## A TUBE TESTER \& REJUVENATOR



THE


The "Avo" tradition of pioneering emerprise again finds expression in a new multi-range meter of compact size, robust construction, and thoroughly sound design.
It is a rectifier/moving coil instrument, simple to use, easy and quick to read. A single rotary switch selects any one of the 19 ranges. One pair of connection sochets deals with any measurement. One scale is provided for current and voltage readings and another for resistance.

## Sensitivity :

10,000 S/V on D.C. voltage ranges.
1,000 is , A.C.
Accuracy :
On D.C. $3 \%$ of full scale value.
On A.C. $4 \%$.

Designed and Manufactured by


RANGES
D.C. Voltage $0-100 \mathrm{mV}$ Voltage
$\begin{array}{llll}0- & 2.5 \mathrm{~V} & 0- & 25 \mathrm{~V} \\ 0 & 10 & \mathrm{~V} . & 0- \\ 0 & 100 \mathrm{~V}\end{array}$ $\begin{array}{llllll}0 & 10 & V & 0 & 100 & V \\ 0 & 25 & V & 0- & 250 & V\end{array}$ $0-100$ V. $0-1,000$ V. $0-250 \mathrm{~V}$.
D.c.

Current
C- $\quad 100 \mu \mathrm{~A}$
1 mA
10 mA
100 mA


## of learning

 COMPLETE EXPERIMENTHNOLOGY

NEW. . . Completely up-to-date method of giving instruction in a wide range of technical subjects specially designed and arranged for self-study at home under the skilled guidance of our teachers.
HEW.
MEW... Experimental outios and lesson manuals sent on enrolment remain the student's property. Tutor allocted to each student or personal and individual tuition throughout the course.
Radio and television' courses, with which specially prepared components are supplied, teach the basic electronic circuits (amplifiers, oscillators, detectors, etc.) and lead, by easy stages, to the complete design and servicing of modern radio and $T / V$ receivers.
If you are studying for an examination, wanting a new hobby, commencing a career in industry or running your own part-time business, these practical courses are ideal and may be yours for moderate cost. Fill in the coupon to-day for a free Brochure. There is no obligation whatsoever.

The only Home Study
College run by

organisation



SUBJECTS INCLUDE:RADIO - SHORT WAVE RADIO TELEVISION • MECHANICS • CHEMISTRY PHOTOGRAPHY-ELECTRICITY CARPENTRY ELECTRICAL WIRING - DRAUGHTSMANSHIP ART, ETC. COURSES FROM
I5/- PER MONTH


NAME $\qquad$
(If under 21)
ADDRESS


I am interested in the following subject(s) with/without equipment

DEC. $/ 57$ (We shall not worry you with personal visits)

# TOP QUALITY FULLY GUARANTEED VALVES BELOW MANUFACTURERS' PRICES 



FOR ONLY 6d. EXTRA PER ORDER WE WILL INSURE YOUR VALVES AGAINST DAMAGE IN TRANSIT. ALL UNINSURED PARCELS AT CUSTOMER'S RISK.


TERMS OF GUSINESS :-CASH WITH ORDER OR C.O.D. ONLY. ORDERS VALUE 63 OR MORE SENT POSTIPACKING FREE. ORDERS BELOW 63 PLEASE ADD Gd PER VALVE C.O.D. ORDERS :-MINIMUM FEE, INCLUDING POST AND PACKING, 3/-. WE ARE OPEN FOR PERSONAL SHOPPERS. MON.FRI. 8.30-5.30. SATS. 8.30-I p.m.

ALL VALVES NEW, BOXED, TAX PAID, AND SUBJECT TO MAKERS' GUARANTEE. FIAST GRADE GOODS ONLY, NO SECONDS OR REJECTS. GOODS ARE ONLY SOLD SUBJECT TO OUR TERMS OF BUSINESS. OBTAINABLE FREE ON REQUEST. CATALOGUE OF OVER 1,000 DIFFERENT VALVES 3d.

We specialise in VALVES-of every kind and description-serving the industry for years. More than 2,000 different types in stock for IMMEDIATE DELIVERY-including hard-to-get and discontinued numbers. All valves exhaustively tested in our fully equipped laboratories, and re-tested at time of despatch. FULL NINETY DAY GUARANTEE. All valves individually boxed.

