NOVEMEAR 197E

SERVICINGVIIDEO-CONSTRUCTION-DEVELOPMENTS

PHD COMPONENTS

RADIO \& TV COMPONENT DISTRIBUTORS
UNIT 7 CENTENARY ESTATE
JEFFRIES RD ENFIELD MIDDX
CALLERS BY APPOINTMENT ONLY TELEX 261295

ALL COMPONENTS PRICED EACH (INCLUSIVE OF VAT AT 12 $\frac{1}{2} \%$) NO MINIMUM ORDER CHARGE
TRANSISTORS
AC107 Trinsistor
AC 266 Trasistor
A12
ACl
AC127/01 Transistor
AC128 Transistor
AC128/01 Transistor
AC141k Transistor
AC142 Transistor
AC142K Transistor
AC153 Transistor

$$
.25
$$

$$
\begin{aligned}
& \text { AC176 Transistor } \\
& \text { AC17601 Transisto } \\
& \text { AC186 Transistor } \\
& \text { AC187 Transistor } \\
& \text { AC187K Transisior }
\end{aligned}
$$ GEC $2000200200-1$

GEC $100-2000 / 35$
GEC $98600 / 300 \mathrm{~V}$ GEC G8 $600 / 25$
RRI $600 / 300 \mathrm{~V}$ PYE 169 1000-1000/40 RRI 823 2500-2500/30
RRI $300-300 / 300$
TT/KB $200-200-75-25$ TCE $950100-300-100-16 / 275$
TCE $400150-100-100-100-15$ TCE $3000 / 3500 \times 150 \times 100$
TCE $3000 / 35001000-100$
TCE $3000 / 70 \mathrm{~V}$ TCE 3000/3500 220/100
TCE 8000//500 $250 / 2500 / 63$
TCE $8000 / 8500700 /$ B00 $300-300 / 350$
$100-200 / 275$ $100-200-60 / 275$
$200200-400 / 350$ $125-300-100 / 350$
$300-200-100 / 300$
$2000-2000 / 40$ $300-300-100-32$
$300-300-100-50$ $220-100-47-22 / 340$
$200-100-100-150 / 350$
DROPPERS
Dropper TCE 1400
Dropper TCE 1500
Dropper TCE 1600
Dropper TCE $3000 / 3500$
Dropper TCE 8000
Dropper TCE 8500
Dropper Philios 68
Dropper Philips 68
Dropper Philips 210
Philips 210 (Link)
Oropper RR1 141
Dropper RR1 161
Dropper 27840
Dropper GEC 2000
Dropper PYE 11062
Dropper PYE
DIODES \& RECTIFIERS
AA117 Diode OA47 Diode
OAB 1 Diode
OA85 Diode
OA900 Diode
OA9
Oiode
OA202 Diode
BA102 Diode
BA148 Diode
BA154 Dode
BA155 Diode
BA164 Diode
BAX16 Diode
SK3F/O4 Diode
IS44 Diode
BY127 Rectifier
BY 133 Rectifier
BY179 Bridge Rectifier
BY238 Rectifier
BY 10 Rectifier
BY 187 High Voltage Rectifier
iN4002 Rectifier
iN4003 Rectifier
N 4005 Rectifier
N4007 Rectifier
BY142 Rectifier
BR100
BRY39
BT116
BT119

N4443

BT100A/02
OT112
OY'
BYX55/350
$B Y \times 55 / 600$
BYX71/600
N4444 Thyristor
0.30

BD44 4 Transisto BD535 Transisio

-

COPYRIGHT

- IPC Magazines Limited, 1978. Copyright in all drawings, photographs and articles published in Te/evision is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, 'Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltḍ., King's Reach Tower, Stamford Street, London SE1 9LS.

BINDERS AND INDEXES

Binders ($£ 2.85$) and Indexes (45p) can be supplied by the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Prices include postage and VAT. In the case of overseas orders add 60 p to cover despatch and postage.

BACK NUMBERS

Some back issues, mostly those published during the last two years, are available from the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF at 70p inclusive of postage and packing to both home and overseas destinations.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. All correspondents expecting a reply should enclose a stamped addressed envelope.
Requests for advice in dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Your Problems Solved". "Send to the address given above (see "correspondence").

this month

7 Leader

8 Teletopics

News, comment and development.
Eliminating Ghosts
by Bill Wright
An aerial specialist with considerable experience of ghosting in an area plagued with this problem discusses methods of cleaning up the picture, in particular by careful adjustment of horizontally stacked arrays.

Letters
Thorn 9000 Chassis Faults
by John Coombes
A summary of fault experiences on this unusual chassis, with its Syclops combined line output/regulated power supply circuit.
Long-Distance Television
by Roger Bunney
Reports on DX reception and conditions, and news from
abroad. Also notes on varicap tuners and some
interesting f.e.t. circuits.
24 Colour Receiver Project, Part 2
by Luke Theodossiou
Introducing the signals board. Complete circuitry plus a
description of the pin-diode tuner and the i.f. strip.
32 Twisted Tails
by Les LawryJohns
Problems this month include trouble with a Spaniel in
need of trimming.
34 LED Channel Display
by Alan Damper
A problem when using varicap tuners with rotary manuar
control is to know which channel is being received. This
simple system not only gives channel identification but
also indicates optimum tuning.
35 Readers' PCB Service
36 The Language of Logic, Part 2 by E. A. Parr, B.Sc., C.Eng., M.I.E.E.
Start of an illustrated dictionary of terms used in
connection with electronic logic systems.
40 TV Servicing: Beginners Start Here, Part 14
by S. Simon
Fault finding in valve field timebase circuits, with
particular reference to the things that go wrong in the
Thorn 1500 chassis.
Next Month in Television
Versatile Remote Control System by Brian Dance, M.Sc.
Plessey's new remote control system for TV receivers
uses pulse-position modulation and two special i.c.s.
The link can be either ultrasonic or infra-red. The system
and the circuitry are described. The system has already
been adopted by several continental setmakers.
47 Your Problems Solved
49 Test Case 191
OUR NEXT ISSUE DATED DECEMBER WILL BE PUBLISHED ON NOVEMBER 20

TELEVISION SALE

DISCOUNT FOR QUAN'TITY

MONO

Rotaries 19" \& 23"
GEC
Thorn 950 etc.
K.B.

Pye
Thorn 1400
D/S P/B 19" 23"
Thorn 1400
Bush 161 etc.
Baird 660 etc.
Philips 210 etc.
Pye Olympic etc.

MAINS DROPPERS
All Popular Makes now in stock e.g.
1500 60p Philips 210 40p
8000 54p Bush 161 40p
G8 - 36p Pye 723 47p
GEC 2110-41R 45p
PLEASE NOTE THERE IS $12 \frac{1}{2} \%$ V.A.T.
Please note all mono sets sold as 100\% comp. No broken masks, no broken panels etc.
Colour sets sold with good c.r.t.s and 100\% comp.
Working Mono $£ 3.00$ extra
Working Colour $£ 15.00$ extra
Supplied in 1's or 100's
WE DO NOTT SELL RUBBISH AT
BRIARWOOD TV LTD EXPORT
COLOUR \& MONO T.V.s AVAILABLE READY FOR USE ABROAD

BRIARWOOD TELEVISION LTD. Briarwood House
Preston Street, Bradford, West Yorkshire BD7 INS. Tel: (0274) 308018.

π	7490．．．．．．．． 38	74	4051.	вс109C．．．12p	BD140 ．．．．38p	Oc	2N2219．．．．．．．${ }^{\text {25 }}$	2NS194．．．．．3000	LM330－．．．．．38p		$\star \star \star \star \star \star \star \star * *$
7400.	$7491 . . .10$	$74185 . . .19$	4054．．．．． 120	BC147．．．．．．．80	B0234	$0<71$	2N2219A．．．．28p		LM391AN 14E0	TBAB105．． 1	
$7401 . . .11$	7491AN．．．900	$74186 . . .1800^{1}$	4055．．．．140p	8С148．．．．．8p	BF180 \ldots ．．．．32	R20088．200	2N2221．．．．．．．20p	2N5296－．．．．．ET0！	LM732 ．．．．．124pe	TBA820．．．．．78p	
7401AN	7492．．．．${ }^{\text {ssp }}$	$74190 \ldots 120 \mathrm{p}$	4056．．．．．． 130 p	BC149．．．．100	BF181．．．．．．32p	R20108．200	2N2221A $\ldots . .240$				
	7493．．．．．．．389	74191.120 $74192 \ldots 9$.	4080 4066			$\begin{aligned} & 7 P 29 \ldots . . .6 \% p \\ & 7 P 29 A . . .45 p \end{aligned}$	$\begin{array}{ll} 2 N 2222 \\ 2 N 2222 A \end{array}$	$\begin{aligned} & \text { 2N5458 _lopp } \\ & \text { 2N5459 } \end{aligned}$	$\begin{aligned} & \text { LM747 } \ldots70 p \\ & \text { LM748 38p } \end{aligned}$	TDBO565 ．．．．30p UA74ICP．．．．．25p	
7404×20	7495．．．．．．．． 78	74193．．．．．9989	4066．．．．．．65p	BC159．．．．110	BF194．．．． 10	TP298．．．．${ }^{\text {cop }}$	2N2368．．．．．．20p	2N5480．．．．．． 4	Lм 3900 ．．．．．． 6	ZN414．	
$7405 \ldots \ldots . . .28$	7496	$74194 \quad 160$	4088．．．．．．．．．25p	BC169C．14p	日F195．．．125	TP29C．．．．80p	2N2369．．．．．． 18	2N5485．．．．．44	LM3911．．．．125	ZN424E	
7408.	7497．．．．． 280	74195．．．110p	4069．．．．．．．．．27p	BC172．．． 12 p	BF196．．．．120	TP30	2 N 2369 A ．．．．16p	$2 \mathrm{NB02}$		328－501	
7407．．．．－．．．40p	$74100 . . .1400$	$74196 . .100$	4070－1．．．．65p	8C177．．．17 ${ }^{\circ}$	BF197 14	TP30A．．．．． 48 p		2N6545．．．．． 420	FSA2510M．	320AN	
$7408{ }^{22}$	74104－ 780	$74197 \ldots .1300$	4071 ．．．．．．．260	BC178．．．．．17p	日F198．．．185	TIP30日．．．．．48p	2N2904．．．．．．．25p	3 N 12 s			＊
7409．．．．．．． 22 P	74105．．．．．75p	74198.250	4072 ＿．．．．30p	8C179．．．．18p	8F199．．．20			3N140．．．．．．． 10			
$741018 p$	74107．．．．38p	74199．．．．250p	4073．．．．．．．．30p	BC182．．．100	8F200．．．．320 ${ }^{\circ}$	TIP31A．	2N2905．．．．．．．28p				
$7411 \cdots \cdots$	74109．．．．． 600	$74221 \ldots . .175$	4078． 1700	BC183 ．．．1006	Ef224 320	TIP318．．．．．${ }^{\text {sep }}$	2N2906A	3N201．．．．．．． 110 p			
$7412 \ldots25 p$ $7412 A N .28 p$	74110．．．． $\mathbf{5 0 p}_{8}$	74 HOO － $\mathrm{BB}^{\text {B }}$	408120		${ }_{\text {BF240．．．．}}^{\text {BF2 }}$	TP31C．．．．E0	2N2906．．．．．．209	3N2O4－10 ${ }^{10347-1}$	MC1103 ．．．．．．S6p MC3340．．．120p＂	$78055 v+\ldots . . .8 p$ $781212+\ldots . .$.	
7413．．．．．． 40 p	74118 220p	74H10．．．．．．－429		BC187．．．．．30p BC212．．．． $11 \rho^{\circ}$	8F2448．35p	TP32A．．．．．600	2N2907．．．．．．．．28p	40348	MC3360 ．．． 120	781515	
7416 ．．．．．．．40p	$74118 \ldots . .110 p$	74M11	4096．．．120	BC212L．11p	BF257．．．．．．36p	TP328	2N2907A ．．．．	40366	MC7242＿12000	$781818+\ldots . . .040$ $782424+$	
7417．．．．．．．．40p	74119 \quad 2250	74420．．．． 42 p	4099－14．－145p	${ }^{8} \mathrm{C} 213 \ldots 11{ }^{\circ}$	8F258．．．．．32p		2N3926．－n－${ }_{\text {2 }}$	40361．．．．－ 46			
	74120．．．130p	74S10．．．．．400	4180	BC2132．120	BF259．．．．．360	TIP 33. $\pi P 33 A$		40362	$040 . .12$	7912 12－．．．120p	
7422.1 .12				BC214 13	BF337	TIP338．．．．．90p	2N3702．．．．． $12 p^{\circ}$	4040	MH03476．	7915	50 SimplopiLS Circulsa．．．．．．．．．．．．．．．．．．．．．．．．78p
7423．．．．．．33	74123．．．．． 75 p		4163	BC237．．．18p	BFR39 30	Tp33C	2N3703．．．．．．1250	40409	MP0372	$\begin{aligned} & 791 \\ & 792 \end{aligned}$	First Book of Transietor
7425335	74125．．．．． 78 p	cmos	4174.	日C237A． 18	9FR40．．．30\％	TP34．．．．96p	2N3704．．．．． 1	40410	MK55382．8	1924	
$\begin{array}{r} 7428 \\ 7427 \end{array}$	74128．．．．．e6p	4000．．．．．．．18p	4175	BC2378．18		${ }_{\text {T1P34A }}$ T11	2N3705．．．．．．12p 2N3706.... $.14 p^{\circ}$ 2N37	40411	NEES5		Second Book of Tranyistor
7428.	74130．．．110p	${ }^{400695 p}$	4194105 4408.	BC238A． 180°		TIP34C．．．16	2N3707．．．．140\％	40	5		11
7430．．．．．． 18	74132．．．．22p	4007．．．．．．．11pp	4409．．．．．．．710p	ВС2388． $16 \%^{\circ}$	BFRBO－300	TIP35A．	2N3708．．．．． 1	405	80.		
7432314	74135．．．．．${ }^{\text {ct }}$	4008．．．．．120p	4410 － 712	BC238C． 20	BfRg	TIP35C．．．280	2N3709．．．．．．1400	40595	NE561．．．．．389		
7433	$74136 \quad 80$	4009．．．．．．． 50 sp	4419．－280	BC328．．． 180°		TP36A．2600		40603.	NE56	200v 1A	
7438．．．．．．．．38p	${ }^{\text {7414，}}$		$\begin{array}{ll}4422 & \text { SE } \\ 4433 & 126\end{array}$			TP41A	2N3823 ．．．．．．700	40	NE565．．．．．．．．．	${ }^{4000} 1 \mathrm{~A}$ ．$\ldots . .300$	
7440	$74142.300 p$	4012 18． $\mathbf{1 8}^{\text {p }}$	$4435 . \ldots . \quad .80$	BC516．．． $50{ }^{\circ}$	8FX85．．．．． 300	TIP418	${ }^{2} \mathbf{N 3 3 6 6 5}$	$40842 \times 110^{\circ}$	NE5654．．．．．		
7441.	7414	4013．．．．．．．．60p	4450	BC517 ．．．80\％	8FX86．．．30p	T1P41C．．．．． 78	2N3903 ．．．．．1190	40871．．．．．．．．．${ }^{\text {80p }}$	NE566．．．．．．．．158p NE567 170p		
7441 AN	74147 $\quad 210$	${ }^{4014} 10.110 p$	4451－290	$8 \mathrm{CL54} 7 . .18{ }^{\text {1 }}$	8F×87 ${ }^{8300 ~}$	TP42A．．．70p TIP428．		40872－．${ }^{\text {－50p }}$	N $\times 015332 \mathrm{~N}$	400V 2A ．．．．．20p	20 pin ．．．．25p 33．47uF．12p eech．
	74148．．．160p	${ }^{401698}$		BC547A．1			$\begin{aligned} & \text { 2N3905......200 } \\ & \text { 2N3906 } \end{aligned}$		$\mathrm{N} \times 015332 \mathrm{~N}$ $(133 P 101) .$.	40 15A 1700	
7443．．．．．．120p	74151．．．．．． 81 p	4017．．．．．100p	$4503 \ldots$	QC548．．．．16 ${ }^{\text {p }}$	BFY51．．．．．12p	T1P2955．．．75	2N4036－．．．． 68		SF553		
$\begin{aligned} & 7444 \ldots . .120 p \\ & 7445 \ldots . . . \quad .97 p \end{aligned}$	${ }^{74153 . . .85 p}$	4018.110 p	${ }^{450650 p ~}$	BC549 ．．．185	BFY52．．．．．． 22 p	TIP3055． 70	2N4037．．．．．．68p				40 pin．．．．．． 52 p 16 wott 22
7446．．．．． 110 p	74154．．．．149p ${ }^{\text {9pp }}$	4019．．．． 12		${ }_{\text {BC550．．．}}$		TIS90．．．．220	2N4059 …．．120	Lnemic．	2109	2A 100\％$\ldots \ldots .3$ 32p	
7447．．．．．．．．75p	74158．．．．．98p	4021．．．．115p		QC657．．．14p	BSx19．．．．．200	Tis91．．．．${ }^{25}$	2N4O6O	Ca3011		$2 A 400 v75 p \mid$	Coramio
$744885 p$	74157．．．．．98p	4022．${ }^{\text {a }}$ ． 1000		BC5	8s $\times 20 . . .20 \mathrm{p}$	$11593 . . .3000$			SN7	6A 100v．．．．．． 600	
$\begin{aligned} & 7450 \ldots 18 \mathrm{c} \\ & 7451 \ldots18 p \end{aligned}$		4023．$\quad 22 \mathrm{P}$		BC55				CA3020．．．．1700	SN76013N．1400	6A 20	
$745318 p$	74161．．．110p	4025．．．．．． 20		$\begin{aligned} & \text { BC558....12~ } \\ & \text { BC559.... 16p } \end{aligned}$	BU204 230\％	27x500．1500	2N4124	Ca3023．．．．170	SN78023N．140	8A	T1212．
$7454 \times \ldots . .18 \mathrm{p}$	$74182 . .100 p$	4026．．．．140\％	Trameatori	BC5598． $16{ }^{\circ}$	日U205．2200	2TX502 180	2N4125．．．．－220	Ca302	SN76033N．		216
$7460 . \ldots . . .18{ }^{18}$	74163．．．100p	4027．．．．．．．．85p	AC107．．．．． 24 p	BC559C．18p	BU208．2400	27x504．．30p	$2 \mathrm{N4} 123 \mathrm{~B}$ 2250		SN76110．	104	
$7470 . \ldots38 p$	74184.120^{120}	4028．．．．．．．95p	AC127．．．． 20 p	BCY7O．．．．18p	8U406．145p ${ }^{\circ}$	${ }_{2}^{2 N 69635 p ~}$	2N4230	CA3048 CA3075 220	SN76115．	10a 400v．120p	
$7472-\quad 32 \mathrm{p}$	74165．．．180p	4029．．．．．120p	AC128．．．． 200	BCY56．．．．22p	C1509．．．．${ }^{15 p}$	2N705．．．．．35p	2 N 423 BC ．1500\％	CA3075．．．．1700	SN76227．11		
7473	74166．．．1800	4030．．．．．．．50p	A0149 ．．．．70p	BCY59．．．．．22p	MEO491．18p	2N706A．． 200	$2 \mathrm{~N} 4239 \cdots \cdots$	CA3080E． 74.7	SN76860 ．．．7		
7474．．．．．38p	74167－320	4033．．．．．． 2600	AD181．．．．460	${ }_{\text {BCY71 }}$	M		$\begin{aligned} & \text { 2NA240 } \\ & \text { 2N4259 1 1 } 1800^{\circ} \end{aligned}$	CA3090AO		14 50，… 32p	
7478．．．．．．．．38p	$74172 \ldots$ ．．．60p	4035．．．．． 130 p	${ }_{\text {BCt }} 107108$	${ }^{1} \mathrm{C} 778$	MJE340 65p	2N930．．．．． 20 p	2N4286 ．．．．．． 180°	3700	taA661a． 1	1A 200v．．．．．80p	Dradee
7480 ．．．．．．．．E4p	74173．．．180p	4040．－．．．120p	BC1074．12p	BD121 ．．．．．95p	MJE905570p	$2 \mathrm{~N} 1 \mathrm{l}^{3} 1 . .20 \mathrm{p}$	$2 \mathrm{N4} 2 \mathrm{B7}$ ．．．．．．．1800	C43130－．．－88p	TAD110．＿1		
7481．1．1100	74174 110p	4042．．．．．．．．300	BC1078	$80131 . . .600$	MPs 2369.20 p	2N1132 ${ }^{\text {200 }}$	2N4288．．．．．． $1{ }^{\text {1\％}}$		TA	3A 400V．．．．．．${ }^{\text {5ap }}$	
7482900	74175．．．．．95p	4043．$\quad 100 \mathrm{p}$	BC108．．．．10p	80132＿．．EOp	MPSAOS ． 3000	2N1613．．． 25 p	2N4289．．．．．200				
7483．．．．． 10	74178 $\quad 1330$	4044．．．．．109p	BC108A．．．12p	$80133 \ldots . .44 \mathrm{p}$	MPSAOE 3000	2N171－．25p	2N4290．．．．．．200				．
7484	74177．．．120	${ }^{4046}$	8C108B．．．12p	${ }_{80135 . . .380}^{80}$		2N1893 ．．．38	$\begin{aligned} & \text { 2N4291. 20\% } \\ & \text { 2N4292 } \end{aligned}$	LM324．．．．．．．．．． $70 p$			
$7486 \ldots . . .36 p^{\text {P }}$	74181．．．．320p		BC108C．．．12p	80136．．．．37p	MPSU06－63\％	2N2218A 280	2N4923．－．．．－65	LM339．．．．．．．．．88p			OA91
74893400	$74182 \ldots 150 p$		$\mathrm{BC} 109 \mathrm{~B} \ldots \mathrm{I2P}$	80139380	MPSU56．．． F \％		2N5172．．．．．．20p	LM348．．．．．．．110p	TBA651 ．．．180\％	304 200r． 180 p	

STRUTT Electrical \＆Mechanical Engineering Ltd．，3c BARLEY MARKET ST．，TAVISTOCK，DEVON
telephone：Tavistock sa33．telex： 45263.
P \＆P 25p．VAT 8\％unless ${ }^{\circ} 12+$ ．
Send 12p．large SAE for Price Litt．

ARE YOU

USING YOUR SPARE TIME PROFITABLY？

If not，you＇re losing money．Money that you could be making by selling used colour televisions from home in the evenings．In fact，provided you start correctly and know exactly how to operate，you can easily earn a substantial CASH INCOME with a starting capital of less than E20．Our new unique publication＂How to Deal Successfully in Used Colour Televisions＂enables you to follow in the footsteps of many experts who have a great deal of combined experience in this lucrative home business，and who have＇pooled＇their knowledge to help you．After all，to follow the advice of someone who has travelled the ground before you，is to be given the best possible start．And the hundreds of valuable trade secrets，hints，tips and suggestions in the guide show exactly how anyone of average intelligence can succead immediately．

Every aspect，from securing the first television right through to rapid expansion of sales，is covered with the detailed knowledge of experts to ensure certain success．Indexed information on almost all makes of television is presented in clear tabular form，describing performance，reliability，price and sorvice．In particular，the tips on expanding the business are very practical，and are almost automatic when put into practice．Pages of unique advice on advertising ensure that maximum sales are secured，and sources of supply are described in detail－for both televisions and new／used spares．Monochrome sets are also covered，as are ＂invisible＂cabinet repairs．Plus FREE on－going advice and FREE regular up－ dating service．

You can start tomorrow－but you＇ll need our guide．The latest big illustrated edition is out now，and costs just $\mathbf{£ 4 . 9 5}$－a small price to pay for financial independence！

SAME DAY SERVICE
CITY PUBLISHING，HAYWORTH ROAD，SANDIACRE，NOTTINGHAM NG 10 5LL

To：City Publiahing，Hayworth Road，8endiecra，Mottingham NG10 5LL
Please send by retum post＂How to Deal Successfully in Used Colour Te I enclose cheque／p．o．for $£ 4.95$ ．

NAME ADDRESS．

QUALITY USED TV＇s AT GIVE AWAY PRICES

S．S．MONO FROM $£ 12$
D．S．COLOUR FROM £25
S．S．COLOUR FROM £40 PRICES PLUS V．A．T．
ALL WORKERS，FRESH STOCKS WEEKLY QUANTITY DISCOUNTS，DELIVERY ARRANGED． try us you will not be disappolnted．

TELETRADERS 329 TORQUAY RD， PAIGNTON，DEVON． Telephone（0803） 551364.

N．G．T．COLOUR TUBES

First Independent Rebuilder with B．S．I．CERTIFICATION

（Certificate No．004）
Tubes are processed using high temperature pumping schedules giving high definition and long life．They are then fitted with an implosion safety system approved by the British Standards Institution．

N．G．T．ELECTRONICSLTD． 120，SELHURST ROAD．，LONDON S．E． 25 Phone：01－771 3535.
20 years experience in television tube rebuilding．

 COLOUR t.V. PAMEL EXCHANGE Repalr SERVICE

THŌRN. RBM PHILIPS PYE.INVICTA. GEC DECCA. TELPRO AND MANY OTHER MAKES

We employ a-large skilled Staff, who utilise some of the most Sophisticated Test equipment available, inclusive of AUTOMATIC FAULT FINDING COMPUTORS together with specially designed SERVICING JIGS which in short means to you:-
high quality repairs - at Low cost

Factory Unit E5, Halesfield 23. Telford. Shropshire.TF7 4QX Telephone:Telford(0952) 584373.Ext.2. Telex 35191 Chamcon

BENTLEY ACOUSTIC CORPORATION LTD.
 The Oid Police Station, Gloucester Road, LITTLEHAMPTON. Sussex.
 PHONE 6743
 ALL PRICES INCLUSIVE OF V.A.T. AT 12 1%. NOTHING EXTRA TO PAY

OA2	$\Sigma 1.20$	6DT6A	0.85	30 C 17	0.90	ECC86	2.00	EZ41	1.00	PLS19	
OB2	0.40	6Es	1.00	30 Fs	0.70	ECC88		E280	0.42	PY33/2	
\|B3GT	0.55	6EW6	0.85	30FL2	2.25	ECC1891	1.00	E281	0.45	PY81	0.60
SCG8	0.75	6 F 1	0.80	30L15	0.75	ECC8072	2.80	GY501	1.40	PY82	0.40
SR4GY	1.00	6F6G	0.70	30 L 17	0.70	ECF80	0.65	GZ32	1.00	PY88	1.12
SU4G	1.00	6 F18	0.60	30P12	0.74	ECF82	0.50	GZ33	4.00	PY500A	
3V4G	1.00	6 F 23	1.00	30 P 19	0.90	ECF86	0.80	GZ34	2.25	PY800	0.60
5 Y 3 GT	0.65	6 F 28	0.85	30 PL 1	2.20	ECH35	2.00	309	1.70	PY801	0.60
523	1.40	6GH8A	0.80	30PL13	1.30	ECH42	1.00	KT66	3.50	PZ30	0.50
5Z4G	0.75	6GK5	0.75	30PL14	1.50	ECH81	0.55		6.75	QQV03/	/10
6/30L2	0.90	6GK6	2.00	50 CD 6 C		ECH84	0.75	P61	0.60		2.00
6AC7	0.70	6GU7	0.90		4.00	ECL80	0.55	PC86	0.80	QV06/20	
6AG7	0.70	6H6GT	0.50	85A2	1.40	ECL82	0.60	PC88	0.80		4.70
6AH6	0.70	6JSGT	0.65	807	1.10	ECL83	1.50	PC92	0.65	R10	5.00
6AK5	0.45	6 J 6	0.35	5763	3.65	ECL86	0.64	PC97	0.75	R19	0.75
6AM8A	A 0.70	$6 \mathrm{JU8A}$	0.90	AZ31	1.00	EF22	1.00	PC90		UABC ${ }^{\text {d }}$	
6AN8	0.78	6K 7G	0.50	AZ41	0.50	EF40	2.00	PCC84	0.39		0.45
6AQS	0.75	6K8G	0.50	DYS!	2.00	EF41	1.00	PCC85	0.47	UAF42	0.70
6ARS	1.05	6L7(M)	1.50	DY86/7	0.52	EF80	0.40	PCC89	0.49	UBC4	0.70
6AT6	0.60	6Q7G	0.75	DY802	0.50	EF83	1.70			UBC81	0.55
6au6	0.62	6SA7	0.70	E8OCF	6.00	EF85	0.45	PCF80	0.80	UBF80	0.50
6AV6	0.65	6SG7	0.70	E88CC	1.20	EF86	0.52	PCF82	0.45	UBF89	0.39
6AW8A	A 1.15	6SJ7	0.70	E80F	5.50	EF89	0.55	PCF86	0.57	UC92	0.50
6AX4	0.75	6UAGT	1.00	E188CC	5.90	EF91	0.70	PCF200	1.53	UCC8S	0.50
6BA6	0.65	6V6G	0.50	E280F	2.50	EF92	0.70	PCF201	1.45	UCF80	0.80
6BC8	0.90	6X4	0.95	EAs0	0.40	EF183	0.50	PCF801	0.49	UCH42	1.00
6BE6	0.70	6X5GT	0.50	EABC80		EF184	0.50	PCF802	2.80	UCH81	0.60
6BH6	1.10	9D7	0.70		0.48	EH90	0.75	PPCF805	2.25	UCLS	0.75
6BJ6	0.75	10 C 2	0.70	EAF42	1.00	EL34	250	PCF806	0.70	UCL83	1.00
6BK7A	A 0.85	10DE7	0.80	EAF801	1.50	Elal	L00	PCH200	01.20	UF4]	1.00
6BNB	1.50	10F1	1.00	E891	0.25	ELSI	1.00	PCL82	0.62	UF42	1.00
6BQ7A	1.40	10F18	0.65	ERC41	1.00	ELS4	0.48	PCL83	1.20	UF80	0.40
6BR7	1.00	10P13	0.80	ERC81	1.00	EL95	0.95	PCL84	0.65	UF8S	0.50
6BR8	1.25	10P14	2.50	EBF80	1.00	EL360	2.50	PCL86	0.85	UF89	0.52
6BW6	3.75	12AT6	0.45	EBF89	0.40	EL506	2.00	PCL80S		UL41	0.90
6BW7	0.65	12AU6	0.50	EC86	0.84	EL. 509	2.50	PFL200	1.35	UL84	0.90
6BZ6	1.50	12AV6	0.60	EC88	0.84	EM80	1.00	PL33	1.00	UM80	1.00
6 C 4	0.50	12BA6	0.50	EC92	1.00	EM81	1.00	PL36	0.80	UY41	0.70
6 C 9	2.00	12BE6	0.85	EC97	0.75	EM84	1.00	PL81	0.49	UY85	0.70
6CB6A	0.65	12BH7	0.68	ECC33	2.00	EM87	1.45	PL81A	0.75	U19	4.00
6CD6G	4.00	$13 \mathrm{D8}$	2.00	ECC35	2.00	EY5!	0.80	PL82	0.50	U25	1.00
6CG8A	A 0.90	19AQS	0.65	ECC40	1.00	EY81	1.50	PL83	0.50	U26	0.90
$6 \mathrm{CL6}$	0.75	19G6	6.50	ECC81	0.52	EY83	1.50	PL84	0.50	U191	0.50
6CL8A	A 0.95	19H1	4.00	ECC82	0.62	EY87/6	0.45	PL95	1.00	U301	1.00
6 CM 7	1.00	20P1	1.00*	ECC83	0.62	EY88	1.00	PLS04	1.05	U404	0.75
6CUS	0.90	20P4	0.84	ECC84	0.50	EY500	1.45	PL508	1.85	U801	1.00
6 DE 7	0.90	30 C 15	1.00	ECC85	0.50	EZ40	1.0	PLSO9	3.10	X41	1.00

Technical Training in Radio, Television and Electronics

Start training TODAY and make sure you are qualified to take advantage of the many opportunities open to trained people. ICS can further your technical knowledge and provide the specialist training so essential to success.
ICS, the world's most experienced home study college has helped thousands of people to move up into higher paid jobs - and they can do the same for you.

