$N \circ V=M=\exists=1=E=$, man TELEEUISION

g\#ivalic whinsioi mile uis WH APIIH or 93 F.UCh iapoit • 'Gi Ghats Fogus or poindialas
Qugh GizGMs ox pre myinil gws

PHD COMPONENTS RADIO \& TV COMPONENT DISTRIBUTORS UNIT 7 CENTENARY ESTATE JEFFRIES RD ENFIELD MIDDX SHOP NOW OPEN TELEX 261295					ALL COMPONENTS OFFERED SUBJECT TO AVAILABILITY. WE RESERVE THE RIGHT TO SUBSTITUTE REPLACEMENTS SHOULD THE ORIGINAL PART BE OUT OF STOCK OR UNAVAILABLE! PLEASE ADD 50p per parcel post and packing. Allow 5 days for delivery.		
Semiconductors		AU113	300	${ }^{\text {BF273 }}$	0.25	${ }^{\text {TBA3960 }}$ 2.00	eht multiplers
	${ }_{0}^{0.16}$	${ }_{\text {AY }}^{\text {Al } 103}$	3.00 3.00	${ }_{\substack{85274 \\ 8536}}^{\text {83 }}$	O.50	TDA440 TN76001N 2.50 150	2.00
	0.16	${ }_{\substack{\text { BC107 } \\ \text { RC108 }}}$	O20		0.50		
${ }^{\text {OAP9 }}$	- 0.12	${ }_{\text {BC109 }}$	O20	${ }_{\text {8F355 }}$	${ }_{0}^{0.50}$		
${ }^{\text {OAP95 }}$	0.12	${ }_{\text {BC1 }}{ }_{\text {BC13 }}$	0.15		1.00	${ }^{\text {TCAF270SO }}$	TCE1500 Tipler
- ${ }_{\text {BAOLOO}}$	${ }^{0.18}$	${ }^{\text {BC114 }}$	0.15 0.20		${ }_{0.50}^{1.00}$		
${ }_{\text {B4A }}{ }^{\text {B4, }}$	0.10 0.15	${ }_{8}^{8 \mathrm{BC} 16}$	-20		- 0.50		
	0.15 0.10	${ }_{\text {BC118 }}^{\substack{8 C 17 \\ 8.118}}$	0.20 0.20	$\underbrace{\substack{\text { cki }}}_{\substack{8 F \times 84 \\ 8 F \times 88}}$	0.50 0.50 0	TPA2 160 600 TDA 130	(1)
	0.20	${ }_{\text {BC1, }}$	0.50	${ }_{\text {8Fx }}^{8 \times 89}$	0.50		
	O.16	${ }_{\text {8C125 }}$	020 020	${ }_{\text {8FF51 }}^{\text {8F50 }}$	0.50 0.50 0	$\begin{array}{ll}\text { TPA1054M } & \\ \text { MC1 } 399 \mathrm{M}\end{array}$	
	O. 0.08	${ }_{\text {- }}^{\text {BCI36 }}$	0.20	${ }_{\text {Bras }}$	0.50	MAA669	
¢ $\begin{gathered}\text { BAY38 } \\ \text { Br206 }\end{gathered}$	0.16 0.20	${ }_{\substack{8 C 137 \\ 8 C 138}}$	0.40 0.40		1.20 0.50	SAA560S ${ }^{\text {S }}$	
IN4148	004	${ }^{\text {BCI } 139}$	0.40	${ }^{\text {BFFr39 }}$	0.30	SNTH00N	
${ }_{8127}$	- 020	${ }_{\substack{\text { BC140 } \\ \text { BC142 }}}$	O.40	${ }_{\text {ERPR }}$	0.30 0.30		
	-0.22		-4.40		-.50		${ }_{\text {Pre } 697 / 693 / 697 \text { Tripler }} \quad{ }_{668}^{668}$
SKk2\%8	1.00	${ }_{\text {BC }}$	0.10	${ }_{\substack{\text { br2 }}}^{\text {Br39 }}$	025 2.50		
	0.15 0.18	${ }_{\substack{\mathrm{BC} 149 \\ \mathrm{BC153} \\ \hline}}$	0.15	${ }^{\text {Bu206 }}$	1.60 280 1	THA950 TCAB00	$\begin{array}{ll}\text { TCE } 3000 / 3500 \text { Triper } & 5.51 \\ \text { TCE } 4000 \\ \text { Tripler }\end{array}$
In 20001 NaOO2	0.10	${ }_{\substack{\text { BCI54 } \\ \mathrm{BCC} 57}}$	0.15		1.00	TCABOOO ${ }^{\text {T, }}$	TCE E000 Doubler ${ }^{\text {TCE }} 850000$
-	退 01010	${ }_{\text {BC157 }}$	0.15 0.15	${ }_{\text {BU40060 }}^{\text {Bua }}$	${ }_{2}^{200}$	$\begin{array}{ll}\text { TDA1180 } & 300 \\ \text { TDA1190 }\end{array}$	TCEE 5000 Tniler
(1N0034	0.12 0.12		0.15	${ }^{\text {B4U097 }}$			(TC)
inaoco	0.14	${ }_{\text {BCIL60 }}$	ci. 0.40	${ }^{\text {R20 }}$	250 250	TAA25900 TDA2600 50.00	Koting gos ripler
(iNa007	0.16 0.33	${ }_{\text {BC170 }}^{\text {BC171 }}$	0.15 0.15	${ }_{\text {R2540 }}^{\text {R20108 }}$	2.50 300		
${ }_{\text {BR100 }}^{\text {BR101 }}$	0.30 0.60 0	${ }_{\text {BC172 }}^{\text {BC177 }}$	0.20 0.20 0	ME0402	0.20 0.20 0		
${ }^{\text {BrF39 }}$	O60	${ }_{\text {BC178 }}$	020	M 4 E4003	0.15		MULTISECTION CAPACITORS
${ }_{\text {BTT19 }}$	2.00	${ }_{\text {BC1 }} 1822$	0.15	ME8601	020	$\begin{array}{ll}\text { TDAOO20/A2 } & 500 \\ \text { TDA2020 }\end{array}$	DECCA 4004.40035050 $\mathrm{DECCCA} 80 / 100400 / 350$
	${ }_{0.80}^{2.00}$			M MJe295	1.30		8800250
2N044	1.50 1.50	${ }^{\text {BCI } 184 \mathrm{C}}$	0.15 0.30 0	MP813	1.20		
	0.10 0.10		0.30 0.30 0	MPsu5	1.20		
-	0.10 0.10		015 0 0 0		+1.30		
	-10	${ }_{\substack{\text { BC205 } \\ 8 \times 206 \\ 8207}}$	${ }_{0}^{0.15}$		- 0.50	ist on reaust with any order	
	0.10 0.10	${ }_{\substack{8 C 207 \\ \text { BC208 }}}$	${ }_{0}^{0.15}$	2N2905A	0.50 0.50	valve	
	010 010	${ }^{\text {BC229 }}$	0.15	${ }^{2}$ N3053	0.50		
${ }_{\text {B7Y } 886 \text { 6 } 20}$	0.10	${ }_{\substack{8 C 212 L}}^{8 C 213 L}$	-15	2N3095	020 0.20 0		
	- 0.10	${ }_{\substack{8 C 214 L \\ 8.225}}$	015 040	${ }_{\text {2N3710 }}^{\text {2N355 }}$	c. 0.60	ECC84 ECH83 1	
	0.10 0.10	${ }_{8 \text { 8C237 }}^{818}$	0.15	${ }_{\text {TTAA }}$	080 0.50 0		${ }^{1} 100150$
	010		0.15 0.15 0.40	teas 50	1.80		TCE 1500 150 150 100 . 210
${ }^{877} 9888$	- 010	${ }^{\text {BC301 }}$	- 0.40	${ }_{\text {TAAG30S }}$	1.55 2		100. $100 / 350$ TEE 3000350060770 1.00
	-		0.15 0.15 0.15		2.50 1.50		TCE 300033000220/100
	- 0.10	${ }_{\text {8C327 }}$	O.15	${ }_{\text {TAPD }}^{\text {Tiod }}$	200 0.75		(TCE 800088500850002500631.50
	-		O.15		1.50 1.20 2		
	O10		0.15	TB45200	${ }_{2} 2.00$	Pcc7 P970	TCE 9500 220/400
	-	${ }^{\text {RC141-10 }}$	- 0.50	${ }_{\text {TBAS }}^{\text {T }}$	200 200	Pçar PCF80 	TCE 140 12R - 16 , IK7 . 116 +
	- 220	${ }_{\text {BD124 }}^{80}$	1.80 0.70	${ }_{\text {TBASAO }}^{\text {TBA500 }}$	2.20 2.20	PCFB802 PCF806 1.150 1.10	
	0.20 020		0.60		2100 300 300		(TC)
		${ }^{\text {cobe }}$	0.70 0.70	${ }_{\text {TBA5boc }}$	2.20 2.20		
	020 0.20		2.50	${ }_{\text {TBA5570 }}^{\text {TBASO }}$	${ }_{2.50}^{2.20}$	PCLI86 Po500/510 P3,91	
	020	${ }^{\text {BD2 } 238}$	0.50		2.50	${ }^{\text {PFF200 }}$	
	0.20		0.70 0.70		${ }^{3.00}$		
	O200		0.70 0		3.00 150 150		
	0.20	${ }^{\text {B0538 }}$	0.70 0.70		1.50		Philps 210 118-118-148
	O.20	${ }_{\text {chersigi }}$	0.75	${ }_{\text {TBAT }}^{\text {TBA }}$	${ }_{200}^{200}$	PLL992 7.22 P-802 8.81	
	0.20 0.20	${ }_{\text {l }}^{16182}$	1.20 1.00		lis0	Pr88 PY500	
${ }_{\substack{\text { B22660 } \\ \text { AC10 }}}$	020 0.35 0.3		1.1 .00	TBAA82 TBA920	1.150 150 150 1		
	0.35 0.50 0.60	-	0.70 0.50 0				
${ }^{\text {ACL }}$ A 128101	0.60	${ }_{\substack{\text { BFI } \\ \text { BF1 } 15}}$	0.60	${ }_{\text {TR }}$ T8999900	2000		
${ }_{\text {ACl }}^{\text {ACI } 28.01}$	- $\begin{array}{r}0.50 \\ 0.50 \\ 0.0\end{array}$		0.40 020	TCA2205A	3.00 1.00 		CONNECTORS
${ }_{\substack{\text { ACC14, } \\ \text { AC12 }}}$	O. 0.60		- 070	${ }^{\text {TCASA9O }}$	2.00	(VALVES NOT SHOWN HERE MAY	Sels of AVO Leads $\quad 1000$
${ }_{\text {Ac }}{ }_{\text {Ac } 122 \mathrm{~K}}$	0.60		0.40 0.60	TDAA 200	200	For quote.	(1)
${ }_{\text {ACl7 }}{ }_{\text {ACliol }}$	0.60 0.60		${ }_{0}^{0.60}$		4	direct replacement parts	
ACl186 Aclig	0.40		-0.50 0.50	TD2020	${ }_{200}^{4.00}$		ligit Atenuator Back to Back coax
	-	${ }_{\substack{\text { BFF } \\ \text { EF189 }}}$	0.50		1		SERVIICE AIDS \& tools
${ }_{\text {Ac }}$ A 188 K	0.60	${ }_{\text {BFI } 181}^{81}$	-	SN76651N	1.50		Super Servisol $\quad 1.20$
	${ }^{1.50}$	${ }_{\substack{\text { BFF } 182 \\ \text { EF } 183}}$	0.50 0.50	SNTfoce	300		$\substack{\text { Foam Clieanser } \\ \text { Silicone Grease }}$ 1.20
${ }_{\text {AD }}{ }_{\text {AD } 145}$	1.50 150 150	${ }_{\text {BF184 }}^{8 \times 185}$	-050	SN76013N0	${ }_{200}^{200}$	TV20 Restifier Stick	Plastic Seal Aerokeneal 1.20
AD149	1.00	${ }^{\text {BFF194 }}$	-20	SN76023N	200		
${ }_{\text {AD }}^{\text {AD } 16162}$	1.50 0.70	${ }_{\text {BFF195 }}^{\text {BFI96 }}$	0.20 0.20	SNT6023ND	$\xrightarrow{100}$		Antistatic ${ }^{\text {A }}$
${ }_{\text {ADE } 22}$	1.50	${ }_{8 \times 197}$	020	SN76110N	2.00	Phils 68 Lopt ${ }^{\text {a }}$	${ }^{\text {SR2 }}$ Desoldesing Tool ${ }^{\text {a }}$
	- 0.60		0.15 0.15 0.15		2.20 1.20		SR3AS Mini Siver SR3A Min Orange 6.800 6.80
${ }_{\text {AFF }}^{\text {AFP2 }}$	-060	${ }_{\substack{\text { BF220 } \\ \text { BF224 }}}$	0.15 0.15	SN76532N SN7633N	边 2000		
${ }_{\text {AF }}$ A 27	0.60	${ }_{\text {BFF240 }}$	0.45	${ }_{\text {SN }}$	200	${ }^{\text {A } 823 \text { Eush Powner Panel }} 12000$	
${ }_{\text {AFF239 }}^{\text {AF }} \mathbf{}$	$\xrightarrow{0.60} 1$	${ }_{\text {BF2 }}^{\text {BF24 }}$	0.50 0.50	¢N776504	1.00 1.50 1		
${ }_{\substack{\text { All } \\ \text { Al } 102 \\ \text { a }}}$	3.00		0.50	SN76666N	1.20		TMY 800/80 Transistor EQV ${ }^{\text {a }}$
${ }_{\text {AUlio7 }}$	3.00 300	${ }_{\substack{\text { BFF258 } \\ 8 \times 271}}$	0.50 0.50		6.00 8.00	catalogue tree, on reauest, with any order.	

COPYRJGHT

©IPC Magazines Limited, 1982. Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF.

SUBSCRIPTIONS

An annual subscription costs $£ 10$ in the UK, £11 overseas ($\$ 24.20$ Canada or USA). Send orders with payment to IPC Services, Oakfield House, Perrymount Road, Haywards Heath, Sussex.

BINDERS AND INDEXES

Binders ($\mathbf{£ 4 . 5 0 \text {) and Indexes (45p) can be }}$ supplied by the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Prices include postage and VAT. In the case of overseas orders, add 60p.

BACK NUMBERS

Some back issues are available from the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF at 85p inclusive of postage and packing.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Telavision, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. All correspondents expecting a reply should enclose a stamped addressed envelope. Requests for advice in dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").
by Ted Barrett
Leader
Servicing Thyristor Line Timebases by
Though the thyristor line timebase is now obsolete, there
are still large quantities of sets using this system in service.
Servicing can present problems to those without experience of this type of circuit. The operation is described, basic fault conditions examined and various less common symptoms
described. The importance of using suitable replacement components is emphasized.
VCR Clinic
Notes on modifications and faults from Derek Snelling,
Richard Roscoe and Mike Sarre.
Readers' PCB Service
Teletopics !
News, comment and developments.
Hey Constablel
by Les Lawry-Johns
The constabulary has been much in evidence recently at this
famed emporium, initially following a smash and grab raid.
Attempts to establish law and order don't seem to have been too successful.
Focus on Portables, Part 1
by George Wilding
A look at the techniques used in the i.f. and a.g.c.
departments, with notes on fault finding.

Correction

Fault Report
by Mick Dutton
Notes on faults experienced with a variety of TV receivers.
The Spirit of '51 by
What TV meant domestically back in the pioneering days just after the war, when sets took an age to warm up and programmes were still rather experimental.

Next Month in Television

A Simple 4GHz Satellite Recelver by Roger Bunney A "basic" set-up to enable the experimenter to receive TV signals in the 4GHz band.
VCR Servicing, Part 13
by Mike Phelan
This time the basic VHS machine's tape path, with notes on adjustments and fault symptoms.

Video Books

Routine TV Receiver Tests
How to tackle the usual faults experienced with Pye hybrid colour sets.
Gray Coding
A variant on the binary digital code.
Inside the Philips VR2020, Part 6
by Brian Dempster Operation of the microcomputer control system and an account of the tuning arrangement.

Letters

Long-distance Television by Roger Bunney
Reports on DX reception and conditions, the discone aerial and news from abroad.

Service Bureau

Test Case 239

OUR NEXT ISSUE DATED DECEMBER WILL BE PUBLISHED ON NOVEMBER 17

MANOR SUPPLIES

NEW MKV CHEQUERBOARD \& PAL COLOUR TEST GENERATOR FOR TV \& VCR.

$\star 40$ different patterns and variations.
\star Broadcast transmission accuracy (fully interlaced sync pulses with correct picture blanking).
\star EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red, blue and black.
\star Chequerboard.

* Mono outputs with border castellations, cross hatch, grey scale, vertical lines, horizontal lines and dots.
UHF modulator output plugs straight into receiver aerial socket.
\star Additional video output for CCTV \& VCR.
\star Facilities for sound output.
\star Easy to build kit. Only 2 adjustments. No special test equipment required.
* Mains operated with stabilised power supply.
* All kits fully guaranteed with back-up service.
\star Also available with VHF Modulator.
Price of Kit
£80.50
Standard Case ($10 \frac{1^{\prime \prime}}{\prime \prime} \times 6 \frac{1^{\prime \prime}}{}{ }^{\prime} \times 2 \frac{1}{2}^{\prime \prime}$)
65.50

De Luxe Case $\left(10^{\prime \prime} \times 6^{\prime \prime} \times 2 \frac{1}{4}^{\prime \prime}\right)$
c8.50
Optional Sound Module (6 MHz or 5.5 MHz)
£4.50
Built \& Tested in De LuxeC Caseincluding Sound Module
£115.00
Post/Packing $£ 2.00$.
All above prices include VAT 15\%

PAL COLOUR BAR GENERATOR (Mk 4)
 4TH SUCCESSFUL YEAR

\star Output at UHF, applied to receiver aerial socket.
\star In addition to colour bars $\mathrm{R}-\mathrm{Y}, \mathrm{B}-\mathrm{Y}$ etc.
\star Cross-hatch, grey scale, peak white and black level.
\star Push button controls, battery or mains operated.
\star Simple design, only five i.c.s. on colour bar P.C.B.
PRICE OF MK4 COLOUR BAR \& CROSS HATCH KIT $£ 40.25$ P\&P $£ 1.20$. DE-LUXE CASE $£ 5.95$. ALUMINIUM CASE £3.30, P\&P £1.20, BATT HOLDERS $£ 1.70$ P\&P 85p, ALTERNATIVE STAB. MAINS SUPPLY KIT £5.55 (Combined P\&P £1.80).
MK 4 DE LUXE (BATTERY) BUILT \& TESTED $266.70+\mathbf{E 1 . 8 0} \mathrm{P}$ \& P. MK 4 DE LUXE (MAINS) BUILT \& TESTED $£ 80.50+£ 1.80 \mathrm{P}$ \& P. VHF MODULATOR (CHI to 4) FOR OVERSEAS $\mathbf{8 . 6 0}$. EASILY ADAPTED FOR VIDEO OUTPUT \& C.C.T.V.
(ALL PRICES INCLUDE 15\% VAT)

MANOR SUPPLIES TELETEXT ADAPTOR KITS

MK 1 (Texas XMII) Cable remote control $£ 170.20$ p.p. $£ 2.80$ MK 2 (Philips/Mullard) Infra-red remote control $£ 227.70$ p.p. $£ 2.80$. Further details on request.
Goods available if in stock immediately over shop counter (Mail order between 3 days and 1 week from receipt of order).

TV SERVICE SPARES

BACKED BY TWENTY YEARS EXPERIENCE \& STAFF OF TECHNICAL EXPERTS
SPECIAL OFFER THORN 8000A, 8500 Power \& Sound Panels (new and boxed) $£ 5.75$ p.p. £1.25.

TELEVISION MAGAZINE PROJECT PARTS NEW COLOUR PORTABLE TV
TV PATTERN GENERATOR SMALL SCREEN MONITOR MONO PORTABLETV LARGESCREENC WORKING MODELS \& PANEL TEST SER VICE AT 172 WEST END LANE.
SPECIAL OFFER Leading makers Tuner-Timer in De Luxe Case. 12 station touch tune UHF-VHF + IF amp. Video Audio Outputs, Digital Clock etc. Less than half original trade price $\mathbf{£ 7 4 . 7 5} \mathrm{p}$-p $£ 3.50$.
TV SOUND IF PANELS, FULLY TESTED $£ 7.82$ p.p. $£ 1.00$
TV SOUND IF PANELS, FULLY TESTED 27.82 p.p. .1 .00. SAW FILTER IF AMPLIFIER PLUS TUNER COMPLETE AND
tested for T.V. SOUND \& VISION $£ 32.80$ p.p. $£ 1.20$ (SUITABLE tested for T.V. SOUND \& VISION $£ 32.80$ p.p.
FOR USE WITH TELEVISION SIGNAL BOARDS).
FOR USE WITH TELEVISION SIGNAL BOARDS).
SPECIAL OFFER TEXAS XMII TELETEXT MODULE NEW \& SPECIAL OFFER TEXAS XMII TELETEXT
TESTED, AT REDUCED PRICE $\$ 7.50$ p.p. 1.60 .
TESTED, AT REDUCED PRICE $£ 57.50$ p.p. £1.60.
TELETEXT 23 BUTTON DE-LUXE HANDSET WITH 5 YDS. CABLE $£ 7.80$ p.p. £ 1.20 . XMII INTERFACE PANEL (THORN) £2.10 p.p. 75p. £7.80 p.p. 1.20 . XMII INTERFACE PANEL (THORN) £2. 10 p.p.
CROSS HATCH UNIT KIT, AERIAL INPUT TYPE, INCL. T.V.SYNC AND UHF MODULATOR. BATTERY OPERATED. ALSO GIVES PEAK WHITE' \& BLACK LEVELS. CAN BE USED FOR ANY SET $\mathbf{5 1 2 . 6 5}$ p.p. 60p. (ALUM CASE $£ 2.60$ DE LUXE CASE 85.50 p.p. $£ 1.20$.) ADDIIIONAL GREY SCALE KIT £3.35 p.p. 45 p.
UHF SIGNAL STRENGTH METER KIT $\mathbf{\Sigma 2 1 . 6 0}$
UHF SIGNAL SIRENGTH METER KK 221.60 (VHF version also available). ALUM CASE £2.00 DE LUXE CASE $£ 8.50$ p.p. $£ 1.80$
CRT TESTER \& REACTIVATOR PROJECT KIT FOR COLOUR \& MONO $£ 29.40$ p.p. $£ 2.00$.
BUSH 2718 BC6100 SERIES IF PANEL $85.75 \mathrm{p.p.9} 90 \mathrm{p}$.
BUSH A816 IF PANEL (SURPLUS) $£ 1.90$ p.p.
BUSH A816 IF PANEL (SURPLUS) $£ 1.90$ p.p. 90 p.
DECCA "Bradford" IF T.B. POWER ex rental 55.75 each p.p. $£ 1.40$.
DECCA 80,100 SERIES, IF, FRAME T.B. $£ 5.75$ each p.p. $£ 1.40$.
GEC SERIES I MONO PANELS $£ 2.10$ p.p. $£ 1.30$.
GEC 2110 Decoder. RGB panels (ex rental) $£ 5.75$ each p.p. $£ 1.00$.
GEC 2040 DECODER PANEL $£ 2.88$ p.p. $£ 1.60$.
GEC 2040 IF PANEL $£ 3.22$ p.p. $£ 1.40$.
GEC 2040 (SERIES) CDA PANEL $£ 2.88$ p.p. $£ 1.40$.
THORN TX9 PANELS ex factory for small spares. Includes I.C.s \& THORN IX9 PANELS ex factory
Semiconductors etc. 5.75 p.p. $£ 2.00$
THORN 3000 LINE T.B., POWER PCB $\mathbf{~ 5 . 7 5}$ each p.p. £1.30.
THORN 3000 BEAM LIMITER PANEL $£ 1.72$ p.p. 80p.
THORN 3000 VID, IF, DEC. Ex Rental $\mathbf{£ 3 . 7 0}$ each p.p. $£ 1.30$
THORN 8800 Varicap channel selector \& front control unit $£ 4.37$ p.p. $£ 1.80$.
THORN 8000/8500 1 F/DECODER PANELS salvaged $£ 3.70$ p.p. $£ 1.80$
THORN $8000 / 8500$ FRAME T.B. PANELS salvaged $£ 2.88$ p.p. $£ 1.40$
THORN 9000 LINE T.B. (incl. Lopt etc.), Salv., spares $£ 8.62$ p.p. $£ 2.00$
THORN 9000 SERIES TOUCH TUNE REMOTE CONTROL UNIT
PLUS ULTRASONIC TRANSMITTER HANDSET 119.32 p.p. $£ 1.84$.
THORN 9000 IF/DECODER PANELS Salvaged Es .75 p.p. 11.60.
PHILIPS 210, 300 Series Frame T.B. Panels $£ 1.15$ p.p. 80 p.
PHILIPS G8/G9 1F/DECODER Panels for small spares $\mathbf{~ 2 . 8 8}$ p.p. $£ 1.40$.
G8 IF Panels for small spares $\boldsymbol{£ 1 . 7 5}$ p.p. 95 p.
G8 Decoder panels salvaged £4.25. Decoder panels for spares $£ 2.00$ p.p. $£ 1.40$. VARICAP, U321, U322, ELC $1043 / 06$ ELC $1043 / 05$ £7.82 p.P. 80 p; G.I. type (equiv. $1043 / 05$) $£ 4.00$ p.p. 60 p. Control units, 3PSN £1.40, 4 PSN SPECIAL OFFER ELEVEN POSITION VARICAP CONTROL UNIT UHFF/VHF $£ 2.10$ p.p. $£ 1.00$.
UHF/VHF £2.10 p.p.; $\mathfrak{£ 1 . 0 0 .}$.
BUSH "Touch Tune" Varicap Control 2179 , 718 types $£ 4.40$ p.p. 95 p.
VARICAP UHF-VHF ELC 2000S $£ 9.80$. BUSH TYPE $\mathbf{2 7 . 8 2}$ p.p. 85 p.
VARICAP VHF MULLARD ELC 1042 £7.93 p.p. 80p.
UHF/625 Tuners, many different types in stock. UHF tuners transisted. incl. s/m drive, Mullard 4 position push button $£ 4.80$ p.p. $£ 1.50$.
LOPTS NEW \& GUAR. P/P Mono $£ 1.35 \mathrm{p}$, Colour 1.45 p , Bobbins 80 p .

BUSH, MURPHY 774 series $£ 9.80$ R.B.M. A179... $\mathbf{E 6}$

BUSH, MURPHY A8 16 series....... 69.80 R.B.M. T20, T22................................... 11.30 DECCA 20/24, 1700, 2000, 2401. 88.80 | FERG., HMV, MARCONI, ULTRA |
| :--- |
| 950 to $1580 . ~$ |
| 60.80 |

 GEC 2000 to 2038 series................ $£ 7.80$
 ITT/KB VCI 200, 300........................ 88.50 MURPHY 1910 to 2414 series $\mathbf{\Sigma 6 . 8 0}$ PHILIPS 19TG $170,210,300 \ldots \ldots . . .88 .80$ PYE, INVICTA, EKCO, FERR.

368, $169,569,769$ series...
GEC 2114J/Junior Fineline

KB VC ELEVEN (003)................. 52.00
OTHERS AVAILABLE, PRICES ON REQUEST ALSO
TRIPLERS Full range available. Mono \& Colour.
Special Offer: Thom 14005 stick EHT Tray 1.72 p.p. 65p.
TRANSDUCTORK suitable for G8, A823, Bradford etc. 81.72 p.p. 60 p. 6:3V CRT Boost Transformers £5.80, Auto Type £3.20, p.p. £1.20.
CALLERS WELCOME AT SHOP PREMISES T THéphone 01-794 8751/7346
THOUSANDS OF ADDITIONAL TTEMS A VAIEKBLE, ENQUIRIES INVITED
LARGE SELECTION TESTED COLOUR PANELS POPULAR MODELS

MANOR SUPPLIES

172 WEST END LANE, LONDON, N.W.6.

W. Hamparead Britizh Reill Stras (Richmond, Brasd SL) (St Pancraze Bedtort)

Mail Drder: 64 GOLDERS MANOR DRIVE, LONDON N.W. 11. ALL PRICES INCLUDE VAT AT 15%

SAFGAN DT-420 DUAL TRACE SCOPE 20 MHz BANDWDTH

 SPECIFICATION\star CH1, CH2: $5 \mathrm{mv} / \mathrm{div}-20 \mathrm{v} / \mathrm{div}$ * Time Base: $1 \mathrm{sec} / \mathrm{div}-100 \mathrm{~ns} / \mathrm{div}$ - Trigger: Level control, \pm slope selection
\star Auto, normal, TV triggering \star Z-Modulation

- CAL output 1 V 1 KHz
\star Graticule blue ruled 8×10 div ($4^{\prime \prime}$ CRT). Very Sharp Trace. * Size: H215mm, W165mm, D280mm Weight: 4 kgs , PRICE E199 + £29.85 VAT
Probes as Thandar below.
BRITISH MADE - RELIABLE - 18 MONTH GUARANTEE

cathodes with automatic timing.
- Super rejuvenation with manual con
trol.
Complete with tube base adaptors.
Size: H 230 mm W 330 mm D 120 mm .
PRICE $\mathbf{£ 1 4 5 + £ 2 1 . 7 5}$ VAT
THE VERY LATEST SC110A LOW POWER FULLY PORTABLE OSCHLOSCOPE.
The new Thandar SC110A represents a break-through in oscilloscope development. The SC110A is ONLY TWO INCHES thick and weighs under two pounds, yet retains the standard features and controls of a bench oscilloscope. FITS IN A BRIEFCASE

1980 GOLD MEDAL winner of the B.R.N.O. EXHIBITION, the largest Trade Fair held in Eastern Europe.
Full Sized Performance

- 10 MHz bandwidth.
* 10 mV per division sensitivity
* Full trigger facilities are provided including TV frame, or TV fittering.
- Runs on 4 to 10 V DC via disposable batteries, re-chargeable cells, or AC - adaptor.
- Size $255 \mathrm{~mm} \times 148 \mathrm{~mm} \times 50 \mathrm{~mm}$. ${ }^{\text {Scope }} \mathbf{£ 1 4 9 . 0 0}+\mathbf{f 2 2 . 3 5}$ V.A.T.

Carry Case £5.95 + £0.89 V.A.T.
$\times 1$ Probe $£ 7.00+£ 1.05$ V.A.T.
BRITISH $\times 1$ Probe $87.00+£ 1.05$ V.A.T.
MADE
FULLY

U.K. Post Paid. Export orders welcome, please deduct V.A.T. and include an additional $£ 5.00$ for Overseas carriage. Mail Order only. Callers by appointorder please. Large S.A.E. for technical leaflets of complete range
B. K. ELECTRONICS, Dept. 'T',

37 Whitehouse Meadows, Eastwood Leigh-on-Sea, Essex SS9 5TY. Tel: (0702) 527572.

Technical Training in Television, Radio and Electronics

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the field of electronics-now it can be your turn. Whether you are a newcomer to the field or already working in the industry, ICS can provide you with the specialised training so essential to success.

Personal Tuition and Guaranteed Success

The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: " Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed".

