

New Series: VGR SERVIGING

TUNER GOUPLING WITH SAWFS

PHD COMPONENTS
 RADIO \& TV COMPONENT DISTRIBUTORS
 UNIT 7 CENTENARY ESTATE
 JEFFRIES RD ENFIELD MIDDX
 SHOP NOW OPEN TELEX 261295

ALL COMPONENTS OFFERED SUBJECT TO AVAILABILITY. WE RESERVE THE RIGHT TO SUBSTITUTE REPLACEMENTS SHOULD THE ORIGINAL PART BE OUT OF STOCK OR UNAVAILABLE!
 PLEASE ADD 50p per parcel post and packing.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline SEMICONDUCTORS \& \& AU113 \& 3.00 \& BF273 \& 0.20 \& TBA3960 200 \& EHT MULTIPLIERS \& \\
\hline AA113 \& 0.16 \& AL103 \& 3.00 \& BF274 \& 0.25 \& TDA440 2.50 \& EHT Mul \& \\
\hline AA116 \& 0.16 \& AYY 12 \& 3.00 \& BF336 \& 0.50 \& SN76001N 1.50 \& TCE950 Doubler \& 2.00 \\
\hline AA117 \& 0.16 \& BC107 \& 0.20 \& 8F337 \& 0.50 \& TBA520 2.00 \& TCE950/1400 Tripler \& 5.04 \\
\hline A A119 \& 0.16 \& BC108 \& 0.20 \& 8F338 \& 0.50 \& \(\begin{array}{ll}\text { tBA120S } \& 1.00\end{array}\) \& TCE 1400 (Piped System Oniv) \& 4.56 \\
\hline OA91 \& 0.12 \& 8C109 \& 0.20 \& BF355 \& 0.80 \& TBA396 2.00 \& TCE 1500 Doubler \& 4.16 \\
\hline 0495 \& 0.12 \& BC113 \& 0.15 \& 8 BF 458 \& 1.00 \& TCA270SO 200 \& TCEE 1500 Tripler \& 4.64 \\
\hline OA202 \& 0.18 \& BC114 \& 0.15 \& BF459 \& 100 \& TDA2OSO 800 \& TCE \(16001 / 2\) Wave \& 3.95 \\
\hline 8 8100 \& 0.18 \& BC115 \& 0.20 \& BFT43 \& 0.50 \& \(\begin{array}{ll}\text { TDA2140 } \& 6.00\end{array}\) \& DEECA CS 1730/1830 Doubler \& 4.23 \\
\hline BA102 \& 0.10 \& BC116 \& 0.20 \& \(8 \mathrm{BF} \times 29\) \& 0.50 \& TDA2150 6 \& DECCA CS 1910/2213 Tripler \& 6.67 \\
\hline BA130 \& 0.15 \& \({ }^{8 C 117}\) \& 0.20 \& \(\mathrm{BFX84}^{\text {8 }}\) \& 0.50 \& TDA2160 6.00 \& DECCA 30 Series Tripler \& 6.01
6.43 \\
\hline BA154 \& 0.10 \& \(8 \mathrm{BC118}\) \& 0.20 \& BF×88 \& 0.50 \& TOA1230 300 \& DECCA 80 Series Tripler \& 6.43
6.68 \\
\hline BA155 \& 0.20 \& \({ }^{8 C} 19\) \& 0.50 \& BFX89 \& 050 \& TDA3089 200 \& DECCA 100 Series Tripler \& 6.68
6.43 \\
\hline BA164 \& 0.12 \& \({ }^{8 C 125}\) \& 0.20 \& BFY50 \& 0.50 \& \begin{tabular}{ll}
TDA 1054 M \& 2.00 \\
\hline S
\end{tabular} \& GEC Hybrid 2028 Tripler
GEC 2110 Tripler Pre JAN 77 \& 6.43
7.21 \\
\hline BAX13 \& 0.16
0.08 \& \(8 C 126\)
8C136 \& 020
0.20 \& BFY59
BFY52 \& 0.50
0.50 \& \(\begin{array}{ll}\text { MC1343P } \& 1.50 \\ \text { SAA661 } \& 0.60\end{array}\) \& GEC 2110 Tripler Pre JAN77
GEC 2110 Tripler Post JAN77 \& 7.21
6.43 \\
\hline ВАуз8 \& 0.16 \& BC137 \& 020 \& BFY90 \& 1.20 \& \(\begin{array}{ll}\text { SAA661 } \& 0.60 \\ \text { SAS560S } \& 200\end{array}\) \& ITT CVC 5/8/9 Tripler \& 6.51 \\
\hline BY206 \& 0.20 \& BC138 \& 0.40 \& BF381 \& 0.50 \& SAS570S 200 \& \(17 \mathrm{CVC} 20 / 25 / 30\) \& 645 \\
\hline IN4148 \& 0.04 \& BC139 \& 0.40 \& BFR39 \& 0.30 \& SN7400N 0 \& Philips 520 Tniper \& 6.51 \\
\hline 8 8126 \& 0.20 \& BC140 \& 0.40 \& BFR79 \& 0.30 \& SN7413N 0.90 \& Philips 550 Tinpler \& 6.42 \\
\hline BY127 \& 0.15 \& BC142 \& 0.40 \& BFR81 \& 0.30 \& SN74122N \& Philios 69 Trinter \& 663
668 \\
\hline BY133 \& 0.22 \& BC143 \& 0.40 \& BFR89 \& 0.50 \& SN74141N \& PYE 691/693/697 Tripler \& 6.68
548 \\
\hline \({ }_{\text {BY } 164 ~}^{4}\) \& 0.50 \& \({ }^{8 C 147}\) \& 0.15 \& 8 B 259 \& 0.25 \& TBA395 \& RR1 823 Tripler
RRI2179/823 \& 5.48
6.68 \\
\hline SK82/08 \& 1.00
0.15 \& BC 148
BC 149 \& 0.10
0.15 \& BDX32
BU206 \& 2.50
1.60 \& \begin{tabular}{ll}
TBA3950 \& \\
TBA950 \& 1.80 \\
\hline 6800
\end{tabular} \& RRILI \({ }_{\text {TCE }}\) 3000/398300 Tripler \& 6.68
5.51 \\
\hline \({ }^{\text {BY }}\) (10 10 \& 0.18 \& \({ }^{8 C 153}\) \& 0.15 \& 8u208/02 \& 2.80 \& TEAP50
TCABOO \& TCE 4000 Tripler \& 8.00 \\
\hline IN4001 \& 0.10 \& BC154 \& 0.15 \& BU326S \& 100 \& TCAB000 400 \& TCE 8000 Doubler \& 3.53 \\
\hline IN4002 \& 0.10 \& BC157 \& 015 \& 84406 \& 200 \& TDA1180 3.00 \& TCE 8500 Tripler \& 5.60 \\
\hline IN4003 \& 0.12 \& \({ }^{\text {BC }} 158\) \& 0.15 \& BU406D \& 250 \& TDA1190 3.30 \& TCE 9000 Tripler \& 7.28
550 \\
\hline in4004 \& 0.12 \& BC159 \& 015 \& BU407 \& 1.70 \& TDA2OC2H \(\quad 3.60\) \& TVK \(76 / 13\) Continental Sets \& 5.50
6.68 \\
\hline in4005 \& 0.12 \& \({ }^{\mathrm{BC} C 160}\) \& 0.40 \& BU407D
R2008B \& 2.50 \& TDA25900 500 \& TVK 52 1TM Replacement
Korting \(90 \%\) Tripler \& 6.68
650 \\
\hline IN4006 \& 0.14
0.16 \& BC161
BC 170 \& 0.40
0.15 \& \begin{tabular}{l}
R2008B \\
R2010日 \\
\hline
\end{tabular} \& 250
250 \& \begin{tabular}{ll}
TDA 2600 \& 5.00 \\
\hline TOA2640
\end{tabular} \& Korting \(90 \%\) Tripler
Autovox Tripler \& 650
6.50 \\
\hline in5407 \& 0.33 \& BC171 \& 0.15 \& R2540 \& 300 \& \begin{tabular}{ll}
TDA \\
TDA3950 \& 3.30 \\
\hline
\end{tabular} \& Rediftusion MK 1 Tripier \& 6.00 \\
\hline BR100 \& 0.30 \& BC172 \& 0.20 \& ME0402 \& 0.20 \& \(\begin{array}{ll}\text { TAA621 AX1 } \& 3.30\end{array}\) \& RRIT TV 25 Quadrupler \& 400 \\
\hline BR101 \& 0.60 \& BC177 \& 0.20 \& ME0412 \& 0.20 \& TBA625 5 \& RRI T20 \& 7.04 \\
\hline \({ }^{\text {BRY }}\) TiC19 \({ }^{\text {chen }}\) \& 060
150 \& BC178 \& 0.20 \& ME4003 \& 0.15 \& TCAB3CS 2.00 \& MULTISECTION CAPACITORS \& \\
\hline TiC1160N \& 1.50
2.00 \& \& 0.20
0.15 \& ME6002
MEBOO1 \& 0.20
0.20 \& TDA2020/A2 \({ }^{\text {T }}\) \& DECCA 400 400/350 \& 3.72 \\
\hline BT120 \& 2.00 \& \({ }_{\text {BC183L }}\) \& 0.15 \& M.JE2955 \& 1.50 \& \(\begin{array}{ll}\text { TDA2020 } \& 5.00 \\ \text { TDA2030 } \& 3.60\end{array}\) \& DECCA 80/100 400/350 \& \\
\hline BYX \(71 / 500\) \& 080 \& BC184L \& 0.15 \& M.JE3005 \& 1.30 \& \(\begin{array}{ll}\text { TDA2010/8D2 } \& 4.50\end{array}\) \& GEC 200200150 50/350 \& 4.00
300 \\
\hline \({ }^{2} \mathrm{~N} 444\) \& 1.50 \& \({ }^{8 C 1841}{ }^{\text {c }}\) \& 0.15 \& MP8113 \& 1.00 \& TDA2002V 5 \& GEC 100 2000/35 \& 110 \\
\hline TV106/2
BYX 882 V 7 \& 1.50
0.10 \& \(8 C 186\)
BC187 \& 0.30
0.30 \& MPSUO5
MPSU55 \& \begin{tabular}{l}
1.20 \\
1.20 \\
\hline
\end{tabular} \& TCA940E 300 \& GEC Prilips G8 500/250 \& 2.10 \\
\hline BZY88 3VO \& 010 \& BC203 \& 0.15 \& TIP2955 \& 1.30 \& \& GEC Philips G8 600/300
ITK KB \(2002007525 / 350\) \& 2.50 \\
\hline BZY88 3V3 \& 010 \& BC204 \& 0.15 \& TP3055 \& 1.30 \& We can orten supply equivaients
to transistors \& I.C's not listed. Free \& \(1{ }^{1 / 1}\) KVE \(200200 / 400\) \& \begin{tabular}{l}
3.20 \\
\hline
\end{tabular} \\
\hline BZY88 3V6 \& 0.10 \& \({ }^{8} \mathrm{BC205}\) \& 015 \& T1S90M
2N2904 \& 0.30
050 \& list on request with any order. \& Philips G11 470/250 \& 1.90 \\
\hline BZY88
BZY88
4V9 \& 010
0.10 \& - \(\begin{aligned} \& \text { BC206 } \\ \& \text { BC207 }\end{aligned}\) \& 0.15
0.15
0.15 \& 2N2904
2N2905A \& 050
050
0 \& list on request with any order. \& PYE \(691200300 / 350\) \& 2.80 \\
\hline BZY88 4V7 \& 0.10 \& 86208 \& 0.15 \& 2N2905 \& 0.50 \& Valves \& PYE \(10001000 / 40\)
PYE \(731800 / 250\) \& 0.90
250 \\
\hline BZY88 5V1 \& 010 \& \({ }^{\text {BC209 }}\) \& 0.15 \& 2 N 3053 \& 0.50 \& \(\begin{array}{ll}\text { DY/86/87 } \& 1.30 \\ \text { DY802 }\end{array}\) \& RRI \(2500 \cdot 2500 / 30\) \& \begin{tabular}{l}
250 \\
1.30 \\
\hline
\end{tabular} \\
\hline BZY88
BZY86
6V2 \& 0.10
0.10 \& \({ }_{\text {BC2 }} \mathrm{BC213L}\) \& 0.15
0.15 \& \({ }^{2} \mathrm{~N} 3703\) \& 020
0.20 \& \begin{tabular}{ll}
OY802 \& 1.80 \\
ECC82 \& 1.40 \\
\hline 1
\end{tabular} \& RRI \(600 \% 300\) \& 2.50 \\
\hline BZY88 6V8 \& 0.10 \& BC214L \& 0.15 \& 2N3710 \& 0.20 \& \(\begin{array}{ll}\text { ECC84 } \& 1.20\end{array}\) \& RRII 300 300/300 \({ }^{\text {TCE } 950} 10030010016\) \& 2.50
100 \\
\hline BZY88 7V5 \& 0.10 \& BC225 \& 0.40 \& 2 N 3055 H \& 0.60 \& ECH83 \& TCE 1400150100100 \& \\
\hline BZY88 8V2 \& 010 \& \({ }^{\text {BC237 }}\) \& 0.15 \& TAA350 \& 0.80 \& ECH84
ECL80 \& 100150 \& 370 \\
\hline BZY88 9V1
BZY88
IVN \& 0.10
0.10 \& \({ }^{\mathrm{BC} 238} \mathrm{BC251A}\) \& 0.15
0.15 \& TAA550 \& 0.50
1.80 \& \begin{tabular}{ll}
ECL80 \\
ECL82 \& 1.10 \\
\hline 1.10
\end{tabular} \& TCE 1500150150100 \& 2.10 \\
\hline BZY88 11v \& 010 \& \({ }_{\text {BC30 }}\) \& 0.40 \& TAA611 \& 1.75 \& \(\begin{array}{ll}\text { ECL86 } \& 1.10\end{array}\) \& TCE 3000/3500 175/400 \& \\
\hline BZY88 12 V \& 0.10 \& ВС303 \& 0.40 \& TA4630S \& 2.50 \& EF80 \& TCE 3000/3500 600/70 \& 2.70
1.00 \\
\hline BZY88
BZY88
13V \& 0.10
0.10 \& BC307
BC308 \& 015
015
015 \& TAA661B
SN7654ON \& 2.00
1.50 \& \begin{tabular}{ll}
EF95 \\
EF183 \& 1.50 \\
\hline 1.70
\end{tabular} \& TCE 30003500 220/100 \& 070 \\
\hline BZY88 18V \& 0.10 \& \({ }_{8}{ }^{\text {BC327 }}\) \& 0.15 \& TAD 100 \& 2.00 \& EFF183
EF184 \& TCE 8000/8500 2500-2500/63 \& 1.50 \\
\hline BZY88 20 N \& 0.10 \& 8С328 \& 0.15 \& traizoas \& 0.75 \& E134 3.00 \& TCE 8000/8500 700/200 \& 1.00
1.00 \\
\hline BZY88 22 V \& 0.10 \& BC337 \& 0.15 \& TBA231 \& 1.20 \& EL84 \({ }^{\text {GY50 }}\) \& TCE 9000 400/400 \& 3.00 \\
\hline BZY88827V
BZY883V \& 0.10
0.10 \& BC338
BC547 \& 0.15
0.15 \& TBA4800
TBA5200 \& 2.20
2.00 \& \(\begin{array}{ll}\text { GY501 } \& 3.00 \\ \text { PC97 }\end{array}\) \& TCE 9500 220/400 \& 2.20 \\
\hline BZX61 7V5 \& 0.20 \& BC141-10 \& 0.80 \& tBA530 \& 2.00 \& \begin{tabular}{ll}
PC900 \\
\\
\hline 1.50
\end{tabular} \& MAINS DROPPERS \& \\
\hline \(87 \times 618 \mathrm{~V} 2\) \& 020 \& 8D115 \& 0.50 \& TBA5300 \& 2.00 \& PCF80 \& TCE 140 12R - 16. IK7 - 116 \& \\
\hline \({ }_{8}^{8 Z X 619 V 1}\) \& 0.20
020 \& 8D124 \& 1.80 \& TBA540 \& \({ }_{2}^{2} 220\) \& PCF802
PCFBO6 \& \& 1.16 \\
\hline \& 020
0.20 \& 80131
\(8 D 132\) \& 070
0.60 \& \({ }_{\text {TBA5400 }}^{\text {TBA550 }}\) \& 2.20
3.00 \& \(\begin{array}{ll}\text { PCF806 } \& 1.10 \\ \text { PCL82 }\end{array}\) \& \(\mathrm{TCE}_{\text {TK5, } 1500350}\) \& 1. 10 \\
\hline BZX61 12v \& 020 \& 8D133 \& 0.70 \& TBA5500 \& 3.00 \& \(\begin{array}{ll}\text { PCL84 } \& 1.80\end{array}\) \& TCE 160018 Thermal Link \& 1.10 \\
\hline 8ZX61 13 V \& 020 \& BD134 \& 0.70 \& TBA560C \& 2.20 \& PCL85/805 \(\quad 1.90\) \& 320 - 70, 39 \& 1.10 \\
\hline \(8 z \times 6115 \mathrm{~V}\) \& 020 \& BD144 \& 2.50 \& teas60CO \& 220 \& PCL86 \& TCE 3000/3500 \& 0.80 \\
\hline \(82 \times 6116 \mathrm{~V}\) \& 0.20 \& 8 BD 159 \& 080 \& T8A570 \& 2.50
2 \& PD500/510
PFL200 \& TCE 8000/8000A 56 + 1K.47. \& \\
\hline 8 Px 6118 V \& 0.20 \& BD238 \& 0.50 \& TRA5700 \& 250 \& PFL200
PL36 \& 5R. \(1 \mathrm{R}, 100 \mathrm{R}\) \& 1.00 \\
\hline \(87 \times 6120 \mathrm{~V}\) \& 0.20 \& 8 B 380 \& 070 \& TBA6418X \& 300 \& PL36

P181 \& Prilips G8 $2.2+68$ \& 0.90

\hline $8 Z \times 6122 \mathrm{~V}$
$8 Z \times 6124 \mathrm{~V}$ \& 0.20 \& 80441
80537 \& 0.70
0.70 \& ${ }_{\text {TBA65 }}^{\text {TBA64 }}$ (${ }^{\text {(1) }}$ \& 4.00
3.00 \& $\begin{array}{ll}\text { PL81 } & 1.50 \\ \text { PL504 } & 2.50\end{array}$ \& Phitips G847 \& 0.80

\hline $88 \times 6127 \mathrm{~V}$ \& 0.20 \& 80538 \& 0.70 \& tBa720A \& 1.50 \& | PL508 | 2.50 |
| :--- | :--- | \& Pritips $21030+125.2$ K85

Philios 210 $118+118+148$ \& 0.70

\hline BZX61 30 V \& 020 \& 80507 \& 0.70 \& TBA730 \& 1.50 \& PL509 $\quad 4.00$ \& (Link) \& 0.65

\hline $8 \mathrm{BX6} 6133 \mathrm{~V}$ \& 0.20 \& BD508 \& 0.75 \& TBA750 \& 2.00 \& PL519 5.00 \& RRI 154.50-1694 \& 060

\hline $87 \times 6136 \mathrm{~V}$ \& 0.20 \& 16181 \& 1.20 \& T8A7500 \& 2.00 \& PL802 3.00 \& RRI A640 $250+14+156$ \& 080

\hline $87 \times 6139 \mathrm{~V}$ \& 0.20 \& 16182 \& 1.20 \& t8abou \& 1.00 \& | PY88 | |
| :--- | :--- |
| PY500 | 1.70 | \& GEC 27840 10 - 15 - 19 \&

\hline | BZX61 |
| :--- |
| $8 Z \times 6172 \mathrm{~V}$ | \& 0.20 \& 80709

80710 \& 1.00 \& ${ }_{\text {TBAB }}^{\text {T8AB20 }}$ \& \begin{tabular}{l}
1.50

150

\hline 1000

 \&

PY500A \&

PY800/801 \&

\hline 1.80

\hline 1.70
\end{tabular} \& 10.63 +188 \& 1.00

\hline ${ }_{\text {AC }}{ }^{\text {Cl }} 127$ \& 035 \& ${ }^{\text {BD7 }}$ B 442 \& 1.00
0.70 \& T8A820 \& 2.00 \& $\begin{array}{ll}\text { PYB00/801 } & 1.70 \\ \text { UCL82 } & 1.10\end{array}$ \& \& 0.80
1.00

\hline AC127 \& 0.50 \& BD379 \& 0.50 \& tBa9200 \& 200 \& $30 ¢ 52 / 91.40$ \& PYE $1100960 \times 70 \cdot 173$ \&

\hline \& 0.60 \& BF115 \& 0.60 \& TBA990 \& 2.00 \& PCF805
PCFEO8 \& 26+16+17+19 \& 1.00

\hline AC128
AC128/01 \& 0.60
0.60 \& BF118
BF152 \& 0.60
0.40 \& TEA9900 \& 200

3.00 \& | PCF8888 | |
| :--- | :--- |
| PL519. PY 500 A | 1.20 | \& RR1823 56R 68R \& 0.80

\hline AC141 \& 0.50 \& BF154 \& 0.20 \& TCA900 \& 1.00 \& \multirow[t]{3}{*}{| VALVES NOT SHOWN HERE MAY |
| :--- |
| BE IN STOCK. PLEASE WRITE |
| FOR QUOTE |} \& CONNECTORS \&

\hline AC141K \& 0.60 \& BF157 \& 0.70 \& TCA940 \& 2.00 \& \& Sets of AvO Leads \& 10.00

\hline ${ }_{\text {ACl }}{ }_{\text {AC142 }}$ \& 0.40 \& ${ }_{8} \mathrm{BF} 58$ \& 0.40 \& TDA1170 \& 2.00 \& \& Plug 13A (Box of 20) \& 8.00

\hline ${ }_{\text {ACl }}{ }_{\text {AC176 }}$ \& 060
0.60 \& \& 0.60
0.60 \& TDA1220 \& 4.00 \& \& AL Coax Plugs Pack of Ten
608 Attenuator \& 1.80

\hline AC176/01 \& 0.60 \& BF167 \& 0.50 \& TDA1412 \& 1.00 \& DIRECT REPLACEMENT PARTS \& 12 LB Amenuator \& 1.00

\hline AC186 \& 0.40 \& BF173 \& 0.50 \& TDA2020 \& 4.00 \& Decca 30 Series Lopt 8.00 \& 180B Attenuator \& 1.00

\hline ${ }_{\text {AC1 }}^{\text {AC187 }}$ \& 0.40 \& ${ }^{81} 177$ \& 0.50 \& \& 200 \& 173 Tune: (Repl Elc 1043/05) 8.00 \& Back to Back Coax \& 0.40

\hline AC187K
AC188 \& 0.60
0.40 \& BF179
BF180 \& 0.50
0.50 \& SN76227N
SN76530P \& 1.20
1.00 \& $\begin{array}{ll}\text { 4.443MHZ Crystals } & 2.00 \\ \text { Cut Out TCE } 3500 & 250\end{array}$ \& Service alds \& tools \&

\hline AC188K \& 0.60 \& BF181 \& 0.60 \& SN76651N \& 1.50 \& | Cut Out Gec | 250 |
| :--- | :--- |
| 200 | | \& Super Servisol \& 1.20

\hline AD140 \& 1.50 \& BF182 \& 0.50 \& SN76003N \& 3.00 \& Cut Out TCE 8500 200 \& Foam Cleanser \& 1.20

\hline AD142 \& 1.50 \& BF183 \& 0.50 \& SN76013N \& 2.00 \& TV18 Rectifier Stick $\quad 2.00$ \& Silicone Grease \& 120

\hline AD 143
AD 145 \& $\begin{array}{r}1.50 \\ 1.50 \\ \hline\end{array}$ \& BF184
BF185 \& 0.50
0.50
0.5 \& SN76013NO
SN76013ND \& 2.00
2.00 \& $\begin{array}{ll}\text { TV20 Reccififer Stick } & 2.00 \\ \text { VA } 1104 \text { Thermister } & 080\end{array}$ \& Plastic Seal
Aeroklene \& 1.20
1.20

\hline AD149 \& 1.00 \& BF194 \& 0.20 \& SN76023N \& 2.00 \& $\begin{array}{ll}\text { Transductor TCE } 3000 & 1.50\end{array}$ \& Freezit \& 120

\hline AD 161/2 \& 1.50 \& BF195 \& 0.20 \& SN76023ND \& 1.00 \& AEG Tuner (Repl Elc 1043/06) $\quad 9.00$ \& Antistatic \& 1.20

\hline AD162 \& 0.70 \& BF196 \& 0.20 \& SN76033N \& 2.00 \&	Aeriel Isolator Kit
1.60	\& Solder 18SWG 60/40. 5 KGM \& 10.00

\hline AD262 \& 150 \& 8F197 \& 020 \& SN76110N \& 200 \& Philips G8 Lopt 12.00 \& SR2 Desoldering Tool \& 9.70

\hline AF121 \& 0.60
0.60 \& BF198
BF199 \& 0.15 \& SN76226D
SN76227N \& 2.00
1.20 \& $\begin{array}{lr}\text { PYE } 691 / 697 \text { Lopt } & 1100 \\ \text { Bush A 77.4 lopt } & 1800\end{array}$ \& SR3AS Mini Siver \& 7.00

\hline AF125 \& 0.60 \& BF200 \& 0.15

0.15 \& SN76532N \& 1.20 \& | Bush A 77.4 Lopt | 18.00 |
| :--- | ---: |
| Bush ab23 Lopt | 5.00 |
| 0 | | \& SR3A Mini Orange

Repiacement
Nozzles \& 680
0.80

\hline AF126 \& 0.60 \& 8 8224 \& 0.15 \& SN76533N \& 200 \& Pre 731 lF Gain $\quad 10.50$ \& Replacement Washers \& 0.19

\hline AF 127 \& 0.60 \& BF240 \& 0.45 \& SN76544N \& 200 \& A823 Busb Power Panel 20.00 \& Solder Mop Red \& 0.60

\hline AF139
AF239 \& 0.60
1.00 \& \& 0.20
0.50 \& SN766504
SN76665 \& 1.00 \& PL 802T Transisiorised 400 \& Solder Mop Brown \& 060

\hline All 102 \& 3.00 \& 8 F 257 \& 0.50 \& SN76666N \& 1.20 \& \multirow[t]{3}{*}{BAHCO TOOLS - Come and see the full range at our shop or send for fuil catalogue free, on request, with any order} \& Stide Curters OrYX \& 320

\hline AU107 \& 300 \& 8F258 \& 0.50 \& SL9018 \& 600 \& \& A-Z or 2N 500 \& 0 each

\hline AU110 \& 300 \& 8F271 \& 0.60 \& SL9178 \& 8.00 \& \& Books PR 9 . \& . 00 PF

\hline
\end{tabular}

COPYRIGHT

olPC Magazines Limited, 1981. Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., Lavington House, Lavington Street, London SE1 OPF.

SUBSCRIPTIONS

An annual subscription costs $£ 10$ in the UK, £ 1.1 overseas (\$24.20 Canada or USA). Send orders with payment to IPC Services, Oakfield House, Perrymount Road, Haywards Heath, Sussex.

BINDERS AND INDEXES

Binders ($£ 4.40$) and Indexes (45p) can be supplied by the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Prices include postage and VAT. In the case of overseas orders, add 60p.

BACK NUMBERS
Some back issues are available from the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF at 85 p inclusive of postage and packing.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. All correspondents expecting a reply should enclose a stamped addressed envelope.
Requests for advice in dealing with servicing problems should be directed to our Queries Service. For details see our regular feature
"Service Bureau". Send to the address given above (see "correspondence").

this month

569

Leader

Teletopics
News, comment and developments.
Crossed Lines
by Les LawryJJohns
These Telecom chappies are up to no good at all. Plus
a note on the new Fidelity 14 in . colour set.
VCR Servicing, Part 1
by Mike Phelan
Time for usall to get down to understanding how these
newfangled things are supposed to work and how to fault find.
Next Month in Television
Tuner Coupling with SAWFs
by Ted Barrett
Coupling the tuner's output to the i.f. strip via a surface
acoustic wave filter involves quite a few design
niceties. A look at the techniques employed in practice and some of the things that can go wrong.
Fault Report
by Dewi James
Lots of foreigners - they must like the climate in
N.W. Wales - plus some fuse blowing troubles with the Decca 80 series chassis.
Amateur Television by John L. Wood, G3YOC
A short account of the activities of TV amateurs by the the editor of CQ-TV magazine.
Maintaining Telefunkens
by Keith H. Gould
The older Telefunken hybrid and solid-state colour sets can cause problems but are nevertheless capable of excellent results when properly set up. Hints on what to watch out for and how to keep them going.
Test Report: Sadelta Pattern Generator by Eugene Trundle A state-of-the-art colour TV pattern generator that comes in a mini package - simple to carry round and use.
Colour Portable Project, Part 5
by Luke Theodossiou
The remote control receiver/decoding/interfacing arrangements used in the set, also the channel indicator.
Vintage TV: Etronic by Chas E. Miller A name from the distant past - once a brand leader however. Details of the firm's activities and their main TV products.
Letters
VCR Clinic
Notes from Mike Phelan and Mick Dutton on VCR faults and how to tackle them.

Readers' PCB Service

Long-distance Television
A remarkable month this time, with intense and lengthy SpE openings. Plus news from abroad and notes on dealing with the new menace - interference caused by CB radio and other illegal equipment.
Practical TV Servicing: The Line Output Transformer
by S. Simon
This key item causes many a headache. Life's much easier when
you know whether or not to suspect the transformer.
The advice given includes a shopping list to make it all easy.
Service Bureau
Test Case 225
OUR NEXT ISSUE DATIED OCTOBER WILL BE PUBLISHED ON SEPTEMBER 23

THE

 COLOUR PORTABLE RECEIVER PROJECT

We will be offering all the components as specified by the magazine for this latest project.
All items down to the last nut and bolt are available separately or in kit form, with the exception of the p.c.b.

C.R.T. BASE BOARD
 Full Pack ref. no. 48811

TIMEBASE BOARD

Resistor pack
Capacitor pack
ref. no. $37811 £ 3.85$ ref. no. $37812 \mathbf{£ 8 . 0 0}$ Semiconductor pack ref. no. $37813 £ 12.50$ Miscellaneous pack ref. no. $37814 £ 27.50$

All four of the above packs purchased together ref. no. 37815 £44.00.

For individual component price list of above, send s.a.e., quoting ref. no. 37815L.

EXPORT SIGNALS BOARD

VHF/UHF PAL B/G (ref. no. 26811) $£ 60.00+£ 6.50$ p.\&p.
VHF/UHF PAL I (ref. no. 26812) $\mathbf{£ 6 0 . 0 0}+£ 1.50$ p.\&p.

SWITCH-MODE POWER SUPPLY

Resistor pack Capacitor pack Semiconductor pack Miscellaneous pack
ref. no. $15811 £ 3.35$ ref. no. $15812 \mathbf{£ 8 . 4 0}$ ref. no. $15813 £ 3.60$

All four of the above packs purchased together ref. no. $15815 £ 28.75$

For individual component price list of above, send s.a.e., quoting ref. no. 15815 L .
All kit prices are inclusive of VAT, p.\&p., for UK orders (except for export signals boards-see above).

JU electronics

TRIANGLE BUILDINGS, 234R GREEN LANES, PALMERS GREEN, LONDON, N13 5UD TEL. 01-882 3531

THE VERY LATEST SC1 10 LOW POWER,
FULLY PORTABLE OSCILLOSCOPE.
The new Thandar SC1 10 represents a break-through in oscilloscope development. The SC110 is LESS THAN TWO INCHES thick and weighs under two pounds, yet retains the standard features and controls of a bench oscilloscope.

1980 GOLD MEDAL winner of the B.R.N.O. EXHIBITION, the largest Trade Fair held in Eastern Europe
Full Sized Performance

* 10 MHz ertarra

Full $\quad * 10 \mathrm{mV}$ per division sensitivity.

- Full trigger facilities are provided including TV frame, or TV filtering
*Runs on 4 to 10 V DC via disposable batteries, re-chargeable cells, or $A C$
Size $255 \mathrm{~mm} \times 148 \mathrm{~mm} \times 50 \mathrm{~mm}$.
'Scope $£ 139.00+£ 20.85$ V.A.T.
Carry case $£ 7.70+£ 1.16$ V.A.T.
$\times 1$ Probe $£ 8.50+£ 128$ V.A.
$\times 10$ Probe $£ 10.00+£ 150 \mathrm{VAT}$ (AC Adaptor $£ 4.95+£ 0.74$ V A.T) (Overseas purchasers please state voltage Re-chargeable cells $\mathbf{£ 7 . 5 0}+£ 1.13$ V.A.T

THANDAR TM354 HAND HELD LCD DIGITAL MULTIMETER
The TM354 is a compact $3 \frac{1}{2}$ digit hand held multimeter featuring a LARGE $0.5^{\prime \prime}$ liquid crystal display, 0.75% basic accuracy and a 2000 HOUR battery life. The meter provides five functions in fourteen ranges

DC voltages 1 mV to 1000 V

- AC voltages 1 V to 500 V
- DC current $1 \mu A$ to 2 Amps
* Resistance in to $2 \mathrm{M} \Omega$
* Diode check

Complete with test prods and vinyl pouch $\mathbf{£} 39.95+£ 5.99$ V.A. 7
World-wide post free service. Overseas orders welcome. Please deduct U.K. V.A.T. Mail Order only. Callers by appointment.
Barclaycard/Access orders welcome, Cheque/Bank draft etc., with order please.
Large S.A.E. Wr technical ieaflet and complete Thandar list.
B. K. ELECTRONICS, Dept. 'T',

37 Whitehouse Meadows, Eastwood, Leigh-on-Sea, Essex SS9 5TY. Tel: (0702) 527572.

REBUILT CATHODE RAY TUBES IN SOUTH WALES

C.R.T. SERVICES

274 Chepstow Road, Newport, Gwent. Tel Newport 272005.

Can youaffordNOT to switch to the fantasticBRIARWOOD TV trade offer?

