# TELEUISION 

SERRICING-VIDEO-CONSTRUCTION•DEVELOPMENTS


| PHD COMPONENTS | ALL COMPONENTS OFFERED SUBJECT TO AVAILABILITY. WE RESERVE THE RIGHT TO SUBSTITUTE REPLACEMENTS SHOULD THE |
| :---: | :---: |
| RADIO \& TV COMPONENT DISTRIBUTORS | ORIGINAL PART BE OUT OF STOCK OR |
| UNIT 7 CENTENARY ESTATE | UNAVALLABLE: |
| JEFFRIES RD ENFIELD MIDDX | PLEASE ADD 0.35p per parcel post |
| MAIL ORDER ONLY TELEX 261295 | and packing. |




TELEORSORT

January 1980

## COPYRIGHT

olPC Magazines Limited, 1980. Copyright in alf drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

## CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., Lavington House, Lavington Street, London SE1 OPF.

## SUBSCRIPTIONS

An annual subscription costs $£ 9.50$ in the
 Send orders with payment to IPC Services, Oakfield House, Perrymount Road, Haywards Heath, Sussex.

## BINDERS AND INDEXES

Binders (£3.75) and Indexes (45p) can be supplied by the Post Sales Department, IPC Magazines Lid., Lavington House, 25 Lavington Street, London SE1 OPF. Prices include postage and VAT. In the case of overseas orders, add 60p.

## BACK NUMBERS

Some back issues are available from the Post Sales Department, IPC Magazines Ltd. Lavington House, 25 Lavington Street, London SE1 OPF at 75 p inclusive of postage and packing.

## QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. All correspondents expecting a reply should enclose a stamped addressed envelope.
Requests for advice in dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

## this month

121 Leader<br>122 Teletopics<br>News, comment and developments.<br>124 Video Tradex '79 by Davider as revealed at thi leading conference and exhibition.<br>\section*{127 Letters}<br>128 There's a Moose Loose by Les LawryJohns Battles with Bushes and a Thorn which couldn't be tuned.<br>130 Domestic Video Cameras by David Matthewson, B.Sc., Ph.D. The facilities offered by the current generation of domestic monochrome and colour video cameras, with a review of the JVC GS1000 and the Hitachi GP5.<br>133 Colour Receiver Options, Part 3 The ultimate option - remote control plus teletext.<br>by Luke Theodossiou<br>136 Portable CCTV Test Box by Andrew Parr, B.Sc., C.Eng., M.I.E.E. The simplest possible test pattern generator, using just five i.c.s in a small case which can be carried in the pocket. For go/no go testing of CCTV equipment.

137 Next Month in Television
138 TV Servicing: Beginners Start Here . . . Part 28
by S. Simon A stage further with the colour decoder: description of the decoder circuitry used in Pye hybrid colour receivers.
142 Battery Charger for Portable Video
by Ian Pawson
To obtain extended operating time with his portable video camera/NCR, lan Pawson built a d.c.-d.c. converter so that the batteries could be recharged from the car battery.
144 Servicing in the Field, Part 3
by George Wilding
A look at the practical problems of dealing with faulty sets with solid-state chassis.
145 A Videocassette Rewind Machine by John de Rivaz, B.Sc. (Eng.) A rewind machine saves head wear on the main VCR and
is also useful for salvaging damaged cassettes. An old Philips N1500 was adapted for the purpose.
A general-purpose PCB which can be used for receiver/monitor A general-purpose PCB which can be used for receiver/monitor conversions and as a distribution amplifier. With details of how to convert the Sony Model KV2000 Mk II for receiver/monitor use.
149 Latest VCRs
by Steve Beeching, T.Eng. (C.E.I.) A review of the Hitachi Vr5000 and a look at the new Philips VCR.
150 Long-Distance Television
by Roger Bunney
Reports on DX reception and conditions - there's
been startling F2 reception this month, including
reception of Australian TV in the UK. The beginners' section
deals with power supplies for varicap tuners.
153 Readers' PCB Service
154 Service Bureau
156 Test Case 205

## OUR NEXT ISSUE DATED FEBRUARY WILL BE PUBLISHED ON JANUARY 21

## THE UNBEATABLE BRIARWOOD SERVICE



| S/STANDARD COLOUR SPARE PANELS |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | IF | LUM | CHROMA | VIDEO | CON | POWER | L/TB | F/TB |
| Bush 184 | 9.50 | - | 12.00 | - | 6.00 | 6.00 | 12.00 |  |
| GEC Hybrid | 6.00 | 6.50 | 9.00 | - | 5.00 | - | - | 12.00 |
| Philips G6 S/S | 9.50 | - | 10.00 | - | 5.00 | - | $\overline{20} 0$ | 6.00 |
| Thorn 3000 | 6.00 | 6.00 | 6.00 |  | 5.00 | 20.00 | 20.00 | 6.00 |
| Pye 691/693 | 6.00 | 6.00 | 8.00 | - | 5.00 | - | 15.00 | 5.00 |
| Thorn 3500 | 6.00 | 6.00 | 6.00 | 6.50 | 7.50 | 20.00 | 20.50 | 6.00 |
| Korting and other foreign panels available on request. | Postage \& Packing ¢ 1.25 |  |  |  |  |  |  |  |

## COLOUR TUBES

19". $£ 18.00$
19'A49, 192 £20.00
20.

22" $£ 22.00$
$\begin{array}{ll}25: & \text { £ } 18.00 \\ 26 . & \text { £28.00 }\end{array}$
Plus P\&P 55.00
NEW
Rebuilit tubes
available on request.

## COLOUR LOPTS

Most Lopts available from $£ 5.00$. Both
British \& Foreign makes. Please ring or write.
P\&P per Lopt $£ 1$.

## MISC.

S/Output transformer from $£ 1.50$.
F/Output from $£ 1.25$.
Scancoils from $£ 5.00$.
P\&P $\mathcal{P} 1$.
Other spares available on request.

THORN 1500 TUNERS
NEW SPECIAL OFFER

## AT $£ 8.00$

Postage \& Packing $£ 1.00$

## MAIL ORDER TNS. IN GOOD WORKING ORDER

| COLOUR |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Pye | $19^{\prime \prime}$ | $£ 60.00$ | $22^{\prime \prime}$ | $£ 65.00$ | $\mathbf{2 6 "}^{\prime \prime}$ | $£ 75.00$ |
| GEC | $19^{\prime \prime}$ | $£ 60.00$ | $22^{\prime \prime}$ | $£ 65.00$ | $\mathbf{2 6}^{\prime \prime}$ | $£ 75.00$ |
| Bush | $19^{\prime \prime}$ | $£ 80.00$ | $22^{\prime \prime}$ | $£ 80.00$ | $\mathbf{2 6}^{\prime \prime}$ | $£ 90.00$ |
| Philips | G6 | - | $\mathbf{2 2}^{\prime \prime}$ | $£ 63.00$ | $\mathbf{2 6}^{\prime \prime}$ | $£ 70.00$ |

Many other makes \& models available.
Please ring or write for information.

PERSONAL CALLERS WELCOME.

## MONO

20" \& 24" S/S £16.00 Pye, GEC, Bush etc.
$20^{\prime \prime} \& 24^{\prime \prime} \mathrm{D} / \mathrm{S} \mathrm{f} 14.00$ Pye, GEC, Bush etc.
$19^{\prime \prime} \& 23^{\prime \prime} \mathrm{D} / \mathrm{S}$ P/button f 12.00 Pye, GEC, Bush etc. $19^{\prime \prime}$ \& 23" D/S Rotary $£ 8.00$ Pye, GEC, Bush etc.
Please note there is $15 \%$ V.A.T. on all the above prices.
Plus $£ 8$ P\&P. England, Wales \& Scotland for colour T.V.'s. Inland N. \& S. Ireland P\&P £15. P\& P £5 for mono T.V.'s to England, Wales \& Scotland. Inland N. \& S. Ireland $£ 7$ per set.


## THE PROFESSIONAL CHOICE. NATIONWIDE

## NEW SPARES

| TYPE | Price f | TYPE | PRICE $£$ | TYPE | Price $E$ | TYPE | PRICE f | TYPE | PRICE f | TYPE P | Price $f$ | DIOD |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AC107 | 0.20 | AF170 | 0.25 | BC172 | 0.08 | BD222/ | 1P31A | BF260 | 0.24 | $0 \mathrm{C45}$ |  | 1 N4001 | 0.04 |
| AC1 13 | 0.17 | AF172 | 0.20 | BC173 | 0.12 | BD222/ | 0.37 | BF262 | 0.28 | 0 O 46 | 0.25 | 1 N4002 | 0.04 |
| AC1 15 | 0.17 | AF178 | 0.49 | BC177 | 0.12 | BD225/ | 1 P 31 A | BF263 | 0.25 | 0 O 70 | 0.22 | 1 N4003 | 0.06 |
| AC117 | 0.24 | AF180 | 0.60 | BC178 | 0.12 | BD225/ | 0.39 | BF271 | 0.20 | 0C71 | 0.28 | 1N4004 | 0.07 |
| AC125 | 0.20 | AF181 | 0.30 | BC179 | 0.12 | BD234 | 0.34 | BF273 | 0.12 | $0 \mathrm{C72}$ | 0.35 | 1N4005 | 0.07 0.08 |
| AC126 | 0.18 | AF186 | 0.29 | BC182L | 0.09 | BD222 | 0.50 | BF336 | 0.28 | $0 \mathrm{C74}$ | 0.35 | 1N4007 | 0.08 0.08 |
| AC127 | 0.19 | AF239 | 0.43 | BC183L | 0.09 | BDX22 | 0.73 | BF337 | 0.24 | 0 O 75 | 0.35 | 1 N4007 1 $N 4148$ | 0.08 0.03 |
| AC128 | 0.17 | AU113 | 1.29 | BC184L | 0.09 | BDX32 | 1.98 | BF338 | 0.29 | $0 \mathrm{C76}$ | 0.35 | $\begin{aligned} & \text { 1N4148 } \\ & \text { 1N4751A } \end{aligned}$ | 0.03 0.11 |
| AC131 | 0.13 |  |  | BC186 | 0.18 | BDY18 | 0.75 | BFT42 | 0.26 | $0 \mathrm{C77}$ | 0.50 | 1N4751A | 0.11 0.12 |
| AC141 | 0.23 | BA130 | 0.08 | BC187 | 0.18 | BDY60 | 0.80 | BFT43 | 0.24 | 0 C 78 | 0.13 | 1N5401 1 N5404 | 0.12 0.12 |
| AC142 | 0.19 | BA145 | 0.14 | BC209 | 0.11 | BF115 | 0.24 | BFX84 | 0.27 | OC8 1 | 0.20 | 1 N5406 | $0.12$ |
| AC141K | 0.29 | BA148 | 0.17 | BC2 12 | 0.09 | BF121 | 0.21 | BFX85 | 0.27 | OCB10 | 0.14 | 1 N5406 | 0.12 0.16 |
| AC142K | 0.29 | BA155 | 0.08 | BC2 13L | 0.09 | BF154 | 0.12 | BFX88 | 0.24 | OC82 | 0.20 | 1 N5408 | 0.16 |
| AC151 | 0.17 | BAX13 | 0.05 | BC2 14L | 0.09 | BF158 | 0.19 | BFY37 | 0.22 | OC820 | 0.13 | VALVES |  |
| AC165 | 0.16 | BAX16 | 0.08 | BC237 | 0.07 | BF159 | 0.24 | BFY50 | 0.15 | $0 \mathrm{C83}$ | 0.22 |  |  |
| AC166 | 0.16 | BC107 | 0.10 | BC240 | 0.31 | BF160 | 0.23 | BFY51 | 0.15 | OC84 | 0.28 | DY87 | 0.52 |
| AC168 | 0.17 | BC108 | 0.10 | BC281 | 0.24 | BF163 | 0.23 | BFY52 | 0.15 | OC85 | 0.13 | DY802 | 0.64 |
| AC176 | 0.17 | BC109 | 0.10 | BC262 | 0.18 | BF164 | 0.17 | BFY53 | 0,27 | OC123 | 0.20 | ECC82 | 0.52 |
| AC176K | 0.28 | BC113 | 0.09 | BC263B | 0.20 | BF167 | 0.23 | BFY55 | 0.27 | OC169 | 0.20 | EF80 | 0.40 |
| AC178 | 0.16 | BC114 | 0.12 | BC267 | 0.19 | BF173 | 0.21 | BHAOOO2 | 1.90 | OC170 | 0.22 | EF183 | 0.60 |
| AC186 | 0.26 | BC1 15 | 0.10 | BC301 | 0.22 | BF177 | 0.26 | BR100 | 0.20 | OC171 | 0.27 | EF184 | 0.60 |
| AC187 | 0.21 | BC116 | 0.10 | BC302 | 0.30 | BF178 | 0.24 | BSX20 | 0.23 | OA91 | 0.05 | EH90 | 0.60 |
| AC188 | 0.20 | BC117 | 0.11 | BC307 | 0.10 | BF179 | 0.28 | BSX76 | 0.23 | BRC4443 | 0.65 | PC86 | 0.76 |
| AC187K | 0.30 | BC119 | 0.22 | BC337 | 0.11 | BF180 | 0.30 | BSY84 | 0.36 | R2008B | 1.50 | PC88 | 0.76 |
| AC188K | 0.30 | BC125 | 0.12 | BC338 | 0.09 | BF181 | 0.34 | BT106 | 1.18 | R2010B | 1.50 | PCC89 | 0.65 |
| AD130 | 0.50 | BC126 | 0.09 | BC307A | 0.10 | BF182 | 0.30 | BT108 | 1.23 | R2305 | 0.38 | PCC189 | 0.65 |
| AD140 | 0.65 | BC136 | 0.12 | BC308A | 0.12 | BF183 | 0.29 | BT109 | 1.09 | R2305/BD2 | 222 | PCF80 | 0.70 |
| AD142 | 0.73 | BC137 | 0.12 | BC309 | 0.14 | BF184 | 0.23 | BT1 16 | 1.23 |  | 0.37 | PCF86 | 0.68 |
| AD143 | 0.70 | BC138 | 0.21 | BC547 | 0.09 | BF185 | 0.29 | BT120 | 1.23 | SCR957 | 0.65 | PCF801 | 0.70 |
| AD145 | 0.70 | BC139 | 0.21 | BC548 | 0.11 | BF186 | 0.30 | BU105/02 | 1.50 | TIP31A | 0.38 | PCF802 | 0.74 |
| AD149 | 0.64 | BC140 | 0.24 | BC549 | 0.11 | BF194 | 0.09 | BU105/04 | 2.00 | TIP32A | 0.36 | PCL82 | 0.67 |
| AD161 | 0.40 | BC141 | 0.22 | BC557 | 0.11 | BF195 | 0.09 | BU126 | 1.40 | TTP3055 | 0.53 | PCL84 | 0.75 |
| AD162, | 0.40 | BC142 | 0.19 | BD112 | 0.39 | BF196 | 0.12 | BU205 | 1.20 | T1590 | 0.19 | PCL86 | 0.78 0.78 |
|  | 1.30 | BC143 | 0.19 | BD113 | 0.65 | BF197 | 0.10 | BU208 | 1.60 | T1591 | 0.19 | PCL805 | 0.75 |
| AD162 | 1.30 | BC147 | 0.07 | BD115 | 0.30 | BF198 | 0.11 | BY126 | 0.09 | TV106 | 1.09 | PLF200 | 1.00 |
| AF106 | 0.42 | BC148 | 0.07 | BD116 | 0.47 | BF199 | 0.14 | BY127 | 0.10 |  |  | PL36 | 0.90 |
| AF1114 AF1 15 | 0.23 0.22 | BC149 | 0.07 0.12 | BD124 | 1.30 | BF200 | 0.28 |  |  |  |  | PL84 | 0.74 |
| AF1 16 | 0.22 | BC153 BC154 | 0.12 0.12 | BD131 BD132 | 0.32 0.34 | BF216 | 0.12 | OC22 | 1.10 |  |  | PL504 | 1.10 |
| AF117 | 0.30 | BC154 | 0.10 | BD132 BD133 | 0.34 | BF217 | 0.12 0.12 | OC23 | 1.30 1.30 | PECIAL 0 | OFFE | PL509 | 2.45 |
| AF118 | 0.40 | BC158 | 0.11 | BD135 | 0.26 | BF219 | 0.12 | OC25 | 1.30 1.00 | SL901B | 3.50 | PY88 | 0.63 |
| AF121 | 0.33 | BC159 | 0.11 | BD136 | 0.26 | BF220 | 0.12 | OC26 | 1.00 | SL917B | 5.00 | PY5004 PY81/800 | $\begin{aligned} & 1.60 \\ & 0 \end{aligned}$ |
| AF124 | 0.33 | BC160 | 0.22 | BD137 | 0.26 | BF222 | 0.12 | OC28 | 1.00 |  |  | PY81/800 | 0.57 |
| AF125 | 0.29 | BC161 | 0.22 | BD138 | 0.26 | BF22 1 | 0.21 | OC35 | 1.00 |  |  |  |  |
| AF126 | 0.29 | BC167 | 0.09 | BD139 | 0.40 | BF224 | 0.12 | OC36 | 0.90 |  |  | SPECIAL OFFER |  |
| AF127 | 0.29 | BC168 | 0.09 | BD140 | 0.28 | BF256 | 0.37 | OC38 | 0.90 |  |  |  |  |
| AF139 | 0.39 | BC169C | 0.09 | BD144 | 1.39 | BF258 | 0.27 | 0 O 42 | 0.45 |  |  | Philips PL802 |  |
| AF151 | 0.24 | BC171 | 0.08 | BD145 | 0.50 | BF259 | 0.27 | 0 C 44 | 0.20 |  |  |  | 2.55 |

All transietors, ICs offered are now and branded. Menuftectured by Mullerd, I.T.T., Texae, Motorole etc. Please add 15\% VAT to all items and overveas at cost
P急 P U.K. 25p per order, overseas allow for peckage and postage. Cash with all orders. All prices subject to alteration without notice.


Colour sets sold with good c.r.t.s and $100 \%$ comp.
MONO Rotaries 19" e.23" GEC
Thom 950 etc K.B.

Thom 1400
D/S P/B 19' $23^{\prime \prime}$
Thorn 1400
Bush 161 etc.
Philips 210 etc.
Pye Olympic etc.
D/8 P/B 20'24"
Bush
Philips
Pye
Thom

Working Mono $£ 3.00$ extra.
Workling Colour $£ 15.00$ extra.
Supplied in $1^{1}$ s or $100^{\circ} \mathrm{s}$.
S/S20"24"
$£ 3.00$
3.00
3.00
3.00
4.50
7.00
7.00
7.00
7.00
7.00 7.00
7.00
7.00 10.00 10.00
10.00
10.00
10.00
10.00

## MAINS DROPPERS

## Mono

## Bush 16

Philips $21030+125+2$ K85
Philips 210 118R+148R
Thorn 1400
GEC 2018
Thorn 1500
Colour
8ush A823
Pye 723 27 $\Omega+56 \Omega$
GEC 2110-41R
GEC 2110-12R5+12R5
GEC2110-27R5
Thorn 3500
Thorn 8000
Thorn 8500
Philips G8 47R
Philips G8 $2.2+68$
All plus VAT at 15\%
$60 p$
$50 p$
$48 p$
$75 p$
$58 p$
$70 p$

$72 p$
$57 p$
$45 p$
$47 p$
$45 p$
$58 p$
$58 p$
$54 p$
$30 p$
e.h.t. trays mono 950 MK2 1400200 950 MK2 $1400 \quad 2$
$150018^{\prime \prime} 19^{\prime \prime}$ stick 2.37
$150024^{\prime \prime} 5$ stick $2.4 B$ Single stick Thom TV

| $11.16 \mathrm{~K} \mathrm{70V}$ | 0.75 |
| :--- | :--- |
| TV202 MT | 0.75 |
| TV20 16K 18 V | 0.75 |


| IC's |  |
| :---: | :---: |
| SN76013N | 1.20 |
| SN76013ND | 1.00 |
| SN76023N | 1.20 |
| SN76023ND | 1.00 |
| SN78226DN | 1.50 |
| SN76227N | 1.20 |
| TBA341 | 0.97 |
| TBA5200 | 1.10 |
| TBA5300 | 1.10 |
| TBA5400 | 1.45 |
| TBA5500 | 1.40 |
| TBA560CO | 1.50 |
| TBA5700 | 1.00 |
| TBA800 | 1.00 |
| TBA810 | 1.50 |
| TBA9200 | 1.50 |
| TBA9900 | 1.50 |
| TCA270S0 | 1.45 |
| TCA270SA | 1.45 |
| TCA1327B | 1.00 |
| E.H.T. TRAYS COLOUR |  |
| Pye 731 | 5.20 |
| Pye $691 / 693$ | 4.50 |
| Decca (large screen) | n) |
| CS2030/2232/26 | $30 /$ |
| 2632/2230/2233 |  |
| 2631 | 5.00 |
| Philips G8 520/40 | 5.30 |
| Philips 550 | 5.30 |
| GEC C2110 | 5.50 |
| GEC Hytrid CTV | 5.10 |
| Thorn 3000/3500 | 5.00 |
| Thorn 8000 | 2.42 |
| Thom 8500 | 4.75 |
| Thom 9000 | 5.50 |
| GEC TVM 25 | 2.50 |
| ITT/KB CVC 5/7/8/9 |  |
|  | 5.10 |
| RR1 (RBM) A823 | 5.00 |

Bang \& Olufsen
4/5000 Grundig
5010/5011/5012/
$6011 / 6012 / 7200 /$
2052/22 10/2252R 2052/22 10/2252R
Tandberg (radionette) Autovox 6.60 Grundig 3000/3010 Saba 2705/3715 Telefunken 709/7 10/ $\begin{array}{ll}717 / 2000 & 6.80 \\ \text { Korting } & 6.80\end{array}$

# BRIARWOOD TELEVISION LTD Britain's Mail Order TV Specialists 

## BRITAIN'S LARGEST SUPPLIERS OF BRITISH AND CONTINENTAL LINE OUTPUT TRANSFORMERS

12 Months Guarantee. Please add 15\% VAT to all items. P \& P $£ 1.00$.

Various other models available on request


Briarwood House, Preston Street, Bradford
West Yorkshire BD7 1LU
Tel: (0274) 306018

# CAIIPBL2 Telford, Salop TF7 40X <br> Tel: Telford (STD 0952) ELECTRONICS Limited <br> 585799/584373 

# Your source to better components <br> ITEMS SHOWN WITH INDICATES THESE ARE SOLD IN PACKS OF 5 

| - $\mathrm{ACl} \mathrm{Cl}^{\text {a }}$ | . 48 |  | Y60 | C $\mathrm{Cl} 1{ }^{\circ}$ | 宛 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AC12s | . 68 | Af27es | 1.20 | BC125 | $20^{\circ}$ |
| AC 141 | 48 | Alice | 2.90 | BC128 | $20^{\circ}$ |
| AC142 | 40 | AL113 | 2.90 | 8C135 | .20* |
| AC153 | . 67 | au103 | 2.11 | BC139 | $20^{\circ}$ |
| ${ }^{\text {ACl }} 8$ | . 58 | AU105 | 2.09 | BC137 | $20^{\circ}$ |
| AC187 | . 38 | AU107 | 2.08 | 日C139 | 39 |
| AC1 ${ }^{\text {d }}$ | . 38 | Aulos | 2.08 | BC140 | . 39 |
| AD 149 | 1.00 | AU110 | 2.00 | HC141 | . 33 |
| AD161 | . 75 | AU111 | 2.90 | BC142 | . 39 |
| AD162 | . 75 | Auliz | 2.40 | BC143 | 39 |
| AFIIS | . 60 | Aul13 | 2.00 | 8C147 | $15^{\circ}$ |
| AF116 | . 60 | AuYio | 1.29 | ${ }^{8} 148$ | . $10^{\circ}$ |
| AF117 | . 80 | EC107 | .18* | BC140 | .16* |
| AF118 | . 60 | ectas | 18* | ${ }_{6} \mathbf{C l} 15$ | $15^{\circ}$ |
| AF128 | . 69 | BC100 | .18* | ${ }_{8} \mathbf{C 1 5 4}$ | 15* |
| AF128 | . 61 | ${ }_{8 C 113}$ | 15* | BC157 | $15^{\circ}$ |
| AF127 | . 80 | BC114 | 15* | 8c158 | 15* |
| AF139 | . 00 | 8C115 | $20^{\circ}$ | -c150 | 15* |
| AF178 | 1.54 | BClis | $20^{\circ}$ | BC160 | . 38 |
| AF100 | 1.80 | 8C117 | .19* | 8C1708 | . $20^{\circ}$ |
| AF 181 | 1.61 | $8 \mathrm{Cl18}$ | .18* | 8c171 | .15* |
|  |  |  |  | BC172 | . $18^{\circ}$ |


$14^{\circ}$
$.19^{\circ}$
$.19^{\circ}$
$.14^{\circ}$
$.14^{\circ}$
$.20^{\circ}$
$.29^{\circ}$
$.15^{\circ}$
$.15^{\circ}$
$.15^{\circ}$
$.15^{\circ}$
$.14^{\circ}$
$.12^{\circ}$
$.14^{\circ}$
$.14^{\circ}$
$.14^{\circ}$
72
.27
.05
.65

.08
1.20
.14
.14
.14
.25
.24
.22
.27
.27
.18
.14
.19
.71
.68
.00
.69
.68
.68
2.49
.49
 8.8
.28
.84
.73
.78
.79
.79
.66
.76
.36
.45
.47
.47
.45
.50
.78
.75
.58
.49
2.17
.59
.21 $\qquad$





2.10
2.10
1.50
1.99
1.00
1.80
1.93
2.06
.80
.90
3.00
.43
.58
.37
.40
.44
.83
.00
.94
.00
1.00






| AA112 | $20^{\circ}$ | BAitis |
| :---: | :---: | :---: |
| AAl16 | .18* | bal45 |
| AA117 | .16* | BA156 |
| AA119 | 16* | BA158 |
| AA143 | $20^{\circ}$ | bazo? |
| AA144 | .14* | ba219 |
| AY102 | 2.99 | BA316 |
| AY106 | 2.30 | 8A317 |
| BA102 | . 35 | Baxi3 |


| 22 | baxic |
| :---: | :---: |
| .180 | - 128 |
| . $20^{\circ}$ | 8Y 127 |
| .20* | EY133 |
| .18* | BY176 |
| .180 | 8Y182 |
| 40 | BY184 |
| 44 | 8Y487 |
| .16* | BY199 |

$\qquad$




## Telephone-TELFORD STD (0952) 585799/584373

ALL PRICES QUOTED ARE NET. EXCLUSIVE OF VAT. PLEASE ADD AT 15\%



We employ a large skilled Staff, who utilise some of the most sophisticated Test equipment available, inclusive of AUTOMATIC FAULT FINDING COMPUTERS together with specially designed SERVICING JIGS which in short means to you -
HIGH QUALITY REPAIRS -ATLOW COST


Factory Unit E5. Halesfield 23. Telford Shropshire. TF7 40X Telephone Telford $\mathbf{0} 0952$ ) 584373 . Ext. 2. Telex 35191 Chamcon

# TV LINE OUTPUT TRANSFORMERS <br> by FAST RETURN OF POST SER VICE 

MONO LOPTS
Most makes supplied
£7.90 TRADE
£8.50 RETAIL
p\&p 70p each item
COLOUR LOPTS
Philips G8, ITT CVC5-9, Decca Bradford series 10 \& 30
£8.35 TRADE
E9.50 RETAIL

## p\& 70p each item

WINDINGS p. \& p. 50p each item
Bush colour. (Hybrid quadrupler version)
$£ 6.25$
Decca CTV19/25 (non-tripler version)
Primary $\mathbf{f 6} \mathbf{2 5}$
EHT £7. 20
Philips G6 (dual \& single standard)
Primary $\mathbf{£ 6 . 2 5}$
(EHT winding on exchange basis only)
EHT $£ 7.20$
Pye 691, 693 \& 697 (please state which)

| Primary $\mathbf{£ 4 . 6 0}$ EMO 90 degree | EHT £3.10 <br> Primary £6.25 |
| :---: | :---: |
| PRICES INCLUDE 15\% VAT | S.A.E. all enquiries |
| All lopts and windings are new and guara | or 6 months. |
| PAPWORTH | Barclaycard and Access welcome |
| TRANSFORMERS 80 Merton High Street London SW19 1 BE | $01-5403955$ |

## Technical Training in Radio, Television and Electronics

Start training TODAY and make sure you are qualified to take advantage of the many opportunities open to trained people. ICS can further your technical knowledge and provide the specialist training so essential to success.
ICS, the world's most experienced home study college has helped thousands of people to move up into higher paid jobs - and they can do the same for you.
Fill in the coupon below and find out how!
There is a wide range of courses to choose from, including:
City and Guilds Certificates:-
Telecommunications Technicians
Radio, TV and Electronics Technicians.
Electrical Installation Work,
Technical Communications,
Radio Amateur.
MPT General Radio Communications
Certificate

## Diploma Courses:-

Electronic Engineering,
Electrical Engineering,
Computer Engineering.
Radio. TV, Audio Engineering. Servicing and Maintenance. (inc Colour TV)
New Self-Build Radio Courses with Free Kits

## Colour TV Servicing

Technicians trained in TV Servicing are in constant demand Learn all the techniques you need to service Colour and Mono TV sets through new home study courses which are approved by a leading manufacturer

## The ICS Guarantee

If you are studying for an examination, ICS will guarantee coaching until you are successful - at no extra cost.

POST OR PHONE TODAY FOR FREE BOOKLET.

I am interested in
Name
Address. $\qquad$
Phone No:
International Correspondence Schools, Dept. Q285, Intertext House,
LONDON SW8 4UJ. Tel 6229911 (all hours)



EDITOR
John A. Reddihough
ASSISTANT EDITOR
Luke Theodossiou

## ART EDITOR

Roy Palmer
ADVERTS MANAGER
Roy Smith

## CLASSIFIED ADVERTS

Colin R. Brown
01-261 5762

## QUERY CHARGE

We regret the need to increase the charge made for dealing with readers' servicing queries - to 75 p (including VAT) from the present issue. The charge has remained at the previous rate since July 1976.

## COVER PHOTO

Our cover photo this month was taken by Ian Hirstle and shows Julie Vickerman with an Hitachi GP7 colour camera.

## The Wonderful World of Video

In the present issue we've altered our emphasis somewhat, turning more to the video side of the subject for a change. Our main concern is always with the technical rather than the user side of TV, which is why the amount of space we normally devote to video tends to be limited. After all, once you've covered the basic principles of video tape recording, TV games, and the various types of cameras, all things we've done in some detail in the past, what more is there to say? Developments are covered as they come along, while with VCRs the servicing side consists mainly of routine cleaning and adjustment - and awkward one-off electronic faults. Some of the latter can nevertheless be intriguing, and we intend to publish more on this in later issues.

The fact is however that an interesting point has been reached in the development of domestic video technology. The user is now being offered VCRs and cameras at very reasonable prices; video discs are on the market (in the USA now, in the UK before long); video games are legion, and of growing sophistication; and the data side, teletext and Prestel, looks poised for a take off. The major question remains how consumers will respond to all these goodies?

This column seems to have got itself a reputation as being something of a jeremiad when it comes to video. We've been accused of pouring cold water over VCR prospects, and when it comes to the TV data services we were asked recently why no Churchillian call to action? Well, as a technical journal we feel that our job is to try to attempt a realistic assessment of possibilities rather than to help push particular marketing efforts. And as for Churchillian calls, unless these are made at a time when the country is in extremis they unfortunately tend to be ignored.

The major Japanese TV firms at any rate regard video as being a key element in their future prospects, and as a Sony spokesman recently put it their job is to make their products obsolete. Hence the heavy expenditure by the leading Japanese firms on the development of domestic video technology. Europe's largest electronics firm, Philips, is likewise concerned to assure for itself a strong presence in this field - smaller manufacturers will probably have to content themselves with marketing operations. But however much effort is put into development, there's a limit to what's possible - and to consumers' wish or ability to rise to the bait.