CITY AND GUILDS CERTIFICATES

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Bașic Electronic Engineering (C\&G/ICS)
Radio Amateurs
CERTIFICATE COURSES
TV \& Audio Servicing
TV, Radio and Audio Engineering
Radio \& Amplifier Construction
Electronic Engineering*
Computer Electronics*
Industrial Electronics*
Radio Frequency Electronics*
Introduction to Microprocessing*
Electrical Engineering*
Electrical Contracting \& Installation

Member of ABCC

POST OR PHONE TODAY FOR FREE BOOKLET

```
Please send me your FREE School of Electronics Prospectus
```

Subject of Interest

Name

P. V. TUBES
 Telephone: Accrington (0254) 36521 Accrington (0254) 32611
 $38 A$ WATER STREET, ACCRINGTON, LANCS BB5 6PX.
 WHOLESALE SUPPLIERS OF TELEVISION COMPONENTS TRADE COUNTER OPEN MON-FRI 9 a.m.-4.30 p.m. SAT MORN. 9.30 a.m. 12 noon.

Alexandra Pavilion London November 18-211982

The biggest and best event ever to be

 staged for the electronic hobbies enthusiast!Walk intoa whole worid of electronic equipment. - Every thing from resistors, IC's to homecomputers, transmitting and receiving units, citizens band radio and perioheral equipment, video games, musical instruments, radio control models. . . . In fact whatever your particular electronic hobby you'llifind this show will be the most interesting and informative way to discover all the latest developments in your particular field.
Other attractions will Include radio and TV transmission, electric vehicles, radio controlled models, and demonstrations by local and national organisations.
This is the age of the train-British Rall are Offering a cheap rate rall fare from all major
stations in the country direct to Alexandra Palace-a bus will be waiting on your anival to take you to the show. ncket price also includes admission to the exhibition-so let the train take the strain to the Electronic Hobbies Fair.

Ticket prices at the door are $\mathbf{2}$ for adulas, $£ 1$ for

 children but party rates are avallable for 20 people or more. To find out more, contact the Exhlbition Manager, Electronic Hobbies Fair, IPC Exhibitions, Surrey House, 1 Throwley way, Sutton, Surrey SM1 400. TEl: 01-6438040.Electronic Hobbles Falr is sponsored by Practical Electronics, Everday Electronics and Practical Wireless and is organised by IPC Exhlbitions Ltd.

SEMICONDUCTORS			
BC153	10p BD131	25p 8 U128	1.00p
${ }^{8 C 154}$	10p BD183	$1.00 p$ MEOAO4	7
${ }^{8 C 171}$	$7{ }^{1} \mathrm{BFI} 37$	20 P MEOH 12	7 p
${ }^{8} \mathrm{C} 172$	$7{ }^{7} 8{ }^{\text {F240 }}$	2p MEG002	7
BC208	7p BF255	10p NKT241	7p
BC237	10p BF256c	${ }^{35 p}$ NKT276	20p
BC238	7p BF256LC	35 p P107	10
BC250	7p BF257	30p R20108	1.00p
8C251	1p BF259	40p R243	25\%
8C307	10p BF274	10p 82540	1.00p
$8 \mathrm{BC309}$	7p ${ }^{\text {PF337 }}$	25p R2781	1.25p
BC347	7p BF391	7p RCA16446	
BC394	$7{ }_{70}$ BF394	${ }^{30}$ TIS50	20 p
8Ca55	$7{ }^{7} \mathrm{BF} 459$	top TIS91	20p
8C546	7p BF596	7p 2 N2198	70
BC549	7 P Bfri87	25p 2 N3703	20p
BC556	7p BU105	15p 2SA473	12p
BC559	7p BU108	1.0002 SC346	7p
8C595	7p 8U207	$1.00 \mathrm{PTIC106C}$	3p
BCX34	10p 8U208	1.60p 22265	$1.35 p$

300 mixed resistors
300 mixed capacitors
150 mixed electrolytics
$100 \mathrm{~W} / \mathrm{W}$ resistors
20 mixed conv pots
40 mixed potentiometers
20 mixed sliders
40 mixed presets
20 mixed VOR \&
thermistors
20 mixed ferrite cores
MIXED PACKS

1.50	20 mixed valve bases	1.00
1.50	10 spark gaps	1.00
2.00	10-16 pin Quil IC socket	90 p
1.00	20 assorted T.V. knobs	1.00
1.00	10-16 pin Quil to Dil IC	
1.50	socke!	90 p
1.00	100 mıxed diodes	1.00
60 p	50 mixed mica washers 300 mixed resistors \&	$65 p$
1.00	capacitors	1.50
50 p	10-16 pirn Dil to Dil IC	
	socket	1.00

INTEGRATED CIRCUITS
BAV40 ${ }^{50}$ SN74123N 40p TBA4BO 1.00 BRC/M/2001.00SN7415NN 1.40 TBA140C 1.00 BRC/M/3001.000N76110N 40 P TDA2880 40 p


```
3000.8500 Thorn focus pot
```

9000 Thorn focus po:
IC inserters 16 pin
Large 1 C extractor
Crystals 4433619 MHz
EHT lead for split diode LOPT $\quad 1.0$
Litesoid 20 watt 240 V soldering iron
element 65 peach or 4 for 2
EHT final anode cap
6 MHz ceramic filter
17 t bridge rec FXS 244/2A
Castors, sets of 4

3000. 8500 Thorn focus pot	focus pot $\quad 1.25$
9000 Thorn focus po:	po! 1.00
IC inserters 16 pin	pin 50p
Large IC extractor	- 50p
Crystals 4 433619MHz	MHz 50 p
EHI lead for split diode LOPT	1 diode LOPT 1.00
Litesold 20 watt 240 V soldering iron elemen! $\quad 65 \mathrm{p}$ each or 4 for 2.00	
EHT final anode cap	cap 47p
6 MHz ceramic filter	(er 30p
ITT bridge rec FXS 244/2A	X $5244 / 2 \mathrm{~A}$ - 15p
Castors, sets of 4	$4 \quad 2.50$
Direct panel mounting 20mm	unting. 20 mm fuse clips pair tor 25p

WIRE WOUNDS	
1.5f 5W Thorn 3K	270R 5W
2A5W Thorn 3K	27087W
2.2 A 4 W	280817 W
3.3R9W	$330 \mathrm{5W}$
4 R 11 W fusible	330R7W
7R 9W fusible	330 R 11 W fusible
8.27 W	Thorn
10 fl 7 W	3700 17w
12 SaW	82084W
15R 5W fusible	1 k 29 W Thorn $3 \mathrm{~K} / 4$
15R 7W	1 K 211 W fusible
${ }^{15 \mathrm{R}}$ 11WWThorn 3K	$2 \mathrm{K2} 5 \mathrm{~W}$ tusib
${ }^{15}{ }^{\text {2 }} 17 \mathrm{~W}$	2 k 2 W
22 A 4 W	2 K 2 WW fusible
${ }^{22} 9$ 9W ${ }^{\text {a }}$ fusible	2 K 2 W fusible
27R7W	2 K 35 W
27R7W fusible	2379W fusible
36f 17w	3 Kg 5 W fusible
82 A 4 W	3 k 34 W
${ }^{82 R} 9$ 9W fusible	4K77W fusible
100f 5W fusible	${ }^{517 \%}$
$\underset{\text { fusble }}{220 R ~} 7 \mathrm{~W}$ Korting	
220817W	10k 7 W
235R 9W fusible	10K9W
240R 9W Thorn 4K 3	39K 4W

EX-EQUIPMENTSPARES

IG HH ROAD, NORTH STIFFORD, GRAYS, ESSEX, RM16 1UF.
(Mail Order Address On/y) Delivery within 28 days.
PLEASE ADD 60p P\&P, PRICE INCLUSIVE OF VAT, ADD POSTAGE FOR OVERSEAS ORDERS thousands of adomional items avaicable, enouiries invited

$\begin{aligned} & \text { TRANSFOMMERSLOPT } \\ & \text { Mains TX } 3000 / 3500 \end{aligned}$	10.60
Mains TX 8000/6500	10.00
S.O.P.T. 8000/8500	3.50
3000/3500 Scan TX	6.00
3000/3500 EHT TX	6.00
8000 LOPT	9.35
8500 LOPT	10.65
9000 LOPT	10.15
Mono portable LOPT. Thorn, GEC, atc.	3.75
Mullard diode splitting LOPT. GEC, etc.	14.75
DROPPER	
Pye 78+161	40 p
Pyo $147+260$	400
Thorn $6+1+1003 \mathrm{~K}$	50 p
Thorn $56+1 \mathrm{k}+47+12$	1.00
Thorn $350+20+148+1 \times 5+317$	1.00
Thorn $50+40+1 \mathrm{~K} 5$	50p
R8M $250+14+58$ TV161	50
$3 \mathrm{R5}+15 \mathrm{R}+45 \mathrm{~F} 28 \mathrm{~W}$ Working @	900
$140+14028 \mathrm{~W}$	10

8500 if decuder panel Ex-equipinent,	Ex-equipment untested 3000.3500 panels ary specitied panel 375
mitested 4.75	UHF aeral socket \& lead Pye.ITT.
Maris on oft swich rotary 20 p	Uhoril
Marins on ofl swich, push 20p	UHF aertal socket \& lead GEC 25p
Al switch thoril $3000.3500 \quad 50 \mathrm{p}$	UHF derial socket \& longlead GEC 35p
Al switch Thorn 4000 -fits ITT Pre 50p	UHF aerial socket \& mounting bracket for
Al pot 5M3000 3500 - 70 p	Thorn 4000 (${ }^{\text {a }}$
100k 40 turn pors forv/cap lutiers $\mathbf{2 5 p}$	UHF TV areral for portable $\quad 50 \mathrm{p}$
Double luse holder on simall pax board (20mintype) $\mathbf{1 0 p}$	625 aerials + fillings avaitable Price lisi 0ir reques
Single fuse holiter on small pax board (20mm) type)	Cuaxplugs 12p
	Swhite) Swither 1.20

2a tw CABBONRESISTOAS

 82R 1 W . 100R $2 \mathrm{~W}, 120 \mathrm{R}+\mathrm{W}$. $120 \mathrm{R}+\mathrm{W}$. 130 R 2 W . $1503 \mathrm{~W} .1807 \mathrm{RW}, 220 \mathrm{R}$ LW. 220R2W. 240 R 2 W .

 $2 \mathrm{~W} .22 \mathrm{~K} 1 \mathrm{~W} .33 \mathrm{~K}, \mathrm{~W}, 36 \mathrm{~K}+\mathrm{W}, 47 \mathrm{~K}\{\mathrm{~W}, 63 \mathrm{~K}, 1 \mathrm{~W}$
 390K $\frac{W}{} \mathrm{~W}^{2}, 500 \mathrm{~K}$ WW. 1 MEG WW, 1 MEG 2 W .2 M $21 \mathrm{~W}, 2 \mathrm{M} 7 \frac{1}{2} \mathrm{~W}, 4 \mathrm{M} 7.1 \mathrm{~W}, 10 \mathrm{M} \frac{1 \mathrm{~W}}{}$ eny 10 for 25p

Thorn 9K thick film units ffl or FR3
10 Meg thick film focus resistor

ELECTRDLYTICS			
1 MF 63V	20/E1	100MF 100V	10/E1
1.5MF63V	20ek	100 MF 160 V 125 MF 16 V	10/E1
$4 \mathrm{MFB6V}$	$20 / 1$	150 MF 25 V	$20 / 51$
$4 \mathrm{MF350V}$	10/51	160 MF 25 V	$20 / 51$
6.8MF 40V	20/21	160MF 40V	10/E1
10MF40V	20/E1	220 MF 40 V	10/E1
10MFF 160 V	10/E1	250MF $25 V$ 330 MF 10 V	10ff1
15 MF 63 V	20161	330 MF 35V	20/fi
22 MF 10 V	20/51	330 MF 63V	10/E1
22 MF 40 V	20/E1	470MF 6.3V	20.11
22 MF 63 V	20151	470MF 10V	10/fi
22 MF 160V	10151	470 MF 25 V	10/f1
32MF 275 V	10 E 1	470 MF 40V	10 Cl
33MF 40 V 33 MF 50 V	20/E1	640MF 10 V	20 fl 1
33 MF 250 V	Tors	6880 MF 40 V	1efi
47MF350V	10/E1	1000 MF 10 V	10/E1
50 MF 25 V	20/E1	1500 MF 16 V	10/E1
68 MF 250 V		2200MF 25	E/f1
100 MF 16 V	10/E1	3300MF25V	10/f1

I wish to pay by Access.

Access No.
Amount
NAME
ADDRESS

Signature

EDITOR

John A. Reddihough
ASSISTANT EDITOR
Luke Theodossiou
ART EDITOR
Roy Palmer

ADVERTISEMENT MANAGER

Roy Smith
01-261 6671

CLASSIFIED ADVERTISEMENTS

Barbara Blake

01-261 5897

COVER PHOTO

Our front cover photograph this month shows the shadowmask production line at Mullard's Simonstown plant. Rolled sheet steel goes in at one end, and after a series of precision photo-etching processes finished shadowmasks arrive at the other end. Our thanks to Mullard Ltd. for providing the photograph.

Channel Four and all that

The traditional fourth push-button on the TV tuner is at last going to serve its original purpose. Channel 4 starts operation any day now, and we wish it a bright future. An additional choice of programming can't be a bad thing - let's hope it won't be just more of the same with a bit of difference. The initial programme details don't exactly raise one's hopes unfortunately. To start off with a panel game of all things! After all the effort that went into establishing the new network, one had hoped for something a bit more enterprising. Another hope is that we don't get a fourth dose of sport to coincide with sport on the other three channels, something which incredibly seems to happen all too frequently at present. What is it about our programme controllers that makes them give such emphasis to sport? Music programmes get cut and films postponed, but it never works the other way round. Sport is of course easy TV: just point the camera in the appropriate direction and hire a commentator to waffle away without actually saying anything. Maybe we might get a panel game as an alternative on such occasions!

The new channel is not exactly helping the ITV companies at present. Scottish Television has just reported increased advertising revenue for the half year, up 22.5 per cent, but after meeting increased costs profit has fallen. A substantial proportion of these increased costs consists of the company's Channel 4 commitment. This could be a temporary phenomenon, since the Channel 4 subscriptions are being levied before the advertising revenue starts to come in, but the industry seems to be a bit worried about that advertising revenue. Prospective advertisers on the other hand naturally want to see what sort of programmes will be forthcoming and what sort of viewer response the new channel is going to get before committing themselves. It seems that at the time of writing there have been no firm advertisement bookings in some of the smaller regions.

The advertising/ITV industry is naturally a bit uptight at present. To start a major new venture in the middle of a severe recession doesn't help exactly. Whilst advertisers were being turned away when Channel 4 was originally being planned, there's now ITV space to sell. Channel 4's start-up budget is $£ 104$ million, of which $£ 49$ is being provided by the fifteen ITV contractors whilst the rest is being borrowed from the IBA. The idea of course is for the ITV companies to recover their subscriptions by selling advertising space in their regions, but interest so far has been decidedly lacking.
This could lead to an almighty row if there's no improvement. It has been suggested that advertising revenue may fund less than half of Channel 4's next year costs, which could wipe out the ITV companies' profits for the year. If that happens and the viewing figures are poor, there'll be mounting pressure for a change in the system.

Why worry about the problems of the ITV contractors? Well, they do draw attention to the fact that TV has to be paid for, something that seems to get overlooked in all this talk about 30 channel cable TV and so on. It's all very well to get enthusiastic about the multiplicity of channels available in places like Brussels, but many of those channels are simply being pinched. Unpaid for use of the BBC and ITV channels, also French and German channels, is common in the Low Countries, just as parts of Canada receive US stations and so on. Satellite TV will further complicate matters. There's little that can or need be done about this, but it's important that those who want to offer multichannel TV via cable don't obscure the fact that someone somewhere along the line has to pay for these channels. In one way or another that someone ends up being the viewer! It's true that with ITV the viewer pays indirectly, when he purchases the advertised goods, but the point that stands out is that in the present economic climate and with Channel 4 and breakfast TV seeking revenue from advertisers there'll be little if anything left over to fund extra cable channels.

It would be wise to wait and see how Channel 4 develops over the next couple of years before making a firm decision on extra cable channels. The money to pay for them has to come from somewhere - the programmes too (what a prospect: thirty pictures of indistinct horses walking around in circles before they do their bit of running around in circles!). The awful possibility is that cable could become the Concorde of the TV industry. Then and not least there are the technical problems of what technology to adopt. We could all too well end up with the same sort of mess the telephone network has got itself into. The idea might be to get in first and claim world leadership, but if the technology isn't right the rest of the world won't be interested. Telephone equipment was once a major export industry: the UK's share of this market has declined substantially over the last decade however, largely as a result of not being able to offer the type of equipment wanted.

Servicing Thyristor Line Timebases

LARGELY due to advances in colour c.r.t. scan coil design, the thyristor line output stage has become obsolete. It's a very good system to use where the line scan coils require large peak currents with only a moderate flyback voltage - an intrinsic characteristic of toroidally wound deflection coils. Many sets fitted with 110°, narrow-neck delta-gun tubes used a thyristor line output stage - for example those in the Grundig and Saba ranges and the Finlux Peacock. The circuit continued to find favour in earlier chassis designed for use with in-line gun tubes, examples being found in the Grundig and Körting ranges - also the Rediffusion Mk. III chassis. Deflection currents of up to 13A peak-to-peak are commonly encountered with 110° tubes, with a flyback voltage of only some 600 V peak-to-peak. The total energy requirement is of the order of 6 mJ , which is 50 per cent higher than modern 110° tubes of the 30AX and S4 variety with their saddle-wound line scan coils.

Circuit Operation

The basic thyristor line output stage arrangement used in all these chassis is shown in Fig. 1 - it was originally devised by RCA. The part to the right of the tuning capacitance acts in exactly the same manner as a transistor line output stage, with the scan thyristor Th2 replacing the transistor. The thyristor is switched on about half way through the forward scan, the efficiency diode D2 providing the initial part of the line scan (left-hand side of the screen). The scan coils and line output transformer (used to generate the e.h.t. plus various other supply lines and pulse waveforms as required) are a.c. coupled, via the scan-correction capacitor C5 and C6 respectively.

The problem with a thyristor is that it can be turned on at its gate but not off. To switch a thyristor off, the current flowing through it must be reduced below a value known as the hold-on current. This is the main function of the components on the left-hand side - the line generator, the flyback thyristor with its parallel diode and the commutating coil. During the forward scan, the tuning capacitors are charged from the h.t. line via the input and commutating coils. The line generator produces a pulse to trigger the flyback thyristor Th1 - this occurs just before the actual flyback. When Th1 switches on, the junction of the'

Fig. 1: The basic thyristor line timebase circuit.
input coil and the commutating coil is momentarily connected to chassis. The tuning capacitance and the commutating coil then resonate, producing a pulse which draws current via the scan thyristor. Since this current flow is in the opposite direction to the scan current flow, the two cancel and the current flowing via the scan thyristor falls below the hold-on current. Th2 is thus switched off, and the scan coils resonate with the tuning capacitance to provide the flyback action.

So much for the basic action. A secondary winding coupled to the input coil produces a pulse to switch the scan thyristor on, in conjunction with the shaping/delay network L1, C4, R1. The tuning capacitors are usually arranged in the T formation shown to reduce the values required and the voltages developed across them. In practical circuits the input and commutating coils are usually combined in a single unit which for obvious reasons is generally known as the combi coil. The main point not so far mentioned is stabilisation. There are two approaches to this. In earlier circuits a transductor was included in parallel with the input coil to vary the impedance in series with the tuning capacitance. This was driven by a transistor which was in turn controlled by feedback from the line output transformer. A more efficient technique is used in later circuits, with a current dumping thyristor in series with the input coil.

Practical Circuit

As a typical example of the earlier type of circuit, Fig. 2 shows the thyristor line output stage used in the Grundig 5010/5011/6010/6011 series. Td1 is the regulating tranductor which is driven by Tr506. Ty511 is the flyback thyristor (commutating thyristor might be a better name), Ty518 the scan thyristor, Di518 the efficiency diode and C516/7/8 the tuning capacitance. The scan coils are coupled via C537, while C532 provides coupling between the primary winding of the line output transformer and chassis. A transductor (Td2) is used for EW raster correction. The combi coil also feeds 1.t. rectifiers from its secondary windings.

Component Problems

The only problem with this type of circuit is the large amount of energy that shuttles back and forth at line frequency. This places a heavy stress on certain components. Circuit losses produce quite high temperatures, which are concentrated at certain points, in particular the combi coil. This leads to deterioration of the soldered joints around the coil, a common cause of failure. This can have a cumulative effect, a high-resistance joint increasing the local heating until the joint becomes well and truly dry - a classic symptom with some Grundig sets. The wound components themselves can be a source of trouble, due to losses - particularly the combi coil and the regulating transductor. Later chassis are less prone to this sort of thing, partly because of the use of later generation, higher efficiency yokes but mainly due to more generous

Fig. 2: Practical thyristor line output stage circuit used in the Grundig Models 5011 and 6011 (there were minor variations in the earlier 5010/6010). The over-voltage circuit R513/Di513/Di514 is used in later models -if the voltage at tag con the line output transformer exceeds 68V, zener diode Di514 conducts, triggering Ty511 so that the overload cutout operates. The clamp circuit connected between points A and B was incorporated in earlier models to protect Ty511.
and better design of the wound components.
The ideal dielectric for use in the tuning capacitors is polypropylene (either metalised or film). It's a truly wonderful dielectric - very stable, with very small losses, and capable of operation at high frequencies and elevated temperatures. It's also nowadays reasonably inexpensive. Unfortunately many earlier chassis of this type used polyester capacitors, and it's no surprise that they were inclined to give up. When replacing the tuning capacitors in a thyristor line output stage it's essential to use polypropylene types - a good range of axial components with values ranging from $0.001 \mu \mathrm{~F}$ to $0.47 \mu \mathrm{~F}$ is available from RS Components, enabling even non-standard values to be made up from an appropriate combination. Using polypropylene capacitors in place of polyester ones will not only ensure capacitor reliability but will also lower the stress on other components by reducing the circuit losses (and hence power consumption).

The thyristors are also liable to fail, as are their parallel diodes. Earlier devices were less reliable than their successors. Since all thyristor line output stages operate in the same way and under similar conditions, the use of later types of thyristors and diodes in earlier circuits is a matter of mechanical rather than electrical considerations. One important point should be noted: the scan thyristor is a faster device and often has a higher voltage rating than the flyback thyristor. The simplest course is to keep in stock some of the later scan thyristors that incorporate an efficiency diode - suitable types are the RCA S3900SF and the Telefunken TD3-800H. The Telefunken device is in a TO66 package (and can be obtained quite cheaply) while the RCA type is in a TO220 package. Either type can be used in the scan or flyback positions and can also be used as a replacement for the regulating thyristor used in later designs instead of
a transductor. Whenever replacing a thyristor in the line output stage it's good practice to replace the parallel diode at the same time. Using one of the above recommended devices will do this automatically, since the thyristor and its parallel diode share the same encapsulation - always remember to remove the old diode when this is a separate device however, as some can exhibit high-voltage leakage/breakdown which is not evident from a quite check with the Avo.

Apart from the wound components (including the line output transformer), the thyristors and their parallel diodes and the tuning capacitors several other components are prone to failure. These include the tripler, scan/flyback rectifier diodes used to provide various supply lines, surge limiting resistors, the scan coil coupling/scan correction capacitor (replace with a metalised polypropylene type) and regulator components such as the thyristor in later types and the transductor driver transistor in earlier circuits.

Basic Fauft Conditions

All chassis that use a thyristor line timebase incorporate a trip of some sort. The type varies from chassis to chassis. Early Grundig sets have a mechanical cutout; the Saba H chassis uses a thyristor and solenoid to open the mains on/off switch; a common arrangement consists of a thyristor in series with the h.t. line and a control transistor which shorts the thyristor's gate and cathode in the event of excessive current demand (this gives audible tripping at about 2 Hz). Some sets incorporate both excess current and over-voltage trips, but most have just the former. There are two basic fault conditions: when the excess current trip is activated and the set goes dead, or no e.h.t. with the trip not activated.

Fig. 3: Components connected to the input and rectifier windings on the combi coil in the Finlux Peacock. The commutator winding is connected between pins 5 and 8.

The first condition is usually due to a line timebase fault, the most common being a short-circuit flyback thyristor or its parallel diode. A straightforward resistance check will sort this out. If this is not the case, short-circuit the scan thyristor by soldering a wire link between its anode and cathode. This will prevent any drive to the scan coils and the line output transformer. If the tripping stops, the fault could be due to the tripler, the line output transformer, a rectifier diode fed from a winding on the latter or a short in a circuit supplied by a scan rectifier diode. If the trip continues to operate and the flyback thyristor/diode is not the culprit, the most likely causes are incorrect drive to this thyristor - if possible check with a scope against the waveform given in the manual - or a rectifier diode fed from the combi coil. As an example of the latter, Fig. 3 shows the arrangement used in the Finlux Peacock: the electronic trip will operate if either D503 or D504 goes short-circuit, a fairly common fault on these sets. The diodes can also go open-circuit/high resistance to give the no sound with field collapse symptom, but that's another story (our apologies for referring to the diodes as D603/4 in the September 1981 issue, page 583).

When the set is dead, h.t. is present and the trip is not activated, suspect the following: the scan thyristor, the efficiency diode, the line output transformer, the scancorrection capacitor, or lack of drive to the scan thyristor.

Dry-joints can be the cause of any of these basic fault conditions, depending on the actual circuit and where the dry-joint has occurred.

Other Symptoms

Hairline cracks in the ferrite core of a wound component can give rise to strange symptoms since this upsets the delicate balance of the tuning arrangements. There will usually be excessive current which will probably cause the trip to operate. Alternatively the fault may be incorrect line frequency which cannot be set by the line hold control. This fault can also give rise to excessive e.h.t., which can in turn produce a chain reaction of destruction, e.g. the tripler is a common victim as are the two line output stage thyristors.

Excessive e.h.t. leading to instant destruction of these components may also be due to open-circuit line scan coils or the connections to them. A quick resistance check done on the board itself will eliminate both the coils and the leads/connectors.

Excessive e.h.t. with foldover in the centre of the screen and cooking in the tube's first anode supply network occurs in the Grundig 5010 series when L515 in the scan thyristor's trigger circuit (see Fig. 2) goes shortcircuit. The reason for this situation is that the thyristor is triggered on early. Another common fault in these sets is failure of Di504/R504 - failure of one seems to affect the other, so both should be replaced. The usual symptom is fuzzy verticals and a sawtooth effect on diagonals. The trip may operate, possibly after period of operation. These components set up the transductor's operating bias.

Linearity problems are usually caused by the regulator circuit, which can also be responsible for line "hunting". In the event of lack of width in the earlier type of circuit, check for dry-joints in the regulator circuit and suspect the control transistor.

Foldover on the left-hand side of the screen can be caused by an open-circuit flyback diode. Foldover at the centre of the screen with greatly reduced width is the symptom when the efficiency diode goes open-circuit the trip may or may not operate.

Unusual interference patterns on the screen, best viewed with the contrast control turned to minimum and the brightness control advanced until a distinctly visible but not over bright white raster is obtained, can be due to the tripler if there's curved patterning on the extreme lefthand side of the screen, the regulator clamp diode (Di505 in Fig. 2) if there's curved interference just to the left of centre, or the flyback thyristor drive circuit if there's a single vertical line of patterning about four fifths of the way to the right of the screen.

Footnote

The aim of this article has been to provide a general guide to servicing rather than to list faults common to particular models. Much useful information on individual chassis with thyristor line output stages has appeared in previous issues of Television - refer to the following as required:

Asa 6000 series: May 1981.

Grundig 5010/5011/6010/6011 etc.: November 1976.
Körting 5507/55636 20in. PIL tube model: March 1979.
Saba H chassis: March 1978.
Zanussi BR1026: March/April 1980.
A final footnote on the Finlux Peacock, since little information has been published on this. It's not unusual to find field collapse due to R504 (see Fig. 3) having gone open-circuit. Replacement may restore normal results but it's as well to check the voltage developed across this resistor. $2-2.5 \mathrm{~V}$ is normal but anything above this should be investigated - in particular replace the biasing diode(s) (three 1N4148s in early sets, a single STV3 in later ones) in the field driver stage, using two 1 N 4001 diodes in series.

In early sets there's a 10Ω resistor with a shorting link in series with these diodes, in later sets two 39Ω resistors are fitted in parallel. Fit a single 39Ω or 47Ω resistor in this position to avoid the possibility of a crossover line at the centre. In the event of slight bottom foldover check for 31 V across C505. If this voltage is low, one or both of the rectifiers D503/4 could have a high forward resistance, one of the associated coils L501/2 could be dryjointed, the printed circuit board could be cracked if a faulty BYX 55 has been replaced heavy-handedly, or C505/6 could be open-circuit.

PANELS AVAILABLE

Ex-equipment - complete but untested - all makes.

ONLY CELTEL OFFERS

1. Best possible quality at the lowest cost.
2. Mixed loads delivered directly from source to your door at unbeatable prices.
3. Even greater discounts for bulk purchases CALL BRAINTREE (0376) 43685 FOR OUR 24 HOUR SERVICE!

OPMNING HOURS BRAINTREE
Mon-Fin $\quad 9-6 \mathrm{pm}$ Mon-Fin $10-5 \mathrm{pm}$ Saturday $9-3 \mathrm{pm}$ Saturday $10-1 \mathrm{pm}$

Warmers Mill, South St. Braintree, Essex. Tel; (0376) 43685 10 Shacklewell Rd. London N16. Telephone; 01-249 9265

00K
 Phone: LUTON BEDS. 38716 OPPORTUNITIES TRADE SALES

ALL SETS GUARANTEED COMPLETE
OVER SIX HUNDRED SETS ALWAYS IN STOCK

Philips G8; Pye
Thorn Sets i.e.
3000 series, 8000 series, 9000 series Murphy, Bush, Decca, GEC

All from
£20.00
Mono's from:
£2.00
ALL MODELS
All include VAT
OPPORTUNITIES
9A, Chapel Street, Luton, Beds. LUTON 38716
9.30-6.00 p.m. Weekdays, $10.30-1.00$ p.m. Sundays.

Interested in Television Servicing? Try a ZED Pack. Effect Repairs at Minimum Cost.

21	300 mixed $\frac{1}{2}$ and $\frac{1}{4}$ watt and miniature resistors	$£ 1.95$	Z20
22	150 mixed 1 and 2 watt resistors	$\underline{1} .95$	
23	300 mixed capacitors, most types amazing value	£3.95	221
24	100 mixed electrolytics	E220	222
25	100 mixed Polystyrene Capacitors	$\Sigma 220$	223
26	300 mixed Printed Circuit Components	$£ 1.95$	
27	300 mixed Printed Circuit resistors	£1.45	224
$\mathbf{Z 8}$	100 mixed High Wattage Resistors, wirewounds etc.	$\underline{2.95}$	$\mathbf{Z 2 5}$ Z27
29	100 mixed Miniature Ceramic and Plate caps	$£ 1.50$	228
210	25 Assorted Potentiometers	$£ 1.50$	
211	25 Assorted Presets, Skeleton etc.	$\underline{1.00}$	229
212	20 Assorted VDR's and Thermistors	$£ 1.20$	Z30
Z13	1 lb Mixed Hardware, Nuts, Bolts, Selftappers, "P" clips etc.	$\underline{1.20}$	231 $\mathbf{Z 3 2}$
214	100 mixed New and marked transistors, all full spec. includes:		232 $\mathbf{2 3 3}$
	PBC108, BC148, BF154, BF274,		234
	BC212L, BC238, BC184L and/or Lots of similar types ONLY	£4.95	235
(Z14A)	200 Transistors as above but including power types like BD131,		236
	2N3055, AC 128, BFY50 etc.	$\underline{19.95}$	$\mathbf{2 3 7}$
215	100 Mixed Diodes including:		238
	Zener, Power, Bridge, Signal, Germanium, Silicon etc. All full		239
	spec.	¢4.95	
216	20 IN4148 Gen Purpose Diodes	$\underline{1.00}$	240
217	20 IN4003/10D2	¢1.00	241
218	20 Assorted Zeners.	11.50	242 $\mathbf{2 4 3}$

Z18 20 Assorted Zeners.

