of minutes with an Allen key put the machine to rights. It now sits on the shop shelf, fearfully awaiting its next customer.

Service
 Bureau

Requests for advice in dealing with servicing problems must be accompanied by a $£ 1.00$ postal order (made out to IPC Magazines Ltd.), the query coupon from page 488 and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

ITT FT110

The picture broke into lines whilst the set was being viewed. Switching off and on restored the picture, but after a while the raster collapsed towards the centre. The set is now dead.

First check whether the surge limiter resistor R765 ($5 \cdot 1 \Omega$) is open-circuit or the mains rectifier D708 shortcircuit. If these items are in order it's likely that the switchmode power supply has stopped due to an overload. There's no single common fault unfortunately. First check whether any of the rectifier diodes $\mathrm{D} 713 / 4 / 5 / 11$ is shortcircuit. If R789 is open-circuit, check the BU208 converter transistor T712. Further possibilities include the BU208 line output transistor T501, the tripler, and C517 $(0.001 \mu \mathrm{~F})$ at the earthy end of the e.h.t. overwinding. If the power supply comes to life when the tripler is disconnected from the line output transformer, replace the tripler.

KUBA FLORENCE

There's a bright white line down the centre of the screen, with centre foldover, and R514 across the line coils is cooking. The field scan appears to be normal and there's full width. The original fault was no e.h.t. due to lack of line drive as a result of the l.t. bridge rectifier D606 going short-circuit and blowing the fuse.
The fact that R514 is overheating indicates that there's a break in the scan circuit on the raster correction panel (removing the panel will have the same effect). Check for continuity from pins $5 / 6$ through one winding of the linearity coil L551, then the corner convergence transductor L552, the EW correction transductor L555 (the blue one) and its parallel resistor R 561 (15ת), the second comer correction transductor L553, the other
linearity coil winding and finally pins 7/8. L555 is not fitted on some panels.

BUSH TV300

The main problem is poor field linearity, which no adjustment will cure - the field linearity control has no effect. The sound output transistor also seems to be excessively hot.

We suggest you check the field drive coupling capacitor $\mathrm{C} 411(47 \mu \mathrm{~F})$ and the output coupler $\mathrm{C} 413(470 \mu \mathrm{~F})$, preferably by substitution, before suspecting the driver and output transistors. These are TR19 (2SC945) and TR20 (2SD152). If the audio output transistor TR15 (2SD152) is excessively hot it's probably leaky.

SONY KV1800UB

The trouble is the convergence. The blue horizontal lines are wider than the red and green ones and can't be superimposed on them.

Assuming that the static convergence (screen centre) is correct (if not, adjust the vertical static convergence plate, whose tab points upwards), you'll have to move the deflection yoke (flared end) carefully to the right, as viewed from the rear of the set. When the convergence is correct, wedge and seal the yoke.

GEC 3133

The fault with this set is no results. There's 300 V at the collector of the pump transistor TR451, but the start up bias at the junction of $\mathbf{R 4 0 3 / 4}$ is only 1.5 V instead of 5.8 V . The pump and line output transistors are both o.k. and no component defects can be found on the power panel.

We suggest you feed an external 6 V supply to the junction of R403/4, i.e. the anode of the start-up diode D403, then check with an oscilloscope whether line drive is present. If so, C404/5 (across R403/4) and D403 are suspect. If not, check the line driver transistor TR202 then suspect the 12 V zener diode D201 and the timebase generator IC251.

THORN 8500 CHASSIS

The picture is very gocd with the brightness turned down, but there's severe smearing when the brightness is advanced - especially on peak white. The tube has been tested, all voltages seem to be correct and the grey-scale tracking has been set up as per the instructions in the manual.

Flaring at high brightness levels is the result of the RGB output stages bottoming. Make sure that the beam limiter circuit diodes W601/2 on the c.r.t. base panel are o.k., then turn down the preset brightness control R205-it's in the middle of the signals panel - compensating for this by increasing the settings of the c.r.t. first anode presets. After doing this ensure that all three drive controls R214/ $6 / 8$ are set to maximum and that the contrast control is not over advanced.

[^1]
ELECTRONIC EQUIPMENT SERVICING

(TELEVISION/VIDEO)
full-time College course

TRAINING INVOLVES A HIGH PERCENTAGE OF WORKSHOP FAULT DIAGNOSIS ON MONOCHROME \& COLOUR TELEVISION EQUIPMENT. CLOSED CIRCUIT TV \& VIDEO CASSETTE RECORDER PRINCIPLES ARE INCLUDED IN THE COURSE

15 MONTHS COURSE

for beginners to include Electronic Fundamentals

6 MONTHS COURSE
for BSc, HND, CGLI, TEC
and similar applicants

Next two courses commence on September 19th and January 9th.
Also courses in Computers/Microprocessors, and Robotics leading to Technician Education Council Cert. and Higher Cert. awards.
Prospectus from:
LONDON ELECTRONICS COLLEGE (Dept T3/4)
20 Penywern Road,
Earls Court, London SW5 9SU
Tel: 01-373 8721

TV TUBE	S TUBE P	LISHING
ORKING T	V's WORK	NG PANELS
	Ree deliver	
Quality, High	Temperature	Reprocessi
Solour Tobes	One yer farane	mar
		边
$\left.\right\|_{904} ^{90}$		$\underset{\substack{835 \\ 855}}{\substack{89 \\ 5}}$
Hast hat marow reeck)		

Please add f12 plus VAT for optional guarantee on any type of colour tube.
MONO TUBES (One Year Guarantee)
A50-120W/R $£ 12$, A61-120W/R $£ 13$, Mono Portables $£ 16$
All tubes exchange glass required.
folowing items callers only
Solid state working colour TV's, with well view tubes fitted (1 year guarantee on tubes) from Only $£ 45$
Working TV Panels at Reasonable Price
Your good, working tubes with scratches or small chips, can be POLISHED with our purpose built polishing equipment. Only £7 per tube.
Delivery Service up to 40 miles from Luton. Fixed Charge £3. Free Delivery for tube orders over E50 + VAT.
Please add 15\% VAT to all prices. Callers welcome. Please phone first. Send for a fully comprehensive price list and a wall chart of approx 1700 Colour Tube Types that can be processed by us.
WELL VIEW
1144-134 Midland Rd.
Open Mon-Fri 8am-6pm, Sat 9am-5pm. Tel. 0582-410787
Your Local Tube Stockist:
Retach Ltd., Northwood, Middx. Tel. 9684-27019
West One Distributors Lid., Chesham, Buckinghamshire. Tel. 0494-778197
Rushden Rentals Ltd., Rushden, Northants. Tel. 0933-314901
S. and B. Electronics Services, Huddersfield, Yorks. Tel. 0484-36706

Please note that we have no connections whatsoever with any other business having similar name to ours.