## BENTLEY ACOUSTIC CORPORATION LTD.

the valve specialists
38 CHALCOT ROAD, LONDON, N.W.I
PRImrose 9090
PLEASE ENQUIRE FOR ANY VALYE NOT LISTED. 3d. STAMP, PLEASE;

# PREMIER RADIO CO. 

## Build the NEW " MAYFAIR" TELEVISOR

 which gives complete SAFETY to the constructor!These Televisors use a double wound mains transformer which gives you complete safety from contact with the mains supply when handling the chassis or controls. $\star$ B.B.C. \& I.T.A. DESIGN with New Turret Tuner may be builf for $\mathbf{£ 3 3 . 7}$. II $\begin{aligned} & \text { plus coit } \\ & \text { or c.R.T. }\end{aligned}$ Build in 5 easy stages. Full Construction details available. Instruction Beok, 3/5 Post Free
Console Cabinets with full length doors for 14 in .. I 6 in ., and 17ia. tubes. Price $£ 14.14 .0$.
H.P. Terms : Deposit $£ \mathbf{7 . 7 . 6}$ and 9 monthly payments of $18 / 6$ Console Cabinets. Half door $\mathbf{£ 1 2 . 1 2 . 0}$.
H.P. Terms: Deposit $£ 6.5 .0$ and 8 monthly payments of $18 / 3$ On above cabinets add 21/- for pkg. and carr.

## The "Petite" P ORTABLE

 may be bult for $\mathbb{E} 7 \cdot 7 \cdot 0$ plus 3/-post \& packin3.

Batteries extra.
HT 10/. (Type BI26) or
 equivalent.
t. Size only $\sin . \times 8 \mathrm{in} . \times 4 \mathrm{in}$.

* Weight, including batteries, 5 ! Ib valves of the economy type. * Mediurn and longwave superhet circuit.
- High $Q$ frame aerials.
* High sensitivity on both
- Prealigned IF trans Prealigne
+ Sin. speaker of the latest type.
- Automatic on/off switch operated by lid.
- Desizned in our own laboratory.
- Backed by an up-to-date Technical Information Department.
- Components avalable separately if desired.
- Simpla to construce. using normal soldering methods

Battery eliminator now available for $37 / \mathrm{s}$.

## B.S.R. TU8

3 speed record player £3.19.6.
plus $2 / 6$ postage \& packing.

## 8-WATT AMPLIFIER

This design insludes 5 miniacure Valves of the latest types, ai Ultralinear Output Transformer suitable for Speakers of 3 and 15 ohms and a very attractive Perspex front panel with gold letcering, complete set of parts, E8.8.0.
Postage \& Packing. 5/- extra, Instructio.. Book I:6.

MHY buy surplus or reconditioned tubes when these Fully HY Guaranteed Wide Angle Tubes are available? The latest type 17 in . Rectangular Tube MW43/64 by Telefunken at $\mathbf{f 1 7}$ (inc. tax) post and packing 21/- extra. Also 14 in . Rectangular


for
E6.5.0
DEPOSIT $\&$ 8MONTHLY PAYMENTS OF $55 \cdot 17 \cdot 11$
OR CASH 45 GNS. plus 21/-post \& pkg. TRADE ENQUIRIES WELCOMED


Write for details of the New PREMIER TAPE RECORDER KIT for $\mathbf{E 3 8 . 1 5 . 0}$.

Case finished in Red and Cream with gile styling and fittings. Size $18 \frac{1}{2}$ in. $x 15 \mathrm{in}$. x 9 in . for A.C. Mains $200 / 250$ v. 50 cycles

NEW F.M. TUNER
 for the Home Constructor

A new design using the latest circuit techniquès. Includes 4 valves plus magic eye tuning indicator, permeability tuning and an integral power supply. Two controls only, a gear driven slow motion tuning control and an output volume control with on/off switch. Suitable for fringe area reception.
All components may be purchased for $\mathbf{£ 8} \mathbf{I} \mathbf{5 . 0}$, plus postage and packing 3,6
OR leis Mains Transformer \& Rectifier $\mathbf{\text { E }} \mathbf{7 . 1 2 . 5 , ~ p l u s ~ p o s t a g e ~}$ and packing 3/-
Power requirements H.T. 230 v. $50 \mathrm{~mA} .$. L.T. 6.3 v. 1.5 A Dial size 3 ! in. x I! sin., overall size llyin tong, $5 \frac{1}{\operatorname{lin}}$. deep. 4lin. high. Instruction Book 1/6.