Over the last couple of decades, audio has been a great success story. Many people seem to think that this success story can be repeated with video. There are fundamental differences between the two however. The audio enthusiast is concerned with better quality reproduction. Understandably enough to those of us who remember railway announcement systems at their worst, and single pentode record reproducers with the motor winding doubling as the mains dropper. The point with video on the other hand is to extend the range of uses: the picture remains of the same quality. In fact the video market is rather closer to the home movie market, which though large is not exactly a mass one.

At the present time, VCR manufacturers are not helping themselves by constantly introducing new machines with extra features - and completely new systems. Considerable buyer resistance has been reported to us. Why purchase a current VCR when a similar machine at much the same price will soon be available with still pictures, slow-motion replay, more adaptable time switching and so on? Many prospective buyers are probably at present waiting to see the Philips VR2020 and its derivatives, while possibly keeping a weather eye open on the prospect of LVR machines. Purchasers can hardly be expected to rush for their chequebooks when confronted with such a confusing scene.

When it comes to the video disc however one is rather closer to the world of audio. Simply put it on and watch. It's likely that discs will have a greater appeal to the man in the street than videocassettes, especially as they'll probably be much cheaper. But ... Haven't we all heard those complaints about continual repeats on TV? The fact is that music bears repetition to a far greater extent than visual programme material. It's nevertheless interesting to note the efforts being made by those with competing disc systems to obtain rights to use popular programme material: RCA with its Selectavision video disc system for example has recently signed agreements with Paramount Pictures Corporation and Rank Film Distributors giving it licence rights to 95 feature films for its US disc catalogue. RCA envisage $25-40$ million video disc players in use a decade after their introduction.

On the teletext side a boost has been reported with the introduction of cheaper, 22 in . models. The price of the chips seems set to fall, and it could well be that in the long run the majority of sets will incorporate teletext. After all, most people now automatically have colour. Why not teletext also, once the price is right?

# Teletopics 

## GETTING ON WITH TV4

The IBA seems intent on wasting as little time as possible in setting up the UK's fourth TV network - or channel as most people, including the IBA itself, seem to want to call it. The IBA's engineering plans are to have thirty main highpower transmitting stations installed and ready for the simultaneous launch of the new service in all ITV regions (except the Channel Islands) by November 1982. From the outset, the new service will be available to over 80 per cent of the UK's population - it will be the first new programme service in the history of British television for which the majority of viewers will already have suitable receivers and aerials when the service starts. During 1983-4 a further eighteen main high-power stations will join the network, at the rate of one a month. Priority is being given to coverage of Wales, where 90 per cent of the population should be able to receive the service on "start-up day".

The IBA has already placed substantial contracts with Marconi and Pye TVT for the supply of the klystron transmitters for the 48 high-power main stations. These will operate with the same e.r.p. as existing transmitters, but will have greater conversion efficiency, with more compact power supplies and smaller air-cooling systems, and will come into operation - when in the standby mode - within seconds rather than minutes of a fault developing in a main transmitter.

The IBA is proposing to set up a new company to run the fourth service. The company would have a contract with the IBA to commission and acquire programmes, plan schedules, take on staff and operate within a budget provided by the IBA. It would not itself make programmes or own studios, commissioning programmes instead from existing ITV companies and outside producers. It's estimated that $£ 60-80$ millions a year would be required to run the service. The idea would be to raise this from each existing ITV company in the form of a "subscription" which would be calculated on the same basis as the rental already paid to the IBA. In return, each ITV company would have the right to sell advertising air time for both services in its area, also recouping its expenditure by selling programmes to the new company. The extra income thus obtained by the ITV companies is not expected to match the cost of running the new service in the early years. During this time the main ITV network would be subsidising the new one - as part of the price of involvement in the new venture. The Exchequer would also bear a substantial part of any early losses, since a decrease in ITV's profits automatically reduces the levy the ITV companies pay to the Exchequer.

The idea of setting up the proposed company is to establish a "distance" between the IBA and its new charge as exists at present between the IBA and the current ITV franchise-holding companies. One problem is that for the IBA to be able to keep to its tough schedule for inaugurating the new service it would like to appoint the board of the new company in early 1980, whilst the bill authorising the new service is not expected to receive the Royal Assent until later in the year.

## TV RECEIVER CONTROL SYSTEMS

TV receiver control systems still seem to be in a process of rapid evolution. The latest stage, proposed by both Philips and ITT, is to use a microcomputer i.c. as the heart of a set's control system. The approach previously proposed, to use special-purpose LSI i.c.s for the purpose, has the disadvantage that such i.c.s will probably turn out to be rather expensive while if they are to be capable of meeting a wide range of possible customer requirements they will contain a lot of reduntant circuitry. So Philips is developing a series of microcomputer-controlled i.c.s which will form a versatile Video Tuning System (watch out for those initials - VTS). This will operate on similar lines to the DICS (digital channel selection) system we described last April (see page 304, April 1979), but will also control the analogue receiver control functions and can be extended to control teletext and viewdata circuits, on-screen channel/station display and so on. The ITT system uses a microcomputer in the remote control transmitter.

## MULLARD'S COLOUREX TUBES

Mullard have invested a further quarter of a million pounds at their Simonstone plant on equipment for reconditioning and rebuilding the colour tubes sold in the Colourex range. The market for reconditioned colour tubes is expected to reach 750,000 this year (1980), and Mullard say that their Colourex tubes are as good as if not better than the originals at only half the price. The range covers $18-26 \mathrm{in}$. sizes at $90^{\circ}$ and 22 and 26 in . $110^{\circ}$ types. According to Mullard, many of the reconditioned tubes at present being sold are not implosion proof. Those, including Mullard's Colourex range, rebuilt to the BSI standard are safe in this respect.

## VIDEO

Bang and Olufsen have announced that their first VCR will be of the Philips V2000 type. It's expected to be launched early next year (1981). JVC is entering the pre-recorded videocassette market with a range of fifteen exclusive titles which will sell at $£ 19.95$ each (including VAT). They'll be to the VHS format only of course.

## ANOTHER EUROPEAN TV SATELLITE?

Following the decision by France and Germany to go ahead with a joint TV satellite programme, Luxembourg is understood to be planning a satellite service of its own. Cost/efficiency studies have apparently already been completed. The service area of the satellite's transmissions would cover from Lyons, France in the south to Hamburg in the north. Programmes would be transmitted in French, German and Dutch.

## A SAD STORY

Back in May 1976, at a time when Thorn had just closed its Skelmersdale colour tube plant, we reported on plans to set up a completely new colour tube plant in Finland. The idea was that setmaker Salora would take a $20 \%$ interest, Hitachi a $20 \%$ interest and provide the technical know-how, with the Finnish government providing the remaining $60 \%$ stake. If the Finns could do it we commented, why the UK's colour tube troubles? Well, in the event it seems that the Finnish attempt to get into this field has produced little but trouble so far, which is possibly not too surprising when you consider that world colour tube production in 1978 reached 32.5 million while only 30.1 million colour sets were
produced (figures from Mullard's Economic and Market Research Department).

Salora and Hitachi have withdrawn from the company (Valco), which is now wholly state owned. The original aim was to produce 400,000 tubes a year, but by the time production started in the autumn of 1978 the planned production had been halved. When production was temporarily stopped last October, only 85,000 tubes had been produced. The aim for the present year remains at 200,000 , with a heavy cut in the workforce. It seems that in addition to excess world capacity the venture suffered from the decision to develop a green field site 160 miles from Helsinki - a decision taken in the hope of dealing with the high level of unemployment in the area.

## NEW TV SETS

Decca's latest colour set, Model CV950, uses the new 70 series chassis to drive a $22 \mathrm{in} .90^{\circ}$ tube. A small UK company, Radicom Ltd., has introduced a tri-standard colour receiver capable of operating on the PAL, SECAM and modified NTSC standards. It will also handle videocassettes recorded using any of these systems. There are 20, 22 and 26in. versions. Radiocom's address is 45 Gladstone Road, Croydon, Surrey, CR0 2BQ.

## PUBLICATIONS

Newnes-Butterworths have published a book by Steve Money entitled "Teletext and Viewdata". The price is $£ 5.50$ and it's as easy an introduction to the subject as you'll find. Steve of course is a regular contributor to these pages. The latest in a series of occasional engineering publications published by the IBA under the general title IBA Technical Review is "Techniques for Digital Television". This extensively illustrated, 70-page book describes the pioneering work that led to the demonstrations of all-digital studio and transmission techniques by the IBA in 1977, and considers the questions arising from the current search for an international coding standard for digital television. Enquiries should be sent to IBA Engineering Information Service, Crawley Court, Winchester, Hants SO21 2QA. The Libraries and Arts Department of the North Tyneside Metropolitan Borough Council has published a new edition of its Electronics Projects Index - covering projects published during 1978 in seventeen magazines. The cost of the index is $£ 1 \cdot 30$, including post and packing. It's available from M. L. Scaife, Central Library, Northumberland Square, North Shields, Tyne and Wear NE30 1QU.

## NEW IF STRIP APPROACH

Plessey Semiconductors have developed an interesting new approach to the design of a TV receiver i.f. strip. The circuit, shown in Fig. 1, consists of a couple of i.c.s, an acoustic surface-wave filter to shape the passbands, and a
handful of capacitors and resistors. The initial i.c. is an i.f. preamplifier which also provides the tuner a.g.c. voltage-type SL1431 is for use with pnp transistor tuners, type SL1432 for npn transistor tuners. The most interesting bit follows. The SW 180 SAWF provides separate vision and sound i.f. outputs which are fed to separate channels within the SL1440 i.f. amplifier/detector i.c. The detectors are of the wideband switching type which require no tuning. The vision channel incorporates an a.g.c. loop, the sound channel being made to hard limit.

## COMMERCIAL CORNER

B and B Electronics (Steve Beeching) have introduced an advanced receiver/monitor based on the new Grundig 80 series chassis, which uses the 30AX tube. There's automatic TV/monitor switching by selecting a special AV channel, the signal routing being solid-state. Features include: digitally controlled self-seeking tuning and station memory; remote control of all main functions; automatic selection of external inputs by the channel selector; 15 W audio output; continuous station output even in the monitor mode; E to E monitoring on CCTV recorders; isolated chassis; rear input/output connector panel; customer specified connectors to order. All for $£ 495$ including VAT. Enquiries to 64 Manners Road, Balderton, Newark, Notts.

Manor Supplies have introduced a new teletext decoder kit based on the latest Mullard teletext i.c.s. There's full colour and infra-red remote control. The price of the complete kit, including case, is $£ 268 \cdot 70$ plus $£ 2.50$ p.p. plus 15\% VAT.

## TRANSMITTER OPENINGS

The following relay stations are now in operation:
Bollington (Cheshire) BBC-1 ch. 21, Granada Television ch. 24, BBC-2 ch. 27. Receiving aerial group A.
Glen Urquhart (Inverness) Grampian Television ch. 41, BBC-2 ch. 44, BBC-1 ch. 51. Receiving aerial group B.
Guiting Power (Gloucestershire) ATV ch. 41, BBC-2 ch. 44, BBC-1 ch. 51 . Receiving aerial group $B$.
Newton Ferrers (Devon) BBC-1 ch. 55, Westward Television ch. 59, BBC-2 ch. 62. Receiving aerial group C/D.
Oakamoor (Staffs) BBC-1 ch. 21, ATV ch. 24, BBC-2 ch. 27. Receiving aerial group A.

Teignmouth (Devon) BBC-1 ch. 39, Westward Television ch. 45 , BBC-2 ch. 49. Receiving aerial group E (fourth programme ch. 67).
Threlkeld (Cumbria) BBC-1 ch. 57, Border Television ch. $60, \mathrm{BBC}-2$ ch. 63. Receiving aerial group C/D.
Ubley (Avon) BBC-1 ch. 21, HTV West ch. 24, BBC-2 ch. 27. Receiving aerial group A.

All the above transmissions are vertically polarised.
The IBA has published the latest (October 1979) issue of its Pocket Guide to Transmitting Stations.


Fig. 1: Plessey's parallel sound and vision i.f. strip - the SW180 SAWF separates the sound and vision signals.

# Video Tradex '79 

D.K. Matthewson, B.Sc., Ph.D.

From small beginnings at the Heathrow Hotel in 1975, this exhibition and conference have grown to beome one of the most important and prestigious video events in Europe. This time it was held at the Wembley Conference Centre, during October 15-18th.

Conference sessions included one on video origination, including tape formats, digital effects etc. and electronic publishing, mainly orientated towards viewdata systems; one on low-cost colour, dealing with timebase correction and processing amplifiers, cheap colour cameras, telecine, slide to tape transfer and similar topics; video distribution, including the second generation problems encountered using both the Betamax and VHS systems, and brief information on various techniques designed to prevent the illicit copying of pre-recorded video cassettes; and information on the new Philips VCC (V2000) system.

The exhibition itself occupied both floors of the exhibition area, and attracted the well known UK, European and Japanese manufacturers you'd expect. Unfortunately BASF did not have on display its much heralded logitudinal video recording (LVR) machine, but the Philips stand had an example of the new VR 2020 machine, and also one of the V200 three-tube portable colour cameras. The latter is said to be capable of providing very high quality colour pictures, but it has to be admitted that the demonstration results were not particularly impressive, possibly due to the adverse lighting conditions. The VR2020 did however seem to fulfil all its promises. It's versatile, can be programmed up to several days in advance, and promises very cheap video recording - the estimated cost is about $£ 2.30$ per hour. Optional infra-red remote control and a plug-in video input/output module are available for use with it. A player only unit, an editing machine and a portable version are to be introduced at a later date. It should also be noted that a prototype of a machine able to give up to 48 hours' continuous recording or playback, using a ski-cassette changer principle, was demonstrated at the recent Berlin Radio and Television Show.
A feature of this year's exhibition was the large number of stands where pre-recorded videotapes were being sold and displayed. The subjects ranged from adult movies to family entertainment such as popular films of the Mary Poppins, The Guns of Navarone etc. type. Several large firms, for example EMI and The Mirror newspaper group,


Panasonic's recently introduced NV8610 VHS VCR.


JVC's new GX77 single-tube colour camera.
now have interests in this field and are investing considerable amounts of capital.

An interesting development in this area is the trend away from outright purchase of feature film on video cassette to cassette rental at more reasonable prices. A typical two-day rental charge for a three-hour feature film is some $£ 5-6$, while the purchase price for the cassette would be $£ 39-45$ depending on the tape format.

Another prominant feature of the exhibition was the very large increase in the number of domestic VCRs on display. Most of these were of the VHS type, though there were quite a lot of Betamax ones as well.

Hitachi were showing a prototype of what is claimed to be the world's lightest portable VHS machine. It was running on the US NTSC colour system, but a PAL version is expected later this year. It performed as well as any other portable VHS VCR I've come across, and was indeed light and easy to use. An interesting point is that touch-sensitive buttons are used instead of the usual piano-key type switches. Hitachi hope it will turn out to be the cheapest as well as the lightest machine of its type.

Panasonic were also showing a portable VHS machine, as well as their latest mains-operated VCR, the NV8610, which allows the user to freeze any one frame of picture information and also to advance the frames at a very slow rate.

JVC was the first company to introduce a portable VHS machine in the UK - the HR4100, in May 1979. Their range of mains-operated machines has been extended with the HR3660. This incorporates all the features of the recently launched HR3330, such as audio dubbing, eightday digital clock/timer for unattended recording, easy operation and a three-hour playing time, and in addition has slow-motion playback, enabling the user to study details of motion at the touch of a button. This is the first VHS machine to feature slow motion, and in addition the slowmotion speed can be varied by the user. For even closer detail, a freeze frame facility is included. The HR3660 also features double-speed playback, enabling irrelevant material to be speeded up and particular items on the tape to be quickly located. A voice compression effect ensures that the speech remains intelligible in the doble-speed mode. Finally, a six-function remote control unit is available for use with this machine.

The various Japanese companies exhibited a large number of essentially domestic portable colour cameras. JVC in fact now have six colour cameras in their range, with prices running from $£ 450$ upwards. The GX33 and GX77 are aimed at the Super-8 market, and although they

## MANOR SUPPLIES <br> PAL COLOUR BAR GENERATOR plus CROSS HATCH KIT (Mk. 4)


$\star$ Output at UHF, applied to receiver aerial socket.
$\star$ In addition to colour bars R-Y, B-Y etc.
$\star$ Cross-hatch, grey scale, peak white and black level.
$\star$ Push button controls, battery or mains operated.
$\star$ Simple design, only five i.c.s. on colour bar P.C.B.
PRICE OF MK4 COLOUR BAR \& CROSS HATCH KIT $£ 40.25+£ 1.25$ P/Packing. DE-LUXE CASE $£ 5.95$. ALUMINIUM CASE £2.95, BATT HOLDERS £1.70, ALTERNATIVE STAB. MAINS SUPPLY KIT $\mathbf{8 5 . 5 5 .}$

ALSO THE MK 3 COLOUR BAR GENERATOR KIT FOR ADDITION TO MANOR SUPPLIES CROSS HATCH UNITS. £28.75 + $\mathbf{1 1 . 1 5}$ p.p. CASE EXTRA $£ 1.75$. BATT. HOLDERS $£ 1.70$.
$\star \star$ Kits include drilled P.C. board, with full circuit data, assembly and setting up instructions.
$\star$ All special parts such as coils and modulator supplied complete and tested, ready for use.
$\star \star$ Designed to professional standards.
$\star$ * Demonstration models at 172 West End Lane, NW6.
$\star \star$ Every kit fully guaranteed.
MK4 DE LUXE (BATTERY) BULLT \& TESTED $\mathbf{8 6 6 . 7 0}+\mathbf{~} 1.50$ P\&P. VHF MODULATOR (CHI to 4) FOR OVERSEAS 54.00 . INFORMATION ON VIDEO TAKE-OFF FOR C.C.T.V. (ABOVE PRICES INCLUDE 15\% VAT)

## MANOR SUPPLIES TELETEXT KIT (MK2)

(INCORPORATING MULLARD DECODER 6101 VML )

: EXTERNAL UNIT PLUGS INTO AE SOCKET
INFRA-RED REMOTE CONTROL (MULLARD SOOO SYSTEM) STATION SELECTION, TEXT, MIX. TIME DOUBLE HEIGHT, HOLD, CLOCK, REVEAL RESET ETC, ETC.

- PANEL 32 BUTTON REMOTE CONTROL HANDSET. - CONVERTS ANY UHF RECEIVER TO STATION SELECTION REMOTE CONIROL
- EVERYKIT EASY TO ASSEMBLE \& FULLY GUARANTEED

FURTHER DETAILS ON REQUEST

## COLOUR. UHF \& TELEVISION SPARES

NEW 'TELEVISION' COLOUR RECEIVER PROJECT ALL PARTS AVAILABLE AT PRESENT. POWER, SIGNAL \& TIMEBASE SEND OR PHONE FOR LIST. WORKING DEMONSTRATION SET NOW ON SHOW WITH TELETEXT.
NEW SAW FILTER IF AMPLIFIER PLUS TUNER COMPLETE AND TESTED FOR T.V. SOUND \& VISION 83280 p.p. £1.10. T.V. PORTABLE PROJECT PARTS AVAILABLE. SEND OR PHONE FOR LIST. WORKING MODEL AT 172 WEST END LANE, NW6. TV TEST GENERATOR UHF MODULATOR $£ 4.60$ p.p. 40p.
CROSS HATCH UNIT KIT, AERIAL INPUT TYPE, INCL. T.V. SYNC AND UHF MODULATOR. BATTERY OPERATED. ALSO GIVES PEAK WHITE \& BLACK LEVELS. CAN BE USED FOR ANY SET $\mathbf{f 1 2 6 5}$ p.p. 50 p. (ALUM CASE $£ 230$ p.p. 80 p.) COMPLETE TESTED UNITS READY FOR USE (DE LUXE CASE) $\mathbf{E 2 6 . 0 0}$ p.p. $£ 1.25$. ADDITIONAL GREY SCALE KIT $\mathbf{£ 3 . 3 5}$ p.p. $\mathbf{3 5}$ p.
UHF SIGNAL STRENGTH METER KIT £19.40 (ALSO VHF VERSION) ALUM CASE $£ 1.75$ p.p. $£ 1.25$.
CRT TESTER \& REACTIVATOR PROJECT KIT FOR COLOUR \& MONO $£ 25.00$ p.p. $£ 1.60$.
"TELEVISION" COLOUR SET PROJECT (1974) SPARE PARTS STILL AVAILABLE. ALTVE. IF COMPL. \& TESTED $£ 16.80+£ 1.25$ p.p.
THORN 9000 TOUCH TUNE, REMOTE CONTROL RECEIVER UNIT PLUS TR ANSMITTER HANDSET $£ 18.40$ D.D. £1.40.
THORN 9000 FASCIA INCL. CHANNEL SELECTOR, INDICATOR SET CONTROLS, SPEAKER $\mathbf{8 6 . 9 0}$ p.p. $£ 1.50$.
PHILIPS 210300 Series IF Panels $\mathbf{£ 2 . 9 0}$ p.p. $£ 1.25$.
PHILIPS 210, 300 Series Frame T.B. Panels $£ 1.15$ p.p. 75p.
BUSH A823 CONVERGENCE PANEL 87.60 p.p. $£ 1.25$.
BUSH A823 (A807) Decoder Pancl $£ 8.65$ p.p. $£ 1.25$.
BUSH A823 CONVERGENCE PANEL $£ 7.60$ p.p. $£ 1.00$.
BUSH A823 (A807) Decoder Panel $\mathbf{8 8 . 6 5}$ p.p. £1. 10.
BUSH A823 SCAN CONTROL PANEL $£ 2.90$ p.p. 80 p.
BUSH A823 IF PANEL (EXPORT VERSION) 83.25 p.p. 95 p.
BUSH 2718 BC6100 SERIES IF PANEL 85.75 p.p. 80p.
BUSH A816 IF PANEL (SURPLUS) 81.90 p.p. 80p.
BUSH 161 TIMEBASE PANEL A634 $\mathbf{£ 4 . 4 0}$ p.p. $£ 1.25$.
GEC 2010 SERIES TIMEBASE PANEL \&1.15 p.p. 95p.
GEC 2040 Surplus Panels, ex-rental. Decoder £5.75, T.B. $£ 2.88$ p.p. £1.25. DECCA CTV 25 Single Stand. IF Panel E4. 40 p.p. 75 p.
DECCA Colour T.V. Thyristor Power Supply. HT, LT etc. EA. 40 p.p. £1.40. BUSH TV 312 IF Panel (Single I.C.) incl. circuit $£ 5.75$ p.p. 75 p.
BUSH TV Portable Eleven Volt Stab. Power Supply Unit E4. 40 p.p. £1.10. PYE 697 Line T.B. P.C.B. for spares $£ 3.68$ p.p. $£ 1.25$.
THORN 3000 POWER LINE TB PCB $\mathbf{8 5 . 7 5}$ each p.p. 85p. THORN 3000 VID, IF, DEC, FTB SALVAGED $£ 5.75$ ea. p.p. $£ 1.00$. THORN 8000/8500 POWER/SALV. SPARES $£ 288$ p.p. 60p. THORN 8000/8500 TIME BASE, SALV., SPARES $£ 5.52$ p.p. 90 p. THORN 9000 LINE T.B. SALV., SPARES 58.62 p.p. $£ 1.38$. MULLARD AT 1022 Colour Scan Coils $£ 6.90$ p.p. $£ 1.30$, AT1023/05 Convergence Yoke $£ 2.90$ p.p. 95 p, AT $1025 / 06$ Blue Lat. 90 p p.p. 40p. PHILIPS G9 Signal Board Panels for small spares $£ 4.80$ p.p. £1.00. PHILIPS G6 convergence panels $£ \mathbf{£} 90$ p.p. $£ 1.20$.
G8 Decoder panels salvaged £4.25. Decoder panels for spares $£ 2.00$ p.p. $£ 1.15$. VARICAP UHF MULLARD U321 88.97 , ELC1043/05 86.35 p.p. 40p., G.I. type (equiv. 1043/05) \&4.00 p.p. 40p. Control units, 3PSN £1.40, 4PSN £1.75, 5PSN £200, 6PSN 2210, Spectal Offer 6PSN 11.15 p.p. 40p. TAA 550 38p p.p. 20 p. Salv. UHF varicap tuners $£ 1.75$ p.p. 40p. BUSH "Touch Tune" assembly, incl. circuit $£ 5.75$ p.p. 85 p.
VARICAP UHF-VHF ELC $2000 \mathrm{~S} \mathbf{5 9 . 8 0}$. p.p. 75p.
UHF/625 Tuners, many different types in stock. UHF tuners transisted. incl. $\mathrm{s} / \mathrm{m}$ drive, $\mathrm{E}^{23.28}$. Mullard 4 position push button $£ 2.88$ p.p. $£ 1.10$ etc.
TRANSISTORISED 625 IF for T.V., sound, tested. 87.82 p.p. 75p.
RBM 774 250R Mains Droppers, four for $£ 1.15$ p.p. 40p.
LINE OUTPUT TRANSFORMERS. New guar. p.p. 95p.

BUSH 145 to 186SS series ............ 28.50 BUSH, MURPHY A816 seric

DECCA DR 121/123 | 2400 | ... .27 .70 |
| :--- | :--- |
| 6 |  |

FERG. HMV, MARCONL, ULTRA
900:950, Mk. 1
$9501 \mathrm{I}, 1400,1500,1580$. $\qquad$ GEC 2000,2047 series, etc. …..... 568 NDESIT 20 $24 \mathrm{EGB}, \mathrm{C}$.............. 88.50 INDESIT 202 24 EGB................. 50


 PYE 368, 169,169 series
PAM, INVICTA, EKCO. FERRANTI equivalents as above. SOBELL 1000 series ....................... 28.50 THORN 3000/3500
(Scan or EHT)
(7.85 (ASLUEST. THORN 8500 THORN 9503 Stick Tray 1.15 p.p. 55p. Most others available. 6.3V CRT Boost Transformers $£ 3.70$ p.p. 85 p., Auto type $£ 2.10$ p.p. 50p.

CALLERS WELCOME AT SHOP PREMISES (Ted: 01-794-8731)
MANOR SUPPLIES
172 WEST END LANE, LONDON, N.W.B. MEAN: W. Momad Tat sta hiviol Duos 28, 151 nom dom

Meil Orter: E4 GOLDERS MANOR DRIVE, LONDON M.W.11. ALL PRICES INCLUDE VAT AT 15\%

## THE LARGEST STOCKS OF

## GENUINE PART-EXCHANGED COLOUR

## T.V.'s IN THE COUNTRY <br> - UNDER ONE ROOF.

## REGULAR LARGE DELIVERIES EVERY WEEK

 INCLUDE-Philips $511 / 512 / \mathrm{G} 8$ etc., Bush, Murphy, Thorn 3000/3500/8000/8500, GEC all models, Pye Varicap, Grundig, Telefunken, Saba, Decca Bradford, Nordmende, B. \& O., Emo, Finlux, Luxor, Korting, Hitachi, Sanyo, Toshiba, etc., etc., etc.

## STOCK UP NOW FOR THE COMING BUSY PERIOD.

SINGLE STANDARD T.V.'s SPECIAL OfFER WHILE STOCKS FROM $\mathbf{f 2 0}$ + VAT LAST. ASSORTED DUAL STANDARD COLOUR T.V.'s IN LOTS OF TEN, ALL AT £5 EACH.


BARCLAYCARD AND ACCESS WELCOME
QUANTITY DISCOUNTS DELIVERIES CAN BE ARRANGED SUPERB TESTING FACILITIES AVAILABLE OTV TELEVISION LTD, 144A Lea Bridge Rd, London E5 9RB.
Tel: 01-985 6111/8687
OPEN MON.-SAT.


## We specialise in Export

Enquiries invited from the Middle East and Third World Countries.
are rather basic they incorporate all the features most domestic users would require. Both use a $\frac{2}{3} \mathrm{in}$. stripe-filter vidicon tube, and have a built-in microphone, auto or manual iris control and optical viewfinders. The GX77 is the more sophisticated of the two, having an auto white balance control, electric/manual zoom lens and various LEDs to indicate white balance, exposure, battery life and

VTR record mode. The JVC range includes a very basic monochrome camera, the GS 1000 , which will be available for around $£ 200$.

In all this was the most impressive Video Tradex Exhibition so far. It emphasized the need for an annual show at least to keep the trade and the industrial user up-todate with developments.

## Letters

## SECAM COLOUR

I was interested to see the article on the SECAM colour system in your October issue, as there's not much information on it available in English. In general the article provided a clear and easy to follow account of the principle features of the system, which was first introduced in France and subsequently adopted by many other countries, particularly in Eastern Europe, various Arab countries, and many former French overseas possessions. One important point was not fully covered however - the technique used to synchronise the switch that separates the modulated red and blue subcarriers (not the same as the PAL U and V signals incidentally).

The original system used did indeed function by reference to the "bottles" of unmodulated subcarrier transmitted during the active line time of lines 7-15 and 320-328 inclusive. All sets manufactured during the last few years ignore these signals however, operating instead by reference to the unmodulated blue and red subcarriers transmitted alternately during the back porches of the line sync waveform - just like the colour burst used in the PAL and NTSC systems. In fact the SECAM transmissions in several countries that have recently adopted the system omit the "bottle" reference signals, and it's the official policy in all the other countries still transmitting them to discontinue this as soon as possible.

As Keith Cummins mentions, this is to eliminate the transmission of redundant sync information during the field blanking interval, so that more useful signals such as those for the Antiope teletext service can be transmitted instead. Incidentally, just as with the UK teletext system the Antiope system has been modified in various ways since the description of it appeared in the November-December 1975 issue (No. 40) of the French magazine RadiodiffusionTélévision (pages 18-23). The current transmissions, broadcast with the Antenne-2 programme service, can be decoded satisfactorily using equipment intended for the original version.

## Alan F. Reekie,

## Brussels, Belgium.

P.S. Long-distance television enthusiasts may be interested to know that a comprehensive list of channels and addresses of the numerous Italian local radio and TV stations was published recently by the magazine Millecanali, Piazza Boromeo 10, I-20133 Milano. The list is entitled Guida Radio-TV, and the price is 2500 lire.

## MINI CRT REACTIVATOR

I view with some misgivings Mr. Wood's c.r.t. reactivator (see Letters, October 1979). What happens if one of the $4 \cdot 7 \mu \mathrm{~F}$ dropper capacitors goes short-circuit? It's doubtful whether the 2A fuse could operate fast enough in all conditions, so the heaters could be blown open-circuit. Also,
the inrush current which can flow if the mains supply is switched on at the peak of the a.c. cycle might not be too good for spot welds etc. in the tube's heater system. The situation is worse with a colour tube, since there are three capacitors in parallel, thus trebling the risk. It doesn't matter how reliable the capacitors are: there's always the chance of failure, however remote, so I question the wisdom of placing a customer's colour tube at risk in this way. I'd sooner carry the weight of a transformer than the weight of worry associated with the use of capacitive droppers.
Keith Cummins,
Southampton.

## LOW-LEVEL HUM

I was interested to see the reply in Your Problems Solved to the query regarding low-level hum on a Sony Model KV1340UB. There's an official modification for this problem on sets below serial number 012001 - to fit an audio output transformer shield plate, part number 4-316-261-01, underneath the transformer's plastic mounting bracket. Change the bracket's mounting screw to a selftapping BV3X10 type. Later sets incorporate this modification.

## S. A. Storie,

Minehead, Somerset.