100's of colour TVs
 100\%complete-as they arrive-inbatches of ten ONLY $\mathbf{£ 2 0 . 0 0}$ per set

COLOUR TVs WITH TESTED TUBES GUARANTEED 100\% COMPLETE

IN 10's
$£ 30.00$ each
$£ 25.00$ each
$£ 30.00$ each
$£ 35.00$ each
$£ 28.00$ each
$£ 35.00$ each
$£ 35.00$ each
$£ 35.00$ each
$£ 30.00$ each

In 20's
£27.00
£20.00
£25.00
£30.00
£25.00
£30.00
£30.00
E30.00
三27.00

GOOD WORKING
in 10's
$£ 50.00$
£48.00
£50.00
£50.00
£50.00
£50.00
£50.00
£50.00
£45.00

Please note there is 15% VAT or all the above prices.

Foreign makes of TV's i.e. Skantic/Luxors, ASA's, Mitsubishi, Teleton, Grundigs, Saba's etc., @ $£ 40.00$ each

Later types of sets i.e. G8, Thorn 3500 Varicap, ITT/KB, Thorn 850 , GEC 2100 etc., @ $£ 50.00$ each. @ $£ 50.00$ each

OPENING TIMES MON-FRI 9.00-12.00/1.00-5.45 (CLOSE 4.30 SAT)
CASH \& CARRY SPECIAL SERVICE TO THE TRADE
OR ASK ABOUT SPECIAL DELIVERIES ON LARGE QUANTITIES

Tel: (0274) 306018

BRIARWOOD TELEVISION LINITED

TV scores with

TYPE	PRICE E	TYPE	FRICE E	TYPE	PRICEE [TYPE	PRICE E	TYPE	PRICE £
AC107	0.24	AF 181	1.00	BC179	012	BD137	0.30	BF218	012
AC113	0.22	AF186	0.90	BC182L	0.09	BD138	0.31	BF219	012
AC115	0.23	AF239	0.46	BC183L	0.09	BD139	0.40	BF220	012
AC117	0.30	AUl13	140	BC183LA	- 010	BD140	1) 37	BF221	0.21
AC125	0.23	BA130	0.08	BC183LB	3 0.10	BD144	1.39	BF222	012
AC126	0.23	BA145	0.14	BC 184L	0.09	BD145	0.50	BF224	018
AC127	0.22	BA148	0.21	BC186	021	BD 177	0.50	BF256	0.37
AC128	022	BA155	0.08	BC187	0.21	BD178	$\bigcirc 50$	BF258	0.30
AC131	013	BAX 13	0.05	BC209	011	BD203	040	BF259	0.30
AC141	0.24	BAX 16	0.08	BC212	0.09	BD204	0.70	BF260	0.25
AC142	0.24	BC107	011	BC212L	0.09	BD222	373	BF262	028
AC141K	0.31	BC108	0.11	BC213L	009	BD233	036	BF263	0.25
AC142K	031	BC109	0.11	BC214L	0.09	BD234	034	BF271	027
AC151	0.21	BC113	0.11	BC237	0.09	BD237	0.44	BF272	0.27
AC165	021	BC114	011	BC238	009	BD238	044	BF273	016
AC166	0.21	BC115	011	BC240	031	BD×22	0.73	BF336	030
AC168	0.22	BC116	0.11	BC249	0.35	BDX32	198	BF337	0.29
AC176	0.22	BC+17	012	BC251	0.22	BDY 18	0.80	BF338	029
AC176K	028	BC119	0.24	BC257	020	BDY60	0.80	BF479	
AC178	0.23	BC125	0.15	BC262	018	BF115	0.30	BFT	027
AC186	0.26	BC126	015	BC263B	020	BF12:	0.29	BFT	0.27
AC187	0.23	BC136	0.15	BC267	019	BF154	012	BF×84	027
AC188	0.23	BC137	0.17	BC281	024	BF158	019	BFX85	027
AC187K	0.30	ВС137	0.23	BC300	027	BFi59	024	BFX	030
AC188K	0.30	BC139	0.23	BC301	0.27	BF160	023	BFY37	022
AD130	0.58	BC140	0.24	BC302	030	BF163	030	BFY50	021
AD140	068	BC141	0.27	BC303	027	BF164	030	BFY51	021
AD142	080	BC142	0.27	BC307	011	BF167	030	BFY52	021
AD143	070	BC143	0.27	BC307A	011	BF173	021	BFY53	027
AD145	0.70	BC147	010	BC308A	012	BF 177	026	BFY55	033
AD149	0.64	BC148	010	BC309	014	BF178	024	BFX	
AD161	0.42	BC149	010	BC337	012	BF179	028	BHA0002	2190
AD162	042	BC 153	012	BC338	015	BF180	030	BSX20	023
AD161)		BC154	0.12	BC487	020	BF181	034	BSX76	0.23
AD162)	1.00	BC157	0.12	BC547	010	BF182	030	BSY84	036
AF 106	042	BC158	0.12	BC548	011	BF183	029	BU 105	100
AF114	037	8C159	012	BC549	011	BF184	027	BU105 02	$2 \quad 150$
AF118	0.45	BC160	0.26	BC557	012	BF185	029	BU105 04	4200
AF121	0.37	BC161	026	BC×33	010	BF186	032	BU126	,
AF125	030	BC167	011	BD112	0.39	BF132		BU205	120
AF126	030	BC168	011	BD113	0.65	BF194	015	BU206	160
AF127	0.30	BC169	0.11	BD 115	032	BF195	013	BU208	160
AF139	040	BC171	0.10	BDI 16	047	BF196	013	OC22	
AF150	0.27	BC171A	010	BD124	130	BF197	013	OC23	
AF151	0.30	BC172	010	BD131	0.36	BF198	012	OC24	130
AF170	0.92	BC173	012	BD132	0.36	BF199	014	OC25	
AF172	1.00	BC177	0.12	BD133	0.37	BF200	0.28	OC26	1.00
AF178	100	BC. 178	0.12	BD135	0.30	BF216	012	OC28	1.30
AF180	1.00	BC178A	0.12	BD136	030	BF217	012	-C35	

All transistors, IC s offered are new and branded. Manufactured by Muliard IT T Texas. Motorola elc
ease add 15\% Vat io all items and overseas al cost

MAIL ORDER TV BARGAINS

PYE 691	22' @ 555.00
PYE 691	26'@
PYE 697	22' @ §65.00
PYE 697	26' @ ¢65.00
BUSH 184	19"@ §70.00
BUSH 184	22' @ £70.00
BUSH 184	26" @ $£ 70.00$
GEC 2040	19"@ 555.00
GEC2040	22"@ $\$ 55.00$
GEC 2040	25' @ ¢55.00
GEC 2040	26"@ £65.00
KORTING	22' @ §70.00
KORTING	26" @ £80.00
THORN 3000	19' @ £ 70.00
THORN 3000	25'@ £60.00

Good working mono's Pye, GEC, Bush etc.
$20^{\prime \prime} \& 24^{\prime \prime} \mathrm{S} / \mathrm{S}$
$£ 20.00$
$20^{\prime \prime} \& 24^{\prime \prime} \mathrm{D} / \mathrm{S} \quad £ 18.00$
$19^{\prime \prime}$ \& 23"' D/S P/Button $\quad £ 15.00$
Cheques. P.O. or Cash with orders Please Please note there is 15% VAT on all the above prices. Plus $£ 10.00$ p \& p for colour TV. $£ 5.00$ for mono. ENGLAND. WALES and SCOTLAND Inland N \& S IRELAND $£ 15.00$ for colour

¿7.00 for mono.

P.V.TUBES

38A WATER STREET, ACCRINGTON, LANCS BB5 6PX.
OF TELEVISION COMPONENTS
TRADE COUNTER OPEN MON-FRI 9 a.m.-4.30 p.m. SAT MORN. 9.30 a.m.- 12 noon.

P. V.TUBES

Telephone: Accrington (0254) 36521

SUNDRIES

SOLOERING EQUIPMENT

WELIER Iron Kit 15w	3.60
WELER Ifon Kit 25W (inc. lips)	4.88
Weller lion 25w	3.80
Weller 3/16" Single Flat Tips	51
MIN Soldering Iran	5.00
WELiER Heat Gun Kit	14.00
Weller haat Gum	11.00
(Pairl Tips tor Gun	31
WELER Cordiess Ifon	24.78
ANTEX Soidering tron 25W	4.84
Solder Remover Sucker	6.60
Solda Mop	70
500 G Reed Solder	7.00
diy Type Solder	43

OATA BOOKS	
Transistor Equivalent	
TVI 80 A .2 only	1.25
TVT $802 \mathrm{~N} / 2 \mathrm{~S}$ series only	3.50
TVT 80/80 A-Z and $2 \mathrm{~N} / 2 \mathrm{~S}$ together	1.50
LIN IC Books LIN 1	5.50
LIN 2	5.50

SERVICE AIOS

Electro-Mech Iubricant
Elect. cleaning solvent
Freezer
Foam cleansar
Heat transfer compound
Heat transifer compouin
Silicone compound
Special contact fluid (Snerkel)
Permagard
Elec. mech. lubricant pen

EDITOR
John A. Reddihough
$\underset{\text { Luke Theodossiou }}{\text { ASSISTANT EDITOR }}$
Luke Theodossiou

ART EDITOR

Roy Palmer

ADVERTISEMENT MANAGER

Roy Smith
01-261.6671

CLASSIFIED ADVERTISEMENTS

Colin R. Brown
01-2615762

Investment

We must export or die, investment is the key to success, and so on and so forth. How often one's heard these perfectly truthful exhortations over the years. Yet as one looks around at the present state of industry in the UK one might be forgiven for thinking that they'd never occurred to anyone. Following many years of poor export performance, a lengthy period recently when the pound was grossly over valued seemed quite likely to put an end to mainstream exports. We then had the daft view put forward in all seriousness that oil wealth meant something else having to go, that something else being manufacturing industry. If wiews such as this can, with great sophistication, be propounded, it's not surprising that economics generally has got a bad name while the profession is in greater disarray than ever before.
At some point someone's going to have to pick up the pieces. The pound has already fallen to a more appropriate level - appropriate in terms of comparative UK and overseas costs - though it didn't do so soon enough to save several otherwise perfectly viable firms. Industry will end up leaner and in better shape it's said. Leaner maybe, but after a prolonged period of profit squeeze will it have the necessary funds to be able to get on with the job of producing competitive goods?
One could almost say that we've suffered from a surfeit of economic theories. As one after another has been tried, monetarism being the latest, we've ended up no better than and sometimes in a worse situation than when we started. They do things differently in that place across the seas of course. The trouble is that economic policy is but one component of the economy as a whole. The rest - ensuring that work gets done, that costs, including wages, are kept at reasonable levels, that the work done is what needs to be done, that it's backed by adequate resources and so on - is a mucky, awkward business that calls for a pragmatic approach. We haven't been very successful in these respects either.
There's a school of thought that considers manufacturing to be rather old hat. We're not very good at producing cars and cameras, TVs and audios, so let's get on with more glamorous things - high value-added equipment, the so called information age and so on. This looks like wishful thinking - the country that can't make nuts and bolts is not likely to be much good at producing the things that use them.
One has a horrible foreboding that at some stage this or another government will see investment as the answer to our problems (it is, partially), and will start shovelling funds (what's left) here and there regardless. We might end up with a field full of the twenty first century equivalent of Concorde, or several dozen nuclear power stations when coal-fired ones cost much less to run. Encouragement could be given to follow up all sorts of bright ideas regardless of their prospects in the market place.
Investment is a broad term that calls for some consideration. It often requires a surprisingly small investment to take an idea and show that it works. EMI for example needed only a modest investment to get electroric TV to a practical stage for the first time - with only a small team of engineers and technicians. In more recent times, teletext and viewdata have been developed at very littie cost. We seem to be quite good at this sort of thing. The really large investment is required once a system has been found to work however - investment in developing products that will sell because they represent good value, in finding out how to manufacture them and in setting up the assembly lines, and in finding out how to build in reliability. This is what one might call-bread and butter investment rather than innovative investment, and we seem to be rather bad at it. Perhaps this is due to the oft quoted shortage of trained engineers in the UK, and the failure of so many companies to give due weight to their views. After all, it's easier for management to understand the chief accountant's warning about the cash flow, or the personnel director's warning that the lads won't settle for less than 10%, than it is to appreciate the importance of spending money on finding out why a particular component has a failure rate of 1%.
We really have been atrociously careless when it comes to quality control, something that requires quite a lot of continuous investment if it's to be done adequately. This may have been due in part to some rather dangerous notions. The Rolls-Royce syndrome for example - that excellence is o.k. for a flag carrying product that doesn't sell on price considerations, but is not relevant to mass produced goods. Or the throw away approach that was once so fashionable - remember "built-in obsolescence"? What the Japanese have proved, with the help of substantial, well directed investment, is that mass produced goods need not be shoddy, that engineering quality is not irrelevant to ordinary consumer goods.

Our cover photo this month was taken in the service department of Piercys (Electronics) Ltd., 56-62 Lupus Street, London SW1. Our thanks to this well known TV/audio/video dealer and to the proprietor Bob Piercy for his kind co-operation.

Teletopics

VIEWDATA DEVELOPMENTS

A European standard for alpha-mosaic viewdata has been ratified by the Telecom Commission of the Conference of European Post and Telegraph Authorities, representing 26 European countries. It's "upwards compatible" with Prestel, i.e. decoders built to the new standard will be able to work with the present system, and is also compatible with the French Teletel and German Bildschirmtext systems. Steps are being taken by British Telecom to see whether agreement on a compatible system can be reached with the US AT \& T company (Bell telephones). AT \& T, which controls 80% of the US telephone network, has proposed a hybrid system using both alpha-mosaic and alpha-geometric display techniques. The alpha-geometric technique, used in the Canadian Telidon system, gives improved picture displays at a higher cost. Unfortunately the alpha-mosaic coding scheme put forward by AT \& T is not compatible with the European standard.

Following a two-year trial period the Deutsche Bundespost has decided to promote viewdata in a big way, with the hope of attaining a million subscribers by the end of 1986 - mainly business users.

An advanced graphics system that provides an alphageometric type display has been developed by Aregon International for use with the Prestel system. Another recent Prestel development is transform coding, for use with Picture Prestel. The idea is that a low-definition still picture is first displayed: if the user requires a more detailed picture, the display can then be progressively enhanced.

The Prestel system now has over 10,000 subscribers the rate of connections is around 500 a month.

TELETEXT

The BBC and the IBA have been carrying out tests on the use of extra lines for teletext transmissions - lines 17 and 18 are at present used. The aim is to double this to four lines initially and eventually to use six lines. The BBC comment that their tests, on lines 15 and 16, have proved successful, but that financial constraints make it impossible to increase the service for the time being - extra lines means more pages, quicker access or both. ITV is hoping to be able to use two extra lines at an early date to provide regional services.

Deliveries of teletext sets to the trade during the first five months of the year were up by 50% on last year, at 36,600 sets. Thorn comment that the recent reduction in advance rental payments and hire purchase deposits has had a very positive effect on sales and rentals. Production of the Thorn TX teletext range is being increased by 40%, and an order for 120,000 teletext modules and chip sets, to be fulfilled by the end of the year, has been placed with Mullard.

EXPANSION AT FIDELITY

Fidelity Radio is to increase production at its North Acton factory in London. The TV side is doing well, with the entire production of the new 14in. portable colour TV set sold out to the end of the year - a production run of at least 40,000 sets. A larger-screen colour TV set is to be introduced next year, when the company will also be selling its first VCR.

Exports during the coming year are expected to increase, especially to Airica and Europe.

COLOUR SERVICING COURSE

The South London College (Knights Hill, London SE27 0TX) is holding a short course on practical colour television servicing commencing on October 1st. The course of 16 lectures/practicals is designed to lead to a qualification which meets the needs of industry in providing a recognised certificate in colour television servicing. The lectures will be held in the college's Television Laboratory on consecutive Thursday evenings from $6.15 \mathrm{p} . \mathrm{m}$. to $9.15 \mathrm{p} . \mathrm{m}$. The course fee for London students is $£ 16 \cdot 50$.

SERVICE BRIEFS: PHILIPS

G8 chassis: Intermittent loss of colour in sets fitted with the combined i.f./chroma panel can be caused by R3192 ($27 \mathrm{k} \Omega$), which biases the chroma amplifier in the TBA560C i.c., going high in value. Replacements should be of the carbon film or metal film type.
G11 chassis: In the event of field bounce when used with a VCR, first check that C2039 on the timebase panel is $0.0039 \mu \mathrm{~F}$ then if necessary reduce the value of R 2003 to $1: 8 \mathrm{M} \Omega$ or possibly $1.5 \mathrm{M} \Omega$ (keep the reduction as small as possible to preserve weak signal performance). Philips comment that a modification to the National Panasonic NV7000 VCR is available from the manufacturer (not Philips!) to improve the sync signal.
KT3/K30 chassis: In the event of C1567 in the diode modulator circuit going open-circuit the e.h.t. will rise sharply, with possible damage due to flashovers. The National Semiconductors TBA120SQ intercarrier sound i.c. is now being fitted in production to reduce the background noise on sound. Replacements should be obtained from Philips Service, Waddon, as they are selected for a low noise characteristic. Loss of red, green or blue can be due to R4250/R4266/R4282 respectively going opencircuit: check with an ohmmeter (a voltage check may be misleading).
K30 chassis: The value of C7336 on the power supply control panel has been increased from 220 pF to 470 pF to improve the line sync when cold - a few cases of poor line sync (horizontal displacement of successive lines) have been reported when a set is first switched on in a cold environment.

COLOUR BAR GENERATOR FROM WILLOW VALE

Willow Vale Electronics Ltd. have introduced a colour bar generator with a comprehensive specification and the added facility of a sound signal at a price of $£ 98.50$ plus VAT. The outputs available are crosshatch, peak white plus 1 kHz sound modulation, linear grey scale, standard colour bars and a red raster. The unit is available from Willow Vale's three trade counters or directly from the Mail Order Department at Old Hall Works, Arborfield Road, Shinfield, Reading (part number 12-008).

CHOPPER WITH A DIFFERENCE

Yet another variation on the chopper switch-mode power supply theme has come to our notice, see Fig. 1. It's used in the latest NordMende type TCC2 chassis. The subtle difference this time is that the circuit is a step-up voltage regulator. The bridge rectifier is fed from a transformer which provides mains isolation, and produces 80 V across

Fig. 1: The step-up chopper arrangement used in the latest NordMende colour chassis.
its $470 \mu \mathrm{~F}$ reservoir capacitor. The following chopper arrangement produces a 135 V stabilised h.t. line. As you can see, the chopper is of the series type, i.e. the reservoir inductance LP30 is in series with the load. The chopper itself, TP30, is a Darlington device. As it's switched on and off at line frequency it produces pulses which are rectified by DP30. The line frequency pulse switches TP30 on: regulation is effected by varying the time at which it's switched off. The switch-off circuit uses a thyristor whose triggering point is controlled by feedback from the line output stage.

BATC CONVENTION

The British Amateur Television Club will be holding its annual convention and exhibition at The Post House, Braunstone Lane East, Leicester on Sunday, October 4th. The exhibition will include demonstrations of both slow and fast scan television along with lectures, exhibits, trade stands, a free trade area and a chance to see the video tape the Club made of Dud Charmans' famous aerial lecture. Admission is free and all are welcome. The exhibition starts at 11 a.m., and there's a large free car park adjacent to the exhibition hall.

LATEST VIDEO EQUIPMENT

An easy to use VCR at a competitive price has been added to the Panasonic range. The new VCR, Model NV2000, is based on the more sophisticated NV 7000 VHS format machine and has a 14 -day, one programme timer and fast or slow replay. The suggested price is $£ 555$.

The latest domestic colour video camera from Hitachi, Model VKC800, is fitted with a saticon pick-up tube. This gives the camera a high standard of picture clarity and resolution even under dim lighting conditions and eliminates lag when panning from side to side. The camera is aimed at the serious video enthusiast and has a price tag of $£ 799$.

THYRISTOR TESTER

The simple thyristor tester idea shown in Fig. 2 was first published in that excellent US magazine Radio-Electronics (in the June 1981 issue). SW1 and SW2 are miniature

Fig. 2: Simple thyristor tester circuit. Use $\frac{1}{2} W$ resistors.
momentary push-to-make switches, e.g. RS Components type 339-229. Momentarily closing SW1 should trigger the thyristor on, the LED then glowing. Momentarily closing SW2 so that the current is shunted away via the 10Ω resistor should result in the thyristor switching off. Stephen P. Weinrich, who suggested the device, comments "it's simple to make and hasn't lied to me yet".

LOW COST REMOTE CONTROL SYSTEM

A new receiver/decoder chip, type ML923, has been introduced by Plessey. It's based on the ML920 but has a single analogue output, with sixteen channels available in 4bit binary form and channel step, set on, a.f.c. defeat, recall, mute and analogue normalise functions. The chip forms a remote control system with the SL480 preamplifier and SL490 transmitter. The device comes in an 18-pin plastic DIL pack and is specified over the temperature range $-10^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$. Further details of the SL490 and ML920 were given in an article in our November 1978 issue.

MORE LASERVISION DISC PLANTS

Philips LaserVision's network of video disc manufacturers is expanding, with the addition of Bertlesmann and Bavaria in West Germany. Both will manufacture discs under licence from Philips, and will join the Mullard Blackburn and Philips Eindhoven plants, which have already been commissioned, and the Sonopress plant in W. Germany. Universal-Pioneer and Sony are to produce LaserVision discs in Japan, while 3M and Discovision Associates (MCA and IBM) already have plants in operation in the USA.

TRANSMITTER OPENINGS

The following transmitters are now in operation:
Cerrigydrudion (Clwyd) HTV Wales ch. 23, BBC-2 ch. 26, Sianel 4 Cymru (future) ch. 29, BBC Wales ch. 33.
Dolwyddelan (Gwynedd) HTV Wales ch. 41, BBC-2 ch. 44, Sianel 4 Cymru (future) ch. 47, BBC Wales ch. 51.
Kettlewell (Yorkshire) BBC-1 ch. 39, TV4 (future) ch. 42, BBC-2 ch. 45, Granada Television ch. 49.
Lauder (Borders region) BBC-1 ch. 22, Border Television ch. $25, \mathrm{BBC}-2$ ch. 28 , TV4 (future) ch. 32.
Llanarmon-yn-Ial (Clwyd) BBC Wales ch. 21, HTV Wales ch. 24, BBC-2 ch. 27, Sianel 4 Cymru (future) ch. 31.
Monmouth (Gwent) BBC Wales ch. 55, HTV Wales ch. 59, BBC-2 ch. 62, Sianel 4 Cymru (future) ch. 65.
Stow (Borders region) Border Television ch. 23, BBC-2 ch. 26, TV4 (future) ch. 29, BBC-1 ch. 33.
Sunderland (Tyne and Wear) BBC-1 ch. 40, Tyne-Tees Television ch. 43, BBC-2 ch. 46, TV4 (future) ch. 50.
The above transmissions are all vertically polarised.
A new edition (dated May 1981) of the IBA's Pocket Guide to Transmitting Stations has been published. Copies can be obtained from the IBA Engineering Information Service, Crawley Court, Winchester, Hants, SO21 2QA.

RADIO AND TV SERVICING

The latest (1980-81) volume of Radio and Television Servicing has been published by Macdonald (Paulton House, 8 Shepherdess Walk, London N1 7LW) at $£ 17.50$. There's a mass of data on recent radio/audio/television models (but not VCRs) in this volume of over 800 pages, and one's only complaint is that chopping some of the circuits into so many sections makes it tricky to follow the overall circuit and check up on particular interconnecting paths.

Crossed Lines

Les LawryJohns

SOME time ago I reported on the condition of Laura Lovitt's loose legs. On her dicey Decca of course. Also her collapsed frame which was restored to full working order after a quick visit to the bedroom - to plug in the iron as there isn't a plug point in the adjoining lounge, which surprised me.

I'm easily surprised, and my eyebrows seem to be permanently arched over something or the other, usually the latter but sometimes the former. I mustn't chatter on however or the editor may edit. Look what he did to my gravestone: he cut out "he he". If there's one thing that should be seen more on headstones it's more he he and less poor buggers. Never mind, one day he'll realise he's erasing some of the world's finest literary efforts, and without a passing thought at that.

Anyway, Laura had phoned to say that her set wasn't working, and I'd said I would call during the afternoon if she'd nothing on. So I nipped up to the bathroom for a quick shave, shower and shampoo while my wife looked on in amazement. This annoyed me for three reasons. First because she seemed to think it unusual for me to have a clean up. Now I'm not the scruffy type. It's just that I don't like wasting water and razor blades, so I normally clean up in the evening after the toil of the day. Secondly because she was also laughing. I haven't been too good lately and I've been under the doctor for a funny thing and the pills haven't done much good either. And finally because she wasn't annoyed.
"Give my love to Laura" she said. "After you've fixed her set I hope she'll find something worth looking at."

I ignored that remark. "I wonder whether she's still keen on that telephone chappie" I mused.
"Oh, you mean Eric. He's thirty years younger than you and he's coming here this afternoon to run an extension into the bedroom."

It was my turn to be amazed. "You Jezabel" I bawled with righteous indignation. "Planning to get me out of the way when that fancy fellow calls. No wonder you were laughing at me when I was having a shower."
"I wasn't laughing. It's just that I don't like to see dead horses being flogged. Laura said that Eric is an up and coming young man." It was all too much.
"Right. I'm going to nip down to Laura's to fix her set before you can say knife, then bring the knife back here to cut the telephone communications in the bud."
"All right love. Don't rush about though. You know it's bad for you."

It was under this cloud of torment and suspicion that I called to put Laura back into working order. Knowing these Decca hybrids fairly well, I'd packed into my case everything I thought I might need. Except one thing that is. The yellow van just had to be outside when I arrived.

The Dicey Decca

There they were laughing and chatting away. Blockheads. What these women see in Eric escapes me. He must keep it hidden. I decided to give him a lesson in advanced technology. Instant diagnosis and immediate
remedy would really shake him. And give him an object lesson on the advantages of private enterprise over these top-heavy nationalised industries with their multilayer layers of layabouts all passing the buck to one another and getting nothing done. So I whipped the back off the Decca.
"Can you make it snappy Les?" asked Laura. "I've got a lot to do today."
The h.t. fuse had failed, and a test between the top cap of the PY500 and chassis revealed an almost dead short. "Nothing to it Laura. Just a shorted capacitor. I'll just check the suspects and stick another one in." So I confidently clipped the boost capacitor on the lower panel and connected the meter across it. No short.
"Bloody disc on the tranny" I thought out loud. The harmonic tuning disc ceramic was also blameless however, and it then dawned on me that there was a real possibility of the line output transformer having a short between its windings. This was the item I'd not brought along of course.
"Sorry Laura, I'll have to run it back to the shop to fit a new transformer. Should have it back by five o'clock with a bit of luck." Laura looked at Eric and then said it would be fine.
"Aren't you coming to our place this afternoon Eric," I asked.
"No. The new fellow Desmond's doing that one. Probably done it by now. Fast worker. We don't waste much time on this job - we carry all the gear we need with us you see."
So I shoved the Decca in the van and hot-footed it back to the shop. That little demonstration of 100% efficiency hadn't quite worked out as intended.
Back at the ranch, Honey Bunch was looking as bright as a new pin. The nice chappie had called, done the job and departed. "Quite a dishy young man" she said. "In and out before you could say stud." The torture continued without a pause. "You didn't have much luck with Laura then?"

Bush Rangers

We seem to have quite a few of the little white Bush monochrome portables coming in - the ones fitted with the T16A chassis. The common failing is that the BF257 (BF337 or whatever) video output transistor has a high casualty rate, leading to a picture with an empty plastic look or no picture at all. The answer is to fit a new output transistor plus a heatsink - one of those nice round ones with fins is ideal. If you can't put your hands on a heatsink of the approved variety you can use the shell of a coaxial plug, clipping the side to make it fit if necessary. We refer to the metal type of plug of course, not to the part plastic ones, some imported examples of which don't even fit our standard coaxial sockets let alone a transistor . . .

8500 Focus Fault

We often have trouble with the thinner, square type of thick-film focus unit used in the Thorn 8500 etc. chassis. So it came as no surprise when Mr. Piddlewell turned up again with his set. You will remember that we had a certain

MANOR SUPPLIES
 PAL COLOUR BAR GENERATOR plus CROSS HATCH KIT (Mk. 4)

* Output at UHF, applied to receiver aerial socket.
* In addition to colour bars R-Y, B-Y etc.
* Cross-hatch, grey scale, peak white and black level.
\star Push button controls, battery or mains operated.
* Simple design, only five i.c.s. on colour bar P.C.B.

PRICE OF MK 4 COLOUR BAR \& CROSS HATCH KIT £40.25 P\&P £1.20. DE-LUXE CASE $£ 5.95$. ALUMINIUM CASE £3.30, P\&P £1.20, BATT HOLDERS $£ 1.70$ P\&P 85p, ALTERNATIVE STAB. MAINS SUPPLY KIT £5.55 (Combined P\&P £1.80).

ALSO THE MK3 COLOUR BAR GENERATOR KIT FOR ADDITION TO MANOR SUPPLIES CROSS HATCH UNITS $\mathbf{£ 2 8 . 7 5 + £ 1 . 6 0} \mathbf{p . p}$. CASE EXTRA $£ \mathbf{£} .00$. BATT. HOLDERS $£ 1.70$.
$\star \star$ Kits include drilled P.C. board, with full circuit data, assembly and setting up instructions.
$\star \star$ All special parts such as coils and modulator supplied complete and tested, ready for use.
$\star \star$ Designed to professional standards.
\star © Demonstration models at 172 West End Lane, NW6.
$\star \star$ Every kit fully guaranteed. Technical back-up service.
MK 4 DE LUXE (BATTERY) BUILT \& TESTED $166.70+£ 1.80$ P \& P. MK 4 DE LUXE (MAINS) BUILT \& TESTED $£ 80.50+£ 1.80 \mathrm{P}$ \& P . VHF MODULA TOR (CHI to 4) FOR OVERSEAS $£ 4.60$.
EASILY ADAPTED FOR VIDEO OUTPUT \& C.C.T.V. (ALL PRICES INCLUDE 15\% VAT)

MANOR SUPPLIES TELETEXT KIT (MK2)

(INCORPORATING MULLARD DECODER 6101 VML)

BACKED BY
YEARS OF
EXPERIENCE

INFRA RED REMOTE CONTROL
TEXT \& STATIONS

- externalunit plugsinto aesocket of tV receiver.
- LATER SPEC (DOUBLE HEIGHT,BACKGROUND COLOUR ETC) - TEXT, MIX. TIME, DOUBLE HETGHT HOLD, CLOCK REVEAL RESET ETC. ETC SANEL \& 32 BUTTON REMOTE CONTROL HANDSET. CONVERTS ANY UHF RECEIVER TO STATION SELECTION REMOTE CONTROL AND TELETEXT, SIMPLIFIED RITAVALABLE FOR REMOTE CONTROLONLY). - FACILITIEE FOR VIDEO OUTPUU. MONITORS CCTV ETC.
- AUDIO OUTLEA KOR EASEREMALE ASSEMLE FULLY GUARANTEED. TECH. BACK-UP SER VICE. - DE-LUXECASE MEASUREMENTS APPROX. $154 \times 104 \times 34$. - WORKING MODEL AT 172 WEST END LANE. N.W.6.

FURTHER DETAILS ON REQUEST
ALSO, MANOR SUPPLIES TELETEXTMK 1 KIT(TEXAS)
NOW WITH REMOTE CONTROL PRICE $£ 181.70$ P/P $£ 2.80$.

TELEVISION PROJECTS \& SERVICE SPARES

"TELEVISION" NEW COLOUR PROJECT PARTS AVAILABLE SWITCH MODE POWER SUPPLY KIT $£ 26.00$ p.p. $£ 1.60$. SIG BOARD KIT (Incl. ALT. SAW IF) $£ 70.00$ p.p. $£ 1.60$.
SIG.BOARD KIT Incl. ALT. SAS
(PHONE, CALL, SEND FOF, LIST). FULL TECHNICAL ADVICE \& (PHONE, CALL, SEND FOF LIS OUR CUSTOMERS, BACKED BY PANEL TEST SERVICE FOR OUR CUSTOMERS, BACKED BY
YEARS OF EXPERIENCE ON PREVIOUS MAGAZINE TV PROJECTS. YEARS OF EXPERIENCE ON PREVIOUS MAGAZ
"TELEVISION" MONITOR PARTS AVAILABLE.
"TELEVISION" MONO PORTABLE RECEIVER PARTS AVAILABLE. WORKING MODEL \& PANEL TEST SERVICE.
SPECIAL OFFER TEXAS XMII TELETEXT MODULE NEW \& TESTED, LIMITED QUANTITY AT HALF PRICE $£ 69.00$ p.p. £1.60. "TELEVISION" COLOUR RECEIVER (LARGE SCREEN) PROJECT ALL PARTS AVAILABLE. SEND OR PHONE FOR LIST. WORKING MODEL ON SHOW WITH TELETEXT. (PANEL TEST SERVICE) NEW CTV SIGNALS BOARD PARTS AVAILABLE.
NEW SAW FILTER IF AMPLIFIER PLUS TUNER COMPLETE AND TESTED FOR T.V. SOUND \& VISION $£ 32.80$ p.p. $£ 1.20$ (SUITABLE FOR USE WITH TELEVISION SIGNAL BOARDS
TELETEXT 23 BUTTON DE-LUXE HANDSET WITH 5 YDS. CABLE $\mathbf{£ 8 . 9 0}$ p.p. $£ 1.20$. XMII INTERFACE PANEL (THORN) $£ 2.10$ p.p. 75 p. f8.90 p.p. £1.20. XMII INTERFACE PANEL (THORN) \&2.10 p.p. 75p. CROSS HATCH UNIT KIT, AERIALINPUT TYPE, INCL. T.V.SYNC AND UHF MODULATOR. BATTERY OPERATED. ALSO GIVES PEAK WHITE \& BLACK LEVELS. CAN BE USED FOR ANY SET
$£ 12.65$ p.p. 60 p. (ALUM CASE $£ 2.60$ DE LUXE CASE $£ 5.50$ p.p. $£ 1.00$.) £12.65 p.p. 60p. (ALUM CASE 22.60 DE LUXE C
ADDITIONAL GREY SCALE KIT $£ 3.35$ p.p. 45 p.
UHF SIGNAL STRENGTH METER KIIT $£ 20.00$ (VHF VERSION £21.60). ALUM CASE $£ 2.00$ DE LUXE CASE $£ 5.95$ p.p. $£ 1.80$.
CRT TESTER \& REACTIVATOR PROJECT KIT FOR COLOUR \& MONO $£ 28.00$ p.p. $£ 2.00$
BUSH 2718 BC6100 SERIES IF PANEL $£ 5.75$ p.p. 90p.
BUSH A816 IF PANEL (SUR.PLUS) $£ 1.90$ p.p. 90 p.
BUSH 161 TIMEBASE PANEL A634 £3.25 p.p. £1.40.
DECCA "BRADFORD" IF T.B. POWER EX RENTAL $£ 5.75$ each p.p. £1.40.
DECCA 80, 100 SERIES, IF FRAME TB $£ 7.90$ each p.p. $£ 1.40$.
GEC SERIES I MONO PANELS $£ 2.10$ p.p. $£ 1.30$.
GEC 2110 DECODER, RGB PANELS (EX RENTAL) 55.75 EACH GEC 2110
G.p. $£ 2010$ SERIES TIMEBASE PANEL $£ 1.15$ p.p. $£ 1.00$

GEC 2040 (TYPE) CDA PANEL $£ 2.88$ p.p. $£ 1.25$.
PYE 713/715 Convergence $£ 5.75$ each p.p. $£ 1.40$.
PYE 697 Frame T.B. ex Rental $£ 2.88$ p.p. 90 p
PYE 597 Line T.B. P.C.B. type salvaged $£ 4.80$ p.p. $£ 1.50$.
THORN 3000 LINE TB PCB $£ 5.75$ each p.p. 85 p.
THORN 3000 VID, IF, DEC. EX Rental $£ 5.75$ each p.p. $£ 1.30$
THORN 8000/8500 IF/DECODER PANELS salvaged $£ 5.52$ p.p. $£ 1.60$ THORN 8000/8500 FRAME T.B. PANELS salvaged $£ 5.52$ p.p. £1.40.
THORN 8000/8500 POWER/SALV. SPARES $£ 2.88$ p.p. 60p.
THORN 9000 LINE T.B. (incl. LOPT etc.), SALV., SPARES $\mathbf{8 8 . 6 2}$ p.p. $£ 1.60$.