SPECIAL OFFER

Etch Kit with Instructions, 150 sq ins Paxolin Board, 1 Nylon Etch Resist Tray, Set of 3 Etch Pens, Tweezers, Abrasive Cleaner, Thermometer, 1 Ib

ELECTROLYTIC	
$1 \mu \mathrm{f} 63 \mathrm{v}$	20 for $¢ 1.00$
1uf 350v	10 for f 1.00
$2.24563 v$	20 for $£ 1.00$
4 $\mathrm{f}^{\text {f }} \mathbf{3 5 0} \mathrm{v}^{*}$	10 for $£ 1.00$
$22 \mu \mathrm{f} 16 \mathrm{v}$	20 for El .00
$100 \mu \mathrm{f} 25 \mathrm{v}$	20 for $\mathbf{f 1 . 2 0}$
$160 \mu \mathrm{f} 25 \mathrm{v}^{*}$	20 for El .50
330pf 25v	10 for $£ 1.00$
$400 \mu \mathrm{f} 40 \mathrm{v}^{*}$	8 for $£ 1.00$
470رf 25v	10 for E 1.00
$470 \mu \mathrm{f} 35 \mathrm{v}$	8 for $£ 1.00$
$1000 \mu \mathrm{f} 16 \mathrm{v}$	10 for $£ 1.00$
1000uf $25 \mathrm{v}^{*}$	8 for $£ 1.00$
$1000 \mu \mathrm{f} 35 \mathrm{v}$	6 for $£ 1.00$
*Axial. All others are Radial.	

CAN TYPES		BC154, BC149. BC157, BF195, PBC108, BF393S 2N3702, BC 148B, BC 159 ,	
$100+200350 \mathrm{v}$	51.00	ZTX107, ME8001,	
$2000 \mu \mathrm{f} 100 \mathrm{v}$	f1.00	BF324	
-1000رf 100v	60p	12 of one type	$\underline{1.00}$
$2.200 \mu \mathrm{~F} 40 \mathrm{v}$	60p	Any 6 packs of 12	25
2,200uf 63v	70p	2N305SH	60 p each
$3.500 \mu \mathrm{mf} 3 \mathrm{v}$	50p	BD181	50p each
4,500رf 35v	60 p	BD131	4 for $\mathbf{1 1 . 0 0}$
220uf 400v ITT/RBM	¢1.00	BD132	4 for IL 1.00

including:	
Pushbutton, Slide, Multipole,	
Miniature etc. Fantastic Value	£1.20
100 Assorted Silver Mica caps	£2.20
10 Mixed TV convergence Pots	£1.00
20 Assorted TV Knobs including:	
Push Button, Aluminium and	
Control types	$\boldsymbol{¢ 1 . 2 0}$
10 Assorted Valve bases	
B9A, EHT, etc.	$\boldsymbol{1 . 0 0}$
10 Spark Gaps	£1.00
20 Assorted Sync Diode Blocks	£1.00
12 Assorted IC Sockets	£1.00
20 General Porpose Germanium	
Diodes	$\boldsymbol{1} .00$
20 Assorted Miniature Tantalum	
Capacitors. Superb Buy at	$\ldots 1.20$
40 Miniature Terry clips, ideal for small Tools etc.	
5 CTV Tube Bases	$\varepsilon 1.00$
10 EY87/DY87 EHT bases	$\underline{1.00}$
$20 \times$ PP3 Battery Connectors	$\boldsymbol{1 1 . 0 0}$
$6 \times$ Miniature "Press to Make"	
Switches, Red Knob	$\boldsymbol{1 1 . 0 0}$
12 Sub Min S.P.C.O. Slide	
Switches	$\mathbf{1} .00$
12 Min D.P.C.O. Slide Switches	£1.00
8 Standard 2 Pole 3 Pos Switches	$\boldsymbol{1} .00$
$4 \times$ HP11 Batt Holders	
(2×2 Flat type) 4	. 00
3.5 mm Jack Sockets, switched,	
100 Miniature Reed Switches	£2.30
100 Subminiature Reed Switches	$\underline{4.20}$
20 Miniature Reed Switch	£1,00
Subminiature Reed Switches	£1.00

TO3 Mounting kits (BU208) 8 for $\mathbf{6 0 p}$ TO220 Mounting kits (TIP33) 10 for 60 p TO126 Mounting kits (BDI31)

12 for 60 p
Pack of each Mounting kit. All include insulators and washers $\quad £ 1.50$ 3a 1000v Diodes (IN5408 type)

Brushed Aluminium Push Button

 Knobs, 15 mm long $\times 11 \mathrm{~mm}$ Diam.Fit standard $3 \frac{1}{2} \mathrm{~mm}$ square shafts
10 for $\mathbf{\$ 1 . 0 0}$
Z50 Chrome finish $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ Diam
as above $\quad 10$ for $£ 1.00$
251 Aluminium Finish. Standard Fitting
Slider Knobs. (Decca) 10 for $\mathbf{\$ 1 . 0 0}$
252 Decca "Bradford" Control Knobs
Black and Chrome. $\frac{1}{8^{\prime \prime}}$ Shaft 8 for $\mathbf{£ 1 . 0 0}$ 253 Tuner P/B Knobs, Black and Chrome. Fit most small Diam Shafts, ITT, THORN, GEC etc. 8 for $£ 1.00$ 254 Spun Aluminium Control Knobs (ITT) $\frac{1}{4}$ " Shaft, suitable for most sets with recessed spindles 8 $255 \quad 14$ Pin DIL I.C. Sockets $\quad 12$ for $£ 1.00$ 25616 Pin Quil I.C. Sockets 12 for $£ 1.00$ 25716 Pin DIL TO QUIL I.C. Sockets

10 for $£ 1.00$
$258 \quad 22$ Pin DIL I.C. Sockets $\quad 10$ for $£ 1.00$ 259 B9A Valve Bases P.C. Type 20 for $£ 1.00$ $260 \quad 0.47 \Omega \frac{1}{2}$ Watt Emitter Resistors

40 for $£ 1.00$

V.C.R. BATTERY PACKS.

HITACHI PORTABLE V.C.R. Nicad pack

Type VTBP60E
Brand New and Boxed 3 for 550
THORN "VIDEOSTAR" 3V25/26 Nicad pack. Type VA214. Also suitable for J.V.C. etc.
These are untested units which contain $10 \times$ "C" slze (HP1I) Nicads, which alone would cost in excess of E20. A Real Bargain at
$\mathbf{1 0}$ each 3 for $£ 25$
MISCELLANEOUS
BG100 tripher for CVC45 et.
ANEOUS
Line output transformer for RBM 823A 4.25 emeh
ITT VC200 4P/B Transistor Tuner. Suitable for some Pye and Philips sets. 3 hole fixing
only 23.50 and Philips sets. 3 hole fixing $\quad \mathbf{2 . 7 5}$ each Decca Bradford Tuners, 5 button type 36. $\quad 13.00$ e
$2 t^{\prime \prime} \times 2^{\prime \prime} \times \sum^{\prime \prime}$ complete with 9 foot coaxial lead and plug.
With connection data
GEC Hybrid 2040 series Focus Assembly with lead and ench, 2 for $\mathbf{E 5 . 0 0}$
VDR rod \quad K2.00 each, 3 for $£ 5.00$ Convergence Panel for above. Brand new leads and plug. $\mathbf{5 3 . 0 0}$ ewh GEC 2010 Transistor Rotary Tuner with AE, SKT, and
 Q Q2SB equivalent to ITT PYE 697 Line and power Panel. damaged with some components missing but ideal for spag wo sore 2 for 25.00 components missing but ideal for spares $\quad \mathbf{G} \mathbf{2 . 2 0}$ eandig UHF/VHF Varicap Tuner for 1500 GB
 EHT Lead with Anode cap (CTV) suitable for split Diodes

sets 1 m long

EHT Cable
Anti Corona Caps
30 p per metre 6 each, 3 for 51.50
Ancorona Caps $\quad 30 \mathrm{p}$ per metre. 10 metre 3 for $£ 1.00$

6 MHZ sound filers, 7 ff with fig 8 plug $\quad 60 \mathrm{p}$ eack, 3 for $£ 1.50$ 10.7 MHz Cerrmic Filters "Vernitron "TAIYO" type SOp eack, 3 for $£ 1.00$ PYE CT200 Conic Filters "Vernitron" FM4 50p each, 3 for fl 1.0 High quality Metal Coax Plug. Grub screw
 3.5 mm Jack Plug on 2 m of screened lead $\quad 60 \mathrm{p}$ emeh, 3 for $\mathrm{El.50}$ 3.5mm Jack Plug on 2 m of screened lead

SOp emeki, 3 for £ 1.50
3 for $£ 1.00$ Mains Neons

10 for EL .00

THEYRE BACK

We can now again offer our special TV BARGAIN PARCELS. These contain all manner of useful bits and pieces. Componepts, semiconductors, videogame boards etc, which we have accumulated over the past year and must clear as we need the space.
lkg 23.95
5 kg
29.95
$5 \mathrm{~kg} 59.95 \quad 10 \mathrm{~kg} \mathrm{f} 14.95$

2k2 Screenfood Revistors.
White ceramic, 9 watt. with fusible link
Phillips G8 Transductor.
EH.T. Discharge probe, with heavily insulated 81.28 each 8 foe 81,60 THYRISTOR. COP asem. 3 for 21.50 THYRISTOR CONVERGENCE POTS SS 106 (BT106)65p each $\begin{aligned} & 5 \Omega .10 \Omega .20 \Omega, 30 \Omega .50 \Omega .100 \Omega \\ & 200 \Omega .1 K .8 \text { of one type } £ 1.00 .8 \text { of }\end{aligned}$ 3 for $£ 1.50,10$ for $\mathbf{2 4 . 5 0} \begin{aligned} & 200 \Omega \text {. IK. } 8 \text { of } \\ & \text { ench type } \mathbf{£ 6 . 0 0}\end{aligned}$

Ferguson 3V29/30

The problem of the Ferguson 3V29/30 machines drifting off tune during the first couple of weeks was mentioned in this column last April. It's apparently due to the tuning potentiometers burning in: the recommendation is to run the machines for 24 hours prior to installation. If you have to keep retuning the set, fit the additional circuit shown in Fig. 1.
Ferguson have also had a problem with tape damage due to the insertion of slack tapes (mainly rented ones) in the machine. A modification kit, part number 00X6-419, has been introduced to alleviate this. It consists of a plastic collar and a plastic cap for the pinch roller. The collar is placed over the tension pole, positioning it farther back in the rest position and thus making it difficult for the slack tape to go to the wrong side of it. The cap makes a slack tape slide off the top of the roller on insertion instead of getting caught and damaged.
D.S.

Hitachi VT8000 Series

Several points are worth noting in connection with the Hitachi VT8000 series.

First, a hum bar on record with the VT8500 and VT8700 - this can sometimes be seen on playthrough, i.e. in the E-E mode. The cure is to fit a low-voltage (a Mylar type is suggested) $0 \cdot 1 \mu \mathrm{~F}$ capacitor across C 760 on the tuner PCB and to cut the pink lead (chassis connection) between the tuner board and the tuning preset board.

Secondly, tape damage after rewind. The problem is caused by the fact that the supply spool brake comes on fractionally before the take-up spool brake, or the latter slips slightly, when the machine stops after rewind. This results in a loop of tape which gets trapped in the cassette flap when the cassette is removed. There are two modifications for this, one mechanical and the other electrical. The former consists of filing a piece off one brake arm (see Fig. 2) to ensure that after rewind this brake comes on fractionally before the other one to prevent tape slack. The latter modification consists of fitting a small panel called the tape board next to the main board beneath the set, wiring this to the microprocessor as indicated (see Fig. 3). When the tape reaches the end on rewind, the rewind end sensor sends a signal to the microprocessor: this is detected by the tape board which instructs the machine to continue to rewind for a fraction of a second to remove any slack. It also does this when the machine is first switched on.

This is a very neat solution, but requires the rewind end sensor to detect the end of the tape: with machines such as the VT8500 and VT8700 that are fitted with the tape index system, if this is switched on during rewind the tape stops when the next index pulse occurs, so the modification circuit does not operate. With these machines it's advisable to do both modifications therefore.

This final point is not so much a modification as a problem arising from a production change. The fault is rather puzzling: a squeaking/rubbing noise comes from the tape transport system, the sound is warbled and the picture wavy. This usually happens only with certain tapes, and any alteration to the tape tension when the fault is
present will affect it. We finally tracked down the cause of the fault with help from Hitachi. It's due to the audio/control head resonating, a bit like a wine glass when rubbed with a damp finger. Apparently the head material was changed to improve the sound output and this problem showed up. All the faulty heads we've come across so far (we've changed eleven) have had the number 671 stamped on them, so this may be the batch that causes the problem. Certainly all the machines concerned were sold during March/April this year, though the fault didn't show up till a couple of months later. The replacement heads supplied by Hitachi are of a slightly different construction again, and don't exhibit the fault.
D.S.

Mitsubishi HS310B

A Mitsubishi HS310B would thread up normally but the spools wouldn't go round. On inspection we found that the pinch roller solenoid was failing to pull the pinch roller against the capstan: when it was pulled in manually,

Fig. 1: Tuning modification, Ferguson 3V29/30.

Fig. 2: Mechanical modification, Hitachi VT8000 series.

Fig. 3: Electronic modification, Hitachi VT8000 series.

Fig. 4: After-load switch arrangement, Mitsubishi HS310B.
the machine would run normally until the pinch roller once more disengaged, so the servos and motors were all clearly o.k.

The main control chip is IC5A0, the output from pin 36 of this driving the pinch roller solenoid. We established that this output was not present, but having read in past issues how reliable these 40 -pin brutes are we didn't immediately reach for the soldering iron. Much poring over the circuit diagram (why isn't it compulsory to include a good circuit description in all manuals?) revealed that one of the control inputs to IC5A0 comes via an analogue switch which is part of IC5A1. This switch is in turn controlled by the after-load switch S572 (see Fig. 4). The latter closes once the tape has threaded up completely, putting 12 V on the control pin (12) of the analogue switch which then closes, telling the control chip to operate the pinch roller solenoid.

We found that S572 was o.k. and was putting the 12 V on to pin 12 of the i.c. switch after the tape had threaded. The 12 V also appeared at both switch terminals however. Replacing IC5A1 cured the trouble - and 14 pins are a lot easier to cope with than 40 !
R.R.

Sanyo VTC5600P

Fault: Playback speed varies and line slip.
As with all servo faults, the first step is to check all the input and reference signals. This usually pinpoints the cause of the problem very quickly. In this case we found that the 50 Hz reference pulse was missing at S 403 , pin 8 , on servo board 1 . On tracing back to servo board 2, there were no pulses at pins $9 / 10$ of i.c. Q1315, but on switching to record the pulses were o.k. We then started to trace back on the playback side to try to find the elusive pulses. There was nothing at Q1316, and Q1312 was just putting out noise. This led us to the oscillator section of i.c. Q1322, which should have been oscillating at $31 \cdot 25 \mathrm{kHz}$. The circuit seemed quite lively, and changing the crystal cured the problem.
M.S.

JVC HR7700

Fault: Wow and flutter on playback sound with own recording. Prerecorded tapes play back o.k.

Yet another servo fault. Of all the machines that come into our workshop we find that about 50 per cent have mechanical faults, 30 per cent servo faults and 20 per cent all other types of fault. So it's important to know about servos!

We started with the servo 1 board. With the scope at the capstan sampling point (TP8) in the record mode there was no pulse on the rising slope of the trapezoid waveform. Moving back to TP7, there was still no pulse. TP7 is at pin 14 of IC12, this pin being linked to the tracking circuit. We checked the voltages around the associated transistor (X11) and found zero volts at its

Fig. 5: Part of the Sony C7's timer control circuit.
collector instead of 11.7 V - it was open-circuit. Replacing this pnp transistor restored correct operation.
M.S.

Sony $C 7$

Fault: Timer mode will not set (when pressing the timer button the red LED illuminates but the green LED stays on and all functions continue to work as normal).
This one involved us in delving into the timer control logic circuitry. Fig. 5 shows the bit involved. Diodes D2/4 and D106/7 form OR gates, sending timer "power on" signals to the power supply. We found that there was 12 V at each side of D107, as a result of which there was a continuous "power on" signal. This voltage was getting through the timer switch from the AND gate IC7 (output pin 10). Now pin 8 of this gate was low and pin 9 high, so the output should have been low. Replacing IC7 cured the problem.
M.S.

Sanyo VTC5300P

Fault: Varying speed playback of own tapes.
After replacing a noisy capstan motor (which is no mean task) we discovered that this machine played back its own tapes with speed variations - the playback was correct with a prerecorded tape. It seemed therefore that the control pulses were not being recorded correctly. We checked for the 50 Hz pulse at a convenient point on the servo panel at the left-hand side. No signal was present. This led us back to the system control panel beneath the machine, then to the video 2 circuit. We eventually found that the signal at TP1239 (collector of transistor Q1239) contained a lot of "mush" which was swamping the reference pulses on record. Replacing this transistor which showed no signs of being defective when tested produced a nice, clean reference pulse to the servo panel and cured the fault.
M.S.

Ferguson 3V29

Fault: Head drum rotating at 45 r.p.m. (perhaps it thought it was a record player!).

The engineer who had been looking into this one shot off on holiday, leaving me to pick up the pieces. He'd

Fig. 6: Part of the Ferguson 3V29's drum servo circuit.
tried replacing the two i.c.s (IC201 and IC202) in the motor drive amplifier circuit, so I decided to start from scratch. As a first step I checked the drum motor stop circuit, i.e. the input to transistor Q202 etc. Everything was o.k. here. The drive output at pin 7 of IC202 was then found to be low (see Fig. 6). The output comes from an operational amplifier within the i.c., the inputs being pins 5 and 6 , both of which should be at about $6 \cdot 2 \mathrm{~V}$. Pin 5 was in fact at 0.4 V . The l.t. voltage was correct at the supply side of R209 while the voltage at pin 10 of IC201 was 4.25 V instead of 2.9 V . This proved that the servo system was working correctly (a high voltage is required from the control frequency-to-voltage converter when the drum speed is low and vice versa). With higher vol-
tages at each end of R209/R211 than at pin 5 of IC202 it had to be either the i.c. or the filter capacitor C207. It turned out that C207 was leaky.
M.S.

Philips N1700

Fault: Chews tape for no apparent reason.

Here's a simple fault that took a long time to deal with due to its intermittent nature. What was happening was that after half to one and a half hours the friction motor (tape take up on play and record) developed a null spot and would stop, causing the tape to spill into the machine and get fouled up. Replacing the motor cured the problem.
M.S.

Teletopics

LATEST TX9s

The latest version of the Thorn TX9 chassis contains one major change and one minor one. The major change is the use of a chopper power supply on the new main panel, type PC1044. It's of the Siemens self-oscillating type, with a TDA4600 control i.c. - the same arrangment as used in the Decca/Tatung 120/130 series chassis (see description in the January 1982 Television) but here providing 18 V and 115 V outputs. The new main panel can be substituted for the earlier ones (PC1001 and PC1040) but for battery operation must be used in conjunction with add-on battery converter type TA126 which has been specifically designed for use with the PC1044. A quick way of identifying the new panel is the changed position of the mains fuse FS1, which is now positioned behind the tuner (towards the tube) as viewed from the rear of the receiver. The new power supply results in reduced weight, a lower component count and simplified operation.

The minor change is the use of an SL1432 i.c. to drive the SAW filter on the new i.f. panel type PC1531. The SL1432 has an a.g.c. input (pin 7), dispensing with the need for an r.f. a.g.c. control (RV36). The new a.g.c. arrangement gives improved performance in the presence of strong adjacent channel interference.

Whilst on the subject of TV chassis, there's a new one from Philips, the CTX. This is initially being used in Models CT2006 and CT2016 (14 and 16in. respectively). The circuitry is arranged on a single main panel instead of the mother-daughter-board system used in previous Philips chassis. The sets are produced in the Philips' Singapore plant, though it's understood that a 20 in . version will go into production in the UK. More details will be given when we've had an opportunity to examine the circuit.

VIDEO PROSECUTIONS

Can a prerecorded video cassette be an obscene publication? A recent case brought by the Director of Public Prosecutions against a north London video software distributor at Willesden magistrates court has. produced a decision. All 590 copies of two horror tapes entitled Death Trap and Driller Killer were seized, the maximum action that could be taken under section 3 of the Obscene Publications Act. The decision to prosecute under section 3 was described as "exceptional", the prosecution being brought before the magistrates as a test case. Dealers are warned that future prosecutions will be brought under section 2 of the Act: this can involve a substantial fine or prison sentence.

TVROs AVAILABLE

In case you've not yet come across these initials, TVRO stands for television receive only, a term that's come to be used for satellite TV receiving terminals. Although there's not all that much by way of signals so far, TVROs are beginning to come on the market. March Microwave Ltd. of 112 South Street, Braintree, Essex (telephone

0376 44277) have available a terminal for reception in the 12 GHz broadcast band. The terminal is known as the Satcom 1200 and the price of a complete system is around $£ 3,000$ - the price varies according to specification. Gallium arsenide f.e.t.s are used in the head unit, which has a low-noise amplifier and down converter. The unit has a stable, low-drift performance across a minimum bandwidth of 500 MHz . This is complemented by an indoor unit which can provide outputs for standard domestic TV receivers or for a cable distribution network. The system has been designed to be compact and affordable for business, educational, cable and home TV use.

South West Aerial Systems have introduced a satellite receiver system for use in the 4 GHz band. This comprises a dish aerial, head unit and indoor unit which can provide outputs on ch. E3, ch. E36 or at video/audio. The inclusive cost of the system is around $£ 1,700$. An advertisement appears elsewhere in this issue.

SONY COMMITTED TO HIGH-DEFINITION TV

Speaking at the recent International Broadcasting Convention at Brighton, Sony's deputy president Masahiko Morizono said that the company had made "a firm commitment" to manufacture of the Japanese 1,125-line high-definition TV system (see report in the September issue, page 596) though the production time scale has not yet been decided. Prototype cameras, VTRs, display systems and fibre-optic links were all on display at the Convention. Pilot movie production using the system has already been undertaken in the USA, but its use for TV purposes will have to await a decision on standards for future satellite use.

ELECTRONIC HOBBIES FAIR

The Electronic Hobbies Fair, sponsored by "Everyday Electronics", "Practical Electronics" and "Practical Wireless", is being held on November 18th-21st at Alexandra Palace, N. London (nearest tube station Wood Green). The aim is to provide the biggest and best ever event for the electronic hobbies enthusiast.

TUBE REBUILDING

TSR Vacuonics Ltd. have opened a new factory at St. Andrews, Fife for the rebuilding of Sony TV tubes. Mullard have announced the end of delta-gun colour tube rebuilding at their Simonstown plant, due to falling demand. In-line gun tubes will continue to be rebuilt and a stock of delta-gun tubes sufficient to meet demand well into the future is being held.

GEC-McMICHAEL

GEC (Radio and Television) Ltd., the GEC marketing arm for consumer electronic products, has been merged with another GEC subsidiary McMichael. The managing director of the newly formed GEC-McMichael will be McMichael's managing director David Wright. Old timers will recall that McMichael was once a leading brand in the radio and television field - their earliest products were radio kits which were first marketed in 1920 . The company was bought by Sobell in the mid-fifties, the joint company subsequently becoming part of GEC. McMichael has remained as a separate entity however,
concentrating in recent years on defence electronics. The intention is to take advantage of the growing opportunities in the television field by introducing new products developed by McMichael's research organisation. Such products will include satellite terminals and an up-market modular TV system which was shown in prototype form at the recent International Broadcasting Convention.

RADIO AND TELEVISION SERVICING

The latest of the annual Radio and Television Servicing books, covering 1981-2 models, has been published by Macdonald Educational, Holywell House, Worship Street, London EC2A 2EN at $£ 19 \cdot 50$. As usual, there's a wealth of servicing data on the latest TV sets and other consumer electronic products.

V2000 PORTABLES

Further details of the new portable VCRs using the V2000 system have now been released by Philips and Grundig. The Philips VR2220 weighs $4 \cdot 6 \mathrm{~kg}$ (exclusive of battery and cassette) and measures $274 \times 219 \times 117 \mathrm{~mm}$: it uses standard V2000 cassettes and provides a recording time of an hour per charge of its lead-acid, slot-in battery. It's partnered by the VR2120 tuner/timer/mains adaptor/charger unit and the VK4020 camera. The recorder itself is expected to retail at around $£ 550$, with the tuner/ timer at $£ 250$ and the camera at $£ 500$. Features include automatic assembly editing to give clean cuts between shots and audio dubbing to enable an additional sound track to be recorded.

The Grundig machine, Model VP200, is rather different, using a mini cassette which gives an hour's recording time per side and fits into an adaptor for use with a standard machine. The dimensions of the VP200 are $185 \times 214 \times 70 \mathrm{~mm}$ and the weight 2.1 kg - the cassette measures $108 \times 72 \times 21 \mathrm{~mm}$. The machine has been shown at W. German exhibitions but no decision on a UK launch date has been made.

On the disc front, Philips have reduced by $£ 50$ the suggested prices for LaserVision players - the new prices are $£ 399$ for the standard version and $£ 449$ for the version with remote control. In addition, a gift package of three video disc albums claimed to be worth $£ 50$ gives a total saving of $£ 100$.

WILLOW VALE'S TRADE SHOW

Willow Vale Electronics Ltd. are holding a trade show on Wednesday, January 26th at the Caversham Bridge Hotel, Reading, from 11.30 a.m. to 8.30 p.m. Admission is by invitation obtainable on request by telephoning 0734884444.

TRANSMITTER OPENINGS AND CHANNEL 4

Antiference have produced a useful two-colour broadsheet giving facts and guidance on Channel 4 TV reception. It includes a comprehensive u.h.f. transmitter list with the opening dates (where known) of the various Ch . 4 transmitters, and highlights the opportunities the new service will give to "aerial people" and those in the TV trade. Copies can be obtained from Antiference Ltd., Aylesbury - telephone 029682511.

A new 22-page edition (dated August 1982) of the IBA's Pocket Guide to ITV, Channel Four and ILR sta-
tions is now available. This includes the latest information on Ch. 4 transmitter openings, also current and future ILR services and closing dates (where known) for Band III transmitters.
The following relay transmitters are now in operation: Cathcart, Glasgow TV4 ch. 53, BBC-1 ch. 57, Scottish Television ch. 60, BBC-2 ch. 63.
Cushendall, Antrim BBC-1 ch. 40, Ulster Television ch. 43, BBC-2 ch. 46, TV4 ch. 50.
Cushendun, Antrim BBC-1 ch. 22, TV4 ch. 25, BBC-2 ch. 28, Ulster Television ch. 32
Dunure, Strathclyde BBC-1 ch. 40, Scottish Television ch. $43, \mathrm{BBC}-2$ ch. 46, TV4 (future) ch. 50.
Glenariff, Antrim TV4 ch. 54, BBC-1 ch. 58, Ulster Television ch. 61, BBC-2 ch. 64.
Ipswich, Suffolk BBC-1 ch. 22, Anglia Television ch. 25, BBC-2 ch. 28, TV4 ch. 32.
Largs, Strathclyde BBC-1 ch. 39, Scottish Television ch. 42, BBC-2 ch. 45 , TV4 (future) ch. 49. Polarisation horizontal.
Orton, Cumbria BBC-1 ch. 41, Border Television ch. 43, BBC-2 ch. 46, TV4 ch. 50.
Rye, Sussex Television South ch. 41, BBC-2 ch. 44, TV4 ch. 47, BBC-1 ch. 58.
Tillicoultry, Alloa TV4 ch. 53, BBC-1 ch. 57, Scottish Television ch. 60, BBC-2 ch. 63.
Wootton Courtenay, Somerset BBC-1 ch. 22, HTV West ch. 25, BBC-2 ch. 28 , TV4 ch. 32.
The above transmissions are vertically polarised unless otherwise stated.

THE COST OF CABLING

A report ("TV and Video Technology in the UK") from the Economist Intelligence Unit includes some interesting estimates on the cost of installing cable systems in the UK. The cost of providing a fibre-optic cable network covering 50 per cent of households would be of the order of $£ 5$ to $£ 20$ billion - or between $£ 500$ and $£ 1,500$ per household. A coaxial cable network would work out at around $£ 2$ to $£ 4$ billion to cover 50 per cent of households. When the cost of providing the services is added to this, it would appear that prospective users will find themselves faced with substantial charges. It's interesting to note that whilst the spread of cable networks in the USA has been rapid their profit performance has been patchy.

SERVICE BRIEFS

The following information has been received from Philips:
TX chassis: Whilst the volume control can be responsible for uncontrollable volume the TBA120AS intercarrier sound i.c. is more likely to be the cause.
G11 chassis: The type BYX55-600 diode used in one of the EW diode modulator positions (D3132) and as the 37 V rectifier (D3138) is no longer supplied as a replacement part. Diode type BYV95C is now being supplied as a substitute: it should be mounted 12 mm ($\frac{1}{2} \mathrm{in}$.) off the panel, well clear of surrounding components.
VR2022 VCR: A number of early production machines were fitted with a head servo panel whose print pattern differed from later production - the positive and negative 175 V supplies were interchanged at socket N 2 . When replacing this panel (U202) the 175 V supply connections should be checked and if necessary the cableform leads changed over.

Hey Constable!

Les Lawry-Johns

WE were snoozing peacefully at $04 \cdot 15$ the other morning. Our dreams were then interrupted by this earsplitting crash of broken glass. A horrible noise, difficult to describe and a bit frightening. "That bloody cat" I moaned.
"It's not the cat, it's the shop window" H.B. bawled, reacting quicker than me.

Rush down the stairs and switch on window lights. Just reaching the front door when I realise I'm stark naked (hot night). H.B. now at bottom of stairs with towel wrapped round her. Grab it - quicker than you could unveil a statue of Venus - and wrap it round lower regions. Open shop door and peep outside. No one to be seen. Whoever had smashed the window hadn't hung around for long and was nowhere in sight. Look at main window. Large hole on left side and scene of utter devastation inside. Large double housebrick lying amidst pile of broken glass and shattered display stands. It appeared that a portable TV set was missing.
"What did they get" asked H.B., now decently done up in her dressing gown.
"The daft buggers have only taken a monochrome portable. Hardly worth the effort" I said, checking to see that the remote control colour portable and the other more important items were still there.
H.B. went to phone the police whilst I dressed and got out the car to take a quick tour round, looking for any likely suspects on foot. Not a soul of course, so back to the shop to find that the police had arrived and were taking notes.

Getting the Facts

"Thirty eight, twenty four, thirty eight" Honey Bunch volunteered. That got me a bit as I couldn't quite see what her vital statistics had to do with it.
"They grabbed a portable TV, not my wife" I told the young officer.
"We have to have all the facts sir. Er, how old was the set?"
"How old! It'd only just been born, that's how old it was."
"Oh I see. It was new then?"
"It was new till that bloody brick hit it. I don't suppose it looks all that new right now. I've the make, model and serial number if that helps."
"Ah yes. Of course. Now how old are you sir?"
"Ninety four. What's that got to do with it?"
"Must keep a complete record sir. Now, do you keep a dog?"
"Yes, but he's not all that brave. Hides away if there's a loud noise. Only thing that upsets him is when someone stands on his mat. He bites them."
"Which mat is that sir?"
"The one you're standing on. I'll call him so that you can take a look."
"Please don't bother. Well, that's about all. If you find out who did it, let us know." And off he went.

