TELEUIFIOM

PHILPS' MEW GUX GMASGIS GOMPONEMH DISWRIBUHON GUIDE
Fifyke fiamie \& slow moulon - UNGK GHEGMS : PYETE GMASSIS GABHNE RIPAMES

Interested in Television Servicing?
 Try a ZED Pack. Effect Repairs at Minimum Cost.

GEMINI ELECTRONIC COMPONENTS

Dept. TV, The Warehouse, Speedwell Street, London S.E.8.
Please quote ZED code where shown. Send cheque* or Postal Order. Add 60p P\&P and 15\% VAT. *Schools etc. SEND OFFICLAL ORDER. Allow up to 28 days for delivery. Most orders despatched same day.

ZED PACKS now available for CALLERS at 50 Deptford Broadway, London, S.E.8.
Send large S.A.E. for list of Quantty, Prices and Clearance Lines etc.

COPYRIGHT

${ }^{\text {© IPC Magazines Limited, 1983, Copyright in }}$ all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF.

SUBSCRIPTIONS

An annual subscription costs $£ 10$ in the UK, f11 overseas (\$24.20 Canada or USA). Send orders with payment to IPC Services, Oakfield House, Perrymount Road, Haywards Heath, Sussex.

BINDERS AND INDEXES

Binders ($£ 4.50$) and Indexes (45p) can be supplied by the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Prices include postage and VAT. In the case of overseas orders, add 60p.

BACK NUMBERS

Some back issues are available from the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF at 85 p inclusive of postage and packing.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. All correspondents expecting a reply should enclose a stamped addressed envelope.
Requests for advice in dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

this month

121 Leader

122 Long-distance Television
by Roger Bunney
Reports on DX reception and conditions and news from
abroad. Also a tunable sound i.f. circuit for system 1/B/G/D reception and a simple frequency divider for satellite TV use.
127 Test Report
by Eugene Trundle
The Scopex 14D-10V oscilloscope was designed
specifically for TV/video servicing. It comes out well after a
thorough bench test. Of particular interest is the built-in
delay system, which enables individual TV lines to be displayed and examined.
130 The Philips CTX Chassis
Details of the latest colour TV chassis from Philips. A novel chopper control system is used to provide regulation of the supply lines.
132 The Adventures of Tiny Tim
by Les LawryJohns
Lots of funny and some not so funny things keep happening to Tiny Tim in his little shop.
134 Teletopics
News, comment and developments.
136 VCR Servicing, Part 14
by Mike Phelan
This time the complications introduced by freeze frame plus fast and slow playback.
140 TV Component Distribution Directory
A tabulated at-a-glance guide to sources of TV components.
142 Fault Report
Notes on TV faults contributed by Richard Roscoe,
John Coombes and S. Leatherbarrow. The over-voltage
trip used in the Toshiba T24 chassis is something new to these pages.
144 Letters
Including an account of the main power supply arrangements used in the Telefunken 711 chassis and troubles with the line oscillator chip.
145 Thorn TX9 Chassis
A correction to our notes last month plus more information on the random mains fuse blowing problem.
146 Routine TV Receiver Tests
by S. Simon
Fault-finding procedures for the Pye 713/5/7 18in. colour chassis.
148 Cabinet Renovations
The appearance of a set has a great effect on its resale price. Various steps can be taken to enhance the condition of the cabinet - a practical guide to restoration work on wood and plastic cabinets.
TV Test Equipment
Newly introduced test equipment.
151 Next Month in Television
152 VCR Clinic
Notes on VCR servicing contributed by Derek Snelling,
John Coombes and Mike Phelan.
154 Service Bureau
155 Test Case 241

OUR NEXT ISSUE DATED FEBRUARY WILL BE PUBLISHED ON JANUARY 19

MANOR SUPPLIES

NEW MKV CHEQUERBOARD \& PAL COLOUR TEST GENERATOR FOR TV \& VCR.

$\star 40$ different patterns and variations.
\star Broadcast transmission accuracy (fully interlaced sync pulses with correct picture blanking).
\star EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red, blue and black.
\star Chequerboard.

* Mono outputs with border castellations, cross hatch, grey scale, vertical lines, horizontal lines and dots. UHF modulator output plugs straight into receiver aerial socket.
\star Additional video output for CCTV \& VCR.
\star Facilities for sound output.
\star Easy to build kit. Only 2 adjustments. No special test equipment required.
* Mains operated with stabilised power supply.
\star All kits fully guaranteed with back-up service.
\star Also available with VHF Modulator.
Price of Kit
$\mathbf{8 8 0 . 5 0}$
Standard Case ($10 \frac{1}{2}^{\prime \prime} \times 6 \frac{1_{2}^{\prime \prime}}{} \times 2 \frac{1}{2}^{\prime \prime}$)
$£ 5.50$
DeLuxe Case $\left(10^{\prime \prime} \times 6^{\prime \prime} \times 2 \frac{1}{4}^{\prime \prime}\right)^{2}$
18.50

Optional Sound Module (6 MHz or 5.5 MHz)
£4.50
Built \& Tested in De Luxe Cáse including Sound Module
specialtest
£115.00
${ }_{\text {'TELEVSION }}^{\text {Report }}$ Post/Packing $£ 2.00$.
'TELEVISION' DEC All above prices include VAT 15%

PAL COLOUR BAR GENERATOR (Mk 4)

\star Output at UHF, applied to receiver aerial socket.
\star In addition to colour bars $\mathrm{R}-\mathrm{Y}, \mathrm{B}-\mathrm{Y}$ etc.
\star Cross-hatch, grey scale, peak white and black level.
\star Push button controls, battery or mains operated.
\star Simple design, only five i.c.s. on colour bar P.C.B.
PRICE OF MK4 COLOUR BAR \& CROSS HATCH KIT $£ 40.25$ P\&P $£ 1.20$. DE-LUXE CASE $\mathbf{£ 8 . 5 0}^{2}$. ALUMINIUM CASE £3.30, P\&P $£ 1.20$, BATT HOLDERS 11.70 P\&P 85p, ALTERNATIVE STAB. MAINS SUPPLY KIT £5.55 (Combined P\&P £1.80).
MK 4 DE LUXE (BATTERY) BUILT \& TESTED $£ 66.70+\mathbf{£ 1 . 8 0} \mathrm{P}$ \& P. MK 4 DE LUXE (MAINS) BUILT \& TESTED $£ 80.50+\boldsymbol{1 1 . 8 0} \mathbf{P}$ \& P.
VHF MODULATOR (CHI to 4) FOR OVERSEAS £4.60.
EASILY ADAPTED FOR VIDEO OUTPUT \& C.C.T.V.
(ALL PRİCES INCLUDE 15\% VAT)

MANOR SUPPLIES TELETEXT ADAPTOR KITS

MK 1 (Texas XMII) Cable remote control $£ 170.20$ p.p. $£ 2.80$ MK 2 (Philips/Mullard) Infra-red remote control $£ 227.70$ p.p. $£ 2.80$. Further details on request.

[^0] between 3 days and 1 week from receipt of order).

TV SERVICE SPARES

BACKED BY TWENTY YEARS EXPERIENCE \& STAFF OF TECHNICAL EXPERTS
SPECIAL OFFER THORN 8000A, 8500 Power \& Sound Panels (new and boxed) $£ 5.75$ p.p. $£ 1.25$.

TELEVISION MAGAZINE PROJECT PARTS
NEW COLOUR PORTABLE TV
\section*{TV PATTERN GENERATOR

SMALL SCREEN MONITOR}
MONO PORTABLETV
LARGE SCREEN SEND FOR LISTS
WORKING MODELS \& PANEL TEST SERVICE AT 172 WEST END LANE.

SPECIAL OFFER Leading makers Tuner-Timer in De Luxe Case. 12 station touch tune UHF-VHF + IF amp. Video Audio Outputs, Digital Clock etc. Less than half original trade price $£ 74.75 \mathrm{p}$-p $£ 3.50$.
TV SOUND IF PANELS, FULLY TESTED $£ 7.82$ p.p. 11.00
SAW FILTER IF AMPLIFIER PLUS TUNER COMPLETE AND tested for T.V. SOUND \& VISION £32.80 p.p. 11.20 (SUITABLE FOR USE WITH TELEVISION SIGNAL BOARDS).
SPECIAL OFFER TEXAS XMII TELETEXT MODULE NEW \& TESTED, AT REDUCED PRICE $£ 7.50$ p.p. $£ 1.60$.
TELETEXT 23 BUTTON DE-LUXE HANDSET WITH 5 YDS. CABLE £7.80 p.p. £1.20. XMII INTERFACE PANEL (THORN) £2.10 p.p. 75 p. CROSS HATCH UNIT KIT, AERIAL INPUT TYPE, INCL. T.V.SYNC AND UHF MODULATOR. BATTERY OPERATED. ALSO GIVES AND UHF MOD BLATOR BATTIERY OPERATED. ALSO GIVES £12.65 p.p. 60 p. (ALUM CASE $£ 2.60$ DE LUXE CASE $£ 5.50$ p.p. $£ 1.20$.) ADDITIONAL GREY SCALE KIT £3.33 p.p. 45 p.
UHF SIGNAL STRENGTH METER KIT $£ 21.60$ (VHF version also available). ALUM CASE $£ 200$ DE LUXE CASE $88.50 \mathrm{p.p} . ~ £ 1.80$. CRT TESTER \& REACTIVATOR PROJECT. KIT FOR COLOUR \& MONO $£ 29.40$ p.p. $£ 2.00$.
BUSH 2718 BC6100 SERIES IF PANEL $£ 5.75$ p.p. 90 p .
BUSH A816 IF PANEL (SURPLUS) 81.90 p.p. 90 p .
DECCA "Bradford" IF T.B. POWER ex rental $£ 5.75$ ench p.p. $£ 1.40$.
DECCA 80, 100 SERIES, IF, FRAME T.B, $\mathbf{~} 5.75$ each p.p. $£ 1.40$
GEC SERIES I MONO PANELS £2.10 p.p. $£ 1.30$.
GEC 2110 Decoder, RGB panels (ex rental) $£ 5.75$ each p.p. $£ 1.00$.
GEC 2040 DECODER PANEL $£ 2.88$ p.p. $£ 1.60$
GEC 2040 IF PANEL $£ 3.22$ p.p. $£ 1.40$.
GEC 2040 (SERIES) CDA PANEL $£ 2.88$ p.p. $£ 1.40$.
THORN TX9 PANELS ex factory for small spares. Includes I.C.s \& Semiconductors etc. $\mathbf{E S . 7 5}$ p.p. $£ 2.00$
THORN 3000 LINE T.B., POWER PCB 55.75 each p.p. $£ 1.30$.
THORN 3000 CONVERGENCE PANEL $£ 5.75$ p.p. $£ 1.80$.
THORN 3000 VID, IF, DEC, Ex Rental $£ 3.70$ each p.p. $£ 1.30$
THORN 8800 Varicap channel selector \& front control unit $£ 4.37$ p.p. $£ 1.80$
THORN 8000/8500 IF/DECODER PANELS salvaged $£ 3.70$ p.p. $£ 1.80$
THORN 8000/8500 FRAME T.B. PANELS salvaged $£ 2.88$ p.p. $£ 1.40$
THORN 9000 LINE T.B. (incl. Lopt etc.), Salv., spares $\$ 8.62$ p.p. $£ 2.00$
THORN 9000 SERIES TOUCH TUNE REMOTE CONTROL UNIT PLUS ULTRASONIC TRANSMITTER HANDSET $£ 19.32$ p.p. $£ 1.84$. THORN 9000 IF/DECODER PANELS Salvaged $£ 5.75$ p.p. 11.60 PHILIPS 210, 300 Series Frame T.B. Panels $£ 1.15$ p.p. 80 p.
PHILIPS G8/G9 IF/DECODER Panels for small spares $\mathbf{2 2 . 8 8}$ p.p. $£ 1.40$. G8 IF Panels for small spares $£ 1.75$ p.p. 95 p.
G8 Decoder pands salvaged $£ 4.25$. Decoder panels for spares $£ 2.00$ p.p. $£ 1.40$ VARICAP, U321, U322, ELC 1043/06 ELC $1043 / 05$ £7.82 p.p. 80 p; G.I. type (equiv. 1043/05) $£ 4.00$ p.p. 60p. Control units, 3PSN $£ 1.40$, 4PSN £1.75, SPSN $£ 2.00,6$ PSN 84.00 p.p. 60 p . Makers special types available. SPECIAL OFFER ELEVEN POSITION VARICAP CONTROL UNIT UHF/VHF $£ 2.10$ p.p. $£ 1.00$.
BUSH "Touch Tune" Varicap Control Z179, Z718 types $£ 4.40$ p.p. 95 p.
VARICAP UHF-VHF ELC 2000S $£ 9.80$. BUSH TYPE $£ 7.82$ p.p. 85 p.
VARICAP VHF MULLARD ELC 1042 £7.95 p.p. 80p.
UHF/625 Tuners, many different types in stock. UHF tuners transisted. incl. s / m drive, Mullard 4 position push button $£ 4.80 \mathrm{p} . \mathrm{p} . £ 1.50$.
LOPTS NEW \& GUAR. P/P Mono £1.35p, Colour 11.45p, Bobbins 80 p .
 BUSH, MURPHY A816 series....... 89.80 DECCA 20/24, 1700, 2000, 2401, 28.20 FERG HMV. MARCONL, ULTRA THORN 1600 , 1615 , 1690,1691 126.00 GEC 2000 to 2038 series 16910.50 GEC 2000 to 2038 series 87.80 INDESIT 20/24EGB..............................8.20. 20 ITT/KB VC1, 200, 300..........................28.20 MURPHY 1910 to 2414 seriesE. 6.80 PHILIPS 19TG 170, 210, 300....... 20.80 PYE, INVICTA, EKCO, FERR.
368, 169, 569, 769 series............ 88.50
GEC 2114J/Junior Fineline
GEC 2114J/
/Junior Fineline.. $+. . .53 .25$ OCELEN (003) OTHERS AVAILABLE, PRICES ON REQUORN 9000109600.
TRIPLERS Full range available. Mono \& Colour
Special Offer: Thorn 14005 stick EHT Tray $£ 1.72$ p.p. 65 p
TR ANSDUCTORS suitable for G8, A823, Bradford etc. 11.72 p.p. 60 p. 6.3V CRT Boost Transformers $£ 5.80$, Auto Type $£ 3.20$, p.p. $£ 1.20$.

CALLERS WELCOME AT SHOP PREMISES Tdephome 01-794 $8751 / 7346$ THOUSANDS OF ADDITIONAL ITEMS AVAILABLE, ENQUIRIES INVITED

LARGE SELECTION TESTED COLOUR PANELS POPULAR MODELS

MANOR SUPPLIES

172 WEST END LANE, LONDON, N.W.6.

Maid Order: 64 GOLDERS MANOR DRIVE, LONDON N.W. 11.
ALL PRICES INCLUDE VAT AT 15\%

SHEILA AND THE GIRLS AT P.V. TUBES THANK THEIR CUSTOMERS FOR THEIR FRIENDLINESS AND SUPPORT DURING 1982 AND SEND SINCERE BEST WISHES TO ALL FOR
A MERRY CHRISTMAS AND HAPPY NEW YEAR

P. V. TUBES
 NEW PRODUCT LIST VIDEO TO VIDEO DIRECTRECORDING LEADS

We now stock a range of these cables suitable for connecting two video recorders for direct recording Send us the two makes/models of the video machines being used and we will send the correct type.

PRICE $£ 4.25$ per 2 metre lead DOMESTIC COMPUTER LEADS

A computer to cassette recorder (suitable for BBC computer) lead-length 1 metre.

B+K TUBE TESTER/REJUVENATOR MODEL 467 DYNASCAN

PRICE £312.50
TESTS: Emission, leakage, tracking (colour tubes), life-focus continuity.

RESTORING FUNCTIONS: Shorts removal - gun cleaning and balancing - cathode rejuvenation

FACTORY	ELECTROLUBE	TELETEXT
RECONDITIONED	CM 100	ADAPTOR
AVO8	CIRCUIT MAKER	AYR
METERS	A comprehensive	VIEWDATA
AVO 8 Model A£97	system for the crea-	Converts any set
AVO 8 Mark $5 £ 109$	tion of professional	to Teletext/remote
12 months	circuit boards.	control
warranty	FREE LEAFLET	PRICE $£ 120.00$

TO ORDER SEE MAIN ADVERT NEXT PAGE

AC17 SPECLIN OFFER SURPLUS STOCX TO CIEAR							
AC12\%	0.150	EFV50	0.140	2 N3772	0.550	NE555	0.180
AC187	0.150	8F5 51	0.140	$2 \mathrm{N3773}$	1.000	(M3300	0.250
${ }^{\text {ADO }} 143$	0.480	8T106	0.950	LM309k	1.000		0.110
AD161	0220	8 BT16	0.500	7805	0.350	1401	0.110
AD162	0200	$8{ }^{1} 119$	1.100	1812	0380	1402	0.120
- AF139	0220	8 P 120	1.100	1818	0330	2405	0.100
AF239	0200	84126	0.700	7824	0330	7407	0200
Allios	1000	8 B 225	0.750	7905	0.350	1413	0.190
AU110	1.100	$8 \cup 203$	0.800	76.105	0.300	7414	0250
BC107	0.070	BU208A	0.850	7812	0.300	1425	0.110
$8 \mathrm{BC108}$	0.070	81326	0.850	7812	0.300	1441	0300
${ }^{\text {BC109 }}$	0.070	8 B 407	0.750	7824	0.300	1442	0300
$8 \mathrm{BC147}$	0.055	8 8526	$0_{0} \mathbf{0} 500$	$2 \mathrm{SC495}$	0.700	7447	0.400
8C149	0.055	8 BY 127	0.080	${ }^{25 C 1305}$	1.000	7473	0.190
8C149	0.055	BY113	0.050	${ }^{2}$ 2C1969	1300	1474	0.150
${ }^{\mathrm{BC} 515}$	0.055	8 BY 164	0.200	$2 \mathrm{SC2029}$	1200	7475	0.150
8C159	0.055	0447	0.000	$2 \mathrm{SC2078}$	1200	1485	0.300
80131	0250	0 Cza	1.000	MB3712	1.500	7486	0.150
${ }_{8}^{80132} 8$	0250	${ }^{0} \mathbf{C} 29$	0.800	TA7205	1.500	7499	1.100
${ }_{80}{ }^{\text {8 }}$	0200	${ }_{820088}$	1000	UPC575	1.000	7490	0220
B0137	0.200	${ }_{\text {R2010 }}$	0	M M 381 A	${ }_{0}^{0.500}$	7493	0250
B0139	0200	I8A520	0.750		. 60	74141	0.250
80139	0.200	TBA530	0.750			74333	0.500
80140	0.200	IBA540	0.750			741509	0.120
80144	1.100	IBA550	0.750			741516	0300
80150	$0.300{ }^{\circ}$	T8A560	0.700	$\bigcirc \mathrm{Ors02}$	0.450	741519	0.350
80157	0380	T8ASOO	0.350	ECC82	0.400	741522	0.423
80158	0380	trasios	0.600	ECCC33	0.330	74 [524	0.580
${ }_{8}^{80159}$	O.400	T8A820	0.150	$\mathrm{ECCO}^{\text {ECC8 }}$	0.400	741524	0.580
${ }_{80175}$	0.300 0300	I8A920	0880	ECHBI	${ }_{0}^{0.490}$		
80177	0300	TBA990	0800	ECH8A	0.520	8 PIN	0.070
80179	0.3201	TCABDO	0.800	ECLBO	0.570	14 PIN	0.000
80181	0.450	TCA940	0850	ECL182	0.590	16 PIN	0.090
8 B 433	0.320	T0A1170	0.900	ECL84		18 PIN	
80535	0.400	TOA2522	0 BPO	EC185	0.570	20 PIN	0.140
${ }^{80536}$	0.400	T0A2520	0800	ECl26	0.390	22 PIN	0.100
80537	0.420	T0A2532	0.750	EFEO	0310	${ }^{24} \mathrm{P}$ N	0.150
80539	0,423	T0A2540	0.700	${ }_{\text {Efers }}^{\text {Ef }}$	0,340	${ }^{28} \mathrm{PIN}$	0200
	0.800 0.100	TOA2550	0.800	${ }_{\text {Efreb }}^{\text {Ef89 }}$	0.430 0.310	40 PIN	0250
BF181	0.180	TOA2640	0.500	EY87	0.310		
BF194	0.050	$\mathrm{TIP}_{1 / 29}$	0.150	PC97	1.000	3 mm R	0.050
$8{ }^{8195}$	O.050	IIP41A	0230	${ }^{\text {PCFEEO2 }}$	0.570	3 mm	0.100
8 8596	0000	TP42A	0230	${ }^{\mathrm{P} C[51}$	0.540	3 mm	0.100
${ }^{8 F 199}$	${ }_{0}^{0.060}$	T1P2935	0340	${ }^{\mathrm{PCCLB2}}$	0	5 mm	0.050
${ }_{8}^{8 F 2200}$	0.150 0.180	- ${ }_{\text {2N30535 }}$	0.340 0.180	${ }_{\text {PCCLP4 }}$	0.500 0.50	Smm ${ }_{5}$	0.100 0.100
8F337	0.200	$2{ }^{\text {N3054 }}$	0.400	PCL186	0.550		
$8{ }^{8} 389$	0.200	${ }^{2} 12055$	0.320	PR1200	0.850	ELEC	
${ }_{8}^{8 F 362} 8$	0.300 0.150	$2 N 3440$ $2 N 342$	0.580	${ }_{\text {PY P5 } 5004}$	${ }^{0} 1.5000$	${ }^{4} 160 \mathrm{~V}$ CA	0200
Please add 40 p. P\&P and VAT at 15%. Govt Colleges, etc. orders accepted. Quotations given for Large Quantities. Please allow 1 days for deliven. All brand-new Components. All valves are new and boxed.							
SUNMIT ELECTRONICS 9 the broadway, preston road, wembley, middlesex, england. Telephone: 01-50420es							

? Phone: LUTON BEDS. 38716 OPPORTUNITIES TRADE SALES
 ALL SETS GUARANTEED COMPLETE OVER SIX HUNDRED SETS ALWAYS IN STOCK
 Pye 20T, Philips G8;
 Ferguson 3-3k5
 Murphy, Bush, Decca, GEC All from
 $£ 35.00 \quad £ 50.00$
 Square Screen, Mono's from
 £5.00 ALL MODELS
 Sets for spares from
 £2.00
 All include VAT
 OPPORTUNITIES
 9A, Chapel Street, Luton, Beds. LUTON 38716
 $9.30-6.00$ p.m. Weekdays, $10.30-1.00$ p.m. Sundays.

P. V. TUBES

Telephone: Accrington (0254) 36521

38A WATER STREET, ACCRINGTON, LANCS BB5 6PX. OF TELEVISION COMPONENTS
TRADE COUNTER OPEN MON-FRI 9 a.m.-4.30 p.m. SAT MORN. 9.30 a.m. 12 noon.

EX-EQUIPMENT SPARES
300 mixed resistors
300 mixed capacitors
150 mixed electrolytics
100 W W resistors
20 mixed conv pots
40 mixed potentiometer
20 mixed sliders
40 mixed presets
20 mixed VDR \&
thermistors
20 mixed ferrite cores

MIXED PACKS

1.50	20 mixed valve bases	1.00
1.50	10 spark gaps	1.00
2.00	10.16 pin Quil it socket	90p
1.00	20 assorted 1.2 knobs	1.00
1.00	10-16 pin Quil to Dif IC	
1.50	sucket	90p
1.00	100 mixed diodes	1.00
60 p	50 mixed mica washers 300 mixed resistors \&	$65 p$
1.00	capacitors	1.50
50p	10-16 pin Dil to Dil IC	
	socket	1.00

E.H.T. THAYS

10.00
10.06
3.5
6.00
6.00
9.05
10.65
10.15
3.75
14.75

Pye $78+161$
Pye $147+280$
Thorn $56+1 K+47+12$
Thorn $350+20+148+1 \mathrm{~K} 5+317$
Thorn $50+40+1$ K5
3 35 $+15 R+45 R 28 W$ Working ©
$140+14028 W$ $140+14028 \mathrm{~W}$

OIOOES		
112	pp BZuISCI2R	
AAl19		14p iN5
AA143	${ }^{80}$ Prios	${ }^{3} \mathrm{I}$ IN742
BA115	${ }^{1} 1$	
8A131	ip BzV79C 20V	IS1858
		Ip itr638
BA157	${ }^{1} \mathrm{p}$ DA002	
88103	${ }^{\text {8p }}$!1M10225	${ }_{3}{ }^{5} \mathrm{Z} \times 150$
303	$26 p$ N60	SKE1/
127	12p, in53	
133	10,	MCA
INTEGRATED CIRCUITS		
BAV40 50, SN74123N 40p TBA480 1.00 BRC/M/2001.00SN74154N 1.40 TBA1400BRC/M/3001.00SN761ION $40 p$ TDA2680 BRC/M/301.DM74123N 50 p SN6622N 40 p TDA2890A 44p SNI544N 40p TAA570 1.09 TBA540 90p		

E.H.T. Thays			
Thorn 8000 EHT		Thor	5.00
		Pye 18" eerly type	
LP1174	3.50		3.50
PYE731	4.00	Pye 18" late trpe	ype 4.00
Thorn 8500	5.00	Thern 900/950	2.50
Thorn 9000	5.00	Thorn 3000	6.00
E.H.T. STICK FOR THORN			
950/1400/1500 triplers E.C.T. type 80/150 E. H. T. stick. $83 / 200$			
FUSES 20 mm			
50MA 10 fo		500MA 10 for	10
315 MA 10 to	10 tor 50p		
Thorn 3000 metad 2A cut out 1.25			
Thorn a500 plastic 2.5 A cut outDegause thermistor PT37P ITI/GEC1.2525			
gause VDR type E			

\&x-quivilion untested 30003 3hoid paneis

-rspr mar.	3.15
Iher	
	Sp
UHF aternal sacker s lisug lead fof	35p
Tharsa 4tou	40p
	50 p
tion deride firmeng avalatile. \boldsymbol{P} (3) rratucs	st
Cotax plags	12p
Sertctiodtlum	
(whiet	120

CARBONRESISTOR
 $\frac{1}{2}$, 62R IW, 68R IW, 68R $1 W$, 68 R $1 W, 75 R ~ 1 W$,
 $150 j W, 180 R 1 W, 22081 W, 220 R 2 W, 240 R 1 W$,
$240 R 1 W, 270 R 1 W, 270 R 1 W, 360 R 1 W, 330 R 1 W$
 470R 1 WW , 560 R IW, 680R $1 \mathrm{WW}, 820$ RIW, 820 RIW. 2K21W $2 K 71 W 4 K$ 2W. 22K iW. 33 K iW 36K IW 47 K iW 69 K iW 100K $1 \mathrm{~W}, 110 \mathrm{~K}+\mathrm{W}, 270 \mathrm{~K}+\mathrm{W}, 330 \mathrm{~K}+\mathrm{W}, 330 \mathrm{~K} 1 \mathrm{~W}$ 390 K IW , 500 K IW. 1 MEG IW. $1 \mathrm{MEG} 2 \mathrm{~W}, 2 \mathrm{M}$ $2 \mathrm{fW}, 2 \mathrm{M} 7 \mathrm{lW}, 4 \mathrm{M} 7.1 \mathrm{~W}, 10 \mathrm{M}$ iW any 10 for 25p

Thorn 9X thick film units FR1 or FR3
10 Meg thick film focus resisto

EDITOR

John A. Reddihough

ASSISTANT EDITOR
 Luke Theodossiou

ART EDITOR

Roy Palmer

ADVERTISEMENT MANAGER

Roy Smith
01-261 6671

CLASSIFIED ADVERTISEMENTS

Barbara Blake
01-261 5897

PRICE INCREASE

Our annual price adjustment takes effect next month. From the February issue the price of Television will be 90p.