Fill in the coupon below and find out how!
There is a wide range of courses to choose from, including:

City and Guilds Certificates:-

Telecommunications Technicians
Radio, TV and Electronics Technicians
Electrical Installation Work,
Technical Communications,
Radio Amateur,
MPT General Radio Communications Certificate

Diploma Courses:-

Electronic Engineering,
Electrical Engineering,
Computer Engineering
Radio, TV, Audio Engineering, Servicing and Maintenance. (inc. Colour TV)
New Self-Build Radio Courses with Free Kits

Colour TV Servicing

Technicians trained in TV Servicing are in constant demand. Learn all the techniques you need to service Colour and Mono TV sets through new home study courses which are approved by a leading manufacturer

The ICS Guarantee

If you are studying for an examination, ICS will guarantee coaching until you are successful - at no extra cost

POST OR PHONE TODAY FOR FREE BOOKLET

I am interested in
\qquad
\qquad Phone No

International Correspondence Schools, Dept. A285, Intertext House, LONDON SW8 4UJ. Tel 6229911 (all hours)

EDITOR
John A. Reddihough

ASSISTANT EDITOR
Luke Theodossiou

ART EDITOR

Roy Palmer
ADVERTS MANAGER
Roy Smith
01-261 6671
CLASSIFIED ADVERTS
Colin R. Brown
01-261 5762

COVER PHOTO

Test Card F shows ghosting up very well! Note that the card is the joint copyright of the BBC, BREMA, EEA and the IBA.

SUBSCRIPTION SERVICE

You can now take out an annual subscription to TELEVISION, so that copies are sent direct to your home each month. The cost is $£ 9.50$ for UK residents, and for overseas residents $£ 10.50$ or $\$ 21$ to the USA or Canada. Orders with payment should be sent to:

IPC Services,

Oakfield House,
Perrymount Road,
Haywards Heath,
Sussex.
Make money orders, cheques etc. payable to IPC Services.

Know-How

The future structure of the UK's TV industry is becoming clearer. Decca and Thorn have reduced their production capacity, with Thorn now undertaking fresh investment at its two remaining plants. The multinationals ITT and Philips seem to have survived the traumas of recent years reasonably well: Philips has absorbed Pye, and ITT is setting up new plant at Basildon to produce its new small-screen colour chassis. The most-intriguing factor however is that the Japanese have ended up with a significant chunk of the industry. Sony and National Panasonic both have plants in South Wales, while Toshiba is forming a joint company with Rank to handle the audio/TV side of Rank's operations. Talks between Hitachi and GEC are continuing.

It's the Rank-Toshiba link that hit the headlines however, with questions in parliament and a brief hullabaloo. The general tenor of press comment seemed to be concerned with the UK acquiring Japanese know-how - as if no one in the UK knew how a transistor worked, or how to make a c.r.t.! In practice of course basic electronics know-how is nowadays pretty widely spread. Get together a handful of engineers almost anywhere and provide them with the necessary components and they'd have a TV set working without too much difficulty. But would it be reliable, and a sound commercial proposition? This in fact is where the required know-how lies.

In a modern mass TV assembly plant production engineering know-how is probably more important than electronics know-how. In other words, the vital ingredient today is the ability to test and assemble sets rather than to knock up circuits that work. But production know-how is expensive, and can be generated only through intensive, largescale operations. A great deal of money is required, because whereas electronic components are comparatively cheap, the computer to check them with isn't. Nor is automatic insertion equipment, the equipment that produces reliable soldered joints, and the equipment to check panels and sets. What it boils down to is that the lack of profitability of the UK's TV industry in recent years means that instead of generating our own production know-how we're now having to buy it in. A frustrating situation for a long established industry to find itself in.
It's likely however that this sort of thing is pretty general in UK industry. In the semiconductor field for example designing the circuits is no problem: the chemistry, testing, getting the encapsulation right and so on is. Dare one mention the car industry?

It's interesting to note that the multinationals Philips and ITT have fared comparatively well in recent times, presumably because they've had international know-how to call upon. Figures of investment per employee are often quoted when making international comparisons of economic performance, the UK coming out rather badly. The figures may seem rather pointless by themselves, but take on greater significance when considered in the light of the technology required for today's mass production. The obvious reason why the necessary investment hasn't been made in the UK is shortage of funds, but other factors are involved as well. For example, the role of the engineer in industrial management. Decisions on investment are made in company boardrooms: is the engineering voice adequately represented there? International comparisons suggest not. That's one factor that requires urgent review. Another factor is education, training and the ability to get the right mix of skills. If it's production and materials engineering skills that are required, is enough training being devoted to them? Is the training of technicians and engineers unduly specialised, so that shortages keep arising because no one's adaptable enough to be able to tackle different subjects?
Another problem is industrial organisation. We don't just mean the old blue/white collar business, though that should have been sorted out long ago. Problems do seem to arise in industries such as TV and car manufacture, where products are assembled from bought in components. Who specifies what, and who's responsible for the necessery research? To put it crudely, should the capacitor manufacturer or the setmaker find out why mains filter capacitors fail so frequently? Things can easily go wrong where an industry is not integrated, a point again brought out by the comparative success of the multinationals. This is a factor that's probably by now largely been resolved however but at what a cost in terms of a reputation for unreliable products.

Just now industry looks set for a brighter future. There's still a lot for the UK to do in getting its industrial strategy right however.

Teletopics

RANK-TOSHIBA

After many months' negotiations, Rank Radio International and Toshiba (UK) have announced the setting up of a jointly owned subsidiary, Rank Toshiba Limited, which will take over and develop Rank's television and audio manufacturing plants in the west country. Rank has been making losses on its TV making operations for several years now, and the join up with Toshiba will give it much needed cash plus access to Toshiba's technology. The project is being backed with $£ 1.95$ millions of government funds. Rank say that their colour TV output this year will amount to some 175,000 sets, and the aim is to increase this to around 350,000 by 1981 , of which 40 per cent will carry the Toshiba brand name while the remainder will be sold as Bush, Murphy or Rank-Arena sets. Two-thirds of the Toshiba sets will be earmarked for export.

For Toshiba, the venture means access to large-screen TV sets, manufacturing capability within the EEC, and an interest in Rank's expertise in the fields of teletext and viewdata - Rank have been active in this area from the start, and introduced the first teletext receiver for sale to the general public. Rank will start to manufacture small-screen colour sets, and by 1981 production will be centred on the Toshiba X53 chassis. It's not clear how Mullard will be affected, and doubtless the yen-pound exchange rate will be the deciding factor here. Rank started to use Toshiba's RIS colour tubes in early 1975, with the introduction of their Z718 chassis. More recently with the introduction of the T20 chassis they have been switching over to use of the Mullard 20AX tube, and currently 85 per cent of Rank's colour sets are being fitted with the Mullard 20AX tube.

A group of Japanese technicians is to work at Plymouth for the next couple of years on getting the new production lines into operation. This gives an indication of the type of technology that Toshiba will be contributing.

RCA'S S4 PIL TUBE

RCA have announced the introduction of a new version of their PIL tube, called the S4. It will be available in both 110° and, for the smaller sizes, 90° versions. The main changes are the use of a new deflection yoke, with higher sensitivity and consequently reduced receiver power consumption, and a new high-resolution gun which gives improved focus performance. Previously announced developments such as the contoured-line screen, super-arch mask, pigmented phosphors etc. are all incorporated in the new tube.

The new saddle-toroidal yoke - saddle-wound line deflection coils and toroidally-wound field scan coils - has a significantly improved efficiency and offers optimum impedance matching to present day high-performance circuitry. The peak energy requirement is 4.3 mJ for the horizontal deflection and 3.9 W for vertical deflection. The series-connected horizontal deflection coils have a resistance of 1.05Ω and require a peak-to-peak current of 5.4 A at 25 kV . The vertical scan coils may be series- or parallel-connected. In the former case the resistance is 10Ω and the p-p deflection current required is 1.25 A at 25 kV ; in the latter case the figures are 2.5Ω and 2.5 A respectively. This enables the tube to be used with each of the popular vertical deflection systems at present used in Europe.

The new gun incorporates a larger diameter lens to give a smaller spot size and thus improved focus. The focus electrode operates at 7 kV compared to the 4.6 kV of current PIL tubes. In the interests of reliability, a new base and socket have been designed to accommodate this increased focus voltage.

RCA point out that the tubes have been specifically designed to meet European TV receiver requirements. Note that our colour receiver project is based on the current generation of PIL tubes and cannot be adapted to use with the new version, which is not yet in full scale production.

PRESTEL'S EXPORT SUCCESSES

The Post Office seems to be enjoying considerable export success with its Prestel (v́iewdata) system. An agreement in principle has been reached with Insac Data Systems Ltd., the firm set up by the National Enterprise Board to market British computing systems and software overseas, to make a Prestel service available to users in the USA late next year. This follows the signing of a letter of intent by the Hong Kong Telephone Company to purchase Prestel technology. West Germany and the Netherlands have already bought Prestel equipment from the PO. The Hong Kong Telephone Company is negotiating separately with GEC Computers Ltd for the supply of a GEC Series 4000 computer on which the service will be based. The start of the public Prestel service in the UK is now planned for the first quarter of 1979.

NEW CATALOGUES

Best Electronics have just published their largest ever TV spares catalogue, covering semiconductor devices, capacitors, resistors, e.h.t. rectifiers, picture tubes, valves, fuses, instruments, soldering equipment, tools and chemicals. Each section is thumb indexed for easy reference, and is written specifically for service engineers. Setmakers' part numbers are included, together with a semiconductor index detailing over twelve hundred device alternatives, all manufacturers' recommended ones. Copies of the new seventy-two page catalogue are available free, from Best Electronics (Slough) Ltd, Unit 4, Farnburn Avenue, Slough, Berks SL1 4XU, or telephone Slough. (0753) 39322.

A new 36-page catalogue has been published covering the entire range of Telequipment oscilloscopes and accessories. Copies are available from Tektronix UK Ltd., Beaverton House, PO Box 69, Harpenden, Herts.

We have received from Anglia Components of Burdett Road, Wisbech, Cambridgeshire PE13 2PS a copy of the latest edition of their very comprehensive components catalogue which includes resistors, capacitors, semiconductor devices, e.h.t. triplers and many other TV components. Anglia Components supply trade customers only. Telephone 094563286.

RELAY STATION OPENINGS

The following relay stations are now in operation: Bellair (Antrim) BBC-1 channel 48, Ulster Television
channel 52, BBC-2 channel 56. Receiving aerial group C/D.
Box (Wiltshire) BBC-1 channel 40, HTV West channel 43, BBC-2 channel 46. Receiving aerial group B.
Fort Augustus (Scotland) Grampian Television channel 23, BBC-2 channel 26, BBC-1 channel 33. Receiving aerial group A.
Kington (Herefordshire) BBC-1 channel 39, BBC-2 channel 45, ATV channel 49. Receiving aerial group B.
Lochwinnoch (Strathclyde) BBC-1 channel 57, Scottish Television channel 60, BBC-2 channel 63. Receiving aerial group C/D. Note that horizontal polarisation is used.
Primrose Hill (Huddersfield, Yorkshire) BBC-1 channel 57, Yorkshire Television channel 60, BBC-2 channel 63. Receiving aerial group C/D.

Except for Lochwinnoch, all the above transmissions are vertically polarised.

NEW CIRCUITRY FROM RANK

Rank have introduced a new colour TV chassis, type T22A, which is initially used in the Bush Models BC6268, BC6368 and BC6468. The chassis uses the 20AX c.r.t., and has the same timebase and switch-mode power supply circuitry as the T20A chassis. There's an interesting new signal panel however. To start with, a surface-wave filter (type SW102M) is used to form the i.f. bandpass response at the input to the i.f. strip, preceded by a wideband two-transistor amplifier. The rest of the i.f. strip consists of a Mullard TDA2540 i.c., with an SGS TDA2 190 i.c. combining the intercarrier sound and audio functions. The decoder consists of a TDA2560/TDA2522 combination followed by a TDA 2532 matrixing i.c. This is an up-dated version of the TBA530, and drives class AB RGB output stages. These are unusual, and a simplified circuit of the R output stage is shown in Fig. 1. The R output is applied to the base of VT9, which has a very high value load resistor (R136). Positive-going signal excursions drive VT9 to saturation, the output being conveyed to the c.r.t. cathode via D39. On negative-going signal excursions VT9 is driven to cut-off, its positive-going collector voltage driving VT12 on to provide a low-impedance, emitter-follower output. R142 is included to reduce the dissipation in VT12, and the gain is set by the ratio of R139 to R116/R117 in parallel. A similar circuit is used in the B and O 3500/4000/5000 chassis and the Rediffusion Mk.III chassis. The panel incorporates circuitry for interfacing with a teletext decoder module.

the wessel circuit

In our original note on the Rank small-screen colour set (Teletopics, May 1978) we slipped up over the system of e.h.t. regulation used. In fact the chassis uses a combined switchmode power supply/line output stage known as the Wessel circuit. It's been talked about for someitime, but this is the first time it's put in an appearance in a set sold in the UK. A. simplified circuit is shown in Fig. 2. The line output/switch mode transistor T686 is fed with an unregulated 300 V supply from a bridge rectifier via transformer $\operatorname{Tr} 841$. The rest of the supplies are obtained from the line output transformer. As with any switch-mode circuit, regulation is achieved by varying the on/off time of the control transistor. Thus a modulated squarewave drive is applied to the base of T686, the mark/space ratio varying as required to stabilise the supplies obtained from the line output transformer. When T686 is driven on, D687 also switches on and the right-hand side of the screen is scanned in the normal manner, the efficiency diode providing the initial, left-hand part of the scan. When T686 is switched off at the end of the forward scan, D725 conducts and charges C836.

Fig. 1: Class $A B$ video output circuit used in the new Rank T22A colour chassis.

Fig. 2: Basic Wessel combined switch-mode power supply/line output stage circuit used in Rank's W. German produced small-screen colour sets. From the regulated power supply viewpoint, the stage acts as a parallel switch-mode power supply. The arrangement is such that the rectifier (D725) switches on when the transistor is switched off and vice versa however.

D725 remains conducting until T686 is switched on again. Thus the more T686 conducts, the less D725 conducts and vice versa, achieving regulation of the supplies. The voltage across R836 is fed back as the reference to a squarewave modulator circuit which is interposed between the TDA2590 sync/line oscillator i.c. and the line driver stage. A start-up circuit is required for the line oscillator i.c. A short-circuit across any of the outputs would result in excess current in T686. Under these conditions the protection circuit fires the thyristor Thy697, removing the drive to T686. Needless to say, the transformer $\operatorname{Tr} 841$ is a rather special one. C841/R841 are included to provide protection for T686.

SATELLITES FOR BROADCASTING

The latest IBA technical review is entitled Satellites for Broadcasting and must surely be the first book to be published on this subject. Full of interesting information and lavishly illustrated, the book is available from the IBA, Engineering Information Service, Crawley Court, Winchester, Hants SO21 2QA at $£ 1.50$ a copy.

SPECIAL OFFER

a Year's Subscription to

if you order three or more gift subscriptions from any of the magazines shown below.

1
Practical
Electronics
to addresses
in:
U.K. $£ 10.60$

Other countries
£10.60

3
Everyday Electronics to addresses in:
U.K. $£ 8.50$

Other countries $£ 9.50$

4

Practical Householder to addresses in:
U.K. $£ 8.50$ Other countries $\mathbf{£ 9 . 5 0}$

Magazine subscriptions make ideal gifts. They are so easy to arrange - with no shopping and no packing - and they form a year-long reminder to friends and relatives at home and overseas. Choose a magazine suiting the interests of your recipient from the list of titles below, and if you order three or more gift subscriptions to one or more of these magazines you can claim your own annual subscription to Television
for as little as $£ 2$ - an unbeatable price for ensuring that copies are delivered direct to your home every month. Even cheaper than waiting your turn at the newsagents'.
And for every gift subscription you order, you can instruct us to send a greetings card announcing your gift. So this year you save on Christmas cards too I Get your order in NOW.

All subscription orders must be accompanied by payment. Cheques should be made payable to IPC Magazines Limited and sent with this completed order form to Room 2613 King's Reach Tower, Stamford Street, London SE1 9LS.

Please send your order in
to us in good time before

Practical Woodworking
to addresses
in:
U.K. £9.50

Other countries
£10.50

8
Practical Motorist to addresses in: U.K. $£ 9.50$ Other countries £10.50

Practical Boat Owner to addresses in:
U.K. $\mathbf{f 1 0 . 0 0}$ Other countries £10.00

MANOR SUPPLIES COLOUR BAR GENERATOR plus CROSS HATCH KIT (ME. 4)

* Output at UHF, applied to receiver aerial socket.
* In addition to colour bars, all R-Y, B-Y and Lum. Combinations.
* Plus cross hatch grey scale, peak white and black levels.
\star Push button controls, small, compact battery operated.
\star Simple design, only five i.c.s. on colour bar P.C.B.
PRICE OF MK4 COLOUR BAR \& CROSS HATCH KIT $£ 35.00+8 \%$ VAT $+\boldsymbol{£ 1 . 0 0}$ P/Packing.
CASES, ALUMINIUM $£ 2.40$, DE-LUXE $£ 4.80$, BATT. HOLDERS 81.50 . ADD 8\% VAT TO ALL PRICES!

ALISO THE MK3 COLOUR BAR GENERATOR KIT FOR ADDITION TO MANOR SUPPLIES CROSS HATCH UNITS. $£ 25.00+£ 1.00$ p.p. CASE EXTRA $£ 1.40$. BATT. HOLDERS $£ 1.50$. ADD 8\% VAT TO ALL PRICES.
$\star \star$ Kits include drilled P.C. board, with full circuit data, assembly and setting up instructions.
$\star \star$ All special parts such as coils and modulator supplied complete and tested, ready for use.
$\star \star$ Designed to professional standards.
\star Demonstration models at 172 West End Lane, NW6.
$\star \star$ Every kit fully guaranteed.
MK4 DE LUXE (BATTERY) BUILT \& TESTED $558.00+8 \%$ VAT $+£ 1.20 \mathrm{P} /$ Packing.
ALTERNATIVE MAINS SUPPLY KIT $\mathbf{5 5 . 7 8}+\mathbf{8 \%}$ VAT $+\mathbf{6 5 p}$ P/P. VHF MODULATOR (CH 1 to 4) FOR OVERSEAS $£ 3.50$.
INFORMATION ON VIDEO TAKE-OFF FOR C.C.T.V.
MANOR SUPPLIES TELETEXT KIT (incl TEXAS DECODER). Full facilities in colour. External unit. AE input to set. Write or call for further information. See working demonstration model! Easy to build and results guaranteed for every completed unit.

COLOUR UHF \& TELEVISION SPARES

NEW SAW FILTER IF AMPLIFIER PLUS TUNER COMPLETE AND
TESTED FOR SOUND \& VISION $\mathbf{8 2 8 . 5 0}$ p.p. 95 p .
NEW'TELEVISION'COLOUR RECEIVERPARTS CANBE SUPPLIED AN COILS, DRIVER £12.50; EHT RECT. 80p; ELC1043/05 £5.50, CONTROL UNIT £1.80; VIS GAIN, VIS SELECT (TESTED) £3.80; PACKS: I.C. £5.20, CAPS TANT $£ 275$, ELECTROLYTICS $£ 3.20$, CERAMICS $£ 200$, POLYESTER ETC. $£ 1.35$; PRESETS 90 p, TRANSISTORS $\mathbf{5 3 . 9 0}$ RESISTORS $£ 2.50$, SEMICONDS $£ 3.80$, BRIDGE REC. £1.95, C 106 90p; BYX71/600 (2) £2.40; RELAY $£ 2.25$, CONTROLS $£ 1.18 ; 6 \mathrm{MHz}$ FILTER 68p; COIL 11.00 ; AERIAL $£ 1.00$; p.p. 85p. MAINS TRANSFORMER $£ 5.80$ p.p. $£ 1.00$. OTHER PARTS AVAILABLE. WORKING MODEL ON VIEW AT 172 WEST END LANE, NW6. SPECIAL OFFER FOR SHOP CUSTOMERS, TOSHIBA $14^{\prime \prime}$ CRT BRAND NEW $£ 12.50$.
TV TEST GENERATOR UHF MODULATOR $£ 3.50$ p.p. 35 p.*
CROSS HATCH UNIT KIT, AERIAL INPUT TYPE, INCL. T.V. SYNC AND UHF MODULATOR. BATTERY OPERATED. ALSO GIVES PEAK WHITE \& BLACK LEVELS. CAN BE USED FOR ANY SET f11.00 + 45p. p.p. (ALUM. CASE $£ 2.00$ p.p. 75 p.*). COMPLETE TESTED UNITS. READY FOR USE (DE LUXE CASE) £20.80 p.p. ${ }^{\text {TESTED }} 1.00$. ${ }^{\circ}$ ADDITIONAL GREY SCALE KIT $£ 2.90$ p.p. 30 p .*
UHF SIGNAL STRENGTH METER KIIT 116.80 (ALSO VHF VERSION ${ }^{*}$ ALUM CASE $£ 1.40$, DE-LUXE CASE $£ 4.80$ p.p. $£ 1.00$.) CRT TESTER \& REACTIVATOR PROJECT KIT $£ 19.80$ p.p. $£ 1.30^{*}$ "TELEVISION" COLOUR SET PROJECT (1974) SPARE PARTS STILL AVAILABLE.
SPECIAL OFFER I:F. Panel, leading British maker, similar design to "Television" panel. Now in use as alternative inc. circuit and connection data, checked and tested on colour $£ 14.80$ p.p. 95p.
STABILISER UNITS, "add on" kit for either 40V or 20V, $\mathbf{£ 2 . 8 0}$ p.p. 35p. PHILIPS $\mathbf{2 1 0}$ or $\mathbf{3 0 0}$ Series IF Panels $£ 2.50$ p.p. $£ 1.00$.
PHILIPS 210,300 Series Frame T.B. Panels $\mathbf{£ 1 . 0 0}$ p.p. 65 p
PHILIPS 19TG 170 Series Timebase Panels $£ 2.50$ p.p. 90 p.
PUSH A823 (A807) Decoder Panel $£ 7.50$ p.p. $£ 1.00$.
BUSH A823 SCAN CONTROL PANEL £250, p.p. 75p.
BUSH 161 TIMEBASE PANEL A634 $£ 3.80$ p.p. 90 p.
GEC 2040 Surplus Panels, ex-rental. Decoder $£ 5.00$ p.p. 90p.
GEC 2040 Convergence Control Panel $£ 2.50$ p.p. 90p.
DECCA CTV 25 Single Stand. IF Panel $£ 3.80$ p.p. 65 p.
DECCA Colour T.V. Thyristor Power SuppTy. HT, LT etc. $£ 3.80$ p.p. 95 p. BUSH TV 300 portable Panel incl. circuit $£ 5.00$ p.p. 95 p.
BUSH TV 312 FF Panel (Single I.C.) incl. circuit $£ 3.00$ p.p. 65 p.
BUSH TV Portable Eleven Volt Stab. Power Supply Unit $£ 3.80$ p.p. $£ 1.00$. PYE 697 Line T.B. P.C.B. for spares, $£ 1.50$ p.p. 11.00 .
MULLARD AT1022 Colour Scan Coils $\mathbf{£ 6 . 0 0}$ p.p. 11.20 , AT 1023/05 Convergence Yoke $£ 2.50$ p.p. 85 p , AT $1025 / 06$ Blue Lat. 75 p p.p.35p, Delay Lines, DL1E 90p, DL20, DL50 $£ 3.50$ p.p. 75 p .
PHILIPS G6 single standard convergence panel, incl. 16 controls, switches etc., and circuits $£ 3.75$ p.p. 85 p, or incl. yoke, $£ 5.00$. G8 Decoder panels ext., Rental $£ 5.00$. Decoder panels for spares $\mathbf{£ 2 . 5 0}$ p.p. 85 p.
VARICAP, Mullard ELC $1043 / 05$ UHF tuner $£ 5.50$, G.I. type (equiv. $1043 / 05$) $£ 3.50$ p.p. 35 p. Control units, 3 PSN $£ 1.25,4$ PSN $£ 1.50$, 5 PSN $£ 1.80$, Special offer 6PSN $£ 1.00$, 7PSN De Luxe $£ 2.80$ p.p. 35p. TAA 550 50 p p.p. 15 p . Salv. UHF varicap tuners $£ 1.50$ p.p. 35 p .
BUSH "Touch Tune" assembly, incl. circuit $£ \mathbf{\sum S} \mathbf{0 0}$ p.p. 75 p.
VHF, ELC 1042 £4.80, p.p. 35p, on Pye P.C.B. £5. 40 p.p. 85 p.
VARICAP UHF/VHF ELC 2000S $£ 8.50$ p.p. 65p.
UHF/625 Tuners, many different types in stock. Lists available. UHF UHF/625 Tuners, many tuners transisted. incl. s/m $\mathrm{f2}: 50,6$ position push-button $£ 4.50$ p.p. 90 p. AE ISOL $\mathbf{3 0 p}$ p.p. 20 p .
TRANSISTORISED 625 IF for T. ${ }^{\text {V. . sound, tested. }} \mathbf{£ 6 . 8 0} \mathrm{p} . \mathrm{p} .65 \mathrm{p}$.
PHILIPS 625 IF Panel incl. circuit 50 p p.p. 65 p .
TBA "Q" I.C.s. $480,530 \overline{0}, 540, £ 220,550,560 \mathrm{C}, 920 £ 3.20$ p.p. 15 p.
HELICAL POTS, 100 K . 4 for $£ 1.20$ p.p. 20 p.
PHILIPS 19TG170 Mains Droppers, two for 90 p p.p. 50 p
LINE OUTPUT TRANSFORMERS. New guar. p.p. 85p.
BUSH 145 to 186SS series .,........ 6.95 BUSH, MURPHY A816 series.... $\mathbf{8 8 . 5 0}$ DECCA DR $1,2,3,121 / 123$,
20/24, MS $1700,2001,2401$.... $\mathbf{£ 6 . 8 0}$ DECCA MS 2000,2400 ... ONI, FERG., HMV, MARCONI, ULTRA $850,900,950 \mathrm{Mk}$. 1 $\mathbf{£ 5 . 9 0}$ 950II, 1400, 1500, 1590 £5.90 GEC 2000 , 2047 series, etc............ $\mathbf{£ 6 . 8 0}$ INDESIT 20/24EGB $\mathbf{5 6} 80$ ITT/KB VC2 to $53,100,200,300$ £6.80 MIURPHY 1910 to 2417 series $\mathbf{E 6 . 9 5}$ PHILIPS 19TG 21 to 19TG 156 $£ 4.80$ PHILIPS 19TG170, 210, $\mathbf{3 0 0} \ldots \ldots . \mathbf{£ 6 . 8 0}$ PYE $11 \mathrm{U}, 368,169,769$ series...... £6.80 PYE 11U, 368, 169,769 series..... $\mathbf{£ 6 . 8 0}$ PAM, INVICTA, EKCO,
FERRANTI equivalents as above
SOBELL 1000 series................... $£ 6.80$
STELLA 1043/2149 \qquad
THORN MONO SCAN COILS (850 to 1500) $£ 2.80$ p.p. 85
THORN 850 Time Base Panel. Dual Standard 50p p.p. 80p.
THORN 3000,3500 Tripler $£ 5.80$ p.p. 85 p. Others available. 1.80 p.p. 45 p.
CALLERS WELCOME AT SHOP PREMISES
THOUSANDS OF ADDITIOMAL ITEMS AVAILABLE HOT NORMALLY ADVERTISED

MANOR SUPPLIES

172 WEST END LANE, LONDON, N.W.6.

Mail Order: 84 GOLDERS MANOR DRIVE, LONDON N.W.11. PLEASE ADD $12 \frac{1}{\hbar} \%$ VAT TO PRICES (EXCEPT * 8\%)

TV LINE OUTPUT TRANSFORMERS

ALL MAKES SUPPLIED
PROMPTLY by our
RETURN OF POST MAIL ORDER SERVICE
All Mono Lopts at the one price

f6.45
BONA FIDE
TRADE

E7.00 RETAIL
(V.A.T. INCLUDED AT 12 $\frac{1}{2} \%$)

Postage and Packing 70p
All Lopts NEW and GUARANTEED for SIX MONTHS
WE ALSO SUPPLY SEPARATE WINDINGS FOR THE FOLLOWING COLOUR L.O.P.T.S Pye 691 or 697 Chassis.
Bush CTV25Mk. 1-2-or 3.