Left alone we cleared out the window, swept up the debris and tidied up generally, waiting to get in touch with the glaziers who, bless them, had a new window fitted by mid-day.

Italian Interlude

My friend Geoff sold a TV set to an Italian family that lived nearby. They saw it working and paid the money, then popped it into the car and took it home. That same afternoon the lady returned waving her arms in the air. "Set no gooda. No goodatall. You owe me twelve pounds fifty. I take it now."

Well. Why twelve fifty? The set had cost a lot more than that. When the lady stopped bawling, Geoff ventured to ask.
"Becauser the set no go I kick electric fire. Now he no go. Cost twelve pound fifty to repair. Hur?"
"You kicked the fire, you pay for it. We'll pop round and fix the set for nothing, all right?" bargained Geoff.

Eddy looked up from the workbench and Geoff nodded to him. Eddy takes over. Soothing Eddy. Smarmy sod. Had the woman eating out of his hand in half a minute. Whipped her round to her house, retuned the set, from London to Bluebell Hill in thirty seconds and stayed for two hours. No more mention of the fire. I could do with a bloke like that. On second thoughts, perhaps not.

A Couple of Deccas

I'm not well acquainted with the Decca colour portable (70 series chassis), so when Len brought his in for me to look at I was a bit wary. He's one of our local characters, an electrician by trade. So I guessed he'd already been having some sort of a go at it. I normally only see him in the local when we (me and the dog) pop in for a quick one after our walk. This is early on in the evening, about six thirty, but by that time Len is usually sloshed. It was fairly early in the morning when Len arrived, sober (I think).
"It used to go when I hit it. Now it doesn't. There's obviously a dry-joint" diagnosed Len.
"What did you do to it?" I asked carefully.
"Well, as the picture went off but the sound would stay on till I hit it to bring the picture back, I thought the trouble must be in the tuner."
"Well I never. Brilliant. What did you do next?"
"Took the tuner out. When I put it back there wasn't any sound either."

The chassis swings up. So we did this and took a look at the tuner. It plugs into the panel, and it's possible to plug it in wrong. Not easy mind you, but Len had managed it.

So we took it out and had another go, finally refitting the clip to hold it in position. We now had sound but no raster, due to the line output stage not working. Slight pressure on the line output transistor subpanel restored normal operation, and inspection revealed that the panel could move independently of the transistor which was soldered to it. Resolder the base and emitter legs to the panel and there we are.
"Wife will be pleased" said Len. "She goes to bed early and this keeps her company."
"You don't get home till late then?" I said by way of conversation.
"Most often don't get home at all" said Len. "Usually sort of fall asleep in funny places."

So Len wandered off, leaving me to reflect on the odd
lives some people live. I couldn't ponder long because this young chap brought another colour portable in. Just had to be a Decca 70.
"It sort of went off" he explained. "Mum said if you hummed and harred about doing it, take no notice, just leave it for you to play with."
"I'll play with her if she talks like that" I threatened.
"That's what mum said you'd say. Mum's name is Joyce."
"I see. Yes well leave it for a couple of hours and I'll see what I can do. Give your mum my regards."

Fancy Joyce talking to her son like that. Let's see. How old would he be now? Well, must try to help the lad. Nice looking boy that.

So we looked at the Decca and didn't have to look far. The focus lead from the tripler was welded to a 27Ω wirewound which didn't look too happy with the wedding. It was just a matter of re-insulating the focus lead, dressing it away from any warm parts and replacing the 27Ω resistor, hoping that no other damage had been done.

Fortunately nothing else had been affected, and a nice picture was produced.

Another Constabulary Visit

In comes this good looking fellow. Introduces himself as Don Clark, Inspector (technical) with the county police.
"Calling about the smash and grab?" I asked.
"Heavens no. Don't deal with that sort of thing. Technical, electronics and all that stuff. You must come and see our headquarters. Think you'd find some of the things we've got interesting."
"I'd like that" I said, wondering what might happen if I paid a visit to the police headquarters.
"Just passing by and thought I'd pop in to say how much I enjoy reading that magazine of yours. That chap Chas E. Miller kills me. Really does."
"He and his friend Ike Hodge kill me too" I said. "Pop in again next time you're passing Don."

Focus on Portables

1: IF and AGC Circuits

George Wilding

MONOCHROME portables from many countries have been imported into the UK over the past decade, and there is great diversity in the circuitry they employ. To start with, the tuner units: though the varicap type is now the norm there are still some current models that use mechanical tuners - quite a variety of different types of mechanical tuners are to be found in earlier models. Many use a diode mixer for example, while the simple tuner unit used in the Sony TV144UK dispensed with an r.f. amplifier stage, incorporating just a diode mixer and a transistor oscillator. This was followed by a two-stage, wideband i.f. preamplifier.

The i.f. circuitry employed is also diverse. You may find a couple of chips preceded by a bandpass filter, a single chip preceded by a SAWF and its driver, a discrete component i.f. strip or, as previously mentioned, a transistor i.f. strip preceded by a preamplifier. Whilst the conventional diode is the usual type of vision detector employed in discrete component i.f. strips, it's not uncommon to find that a transistor is used for this purpose.

Interstage Coupling

Where discrete component circuitry is employed, many different collector load/interstage coupling arrangements are to be found. Coupling involves providing a good match between the comparatively high output impedance of one stage and the much lower input impedance of the following stage. Tuned transformers employing a suitable step-down ratio will meet this requirement, but tuned coils with impedance matching by means of a couple of capacitors or even just one capacitor are equally popular. Alternatively the coil may be tapped.

Fig. 1 shows the basic idea of capacitive impedance matching: the coil is tuned by C 1 and C 2 in series, the ratio of C 2 to C 1 determining the degree of coupling to the following stage - the larger the value of C 2 , and thus the lower its reactance at the signal frequency, the more
closely the tapping point approaches the live end of the coil. By the latter we mean the collector end, since the other end is decoupled by C3. Because of the latter condition, identical results would be obtained by connecting the capacitors between the collector of the transistor and chassis.

When only one capacitor is used to couple the signal to the following transistor, the latter's input capacitance may act as the second capacitor in the coupling/matching arrangement. Transformers and coils are commonly damped with a resistor to broaden the bandwidth - on occasion you may even find that $R C$ coupling is used.

Neutralisation

Whatever is done earlier in a discrete component i.f. strip, the final stage is usually transformer coupled to the detector. Neutralisation is also commonly employed in the final i.f. stage. The reason for this is that the types of transistor used in the final i.f. stage tend to have a larger feedback capacitance, whilst as the signal is at maximum

Fig. 1: Capacitive impedance matching between stages.

Fig. 2: Basic principle of neutralisation (a) plus some contrasting examples of neutralising and impedance matching arrangements ($b-d$).
amplitude the effect of any feedback will be much greater.

The simplest way of providing neutralisation is shown in Fig. 2(a). Here the l.t. supply is applied to an almost central tapping point on the i.f. transformer's primary winding, so that signals of opposite polarity will appear at each end. We can therefore connect a small capacitor (C1) whose value is equal to the transistor's collectorbase feedback capacitance from the top of the coil to the base so that the two feedback signals cancel out (neutralise each other) at the base of the transistor. If the tapping point on the coil is not central, we will still get opposite polarity effects but the value of the capacitor will have to be changed to compensate for the signal amplitude disparity at the two ends of the winding.

Fig. 2(b) shows the coupling/neutralising circuit used in the second i.f. preamplifier stage in the Sony TV720UK. The two series connected coils L155 and L154 are tuned by C160 and by C163/4 which also provide capacitive matching to the following stage in the manner previously described. Since the junction of L154/5 is live from the signal point of view, a neutralising signal can also be tapped off at this point. It's applied to the transistor's base via the trimmer C162 (neutralising adjustment) and the d.c. blocking capacitor C161.

The example shown in Fig. 2(c) is the arrangement used in the final i.f. stage in the Philips T8E chassis. This may at first sight look a bit unusual, but is in fact the basic circuit. The extra winding provides tight coupling to the vision detector circuit, the 8 pF capacitor tunes the primary inductance, the 3.9 pF capacitor provides neutralisation while the 100Ω resistor is included to prevent spurious oscillation.

As a further contrast, Fig. 2(d) shows the final i.f. stage
used in the Rigonda Fiesta. It's unusual in that whilst the earlier i.f. stages in the set use npn transistors a pnp type is used in this last stage. So the collector is returned to chassis, with C28 providing neutralisation, C30 tuning and C32 matched output coupling to the detector circuit. Note the precise value of C28.

Bandpass Filtering

Whether discrete component or i.c. circuitry is used, the bandpass forming circuitry is usually lumped together and placed between the tuner and the i.f. strip - as in other types of TV receiver. Such circuits rarely give trouble, a dry-jointed connection being the most likely fault.

AGC Arrangements

Since portables may have to work under extreme reception conditions, the a.g.c. system must have a wide range. Where i.c. circuitry is employed there are hardly any discrete a.g.c. components other than those that provide an adjustable delay to the tuner, a gating pulse feed, and maybe an inverter stage if it's necessary to invert the sense of the a.g.c. potential applied to the tuner.
Several different a.g.c. arrangements are to be found with discrete component i.f. circuitry. The starting point is generally the load resistor of a video emitter-follower used to drive the video output stage. Fig. 3 shows a couple of typical examples.
The first example, Fig. 3(a), is used in the Philips TX chassis. Under no signal conditions, C350 charges to 1.4 V via R353. This positive voltage at the base of the a.g.c. amplifier transistor TS351 drives it to saturation, its collector voltage then being 0.8 V . The voltage developed at the junction of the potential divider R355/6 is filtered and used as the base bias for the first i.f. amplifier transistor TS217. The amplitude of the sync pulses, which are negative-going at the cathode of D350, provide the measure of signal strength. D350 acts as a peak detector, conducting on the sync pulse tips to produce a negativegoing a.g.c. voltage at the base of TS351. The a.g.c. voltage applied to the base of TS217 is thus positive-going, reducing the gain of this transistor with increased signal strength through forward a.g.c. action.
TS217 also acts as a d.c. amplifier for the a.g.c. system, providing a positive-going a.g.c. voltage (with increased signal strength) at its emitter to bias the base of the second i.f. amplifier transistor and a negative-going voltage at the slider of R216 in its collector circuit. This latter voltage is amplified and inverted by TS366 and applied to the r.f. amplifier stage in the tuner.
The circuit used in the Sanyo 12T234, shown in Fig. 3(b), also produces a positive-going a.g.c. voltage as signal strength rises. Transistor Q151 acts as a peak detector, gate and amplifier. Negative-going sync pulses are fed to its base, while a 25 V peak-to-peak line flyback pulse is fed to its collector to provide the gating action. This has the advantage that the transistor conducts only when a sync pulse is present at its base. At this point, the pulse coupling capacitor C 156 acquires a charge proportional to signal strength. This charge is fed via D154 to the a.g.c. reservoir capacitor C 154 , and then via $3.3 \mathrm{k} \Omega$ resistors to the bases of the first two i.f. amplifier transistors.
The potential divider R155/6 provides a minimum low-signal bias for the i.f. transistors. R157/8 provide the same action for the tuner a.g.c. D153 is held cut off until the a.g.c. voltage at its anode exceeds the voltage at its

(a)

(b)

Fig. 3: Representative a.g.c. circuits used in monochrome portables.
cathode set by the potential divider action of R157/8: D153 thus delays the application of a.g.c. to the tuner until the signal strength rises to a predetermined level.

Fault Conditions

Faults in a.g.c. circuits are not common, and when they do occur are mainly due to defective transistors, diodes or electrolytic filter/reservoir capacitors - in that order of probability - giving rise to a variety of symptoms.

Should the a.g.c. amplifier transistor (TS351) in the Philips circuit fail to pass current for any reason the result will be complete loss of sound and vision signals since in this type of circuit one or more of the i.f./r.f. amplifier transistors will be driven into saturation. In the circuit shown in Fig. 3(a), with TS351 non-operative R355 will no longer be returned to chassis and will thus fail to provide a potential divider action with R356. So the base bias applied to the controlled transistors will rise dramatically and all three transistors will be saturated.
The opposite situation will arise if Q151 in the Sanyo circuit - Fig. 3(b) - becomes non-conductive. There will then be no a.g.c. action, resulting in excessive contrast, vision-on-sound, sound-on-vision and possibly loss of and a misreading of the circuit diagram. The correction to note is that when the 20 V l.t. supply fails there will be no

A simplified circuit of the RGB driver/output stage configuration used in later versions of the chassis (CVC8 and CVC9) is shown in Fig. 1. Noting the presence of the The key to what actually happens lies in the driver stage

Correction

Our apologies to S. Simon and to readers for an error that occurred in the Routine TV Receiver Tests article in the August issue (ITT CVC5-CVC9 series hybrid colour chassis). This was due to a misunderstanding on our part sound and no raster in all versions of these chassis. $82 \mathrm{k} \Omega$ resistor between the output transistor's base circuit and the h.t. line, we had supposed that absence of the 20 V supply would have left the output transistor biased into conduction, with a low voltage at the c.r.t. cathode. however. With its base returned to chassis and its emitter
TELEVISION NOVEMBER 1982
sync. A collector-emitter short-circuit in Q151 will result in low sensitivity on the other hand, since the current flowing via R156, D154, R154, D152, Q151 and R152 will increase the a.g.c. bias developed across R156.

Open- or short-circuit diodes in a.g.c. circuits can cause similar problems, while leakage in an electrolytic capacitor can alter the bias applied to the controlled stages. Partially dried up electrolytics can also cause buzz on sound, since the field as well as the line sync pulses must be filtered out.

When confronted with loss of signals or excessive contrast, it pays to start by making voltage checks in the a.g.c. circuit - in most models the a.g.c. circuit is more prone to failure than the i.f. stages are. An npn transistor with excessive forward bias will have a lower than normal collector voltage: if it's driven into saturation, the voltages at the base, emitter and collector will be nearly the same, though a careful measurement will reveal that the base voltage is slightly higher than the other two.

The most common fault in the i.f. strip itself (discrete component type) is a defective transistor, which should be revealed by voltage checks. A less common though not infrequent cause of signal loss, sometimes intermittent, is leakage in an emitter decoupling capacitor.
linked to the h.t. line via the $82 \mathrm{k} \Omega$ resistor, the driver transistor will switch on and short-circuit the base of the output transistor which will in consequence be cut off. So, as in the earlier CVC5 and CVC5/8 chassis which use a different RGB driver/output circuit, the result will be a blank raster with high voltages at the c.r.t. cathodes.

Fig. 1: Video circuit used in later ITT hybrid colour sets.

Fault Report

Mick Dutton

Decca 30 Series

We've had several interesting faults on sets fitted with the Decca 30 series hybrid colour chassis recently.

The problem with the first was sound but no raster. We switched on and found that there was a nice, healthy e.h.t. rustle, so over to the tube base to check voltages. The first anodes were very low at only 300 V or so, and on checking back to the timebase board we found that there was a very large voltage drop across R 475 ($220 \mathrm{k} \Omega$) which feeds the first anode presets from the boost supply. The obvious assumption was that it had gone high in value. This was not the case, but as it was running quite warm there was clearly an excessive load in the first anode circuit. Everything measured o.k. on a resistance check, so we removed the three leads to the first anode connections on the tube base. This produced a nice 800 V at the sliders of the first anode presets, and the problem turned out to be due to leakage in the spark gap associated with the red first anode pin - there was no measurable leakage when checked with an Avo, but replacing it restored normal results.

The second set had neither sound nor picture: the valve heaters were alight, but fuse F2 ($500 \mathrm{~mA} \mathrm{A/S}$) in the l.t. rectifier circuit had blown. We replaced this and switched on. Heaters alight, plenty of spark at the top cap of the PL509, but no signals. After a minute or so the fuse failed again. Replace fuse, check diodes etc. in the power supply, then switch on. The 25 V output was very low at just $1 \cdot 5 \mathrm{~V}$, but returned to normal when the i.f. panel was unplugged. The culprit turned out to be the small disc ceramic l.t. line decoupler $\mathrm{C} 38(0 \cdot 01 \mu \mathrm{~F})$ which measured short-circuit.

The next set had a slight hum bar - on the picture, not the sound. The power supply looked in good condition, and the l.t. reservoir/smoothing electrolytics C604/6 checked o.k. We then noticed that if the brightness was advanced the fault became more prominent. A peculiarity of this chassis is the preset brightness control which is connected between the 25 V line and a negative -38 V line. It turned out that the reservoir capacitor for this latter supply ($\mathrm{C} 605,22 \mu \mathrm{~F}$) had gone open-circuit.

The final set led us a dance over a good few days. The initial complaint was of intermittent lines in the background of the picture. We'd replaced the tripler not long before,' and had noticed that the aerial signal was rather poor. When we called this time a new aerial had been installed and there were signs of overloading which we cured by fitting a 12 dB attenuator. A few days later we were called back for the same problem, but as we could find no signs of it we took the set back to the workshop for a soak test. The set spent several days on the bench without the fault putting in an appearance, so back it went to the customer.

The next call came a week later, and this time we saw the lines - it looked like aerial overloading. A check with another set cleared the aerial installation however, and we came to the conclusion that it was a tuner fault. We didn't have one with us, but as I was putting the back on I
noticed a smell of e.h.t. arcing from the left-hand side. Close inspection in the dark revealed tracking from the envelope of the PL509 to the surrounding metalwork. A new valve stopped this and finally cured the background lines problem.

Lack of Brightness

The problem with a 24 in . monochrome Decca set (Model MS2401) was lack of brightness - the customer said that the picture had got darker gradually over a period of several weeks until now it was only just visible on highlights. Tube base voltage checks revealed that the first anode supply was low at 350 V instead of 660 V . The resistors in the feed were o.k., as was the decoupler C92, but when we disconnected the focus control to measure its value we found that it had fallen from $2 \mathrm{M} \Omega$ to only $280 \mathrm{k} \Omega$. A new slider potentiometer restored the picture to normal.

Rank A823 Chassis

Field collapse is a fairly common fault on the Rank A823 chassis, the usual cause being dry-joints on the NS pincushion phase coil or the pincushion amplitude control. These components were o.k. on this occasion however, as was the field output stage. We then remembered that the field scan coupling capacitor $7 \mathrm{C} 5(400 \mu \mathrm{~F})$ is mounted on the convergence panel: it proved to be open-circuit.

Folded Picture

A GEC monochrome portable (Model M1201) produced a picture which was folded down the centre. The voltages in the line output stage all seemed low, but we couldn't fault any of the smaller components. A new line output transformer was then ordered and fitted, but the fault remained. We eventually traced it to the line driver transformer whose secondary winding was high-resistance. On examining its pin connections a large amount of flux was found where the wires were soldered: cleaning off and resoldering finally cleared the problem.

Telefunken 709 Chassis

The problem with an elderly Telefunken hybrid colour set (709 chassis) was field collapse, and on checking the voltages in the field output stage we discovered that the output transformer's primary winding had gone opencircuit. Luckily we had a scrap chassis handy, so we transplanted the field output transformer from this. After a bit of setting up the receiver produced a very acceptable picture.

Rank 120 Chassis

Sets fitted with the Rank T20 chassis seem to suffer more than their fair share of faults. We've had three different line driver transformer faults for example. First there was the case of the dead set, due to dry-joints where the transformer is soldered to the panel; secondly a dead set due to the wire from the transformer winding never having been soldered to its leg (l've had that one twice); and finally the set that used to blow up BU208 line output transistors once in a while - we put this down to breakdown between the transformer's primary and secondary windings.

We also had a set with a very strange field fault. The complaint was of intermittent foldover at the bottom, with teletext lines at the top of the picture - the problem seemed to appear only on bright scenes. On making voltage checks in the field timebase everything was found to be about right but a little unstable. To cut a very long story short, 4D4 which is part of the biasing network for the second driver transistor 4VT5 had never been fitted!

Thorn 8800 Chassis

No sync and lack of luminance information was the fault on a Thorn 8800 chassis - the colour was present as normal. The two main suspects were IC1 (TCA270) and IC3 (SN76226DN-07) but replacing these made no difference. Time to check waveforms. The level of the output at pin 9 of IC1 was low at some 0.5 V peak-to-peak instead of 2.7 V , while the output from the following filter was almost non-existent. The signal is coupled from this point to pin 6 of IC3 by the tantalum capacitor C153 $(1.5 \mu \mathrm{~F})$ which was found to be almost dead short.

Telefunken 711 Chassis

A set fitted with the Telefunken 711 chassis came in with the complaint of no raster and smoke coming from the back. The smoke was found to have been coming from the safety resistor R550 (68Ω) which supplies the line driver stage. We replaced this and checked the transistor (T561, type MJE340) which was all right. As there were no obvious short-circuits we switched on. Up came the sound but there was no rustle of e.h.t. and after a few seconds R550 became very warm - the voltage at the collector of T561 was only 10 V instead of about 150 V .

We decided to check the waveform at the base of T561 and found that this was absent. Neither was there any output waveform at pin 2 of the TBA950-2 line oscillator i.c. A few voltage measurements here revealed that there was no 12 V supply to pin $2-$ in fact there was no U3 (12V) supply from the 12 V series regulator in the power supply section. The cause was the driver transistor T402 (BC307) which was open-circuit base-to-emitter.

Thorn 1615 Chassis

A case of no tuning with a Thorn monochrome set (1615 chassis) was simply due to R 5 ($24 \mathrm{k} \Omega$) being open-circuit, thus removing the supply to the TAA550 stabiliser.

Grundig 1510

The problem with a Grundig 1510 colour portable was that it would go dead after a period of use. We checked for the usual dry-joints in the thyristor line output stage but everything looked o.k. So we left a meter connected to the " A " h.t. rail -255 V to the line output stage - and found that when the fault occurred the voltage dropped to zero. The fault was due to the electronic cut-out thyristor going open-circuit intermittently.

Telefunken 712 Chassis

The complaint with a 20AX Telefunken set (712 chassis) was a dark picture with bars of interference. The first anode voltages were low at only 200 V , and on tracing back we found only 250 V on the input side of the first
anode presets. The problem turned out to be due to a dry-joint on the first anode supply smoothing capacitor C579 ($0.068 \mu \mathrm{~F}$).

Purity Problem

The problem with a Thorn set fitted with the 8500 chassis was that the purity would vary. The degaussing circuit was checked and found to be working correctly, so we came to the conclusion that the tube was at fault. A new one was fitted and set up, and the set returned to the customer. Two days later it was back with the same fault!
We reset the purity, and this time disconnected the degaussing circuit: after a few hours the purity had again moved out. As we had another of these sets in the workshop we decided to try swapping over the degaussing shields. The fault in the first set was now cured but was present in the second set. Removing the affected shield and demagnetising it by hand with a degaussing coil solved the problem. The metalwork must somehow have become permanently magnetised.

Philips G11 Chassis

Two sets fitted with the Philips G11 chassis have been our way recently. The problem with the first was intermittent no sound - the sound would go off after about half an hour, and the customer said a tap on the cabinet would get it back. We hooked up a meter and found that there was no 38 V supply to the sound output stage on the i.f. panel when the fault was present. As so often with this chassis, the fault was due to a dry-joint, this time at pin 3A1 on the line timebase panel.

The problem with the second set was that the picture had suddenly gone very dark, with the sound normal. A few checks at the tube base revealed that the first anode voltages were normal, so we suspected a fault in the RGB output stages or their biasing. The voltages around the output transistors seemed reasonable however, so we moved back to the U6200 luminance/chrominance control module where we found that the supply voltage at pin 15 was only 4 V instead of $11 \cdot 8 \mathrm{~V}$. This voltage comes from the 12 V regulator on the i.f. panel, and although its input was correct at 17 V it was giving only 4 V output. A new i.c. cleared the fault.

Grundig 2200

A Grundig 2200 came to us with the complaint of general convergence errors which could not be corrected by means of the dynamic correction controls. The problem was caused by cracked print inside the convergence assembly on the tube neck: we were able to strip the unit down and make repairs with some thin wire.

Indesit Monochrome Set

The customer complained that his 24 in . Indesit solid-state monochrome set would go dead when it got warm. We took it into the workshop, connected it up and switched on. Half an hour later it went off. There was h.t. at the smoothing capacitor but no other sign of life. A close examination revealed white deposits around the base of this electrolytic, and on fitting a replacement normal operation was restored.

In these sets the negative side of $\mathrm{C} 901 / 2 / 3$ is returned
to chassis via C 921 , which should have 2.6 V across it. In this case the 2.6 V was missing due to the reduced capacitance of the main smoothing pack.

Philips G8 Chassis

I've had several cases recently of field foldover in sets fitted with the Philips G8 chassis. The problem has been traced to cracked print between the pincushion correction
transductor and R4483, thus effectively disconnecting the field windings on the transductor from the circuit.

Another problem that seems to be getting quite common on the G8 chassis is R1372 ($390 \mathrm{k} \Omega$) going high in value. This is the feedback resistor in the mains thyristor control circuit, and the result is intermittent picture jitter due to the over-voltage circuit operating. You get the same problem with the Pye 725 etc. chassis when R897 ($470 \mathrm{k} \Omega$ or $390 \mathrm{k} \Omega$) goes high in value.

The Spirit of '51

Chas E. Miller

WHEN TV was in its infancy in 1951 a booklet entitled "Trouble-free Television" was published. I came across a copy recently in a pile of second-hand service sheets and what a fascinating insight it gives into the world of television in those far off post-war days. Even to one who lived through this period, the attitudes of the time now seem almost beyond belief.

Take the front cover to start with - it features a photograph of a group of ultra-short-wave haired tots gazing entranced at an Ekco console model which is displaying a picture of the dreaded Andy-Pandy disappearing backwards into his own hamper. A better scene setter for what is to follow would be hard to imagine. In the opening chapter the author declares: "By its appeal to both eye and ear and stimulation of the intellectual senses, Television (his capital T) is the most satisfying medium for home entertainment yet devised . . . Television comes to us as a virile, intimate and refreshing solace of our leisure." Well! After a write up like that, it's not surprising that "purchasers will be well advised . . . to place their orders as soon as possible. Otherwise, because of the scarcity of certain non-ferrous metals and the rearmament demand for Radar, they may have to wait months for delivery, thus missing programmes of great appeal." They don't write sales talk like that any more - my heart bleeds for those unfortunates who missed the television premier of "Wallaby Jim of the Islands" due to the Cold War, not to mention umpteen editions of "Whirligig".

What to Expect

Having assumed that his readers would immediately rush out and buy sets, our author goes on to tell them what to expect and do. "Installation completed, the first evening programme will be some occasion. The peak period normally commences at eight o'clock. It's then that the BBC steps out high, wide and plentiful with television broadcasts rated the world's best by all except a few disgruntled viewers." And we wouldn't trust them, would we? On he goes with "the viewers are greeted with charming smiles by an announcer who outlines the programme for their entertainment. Feminine members of the audience will be keenly interested in the dresses for the lady announcers, provided by the BBC and chosen for their photographic properties." The dresses, lady announcers or both? "At last we are away and can sit back for an enjoyable hour or two" - unless there's a breakdown "followed by a few words of apology and 'in the meantime we will play a few records'."
" 'Thank goodness it isn't our tube' exclaims the viewer with relief, and waits for the reassuring statement 'I am
glad to say that we are now able to go ahead with the programme'." Some things haven't changed all that much after all. Certainly the programme schedules of those far off days affected service engineers in a way that continues. The "high, wide and plentiful" programmes began at eight o'clock - and normally finished not later than ten o'clock! What constitutes "plentiful" is clearly a debatable point. There was the demonstration film and fifteen minute showings of test card C from ten till noon, with "very old films, often repeated" (something else common to the present) from three till four and Children's Hour from five to six. There were no test transmissions between these hours, so when delivery of a set was not possible during those sporadic day time hours the engineer had no choice but to turn out at eight o'clock at night.

We certainly made a rod for our own backs! For years after all day programmes became commonplace we were still expected to work all the hours God sends - someone phoned me at ten past eleven only the other evening and seemed surprised that I wasn't madly interested in his troubles. But if nothing else the scarcity of programmes did give the illusion that each was an event in its own right. This was aided by the elaborate tuning-in procedure that had to be carried out before the evening's viewing commenced. Younger readers may find it hard to believe that people did adhere to the long-winded process described in "Trouble-free Television", but I can assure them that it was the norm for many years.

The Switch-on Procedure

"Switch on ten minutes before the hour. Only click on if combined with Brightness." That last rather puzzling comment meant that if the on/off switch was ganged with the brightness control it should be rotated just far enough to operate only the switch. If the switch was ganged with the volume control, "give it about half a turn after a minute or so. In this case the other control . . . should have been turned right off to fade out the picture before switching off."

One then waited until the signature tune - "a phantasy of National airs" - warns that "it's time to begin operations." The brightness control had to be turned up slowly until a test card became apparent. The contrast and brightness were then balanced in order to achieve sharp distinctions between the steps of the displayed grey scale. After a while the card was faded out, together with the music, to be replaced with a picture of the BBC's coat of arms. After "a minute or two of silence there is another record, the 'Television March' by Eric Coates, accom-
panied by the relief map of England featuring aerial masts from which radiate rings of light representing the transmitting waves." And "that is all there is to bringing the receiver into operation."

The ten-minute warm up was advisable because sets needed that amount of time to reach their normal working temperature. Sets employing electromagnetic focusing were especially affected, and if one corrected the fuzziness too soon the chances were that one would be up and down to the control all evening. Added to the set's own hazards was what the author described as "that postwar disease of 'load-shedding'." When the power stations were in danger of being overloaded, the engineers used Ohm's Law to cut back on demand. They simply reduced the consumer's voltage by say ten per cent, automatically reducing the current consumption by the same amount. On occasion the load-shedding would reduce the voltage to under 200 V , which had a severe effect on sets innocent of any h.t. regulation. Although not the primary reason, this problem certainly helped to make it desirable to have a large number of sub-controls which were usually available through a small sliding or hinged door at the front or side of the cabinet. It was by no means unusual to find eight or more "user presets".

Programmes of the Time

The latter half of the book was mainly concerned with the programme matter of the time, and one receives the impression that the author was beginning to repent his earlier fulsome praise. "Less satisfying is the inevitable repeat of Sunday's drama or opera on Thursdays. If that happens to be a cultural type, or of a kind preceded by a warning that it is unsuitable for children, for many families that will mean two nights when it will not be thought worth while switching on ... In the first few months of 1950, there was an outburst of indignation at the unsuitability of the dramatic productions on Sundays, leading to a better balance subsequently ... It is feared that the more cultured emphasize their tastes and create a false impression that the performances they prefer are what the mass desire, the lowbrows remaining in silent, if angry, obscurity." So much for the disgruntled few!
"Friday's programmes have been generally of the popular type . . . Monday's are often the dullest . . . There are numerous (variety) shows, generally one on Saturdays, but except for the more spectacular items . . . they often fall flat." A photograph of an item being presented in one well-liked programme reveals that the ever reliable stand by, the viewer's phone in, was even then in use. But ". . . there is too much emphasis on politics for the people of a country that is not politically conscious."