THORN 9000 IF/DECODER PANELS Salvaged $£ 8.90$ p.p. $£ 1.60$.
PHILIPS 210, 300 Series Frame T.B. Panels 11.15 p.p. 80p.
PHILIPS G8/G9 IF/DECODER Panels for small spares $£ 4.80$ p.p. $£ 1.30$. PHILIPS G6 Single standard zonvergence panels $£ 2.90$ p.p. $£ 1.20$.
G8 IF Panels for small spares $\boldsymbol{£ 1 . 7 5} \mathrm{p} . \mathrm{p} .95 \mathrm{p}$.
G8 Decoder panels salvaged $£ 4.25$. Decoder panels for spares $£ 2.00$ p.p. $£ 1.35$. G8 Decoder panels Uall ELC $1043 / 06$ £7.82, ELC $1043 / 05 ~ £ 6.35$ p.p. 60 p; VARICAP, U321, ELC $1043 / 06$ £ 7.82, ELC $1043 / 05$ £6.35 p.p. 60p, G.I. type (equiv. $1043 / 05$) $\mathbf{£ 4 . 0 0}$ p.p. 60 p.
£1.75,5PSN $£ 2.00,6$ PSN $£ 2.10$ p.p. 60 p.
£1.75, SPSN $£ 2.00,6$ PSN $£ 2.10$ p.p. 60 p.
BUSH "Touch Tune" and Va:icap Control Unit $£ 4.40$ p.p. 95 p.
BUSH "Touch Tune and La 2000 S £.80. BUSH TYPE $\mathbf{£ 8 . 6 0}$ p.p. 85 p.
VARICAP VHF MULLARD ELC $1042 \$ 7.95$ p.p. 60 p.
UHF/625 Tuners, many different types in stock. UHF tuners transisted. incl. s / m drive. £3.28. Mullard 4 position push button $£ 4.80$ p.p. $£ 1.30$.
TRANSISTORISED 625 If for T.V., sound, tested. 17.82 p.p. 95 p
MULLARD EP9000 Audio Unit incl. LP 1162 Module $£ 4.38$ p.p. 85p. LINE OUTPUT TR ANSFORMERS. New guar, p.p. $£ 1.25$.

OTHERS AVAILABLE, PRICES ON REQUEST. ALSO F.OPTS.
THORN 9503 Stick Tray $\mathbf{£ 1 . 1 5}$ p.p. 55p. Most others available.
THORN $3000 / 3500,8000,8500$, MAINS TRANSF. £10.15 p.p. $£ 1.80$ 6.3V CRT Boost Transformers $£ 5.00$, Auto Type $£ 3.20$, p.p. $£ 1.20$.

CALLERS WELCOME AT SHOP PREMISES Telephone 01-794 8751/7346 THOUSANDS OF ADDITIONAL ITEMS AVAILABLE, ENQUIRIES INVITED LARGE SELECTION TESTED COLOUR PANELS POPULAR MODELS

MANOR SUPPLIES

172 WEST END LANE, LONDON, N.W. 6.
NEAR: W. Hampstead Tube Stn. (Jubilee) Buses 28, 159, C11 pass door W. Hampstead British Rail Stms. (Richmond, Broad St.) (St. Pancras, Bedford) W. Hampstead (Brit. Rail) access from ell over Greater London.

Mail Order: 64 GOLDERS MANOR DRIVE LONDON N.W. 11.
ALL PRICES INCLUDE VAT AT 15\%

Interested in Television Servicing? Try a ZED Pack. Effect Repairs at Minimum Cost.

Z1	300 mixed $\frac{1}{2}$ and $\frac{1}{3}$ watt resistors	$£ 1.95$	Z20
Z2	150 mixed 1 and 2 watt resistors	$£ 1.95$	
23	300 mixed capacitors, most types		
	amazing value	$£ 3.95$	221
Z4	100 mixed electrolytics	£2,20	222
25	100 mixed Polystyrene Capacitors	£2.20	223
Z6	300 mixed Printed Circuit		
	Components	$£ 1.95$	
27	300 mixed Printed Circuit resistors	£1.45	Z24
28	100 mixed High Wattage Resistors, wirewounds etc.	£2.95	225 $\mathbf{2 2 6}$
29	100 mixed Miniature Ceramic and		227
	Plate caps	£1.50	228
210	25 Assorted Potentiometers	$\ldots 1.50$	
Z11	25 Assorted Presets, Skeleton etc.	¢1.00	229
Z12	20 Assorted VDR's and		
	Thermistors	¢1. 20	Z30
Z13	1 lb Mixed Hardware, Nuts, Bolts, Selftappers, "P" clips etc.	$£ 1.20$	231
Z14	100 mixed New and marked		Z32
	transistors, all full spec. includes:		23
	PBC 108, BC 148, BF154, BF274,		Z34
	BC 121L, BC238, BC184L and/or		
	Lots of similar types ONLY	$£ 4.95$	Z35
(Z 14A)	200 Transistors as above but including power types like BD131,		
	including power types like BDI31, 2N3055. AC 128, BFY 50 etc.	$£ 9.95$	Z36 $\mathbf{Z 3 7}$ $\mathbf{2}$
Z15	100 Mixed Diodes including:		Z38
	Zener, Power, Bridge, Signal,		
	Germanium, Silicon etc. All full	¢4.95	Z39
Z16	20 IN4148 Gen Purpose Diodes	$£ 1.00$	Z40
Z17	20 IN4003/10D2	$£ 1.00$	241
Z18	20 Assorted Zeners.		Z42
	1 watt and 400 mw	$£ 1.50$	Z43

Pushbutton. Slide. Multipole,		Z44
Miniature etc. Fantastic Value	$\mathbf{1 1 . 2 0}$	Z45
100 Assorted Silver Mica caps	$£ 2.20$	Z46

TO3 Mounting kits (BU208) $\mathbf{8}$ for $\mathbf{6 0 p}$ TO220 Mounting kits (TIP33) 10 for 60 p TO126 Mounting kits (BD 131)
 \author{ 12 for $60 p$

}Pack of each Mounting kit. All
include insulators and washers $\quad \mathbf{£ 1 . 5 0}$
3a 1000v Diodes (IN5408 type)
8 for $£ 1.00$
Brushed Aluminium Push Button
Knobs, 15 mm long $\times 11 \mathrm{~mm}$ Diam Fit standard $3 \frac{1}{2} \mathrm{~mm}$ square shafts

10 for $£ 1.00$
Chrome finish $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ Diam as above $\quad 10$ for $£ 1.00$
Aluminium Finish. Standard Fitting Slider Knobs. (Decca) $\quad 10$ for $£ 1.00$ Decca "Bradford" Control K nobs Black and Chrome. $\frac{1}{4}$ "Shaft 8 for $£ 1.00$
Z53 Tuner P/B Knobs, Black and Chrome.
Fit most small Diam Shafts.
ITT. THORN, GEC etc. $\mathbf{8}$ for $£ 1.00$
Spun Aluminium Control Knobs (ITT)
$\frac{1}{2}$ Shaft, suitable for most sets
with recessed spindles $\quad \mathbf{8}$ for $£ 1.00$
14 Pin DIL 1.C. Sockets 12 for $£ 1.00$ 16 Pin Quil I.C. Sockets $\quad 12$ for $£ 1.00$ 16 Pin DIL TO QU1L I.C.
Sockets $\quad 10$ for $£ 1.00$ 22 Pin DIL 1.C. Sockets $\quad 10$ for $£ 1.00$ B9A Valve Bases P.C. Type 20 for $£ 1.00$ $0.47 \Omega \frac{1}{2}$ Watt Emitter Resistors

40 for $£ 1.00$

MISCELLANEOUS

Line output transformer for RBM $823 \mathrm{~A} \quad$ [4.25 each, 3 for $\mathbf{f 1 0 . 0 0}$ ITT VC $2004 \mathrm{P} / \mathrm{B}$ Transistor Tuner. Suitable for some Pye and Philps sets. 3 hole fixing $£ 2.75$ and Philps sets. 3 hole fixing
Decca Bradford Tuners, 5 button type $\quad £ 3.00$ each, 5 for $\mathbf{~} 12.50$ Decea Bradford Triplers $\quad £ 3.00$ eac
UHF Modulator UHF out Video in. Ch. 36 .
With connection data $\quad \mathbf{\$ 3 . 0 0}$ each, 2 for $£ 5.0$ Video Game Boards. All new but incomplete. Hundreds of
useful components. C.M.O.S. IC's. transistors, diodes. sockels,
switches etc. Pack of five assorted boards
GEC Hybrid 2040 scries Focus Assembly with lead and

GEC Hybrid 2040 scries Focus Assembly with lead and
VDR rod
$£ 200$ each, 3 for $£ 5.00$

 Convergence Panel for above. Brand new leads and plug. $\quad £ 3.00$ each
GEC 2010 Transistor Rotary Tuner with AE SKT and
 Bush CTV 25 Quadrupler type Q25B equivalent to ITT
TU25 3QK
PYE 647 Line and power Pancl. damaged with so 5 each, 2 for $£ 5.00$ PYE 647 Line and power Panel. damaged with some conponents missing but ideal for spares $\quad £ 2.20$ each, 3 for $£ 6.00$
Grundly UHF/VIFF Varicap Tuner for $1500 \mathrm{~GB}, 3010 \mathrm{~GB}$

sets $t \mathrm{~m}$ long
EAHT Cable
Anti Corona Caps 30 p per metre, 10 metres $£ 2.50$ 4.433 Mhz CTV Crystals \quad £1.00 each, 3 for $£ 2.00$ Cassette Mains Leads. 7f with fig 8 plug $60 p$ each, 3 for f 1.50 $6 \mathrm{MHZ}^{2}$ sound filters. ceramie 3 pin -TA1YO" type 50p each, 3 for $£ 1.00$
 PYE CT200 Control Knobs
fixing
Casselte/Calc Leads. 2 ml long, figure 8 skt. to flat E .
American plug 60 peach, 3 for $£ 1.5$
3.5 mm Jack Plug on 2 m of screened lead $\quad 5$ for $£ 1.00$
T.v. Game Remote Conrols. Contains 22k thumbwheel pot on 2 m of screened lead with 3.5 mm plug 2 for f 1.00 10 for $£ 1.00$

8 for $\mathbf{~} 1.00$
3 for $\mathbf{3 . 0 0}$

ZENER DIODES

$1 \mu f 63 v$	20 for $£ 1.00$
$1 \mu f 350 v$	10 for $£ 1.00$
$2.2 \mu f 63 v$	20 for $£ 1.00$
$4.7 \mu f 63 v$	20 for $£ 1.00$
$4 \mu f 350 v^{*}$	10 for $£ 1.00$
$10 \mu f 400 v$	8 for $£ 1.00$
$22 \mu f 16 v$	20 for $£ 1.00$
$100 \mu f 25 v$	20 for $£ 1.20$
$160 \mu f 25 v^{*}$	20 for $£ 1.50$
$330 \mu f 25 v$	10 for $£ 1.00$
$400 \mu f 40 v^{*}$	8 for $£ 1.00$
$470 \mu f 25 v$	10 for $£ 1.00$
$470 \mu f 35 v$	8 for $£ 1.00$
$1000 \mu f 16 v$	10 for $£ 1.00$
$1000 \mu f 25 v^{*}$	8 for $£ 1.00$
$1000 \mu f 35 v$	6 for $£ 1.00$
Axial. All others are Radial.	

CAN TYPES

$100+200350 \mathrm{v}$	$£ 1.00$
$2000 \mu \mathrm{f} 100 \mathrm{v}$	$£ 1.00$

2.200 ff 40 v
$2.200 \mu \mathrm{f} 63$
$220 \mu \mathrm{f} 400 \mathrm{v}$ ITT/RBM
$220 \mu \mathrm{f} 400 \mathrm{v}$ ITT/RBM
$10.000 \mu \mathrm{f} 35 \mathrm{v} 2 \mathrm{t}^{\prime \prime} \times 1 \frac{1}{\mathrm{E}}$ " with
fixing stud and nut. $£ 1.006$ for $£ 5.00$
THYRISTOR
SS 106 (BT 106)
3 for $£ 1.50,10$ for $£ 4.50$

33v REGULATOR

 (Thorn)
TANTAI

12 for $£ 1.00$ 12 for $£ 1.00$ 12 for $£ 1.00$ 12 for C 1.00 12 for $£ 1.00$ 12 for $£ 1.00$ for $£ 1.00$

$7 \mathrm{v} 5,27 \mathrm{v}, 30 \mathrm{v}$. ALL 400 mw .

10 of one value
10 of each.
1.3 watt, 12v. $13 \mathrm{v}, 18 \mathrm{v}$ 10 ot one valu DIODES $10 \times$ SKE 4F2/06 (600 v 2 a fast switching) $£ 1.00$ $12 \times$ BY127 $\quad \mathbf{8 1 . 0 0}$ $10 \times$ BA $158(600 \mathrm{v} 400 \mathrm{ma}) \quad \$ 1.00$ BY142 3a $1.750 \mathrm{v} \quad 5$ for $£ 1.00$ CA270AE $\mathbb{1 . 0 0}$ I.C.'s MC 1327P $\mathbf{£ 1 . 0 0} \quad 6$ for $\mathbf{5 5 . 0 0}$ TBA8 10 P $£ 1.00 \quad \mathbf{6}$ for $\mathbf{5 5 . 0 0}$ 555 Timer 50 p

LEDS
3 mm Crystal Clear, very pretty. Red, Green. Yellow $\begin{array}{ll}10 \text { of one colour } \\ 10 \text { of each } & \mathbf{1} .00\end{array}$ TIL209 3 mm Red $\quad \mathbf{£ 2 . 5 0}$ 5 mm Red $\quad 10$ for $£ 1.00$ Red Triangle $\quad 8$ for $£ 1.00$ Green Rectangle $\quad 8$ for $£ 1.00$ Infra Red. LED Transmitter. Til 38. Hi-Power. 50 peach. 3 for $£ 1.00$

CONVERGENCE POTS
50.. 10s. 20s2. 30s2. 50s2. 100s. 200.. 1 K .8 of one type $£ 1.00 .8$ of each type $\mathbf{£ 6 . 0 0}$.

60p each, 3 for Et .50
Equivalent to TAA550. SN76550,

EHT STICKS

TV18 KV $\quad 50 \mathrm{p}$ each, 3 for $\mathbf{£ 1 . 0 0}$ Replacement Tripler Sticks

Mains Neons . $9 / 15^{\prime \prime} \times 11^{\prime \prime} 1-6 \mathrm{~V}$ $9 / 15^{\prime \prime} \times 1 \frac{1}{4}{ }^{\prime \prime} 1-6 \mathrm{~V}$
2 k 2 Screenfeed Resistors.
White ceramic. 9 watt. with fusible link
Mullard LP 1173 . IO wat
Amplifier module with circuit diagram.
E.H.T. Discharge probe. with heavily insulated
handle, with lead and chassis connector.

$\cdots 350{ }^{*}$ Transductor	£120.350r ${ }^{\text {c }}$ 300
-3500* Focus Assembly with VDR	£1.50
"8500" Focus Assembly. Rotary type	¢1.50, 3 for $\mathbf{\$ 4 . 0 0}$
"8500".0022 2000v Line Capacitor	10 for $\mathrm{\Sigma}$ 1.00
"1590/91" Portable metal boost Diode (WII)	5 for £ 1.00
- $1500{ }^{\text {- }}$ Bias Caps 160μ [25 ,	20 For £1. 50
*1500"- Jellypot. L.O.P.T. Pinkspot	¢3.50
"900/950" 3 stick triplers	£1.00, 3 for $£ 2.50$
- $1600{ }^{*}$ Dropper $18+320+70+3952$	3 for I 1.50
"950" Can. $100+300+100+16 \mu \mathrm{f}$	£ 1.0

THORN SPARES

-

1.20. 3 for 13.00 0,3 for $£ 4.00$
10 for $£ 1.00$ 10 for $£ 1.00$
5 for $£ 1.00$ 20 for $£ 1.50$

3 for $\$ 250$ f1.00
3500^{-}Transductor ${ }^{3500^{-0}}$ Focus Assembly with VDR $8500^{\prime \prime} .00222000$ Line Capacitor 1500^{-}Beas Caps 160μ Г 25. $1600^{\circ} 0^{\circ} 3$ stick triplers 950° Can. $100+300+100+16$ s

GEMINI ELECTRONIC COMPONENTS

Dept. TV, The Warehouse, Speedwell Street, London S.E.8.
Please quote ZED code where shown. Send cheque* or Postal Order. Add 60p P\&P and 15\% VAT.
*Schools etc. SEND OFFICIAL ORDER
ZED PACKS now available for CALLERS at 50 Deptford Broadway, London, S.E.8.
amount of trouble with its start-up problems a little while ago. "Tube's gone" he announced flatly.
"No it hasn't" I announced, having had a look. "It's either the focus unit or the $100 \mathrm{k} \Omega$ resistor on the tube base."
"I knew it was something to do with the tube" he said.
So we checked the $100 \mathrm{k} \Omega$ resistor (in series with the focus electrode). Nothing wrong here. While next removing the focus unit screws I explained what happens when the thick-film track in the unit becomes practically open-circuit. I showed him the effect of having no focus voltage by removing the lead from the unit to the c.r.t. base panel. To my amazement the focus improved enormously - the picture was quite watchable, though we watched it for only a very short time.

To cover my confusion I switched the set off and proceeded to fit a new unit, mumbling something about the focus electrode borrowing some potential from the final anode for a short time. When the new unit was fitted I switched, the set on and found the picture back in the grossly out of focus condition (at all settings of the control).
"It's better off without the bloody thing" said Mr. Piddlewell.
"That's silly" I said, "everyone knows you've got to have a high focus voltage with this type of tube."
"I don't. All I know is you've got to have a little adjustment to get good focus" said Mr. Piddlewell.
"How can we adjust something that's not there?" I argued reasonably. Having almost made my point I made the final diagnosis. "The e.h.t. rectifier unit must be up the creek."
"What's that got to do with the focus?" asked Mr. Piddlewell, sipping his coffee which No. 1 supplies for all potentially awkward customers.
"The focus unit receives its supply from the rectifier unit - this lead here" I said. "The rectifier's not providing sufficient output you see."
"How come it's better with none at all then?"
"Ah, that's the rub you see. If the focus electrode is not connected at all it floats, taking up a potential somewhere between that of the first and the final anode" I said.
"Sounds like a load of old bull to me" said Mr. Piddlewell unkindly.
"All right then, wait and see what it's like with a new rectifier." I was hoping I hadn't got one, but there it was on the shelf. In it went and I crossed my fingers, legs and eyes.

Perfect. "There you are you see. Faultless diagnosis."
"No it's not. You said it was the focus unit or that resistor thing on the tube base. I bet the thing you've just put in is dearer than those." Mr. Piddlewell's thoughts were becoming wonderously concentrated as he sorted out his priorities. "With the troubles I've had with this set lately I don't think I should pay anything at all."
"Don't then. Go somewhere else and see if they'll give you coffee while they sort out your clapped out old set."
"What do you mean, clapped out?" demanded Mr. Piddlewell indignantly.
"Well, the tube's going for a start."
"Right then. Now I'm not going to pay, and what's more you won't get your milk tomorrow morning."

The sooner the common market does away with our milkmen the better I say.

Anne's Troubles

Anne is a local character who can't see why the world should be a different place from what it was fifty years or so ago. Her age is a secret, and she's a little woman with a loud
voice, very fond of a flutter on the horses. She goes into the bookies and puts sixpence each way on this horse and sixpence each way on that. The bookies don't hesitate to accept her money, even though she moans about two bob being a lot to pay out. Anyway, she popped into tell me that her sound had gone off.
"I'll be up this afternoon, Anne."
"You can't come this afternoon mate, I'm having my hair permed. I'll borrow a set from the pub tonight. You can come tomorrow. Make it two o'clock. Don't be late: I go down to the bookies at half past."
So next afternoon at precisely two o'clock we pulled up outside. The set needed a new PCL82 and a couple of resistors.
"I suppose you're glad of the work, the way things are" said Anne.
"Yes thank you Anne."
"That's all right mate. Now what do I owe you?"
"Seventy five pence please Anne."
"Here's a pound. Keep the change - I believe in paying a man his worth. You can put the plug back on the set I borrowed from the pub before you go, it'll save them having to do it later."

Test Report

We've just taken in our first batch of Fidelity CTV 14R colour sets - and very nice little sets they are. British made and fitted with a 14 in . Toshiba black-stripe tube. The picture strikes us as being exceptionally bright and well defined.

The hand-held infra-red remote control unit changes the six selected channels positively, and the off button switches the set off when depressed for a few seconds. Removal of the rear cover (sensible screws for a change) exposes the well laid out horizontal panel, with everything easy to get at and the presets clearly marked. If servicing is required, it looks as if this is not going to present any problems. One of the sets had a tendency to jitter vertically, but only when the tuning cover was up to close the a.f.c. switch. The a.f.c. coil was clearly marked on the front right-hand side, and a slight turn of the core of this instantly cleared the instability.

Full marks Fidelity. This set looks a winner, and has a very reasonable price.

The main panel and c.r.t. base panel used in the Fidelity CTV14R 14 in . colour transportable. The low component count and neat layout should make any servicing required easy.

VCR Servicing

Part 1

THE domestic video recorder is now well and truly with us. As a result, many service engineers who've never seen the inside of one before are going to be called upon to service them. In fact in view of the present video boom it's likely that no one involved in television servicing will be able to avoid getting caught up somehow in video servicing remember the start of colour?

Where do you go for information? Very little has been published in book form on basic servicing, while half the battle is in recognizing the symptoms. Don't let this put you off the subject however - video recorders display their faults quite well on the screen, they are light and easy to handle, and don't have e.h.t., boost or even h.t. rails -30 V or so is usually the highest voltage. There's no c.r.t. to flash over and destroy dozens of semiconductor devices - so all in all it's not that bad!
The aim of the present series is to outline the basics of VCR operation and to take a look at the things that can go wrong and the symptoms and action required. Let's start by going back briefly to the principles of audio recording.

Recording on Tape

To record a signal on magnetic tape, the tape must travel at a constant speed past a magnetic head in whose winding the signal current is flowing (see Fig. 1). It doesn't matter whether the signal is an audio or a video one, a computer programme or whatever. Unfortunately, the relationship between the magnetising current and the magnetic flux produced, known as the $\mathrm{B}-\mathrm{H}$ curve (see Fig. 2), is not linear. If things were simply left at this, the signal would be severely distorted. For audio, the problem is overcome by adding an h.f. bias signal - at a frequency much higher than the highest audio frequency, typically around $35-50 \mathrm{kHz}$. As Fig. 3 shows, the result is that the audio signal is moved to the linear portions of the $\mathrm{B}-\mathrm{H}$ curve. The oscillator that provides the bias signal also doubles as the erase oscillator. The reason, incidentally, for going into this is to be able to see later why h.f. bias is not necessary when recording a video signal!

Next, what sort of frequency response is required for recording video information? The bottom limit is d.c. (or should we say zero frequency?) to take care of slow changes in scene brightness. The top limit needs to be in the region of 5 MHz , to achieve reasonable picture definition and to be able to include the chrominance subcarrier at 4.43 MHz and its sidebands within the bandwidth. This sounds nice and straightforward until we come to examine the capabilities of a magnetic tape system.

Fig. 1 (left): Tape, head and signal winding arrangement.

A good audio tape recorder might have a frequency response of say 20 Hz to 20 kHz . It's easy to design an amplifier with a much greater bandwidth than this, so why the limitation? Say we have a prerecorded tape with signals of gradually increasing frequency recorded on it. When we play it back, the lowest frequencies will be audible when the amplifier's gain etc. is suitably adjusted. As the frequency rises, the rate of change of the magnetic flux increases and the alternating voltage developed across the playback head increases - because, as you should know, the voltage produced across an inductance is proportional to the rate of change of the current flowing through it - the current which, in this case, is generated by the changing magnetic flux from the signal on the tape as it passes the head. Were this not true, we could not derive the e.h.t. from our line output stage! To put it briefly, if the frequency is doubled the output voltage is doubled - this is conveniently stated as an increase of 6 dB per octave, an octave being the interval between any frequency and double or half that frequency.

0126

Fig. 2 (left): Recording characteristic of magnetic tape.
Fig. 3 (right): Use of an h.f. bias signal to keep the signal being recorded on the linear portions of the tape's $B H$ characteristic.

Fig. 4 (left): When one recorded signal cycle equals the width of the head gap the output drops to zero.

Fig. 5: Use of frequency modulation, with a carrier' at 3.8 MHz , to record the luminance signal.

So far so good then: as we play back the tape, the output rises at 6 dB per octave and we design our playback amplifier with a falling gain/frequency characteristic to compensate. This is all right provided we do not want to span too many octaves.

There's another problem. As the frequency increases, the length of each cycle of magnetic flux on the tape becomes shorter: when it equals twice the head gap, the output starts to fall rapidly, reaching zero when one cycle equals the width of the head gap (see Fig. 4) as there is then no change of flux. If we reduce the head gap by half, the upper frequency limit is increased by an octave. At lower frequencies however the output is reduced, because the narrower the gap the less effect the tape has on the flux in the head. So the lower frequencies will be lost in the noise, and as we get an extra octave at the top by halving the head gap so we lose an octave at the bottom.

Recording Video

Where does this leave us? Our good audio recorder with a bandwidth of 20 Hz to 20 kHz has a response of nearly ten octaves. If we want to record a video signal with a bandwidth of say 50 Hz to 5 MHz we are concerned with nearly 17 octaves. One solution is to increase the tape speed - by this means we increase the output from the head and the upper frequency cut-off point, since one cycle then occupies a longer section of tape. So we could record our 17 octave video range if we had a playback amplifier whose gain varied with frequency over a range of 100 dB or so and a tape speed of several metres per second. But for a reasonable playback time we'd need reels of tape the size of dustbin lids - not the sort of thing to have in one's front room, and mightily expensive. Clearly we need some means of reducing our 17 octaves to ten or less. This is done quite simply by converting the video information to f.m.

Amplitude modulation of a carrier wave produces sidebands that are the sum and difference of the carrier and modulation frequencies. The situation with frequency modulation is a little more complex, but we're not concerned with mathematical theory here. Suffice it to say that if we limit the upper frequency of the video information to about 3 MHz and use it to frequency modulate a carrier between 3.8 MHz and 4.8 MHz , we will have to be able to handle sidebands from about 1 MHz to 5 MHz . This is what's done, and the octave range is reduced to less than three (see Fig. 5).

If we used a lower carrier frequency, the lower sideband would be too low or would get cut off altogether. If a higher frequency carrier was used, a much higher tape speed and/or a microscopic head gap would be required -5 MHz is bad enough! But if we cut off the video at 3 MHz , what about the definition and how do we manage to get the chroma in? Without going into detail here (we'll have more to say on the subject later) the chroma is separated and converted to a lower frequency before being recorded. As for the loss of definition, this is partially compensated for in some (though not all) machines by including a circuit that enhances the h.f. response on playback.

At this point it should be stated that we shall be using the VHS system to illustrate these articles, in particular the basic JVC/Ferguson machine (HR3330/3V00/Baird 8902 etc.). Other machines and systems use similar principles and the important differences will be pointed out as we go along.

So there we are then: we've converted the chroma to a lower frequency, limited our video to 3 MHz , and used it to frequency modulate a carrier, with 3.8 MHz corresponding to the sync tips and 4.8 MHz to peak white. H.F. bias is not

next month in

- TV PATTERN GENERATOR

We've alreadv seen one application of the Ferranti ULA (uncommittec logic array) concept in the ZNA 134 sync pulse generator chip which has been featured in several of our projects. Another i.c. tased on this concept has recently been released, the ZNA234. In this, the various logic blocks in the i.c. have been connected to provide a single-chip multi-pattern generator. We've used this, along with three readily-available CMOS i.c.s and a readykuilt u.h.f. modulator, to form a very compact pattern §enerator which is simple to construct and is fowered from a standard mains adaptor. The following patterns, selected by means of a single step-through switch, are provided: grey scale; crosshatch; horizontal lines; vertical lines; dots; white raster; blank: raster. The complete unit is roused in a proprie:ary case measuring only $120 \times$ $65 \times 40 \mathrm{~mm}$ ($4 \frac{3}{4}>2 \frac{1}{2} \times 1 \frac{1}{2} \mathrm{in}$.). Useful for many servicing applications in the workshop and in the field, the unit can also be powered from a car tattery or a dy cell.

- CHOPPERS RULE OK

Switch-mode power supplies are now the rule in colour sets, having finally ousted the thyristor regulated power supply. Servicing them is another matter however ... Derek Snelling provides some useful guidelines.

- MORE PATTERNS!

Our colour pattern generator featured in 1979 was designed to provide a comprehensive test pattern. In doing so it produces within itself many other patterns, and requests have been received on how to extract some of them. This follow up provides details of cbtaining full-screen colour bars, a crosshatch fattern and a red raster, plus some other ideas.

AND ALL THE REGULAR FEATURES

ORDER YOUR COPY ON THE FORM BELOW:

TO
(Name of Newsagent)
Please reserve/deliver the October issue of TELEVISION (70pi, on sale September 23rd, and continue every month until further notice.

NAME
ADDRESS

Fig. 6 (left): Helical scanning.
Fig. 7 (right): Tape wrap system used with VHS machines.

Fig. 8 (/eft): Betamax and Philips N1500/N1 700 tape wrap arrangement (simplified).

Fig. 9 (right): Lavout of the tracks on the tape.

Fig. 10: VHS tape deck arrangement (simplified).
needed - as the signal is in f.m. form, distortion doesn't matter, while any a.m. noise can be removed by limiting on playback (the same principle as with an f.m. i.f. strip). Also, $\dot{w e}$ don't have to bother too much about over recording, or the amount of gain on playback.

Helical Scanning

To play back a frequency of 5 MHz , we still need a very small head gap and a high tape speed. The latter problem is overcome by mounting the video head (two in practice) in a rotating cylinder around which the tape is wrapped for just over 180° (see Figs. 6-8). Since both the heads and the tape are moving, the relative head-to-tape speed is quite high though the actual tape speed is similar to that used in audio machines.

As Figs. 6 and 9 show, the information is recorded on the tape as a series of long diagonal stripes. With the head drum rotating at 25 revolutions per second, the stripes recorded or played back by each of the two heads comprise one complete field ($312 \frac{1}{2}$ lines). As one head leaves the tape, so the next head comes into contact with it. There's an overlap of a few lines, which may appear as a slight horizontal disturbance at the bottom of the picture, though this will not be seen with correct setting of the height control. In most machines (though not the Philips N1500/N1700 series) the head that's not in contact with the tape is switched off. With
the head drum rotating in contact with the tape there's no need for pressure pads, and as the heads project slightly from the drum intimate contact with the tape coating is ensured.

Stationary Heads

The tape passes a stationary erase head (see Fig. 10) before the video heads, and another stationary head between the drum and the capstan. This latter head records the audio signal on the top edge of the tape and control pulses, derived from the field sync pulses, on the bottom edge - we'll explain about these later. Since the audio record/playback part of the machine is just like an audio only tape recorder, we'll not have much more to say about this.

Track Layout

Fig. 9 shows the layout of the information recorded on the tape. Head switching occurs just before the field sync pulse, so each video track starts with the sync pulse. Great care has to be taken to synchronise the head and tape movement with the video information on record and playback. This is done by the head and tape (capstan) servo systems, which we'll consider as soon as we've looked at the chroma signal.

Chroma Signal Processing

As the frequency response on playback drops off rapidly above about 5 MHz , video frequencies above about 3 MHz cannot be reproduced. This means that if the chroma information was left at 4.43 MHz when recording it would be lost on playback. Even if it wasn't, consider this: each line of the picture contains 283.75 cycles of chroma $(4.433619$ divided by 15,625$)$ and each field recorded on the tape contains 283.75×312.5 cycles; an error of half a cycle will reverse the colour, and even a 45° phase shift is totally unacceptable.