The Brimar 6BQ7A is a double triode consisting of two independent high slope sections with similar characteristics. The valve is particularly useful as a cascode R.F. amplifier for television receivers and also as a combined oscillator and mixer for frequency modulation receivers. It can, of course, be used wherever high slope triodes are required, and features low

interaction betweenthe sections as an internal screen is provided which is brought out to a separate base pin.


TYPICAL CHARACTERISTICS
Heater voltage......................................................................6.3 volts
$\qquad$
Anode voltage...................................................................... 50 volts
Cathode bias resistor............................................................ 220 ohms
Anode current............................................................................. 9 mA
Mutual conductance................................................................. 6.4 mA V
Amplification factor.......................................................................... 39
Anode resistance.............................................................6,100 ohms

Write to the Publicity Department for a data sheet.


## GUITAR AMPLIFIER!

5-6 watts output. For use on A.C. Mains 200-250 v. Complete with 4 valven, speaker, all contro's, neon level indicator, gram and mike inputs. Speaker in lid, but movable to any position by using lead supplied. In smart case with carrying handle, size closed $8!\mathrm{in} . \times 8 \frac{1}{2} \mathrm{in}$. $\times 19 \mathrm{in}$. long. Brand new and unused.
LASKY'S PRICE, absolutely compiete $\mathbf{E I O}$.19.6 $\begin{gathered}\text { Carr. \& } \\ \text { Pk. } \\ \text { \& }\end{gathered}$
Available as Amplifier without Case and Speaker, 66.19.6. Carr. \& Pkg. 5:NOTE: Can also be used as tape-recording omplifier (pre-amplifier and erase).

## TURRET TUNERS.

All types in stockValradio, Cyldon, Telente, etc. Write us make and model of your Set; we will quote for the Tuner you need. Prices from 79/6.

## BAND III CONVERTERS

with own power supplies in attractive Cases. Leading makes from $£ 5.19 .6$.

17in. C.R. TUBES. Few only, Brand new and unused. Rectangular, aluminised or ion trap, 0.3 heater.


LASKY'S PRICE
£12.19.6
Carr. \& Ins. 22/6.


## MAKER'S SURPLUS COMPONENT BARGAINS

WIIE ANGLE 38 mm .
Line E.H.T. trans. Ferrox-
cube core, 9-16 kV............. 25-
Scanning Coils. low imp.
Ferrox-cube cored Scanning Coils and Line Output winding Line kV. EY51 winding line trans. commiete with circuit diaFrame output Transformer $50^{\prime}-$ Franning Coils low imp. iine 6/6 scanning coils low imp. Ine $17 / 6$ Frame or line block osc. Focus Magnets Ferrox-dure 19,6 F.M. Focus Magnets, Iron Cored …...................... $19 / 6$ Duomag Focalisers..................... 1926 300 mas smoothing chokes.. Electromagnetic focus coil.

STANDARD 35 mm .
Line Output Transformers.
No E.H.T.
Line Outpit Transfor........ 12/6 6.9 kV . E . Transformers, winding. Ferrox-cube...... 19/ Scanning coils. Low imp. line, and frame................... 12 Ditto by Igranic.................... $14 / 9$ Frame or line blocking oscillator transformer...... 4 Frame output transformer.
Focus Magnets Without Vernier. With Vernier $200 \mathrm{~m} / \mathrm{a}$ Smoothing Chokes... 10.5

## 

Open All Day Saturday. Early Closing Thurg. Mail Orders to Harrow Rd. 42, TOTTENILAM COURI IHAD, W.1. 370, HARHOW HOAD, PADDINGTON, W.9. Telenhone: MUSeum 2605.1 LADbroke 4075 and CUNningham 1979,


Vol. 8 No. 89
EVERY MON'II
DECEMBER, 1957


## A SUITCHED TV/F.M.

 SEEEIVER
## A COMBINED TV AND BAND II SOUND RECEIVER

By R. Shatwell
(Continued from page 173 November issue)