READERS' PCB SERVICE

Due to shortage of space in the present issue it has not been possible to include the usual Readers' PCB Service box. The details given last month (page 99) still apply.

CORRECTION

The triple-standard JVC VCR mentioned last month (page 71) should have been shown as Model HR3330TR, not HR3330TS.

COVER PHOTO

This month's cover photo shows the new Philips CTX chassis. Our thanks to Philips Video for the loan set provided.

TELEORSUOM

Who wants a better picture?

Ever since the start of TV effort has been put into improving the quality of the picture. Baird's extraordinary 30-line pictures got things going, with experimental transmissions that commenced back in 1930. The pictures suffered from poor contrast, weak sync and lack of resolution, but served to prove the point. Giant steps had been taken by 1936, when the BBC's 405 -line transmissions started. EMI had developed the cameras and the electronics to make this possible. In subsequent years good pictures became better as pick-up tube technology advanced. Development in the UK came to a halt in 1939, when all effort had to be switched to radar, and was slow to resume after the war. Meanwhile further giant strides were being taken in the USA, first with the 525 -line system and then in the early 50 s with colour.
From the start, TV has been an optical illusion - a wholly effective one. As the technology advances the illusion gets better, but in contrast the public by and large shows little interest. This is unfortunate for the TV trade and industry. A more critical public would be prepared to spend more on TV equipment, benefitting the trade and encouraging technological innovation. But you have to try awfully hard to get the UK public to take to new developments. Think how difficult it's been putting teletext across. Until, by juggling the trade terms, teletext came almost for free the public wasn't interested!
Time and again the old point about the public happily viewing sets that produce atrocious pictures has been made. This is perhaps not as surprising as it may appear to the professionals. Sets deteriorate gradually, and the viewer adjusts - sometimes until things get so bad that sync is lost! Then again, are sets actually watched or are they switched on to provide video wallpaper? I'd hazard a guess and say that most sets get switched on and are then paid attention to only when the odd item grabs the family's interest. If this is in fact general telly behaviour, it's not surprising that there's little criticism of or interest in picture quality. Most of what's wrong with the pictures actually viewed is the fault of the owner and his set, and as it's all part of the great illusion the public settles for what it will tolerate. More recently the public has quite happily accepted VCR pictures of less than broadcast specification. Philips are pushing LaserVision discs in part on the basis of the superior picture and sound they provide, and quite right too. But the public is more likely to respond to the fact that the discs are relatively cheap.
While people contentedly watch bleary, over coloured pictures, the video technology continues to race ahead. At the same time the burgeoning electronics industry ensures that new technology can be made available to the public at bargain prices (imagine what the cost of a teletext decoder using thermionic diodes and triode bistables would be!). We've now arrived at a point where the provision of much improved TV pictures can be looked forward to. Satellite TV is opening up all sorts of prospects. The great problem is that this involves delicate decisions about the best course to follow, decisions that can have a profound influence for better or worse for years to come. It's not helped by the fact that the public couldn't care less so long as the old soap operas keep coming up in some sort of visible form.
A few months back we reported, in connection with an NHK demonstration to the EBU General Assembly at Killarney, CBS's head of engineering and development Joe Flaherty's comment that "somewhere during the period 1986-90 a high-definition television system is going to do to the current generation of domestic TV systems what colour did to black-and-white in the 60s." One feels that 1986 is rather too close a date considering the politics and economics of such a development, but by 1990 well, yes, it's decidedly feasible, though the operative word so far as the UK is concerned is probably "somewhere"!
What would it have? More lines of course - 1,125 in the NHK system - and maybe, again as in the NHK system, an aspect ratio of 5:3. The improved resolution offered by a system with some 1,000 lines makes a vast improvement with a large display, and large displays are part of what high-definition TV is all about. But in practice the public has tended to opt for smaller screen sizes in recent years! Certainly projection TV, which would benefit enormously from an increased number of lines, is never likely to catch on to any great extent. People just don't live in rooms of a size that justifies it. The real puzzle to this commentator is why anyone should want to muck about with the aspect ratio. The traditional 4:3 was not something that was adopted for some compromise reason. It's roughly the ratio that's common to the stage, most films, photographs and so on. It seems to tally with the basic human field of vision. Cinemascope may be all right for film epics, but for most purposes it's not how one looks at the world.
Satellite transmissions are likely to be free of those irritating colour patterning effects, probably the biggest defect at present. It would also be nice to get rid of the annoying picture jitter associated with the field frequency, though no one seems to be tackling that one.
The UK has to try to keep in the forefront of the development of TV technology. We've always been there, and the future of our TV industry depends on our staying there. But one wonders whether the public will be all that interested in what it can be offered. It's all too likely that if the cable operators get going the public will settle for a rock-bottom system which it'll happily watch on clapped out old tellys!

Long-distance Television

Roger Bunney

OCTOBER was a busy month: lots of news and reception. Before plunging in however Clive Athowe (Norwich) has been in contact regarding his exotic reception during the excellent tropospheric opening on September 14-15th. It seems that he broke all records with a Band III tropospheric catch on the 14th at 2315BST - a channel E11 signal from JRT (Yugoslavia). The EBU list suggests that the signal came from Vlasic (600 kW e.r.p.). Our congratulations to Clive on this quite remarkable reception. Ray Davies (also Norwich) comments that the following morning produced TSS (USSR) on channels R21-29 inclusive and in addition three Band III channels!

Reception during October was widespread and varied, the month ending with another short but spectacular tropospheric opening. For many enthusiasts this was better even than the September 14-15th opening. Here are some of the more interesting loggings:
6/10/82 RTVE (Spain) chs. E2-4; ZTV (Zimbabwe) ch. E2 (TE).
8/10/82 Unidentified F2 signals from the SSE during the mid-afternoon on ch. E3.
9/10/82 RTVE E2-3; RTP (Portugal) E2-4.
10/10/82 RTVE E3; RAI (Italy) IA; SR (Sweden) E2. These signals appeared during an SpE opening at 1400 . GBC (Ghana) ch. E2, very strong, at $1400-1600$ via $F 2$; later ZTV via TE.
15/10/82 RTVE E2-4, including an E4 Madrid relay; TSS R1-2; MTV (Hungary) R1. Unidentified F2 signal at 1230 on ch. E2.
16/10/82 RTVE E2, 3.
17/10/82 TSS R1 very strong; Dubai E2; afternoon F2 reception from the south with ZTV and GBC ch. E2.
18/10/82 RTVE E2-4; NRK (Norway) E2. Also Dubai E2 via F2.
19/10/82 NRK E2, SR E4.
20/10/82 RTVE E2. Good MS (meteor shower) reception reported.
21/10/82 TSS R1 via F2.
23/10/82 TSS R1.
24/10/82 RTVE E2-4; RTVE-2 E2; RTP E3, 4. Note that RTVE-2 Santiago is still on air!

26/10/82 SR E2; NRK E2; TSS R1, 2.
27/10/82 JRT E2.
28/10/82 GBC E2 via F2.
31/10/82 RTVE E2.
Reception via SpE unless otherwise indicated.
There was a tropospheric lift on the $19 / 20$ th, with W. German signals along the east coast. The main tropospheric event came on the night of the 29th/daytime 30th, when a slow-moving high pressure system lifted to give Band III/u.h.f. signals at high strength from central/ eastern Europe - the u.h.f. band looked more like conditions associated with SpE! TVP (Poland) and CST (Czechoslovakia) were widely received in Band III and at u.h.f. I was alerted by Trevor Rose (Lowestoft) who got in touch to report the wide-open conditions, with his reception of CST chs. R22 and 32, and thanks to him I logged for the first time at Romsey CST-1 from Usti Nad Laben on ch. R12.

Signals came mostly from the east and south east, with TDF (France) swamping the bands. Clive Athowe received two ORF (Austrian) Band III stations, three DFF (GDR) transmitters and CST chs. R7 and R11. Hugh Cocks (E. Sussex) reported CST and TVP throughout Band III. Several enthusiasts just switched off due to the u.h.f. band being jammed up with programmes! At his screened location at New Radnor, Wales, Simon Hamer received several ARD (W. German) transmitters plus BRT/RTB (Belgium) and NOS (Holland) in Band III and at u.h.f., the signals coming in "thick and fast". Conditions were best early in the morning on the 30th, continuing through to the afternoon when the signals started to fade. CST was still visible at close down, but next morning produced a dead u.h.f. band.

Improving F2 conditions were confirmed by reception of very low-level Australian ch. 0 signals on the 26th. Though some F2 signals are arriving, it's evident that conditions are not nearly as good as last Autumn. I suspect that this may be the last season for Band I activity during the present sunspot cycle.

Thanks to Hugh Cocks, Clive Athowe, Ray Davies, Simon Hamer, Trevor Rose, Robin Crossley (St. Albans), Cyril Willis (Ely), Arthur Milliken (Wigan), Graeme Wilson (Middlesborough), David Moller (Eastbourne) and our Dutch correspondents Ryn Muntjewerff and Gosta van der Linden for reception reports.

News Items

Japan: A teletext service was started in the Tokyo area during December, with facilities provided by the Tokyo Broadcasting Company.
Luxembourg: Hugh Cocks has been monitoring high-level

Left: Litvius TV, Western USSR ch. R8, received via tropospheric propagation on September 14th. Centre: Ryn Muntjewerff's mystery signal now identified as Uzhgorod, USSR. Right: "The Star of Hope" identification, ch. E12, a pirate once offshore Cyprus.
test signals from RTL on ch. E7 - at higher signal strengths than the transmissions prior to the collapse of the mast. System B has been used for these tests - RTL normally uses system C (positive-going video) on ch. E7. There are rumours of a standards change to system B. A u.h.f. transmitter to provide a system B service to Holland and Belgium is understood to be under construction at Marnach - a signal has been noted on ch. E23.
In brief: A Basque language TV service, Euskal-Telebista, is due to commence early this year - no connection with RTVE. The RTVE-3 regional service is to start first in Andalusia ... To prevent video copying, identifications are increasingly being inserted on films/serials. ARD (W. Germany) includes the identification for 30 seconds in every fifteen minutes at the upper right corner, ZDF similarly at the upper right and the BR third programme at the upper left. TSI (Switzerland) inserts RTSI in each corner in sequence for 15 seconds each minute. TMC (Monte Carlo) has the insertion at the upper right.

Meteor Showers

The dates for the main 1983 meteor showers are as follows - our thanks for these to George Spalding, Director Meteor Section of the BAA.

Quadrantids (strong shower)

Lyrids (weak)
May Aquarids (moderate)
Delta Aquarids (moderate)
Perseids (strong)
Orionids (moderate)
Taurids (weak)

Leonids (weak)
Geminids (strong)
Ursids (weak)

January 1-6, peaking at 0600 GMT (plus/minus a few hours) on the 4th.
April 19-25, peaking on the 22nd.
April 24-May 20, peaking on the 5th.
July 15-August 20, peaking on the 28th.
July 23-August 20, peaking on the 12 th.
October 16-26, peaking on the 20/22nd.
October 20-November 30 , peaking on the 1 10th.
November 15-20, peaking on the 17th.
December 7-15, peaking on the 13th.
December 17-24, peaking on the 22nd.

DX-TV C/ubs

From time to time I receive letters asking whether there's a local DX-TV club. Unfortunately clubs are few and far between, though interest has been growing in recent years. Here's a club update.

DX/TV RX Group. Formed by Dave Lauder, 18 Burnside Close, Barnet, Herts EN5 5LN. First news letter currently available. Send s.a.e. for first issue. A further six first class post stamps will ensure receipt of the following three issues which will appear at intervals of about three months.

Cyril Willis is considering publishing a DX-TV magazine from 17 Main St., Little Downham, Ely, Cambs. CB6 2ST. Anyone interested in contributing etc. should send a s.a.e. with details to Cyril.
Tele-Audiovision is a German TV/FM-DX magazine of relatively high quality containing a short English translation. Photographs are included and the present

SOUTH WEST AERIAL SYSTEMS

10 Old Boundary Road.Shaftesbury, Dorset. SP7 8ND tel. 0747370

Two new models from Triax!
The BB Yagi is a 10 element rear mounting system with twin reflector for use in either Group A, B C/D, E and W. Of unusually rugged construction, it features a typical peak gain of 13.5 dBd (Group A) and 12.5 dBd (Groups B, C/D, E, W) with a f / b figure of 21 dB typical. The horizontal beamwidth is 59° and 47° respectively. The 40055 UHF masthead amplifier - an established market leader - has now been upgraded with even lower noise figures and is the lowest noise domestic unit currently available for weak signal use. The amplifier has 25 dB gain with noise levels of 1.5 to 1.9 dB and operates from a $20 / 24 \mathrm{v}$ supply.
South West Aerial Systems provides an expert service for local, fringe and DXing applications and we supply aerial equipment from Europe's foremost manufacturers. A customer consultancy service resolves reception difficulties.
A satellite 4GHz TVRO terminal package is available, include SAE for leaflet.
Triax BB Yagi 10 element (state group) $£ 8.65$
Triax $40055470-860 \mathrm{MHz}$ masthead amplifier (ultra low noise) $£ \mathbf{£} 1.86$ Triax 601/60A mains PSU for above E10.95
Triax Unix 92 'Continental' style high gain anodised long yagi 16.5 dBd peak gain (Group A, E, W - state group)
$£ 45.90$
Labgear CM9034 UHF channel Group bandpass filter -external
use- available Group A, B, C/D, please state type required $£ 11.25$ The above prices include VAT, postage and packing.
Our restyled and enlarged catalogue for 1983 costs 54p. Include SAE with ALL enquiries. Access/Barclaycard accepted. Allow $10-14$ working days for delivery.

M LTE OUTPU	RANSFORMERS
If the Transformer you require is not listed please phone.	
RANK BUSH MURPHY	DECCA
2146 A640 dual std mono 8.51	MS1700 200120202401 mono 8.00
Bush A792, A793 single std mono 8.51	MS2404 24202424 mono 8.00
A774 single std mono 8.50	121012111511 portable $\quad \mathbf{. 1 3}$
A816 solid state mono 9.00	GYPSY portable $\quad 9.13$
Z712 T168 T16b mono portable 9.00	CS1730. 1733 colour 8.00
A823 A823b A823av colour $\quad 10.00$	CS1830 1835 colour 8.00
Z179 2722 series colour $\quad 10.00$	'30' series BRADFORD colour 8.00
$271818{ }^{\prime \prime}$ series $\quad 11.00$	80 series colour 8 8.00
$2718200^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ series $\quad 11.00$	100 series colour 8.00
G.E.C.	210300 serias mono
2047 to 21053112 to $3135 \quad \mathbf{8 . 0 0}$	320 series solid state mono $\quad 1.50$
"GAIETY" FINELINE 8 8.00	G8 series colour 8 8.00
2114 portable mono $\quad 8.00$	G9 series colour 8.50
31333135 M1501H portable mono 8.00	G11 series colour $\quad 13.70$
DUAL STD hybrid colour SINGLE STD hybrid colour 10.00	KB-4TT
SINGLE STD solid state $90^{\circ} \quad 8.50$	VC200 VC205 VC207 mono $\quad 3.00$
or 110°	VC300 VC301 VC302 portable $\quad \mathbf{8 . 0 0}$
FERGUSON HNY MARCONI	CVC1 CVC2 colour CVC5 CVC7 CVC8 CVC9 colour
1590159115921593 mono 8.00	CVC20 series colour $\quad 9.00$
161216131712 mono 8.00	CVC30 CVC32 series colour $\quad \mathbf{8 . 0 0}$
16901691 mono 8.50	CVC40 series 14.55
16001615 series mono 9.74 30003500 EHT or SCAN $\mathbf{7 . 9 4}$	L.O.P.T TESTER Total Price
ADD 15\% VAT to ALL prices.	
Tidman Mail Order Litd., 236 Sandycombe Road, Richmond, Surrey. Approx. 1 mile from Kow Bridge. Phone: 01-948 3702 Mon-Fri 9 am to 12.30 pm . 1.30 to 4.30 pm . Sat 10 am to 12 pm .	Hamond Components (Midland) Ltd., 416 Moseley Road, Birmingham B12 9AX. Phone: 021-440 6144. Mon-Fri 9 am to 1 pm. 2 pm to 5.30 pm .

Fig. 1: Robin Crossley's tunable sound i.f. circuit To align, set the potentiometer mid-way, tune in a 6 MHz signal and peak L10/11 for maximum sound. Tune in 5.5 and 6 MHz transmissions and check the potentiometer's tuning range (should exceed $\pm 1.5 \mathrm{MHz}$ about centre). Repeak if necessary.
issue has 62 pages plus cover. A sample subscription (three issues) is offered for ten IRC or 10DM. Write to Tele-Audiovision, Postfach 801965, D-8000 Munchen 80, W. Germany.

The Benelux DX Club produces a similarly high-quality folded A4 offset-format bulletin covering SW, Utility, FM and TV with extensive photographs and news, reception logs and English summaries. Annual membership of this Dutch club costs f39. Details and a sample can be obtained from the Benelux DX Club, Postbus 1306, 6501 BH Nijmegen, Netherlands for three IRC.
The French DX-TV club AFATELD publishes five bulletins a year called "Television sans Frontieres" containing on average some 24 A4 stapled format typed/ Xerox pages, all in French. Photographs, diagrams, reviews and loggings are included. Annual subscription outside France costs 120 francs. Write to AFATELD, Siege Social, Place de Mons, Cenac 33360, Latresne, France. Include four IRCs for a sample.

Variable Intercarrier Sound

Standard system I receivers have a sound i.f. of 6 MHz , making it impossible to resolve the $5 \cdot 5 \mathrm{MHz}$ system B / G sound or the 6.5 MHz system D sound. Robin Crossley has been giving thought to this problem and has come up with a system of tunable i.f. working which he's incorporated in his sets (Ferguson monochrome portables fitted with the Thorn 1690 chassis). The modifications required are shown in Fig. 1. Other chassis could be modified along similar lines. Our thanks to Robin for his research and for passing on the information.

From our Correspondents . . .

Ryn Muntjewerff received a mystery Russian electronic test pattern with identification back in August (see photo). This has been identified by Igor Hajek, who is now living in California, as coming from the Uzhgorod transmitter in the western USSR. We've been unable to resolve what the Cyrillic identification "ORPS" on a similar electronic pattern signifies.

Mel Thurlburn has recently returned from Cyprus where he kept up his TV-DXing. He's sent us several interesting photos, including a unique "Star of Hope"
identification from the Israeli offshore pirate on ch. E12.
Jim Maden (Vereeniging, S. Africa) is now using a 12 ft dish mounted at 30 ft on his lattice mast to receive the Russian Ekran/Stat-T satellite TV transmissions at 714 MHz . This has produced a startling improvement, with virtually noise-free monochrome pictures and good quality sound. The elevation to the satellite at Jim's location is virtually 0°.
The May column featured a ZX81 programme devised by Petri Pöppönen for DX-TV use. Ian Mitchell (Westerham, Kent) has since sent us a variation which tends to help as you go along and avoids a "crash" half way through: major additions are storage of your own coordinates (receiving site) so that only those of the distant transmitter need to be entered, and the ability to produce a print out.
Nick Harold (Essex) reports successful reception of the Russian 4 GHz satellite transmissions with equipment which is virtually all home made. Despite using a 4 ft diameter dish with a focal length of only 12 in . - unsuitable for such a relatively low microwave frequency since it was originally designed for 9.4 GHz radar use - Nick is receiving good quality SECAM colour plus sound from Gorizont $1(3.675 \mathrm{MHz})$, and noisy monochrome signals from Gorizont $4(3.825 \mathrm{GHz})$ and Gorizont 5 $(3.875 \mathrm{GHz})$. We hope to give further details of Nick's equipment next manth.

Simple 4GHz Receiver

The simple 4 GHz satellite receiver I described in the November issue provided an output at 70 MHz . It's prompted questions about what to do with this if you don't have a suitable tuner, e.g. an ELC2000 or ET021 varicap tuner that covers this part of the spectrum. A natty solution was given in the May 1982 issue of RadioElectronics. A high-speed flip-flop i.c. is used as a divide-by-two circuit (see Fig. 2) following a 70 MHz bandpass filter and amplifier. The input is fed to pin 6 of the i.c., the 35 MHz output being taken from pin 3 . This is fed to a phase-locked loop detector (NE564 etc.). The $1 \mathrm{k} \Omega$ bias potentiometer connected between pins $14 / 15$ is adjusted to bias the flip-flop so that the 70 MHz input makes it switch. Since the bias source and the flip-flop are on the same chip, temperature compensation is provided.

The same article describes a suitable 70 MHz bandpass filter. The November 1982 issue of the BATC magazine CQ-TV also describes such a filter. The May-July 1982 issues of Radio-Electronics featured a series on a satellite receiver and are well worth getting (it didn't include the feed horn electronics package with 4 GHz low-noise amplifier - input to the receiver is at 4 GHz). RadioElectronics is published by Gernsback Publications Inc., 200 Park Avenue South, New York, NY 100003. Individual copies cost $\$ 1.25$ each.

Fig. 2: Divide-by-two circuit to obtain a 35 MHz output

B.K. ELECTRONICS

INCREASE YOUR PROFITS - IMPROVE YOUR SERVICE WITH RELIABLE COST EFFECTIVE TEST EQUIPMENT

SAFGAN DT-420 DUAL TRACE SCOPE 20 MHz вANOMDTH

 SPECIFICATION* CH1, CH2: $5 \mathrm{mv} / \mathrm{div}-20 \mathrm{v} / \mathrm{div}$
* Time Base: $1 \mathrm{sec} / \mathrm{div}-100 \mathrm{~ns} / \mathrm{div}$
- XY Facility: Matched XY inputs
- Trigger: Level control, \pm slope selection
\star Auto, normal, TV triggering - Z-Modulation
- CAL output 1V 1 KHz
- Graticule blue ruled 8×10 div (4* - CRize: V215 Sharp Trace.
* Size: H215mm, W165mm, D280mm

PRICE E199 + £29.85 VAT
BRITISH MADE - RELIABLE - 18 MONTH GUARANTEE

LEADER LCT-910A

 cathodes with automatic timing.

* Super rejuvenation with manual con-
- Complete with tube base adaptors.

Size: H $230 \mathrm{~mm} W 330 \mathrm{~mm}$ D 120 mm .
THE VERY LATEST SC110A LOW POWER, FULLY PORTABLE OSCILOSCOPE.
The new Thandar SC110A represents a break-through in oscilloscope development. The SC110A is ONLY TWO INCHES thick and weighs under two pounds, yet retains the standard features and controls of a bench oscilloscope. FITS IN A BRIEFCASE

1980 GOLD MEDAL winner of the B.R.N.O. EXHIBITION, the largest Trade

Full Sized Porformance

. 10 MHz bandwidth
Firld in Eastern Europe
10 MHz bandwidth. $\quad 10 \mathrm{mV}$ per division sensitivity.

- Full trigger facilities are provided including TV frame, or TV filtering. - adaptor.
- Size $255 \mathrm{~mm} \times 148 \mathrm{~mm} \times 50 \mathrm{~mm}$
'Scope $£ 149.00+\mathbf{C 2 2 . 3 5}$ V.A.T
Carry Case £5.95 + $\mathbf{E 0 . 8 9}$ V.A.T.
BRITISH $\times 1$ Probe $£ 7.00+£ 1.05$ V.A.T.
MADE $\times 1 / \times 10$ Switched Probe $£ 9.50+£ 1.42$ V.A.T.
FULLY $\times 1 / \times 10$ Switched Probe $£ 9.50+£ 1.42$ V.A.T.
Rechargeable Batteries $£ 11.00+£ 1.65$ V.A.T. AC Adaptor $£ 4.95+$ E0. 74 V.A.T. (Overseas purchasers please state voltage.)

also avallable Analogue Multimeters Digital Multimeters Oscilloscopes Signal Generators Digital Frequency Meters Pattern Generators CRT Tester/Rejuvenato T.V. Field Strength Meter T.V. Field Strength Meter LARGE S.A.E FOR COMPLETE LIST

[^1]Technical Training in Television, Radio and Electronics

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the field of electronics - now it can be your turn. Whether you are a newcomer to the field or already working in the industry, ICS can provide you with the specialised training so essential to success.

Personal Tuition and Guaranteed Success

The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed'":

CITY AND GUILDS CERTIFICATES

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Basic Electronic Engineering (C\&G/ICS)
Radio Amateurs
CERTIFICATE COURSES
TV \& Audio Servicing
TV, Radio and Audio Engineering
Radio \& Amplifier Construction
Electronic Engineering*
Computer Electronics*
Industrial Electronics*
Radio Frequency Electronics*
Introduction to Microprocessing*
Electrical Engineering*
Electrical Contracting $\boldsymbol{\&}$ Installation

- Quality for IET Associate Membership

Approved by CACC

Member of $A B C C$
POST OR PHONE TODAY FOR FREE BOOKLET

N. J. ELECTRONICS
(SUPPLIERS OF QUALITY COMPONENTS)UNIT 94, STORFORTH LANE TRADING ESTATE, CHESTERFIELD, S41 OSN, DERBYSHIRE
Philips G8 Later Push Button Unitf10.50Pye 731 IF Gain Module (original type) $\mathbf{£ 7 . 8 0}$Alternative IF Gain (SAWF Type) $\mathbf{£ 7 . 6 0}$ITT CVC9 LOTX $\mathbf{f 9 . 0 0}$Philips G8 LOTX (genuine Philips)£7.80G11 EW Loading Coil£1.00
G11 EW Transformer £1.00
$25 \times$ BY127 f2.35
$25 \times 1 \mathrm{~A} 20 \mathrm{~mm}$ Anti Surge Fuse £2.00
25×2 A 20 mm Anti Surge Fuse £2.00
$50 \times 500 \mathrm{~mA} 20 \mathrm{~mm}$ Quick Blow Fuse £1.50
$5 \times$ BU208A $£ 4.50$
$5 \times$ R2008 $£ 4.50$
$5 \times$ R2010 £4.50
G11 Diode Split LOTX £12.50
ITT CVC40 Diode Split LOTX £12.50
Thorn 3500 EHT Tray f6. 30
Decca 100 EHT Tray £6.30
Decca 80 EHT Tray f6.30
U321 Tuner $£ 7.00$
U322 Tuner E7.00
FT3055 Transistor $\mathbf{f 0 . 5 0}$
G11 CRT Base Panel f3.00 813596 between 9.30-11.30 am or 2.00-4.00 pm.

APOLLO

HIGH TEMPERATURE PUMPED COLOUR TUBES

Fast Mail Order service to any part G.B. Delivery 2-3 days.
Just phone for a quotation. Delivery Manchester area free same day. Two year guarantee. Fitting while you wait or in your home $f 20$ extra. Also PlL types \& Toshiba.