Bush CTV25 Mk. 1-2 -or 3.
Decca CTV 25 Non-Tripler Version.
Philips G.6 Single or Dual (Overwind for this Model
on Exchange Basis Only).
Philips K.70 Underwind Only.
E VO 90°

COMPLETE L.O.P.T.S
Philips G.8, ITT C.V.C. 5-9 and Decca Bradford. Prices for the above Colour L.O.P.T.S and Windings on application.

S.A.E. all enquiries

PAPWORTH
TRANSFORMERS
80 MERTON HIGH STREET,
LONDON S.W. 19
01-540 3955

TELEVISION ELECTRONIC DISTRIBUTION (SPARES) LTD.
 412a Hanworth Road, Hounsiow, Middlesex

 Telephone: 01-572 4668 PANEL REPAIR/EXCHANGE SERVICE TRADE ONLYBERRYVISION 510
EMO
THORN 2000 Series, 3000/3500 Series, 8000/8500/8800/9000 Series.
GEC Solid State 2110 Series.
PHILIPS G8 G9
RBM A802/823
DECCA Solid State 80 Series/Hybrid 30 Series.
GRUNDIG 5010/6010 GB
VERY COMPETITIVE PRICES.
3 MONTHS' WARRANTY FROM DATE OF OUR INVOICE.
DISCOUNT FOR BULK PANEL ORDERS.
CATALOGUE AVAILABLE ON REQUEST.

Eliminating Ghosts

Bill Wright

Fortunate indeed is the aerial contractor who operates where good, strong signals abound. But pity the poor soul who has to live with good, strong ghosting as well. Ghosting, as all customers know, is something that can be cured by any half-competent aerial man in next to no time and at minimal cost. "The man who mended the telly said the aerial just needed moving round a bit to get rid of the ghosting." The service engineers who cover our patch. seem fond of such unguarded statements! The truth, unfortunately, is often sadly different. Faced with a really good aerial installation which is nevertheless producing very ghosty pictures, the aerial contractor is very much aware that things aren't as simple as the customer (and the TV engineer!) sometimes seems to believe.

As aerial contractors in an area of generally high field strengths but often very bad ghosting, we've been much involved with the "ghost problem" over the years. In the early days of u.h.f. transmissions most of the major aerial manufacturers produced stacked arrays. These were supposedly the ultimate answer to ghosting. In practice however results were variable. No improvement at one call; a pleasant surprise at the next; and so on. The whole thing had an alarming air of unpredictability, while the time and trouble involved in each installation meant that a high failure rate was quite unacceptable.

Log-periodic Aerials

The manufacturers' next bright idea was in the shape of the log-periodic aerial. And a very peculiar shape we thought it to be (see Fig. 1). Log-periodic aerials are enigmatic, inscrutable devices. They are quite unlike more familiar aerials in that every element is driven. In other words there are no reflectors or directors, but simply a series of dipoles which are connected to the downlead via the boom. In fact there are two parallel booms. Each dipole is connected at its centre point across the two booms, and the polarity of this arrangement alternates along the boom. The ends of the booms farthest from the transmitter are shorted together, whilst the downlead is connected across the front end. Don't be misled by the appearance of the Antiference TS21: the coaxial feeder emerges from the back end of the aerial but runs along inside the boom to the connection point at the front. Log-periodic aerials generally have a characteristic impedance about 100Ω, but matching devices are not considered necessary. The coaxial inner is connected to the uppermost boom, and the outer to the lower one.

The "spread" of dipole lengths from smallest to largest determines the aerial's bandwidth and, since the gain suffers little if this spread is relatively great, log-periodic aerials designed for domestic TV reception usually cover the whole of the relevant band, be it channels 6 to 13 or 21 to 68 . If the gain is plotted against frequency (within the designed bandwidth) the result is a surprisingly straight line.

This flat response is one outstanding characteristic of the log-periodic aerial. The other is its extremely clean and sharp polar response pattern (see Fig. 2): undesirable rear and side lobes are smaller than those of a conventional
aerial of comparable size. This is because the phase relationship between the voltages developed across each dipole (as they appear at the downlead having travelled varying distances along the booms) tends to favour signals arriving from the front of the aerial rather than those arriving from any other direction. The lack of parasitic elements also helps to keep the response clean.

A highly directional aerial immediately suggests itself for anti-ghosting work of course, and the log-periodic aerial begins to sound ideal. The drawback is its poor forward gain, which seems to be an unavoidable feature of aerials based on this principle. The forward gain figure usually quoted is 8.5 dB , which is significantly lower than a conventional 10 -element Yagi aerial's gain of about 11 dB . In many locations the poor gain of the log-periodic aerial effectively disqualifies it from anti-ghosting work, which is a great pity.

Some time ago Antiference produced a version of their 21 -element log-periodic aerial with an amplifier attached. This alleviated the problem to a limited extent, but the cost of the product compared very unfavourably with that of a straight 18 -element Yagi aerial without amplification and the results often didn't in the customer's eyes justify the extra expense. Antiference no longer produce a log-periodic aerial for ordinary domestic use: possibly they feel that their XG8, XG14, and XG21 aerials provide a more useful combination of gain and directivity.

Log-periodic aerials are nevertheless nice, light, compact arrays with low wind resistance, and in some locations the extra height that this allows, combined with the aerial's directional properties, will do the trick.

We've used a great many log-periodic aerials over the years to combat ghosting, but we very soon became aware that they don't produce the complete answer in every case.

Fig. 1: The Jaybeam LBM2 log-periodic aerial.

Fig. 2: Polar response of the LBM2 at 500 MHz .

They were found to be at their best in area's of high field strength where, with say a combination of half a dozen factory chimneys to the rear and some local obstruction to the fore, strong multiple images are present on the screen. In this sort of place a ten or eighteen element Yagi would produce unrecognisable and unlockable images but a logperiodic aerial might, if it was your lucky day, give watchable but still very ghosty results. The fact that the customer would then appear to be unable to detect any improvement is neither here nor there.

The majority of our ghosting problems are not of this sort however. Often the problem is one solitary ghost image which can be strong enough to make the picture unwatchable. Forty-four footballers controlled by two referees. . . . Video in stereo. . . . In these conditions logperiodic aerials seem as unpredictable as the earlier stacked arrays. Unpredictable except that they tend to be at their least effective on the roofs of the most critical customers, just like all other aerials. Log-periodic aerials are cheaper than stacked arrays - if you can manage without an amplifier. They are quicker to assemble. Perhaps they work on average a little bit better. But they don't really solve the problem.

Back to the Drawing Board

So we started to experiment extensively, and spent a lot of time working with stacked arrays. We needed to tailor the response pattern of the array at each location to reject signals from one specific direction, that of the ghosting. At the same time, maximum forward gain must be maintained. This is important because the strength of the ghost image as it appears on the screen is dictated not by the strength of the ghost signal in absolute terms but by the ratio between it and the signal received direct from the transmitter.

In the early days we had simply fixed two aerials together and rotated the whole assembly for the best results. This was a bit hit and miss. A typical polar response diagram for a horizontally stacked array of two aerials is shown in Fig. 3. Ghosting from directions A1 and A2 will be largely rejected by the array, but ghosting from directions B1 and B2 will be rejected to a much lesser extent. We can't move the factory chimney, gasometer, or other reflecting object, so we must alter the angles of minimum and maximum signal acceptance. We must do this while still keeping the largest forward lobe pointing at the transmitter.

How? Consideration of the way stacked arrays achieve their directional characteristics lead us to realise that we have to satisfy the following conditions: (1) Both aerials must receive as much signal as possible direct from the transmitter, and these signals must be combined exactly in phase. (2) The ghost signals received by the two aerials must be of equal amplitude and must be combined exactly out of phase.

Alignment Procedure

If there's only one really troublesome ghost signal to deal with, the above conditions can be satisfied quickly and easily as follows.

Fix a horizonal boom on a vertical mast (see Fig. 4) with an 18-element aerial at one end of the boom. The aerial's supporting cradle should be roughly central on the boom. Rotate this assembly for maximum signal strength, using a field strength meter or a portable TV set with an attenuator. Ignore ghosting at this stage. The boom should now be at right-angles to the direction of the transmitter. Secure the assembly in this position.

Fig. 3: Polar diagram of a stacked Yagi aerial array.

Fig. 4: Aligning the first aerial.

Fig. 5: Movement of the second aerial towards and away from the transmitter for correct phasing of the signals received by the two aerials direct from the transmitter. Adjust for maximum signal pickup. The phasing harness used when adjusting the aerials consists of a quarter wavelength of 50Ω coaxial lead connected between the. 75Ω downlead and the equal-length 75Ω leads from the two aerials.

Fig. 6: Sideways movement of the second aerial. This adjustment is made so that the ghost signal pickup by the two aerials cancels out.

Connect this aerial and an identical one to the meter or TV set, using a phasing harness. Holding the second aerial in position along the boom, move it towards and away from the transmitter (see Fig. 5), carefully keeping it pointed at the transmitter. Since this movement alters the phase relationship of the two aerials, a maximum and minimum meter indication will occur. If a meter is not available and a TV set has to be used, the effect is visible but less obvious. Obtain a maximum reading, then mark on the cradle with felt pen the point where it crosses the boom. Again, ignore ghosting. Repeat this procedure several times, with the loose aerial at different distances from the fixed one. The same mark on the cradle should coincide with a maximum meter reading at all points along the boom. If not, the boom is not at right-angles to the transmitter direction. Realign it if this is the case.

You can now alter the distance between the two aerials while they remain exactly in phase. In this way the foward gain of the combined array is always at maximum. The mark on the cradle must always be kept exactly on the boom of course. Don't be tempted to skimp on the adjustments leading up to this point: if there's a phase error between the two aerials at any point along the boom there will be a reduction of forward gain if the loose aerial is mounted at that point. This will make nonsense of any subsequent attempts at alignment for minimum ghosting.

With the two aerials still connected together via the phasing harness, next move the loose aerial sideways (see Fig. 6), observing the results on the TV set. It should be possible to identify a series of points along the boom where the loose aerial should be fixed for the two aerials together to produce minimum ghosting. At these points the ghost signals from the two aerials are exactly out of phase with each other. This happy condition will recur every time the loose aerial is moved through one wavelength towards or away from the source of the ghosting. If the ghosting is only slight it may be easier to find the points along the boom where the ghost is most visible: mark these, then mount the aerial mid-way between them.

If the source of the ghosting is at right-angles to the transmitter direction the points of minimum ghosting will be at one wavelength intervals along the boom. In fact the distance between the two aerials will be $\lambda\left(\mathrm{n}+\frac{1}{2}\right)$. In cases where the ghost signal comes from an angle other than 90° or 270° the optimum positions will be more widely spaced. If the ghosting originates from almost exactly the same direction as the transmitter, or from almost exactly the opposite direction, the two aerials will need to be very far apart for phase cancellation to occur. In fact if the ghosting originates 5° from the transmitter axis (that is, from 5°, $175^{\circ}, 185^{\circ}$, or 355°), the two aerials will need to be about 140 cm apart for channel group A.

Those of a mathematical bent will realise that the distance along the boom between the two arrays can be derived from the wavelength (λ) and the angle between the transmitter and ghost directions (θ). The formula is $\lambda\left(\mathrm{n}+\frac{1}{2}\right) \sin \theta$.

Being more nimble on a roof than with a calculator we usually proceed by trial and error. The mathematical approach can help when there are two strong ghost signals from different directions however. The series of possible inter-aerial distances for each can be worked out, and a position for the second aerial chosen which approximates to one value for both. This should be regarded as a starting point for practical experiment however, not as a definitive answer. The easiest way to find the necessary angle for the calculation is to use a large-scale Ordnance Survey map and a protractor. The direction of the source of ghosting can be
found by rotating the aerial whilst observing the TV screen. There is seldom any problem here, since the highly reflective culprit can usually be seen clearly on the skyline. In the highly unlikely event of the ghosting coming from exactly 180°, no phase cancellation would be possible and the ghosting would triumph. Fortunately this'remains for us a hypothetical case.

Final Adjustments

Because the final adjustments are extremely critical, and involve moving a fairly large aerial accurately through small distances, great care should be taken. It's impossible to eliminate ghosting if it can't be seen properly in the first place, so the right sort of programme must be on the air. If you find yourself trying to do this job with a rapidly changing selection of cluttered shots on the screen, well, go down the ladder and have a cuppa, and admire the customer's new microwave oven for a bit. This problem brings the writer dangerously close to his number one hobby horse, which concerns the lack of BBC-2 test transmissions for most of the working day. 'Nuff said!

If the ghosting cannot be eliminated completely the reason may be that the ghost signals received by the two aerials are not of equal amplitude. If one aerial appears to be screening the other in this respect they can be mounted at different heights by simply inverting one cradle. The aerial itself should remain the same way up of course. Remember that it isn't essential for the two aerials to receive exactly the same amount of signal direct from the transmitter (although this is usually the case): it's the ghost signals that need to be exactly equal.

When a satisfactory picture has been obtained it will probably be found that the two aerials are at different distances from the mast. You can't move the mast sideways because it's attached to the chimney, but fortunately the two aerials and the boom can be moved sideways without the previous critical adjustments being invalidated. The distance between the two aerials must be kept exactly the same of course, so it's usually easiest to keep them clamped to the boom and move the whole thing in one piece. Check orientation by visual sighting along one aerial before and after moving.

Bandwidth Requirements

In theory the correct inter-aerial spacing for one channel will not be correct for the other two. In practice this doesn't seem to be a problem. We usually carry out the alignment procedure on the most ghosty channel of the three or on the middle one. Minor adjustments can then be made if necessary after the pictures have been scrutinised. Reducing the distance between the aerials will favour the higher channels and vice versa. These adjustments are small: the theoretically correct positions for each channel may be only $2-3 \mathrm{~cm}$ apart if the two aerials are reasonably close together. This makes it easier to find a position which works on all channels however, and for this reason the two aerials should not be mounted unnecessarily far apart. We usually start with the aerials about one wavelength apart, and use the first optimum position greater than this distance.

Connecting the Aerials Together

An ordinary splitter can be used to connect the aerials together. Both inductive and resistive types are suitable. The split must be exactly equal, otherwise complete cancellation
of the ghost signals will be impossible. Commercially available splitters are generally satisfactory in this respect, but a check can be performed quickly with the field strength meter. Connect the common terminal of the splitter to a signal source, and measure each output. The other output should have a dummy load connected.

We use splitters for this purpose because they give us an accurate impedance match in a simple and straightforward way. We haven't worried much about phasing arrangements, which might give better gain, because we are rarely troubled in our area by weak signal problems. With an ordinary resistive splitter the gain, as you might expect, is about the same as the equivalent single aerial. Those who wish to experiment with phasing harnesses of greater efficiency are referred to Nick Lyon's article on Removing Ghosts (March 1978) and to Long-Distance Television (March 1977).

Don't be tempted to connect the two feeders to the downlead without any impedance correcting device. The resulting mismatch will cause all sorts of unpredictable effects.

The two feeders which take the signal from the aerials to the splitter should be of exactly the same length. If not it will still be possible to carry out the alignment procedure but one aerial will end up slightly forward of the other, which looks odd. There is also the possibility of unbalanced standing waves or some other inequality affecting the $\rho v e r a l l$ performance.

Choice of Aerial

The two aerials must of course be identical. After some experimentation we now always use Antiference 18 -element aerials for the job. When used singly these aerials seem to us to be as directional as any on the market within the price range. We have not used large, high-gain aerials in the stacked mode - as already mentioned, we have few field strength problems to contend with. The cost of two XG21s might also have something to do with it! We can see no reason why these very large aerials should not be efficient when used in this way, though they would need a well thought out mounting and stacking arrangement. We've removed many a nasty ghost simply by replacing the
existing cheap 18-element aerial with an Antiference TC18 incidentally.

Co-channel Interference

From the aerial rigger's point of view co-channel interference presents exactly the same problem as ghosting: how to achieve maximum gain in one direction with minimum gain in another. Stacked arrays can do a really good job here, because the signal rejection is usually required on only one channel of the three. Alignment can thus be carried out on this channel, with no need to worry about the others. Co-channel interference disappears in a much more definite and obvious way than ghosting when the final adjustments are made, so finding the exact position along the boom for the second array is that much easier.

Mounting the Array

Rigid mounting is essential if the results are to be reliable. The mast should be of $1 \frac{1}{2}$ or 2 in diameter, with a 12 in chimney bracket or the equivalent wall bracket. A $6 \mathrm{ft} \times$ lin heavy gauge mast is ideal for the boom, which should be cut to length when all adjustments have been made. All cables, splitters, etc. should be well secured. The feeders should be brought away from the aerials as neatly and cleanly as possible, and in an identical manner on both sides of the array.

As already stated, the technique depends for its success on each array receiving an identically strong ghost signal. For this reason the field strength of the ghost signal must be uniform over the area of the array. When considering where to mount the array therefore, keep it away from other aerials or anything else that might obscure or reflect the signal.

With a single aerial, it's often possible to find a place for the installation where the ghost signal is attenuated by intervening brickwork, stone or trees. Unfortunately this normally useful wheeze doesn't combine well with the use of stacked arrays, presumably because the ghost signal is of an uneven and irregular nature in such a location. Stacked arrays seem to be happiest nice and high and as far away from other objects as possible.

Letters

STANDARDS OF SERVICE

The question of what constitutes good service doesn't seem to have come up for discussion recently, though in the fast changing world of TV I think it's very important. If the customer phones to say his TV set has gone wrong and a technician calls within a few hours it's assumed by all concerned, including the customer, that the service was excellent, regardless of whether the technician left the set in a satisfactory condition. Suppose the set concerned suffered from intermittent sound or loss of one colour. Unless the cause was readily identifiable on the spot, the chances are that the technician left with one or other of the following comments: "It should be all right now I've adjusted it; let us know if not." "It should be all right now I've put in a new valve." "I can't find any fault, let's see how it goes . . ." "It needs a new panel: I'll bring one in a day or so." "We'll arrange to take it to the workshop for a soak test."
This sort of vagueness does not amount to good service, because the repair' may or may not have been completed and more calls may be required until either the staff or
customer become so tired of the situation that more drastic action is taken. The problem mainly concerns large service organisations and rental companies, where technicians may have a dozen or more calls to make in a day, inadequate records of calls and the action taken are kept, and perhaps a different technician calls on each occasion. This situation means that each service call is a potential problem to the technician', impeding his progress through the day, with the result that he 'hasn't the time to get involved or to deal with an interesting problem from beginning to end - if he fails to find the cause of the trouble in the limited time available, it's back to the bench engineer.

Provided the number of complaints reaching head office are few and the usual credit-debit figures show a healthy profit, no concern is shown and the illusion of good service is maintained. One solution would be to enable the field technician to do his own bench work as well. He then won't get tired of and waste time making repeated calls to faults he can't find, but will be able to get to know a number of sets thoroughly and ensure that their performance standards are maintained. He'll be able to carry out preventive maintenance and safety checks, thus reducing his future workload.

This brings us to the quality of work carried out in the workshop. The preoccupation of large concerns with time sheets and figures leads to the danger ous situation where the main consideration is the number of "completed" outgoing sets. The pressure from sales staff in rental companies can be such that incoming decontrolled sets from other subscribers are sold before they are checked, or re-rented without any form of inspection other than a cursory glance by the non-technical installer - who's often underpaid and dependent on commission.

It amazes me that companies so run have any customers at all. It's interesting to look at the sets working in the showrooms. In some the standards are high, but in others one sees sets with dim pictures due to failing tubes, weak or no colour, incorrectly centred pictures, intermittent rolling, and a truly amazing variation in colour fidelity. One can't expect the performance of an early design to come up to the standards of more recent times of course, but it's not unreasonable to expect old sets to perform as they were designed to do. There seems in particular to be very little appreciation of colour pictures. Setting up each receiver on a vectorscope would be expecting too much, but decent reproduction of test card F by all sets should be possible.

In conclusion, it seems to me that reappraisal of the basic approach to service is needed. There should be standard checks on sets in the workshop for safety, then assessment of the picture under various conditions to show up faulty colour reproduction, poor synchronisation, picture geometry faults and, in addition, a check on anything that to an experienced hand doesn't "feel" right, such as a badly operating on-off switch or worn tuner buttons. This should be coupled with extensive soak testing and checking to ensure that as far as possible the sets are working in peak condition. By adopting such standards, engineers will achieve greater job satisfaction, and there'll be more time too for the numerous obscure faults which increasingly complex technology is building into sets. - Malcolm Burrell, Halstead, Essex.

THE COMMON-EMITTER CIRCUIT

I've read with interest the correspondence in the September issue on the common-emitter circuit variant, and feel that any confusion is mainly due to the statement that a common-emitter stage imparts a 180° phase shift. In fact a common-emitter stage at normal signal frequencies provides a signal at its collector in phase with, but the inverse of, that at its base. Although the effect with a symmetrical waveform can be considered to be the equivalent of a 180° phase shift, consider what happens with an asymmetrical waveform as shown in Fig. 1(a). This shows that the phase relationship between the input and the output is maintained.

The "unconventional" common-emitter circuit shown in Mr. Amos's Fig. 1(c) appears rather more conventional when the a.c. conditions only are considered and, as shown in Fig. 1(b), the supply impedance is regarded as being zero. It can be seen that all the terminals are now connected to either the input or the output in the usual manner. It can

(b)

Fig. 1 : Common-emitter arrangements.

Australian teletext reception. Sydney channel 9 relayed by coaxial cable to Melbourne and transmitted by Melbourne channel 9. Received by P. Izzard in Niddrie, Victoria.

Teletext transmitted òn Melbourne channel 7.
also be seen that with respect to the common line \mathbf{A} the output will be in phase with but the inverse of the input, as in the conventional way of showing the circuit. - H. Evans, Crewe, Cheshire.

AUSTRALIAN TELETEXT RECEPTION

I have recently completed construction of the Television teletext decoder and thought you might be interested in the results obtained here. The decoder was built to gain experience with teletext. The input logic, memory and display boards are as published, but for various reasons the front end differs. I chose to pick off the detected video from a standard Japanese (National) monochrome portable, passing the signal through a simple two-transistor video amplifier to the input of the CA3046 i.c. The output from the display board is then returned via a transistor back into the set's video circuitry.

The results, after some fault finding, are very encouraging. Melbourne channels 7 and 9 transmit a teletext test service, and I was able to produce stable, clear teletext from both sources. No doubt the results would have been even better following the front end as published. The accompanying photos show the reception, and I'd like to thank all those involved in the project. - P. Izzard, M.T.E.T.I.A., Niddrie, Victoria, Australia.

Thorn 9000 Chassis Faults

John Coombes

THE 9000 colour chassis was introduced in early 1975 and was another Thorn innovation, for two reasons. First, it's fitted with the 20 in ., 90° version of the RCA PIL selfconverging c.r.t. And secondly the single R2540 "Syclops" transistor acts as both a parallel chopper transistor for h.t. regulation and as the line output transistor, driving two transformers. Because of the latter feature a fairly comprehensive over-voltage/excess current trip circuit is incorporated. There's NS and EW raster distortion correction, and a rather complex eight-transistor field timebase which owes something to the RCA influence, being designed to drive the low-impedance toroidal scan coils. The signal side is fairly conventional, with a varicap tuner, three-chip decoder, and cascode RGB output stages driving the c.r.t. cathodes.

No Results

As with all sets, no results is the most common fault. It's necessary first however to decide whether the set is actually dead or tripping, since the observable symptoms will be the same. A voltage check at pin 7 or 8 of socket 16 on the bottom PC752 switch-mode power supply/line output panel will show a fast flicker if the set is tripping - with the meter on the 10 V or 30 V range.

If the set is completely dead, the first thing to check is the mains fuse F1 ($2 \cdot 5 \mathrm{AT}$) which, being BEAB approved, must be replaced with the same type. If it's found to be opencircuit, first check the mains filter capacitor ($1 \mu \mathrm{~F}$, no circuit reference number, on the PC752 panel), then the mains rectifier W701 (MR510). Another possibility is the Syclops transistor VT701.

W714 Defective

If you find that VT701 is being ruined at an alarming rate, though there doesn't seem to be any apparent reason, check diode W714 (1S44) which may be open-circuit - the set will continue to operate, but the Syclops transistor will be without protection since W714 senses its emitter current, operating the overload trip if this is excessive. W714 can also be responsible for intermittent tripping. To provide increased protection for the Syclops transistor, W729 (ITT44) is added in parallel with W714 in later sets.

Set Tripping

Before dealing with the causes of tripping, it's important to emphasise that the set should not be operated with any of the trips disconnected - five factors are monitored, the Syclops transistor's collector voltage (via W703), its emitter current (W714), the mains input (W716 in the thick-film unit on panel PC752), the field timebase h.t. supply (W723) and the 240 V video supply (W724).