THE iuner is the heart of the set and provides the F.M./ A.M. switching of the detector as well as the station selection. Fig. 1 in last month's issue gives the theoretical circuit of the tuner and to cut down variations to a minimum a point to point drawing of the top plate with the precise location of every item is given in Fig. 4b. The work involved should be done in the following order:-

Make up the top plate (Fig. 4a), front panel (Fig. 5a) and two partitions (Fig. 5b).
2. Modify switch plates to take coil platforms (Fig. 6a).
3. Make up coil platforns (Fig. 7).
4. Assemble switch wafers, platforms, front panel and partitions (Fig. 7).
5. Make and fit fine tuner.
6. Wire top plate, check no shorts when in position on switch assembly.
7. Insert Band I and II coils, wire to switch plates, bolt to top plate and complete wiring between the two.

The first stage is amply covered by the diagrams. The top plate is 18 s.w.g. aluminium. The partitions can be 18 or $20 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. Note that only one partition needs the cut-out to avoid components, and this will also need coil platform supporting holes drilling at a later stage. The other partition has a hole for the bias lead to the signal balancing switch plate.

Fig. 6A shows the modifications to the suitch
plates necessary to accommodate the coil platforms, the existing small hole at " $A$ " being enlarged to $1 / 16 \mathrm{in}$. square in an upward direction on plate 1 . downward on plate 3. symetrically on plate 4: and also on plate 2. but in this case to $1 / 16 \mathrm{in} . \times \frac{1}{5} \mathrm{in}$. to accommodate two platforms. This latter operation calls for careful work and a fretsaw was used by the author.
The coil platforms can be made up from the details on Fig. 7. The supporting lugs are $1 / 16 \mathrm{in}$. wide and bin. long. Again a fretsaw is a useful aid. The centres of the coil-former holes must be not less than $\frac{3 i n}{}$. from the centre. to avoid the switch actuating bar touching the coils. One 8 BA bolt on the outer hole secures the coil formers, as these are inserted through a $\frac{3}{8}$ in. hole in the platforms. It is therefore a simple matter to remove any coil for modification even in the completed set.

Assembly of the switch is the main work involved. Fig 6a gives the wafer layout. and it will be seen that there are two fixed contacts without soldering tabs and these do not normally take any part in the switching. These are made use of in the modified switch wafer 9 . Although nine wafers are used ten are necessary. as an extra contact must be inextra contact must be inwafer. The tuner incorporates seven of the nine, and although switch specialists will no doubt make up the assembly to order. it can be made up for a few shillings from two surplus switches as sold by Messrs. W. A. Benson. 136. Rathbone Road. Liverpool. This firm sell a 1P 6W 5B switch at a very low price. and if 1wo are obtained then the ten wafers are obtained, also the copper foil links, and by careful use of the
spacers very little modification to these is necessary: The only dificulty is the hort spindle, as the fine tuner prevents the use of an ordinars extension coupler. The author used this suitch and pinned and soldered a i in. entension to the spindle (Fig. 8). A precise horizontal joint can be obtained by lying the pinned joint in a piece of angle aluminfum when soldering with a gas or small blow lamp jet. A sted shaft is used on the switeh and either spirit flux or the special cored solder will be necessary After the joint is cleaned up it should be protected with a sleeve of $\frac{1}{4}$ in. lD tube until the fine tuner is fitted.

Fig. 7 gives the spacer lengths. the critical dimensions being the position of the partitions, and it is essential that these be cheched The wafers face to the rear and the mosing contact lug is at the top for wafers 1 lo 0 , and bottom


Fig. $5(a)$ (above), details of the pancl, and $\boldsymbol{5}(b)$ (below), the partitions, two of which are needed.
for wafer 7, where the L.F. signal is tahen ofl. The front panel is secured onfy by the switch fixing nut and the top plate. At least tin. of the actuating rod must protrude bevond uafer 7, for ganging purposes. The copper foil links bridge the wafers and ensure the effective electrical return of the


This view shows the switch assembly
distance pieces to the chassis. The assembly should then be positioned on the top plate and the 8 B.A. holes drilled through from the top plate into the front panel and partition llanges.