APOLLO

HIGH TEMPERATURE PUMPED COLOUR TUBES
Fast Mail Order service to any part G.B. Dalivery 2-3 days. Just phone for a quotation. Delivery Manchester area free same day. Two year guarantee. Fitting while you wait or in your home $£ 20$ extra. Also P/L types \& Toshiba.
$18^{\prime \prime} \quad$ A47 $-342 \times 343 \times \quad £ 37.00$
$19^{\prime \prime}$ A49-120×/192x £37.00
$20^{\prime \prime} \quad$ A51 - $220 \times / 110 x$ - 538.00
22" A56 $-120 \times / 123 \times / 140 \times$ £38.00
$25^{\prime \prime}$ A63-120x . $£ 39.00$
$26 \times \quad$ A66-120×A67-120×/140×/150 £39.00
17" Ferguson Colour T.V.'s fully serviced, ideal as second set for kitchen, bedroom or caravan. $£ 75$ inc. delivery anywhere. Philips Video Spares Available.

061799085424 hour answering service.
43 Clarke Cres, Little Hulton,
Nr. Manchester M28 6XM.

M W ELECTRICAL BROOK PARK AVE. (OFF MARINE RD.) PRESTATYN
 "'WE DO NOT BOOST TUBES" COLOUR TV'S

COMPLETE FROM $£ \mathbf{1 0 . 0 0}$
TRADE WORKERS FROM $£ \mathbf{2 5 . 0 0}$ MINIMUM OF TEN
G8, DECCA, BUSH, THORN. ALSO MONOs ETC.
NEW \& GRADED TVs ALSO AVAILABLE OPEN SAT MORN, LATE NIGHT THURS 8pm
TEL: PRESTATYN (07456) 89849/89970

N7128 COLOUR BAR GENERATOR

New improved design with additional features.

\star Six Standard Test Patterns viz. Colour Bars, Red Faster, Linear Grey Scale, Cross Hatch, Dits, White Raster
\star All monochrome patterns available with or without burst signal (for checking colour killer action etc).
\star Crystal controlled sub-carrier, Line and Field frequencies.
\star Three outputs to rear panel: Video at IV P to P in:o $750 \mathrm{hm}, 800 \mathrm{~Hz}$ (approx), sine wave audio and modulated UHF (VHF available) 4 mV at 750 hm .
$\star 6 \mathrm{MHz}$ (adjustable to 5.5 MHz) intercarrier sound.
\star Front panel LED to indicate "Power On"

* Integral re-chargeable ni-cad battery plus mains unit/charger.
* Fully built, tested and guaranteed for 12 months.

PRICE $£ 85.00$.

N7118 COLOUR BAR GENERATOR KIT

* Five Standard Test Patterns viz. Colour Bars, Red Raster, Linear Grey Scale, Cross Hatch and White Raster.
\star Crystal controlled sub-carrier, Line and Field Frequencies.
\star UHF Output (VHF available).
\star Integral Ni-cad Battery and mains unit/charger.
\star Optional integral sound and video board add-on kits available @ $£ 8.95$.
Still available at special price $£ 39.95$.
Please add 15% VAT $+£ 2.05$ postage and packing per Generator.
Please allow 14 days for delivery.

INTRACEPT ELECTRONICS LTD., 203 PICTON ROAD, LIVERPOOL L15 4 LG. TEL: 051-733 3042

TV LINE OUTPUT TRANSFORMERS

FAST RETURN OF POST SERVICE

RANK BUSH MURPHY	
46 A640 dual std mono	7.00
sh A792, A793	
single std	7.00
A774 single std mono	7.00
A816 solld state mono	9.00
DECCA	
MS1700 200120202401 mo	7.
MS2404 24202424 mono	7.00
CS1730 1733 colour	8.00
CS1830 1835 colour	8.00
'30'series Bradford cold	8.00
80 series colour	8.00
100 series colour	8.00
FERGUSON HMV MARCONI	
1600	9.50
G.E.C.	
2047 to 2105	7.00
2000 to 2064dual std mono	7.00
DUAL STD hybrid colour	1.00
SINGLE STD hybrid colour	10.00
Indesit 20EGB 24EGB mono 9.00	
KB = ITT	
VC200 VC205 VC207 mono 7.00 CVC5CVC7CVC8CVC9 col. 8.00 CVC20 series colour CVC30 CVC32 series colour 8.00	
PRICES INCLUDE	
P \& P \& 15\% V	

PHILIPS

170 series dual std mono
7.00 210300 series mono 7.00 G8 \& G9 series colour 8.00

PYE 169-173-569-368
7.00

EKCO RV305-769-725-74I
8.00

WALTHAM 125
9.00

REWIND SERVICE - available for most continental types i.e. Kuba, Luxor, Korting, Tyne, Berry Skantic, K80 £12. Old lopt required

WINDINGS

RANK BUSH MURPHY

T20a T22 Pry \& Sec	6.00
Z718 series primary	6.00
Z718 series EHT overwind	7.00
ULTRA THORN	
I690 l691 EHT overwind	$\mathbf{7 . 0 0}$
1590 overwind	5.00
1615 winding	$\mathbf{7 . 5 0}$
PHILIPS	
G6EHT	$\mathbf{8 . 0 0}$
G6 primary	6.00
PYE	
691 to 697 EHT overwind	$\mathbf{4 . 0 0}$
691 to 697 primary	$\mathbf{5 . 0 0}$

All lopts and windings are new and guaranteed Open Mon_-Fri. 9 to 5.30 pm Allow 1-2 days for delivery

PAPWORTH
 TRANSFORMERS
 80 Merton High Street
 London SW191BE

S.A.E. all enquiries Barclaycard and Access welcome man
01-5403955

ARE YOU

USING YOUR SPARE TIME PROFITABLY?

If not, you're losing money. Money that you could be making by selling used calour televisions from home in the evenings. In fact, provided you start correctly and know exactly how to operate, you can easily earn a substantial CASH INCOME with a sterting capital of less than $£ 20$. Our new unique publication "How to Deal Successfully in Used Colour Televisions" enables you to follow in the footsteps of many experts who have a great deal of combined experience in this lucrative home business, and who have 'pooled' thei knowledge to help you. After all, to follow the advice of someone who has travelied the ground before you, is to be given the best possible start. And the hundreds of valuable trade secrets, hints, tips and suggestions in the guide show exactly how anyone of average intelligence can succeed immediately.

Every aspect, from securing the first television right through to rapid expansion of sales, is covered with the detailed knowledge of expers to ensure certain success. Indexed information on almost all makes of television is presented in clear tabular form, describing performance, reliability, price and service. In particular, the tips on expanding the business are very practical. and are almost automatic when put into practice. Pages of unique advice on advertising ensure that maximum sales are secured, and sources of supply are described in detail - for both televisions and new/used spares. Monochrome sets are also covered as are "invisible" cabinet repairs. Plus FREE on-going advice and FREE regular updating service

You can start tomorrow - but you'll need our guide. The latest big illustrated ecition is out now, and costs just $£ 4.95$ - a small price to pay for financial independence

ORDER TODAY FROM
GLOBUS INDUSTRES LTD. UNIT 18. DARLEY ABBEY MILLS, DERBY
Please allow up to 28 days for delivery.
To: Globus Indurtios Led., Unit 18, Dartoy abbey Mille, Derby.
Please send by return past "How to Deal Successfully in Used Colour Televisions"
enclose cheque/p.o for $\mathbf{£ 4 . 9 5}$
NAME
ADDRESS ...