The answer to this is to convert the chroma signal to a much lower frequency (still a.m.) and add it to the f.m. being recorded on the tape. Since the chroma uses a.m. instead of f.m., what about h.f. bias? Fortunately the f.m. video signal acts as the bias for the chroma signal, simplifying things considerably. What frequency can we use for the chroma? It must fall into a vacant space in the f.m. passband (outside the limits $1-5 \mathrm{MHz}$), and as above 5 MHz is out below 1 MHz it must be. A frequency of 36 or 40 times the line frequency is chosen - 40 times with the VHS system.

An oscillator running at 40 times the line frequency (40 H for short) is used, and to compensate for tape speed variations it's locked to the line sync pulses (off tape on playback). The output from this voltage-controlled oscillator (VCO) is mixed with the 4.433619 MHz output from a crystal oscillator (see Fig. 11) to give an output of approximately 5.06 MHz which when mixed with the 4.43 MHz chroma signal on record gives a signal at 625 kHz , and when mixed with the 625 kHz signal on playback gives us back the 4.43 MHz chroma information. This is an approximate picture and we'll fill in more detail later.

Block Diagram

Fig. 11 provides a simplified block diagram of the signals side of the VCR, on record and playback. The tuner and i.f.

Fig. 11: Block diagram of the signal circuits, (a) when recording and (b) on playback.
strip are necessary so that recording is completely independent of the TV receiver - indeed you don't even need one. As one requirement is for the viewer to be able to watch one channel whilst recording another, the aerial is plugged into the VCR, the signal being amplified and then split, one output going to the TV set's aerial socket and the other to the tuner and i.f. strip in the VCR. This circuitry is all quite conventional.

The composite video output from the i.f. strip passes to the luminance and chroma channels and to a sync separator. Pre-emphasis is included in the luminance channel to give greater gain to the higher frequencies - as is done with other f.m. systems, e.g. TV sound, f.m. radio etc. This improves the noise performance, as the de-emphasis used on playback (reducing the gain at the higher frequencies) reduces h.f. noise correspondingly. There's a snag to this however. As Fig. 12 shows, spikes are produced by overshoot. If these are not removed, over modulation will occur, giving rise to black streaks on highlights etc. Hence the white and dark clip circuits

Fig. 12: Use of white and dark clipping.
following the pre-emphasis.
The f.m. modulator consists of a simple voltagecontrolled multivibrator with a low- Q tuned circuit at its output - the latter is omitted in some makes of machine.

We've already outlined the technique used in the chroma section, the sync separator providing off-tape sync pulses to lock the 40 H voltage controlled oscillator.

On playback the u.h.f. modulator is fed with the video and audio signals and modulates these on to u.h.f. carriers somewhere between channels 30 and 40 , to which one channel position on the TV set is tuned. The modulator can be tuned up or down a few channels in case its output lands on top of one of the local channels, giving rise to patterning.

The Mechanics

The mechanical part of the tape deck is similar to that of an audio machine. The video head drum is usually driven by its own motor, and the capstan, which drives the tape in conjunction with the pinch wheel, by another. In the simpler VHS machines the latter motor also drives the spool carriers on fast forward and rewind, and the take-up spool through a slipping clutch on record and playback. When the play key is depressed, the tape must be drawn from the cassette and wrapped around the head drum. This is achieved by a rather complicated system of levers driven by a large nylon wheel which is driven from the capstan. Other types of machine use separate motors for loading (threading) and for the spools, eliminating the mechanical idlers and slipping clutch. The Betamax system laces up when the cassette holder is closed and unlaces when the eject key is pressed. The Philips N1500 and N1700 series machines lace up when switched on. Both these systems (Philips and Betamax) have guides attached to a metal ring
below the head drum, the whole assembly rotating during lacing and unlacing.

It will be apparent by now that the speed of the tape and of the head drum must be very accurately controlled. Both must run at a constant speed, the same during record and playback. In addition, on record each video head must start its scan of the tape just before the field sync pulse arrives, and on replay the head must scan the tracks centrally to give maximum output to the head amplifier. In the VHS system the head motor has its speed and phase controlled to achieve this, the capstan motor being locked to a reference
frequency from a crystal (a tuning fork was used in earlier machines). Feedback for the servo systems comes from magnets on the head drum and capstan flywheels - the magnets pass pick-up heads which produce feedback pulses. These are compared with a reference, the servo systems producing d.c. outputs to drive the motors. We'll examine these servo circuits in detail later.

Finally we have a stop solenoid, which is operated by the tape end sensors, and protection circuits which sense if the drum or capstan stops rotating or the take-up spool stops all these will cause the stop solenoid to operate.

Tuner Coupling with SAWFs

Ted Barrett

The Surface Acoustic Wave Filter (SAWF) is here to stay. Virtually every setmaker now uses them, including the Japanese who are sometimes slow to adopt new technology. The advantages of SAWFs are well known, and when coupled with competitive pricing due to multisourcing they become the obvious choice for use in a modern i.f. strip design.

In order to use a SAWF successfully, two parameters need to be considered. First the loss introduced by the SAWF itself (between 20 and 26 dB). This has to be made up by including a preamplifier between the tuner and the filter. Secondly, most tuners currently available have an i.f. output circuit which is tuned about halfway between the vision and the chroma carriers (i.e. about 36 MHz), yielding a given bandwidth at a specific load. Since all the bandshaping should be left to the SAWF, a system of providing a flat frequency response between the sound and vision carriers without loss of tuner conversion gain is required. The necessary bandwidth could be achieved by damping the tuner's i.f. output circuit with a resistor, but of course this will reduce the tuner's gain.

Fig. 1: Typical bandpass tuned circuit between the output stage in the tuner and the preamplifier. C1, L1, C2, L2, C3 and C4 form a two-section pi-filter, with R1 providing a d.c. path for the collector of the output transistor and a degree of damping. C3 provides a d.c. block as well as contributing to the tuning, and with C4 provides a tapping point to give the correct impedance matching to the following circuit.

Fig. 2: Use of an SL1430 i.f. preamplifier i.c. to drive a SAWF. The i.c. provides a differential output at pins 2 and 3. The SAWF also provides a differential output.

The usual way of achieving a wide bandwidth without loss of gain is to use an external tuned circuit as part of a multipole coupling network between the tuner and the i.f. preamplifier. A typical arrangement is shown in Fig. 1. The output is fed to either a discrete component or an i.c. preamplifier which must meet the following requirements. (1) Gain equal to the loss introduced by the SAWF. If the gain is higher than is necessary, direct breakthrough may occur between the input and output of the SAWF. (2) The preamplifier's input impedance must be high compared to the coupling circuit's output impedance - say four times.

Fig. 3: An interesting variation. The preamplifier's gain is set by the ratio of R1 and the feedback resistor R2. The use of feedback gives "virtual earth" conditions at the preamplifier's input, the low impedance at this point being used to damp the tuner's output circuit to get the required bandwidth. With the values shown for R1 and R2, the voltage gain contributed by the preamplifier is about 32 (30dB).

Fig. 4: Discrete component preamplifier circuit used in the latest ITT chassis, employing the technique shown in Fig. 3. R211 with R213 and R214 provide the effective feedback resistance shown as R2 in Fig. 3 - the value is $1.66 \mathrm{k} \Omega$, given by

$$
\frac{R 213+R 214}{R 214} \times R 211
$$

The impedance shown as R1 in Fig. 1 is formed by the combination of L201, C206A and the tuner's output coil, and works out at around 50Ω.

Fig. 5: Correct SAWF bandpass response, achieved with good screeninsis
(3) Good overload capability is required to avoid signal distortion. (4) Low intermodulation is required at high signal levels to avoid the production of beat signals. (5) Low cost.

These conditions would be easier to fulfil if all this circuitry was incorporated in the tuner itself, so that the output drove the SAWF directly. We know of one Japanese manufacturer of such tuners, but European companies have been rather reluctant to offer such products. Perhaps the situation will change with the next generation of tuners.

In the meantime, the widely used Plessey SL1430 preamplifier i.c. fulfills the requirements outlined above: a typical application circuit is shown in Fig. 2.

An interesting variation is shown in Fig. 3. Here the tuner's i.f. output circuit is damped by the input impedance of the preamplifier. Since the amplifier is connected in the "virtual earth" configuration, its input impedance is determined by R1, i.e. the value of R1 is (within a few ohms) the amplifier's input impedance. This value is chosen so that the damping it provides gives the required bandwidth. The value of R2 is then calculated so that the required gain is achieved. This method is used by ITT, Fig. 4 showing the circuit.

So far we've concentrated on the circuitry before the SAWF, but the physical layout, screening and termination characteristics need to be looked at just as carefully if the complete i.f. system is to function correctly.

The TDA2540/TDA2541 i.f. i.c. is nowadays very commonly used in i.f. strips, though virtually any other similar i.c. may be substituted, the same considerations applying.

Breakthrough

Let's take a closer look at the problem of breakthrough that is, when some of the signal finds a direct path from the preamplifier to the i.f. i.c. without first passing through the filter. The effect this has on the i.f. response is quite devastating. If the time taken for the i.f. surface wave to travel through the filter from the input to the output is $1 \cdot 5 \mu \mathrm{~s}$ (this is known as the transit time), any signal bypassing the filter will cause a ghost image $1 \cdot 5 \mu$ s to the left of the correct image. The screening must therefore be adequate to suppress this ghost - manufacturers provide some 40 dB isolation between the SAWF's input and output.

The transducers within a SAWF are not perfect matches, and waves launched in the wrong direction are never perfectly absorbed. This gives rise to a ghost which travels

Fig. 6: Inadequate screening has a drastic effect on the SAWF's bandpass characteristic. The effect of adding direct signals and indirect signals delayed by the transit time of the SAWF is to produce ripple on the response and other undesirable effects.

Fig. 7: Matching between a SAWF and a TDA 2540 i.f. i.c., with a damping resistor and coupling capacitors. A symmetrical layout between the SAWF and the i.c. is important.
three times through the filter; i.e. $3 \cdot 0 \mu \mathrm{~s}$ to the right of the main image. The attenuation of this image is twice the insertion loss plus 6 dB . so there is no need to try to minimise the insertion loss: allowing it to be of the order of $20-30 \mathrm{~dB}$ will cut the "triple-pass response" by some $46-66 \mathrm{~dB}$.

A transit time of $1.5 \mu \mathrm{~s}$ means that there will be 59 complete delayed waves at 39.3 MHz and 58.5 waves at 39 MHz . Suppose that the breakthrough due to poor screening is $20-25 \mathrm{~dB}$ down on the input, i.e. at the same level as the intended output. At 39.3 MHz the waves will reinforce, while at 39 MHz the waves will cancel. This will be repeated every 666 kHz , giving deep notches in the bandpass response and poor rejection outside. This effect is illustrated by the response curves shown in the accompanying photographs.

Fig. 5 shows the correct response with good screening the scales are $10 \mathrm{~dB} /$ division vertically and $2 \mathrm{MHz} /$ division horizontally, with a centre frequency of 36 MHz . Fig. 6 was taken under identical conditions, except that a piece of insulated wire was laid across the filter, passing close to but not tcuching the input and output pins. The performance of the filter has been totally degraded, with ripple in the passband and undesirable notches at the edges.

As the transit time depends on temperature (by 90 parts per million per degree Kelvin), the position of the notches will vary with the ambient temperature, giving rise to curious changes in picture quality.

SAWF Output Capacitance

The output capacitance of some SAWFs upsets the TDA2540 i.c. This problem can be overcome by using a damping resistor of 470Ω or so, but since the input pins of the TDA 2540 must be at different d.c. levels d.c. blocking is required as well. The best way to arrange this is to use two blocking capacitors, one for each input pin, thus maintaining a symmetrical physical layout. A typical circuit is shown in Fig. 7.

Although SAWFs simplify the outward appearance of i.f. strips, considerable effort is required to get a practical design right.

Fault Report

Dewi James

I've been involved in the retail side of the radio/TV trade for many years now, and recently started to think "where's everyone gone?" So I counted the businesses I've known in my little corner of the world, a supposedly hassle free country district with sandy beaches, mountains and several nature reserves, and worked out who had gone where and why. Here's the list:
(1) The first proprietor walked out of his shop one morning, never to be seen again.
(2) The second sold out to someone who'd not been in the trade before.
(3) The third attempted suicide.
(4) The fourth sold out.
(5) The fifth sold off his rentals, reduced his shop by half and his staff by two thirds.
(6) The sixth attempted suicide, failed, then sold out.
(7) The seventh, who bought from sixth, has had two heart attacks but still carries on.
(8) The eighth has had a stroke but carries on and has in fact increased his substantial business.
(9) The ninth is now a pork pie salesman.
(10) The tenth, who bought out from the third, would sell if he could but can't find a buyer so hasn't yet.

What a litany of woe and failure. I doubt whether any insurance company would give very good terms with odds like these. The TV set is not a luxury - in fact nowadays it seems to be a necessity, on a par with food and shelter. But trying to make a living out of it is something different. I don't know how I manage to cope, but suspect that draught Bass has a lot to do with it.

Sony KV1800UB

Anyway, what's come our way recently? Let's take the Japanese sets first, plenty of them around here. The complaint with a Sony set, an elderly KV1800UB, was "please come and check the set, the on/off switch has gone". What he should have said was that the set doesn't always come on, which is a completely different kettle of fish. It just refused to start up periodically, and when I called on a Saturday afternoon was just one such occasion. Now most of the supplies in this set are obtained from the converter stage, which is between the line driver and output stages. As a result, the line oscillator has to have a start-up arrangement so that things can get going. The start-up system consists of a capacitor (C531) and a resistor (R555) which are connected in series between the main, regulated 110 V rail and the 18 V rail. The 110 V supply was present, but little else was happening. In an effort to entice the line oscillator to oscillate, we bridged the kick-start circuit with a $15 \mathrm{k} \Omega$ resistor. The set then sprang to life - predictably C531 ($10 \mu \mathrm{~F}, 160 \mathrm{~V}$) was open-circuit.

Various Hitachis

Several Hitachi sets have come our way recently. The first was a newish set, Model CTP213, fitted with the NP8C
chassis. It had, to put the description in non-technical terms, "gone off with a hell of a bang". The set uses a selfoscillating chopper circuit, and the destruction was quite extensive. The mains fuse had shattered, the bridge rectifier had given up the struggle, the chopper transistor Q901 and the driver Q903 were short-circuit, the error detector transistor Q902 was open-circuit, and module CP901 (sample voltage divider plus reference voltage source) was damaged. Which was the chicken and which the egg in this situation I don't know.

The next set was a nice little portable (CWP132) fitted with the NP6C chassis, the problem being that it intermittently refused to come on whilst on other occasions it came on then went off. Disconnecting R941 so that the over-voltage circuit could not operate made little difference, but shorting out C910 which provides a kick-start supply for the start-up multivibrator restored life. The culprit turned out to be the 12 V rectifier diode CR705 (type V09C).
A much older set (Model CEP180) suffered from no e.h.t. This was traced to an open-circuit line oscillator coil (T701). The other two Hitachis were both suffering from transistor trouble. The symptom with a CTP200 (PAL-4 chassis) was low gain, with a blank, noise-free raster when the aerial was disconnected: the first i.f. transistor TR201 (2SC682) was faulty. The symptom with a CNP 192 (PAL2 chassis) was no $R-Y$ signal, due to failure of TR31 (2SC460) to conduct (no emitter voltage) - this transistor provides the reference signal drive to the $\mathrm{R}-\mathrm{Y}$ demodulator circuit.

A Couple of Mitsubishis

The other two Japanese sets we've dealt with recently were both Mitsubishis. The first (Model CT205) originally had a field fault, but in the meantime someone had borrowed the power supply, replacing it with one that produced a small picture accompanied by what looked like a hum bar. The error amplifier transistor Q902 (2SC711E) was responsible for this. The field trouble was a little more difficult to diagnose since it took some time to show up and when it did the symptoms were misleading - the field would roll intermittently, but was this due to loss of the sync pulses or a change in the oscillator frequency? The latter as it turned out, the fault being due to Q432 (2SC711A) in the field oscillator circuit (it's a multivibrator).

The second Mitsubishi set was one of those excellent but now ageing CT200s. A gentleman phoned to say that it had been going off for the past few weeks, but that when he banged the top it came on again. No amount of banging would now restore it to life however. The on/off bit was due to a high-wattage resistor that had burnt itself a hole in the board because it had been chattering in and out. After cleaning up and cutting out the burnt bit, the set came on, with normal sound but a small picture (all round). Those familiar with this set will know that the fault is not uncommon - it's due to the 12 V zener diode D923 in the error amplifier circuit. Possibly on this occasion the diode had been damaged through the set offing and oning once too often.

Finlux Peacock

Now to the continentals. A set I'd never actually seen before turned up recently - a Finlux Peacock. There was no field scan, and although there was the usual no signal rushing noise on the sound it was not possible to tune in any stations. After removing the back etc. I discovered that the

30 V line was missing. "How did he discover that without the manual?" I hear you ask. Simple, " 30 V line" was written on the chassis and there was no voltage at that point. By tracing along the print I discovered that the supply comes from diodes D603/4 (type BYX55-350) in the line output stage. Replacing these restored the sound and a full scan. (These two diodes, which are fed from a winding on the combi coil in the thyristor line output stage, seem to be one of the main causes of trouble in these sets editor.)

The Telefunken 711 Chassis

The other continentals we've dealt with recently have all been Telefunkens fitted with the 711 chassis - five of them. The first one had a hiss on the sound but no raster, and was stuck on channel one. In fact the h.t. (U1) supply was missing. The h.t. rectifier/regulator thyristor TY421 was open-circuit, diode D425 which is in series with it was short-circuit, as was T 424 which produces the trigger pulses. These points were put right and after making thorough checks we switched on. H.T. was present, but there was a strange, distorted raster on the screen. Replacing the h.t. reservoir capacitor $\mathrm{C} 428(1,000 \mu \mathrm{~F})$ put that right.

The next one had no e.h.t. due to R $566(15 \Omega)$ in the h.t. feed to the line output stage being open-circuit. The line output stage had apparently been overloaded since D563 (BYX55), one of the EW modulator diodes, was found to be open-circuit and very charred. This in turn was probably due to the fact that the output transistor T503 (BD177) in the NS correction circuit was short-circuit, with its emitter resistor R519 (8.2 Ω) open-circuit - the NS driver and output transistors are powered from the EW modulator derived 28 V (U4) rail. The next two were easy. On the first, extremely poor focus was found to be due to the $33 \mathrm{M} \Omega$ resistor R 578 in the feed to the focus control being virtually open-circuit. The second stuck on channel one, the fault being cleared by replacing the SAS560 i.c. in the channel selector circuit. The final one was rather more awkward, the fault being intermittent loss of the top of the raster. This was eventually resolved by replacing the field flyback diode D451 (1N4001).

Little Local Difficulties

We get many home produced sets as well of course. A Philips G8 for example, whose line shift control was burning up due to the shift voltage reservoir capacitor C5553 ($400 \mu \mathrm{~F}$) being open-circuit. This was swiftly followed by a Gll which displayed a blank screen though the e.h.t. was present. Not an uncommon fault, due to the zener diode D4090 in the beam limiter circuit going shortcircuit. Note however that exactly the same symptoms can be caused by TR2164 (BC148) in the field flyback blanking circuit going open-circuit. Other recent experiences with the Gll have been no results due to R 4059 ($15 \mathrm{k} \Omega$) in the power supply going open-circuit so that the thyristors don't get triggered, pincushion distortion due to a variety of causes, often simply dry-joints on the line scan panel, usually in the top right-hand corner of the chassis (also check the EW modulator driver pair TR2150 (BD238) and TR2149 (BFX85) as necessary), a case of intermittent field flyback lines due to a dry-joint on C2165 ($0.0022 \mu \mathrm{~F})$, and finally an unusual case of field collapse due to C2060 $(0.0022 \mu \mathrm{~F})$ being short-circuit.

On examining a dead Thorn 8500 we discovered that R704 (51Ω) in the power supply was overheating. This
resistor is in series with the MJE520 25 V supply series regulator transistor, which was short-circuit, the result in turn of the SN76227N demodulator/matrixing i.c. in the decoder being short-circuit. On replacing these components there was sound but no raster, with no voltage at the collector of the line output transistor. This was simply due to a dry-joint on SKT10/7 on the power board - it had no doubt been disturbed when we changed the regulator transistor. During the summer months the servicing of holiday makers' monochrome portables brings a welcome injection of cash into our business. One of the first to come along was a Thorn 1613, which had a weak picture, poor sync and a contrast control that didn't operate properly. When the aerial was removed, we had a blank white raster with no snow. Replacing the final i.f. transistor VT3 (BF 197), which was open-circuit, restored things to normal.

In two cases recently we've had field collapse, in sets fitted with the ITT CVC20 chassis, due to the TIP33 output transistor being short-circuit. This seems to be quite a common occurrence. A CVC8 came along with no colour. Overriding the colour killer by connecting the 20 V line to the positive side of Cl 162 via a $12 \mathrm{k} \Omega$ resistor failed to restore any semblance of colour, while a quick scope check revealed that the reference oscillator was working. Attention was turned to the chroma amplifier therefore, where the first transistor T27 (BC172X) was found to be open-circuit.

The trouble with a Decca colour set fitted with the 30 series hybrid chassis was lack of colour sync. The burst signal was o.k. at the collector of the final burst amplifier/phase detector driver transistor TR211, but the d.c. amplifier transistor (TR212, BC148) in the reference oscillator control loop was turned hard on. Its base bias reșistor R272 ($1.2 \mathrm{M} \Omega$) was the culprit. On another of these sets the problem was an intermittently poor $B-Y$ signal. The fault here was a dry-joint on L204, the summing coil at the output from the choma delay line. On the last of these sets to come along the focus spark gap had burnt out and disappeared: examination of the focus voltage chain revealed that the earth return resistor $\mathrm{R} 470(4 \cdot 7 \mathrm{M} \Omega)$ was open-circuit.

Fuse Blowing: Decca 80 Series

Finally, a couple of Decca sets fitted with the 80 series solid-state chassis, both with blown mains fuses. There were no obvious shorts, so to check whether the crowbar trip was operating we disconnected the link (TP600/TP601) in series with the crowbar thyristor and fitted a 15 W bulb in its place (this enables the operation of the trip to be observed without the fuse necessarily blowing). The bulb promptly lit up, indicating that the trip was tripping. Disconnect the line output stage from the power supply and the bulb goes out. So we'd an overloaded line output stage. The usual cause is the tripler of course; but disconnecting this.and trying again failed to cure the overload. We next disconnected R400, removing the load from the line output transformer derived 37 V line. This time success. The main suspect was the TDA1170 field timebase chip, and this was confirmed by open-circuiting R342. So we replaced the chip and did the modification (fitting a short wire link from the earthy end of C332 to the earthed copper land under the TDA1170) to provide flashover protection. That was the easy one.

The next one was put on the bench, a 15 W 250 V bulb and a new fuse were fitted, and the set was switched on. Bulb lights up. Disconnect line output stage and bulb goes out. So far so good. Check with tripler disconnected and R400 disconnected, but bulb stays alight. Try fitting
another line output transformer and transistor. Still no luck. Fault must be on the line output panel, but just about everything likely has been isolated and/or eliminated. Try disconnecting line output stage again, just to make absolutely sure, and yes the bulb goes out. Look at line timebase again. Disconnect scan coils. Bulb stays alight. Are both transformers faulty?

Consider the symptoms. With the bulb connected and the set switched on, we get good sound with a pulsating, locked and fully scanned coloured picture and normal h.t. But our bulb is glowing brightly, pulsating in unison with
the picture. Is the power supply faulty? It shouldn't be, since the bulb goes out when the line output stage is disconnected. Anyway, try another panel generously lent for ten minutes by an engineer from one of the large rental companies - he'd called in for a cuppa. Symptoms exactly the same. Could it be the smoothing electrolytic (C80I, $800 \mu \mathrm{~F}$)? Well, as I'm sure you'll all have guessed by now, it was. Isolate power supply panel from smoothing components, connect $600 \mu \mathrm{~F}$ and $200 \mu \mathrm{~F}$ in parallel across C801, connect up again: out goes the bulb and the picture stops pulsating. I'll remember next time.

Amateur Television

John L. Wood, G3YQC (editor, CQ-TV)

AMATEUR radio, as with many things nowadays, has become somewhat commercialised. Gone are the days when most equipment was home built, and the desire to construct, experiment with and operate better equipment was what amateur radio was mainly about. The era of the Japanese "black box" has overtaken us, with the result that many radio amateurs tend to be appliance operators. There are still some who like to build their own gear of course, but the sophistication of today's techniques and hardware, coupled with the need for expensive test equipment if results comparable with commercially built equipment are to be obtained, means that construction is fast becoming out of the question for most enthusiasts.

All is not lost however. Many amateurs are turning to television, a field that's received little commercial attention. Apart from the use of domestic TV sets and VCRs, almost all the rest of the equipment has to be built or adapted for amateur purposes. Amateurs transmit both monochrome and PAL colour pictures to CCIR System I specifications, so there's no problem with using domestic TV sets for reception.

A typical amateur TV station incorporates a tuner for the $70 \mathrm{~cm} .(432-440 \mathrm{MHz})$ amateur band - either a modified

The BATC electronic test pattern - a pity we couldn't reproduce it in colour.
commercial varicap unit with a home-built preamplifier, or a home-built up-converter whose i.f. output is in the domestic u.h.f. TV spectrum so that it can be fed into the aerial socket of a standard TV set without modification. Aerials may be home constructed, but the majority are commercially made and are relatively cheap. The transmitter is invariably home built and is usually solidstate, running at a few watts. Individuals who desire high power (up to 150 W d.c. input) of necessity still employ valves in the high-power amplifier stages. The video modulation is generally carried out in the transmitter's lowpower stages, the signal then being amplified to the required level.

Station identification takes various forms. A common method is to use a drawn caption card, transmitting this using a TV camera (the camera is generally home built, or an ex-surveillance vidicon type purchased second hand). Alternatively, the call sign may be electronically generated, using a home constructed digital character generator - the caption can be inlaid in any other available vision source. The great benefit of using this system is that there are no cameras or lights to set up.

These items are basically all that's needed in an amateur TV station, though many enthusiasts go on to build quite elaborate studio systems, employing several vision sources, vision switching and effects generators, together with a mixing desk etc. - the scope is limitless.

This brief description merely scratches the surface of amateur TV, which can be as simple or as complex as you wish to make it. The beauty is that it can be tailored to suit all levels of interest, expertise and size of wallet!

In the UK, amateur television is officially represented by the British Amateur Television Club (BATC), which was founded in 1949. Membership is $£ 3$ per year, and details can be obtained from Mr. B. Summers, 13 Church Street, Gainsborough, Lincs (please enclose a stamped, addressed envelope). The club has over a thousand members throughout the world and issues a quarterly magazine, $C Q-T V$, which is sent to all members. The magazine usually has between thirty and forty pages, and is packed with practical articles and projects covering the full range of amateur TV equipment.

The BATC has its own publications department, library, and sales department which sells hard to get bits such as camera tubes, scan coils, lens mounts, test cards, etc., all at special members' prices. The club recently published the third edition of the Amateur Television Handbook, which is available from BATC Publications, 14 Lilac Avenue, Leicester LE5 1FN at £2 (to non-members) plus 35p postage. This paperback volume has over a hụndred pages and contains a wealth of information on amateur TV, with practical designs for, amongst other things, a full electronically generated test card (see photo) and a PAL colour coder. Printed circuit boards for most of the projects are available from the club.

Maintaining Telefunkens

Keith H. Gould

MANY readers will be aware that one of the oldest names in consumer electronics, Telefunken, seemed set to disappear from the UK scene in the Autumn of 1980, when the UK sales and servicing facilities were closed down. Fortunately, following the trade shows earlier this year, the name is now back in the limelight here with the new $415 / 615$ chassis. Since the new agents are starting with a "clean slate" however so far as servicing is concerned, they will not be stocking spares for the earlier chassis. Spares are still available from AEG's UK headquarters, but as a result of the reduced stocking levels, increased prices and lack of the previously excellent technical back-up service there's an obvious risk that a number of sets that would formerly have been serviced without hesitation may now be considered as candidates for the chop. This is a great pity, since when properly serviced Telefunken sets are, in this writer's opinion anyway, amongst the finest of all TV receivers (after all Telefunken invented PAL, and Hanover bars are named after the location of their German headquarters!).

The purpose of this article is to indicate various ways in which the active life of some of the more common earlier Telefunken colour chassis may be prolonged - the 709, $710,710 \mathrm{~B}, 711$ and 711 A chassis. We are not concerned with those Telefunken sets fitted with Decca chassis, nor with the more recent 712 and 712A chassis with in-line gun tubes - these will for the most part still be under the charge of the original supplying dealer, who hopefully has a reasonable stock of spares. It's perhaps worth mentioning at the start that Telefunken sets are blessed (?) with a somewhat greater than average number of presets, and that correct setting up of these in accordance with the service manual is vital. English-language manuals are still available from AEG, Slough, at prices that represent good value considering their detailed content.

Hybrid Chassis

The 70990° hybrid chassis dates from 1969-70. These sets are now getting just a bit long in the tooth, but if the tube is in a reasonably healthy state they are probably worthy of further care and attention. Many of them were fitted with u.h.f. tuners which covered only up to channel 60 , so if you live in a group C area you may well be missing a station or two. If wide rolling hum bars are your problem, check that socket 27 (fluorescent strip power supply) hasn't been accidentally reversed, failing which the l.t. supply bridge diode block Gr521 (B40C800) is the chief suspect. If greater gain is required, a useful increase can be obtained by bridging the a.g.c. preset R 172 with an $8.2 \mathrm{k} \Omega$ resistor (always assuming that someone hasn't beaten you to it!).

By and large, these sets are reliable and trouble-free "old faithfuls". The four valves used are the ECH84, PL509, PY500A and PL508. An unusual feature by UK standards is the use of a regulated h.t. supply ($\mathrm{U} 1,260 \mathrm{~V}$). This is obtained from a voltage-doubling rectifier circuit which employs a thyristor as the second rectifier/regulating element. The 24 V 1.t. supply is stabilised by a series regulator.

The 710 was one of Europe's first 110° chassis. Some of these hybrid sets were imported without the 240-220V autotransformer, which means that just about every component will have been constantly overrun. If yours is one of these, you might be wise to wave it a fond goodbye. If the model number on the cabinet is suffixed "-GB" however you're in with a good chance. Again, models without the -GB suffix were mostly fitted with tuners with a restricted u.h.f. coverage. The following comments on the 710B apply in the main to the 710 also.

Although the 710 B is on the face of it little different from the 710 , sets fitted with the 710 B chassis have been consistently more reliable and even now, when well set up, many of these delta-gun hybrid sets are capable of displaying a picture which will put much more recent sets to shame! The printed circuit boards are reasonably durable, but as a matter of course you should check for dry-joints and possible damage by overheating around the bases of the PL508, PL519 and PY500A valves, and around the PL519's $2.2 \mathrm{k} \Omega$ wirewound screen grid feed resistor R 704 . The one and only really weak spot seems to be the mains transformer, which is prone to intermittent breakdown. The transformer is now horribly expensive, as well as being something of a swine to change, so if you are unfortunate enough to be confronted by an arcing one you will be able to draw your own conclusions quickly . . .!

The 710/710B chassis use the same voltage doubling rectifier/regulator system as the 709 chassis, but this time the U1 line is 290 V . The 1.t. supply circuit is also the same as in the 709 chassis.

There's an unusual field timebase in these sets - a selfoscillating circuit with a switching diode. Fortunately it's reliable. Note however that the field charging capacitor C424 ($0.33 \mu \mathrm{~F}$) charges from a negative potential derived from the line output stage. In the 709 you should find -48 V and in the $710-36 \mathrm{~V}$ across $\mathrm{C} 430(2 \cdot 2 \mu \mathrm{~F})$. If this voltage is missing (no field scan) check back to the appropriate rectifier diode (Gr 490 in the 709 chassis, Gr 703 in the 710 chassis). If the voltage is low (lack of height), check the $1.2 \mathrm{M} \Omega$ series feed resistor (R431 in the 709, R470 in the 710).

711/711A Chassis

The 711/711A were Telefunken's 110° delta-gun solidstate chassis. They use a BU108 line output stage and a rather unusual bridge field output stage. The 190 V h.t. supply (U1) is obtained from a thyristor rectifier/regulator circuit which is followed by an active filter. A bridge rectifier and series regulator provide a stabilised 12 V supply (U3). The only major difference between these chassis is in the i.f. unit below the tuner. They are not quite as reliable as the 710 B , but nice enough all the same, and were covered in detail from the servicing angle in the July-September 1976 issues of Television. The h.t. reservoir capacitor C428 $(1,000 \mu \mathrm{~F})$ has a tendency to loose its capacitance, and is therefore worth changing in the interests of long-term reliability.

In cases of intermittent loss of signal, don't immediately blame the tuner - instead, look carefully at the i.f. board's double-sided print, especially around point 142 where the 12 V supply comes in. Run over the plated holes and allow solder to pass through: you should then be home and dry (though hopefully your joints won't be!). If the tuner really is faulty, see the comments on tuners below.

Faults in the supersonic remote control system fitted to some of these models are almost guaranteed to turn your hair grey! Telefunken used to suggest that repairs to these boards should be confined to "first aid" level only, and even

Fig. 1: Pin connections, tuner type ET176K.
now it may be less painful in the long run to opt for a service exchange from Slough rather than to delve too deeply. In the event of an unsympathetic bank manager however the following notes may assist:
(1) Locate a "known good" supersonic transmitter to prove whether it's your transmitter or receiver that's faulty.
(2) Assuming that the fault lies in the receiver board (it usually does), proceed as follows. (a) Check microphone socket Bu 1200 for poor contact (internal and external). (b) Ensure that R1312 is set to give exactly 12.5 V at test point M1302. (c) If the fault is an incorrect or non-existent analogue function (colour, brightness, volume), check
transistors T1222/T1223/T1240/T1241/T1242/T1243/ T1244. Note that the TBA120S intercarrier sound chip on the signals panel can be responsible for no control of volume however. (d) If the brightness or colour levels "creep", change IC1281 or IC1282 (both type TL3741) respectively.