The fine tuner fixed plate should now be fitted This is made up on a 1 tin. pavolin disc with a countersunk hole at the centre. This hole should be made by using a $\frac{4}{2}$ in. drill to make a countersink. but completing the breakthrough with a pin, and it coincides with the $\frac{1}{2} \mathrm{in}$. dia. centre of the elongated hole in the front panel. Another $1 / 16 \mathrm{in}$ dia. hole is made to conncide with the $5 / 16 i n$. dia, centre. A piece of timed 36 s.w.g. wire is threaded through one and back


Fig. 4(a).-The top plate drilling data.
through the other and twisted and soldered behind, being left 2 in . long. The countersink on the front is filled with solder until a raised
and to avoid failures at a later date $\frac{1}{2} \mathrm{w}$, are specified wherever anything higher than bias volts are involved. Leave about $\frac{1}{4} \mathrm{in}$. of wire protrud-

ing at all points requiring connection to Band III coils or switch points. The test point is for lining up the I.F.s. Leave the aerial input transformer connections long on the top side of the plate. Wire to the theoretical diasram only, using Fig. 4 b as a guide to location of components.

This completed and checked liy the switch assembly in position and ensure there are no shorts between components and this assembly. If not. the Band I and II coils can be inserted and
$\frac{1}{4}$ in dia. blob adheres to the wire (Fig. 9b). This is filed to a flat raised disc, and the paxolin then secured to the front panel by two 8 B.A. bolts. a strip of springy brass $3 / 16 \mathrm{in}$. wide being held by one of these bolts to press against the moving plate.

The moving plate is shown in Fig. 9a. Its capacity change is obtained by the cam shape augmented slightly by its closing air gap. Maximum capacity should be obtained in about $270^{\circ}$ rotation when the threads of the bush and nut butt tightly. The tab on the outer edge is bent down to form a stop in the minimum capacity position. The plate is of 22 s.w.g. copper, soldered to a nut to suit the switch thread, and this to an inch of $\frac{3}{8}$ in. I.D. copper tube into the end of which is soldered a length of $\frac{1}{4} \mathrm{in}$. I.D. tube to form the fine tuner shaft, the inner shaft to protrude $\frac{3}{8} \mathrm{in}$. beyond this. This soldering operation is best done by tinning all surfaces and then completing the whole jointing in one operation with a small jet. Check that the moving and fixed plates cannot short at any position but arrange them to be as close as possible.

## Components

The top plate can now be wired and a small type iron is essential for this. Use of the heavier type $\frac{1}{4}$ in. bit will almost certainly damage some components. Ceramic tubular condensers are used throughout and in no case is there more than $\frac{1}{4} \mathrm{in}$. of wire from the condenser to its fixing point and a pair of pointed-nosed pliers should be used as a " heat shunt." All resistances are $\frac{1}{4}$ watt unless otherwise specified,


Fig. 4(b).-Wiring diagram of the tuner.
if used can likewise be accommodated here. The Band IIt coil L13 does not go to any anchor point on the top plate and can be inserted at this stage the free end passing through the small hole alongside the contact, and tinned ready for CX


Fig. 8 (above).-Modification to the fine tuner spindle. Fig. 9(a) and (b).-Further fine tuner details.
and 9 to be connected. Note that no connection is made to the Band 1 position. as this coincides with all coils being in circuit. Fig. 6a shows the coil connections to the wafers. The top plate and switch assembly can now be bolted together and the neeessary links made and Band III coils inserted. Those links consist of fine tuner to water 1 and $\mathrm{C} 14,15 ; 119$ from water 1 to V 2. pin 2; water 2 to V 2 chassis return; $\mathrm{C} 8, \mathrm{C} 9$ to 113 as prepared; R6, C7 to water 3; L7 from

```
TUNER COILS BANI) III
    Position Position
\begin{tabular}{|c|c|c|c|}
\hline & 1 & 2 & \\
\hline 1.1 & 4 T & Link & All coils clean 18 s.w.g. \\
\hline 1.7 & 5tT & & wound on . 2 in . former, \\
\hline 1.13 & 4T & & removed and opened \\
\hline L19 & \(3 T\) & & slightly. \\
\hline
\end{tabular}
```