$18^{\prime \prime}$	A47-342×343×	$£ 37.00$
$19^{\prime \prime}$	A49 $-120 \times / 192 \times$	$£ 37.00$
$20^{\prime \prime}$	A51-220×/110×	$£ 38.00$
$22^{\prime \prime}$	A56-120×/123×/140×	$£ 38.00$
$25^{\prime \prime}$	A63-120×	$£ 39.00$
$26 \times$	A66- $120 \times$ A67 $-120 \times / 140 \times / 150$	$£ 39.00$

$22^{\prime \prime}$ Bush all transistor colour TV's fully serviced 559 delivery or with (new tube guaranteed 2 years) $\mathbf{£ 8 9}$.

Philips Video Spares Available.
061799085424 hour answering service. 43 Clarke Cres, Little Hulton Nr. Manchester M28 6XM.

Test Report

Eugene Trundle

InNOVATIVE design, new features and techniques are very much the rule these days in consumer electronics equipment. One sometimes feels that it's very difficult to keep up with all these developments. Great improvements are also being made in the field of test equipment, though most of us have used the same sort of tackle for servicing for many years - a reasonably sensitive 10 MHz oscilloscope, a good multimeter, perhaps a digital multimeter and such other gear as we may be able to afford.

It was with great interest then that I noticed the announcement of a new oscilloscope intended specifically for TV and video servicing, with several new features. I was fortunate in securing one for review.

Features and Construction

Briefly, the Scopex $14 \mathrm{D}-10 \mathrm{~V}$ is a $2 \mathrm{mV}, 10 \mathrm{MHz}$ scope with a $10 \times 8 \mathrm{~cm}$ screen, X-Y facilities, a TV trigger circuit and a timebase delay system for accurate examination of individual TV lines. It's a big oscilloscope, and remarkably light since the usual 50 Hz mains transformer has been dispensed with. Its place is taken by a switch-mode power
supply, with mains isolation provided by a surprisingly small ferrite transformer. The circuit is of the Siemens selfoscillating chopper type, similar to that used in the Rank T20/T22 chassis, the Tandberg CTV2 series and many others. An interesting feature is the method of mains input voltage selection - when 110 V operation is required, a single link is fitted to turn the mains bridge rectifier and reservoir capacitors into a voltage doubler.

Inside the scope I found a single large PCB for most of the circuitry, with thirteen i.c.s. A smaller PCB at the rear, behind a screening can, houses the switch-mode power supply. The front panel-mounted potentiometers are similar to those used in certain TV sets. I've known them to give trouble, but if it was ever necessary they are easy enough to replace. The case is of sheet aluminium, with a plastic front panel, the tilt stand doubling as a carrying handle. A comprehensive instruction manual is supplied, complete with circuit diagram, calibration instructions and circuit description. This is a useful point. Coupled with the fact that many of the components used are standard, readily-available types, any maintenance necessary should be easy.

Y Amplifiers

The Y amplifiers have twelve fixed-gain settings between 2 mV and 10 V per division. These days a sensitivity of 2 mV /division is becoming more important for many applications, and in the $14 \mathrm{D}-10 \mathrm{~V}$ the Y amplifiers each consist of a wideband i.c. differential amplifier driving a complementary transistor chain for push-pull deflection of the c.r.t. beam. There's push-

button selection of dual- or single-trace operation, and for $\mathrm{X}-\mathrm{Y}$ operation channel A drives the X deflection system. The X-Y mode is useful to have, even with the reduced bandwidth of 500 kHz on the X axis, and who knows what applications we may find for it in the future?

Further manipulation of the Y select push-buttons brings us to the add and invert facilities. In the add mode the sum of the A and B (Y1 and Y2) signals appears as a single trace. The crudest use I found for this was to double the sensitivity by connecting both probes to the same point! When B invert is selected in this mode the A and B signals are subtracted, the result appearing as a single trace. Thus equal amplitude, in-phase signals cancel, leaving a straignt line across the screen. This mode is very useful where small signals ride on large waveforms as the latter can be cancelled out. This mode also shows up glitches in digital equipment, phase shifts, and provides amplitude and gain checks in any "dual" system. With the probes on a common signal source it's also a very severe test of gain balance in the scope itself - the review machine came through this test well.

For certain applications in the differential mode the lack of a continuously variable gain control on at least one Y channel is a slight handicap - on the other hand its absence prevents errors due to its misadjustment! The 2-510 sequence of the gain switch is quite adequate for normal use.

Trigger and Timebase

The range of sweep speeds provided was suitable for all the servicing requirements I had, and it was seldom necessary to make use of the X5 magnification facility on the X axis (this robs the display of some brightness). The 2-5-10 sequence is again followed for the sweep-speed selector, with no continuously variable control. The sweep is linear and well within the quoted calibration accuracy.

An active TV sync separator is incorporated. I got good solid lock from composite waveforms, even filtered chroma. No complaints here. Much ado is often made by users of scopes about the trigger performance of this instrument and that. I've always felt that external triggering is a far better idea, giving solid lock regardless of the displayed waveform's changing amplitude and polarity. We are getting used to having to do this in VCR servicing, where a great deal of work is done with the scope locked to field-rate reference pulses. In the Scopex instrument, external sync is conveniently applied to a third BNC front panel mounted socket, which deserves a probe of its own.

Sweep output and probe test sockets are provided, the former for use with a wobbulator, the latter a useful and quick means of setting up the compression trimmer in the body of the divider probe.

Display

The c.r.t. is the heart of an oscilloscope, and the type of tube used depends very much on the cost of the instrument. In the $£ 300$ price range you'll usually get a non-PDA (post-deflection acceleration) tube, and this is the type used in the 14D-10V. It operates at a respectable 2 kV e.h.t., and the 10×8 screen is larger than with most comparable scopes. The focus and brightness are reasonable, though the review model had a slight tendency to astigmatism at high brightness levels. For optimum focus, medium brightness is to be preferred.

ABRIDGED SPECIFICATION

Vertical System

Dual-trace: Chopped (at 110 kHz) up to $1 \mathrm{msec} / \mathrm{cm}$, alternate at higher sweep speeds.
Sensitivity: $2 \mathrm{mV} / \mathrm{div}$. to $10 \mathrm{~V} / \mathrm{div}$. in 12 ranges. $1-2-5$ sequence.
Accuracy: $\pm 3 \%$.
Bandwidth: D.C. to $10 \mathrm{MHz}-3 \mathrm{~dB} .3 \mathrm{~Hz}$ to 10 MHz a.c. coupled.
Rise time: $\mathbf{3 5 \mu s e c}$.
Maximum input voltage: 400 V peak.
Input impedance: $1 \mathrm{M} \Omega / 33 \mathrm{pF}$ to BNC socket.
Operating modes: Dual, single, X-Y (500kHz), add, invert B.
Horizontal System
Sweep Speeds: $1 \mu \mathrm{sec} / \mathrm{div}$. to $100 \mathrm{msec} / \mathrm{div}$. in 16 ranges. 1 -2-5 sequence.
Accuracy: $\pm 3 \%$.
Magnifier: X5 (increases fastest sweep to 200nsec/div.). Sweep output: $1.5-10 \mathrm{~V}$ sawtooth at rear panel.

Trigger System

Sources: Vertical channel A or external.
Modes: Normal, TV line, TV field, delayed.
TV delay: Continuously adjustable, line 17 to line 312.
Bright line auto: Free-running sweep with no trigger signal (facility to disable).
Polarity and level: Selected by front panel controls.
Display
Graticule: 10×8 divisions. 1 division $=1 \mathrm{~cm}$.
CRT: P31 phosphor standard, P7 optional, operated at 2kV. Trace locate: Returns over-scanned trace to display area.

General

Power supply: $210-250 \mathrm{~V}$ or $105-125 \mathrm{~V}$ a.c., $50 / 60 \mathrm{~Hz}, 25 \mathrm{VA}$.
Dimensions: 153 mm high $\times 312 \mathrm{~mm}$ wide $\times 435 \mathrm{~mm}$ deep.
Weight: 5kg.
Optional extras: High-impedance probes, protectomuff.

Where strobe operation is used, i.e. X expansion by one means or another, the duty cycle of the display is low and the trace brightness is correspondingly low. The only way round this is to fork out many hundreds of pounds for a PDA-tube scope, or to go well into four figures for a storage scope. Few of us could justify this!

I do have a couple of criticisms in this department however. At the low brightness levels that can be encountered in certain modes of operation a viewing hood is almost essential. The review instrument did not have one. Worse than this, the distance between the c.r.t. face and the graticule is so great that a shocking parallax error in reading the display is possible.

TV Delay

So we come to the main feature of this scope so far as I'm concerned, the TV delay facility. The idea of a delayed timebase is to trigger the sweep at some time after applying a trigger pulse, the delay being set precisely by the user. Thus for TV purposes we can start timing from the field sync pulse and "reach down" into the picture for say 10 msec . This brings us to line 156 , and if we then initiate one $64 \mu \mathrm{sec}$ sweep we shall see just this line. If the process is repeated after each field sync pulse we'll have "strobed out" line 156 and will be able to examine it in isolation.

Let's assume that we keep the $20 \mu \mathrm{sec}$ delay and reduce the sweep speed to $200 \mu \mathrm{sec}$. We'll now see lines 156,157 and 158 of each field and so on. In fact on single-trace operation we'll get not only line 156 in the above example
but its partnering line 469 in the even field. This is no detriment because it will probably be identical and the two will overlay to give a useful increase in brightness.

Now line 156 may not be of burning interest (unless one is constructing an electronic pattern generator or analysing the waveform of an optical one), but certain TV lines are very important to us. Amongst these are the lines on which the TV picture starts and finishes, and those that carry equalising pulses, test signals and teletext waveforms during the field blanking period. Towards the end of each field comes the VCR head changeover point, while video disc systems perform their still-motion and trick-speed operations during the field blanking period. So the ability to be able to strobe out lines is becoming more significant.

In the past only expensive oscilloscopes boasted delayed timebases, and this was usually done by having in effect two variable timebases, the second ramp (the sweep) being initiated at the end of the first (the delay). This system requires very precise triggering and impeccable circuit design if jitter is to be avoided. A more recent approach, applicable really only to TV signal analysis, is to use digital circuitry to count the lines, starting from the field sync pulse and counting a preset number of lines before initiating the sweep. This approach is facilitated by the availability of suitable digital i.c.s, and this is how it's done in the 14D-10V.

In the TV delay mode an electronic cursor, in the form of a blanked slice as it were, is superimposed on the waveform to indicate the delay setting and mark the TV line required. A precision ten-turn vernier potentiometer is used for this, after which delay sweep is selected and up comes the required line. If necessary, video waveforms down almost to picture element level can be examined by stretching out the sweep with the X5 switch, though by this time the trace brightness is quite low.

How does it work in practice? Very well I found. The review instrument started at line 16 and was continuously adjustable up to line 312 . I examined the text lines of the broadcast signal in detail, and was able to get well locked and beautifully reproduced traces of the pulse-and-bar waveform and the teletext test line (line 20). I successfully made eyeheight measurements (for further' details see page 128, January 1978, and page 648, October 1982). Briefly, line 20 and its partner line 333 together provide a test for eyeheight or decoding margin of the broadcast text signals, the pulses on line 333 being complementary to those on line 20 when displayed as a single stationary test line.

Now at the sweep speeds used for this test the scope is in the alternate-trace mode so far as the Y amplifiers are concerned, so for this and other tests a single line per picture can be observed on each of the dual traces, or the two can be superimposed by selecting "A only". This is ideal for any form of line-by-line analysis. It's possible for example to study the alternate line phasing of the PAL colour burst with ease.

After wondering at the BBC's "remote control line" number 21, I selected a much longer delay and was able to look at VCR head switching events and the run up to the sync pulse at the end of the field. I experienced no jitter whatever, and discovered an inherent virtue of digital delay that no analogue delay system has. With a jittering signal such as comes from any mechanically reproduced video recording system, i.e. tape or disc, the counting system relies on the line numbers rather than the time, so that jitter-free traces are produced even after a delay of almost a full field. In fact the ten-turn vernier delay

The Scopex 14D-10V oscilloscope.
control, which is fitted with a locking device, is so stable and accurate that I found it possible to set it for a certain line number and come back two days later and find that same line would be reproduced on a different transmission and at a different room temperature. The circuit would be amenable to a calibrated dial-a-line control system with a potentiometer or thumbwheel controls. When using the digital delay system, the displayed line sync pulses stand still and delay adjustment makes the lines of video jump across them, giving an effect similar to that of tilting a TV camera vertically. With an analogue delay arrangement the whole trace moves sideways (X shift effect) with delay adjustment.

Conclusion

This instrument is a workshop type and belongs on the bench where its full potential can be exploited. The large screen, mains operation and the facilities it offers make it ideal for TV, video, text and much digital work. Technical colleges, polytechnics and similar establishments should also find the 14D-10V of interest - many of them have to work with a very restricted budget these days, and for demonstrating modern TV tecniques this instrument is very useful. The necessity to operate the instrument at low ambient light levels in certain modes is a small price to pay in view of the low cost of the 14D-10V.

Since this review was originally prepared a viewing hood has been introduced and comes as standard with the instrument. The makers say that they intend to fit a c.r.t. with an internal graticule at some future date. These points will overcome the two small grouses I've made. The design is a good one and capable of further development for instance the incorporation of thumbwheel line selection, a vernier Y gain control on channel A and a PDA tube operating at a higher e.h.t. for brighter traces in the strobe mode. All these would add to the expense of course, but I'm sure there would be a market for a de-luxe version alongside the standard model.

As it stands, the 14D-10V is incredibly good value for money at $£ 260$ plus VAT, with two probes and delivery included. It's available from Scopex Instruments Ltd., Pixmore Avenue, Letchworth, Herts SG6 1JJ (telephone 04626 72771). I can wholeheartedly recommend it, not only for its intrinsic virtues but as a piece of British innovation in a field which is being steadily encroached upon by the Oriental big boys. Well done Scopex!

The Philips CTX Chassis

The new Philips CTX colour chassis is designed to drive 90° colour tubes of the 570X type. Mechanically, the chassis is very different from the KT3 which it will replace. While the KT3 used the mother/daughter board principle, with a large vertically mounted main panel into which seven subpanels were plugged, the CTX has a single horizontally mounted panel plus a rather larger c.r.t. base panel than its predecessor. Packing most of the circuitry on to a single panel at the base of the cabinet gives room for a larger c.r.t. base panel on which the RGB output stages and the focus unit can be mounted. Altogether a much neater scheme.

An initial glance at the circuit reveals that many of the features of the KT3 have been retained. So how has the component count been substantially reduced and space saved? One space saver is the use of a compact diode-split line output transformer instead of a separate transformer/ tripler combination. Then a TDA3651 i.c. is used to provide the field output whilst another i.c., a TDA2577, takes care of quite a lot of things, containing as it does the sync circuits, the field generator and the line frequency generator. The new circuitry has enabled the power consumption to be reduced to 39 W average in comparison to the KT3's 70W.

The chassis is neatly laid out and easy to get at. The low power consumption should ensure reliable operation. Perhaps we should say extremely reliable, since the KT3 itself established an enviable reputation for reliability.

The main similarities between the CTX and the KT3 lie in the signals circuitry and in the use of a tandem chopper/ line output arrangement, i.e. the line output transistor is driven by a secondary winding on the chopper transformer. The tuner is quite large, and along with the discrete component i.f. filter takes up quite a large proportion of the main panel. The filter is identical to that used in the KT3. The TDA2540 i.f. i.c. is also the same, whilst the decoder consists of a TDA3560 as in the KT3

The Philips CTX chassis.

Mk. II. The sound channel is also the same, consisting of the well tried TBA120S intercarrier sound i.c. followed by a TDA2611AQ audio i.c. Fig. 1 shows the CTX's circuit and power supply arrangements in block diagram form.

Class A RGB output stages replace the KT3's class AB circuits. This simplifies the circuitry, and since the output stages are now on the c.r.t. base panel the capacitance they have to drive is much reduced. The performance is perfectly adequate, especially when one considers the limitations on picture resolution imposed by modern tubes.

The item that's brought about the greatest changes in comparison with the KT3 chassis is the TDA2577 i.c. This, with some extra discrete component circuitry, replaces the TDA2571/TDA2581 sync/line oscillator/ chopper drive combination and the discrete component field generator circuit. It contains the sync circuitry and the line and field frequency generators. It also produces the sandcastle pulse for the decoder and contains a pulsewidth modulator for chopper control. This latter feature is not used however. Instead control of the chopper drive is carried out in the external discrete component circuitry (see Fig. 2).

The drive waveform produced at pin 11 of the TDA2577 consists of a line frequency pulse with a sawtooth leading edge. This waveform is a.c. coupled to the base of TR 7322 which is forward biased by R3317. As a result, TR7322 switches off on the negative-going pulse transition. The same conditions apply at the base of the chopper driver transistor TR7353, which is forward biased via R3319 and receives the squarewave output from TR7322 via C2319. Control is provided by TR7323 which senses the 125 V h.t. rail at its base. The conduction of TR7323 varies with the h.t. voltage therefore. Since TR7323 is part of TR7322's load, the effect is to introduce a variable delay in the switch-on conditions at the base of TR7353, thus providing the regulatory action. The key to this is that C2319 is instantly discharged when TR7322 switches on, but charges via the parallel combination of R3318 with TR7323/R3320 when TR7322 is switched off.

It's a neat arrangement, since over-voltage protection is applied at the same time. If the h.t. voltage rises, TR7323 is driven towards cut-off and the chopper drive is thus reduced. If TR7322/3 go either short- or open-circuit the drive to the chopper is removed, while if the chopper goes short-circuit there's no drive to the line output transistor and thus no e.h.t., so the circuit incorporates inherent protection.

Excess current protection is provided by TR7330/1. D6334 acts as the chopper circuit efficiency diode, switching on to maintain the h.t. current when the chopper transistor TR7355 switches off. Excessive h.t. current produces negative pulses across the sensing resistor R3337 of sufficient amplitude to switch TR7330 on. TR7331 in turn conducts and the two transistors latch on, removing the pulse input to TR7322 via D6317.

With the field drive produced by the TDA2577, all that the TDA3651 field chip has to do is to drive the scan coils and generate the flyback.

Since the TDA2577 controls the line and field

Fig. 1: Block diagram of the Philips CTX chassis.

Fig. 2: The chopper transistor TR7355 and its control circuit. The chopper part of the circuit is shown in simplified form.
frequency scanning, most of the timebase controls, including the line and field hold, line shift and height controls, operate in conjunction with it. The height control adjusts the field feedback - there's no field linearity control. The width control sets the d.c. conditions in the EW modulator circuit.
So there we have it. A nice blend of new and established circuitry, all admirably laid out. The 14 in . set
(Model CT2006) we've had in the workshop has performed very well. Its suggested retail price is a very competitive $£ 179$ inclusive of VAT. The next model is to be a 16 in . one with remote control, and 20 in . models are to follow. Whilst CTX production will initially be abroad, the Philips Croydon TV plant will shortly start production of CTX sets.

The first Pye CTX set (14in.) is Model 2060.

The Adventures of Tiny Tim

Les Lawry-Johns

The Awakening

It was Tiny Tim's turn to get up first. So he rubbed the sleep from his little eyes, tumbled out of bed and set about making breakfast for the dog, his wife and himself, leaving the cat till later as she doesn't like Tiny Tim feeding her. He's often bad tempered in the morning, and has been known to kick her.

The Breakfast

He put the crumpets under the grill, filled the kettle and plugged it in, then prepared the scrambled eggs the way the dog likes them. Beat up the eggs, add a little milk, grate in some cheddar cheese and add vinegar, salt and pepper to taste. Slice a couple of tomatoes and put under the grill with the crumpets. Turn the crumpets and stir the scrambled eggs in their little saucepan.

Take out crumpets and butter them. Spread with cheese spread and return under the grill to brown. Make the tea and wonder what the day will bring. Look at headlines in the morning paper and realise that the scrambled eggs are burning. This didn't upset Tiny Tim since it gave them a nice nutty flavour which the dog liked.

Out with the crumpets, all sizzling on their plates. Cover with tomatoes scraped from their skins. Cut into sections so the dog can eat them better, and cover with scrambled egg. Leave the dog's to cool, pour out tea, take wife's breakfast upstairs and return to find letters on the mat. Tiny Tim gave the dog his breakfast whilst opening the letters and sipping his tea. About to start eating when there's this knock on the door.

The Intruders

"We're not open yet" bawled Tiny Tim.
"I know, but I'm on my way to work and can't call later."

So Tiny Tim opened the shop door and a man struggled in with a 26in. Philips G11. "Buttons won't stay in mate."

As he was going out, a lady pushed her way in holding an old Morphy Richards iron with two inches of lead coming from it. In her other hand she held about a metre of unsuitable cable.
"I'm going down town shopping so I'll leave this with you. Just put this lead on the iron and I'll collect it on the way back."

Now Tiny Tim is normally a very obliging fellow. But as the cat will tell you he's often nasty first thing in the morning, especially if he hasn't had his breakfast.

It wouldn't be right to tell you what Tiny Tim told the lady to do with her iron, but she left in a high old huff to spend the rest of her days spreading evil rumours about Tiny Tim and his rotten little shop.

The Walk

So Tiny Tim locked the door and returned to his kitchen. The crumpet was cold and if there was one thing he didn't like it was cold crumpet.

It was then time to take the dog out for his walk. The cat was outside, waiting for them to go so that she could jump in through the window and scream her orders at Mrs. Tim who was already on her way down having been thoroughly upset at Tiny's outburst at the poor innocent woman who would never darken their door again. She was in time to see Tiny Tim over on the green, chasing after the dog who was being chased by a cat he'd accidentally disturbed, being short sighted as he was.

The cat eventually gave up as he wasn't a good runner he seemed to throw his legs out sort of sideways, scattering along rather than running, as most Siamese cats are in the habit of doing.

Tiny Tim and the dog resumed their normal walk and took a sniff around the large block of flats at the rear of which stood a row of parked cars. One caught Tiny's eye. A Hillman Hunter that appeared to have a list to starboard.

The rear off-side leaf spring's going thought Tiny, with his habit of getting everything wrong. Still gawping at the car he walked straight into a rain filled pot-hole he'd been carefully avoiding for months. "Oh dear" cried Tiny. "Why don't I look where I'm going?" His little feet felt most uncomfortable for the rest of his walk home, where there was a lot more work waiting for him than had been there ten minutes before.

The Letters

First Tiny browsed through the letters that had been delivered earlier. One was from the insurance company that had paid for the front window smashed a couple of weeks previously. They thought the cost of the replacement window had been excessive and wanted an estimate for the entire shop front. Probably so that they could put up his premiums Tim thought gloomily. He worked out what he'd paid over the last few years and thought what a handsome profit they still had. But the fact remained that they'd asked for this estimate.

So Tiny went round to the nearby builders and had a chat with them. They didn't know and talked about brick work as well as windows. This made Tiny think about a bloody great big lorry rushing into his shop front out of control, demolishing the shop and all those inside. Tiny Tim shivered and made his way back, feeling worse than ever.

The Estimate

An old boy came in and asked for a battery. He'd worked for the builders years before so Tiny asked him how much house bricks were. "Ninepence each" the old boy remembered. Later Tim went out front and counted the bricks in twelves. He'd two reasons for doing this. First he couldn't bring himself to say the number that follows twelve. Secondly twelve ninepences make nine shillings, making his calculations easier since all he then had to do was add the cost of a bag of cement and some sand which he could get from the beach at Ramsgate in the summer.

With the figure for brickwork worked out, Tiny added
the cost of the window and half again for the smaller one. This gave him the estimate the insurance company wanted. He carefully sent this off in an envelope and hasn't heard a word since. He could now tackle the jobs.

The G11

First the G11 which he'd forgotten about. After thinking for a bit he remembered that the complaint had been about buttons that wouldn't stay in. Tiny took out the selector unit and stripped it down. The spring that tensions the clicker plate was broken and Tiny Tim didn't have one. What was Tiny to do? He decided to make a replacement out of one of the loose coil springs Bush tuners used to have behind the buttons. It took Tiny an awfully long time to do this simple job, but then it always does. It worked however and Tiny Tim was quite pleased with the result. Except that the picture had bowed-in sides which the man hadn't mentioned. Shining his torch on the line output panel, Tiny looked and looked for ten minutes before he saw it - the dry joint. It was in the most obvious position and looked like the top of a volcano.

The Cassette Recorder

A lady then came in with a mains/battery tape recorder which she said didn't work. Tiny Tim plugged it into the multiway socket and pushed down the play button. Nothing happened so he thought he'd start at the beginning and check the continuity of the mains transformer primary winding etc. by connecting his ohmmeter across the pins of the mains plug. He removed the plug from the multiway socket and put the test prods across it. There was no reading at all, so the fuse, lead and connections would all have to be carefully checked. First he stripped the plug to test the fuse and leads. He thought there was something familiar about the plug, but then one plug looks pretty much like another so Tiny persevered.

The fuse was intact and the connections good, so Tiny whipped the back off the recorder and proceeded to check from the input socket to the transformer, which proved to have continuity after all. Tiny Tim frowned and this made him look old. He caught sight of himself in the bench mirror so he stopped frowning quickly. He would now have to check the lead and socket. So he pulled on the lead and up came his Weller soldering iron, which of course had continuity only when the trigger was pressed. No wonder the plug had looked familiar!

Tim was really cross with himself over this. No wonder all those remote control TVs confuse him when he keeps doing such silly things. Having identified the correct plug, Tiny found a lead disconnected. So he put the back on the recorder and checked with a tape in it. The machine worked all right and as it had a radio section Tiny tried this just to be sure. It didn't work. Oh dear.

With the machine still switched to radio Tiny pressed the play button. On came the radio. This made Tiny Tim even angrier, and he swore as he once again removed the rear cover. It took a long time to trace the supply leads, as there was no voltage at the radio switch. Tim was patient however and traced them down to another little switch marked "sleep". When this was operated the radio worked normally without the play button pressed, and Tiny remembered how he had demonstrated this sleep facility to a lady only the other day - so that she could lay in bed and doze off safe in the knowledge that the radio would switch itself off when the cassette came to an end.

Once again Tim had been caught out by a silly thing. "Coffee" he bawled in a loud voice as he put the cassette recorder back together again for the second time, reflecting on how much time he'd wasted. His New Year's resolution must be to be more sensible and to think more logically. But how was he to do this?

Perhaps he could buy a book like the one called Thinking to Some Purpose he'd read years before but never understood. The trouble was that he now didn't seem to be able to understand anything the least bit complicated. Look at his performance the other day when he delivered a new TV set to a customer and demonstrated it. The other lady in the house said she couldn't get channel 4 on her set, so Tiny had volunteered to tune it in for her.

The Grundig Portable

The set turned out to be a 16 in . Grundig colour portable that Tiny had never seen before. There were no friendly knobs for him to twiddle. He asked if the instructions were available, but when Tim looked at them he couldn't make head nor tail of the words despite their being in English and designed for customer use. He eventually found a flap on the front. This concealed a little switch which when it was up pointed to three buttons with arrows on them and when it was down pointed to another three, one marked M . The arrows seemed to indicate some sort of search, so Tiny presumed that when the switch was up you could search one way or the other through the channels. Whilst he was pondering upon this a small boy came in.

The Small Boy

"What's up auntie?"
"The man is trying to tune in channel 4 for us, but he can't quite understand it."

