

TELEVISION SPARES

All Makes

All Models

By return of post

LINE OUTPUT TRANSFORMERS FRAME OUTPUT TRANSFORMERS DEFLECTOR COILS

LINE AND FRAME BLOCKING OSCILLATOR TRANSFORMERS

ALL POTENTIOMETER AND SLIDER CONTROLS

MAINS DROPPERS
GERMANIUM DIODES ION TRAPS

METAL RECTIFIERS
FOCUS MAGNETS
E.H.T. CONDENSERS

Our Range of Spares is probably the most extensive in the country and includes all Spares for Tape Recorders. Radio and Record Player Units.
Technical Advice Free. Service Manuals supplied on loan.
Terms: C.W.O. or C.O.D. All Components are supplied at list prices, plus 26 p.p.
Please enclose S.A.E. with all enquiries.

NEWBURY RADIO

272 ROMFORD ROAD, FOREST GATE, LONDON, E.7.
MARyland 3100

SPECIAL FOR THE "HAMS" RADIO STATION
 Illustrated
 tinch detachable bit soldering instrument List No. 70
 Combined Protective Unit with Wiper/Abrasion Pad and Solder Reel
 List No. 700
 Apply SALES \& SERVICE
 (Regd. Trado Mark)
 GAUDEN ROAD
 CLAPHAM HIGH ST.
 LONDON, S.W. 4
 British \& Foreign Potents, Registered Designs, etc.
 Telephones:
 MACaulay 4272-3101
 Telegrams:
 "SOLJOINT, LONDON"

TELEVISION TUBES REBUILT

\star A NEW GUN IN EVERY TUBE
\star bUY DIRECT FROM THE FACTORY

* 12 MONTHS' GUARANTEE

12 inch $\mathbf{f 5 . 0 . 0}$
14 inch $£ 5.10 .0$
17 inch $£ 6.10 .0$
Immediate dispatch on receipt of Remittance Carriage and insurance 12/6 extra
£I Refunded on receipt of your old Tube

SPECIAL TERMS TO THE TRADE

Our new Saphire Tubes with 18 months' guarantee are also available.
MARSHALL'S for TELEVISION LTD.
131 St. Ann's Road, Tottenham, London, N. 15 STAMFORD HILL 3267

BENTLEY ACOUSTIC CORPORATION LTD.
 Telephone: PRIMROSE 9090

38 CHALCOT ROAD, CHALK FARM, LONDON, N.W.I.

FOR IMMEDIATE DESPATCH PHONE PRIMROSE 9090 ANO ASK FOR "CASH ON DELIVERY SERYICE." ALL POST ORDERS CLEARED SAME DAY AS RECEIVED.

ALLITEMS OFFERED ARE NEW, FULLY GUARANTEED, AND PRODUCTS OF ONLYT

WE DO NOT STOCK JAPANESE GOODS, NOR ANY DISMANTLED FROM USED SETS

VOLUME CONTROLS METAL RECTIFIERS Full List with ratings free for S.A.E.

All with Long Spindle and Double-pole Switch. $4 / 6$ each.
$10 \mathrm{~K} 25 \mathrm{~K} \quad 50 \mathrm{~K} \quad 100 \mathrm{~K}$
$\frac{1}{4} \mathrm{mg}$. $\frac{1}{2} \mathrm{mg}$. 1 meg .2 meg

DRMIB 13/: 1 RMDRM2B I5/6 RMDRM3B 15/6 RM-3

5/3	14A86	176	14 Bl 30	35;	14 RA 1-2-8-3	21/-	
$7 / 6$	14 A 97	25i=	\|4B26		$11 / 6$	(FC31)	
7/9	14 Al 100	27/-	\| 4RA I-2-8-2	17/6	16RD 2-2-8-1	12/:	
141.	$14 \mathrm{~A} \mid 24$	28/*	(FClOI)		16RE 2-1-8-1	$8 / 6$	

18RA 1-1-16-1 6/6 (FCl|6) 8RA 1.2.8-1 11/0 $\begin{array}{ll}\text { (8RA 2-2-8-1 } & 1 / /= \\ \text { 18RD 2-2-1 } & \text { |5/ }\end{array}$

IUST OUT: MIDGET SILICON RECTIFIERS, OUTPUT I20 VOLTS AT $\frac{1}{3}$ AMP. TWO IN SERIES GIVE 240 VOLTS AT $\frac{1}{3}$ AMP. NO LARGER THAN A RESISTOR. 10/6 EACH.

Fost/Packing Charge 6d. per item. Orders over $£ 3$ post free. C.O.D. $2 / 6$ extra. Full List, with Terms of Businese,
Any parcel insured against damage in transit for only od. extra. Shop Hours 8.30-5.30. Early Closing Saturday.

YOUR C.R.T. completely FACTORY REBUILT

New heater and Cathode assembly

$$
\begin{aligned}
& \star 12 \mathrm{in} . £ 3.0 .0 \quad \star 14 \mathrm{in} . £ 3.10 .0 \\
& \text { (Money back if not completely satisfied) } \\
& \star 17 \mathrm{in} . £ 4.0 .0 \quad \star 21 \mathrm{in} . £ 5.0 .0 \\
& \text { Carriage and Insurance add 12/6 }
\end{aligned}
$$

Have you sent for your copy? ENGINEERING OPPORTUNITIES is a highly informative 156 -page guide to the best paid engineering posts. It tells you how you cań quickly prepare at home for a recognised engineering qualification and outlines a wonderful range of modern Home Study Courses in all branches of Engineering. This unique book also gives full details of the Practical Radio \& Electronics Courses, administered by our Specialist Electronics Training Divisionthe B.I.E.T. School of Electronics, explains the benefits of our Employment Dept, and shows you how to qualify for five years promotion in one year.
We definitely Guarantee "NO PASS - NO FEE"
Whatever your age or experience, you cannot afford to miss reading this famous book. If you are carning less than f20 a week, send for your today-FREE.

WHICH IS YOUR PET SUBJECT ? Mechenical Eng. Electrical Eng., Clvil Englneering. Radlo Englnetrieg, Automobile Eng. Asponautlcal Eng. Praduction Ens.. Building. Plastict, Draughtemanshlo. Telavision, etc. GET SOME LETTERS AFTER YOUR NAME! A.M.I.Mach.E. A.M.I.C.E. A.M.I.Prod.E. A.M.I.M.I. L.I.O.B. A.F.R.Ae. 8. B.sc. A.M.BrIt.I.R.E. city \& Bullds Gan. Cert. of Education Etc., etc.

BRITISH INSTITUTE OF ENGINEERING

TECHNOLOGY (Incorporating E.M.I. Institutes)
'Dept. SE 20), 29 Wright's Lane, London, W. 8

E．\quad New low prices．New top quality guns： ALL GUARANTEED			
Carriage and Inaurance 12／6 REV	MONTHS VACUUMED	12 MONTHS REGUNNED	12 MONTHS
CRM92．MW\＆2－7，MW2－14，MW2－14C．$\}$ ¢ $1-10$			
MW22－17，MW22－18，ete．			W31；74
12KPA． $121 \mathrm{~K}, \mathrm{Cl2B}$ ，CRM121，CRM121A．		$f 4$	4－10
MW31－16，MW31－18，MW31－74，ete．．．			
141K，7201A，C14FM，CRM141，CRM142， CRM143，MW36－24．MW36－44，etc．	22－10	¢4－10	£5－15
17ASP4，171K，AW32－21，C17FM，CRM171．			AW43：80
CRM172．HW43－64，MW43－69，\％401A．			
	23	£5－5	5
			WW43 64
AW53－80．CRM212．MW53－20，MW53－80－－	84	86－10	6－15

13 CHANNEL TV＇s

TABLE MODELS．FAMOUS MAKES．Complete with sll
valves and tubes．These sets ane unequadled la value due to bure purchase alirect from sularce．They are untested and are not guaramted bu he in working order．
AMAZINGLY POPULAR－IDEAL SECOND SETS

14＂－£6．19．（～ロッド）

12＂ 5 CHANNEL TV＇S 45／－$\binom{\mathrm{p}_{12} \mathrm{i}_{\mathrm{i}} \mathrm{b}}{\mathrm{H}}$
14＂ 5 CHANNEL TV＇S 85／－（ $\left.\begin{array}{c}\mathrm{P}, \mathrm{A}, \mathrm{P} . \\ 1 \% 6\end{array}\right)$

17 INCH 5 CHANNEL TV＇S Complete table modele with all valves and tulea Amazing value．$£ 6.19$ Carr．etc．

4－SPEED RECORD PLAYERS

 Latest B．3．R．TU．Turntable together with lightweight Stasr Galasy dual sapphire crystal turnover pick－up head． 53.10 CartTruly amazing value ai

100 CONDENSERS 10／－
Assortnient of wiumazure gilver mica and ceramic
condensera． $3-10,000 \mathrm{pF}$ ．List value ver $k 5$.

100 RESISTORS | assorturent |
| :---: |
| $f-2$ wat． |
| $7 / 6$ | PM SPEAKERS $\begin{gathered}3 \text { periormance }{ }^{\text {ond }} \text { top makes，} \\ \text { murateed．}\end{gathered}$

 Co－ar．Plugs $1 / 3$ ．Wahl cutiet boxes $3 / 6$ ．

SMASH HITS

STEREO AUTOCHANGERS

STEREO OUTFITS

Consisting of atpreo B．S．R．UA\＆，tugether witb twu separate 3 wati mains amphificr， 3 ，valves （1uF2，1uP14，VY＇）with siu，speakers in two

£11．10！

3 WATT AMPLIFIERS

As above，idesl fur P．A．Guitars Grame．49／m
TV PROJECTION UNITS
Complete standard Phillips uptical units with Mulard siv6－2 projection tube $£ 3.10$ （untested）at a fraction of cust． valves solled guaranteed 3 mphs． EY51，PL81 AMAZING $4 / 6$
 cabint．Top makes requiritug unily valves and

TURRET TUNERS

38 Mc．If．stamlard Famons Make with colla listed．if．Complete nith Pre Fso 45／＝ and Pcest valves，hosed warr．H．）．
 EXTERNAL／INTERNAL I．T．V．CONVERTERS WITH POWER PACK．Very compact PCC＇s4！
 Uur Price．cantr－Lb．

B．S．R．MONARDECX TAPE DECKS
COLLARO TRANSCRIPTION DECKS
R13 150

VALVES BY
 RETURN

$\overline{10 \%}$ DISCOUNT TO PORCTAL OFFER of any SIX VALVES marked in black type（ 15% in dozeng）．Post： 1 valve，bid．，2－11，1／．

 1C5GT 9／8 6AL6 7／915K7

1 L 4	$3 / 6$	6 BE 6	$8 /-6 \mathrm{~K} 5 \mathrm{GT}$
1 LD 5	$3 / 6$	$6 \mathrm{BE} \times \mathrm{AG}$	$12 / 6$
6 BK 25			

 $1 \mathrm{RJ} \quad 6 /=6 \mathrm{BR7}$ $1 \$ 4$ 8／6．68W6 9／316L6G $\begin{array}{lll}185 & 5 / 36 B W 7 & 6 / 6 \operatorname{l6L} 76 \\ 1 \mathrm{~T} 4 & 4 /-6 \mathrm{BX} 6 & 5 / 316 \mathrm{~L} / 8\end{array}$ | 1 T 4 | $4 /-6 \mathrm{BX} 6$ |
| :--- | :--- |
| $21) 21$ | $4 / 6$ |
| 6 CC 4 | |

 $\begin{array}{llll}5 \mathrm{Y} 3 \mathrm{G} & 8 /-16 \mathrm{FGG} & 8 / 3 & 6 \mathrm{SA7} \\ 5 \mathrm{~F} & 5 / 9 & 10 \mathrm{P} 13\end{array}$

 $\begin{array}{llll}6 A B H & 8 / 8 & 6 \mathrm{FS} 3 & 6 / 9 \\ 6847 & 6 / 3 & 12 A T 7\end{array}$
 $\begin{array}{llll}6 A G 7 & 8 /-6 J 5 G & 2 / 9 & 6 U 5 G \\ 6 / 3 & 12 \mathrm{BAB}\end{array}$

NEW LOW PRICES GUARANTEED 3 MONTHS

FREE TRANSIT INSURANCE．All valves are new FREE TRANSIT INSURANCE．All valves are new or of fulliggarantert origin．Satisfaction or Moner Back Guarap－ weat ongin．Satistaction or honey Back Guarga－
tee on goods if returued unhed within 14 dsys．

MS LESS 5\％\＆POST FREE IN DOZENS． Callers always welcome．LIST OF 1000 SNIPS 6d． 350－352 FRATTON ROAD，PORTSMOUTH． P．O．BOX 21 （W）

TRUE
 ECONOMY Depends on Quality

Midland "New Alumina" rebuilt C.R.T.s conform to the highest standard of reliability-offering you the finest value available today. Each tube is completely rescreened, aluminised and fitted with a new gun unit.
Midland's reputation for quality and the rapidly growing demands for these dependable tubes are your assurance of satisfaction.
12 and 14 in .- $\mathbf{£ 5 . 0 . 0} 15$ and $17 \mathrm{in} .-£ 5.10 .021 \mathrm{in}$.-£8.0.0 (all types).
Reliable Rebuilds at Popular Prices.
Exceptionally low-priced Midland Rebuilds-the tubes you can always depend on.
 $21 \mathrm{in},-\mathbf{\$ 7 . 0 . 0}$ (all types).

all types covered by midland's 12 month guarantee available now-from stock

MIDLAND TUBES LTD.

37 GEORGE STREET, MANCHESTER, 1. Telephone: CENTRAL 4568/9

FOR THE MAN ABOUT THE HOUSE, A SOLDERING TOOL 8

12/6
A.O. 货AINS OR CAR BATTEBY 110 v or 6 F and 12 v . Spechal adapter for $200-2 \% 0 \mathrm{v}$ working $10 / \mathrm{e}$ extra. car wime solder reed. Lncludea a 20 ft . reel of ERSIN f0/40 solder. It is a tool for electronic soldering instructions for nse. These matantly ready for use and cannot burn Fitted in a light meisal cerrying case, with full all over the Btated for over e4 (exchange value) P. P. $3 / f d$.

THE AMPLIFIER FOR CHRISTMA8. 69/8, Ideal for stereo attachment, well gtyled cabinet un Brown/IFory with carrying handle. Containg 8in. algo thax epeaker. For use A.C.D.C. mans. 8 valpes loin, 10P14, and U404. Max. O.P. 4.5 watts. Size. 14 I $11 \times 6 \notin i n s$. Wonderful for HOME, HALI, AMATEUR THEATRICALA. \& unita can glve a world of antusement and special mereo effecta. [deal for works and otfleem sa Loud Haller, for Election spealter and Public

PORTABLE AMPLIFIER, 49/6 (2E. DRA) 8 watts ECL82 valre, A.C. Mains. O. ${ }^{3}$. Trunsformer included (two controla.) Latest circuit inciuding negative feedback. Knobs $2 / 6$ extra. P. \& $\Psi .3 / 6$.

NEW LOOK AMPLIFIER, 49/6. For use with A.C. or D.C. mands \& vatve, 10f1, 10P14, and U404. Max O.P. 4.5 watta. Sise $7 \times 6 \times 4 \mathrm{in}$. Ready for immediate use. Balrage guarantee. P. $\$ P$. $5 / 6$.

8PEAKERS 6/9. Limited quantity of theae modern type speakel. Thep are tested and they have a allight cone fault, that is repaired. not afferting the quailty. P. \& P. 2/B.
8in. P.H. SPEAKER. 6/9. As above, but with O.P. tramormer titted. P. P. $2 / 6$.
P.M. SPEAKER, 9/9, 8in of the alghest quality. Atted with O.P. Trengformer. P. \& P. $9 / 6$,
ELLIPTICAL SPEAKERS, 16/9. 8 x 3 in. and $7 \times$ 4id. Brand new. Speciaily made for Record and Tape Recording Canineta, P. Brand P. $2 / 9$,
ELLLIPTICAL SPEAKERS. 19/9. Bradd new. Ideal for Record Cabincte x 4 in . P. * P. $2 / 9$.
TRLEPHONE SETS. 7/9. Ex, W.D. Wireiess remote control unit E.ME.II New condltion morse tapper, switched. Jeck plugs, etc. Lese phone. P. \& P.
$\mathbf{3 / 6}$. $3 / 6$

COMPONEWTSS 4 TD.
219 ILPORD LANE TLPORD ESSEX

TAPE AMPLIFIER, 27,19.6, 5 valve amplifier. Output 8.5 watte. Valve line up; ECC83. ECLA2, 6BWO, EM84, EZRO. Lnput for Microphone, Radio And Gram. Controls-Record playback, volume, tone and Off/On. Blze
Si $£ 3 \leq 4 / i n$. Ins. \& Carr. $4 / 6$.

COLLARO 4-8PRED AUTO-CHANGER. 57,19.6. incorporativg auto and manual controts. Complete with dual turn over type studio crystal pickenp and eapphire ty y ius. Four speed. A.C. Mains. $200-250 \mathrm{y}$. P. \& P. Ins. 5/6.

EXTENSION, 19/8. In polished ost cabinet of attractive design. Coroplete, fitted with Sin. P.M. Speaker of the bigheat quality. hex and swith. Ready for ase

CONTINENTAL DESIGN EXT, BPEAKER, 19/9. Idea for that htereophonic speaker. Covered in amart two tone leatherette colour scheme. Contains 8 in . P.M. speaker. Remdy for immediate use. P. \& P. 3/9.

TV AERIALS, 36/6. Combined toft type. single dipole B.B.C. with 8 elements. I.T.A. Swivel bracket tor univereat fixing. Ins. \& Cart, g_{1-}.

INDOOR COMBINED 27/-. Folded dipose with 12ft. comax cable fithed. Gold inish. P. \& P. $21 *$
1.T.A. AERIAL, 88/6, For all I.T.A. Channeus ror outdoor or cott. 8 elementa. Farnous manufacturer. Sold at hal the normal price. P \& P. 2/6. CO-AXLAL CABLE, Bd. PER YARD Cut to any lenyth. Good quality at

Stamp for FREF Gatalogite (ReqTet U.K. Ontv)

BEAM "'SCOPE'

for D.C. \& A.C. APPLICATIONS

Engineered to precision standards, this high-grade instrument is made avajlable at the lowest possible price, incorporating the essential features usually associated with luxury instruments.
This "SCOPE" will appeal particularly to service engineers and Amateurs. A high \&ain, Y-amplifer ($30 \mathrm{mV} / \mathrm{C} M$.) Provides ample sensitivity with A.C. I- C inputs. Especially suitable for measurentent of transis. of D.C. inputs. Especially suitable ior measurenient on transisof paramount importance. Push-pull X amplifier; Fly-back suppression: Interna] Time-base Scan Waveform available for exterpal use: pulse outbut \&vallable for checking TV Line
OiP Transformers, etc.: Provision for external - I/P and CRT Brightness Modulation. A.C. mains 2001250 v. f19.19.0. plus P. \&P. 7/6. or $50 /$-deposit, plus P. \& P. $7 / 6$ and 12 monthly payments of 33/4.
FULL 12 MONTHS' GUARANTEE INCLUDING
VALVES AND TUBE.

\section*{ALIGNMENT ANALYSER | TYPE |
| :---: |
| Mcta |
| 10 |}

A.C. mains $200 / 250$ V. Provides: Frequency) operation, for FM/TV slignment linear frequency sweep up to $12 \mathrm{Mc} / \mathrm{s}$. From $400 \mathrm{kc} / \mathrm{s}-80 \mathrm{Mc} / \mathrm{s}$. Caphecitance Measurement. Two ranges provided $0-60 \mathrm{pF}$ and
$0-120 \mathrm{pF}$.
Special enables true resonant frequency of any tuned cct, I.F. transformer, etc., to be rapidiy determined. Cash price £6,18.6.

LINE E.H.T. TRANSFORMER

With built-in line snd width control. 14 KV . Scan eoil, yodeg deflection, on ierrite former pf, 1 s kV . sinouthiug condenoer. Can be used for tina, 17in. or slia. tubes. Complete with circult diagram.

29/6 Pus
As above, but for 625
lines, $\mathbf{6 2 1 0 . 0}$, plus 4/P. \& P.

FOCUS IAGMET suitable for the above (state tube), 10/- plas $2 / 6 \mathrm{P}$. \& P

CYLDON TURRET TELETUNER

r.F. $34 / 38$ Mc/s. Braud new, complete with biscuits for channels 2, 4, 8, and 9, but lese vaives. $10 /=$ plus $2 / 6$ P. \& P.
Valves required P.C.c. 84, P.C.F. no.

MAINS TRANSFORMERS

All with tapped primaries. $200 \cdot 250$ volts. $0-160.186 .260 \mathrm{v},. 60 \mathrm{~mA}, 6.3 \mathrm{~F}$
 $350 \mathrm{v} ., 70 \mathrm{~mA}, 6.3 \mathrm{v} .1 \mathrm{mmp.} 6.3 \mathrm{q},. 2 \operatorname{smp} ., 10 / 6.250 * 250 \mathrm{v} .70 \mathrm{~mA}, 6.3$ ₹. 2 mpp., 10/6. Puatage and packing on the above. 3/\%

SURFACE BARRIER TRANSISTORS

Type $\operatorname{AB} 305,15 \mathrm{Mc} / \mathrm{s}$, 2/6 each. 100% AODIO TRANSISTORS, 5/- each.

TRANSISTOR TESTER

For both P.N.P. and N.P.N. transistars incorporating moving coil meter. In
 and leakage. Complete and ready for ust.

A.C./D.C. POCKET MULTIMETER KIT

2in. moving coil meter, scme calibrated in A.C.jD.C. volts, ohmg and millamps. Onge range A.e. $0 . \mathrm{C}$. $0.50,0-100,0-250,0-500$. Milliamps $0-10,0 \cdot 100$. Ohm range $0-10,000$. Front panel, range ${ }^{0}$. pot (for ohm zero seting), tree with kit.

SIGNAL GENERATORS

£6.19.6 or $25 /-$ deposit and 6 monthly payments of 21.6 . P. \& P. 5i- extra. covcrage $100 \mathrm{Kc} / \mathrm{g}-100 \mathrm{He} / \mathrm{s}$ on fundamentals and $100 \mathrm{Mc} / \mathrm{s}$ to 200 Me/s on harmonies. Metal case $10 i n$. x 6tin. x 5in., grey hammer finish. Incorporating three miniature valves and Metal Rectifier. A.C. Mains 200/250. Internal Modulation of $400 \mathrm{c} . \mathrm{p} . \mathrm{s}$. to a depth of 30% : modulated or unmodulated R.F. output continuously CW and magic-eye as output indicator. Accuracy plus or minus 2%.

Cash 24.19 .6 or $25 /-$ deposit and 4 monthly payments of 21/6. Plus Postage and Packing 5/-.
Coverage $120 \mathrm{Kc} / \mathrm{s}-84 \mathrm{Mc} / \mathrm{s}$. Metal case 101n. x $6 \not 1 \mathrm{in}$. x 4tin. Size of scale 6 inn. x sin 2 valves and rectifler A.C. mains $20-200$. modulation of 400 C.D.s. to a unmodulated R.F. output continuously variable. 100
 milli-volts. C.W. and mod. switch variable A.F. output and moving coll output meter. Grey hammer finished case and white panel. Accuracy plus or minus 2%.

SIGNAL \& PATTERN GENERATOR

£6.19 6
P.\& P. 5 \%.

Or 25/=deposit. P. \& P. $5 /=$ and 6 monthly payments of 21/6. Coverage $7.6 \mathrm{Mc} / \mathrm{s},-210 \mathrm{Mc} / \mathrm{g}$. in five bands, all on fundamentals. slow motion tuning audio output. 8 vertical and hori 2ontal bars, logging scale. In grey hammer finished case with $\pm 1 \%$ A.C. malns $200-250 \mathrm{~V}$.

CHANNEL TUNER

Will tune to all Band I and Band IL stations. BRAND NEW by famous manufacturer. complete with P.C.C. 84 and P.C.F. 80 valves (in series). 1.F. 16-14 or 33-38. Also can be modified as an aerial converter (instructions supplied).
with knobs.
$32 / 6$ Plus $3 / 6$ P. \& P

HEATER TRANSFORMER

To suit the above، $200-250$ v., 6/-: Plus $1 / 6$ P. \& P.

8-WATT PUSH-PULL

 AMPLIFIERCOMPILETE WITH CRYSTAI MIENE AND sin. A. mains A.C. mains 200-250 v . Sire 104 in . x 6ifn. x $2 t i n$. Incorporating 6 valves. H.F. pen., 2 triodes. ${ }^{2}$ use with all makes and type ot pick-up and mike. Negative of pick-up and mike. Negative and gram.. and controls for same. Separate controls for Bass and Treble lift. Response f at from 40 cycles to 15 Kes . $\pm 2 \mathrm{db} ; 4 \mathrm{db}$ down to 20 Kos . Output 8 watts at 5% total distor tion. Noise level 40 db down all hum. Output transformer tapped for 3 and 15 ohm speech colls. For use with Std. or I.P. Pecords, musical instruments such as Guitars, etc.f4_19.6 Plus Or $20 /$ - deposit Plus P. \& P. 7/6, and 4 monthly payments of $23 /$.

RADIO \& T.V. COHPONEHTS (Acton) ITD.

23 HIGH STREET, ACTON, LONDON, W. 3
All enquiries S.A.E. GOODS NOT DESPATCHED OUTSIDE U.E.

A NEW-PRACTICAL WAY of UNDERSTANDING Radio: Television Electronics

Including: Transistors; VHF/FM; Hi-Fi equipment; Computors; Servo-mechs; Test instruments; Photo-electrics; Nucleonics, etc.

Radiostructor-m organisation spectalising in electronic training systems-offers a new selfinstructional method using specially designed equipment on a "do-it-yourself" basis. You learn by building actual equipment with the big kits of components which we send you.
You advance by simple steps. periorming a whole series of interesting and instructive experimentswith no complicated mathematics! Instructional manuals employ the latest techniques for showing the full story of electronics in a practical and interesting way-in fact. you reafly have fun whilst learning! Fill is the coupon below, for full particulars.

VOL. II, No. 123, DECEMBER, 1960

THE REPORT OF THE BBC

THE report of the BBC which was published in October gave rise to a great deal of comment in the daily Press, and the statements concerning the views of the BBC on the future of television were given particular prominence. Under the heading "Tasks for the Future", the report states that the Corporation sees as its first task the need to extend the coverage of its transmitters to those areas which at present lack a television service or do not possess a satisfactory service. The BBC has in mind especially the need in the remoter parts of Scotland and Wales. This policy statement shows that the Corporation is aware of the limitations of the present service and, sensibly, intends to improve it before, or together with, the introduction of an alternative service. It must be remembered that where the coverage is at present poor-in remote areasthe need for a television service is great owing to the lack of other forms of entertainment.

Where the introduction of another service is concerned, and it is decided that the uncommitted channels in Band III should be used for an additional television.service instead of being employed to extend the present coverage, the report states that "the BBC would wish to provide the additional service". The report continues, "It remains the BBC's objective to provide the public with a planned choice between two different television programmes as soon as possible. This is necessary to the proper fulfilment of the Corporation's obligations as a public service.". The BBC considers that this second service would enable it to "increase the number of serious, cultural and informational programmes; cater more fully for regional needs than is possible at present; extend educational broadcasts; provide more opportunity for programmes of an experimental nature".

Of the two alternative uses of the remaining channels in Band III, we think that the proposal to use them to increase the coverage of existing transmitters is the better. As the BBC points out, television in Bands IV and V is all the more likely to succeed if a completely new programme is transmitted to give viewers an incentive to purchase new receivers or the new equipment necessary to receive the transmission.

The report states that the BBC would also be prepared to introduce colour television in any band when the time comes. The point is made that the studios at the Television Centre have been designed so as to be suitable for the introduction of colour at any time.

This latest report of the BBC has already given rise to many comments and we consider that, so far as the future of television is concerned, a number of factors have been mentioned which are worthy of more attention than has so far been bestowed upon them.

Our next issue, dated January, 1961, will be published on December 27ed.

A.M. Radio from Spare Turret Coils

RETUNING THE LOCAL OSCILLATOR TO $38 \mathrm{MC} / \mathrm{S}$

By L. E. Higgs

UNUSED channel coils that are fitted in many TV receivers can be modified, in many cases. to tune down to the local broadcast radio station frequencies. The convenience of changing from either channel to A.M. (amplitude modulation) radio for a quick news check, or to

Fig. 1.-Aerial coil assembly.
listen to a short item. without switching off the TV and waiting for the radio to warm up is one advantage. The other is that all modifications are made on detachable spare coils from the turret, without interfering in any way with the circuit of the receiver. If a mistake is made, only a coil is spoiled.

Coil Information

Since about 1955, most thirteen channel receivers use the standard intermediate frequencies of $35 \mathrm{Mc} / \mathrm{s}$ vision and $38.15 \mathrm{Mc} / \mathrm{s}$ for sound. This makes the coil information similar for a whole range of sets. Added to this. the turrets fitted in a large range of sets are similar, and often originate from the same factory. These turret

Fig. 2.-Mixer coil assembly.
types are still being incorporated in sets today, and can be identified by the shaped coil mouldings (Fig. 1). Almost any set with this type of coiliand standard I.F.'s should function on radio from the modifications given here.

Receivers using different types of turrets, converted sets with the old low I.F., in fact almost any tuner with detachable coils can be modified using this procedure as a guide. Switch tuners, continuously tuned front-ends, and incremental inductance tuners are not suitable.

Briefly then, the oscillator coil has additional turns added to bring its frequency down to around the $38 \cdot 15 \mathrm{Mc} / \mathrm{s}$ sound $1 . \mathrm{F}$. The mixer grid coil is replaced with a M.W. pre-tuned coil. The cascode anode coil is dispensed with and replaced by a resistor and coupling capacitor. The aerial coil is replaced by another M.W. pre-tuned coil but with a coupling winding.