## Position

```
\begin{tabular}{|c|c|c|c|}
\hline L3 & 7 T & & \\
\hline 19 & 57 & 39 DSC Difilar & \\
\hline 1.15 & 5T &  & former. \\
\hline L21 & \(3 T\) & 20 s.w.g.ena & \\
\hline
\end{tabular}
```


## Position 5 and 6 - 2 T throughout, wound as

 Band III coils. See text for oseillator links.BAND I
Channel

| Position $1 \& 2$ |  | Position |  |
| :---: | :---: | :---: | :---: |
|  |  | 3, 4, |  |
| 16 | 7 T | $6 T$ | 32 s.v.g. Closewound. |
| 1.12 | 8T) | 7T) | Bifilar wound. spaced |
| 1.18 | 8T | 7T S | to fill $6 \mathrm{in},-39$ D.S.C. |
| L24 | 41 | 3 T | 32 D.S.C.-to all in, |

Aerial imput transformer-20T 32 D.S.C. PRI. 11 sec. interwound earthy end.
1.258 turns 22 s.w.g. enam. din. diam.
wafer 3 to V1, pin 3; Rt. R5 to wafer 5; Cl, R1. C2 to water 4; LI from water 4 to VY , pin 6 Fit the aerial transformer on the top plate near the grommet hole. with a iwo-way lag strip nearby and connect to prepared leads and wire C10. C20 to tag strip and T1. Conneet a convenient length of 70-80 ohm coaxial suitably terminated for aerial plug used. Wafer 5 can have all fixed contacts tahen to chassis at this stage. Waters 6 and 7 have the three TV positions linked and the three F.M. positions also linked. This completes work on the luner.

## Coil Data

Coil data is given in sets for each coil position as being more convenient to use. At this stage the oscillator F.M. positions. 3. 4,5 and 6 (wafer 1) can be linked at the back with a short piece of 28 s.w.g. The intervalue coupling transformers are best made up by anchoring two lengths of 39 s.w.g. to the fixing holes in the Aladdin formers and then laying the wires up opposite sides of the former and taking two or three turns of thread tightly around the former at the start of the winding and tying securely. Alter winding bitilar fashion finish each wire on the same side as it began and another two or three turns of theed will anchor these, If necessary move the


Fig. 7.-Details of the main switching assembly.
wires to even out the spacing and take a strip of Sellotape completely around the former to protect the winding. Free the wire from the fixing holes and the coil is complete.

## Main Chassis

The main chassis can now be made up. This is 9in. $\times 6$ in. $\times$ $2 \frac{3}{4} \mathrm{in}$. deep. This may be made up from a sheet of 18 s.w.g. aluminium. Next month we will show details of the wiring and chassis data.
(To be continued)



## Anllmppoved BANDIIII Converter

This Article is Written to Helf Readers Who are Having Difficulty in Obtaining Satisfactory Reception on Band III with EF50 and EF80 Valves

By "Diadem"


(Contimued from page 154, Nomember issue)

THE converted output is taken from the IF transformer secondary in the anode of $V 2$. and after switching is fed into the receiver. The 330 pF decoupling condensers were found to be adequate. Larger ones up to $1.000 \mathrm{p} F$ were tried and can be used without affecting performance. All other condenser and resistor values must remain as stated. Nothing is to be gained by altering these, many combinations of resistors and condensers were tried and those given were found to be the best. "Red" Sylvania EF50s were found to be much better than the "silver" lype and more stable and gave better contact. especially the spigot which is ol different metal and does not oxidise so rapidly.

## Valveholder Trouhles

Ceramic valveholders were used for low loss The sochets are silvered and turn blach. Some of this can be removed with carbon tetrachloride and a tlat nail file very lightly passed up and


Vien of the uaderside of the unit.
down the sockets a few times removes the rest. Do not forget the centre spigot hole and pincle the spigot contacts together. Clean all valve pins the same way and make sure the aluminium ring on the valve base which holds the spigot is making. good contact with the valve can, as both these parts film over with age.