## N1700 VIDEO OUTPUT

Several readers have queried the voltage readings given on the N1700 video output circuit (page 23, November issue), in particular since Tr 2 would be reverse biased. The voltages have been checked on one of the converted machines therefore, using an Avo Model 8, and the following corrections should be noted. Trl's collector voltage should have been shown as 11 V instead of 9.6 V : its emitter voltage is 3 V and its base voltage 3.8 V . Tr3's base voltage is 5.5 V : its collector voltage varies depending on whether or not its emitter is terminated at $75 \Omega$ - it's 8 V with signal and a $75 \Omega$ load, 12 V with no signal and no load. I've had several of these boards working successfully, with the circuit as published, for over six months now.
D. K. Matthewson, B.Sc., Ph.D.,

Huddersfield, Yorkshire.

## SNOWY PICTURE

The problem I had with an Indesit Model T24EGB was a snowy picture. The obvious course was to fit a new r.f. amplifier transistor in the u.h.f. tuner. I tried a couple of AF239s, which improved matters for a few days each time, and then obtained the correct replacement. This gave an improvement for about ten days, after which the trouble was back again. Remembering some trouble I'd had with older sets quite a time back, I next tried replacing the AF139 mixer-oscillator transistor. That was several months ago, and seems to have finally cured the problem.
S. J. Morris,

Stoke-on-Trent, Staffs.

# There's a Moose Loose 

Les Lawry-Johns

How I got the name confused I don't know. She phoned to say that her Bush had lost its sound and picture. She also seemed to know us well, which was a mystery to me as I couldn't recall her or the set. She said her name was Loose, which I took to be the surname, and when I sounded vague she gave the other name, which was Pretty. So I wrote down Pretty Loose.

In fact it turned out to be Lucy Pretty, but I couldn't be expected to know that at the time. When I got there it all became clear, because I'd known Lucy from way back. But she'd married again, and now had the name Pretty and a TV which we didn't know.

The set turned out to be a Bush model fitted with the Z179 chassis. This is one I've yet to get on really familiar terms with. There was a raster on the screen, but precious little else. With the rear cover off we pondered upon the possibilities. With the voltage supplies intact but no sound or vision signals, it seemed likely that the fault would be in the i.f. strip. This is a plug-in panel on the left side main frame, which can be withdrawn when the bottom runner is pulled round.

The TBA750 intercarrier sourid i.c. is at the top, and using a finger as a test probe we found plenty of life at the input to this, with some fellow talking to me in a language I didn't understand. This i.c. is fed from the SC9503P video detector i.c., and the fellow chatted away when we touched its output but had nothing to say at the input. So it seemed likely that this i.c. could be the culprit. Did we have one? No, but we did have an MC1330P which does the same job. Take out the i.f. unit, whip off the little chip with a wave of the desoldering braid, and plonk in the MC1330P with eight deft dobs. Slide the i.f. unit back in and check. Now it talks in my own language and there's a picture.

Now there's a bit of luck we thought, viewing the rest of the chassis with some trepidation.
"Done it already?" cooed Mrs. Pretty. "It must be a much easier set than the one we had years ago that you took so long to get right. You must remember. The Philips with the big flat screen."

I remembered. Well. As a matter of fact, I still have the projection unit, slightly rusted, to remind me.

Mind you, Lucy was a cracker in those days. Still quite nice, albeit a little weather beaten you might say. Who isn't?

With a short exchange of pleasantries I prepared to leave, but at the moment of departure Mrs. Pretty remembered that her neighbour had asked her if her man would pop in to have a look at their set?
"Would you pop next door to look at Mrs. Moose before you go? Their set is playing about."

## A Visit to Mrs. Moose

So that is how I came to be ringing the bell next door. A pleasant woman opened the door, and I heard a voice call from inside the house "who is it?"
"It's the telly man dear."
"The tally man? Oh my Gawd." There was a sound of someone beating a rapid retreat.
"Not the tally man, the television man, stupid. Come
back." I never did find out why Mr. Moose didn't want to meet the tally man.

The set was a Thorn 3000 which couldn't be tuned. The push bar and spring from the tuner were at the bottom of the cabinet. It didn't take long to reassemble it and solder up.

The programme could then be tuned in, but apart from a few faint bars the colour was absent. This responded to a tweek of L302 (reference oscillator output coil) and the colour apeared to be fine through a mirror - until the snooker table came on that is.

It was red. I thought snooker tables were all green, except when they are blue. Then I noticed the player's face. He didn't look at all well. Someone's changed over the tube leads I mused quietly to myself. They hadn't, and for the life of me I couldn't think of a reason for this reversal. As I crouched behind the set, crying my heart out so that the bitter tears hissed on to the hot dropper at the rear of the power board, I heard Mrs. Moose mumbling something about lovely colour.

I looked up and the table was green, with faces a nice bright orange. It transpired that the normal sequence of events was that the picture would come on with no colour, then some bars would appear for about five minutes, then the colour would come on with reversed reds and greens, and then all would be well. What I'd done was to tune in the reference oscillator so that the colour would be there from switch on, but the reversal remained, for a few minutes only, after which normal service would resume.
"We only wanted you to get the tuning right. The colour doesn't worry us. We thought it was supposed to be like that until it warmed up. I hope the bill is not going to be too much, only my husband is a little short this week so we can afford only bare essentials."

Which is why I didn't find out what really was happening, and I still don't know. I've seen plenty of out-ofphase conditions which usually respond to adjustment, but not a complete reversal that rectifies itself so suddenly (which shows just how ignorant I am).

Returning to the pad, footsore and weary, I was greeted with the usual smarty pants remark.
"Where have you been? Playing fast and loose no doubt."
"Fast and moose you mean," and I related the sorry tale to the disbelief of her highness who flounced off upstairs and shortly began to sing her bitter song of hatred and resentment.
"I'm a little prarie flower
Growing wilder by the hour.
No one cares to cultivate me,
So I'm as wild as wild can be."
I could tell she was a bit mad by the way she banged things about. I don't know why, but then I never could understand the wonderful workings of a woman's mind. It's a good job we are so logical and placid, so understanding and reasonable. No one can accuse us of doing unreasonable things, even when we are faced with insurmountable obstacles and impossible tasks (as we are every day, as you know only too well). I sometimes feel we
are not given the credit that is our just due.
Trouble rarely comes singly. If you get one horror there's bound to be another close behind.

## A Brace of Bushes

I was just finishing off a Pye 697 which had had just about everything wrong with it, including an open-circuit reservoir electrolytic, an open-circuit $10 \mathrm{M} \Omega$ resistor in the width circuit, an open-circuit $12 \mathrm{k} \Omega$ red output pentode load resistor, open-circuit print to the blue ditto, open-circuit line sync discriminator diodes due to the $47 \mathrm{k} \Omega$ reference pulse feed/integrating resistor going low before disintegrating, plus a few less trying teasers, when a couple popped in to ask if they could bring in their 22in. Bush colour set which had popped off. I said they could, so off they went to get it.

In the tussle with the Pye the enthralled owner had been watching each and every move. He'd come from way out of town, and was quite happy to wait for it. For my part I don't mind people watching me suffer provided it's a set I know. If it's a set I don't know, I don't like it at all as I wallow around trying to find where to start, conscious of the pitying glances.
"Wouldn't be so bad if he knew his job, would it?"
For the Pyes and the Philips etc. we don't mind an audience, provided they applaud every time we pull a rabbit out of the hat, and gasp with sheer admiration at the wonderful works taking place under their very eyes.

So off went the owner of the Pye, back to the back woods from whence he came. And in came the Bush.
"Our son had someone in to look at it while we were away, but as the chappie said it was going to cost quite a bit to repair he left it until we came back. So we thought we'd see what you had to say about it."

Fortunately is wasn't one of those Z179 ones, but one of the more familiar A823 type. The h.t. line fuse at the top of the power panel was a nasty black colour, denoting that it had died a violent death, probably due to something over on the line output side. We checked the resistance to chassis. The needle flicked over and climbed back towards infinity.

What devil's work was this? Infinity meant no circuit through the smoothing resistors etc. Both the $68 \Omega$ and $56 \Omega$ wire-wounds in the h.t. circuit were open-circuit (see Fig. 1). Killed no doubt by someone bunging in a heavy fuse or some other blunt instrument. Check at the other end of the $56 \Omega$ resistor. Still no reading, except for a faint suspicion of a movement. Look over to the scan panel. All three plugs out.

Put them back in and now record the low resistance reading expected. So we pronounced our verdict.
"This is a clear cut case of the Howling Heebie Jeebies. It's never an easy thing to cure, and it'll have to stay overnight."

Left alone it didn't take us long to establish that the line output transistors were short-circuit. So some patience and a fair bit of time were going to be needed, as replacing these in this set is not our favourite occupation.


Fig. 1: H.T. feed circuit, Rank A823 chassis. The h.t. fuse 8F3 and the two resistors 8R15 (smoothing) and 8R17 (antibreathing) were all open-circuit.

I'd just removed the right side assembly from the main frame when a mini drew up outside. Incredibly, there was a 26 in . colour set strapped on top of it, giving the little car a decidely top heavy apperance. How it had stayed put I just don't know.
"Hallo" said Mr. Sparks. "It wouldn't go inside. Could you give me a hand to lift it off?"

The spindly luggage rack groaned as we unstrapped the set, and I'm sure the little car rose a foot when we lifted the big Bush free.
"One thing's for sure Mr. Sparks. It won't go back home like that. I'll deliver it for you."
"Don't worry" said the indomitable Mr. Sparks. "I had one arm out of the window supporting it when we went round corners."

So now we had two.
Back at the bench we wrestled with the first one. In went the transistors, back went the tripler (leaving the input out, just in case this was the original cause of the trouble) and the unit was reassembled. Both the wire-wound resistors were replaced and all seemed ready. We wound down the "set H.T." control and connected a meter switched to the 1 A range in place of the h.t. fuse.

On switching the set on, the meter hardly moved. This was not encouraging, so we put a 630 mA fuse in and checked the h.t. voltage. It was under 200 V , and this was also present at the line output unit.

We next checked the line driver transistor and found it had no 20 V supply. Back to the power unit, where the $6.8 \Omega$ resistor (8R2) was found to be open-circuit. In went another resistor and the timebase now started working.

We next had to check the tripler, so out came the h.t. fuse and the meter was again connected in its place. It read under 400 mA , so the tripler was reconnected and the e.h.t. rustled up nicely and the meter showed only a small increase. Back went the fuse and all was well.

There were a few questions for which there seemed no answers. If the $6.8 \Omega$ resistor supplying the 20 V line went first, the line timebase would have been inoperative, drawing no current. Could the line output transistors short under these conditions - h.t. high maybe? How come the two h.t. wire-wound resistors were both open-circuit if the correct fuse was fitted? Why were the plugs left out on the scan panel? Could it be that the two black ones had been interchanged by the first intrepid explorer? The answers to these and many other questions will not be revealed in the next instalment.

## Mr. Sparks' Bush

Up on the bench Mr. Sparks' Bush was coaxed into giving up it's secrets. You'll never guess, but the 600 mA h.t. was blown. Oh no, not again. Please not again.

I raised the convergence panel to check the condition of the front smoothing resistors, and was immediately confronted with a nice big hole where 7RV3 (7 R/G horizontal tilt control) had been. The remains of 7R V3 were found laying at the bottom of the cabinet.

Did it die or was it killed? Hope it died, but proceed as though it has been killed. Fit a new control of a more robust type. Check for shorts at the fuse holder and at the h.t. resistors, which both seemed intact. Connect the meter across the fuse holder and switch on. Two amps. Switch off quick.

Disconnect the input to the tripler. Switch on. Now 400 mA . Fit another tripler and 630 mA fuse. Check h.t. and reduce to 200 V . Tidy up convergence and prepare report for Mr. Sparks.

# Domestic Video Cameras 

David K. Matthewson, B.Sc., Ph.D.

THE last few years have seen the price of the small CCTV colour camera drop by a factor of about ten. It's good to know that in these days of seventeen per cent inflation something has actually become cheaper! You can in fact now buy quite a respectable two-tube colour camera for about $£ 600$, while a similar monochrome one will cost you around $£ 120-200$.

The major factor involved in this fall in prices seems to be a distinct shift in the market at which the video manufacturers are aiming. It's moved from the near broadcast/industrial user to the domestic "home movie" type buyer. To interest this type of customer, the price of a colour camera must be reduced to much the same as or slightly less than the price of a domestic VCR. A complete, portable colour outfit, VCR plus camera, will set you back about $£ 1,400-1,700$ depending on the facilities you want. At these prices domestic video is not quite an economic alternative to Super-8 film - at least not yet! A cheaper alternative is to use a monochrome camera, bringing the cost of the VCR plus camera combination down to around £1,100.

Let's consider the basic pros and cons of domestic cameras, and the various facilities offered. We'll then take a more detailed look at a couple of representative examples a JVC monochrome camera and a Hitachi colour one.

## Basic Facilities

Most domestic cameras, whether colour or monochrome, are similar in appearance and offer the same basic facilities. The simplest ones have a fixed focus lens and an optical viewfinder for composing the picture. The viewfinder is usually a sort of telescopic device. The more sophisticated cameras have zoom lenses, electronic viewfinders and, on the most recent models, electronic lens iris controls. The


Fig. 1: Block diagram of the JVC GS1000 monochrome camera.
advantage of a zoom lens is that the camera shot can be changed from a telephoto close-up to a wide-angle shot without having to move the camera position or change lenses. An electronic viewfinder not only ensures that all the shots are correctly framed, it also acts as an instant replay monitor for playing back tapes from the portable VCR.

All domestic cameras incorporate a microphone so that the sound is recorded along with the vision. The most common location for the microphone is at the front of the camera, above the lens. It can often pick up the noise of the lens being operated therefore, so it's better to use an auxiliary microphone plugged directly into the VCR. This also enables a directional microphone to be used, giving better quality sound with less background noise.

Most of the cameras are designed to run off a 12 V d.c. supply. This is often supplied by the portable VCR with which the camera is being used. Alternatively, some cameras can be run off a separate power supply, or even from self-contained batteries.

Many domestic cameras can be run from portable VCRs, in which case a single 10 or 12 -way multicore cable is used to link the two. As well as supplying power, this cable also carries the microphone signals, auto VCR start, camera video out, replay video in, low battery indicator signals etc. Some of the more sophisticated cameras derive their sync signals from the VCR, and these are also fed via the multicore cable. The more basic cameras rely on a built-in sync pulse generator and are not intended for use in multicamera set-ups.

If the camera is to be used with a mains-operated VCR, or as a surveillance camera, it can be run off a mains adaptor, supplying a standard 1 V into $75 \Omega$ composite video signal.

One final general point. Although most cameras are designed to give a video output a few, notably from the Philips group, are designed to give a modulated u.h.f. sound and vision signal which can be fed straight into an N1700 or similar machine. The monochrome V100 and colour V200 cameras are of this type. I think it's fair to say that this type of signal processing does not give as high quality a picture as with a direct video output.

Having discussed the facilities one would find on most domestic cameras, let's next consider how both monchrome and colour cameras function. A block diagram of a typical inexpensive (around £200) monochrome camera intended for the domestic market is shown in Fig. 1.

## The JVC GS1000 Camera

As an example of this type of camera, JVC recently introduced the GS1000 - a portable battery-operated camera along the lines of a Super-8 film camera. It's designed for use with a suitable portable VHS machine or, with its mains unit, any VTR or monitor. With the addition of a u.h.f. modulator, the output could be fed straight into a TV set. I recently had the opportunity to borrow one of these cameras so that I could examine it in more detail, and must say that for a camera selling at a recommended retail price of around $£ 200$ including VAT I was quite impressed.

The resemblance to a Super- 8 camera is more than superficial. The camera weighs slightly over 1 kg and fits well in one's hand. It has a reflex optical viewfinder, which works through the $\times 2$ zoom lens. The lens runs from 16 to 32 mm , has a minimum aperture of f 2.5 but is of the fixed focus type. In practice this means that one has to be about 1.5 m away from the subject to get a clear picture.

There are three aperture stops, $12 \cdot 5,5.6$ and 11 , which coupled with the a.g.c. system ensure correctly exposed pictures under most lighting conditions - even with a 100 W bulb, acceptable scenes were obtained. The minimum practical illumination level is about 50 lux, and the manufacturers state that the a.g.c. will cope with light levels up to 100,000 lux - needless to say, I couldn't check this upper limit. Suffice it to say that under most conditions the a.g.c. worked well. As with all cameras of this type however, it could be fooled by one bright spot, i.e. a light, in the scene.

To avoid burn-in problems with the $\frac{2}{3}$ in. vidicon tube, a metal shutter is provided. This can either be locked open, for use with a mains VCR etc., or be opened when the camera trigger is pressed. The latter action also sets a suitable battery-operated portable VCR in the record mode. The trigger is non-locking, and has to be continuously squeezed to keep recording. A red LED in the viewfinder comes on to remind you that you're recording.

I didn't have a suitable VHS machine to hand, so pressed an older Sanyo VCR into service. With this the GS 1000 gave monochrome pictures that most domestic users would find acceptable.

Electronically, the camera is one of the smallest and neatest I've come across. All the electronics are housed in the camera head, on two main PCBs. Referring to Fig. 1, a crystal-controlled sync pulse generator provides the line and field frequency pulses which all TV cameras require. A 2:1 interlaced 625 -line 50 Hz output of 1 V into $75 \Omega$ appears at the output connector. Using a similar arrangement to that employed in TV receiver e.h.t. systems, the 12 V d.c. supply from the battery (or a.c. adaptor) is multiplied up to the several hundred volts required by the light-sensitive vidicon pick-up tube. The a.g.c. or automatic sensitivity control works by sampling the output from the video preamplifier, using a type of negative feedback to reduce the tube's sensitivity if its output rises above a preset level. This, along


The JVC GS1000 monochrome camera with its mains adaptor.


All is revealedl The JVC GS1000 (left) and the Hitachi GP5 (right) shown alongside with the side covers removed.
with the iris diaphragm, ensures that correctly exposed pictures are always produced. It's interesting to note that on some of the more sophisticated cameras, and also on some that employ a special (silicon-diode) type of vidicon to which this type of a.g.c. cannot be applied, electrically operated irises are being introduced: these alter the iris setting in response to the output from the tube.

The very small signal provided by the tube is amplified, mixed with the line and field sync pulses, and then fed to the output amplifier. On cameras using an electronic viewfinder, a portion of the signal is tapped off and used to drive the viewfinder.


Fig. 2: Block diagram of the Hitachi GP5 single-tube colour camera.

As an inexpensive monochrome camera for the home video enthusiast, the GS 1000 has a lot to recommend it, not the least being the ease of operation. Its main disadvantage is the fixed focus lens, which limits the camera's close-up potential. The measured signal-to-noise ratio was 39 dB on video, and the horizontal resolution around 420 lines at screen centre. The sound output from the built-in microphone was adequate, though not hi-fi! Whether or not most domestic users would prefer to spend another $£ 250$ 300 to buy a colour camera is another matter entirely.

## The Hitachi GP5 Colour Camera

If you're in the market for an inexpensive ( $£ 500$ or so plus VAT) colour camera, the Hitachi GP5 would be the sort of model you might consider. A simplified block diagram is shown in Fig. 2, and the similarity with Fig. 1 is apparent.
Since this is a colour camera, there have to be some means of detecting red, blue and green light values as well as the luminance value. In some colour cameras a vidicon is provided for each of these functions, but in the cheaper type of camera a single tube is employed. The technique used is to interpose between the tube's glass faceplate and the photoconductive layer a tri-colour striped filter and a corresponding set of strip electrodes which feed separate pins with RGB outputs. The luminance signal can be obtained from these signals in the usual way. Hitachi were pioneers in this technique, which is used in many of their cameras.
The GP5 is available in either the basir version, with a fixed focal length lens and optical viewfinder, $r$ in a de luxe version with a $\times 6 \mathrm{f} 2$ zoom lens and an electrons viewfinder. The camera is inevitably somewhat larger than the GS 1000 , and weighs slightly over 2 kg . It's very easy to operate, having only three controls besides the normal lens ones (iris, focus and zoom). These are a trigger for remote start of a battery-operated VCR (from which the camera can be powered) and two potentiometers, one for picture contrast

Table 1 : Typical domestic video cameras.

| Manufacture | Model | Colour or mono | Tube(s) | Approx. price including VAT. |
| :---: | :---: | :---: | :---: | :---: |
| Akai | VC300 | Mono | 17 mm . | £294 |
| Elbex | EX803 | Mono | 17 mm . | £207 |
| Ferguson | 3V04 | Mono | 17 mm . | £213 |
| Ferguson | 3V06 | Colour | 25 mm . | £863 |
| GBC | Mk 15 | Mono | 17 mm . | £316 |
| Grundig | FAC1800 | Colour | 17 mm . | £800 |
| Hitachi | GP5 | Colour | 25 mm . | £750 |
| Hitachi | VKC500 | Colour | 25 mm . | £760 |
| JVC | GC3300 | Colour | $2 \times 17 \mathrm{~mm}$. |  |
| JVC | GC4100 | Colour | $2 \times 17 \mathrm{~mm}$. | £995 |
| JVC | G31 | Colour | 25 mm . | £633 |
| JVC | GX33 | Colour | 17 mm . | - |
| JVC | G71 | Colour | 25 mm . | £863 |
| JVC | GX77 | Colour | 17 mm . | - |
| JVC | GS1000 | Mono | 17 mm . | £213 |
| Panasonic | WV460 | Mono | 17 mm . | - |
| Panasonic | WV3310 | Colour | 25 mm . | £613 |
| Panasonic | WV3300 | Colour | 25 mm . | $£ 840$ |
| Philips | V100 | Mono | 17 mm . | £460 |
| Philips | V200 | Colour | $3 \times 17 \mathrm{~mm}$. | - |
| Sanyo | VC1400 | Mono | 17 mm . |  |
| Sony | DXC1610 | Colour | 25 mm . | £2,990 |
| Sony | AVC1420 | Mono | 17 mm . | £216 |

and the other to adjust for various lighting conditions. The latter in effect alters the colour temperature by adjusting the ratio of the red to blue outputs from the respective preamplifiers. The green gain control is a factory preset. This arrangement enables the camera to be used in daylight or artificial lighting without the need for external filters. Those of you familiar with 35 mm . colour film work will appreciate the problems involved. As with the GS1000, the camera comes with a mains adaptor so that it can be used with any VTR or straight into a TV monitor.

A useful indicator is a LED which shows when there's not enough light on the subject to get a respectable picture. Another LED, in the electronic viewfinder, shows when the VTR is in the record mode. Following normal practice, a microphone is built into the front of the camera. It gives reasonable quality sound, but can be cut out by using an external microphone, giving superior results.

And that's really all there is to operating a GP5!
Electronically the GP5 is again similar to the GS 1000 , but with all the additional circuitry required for colour operation. The a.g.c. system enables usable pictures to be obtained at light levels from 200 to 100,000 lux. In practice around 2,000 lux is required to give good quality colour pictures. When I say good quality, I mean it: although a domestic camera, the GP5 gives pictures that when shown on a studio monitor are better than those many viewers watch every night at home! My only complaint is that it won't handle fully saturated reds, rendering them as more of a pink. But for the price...

There are four main PCBs - video, sync pulse generator, regulator and filter. The video board amplifies the red, blue and green signals from the tube, clamps and clips them and then performs matrixing operations to get the required $\mathrm{R}-\mathrm{Y}, \mathrm{B}-\mathrm{Y}$ and Y signals. The Y signal is gamma corrected, then all three signals are fed to the SPG board. Here the Y signal is fed to a delay line while the colourdifference signals are modulated on to a 4.43 MHz subcarrier. The whole lot are then added together, along with the syncs, giving a PAL compatible composite colour video output. The sync pulse generator itself is a single crystal-controlled i.c. which also provides all the pulses required for PAL colour operation.

The regulator PCB contains a 9 V regulator, the focus current circuit, microphone amplifier and deflection circuits. The filter PCB provides stable voltages to operate the tube.
That sums up the basic principles of the GP5 colour camera. Most domestic colour cameras follow similar lines.

To be honest, when I first saw a GP5 about two years ago I expected very Mickey Mouse pictures. Having used several GP5s for some eighteen months now however I'd say that if you want a simple domestic or basic industrial camera you'd be hard pushed to get better value for money. Having said that however I should add that this is a fastmoving field, and by the time you read these words in January 1980 the GP5 is due to be replaced by the cheaper, smaller and simpler GP4. This will use a $\frac{2}{3}$ in. instead of a lin. vidicon tube, and will be available in both basic and de luxe forms.

## Choice of Cameras

To give you some idea of the range and choice of domestic type cameras, Table 1 summarises most of those currently available.

## Acknowledgements

My thanks to Ian Hirstle for photographs and to JVC, Hitachi and Panasonic for various information.

# Colour Receiver Options 

3: Adding teletext \& remote control

Luke Theodossiou

This month we're describing our ultimate option for the colour receiver project - adding teletext with remote control. With this option, constructors will end up with a high quality set offering much the same facilities as upmarket commercial receivers but with the added bonus of a price advantage.

We have been asked by a number of readers who are contemplating starting the project whether it would be cheaper than going out and buying a set. Unfortunately, when buying components in one-off quantities you are bound to pay a penalty which makes competing with the setmakers impossible. On the other hand though, the selling price of the luxury type of receiver is not in exact proportion to the cost of the extra components used to provide these luxury functions - so we can justify the project from a financial point of view provided you build in the up-market options.

A straight comparison between the constructor and the setmaker is inaccurate of course and downright unfair: for instance we haven't taken into account the large number of hours you have spent slaving over a hot iron . . . but then we hope this is compensated for in part by being able to claim you built the set yourself!

The remote control receiver circuit is identical to that used in our previous option. The only difference is that we've decided to have the preamplifier section built on a separate small p.c.b. which can then be screened. The main reason for this is that the effective range of operation (i.e the maximum distance between the transmitter and the receiver) can be severely reduced if the preamplifier is allowed to pick up any stray signals such as hum or line pulses. If you experience this problem with the remote-control-only option, you can cure it by screening the preamplifier section - preferably on both sides of the board.

Due to the extra complexity of this board, which made a double-sided design unavoidable, we felt that a separate small board would be far easier to screen.

The circuit diagram for the preamplifier is shown in Fig. 1. For a description, refer back to the November issue. Fig. 3 shows the printed board pattern, while Fig. 4 is the component location diagram. The transducer is glued to the board using an epoxy adhesive. The idea is that the complete unit will be screened in a tin "matchbox" with a window cut out for the transducer. The assembly is then fixed to a convenient place behind the front cabinet panel, with a hole cut out for the transducer. The connections to the interface board can be made with "stereo" type audio screened cable. Don't forget to make sure the tin screen is earthed to the cable braid.

The complete circuit of the interface board is shown in Fig. 4. As we pointed out earlier, the circuitry around the remote control receiver i.c. (IC1, SAA1130) is identical to that described in the November issue.

The differences start at the programme outputs - pins 13, 14, 6 and 7. After the level-changing resistors, the signal follows two paths. The first goes to IC2 which is a quad Dlatch, type 4042, and from there to the 1 -of- 10 decoder (IC3), type 4028. This in turn drives each of the tuning potentiometers via the relevant switching transistor when the appropriate channel is selected.

The latch is present to prevent channel changing while operating in the text mode, since the first eight of the possible 16 channels double up as page digits. The latch also prevents channel changing if any of the last eight buttons is pressed. The channel-change inhibit command is derived from a flip-flop (IC4) which is driven by three signals: "picture", "text", and the D-bit of the programme output word of the SAA 1130.


Fig. 1: Circuit diagram of the remote control receiver preamplifier.



Fig. 3: Copper pattern for the receiver preamplifier p.c.b. ref. no. D061.

The second path of the programme outputs from IC1 drives IC5, which is a 1 -of- 16 decoder. The outputs of the i.c. activate transistor switches which connect the appropriate strobe output to one of the inputs on the Texas XM11 decoder module. For a more detailed description of the XM11, refer to the October 1979 issue.

The 16 commands provided when in the teletext mode are: ten digits for page selection; picture; text; select page; time code; update; reveal. Since we have only 16 channels available in this format, the "mix" mode can't easily be provided and is therefore absent. Tr32 together with C7 form a picture initiation circuit for use when the receiver is first switched on.

As with our previous option, we've decided to use an ITT transmitter unit which can be bought as a spare part. This is for purely aesthetic reasons - there's nothing to stop readers making their own unit, based on the circuit of the commercial one shown in Fig. 5.

A components list, together with full constructional and connecting up details, will be given next month.


TMF 193
Fig. 4: Component layout for the preamplifier p.c.b.

## Signals Board Instability

A number of constructors have experienced instability problems with the signals board. Symptoms include low gain, patterning and colour noise. It appears to depend on the earthing arrangements and to a lesser extent on the particular i.c. samples used.

The first suspect is the 7812 regulator i.c. Some types are prone to oscillation, and the surest cure is to connect an $0 \cdot 22 \mu \mathrm{~F}$ capacitor between pins 1 and 2 - this can easily be accommodated on the back of the board.

The next (and possibly most important) area to look at is the earthing arrangements. As we pointed out before, it's essential to earth the signals board and timebase board independently, i.e. run a reasonably thick cable from the signals board to the power supply board and another one from the timebase board to the power supply board (omit the link between connector pins B2 and C2).

In order to prevent instability in the feedback loops to the TDA3500 i.c., connect 33 pF ceramic plate capacitors across R 19, R34 and R46 in the RGB output stages.


Fig. 5: Circuit diagram of the remote control transmitter unit.

# Portable CCTV Test Box 

Androw Parr, B.Sc., C.Eng., M.I.E.E.



Fig. 1: The pattern.

INDUSTRIAL closed-circuit television installations are often maintained by non-technical personnel, on the basis of replacing complete units when defective. At this level, a CCTV channel consists of three elements: a camera, a monitor, and the cable linking them. Cameras and monitors are bulky items, and it can be infuriating to carry a camera over a distance of say half a mile, and then 100 ft in altitude, only to discover that what you actually have is a cable fault. In accordance with Murphy's Law, this is all too likely ...

The unit featured in this article was designed to assist electricians doing first-line maintainance on CCTV and VDU systems in industrial plants. It consists of a small battery-powered pattern generator that can be used to test a monitor or cable on site. The unit is small and light enough to be carried in a pocket, and has proved an invaluable aid for first-line fault finding.

The unit is designed to give a go/no go test. This means that a very simple circuit can be used. The pattern produced (see Fig. 1) is a white cross on a black background, which is adequate for seeing whether a monitor is operating and a cable has continuity.

The circuit is shown in Fig. 2. IC1 and IC2 are 555 timer i.c.s connected as equal mark-space ratio oscillators. IC1 operates at line rate $(15.625 \mathrm{kHz})$ and IC2 at field rate ( 50 Hz ), the timing components being R1-4 and C1-2. The negative edge of each waveform is differentiated (see Fig. 3) by C3/R5 and C5/R7, then combined in IC4b. This produces a bright-up pulse at the centre of each line and each field, thus producing the white cross. To get the sync waveform, the oscillator outputs are inverted by IC $3 \mathrm{a} / \mathrm{b}$, differentiated by C4/R6 and C6/R8 and combined in IC4a. IC3d gates the bright-up and sync pulses to inhibit line bright-ups during the field flyback period. The bright-up and sync pulses are finally combined by R13-15. When feeding " a $75 \Omega$ load, the waveform is approximately $1 V$ peak-topeak.

The circuit is supplied by a 5 V rail obtained from a 9 V battery. The 5V regulator IC5 stabilises this supply. With a current consumption of about 15 mA , the battery gives several hours' use. We used PP3 batteries in the original units, but as funds permit we are replacing them with rechargeable batteries.