One cause of tripping is excessive e.h.t. If R606 (set
e.h.t.) is not incorrectly adjusted (see later), check the efficiency diode W705 (MR510) which can cause this trouble. Other diodes which can cause tripping when faulty are W723 (BZX83C30, one of the trip sensors) and the 90 V supply rectifier W706 (F247). The line oscillator transistor VT411 (BC212C) can be responsible for tripping, while another cause is a defective thick-film unit (R704-7/W716) which must be replaced as a complete unit - very often it will seem to check o.k. but a replacement unit will cure the fault. Other transistors which can cause tripping are the line driver VT412 (TCE527) and the 12 V regulator transistor VT413 (BC182L) which is in series with the line driver. The correct type must be used when replacing the line driver transistor, otherwise you can get a white line, like a striation, down the side of the screen.

If the set keeps tripping the best course of action is to remove fuse F4 (1.6 A), thus disconnecting the supply to the field timebase. If the tripping persists, remove F2 (1 A), disconnecting the 30 V supply. If the tripping then stops, the 30 V supply rectifier W708 (BY210/400) is suspect.

If the raster appears and the set just trips out, check C602 $(0.068 \mu \mathrm{~F})$ and the voltage comparator transistor VT601 (BC212L) on the Syclops control panel PC756

Intermittent tripping can be the result of incorrect e.h.t. adjustment which should first be checked. R606 should be adjusted for 720 V at TP708, using a $10 \mathrm{k} \Omega / \mathrm{V}$ or higher sensitivity meter. To make the reading, connect the meter to TP708 via a BY127 or 1N4007 rectifier diode (anode to the test point) and shunt the meter with a 1 kV d.c. $0.01 \mu \mathrm{~F}$ capacitor. If the trouble persists, change C741 ($1 \mu \mathrm{~F}$) which decouples the emitter of the Syclops transistor.

Tripping with hum from the speaker is caused by a defective mains rectifier reservoir capacitor $\mathrm{C} 702(400 \mu \mathrm{~F})$.

Sound, No Raster

The most likely cause of sound but no raster is a faulty e.h.t. tripler. The line output transformer can also be responsible, often due to dry-joints - on the transformer itself, between the coil leads and connecting pins, not where the pins are connected to the board. If the e.h.t. tripler is faulty, check whether the efficiency diode W705 (MR510) is opencircuit.

No Sound or Raster

No results due to failure of the Syclops circuit to operate (set not tripping, F1 o.k.) can be due to a defective ramp reset transistor VT602 (BC182L) on the Syclops control panel. Alternatively the ramp charging capacitor C604 $(0.0039 \mu \mathrm{~F})$ may be faulty. Other semiconductor devices on the panel may have to be checked.

The EW modulator diodes are W711 (MR814) and W712 (MR854, later MR914). The supplies for the field timebase, the decoder and the i.f. strip are derived from this circuit (though in early production sets the decoder/i.f.

Fig. 2: Locations of the printed pane/s, with the bottom panel shown in the raised position for access to the print side. If the 24 V field timebase supply rises excessively, the overvoltage trip operates. Check by removing F4. If this clears the trouble, connect a $120 \Omega 5 \mathrm{~W}$ resistor across the field timebase supply, replace the fuse and check the field timebase circuitry.
supply is obtained from a regulator fed from the audio supply line). When W711 or W712 is open-circuit the tube heaters will be alight and e.h.t. will be present but the 24 V supply will be lost and there'll be no sound or raster (c.r.t. cathode voltages high). First check fuse F4 (1-6A) however. If it's open-circuit, C196 on the i.f./video/chroma panel PC813 may be faulty. Change it to an electrolytic if it's a tantalum type. Check the field timebase supply line.

No sound or raster with no e.h.t. and the c.r.t. heaters out will be the symptom when the 90 V supply to the line output transformer is absent. Check whether R712 (5Ω) or alternatively W704 (F249 between the Syclops transistor and the line output transformer) is open-circuit.

Excessive Width or Line Jitter

The symptom when W712 in the EW modulator circuit goes short-circuit is excessive width. W712 can also be responsible for line jitter: to prevent this, it was changed from type MR854 to type MR914.

R736 ($18 \mathrm{k} \Omega$) has been added across the 30 V supply reservoir capacitor C713 to prevent this voltage rising if the sound output panel PC757 or PC778 is removed. It's worth adding this resistor on all sets.

Excessive Brightness

Loss of the 240 V supply to the RGB output stages will result in excessive brightness. Check whether fuse F3 (500 mA) has blown. If it has, the filter capacitor C711 $(0.47 \mu \mathrm{~F})$ could well be short-circuit. If the fuse is in order, the 240 V rectifier W707 (BY210/600) is probably opencircuit. Excessive brightness with the 240 V supply present is usually due to a defective i.c. - the SN76227N-07 demodulator/matrixing i.c. which drives the RGB output stages (IC4).

Unstable Grey Scale

Since the first anodes are internally connected in the PIL
tube, the grey scale is entirely dependent on the RGB output stages. Unstable grey scale can be caused by one or other of the three emitter circuit decoupling capacitors C174/5/7 (560 pF) being defective.

Crinkley Verticals

Returning to the line timebase before going on to the field timebase, the only other trouble we've had is C431 $(10 \mu \mathrm{~F})$ drying up. This decouples the emitter of the line oscillator transistor, and the result is crinkley verticals.

Field Timebase Faults

Common causes of field collapse are VT407 (16801) which is one of the field output transistors, VT408 (BC327) which drives it, the field output stage driver transistor VT404 (BC182LB) and the source-follower f.e.t. VT403 (BF256L). We've also had one of the transistors in the field oscillator circuit, VT402 (BC182L), cause field collapse.

VT407 and VT408 can also be responsible for lack of height, or bottom cramping.

The other output transistor VT406 (16802) generally causes excessive height when it goes faulty. This fault can also be due to diode W406 (1N4001) being leaky.

The components which cause field collapse can also do so intermittently. This is harder to track down of course, but a freezer spray and hairdryer help. Don't apply excessive heat however as this can cause more trouble.

Signal Board Faults

In addition to causing excessive brightness, IC4 (SN76227N-07) can be responsible for loss or intermittent loss of colour. The luminance and chrominance signal processing i.c. IC3 (SN76226DN-07) can also cause loss or intermittent loss of colour. It can also be responsible for loss of colour on various parts of the screen. Other causes of no colour are a defective chroma coupling capacitor C181 (22 pF) or C186 $(6 \cdot 8 \mu \mathrm{~F})$ which decouples the supply to IC5 (pin 2) going short-circuit or leaky.

A ghost or a weak signal can be responsible for intermittent colour drop-out. There's a modification that can help here - adding a $12 \mathrm{k} \Omega, \frac{1}{4} \mathrm{~W}$ resistor (R 270) in series between C194 ($1 \mu \mathrm{~F}$) and pin 13 of IC5. The fault affects only a small number of sets however.

The PAL switch is in IC4, which can be responsible for PAL switching faults.

Slow colour drop-in may be due to incorrect adjustment of the reference oscillator frequency control R210 ($10 \mathrm{k} \Omega$) associated with IC5 (TBA395). In later production sets a zener diode W107 (BZX83C8V2) is added from pin 2 of this i.c. to chassis to eliminate hum effects on some areas of the picture.

Striations can be caused by capacitor troubles in the a.g.c. circuit. In later production C125 is changed to $100 \mu \mathrm{~F}$ and C 116 to $0.001 \mu \mathrm{~F}$ to counter this problem.

Loss of colour can be due to incorrect tuning or a defective tuner. The tuning capacitors associated with the TCA270 vision demodulator i.c. can also be responsible. These are C136 (47 pF) which tunes the a.f.c. circuit coil and C138 (75 pF) which tunes the detector tank coil.

The tuning voltage stabiliser i.c. (TAA550) can cause this trouble or drifting completely off signal.

On one or two rare occasions we've found the TCA270 i.c. to be the cause of drifting, where it's been very difficult to tune the receiver to the station correctly.

Long-Distance Television

Two firsts to report this month. On Wednesday, August 9th the first European television signals at 12 GHz were received at the IBA's Crawley Court, Winchester engineering centre, from Italy via the OTS-2 satellite. The IBA reported that the vision quality was good, confirmed by subsequent tests which occur on various days during the periods 1200-1400 and 1700-1900 BST (normally, that is). Steve Birkill, of ATS-6 fame, is working on an installation which he hopes will enable him to receive the signals successfully.

The second and rather startling item, a first in the DXTV field, occurred on July 30th, yours truly participating. RUV Iceland ch. E4 was being received at good strength at 1830, with the aerial pointing north west. There was no ch. E3 RUV signal however, so I tuned in to this channel and hopefully awaited the RUV "ISLAND" test card. Signals appeared at 1845 , but did not lock. Adjustment of the line and field hold controls enabled the picture to be locked, displaying a picture of a variety show but lacking in height. Tuning back to ch. E3, I passed through American speech: it then became clear that the ch. E3 signal was actually a ch. A2, System M, 525 -line one. Tuning back up to the sound, another System M vision signal became apparent, just above the sound frequency but slightly below the ch. E4 vision - obviously ch. A3! A hurried call was made to David Martin at Shaftesbury, and some ten minutes later he logged both signals.

Efforts were made to record the ch. A2 sound, which at 1925 went on to commercials, then to what at first seemed to be a station identification but subsequently seems could have been a promotion for a radio station. We've been unable so far to trace the source of the signals, but are awaiting information from the US. After several commercials, the following was resolved at about 1925: ".?. News Service, coming your way with stereo .?. coverage promptly at 7.30 here on ?7? TFL. More coverage, better than ever. This is coast to coast action, ??? TFL MV. You'll enjoy better coverage in Telfor (Telford?) $10 \cdot 30$??2?? \mathbf{A} is for astronaut." A characteristic background musical accompaniment was noted. So far, a small town called Telford has been located near Philadelphia, but no matching call letters WTFL. The investigation continues.

Hugh Cocks, some 70 miles to the west of Romsey, was contacted but RUV ch. E3 was so strong there that nothing could be resolved through it. As far as I know, this is the first time that North American ch. A2 and A3 signals have been received in Europe. They came via double/triple hop Sp.E.

As regards more conventional reception, August remained a very active month, with a high level of Sp.E activity. There was an aurora on the 4th, and improved tropospheric reception during the last week. There was continued F2/TE reception, with Gwelo, Rhodesia ch. E2 putting in an appearance on several dates - in fact its reception is becoming rather a common event in the south of England, though it hasn't reached very far north.

Sp.E signals have arrived from most of Europe, with
prolonged reception of RTVE (Spain) and NRK (Norway). Excellent Sp.E conditions were noted here on the 1st, 2nd (including Finland), 3rd, 8th (RTVE were using a variety of patterns), 10th (Rhodesia), 11th, 12th (Rhodesia), 14th, 15th, 16th, 17th (Rhodesia), 22nd, 23rd, 24th (Rhodesia again), 26th and 27th. Altogether an eventful and interesting month.

News Items

Jordan: Reports suggest that JTV is to transmit a daily one hour programme in French - so take care on ch. E3.
Canada: An unlicensed TV transmitter has been established in the North West Territory, radiating programme material recorded in the Buffalo NY area (USA), including commercials. The output comes from two stations in Buffalo. Transmissions last for some 20 hours daily. The radiated power is low, and it's expected that other transmitters in isolated areas will follow.
Sunspots: Sunspot activity may peak towards the end of 1979, not in early 1980 as earlier suggested. The Swiss Solar Observatory expects the smoothed numbers to reach 103 in November, 107 in December and 111 in January 1979.

United Kingdom: The IBA is transmitting a new experimental test pattern from its Rowridge, Isle of Wight transmitter (and its relays). The pattern generator was constructed and designed by the IBA.

New EBU Listings

France: Saint Etienne TF1 ch. E35 10kW horizontal; Limoges TF1 ch. E56 1000kW horizontal; Niort FR3 ch. E58 310kW horizontal.
Eire: Cairn Hill RTE-2 ch. E43 800 kW horizontal.
Morocco: Boukhoual RTM ch. M5 520 kW horizontal. Ch. M5 vision is at 171.25 MHz - a good one for MS reception.

Astra Aerials

Having noticed the Astra (D.I.Y.) Aerials advertisement alongside this column for several months, I decided to contact the Dwyer family - who are Astra Aerials! The business was started in 1954 and currently stocks a vast range of aerials and associated equipment, both of UK and continental manufacture. It's very obvious that they've gained a great deal of practical experience over the years,

The IBA's new electronic test pattern, which is undergoing evaluation. A sixth set of frequency gratings has since been added-sinewaves, same frequencies as Test Card F.

Italian "free" TV test card received by D. F. Browne.
and are consequently well qualified to advise upon and undertake even the most difficult reception projects and installations. Aerials stocked include the wideband v.h.f. Antiference MH308 and MH311. An aerial rigging crew specialises in large masts and rotor systems. Enquiries should be accompanied by an SAE.

From Our Correspondents . . .

We've had a vast pile of mail this month! Cyril Willis (Cambridge) sent in a long list of tropospheric successes at u.h.f., using a group A aerial with a Labgear 6040/WB amplifier, feeding a 22in. Pye colour receiver and an Ekco monochrome dual-standard set. Though Cambridge is low, he managed to resolve Dutch and French signals.

Des Walsh (Co. Tipperary) reports that he's received ch. 40/43 signals from Cairn Hill, a distance of some 140 miles, at up to $50 \mu \mathrm{~V}$, despite intervening hills. Des is using a Wolsey Colour King and suggests that much of the signal is due to diffraction. Apparently reception in the Cork area is more difficult, due it's suspected to the more rounded hills there than the rugged Tipperary terrain. Des goes on to say that in December 1977 Harlech TV signals at about 860 MHz were received along the Waterford coast, from the NE. This is above any allocated frequency at present, and could possibly have been the result of activity by a commercial relay company. The signals were "very clear".

Garry Smith (Derby) has received the normal electronic RTVE (Spain) test pattern, but including a black bar. Since the reception was on ch. E3, it's thought that the signal could have come from the Canary Islands, the pattern relayed via Intelsat 4 a with the Madrid time removed (the Canary Islands' time is an hour later than mainland Spain).

Finally Derick Browne (Portslade) reports a most remarkable reception, on July 8th on ch. E3 for about two minutes, at 1925. He thinks the signal was from an Italian "free" transmitter (see accompanying photo) as the test card is not one of the recognised ones.

Interference

In a recent column I went into the subject of electrical interference in some detail, including arcing from thermostat contacts. It's been pointed out that Radiospares have a reasonable selection of mains suppression and contact filters, one of particular interest being called a "contact suppressor". This is a small, encapsulated component containing an $0.1 \mu \mathrm{~F}$ capacitor and a 100Ω resistor in series, with a maximum voltage rating of 250 V
a.c. The filter is connected across the switch, relay contacts etc. to suppress interference caused when switching reactive loads.

Varicap Tuners

Quite a number of v.h.f., u.h.f, and v.h.f./u.h.f. varicap tuners are now available, and selection of a suitable one for DXing can be a confusing business. Regular advertisers Sendz Components seem to have a vast number of tuners, many of Telefunken manufacture. Those I've obtained from them have generally proved to be extremely useful, a good example being the "new v.h.f. varicap tuners covering 49219 MHz ". These were apparently made for use in Australian receivers, and normally cover chs. E2-4 and up to 110 MHz in Band I (ideal for sweeping through the European Bands I/II), and approximately $135-225 \mathrm{MHz}$ in Band III. Excellent value at $£ 1.50$. Sendz can usually supply a circuit on request with order, and exchange faulty units.

The first Mullard varicap tuner with full Band I/III coverage was the ELC1042, which requires a 12 V 1.t. supply and Band switching voltage and an $0 \cdot 3-28 \mathrm{~V}$ tuning supply. A noise figure of 7 dB in both Bands is quoted, with power gains of 20 dB and 22 dB in Bands I and III respectively. Signal handling capability without overloading is 20 mV in Band I and 13 mV in Band III. The later ELC1042/05 has a slightly improved performance, with a 2dB higher Band III power gain.

The Mullard V311 is a late production v.h.f. tuner featuring improved overload performance, lower noise and a higher gain at 25 dB in Band I and 26 dB in Band III.

The Mullard u.h.f. range is larger. The partner to the ELC1042 is the ELC1043, which requires the same supplies. The later ELC1043/05 has a 2dB higher gain at 22 dB and an average 1.5 dB lower noise figure at 6.5 dB . The / 06 version has a lower gain than the / 05 due to the i.f. output coil being damped by a 680Ω resistor. The overload figure is given as $15-20 \mathrm{mV}$ compared to the 8 mV of the original ELC1043.

The new U321 u.h.f. tuner features pin diodes for gain control. It's designed for good overload performance, and can handle in excess of 20 mV throughout the range. The average power gain is 22 dB with a noise figure of 7 dB . The U321-LO is similar but modified for use with digital tuning systems. The U322 is also similar but has a higher gain at the h.f. end of the u.h.f. band - a 26 dB power gain is quoted at ch. E69. For further details of these new tuners see Part 2 of the colour receiver project elsewhere in this issue.

Undoubtedly the most sought after Mullard varicap tuner for DX purposes is the ELC2000S, though it's usually difficult and expensive to obtain. The ATS-6 satellite was received here at Romsey using one of these tuners, the other tuners available here not quite reaching 860 MHz . The coverage is $47-88 \mathrm{MHz}$ in Band I (ideal for Sp.E, covering all channels from E2 to IC inclusive), $170-230 \mathrm{MHz}$ in Band III, and 470 to over 860 MHz at u.h.f. The supply voltages required are the same as for the other Mullard tuners. The power gain in Band I is 29dB, Band III 28 dB , u.h.f. low 32 dB , high 33 dB , and the noise figures are 6.5 dB in Bands I/III and 9.5 dB at u.h.f. Altogether a reliable, high-gain tuner which I thoroughly recommend.

FET Circuits

Our Abu Dhabi correspondent Allan Latham recently sent in a couple of interesting circuits using f.e.t.s. They've proved to be most successful apparently. The masthead amplifier (see Fig. 1) uses a dual-gate, n-channel MEM680 to give wideband Band I coverage. My own previous

Fig. 1: Wideband f.e.t. amplifier covering chs. E2-4 inclusive. Coil data: E2 12 turns, E3 10 turns, E4 eight turns 24 s.w.g. close spaced $\frac{1}{4}$ in. diameter. L 3 turns wound at dead end. For non-masthead use connect earthy end of output coupling coil to chassis. Observe normal v.h.f. constructional practice.

Fig. 2: Electronic phasing unit for Band I use. Coils wound on ferrite beads, primary 3 turns, secondary 5 turns with centre taps where indicated.
experiments using E300 f.e.t.s revealed that they worked well in the narrow-band mode but didn't like wideband operation. Allan's circuit with the double-tuned load seems to work well however - the power is fed to the amplifier via the downlead.

The second circuit (Fig. 2) should help all those Band I enthusiasts plagued with "interference" from a strong local signal. Previous experiments feeding a phasing circuit with the signal from the DX aerial (containing both the DX and local signals) and a signal from an aerial orientated for maximum local signal pick-up, adjusting the phase and amplitude of the latter so as to cancel out the local signal picked up by the DX array, met with fair success but needed careful adjustment for good results - while any rotation of the DX aerial meant that the phasing unit's two controls required retuning. The circuit Allan has devised is by all accounts a successful electronic equivalent using f.e.t.s and providing easy tuning with carbon potentiometers.

Basically, the local signal is fed to two balanced pairs of 40673 dual-gate n-channel f.e.t.s, with a 90° phase shift in one feed, the ganged potentiometers (of the type used for stereo amplifiers) being used to adjust the gain and phasing relative to the signal from the DX array. The result is virtual elimination of the unwanted signal, with very easy adjustment. Allan comments that he's used the circuit with great success over many months, but wishes to stress that it's purely experimental. We'd like to hear from anyone who tries it. Adjustment to phase out the local signal takes only a few seconds.

WE OFFER A UNIQUELY HELPFUL AERIAL SERVICE TO PUBLIC AND RETAILERS. WE WILL ADVISE, RECOMMEND AND EXCHANGE EQUIPMENT.
WE GUARANTEE ALL CONTINENTAL AERIALS FOR FIVE YEARS FAIR WEAR \& TEAR
10\% OFF AERIAL MAIL ORDER SALES ONLY

$9 " \times 4 "$ S.A.E. Dept TM
for mail order lists. For
specific advice please
phone or call.

Stockists of the finest aerials available in Britain:
FUBA TV \&i FM aerials (W.Ger.) PLEMI TV aerials (Hol.) UKW FM aerials (E.Ger.) ANTIFERENCE TV \& FM aerials (U.K.) JAYBEAM TV \& FM aerials (U.K.)

LONDON AGENTS

PLEMI

ASTRA (D.I.Y.) AERIALS

2. A friendly family firm. Now Established 24 years D.I.Y. AERIAL SPECIALISTS FOR ALL DOMESTIC TV \& FM RECEPTION Weather exposed part of U.K.? Scotland, Wales, West Country etc. Gales, salt air corrosion problems? Want to install your aerial and forget it?
The continental aerial range from Germany and Holland having proved so fantas-
 Fuba) as our first choice for customers. In short we offer quality in a plastic age. Anodised against corrosion, guaranteed for five years, robust, high gain, easy to assemble, eye-catching superb aerials, what else, in truth could we recommend?

AERIALS \& PARTS EXCHANGEABLE UNTIL SATISFIED.
BONA FIDE TV/FM TRADE, COUNTER SALES ONLY.
Over 3,000 aerials stocks: All Bands: Masts: Lashings: Wall Brackets: Rotators: Televertas: Diplexers and Triplexers: You can now mix Band 4 and Band 5, or lower Band 5 with higher Band 5, or mix FM with either, 1.5 db loss approx.: Padded outlets: Directional splitters: Coax, white or brown: 300 ohm cable.
Many of our customers come from recommendation.
53 WHITEHORSE ROAD. CROYDON, SURREY.

Closed 12.30-1.30 But Open ALL day Sat. 24 hr . answering service FM \& TV AERIALS AND ROTATORS ON DISPLAY

LOOK! Phone: LUTON, BEDS. 38716 OPPORTUNITIES TRADE SALES

START AT £25 INC. VAT!!
FOR D/S COLOUR TV's
G.E.C., Philips, Murphy, Decca, Ferguson

S/S COLOUR TV's
Philips, G.E.C., Telefunken, Decca, Ferguson
FROM £40 INC. VAT!!
MONO TV's, all makes from £5 INC. VAT
SQUARE SCREEN, all models £12 INC. VAT!!

Deliveries arranged if necessary.
HUNDREDS OF SETS EACH WEEK TO BE DISPOSED OF AT GIVE-A WAY PRICES. OPPERTUNITIES

9A, Chapel Street, Luton, Beds. LUTON 38716

9.30-6.00 p.m. Weekdays, 10.301 .00 p.m. Sundays.

Colour Receiver Project

Part 2

Luke Theodossiou

Introducing the signal board

Following last month's very simple power supply board, we now get our teeth into some real circuitry. For a while the author was tempted to design a modular signal board there's such a big song and dance about modules these days. The idea was finally rejected on the grounds of expense and unnecessary complexity. It's true of course that modular construction makes for more instant servicing but only if you have replacements ready to hand: how many constructors would be prepared to go to the trouble and expense of building spares? You should have no difficulty in servicing the design adopted however. By the end of the project you should also be so familiar with the circuitry and layout that diagnosis and cure will be fairly simple should faults develop.
The board we start to deal with this month contains the signals side of the receiver. It takes the aerial signal and delivers R, G and B outputs to drive the c.r.t. cathodes also an audio signal to drive the speaker. It could be called a "five-in-one" panel, i.e. tuner, i.f., chroma decoder, video output stages and sound channel. We'll try to describe the circuit in a logical manner (allowing for the author's shortcomings), starting with the tuner.

The tuner

The tuner was first mentioned over a year ago as a new product from Mullard, destined eventually to replace the ELC1043 and its derivatives. The new unit, the U321, is smaller than its predecessor, boasts improved performance, and has already put in an appearance in the Philips G11 chassis and the ITT CVC40 16in. portable chassis. We'll probably see more of it elsewhere in the future. Since we haven't to date described the unit, a fairly close look at it is in order.

R.f. stage and a.g.c.

The circuit is shown in Fig. 1. The r.f. stage consists of a BF480 high-current, low-noise transistor which is preceded by a pin diode attenuator using two BA379 diodes (D7004 and D7005). The receiver a.g.c. system controls the current through these diodes, which behave as a virtually linear u.h.f. attenuator. Current flows out of the tuner and is "sinked" by the TCA270S i.c. in the detector module. At maximum a.g.c. current (this is externally limited to 9 mA), D7004 is hard on, while D7005 is switched off (high
impedance). This results in minimum attenuation and therefore maximum gain. As the current decreases, the d.c. bias on the diodes is such that at minimum a.g.c. current (lmA) D7004 is switched off and D7005 is hard on. This shunts the signal to earth via C2007, and leads to minimum gain.

Signal handling

Since signal attenuation occurs at the input of the tuner, the signal handling capability is increased compared to previous designs in which the gain of the r.f. amplifier was controlled by the a.g.c. potential. There's a dip in the inband cross-modulation characteristic however, due to the influence of the BF480's emitter current variations - the emitter is d.c. coupled to the pin diode attenuator to optimise the a.g.c. characteristic. Overall, the crossmodulation performance of the U321 tuner is something like ten times better compared to other tuner units in current use. This is a direct result of using a pin diode attenuator and a high-current r.f. stage.

Mixer stage

The oscillator is conventional, using a BF480 (Tr7002) transistor and its associated components. The mixer stage is somewhat unusual though. It uses a Schottky diode, type BA280 (D7006). The conventional transistor mixer can suffer from signal handling problems due to its non-linear characteristic. The result is poor cross-modulation performance. Using a diode improves the performance but results in a conversion loss (unlike the transistor mixer, which is why the latter is normally used). In this design, the loss is made up by the additional common-base i.f. amplifier stage built around the BF324 transistor (Tr7003). Note that there is no d.c. return path for this transistor - it's provided by R410/R412/L411 in the vision gain/selectivity module. This arrangement makes the output circuit more flexible so that it can be readily interfaced with a variety of i.f. strip designs. Needless to say, tuning is performed by varicap diodes.

Incidentally, the Schottky barrier diode (to give it its full title) may be a newcomer to some readers. It consists of a semiconductor (silicon) to metal rectifying junction which eliminates charge storage effects since the offending semiconductor junction capacitance is not present. Other properties include a lower forward voltage drop, which results in lower power dissipation, low reverse leakage current and fewer reffection problems.

Fig. 1: Circuit diagram of the Mullard U321 tuner. The bold line shows the main signal path, whilst the dotted lines indicate metal screening.

 waste. We shall deal with the mating connectors when we come to the interconnections.

The i.f. output from pin 10 of the tuner is directly coupled to the Philips vision selectivity and gain module (from the G11 chassis). This and the following vision detector module are prealigned, ready-made units and were chosen for a number of reasons. First, using these units cuts out all i.f. strip alignment, making the construction of the signal board wholly uncritical. This would not have been so had we decided to design our own i.f. strip, even if a surface acoustic wave filter (SAWF) had been used. The detector, a.f.c., 6 MHz attenuator and 4.43 MHz subcarrier trap would still have needed setting up - and the first two of these adjustments are very critical. A glance at the signal board circuit (Fig. 3) shows the simplicity of the i.f. strip as a whole.

Secondly, since all alignment has been dispensed with, consistent receiver performance is assured. If the board is correctly built, the least that can be guaranteed is that a video signal will be present at the output of the i.f. strip - in many cases both sound and a picture should appear on switching on, without any adjustments whatsoever. This would not have been the case if the constructor had to build his own i.f. strip!

Thirdly, the author loathes winding all those damn coils! If coils had been bought in they would have been rather expensive - also the signal board would have had to be larger to accommodate a "flat-on-your-back" i.f. strip p.c.b. design.

The modules win!

Overall then, and not forgetting their reasonable price, these modules offer the constructor distinct benefits, while the quality of the signals is very good. We understand that Philips are in the process of updating the two modules, with the incorporation of a SAWF and an up-to-date i.f. i.c. Should this happen, the new modules are likely to be plug-in replacements for the current ones. As soon as we have more definite information on the introduction of the new modules we will let you know. There's no need to wait for the new modules on performance grounds however, as we don't
think they will offer any improvement. We believe that the aim of the exercise is to simplify production, since the performance of the current circuits is very high indeed.