Fig. 3.-Pre-tuning the coils. :

The Modifications

Remove all the windings from a spare mixer coil except the slug-tuned oscillator winding. Rewind the oscillator section, tags 1 and 2 (Fig. 2), until, after trial and error guided from the coil table, the oscillator runs at the sound I.F. and can be tuned off on either side of this point. When the oscillator passes through the sound 1.F. a hum and rushing noise is heard accompanied. by disturbances of the brilliance of the unsynchronised raster. The coarse-tuning slug decides this frequency. Coat this winding with cellulose cement to fix the turns. and improve frequency stability. Cut off the remaining length of paxolin tube (Fig. 2) and solder a $5 \cdot 6 \mathrm{k}$ resistor $\frac{1}{\frac{1}{2} \mathrm{~W}}$ with short ends across the cascode output anode coil contacts. In Fig. 2 these are shown as pair 5 and 6, but check the circuit of the turret in question as it may differ from the examples shown. Now connect a capacitor from the anode contact of the

Fig. 4.-Correct and incorrect local oscillator settings.
cascode to the mixer grid contact (6 and 3 in the particular example). This capacitor is not critical. Try 500 pF at first until a good signal strength is obtained and then reduce it to improve selectivity compatible with output-47pF is about the lowest tolerable

Wind a medium wave coil to fit between the mixer grid and the bottom contact of the grid circuit (the pair of contacts from which the original grid winding was removed) 3 and 4 in Fig. 2. This coil is quickly hand-wound on the can of one of the turret valves, slipped off, tested and adjusted to one of the required stations and bound with tape in three places in a circular bundle winding. The whole coil is shaped into an ellipse and wired on to the coil holder and cemented with an adhesive. Do not cement it until all the adjustments have been completed. The problem with these coils is to obtain a good Q in a small space and yet leave them easy to adjust, and the rough coils shown here work well, although time and patience spent with alternative arrangements and miniature screened dust-cored M.W. types would probably give better efficiency.

Pre-tuning the Coils

The method of pre-tuning the M.W. coils will depend on the equipment available. A signal generator and a valve voltmeter were used by the author (Fig. 3). Good positive peaks were obtained with the signal generator set to the station frequency. The turns are removed one by one until resonance shows as a peak reading on the valve voltmeter, and are then bound with tape, soldered on to coil former, and checked again.

When no equipment is available, the coils can be tuned by substituting them for the medium wave coil in a TRF radio and adjusting for maximum volume on the required station. 1t is important to remember to keep the tuning condenser vanes fully out of mesh during this operation, which is repeated until optimum results are obtained. A superhet would not be suitable owing
connections and the circuit. the small. 25 per cent aerial coupling winding goes between the aerial inner and the coaxial outer (not always the chassis), and the tuned R.F. coil between the lower cascode grid and the chassis or old winding connection, whichever is better.

Make the tests for performance described below and when satisfied with one station, repeat for the other station. Make sure that the aerial socket does not become connected to the mains via direct chassis connection.

COIL DETAILS

Oscillator: $\frac{1}{f i n}$. dust-core tuned, 17-25 turns (strip off from 25 turns), 32s.w.g.
M.W. mixer coil:

247 m . 甭in. in diameter air core "bundled" winding, 47 turns 32 s.w.g.
$330 \mathrm{~m}, 47$ turns. $32 \mathrm{~s} . \mathrm{w} . \mathrm{g}$.
R.F. and aerial coils: as for mixer but with 25 per cent additional winding. 32s.w.g.
The information above can only be approximate and should only be used as a guide. This is due to the circuit variations and coil positioning, the turns spread, and the dielectric effect of adhesive soaked into windings.

Testing and Adjusting

It cannot be overstressed that the turret wiring must not be altered. To do so can spoil the TV receptıon. Manufacturing experts leave this section well alone while it is working, especially the trimmers. Use a long aerial plugged into the inner only at the start. With the set on, select the newly fitted radio coil pair and, with the volume full up, tune the oscillator slug slightly above or below the J.F. and several stations should be heard; the pre-tuned should be loudest. Watch

Fig. 5.-A typical turret tuner circuit.
the screen when adjusting because there are two places that the selected station can appear owing to the sum and difference hetrodyning of the local oscillator. Between these two points the described effects will occur as the oscillator runs at the I.F. It is important to chose the highest oscillator setting as this lies outside the vision I.F. acceptance band. The wrong setting can be seen in Fig. 4, and shows up on the screen as a strong brightening of the raster while the correct setting leaves the raster at "no signal" illumination but slightly rippled and torn by other signals.

When the station is tuned in. try the normal TV aerial. This will probably give weaker reception. and a loft or outside aerial is essential for a good signal. If a good result is obtained. the next pair of station coils can be made. However. if the selectivity is poor. then reduce the size of the coupling capacitor until the best result compatible with good volume is obtained. The setting of the contrast and sensitivity controls will affect the signal output and, in the absence of AVC on some
models, any overloading, choking, sound can be cured by slight oscillator detuning or by reducing the number of turns on the aerial coupling winding. It is assumed that the alignment of the vision I.F. is reasonably accurate. Because prolonged running of the oscillator at the intermediate frequency can overrun the video output valve. or possibly affect the vision detector if it is a crystal type. it is wise to short the vision I.F. out with a 1000 pF capacitor from the last I.F. valve anode to chassis while tests are made. This can be removed for a second or two when the screen has to be observed and. of course, when the work is finished.

Curing Instability

The many things that cause frequency shift in a turret would in a good proportion of cases make the local oscillator "pull into the I.F." and the powerful signal. greatly amplified. could radiate back into the whole of the turret and I.F. stages, (Contmined on page 152)

Televislon Receiving Llcences

THE following statement shows the approximate number of Television Receiving Licences in force at the end of September, 1960, in respect of television receiving stations situated within the various Postal Regions of England, Wales, Scotland and Northern Ireland.

French Television

MR. H. A. RICHARDSON of Jngoldmells, Skegness, Lincolnshire, has been supplied by Aerialite Ltd. with the television aerials necessary for his experiments and these have proved very successful in receiving French Television Services at Skegness.

Tests have also been carried out on the French channel eleven station at Bouvigny and the French channel 8A, Lille and Paris.

The receiver being used was a standard British model, but Mr. Richardson proposes acquiring a set suitable for the French Service.

New Survey of British Electronics Industry

TODAY, over $1,700 \mathrm{firms}$ in Britain employing more than 350,000 people operate within the broad field of electronics. Value of the gross output is around £475 million and exports this year are expected to exceed $£ 100$ million.

These and a mass of other facts are brought out in "The

Siructure and Future Prospects of the Electronic-based Industries in the United Kingdom ", a new 54 -page survey by Cyril C . Gee, managing editor of "British Communication and Electronics" and the recently launched newspaper " Electronics Weckly".

Low Power Television Station for Ballachulish

THE Postmaster General has approved in principle a proposal by the BBC to build a lowpower television station near Ballachulish, Argyllshire. The
station already approved for Kinlochleven will receive its television programme from the existing BBC station at Rosemarkie via the satellite station to be built at Fort William. This plan necessitates the use of a relay point at Ballachulish to feed the programme to the Kinlochleven station. The BBC has decided that, rather than provide a point-to-point link over this part of the route, it would be better to build a small satellite station at Ballachulish that would not only serve the main purpose of providing the feed of the programme to Kinlochleven, but would also give direct television reception to some 1,500 people in

Taylor Woodrow Ltd. have installed Marconi closed circuit television on the site of the new building they are erecting at the junction of Gracechurch Street and Fenchurch Street. The installation enables the public to watch building operations in progress on a 2 lin. monitor fitted in a public observation plattorm. This illustration shows a Marconi engineer fitting the closed circuit television camera on the roof of a building adjoining the site.
the immediate neighbourhood of Ballachulish.

The new station. the site and technical details of which have not yet been authorised, is to be built concurrently with the other satellite stations in Stage 1 of the BBC's scheme. all of which are scheduled for completion by March 1962.

TV as a Public Observation Aid

"HE first public "televiewing" platform at a building site in this country is now in use at Gracechurch Street. London.
Taylor Woodrow Construction Ltd. have installed Marconi closed-circuit television on the site of the new building they are erecting at the junction of Gracechurch Street and Fenchurch Street, E.C. 3.

A Marconi 2 lin. monitor installed on an observation platform at Gracechurch Street enables the public to watch work in progress in areas which would otherwise be hidden from view. A control unit mounted near the monitor enables the public to move the camera in bearing and elevation to view different parts of the site.

An industrial camera complete with a remotely controlled pan/ tilt head has been fitted on premises overlooking the site. where work will be completed by autumn. 1961.

The TV installation is a development of the public observation platforms first introduced to building operations in this country by Taylor Woodrow in 1955. "Televiewing" will prolong the life of observation platforms. which are normally dismantled as building progress screens the view.

Stockholm Exhibition

PHOTOMULTIPLIER tubes. of the type used in space rockets for measuring radiation hundreds of miles above the earth, were among the display of special valves and tubes, manufactured by E.M.I. Electronics Ltd.. shown on the stand of Swedish SAAB Aircraft Company. at the recent Fifth International lnstruments and Measurements Exhibition in Stockholm.

A vidicon television tube which can "remember" a transient picture for up to two minutes after the subject has passed out of camera range, and microwave

Dr. H. K. Henisch, of the Department of Physics, Reading University, lectures in the first of the new series of Discovery, Granada TV's schools programme for sixth formers.
Every Thursday at $11.40 \mathrm{a.m}$. Granada TV's Discovery can be seen in the North and Wales and the West. Dr. Henisch's subject: "Semi-Conductors".
k lystron valves of the type used by the Eurovision network of radio links. for televising such events as the Olympic Games to Stockholm and other cities of Europe, were also shown.

Visitors to the exhibition were able to see the latest E.M.I. closed-circuit television equipment. This system. which is being used for applications as varied as police control of traffic and auditioning of television artistes. has recently been installed in the offices of a leading Wall Street stockbroker to show busy executives a continuous picture of the latest ticker-tape price changes.

During the Exhibition, the SAAB Company also showed a range of E.M.I. stroboscopes and oscilloscopes in their Stockholm offices. These included E.M.I.'s latest high-power industrial stroboscope which "freezes" fast-moving mechanisms for observation and critical adjustments without interrupting production. This stroboscope, which uses an ultra-high intensity Xenon discharge tube has a flash rate of up to 60.000 flashes per minute.

Appointment

MR. Michael Clark, Director of the Electronic and Equipment

Group of The Plessey Company L_td. announces the appointment of Mr. George A. Smith as Commercial Executive of that Group.

This Plessey Group includes the Telecommunications, Electronics and the Domestic Equipment Divisions and Hagan Controls Ltd., with a total pay-roll of over 4,000 people. In this appointment he will be responsible for the coordination of the four sales organizations within the Group.

British Instrument Display in Germany

THE Board of Trade and the Scientific Instrument Manu-

 facturers Association (S.I:M.A.) co-operated for a second time in the organisation of a collective display of British scientific instruments at the triennial International Congress and Exhibition of Measuring Instruments in Dusseldorf. which was held this year from October 19th to 26th.This year's collective British display followed a successfül combined effort by the Board of Trade and S.I.M.A. similar to the first event of the same exhibition in 1957. Twenty-five firms have displayed their products on the official stand. which covered an area of $5,000 \mathrm{sq} \mathrm{ft}$.

EHT Generation

By G. K. Fairfield

No.I-THE USE OF THERMIONIC VALVES

THE need for a compact unit capable of providing the EHT required for television equipment often arises where servicing or experimental work is undertaken. Safety requirements demand that the type of EHT unit chosen should not be capable of giving a lethal shock as very high voltages are in use. Consequently a simple transformer system for increasing the A.C.

Fig. 1.-R.F. oscillator circuit (grid-leak bias).
mains potential to a high voltage, followed by a rectifier or voltage-doubling circuit may not be used and therefore one of the various types of high-frequency circuits that are available must be employed. In addition to its use as a test source, the provision of EHT independently produced. will simplify the design of the line scanning section of the television receiver, which usually provides, by line-flyback action, the EHT for the CRT. The brightness of the screen will not then depend on the action of the time-base. and since the separate EHT unit can have better regulation, then defocusing on high-lights can be avoided and improved picture definition results.

Methods of EHT Production

Two general methods are possible to produce the high voltage required and both lead to a compact unit being produced which is quite safe to use. The first of these is the R.F. Oscillator systen in which a class C oscillator, containing a high-Q tuned circuit resonating at a radio frequency provides an oscillatory voltage which may be stepped up by transformer action and subsequently rectified.

Since the resonant frequency is high, only small smoothing capacitors are necessary in the rectifying system and these cannot contain enough energy to give a lethal shock. In addition their smaller size, compared with those necessary for mains EHT production, allows a much more compact unit to be designed.

The second method is similat to the way in which the line timebase transformer operates to provide a high potential from the flyback pulse appearing across the deflection coils.

The principle is to "shock-excite" a tuned circuit by passing a large pulse of current through it at a repetition frequency that is low compared with its self-resonant frequency. This current pulse sets up at train of high frequency oscillations in the tuned circuit which are then transformed to a higher voltage and rectified in the same manner as the K.F. oscillator system. This arrangement is known as the "Ringing Choke" or "Pulsed EHT System."

In addition, circuits may be used where a transistor acts as a very effective switch and converts a D.C. voltage into a square wave, also at a frequency high compared with the mains supply frequency. This waveform can also be increased in amplitude by transformer action to a high voltage. The use of transistors for this purpose is very attractive owing to the high efficiency of conversion, and a future article will be devoted to a description of their operation, and practical designs will be discussed.

Fig. 2.-Generation of current pulses.
In this article it is intended to describe both types of thermionic valve circuits and show how the regulation of such circuits may be improved very considerably by the use of negative feedback.

R.F. Oscillator

This method consists of an R.F. oscillator having a large secondary winding tightly coupled to its anode "tank" circuit.
For maximum efficiency a class C oscillator is used, the grid leak being of such a value that the
minimum anode potential is small compared with the anode supply potential.
Assuming an anode supply of 300 V , let the minimum anode potential be 50 V . Then the peak

Fig. 3.-Circuit of the R.F. oscillator EHT unit.
A.C. potential developed across the tank winding will be 250 V . In order to have, say, 5 kV across the secondary winding the transformation ratio must be 20:1. In practice a ratio of $25: 1$ is necessary to take into account coil losses etc., and this corresponds to a transformer ratio of $15: 1$. This winding will be so large relative to the grid and tank coils that the frequency of operation will be governed by the inductance of this coil together with its self and stray capacitances to earth. The frequency will be found to lie between 100 and $300 \mathrm{kc} / \mathrm{s}$.

R.F. Oscillator Circuit

A circuit of such an R.F. oscillator is shown in Fig. 1. The circuit oscillates by virtue of the positive coupling that exists between the anode and grid coils L1 and L3. Oscillation build-up, at a frequency determined by the tank or anode-tuned circuit, occurs until grid current is drawn by V1. This flows through R1, bypassed by C1 to radio frequencies, and builds up a negative bias which limits the action of the valve. After a few oscillations the bias increases to a maximum where V1 only conducts for each half cycle as shown in Fig. 2 , with the anode passing pulses of current at oscillation frequency.
In the circuit shown in Fig. 1, the anode inductance L1 is tuned by C2 to the frequency of the circuit L2 and stray capacitances. shown dotted as C. L3 is the grid coupling coil and need not be tuned.
To prevent the tuning of the tank coil with C2 becoming too broad, L 1 can be made about $600 \mu \mathrm{H}$. with C_{2} as a parallel combination of fixed and pre-set capacitors of 600 pF maximum capacitance. L2 must then have 15 times the number of turns as Ll , and due to the large potential developed, it
is usually constructed in sections to avoid insulation breakdown. The Q -factor of this coil is most important and if this falls much below 450 then excessive power will be dissipated in the coil, the overall efficiency will fall, and the protective coating of wax given to the completed coil will melt, increasing the danger of breakdown between windings. Filament current for the high voltage rectifier $V 2$ can be obtained by an extra winding on the former which must be suitably spaced or insulated from other windings since it is at EHT potential.

Disadvantage

A disadvantage of the arrangement shown in Fig. 1 is that, should the valve cease to oscillate for any reason, the large negative bias is removed,

Fig. 4.-R.F. oscillator coil construction.
and the resulting large cathode current may damage the valve through excessive anode dissipation. Using cathode bias as shown in Fig. 3, the anode current is actually reduced on cessation of oscillations and no power is being delivered to the external circuit.

Choice of V1 is governed by consideration of the EHT required, peak anode dissipation at this value of EHT, and peak A.C. potential. The latter is important as the peak voltage between the anode and grid is twice this peak voltage across L1, hence the valve chosen must have adequate gridanode spacing to avoid internal "flashover" For EHT potentials below about $7-8 \mathrm{kV}$ then a medium impedance triode, such as a 6 J 5 can be used.

Varying the EHT Value

The value of EHT produced can be varied over small limits by tuning the tank circuit. If this process is carried too far then poor regulation of the output results. A better method is to adjust the cathode bias resistor and maintain the tuning capacitor at optimum setting where a maximum EHT is produced.
With any design a value of EHT will be found corresponding to peak efficiency of operation. Above this value the efficiency of conversion drops and high anode dissipation results. With the design described, this optimum EHT is about 6 kV at a load current of $100 \mu \mathrm{~A}$.

Practical Design

Suitable component values are given in Fig. 3 for an EHT unit giving up to 7 kV EHT, at a load current up to $100 \mu \mathrm{~A}$ usually quite adequate for most cathode-ray tubes.

A diagram of the oscillator coil is shown in Fig. 4. L1 is the anode tank coil and consists of 100 turns of $30 / 48$ Litz wire either wound between insulating cheeks or preferably wavewound so as to be self-supporting. L2 is the main EHT winding and is found in six sections each of 250 turns. Thinner wire is chosen to avoid excessive bulk and 6/5 Litz wire will be suitable. Litz wire is used, to give a high Q-factor by avoiding "skin effect " -that is the high R.F. resistance that occurs in solid wire owing to the high frequency currents travelling only at the surface of the wire. L3 is the feedback winding and need only have about 50 turns of 38 s.w.g. wire to couple sutficient energy into the grid circuit. Fairly tight coupling is required but this is limited by the nearness to which L1 can approach the high potential end of L2. A satisfactory arrangement is to wind L1 and L3 on either side of L2 as shown in the diagram.

The filament winding $L 4$ will depend on the requirements of V2-the high voltage rectifier. Using an EY51, 24 turns of $23 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. polythene covered wire will suffice. To avoid "tracking"-a gradual breakdown of the paxolin former due to the voltage stress across it - the completed coil is given a fairly thick coating of soft wax.

Screening of the complete oscillator is necessary, both from the point of view of interference with neighbouring broadcast receivers. and avoidance of interference patterns on the screens of the television receiver which is being supplied by the unit. A close mesh wire screen will be necessary to enclose the coil completely or complete circuit. care being taken to ensure that adequate clearance is maintained between the screen and the high potential points.

Fig. 5.-Ringing choke circuit.

Ringing Choke Unit

The ringing choke system is rather elaborate but has the advantage that it is easier to modify the circuit to produce control over the regulation of the EHT produced.
The principle has been stated earlier in that a valve is pulsed repetitively into current which flows through an inductive circuit. thus setting up a large resonant voltage across it. To pulse this valve a sawtooth generator is used and it is convenient to make this a blocking oscillator similar to that used in the time-base sections of the television receiver.

If an additional winding is placed on the output transformer core then the voltage developed across this may be rectified and fed to the driven valve as a controlling bias and in this way any increase in load current can be made to cause an increase in the amplitude of the current pulse, thus maintaining the EHI voltage constant. A circuit of the type is shown in Fig. 5.

The triode section of V 1 functions as a blocking oscillator and provides a sawtooth driving waveform to the grid of V2. This has an inductance L1 tuned by C8 in its anode circuit and by autotransformer action provides a large pulse voltage across the EHT winding L2. Rectification of this pulse voltage is carried out by V3 which develops the EHT voltage across the smoothing capacitor C9.

Feedback Action

Feedback action is carried out by coupling winding L3 to the diode of the double-diode triode V1. This rectifies the pulse voltage induced in L3 and develops a D.C. voltage across the diode load R9 proportional to the peak value of the EHT pulse. Controlling action is obtained by feeding this as bias to V2 such that as the load across C9 increases, then this bias is reduced, allowing V2 to supply more current to the transformer windings. If the load is reduced then the bias is proportionally reduced and less current is supplied by the valve.
Thus the EHT potential tends to remain constant irrespective of the load current supplied. To render this action more effective a fixed voltage is added in series with the peak rectified voltage so that as the load varies then the percentage variation of the resulting control is greater than that of the induced peak.
Consider a change in rectified bias of from 12 to 15 V due to a change in load current. This represents a change of 25 per cent in bias value. Now if 10 V of fixed bias is deduced from this then the change is from $12-10=2 \mathrm{~V}$ to $15-10=$ 5 V , i.e. a 150 per cent change thus rendering the arrangement much more sensitive to changes in load.
The effect of this feedback on regulation of the supply is illustrated in Fig. 6 which shows the change in EHT output with and without the feedback circuit connected.

Transformer Design

A blocking oscillator transformer as used in line timebase operation may be used for T1. A suitable design has been described in the October 1957 issue (now out of print). The output transformer is wound on a paxolin former $\frac{1}{2} \mathrm{in}$. in diameter with the turns given in Fig. 7. Windings L1 and L2 should preferably be wavewound and the gear ratios for a Douglas wave-winding machine are given in the diagram. A satisfactory coil may be obtained by winding this between thin perspex cheeks cemented on to the former. These cheeks

Fig. 7.-Construction of the transformer.

Fig. 6.-Regulation of ringing choke system.
should be separated by a gap of $\frac{1}{8} \mathrm{in}$. and the 1,500 turns pile-wound between them. The whole coil should be impregnated in soft wax for insulation purposes.
A ferrite core is used for the transformer consisting of two U-shaped cores (Mullard type FX1336) with a 0.003 in. paper spacer in each gap. The heater winding for the EHT rectifier can consist of six turns of 20 s.w.g. polythene covered wire, (the "inner" of television coaxial cable will be found quite satisfactory for this purpose) wound on one of these limbs as shown in Fig. 7.

It is important to connect the feedback winding in the correct sense to obtain best regulation and Fig. 6 shows the effect of incorrect connections.

Performance

With this design a regulated supply of 6 kV is obtained adequate for supplying currents up to $200 \mu \mathrm{~A}$.

Higher voltages than this can be supplied by adjustment of the fixed potentiometer R8R9 with, of course, reduced regulation performance. The limit being reached at $11-12 \mathrm{kV}$ with this design.
(To be continued)

WINDING DATA FOR FIG. 7	
Winding	No. of turns and wire gouge
4/5	40 turns of 0.026 enamelled copper wire.
1/2	500 turns of 0.0058 enamelled and single-silk wire (wavewound).
2/3	1,000 turns of 0.0048 enamelled and single-silk wire (wavewound).
6/7	6 turns of polythene-covered wire.
	A B C D E F
Gears (Dou	(ndings $1 / 2$ and $2 / 3 \quad 423136488040$

A BAND III LOFT AERIAL

A IO-ELEMENT DIRECTIONAL ARRAY

By A. R. Richards

MANY articles have appeared in Practical Television from time to time on how to construct a suitable array for Band III transmissions.

Substitute for Metal Elements

Nothing basically new is offered in this article, other than to introduce a suitable substitute for the normal metal elements, and which should simplify the construction, even for the very inexperienced constructor.

The whole array is constructed with a length of $1 \mathrm{in} . \times \frac{3}{4} \mathrm{in}$. timber, a dozen ${ }^{3} \mathrm{in} . \times 3 \mathrm{ft}$ dowelling rods, and a box of aluminium cooking foil. The total cost amounts to less than 10s.

There is no real need for perfection in placing the foil on the dowel rods, and wrinkles will not impair the efficiency of the array. Cut 3 in . wide strips of foil to length and roll around each element lengthwise. Any method can be used to hold the foil such as glue, elastic bands, cotton, thin wire, etc. The directors are then nailed to the maịn support with panel pins, taking care that the centre of each director is properly in line (Fig. 1).

Fig. 2.-The method of making the elements from aluminium foil.

Connecting the Feeder

The two main lengths of the folded dipole are wrapped with forl in a similar manner to the directors and reflector, with the exception that the wrapping on the one length allows for $\frac{1}{3}$ in. to $\frac{1}{2}$ in. gap at the centre. Two 2 in . lengths of dowelling rod are then cut and these are nailed to the ends to form the folded dipole, and over these ends are wrapped more foil taking care to bond this with the foil on the main elements. The folded dipole is then nailed in the appropriate position on the main support, and if thought necessary, further short pieces of dowelling rod can be used as struts for the outer element of the dipole to give additional support. These are easily nailed in situ providing reasonable support is made beneath the dowelling rod when being nailed. Bare lighting flex wire is wound firmly around the ends of the foil at the gap of the folded dipole outer element, and to these ends are soldered the co-axial down lead (Fig. 2). A lin. wide strip of foil is attached to the centres of all the directors thus connecting them together.

Spacing between each Director is $6^{\prime \prime}$, between Dipole. and Director, $6^{\prime \prime}$ and between Dipole.and Reflector, i2"

Fig. 1.-The construction of the aerial.

Mounting

It is necessary to stress that the array must be sited in the loft with the maximum available space above and to the sides.

Mounting can be carried out by placing a board across two ralters, to which has been nailed a 6 in . cube of wood suitably drilled to receive the $\frac{3}{8} \mathrm{in}$. vertical dowelling-rod mast. An elastic band will effectively hold the co-axial down lead to the horizontal support, and the lead can also be anchored to the rafters when the correct positioning of the aerial has been obtained.

This aerial is highly directional, and a deviation of 1 in . to 2 in . will appreciably vary the signal strength. However, no real difficulty should be experienced in swinging the aerial to the best position to receive maximum signal.

Band I aerials or V.H.F. aerials generally can be constructed quite simply with this method of construction, and many experiments can be carried out cheaply and without waste, as the dowelling rods can easily be spliced to make them longer should an aerial for other frequencies be required.

ELEMENT DIMENSIONS			
Channel	Reflector (I)	Dipole (2)	Director (3)
8	$\mathrm{ft}_{2} \mathrm{in}_{7}$	$\mathrm{ft}_{2} \mathrm{in}_{5 \frac{1}{2}}$	$\begin{gathered} \mathrm{ft} \\ 2 \\ 2 \end{gathered}$
9	2 61	25	2 112
10	2 5i	24	21
11	25	2 31	20

Directors numbered 4 to 10 may each be $\frac{1}{2} \mathrm{in}$. shorter than their predecessor; for example, for channel 9, director No. 4 would be 2 ft 1 in . long and director No. $52 \mathrm{ft} 0 \frac{1}{2} \mathrm{in}$. long, etc. (Note that the number of directors may be varied to suit the available space.)

RepIacing CIF Tubes-1:\%

R.G.D. AND REGENTONE RECEIVERS

(Continued from page 85 of the November issue)

HAVING dealt with unboxing and removal of the CRT in the R.G.D. Deep 17, we now deal with the boosting and focusing procedure.

Boosting

Use a 6.3 V CRT transformer and connect the boosted secondary to pins 1 and 12 of the tube, having removed the previous two leads from these pins, and joined them together to complete the heater chain. Mains voltage for the transformer may be obtained from between the set side of the mains fuse and chassis.

Screen Cleaning

In all cases the chassis is removed from the cabinet to clean the screen as outlined in "Unboxing."

Focusing

"The 17 ". "The 21 ", and earlier models have a magnetically focused tube which has as its picture shift device a shuffle plate just forward of the focus magnet adjustable by a bent metal strip at the top. The tube neck is centred within the focus magnet by a wedge-shaped rubber ring which should be removed with the ion trap magnet when replacing the tube.
On electrostatic models, focus is adjusted by touching the lead attached to pin 6 on to various other electrodes around the tube base, and fixing it to the one which gives the best focus. This adjustment seldom needs altering when a tube is replaced.

MODEL TI4 Transportable Unboxing

Remove the main control knobs (the inner two are grubscrewed in, and retain the outer two) and the cabinet back. Take off the two rear rubber feet and the green earth wire. Remove the handle, which is held by two screws located beneath the plastic trim over the handle support, and which should be picked out to gain access. Remove the two insulated spacers from the lower chassis securing screws and withdraw the chassis.

Chonging the CRT

Discharge and remove the EHT cap, CRT base, ion trap magnet and picture shift magnet, keeping these latter two in a safe place away from strong magnets and each other. Remove the four self-tapping screws holding the tube support board to the top edge of the chassis and the two diagonal support struts to the side of the chassis and withdraw the CRT assembly. Clean all parts thoroughly before reassembling.

Setting Up

Ensure that the scanning coils are seated well forward on the tube neck, adjust ion trap and picture position magnets in turn for the brightest possible picture centrally placed on the screen.

By H. Peters
The ion trap magnet should not be used to position the picture at the sacrifice of brightness. Focusing is adjusted by the small pre-set resistor mounted on the tube base.

Boosting the Tube

This is performed in exactly the same way as on the Deep 17, detailed above.

Models 605. 590. 610.611 . etc,

Warning; 110deg tubes are used.

All the above receivers use a wide angle 110 deg tube. It should be realized that the more the shape of a tube departs from the traditional goldfish bowl the greater are the stresses set up in the glass under high vacuum. The risk of implosion when handling is therefore theoretically greater than with earlier shapes of CRT.

Unboxing Model 605/590

Lay face down on a soft cloth, remove two back screws and lift off the cabinet.
(Continued on page 148)

Fig. 5.-R.G.D. 605/610 series-plan view.

No. 62-THE DEFIANT TRI456T AND TRI756T SERIES
By L. Lawry-Johns

THESE receivers bear a close resemblance to several other receivers of well-known makers. Probably the closest relative is the Regentone 143T, and these notes may be used in cautious conjunction with these models. There is, however, absolutely no resemblance between this range and the R.G.D. 1455-1456 series, the chassis and circuit being completely different. Defiant models covered by these notes are, in addition to those above, TR1456TL, TR1456C, TR1456CT, TR1756TD and TR1756C. Three types of tube are fitted, a Mazda CRM171 17 in . rectangular, CRM141, 14in. circular (actually $13 \frac{1}{2} \mathrm{in}$.) and CRM143 14 in . rectangular.