The circuit is built on Veroboard, the layout being shown in Fig. 4. The unit, with its battery, can be built into a pocket sized box. Our units have two outputs in parallel, a lead with plug for testing monitors and a socket for testing

| $\star$ Components list |  |  |  |
| :---: | :---: | :---: | :---: |
| Capacitors: |  | Resistors: |  |
| C1 | 4700pF ceramic plate | R1 | 1k |
| C2 | $0.33 \mu \mathrm{~F}$ polyester | R2 | 4.7k |
| C3 | 2200pF ceramic plate | R3 | 1k |
| C4 | 1000pF ceramic plate | R4 | 22k |
| C5 | $0.047 \mu \mathrm{~F}$ polyester | R5-12 | 10k |
| C6 | $0.047 \mu \mathrm{~F}$ polyester | R13 | $470 \Omega$ |
| C7 | $10 \mu \mathrm{~F} 16 \mathrm{~V}$ electrolytic | R14 | $330 \Omega$ |
| C8 | $0.01 \mu \mathrm{~F}$ ceramic disc | R15 | $330 \Omega$ |
| C9 | $0.01 \mu \mathrm{~F}$ ceramic disc | All $\frac{1}{4}$ W |  |
| C10 | $0.22 \mu \mathrm{~F}$ polyester | All 4 |  |
| C11 | $0.47 \mu \mathrm{~F}$ polyester |  |  |
| Miscellaneous: |  |  |  |
| Veroboard, case, switch, video connector, battery with connectors. |  | Semiconductors: |  |
|  |  | IC1 | 555 |
| Controls: |  | IC2 | 555 |
|  |  | IC3 | 7400 |
| VR1 | 10k | IC4 | 74132 |
| VR2 | 10k | IC5 | 78L05 |
| Linear trimpots |  | D1 | 1 N914 |



Fig. 2: Circuit diagram. Pin 14 of /C3/4 is connected to 5 V , pin 7 to OV.


Fig. 3: Line rate waveforms. The field waveforms are similar.


Fig. 4: Component layout on 0.1 matrix Veroboard.


Fig. 5: Cuts and connections on the copper side of the board.
cables. It's advisable to use sockets for IC1-4, particularly as this type of test unit is almost certain to be plugged into a cable with a high voltage on it some day - common cable trenches and men with shovels often cause inter-cable shorts . . . Incidentally, the output can be shorted indefinitely without harm.

The only adjustments are RV1 and RV2. These should be set so that the average monitor locks with its hold controls at range centre.

IC1 and IC2 could be replaced by a single 556 i.c. When a CMOS replacement for the 555 becomes readily available, battery life will be improved by using it in the IC1 and IC2 positions. No 556 CMOS device seems to be on the cards, so we stuck to 555 s to allow replacement with a CMOS equivalent at a later date. IC3 can be replaced with a low-power TTL 7400, or a 74 replacement CMOS device, which will reduce consumption further. It's not feasible to replace IC4, because of the low-impedance output required.

A number of these units have been issued to electricians on our site. They've proved very useful in identifying faults, and have saved many wasted journeys carrying a monitor or camera.

## next month in

After the excursions during the last two months into the fields of VDUs and video equipment, next month we're firmly back to the domestic TV set.

## - ASSESSING THE THORN TX9

One of the most important of the recently introduced UK made TV colour chassis is the Thorn TX9. E. Trundle takes a detailed look at it, having had one on loan for a few weeks to try out. Amongst the interesting features are a single chip decoder and a novel thyristor power supply.

## SERVICING HINTS

More useful gen from John Coombes on faults experienced with a variety of sets, in particular the Rank chassis from the A823 to the T20.

- Vintage TV

Vivian Capel starts a new series on the TVs of yesteryear. The first to be featured is the English Electric 16T11D, which had some surprisingly modern circuitry for a set dating from early 1953. With hints for anyone proposing to restore one of these oldies.

## MICROPROCESSORS IN TV

Microprocessor i.c.s seem to be cropping up everywhere nowadays, and it's scarcely surprising that TV manufacturers have started to find uses for them. The very latest receiver control systems are based on the use of a microcomputer, and microprocessors are featured in some recent VCR control systems. David Matthewson takes a look at this new development.

## PLUS ALL THE REGULAR FEATURES

## ORDER YOUR COPY ON THE FORM BELOW

```
TO
(Name of Newsagent)
Please reserveldeliver the February issue of TELEVISION (55p), on sale January 21 st, and continue every month until further notice.
NAME
ADDRESS
``` \(\qquad\)
\(\qquad\)
\(\square\)

\title{
TV Servicing: Beginners Start Here . . .
}

LAST month we tackled the subject of the PAL decoder, showing with the aid of a block diagram what basically has to happen in order to decode the colour signal and produce three RGB primary-colour signals to drive the cathodes of the c.r.t. - or alternatively three colour-difference signals to drive the c.r.t.'s grids, with the luminance signal used to drive the cathodes. It must be emphasized that there are a lot of differences in the detailed arrangements used in the decoders fitted in the various colour chassis - different PAL switching systems, colour-killer circuits, matrixing and quadrature phase-shift systems for example. To put some flesh and bones on our account of the decoder however, let's look at a typical circuit. As in many past instalments, we'll take as our example the circuit used in the Pye hybrid colour chassis (the 691). This closely follows the arrangement shown in our block diagram last month, the main difference being that the Pye chassis uses colourdifference tube drive.

\section*{Chrominance Channel}

The circuit of the Pye 691 chassis' decoder is shown in Fig. 1. We're not showing the luminance channel, which is relatively straightforward, but the section that started with the high-pass filter in last month's block diagram. The highpass filter consists of C91 and R91. A composite video signal from the i.f. strip enters the decoder at SK6, and after filtering to remove the low-frequency, i.e. luminance, part of the signal the remaining h.f. part is coupled by C 92 to the base of the first, gain controlled, amplifier stage (VT12 and associated components). The signal applied to the base of VT12 is of about 20 mV peak-to-peak amplitude. The automatic gain control (or a.c.c. - automatic chrominance control) circuit is simplicity itself. D15 rectifies the burst signal present in VT14's collector circuit, producing a negative control voltage across C105. This is filtered by R105/C93 and applied via R94 as reverse bias to VT12's base. A positive, forward bias is also applied via R93 from the slider of RV9, which enables the a.c.c. level to be adjusted.

\section*{Colour Control}

The output from the first chrominance amplifier stage goes two ways. Via C96 to the base of the first burst amplifier transistor VT13, and via C125/D23/D24/C128 to the base of the second chroma amplifier transistor VT20. Let's consider the latter, rather complicated looking path. The two diodes D23/24 serve two purposes. First of all they form part of a very effective user colour control circuit. The user colour control RV11 adjusts the forward bias applied to the anodes of these two diodes, and thus their conduction. In this way the amplitude of the chroma signal flowing via the two diodes is varied. The colour and contrast controls are electrically linked so that they track together, i.e. whichever of these two user controls is adjusted, both the colour and contrast are varied.

\section*{Burst Blanking}

The second function served by D23/24 is to enable burst blanking to be carried out. Negative-going line pulses enter the decoder at SK8. They are used to trigger the PAL switch (we'll return to this later) and also pass via D25 to the anodes of D23/24, switching them off during the burst period so that the burst signal is removed from the chrominance signal path. VT20 amplifies the chroma signal only therefore. The output appearing across its collector load resistor R148 is fed via \(\mathrm{L} 30 / \mathrm{C} 133\); a 6 MHz trap to remove any intercarrier sound signal that may be present, to the base of the delay line driver transistor VT21.

\section*{Delay Line Circuit}

The latter provides two outputs. Its collector drives the delay line's input coils, while its emitter provides an output which is coupled via C138 and R165 to the centre tap on the delay line's output coils. The output coils thus receive both the direct and delayed (previous line) chroma signals, and carry out the add/substract actions. As a result, \(\mathrm{R}-\mathrm{Y}\) appears at the top end of R174 and B-Y at the bottom end. Another result of this addition and subtraction of signal voltages is that the effect of any spurious phase shift is converted to a slight reduction in the amplitude of the output signals. This can be seen if one plots vector diagrams of the signals on alternate lines (remembering that the polarity of the R - Y component of the signal is inverted on alternate lines). We can't go into that here however. The two separated but undemodulated colour-difference signals thus obtained are then fed to two bridge rectifiers, D30-33 and D34-37.

For the addition and subtraction processes to be carried out correctly, it's essential that the direct and delayed signals are of equal amplitude and in phase. RV12 is included for amplitude and L31 for phase adjustment. The correct setting of RV12 is particularly important: the effect of incorrect adjustment is a line by line colour change, i.e. Hanover bars. Incorrect adjustment of L31 will have the same effect.

The two chroma demodulators D30-33 and D34-37 are of the synchronous type. They require two inputs, the signal input and a reference signal input which is obtained from the reference oscillator. The action can be thought of in terms of timing and sampling. What happens is that the 4.43 MHz reference signal switches the demodulator on once during each signal cycle, the demodulator then sampling the signal input. We thus get a demodulated output, i.e. a signal of amplitude equal to that of the input signal at the instant of sampling. These outputs are fed via filters, to remove the 4.43 MHz component, to the decoder panel's output sockets SK9 and SK10.

From this it's clear that the reference signal must be very
accurate - dead on from a frequency point of view, and phase controlled. The use of a crystal controlled oscillator (VT16 and associated components) ensures frequency stability, while the use of the burst signal in a feedback control loop produces phase synchronisation.

\section*{Burst Gating}

This takes us back to the burst channel. We saw that one output from VT12 is taken to VT13. This is a straightforward tuned amplifier which drives the second burst amplifier transistor VT14. This latter transistor also provides the burst gating action. Since VT14 has no fixed forward bias, it spends most of its time in the nonconductive state. We want to switch it on for a brief period only, when the burst signal is present, so that only the burst signal is developed across its collector load - transformer T9. For this purpose, line sync pulses are fed into the decoder at socket SK7. The timing of these pulses is not correct for burst gating however, since the burst is present during the back porch immediately following the line sync pulse. We need a slightly delayed pulse therefore for accurate burst gating. For this purpose the sync pulses are fed to the tuned circuit L28/C126, which produces a cycle of oscillation whose positive excursion occurs during the back porch period. This cycle is fed via R103/C100 to the base of VT14, which thus switches on to allow the burst through.

\section*{Reference Oscillator Phase Control}

There are two detectors in VT14's collector circuit. We've already seen that the simple half-wave rectifier D15 is used to develop the a.c.c. potential across C105. The other detector is another synchronous one consisting of the centre-tapped secondary winding on T9 and the two diodes D16/17. C102 and C104 couple the burst signal to the diodes, while T10 feeds the reference signal back to the junction of the two diodes. RV10 applies a standing bias to the circuit. If the bursts and the reference signal are correctly phased, the demodulator produces zero output, the bias voltage provided by RV10 appearing at the base of the d.c. amplifier VT15. If the bursts and the reference signal are not correctly phased, the diodes produce a positive-going or negative-going output which adds to or subtracts from the voltage provided by RV10. The resultant output is smoothed by C107 and C106/R109. We thus obtain a control voltage to adjust the oscillator's phase, RV10 setting the basic frequency. The control voltage is amplified by VT15 and used to bias the varicap diode D18 in the reference oscillator circuit. As you'll recall from a previous instalment, the capacitance of a varicap diode alters as the bias voltage applied to it is varied. So our control voltage is being used to adjust the capacitance in the reference oscillator's tuned circuit.

The result of all this is that the reference oscillator transistor VT16 develops across its collector load T11 a 4.43 MHz signal which is held stable in frequency and phase. This signal is fed to the emitter-follower VT17, which is included simply to act as a buffer between VT16 and its load. The signal at the emitter of VT17 is fed back to T10 to provide the phase control action, and via C150 to the chroma demodulators. Before following this latter path however there's another lump of circuitry to consider.

\section*{Generating the Ident Signal}

As we mentioned last month, the burst phase varies on alternate lines due to the PAL switching at the transmitter.

As a result, the burst detector produces a 7.8 kHz (half line frequency) squarewave output in addition to the d.c. output it provides. This burst ripple as it's called appears at the collector of VT15 and is coupled via C111 to the base of the ident amplifier VT18, which develops a large-amplitude 7.8 kHz sinewave across its collector tuned circuit L27/C118/C119. The important thing here is that this ident signal, as it's called, follows the phase of the burst ripple. It can thus be used to synchronise the PAL switching in the decoder. Before getting on to this however there are a couple of other points to note.

\section*{Using the Ident Signal}

VT18 is followed by the emitter-follower transistor VT19. The signal developed across this transistor's emitter load resistor R131 goes off in three directions. First via R129 back to the ident tuned circuit. This is positive feedback, and serves to increase the amplitude of the ident signal. Secondly via C122 and D20 to the PAL switch, to which we'll return shortly. The third feed is to the colourkiller rectifier D22, which rectifies the ident signal, producing a positive voltage across its reservoir capacitor C123. The idea is no burst \(=\) no colour \(=\) no voltage across C123. The voltage developed across C123 during a colour transmission is used to forward bias the base of the second chroma amplifier VT20, which is thus non-conductive when a monochrome transmission is being received. This is the colour-killer action of course.

\section*{\(90^{\circ}\) Phase Shift}

The final thing to consider is the path the reference signal follows from the emitter of VT17 to the two chrominance synchronous demodulators D30-33 and D34-37. Let's take the easy bit first. One path is via C148/C149 and T16 to the B - Y demodulator D34-37. The transformer is used simply to apply the signal across the bridge. C148/C149 with R178 provide the \(90^{\circ}\) phase shift which we talked about last month. The idea is that to demodulate the quadrature modulated signals correctly, an equivalent \(90^{\circ}\) phase difference is required between the reference signals used to time the synchronous detectors. This shift is included in the B - Y reference signal feed.

\section*{The PAL Switch}

There's no phase shift in the reference signal feed to the R - Y synchronous demodulator, but to invert the effect of the PAL switching at the transmitter we have to invert the reference signal fed to the \(\mathbf{R}-\mathrm{Y}\) synchronous demodulator on alternate lines (alternatively we can invert the signal feed to the demodulator on alternate lines - it makes no difference - but in this Pye decoder it's the reference signal that's inverted). This inversion is carried out by the two secondary windings on T15 and diodes D28/29, which are switched on and off by the bistable circuit VT22/23.

A bistable circuit is not something we've encountered before in this series of articles. It's simply a pair of crosscoupled transistors - observe that the collector of VT22 is coupled via R167 to the base of VT23, whose collector is coupled via R 168 to VT22's base - which switch each other on and off. The result is the generation of opposite polarity squarewave outputs at the collectors of the two transistors. The bistable circuit has to be driven by trigger pulses - in the absence of trigger pulses, one transistor will turn on and the other off and they'll remain in this condition. The line frequency pulses fed into the decoder at SK8 are used to do


Fig. 1: The colour decoder circuit used in Pye hybrid colour receivers. The circuitry around the
the triggering, being fed via C136/D26 and C137/D27 to the bases of the two transistors - where they switch off whichever of the two transistors happens to be conducting. The squarewave outputs thus produced are at half line frequency, and switch D28 and D29 on and off alternately on alternate lines. T14 applies the reference signal to D3033, and is fed on alternate lines by D28 and D29. These connect either one or other of the two secondary windings on T15 to T14, and since the two secondaries are wound in
phase opposition we get the required inversion of the polarity of the R - Y reference signal fed to D30-33.

\section*{Synchronising the PAL Switch}

The final point is to ensure that this switching is synchronised with the transmitter's PAL switching. This takes us back to the ident signal at the emitter of VT19. As we've seen, the ident signal follows the transmitter's PAL

'ay line varies in different versions of the chassis, due to the use of different types of delay line.
switching. The positive-going excursions of the ident signal are coupled by diode D20 to the bistable triggering circuit, where they suppress the triggering for a single cycle if the triggering is incorrectly phased, i.e. they so to speak make the bistable miss count.

\section*{Decoder Outputs}

The Pye decoder panel produces two demodulated
colour-difference signal outputs, \(\mathrm{R}-\mathrm{Y}\) and \(\mathrm{B}-\mathrm{Y}\). These are fed to the chassis' CDA (colour-difference amplifier) panel, where the \(G-Y\) matrix is also located. This matrix consists of a couple of resistors across which set proportions (determined by the values of the resistors) of the \(\mathrm{B}-\mathrm{Y}\) and \(\mathrm{R}-\mathrm{Y}\) signals are added together to give us the missing \(G-Y\) signal.

Next month we'll take a look at some practical decoder servicing problems.

\title{
Battery Charger for Portable Video
}

\author{
lan Pawson
}

THE portable video recorder (JVC HR4100) and camera I bought recently are powered by a 3Ah dryfit battery housed inside the recorder. This enables you to record for just over an hour, and I was surprised to find how quickly this time can be used up. To give a longer recording time I bought a 12V 5.7Ah dryfit battery (RS type 591-398). I enclosed this in a wooden box with a short lead terminated with a 4 -pin DIN plug to connect to the recorder's external power socket (for details of the socket see Fig. 3). This is used to give a couple of hours' recording time, a futher hour then being obtained from the recorder's internal battery. It then occurred to me that it would be useful to be able to recharge the battery from a car battery, via the cigar lighter socket, and the unit described in this article was devised for the purpose.

Dryfit batteries need to be charged from a constant voltage source of 2.3 V per cell. Thus for a 12 V battery, 13.8 V is required. To obtain this from a car battery, a d.c.d.c. converter is needed. The charging current is selfregulating, but the initial charging must be limited to about 2 A . As the battery charges the current decreases, until at full charge it takes less than 50 mA .

Most d.c.d.c. converters use a transformer. The one
thing I hate in a project however is having to wind an inductor or transformer. In this case the output required is nearly 30 W , so a large pot core would be needed. I thus decided to adopt a transformerless circuit.

\section*{Circuit Operation}

The circuit is shown in Fig. 1. Gates N1 and N2 of IC1 form an oscillator which runs at around 1 kHz . The output is buffered by N3, with N4 providing inversion. Transistors \(\operatorname{Tr} 1\) and \(\operatorname{Tr} 2\) are thus turned on and off alternately, via the limiting resistors R3 and R4. This in turn switches \(\operatorname{Tr} 3\) and \(\operatorname{Tr} 4\) on and off.

With Tr 2 and Tr 4 turned on ( Tr 1 and Tr 3 off), C 2 charges via D1 and R7 to 12 V . When Tr 1 and Tr 3 switch on ( \(\operatorname{Tr} 2\) and \(\operatorname{Tr} 4\) off), D1 is reverse biased. C2 is now in effect in series with the 12 V supply, via R 7 and Tr 3 . As a result, C3 charges via D2 to about 21V off load. D2 prevents C3 discharging back into \(\mathbf{C} 2\) when \(\operatorname{Tr} 1\) and \(\operatorname{Tr} 3\) switch off and \(\operatorname{Tr} 2 / \mathrm{Tr} 4\) switch on again. The value of C 3 is large enough to smooth out the ripple caused by the switching action.

The voltage developed across C3 is applied to the i.c.


Fig. 1: Circuit of the d.c.-d.c. converter for charging 12 V dryfit batteries.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{\(\star\) Components List} \\
\hline \multicolumn{2}{|l|}{Resistors:} & \multicolumn{2}{|l|}{Semiconductors:} & \multicolumn{2}{|l|}{Capacitors:} \\
\hline R1 & 820k & IC1 & CD4001 & C1 & \(0.001 \mu \mathrm{~F}\) ceramic plate \\
\hline R2 & 390k & IC2 & L723 (DIL) & C2 & \(1000 \mu \mathrm{~F} 35 \mathrm{~V}\) electrolytic \\
\hline R3 & 1k & D1-2 & RS 261-019 & C3 & \(4700 \mu \mathrm{~F} 35 \mathrm{~V}\) electrolytic \\
\hline R4 & 1k & D3 & 1N5401 & C4 & \(0.001 \mu \mathrm{~F}\) ceramic plate \\
\hline R5 & \(820 \Omega\) & D4 & LED & & \\
\hline R6 & \(820 \Omega\) & Tr1. 2 & BC109 & & \\
\hline R7 & \(0.27 \Omega 2.5 \mathrm{~W}\) w.w. & Tr3, 4 & TIP3055 & & \\
\hline R8 & 4.7k & Tr5 & 2N3053 & & \\
\hline R9 & 2.2k & Tr6 & TIP3055 & Miscellaneo & \\
\hline R10 & \(0.33 \Omega 2.5 \mathrm{~W}\) w.w. & & & Miscellaneous & \\
\hline R11 & 5.6k & & & RS 401-964 & heatsinks for Tr3, 4, 6 \\
\hline R12 & 5.6k & & & RS 401-548 & heatsink for Tr5 \\
\hline R13 & 1k & & & RS 509-967 & case \\
\hline VR1 & 1 k miniature horizon & & & Two 4-pin DI & ckets \\
\hline \multicolumn{4}{|l|}{All \(\frac{1}{4} \mathrm{~W} 5 \%\) unless otherwise specified.} & PCB and alum & mfor D1, 2 heatsinks. \\
\hline
\end{tabular}


Fig. 2: Printed board layout.
voltage regulator IC2, whose output is buffered by the Darlington pair Tr5/6. R 10 provides the current limit of 2A, with VR1 providing fine adjustment of the output voltage. D3 is a protection diode while D4 gives a positive indication that the unit is working.

\section*{Construction and Use}

The PCB details are shown in Fig. 2. Tr3/4/6 are mounted on the board on RS heatsinks. Tr5 is also provided with a small heatsink. D1 and D2 are stud mounting types and are bolted through the board with, as a heatsink on top of the board, a short length of \(18 \mathrm{~s} . \mathrm{w} . \mathrm{g}\). aluminium bent in a U shape with a hole drilled in the middle. Short lengths of wire are used to connect the anodes of D1 and D2 to the adjacent holes in the board.

On completion, mount the board in the case with the heatsinks towards the rear. D3 is a wire-ended type connected between the board and the output DIN socket.

(a)

(b)



Fig. 3: (a) The charger's input and output sockets. (b) Connections between the charger and the recorder. (c) Lead from the car's cigar lighter to the recorder or charger. Plugs and sockets viewed from the tag side. (d) The recorder's external power socket.

Details of the input and output sockets are shown in Fig. 3.
The lead for powering the recorder from the car's cigar lighter socket (see Fig. 3) is also used as the charger's input lead.

The DIN plug on the spare battery is plugged into the converter's output socket. To charge the recorder's internal battery, a lead with 4 -pin DIN plugs at both ends has to be made up - see Fig. 3(b). To enable this lead to be used, pins 2 and 3 of the converter's output socket are connected together.

D4 is mounted on the front panel between the two DIN sockets. Tr 3 and Tr 4 get warm, \({ }^{1} \mathrm{Tr} 5, \mathrm{D} 1\) and D2 get fairly warm, and Tr6 gets hot!

To set up, turn VR1 to its mid position and connect the input to 12 V . D4 should light. Connect the output to the battery and with a voltmeter adjust VR1 for an output of 13.8 V . The unit is then ready for use.

\section*{Robust, Battery Powered, Pocket Sized Unit, Plugs Straight into Aerial Socket.}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(Y\) & & & \(M\) & & & \\
\(W\) & \(E\) & \(C\) & \(G\) & \(A\) & & & \(B\) \\
\(H\) & \(L\) & \(Y\) & \(R\) & \(G\) & \(R\) & \(B\) & \(L\) \\
\(I\) & \(L\) & \(A\) & \(E\) & \(E\) & \(E\) & \(L\) & \(A\) \\
\(T\) & \(O\) & \(N\) & \(E\) & \(N\) & \(D\) & \(U\) & \(C\) \\
\(E\) & \(W\) & & \(N\) & \(T\) & & \(E\) & \(K\) \\
\hline
\end{tabular}

\section*{FEATURES:}
* CROSSHATCH GRID * HORIZONTALS
* DOT MATRIX * WHITE RASTER
* VERTICALS * GREYSCALE
*PLUS PAL COLOUR BARS;
ONLY 3 SIMPLE ADJUSTMENTS.
\(\star\) PG6RF OWNERS; Buy Add-On 'C6' Unit 1
ORDER NOW!

In response to demand we have produced an add-on Colour Bar unit C6 to upgrade the PG6RF to PAL COLOUR. A MUST for TV construction or servicing! Available as a KIT or BUILT \& TESTED. Kit includes all components and ready built modulator etc. Hundreds sold, reliable design.
Full 12 month guarantes on built units.
MAIL ORDER ONLY
Quantity Discount on application


PG6RF KIT £25.87 BUILT £33:35 - As per TV Review, Jan. 1979 C6 KIT £18.98 BUILT £26.45 - Add-on Colour to PG6RF CPG6RF KIT £42.55 BUILT £63.25 - Both above combined.

\section*{ALSO AVAILABLE:}

\section*{TECS: TECHNALOGICS EXPANDABLE COMPUTER SYSTEM.}

Full Colour Toletext; full facility Microprocessor-based. Aerial Input Decoder with extensive computing facilities. The most versatile decoder on the market. Expandable from a simple teletext decoder to a full professional computer/information centre. Send large S.A.E. for details. SEND ALL ORDERS OR ENQUIRIES TO TECHNALOGICS LTD. (DEPT. TV)

8 EGERTON STREET, LIVERPOOL L8 7LY. Tol: 051-724 2695.

\title{
Servicing in the Field
}

Part 3
George Wilding

THE line timebase and power supplies are responsible for most service calls in all types of chassis, whether all valve, hybrid or solid-state. When it comes to solid-state chassis however the power supply arrangements and line output stage circuitry vary so much that it's difficult to generalise about fault finding procedures. When confronted with a faulty set of this type, the best field servicing procedure to adopt will be dictated largely by one's experience of the particular chassis and the setmaker's recommended approach to fault finding.

\section*{Common Failures}

There are one or two components that are particularly suspect in certain chassis. In the large-screen Pye solid-state chassis ( \(725,731 \mathrm{etc}\) ) for example, C563 ( \(0.1 \mu \mathrm{~F}\) or, later \(0.22 \mu \mathrm{~F}\) ) across which the c.r.t's first anode supply is developed is a frequent offender. You may find the h.t. fuse blown, or the dead set symptom if the set was switched off quickly enough. You may also find the tripler, line output transistor and transformer all defective if you're unlucky. Use a replacement rated at 1.5 kV - the capacitor is mounted inside the e.h.t. can. The capacitor used for the same purpose in the ITT FT110 chassis (C517, \(0.001 \mu \mathrm{~F}\), 1.6 kV ) is similarly a common offender. When this goes short-circuit however an electronic trip operates, preventing damage to other line output stage components.
There are quite a few components that tend to break down after some years' service in solid-state chassis. The two components just mentioned however can fail very quickly. Let's summarise a few of the components that experience indicates tend to fail with age.
The wirewound surge limiting/smoothing resistor R1367/81 ( \(2 \cdot 2 \Omega+68 \Omega\) ) in the Philips G8 chassis frequently goes open-circuit, giving the symptoms c.r.t. heaters alight but set otherwise dead.
In the Rank A823 chassis used in many Bush/Murphy single-standard colour receivers the BY164 or BY126 1.t. bridge frequently fails, blowing the 2A 1.t. fuse 8Fl. Since there will be no line drive, the dead set symptom will be present. Other common faults on these chassis (A823, A823A etc.) are loss of capacitance in the h.t. reservoir/smoothing block \(8 \mathrm{C} 9 / 10\), and no h.t. due to the smoothing resistor 8R15 (688) going open-circuit.
In both the Philips G8 and the Rank A823 chassis the older type of BT106 mains rectifier thyristor often goes short-circuit, blowing the mains fuse.
The thyristors used in the line output stage in Grundig colour sets, and/or a perforated insulating washer, can result in the cut-out operating on switching the set on. Spark-over between the washer and heatsink will always trip the cut-out: careful inspection will reveal the perforation. As to which of the two thyristors is responsible, if the cut-out operates immediately suspect the flyback thyristor Ty 511 (TA16091), if there's a slight delay suspect the scan thyristor Ty518 (TA16090).

Severe loss of capacitance in the triple electrolytic can C602/3/6 used in the Thorn 3000/3500 chassis causes low h.t. voltages with a high hum content. Severe loss of capacitance in \(\mathrm{C} 607(1,000 \mu \mathrm{~F})\) results in a low 30 V rail
with all its attendant symptoms, e.g. a dead set due to lack of drive to the chopper transistor. Shorts in power rectifier diodes are not uncommon, especially in the 30V supply rectifiers W603/4. As mentioned last month, the c.r.t. first anode switches on these sets tend to develop leakage to chassis, reducing the first anode voltage(s) to the associated gun(s) so that the output from them is either reduced or absent. Quite often the leakage current through the associated \(1 \mathrm{M} \Omega\) or \(1.5 \mathrm{M} \Omega\) feed resistor causes it to rise in value, making the problem worse.

Having strayed for a moment from line timebases and power supplies, it's also worth noting that the ETTR6016 i.c. used in GEC colour sets featuring touch-button channel selection is often responsible for channel change problems.

\section*{No EHT}

Triplers don't fail all that often, but nevertheless provide a considerable percentage of the troubles with UK and continental colour receivers. The incidence of tripler failure in Japanese sets is almost unbelievably low. I don't know the proportion of Japanese sets in my catchment area, but whilst I've serviced most makes of Japanese sets for a variety of faults I've yet to replace a tripler.

When a tripler is suspected of being faulty, particularly if the set doesn't incorporate overload protection circuitry, the aim must be to prove or disprove the suspicion without subjecting the rest of the line output stage to stress - a defective tripler can quite easily destroy the output transistor, transformer and associated components. Hence the protection circuitry used in some sets.

This protection circuitry can be ingenious. In the Saba H chassis for example the h.t ripple is sampled and if excessive activates a thyristor which in turn operates a relay which opens the mains switch. In the Thorn Model 3787 (NordMende F VI chassis) a bistable circuit alters the voltage at pin 4 of the TDA2590 line oscillator i.c. from 11 V to 6 V , stopping the line oscillator and shutting down the set. In sets using a switch-mode power supply there's usually an excess current trip, while in many older solidstate sets protection is provided by correct fusing, fusible resistors and thermal cut-outs.

In all cases the simplest and surest way of determining whether or not a tripler is faulty is to remove the pulse input to it. In many sets this can be done by unplugging a connector - the Thorn 3000/3500 and some Philips chassis are examples. Where protection circuitry is incorporated and this action restores normal supplies, the tripler is clearly defective. It's possible, though rare, for the trouble to be due to a succession of severe flashoves or even an internal shortcircuit in the tube however, especially in some regunned tubes.

Where there's no protection circuitry, replace any blown fuses and, with the tripler disconnected, check whether an arc can be drawn from the pulse supply point. If so, the tripler has probably broken down.

If the e.h.t. is present, the other possible causes of the no raster symptom are zero or low first anode voltages to all tube guns or excessive tube bias. Check tube base voltages and follow up whichever are incorrect.

If no arc can be drawn after disconnecting the tripler, how does one tell whether the fault originated in the line generator or output stage, or alternatively the line output transformer has been damaged by a faulty tripler? Take a sniff at the tripler - breakdown of selenium types is usually accompanied by an obnoxious smell. In addition, check for any signs of swelling, and note whether any thermoplastic top or back filling is at all spongey in places or generally. In any event, you'll have to follow the appropriate procedure to establish why the line timebase is not working. Check voltages and follow up any clues. If the h.t. to the line output stage is low, disconnect the h.t. and check at the power supply to see whether it rises. If so, try disconnecting the items fed by the line output transformer to find out which is causing an overload. Resistance checks will help. If the h.t. at the line output stage is correct, find out why the output transistor(s) aren't being driven.

Output transistor and/or transformer failure due to a defective tripler often means that an incorrect fuse has been fitted, prolonging the overload condition. Tripler failure on the other hand is often caused by excessive input pulse amplitude. The excessive pulse amplitude may well be due to the h.t. being high, as a result of incorrect setting of the set HT/set EHT control in the power supply. Whilst manuals usually tell you to set this control for the correct e.h.t., in practice most engineers tend to set it for the specified h.t. voltage. To be on the safe side, it's best to set the h.t. towards the lower end of the range quoted - about 61 V in the case of the Thorn \(3000 / 3500\) chassis for example.