The Final Word

So there you are. If it all sounds too familiar, comfort yourselves with the thought that the technical merit of most inventions far outweighs the use to which they are put for example aerosol paint cans in toilet blocks and fish and chips wrapped in colour supplements. Let the author of "Trouble-free Television" have the (almost) last word: "Were the BBC to aim at a round the clock service with television (it) would inevitably decline to a mediocre level." No doubt he would have included ITV had it been around then. But at least we now have full colour mediocrity . . "Trouble-free Television" was written by A. C. Armstrong and published by G. T. Foulis and Co., Ltd.

next month in

- SOME RECENT CHASSIS

Fault reports relate mainly to older sets - the latest generation of TV chassis don't have "stock faults" in the way that older ones did. Nevertheless if you deal with the more recent sets in sufficient numbers you acquire a certain amount of fault know-how. John Bourne on the Thorn TX9 chassis and the Hitachi NP8CQ.

VINTAGE TV - EMI

From the latest to the oldest! The HMV 905 dates from 1938 and John Narborough has recently been renovating one. Interesting to see how sets were designed in those days - and it says more than something for the technology that they can still be got going.

- MILLER'S MISCELLANY

From the sets of yesteryear to the workshops of the time. Chas E. Miller describes some work places that will make you either laugh or cry. Also some recent servicing problems and a visit to the Radio Rentals' renovating plant at Bristol.

- TEST AND FAULT REPORTS

Eugene Trundle on the Manor Supplies Mk. V pattern generator and a report from John Coombes on various TV receiver faults.

VCRs FOR SECAM

One of the advantages of the SECAM colour system is the ease with which the signal can be recorded on tape. Things are more complex in practice since French and Middle Eastern SECAM machines don't operate in the same way. David Matthewson reports.

- ROUTINE TV RECEIVER TESTS
S. Simon on the Pye 725 and related solid-state colour chassis.

PLUS ALL THE REGULAR FEATURES

ORDER YOUR COPY ON THE FORM BELOW:

TO
(Name of Newsagent)
Please reserve/deliver the December issue of TELEVISION (80p), on sale November 17th, and continue every month until further notice.

NAME
ADDRESS

A Simple 4GHz Satellite Receiver

Roger Bunney

Simplicity was the aim with the 4 GHz receiver to be described. It consists of two basic elements - the "plumbing" and the electronics. The former (see Fig.' 1) consists of a horn which is placed at the focal point of the parabolic dish to collect the signal and direct it to a pick-up probe. The probe in turn provides the input for the electronics (see Fig. 2), which consist of a frequency changer (mixer plus local oscillator), a three-stage i.f. amplifier and a voltage stabiliser which provides 15 V and 12 V outputs. So we have an input to the mixer at 4 GHz and an output at 70 MHz .

Improved signal-to-noise ratio and image rejection would be obtained by incorporating one or two stages of low noise amplification at the input and using double conversion, but the idea has been to show how things can be done simply in order to encourage experimentation. More sophisticated arrangements are being worked on and will be featured in future articles. Satellite TV transmissions use f.m. for the video of course, but images of fair quality can be resolved by feeding the 70 MHz signal to a standard a.m. receiver. Again, more advanced circuits will be given in due course.

The feedhorn is based on a design by Steve Birkill published in the February 1979 issue of the US publication CATJ - credit must be given to Steve for his pioneering work in this field. Sources of dish aerials have been mentioned in previous Long-distance Television columns, and if you don't fancy making a feedhorn a complete unit with SMA output socket can be obtained from Harrison Brothers (22 Milton Road, Westcliffe-on-Sea, Essex). Once the horn has been mounted, the electronics built and tested and the dish aligned with the satellite, signals should be resolved. Locating the satellite may take some effort in practice, but since the EIRP of the Gorizont channel 1 transmissions is high, signal acquisition should be easy once you are nearly "on beam". The 3.675 GHz Gorizont satellite is at some 197° from North at an elevation of 30° in the southern UK.

Production of the feedhorn is tricky. A heavy-duty soldering iron (say 240 W) is advisable, and if you've a friend who's skilled at metalworking get him to help! The waveguide section of the feedhorn consists of a seven inch length (may be longer) of 54 mm outside diameter copper water pipe which can be obtained from a scrap yard. The end adjacent to the probe is closed with a circular cap of thick brass. The reflector at the input end is also made of brass $-\frac{1}{16}$ in. double sided PCB could be used, but there will be no forward slant and an outer ring $\frac{7}{8} \mathrm{in}$. high should be fitted. The quarter-wave probe is fitted within the waveguide, $1 \frac{1}{8} \mathrm{in}$. from the rear end. In my prototype this was spun from brass, with a tapered connection end to the electronics section giving a push-fit through the Teflon insulator. The reflector shapes the pick-up characteristics to encompass the appropriate dish capture area, and will obviously vary with the focal length - the dimensions given provide a good compromise for typical practical dishes with focal points around 26-32 in. (focal/diameter ratios from 0.35 to 0.5). From comments made during discussions with Harrison Brothers copper seems to be essential for the waveguide - don't use
aluminium! The accompanying photographs show the overall construction. An SMA socket could be fitted instead of the Teflon insulator, giving direct coupling to a commercial low noise amplifier unit.

An industry has grown up almost overnight in the USA to cater for the rapidly increasing interest in satellite TV reception in the 4 GHz band. As a result, much simplified electronic packages for the purpose have come on the market. Two such items are used in the present design. First a double balanced mixer, Varil type DBM1600,

Fig. 1: Construction of the feedhorn.

Fig. 2: The electronics. Electrolytics 35 V tantalum.
which is housed in a TO8 package. Inside there are four diodes in a ring formation plus input and output transformers. One merely connects the 4 GHz input to one pin, the local oscillator input to another, earths the third and takes the output from the fourth. The conversion loss is low at some 4 dB . The mixer is complemented by a varicap tuned oscillator, Magnum type V82T-2, which is also housed in a TO8 package. Applying a tuning voltage of $0-15 \mathrm{~V}$ to one pin enables the whole band $(3 \cdot 6-4 \cdot 3 \mathrm{GHz})$ to be converted down in conjunction with a suitable mixer - to 70 MHz in this case. One pin is earthed, another provides the output, and the remaining one requires 15 V at 60 mA . This is high, but the output provided is $10-15 \mathrm{~mW}$. With careful mounting of these two TO8 packages a very compact microwave downconverter is obtained. Since there is no amplification prior to the mixer, it's essential to mount this very close to the signal probe's output pin.

The mixer is followed by a Labgear type CM7065 two-stage amplifier which provides a gain of 26 dB . The CM7065 is a wideband ($40-86 \mathrm{MHz}$) amplifier with a noise figure of 1.8 dB . I removed the case and changed the position of the middle screen (adjusting the lower third through 45°) and the output connection screening (still the cable clamp but moved farther away). The space left adjacent to the original input clamp (removed) was used to mount the two TO8 packages, the green varnish being scraped from the PCB and two holes drilled and filed to enable the TO8s to be fitted flush. Conductive epoxy resin (RS) was carefully applied to ensure complete earthing. The CM7065 was also modified to accept a separate supply instead of being powered via the output cable. Further gain of some 18 dB was obtained by adding a BFY90 transistor amplifier stage, giving an overall i.f. gain of 44 dB . The BFY90 stage was fitted adjacent to the output clamp connection, with appropriate modification to the connections at this point. Output is via the cable clamp as normal, modified to remove the 12 V through powering facility.

As can be seen from the photographs, the resultant head downconverter board sits upright atop the circular waveguide. Brass strips are soldered to the guide and to the PCB to provide support. A standard double-sided PCB is mounted adjacently to house the three stabilisers. These receive a 30 V input and provide stabilised 15 V and 12 V outputs. There is also a $0-15 \mathrm{~V}$ feed to tune the oscillator and an earth return.

In Steve's original feedhom, the method of adjusting for left- or right-hand circular polarisation, or vertical/ horizontal polarisation, was to twist an integral sleeve with two protruding screw threads within the waveguide. Assuming that one is looking into the guice, towards the vertical signal probe at the rear, threads at ten past eight (45°) give right-hand circular polarisation while the opposite (ten to four) gives left-hand polarisation. With the screws across the middle (horizontal) you get vertical polarisation. For horizontal polarisation the probe must be rotated so that it is horizontal, with the screws at six o'clock. Steve subsequently suggested an easier arrangement - a PTFE slab some 1 cm thick and 4 cm long is inserted so that it fits just inside the open end of the tube. This is adjusted to the same positions as noted above and gives the same results. Right-hand circular polarisation is required for reception of Gorizont's channel 1.

This isn't a project for the complete beginner - though I knew nothing about microwaves at the start and mine worked! Also, the TO8 devices are not cheap. PTFE and

Feedhorn with downconverter mounted atop.

Front view of the feedhorn.
Teflon can be obtained from Insoll Materials Ltd., 39 Wilbury Way, Hitchin, Herts SG4 0TW. Note that Teflon is a registered trade name of Du Pont (Geneva). Hugh Cocks (Bre Cottage, Cripps Corner, Staplecross. Robertsbridge, E. Sussex TN32 5RY) can supply the TO8 devices, while CM7065 amplifiers can be obtained from South West Aerial Systems (10 Old Boundary Road, Shaftesbury, Dorset). The copper tube is of the standard seamless water pipe type - you may get an offcut from a large builder (this piping is not used for domestic work but for factory etc. installations). I obtained a two foot length for $£ 2$ (scrap weight value) from a scrap metal yard. Please include a stamped, addressed envelope with any enquiries sent to the above mentioned suppliers.

The friend who made the feedhorn supplied the brass work. I found him by first contacting a local artist and asking him whether he knew of any local metal workers involved in arts and craft work! The feedhorn can be held by a clamp made from small size Marley drainpipe fittings - a circular bracket gives a safe, tight fit around the 54 mm waveguide. Two lengths of half inch outside diameter alloy tubing were used to suspend the feedhorn in front of the dish.
It has been suggested that whereas the 12 GHz band will be the DBS band, the 4 GHz band will be the haunt of the TV-DXer! There's a lot about, Gorizont being merely the start.

VCR Servicing

Part 13

Mike Phelan

THIS month we'll look at some of the problems associated with the mechanical side of the VHS machine. We've already discussed things like faulty motors, so let's take a detailed look at the actual tape path through the machine (see Fig. 55).

It must be stressed at the outset that most of the adjustments require the use of the appropriate manufacturer's jigs. Also, and this is very important, no adjustments are necessary unless parts have been renewed or the machine has already been tampered with. The tape path is very critical: to enable prerecorded tapes to be played there must be no differences between machines of the same type.

We'll start off at the left-hand side of Fig. 55, where the tape leaves the cassette. When the play key is depressed, the two loading arms carrying the entry/exit guide rollers and slant poles leave their resting places and carry the tape out, wrapping it around the head drum. The back tension lever is then released, so that the pole contacts the tape, the attached brake band wrapping around the supply reel. This maintains a constant tape tension around the head irrespective of variations in cassette size etc. If the tape tension increases, the pole moves to the right and slackens the brake band: if the tension decreases, the pole penetrates the tape farther, increasing the tension on the brake band.
There are two adjustments here, one for the position of the anchor at the fixed end of the band and one for the spring tension. The alignment kit is necessary for carrying these out, but fortunately most trouble is not due to misadjustment. As a rough check, with the machine in the playback mode a line drawn from the front right-hand corner to the static guide by the erase head should pass through the back tension pole. Excessive back tension will result in the chroma being displaced to the left of the luminance, with premature head and tape wear. Insufficient back tension produces a rather noisy picture because the head-to-tape contact is impaired. The main cause of this is that the brake band and reel disc need cleaning - with alcohol. Another problem is that the brake band sometimes snaps. To get to all these parts it's necessary to remove the cassette housing (four screws). The band can be cleaned if the screw and bush attaching it to the arm are removed. Do not take out the screw at the other end.

Next in line come the static guide, which should never be moved, and the erase head. If the tape is not running centrally in the guide, i.e. there's curving at the top or bottom edge (see Fig. 56) with the paint seal unbroken, suspect that the back tension pole is not vertical - correct by gentle bending.

The two slant poles and guide rollers we'll leave till later. The other static guide should also never be moved, but the audio/control head has three screws for adjustment. Assuming that the head's been replaced, the procedure is as follows. First mount the head at approximately the correct height, vertically. With the machine in playback, use a small mirror to look at the ferrite inserts in the head. Adjust all three screws until these project
equally above and below the tape edge. Some heads have white inserts to facilitate this. Adjust the back screw to make the head vertical in the fore-and-aft direction. Then repeat the procedure.

Next put in the alignment tape with the $6 \mathbf{k H z}$ audio track. With a scope at TP19 (top of the audio-seryo board), tighten all three screws a quarter turn and note whether the audio monitored on the scope increases. Ignore any increase obtained after moving one or two screws. If there is an increase, repeat this procedure: if there isn't, try slackening all three screws. The head is now at the correct height. We must next adjust the azimuth for best h.f. response. This is done by adjusting the side screws (say one eighth of a turn) in equal and opposite amounts, still with the scope at TP19. The only thing that remains is to adjust the back screw until the tape is running centrally in the static guide. Repeat the height and azimuth adjustments.

If the tape runs upwards or downwards after a few minutes the pinch wheel isn't vertical. Check by pushing it towards the capstan to see whether the gap is parallel. Correct by bending the arm on which the pinch wheel is mounted. If the tape runs over the top shoulder of the static guide the audio will be intermittent: if it runs over the bottom shoulder the lower edge will be wrinkled where it passes the control head, causing intermittent loss of the control pulses and side-to-side movement of the picture - if this is bad enough there'll be no off-stape control pulses and no servo action. The oil fence on the capstan will produce the same effect if it's not pushed right down. If the audio/control head is much too low, the h.f. bias on record will erase the top edge of all the video tracks - giving a well defined noise bar at the bottom of the picture, disappearing three seconds before the end of the recording.

It's worth considering what happens if the audio/control head is moved laterally in the direction of tape travel. As far as the machine's own recordings are concerned, nothing will happen, but with a prerecorded tape the phasing of the off-tape control pulses will shift (the pulses have a fixed relationship with the tracks, defined in the VHS standard). This has the same effect as adjusting the tracking control. In manufacture, the baseplate on which the head is mounted is set so that the alignment tape plays back with the tracking control in the centre: the preset tracking is then adjusted on the machine's own recordings. Note that we said centre, not click, position - the tracking in the click position depends on the setting of the preset control.

The position of the audio/control head's baseplate must never be moved. When you consider how close together the control pulses are on the tape you will appreciate how critical this adjustment is. The total movement spans several pulses, so at first glance you might think that there are several "correct" positions for the head. Not so however as there's only one correct position where the audio and the picture are synchronised - this is noticeable on lip movements on a prerecorded tape if incorrect.

Loading Mechanism

We'll return now to the loading mechanism, where most faults occur. If either slant pole or guide roller is for any reason not in the correct position, the angle of the tape path around the head drum will not be correct. This may not affect the recordings made on a particular machine, but it won't play back prerecorded tapes cor-

Fig. 55: The tape path in the JVC VHS machine.
rectly. We assume therefore in the following notes that an alignment tape or at worst a tape made on a known good machine is being used. Faults of this nature cause noise bars at the top or bottom of the picture, depending on whether the entry or exit guide is responsible. Observe each in turn as the machine laces up. The slant pole should go positively home in the V block and should not spring back.

Most problems here are due to one screw coming loose, but there can be much puzzlement if you are not aware of this. If one or other arm doesn't seem to locate, put the machine in stop and see if the two loading arms can be moved relative to each other (see Fig. 57). The cassette housing has to be removed of course. If there's any play it will be necessary to remove the cabinet base and swing out the Y-C board. Then remove the drum flywheel and belt. Take off the copper earthing bush and the three screws holding the brush and pickup head. Tighten the screw shown (Fig. 58).

If you're unlucky, the end of the link will have worn and will have to be replaced together with the loading arm. This means that the lower drum assembly will have to be lifted out. Make a careful note of the positions of all the washers and screws, as putting the wrong length screw anywhere can cause problems. Do not be tempted to adjust the slotted links.

Reassemble, cleaning the copper earthing bush and the small spring brush. This earths any static produced by head-to-tape friction, and if dirt is present here there'll be horizontal flashes all over the picture. When replacing the cassette housing, make sure that the flag on the release bar and the flat spring go between the keyboard frame and the eject lever, otherwise the eject will not work.

Noise Bars

If you have problems with noise bars at the top or bottom of the picture, the waveform at TP7 on the pre-rec
board will tell you a lot (see Fig. 59). It's occasionally necessary to adjust the guide rollers because the grub screws haven't been fully tightened, but don't do this for fun. Assuming that both rollers have moved (unlikely), proceed as follows. Tighten both grub screws only finger tight (with the cassette carriage out). To play a tape with the carriage out, tape down the cassette switch or bend the spring up slightly so that the cassette operates the switch. Put the cassette in, operating the flap manually. Place a weight on top of the cassette or use the spring bar available from Thorn/JVC. Note that too much extrane-

Fig. 56: Static guide operation.

Fig. 57: (left): Loading arm check.
Fig. 58: (right): Loading arm driving mechanism.

Fig. 59: Signal envelopes (f.m.) at TP7 on the pre-rec board.
ous light falling on the machine will cause the photo sensor to operate.

If the guide rollers are suspect, don't put a good tape in yet - use any old tape, even a damaged one. The first thing to do is to adjust the guide rollers approximately. Unscrew each one about two turns, then screw in, looking closely at the tape as it enters or leaves the lower drum groove at the end of same. As the roller is lowered, the tape meets the bottom of the groove then suddenly wrinkles as it overruns the groove. Back off until the wrinkles disappear, and repeat with the other roller. Check the rest of the tape path, then substitute the alignment tape and connect the scope to TP7. Look at the waveforms shown in Fig. 59. Adjust the tracking for maximum f.m., then the guide rollers no more than one turn each to get rid of noise bars. The dips in the f.m. envelope tend to be much the same whether the tape is too low or too high, but by getting the tape at the bottom of the groove to start with you'll probably have to unscrew the guides slightly to get the correct waveform. The preliminary visual adjustment is important because if both guides are too high by an equal amount the writing angle will be correct but there will not be a full 180° wrap and part of the f.m. will be missing. This is usually audible, as the heads collide with the bottom of the tape.

Adjusting the tracking reduces the amplitude of the f.m. envelope and makes it taper. Try to keep it parallel and at maximum. A perfect shape is sometimes unobtainable, but the lowest parts should be at least 60 per cent of the highest.
When you've achieved what you think is the correct adjustment, tighten the grub screws and recheck.

The foregoing assumes that there are no faults in the machine and that the servo adjustments are o.k. Obviously if you get a machine that's been well and truly twiddled it's necessary to go through everything several times - you can't adjust the servos if the guide rollers are so far out that the picture rolls continuously.

Take-up Clutch

A word on the take-up clutch. This little fellow causes more than his fair share of trouble. The usual story is that everything is o.k. until near the end of a three hour tape. The machine then stops and the tape is found to be rather chewed. The reason for this is that the clutch slips excessively after a period of use, but the Hall sensor doesn't operate until the take-up spool has stopped for several seconds. The slipping clutch makes the spool go round in fits and starts, and a loop of tape builds up between it and
the capstan. There's no cure other than to renew the clutch.

Some Quickies

To close with, a few "quickies" in list form.
Screeching on fast rewind: Oil the counter pulley.
Squeaks on record and playback: Replace the take-up spool tyre.
Record key won't depress: Function plate notch closed up due to someohe jumping on the record key with a prerecorded tape in.
Machine goes to stop at end of lacing up: Notch in play key worn.

Video Books

As interest in video continues to grow, so the number of books on the subject increases. Two fairly substantial volumes have been published by Newnes in recent months. The first, Ru van Wezel's Video Handbook (edited by Gordon J. King), tries to be too many things and unfortunately doesn't quite succeed in any of them. It has its problems, being a revised English edition of a work originally published in Dutch and written in the mid-seventies. The intended audience is the technician and enthusiast, though at almost 400 pages and with a price tag of $£ 19.95$ you'd need to have more than a passing interest. The information ranges from basic standards to constructional details of cameras and mixers, and is readably and interestingly presented. There are omissions however no mention of the Betamax system for example, nor of single-tube colour cameras. Newnes are understood to be working on a second, revised edition, which will hopefully make the book what it deserves to be.

The second book, Gordon White's Video Techniques ($£ 9.95$), is a different matter. It's up-to-date and comprehensive, though lacking the practical information and. sections on programme making provided in the Video Handbook. If you want the latest information on satellite or digital TV, chroma key, tape duplication, tape editing etc., this is the book for you. It's not without the occasional error - it would be nice to be able to store a single frame of colour TV in a 16 k RAM - but on the whole is accurate and readable. In short, it would be a worthwhile addition to the bookshelf of anyone who wants a readable review of current technology and operating systems.
D.K.M.

Routine TV Receiver Tests: Pye Hybrid Colour Receivers

S. Simon

To most regular readers this article will probably be the least necessary in the present series, in view of the amount of information previously published in the magazine on the Pye hybrid colour chassis. I've found however that there are a surprising number of well experienced engineers, working mainly in the rental field, who've never come across one of these "old faithfuls". So for them and for newer readers, the present offering.

There were three basic versions of the chassis, with other variants including remote control. The first was the dual-standard version which had a very large line output stage compartment on the right-hand side housing the PD500 e.h.t. stabiliser and GZ501 e.h.t. rectifier in a configuration that was commonly used in the initial generation of colour receivers. We will not dwell on these very early sets, but instead concentrate on the second generation single-standard chassis - the 691, 693 and 697.

Identifying whether the set uses the earlier 691/693 chassis or the later 697 chassis is simply a matter of glancing at the right side line timebase section. If there's a square metal box containing the line output transformer and tripler its the earlier version. If there is a single, vertical panel showing you its print side, its a 697. The 693 differs from the 691 in having a varicap tuner.

Initial Handling

First a word of caution. The supply from the mains is not taken directly to the on/off switch. Instead it's taken to the one and only fuse ($2 \cdot 5 \mathrm{~A}$ anti-surge - don't exceed this rating) whence it's conducted via wires and edge connectors $(691,693)$ or print and edge connectors (697) to the on/off switch. This means that there are areas which are live whether the set is switched on or not - the warning mainly concerns the 697 chassis, where the fuse and print are at the top of the main panel in a more accessible position. If this fuse is found severely blown or with its glass shattered, it's possible that the associated print has also suffered and rewiring may be necessary.

The cause of a shattered fuse in the 697 chassis will probably be the mains filter capacitor (C301), which in this chassis is associated with the on/off switch and will probably be of the blue-white variety rated at 600 V . This is the d.c. rating, the a.c. rating being 300V. Too low - use a 1 kV d.c. type as the replacement. If the capacitor is not at fault, check the BY127 h.t. rectifier diode which is up on the top left of the vertical panel as viewed from the rear. Whilst a short-circuit diode would shatter the fuse, it would be unlikely to disturb the print unless the fuse rating has been varied. We have often found a piece of 15A (or so) fuse wire across the holder, the set owner apparently reasoning (?) that if the fuse's rating is increased it won't blow!

Thus the place to start looking for the mains is not at the on/off switch but at the fuseholder, which should be
covered by a red plastic hood. This may or may not be present. It's quite common, mainly on the 691 series, for the edge connectors to give trouble. B2 and B3 link the a.c. supply to the switch, B1 and B4 being the return from it. Where they are worn away or intermittent, remove the relevant leads and solder them directly to what is left of the copper strip.

No Results

In the event of the fuse being blown but not shattered, the first step should be to take a resistance reading between the PY500A efficiency diode's top cap (cathode) and chassis. If the reading is low, remove the top cap to see whether the low reading remains at the valve or at the cap (or the PL509 line output valve's top cap). If the short is in the valve (heater-cathode short), replace the PY500A and keep your hand on the off switch since the PL509 may also have suffered. Indeed its heater may be open-circuit, which will stop any heater current flowing at all.

If the short is not in the PY500A there are two main possibilities. First the $0.47 \mu \mathrm{~F}, 1 \mathrm{kV}$ boost capacitor (C218) which is mounted on the line output transformer. If this has gone short-circuit your reading will be zero ohms. Secondly there's the tube's first anode supply circuit. The first anodes are fed from the line output transformer (boost rail) via a filter consisting of a $100 \mathrm{k} \Omega$ resistor (R227) and an $0.1 \mu \mathrm{~F}, 1 \mathrm{kV}$ decoupling capacitor (C224). One might think that even had the capacitor gone short-circuit the presence of the $100 \mathrm{k} \Omega$ resistor would prevent a low resistance reading being obtained if, that is, it retained its value of $100 \mathrm{k} \Omega$. But it's a 1 W resistor alas, and when it finds that it has 1 kV suddenly across it the poor old thing burns up (the customer's complaint is "the picture went off and there was a smell of burning, then it all went off'). So it ends up as a virtual short. To check on this is an easy matter with the 697 chassis (vertical panel) - you just locate the position of the resistor (about a third of the way down from the top, in the centre), shine a light on it and enquire as to its health. If the colours (brown, black, yellow) are clearly visible, the resistor feels all right and the $0.47 \mu \mathrm{~F}$ boost capacitor on the line output transformer (also clearly visible) can be unhooked at one end for a quick test.

There's another possibility, the 180 pF (or 170 pF), 8 kV disc capacitor (harmonic tuning) on the transformer. This could be short-circuit - less likely but a real possibility nonetheless.

When one is dealing with the earlier versions access is a little more difficult since the $0.47 \mu \mathrm{~F}$ boost capacitor is mounted on the right side (lower) of the screened section, which necessitates removal of the whole unit (two screws on the rear flange), whilst the $100 \mathrm{k} \Omega$ resistor is underneath with the $0 \cdot 1 \mu \mathrm{~F}$ decoupling capacitor leading off to the rear. Some models have a trap door under the unit.

Fig. 1: Panel layout, viewed from the rear.

This makes access easy, but in most versions the whole unit must be removed - no real effort however once the cableform ties have been released and the earthing clips removed. There are two earth clips on the left-hand side and the focus unit earth on the right.

If the fuse has failed and there are no low resistance readings from the top caps of the line output stage valves to chassis, the next step is to check the l.t. bridge rectifier. This is easy on the 697, not quite so easy on earlier chassis. The BY164 bridge rectifier lives down at the bottom right-hand side of the main panel of the former, but is on a subpanel at the front of the screened section in the latter, again necessitating removal of the complete unit.

The usual fault is a short between either the positive or negative pin and one of the a.c. input pins. The BY164 is mounted vertically in the 697 chassis, so that there's a recognisable row of four contacts down in the bottom, right-hand corner. It's a matter of moments to make readings between them, on the low ohms range - the centre two will read low resistance because this is the a.c. input from the mains transformer. The effect of a direct short from either end to the centre can be nasty as this may not immediately blow the fuse. As a result, the transformer will run very hot until the fuse blows, leading to shorted turns in this rather hefty item and ending with a simple fault becoming an expensive repair. The problem is avoided in the 697 chassis by incorporating a thermal fuse in the transformer's primary winding. This can be removed and repaired without too much trouble.

Thus if the tube's heaters are not glowing but the mains fuse is intact, the fault could well be that the transformer is open-circuit with a sprung thermal cutout: this should lead to a check on the bridge rectifier for shorts before any other action is taken.
The 697 also employs an extra l.t. rectifier diode to provide the supply for the audio output i.c.

Line Oscillator

The PCF802 line oscillator valve is situated in a very awkward position in the 697 chassis - this is the one big problem when working on this chassis. It's not too great a snag for those familiar with the chassis, but one is inclined to swear a bit the first time. The valve itself is not often the cause of line hold troubles. The usual cause is the pulse feedback/integrating resistor R203 ($47 \mathrm{k} \Omega$, 2W) which tends to change value. The problem is that when it goes low in value it can deal a death blow to the flywheel sync discriminator diodes D40/41 before it actually disintegrates. This means that the unit must be removed, also the line output transformer cover, and the panel hinged
down for access. Removing the tripler unit's front securing screw simplifies matters.

If the flywheel sync discriminator diodes are in order, R203 has probably gone high in value. A replacement must be rated at 2 W or more for reliable operation.
The other item that can cause quite a lot of trouble, which may not be immediately obvious, is the $100 \mathrm{k} \Omega$ resistor R210. It's connected between the h.t. supply to the line oscillator stage and the line hold control. If this resistor changes value - which it does - the first effect will be to change the line hold control setting required. As its value falls further however the effect becomes more insidious, because the line oscillator stage's h.t. voltage is reduced. The effect of this is to reduce the line drive to the PL509 line output valve, which overheats and produces the lack of width symptom. A new PL509 may apparently restore normal conditions, but the new valve will overheat and speedily fail. A similar problem arises when the h.t. decoupling electrolytic C215 ($16 \mu \mathrm{~F}$) fails normally only the black ones give trouble.
Lack of width should initially lead to a check on the h.t. voltage - for about 290 V at C 315 - followed by checks on the line output stage valves (PL509 and PY500A) and a check for changed value resistors in the width circuit (R223 1-8M Ω and R224 10M).

Video Troubles

The next most likely trouble spot on these chassis is the CDA (colour-difference amplifier) panel. This houses the PL802 luminance output pentode and the three PCL84 colour-difference output/clamp valves. In early models the valve bases were of the flush type: unfortunately the heat conducted on to the panel leads to rapid deterioration of the panel material, resulting in cracks and dryjoints. The various effects produced are too numerous to list. Examples are no h.t. supply to one of the valve bases, varying colours, intermittent loss of picture etc. It's prudent to examine the underside of the panel closely and take whatever action is necessary to overcome cracks and solder deterioration.
Apart from the PL802 losing emission to cause lack of brightness, or running into grid current to cause excessive brightness, there are several fault conditions that can be confusing. These occur on later panels with stand-off valve bases as well as the earlier panels.

One very common "stock fault" is when the carbon resistor R353 (680) becomes open-circuit. Since it's in series with the luminance output pentode's anode load resistor, you might think that the result would be no luminance information at all. In fact the result is a smeary picture, lacking in detail. The reason for this is that there is another route via which h.t. reaches the anode of the luminance output valve - via the screen grid feed resistor R356 ($2.7 \mathrm{k} \Omega$) and the two high-light presets RV44/5. The effective anode load is thus substantially increased, accounting for the very poor definition.

The next common fault is loss of h.t. to one of the CDA pentode anodes, due to one of the three anode load resistors R390/1/2 going open-circuit. Since the following clamp triodes are not affected, the grey scale remains good (colour off): with the colour restored, one of the primary colours is missing. The PCL84 next to the PL802 is the red one, the centre one is for green and the one on the right-hand side is for blue. The relevant $12 \mathrm{k} \Omega$ load resistors are fairly easy to find - behind the valves and a quick check with a meter will show which one has
h.t. at one end but not the other.

Hopelessly wrong voltages on the CDA panel, e.g. negative readings at the tube grids instead of the normal 100 V (approximately), should lead one to check the condition of the main electrolytic h.t. reservoir/smoothing can C306/C315 (200 plus $300 \mu \mathrm{~F}$) which will probably be found to have a bulge sticking out between the tags. This is a common cause of the "no raster" condition, with the relevant tube voltages nowhere near what they should be.

Before leaving the CDA panel we should also point out that models using varicap tuning (press buttons not push) obtain the tuning voltage via an h.t. feed resistor on the right-hand side of the panel. The resistor is R389 ($3.9 \mathrm{k} \Omega$): it also supplies the three PCL84 pentode screen grids. If there is no h.t. on the tuner panel, i.e. the resistors here remain cold, check the right-hand side of the CDA panel where R389 is probably open-circuit. The value of the resistor was changed to $2.7 \mathrm{k} \Omega$ in later models.
The importance of the spring clips that secure the rear of the CDA panel to the main frame must also be men- . tioned. They provide essential earthing, and although the clips may be making mechanical contact the electrical contact may not be good. The effect of this is to shade the grey scale from green on one side to blue on the other. An extra earth wire soldered to the panel and screwed to the main frame to ensure good bonding is often a good idea.