Selectivity and gain

The circuit of the vision selectivity and gain module is shown in Fig. 2. It's quite conventional, consisting of a medium-gain, three-stage amplifier with little selectivity. The first two. stages are choke-capacitor coupled, the final stage being $R C$ coupled to the synchronous vision demodulator i.c. in the following module. The bandpass response is determined mainly by the selectivity filter between the tuner and the i.f. amplifiers. The i.f. coil in the tuner is part of the selectivity filter.

Forward gain control is applied to the second i.f. amplifier stage. The a.g.c. crossover characteristic is modified by the action of the external zener diode D1, which is used to "catch" the i.f. gain control voltage.

Vision detector

The amplified i.f. signal appears at pin 17 of this module and is directly linked to pin 1 of the vision detector module. The circuit for this module is shown in Fig. 4. The signal first passes through a double bridge-T filter which rejects the channel 1 vision and sound carriers which can be picked up by the vision selectivity and gain module (due to the use of untuned gain stages) in areas of high signal strength such as Crystal Palace.

The TCA270S i.c. is too well known to warrant much comment. Suffice to say that is produces both negative- and positive-going video signals; an a.f.c. signal; and i.f. and tuner a.g.c. signals. There are two quadrature coils, L626 for the vision synchronous demodulator and L630 for the a.f.c. synchronous demodulator. The a.g.c. detector is gated by negative-going line pulses which are fed in at pin 16 of the module.

Fig. 2: Circuit diagram of the i.f. selectivity and gain module from the Philips G11 chassis.

The positive-going video signal appearing at pin 9 of the TCA270S passes through a 6 MHz trap (L641) to remove the intercarrier sound from the video signal which is then this stagë is R654, which must be removed from the module before this is soldered to the p.c.b. The reason for this is that the Tifax module we shall be using to decode the teletext signal needs a positive-going video signal whose amplitude must be adjusted between 1 V and 3 V peak-topeak to obtain optimum performance from the data slicer circuit on the Tifax module. We therefore remove this The operation is quite straightforward, but be careful with the soldering iron as the module's component density is very high. The connection from the emitter of T653 is brought out to an unused pin (pin 12), using an insulated wire.

From this point the signal goes two ways. First through high-pass filter consisting of C651 and L650, which removes the sync pulses and luminance signal. The follower chroma signal is then applied to the emitter coupled to the luma/chroma processor i.c. (IC3) via C17.

Luminance

Secondly, from the emitter of T653 the video signal passes through R661, after which the $4 \cdot 43 \mathrm{MHz}$ trap C656/C657/L658 removes the chroma signal, then through the module. It's then lumance signal appearing at pin 15 of Note that the series combination of R661 and R665
matches the delay line impedance, so no external matching resistor is necessary
The tuner a.g.c. voltage appears at pin 4 of the TCA270S, then at pin 6 of the module. After decoupling at both low and high frequencies by C11 and C10 by C3 and applied to the tuner. The a.g.c. crossover point is determined by VR1.

A.f.c

The a.f.c. voltage appears at pin 7 of the module. The centre point voltage is determined by the potential divider consisting of R3 and R9 from the +33 V stabilised tuning
supply. With the values used, this is 6 V ; i.e. when there is
no a.f.c. correction voltage from the TCA270S, this is the reference a.f.c. voltage. When the i.c. provides a correction voltage, the reference voltage either increases or decreases (depending on the output from the i.c.) and this information is added to the tuning voltage via R2. The
The negative-going video signal from the TCA270S appears at pin 13 of the module. This is connected to the sync separator i.c. on the timebase board.

6MHz extraction

The 6 MHz intercarrier sound signal is extracted from the video signal by a top-coupled bandpass filter, usin

Fig. 4: Circuit diagram of the i.f. vision detector module from the Philips G11 chassis. See text for details of minor operation required to enable teletext reception.
inductors L637 and L638. The primary of this filter also corporates a broad 4.43 MHz notch fiter. The 6 MH ncorporates a broad 4.43 MHz notch iiter. The MMy is decoupled, both inside the module by C640 and outside by C15, and is at the same d.c. potential as pin 10 (via L638). This potential is used to provide bias for pin 13 of the LM1808 sound channel i.c. (IC2), coming from pin 12 of the i.c.

The LM1808

The sound channel i.c. has been described in a previous Tsue of Television (see December 1976) but a brief mentio is included for completeness. There are a number of such i.c:s now on the market, but we chose this particular one fo wo main reasons. First it uses the least number of externa components; secondly it doesn't need a heatsink
A block diagram of the device is shown in Fig. 7, while igs. 5 and 6 show the circuits of the i.f./detector and the minimum of 2 W output (although the typical figure is 3.5W) which we considered ample for all domestic listening conditions. The i.f./detector section is very similar to the LM3065. The main difference is in the volume contro circuit, which is now a linear function of the volume contro potentiometer (a logarithmic potentiometer is therefore equired).

The audio power amplifier is similar to that of the popular LM380. Both short-circuit and thermal protection are featured, so it's pretty difficult to destroy (the autho managed it once though.). The device is housed in standard 18 -pin d.i.l. package. The main reason for the very
low external component count is that the power amplifier has fixed gain, which is certainly an advantage when one of the prime objectives is to produce a simple design.

Audio quality

Some purists may disagree with the author's view that 2 W is adequate. More to the point, the limitations of a speaker housed in a TV cabinet certainly degrades the audio quality. Two options are possible to obtain improved results. One is to include a socket so that an external speaker can be connected. If a standard DIN socket is used, the external speaker is inserted. The other possibility is to extract the audio signal after the detector and feed it into the auxiliary socket of your hi-in system.

Extracting an audio signal
Around 500 mV of audio is available at pin 8 of the ic. It should be connected to an amplifier input whose impedance is $47 \mathrm{k} \Omega$ or greater. Two points here Unfortunately the signal level at pin 8 is determined by the volume control (it cannot be extracted prior to the volume control circuit). Secondly, the use of a screened cable is essential, but the results may still be poor. The reason for this is that the timebases of the receiver cause high peak currents to flow through the receiver's earthing system. This can give rise to all sorts of additions to the audio signal These are not normally audible through the receiver the warts start showing. This approach has not been tried

Fig. 5: Circuit diagram of the i.f. amplifier, detector and volume control sections of the LM1808 sound channel i.c.
by the author, but he would be interested to hear from any reader who may finally manage it. Incidentally, the positioning of the cable will prove critical, as will the position of the socket. This second method cannot be used unless the set is isolated from the mains.

Capacitor C9 provides de-emphasis; the audio signal is coupled to the power amplifier via C7. Resistor R6 feeds the i.f. section of the i.c., whose supply is stabilised around 11.5 V (pin 6). The network comprising R8 and C13 ensures
h.f. stability.

Supply Rails

All the small signal circuitry runs on +12 V , which is provided by IC1 from the +24 V rail used for the audio power amplifier of the sound channel i.c. The +33 V tuning voltage is stabilised by regulator diode D 2 from the +220 V video supply rail via dropper R10.

Note that the RCA TA10313B decoder chip is still a development device. The decision to start quantity production has unfortunately been delayed, and it may therefore be necessary to use an alternative solution. The situation is being reviewed at the time of going to press.

Fig. 6: Circuit diagram of the audio power amplifier section of the LM1808. This is very similar to the LM380.

Fig. 7: Functional block diagram and pin-out of the LM1808.

Twisted Tails

We've had hot Pyes and burning Bushes, but the one we came across the other day takes the cake (Alfred's). You could call it a cooked up cake.

A nice young lady came in to pick up a few bits and pieces and casually mentioned that the next time she passed she would pop in a portable TV set which had been involved in a fire and could possibly be of some use for spares.
Sure enough, a couple of days later she popped in and left a twisted mass of plastic with us. Unfortunately, we didn't know her name or address and just accepted the mangled mass as a kind of burnt offering. When time permitted, we did a cut away job to see what was left inside. Much to our surprise the inside was practically untouched and was obviously almost new. If the on/off knob had not been welded to the front panel it could have been used.

Carefully arranging the component pieces on the bench we switched it on and everything functioned as it should, so we thought it worthwhile ordering a new cabinet from the makers.

On the phone this proved to be somewhat more difficult than we had anticipated. We explained that the set had been in a fire not of its own making, and that the complete outside shell was required.

A verbal tussle then ensued. We would have to specify exactly which parts were to be ordered. I never, in my ignorance, realised how many bits and pieces go to making up the cabinet of a portable TV set. Each piece was the subject of earnest discussion and apparently would be dispatched separately. So far four pieces have arrived, and by the time the rest have been accounted for the postage and packing will have cost more than the new one of the same type we have for sale. It would also appear that somehow we have ordered two of each piece!

Anyone want a $£ 70$ portable for $£ 140$?
We are never without a hybrid Pye colour receiver for very long. The report on this one said that for some time there had been a sparking noise from the back, the picture had been blurred and that finally there was lots of smoke and off it went.

Inspection showed that the long gondola type focus unit (697 chassis) was just a mass of twisted plastic which could not be separated from the VDR rod inside. This had broken anyway (hence the sparking from the rear, as the excessive voltage hopped across the focus spark gap with the slider wire contacting the rod above the break ... I think). The final demise came when the first anode supply $0.1 \mu \mathrm{~F}$ decoupling capacitor shorted and the associated $100 \mathrm{k} \Omega$ resistor cooked, as usual.

Replacing these items necessitates access to the component side of the panel, and a glance down inboard of the line output transformer showed R203 (the $47 \mathrm{k} \Omega$ reference pulse integrating resistor) to be in no fit state to be left in. In fact it just crumbled to dust when touched, so how the line hold had been locked we'll never know.

With these itmes in we were ready to check through the rest of the supply lines. These seemed to be in order. We could not check the thing however because we were out of the long VDR focus units. Phoning around proved that Don, Ray, Fred and Harry didn't have one either, which meant a delay.

Ever the impulsive type, we decided to hook up one of the square, thick-film types to a point of lower potential.

Now I don't know if you've ever looked at the tripler units used in these Pye group hybrids, but one of the three outlets is marked "focus" and connects to C226 on the transformer. Connecting the high end of the thick-film focus unit to this point, the centre to the focus lead and then earthing the low end produced just the right potential. The set was back in action and fit to fight another day.

Nothing to do with TV (as usual), but what is the answer to this one?

We ordered and received from a wholesaler some clock radios (UK made). One when unpacked was obviously not new, and on close inspection the guarantee card had been filled in and dated December 1977. We contacted the wholesalers (and their rep) who said they would collect it. Some time later they did. Some further time later a replacement was received. When unpacked, it proved to be the same set with the same filled in guarantee card.

We again contacted the wholesalers. "Good Lord" they said. "Fancy that!"

Will you collect it and supply us with a new one or give us a credit note for it?" we asked.
"Well, it's not really our pigeon. It's really between you and the makers you know. We have a directive from our head office that our responsibility ends when we have supplied goods to the dealer."
"Second-hand goods?" we queried.
"As far as were were concerned, all goods supplied by us are new."

So we thought about this and taxed the rep on his next visit. He said he knew how it had happened. When his branch were out of stock on some items they obtained them from another. It was obviously not intentional on their part, but they had sent one which had previously been returned to the makers for service by them instead of by the dealer who had given the customer a new set instead of loaning them one until their own was returned.

This left one used set which was now with us, and still is. The makers say they have discharged their obligations and have serviced the set, and that it is up to the wholesalers to put things right.

Back on the phone to the wholesalers who have now closed the branch where we obtained the set and are no longer trading in this part of the country.... Anyone want a new-used clock radio?

We called upon some friends to put their set right - an ageing ITT/KB VC4 used as a second set but still in mint condition except that the picture was dark and lacking width. Whilst we worked on the set, the lady of the house (a

Fig. 1: Boost supply feeds in the ITT/KB VC4 and similar dual-standard monochrome chassis.

SPECIAL OFFER OF DIRECT REPLACEMENT PARTS. ALL PARTS GENUINE MANUFACTURERS PARTS AND BRAND NEW.

GEC MONOCHROME 2000

Description	Manuf. Pt. No.	Price	Description	Manuf. Pt. No.	Price
VHF/UHF TUNER	M96981	$\mathbf{4 . 0 0}$	LOPT	-	$\mathbf{6 . 0 0}$
SCAN COIL	-	$\mathbf{2 . 0 0}$	DECODER PANEL	34310443	$\mathbf{1 2 . 0 0}$
TIMEBASE PANEL	M96772	$\mathbf{4 . 0 0}$	DEGAUSSING PANEL	34310497	$\mathbf{2 . 5 0}$
LOPT	94209	$\mathbf{3 . 0 0}$	SOUND O/P PANEL	34310414	$\mathbf{5 . 0 0}$
MAINS DROPPER	27837	$\mathbf{0 . 5 5}$	POWER SUPPLY PANEL	34310494	$\mathbf{7 . 5 0}$
ELECTROLYTIC			COMPLETE CONTROL		
200-200-150-50		$\mathbf{2 . 0 0}$	UNIT	21380301	$\mathbf{3 . 7 5}$
			FIELD T/B O/P PANEL	34310499	$\mathbf{6 . 2 5}$
			CONVERGENCE PANEL	34310503	$\mathbf{4 . 2 5}$
			IF TUNER ASSEMBLY	34310495	$\mathbf{9 . 0 0}$
			TRIPLER	$\mathbf{5 . 0 0}$	

formidable character henceforward referred to as "our Glad") worked on the dog, an inoffensive black spaniel named Soot. In fact the set responded to our labours quite well, which was a good deal more than Soot did a short time later.

The lack of width turned out to be due to no more than a high-value resistor ($\mathrm{R} 152,560 \mathrm{k} \Omega$, see Fig. 1) in series with the 625 -line width control, while the dark aspect was due to low voltage on the tube's first anode (pin 3-there was also low voltage on the focus pin 4 with the control fully up). Following the supply lead back, we came to R 156 which is a $680 \mathrm{k} \Omega$ resistor going to the boost line. This had also gone high, and being in series with the focus control (to chassis) the result was that the voltage available at the top of the focus control had got lower and lower as R 156 went higher and the focus control's value remained the same. So in went another $680 \mathrm{k} \Omega$ resistor and the set then gave a full-width picture with plenty of brightness to spare.

While all this was going on, our Glad laboured with Soot.
The idea was to comb out the tangled fur and clip off the surplus. Soot was becoming more and more anxious as Glad approached his rear end, and when Glad picked up the scissors his nerve snapped. It's one thing to have your sensitive areas combed, but when they are in danger of being clipped it is time to take action.

Giving a yelp of protest, Soot made for the door but found it closed. With his back to the door he prepared to do battle. He was not going to give up his vital organs without a fight. Glad was not used to dissention in the ranks however.
"Come here you stupid hound" she bawled in a voice which nearly shattered the windows. At the sound of that familiar trumpet Soot's courage deserted him. He slunk
back to the spread newspapers and Glad's clutches. Just then Glad realised that I was ready to go.
"Sorry Les" she hollered. "This dozy dog made me forget you. How much do I owe you?"

I told her, but apparently her purse was in the kitchen.
"Hold on to him for a minute love she said more quietly.
"Comb his ears or do something to keep him happy. They. need clipping too."

So off went Glad and I soothed Soot.
"Has he got beautiful ears then?" I murmured, combing the long silky ears. "Does he want the naughty fur cut off? Yes, 'course he does." Being an expert on dogs, I grabbed the scissors and snipped at the long fur.

Soot gave an almighty scream and belted off dripping blood all over the carpet. At the same time I was surprised to find that as well as the fur I was also holding about half an inch of Soot's left ear in my hand.

Glad grabbed Soot as he shot through the kitchen and her scream rent the afternoon air.
"Ahhhh, Ahhhh, look at his bleeding ear. You've cut the end off."

I stood struck dumb for a moment, desperately searching for words.
"Er, well, you have to clip their ears Glad. Otherwise they dangle in the dirt and pick up all sorts of things: a vet told me."

Glad glared at me in disbelief. "You're supposed to clip the fur, not the ear, you bloody fool. Poor old Soot's going to look lop sided now until his fur grows."
"Sorry Glad, sorry Soot." And with the score at one TV set repaired and one dog with a clipped ear (neither chargeable) we beat a hasty retreat. Anybody want their dog groomed?

LED Channel Display System

Alan Damper

ONE of the problems of using varicap tuners for DX-TV is channel identification. Previous articles in Television have mentioned ways of solving the problem, the simplest being to use a meter fed from the tuning rail. Unless extra circuitry is included however the scale is non-linear and is therefore cramped at one end - usually the end with most of the required channels! An alternative solution is to use touch-tuning i.c.s, the problem in this case being that with the number of channels to be displayed for DX-TV the cost can be considerable. The unit described here indicates the channel tuned by lighting the appropriate LED. The number of channels catered for - twelve in the prototype - can easily be reduced or expanded as required.

Power Supply Circuit

The circuit can be split into two parts. First, the power supply which generates the $0-28 \mathrm{~V}$ tuning voltage. Secondly,

Components List

Power Supply

Resistors:

R1	680Ω	1W
R2	$10 k \Omega$	$\frac{1}{2} W$
R3	$47 k \Omega$	$\frac{1}{2} W$
R4	560Ω	$1 W$
R5	120Ω	$1 W$
VR1	$47 \mathrm{k} \Omega$	linear pot
VR2	2k Ω	linear pot

Capacitor:
C1 $2200 \mu \mathrm{~F} 63 \mathrm{~V}$

Semiconductors:		
REC1	100 V	1A bridge rectifier
Tr1,	BD131	
Tr2	BC107	
Tr4	BD132	
D1	36 V	1.3 W zener diode
D2	5.6 V	1.3 W zener diode

Transformer:
$0-36 \mathrm{~V} 500 \mathrm{~mA}$
Display circuit
(components for each display required)
Resistors:

R6	$15 \mathrm{k} \Omega$	tw
R7	6.8k』	tw
R8	100kS	tw
R9	22 k ת	LW
VR3	100k Ω	horizontal preset

Semiconductors:

Tr 5,6,7 BC107
LED TIL209 or similar
D3 1N914
the display circuits which turn on a LED to indicate that the required channel is tuned in.

The power supply is shown in Fig. 1. The transformer, bridge rectifier and reservoir capacitor C1 present around 50 V to the series regulator $\mathrm{Tr} 1, \mathrm{R} 1, \mathrm{D} 1$ which provides a regulated 35 V supply -Tr 1 acts as an emitter-follower, with its base voltage held constant by the 36 V zener diode D 1 . The tuning voltage is set by VR1 and VR2 (coarse and fine tuning respectively). The potential at VR2's slider determines the voltage at the emitter of Tr 3 and, due to the action of zener diode D 2 , the emitter of Tr 4 is always at 5 V less than this value. There is therefore a floating low-impedance supply available across R5 to power the display circuits. The tuning voltage itself is taken from the base of Tr4.

Display Circuit

The display arrangement is shown in Fig. 2. One of these circuits is required for each channel to be displayed. That may seem to be a lot of transistors, but they cost around $£ 3.30$ compared to around $£ 10$ for i.c.s providing twelve touch channels.

The LED D4 will light only when there is a certain potential between VR3's slider and the emitter rail for Tr6 and

Fig. 1: Power supply circuit.

Fig. 2: Display section circuit.

Tr7. If the slider voltage is below this value both these transistors will be switched off, and although $\operatorname{Tr} 5$ is biased "on" no current will flow via the LED. As the potential rises above 0.6 V , Tr 6 will conduct and the LED will start to glow, increasing in brightness as the potential increases further. At around 1.2 V (the sum of the forward voltage drops across $\operatorname{Tr} 7$ and D3) however $\operatorname{Tr} 7$ will start to switch on. Tr5 thus starts to switch off, depriving the LED of current. A point of maximum brightness occurs, and this can be used to indicate the exact tuning point.

In practice the emitter potential of $\operatorname{Tr} 6 / 7$ varies with the setting of VR1 and VR2, as does the rail (A) supplying the display circuit with a constant 5 V . The setting of VR3 determines the point at which the LED lights.

Modifications

The prototype was built solely to provide a tuning voltage and a display, the other supplies needed for the tuner being available within the receiver. It would be a simple matter to derive a 12 V supply from the 50 V rail, together with a $0-8 \mathrm{~V}$ "manual a.g.c." voltage, if these are not already available. Similarly, the 50 V supply obtained from a transformer in the prototype could possibly be obtained from the receiver's own supplies, reducing the cost considerably.

When provided with adequate heatsinks, $\operatorname{Tr} 3$ and $\operatorname{Tr} 4$
can dissipate up to 11 W . With the circuit values shown it's possible to drive many more than the twelve display circuits used in the prototype. A quick calculation suggested a limit of around 400 (well you never know - you might need them!!!) providing only one LED is lit at any time.

Construction

The method of construction is not critical. In the prototype the power supply section and the display circuits were built on two separate printed boards, but there's no reason why Veroboard should not be used throughout. The unit was built into an aluminium box, with the tuning voltage output available from a socket at the rear. $\operatorname{Tr} 1, \operatorname{Tr} 3$ and $\operatorname{Tr} 4$ should have heatsinks fitted.

Whether a separate transformer is used or the 50 V rail is obtained from the receiver, all circuits must be isolated from the metal case which should be earthed.

Setting Up

Once the power supply has been built it should be tested by monitoring the tuning voltage output whilst varying VR1 and VR2 to check that the full tuning range is available. The displays are set up by tuning in the appropriate channel and adjusting the relevant preset (VR3 etc.) for maximum brightness of the associated LED.

The Language of Logic

Part 2

In Part 1 we introduced the basic ideas of electronic logic, and explained how the basic circuitry used operates. We also saw how basic electronic logic systems operate. Since the groundwork has now been covered, the most compact way of taking the subject further is by way of a dictionary of terms used in electronic logic.
To keep within limits we've kept to common terms, omitting the more obscure and rare ones. Inevitably there's a lot of cross-referencing to other terms in the dictionary and Part 1. Cross-referenced terms are set in italics.

Access time: A measure of the performance of a store such as a $R O M$ or $R A M$. It's the time between applying the address to the address lines until the data is available at the output lines.

Accumulator: A collection of flip-flops used to store one binary word.

Adder: A device or circuit for adding two binary numbers (see main text).

Address: In a memory such as a $R A M$ or ROM, data is stored in the form of words (usually multiples of four bits). Each word is held in a specific location, which has a unique address. See Fig. 1.

The memory uses binary addresses, but it is usual to use octal or hexadecimal for convenience.

The address of a location is very similar to a postal address.

Analogue-to-digital converter (ADC): A device for converting an analogue signal to a digital form suitable for processing by a digital circuit. There are three main types of ADC, ramp, successive approximation, and parallel conversion.

A ramp converter is shown in Fig. 2. A free-running oscillator feeds a counter which in turn feeds a DAC. The counter cycles from 0 to full house, generating a ramp

Fig. 1: A 256-location store, each location holding an eight-bit word.

E. A. Parr, B.Sc., C. Eng., M.I.E.E.

output from the DAC. The ramp voltage is compared with the input voltage, and when the two are equal the counter state is gated into the output latches.

A successive approximation converter asks a series of questions, each of which reduces the range in which the voltage can lie. Suppose we have an input voltage range of $0-10 \mathrm{~V}$, and our voltage is 6 V .

First question: "greater than 5 V ?" Yes. Most significant bit is 1 .
Next question: "greater than 7.5 V ?" No. Next bit is 0 .
Next question: "greater than 6.25 V ?" No. Next bit is 0 .
Next question: "greater than 5.625 V ?" Yes, Next bit is 1.
Next question: "greater than $5.9375 . \mathrm{V}$?" Yes. Next bit is 1.
Next question: "greater than 6.09375V?" No. Next bit is 0 .
And so on, each time halving the range in which the voltage can lie. This somewhat complex process is summarised in Fig. 3. The logic of a successive approximation ADC is obviously more complex than a ramp type.

Finally we have the parallel converter. This is a sledgehammer technique with the input voltage being fed to a bank of comparators. The logic sees which comparators are turned on and sets the corresponding output bits. See Fig. 4. Note that eight comparators are needed for a threebit output. For a four-bit output 16 comparators would be needed, for five bits we would need 32. Parallel converters get complex and expensive for high resolution.

Important parameters of an ADC are resolution (the smallest voltage step we can recognise), conversion time (the time to get a result) and cost. Obviously there is the usual engineering trade-off.

Type	Resolution	Speed	Cost
Ramp	Medium (8 bits 0.5%)	Slow (10mS)	Low
Successive Approximation	Excellent $\text { (14 bits } 0.01 \% \text {) }$	Medium ($1 \mu \mathrm{~S}$)	diu
Parallel	Poor (5 bits 3\%)	Very Fast ($0 \cdot 1 \mu \mathrm{~S}$)	Expensive

ADCs are widely used to convert TV signals to digital form for digital transmission between studios and transmitters.

And gate: A logical gate. See Part 1

ASCII: American Standard Code for Information Interchange. An eight-bit code for transmission of alphabetic, numeric and control characters. It uses seven data bits and one parity bit for error checking.

Asserted: A quick way of defining a particular digital signal. If we have a digital signal that represents oil level,

Fig. 2: Block diagram of an eight-bit ramp ADC.

Fig. 3: Operation of a successive approximation ADC.

Fig. 4: The parallel $A D C$.

Fig. 5: Two monostable i.c.s connected to form an astable oscillator.
say, and is a 1 for oil level liow, we describe the signal as "oil level low, 1 in the asserted state."

Astable: A digital oscillator giving a continuous stream of 1 and 0 signals. See Fig. 5. The astable can be made from a conventional multivibrator, or two monostables connected as shown.

Asynchronous: Large digital systems can be asynchronous or synchronous. In a synchronous system all operations are performed at a regular rate controlled by a central clock which acts like an orchestra conductor. In an asynchronous system each part of the system does its own thing in its own time, and there is no synchronisation of operations.

Baud: A measure of the speed of a digital transmission network. A baud is a rate of one-bit/second. A 300 Baud line can thus pass 300 bits per second.

Binary-coded decimal (BCD): BCD is a halfway house between our decimal system and pure binary. Each decimal number is encoded into a four-bit binary number, e.g.:

4	0	5	9
0100	0000	0101	1001

the resulting BCD number being 0100000001011001 .
BCD is a slightly inefficient use of digital techniques. A true binary representation of 4059 is 111111011011 which uses 12 binary digits as opposed to the 16 of BCD . BCD is useful though where the digital logic is required to do only simple arithmetic operations (e.g. channel displays).

Note that each four binary bit group in BCD can only assume states 0000 to 1001 . States 1010 to 1111 representing 10 to 15 are not allowed.

Binary: A number system based on base two. States 1 and 0 are the only states allowed, hence counting goes:

0	1	2	3	4	5	etc.
000	001	010	011	100	101	etc.

See Part 1 for further details.
Bistable: A circuit having two stable binary states. See flipflop.

Bit: A shorthand way of writing binary digit, i.e. a signal with only two possible states, 1 and 0 .

Buffer: A store for a binary word (which is usually $1,4,8$, 12,16 , etc. bits long). A buffer is an isolating device, and stores a word between devices such as an $A D C$ and the rest of the system.

Bus: A shorthand version of busbar. In digital systems a binary signal goes to several places, e.g. an adder, a RAM, an $A D C$ and an output device. These are all connected by a common ribbon cable called a bus, which carries all the
data. See Fig. 6. Signal flow along the bus is bidirectional, e.g. RAM to ADC and ADC to output. The actual transfer is controlled by the control logic. See tri-state gate and open collector.

Byte: A binary word of eight bits. Experience has shown that this is a convenient size for a binary number. A few years ago there was a suggestion that a four-bit word should be called a "nybble", but this was not adopted!

Clear. A term used with flip-flops. To clear a flip-flop is the same as to reset it, i.e. set $\mathrm{Q}=0$ and $\overline{\mathrm{Q}}=1$.

Clock: In a synchronous system, events are sequenced by a clock waveform which is connected to all units. The clock waveform is usually generated by an astable oscillator. See also D-type flip-flop and J-K flip-flop.

CMOS: A form of digital integrated circuit using integrated field-effect transistors (f.e.t.s). These are in theory the perfect digital circuits: they operate on a wide supply range (315 V), have excellent noise immunity, and take a very small

Fig. 6 (left): Digital system using a data bus.

Fig. 7 (below): A fourbit counter using toggle flip-flops.

Q_{3}

Fig. 8: Basic computer block diagram.
supply current (typically a few $\mu \mathrm{A}$). In practice early CMOS acquired a bit of a bad reputation, as it was prone to die for no apparent reason. The cause of this was found to be static electricity. CMOS has an input impedance measured in megohms. As a result static electricity from nylon clothes or a soldering iron bit easily blasts a CMOS gate. This has now been.cured, later CMOS having input protection. CMOS gates are designated by a 4 digit number in the 4000 range (e.g. 4016).
MOS stands metal-oxide-semiconductor, i.e. the f.e.t.s are of the insulated-gate type. C stands for complementary, i.e. both n - and p -channel devices are used.