The vulnerability of line output transformers and transistors to tripler failure varies widely from chassis to chassis, and although it's not all that common it's expensive when it does occur. ITT report that in certain circumstances failure of the tripler in the CVC25/30 series chassis can destroy the transformer, the EW modulator driver transistor

T13 (BD238, later type BD442) and the EW modulator module. This problem usually occurs during the set's twelve month guarantee period, but ITT have extended the warranty on these items to 24 months. That said, I have the highest regard for ITT triplers, which are used by a number of setmakers. In fact in the case of the ITT CVC5-CVC9 hybrid series chassis, which form a high proportion of the sets in my area, I've had to replace only one tripler.

Before fitting a replacement tripler, check whether any components connected to the earthy end of the e.h.t. overwinding have been damaged.

\section*{Dead Set Clues}

In the case of a completely dead set, some clues can usually be obtained by finding out how the failure occurred. If the set was working normally until switched off, it's likely that the surge induced by the action of switching off or on is responsible for the fault. There's always the possibility however that the start-up circuitry used in many sets to get the line generator circuitry to work prior to the line output stage coming into operation is at fault, but this is not common. The switch-on or switch-off surge may have been just too much for an ageing cartridge fuse. After years of use their susceptibility to failure increases. The same can be said of a fusible resistor's soldered connection deterioration can occur here due to repeated thermal changes.

If the fuse is shattered, the surge could have been due to a short-circuit rectifier - and we must always remember the tendency of mains filter capacitors to go short-circuit.

Where the set failed while viewing however it's likely that the fault is in the line output stage.

Trip circuitry varies so much that where you encounter a set which is tripping the maker's recommended servicing procedure should be followed.

\title{
A Videocassette Rewind Machine
}

\author{
John de Rivaz, B.Sc. (Eng.)
}

OWNERS of VCRs will doubtless be well aware of the replacement costs of the video heads and parts in the tape path. For each hour spent viewing, a rewind period, with the tape rubbing against the heads, is required. For the Philips N1500 VCR, the playing time is an hour and the rewind time 400 sec . It follows from this that a saving of about 10 per cent of head replacement costs will be achieved if a separate chassis is used for rewinding. There's another good reason for having a rewinding machine.

It's occasionally possible to buy, for about \(£ 1 \cdot 50\), broken videocassettes for repair. Such repairs are possible if parts can be exchanged between cassettes. Points to look for include warped spools, dirty bores in the PTFE rollers, out of tolerance combinations of spools and cases, broken springs, and foreign matter in the mechanism. It's worthwhile having a separate rewind machine when working on such cassettes, since they can sometimes be very hard on the mechanism by suddenly jamming up. One was found with a knot tied in a break! If you don't want to splice, you can make a VC30 from a VC60 say by loading it with a continuous half length of tape.

I obtained an N1500 chassis from a dealer for \(£ 25\) plus VAT and carriage - others may be able to better this price. It contained the head and drive motors, mains transformer,
a broken head disc with drum assembly and drive belt, a cassette drive assembly, flywheel and control linkages. The lacing motor and parts had been removed, but the cassette unlocking spigot was still in place, with its linkage back to the position previously occupied by the lacing chassis. The cassette loading structure had been removed, together with the record and eject buttons and the stop solenoid.

The mains transformer wasn't really needed, so I removed it along with the voltage selector. The motors could then be wired as shown in Fig. 1 for mains operation. Cassette loading was to be done by hand, so a handle was fitted to the drum in the place previously occupied by the top mounting support for the head disc. A lever was then fitted to the unlocking linkage so that it engaged with a


Fig. 1: Method of connecting the head and wind motors, with the mains transformer removed.


Fig. 2: Circuit used to provide an autostop facility. The thyristor is a 200V, 1A type; the diodes have a p.iv. rating of 400 V and the electrolytics a voltage rating of 400V. The relay is a 240 V a.c. mains type with normally-closed contacts.
spigot fitted to the underside of the drum in the fully unlaced position - with the effect of locking the cassette in the usual manner. To make the new system work, the spring on the locking mechanism situated under the cassette drive was reversed, so that its pressure had the effect of unlocking the cassette.

The machine could have been used as a winding machine in this condition, but there would be no autostop. The circuit shown in Fig. 2 was used to provide this feature. The stop solenoid having been removed, a Potter and Brumfield KU25011 mains relay was found in the spares box and used. It has two metal strips fitted to the armature, and one of these was bent to engage with the stop lever. The circuit was built on a small tagboard mounted next to the relay.

The \(10 \mathrm{k} \Omega\) resistor provides holding current without overheating the relay: the parallel \(10 \mu \mathrm{~F}\) capacitor provides the boost required for the initial movement. The \(33 \mathrm{k} \Omega\) resistor in series with the thyristor's gate limits the trigger current to the rated 10 mA . The \(220 \mathrm{k} \Omega\) resistor across the relay contacts, together with the mechanical time-constant of the relay, switch off the thyristor without any bouncing. A microswitch was fitted to the drum so that it opens when the tape is fully laced. This was connected as shown, and has the effect that the stop relay is energised until the tape is properly laced.

If the stop foil is missed or not present on the cassette being reclaimed, the tape will jerk the drum around on reaching the end and will close the microswitch, activating the stop solenoid. This is not ideal, but is better than stretching the tape to breaking point or stalling the motor!

\title{
Receiver/Monitor Conversion
}

\author{
Steve Beeching, T.Eng. (C.E.I.)
}

THE MC 1552 G i.c. used in the video distribution amplifier I designed some time ago (see Letters, Television August 1978) is getting rather expensive. I decided therefore to design a new video distribution amplifier to supersede the earlier i.c. design. During the development of this it became clear that the amplifier's potential could be expanded - to make it suitable for use as an interfacing board for converting certain standard TV sets for use as receiver/monitors. The result is a single PCB that can be used in a number of ways.

\section*{Basic Circuitry}

The basic circuit adopted is shown in Fig. 1. It consists of a fairly common wideband amplifier circuit ( \(\operatorname{Tr} 1 / 2\) ) and a couple of emitter-follower buffer stages ( \(\mathrm{Tr} 3 / 4\) ). For a \(75 \Omega\) video input signal, input termination is required (R14). This is followed by d.c. isolation (C1) in case there's some standing voltage on the incoming line. Then come the wideband amplifier and emitter-follower Tr3. An additional emitter-follower stage is added, with provision for base


Fig. 1: Basic circuitry provided by the board.
biasing (R 10/11): this will drive a \(75 \Omega\) terminated output at the standard 1 V peak-to-peak video level. The amplitude and d.c. level of the signal provided by Trl-3 can be set by altering the value of R4 to get the required gain and the values of R1/2 for the desired standing level. The reason for using this arrangement is that to prevent large changes in contrast and brightness when the set is switched between the TV and monitor modes the signal fed into the set via Tr 1-3 must match the detected signal within the set.

\section*{Uses}

Tr 3 is in fact not often required, though I do use it when employing the circuit as a video input for Philips VCRs. Various components in the output driver stage Tr4 are also not always used. R13 ensures the correct 1V into \(75 \Omega\) output.

For use as a distribution amplifier, link the collector of Tr 2 to the base of Tr 4 , replace R13 with a link, and feed the


Fig. 2: Layout of the board.


Fig. 3: Interconnections to the Sony ModeI KV2000 Mk II.


Fig. 4: Circuit as used with the Sony Model KV2000 Mk II. Link out the component positions not needed on the board.
output via \(75 \Omega\) resistors to up to five parallel terminations.
The layout of the PCB is fairly critical: variations are not advised.

To avoid unnecessary work when converting a standard TV set for use as a receiver/monitor or a monitor only, the


Fig. 5: Mains input wiring to the Sony Model KV2000 Mk II.
following requirements should be met. (1) The set must either incorporate a mains isolating transformer or be capable of running off one which can be housed within the cabinet. This rules out small-screen sets without transformers, and large-screen sets that use thyristor power supplies. (2) The detected video signal should be of the right polarity (video up, sync pulses down), and the sync pulse feed must be maintained when the set is switched to the monitor mode (in some Sony sets for example the sync separator is fed from a point in the a.g.c. circuit, so that the video feed to it in the monitor mode can be lost unless a lot of additional work is carried out). (3) The audio signal must be at a reasonable level at the point of interruption, and preferably not d.c. controlled. These are only general guide lines however.

\section*{Converting the Sony KV2000 Mk //}

As an example of receiver/monitor conversion using the board, we'll take the Sony Model KV2000 Mk II. Just to make life complicated, there are two versions of this receiver, the first being used up to serial number 600,000 . The circuitry we're concerned with is almost identical however, though the component reference numbers are different.

The basic interconnections are shown in Fig. 3 and the board circuit in Fig. 4 The detected video signal is taken via L301 (or L204 as the case may be) to the output buffer stage Tr4. The video input is taken via the wideband


Fig. 6: Repositioning the tuner PCB in later versions of the Sony Model KV2000 Mk. II.


Fig. 7: Video connections to the Sony KV2000 Mk II - board viewed from the print side.


Fig. 8: Audio modifications, (a) early versions of the Sony Model KV2000 Mk II, (b) later versions.
amplifier \(\operatorname{Tr} 1 / 2\) and the TV/monitor switch to the circuit print next to L301/204. The audio output is taken from C238/C245, while the input is fed via the TV/monitor switch to the volume control.

To carry out the conversion, first remove signals panel A. All the plugs and sockets are labelled, so there should be no difficulty. Then remove the two-core mains lead, replacing it with a three-core lead. Watch which way round the internal cable clamp is fitted. Add the mains transformer, bolting it down with \(\frac{3}{4}\) in. 2BA nuts and bolts - mount it as far over to the left as possible. You may have to remove the set's foot and cut part of it away when the transformer is fitted. Add a \(1 \frac{1}{4}\) in. fuseholder and a 5A fuse - the RS type 412-677 fuseholder can be secured by a screw holding the tuner
pushbutton assembly to the front fascia, at the bottom right of the pushbutton panel.

Wire the mains supply as shown in Fig. 5, using a fiveway connector block to link up with the transformer's flying leads - this can be screwed to the side of the cabinet. Earth the transformer body, screen winding and the TV chassis. A convenient point to earth the chassis is at the metalwork above the power supply board, where a black wire connects to the tube's screening plate. The chassis is now isolated.

In earlier versions with a smaller tuner panel the transformer can be fitted without moving this panel. On later versions the tuner panel will have to be moved. The details are shown in Fig. 6. Drill the holes required with a 2 mm or \(1 / 8 \mathrm{in}\). drill, and fix the panel with 6BA self-tapping screws and plastic pillars (RS type 543-743). Bend the chassis member flat to avoid catching the transformer, and take care when drilling the location hole next to IC301i.c.s don't work too well with holes in them . . . The bit of print next to pins 4,5 and 6 is well defined and you can't miss it (famous last words).

The video modification is straightforward. Fig. 7 shows the print cuts required - next to inductor \(\mathrm{L} 301 / \mathrm{L} 204\). In the early version, connect the video cable screens to the adjacent screening can: in the later version there's a convenient bit of print nearby.

The audio modification is more complicated since the circuit must be changed from a d.c. volume control arrangement to an in-line signal contol system. The circuit changes are shown in Fig. 8, and are very similar. Cut the print about \(3 / 8 \mathrm{in}\). from pin 7 of IC203. It's easy to find. Remove R244/R232 as the case may be and wire a \(22 \mu \mathrm{~F}\), 25 V electrolytic capacitor between the input end of the vacated resistor position and the print adjacent to IC203 pin 7. Sleeve the capacitor's leads to prevent shorts to the rest of the circuit. Link pins 12 and 13 of IC203 together with a bit of solder - this sets the amplifier in the chip at full gain.

Remove the volume/picture control panel. Cut the print at the top of the volume control - make the gap about \(1 / 16 \mathrm{in}\)., as you are isolating the control from a power supply. Connect the audio lead, with the screen to the earth print, remove R401 or R402/D401, and add a wire link across the R401 or R402/D401 positions to earth the bottom end of the control. Return the panel to the set.

The set's tone control will affect the audio output signal. This can be useful for cutting down hiss and the excessive h.f. you would have if the control was removed. I use this output to feed a hi-fi installation, and the results are superb. The intercarrier sound channel in this set is so good that all traces of video buzz are removed, leaving crisp, clear sound.

The wire from the slider of the volume control to plug A1 is not screened, and can pick up fields from the timebases. I don't normally screeen the lead when carrying out this conversion, but I do dress it carefully, which is usually satisfactory. If you prefer to replace the lead with a screened cable however, be my guest.

The connector panel used is a matter of preference. I normally use a \(5 \times 4 \mathrm{in}\). panel, with the video amplifier panel mounted on this with stand-off spacers. I use BNC connectors for the video input/output, and 3.5 mm jacks for the audio in/out. Also a double-pole changeover switch for TV/monitor, and the same for a terminate switch if fitted. I've included in Fig. 3 the connections to an 8-pin EIAJ socket which can be fitted for use with U-matic video recorders.

The panel can be fitted to the back cover of the set there's plenty of room. Fig. 3 includes lead lengths for this
type of fitting. Miniature screened cable is used for the audio connections, and RG174 miniature video cable for the video wiring.

The Sony KV2000 Mk II makes an excellent receiver/monitor for colour video use. I think it's one of the best chassis to use for this purpose. The 9in. Sony Model KV9000 can be similarly adopted. The KV2000 Mk. I is
difficult to convert due to the sync problem mentioned earlier.

Finally, a commercial. If anyone has difficulty in getting the bits - the special squat mains transformer and any other parts - these can be obtained from B and B Electronics, 64 Manners Road, Balderton, Newark, Notts. Telephone Newark 76895.

\section*{Latest VCRs}

\author{
Steve Beeching, T. Eng. (C.E.I.)
}

\section*{HITACHI VT5000}

THE Hitachi VT5000 VCR's fascia has what one would call style, with light and dark grey tones and graceful lines. It certainly looked nice on the shelf, and my wife compared it favourably with other machines we've had for examination.

The clock has a preset on and off time, and can be set up to nine days in advance. This is more than earlier models from other manufacturers using the VHS format. It has an 0000 counter memory, and the single press to record button that's now become standard practice.

Unless there was a fault present in the machine I had for a few days, the VTR/TV switch was most interesting. It had no effect in the play mode, when all three programmes plus playback on the allocated channel could be had. I liked this. At least after an off-tape replay I could switch the TV set back to an off-air programme by means of the remote control unit, without having to get up and cross the room in order to press a button - this in fact is similar to the Philips VCR. If the VTR/TV switch is put in the TV position when a recording is being carried out, the monitoring output signal disappears but reception of the transmitted signal remains unaffected.

The instruction booklet is clear, with helpful diagrams, except for the part dealing with the VTR/TV button. It says that if you want the transmitted channels select TV, the machine returning to VTR when you press the cassette play button.

On a subjective assessment, the replayed pictures were average for a VHS machine. There was significant drop-out on the tape supplied, at least towards the beginning. This could have been due to greater usage at the beginning than at the end. My experience to date with VHS machines and tapes tends to confirm that tape drop-out (white spots flashing about) increases with use, pushing cassettes into early retirement.

There was some cross-modulation in the tuner - as if video was present on the sound, producing buzz. The tuning unit is rather flimsy, and very loose when withdrawn to carry out tuning. This lets down the otherwise rugged overall construction.


The Hitachi VT5000 VCR.

The external video and audio connections are all made via phono sockets. The inputs are switched, eliminating the need for tuner-auxiliary switching. I don't myself think it was a wise decision to have the same type of connections for video and audio.

I took a look inside the machine and found the construction good. The casing is made of plastic, with rigid cross struts. There's a screening shield around the head drum to give protection.

The power unit is compact and looks a bit difficult to get at for servicing. This is not true of the main circuit board, which is sturdy and well labelled. An interesting feature is that the main preset controls - head switching, capstan speed, record timing etc. - are all in a row, clearly labelled and accessible. A belt change would be a major operation, though not too impossible.

To sum up, the Hitachi VT5000 is a good-looking machine with excellent styling, but some improvement to the video noise level on playback and a bit more edge ringing to sharpen the picture would give better results. Production machines ought to come through better aligned: there's still some way to go before the VT5000 matches the standard set by the Panasonic NV8610 (I tried the two of them side by side).

\section*{A LOOK AT THE PHILIPS VR2020}

I recently had an opportunity to try out the new Philips VR2020 VCR - and what a fantastic machine it is! It did everything it was supposed to do, and more. You'll by now be familiar with the dynamic track following technique used (see September 1979 issue, page 574), which is similar to the Ampex AST (automatic scan tracking) system used on broadcast VTRs. The new VR2020 has no tracking control, and can operate in the fast forward or rewind modes at a slow rate with the tape threaded or at a fast rate unthreaded. A future model will provide pictures in slow motion, still frame, and intelligible pictures in the fast foward and rewind modes with the tape threaded. Such is the adaptability of DTF.

The self-seeking tuner seems to be a Grundig contribution to the system, and I'd suppose the same of the microprocessor deck control system.

A most impressive feature is the digital tape counter and programme finder. Every time a cassette rewinds to the beginning, the counter is set to 0000 . Thus every cassette has a start datum point, and the beginning of each recording can be logged with the counter number. Say a recording starts at 1236 for example. To find this the go-to button is pressed and the number 1236 entered on the keypad. The VR2020 will then either rewind or move fast forward to position 1236 and stop, no matter where it was on the cassette when the instruction was given.

The V2000 VCR system has been designed for further development - additional features etc. - during the 1980s, and we shall hear more about this when production VR2020s are released in quantity later this year. Already the VR2020 has optional audio/video input/output add-on units, and optional add-on remote control.

\title{
Long-distance Television
}

\author{
Roger Bunney
}

F2 RULES o.k., and BBC TV has started broadcasting internationally - the conditions during October 1979 have been such that Crystal Palace ch. B1 has been transmitting to the world! At the time of writing conditions are still improving, and it's likely that new records will be broken. The coverage of ch. B1 has included the Americas, Africa and Australasia, and Anthony Mann reports that on October 27th BBC-1 on ch. B2 was received, both sound and vision, in the Perth, Western Australia area from 0900 to 1140 GMT. This seems to be a record, but with increasing m.u.f.s greater triumphs may yet occur.

Conditions have been improving in the UK, with US communications and other signals from the Middle East from about mid-September in the low 40 MHz band, and occasional ch. E2 signals from Africa during the afternoon and evening. Hugh Cocks received an F2 signal from the SW, with the nowadays unusual RETMA test card, thought to be from Ghana.

There were several prolonged periods of F2 propagation with Afriçan ch. E2 signals during the first two weeks of October. Perhaps the reception on the 4th was the most spectacular, with at least two signals present until after 1800. Rhodesia ch. E2 was present here at Romsey until 2030, and at Hugh's location produced reasonable sound and vision. One test pattern signal that's been received on several occasions seems to be from a faulty transmitter, with fluctuating video modulation, flashing and general disturbance. We think it may come from Ghana.

The southerly African signals faded away after the 14th, to be replaced by really high-level ch. R1 F2 signals from distant parts of Russia. It's simpler to list the days when I didn't note signals - the 25 th and 30 th! Conditions have been too good, in that within five minutes of F2 signals appearing on a previously dead channel it has been completely jammed with signals, making identification impossible. The first five minutes and the fade out of the last signals at the minimum F2 skip distance produce the best quality signals. More than four signals have usually been present within the first few minutes of a typical F2 "opening", with an excess of other Russian signals of the communications/military type jamming adjacent frequencies down through ch. B1. This latter effect gave problems with the next spectacular item on my list.

\section*{Australian TV Received in the UK}

I didn't return from work on the 27th until 2030. At 2031 Hugh Cocks rang to report reception of the Australian ch. A0 ( 46.25 MHz vision, 51.75 MHz sound). Hugh noted signals from the NE from 0917 to 1050 GMT, sufficiently strong for the programme content, apparently Kojak, with captions at 0930, to be observed. The video buzz was first audible on a radio receiver (much narrower bandwidth). Next morning I wasn't at work, and started tuning carefully following the appearance of the by now familiar jammed ch. R1. Soon after 0800 Hugh rang to report that the ch. A0 video buzz was audible, and I eventually managed to lock the syncs and observe real Australian TV. At least the raster locked, and vague images could be seen moving about, but due to the interference from the other signals
present the ch. A0 reception was difficult.
Two of my tuners go to just under ch. E2, and I found it best to use an upconverter to ensure that I could tune through ch. B1 - BBC itself couldn't be seen due to the heavy interference from the other signals present. The receiver I was using was the ubiquitous Bush TV125, fed via a Philips G8 i.f. selectivity module, with the i.f. strip in the receiver operating in the narrow-band mode. The bandwidth was down to about 2 MHz maximum in fact. This made resolution of the vision possible - on a KB Featherlight with the full 3.5 MHz bandwidth the vision could not be resolved. The signal strength, as heard on a receiver tuned to the vision carrier, was relatively strong and consistent, but it was extremely difficult to display the video on a TV screen.

\section*{Confusion and Puzzles}

There's been plenty of scope for confusion during this recent F2 activity. Along with some of the strongest TSS (Russian) signals, there have been SpE signals from SR (Sweden). The latter can cause confusion by displaying a clock with "UR" identification. Both RAI (Italy) and RTVE (Spain) have been present during the F2 openings, causing confusion when on programme. One signal that puzzles us appeared on ch. E2 on the 23rd, from about 1840 GMT. It consisted of a pulse and bar pattern and was of the F2 type, fluctuating in and out all morning. It was eventually seen going on to the PM5544 test pattern at 1300, with programmes starting at 1330. Hugh thinks it was from Dubai on the Gulf. Several readers have commented on the speed at which an F2 opening establishes itself - from the onset of signals at noise level to perhaps 0.5 mV within five minutes, followed by jammed channels.

\section*{More Startling Reception}

The recent conditions have meant much interference on ch. B1. I recently heard police in the St. Louis area discussing a felon who'd acquired several hundred thousand dollars in cheques! Ian Roberts reports from South Africa that the m.u.f.s to the north have risen above 70 MHz daily. His latest catches have included RTP (Portugal) ch. E2 and several stations in the E. European f.m. band \((68-72 \mathrm{MHz})\). He also reports that a Salisbury, Rhodesia 432 MHz beacon (radio amateur) and two Pretoria, SA 144 MHz beacons have been received in Athens. Chris Wilson (Potters Bar) has monitored both US and UN forces carrying out radio tests in the Sinai between \(45-47 \mathrm{MHz}\). On the 22 nd he heard signals at up to 54 MHz . He observed the ch. E2 signal (Middle East?) mentioned above, saw four large Chinese characters on ch. R1 on the 17th at 0720GMT, and heard various N. American radio amateurs on the 20th operating at 50 MHz .

\section*{Summary}

On one occasion I noted a very weak ch. R 2 vision signal via \(F 2\), but at the time of writing (30th) I've yet to receive the widespread ch. A2 signals. To sum up, the past month
has been spectacular indeed, and there's every chance of even better things over the next four-five months.

\section*{It Wasn't Gabon!}

Further information has been sent by Kevin Jackson (Leeds) on the subject of the reception previously presumed to be from Gabon. The card was a long disused Czechoslovakian one, but it seems that the pattern is resurrected at times for use by links within the OIRT network. The reception was apparently on ch. R2, and the signal is most likely to have come from Czechoslovakia. This view seems to be confirmed by the fact that a Doncaster DX-TV enthusiast received the same card at the same time, with the heading OIRT in white letters. So it seems that Gabon ch. E3 has yet to make it to Europe.

\section*{Satellite News}

The famed ATS-6 satellite has now been switched off, due to three of its four station keeping thrusters failing. The Russian 714 MHz direct broadcast satellite Stat-T, which is just over our horizon, has been causing problems in China. It's putting out such a strong signal that interference has been caused to radio services in Peking. An official complaint has been made. Since normal Yagi aerials are used to receive the signals, a high field strength is necessary.

Steve Birkill reports that the Stat-T satellite was launched as part of the Ekran series. An Ekran-class Stat-5 craft was launched into orbit at \(55^{\circ} \mathrm{E}\) on February 21st 1979, and is expected to transmit at 714 MHz and 4 GHz . From the Southampton area, the craft is at an elevation of \(12^{\circ}, 116^{\circ}\) from north. I and others have looked for signals, but with no results to date.

\section*{CONTINENTAL AERIAL SPECIALISTS, RETAIL AND TRADE. GOLDEN ANODISED, WEATHER PROTECTED, SUPERB ARRAYS. gUARANTEED FOR FIVE YEARS. GOLDEN QUALITY IN A PLASTIG AGE. \\ ALL PARTS (EXCEPT COAX) EXCHANGEABLE FOR 7 DAYS. 10\% DISCOUNT OFF MOST AERIALS SPECIAL PROMOTION OFFER 15\% + DISCOUNT ON PLEMI RANGE}


Stockists of the finest aerials available in Britain:
available in Britain: FUBA TV \& FM aerials (W.Ger.) PLEM I TV aerials (Hol.) UKW FM aerials (E.Ger.) ANTIFERENCE TV \& FM aerials (U.K.)


\section*{ASTRA (GOLDEN D.I.Y.) AERIALS}

A friendly family firm. Our 25th. Jubilee Year.
D.I.Y. AERIAL SPECIALISTS FOR ALL DOMESTIC TV \& FM RECEPTION Weather exposed part of U.K.? Scotland, Wales, West Country etc. Gales, salt air corrosion problems? Want to install your aerial and forget it?
The continental aerial range from Germany and Holland having proved so fantasically successful, we are in future recommending continental aerials lespecially Fubal as our first choice for customers. In shor we offer quality in a plastic age. Anodised against corrosion, guaranteed for five years, robust, high gain, easy to assemble, eye-catching superb aeriais, what else, in truth could we recommend? Over 3,000 aerials stocked: All Bands: Masts: Lashings: Wall Brackets: Rotators: Televertas: Diplexers and Triplexers: You can now mix'Band 4 and Band 5, or lower Band 5 with higher Band 5, or mix FM with either, 1.5 db loss approx.: Padded outlets: Directional splitters: Coax, white or brown: 300 ohm cable.
Many of our customers come from recommendation.
53 WHITEHORSE ROAD, CROYDON, SURREY.
Nr. Gloster Pub \& Garage
Tel: 01-684 4300
Open 9.00-5.30 MON-SAT. 01-6845262
Closed 12.30-1.30 But Open ALL day Sat.
24 hr . answering service FM \& TV AERIALS AND ROTATORS ON DISPLAY

\section*{Publications}

Amongst the various publications available from the IBA free of charge is one entitled "Overseas Television", an alphabetical listing of the World's countries and their TV transmission standards. There's also a colour information sheet on their new electronic test pattern, type ETP1. Available from Engineering Information Dept., IBA, Crawley Court, Winchester, Hants SO21 2QA. The Irish broadcasting service RTE has published a colourful and informative booklet which contains a potted history, details of current activities, a transmitter map, plans for the future, etc. It's interesting reading and a useful reference book. Available from Publications Dept., RTE, Donnybrook, Dublin 4, Eire.

\section*{From our Correspondents. . .}

The current F2 conditions have meant a record post bag. It's possible to mention only a few letters therefore.

Denis Kenneally (Midleton, Co. Cork) has had great success with SpE reception during the summer months, using a Bush 12 in . portable with v.h.f./u.h.f. tuner - and only the set's telescopic aerial. This shows the signal strengths that can occur at times. He's seen signals from much of Europe at v.h.f. For u.h.f. reception, he's using a Vorta VP91 aerial plus Wolsey amplifier. Many UK stations have been logged.
M. Baldwin has received signals from many European countries, including YLE (Finland), using an upconverter with his u.h.f. only receiver. The KRS3 identification he saw comes I think from Czechoslovakia. Roger Powell (near Abindgdon) has been receiving Lopik ch. E4 and asks


Fig. 1: The original varicap tuner power supply circuit devised in 1973.
whether the characteristic slow fading and rising signal strength indicates tropospheric propagation. Yes. He's heard from the IBA that the new ETP1 pattern will not carry any identification for individual regions. A pity.

Christian Mardon, 28 Rue Baudry-Lacantinerie, 33100 Bordeaux-Bastide, France would like to contact an experienced UK DX-TV enthusiast to exchange news etc. John Tellick reports that during a recent visit his Brussels hotel room had a TV outlet providing the Belgian BRT 1 and 2 and RTB 1 and 2 networks, Luxembourg, Dutch 1 and 2, Germany 1, 2 and 3 and France 1, 2 and 3, the latter converted to system B PAL. Apparently BBC-1 and 2 and ITV are to be added. He saw several PAL/SECAM sets in a Calais supermarket.These also operated on system I, but the price was around \(£ 610\) for a 26 in . model.

Cable TV is increasing in popularity in Austria, Vienna already having a five-channel system. Thirteen channels are planned for the future, plus up to fourteen radio channels. The connection charge is \(£ 92\) and the monthly rental \(£ 3.50\).

\section*{30-50MHz Receivers}

In the September 1979 column I mentioned receivers covering the \(30-50 \mathrm{MHz}\) band available from Allan Electronics of Whitley Bay. This firm is no longer able to supply these receivers.

\section*{DX-TV for the Beginner-5}

When it comes to tuning, it's best to be able to sweep cleanly over the frequency band of interest: fewer signals are missed, and the whole band can be monitored in a matter of seconds. This is easy to arrange with a varicap tuner, and by using an upconverter you can tune across the v.h.f. bands using a u.h.f. tuner. The operation of a varicap tuner is based on the use of variable-capacitance diodes in the tuned circuits. The capacitance of these devices depends on the reverse bias applied to them, so by altering the bias you alter the tuning. All you have to do therefore is to supply the correct voltages to the varicap tuner.

The voltages normally required are a 12 V supply, a gain/a.g.c. bias voltage of \(2-8 \mathrm{~V}\), a 12 V supply for band switching in the case of a v.h.f. varicap tuner, and a tuning voltage of \(0 \cdot 3-30 \mathrm{~V}\) (stabilised and hum free of course!). In the case of an integrated v.h.f./u.h.f. tuner, an extra switch position is required to provide a further 12 V feed for v.h.f./u.h.f. switching.

Varicap tuners are nowadays readily available and


Fig. 2: I.C. stabilised varicap tuner power supply circuit devised by Robin Crossley.


Fig. 3: Hugh Cocks' varicap tuner power supply circuit, with 12 V transformer and voltage tripler system.
inexpensive. Sendz Components for example regularly advertise in the magazine some ten or so types of varicap tuner for v.h.f. and u.h.f. operation, and it's up to the individual whether you decide to buy two separate tuners for v.h.f. and u.h.f. operation, an integrated v.h.f./u.h.f. type, or use a u.h.f. tuner with a upconverter. The use of an integrated v.h.f./u.h.f. tuner instead of two tuners has the advantage that the installation is simplified.

I first started using varicap tuners for DX-TV reception in mid-1973 (see article in the October 1973 issue). The original tuners are still in use. The power supply circuit I used is shown in Fig. 1. It's rather dated but there have been no faults in any of the six units I constructed. The only trouble that does occur from time to time is with the \(270^{\circ}\) carbon potentiometers. Dirt on the track can cause fluctuating tuning. This can be particularly troublesome at the I.f. end of the tuning range, where even a small spot of dirt will give abrupt tuning changes. The usual squirt of cleaner will cure this however. Alternative circuits are shown in Figs. 2 and 3.

I found that the most effective channel readout was a large-scale 4 in . Adastra \(50 \mu \mathrm{~A}\) panel meter, the channels being noted on a table of readings alongside. A new scale could be devised, but in the event of using a new tuner or drift in the tuning diode characteristics the readings would change. A digital readout is another possibility, but cost may dictate the cheaper meter - though meters are anything but cheap nowadays. When I made the units in 1973, multiturn potentiometers were expensive. These days they can be obtained cheaply at surplus disposal depots, and this could be a more effective way of tuning - though not as fast as the two \(270^{\circ}\) potentiometers in series! I understand that Hugh Cocks has in stock a low priced 10-turn potentiometer with standard shaft, but the present price is not known.