The small boy picked up the remote control unit which Tim hadn't noticed over on the armchair. He pressed a button, then went over to the set and pressed search. BBC-2 came on and went. Channel 4 hove into sight and the little horror pressed the M button.
"O.K. auntie. It'll be all right now. Can I have an apple?"

Tim slunk away and wondered what all his years had done for him and how little boys could understand at a glance how complicated things worked. I bet he couldn't handle a T20 thought Tim viciously.

Mr. Styles' New Set

Mr. Styles is a nice man who lives at the top of Telegraph Hill. This means that he has superb reception. He popped in last week to buy a clock radio and to say that he would be back for a 26 in . colour set later in the week. When he came back we had a nice new Pye 26in. set ready for him.

We showed him how it worked and how to change channels to take advantage of his position. He took it off whilst we completed the four year insurance etc. A few days later he returned to say that his reception was terrible. We checked the set and came to the conclusion that the U321 tuner was responsible. So we fitted a new one and everything was fine. When we opened up the faulty tuner we found that it had received previous attention. In a new set!???

Teletopics

THORN'S NEW PORTABLES

Thorn's latest 12in. monochrome portables are the 38020 (black cabinet) and 38030 (white cabinet), the suggested retail price for both being a very competitive $£ 49.95$. How have Thorn managed to do it? The answer is a radically new chassis, the 1790 series chassis; which makes use of a very interesting i.c. to reduce the component count to a very low total. The Motorola MC13002 is a 28 -pin i.c. that incorporates the i.f., video processing, a.g.c. and sync circuits plus the field and line generators. So all that's required in addition is a tuner, i.f. filter, video output stage, audio channel and power supply plus field and line driver and output stages. Further details will be given next month.

Thorn have developed this new chassis in the belief that the increasing number of video sources and programmes will lead to a greater demand for additional TV sets in the home. The previous 1696 series chassis is being phased out.

PLESSEY'S SYNTHESRER IC

Plessey Semiconductors were showing an interesting new TV tuning i.c. at the recent Munich Electronica exhibition. It's a single-chip frequency-synthesis tuning system provisionally designated type XP5000. Previous i.c. frequency-synthesis tuning arrangements have used a couple of chips, with a high-speed prescaler. It appears that Plessey have a world lead in this field, which could amount to a market of several million i.c.s a year. Setmakers are at present evaluating the device, which is expected to go into production this spring.

DISC COMINGS AND GOINGS

Video disc prospects are still far from bright. The JVC VHD system has been further postponed and Thorn EMI have put into mothballs their two VHD disc pressing plants at Swindon and Cologne. The Thorn EMI view is that for the present the UK video market is adequately catered for by VCRs.

This leaves the UK video disc market to the Philips LaserVision system for the time being. Philips have now been joined by Pioneer who produce LaserVision players and discs in Japan for the Japanese and US markets. Pioneer's UK player will be known as the LaserDisc Model LD1100. It will sell for rather more than the Philips players, at a suggested retail price of just under $£ 500$, but will incorporate extra features including a CX noise-reduction system in the sound channel, audio in the still frame mode and built-in interfacing for use with a microcomputer.

Pioneer have sold some 100,000 LaserVision players in Japan and the USA and are hoping for sales of around 5,000 during the first year in the UK. They comment that market growth over the past couple of years has been comparable with the early growth of the VCR market. A training school for service engineers is being set up at Pioneer's new Greenford, Middx. headquarters so that dealers will be able to service the machines, though all initial repair work will be done at Greenford.

Philips recently reduced the price of their basic

LaserVision disc player to just under $£ 400$, the remotecontrol version having a price tag of around $\mathbf{£ 4 5 0}$. It seems that at least half the sales of LaserVision players have been to people who already own a VCR.

A major boost to video disc systems is likely to come from their use for video games, giving normal pictures rather than the strange shapes that go with the present generation of video games. It's understood that the VHD system had interactive capability from the start, and there are rumours that Philips may introduce computer games interfacing with the LaserVision system in the US market before long.

SANYO LOWESTOFT IN PRODUCTION

Production of Sanyo colour sets at the ex-Pye/Philips Lowestoft plant has now started. Sanyo have spent $£ 2$ million on installing highly automated assembly lines. Initial models are the CTP3131 (14in.), CTP4101 (16in.), CTP7130 and CTP7131 (both 22in.). The CTP4101 and CTP7131 feature full infra-red remote control. 20 and 26 in . models are to follow, also teletext models.

PART BACKS MAC

The Part committee has recommended in an official report to the Home Office that the IBA's MAC (multiplexed analogue component) system should be used for UK satellite TV transmissions. In the MAC system the chroma and luminance components of the signal are separated, compressed and then transmitted on separate sections of each line. The receiver thus requires a converter to restore the signal to the conventional form prior to display. According to the IBA, converters could be produced cheaply using charge-coupled memory i.c.s to expand and rearrange the signal.

The report has drawn a furious response from the BBC which had hoped to start satellite TV transmissions on two channels in 1986. The BBC feels that the added complexity of MAC could jeopardize the economics of satellite broadcasting - the BBC had hoped to use a system that's compatible with existing receivers. The Part committee took the view that the MAC system could become an international standard for European use and benefit UK setmakers by giving them a technical headstart. There are doubts however as to whether France and Germany in particular would be prepared to accept the system.

ORACLE 4

As mentioned last month, Channel 4 is now carrying the Oracle teletext service. Some Oracle pages are now on ITV, others on Channel 4. This reduces the access time to about eight seconds maximum, but the catch is that not all areas have Channel 4 at present, so some viewers get only half the Oracle service.

FERGUSON FEEDBACK

At last there's a successor to Thorn's much respected servicing publication Scope. The new publication is called Ferguson Feedback and will be published at six weekly intervals. The aim is to provide technical information on new chassis, modifications and the latest technical innovations, and a "Workshop Wisdom" feature will be included. The editor is Frank Pack, who has been with Thorn for seventeen years (prior to that he was with GEC). Frank has been involved with the servicing side of
the industry since leaving the Air Force in 1948, and spent several years as a technical liaison officer in the Ferguson Service Division. Ferguson believe that the new publication will be a useful addition to the workshop bookshelf, and with the first issue engineers have received a Ferguson Feedback binder.

TRANSMITTER NEWS

News nowadays includes both openings and closures. The following relay transmitters have or will shortly come into operation (see Ceefax page 196 for exact opening dates), Holmhead, Strathclyde Scottish Television ch. 41, BBC-2 ch. 44, Channel 4 (future) ch. 47, BBC-1 (Scotland) ch. 51.

Portishead, Avon BBC-2 ch. 39, HTV West ch. 49, BBC1 (West) ch. 66, Channel 4 ch. 68. Wideband aerials are required for reception of this station.
Portreath, Cornwall Television South West ch. 23, BBC2 ch. 26, Channel 4 (future) ch. 29, BBC-1 (South West) ch. 33.
Redcliff Bay, Avon BBC-1 (West) ch. 30, HTV West ch. 34, BBC-2 ch. 56 , Channel 4 ch. 67. Group W aerials horizontally mounted are required for reception of this station.
Turves Green, Birmingham BBC-1 (Midlands) ch. 56, Central Independent Television ch. 62, BBC-2 ch. 66, Channel 4 ch. 68.

Polarisation is vertical unless otherwise indicated.
The closures are the Wenvoe and Kilvey Hill South Wales 405 -line transmitters which will close down in the first week of January.

LATEST VCRs

One of the most striking VCRs to come on the market recently is the Hitachi VT11E (see photo last month) which has won a Manufacturing Industries Technology Innovation award in Japan. Despite having full function remote control and all the usual features, including freeze frame, the suggested retail price is only $£ 399$. Of particular interest are the multi-function control buttons - a single button is used for play, record, fast forward, fast rewind and fast visual search in both directions.

A third front-loading VHS recorder, Model VC9500H, has been added to the Sharp range. Selling at $£ 30$ more than Sharp's budget model, the VC9500H incorporates a more flexible timer.

Front-loading is also a feature of the latest VHS machine from Panasonic, the NV777. This has a full specification including infra-red remote control and Dolby sound and a recommended price of £611. An LCD indicates cassette loaded and tape-remaining time. Panasonic have also introduced a tape editing system consisting of two VCRs and an automatic controller and a new portable system. The latter is similar to the recently announced Olympus system, with the WVP100E camera giving positive-negative picture reversal. The NV100E portable recorder weighs under 8.8 lb with battery pack and is partnered by the NVV10B tuner/timer/power supply system.

The latest V2000 system VCR from Bang and Olufsen is the Beocord 8802 V . Features include picture search at seven times normal speed forwards and five times normal speed in reverse, freeze frame, dynamic noise suppression and remote control, all for a suggested retail price of $£ 475$. B and O claim to have improved the vision signal-to-noise ratio by 2 dB (minimum) and extended the audio bass

The new AVO 2000 range of digital multimeters. For further details see page 151.
response to 40 Hz in comparison with the standard V2000 system specification.

An intriguing colour video camera, the Konica Color VC, is due to be launched on the UK market this summer by Konishiroku. It's claimed to be the world's smallest, weighing only 690 g including cable, despite having a $10-$ 30 mm zoom lens and optional electronic viewfinder. The pick-up tube is a half inch SM Saticon and the power consumption $4 \cdot 1 \mathrm{~W}$ at 12 V d.c.

HARRISON'S 4GHz EQUIPMENT

Harrison Bros. of 22 Milton Road, Westcliffe-on-Sea, Essex now have available receiving equipment for use with satellites operating in the 4 GHz band. This includes a feed horn at $£ 65,1.9 \mathrm{~m}$ parabolic dish at $£ 265$, a downconverter at $£ 410$, tripod assembly at $£ 21$ and stand at $£ 170$. An alternative economy dish is available at $£ 85$, and work is continuing on the development of a wideband f.m. receiver, also on a 3 m dish and weather satellite receiving and display equipment. Tests have provided noise-free pictures from the Gorizont satellite, with good colour when used with a SECAM colour set. Data sheets are available on receipt of a stamped, addressed envelope. Alternatively phone 0702 32338. The prices above exclude carriage and VAT.

EUROPEAN SETMAKERS JOIN FORCES

The major French and W. German consumer electronics firms Thomson-Brandt and Grundig are to join forces -Thomson-Brandt will take a 75 per cent share in Grundig, in which Philips already has a 25 per cent share. ThomsonBrandt also own the W. German firms NordMende and Saba. This major consolidation of the W. European consumer electronics industry has been undertaken in an effort to meet growing competition from Japanese manufacturers. It could have a significant effect on European VCR production since Thomson had been planning to produce VHS machines.

SERVICE BRIEF - PHILIPS

TX chassis: C393 which decouples the slider of the line hold control has been increased in value from 560 pF to $0.0015 \mu \mathrm{~F}$ to prevent intermittent line collapse. Sets bearing the factory code HU on the chassis serial plate should be checked to ensure that this value capacitor is fitted.

VCR Servicing

Part 14: Freeze Frame plus Fast and Slow Playback.

Mike Phelan

HAVING covered the initial basic machine in the Ferguson/JVC range in some detail, it's time to look at those models that do things other than play tapes normally. The most common option is still frame.

The Still Frame Problem

One of the first domestic machines to have this facility was the Philips N1502. It's interesting to consider how it provided the still frame feature. If we simply stop the rotation of the capstan, the tape stops but the video heads continue to rotate. Since each recorded track consists of one field, if we don't mute the signal the result will be a still picture with a certain amount of noise. Why the noise?

The point to consider is the angle at which the video heads scan the tape. If the tape is stationary, the angle will correspond to the tilt of the head axis with respect to the tape. When the tape moves forward during normal record/playback however the head scans the tape in a shorter time since both are moving. To put it another way, the writing speed, i.e. the effective head-to-tape speed, is increased. The important factor from our point of view however is that the angle of the scanned track is greater, the track being shorter. See Fig. 60(a).

What this means is that the recordings are made at a particular speed and scanning angle, so that if the tape is stopped on playback the scanning angle will be reduced. Refer to Fig. 60(b). On this machine (Philips N1502) there are spaces between the tracks (guard bands) to reduce crosstalk between adjacent tracks. With the tape stopped, the rotating head will cross the spaces between

Fig. 60: Different head scanning angles on normal playback, still frame and double speed (a). Still frame conditions with the Philips Model N1502 (b).
the tracks. Hence the noise. The use of guard bands instead of slant-azimuth head mounting means that the heads can play back each other's tracks. So the tape can be stopped to get a still picture and the only problem is the slight amount of noise introduced when a head crosses a guard band.

The slant-azimuth mounting of the heads with the VHS system means that each head can play back only its own tracks (see Fig. 61). So the best we can hope for when we stop the tape is a noise-free output from one head and very little output from the other. The exact f.m. output envelopes obtained will depend on the point where the tape stops. Two examples are shown in Fig. 61.

The JVC Solution

Suppose we stop the tape in such a position that the channel 1 output is at maximum and that we use a wider head for channel 2 (see Fig. 62). The wide channel 2 head will now scan some of the channel 2 track above the channel 1 track being scanned. As a result, the f.m. envelope obtained is much improved. It's necessary to make the channel 1 head slightly wider as well, otherwise the tracks would be recorded with greatly differing widths.

We are left with two problems. First the point of minimum f.m. now coincides with the position of the field sync pulse on the tape. The result could be field jitter or rolling. The second problem is to stop the tape in the correct place every time. The first problem can be overcome by adding a synthesized field sync pulse there's a second reason, which we'll explain later, for doing this.

The Ferguson 3V16

Though very similar to the 3V00 previously described, the Ferguson 3V16 (JVC HR3660) has in addition to normal playback still frame when the pause control is depressed and a plug-in remote control system giving double-speed playback, still frame and variable-speed slow motion. The main difference between the two machines lies in the servo circuitry, which is moved off the audio board on to a large board at the rear of the machine, behind the pre-rec board.

The 3V00 was a drum-controlled machine, i.e. the drum servo is phase-controlled on playback by the control pulses recorded on the tape, the capstan servo merely ensuring that the tape speed is constant on record and playback. To make it easier to produce the "trick-effects", the 3V16 is a capstan-controlled machine. Before delving into the stillframe mode, we'll look at the basic operation of the servos (see Fig. 63).

Basic Servo Operation

Both servos are under the control of a 32 kHz crystal oscillator which together with most of the servo circuitry is in IC4. The oscillator's output is fed to a switchable

Fig. 61: Conditions when the tape is stopped with the JVC/ Ferguson HR3330/3V00.

Fig. 62: Same conditions with the HR3660/3V16 with its wide channel 2 head.
divider that gives a 25 Hz output on playback and 21 Hz on record. On record, the capstan servo is controlled by taking a signal from what JVC call a "frequency gear" (FG for short). This replaces the flywheel magnets used on the 3 V 00 and consists of an annular plastic magnet on the flywheel with a stationary printed coil nearby. The coil gives an output of 126 Hz when the capstan speed is correct. This is divided by six in IC4 and then compared with the 21 Hz trapezoid obtained from the 32 kHz oscillator. The output from the sample-and-hold circuit is fed via an external operational amplifier (IC7) to the motor drive amplifier and the capstan motor.

On playback, the divider is switched to give a 25 Hz reference output. The trapezoid derived from this is compared with the amplified off-tape control pulses, thus precisely determining the position of the video tracks with respect to the heads.

As we said in an earlier instalment, it doesn't matter which of the two servos we control with the off-tape pulses on playback, but the head drum must be locked to the field sync pulses on record so that each track consists of a complete field. To this end IC1 separates the field sync pulses from the video signal and IC6 (a monostable) divides the output by two to obtain a 25 Hz signal. This goes two ways. First though another monostable (part of IC1) which is enabled in the record mode only. The output from this goes to the control head to be recorded on the tape. The other path is via two monostables in IC4. The timing of the output from the second monostable can be adjusted by means of the tracking control, but only on playback - the control is bypassed on record, as with the 3V00. The tracking monostable's output goes to a sample-and-hold circuit, again within IC4, for comparison with the trapezoid derived from the drum flywheel pulses, again as in the 3 V 00 .

On playback we have the same trapezoid as before, derived from the drum flywheel pulses, but the reference pulses now come from the 32 kHz oscillator, the following divider being switched to give 25 Hz on playback. The output from the sample-and-hold circuit goes to the motor driver transistors via the usual operational amplifier, with current sensing and loop gain adjustment as in the 3 V 00 .

Motor Control \& Slow/Pause Inputs

The motor control input stops the capstan motor when no keys are depressed. The slow-pause intput drives the motor in these two modes, the servo then not being in operation. The normal position control enables the position of the control pulse on the trapezoid ramp to be

Fig. 63: Block diagram of the servos used in the HR3660/3V16.
varied on playback, its lower end being earthed via an electronic switch (in IC6) that opens when double speed is selected. This varies the d.c. conditions in the servo, with the result that the motor runs twice as fast. The speed position control adjusts the control pulse position on the ramp in the double-speed mode. Both controls are interdependent, and the servo operates quite happily with the control pulses arriving at double speed.

Trick Mode Control IC

The electronics for the various trick modes of operation are taken care of mainly by a special purpose i.c. IC6, type BA841, on the servo board. See Fig. 64. To run through the connections quickly, pin 10 goes to the collector of transistor X8 which is turned off when the remote handset is plugged in, disabling the pause key on the machine itself so that it's now controlled by the inputs from the handset on pins 7, 8 and 9 . These are connected to chassis when the appropriate function is selected by the handset. The slow-speed control on the handset is connected to pin 20.

At pins 4 and 15 respectively we have the off-tape control (CTL) and drum switching (drum FF) pulse inputs to drive the logic that stops the tape in the correct place when still or slow is selected. The drum FF input is also used to generate the synthesized field sync pulse. Presets connected to pins 17 and 18 provide adjustments for the pulse position on odd and even fields - one of these is accessible to the customer for minimising jitter. The synthesized sync pulse leaves at pin 37 to go to the Y-C board where it's added to the luminance signal. Pins 26 and 27 are the input and output to the monostable previously mentioned - the one which divides the field sync pulses by two to provide the control pulses on record.

Pins 34 and 35 provide outputs on slow and still. Both go to the audio board for muting purposes and to the mechacon board to inhibit the tripping that would otherwise occur due to the fact that the take-up reel is not rotating normally. Pin 39 is the drum motor control output to stop the head when no function is selected. The remaining three outputs play a large part in the slow and still modes. They are pin 38, capstan motor control, which removes the output from IC7 to stop the motor; pin 30 (FF2) which also stops the motor by switching X17 on when it goes low; and pin 29 (FF1) which drives the slow-pulse circuit consisting of IC8, X10/11/14 and the associated components.

Double Speed

As previously mentioned, on twice speed pin 32 goes open-circuit to disconnect the normal position preset's earth connection, altering the d.c. conditions in the servo so that the motor runs at double speed. Pin 31 goes low to mute the audio.

Ensuring that the Tape Stops at the Correct Point

Now for a closer look at the FF1 and FF2 outputs. On normal playback FF1 is set low and FF2 high, neither of the flip-flops that produce these outputs being operational. When slow or still is selected, both flip-flops are enabled by the logic within IC6 and work as follows. A monostable multivibrator (MMV1) driven by the off-tape control pulses causes the outputs to go low, another
(MMV2) driven by the drum FF pulses makes them go high. The time-constant of MMV2 actually divides the drum FF pulses by three.
So we're in normal playback, with FF1 low and FF2 high, and we press pause. At the next control pulse, plus the time delay introduced by MMV1 (see Fig. 65), the output (CM) at pin 38 goes low, removing the servo output from IC7 and stopping the capstan motor. FF2 goes low, turning on X17 and placing a dead short across the capstan motor. The tape stops dead. FF1 stays low, and on this machine the pinch roller is not withdrawn.

The tape has now stopped, but probably not in the right place. After two more drum FF pulses, MMV2 resets FF1 and FF2. FF2 goes high, removing the short across the motor (X17). FF1 also goes high, driving the slow-pulse circuit (Fig. 64). This moves the tape (output via D15) until another control pulse is picked up by the control head. The control pulse sets FF1 and FF2 low via MMV1, stopping the motor again. This sequence happens three more times, the final control pulse setting FF1 and FF2 low permanently (see the timing chart).

What's this all about? Well, while the tape is running in the normal playback mode the relationship between the off-tape control and drum FF pulses is fixed. Once the tape has stopped there are no more control pulses, which is why the motor is pulsed four times - to ensure that the tape finally stops with the control pulse in the correct position so that the video tracks are in the optimum position for a still picture display (when the control pulse has passed the head, the tape moves by a distance determined by MMV1).

Generating the Slow Pulse

The slow pulse output from X14 consists of two parts. The first part is of high amplitude and lasts for 20 msec . This gets the motor moving by overcoming its inertia. A reduced amplitude part then lasts for 40 msec to keep the motor moving. When FF1 goes high, the monostable multivibrator in IC8 is triggered, producing the 20 msec section of the pulse waveform. X10 is switched off. At the end of the monostable's cycle, D21 switches off. The output from FF1 is still high, and the potential divider R97/8 applies a reduced voltage to the base of X14 via D20 to give the 40 msec part of the pulse waveform. When FF1 goes low, X11 switches off, X10 switches on to shortcircuit the base of X14 and the pulse waveform comes to an end.

The slow-pulse preset in X14's emitter circuit may appear to set the amplitude of the pulse, but in practice it alters the length of the 40 msec section. Strange? Not really. The pulse ends when the off-tape control pulse fires MMV1 and resets FF1 (and FF2). The bigger the shove we give the motor, the sooner this occurs. Thus the higher the setting of R114 the faster the tape is driven and the shorter output obtained.

Slow Motion

For slow motion the capstan servo alternates between still and normal speed playback. When slow motion is selected, the above sequence takes place. After stopping, there's a variable stop period set by means of the slowspeed control. This is achieved by interposing another monostable whose cycle of operation can be varied. So what happens is that a normal two-field picture is produced, followed by a still picture with variable delay, and

Fig. 64: Motor control arrangements for freeze frame and slow motion.

Fig. 65: Timing chart for freeze frame operation.
so on. On then going from slow to still, if the tape is stopped it remains so, if it's moving it stops when the slow pulse is completed.

Synthesized Field Sync Pulses

We said earlier that a synthesized field sync pulse is necessary in the still-frame mode because of the low level of the f.m. output waveform at the field sync position on the tape. There's another reason for producing a synthesized field sync pulse in the trick modes. When the tape is stopped, the heads scan longer paths across the tape. The
drum is still rotating at 25 Hz , and the result is a picture consisting of 628 lines, the duration of each line being shortened in the same ratio (by approximately 0.46 per cent). Also, odd and even fields no longer have the same number of lines. The converse occurs at double speed there are then fewer lines per field. All this would lead to jitter, hence the need for the synthesized field sync pulses - separate adjustments are provided for channel 1 and 2 sync. If the difference in relative head-to-tape speed in the trick modes was any greater, it would be necessary to alter the head speed to avoid loosing line lock on the displayed picture.

NJ Electronics, Unit 94, Storforth Lane Trading Estate, Hasland, Chesterfield, S41 OSN.		\bullet	-	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet				-	126
Papworth Transformers, 80 Merton High St., London SW19 1BE.		,		-										159
Post-A-Part Electronics, 39 High Rd., North Stifford, Grays, Essex.		-	-	\bullet	-	-	-	-	-	-			-	115
PV Tubes, 38A Water St., Accrington, Lancs. BB5 6PX. 0254 36521/32611	-	-	-	-	-	-	-	-	-	\bullet		-	-	-
Quick Save TV Spares, Muxton House, Muxton, Telford, Shrops.				-	-	\bullet	-							160
Retach Ltd., 78 High St., Northwood, Middx. 01-652 7019	\bullet	\bullet									\bullet			164
Retube Ltd., North Somercotes, Louth, Lincs. LN11 70U.		\bullet	-	-										-
Sandhurst Publications, 49C Yorktown Rd., Sandhurst, Camberley, Surrey GU17 7AG.													-	167
Sendz Components, 63 Bishopsteignton, Shoeburyness, Essex SS3 8AF.	-			-	-	-	-	-	-			-	-	168
Shieldway Ltd., Swan Lane Mill, 3 Higher Swan Lane, Botton, Lancs. BL3 3BJ. 020464746	\bullet	-												-
South London Television, 45 Griffiths Rd., London SW19. 01-543 5437											-			165
Technical Information Sarvice, 76 Church St., Larkhall, Lanarkshire. ML9 1HE.													-	167
Technomatic Ltd., 15-17 Burnley Rd., London NW10. 01-452 1500. 305 Edgware Rd., London W2.								\bullet						-
Tektronix (UK) Ltd., 36-38 Coldharbour Lane, Harpenden, Herts. AL5 4UP. 0582763141										\bullet				
Telepart, 13-14 Worcester St., Wolverhampton, W. Midlands. WV2 4LJ.			-	-	-	\bullet	-	\bullet	-	-				156
Teletronic (North East) Ltd., See Vu Works, Strangford Rd., Seaham, Co. Durham. SR7 8QE.		\bullet												164
Thandar Electronics Ltd., London Rd., St. Ves, Cambs.										\bullet				-
Tidman Mail Order Ltd., 236 Sandycombe Rd., Richmond, Surrey TW9 2EQ. 01-948 3702				-	\bullet									123
Trident TV Tube Co., Lyttleton Rd., Leyton, London E10 5NH. 01-558 3749		-												-
TSR Vacuonics Ltd., Tom Stewart Lane, Industrial Estate, St. Andrews, Fife. XY16 8YH. 033474035		\bullet												
TV Sales and Service Centre, 3 High St., Elstree, Herts. 01-207 0073			-	-	-	\bullet	\bullet	-	-		-			-
U-View (Tubes), 29 Warmsworth Rd., Doncaster, Yorks. DN4 ORP. 0302855017		-												
Watford Electronics, 33 Cardiff Rd., Watford, Herts.								\bullet	-			\bullet	\bullet	
Weltech Picture Tubes, Unit 3,10 Wembley Commercial Centre, EastLane, Wembley, HA9 70R.01-908 1816		-												
Western Whybrow Engineering, The Square, Marazion, Cornwall. TR17 0AP.		-								-				
P. E. White, 22 York Rd., Camberiey, Surrey. GU15 4HR.							\bullet							
Stan Willets (Wholesale Supplies), 37 High St., West Bromwich, W. Midlands. B76 6PB. 0215530186										\bullet	\bullet	\bullet	-	-
Willow V®le Electronics Ltd., Old Hall Works, Arborfield Rd., Shinfield, Reading. 0734884444.	-		\bullet	\bullet	\bullet	\bullet	-	\bullet	-	\bullet		\bullet	\bullet	-
Willow Vale Electronics Ltd., 74 Maxwelton Rd., Paisley, Renfrewshire. 0418844949	\bullet		\bullet	\bullet	-	-	\bullet	\bullet	\bullet	\bullet		\bullet	-	-
Willow Vale Electronics Ltd., 4 The Broadway, Hanwell, London W7. 01-567 5400	-		\bullet	\bullet	\bullet	-	\bullet	-	-	\bullet		\bullet	-	
Wing Electronics, MO Dept., 15 Waylands, Off Tudor Rd., Hayes End, Middx.					-									
Wizard Distributors, Empress St. Works, Empress St., Manchester. M16 9EN. 0618725438	\bullet	\bullet	\bullet	\bullet	-	\bullet	-	\bullet	-		\bullet	\bullet	\bullet	164

Fault Report

Two Toshibas

We don't get many call outs to Toshiba sets. Straightforward circuitry, cool-running chassis and wellsupported PCBs with a good layout all contribute to a satisfyingly low failure rate amongst those under our charge. The other day however we had two in trouble, both 20 in . C2090Bs, both recently installed and both with the fault intermittent no results.