Tuners

Finally tuners. Many different types of varicap tuner have been used over the years, and one pitfall for the unwary is that many of the "Telefunken type" tuners available on the surplus market are not suitable for use in Telefunken TV sets. The surplus units are generally of the two-transistor u.h.f. type, whereas a three-transistor type with an integral i.f. preamplifier stage is required. "Official" exchange units, although still available, are now very expensive. One excellent solution however is to use the ET176K v.h.f./u.h.f. type (with full coverage) which is available from Sendz Components at around £4. With a little mechanical ingenuity the ET176K will replace the original tuners in all the chassis mentioned, while at the same time improving the band coverage and gain in earlier sets. Fig. I shows the pin connections.

Test Report: Sadelta Pattern Generator
 Eugene Trundle

To those of us used to getting our patterns out of a large, elaborate, mains-powered box, and tracing them with such machinery as an Avo Model 8 and a five-inch screen oscilloscope, modern test equipment comes as something of a surprise. Small is beautiful these days it seems, and thanks to the silicon chip all manner of TV test equipment is coming in smaller and smaller packages. In the last year or so we've come across examples of miniature oscilloscopes, multimeters and so on, to the point where a few hundred pounds will buy a complete colour TV servicing outfit with sufficient change to pay for a small attaché-type case to put it all in. The spotlight this month is on a state-of-theart colour TV pattern generator, produced by the Spanish firm Sadelta. A couple of versions of this have been released, the MC11B, which we had for review, and the MC10I, a version "specifically designed for System I" (to quote the manufacturers) and with a slightly different front panel.

Features

Whatever the version, it's a pocket-size instrument that generates eight patterns for setting up and checking TV sets. It operates from an internal, rechargeable nickelcadmium battery, and provides outputs at v.h.f. and u.h.f.

Pattern selection is by a single push button which steps through the available patterns sequentially, with a LED display indicating which pattern is being generated. A 650 Hz sound signal is also provided.

The instrument can be used in the field on its internal power supply (about eight hours' intermittent use from a fully-charged battery). For workshop use there's a mains adaptor which also acts as a charger for the battery. For further details, see the accompanying specification.

On receipt of the instrument I started by taking it apart. I was immediately impressed, as I usually am with this type
of equipment, by the sheer volume of technology packed into it. Nineteen i.c.s and six transistors, beautifully laid out on two plugged fibreglass panels, and an r.f. modulator scarcely bigger than my thumbnail.
The battery is not charged while the generator is being operated from the mains - charging starts when the off switch is operated. I found that one overnight charge was sufficient for my review. A feature I'd have appreciated is a low battery warning device, since a low battery voltage can have rather subtle effects. The first sign of this is when the battery voltage falls to 7.8 V : the colour saturation is then reduced and the colour bars look decidedly wrong. At 7.5 V the line sync starts to fail when operating with colour bars, and at 7.2 V all syncs are lost. When a monochrome pattern is being used all is well down to 7.4 V , which could lead to false accusations against the decoder in the set being tested unless one is aware of what's happening!

Patterns

I found the range of patterns provided useful and comprehensive. The colour bars were checked for accuracy on a vectorscope, and were found to be within 4% in all cases. The red raster (slightly marred by vertical striations, but no worse than that provided by many other pattern generators) is bright and cheerful, and the crosshatch and dot patterns are well spaced. The single cross and centre dot facilities are ideal for static convergence. The white field is a useful back up to the red raster for checking, if not adjusting, purity, but I find greater use for this pattern in setting up beam limiter circuits.

The eighth pattern left me at something of a loss. The specification says it's vertical bars in monochrome at half subcarrier frequency: in fact I counted 56 vertical bars across the screen, which means that with an active (picture) line period of $52 \mu \mathrm{sec}$ the frequency of the bars is at a
quarter of the subcarrier frequency, i.e. $1 \cdot 1 \mathrm{MHz}$.
One small criticism at this point. As the patterns are selected sequentially by a single push button, it would seem logical to arrange the sequence in the order that the patterns are required, say when setting up a c.r.t. after replacement. On the other hand, maybe the sequence has been arranged in order of decreasing usefulness, in which case certainly the first pattern (colour bars) and the last (vertical lines) are in the right places.

Before leaving the video side of the instrument, I checked the line generator frequency. It can't go far wrong, being derived by division from the crystal-controlled subcarrier oscillator. I found it to be 15.556 kHz , about 0.5% out. This is an important point, since some of the later delta-gun c.r.t. chassis use critically tuned circuits in the convergence correction networks, usually in the blue line convergence department. These are tuned to the second or third harmonic of the line frequency, and it doesn't need much deviation from 15.625 kHz in the line frequency of the crosshatch pattern being. used for the convergence to be upset when reverting to a broadcast signal. No problems with the Sadelta generator however.

Modulator

I next looked into the r.f. department. There's not a lot of point in measuring the r.f. output level of these doublesideband modulators on an ordinary field strength meter, and I found the output sufficient over the available band to invoke tuner a.g.c. on all the sets I tried. With some combinations of generator and teceiver an attenuator in the aerial lead may be required - the onset of picture noise occurs with 12 dB of attenuation, which suggests that a four-way split of the r.f. output could be tolerated.

Spurious r.f. outputs are quite low, with none that could

The Sadelta TV pattern generator type MC11B with its various accessories.

Specification.

System: CCIR I, PAL.
Subcarrier frequency: 4.433619 MHz , crystal controlled.
Lines: 625, derived from the subcarrier.
Sound: F.M., +6 MHz , modulated at 650 Hz .
Video modulation: Negative, double sideband.
Vision carrier: V.H.F. channels 5-9, u.h.f. channels 21-41. Output level: V.H.F. $12 \mathrm{mV} \pm 6 \mathrm{~dB}$, u.h.f. $10 \mathrm{mV} \pm 6 \mathrm{~dB}$.
Output impedance: 75Ω.
Patterns: (1) Colour bars, switchable to grey scale; (2) red raster, switchable to grey; (3) crosshatch; (4) dots; (5) central cross; (6) central dot; (7) white raster; (8) vertical lines at half subcarrier frequency (see comment in review).
External supply: 125 V or 220 V a.c., $\pm 10 \%$.
Internal supply: Fitted with 9 V rechargeable battery, 90 mAH .
Power consumption: Monochrome 20 mA , colour 28 mA .
Recharging current: 9 mA for 14 hours.
Battery life: 8 hours with intermittent use.
Size: $131 \times 81 \times 23 \mathrm{~mm}$.
Weight: 250 g with battery.
Accessories supplied: Nickel-cadmium battery, mains power unit, padded carrying case, r.f. output lead, instruction book.
be mistaken for the fundamental. As with all doublesideband generators, it's important that the correct (upper) sideband is tuned in on the receiver under test. On the u.h.f. band, our review model covered the channels from below 21 to about 39. In the v.h.f. band, coverage of certain channels in Band I and III is available (CCIR System I, as on u.h.f.).

Sound

The sound signal provided is a 650 Hz tone, frequency modulated on to a 6 MHz carrier. I found that both frequencies were spot on. The reproduced audio had a rough sound, with the effect of heavy harmonic distortion: an oscilloscope test confirmed that the audio signal consisted of a distorted quasi-squarewave with a markspace ratio far from 1:1, while spurious spikes, probably remnants from the pattern, were present. Unless the set is carefully tuned to the correct sideband, the sound signal gives rise to sound-on-vision, in the form of horizontal bars in the background of the picture - this happened on all the sets we tried.

On the credit side, the sound signal is as free of pattern breakthrough as any pattern generator I've come across. It has to be said that this modulator business is not an easy desigr point, as witness the price and complexity of professional and broadcast standard modulators. This is no excuse for the piercing sound signal however. The sound facility is a rather mixed blessing on this generator, though it's adequate for the alignment of intercarrier i.f. transformers where these are encountered!

To Sum Up

Our engineers were clamouring for these instruments one for each vehicle they said, and one to each bench. This echoes my feelings about this little instrument. Within the odd constraints mentioned, I was happy with all but the sound. The price quoted for the MC10I is $£ 149 \cdot 50$, which includes post and packing, a padded carrying case, aerial flylead, mains power unit/adaptor and instruction manual. VAT is extra. The instrument is marketed by The House of Instruments (Anglia) Ltd., Clifton Chambers, 62 High Street, Saffron Walden, Essex CB 10 1EE (telephone 0799 24922). There's a one year guarantee, and out of guarantee service will be available.

Colour Portable Project

Part 5

Luke Theoidossiou

The basic receiver is now complete apart from the interconnections and degaussing. As previously mentioned, the design includes remote control as a standard feature, and it's time to turn to this. The remote control feature can be omitted however, and we shall be providing some guidelines on this in a later issue.

The remote control system we've chosen is the latest ITT Semiconductors' one which is in current use by a number of setmakers. The basic principles of operation were covered in some detail in the December 1979 issue of Television.

Fig. 1 shows the circuit of the infra-red preamplifier. The coded infra-red signal is picked up by the TIL100 photodiode D1, and is then fed to pin 13 of IC1. This is a multistage preamplifier i.c. designed specifically for this type of application. It has a gain of $80 \mathrm{~dB}(10,000$ times $)$, a.g.c., and a "wanted signal" separator stage which separates the coded signal from noise and spurious signals, thus achieving a high degree of interference immunity.

Capacitors C1 and C5 are used for signal coupling, whilst C 2 and C 3 are a.g.c. reservoirs. Due to the very high gain of this circuit, it's important that a metal screen is used to house it, with a small window area cut out for D1. Fig. 2 shows a suitable design which may be fabricated in thin gauge tinplate material. The completed board, including the lead-out wires, is soldered at several points around its periphery on to the sides of the screening box, the lid then being pushed into place.

The TIL100 is housed in a black moulded case which reduces its response to visible light, though not sufficiently. It's necessary to place a small piece of filter material such as Kodak type 87C in front of the diode window therefore. The effect of failing to do this is reduced operating range down to less than 1 m in the presence of fluorescent lights or sunlight.

The complete assembly is fixed to a convenient point on the back of the cabinet fascia, using a few drops of cyanoacrylate adhesive (read the instructions carefully). Figs. 4 and 5 show the copper pattern and component location respectively.

Fig. 6 shows the circuit diagram of the remote control interface board. The SAA1251 (IC1) receiver i.c. is responsible for decoding the received signal and providing the necessary control signals for adjusting the receiver. In our application the following facilities are available:

Fig. 1: Circuit of the remote control preamplifier.
(1) Selection of any one of eight pretuned channels, with automatic selection of channel 1 at switch-on.
(2) Step-through channel selection either via the remote transmitter or from a switch on the receiver. When either switch is kept depressed, a continuous step-through facility is offered.
(3) Four analogue outputs which are used to control the volume, brightness, contrast and colour saturation levels: a "normalise" command returns all outputs to the preset settings.
(4) A "mains off" command which activates a relay switch to totally isolate the receiver from the mains. Switch on is manual.

The master clock pulses for the receiver i.c. are generated by a 4.43 MHz crystal, XL1. The analogue outputs have their ranges set by resistive dividing networks (e.g. R3 and R4), and with the exception of the volume control circuit have a network comprising two diodes and a preset control which effectively sets the output d.c. voltage on a reservoir capacitor from around 1.5 V to 4 V . In the case of the volume control, the required range is much less and a simpler network using a variable potential divider is used.

The mains control pin 19 is used as both an input and an output. At switch-on, the i.c. automatically assumes a standby mode until this pin is momentarily connected to the supply rail. This is achieved by the circuit comprising R15, R16, D9, C8 and Tr2. At switch-on, whilst C8 is being charged via R16, the base of Tr 2 is pulled low so that the transistor is turned on, connecting pin 19 to the +18 V rail. When C8 has fully charged, the base of $\operatorname{Tr} 2$ is at the same potential as its emitter (i.e. +18 V). It therefore switches off. Resistor R15 supplies a very low 'top-up' charging current for C 8 to compensate for the capacitor's leakage current - this would otherwise be supplied via the transistor, with the subsequent danger of it being triggered on. At switch-off, diode D9 ensures a very rapid discharge path for C8.

The latched programmed code appearing at pins 8,9 and 10 is shown in Table $1-L$ is approximately 0 V and H is approximately +17 V .

In conjunction with the input circuit of IC3, resistors R17, R18 and R19 reduce the amplitude of the outputs to around 4 V , driving both IC 3 and the channel display module (via connector D). The SL470 is a BCD to 1 of 10 decoder/varicap driver. In our application, the first eight outputs only are used. The i.c. is supplied with a stabilised +33 V supply and simply acts as a switch to connect the

Table 1: Latched programmed code.

Programme no.	$P A($ pin 8)	$P B($ pin 9)	PC (pin 10)
1	L	L	L
2	H	L	L
3	L	H	L
4	H	H	L
5	L	L	H
6	H	L	H
7	L	H	H
8	H	H	H

Fig. 2: Preamplifier/detector module screening can.

Fig. 4 (left): Preamplifier board print layout.
Fig. 5 (right): Preamplifier board component layout.

TMH231
Fig. 3: C.R.T. panel component layout.

Fig. 6: Circuit of the remote control decoder/interface board.
appropriate tuning potentiometer to this supply. Blocking diodes on the wipers of the potentiometers ensure that the non-selected potentiometers don't interfere, imposing a resistive load to ground. Diode D10 provides temperature compensation, and R20 allows a small current to pass
through the selected circuit to ensure that the respective diode is switched on.

When channel 8 is selected, the zener diode D19 is switched on to provide a switching voltage for the line processor i.c. on the timebase board for VCR operation.

\star Components list

Remote Control Preamplifier
Resistors: 0.25 W carbon film, $\pm 5 \%$

R1 1 M
R2 680R

Capacitors:
C1 10n ceramic plate
C2 $4 \mu 7 \quad 50 \mathrm{~V}$ radial electrolytic
C3 $\quad 22 \mu \mathrm{~F} \quad 16 \mathrm{~V}$ radial electrolytic
C4 $47 \mu \mathrm{~F} \quad 50 \mathrm{~V}$ radial electrolytic
C5 $4 n 7$ ceramic plate

Semiconductors:

D1 TIL100
IC1 TEA1009

Miscellaneous:

P.c.b. ref. no. D085

Screening box (see text)
Small piece of Kodak filter type 87C

Remote Control Interface Board

Resistors: All 0.25 W carbon film, $\pm 5 \%$

R1	3k9	R12	10k
R2	1 M	R13	10k
R3	3k9	R14	10k
R4	1 k 8	R15	100k
R5	3k9	R16	22k
R6	1 k 8	R17	3k9
R7	3k9	R18	3k9
R8	1 k 2	R19	3k9
R9	47k	R20	270 k
R10	47k	R21	2k2
R11	3k3		

$\begin{array}{ll}\text { VR1-3 } & 4 \mathrm{k} 7 \\ \text { VR4 } & 2 \mathrm{k} 2\end{array}$
VR5-12 100k
miniature horizontal-mounting skeleton presets
tuning diode-law 20-turn potentiometers

Capacitors

C1	470 pF	ceramic plate
C 2	$1 \mu \mathrm{~F}$	63 V radial electrolytic
C 3	$1 \mu \mathrm{~F}$	63 V radial electrolytic
C 4	$1 \mu \mathrm{~F}$	63 V radial electrolytic
C 5	$10 \mu \mathrm{~F}$	16 V radial electrolytic
C 6	100 n	ceramic disc
C 7	$10 \mu \mathrm{~F}$	35 V radial electrolytic
C 8	$2 \mu 2$	63 V radial electrolytic
C 9	$10 \mu \mathrm{~F}$	35 V radial electrolytic
C 10	100 n	ceramic disc

Semiconductors:

D1	1N4148
D2	1N4148
D3	1N4148
D4	1N4148
D5	1N4148
D6	1N4148
D7	BZX61C13
D8	1N4002
D9	1N4148
D10	1N4148
D11	1N4148
D12	1N4148
D13	1N4148
D14	1N4148
D15	1N4148
D16	1N4148
D17	1N4148
D18	1N4148
D19	BZY88C18
Tr1	BD676
Tr2	BC212L
IC1	SAA1251
IC2	7818
IC3	SL470

Miscellaneous:

Heatsink for IC2: Staver F9-4-220
P.c.b. ref. no. D090

XL1 4.43 MHz crystal
P.c.b. pillars

Molex $0.2^{\prime \prime}$ pirch connectors
Mains on-off switch: Preh type 70040-028/7/0000

Channel Display Module

ICI MC14493 Display TIL702 P.c.b. ref. no. D095

Fig. 9: Channel display module circuit.

Fig. 7: Interface board print layout.

Fig. 10: Channel display module board

Fig. 11: Channel display module component layout.

Fig. 8: Interface board component layout.

The power supply circuit is straightforward, using a 7818 regulator with a small clip-on heatsink to provide the +18 V rail, the 13 V zener D7 providing the +5 V supply required by the display module.

Construction of the printed circuit board is very easy, but be careful with IC1 - it's an expensive device and it's a good idea to use an i.c. socket for it. Fig. 7 shows the copper pattern for the board, whilst Fig. 8 shows the component
locations.
The channel display module uses a Motorola BCD to 7 segment decoder/driver. It drives a 0.5 in . common cathode 7 -segment l.e.d. display without any external components.

The circuit diagram is shown in Fig. 9; the copper pattern in Fig. 10, and the component orientation and connections in Fig 11.

Next month we'll describe the remote control transmitter.

Vintage TV: Etronic

Chas E. Miller

THIS particular vintage piece comes in response to a friendly challenge from the editor who asked me to unearth what I could about the Etronic brand of radio and TV sets which were on sale in the late 40 s and early 50 s . That normally rich goldmine of information Radio and Television Servicing has nothing to offer on the television side, though the radio models are well covered. I got somewhat confused myself to start with, since though remembering the name well enough I mixed up the chassis with those of another long defunct manufacturer. Thanks to some very welcome assistance from various sources however all can now be revealed. In particular some data sheets published by British Radio and Television, an earlier name for the monthly trade magazine Radio and Electrical Retailing, came to light.

Etronic sets were produced by the Hale Electric Co., Ltd. of West Ealing, an established if not spectacular setmaker of the 40 s . It would appear that much of their output was sold under other names, though at least one radio set bore the company's own name. This was the Hale Model PWR2/3 of 1947, a fully tropicalised a.c.-only receiver intended for export and having medium and two short wavebands. Shortly after this the Etronic brand appeared, the range being developed to include everything from small portables to large radiograms. It was inevitable therefore that TV sets should in due course be produced to complete the product line-up.

Models ECV1523 and ECV1527

The most noteworthy TV sets were a couple of consoles, Models ECV1523 and ECV1527, which had 10 and 12in. tubes respectively. There were London and Birmingham versions. The circuitry was straightforward and economical, just fifteen valves being used. There were, as was usual in those days, dotty aspects however, giving the impression that the works manager and his staff were using a badly creased blueprint. For instance, although the valve complement included two 7C5 audio output tetrodes, neither was used for this purpose, the job being done by a tiny r.f. pentode instead.

The metal chassis was of the then popular cheese shape, the thin end supporting the c.r.t. bulb while the thick end suported the neck. This approach was not renowned for easy servicing, since the components living in the deep end were difficult to get at and replace. Six of the fifteen valves were located on the main chassis, the other nine (including the sync separator) being on a small r.f. unit which was mounted vertically, just within one side of the main chassis.

Perhaps the oddest looking feature was the mains transformer, which was again mounted vertically, but on long extension pillars that held it well clear of the rear of the chassis where no doubt its magnetic field would have the least disastrous effect on the scan coils. It provided 6.3 V for the valve heaters, which were all connected in parallel except for the 53 KU h.t. rectifier which had its own 5 V supply. The primary had an overwinding to give the h.t. rectifier 280 V a.c., and a third secondary winding provided 2 V or 6.3 V to suit the type of c.r.t. fitted.

There were minimal differences between the London and Birmingham r.f. units, both being superhets with i.f.s of 10.5 MHz sound and 14 MHz vision. The signals subchassis employed seven 6AM6 (EF91) r.f. pentodes and a couple of 6AL5 double diodes. These fulfilled the functions you'd expect, the video output 6AM6 being d.c. coupled to the cathode of the c.r.t. An eighth 6AM6 was mounted on the main chassis, where it undertook the decidedly out of character role of audio output valve. Puzzle: why wasn't this job allocated to one of the two 7C5 valves used, in particular the one used as the field blocking oscillator? Hence my creased blueprint theory. If it's really felt necessary to use a 4.5 W output valve in the field oscillator stage there's nothing to stop one of course maybe they'd a lot of 7C5s left over from the radio side of the factory.
The field oscillator stage was, apart from the choice of valve, conventional. The output stage however (see Fig. 1) was distinguished by an unusual method of linearising the scan. The cathode of the field output valve (the other 7C5) was returned to chassis via the secondary winding on the output transformer and a combination of fixed and variable

Fig. 1: Field ouput circuit, Etronic Models ECV1523/7.

Fig. 2: The Miller-transitron line timebase circuit used in the Etronic Models ECV1523/7.
resistors which were decoupled by a pair of $50 \mu \mathrm{~F}$ electrolytics (another case of having a lot of spares?). The valve was triode connected by the way, a common ploy of the period to reduce the valve's internal resistance, an advantage where low-frequency amplification is concerned.

The line timebase was an economical design using a selfoscillating EL38 pentode valve (see Fig. 2). The circuit is similar to that used by Plessey in their ubiquitous standard TV chassis of the time. As an oscillator, the valve employed the Miller-transitron circuit, with feedback between the suppressor and screen grids via C5 and between the anode and control grid via T4 and C2. The operation of the basic Miller-transitron circuit was described in greater detail in the March issue earlier this year (see Vivian Capel's article on the Ekco Model TS105). Linearity control was achieved by including a preset in series with C 2 , while the hold control adjusted the time-constant of the control grid circuit. The interdependence of these controls must have made setting up difficult.

The e.h.t., 6 kV or 7.5 kV depending on the c.r.t., was provided by an EY51 rectifier fed from an overwinding on the line output transformer.

Projection Receivers

To my own knowledge these sets sold in reasonably large numbers - certainly many passed through my workshop at the time. I don't ever recall seeing the contemporary Etronic projection receiver however, Model ECS2231, which is a pity since from the circuit it would appear to have been a much more compact and tidy design than many of the projection sets of the period. A total of 21 valves was used, five in the standard Mullard 25 kV e.h.t. supply unit.

The c.r.t. protection circuit required (to blank out the screen and prevent damage to the tube in the event of failure of either of the timebases) was simpler than most but appears to be perfectly adequate. A lone EB91 double diode rectified pulses from the two timebases to provide the potential for the brightness control. Thus both the field and the line timebase had to be operating normally before the screen could be illuminated. The only, very minor, drawback to this system was that large alterations to the picture height or width would affect the brightness level. This would obviously not be a problem in normal service however.

The projection unit itself was the standard Mullard type employed in all British projection sets of this type.
The rest of the design was straightforward enough, the r.f. unit being only a little more complex than that used in the direct viewing sets - there was a second r.f. amplifier stage. EF91 valves were employed for most purposes, but the newer EF80 put in an appearance in the video output and sync separator stages. Three ECL80s were recruited to do duty as audio amplifier/output, field blocking oscillator/output and line blocking oscillator/field sync pulse clipper (the use of the latter expression always puts me in mind of five-masted sailing ships beating around the Cape in gale force winds, bearing heavy cargoes of sanitary ware for the colonies: my wife has a terse and highly derogatory comment for such little conceits, but I won't repeat it here). An EL38 was again the line output valve, with simple transformer coupling to the scan coils.
H.T. was supplied in much the same way as before, but the mains transformer primary overwinding was modified to give 350 V at the anodes of the GZ32 h.t. rectifier. The full whack was delivered to the EL38, but the supply to the field timebase was dropped by 100 V via the focus coil. The video output valve was also fed from the 350 V rail, since the MW6-2 projection tube needed a goodly voltage swing for
correct modulation. This in turn called for some hard work on the part of the video amplifier valve, and in due course Mullard introduced the more powerful PL83 valve, whose characteristics suited it to the job. By that time however the projection boom was already on the wane.

Etronic sets seemed to sell quite well, so why did the name disappear so quickly? The answer is probably bound up with the state of the industry at the time. There were dozens of firms (well, some three dozen anyway) competing against each other for sales, using production techniques that had remained unchanged since pre-war days and producing sets in microscopic quantities by today's standards. The profits generated by most of these firms must have been barely adequate. In this kind of situation it's a question of the survival of the fittest. If the then mighty EMI decided to back out of TV receiver production in the mid-50s, what chance was there for the many smaller manufacturers?

Footnote: There were apparently some earlier Etronic sets using t.r.f. circuitry, Model numbers HV203, HV204, CV1050 and CV1250. I've yet to track down any information on these, though research is proceeding...

Letters

RANK T20/T22 CHASSIS

I found the fault articles on the Rank T20/T22 chassis in the June issue very informative, and would like to mention a fault symptom I've had trouble with. The problem was white lines across the screen - the same as the common black lines fault on these sets. To start with the trouble was intermittent. It then gradually got worse over a period of two-three weeks, by which time the white lines appeared in a block of about three inches long by an inch, randomly anywhere on the screen - there would sometimes be two or three of these blocks, accompanied by coloured flaring.

The fault could be overcome by very careful adjustment of the contrast, colour and brightness controls, but after a while this approach resulted in an unwatchable picture: I also found that turning these controls to minimum then increasing the setting of the contrast control produced the fault symptom. Replacing the TCA800 colour demodulator/matrix/clamp i.c. cleared the problem completely.
F. D. Kemplay,

Cleadon, Nr. Sunderland.

ACTIVE RIPPLE FILTERS

I read with interest the article on active ripple filters in the August issue. It might be worth mentioning that T506 in the NordMende F IV chassis is actually a Darlington transistor - so the circuit is a triple Darlington configuration. The MJ3000 has a collector-emitter voltage rating of 60 V hence the need for the switch-on protection arrangement. The similar FC 25 and FC1 25 (this one uses an in-line gun tube) chassis use an MJ3001 transistor in this position. The voltage rating of this device is 80 V , and the shunt diode is included within the common encapsulation. Hum problems on these sets have been traced to these Darlington devices becoming leaky.
A. Mole,

Chiswick, London.

VCR Clinic

Notes from Mike Phelan and Mick Dutton

It's a sad fact of life that there are many folk who wouldn't dream of removing the back from a TV set under any circumstances yet delight in twiddling presets, tape guides etc. in VCRs. The resultant "faults" account for a goodly proportion of the machines that come our way. Other "man-made" troubles arise from sheer misuse - the favourite one is quite common on the Ferguson 3V00-3V 16 series (JVC HR3300 etc.). The story goes like this. On the right-hand side of the cassette compartment there's a small V-shaped spring whose function is to press in the latch on the cassette when it's inserted, so that when the cassette is pressed down the flap is opened by the bracket shown (see Fig. 1). Unfortunately the spring loses its tension, and as a

Fig. 1: A common source of faults in JVC/Ferguson machines - the small V-shaped spring in the cassette compartment. When the spring loses its tension, the cassette flap won't open.
result the flap won't open. The owner then (we think) jumps on the cassette cover. Surprisingly the flap on the cassette doesn't break, but bends the opening bracket around the plunger of the pinch wheel solenoid.

A new spring, straighten the bracket, and everything is o.k. - usually anyhow. Not so however with the last 3 V 00 we had in with this fault. When we tried the machine after repairing the bracket, the colour kept being displaced and sometimes line lock was completely lost, suggesting a drum servo problem. The first thing to do in this event is to connect a scope to TP9 on the audio/servo board. A trapezoid with a pulse sitting half-way up the slope should be seen. If the drum speed is varying, the width of the trapezoid will vary - it's derived from the pickup head and magnets associated with the drum flywheel. The pulse on the other hand comes from the control track on the tape. Since these pulses have been recorded on the tape, any trouble with the capstan servo or tape path will cause drum speed variations. Note that capstan servo faults will cause wow on the sound - a useful thing to remember. If the pause key is depressed the pulse at TP9 will disappear, since control pulses are no longer being obtained from the tape. If the trapezoid is no longer varying in width, the drum is running at a constant speed and the trouble is probably mechanical.

On the machine in question it was noticed that the tape was wrinkling as it passed the control head, due to the pinch wheel not being exactly parallel with the capstan. After carefully bending. the pinch wheel lever everything was o.k.

Another cause of this sort of trouble is insufficient pinch
wheel pressure - on JVCs, replace the pinch wheel spring with the later (black) type.
M.P.

Check the Replay Signal Envelope

The next fault, on a JVC HR3300, was a real headscratcher. A prerecorded tape would play back all right, but a tape recorded on the machine played back with a noise bar ten lines or so deep near the bottom of the picture - on this or any other machine. This sort of fault is usually caused by the right-hand guide roller not entering into the V-notch in its locating block correctly (see Fig. 2). With this fault the symptom would show up on a prerecorded tape as well of course, nevertheless we checked it.

The next thing to do is to look at the f.m. signal envelope at TP7 on the pre/record board. We found that, as shown in Fig. 2(e), there were definite gaps with straight sides in the envelope - the gaps were not tapered as they would be with a tape guide fault. Very strange. Even stranger was the other thing we noticed - that the noise bar disappeared three seconds before the end of any recording! This in fact was a good clue - it takes about three seconds for the tape to pass from the video drum exit guide to the audio/control head, i.e. the last part of the recording had no noise bar because it had not reached the audio head. The light then dawned - someone had screwed the audio head down about 2 mm ., enough for the h.f. bias used in recording the sound to erase the top ends of all the video tracks!
M.P.

Slipping Clutches

We've found that many Ferguson/JVC 3V00/HR3300 machines need the take-up clutch renewing as the machines chew up the tape for no apparent reason after playing for an hour or so. What happens is that the clutch slips excessively,

Fig. 2: Examining the f.m. replay signal envelope lat TP7 on the pre/record beard in the JVC/Ferguson HR3300/3VOO series) will reveal the cause of a number of faults. (a) Correct f.m. signal envelope. (b) Envelope obtained when the righthand tape guide is faulty (noise at bottom of picture). (c) Lefthand tape guide faulty (noise at top of picture). (d) Tape guides badly out of alignment. (e) The f.m. signal envelope on the faulty machine described.
the take-up spool revolves sporadically and the tape wraps around the capstan. More recent machines have a modified clutch and belt arrangement.
M.P.

Toshiba V5470

A Toshiba V5470 came in with the complaint that the still frame was no good. We tried our test tape in it and found that whilst normal playback was perfect, on still frame the picture rolled and bounced vertically. The same thing happened on cue and review.

On the TV set we use as a monitor, we have the height turned down so that the position of the head switching can be seen at the bottom of the picture. On this Toshiba machine, in the still frame and cue and review modes a pulse is inserted to compensate for the weakened field sync (Toshiba call it a VD pulse ...). This can be observed on the screen as a white band several lines deep near the bottom of
the picture. On our problem V5470 the pulse was missing we traced this to a defective i.c. on the speed logic board (ICH01, type TC4528P). The i.c. contains two monostables which produce the VD pulse from the head switching waveform.
M.P.

Hitachi VT5500

An Hitachi VT5500 was brought in for attention because it was producing very unstable pictures - the effect on the screen was as if the line hold was going out of lock. There was a rattling noise from inside the machine, so we decided to strip it down and investigate this first. As the noise seemed to be coming from the drum motor, we disconnected the drive belt. The noise then stopped. The head drum itself was running freely, so we concluded that the motor had a faulty bearing and ordered a replacement: fitting this provided a complete cure.
M.D.

All boards are epoxy glassfibre and are supplied ready drilled and roller-tinned.
Any correspondence concerning this service must be addressed to READERS' PCB SERVICES LTD, and not to the Editorial offices.

Issue
November 1976
March 1977
May 1977 June 1977 June 1977 July/Aug 1977 September 1977 April/May 1978 October 1978 January 1979 February 1979 February 1979
March 1979 July 1979

September 1979
August 1979
August 1979 September 1979 October 1979 October 1979 November 1979 January 1980 January 1980
February 1980 February 1980 March 1980 March 1980
May 1980 May 1980 June 1980
Sept/Oct 1980
January 1981
December 1980
December 1980
January 1981
January 1981
Feb/Mar:h 1981
May 1981
June 1981
August 1981
August 1981

Project
Ultrasonic Remote Control
Teletext Decoder Power Supply Teletext Decoder Input Logic Wideband Signal Injector Teletext Decoder Memory Teletext Decoder Display Teletext Decoder Switch Board CRT Rejuvenator
Colour Receiver PSU Board
Colour Receiver Signals Board
Commander-8 Remote Control System Colour Receiver Timebase Board Colour Pattern Generator

Teletext Decoder Options Board Teletext Decoder New Mother Board Simple Sync Pulse Generator New Teletext Signal Panel Teletext Keyboard Teletext Interface Board Colour Receiver Remote Control Remote Control Preamplifier Teletest/Remote Control Interface LED Channel Display Improved Sound Channel
Monochrome Portable Signals Board Monochrome Portable Signals Board Monochrome Portable Timebase Board
Monochrome Portable CRT Base Board New CTV Signals Pane Smail-screen Monitor Board
Video Camera Pulse Generator Board
Video Camera Video/Field Timebase Board

Video Camera Power Supply Board Video Camera Line Timebase/H.T. Board Video Mixer
Switch-mode Power Supply
Simplified Signals Board
Timebase board
CRT base board

To:- Readers' PCB Services Ltd (TV), Fleet House, Welbeck St., Whitwell, Worksop, Notts.
Please supply p.c.b.(s) as indicated below

Issue	Project	Ref. Price

Prices include VAT and post and packing. Remittance with order please NAME
ADDRESS

Long-distance Television

Roger Bunney

WHEN I finished writing the last column, on May 27th, we were all wondering where the signals had gone! From the 28th onwards however that question was answered. Long Sporadic E openings have occurred, some of great intensity and very long duration, reaching into Band II and beyond.