COLOUR TELEVISION \& MUSIC CENTRE
 WE HAVE MOVED TO A NEW WAREHOUSE (NOTE NEW ADDRESS)

35 Stafford Road, Weston Super Mare, Avon.
(15 mins. past Bristol on M5)
NOT EX-RENTAL
COLOUR TELEVISIONS SOLID STATE
ћ FANTASTIC OFFER ઐ
PYE CHELSEA
18", 6 Button, Sliding Controls, Brilliant Condition

THE ABOVE ARE WORKS MODIFIED FOR MOST PARTS OF THE WORLD VHF - UHF
PYE 721
$20^{\prime \prime}-26^{\prime \prime}$, could be mistaken for new
£57.00 each
PYE 725
$20^{\prime \prime}$ as new
£69 each
Minimum 5 sets

* *

BIG REDUCTIONS FOR EXPORT ORDERS OVER 100 SETS all other makes in stock off the pile $\star t$
(G.E.C., SOLID STATE, FERG 9000 \& 8500, G's, DECCAS etc.)

Ring Now: W.S.M. 413537

MAIL ORDER ADVERTISING

British Code of Advertising Practice
Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requires advertisers to fulfill orders within 28 days, unless a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please retain proof of postage/despatch, as this may be needed.

Mail Order Protection Scheme
If you order goods from Mail Order advertisements in this magazine and pay by post in advance of delivery, Television will consider you for compensation if the Advertiser should become insolvent or bankrupt, provided:
(1) You have not received the goods or had your money returned; and
(2) You write to the Publisher of Television summarising the situation not earlier than 28 days from the day you sent your order and not later than two months from that day.
Please do not wait until the last moment to inform us When you write, we will tell you how to make your claim and what evidence of payment is required.

We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiser has been declared bankrupt or insolvent.

This guarantee covers only advance payment sent in direct response to an advertisement in this magazine not, for example, payment made in response to catalogues etc., received as a result of answering such advertisements Classified advertisements are excluded.

hUSSAIN CENTRAL TV

Clearance deal to the trade

10,000, yes, 10,000 sets to be cleared at ridiculous prices in ones or hundreds, i.e. Pye $205 £ 3$, GEC Hybrid £3, Philips G8 $£ 5$, and mono's $£ 1.50$.

Hundreds of modern sets at giveaway prices, i.e. Philips G11, G9, Grundig, Bush T20, Thorn 9800, Solid State ITT, Decca 100 and 80, etc.

Ring us today at our Birmingham depot:
 Phone 0216221023. Chepstow depot: 029126652.

COLOUR T.V. PANELS AND SPARES

Fully refurbished and working with 90 day guarantee for most leading makes. Very competitive prices. Same day postal service.

> S.A.E. for price list or telephone: JORDAN ELECTRONICS 113B Preston New Rd., Blackburn, Lancs. Tel: Blackburn 677824 .

Telepart

 Pattern Generator- Exceptionally light and durable

Pocket size for outside service

- Five different test power source - Five difterent test patterns for colour - White raster
*Horizonta/s *Vericles
A lightweight, extremely portable and versatile pattern generator for Alent correct installation, fast checks and repairs. Pattern stability is first class and compares favourably with other more costly bulky generators only suitable for bench work. The generator is pocket size measuring $10 \times 7.5 \times 4 \mathrm{~cm}$ and weighs only 190 grams.
PRICE £14.95 (Subject to V.A.T.)
POST \& PACKING £1.15

A Versatile Generator for Servicing or aligning mono or colour TV receivers. Lightweight and very compact for outside service. Features sound facility often not found on more costly generators.
PRICE £49.95 (Subject to V.A.T.) POST \& PACKING £1.15

Power Supply

A Power Supply can be supplied for the Telepart COLOUR BAR GENERATOR This compact unit mounts by 2 screws into the Battery compartment and converts the unit to a bench instrument.
PRICE £5. 50 (Subject to V.A.T.)
Supplied by return, off the shelf

'DO IT THE FREEWAY' All orders sent POST FREE by return			
LOPTS		PRESS BUTTONS	
B $+03000+3200$ EHT	17.00	Dacca 1730+20 Mono 4 way	6.60
$\mathrm{B}+03100+3300$		Dacca $1730+30+80+1006$ way	7.40
3400 EHT	19.50	GEC 21106 way	8.40
$8+03100+3300$		GEC 2136/7 6 way	8.00
3400	12.00	GEC 2112 +neons 7 way	12.50
$B+03500+3600$		GEC Corversion Unit	
$4000+5000$		$2113+2119+2121+2144$	
6000	11.50	$2147+2148+2149$	14.20
Decca 30	9.50	Hitachi 1904 way	8.50
Dacca 100	8.00	$1 T \mathrm{CVC} 57$ way	10.50
Decca 1700	9.00	ITT CVC 8/9 6 way	12.50
Decca 1730+1830	9.00	$17 \mathrm{CVC} 20+30+326$ way	7.40
Dynatron TV202 +203	11.00	17 CVC 25 VCR 6 way	8.50
GEC 2623 Solid State	9.50	National TG85 4 way	8.50
Grundig 5010UE		Philips G8 520 Square	10.50
6010UE +2202	12.00	Philips 68550 Sloping	16.50
Grundig 5010	12.00	Pye 713+715 4 way	8.00
Grundig 1500	15.00	Pye 715+207 Chelsea 6 way	12.50
Grundig 5010 EHT	19.50	Pye 7256 way	13.50
$1 T \mathrm{CVC} 5$	9.60	Rank A823 4 wey	9.00
$17 \mathrm{CVC} 25+30+32$	8.00	Rank A823 6 way	12.50
17 CVC 45	8.50	Rank T20A 6 way	9.50
Philips G8	8.50	Rank 27186 way	12.50
Philips 69	9.00	Salora 5 way	10.00
Philips 210 Mono	10.75	Satora 7 way	12.00
Philips 570	9.50	Skantic/Luxor 6 way	13.75
Pye $169+509+709$	10.00	Telpro 4 way	10.00
Pye $681+897$ PCB	14.25	Thorn 9000 Switchbank	7.50
Pre $713+715+717$	9.50		
Pye 725	10.20	TUNER	
Pye $731+735+737+741$	10.50	ELC 1043/06	6.00
Rank 7204	11.50		
Renk A774	11.00	CAPACITOR	
Renk $271818{ }^{\prime \prime}$	23.00	G11 470mfd/250v Elco	1.60
Rank $271820+22+26^{\prime \prime}$	23.00		
Rank Mono Portable 14*	9.50	INTEGRATED CIRCUITS	
Tandberg 110°	11.25	TA7607AP Pack of 10	5.00
Thorn 1590+1591	10.90	TAA550 Pack of 10	1.50
Thorn 1615	9.00	TDA2540 Pack of 5	5.00
Thorn 1690+1691	8.50	TDA9513 Pack of 10	5.00
Add 15\% V.A.T. and send cheque or P.O. to:			
FREEWAY COMPONENTS The Airport, Weston Super Mare, Avon BS24 8RA Tel: 0934419147			