The first fault was simple. The set burst into life, chatted briefly, then died. A pat on its bottom produced a repeat performance. Inside we found that the plug from the on/off switch to the small mains filter panel had worked loose. After pushing it well home we got normal results and, much encouraged, set off for the next one. After all these years you'd think we would know better!

This one came on and stayed on. No amount of bottom patting or even a severe clout made any difference. We had to leave a loan set and take it back to the workshop. On the bench it ran for a couple of hours then stopped with a squawk. Off with the back and in with the meter probes. First check for 112 V at the output from the series regulator circuit. The reading we got was 130 V , so the power supply was there but insufficient current was being drawn for the normal regulating action to occur. Our next check was on the line driver transistor TR402, which was cut off due to lack of drive from the timebase (sync plus line and field oscillators) chip IC301. A faulty chip? Not necessarily.

These sets have a trip which shuts down the linefrequency output from the i.c. in the event of a fault which causes excessive e.h.t. The circuit is shown in Fig. 1. A 226 V supply is derived from the line output transformer and is applied to TR471 and the associated components. The potential divider network R471/2/3/4 presents a portion of this voltage to the emitter of TR471, whose base is held at 6.2 V by the zener diode. Normally, TR471 is cut off. If the 226 V rail rises however - indicating that the e.h.t. has also risen - TR471 will conduct and the voltage (normally zero) across R482 will be applied to pin 3 of IC301 - Toshiba grimly refer to this pin as "X-rays". A check at pin 3 proved that the trip circuit had indeed operated.

For test purposes R482 can be short-circuited (points marked D and E on the panel) - this should obviously be done with caution to avoid damage to other parts of the set. When we did this we got perfect results, so the fault

Fig. 1: Over-voltage trip circuit, Toshiba T24 chassis.

Notes from Richard Roscoe, John Coombes and S. Leatherbarrow

was probably in the trip circuit itself. We next removed TR471 to block the tripping action and then discovered that the voltage across the $6 \cdot 2 \mathrm{~V}$ zener diode was low at about 4 V . Either the diode was leaky, or R476 had risen to such a high value that the diode was starved of current. The latter turned out to be the case, R 476 reading open-circuit on the meter. TR471 must have been on the point of conduction permanently, being switched on to give the intermittent tripping by a minor voltage fluctuation.

Note that this chassis is also known as the Rank T24E chassis.
R.R.

B and $\mathbf{O} \mathbf{3 4 0 0}$ Chassis

There are still quite a few of these hybrid B and O receivers in use. The other day we were called back to one that had had a new line output transformer fitted only a few days previously. The customer was not happy with the picture - "the close-ups are perfect" he said, "but everything in the background looks fuzzy." Now we've heard this description many times, and always the fault turns out to be poor focus. It seems that all those arty, soft-focused shots the advertisers are so fond of have got people used to less sharpness, hence the "perfect close-ups". Anyway when the picture came on, sure enough it was out of focus.

We took off the back and lifted the board holding the four valves (PY88, PY500A and two PL509s) used in the dual line output stage, thus gaining access to the focus control. Adjusting this produced a reasonably sharp picture - for a time. Then, as we watched, it went out of focus again - again and yet again. In fact every time we readjusted the control the focus would eventually drift off. This wasn't the usual gradual drift that occurs when one of the resistors in the focus control network changes value, but we changed the resistors nevertheless. Needless to say there was no improvement. Next we changed the focus control and the BY176 focus supply rectifier. Still no improvement. We then replaced the $68 \mathrm{pF}, 7 \mathrm{kV}$ reservoir capacitor in case it was leaking. It wasn't. Totally baffled and wondering whether the new transformer was in some way responsible, we had to pack up the set and take it back to the workshop.

When we had it on the bench we switched on and found a dramatic change. This time there was no picture at all! Our problems had been simplified however. There was no raster because the tube's heaters weren't alight. They're powered from a secondary winding on the mains transformer, via a 6A fuse. On examination we found that one of the connections to this transformer was very heavily oxidised. Cleaning and resoldering this joint restored the picture, and once the focus control was set up the picture remained sharp with no sign of drift.

We came to the conclusion that the joint must have been disturbed when we'd fitted the new line output transformer, and had started to act as a variable resistance in series with the heaters. This would make the heater voltage vary, in turn varying the tube's emission

Fig. 2: Start-up circuit, Körting chassis 9.
and thus, as with a low-emission tube, the focusing would be affected.
R.R.

Körting Chassis 9

Like many setmakers, Körting have adopted the selfoscillating chopper power supply (Siemens circuit) and transistor line output stage in their more recent sets. The problem we occasionally get is no sound or raster - the fault is sometimes intermittent. The most common cause is failure of resistor R 634 ($1 \mathrm{M} \Omega$) in the start-up circuit (see Fig. 2). Körting suggest that if necessary the value of this resistor can be reduced to $470 \mathrm{k} \Omega$. Another item worth checking for this fault is the start-up diode D632 (1N4007).
J.C.

Rank 126 Chassis

A modification well worth noting on the Rank T26 chassis is the addition of an $0.0022 \mu \mathrm{~F}$ capacitor across R15 in the over-voltage trip circuit. In later production it's included across the holes for the collector of TR1 and the emitter of TR2. It's purpose is to prevent random tripping, something that can lead to hair tearing. J.C.

Rank T16A Chassis

The trouble we had with a Bush BM6514 monochrome portable (T16A chassis) was weak field sync. Everything was fine when the set was first switched on, but after a few minutes the sync was impaired, with a tendency to trip on scene change. As a start, we carried out d.c. checks on the transistors used in the field oscillator circuit (a multivibrator). As expected, these revealed little, so we tried replacements. This made no difference, so we checked the resistors in the circuit. Once again nothing amiss could be found. As the fault was temperature sensitive, we next tried spraying the resistors, capacitors and transistors in the circuit with freezer. This had no effect and it began to look as though wholesale component replacement would be necessary. We then noticed a couple of likely looking 1N4148 diodes nearby (D4/5, one in the sync pulse feed circuit and the other to isolate the charging circuit). Replacing these with BY206s restored good field sync.
S.L.

Thorn 1691 Chassis

The problem with a Thorn 1691 monochrome portable was intermittent loss of signals. Touching the board in the vicinity of the first i.f. transistor under the fault condition produced a good picture, so the transistor was replaced. Four hours later the signals again disappeared. This time the a.g.c. amplifier transistor seemed to be the culprit, replacement curing the fault. I had the set at home for a thorough soak test, and a couple of days later we were
back with the no signals fault. This time no voltage discrepancies could be detected, except possibly a slight increase in the tuner a.g.c. voltage. All the other tuner voltages were correct, with a nicely varying tuning voltage, but the tuner wouldn't respond.

After fitting a Mullard ELC1043/05 tuner we had no further trouble. Whether the tuner was the culprit all along, the others being red herrings, is difficult to tell (both transistors tested perfectly with an ohmmeter). Faults like this always leave one with the feeling that every knock on the door could be the disgruntled owner returning with his set.
S.L.

Grundig Model 1500

A 22 in . Grundig colour set (Model 1500 GB) caught us nicely the other day. It came in with a simple sound, no raster fault, and the line output valve's fusible screen grid feed resistor was found to be open-circuit. Fitting a new valve and resoldering the resistor restored the e.h.t., but the picture was lacking in width, with convergence errors accompanied by a kind of tracking effect across the screen. The first two problems responded to adjustment, but the third took somewhat longer to deal with.

Having seen a similar fault before on these sets (picture quality degraded, with horizontal grouping of lines and streaks appearing intermittently), I removed the i.f. strip and went over it with a hot iron. This must be done quickly and carefully as the unit is easily damaged - go for the joints around the chokes in the detector circuit. After doing this, refitting the unit and switching on the fault was still there. Thinking that I'd damaged the unit I tried a new one. Still no luck.

If the above procedure hasn't been successful in the past, we've usually found that the BF258 luminance output transistor is at fault. Not this time however. Looking again at the symptoms on the screen led me to think about the possibility of arcing/tracking in the line output stage. The valves were tapped, and as they seemed to be all right a new tripler was tried - I thought that maybe an internal discharge was taking place. It wasn't, so the original was refitted.

At this point I noticed that the focus unit was clogged up with accumulated gunge. Sure enough when the set was switched on there were tiny sparks between the slider and the VDR rod. Removing the unit and dismantling it enabled us to get at it with methylated spirits, and on refitting the unit the fault had at last been cleared. Much time had been wasted on this one because I'd not observed the symptoms carefully enough - the focusing had remained perfect throughout however.
S.L.

Plastic Control Shafts

Here's a tip I'd like to pass on. How many people out there have difficulty fitting the plastic shafted type of potentiometer? Not fitting as such, but cutting the shaft to the required length to produce a nice fit. Small saws always leave rough edges, and cutters can split the shaft into a million pieces. It's much more elegant to use a loop of fine wire and a soldering iron. Loop the wire round the shaft at the required point, then pull the wire down gently whilst simultaneously heating the wire as closely as possible to the shaft. The wire will melt the plastic, passing through it with little resistance to leave a very straight, sharp finish. Any small edges can be removed with a small file.
S.L.

Letters

VCR HINT

One of the most common problems with used Philips VCRs is worn audio/control heads. The symptoms are glitches on the replayed picture accompanied by wow on sound. This is due to grooves worn in the head block causing minute variations in the tape path. As a result, the pulses recorded on the control track get missed by the head on replay.

I adopt the following procedure to remove such grooves. First lay a sheet of 400 grade wet and dry on a smooth, flat surface. Then rub the head block across the paper from side to side, following the contours of the block, until the grooves have gone - this takes only twothree minutes. Finally lay a soft cloth on a flat surface, put some metal polish on it, and polish the head block. It's not necessary to achieve a mirror finish.

This procedure has worked perfectly for me on a number of occasions, and results in a considerable financial saving for five minutes work!
Eamonn Galvin,
Ovens, Co. Cork.

TELEFUNKEN 711 CHASSIS

I feel I must write concerning the Telefunken 711 fault mentioned by Mick Dutton in the November issue (page 25). As a past workshop supervisor for Telefunken in the UK I think I can claim to know this chassis fairly well.

The fault described by Mick Dutton is a very common one on this chassis, but I suspect that the sequence of events was not quite as outlined. To get things into perspective, Fig. 1 shows the basic power supply arrangements. Thyristor Ty 421 provides a regulated 190 V h.t. supply (U1). This thyristor is fired by T424 which is fed from a 26 V rail provided by D427 and clamped to the regulated 12 V supply (U3) via D422/3/4. Thus if the 12 V supply is missing, the 26 V rail will fall to 14 V . The thyristor will then produce a very low output, usually about $10-30 \mathrm{~V}$, which is insufficient to cause any problems with the line driver transistor T561.

Mick Dutton's fault is nearly always caused by the sync/ line oscillator i.c. TBA950 going open-circuit. From the line drive point of view, this i.c. forms part of a potential
divider with R549 for T561's base current. So when the TBA950 goes open-circuit, T561's base is effectively left at 12 V . The transistor switches hard on and attempts to short-circuit the h.t. line via R550 and R564. When you find that R550 has burnt out, the answer is to replace it along with T561 and the TBA950 i.c. It's as well to mention that early versions of the 711 chassis didn't include R550-R564 was then 470Ω. As a result, the fault could see the end of the driver transformer $\operatorname{Tr} 561$ as well.

Early chassis also used a different line oscillator circuit, with component variations. Fitting the later TBA950-2X i.c. can cause problems when attempting to set the line hold for the usual float through with test points M531a/b shorted. The answer is to change the value of R540 ($10.5 \mathrm{k} \Omega$, H.S.) to something approaching $9.1 \mathrm{k} \Omega$. The exact value must be found by experiment as there are several makes of chip which differ slightly on the market.

I suspect that what happened in Mick Dutton's set was that he accidentally killed the 12 V supply whilst faultfinding - something which I can assure him wasn't unknown even in Telefunken's workshops!
Alan J. Tuck,
Uxbridge, Middx.

SALESBURY ELECTRONICS FAIR

The above fair will be held on April 30th-May 2nd and is intended to show the public a wide range of working exhibits of modern electronics in action. We particularly want a working satellite TV demonstration - any firm or group prepared to attend will be given a prior choice of facilities to avoid interference from other exhibits. There is no charge for indoor or outdoor space, but the public will be charged for admission. Security and insurance arrangements will be made, and it seems likely that TV personality Fred Dibnah will open and attend the fair.

Enquiries from potential trade exhibitors would be welcome. The venture is in aid of fund raising for church roof repairs. We aim to have something for all the family to look forward to over the May Day bank holiday weekend. It could be a marvellous shop window: maximum local and national media coverage will be sought, AA signs erected, etc. I would be pleased to answer any questions.
WH. Janvis, MA., M.Inst.P., Saleweel House,
Salesbury Hall Rd., Ribchester, Preston, Lancs. PR3 3XU.

SACK THE EDITOR!

Your November leader (Channel 4) contained several swipes at sport. As a firm believer that sport actually helps

Fig. 1: Outline of the power supply arrangements used in the Telefunken 711 chassis. In the absence of an output from the 12 V regulator, D422 will attempt to take over the supply to the $U 3$ rail and the 26 V line will fall to around 14 V .
sell tellys, due to its popularity, let me have a swipe or three in retaliation!

I can hardly believe your line of criticism that lumps sport against music or films. This must imply that all music is good, all films are good, and all sport is bad (on TV at any rate). My goodness, such prejudice deserves two panel games! Unfortunately your comments showed not just prejudice but ignorance as well. Sport played in our climate is often curtailed or postponed. It's undermined by strikes and abused by politicians world-wide in a way unknown in other entertainment.

I doubt very much if sport is "easy TV" - possibly the reverse is true. As to "commentators waffling", it must be said that seldom have any four editorial lines included so much contentious copy. The last paragraph refers to "thirty indistinct horses". Does this reflect the writer's viewing habits, his Saturday liquid intake, or a faulty tube? Where I live I see thirty of what other writers have described as one of God's noblest creatures. I see them clearly enough on my Co-op TV. I agree incidentally with the other points made.
James Kaney,
Foxbar, Paisley.

I was surprised and disappointed that the editorial in the November issue should erroneously claim that many of the cable channels available in places like Brussels "are simply being pinched". Unpaid for use of the BBC and ITV channels and those from other foreign sources in Belgium occurs only where direct reception is also possible with individual aerials, just as in the case of the UK where cable companies distribute the BBC and ITV programmes without paying charges for obtaining the signals. Does the editor think these signals are also being "pinched". If so he should say so, and presumably include users with individual aerials as guilty of his newly invented crime of receiving broadcast programmes. In both Belgium and the UK, the broadcast receiving licence is simply an authorisation to install and use the appropriate receiving equipment, and in strict legal terms has nothing to do with the supply of programmes, provided only that they come from "authorised broadcasting stations".

Indeed it is precisely because it has not yet been possible for the local cable operators and the BBC to reach agreement that we still have no BBC (or ITV) programmes on the cable in Brussels, which is outside the area in which direct reception is in principle possible.

The information in Teletopics on the cost of cabling, without any qualification, also seems to be highly questionable. A report by CIT Research, quoted in the Sunday Times, estimates that the cost would be half the suggested figure. Estimates depend on the assumptions made, but for your information I pay some $£ 40$ annually for the cable which supplies thirteen TV programmes and twelve f.m. radio programmes (with at least two spare TV channels at present occupied by test signals) - yet the Sunday Times article says "realists about cable know that they will have to charge about $£ 10$ per month"!

It seems incredible to me that nobody writing about cable appears to realise that broadcasting economics depend on a mass audience to provide economies of scale: it costs the same to produce a programme that nobody watches, so to bring the cost down to what people are prepared to pay the potential audience must be vast. Only if the cable distributes programmes for which a mass audience already exists (such as foreign broadcast programmes) can the marginal cost per subscriber be kept
at a level where people are willing to pay for it.
Because of my professional position, I must ask to remain anonymous.
(Name and address supplied.)
Editorial comment: Well I never: I seem to have sparked something off this time! Whilst admitting to a bit of prejudice about the amount of sports broadcasting, this was not really the point. My complaint is about programme scheduling. The competing networks consider it essential to put the two things you want to see on at the same time and to leave other large chunks of TV time full of things you don't want to see. If sport helps sell tellys however I suppose this scheduling helps to sell VCRs, so perhaps we shouldn't complain!

In reply to the gent from Brussels, UK cable operators have to distribute the BBC and ITV programmes - few (at present) are allowed to distribute anything else. The licence is indeed permission to instal receiving equipment, but the revenue in the UK goes to the BBC for the provision of programmes. The point I was making was that in one way or another we have to pay for the programmes we get, and that this will be as true for additional cable channels - something our correspondent appears to agree with in his later remarks. As to the cost of cable installation, we have only quoted estimates from other sources, not our own. There is a great deal of guesstimation about this - inevitably, since decisions on type of network etc. have yet to be made and no one knows how many households will avail themselves of the option once cable becomes available to them. A charge of $£ 40$ a year for a service that's yet to be costed let alone installed seems unlikely to say the least - unless it's "given" away at the start to get it going. Recent comments from cable organisations suggest that it will be several years before such operations begin to show a profit. It seems that in the USA the only organisations making much of a profit out of cable TV are those providing the programmes rather than the cable service itself.

THORN TX9 CHASSIS

AN error occurred in our notes on this chassis last month (page 72). The earlier main panel is type PC1001, not PC1002 - panel PC1002 is the tube base panel. Thorn have issued some additional recommendations on the problem of random mains fuse blowing. Where the problem could be due to transient spikes on the mains supply, i.e. in areas where the mains supply is "dirty", it's worth fitting the 002 version of the reservoir inductor L65. This has been specially designed to deal with this sort of difficulty. Note also that the zener diode now recommended for use in the D85/W85 position (over-voltage sensing) has been selected for improved characteristics in this application. The part number is $02 \mathrm{~V} 4-718$ (there's a three-segmented circle symbol on the body). Other steps that can be taken are as follows:
(1) Change $\mathrm{C} 134 / 5$ to $0.01 \mu \mathrm{~F}, 1 \mathrm{kV}$, part no. C5100-EW410-CBC1.

The following apply to panel PC1001 only, having been implemented on later panels.
(2) Change C146 to $220 \mu \mathrm{~F}$ (16V).
(3) Change R223 to 470Ω ($\frac{1}{2} \mathrm{~W}, 5 \%$ fusible).
(4) Change R216 to $1 \mathrm{k} \Omega \frac{1}{2} \mathrm{~W}, 5 \%$.
(5) Replace VT67/TR67 with the Thorn in-house transistor type T6059V, part no. 01V0-953.

Routine TV Receiver Tests: Pye 713 Series Chassis

S. Simon

LARGE numbers of 18 in . colour sets were froduced by Pye during the early/mid-70s. The initial model was the CT200, which was fitted with the 713 chassis. The subsequent CT200/1 was fitted with the 715 chassis while the later CT218 was fitted with the 717 chassis. The chassis was also used in Philips models, and was then known as the 570 chassis. There are many differences, which can be confusing. The main one was the use of a unipotential (low focus voltage) tube in the earlier chassis and a bipotential (high focus voltage) tube in the later chassis. From a general handling point of view however the differences are minimal, the basic design remaining the same.

The mains fuse is F526 which is rated at 1.6 A (delay). In later versions there's a second mains fuse F542 (3•15A delay) which is in the feed to the degaussing circuit. This means that on early models the 1.6 A fuse is subjected to pretty heavy treatment. We'll take this as our starting point.

Dead Set

The mains input goes to the on/off switch and from this to the main board, front left side, plugging into a two-pin socket. This is where the mains fuse(s) are located. If the 1.6 A fuse is open-circuit, examine it to determine the mode of its death. If it's not blackened, replace it and try again. If it's blackened, check the resistance reading across the four BY127 diodes in the bridge rectifier circuit. One or two are likely to be short-circuit. If not, lift one end of the $0.33 \mu \mathrm{~F}$ mains filter capacitor C501 off the print and check it - this capacitor is just to the right of the fuses. If it's not at fault, check the BT106 thyristor farther to the centre for shorts between its metal body and the long cathode leg. The large electrolytic can (C535/6, h.t. reservoir/smoothing) in the corner of the board could be at fault but this is less likely. If there are no shorts, leave the filter capacitor disconnected at one end and try another fuse.

Not so Dead Set

Note that the tube's heaters receive their supply from the line output transformer. Thus if the set appears to be dead there could still be plenty of h.t. around, as a check at the rear left resistive assembly may show. Check each section (R544/5/6) in case one is open-circuit. The value of the surge limiter section R544 varies with the different versions of the chassis, but will be between $3 \cdot 3 \Omega$ and $5 \cdot 6 \Omega$. If this is intact and the thyristor is working the h.t. reservoir electrolytic $\mathrm{C} 535(600 \mu \mathrm{~F})$ will be fully charged, so take care if R545 or R546 is open-circuit. Switch off and discharge C535 to chassis through a resistor of say 100Ω.

Note also the cluster of fuses in the centre of the main board, under the tube. There are four. F541 (630 mA delay) is the main h.t. fuse and 155 V should be recorded here. It's the second one from the front. The one next to
it (F691, 500 mA), i.e. the second one from the rear, also has h.t. on it. It feeds the line output stage. The front fuse F683 $(500 \mathrm{~mA})$ is the l.t. fuse (18 V line). It feeds the 12 V regulator on the i.f. panel and also provides bias for the sync separator which is in the TBA920Q i.c. The rearmost fuse F678 $(315 \mathrm{~mA})$ is in the 40 V supply to the field timebase and the audio output stage. This is the fuse most likely to be found open-circuit, with consequent loss of sound and field scan. It can fail on its own or can be blown by a shorted transistor or transistors in the field or sound output stage.

Blow LT Fuses

The BD233 and BD234 field output transistors (VT751/VT754) are at the rear edge of the panel, roughly in the centre. The two BD131 audio output transistors are on the left-side i.f. panel, which also carries the tuner and the i.f. gain/filter and demodulator units. If there's doubt or a resistance check is inconclusive, switch the multimeter to the 500 mA range and apply the probes across the fuseholder. If this restores the sound and field scan and the reading is well under 300 mA , the fuse can be judged to have failed on its own, or perhaps there's an intermittent fault which shows up only now and again or maybe when the transistors have become hot. If a short is present, removal of the supply plug to the i.f. panel (to socket SK259) will show whether the fault is on this or the main panel and provide a starting point for the search. If replacement of the fuse restores sound but not the field scan or vice versa, it's likely that the series feed resistor to either stage has been damaged. In the case of the audio output stage it's R249 (12 Ω) while in the case of the field output stage it's R746 (22 Ω).

Complete loss of sound and vision signals directs attention to the front fuse F683 (500 mA). There should be 18 V at both ends. This voltage is fed to the i.f. panel where the BD131 12V regulator transistor VT210 lives at the top front: If there's an 18 V supply here (fuse intact) it's likely that the BD131 is open-circuit, as may be revealed by a high reading at its collector (should be 15 V , not 18 V). A quick check on the forward and reverse readings, base to emitter and base to collector, will confirm this.

The Line Timebase

We've found the line timebase fairly reliable. The oscillator is in the TBA920Q i.c., which receives its supply at pins 1 and 4 from the 155 V line via $\mathrm{R} 617(2 \cdot 7 \mathrm{k} \Omega)$, stabilised by the 12V zener diode D618 (BZX79). In the event of non-operation, check the supply at these pins. If absent, touch R617. If it's cold, ensure that there's 155 V at one end and nothing at the other before pronouncing it open-circuit. If it's hot but there's no 12 V supply, suspect the zener diode and check it for being short-circuit.

The i.c.'s output is fed to the line driver transistor

Fig. 1: Basic power supply arrangements used in the Pye 713/5/7 series chassis. Use of the mains bridge rectifier means that the chassis is at half mains potential. The line output transformer also feeds the line shift and c.r.t. first anode supply rectifiers.

VT647 (BF337) via a $10 \mu \mathrm{~F}$ electrolytic capacitor (C638). There should be 5.3 V at the base of this transistor and 105 V at its collector. If the base voltage is absent and the collector voltage is 155 V (h.t.), either the transistor is faulty or C638 is open-circuit. If the collector voltage is low, with R644 in its feed circuit hot, the transistor is likely to be short-circuit though the decoupler C643 $(0.1 \mu \mathrm{~F})$ could be leaky. A less likely possibility is that the driver transformer has a primary to secondary short.
The damping components across the driver transformer's primary winding are important to the life of the BU105 line output transistor. In the event of nonoperation of the line output stage, don't overlook the 1Ω resistor R651 in series with its base.
If fuse F691 is open-circuit, check the BU105/BU205 line output transistor and the 1.t. rectifier diodes D679 (BYX70-300) and D675 (BYX70-500) for shorts, remembering that a short recorded across the diodes could indicate a shorted reservoir electrolytic (C682/C677) rather than a shorted diode. The BY206 and BY207 are suitable replacement diodes for D679 and D675 respectively. The third low-voltage diode D670 (BA148) provides the line shift voltage. There's also a high-voltage diode, D657 (BYX10), which produces a 570 V supply for the tube's first anodes. The reservoir capacitor is $\mathrm{C} 655(0.01 \mu \mathrm{~F})$ which can short to the 155 V line.
An overwinding on the transformer feeds the e.h.t. doubler, which is first in line for disconnection in the event of F691 having failed. The doubler also feeds the focus network, which is on the tube base panel. There are four $4.7 \mathrm{M} \Omega$ resistors in a series chain before the focus control, which supplies some 3.5 kV to the focus pin (9) on the tube base - we're talking about the bipotential tube, the earlier unipotential tube having its focus pin fed from a tapped resistor chain supplied from the first anode supply rectifier. The output from the doubler is some $18-20 \mathrm{kV}$. A sudden and possibly nasty increase in the e.h.t., with arcing from the tube connector and perhaps the doubler, should direct attention to the flyback tuning capacitor $\mathrm{C} 656(0.0027 \mu \mathrm{~F}$ on earlier models, $0.0024 \mu \mathrm{~F}$ on later ones) which is of the special high-voltage type. The line output transistor could well fail before these uncomfortable symptoms can materialise, which is probably why these firecracker antics are not too well known.

IF and Decoder Panels

The i.f. and decoder panels are on the left-hand side
and are almost identical to those used in the Pye 725 series covered last month. The same remarks apply, particularly to the i.f. gain/filter module where a sudden loss of gain may well give the impression that there's a fault in the tuner. Resoldering the through-connections in the filter part of the unit, coils and capacitors, will normally resolve the problem without need to replace the module. The same type of thick-film resistor unit is employed at the top of the decoder panel (the upper one), and is the cause of a wrong grey scale in most instances. The unit contains the $4.7 \mathrm{k} \Omega$ RGB output transistor collector load resistors and the $27 \mathrm{k} \Omega$ feedback resistors. A voltmeter check with the set switched on or a resistance check with it off should quickly reveal any differences between the operating conditions in the three stages.
One expects to find h.t. at the top of the decoder panel but not, perhaps, on the i.f. panel. The feed resistor to the tuning voltage supply, R209 $22 \mathrm{k} \Omega$, lives at the bottom of the i.f. panel however. It has, or should have, 155 V at the end nearest the socket from whence it obtains this voltage (at pin 6).
All we said about the left-side section of the 725 chassis last month (and we didn't say a lot) also applies to these sets. The panels cannot be interchanged however because the sockets have a different configuration. It's the main panel which may perhaps appear to be strange and a bit awkward to those who are not familiar with it.