If you're reluctant to modify the existing receiver i.f. strip to get switched narrow/wideband operation, selectivity switching can be provided between the varicap tuner and the i.f. strip using the famed G8 selectivity module - which can be operated from the same power supply.

How the i.f. output from the external varicap tuner is fed into the set depends on the type of set. With an old all-valve receiver it's often possible to wind down the ch. B1 coils to the set's i.f., remove the h.t. feed to the triode oscillator in the tuner, and connect the varicap tuner's output to the set's
aerial input socket. The valve tuner then acts as an i.f. preamplifier. Alternatively the signal can be fed to the v.h.f. tuner's i.f. input socket (where the tuner is of the type that accepts an input from a separate u.h.f. tuner). Or, with reduced gain, the output from the varicap tuner can be fed directly into the i.f. strip. D.C. isolating capacitors of at least 400 V a.c. rating must be used in both the signal and earth connections between the external tuner and a mainsoperated TV set. Care is required with any modifications to live-chassis, mains-operated sets. If in doubt, don't.

I usually operate with at least 18 dB preamplifier gain ahead of any tuner. It might be found that with optimum gain there's a tendency for cross-modulation of a strong local signal on to adjacent channels. If this problem is experienced, a reduction in gain will usually offset the problem with minimal reduction of the wanted weaker signal.

Sources of supply: tuners, Sendz and Manor Supplies; meters and transformers, Maplin Electronics; G8 modules, Manor Supplies or Hugh Cocks. I understand that Hugh is willing to construct one-off tuner units - send s.a.e. with any enquiries.

In the concluding instalment in this series for beginners we'll deal with preamplifiers and simple interference problems.


\begin{abstract}
Requests for advice in dealing with servicing problems mu be accompanied by a \(75 p\) postal order (made out to IPC Magazines Ltd.), the query coupon from page 155 and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.
\end{abstract}

\section*{ITT CVC9 CHASSIS}

The trouble on this set is excessive height, with some strange voltages around the PCL805 field timebase valve \(\mathbf{2 0 0 V}\) instead of 90 V at the triode anode for example. A new PCL805 has been tried but makes no difference.

Your fault is likely to be due to failure of either D57h (OA91) or \(\mathrm{R} 413 \mathrm{~h}(200 \mathrm{k} \Omega\) ). These components are used in the circuit which mutes the sound at switch-on - until the line output stage comes into operation. They are fed from the boost rail, which also feeds the height circuit - hence the link. If the diode is responsible, the brightness will be excessive and its anode voltage in excess of 1 V instead of 0.34 V .

\section*{THORN 8500 CHASSIS}

Despite replacing the e.h.t. stick and the components in the focus circuit, including the spark gap, the focus takes some four minutes to come right. The picture is quite acceptable apart from severe flaring when either the colour, brightness or contrast control is advanced.

The symptoms all suggest a low-emission c.r.t., especially as the picture flares with increased brightness/contrast. You've replaced all the usual causes of the problem except the c.r.t.

\section*{DECCA 30 SERIES CHASSIS}

The picture is very blurred towards the bottom, while the width decreases progressively, with wavy verticals. The faults are less prominent with bright scenes, while they get worse the longer the set is left on.

The h.t. smoothing seems to be defective. Check the a.c. voltage at the anode of the h.t. rectifier D600 and multiply this figure by \(1 \cdot 4\). A d.c. voltage something like the result of this multiplication should be present at the cathode of D600. If something more like half the a.c. voltage is present instead, the reservoir electrolytic C602 ( \(400 \mu \mathrm{~F}\) ) is opencircuit. If the voltage at the cathode of D600 is roughly correct (about 300V) try connecting a test electrolytic across the smoothing section C 601 (also \(400 \mu \mathrm{~F}\) ). If this produces a noticeable improvement, replace \(\mathbf{C} 601 / 2\). If the fault is still present however the smoothing choke L600 could be faulty or one of the line timebase valves could be suffering from heater-cathode leakage.

\section*{THORN 1500 CHASSIS}

The trouble is excessive height - long faces, tops of heads , cut off, and subtitles cut off at the bottom.

If the width is inadequate, attend to this first (the e.h.t. will be low). Try a new PL504 line output valve, check the
setting of the width control R132 and the value of its series resistor R130. If the width is adequate, check the height control R94, the height stabilising v.d.r. Z1, and if necessary the field linearity controls R106 (main) and R104 (top). R106 could be open-circuit at one end of its track.

\section*{PYE 11 USERIES}

Five minutes after switching the set on, the picture lines start to tear. Several minutes later this tearing becomes excessive, and eventually the line hold is badly affected. The effect seems to vary considerably with picture content however: a very simple picture is moderately stable.

This fault is caused by the \(0 \cdot 1 \mu \mathrm{~F}\) coupling capacitor to the grid of the sync separator being leaky. It's C84, situated on the upper part of the panel to the left of the centre gap.

\section*{DECCA 30 SERIES CHASSIS}

The problem of wavy verticals when the brightness control was advanced was cured by replacing the boost capacitor \(\mathbf{C 4 3 6}(0.22 \mu \mathrm{~F})\). The capacitor I removed however was of a much lower value, and on several Bradford chassis I've serviced I've found that C 436 is \(0.03 \mu \mathrm{~F}\). I managed to check back to the original set with the wavy verticals fault and found that it worked all right with an \(0.03 \mu \mathrm{~F}\) boost capacitor. This seems strange!

Many thanks for the tip. The confusion over the boost capacitor value is because different components are used in the small screen ( 17 and 18in.) versions of the chassis and the larger screen versions. For the small screen versions the correct value is \(0.033 \mu \mathrm{~F}\), for the larger screen versions \(0 \cdot 22 \mu \mathrm{~F}\). It's important to quote the model number or screen size therefore.

\section*{PYE 697 CHASSIS}

When the set's first switched on, a greenish monochrome picture appears. About half an hour later a correct monochrome picture appears. After a further half hour or so, colour bars appear. These eventually lock into a colour picture.

You are suffering from a lame crystal oscillator! The initial green is characteristic of a stalled oscillator, while the colour bars are indicative of a gradual frequency drift towards the correct point, when the colour becomes locked. Check the d.c. amplifier transistor VT15, the oscillator transistor VT16, the tuned circuit capacitors C110 and 112 (both 390 pF ), and the varicap diode D18. The crystal itself can also play up. Gentle application of warm air from a hair dryer, followed by freezer from an aerosol, should help locate the component responsible.

\section*{GEC SERIES ONE}

The trouble with this single-standard monochrome set is foldover at the top of the screen, with loss of height.

It's likely that the fault is in the linearity feedback circuit, and we suggest you replace the top linearity control P203 ( \(1 \mathrm{M} \Omega\) ) and the \(0.1 \mu \mathrm{~F}\) capacitor ( C 213 ) connected from its slider to chassis. We assume that the PCL805 is in order.

\section*{THORN 8000 CHASSIS}

The picture is cramped at the extreme right-hand side of the screen. Any ideas?

Temporarily disconnect the shift circuit choke L401 by disconnecting the shift reverse plug. If the non-linearity remains, check the scan-correction capacitor C407 ( \(0.33 \mu \mathrm{~F}\) ) which could be leaky and adjust the linearity control L402 for optimum results.

\section*{GEC 2010 SERIES}

The fault is that the picture keeps jumping up and down. A new PCL805 field timebase valve has been fitted, and the components in this area appear to be in order, but the fault persists.

We suggest you replace the field sync pulse integrating capacitor \(\mathrm{C} 156(0.05 \mu \mathrm{~F}\) or \(0.047 \mu \mathrm{~F})\) and the crosscoupling capacitor \(\mathrm{C} 150(0.005 \mu \mathrm{~F}\) or \(0.0047 \mu \mathrm{~F}, 1.2 \mathrm{kV}\) peak). Then check the soldering to the PCL805's pins above and below the panel.

\section*{THORN 3500 CHASSIS}

There are width problems on this set. When it's switched on from cold, the picture takes a long time to fill the last half inch of the screen on the right-hand side. Also on certain picture shots the width decreases, depending on picture content, by up to half an inch. An improvement was obtained by increasing the h.t. to 65 V (from 62.5 V ). This fills the screen from switch on, but there's still variation in the width and in addition when there's excessive movement on the screen from top to bottom the width bounces.

It seems that the line timebase is heavily loaded. This can be confirmed by measuring the voltage across R907 on the beam limiter board. If the voltage is markedly above 1.3 V with the beams switched off, suspect an incorrectly adjusted width control (L751A on the convergence panel) or linearity control (L503). Shorting turns on the choke (L504) in the shift circuit (remove it from the panel, then check the width), or leakage in the c.r.t. first anode supply components W505/C523 or the shift rectifier W506, could also be responsible. We don't recommend leaving the h.t. at its maximum permissible setting ( 65 V ).

\section*{GEC C2110 SERIES}

The red output transistor TR303 was replaced, and after setting up the picture for a good monochrome display all was well, with perfect colour, for about half an hour. Colour was then lost, but was restored by slight adjustment of the set oscillator frequency trimmer C264. After a while however the colour became excessive, calling for adjustment of the colour control. This situation didn't last long, and on switching off for a few minutes then on again correct colour was obtained. The same thing then started over again. Before going to the trouble of changing i.c.s, your views would be welcome.

We wouldn't consider changing the reference oscillator i.c. until other possibilities have been exhausted. There's probably a dry-joint on one of the left-hand side boards, or a defective preset control whose wiper is not making proper contact with the track. Try gentle probing around the reference oscillator panel PC444, and check the set a.c.c. level control P251.

\section*{THORN 1400 CHASSIS}

When the set is switched on, the picture jitters - it looks as if it's about to collapse to a horizontal line. The field and line hold are also unsteady. The picture improves if the set is left on for a quarter of an hour or so, but still remains rather jittery. On one occasion the raster did collapse to a narrow horizontal band about an inch wide. This was very dim, even with the brightness control turned fully up. The fault had gone after removing the back to make checks, but the picture was still jittery.

The fact that the line was dim when the fault occurred suggests a defect in the boost supply. The trouble is normally due to R133 ( \(220 \mathrm{k} \Omega\) ), which feeds the height control, decomposing. Alternatively its associated
decoupling capacitor C104 ( \(1 \mu \mathrm{~F}\) ) could be leaky - check the value of R133 first however. It's also prudent to check the value of \(\mathrm{R} 72(620 \mathrm{k} \Omega)\) which is fed from the same point.

\section*{PYE 697 CHASSIS}

The trouble with this set is intermittent loss of colour. Adjusting the tuning buttons has no effect on the fault, though changing channels or switching the set off and on again may restore colour - it never returns on its own. Sometimes the set works normally for several days, then the fault returns.

The most likely cause of the trouble is that the reference oscillator in the decoder is off tune. Adjusting RV10 should fix matters. When this control is correctly set to stabilise the colour, the voltage at TP5 (collector of the d.c. amplifier VT15) should be about 5 V .

\section*{PHILIPS N1500 VCR}

There's a tracking fault on this machine - a tracking line sometimes occurs about a third of the way up the screen when a recording is played back. The tracking adjustment control moves this line up and down but doesn't remove it. Switching off the VCR, removing the cassette and then replacing it and switching on again usually clears the fault. The machine was serviced and cleaned, which got rid of the fault for a few weeks, but now it's back again.

The trouble is due to the machine lacing the tape in slightly different ways each time. If the machine laces the tape in mode one during record and then mode two during playback, it will be impossible to adjust the tracking control so that the head follows the recorded tracks. Either mode is stable, so it's chance as to which mode the machine settles down in, though there may be a tendency for one mode to predominate.
The fault is due to dirt collecting on various parts of the tape transport system - follow the cleaning instructions given in the users' handbook or the manual. A very hard patch of dirt can collect unnoticed under bush 106 (shown as item B in Fig. 8 of the users' handbook, though the drawing is a poor likeness of the bush). The bush can be removed by inserting a small pair of pliers in the two holes at the top and unscrewing it, but doing this disturbs the lacing adjustment. It's best to clean the bush in situ therefore. If this fails to remove a very hard deposit, make a careful note of the position of the two holes relative to other parts of the machine, and count the number of turns required to unscrew the bush so that it can be returned to its original position after cleaning.

Sometimes lacing faults can be caused by the lacing cord springs being stretched beyond their elastic limits. Replacement is the only cure. With this fault however the symptom is usually confined to the bottom of the screen. Metering the servo system (see Television, February 1977, page 195) would probably help by giving an early warning of the fault described.

\section*{QUERY COUPON}

Available until 21st January, 1980. One coupon, plus a 75 p (inc. VAT) postal order, must accompany EACH PROBLEM sent in accordance with the notice on page 154.

\section*{TELEVISION JAN. 1980}

\section*{DECCA 30 SERIES CHASSIS}

The trouble is intermittent operation of the line oscillator circuit. The set usually operates correctly when switched on, but about one time in four the oscillator fails to start, resulting in no raster and an overloaded line output valve.

This trouble can usually be resolved by replacing C427 ( 470 pF ). It's essential to use a polystyrene or silver mica capacitor in this position. Less likely possibilities are the electrolytics C419 and C425 (both \(5 \mu \mathrm{~F}\) ) in the oscillator circuit.

\section*{THORN 1590 CHASSIS}

The raster suddenly dropped to about half the size of the screen, though the picture itself is still good.

It seems that the voltage on the set's l.t. supply rail is low. We suggest you check the connections to the AD149 series regulator transistor VT21. This is mounted on the large heatsink to the left-hand side. The troube could be nothing more than a dry-joint at the base or emitter pins, or
a poor contact down to the panel pins. If all is in order here, check the AD149, its BC147 control transistor VT22 and this transistor's base circuit components - the "set h.t." control R104 should set VT22's base voltage at 5V.

\section*{RANK A823A CHASSIS}

There's lack of width on this set - about half an inch is lost at each side of the screen. There doesn't seem to be any width control

Check the h.t.: there should be about 200 V at fuse 8 F 3 . If this is low, try adjusting 8 RV1 (set e.h.t.). If this fails to produce 200 V , check the reservoir/smoothing electrolytics \(8 \mathrm{C} 9 / 10,8 \mathrm{R} 6(470 \mathrm{k} \Omega)\) which could have fallen in value, and the control transistor 8 VTI which could be leaky. If the h.t. voltage is correct, the fault is in the line output stage. Check the shift circuit choke 6L26 which could have shorting turns, the flyback tuning capacitors \(6 \mathrm{C} 5 / 6\), and try using a different width tap (pins 7-10) on the line output transformer.


205
Each month we provide an interesting case of television servicing to exercise your ingenuity. Thase are not trick questions but are based on actual practical faults.

One of the best known hybrid colour chassis is the Pye 691. It's found in various sets bearing the Pye, Invicta, Ekco and Dynatron brand names, and was the subject of one of Len Briggs' series of dealer lectures.

An Ecko set fitted with the chassis came into the workshop with the complaint "intermittent picture (raster)". The picture would sometimes appear normally after switching the set on, while at other times the viewer had to wait for ten minutes or more, while when the picture eventually arrived it was out of lock, calling for critical adjustment of the line hold control.

As luck would have it, the picture appeared after the normal warm-up time when the set was placed on the test bench and switched on, but there was no line lock. The picture could just about be locked by carefully adjusting the line hold control, but the control was pretty well at one end of its travel. The line oscillator circuit consists of the conventional PCF802 valve arrangement, with the pentode section of the valve acting as a Hartley oscillator and the triode section working as a variable reactance, under the control of the flywheel sync circuit, in the oscillator tuned circuit. The coll's core can be adjusted for optimum lock with the line hold control at its centre position - an operation that's best done with the line sync pulse input to the flywheel sync circuit removed.

Since the field lock was solid, it was assumed that the sync separator and sync pulse feed circuits were in order and that the trouble was in the line oscillator circuit. So the PCF802 was replaced and the coil adjusted with the line hold control in its centre position. On restoring the sync pulse feed however the locking was still weak, while the display tended to wobble sideways within the raster. The line hold control circuit was then checked, and it was found that R210, which is in series with the hold control, had increased significantly in value. After replacing this, no lock at all could be achieved within the range of the control. So a further adjustment of the coil was tried.

When the setting of this had been optimised under the new conditions, the lock was much more solid. But before there was time to do anything else the raster vanished! It didn't take long to establish that the line oscillator stage had failed completely. Switching the set off and then on again a few minutes later brought the raster back. What was the most likely cause of the trouble? See next month for the solution and a further item in the series.

\section*{SOLUTION TO TEST CASE 204 -page 98 last month -}

When a TV set has had several years' busy use, the electrolytic capacitors are amongst the first components to become defective. Certainly where a fault is present any electrolytics in the circuit being checked are suspect. The technician delving into the intermittent colour tinting fault with the Decca 10 series chassis should not have overlooked the \(5 \mu \mathrm{~F}\) electrolytic (C214) which couples the blue signal to the base of the blue driver transistor TR207. This is a classic case where a dying electrolytic can cause problems.

The trouble was in fact eventually traced to this capacitor: heat and age had resulted in it drying up and becoming slightly leaky electrically. A replacement enabled the preset blue drive control to be set to the centre of its range, and restored the picture to its former glory. As a precaution, the equivalent electrolytics in the red and green channels were also replaced.

\footnotetext{
Published on approximately the 22nd of each month by IPC Magazines Limited, KIng's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting'Systems, 220-228 Northdown Roed, Margate, Kent. Printed in England by Carlisle Web Offset, Newtown Trading Estate, Carlisle. Distributea by IPC Business Press (Sales and Distribution) Lid., 40 Bowling Green Lane, London EC1R ONE. Sole Agents for Australia and Now Zealand - Gordon and Gotch (A/sia) Ltd.; South Africa - Central Nows Agency Ltd. Subscriptions: Inland £9.50, Overseas \(£ 10.50\) per annum payable to IPC Services, Oakfield House, Perrymount Road, Heywards Heath, Sussex. "Television" ls sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed of by way of Trade at more than the recommended seling price shown on the cover, excluding Eire where the selling price is subject to VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutlated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever.
}

\section*{SERVICE \& REPLACEMENT COMPONENTS}


\section*{ARE YOU}

\section*{USING YOUR SPARE TIME PROFITABLY?}

If not, you're losing money. Money that you could be making by selling uaed colour televielone from home in the oveninga. In fact, provided you start correctly and know exactly how to operate, you can easily eam a substantial CASH INCOME with starting caplta! of less than \(\mathbf{E 2 0}\). Our new unique publication "How to Deel succeeathly in Uaed Colons Telovinione" enablas you to foliow in the footsteps of many experts who hove a great deal of combined experience in this lucrative home business, end who have 'pooled' their knowledge to help you. After alf, to follow the advice of someone who has travelied the ground before you, is to be glven the best poselble start. And the hundreds of valuable trade secrets, hints, tips and suggestions in the gulde show exactly how anyons of average intefligence can moeesed inmeellately.

Every aspect, from securing the first television right through to rapld expension of salies, is covered with the datalled knowledge of experts to ensure eartein succeses. indexed information on almont all makes of telovision be presented in clear tabular form, describing performance, reilabifity, price and service. In particular, the tips on expending the business are very practical, and are almost automatic when put into practice. Peges of unique advice on advertising ensure that maximum sales are secured, and sources of supply are described in detail - for both televisions and now/used speres. Monochrome sets are also covered, ats are "invisible" cabinet ropaira. Phue FREE on-going advioe and FREE regular updating service.

You enn etart tomorrow - but you'lil need our gulde. The lateat blg illustrated edition is out now, and costs just 24.95 - amall price to pay for finmelal independencel

CTTY PUBLLSHING. HAYWORTH ROMD, EANDIACRE, NOTTINGHAM NG1O ELL

Please eend by rotum post "How to Deel Euccerefulty in Used Cotour T Hevisions"
I enclose chequalp.o. for eases.
NAME
ADDRESS \(\qquad\)

\(\qquad\)

TV LINE OUTPUT TRANSFORMERS (Prices include VAT at 15\%)
\begin{tabular}{|c|c|c|c|c|}
\hline BU8M & MURPHY & DECCA & PYE & GEC \\
\hline TV123 & V843 & MS1700 & 5864 & 87454 \\
\hline TV124 & all models to & MS2000 & 59 68 & 87455 \\
\hline TV125 or U & V979 & MS2001 & \(60 \quad 75\) & 8T4550ST \\
\hline \multicolumn{2}{|l|}{TV128 \(/\) V153} & MS2400 & 6176 & \multirow[t]{2}{*}{20000ST ...} \\
\hline TV134 & \[
\begin{aligned}
& \text { V153 } \\
& \text { V159 }
\end{aligned}
\] & MS2401 & 6277 & \\
\hline TV135 or R & V173 & MS2404 & 6380 & \[
2044
\] \\
\hline TV138 or R & & MS2420 & 8193 & \multirow[t]{2}{*}{} \\
\hline TV139 & V179 & \multirow[t]{3}{*}{Price Ee.co} & \(\begin{array}{ll}83 & 94 \\ 84 & 95 / 4\end{array}\) & \\
\hline TV145 & \multirow[t]{2}{*}{V1913} & & \(84{ }^{85} 98\) & all models to \\
\hline TV148 & & & 85
86 & \\
\hline TV161 & V2014 or S & & 9298 & 2104 or /1 \\
\hline TV165 & V20150 & & 150161 & 2105 or/1 \\
\hline TV168 & V2015S & PHILJP8 & 151170 & Price 28.50 \\
\hline TV171 & V2015SS & 23TG170a & 155 170/1 & \\
\hline N175 & \multirow[t]{2}{*}{V2017S} & \multirow[t]{2}{*}{\[
23 T G 176 \mathrm{a}
\]} & 156171 & \\
\hline TV176 & & & 160 171/1 & 80BELL \\
\hline TV181 or S & \[
\begin{aligned}
& \text { V2019 } \\
& \text { V2023 }
\end{aligned}
\] & \multirow[t]{3}{*}{G24T230a... all models to G24T310} & Chaseis & \multirow[t]{2}{*}{ST196 or OS
ST197} \\
\hline TV183 or 0 & \multirow[t]{2}{*}{V2027
V 2310} & & 189,173 & \\
\hline TV183S & & & 368 & ST297 \\
\hline TV183SS & V24140 & \multirow[t]{2}{*}{19TG170a... all models to} & 569.573 & \multirow[t]{4}{*}{\[
\begin{aligned}
& 100005 . . . \\
& \text { all models to } \\
& 1102 \\
& \text { Price es.e0 }
\end{aligned}
\]} \\
\hline TV185S & V24150 & & \multirow[t]{2}{*}{Price 28.00} & \\
\hline N188 or O
TV186S & \[
\mathrm{V} 2415 \mathrm{~S}
\]
V2415SS & \begin{tabular}{l}
all models to \\
19TG179a
\end{tabular} & & \\
\hline SS & V2415SS V24160 & \[
\begin{aligned}
& \text { G197210a } \\
& \text { G197211a }
\end{aligned}
\] & & \\
\hline TV191S & V2416s & & \multirow[t]{2}{*}{KB-ITT} & \multirow[t]{2}{*}{TMORN EROUP} \\
\hline TV1930 & V2417S & G197314a
G19T215a & & \\
\hline TVi93S & V2419 & G20T230a & 8 C Chassis: & \multirow[t]{2}{*}{Ferguson, H.M.V., Marconi, Uttra.} \\
\hline TV198
TV307 & A774 & Price Ex.eo & VC2 & \\
\hline TV307
TV313 & & G24T324 & VC3 & \multirow[t]{2}{*}{800, 850, 900, 950/3,960, 970} \\
\hline TV313
TV315 & \multirow[t]{3}{*}{Alicomplete with valve base} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { G24T328 } \\
& \text { G24T329 } \\
& \text { Price } 810.00
\end{aligned}
\]} & \multirow[t]{2}{*}{VC4} & \\
\hline TV315 & & & & \multirow[t]{2}{*}{950/1,950/2,} \\
\hline Price 58. co & & & VC51 & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{BUSH MURPHY}} & \multirow[t]{2}{*}{INDESIT} & \multirow[t]{2}{*}{VC52/1
vC100} & 1612.1712 \({ }^{\text {a }}\) \\
\hline & & & & \multirow[t]{2}{*}{Or quote model No. Price CB .50} \\
\hline \multicolumn{2}{|l|}{A816 Chsssis} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { 20EGB } \\
& 24 E G B \\
& \text { with rectifier } \\
& \text { holder } \\
& \text { Priee efe.E1 }
\end{aligned}
\]} & \multirow[t]{4}{*}{\begin{tabular}{l}
VC100 \\
VC100/2 \\
VC200 \\
VC300
\end{tabular}} & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{ll} 
TV309 & TV311 \\
V2029 & V2427
\end{tabular}}} & & & 1600, 1815 \\
\hline & & & & 1690, 1691 \\
\hline \multicolumn{2}{|l|}{Price ¢10.30} & & & Price \(\mathbf{E 1 0 . 2 0}\) \\
\hline
\end{tabular}

Tidman Mail Order Ltd.,
236 Sandycombe Road, Richmond, Surrey.
Approx. 1 mile from Kow Bridge.
Phone:01-948 3702

MON-FRI 9 am to \(\mathbf{1 2 . 3 0} \mathbf{~ p m}\).
\[
1.30 \mathrm{pm} \text { to } 4.30 \mathrm{pm} \text {. }
\]

SAT 10 am to 12 pm .
Closed Wednasday afternoon

COLOUR TRANSFORMERS
\begin{tabular}{|c|c|c|}
\hline DECCA & CS1 730, \(1733,1830,1835\) & 29.51 \\
\hline DECCA & 30 Series Bradford Chassis & E9.51 \\
\hline DECCA & 80, 100 Series & ¢9.51 \\
\hline GEC & Dual STD Hybrid & £11.59 \\
\hline GEC & Single STD Hybrid & ¢11.89 \\
\hline GEC & Single STD Solid State & 89.51 \\
\hline ITT & CVC 1 to CVC 9 & 29.81 \\
\hline ITT & CVC 20 & \(£ 10.53\) \\
\hline ITT & CVC 30, CVC 32 & 89.51 \\
\hline PYE/EKCO & 725 Chassis & E9.61 \\
\hline PYE/EKCO & 731, 735, 737, 741 Chassis & E9.51 \\
\hline PYE/EKCO & 713,715 Chassis & \(\mathbf{1 1 1 . 3 5}\) \\
\hline PHILIPS & G8, G9 Chassis & E9. 51 \\
\hline PHILIPS & 570 Chassis & E11.35 \\
\hline THORN & 3000, 3500 EHT and SCAN & 28.50 \\
\hline THORN & 8000, 8000A, 8500, 8800 & \(\mathbf{~} 10.02\) \\
\hline THORN & 9000 & E12.14 \\
\hline TELPRO & All Models & \(\underline{8.51}\) \\
\hline RANK & A823, A823A, A823B & E11.35 \\
\hline TANDBERG & CTV 2-2 AT2063/00 & ¢9.51 \\
\hline PYE/EKCO & 691 to 697 Printed cuircuit type & ¢18.26 \\
\hline PYE/EKCO & 691 to 697 Wired Type & P.O.A. \\
\hline NORFINDER & Solid State & \(\mathbf{8 9 . 5 1}\) \\
\hline \multicolumn{3}{|l|}{MINDINGS Post \& Packing 40p} \\
\hline BUSH & Colour Hybrid Quadripler type & E6.25 \\
\hline RANK & T20A, Z179 chassis & 48.83 \\
\hline PHILIPS & G6 EHT Overwind & 27.20 \\
\hline PHILIPS & G6 Primary & 88.00 \\
\hline PYE & 691 to 697 EHT Overwind* & E3.07 \\
\hline PYE & 691 to 697 Primary Winding* & E4.80 \\
\hline *Please sta & O Printed Circuit version or
O, Grundig, Autovox in stock. & \\
\hline
\end{tabular}

Hamond Components (Midland) Ltd., 416, Moseley Road,
Birmingham B12 9AX.
MON-FRI 9 am to 1 pm.

Phone: 021-440 6144.

Contact your nearest depot for service by-return. Callers welcome. Please phone before calling.

\section*{APOLLO}

HIGH TEMPERATURE PUMPED COLOUR TUBES 2 YEAR GUARANTEE ORDERS EXCEPTED BY PHONE SAME DAY DELIVERY MANCHESTER AREA NO ORDER TO SMALL EXCHANGE PRICE
\begin{tabular}{lll}
\(18^{\prime \prime}\) & A47-342x/343x & \(£ 28\) \\
\(19^{\prime \prime}\) & A49-120x/192x & \(£ 28\) \\
\(20^{\prime \prime}\) & A51-220x/110x & \(£ 28\) \\
\(22^{\prime \prime}\) & A56-120x/123x & \(£ 30\) \\
\(25^{\prime \prime}\) & A63-120x & \(£ 34\) \\
\(26^{\prime \prime}\) & A66-120x & \(£ 34\) \\
\(26^{\prime \prime}\) & A67-120x & \(£ 34\)
\end{tabular}

These Tubes will replace many Toshiba types
SAE for FREE equivalence list
Colourex Tubes by Mullard, prices on request \(£ 3.50\) delivery - mail order by request Callers welcome - please phone first 0617990854
24 hour answering service Reg Office:

\section*{APOLLO Elektroniks}

43 Clarke Cres, Little Hulton, Worsley, Nr. Manchester M28 6XM

\section*{Spares Service from W.M.T.V. Ltd.}
\begin{tabular}{|c|c|}
\hline Teated Ex-Equipment Velves & \\
\hline DY802/86/87 & 10p \\
\hline ECC82 & 10p \\
\hline ECL80 & 8p \\
\hline EF80 & 8 p \\
\hline EF85 & 8 p \\
\hline EF183 & 8p \\
\hline EF184 & 8p \\
\hline EY86/87 & 10p \\
\hline PCC85 & 15p \\
\hline PCF80 & 10p \\
\hline PCF802 & 12p \\
\hline PCL82, PCL86 & 12p \\
\hline PCL84 & 15p \\
\hline PCL85/805 & 15p \\
\hline PFL200 & 15p \\
\hline PL36 & 20p \\
\hline PL504 & 25p \\
\hline PL508 & 30p \\
\hline PL509 & 80p \\
\hline PL519 & 81.00 \\
\hline PL802 & E1.20 \\
\hline PY500 & 40p \\
\hline PY800/81/801 & 15p \\
\hline \(6 F 23\) & 20p \\
\hline 30FL1/2 & 25p \\
\hline
\end{tabular}

\section*{Many more available. \\ 15\% V.A.T. to be added to} prices shown.

Postage paid on orders over \(£ 2.00\)
Orders under £2.00, please add 10p per valve, p\&p. Discount of \(10 \%\) on orders over \(£ 20.00\) Large quantities of untested valves sold. prices on request.

Ex-Equipment Colour
Tuber
19" A49 120x \(\quad\) E18.00 \(20^{\prime \prime} \quad\) E20.00
22" A56-120x \(£ 22.00\) 25" A63-120x E15.00 26" \(90^{\circ}\) 224.00

Please add \(£ 4.00\) p\&p per C.R.T.
Please add 15\% V.A.T.
to all items ordered,
then add postage indicated.
MANY MORE SPARES AVAILABLE
PLEASE WRITE OR PHONE NOW.

PERSONAL CALLERS WELCOME.