UNIVERSAL PROGRAMME SELECTOR FOR VARICAP TUNING

UK Regd. Design No. 1006611
6 way interlocked d.p.
switch 100 K tuning
potentiometers
Top quality through hole
plated pcb
Dimensions: $5^{n \prime}$ by $22^{\prime \prime}$ by 1 Ideal for replacement wherr original parts are obsolete or unobtainable
Template guide supplied for
drilling of your own tascia
design
Range of pre-cut and drillec
fascia/mounting kits for
selected TV chassis enabling
our unit to be fitted without
further cutting drilling or
modification
All orders desparched same
day
DIRECT REPLACEMENT FASCIANMOUNTING KITS
Type 30-80 Replaces 7 piano-key unit as fitted to Decca/Telefunken 30 and 80 Type 30-80 $\begin{aligned} & \text { Replace } \\ & \text { chassis }\end{aligned}$
Type 30-C Replaces 7 piano-key unit as fitted to Decca console using long Replaces illumiana-key control panel
Type 100 Replaces 8 position touch tune selector (AEG SAS 660 SAS 670) as used in Decca/Telefunken 100 chassis
Type CVC8-9 Replaces 5 rectangular push button plus thumbwheel as used in ITT

SELECTOR E11+VAT
FASCIA/MOUNTING KITS (each) \mathbb{E} + VAT

ALDERSON-JAMES LTD

160 KINGS ROAD - HARROGATE N. YORKS
TEL: HARROGATE (0423) 60058 HG1 5JG

CENTREVISION

NO. 1 IN WALES
9000 SqFt
2000+CTV

* DECCA 18" £20 + VAT
\star KORTING 22-26 CTV £15 + VAT
\star HITACHI CTV FROM $£ 32+$ VAT
\star THORN $900020^{\prime \prime} £ 48$ + VAT
\star RANK Z719-Z718-T20 VARIOUS PRICES
\star PHILIPS 550 22" REMOTE $£ 35$ + VAT
\star GEC SOLID STATE FROM $£ 32+$ VAT
\star THE TRADE SAY THE BEST QUALITY
SETS ON THE MARKET TODAY
\star BULK TERMS TO OTHER WHOLESALERS
\star ALSO PANEL’S-STANDS AND TUBES IN STOCK

DECCA 30 SERIES 22" IN 10'S £18
SELECTION OF WORKING SETS DONT DELAY PHONE TODAY

0222-44754 CENTREVISION HOUSE, SLOPER ROAD,
CARDIFF CF1 8AB.

HIGH GAIN
AERIAL

BOOSTERS

B45 H/G UHF Television -
Tunable over the complete UHF band. Gain above 20dB, noise 2.8 dBs .

B14 - Band 3 VHF Television -
Tunable over the complete Band 3 (Channels (E) 5 to 13). Also covers Aircraft \& 2 meter Amateur Bands. Gain above 28 dBs . Noise 2.8 dB
PRICE each $£ 8.70$.

AERIAL AMPLIFIERS Aerial amplifiers can produce remarkable improvement on the picture and sound in fringe or difficult areas.
B45 - For Mono or Colour this is tunable over complete UHF television band.
B11 - For stereo or standard VHF/FM radio.
B12-for VHF television band 1 \& 3. All amplifiers are complete and ready to use Battery type PP3 or 8 V to 18 V DC next to the set type fitting. PRICES £6.70 each.

AERIAL SPLITTERS
2 way T-TYPE $£ 2.70$ each
Goods despatched on receipt of order.
Prices Fully incuusive. P \& P per Order 300. S.A.E. for Leatiets. Access Cards.
ELECTRONIC MAILORDER LTD
62 Bridge St, Ramsbottom, via Bury, Lancs. BLO 9AGW. Tel Rams (070 682) 3036.

If you see an advertisement in the press, in print, on posters or a cinema commercial which you find unacceptable, write to us at the address below. (TV and radio commercials are dealt with by the I.B.A.)
The Advertising Standards Authority. If an advertisement is wrong, we're here to put it right.

ASA Ltd., Brook House, Torrnngton Place, London WCIE 7HN.

VISIONTEL BEST QUALITY EX RENTAL SETS FROM £10 HERE IN CENTRAL LONDON!

Hundreds of sets always in stock AT VERY COMPETITIVE PRICES

For Example:
Philips G8
Philips 550
Thorn 3500
ALL PRICES SUBJECT TO VAT

Good Workers
£25
£35
£25

We also have PYE, DECCA, GEC, ITT, GRUNDIG, JVC, PHILIPS G9 + G11, THORN 9000 and PORTABLE TVs
FOR FURTHER DETAILS TELEPHONE 3283787 OR COME ALONG TO 55 KILBURN HIGH ROAD, NW6

TELEVISION TUBE SHOP LTD

BRAND NEW TUBES AT CUT PRICES

31-19W/20W19.95	230DB4CT468..........31.00
A31-120W/300W17.95	240DB4/240AB4A22.00
A31-410/510W17.95	CT507 equiv 21.95
A34-100W/510W18.50	310DGB4/DMB4....... 23.00
A34-514W24.25	310EUB419.95
A38-160W/170W17.50	310EUB4A18.50
A44-120W/R 25.00	310EYB4 18.75
A50-120W/R 19.00	310FXB4 $\mathbf{1 7 . 5 0}$
A61-120W/R 21.00	310HCB4..................31.30
9AGP4 $\mathbf{2 1 1 . 8 2}$	340AB422.50
190AB4/C4 23.00	340AYB4...................30.00
	340AXB430.00
Some Rebuilt Japanese	340RB4/CB4.............26.00
\& European Types	340AHB426.00
Available from £14.00 + VAT £2.	RIGONDA 6 "...........14.00

COLOUR TUBES
(NEW \& MULLARD/THORN COLOREX) into cash. Contact COLES-HARDING \& CO, 103 South Brink, Wisbech, Cambs. 0945 584188. Immediate settlement

SECOND HAND Colour TV spares and tubes. Most makes. Telephone Southport (0704) 74411. Anytime.

```
Northwood Middx (9684) 27019 01-845 2036
            RETACH LTD.
    Rear 78 High Street,Northwood,'Middx
LOOK G11 PHILIPS (inline tube)
Also:
PHHLIPS G8 550 (22 Slant Button)
PHILIPS G8 520 (22 Flat Button
PHIIPS G8 522 (26 Hat Button)
PHILIPS G9 585 (26 Remote)
RANK T20/22 Series (Incline Tube)
RANK }823\mathrm{ (While Stocks Last)
RANK }718\mathrm{ (Incline Tube)
THORN 9800 (Incline Tube)
MONO:- PYE T184-24" Mono (Solid State)
VIDEO's:- PHILIPS N1700, N170Q, videos
TUBES:-
20"}\mathrm{ Rebuilt Colour Tube, 2yr Guar.
22" Rebuilt Colour Tube, 2yr Guar.
26"\prime
All Prices +VAT - Callers by Appointment
```

GRUNDIG NORDMENDE Spares panel exchange service. Complete sets. Circuits, 0785814643 anytime

NEW SUSSEX WAREHOUSE, Trade Televisions.
Colour from $£ 10$, mono $£ 3$. Tel. Brighton 673482

Japanese colour tVs, Hitachi, Sony, Panasonic, Mitsubishi, Toshiba, Sharp. Colourland TV. Trade Only. 0484863489.