Complement: (1) The $\overline{\mathrm{Q}}$ output from a flip-flop or monostable is sometimes called the complement output.
(2) The act of inversion is sometimes called complementing (see Part 1).

Counter: A binary counter in its simplest form is constructed from toggle flip-flops as shown in Fig. 7.

If the toggle flip-flops change state on the 1 to 0 edge, this simple circuit will count input pulses with the Q outputs showing the correct state. Note that Q_{0} is the least significant end of the counter.
It's unusual to find a constructed counter in a digital system, as counter chips are available (usually a 4 -bit counter, but chips can drive each other to give 8 -, 12 -bit counters).

The above counter is called a ripple through counter. Suppose we have a 4-bit counter and it holds a count of 7, i.e. 0111 . We give it one pulse and the counter goes to 8 , 1000 , but along the way we get other numbers:
Q_{0} changes to $0, \quad$ counter state 0110
this changes Q_{1} to $0 \quad 0100$
this changes Q_{2} to $0 \quad 0000$
this changes Q_{3} to $1 \quad 1000$ (final state).
For a very brief time, the counter gave an output of 7, 6, 4, 0, 8. In many applictions this would not matter (the whole glitch probably lasts 10 nanoseconds) but if it's likely to cause trouble synchronous counters are available. These are glitch free.

Counters are available that can count up or down as desired, be preset, or count to bases of 10 (BCD) or 12 .

CPU (central processor unit): A computer system has three parts (see Fig. 8). These are the store, the input/output interface, and the central control unit which does all the number crunching and control.

The central unit is called the CPU. In a microprocessor system, the actual microprocessor chip is the CPU. Other chips need to be added to provide the store and input/output interface.

D-type flip-flop: A form of flip-flop with two inputs, labelled D and Clock, and the usual two outputs Q and $\overline{\mathrm{Q}}$, see Fig. 9. The operation is synchronous. The Q output assumes the same state as D when a pulse is applied to the clock input (see Fig. 10). Data sheets specify the polarity of the clock pulse.

Note that the D input cannot be allowed to change during the clock pulse. D-type flip-flops usually have S and \mathbf{R} inputs as well (often labelled preset and clear, or load and olear).

Decimal: A number to base ten (see Part 1).
Decoder: A device for going from one number system to

Fig. 10: How a D-type flip-flop operates.

Fig. 11 (left): Digital-to-analogue converter.
Fig. 12 (right): Disabling or enabling a group of gates.

Fig. 13 (left): A two-input DTL nand gate.
Fig. 14 (right): The dual-in-line i.c. pack.
another. Usually the change is from binary to decimal. See Part 1 for details and encoders.

Decoupling: Digital integrated circuits operate at very high speeds (in excess of 20 MHz). Combined with this we have 0 to 1 transitions measured in nanoseconds. The effect is to produce sharp spikes on the supply rails, causing subsequent problems with counters or flip-flops.
The conventional $10,000 \mu \mathrm{~F}$ capacitor is of no use here, as it's the inductance of the supply leads that causes the trouble. The problem is overcome by liberally sprinkling $0.01 \mu \mathrm{~F}$ capacitors between the supply and 0 V . These are added at a density of one capacitor to two integrated circuits. $T T L$ is particularly prone to supply problems, but liberal decoupling always works.

Decrement: To reduce by one. Thus 9 decremented is 8 , and 1010 decremented is 1001.

Delay: Another term for monostable.

Digital-to-analogue converter (DAC): A device for converting a digital number (usually binary) into an analogue voltage (see Fig. 11). A DAC is thus the converse of an $A D C$, and the two together are used in digital transmissions of analogue signals (e.g. TV, telephone). A typical DAC is the Ferranti ZN425E i.c.p., which is widely available. Its data sheet is particularly informative.

Disable: To inhibit a gate or output. Usually applied where a common line goes to several gates (Fig. 12). A 0 on line A
disables the transfer of data from \dot{X} to Y .
DTL: Diode-transistor logic. An early form of digital integrated circuit, not widely used today. Its internal circuit is along the lines shown in Fig. 13. Because the 0 to 1 transition at the output relies on a simple resistor, DTL is poor at driving capacitive loads.

Dual-in-Line (DIL): The official name for the familiar beetle encapulation used for digital integrated circuits refers to the dual rows of in-line pins. DIL packs are available with a vast array of pins from four upwards. Pin 1 is always to the left of the package cutout (viewed from above). See Fig. 14.

Edge: Many devices are specified as responding to an edge signal, i.e. a transition from 1 to 0 or 0 to 1 . Counters in general are typical devices behaving like this. A positive edge is a transition from the 0 to the 1 state, a negative edge is a transition from 1 to 0 (for positive logic).

Enable: To allow a gate or output. The opposite of disable.
Encoder: A device for converting a number (usually in decimal form) into binary form.

EPROM: An erasable PROM. This type of PROM can be changed, with some effort, by the user. The most common type of EPROM is cleared by flooding it with ultra-violet light through a transparent window in the chip. Once cleared, the chip can be reprogrammed.

Error checking codes: In digital data transmissions systems, noise can easily turn valid data into gibberish. To overcome this, check bits are often inserted with the data to indicate if an error has occured.

The simplest error checking system is parity. We transmit the data in blocks of seven bits, with an eighth (parity) bit added. The parity bit makes the total number of bits in the eight bit word even (if even parity is chosen) or odd (if odd parity is chosen).

To see how this works, let us send the data stream 101101110101101111101110110100000110110010
using odd parity. We split this into blocks of seven, adding a parity bit each time.

Transmitter	Parity	Receiver	Parity	Check
1011011	0	1011011	0	OK
1010110	1	1010110	1	OK
1111101	1	Error 1101101	1	Wrong
1101101	0	1101101	0	OK
0000011	1	0000011	1	OK
0110010	0	0110010	0	OK

Error checking codes can be made far more sophisticated, allowing identification and correction of errors. Such codes are used in teletext.

Exclusive-or: A logical gate. See Part 1 for details.

Fan out: The number of gate inputs a gate (or other device) can drive is limited. The drive capability of a device is defined in terms of the unit loads it can drive: this is known as the fan out. Gate and other inputs are also defined in unit loads and this is known as the fan in.

For example, three D-type flip-flop clock inputs (each fan in 2) and two gate inputs (each fan in 1) can easily be driven from a gate output with a fan out of 10 since the total load is only 8 .

TV Servicing: Beginners Start Here

S. Simon

We should by now know what jobs the timebases do. The line timebase deflects the spot across the screen at a fairly high speed, then makes it fly back to the left-hand side at an even higher rate. Left to itself it would merely produce a white line across the centre of the screen. This would appear at very high intensity and would very quickly burn away the coating on the inside of the glass so that there would thereafter be a nasty dark line to forever record the event. This in fact is what can happen when the field timebase ceases to function. This timebase's job is to deflect the spot vertically twice for every complete frame (the two being interlaced, remember?). Dear oh dear you may say. If failure of the vertical scan concentrates the electron beam in the centre so as to burn the screen, what happens when both timebases fail? Surely the resultant laser like spot will push a hole clean through the glass, never mind the coating.

Not quite. The beam has lots of energy, but not enough to come through the glass. It could however completely burn away the coating in a split second, leaving a nasty spot at the centre of the screen. We say could. In fact this is not likely to happen as the line timebase is a maid of all work and supplies, along with other things, the final anode voltage (e.h.t.) for the tube. Thus line timebase failure means no e.h.t. and no beam. The only way in which an undeflected spot could appear is when the field and line deflection both fail although the line timebase continues to function. This would be the result if both sets of scan coils failed together
(unlikely), or if some donkey of an engineer left the deflection coils' plug out of its socket. But even here the makers often provide a safety link in the plug to disconnect the line timebase power (say the screen grid feed in the case of a valved circuit). Not all do however, so watch this point.

More often only one deflection is affected. So we can have a line across the screen to denote failure of the field scan, or far less common a line down the centre to denote that there is a failure of continuity from the line output transformer to the line scan coils. We say far less common though you will in fact come across this. It's usually the result of a poor contact between the line output transformer leadouts where they connect to the printed panel (perhaps marked by initial arcing), or associated with the seriesconnected scan-correction capacitor. So the rule in this event is to check the connections from the line output transformer to the scan coils and the capacitor and line scan coils for being open-circuit. These are the only causes of a vertical white line, as a failure earlier in the line timebase will result in a blank screen. O.K.?

Horizontal White Line

In the vast majority of cases if only a line can be seen it will be across the screen (east to west you might say). When this is encountered, take a closer look. If the line is straight, the fault is most likely to be in the oscillator/output section

Fig. 1: The valve field timebase circuit used in the Thorn 1500 chassis. The negative-going field sync pulses are fed to the cathode of the oscillator triode section of the valve to ensure that it switches on at the right time to discharge C72. In many circuits you'll find the triode cathode connected direct to chassis, with the sync pulses appliad to the control grid circuit of the pentode section of the valve, switching it off at the correct time to initiate the flyback. It's also common to find the earthy side of the field waveform generator charging capacitor connected to the cathode of the output pentode in order to provide a certain amount of linearity correction. In this circuit the same effect is achieved by returning C76 to the cathode of the output pentode. Feedback between the output pentode's anode and control grid is used to provide the main linearity correction, via C81. R104 etc. The feedback waveform is differentiated by C81/R105/R106, then integrated by R104/R100/C76, to achieve the correction required.
of the timebase. If the line has a distinct curve (a sort of depressed sinewave) however the first suspect must be the deflection coils themselves. These consist of two slabs connected in series with a little round disc thermistor (which corrects for the effect of temperature rise). Thus the fault could be an open-circuit in either winding or in the thermistor. Identify the windings, disconnect one end (to remove the shunting effect of the field output transformer secondary) and measure with an ohmmeter.

Scan Coil /dentification

Identification of the windings is not difficult. The line slabs are at the top and bottom and are connected in parallel: two wires in (probably thick) and two scan coil connections to each with a pair to the top and a pair to the bottom. The field scan coils have two leads in (probably thinner), with one to the disc thermistor (tucked under a clamp?) and the other to a single lead contact. There is a double connection, but the supply leads do not connect to this as this is the series connection. The assembly may be complicated by resistors across these tags, but you should get the general idea.

Field Timebase Failure

If the horizontal white line is straight however we come to the ifs and buts. If the field timebase is valved (easier to deal with) there will be an output transformer, as in the case of the sound output stage, to match the high impedance of the output valve to the low impedance of the coils. We will deal with this arrangement first.

In a lot of sets the transformer is fixed to the printed panel, and this in itself is where the field collapse can originate. Careful examination may well show that the fixing is not all that it should be, and as the primary and secondary windings connect to the fixing pegs the search may be ended before it even got started. It's in the nature of a transformer to vibrate at the frequency at which it operates (a blinding glimpse of the obvious). This can result in fine cracks appearing around the soldered connections, and eventually all contact will be lost at this point. The process can be hastened by dropping the set. ... It can be seen then that defects on the printed panel loom large in our quest for the cause of a horizontal white line.

The next step if necessary is to check the valve base voltages to ensure that the anode, screen grid and cathode voltages are right. We've already covered this part of the operation (valve amplifiers), so we shouldn't need to go into it in too much depth here. We will however repeat the salient points in relation to the common PCL805 field timebase valve found in most monochrome sets and some colour ones, e.g. the ITT CVC5, CVC8 etc.

We can again refer to the Thorn 1500 chassis where the output transformer T3 will be found at the top right side (check soldered contacts) and the PCL805 a little to the left and lower.

Two of the transformer contacts should have h.t. on them (the primary winding), one of these leading to pin 6 of the PCL805 valve base (anode), the other being the h.t. point from R 133 which also feeds pin 7 (screen grid), see Fig. 1. If either or both voltages are absent the valve cannot start to operate. If there is no voltage at pins 6 or 7 , check back to R133 which could be open-circuit. If pin 7 is about right at a little over 200 V but the voltage at pin 6 is absent or very low, check up to the transformer contacts and, if these are intact, check the continuity of the primary winding as this
could be open-circuit. On a cold test the resistance should read about 260Ω.

The significant reading is at pin 8 (cathode). This records the voltage across the cathode bias resistor R103, which should have a value of 300Ω. Note that we said should. At the correct resistance value the voltage across this resistor (i.e. between pin 8 and chassis) should be 16.5 V . If this figure is wrong, the valve could be faulty (assuming that the voltages at pins 6 and 7 are correct) or the resistor R103 could have changed value (which it does).

When faced with the fault of mainly top compression, most impulsive young men rush to the linearity control or circuitry when they should instead first check the value of R103. When it goes high you get top compression, when it goes low (less often) you get bottom compression. A 330Ω 2 W resistor is O.K. as a replacement. More often bottom compression is due to the capacitor C79 drying up.

Once in a while one may well find that there is no or very little voltage reading across R103 (we are still looking for the reason for the horizontal white line), and although the h.t. may be present at pins 6 and 7 and the PCL805 itself has been checked the reason for the fault may begin to look illusive. A cold resistance check across R103 may show 300Ω, which means that capacitor C79 is not shortcircuit (you thought it would be, didn't you?) and that the resistor is keeping its correct value.

Àt this point you should remember what we have said about capacitors. If one side of a capacitor is subjected to a positive potential (a positive dearth of electrons you might say) the other side or plate will become crowded with the little horrors: it's as heavily negative therefore as the other plate is positive. The electrons will stay where they are if they have nowhere to go (no d.c. path to discharge through). Now if the capacitor is C73, the control grid of the PCL805 pentode section (pin 9) will be heavily negative, thus cutting off the normal current flow through the valve. The discharge path is R97, R98, R100, R 104, R 105 and R106. If any of these items are open-circuit, the capacitor holds its charge and the control grid stays negative and there you have it. The fixed resistors are rarely at fault, but the preset linearity controls R104 and R106 are highly suspect and should be treated accordingly.

Oscillator Section

Now it's often the case that the output section is beyond reproach and is passing current (as denoted by the 16.5 V across the bias resistor) but there's nevertheless a horizontal white line on the screen. In this event we must remember that an amplifier will amplify only if there's something for it to amplify (loud cheers). At this point we may pause for thought.

If the amplifier is willing to amplify, why not use this fact to prove that the output section and the scanning coils are in order? The output section control grid is pin 9 in the case of a PCL805. So, if we apply a signal to pin 9 there should be a variation of current through the output section of the valve and thus through the field scan coils. Ideally, this should be a 50 Hz signal, and it's an amazing coincidence that this is exactly the frequency of the mains supply.

In earlier sets the heater line was derived directly from the mains, via dropping resistors. Therefore a capacitor of say $0 \cdot 1 \mu \mathrm{~F}$ could be touched from a heater pin (4 or .5) to pin 9, thus opening up the field scan and proving that the amplifier section is working. Where there's a diode in series with the heater circuit nearly half the a.c. waveform is snipped off, leaving a pulsed d.c. which in the 1500 series is later smoothed by C58 and C56 to provide a supply line for
the transistor stages. Even so, there's still a small ripple àt the PCL805's heater pins and a capacitor from pin 5 to pin 9.will give an indication that from this point on the circuit is willing to work, given something to work on. Even a handheld screwdriver blade will induce sufficient hum on the control grid to open up the scan slightly.

If this is so, we know that the driving force is absent. This force, applied to pin 9 , should be in the form of a sawtoothed voltage waveform.

Now there are many ways of producing a sawtoothed waveform. Imagine a steep approach to a cliff edge. You slowly plod up the slope, then fall straight off the top. You could say that the descent was much quicker than the ascent. Even so, it still takes time to meet your mangled end on the rocks below. Have you got the picture?

This is the shape of the current waveform required to push the tube beam (or beams in a colour réceiver) from the top of the screen to the bottom. An even build up, then a sudden collapse to speedily induce the flyback to the top. Ah, you may say, what about all these magnetic fields which will want to build themselves up and collapse in the field output transformer when we don't want them to (a collapsing field induces another flow of current which induces another field and so on - ringing, you might call it). Well, this is what the VDR (voltage dependent resistor) Z2 is for, wired across the transformer's primary winding. The resistance of this device falls as the voltage across it tries to rise. So it damps the circuit's attempts to ring. Oil on troubled waters you could say.

Where were we? Oh yes. How to provide a waveform with a nice linear slope up and a rapid drop down. Well now, what about that capacitor we talked about just now. We could charge it up slowly, then discharge it quickly.

How to do this and at the right rate? Obviously the timing is of paramount importance. We need a resistor in series with the capacitor to slow down the charging rate, and the time the capacitor takes to charge will depend upon the resistance value of the resistor and the capacitance value of the capacitor (now look' up $T=R \times C$ or something like that in any basic reference book).

Say we want to charge C72 through R93 and R94 (which is variable so that the charging rate can be adjusted). With V3A cut off, due to a negative charge on C70, C72 will charge up, the voltage at its "top end" rising evenly. This rise is passed on via C73 to the amplifier section (provided everything is working properly of course).

Once the voltage across C 72 reaches the required figure, how do we rapidly discharge it? Well, we could have wired a neon across it so that at a certain level the neon would have "struck", conducting heavily and thus discharging the capacitor to produce the rapid fall in voltage. As a neon is none too precise in its action however we use a transistor or a valve instead, turning it on and off at the right time like an oscillator. In the 1500 chassis a valve, the triode V3A, is used.

How to turn it on and off? Well, you could use a transformer to couple the output back to the input to form a blocking oscillator, or two cross-connected transistors or valves to flip each other on and off (sorry, flipping one on and flopping the other off), or you could do much the same thing by taking part of the amplifier's output and feeding it back as is done in the 1500 chassis and many others.
You will observe two $18 \mathrm{k} \Omega$ resistors (R101 and R102) with a connection from their junction feeding back through C75 to a timing circuit which consists of the capacitor C70 with R91 and R92, the latter being adjustable to enable the timing of the circuit to be varied. This variable resistor is termed the vertical hold, frame hold, field frequency or
something like that on various chassis, to denote that it varies the repetition frequency of the sawtooth. The size of the sawtooth thus generated is determined by the voltage applied to the charging capacitor by R94, which is termed the height, amplitude or vertical size control.

Now let's look- briefly at the oscillator action. When V3A conducts (we'll come to how in a minute) C72 is discharged, the voltage at V3A anode falling sharply. This fall is communicated to V3B's control grid (pin 9) by C73, V3B thus being cut off. A positive-going voltage spike occurs at its anode, and does two things. It moves the spot rapidly to the top of the screen and, being communicated to V3A's control grid via C75 and C70, ensures that V3A'turns on hard to discharge C72 fully. Now as we've seen before, when a valve is driven into heavy conduction, there's current flow in the control grid circuit. Hence the left-hand plate of C70 charges negatively, cutting V3A off again and holding it cut off until C70 can discharge via R91 and R92. This then is the timing action, that determines the "natural" repetition rate of the circuit's oscillatory action. Once C70 has discharged, V3A will switch on again. The potential divider R101/R102 determines the amplitude of the pulse fed back to the control grid of V3A to drive it into full conduction.

So there you are. Provided the components have the right value and keep the right value, the screen will be scanned at the right amplitude and at approximately the right frequency. The exact frequency is determined in the studio by the sync pulses inserted on to the transmitted signal. We talked about these last month. The field sync pulses are applied to pin 3 (triode cathode) of the valve to trigger it precisely - provided the coarse frequency setting (R92) is not too far out. If the circuit values are disturbed, the repetition rate will be outside the influence of the sync pulses and the picture will appear to roll rapidly. If on the other hand the sawtooth is not produced by this oscillatory action there will be no field scan at all and we are back to our horizontal white line. So what goes wrong and how do we tackle it when it does?

Checking the Oscillator Circuit

We have already proved the amplifier section, so this cannot be at fault. Or can it? Remember that it's also part of the oscillatory circuit, and that there are in the output stage components which determine what's fed back. Remember those $18 \mathrm{k} \Omega$ resistors. These often change value, changing the field scanning rate and eventually causing complete field collapse. To check them, disconnect one end of one resistor and measure them both. The feedback capacitors C75 and C70 are not often at fault, and there are other things to check before these. The valve itself is most often at fault, and must come early in the checking list. This can also cause loss of field hold, particularly when the set is first switched on, i.e. the valve gets lazy and requires more time to reach its operating efficiency. If a new valve doesn't help matters, do the valve base voltage checks on pins 6,7 and 8 . If 8 is low, apply the meter to pin 9 and if this action opens up the scan suspect the linearity controls of being open-circuit as already described - the point here being that the meter itself has provided a d.c. return to chassis to "unblock" V3B's control grid.

Having ensured that the amplifier section voltages are right, check at pin 1 . This is the triode anode, and the reading here should be about 50 V . That is, it should be about 50 V if the oscillator section is working. As we have said, the capacitors in the timebase proper don't often give trouble and it's better to concentrate on resistors if the valve is not at fault. The resistors must include the $18 \mathrm{k} \Omega$ ones
mentioned above (R101/R102), also the height control if this has a healthy 270 V at one end and precious little at the other.

If the oscillator has stopped due to some other reason (say a mangled vertical hold control, damaged by an irate user merely because the $47 \mathrm{k} \Omega$ sync circuit resistor R 44 has gone high and left the timebase floating), the triode will pass excessive current and as a result the voltage across R93, which is in series with the height control, will increase considerably, leaving a reduced voltage at both ends of the height control, thus removing suspicion from this component. Let's give this a little more thought.
A non-working oscillator draws more current than a working one. Hence its anode voltage will be low. Why?
Because a non-working oscillator doesn't develop the self-bias (in this circuit, a negative charge on C70) that cuts a working oscillator off for most of the time. It simply sits there passing a steady, increased current, hence the low anode voltage, because an increased voltage will be developed across the anode circuit resistors. It fails to develop self-bias because there's no feedback pulse to drive it hard enough for grid current to flow. O.K.?

In many chassis the feedback pulse coupling network is rather more complex than here, with extra components to shape the pulse. Obviously an open-circuit coupling capacitor or resistor or a short-circuit capacitor to chassis will result in non-oscillation.

Insufficient Height

Insufficient height is another common complaint which can originate in the oscillator stage. The cause is usually in the supply, normally derived from the boost line (line output stage), to the triode anode. The boost voltage depends upon the particular design, and will normally be found to be from around 600 V to about 900 V . There is usually a series resistor which reduces this voltage to the figure required at the "top end" of the charging circuit resistors. Associated with the series resistor is some sort of decoupling capacitor, usually about $0.1 \mu \mathrm{~F}$ in value, to stabilise this point. Some designs use a higher value capacitor (say $1 \mu \mathrm{~F}$), so that in the event of line timebase failure the consequent collapse of the height circuit voltage is delayed - the larger capacitor takes longer to discharge thus avoiding the appearance of a concentrated spot at the centre of the screen.

Taking a look at the 1500 circuit, we find the boost line supply is via R123 which drops the 650 V line down to 270 V where it's decoupled by the $1 \mu \mathrm{~F}$ electrolytic C 89 (the original design used a $0.1 \mu \mathrm{~F}$ capacitor in this position) and stabilised by the VDR Z1. When the voltage at this point tries to rise, the VDR conducts more heavily, and vice versa less heavily when the voltage tries to 'fall, providing the stabilisation effect. Thus Voltage Dependant Resistor.
${ }^{\prime}$ So when the complaint is loss of height, we look for reduced voltage - provided the PCL805 is in good order and the loss of height is even at the top and bottom of the screen. C89 can (and does) leak, thus dropping the voltage, and R123 can rise in value (less often). R94 can develop a dud spot on its track, where the wiper arm contact to the track is not good (fit a new preset control), or R93 can rise in value (less often). The VDR is often suspected but in fact these little fellows are almost trouble free and can put up with a lot of mistreatment (even more so those used in width stabilising circuits). So the VDR is the last item likely to require replacement. In short, if lack of height is the problem, leap at the preset height control and then at C89if the valve is in order.

next month in

- MULTIBURST GENERATOR

Checking the frequency response of a video circuit is greatly simplified by using a multiburst signal consisting of a series of frequencies sen consecutively along the TV. line. The multiburst generator to be described provides a white bar followed by $0.5,1.6,3.3$ and 5 MHz signals. The results show up clearly on an oscilloscope and, if a dual-beam scope is used, the input and output waveforms can be compared directly.

- SERIES REGULATOR CIRCUITS

Voltage stabilisation is important in solid-state TV sets, and in the case of a mains-battery portable receiver the stabiliser circuit must be capable of working with an input voltage as low as 12 V . The type of stabiliser generally used in such sets is the series regulator arrangement. Stanley Amos analyses the basic circuit and describes a number of interesting variations.found in practice.

- SEMICONDUCTOR REPLACEMENTS

Sets from many parts of the globe are likely to appear on the bench today, and a bewildering variety of transistors and diodes may require replacement. Apart from the difficulty of obtaining the exact type in many cases, this also presents stock problems. It's much simpler to stick to a group of well known transistor types that can be relied upon to operate satisfactorily in the usual circuitry. Andy Denham provides useful guidance on a range of transistors and diodes that meet most requirements

PLUS ALL THE REGULAR FEATURES

ORDER YOUR COPY ON THE FORM BELOW:

то
(Name of Newsagent)
Please reserveldeliver the DECEMBER issue of TELEVISION (50p), on sale November 20th, and continue every month until further notice.

NAME
ADDRESS \qquad
\qquad
\qquad
\qquad

Fig. 7: Infra-red transmitter circuit.

Fig. 8: Infre-red receiver circuit.

Fig. 9: Using an extra SL490 for manual receiver control.
directly control the volume, brightness and colour;, as shown in Fig. 6. The circuit also has a second mute facility which instantly removes the sound without the need to reduce it over a period of a few seconds through the 32 possible sound levels. The sound returns to its original level when the mute button is pressed a second time.

The , on/standby command switches the television receiver on from a standby condition. The receiver can't be switched on from the remote control unit when completely off. This prevents the possibility of a spurious signal switching the receiver on and causing a fire risk.

Infra-red linked remote control systems are slightly more complex but offer the advantages of higher data rate capability, less chance of the radiation being noticed by animals or even by humans, and less multipath interference.

The transmitter for an infra-red system must generate short d.c. pulses. These are applied to one or more infra-red emitting diodes. A typical infra-red transmitter circuit is shown in Fig. 7. The internal oscillator of the SL490 is not
required in this circuit, so it's disabled by connecting pin 18 to earth through a $2.2 \mathrm{k} \Omega$ resistor.

Short current pulses from pin 3 drive the BC307. pnp transistor which feeds an npn Darlington pair (BC337/ TIP41). The latter provides current pulses of up to 10A for the three parallel connected GAL32 infra-red emitting diodes.

The maximum range of a circuit of this type is about 27 metres - far more than that of an ultrasonic system. A simpler infra-red system with a single npn transistor instead of the Darlington pair and a single emitter diode was found to have a range of about eight metres.

Although a current of 10A from the small battery in the hand-held infra-red transmitter unit may appear excessive, the pulse width is only of the order of $15 \mu \mathrm{sec}$. This pulse is drawn from the $470 \mu \mathrm{~F}$ capacitor C 1 which must not have excessive inductance and must have short connections to the circuit if sharply rising pulses are to be obtained.

Attempts to use a pulse width of less than $15 \mu \mathrm{sec}$ may result in a diminished response due to the response time of the phototransistor employed in the receiver.

A suitable infra-red receiver circuit is shown in Fig. 8. A light filter is employed in front of the receiving phototransistor since this is also sensitive to visible light. The filter removes the visible light but has very little effect on the 940 nm infra-red radiation from a gallium arsenide emitting diode. The SL748 amplifier/filter stage in Fig. 8 must be well screened to prevent electrical interference: it's possible to include screening (in the form of wire mesh) over the phototransistor window.

The output from the SL748 is fed to one of the two-input nand gates of a 4011 CMOS i.c. (which contains four such gates). The first gate is biased for Class A operation, whilst the succeeding two gates are connected as a monostable circuit. The $1 \mathrm{M} \Omega$ potentiometer varies the monostable threshold voltage, acting as a sensitivity control. This circuit produces very clean output pulses which are fed to pin 10 of the ML920 (see Fig. 6).

The circuits described enable up to 20 channels to be selected individually by remote control or to be stepped sequentially until the required programme is reached. If less than 20 channels are required, $6,8,10,12$ or 16 channels can easily be used. If the least significant bit of the transmitted word is ignored, one has a 10-channel system without any other modification.