Field Timebase

The field timebase is housed on a small panel just to the left of the line timebase/power supply unit. It has its fair share of troubles, but not too many. The original panels had a pair of BD124 output transistors of the SO55 configuration. These were changed to TO220 types, often retaining the BD124 number, with modified mounting. The output transistors are driven by an AC128 or AC188 transistor which should be mounted under the panel for cooler operation. The height control is connected to the base of the driver transistor, and is fed via a $22 \mathrm{k} \Omega$ resistor (R254) from a separate, zener diode stabilised 20 V line (input at PL10A). There are three l.t. supply lines to the field timebase, which sits between positive and negative 20 V rails (PL10B and PL10C respectively).

The most comon cause of field collapse on the 697 chassis is to be found on the main board where, towards the top centre, the supply tracks have to run past an area that's subject to considerable heat from the power resistors. Close inspection will reveal the discoloured solder and the fine hair cracks radiating from it. Jumper leads should be used to complete the circuits affected.

Loss of the supply to the height control will not result in complete loss of field scan, only to severe loss of height. The cause of this is usually leakage through the l.t. smoothing electrolytic $\mathrm{C} 312(250 \mu \mathrm{~F})$ or the stabilising zener diode D52. These items are mounted on the main board, approximately half way up the right-hand side. Note that you should not expect to find a positive voltage at the height control: the positive 20 V supply will be found only at the other end of the series resistor (R254) next to the control.

General Notes

Poor sync is usually due to the sync separator's base bias resistor $\mathrm{R} 33(4 \cdot 7 \mathrm{M} \Omega$) on the i.f. panel (left-hand
side) increasing in value. It's on the lower right of the panel.
The decoder panel is very reliable. Loss of colour should direct attention to the supply points - orange 15 V positive, pink 20 V negative.

A weak point in models fitted wth the 697 chassis is the front control panel (brightness, contrast etc.) which was hand wired in earlier versions. A tendency for heavy handedness will result in the controls being loosened on the panel - the contact may become intermittent or completely lost.

The relationship between the brightness control and the beam limiter should be understood. The PL802's grid bias is obtained from the brightness control which is slung - with various series resistors - across the positive and negative 20 V lines. The beam limiting action is carried out by a transistor which acts as a shunt on the positive side. When it conducts, the negative bias to the grid of the PL802 is increased, producing a darker picture. It's base is biased from the cathode of the line output valve. A reversible electrolytic ($\mathrm{C} 201,12 \cdot 5 \mu \mathrm{~F}$) smooths the voltage tapped from the slider of the brightness control: it sometimes leaks, giving the impression that the beam limiter circuit is malfunctioning.

No article on the Pye hybrids would be complete without mention of the pincushion amplitude control RV41 (50Ω) on the convergence panel. This item is under-rated and changes value, the result being bright white lines across the top of the screen. A fixed 12Ω resistor can be fitted instead.

The advice given in this article will enable the vast majority of common faults encountered on these Pye hybrid colour sets to be dealt with quickly, which is the aim of the present series of articles. For a more detailed discussion of various possible faults, see the article by Andy Denham in the September 1977 issue and the follow-up letter from Mike Phelan in the November 1977 issue.

GRAY CODING

Attentive readers may have noticed that we got confused a while back over a thing called the Gray code, a variant on the binary system. If like us you're not familiar with this digital coding system the comparison is as follows:

Binary	Gray
0000	0000
0001	0001
0010	0011
0011	0010
0100	0110
0101	0111
0110	0101
0111	0100
1000	1100
1001	1101
1010	1111
1011	1110
1100	1010
1101	1011
1110	1001
1111	1000

Why dream up something different? Well, if you look at the Gray code you'll see that only one of the four digits changes each time instead of one or more. This reduces the possibility of voltage spikes giving rise to false data, and is thus an advantage for video analogue-to-digital conversion.

Inside the Philips VR2020

Part 6

Brian Dempster

THIS final instalment on the basic machine deals with the system control arrangements. An introduction to some of the techniques used was provided by the article on microcomputer control of VCRs in the previous issue.
The job of systems control panel U20 is as follows: (1) to scan the keyboard for operator requests; (2) to carry out any such requests; (3) to monitor the machine's operation for any potentially damaging conditions and to bring about appropriate safety procedures; (4) to update the time of day clock; (5) to accept and store instructions for timed recordings and to carry out such instructions; (6) to perform the search tuning and channel store duties.

Microcomputer Control

The heart of the control system is an 8049 microcomputer i.c. Extra programme memory and input/output line expansion are provided by an 8355 i.c., with additional output expansion provided by an 8243 i.c. Two 5101 RAM chips are used to store the tuning information and timed recording requests (total capacity 256 bytes) these are supported by a 3.6 V nickel-cadmium battery to ensure data retention for up to three months with no mains voltage applied. Fig. 37 shows a simplified block diagram of the system.

The 8355 input/output expander i.c. has an eight bit bus port, two eight bit input/output ports and 2 k bytes of programme memory (ROM). It can be instructed to connect the bus port to either input/output port for data movement in either direction. It can also be instructed to put the contents of a particular "address" in its memory on to the data bus. The control lines tell the device which of these types of instruction to carry out.
The 8049 microcomputer i.c. communicates with the rest of the control system mainly via its bus port, which is used for feeding in information on the machine's operating conditions and requests from the keyboard, and to feed out data to update the displays and, via the output expander, to control the operation of the machine. The bus also addresses the external memories in the 8355 and two 5101 i.c.s, i.e. makes it possible for the microcomputer to obtain the information held in these i.c.s' memories. The control lines from the 8049 activate the external device to which information is to be sent, or from which information is requested, at any time.
The address/data bus has four "high order" bits, giving the bus a total of twelve lines: the four high order bits are driven by the lowest four bits coming via the 8049 i.c. The high order bits are used for the ROM's upper addresses and to communicate, via port 2 of the 8243 i.c., with the rest of the machine to issue instructions.
The timing of the microcomputer's operations is controlled by an internal 6 MHz clock - there's a 6 MHz crystal, which is external of course.

Port 1 of the microcomputer i.c. controls the tuning during the search tuning process and transmits a signal for camera remote control on the lower four bits. The upper four bits are used to accept a wind tacho pulse (for tape counter updating), a crystal derived 50 Hz signal (to update the time of day display), a camera remote control
signal and to send out a signal associated with the time of day updating.

Operation of the System

Let's see how the control system operates from application of the mains supply to the machine onwards. Removing the mains supply drives pin 1 of the microcomputer i.c. low. The microcomputer then carries out a "data dumping" sequence, i.e. it stores in the RAM information on the machine's condition (mode, tape counter reading, etc.). The RAM holds this information after removal of the mains supply since it's powered by the battery. When the mains supply is restored, the microcomputer's reset pin 4 is driven high. At the same time the 8355 input/ output expander/ROM i.c.'s reset pin goes low. This starts the control programme at the correct point, the microcomputer ascertaining the machine's previous condition. It then puts the machine into the mode in which it was previously operating, restores the displays and flashes the clock (to indicate that there's been a mains failure). The state of the battery is checked, and if its output is found to be low a memory clear sequence is carried out, completely wiping the memory in case corrupted data is present. Once the previous mode of operation has been reinstated, the microcomputer starts on the main programme, scanning the keyboard and checking the feedback signals.
Keyboard scanning techniques were described last month. The process feeds a binary word to the microcomputer which then places the required address on the data/address bus to gain access to the relevant part of the programme in the 8355's ROM - the control lines are set to the levels necessary for this. Instructions are then fed to the microcomputer via the bus, and may call for machine condition checks to be made before any further action is taken. The computer analyses the resultant reports, in accordance with the programme, and issues the appropriate commands via the bus. Safety operations such as unthread, switch off etc. are brought about under the control of the programme as conditions dictate.

Output Latching

The output ports of the 8355 and 8243 i.c.s have latches which maintain the outputs so that the data needs to be fed to these devices for only a very short time. The next "write" command to an output port overwrites any information already present there. Since these expanders are MOS devices the output currents are limited:buffer transistors are used for some of the outputs therefore.

Tuning Arrangements

The basic idea of search tuning is to produce a ramp voltage of about $0-30 \mathrm{~V}$ to tune through Bands IV and V until a transmission is found. Fine tuning is then brought about and if the channel is required the user stores the tuning voltage value. By allocating a two digit number to each channel/tuning voltage value (up to a total of 25) the

Fig. 37: Block diagram of the machine's control system. The heart of this is the 8049 microcomputer control i.c. Extra programme memory is provided by the ROM in the 8355 i.c., the two RAM's providing changeable memory storage.
stored channels can be recalled at will.
A representation of the tuning system is shown in Fig. 38. When a stored channel is selected by the user, digital output signals appear at pins 29 and 30 of the microcomputer. These are fed to tuning panel U60 via a latch i.c. The tuning signals consist of squarewaves whose markspace ratio, and thus average or mean value, indicates the stored channel. The amplitude of the squarewave is set by the microcomputer's supply line voltage (5 V) of course. These outputs are inverted by amplifiers fed from a stabilised 31 V supply to produce an output which is suitable, after integration, for tuning a varicap tuner. An active filter is included between the integrating network (C 1 and the associated feed resistors) and the output, which is

Fig. 38: The tuning system.
developed across C 2 , to the tuner.
The coarse tune output from the microcomputer defines the tuning to an accuracy of six bits. The fine tune output from pin 29 is passed via a circuit whose values are such that it contributes only $1 / 64$ th of the final tuning voltage, i.e. it provides fine tuning after a station has been located. The a.f.c. is muted by the microcomputer during the initial tuning operation.

During the search operation, binary words for successive tuning voltages are progressively clocked into the latch. When a signal is detected, a high to low transition occurs at pin 39 of the microcomputer - the a.f.c. signals, via the comparator/Schmitt trigger, provide the indication that a signal is present. After tuning, the picture mute signal (from the sync panel) is removed and the received channel is displayed on the monitor.

Updating

50 Hz pulses derived from the $4 \cdot 43 \mathrm{MHz}$ oscillator on the sync panel are fed into the microcomputer at port 1 , counted and used to update the time of day. The current time is entered by pressing the set clock button on the front panel to blank the clock display, then setting the time via the keyboard. The wind tacho pulses fed in at this port are counted and used to update the tape counter: the microcomputer knows whether to increase or decrease the counter reading by checking the machine's condition (wind, rewind etc.).

Programme Interrupts

Functions such as search tuning, time of day and tape counter updates take place during an "interrupt". This enables the programme to be broken into (at the end of a cycle). Using an interrupt ensures that critical timing functions do not have to wait for other sequences to finish.

Letters

TUSSLE WITH A TX9

We had our first tussle with a Thorn TX9 chassis the other day. The h.t. regulator thyristor CSR1 had gone short-circuit and taken with it half the mains rectifier bridge, D67, D77, D82, zener diode D83 and transistor TR66. These items were replaced, but with the full applied mains voltage the over-voltage trip operated. By adjusting the set h.t. control RV185 to minimum the set would operate, but all voltages were a little on the high side and the picture bounced continually. Going round with a scope, the culprit was found to be the thyristor's surge protection capacitor C142-it was leaking as the thyristor fired. One for the notebook!
K. Fry,

Shaw, Nr. Swindon, Wilts.

TUNING PROBLEM

During the past two weeks we've serviced two solid-state GEC colour sets (2110 series) with identical faults, the symptoms being flashing tuner neons and inability to preselect required channels. The usual cure is to replace the complete set of neons - this normally restores the tuning system to working order. The fault remained after doing this however - also after replacing the touch tuning chip.

On closer inspection we noticed that the plug and socket connecting the tuner to the main board was heavily tarnished, and after cleaning both the plug and socket the fault was cured. It's the first time we've encountered this problem. Could the tarnished condition of the mated plug and socket form a rectifying junction at these low currents?
R. M. Guerin,

Torteval, Guernsey.
Editorial comment: We suspect that the trouble was due to a defective circuit connection, e.g. a high-resistance earth path, rather than rectifying action.

PYE PUZZLER

We've had the following fault on Pye/Philips monochrome portables fitted with the TX chassis on several occasions in recent months. Each time the symptoms have been the same, either constant or intermittent, namely a smoothing fault - buzz on sound and an unstable picture.

Fig. 1: The mains/battery input/switching arrangement used in the Philips/Pye TX chassis (simplified circuit).

The input to the series regulator transistor was low at around 12.5 V instead of 15.3 V as stated in the manual, and on inspection diode D114 in the bridge rectifier was found to be running far warmer than the other three. Replacing the diodes failed to cure the trouble, so checks were made around them for any resistance or leakage. A reading of a few ohms was found between the cathode of D114 and the anode of D110: the only suspect item here is the switched mains/battery socket (see Fig. 1), and on placing a wire across tags 2-3 on the socket the fault disappeared, with all four diodes running at the same temperature. A replacement switched socket clears the fault completely. If you inspect the old socket you'll find the switched connections slightly oxidised.
T. L. Bingham,

Glebe Park, Lincoln.

LINE OSCILLATOR COIL PROBLEM

The problem I had with an ITT monochrome set fitted with the VC200 chassis was very similar to that described by George Wilding in the September issue, i.e. loss of line sync. Replacing the PCF802 valve and capacitors C124-7 made no difference, so I tried adjustment of the line oscillator coil L56. This had seized solid however, and any pressure on it only made matters worse. A new coil was obtained and fitted, but after a week the set came back with the same trouble. Once again I attempted to adjust the coil, and found that even in this brief time it had started to jam. The core was eventually freed, with a lot of care and some contact lubricant. Since there is no separate line hold potentiometer in these sets, I recommend that anyone fitting a new line oscillator coil ensures that it's well lubricated so that future adjustment is possible. J. Norman, Burgess Hill, Sussex.

THORN 9000 CHASSIS

We've had exactly the same symptoms described in the September Service Bureau with the Thorn 9000 chassis the picture split by horizontal lines, a high-pitched whistle and the set cutting out on changing channels. The fault was due to the 87.9 V supply reservoir capacitor being open-circuit - this is the h.t. supply to the line output transformer. When the fault is present the voltage at the collector of the chopper transistor VT701 increases by $30-50 \mathrm{~V}$, fluctuating, which might account for the intermittent tripping.
G. Lewis, Hartlepool, Cleveland.

HEAD WEAR

I read with interest Derek Snelling's mention of head wear on Toshiba VCRs (VCR Clinic, August). We experienced something similar recently in our workshop on a Toshiba V8600. The customer's complaint was of poor rewind on most tapes. Having checked the torque on both reels (correct) and ensured that the tape guides were not bent we scratched our heads, a little baffled until we noticed that the surface of the video head drum was of a very dull appearance. Cleaning fluid had no effect, so a replacement was tried - with complete success.

This particular customer had used tape head cleaners
on this machine and on his previous V5470, which required new heads after only ten months' use. I always advise our customers not to use any form of head cleaner at all.
David F. Pentin,
Melling, Merseyside.
(See also reference to the tape tension arm setting in last month's VCR Clinic - editor.)

SORTING OUT EW FAULTS

I read with interest the notes on EW faults in the article on the Philips G11 chassis in your September issue. It can be a bit of a problem when you find that the width and EW shaping controls have no effect. I now use a simple method to determine whether the fault lies in the EW amplifier/drive circuit or the diode modulator. The procedure works with most such circuits, e.g. the G11, Decca 100, Rank T20/22 etc.

A typical arrangement (Rank T20/22 chassis) is shown in Fig. 2. The amplifier and driver stages are all d.c. coupled, with the width preset varying, via one or more of the preceding stages, the conduction of the driver transistor. The driver's output is applied to the diode modulator circuit: the greater the conduction of the driver transistor, the greater the width. This latter fact is the key to diagnosis.

The two basic faults are: (1) lack of width with bowed sides and (2) excessive width with bowed sides. Let's take lack of width first. If we short across the emitter and collector of the driver transistor (4VT18 in Fig. 2) we get the condition equivalent to maximum conduction of the transistor. One of two things will happen: (a) the width

Fig. 2: Typical diode modulator drive arrangement, in this case as used in the Rank T20/22 chassis. The driver transistors 4VT17 and 4VT18 receive their power supply from the diode modulator, the components in 4VT18's collector circuit filtering out the line frequency components.
will not be affected; (b) the width will increase so that the raster fills the screen. If the result is (a), we know that the fault lies after the driver stage, i.e. in the diode modulator or an associated component. If the result is (b), the fault is prior to the diode modulator, i.e. in the driver transistor itself or a preceding stage.

With excessive width, we can turn the driver transistor off by shorting together its base and emitter. Again either of two things will happen: (a) the width remains excessive; (b) the width reduces. If the width remains excessive the fault lies in the driver transistor or the EW modulator. If the width is reduced, the fault is prior to the driver transistor.

The idea then is to use the driver transistor as the mid-point in the whole system, employing very simple checks to see whether the fault lies before or after this stage. I find this an invaluable aid to diagnosis. Note that the driver transistor may be an npn or a pnp device - the procedure remains the same however.
Jim Rainey,
Bangor, Northern Ireland.

N7118 PAL COLOUR BAR GENERATOR

An extremely light, compact and durable instrument, designed for mobile Colour T.V. Maintenance in the customers home. The basic model includes a built-in rechargeable battery plus a Power Unit/Charger. (A fully charged battery gives 10 hours continuous use). All patterns and sync. puises are derived from a single crystal controlled oscillator, producing extremely accurate, stable displays. The patterns available are: Standard Colour Bars, Red Raster, LInearised Grey Scale Step Wedge, Crosshatch and Peak White Raster. A Coaxial Socket on the rear panel provides a modulated UHF or VHF (please specify) signal of approx. 1 mV for direct connection to Receiver Aerial Socket. An (optional) integral Sound board is available, producing a Sound Carrier (6 MHz or 5.5 MHz), frequency modulated by a 1 KHz Sinewave. The N7118 will also house a third board that provides a 1 Volt p to p. 75 ohm Video Signal to a rear panel B.N.C. Socket.

Complete kit, including a professional finished case, screen printed P.C.B., Ready Built P.S.U., and all components - $\mathbf{f 5 9 . 5 0}$ inclusive. Sound and Video Boards, add $\mathbf{£ 1 0 . 2 9}$ per board.
Ready Built - £88.25 inclusive, Sound and Video Boards add f11.45 per board.
S.A.E. for details and specification.

N7121 VIDEO PATTERN GENERATOR

This Generator, based on the N7118 is designed for the mobile servicing of Colour Monitors and V.D.U.'s. It produces three separate Colour output signals at 1 Volt peak to peak into 75 ohms. Also provided is a separate sync. output which may be adjusted for positive or negative-going sync. tips. The Generator may be operated at $625 / 50 \mathrm{~Hz}$ or (by operating a push swltch on the rear panel) $525 / 60 \mathrm{~Hz}$.

The patterns available are colour bars, crosshatch, B step grey scale wedge, peak white plus many other combinations i.e., red raster, blue raster. yellow crosshatch etc., as defined by the three (red, green blue) beam switches on the front panel. The generator is powered by an internal Ni-Cad battery and is supplied complete with the Charger/Power Unit.

Price (Built \& Tested) $£ 75.00+$ VAT \& p. \& p.
Total $\mathbf{£ 8 8 . 2 5}$.
All goods despatched within 14 days.

Long-distance Television

Roger Bunney

There was a slow decline in Sporadic E activity during August, particularly from the middle of the month. Some exotic signals were received by the more vigilant - reception from Arabic sources occurred on at least three occasions, and signals from Italian free stations were seen during the early morning hours of the 15 th. Tropospheric reception improved somewhat during the month.
It was too late to include some news from Ryn Muntjewerff in the last column - of a selective tropospheric opening on July 29th when ten low-power Norwegian relays were received in Holland on channels between E24-44. The highest power relay station received was on ch. E44, with 1.7 kW e.r.p. Fortunately most of the relays were transmitting the PM5544 test pattern prior to the start of programmes, with the pattern carrying the identification of the relevant main transmitter. Oslo was being transmitted on ch. E44, Hovdefjell on chs. E25, 28, 36 and 40, and Lyngdal on ch. E22 (the other four relays were either on programme or used a pattern without identification).
So to the general log for August, as follows:
4/8/82 RAI (Italy) ch. IA, B; RTP (Portugal) E2, 3; RTVE (Spain) E2-4; MTV (Hungary) R1, 2; CST (Czechoslovakia) R2; JTV (Jordan) ch. E3 at 1635.
5/8/82 RAI IA, B; RTVE E2-4; RTP E3; MTV R1; CST R2; TSS (USSR) R1; TVP (Poland) R1.
6/8/82 ORF (Austria) E2a, 3; Switzerland E2, 3; MTV R1, 2; JRT (Yugoslavia) E4; RTP E3; RTVE E2-4; TF1 (France) F2, 4; Switzerland E2, 3; RAI IA; SWF (W. Germany) E2; DFF (E. Germany) E4; CST R1; JTV Amman ch. E3 at 1045-1115 BST - a good day!
7/8/82 RTVE E2-4; RAI IA; JRT E3, 4; MTV R1, 2; CST R1; TSS R1, 2; DR (Denmark) E3, 4.
8/8/82 RTVE E2-4; RAI IA, B; TVP R1; JRT E3; TSS R1-3; NRK (Norway) E2.
9/8/82 RTVE E2-4; RAI IA, B; NRK E2, 3; SR (Sweden) E3; CST R1; JRT E3; Switzerland E2; W. Germany E2.
10/8/82 TSS R1, 2; TVP R1, 2; MTV R1; CST R1; RAI IA; RTVE E2-4.
11/8/82 TVR (Rumania) R2, 3; TSS R1, 2; TVP R1, 2; CST R1, 2; DFF E4; ORF E2a-4; W. Germany E2; RAI IA, B; RTVE E2-4 (with experimental teletext).
12/8/82 RTVE E2-4; RTP E3; MTV R1, 2; DFF E4; CST R2; TVP R2; TSS R2; SR E3, 4.
13/8/82 RTVE E2-4; TVP R1, 2; TSS R2; NRK E2.
14/8/82 TSS R1, 2; NRK E2; RTVE E2.
15/8/82 ORF E2a-4 (with Austrian Grand Prix); JRT E3, 4; RAI IA, MTV R1, 2; RTVE E2-4; TVR R2; TSS R1, 2; NRK E2; TF1 F4; Arabic signal on ch. E3 at 1735; also a very early morning opening - see later.
16/8/82 SR E2; RTVE E2.

17/8/82 RTVE E2-4; RTP E2, 3; RAI IA; JRT E3; TVP R1, 2; CST R1.
18/8/82 TSS R1, 2; CST R1, 2; TVP R1, 2.
19/8/82 TSS R1, 2; TVP R2; CST R1; MTV R1; RAI IA.
21/8/82 TSS R1, 2; DR E3, 4; NRK E2; JRT E3, 4; RAI IA; RTVE E2-4.
22/8/82 RTVE E2, 3; improved tropospheric reception with W. German u.h.f. signals received in eastern UK.
23/8/82 JRT E3.
25/8/82 RAI IA, B; RTVE E4.
26/8/82 RTVE E3; MTV R1; SR E2; RAI IA, B.
27/8/82 JRT E3, 4.
29/8/82 TSS R1, 2.
During early September there was a slow moving high pressure system which produced improved tropospheric conditions with reception mainly on an easterly path. Here at Romsey the signals reached as high as W. German u.h.f. outlets and E. Germany ch. E6 (3rd-4th September).

Cyril Willis received Gwelo, Zimbabwe ch. E2 via TE (transequatorial skip) on August 4th, 9th and 15th. The high solar activity mentioned last month, producing an Aurora on July 14th, produced further activity on August 7-8th following the Sun's rotation. In the early hours (0300) of August 15th Cyril Willis noted Band I activity with several Italian f.m. stations both in and above Band I, including one with a programme in English. NCT came up on ch. E3 (not ch. IA as their logo suggests) at 0345, with a further unidentified signal on ch. E4. Ray Davies (Norwich) was contacted and confirmed the presence of these signals.

During an Italian SpE opening Hugh Cocks received a ch. A2 system M (525 lines) signal of (one assumes) US forces origin. The prevailing skip conditions suggest that there's a US base using ch. A2 (despite denial by the AFRTS of this channel being used in Europe) in southern Italy or north Africa. The "typically American" programming was in English. Can anyone assist with identification?

Garry Smith suggests that certain IBA transmitters are staying on air to prevent relays that receive their signals RBR (taken off-air, converted to another channel and retransmitted) processing other incident signals of a perhaps dubious nature. A sighting by Arthur Milliken during July tends to confirm this.

Here at Romsey problems have arisen with the 4 GHz dish. The focus seems to be incorrect and to date no signals from the Gorizont satellite have been received. Fortunately the feedhorn and head electronics (see else-

Satellite TV terminal installed at Joe's Gas Station, Nickel Creek, Texas. Photograph from John Tellick.

The Revco Electronics discone aerial.
where) have been tested and found to be working by using Hugh Cocks' 6 ft . dish. A reasonable quality display was obtained.

My thanks to the following who contributed to the log this month: Paul Barton (Harrogate), Hugh Cocks (E. Sussex), Cyril Willis (Ely), Arthur Milliken (Wigan), Brian Renforth (Chippenham), Iain Menzies (Aberdeen) and Ryn Muntjewerff (Holland).

News Items

France: In connection with re-engineering work for the new fourth channel, most of the main 819 -line v.h.f. transmitters should be off-air by the second week of September. David Moller has sent the following list of channel four openings: first half of 1983 Lille, Metz, Mulhouse, Nancy, Strasbourg, Caen, Cherbourg, Le Havre, Rouen, Brest, Le Mans, Nantes, Rennes, Vannes, Lyon, Saint-Etienne; second half of 1983 most other regions including Hyeres, Marseilles, Menton, Nice, SaintRaphael, Toulon, Ajaccio, Bastia, Corte, Grenoble and Toulouse.
India: The government has decided to start the phased introduction of colour TV. Test transmissions have been carried out in Delhi.
Guyana: France has received a major contract for establishing a colour TV service, with studios at Georgetown and eight 2 kW transmitters there and elsewhere in the coastal/mining areas. The opening is expected late next year.

The Discone Aerial

The discone aerial is a wideband system with a ten to one frequency range and omnidirectional characteristics. It's widely used for monitoring purposes, particularly with scanners (e.g. aircraft band use etc.) and has a predominantly vertically polarised pickup pattern with unity gain. For the enthusiast who's interested in a search aerial with general v.h.f./u.h.f. coverage, it's an ideal choice. The details shown in Fig. 1 were sent in by Derick Browne (Hove). Though the aerial is simple in principle, in practice it's rather difficult to construct.

Until recently two types have been available, a threepaired element system of relatively poor constructional standard selling at about $£ 13$, and a more up-market version, intended for the professional communications user, retailing at upwards of $£ 45-£ 50$. Revco Electronics (Poundwell St., Modbury, Devon PL21 0RQ) have now

SOUTH WEST AERIAL SYSTEMS

10 Old Boundary Road, Shaftesbury, Dorset. SP7 8ND tel. 07474370

Internal construction of head unit

SATELLITE TELEVISION

With the upsurge in interest of direct broadcasting from satelites. South West Aerial Systems are entering the DBS field with the introduction of a (relatively) inexpensive terminal package. Following completion of negotiations with various sources of supply. wo can offer the equipment as an electronic package' which when purchased in conjunction with a 1.8 metre dlameter dish support structure will provide a tuneable 4 GHz band TVRO verminal for approximately $£ 1700$ fully inclusive delivered, capable of resolving the Gorizont transmissions (Russian channel 1) at good quality and 'certain other transmissions' within the 4 GHz spectrum. Initially South West Aerial Systems will supply the electronic package and provide addresses for inexpensive dish systems but eventually it is hoped to supply sectional dishes direct in due course from Shaftesbury. Since the purchaser will mount the head assembly into the dish of his choosing and arrange the siting/erection/atignment bearing, the overall low cost compares favourably with other complete TVRO terminals currently on offer within the UK. It provides the progressive retailer with capital equipment suitable for publicity/showroom display demonstrating in a practical fashion real satellite television some 4 years before its official start in the UK.

The head assembly via its dipole feed couples signals into a 2 stage GaAsfet LNA and thence to a first down conversion/UHF amplification stage at $880-1150 \mathrm{MHz}$. giving on overall system gain of +38 dB at 1.3 dB noise. Signals are conveyed via standard UHF coaxial cabje to the indoor unit which further downconverts to the 2nd IF of 70 MHz . Signal processing takes the 25 MHz input bandwidth to baseband video and audio where it undergoes remodulation back to standard AM video/FM audio at either system B ch.E3 $(5.5 \mathrm{MHz}$ sound/vision spacingl or so system I ch.E36 (6 MHz sound/vision spacing). The audio subcarrier is tuneable over the $5.5-7.8 \mathrm{MHz}$ to cover the various transmissions likely to be encountered. AGC control is applied within the 2 nd conversion IF strip and AFC is similarly fed back to the input of the 2 nd conversion stage. Two units are available, type al covering 3.650 .3 .920 GHz or b) $3.920-4.200 \mathrm{GHz}$. The head unit is powered via the output coaxial cable from the indoor receiver, general power requirements call for 13.8 v .DC nominat or as supplied from a stabilised mains PSU. For correct display of the Russian SECAM coded colour transmissions a multiple standard TV receiver should be used, mono reception will be excellent on non-SECAM receivers (colour or black and white). The 4 GHz equipment is made in Sweden and delivery will normally be 2-3 weeks

Further information is available on a leaflet. Our catalogue covering all types of conventional terrestrial equipment costs 50p. Please include SAE for satellite leafiet and with general queries.

Fig. 1: Discone aerial data.
introduced a discone aerial with eight pairs of elements (i.e. eight hanging downwards and eight shorter horizontal elements on top) at below $£ 25$. Examination and use shows that this is a very efficient system, made to a high constructional standard. Connection is via 50Ω coaxial cable to a PL259 socket beneath the large element mounting hub. A small tool is provided to ensure tight, secure fitting of the elements. The "Revcone" covers $50-500 \mathrm{MHz}$ and is highly recommended. Our thanks to Revco Electronics for supplying a sample (see photo on previous page).

From our Correspondents .