The electrical shift controls are fitted in 17 in . models only and there are minor component differences.

Common Faults

The most common fault encountered by the
writer is failure of the metal rectifier, especially when the original 14 RA1-2-8-2 (short) or 14 R A 1-2-8-3 (long) is fitted. The normal symptoms are no sound, no vision, valves light up but no raster or hum from the speaker. This generally only necessitates replacement of the contact cooled rectifier, MR1, which, as shown on the chassis layout diagram. is bolted on the front centre of the chassis. A replacement, FC101 (short) or FC31 (long) should be fitted. Occasionally the H.T. fuse, 500 mA , or 1 A on some models, will be found blown, due to a short on, or in, the rectifier, and this can blow the 1.5 A mains fuse at times.

Dull Negative Picture

When the picture lacks brilliance or what may be termed crispness, having a uniform grey appearance with silvery highlights, worsening when the controls are advanced, the tube may be assumed

Fig. 1.-The video amplifier, sync separator and frame timebase circuith.

Fig. 2.-The above-chassis layout.
to be losing emission. Check the setting of the ion trap magnet on the rear of the tube neck (set for maximum brilliance), and make a voltage check across the heater pins 1 and 12. In some cases these tubes seem to lose some heater resistance, thus causing the voltage drop across the heater to fall. Even though the cathode may be in good
order, its temperature is lower than that specified and the beam current is correspondingly less. The provision of a 12.6 V heater transformer 13 V is usually supplied) will overcome this trouble and restore the emission if the cathode is in good conz dition. When this is done, remove the original heater leads from pins 1 and 12, connect these
leads together and shift the green lead on the mains voltage adjustment one letter up, e.g. C to D. The mains supply for the transformer may be obtained with a lead to the chassis and a lead to the main 1.5 fuse. There are occasions, however, when the
symptoms are misleading unless carefully studied. When the brilliance control oroduces a fairly bright raster although the contrast only shows a negative or thin picture when advanced, check the V6 20 F 2 anode load resistor 6.8 k , the cathode 330Ω, and the video choke L25-L40, R54, etc. The video
Fig. 3.-Simplified under-chassis view.

GDI..... CG6E	Sound Detector
MR2...WX6	Sound Limiter
MRJ..... $39 K I$	Sync. Clipper

Fig. 4.-The sound detector, limiter and A.F. output stage circuits. (' X ' marks a test-point)
coupling capacitor C98 may occasionally be found o.c.

Frame Foults

The most common frame trouble is compression at the bottom of the picture. This is usually due to a failing V11 ECL80. Replacement of this normally restores full height and linearity once the controls have been reset. If. however, valve replacement fails to cure the condition, attention should be directed to the biasing. which is unusual. It will be seen from the circuit that the cathode is returned to the chassis with no bias resistor. The bias is applied to the control grid pin 9 from the oscillator which when the stage is working is a source of heavy negative potential. via R68 ($4 \cdot 7 \mathrm{M}$) and R 69 (1.8 M). The actual bias applied depends upon the value of these resistors. C65 $(0.1 \mu \mathrm{~F})$ and the linearity network R73 270k and VR7.

Complete Loss of Frame Scan

When only a bright horizontal line is visible across the screen, V11 should be checked and if this is in order a voltage check made on pins 1 and 6. Full H.T. should be present at both these pins, allowing for a slight drop across the transformer windings. If there is no voltage at pin 6 , check the blue lead H.T. If H.T. is present here, the transformer T3 has an o.c. primary winding. A cold resistance check should record about 750Ω between the blue and red leads. If the voltage
is present at pin 6, check pin 1 , where the same remarks apply to $T 2$, green and red resistance reading about 780Ω.
If these voltages are present and V11 is in order, check C65, which may be shorted.

Frame Hold

If the picture rolls with the hold control set at one end of its travel for the best condition without locking. check V11. R70 and C64. Alternatively if the picture rolls up or down but will not lock. check MR3 (39K1). R116. R117 and C63. If both line and frame holds are critical or cannot be obtained at all, check V10. R63. C59 and C102 (250μ F H.T. decoupling). If this capacitor is open circuited the loss of hold will be accompanied by hum. sound on vision and other symptoms. depending upon the setting of the various controls.

Intermittent Sound

This normally shows as a sudden drop in volume or sometımes complete loss which is restored iust as suddenly, sometimes by the operation of a light switch in the house, by switching channels or even by removing and replacing the aerial plug. This should immediately direct attention to C82 and C83. both $0.01 \mu \mathrm{~F}$ audio coupling capacitors. Firmly moving each will usually show which is the culprit. It is pointed out. however, that C88. $0.01 \mu \mathrm{~F}$. could equally be at fault, as could a poor connection anywhere in the V7-V8-V9 stages, and GDI should not be neglected in this respect.
(To be continued)

BRAND NEW AM/FM (V.H.F.) CHASSIS AT $£ 13.6 .8$. (P. \& P. $10 /-$)

Dial 14t x 4 in, in gold and black. \quad Pick-up. Extension Speaker, Ae. Eipole sockets. Five "plano" Picx-up. Extension Speaker, Ae.. E.M. and Gram. Aligned and tested. push bult valves \& O.P. Transtormer. Tone-control fitted.
Covers $1,000-1.900 \mathrm{M}$. $200-500 \mathrm{M}$; $88-98 \mathrm{Mc}{ }^{\circ} \mathrm{s}$.
Covers 1,000-1.900 M. ECH81, EF89, EABC80, ELS4, ECC85, Speaker \& Cabinet to fit chassis, $47 / 6.10 \times$ Bin. ELLIPTICAL SPEAKER, 80/-. Payments Tenkis:-(Chessts e4.16.8 down-10/-carr.-and 6 Monthly Payments of $30 /=$, or with Cabinet $\&$ Speaker 25.8 .2 down and 7 Monthly Payments of 321 FEW CHASWIS, DUSTY AND TARNISHED THROUGH
 guarantee.

"READY TO USE" ITA CONVERTER

We are specialists in ITA Converters, Our converters give direct switching ITA to BBC, metal rectifier. co-axlal plug, can be fitted in $5-10$ mins. and need no alteration to your set. ALL. AREAS. ALL, SETS. ALL CHANNELS. 12 months' guarantee (3 months on valves).
Separate gain controls. Valves PCF80 and PCC84. Switch positions ITA (I)ITA (2)-BBC. Bakelite moulded cablnet 8 x $x 4 \times 61$. 25.5 .0 . P. \& P. 3/-.

REGUNNED TUBES

Mallard and Mada, all types. 12 months guarantee. First grade guns.

14 inch \&5.0.0

17 inch $£ 5.10 .0$
Carrlage and Insurance 12/6. and NEW COSSOR 10 inch, $108 \mathrm{~K}, 201$ - (P. \& P.).

OFFER OF 13-CHANNEL

INCREMENTAL TUNER

1.F, $34-38 \mathrm{Mc} / \mathrm{s}$ without valves. Removed rom chassis but in working order. PCF80 and PCC84 required.
7/6 (2/B. P. \& P.). Knobs 2/6 extra.

NEW ITA AND BBC TUNER. By well-known manufacturer for superhet TVs with $35-38$ Mc/s I.F For all areas: covers all 13 channels. Switch gives BBC and two ITA selections. Sults G.E.C. sets BT4543 4544. 5146, 5147. 5543, 5642, and 6641 Without alteration, Easily adapted as aerial converter, and instructions can be provided free.
sookets and separate galn controls. $2 / 6$ (P. \& P. 3/-).

PERSPEX UNSCRATCHED. (Post $2 /$ each or 6 post iree.)

Armour Plate Glags $161 \times 14 \times{ }^{3} / 1 \mathrm{a}^{\mathrm{In}}$. 7/6.

AUTOMATIC RECORD CIIANGERS, COLLARO CONQUEST with manual pley also. Turnover crystal pick-up. 4-8peed.
see illus.

$$
£ 7.10 .0
$$

P. $\stackrel{(5)}{P})_{(-)}^{5}$
B.S.R. 4-speed UA14, autochanger 87.10.0 or STEREO UAB lor only $£ 6.17 .6$ (carr, 5/ on el ther).

GLADSTONE RADID

Camberley closed Satg.
Portsmouth closed Weds.

THE "CABY" TEST METERS In moulded case. Prices include Test Prods., Batteries, Instruction Brook. FULLY GUARANTEED. Also measure db. Accuracy i A.C. 3 per cent: D.C.. 2 per cent.

$$
\begin{array}{ll}
\text { A-10 } & £ 4.17 .6 \\
\text { B-20 } & £ 6.10 .0
\end{array}
$$

A-10-2k ohmelv on A.C. and D.C. volts (10, 60, 250, 500 and 1000 v.); 10 K find $I M$ ohms: $1 \mathrm{~mA}, 26 \mathrm{~mA}$ and 250 mA . D.C. Size: bi $x 31 \times 2 t i n$. Weight 170 gs.
$3-00-10 \mathrm{~K}, \mathrm{ghms} / \mathrm{V}$. on 0.5 v . and $25 \mathrm{v} \cdot \mathbf{4 \mathrm { K }} \mathrm{ohms} / \mathrm{v}$. on $10,50.250$, 000 and 1000 A . ohms. C Curent 100 microA $2.5 \mathrm{~mA}, 25 \mathrm{~mA}, 250 \mathrm{~mA}$ Size: 54×3 x 2 tin . Weiéht 24 oss.

THEBRAYHEAD TURRET TUNER, 27.7.0 post free. Complete with booklet and fitting instructions. State set and model number when ordering.
your b-channel
BBC only set to recelve
ITA as well.

ITA AFIRIALS clidping to existing mast $1-2 i n$. dia, 3-element. 22/-; 5-el. 30/-; 901 . $50 /$; Loft mounting. 3-el.. $80 /-;$;-el., 28/=; Combined single BBC and 5-el. ITA. 75/- with chimney-lashings Co-axial bable semi-alr-spaced, 7d. yd, or 20 yds., 11/-. Aerial prices carr. pald. Postage on cable $1 /$.
NEW WAXED TUBULARS, 350 v . or above, 3 of each, 0.001 $0.002,0.005,0.01,0.02,0.05,0.1 \mathrm{mF}$. Total 21 for $4 / 6$. post paid.

GRAMOPHONE AMPLAFIER WIth S in. SPEAKER. On Fabriccovered Baffle 121 x $5 i n$. Mains and Output rans ormers. Valves EZ 40 and EL41. Tone and Volume Controls. Un/Of switch. Plenty of volume. Fill for Stereo.
Two Knobs supplied. Ready to play.
ONLY $57 / \mathrm{m}$, post $3 /=$

LISTEN

WITHOUTINTERFERENCE
Fully bullt V.H.F./F.M. set. Wired, allgned and tested. 4 Mullard valves: with mains transformer, $88-98 \mathrm{Mc} / \mathrm{s}$. ON1.1 88.8 .0 (4/-Carr.). Cheap room dipole $10 /$. 300 ohm twin feeder, di. yd. Valves 3 months guarante. Incorporates Mullard Permeablity Tuner.

Deivvery by return. C.O.D. $2 /$-extra. Terms: Cash with order or one-third down and balance plus $7 / 8$ (up to 87.10 .0) in four qual monthly peyments. Balance over 87.10 .0 add $1 /$ in $£ 1$ and pay in not more than. 5 monthly payments. See special terms for pay in not more ohasis. All new goods unless stated. Send 6d. for AEW 20-page ontalogue.

PO8TED ORDERS TO CAMBERLEY PLEA8E
58A HIGH STREET, CAMBERLEY, SURREY. Tel, 22791 and 2H7 NEW ROAD, PORTEMOUTH

FIRST IN QUALITY FOREMOST IN ECONOMY

Suffolk's reputation for reliability accounts for the rapidly increasing popularity of Suffolk rebuilt tubes. Now you can obtain "NEW ALUMINA" C.R. Tubes of all types completely rescreened and aluminised-at an exceptionally low price!
$12^{\prime \prime}$ £5. $14^{\prime \prime}$ £5.5. $15^{\prime \prime} \& 7^{\prime \prime}$ £5.10. $21^{\prime \prime}$ £8.
Sensational value with the existing range of picture tubes!
$12^{\prime \prime}$ £4.10. $14^{\prime \prime}$ £4.15. $15^{\prime \prime} \& 17^{\prime \prime} £ 5$. 21" $\begin{gathered}\text { £ } 7 .\end{gathered}$
Suffolk's FULL 12 MONTH GUARANTEE is your assurance of satisfaction. You get FREE DELIVERY anywhere in the U.K. when you trade with Suffolk, the largest independent tube rebuilders in London.

SUFFOLK HALL, I-3 UPPER RICHMOND ROAD, PUTNEY, S.W. 15

Telephone: VAN 5267, 4304

THE ALL NEW
COMPLETELY REPROCESSED PICTURE TUBES

Line Oscillator

 memememand Sync CircuitsNo. 2-SYNCHRONISATION PROBLEMS

(Continued from page 94 of the November issue)

HAVING dealt with the basic requirements of line oscillator stages, the next step is to discuss the circuits involved in line sync separators and pulse-forming stages. First, however, the effects of variations of H.T. and of component tolerances must be considered.
Change of Oscillator Frequency with Picture Brightness
If the oscillator is fed from the boost H.T. line, or if the main feedback is obtained from a tap on the line transformer, the frequency may change as the picture brightness is increased or decreased either by means of the control or due to a change of programme or scene. This is because any change of brightness alters the loading on the line output circuit and thus affects the amplitude of the boost H.T. voltage and the pulse fed back to the oscillator.

An exception to this occurs when a stabilised line output circuit is used, where the voltages change only a very small amount over a wide range of loading. These circuits are uncommon at present but will probably become more popular in the near future.
The change of frequency is undesirable because the hold range has to be increased correspondingly, to the detriment of the sync performance, and even then the picture may break sync when the brightness is changed, if the hold control happens to have been adjusted near the end of its range.
If the trouble is due to changes of boost H.T., the obvious cure is to return the oscillator to ordinary H.T. instead, if the other circuit characteristics permit. Changes of feedback amplitude are not easy to compensate because they are inherent in the circuit, and if the fault is serious it is probably best to use a different type of oscillator, unless the time and equipment necessary for a full-scale investigation are available to the reader, in which case the aim should be to alter the circuit so that another frequency change is induced of the opposite sense to cancel out the first one.

Circuit Tolerances and Component Ratings

The commercial setmaker has to take a great deal of trouble to investigate the effects of component tolerances on the working of a circuit. This is necessary to avoid making a large number of reject receivers which have failed to pass the stringent production tests because the tolerances added up the wrong way. Fortunately the home constructor is not much affected by tolerances, since he is only making one receiver, and he can afford to ignore this aspect of the task.
In the case of component ratings the setmaker is again vitally interested, because any carelessness in the specification of components will cause a lot of unnecessary and premature failures in customers' sets. The home constructor is also concerned, although not quite so seriously, because he does not want any unnecessary faults either.

By A. G. Priestley

The thing 10 do here is to measure or calculate the currents, voltages and powers in each part of the circuit and then to make sure that components of the correct rating are used. This applies particularly to valves, and great care should be taken to avoid exceeding any of the published limits, as this invites an early failure, and will prove expensive. Valve makers do not want to limit the usefulness of their valves, but they are forced to do so in order that their products shall give good service.

It is as well to bear in mind, too, that resistors of over 1 M and of small size and wattage rating do not always take kindly to pulses; even quite small ones. In such cases it is best to err on the side of satety and use 1 W types where a $\frac{1}{2} \mathrm{~W}$ component would be adequate in theory. They are also eașily damaged by too much soldering.
Pulsed applications commonly occur in the frequency controlling circuits of line and frame oscillators, and also in the feedback stages of the frame output valve. This is a good point to bear in mind when servicing a receiver, since by replacing a $\frac{1}{2} \mathrm{~W}$ resistor by a IW type, you may prevent repetition of the fault.

Line Synchronisation

In an ideal receiver, fed from a perfect transmission, the sync pulse always arrives at exactly the correct moment and triggers the oscillator so that the next line of the picture starts in precisely the right place. This means that the edge of the raster will be perfectly straight, and any vertical line will appear "clean". (Fig. 4.) This is what we mean by good synchronisation.
In practice however, electrical noise is generated in both the aerial and the receiver circuits and this, added on to the sync pulses, causes them to trigger slightly $t 00$ early or slightly too late. As a result the individual lines of the picture will be displaced, and vertical lines will appear ragged. (Fig. 5.)
In areas close to the transmitter (called the service area) the signal picked up by the aerial is so large that the noise forms only a very small proportion of it.

Fig. 4 (left)-Part of a "clean" picture. Fig. 5 (right)-Part of a "ragged" picture. Note the random displacement of the lines. Consequently with almost any type of synchronisation arrangement the displacement of the lines in the picture will be so small that the picture detail will look clean.

In the outer region of the service area the signal is not so strong and the noise forms an appreciable part of the total signal; consequently care is needed in the design of the sync circuits.
In the fringe area the signal-to-noise ratio is so poor that special synchronisation circuits have to be used in order to obtain a stable picture, and these are usually of the so-called flywheel type. Often the entertainment value is small, even if the picture is staady, because the detail tends to be lost amongst noise.

Other Causes of Poor Synchronisation

When considering the causes of poor synchronisation in general, the electrical noise generated in the

Fig. 6 (Ieft)-Squaring.
Fig. 7a (right)-Part of a picture comprising dark grey and white horizontal bars.
aerial or receiver circuits is only one of the hazards.
Other sources of trouble include:
impulse interference;
squaring;
self-generated oscillation in the line transformer; spurious line hold characteristics;

> interaction of line and frame sync.

Impulse Interference

This is the kind radiated by electric motors, thermostats and arcing in faulty connections. Cars, electric hair dryers and razors, immersion heaters and old power points are often the culprits, although most of these should have suppression devices. The effect is to swamp the sync pulses so badly that several lines of the picture may be hopelessly displaced. and since the interference is also fed to the cathode ray
tube, the picture is affected by black or white spots tube, the picture is affected by black or white spots
and streaks.

Squaring

This is the term given to a fault which causes groups of lines in a picture to be displaced towards the left-hand side. On looking more closely it will be found that this only happens where a white portion of the scene occurred at the end of the line before. Fig.6.) The reason for this is shown in Figs. 7a-e. Diagram (a) shows a picture comprising dark grey and white horizontal bars; (b) is the corresponding video signal for a dark grey line and (c) for a white line. Note particularly the so-called "front porch",
which is an interval to give the signal time to fall which is an interval to give the signal time to fall from white to black level before the sync pulse
comes along.
Supposing that there is a long time constant in, say, the sync separator, then the signal will take too long to fall from white to black level and it will not have reached it by the time the sync pulse arrives. This state of affairs is illustrated in Fig. 7d, and it should be compared with the dark grey line in (e). It can be seen that in case (d), for a white line, the
oscillator will be triggered too late, causing the next line to start too late also, i.e. this line, and any subsequent white ones, will be displaced towards the left and in bad cases with a picture of the appropriate pattern, the whole scene appears almost to be built up from a number of squares, like a chess board.
Sometimes the trouble is aggravated by a faulty transmission which has an unusually short front porch. This is easily tested by switching over to another channel and seeing if the fault persists. If it does,
then the fault lies in the receiver and may be due to then the fault lies in the receiver, and may be due to valve or component failure in the sync separator or
video circuits, or to incorrect tuning of video circuits. or to incorrect tuning of R.F. or I.F. circuits causing poor H.F. response.
Another way in which this peculiarity can arise is when video information reaches the line sync pulse more directly. If a video voltage is added to the șync pulse, the size of the pulse, and hence the time of
firing of the oscillator varies with the picture firing of the oscillator varies with the picture content. This is basically the same mode of action as in the previous case, but the means by which it cones about are different.
If the sync separator fails to separate completely the video information from the sync pulses, i.e. its

Fig. 7b-Ideal signal waveform corresponding to the dark grey lines of Fig. 7a.
7e-Ideal signal waveform corresponding to the white line of Fig. 7a.
7d-Video signal with a long time constant giving a white line.
7e-Video signal with a long time constant giving a dark grey line.

December, 1960

PRACTICAL TELEVISION
clipping action is inadequate, squaring will occur. Alternatively, if a lead carrying line sync pulses passes too close to one carrying video information, the mixture will be passed to the oscillator, with the same results. This mixture is shown in Fig. 8 (a) and (b).

Spurious Oscillations

Another form of bad synchronisation is due to a spurious oscillation (ringing) in the line transformer. This gives rise to the trouble illustrated in Fig. 9, where the vertical lines on a picture tend to form a zig-zag with two or three lines at a time. It only occurs in circuits where a capacitor is used in series with the deflection coils, and these two components may resonate at a frequency corresponding to a few lines of the picture. This condition is easy to recognise because the quality of synchronisation is worse on the right-hand side of the picture than near the beginning of each line.

There is no cure for this trouble except to change the circuit for a less efficient one, but it can be improved by good design of the sync circuits.
In some circuits ordinary line transformer ringing, characterised by vertical bars on the raster, can be fed back to the oscillator, and this causes the output pulses to vary in a regular pattern with the result that the raster has a wavy edge, as shown in Fig. 10.

Spuriaus Locking

If you turn the line hold control of an ideal receiver the picture should remain in perfect synchronisation over the whole of the hold range, and should break up smoothly at each end. Most receivers, however, show some slight peculiarities. In some cases the

Fig. 8a-Normal line sync pulse.
Fig. 8b-Normal line sync pulse with added video information.
picture does not immediately break up at one end of the control range, but first slips sideways. The last half of the picture then appears at the left-hand side of the screen followed by a broad vertical bar and then by the first half. The black bar in the middle is the sync pulse and blanking period, illustrated earlier in Fig. 7, and this can be seen in detail by turning up the brightness. Further rotation of the hold control then causes the picture to go out of sync in the usual way.

This spurious hold position can hardly be classified as a fault, but it is an interesting peculiarity, and provides an easy means of jooking at the transmitted blanking times and sync pulse widths. Incidentally, the actual times can easily be measured and then

Fig. 9 (left)-A form of poor sync which may occur when a capacitor is used in series with the deflection coils.
Fig. 10 (right)-The raster may have a wavy edge when line transformer ringing is fed back to the oscillator.
compared against the transmission standards. Day to day variations can be recorded as well. How to do this will be described in a future article.
Another phenomenon which may as well come under this heading is backlash in the hold control. This is very much akin to lost motion in the steering wheel of a car, which makes it difficult to set the road wheels in the right direction. When the hold control is adjusted so that the picture just breaks lock, it has to be rotated back again quite a long way before the picture is resynchronised. This characteristic must be classified as a design fault because it makes the control difficult to adjust to its best position, and makes a larger hold range necessary.
The third peculiarity is that of the picture jumping sideways slightly when passing through a certain critical setting of the hold control. This, too, is a slight fault since it makes it more difficult to choose a mean position of the control when centring the picture on the screen of the CRT.
(To be continued)

LaSt minute christmas gifts

No need to rush out to the shops. Here's one you can arrange now . . in a few moments ... in the comfort of your own armchair. A year's subscription for PRACTICAL TELEVISION is the ideal gift for friends who are TV enthusiasts.

Either send your friends' names and addresses, together with your own and remittance* to cover each subscription, to The Subscription Manager (G.2),
PRACTICAL PRACTICAL TELEVISION, Tover House, Southampton Street, London, W.C.2, or you may place your instructions with one of the leading new sagents or bookstalls, who will be pleased to make the necessary arranyements.

Whichever way you choose, your friends will receive a Christmas Greetings Card announcing each gift.

* Rates (INCLUDING POSTAGE) FOR ONE YEAR (12 ISSUES):-U.K. 11.2.0, OVERSEAS £1.0.6, CANA DA £0.19.0, U.S.A. $\$ 3.00$.

The Practical Television
 CONSTRUCTING THE I.F. TRANSFORMERS AND THE TUNER
 OLYMPIC

Continued from page 98 of the November issue

THE layout is also complicated to some extent by the need to keep line and frame time-bases well separated. It is not always realised that in places very heavy pulse currents flow. and that the large magnetic field associated with them can induce quite high voltages in adjacent highimpedance circuits. If this happens, interlace mav

By D. R. Bowman

leaving about 4 in . as leads. The tape is then carefully trimmed to the size of the coil with a sharp penknife or razor blade.

In order to obtain the correct spacing between the coils it is best to mark off a strip on a long piece of drawing paper. and cut it to precisely the width required. A long piece is needed of uniform

Fig. 4.-(left) Chassis drilling details for the I.f: transformers, and (right) the coil connections.
be seriously affected. As extremely good interlace is a feature of this receiver, care must be taken not to spoil it through thoughtless location of com-
ponents.
The last components to be litted to the chassis will be the I.F. transformers and R.F. chokes, because these are to be home-constructed and are moreover not very robust. Among these is classed the sound-l.F. rejector which is of the same physical form. The data for winding these components was given on page 80 of the previous issue.

The coil forms for these transformers are made of bakelite, a substance of very satisfactory resistance to temperature. It is, however, not particularly easy to wind on it a coil which will not slip or defornt as time goes on. The vision I.F. coils are of finer wire than the sound I.F. coils because more turns have to be accommodated. These are prepared in the following way.

A piece of adhesive cellulose tape is wound once round the coil forner. sticky side on the bakelite. with an overlap of about $\frac{1}{4} \mathrm{in}$. The wire is looped several times through one of the fixing holes, and is wound quite tightly on to the tape, as many turns as are required. Another piece of sticky tape is placed carefully over the wound coil and pressed down firmly. The ends are now cleaned of enamel and soldered into the eyelets,

A vision I.f. transformer.

The presence of large quantities of a material of unknown dielectric properties matters very little in the vision amplifier because the coils are heavily damped in any case to obtain the neces. sary bandwidth.

Before closing up the coils in their cans, the damping resistors are soldered into place. These
are very small items and if they are arranged neatly in the corners no difficulty will be found in accommodating them. Fig. 4 shows the recommended connections to the eyclets.

This system separates anode and grid lcads as far as possible and is convenient for the EF80 valves. It should be noted that the centre ends of the windings are screen or earth con-

Fig. 5.-Winding details for the I.F. transformers.
go in with case, but there is not a great amount of room.

The sound l.F. trap is constructed in the same way. except that there is no necessity to put the tuning capacitors in the can; but they may be included with the phase-correcting resistor if the constructor desires.

When polystyrene formers are used, as in the tuner and the pre-video stage I.F. filter, polystyrene cement may be used to secure the turns. Here it is essential to do the sticking with a core slug in place. and to leave the component at least overnight to harden. The slug in position prevents warping of the former, and the long drying time is necessary because the cement solvent penetrates the former deeply. Artificial drying by heat is not advised as warping will almost certainly take place. There is some tendency to soften on nections to reduce the capacitance coupling between the primary and secondary of the transformer. Fig. 5 shows this. The two coils are both wound in the same direction on the former.

The sound l.F. transformers are of somewhat different construction. because of the need to avoid losses. A heavier gauge wire is used. and this is wound direct on to the former. When wound the turns are cemented together with polystyrenc ecment (plastic model aireraft cement). The cement may appear to stick the coil to the former, but it does not do so. It does fix the turns very firmly together however. The wire ends are then cleaned off and soldered into the cyelets. making sure that they are not under tension. In this way the coil holds together very well. and the stiff leads automatically ensure that correct spacing is maintained, Spacing is arranged by eye and ruler in this case. as it is much larger and is not eritical. No damping resistors are used, but tuning capacitors are soldered across the coils and closed up in the can, 1. together with the 1 pF topcoupling capacitors. These will

Fig. 6.-Dimensions of the vision I.F. screen or attenuating waveguide.

heating for a week after sticking, but this only means that soldering the ends should be done with a "heat-sink "-a pair of pliers to yrip the wire - between the soldered wire and the former. It schould be realised that before the knack is obtained. one polystyrene former will probably have to be sacrificed!

The tuner is next to be tackled. This is a critical item, and even
(left)-Another view of a sound I.F. transformer.
if the layout given is followed accurately, different constructors will probably obtain different circuit capacitances. The chief difficulty is in the Band III oscillator, and to obtain a stable oscillator of large (and therefore less critical) dimensions a tunedlines oscillator is specified.

The very much increased physical size of the inductors of a tuned-lines oscillator also enables a quite large temperaturecompensating capacitor (Ck) to be included in the circuit. This should be soldered very close to the ends of the lines, care being taken not to let its temperature rise appreciably during the operation. This precaution is necessary whenever a negative temperature coefficient capacitor is soldered in. This is because any overheating may, and usually does, impair the negative temperature coefficient quite seriously.
Provided the dimensions given are adhered to reasonably closely there should be no difficulty encountered in covering the range of frequencies needed. The aerial and inter-stage circuits are heavily damped by the input resistance of the valves, and are not critical.

With the frequency changer, temperature rise is minimised by running it at reduced anode and screen voltages, and the gain improved by using an inductance in the screen lead to neutralise

Fig. 7.-The containing screen of the tuner unit.
cathode lead inductance. The screen inductance consists of 0.9 in . of lead between the valve pin and the decoupling capacitor. More length than this may lead to instability; less length will reduce the conversion conductance, but if the receiver is to be used in an area of high signal strength the length may be reduced at will.

The Band III oscillator lines are constructed from tin. outside diameter copper tubing, which
(Continued on page 168)

Fig. 8.-Dimensions of the chassis of the tuner and inter-stage screen.
 It will need servicing!
||
USEFUL HINTS ON WIRING AND CONSTRUCTION

WHETHER you build for yourself or for your friends-it will need servicing. Here are some hints for cutting down the need to a minimum, and to ensure simple repair when the need does arise.

Soldering

Learn to solder perfectly. A good iron is the best investment in the world-except a pair of good irons, one large for heavy soldering and an instrument type for small components. Scrupulous cleanliness and the use of a good cored solder (e.g. Ersin Multicore) are the next requirements, and then commonsense.