An additional SL490 device can be used at the receiver to provide local push-switch controls. See Fig. 9.

A single transmitter can be used to control more than one receiver. In this case a switch in the pin 16 circuit of the SL490 is used to alter the RC time-constant and hence change the pulse modulation rate. If the command signal rates differ by more than 30 per cent no mutual interference or cross coupling should be found between the system. A second receiver can be incorporated in a high fidelity system so that both the television receiver and one's $\mathrm{Hi}-\mathrm{Fi}$ system can be controlled from a single portable unit. A second receiver can even be used to switch on the oven.

Remote control facilities are especially important in receivers incorporating teletext decoders. The ML920 decoder can be interfaced with a teletext receiver using CMOS logic elements.

The new integrated circuits used in the remote control system described here are in production and readily available for large or small orders. It's interesting to note that they can be used not only for television remote control but also for industrial and commercial applications (such as automatic telephone answering equipment). It's understood that one TV setmaker has already adopted this remote control system. Others are due to follow.

Requests for advice in dealing with servicing problems must be accompanied by a 50p postal order (made out to IPC Magazines L.td.), the query coupon from page 49 and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

DECCA 30 SERIES CHASSIS

With the colour control at maximum, the colour spreads over the edges of faces (particularly) and objects. Turning the brightness up fully has much the same effect. With a lower colour control setting, the faces in particular have a bue tinge. On monochrome, there are very slight red borders on all objects and people.
The first effect is usually due to the video stages operating under the wrong d.c. conditions. The luminance signal is a.c. coupled to the emitter-follower TR 204 which drives pin 3 of the MC1327P demodulator/martrixing i.c. Associated with the a.c. coupling is a d.c. restorer and a preset control VR239. Reduce the brightness level by turning VR239 until the effect disappears (with the brightness control advanced), then restore normal brightness control range by means of the preset brightness control VR601 on the bottom power supply panel. If this action results in a dark picture at full brightness, advance all three c.r.t. first anode preset controls, ensuring that the grey-scale remains correct. The fringeing should be cured by adjusting the static convergence.

PYE 691 CHASSIS

The picture is good but on a normal colour transmission the red information disappears intermittently, details which should be red turning to orange over wide sections of the raster. The purity and convergence have been checked and are correct, and when the guns are separately switched, red, green and blue rasters are obtained.
The symptom is unfortunately that of a c.r.t. with a failing red gun. It would be worth checking the red output pentode's cathode decoupling capacitor C364 ($0.0015 \mu \mathrm{~F}$) however. You could try reactivating the red gun.

GEC C2110 SERIES

When the set is switched on from cold there's inadequate field scan and foldover at the bottom of the raster. The picture corrects itself gradually, and after about six minutes is normal.

The thermistor TH451 (VA1034) in the field output stage is suspect, also the field charging capacitors $\mathrm{C} 458(22 \mu \mathrm{~F})$ and $\mathrm{C} 457(47 \mu \mathrm{~F})$. Also check the field linearity control P453. If this doesn't solve the problem, you'll have to check the semiconductor devices in the field output stage TR454/5 and D451/2.

GRUNDIG 5010GB

The problem with this set is a line foldover of approximately. half an inch down the centre of the screen. In a past issue, L515 was suggested as a possible cause. The fault remains however after replacing this coil with one from another set.

L515 is in the circuit which drives the scan thyristor. Make sure that you've used the correct coil, as it's critical in value. Also make sure that it's a good one. It's not an expensive item, and easy to replace. C515 and R515 in the same circuit tend to suffer in this chassis and should be replaced at the same time as the coil. Failing this, ensure that all joints on and around the commutator coil are sound, and if necessary check the scan thyristor and efficiency diode (Ty518 and Di518). Note that in this condition the e.h.t. will usually rise to around 30 kV and at this voltage the resistors (R545/6) in series with and one or more of the c.r.t. first anode presets may fail. Other possibilities are the tuning capacitors C516/8/9 and C517. Replacements must be of the correct type, since they have to handle a ripple current of some 40A peak.

THORN 980 CHASSIS

There's an odd fault on this v.h.f. only portable. On ITV only, about a quarter of an inch of video information is being repeated down the centre of the screen, correct in every way (perhaps a line or two lower) and about $1 \frac{1}{2}$ in. to the right of its correct position. The contrast of both sets of information is the same. BBC- 1 is excellent in every way.

If the fault is still present as say a lighter patch with no signal or a short length of wire connected to the aerial socket, there's a tendency to instability in the tuner, probably due to a faulty biscuit. If there's no sign of a fault under this condition, try reducing the signal level and see whether the fault appears at some particular signal level. If so, look around the a.g.c. line for a faulty decoupling capacitor. It would be interesting to see whether the fault is present with say a crosshatch signal applied. If not, the signal itself must be subject to some form of distortion.

PYE 697 CHASSIS

The two 100Ω wirewound resistors R462/R463 on the convergence board were getting very hot, though the pieture and sound were both o.k. before I switched the set off.
The two resistors are connected across the R / G line symmetry coil L64/5. It's unusual for this coil - which carries the line scan current - to become open-circuit, so the probability is of a break in the copper circuit around its base. The d.c. resistance of each half of the coil should be 0.5Ω :

THORN 2000 CHASSIS

The picture is good but there's reduced height and width, varying with picture content and the brilliance control setting. Examination of the boards has failed to reveal any defective components.
It's essential to check first that the stabilised voltages from the power regulator board are correct: there should be 53 V at TP3 and 55V at TP1. If these are wrong, suspect the regulator transistors VT2/3/7. If all is well here, the probable cause of the trouble will be excessive e.h.t., in which case the feedback amplifier output transistor VT6 (D1693, use type 2 N 3055) in the e.h.t. generator circuit may be leaky or short-circuit. Adjust R14 on the e.h.t. board for 24 kV at the c.r.t.'s final anode.

DECCA 30 SERIES CHASSIS

With the slider of the set width/e.h.t. control VR 451 hard over to the right (viewed from the rear) there's still lack of width. Moving the slider to the left narrows the picture. I've checked all the resistors in the width circuit, also the line drive coupling capacitor C430, and replaced the PCF802 line oscillator valve and PL509 line output valve. Before finally suspecting the line output transformer, has anything been missed?

There are several things to check before suspecting the line output transformer. First ensure that the h.t. at F1 is above 265 V . If not, replace the reservoir/smoothing electrolytic block C601/2. Next try a new PY500 boost diode. Measure the resistance of the width/e.h.t. control VR451 ($2 \mathrm{M} \Omega$) - it sometimes changes value to give low width. Check the damping/tuning capacitors C433/C435 associated with the line output transformer - one or other could be open-circuit. Finally disconnect the shift choke L402 at the shift-sense tag to see whether this component has short-circuit turns.

ITT/STC VC51 CHÁSSIS

There is constant field slip on this set - the picture will stop for a few seconds only. The picture looks as if it would be good if only it would stop. Adjusting the height control affects the rolling, but a new PCL805 field timebase valve has made no difference.

This is a common fault with the VC51 chassis. The pentode section of a PCF80 is used as the sync separator, and its anode load and screen grid feed resistors tend to change value. They are R66 ($220 \mathrm{k} \Omega$) and R63 ($330 \mathrm{k} \Omega$) respectively. Check these, also the $390 \mathrm{k} \Omega$ and $470 \mathrm{k} \Omega$ resistors in the cathode circuit of the PCL84's triode section (field sync pulse amplifier).

KORTING 51763 SERIES

The set was left idle for several months. On switching on, it comes to life and produces a dullish raster and after 15 seconds a crackle on sound. The PY500A boost diode then starts arcing inside, followed by fuse blowing. The line output stage valves have been replaced, the set isn't damp, and no definite short-circuit can be found with a meter.

The e.h.t. tripler could be breaking down. Disconnect it and see whether the PY500A continues to arc. If it does, disconnect the $82 / 150 \mathrm{pF}$ high-voltage ceramic capacitors, which provide the line output stage fifth harmonic tuning, one at a time. There are usually three (C427/8/9), in the PY500A's cathode circuit.

GEC 2040 SERIES

There is no raster on this set. At the time of the failure, R705 on the raster correction panel glowed brightly - its value is not now discernable, i.e. it's thoroughly cooked. Are the two faults associated?

R705 is part of a network across the pincushion distortion correction transductor T701: the network is also in parallel with the line scan coil circuit. It's possible for R705 to become very hot should the line oscillator change frequency as a result of a component failure, then ceasing to operate. So first check whether the line oscillator is working - there should be -60 V at the control grid (pin 1) of the line output valve. If the line oscillator is working correctly, check the continuity of the transductor, the scan coils and the R / G symmetry coil L701.

WALTHAM W125

We're having difficulty obtaining certain components for this set and would appreciate any suggestions for suitable replacements. The components are the TS 18 e.h.t. rectifier, the OA1161 diode in the line oscillator circuit, the two diodes (same type) used in the flywheel sync discriminator circuit, and the OA 1160 detector diodes.

The following types are suitable:
D304 TS 18 e.h.t. rectifier, use a TV18.
D101 OA1160 vision detector, use an OA90.
D102 OA1160 6 MHz sound detector, use an AA119 or OA91.
D301/2/5 OA1161 line timebase diodes, use a BA 129 or BA154.

MITSUBISHI CT200B

What appear to be hum bars travel either up or down the picture from time to time. They are not intrusive on bright scenes, but noticeable on dark scenes, sometimes causing a local sideways movement over a few lines.

It seems likely that one of the series regulator transistors is leaky. There are two of them, Q941 and Q943. They are on the left-hand side, with access after lowering the vertical chassis. Alternatively the mains bridge rectifier could be responsible.

BUSH TV350 PORTABLE

The sound is very distorted and the picture only faint. The screen is bright, but the brilliance control does not have much effect when turned down. There's line pairing, with a faint grey picture in the background.

The regulated l.t. line could be incorrect. Check for 11 V across C609. If the supply is in order, suspect the video emitter-follower $\operatorname{Tr} 9$ (2SC829, 2SC838 or 2SC839 may be fitted) - the sound and sync signals are extracted from its collector circuit, so a defect here would account for the various symptoms present. There should be $7 \cdot 1 \mathrm{~V}$ at its collector, $2 \cdot 7 \mathrm{~V}$ at its base and 2 V at its emitter.

THORN 3500 CHASSIS

If the brightness control setting is increased there's excessive h.t. current with the result that the excess-current trip operates, causing field foldover due to the reduced h.t. The voltages in the beam limiter and field output circuits seem to be correct. The fault occurs only when a very bright scene is displayed or the brightness control setting is increased. One other point is that when a dark scene is displayed there is progressive width cramping (pincushion shape) on the right-hand side only, the cramping increasing in proportion to the darkness of the picture, reaching a maximum of about lin. The h.t. is stable and correct with this cramping. Neither the cramping nor the foldover occur until the set has been on for about half an hour,

We have an uncomfortable feeling that either the line output transformer or the e.h.t. transformer has one or two shorted turns. This is enough to reduce the width at low brightness and increase the line output current (though apparently the voltage across the beam limiter sampling resistor R907 is correct). The line output transistor could also be at fault, but with a fault of this nature one can never be sure. The a.c. blocking choke L504 is also not above suspicion. It might also be worthwhile checking the condition of the pincushion distortion correction transductor and its associated resistors on the convergence panel.

ELIZABETHAN T12

The trouble with this set is field slip. The picture and sound are all right and the line timebase works perfectly, but the picture rolls.

If the picture can be made to hover by adjusting the field hold control, check the $3.3 \mu \mathrm{~F}$ a.g.c. reservoir capacitor C145, the two coupling electrolytics in the sync circuit (C302 and C303, both $0.47 \mu \mathrm{~F}$), and the sync separator transistors $\operatorname{Tr} 302$ and $\operatorname{Tr} 301$. Otherwise a general check of components around the field oscillator transistor $\operatorname{Tr} 303$ will be necessary.

ITT VC100

The picture and sound come on normally, but after threefour minutes a loud bang comes from the loudspeaker, followed by a chain of lesser noises. The picture appears to jolt when the bang occurs, but otherwise remains normal.

This often occurs with the VC100 and similar ITT chassis, and can usually be cured by replacing the PCL86 audio valve. If necessary, its holder may have to be changed. Very occasionally the coupling capacitor C108 ($0.01 \mu \mathrm{~F}$, between pins 8 and 9) will be found to be responsible due to leakage.

191
Each month we provide an interesting case of television servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.

An ASA hybrid colour receiver (of Finnish origin), Model CT5004, was working perfectly on sound but the display was marred by a small, seemingly defocused, displacement of blue with respect to the vertical picture content. The owner confirmed that the fault had developed gradually, and that before the blue started to "drift" horizontally the picture was of high colour quality.

The overall convergence adjustment is not unduly difficult on this model, and as the symptom gave a distinct impression of misconvergence steps were taken to check the adjustments while at the same time getting a feeling of how the convergence controls influenced the fault.

The convergence unit is somewhat complex (by today's standard), with diode-rectified d.c. fed through the coils for static convergence, the magnetic field in some versions (as that under investigation) being supplemented by small permanent magnets for coarse adjustment.

All the controls appeared to work and although the convergence was marginally in error the display could not be significantly improved. For a subjective test of the blue display the set was arranged so as to produce a modulated blue raster. This was well defined in terms of scanning lines, but the modulation content was of a "diffuse" nature rather like a tube with astigmatism. Red and green modulated rasters were then similarly arranged, and both were found to be well defined in terms of picture content.

Attention was then directed to the colour drive circuits, which consist of transistor driver/output pairs for each colour, primary-colour drive being applied to the tube's cathodes. All the voltages around the blue transistor stages appeared to be correct, but when the meter probe was touched on the collector of the blue output transistor the fault condition worsened quite substantially. When the
probe was touched on the emitter the fault almost completely cleared!

After a short while the service technician had located the trouble, aided by the clues just described, and changing one small component restored the picture to its original high quality. What was the most likely cause of the fault, and how did the effects of the probe connections assist the technician? See next month for the solution and for a further item in the series.

SOLUTION TO TEST CASE 190 - Page 665 last month -

As in many mains/battery portables, the c.r.t. heater in the Thorn 1690 chassis is connected between chassis and the regulated l.t. rail. The small tubes used in portables tend to be more susceptible to intermittent heater-cathode shorts than the larger types used in table models, particularly if they've been subjected to excessive vibration while being carried around in a car or caravan.

The trouble was eventually traced to such a short or, rather, more of a high-resistance leak. When the tube was cold the insulation resistance was very high, but when the resistance was checked after the set had warmed up it was found to have fallen in value. This not only reduced the cathode voltage, thereby reducing the bias and causing the screen to brighten, but also attenuated the video drive signal.

The technician was presented with a good clue when his test prod inadvertently knocked the tube neck - indeed tapping the neck of the tube with a screwdriver is a good way of verifying a tube fault of this type, provided undue force is not used! (But don't do it when people like Sid and Grace are around - see page 626 last month.)

[^0]
Manufacturers Surplus Components
 FIT THE RIGHT PART

 150 mixed 1 and 2 watt resistors $£ 1.50$ 200 mixed Capacltors, most type

100 mixed Electrolytics f3.30 300 mixed Printed Circuit mounting Components for various TVs, resistors, caps etc. 300 printed circuit Resistors
to 4 watt
100 High Wattege TV resistors
Wirewound etc.
100 mixed miniature Ceramic and Plate Caps
25 mixed Pots and Presets
25 mixed TV Presets
20 assorted TV VDRe and
Thermistors
TV Convergence
Pots
20 assorted TV knobs, includ
push button, chrome, control
push button, chrome, control
types etc. Mostly Thas,
20 assorted Vaive Base
20 assorted Sync Diodes blocks for various TVs
25 assorted Pulse Caps
high voltage
10 Spark Gaps
20 assorted Zener Diodes 1 watt and 400 MW
100 Mixed Diodes, includes zener, power, bridge, varicap germanium, silicon, marked unmarked etc.
New Improved Transistor
Packs
100 New and Marked Transistors
including, $\mathrm{BC} 148, \mathrm{BC} 154, \mathrm{BF} 274$
BC212L, BF200 and lots of others only
200 Transistors as above and
including 2 N 3055 , AC1 28
BD131, BFY50, BC238
BC184L
only $£ 9.95$

Why Buy Expensive Triplers 1
Repair your old 5 and 3 sticks at
a Fraction of the Cost.
10 Replacement Rectifier
Sticks
$\mathbf{E 1 . 0 0}$

500 untested Diodas some
marked, signal, zener, sync,
etc. Random checks showed ver 70\% good
Special TV Bargain Parcels
Lots of useful parts including
damaged panels, tuners.
omponents etc. 10 lb for $£ 7.50$
Hardware Pack
ncludes BA nuts and bolts
hylon, posidrive, self-tapping
P" clips, cable markers,
clamps, fuse holders etc. \quad £1 per lb.

THORN SURPLUS

3500 Series Scan Coils,
now and boxed, complete with
assembly static controls
assembly, static controls,
eads and sockets
£5.25
500 Focus units with matrosil $£ 1.00$ $\mathbf{0 0 0}$ L.O.P.T windíngs f2 pair
1500 multi caps
$50+150+100 \mu$
3500 " 625 " line VHF Kit for wired systems 4 Knobs black with chrome caps to fit ITT, Thom, GEC and most small diam. shafts $\quad 60 \mathrm{p}$ per se 1500 bias caps 160 f 25 V 10 for $£ 1.00$ 950 rotary transistor tune with leads and slow motion drive
50 bottom panel complete with i.f.'s switch etc
950 line transformier (not
Jellypot)
£ 3.00

Convergence Pots with knobs. $5 \Omega, 20 \Omega, 30 \Omega, 100 \Omega$

MISCELLANEOUS

GEC single standard, hyorid cha
Convergence panel.! Brand new
complete with|plugs and leads

SPECIAL OFFER
 GEC transistor rotary tuners with slow drive, $A E$ Skt. and leads

 2000 Series ITT CVC5 power panel. New but five resistors never fitted Pye 697 line and power panels, damaged or some bits missing but invaluable for sparesPyo mono mains droppers
with fusible link
$147 \Omega+260 \Omega \quad 50 p 3$ for $f 1.00$
Decca "Bradford" C.T.V.
triplers $25 \mathrm{KV} \quad £ 2.50$ each 5 for $f 10$ G8 Thyristor OT1 $12 £ 1.003$ for $£ 2.50$ Portable TV EHT Stick
"Siemans TV $18 \mathrm{~K}^{\mathrm{KV}}$ ". Fit
most portables 50 p each 3 for $£ 1.00$ Wost portables SOp each 3 for
$20 \Omega 16 \mathrm{~W}, 135 \Omega 15 \mathrm{~W}$.
$86211 \mathrm{~W} 105 \Omega 10 \mathrm{~W}$
10 of any one type $£ 1.00$ 10 of each type $£ 3.50$
2.2k fusible, vertical mounting

Screen Feed resistors 9 watt
$0.47 \Omega \frac{1}{2}$ watt emitter $\quad 8$ for $£ 1.00$ resistors
Bias Caps
$330 \mu \mathrm{~F} 25 \mathrm{v}$
470μ F $25 V$
160μ F 16 V
40 for $£ 1.00$
10 for $£ 1.00$
10 for $£ 1.00$
10 for $£ 1.00$
Avoid Lethal Shocks
Auy our specially designed
EHT Probe, removes high
voltage charges from tubes
caps, etc. Heavily insulated
with lead and earth connector 60p each
B9A P.C. valve bases $\quad 20$ for $£ 1.00$
EY87/DY87 EHT bases 10 for f 1.00

Send 40p P. \& P. on all above items send Cheque or P.O. with order to:- SENTINELSUPPLY DEPT. TV

149a Brookmill Rd., Deptford, London SE8
(Mail Order address only. Callers by appointment) Trade enquiries for quantity welcome. Surplus stocks purchased for cash.

U.H.F. GREYSCALE AND PATTERN GENERATOR.PG6RF

PRODUCES SIX INVALUABLE PATTERNS:-
\star CROSSHATCH GRID
\star HORIZONTALS
\star DOT MATRIX
\star VERTICALS
\star WHITE RASTER
only reauires connection to u.h.f. aerial socket. 9V BATTERY OPERATED.
TECHNALOGICS now gives you the opportunity to set up colour television receiver the professional way.
This pocket size, battery powered unit (consumption less than $6 \mathrm{~m} . a$. I) based on latest cmos technology, enables you to set up: static convergence, dynamic convergence, picture geometry, colour purity. focus, beam limiting, Grey-scale tracking, black level. clamping etc. by selecting one of the six patterns generated by the PG6RF on channel 36 (for U.K. 625-line standard T.V. sets).
Available either ready built and tested or in D.I.Y. kit form. The kit consists of all components, glassfibre p.c.b., tough plastic box with full instructions (modulator pre-built for ease of construction).
Ready built and tested guaranteed for 1 year.
KIT £21.50 BUILT £28.00 + 50p p\&p all subject to 8\% VAT STILL AVAILABLE:

LOGISCAN MK II COLOUR TELETEXT DECODER

YOU CAN NOW BUILD A TELETEXT DECODER TO THE LATEST BBC/IBAㄱBREMA SPEC. (N.B. Many other decoders are not to full spec.)
Available with full technical back-up in easy to build form for-f205 Kit, $£ 265$ ready built and tested or in module form, price on request. all subject to $12 \frac{1}{2} \%$ VAT.
DISCOUNT PRICES FOR TITL LS AND LOCMOS INTEGRATED CIRCUITS ON REQUEST. DETAILS LARGE S.A.E.

MAIL ORDER ONLY
TECHNALOGICS
8 EGERTON STREET, LIVERPOOL L8 7LY

SOUTHERN IRELAND DEALERS

We are the largest stockists in the south of Ireland of clean used T.V. sets.
PYE - BUSH - PHILIPS - FERGUSON -KORTING DECCA ETC.
UHF/NHF Mono from $\mathbf{£ 1 5 . 0 0}$ each Colour from $£ 120$
All Sets Tested \& Cabinets Polished. Over 2,000 sets in stock.
Visit our warehouse and see for yourself. Fresh Stocks Weekly.
Delivery can be arranged.
T.V. WHOLESALE DISTRIBUTORS LTD.
E.D.I. House, Kylemore Park West Industrial Estate, Dublin 10. Tel. 364139 or 791995.
Also at 2, Tower Street, Cork (off Barrack Street).

PHILIP H. BEARMAN
 (VALVE
 SPECIALISTS)
 SUPPLIERSTO

NEW valves by Mullard, Mazda, Telefunken, etc.
manhe "qualty" branded valves only carry the go day guarantee, see our lists.

onal Valves 7 p)
(Adjacent to Post 0ffice) 6 \& 8 POTTERS RD., NEW BARNET sTop Phess PC92/96, PCL200, HERTS. Tel: 449/1934-5 (Robophone on 449/1934)
Also EY 500 A . EL509 ect. (CLOSED 12.30-2 p.m. DAILY. OPEN SAT. A.M. ONLY)

Any $\frac{\text { NOTE }}{\text { excess }}$
Aill be refumbdal

Second Floor, 8 Potters Road, New Barnet, Herts.											Telephone 01-440/8841 MAIL ORDER ONLY				
ALL NEW \& BOXED. "QUALITY" BRANDED VALVES GUARANTEED 3 MONTHS. BVA ETC. HAVE							$\begin{aligned} & \text { PLEATE: } \\ & \frac{\text { NOTE: }}{\text { CURRENT PRICY }} . \end{aligned}$				MINIMUM ORDEREOP				
6\% ALLOWED IN LIEU OF GUARANTEEI									Some leading makes available.						
D	53p	EF86	p	ars01	11.40	PCFs02					90				
DY802	53p	EF89	S5p	PC86	75p	PCF80S	11.60	Plsia	65 p	UBF		${ }_{\text {cose }}^{\text {service }}$	of		
ECCC	54p	EFF183	55p	${ }^{\mathrm{P} C}$	75p	PCF806	75p	PL	30 p	UCC	Sop				
CC83		EH90				PCF	${ }_{6}^{1.70}$	${ }^{\text {PLI83 }}$	30p	UC	${ }^{58 p}$	OONLY,	O. C.O.		
ECC8		EL41		PCC	${ }_{35} 5$	PCL	39.	PL500		${ }^{4} \mathrm{CLE83}$	Op				
ECH8		EL599		PCC	52 p	${ }^{\mathrm{PCL}}$	${ }^{65 p}$	PL504	$\underline{1}$	UF		portite over			
ECH8		EM84					70p	PLS		U	${ }^{85}$	£6 60 £ $20-80 p$	p (max)		
ECL80		EY900/			889p	${ }^{\text {PCLL }}$		${ }_{\text {rLSOO }}$	${ }_{\text {c }} \times 2.00$	UK_{41}		sin stock	time of		
ECLS6					\%	PCL	£1.40	PY88	${ }^{75 p}$			press	ect		
EF80	$41 p$	1		ccreo	c1.50		${ }^{83} .60$	PY800	60 p .	U25		opossible market	entuctuar		
EF85	45 p			PCF801		\|PFL200	35	PY80		U26	60p	tions if unavoid	idable.		
Large vilven 2 p . ench extre.				ALL PRICES INCLUDE VAT @ 12+\%						ENQUIRIES WELCOMED FROM TRADE \& RETAIL (same prices)					

EMO - EUROSONIC - GRUNDIG - TELETON + ALL BRITISH MAKES ETC., ETC. - ALL SPARES READILY AVAILABLE P PANEL REPAIR SERVICE REBUILT TUBES - TWO YEAR GUARANTEE
Almost any TV Component supplied by return "'off the shelf" e.g. LOPTX EHT trays - droppers - OSC coils - switches - cans - smoothers - I.C.'s, etc., etc. NEW - COMBI LOPTX NOW AVAILABLE.
YOU CAN BE 95\% SURE WE CAN SUPPLY ANY TV COMPONENT BY RETURN IF YOU NEED SPARES FAST - RING NOWI
ACCESS AND BARCLAYCARD ACCEPTED.
S.A.E. FOR FREE SERVICE CATALOGUE.

THE TELECENTRE, WORCESTER ST.
WOLVERHAMPTON (0902) T2293

PHILP H, BEARMAN $6 \& 8$ POTTERS ROAD, NEW BARNET, HERTS. Tel: 01-449 1934/5

 NEW MONO TUBES, Usually 2 Year Guarantee. Tested prior sale.| A31/410W Mullard | | |
| :---: | :---: | :---: |
| A31/120-CME1220 | (A31/300)* | PRICES INCLUDE 121 |
| A $34 / 100$ - CME 1420 | £19.50* | |
| A38/160-CME1520 | £21.00* | |
| A44/120WR - CME1713 | £21.00 | |
| A50/120WR - CME2013 | 118.00* | |
| A61/120WR - CME2413 | £21.00* | Eire Ex |
| COLOUR TUBES. | | quiries pleas |

Prices correct at time of going to press but subject to alteration without notice. Telephone enquirles welcomed. $19^{\prime \prime}, 20^{\prime \prime}$ £60; $22^{\prime \prime} \mathrm{£68.00} \mathrm{ES}$ allowance old CRT.

TELEVISION TUBE SHOP

NEW TUBES AT CUT PRICES

JAPANESE etc. TUBES

9AGP4 \qquad $£ 17.50$
90AB4£15.00
190CB4£15.00
230ADB4 18.9
230DE4/CT468.................... 224.00
CT507................................£17.95
CT512................................£27.79
240AB4A 17.95
310DMB4/DGB4 19.50
310DWB4/DJB4 19.50
310EDB418.75
310EUB4............................. 19.50
310EYB4.............................£16.50
310FDB4 19.95
310GNB4A Equivalent..........£19.9
310HCB4£19.95
340AB4£19.50
340AYB4£23.00
340CB4 244.50
340RB4£24.50

Some Rebuilt Japanese Tubes
Now Available at $£ 14+$ V.A.T.

COLOUR TUBES

12VARP22.............................. 62.50
330AB22..267.50
470FUB22B 585.00
A44-271X£65.00
A47-342X 669.50
A49-191X/120X 552.00
A51-220X/510DJB22.............e64.00
A56-120X 669.50
A56-140X/410X£62.00
A66-120X275.00
A63-11X/120X $\mathbf{5 6 9 . 5 0}$
A67-120X 582.00
A67-1.50X :............................. 669.00
A66-140X/410X $\mathbf{8 7 0 . 5 0}$
ALL TUBES GUARANTEED 12 MONTHS

CARRIAGE:
Mono £2.00 Colour $£ 3.00$ N. Ireland $£ 4.00$

ADD 12 $\frac{1}{2} \%$ VAT TO ALL PRICES

TELĖVISION TUBE SHOP
 52 BATTERSEA BRIDGE RD., LONDON, SW11.