Over-voltage Protection

The over-voltage protection arrangement used in these chassis is simple indeed - just a single glow switch (GL537). It strikes in the event of excessive h.t., shorting the h.t. line and blowing the mains fuse. The usual cause is a faulty thyristor (D529). You would have discovered this from examination of the fuse as outlined earlier. Another possibility is zener diode D518 (BZY88, 7•5V) going open-circuit.

VCR Operation

To reduce the time-constant of the flywheel line sync circuit for use with a VCR, connect pin 10 of the TBA920Q i.c. to chassis, i.e. connect points Y1 and Y2 together. If this results in poor line lock with an off-air signal, fit a switch so that the connection can be opened. Some Philips sets have a VCR button on the six-latch unit, and this is what it does in addition to the normal tuning.

Cabinet Renovations

Tony Thompson

AsK any used car dealer what sells cars and the chances are he'll confirm what you suspect already: appearances are all important. It's the same when people buy a used television set. Potential customers want to see a good picture of course, and may well be reassured by the offer of a guarantee, but as few purchasers are technically minded the look of the set can be as important as your carefully set convergence. In this article I've set out ways of enhancing the appearance of most sets. Some you may know already, others may be new to you: I've tried them all, and provided the procedures are followed carefully you should be pleasantly surprised at the overall improvement that can be achieved. Let's make one thing clear from the start however: we're not embarking on a master cabinet maker's refresher course! The methods are simple and require the minimum of skill (but the maximum of common sense, something you have in abundance, yes?). They can more aptly be described as "patch and hide" rather than "repair".

Materials Required

The items you'll require are as follows:
(1) Aerosol foam cleaner (Servisol or similar).
(2) Topp's scratch-cover polish, medium and dark.
(3) Plastic wood - tubes for teak and mahogany.
(4) Touch-up paint - use Humbrol modeller's tins.
(5) A fine watercolour or hobbyist's paint brush - size 0 , sable.
(6) Scraper - Skarsten or other type, see below.
(7) Stanley craft knife no. 199. Blades no. 1992.
(8) Black and brown shades of cobbler's heel-ball or similar wax.
(9) Small tin of Brasso metal polish and/or T cut car paintwork restorer.
(10) Small tins of silver paint and gloss or matt black as required.
(11) Tin of wax furniture polish. Shoe polish is useful too.
(12) Aerosol polyurethane varnish, Humbrol or similar.

Some of these things you'll already have of course. Cobbler's heel-ball wax can be obtained from one of those old-fashioned shoe repairers hidden away in the back streets of all towns and cities. If you ask nicely, he may well give you the butt ends of wax sticks he finds too short for convenient use - he would probably throw them away anyway. Even if you have to buy or get him to order a couple of sticks for you it's inexpensive stuff. Failure to locate a source of heel-ball wax should lead you to the local arts/crafts shop where you can buy wax as used for brass rubbings. As a last resort, the wax crayons kids use to draw pictures with will do, provided the colours are right.

Skarsten scrapers are usually available from tool shops and ironmongers. They are professional shave-hooks with replaceable blades, designed to strip paint or varnish from
wood. A standard cabinet maker's scraper will serve just as well - if you can find someone who knows what one is. You could even use a good, sharp smoothing plane blade - remove it from the plane first!

Foam cleaner is amazing stuff, magic with difficult surfaces like grained leatherette, but if you want a cheap substitute you can half fill a jam jar with warm water and add a squeeze of washing up liquid. The resulting mixture can be used effectively with a soft nylon-bristled long-arm brush - of the type sold for cleaning toilet pans. Get small tubes of plastic wood: tins dry up too quickly, and in any case other fillers may be preferable.

Types of Cabinet

There are two basic forms of cabinet. First the all plastic type, usually in the form of a single major moulding to which the decorative emblems, the handles etc. are attached. These would once have automatically been produced in thermosetting material, e.g. Bakelite, but nowadays many seem to be made of thermoplastic material, especially the cheaper types of portables. Secondly wood construction. Such cabinets may be made of chipboard (particles of timber resin-bonded into a grain and warp-free solid) or plywood, in either case with a surface finish designed to hide the true nature of the material used.

The added surface may be a genuine wood veneer, but increasingly the finish is imitation wood grain in the form of plastic sheet. Some of the larger plastic cabinets have a wet-printed wood-effect finish. From our point of view it's a pity that teak has been so popular where a genuine wood veneer is used. There are so many attractive and far more durable timbers around. Teak is difficult to work, very easily marked and damaged and a problem to repair. Finally there are a few sets around with a painted finish, probably cellulose sprayed.

Initial Cleaning

Initial cleaning is essential and should be carried out carefully and thoroughly if best results are to be obtained. Foam cleaner or the wash-up liquid alternative will lift the grime of years out of wood grain and remove layers of greasy dirt from the facia panel and knobs. Take especial care where lettering is applied however: this may lift with over zealous cleaning, particularly where emblems and logos are screened on to hard, shiny surfaces or chromium panels.

Pay particular attention to the area immediately surrounding the c.r.t. mask or push-through seal, because it's here that much thick and resistant gunge lies unsuspected. One of the beauties of foam cleaner is its ease of use, there being no real need to remove items such as control knobs for separate cleaning. When using wash-up liquid it's best to pull off the knobs or sliders and scrub them with an old toothbrush - useful indeed where the knobs are fluted.

After cleaning, dry thoroughly with towelling or other absorbent material and you're ready to examine the set critically.

Minor Blemishes

Any blemishes should be very apparent after thorough cleaning. Minor (surface) scratches and scrubs tend to disappear when polished with the appropriate shade of
scratch-cover polish, but go carefully on teak. Slight marks on this type of wood tend to darken, so you can actually get the opposite effect to that required. Look at the scratches carefully before starting. Is the surface broken or just depressed below the surrounding wood? If it is broken, your best bet may be plain (i.e. noncoloured) polish. Polishing will not of itself remove the marks of course, but a good cleaning will have shifted any accumulation of dirt and together with the covering effect of the wax layer the result will be that the blemishes are much less obvious. If you really want to be rid of the mark it's got to be levelled.

Filling

This is essential where there are deeper marks, perhaps penetrating through the veneer to the base timber. In such cases a more aggressive approach is needed. Fill with plastic wood or other suitable filler so that the depression is built up to the level of the surrounding wood. Avoid the use of sandpaper whenever you can: you may end up having to revarnish the entire top or side to make it look acceptable. Plastic wood is available in shades to suit almost any TV cabinet, but tends to show on any but the smallest blemish - especially on teak.

Modeller's paint is helpful here - the type you buy in inch high tins. Humbrol no. 9 is a close match for teak for example, being a sort of tan colour. Apply the paint to the filled and levelled surface not in brushfulls but with the brush almost dry, stippling the paint on. Use levelling techniques as described later for plastic finishes. Build the stippling up slowly, observing the results. With practice you'll find you can blend your repair almost perfectly. If the area is large you'll need a couple of other darker brown shades to stipple on to give the illusion of wood grain. Don't laugh - it works! Remember that you're right close up to the repair, seeing it under strong direct light and knowing it's there. Others won't notice it if you do it well enough.
One big problem with plastic wood, something that does little to endear the stuff to me, is its tendency to drop out due to shrinkage, especially if the hole is shallow. It may seem paradoxical to make the hole deeper in order to hide it, but that's what you've often got to do, digging in with the Stanley knife or a fine chisel to undercut the edges sufficiently to provide a key for the filler. You can use Polyfilla, other similar fillers or even car body fillers when you intend to paint the "wood" back on. These fillers usually stay in place well and are resistant to crumbling. Take care to avoid such fillers spreading into the surrounding woodgrain, as this can prove very difficult to clean subsequently.

Venear

In case you're in any doubt, veneer consists of a thin sheet of quality wood firmly bonded to a base. Many years ago veneers were held in place with animal glues which, being heat softenable, could be spot lifted and repaired. Such glues are no longer used in massproduction work - once bonded, modern veneers are intended to stay that way.

Due mainly to the fact that veneer is so very thin, the corners, edges and other narrow areas such as those around the front edges of the cabinet often tend to split and crack. With its deeply grained texture, teak easily gets caught with a duster and rips away nicely. Other
kinds of damage may be caused by stains or watermarking of one kind or another. My favourite timber teak is especially prone to watermarking, which shows up as white patches or rings where the previous set owner perched cups of tea or vases of flowers (brimming over nicely). The damage this can cause to the innards of a set is enough to give any engineer a nervous twitch, but we're concerned with appearances. These marks can be a real problem. They won't hide with scratch cover, though they will diminish slightly.

The surface of many teak cabinets is finished with a polyurethane or similar sealer. The amateur is unlikely to achieve a satisfactory surface finish due to the oily nature of the wood - it's this very quality that makes teak ideal for the decks of yachts! One way to tackle the problem is as follows. Using the scraper, carefully remove the entire top or side until you've reached a level to which the water has not penetrated. Use the scraper gently, always along the grain and outwards off the edges to avoid lifting or cracking the delicate veneer. A power sander can make light work of finishing the job, or you can hand sand then wirewool to a smooth finish. Make no mistake: this is hard work and you'll need to spend a lot of time getting a good surface. The finished surface may well have a slightly different colour and texture to the untreated areas. There's little that can be done to improve this, as timber weathers and often gains or loses surface colour after months or years of exposure.

Finishes

Once the surface has been prepared, the choice of finish is yours. Waxing with a cream-type furniture polish gives a nice stain finish, or you could use teak oil. Brushing varnish on teak cannot be recommended because, due to the oiliness previously mentioned, you end up with a tacky, gooey surface that takes ages to dry properly and is anything but attractive. It's possible however to use an aerosol spray varnish as outlined below for other timbers, provided you first degrease the wood thoroughly with white spirit. Rub along the grain vigorously, go over quickly with a dry cloth, then spray immediately.

Other wood veneers can be successfully revarnished as follows. Strip with a scraper or with paint stripper if preferred until all traces of the original finish have been removed. Smooth down with glasspaper, working from medium through the grades to very fine or flour quality. Wire wool, then soak a lint-free cloth such as a piece of old shirt in white spirit, fold it into a pad, and rub along the grain. This is called a tack rag and will lift very fine wood dust from the grain. It goes without saying that the room where the varnishing is to be done should be dust free. I use my garage on still days, wetting the concrete floor to avoid rising dust. Mask off all areas not requiring treatment, using masking tape (not Sellotape, as this can damage the cabinet when being removed) and newspaper. Several passes are better than one heavy one. The varnish dries more quickly, minimising dust pick up. When hard dry, the surface can be left glossy or wirewooled and waxed.

Iron-on Veneer

Narrow front surfaces come in for a lot of hammer, but there's an answer in the form of iron-on Conti-strip or similar rolled, pre-glued strips of veneer designed for easy finishing of the edges of veneered chipboard panels.

Simply cut the strip to length, strip off the remains of the original veneer - a task which should be relatively easy as a result of the brittle glues used - and iron on the new veneer, mitring the corners as you go. Trim the edges with the Stanley knife, wirewool smooth and finish by rubbing on clear varnish quickly with a cloth or waxing. If the shade of wood is too light, use scratch-cover polish instead.

It's now possible to buy complete sheets of iron-on veneer with which a complete cabinet could presumably be reveneered. I've not tried this, but if I did I would first remove any broken veneer areas, then level with filler. The entire cabinet would require roughing or scoring to give a key for the new veneer. I'd not recommend the removal of existing sound veneer surfaces.

Plastic Cabinets

When it comes to plastic cabinets we have to take special care. The quality of finish ranges from hard as Formica excellence to what can only be described as grotty. Treatments that work well on the more durable finishes can easily destroy the wood effect of the poorer types, so it's important to bear in mind what could happen and wherever possible experiment in a less obvious place than the top centre of the cabinet.
The dirt should have lifted o.k. with the cleaner (but steady with the brush when using wash-up liquid). You'll probably find spots of paint in evidence: I always do. Seems nobody bothers to cover the telly when doing the annual decorating - or perhaps they can't bear to miss favourite programmes and paint only during the commercials . . . These spots can be removed with Brasso and very gentle rubbing. If this produces a "too clean". effect the whole panel can be gently cleaned. Sometimes, depending on the method used to apply the wood grain effect, scratches show through whitish and obvious. Spot these out with your watercolour brush, stippling on suitable paint as previously outlined. It won't fill the scratch, but it's effective camouflage.

Deep, wide scoremarks, sharp dents, gouges and even missing corners can make a good set virtually unsaleable. Such damage can be repaired with heel-ball wax. To repair a flat surface, have it horizontal then melt a little wax either with a match or your soldering iron and allow it to flow into the damaged area. It's worth warming the damaged area first, using a hairdryer, as this assists the flow of wax by preventing premature chilling. Judicious local heating of the wax pool with the iron also helps, but avoid touching sound plastic areas.

Once the wax has set, usually a matter of moments, it can be scraped down carefully layer by layer using a Stanley blade held in the fingers until you're down to the surrounding level again. With a backward tilt to the blade and only slight pressure you are unlikely to damage the good surrounding area, but you can stop the corners of the blade digging in by sticking strips of masking tape or paper tape on either side of the repair, allowing the blade ends to rest on this as you scrape. The big advantage is that if you do go wrong and the wax breaks free, it can easily be remelted and you can try again. And again if necessary.

Corners can be repaired in much the same way, but you have to build up a "dam" to form the missing side or sides. Use waxed card or smooth pieces of plastic, held in place with masking tape. The wax can be blended to suit by mixing various shades in a spoon held over a candle.

It's inflammable, but not violently so. Still, take care. When repairs are complete, finish the entire cabinet with scratch cover or shoe polish.

Large areas around channel switches or on the tops of sets where hands have rested umpteen times whilst selecting stations will sometimes be found to be stripped of print or worn very thin. Small areas can be touched in as described earlier. If the area is extensive however this won't work. What then? It's possible to remove the whole printed area with T cut or fine wet and dry paper, used wet and lubricated with a bar of soap. Such a job can be finished with Brasso or left T cut for a medium shine! Often the finish obtained is dark grey. You could spray paint this, using a car aerosol, but at all costs avoid using cellulose or you could end up with a crackle finish due to interaction between the cellulose and the plastic base (it's a good solvent for many types of plastic). Fortunately, car aerosols are increasingly non-cellulose, being mainly of a synthetic enamel formation (acrylic). Look on the tin, read the manufacturer's literature or seek advice on the spot before purchase, and test a small hidden area first.

Another possible finish is Con-Tact or Fablon selfadhesive plastic sheet. This strong thin film is readily available in a wide range of photographed finishes. Not all cabinets can be recovered successfully in this way however. Heat generated within the set can lead to failure of adhesion and a buckling or shrinking of the film. If the cabinet allows, a wrap-around and tuck-in form of covering should minimise such problems, but I cannot recommend using this recovering technique where cabinets have side mounted speakers with grilles of thin, slatted form, and I do recommend covering in one continuous length - up one side, across the top and down the other. Leave a generous overlap underneath, but take care not to block air vents.

Other Types of Cabinet

White or coloured cabinets may be revived with Brasso, but check somewhere inconspicuous that the colour is sound or that the plastic is self-coloured. Grained effect plastics are best simply polished after cleaning.

Panels and Masks

One of the focal points of a set for the prospective purchaser is the front panel. Marks here or on the c.r.t. surround are very obvious. Control panels are often black, either gloss or matt, with white lettering screened on. The paint often cracks away due to poor chemical adhesion with the smooth metal surface beneath, taking with it portions of the lettering. Spotting in with appropriate paint colour is very effective, but remember the golden rule: built it up slowly. It's relatively easy to reletter using Letraset transfer lettering, which is available from stationers. Some mask edges have a thin line of silver paint which wears away here and there. It's your choice whether to remove or repaint, but don't leave it half and half!

Backs and Stands

The back of the set should not escape attention. Clean plastic backs as you would the cabinets, and remove extraneous labelling as far as possible. If you can't shift them, cover them with one of your own! Fibre type backs
can be more untidy, because attempts to remove unwanted labels can easily result in large surface areas being ripped off. Best advice is to take care. Mains leads get filthy, but can easily be cleaned with scouring powder on a dampened cloth. Wrap the cloth round the lead and pull through.

Don't neglect the stands. Metal castored types can be cleaned with Brasso or even resprayed or if need be painted. Wood types and plastic wood-effect cross members respond very well to scratch cover.

Conclusion

So there you are! A little time spent methodically tidying the average set will pay handsome dividends since your work will look that much more professional and more nearly justify the use of a "fully reconditioned" tag. Many of the methods described can be used on cabinets of other than the types specified. For example, there's no reason why wax cannot be used on a wooden cabinet, or Polyfilla on a plastic cabinet. By and large though the methods outlined should prove best.

TV TEST EQUIPMENT

Two interesting devices have been introduced by Video Techniques (101 Derby St., Bolton, Lancs BL3 6HH). First is an active sync separator to enable a scope to be triggered from composite video waveforms (with negative-going sync pulses or standard 70:30 video). The device is suitable for TV receiver, VCR/camera, CCTV or computer VDU servicing, and for easy circuit connections can be used with an X1/X10 scope probe. One off price is $£ 29$ including UK post but not VAT. The second item is a delayed timebase trigger unit which converts an inexpensive scope without delay facilities to a delayed timebase unit giving viewing access to the field blanking interval and the VITS/teletext lines - handy for use with teletext receivers. The one off price is $£ 43$ plus VAT.

Viewdata test signal simulators are available from Team Services, 17 Stokesay Way, Sutton Heights, Telford, Shropshire TF7 4QF. The units simulate a viewdata computer and telephone link, giving displays that enable a wide range of tests to be carried out without having to pay for access to a viewdata computer.

AVO'S 2000 SERIES

A newly designed range of hand-held digital multimeters, the AVO 2000 series, has been launched by Thorn EMI Instruments. There are initially three meters, for specific applications - the Digiminor 2000 which is intended for maintenance applications, the Vehicle Test 2002, and the one of interest to the TV engineer, the AVOmeter 2001. All these meters feature direct entry prods to give true one-hand operation, a $3 \frac{1}{2}$ digit LCD readout at the base of the housing to give improved readability, and slide switching for positive, dustproof range selection.

The 2001's ranges are: $200 \mathrm{mV}-1 \mathrm{kV}$ a.c. and d.c.; $0.2 \mathrm{~mA}-10 \mathrm{~A}$ a.c. and d.c.; $200 \Omega-20 \mathrm{M} \Omega$ resistance; plus a diode test facility and continuity buzzer. Correct mode and range selection are ensured by the inclusion of an audible alarm that signals any discrepancy, while both the unit and mode are shown on the LCD. The 2001's trade price is $\mathbf{£ 8 5 . 4 0}$ excluding VAT.

next month in

- THORN'S 1790 CHASSIS

Thorn's latest monochrome portable chassis has a minimal component count due to the use of a startlingly new i.c., the Motorola monomax. This provides six receiver functions - vision i.f. channel, video processing, a.g.c., sync separation and the generation of line and field frequency drive signals. It does so in some quite new ways - there are no i.f. tuned circuits for example, while the field and line frequency outputs are obtained by counting down from a 31.5 kHz clock oscillator. There are only two timebase controls, line hold and height, and only two tuned coils, tuner coupling and 6 MHz sound trap.

- SIMPLE VCR SERVICING

Things to check when confronted with a VCR that won't play a tape. More involved causes of the problem can't be considered, but the information provided should enable $50-75 \%$ of cases to be dealt with. Both VHS and Betamax machines are covered.

- VINTAGE TV

Chas E. Miller on early Decca sets, in particular the Model 1000 front projection set which used no fewer than 28 valves.

- ROUTINE TV RECEIVER TESTS

S. Simon describes basic fault-finding procedures applicable to the Thorn $3000 / 3500$ chassis.

SIMPLE SYSTEM L-I CONVERTER

French u.h.f. transmissions use system L and can't be resolved by a standard UK system I receiver. Once the signals have been demodulated however they can be fed to a modulator which provides a system I output. This is simple to do using an external tuner, Ambit 94420 module and Astec modulator.

PLUS ALL THE REGULAR FEATURES

ORDER YOUR COPY ON THE FORM BELOW:

(Name of Newsagent)
Please reserveldeliver the February issue of TELEVISION (90p), on salo January 19th, and continue every month until further notice.
NAME
ADDRESS \qquad
\qquad

VCR Clinic

Hitachi VT8500

Why is it that when I have only two or three VCRs a day to deal with the problems are simple, like replacing the 12 V regulator transistor on the Sanyo VTC9300 or showing the customer how to use the tracking control, but as soon as eight or more VCRs a day are lined up the interesting faults appear? Take last week. The first machine was a Hitachi VT8500 which came in with the complaint that the recording was intermittent. This was soon traced to the thick-film unit IC201 which does most of the final processing of the video signal prior to the heads.

Whilst working on the machine however I noticed that the picture was not being blanked as it should be when threading up, though it was blanked when the machine unthreaded the tape. In fact I'd at first wondered whether this had anything to do with the record problem, but it didn't. Now in this machine a microprocessor, IC901, detects when the play button is pressed. It then starts the threading motor and sends appropriate instructions to the reel motor, the brakes and in addition informs a second microprocessor IC902 that the play mode has been selected. This second i.c. lights up the play indicator, starts the head rotating and produces a load signal which is amplified by Q915 and Q917 and is then used to blank the picture and sound whilst threading up. In this model the load signal also puts an index pulse on the tape. Sure enough, a quick check showed that the tape index system was not working either. By using the meter it was a simple matter to find that the pulse was leaving the i.c. and passing via Q915 to the base of Q917 where it stopped. Q917 turned out to be open-circuit.
D.S.

Ferguson 3V30

The problem with the first Ferguson 3V30 that came along was that whilst play was o.k. forward and reverse visual search produced only lines on the screen - it was obvious in fact that the machine was going too fast. In the search mode the tape is moved by the reel motor, albeit at a slower speed than during rewind or fast forward. The

Fig. 1: Reel motor drive/control arrangement used in the Ferguson 3V29 and 3V30.

Reports from Derek Snelling, John Coombes and Mike Phelan

speed of the reel motor depends on whether Q15 (see Fig. 1) is switched on or not. A check here showed that this transistor was switching correctly, but before further checks could be made the motor came to a stop. This was soon traced to lack of voltage at pin 10 of the reel motor drive i.c., which gave rise to a minor problem - resistor R48 is no longer fitted, having been replaced by a "circuit protection device" consisting of a fuse in a transistor case. I found the modification sheet covering this, and fortunately we'd one in stock, having had previous problems with one of these items used in the timer backup circuit of another 3 V 30 . Fitting the replacement got the motor going again and enabled us to return to the original fault. The next check, on Q16, revealed that this was defective, a replacement restoring normal operation.
D.S.

Another 3V30

All functions were correct until record was selected on the second 3 V30. At this point the machine would go into pause and nothing would get it out again except stop, whereupon it would work perfectly until the next time record was selected. The obvious thing to do was to find out where the pause signal was coming from. This took us back to the output expander/latch i.c. (IC4) on the mechacon board. This i.c. takes its instructions from the microcomputer IC2, via four data lines which it interprets and acts upon. So were the instructions wrong, or was IC4 misinterpreting them? One could check the lines of course, but we decided it would be simpler and quicker to change the i.c.s. We went for IC4 first as it was the smaller one, and of course it was IC2 that was causing the problem.

This is a μ PD553C-164: the last three numbers are important as they indicate how the device is programmed. The 3V30 also uses a μ PD553C-100, which is the same device programmed to act as a timer and channel selector. The point is worth noting as several microcomputer manufacturers use this numbering system.
D.S.

Toshiba V5470/Bush BV6900

The following is a summary of faults we've experienced with the Toshiba V5470/Bush BV6900 machine.
Selected button trips: First check the plugs and sockets. Then try removing plug P903 on the pause circuit board (PW2113). If the drum fails to rotate after record/ playback has been selected, check the drum drive circuitry on board PW2115 - the main suspect is transistor Q961 (2SD235X) which should be checked by substitution. If the transistor is all right, check the servo i.c. (IC501 type TM4216P). If after removing P903 the capstan motor fails to operate, again IC501 may be at fault. Also check for tape movement failure - this may be due to faulty drive belts, play idler or the tape guides.
Record button jumps out on a timed recording: This was a common problem on early machines. The solution is to change R619 on the logic board (PW2110) from $150 \mathrm{k} \Omega$ to $330 \mathrm{k} \Omega$.
No illumination of digits, incorrect time settings, days will
not change on programme setting or inoperative on second programme: For the first fault check for dry-joints around IC861 (TC5038P) on the programme timer board (PW2112). For the latter faults check the i.c. itself.
Tuning drift: Can be caused by any of three i.c.s. The most common offender is the digital control i.c. (ICA01, type TC9002AP). If still in trouble check the TMM841P memory i.c. (ICC01) and/or the TA7619AP memory control i.c. (ICC02) by substitution or fit a replacement selector panel (PW2106).
Rewind fault: If during rewind the tape slows down and sometimes stops (this makes a screeching sound) then speeds up again, replace the rewind idler.
Wow and flutter: Very carefully check the tape guides and the tape path. Check the play idler. Before replacing this, proceed as follows. Open up the clutch section and clean the felt pads. Clean dust from the plastic face plates. Also check the rubber tyre, removing glaze with wet and dry and cleaning up with alcohol. Re-install, check the play belt and ensure that the play torque is $80-120 \mathrm{~g} / \mathrm{cm}$. If still in trouble, replace the play idler. The trouble may also be due to the capstan flywheel: clean and lubricate the base of the spindle. If this is ineffective, replace the flywheel or if necessary the capstan motor.
Patterning/poor quality picture: Check the tracking control setting, the tape guides and the slide switch S101 for intermittency or poor contact. S101 can be responsible for video break-up or even chroma drop out. If the machine is used with a stand that brings it too close to the TV set, the two can interact to give severe patterning or chroma drop out. It's simple to check for this by moving the VCR. A cure is to fit a section of cooking foil between the two. Check also that patterning is not due to incorrect setting of the VCR's u.h.f. output.
Smearing on playback: Check IC402 (TA7636P) on the video board (PW2109) by substitution.
Head faults: These machines do tend to get through video heads. The symptom that arises is poor quality pictures. The cause may be lack of cleaning or damage due to customer misuse. The heads can develop a sharp edge which can cut away at the tape.
Eject switch problems: Check the TM4216P servo i.c. (IC501) and the CX141 logic i.c. (IC601) by substitution.
Prerecorded tape trouble with TV Model BC7300: The complaint was line jitter, picture break up and generally poor quality. We checked the machine with a Murphy MC7340 and obtained a perfect picture. The problem is due to the fact that the additional pole for VCR switching is not present on customer control unit type T515A (the sixth switch position). The extra pole applies 12 V to pin 11 of 5SIC1 (TDA2593).
J.C.

Ferguson 3V29

We've had a couple of tuning voltage problems recently on the JVC/Ferguson HR7200/3V29. On the first machine the tuning voltage altered when going from stop to record. On checking, we found that the voltage at the collector of transistor Q8 in the tuning voltage regulator circuit (see Fig. 2) was only about 19 V instead of 31.5 V . The obvious thing to do was to change the zener diode IC3 and check for leaks. Still the same. We eventually found that D8 was short-circuit, as a result of which Q8 was not being turned on fully.