In the realisation that short leads to condensers and resistors are needed at the higher frequencies, some constructors try to cut the wire ends too short. This often causes a component to become overheated during soldering and defects easily arise. A useless component is still useless even if it is soldered in with very short leads. The "thermal shunt " is often advocated to minimise this trouble, and it can help a great deal to hold the wire, between the component body and the soldering point. with a pair of pointed pliers. What is nore effective, often. is to dip the pliers into water first so that water is held in contact with the wire heing soldered. If this precaution is taken the component is very unlikely to be overheated, especially if a really hot iron is used. A cool iron means long contact with the soldering point and nuch heat can travel along the wire in such circumstances.
Avoid, too. the use of a mechanical joint as a preliminary to soldering. A wire looped through the hole in a valveholder tag and bent round on itself, or twisted round the tag, makes a sound joint. but if later the component has to be removed especially if the space is confined-neighbouring components can easily be damaged and the last state can be worse than the first. If a "lying side by side" joint is not gond enough, better soldering technique is needed!

Solder tidily: loose blobs usually end up in very tiresome positions-for example. between anode - and suppressor grid conections. The decoupling resistor will probably burn out. but even if it does not, the anode still will be deprived of H.T. and the valve will be overheated by excessive screen current.

Components

Component reliability is high these days-except for volume controls. This does not mean that one can take liberties. A 450 V condenser may cost a shilling more than one rated at 350 V , but if it saves a replacement it pays for itself when it is so.dered into place. The rule should always be to work well within the rating of all components,
including valves. However, in this latter connection, it is better to overrun heaters than to underrun them, if the choice has to be made.

If you rely on "surplus" resistors and con-densers-or those stripped from ex-government equipment-always test them before use. While resistors are not too bad for reliability, they are often different in actual value from that colourcoded on them. Many people will not employ condensers taken from such a source; they are often very unreliable. If you do use them, test the insulation resistance first. Fig. 1 shows the simple apparatus needed. V is a neon lamp-any type will do. R1 is about 50.000Ω. C is a first-rate mica condenser of about $0.01 \mu \mathrm{~F}$ capacitance. X is the condenser to be tested. H.T. should be about 250 volts. Comparative tests with components known to be good are the best guide to the rate of flashing of the neon which should be tolerated. In any case, never test by connecting a delicate milliammeter in series with a doubtful component and H.T. The sudden demise of the meter, if one's fears are found to be well-grounded, is not amusing and costs more than buying a new condenser of reliable make in the first place.

Ex-government and manufacturers' surplus valves are defective often enough to warrant testing each one before use. Test the cathodeheater insulation, and do not be content with the 9 V or so of an ohmmeter-use 50 V in series with a 10 k resistor. The neon tester is of little use for this purpose. If any component is found to be seriously defective, destroy it-if you put it back in the box you will use it some time and probably regret it!

Layout

This is just as important a matter as good soldering or watchfulness over components. The rules are simple enough: they are these. Economise in space. but not to the extent that components are rendered inaccessible by others being put on top of them. A logical order is important -avalveholder the wrong way round will cause endless difficulties with crossing wires. Al-

Fig. 1.-Simple neon tester for capacitors. ways leave room for the soldering iron between components and don't pack them so close that heat radiated from the iron causes wax to drip or insulation to be charred. It is sound practice to do development work on a skeleton chassis, where different
arrangements can be tried out. When the circuit is satisfactory, the layout can then be considered carefully before actual construction begins.

Always use enough components. This may sound strange advice, but I have seen many chassis where the H.T. wiring is insecure for want of a few stand-off insulators or insulated tag-strips. Such economy may be all right in a development chassis, but in a receiver itself it must be assumed that shaking and bumping will inevitably occur. If the H.T. leads are loose, trouble can then be expected with some confidence. Clips to hold down bulky components with wire ends can be manufactured easily enough by anyone with a broom handle, tin-snips and a drill; and so there is no excuse for unstable components waggling about and not supported properly.

Mount condensers, resistors, etc., so that their value can be read without taking half the set to pieces.

Circuit Diagram

Always have an accurate circuit diagram inside the instrument itself. If modifications are carried out, enter them on the diagram as amendments in
a different-coloured ink. This saves endless bother and is well worth the trouble. If you are making a set for a friend, give him a circuit diagram and keep a copy yourself. It is hardly fair if he is deprived of the use of a receiver for want of a diagram, if you are in hospital, or Africa. Make sure that relevant voltages, wave-forms and the like, together with component resistances, and tolerances on condensers, etc are recorded. If you cannot service the thing yourself, make sure that somebody else can.
A circuit diagram ought to be kept carefully. Usually they are not, but if you make the diagram an awkward thing to handle the chances are that it will survive. If it is drawn large, in Indian ink and pasted on to a piece of plywood, or stuck to the inside of an instrument case, and varnished over, its chances of being available when needed are improved.

These four factors more than anything else Tontribute to ease and efficiency to servicing and maintenance. There is a fifth-the "savvy" that comes with experience and knowledge which is in effect an eye for a goot design. But perhaps that is just another way of saying-" design for future servicing".

REPLACING CR TUBES

(Continued from page 134)

Fig. 6.-Removal of the carrying handle (and chassis) on the T14 transportable.

Unboxing Model 610/611

Remove the four front control knobs and the cabinet back, disconnect and remove the loudspeaker by taking out the wing nut and spring clip. Remove the base fixing screws from the side brackets at the rear of the chassis and withdraw the chassis backwards.

Replacing the CRT

Discharge the EHT cap and remove it. Disconnect the wires from the deflector coils, having marked their position, and withdraw all units from the tube neck. Remove the clamping band around the tube bowl and withdraw the tube from its harness. The setting up follows the previous models, with a tapping system for the adjustment
of focus on the 605, and a small pre-set potentiometer on the 110 deg models.

note on the focusing of ELECTROSTATIC. TUBES

Two methods of adjusting the focus on electrostatic tubes are commonly employed by R.G.D. *One is to have a short flying lead permanently connected to pin 6 of the tube (the focusing electrode), the other end of which may be taken to any of the other tags around the tube. An H.T. feed is brought up to pin 9 and, because pin 12 is the earthing end of the heater chain, the voltages available are thus:
Pin 9
Pin $10=400$
Pin $11=100$
Pin 12

On other models a small 2 M pre-set resistor is connected between A1 and chassis providing a continuously variable voltage on the focus electrode of between 0 and 400 .
JOIN THE PRACTICAL GROUP
PRACTICAL WIRELESS 1/6
Every Month.
PRACTICAL MECHANICS 1/3 Every Month.
PRACTICAL MOTORIST 1/6Every Month.
PRACTICAL HOUSEHOLDER I/3
Every Month.

Abstract

MICROPHONES Acos Mie $3 \$ / 1$, crystal stick microphones or use as a hand. desk or foor stand unit. listod at 3 gnsi; our price 89/8. Table stand 7/6 extra, foor stand adaptor $12 / 6$ extra. Acos Mic 40, as supplied with modern tape recorders, with a folding rest and 8 it lead. listed at \&1.15.0. Our. Price 19/B G.B.s. Microphone, pencil stick type. atted with muting switch, $42 /-$. T. S.L. Crystal "Stick" Mierophone, model MX3, for general purpose use, comlete with tabie stand. 40 -s.Le Moving Coil Microphone, for high or low impedance. brown and cream plastic cese with a fold-in tabie rest o coble and a ste

\section*{AUTUMATIC RECORD CHANGER}

UNITS B.S.H. Monarch UAB, 4-speed untt with B.S.R. monaural ful- $\frac{1}{2}$ cartridge. 28.18.8. S.S.R. Monarch UAS, 4-speed unit with a E.S.R. stereo tul-6 cartridse, \&6.19.6. twotone grey E8.19.6. Collaro Conquest, 4 -speed fully mizing ohanger, complete. With studio cartridge. 6.19.6.

Coliaro RC457, 4-speed record changer. fitted with transcription cartridge TX88, G8.19.6. G artard RCLzo, Mark II. 4-speed unit with manual control. to enable records to be played singly, fitted with the GC8 cartridge. 88.1846.

AMPLIFIERS

Deodamatle, fitted with valve flCL82, contrict cooled rectifler, tone and volume on/of, chasels size $8 / x$ xin.. complete with Celestion apeaker, 8 z 6in. 94.5.0.

VALVES GUARANTEED ALL TESTED AZ1 B BEFORE DESPATCH | AZ1 | $10 /-$ | GZ32 | $11 / 6$ | 384 | $7 / 8$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| AZ31 | $10 /-$ | PCC84 | $8 / 6$ | $3 V 4$ | $8 /-$ |

SINGLE RECORD PLAYEIR UNITS Garrard, Mode! TA, Mark II. 4-speed single player, die-cast aluminlum pick-up with a GC2 cartridge, automatic stop, 91n, diameter turntable. £8.10.0.
Collaro Junlor, 4-speed turntable and pick-up. complete with a crystal cartridge and sapphire styli, finished cream with a maroon turntable mat and speed control 2\&.12.8, pick-up only si.7.6.

DF96

DL96
EAF42
E
E
E
EC
EC
EC

ALPHA RADIO TERMS, Cash Fith order of C.O.D. Postage and Packing charges extra, as follows; Order value 10/- add $13: 20$ add $1 / 9 ; 40 /$ add $2 / 6 ; 5$ add $3 / 6$. Minimum C.O.D. Fee and Postage 3/. For full ter
otr catalogue. Personal Shoppers 9 a.m. to 5 p.m. Monday to Friday. Saturday 10 a.m. to 1 D.m.
103 LEEDS TERRACE, WINTOUN STREET, LEEDS, 7.

\section*{TV PICTURE BUY DIRECT FROM FACTORY

 | * 12 months guarantee
 * Cash allowance for Old Tube
 * All Types |
| :---: |
| | |
| | |
| | |

Send cash with order or C.O.D. giving size and type of tube required to:-
HOMEVISION SERVICES
17 OXFORD STREET, SWANSEA

Safety first every time with these patented springloaded AVO Prodclips.
Cleverly designed for use as insulated prods, they are invaluable for reaching and holding test points which are difficult of access.
Suitable for use with AvoMeter, Multiminor
Post Free
15/-
per pair.

By H. G. Underwood
soldered to the first star tag. Now solder C8 and C9 into position.

The Band-Switch Installation

This completes the main circuit wiring, and the band-switch can now be installed. Cut down all the tags on this component and the centre pin of the coaxial Band I input socket, leaving about $\frac{1}{32} \mathrm{in}$. for soldering. This is essential to prevent patterning from BBC on the ITV signal.
Pass the end of a piece of p.v.c.-covered twin flex (approximately 2 ft long) through the righthand hole in the chassis end and solder one lead to the heater section of the switch. The other lead is secured by loosening the bolt holding the corner of the chassis, tucking the bared end of the lead in and tightening the bolts again. Wire the remainder of the switch as shown in the layout diagram and solder in C15 and C16. Allow about 2 ft of coaxial lead for the output to the receiver for preliminary testing and fix a coaxial plug on its further end. Finally solder a $2-3 \mathrm{ft}$ length of black p.v.c.-covered wire to a convenient solder tag direct on the chassis and take through the same hole as the H.T. lead. This is the H.T. return wire and must be soldered direct to the main receiver chassis. Insert a grommet, or bind these two wires with insulation tape where they pass through the hole in the chassis end.

Testing

The unit is now ready for testing. Insert the two valves in their holders and connect the heater cable to the output tags of a small $6.3 \mathrm{~V} \quad 1 \mathrm{~A}$ heater transformer. Take a mains lead, complete with plug, and solder to the mains input of the heater transformer. Now cover all the tags on this component with insulating tape to obviate any possibility of shock whilst testing. Connect an ohmmeter or continuity tester between the H.T. lead and the chassis and make quite sure that no short exists between the two. The meter should not read less than 200k.

Solder the red p.v.c.-cover.d H.T. supply wire to the output tag of the

Fig. 5.-Modifications to the tuning condenser to leave one moving and one fixed vane.
main smoothing condenser of a single band television receiver and the black wire to a convenient earth tag. Set the fine tuner so that the vanes are half engaged. Plug in the aerials to the correct sockets of the converter, and the output lead of the converter to the input socket of the television receiver. Switch the band-switch on the converter to position 1, and switch on the main receiver and allow to warm up on the BBC signal.

Tuning

Now plug in the lead to the fila ment transformer, switch to position 2 and observe that the converter valves light up correctly. Allow about 30 sec and switch to position 3. With a non-metallic tuning rod, such as a broken plastic knitting needle with its end filed to a chisel point adjust the core of the output coil. (L6) for the loudest "rushing" noise from the speaker. Set all other cores with their tops about level with the rims of the holders and slowly screw in the oscillator core (L5) until the vision signal is heard on the speaker. Screwing in the core a little further should produce a picture, accompanied by sound. If, however, the vision signal sounds weak, leave the oscillator core in that position and adjust all the other cores to produce the loudest vision signal noise in the speaker. Now go back to the oscillator core and screw in until the picture and sound appear. It is only necessary, then, to readjust all the cores for the best picture and sound, adjusting L4 for maximum sound, and noting also that the fine tuner functions correctly.

If the sound and picture are only obtainable separately, then the oscillator frequency is too high, and the core of that coil should be screwed further into the former.

If the heater transformer can be accommodated on the main receiver chassis, then a worthwhile refinement could be added to the converter by incorporating a four-way non-reversible plug and socket in the bottom end of the chassis to convey the supplies to the converter from the main set. This would make subsequent servicing far easier.

Installing the Converter

Before installing the converter in the receiver for which it is intended, switch on that receiver and test the chassis with a neon screwdriver. This is a precaution one should always take before touching any receiver. If it is alive-and it is surprising how many are-reverse the connections to the mains plug. If the plug is of the reversible type, mark suitably with white paint and give firm instructions to the owners always to ensure that the plug is correctly inserted.

Resistor R2 can now be experimented with to obtain reasonable matching between the signalsthe higher the value, the lower the gain.

On some older receivers employing auto-wound or double-wound mains transformers it will be found that the receiver H.T. line will be in the neighbourhood of 350 V . Under such conditions R 10 should be increased to about 5 k to 6 k , so as to reduce the supply to the converter to about $200-250 \mathrm{~V}$.

Another view of the Converter.

A.M. RADIO FROM SPARE TURRET COILS

(Continued from page 126)

which might become a combined feedback oscillator. To keep an oscillator running about 5 per cent from the main I.F. is difficult. There need be no great concern of the TV enthusiast on this count. as dirty contacts, valve bases and drift are .speedily noticed and corrected.

Filters

Other points to watch for are the possibility of filters fitted in the aerial lead to the turret removing M.W. radio frequencies. These should only be removed if they do not spoil the results on the TV. The disturbed raster that may irritate when using radio can in some cases be cleared by making a vision valve inoperative with any spare switch contacts existing on the wafer where fitted on to the turret spindle. It is not advisable to attempt to switch off the vision sections of the set owing to the complex interdependence of sound and turret sections on the normal running of picture and timebase sections. Heater current, H.T. level and parts of some AGC systems affecting sound rely on line gating pulses.

Results

Good radio results were obtained in the London area with a normal outside aerial on the Light and Home programmes, 247 m and 330 m , with no noticeable drift or oscillator pulling. Radiation to other receivers was also negligible. Using the inner only of the coaxial increases the volume.

New and IR3，IS5	As prevtously annoanced fresb supplies alight deleg knay be experferced in fultil				
	Gus	ateed V	VES	educed	Prices
	$7 / 8$	DK0\％	9／6	E280	7／8
IT4	6／6	ECC85	11／6	MU14	$0 /$
384，374	76	ECF80	9／6	POCP4	9／8
574	9\％	ECLB0	10／6	PCN80	$9 / 6$
$6 \mathrm{K7}$	8%	ECLS ${ }^{\text {d }}$	10／6	PLL88	1216
6 K 8	$7 / 6$	EF80	8／－	PL81	12／6
497	7／8	EF86	12／8	PL82	$9 / 6$
6V6	6／6	EF91	81.	PLRg	$10 / 8$
DaF96	9／－	EL84	$8 / 6$	PY80	718
DF98	9\％	EM81	$9 / 6$	PY82	$7 / 6$
DK96	$9 /$	EY61	9／6	PY： 2	12／6
DLS＊	日f－	CY86	10／	U25	12／6

SPECLAL PRICE PER SERT $10 /=120$ IRS，IT4，ISS， 384 or 8V4
 TRAMBIETOR
MAZDA：XA101 14／6，XA102 10／6，XA103 16／－， XA104 18／＝，XB102 $10 /=$, XC101 10／6
MULLARD：0U70 9／6，OC7t 12／6，OC72 15／－，
G．E．C．：GET114 9／6，GET16 12／6，ditto matched NEWMER
EWMARKER：＂Goldtop＂Vlא／10P 15／－
GERMANIUM DIODES：OA70 8／9．OA81 3／6．
GEGORD PLAYAR $8 / 6$ ，
GEORD PLAYER CABINETS
otyled，rexine Cabine a two－tone Fine and cream or mottied red $0,3,0$ with white polls lim．s／s dot．Bize 18t x lis x ht． 8 tin． titted witb wil accessorles， 11 ． cluting baftle bnard and ano－ dised metal fret． puace available for sli modern mplifiers and
 thtochangers etc．Uncut re
13 gin．gupplied．

2．VALVE AMPLIFIER MK． 2.
Lateat developed circuit giving a bigher fidelity response and greater output（ $2-3$ watt ）using twin Caige valves ECLS：and neg，feed back Toue Contiol， Complete with knobs，etc．，wired and tested ready to Lita sbove cabinet．
in．ONLT 2L．17．P．© P． $1 /$ ，
in．apeaker sad costahing trwasformer，28／＝ P．P．1／6．

VOLUME CONTROLS
5k ohman－2 Megohail．Als lonk spindles， morganite addet type， 11 ．dianeter．Guat． year．Loy or Lid．Ratios．Lers Bw．8／：D．P． Gw，6／9．Twin Btereo Oontrolo－Log or Lin．Less

CONDENSERS．－Silver Mica．Aj prel，values． 2 pL ．to $1,000 \mathrm{pl} ., 8 \mathrm{~d}$ ．otch．Ditto．deramios 9 d ．ench．

 RESISTORS，－FULJ RANGE 10 ohms－1i） ohroz 20% in．und \＆w． $8 d$. ．w．，5d．（Midget tyen modern ratiug）， 1 w．， $8 \mathrm{~d} ., 2$ w．， $9 \mathrm{~d} ., 10 \%$ Hl－stab，

BARGAINS GARRARD

 3／6．Model TA Mk． 4 ，E7．10．6．Carr．3／6． Model 4HF，818．Carr． $3 / 6$ ．
ADTOCHANGERS：Model KC210，with plug－in GCR head， 10 gni．Carr．4／6．Latent release Tranacription Unit Model＂A＂．Autochanger． e18．19．8 Carr．and Ina， 5% ．

RE－GUNNED

 TV TUBESNew reduced prices and now 12 months＇ guarantee！
All tubes rebuilt with new heater，cathode and gun assembly－ reconditioned virtually as new．
$12 \mathrm{in}, 65,14 \mathrm{in}$ ． $65.10,17 \mathrm{in}$ ． C6，etc．

10／－part exchange allowance on old tube

Carr．and ins．10＇．Compre hensive stocks－quick delivery．

TRANSISTOR（ONE．WATT）
 AMPLIFIER 6 v ．operated

Latest Push－Pult，Transistor circuti siving fuld 1 watt Output into atandard 3 obme newker． Geg．teedisack．Var．Tone and Volume Controle Chasgir Bize 6 inn． $3 \% 10$ ． 1 im．Current cons chanption 10 mA qulescent－ 200 mA at 1 tratt．

COMPLETE KIT－now ONLY 70／6．Cart． $2 / 6$ ． 7in．x 4 in．matchune speakera，18／6．Circuit and inatruction reaflet for complete Portable
Reoord Players $: 1 / 6$ ，post free．

Driver Trans， $10 / 0$ special price
U／P Trans．10／6 per 4et ONLY
2 GET 15＇s 25／－pr．69／6，carr．已／f．
\＆GET 114 O／6 eat

RECORDING TAPE－ SPECIAL OFFER

Manulaturers list grade Acetate Tape－ BRAND NRW－tealed boxes Sin．600ft．．． $15 / \mathrm{L}$ Long／Play
 7in．1200rt．． 8 81／＊1800it
Plastio Tape Spoals

BAND 3 TV CONVERTER

All chazanels 7.13 （ $180-250 \mathrm{Mc} / \mathrm{s}$ ） ak． 2 Model．Using ECC84 and H480 Falrea
 1．\＆P． $2 / 0$ ．
Bl－H3 chmangeover Sw．and BBC Aerlal Bocket Heted and wired，s／－axtra．
Bend 3 Aorisis singlo Dipole whth 4 yds 32／6，etc．B1－B3 Crossover Units．7／6．

COAX 80 OHI CABLE

Stand．tin．diameter Low－loes Bem shr－spaced Aeraxial A high－grade Coms at NEW BEDUCED PRICES．NOW ONLX Gd．per yard．
Spechal prices－quastity dengths．
20 gde．$\% /=$ Cart．1／6．Ciax．Piuga $1 /=$
40 ytis．17／6．Carr．2／～．Sockets 1／－．Couplers $1 / 8$. 60 yds． $25 / \mathrm{m}$. Carr． $9 /-$ ．Cable and Bockets $1 / 4$ Outlet Boxes $4 / 8$ ．

CRT HTR ISOLATION

TRANSFORMERS
New improved types，Now onpecity，manall axa and tag terminsted，Prim．AC $200 / 250 \mathrm{~V}$ ．Beconderits $\mathrm{NiI},+45 \%,+50 \%$ B00ST for $2 \mathrm{~F}, 4 \mathrm{~V}, 6.37 .127$ or 19V Tubear $18 / 6$ each．P．\＆P．1／6．
 back Voltages，KS／25 \％kV．， $5 /-\mathrm{K} 3 / 40$ 3．2 KV． 6／9；K3／45 3．6 kV．7／8；K $3 / 504 \mathrm{kV}$ ．7／9；K9／100 ／9；RM2， 125 v． $100 \mathrm{~mA}, 5 / 8 ; \mathrm{RM} 3,125$ v． 120 mm ， 16 ：RM4， $250 \mathrm{v} .250 \mathrm{~mA}, 16 / \mathrm{F}$ ；RMM 4 B type 270 mA ， 17／8：RM5， 250 \％． 800 mA ，21／－etco

SPEAKER FRET－Expanded Broaze anodised
 $12 \times 15 i n, 8 /=; 24 \times 12 i n_{n}, 9 / *$ etco．

TYGAN BRET（Murphy pattern） $12 \times 1 \sin _{0}$ e／m； $12 \times 181 \mathrm{n}, 9 / \mathrm{-i} 12 \times 241 \mathrm{~m}, 4 / \mathrm{s}$ ，otos
 Gootenams，18／6． \sin. R．\＆A．，17／6．fin．Celection， 18／6． $7 \times 4 \mathrm{in}$ ．Goodmans，18／8．，Bin．Rola，80／o，8in．

JASON FM TUNER UNITS

（87－105 Mc／s）
Deadgner－approved tits of parts for these quallty end bighly popalar tunery avallable at follows： STANDARD MODEL（FMTI）－es previonaly

 LATEST MODEL（FMT7）－titractively presented ohelf mounting unit in encloasd Metal Cstimet with Built－in Power Supply．OOMPLZTE KIT， 8\％，P．\＆P．8／6，bet of 5 epec，vaves， $7 / 6$ LATEST MOD私（JTV8）Self－powered Bwiteh． thued Bsad 1－2－3 AM／FM Unit 5 pre－bet atistions． $A P^{P} C$ and $A G C$ elreuts．Complote kit，includiag ready－build Turrent Tuper，E18．19．6，P，\＆P．3／6． NEW JASON COAPABEANOL

ONLY A FEW ITEMS ARE LISTED FROM OUR COMPREHENSIVE STOCK． WRITE NOW FOR FULL BARGAIN LISTS；3d，

Terms．C．W．O． or C．O．D．post and packing up to t ／b，7d． $1 / \mathrm{b}$ ． 111 31b．116： 5／b．2fa： 10 lb ． $215115 / b .3 / 6$.

TELEVISION SPARES

We can supply from stock elmost any component from a Resistor to a Tube.

NEW OR USED
Line Ontput Transformers from 25/-. S/Colls from 15/-. Line or Frame Blocking Ose. Transformers from $3 / 6$. Frame Output Transformers from 10/-.
12 Channel Turret Tuners from 40/-. $10-16-38 \mathrm{Mc} / \mathrm{s}$. state which.
Lon Trabs, 2/6 each, Resistors, mixed (25). 2/6. Speakers fer TV, 7/6. Cablinets. New or Secondhand, from 10/-. Spares for:
PYE V/4, V/7. FV1, etc. 283 etc
FERGUSON $988,998,992 / 4 / 6 / 8$. 204/6. 306/8. etc.
H.M.V. 1807 to 1840 series, etc.

MURPHY 214. 200. 240, 250, etc.
These are only examples of stocks, we have spares for nearly any make and model.
FIRST-CLASS PICTURE TUBES (Used)
91n. and $12 i n . .35 / 0$ 1 141n. £2.10.0; 171n., 83.0.0.
7-DAY MONEY BACK GUARANTEE if not perfectly satisfled.
REGUNNED TUBES:

CALL, WRITE OR PHONE
D and B TELEVISION
I31A, Kingston Road, London, S.W.I9. CHE. 3955.
S.A.E. all enquiries. Terms: C.W.O. or C.O.D. $2 / 6$ extra. Postage on Valves 6d. each. Picture Tubes $12 / 6$ inc. insurance Enquiries answered and orders despatched by return post. Advlee and technical information free-we are always pleased to help.

TOP QUALITY AT

 LOWEST PRICESwith 12 months' Guarantee.

VIRTUALLY AS NEW

COMPLETELY REBUILT TUBES

TERMS-C.W.O.

MULLARD - MAZDA AND HARD GLASS TYPES

12-14 inch
E6. 0.0
15-17 inch
21 inch
E6. 10.0
E9. 0.0
ELECTROSTATIC
TYPES
10/-EXTRA.

TRADE ENQUIRIES WELCOMED

PRICES SUBJECT TO RETURN OF OLD TUBE

Pass. Train, Carr. \& Ins.-To You-\& return of old tube, in special containers. All covered for $20 /-$ extra anywhere in U.K. or N. Ireland. BRAND NEW TUBES WITH 2 YEARS' GUARANTEE-NOW AVAILABLE (i.e. 17 inch at $£(0$.). From:-

SABRINA C. R. TUBE CO.
Electron Works, North Bar,
BANBURY - OXON
Phone: 2390.

PHONES FDR TV RECEIVEIRS

FOR PERSONAL LISTENING AND THE DEAF
By F. G. Rayer

IT is not always realised that headphones can be worked from a TV receiver, and that this can be of great convenience for individual listening, or for a deaf person. If the receiver speaker is switched off (as it can be) a viewer can use the phones without any danger of disturbing others, and this arrangement is occasionally handy.

Fig. 1.-Connections for a receiver with an earthed chassis.

Advantages

In the case of a deaf person, when phones are connected, there is no longer any need to adjust the receiver volume control to a level which is unpleasant for other people in the room nor need for the deaf individual to sit near the receiver. This is sometimes done in an attempt to follow the programme, but is not a good viewing position. A deaf aid can, of course. be helpful, but it is not always easy to situate this so that it picks up a good signal from the receiver loudspeaker and yet allows the deaf person to be at the best viewing distance.
To overcome these difficulties, phones may be connected to the output circuit, with their own volume control. The exact manner in which hearing has deteriorated varies with different people, and this can have a bearing upon the circuit which is found best. Frequently, however, the maximum reduction in hearing is in the top register, and a simple condenser coupling circuit will allow considerable top boost to be made available.

Output Sockets

Sockets are provided so that the phone circuit can be plugged in. If the receiver speaker is always to be left working when the phones are in use, no changes will have to be made except for this socket circuit. But if a speaker silencing switch is required, this will have to be fitted at a convenient point at the back of the cabinet.

It is essential that the headphone circuit is isolated from receiver high tension and mains voltages. If the receiver is of A.C. type, with all circuits isolated from the maíns by means of a transformer, and an earthed chassis, then it is only necessary to connect the sockets to the buitput transformer secondary, as in Fig. 1. One side of the phone circuit is then earthed.
If the receiver speaker is to be silenced, it is often enough to include an on/off switch in one lead from output transformer secondary to speaker speech coil. But if the circuit has a powerful output stage, or takes negative feedback from the secondary, a 2-way switch can be used instead, as also shown in Fig. 1. The resistor \mathbf{R} is somewhat higher in value than the speech coil impedance of the speaker-say 5Ω, for a $2 / 3 \Omega$ unit. For normal purposes with the speaker silenced it is unlikely that very much power will be dissipated in this resistor, so a 1 W to 5 W component may be fitted.

Isoration

With A.C./D.C. or series-heater circuits, it is not safe to assume that the output transformer secondary is isolated, because it may be "wired' to chassis, or to a negative feedback circuit. "Because of this, an isolating transformer can best be added, as in Fig. 2. The primary of this is returned to the chassis, and is therefore alive to the mains. The secondary is isolated, however, and one secondary lead can be connected to earth (not the receiver chassis, with this type of set).
The transformer is a small output coupling type, with a fairly high primary impedance. The condenser C is a high voltage paper component, and $0 \cdot 1 \mu \mathrm{~F}$ will usually be suitable. This can be modified if desired, as explained later.

Phone Control Unit

A length of twin flex is run from the receiver sockets to a small box or case, which containsja volume control for the person using the phones. Some surplus phones of very low impedañee are encountered. and these may be operated directly from the low impedance output sockets, fitted as in Figs. 1 and 2. The matching will not usually be correct, but can be near enough for satisfactorv quality.

Fig. 2.-Isolating circuit.

When this method of operation is to be adopted, the circuit in Fig. 3 will be satisfactory. R1 is a volume limiting resistor, because the power required by the phones will usually be relatively small. R2 is for volume control purposes. For a low impedance circuit, R2 can usually be some 10. to 50Ω or so, without very much influencing results. R1 can, of course, be omitted. But it is

Fig. 3.-Low impedance circuit with volume control.
wise to adjust speaker volume to a normal level, then employ for R1 a resistor which will avoid distress to the person using the phones, even with the volume control near maximum.

If medium or high impedance phones are to be used. the volume obtained from them will be small with a low impedance output circuit. It is possible to feed such phones from isolating condensers connected to the primary of the receiver output transformer, but a fault can then result in a high voltage reaching the phones. For this reason, a small output transformer is best used, wired as shown in Fig. 4. A moderate ratio, such as would be fitted to couple a triode output valve to a speaker, will be satisfactory.