Tel. 228 6859/223 5088

SETS \& COMPONENTS

TUNER REPAIRS

Repair Service for most types of U.H.F. Tuner. Prompt turnaround. C.O.D. or Proforma.

R. A. ASSEMBLIES
.66 Boteruta Romad. Herthag, SX (0424) 434932

TIRRO ELECTRONICS the mail order division of RITRO ELECTRONICS UK offers a wide range of components for the amateur enthusiast. Large SAE or 20p brings list. GRENFELL PLACE, MAIDENHEAD, BERKS. SL6 1HL.

KORTING COLOUR T.V.s $22^{\prime \prime}$ and $26^{\prime \prime}$ screen size available. Perfect working order $£ 80$ each, non workers from $£ 50$. Full back up spares available. Tel: Mr. Wilson, Bradford (0274) 665670 .

P1802/T Top
 Solid State Replacement Valve

E2.50 each	Uoyd Eloctronics, C.W.O.
	G3 North Parede.
Grantham,	
Lincs.	

SMALL ADS

The prepaid rate for classified advertisements is 18 p per word (minimum 12 words), box number 60 p extra. Semi-display setting $£ 3.50$ per single column centimetre (minimum 2.5 cms). Ail cheques, postal orders etc., to be made payable to Television and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertismement Manager, Television, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

CONDTIONS OF ACCEPTANCE

 OFCLASSIFED ADVERTISEMENTS1. Advartisuments are ieceapted subject to the conditions appaaring on our current adverisament rate card and on tho express warrants that the advertisoment does not contravens any Act of Parliament nor is it an linfingemant of the British Code of Advartising Practice.
2. The publishers rasarve the gight to 3 atuse or withdraw any advertisemant. 3. Although every care is raken, the Publizhers shall nat be liable for clerical ar printers' arrors or their consequentes.

TELEVISIONS to the Trade. Large quantities of Mono from £4, square screen from 18 . Colour TVs working from 165 . R.B.M. GEC, Pye, Thorn, etc. Phone Scarborough 0723 - 68087 - 65451. Scarborough TV Trading, Ridings House, Depot Lane, Seamer Road, (A64), Scarborough.

American Dynascan Tube Restorer \& Analizer,

Now available in this country. For full details write or telephone:T.V. WHOLESALE

12 Front Street, Whitley Bay. Tel: 532561 or 512276.

VALVE BARGAINS

ANY 1-20p, 5-80p, 10-f1.25, 50-f5. 50 ECC82, ECH84, EH90, DY86/7, EF80, EF183, EF184, PC86, PC88, PCF80, PCF802; PCL82, PCL84, PCL85/805, PCL86, PY81, PY800, PY88, PL36, PL504, 6F28, 30PL14.

- COLOUR VALVES 50 p EACH

PY500/A, PL508, PL509, PL519.
Postage \& Packing 30p, no VAT
VELCO ELECTRONICS
9 Mandevilio Torrace, Hawkshaw, Via Bury, Lancs.

RE-BUILT COLOUR TUBES 19' ${ }^{\prime \prime}$ 29.50 22' ${ }^{\prime \prime}$ £32.50

20' $£ 30.50$
 26" £38.50
One Year Guarantee. Tel: 22611.11 MATRIX TV LTD., 112 Eseex Roed, London N1.

INGERTONE

For ex-rental colour and mono televisions

De-controlled sets suitable for re-rent or sale. A good sélection always available, many working. Good testing conditions. Trade only.

LONDON

24 Dames Road
London E7
01-555-5569 01-555-2.200

BRISTOL
28 St. Thomas Street Bristol 1
0272-211179

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact Coles-Harding \& Co., 103 South Brink, Wisbech, Cambs. 0945 4188. Immediate settlement.

RCA 110° PIL TUBES
 For 'TELEVISION"' COLOUR RECEIVER Project

22^{n} AS6-611X \qquad . 5101.50 ince. VAT.
A67-611X
 127.65 inc. VAT Neck Components included and preset at Factory. Carriage $\mathbf{2 3 . 0 0}$.
B. J. BUCKLE, 14 Park Crescent, Motheringham, Uncs. Telephone (0628) 20031.

Colour T.V. Spares
 Brand New Top Quality Components

E.H.T. Triplers

Philips G8 E6.50; Pye 691 E6.00; Thorn 3000 £6.50; 3500 ع6.50; 8000 £4.00; Thorn 8500 £7.00; 9000 £7.00; Korting Hybrid 26.80 ; Grundig Hybrid $\mathbf{£ 9 . 0 0}^{\mathbf{0}}$.

Mains Capacitors

Philips G8, RRI. GEC. 600 MFD . 300V £2.25; Pye 691 200-300MFD. 350V $£ 3.00$; Thorn 3000/3500 175-100-100 83.00; Thorn 1000MFD. 70V 80p; RRI. 2500+2500 30V £1.25.

Semiconductors

BT119 £4.00; BT120 ع4.00; TV106 ع1.70; BU208 £2.80.

All prices inclusiva. Please add 30 p for p. \& p. Thousands of parts in stock for British and Foreign TVs.

Terry Gallagher,

 TV Spares Specialist 20 Oakworth Green, Beachiwood, Middlesbrough, Cleveland TS4 3ES.Office Only, No Callers, Thank You.
Enquiries Please Tel: (0642) 85886

VALVE LIST
 all valves fully tested

Five valves or over postage paid Under five valves postage $6 p$ each

114 Burnky Road, Ramtenstall, Rossendale, Lancs.

BRC 2000, 3000, 8000, 9000 .
Philips G8, Pye 691, 697, 713 Bush Murphy 802, 823.
G.E.C. 2100 Single Standard Hybrid Panel Repair/Exchange Singles or Bulk: MODULAR ELECTRONICS
160 Brabazon Road, Hounslow, TW5 9LP. Telephone 01-897 0976.
EX RENTALTV
$19^{\prime \prime \prime}$ UHF 625 £4.50
$23^{\prime \prime}$ UHF 625
Colour from
£ 40.00
(

EDWARDS \& SONS

103 Goldhawk Road, London W12 Tel: 01-743 6996

BREAKING TV's

Over 200 TV 's to be disposed of, for Spares or Complete. Amont any Mono apare available (Tested). Any Mono Tube ES + $\mathbf{\$ 1 . 2 5}$ p ${ }^{2} \mathrm{P}$.

IFFLRF BRC 1400 Chusias, complete, workin order. incl. valves, lesa tuner, $26+22 \mathrm{P}$ \& p . Many colour spare avuilable. S.A.E. please with enquirica.

KNAVESMIRE T.V.,
 74, Albemarie Road, York.

 Tel: York 31237.
LARGE SUPPLIERS OF SERVICE SHEETS AND COLOUR MANUALS
 TV, Radio, Tape Recorders, Record Players, Transistors, Stiereograms, Radiograms. All at 75 pach except Colour TV \& Car Radios
 TV Sheets full-fength, nöt in bits and pieces, 24×12. All other stieets also full-length.
 please state if circưtr will do if service sheet is not in stock, large s.a.e with all enquiries and orders otherwise cannot be ätiended to. Uncrossed P.O.'s or crossed Cheques returned if servich sheets are not owailabls. Mail order only or 'phone 01-458 4882. Free TV foult trocing chart OR TV CATALOCUE WITH ORDER.
 C. CARANNA, 71 BEAUFORT PARK, LÓNDON, NW116BX NO CALLERS PLEASE

SERVICE SHEETS, Radio, TV, etc., 10,000 models. Catalogue 24p plus SAE with orders/enquiries. TELRAY, 154 Brook Street, Preston, PR 1 7HP.

SERVICE SHEETS for Radio, Television, Tape Recorders, Stereo etc., with Free fault-finding guide, from 50 p and S.A.E. Catalogue 25 p and S.A.E. Hamilton Radio, 47 Bohemia Road, St. Leonards, Sussex.

SERVICE SHEETS. SERVICE MANUALS
PRACTICAL AND TECHNICAL BOOKS
COVERING COLOUR \& MONO TELEVISIONS, RADIOS. RECORD PLAYERS, TAPE RECORDERS; ETC.

SERVICE SHEETS 75p PLUS S.A.E. SERVICE SHEET CATALOGUE 50p BOOKS
 COLOUR TV MANUALS

prices include postage uik. Only
|TVT ${ }^{\top} 77$ TRANSISTOR EQUIVALENT \& DATA BOOK. (A TO Z). 272 Pages................. $.2 .25 i$ TVT ' 78 TRANSISTOR EQUIVALENT \& DATA BOOK. (2N. 2 S . ETC.). 392 Pages - $\mathrm{E} 3.30^{\prime}$ NEWNES COLOUR TELEVISION SERVICING MANUAL by G.J. King. Vol. 1 87.20 NEWNES COLOUR TELEVISION SERVICING MANUAL by G.J.King. Vol. 2: $\mathbf{1 7 . 2 0}$ NEWNES COLOUR TELEVISION SERVICING MANUAL by G.J.King.Vol. 3 88.60 COLOUR TELEVISION SER VICING by G.J. King. 2 nd Edition...................................... 1.1 .30 COLOUR TELEVISION THEOR Y by G. H. Hutson..86.80 COLOUR TELEVISION PICTURE FAULTS byK. J. Bohlman 2.90 ICOLOUR.TV WITH REFERENCETO THE PAL SYSTEM by G.N.Patchett 86.20 TELEVISION (COLOUR \& MONOCHROME) Part 3 by G. N. Patchett . 4.35 TELEVISION SER VICING HANDBOOK by G.J.King.3rd Edition 86.10 BEGINNERS' GUIDE TO TELEVISION by G.J. King. Sth Edition. .$£ 2.65$ BEGINNERS' GUIDE TO COLOUR TELEVISION by G.J.King.2nd Edition CATHODE-RAY OSCILLOSCOPE AND ITS USES by G.N.Patchett............................\&4.00 SERVICING WITH THE OSCILLOSCOPE by G.J.King. 2 nd Edition c5.35
TOWERS' INTERNATIONAL TRANSISTOR SELECTOR. Revised Edition \qquad c5.35 (send large saie for free book lists)

COVERING FOLLOWING MAKES ALBA, BRC, BUSH, DECCA, GEC, DEFIANT, MARCONI, EKCO, PYE, FERGUSON, DYNATRON, NATIONAL, .HITACHI, INVICTA, ITT/KB, RGD, GRUNDIG, SOBELL, STELLA, SONY, MURPHY, PHILIPS, HMV, ULTRA.
please send s.a.e. For quotation "COMPREHENSIVE TV REPAIR MANUALS" by McCourt. In six Volumes
These unique Books save time and money on repairs and cover most British Colour \& Mono sets. Price $\mathbf{E 4 . 5 0}$ per volume plus 40p POST, or complete 6 volumes for only $\mathbf{£ 2 7 . 0 0}$ POST FREE.

WE STOCK NEW AND SECONDHAND EDITIONS OF "RADIO AND TELEVISION SER VICING" BOOKS. FROM 1965-66 EDITION UP TO DATE. PRICES ON REQUEST.
BACK İSSUES OF FOLLOWING MAGAZINES AVAILABLE. CURRENT PRICE PLUS 20p POSTAGE PER COP̈Y. P. WIRELESS, P.ELECTRONICS, E. ELECTRONICS,TELEVISION,R.CONSTRUCTOR,ELECTRONICS TODAY,ELEKTOR.

BELL'S TELEVISION SERVICES
 190, KINGS ROAD, HARROGATE, N. YORKSHIRE. TEL. HARROGATE (STD 0423) 55885

OPEN TO CALLERS DAILY $9.00 \mathrm{a} . \mathrm{m}$. TO 5.00 p.m. PLEASE INCLU

Reg. Office: 14B Queen's Parade, North Ealing, W5
SERVICE SHEETS - COLOUR TV SERVICE MANUALS Service Sheets for Mono TV, Radios; Record Players and Tape Recorders 75p. Please send large Stamped Addressed Envelope.
We can supply manuals for most makes of Colour Television Receivers by return Post. B.R.C. PYE EKCO PHILIPS ITT/KB SONY G.E.C. HITACHI BAIRD ULTRA INVICTA FERQUSON H.M.V. MARCONI AND MANY MORE. LET US QUOTE YOU. Please send a Stamped Addressed Envelope for a prompt reply.
COMPREHENSIVE TV REPAIR MANUALS BY J. McCOURT Mono Volumes 1, 2, 3 and 4. Colour Volumes 2, 3 and 4.
A must for the repair man, loaded with faults and cures, all at $\mathbf{£ 4 . 0 0}$ each plus 40 p post Build yourself "The Colour TV Signal Injector", manual £1.45. Manual with printed circuit £2.45 post paid. The McCourt circuit diagram manuals Mono and Colour. Send S.A.E. for full details. Export enquirles wolcome. International Rapiy Coupon please. Mail only to:
G. T. TECHNICAL.INFORMATION SERVICE 10 DRYDER CHAMBERS, 119 OXFORD ST., LONDON WIR IPA

BOOKS \& PUBLICATIONS

SIMPLIFIED TV Repairs. Full repair instructions individual British Sets $£ 4.50$, request free circuit diagram. Stamp brings details unique. TV Publications, (Auset), 76 Church Street, Larkhall, Lanark shire.

LADDERS

'ALUMINIUM Roor Crawlers. Sizes 12 ft - 24 ff . Also aluminium ext. up to $62 \frac{1}{2} \mathrm{ft}$. Leaflet. Ladder Centre (TEL2), Halesfield (1), Telford. Tel: 586644. Callers welcome.
FOR SALE
NEW BACK ISSUES of "TELEVISION" available 70p each post free. Open P.O./Cheque returned if not in stock - Bell's Television Services, 190 Kings Road, Harrogate, N. Yorkshire. Tel: (0423) 55885.
PROJECTION T.V. Decca 1000 C/P Manual. Excellent condition. Working £35. Tel: 0952584910.
PYE 697 Panels, Good, Cheap, S.A.E. Details. Neilson, 70 Falcon Avenue, Edinburgh.
"TELEVISION" 22" CTV needs setting up. Complete, will separate. Carefully constructed with specified components. I.F. professionally aligned. Cost over $£ 200$. Offers - Rapley, 116 Pine Gardens, Eastcote, Ruislip, Middlesex.

SOLARTRON OSCILLOSCOPE CD1400 dual beam 15 MHz with $2 \times$ CX1441 1XCX1443 $£ 140$. Tel: 8748779.

CATRONICS TELEVISION TELETEXT, excellent working order with Catronics manual. £145 o.n.o. Congleton (02602) 6281 after 6 p.m.

NOW YOU'VE SEEN THE REST, COME AND SEE THE BEST IN REBUILT TUBES contact Trent Tubes
 31a Radcliffe Road, West Bridgford, Nottingham. Tel 0602813329
 Most types available Ex. Stock at very competitive prices.

Colour Televisions From $£ 30.00$ VAT inc. D/S Mono From $£ 4.00$ VAT inc. Square Screens From $£ 10.00$ VAT inc.

 VISIT OUR WAREHOUSE AND SEE FOR YOURSELF. WE HAVE DELIVERIES OF FRESH STOCK WEEKLY.TELECARE
BRITAIN'S LARGEST USED T.V. DISTRIBUTOR.
Unit B.3, Eley Road, Eley Estate,
Edmonton, London N18.
Tel: 01-807 5908/9, 8075900.

EDUCATIONAL

TELEVISION TRAINING

18 MONTHS full-time course for beginners to include all the undermentioned subjects. Short courses, combining, one or more subjects, for applicants with suitable education and electronics background such as C \& G, HND, BSc etc.

- 13 WEEKS TECHNICAL MATHEMATICS \& ENGLISH
- 13 WEEKS ELECTRONICS \& RADIO
- 13 WEEKS MONOCHROME TELEVISION
- 13 WEEKS COLOUR TELEVISION
- 13 WEEKS VIDEO CASSETTE RECORDING \& CCTV

The training incorporates a high percentage of practical work.
Next session starts on Jan 8th.
(Also available $2 \frac{1}{3}$ year course in Marine Electronics \& Radar for employment as ships Radio Officer.)
Prospectus from:
LONDON ELECTRONICS COLLEGE

[^1]
BETTER JOB! BETTER PAY!

GET QUALIFIED WITH ICS IN: COLOUR \& MONO TV SERVICING COLOUR \& MONO TV ENGINEERING COLOUR \& MONO TV MAINTENANCE PLUS: Telecommunications, radió, electronics, electrical engineering, technical communications, radio communications, etc., etc.,
NEW: Seff-build radio courses with free kits
Train in your own home, in your own 'time with ICS, the world's most experienced home study college. RETURN THIS COUPON TODAY

WANTED

NEW VALVES and CRT's required, PCL805, PL504, PL509, PY500A etc. Cash waiting. Bearman, 6/8 Potters Road, New Barnet, Herts. Tel: 01-449 1934/5.

WANTED: Clean new semiconductors, I.C.'s etc. Good prices paid. Hewitts, 52 Barkley Road, Suston, Leicester.

TV TUBE REBUILDING - for all supplies, equipment, plant and training - Western-Whybrow Engineering, Praa Sands Cross, Penzance (073-676) 2265.

VHF/UHF inverters less power unit samples $\mathbf{£ 6 . 3 0}$. With power unit $£ 11.81$ inc. VAT and postage. CLEARLINE (Bampton) 21, Brook Street, Bampton, Tiverton, Devon. Phone Bampton 204.

MISCELLANEOUS

COLOUR TUBES

Rebuilt with new electron gun, to British Standard. High temperature pumping.

Here is what you pay.
17-18-19 inch $229: 00$
20 inch . $£ 30.00$
22 inch.............................532,00
25 inch.............................. 534.00
26 inch............................. 538.00
Guarantee 1 year.
Exchange basis.
Prices negotiable for contracts.
Old Colour tubes purchased.

TELESTAR TUBES

575c Moseley Road,
Birmingham B12 9BS.
Tel: 021-440 5712.

UP TO $£ 75$ paid for repair information on British/ foreign TV Sets. Full details from TV Technic, 76 Chürch St., Larkhall, Lanarkshire ML9 1HE.

PROTECT YOUR SERVICING VANI
Do you own a television nervicing van or similur light vebicle? If
 equipment it contuine juat wating to be stolen??
Protect your van/cerr now with the eloctronic Andi-Then Car Protect your van/car now with the eloctronic Andi-Then Car
Security Syatem for the fully inclusive price of only $\mathrm{Cl9.95}$ (UKX only).

* Usea eristing courteay light door switches; entra mintehes may be fited to rear doorra, bonno wec. for added mecurrity.
* Dual Pountive or Negmive chnasis cupability (12 V).
* Includes all necessary switches, wire, connectors etc. with full installation introctiona.

PLUS MUCH MOREI
Generous discount given to bonai-fde compenies operatine servicins tiecta. Trade and Overteas enquiries mont welcome.
Uf you require fiurther deaills, please send SAE/one IRC for our free leaper.

DERWENT ELECTRONICS
Dept. T/F, 7 Epping Close. Derby DE3 4 HR.

COMPREHENSIVE TV Repair Instructions for your set $£ 4.50$ with circuit (if requested). Free catalogue unique T.V./other publications. AUSE (T), 76 Church Street, Larkhall, Lanarkshire ML9 1HE.
G.E.C. Solid State Colour Panel exchange service. S.A.E. Details. Baker, 12 Hampton Gardens, Blackfield, Southampton.

QUALITY REBUILT TUBES
Colour (2 year guarantee) from $\mathbf{£ 3 0}$ Mono (including thin necks) from $£ 10$ Send or phone for full list and terms
WELTECH PICTURE TUBES
5 Masons Avenue, Wealdstone, Harrow, Middx. 01-4275063.

COLOUR PANEL EXCHANGE SERVICE

BRC 3000-3500 8000-8500 Philips G8 and GEC 2110 series.

Free delivery in London area on Exchange Panels. Large tock of BRC 3500 series spares. New and S/H BRC Panels for sale. Immediate exchange on repairable panels.

Catalogue avallable on request.
KAY JAY TV SERVICE
34. Clauson Avenue, Northolt. Phone 8640350.

FOR EX RENTAL COLOUR AND MONO TELEVISIONS

Why not call in and see us - a relaxed friendly atmosphere, together with a choice of hundreds of sets at low, low prices. Colour from $£ 15$, Mono from $£ 2$. Also stands, spares etc. Send an S.A.E. or phone for our current price lists and area map showing how to find us.

Export enquires welcome
West Midlands TV Trade Sales
92 High Street, Kings Heath, Birmingham B14 7JZ.
021-444 6464

DISPLAY ELECTRONICS

COLOUR TUBES mONOCHROME TUBES VDU/RADAR TUBES

REBUILT IN OUR OWN FACTORY
IN N.W. LONDON

Customers are asked to note that as a result of the continuing high demand for our products we shall be moving into a new purpose built factory towards the end of the year. Until that time we shall be pleased to deal with enquiries on

WEST DRAYTON 43904

When we move our new number will be

UXBRIDGE 55800

ELECTRONIC MAILORDER LTD.

VALVE BARGAINS

Any 5-80p, 10-£1.50, 50-£6.00 Your choice from the list below.
ECC82, EF80, EF183, EF184, EH90, PCF80, PCF802, PCL82, PCL84, PCL85, PCL805, PL504, PY81/800, PY88, 30PL14, 6F28, PFL290.
Colour Valves - PL508, PL509, PL519, PY500/A. All tested. 55p each.
Aerial Splitters: - 2 way, 75 OHMS, Inside Type, £2.50

AERIAL BOOSTERS

Aerial boosters can produce: remarkable improvements on the picture and sound, in fringe or difficult areas.
B11 - For the sterso and standard VHF/FM radio.
B12 - For the older VHF television - Please state channel numbers.
B45 - For Mono or colour this covers the complete UHF Television band.
All boosters are complete with battery with Co-ax plugs \& sockets. Next to the set fitting. Price £4.70 each.

600V-1 AMP. SILICON RECTIFIERS PRICE 10-50p 100-£4.00

ALL PRICES INCLUDE VAT. P\&P 30p PER ORDER. EXPORTS WELCOME AT COST.

62 BRIDGE STREET, RAMSBOTTOM, BURY, LANCS.
TEL: RAMS (070 682) 3036.

REBUILT TV TUBES

MONO, WITH TWO YEAR GUARANTEE

A 28 -14W; A 31-410W.
And all thin neck tubes for
portable TVs, including Japanese types
$£ 14.00$

CME 1501/2, CME 1713, CME 1908, CME 1913, CME 2013, CME 2313, CME 2413.
A 44-120W, A 47-11W,
A $47-26 \mathrm{~W}$, A $50-120 \mathrm{~W}$,
A $59-11 \mathrm{~W}$, A $59-23 W$.
And similar types all avail-
able, only two prices.
Up to and including 20"
$£ 11.50$
23 " \& 24"

COLOUR TUBES

Normal Guarantee 1 year, extendable for 4 years (details on Guarantee cards).

All types except Sony, Trini-
tron \& P.I.L.
$12^{\prime \prime}-20^{\prime \prime}$ inc. Japanese
£29.50
22"
$£ 33.00$
$25^{\prime \prime}$ \& $26^{\prime \prime}$
$£ 37.50$

Please add $12 \frac{1}{2} \%$ V.A.T. to all orders. Cash or cheque and old CRT with order

Carriage $£ 3.75$ inc. V.A.T. anywhere on mainland.

All prices quoted assume the return of your old tube in rebuildable condition.

Same day despatch. Advance replacements for some types against deposit. Please enquire.

$$
\begin{gathered}
\text { CALEY TUBES } \\
\text { 17-35 Bangor Road, } \\
\text { Edinburgh EH6 5JY. } \\
\text { 031-554 } 4200 . \\
\text { Callers Welcome. }
\end{gathered}
$$

Forgestone 500

* Pin diode tuner
*Glass epoxy printed circuit panels
*Full technical construction manual
*20AX Hi-Bri tube *Eleven integrated circuits
*Ready built and aligned IF module
*High quality components
*Modern and period cabinets

TELETEXT DECODER KITS available for Forgestone 400 and 500 models, include assembled and tested LSI Module, power unit, interface panels, keypad and complete instructions.
Buy as you build. All Forgestone Kits are for the constructor of today, sections of the Kit are available separately. Please send stamp for further details of these quality products.

Forgestone Colour Developments Limited

Ketteringham, Wymondham, Norfolk, NR18 9RY Telephone: Norwich 810453 (STD 0603)

COLOUR T.V. SPARES

Are you repairing a Decca or Thorn? We can supply most spares - fast!
Here are some examples:-
DECCA All parts stocked for the 10,30 , 80 and 100 series. LOPT $£ 10.50$. Tuner control units, 4 Butt. $£ 6.50,6$ Butt. $\mathbf{£ 8 . 6 5}$. 3R9 R603 52p. Cut-out £1.55. Focus £3.50. Fusibles 61 p . Vol/switch $£ 1.45$. Tripler $\mathbf{5 9 . 0 0}$. Converg. pots $\mathbf{4 8 p}$. Line osc. coil 95p. Mains Tx. £7.30. Mono Dropper £2.05. Mono LOPT £11.75.
THORN 3000. Tripler $\mathbf{~} 9.90$. PSU Dropper $£ 1.32$. $1000 \mathrm{mfd} £ 1.20$. Mains Tx £10.44. Cond. can £3.57. Focus £3.98. Cutout £1.48. 1500. Dropper £1.30. E.H.T. Tray $£ 4.15 .8500 .9000$ Triplers $£ 8.50$ each. 12" Portable (1590) Speaker £4.50. Batt. Socket £2.50. Vol/Sw £2.60.

Most Makes:- Triplers, Droppers and Condenser Cans, prices on application.
One only - THORN 200025 inch. First caller with $£ \mathbf{4 0}$ gets it.
All orders are processed on day of receipt. Send $14 p$ stamps for our catalogue (free with an order). Prices include VAT ($12 \frac{1}{2} \%$). Please add 25p for P. \& P.

BOTTOMLEY'S TELEVISION
11 Leeds Road, Hipperholme, HALIFAX
Phone HX (0422) 202979.
CALLERS - Phone first
NEW ENLARGED CATALOGUE NOW READY

COLOUR TUBES

STANDARD TUBES

METAL BAND TUBES

Rebuilt with new Electron Guns to British Standard 415/1972. Clause 18.2.

SUFFOLK TUBES LIMITED

214, PURLEY WAY CROYDON, SURREY 01-686 7951

Britain's Largest Independent TV Tube Rebuilder

	LINE OUTPUT TRANSFORMERS All items new and guaranteed				MONO TRANSFORMER (No Extra for Carriage) discount for VAT @ 12 $\frac{1}{2} \%$ TRADE. TOTAL				$\begin{array}{r} £ 7.45 \\ .93 \\ \hline £ 8.38 \end{array}$
BUSH A	CHASSIS								
BAIRD						$\begin{aligned} & \mathrm{y}_{20} \mathrm{y}_{2} 82 \end{aligned}$			
COLOUR TRANSFORMERS ITT CVC1 TO CVC2O CHASSIS PHILIPS G8 CHASSIS DECCA CS1730 GS1830 decCa 30 SERIES BRADFORD CHASSIS $\mathbf{£ 9 . 5 0 + £ 1 . 1 9 \text { VAT. TOTAL } £ 1 0 . 6 9}$			BT455DST all models to 2047 all models to 2084 2104 or $/ 11$ 2105 or $/ 1$						V., Marconi, Ultra. $0,950 / 1,950 / 2$. $970,980,981$. $1500\left(24^{\prime \prime}\right)$
			INDESIT $\underset{\substack{20668 \\ 24668}}{ }$		A816 Cha £11.00	 Or auore model No			

[^0]: Published on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Pacesetters, London SE1. Printed in England by Carlisle Web Offset, Newtown Trading Estate, Carlisle. Distributed by IPC Business Press (Sales and Distribution) Ltd., 40 Bowling Green Lane, London EC1R ONE. Sole Agents for Australia and New Zealand - Gordon and Gotch (\mathcal{A} sia) Ltd.; South Africa Central News Agency Ltd. Subscriptions: Inland $£ 9.50$, Overseas $£ 10.50$ per annum payable to IPC Services, Oakfield House, Perrymount Road, Haywards Heath, Sussex. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed of by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever.

[^1]: Dept. BTT11, 20 Penywern Road, London SW5 9SU. Tel. 01-373 8721