\section*{W.M.T.V. TRADE SALES LTD.}

92, High Street, Kings Heath, BIRMINGHAM, B14 7JZ

\section*{Manufacturers Surplus Components FIT THE RIGHT PART}

300 mixed \(\frac{1}{4}\) and \(\frac{1}{2}\) watt resistors \(£ 1.50\) 150 mixed 1 and 2 watt resistors f 1.50 300 mixed Capecitora, improved pack, most types \(£ 3.75\)
100 mixed Electrolytics 300 mixed Printed Circuit mounting Components for various TVs, resistors, caps etc 300 printed circuit Resistors 4 to 4 watt
100 High Wattage TV resistors
Wirewound etc.
100 mixed miniature Ceramic \(\quad \mathbf{2 . 7 5}\)
and Plate Caps
100 mixed polystyrene
capacitors
25 mixed Pots and Presets \(£ 2.20\)
25 mixed
20 assorted TV VDRs
Thermistors
10 assorted TV Convergence
Pots
20 assorted TV knobs, includes
push button, chrome, control
types etc. Mostly Thorn and ITT
10 assorted Valve Bases,
B9A, ceramic, EHT, etc.
20 assorted Sync Diodes
locks for various TVs
25 assorted Pulse Caps
high voltage
high voitage
4 Knobe black with chrome
caps to fit ITT. Thorn, GEC and
most small diam. shafts 60p per set 950 bottom panel complete with i.f.'s switch etc.
\(£ 3.00\)
950 line transformer (not Jellypot)
Convergence Pots with
£2.50
knobs. \(5 \Omega, 10 \Omega, 20 \Omega, 30 \Omega\)
8 of 1 type £1.00. 8 of each \(£ 3.50\)
10 Spark Gaps

\section*{SAVE THAT TUBE.}

Fit our C.R.T. Isolating Transformer. Ideal for HTR./Cath. Shorts. 200-220-240 inputs. 750-900 MA outputs with thermal cutout. Made for Thorn 4000 C.T.V. but works O.K. on other sets. \(£ 2.00\) each \(\quad 3\) for \(£ 5.00\)

\section*{ULTRASONIC TRANSDUCERS}

Transmitter and receiver. 40 kHz 14 mm diam. \(£ 4.25\) pair

\section*{LOUDSPEAKERS}
\begin{tabular}{lr}
\(2 \frac{1}{4}^{\prime \prime}\) Round \(8 \Omega\) & 70 p \\
\(2 \frac{1^{\prime}}{4^{\prime \prime}}\) Round \(20 \Omega\) & 90 p \\
\(2 \frac{1}{2},{ }^{\prime \prime}\) Round \(8 \Omega\) & 80 p \\
\(6^{\prime \prime} \times 4^{\prime \prime}\) Elliptical \(8 \Omega\) & f 1.25
\end{tabular}

\section*{PROTECT YOUR PROPERTY}

Buy a "SENTINEL" Smoke and Gas Detector. Uses TGS105 plug in sensor, housed in \(3 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}\) diameter diecast box. 24 V . Convertible to 12 V . Will activate lamp or relay.
With Data and Circuit \(\mathbf{£ 1 6 . 9 5}\)
Suitable 24V Relay \(£ 1.00\)

De Luxe Fibre Glase
Printed Circuit Etchingkits
Includes 150 sq. ins. coppe clad F/G. board. 1 ib ferric chloride 1 dalo etch resist pen. Abrasive cleaner. Etch tray plus instructions.
Special Price \(\mathbf{E 4 . 9 5}\)
1 ib F.E. C1 To mil. spec. £1.25
5 lb FE. C1. To mil. spec. \(\mathbf{5} 5.00\)
150 sq. in. Single sided board
150 sq. in. Double sided board
E2.00
0

\section*{500 Watt}

Dimmer Switch
Toroidal mains suppression, fused with satin aluminium knob, white.

ONLY
£3.45.

\section*{MISCELLANEOUS}

Philips G8 Tube Base Panela
Complete, but PCB's cracked, ok for spares. Focus, base, leads, plugs etc. 2 for \(£ 1\)
Bush CTV 25 Ouadrupler Remo type Q25B. equiv. to ITT. TU25 3QK, with mounting brackets. £4.25 ench.

EEC single standard hybrid
GEC single standard, hybrid chassis
convergence panel. Brand new
omplete with plugs and leads \(\quad £ 2.50\)
Focus unit with lead
\(£ 1.50\)
IT Featherlight Super. Side
Chassis, with controls, V. Cap
Tuning Panel, Regulator,
P/Button Switches. Bridge
Rec. etc., etc.
£3.50
C. for above \(£ 1.00\)
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ SPECIAL OFFER } \\
GEC transistor rotary tuners with \\
slow drive. AE Skt. and leads \\
2010 Series & E1.50 \\
\hline
\end{tabular}

KB VC3 VHF tuner with valves \(£ 1.50\) KB VC3 transistor tuner "UHF" £ 1.50
ITT VC200 transistor tuner
(Philips type)
but five resistors panel. New
£1.50
but five resistors never fitted
£ 1.50
panels, damaged or some bits
missing but invaluable for
spares
£2.00
Pye mono mains droppers
with fusible link
\(147 \Omega+260 \Omega \quad 50 p 3\) for \(£ 1.00\)
\(69 \Omega+161 \Omega \quad 50 p 3\) for \(£ 1.00\) Decca "Bradford" C.T.V
triplers \(25 \mathrm{KV} \quad £ 3.00\) each 4 for \(£ 10\)

\section*{Portable TV EHT Sticks}

Siemans TV 18 KV". Fit
most portables \(\quad 50\) peach 3 for \(£ 1.00\)
Pye 18 " CT200 V. Cap P/B
Assembly with leads and
plug
f3.90
G.E.C. S/8 Hybrid Focus

Assembly with lead
£1.50
\(2 \times\) Coax Socknts on plates suitable
for various Continental T.V.s 50p
1.9 Amp T.V. Cutouts Suitable for DECCA and THORN sets. 60p each. 3 for \(£ 1.50\)

White Caramic TV Resistor: 20』 16W. 180 11W. 13 11W.

10 of any one type \(£ 1.20\) 10 of each type \(£ 3.00\) 2.2k fusible. vertical mounting Screen Feed resistors 9 watt \(0.47 \Omega \frac{1}{2}\) watt emitter 8 for \(£ 1.00\) resistors
\(10 \mu \mathrm{~F} 400 \mathrm{~V}\) modern Small 40 for \(£ 1.00\) \(10 \mu \mathrm{~F} 400 \mathrm{~V}\) modern Small 8 for \(£ 1.00\)
Type \(\begin{array}{ll}4.7 \mu F 63 V & 20 \text { for } £ 1.00 \\ 1000 \mu F 16 V & 10 \text { for } f 1.00\end{array}\) \(\begin{array}{cc}1000 \mu F 16 V & 10 \text { for } £ 1.00\end{array}\) Bina Caps
\(330 \mu F 25 v\)
\(\begin{array}{ll}470 \mu F 25 V & 10 \text { for } £ 1.00 \\ 45 & 10 \text { for } £ 1.00\end{array}\)
\(4,500 \mu \mathrm{~F} 35 \mathrm{~V}\) cans 80 p each
R.B.M. \(100 \mu \mathrm{~F}+32 \mu \mathrm{~F}+32 \mu \mathrm{~F} 300 \mathrm{~V}\)

Avoid Lethal Shocks 50p each
Avoid Lethal Shocks
Buy our specially designed
EHT Probe, removes high
voltage charges from tubes
caps, etc. Heavily insulated
with lead and earth connector 60p each
B9A P.C. valve bases \(\quad 20\) for \(£ 1.00\)
EY87/DY87 EHT bases EY87/DY87 EHT bases 10 for \(£ 1.00\)
C.T.V. Tube bases \(\quad 5\) for \(£ 1.00\)

20 mm Antisurge Fuses. 630 Ma \(800 \mathrm{MA}, 1 \mathrm{~A}, 1.25 \mathrm{~A}, 1.6 \mathrm{~A}, 12\) for f 1.00 2A, 2.5A, 3 15A \(\quad 100\) for \(£ 7.00\) TH1 thermistors \(\quad 6\) for \(£ 1.00\) TH3 thermistors \(\quad 10\) for f 1.50 Aluminium Coax Plugs 8 for \(£ 1.00\) Metal Coax Couplers

6 for \(£ 1.00\)
200V 1 A Diodes 10D2
(equivalent to 1 N 4003 ) \(\quad 20\) for \(£ 1.00\) Miniature "Terry" clips ideal
for screwdrivers and small tools etc.
Low profile 16 pin quill
I.C. Sockets (to fit most
" O " series I.C.) 12 for \(£ 1.00\)

\section*{Cassette Motors self regulating. \\ 9V. make unknown type 9FM 90p}

Rediffusion/Doric Mk 135 stick
Triplers can be modified for
other sets
£1.00
Miniature Level/Batt. Meters
as fitted to many cassette
recorders 90p
Also:- Miniature Mains Transformera \(4.5 \mathrm{~V}-0-4.5 \mathrm{~V}\) at \(250 \mathrm{Ma} \quad\) SOp each.

3 for \(£ 2.50\)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ZENERS} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{400MW. 4.3V, 4.7.6.8,7.5,30V 10}} & one type 80p \\
\hline & & & type \(£ 3.00\) \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{1.3W. 12V, 13V, 18V, 10}} & e type \(£ 1.00\) \\
\hline & & & ch type £2.50 \\
\hline DIACS & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { BR100 } \\
\text { STABILIZERS }
\end{gathered}
\]} & 6 for \(£ 1.00\) \\
\hline \multirow[t]{2}{*}{TAA550} & & & 4 for \(£ 1.00\) \\
\hline & \multicolumn{2}{|l|}{GEN. PURPOSE DIODES} & \\
\hline IN4000 & 30 for \(£ 1.00\) & IN4003/10D2 & 20 for £ 1.00 \\
\hline IN4002 & 25 for £ 1.00 & IN4148 & 20 for f 1.00 \\
\hline
\end{tabular}

\section*{TRANSISTOR PACKS}

Our Transistor Packs are even better than before! 100 NEW AND MARKED TRANSISTORS including BC238, ME0412, BF274, BC148, BC182L, BC338 and, or other similar types. A random analysis of these packs yeilded between 98 and 106 transistors of 17 to 20 different types with an average total retail value of \(£ 14\) £16. OUR PRICE ONLY \(£ 4.95\)
200 transistors as above but including BD131, 2N3055, AC128, BFY50, BC154, BF394, BC184L, etc.

ONLY £9.95
BY476 (BY176) 18kV. 2.5Ma EHT REC 60p each 3 for \(£ 1.50\)
Send 40p P. \& P. on all above items; send Cheque or P.O. with order to:-

\section*{SENTINELSUPPLY DEPT. TV}

149a Brookmill Rd., Deptford, London SE8
(Mail Order address only. Callers by appointment) Trade enquiries for quantity welcome.

Surplus stocks purchased for cash.

\title{
The NEW Marshall's 79/80 catalogue is just full of components
}

\section*{and that's not all . . .}
... our new catalogue is bigger and better than ever. Within its 60 pages are details and prices of the complete range of components and accessories available from Marshall's
These incllude Audio Amps. Connectors. Boxes. Cases, Bridge Rectifiers, Cables. Capacitors. Crystals, Diacs. Diodes. Dis plays. Heatsinks, I Cs, Knobs. LEDs. Multimeters. Plugs. Sockets. Pots. Publications, Relays. Resistors Soldering Equipment. Thyristors. Transistors. Transformers. Voltage Regulators, etc., etc
Plus details of the NEW Marshall's budget Credit Card. We are the first UK component retailer to offer our customers our own credit card facility
Plus - Twin postage paid order forms to faciltate speedy ordering.
Plus - Many new products and data
Plus 100s of prices cut on our popular lines including I Cs. Transistors, Resistors and many more
If you need components you need the new Marshall's Catalogue
Available by post \(65 p\) post paid from Marshall's, Kingsgate House, Kingsgate Place, London NW6 4TA. Also available from any branch to callers \(50 p\)


Retail Sales: London: 40 Cricklewood Broadway, NW2 3ET. Tet: \(01-4520161 / 2\). Also 325 Edgware Road, W2. Tel: 01 -723 4242. Glasgow: 85 West Regent Street, G2 2QD. Tel: 041 -332 4133. And Bristol: 108A Stokes Croft, Bristol. Tel: 0272426801 /2.
TELEVISION ELECTRONIC DISTRIBUTION (SPARES) LTD.
412a Hanworth Road, Hounslow, Middlesex Telephone: 01-572 4668 PANEL REPAIR/EXCHANGE SERVICE TRADE ONLY
BERRYVISION 510
EMO
THORN 2000 Series, 3000/3500 Series, 8000/8500/8800/9000 Series.
GEC Solid State 2110 Series.
PHILIPS G8 G9
RBM A802/823 AV (Ultrasonic)
DECCA Solid State 80 Series/Hybrid 30 Series.
GRUNDIG 5010/6010 GB
PYE 691, 697, 713, 723, 731
SONY 1800UB
TRADE REPAIRS ON ALL SONY COLOUR T.V.'s VERY COMPETITIVE PRICES.
3 MONTHS WARRANTY ON PANELS FROM DATE OF OUR INVOICE.
DISCOUNT FOR BULK PANEL ORDERS.
CATALOGUE AVAILABLE ON REQUEST.

NOW AT LAST . . .

- Yes, truly portable - runs (for up to 10 hours) on it's own built-in rechargeable battery OR direct from mains via Power Unit supplied.
- Small enough to be carried in a Tool Case, it measures only \(205 \mathrm{~mm} \times 143 \mathrm{~mm} \times 40 \mathrm{~mm}\), and weighs a mere 500 g .
- Push button selection provides:
(i) Peak White Raster.
(ii) Linearised Grey Scale.
(iii) Crosshatch.
(iv) Standard 75\% Saturated 100\% Amplitude Colour Bars
(v) Red Raster.
- Modulated UHF Output (VHF Model E 5 extra)

Just send \(£ 59.50\) INCLUSIVE for a complete kit
including a professionally finished Case, Ready Built Power
Unit/Charger, Ni-Cad Battery Drilled \& Tinned P.C.B.
Crystal, 1 1 I.C's \& Holders, Push-Button Switch Assy.
Resistors, Capacitors, Transis tors, Diodes, Sockets, Wire,
Nuts \& Bolts.
to: INTRACEPT ELECTRONICS LTD.,
203 Picton Road, Liverpool L15 4LG
Tel. 051-733 3042.
FULL BACK-UP REPAIR SERVICE.

\section*{THE FAMOUS BI-PRE-PAK}

\section*{CROSS HATCH GENERATOR}


\section*{LIMITED STOCKS-SO ORDER PROMPTLY}

In kit form with instructions. Inc. VA.T.
£12.25
Ready built and tested (less batts) but inc. VA.T.
 only sccurrte wry to stign all three guns in colour TV. The provew reliatility, small stex, anpy opmation now

 improvements incorporated - pley-in I.Cs for aximple - it is poing to be wastod mere theon wew. Meny thousands are in regular use by TV renters and suppliers. otce. As this Generstor in a VIDEO FEED UNIT
 Operates from its own adf-contained standerd batteries.
\(\star\) FOUR STANDARD PATTERN SELECTOR SWITCH GIVING VERTICALS, HORIZONTALS, DOTS AND CROSS HATCH
\(\star\) TOUGH FIBRE GLASS CASE \(5 t^{\prime \prime} \times 3^{\prime \prime} \times 3^{\prime \prime}\)
\(\star\) OPERATES FROM SELF-CONTAINED BATTERIES
* VERY EASY TO CARRY AROUND - REQUIRES NO EXTERNAL POWER SOURCE
\(\star\) PLUG-IN I.Cs AND SENSITIVE SYNC PICK-UP CIRCUIT
\(\star\) FUNCTIONS TO FULL PROFESSIONAL AND COMMERCIAL REQUIREMENTS
\(\star\) FOR PROMPT, NO DELAY DELIVERY
\(\star\) IN KIT FORM OR READY-BUILT. TESTED AND GUARANTEED
NO EXTRA TO PAY IF YOU
ORDER BY POST IN UK.
To pay by Access or Barclaycard just phone in your number.

Orders by post to
STIRLING SOUND,
37. Vanguard Way. Shoeburyness, Essex.

Teiephone (03708)5543

Personal Shoppers:
BI-PRE-PAK LTD., 222-224 West Road.
Westcliff-on-Sea, Essex SSO 9DF
Telephone Southend (0702) 351348

\section*{SOUTHERN IRELAND DEALERS}

We are the largest stockists in the south of Ireland of clean used T.V. sets.
PYE - BUSH - PHILIPS - FERGUSON -KORTING DECCA ETC.
UHFNHF Mono from \(\mathbf{8 1 8 . 0 0}\) each Colour from \(\mathbf{£ 1 2 5}\)
All Sets Tested \& Cabinets Polished. Over 2,000 sets in stock Visit our warehouse and see for yourself.
lrish slockists tor the new Tyme' colour sets.
T.V. WHOLESALE DISTRIBUTORS LTD.
E.D.I. House, Kylemore Park West Industrial Estate,

Dublin 10. Tel. 264139 or 267995.

\section*{QUALITY TV's ALWAYS AVAILABLE}

GOOD STOCKS OF MODERN COLOUR QUANTITIES OR SINGLES

COME TO THE BEST IN THE WEST

\section*{TeleTraders}

ST. LEONARDS WAREHOUSE ST. LEONARDS ROAD, NEWTON ABBOT, DEVON Telephone: (0626) 60154

\section*{EX RENTAL COLOUR TV's. THE BEST DEAL IN LONDON}

OVER 2,000 in STOCK. MANY WORKING.
THORN BUSH DECCA PYE GEC PHILIPS KORTING GRUNDIG
Delivery arranged \(\star\) Working sets available \(\star\) Complete lorry loads available \(\star\) Excellent stocks of Mono \(\star\) Export our speciality.
Low, Low prices for genuine trade buyers, call and see for yourself, we would like to meet you or phone 01-997 8833/2298

Colin Butler TV Wholesale, Servier House, Horsenden Lane South, Perivale, Middx.
(New industrial estate behind Perivale underground station)

BUSH 2211/14/15 AU 863
GEC 2110/2110 SOLD
STAIE
DECCA 22/30 SERIES
FERGUSON 3713
PYE 18" 200-713
SERIES
KB 703/704
MITSIBUSHI CT
2008/202B
HITACHI CMP 190/20

\section*{SPECIAL OFFER!}

PYE 205 VARICAP
(Sold as checked complete, good cabinet, tested tube, many working)
\begin{tabular}{lcc} 
& \multicolumn{2}{c}{\(22^{\prime \prime}\)} \\
26' \\
Singles & \(£ 28.00\) & \(£ 24.00\) \\
5's & \(£ 26.00\) & \(£ 22.00\) \\
20's & \(£ 24.00\) & \(£ 20.00\) \\
100's & \(£ 18.00\) & \(£ 18.00\)
\end{tabular}
(mainland delivery free)
All prices plus VAT

\section*{SPECIAL OFFER!}

\section*{COMPLETE COLOUR SETS}
(but minus tube)
MANY CHASSIS WORKING ALL MODELS AND SIZES
First Come! First Served!
Quantity Discounts
Deliveries Arranged
We are taking orders now
BATCHES OF 12 FOR f115 INC vat

PLUS THOUSANDS OF SPARES IN STOCK - RING OR WRITE FOR QUOTATIONS TRITEL GROUP
\begin{tabular}{|c|c|}
\hline NORTHERN & SCOTLAND \\
\hline Thernbury & Peacock Cross \\
\hline Reventebout & Industrial Estate, \\
\hline Lents Rond & Burnbank Road \\
\hline Bratferl 3 & Hamilton. \\
\hline Td: (0274) 865870 & Tal: (0698) 282141 \\
\hline
\end{tabular}

\section*{LONDON 395/397 Albamy Road Off Walworth Road LONDON SE5 Tol: (01) 7034040}
WEST
Unit 4a
Bulwark Industrial
Estate, Chepstow,
Nr. Bristol.
Tel: Chapstow
(02912) 6652
MIDLAND
48/52 Porshors
Street.
"Birmingham 5.
Tal: (021) 6221023

\footnotetext{
SOUTHERM
Wading Street Hockeliffe, North Dunateblio (on A5) Tel:
Laighton Buzzard (0525) 210768
}

MAIL ORDER SEND CWO (Cheques OR UNCROSSED PO'S) TO ANY BRANCH

WE STOCK THE PRODUCTS OF

EAGLE
WELLER
DRAPER
SPIRALUX

KNIPEX SERVISOL BARNARD'S \& BABANI

NEWNES JAYBEAM LIDEN PLASTICS GREENPAR

\section*{B. BAMBER ELECTRONICS}

\section*{5 Station Road, Littleport Cambs. \\ Telephone: (0353) 860185}

\section*{1980 ELECTRONICS CATALOGUE now} available price \(\mathbf{7 5 p}+20\) p postage. If you send \(£ 1.55\) you will receive our catalogue plus six bi-monthly shortform catalogues to keep you up to date with prices and special offers.

We're giving away


West Midlands T.V. Trade Sales Ltd. 021-444-6464 92 HIGH STREET KINGS HEATH BIRMINGHAM B147JZ
\(\star\) NOW OPEN \(\star\)
Now Warehouse at 37-39, Jamaica St. Bristol.

0272-48266

\section*{N.G.T. COLOUR TUBES}

First Independent Rebuilder with

\section*{B.S.I. CERTIFICATION}
(Certificate No. 004)
12 month's guarantee: 4 year option Tubes are processed using high temperature pumping schedules giving high definition and long life. They are then fitted with an implosion safety system approved by the British Standards Institution.
N.G.T. ELECTRONICS LTD.,
120. SELHURST ROAD., LONDON S.E. 25

Phone: 01-771 3535.
20 years experience in television tube rebuilding.

\section*{STANDARD T.V. TUBE}
high quality colour and MONO-CHROME REPLACEMENT TUBES AT COMPETITIVE PRICES.
\(\star\) Complete New Gun fitted to every Tube.
\(\star\) Two year Guarantee
\(\star\) Every Tube Electrically Tested.
\(\star\) Every Tube Picture Tested.
\(\star\) Supplier to Major Rental Companies.

All prices quoted assume the return of your old glass rebuildable condition. Old CRT cash/cheque with order. Please add VAT at \(15 \%\).

\title{
11-29, Fashion Streat, London E1
}

Ring Standard T.V. Tube Reguner TEl. 01-247 3097


EMO - EUROSONIC - GRUNDIG - TELETON + ALL BRITISH MAKES ETC., ETC. © ALL SPARES READILY AVAILABLE - REBUILT TUBES CREDIT AVAILABLE - TRADE ONLY
Almost any TV Component supplied by return "off the shelf" e.g. LOPTX -
EHT trays - droppers - OSC coils - switches - cans - smoothers - I.C.'s, etc., etc. NEW - COMBI LOPTX NOW AVAILABLE.

\section*{YOU CAN BE 95\% SURE WE CAN SUPPLY ANY TV COMPONENT BY RETURN IF YOU NEED SPARES FAST-RING NOW!}

\section*{MAIL ORDER \\ PROTECTION SCHEME}

The publishers of Television are members of the Periodical Publishers Association which has given an undertaking to the Director General of Fair Trading to refund monies sent by readers in response to mail order advertisements, placed by mail order traders, who fail to supply goods or refund monies owing to liquidation or bankruptcy. This arrangement does not apply to any failure to supply goods advertised in a catalogue or in a direct mail solicitation.
In the unhappy event of the failure of a mail order trader readers are advised to lodge a claim with Television within three months of the date of the appearance of
the advertisement, providing proof of payment. Claims lodged after this period will be considered at the Publisher's discretion. Since all refunds are made by the magazine voluntarily and at its own expense, this undertaking enables you to respond to our mail order advertisers with the fullest confidence.
For the purpose of this scheme, mail order advertising is defined as:-
'Direct response advertisements, display or postal bargains where cash had to be sent in advance of goods being delivered'. Classified and catalogue mail order advertising are excluded.


\section*{NEW TUBES AT CUT PRICES}

\section*{EUROPEAN TYPE Nos.}

Price \& VAT \&
\begin{tabular}{|c|c|}
\hline & 15\% \\
\hline A28-14W.................. 18.95 & 284 \\
\hline A31-19W/20W .......... 19.95 & 2.99 \\
\hline A31-120W/300W...... 17.95 & 2.69 \\
\hline A31-410W/510W...... 17.95 & 2.69 \\
\hline A34-100W................ 18.50 & 2.77 \\
\hline A38-160W................. 17.50 & 2.63 \\
\hline A44-120W................ 18.75 & 281 \\
\hline A50-120W................. 17.95 & 2.69 \\
\hline A59-23W:................ 18.95 & 2.84 \\
\hline A61-120W................ 18.95 & 2.84 \\
\hline U.S.A.JAP. TYPE No & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 9AGP4................... 19.50 & 2.92 \\
\hline 190AB4/C4............... 17.50 & 2.62 \\
\hline 230ADB4 ................. 28.50 & 4.28 \\
\hline 230DB4/CT468......... 24.00 & 3.60 \\
\hline 240AB4A ................. 17.95 & 2.69 \\
\hline CT507...................... 17.95 & 2.69 \\
\hline CT512..................... 27.50 & 4.12 \\
\hline 310DGB4/DMB4...... 23.00 & 3.45 \\
\hline 310EUB4................... 19.95 & 2.99 \\
\hline 310EYB4................. 18.75 & 2.81 \\
\hline 310FDB4................... 19.95 & 2.99 \\
\hline 310FXB4.................. 17.50 & 2.62 \\
\hline 310GNB4A.............. 23.50 & 3.52 \\
\hline 310HCB4 ................. 23.50 & 3.52 \\
\hline 340AB4 ................... 19.50 & 2.92 \\
\hline 340A YB4 ................. 25.25 & 3.79 \\
\hline 340Rb4/CB4.............. 24.50 & 3.68 \\
\hline 340AHB4 .................. 24.50 & 3.68 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c} 
Some Rebulte Japanese \\
\& European Types \\
Avallable at
\end{tabular} \\
£14.00 + VAT £1.75
\end{tabular}\(|\)

ALL TUBES TESTED BEFORE DESPATCH \& GUARANTEED FOR 12 MONTHS! 4 YEAR GUARANTEES AVAILABLE ON MOST TYPES
CARRIAGE
Mono \(£ 3.00\) Colour \(£ 4.00\)
Mainland only. Overseas Rates on Application.

\section*{TELEMSIONTUBE SHOP LTD. 52 BATTERSEA BRIDGE RD., LONDON, SW11.}

Tel. 228 6859/223 5088


SETS \& COMPONENTS

\section*{LEDCo \\ LEADS THE WAY IN NEW REPLACEMENT PANELS \& MODULES}

\section*{NEW!!!}

Detector module for Philips 570 and Pye 713-731 735 series. \(\mathbf{£ 8 . 9 5}+\) V.A.T.
Other highly successful and popular LEDCo products are I.F. Filter/Gain module for above models: Solid State CDA Panel for Pye Hybrid: Replacement for Mullard LP1162.
LEDCo products are used by most major companies. Further modules coming soon. Get them all from your usual stockist but make sure they are genuine LEDCo.
Contact us in case of difficulties.
LEDCo Ltd. 189A Livingstone Rd., Thormton Heath. Surrey, CR4 8JZ Tel: 016537575

S/S Colour \(\mathbf{8 3 0}\), Mono Push Button \(\mathbf{~ 2 3}\). Plus VAT. Phone Southend 559895. Any time.

\section*{TV TUBE REBUILDING}

Faircrest Engineering Ltd., manufacture a comprehensive range of equipment for processing all types of picture tubes, colour and mono. Standard or custom built units for established or new businesses. We export world-wide and have an excellent spares service backed by a strong technical team.

Full training courses are individualiy tailored to customers requirements.
For full details of our service contact Neil Jupp
FAIRCREST ENGINEERING LTD.
Willis Road, Croydon CRO 2XX
Tel: 01-689 8741 01-684 1422/3

\section*{SMALL ADS}

The prepaid rate for classified advertisements is 21 p.per word (minimum 12 words), box number 60p extra. Semi-display setting \(£ 4.00\) per single column centimetre (minimum 2.5 cms ) All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertismement Manager, Television, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846)

\section*{NOTICE TO READERS}

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

\section*{SUFFOLK TUBES LIMITED \\ 214 Purley Way, Croydon, Surrey. Tel: 01-686 7951/2/3/4}

SUPPLIERS OF MONO AND COLOUR TUBES TO MAJOR RENTAL COMPANIES.
ALL COLOUR TUBES HOT PUMPED AT 385c AND REBANDED TO BRITISH STANDARD. 4151972 CLAUSE 18-2.
\(19^{\prime \prime}\) and \(22^{\prime \prime}\) TUBES APPROVED. OTHER TYPES PENDING.
BRITAINS LARGEST INDEPENDANT REBUILDER FOR 21 YEARS.

TELEVISIONS to the Trade. Large quantities of Mono from \(\mathbf{£ 2 . 0 0}\); Square Screen from \(\mathbf{£ 6 . 0 0}\). Colour T.V.s Working from E65. R.B.M., GEC, PYE, Thorn etc. Phone Scarborough 0723-68087-65451. Scarborough T.V. Trading, Ridings House, Depot Lane, Seamer Road, (A64) Scarborough.

\section*{RE-BUILT COLOUR TUBES 19"£29.50 MONO 20"£30.50 \(22 " 1^{\prime \prime} £ 32.50 \quad 20^{\prime \prime} 24^{\prime \prime} \quad 25\) " \(£ 34.50\) 28' \(£ 38.50\) £16 \\ One Year Guarantee. \\ MATRIX TV LTD., \\ 112 Esesex Rond, London N1. Tel: 2261111}

\section*{URGENT TRADE NOTICE}

Large quantities of good quality mono and colour TV receivers for sale, at competitive prices.

WHY not come to us where your custom will be welcomed and appreciated.
WE supply receivers to all parts of the UK, and to EIRE. All export enquiries welcomed.
TV WHOLESALE SUPPLIES
35 Shipston Road, Stratford-on-Avon.
TEL: 07894424

\section*{COLOUR TUBES}

Rebuilt with new electron gun, to British Standard. High temperature pumping.

Here is what you pay. VAT


\section*{TELESTAR TUBES}

575c Moseley Road, Birmingham B12 9BS. Tel: 021-440 5712.

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact Coles-Harding \& Co., 103 South Brink, Wisbech, Cambs. 0945 4188. Immediate settlement.

\section*{LOOK!}

THORN 3000/3500 TRIPLERS
High Quality Silicon Replacement Units One Year Guarantee; Same Day Despatch ONLY E3.95 inc. P.P. Add \(59 p\) V.A.T. Quotes for larger quantities on request.

WING ELECTRONICS
13 Made Rowd, Herrow Hin, Mlodx

\section*{TELECARE T.V. DISTRIBUTION LTD. BRISTOL AND NORTHERN IRELAND}

Due to a New Policy in purchasing we are able to OFFER most makes of Colour \& Mono at Lower Prices than ever before.
We can supply any quantity, nothing too big or too small. Trade only.
telecare bristol
Unit 3 Whitby Road,
Brislington,
Bristol.
Phone 0272712569
NORTHERN IRELAND
Bellanaleck
Co' Fermanagh,
Northern Ireland.
Phone Florencecourt 388


> J AND J ELECTRICS
> 68 Abergele Road，Colwyn Bay，
> Telephone 31422.