Resistor R1 is again so chosen that careless adjustment of the phone unit volume control will not distress the listener. R2 should be of fairly high value, and $10,000 \Omega$ will generally serve. A small $0 \cdot 1 \mu \mathrm{~F}$ condenser can be used for C.

Treble Boost

When it is necessary to accentuate the treble, the condenser in Figs. 2 or 4 can be reduced in value. Quite small condensers can be fitted, if necessary. Readjustment of the volume control will be needed, and this will give a relative

FRIDAY, JANUARY 13th, 1961 A FILM SHOW
 (in collaboration with Mullard Led.)
 CAXTON HALL, WESTMINSTER at 7-30 p.m.

Send for your free tickets now marking your envelope "Caxton Hall" in the top left-hand corner and enclosing a stamped addressed envelope (at least $3 \frac{1}{2} i n . \times$ bin.) for the tickets.

The films to be shown will be announced later, but, as in previous years, the programme will be arranged to appeal to all who are Interested in radio.

The demand for tickets is great; order yours NOW.
increase in the power of the higher frequencies. If the phones are only to be used for personal listening by people having normal hearing, the coupling condenser should be of reasonably large value. When a deaf person is using the phones, while other viewers listen with the speaker, the receiver volume control should be adjusted first. The deaf person should then set the phone volume at the required level.

Many ex-service headsets can handle quite a powerful signal. This is not so, however, with some types of diaphragm phones which are produced for crystal sets, 1 -valvers and similar purposes. Attempts to work the phones at high volume will then cause a rattle, owing to the diaphragm striking the magnet poles. If this arises, the cap should be unscrewed, and the diaphragm lifted off. By drawing a pencil line round the diaphragm, a narrow washer of the same

Fig. 4.-Impedance matching and top-boost circuit.
diameter can be cut from stout paper or very thin card. One such washer is then placed under each diaphragm, to increase the clearance between diaphragm and magnet poles.

A spare multi-ratio output transformer will be handy for coupling purposes, as it is then possible to select tappings to match phones of various impedances.

NEW BBC TRANSMITTING STATION AT DRYDEN HILL

THE BBC has chosen a site at Dryden Hill, near Galashiels, for its new station in South-East Scotland. The site has been approved by the Postmaster General and legal negotiations for its acquisition are in progress. The station will transmit BBC Television, and also the Scottish Home Service, the Light Programme, and the Third Programme, with Network Three, on VHF. The station will be provided with a 750 ft . mast, and will serve an area with a population of nearly 100,000 people, some 70,000 of whom have not hitherto been within range of BBC Television or of the VHF sound services. This area will extend to Lauder, Duns, Selkirk, Hawick, Jedburgh, and Coldstream.

The station will work in Channel 1 with vertical polarization.

Work on the site will be started as soon as possible, but the construction of the building, the installation of plant, and the design and completion of the mast and aerials will necessarily take some time so that it is not yet possible to give a completion date.

CLARKSON＇S TUBE CHANGE
 120 COMMERCIAL ROAD，LEEDS 5

We are now able to offer SUPER SCREEN TV TUBES with 12 months＇guarantee at the keenest exchange price ever．

Example：

Tubes all types	Cash ailowance on recurn of old tube	Actual Cost of Tube
$12^{\prime \prime}-14^{*}$ $£ 5$	$15 /=$	$£ 4.5 .0$
$15^{\prime \prime}-17^{\prime \prime}$ $£ 6$	$25 /-$	$£ 4.15 .0$
$21^{\prime \prime} £ 8$	$30 /-$	$£ 6.10 .0$

Carriage and Insurance 10／－extra
These tubes are COMPLETELY REBUILT by experts， with the most up－to－date electronic equipment，and are fitted with the famous American Superior Electron Gun． Many thousands of these tubes are in service today． Our factory is open to inspection to readers of＂Practical TV ${ }^{\prime}$＂．Technical advice and queries are answered tree of obligation．All tubes are dispatched with adhesive paper and return labels．Cash allowance is sent on receipt of old tube．

	MAI 211 Stre L．VALV Terms C．W	ORDEIR I ham IRoad， ；LISTED or C．O．D． mitcha	EPARTME Mitcham， ARE NE Postage 3d． M 6201	T rrey STOCK per valve
AZ31 15／6	EF92 5／－	82	UY85 71	$6 \mathrm{K8G} 7 / 6$
B65 8／6	EL42 10／－	9／6	VP4B $17 / 8$	6K8GT
DAF91 3	ELS4 $7 /$	CL． 82	W81M $5 / 9$	12／6
${ }_{\text {DF91 }}{ }^{\text {DAF }}$ 4／6	EM80 10%	PCL $83{ }^{11}$	W719 ${ }^{\text {W }}$	6Lba $15 / 6$
DH719 $7 / 6$	EM81 10\％－	12／6	W727 7／6	$6 \mathrm{~L} 1812 / 6$
DK91 ${ }^{\text {9／－}}$	EY81 $10 / 6$	PENA4	$\times 78 \quad 21$	6L19 21／－
EABC80	EY84 10／6	$17 / 6$	$\times 79$ 21／－	6N7G／GT
EAF42 10／	EY86 9／6	EN4VA	Z21 12／6	8SL7GT ${ }^{7 / 6}$
EB91 5／－	EY91 EZ35 \％／－ \％	PL36 176	$\begin{array}{ll}\text { Z77 } & 4 / 8 \\ \mathrm{Z} 152 & 8 / 6\end{array}$	
EBC41 $9 / 6$	EZ40 \％／6	PL． 81 14／9	2719 7／6	6SN7GT
EBF89 976	EZ41 716		${ }^{1125} 5$	8V60 5／6
EC91 9／6	EZ80	${ }_{\text {PL83 }}{ }^{\text {PY8 }} 10 / 6$	$\begin{array}{ll}\text { 5U4G } & \text { 4／6 } \\ \text { 5V4G } & 9 / 8\end{array}$	6X5GT 5%
$\mathrm{ECC33}_{5}$	$\mathrm{FC2}^{1} 21 /$	PY81 7／6	5X5GT $5 /$	$75710 / 6$
C83 81		PY82 8／－	5Y3GT 8／6	
ECC84 916	${ }^{\mathrm{FC}} \mathbf{}$	PY83 8／6	5Z4G 10／－	8D3 ${ }^{\text {8／}}$
ECC85 9／6	FC13C $21 /-$	${ }_{\text {R19 }} 18$ 21／－		
ECF80	GZ32 H30 11／6	TDD4 $17 / 6$	6ALs 10\％	12AH8 10／－
ECF82 ${ }^{12}$	H64 9／6	T＇P22 17／6	6AM6 4／	12AT6 9／－
12／6	HBCSO 9／6	U142 8／－	6AN5 $7 / 6$	12AU7 8／－
$\mathrm{ECH}^{\text {ECH }}$ 5 9	$\mathrm{HLS2}^{\text {HL13D }}{ }^{\text {6／6 }}$	U153 6 9／6	6BA6 7／6	$12 \mathrm{AX7} 9 / 8$
ECHE1 9%		UABC80	BBE6 7／6	${ }^{12 \mathrm{Ca}}$ 128E6 $9 / 8$
ECL80	KT33C	8／－	613J6 616	12BH7 15／m
82	$\mathrm{KTS6}^{1710 / 6}$	UBC41 $9 / 6$	6BW6 8／6	T
$12 / 6$	LZ31918／6	UBF80 9／6	68W7 6／6	$12 \mathrm{K7GT}{ }^{8 / 6}$
EF37A 8／6	MKT4（5）	UCH42	皆日 686	
EF40 15／－	（or 7） $17 / 6$	UCH日1	ED2 ${ }_{\text {V1 }}$	8 CT
$\begin{array}{ll}\text { EF41 } & \text { 18／3 } \\ \text { EF42 } & 10 / 6\end{array}$	MSP4 $17 / 8$	8/-	${ }_{6 \mathrm{Fl2}}^{1 / 1 / 9}$	$1207^{12 / 6}$
EF50 A ）	$\text { MU14 } 9 /$	UCL83	$\begin{array}{ll}6 \mathrm{Fl} 3 \\ 6 . J 5 G & 17 / 6 \\ 4 / 6\end{array}$	1207 GT
EF90 4／－	$M \times 4017 / 6$	UF41 ${ }^{13 / 6}$	6．J5G 6.57 GT 186	$35 Z 4 G T^{9 / 6}$
EF85 6／6	N153 11／6	UF89 8\％－	$6 \mathrm{K7} \quad 4 / 6$	
EF86 ${ }^{\text {EFP89 }}$	${ }^{\text {PCC84 }}$ P／8／6	UL41 9／－	${ }_{\text {6K7GT }}^{\text {8K7 }}$	OLAGT 9／－
$\begin{array}{cc}\text { EF89 } & 10 /- \\ \text { EF91 } & 4 / 9\end{array}$	16	UY44 7	${ }^{\text {6K7GT }}{ }_{10 / 6}$	
Qnotatio		D FOR LIS types not es a speciali	18. isted．Obso y．	te and oid

BRAND NEW TUBES

12 months' guarantee TOP CLASS MAKE
CARR. \& INSURANCE PAID
$12^{\prime \prime}$ MW 31-74 etc. $£ 5.5 .0$
$14^{\prime \prime}$ MW 36-24 etc. $£ 6.6 .0$
$17^{\prime \prime}$ MW 43-64; 43-69 $\mathbb{C R M}$ 171, 172 $\mathbf{~} \mathbf{0 . 0}$
NEW, BOXED, ex Factory
RESISTORS-NEW, tw. -3 w . mixed. 50 for $4 /-: 100$ for $7 / 6$, post $1 /$-.
WELWYN 5w., w/w precis. ceramic 5 K . 1/3 each (12/- doz.), post 6d.
SUPERB CABY MULTI-METERS.
Inclusive of Test prods, Batteries, Instrn., Book.
MODEL A-10. 2 K ohms/v. 10 ranges of volts, current, resistance. $£ 4.15 .0$ post 2/6.
MODEL B-2. 10 K ohms/v. on .5 v . and 2.5 v . 4 K ohms/v. on (10 v . to 1000 v.) 19 ranges. £6.5.0 post $2 / 6$.

RECORDLNG TAPES
 5in. $1200 \mathrm{ft} . \because 23 / 6 \quad 7 \mathrm{in} .1200 \mathrm{it} \quad \because 25 / \mathrm{O}$
"lngtant" Bulk Eraser and Head Defuxer, 27/6. an
Above items, post 1/6.
TRADE ENQUIRIES INVITED

LINE OUTPUT

TRANSFORMERS

Direct Replacements for 200 sets. Baird. T29, T163, ․ . ..
 Bush. TV 11A, B: $12 A$. B; TVF 12A.
TUG 12A, B. TRG $12 \mathrm{~A}, \mathrm{~B}$ TUG12A, B; TRG 12A, B TV12AM; TV22, 24 : TRG24, TUG 24 45/ Cossor. $930,931,933,934.948$, etc. 24 600Ekco. TSI46; TSll3-114: T161, 164; T222, 231; TSC311. etc. 94. . -. $47 / 6$ Ferguson. 841.2.3;941 to 945 . $\because 55 /-$ 990T-998T; 103-145T; 203-246T . $66 / 6$ Ferranti. 14T3. $14 \mathrm{~T} 4,{ }^{17 \mathrm{~K} 3,17 \mathrm{TS}} 14 \mathrm{~T} 2$. T1405, T1415, T1425, T1505 T1825, T1325, G.E.C. and H. M.V. mostiy 55/- io $60 /$ G.E.C, and H.B. Ficta. T101-104; Ti08-110 $\quad \because \quad$ to $52 /-$ Inveta. T101-104; T108-110 Murphy. V114C.V116C. シ̈118C'. $.601-$ Murphy. vil4c. V116C, V118C. $\quad .45 /-$ Vhilioc. V180, V178, V200, V202C Phisg U 114 UF UM, 115 U 1437 U. $383 \mathrm{~A}, 463 \mathrm{~A}, 563 \mathrm{~A}, 663 \mathrm{~A}$. . $57 / 6$ 383A, $463 \mathrm{~A}, 563 \mathrm{~A}, 663 \mathrm{~A} .$.
рye. Lv30. 16T. CS17, etc. . 85/-
$. .80 /-$... 601 Add $2 / 6$ post. S.A.E. with enquiries.

SPECIAL!