Before plunging into the happenings in general during June 1981, mention must be made of an important event on June 7th, when the m.u.f. rose to in excess of 200 MHz during an SpE opening. Unfortunately several enthusiasts, including Hugh Cocks and myself, were attending a radio exhibition near Storrington at the time. We missed the opportunity therefore, and it seems from the many letters received that most other enthusiasts didn't look into Band III, which was rather unfortunate on this occasion. An exception was Cyril Willis (Cambridge) who logged TSS (USSR) chs. R8 and R11 at 1630 BST, with typical slowfading signals but of good quality at times though rather directional, picked up on his fourteen-element array. He made the obvious check to ensure that this wasn't some form of Band I overloading (it wasn't): the signals lasted for just over a quarter of an hour. In Holland, Ryn Muntjewerff and others received similar SpE signals from approximately 1640-1720 GMT (1540-1620 BST), but on all Band III channels! With the ch. R11 video being $215 \cdot 25 \mathrm{MHz}$, the ionisation density must have been extremely high. It suggests that whenever a really intense Band I/II opening occurs a quick check should be made in Band III. Congratulations anyway to all concerned on this record reception.

Meanwhile more conventional SpE openings have kept everyone busy. Here's a brief log of reception generally in the UK.
28/5/81 Southerly signals during the late afternoon from RTVE (Spain), RAI (Italy) and RTP (Portugal).
31/5/81 RTVE again from 1740, but at 1810 JTV (Jordan) ch. E3, first logged by Hugh then here at Romsey, with confirmation via the sound channel (using the new SX200N receiver here). As a floater with JTV there were pictures of a football match with English commentary. Any ideas?
2/6/81 An excellent prolonged SpE opening with RTS (Albania) ch. C, MTV (Hungary), RAI, JRT (Yugoslavia), TVP (Poland), RTVE, ORF (Austria), RTP, DDR (East Germany) and ARD (W. Germany). During the late afternoon Band I jammed up! TVR (Rumania) was seen in Cambridge.
5/6/81 RTVE, RTP, NTV (Nigeria) ch. E3 logged here at Romsey, Hugh logging an African ch. E2 transmitter at the same time.
6/6/81 RTVE, RAI and JRT.
7/6/81 Apart from the Band III opening mentioned above, there were Band I/II signals from most of Europe for much of the day, causing general signal jamming. Signals noted included RTVE,

RAI, MTV, JRT, TSS, RTP, SR (Sweden), RUV (Iceland), TF1 (France), YLE (Finland) and TVR.
8/6/81 A similar day to the 7th, but with no Band III signals. Band I was open all day.
9/6/81 Similar again to the 7/8th, with signals for over twelve hours. An Italian "free" station was generally noted, operating between ch. E3/IA probably NCT Udine. A new station for me was ORF ch. E3.
10/6/81 All Europe was again present through much of the day. When I left for work at 0810 NRK (Norway) and TSS were present, and on arrival back at 1900 the Band I spectrum was still wide open.
11/6/81 As on previous days, plus additional short-skip SpE - DR (Denmark) and DDR were received at Wigan. Signals were received at up to Band II (f.m.). JTV ch. E3 was logged at Norwich at 1515 and 1700. The Italian NCT "free" station and RTS ch. C were other notable receptions.
12/6/81 Again as on previous days, including JTV ch. E3 (at 1038) and RUV ch. E4. The opening lasted from 0730 until the evening.
13/6/81 A lower level of SpE activity. TSS signals were received.
17/6/81 A good daytime SpE opening, with TSS in the evening. JTV E3 logged at Cambridge.
19/6/81 Excellent SpE again all day. Most European Band I stations were present. NCT ch. IA seen again.
20/6/81 Southerly SpE during the afternoon, with RTVE and RTP.
23/6/81 Southerly SpE during the evening, with RTVE, RTP and RAI.
24/6/81 Late morning SpE with RTVE, RAI and JRT.
25/6/81 Evening SpE with RTVE and RAI plus unidentified signals on chs. R1/2.
27/6/81 Early morning SpE with unidentified E . European R channel signals.
28/6/81 RTVE from 1800 onwards. Hugh logs NTV ch. E3 at 1840 .
29/6/81 A largely north/south SpE opening with NRK, RTVE and RTP.
ZTV (Zimbabwe) ch. E2 was noted on several occasions being carried into the UK via SpE on its last hop - this signal normally arrives via F2 or TE. ZTV was seen on the 29th and 31st of May, and on June $1 / 2 / 7 / 8 / 9 / 11 / 12$, via either direct $\mathrm{F} 2 /$ TE propagation or with SpE assistance. On two occasions Hugh Cocks (East Sussex) received a system M, 525-line signal on ch. A2 from the south east via SpE could this be the Iraklion (Crete) transmitter still in operation? On June 7th Clive Athowe (Norwich) received Band II (88.2 and 91 MHz) f.m. signals from TRT (Turkey) via SpE. John Tellick (Surbiton) noted a film with Arabic subtitling on ch. E2 from 2142 onwards on the 11th: I suspect that this could be Dubai (UAE) despite the late hour.

RTVE has been seen using a new test pattern, fortunately with the transmitters identified: James Burton Stewart (Milton Keynes) sent the accompanying photograph, showing the La Muela ch. E3 identification. A large number of patterns with varying location identifications have been seen during June. RTVE are also carrying out teletext tests. The Czechoslovakian PM5544 top identification has been seen to change from SR-TV to CST prior to programme commencement. The TSS letterbox electronic pattern now carries a six-figure digital clock.

Tropospheric reception also improved during the period under review. An evening tropospheric duct occurred on May 28th, between Southern England and the Low Countries/W. Germany, giving good f.m. radio reception in Band II on a very narrow path heading. Further ennanced tropospheric reception occurred on the $13 / 14 / 15$ th, with really intense French v.h.f./u.h.f. signals, also signals from W/E Germany. Hugh logged several RTVE Band III/u.h.f. and Swiss Band I/III/u.h.f. signals. One mystery was a 625line Band III French signal carrying the Antiope teletext service: this was just below ch. Ell (their new ch. 6?), received by Hugh from the Paris direction. June 22nd produced W/E German, French and Low Countries' signals, both television and f.m. radio. Clive Athowe is building an OIRT tuner for the $58-74 \mathrm{MHz}$ band, including the E. European $68-73 \mathrm{MHz}$ f.m. radio band, using an Ambit DM7 i.f. module with 5804 tuner head.

To summarise - an extremely active month! My thanks to the following for sending in extensive logs: Hugh Cocks (Sussex), Clive Athowe and Ray Davies (Norwich), Arthur Milliken (Wigan), Reg Roper (Torpoint), James Burton Stewart (Milton Keynes), Edward Baker (Northumberland), John Tellick (Surbiton), George North (Walton on Thames), Brian Fitch (Scarborough), Jim Cook (Newcastle), John May (Ashford), Mark Baldwin and Nicholas Brown (Rugby), Cyril Willis (Cambridge), Paul Barton (Harrogate), Petri Pöppönen (Finland) and Ryn Muntjewerff (Holland).

Conditions have also been active overseas. Geoff Perrin (Oman) has been logging strong ch. E4 signals from India. Nanda Kumar reports from Madras that Madras AIR are testing v.h.f./f.m. radio at $107 \cdot 1 \mathrm{MHz}$ from 1700-2230 local time. Manufacture of f.m. receivers locally has just started.

DX-TV Club

George Grzebieniak (c/o 185 Fleet St., London EC4A 2HS) has formed a DX-TV club that holds regular meetings with a view to encouraging a flow of ideas, advice and practical assistance. Data sheets covering the basic techniques of v.h.f. DXing are available to members. I feel that it's time for the DX hobby to increase its social activities. For further information on meetings etc., write to George at the above address, enclosing an s.a.e.

News Items

Eire: Trevor Plowman (Dublin) reports that a pirate station called "Channel 3" commenced operations on June 19th. A test card is transmitted from 2100-2400, followed by late night films on Fridays, Saturdays and Sundays. Increased transmitter power is expected from early July (assuming that the station is not shut down!). Presumably channel 3 is in fact ch. C, with 61.75 MHz video and 67.75 MHz sound.
Australasia: ABC have started teletext tests. A correspondent reports that the 477 MHz CB spectrum in Australia is "very full". A go-ahead for f.m. radio in New Zealand has been announced. Australia's ethnic service seems to be a success, and Wenlock Burton (Melbourne) reports that a ch. 28 transmitter carrying the ethnic service is to be opened in Hobart, Tasmania.
West Germany: ZDF is to commence dual-sound transmissions, using the two-carrier system (see Teletopics last month), from September. 32 transmitters will be modified for the new service, the second sound carrier being at 242 kHz (half line offset) above the present one. Both channels use f.m., with the full 15 kHz bandwidth. The cross-talk with independent signals (e.g. bilingual) is better than 76 dB and the stereo cross-talk better than 38 dB . Information to make the receiver switch to stereo or dual-

GOLDEN ANOD EST. 26 YRS.	ALL PRICES INCLUDE VAT.		PLIFIERS; EST. 26 vRs.
Masthead Amps	Type	Gain	Price
Astrax 1441	VHFJUHF	21dB	¢1282
Asitrax 1450 LN	Bands 485 (TV)	28dB	¢15.49
Astrax 1455	Bands 183 (TV)	25dB	f16.81
Astrax 1520	power unit for abo	amps	¢9.1

All mast amps require a 1520 power unit.
SPECIAL OFFER HIRSCHMANN ROTATOR

ASTRA (GOLDEN D.I.Y.) AERIALS SOME OF OUR SUPERB TV \& FM AERIALS.

me	Gromp:W/Band	Gain dB	Price	fter discount
Margon 103 (TV)	both stocked	19.5/21.5	£61.4	E52.1
Margon 91 (TV)	both stocked	18.5/20.5	£44.16	37.5
Fuba 91 (TV)	both stocked	18.5/20.5	£48.61	¢43.7
Optimax 14 (FM)	Band 11 W/8	14	£57.50	¢48.88
Optimaz 8 (FM)	Band 11 W/B	9.5/10.5	£32.54	£29.29
Fuba 8 (FM)	Band 11 W/B	10.5	£40.85	£36.7
Over 3,000 aerials stocked; all transmitters; poles: lashings: rotators; clamps; wall brackets; amplifiers diplexers; triplexers; motch filters, coax white or brown.				
Many of our customers come from recommendation. 53 WHITEHORSE ROAD, CROYDON, SURREY.				
Nr. Spurgeons Bridge Tel: 01-6844300				
Open 9.00-5.30 TUE-SAT.				
Closed 12.30-1.30 Closed All Day Mon.				
FM \& TV AERIALS AND ROTATORS ON DISPLAY				

South West Aerial Systems

10 OLD BOUNDARY ROAD, SHAFTESBURY, DORSET.
SP7 8ND tel. 07474370

The Wolsey 'Sapphire' range of distribution amplifiers gives wideband cost effective flexibility for the small domestic, hotel and showroom installation. Its $40-854 \mathrm{MHz}$. bandwidth encompasses all VHF and UHF broadcasting bands allowing distribution of VHF-FM radio and UHF TV. On both the 41 and 81 versions a high level $\mathrm{C} / \mathrm{P}(+23 \mathrm{~dB})$ gives a further 8 outlets via the RS8 splitter unit. Masthead powerıng ($24 \mathrm{v} @ 34 \mathrm{~mA}$) is a feature of both amplifiers. Noise figure $5-8 \mathrm{~dB}$., 240 v . $A C$ operation.

South West Aerials provides equipment for the local, fringe, deflector, and TV/FM DXing installation, our CB department can supply reputable pquipment at competntive prices. A customer consultancy service is available to solve reception problems. South West Aerials . . THE specialists.

[^0]

The new RTVE pattern (ch. E3), photo courtesy James Burton Stewart.

GBC (Ghana) ch. E2 received via F2 in Holland. Photo courtesy Henny Demming.

RTP (Portugal) ch. E3, received in Derby. Photo courtesy Keith Hamer/Garry Smith.
sound mono is carried on line 16 . Several setmakers are introducing suitable receivers.

ZDF intend to use the Franco/German direct broadcast satellite for an additional TV service starting in 1986.
In brief: Uruguay has adopted the PAL-N colour system . . Sweden hopes to launch its own satellite, "TeleX", by 1986/early 1987, and Finland hopes to use one of its channels... The Liberian ship Odelia is anchored off Ashdod, Israel and intends to commence transmissions to Israel on ch. E59 - the project is being run by a Greek commercial organisation which hopes to provide five hours of programmes daily, in colour.

Italian Free Stations

I've recently received an "official" listing of the various "free" TV/f.m. stations now in operation in Italy (as of May 1st). The private stations are located in hundreds all over Italy, and there seems to be little official regulation stations pick and change channels quite freely, often overnight. In some areas the u.h.f. band is literally jammed! Most stations rely on film or one-inch VTR material, and to stop the poaching of RAI (the official Italian broadcasting organisation) material the letters RAI are now inserted on their programmes. "Adult" type programmes seem quite common. The technical and production standards are generally low, the programme material often being "video wallpaper". The following stations operate in Band I (no transmitter powers are given in the list):
Venezia Giulia district, NCT (Udine) ch. A.
Campania district, Tele Spazio Campano (Sant Agata dei Goti) ch. A.
Puglie district, Tele Bari (Bari) ch. B.
Calabria district, Radio Sud Television (Reggio Calabria) ch. B.
Isle of Sicillia, Tele Radio Centro (Canicatti) ch. B.
Isle of Sardegna, T.O. Sardegna (Sassari) ch. B.
My thanks to C. Grima (Malta) for this information.

VHF Radio

A number of enthusiasts have enquired about a small pocket radio currently selling at between $£ 12-£ 20$ and covering the "Air/TV/CB" bands. At this price you can't expect too much, but in view of the v.h.f. coverage it was felt worth getting a specimen and trying it out. The unit was obtained from a mail order CB firm (they all seem to have them) and carries the model number HH857 and the name "Flight Multiband Radio".

There are three bands, one covering the accepted albeit illegal CB band, calibrated simply ch. 1-40, a second covering $108-176 \mathrm{MHz}$ and the third $54-108 \mathrm{MHz}$, the latter two being for f.m. The tuning scale is approximately $2 \frac{1}{4} \mathrm{in}$.
long, so accurate tuning and calibration are not the order of the day. The telescopic aerial extends to a length of 20 in . it's ineffective for CB monitoring, and further wire should be added to increase the gain. At v.h.f. the results from aircraft etc. were surprisingly good. The range that includes part of Band I just takes in the ch. E2 sound. There are separate front-end units, each with an r.f. amplifier and selfoscillating mixer, feeding a common three-stage i.f. strip.

A check was made on the Band I section, and an audible note was produced with a $1 \mu \mathrm{~V}$ input - just. The selectivity is poor, but if the unit is to be used for TV sound only this may not be too important. There's an earphone jack for feeding into an auxillary amplifier. I would suggest

Five foot diameter 714 MHz dish aerial used by John Abbott in South Africa for receiving the Russian Stat-T satellite. The u.h.f. head amplifier mounted behind the dish has a gain of $38 d B$ and a noise figure of $1.8 d B$.
removing the telescopic aerial and connecting a coaxial feeder to the input point on the chassis, with the feeder terminated by a coaxial socket so that an external aerial can be used.

Briefly, it's a cheap Hong Kong type radio, but perhaps gives a limited means of resolving TV sound or acting as a signal monitor if left tuned to a known video frequency (despite it being for f.m., it does resolve a.m.). A slight realignment downwards to cover chs. E2/R1 would be helpful. Despite reservations, you may find it useful - but don't expect Eddystone standards!

From our Correspondents . . .

Various letters have been mentioned, but due to the amount of news etc. this month the correspondence section has had to be held over. Sorry, and please keep writing in!

CB Interference

CB operators are presenting increasing problems as their transmissions intrude into the broadcast bands. Nicholas Brown for example reports that the 27 MHz transmissions are spreading through Bands I/II/III and also affect his hi-fi system. Cyril Willis describes the activities of "The Fen Ranger", whose signals have caused breakthrough problems with his DX-TV equipment, his domestic u.h.f. TV receiver and Band II radio set, and his disco gear (100W audio!). Similar problems have been described in other letters. Perhaps Keith Harmer is suffering the most, his road in Derby housing some ten "breakers". The following notes describe simple methods of reducing the problem, but I hope that readers who are experiencing difficulties will write in to me with details of their problems and any successful steps taken to resolve them, the aim being to report back further in due course. The main source of breakthrough seems to be second (or third etc.) harmonic radiation from the offending CB equipment, or alternatively overloading due to excessive signal from equipment being operated nearby.

Harmonic radiation is perhaps the most difficult problem since the solution is to fit a low-pass filter to the CB transmitter, which means you've got to find the operator. Amateur low-pass filters that can carry several hundred Watts cost around $£ 20$, but low-power filters are available at around $£ 6-£ 10$. It's essential to optimise the earth connections and links - harmonic radiation is often caused by poor inter-unit earth connections. New equipment made to meet the official requirements should not cause problems, but from comments in CB magazines it seems that those using illegal equipment intend to go on doing so. If you can't trace the user of a rogue transmitter, contact with a local CB club may help - some clubs have been known to go to a lot of trouble to identify specific rogue equipment.

Where CB interference is experienced at a receiving site it's essential to remove any high-gain outside/masthead amplifiers, particularly in Band I. Filtering must be inserted prior to the amplifier's input, since nearby transmissions can saturate the unit with the result that CB signals may appear at 54 MHz , giving the impression that the trouble is due to second harmonic interference from the CB transmitter. Other effects may be spreading of CB signals throughout Bands I/II/III and even breakthrough on some audio equipment. The latter can be confusing where for example the left-hand channel of a tape deck is affected but not the right-hand one.

In the case of TV breakthrough, the first action required is to insert filtering at the input from the aerial to the first active stage. A 27 MHz band-stop filter providing say 26 dB

Fig. 1: Filters for reducing interference. (a) Simple u.h.f. highpass filter. Suitable values for C 3.9/4.7pF. The coils are three-turn u.h.f. chokes. (b) Simple v.h.f. high-pass filter system for TV-DXing. (c) Band-stop filter for 27 MHz . Trimmer values $3-30 p F$. Coils consist of 18 turns of 26 s.w.g. (approximately) wire wound on a $\frac{1}{4}$ in. former with dust core. Tune to attenuate a 27 MHz input.
attenuation at 27 MHz , or a high-pass filter which provides 45 dB attenuation below 40 MHz with an insertion loss of only 2 dB , can be used. Examples of the latter are the PO filter types 38 and 45A. Simple filters can be made, and in severe cases a combination of several filters may be necessary to obtain sufficient rejection at 27 MHz .

If the problem remains after trying in-line filtering, the trouble could be due to harmonic radiation or pick-up via the braiding of the coaxial downlead. In the latter case, fit a ferrite braid filter - this consists of two FX1588 Ferroxcube toroids held together with five turns of coaxial feeder looped around them. This works at above 40 MHz : for interference below 40 MHz , use the same toroid assembly with thirteen turns of the coaxial cable. The ferrite filter must be fitted as close to the receiver as possible of course. Experimentation with quarter- and half-wave stubs connected across the feeder could also prove useful. A quarter-wave open-ended stub using feeder with a velocity factor of 0.85 would have a length of 7.74 ft (75Ω coaxial feeder of course).

Cheap filters called "CB High Pass Filters" are available at prices of around $£ 4-£ 7$. We recently obtained one (type HP3A) from Waters and Stanton Electronics (Warren House, Main Road, Hockley, Essex). The circuit consists of coaxial inner conductor filtering and a braid break filter. The attenuation at 50 MHz was found to be 45 dB , at 200 MHz 18 dB and at 500 MHz upwards 2 dB . CB filters such as this are irtended for u.h.f. use and will undoubtedly prevent breakthrough on domestic u.h.f. TV receivers. Peter Waters has since advised us that the filter has been superseded by the improved type HP4A. This company can also supply an equivalent to the FX1588 at 30p each plus 30 p postage (any quantity) - they are known as type 8 A filter cores. The HP4A costs $£ 4.95$ inclusive.

For effective attenuation of interference in Band I a combination of ferrite braid filtering plus high-pass v.h.f. filtering may well be necessary, or maybe braid filtering plus a 27 MHz notch filter.

Another form of illegal radiation is becoming a problem there's an increasing flood of imported walkie-talkies operating in the $49 \cdot 1 \mathrm{MHz}$ region and selling at under $£ 30 \mathrm{a}$ pair. Added to this is the rise of the cordless phone, also operating at 49 MHz and around 71 MHz . None of these items are GPO approved. In the USA where the use of these devices is legal a small band at around 49 MHz is allocated for domestic communications - this band is free from TV transmissions in the USA.

Practical TV Servicing: The Line Output Transformer

S. Simon

IF there's one item that gives an engineer pause for thought in a TV set it's the line output transformer: when to condemn it that is, and when to judge it free from blame. The decision is not always easy, and is often taken almost as a last resort. The reason for this is not hard to understand - expense, and the often time consuming business of fitting a replacement.

To the beginner, it may seem that the line output transformer has little more to do than the field output transformer, primarily being asked to contribute to driving the spot from one side of the screen to the other rather than from the top to the bottom. It has to do this approximately fifteen thousand times a second however instead of fifty times. Now from our previous ponderings we've noted that the rapid build up and sudden cessation of current in a coil can induce in it a higher voltage than that supplied to the stage of which it forms a part. In the line output stage this induced voltage can be very high indeed (the famed line flyback pulse). This imposes a stress between the windings a difference of some 5 kV may be present between windings on the same section (leg) of the transformer. Such stresses increase the possibility of breakdown.

Apart from insulation failure between windings, there's the more common (or once more common) failing of shorted turns in the same winding - it's this fault in fact that - causes most trouble. Basically the line output transformer is an extremely efficient device. As a result, any defect that causes a drop in its efficiency, however small, has a most marked effect on the operation of the TV set. There's always an element of doubt however, since the symptoms displayed may be caused by the various items fed from or connected to the various tags on the transformer, and whilst it's easy to disconnect some of these as a check the disconnection of others will result in the timebase ceasing to function altogether, thereby largely defeating the object of the exercise (unless you happen to be monitoring the current flowing via the line output stage). Let's consider some practical examples.

Some Examples

Shorts between windings don't leave much room for doubt as the effect is more drastic. For our examples, we'll consider the Philips 210-300 series hybrid monochrome chassis and the Philips G8 solid-state colour chassis. The former employs a fairly typical valve line output stage, with the h.t. fed to the anode of the PY800 efficiency diode valve (see Fig. 1). The cathode of this valve (top cap connection) is at a higher voltage (the "boost" voltage), since the diode charges the boost capacitor C2064 during part of the scanning cycle. The anode of the PL504 line output valve is also connected to the boost supply. Thus if there's a short or leak between the boost line and the h.t. line the timebase cannot operate properly. If this is suspected, it's a matter of seconds to remove the efficiency diode's top cap. This should remove all traces of h.t. from the timebase, i.e. from the anode (top cap) of the PL504 line output valve. It should also result in the PL504's screen grid feed resistor

R2158 overheating, since without h.t. at its anode the valve's cathode current will flow via the screen grid instead of the anode.
In other words, removing the PY800's top cap should result in nothing at the top cap of the neighbouring PL504. If however something continues to happen when this action is taken, even if it's only a feeble attempt at normal working, then there must be another d.c. path that shouldn't be present between the anode of the PL504 and the h.t. line. In most cases one would immediately accuse the boost capacitor of being short-circuit, and since it stands erect to the left of the screened line output stage section this point can be checked simply by snipping its top leadout wire. If there is then no h.t. at the anode of the PL504, the capacitor has been proved to be short-circuit and a replacement (which must be of at least 1 kV working voltage) will restore normal operation.

There's a distinct possibility however that snipping the boost capacitor's leadout wire will leave the output stage working (well sort of working). This means that there's still a d.c. path from the anode of the PL504 to the h.t. line: the route is between windings L5024/6 and L5020/3. Obviously in this event there's no alternative to transformer replacement. Don't think that this type of fault is confined to one particular type or make of set: it does seem to afflict some more than others however.

A different approach is called for with sets using solidstate circuitry. For a start the protection circuit (excess current trip) may operate, shutting down the supply to the line output stage. Or a fuse may have failed, indicating the approximate area in which the fault lies. In an earlier article in this series we considered the procedure to adopt in the case of the G8 chassis, but it'll do no harm to recap a bit.

We'll assume that the G8 has been brought in with the complaint "no results". If the tube heaters are glowing we know that the mains fuse is intact, so the first check should be made at the two fuses on the upper left-hand side power supply panel (the h.t. fuses). If some 200 V is present here, we know that the "mains dropper" resistor is intact (it's a frequent cause of no results if there's no h.t. at the fuses) and that the h.t. rectifier/regulator thyristor is functioning. The lower of these two fuses may or may not be intact (normally it is).

We then shift our attention to the right-hand side line timebase section and check the 800 mA fuse here (see Fig. 2). It may or may not be intact. Normally it isn't under the fault conditions we've outlined. If it is intact, check for 200 V at either end of the front mounted 47Ω wirewound resistor R5535 which could well be open-circuit. If it is, the search for the cause of the trouble is over almost before it has begun. If the fuse is open-circuit on the other hand the plot thickens.

The cause could be one of lots of things - shorted diodes, capacitors, output transistors or a faulty tripler for example. Where do we start? As it happens, no difficulty is presented in this set. The tripler is connected to the line output transformer via a rubber capped connector which is easily (usually - but don't rip it off and damage the panel)

Fig. 1: Line output stage circuit (simplified), Philips 210-300 series monochrome chassis.

Fig. 2: Line output stage circuit, Philips $G 8$ chassis. Note that a number of. modifications were introduced during the production run.
removed. Ease it off if necessary.
One might think that resistance checks would be the next obvious step. Possibly, but the chances are that they will be inconclusive. Our method is to switch the meter to the 1A or 2 A range and connect it across the 800 mA fuse's holder, via hand-held probes (quickly removed). This serves two purposes. One to ascertain the current flowing - this should be between 400 mA and 500 mA - and secondly to see what happens. What normally happens is that the transformer gives an audible or visual indication that it doesn't feel well. Audible with a click that is, and/or visible with a spark from the windings.

If it does neither and the reading is as expected, reconnect the tripler and try again. If the reading is still normal, fit a new 800 mA fuse and put the set on a soak test.

If the reading is high, the tripler could be at fault and a new one should be tried. It's just possible that there's an excessive current demand and that the beam limiter is out of action, but we mustn't get side-tracked. It's a good idea however to check the tube base voltages to ensure that the cathodes are fairly high in relation to the control grids funny things do happen on occasions.

The G8 is one of those sensible designs with a liberal provision of fuses associated with the various supplies derived from the line output transformer. This serves two purposes - even if the wrong value fuses have been fitted by persons unknown. Apart from providing circuit protection, the fuses can be lifted to clear sections of the circuit from suspicion. Furthermore, once a fuse has been lifted a meter can be connected in its place to see if the current taken in that particular branch of the circuit is excessive.

Another suspect in the G8 is the pincushion correction transductor - it's a frequent cause of fuse blowing, and the simple check is to remove the red plug H . The receiver will function quite happily without the transductor, though the raster will have a slight pincushion shape. The transductor is mounted on the lower timebase board.

So if the line output transformer gives no obvious
indication that it's at fault, we've the means in the G8 chassis of simply unloading many of the possible causes of fuse blowing. If the problem remains, we're left with the line output transistors and something we've not yet mentioned, the line driver stage, since this is also fed with h.t. via the 800 mA fuse. Happily the driver stage is not often responsible for no results in this chassis, but it's something to keep in mind.

The driver and line output transistors can be checked with a meter (resistance checks with the collector isolated) to see whether there's any leakage. If there's any doubt about the line output transistors they should be replaced. In the G8 however it's the line output transformer that's the most frequent cause of the failure of the supply fuse. Despite that, the Philips $G 8$ is still my favourite set from all points of view.

Other Makes and their Habits

Experienced engineers used to dealing with a variety of makes are able to assess the probability of the line output transformer being at fault merely by looking at the exterior of the receiver or being told the model number. Not the make. If this sounds confusing, we'll explain.

If we have two Bush colour sets on the bench, one fitted with the Z718 chassis and the other with the T20, the engineer will not suspect the transformer in the Z718 because experience will have shown him that this type of transformer rarely breaks down unless the e.h.t. stick rectifier has shorted to present a heavy overload, though even then the chances of the transformer being defective are not high. In the case of the T20 however he'll suspect the transformer together with the tripler, and if he doesn't he has a long haul ahead of him. With the Z718, he'll first check the two EW modulator diodes (5D5/6) associated with the transformer and soldier on from there, having first removed the e.h.t. stick to clear this of suspicion. If he's presented with a pair of ITT colour sets, one fitted with a
hybrid chassis (CVC5-CVC9) and the other with a solidstate chassis (CVC20-CVC30), he'll not suspect the transformer in the hybrid chassis, though he'll check the soldering of the leadout connections on the subframe. In the case of the CVC20 however he'll have grave doubts about the tripler unit and the transformer and will replace both if either is found to be at fault. Read that again. Ah, you might say, but we're not that experienced. Which is why you're reading this little article, isn't it?

Shopping List

If you have a variety of sets coming in for service, or if you go out to them for that purpose, you may like to have a list of the transformers which it will pay you to carry and won't gather dust on the shelf. Here it is.
Monochrome sets: Bush TV161 series (A640 chassis), wired. Bush TV181 series (A774 chassis), panel mounted. Indesit Model T24. Philips 210-300 chassis.

Colour sets: Bush T20 chassis. ITT CVC20 and CVC32 chassis. Philips G8 chassis.

A modest list, but one that will stand you in good stead.
What about Thorn sets (Ferguson, HMV, Marconiphone, Ultra etc.) you may ask? The only trouble, apart from isolated cases, arises with those monochrome sets which have combined transformer/e.h.t. stick units. The stick tends to short, and it's possible to fit an external (fully insulated) stick as a "get you home" remedy.

Modifying Older Transformers

Sometimes a transformer may not be available, and if the fault is shorted turns in the e.h.t. overwinding the possibility
of doing away with this and fitting a tripler may be considered (we're talking about valve line output stages). There are one or two points that have to be taken into consideration before this is done. First, merely disconnecting the winding is not enough. Even though it's not connected, it's still there with its shorted turns damping the rest of the transformer. It has to be removed, if possible by dismantling the transformer and sliding the winding off. This is not always as easy as it sounds, and the less elegant method of cutting away the faulty winding may have to be adopted.

Once this has been done the tripler can be fitted, with its input lead connected to the anode of the line output valve, any earth lead linked to chassis and the output applied to the tube's anode. Insulate any other leads well, the exception being the focus facility if this is being used. The resulting picture may be a complete disappointment however, which brings us to the second consideration. The point here is that a flyback tuning capacitor is required (the self-capacitance of the overwinding took care of this previously). Use a high-voltage disc type, rated at 12 kV . The value will have to be found by experiment, but will be around 100 pF . Fit it between the line output valve's top cap connection and chassis. Some other adjustments may then have to be made (width etc.) to obtain optimum scanning with the correct e.h.t.

Since there may well be a pulse winding on the transformer, with the pulses operating the burst gate in a colour set, the appearance of green streaks across red areas will indicate that the setting up of the width and timing has not been carried out correctly.

Where a PD500 shunt stabilizer valve is removed, add a $22 \Omega 4 \mathrm{~W}$ wirewound resistor in its place in the heater chain.

N7118 PAL COLOUR BAR GENERATOR

An extremely light, compact and durable instrument, designed for mobile Colour T.V. Maintenance in the customers home. The basic model includes a built-in rechargeable battery plus a Power Univ/Charger. (A fully charged battery gives 10 hours continuous use). All patterns and sync. pulses are derived from a single crystal controlled oscillator, producing extremely accurate, stable displays. The patterns available are: Standard Colour Bars, Red Raster, Linearised Grey Scale Step Wedge, Crosshatch and Peak White Raster. A Coaxial Socket on the rear panel provides a modulated UHF or VHF (please specify) signal of approx. ImV for direct connection to Receiver Aerial Socket. An (optional) integral Sound board is available, producing a Sound Carrier (6 MHz or 5.5 MHz), frequency modulated by a 1 KHz Sinewave. The N7118 will also house a third board that provides a 1 Volt p to p, 75 ohm Video Signal to a rear panel B.V.C. Socket.

Complete kit, including a professional finished case, screen printed P.C.B., Ready Built P.S.U., and all components - $\mathbf{£ 5 9 . 5 0}$ inclusive. Sound and Video Boards, add £10.29 per board.
Ready Built - £88.25 inclusive, Sound and Vido Boards add ع11.45 per board.
S.A.E. for details and specification.

N7121 VIDEO PATTERN GENERATOR

Service Bureau

Requests for advice in dealing with servicing problems must be accompanied by a 75p postal order (made out to IPC Magazines Ltd.), the query coupon from page 605 and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

RANK A816 CHASSIS

The line output transistor in this set went short-circuit. I used a BU205 as a replacement and the set works perfectly apart from a thin line, like a piece of rope, down the righthand side of the screen - about two inches from the edge. I've tried using a BU105/01 as originally fitted, but the fault is still present.

We suggest you try threading a ferrite bead on the base and emitter leadouts of the replacement transistor. Also ensure that the aerial lead is properly wired, and doesn't pass too near the area of the line output stage.

THORN 9000 CHASSIS

The set itself works all right, but the remote control unit won't change the channel unless it's held within a foot of the receiver. I've replaced the battery and tried a new remote control transmitter, but this has made no difference.

We suspect the receiving transducer (microphone) within the set. These sometimes go low-gain or insensitive. Ensure that a replacement is the correct Thorn-approved type.

DECCA 80 CHASSIS

The picture suddenly reduced to a thin vertical line down the centre of the screen - movement of the picture can just be seen in the line. The picture has returned on a couple of occasions at switch on, but collapses to a line within a few minutes.

The line scan circuit is going open-circuit. Check the scan correction capacitor C403 for being open-circuit, then look for dry (burnt!) joints around the line linearity and width coils, plugs A / B etc. The scan current path is as follows: line output transformer, C403, L401 (linearity), PLA1, the scan coils, L705 (line balance), PLA3, PLB8, PTA7, T301 (raster correction transductor), PTA8, PLB5, L400 (width), chassis.