The main talking point continues to be satellite TV reception, though the cost is unfortunately prohibitive for most of us at present - come back ATS-6, all is forgiven! Chris Wilson (see article in the September issue) is working on improvements to his 11.6 GHz system, including the use of an NEC 72089 gallium arsenide f.e.t. r.f. amplifier and a much higher first i.f. (700 MHz). A Cassegrain feed system is now in use, giving improved pictures, and the new i.f. amplifier will use two BFR91 transistors in a stripline arrangement. Whilst on holiday in E. Europe recently Chris obtained a copy of an aerial magazine called Sdelovact Technika. It shows a receiving system in western USSR for the 714 MHz Ekran (Stat-T) signals (satellite at $99^{\circ} \mathrm{E}$). There's a total of 32 stacked Yagis, each with approximately 23 elements!
L. Bruzzichesi (Malawi) has constructed a 714 MHz system for Ekran reception, using a five metre dish plus head amplifier feeding a PLL f.m. detector. He watched the World Cup in colour from Spain, listening to the live commentary from Rome via a shortwave radio. Interesting to note that the picture had a half second delay with respect to the sound. The first transmission ($0600-0900 \mathrm{GMT}$) had a higher power than the second (following a four minute break at 0900). The video quality was such that the broadcast "could have come from next door"! A 4 GHz system is under construction signals from the Saudi Arabian Intelsat downlink at $24.5^{\circ} \mathrm{W}$ are already being received using a two-stage low-noise amplifier, Birkill feedhorn and a Gillespie single-conversion receiver.
John Tellick (at present working in New York) has sent us a shot of a garage in the Guadalupe Mountain Range,

Texas whose owner, tired of fringe-quality TV signals, invested $\$ 6,000$ in a satellite terminal. He now gets 18 channels noise free! John's cable system at his N.Y. flat provides 28 channels.
On the subject of multi-channel cable systems, David Moller (Eastbourne) recently spent five days on holiday in Belgium. The local TV shop there was on cable and could receive sixteen channels, all signals being converted to system B/G PAL. There were three French, one Luxembourg, three German, four Belgian, three UK and two Dutch channels.
A DXer in Nicosia, Cyprus, who started operations as long ago as 1964, reports regular reception from most neighbouring Arabic stations and Greece ch. E9. He comments that SpE results are good, thanks in part to no local Band I signals. Summertime locals include Israel chs. E8, 10, 11 and 24, JTV chs. E3, 6 and Syria ch. E9. The September/October period always brings signals from Gwelo (ZTV) ch. E2 and Nigeria (NTA) chs. E2 and 3.
Gareth Foster reports on a visit to Hong Kong, Canton, Peking, Penang and Singapore. In China colour sets for hotels cost around $£ 7-800$, with monochrome portables (made locally or in Japan) being available from $£ 150$. Many aerials point to Hong Kong - even approaching Canton, some 80 miles away, there are aerials swaying on high bamboo masts pointed at HK, though such reception is officially discouraged. Dual-standard colour sets (systems D/I) are on sale in Hong Kong. The Fuba XC391 aerial is available there at $£ 35$, but an enterprising company sells a copy of the XC343 under the "Fuber" brand name at $£ 5$. The number of missing elements to be seen suggests that these Fuber aerials are not too strongly made! HK and Malaysia both use the PM5544 pattern. Malaysia's version has the identification RTM at the top with a six-figure digital clock at the right-hand centre and WARNA 1 (or 2) at the bottom - Warna is Malayan for colour.

DX-TV Receiving System

The DX-TV receiving system I described earlier this year (see articles in the February/March/April issues) has proved most successful, used with ET021 tuners. A prototype of an additional unit which converts the French system L signals to the UK system I is now working and will be described in a subsequent issue.

Correction

A slight (but important) amendment is required to my article on wideband u.h.f. aerials in the August 1982 issue. Stacked bowtie arrays were described as having a wide vertical beamwidth. This is incorrect. What I intended to say was that the system has a wide signal capture area vertically, i.e. what one bowtie misses another may get, enabling signals that vary in strength with height to be received. The system has a very narrow vertical beamwidth: signals that arrive at right angles to the reflector screen are accepted, but signals (or interference) that arrive at angles above or below the aerial structure are severely attenuated. The basic principle of this is as follows. Signals arriving from the forward direction and at right angles to the reflector appear at the output in phase. Signals arriving from above, below or from the sides produce out-of-phase outputs from the dipoles and thus cancel when added.

Service Bureau

Abstract

Requests for advice in dealing with servicing problems must be accompanied by a $£ 1.00$ postal order (made out to IPC Magazines Ltd.), the query coupon from page 44 and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

RANK A823 CHASSIS

There are two faults on this set. First the sound disappears once, twice or maybe three times an evening. If the set is left untouched the sound may come back in anything up to an hour. Otherwise the sound can be brought back by advancing the volume control to almost maximum, then turning it down again. The second fault is that the picture sometimes moves two inches to the left on changing channels, and in this state all the colours are out of position. It can be rectified by changing channels once or twice.

The sound fault is probably due to the germanium output transistors (AC176 and AC128) which should be replaced. The sideways displacement is not uncommon on this chassis and is known as "false line lock". Slight, careful adjustment of the flywheel line sync discriminator transformer 5T1 (bottom of the scan output panel, on the right-hand side) should cure this.

SONY KV1810UB Mk. //

The height increases intermittently by varying amounts of up to about 25 per cent, especially during the first half hour after switching on. The height control can be adjusted to correct the scan, but there seems to be some nonlinearity at the top. With the control set correctly, one of the teletext lines appears at the top. Reducing the height removes the line. Another problem is that the white balance can be set correctly for only one brightness level. If this is done at low brightness, increasing the setting of the picture control produces a green tint overall. With equal voltages at the three cathodes the picture becomes red. This seems to be the tube, since interchanging the drives has no effect.

The height and linearity variations may be due to the 2 SC 867 field output transistors Q503/4 or the 2 SC 1124 driver transistor Q502, but before investigating these replace thermistor Th501 (TH1500) in the field bias network - these little thermistors are notorious. Also check the setting and condition of the bias control VR505. The grey-scale problem is almost certainly due to a worn tube. We've found that Trinitron tubes don't wear too well, but the situation can often be improved by careful manipulation of the drive and background controls.

RANK T22 CHASSIS

A line frequency whistle starts after the set has been on for about an hour if the ambient temperature is about $70^{\circ} \mathrm{F}$. The picture is not affected, but the strength of the whistle
varies with picture content. After a further hour the whistle stops.

Whistling is a common affliction with modern sets. The usual offender in this chassis is the line linearity coil 5L4. Check by using an insulated tool to put pressure on the coil when the whistle is present. If this proves the point, a replacement coil should clear the fault.

DECCA 30 SERIES CHASSIS

The blue line tilt potentiometer VR500 burnt out and after a few hours the same thing happened to a known good replacement. R 502 in series with the blue line parabola potentiometer also runs very hot. Good but rather degraded convergence can be obtained, but I'm reluctant to leave the set running in view of the overheating.

Most of the available energy in this section of the circuit is bypassed by the 10Ω resistor R504. Check it for being high in value, open-circuit or dry-jointed. Also check diode D412. Then replace VR500 and R502.

THORN 8800 CHASSIS

Line shake is present on BBC-1 only. BBC-1 transmissions are available from two transmitters in this area, and the fault is present whichever is tried - but not on BBC-2 or ITV. The shake is worse at switch on. Disconnecting the a.g.c. link does not affect the fault, though careful adjustment of the vision/a.f.c. detector coils L112/L111 seems to affect but does not cure the trouble.

We've not had the fault with this chassis and suggest that if possible you try the set at a different location to eliminate the aerial system from suspicion. If the fault proves to be in the set, check the setting of the a.g.c. crossover control R127, the 12 V zener W102 which stabilises the supply to the TCA270SQ vision detector i.c., and then try slight adjustment of the vision detector coil L112. If these steps fail to cure the fault, suspect the tuner unit.

SPLICING VIDEO TAPES

Where can splicing tape that doesn't bleed adhesive over the heads and is sufficiently flexible be obtained? - many splicing tapes are much too stiff. I've seen it said that a straight splice should be made, but am unsure whether it should be perpendicular or diagonal. Also, would an overlap joint be better, arranged so that the overlap trails the heads?

The tape should be spliced at right angles to its edge with a perfect butt joint - otherwise another pile-up will occur. Splice on the back (non-oxide) side and restrict the number of splices to one per tape. Half inch Bib splicing tape is suitable - most of the larger video dealers stock it. Bib also have a complete kit.

GRUNDIG 5011

There's a quarter-inch wide rope-like line down the righthand side of the screen, about two inches from the edge. It disappears briefly if the brightness control is turned down then up again.

There are some official modifications for this, as follows: fit a choke (similar to L501) between Di637/C637 in the 14.3 V supply to the line driver stage; place a link across L 501 in the line drive coupling to the gate of the flyback thyristor; change C432 in the line driver transistor's base circuit from $0 \cdot 001 \mu \mathrm{~F}$ to $0 \cdot 0068 \mu \mathrm{~F}$.

239
Each month we provide an interesting case of television servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.

If we were to make a list of the simplest faults to deal with in a colour set, lack of one of the primary colours would come near the top - especially in the case of a seven year old hybrid set with which we are very familiar. A quick whip round with the AVO, a new transistor or whatever, and a tweak of the grey-scale pots is par for the course with a fault like this. How could we get into such a muddle that it took us a couple of hours to sort out the fault?

The set was an ITT hybrid one fitted with the CVC9 chassis, and the absent colour was blue. Yellow test card, yellow pictures. The first step in a case like this is to measure the voltages at the electrodes of the tube's blue gun. We found 430 V at the first anode (pin 13) and 44 V at the grid (pin 12), i.e. what one would expect under normal conditions. We next, as expected, found an excessively high voltage at the cathode (pin 11) - some 245 V . Normally about 150 V is present here, and it seemed that the blue output transistor T33d was cut off, in turn cutting off the tube's blue gun. These transistors often develop an open-circuit base-emitter junction, so in went a new BF337. The old one was cold when removed, which we took as confirmation of our diagnosis.

With the new transistor installed, power was applied. Up came the picture, as yellow and jaundiced as before and still with 245 V at pin 11 of the c.r.t. We had almost made up our minds that the d.c. coupled driver transistor T32d was short-circuit, but instead of picking up the soldering iron we picked up the meter leads to compare the voltages in the blue output stage with those in the neighbouring green output stage. The relevant circuit is shown in Fig. 1 - T33d is the blue output transistor and T32d the blue emitter-follower driver transistor. The voltage at the

base of T33d was found to be low $-5 \cdot 7 \mathrm{~V}$ compared to 7 V at the base of the green output transistor. T33d's emitter voltage was 5 V , which seemed fair enough, but the voltage at the emitter of T32d was $7 \cdot 5 \mathrm{~V}$. So the coupling resistor R246d, which was of the correct value at 180Ω, had 1.8 V across it, suggesting that a whopping 10 mA was flowing via the output transistor's base. It seemed that the new BF337 was faulty, but a resistance check proved otherwise. T32d was o.k. as well. The output stage load resistor R248d was of the correct value, and swapping over the blue and green c.r.t. drive leads brought us a blue raster.

What had we overlooked? If you are as puzzled as we were, it might help to know that when the culprit was eventually brought to light suspicion fell on the owner's wife, children and cat! We'll tell you why next month.

ANSWER TO TEST CASE 238 - page 659 last month -

Last month's cliff-hanger concerned a solid-state GEC colour set - one of the C2110 series. If you recall, we were in trouble with an intermittent case of loss of field sync, and were rather confused by the presence of a sawtooth waveform all round the field sync amplifier transistor TR451 when the fault was present. The sawtooth was present at the positive plate of the newly fitted emitter decoupling electrolytic C452, and we soon discovered that it was also present at the negative plate - and that's the earth line for the field timebase panel.

We were using the metal chassis frame as the earth connection for the scope, the connection between the two "earths" being PL28-1. This was dry-jointed, as a result of which some of the field scan current was developing a sawtooth voltage on the field timebase panel's earth print. This had the effect of cancelling the field sync pulse, whose source on the line oscillator/sync panel was firmly grounded. A run over the print connections of PL28, especially pin 1 , cured the trouble.

Fig. 1: Blue driver and output stage circuits used in the ITT CVC9 chassis. R245d is included to provide h.t. tracking. R250d provides output stage bias stabilisation. The peaking coil L73d and the partial decoupling of R247d improve the h.f. response.

[^0]
ELECTRONIC EQUIPMENT SERVICING (TELEVISION/NIDEO)
 full-time College course

TRAINING INVOLVES A HIGH PERCENTAGE OF WORKSHOP FAULT DIAGNOSIS ON MONOCHROME \& COLOUR TELEVISION EQUIPMENT. CLOSED CIRCUIT TV \& VIDEO CASSETTE RECORDER PRINCIPLES ARE INCLUDED IN THE COURSE

15 MONTHS COURSE

for beginners to include Electronic Fundamentals

6 MONTHS COURSE
for BSc, HND, CGLI, TEC
and similar applicants

Next two courses commence on JANUARY 3rd \& APRIL 18th.
Also courses in Computers/Microprocessors, and Radiocommunication/Radar leading to College Diploma and Technician Education Council awards.
Prospectus from:

LONDON ELECTRONICS COLLEGE (Dept T3/4) 20 Penywern Road, Earls Court, London SW5 9SU Tel: 01-3738721

TV LINE DUTPUT TRANSFORMERS

FAST RETURN OF POST SERVICE

ARE YOU

USING YOUR SPARE TIME PROFITABLY?

If not, you're losing money. Money that you could be making by selling used colour televisions from home in the evenings. In fact, provided you start correctly and know exactly how to operate, you can easily earn a substantial CASH INCOME with a starting capital of less than $f 20$. Our new unique publication "How to Deal Successfully in Used Colour Televisions" enables you to follow in the footsteps of many experts who have a great deal of combined experience in this lucrative home business, and who have 'pooled' their knowledge to help you. After all, to follow the advice of someone who has travelled the ground before you, is to be given the best possible start. And the hundreds of valuable trade secrets, hints, tips and suggestions in the guide show exactly how anyone of average intelligence can succeed immediately.

Every aspect, from securing the first television right through to rapid expansion of sales, is covered with the detailed knowledge of experts to ensure certain success. Indexed information on almost all makes of television is presented in clear tabular form, describing performance, reliability, price and service. In particular, the tips on expanding the business are very practical, and are almost automatic when put into practice. Pages of unique advice on advertising ensure that maximum sales are secured, and sources of supply are described in detail - fo both televisions and new/used spares. Monochrome sets are also covered, as are "invisible" cabinet repairs. Plus FREE on-going advice and FREE regular updating service.

You can start tomorrow - but you'll need our guide. The latest big illustrated edition is out now, and costs just $\mathbf{£ 4 . 9 5}$ - a small price to pay for financial independence !

ORDER TODAY FROM:
GLOBUS INDUSTRIES LTD., UNIT 18, DARLEY ABBEY MILLS, DERBY.

[^1]
THE BEST TV BARGAINS IN THE SOUTH

DECCA BRADFORDS

PHILIPS G8's
5 for $\mathbf{£ 7 5}$ (Varicaps also
Plenty of refurb-working sets
THORN 8-8K5
R.B.M. twin chip
G.E.C. 2040 most working

THORN 3-3K5
THORN 3-3K5
Special discount offers on large orders
G.E.C. Solid State

5 for $£ 100$
Hono ', 1500 s etc. all at E 3 in batches of 10 . \mathfrak{E} singles. Virtually every
known make in stock inc. Japanese at give away prices.
EXPORT SPECIALISTS - 1000s SETS AVAILABLE EVERY WEEK OPEN 7 DAYS Bulk Shipments catered for.
C.R.T.s Regun or Ex Equip. T.V. Trolly Stands

Visit our massive ultra modern premises. Tea, coffee, snacks available.
Whatever your needs we are in the lead. Ring today.
Easy Motorway Acess, ample parking. Open 7 days.
PANELS EX-EQUPMENT
R.B.M. I.F. Power Conv.

Time Base-Decoder
Philips G.8. All Panels
G.E.C. 2040 Decoder-C.D.A.
I.F. Panel

Thom 3-3K5. Power Line
All others
$7.50+£ 1.60$ P.P
$\mathrm{f} 12.00+\mathrm{f} 1.50$ P.P.
£7.50 + f200 PP $\mathrm{E} 2.50+\mathrm{f} 1.60$ P.P. $\mathrm{f} 3.50+\mathrm{f} 1.40$ P.P.
$\mathrm{f} 12.00+\mathrm{f} 2.00 \mathrm{PP}$.
$£ 12.00+£ 2.00$ P.P. $£ 7.50$ + £ 1.40 P.P. $£ 7.50+£ 1.50$ P.P. All Parts available all sets.
Please telephone your needs. Speedy return of post sarvice.
Special Offer: G-8 lopts (new type) $£ 9.00+£ 1.00$ P.P. All prices subject to 15% V.A.T.

COLOUR T.V. \& MUSIC CENTRE

Old Mixon Trading Estate,

Winterstoke Road, Weston Super Mare, Avon. Tel: 0934413537.
N. J. ELECTRONICS (SUPPLIERS OF QUALTTY COMPONENTS) UNIT 94, STORFORTH LANE TRADING ESTATE, CHESTERFIELD, S41 OSN, DERBYSHIRE

G8 LINE OUTPUT TRANSFORMER	$£ 7.30$
ITT CVC9 LINE O/P TRANSFORMER	$£ 9.00$
G11 ENN COIL	$£ 1.00$
U321 TUNER	$£ 7.00$
U322 TUNER	$£ 7.00$
DECCA 30/100 PUSH BUTTON UNIT	$£ 6.00$
PHILIPS DESOLDER PUMPS	$£ 6.00$
2A 20mm A/S FUSES	10 FOR $£ 1.00$
1A 20mm A/S FUSES	10 FOR $£ 1.00$
DECCA 100 EHT TRAY	$£ 559$
DECCA 80 EHT TRAY	$£ 5.95$
TDA 3560 INTEGRATED CIRCUIT	$£ 2.75$

TRADE COUNTER NOW OPEN 9.00 TO 12.00 WEEKDAYS. TUBES AVAILABLE FROM TRADE COUNTER ONLY. STOCK ENQUIRIES RING RIPLEY (DERBY'S) 8135969.30 TO 11.30 OR 2.00 TO 4.00 WEEKDAYS ONLY. FREE WALL CHART SUPPLIED WITH ALL ORDERS OR SEND LARGE SAE. GOODS DESPATCHED ON THE DAY WE RECEIVE YOUR ORDER BY FIRST CLASS POST.

ACCOUNT FACILITIES AVAILABLE (TRADE ONLY). PLEASE ADD 65 PENCE AND PACKING $+15 \%$ VAT TO ALL ORDERS.

GUARANTEED COMPLETE GOOD CABINETS SPARES AVAILABLE
PYE CT 205/CT 200 BUSH A823. TH 3500/8500 PHIL G8 DECCA BRAD . ITT CVC5. JAP GRUNDIG

656 WIMBORNE RD, BOURNEMOUTH
TEL: 0202522592

COLOUR TV SETS

Philips G8, Bush 823, Pye 222, Decca 30 series, Pye Chelsea, Grundig.

All complete, workers or untested from $£ 10$.

Spare panels and rebuilt tubes available.

SOUTHBRIDGE TV EENTRE

20 Southbridge Rd., Croydon, Surrey.
Tel: 01-771 3536 or 01-681 7848.

GET INTO THE PICTURE WITH...

BEGINNER'S GUIDE TO
 TELEVISION - 6TH EDITION
 Gordon J King
 Revised by E Trundle

Beginner's Guide to Television is an introduction to the techniques and equipment used in modern television broadcasting, recording and reception. The sixth edition has been carefully updated and will prove most valuable to students, technicians and all who need a clear. concise guide to the subject.
0408012153256 pages approx $£ 3.95$

SERVICING MONOCHROME PORTABLE TELEVISION George Wilding

A comprehensive servicing guide covering the operation. fault-finding and repair of a range of popular sets.
0408011432160 pages approx $£ 6.50$ approx
Please allow 28 days for delivery.

TELEVISION ENGINEERS'
 POCKET BOOK - 7TH EDITION Malcolm Burrell

A fully revised and updated handbook providing a summary of basic facts, circuit techniques and technical data for everyday reference. Useful to all concerned with, or interested in, the installation and servicing of modern television receivers.

0408004444324 pages $£ 7.95$

ORDER NOW

from your local Bookseller. In case of difficulty send cheque/PO with order to Publicity Department at the address below.

SPECIAL OFFER SURPLUS STOCK TO CLEAR							
AC128	0.150	BFY50	0.140	2N3772	0.950	NE555	0.180
AC187	0.150	BFY51	0.140	2N3773	1.000	(M3900	0.250
AD149	0.480	BT106	0.900	LM309K	1.000	7400	0.110
AD161	0220	BT116	0.900	7805	0.350	7401	0.110
AD162	0.220	BT199	1.100	7812	0.380	7402	0.120
AF139	0.220	BTi20	1.100	7818	0.380	7405	0.100
AF239	0.270	BU126	0.700	7824	0.380	7407	0.200
AU106	1.000	BU205	0.750	7905	0.350	7413	0.190
AU110	1.100	BU208	0.800	78105	0.300	7414	0.260
BC107	0.070	BU208A	0.850	78 L 12	0.300	7425	0.110
BC108	0.070	BU326	0.850	78L18	0.300	7441	0.300
BC109	0.070	BU407	0.750	781.24	0.300	7442	0.300
BC147	0.055	BU526	0.800	$2 \mathrm{SC495}$	0.700	7447	0.400
BC148	0.055	BY127	0.080	2 SC1306	1.000	7473	0.150
BC149	0.055	BY133	0.080	2SC1969	1.300	7474	0.180
BC157	0.055	BY164	0.220	2 SC 2029	1.200	7475	0.150
BC159	0.055	0A47	0.060	2 SC2078	1.200	7485	0.300
BD131	0.250	OC28	1.000	MB3712	1.500	7486	0.160
BD132	0.250	0 C 29	0.800	TA7205	1.500	7489	1.100
B0135	0200	0C35	1.000	UPC575	1.000	7490	0.220
B0136	0.200	R2008B	0.800	LM380	0.500	7493	0.250
BD137	0.200	R2010B	0.800	LM381A	0.600	74123	0.160
BD138	0.200	TBA520	0.750			74141	0.250
BD139	0.200	TBA530	0.750			74393	0.500
BD140	0.200	TBA540	0.750			741509	0.120
BD144	1.100	tBA550	0.750			74LS 164	0.300
BD150	0.300	TBA560	0.700	0 Y 802	0.450	7415197	0.350
BD157	0.380	TBA800	0.350	ECC82	0.400	74LS221	0.420
BDI58	0.380	TBA810S	0.600	ECC83	0.430	74LS240	0.500
BD159	0.400	TBA820	0.750	ECC84	0.400	74LS244	0.580
BD166	0300	TBA920	0.800	ECC85	0.400		
BD175	0.300	TBA950	0.800	ECH81	0.450		
B0177	0.300	TBA990	0.800	ECH84	0.520	8 PIN	0.070
BD179	0.320	TCA800	0.800	ECL80	0.570	14 PIN	0.080
80181	0.450	TCA940	0.850	ECL82	0.590	16 PIN	0.090
BD433	0.320	TOA1170	0.900	ECL84	0.570	18 PIN	0.120
BD535	0.400	TDA2522	0.800	ECL85	0.570	20 PIN	0.140
80536	0.400	TDA2530	0.800	ECL86	0.480	22 PIN	0.160
80537	0.420	TDA2532	0.750	EF80	0.310	24 PIN	0.180
BD538	0.420	TOA2540	0.700	EF85	0.340	28 PIN	0200
BDX65	0.800	TOA2560	0.700	EF89	0.430	40 PIN	0.250
BF180	0.160	T0A2593	0.800	EY86	0.310		
BF181	0.180	TDA2640	0.800	EY87	0.310		
BF194	0.050	T1P29	0.150	PC97	1.000	3 mm Red	0.050
BF195	0.050	TIP41A	0220	PCF802	0.570	3 mm Yel	0.100
BF196	0.060	TIP42A	0220	PCL81	0.540	3 mm Gre	0.100
BF199	0.060	TIP2955	0340	PCL82	0.700	5 mm Red	0.050
BF200	0.160	T1P3055	0.340	PCL84	0.500	5 mm Yell	0.100
BF258	0.180	2N3053	0.180	PCL 85	0.550	5 mm Gre	0.100
BF337	0.200	2N3054	0.400	PCL86	0.550		
BF338	0200	2 N 3055	0320	PFL200	0.850	ELECT	
BF362	0.300	2N3440	0.580	PL504	0.950	4700 UF.	
BFX87	0.150	2 N 3442	0.850	PY500A	1.600	16 V CAN	0.200
Please add 40 p. P\&P and VAT at 15%. Govt. Colleges, etc. orders accepted. Quotations given for Large Quantities. Please allow 7 days for delivery.							
SUNMIT ELECTRONICS 9 THE BROADWAY, PRESTON ROAD. WEMBLEY, MIDDLESEX, ENGLAND. Telephone: 01-904 2093							

A lightweight, extremely portable and versatile pattern generator for black/white and colour T.V. alignment and service at the customers home. At the turn of a switch, the generator can provide five essential test patterns for correct installation, fast checks and repairs. Pattern stability is first class and compares favourably with other more costly bulky generators only suitable for weighs only 190 grams.
PRICE £14.95 (Subject to V.A.T.)
POST \& PACKING £1.15

Telepart

Colour Bar Generator

- Exceptionally light \& durable
* Battery powered for mobility * Cross hatch

$$
\begin{aligned}
& \text { Grid } \\
& \text { *hite raster } \\
& \text { * Grey scale © Colour bars } \\
& \text { "Sound }
\end{aligned}
$$

A Versatile Generator for Servicing or aligning mono or colour TV receivers. Lightweight and very compact for outside service. Features sound facility often not found on more costly generators.
PRICE £49.95 (Subject to V.A.T.)
POST \& PACKING £1.15

Power Supply

A Power Supply can be supplied for the Telepart COLOUR BAR GENERATOR This compact unit mounts by 2 screws into the Battery compartment and converts the unit to a bench instrument.
PRICE £5.50 (Subject to V.A.T.)
Supplied by return, off the shelf

TV LINE OUTPUT TRANSFORMERS

If the Transformer you require is not listed please phone.		
RANK BUSH MURPHY	DECCA	
Z146 A640 dual std mono 8.51	MS1700 200120202401 mono	8.00
Bush A792, A793 single std mono8.51	MS2404 24202424 mono	8.00
A774 single std mono $8 \mathbf{8 . 5 0}$	121012111511 portable	9.13
A816 solid state mono 9.00	GYPSY portable	9.13
2712 T16a T16b mono portable 9.00	CS1730 1733 colour	8.00
A823 A823b A823av colour $\quad 10.00$	CS1830 1835 colour	8.00
Z179 2722 series colour $\quad 10.00$	'30' series BRADFDRD colour	8.00
$271818{ }^{\prime \prime}$ series $\quad 11.00$	80 series colour	8.00
$271820^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ series $\quad 11.00$	100 series colour	8.00
	PHILIPS	
G.E.C.		
2047 to 21053112 to $3135 \quad 8.00$	320 series solid state mono	8.50
"GAIETY" FINELINE 8 8.00	68 series colour	8.00
2114 portable mono 8.00	69 series colour	8.50
31333135 M 1501 H portable mono 8.00	G11 series colour	13.70
DUAL STD hybrid colour 11.00	KB-ITT	
SINGLE STD hybrid colour $\quad \mathbf{1 0 . 0 0}$		
SINGLE STD solid state 900 8.50	VC200 VC205 VC207 mono	8.00
or 110°	VC300 VC301 VC302 portable CVC1 CVC2 colour	8.00
FERGUSON HMV MARCONI	CVC5 CVC7 CVC8 CVC9 colour	9.00 9.00
1590159115921593 mono 8.00		9.00
16901691 mono 8.00	CVC30 CVC32 series colour	8.00
16901691 mano $\mathbf{8 . 5 0}$ 16001615 series mono $\mathbf{9 . 7 4}$	CVC40 series	14.56
16001615 series mono 9.74 30003500 EHT or SCAN $\mathbf{7 . 9 4}$	L.O.P.T TESTER Total Price	
ADD 15\% VAT to All prices.		16.79
Tidman Mail Order Ltd., 236 Sandycombe Road, Richmond, Surrey. Approx. 1 mile from Kew Bridge. Phone: 01-948 3702 Mon-Fri 9 am to 12.30 pm . 1.30 to 4.30 pm . Sat 10 am to 12 pm .	Hamond Components (Midland) Ltd., 416 Moseley Road, Birmingham B12 9AX. Phone: 021-440 6144. Mon-Fri 9 am to 1 pm . 2 pm to 5.30 pm .	

THE NO. 1 SOURCE IN THE SOUTH

 GOOD STOCKS OF MODERN COLOUR NOW AVAILABLE BRAND NEW TV, VIDEO AND AUDIO PHONE FOR DETAILS
TeleTraders

ST. LEONARDS WAREHOUSE

ST. LEONARDS ROAD, NEWTON ABBOT, DEVON

Telephone: (0626) 60154

COLOUR SETS GALORE

Hundreds in Stock.
From $\mathbf{£ 2 0}$. Guaranteed Complete.
Mono's and non-complete sets from $£ 3$.
Most makes available.
QUALITY COLOUR TUBES
Reconditioned and used tubes.
From £10 Guaranteed.
Don't delay, ring today.
ALPHA TUBES (DUNSTABLE)
53 Lowther Road, Dunstable.
Tel. (0582) 68934
TRADE

TOP TWWENTY T.V. SPARES

All components are At qually from prime manufacturers, and are dispatched by post same day as order received together with any refund due. All goods should be delivered within 4 working days.
Please add 15% VAT and $90 p P$ \& P
QUICK SAVE T.V. SPARES, Muxton House, Muxton, Telford, Salop.

REG. OFFICE ONLY
CALLERS STRICTLY BY APPOINTMENT
UK ONLY

TELEVISION TUBE SHOP LTD

BRAND NEW TUBES AT CUT PRICES

A28-14W $\mathbf{2 1 . 9 5}$	9AGP4 $\mathbf{£ 2 1 . 8 2}$
A31-19W/20W 19.95	190AB4/C4 23.00
A31-120W/300W 17.95	230DB4CT468......... 31.00
A31-410/510W 17.95	240DB4/240AB4A ... $\mathbf{2 2 . 0 0}$
A34-100W/510W 18.50	CT507 equiv 21.95
A34-514W 24.25	310EUB4................ 19.95
A38-160W/170W 17.50	310EYB4 18.75
A44-120W/R 25.00	310FXB4 17.50
A50-120W/R 19.00	310GNB4A............. 31.00
A59-23W/R 21.50	310HCB4................31.00
A61-120W/R 21.00	340AB4 22.50
Some Rebuilt Japanese	340AYB4 $\ldots \ldots \ldots \ldots \ldots . . . \begin{aligned} & \mathbf{3 0 . 0 0} \\ & 340\end{aligned}$
8. European Types	340RB4/CB4...........26.00
Available from	340AHB426.00
£14.00 + VAT £2.10 Old Bulb required.	RIGONDA $6^{\prime \prime}14 .00$
COLOUR TUBES	
(NEW \& MULLARD/THORN COLOREX)*	
12VARP22 $\mathbf{6 2 . 5 0}$	A56-120X $\mathbf{5 4 . 0 0}$
330AB2273.50	A56-410X64.00
A44-271X60.00	A56-500X/510X63.00
A47-342X61.00	A63-120X63.00
A47-343X61.00	A66-120X 65.00
A49-191X 53.00	A66-140X/410X 70.50
A51-161X70.00	A66-500X/510X65.00
A51-220X55.00	A67-120X65.00
A51-500X/510X64.50	A67-140X/200X 69.50
A51-570X73.00	A67-150X75.00
Old Bulb Required for Colourex 15\% VAT TO ALL THE ABOVE PRICES.	
ALL TUBES TESTED BEFORE TELEVISION	ALE \& FULLY GUARANTEED BE SHOP LTD
52 BATTERSEA BRIDGE RD., LONDON, SW11. Tel. 228 6859/223 5088 CARRIAGE: Mono £3, Colour $£ 10$.	

> SCARBOROUGH T.V. TRADERS CO. LTD.
> Offer you quality Colour T.V. at competitive prices with quantity discounts All major makes available -including: PHILIPS G8-GEC SOLID STATEBUSH 2 CHIP - PYE 731 - THORN VARICAP (6 Buttons) - DECCA 30 THORN 8000 17"/8500 19" etc. Delivery arranged
> GENUINE CHANGE OVER SETS SPECIAL OFFERS £100 BUYS 10 of PYE 205 10 of GEC HYBRID 10 of TELPRO
> THIS MONTHS SPECIAL10 BUSH FOR £150
> YOU HAVE TRIED THE REST NOW TRY THE BEST

> 85, Columbus Ravine, Scarborough, North Yorkshire YO12 70U. 0723-68087.
> 1 hour away from A1/A64 Junction.