Pye Hybrid．\(£ 23.00\) each inc．VAT Complete with Tested Tube．
Phillips．K80 £37．95 each inc．VAT Complete with Tested Tube．
G．E．C． 2040 £27．60 each inc． VAT Complete with Tested Tube．
Thorn 3000 Large Screen＇s． From £28．75 each inc．VAT．

SPARES FOR ALL THE ABOVE AVAILABLE MAIL ORDER．

REGUNNED TUBES． 2 Years guaranteed from £27．60 each inc．VAT．

\section*{QUALITY REBUILT TUBES}

HIGH TEMPERATURE PUMPING
COLOUR（2 year Guarantee）from \(\mathbf{E 3 4}\) MONO（Including thin necks）from \(\mathbb{£ 1 2 . 5 0}\) 4 year Optional Guarantee Agents in Harrow，West London，Croydon， Anglia．
Send or phone for full list and terms．
WELTECH PICTURE TUBES Unit 3－10 Wembley Cormmerolel Centre， East Lene，Wombloy，Mididx．

01－908－1816



\section*{MAINS DROPPER RESISTORS}

\section*{POWER SECTIONS}

Type 1112 Wetta 40pem 4R7，7RS．10R，12R， \(15 \mathrm{R}, 18 \mathrm{R}, 22 \mathrm{R}, 27 \mathrm{R}, 33 \mathrm{R}, 39 \mathrm{R}, 47 \mathrm{R}, 56 \mathrm{R}\) ， Type 1218 Wats
\[
2 \mathrm{~K} 5 \quad 2 \mathrm{~K} 85
\]

COMPLETE UNITS
Philipe G8 2R2 +68 R
Phisipe \(210118+148+\) link
Thoon \(1500350+20+148+1500+317\)
Thom \(3009 / 35006+1+100\)
Thorn \(800056+1 \mathrm{~K}+47+12\)
Thorn \(8000056+1 \mathrm{~K}+47+12\)
Thorn \(850050+40+1 \mathrm{Ks}\)
GEC \(201810+15+19+70+188\)
Bush／Murphy TV161 \(250+14+156\)
VAT inclustve．Add 15p PAP for onders below 51.00
ACORD ELECTRONICS LTD．，
45 Stote Roed，Grilatord，GU：4HT

\section*{COLOUR TV＇s}

Many working for disposal，trade only． All sizes and makes available．

Mono sets also available． Ingertone（London）
24 Dames Road，Forest Gate， London E7．

Tel：01－555 5569
Ingertone（Briatol）
28 St．Thomas St．，Bristol 1.
Tel： 0272211179

\section*{VALVE BARGAINS}

ANY 1－20p，5－80p，10－f1．25，50－f5．50 ECC82，ECH84，EH90，PFL200，EF80，EF183， EF184，PCF80，PCF802，PCL82，PCL84， PCL85／805，PY81，PY800，PY88，PL36，PL504， 6F28，30PL 14.

\section*{COLOUR VALVES 65p EACH}

PY500／A，PL508，PL509，PL5 19.
Postage \＆Packing 30p，no VAT

\section*{VELCO ELECTRONICS}

8 Mnndritio Torrace，Hankitow，Via Bury，Lenes．

\section*{LLOYD ELECTRONICS \\ 63 North Permde，Grmithem，}

Lincolnehire
PL802／T Top Quality Solid State Valve－ 22．50 each．
Solid State C．D．A．Panel for＇Pye＇203／205 series ef19 each．
I．F．Gain module for＇Pye＇713／731－series e E8． 50 each．
Motor speed control module for＇Hoover＇ washing machines．Types 3234／5／43 D．C． 5.50 each．

> QUANTITY DISCOUNTS

\section*{REBUILT CATHODE RAY TUBES IN}


All tubes are now guaranteed for 2 years
A44 270X－A44 271X
A47 342X－A47 343X
A49 120X－A49 192X
A51 \(110 \mathrm{X}-\mathrm{A} 51\) 220X
A55 14X
A56 120X－A56 140X
A63 120X－A63 200X
A66 120X－A66 140X
A67 120X－A67 150X
2OAX and P．I．L tube application．
For further details contact：
C．R．T．Services
Tel．Llanwern（0633） 412112

いーいいいていいい

PLEASE MENTION

TELEVISION

WHEN
REPLYING TO
ADVERTISEMENTS

\section*{TELEVISION AERIALS}

South West Aerials was formed in earty 1979 to provide a comprehensive selection of aerial hardware to suit all
localities and situations. Staffed by HOGER BUNNEY and localitise and situations. Staffed by HOGEN BUNNEY and DAVID MABrin, both woll known in the reception field, a aerialreception problems, be it the local, fringe, 2nd ITV channel or DXing installation (covering AM/FM radio, Band 1 through to UHF TV).
The comprehensive 6 page catalogue covering aerials, amplifiers, masts. rotators and mounting hardware is complemented by South West's direct access to the ranges of all major UK manufacturers, ensuring a prompt despatch.


SOUTH WEST AERIAL SYSTEMS
10 Oid Boudary Road, Shaftesbury, Dorset Telephone (0747) 4370

PYE HYBRID CDA panels, tested and working. \(£ 5\) incl. P. \& P. Castlegate TV, 64 Castlegate, Grantham, Lincs.
```

COLOUR PANEL EXCHANGE SERVICE
BRC 3000-3500 8000-8500
Philips G8 and GEC }2110\mathrm{ series.
O
Free delivery in London area on Exchange Panels. Large

```

```

        Catologue arellable on requar.
        KAY JAY TV SERVICE
    34, Cleuson Ayonue, Northot Phone 864 0350.

```

T.V
SPARES, PANELS - AND MANUALS PHILIPS.GRUNDIG

TELEVIEW
01-994 5537
194, Acton Lane, London W.4.

\title{
VALVE LIST \\ ALL YALYES FULLY TESTED
}

Five valves or over postage paid Under five valves postage 6p each

S. W. ELECTRONICS

114 Ruriney Road, Rawtematall, Rossendale, Lancs.
RECONDITIONED Pye Hybrid Colour TV's, to the following spec: New regunned tube (2 year Gtee.) Solid state CDA panel, new boost caps, new tower valves, new thermistors, etc, trade price \(£ 149\) including VAT. CASTLEGATE TV, 64 Castlegate, Grantham, Lincs. Tel: 047666869.
```

HURNGATE LTD.
SERVICED AND WORKING
PHILPS G8
SOLID STATE G.E.C.
THORN 3000/35000
AND OTHERS
CONTACT:
UNIT 3 THE QUARRY,
WESTERLEIGH, YATE
BRISTOL
Tel: CHIPPING SODBURY
316056

```

NTS For Good Quality Colour and Mono T.V.'s ExRental, Part Exchenges, Re-posesasions, etc. COLOUR T.V.'s from 111 inc. V.A.T.
MONO T.V.' from \(£ 3.30\) inc. V.A.T
Why not Call or Phone now to Londons Established Whotesaler SOUTHERN TRADE SERVICES,

21 Coillale Avesian Teli 01 -200 7337.

DXTV PHILIIPS G8 selectivity modules, tested less cans \(65 \mathrm{p}, 10 \mathrm{p}\) post. Gain modules \(65 \mathrm{p}, 10 \mathrm{p}\) post. Other DXTV items supplied. H. Cocks, Bre Cot tage, Staplecross, Robertsbridge, E. Sussex. Tel: 058083-317.

\section*{BOOKS \& PUBLICATIONS}

FULL REPAIR data any named T.V. 55.30 , with circuits, layouts, etc. £7. (AUST) 76 Church Street, Larkhall, Lanarks ML9 1HE.

\section*{for SALE}

FOR DISPOSAL. 3 Bush TV161 Type. Two 23" one \(19^{\prime \prime} £ 15\) each, also Two Pye Olympic 368 Type, Two G.E.C. \(23 "^{\prime \prime}\) D/S. \(£ 10\) each or \(£ 70\) the lot. Buyer collects. Phone 01-777 5895. West Wickham, Kent.

DECCA EP685 Colour Bar Pattern Generator. Factory checked. Owner retiring. \(\mathbf{£ 2 2 0}\). Redditch ( \(\mathbf{0 5 2 7 \text { ) }}\) 43919.

AVO 9, in immaculate condition, complete with leads. Only \(£ 38\). Tel: Bathgate 52904 .

ANTIQUE TELEVISION Set Decca DM4, Origina Cabinet. \(£ 15\) or nearest offer. Telephone 6508876.

NEW BACK ISSUES of 'Television' available 80p each post free. Open P.O/Cheque returned if not in stock - BELL'S TELEVISION SERVICES, 190 Kings Road, Harrogate, N. Yorkshire. Tel: (0423) 55885.

\title{
SERVICE SHEETS. SERVICE MANUALS PRACTICAL AND TECHNICAL BOOKS
}

\section*{COVERING COLOUR \& MONO TELEVISIONS, RADIOS, RECORD PLAYERS, TAPE RECORDERS, ETC.}

\title{
SERVICE SHEETS \(\mathbf{f 1 . 0 0}\) PLUS S.A.E. SERVICE MANUALS ON REQUEST. BOOKS
}

RICES INCLUDE POSTAGE U.K. ONLY
TVT ' 78 TRANSISTOR EQUIVALENT \& DATA BOOK. (A TO Z). 272 Pages ............ \(\mathbf{8 3 . 2 5}\) TVT ' 78 TRANSISTOR EQUIVALENT \& DATA BOOK. (2N. 2S. ETC.). 392 Pages .... \(\mathbf{£ 4 . 2 5}\) NEWNES COLOUR TELEVISION SERVICINGMANUAL by G.J.King. Vol. \(1 . . . . . . . . . . . ~ £ 8.50\) NEWNES COLOUR TELEVISION SERVICING MANUAL by G.J.King. Vol. 2 ............ 88.50 NEWNES COLOUR TELEVISION SERVICING MANUAL by G.J.King. Vol. 3 ........... \(£ 9.50\) COLOUR TELEVISION SERVICING by G.J.King. 2nd Edition..................................... \(\mathbf{8 9 . 8 0}\)
COLOUR TELEVISION THEORY by G. H. Hutson.
LONG DIST NCE TV RECEPTION FOR THP ENTHUSIAST............................................. \(£ 1.50\)
\(\mathbf{8 1 . 7 0}\)
COLOUR TV WITH REFERENCE TO THE PAL SYSTEM by G.N. Patchett ...................... 86.40
VIDEOTAPE RECORDING: THEORY AND PRACTICCE by J. F. Roblñon 2nd Edition. \(\mathbf{1 9 . 9 5}\)
TELEVISION SERVICING HANDBOOK by G.J.King. 3rd Edition ............................... \(\mathbf{5 7 . 2 5}\)
BEGINNERS' GUIDE TO TELEVISION by G.J. King.5th Edition.................................. \(\mathbf{5 3 . 4 5}\)
BEGINNERS' GUIDE TO COLOUR TELEVISION by G.J.King. 2nd Edition ................ \(\mathbf{£ 3 . 4 5}\)
CATHODE-RAY OSCILLOSCOPE AND ITS USES by G.N.Patchett............................ 84.40
SERVICING WITH THE OSCILLOSCOPE by G.J.King. 2nd Edition ........................... 86.65
TOWERS' INTERNATIONAL TRANSISTOR SELECTOR. 2nd Update..
£10.35

WESTOCK NEW AND SECONDHAND EDITIONS OF "RADIO AND TELEVISION SERVICING" BOOKS. FROM 1965-66 EDITION UP TO DATE. PRICES ON REQUEST.

BACK ISSUES OF FOLLOWING MAGAZINES AVAILABLE. CURRENT PRICE PLUS 25 p POSTAGE PER COPY.
P. WIRELESS, P. ELECTRONICS, E. ELECTRONICS, TELEVISION, ELECTRONICS TODAY, ELEKTOR

\author{
BELL'S TELEVISION SERVICES \\ 190, KINGS ROAD, HARROGATE, N. YORKSHIRE.TEL. HARROGATE (STD 0423) 55885 \\ OPEN TO CALLERS DAILY 9.00 am . TO 5.00 p.m. (HALF DAY WEDNESDAY) PLEASE INCLUDE AN S.A.E. WTTH ENQUIRIES
}

\section*{- THE TECHNICAL INFORMATION SERVICE - 76 CHURCH STREET, LARKHALL, LANARKS ML9 1 HE. \\ Over 200 different colour T.V. service manuals in stock. \\ 1000's of other manuals in stock for immediate delivery. \\ \begin{tabular}{ll} 
S.A.E. brings quotations, newsletter, & FREE E4 OFF VOUCHERS \\
bargains, details these and other TV. offers & send ver large s.a.e. and E2 for our \\
by return. Any service sheet \(£ 1\) + large s.a.e. & 2 GIANT SERVICE SHEETS \& \\
by ren
\end{tabular} \\ MANUALS CATALOGUES \\ NEW PUBLICATIONS FROM T.V. TECHNIC ... plus extra manuals. Complete British Colour T.V. Repair System £52 (£65 abroad). \\ ( 3 Repair Manuals \& 3 Giant Circuit Diagram/layout collections in luxury Complete Mono T.V. Repair System \(£ 42\) ( \(£ 53\) abroad). binders). \\ (4 Repair Manuals \& 2 Giant Circuit Diagram/layout collections in luxury. binders).}

\section*{WANTED}

NEW VALVES and CRT's required, PCL805, PL504, PL509, PY500A etc. Cash waiting. Bearman, 6/8 Potters Road, New Barnet, Herts. Tel: 01-449 1934/5.

NEW VALVES REQUIRED, please ring (0254) 36521. P. V. Tubes, 38A Water Street, Accrington, Lancs.

\section*{MISCELLANEOUS}

RIGONDA AGENTS. For all spares and repairs. Fast despatch trade service available. 01-476 1928. Star Radio, 272 Barking Road, London, E13.


VIDEORECORDER SERVICE and Technical consultancy - B \& B Electronics, Newark 76895. Call Steve Beeching.
C.T.V. Panels Ect lists S.A.E. No Callers. Sole, 37 Stanley St., Ormskirk, Lancs. L39 2DH.

\section*{EDUCATIONAL}

\section*{BETTER JOB! BETTER PAY!}

GET QUALIFIED WITH ICS IN: COLOUR\&MONO TV SERVICING COLOUR\&MONO TV ENGINEERING COLOUR\&MONO TV MAINTENANCE PLUS: Telecommunications, radio, electronics, electrical engineering, technical communications, radio communications, etc., etc.,
NEW: Seff-build radio courses with free kits
Train in your own home, in your own time with ICS, the world's most experienced home study college. RETURN THIS COUPON TODAY FOR FREE BROCHURE!


Int Correspondence Schools 0284 Intertext House, Stewarts Rd. London SW8 4JJ. Tel: 01-622 9911
Name
Address.


SERVICE SHEETS, Radio, TV, etc., 10,000 models. Catalogue 24 p plus SAE with orders-enquiries. Telray, 154 Brook Street, Preston, PR 1 7HP.

SERVICE SHEETS from 50 p and S.A.E. Catalogue 25p and S.A.E. Hamilton Radio, St. Leonards, Sussex.

\section*{EDUCATIONAL}

\section*{TELEVISION \& VIDEO SYSTEMS SERVICING}

18 MONTHS full-time Diploma course to include a high percentage of prectical work.
- ELECTRONIC PRINCIPLES
- mONO \& COLOUR TELEVISION
- CLOSED CIRCUIT TELEVISION
- VIDEO CASSETTE RECORDING
- digital technioues \& TELETEXT
- COMPUTERS \& MICROPROCESSORS
Shortened couraee for applicants with
suiteble electronics beckground.
Next session starts January 7th.
(Also available \(2 \frac{1}{2}\) year course in Marine Electronics \& Radar for employment as ships Radio Officer.)
Prospectus from:

\section*{LONDON ELECTRONICS} COLLEGE

Dept; TT1, 20 Penywern Roed, London 8WE 98U. Tel. 01-373 8721.

\section*{ORDER FORM PLEASE WRITE IN BLOCK CAPITALS}

Please insert the advertisement below in the next available issue of Television for
insertions. I enclose Cheque/P.O. for \(£\)
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd and made payable to Television)
\begin{tabular}{|l|l|l|l|}
\hline & & & \\
\hline
\end{tabular}

NAME.
Send to: Classified Advertisement Manager.
ADDRESS
TELEVIBION. Clow Acd Acverdeoment Depe., Im. 2337,
 Rate 21p per word, minimum 12 word, Box No. e0p extra.

\footnotetext{
Company registered in Engiand. Registered No. 53626. Registered Office: King's Reach Tower, Stamford Street, London SE1 9LS.
}

\section*{ELECTRONIC MAILORDER LTD.}

VALVE BARGAINS
Any 5-80p, 10-£1.50. 50-£6.00 Your choice from the list below
ECC82, EF80, EF183, EF184, EH90, PCF80, PCF802, PCL82, PCL84, PCL85, PCL805. FL504, PY81/800, PY88, 30PL14, 6F28, PFL200.
Colour Valves - PL508, PL509, PL519, PY500/A. All tested, 65p each.
Aerial Splitters: - 2 way, 75 OHMS, Inside Type, \(£ 2.50\)

\section*{AERIAL BOOSTERS}

Aerial boosters can produce remarkable improvements on the picture and sound, in fringe or difficult areas.
B11 - For the stereo and standard VHF/FM radio.
B12 - For the older VHF television - Please state channel numbers.
845 - For Mono or colour this covers the complete UHF Television band.
All boosters are complete with Co -ax plugs \& sockets. Next to the set fitting.
Price \(£ 5.70\) each.

\section*{MULLARD CAPACITORS}
\(100 \mathrm{cz80} / 1\) capacitors values from . 01uF to \(1.5 \mathrm{uF}, 250 \mathrm{v} / \mathrm{w}\).
Good mixed selection. Price \(\mathbf{£ 1 . 5 0}\).
all prices include vat. ple 3up per order. exports welcomeat cost.

62 BRIDGE STREET, RAMSBOTTOM BURY. LANCS
TEL: RAMS (070 682) 3036.

\section*{BIRMINGHAM AND DISTRICT DEALERS/ENGINEERS} NEWS FLASH

\section*{HIGH VACUUM QUALITY REBUILTTELEVISION PICTURETUBES \\ COMPETITIVE PRICES \\ CONTRACTTERMS AVAILABLE \\ 2 YEAR GUARANTEE}
\begin{tabular}{|c|c|}
\hline & \\
\hline \({ }_{20}{ }^{\text {" }}\) & £ \(32.50+\) VAT \(\mathbf{1}\) \\
\hline \(22^{\prime \prime}\) & £34.00 + VAT ¢5:10 \\
\hline 25 " & £37.00 + VAT 55.55 \\
\hline & \(\mathbf{£ 4 0 . 0 0}+\) VAT \(\mathbf{f 6}\) \\
\hline
\end{tabular}

PIL Tubes our speciality.
All Prices For Tubes available on a Sound "Glass for Glass" basis otherwise \(£ \mathbf{2 0}\) surcharge c.w.o.Carr./Ins. \(\mathbf{f 6 . 5 0}\) "Old Glass Purchased"

\section*{TUBESURE LTD.}

Unit 111, Middlemore Industrial Estate Middlemore Road. Smethwick, West Midlands. Telephone:021-558 7777

\section*{DISPLAY ELECTRONICS}

\section*{REGUNNED COLOUR TUBES \\ 2 YEAR GUARANTEE}
 15\% VAT

> REGUNNED MONO TUBES
> 2 YEAR GUARANTEE
> \(20^{\prime \prime}\) £11.00
> 24"............................................. 13.00

Carriage/Packing \(£ 4.00\) up to 75 miles from works. \(£ 5.00\) over. Please add \(15 \%\) VAT.

\section*{CALLERS WELCOME}

Late night Thursdays until 8pm Saturdays until midday.
N.B. Customers intending to collect orders are requested to telephone in advance:- even popular types may be out of stock for short periods.

\section*{V.D.U./RADAR TUBES}

We have supplied British and Foreign Airlines with rebuilt V.D.U. Tubes for several years and also have Radar Display Tubes operating on British Airfields.
Home and export enquiries for Radar Display Tubes manufactured from new (with phosphors to specification) are invited.

> WATERLOO ROAD, UXBRIDGE, MIDDLESEX

Telephone: Uxbridge 55800

COLOUR T.V. SPARES
Most parts for Decca's stocked

LOPT
\begin{tabular}{ccc} 
DECCA & \(10 / 30\) & \(\mathbf{£ 1 0 . 8 0}\) \\
& \(80 / 100\) & \(\mathbf{£ 1 0 . 2 0}\) \\
& Mono & \(\mathbf{£ 1 2 . 0 0}\) \\
PHILIPS G8 & & \(\mathbf{£ 1 2 . 9 0}\) \\
ITT & \(20 / 25 / 30\) & \(\mathbf{£ 1 1 . 9 0}\) \\
BUSH & A774 & \(\mathbf{f 1 5 . 0 0}\)
\end{tabular}

BUSH A774
TUNER CONTROL UNITS
DECCA
4 Button \(\quad \mathbf{£ 7 . 9 0}\)
6 Button \(\quad \mathbf{£ 8 . 9 0}\)
\(7 \mathrm{Key} \quad £ 14.50\)
Exchange 2230 Tuner Unit \(\mathbf{£ 1 0}\) (5
Butt - New for old)
Complete working
THORN 3000 models \(£ 79\) (callers only)
Ex-equip panels
for 3000 and BRADFORD See our NEW Catalogue for details.
Hundreds of correct spares listed.
Send stamp for free copy.
New 1590 or 1591 speakers \(\mathbf{£ 4 . 9 0}\).
Prices include \(15 \%\) VAT
Package/Posting 30p per order but Transformers and Panels 80p.
BOTTOMLEY'S TELEVISION
11 Leeds Road, Hipperholme,
HALIFAX (0422) 202979
Callers Phone first. Exit 26 M62

PLEASE

MENTION

TELEVISION

WHEN
REPLYING
1 TO
ADVERTISERS

\begin{tabular}{|c|c|c|c|}
\hline Belling Lee CO AX Plug & AUl13 £1.00 & NEW VHF/UHF on panel & BY 206 7p \\
\hline Non Solder Type 14p & BU 205 ¢1.00 & ELC2060 \(\quad \mathbf{£ 4 . 5 0}\) & IN4006 5p \\
\hline 100 mixed 20 mm Fuses \(\mathbf{£ 2 . 0 0}\) & BU 108 ¢1.00 & Phillips T/Units UHF & IN4007 5p \\
\hline & BU 208 ¢1.00 & New \(\quad £ 2.00\) & BY210/400 5p \\
\hline \begin{tabular}{ll}
\hline Triplers TS2511TDT \\
THORN & \(£ 2.50\) \\
\hline
\end{tabular} & BU 500 ¢1.00 & VHF/UHF AEG \(£ 2.50\) & BY210/800 10p \\
\hline Triplers TS2511TBQ & BU 126 ( \(\mathbf{1 1 . 0 0}\) & Varicap NSE & BY176 50p \\
\hline PYE \(\quad \mathbf{£ 1 . 5 0}\) & R2008B & Removed from new panels & BY133 10p \\
\hline \(\underline{\text { LP 1174/NC ITT }}\) & R 2010 B ( \(£ 1.00\) & VHF Varicap Units & \(\begin{array}{ll}\text { BA159 } & \text { 10p } \\ \text { BY184 } & \text { 25p }\end{array}\) \\
\hline GRUNDIG 3000/3010 & EHT Rectifier BY212 10p & Print Panels \(£ 1.00\) & BY187 50p \\
\hline SIEMENS TVK52 & 3 OFF G770/HU37 EHT 10p & New 49.0021 .900 MHz & TV 20 50p \\
\hline Triplers \(\quad \mathbf{£ 3 . 0 0}\) & \(12 \mathrm{KV} 2 \mathrm{M} / \mathrm{A}\) Small \({ }^{\text {20p }}\) & VHF Varicap (NSF) AEG & TV 18EHT 40p \\
\hline Triplers-DECCA \(\quad \mathbf{8 3 . 0 0}\) & EHT RECS & New 49.00 21.900MHz \(£ 2.00\) & Rectifiers Sticks \& lead \& \\
\hline CS 2030 CS 2230 & \(12 \mathrm{KV} 2 \mathrm{M} / \mathrm{A}\) Large \(\quad 30 \mathrm{p}\) & 4 Push Button T/Units & Anode Cap \\
\hline CS 2232 CS 2233 & EHT RECS & UHF MULLARD \(£ 2.00\) & BYF3214 20KV Rectifier \\
\hline CS 2630 CS 2631 & EHT REC USED IN & AE Isolating Sockets UHF & Sticks 25p each \\
\hline CS 2632 & THORN 1400.1500 & \& Lead & BYF3123 18KV \\
\hline THORN-Needs Mod No & \(\underline{\text { Triplers }(\times 80 / 150)}\) & PYE \& THORN ITT \(\mathbf{3 5 p}\) & Wire ends \({ }^{\text {25p }}\) \\
\hline 1400. 1500 Stud & CSD \(118 \times\) M H Rec & DECCA 1730 Doubler £1.00 & BA 248 6p \\
\hline Multipliers \(\quad \mathbf{£ 1 . 0 0}\) & THORN 3500 10p & Transistor UHF Units with & BSS 68 20p \\
\hline Triplers-PHILIPS & 220M/450V THORN \(\quad \mathbf{5 0 p}\) & AE Socket and leads & BYX 55/350 10p \\
\hline 520.540.550 \(\quad \mathbf{8 3 . 0 0}\) & 700M/250V THORN 35p & GEC 2000 Rotary type & BT106S/Type \({ }^{\text {S0p }}\) \\
\hline Triplers-ITT & \(175+100+100350 \mathrm{~V}\) & NEW \(\quad \mathbf{£ 2 . 0 0}\) & BT 106 95p \\
\hline CVC5 CVC20/25/30 & \(\underline{3500}\) THORN \(\quad \mathbf{£ 1 . 5 0}\) & 7 button Varicap tuning heads & BT 116 95p \\
\hline CVC7 CVC8 & 400+400.350V DECCA 80p & Variable Resistor with Fascia & BT 119 95p \\
\hline CVC9 \(\quad \mathbf{£ 3 . 0 0}\) & \(\underline{470+470.25 \overline{0 V}}\) & Plate 7 Lamps \(\quad \mathbf{£ 3 . 0 0}\) & BT 109 - 70p \\
\hline LP1174/35 DECCA & \(\underline{100+200325 V} 2\) & PYE 6 push button unit for & BT 146750V \\
\hline LP1194/42 PYE & \(200+200+100+32350 \mathrm{~V}\) 70p & Varicap Tuning \(\quad \mathbf{£ 2 . 5 0}\) & Thyristors \(8 \mathrm{~A} / 800 \mathrm{~V}\) \\
\hline Triplers \(\quad \mathbf{£ 4 . 0 0}\) & \(150+200+200.300 \mathrm{~V}\) 70p & 4 push button unit (for & 2N6399A \({ }^{\text {30p }}\) \\
\hline G2100 GEC Tripler & 731 PYE 600/300V & Varicap Tuning) 20K & Thyristors 8A/400V \\
\hline TVM25 \(\quad \mathbf{£ 2 . 0 0}\) & \& BUSH 75p each & New 50p & 52600D \(\quad 30 \mathrm{p}\) \\
\hline \begin{tabular}{l}
THORN 3500 \\
THORN 8500 Focus Unit
\end{tabular} & \(\underline{200+200350 V}\) & \begin{tabular}{l}
DECCA Bradford Tuner \\
5 Button New
\end{tabular} & Y827 Diodes \(\quad \mathbf{3 0 p}\) \\
\hline DECCA Focus Unit & 400M 400V & BB 105 UHF & Bridge Rec \\
\hline (Large or small) \(£ 1.00\) each & 400M 350V & BB 103 VHF & B30C 600A6 - 12p \\
\hline 4 Push Button Units & 800M 250V \({ }^{\text {30p }}\) & BA 182 & B30C 500 \\
\hline 1400-1500 THORN \(£ 3.50\) & AE Power supplys & Varicap diodes 5p each & BC148B BF198 \\
\hline 4 Push Button Unit 8500 & 15 V & BTY80 20p & BC149C \(\quad\) BF274 \\
\hline THORN \(\quad \mathbf{£ 3 . 5 0}\) & BF 127 BC 303 & 3 amp Diodes 300V \(\quad 10 \mathrm{p}\) & BC195 BSY79 \\
\hline 300 Mixed condensers \(\mathbf{£ 1 . 5 0}\) & BF 264 BRC 2108 & 3 amp Diodes 100V \(\quad \mathbf{7 p}\) & BC108 BC327 \\
\hline 300 Mixed resistors \(\quad \mathbf{1 1 . 5 0}\) & BF 180 BC 336 & 1 amp Bridges 100V 20p & BC 107 BC213LA \\
\hline 30 Pre-Sets \(\quad \mathbf{1 0 . 5 0}\) & BF 181 BF 157 & 1 amp 400 V 20p & BF594 BC212LT \\
\hline \(100 \mathrm{~W} / \mathrm{W}\) Resistors \(\quad \mathbf{£ 1 . 5 0}\) & BF 182 BC 161 & 3 amp Bridge \(\quad \mathbf{2 5 p}\) & BC158 BF195 \\
\hline 40 Mixed Pots \(£ 1.50\) & BC 300 BC 460 & W005M Bridge \(\quad 15 \mathrm{p}\) & 2N2222 BC 182L \\
\hline 20 Slider Pots \(\quad \mathbf{£ 1 . 5 0}\) & AC 128 BC 350 & 194-N 30 Replacement & 2N390 BF594 \\
\hline 10 Different Types & BC 350 E1222 & for BU204 75p & 2N4355 BC183 \\
\hline Mixed Electrolytics & BF 178 BSY95A & 121-1015 Replacement & T1591 BC238A \\
\hline 150 ¢2.00 & BF 257 BFT 43 & for BU208A \(\quad \mathbf{£ 1 . 0 0}\) & 2SK30A BC454 \\
\hline DP Push Button Switch & BF 137 with heat sink & 200+200+100 325V 70p & BC455 \\
\hline ON/OFF 10p & BF 185 TIP 29A & \(\overline{\mathrm{BY}} 127 \quad\) 10p & 7p each \\
\hline Mains ON/OFF & \begin{tabular}{ll} 
BF 200 & TIP 32 \\
BD 253 & AC 153K
\end{tabular} & IN4005 4p & TIS90 15p \\
\hline Push Button T/V 20p & \begin{tabular}{l}
AC 153 K \\
20p each
\end{tabular} & & \\
\hline Mains ON/OFF &  & & \\
\hline Rotary T/V 122 \({ }^{\text {2 }}\) p & GEC Sound O.P. Panel & - & \\
\hline Mains Dropper THORN &  & &  \\
\hline 6R+1R+100R 35p & AC 176 K & & \\
\hline Mains Droppers & AC 153K Pair 4 & \(\rightarrow \square \square\) & \(\square\) \\
\hline 69R + 161 PYE
AD 161 AD 162 & UHF Varicap Units+VHF & 1 & E \\
\hline Pair 60p & NEW & & \\
\hline \(\overline{147+260 \text { PYE }} \mathbf{4 0 p}\) & ELC 1043/05 & \multicolumn{2}{|l|}{2 WOODGRANGECLOSE,} \\
\hline (731) 3R+56R+27R 50p & ELC 1043/06 & 2 WOODGR & NGECLOSE, \\
\hline 100 Mixed Diodes \(\quad \mathbf{£ 1 . 0 0}\) & THORN Varicap UHF & \multicolumn{2}{|r|}{THORPEBAY, ESSEX} \\
\hline Mixed Bulbs \(\quad\) 45p & \(3.500 \quad £ 3.50\) & \multicolumn{2}{|r|}{THORPEBAY, ESSEX} \\
\hline RCA 16572 & New EQV ELC 1043/05 & \multicolumn{2}{|r|}{Reg. Office Only.} \\
\hline RCA 16573 & DECCA UHF Varicap & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Callers by appointment only.}} \\
\hline O/P Trans Pair 40p & New eqv E1C 1043/05 & & \\
\hline ZTK 33B 6p & £4.00 & \multicolumn{2}{|r|}{Add 15\% VAT.} \\
\hline 100 Mixed Transistors 75p & VHF/UHF AEG Varicap & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Add 30p P. \& P.}} \\
\hline 1 LBs Mixed Components & (New) \(\quad \mathbf{£ 3 . 5 0}\) & & \\
\hline \(£ 1.50\) & \(\overline{\mathrm{G}} 8 \mathrm{PHILLIPS} \quad £ \mathbf{£ 3 . 5 0}\) & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Add postage for all overseas parcels.}} \\
\hline BU 105/04 \(\quad \mathbf{£ 1 . 6 0}\) & UHF Varicap replacement & & \\
\hline
\end{tabular}```