THORN 9000 CHASSIS

The Syclops transistor VT701 has been replaced five times during the last year. This seems to be necessary every time the set is knocked, but I can't find any intermittent shortcircuit or dry-joint. Are there any adjustments that should be carried out after replacing VT701?

The most common sites of bad joints in this chassis are around the heavy wound components in the Syclops/line output department, i.e. the two transformers T701, T702 and maybe T705. Run over the joints to all these, also replace the h.t. rectifier diode W701 and the isolating diode W702 (in series with VT701). The adjustment required is to
set R606 for 720 V peak at TP708. This can be done using a $20 \mathrm{k} \Omega / \mathrm{V}$ meter shunted by an $0.01 \mu \mathrm{~F}, 1 \mathrm{kV}$ capacitor, feeding these via a diode such as a BYX10 or 1N4007.

TELPRO C671

The chassis used in this set is basically the Decca 30 series chassis. The fault is an image a quarter to half an inch to the right of the picture, especially noticeable on yellow lettering against a deep blue background. The image is then a lighter shade of blue, but is not always present. It's not ghosting, and there's only one image which remains in the same position. The aerial has been carefully aligned and the luminance delay line appears to be in order.
A single reflection of the sort described suggests a "bounce" in the luminance delay line. This is best seen on a test card. The line itself is unlikely to be defective, and if it's earthed correctly the terminating resistors (R202/5/6) and their connections should be checked. That the delay line is responsible for the trouble can be checked simply by removing it and shorting across the panel - this will upset the chroma/luminance registration of course.

THORN 1615 CHASSIS

The problem with this set is to do with the vertical linearity - about once a month I have to adjust the field linearity control R102 slightly to restore good linearity. Something seems to be changing value slowly, but it's difficult to guess what it could be.

The problem could be due to leakage in any of the four transistors that follow the field charging circuit - the amplifier VT20, driver VT21 or class B output pair VT22/3. It's more likely however that a capacitor is to blame, and all the electrolytics associated with these stages will have to be checked - C93/95/99/102.

RANK T2O CHASSIS - VCR OPERATION

The problem is field judder when this set is used with a VCR - it works perfectly all right off air. Is there a modification that can be made?

The suggested modification is to change 2 C 16 in the i.f. a.g.c. circuit from $0.01 \mu \mathrm{~F}$ to $3.3 \mu \mathrm{~F}$.

HITACHI CNP190

After a couple of hours the picture becomes very grainy, while a small increase in the setting of the colour control produces over saturation with the colours trailing and glittering. Slight adjustment of the a.g.c. control gives marginal improvement.

The grainy picture suggests that the tuner is working at less than full gain. Wait till the fault appears, then apply an external bias of about 4 V to the a.g.c. pin (at C266). If this has no effect, the tuner is suspect. If normal reception is restored, check back to the a.g.c. circuit - CR7, C258 $(3 \cdot 3 \mu \mathrm{~F})$, TR 7, CR6 etc. and their associated joints and connections.

ITT VC300 CHASSIS

The raster is present but there's no picture. On the sound side the signal seems to be from a radio station - it comes through clearly but faintly, the volume increasing noticeably when a hand is held near the intercarrier sound i.c. and the surrounding circuitry.

The fault seems to be endemic with these sets, and is invariably due to failure of the video detector i.c. - IC6, type TDA 1330 or MC1330.

PYE 368 CHASSIS

The problem with this dual-standard hybrid monochrome set (Dynatron TV201) is lack of width - about five inches in on each side. Also the picture expands and disappears when the brightness is increased. The e.h.t. rectifier and the valves in the line output stage were replaced without curing the fault, but replacing C111 restored full width. Is there anything else that should be changed?

You seem to have taken the action required. C111 $(0.047 \mu \mathrm{~F})$ couples the drive to the line output valve. Use a 400 V type.

THORN 8000 CHASSIS

There's no raster, though a vertical white line appears when the line scan coils are unplugged. The first anode supply (TP27) is low at 350 V instead of 630 V , and the voltages in the line driver stage are wrong though the transistor itself seems to be o.k. and no faults can be found in this area.

A faulty line output transistor can cause these effects, and a replacement should be tried as a first step. Otherwise the scan correction capacitor C407, the scan coils and the line output transformer are suspect.

NATIONAL TR542G

There are a number of symptoms on this set as follows: the left inch of the picture is white, the brightness is high even with the control at minimum, there's bad horizontal pulling and blurring and spreading of whites on advancing the contrast control setting, there are flyback lines and a long warm up is sometimes required.

First check the video output stage supply - there should be 110 V across $\mathrm{C} 420(3 \cdot 3 \mu \mathrm{~F}, 160 \mathrm{~V})$ which could be faulty. Then check the video output transistor TR 15 (2SC1012-a BF179 should do), the coupling capacitor at its base (C141, $33 \mu \mathrm{~F}$), and if necessary the video emitter-follower TR 14 (suitable replacements BC 107 or BC 171). Also make sure that the l.t. line is correct at 11.5 V across C 705 (set by VR71).

DECCA 30 SERIES CHASSIS

The problem is a vertical green band at the left-hand side of the screen, about half an inch wide, present only on colour. There are also slight Venetian blinds, noticeable when the picture contains large areas of one colour.
Get the right trimming tool and carefully adjust the ident coil L205 to eliminate the green band. Trim out the blinds on a test card with VR249 and if necessary slight adjustment of L204.

PYE 697 CHASSIS

There's a good monochrome picture but no colour. With a colour bar input, the waveform at the vision test point on the i.f. panel consists of a luminance staircase with no colour information. In view of this the i.f. panel and tuner were checked by substitution, but the problem remains.

There's never much colour to be seen at the vision test point, even when a X10 probe is used. Try overriding the colour killer by shorting out diode D21 on the decoder panel. You will then probably find that unlocked colour appears, indicating that adjustment of the reference oscillator preset control RV10 is required.

PIL TUBE

Something that's not supposed to has happened - the scan coils have come unstuck from the tube! I've temporarily
fixed them with insulating tape, but would like to know what type of glue to use.

Epoxy resin (Araldite) should do the trick, provided the glass surface is clean. Before fixing the coils however it will be necessary to align them carefully for optimum convergence. If further trouble is experienced, you may have to use one of the more expensive specialised adhesives.

ITT CVC32 CHASSIS

There's an intermittent field fault on this set - the top quarter of an inch or so of the picture is lost, while about half an inch down from the top of the screen there's a quarter-inch band of white lines.

This sounds like slow field flyback. The most likely cause is slight leakage in one of the FT3055 field output transistors T8/9 or diode D10 (BY133). If proving these by substitution doesn't resolve the problem, the most practical course of action would be to obtain an exchange CMF30 field timebase module.

HITACHI CNP860

The focus on this set is poor, but there doesn't seem to be any focus adjustment.

The c.r.t. used in these sets has a unipotential gun, so no focus adjustment is necessary or provided. If the h.t. is correct at 120 V , and the boost voltage at pin 1 of the threepin connector L is correct at about 520 V , the c.r.t. is probably soft. After some eight years this could well be the case.

GEC 2114
The trouble with this mains-battery monochrome portable is no e.h.t. or any other medium/high voltages, while the main l.t. rail is at about 15.5 V instead of 11 V . I've checked the transistors in the series regulator circuit, but can find no fault here. The line oscillator transistor seems to be warm, while its base bias resistor R 240 is quite hot.

The fact that the main supply line is high indicates that it's unloaded, due to the line output stage not functioning. Whilst the line putput or driver transistor could be at fault, or the supply to either could be missing (check D208 and R243/T201 respectively), the warm oscillator transistor suggests that the line oscillator has stopped. Check the two transistors ($\operatorname{Tr} 211$ oscillator, $\operatorname{Tr} 210$ reactance transistor), the connections to the oscillator coil L201, and the coupling capacitor C228. Also ensure that $\operatorname{Tr} 210$ is receiving base bias from the line hold control P201 (the base voltage should be about 1.6 V).

THORN 3500 CHASSIS

There's an intermittent colour fault. The colour depth sometimes varies randomly between two levels of intensity: on other occasions the colour is completely lost, leaving a good quality monochrome picture. The loss of colour sometimes occurs on changing channels, but the colour then usually returns after a few minutes. The loss of colour is sometimes accompanied by loss of colour lock, i.e. horizontal bands of weak colour bars across the screen.
The problem could be an a.c.c. fault, in which case the a.c.c. smoothing capacitor C173 ($2 \cdot 5 \mu \mathrm{~F}$) should be checked by substitution as a first step. Then suspect that the amplitude of the gated burst signal is varying at the collector of the second burst amplifier transistor VT302. Check this with a scope if you have one. Make sure that the reference oscillator control loop is correctly set up, and note that the correct setting of the line hold control is important for correct decoder operation in this chassis.

ITT VC400 CHASSIS

There are flyback lines on all lighter scenes; there's also line foldover on the left-hand side of the screen.

These symptoms can occur if the line hold control R83 is incorrectly set. Try it to see whether the fault clears. If not, check the flyback blanking diodes D1 and D19, then if necessary concentrate on the flywheel sync discriminator circuit, around D10/D11, also the following f.e.t. reactance stage transistor T14 (BF244B). The line oscillator circuit itself is rather unusual - a complementary squarewave generator. The 8.7 V zener diode D 12 might also be worth checking.

SABA F CHASSIS

The trouble with this set is centre compression - the band of compression is about two inches high, across the centre of the screen. The compression is not too severe, but is annoying on some shots.

A fault in the linearity circuit can cause this sort of trouble. Check the linearity control P676 ($1 \mathrm{M} \Omega$), and the feedback capacitor C694 ($0 \cdot 022 \mu \mathrm{~F}$) which tends to suffer from leakage problems. The usual PCL805 pentode cathode bias components should be checked - R696 (680Ω) and C686 ($100 \mu \mathrm{~F}$). These often fail, especially the resistor which changes value.

225
Each month we provide an interesting case of television servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.

Back to monochrome this month, in the form of an old and tatty set fitted with the Thorn 1500 chassis - one of the most common monochrome chassis around in its day. Most of these sets are now getting on in years, and this particular specimen was brought in by a disgruntled field engineer at the end of a rainy and frustrating day. Evervihing we touched in the set seemed to fall to pieces, and after tidying up a few odd faults we were left with the main problems -a tired c.r.t. and lack of width. The line scan was almost two inches short on each side of the screen.

The technician assigned to the job first tried replacing the line timebase valves (PL504, PY801 and 30FL2). This produced no improvement, so the width control circuit was next examined. The width control and the associated highvalue resistors all measured o.k. on the ohmmeter, and replacing the VDR and the pulse feedback capacitor made no difference. The width control was in fact working, but unable to correct the underscan. Leakage in the line drive coupling capacitor C100 maybe? Replacing this left the fault exactly as before.

At this point the chief technician appeared, cup of tea in hand, and passed his opinion. "The scan-correction capacitor C90 is probably short-circuit" said he. Together they checked C90, which was perfectly o.k.! "Must be the harmonic tuning capacitor" said the oracle - "check C95, and make sure no one's fitted the wrong tripler." After some research, since there are many similar looking types of e.h.t. tray for this series of Thorn monochrome receivers, it was established that the correct unit was filted - a doubler actually, since it was a 19 in . set. Suddenly realising he'd missed an important point, the technician checked the h.t. voltage, which was found to be correct at 245 V. This
brought us to the harmonic tuning capacitor C95, but replacing it made little difference.

The e.h.t. was checked and found to be high at 21 kV , while the boost voltage was roughly correct at 680 V . The high e.h.t. increased our suspicion that there was something wrong with the harmonic tuning, so an experiment was carried out - a 100 pF capacitor was added in parallel with C95 (150pF). This restored normal width! We couldn't leave the set like this however. The culprit was found and replaced - what was it? See next month for the answer and another item in the series.

ANSWER TO TEST CASE 224
 - page 548 last month -

Patience is a virtue in our business, and we had great need of it with the fault described last month! You will recall that an Hitachi VT8000E VCR was on the operating table, and that its very intermittent fault was video noise on the upper half of the raster. The heads had been checked by substitution, likewise the head amplifier etc. chip IC201. We eventually found that the trouble was due to intermittent absence of the head switching pulse, and carried out tests on the servo panel.

The i.c. (IC502) containing the 25 Hz flip-flop proved to be o.k., so where was the pulse disappearing to? In fact the pulse never got started: careful checks during the increasingly rare presence of the fault condition revealed that the pulse from the head drum tachogenerator went missing each time the trouble occurred. After checking its connections, we decided that the tachogenerator must have been going open-circuit intermittently. A new tachogenerator head completely cured the fault, but many hours had been spent on the machine by the time it left the workshop..

[^1]
GET THE BEST DEAL FROM BEST ELECTRONICS

YOUR ONLY AUTHORISED PLESSEY SEMICONDUCTOR DISTRIBUTOR

 ALL PRICES INCLUDE VAT \star FREE WELLER MINI IRON WITH ORDERS £25+

TV LINE OUTPUT TRANSFORMERS

FAST RETURN OF POST SERVICE

RANK BUSH MURPHY Z146 A640 A774 A816 A792 A793 A823 A823b A823av colour			INDESIT			
			KB-ITT VC200 VC205 VC207 CVC5 CVC7 CVC8 CVC9 colour CVC20 CVC30 CVC32 series colour			
DECCA 1700200120202401 MS2000 MS2400 240424202424 mono CS1730 1733 ' 30^{\prime} series BRADFDRD colour CS1830 183580100 series colour						
			PHILIPS 170 series dual std mono 210300 series mono	COLOUR		
			68 series			
FERGUSON HMV MARCONIA ULTRA THORN 1590159115921593 mono 16001615 series mono				G9 series		
			PYE 169173569573769 series RV2938 368 series			
G.E.C. 2000 to 2064 dual std mono 2047 to 21053112 to 3135 DUAAL STD hybrid colour SINGLE STD hybrid colour		WALTHAM 125				
		WINDINGS RANK BUSH MURPHY Colour hybrid quadrupler type T20a T22 27192722 Pry \& Sec $\mathbf{f 6 . 0 0}$				
PRICESINCLUDE P. \& P. \& 15\% VAT		2718 series primary002718 series EHT overwind $\mathbf{£ 7 . 0 0}$				
		ULTRA THORN				
COLOUR LOPTS £10.50 RETAIL £9.00 TRADE		16901691 EHT overwind............... £7.00				
		PHILIPS				
		G6 EHT (exchange basis only)£7.00				
MONO LOPTS £9.50 RETAIL £8.00 TRADE		G6 primary $£ 5.00$				
		PYE				
		691 to 697 EHT overwind		£3.00		
		69110	697 primary*	£4.00		

All lopts and windings are new and guaranteed for 6 months. Open Mon.-Fri. 9 to 5.30 pm Rewind Service Available

PAPWORTH	Barclaycard and Accesswelcome
TRANSFORMERS	BsA
80 Merton High Street	$01-5403955$
London SW191BE	

QUALITY TV's ALWAYS AVAILABLE

GOOD STOCKS OF MODERN COLOUR PLENTY OF SINGLE STANDARD MONO VERY COMPETITIVE PRICES COME TO THE BEST IN THE WEST

TeleTraders

ST. LEONARDS WAREHOUSE

ST. LEONARDS ROAD, NEWTON ABBOT, DEVON Telephone: (0626) 60154

Technical Training in Radio, Television and Electronics

Star training TODAY and make sure you are qualified to take advantage of the many opportunities cpen to trained people. ICS can furtier your tecinical knowledge and provide the specialist training so essential to success

ICS, the world's most experienced home study college has helped thousands of people to move up into higher paid jobs - and they can do the same for you.

Fill in the coufon below and find out how!
There is a wide range of courses to choose from, including:
City and Guilds Certificates:-
Telecommunications Technicians
Radio, TV and Electronics Technicians,
Electrical Installation Work
Technical Commur.ications
Radio Amateur
MPT General Radic Communications Certificate

Diploma Courses:-

Eleatronic Engine \in ring
Eleztrical Encinee-ing,
Computer Engineering,
Radio, TV, Audio Engineering, Servicing and Maintenance. (inc. Colour TV)
New Self-Build Racio Courses with Free Kits

Colour TV Servicing

Technicians trained in TV Servicing are in corstant derrand. Learn all the techniques you need to service Colour and Mono TV sets through new home study courses which are approved by a leading manufacturer
The ICS Guarantee
If you are studyirg for an examination, ICS will guarantee coaching until you are successful - àt no extra cost

POST OR PHONE TODAY FOR FREE BOOKLET.

Name.

I am interested in
\qquad
... Phone No
International Correspondence Schools,
Dept. 285L Intertext House
LONDON STN8 4UJ. Tel. 6229911
(all hours)

IDEAL FOR FEEDING INTO YOUR HI FI TELEVISION SOUND

TV Sound Tuner Kit
$£ 9.50$ plus VAT plus 50 pence $\mathbf{P} . \& P$.
SENDZ COMPONENTS
63 Bishopsteignton,
Shoeburyness, Essex SS3 8AF.

WMTV LTD. - THE TV PROFESSIONALS

THE BEST DEALIN TV's

* Britains most reliable source of Quality T.V.'s.
* Hundreds of working polished T.V.'s.
\star Full customer testing facilities.
* Thousands of untested S/S Colour T.V.'s from $\mathbf{£ 1 0}$.
\star Quantity deliveries arranged anywhere in Britain or the World.

Special Deals

* Mixed $25^{\prime \prime} 4$ for $\mathbf{£ 3 0}$
* GEC 19 " 10 for $£ \mathbf{1 0 0}$
* BRC 26" 10 for $£ 250$
* Pye 691 22" 10 for $\mathbf{£ 1 2 0}$
* PYE 205 22" 10 for $£ 199$
\star Personal collection only
All above prices are plus 15% V.A.T.

RING 021-444 6464 FOR DETAILS OF QUANTITY DISCOUNTS
MAIL ORDER TV's - Working Colour TVs supplied by Mail Order and fully tested before despatch.

```
* BRC 22"/26" £70 * BUSH 184 22" £40
* BRC 8000 17" £65 * BUSH A823 22"/26" £60
```

Above MAIL ORDER prices include V.A.T. but please add $\mathbf{f 1 2} \mathbf{p} \& \mathrm{p} / \mathrm{T} . V$. Set.
\star New T.V. Stands.
\star Fully adjustable.
\star £6.25 plus £1.75 p \& p.
\star Quantity discounts.
\star Price inc. V.A.T.

EXPRESS MAIL ORDER SPARES
\star Ex-equipment Panels

	Con	Power	Line	Decoder	Video	IF	Frame	Tripler	LOPTX
RBM 823	7.00	6.00	14.00	14.00	-	6.00	9.00	3.00	3.00
BRC 3000	6.00	14.00	14.00	6.00	6.00	6.00	5.00	4.00	6.00
BRC 3500	9.00	14.00	14.00	6.00	6.00	6.00	6.00	4.00	6.00
GEC 2100	6.00	-	-	8.00	6.00	6.00	10.00	5.00	5.00
PYE 205	6.00	-	-	8.00	7.00	6.00	5.00	5.00	7.00

Postage \& packing $\mathbf{f 1 . 2 5}$ Panels 50p Triplers

Ex-Equipment	Valves Untested
ECC82	$\mathbf{1 0}$
PCF802	$\mathbf{9}$
PCL82	$\mathbf{1 0}$
PCL84	$\mathbf{1 0}$
PCL85/805	$\mathbf{9}$
PCL86	$\mathbf{1 0}$
PFL200	$\mathbf{1 0}$
PL36	$\mathbf{1 0}$
PL504	$\mathbf{1 0}$
PL508	$\mathbf{1 8}$
PL509	$\mathbf{3 0}$
PL519	$\mathbf{4 0}$
PY500	$\mathbf{2 0}$
PY800/81	$\mathbf{1 0}$
PY801/88	$\mathbf{1 0}$
EF184	$\mathbf{1 0}$
PCF80	$\mathbf{1 0}$
PL802 Tested	$\mathbf{1 0}$

* p \& p paid but minimum order of $£ 3.00$ please.
* Deduct 10% discount on orders over £20.00.

FOR SPARES WE ARE OPEN MON-FRI 9.30-1.00 WED CLOSED ALL DAY FOR SETS WE ARE OPEN MON-SAT 9.30-5.45 WED CLOSED ALL DAY
PLEASE NOTE - ALL THE ABOVE MAIL ORDER PRICES INCLUDE 15\% V.A.T.
WMTV LTD. 92 HIGH ST (A435) KINGS HEATH B'HAM B14 7JZTEL. 021-444 6464

WITWORTH TRANSFORMERS

TV LINE OUTPUT TRANSFORMERS

BUY DIRECT FROM THE MANUFACTURERS of the largest range

OF LOPT'S IN THE COUNTRY:
150 DIFFERENT TYPES IN STOCK TOP QUALITY. COMPETITIVE PRICES

All items new and guaranteed.

Contact your nearest depot for service by return.
Callers welcome. Please phone before calling. PHONE, OR S.A.E. WITH YOUR REQUIREMENTS.

Tidman Mail Order Ltd., 236 Sandycombe Road, Richmond, Surrey. Approx 1 mile from Kew Bridge.
 Phone: 01-948 3702

Mon-Fri am to 12.30 pm .
1.30 to 4.30 pm .

Sat 10 am to 12 pm .

Hamond Components (Midiand) Ltd.,
416, Moseley Road,
Birmingham B12 9AX.
Phone: 021-440 6144.
Mon-Fri 9 am to 1 pm
2 pm to 5.30 pm .

P Phone: LUTON BEDS. 38716
 OPPORTUNITIES TRADE SALES
 ALL SETS GUARANTEED COMPLETE OVER SIX HUNDRED SETS ALWAYS IN STOCK
 Pye 20T, Philips G8; Ferguson 3-3k5 Murphy, Bush, Decca, GEC All from
 $£ 35.00 \quad £ 50.00$
 Square Screen, Mono's from
 £5.00 ALL MODELS
 Sets for spares from
 £2.00
 All include VAT
 OPPORTUNITIES
 9A, Chapel Street, Luton, Beds. LUTON 38716
 9.30-6.00 p.m. Weekdays, $10.30-1.00$ p.m. Sundays.

VIDEO FILMS AS A BUSINESS

If you are engaged in the sale, exchange, or hire of pre-recorded video films or are contemplating entering this highly profitable easy to run, "fun" field of enterprise, come to the experts.

HERE ARE A DOZEN

 GOOD REASONS WHY!1 We have the largest warehouse in 1 Great Britain entirely devoted to the sale of video product
2 Our "show shop" gives you all the best ideas on equipment and we can supply any items in it.
3 We stock almost all the 2.000 plus films available for sale in this country.
4 You will be dealing with a Company 4 established for 25 years - not the 'here today and gone tomorrow' sort which are prevalent in this field.
5 Help and advice are yours for the asking. We, ourselves, are very experienced retailers.
6 A large range of feature films can be O bought only from us. We have exclusive rights to them, and they include blockbusting titles such as Carquake. Futureworld. Assassin. etc., eic. (See our advertisement on the back covers of the leading video magazines.)

7 We carry large stocks and have a very fast and efficient delivery service.
8 If you prefer. you can telephone an order and collect it personally. We are very easy to find with plenty of parking.
9 We also have exclusive rights to the revolutionary new "Vidpack" which cuts down the space requirement for lending and exchange libraries in a truly dramatic way.
10 Our advice on starting stock is not based on what shows us most profit. Our experience of what really moves is at vour disposal and. given the amount of money you wish to spend. we can supply you with the right stock. 11 We are always first with new releases.
2 Last but not least. our prices are keen, in most cases the same as the manufacturers. sometimes lower. You have only one Company to deal with rather than many. and our speed
delivery leaves most of them standing.

WHY SHOP AROUND? CENTRE VIDEO

FRENCH'S AVENUE, DUNSTABLE Dunstable (0582) 608933
Call in and see us or give us a ring
and we will get a representative to you very quickly.

APOLLO

HIGH TEMPERATURE PUMPED COLOUR TUBES
Fast Mail Order service to any part G.B. Just phone for a quotation. Delivery Manchester area £3.00. Two year guarantee. Fitting while you wait or in your home $£ 20$ extra.

MAIL ORDER ADVERTISING

British Code of Advertising Practice
Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requires advertisers to fulfill orders within 28 days, unless a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please retainh proof of postage/despatch, as this may be needed.

Mail Order Protection Scheme

you order goods from Mail Order advertisements in this magazine and pay by post in advance of delivery. Television will consid

1) You have not received the goods or had your money retumed: and
2) You write to the Publisher of Television summarising the situation not earlier than 28 days from the day you sent your order and not later than two months from that day Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.

We guarantee to meet claims from readers made in accordance with the abo
This guarantee covers only advance payment sent in direct response to an advertisement in this magazine not, for example. payment made in response to catalogues etc., received as a result of answering such advertisements. Classified advertisements are excluded."

TELEVISION TUBE	
SHOP	
NEW TUBES AT CUT PRI	ICES
EUROPEAN TYPE Nos.	
Price $£$	VAT ¢
	15\%
A28-14W................. 21.95	3.29
A31-19W/20W......... 19.95	2.99
A31-120W/300W...... 17.95	2.6
A31-410W/510W...... 17.95	69
A34-100W/510W...... 18.50	2.77
A38-160W/170W...... 17.50	2.63
A44-120W................ 27.00	4.05
A50-120W................ 17.95	2.69
A59-23W................. 21.50	3.22
A61-120W................ 19.95	2.99
Rigonda 6" 14.00	2.10
U.S.A./JAP. TYPE Nos.	
9AGP4 21.82	3.27
190AB4/C4.............. 23.00	3.45
230ADB4 28.50	4.28
230DB4/CT468......... 26.60	3.99
240AB4A 17.95	2.69
CT507 equiv 21.95	3.29
CT512..................... 27.50	4.12
310DGB4/DMB4...... 23.00	3.45
310EUB4................. 19.95	2.99
310EYB4................. 18.75	2.81
310FDB4................. 27.50	4.13
310FXB4.................. 17.50	2.62
310GNB4A.............. 27.50	4.13
310HC B4 27.50	4.13
340AB4 22.50	3.38
340A YB4 30.00	4.50
340RB4/CB4 26.00	3.90
340AHB4 26.00	3.90
TSD282..................... 8.00	1.20

CARDIFF CENTREVISION

EX RENTAL T/V's

"In stock now. Philips G8 Thorn 3500

Philips K9 $26^{\prime \prime} 110^{\circ}$ VCR Position from $\mathbf{4 5 . 0 0}$
Capacity to supply 300 working sets weekly. Large range of spares. Call and see our 4000 sq. ft. warehouse, you won't be disappointed.

Over 1,000 sets in stock
Unit 2 corner of Penarth Road and Hatfield Road.
Tel. Cardiff 022244754

EMO - EUROSONIC - GRUNDIG - TELETON + ALL BRITISH MAKES ETC., ETC. - ALL SPARES READILY AVAILABLE IMMEDIATE CREDIT AVAILABLE-TRADE ONLY
 Almost any TV Component supplied by return "off the shelf" e.g. LOPTX EHT trays - droppers - OSC coils - switches - cans - smoothers - I.C.'s, etc., etc.

YOU CAN BE 95\% SURE WE CAN SUPPLY ANY TV COMPONENT BY RETURN IF YOU NEED SPARES FAST - RING NOW!

\& European Types Available from
$\mathbf{£ 1 4 . 0 0}$ + VAT £2.10 COLOUR TUBES
New and Mullard Colourex*

12VARP22...............62.50	9.37
330AB22 73.50	11.03
A44-271X 60.00	9.00
A47-342X 63.00	9.45
A47-343X 63.00	9.45
A49-120X/191X 53.00	7.95
A51-161X............... 67.00	10.05
A51-500X/510X 64.50	9.68
A51-220X 64.00	9.60
A56-120X 54.00	8.10
A56-500X/510X 63.00	9.45
A63-120X 69.50	10.42
A66-120X 65.00	9.75
A66-140X/410X 70.50	10.57
A66-500X/510X 65.00	9.75
A67-120X 65.00	9.75
A67-140X/200X 69.50	10.42
A67-150X 75.00	11.25

"Old Bulb Required for Colourex"
ALL TUBES TESTED BEFORE
DESPATCH \& GUARANTEED
FOR 12 MONTHS. 4 YEAR
GUARANTEES AVAILABLE ON MOST TYPES CARRIAGE
Mono $£ 3.00$ Colour $£ 10.00$
Mainland only. Overseas Rates on Application.
TELEVISION TUBE SHOP LTD.
52 BATTERSEA BRIDGE RD., LONDON, SW 11.
Tel. 228 6859/223 5088

SETS \& COMPONENTS

QUALITY REBUILT TUBES

HIGH TEMPERATURE PUMPING COLOUR (2 year Guarantee)

90° up to $19^{\prime \prime}$	$\mathbf{£ 3 3}$
$90^{\circ} 20^{\prime \prime}-22^{\prime \prime}$	$\mathbf{£ 3 5}$
$90^{\circ} 25^{\prime \prime}-26^{\prime \prime}$	$£ 36$
110° and PIL	$£ 40$

MONO (including thin necks) from £14.
All prices + VAT
Delivery UK Mainland $£ 6$.
4 year Optional Guarantee
Send or phone for full list and terms.

WELTECH PICTURE TUBES

Unit 3-10 Wembley Commercial Centre,
East Lane, Wembley, Middx.
01-908-1816
TRIANGLE TELEVISIONS, Coleraine, N.I. Quality working sets. Clean cabinets, Decca, Bush, Kirting. Phone Coleraine 3600 .

VALVE BARGAINS

BOXED \& TESTED 30p EACH

ECC82, EF85, EF 183, EF 184, PFL200, PCF80, PCF802, PCC84, PCC89, PC97, PC86, PC88, PCL84, PCL805, PCL86, PY800, PY88, PL36. PL504, 6F28, 30PL13, 30 PLI4.

COLOUR VALVES 65 p EACH
PY500/A, PL508, PL509/519, PL802.
Postage \& Packing 30p, no VAT

VELCO ELECTRONICS

9 Mandeville Terrace, Hawkshaw, Via Bury, Lancs,

BUSH $20^{\prime \prime}$ and $24^{\prime \prime} \mathrm{S} / \mathrm{S}$ mono’s. Working order $£ 10$. Each minimum 10. C.O.D. available (0706) 623404.

TELEBEST \star

Good quality sets always available. working - non working.
G8* 3500 • 8500 * Grundig etc.
Discount on quantity.
841 Romford Road, Manor Park
London E. 12
Tel: 01-514 1333.

SMALL ADS

The prepaid rate for classified advertisements is 29 p per word (minimum 12 words), box number 60 p extra. Semi-display setting $£ 5.64$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertismement Manager, Television, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

NOTICETO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

SUFFOLK TUBES LIMITED
 214 Purley Way, Croydon, Surrey. Tel: 01-686 7951/2/3/4

SUPPLIERS OF MONO AND COLOUR TUBES TO MAJOR RENTAL COMPANIES.
all colour tubes hot pumped at 385c and rebanded to BRITISH STANDARD. 4151972 CLAUSE 18-2.
$19^{\prime \prime}$ and $22^{\prime \prime}$ TUBES APPROVED. OTHER TYPES PENDING.
BRITAINS LARGEST INDEPENDENT REBUILDER FOR 21 YEARS.

TVDX EQUIPMENT. Vhf to Uhf converter, 12 V supply required $£ 10 \cdot 50$. Band I double notch fiter, 40 db plus attenuation $£ 18.30$ (state Channel). BI mosfet preamplifier, high gain, low noise, mains powered $£ 25.95 \mathrm{Bl} / \mathrm{II}$ version (to 88 MHz) $£ 1$ exfra Tunable set side mosfet Uhf preamplifier, mains powered $£ 25 \cdot 95$. Band III type $£ 25 \cdot 50$. Sae date, lists, H. Cocks, Cripps Corner, Robertsbridge, Sussex. Tel. 058083-317.

THORN 8500 working with polished cabinets $£ 47$ or with regunned tube $£ 65$. Minimum order five. Tel. 0484-643273 (W. Yorks).

CAMPBELL ELECTRONICS LTD.
COLOURT.V. PANELEXCHANGE/ REPAIR SERVICE
THORN, RANK, PHILIPS, GEC, DECCA, TELPRO, GRUNDIG etc.
90 Day Guarantee on all repairs - same day postal service.

Telephone Telford (0952) 502422 for catalogue and price list.

CAMPBELL ELECTRONICS LTD.,
Unit 5, Heath Hill Estate,
Dawley, Telford, Shropshire.

TURN YOUR SURPLUS capacitors, transistors, etc. into cash. Contact Coles-Harding \& Co., 103 South Brink, Wisbech, Cambs. 09454188 . Immediate settlement.

GOOD WORKING CTV's: Thorn $19^{\prime \prime} 3 \mathrm{~K} £ 55.22^{\prime \prime}$ 3K5 667. ITT CVE5 20" $£ 65$. Thorn $4 \mathrm{~K} 22^{\prime \prime} £ 85,26^{\prime \prime}$ £85. Bush 2718 20" $£ 75$. (No VAT) Tele-Q, Preston (0772) 792547.

 T.V. PATTERN GENERATOR
 UHF output plugs straight into aerial socket no other connection required.
 Features.
 \star Crosshatch \star Battery Powered
 \star White Raster \star Pocket sized
 $100 \times 75 \times 40 \mathrm{~mm}$.
 Built ready for use $£ 17.75$. Price includes P\&P and VAT
 C. L. JERVIS
 15 Mercer Grove
 Wolverhampton, WV11 3AN.
 Tel. (0902)' 736606.

LOOK!

THORN 3000/3500 \& 9000 TRIPLERS
High Quality Silicon Replacement Units
3500 only $£ 4.95$ inc. P.P. Add 74p V.A.T

uotes for $50+$.

WING ELECTRONICS
i5, Waylends, off Tudor Road, Hayos End. Middoresex.
BUSH $24^{\prime \prime} / \mathbf{2 0}^{\prime \prime}$ single standard mono's, good working! Clean! $£ 10$ each. Minimum ten. Delivery anywhere. C.O.D. (0706) 623404.