TOSHIBA 110° PIL TUBES
$20^{\prime \prime} 22^{\prime \prime}$
$26^{\prime \prime}$

TRADERCO SUSSEX

Main CLEARANCE CONTRACTOR TO RENTAL COMPANIES. Colour Televisions seen working from $\mathbf{£ 1 9}$ - Untested from $£ 9.00$. Sets for spares from $£ 4$. Exchange panels from $£ 3$ Untested Mono's from $£ 2$.

TELEPHONE RAY ODELL,
'TRADERCO' BRIGHTON 38552

SUFFOLK TUBES LIMITED

214 Purley Way, Croydon, Surrey. Tel: 01-686 7951/2/3/4

SUPPLIERS OF MONO AND COLOUR TUBES TO MAJOR RENTAL COMPANIES.
ALL COLOUR TUBES HOT PUMPED AT 385c AND REBANDED TO BRITISH STANDARD. 4151972 CLAUSE 18-2.
$19^{\prime \prime}$ and $22^{\prime \prime}$ TUBES APPROVED. OTHER TYPES PENDING. BRITAINS LARGEST INDEPENDENT REBUILDER FOR 21 YEARS.

CAMPBELL ELECTRONICS LTD.
Distributors of specialist spares to radio and television service depts.
We stock semiconductors, I/Cs, special
T.V. and audio spares, service aids, rebuilt CRTs etc
Fast off the shelf delivery of stock items.
Send S.A.E. or telephone for full catalogue and price list.

CAMPBELL ELECTRONICS LTD.,

Unit 5, Heath Hill Estate,
Dawley, Telford, Shropshire.
Telephone Telford (0952) 502422.

RANK BUSH MURPHY TV PANELS

Repair, exchange, sale service, same day return where possible. 718 chassis lopt panel charges reduced. Also new boards available for T20/22 chassis. Genuine RBM technology.

T. K. Panels Service,
31 Bronte Paths,
Stevenage, Herts. \quad Kil, Willesden Lane,
Tol. (0438)) 61587.

PHILIPS 550s (Mark 5/Twin Panel/VCR Button) excellent cabinets. Regular supply of working sets. Box T.V. 181.

SUMMER SALE

G8's	$\mathbf{£ 8}$
Decca Bradfords	$\mathbf{£ 6}$
Pye Hybrids	$\mathbf{£ 2 0}$
Mono, 12 sets for	$\mathbf{£ 2 0}$
Philips 1700 Videos	
PLUS MORE	
SOUTH LONDON	
TELEVISION	
$\mathbf{4 5}$ Griffiths Road, SW 19.	
Telephone: 01-543 5437.	

ISOLATION TRANSFORMERS three 70 W 240 V outputs (210 W parallel) ideal for isolating test equip ment $£ 5+£ 2.85$. Working test equipment, meters, PSU's etc. S.A.E. lists. S.H.E. 5 St. Joseph's Park, Ballycruttle, Downpatrick BT30 7EN.

WIZARD DISTRIBUYORS

MANCHESTER
SPECIALIST DISTRIBUTORS TO THE TRADE OF T.V. \& VIDEO SPARES

WE STOCK A FULL RANGE OF PARTS \&
COMPONENTS INCLUDING C.R.T.'s
RANK - THORN - PHILIPS - ITT - DECCA GEC ETC.
THANDER \& LEADER STOCKIST
TRADE COUNTER OPEN: 9-4.30
CATALOGUE ON REQUEST
Mall Order Enquiries Welcomed EMPRESS STREET WORKS, EMPRESS STREET,
MANCHESTER M16 9EN TEL: 061-848 0060

TRADE TV's

For the best quality at the cheapest prices in Nottingham.

CASTLE TV

100 s of ex-rental sets in stock.

S/S colour from

£12.50
S/S mono from £3.00
TV Sales \& Spares to the Trade. 346 Radford Road, Nottingham.
Tel. Mr. Atkins
Nottingham 785321

EERURCE PACES

IRISH T.V. DEALERS

(No. 1 for s/hand T.V.s)

1. 400 sets to choose from.
2. Most leading makes sold.
3. Fresh stocks weekly.
4. Delivery to any part of Ireland.
5. All sets with VHF/UHF tuners.
6. Colour from only $£ 70$ mono from $£ 15$.

Visit our new spacious warehouse:
TELE SPARES LTD.
Unit 113 Elm Road, Western Ind. Estate, Dublin 12.
Tel: 01 521756/521211.

CAMPBELL ELECTRONICS LTD.
COLOUR T.V. PANEL EXCHANGE/ REPAIR SERVICE
THORN, RANK, PHILIPS, GEC, DECCA, TELPRO, GRUNDIG etc.
90 Day Guarantee on all repairs - same day postal service.

Telephone Telford (0952) 502422 for catalogue and price list.

CAMPBELL ELECTRONICS LTD.,
Unit 5, Heath Hill Estate,
Dawley, Telford, Shropshire.

BULK BARGAIN T.V. SERVICE PACK Contains at least $£ 50$ worth of T.V. service components and accessories. Loads of hard to obtain T.V. spares
and components. Ideal for the service engineer. Only and components. 1 deal for the service engineer. Ony
$£ 12.50$, carr. $£ 2.50$. Ref. Guar. HAVE YOU SEEN THE GREEN CAT 1000s of new components, T.V., radio, and electronic items at unbelievably low prices. Probably the cheapest in the country. Send 40 p for GREEN CAT and reserve FREE RECORDD SPEED INDICATOR. MYERS ELECTRONICS, Dept. TV2,
Next to Union Jack Clothing Store, Leeds LS 2 7EA. Open 9 to 5 Mon to Sat Tel 452045

TVDX/SATELLITE EQUIPMENT
VHF to UHF Converter. 12 v supply required. Ideal way to start DXing $£ 13.95$. Band $/ / / 1$ Mosfet mains preamplifier. High gain, low noise $£ 27.50$ (BIII available). SOON TO COME complete 4 GHz LNA/downconverter for satellite reception f 200 (approx.).