On the second machine the symptom was a hum bar on the E-to-E picture. This time the tuning voltage was found to be 45 V , but it was still possible to tune in the stations as

Fig. 2: Tuning voltage supply circuit, Ferguson 3V29 and 3V30. 08 is forward biased by D8/9 and acts as a constantcurrent source for IC3.
we receive our signals from the Winter Hill transmitter which operates near the top of the band. This time Q8 was short-circuit and IC3 had been damaged by the excessive current.
M.P.

Grundig 2×4 Super

Here's a very interesting fault we had on a Grundig 2×4 Super. The machine displayed a ghost about an inch to the left of the image on all tapes. The ghost was clearly visible on the luminance staircase waveform of a monochrome bar signal at all points. Going back to the f.m. demodulator, before the f.m. is filtered out, we could still see it on the scope. For convenience we first tried another luminance board, then another head amplifier panel. Still the same so we replaced the originals. What could it be? In desperation we tried another head drum - and this cured it!
M.P.

Ferguson 3V30

The problem we had with a JVC/Ferguson HR7300/3V30 was no clock display. The timer i.c. has an internal 400 kHz oscillator which operates in conjunction with an external ceramic filter and a couple of timing capacitors, C405 (220 pF) and C404 (120 pF). A check at pins 1 and 42 of the i.c. revealed that the oscillations were absent, so we changed the ceramic filter. No good. It turned out that C405 was leaky.
M.P.

Philips VR2020

A Philips VR2020 came in with the complaint that it played prerecorded tapes o.k. but there was excessive wow and flutter on its own recordings. It seemed that the capstan servo was at fault, but whilst looking for the cause of the trouble we noticed that transistor T7001 in the capstan motor drive circuit (see Fig. 3) had been running hot. A few voltage checks then showed that T7005 had no collector voltage because R3037 was open-circuit. Thus T7001 had been driving the capstan motor via T7005's base-emitter junction.
M.P.

Fig. 3: Capstan drive circuit, Philips VR2020.

Service Bureau

Abstract

Requests for advice in dealing with servicing probloms must be accompanied by a $\mathbf{£ 1 . 0 0}$ postal order (made out to IPC Magazines Ltd.), the query coupon from page 155 and a a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

PHILIPS 320 CHASSIS

There's no picture on this set. With the sound perfect, the screen blanks out completely. Under no signal conditions there's a raster. A weak picture can be tuned in, but the sound is then poor. The h.t. and l.t. supply lines are correct and the TBA550Q video/sync/a.g.c. chip has been replaced.

These puzzling symptoms are usually due to trouble in the a.g.c. circuit. First check for 12 V at the cathode of zener diode D2220, then check that gating pulses are reaching pin 3 of the TBA550Q via R2208. If all is well here, the a.g.c. smoothing capacitor $\mathrm{C} 2207(68 \mu \mathrm{~F})$ and the controlled i.f. transistor T2828 (BF196) are suspect.

THORN 9600 CHASSIS

The field scan is giving trouble. Over the last three months I've had to adjust the height control, the vertical shift control and the N/S balance control several times. The top of the picture kept rising and now the bottom is cramped whilst the top is expanded. Also the top of the picture bows downwards at the middle while the bottom edge bows upwards. The controls are now set for a full screen raster after a run of one and a half hours. At switch on the raster is half an inch up at the bottom and three-quarters of an inch down at the top: it expands slowly as the set warms up.

First check the 24 V line at C803. If it's wrong, check the 24 V regulator circuit - transistors VT812/3 and the 24 V zener diode W819. Next ensure that the 34 V line is correct at C821. If not, check W518, C523 ($470 \mu \mathrm{~F}$) and C821 ($2,200 \mu \mathrm{~F}$). If the fault persists with these lines in order, suspect the field output transistors VT807 and VT809. Since the fault is temperature-dependent, judicious use of a freezer aerosol in the field timebase after the set's been on for a time should quickly narrow the area of search.

GRUNDIG 6010

First the cutout tripped. The tripler was disconnected and the trip reset. This restored normal operation, though with low e.h.t. from the overwinding on the line output transformer. A replacement tripler was fitted, but when the set was switched on a spark shot from R504 (in series with the output end of the width transductor) to chassis. It does this every time, blowing the trip. I suspect the line output transformer.

First make sure that there's d.c. continuity from R504 through both the commutator coil and the width transductor, and that there are no dry-joints on any of the wound
components. If necessary, check Di504 (in parallel with R504) and the components in the pulse shaping network that drives the gate of the scan thyristor - C515, R515 and L515. If all these are in order the line output transformer is suspect (assuming that the tripler is of the correct type and that it's correctly connected).

KÖRTING HYBRID COLOUR CHASSIS

There is a "waisting'" effect on the line scan, a narrowing of the picture. This usually moves up or down the raster, but is sometimes stationary.
The first suspect is the line oscillator's h.t. decoupling capacitor $\mathrm{C} 417(25 \mu \mathrm{~F})$. This often goes open-circuit. Otherwise, check for heater-cathode leakage in the PCF802 and PL509 valves by lifting the h.t. fuse Si5 (1A) on the top panel with the set on and noting whether the hum bar goes before the valves cool down.

RANK A823AV CHASSIS

The picture reverts to monochrome on changing channels pressing the channel change button several times will usually restore the colour. I've changed the chroma amplifier and ident transistors and the SL917 decoder chip. For some reason the ident control has to be turned fully clockwise before colour can be obtained - turning clockwise should disable the colour.
Start by checking that the stabiliser transistor 3VT2 is producing the correct 11 V at 3 TP 27 and that the amplitude of the line frequency pulse fed to pin 5 of the SL917 chip is correct. If these points are in order, and 3RV2 (burst gain) and 3T1 (burst gate pulse timing) are correctly set, check the $50 \mu \mathrm{~F}$ electrolytic decouplers 3 C 2 (burst output circuit) and 3 C 17 (5 V line smoothing). It would be helpful to check the amplitude of the chroma signal at 2TP12 during the presence of the fault.

HITACHI CPB226

The convergence on this set is very bad, with red, green and blue lines here and there. The set is unlike most I've dealt with however so I'd appreciate your guidance on what to do.
Convergence is effected by adjusting the magnets on the tube neck. Remove the green output lead from the decoder and adjust the four-pole magnets (nearest the screen) relative to each other to converge the red and blue verticals, then rotate the two together to converge the red and blue horizontals. Replace the green drive lead and if necessary adjust the six-pole magnets (middle pair) for a white central cross. The rear pair of magnets are the purity rings. Should dynamic convergence be necessary, tilt the scan yoke vertically and horizontally for best results, then wedge in position with rubber wedges.

PYE 713 CHASSIS

The line oscillator won't start up when the set is switched on from cold. Once it has started (switching on and off repeatedly gets it going) the set runs all right, though with slight lack of width and intermittent colour drop out. I've tested the chip with freezer but before condemning it would like your verdict.

We suspect that the chip (TBA920Q) is in trouble, but before you replace it we suggest you check that the oscillator frequency has not drifted off. To do this, short out the two pins of PC7 and adjust R634 until the picture slowly runs through.

241
Each month we provide an interesting case of television servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.

In the current festive season a young man's mind turns to thoughts of many things - including TV games. We sell lot's of TV games consoles and cartridges at this time of the year, the top of the pops for us being the Atari Video Computer Console, which is something of a misnomer since several more computer-oriented games have since come on the market. The Atari VCS is the most commonly available type however, with the widest range of software, This includes the compatible Activision cartridges, which seem to be more popular than the Atari ones because of their better graphics and brighter colours.

One of our more affluent customers bought an Atari VCS and took it home along with the free cartridge (Combat) which comes in the box. Within a few weeks he had our tills ringing like church bells on the receipts from Night Driver, Video Pinball and a collection of others. This particular customer is also a leading patron of our video library, his tastes being very wide - Confessions of a Window Cleaner one night, Watership Down the next. With such a range of locally-generated video signals available to him, we suspect that he seldom watches the off-air TV programmes on his main TV set. Which is why he's about the only one (so far as we can tell!) of our 3,000 or so customers who doesn't immediately pick up the phone and ring us when the local relay station croaks out.
As his family became more expert at TV games, they felt the need to record their triumphs on tape. And why not? Button 7 on the TV set was tuned to the console's output and button 8 to the VCR's output. VCR buttons 1,2,3 and 4 were occupied by the local TV transmissions, so button 5 was tuned to the Atari's output. A way they went with Laser Blast, using the TV set to monitor the action whilst recording it for posterity.
But what happened to the Universe? What alien being had filled outer space with swirling patterns and waves? Whatever was happening out there must be due to some force immune from lasers. Time to call out Dan Dare from the service department, with his multimeter and scre wdriver . . .
When we arrived, a cartridge was inserted in the console and a demonstration game was played. It was incredible, involving a chicken being taken across a
double six-lane free way in the rush hour. So far as we could see, if a car collided with the chicken it disappeared with a great cluck and a cloud of feathers! Dragging ourselves away from the game itself, we studied the picture's background. It was overlaid with patterning which would change and swirl slightly with different background colours and with the sound effects. And all this was recorded on the tape.
We switched off the VCR, a Sanyo VTC9300P, and plugged the console's output into the TV set directly. The patterning disappeared. Next we fed the console's output into the VCR's aerial socket, using the loopthrough facility, with button 7 selected on the TV set and the VCR switched off. Again no patterning. Switch on the VCR and the patterning appears. What was happening? Answer next month.

ANSWER TO TEST CASE 240 - page 101 last month -

The Bush BC6100 (Rank Z718 chassis) we were doing battle with last month had a balance problem in the line output stage. The symptoms were reduced width, high e.h.t. and excessive dissipation in SR6 which feeds the h.t. supply to the driver stage. This supply is taken from the junction of the two series-connected line output transistors. The transistors had been replaced and the components in their base drive circuits checked. All to no avail. The imbalance was such that 6 V a.c. was being developed across 5R6, measured on the 10 V range of our AVO.
Reduced width with high e.h.t. usually means that the flyback tuning is incorrect. This case was no exception! We removed the two flyback tuning capacitors 5 C9 and 5 C 10 (both $3,600 \mathrm{pF}$) and checked them on an $R C$ bridge. One gave a reading of about $1,000 \mathrm{pF}$ and the other $2,900 \mathrm{pF}$! They appeared to be o.k. physically, and were obviously from the same manufacturing batch. Anyway, in went two new $3,600 \mathrm{pF}$ capacitors with the correct voltage and current ratings and we then had no difficulty in balancing the stage. A new 5R6 (correct 2W type) ran cool, and normal scan amplitudes were now present. After setting up the harmonic tuning coil 5L3 and making other adjustments as necessary the set was pronounced fit and well.

[^2]
ELECTRONIC EQUIPMENT SERVICING (TELEVISION/VIDEO)
 full-time College course

TRAINING INVOLVES A HIGH PERCENTAGE OF WORKSHOP FAULT DIAGNOSIS ON MONOCHROME \& COLOUR TELEVISION EQUIPMENT. CLOSED CIRCUIT TV \& VIDEO CASSETTE RECORDER PRINCIPLES ARE INCLUDED IN THE COURSE

15 MONTHS COURSE

for beginners to include Electronic Fundamentals

6 MONTHS COURSE

for BSc, HND, CGLI, TEC
and similar applicants

Next two courses commence on JANUARY 10th \& APRIL 25th.
Also courses in Computers/Microprocessors, and Radiocommunication/Radar leading to College Diploma and Technician Education Council awards.
Prospectus from:
LONDON ELECTRONICS COLLEGE (Dept T3/4)
20 Penywern Road,
Earls Court, London SW5 9SU
Tel: 01-373 8721

13 WORCESTER ST., WOLVERHAMPTON: WOLVER
Tel: (0902) 773122
Tolex: 336810

Telepart

Pattern Generator

- Exceptionally light and durable
- Pocket size for outside service - PP3 battery power source - Five different test patterns for colour and mono TV *-Cross hatch grid * Dot matrix rizontals Verticles
A lightweight, extremely portable and versatile pattern generator for black/white and colour T.V. alignment and service at the cusiomers home. A the curn of a compares favourably with other more costly buiky generators only suitable for bench work. The generator is pocket size measuring $10 \times 7.5 \times 4 \mathrm{~cm}$ and weighs only 190 grams.
PRICE £14.95 (Subject to V.A.T.) POST \& PACKING £1.15

Telepart

Colour Bar Generator
Exceptionally light \& durable

- Compact $13 \times 17.5 \times 5.5 \mathrm{cms}$
powered for mobility ${ }^{\text {-Cr}}$
orid
- White raster
- Grey scail © Colour bars
- Grey scale - Col

A Versatile Generator for Servicing or aligning mono or colour TV receivers. Lightweight and very compact for outside service. Features sound facility often not found on more costly generators.
PRICE E49.95 (Subject to V.A.T.)
POST \& PACKING £1.15

Power Supply

A Power Supply can be supplied for the Telepart COLOUR BAR GENERATOR This compact unit mounts by 2 screws into the Battery compartment and converts the unit to a bench instrument.
PRICE $\mathbf{8 5 . 5 0}$ (Subject to V.A.T.)
Supplied by return, off the shelf

THE BEST TV BARGAINS IN THE SOUTH

DECCA BRADFORDS
PHILIPS G8's
5 for $\mathbf{8 7 5}$ (Varicaps also)
Plenty of refurb-working sets
THORN 8-8K5
R.B.M. twin chip
G.E.C. 2040 most working

THORN 3-3K5
Sp
special discount offers on large orders
G.E.C. Solid State
tc. all at $\mathbf{E 3}$ in batches of 10 . $\mathbf{e 5}$ singles 5 for 830 from E 35
5 for $£ 100$
5 for 295
5 for 980
5 for $£ 100$

Mono's, 1500 s etc. all at $\mathbf{E 3}$ in batches of 10. $\mathbf{E 5}$ singles.
known make in stock inc. Japanese at give away prices.
EXPORT SPECIALASTS - 1000: SETS AVARLABLE EVERY WEEX OPEN 7 DAYS Bult Shipmonts catered for:
C.R.T.s Regun or Ex Equip. T.V. Trolly Stands

Vist our mascive ultra modern premises. Tea, coffee, snacks avalifble.
Whatever your needs we are in the lead. Ring today. Easy Motorway Acess, ample parking. Open 7 days.
PANELS EX-EQUPMENT
R.B.M. I.F. Power Conv.

Time Base-Decoder
Phillps G.8. All Panels
G.E.C. 2040 Decoder-C.D.A.
I.F. Panel

Thom 3-3K5. Power Line
All others
Thorn 8-8K5. I.F. Decoder Time Base
All Parts available all sets.
Please telephone your needs. Speedy return of post service.
Spectal Orfer: G-8 lopts (new type) $£ 9.00+£ 1.00$ P.P.
All prices subject to 15% V.A.T.

COLOUR T.V. \& MUSIC CENTRE

Old Mixon Trading Estate,
Winterstoke Road, Weston Super Mare, Avon.
Tel: 0934413537.

UNIVERSAL PROGRAMME SELECTOR FOR VARICAP TUNING

UK Regd. Design No. 1006611

6 way interlocked d.p.

switch 100 K tunin
potentiometer
Top quality through hole
lated pcb
Dimensions: 5 " by 2 " by $^{\prime \prime}$ deal for replacement when riginal parts are obsolete o nobtanabl
Template guide supplied for driling of your own fascis
design
Range of precut and drilled fascia/mounting kits for selected TV chassis enabling our unit to be fitted without turther cutting driling or modfication
All orders despatched same
day
DIRECT REPLACEMENT FASCUNMOUNTING KITS
Type $30-60$ Replaces 7 piano-key unit as fitted to Decca/Telefunken 30 and 80 Chassis
Type 30- Replaces 7 piano-key unit as fitted to Decce console using long perspex illuminated control pane
Type 100 Replaces 8 position touch tune selector (AEG SAS 660 SAS 670) as used in Deccar/Telefunken 100 chassis
Type CVCs-9 Replaces 5 rectangular push button plus thumbwheel as used in ITT

selector £14 + vat

FASCIA/MOUNTING KITS (each) $\mathbf{E} \mathbf{2}+$ VAT

ALDERSON-JAMES LTD

160 KINGS ROAD - HARROGATE © N. YORKS TEL: HARROGATE (0423) 60058 HG1 5JG

SCARBOROUGH T.V. TRADERS CO. LTD.
Offer you quality Colour T.V. at competitive prices with quantity discounts All major makes available - including: PHILIPS G8-GEC SOLID STATEBUSH 2 CHIP - PYE 731 - THORN VARICAP (6 Buttons) - DECCA 30 THORN 8000 17" 8500 19" etc.

Delivery arranged
GENUINE CHANGE OVER SETS SPECIAL OFFERS £100 BUYS 10 of PYE 205 10 of GEC HYBRID 10 of TELPRO THIS MONTHS SPECIAL10 BUSH FOR £150

YOU HAVE TRIED THE REST NOW TRY THE BEST

85, Columbus Ravine, Scarborough.
North Yorkshire YO12 70U. 0723-68087.
1 hour away from A1/A64 Junction.

FMOSN coverive

Also available; BUSH6437,6438 \& 6100 (SingleChassis). GEC 2202. 2206 \& Plastic Cabinet ITT505.610\& 700 Philips G9\& G8(Sloping Button). 20"JVC 7825; THORN1500 Mono-£8.each and THORN1600 Mono-£10.each.

TV LINE OUTPUT TRANSFORMERS

FAST RETURN OF POST SERVICE

RANK BUSH MUAPHY Z146 A640 A774 A816 A792 A793 A823 A823b A823av colour			INDESIT	
			KB-ITT VC200 VC205 VC20 CVC5 CVC7 CVC8 CVC9 colour CVC20 CVC30 CVC32 series colour	
DECCA 1700200120202401 MS2000 MS2400 240424202424 mono CS1730 1733 '30' series BRADFORD colour CS1830 183580100 series colour				
			PHILIPS 170 series dual std mono 210300 series mono	
REWIND SERVICE available for most continental types i.e Cuba, Skantic, Luxor, Korting, Tyne, Berry, K80 f12. Old Lopt required.				
			PYE 169-173-569-368 EKCO RV 305769 725-741 chassis	
THORN 1600			WALTHAM 125	
G.E.C. 2000 to 2064 dual std mono 2047 to 2105 DUAL STD hybrid colour SINGLE STD hybrid colour		WINDINGS RANK BUSH MURPHY Colour hybrid quadrupler type T20a 12227192722 Pry \& Sec $\mathbf{£ 6 . 0 0}$ 2718 series primary $\mathbf{5 6 . 0 0}$		
PRICES INCLUDE P. \& P. \& 15\% VAT		Z718 series EHT overwind $\mathbf{£ 7 . 0 0}$ULTRA THORN16901691 EHT overwind.......................001590 overwind.......................................		
£9.00		1615 winding ...50		
		PHILIPS G6 EHT (exchange basis oniy) $£ 8.00$ G6 primary 65.00		
	ONO $£ 8.0$			
All lopts and windings are new and guarantee				
Open Mon.-Fri. 9 to 5.30 pm Allow 1-2 days for delivery. S.A.E. all enquiries				
80 Merton High Street London SW19 1 BE		et	Barclaycard and Accesswelcome $1-5403955$	For orders placed at the post office Trens cash 5064856

ABE YOU

USING YOUR SPARE TIME PROFITABLY?

If not, you're losing money. Money that you could be making by selling used colour televisions from home in the evenings. In fact, provided you stan CASH INCOME with actly how to operate, you can easily earn a substantial publication 'How to Deal Sugg capilly in Unique publication "How to Deal Successfully in Used Colour Televisions" enables you to follow in the footsteps of many experts who have a great deal of combined experience in this lucrative home business, and who have 'pooled' thei knowledge to help you. After all, to follow the advice of someone who has travelled the ground before you, is to be given the best possible start. And the hundreds of valuable trade secrets, hints, tips and suggestions in the guide show exactly how anyone of average intelligence can succeed immediately.

Every aspect. from securing the first television right through to rapid expansion of sales, is covered with the detailed knowledge of experts to ensure certain success. Indexed information on almost all makes of television is presented in clear tabular form, describing pertormance, reliability, price and service. In particular, the tips on expanding the business are very practical, and are aimost automatic when put into practice. Pages of unique advice on advertising ensure that maximum sales are secured, and sources of supply are described in detail - for both televisions and new/used spares. Monochrome sets are also covered, as are 'invisible" cabinet repairs. Plus FREE on-going advice and FREE regular updating service.

You can start tomorrow - but you'll need our guide. The latest big illustrated edition is out now, and costs just $\mathbf{£ 4 . 9 5}$ - a small price to pay for financial independence!

ORDER TODAY FROM

globus industries ltd., unit 1b. DARLEY abbey mills. derby

To: Olobus Induatios Led., Unit 18, Dentoy Abboy Mums, Derby
Please send by return post "How to Deal Successfully in Used Colour Televisions"
enclose cheque/p.o. for $\mathbf{£ 4 . 9 5}$.
NAME
ADDRESS

TOP TWENTY T.V. SPARES

1. Philips G8 LOPTX (genuine Philips)
$\mathbf{£ 7 . 5 0}$
2. Decca 30 Series LOPTX (genuine Decca) $\mathbf{£ 7 . 0 0}$
3. Decca 100 Series LOPTX (genuine Decca)
4. ITT CVC 25/30/32 LOPTX (genuine ITT) £6.50
5. Pye $713 / 725 / 731$ Vis Gain Module $£ 7.00$
(replaces expensive 212-27327)
6. $5 \times$ Universal Aerial Socket Kit £6.50
(replaces most UK and Continental skts)
7. $10 \times \mathrm{BU} 208$
2.50
8. $10 \times B U 208 \mathrm{~A}$
9. $10 \times$ BT106
10. Pye 725/731 EHT Tray
11. Decca 1730/1830 Doubler
12. Decca 80 Series EHT Tray
13. GEC 2040 (Hybrid) EHT Tray
14. Thorn 1500 (3 Stick) EHT Tray
15. Thorn 1500 (5 Stick) EHT Tray
16. Thorn 8000 Doubler
17. Thorn 1400 EHT Tray
18. Thorn 3000/3500 EHT Tray
19. Philips G9 EHT Tray
20. ITT Universal EHT Tray

CENTREVISION

NO. 1 IN WALES

9000 Sq Ft 2000+CTV
\star MITSUBISHI CTV £22
\star KORTING 22-26 CTV £10 + VAT
\star HITACHI CTV FROM $£ 28$ + VAT

* THORN $900020^{\prime \prime}$ £60 + VAT
\star RANK Z719-Z718-T20 VARIOUS PRICES
\star TOP MAKES IN GRADED STOCK
\star GEC SOLID STATE FROM £28 + VAT
\star THE TRADE SAY THE BEST QUALITY SETS ON THE MARKET TODAY
\star BULK TERMS TO OTHER
WHOLESALERS

> ALSO VIDEO IN STOCK DONT DELAY PHONE TODAY $0222-44754$ CENTREVISION HOUSE, SLOPER ROAD, CARDIFF CF1 8AB.

MAIL ORDER ADVERTISING

British Code of Advertising Practice

Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requires advertisers to fulfill orders within 28 days, unless a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please retain proof of postage/despatch, as this may be needed.

Mail Order Protection Scheme
If you order goods from Mail Order advertisements in this magazine and pay by post in advance of delivery, Television will consider you for compensation if the Advertiser should become insolvent or bankrupt, provided:
(1) You have not received the goods or had your money returned; and
(2) You write to the Publisher of Television summarising the situation not earlier than 28 days from the day you sent your order and not later than two months from that day.
Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.

We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiser has been declared bankrupt or insolvent.

This guarantee covers only advance payment sent in direct response to an advertisement in this magazine not, for example, payment made in response to catalogues etc., received as a result of answering such advertisements. Classified advertisements are excluded.

THE NO. 1 SOURCE IN THE SOUTH
GOOD STOCKS OF MODERN COLOUR NOW AVAILABLE BRAND NEW TV, VIDEO AND AUDIO PHONE FOR DETAILS TeleTraders
ST. LEONARDS WAREHOUSE
ST. LEONARDS ROAD, NEWTON ABBOT, DEVON Telephone: (0626) 60154

COLOUR TV SETS

Philips G8, Pye 222, Decca 30, Pye Chelsea, Thorn 3500/8500, ITT and JAP.

Working sets from $£ 20$ (+ VAT)
Wide range of non-workers and monos
Spare panels and rebuilt tubes available.
SOUTHBRIDGE TV CENTRE
20 Southbridge Rd., Croydon, Surrey. Tel: 01-771 3535 or 01-681' 7848.

M. W. ELECTRICAL
 BROOK PARK AVENUE - Off MARINE ROAD - PRESTATYN
 '"WE DO NOT BOOST TUBES"
 COLOUR TV's
 COMPLETE $£ \mathbf{£ 1 5 . 0 0}$ TRADE WORKERS $£ \mathbf{~} 25.00$
 Minimum 10
 G-8 DECCA - THORN 3000
 (SPARE PANELS \& TUNERS AVAILABLE) REDUCTIONS ON QUANTITY
 TEL: PRESTATYN (07456) 89849/89970

SOUTHERN IRELAND DEALERS

Ferguson 3C02-3C27, Bush 5022, Philips G8, Ex-rental colour sets working from $£ 95$, black and white $£ 25$. Cabinet expertly polished. Delivery arranged.

COLOURRAMA LTD.,
Indus House, Kyemore Road, Dublin 10. Opp. Fiat Ireland.

Telephone Orders: Dublin 213492 before 10.30 a.m.

DISPLAY ELECTRONICS

GOLD LABEL COLOUR TUBES

2 YEAR GUARANTEE

\qquad
90° up to $22^{\prime \prime}$.533 E36
90° up to $26^{\prime \prime}$.................................... $£ 39$
The above prices are for standard 38mm Delta Gun Types.
Add $£ 2$ Gun surcharge for 20AX Types. Other in-line \& P.I.L. Types, prices on application.

GOLD LABEL MONO TUBES 2 Year guarantee

\qquad
$23^{\prime \prime} / 24^{\prime \prime}$ $f 12$

GREEN LABEL COLOUR TUBES
 12 MONTHS GUARANTEE

Green Label Prices apply only to standard 38 mm Delta Gun Types. They will be of particular interest to customers refurbishing ex-rental sets.

BUDGET CORNER

Buy any 5 mixed types Cash ' n Collect Take 20% discount. The mix can include Green Label Tubes if required.

PRICES EXCLUDE V.A.T.

CALLERS WELCOME

Late night Thursdays until 8 p.m. Saturdays until Midday
N.B. Customers intending to collect orders are requested to telephone in advance:- even popular types may be out of stock for short periods.