NEW
 L.O.P.T. COMPLETE

 with:```
- Linearity and width controls.
- Ev86 base and top caps.
Valve connectors.
E.H.T. leads.
BEAUTIFULLY MADE
```

ONLY £1
post 2 s .6 d .

## IS IT THE L.O.P.T.?

Be SURE with the SKANTEST. The most compact low-priced line output and time base component shorting turn tester. Will indicate even one shorting turn. £7.10.0. Carriage 5/-.

## COAX LOW-LOSS

$50 \mathrm{yds}, 22 / 6$, carr. 3/-; 100 yds, 42/6. carr, 6/-
EAGLE MULTI-PURPOSE VALVE
EAGLE FILAMENT TESTER VT41
Checks - Valves. fuses

- Cot. Continuity

Inbullt - ${ }_{7} 9$ pin straighteners
COMPLETE with batteries. instrns. 30/-
CaIr, $2 / 6$.
RADAR KIIOVOLTER. A servicing "must". Checks accurately and safely. actual E.H.T. volts at C.R.T. E.H.T. rectr. etc. $£ 3.17 .6$. carr. $2 / 6$.

MAINS TRANSFORMERS SPECIAL OFFER. $350-0-350$ v. 80 ma . 6.3 v at 3 a . 5 v . at 2 a. Hall-shrouded, drop-through. Ex new equipment. By well-known manufacturer. WHILE THEY LAST ONLY 13/6, post $1 / 6$.

PLESSEY O.P. transformers-standard matchling for $3-5$ ohm spkr. Only 2/9, p, 1/-

CRYSTAL MLCROPHONES. $3 \frac{1}{2} \times 2 \frac{1}{2} \times 1 \frac{1}{2} \mathrm{in}$. For tape recorders. public address, etc. Cream piastic casing-gold metal grille. Boxed. with long grey screened lead BARGAIN 25/-, post $1 /-$

## WESTWAY RADIO

S.A.E. with enquiries pleas

5 Westward Way
'Better get the best-

## it costs less"

Offers you the finest rebuilding service available today. Each tube is completely rescreened aluminised and fitted with a new Gun Unit. Available now - for IMMEDIATE DELIVERY.
12"—£5. $14^{\prime \prime}-15^{\prime \prime}-17^{\prime \prime}$ £5. 10. $21^{\prime \prime}$-£8.


VIDIO'S SECOND CHOICE -GUN UNITS.
12"—£4. 10. $14^{\prime \prime}-£ 4.15$. $15^{\prime \prime}-17^{\prime \prime} £ 5 . \quad 21^{\prime \prime}-£ 7$.

ALL TUBES GUARAN. TEED FOR ONE YEAR.

Get full details now from.
VIDIO REPLACEMENTS LTD.
Hales St., Deptford High St.
London S.E.8. Tel: TID 4506

## SPECIAL OFFER!

TO THE FIRST HUNDRED CUSTOMERS

## COSSOR IO" TUBES

Brand New NOT A Regun
$108 \mathrm{~K} 15 \mathrm{plus} 6 /=$ carr $\&$ ins 75K 15/- plus 6/- carr \& ins

## 12 MONTHS' GUARANTEE

## ION TRAP MAGNETS

Suitable for all bent gun type tubes
2/9 EACH Plus $6 d$ post \& pack
HARVERSON SURPLUS
LIMITED
83 HIGH STREET
MERTON S.W. 19
CHErrywood 3985:6/7


SOUNDING brass and tinkling cymbals! How realistically they are reproduced on modern V.H.F. hi-fi sound radio-and especially on the latest stereophonic radiograms. Memories of the Radio Show are fading now, but recent examinations 1 have made of some of the very latest commercial television sets have reminded me of the enormous difference in the sound quality when compared with the best of the hi-fi receivers.

## Lo-f Sound

THE shape of the modern TV
set allows little space for a good loudspeaker and baffle, and in any case the loudspeaker is usually relegated to the side or back of the set, thus effectively losing the high harmonics and "top" that give sound presence and character.
What is to be done about it? Nothing, I regret to say. For in the majority of cases, it is the woman of the family who chooses the make of television set at the shop and the choice is dependent upon her existing furniture styles in the house, the wallpaper or other local colour. Some modern receivers have spikes on their legs as injurious to the carpets as stiletto heels. With a resigned expression on his face, a television set designer said to me, "I don't like the trends, but what can I do? I'm restricted by the credit squeeze and slimline fashions; outer styling is now more important than inner engineering-and I have to sell my sets to eat, so I pander to the ladies."

I am, of course, exaggerating to make my point, but not grossly exaggerating. However, two or three makers have lately achieved an admirable compromise by producing rather wide-fronted slimline models with forward directed loudspeakers on each
side of the TV picture combined with cabinet styling that harmonises with almost any kind of furnishings. This is a remarkable achievement!

## Piped Television

POOR sound on television is not only heard from some modern TV sets. It is very often heard on the sets provided by wired television companies in some provincial towns. These services are a boon for those viewers who live in towns which are badly screened from their local BBC and ITA transmitters. In some cases, even the highest aerials will not give an inter-ference-free picture from either transmitter, whereas the piped services originate from a firstclass receiver with a high aerial on high ground outside the town. Picture and sound are relayed to various parts of the town with amplifiers and repeaters at
various points. Picture quality is usually of a high order, free from car and other similar interferences, but sometimes subject to very slight ghost or reflection effects which are possibly due to local distribution line conditions. Surprisingly, the sound sometimes lacks brightness and top. The pictures of BBC and, say, two alternative ITA transmitters are often surprisingly different in strength and quality. I recently looked at a provincial wired television set in a hotel which gave the following picture results:-

## 1. BBC-excellent. <br> 2. London ITA-excellent. <br> 3. Local ITA-weak and poor.

Considering that the people in the town who use their own sets with normal aerials can receive the local regional ITA station perfectly but not the London ITA, the above results are sur-


Tyne Tees Television's new Remote Unit equipped with two Marconi Mark IV cameras in action at Redcar Racecourse.
prising. I would imagine that advertisers who have purchased expensive space for their commercials from the local regional ITA company must be furious.

## TV Humour

It really is not very surprising that the public seem to prefer television in its lightest vein. The most popular films in the cinemas are light comedies which include a quota of slapstick such as the "Doctor" series ("Doctor At Sea", "Doctor In Love", etc.) and the "Carry-ons" ("Carry on, Constable", "Carry on, Nurse", etc.). Virtually the same formulæ are used for "The Army Game",
"Bootsie and Snudge", Granada's two comedy series.

It all goes to show that there is no joke like an old joke, as long as you dress it up in a new way. Granada do this very well, and a good storyline and slick direction keep the laughter going, however old the chestnuts.
My personal preference is for "goonish" humour of the type "distilled" by Peter Sellars, Harry Secombe, Valentine Dyall and the "Fred" gang. There is a touch of this type of humour in BBC's "Parade", in which Alan Melville distinguished himself recently. The pace of this show is a merry one. It is always a wonder to me how the writers and producers, not to mention the artists. can keep it up week after week in any of these comedy series.

I hear that Gracie Allen, of the Burns and Allen team, rejoices in the end of the series which has caused so much laughter week by week both here and in the U.S.A. "What a lovely rest from having to learn pages and pages of dialogue each week!" she said. It is forgotten by many that Burns and Allen toured their music hall act in Britain before the war. I remember seeing them at the Victoria Palace. They were not at the top of the bill then. but their act had the audience rolling in their seats with laughter. Their television act each week is based upon the same routines. Early episodes of "I Love Lucy" another domestic comedy series, are still being enjoyed by some of the regional stations more recently opened.

Many a humorous film series is started for TV but not many succeed in getting further than a pilot of the first episode. It is
a big gamble to assess the possible audience reactions to humour, but there are big financial rewards for those who succeed in making the grade.

## Special Effects

IT only seems a few months since the special effects panel. capable of providing a variety of electronic wipes, was evolved, and yet years have passed since a BBC engineer, Dr. Spooner, first investigated the prospects of applying photographic trick effects, as used in films, to television. He spent several weeks visiting Ealing Studios and watching the travelling mattee process in use on a famous film called "The Lavender Hill Mob." Alec Guiness (now Sir Alec) and the other actors, including Stanley Holloway, were unable to leave London and so other means had to be found to enable them to act in front of the authentic backgrounds. Foreground actors and pieces of scenery were therefore shot in the Ealing Studio and superimposed on backgrounds of the Eiffel Tower and streets of Paris. The result was most convincing and it was hard to believe that the chase down the iron stairway of the great tower was not completely shot in sifti. Dr. Spooner then started his first experiments on inlay and overlay which resulted in the development of the electronic switch. In turn this was simplified to provide straight electronic wipes in which one scene wipes across and replaces an existing scene.

A further recent development and simplification of the special effects wipe panel was evolved by Dave Whittle. Chief Engineer of Alpha Television Studios, Birmingham, and now, various
versions of special effects panels are being supplied to the BBC and ITV Companies by Pye, Marconi, RCA. and E.M.I. The Marconi panel is the most elaborate and can deal with overlay as well as eighteen dilferent types of wipe. These electronic tricks will become conmonplace, largely replacing the cumbersome back-projection system. The only danger is that they will become over-used at the least pretext. Remember the dazzling wipes and zooms which became such boring technical clichés in film trailers announcing next week's attractions at the cinema? Let us hope the television people do not overplay this new electronic card in their hands.

## Granville Theatre

$\mathrm{A}^{\mathrm{s}}$S mentioned last month. the Granville Theatre, Fulham Broadway, has once more been opened for television but in a more elaborate way than it was four years ago and is available for hiring to any of the TV Companies. It is fitted with Pye cameras and telecine, and excellent lighting grid by Mole Richardson and all the very latest paraphernalia of the TV stuctios. I'm glad that the Granville is in circulation again. It has been a theatre of some kind since 1898, housing music hall, melodrama, revue and non-stop variety in turn. It was rather on the small side, seating only 777 people, but this is no disadvantage for television. The maximum audience that can now watch television shows here is about 200. Almost the entire stalls and pit have been turned into an extension of the stage and large control rooms have been fixed up in the gallery.

## PRACTICAL WIRELESS <br> CHIEF CONTENTS OF THE DECEMBER ISSUE Now on Sale, 1/6

A RELIABLE RADIOGRAM CURRENT AND VOLTAGE FEEDS

A MIDGET T.R.F. RECEIVER TWO-VALVE GENERAL PURPOSE AMPLIFIER SIMPLE GUTTAR MICROPHONE INEXPENSIVE PRE-SET TUNING

ETCHED CIRCUIT T.R.F.
CLUB NEWS
ETC., ETC., ETC.

## R.S.C. <br> (Leeds) Lid. <br> BRADFORD, LEEDS and MANCHESTER

### 54.56 MORLEY ST. (Nr. Alhambra) BRADFORD

 5/7 COUNTY ARCADE, BRIGGATE, LEEDS, I 8/10 BROWN St. (Market St.), MANCHESTER Mail orders to Dept. N., 29-31 Moorfield Rd., Leeds, 12Post Terms C.W.o. or C.O.D. No C.O.D. under \&1. Postage $1 / 9$ extra under £2. $2 / 9$ under \&5. Open to callers 9 a.m. to ${ }^{6} \mathrm{p} . \mathrm{m}$. Wednesdays until $1 \mathrm{p} . \mathrm{m}$. S.A.E. with enguiries. Hease. 'Trade supplied.

## R.S.C. TRANSFORMERS <br> Fully Guaranteed Interleaved and Impregnated

 Primaries $200-230-250$ v 50 e/s screened TOP SHROLDED DROP THROUGH $260-0-260 \mathrm{v} 70 \mathrm{ma}, 6.3 \mathrm{v} 2 \mathrm{a}, 5 \mathrm{v} 2 \mathrm{a}$. $17 / 9$ $350-0-350$ v $80 \mathrm{ma}, 6.3$ v $2 \mathrm{a}, 5 \mathrm{v} 2 \mathrm{a} \ldots$$250-0-250 \mathrm{v} 100 \mathrm{ma}, 6.3$ v $4 \mathrm{a}, 5 \mathrm{v} 3 \mathrm{a} .$.
$23 / 8$


 FULLY SHROUDED UPRIGHT $250-0-250 \mathrm{v} 60 \mathrm{ma}, 6.3 \vee 2 \mathrm{a}, 5 \mathrm{v} 2 \mathrm{a}$ Midget type 2k-3-3in..
$250-0-250$ v $100 \mathrm{ma}, 6.3$ v 4 a. 5 v 3 a $\ldots 17 / 11$ $300-0-300 \mathrm{v} 100 \mathrm{ma}+.6 .3$ v $4 \mathrm{a}, 5 \mathrm{v} 3$ a.. $27 / 9$

 $350.0-350 \mathrm{v} 150 \mathrm{ma}, 6.3 \mathrm{v} 4 \mathrm{a} .5 \mathrm{v} 3 \mathrm{a}$. | $425-0-425$ v $200 \mathrm{ma}, 6.3$ v 4 a, С.T. |
| :---: |
| $6.3 \mathrm{v} 4 \mathrm{a}, \mathrm{C} . \mathrm{T} .5 \mathrm{v} 3 \mathrm{a} \therefore$ | FILAMENT TRANSFORMPRS All with $200-250 \mathrm{v} 50 \mathrm{c} / \mathrm{s}$ Primartes: 6.3 v . 1.5 a. $5 / 8 ; 6.3$ v 2 a, 7/6: $0-4-5.3$ y 2 a, $7 / 8 ;$ 12 v 1 a. $7 / 11 ; 6.3 \mathrm{v} 3$ a. $8 / 11 ; 6.3 \mathrm{v} 6 \mathrm{a}, 17 / 8$. CIIARGEIR TRANGFORMERS

$200-250$ v 0-9-15 v 1 ใ $\mathrm{a}, 12 / 9: 0-9-15 \mathrm{v} 3 \mathrm{a}$. 16/9: $0-9-15$ v 5 a. 18/9: $0-9-15$ v 6 a. 23/9.
OUTPUT TRANSFORMERS Midget Battery Pentode 66:1 Small Smail Pentode 5.000 to 3 ohms Standard Pentode, 3 or 15 ohm 3 hms Pugh-Pull 10-12 watts 6 V 6 to 3 or is ohms
Push-Pull $10 \ddot{0}-12$ watts $6 \ddot{\mathrm{~V}} 6$ to $\dot{3} \cdot 5,8$ or . 15 ohms
SMOOTHING COKES
100 ma 10 h 250 ohms .
60 ma 10 h 400 ohms

SELENIUM METAL
RECTIFIERS Special quotes for quantities of 50 to 5,000 H.T. (H.W.) F.W. (Hridice)

| $250 \vee 50 \mathrm{ma} .$. | $3 / 11$ | $6 / 12 \vee 1 \mathrm{a}$ | $6 / 12 \vee 2 \mathrm{a}$ | $3 / 11$ |
| :--- | :--- | :--- | :--- | :--- |
| $6 / 11$ |  |  |  |  | 250 v 80 ma .. $5 / 11$ 250 v 100 ma.. 6/11

 | $250 \mathrm{v} 80 \mathrm{ma} \ldots$ | $6 / 11$ | $6 / 12$ | v 10 a | $\cdots$ | $15 / 6$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $6 / 9$ |  |  |  |  |  |
| 250 | ma |  |  |  |  |

 CO-AXIAL, CABI.E 人 75 ohms 14/36 Twin-screened Feeder ... .. Mi. Mil.
BATTEHY SET CONVERTER KIT All parts for converting any normal type of Battery Receiver to A.C. mains 200-250y $50 \mathrm{c} / \mathrm{s}$. Supplies $120 \mathrm{v}, 90 \mathrm{v}$ or 60 v at 40 ma , uily smoothed and fully smoothed L.T. cult, 49/9. . Or ready for use, $9 / 9$ ixira. ALL DRY RECEIVEIT BATTEERY ELIMINATOR KI'I. - All parts for the construction of a unit metal-case $54-4 f-2 \mathrm{tn}$.) to supply Battery Portable recelvers requiring 90 v and 1.5 v . Fully smoothed. From $200-250$ y $50 \mathrm{c} / \mathrm{s}$ manns. Price. inc. point-to-point wiring
grams. 39/9. Or ready for use. $46 / 9$.
D.C. SUPPLY KIT.-Suitable for Electrio Trains, Consists of mains trans. $200-250$ v 50 c.p.s. A.C. 12 v 1 a Selenium F.W. Bridge Rectifier. 2 Fuseholders. 2 Fuses. Change Direction Swjtch. Variable Speed Regulator. Partially $\quad 33 / 9$ drilled Stee! Case. and Circuit.
$33 / 9$ ACTO (STER CP/STEP/DOWN) TRANSFOR MERS
$\begin{array}{llll}0-110 / 120-230 / 250 & \text { y. } \\ 0-110 / 120-200-230-250 & \text { v. } & 150 & \text { watts. } \\ \text { watts. } & 11 / 9 . \\ 27 / 9 .\end{array}$

TELDEVASION RECTIFIERS
250 v 200 ma . Size 3 x lifins. Brand 200 v 200
New. $6 / 9$.

FX-GOV1 MAINS TRANSFORMERS Ail $200-250$ V $50 \mathrm{c} / \mathrm{s}$ input.
Removed trom New ex-Govt. units, 22/9
$270-0-275$ v 100 ma . 6,3 v 7 a. 5 v 3 ... $27 / 8$


EX-AOVT. SMOOTHING CHOKES-
$60 \mathrm{ma} 5-10$ hi 250 ohms ..
80 ma 10 h 150 ohms
100 ma 5 h 100 ohms Tropicalísed
100 ma $8-10 \mathrm{~h} 100 \mathrm{ohms}$ Parmeko
120 ma 12 h 100 ohms
$200 \mathrm{ma} \mathrm{3-5} \mathrm{~h} 100 \mathrm{ohms}$ Parmeko
. $2 / 11$

- $6 / 9$
3/11

EX-GOVT. CASES. Well ventilated. black crackle finish. undrilled cover. Size $14 \times 10 \times 811 n$, high. INEAL FAR BATTERY CHARGFR OR INSTRUMENT AMPLIFIER. Only 9/9, plus $2 / 9$ postage.

BATTERY CHARGERS For $200 / 250$ v $50 \mathrm{c} / \mathrm{s}$ A.C. mains. 12 months guarmains. Attractive, well antee. Athactive, well finlshed cases, 6 v or 12 v . ${ }_{4}$ inished amp. with meter and variable charge rate selector. as illus$\begin{array}{lll}\text { trated. } & 69 / 9\end{array}$ Or Deposit $13 / 3$ and 5 monthly payments of $13 / 3$.
type. Also suitable tor electric train power supply. Only 29/9 post $2 / 9$.


## TELEVISION TUBES

After considerable development work and extensive trials under working conditions, the manufacturer is confidently offering an

## 18 MONTHS' WRITTEN GUARANTEE

on all tubes.
To ensure extreme reliability, not only are the best available materials used under controlled conditions, but all tubes are given
12 THOROUGH TESTS
after completion of the processes.

| $12^{\prime \prime}$ | $\ldots$ |  |  | .. | $\cdots$ |  | £5.7.6. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $14^{\prime \prime}-16^{\prime \prime}$ |  |  |  |  |  |  | £5.10.0. |
|  |  | w | e | old | tube | 10/-. |  |
| $17^{\prime \prime}$ |  | ... |  |  |  |  | £6.19.6. |
|  |  | w | ce on | old | tube | 20/-. |  |
| $21^{\prime \prime}$ |  |  |  |  |  |  | \&8.19.6. |
|  |  | owan | ce on | old | tube | 30/-. |  |
|  | . O | r | O.D | Ca | rr. | d Ins | 10/- |

## TeleViewer Supplies <br> 95 Caldmore Road, Walsall, Staffs.

## AERIALS

BAND I HANII II B.ANIIII


Conthined Arrays I and III +3 Element Loft Mounting .. 38/3 $\begin{array}{ll}1+3 \\ 1+5 & \text { Element Loft Mounting } \\ \cdots & \cdots 8 / 9\end{array}$ $1+3$ Element Wall Mounting
$1+5$ Element Wail Mounting $: ~$
$61 / 3$ $1+3$ Element Chimney M'ting. ${ }^{1 / 7 / 10}$ $1+5$ Element Chimney M'ting. $86 / 9$ Band I
Single Dipole Wall Mounting .. 24/7 Single Dipole Chimney M'ting. $40 / 2$ x Aerial Chimney Mounting .. $82 / 3$ H Aerial Chimney Mounting .. $67 /$

> Rand III

3 Element Yagi Wall Mounting 33/6 Element Yagi Wall Mounting $43 /$ 9 Element Yagi Wall Mounting $56 /$ Chimney Lashing Mounting add 10 Double 6 Array, only with clamp 83/IBand II Single Dipole Wall Mounting . $20 / 5$
Single Dipole Chimney M'ting. $29 / 9$ Single Diple Chimney Mring. 29/9 Rabbit Ears Antenna, ready to plug in. All Bands $\cdot .21 / 3$ 6-inch Lashing Kit
T1-1nch Lashing Kit .. ... .. .. .. $14 / 8$


1 to 1 -inch Clamps univeran .. .. .. .. $3 / 10$
1 to 2-inch Clamps. Universal
Bracket Repart Kit. J Bolts, U Boits.
zoft Läshing
$5 / 4$
Bracker Repar Kit. J Bolts, U Bolts. 20ft Lashings
Wire. Thimbles. Corner Platos
..
$\begin{aligned} & \text { Wire. Thimbles. Corner Platos } \\ & \text { Insulators. All Types. }\end{aligned} \quad . \quad$.. $\quad$ (Enquire)
$\qquad$ Co-Ax. Semi Air Spaced. Fd, yd.
Send for tor Lists. Plepge state channel when ordering. Cash with Order. Post and Packing $3 /$-extra.
SAPISFACIION OR MONEX HACK GUARANTEF:
WALKER A SQUMRES
PINNOX STLIEET. TUNSTALA. STOKE-ON-TRENT
Phone: Stoke-on-Trent 88767

# VALVES SAME DAY SEIR VICE NEW! TESTED! GUARANTEED! 




## "AS-NU"

 Regunned TV TubesSupplied from stock, and despatehed by ritish Railways same day.
tted in every tube and fuily guaranteed for TWELVE MONTHS.
her types available. Pleast contact:
J. P. WRIGHT

Ic Shotton Street, Doncaster Sole Distribution Asent
'Phone: DON 2636 or 66252

## ACT NOW! Get information-packed literature FREE. Mail coupon today.

PRIME ELECTRICS DEPT. G.A. 11. 36-38 Queensdale Rd., London W.II.
Plase send ma your FREE brochure and tell me how can make EXTRA MONEY in my spare time by introducing your new product which selts on sight to all TV viewers.

NAME
(Please Print and send 3 d . stamp for postage)
ADDRESS
UNITED KINGDOM ONLY.

## LINE OUTPUT TRANSFORMERS

Most types available. State Make and Model Number of Receiver when ordering.
S.A.E. please with all inquiries

## HOWORTH

51 POLLARD LANE, BRADFORD 2, YORKS. Tel. 37030

## Just published in a NEW 3rd edition...

Edited by J. P. HAWKER

Much new information has been added to this enlarged and fully revised third edition.

Apart from essential reference data on cathode-ray tubes, valves, television stations and transmission standards, there are extensive sections on the basic circuits used in receivers, on fault finding-including a new trouble tracing chart-and on the alignment of Band $1 / 111$ receivers. There is guidance on the conversion of Band $I$ sets and a comprehensive list of receiver intermediate frequencies. Colour and transistorized receivers are described. There are also special sections on servicing equipment, dealing with printed-circuit models and projection receivers, aerials and interference problems.

[^0] George Newnes Ltd., Tower House, Southampton Street, London, W.C.2. NEWNES

## A SUPER SPECIAL TV TUBE OFFER

New cubes made by world-famous mantsfacturers complete with 12 months' maker's guarantee. 17 in . Tube to replace the MW43-64 43-69, 171K, 172K, 17 ASP4, 17, AXP4, C17-1, Our Hvallable brand new l4in. to replece Also 4vailable brand new 14in. to replace $36-24$, TR. 14-LP4, TR14-21, TR14, T36-24, or for AW KP4A. 14-1.P4, 141K, C38-24, or for AW 38-20, at gy each. post paoking and insuranoe 10/-extra.
NEW MAX ELECTRONICS
For London's Finest Bargains in electrunic and radio equlpment. Also Largest Selection of Tape Recordersis in he U.K. All Guaranteed.
220, Edgware Road, London, W.2. Tel. PAD sunt

The Editor does not necessarily agree with the opinions expressed by his correspondents.


#### Abstract

SPECIAL NOTE: Will readers please note that we are unable to supply Service Sheets or Circuits of ex-Government apparatus, or of proprietary makes of commercial receivers. We regret that we are also unable to publish letters from readers seeking a source of supply of such apparatus.


## SURGES

SIR,-I am an experimenter and find most enjoyment in trying out timebases. Recently I had a most unfortunate accident with a unit which virtually "blew up". I assumed at the time that one of the condensers had developed a fault which is not uncommon, and proceeded to dismantle it and wired in a new one. I have now found that the output transformer has gone o.c. The primary is burnt out and so I looked through a large number of circuits and books I have, and discovered a very interesting point. Some years ago it was the custom, apparently, to fit a 1W resistor across the primary as a "surge limiter". Today this does not seem to be included in any of the commercial circuits which I have looked at, and I wonder whether there is anything in the frame circuits which now does away with this surge, or are transformers now made to withstand the surge? I have not been able to see any data on this in any books or publications.-G.E. (Enfield).

## A STRANGE FAULT

SIR,-I have seen some peculiar faults in television sets, but am now faced by a most awkward one, which two local dealers have been unable to solve. When switched on the set warms up in the usual way, and suddenly the line whistle may be heard. The screen then starts to light up, and for about ten seconds there is a good picture with a full raster. Almost immediately, however, the frame jumps to about two-thirds full size with no alteration in width. Everything is accordingly elongated but if the set is not touched, after a period varying from ten minutes to half an hour, the frame jumps back to full size. It may do the same thing once or twice more during the evening, although some evenings it remains constant for the entire viewing period. Every component has been changed in the frame timebase, and the valves replaced with no effect. Can anyone offer a suggestion as to the cause?-D.K.L. (Aylesbury).

## ALTERNATIVE TRANSMISSIONS

SIR,-It is now many months since $l$ read that the Government had authorised the use of Bands IV and $V$, yet nothing seems to transpire. I expected to see something at the Radio Show on the lines of a really simple multi-band tuner, but was disappointed. Why cannot the BBC or ITV give us the opportunity of having these additional bands, especially as 1 understand that this may be done with no heavy cost, simply by using the present programmes, radiating them on two or three bands as required. It would
give us experimenters something to mess about with on those nights when there is nothing to hold our interest, as well as permitting developments to be made in multi-band tuning. I agree that colour would be more difficult as changes in the transmitter would be required, but the addition of a simple aerial array on all masts and radiation on three or four bands does not appear to me to be a difficult proposition, and would also help the transmitting people when an alternative transmission is commenced. F.T.R. (Hull).

## COLOUR TV

S$\mathrm{SIR},-$ The BBC has just announced the possibility of introducing colour television to Britain. Unless I am very much mistaken, this will be a costly changeover for both the viewer and the BBC.

For the BBC it will mean employing many more technical advisers who have had experience with scenery and costume arrangement suitable for colour television, as well as the cost of new cameras and equipment. This means that some of the finer points of acting and arrangement of the "sets", which in recent years have come near to perfection, will inevitably be lost under the restrictions caused by the necessity that colours will neither clash nor become lost against a background of similar colour. The result can only be a deterioration in the high standard of production we have at the moment on British television. Which excels, I wonder-a cheap colour production or a first-class play in monotone?

For the viewer it will almost certainly mean an increase in the price of a television licence-the BBC have said so. The receiver will cost many times the amount usually paid for one now. Also, every TV set will have to be increased in size to accommodate the extra components, and much of the elegant styling that has been accomplished over a number of years and which can be seen in nearly all of today's models will have to be forfeited for the addition of colour programmes.-D. Hilliam (Bexley).
SIR,-I, for one, was pleased to hear of the BBC's plan for colour television in this country, but am somewhat sceptical about the quality of the picture that will be received. Although I have no experience in this field of television, I would imagine that faults that were either common or inevitable on normal TV sets would become serious delects on colour receivers.

For instance, would the strength of the colours become lessened when a receiver is used in a "fringe" area? Would the overlapping images formed by "ghosting" result in a change of colour over certain parts of the screen?

No doubt manufacturers will overcome these and other difficulties, but additional controls will almost certainly be necessary, making the operation of receivers more complex than ever.-J. Evans (Redhill).


Whilst we are always pleased to assist readers with their technical difficulties, we regret that we are unable to supply diagrams or provide instructions for modifying surplus equipment. We connot supply aiternative details for constructional articles which appear in these poges. WE CANNOT UNDERTAKE TO ANSWER QUERIES OVER THE TELEPHONE. The coupon from p. 168 must be attached to all Queries, and if a postal reply is required a stamped and addressed envelope must be enclosed.

## ULTRA V707

This set has developed a lin. black line down the right-hand side of the picture. When the sound is loud, the picture breaks up.-D Cole (London, W.3).

We are not familiar with the model V707, but assuming this belongs to the W700 series we would suggest you check the UU8, the electrolytic capacitors and the "beehive" capacitor adjustment on the right side chassis (oscillator tuning).

## H.M.V. 1826

This set uses an Emiscope $4 / 15$ tube which is now going dim. As regunned tubes are hard to obtain for this model I was wondering if there is any way to convert it to take a Mullard or Mazda tube.-E. Williams.

A rebuilt $4 / 15$ tube may be obtained from firms advertising in our pages.

## FERGUSON 989T

The trouble started with what appears to be EHT "brushing" spots in two separate horizontal bands. These have now spread all over the screen, but not always present. I have inspected the circuit in the dark for sparking but with no success. This has become worse after interference accompanied by a forked lightning effect from the top centre to the middle of the screen. This appears to have caused a slight vertical burn, leaving a permanent mark. There is also an erratic frame hold. At intervals of up to 15 minutes or more the picture commences to move up or down and, while a lock can be obtained, there is sometimes a tendency for the bottom of the picture to fold up.-P. Hunt (Hackney, E.8).
There is a possibility that the disturbance is in fact the result of a form of external electrical interference. You should first prove this by disconnecting the aerial from the set when the effect occurs. If the interference spots are still present with the brightness suitably advanced to show a raster, then it is
being caused by a fault in the set. If the raster is clear, however, the interference is external. In the former case check the line output transformer insulation and soldered connections, especially those on the EHT rectifier. Also check the EHT smoothing capacitors. These often tend to break down and cause the troubles mentioned. External interference may require Post Office investigation.