SAE data lists
Cripps Gorner, Roberisbridge, Sussex TN32 5RY Telephone $058083-317$

BARRY TV SERVICES

(EAST ANGLIA)
Your friendly wholesalers. We cater for the smaller dealer who requires regular small supplies of quality used colour TV's. From £25 + VAT. Fully working with good tubes and cabinets, straight from our retail shelves, ready to sell or rent.
Delivery available
Contact John, Dave or Steve on Ely 61462
or Cambridge 69215

OUTSTANDING VALUE ON PROJECTION T.V.
SHARP MV/720
DUE TO A BULK PURCHASE ON THE CONTINENT WE ARE ABLE TO OFFER THE SHARP XV720 3 TUBE PROJECTION T.V. WITH $72^{\prime \prime}$ HIGH GAIN SCREEN \& STAND AT AN INCREDIBLE SAVING OF $£ 1,300$ ON THE NDRMAL LIST PRICE.

* High quality unit beautifully finished.
* Superb 72" Screen and Stand.
* 3-Tube System with Mitsubishi Schimdt optics for superb definition and brightness. * VHF/JHF Tuners fitted: Remote Control.
* High quality 10 w Sound Channel converted ta 6 mz . for U.K. use
* Direct Video/Audio In/Out facility.
* Built in Cross Hatch. Easy stable convergence
* Full Warranty and Spares Back up.
* Ideal for Schools \& Colleges, Pub's, Club's, Residential homes, Training \& Education in Industry and Commerce. Also Computer and Text and many other applications.

LIST PRICE $£ 2,895+$ V.A.T.

SPECIAL OFFER PRICE $£ 1,595$

+ V.A.T. $+£ 50$ carriage to any address in U.K.
TRADE ENQUIRIES ALSO INVITED
Contact Mr. J. A. ORR
TELEVISION \& ELECTRONIC SERVICES
(The Big Screen Scecialists)
98 BOTANIC AVENUE, BELFAST BT7 1JR
NORTHERN IRELAND.' TEL: (0232) 230958

ARE YOU OVERSTOCKED?
 Turn your surpulu stocts into cash £500,000 AVAILABLE

for any surplus electrical stocks ie. TV's, Video's, Washers etc.
Phone in strictest confidence: Mr R. Walker, Bradford (0274) 688458

TELEVISION TUNER REPAIRS ALL TYPES

BRITISH, EUROPEAN JAPANESE ETC.

MEN-TU ELECTRONICS LTD. SALTERNS LANE, FAREHAM, HANTS.
Tel: 0329-235116

NWELECTRON/CS
NewModern Warenoluse
NOWOpen!s
Numbnown [M606 DIRECT LINK M62] TELEPHONE [0274]688458

100's of Colour T.V.'s at Special Opening Prices

BUSH 22" COLOUR T.V.'sONLY £8.00 (min quantity 5) PHILIPS G8ONLY $£ 15.00$ THORN 3500 ONLY £10.00 BUSH P.I.L.TUBES ONLY £35.00 (Repos.) Fril Spares Back-up on al Models \& Makes **** Delivery arranged anywhere $* * * *$

Makes in stock include Hitachi, Sanyo 9000, G.E.C., Pye 223, Grundig, Bush etc., etc.
All T.V.'s sold complete, untested (Test bench Available) We also supply new goods from Pye, ITT, Thorn, Amstrad. Washers and Fridges by Bendix, Zanussi, Tricity, Candy etc. LARGE SELECTION OF WASHERS FOR RECONDITIONING TWINS, AUTOS ETC.,
LARGE QUANTITY OF CYLINDER CLEANERS FROM £2.00
"Pay us a visit - you will not be disappointed'
***** Discount on Quantity Loads ******
(Sorry - Cheques not accepted)
You Can Reach Us Easily From Anywhere.

UNIT 1, WHARFEDALE ROAD, M606, EUROWAY ESTATE, BRADFORD.
[0274] 688458

COLOUR TVs WORKING
 MINIMUM OF 5

THORN
300019 inch
350022 inch
850019 inch
800017 inch
from $£ 30$
8800
from $£ 39$
123 PALMERSTON ROAD, BOSCOMBE, NR. BOURNEMOUTH, DORSET TEL: 0202721145

RANK BUSH MURPHY

TRANSFORMERS
LINE OUTPUT TRANSFORMERS
Z718 (T703A, T706A)
(1) New (Complete)
(3) Less Focus Module and Rectifier
2718 SPARES (T703A, T706A)
Pri. - $£ 5.50$, Sec. $-£ 6.00$,
Rectifier - $£ 3.00$, Lead - $£ 2.50$
T20, T22 (T705A)
T26 (T705B)
Switch-mode Transformers T114 A/B

Genuine RBM Units

Prompt Postal Service. Add 15\% V.A.T. to all Prices. DISCOUNT For QUANTITIES WOODSDALE COMPONENTS MR SKEHAN
34 Field End Road, Eastcote,
Pinner, Middlesex HA5 2QT 01-868 5580
Agents Office, callers by appointment only

TELEVISION

Trade Supplies of Good Quality Colour \& Mono TV's. Most Makes available, suitable for Sale or Re-Rent.
GENERAL UNIONSTREET
FACTORS DONATER $1030229580^{-684} 46$
GOOD MOTORWAYACCESS

[^2]
TUBES £30 INCLUDING VAT REGUNS ONE YEAR GUARANTEE A56-120 A51-110 A49-191 A47-342 or 3 A44-270 A67-120
 A66-120 or 140 ($\mathbf{2 6}^{\prime \prime}$ add £5)
 In line Tubes 51-161 £48
 Sony up to $19^{\prime \prime}$ £ 65 Others $\mathbf{£ 8 5}$ from us (except in-line).

LINE OUTPUT TRANSFORMERS

 G8 DECCA BRADFORD - STATE MODEL f8 $95^{\text {INCluding vat }}$G9 or 17 CVC5 59.95 Pye $731 £ 10.50$ Rank 720 £11.95 Mono Thorn $1615 £ 9.95$ $1690 £ 8.95$ One Year Guarantee U-VIEW (TUBES), 29, WARMSWORTH ROAD, DONCASTER, YORKS. DN4 ORP. TEL 0302856017. Callers ring first. Open every day, including Sunday.

\section*{CLAARANCESALE LARGE QUANTITY OF GOOD CLASS COLOUR TELEVISIONS BUSH, PYE, GEC, THORN, PHILIPS ETC. Excellent Cabinet Condition. Genuine Change Over TV's and Repossessions.

We export large quantities of TV's weekly. Can we help you? Discount on Quantity Orders. OVER 1,000 MONO TV's IN STOCK FROM £3. 100's colour tubes suitable for reconditioning. Working colour TV's to order ie. Bush $20^{\prime \prime} / 22^{\prime \prime} 21 . C$. excelient picture, ready to sell. Only $£ 39$. CALL AND SEE OUR SELECTION

WHITE GOODS

All types of Washing machines, Vacs, Fridges, Cookers, etc. Hoover Auto's, Servis, Hotpoint, Hoover Uprights, Vacs. 500 always in stock. Fully reconditioned Hoover Twin Tubs and Upright Vacs, all models. Phone for details. PAY US A VISIT AND YOU WILL NOT BE DISAPPOINTED.