UNIT 1

SWAN WHARF
WATERLOO ROAD
UXBRIDGE
MIDDLESEX
Telephone: UXBRIDGE 55800

TELEVISION TUBE SHOP LTD

BRAND NEW TUBES AT CUT PRICES

A31-19W/20W19.95	230DB4CT468..........31.00
A31-120W/300W17.95	240DB4/240AB4A22.00
A31-410/510W17.95	CT507 equiv 21.95
A34-100W/510W 18.50	310DGB4/DMB4......23.00
A34-514W24.25	310EUB419.95
A38-160W/170W17.50	310EUB4A 18.50
A44-120W/R 25.00	310EYB4 18.75
A50-120W/R 19.00	310GNB4A...................31.00
A61-120W/R 21.00	310HCB431.00
9AGP4................... 221.82	340AB4 22.50
190AB4/C4 23.00	340AYB4.................30.00
	340AXB4.................30.00
Some Rebuilt	340RB4/CB4.............26.00
8 European Types	340AHB426.00
Available from $£ 14.00+V A T £ 2.10$	RIGONDA 6 "..........14.00

COLOUR TUBES			
(NEW \& MULLARD/THORN COLOREX)*			
VARP22	£62.50	A56-120X	
330 AB 22	73.50	A56-410X	
A44-271X	. 60.00	A56-500X/510X	.63.00
A47-342X	61.00	A63-120X	.63.00
A47-343X	61.00	A66-120X	
A49-191X	53.00	A66-140X/410X	70.50
A51-161X	. 70.00	A66-500X/510X	65.00
A51-220X	. 55.00	A67-120X	65.00
A51-500X/510X	.64.50	A67-140X/200X	69.50
A51-570X	73.00	A67-150X	75.0

Ofd Bulb Required for 110° Colorex ADD 15\% VAT TO ALL THE ABOVE PRICES.
ALL TUBES TESTED BEFORE SALE \& FULLY GUARANTEED TELEVISION TUBE SHOP LTD
52 BATTERSEA BRIDGE RD., LONDON, SW11.
Tel. 228 6859/223 5088 CARRIAGE: Mono £3, Colour $£ 10$.

The Advertising Standards Authority If an advertisement is wrong, we're here to put it right.

ASA Ltd. Brook House, tomington Place, London WCIE 7 HN .

If you see an advertisement in the press, in print, on posters or a cinema commercial which makes you angry, write to us at the address below. (TV and radio commercials are dealt with by the I.B.A.)

MANTEL

MANCHESTERS NUMBER ONE SOURCE IN EX-RENTAL TV'S

SPECIAL COLOUR OFFER

THORN
10 for $\mathbf{£ 1 2 5}$
PHILIPS G8 BUSH GEC 6 for $£ 90$ 6 for $£ 80$ 6 for $£ 60$ DECCA 6 for $£ 60$

WORKING SETS AVAILABLE - MIN 6

THORN	$\mathbf{£ 2 5}$ each
PHILIPS	$\mathbf{£ 3 0}$ each
BUSH	$\mathbf{£ 2 5}$ each
GEC	$\mathbf{£ 2 2}$ each
DECCA	$\mathbf{£ 2 5}$ each
MONO	$\mathbf{£ 1 0}$ each

Repolished Cabinets available P.O.R.
Many other makes incl. JAP, GRUNDIG etc Ring for quote. Export enquiries welcome. Ex-equipment Tubes/Panels.
Callers welcome
Tel. 061-861 8501
419 BARLOWMOOR ROAD, CHORLTON, MANCHESTER M21 2ER.

COLOUR SETS GALORE

Hundreds in Stock.
From $£ 20$. Guaranteed Complete.
Mono's and non-complete sets from $£ 3$.
Most makes available.
QUALITY COLOUR TUBES
Reconditioned and used tubes.
From $£ 10$ Guaranteed.
Don't delay, ring today.
ALPHA TUBES (DUNSTABLE)
53 Lowther Road, Dunstable.
Tel. (0582) 68934
TRADE

A.B.C. ELECTRONICS

Rear of 20, HANKINSON ROAD, WINTON, BOURNEMOUTH.

TEL: 519542
TRADE TV's BEST PRICES
Colour From $\mathbf{£ 1 2 . 0 0}+$ VAT B\&W From £2.00 + VAT

DISCOUNT ON QUANTITIES
ALL MAKES - ALL SIZES - ALL COMPLETE
CALL IN OR RING FOR COMPETITIVE QUOTE FULLY REFURBISHED SETS AVAILABLE + DELIVERY SERVICE

LONDON'S LARGEST TELEVISION WHOLESALER... with over $4 \frac{1}{2}$ thousand sq. feet
"TELEMANN""
8-10 RHODA STREET,
(Off Bethnal Green Road)
LONDON E.2. FREE CAR PARK TEL: 01-739 2707
ALL MAKES IN STOCK AND GUARANTEED
PYE $22^{\prime \prime}$ COLOUR FROM $\mathbf{~} 7.50$
PHILIPS $22^{\prime \prime}$ G8 (Teak cabinet) PARCEL OF TEN $£ 12$ MONO DUAL STANDARD $£ 2$ - SINGLE STANDARD f5

FREE DELIVERY TO THE LONDON AREA! TELEPHONE 01-739 2707 - NOW!

HIGH GAIN
AEOSTAL
B45 H/G UHF Television Tunable over the complete UHF band. Gain above 20dB, noise 2.8 dBs .

B14-Band 3 VHF Television Tunable over the complete Band 3 (Channels (E) 5 to 13). Also covers Aircraft \& 2 meter Amateur Bands. Gain above 2 BdBs . Noise 2.BdB PRICE each £8.70.

AERIAL AMPLIFIERS
Aerial amplifiers can produce remarkable improvement on the picture and sound in fringe or difficult areas
B45 - For Mono or Colour this is tunable over complete UHF television band.
B11 - For stereo or standard VHF/FM radio.
B12 - for VHF television band 1 \& 3. All amplifiers are complete and ready to use Battery type.PP3 or BV to 18 V DC next to the set type fitting.
PRICES £6.70 each.

AERIAL SPLITTERS

2 way T-TYPE $£ 2.70$ each
Goods despatched on receipt of order
All Prices Fully inclusive, P \& P per Order 30p. S.A.E. for Leaflets. Access Cards
ELECTRONIC MAILORDER LTD
62 Bridge St, Ramsbottom, via Bury, Lancs. BLO 9AǴW Tel Rams (070 682) 3036 .

N.G.T. COLOUR TUBES

First Independent Rebuilder with
B.S.I. CERTIFICATION
(Certificate No. 004)
2 year guarantee: 4 year option
All Colour Tubes are debanded, high temperature pumped and rebanded using new adhesives and new tension band.
$19^{\prime \prime} £ 30,20^{\prime \prime} £ 32,22^{\prime \prime} £ 33$, and $26^{\prime \prime} £ 38$.
No exchange tube required on delta types.
N.G.t. ELECTRONICS LTD.,
120. SELHURST ROAD. LONDON S.E. 25

Phone: 01-771 3535.
20 years experience in talevision tube rebuilding. addVAT at 15%

EMO - EUROSONIC - GRUNDIG - TELETON + ALL BRITISH MAKES ETC., ETC. - all Spares readily available

IMMEDIATE CREDIT AVAILABLE-TRADE ONLY

If you are a trader simply phone for the part you require and we will send it - no quibble - no hold up for status check. Satisfy us over the phone that you are a trader and we will supply almost any TV component by return "off the shelf". e.g. LOPTX-EHT trays - droppers - OSC coils - switches-cans

- smoothers - I.C.'s, etc. etc.

YOU CAN BE 95\% SURE WE CAN SUPPLY ANY TV COMPONENT BY RETURN
IF YOU NEED SPARES FAST - RING NOW!
access ano barclaycaro accepteo
Apopises to u... onlx.

THE TELECENTRE, WORCESTER ST., WOLVERHAMPTON (0902) 773122

"TUBE REPLACEMENTS" OFFER
 SPECIAL TRIAL PRICES

''WELLVIEW'" EXCHANGE COLOUR	
A44-271X	$\mathbf{£ 2 4}$
A47-342X	$\mathbf{£ 2 4}$
A47-343X	$\mathbf{£ 2 6}$
A49-120X	$\mathbf{£ 2 4}$
A51-110X	$\mathbf{£ 2 4}$
A51-110LF	$\mathbf{£ 2 6}$
A55-14X	$\mathbf{£ 2 8}$
A56-120X	$\mathbf{£ 2 8}$
A63-120X	$\mathbf{£ 3 3}$
A66-120X	$\mathbf{£ 3 3}$
A66-140X	$\mathbf{£ 3 3}$
A67-120X	$\mathbf{£ 3 3}$
A67-150X	$\mathbf{£ 3 3}$

COLOUR SETS

Complete G8's and Pye CT200's $£ 20$ VAT.
Others from $£ 10$

ALSO YOUR VALVE SUPPLIER

NEW AND BOXED
(inclusive of VAT)

DY802 $=74 \mathrm{p}$
EF $184=64 \mathrm{p}$
PCL82 $=78 \mathrm{p}$
PCL
PFL $200=$
P1
P1
$\mathrm{PY} 800=70 \mathrm{p}$
ECC
$\mathrm{ECC} 82=64 \mathrm{p}$ PCL84 $=92 \mathrm{p}$ PCL $86=97 \mathrm{p}$ PLL508=f1.92

NEWSFLASH
PL509-19
Postage and Packing 10p per valve. All orders over $£ 10$ Free of charge.

Camping - Self sufficiency - Emergencies Be prepared!
Fantastic 200 watt square wave inverter 12 v input $200-240 \mathrm{v}$ AC output tested but no guarantee $£ \mathbf{£ 2}$ + £3 VAT, p\&p $£ 3$
24 v transistor fluorescent ballast units will run $2 \times 4 \mathrm{ft}$ tubes and draw under 2 amps (Philips) $\mathbf{f 5}$ each + 75p VAT. p\&p 70.

Dynamo torches complete with spare bulb. You need never buy torch batteries again. 2 for $\mathbf{5 5}$ inc. VAT, p\&p 50p

Allow up to 14 days for delivery.

TUBE REPLACEMENTS

Unit No. 1, Monmouth St. Bridgwater, Somerset.
Tel. 0278 425690-722816

EX RENTAL C.T.V.'s \& REGUN TUBES

RBM, THORN, DECCA, PYE GEC, GRUNDIG, ITT, PHILIPS G8, G9, G11, JAPANESE From $£ 10$
Also all modules from $£ 4$ untested. STARLITE ELECTRONICS, 80 Como St., Romford, Essex. Telephone Romford 752537 London Code 3.

Tel: Northwood 27019	01.8452036
RETACH LTD. Rear 78 High St, Nortiwood, Middx	
COLOUR SET RANK \& THORN............ from E20	
COLOUR TUBES REB	
	POWER SUPPLY................56
TME BASEf11	CONVERGENCE................ 56
	TUNERS55
All PRICE + VAT	f2 POST \& PACKING

RANK BUSH MURPHY
 TRANSFORMERS
 LINE OUTPUT TRANSFORMERS 2718 (T703A, T706A)

(1) New (Complete) £20.50
(2) Refurbished (Complete) $£ 11.00$ Old Lopt Required
(3) Less Focus Module and Rectifier
$\mathbf{f 1 0 . 5 0}$
2718 SPARES (T703A, T706A)
Pri. - $£ 5.50$, Sec. $-£ 6.00$,
Rectifier - $£ 3.00$, Lead - $£ 2.50$
T20, T22 (T705A) $£ 9.00$
$\mathbf{T 2 6 ~ (T 7 0 5 B) ~} \mathbf{f 9 . 5 0}$
Switch-mode Transformers T114 A/B

Genuine RBM Units Prompt Postal Service. Add 15% V.A.T. to all Prices. DISCOUNT For QUANTITIES
WOODSDALE COMPONENTS MR SKEHAN
34 Field End Road, Eastcote, Pinner, Middlesex HA5 20T. 01-868 5580 or 01-782 0007
Agents Office, callers by appointment only.

[^3]
EERUICE PGGES

(minimum 12 words), box number 60p extra. All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television Room 2612, IPC Magazines Limited, Kings Reach Tower, Stamford Street, London SE1 9LS. (Telephone 01-261 5846).

COLOUR TV PANELS Fully Tested \& Working							
	IF	CDA			Line	Frame	
GEC 2040	3.50	CDA 3.50	Decoder	L7B 5.00	Board	Board	Power
DECCA 13/30	3.00	-	5.00	5.00	-	-	4.00
BUSH 'A'	2.00	-	5.00	5.00	2.50	-	2.00
THORN 8-81"	-	.	7.00	5.00	-		3.00
PYE 205	3.00	3.50	5.00	8.00	-	2.00	-
THORN 3+3IK	3.00	-	5.00	8.00	-	$\underline{-}$	10.00
G8	6.00	-	8.00	5.00	15.00	-	5.00
BUSH twin ch	der 10				fitted w		
\& packing: 1 panel £1.50; 2 panels $£ 2.25 ; 3$ panels E .00 etc. brand new							
		Δ					
Viaduct Mills, Milnsbridge, Huddersfield. Tel: 0484-643273							
Viaduct Mills, Milnsbridge, Huddersfield. Tel: 0484-643273Callers by appointment only.							

SOLID STATE GRUNDIG, Nordmende, reconditioned panels. Also complete sets circuits. 0785 814643.

CASED ISOLATION TRANSFORMERS suitable for most TV work $£ 8.00+£ 2.85$. Good working test equipment P.S.U.'s. SAE lists. S.H.E., 5 St Joseph's Park, Ballycruttle, Downpatrick BT30 7EN.

IRISH T.V. DEALERS Trade Notice

We can supply in good working order:
Bush, Philips, Pye, Decca, Colour TVs all with VHF/UHF tuners.
Also Bush and Pye mono.
Televerters, aerials etc. Call:
TELE SPARES LTD,
7 Walkinstown Road, Dublin 12. Tel. 520485.

RANK, BUSH, MURPHY TV PANELS
Repair/sale service by ex RR1 experts. Same day return with 3 months guarantee Genuine RBM technology at your service. Monday to Saturday 9am to 7 pm .
T.K. PANELS SERVICE

Tet: (0438) 81567.
31 Leaves Spring, Stevenage, Herts.

JABCO LOPT TESTER

 This inctrument for detecting shorted turms on Line O.P. transiomers is now lued in hundreds of sent Malne operatad. No controls to set up.Designed around two I.C.s. glving constant stable resutts with a straightionward indication of the Lopt under teet by Red \& Green Leds.
Whit instruction bookdet on teesting many common Lopts in stou including jellypotes. E1A.00 inctuatve. C.W.O., dellvery 3 deys f 18 oversees post by 800 . $\mathbf{f} 1 \mathrm{a} 1$ armel

> JiowAKER \& CO.
> 1 Odd thomehmon hoed yo
> Td biphon exests.
> Aumbinion comata:
> cocer Tis 2.004

EX RENTAL T.V.'s

Colour from $£ 10$ Complete Working from $\mathbf{£ 2 5}$ (Singles)

Also Quantity Rates Delivery Possible

SOUTH LONDON TELEVISION 45 GRIFFITHS ROAD, SW19.

TEL: 01-543 5437

TELEVISION TUNER REPAIRS ALL TYPES

BRITISH, EUROPEAN JAPANESE ETC.

MEN-TU ELECTRONICS LTD.

 SALTERNS LANE, FAREHAM, HANTS. TEL: 0329-235116EX-EQUIPMENT A823 PANELS, complete, untested. Dec (2 chip) £6, Field £6, I.F. £5, Power £3, Con £3, Tuners £2.50, Tube Base $£ 1.50$, Working Lopt $£ 3$. £1.75 p\&p. C.W.O. to: E. Skingsley, 346 Blackpool Road, Preston, Lancs.

> COLOUR T.V.s CLEARANCE SALE PHILIPS G8 COMPLETE 22"FROM £25 26" £55

DISCOUNT FOR

 BULK BUYERSTEL: 9651230 \& 9613997 SMITH ELECTRONICS
43-43A, PARK PARADE, HARLESDEN, LONDON N.W. 10.

\section*{CLEARANCE SALE
 LARGE OUANTITY OF GOOD CLASS
 COLOUR TELEVISIONS BUSH, PYE, GEC, THORN, PHILIPS ETC. Excellent Cabinet Condition.
 Genuine Change Over TV's and Repossessions.
 | | |
| :---: | :---: |
| | |

We export large quantities of TV's weekly. Can we help you? Discount on Quantity Orders.
OVER 1,000 MONO TV's IN STOCK FROM $£ 3$.
100's colour tubes suitable for reconditioning. Working colour TV's to order ie.
Bush $20^{\prime \prime} / 22^{\prime \prime}$ 21.C. excellent picture, ready to sell. Only $£ 39$. CALL AND SEE OUR SELECTION WHITE GOODS
All types of Washing machines, Vacs, Fridges, Cookers, etc. Hoover Auto's, Servis, Hotpoint, Hoover Uprights, Vacs. 500 always in stock. Fully reconditioned Hoover Twin Tubs and Upright Vacs, all models. Phone for details. PAY US A VISIT AND YOU WILL NOT BE DISAPPOINTED.
N.W. ELECTRONICS

BOLINGBROOKE STREET (PICKFORD BUILDINGS), BRADFORD 5. 3 minutes from Motorways. Telephone $0484 \mathbf{7 1 4 4 1 3 .}$

CAMPBELL ELECTRONICS LTD.

Distributors of specialist spares to radio and television service depts.
We stock semiconductors, I/Cs, special T.V. and audio spares, service aids, rebuilt CRTs etc.
Fast off the shelf delivery of stock items. Send S.A.E. or telephone for full catalogue and price list.

CAMPBELL ELECTRONICS LTD.,
Unit 5, Heath Hill Estate,
Dawley, Telford, Shropshire.
Telephone Telford (0952) 502422.

EAST ANGLIA BARRY TV SERVICES

Good quality working colour televisions (from £35 plus VAT) straight from our retail shelves, (with good tubes \& cabinets). Available at all times delivery available anywhere.

Contact John, Dave or Steve on Cambridge 69215 or Ely 61462
Your Satisfaction Is Our Concern.

SATELLITE TV EQUIPMENT

ARE YOU INTERESTEO BUT PUT OFF BY THE PRICE?
By building yourself, a complete system, excluding dish can cost not much over $£ 200$. 1 am your 'one stop' 4GHz TVRO component supplier. If you've ever built an aerial amplifier you can cope with the electronics at 4 GHz . Sae data, TVDX lists. Overseas enquiries welcome.
H. Cocks,

Cripps Corner,
Robertsbridge, Sussex TN32 5RY.
Tel: 058083-317.

TELEVISION

Trade Supplies of Good Quality Colour \& Mono TV's. Most Makes available, suitable for Sale or Re-Rent.
GENERAL UNION STREE FACTORS (0302)4958368416
GOOD MOTORWAY ACCESS

ABE YOU OVERSTOCKED?

Turn your surplus stocks into cash f500,000 AVAILABLE
for any surplus electrical stocks ie. TV's, Video's, Washers etc.
Phone in strictest confidence: Mr R. Walker, Brighouse (0484) 714413

TRADE COLOUR TV's

MOST MAKES \& SIZES
FROM £10. DISCOUNTS FOR
$5+\& 10+$. MON-SUNDAY.
TEL: OWER 318 (southampton)

WANTED

WANTED - Part time TV/Video Engineer. $£ 5$ per hour minimum. Phone Ray Wooster, 01-422 8032.

WANTED VHS Video Recorders working or not. Good prices paid. Telephone (07975) 457.

WANTED

DECCA 80

and 100 CHASSIS

including lelefunken using them)

Must be good cabinet and complete. First batch about 50 or less.

Details to: Ms. Bottomky, 11 Leeds Road, Hipperholme, Hallfax. Tel. Halifax (0422) 202979.

FINANCIAL

BUSINESS FINANCE. All purposes. Tel. (070682) 7166/(0706) 623404. Ellis Swain, Lodge Mill, Ramsbottom.

cOURSES

CONQUER THE CHIP . . . Master modern electronics the PRACTICAL way by SEEING and DOING in your own home. Write for your free colour brochure now to British National Radio \& Electronics School, Dept. C4. Reading, Berks RGl 1BR.

STEVE BEECHING will be holding another 2 day training Course, on 22 nd and 23rd Jan 1983. If you would like details, please ring or send a letter to:Newark Video Centre, 108 London Road, New Balderton, Newark, Notts. Tel. Newark 71475.

FULL-TIME AND EVENING COURSES IN

- Microprocessor Computers
- Video Cassette Recorders
- Colour TV.

Diploma - Higher Diploma or City and Guilds Qualifications.
Apply:
Registrar,
Reeswood College,
299A Edgware Road,
London W2 1BB.
01-402 9985.
Courses commence 19th January 1983 and 16th September 1983.

PERSONAL

BUSINESS OPPORTUNITY

Can anyone devise a small closed circuit T.V. system for security uses in the home and which could be manufactured and sold for less than those available at present? (Models now on market are from £250 upwards).
If it can be done for much less please contact with view to possible business arrangement.
Mr. D. Minnis, 23 York Road, Edgbaston, Birmingham
B16 9HX.
0214544162

MISCELLANEOUS

BURGLAR ALARM EQUIPMENT. Latest discount catalogue out now. Phone C.W.A.S. ALARM 0274 682674

VETERAN \& VINTAGE

> PLEASE MENTION TELEVISION WHEN REPLYING TO ADVERTISEMENTS

EERUICE PAEES

FOR SALE

For a good selection of used TV sets in good cabinets . . .

* Large stock of working sets. * U.K. Delivery Service * Stands, Aerials, Tubes and Panels.

PETER CAMPION

is now in business at
UNIT 40, HARTLEBURY TRADING ESTATE, NR. KIDDERMINSTER, WORCS. DY10 4JB Tel: Hartlebury 250161 Telex: 334155 MTV G

No connection with MTV Trade Services or Campion Thompson Lid

When replying to Television Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertis ers in processing and despatching orders with the minimum of delay.

FOR SALE CONTD.

BUSH $\mathbf{2 4} \mathbf{4}^{\prime \prime} / \mathbf{2 0 ^ { \prime \prime }}$ S/S MONO'S. Good working $£ 10$ each, minmum ten. C.O.D. Ready to sell. (070682) 7166.
T.V. CAMERAS $\mathbf{\varepsilon 4 0}$, Video Tape Recorders Ampex and Shibaden $£ 40$. Ring Leeds 496048 after 7.00 p.m.
SPECIAL CLEARANCE
Colour T.Vs good working order $£ 25$ each, any quantities, most makes and sizes available. Complete non-workers £10 each, Mono sets $£ 3$ each. Spare parts available.

Tel. (0203) 714213

REGUNNED A1 TUBES $22^{\prime \prime} £ 25.00$. Mono $£ 11$. PIL in stock. Ring first 021-773 8181, seven days till 8 pm .
VCR Philips N1500 with new heads $\boldsymbol{5 9 5}$
SCOPE Solatron CD1400 double beam $15 \mathrm{MHz} \mathbf{8 0}$
SIG GEN Eagle TE 1900 0-200KHZ $£ 15$
COLOUR TV 25" Decca CTV25 regunned tube but
low e.h.t. E 25
Goodman,
01-874 8779 after 5 pm
Buyer collects.

SERVICE SHEETS

TECHNICAL INFORMATION SERVICE

SERVICE SHEETS: full size by return - radio, mono, etc. $£ 2+$ large sae. CTVs \& Music Centres from $£ 3$.
SERVICE MANUALS: Sole suppliers most obsolete equipment. Everything stocked to latest releases. Fantastic stocks CTVs/Videos. E.g. A823 £6.50; Autovox (early) £6.50. Tyne $5000 / 6000$ Series $£ 7.50$.
REPAIR MANUALS: Complete sets - 6 McCourt $£ 35$; 6 Tunbridge $£ 35$; latest mono portables only $£ 6.50 .5$ dif early VHS/Philips types (both $1500+1700 / 2$) 10.50 .
CIRCUIT DIAGRAM COLLECTIONS IN HUGE BINDERS: British CTV (3) £42.50; Foreign CTV (2) £27; Early VHS/Philips video £15;
Mono TV standard + portables $£ 29$.
REPAIR SYSTEMS (REPAIR DATA, CIRCUITS, ETC): Video 1; Foreign CTV £40; Mono TV, $£ 24.50$.
SAVE $£ 12$ - BRTISH CTV ONLY $\mathbf{£ 6 0}$ - LIMITED TIME; Complete integrated TV Repair System $£ 160$ Ouotations/free 50p magazine/price lists/etc for large sae.
$£ 2$ plus $8^{\prime \prime} \times 10^{\prime \prime}$ S.A.E. for service sheet and manual catalogues with $£ 4$ vouchers.
PHONE 0698883334 FOR FAST QUOTES - Open 4-6 daily, 11-1 weekends.
T.I.S., 76 CHURCH ST., LARKHALL, LANARKSHIRE ML9 1HE.

SANDHURST PUBLICATIONS

Television Service Sheet Specialists Workshop Manuals, large selection of Japanese and European TV Sheets. Callers $5.30-7.00 \mathrm{pm}$. Upper Floor. Send S.A.E. for Catalogue and Enquiries: 49C Yorktown Road,
Sandhurst, Camberley, Surrey GU17 7AG.

BELL'S TELEVISION SERVICES for service sheets on Radio, TV, etc. $£ 1.25$ plus SAE. Colour TV Service Manuals on request. SAE with enquiries to B.T.S., 190 Kings Road, Harrogate, N. Yorkshire. Tel. (0423) 55885.

SERVICES

FREELANCE SERVICE ENGINEER. Video, colour experience. Own w/shop and equipment. Cardkan, Dyfed area. Mr. Lawrence. 0239-614282.

BOOKS \& PUBLICATIONS

ANY PUBLISHED, full-sized service sheet by return $\mathfrak{£ 2 + \text { L.s.a.e. CTV/Music centres } £ 3 \text { . Repair data with }}$ all circuits, layouts, etc. Your named TV or Video £8.50. Free 50 p mag. all orders, queries: TIS (TV), 76 Churches, Larkhall, Lanarkshire.

ORDER FORM please write in block capitals
Please insert the advertisement below in the next available issue of Television for insertions. I enclose Cheque/P.O. for \mathbf{E}
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd and made payable to Television)

NAME

TELEVISION

ADDRESS
Ciaselfied Advertisemont Dept, Room 2612 King's Reach Tower, Stamford Street,
London SE1 9Ls. Tolephone 01-281 5846
Rate
$33 p$ per word, minimum 12 words. Box No. 60p extra
Company registered in England. Registered No. 53626. Registered Office: King s Reach Tower, Stamford Street. London SE1 9LS.

[^0]: Goods available if in stock immediately over shop counter (Mail order ${ }^{\text {r }}$

[^1]: U.K. Post Paid. Export orders welcome, please deduct V.A.T. and include an additional E 5.00 for Overseas carriage. Mail Order only. Callers by appointorder please Large S.A.E. for technical leaflets of complete range.
 B. K. ELECTRONICS, Dept. 'TT',

 37 Whitehouse Meadows, Eastwood, Loigh-on-Soa, Essex SS9 5TY.

 Tel: (0702) 527572.

[^2]: Published on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by The Riverside Press Ltd., Thanet Way, Whitstable, Kent. Distributed by IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Sole Agents for Australia and New Zealand - Gordon and Gotch (A/sia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland £10, Overseas $£ 11$ per annum payable to IPC Services, Oakfield House, Perrymount Road, Haywards Heath, Sussex. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever.

[^3]: TEST EQUIPMENT
 Crossh. Pattern Generators
 Crosshatch \& 4 patterns
 As above but with Greyscale
 Prices include P\&P and VAT. Also available: PAL COLOUR BAR GENERATOR CAPACITANCE METER TRANSISTOR TESTER
 S.A.E. for prices and full details

 The above items are not kits
 C.M.J. Electronics (C. L. Jervis)

 52/54 Worcester St.,Wolverhampton WV2 4LL

 - Tel. (O902) 23916