> Southern Valve Co. 2nd Floor, 8 Potters Roed, Now Bemet, Herts. Tel: 01-440 8641 for current prices \& availability, all popular valves stocked. SAE Lists. Cash with order.
postal Despatch. (Lunch $12.30-2$.
> Valves, Tubes. Aerials atc by LEADING-MAKERS. Send SAE Lists or Phone tor currant prices. Counter. NO COD. Speedy Despatch assured. No order under $£$
> hillip Bearman, 6 Pottors Roed, Now Bemet, Herts. Closed Thurs. Pleses phone for opening hour
G.E.C. 2040 working with polished cabinets $£ 32$ or with regunned tube $£ 50$. Minimum order five. Tel. 0484-643273 (W. Yorks).

WERNETHY ELECTRONICS LIMITED

FREEPOST.
P.O. BOX 9, MARPLE, STOCKPORT, CHESHIRE. SK6 6YE.

WERNETH ELECTRONIC PRODUCTS - WINNINGTON RD - MARPLE - STOCKPORT - CHESHIRE

TRADE ONLY N. W. ELECTRONICS

Have for disposal large quantities of good class COLOUR TVs,
Bush, Pye, GEC, Thorn, Hitachi, Philips, etc, (Ex Co-op). Not junk, very clean cabinets.
Genuine change over TVs and repossessions.
From only $£ 20$. Deivery aranged.
We export large quantities of TVs weekly, can we help you? Call now and see our selection, over 1000 TVs to choose from.

N. W. Electronics, Bolingbroke Buildings, Bolingbroke Street, Bradford 5.
3 Mins from Motorways.
Tel. 0274390121.

TV DX
65/17-65. Gain 22-26dB. Noise ratio 3 SdB. Overlod, 7 R $545 / 45$ masthead, remotely controlled, tunable amp.ch 2 VHF, RB3 masthead, remotely controlled, tunable amp.ch $5-11$. Gain 22.30 dB . Noise ratio $2,5 \mathrm{~dB}$. Overload 10 mV Price $\mathrm{F}^{2} 8.00$.
2nd line amp. SBB268-V ch 2-68. Gain $15-12 \mathrm{~dB}$ with DC bypass. Price $\mathbf{f 1 4 . 5 0}$
UHF ch.amp (state) with 2nd unamplified UHF input. Gain 26dB. Bandwidth $10-15 \mathrm{mH}$. Price 531.00 .
UHF ch.amp (state) converted to other ch. with 2nd unamplifed UHF input. Gain 26dB. Price $£ 37.50$
Power-Supply V12 $18 \mathrm{VV/50mA} 2$ outp. Price $£ 8.00$.
Power-tuning supply VR $12 / 012$ oulp. Price $£ 11.50$.
Power-tuning supply VR $12 / 6$ preset. Price $£ 25.00$.
All prices include $P \& P$. Trade enquiries welcome.
Robert van Reysen, 28 Pemberton Road, East Molesey, Surrey. Phone: 01-979 7380

TUBES £24

Re-gunned colour A56 \& 120 ($22^{\prime \prime}$ only) 1 year guarantee. No need to spend $£ 5$ returning old tube No. V.A.t. for return delivery. Send P. Orders plus 55 delivery U.K. mainland to: U. VIEW (TUBES) 29, Warmsworth Road, Doncaster, Yorkshire DN4 ORP. Tel: 855017

T.V
 SPARES, PANELS AND MANUALS

PHILIPS. GRUNDIG
TELEVIEW
01-994 5537
194, Acton Lane, London W. 4.

T.V.s FOR EXPORT

We have a selection of Bush and Ferguson colour T.V.s in good working order.

VHF/UHF suitable for countries using PAL system. We also supply The Home Market.

Write:

Tele Spares Ltd.,
7 Walkinstown Road,
Dublin 12, Ireland.
Tel: Dublin 520485.

When replying to Television Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
B) That you have enclosed the right remittance
C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the
advertiser.
This will assist advertisers in process ing and despatching orders with the minimum of delay

TELEFUNKEN. We buy/sell T.V.'s, Hi-Fi and components (Supersonic receiver boards especially wanted). Turn your surplus items into cash, or contact us for that elusive component. K. H. GOULD, Ladburn Lane, Shilton, Oxford. Tel. (0993) 841999

COLOUR PANEL

EXCHANGE SERVICE
BRC $3000 / 3500,8000 / 8500$ GEC 2110 series Philips G8, G9 and G11
Three roonths guarantee on all Exchange Panels. Free delivery in London area.
Also large stock of ex equipment panels Thorn 3500 Decca Bradford. Thorn 8500 for sale.
All guaranteed Perfect Working Order.
S.A.E. for Catalogue (Trade Only) or phone for prices of Panels.
KAY JAY TV SERVICE, 24 Clauson Avenue,
Northolt, Middlesex
Phone' 864-0350.

CAMPBELL ELECTRONICS LTD.

Distributors of specialist spares to radio and television service depts.
We stock semiconductors, I/Cs, special T.V. and audio spares, service aids, rebuilt CRTs etc.
Fast off the shelf delivery of stock items.
Send S.A.E. or telephone for full catalogue and price list.

CAMPBELL ELECTRONICS LTD., Unit 5, Heath Hill Estate. Dawley, Telford, Shropshire.
Telephone Telford (0952) 502422.

BOOKS \& PUBLICATIONS

OUT OF PRINT BOOK SERVICE, 17, Fairwater Grove (E), Cardiff. Send S.A.E. for details.

ANY SINGLE SERVICES SHEET \&1. L.S.A.E. Thousands different repair/service manuals/sheets in stock. Repair data your named TV $£ 6$ (with circuits £8). S.A.E. Newsletter, price lists, quotations. AUS (T), 76 Church Street, Larkhall, Lanarkshire. (0698 883334).

EDUCATIONAL

BETTER JOB! BETTER PAY!

GET QUALIFIED WITH ICS IN: COLOUR \& MONO TV SERVICING COLOUR \& MONO TV ENGINEERING COLOUR \& MONO TV MAINTENANCE PLUS: Telecommunications, radio, electronics, electrical engineering, technical communications, radio communications, etc., etc.,
NEW: Self-build radio courses with free kits
Train in your own home, in your own time with ICS, the world's most experienced home study college.
RETURN THIS COUPON TODAY FOR FREE BROCHURE!

TELEVISION COMPUTER RADIOCOMMUNICATIONS \& RADAR SERVICING

TWO YEAR full-time Modular Diploma course to include a high percentage of practical work.

- ELECTRONIC PRINCIPLES
- MONO TV \& CCTV
- COLOUR TV \& VCR
- MICROELECTRONICS \& DIGITAL TECHNIQUES
- MICROPROCESSORS \& COMPUTERS
- RADIOCOMMUNICATIONS \& RADAR
Each of the above Modules are 13 weeks in duration. Individual Modules can te arranged for applicants with suitabe electronics background.
Tuition fees (UK \& Overseas) $£ 1500$ per year (i.e. $\mathbf{E 5 0 0}$ per Module).

Next session starts September 14

Prospectus from

LONDON ELECTRONICS COLLEGE

Dept: TT, 20 Penywern Road London SW5 9SU. Tel: 01-373 8721

AERIALS

OLYMPIC 2 WIDEBAND set top aerial for all U.H.F. transmissions. Special price $£ 2.33+50$ p P\&P. Refundable. H.T.C. 48, Broadford Court, Heywood, Lancs.

VETERAN \& VINTAGE

"SOUNDS VINTAGE"
The only magazine for all vintage, sound
enthusiasts, packed with articles by top
writers, covering gramophones, phono-
graphs. 78s. wireless, news, history,
reviews, etc. Annual subscription $£ 6.60$
Bi-monthly. An
(airmail extra). Send 75p for sample copy.
28 Chestwood Close, Billericay. Essex

COURSES

STEVE BEECHING is holding another VCR training course, on 26th \& 27th Sept. Course fee $£ 30 \cdot 00$ Hotel accommodation for weekend $£ 8.47$. Ring for details Newark 71475

BE A COLOUR TV ENGINEER

Two years full time Higher Diploma Course in Electronics, Colour TV and V.C.R.

Next course commences Sept 81 and Jan 82.

APPLY:
Registrar, Reeswood College, 299a Edgware Road, London W2 1 BB.
Tel. 01-402 9985.

MISCELLANEOUS

EX EQUIPMENT TELEVISION SPARES, S.A.E. for lists. P. N. Discount Supplies, Electric House, Suttons Lane, Hornchurch, Essex

BURGLAR ALARM EQUIPMENT. Latest Discount catalogue out now. Phone C.W.A.S. Alarm. 0274682674.

PRE-PACKED. Screws, nuts, washers, solder tags studding. Send for price list. A1 Sales (TV), P.O. Box 402, London SW6 6LU.

RIGONDA AGENTS. For all spares and repairs. Fast despatch trade service available. 01-476-1298. STAR RADIO, 272 Barkin\& Road, London E. 13.

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Television for insertions. I enclose Cheque/P.O. for E
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd and made payable to Television)

NAME... Sendfo: Classified Adverisement Manager.
TELEVISION, Adverisement Manage
Clasesified Ádvartisoment Dept., Am. 2337
London SE19LS. Telephone O'1-2615846
Fate ${ }^{\text {Fap }}$ per word, minimum 12 words, Box No. 60p extra.
Company registered in England. Registered No. 53626. Registered Office: King's Reach Tower, Stamford Street, London SE1 9LS.

SERVICE SHEETS

Thousands of different full size sorvice sheets Thousands of different manuals of all kinds in stock.
(Many of above are unique to us and obtainable nowhere else.)
Updated collection of British colour TV circuits/layouts etc. Containec in 3 huge binders - special price $£ 39.50$ Revised foreign C.T.V. Repair System in 2 huge binders plus $\mathbf{3}$ manuals for $\mathbf{£ 3 9 . 5 0}$ (Rep. Manuals 3 - £6.)
Contains chassis from Grundig, Hitachi, Korting, Kuba, Luxor, Mitsubishi, National F.. Nordmande, Sharp, Skantic, Toshiba, Zanussi Complete set of 11 unique TV repair manuals - only £55. Mono + colour from dual standards to latest models, McCourt \& Tunbridge. SA.E. any quotation, also price lisss, newstenter, bargain offers, detauls of our unique TV repair systems. ${ }^{[1}+$ large S.A.E. any single service shect. Phone: 0698 883334, anytime. Callers $4-6 \mathrm{pm}$. Weekdays, Saturday from 10 am .

- TECHNICALINFORMATION SERVICE

4. - 76 CHURCH ST.. LARKHALL, LANARKSHIRE ML9 1 HE.

30,000 SERVICE SHEETS IN STOCK COLOUR MANUALS ALSO AVAILABLE
TV Monos, Radios, f1.25. Tuners f1.25. Tape Recorders, Record Players, Transistors and Stereograms+ SA.E. from $\mathbf{£ 1 . 2 5}$ each excapt Colour TV Circuits $\mathbf{£ 2}$. Car Radios $\mathbf{£ 2 . 0 0}+$ SAE. Ali Radiograms from $\mathbf{£ 1 . 2 5}$

State if Circuit will do, if sheets are not in stock. All TV Sheets are full lenght 24×12. not in Bits \& Pieces. All ocher Data full lengihs. Free Fault Findirg Chart or TV Catalogue with order. Crossed PO's Returned if Sheets Not in Stock.
C. CARANNA, 71 BEAUFORT PARK, LONDON NW11 6BX. 01-4584882.

MAIL ORDEA SAE.

SERVICE SHEETS from 50p and S.A.E. Catalogue 25 p and S.A.E. Hamilton Radio, 47 Bohemia Road, St. Leonards, Sussex.

SERVICE SHEETS, Radio, TV, etc., 10,000 models. Catalogue 25 p plus SAE with orders-enquiries. Telray, 5 Henderson Street. Preston PR 17 XP

SANDHURST PUBLICATIONS Television service sheet specialists. Workshop manuals. Large selection Japanese TV sheets. Thorn step by step repair guides. SAE for catalogue and enquiries.
49c Yorktown Road, Sandhurst,
Camberley, Surrey GU17 7AG.

EX-RENTAL televisions wanted for export. Must be complete for refurbishing terms. Strictly cash. Phone 0272775865.

NEW VALVES and CRT's required, PCL80S PL504, PL509, PY500A etc. Cash waiting. Bearman, 6/8 Potters Road, New Barnet, Herts. Tet: $01-449$ 1934/5.

WANTED. Integrated circuits types SN7600IND with heat sink. and SL437D for heathkit portable television. Mr. R. E. Gosden, 4 Trussell Close, Weeke Estate, Winchester, Hants. SO22 6DZ.

WANTED Sony Trinitron $18^{\prime \prime}$ C.R.T. Ref. 470 DLB22. Tel. Berkwell 33060 (West Midlands).

FOR SALE

BUSH $24^{\prime \prime} / 20^{\prime \prime} \mathrm{S} / \mathrm{S}$ mono's, good working order, clean, polished. $£ 10$ each, minimum ten. Delivery anywhere (0706) 623091.

PHILIPS V100 mono cameras. This excellent sound and vision camera was made to sell at over $£ 400$. We have just a few, brand new, at an all-time low price. The spec is quite outstanding with zoom lens, TV-type view-finder, electret mike, high sensitivity, complete with moduator/power unit to match any TV or video. Delivered Securicor. Cheque/PO for $£ 125.00$ to Peter Ross, 27 King Street, Ulverston, Cumbria. S.A.E. brings copy of spec. Or phone 0229-52271.
EMIGRATION FORCES SALE of Test equipment, Manuals, Boards, T.V.'s etc. S.A.E. for details: R. Ford, 171, Croham Valley Road, S. Croydon, Surrey CR2 7RE.
NEW BACK ISSUES of ‘Television’ available 95p each post free. Cheque or uncrossed P/O returned if not in stock. Bell's Television Services, 190 King's Road. Harrogate, N. Yorkshire. Tel. (0423) 55885.
H.M.V. 26' C.T.V. Thorn 2000 chassis, working order $£ 25$ o.n.o. Leicester 705439.
PORTABLE U-MATIC. JVC CR4400E including mains PSU \& charger, 2 batteries $£ 1,480.40$ cassettes $£ 120$. Tel. 0907224509 evenings.

N.G.T. COLOUR TUBES

First Independent Rebuilder with

B.S.I. CERTIFICATION

(Certificate No. 004)
2 year guarantee: 4 year option
All Colour Tubes are debanded, high temperature pumped and rebanded using new adhesives and new tension band.
$19^{\prime \prime} £ 30,20^{\prime \prime} £ 32,22^{\prime \prime} £ 33$, and $26^{\prime \prime} £ 38$.
Exchange prices: add VAT at 15\%
N.G.T. ELECTRONICS LTD.,
120. SELHURST ROAD, LONDON S.E. 25 Phone:01-771 3535.
20 years experience in television tube rebuilding.

ARE YOU

USING YOUR SPARE TIME PROFITABLY?

If not, you're losing money. Money that you could be making by selling used colour televisions from home in the evenings. In fact, provided you start correctly and know exactly how to operate, you can easily earn a substantial CASH INCOME with a starting capital of less than $£ 20$. Our new unique publication "How to Deal Successfully in Used Colour Televisions" enables you to follow in the footsteps of many expers who have a great deal of combined experience in this lucrative home business, and who have 'pooled' their knowledge to help you. After all, to follow the advice of someone who has travelled the ground before you, is to be given the best possible start. And the hundreds of valuable trade secrets, hints, tips and suggestions in the guide show exactly how anyone of average intelligence can succeed immediately.

Every aspect, from securing the first television right through to rapid expansion of sales, is covered with the detailed knowledge of experts to ensure certain success. Indexed information on almost all makes of television is presented in clear tabular form, describing performance, reliability, price and service. In particular, the tips on expanding the business are very practical, and are almost automatic when put into practice. Fages of unique advice on advertising ensure that maximum sales are secured, ano sources of supply are described in detail - for both televisions and new/used spares. Monochrome sets are also covered, as are "invisible" cabinet repairs. Plus FREE on-going advice and FREE regular updating sarvice.

You can start tomorrow - but you'll need our guide. The latest big illustrated edition is out now, and costs just $£ 4.95$ - a small price to pay for financial independence!

ORDER TODAY FROM:
globus industries ltd. unit 18, DARLEY AbBEY MILLS. DERBY

[^2]NAME
ADDRESS

DISPLAY ELECTRONICS

LEADERS IN TUBE TECHNOLOGY SINCE THE 60's.

REGUNNED MONO TUBES 2 Year guarantee

20". $£ 11.00$
24". $£ 13.00$

BUDGET CORNER

Buy any 5 mixed types Cash ' n Collect - Take 20\% discount.

OR
Buy any 5 Mono mixed sizes Cash ' n Collect at $\mathbf{£ 8 . 5 0}$ (20") and $\mathbf{£ 1 0}$ (24").

PLEASE ADD 15% VAT.

CALLERS WELCOME

Late night Thursdays until 8pm Saturdays until midday.
N.B. Customers intending to collect orders are requested to telephone in advance:- even popular types may be out of stock for short periods.

V.D.U./RADAR TUBES

Home and export enquiries for Radar Display Tubes manufactured from new (with phosphors to specification) are invited.

WATERLOO ROAD, UXBRIDGE, MIDDLESEX

Telephone: Uxbridge 55800

STANDARD T.V. TUBE

high quality colour REPLACEMENT TUBES AT COMPETITIVE PRICES.
\star Complete New Gun fitted to every Tube.
\star Two year Guarantee
\star Every Tube Electrically Tested.
\star Every Tube Picture Tested.
\star Supplier to Major Rental Companies.

$$
\begin{array}{ll}
18^{\prime \prime}, \mathbf{1 9 \prime \prime} \\
20^{\prime \prime}, 22^{\prime \prime} & £ 25 \\
\mathbf{2 5} 5^{\prime \prime}, \mathbf{2 6 ^ { \prime \prime }} & £ 27 \\
& £ 29
\end{array}
$$

All prices quoted assume the return of your old glass rebuildable condition. Old CRT cash/cheque with order. Please add VAT at 15%.

S.STANDARD TV TUBE CO. 11-29, Fashion Street, London E1

Tel. 01-247 3097

It's easy to complain about advertisements.

Every week, millions of advertisements appear in the press, on posters or in the cinema.

Most of them comply with the rules contained in the British Code of Advertising Practice and are legal, decent, honest and truthful.

But if you find one that, in your opinion, is wrong in some way, please write to us at the address below.

We'd like you to help us keep advertising up to standard.

The Advertising Standards Authority.

A.S. A Ltd , Brook House, Torrington Place. London WCIE 7HN

"TUBE REPLACEMENTS" PROUDLY OFFER

"WELLVIEW" EXCHANGE COLOUR A44-271X
$£ 29$
A47-342X
$£ 29$
A47.343X
A49-120X £31

A51-110X $\mathbf{x} 29$ A51-110LF $£ 29$

A55-14X
A56-120X
£33
A63-120X
£38.50
A66-120X $\boldsymbol{£ 3 8 . 5 0}$
A66-140X £38.50
A67.120X
A67-150X
£38.50
"WELLVIEW" EXCHANGE MONO

A44-120 WR.	$\mathbf{£ 1 1}$
A47-26 WR	$\mathbf{£ 1 2}$
A50-120 WR	$\mathbf{£ 1 1}$
A59-120 WR	$£ 12.50$
A61-120 WR	$£ 13.50$
NEW A31-300 (18 months guarantee)	

All above plus VAT@15\%. Carriage $\mathbf{£ 4 . 5 0} \mathbf{~ i n c .}$ VAT.

ALSO YOUR VALVE SUPPLIER NEW AND BOXED (inclusive of VAT)

Colour Sets

1000 ex-rental TVs Good sets good prices Sets from $£ 10$ only Bush, Pye, GEC, Grundig, ASA, BRC, Philips, Skantic

The prices will amaze you.

TUBE REPLACEMENTS
Unit No. 1, Monmouth St.,
Bridgwater, Somerset.
Tel. 0278 425690-722816

EHT lead for split diode LOPT. $£ 1.00$	GEC 8 ohm. $\mathbf{7 0 p}$ GEC 15 ohm. $\mathbf{7 0 p}$			
h button unit VHF	NE 2B6H 2 small neon lamps used in GEC.			
$£ 7.00$		FRONT END FOR MUSIC CENTRE VHF/MW/LW size $13 \times 3 \frac{1}{2}^{\prime \prime}$.		
CVC 9 ITT Control panel.	Red and Green LED, 14 mixed.	4 push button unit, 7 transistors, V/condenser, 10 coils rod aerial I/C decoder CA 758E (no power supply and output		
CVC 20 ITT 6 push button unit	$\begin{array}{lr}\text { TLR } 102 \text { small red LED. } \\ 20 \text { small red LED. } & \mathbf{£ 1 . 0 0}\end{array}$	stage). Circuit supplied. $\mathbf{£ 6 . 0 0}$ Output stage for music centre. $\mathbf{£ 6 . 0 0}$		
\& Input panel. \quad 25.				
Philips T	MAINS DROPPERS Thorn 50R-40R-1K 5 $\mathbf{5 0 p}$ Thorn $6+1+100 \mathrm{r}$. $\mathbf{3 5 p}$ Pye 6 . -161. $\mathbf{4 0 p}$ Pye $147+260$ r. $\mathbf{4 0 p}$ (731) $3+56+27 \mathrm{r}$. $\mathbf{5 0 p}$	Pre-amp panel 4 pots transistor etc. Plugs and sockets. $£ 1.00$		
		Mains on/off rotary. Mains on/off push. D/P push button on/off. ITT mains on/off push button switches.	TS25-11TBW fits Autovox, Saba, Bang Olufson, Grundig, Tanberg. $£ 3.75$	
Thorn 3500. Varicap $\quad 11.0$				
6 position 12.5 K				
Unit for varicap. ${ }^{\text {app}}$			GEC 2110 after 27.1.77. £3.50	
	CERAMIC FILTERS 5.5 MHz . 6 MHz . $\mathbf{1 5 p}$ $\mathbf{2 5 p}$		GEC G2100 TVM 25. $\quad \mathbf{£ 2 . 0 0}$	
		20 watt O/Put stage. $\quad \mathbf{£ 1 . 0 0}$	Philips G9. $£ \mathbf{£ 3 . 7 5}$	
New portable T/V chassis. Mono $£ 10.00$	3.5 mm Jack socket. NPN/PNP 60v $5 \mathrm{amp} / 80 \mathrm{w}$, pair. 660-661.		Grundig 3000/3010, Seimens TVK 52. $£ 3.00$	
$\begin{aligned} & \text { New I.F. panel T/V 3 I.C. } \\ & \text { TBA750 \& SC950 } \\ & \text { MSC } 950 \end{aligned}$	$\begin{aligned} & \text { NPN/PNP 60v } 5 \mathrm{amp} / 80 \mathrm{w}, \\ & \text { pair. } 660-661 . \end{aligned}$	DE-SOLDER PUMPS. \quad £4.00		
		ORP 12.	ITT LP 1174/NC. $£ 3.00$	
	6 way ribbon cable, per metre.	LP 1173/10 watt. $\quad \mathbf{1 1 . 0 0}$		
ELC 2000 M New. $\quad \mathbf{\$ 7 . 0 0}$		LP 1170.	$\begin{array}{ll} \text { MULTI CAPACITORS } & \\ 1000+2000 / 35 \mathrm{v} . & \mathbf{2 5 p} \\ 2000+2000 / 35 \mathrm{v} . & \mathbf{3 0 p} \end{array}$	
ELC 2060 New $\quad \mathbf{£ 7 . 0 0}$	$\begin{aligned} & \text { TV XTALS } \\ & 4.433 ; 610 \mathrm{KHz} . \end{aligned}$	AM/FM tuner unit (seconds)	$2000+2000 / 35 \mathrm{v} . \quad 30 \mathrm{p}$	
/U Meter 50p			$\begin{array}{ll} 470+470 / 250 \mathrm{v} . & \mathbf{4 0 p} \\ 150+200+200 / 300 \mathrm{v} . & \mathbf{7 0 p} \\ 100+200 / 325 \mathrm{v} . & \mathbf{4 0 p} \end{array}$	
GEC VHF/UHF 8CH touch tune units $41 \mathrm{C} 1 \times S N$ $29862 \mathrm{~N}+1 \mathrm{xSN}$ $16861 \mathrm{NG}+2 \mathrm{xCBF}$ 16848N. $£ 5.00$	6 volt 23 watt soldering	10 watt Mullard amps. NEW.		
	Infra-red emitting diode, TlL30.	AT 1025/08 Blue lateral. 15p	ELC 1043 on panel for$400+200+200 \mathrm{M} 350 \mathrm{v} \quad £ 2.00$	
		Thorn hearing aid unit for ext. loudspeaker.$£ 2.00$		
	750 MFD 50V. $\quad 10 \mathrm{p}$ THERMISTORS 200+200+75 +25 4 fuse holder +2BY133+resistors. I.T.T. panel. CVC 9.		I.T.T. CVC 9. $\quad \mathbf{5 . 0 0}$	
New circuit supplied. CVC panel with pots and main switches $250 \mathrm{~K}, 100 \mathrm{~K}, 423$ 500 K . $£ 1.00$	THERMISTORS $200+200+75+254$ fuse holder +2 BY $133+$ resistors. I.T.T. panel. CVC 9.	AD161/162, pair. 60 p	$175+100+100 / 350 v$ to fit 3500 Thorn.	
		$\begin{aligned} & \text { 731 PYE } 600 / 300 \mathrm{v} \text {, also } \\ & \text { Bush \& GEC. } \end{aligned}$	For T/V Sony Transformer \& Lead \& Sockets for earpiece. 8 ohms. £ 1.00	
	ITT PT266 3W 12 (Thermistor degausing) fits most sets. $\quad 15 \mathrm{p}$ PTH45lA or B. PT 37P. Fit Pye, Bush etc.	EHT rectifier BY212. 10p		
Varicap tuner units. Cost $£ 10$. only $\mathbf{£ 4 . 0 0}$		3X G770/HU37EHT. 10p	THOR N SPEAKERS	
		EHT rec $2 \mathrm{~m} /$ a small. \quad 20p	$15005 \frac{1}{2} \times 2 \frac{1}{2} 3 \mathrm{R} 35007 \times 380 \mathrm{R}$ 35005×3 80R $90007 \times 316 R$ 5×3 loudspeaker for GEC 15	
Convergence panel for GEC 2040, 11 pots, 5 coils, 2 resistors etc. New. $£ 1.50$		EHT rec $2 \mathrm{~m} /$ a large. \quad 30p		
	H.T. thermistor neg. VAll04 35p	Both 12 KV . EHT rec used in Thorn $1400 / 1500 \times 80 / 150$		
PYE 7316 push button unit and 100 KA pots.	GEC 4700M/25v. 15p		25 ohm 6×4 Gl1 Philips $£ 1.00$	
	1000M/63v ITT axle. 15p		UHF Modulator, CCIR, $£ 3.00$	
New circuit supplied with UHF 8ch Light action unit $4 \mathrm{i} / \mathrm{c}$ for Varicap tuning GEC C2001/C2201.	22M/375v ITT. 20p	CSD 118 xMH rec for Thorn 3500 . $\mathbf{1 0 p}$	Circuit supplied. Flush mounting socket. FM/TV 35p	
	THYRISTORSPhilips G11.G122M. $\quad \mathbf{6 0 p}$	GEC 8N 2/2000V. 8p		
		UHF T/V aerial forportable T/V $\quad \mathbf{5 0 p}$		
UHF Mullard 4 push button tuner unit.	$5 \mathrm{amp} / 300 \mathrm{v}$. 25p		ELC 1042. Mullard. ELC $\mathbf{1 0 4 3}$ /05.00 Mullard. $\mathbf{£ 6 . 0 0}$	
	52600D $7 \mathrm{amp} / 400 \mathrm{v} . \quad 30 \mathrm{p}$	Thorn TS 25-11TDT. $£ 2.50$		
ITT Control Panel with Mains lead, 4 slider pots, Mains filter. £2.50		PYE TS25-11TBQ. $£ 1.50$	Moss Fits VHF/UHF D.X.T./Unit N.S.F. $£ 10.00$	
	PYE 22N4444. 85p	DECCA 80 ¢ $\mathbf{\$ 4 . 0 0}$		
		$\begin{array}{ll}\text { GEC Series } & \\ 10282028 & \\ 10401060 & \\ \text { CS } 108 \mathrm{C} 2115 & \mathbf{~ 4 . 0 0}\end{array}$	Power supply 30 V l amp Reg. £2.00	
4 push button unit (for Varicap Tuning) 20 K . 50 p	MR $5013 \mathrm{amp} / 100 \mathrm{v}$. 7p		Small DX Tuner V/cap 48-88 MHz and $175-220 \mathrm{MHz}$ automatic changeover.$£ 5.00$	
4 pots and 6 push button unit for Varicap. Mains on/off switch + Nains filter. I.T.T. CVC 20. £3.50	MR $5083 \mathrm{mmp} / 800 \mathrm{v}$. 12p			
	MR 856. 12p	G9 $\quad \mathbf{£ 4 . 0 0}$		
	SP 8385 Thorn. $\mathbf{2 5 p}$ ELC 1043 AEG. $\mathbf{¢ 4 . 0 0}$		New V/Cap tuner $\quad £ 3.50$ 50 MHz to 300 MHz Automatic Changeover	
		Thorn 9.000 ¢ $\mathbf{£ 4 . 0 0}$		
Philips T/unit UHF. $\quad \mathbf{£ 2 . 0 0}$	PHILIPS SNIPS: CUTS MOST THINGS. $£ 1.50$			
Transistor UHF units with Ae socket and leads. GEC 2000 rotary type. £2.00		GEC $2110 \quad$ £3.50	Thorn Transductor. $\quad \mathbf{£ 1 . 0 0}$	
	CO-AX plugs. 12p		Transductor AT4041/41 50p 8 push button switch and 1 to 8 V/Ristor unit $21-68 \mathrm{CH} . ~$ 22.00 $\mathrm{V} /$ Ristor un	
	UHF Aerial socket and leads. PYE, ITT, THORN.	GEC 2100 TVM25 $£ 2.50$		
Thorn U'HF tuner unit and panel for 900 series.		LP1194 731 Pye $\mathbf{£ 3 . 5 0}$ Grundig TV52 $\mathbf{£ 3 . 0 0}$ ITT BG $100 / 41$ $\mathbf{£ 3 . 0 0}$		
	AE Isolating socket. UHF and lead, PYE. THOR N, ITT. 35p		R2540. $\mathbf{£ 1 . 0 0}$ BUY 69 (RCA 1693). $\mathbf{£ 1 . 0 0}$	
Thorn 900 frame panel. $\quad \mathbf{£ 9 . 0 0}$				
$\begin{aligned} & \text { Mullard VHF Tuner V/cap } \\ & \text { V314. } \quad \mathbf{5 5 . 0 0} \\ & \hline \end{aligned}$	Plug and socket $3+6$ pin printed circuit type, pair.		BUY 69 (RCA 1693). $\quad \mathbf{£ 1 . 0 0}$	
		SENDZ COMPONENT 63 BISHOPSTEIGNTON, SHOEBURYNESS, ESSEX SS 3 8AF. Reg. Office only. Callers by appointment only. Add 15\% VAT. Add 50p P. \& P. Add postage for all overseas parcels		
U321 T/unit V/cap. $\quad \mathbf{£ 6 . 0 0}$	GEC aerial T/V socket \& lead			
U322 T/unit V/cap \quad ¢6.				
Thorn 3500. Thorn 8500 focus unit. Decca focus unit. Large or small. $\{1.00$ each	GEC Mains and battery switch. Or stand by.			
	B9A print V/holder. ${ }^{\text {Sp }}$			
	PYE 697 long. 15p			
4 push button for varicap with pots. $\quad \mathbf{5 0 p}$	TV 11 $\mathbf{2 5 p}$ TV 13 $\mathbf{2 5 p}$ TV 18 EHT. $\mathbf{4 0 p}$ 100k 40 turn pots for V/cap tuning. G9-G11 \& Thorn. $\mathbf{2 0 p}$			
Decca Bradford Tuner, 5				
Line O/P Trans. CVC 20. 12.00				
$12^{\prime \prime}$ TV tube Hitachi	IF Mod CVC25 $\quad \mathbf{5 5 . 0 0}$			
	ITT CVC23 Decoder 110 NEW			
SPEAKERS $5 \times 380 \mathrm{r}$ or 50 r. $\mathbf{5 0 p}$ G970r. $\mathbf{£ 1 . 0 0}$ 5×335 ohm. $\mathbf{7 5 p}$ $\mathbf{6 \times 4 1 5}$ ohm. $\mathbf{£ 1 . 0 0}$ Philips G11 $\mathbf{£ 1 . 0 0}$	ITT CVC20 Audio amp $£ 1.50$			
	ITT CVC20 Driver mod $£ 1.50$			
	ITT CVC9 Power supply board £1.50			

[^0]: Wolsey Sapphire 41 D.A. 40/P @ +3dB; $10 / P$ @ +23dB. £37.95 Wolsey Sapphire 81 DA. $80 / \mathrm{P}$ @ +3dB; $10 / \mathrm{P}$ @ +23dB. £45.25 Wolsey RS8 resistive splitter unit (-20 dB insertion loss) $£ 10.85$ SWAS WB3 Wideband 1 ($47-68 \mathrm{MHz}) 3$ element array £26.75 BL250 Indoor VHF/UHF combiner, 1.5 dB spur insertion loss

 Our 1981 catalogue costs 45 p. Please include SAE with ALL enquiries.

[^1]: Published on approximately the 22 nd of each month by IPC Magazines Limited, King's Reach Tower. Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by Carlisle Web Offset, Newtown Trading Estate. Carlisle. Distributed by IPC Business Press (Sales and Distribution) Ltd., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Sole Agents for Australia and New Zealand Gordon and Gotch (A/sia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland £10, Overseas $£ 11$ per annum payable to \ddagger PC Services, Oakfield House, Perrymount Road, Haywards Heath, Sussex. "Television" is sold subject to the following conditions, ramely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed tc or as part of any publication or advertising. literary or pictorial matter whatsoever.

[^2]: To: Globue Inclustries Ltd., Unh 18, Darley Abbey Milas, Derby
 Please send by return post "How to Deal 'Successfully in Used Colour Televisions
 enclose cheque/p.o. for $£ 4.95$.