T.V SPARES, PANELS - AND MANUALS PHILIPS.GRUNDIG

TELEVIEW
01-994 5537
194, Acton Lane, London W.4.

WIRELESS COMPANY NOSTALGIA ~COLLECTING 1900-1950s
Publishers of The Antique Wireless Newsheet' (Sample on Request)
Suppliers of: - Valve Radio sets \& Amplifiers - Valves,Components - Repairs \& Restorations - Service Data

- Historical Data - New and Used Books/Magaznes
The complete service for the collector and enthusiast of Vintage Radio.
THE VINTAGE WIRELESS COMPANY
64 Broad Street Staple Hull, Bristal BS16 5NL Tel: Bristal (0272) 565472-24hour Ansaphone,Closed Mondays.

AERIALS

AERIALS \& ACCESSORIES ALTV components at competitive prices. UHF 10 ment from $£ 1.18 .18$ element from $£ 2.20$. FM2 $£ 2.40$. FM4 from $£ 4.95$. Lasting Kits from £2.40. FM4 from ${ }^{\text {E4.95 }}$. Lashing Kits from 20. Wall Bkts. from 85 . Masts available 2^{\prime} to 20 minium coax plugs from 10p. Coax cable from 30. Full range of Aucessories and Amplification ipment available. mprehensive price list on request. (Trade Only). S.C.S. AERIALS (Aerial Distributors) 14 Tannars Croscent, Hertford, Herts. SG13 BD Tol: 099250478.

Selling or Buying

A Classified Advertisement could solve your problem at very little cost
Ring 01-261 5846

SERVICE SHEETS

30,000 SERVICE SHEETS IN STOCK. COLOUR MANUALS ALSO AVAILABLE
TV Monos, Radios, $\mathbf{6 3 , 0 0}$. Tuners $\mathbf{6 3 . 0 0}$. Tape Recorders, Record Players $\mathbf{6 3 . 0 0}$. Transistors $\mathbf{6 3 . 0 0}$. Car Radios $\mathbf{£ 3 . 0 0}+$ SAE. Stereograms \& Music Centres $£ 3.00$. Radiograms $\mathbf{2 3 . 0 0}$. Also Colour available. State if circuit will do if sheets are not in stock. All TV Sheets are full length 24×12 not in Bits \& Pieces. All other Data full lengths. All Sheets
C. CARANNA, 71 BEAUFORT PARK, LONDON NW11 6BX
(MAIL ORDER)

SANDHURST PUBLICATIONS
Television Service Sheet Specialists Workshop Manuals, large selection of Japanese and European TV Sheets. Callers $5.30-7.00 \mathrm{pm}$. Upper Floor. Send S.A.E. for Catalogue and Enquiries:

49C Yorktown Road, Sandhurst, Camberley, Surrey GU17 7AG.

TECHNICAL INFORMATION SERVICE

SERVICE SHEETS: full size by return - radio, mono, etc. $£ 2$ + large sae. CTVs \& Music Centres from $£ 3$.
SERVICE MANUALS: Sole suppliers most obsolete equipment. Everything stocked to latest releases. Fantastic stocks CTVs/Videos. E.g. A823 £6.50; Autovox (early) $£ 650$. Tyne 5000/6000 Series $£ 7.50$.
COMPREHENSIVE TV REPAIR COURSE - Complete data almost every fault. - Huge beginners section. - Only $£ 8.50$.
TV REPAIR MANUALS - All 12 for $£ 75$. - Mono portables (new) £6.50. - Early VCR, £10.50.
CIRCUIT DIAGRAM COLLECTIONS IN HUGE BINDERS: British CTV (3) £42.50; Foreign CTV (2) £27; Early VHS/Phillips video $£ 15$; Mono TV standard + portables $£ 29$.
REPAIR SYSTEMS (REPAIR DATA, CIRCUITS, ETC): Video 1, $£ 24.50$; Foreign CTV, $£ 40$; Mono TV, $£ 31.50$.
SAVE $£ 12$ - BRITISH CTV ONLY $£ 60$ - LIMITED TIME; Complete integrated TV Repair System $£ 160$. Quotationslfree 50p magazine/price lists/atc for large sae.
$£ 2$ plus $8^{\prime \prime} \times 10^{\prime \prime}$ S.A.E. for service sheet and manual catalogues with $£ 4$ vouchers.
PHONE 0698883334 FOR FAST QUOTES - Open 4-6 daily, 11-1 weekends.
T.I.S., 76 CHURCH ST., LARKHALL, LANARKSHIRE ML9 1HE.

SERVICE SHEETS CONTD.

BELL'S TELEVISION SERVICES for service sheets on Radio, TV, etc. $£ 1.25$ plus S.A.E. Service manuals on colour TV and Video Recorders, prices on request. S.A.E. with enquiries to B.T.S., 190 Kings Road, Harrogate, N. Yorkshire. Tel. (0423) 55885.

WANTED

WANTED. 9 volumes of the magazine "Television" 1974 to 1982/3. Also colour bar generator. Welcome calls from anywhere in UK. Tel. Sylvester 061747 4192.

WANTED "TELEVISION" FROM 1975 TO 1982, state months available and price per copy. T.J. Maccrossan, Newtown Cunningham. Donegal, Eire.
PHILLIPS, G8, G11 REQUIRED, working or not, must be good cabinets. Regular supply required. Notts/ Derby. Ripley 811124.
WANTED PHILIPS/PYE G11 Colour TVs, any quantities. Hornchurch 58513. Mr. Morris.
WANTED OSCILLOSCOPE WORKING (Midlands preferably) Dual/Single Beam. Cheap price negotiable. Leicester 865457.
INVALID HobByIST REQUIRES Finlux Peacock Lopt and/or set suitable spares. Box 180.
WANTED FOR CASH. Video, TV's, spares, electronic components. Tel: 965 1230. Box No. TV 175.

BOOKS \& PUBLICATIONS

COMPLETE FULL-SIZE SETS any published service sheets $£ 2+$ LSAE except CTVs/Music Centres from $£ 3+$ LSAE. Manuals from 1930 to latest. Quotations, free 50 p magazine, price lists, unique technical publications for sale. Repair data/circs almost any named TV/ VCR $£ 8.50$ by retum. TIST, 76 Church Street, Larkhall, Lanarks ML9 1 HE. Phone (0698 883334).
"RADIO AND TELEVISION SERVICING" books, new editions for the last 6 years always in stock. Prices on request. Bells Television Services, 190 Kings Road, Harrogate, N. Yorkshire. Tel. 042355885.

MISCELLANEOUS

BURGLAR ALARM EQUIPMENT. Latest discount catalogue out now. Phone C.W.A.S. ALARM 0274 682674
LABGEAR TELE-VERTAS CM 6022. $£ 12.00$ each. 1 -Megger 500 V Battery type $£ 50.00$. Tel. 05672-371 evenings.