## ALBA

This set is six years old and has developed a wedge-shaped raster or picture. I purchased a new set of scan coils but there was no life on the tube face at all, so I put the old ones back without results. 1 increased the heater voltage on the tube slightly, and I was able to see the wedge shape but it was misty. The sound is also lacking in strength, and the ion trap magnet failed to increase the brilliance. There is plenty of EHT and the line timebase whistle is loud and clear--A. James (New Tredegar).
Whilst the tube is almost certainly responsible for the lack of brilliance, we do not doubt that the sean coils were responsible for the wedgeshaped raster. Check H.T. and electrolytic capacitors.

## BUSH M56

1 have noticed the fault on this set for some time and have carried out a check over the sound output stage but can find no fault with it. The effect I am obtaining is a low-pitched hum on sound, but while checking 1 noticed that the hum was not present during the warm-up period, and does not become apparent until the line timebase starts, which also makes the frame circuit operate. I helieve that I am obtaining a feedback from the frame circuit. If I open the height control to maximum, the hum becomes louder, and likewise if 1 reduce the height the hum decreases. I have been wondering if it could be a fault in the frame output transformer.-C. E. Herridge (Paignton).
The main smoothing is carried out by a $100+$ $100 \mu \mathrm{~F}$ and separate $200 \mu \mathrm{~F}$ electrolytic capacitors. It is quite likely that one of the $100 \mu \mathrm{~F}$ sections of the former is open circuited. A wire-ended $32 \mu \mathrm{~F}$ 350 VW capacitor can be used for checking, touching the negative wire to chassis and the positive to each capacitor tag in turn to see which gives a result.

## VIDOR CN42I7

The picture is excellent but tapered from top to bottom leaving a 3in. blank each side of the screen. The, coils on the CRT neck become fairly hot. There is a white band about 1 in . wide at the bottom of the screen. The following have been checked and found to be in order:-sound, interlace, contrast, horizontal and vertical holds, picture héight and brightness.-J. Davies (Barry).
The scanning coils should be changed as it would appear that a fault in these is causing the tapered picture. The lin. white band at the bottom should direct your attention to the ECL80, beneath and to the left of the focus magnet, i.e. to the right of the PY82 valves as viewed from the rear.

## PHILIPS I746U

Recently the picture on this set has been gradually contracting in width, to about 3 in . border on

## EDDY'S (Nottm.) LTD.

172 ALFRETON RD., NOTTINGHAM New or Surplus Valves. Guaranteed and Tested, by Return Post. D $\begin{array}{llll}\text { DF91 } 311 & \text { EL84 } & 6 / 6 \\ \text { EL91 } & 4 / 6\end{array}$ $\begin{array}{ll}\text { DF96 } & 6111 \\ \text { DK91 } & 5 / 6\end{array}$ DK96 6111 DL EB3 EB $\begin{array}{lr}\text { EB91 } & 3 / 6 \\ 5 / 11\end{array}$ CC81 5/3 EC82 5111 EC
$\begin{array}{ll}83 & 616 \\ 84 & 8 / 3\end{array}$

\section*{| ECC85 | $8 / 3$ | PEN36C |
| :--- | :--- | :--- |
| 10 | PENA4 |  |}

EC
EC
EF
EF
119 VT52 (4 pin) $6 \mathrm{~V} 6 \mathrm{G} \quad 41$

| EF80 | $5 / 9$ | TDD4 | $12 / 6$ | 6 V 6 GT | $6 /-$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| EF86 | $9 / 9$ | 6U4GT | $10 / 6$ |  |  |


| EF89 | 716 | ID5 | 716 | $12 A T 6$ | 716 | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| EF91 | 316 | 114 | 316 | $12 A 6$ | 513 | | EF91 | $3 / 6$ | IL4 | $3 / 6$ | $12 A 6$ | $5 / 3$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| EF92 | $4 / 6$ | IR5 | $5 / 6$ | $35 Z 4$ | $5 / 3$ |

GUITAR PICK-UPS. Super Hi.Fi Non Acoustical Universal fitting High Output. Complete with lead and plug. Full and easy instructions, 49/11. P. \& P. 2/6.
CAR RADIO KIT 7 TRANSISTOR. Long and medium 2 watts output. R.F stage and auto gain control. $10 \frac{1}{2}$ gns. P: \& P. 5/0. 6 or $12 v$ (state which) with full instructions. Size $7 \frac{\square}{4} \times 7 \frac{1}{4} \times 2 \frac{1}{2}$ in. speaker ex 17/11.
DYNAMOTORS. 200 V D.C. to 12 V D.C. Ideal tor train sets, etc., 19111. P. \& P. 2/6 CRYSTAL SETS. Complete 2 wave bands. High gain. Good quality, 19111, also with transistor amp. extra 9/1/. P. \& P. 2/6.
HEADPHONES. High Resistance
suit above crystal sets. Good quality, 12111 pair. P: \& P. $1 / 6$.
NIFE ACCUMULATORS. 1.25v. Size $3 \times 2 \frac{3}{} \times \frac{7}{3}$ in. 7 amp hrs., weight 13 ozs . 111 ea. P. \& P. 1/6 one only, add 9d, per cell. DIMMER SWITCHES. Ideal for train peed regulators $1 / 11$. Post 9 d
GERMANIUM DIODES, 8d. each., 71. dozen. Post 6d.
THROAT MIKES, If. P. 6d. Could be used for electrifying musical insts., etc. VIBRATORS, $12 v 4$ pin, $4 / 11$. Post $1 /$. JACK PLUGS. Standard I/11. Post 9d VARIABLE CONDENSERS. 0.0005 small win gang. Built in slow motion drive, $8 / 11$ P. \& P. 1/6.

SPEAKER GOLD GRILL, $6 \frac{1}{2} \times 4 \mathrm{in}$., $\mathrm{I}^{\prime}$ ach. Post $6 d$.
NEON MAINSTESTER/SCREW. DRIVERS, 3/II. Post 9d.
HEADPHONE CORDS. High quality 6 ft . lengths $/ / 11 \mathrm{I}$. Post 6 d .
MORSE TAPPERS. Plated contacts. Adjustable gaps. Heavy duty, 316. Post 9d POCKET RADIO 2 transistor with miniature speaker, 2 wave bands. Complete with all parts wiring diagram and luil with all parts wiring diagram and 1/6. CONDENSERS. Tubułar wire end Inot ex-govt.). $8 \mathrm{mfd} .450 \mathrm{v}, 1 / 9,8-8450 \mathrm{v}, 2 / 6$, $16 \mathrm{mfd}, 450 \mathrm{v}, 219,16-16450 \mathrm{v}, 2 / 6,16-8$. 450 v , $4 \%$. $32 \mathrm{mfd} .450 \mathrm{v}, 3 / 9.32-32350 \mathrm{v}, 4 /$. Post 1/=.
LUXEMBOURG AERIALS. Expanding Complete and easy to fit. No technical knowtedge. required. Greatly improves reception, 3!11, Post 6d.
All above are New and Guaranteed Any. parcel insured against damage in transit for only $6 d$. extra per order. All uninsured parcels at customer's risk. Post and packing 6d. per valve extra. C.W.O. or C.O.D. only. C.O.D. charge $3 /=$ extra. S.A.E. with enquiries.

## REBUILT TV TUBES

FULLY GUARANTEED 12 MONTHS
Complete New Gun fitted in every Tube
12in., 14in. ... ... $\mathbf{E 5 . 0 . 0}$
15in. ... ... ... $£ 5.10 .0$
I7in. ... ... ... $£ 6.0 .0$
2lin. ... ... ... $£ 8.0 .0$
Immediate Delivery
Carriage and Insurance 10/- extra Allowance on old tube
IW-GUN TEITUBES ITD.
3 The Mews, Duckett Rd. Harringay, London, N. 4 Telephone: MOUntview 2903

## RE/CAP. BRIDGE $38 /$ <br> p. \& p. 2/ <br> Checks all types of resistors, condensers 6 RANGES Built in I hour. Direct reading READY CALIBRATED Stamp for details of this and other kits. RADIO MAIL (Dept. FV) Raleigh Mews, Raleigh Street, Nottingham <br> SPECIAL VALVE OFFER

## For Limited Period

| EBPI | 4/- | UF42 | 71- | 6 L 1 | 81- |
| :---: | :---: | :---: | :---: | :---: | :---: |
| FCL80 | $7 / 6$ | UL41 | 710 | 6 L 18 | $91=$ |
| ECL82 | 8/- | UL44 | 7/6 | 6P25 | 6/6 |
| EF30 | 51 | UL4 4 | $7 / 6$ | 6 LD 20 | 716 |
| EFO1 | 4/- | UBC:41 | \%/6 | 6SN7GT | 516 |
| EL38 | 10/6 | UCH42 | 716 | 6P28 | $8 / 6$ |
| EY83 | $7 / 6$ | U35 | 8/6 | 757 | $9 / 6$ |
| GZ32 | 8/- | SP61 | $2 / 6$ | 10F1 | 61- |
| KT33C | 6/6 | $3 \mathrm{B6}$ | 2/6 | 10PI4 | $8 / 6$ |
| PCL83 | 12/6 | 6AT6 | 6/6 | 12AT7 | $61 /$ |
| PL33 | 8/- | $6 \mathrm{CHB}^{\circ}$ | $71-$ | 20 D 1 | $7 / 6$ |
| PL82 | $7 / 6$ | 6BG6G | 10/6 | UY41 | 5/6 |
| PL83 | $7 / 6$ | 6 F 1 | 6\% | N37 | $8 /$ |
| PY80 | $7 /$ | 6F13 | $61-$ | ECC83 | $31-$ |
| PY82 | $7 \%$ | 6 F 14 | 6/- | 807 | 61- |
| PZ30 | 11/- | 6 F 15 | 6/- | PY31 | $7 / 6$ |
| UAF42 | 8/6 | 6J5GT | $51-$ | 1625 | 6/- |

Postage 4d. per Valve.
Coaxial Cable, 75 ohms. 6d, yd. Ion Traps, 5/- Midget 2 Gange, 6/6: New $7 \times 4$ P.M Speakers Large or Smail Magnet. 15/-
T AERIALS: We carry large stocks: send S.A.E. with your requirements and we shall reply and send leaflets by return. MAIL ORDER UNLY - NO CALLERS Terms: C.W.O. or C.O.D minimum C.O.D. 3/-; postage, packing other than valves. under $£ 2.1 / 6$ : under $£ 5.2 /$-: aerials. $2 / 6$.

ELLCTRO SERVICES \& C0.
221 BATTERSEA PARK RD., S.W. 11 Mac. $6833 / 4$

## DID YOU KNOW

COYNE'S New
TROUBLE-SHOOTING SERIES TAKES HEADACHES OUT OF ALL SERVICING PROBLEMS ?


Pin-Point
TV troubles in 10 minutes Find the exact Found or picture trouble in ANY TV set from 700 possibilittes 1. atest Edition now has 5 ts pages of solid, down to earth T' servic ing information: $\$(0)$ diagrams, check claarts, 31/6. Postage 1/-.


## SIMPLE CHECK CHART SYSTEM SAVES TIME

These amazing practical handbooks with ENTIRELY NEW METHOD show you how to find the trouble in ANY , or transistor circuit FASTI Index tells you where to look; famous Check Charts heip you to pin-point the exact books quickly pay for themselves in proftable new business and valuable time saved!

## SEND NO MONEY

Just mall coupon for free trial. After 7 days send only low price or return book and pay nothing! If you keep both book send only $19 /$-after 7 days and $£ 1$ a month ntil a total of has been paid.
If ordering one book, pay one half after seven days and the other half in 30 days.

## FREE TRIAL OFFER

Mail Coupon Now for
FAST RETURN SERVICE

Sail Order Jivision, SLM-TECHBOOK CO:IPANY, Gater's Mill, West-Lind sauthampton, Hants.
$\square$ Rush 2-book PIN-POINT Series for 7-day FREE TRIAL per offer (postage tree).
I do not require both books, please send me the following book as per offer.
$\square$ sisTORS, 47/6, pius postage. $\square$ TV TROUBLES. 31/6, plus postage.

Name

City.
Check here if enclosing fall pres: pay postage. Same 7-day money-back

DARWINS "Lancashire" tested television tubes. Completely rebuilt and guaranteed fully for twelve months. 12 inch $\mathbf{6 5}$. 14 inch $\mathbf{4 5 - 5}$. 15 inch $\mathbf{~ 6 5 - 1 0 .}$ 17 inch 65-15. 21 inch E8-10.

Carriage and insurance paid on to your doorstep.

## GEDRGE E. DARWIN

45, Shaw Street, St. Helens, Lancashire, Telephone: St. Helens 4246

B.B.C. - I.T.V. - F.M. AERIALS R.B.C. (BAND 1). Telescopic lo[t, 19/6, External, S/D, 26/3. I.T.V (BAND 3). 3 Element loft array, $84 /-5$ Element, $32 / 6$. Wianting, 3 Element, $33 / 9$. 5 Element, 41/3.
COMBINED - B.B.C. +
I.T.V. Loft $1+3$ Element. 41/3. $1+5$ Element, $48 / 9$. wail mounting, $1+3$ Eisment. $56 / 3.1+5$ Elemont, mounting units also avallable. mounting units also available. Fent loft 59/a s/D loft $18 / 68 /{ }^{2}+3$ EleS/D. 28/3. State channel when ordering C. 'i.O. or C.O.D. P.P. 2/6. Comxial cable. C.N.O. or C.O.D. P,P. 2/6. Coaxial cable,
8d. yd. Coaxial plugs. 1/3. Send $6 d$. stamps for llustrated lists.
K.V.A. ELECTRONICS (Dept. T.P.)

38 Godstone Road, Kenley, Surrey

# You can't help 




MORE THAN


Circuit \& Component Layout Diagrams OVER 3,750 Pages
2 Years' Free Postal Advisory Service
 Includes Practical Guidance on Circuit Developments. Fault-finding and Alignment. Servicing Tape Recorders. Aerial Installation. Electrical and Car interference suppression. Servicing Transistor and VHF/FM Radios. Printedwiring sets. Servicing Equipment. Saivaging Picture Tubes, etc.
INCREASES YOUR EARNINGS
FOR YEARS TO COME

## bADIO and TV SERVICING

## LATEST EDITION IN SIX VOLUMES

## ERBEE FOR 7 DAYS

This Latest Edition of Newnes Complete Library of Servicing Data is exactly suited to your needs. Here in six packed volumes are all the circuits, component and layout diagrams you must have for speedy, efficient repair work, tuning and general maintenance-over 2,300 models pre-1954 right up to 1960. All the famous makes below are included-everything you want for years to come. If you've never seen previous editions be sure to see this one! TELEVISION, RADIO, RECORD REPRODUCER8, TAPE RECORDERS

## All these popular makes-

Ace, Alba, Ambassador, Argosy, Armstrong, Balrd, Banner, Beethoven, Berec, Brayhead, Bush, Capitol, Champion, Channel, Collaro, Cossor, Cyldon, Dansette, Decca, Defiant, Dynatron, E.A.R., Eddystone, Ekco, Elizabethan, E.M.I., Emarson, English Electric, Ever Ready, Ferguson, Ferranti, G.E.C., Grundig, H.M.V., Invicta, K-B., McCarthy, McMlchael, Marconiphone, Masteradio, Motorola, Murphy, Pageant, Pam, Perdio, Peto Scott, Philco, Philips, Plot, Portadyne, Pye, Pye Telecommunications, Radiomobile, Rainbow, Raymond, Regentone, R.G.D., Robert's Radio, Sobell, Spencer-West, Stella, Strad, Ulera, Valradio, Vidor, Walter, Webcor.
Important Reference Data on Valve and Picture Tube Bases and Equivalents. BBC and European Broadcasting Stations. TV and VHF/FM Channel and Stations.

## POST NOW No Cost No Obligation

GEORGE NEWNES, LTD, $15-17$ Long Acre, London, W.C. 2
Please send me Newnes RADIO AND TELEVISION SERVICING without obligation to purchase. I will return it in 8 days or send $11 /$ deposit 8 days after delivery, then twenty monthly subscriptions of $11 /-$ paying $\mathbf{E 1 1} 11 \mathrm{~s}$. Od. in all. Cash price in 8 days is $£ 11$.
Name $\qquad$
Address

| Tick $(\sqrt{ })_{\text {whare }}$ epplicable |  |
| :---: | :---: |
| Houscowner |  |
| House holder |  |
| Livint with Parents |  |
| Lodging Adcrese |  |

## Occupation

$\qquad$

## Your Signature

$\qquad$
(Or Your Parent's Signature if under 21) RV 【20
the right-hand side and 1 in . on the left. Although the knob for adjusting the horizontal width is working it has no effect on the picture. The image appears to be curved on the right-hand side al the extreme edge.-E. Robinson (Slaines).

We would advise you to replace the PL81 line output valve. This is the right-hand valve of the two situated in the screened compartment on the left side as viewed from the rear.

## G.E.C. BTI748

After being switched on for about an hour, the width and height becone smaller. I fitted a new metal rectifier RM5 a few months ago to remedy this fault, which it did, but now it has appeared again.-J. Goodger (Leicester).

Check the H.T. voltage which should not be much under 200 . If it is, change the RM5 and see that the ventilation of the receiver is not restricted in any way. If the H.T. voltage is normal, check the N339 line output valve and the timebase voltages generally.

## ALBA T432

A fault has developed in the H.T. circuit. In the past six months we have changed four GZ32 valves, three condensers C37a and C37b. On the last occasion, a U52 rectifier was used to increase current. This too has burned out. After changing condenser 37 a and 37 b a new rectifier was fitted but this immediately flashed. Condensers 36a, b and c, 37a and b do not appear to be shorting. - H. Mercer (Hove 4).

You should not use a directly heated rectifier such as a U 52 since this causes a rapid voltage rise (to about 500 V ) almost as soon as the receiver is switched on. Revert to the GZ32. Check the line oscillator EF50 and circuit since a short often occurs here of an intermediate nature causing the rectifier to flash over and fail.

## EANNER 124B

Can you tell me where to obtain a service sheet for this receiver? I have flyback lines seriously interiering with the top half of the picture. I think I have the wrong value components.-G. Gibson (Wadhurst).

You will find that a service sheet on the Sobell T143-T144 series will apply to your receiver. You may have fitted a wrong value coupling capacitor in the frame timebase; that to pin 9 of the ECL 80 via a 10 k resistor is $0 \cdot 1 / \mathrm{F}$.

## INVICTA 126

My trouble is two or three lines down the lefthand side of the screen like waterfalls. This only occurs on BBC, ITA is perfect. - R. Shorrock (New Ferry).

Check the PL81 line output valve by replacement, then the top centre PCF80. If these are in order, check the 3.9 k resistor and 47 pF capacitor wired in series behind the line output transformer.

## PILOT TV94

This set has completely broken down to give a horizontal white line of intense brightness. When this line appeared a rasping, grating sound was heard from the speaker. The brilliance con-
trol was turned down and the set switched off. Previous to this fault, the line hold control was at the end of its travel but failed to lock. The only method of locking the line hold was switching from one channel to the next then back again bul this operation had to be carried out every 20 minutes or so. The line output valve was glowing rather blue before horizontal lines appeared. It was later noted that the large resistor underneath the line oulput valve was rather black and burnt. The set is three years old and has the original valves except for the EY51. - A. Taylor (B.F.P.O.39).

The 12 BH 7 may be at fault but from the "rasping sounds" heard we are suspicious of the frame output transformer or the H.T. feed from the boosted line. Check for H.T. at pin 1 of the 12BH7 and at the junction of the 6.8 k resistor and $8_{\mu} \mathrm{F}$ capacitor. If no H.T. is present at pin 1, but it can be recorded at the resistor/capacitor, the transformer is at fault. Inability to lock should direct your attention to the 12AU7 line oscillater valve and the adjustment of the lower corc of the coil next to the PY83.

## DEFIANT T.R.I756T

When first switched on there is a loss of height top and bottom. After one hour or so it reaches the correct height and later it loses height or perhaps becones "too tall". The ECL80 has been changed without effect. - D. Tindel (North Shields).

The ECL80 concerned is that on the front left side as viewed from the rear. Then replace the 4.7 M (yellow-violet-green) and 1.8 M (brown-greygreen) resistors associated with this valve and circuit. The H.T. metal ${ }^{\text {a }}$ rectifier is possibly low but this would also cause loss of width and focus.

## ENGLISH ELECTRIC C45

An unusual fault has developed on the above set. Everything is normal except when the contrast control is turned down or when the aerial plug is removed. Then the EY51 heater goes out and this means that there is no EHT and the PL81 becones red-hot. Also the line output transformer becomes overheated. All the valves in the line output section and EF80 line oscillator have been checked and also the components but they are in order. As this circuit has a separate line oscillator valve this does not make sense to me. There are alout five bands about $\frac{1}{2}$ in. wide on the. Ieft-hand side of the screen which do not alter with the controls.-W. Worral (Holywell).

There is no completely separate oscillator, the EF80 is operated in conjunction with the line output transformer in a feed-back circuit. We would direct your attention to the 220 pF capacitor to pin 2 of the EF80 and the 33 pF wired across terminals 1 and 3 of the line output transformer.

## VIEWMASTER

This set is built to take wide angle 17in. tube and adapted to take a 12 -channel tiarret tuner. I am unable to obtain a full-width picture; it is about 1 in . too small on either side. The width control is at its best position. I have replaced C82 on the side of the line transformer 140 pF and this
improved the width slightly, but not enough.-A. Kemp (Leeds).

Loss. of width, evenly on both sides, normally denotes a low-emission H.T. rectifier. If this is in order. however, check the anode resistor of the line oscillator and the timebase valves and components generally.

## BUSH TV56

I believe the fault is in the tuner. The fault is only on ITA. It is a noise rather like an electric shaver and at the same time two white bands appear on the screen from left to right, one about $\frac{1}{2} \mathrm{in}$. from the top and the other $\frac{1}{2} \mathrm{in}$. from the bottom. These white bands pull the picture contents to the right. I have changed PCF 80 in the tuner and also PCC84 and EF80, first 1.F. valve but the noise still remains. The only way to eliminate it momentarily is to adjust the fine tuner very slightly, but the slightest movement to either left or right brings it back.-H. Wronski (Leeds).

If the original position of the components and wiring in the tuner have nat been disturbed, you will probably find that the cause of the disturbance is an open-circuited decoupling capacitor of 560 pF associated with the H.T. feed to pin 1 of the

PCF80. Check the other decouplers of this value if necessary. It is necessary to maintain the original positions of the components.

## FERRANTI ITT5

I am shortly moving to Sittingbourne, Kent and 1 am anxious to know whether my set will work in that area without many adjustments. - T. Scoates (Orpington).
Set channel selection switch to Band I, and adjust tuning control until Channel 1 is opposite pointer (this gives London BBC): set switch to Band III and adjust tuning control until channel 9 is opposite pointer (this gives London ITV).

## COSSOR 948

On switching off the set a residual spot of some intensity persists for about a minute, which, according to my agent, is of no importance. However, I should like to remove it.-A. Lacy (Aspley).
An EHT Metrosil, fitted between the EHT lead and chassis should reduce the time taken for your spot to decay, and should improve EHT regulation. Metrosils are ordered by their working voltage and we suggest you measure the EHT and purchase the nearest available Metrosil.

## THE 'OLYMPIC" <br> (Continued from page 146)

can be- obtained from most good garages. They are carefully straightened by rolling them on a hard flat surface with a domestic iron, after thoroughly cleaning with metal polish and hot detergent solution. They are preferably silver plated-the method has been described in this


Fig. 9.-Details of the valveholder screens these screens are used across various valveholders as indicated on the blueprint. also drilled with holes
$\frac{1}{4}$ in. apart in the same way. The two pieces of tube are pushed and tapped carefully through the paxolin to the required depth, and then the piece of Perspex is also pushed over the tubes so that it will in the end be inside the tuner. The slight inaccuracies which will inevitably occur in drilling drilled with two holes each $\frac{1}{8} \mathrm{in}$. in diameter. A piece of Perspex is also drilled with holes the circuit but to avoid oxidation which will cover the copper in time with a layer of copper oxide. which is less conductive.

A hole of suitable size is cut in the back plate of the tuner chassis, and a large enough piece of paxolin to cover it is obtained. This is drilled with two holes
journal-not only to
will enable the Perspex to jam the tubes solidly in position when it is tapped gently towards the paxolin mount. Last of all, the paxolin, with tubes in place. is mounted on the back plate of the tuner, and the tubes rendered parallel by slight bending as necessary.

Attachment of the tubes to the oscillator wafer is made by means of flexible braid which may be obtained from odd lengths of coaxial cable. A hot soldering iron is required because of the high thermal capacity of the copper tubes. Extra heat may be needed, from a small blowlamp or gas jet, to increase the temperature of the soldering iron.

Building up the tuner should be carried out wafer by wafer. The first, for the aerial switching (if utsed). is slipped into position and the wiring done on it. Then the valve wiring for the R.F. stage should be started, and when the grid circuit is reached the second wafer is .put in position, using the correct spacers between the two wafers. No inter-stage switching is needed-the coupling circuit has been designed so as to avoid this com-plication-and so the remainder of the wiring can be completed as far as the oscillator stage.

> (To be continued)
,


[^1]
# LAWSON <br> <br> EXACT REPLACEMENT <br> <br> EXACT REPLACEMENT <br> Completely Reprocessed TUBES 



## POINTS FOR PERFORMANCE

 These new small particle silver activated screens have been specially developed for increased brightness with greater contrast. This results in a brilliant crisp picture especially suitable for daylight viewing even in the older type sets. In addition sharper focus, better definition and increased life result, because correct brightness levels are> ALL MATERIALS AND COMPONENTS USED IN THE MANUFACTURE OF THESE TUBES ARE COMPLETELY NEW, EXCEPT THE GLASS ENVELOPE AND ONLY YNVELOPES WHICH WILL PASS INSPECTION TO NEW GLASS STANDARD ARE USED.

## LAWSON TUBES

156 PICKERSLEIGH RD., MALVERN, Worcs. MAL. 3798
obtained with lower beam currents.
all makes all types from stock


20/-
Gladly refunded if you wish to return your old tube.
Carr. and Ins. $7 / 6$ (express passenger).


Guaranteed Set Tested
24 HOUR SERVICE
1RD, 185, 1 T4, 3S4, 3V4, DAF91, DF91, DK91. DLA2, DL94, 8 ET of 4, 18/6.
DAF'6. DF96, DK96, DL96; SET of 4, 86/-.

| 1 D 5 | 71 | DL | 6 | PCF80 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 125 | 51 | DL35 | $9 / 6$ | PCF82 | 16 |
| 115 | $4 / 6$ | DL82 | $5 / 11$ | PCL82 | 716 |
| $1{ }^{14}$ | $3 / 9$ | DL.94 | 6/9 | PCL83 | $10 / 6$ |
| 384 | 5/11 | DL\% | 6/9 | PCL84 | 7/6 |
| $3{ }^{3} 4$ | 619 | EBC41 | 716 | PL38 | $10 / 9$ |
| $5 \mathrm{U4G}$ | 413 | EBF80 | 719 | PL81 | 9/- |
| 5Y3GT | $5 / 6$ | EBL21 | 12/6 | PL82 | $7 \%$ |
| 5249 | 713 | ECC81 | $4 / 9$ | PL83 | $7 \%$ |
| 6 K 7 G | $1 / 9$ | $\mathrm{ECC8}^{\text {E }}$ | 5/9 | PL84 | 9/6 |
| 6 Kg | $4 / 9$ | ECC83 | 16/3 | PY32 | 10/3 |
| 6SL7GT | $8 \%$ | ${ }_{\text {ECC84 }}$ | $8 /{ }^{\circ}$ | PY80 | $7 /$ |
| 6SN7GT | $4 / 8$ | ECFP0 | $8 / 8$ | ${ }^{\text {PY }}$ Y 21 | $6 / 3$ |
| 6 V 6 a | $4 / 8$ | ECF82 | $8 /$ | ${ }_{\text {PY83 }}$ | $1 / 3$ |
| 6V6GT | $18 \%$ | ECH21 | 12/6 | U25 | 120. |
| 6x5GT | $4 / 9$ | ECH42 | $7 / 8$ | U26 | 10/- |
| 12K7GT | $4 / 9$ | ECLPO | $7{ }^{\circ}$ | UABC90 | 16 |
| 12K8GT | 11/0 | EF41 | $7 / 6$ | UAF42 | $8 / 6$ |
| 1207 GT | 4/6 | EF80 | 419 | UBC41 | $7 \%$ |
| 35L6GT | 816 | EF85 | 516 | UPF80 | $8 / 6$ |
| $35 Z 4 G T$ | E/8 | EF8\% | 9/6 | UCC85 | $7 \%$ |
| AZ31 | $8 / 9$ | EF89 | $6 / 9$ | UCH21 | 12/6 |
| B38 | 813 | EL41 | $7 /$ | UCH42 | 76 |
| CL33 | 11/9 | ELA4, | 6/3 | UCH81 | $8 \%$ |
| DAC32 | 9/6 | EY51 | 713 | UCL8 | 101- |
| DAF91 | $4 / 6$ | EY86 | 776 | UCL83 | 13/- |
| DAF96 | $6 / 9$ | EZ40 | 6/- | UF41 | $7 / 8$ |
| DF33 | 916 | EZ,41 | 6/9 | UF85 |  |
| DF91 | $3 / 9$ | EZ80 | $5 / 9$ | UF89 | 6/6 |
| DF88 | $6 / 9$ | EZ81 | 616 | UL41 |  |
| DH77 | 8/- | G230 |  | UY41 | $5 / 9$ |
| DK32 | 11/- | CZ32 | 819 | UYa1 | 11/- |
| DK91 | 5/- | MU14 | - | UX41 | $5 / 9$ |
| DK92 | $7 / 3$ | PCC84 | $7 / 3$ | UY85 | 6/3 |
| DK98 | $8 / 9$ | PCC89 | 10/- | VP4B | $8 / 6$ |

Postage 6d. per vaive extra. Any Parcel Insured Asainst Damage in Transit 6d. extra

Any C.O.D. Parcel $2 / 6$ extra
Office address, no callers.
GERALD BERNARD
90 CARR MANOR AVENUE LEEDS 17

## USING TRANSISTORS

Philips' Technical Library By D. J. W. Siobbema
15/. Postage 8d.

REFERENCEMANUAL OFTRAN. SISTOR CIRCUITS. Mullard Publ: 12/6. Postage ${ }^{1 /-.}$ ENGINEERS' TELEVISION ENGINEERS'
POCKETBOOK. By J. P. Hawker. 12/6. Postage 6d.
TVFAULT FINDING. Data Pubi: 5/., Postage 4d.
A BEGINNER'S GUIDE TO TELEVISION. By F. J. Camm. $7 / 6$. Postage 6d.
RADIO VALVE DATA. 6ch Ed. Compiled by "WW". 5' Postage Com
9d.
THE
THE RADIO AMATEUR'S HAND. BOOK 1960. By A.R.R.L. 32/6. Postage $2 /$ -
FUNDAMENTALS OF SEMICONDUCTORS. By M. G. Scroggie, 231.. Postage 1/-.
MODEL RADIO-CONTROL BY E. L. Safford. 21\%. Postage $1 /=$

RADIO CONTROL MECHANISMS. By R. F. Stock. $4 / 6$. Postage $4 d$.
THE HODER BOOK CO.
BRITAIN'S LARGEST STOCKISTS of British and American Technical Cooks |9-2| PRAED STREET, LONDON, W.2. Phone: PADdington 4185.

## FIRST-CLASS <br> TELEVISION and RADIO COURSES

 GET A CERTIFICATE!After brief, intensely interesting study -undertaken at home in your spare time-YOU can secure your professional qualification or learn Servicing and Theory. Let us show you how.

## FREE GUIDE

The New free Guide contains 132 pages of information of the greatest importance to those seeking such success compelling qualifications as A.M.Brit.I.R.E., City and Guilds Final Radio, P.M.G. Radio Amateurs' Exams., Gen. Cert. of Educ. London B.Sc. (Eng.), A.M.I.P.E. A.M.I.Mech.E.,

Draughtsmanship (all branches), etc., together with particulars of our remarkable Guarancee of
SUCCESS OR NO FEE
Write now for your copy of this invaluable publiection. It may well prove to be the turning point in your career
FOUNDED 1885-_OVER 150,000 SUCCESSES
NATIONAL INSTITUTE OF ENGINEERING
(Dept. 162). 148 HOLBORN
LONDON, E.C.I
S. Africa: P.O. Box 8417, Jo'burg. Australia: P.O. Box 4570 Melbourne.

## SETS \& COMPONENTS

## In Scotland RENVU

For BETTER VALUE Completely REPROCESSED TUBE
(New Gun, Rescreened, aluminised)

| types | ¢7. 0.0 |
| :---: | :---: |
| 6.5v. . 3 amp. $14^{\prime \prime}$ types | ... $£ 6.10 .0$ |
| 12.6 v . 3 amp. 17" types | \&7. 0.0 |
| 12.6v. (round) |  |
| . 3 amp. $14^{\prime \prime}$ types | ... 66.10 .0 |
| 12.6 v . 3 amp. 15" types | £7. 0.0 |
| 12v. $15^{\prime \prime}$ types | ¢7.10.0 |
| 2v. 12" types | E6.10.0 |

## ELECTROSTATIC $90^{\circ}$ TUBES 10:- extra. <br> 10/- allowed on old tube. <br> RENFREW ELECTRONICS LTD., <br> ANDERSON DRIVE RENFREW

Tel.: RENfrew 2642