UNIVERSAL PROGRAMME SELECTOR FOR VARICAP TUNING

UK Regd. Design No. 1006611
6 way interlocked d.p
6 woy interiocked d.
potentiometers
Top quality through hole
plated pcb
Dimensions: $5^{\prime \prime}$ by $2 j^{\prime \prime}$ by $1^{\prime \prime}$
ideal for replacement when original pars ape obsolete or unobtainable
Template guide supplied for drilling of your own fascia design
Range of pre-cut and drilled lascia/mounting kits for selected TV chassis anabling our unit to be fitted without further cutting drilling or
All orders despatched same
day
DIFECT REPLACEMENT FASCLNMOUNTINO KITS
Type 30-80 Replaces 7 piano-key unit as fitted to Decca/Telefunken 30 and 80
Type 30-C Replaces 7 piano-key unit as fitted to Decca console using tong perspex iliuminated control pane
Type 100 Replaces 8 position touch tune selector (AEG SAS 660 SAS 670) as used in Decca/Telefunken 100 chassis

Type CVC8-9 Replaces 5 rectangular push button plus thumbwheel as used in ITT

$$
\begin{gathered}
\text { SELECTOR } \mathrm{E} 4+\text { VAT } \\
\text { FASCIA/MOUNTING KITS (each) } \mathrm{E} 2+\text { VAT }
\end{gathered}
$$

ALDERSONJAMES LTD
 160 KINGS ROAD - HARROGATE © N. YORKS TEL: HARROGATE (0423) $\mathbf{6 0 0 5 8}$ HG1 5JG

MANTEL

MANCHESTERS NUMBER ONE SOURCE IN EX-RENTAL TV'S
SPECIAL COLOUR OFFER
THORN $\quad 10$ for $\mathbf{£ 1 2 5}$ PHILIPS G8 6 for $£ 90$ 6 for $£ 80$ BUSH

6 for $\mathbf{£ 6 0}$ 6 for $£ 60$
WORKING SETS AVAILABLE - MIN 6

THORN	$£ 25$ each
PHILIPS	$£ 30$ each
BUSH	$\mathbf{£ 2 5}$ each
GEC	$£ 22$ each
DECCA	$£ 25$ each
MONO	$\mathbf{£ 1 0}$ each

Many other makes incl. JAP, GRUNDIG etc. Ring for quote. Export enquiries welcome. Ex-equipment Tubes/Panels.
Callers welcome
Tel. 061-861 8501
419 BARLOWMOOR ROAD, CHORLTON, MANCHESTER M21 2 ER.

MAIL ORDER ADVERTISING

British Code of Advertising Practice
Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requires advertisers to fulfill orders within 28 days, unless a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please retain proof of postage/despatch, as this may be needed.

Mail Order Protection Scheme
If you order goods from Mail Order advertisements in this magazine and pay by post in advance of delivery. Television will consider you for compensation if the Advertiser should become insolvent or bankrupt, provided:
(1) You have not received the goods or had your money returned; and
(2) You write to the Publisher of Television summarising the situation not earlier than 28 days from the day you sent your order and not later than two months from that day.
Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.

We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiser has been declared bankrupt or insolvent.

This guarantee covers only advance payment sent in direct response to an advertisement in this magazine not, for example. payment made in response to catalogues etc. received as a result of answering such advertisements Classified advertisements are excluded.

B45. H/G UHF Television Tunable over the complete UHF band. Gain above 20dB, noise 2.8 dBs .

B14-Band 3 VNF Television Tunable over the complete Band 3 (Channels (E) 5 to 13). Also covers Aircraft \& 2 meter Amateur Bands. Gain above 28 dBs . Noise 2.8 dB
PRICE each 88.70

AERIAL AMPLIFIERS Aerial amplifiers can produce remarkable improvement on the picture and sound in fringe or dif ficult areas.
B45 - For Mono or Colour this is tunable over complete UHF television band.
811 - For stereo or standard VHF/FM radio.
B12 - for VHF television band 1 \& 3. All amplifiers are complete and ready to use Battery type PP3 or 8 V to 18 V DC next to the set type fitting PRICES E6.70 each

AERIAL SPLITTERS
2 way T-TYPE $£ 1.70$ each
Goods despatched on receipt of order
All Prices Fully Inclusive. P \& P per Order 30p. S.A.E. for Leafiets. Access Cards.
ELECTRONIC MAILORDER LTD 62 Bridgo St, Ramsbottom, via Bury, Lancs. BLO 9AGW. Tal Rams (070 682) 3036.

LONDON'S LARGEST TELEVISION WHOLESALER.. with over $4 \frac{1}{2}$ thousand sq . feet

"TELEMANN"I
 8-10 RHODA STREET,

(Off Bethnel Green Roed)
LONDON E.2. FREE CAR PARK
TEL: 01-739 2707
ALL MAKES IN STOCK AND GUARANTEED PYE 22" COLOUR FROM $\mathbf{£ 7 . 5 0}$
PHILIPS $22^{\prime \prime}$ G8 (Teak cabinet) PARCEL OF TEN $£ 12$
MONO DUAL STANDARD $£ 2$

- SINGLE STANDARD Ef^{5}

FREE DELIVERY TO THE LONDON AREA!
TELEPHONE 01-739 2707 - NOW!
L.

埗

COMPLETE $\quad \mathbf{~} 15.00$
Minimum 10
G-8 DECCA - THORN 3000
(SPARE PANELS \& TUNERS AVAILABLE) REDUCTIONS ON QUANTITY
TEL: PRESTATYN (07456) 89849/89970

\author{

N.G.T. COLOUR TUBES

 First Independent Rebuilder with
 B.S.I. CERTIFICATION
 (Certificate No. 004)
 2 year guarantee: 4 year option
 All Colour Tubes are debanded, high temperature pumped and rebanded using new adhesives and new tension band.
 $19^{\prime \prime} £ 30,20^{\prime \prime} £ 32,22^{\prime \prime} £ 33$, and $26^{\prime \prime} £ 38$.
 No exchange tube required on delta types.
 N.G.T. ELECTRONICS LTD.,
 120, SELHURST ROAD, LONDON S.E. 25
 Phone: 01-771 3535.
 20 years experience in television tube rebuilding. addVAT at 15%
 B.S.I. CERTIFICATION}

If you see an advertisement in the press, in print, on posters or a cinema commercial which you find unacceptable, write to us at the address below. (TV and radio commercials are dealt with by the I.B.A.)
The Advertising Standards Authority. If an advertisement is wrong, weire here to put it right.

ASA Ltd, Brook House, Torrington Place, London WCIE 7HN

APOLLO

HICH TEMPERATURE PUMPED COLOUR TUBES
Fast Meil Ordor service to any part G.B. Delhery 2.3 days.
Just phone for a quotation. Delivery Manchester area free same day. Two year guarantee. Fitting while you wait or in your home $£ 20$ extra. Also PlL types \& Toshiba.

$18^{\prime \prime}$	A47-342×343x	$£ 37.00$
$19^{\prime \prime}$	A49-120x/192x	$£ 37.00$
$20^{\prime \prime}$	A51-220x/110x	$£ 38.00$
$22^{\prime \prime}$	A56-120×/123x/140x	$£ 38.00$
$25^{\prime \prime}$	A63-120x	$£ 39.00$
$26 x$	A66-120xA67-120x/140x/150	$£ 39.00$

$26 \times \quad$ A66-120×A67-120×/140×/150 \quad - 39.00
$\mathbf{2 2 "}^{\prime \prime}$ Bush all transistor colour TV's fully serviced $\mathbf{£ 5 9}$ inc. delivery or with (new tube guaranteed 2 years) 28. Philips Video Spares Available.
061799085424 hour answering service.
43 Clarice Cres, Little Hulton
Nr. Manchester M28 6XM.

SETS \& COMPONENTS

PORTABLE TV TUBES
£19
Inclusive delivery with one year
110° only - A31-101-120-300-410
A34-100-101-120
29 Warmawort
29 Warmsworth Road Doncanter DN4 ORP.
Open 7 days. Callerys ring first

JABCO LOPT TESTER

This instrument for detecting shorted turns on Line O.P. Transformers is now used in hundreds of service workshops and manufacturers all round the world.
Mains operated. No controls to set up.
Designed around two I.C.s. giving constant stable results with a straightforward indication of the Lopt under test by Red \& Green Lecks.
With instruction booklet on testing many common Lopts in situ including jellypots. f16.50 inclusive. C.W.O., delivery 3 days. f 18 overseas post by sea, f21 airmail

JOBAKER \& CO CO
Supeox BN4 4in.
Tol Brightorn 593315.
Auntralenian egents:
5/37 Byron 8 treet,

WIZARD DISTRIBUTORS MANCHESTER
SPECIALIST DISTRIBUTORS TO THE TRADE OF T.V. \& VIDEO SPARES. WE STOCK A FULL RANGE OF PARTS \& COMPONENTS INCLUDING C.R.T's
RANK - THORN - PHILIPS - ITT -
DECCA - GEC ETC.
TRADE COUNTER OPEN: 9-4.30 CATALOGUE ON REQUEST. EXPRESS STREET WORKS EMPRESS STREET
MANCHESTER M16 9EN
TEL: 061-848 0060

SMALL ADS

The prepaid rate for classified advertisements is 33p per word (minimum 12 words), box number 60p extra. Semi-display setting £5.64 per single column centimetre (minimum 2.5 ms) All cheques, postal orders etc., to be made payable to Television, and crossed 'Lloyds Bank Ltd". Treasury note should always be sent registered post. Advertisements together with remittance, should be sent to the Classified Advertisement Dept., Television, Room 2612, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS (Telephone 01-261 5846).

NOTIEE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

TURN YOUR SURPLUS capacitors, transistors, etc. into cash. Contact COLES-HARDING \& CO, 103 South Brink, Wisbech, Cambs. 0945 584188. Immedi ate settlement

TV 8 CHANNEL TOUCH TUNE and Remote Control. Set top or add on. For details send S.A.E. to B Ewan, 16 Fair Acres, Harwood, Bolton, BL2 3NT.

GRUNDIG, NORDEMENDE reconditioned panels. Also complete sets all solid state. 0785814643.

The UNIVERSAL TRIPLERcan bear guara tee G.E.C.. I.T.T.. Pye. Rank. Decca \& Continertal sets. WING ELECTRONICS
15 Waylands, off Tudor Rd, Hayes End, Midiesex
SECOND HAND COBOLR TV SPARES and Tubes most makes. Telephone Southport (0704) 74411, anytime.

T.V
 SPARES, PANELS - AND MANUALS PHILIPS • GRUNDIG

TELEVIEW
01-994 5537
194, Acton Lane, London W.4.

EAST ANGLIA BARRY TV SERVICES

Good quality working colour televisions (from $£ 35$ plus VAT) straight from our retail shelves, (with good tubes \& cabinets). Available at all times delivery available anywhere.
Contact John, Dave or Steve on Cambridge 69215 or Ely 61462
Your Satisfaction is Our Concern.

SUFFOLK TUBES LIMITED
 214 Purley Way, Croydon, Surrey.

 Tel: 01-686 7951/2/3/4SUPPLIERS OF MONO AND COLOUR TUBES TO MAJOR RENTAL COMPANIES.
ALL COLOUR TUBES HOT PUMPED AT 385c AND REBANDED TO BRITISH STANDARD. 4151972 CLAUSE 18-2.
$19^{\prime \prime}$ and $22^{\prime \prime}$ TUBES APPROVED. OTHER TYPES PENDING.
BRITAINS LARGEST INDEPENDENT REBUILDER FOR 21 YEARS.

CASED ISOLATION TRANSFORMERS 500W max suitable TV work $£ 8.00+£ 2.85$. Good working Test Equipment P.S.U.'s lists. Write S.H.E., 5 Joseph's Park, Ballycruttle, Downpatrick BT30 7EN .

BULK BARGAIN T.V. SERVICE PACK

Contains at least $£ 50$ worth of T.V. service components and accessories Loads of hard to obtain TV. spares and components. Ideal for the service engineer. Only £12.50, carr. $£ 2.50$. Ref. Guar. HAVE YOU SEEN THE GREEN CATT 1000 s of new components, T.V., radio, and electronic items at unbelievably low prices. ProbCAT and receive FREF RFCORD SPEFD INOICATOR. MYERS ELECTRONCS, Dept. TV2,
$12 / 14$ Harper Street, Leeds LS2 7EA.
Next to Union Jack Clothing Store, Leeds LS2 7EA
Callers welcome at our NEW retail promises.
Open 9 to 5 Mon to Sat. Tel. 452045.

RANK BUSH MURPHY
 TRANSFORMERS

LINE OUTPUT TRANSFORMERS
2718
(1) New (Complete) $£ 20.50$
(2) Refurbished (Complete) $£ 11.00$ Old Lopt Required.
(3) Less Focus Module and Rectifier
£10.50

2718 SPARES

Pri. - $£ 5.50$. Sec. $-£ 6.00$,
Rectifier - £3.00, Lead - £2.50.

T20, T22 Complete	$\mathbf{£ 9 . 0 0}$
T20, T22 Windings	$\mathbf{£ 5 . 5 0}$

Switch-mode Transformers
T114 A/B
£8.00
All Units RBM Approved
Prompt Postal Service.
Add 15% V.A.T. to all Prices.
WOODSDALE COMPONENTS MR SKEHAN,
34 Field End Road, Eastcote, Middlesex Tel. 01-868-5580
or 01-789-0027
Agents Office, callors by appointment only.

NETT (NE) LTD UNIT 38 BEDESWAY BEDE IND ESTATE, JARROW, TYNE \& WEAR Tel. 0632896197

100s of choice colour \& mono TV's in stock including Bush, Thorn G8, ITT, Decca. Working or untested.

> Please Ring Sam Wilson For quotation soon!

SETS \& COMPONENTS CONTINUED

-
 TEST EQUIPMENT
 T.V. Pattern Generators. Crosshatch \& 4 patterns As above but with Greyscale Prices include P\&P and VAT Also available:
 PAL COLOUR BAR GENERATOR
 CAPACITANCE METER
 TRANSISTOR TESTOR
 S.A.E. for prices and full details. C. L. JERVIS 15 Mercer Grove
 Wolverhampton, WV11 3AN Tel. (0902) 23916.
 TELEVISION
 Trade Supplies of Good Quality Colour \& Mono TV's. Most Makes available, suitable for Sale or Re-Rent.
 ```GENERAL UNONSTREET \\ FACTOLS Donnessten \\ FACTORS (030249583,68416, \\ GOOD MOTORWAY ACCESS```

TELEVISION TUNER REPAIRS ALL TYPES

BRITISH, EUROPEAN JAPANESE ETC.

MEN-TU ELECTRONICS LTD. SALTERNS LANE, FAREHAM, HANTS. TEL: 0329-235116

G8 WORKING PANELS
 Power \mathbf{f}_{6}
 Chroma $£ 7$
 Field $f 6$

Line $£ 11$
Selectors (flat) $\mathbf{E 4}$
Tuner Assy $\mathbf{£ 5}$
All tested before despatch. Post paid. No exchange required.
C.W.O. to:

TELE-Q,
Lutwidge Avenue, Deepdale, Preston.

CAMPBELL ELECTRONICS LTD.

COLOUR T.V. PANEL EXCHANGE/ REPAIR SERVICE
THORN, RANK, PHILIPS, GEC,
DECCA, TELPRO, GRUNDIG etc.
90 Day Guarantee on all repairs - same day postal service.

Telephone Telford (0952) 502422
for catalogue and price list.
CAMPBELL ELECTRONICS LTD.
Unit 5, Heath Hill Estate,
Dawley, Telford, Shropshire.

COLOUR TUBES
 DONCASTER

£19.50 inclusive \& delivery including Scotland \& N . Ireland. They are slightly used A56 $\times 120$, are jig tested with 3 month guarantee
Re-guns $£ 29$ inclusive:- A44-271, A47-342/3, A49 \& A51s \& A56s $120 £ 5$ del. 2 for $\mathbf{8 8}$. (No need to spend $£ 15$ returning old glass.
66 \& 67×120 from $£ 30$ inclusive. 66 \& 140 or 410 £30. Ring or write for delivery price on $26^{\prime \prime}$. All reguns one year guarantee.
U-View (Tubes)
29 Warmsworth Road, Doncaster, Yorks DN4 0RP. 0302855017. Open 7 days Callers ring first $\frac{1}{2}$ mile off M18 Junction 2.

IRELANDS LARGEST TV DISTRIBUTOR
 THOUSANDS IN STOCK INCLUDING BUSH 2 IC, PHILIPS G8, ITT, DECCA

 BRADFORD, GEC AND PYE SOLID STATE, GRUNDIG, JAPANESE etc.COLOUR FROM $£ 10$ MONO FROM £1. Delivery can be arranged. SUMMER SPECIAL: LOTS OF 100 DECCA BRADFORDS, PHILIPS G8, ITT AND BUSH 823. ALL SIZES $£ 10$ each.
ALSO DISTRIBUTORS OF NEW TELEVISIONS, VIDEOS, MUSIC CENTRES, (GRUNDIG, HITACHI, GEC etc.)
C.Bs, TELEPHONE EQUIPMENT, AERIALS, + AMPS, TUBES, SPARES etc.

NEW NATIONAL PANASONIC VIDEOS $£ 317+$ VAT
TELETRONICS, WHOLESALE,
SESKINORE, OMAGH, CO. TYRONE. TEL: Fintona 841389 (STD 0662)
COLOUR TV PANELS Fully Tested \& Working

	IF	CDA	Decoder	LTB	$\begin{aligned} & \text { Line } \\ & \text { Board } \end{aligned}$	Frame Board	Power
GEC 2040	3.50	3.50	4.00	5.00	-	-	-
DECCA 13/30	3.00	-	5.00	5.00	-	-	4.00
BUSH ' ${ }^{\text {' }}$	2.00	-	5.00	5.00	2.50	-	2.00
THORN 8-8 ${ }^{\prime \prime}$	-	-	7.00	5.00	-	-	3.00
PYE 205	3.00	3.50	5.00	8.00	-	2.00	-
TELPRO	3.00	-	5.00	-	3.00	3.50	3.00
G8	6.00	-	8.00	5.00	15.00	-	5.00
BUSH twin chip decoder 10.00					fitted w		
					brand n		
Post \& packing: 1 panel $£ 1.50 ; 2$ panels $£ 2.25 ; 3$ panels $£ 3.00$ etc c transfor							
Hybrid panels do not include valves. $26^{\prime \prime}$ CRT's fully tested $£ 1$							

TRADE ONLY

N. W. ELECTRONICS

CLEARANCE SALE
LARGE QUANTITY OF GOOD CLASS

COLOUR TELEVISIONS

BUSH, PYE, GEC, THORN, PHILIPS ETC.
Excellent Cabinet Condition. Genuine Change Over TVs and Repossessions.

FROM ONLY £15!!! dELIVERY ARRANGED

We export large quantities of TVs weekly. Can we help you?
Discount on Quantity Orders.
OVER $\mathbf{1 , 0 0 0}$ MONO TVS IN STOCK FROM $\mathbf{£ 5}$
100 's colour tubes suitable for reconditioning. Working colour TV's to order, i.e. Bush 20"/22" 2 I.C. excellent picture, ready to sell. Only £39.

CALL AND SEE OUR SELECTION

WHITE GOODS

All types of Washing machines, Vacs, Fridges, Cookers, etc. Hoover Autos, Servis, Hotpoint, Hoover Uprights, Vacs. 500 always in stock.
Fully reconditioned Hoover Twin Tubs and Upright Vacs, all models. Phone for details.

> PAY US A VISIT YOU WILL NOT BE DISAPPOINTED

N. W. ELECTRONICS

BOLINGBROKE BUILDINGS, BOLINGBROKE STREET, BRADFORD 5.
3 minutes from Motorways. Telephone 0274390121

RANK, BUSH, MURPHY TV Panels

Repair/exchange service by ex RRI experts. Same day retum with 3 months guarantee. Genuine RBM technology at your service. Monday to Saturday 9am to 7pm.
T.K. PANELS SERVICE Tel: (0438) 61567.
31 Leaves Spring, Stevenage, Herts.

TVDX EQUIPMENT

VHF-UHF convertor. 12 V supply required. Superb DX performance $£ 11.90$. Bandi double notch filter, $40 \mathrm{~dB}+$ attenuation, state channel $£ 17.50 .48-88 \mathrm{MHz}$ Mosfet preamp, 25dB gain, very low noise, mains powered £26.50. Band III model same price. Data now available on 4 GHz satellite equipment. Please send S.A.E.

H. COCKS,

Cripps Corner, Robertsbridge, Sussex TN32 5RY. Tel. 058083 -317.

CAMPBELL ELECTRONICS LTD.
Distributors of specialist spares to radio and television service depts.
We stock semiconductors, I / Cs, special T.V. and audio spares, service aids, rebuilt CRTs etc.
Fast off the shelf delivery of stock items.
Send S.A.E. or telephone for full catalogue and price list.

CAMPBELL ELECTRONICS LTD., Unit 5, Heath Hill Estate,
Dawley, Telford, Shropshire.
Telephone Telford (0952) 502422.

LARGE TELEVISION re-gunning company will shortly have a large assortment of production equipment available for disposal, to include glass lathes drying tunnels, cleaning and stripping equipment etc. Anyone interested in receiving the above list, with a view to tender should apply on their heading to box number 172.

FOR SALE

SIX TV-CAMERA LENSES Montial-Sopelem F-95 \& F1.8 'C' \& 50 mm mounts. New unused, sell cheap or swap for anything. Low frequency storage oscilloscope with transfer function analysers (2) $£ 100$. Bolex H16 RXVS Cine-camera with Switar-Macro 26 mm \& 75 mm RX lenses \& 10 mm RX 'C' mts plus $£ 300$ extras, sell or swap for anything. KINGSLEY 88446 (0928) any day $10 \mathrm{am}-10 \mathrm{pm}$.

REGUNNED A1 TUBES $22^{\prime \prime} £ 25.00$. Mono $£ 11$ - Sub £11.00 PIL in stock. Ring first 021-773 8181, $772-1573$ seven days till 8 pm .
TELETEXT (Oracle/Ceefax) add-on adaptors for your existing television. Only $f 149.95$ inclusive. Also viewdata (Prestel). Trade enquiries welcome. Access/Visa. AVON OFFICE SERVICES (T), Freepost, Bristol BS10 6BR. (0272) 502008 anytime.
BUSH $24^{\prime \prime} 20^{\prime \prime}$ S/S MONO'S. Good working $£ 10$ each, minmum ten. C.O.D. Ready to sell. (070682) 7166.

For a good selection of used TV sets in good cabinets

* Large stock of working sets. * U.K. Delivery Service. * Stands, Aerials, Tubes and Panels.

is now in business at
UNIT 40, HARTLEBURY TRADING ESTATE, NR. KIDDERMINSTER, WORCS. DY10 4JB Tel: Hartlebury 250161 Telex: 334155 MTV G
*No connection with MTV Trade Services or Campion Thompson Ltd.

MENTION TELEVISION WHEN REPLYING

SERVICE SHEETS

30,000 SERVICE SHEETS IN STOCK. COLOUR MANUALS ALSO AVAILABLE

TV Monos, Radios, $\mathbf{£ 2 . 0 0}$. Tuners $£ 2.00$. Tape Recorders, Record Players $£ 2.00$. Transistors, Stereograms $\&$ Music Centres $£ 2.00+$ SAE. Also Colour Available. Car Radios $£ 3.00+$ SAE. All Radiograms $£ 2.00$. State if Circuit will do if sheets are not in stock. All TV Sheets are full-length 24×12, not in Bits \& Pieces. All other Data full-lengths.
All sheets from $£ 2.00$ except Colour. OLD VALVE Radios $£ 3.00+$ SAE $9^{\prime \prime} \times 3^{\prime \prime}$. MAIL ORDER
C. CARANNA, 71 BEAUFORT PARK, LONDON NW11 6BX. 01-458 4882 MAIL.ARD

SANDHURST PUBLICATIONS

Television Service Sheet Specialists Workshop Manuals, large selection of Japanese and European TV Sheets. Callers $5.30-7.00 \mathrm{pm}$, Upper Floor. Send S.A.E. for Catalogue and Enquiries:

49C Yorktown Road,
Sandhurst, Camberley, Surrey GU17 7AG.

TECHNICAL INFORMATION SERVICE

SERVICE SHEETS: full size by return - radio, mono, etc. $\mathbf{£ 2}+$ large sae. CTVs \& Music Centres from $£ 3$.
SERVICE MANUALS: Sole suppliers most obsolete equipment. Everything stocked to latest releases. Fantastic stocks CTVs/Videos. E.g. A823 £6.50; Autovox (early) £6.50.
REPAR MANUALS: Complete sets - 6 McCourt £35; 6 Tanbridge £35; latest mono portables only £6.50. 5 dif early VHS/Philips types (both $1500+1700 / 2$) $£ 10.50$.
CIRCUIT DIAGRAM COLLECTIONS IN HUGE BINDERS: British CTV (3) £42.50; Foreign CTV (2) £27; Early VHS/Philips video £15;
Mono TV standard + portables £29.
REPAIR SYSTEMS (REPAIR DATA, CIRCUITS, ETC): Video $1 £ 29.50$; Foreign CTV £40; Mono TV, $£ 54$.
SAVE £12-BRITISH CTV ONLY $\mathbf{E 6 0}$ - LIMITED TIME; Complete integrated TV Repair System $\mathbf{£ 1 6 0 .}$ Quotations/free 50p magazine/price listsletc for large sae.
$£ 2$ plus $8^{\prime \prime} \times 10^{\prime \prime}$ S.A.E. for service sheet and manval catalogues with $£ 4$ vouchers.
PHONE 0698883334 FOR FAST QUOTES - Open 4-6 daily, 11-1 weekends.
T.I.S., 76 CHURCH ST., LARKHALL, LANARKSHIRE ML9 1HE.

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS
Please insert the advertisement below in the next available issue of Television for insertions. I enclose Cheque/P.O. for $£ . \ldots$ (Cheques and Postal Orders should be crossed Lloyds Bank Ltd and made payable to Television)

NAME.

Send to: Classified Advertisement Dept

ADDRESS

TELEVISION

PERSONAL

REQUIRED. Part time or Freelance Engineer. $021-7738181$.

BOOKS \& PUBLICATIONS
ANY PUBLISHED, full-sized service sheet by return $£ 2+$ L.s.a.e. CTV/Music centres $£ 3$. Repair data with all circuits, layouts, etc. Your named TV or Video $£ 8.50$. Free 50 p mag. all orders, queries: TIS (TV), 76 Churches, Larkhall, Lanarkshire.

WANTED

COLOUR T.V.'s good working $\mathfrak{£ 2 5}$ each any quantity, most makes, sizes available. Tel: Coventry (0203) 714213.

COURSES

CONQUER THE CHIP . . . Master modern electronics the practical way by seeing and doing in your own home. Write for your free colour brochure now to British National Radio \& Electronics School, Dept. C4, Reading, Berks RG1 1BR

FULL-TIME AND EVENING COURSES IN

- Microprocessor Computers
- Video Cassette Recorders
- Colour TV.

Diploma - Higher Diploma or City and Guilds Qualifications.
Apply:
Registrar,
Reeswood College,
299A Edgware Road,
London W2 1BB.
01-402 9985.
Courses commence 19th January 1983 and 16th September 1983.

VETERAN \& VINTAGE

MISCELLANEOUS

BURGLAR ALARM EQUIPMENT. Latest discount catalogue out now. Phone C.W.A.S. ALARM 0274 682674.

"TUBE REPLACEMENTS" OFFER
 SPECIAL TRIAL PRICES

"WELLVIEW" EXCHANGE COLOUR
A44-271X £24
A47-342X . £24
A47.343X $\mathbf{E 2 6}$
A49-120X
A51-110X £24
A51-110LF $\mathbf{£ 2 6}$
A55-14X £28
A56-120X £28
A63-120X £33
A66-120X £ £33
A66-140X £33
A67-120X £33
A67-150X £33
"WELLVIEW" EXCHANGE MONO
 GUARANTEE

COLOUR SETS

Complete G8's and Pye CT200's $\mathbf{£ 2 0}+$ VAT.
Others from $£ 10$.

ALSO YOUR VALVE SUPPLIER NEW AND BOXED

(inclusive of VAT)

DY802 $=74$ p	ECC81=64p	EF183-78p
EF 184 $=64$ p	ECC82 $=64$ p	PCF802=98p
PCL82 $=78 \mathrm{p}$	PCL84 $=92 \mathrm{p}$	PCL805=97p
PFL200 $=11.15$	PCL86=97p	PL504 $=1.38$
PY800 $=70$ p	PL508=f1.92	PY88=70p
	N	
PL509-19		¢5 inc.
Postage order	Packing 1 $\text { er } £ 10 \mathrm{Fr}$	valve. All charge.

Camping - Self sufficiency - Emergencies Be prepared!
Fantastic 200 watt square wave inverter 12 v input $\mathbf{2 0 0 - 2 4 0 v}$ AC output tested but no guarantee $£ 20$ $+£ 3$ VAT, $\mathrm{p} \& \mathrm{p} £ 3$.
$24 v$ transistor fluorescent ballast units will run $2 \times 4 \mathrm{ft}$ tubes and draw under 2 amps (Philips) $\mathbf{£ 5}$ each + 75p VAT, p\&p 70.
Dynamo torches complete with spare bulb. You need never buy torch batteries again. 2 for $£ 5$ inc. VAT, p\&p 50p.

Allow up to 14 days for delivery.
TUBE REPLACEMENTS
Unit No. 1, Monmouth St., Bridgwater, Somerset.
Tel. 0278 425690-722816

1982 PRICE LIST

DISPLAY ELECTRONICS

GOLD LABEL COLOUR TUBES

2 YEAR GUARANTEE

90° up to $19^{\prime \prime}$. 533

The above prices are for standard 38 mm Delta Gun Types.
Add $£ 2$ Gun surcharge for 20AX Types. Other in-line \& P.I.L. Types, prices on application.

GOLD LABEL MONO TUBES
2 year guarantee

$19^{\prime \prime} / 20^{\prime \prime}$
£12

$23^{\prime \prime} / 24^{\prime \prime}$
..f14

GREEN LABEL COLOUR TUBES

12 MONTHS GUARANTEE

Green Label Prices apply only to standard 38 mm Delta Gun Types. They will be of particular interest to customers refurbishing ex-rental sets.

BUDGET CORNER

Buy any 5 mixed types Cash' n Collect Take 20% discount. The mix can include Green Label Tubes if required.

PRICES EXCLUDE V.A.t.

CALLERS WELCOME

Late night Thursdays until 8 p.m. Saturdays until Midday
N.B. Customers intending to collect orders are requested to telephone in advance:- even popular types may be out of stock for short periods.

UNIT 1 SWAN WHARF WATERLOO ROAD UXBRIDGE MIDDLESEX
Telephone: UXBRIDGE 55800

[^0]: Published on approximately the 22 nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by The Riverside Press Ltd., Thanet Way, Whitstable, Kent. Distributed by IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Sole Agents for Australia and New Zealand - Gordon and Gotch (A/sia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland £10, Overseas f11 per annum payable to IPC Services, Oakfield House, Perrymount Road, Haywards Heath, Sussex. "Television" is sold subject to the following conditions, namely that it shali not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever.

[^1]: To: alobuss Inclustries Led., Unle 18, Darley Abbey Milna, Derhy.
 Please send by return post "How to Deal Successfully in Used Colour Televisions"
 I enclose cheque/p.o. for $\mathbf{£ 4 . 9 5}$.
 NAME.
 ADDRESS
 \qquad