COURSES

CONQUER THE CHIP . . . Master modern electronics the PRACTICAL way by SEEING and DOING in your own home. Write for your free colour brochure now to British National Radio \& Electronics School, Dept. C4, Reading, Berks RGl 1 BR.

FULL-TIME COURSES IN
 - Microprocessor Computers
 - Video Cassette Recorders
 Colour TV.

Diploma - High Diploma or City and Guilds Qualifications.
Apply:
Registrar,
Reeswood College,
299A Edgware Road,
London W2 1BB.
01-402 9985.
Courses commence 21st September 1983 and 18th January 1984.

FOR SALE

TRADE TELEVISIONS

```
- Wide range of used sets in good cabinet condition.
- Plenty of working sets - try ours!
- Delivery arranged anywhere.

> ALPINE ELECTRONICS
> 39 St Stephen's Road,
> Birmingham B29 7RR.
> Telephone: \(021-4713836\).
```

TRIO 1562A 10 MHz Double Beam Oscilloscope including probes $£ 210.00$ o.n.o. Tel. 0616884279 (M/CR).

TUBE REBUILDING PLANT for sale. Fire salvage in good restorable condition. Offers. Phone 0706 523415.

TELETEXT (Oracle/Ceefax) add-on adaptors for any television. Only $£ 147.50$ plus $£ 2.45$ postage. Also Viewdata (Prestel). Trade enquiries welcome. Access/ Visa. Cytel (T) FREEPOST, Charlton Mead Drive, Bristol BS 10 6BR. (0272) 502008 anytime.

1983 PRICE LIST

DISPLAY ELECTRONICS

GOLD LABEL COLOUR TUBES

2 YEAR GUARANTEE
90° up to $19^{\prime \prime}$. $\mathbf{£ 3}$ 90° up to $22^{\prime \prime}$... $\mathbf{£ 3 6}$ 90° up to $26^{\prime \prime}$.. $£ 39$
The above prices are for standard 38 mm Delta Gun Types.
Add $£ 5$ Gun surcharge for 20AX Types. Other in-line \& P.I.L. Types, prices on application.

GOLD LABEL MONO TUBES
2 year guarantee
$19^{\prime \prime} / 20^{\prime \prime}, . ~$

GREEN LABEL COLOUR TUBES

12 MONTHS GUARANTEE

90° up to $19^{\prime \prime} . ~ £ 28 ~$
 90° up to $26^{\prime \prime}$...................................... $\mathbf{E 3 4}$

Green Label Prices apply only to standard 38 mm Delta Gun Types. They will be of particular interest to customers refurbishing ex-rental sets.

BUDGET CORNER

Buy any 5 mixed types take 20% discount.
Buy any 3 mixed types take 10\% discount.
Budget prices apply only to colour tubes. The mix can include Gold \& Green Label Types if required.

CALLERS WELCOME

Late night Thursdays until 8 p.m.
Saturdays until Midday
N.B. Customers intending to collect orders are requested to telephone in advance:- even popular types may be out of stock for short periods.

UNIT 1
SWAN WHARF WATERLOO ROAD UXBRIDGE MIDDLESEX
Telephone: UXBRIDGE 55800

LONDON'S LARGEST TELEVISION WHOLESALER with over $4 \frac{1}{2}$ thousand sq . feet.

"TELEMANN"

8-10 RHODA STREET,
(Off Bethnal Green Road)
LONDON E.2. FREE CAR PARK
TEL: 01-739 2707
ALL MAKES IN STTOCK AND GUARANTEED
COMPLETE
PYE $22^{\prime \prime}$ COLOUR FROM $\mathbf{£ 7 . 5 0}$
PHILIPS 22" G8 (Teak cabinet) PARCEL OF TEN $£ 12$
MONO DUAL STANDARD $£ 2$

- SINGLE STANDARD £5

FREE DELIVERY TO THE LONDON AREA!
TELEPHONE 01-739 2707 - NOW!

A.B.C. TRADE SALES COLOUR T.V.'s
Philips G8, Pye, Decca 30's,
Thorn's 3000's, 3500's, 8000's
Prices start from $£ 12$ - Working sets from $£ 20$
Hundreds of Mono T.V.'s from £2.00 Jap. sets from $£ 30.00$
Special prices for quantity 9,000 sq. feet Warehouse 83 SHOWELL ROAD, BUSHBURY, WOLVERHAMPTON, STAFFS.
Tel. Wolverhampton 722637

N.G.T. COLOUR TUBES

First Independent Rebuilder with
B.S.I. CERTIFICATION
(Certificate No. 004)
All Colour Tubes are debanded, high temperature pumped and rebanded using new adhesives and new tension band.
$19^{\prime \prime} £ 30,20^{\prime \prime} £ 32,22^{\prime \prime} £ 33$, and $26^{\prime \prime} £ 38$.
No exchange tube required on delta types. Delivery U.K. mainland: $\mathbf{£ 7 . 5 0}$.
N.G.T. ELECTRONICS LTD., 120, SELHURST ROAD, LONDON S.E. 25 Phone: 01-771 3535.
20 years experience in television tube rebuilding. addVAT at 15%

Tomorrows Television Today
 A HANDBOOK ON SATELLITE TELEVISION RECEPTION

Receive Satellite Television at home now.
Low Noise Amplifiers, Down Convertors, Receivers, Dishes \& Feeds explained in detail.

Full information on Television
Broadcasting Satellites over Europe.
Complete listing of more than 20 T.V. Channels on these Satellites. A5. 140p. Fully Illustrated f9.85p $+65 p$ p \& p

YOU COULD BE WATCHING SATELLITE
TELEVISION TODAY

Please send me
copies of
Tomorrows Television Today.
I enclose cheque for $£$
NAME
ADDRESS

Post to:
M. Stone,

47 Filton Avenue, Horfield, Bristol

[^0]: Dept. TV, The Warehouse, Speedwell Street, London S.E.8.
 Please quote ZED code where shown. Send cheque* or Postal Order. Add 60p P\&P and 15% VAT.
 *Schools etc. SEND OFFICIAL ORDER. Allow up to 28 days for delivery. Most orders despatched same day.
 ZED PACKS now available for CALLERS at 50 Deptford Broadway, London, S.E.8.

[^1]: Published on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by The Riverside Press Ltd., Thanet Way, Whitstable, Kent. Distributed by IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Sole Agents for Australia and New Zealand - Gordon and Gotch (A/sia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland f11, overseas (surface mail) £12 per annum, payable to IPC Services, Oakfield House, Perrymount Road, Haywards Heath, Sussex. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever.

[^2]: \star TELEBEST \star
 We specialise in quality working sets.
 Trade enquiries only
 Philips + Thorn 22"
 From $£ 30$ incl. VAT.
 Discount on quantity.
 841 Romford Road, Manor Park, London E. 12.
 Tel: 01-514 1333.