VALVES, RECORD Changers and Players, speakers, Rectitiers. Valve Testers. Condensers. Resistors. Send for list. H. F. JAMES. 21. Claremont Road. Twickenham. Middx.

AMATEURS HANDYMEN, Change your TV Tube with a Rebuilt one by post. Free advice given. Service Sheet HURST. $\dot{\text { G }}$, Coniston Road. Sheffield 8.

TV TUBES, New gun, 17 in . £5. Twelve months guarantee. Dealers supplied. Aer:als and Coax cheap. TV ELECTRIC $\$$ CYCLE CO.. 1, High Street. Chalvey. Slough. Tel.: Slough 21860.

## Televisior Tube Shop <br> now stock

Tubes for every make of set
NEW REDUCED PRICES

[^2]RATES: 4/- per line or part thereof. average tive words to line. minimuin " lines. Box No. 1/-exira. Advertisements must be prepaid and adifessed to Advertisement Manager, "Practieat Television' Tower llouse, Southampton St., London, w.c.e.

TELEVISION TUBES! Rebuilt, new guns. twelve months' guarantee, lifin. $75 / ., 17 \mathrm{in} ., 79 / 6$. Quantity discounts. 3. Pank Ave, New Barnet. BaR 3185.

## OLYMIPIC TV SET

Ton Quality talyes.. EF33 7/-, EF80 7/6. EB91 6/6. ECC82 9/-, PCC89 12/-. PCL82 12/6 PCF80 10/6. PL82 12/6. PY81 10/-6d. D. P . each valve. VALVE HOLDERS, B7G and B9A. Skirt/Can $1 / 9$ each. 6d, p.p. TAG STRIPS, 11-way 9d.. 7-way 6d, RESISTORS watt 3 h 1. . 1 watt 5 hi. WIRE WOUND POTS, Presets $2 /-$, Carbon $3 /$, with switch 5/-. COIL FORMERS with Cores, 6a. 4-PIN COIL FORMER with Can, $2 /-$ each. SILICON RECTIFIERS, 125 V. R.M.S. $300 \mathrm{~mA} .10 /-2 a ;$ 6d. p.p, lim, Rectangular Tubes, 12 months guarantee, ${ }^{\text {E6.0.0. }}$ LORENZ ELequency $8000-20.000$ c.p.S., $7 /$ each 6d. p.p. frequency 8000-20.000 c.p.s.i 7/- each, 6d. p.p. 6ibrATORS. 212 and 4 volt 4 -Din, 41 -each, 0.25 to 50 mid . $3 /$ each, 6 d . p.p.

SOUND VISION
STREET, CHELASFORD
TV TUBES, factory rebuilt (reghnned, fully quaranteed. 14 in . \&5. 17in. £6. $p$ and $p$ 10/-. 24. Bristol Road. Brighton.
"HEATHKITS" can now be seen in London and purchased on easy terms. Free brochure. DIRECT TV REPLACEMENTS LTD., Dept. P7/22/11, 138.
Lewisham Way. S.E.14. Tideway 666.

## TV SPARES

## London's Largest

Range-New or Used

## LINE OUTPUT TRANS FORMERS and SCAN COILS

for nearly every make and model. New from 45\%.

Used from 20/-.
Just a few examples from our extensive range IN STOCK. Add 2/6 for P. \& P. TELEPHONE ORDERS SENT SAME DAY C.O.D.

## NEW LINE O.P. TRANSFORMERS

Pye V4/7, VT4/7, 52/6; LV30, FVI, 52/6. Ferranti $14 \mathrm{~T} 2 / 3 / 4 / 5,45 /=$; $1225,62 / 5$. Ferguson 992/6/7/8, 66/9, 941-55, 57/6. Ekco T221/231, 50/\%: Tí61 etc., 45/*. H.M.V. 1824-9, 58/6; 1840-8, $59 / 6$. Cossor 930-9, 58/6; $916-25, \quad 75 / 0$ Alba T301/504, 45/=, 362/441, 47/6. $\begin{array}{lll}\text { Murphy } V 240 / 250, & 62 / 6 ; & V 200, \\ \text { 49/6. }\end{array}$ Ultra VT9-17 etc., 108/6, with U25 New Scan Colis for Pye, V4/7, VT4/7, 62/6. We also stock a complete range of spares for nearly all makes and models. e.g. LOPT's, Line and Frame Blocking Trans. Frame Output Trans., valves, resistors capacitors, ion traps, etc., etc.,
PLEASE SEND S.A.E. FOR IMMEDIATE QUOTE.
Used Chassis for most of the older sets at only 50/- plus 20/- carriage.

## TELEVISION CONSLMER SERVICES LTID.

28 BROCKLEY CROSS, S.E.4. TIDeway 5394
112 CAMBERWELL RD., S.E.5. RODney 7917

## SPARES - VALVES - TUBES 1930-1960

Guaranteed Perfect, set tested. exvorking equipinent, LOTS frobl £1. FOTs, Osc. Tr. Def. Coils, etc., cheap. UBES, guaranteed 6 months. FITTEO FREE. Picture shown to caller $30 / \mathrm{F}$. 12 in . $50 /-, 14 \mathrm{in}$. $60 /-.17 \mathrm{in}$. $70 /-$
VAIVES. 3.000 types stocked. EF50. SP61, 1.- EF91. EB91, 6H6, Z77, D77, 6J5, 2/-. EF80, UF42, 6F1, 6F13, 6AG5. UB41. 20D1. 3/-. 10F1. B36. 6V6, KT61, 6SN7, EL32. B36. ECL80, PCL83 6K25, EBC91, EY51. EL 33 . ECL80, PCL83, 6K25, EBCC91, EY51, EL33.
 PY31. U22, U35, U281, UU6, たi6. PL38. P230, POP1. 20P3, 185 BT . UU8, U24, U25, $10 /$-: U801. 20Y4, 6CD6. 27SU, U37, 12/6. Pre-war "Constructor's Parcel, each Postage 6 d . Constructor's Parcel. pots, etc. Irom modern TVs. 7/6. Postage $2 / 6$. Write or phone. Send S.A.E. for list or with enquiries. "st. JOHN'S KADIO", 156 St. John's Hill. s.W.11.

BAT. 9838
RECLAIMED VALVES. All tested and perfect: modern and obsolete: huge perfect: modern and obsolete: huge postage each. delivered by return. LEWIS, 46. Woodford Avenue, Ilford. Essex.

TUBES - AERIALS - VALVES Regunned tubes, guaranteed one year. prices from c 5 , allowance on old tube. Revacuumed tubes, all sizes, 501-; guaranteed 4 months. Full range ol aerials at trace prices, double tive costs only $56 /$ - Full range of valves, example PCC84 cost 81 ITV pre-amplifiers, £3.15.0, self-contained in case. ITV converters. $£ 5$. Brayhead tuners. \&4.12.6. New TV sets and transistor radio supplied. ask tor quotation. Low loss co-axial, $1 / 1$ yd.: Standard 6d. yd.
Diplexers. $8 / 8$ each. All items carriage extra. G. A. STRA YGE
G. A. STRANGE

BROADFIELD, NORTH WRAXHALL, Nr. Chippenham, wilts. Tel. Marshfield 236

50 PAM 13-Channel TVs, require some repairs, complete with valves and C.R.T.S. Harpenden. Herts. Tel.: 418 .

## television Picture tibes

Manufacturers' Guarantee

## Twelve Months

Tubes for All British made Sets
10 inch .. .. £4. 0.0
12 inch .. .. £5. 0.0
14 inch .. .. £5.10.0
15 inch .. .. £7. 0.0
16 inch .. .. £7. 0.0
17 inch .. .. £7. 0.0
21 inch .. .. $\mathbf{8 8 . 1 5 . 0}$
E2.12.6 with order
Balance 1 1.0.0 Month Carriage 12/6.
Despatched British Railways Passenger to give a fast delivery and a 48-hour service from:

## Catodod Ray Twe Serice 35 BROOMWOOD ROAD

ST. PAUL'S CRAY, KENT Orpington 21285

SETS \& COMPONENTS (continued)

## C. EDWARDS

1070 HARROW ROAD LONDON, N.W.Io

LADBROKE 1734

$6 \mathrm{FI}, 5^{\prime}$-; SP61, 71 -; $6 \mathrm{~K} 25,81-; 20 \mathrm{PI}, 101-:$ PZ30, 81-; PL33, 71-; ECL80, 81-; EB91, 6/a; Plus 6d. post.
S/H 12 in . Tubes, $50 \%$ plus $7 / 6$ post.
FERGUSON, EKCO

## AJAX TV SIGNAL BALANCER. Gives both programmes with idientical brilliance. 10/\% post free. AJAX ELECTRONICS, 572, Fulham Road. 3 W.6. <br> BRAYHEAD TURRET TUNERS for any area. Will convert over 600 models. Complete with fitting instructions. State set. model and 2 channels when ordering. $10 \mathrm{~m} / \mathrm{c}$ and $35 \mathrm{~m} / \mathrm{c}$ models $£ 5 / 15 /-16 \mathrm{~m} / \mathrm{c}$ ع $6 / 6 /$. External cabinet (if required) 24/ $:$ Extriage paid. C.W.O. or C.O.D.  Road. Bradford 8. Yorkshire.

## MULLARD

CATHODE RAY TUBES
All at the new reduced prices.
RADIANT SCRELEN. The very finest pleture tube avallable.
LUMENAR. Built to the ame bigh standands as the Radiant screen tube, but uring reclaimed glasa buibsen Every other part in brand new.

POLL 12 MONTHS GUARANEEE ON EITHER TYPE Radiant Soreon Lumenar


WATTS RADIO (Mail Order) LTD. GA OHURCE STREET WEYBRIDGE. SURREY
Tolephone: WEYBRIDGE 4568
Please note: Postel burinens only from this sddresa.

SETS \& COMPONENTS (continued)

## GUARANTEED VALVES

| IL4 | $2 / 6$ | 12at7 | 8/6 | EF91 | 8/- |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $6 \mathrm{~F}^{3}$ | 6/8 | 2001 | 8/8 | FL32 | 8/- |
| ${ }_{6} 613$ | $5 / 8$ | 20 t 2 | $7 / 8$ | PCC84 | $8 / 8$ |
| ${ }_{6 F 14}$ | 278 | 20 Ll | 8/8 | I'Y80 | 8/6 |
| difis | 7/6 | 177 | 3/6 | P182 | 8/6 |
| 10 Cl | 7/8 | NABC80 | $7 / 6$ | CF41 | $7 / 6$ |
| 10F1 | 8/6 | EF\%0 | 5\%. | UL46 | 7/6 |
|  | Postag | 8d. each |  |  |  |
| SERVICE SHEETN, BUOKS, COMPONENTE. Liste 3d. |  |  |  |  |  |
| On |  |  |  |  |  |

## BOURNEMOUTH

14in., 15in., 17in. Round and Rectangular TV Tubes. £6.16.6 (10/- allowed on your dud tube). 12 months suarantee. 3 element 1TV/BBC aerial with wall brackot. $34 / 6$ Hoth carr. pald.

| EF80 |  | EZ80 | 16 | 1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| EL84 | $8 / 6$ | EF91 | 6/6 | ECC82 | m/1 |
| PY82 | 8/9 | PL81 | $12 / 8$ | ECC83 | 711 |
| EYSI | $11 / 6$ | PL82 | 11/6 | PCF80 | 11/ |
| 6 V 6 | $5 / 6$ | PY81 | $8 / 9$ | PCC84 | 101 |
| 12AT7 | \%/6 | EC91 | 4/- | ECL80 | 10 |
| 12AX7 | 7/11 | 12AU7 | $7 / 11$ | ECC91 |  |

Complete range of capacitors, resistors Hi-Fi radiogram chassis. ampliflers. motors pick-ups, mono and stereo.

> BOURNEMOUTH'S HI-FI AND

CONSTRUCTORS' CENTRE

NATIONAL RADIO SUPPLIES
66 HOLDENHURST RD., BOURNEMOUTH Tel. 25232

REBUILT TELEVISION TUBES-12in. E5; 14 in. $5 / 10 / \%$ 17in. $56 / 10 / \cdot$ 'Twelve months' guarantee. $10 /$ carr. BRAYHEAD TURRET TUNERS-\& $/ 19 / 6$. Carriage paid. State colls. All types B8C and ITA AERIALS. AIRSPACED COAXIAL CABLE from 6d. per yard. TELEVISION SPARES AND EXACT REPLACEMENTS. The latest BSR UA14 four-speed Changer \&9/10/ Carriage paid. All leading me/ $10 /{ }^{\circ}$ Carriage paid. All leading
makes of TAPE RECORDERS, TAPES, makes of TAPE RECORDERS, TAPES,
A MPL I FIERS, TAPE DECKS, AMPL FIERSS' TAPE DECKS,
RECORD PLAYERS, TELEVISIONS RECORD PLAYERS, TELEVISIONS Easy Hire Purchase Terms. TRAN. SISTORS RED SPOT 5/6, TRAN. SISTORS WHITE SPOT 5/6 each. GERMANIUM DIODES 1/. each. stamped addressed envelope. please. for inquiries and callers are welcome.

DEVIZES TELEVISION SERVICE
29.30, The Nursery, Bath Road,

Devizes. Wilts. Tel: Devizes 1100 .
> H.P. on Regunned C.R.Ts.

> At No Extra Charge 12 Months' guarantee $12^{\prime \prime}$ \& $14^{\prime \prime} \quad . . \quad £ 3.10 .0$ 17" .. £4.10.0 $21^{\prime \prime} \quad . . \quad$ £5.10.0
> Phone or Call only: Rod 7778
> P. J. F. Andrews

> 61-63 ROSEMARY RD. LONDON, S.E. 15

SETS \& COMPONENTS
(continued)
TV SPARES New. Used: LOT from $20 / \%$ etc. Valves from 2/8. S.A.E quotation BOYD. LANGFORD, 162. Church Street, London, N. 16.

| IT4 | 316 | E891 | 316 | PCF80 | 析 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| IL4 | 119 | EF91 | 316 | PCC84 | 716 |
| IR5 | 316 | ECC8! | 51. | PL81 | 816 |
| 155 | 316 | ECC82 | 316 | 6K8G | $5 \%$ |
| DK92 | 81. | ECH42 | 91. | 6SN7GT | 41. |
| DK96 | 810 | ECL80 | 716 | . 6 V 6 G | 416 |
| DL92 | 616 | EY51 | 716 | ' 12AH7 | 41. |
| DL96 | 819 | EY86 | 716 | 954 | 113 |
| DL94 | 716 | EF86 | 91. | EF50 | 11. |

All Brand New and Boxed. C.W.O. Over 200 Types Available, Woodward. 16 Aubrey Road, Sherwood, Nottingham. 65504.

17-INCH TUBES E5, new guns all sizes available. guaranteed. STAR TUBES, Brief Street. Bolton

## SALVAGED VALVES

 $2 / 6$ eachTested on Mullard High Speed Valve Tester
New and Boxed Vaives all at $10 /=$ each S.A.E, FOR LIST

ARION TELEVISION, 4 Maxted Road, S.E.I5 NEWX 7152

## REBUILT TV TUBES

## Fully Guaranteed

 12 monthsAll makes- $12^{*}$ to $21^{\prime \prime}$

## Blane \& Martin Electronics

Sandown Lane, Liverpool details on request. Telo sef. 342k

| AERIALS |  |
| :---: | :---: |
| MAKE YOUR OWN AERIALS |  |
| TV aerlal manulacturer offers "do-1tsourself, kits. 50 components includ brackets, can be utilized th make i00 differ ent models, TV, V.H.F., amateur. Brochure xives full illustrations, element dimension: |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
| RICHAMB MAURICE P'ortsmoutif Road, Conham, surrey. COBHAM 3239 . |  |
|  |  |
| B00KS |  |

[^3]
## EDUCATIONAL

RADID AND TV SERVICING, all aspects from basic principles. Guaranteed Coaching for City and Guilds, R.T.E.B. Cert., Brit. I.R.E.: etc. Study at bome under highly quabifed tutors. No boaks to buy. Write for FREE Prospectus. stating subiect.s to I.C.S. Prospectus, stating subiects to I.C.S. Dept. 516A). London, S.W.11.

FREE FROM THE I.P.R.E. Syllabus of famous radio ard TV Courses. Membership Condition booklet. 1/. Sample copy the Prac. Radio Engineer. 2/- post free. Secretary, 22, Fairfield Road. London, N. 8 .

## Hendio

## Television © Electronics

## Learn at home with the

 world's largest home study organisation. Brit. I.R.E.; City \& Guilds; R.T.E.B., etc. Also Practical Courses with equipment. No books to buy.
## Write for FREE prospectus stating subject to

Dept. 516 I.C.S.
Intertext House, Parkgate Road, London, S.W.II.
"HOW AND WHY" of Radio and Electronics made easy by a new. nonElectronics made easy by a new. nonmaths practical way. Postal inments and equipment building carried out at home. New courses bring enjoyment as well as knowledge of this fascinating sublect. Free brochure from Dept. 12. P.T. RADIOSTRUCTOR, 40, Russell St. Reading.

* LEARN


## RADIO \& TV SERVICING for your OWN BUSINESS/HOBBY

O by a new exciting no-maths system, using practical equipment recently introduced to this country.

FREE Brochure from:-
RADIOSTRUCTOR
DEPT. G78
READING, BERKS. $22 / 11 / 60$

## SERVICE SHEETS

SERVICE SHEETS Radio. TV. 5.000 modeis. Lists $1 /$ S.A.E. enquiries: TELRAY. 11. Maudiand Bk., Preston.
FAULTFINDER FILES (TV) showing common faults that each receiver is prone to and other useful servicing information, $2 / *$ each. List gd. plus O.d Eoad Street. Loadon. W.l.

SERVICE SHEETS (continued)

SERVICE SHEETS for sale, all types from 1/-, with free fault-finding gulde. 125 Radio/TV sheets covering 370 popular models $20 / \%$ S.A.E. Lists/Enquiries, HAMILTON RADIO (T). 13, Western Road, St. Leonards. Sussex.

SERVICE SHEETS. - We have the largest stock of Radio and TV Sheets in the country for sale at $4 / \mathrm{ea}$. Radio and Television Service Sheet List $1 /-$ Also Manuals for sale or List 1/.. Also Manuals for sale or
hire. List 9d. S.A.E. please. Mail hire. List 9d. S.A.E. please. Mail
Orders Only. S.P. DISTRIBUTORS. 11. Old Bond Street. London, W.1.

SERVICE SHEETS. TV $2 / 6$ each. radio $2 /$ each. Post free. DARWINS. 45. Shaw Street, St. Helens, Lancs,

SERVICE SHEETS, TV 4/. ea. Radio 3/- ea. List $1 /$. All orders dispatched on dav recejved. C.O.D. if required. Also manuals for sale and hire. SULTAN RADIO, 29, Church Road, Tunbridge Wells, Kent.

## WANTED

NEW VALVES WANTED. - EY51. ECL80. PCC84, PCF80. PCL83. PL81. PCL82, PY81. R19. U801. 30P4. etc. Best Cash prices by return. Durham Road. Bradford 8. Yorkshire.

W A N TED, Service Sheets. No quantity too large, highest prices paid. SULTAN RADIO. 29. Church Road. Tunbridge Wells. Kent.

A PROMPT CASH OFFER for your surplus Brand New Valves. Speakers. Components. Test Instruments. etc. R.H.S.. 155. Swan Arcade. Bradford 1.

BEST PRICE paid by return for new Valves and equipment. STAN Bromwich Staff Spon, Wane. 2392

NEW TV VALVES WANTED, Send valves, cash by return. to: P. J. F. ANDREWS. 61-63, Rosemary Road. London. S.E. 15.
WANTED-VALVES. Modern TV and radio types. Large or small quantities. Box No. 22.

FOR SALE
VALVE CARTONS at keen prices. Send $1 /$ for sample and list. J. \& A. BOXMAKERS, 75a, Godwin Street, Bradford 1.

SERVICE SHEETS: also Current and Obsolete Valves for sale. JOHN GILBERT RADIO. 20 . Extension. Shepherd's Bush Market, London W. 12 (Phone: SHE 3052 ).
1.000 TELEVISIONS, all makes. from £3 working. $10 /-$ not. Callers only 9 till 6 including Sats. 39. Whitehorse Lane. Stepney. London.

TELEVISIONS
All sizes including Projections. Require attention from $£ 3$. in working order:$12 i n$. BBC from 45 .
$12 i n$. and $14 i n$. BBC/ITA from $£ 10$. Regunned CRT £8 extra. 17in. from $£ 25$. Send for Lists.

Carriage Paid

## CADMANS

SERVICE DEPARTMENT BRYAN STREET, HANLEY STOKE-ON-TRENT

TRANSFORMERS
PHONE
BY 3 p.m.
SENT SAME DAY C.O.D. ON ALL ITEMS BELOW in STOCK


| Makea | Modets | Pr |
| :---: | :---: | :---: |
| ARGOSY: | T2, CTV517 | 8 |
| DECCA: | D17 \& ${ }^{\text {c }}$ |  |
| DEFLANT: | '1R1753. | 59/6 |
| R.G.D.: | 6017T, 7017C. C54 | .. 58/6 |
| REGENTONE: | 17C, 17T. 17 Comb. | - 59/6 |
| BAIRD: | 2014. 2017 , 2114, 2117 | 49/3 |
| COSSOR: | $930 \& T, 931,933-4-5-937,9$ | $338$ |
|  | $\frac{8}{9} 4$ | - ${ }^{\text {- }}$ 58/8 |
| H.M.V.: | 1824 \& A, 1825 \& A, 1826 \& | A, |
|  | 1897 \& A, 1829 \& A | 65/- |
| MARCONI: | VT68DA, VT69DA | - 861 - |
| 80BELL: | Ts17, T346 | - 88/- |
| FERGUSON: | $30 ヶ \mathrm{~T}, 308 \mathrm{~T}$ | 63/- |
| H.M.V.: | 1965, 1869 | - 88/- |
| FERGUSON: | 99.2T-997T, 998T | - 80/9 |
| PYE: | V4, VT4, V7, VT7, CTM4 | 65/- |

## PYE: $\quad$ V4, VT4, V7, VT7, CTM4

LINE BLOCKING OSC. TRANSFORMERS ARGOSY: $\quad$ T $2-3$, CTV517 $\quad 14$
DECCA: TR1454MARCONI: REQENTONE REGENTONE: $14-5-7^{\prime 2} 1, ~: 43 T, 173 T$

182 2 \& A, 1829 \& A, 1840-1.2:
$3-4-5-6-7-3$
VT0KDA, vT69DA, "VT150,
MARCONI; VT06DA, VT69DA, VT150.
FERGUSON: $9921 \mathrm{~T}-997 \mathrm{~T}, 998 \mathrm{~T} \quad . \quad \ldots 14 / \mathrm{A}$
PYE: V4, VT4, V7, VT7, CTM4 $\quad . \quad 16 / 8$
FRAME BLOCKING OSC. TRANSFORMERS
ALBA; TSO1, 304, 312372 \& $\mathrm{B}, 394$,
ARGOSY: $\quad 483$ \& $B$ serjes $\quad . \quad . \quad 121$
DERIANT: TR1454-5-6, 1652, 1- 54-5+6
DEFIANT:
MARCONI:
R.G.D.

REGENTONE:
VIDOR:
PEILIPS: $\quad$ CN4?16, CN4225 series

|  |  |
| :--- | :--- |
| STELLA | $789+\mathrm{A}, 1502 \mathrm{U}, 45 \mathrm{U}, 683 \mathrm{U}$, |

STELLA:
$\begin{array}{ll}\text { PHILIPS: } & \text { 1400A, } 1700 \mathrm{~A}, 1800 \mathrm{~A}, 2347 \mathrm{~A}^{*} \\ \text { PHILIPS: }\end{array} \quad \quad$ E.H.T. Ogc.
PHLLIPS: E.H.T.Osc. 18. 1400A, 1700A,
PHILIPS: $\quad 1101 \mathrm{U}, 1200 \mathrm{U}$ \& UFi, $1400 \ddot{A}_{\text {, }}$
PHILIPS: $\quad$ 2337A, 2347A $14 \mathrm{UM}, 115 \mathrm{U}$, TG்1437 U,
PHLLIPS: $\quad 1446 \mathrm{U}$ \& $/ 4 \overline{5}, 1726 \mathrm{U}, 1746 \mathrm{U}$ \&

PAM: $\quad$ CDL $\quad 904,906,952-3-4-958^{\circ} \quad \cdots$
$\begin{array}{lll}\text { PRIM: } & 904,906,902-3-4-1,958 & 11 / 8 \\ \text { INVICTA: } \quad \text { T10ä, } 107+8,110-1-2+4-5+7+8-9, & 11 / 6\end{array}$
FERRANTI: $\quad 14 \mathrm{~T} 3-4-5 \cdot 6,17 \div 3-4-5-6,20 \mathrm{~T} 4 *$
$\begin{array}{ll}14 \mathrm{~T} 3-4-5-6, & 17 \mathrm{~T} 3-4-5-6, \\ 5-6, & 20 \mathrm{~T} 4- \\ \text { 10. }\end{array}$
1625,1825 , $\because 24$,
$14 / 6$
80BELL: TSIT, T144, T145 \& C, T174 \& C, TRG174, T175 \& LC, TRG 175, T 274, T 277, T346
BT114, BT117 \& C -

H.M.V.: $1814,1816,1821,1824$ \& $\ddot{\text { A }}$,

1825 \& A, 1826 \& A, 1827 \& A,
$\begin{array}{lll}18 \div 9 & \text { \& } A, 1840,1841,1842, \\ 1843, & 1844,1845-6-7+8 & 24 / 6\end{array}$
VC59DA, VT59DA, VC60DA,
VT150, VC \& VT151, VC152-3 $14 / 6$
VTh, VT4, V7, VT', CTM4
All Mares Available.
FRAME OUTPUT TRANSFORMERS
BANNER: BT114, 117 \&
$95 /-$
$25 /-$

SOBELL: TB17, T121, T129, T143, T144,
T175 LC, TRG175, T176,


FERGUSON: 992T-998T Availabie
PYE: V4, VT4, V7, VT7. CTM4 $\quad$ 59/6

 | T 217, TC178, TC196, T205, |  |  |  |
| :--- | :--- | :--- | :--- |
| T206, TC207 | .. | $\ldots$ | .. |

All Hakea Arailabie for ALL Hodels.
BA.E. ALL ENQU1RIES
Post and Packing. alt items, $1 / 6$. C.O.D. 1/6 extra

## Wyndsor Television Service

ST. ALBANS ROAD BARNET, HERTS.
$B \triangle R, 1769$.
Closed Thursday 1 o'clock.


## AS ADVERTISED ON TELEVISION

Save £££
12 Months' Guarantee FACTORY REBUILT... TELEVISION TUBES

## ALL TYPES AND SIZES - Immediate Delivery

 FITTED WITH COMPLETE NEW GUN Price

TERMS TO
THETRADE

## RE-VIEW (LONDON) LTD.

10 High Street - - Colliers Wood, S.W. 19
C.R.T. ISOLATION TRANSFORMERS TYPE A. OPTIONAL $25 \%$ and $50 \%$ BOOST.
 18.3 V. MAINS INPUT. TYPEA2. HIGH QUALITY, LOW CAPACTTY, 10/15 PF. OPTIONAL BOOST $25 \% .60 \%$. $16 / 6$
$76 \%$. MANS IMPUT.
TYPE B. MAINS INPUT, MULTI OUTPUT 9 , 4, $6.8,7.8,10$ and 13 VOLTS. BOOST $25 \%$
AND $60 \%$. LOW CAPACITY.

TRIMMERS, Ceramio. $30.50 .70 \mathrm{pF}, 9 \mathrm{~d}$; 100 pF $150 \mathrm{pF}, 1 / 8 ; 250 \mathrm{pF}, 1 / 8 ; 500 \mathrm{pF} .750 \mathrm{pF} ; 1 / 9$. Resissors. Preterred ralues. 10 ohmat to 10 meg MoH STABLicty. $\dagger$ w., $1 \%$, $2 \%$.-. Preferred value 10 a to 10 meg . Ditto, $5 \% 100 \mathrm{o}$ to 5 meg . Q . 9 d . TETt Weg. WIRE-WOUND RESISTORS 10 watt $\} \quad 25 \mathrm{ohms}-10,000$ ohms

| AMERICAN "BRAND FIVE" PLASTIC RECORDING TAPE |  |  |  |
| :---: | :---: | :---: | :---: |
| Double Play <br> Long Piny | 7in. reel, 2,400ft | 80/- | Spare |
|  | Sin. reel, 1,200ft | 37/8 | Plastic |
|  | $7 \mathrm{in}$. reel, $1,8001 \mathrm{t}$ | 351- | Reels |
|  | 5 fin . reel, 1.200 ft | 88/6 | 3/- ea. |
|  | 5 in . reel, 900 ft |  | Me |
| Standard | 7 in. | 25/6 | $7{ }^{*}$ Reels |
|  | 5 in . reel. 600 tt | 16\% | 2/-ea. |
| "Inatant" Bulk Tape Erater and Head DoAurer. 200/250 v. A.C., 27/6. Leaflet, B.A.E. |  |  |  |

O.P. TRANSPORMERS. Heavy Duty $50 \mathrm{~mA}, 4 / 6$.
 $\mathrm{mA}, 6 /-\mathrm{i} 10 \mathrm{H} .85 \mathrm{~mA}, 10 / 8: 10 \mathrm{H} .150 \mathrm{~mA}, 14 /-$

| MAIN8 TRANSFORMERS 200:250 V. A.C. |  |
| :---: | :---: |
| lapped 4 |  |
|  |  |
| $\because 2$. or 4 v .2 a . ditto. $350-1.350$ |  |
| MINLATURE 200 v .20 mA .6 .3 .3 จ. | $10 / 6$ |
| FIDGET. $220 \mathrm{v}^{\text {v }} 45 \mathrm{~mA}, 6.3 \mathrm{v}$.2 m . |  |
| SMALL, $220-\left(0-2{ }^{2}\right)^{\prime} 50 \mathrm{~mA}, 6.3 \mathrm{v} .2 \mathrm{a}$ | 17/6 |
| 8TD., $250-0 \cdot 0.951,55 \mathrm{ml}$ A. 6.3 v. 3.5 a . |  |
| HEATER TRANS. 6.3 จ. 11 amp . |  |
| Ditto, tapped sec. 2. 4, 6.3 |  |
| Ijito, sec. 6.3 v. 3 amp . |  |
| GENERAL PURPOSE LOW VOLTAO |  |
| $3,4,5,6,8.9,10.12,15,18,24,30$ v. |  |
| AUTO TRANSFORMERS. 150 |  |
| 10, 120, 200, 230, 250 ₹. | $22$ |

ALADDIN FORMERS and core, ina., 8d. ; in., 10 d . $0.3 i n$. FORMERS $5837 / 8$ and Cans TVI/R. tin. sq- I

ROLON Holdering Iron. $220 / 40$ F. 25 W. 24/-
REMPLOY Inatrument Iron, 230 . ${ }^{\text {ren }}$. 25 w.: $17 / 6$. MAINS DROPPERS. 3in. I 14 in . Adj. Bllders. 0.3 amp.. 1,000 ohms. 4/8. 0.2 amp., 1,000 ohms, 43. LINE CORD. 0.3 amp., 60 ohms per t. 0.2 amp., 100 ohms per 1t.. 2 -way. bid. per ft., 3-wzy. 7d. per ft.
LOODSPEAKER P.m. 8 OHM. 5in. Rola, $17 / 6$.
 Bin. Plessey, 18/8. bin. I 4 in . Rola, 18
 in. Hi-Fi Treeter, $25 /$, $12 i \mathrm{n}$. K.A., $30 /-$ 12in. Bakian HFIO12 10 in. 3 to 15 Ohm, 10 w., 95 CRYSTAL DIODE G.E.C. $2 /-$ OEX 34 , $105 /$ DGH RESISTANCE PHONES. GNOU Ohm
ITGE RESISTANCE PHONES. 4.000 ohme, $15 /$ - pr. IIKE TRANSF, 50: $1,3 \cdot 9$ ea.: 100: 1, Potted, $10 / 6$. TWIN GANG TUNNG CONDENSERS.

 FINGLE, $50 \mathrm{pF}, 8 / 8 ; 75 \mathrm{pF}, 100 \mathrm{pF}, 160 \mathrm{pF}, 7 /=$. Enhid dielectric 100. $30 \mathrm{n}, 500 \mathrm{pF}, 8 / 6$.
EPEAKER FRET. GOLD CLOTH. 17 in 2 İin., 5/Ein. I $35 i n$., $10 /=$. Tygan 4 ft. ©in. wide, $10 /-\mathrm{ft}$.; 2 ft Sin. wide, $5 /-\mathrm{ft}$. Samples B.A.E.

| 1 R5 | $766 \mathrm{K8G}$ | $7 / 8$ | EA 3 C80 8/6 | HABC80 |
| :---: | :---: | :---: | :---: | :---: |
| 185 | $7 / 6 \mathrm{LCH}$ | 10/6 | EB91 6/- | 12/6 |
| 1 T 4 | 6/-6N7M | 6/6 | EbC33 8/6 | HVR2A 6/6 |
| $8 \times 2$ | 8/6 6 Q 70 | 8/6 | EBC41 8/8 | MU14 $\quad 9 /=$ |
| 884 | $7 / 65347$ | 6/. | EBF80 10/- | P61 $\quad 3 / 6$ |
| 84 | 7868.17 M | 8/- | ECC84 916 | PCC84 $0 / 6$ |
| EU4 | $71665 N 7$ | $6 / 6$ | ECF80 9/6 | PCF80 9/6 |
| 5 E 3 | 7/8 6V69 | $8 / 6$ | ECH42 10/6 | PCL82 $11 / 8$ |
| 524 | 9/6 $6 \times 4$ | $7 / 6$ | ECLS2 $10 / 6$ | PEN25 6/6 |
| 6AM6 | $5 /-6 \times 5$ | 6/6 | ECL82 $10 / 6$ | $\begin{array}{ll}\text { PLPS } & 10 / 6\end{array}$ |
| $6 \mathrm{B8}$ | 6/-12AT7 | 81. | EF41 0/6 | PY80 7/6 |
| 6EE6 | 7/6 12AU7 | 8 | EF50 $\quad 6.6$ | PY81 8/6 |
| 6 BH 6 | 9/6 12AX7 | 8 1- | EFPSO 8/6 | PY82 716 |
| 8BW6 | 9/8 12BE6 | $8 / 6$ | EF80 8/\% | 8P61 3/6 |
| 6 D6 | 6/-12E7 | 6/6 | EF91 5/- | UBC41 9/8 |
| 8 FGG | 7/61297 | 6/6 | EF92 5/6 | ECH42 $9 / 6$ |
| 6 $\mathrm{H}_{6}$ | 8/6 35L6 | $9 / 6$ | EL32 5/6 | UF41 9/6 |
| 6.55 | 6/6.35\%4 | $7 / 6$ | $\begin{array}{ll}\text { ELS4 } & 8 / 6\end{array}$ | UL41 916 |
| 835 | 6/6.90 | $9 \cdot 6$ | EM81 8/8 | UY41 8/6 |
| 6.30 | 6/6 807 | $8 / 6$ | F2740 76 | U22 8/6 |
| 6E69T | 6/6 954 | $1 / 6$ | EZ80 $7 / 6$ | VR105 $9 / 8$ |
| 6 K 7 l | b/6 EA50 | 1/6 | E1143 1/6 | VR150 0/6 |

## TELEVISION REPLACEMENT LINE OUTPUT TRANSFORMERS

70/- ea. from stock.
For Makes and Models
Argosy: T2, CTV517. Decca: D17 \& C. Defiant: TRI753.
RGD: 6017T, 7017C, C54. Regentone: 17C, 17T, 17 Comb.

Argosy: T3. Decca: D14.
Defiant:TRI453T. Regentone: 14T. RGD: 6014T.

Marconi: VT63DA.
Baird: 2014, 2017, 2114. 2117.
Cossor: 930 \& T. 931, 933-4-5, 937, 938 \& A. \& F. 939 \& A \& F, 943T, 946.
H.M.V. 1824 \& $A, 1825$ \& $A$ 1826 \& $A, 1827$ \& $A$. 1829 \& A, I865, 1869.

Marconi: VT68DA, VT69DA.
Pye: V4, VT4, V7, VT7, CTM4.
Sobell: TSI7, T,346.
Ferguson: 306T, 308T. Most other makes available (7 days). S.A.E. with all enquiries.

## LINE BLOCKING TRANSFORMERS, $10 /-$ to 16/6.

## FRAME BLOCKING

 TRANSFORMERS, $13 / 6$ to $21 /$FRAME OUTPUT TRANS FORMERS, 276 to 39
Most makes available (7 days). S.A.E. with all enquiries.

HIGH GAIN TV PRE-AMP EITS BAND I BBC
Tunable channpla 1 tn 5 , fibin $18,1 \mathrm{~B}$ ECCl vaive. Nit price $28 / 8$ or 486 with power
fack. Details 6d, ( $\mathrm{PCCB4}$ vaives if preferred.) BAND III ITA-Same prices.
Trinable chantipla 8 to 13 , Gain 17dB. ECChit valve. (PCCBt valves if preferted.)

CRYSTAL MIKE INSERT by Acon, preciaion engineered. Bize only tin. $13 / 16 \mathrm{in} ., 66$.
ALUMINIUM CHASSIS. 18 s.w.g. undrilled. With 4 sides, riveted corners and lattice flxing holes. 2iln. sider, 7 I in.., 4/6; 9 I 7in., $5 / 9$


JAgON F.M. TUNER COIL SET, 26:- H.F. cof!, aerial cofi. Oreillator colh. Two I.F. trans. $10.7 \mathrm{Mc} / \mathrm{s}$. Ratlo Detector and heater cholese. Circuit book using four $6 A M 6,2 / 8$.
COMPLETE JASON F.M. EIT, FMTI. with zet of 4 valves, etc., \&6.5.0.

BEC TRANSISTOR RADIO. Med. and Long Wave. Two transutors ani! liode. Complate kit, 32/6. phones $7 / 6$ extra. 11Hhl Aid Earpsece with 8pecial Lead $15 / \mathrm{m}$. Details bd


Volume Controls 80 CABLE COAX lung spindles. Quaran- Poat lid. per yard extra.



COAX PLUGS
PANEL SOCKETS 1- LEAD SOCKET ... 2/BALANCED TWIN FEEDER yd. 6d. 86 or 300 ohms DITIO SCREENED per Yi, 1/6. 80 ohms onlr WIRE-WOUND POTS. 3 WATT. Pre-set Min $30 \mathrm{~K} ., 50 \mathrm{~K} .4 / \mathrm{H}$. (Carboi 30 K ., to 2 fineg.. $3_{\text {/-. }}$ WIRE-WOUND WATT. Puts Long Spinule
 T.U.U. $5 / 6$; Ditto, $20 \mathrm{kV} ., 9 / 8 ; 0.1$ mid, $7 \mathrm{kV} ., 9_{1} 6$ :
 $0,11,169 \% 19 ; 0.1$ mif1., 2,000 Folta, $3 / 8$.
CERAMIC CONDS. 5141 v., 1.3 pF to 0.01 mfd.. 9d SILVER MICA CCNDENSERS. $10 \%$ o pF to 500 gF , $1-8600 \mathrm{pF}$ to 3.1 n10 $p F, 1 / 3$. Cloae tulerance $( \pm 1 \mathrm{pF}) 1.5 \mathrm{pF}$ to ti $\mathrm{pF}, 1,6$. Ditto $1 \% 30 \mathrm{pF}$ to
$815 \mathrm{pF}, 1 / B ; 1,000 \mathrm{pF}$ to $5,000 \mathrm{pF} .2 / \mathrm{m}$.

## I.F. TRANSFORMERS 7/6 pair

 $465 \mathrm{Kg} / \mathrm{slug}$ Tuning Miniature Can. 2hin. lin. $x$ lin. High 9 and good bandwidth. By PYo Radio. Data sheot suppliedWEARITE M800, Miniature, $465 \mathrm{Kc} / \mathrm{s}, 12 / 6$ pair.
W EYMOUTH. Siandard size, 465 Ko s, $12 / 6$ pair.
NEW ELECTROLYTICS. FAMOUS MAKES TUBULAR TUBULAR CAN TYPES



RECTIFIERS SELENIUM $300 \mathrm{~V} .85 \mathrm{~mA} .7 / 6$.
CONTACT COOLED 250 v. 30 मA, $7 /-$ : $100 \mathrm{~mA}, 8 / 6$;

COILS Wearite "p" type, 3/- each. Osmor Mdget 'Q' thpe bul. dust core irom $4 /-$ All ranges TELETRON. L. \& Hed. T.R.F., with reaction, $3 / 6$ FERRITE ROD AERLALS. M.W.. $8 / 8, \mathrm{M}$ \& L, $12 / 6$ T.R.F. COILSA/H, 7/ pair. H.F. CHOKES, $2 / 6$. FULL WAVE BRIDGE SELENIUM RECTIFIER: 2, ${ }^{3}$ or 12 V. 11 smp., 8,9: ${ }^{2}$ a., 11/3; a., $17 / 6$ 250 v . for charging at $\because 6$ or 12 T. 11 imput 200 2 amps., 17/6; $\ddagger \mathrm{amps}$., $22 / 6$. Circuit included VALVE and TV TUBE, ennivalent books 5 . TOGGLE SWITCHES. A.P. 2/-, D.P. 3;6. D.P.D.T. $/$ WAVECHANGE SWITCHES
2 p. e-was, or 3 p 2 way short spindle 2 p. t-way, 4 p. 2-way, 4 p. 3-way long spitule $\frac{2}{8} 8$ VALVEHOLDERS. I'sx Int. Uet., 4d. EFJO, EAJ!) 6 d . BleA, (RI, 1/B. Eng. and Amer $t_{1} 5$, an - pin, $1 /$ MOULDED MAZDA and lnt. Oct., 6d
 Int. Oct., 1/-. S/CANS BTG, B9A, 1/- ea


[^0]:    Only 12s. 6d. FROM ALL BOOKSELLERS .... or, in case of difficulty, 13 s .6 d . by post from

[^1]:    Published on the 22nd of each month by GEORGE NEWNES, LIMITED, Tower House. Southampton Street, London. W. C. 2 , and printod in England by WATMOUGHS LIMITED, Idle, Bradford; qnd London. Sole Agents for Australia and New Zealand: GORDON \& Inland $\{1.2,0$, Abrosd fl.0.6 (Canada 19 s .). Registered at the Gearral Post Offce tor the Canadian Magazine Post.

[^2]:    12 Inch. Muilard type .. .. 24.5 .0 12 inch, Mazas type.. 14 ineh. Mullari type 14 arnd 15 nuab. Mlazda type $\frac{10}{1 \%}$ inch. All rypes $110^{\circ}$ 21 inch. All types Also li.E.i', BRIViAR," E.Mi.1. tymes. Add 10/- lor delivery to your door within 48 nours or j- B.R. A few shop-solled tubes available. Good picture. Fully guaranteed, from 50/*. Spare-time sorvice Enkineers-send for detals of our rebate scheme.

    TAPERECORDERS
    Latest Coliaro "Studio" 3-speed Tape Deck complete
    Fitted to Motor Board, with 1,200
    leet E.M.1. tape, knobs, etc., to fit
    into your own cabinet signed for the 'Studio" complete signed for the studio complete 10.0 with power pack, knobs, etc.

    ## VALVES

    A very wide range at $50 \%$ off list price. Send for complete price list of these and other Bargains.
    TELEVISION TUBE SHOP
    4s Battersea Bridge Road, LoNDON

[^3]:    FIND TV SET TROUBLES IN MINUTES Irom that great book "Thé Principles of TV Receiver Servicing." $10 / 6$ a!l book houses and radio wholesares. If not in stock from: Secretary I.P.R.E., 20. Fairfeld Road London. N.8.