Use spring type ring retainers. The worst, type of retainer is the iwo coiled spring type with the dise on top. although the spigot is "earthed" the top of the valie can is earthed through the disc and the two expanding springs. The dise and the lop of the valve can are usually filmed over. the springs mate bad contact at both ends and at V.H. frequencies it plays havoc with stability. especially in the first stage where it upsets alignment of 12. and the gain drops considerably. I hope this explanation will save much hair tearing by the constructor.

At the start all the stages wiere screened from one another and screens were also placed across the valveholders. All this sereening was removed piece by piece and now only coils 11 and 14 are c canned," with no ill etfect on perlormance.
The valveholder bolts are longer than usual and through this bolt on top of the chassis passe, the valve retaine ring, the valveholder collar. Then comes the chassis. and underneath the solder tag. nut, Aladdin coil former. Washer and nut. This enables the coils to be as near as possible to the valves. On coils L? L?, 1.5 only one bolt was sufficient when the thick wire was soldered in place. No holes were drilled through the chassis for the cores as these were not found to be necessary. Coils L1. L4 were held by two holts each and screened to prevent BBC pich-up.

The formers are $\frac{1}{4} \mathrm{in}$. Aladdin with purple cores When the converter is working satistactorily the cores can be removed and a thin piece of elastic inserted down the inside of the former and the cores put back. This is necessar!. espectally if cores L2. L. roch about.

Wind the coils on $\frac{1}{4}$ in. control spindle and press on tormers : as the formers are slighty over $\frac{\text { dins. }}{}$ the coil makes a tight fit.

The heater chokes are womod on a fat knimiog
needle (plastic); this needle is also used for trimming purposes when filed to a screwdriver tip.

In weak signal areas increase 89 across 14 to $6 \mathrm{~K} \Omega$ or cut out altogether. It should be left in wherever possible.

## Patterning

BBC and I.T.A. co-ax cables running side by side from the aerials have not been found to be the cause of patterning on the l.T.A. unless the cables have been cut or joined or extended. If the BBC cable is eut or extended use a proper cable joiner, not tape, as the cable inner must be screened. The Band I co-ax must always be shorted out when receiving the I.T.A., or pronounced patterning will result. Switching the inner co-ax out of circuit or removing the plug is not effective.

Keep the output leads from the converter aivay from A.C. wiring in the power pack and mains wiring.

The filter coil LI will overcome patterning from the BBC being fed into the unit. If patterning is experienced on the BRC fit switch in H.T. lead from the converter power supply or in the mains lead. This is usually switched out automatically when the band switch is operated.

Although an ordinary 3 -pole 3 -way band switch was used without screening no trouble was experienced through patterning if co-ax is used liberally. Connect co-ax screening to nearest possible points on chassis or solder them to the

metal pillars on the switch framework. In the writer's case the converter was fixed inside the front of a console cabinet and the Band I co-ar from the change-over switch was in one continuous length to the back of the cabinet, where it terminated in a Pye socket fixed to a square of paxolin, alongside the


Iig.
1.T.A. socket from which it was screened. This is mentioned because if you are contemplat ing fixng the Band 1 sochet on the converter chassis. unless the co-av is taken sight up to the

EF80 it works exceptionally well on low roltages (Fig. 5. About lopF seemed about right for matching in the aerial lead: a postage stamp trimmer was used. This matching was found tu be cery importanf for this salve, as the impedance of: the valve is altered and mismatching takes place when the aurial is taken to the cathode. The EF50 requires 1.000 pF acriat condenser. or vary to suit individual requirements.

The band change swith contacts were smeared with Vaseline, not oil. This prevents it getting " noisy after a few months wear. and an additional refincment which I have found to be worth while to heep the dust out and prevent losses and delay any oxidisation is 10 make a hole $\pm$ in. in the bottom of $a$ small polythene bag. drop the band switch in spindle
sochet and the socket screened. patterning will be experienced on the I.T.A.

## Wiring

Keep it short. "ire components right up to the valweholder .where possible, especially VI. When "carthing" V1 spigot, solder wire at the bottom of the spigot tag nearest the valueholder heep R2 ofl the chassis at least tim.

## Alignment

Turn down gain control at keast cuater of the way and leave alone. Switch on converter. place Band 1 aerial on grid of $V 2$ miver and tune L4 for maximum vision. Remove acrial, plug in Band III aerial and set CI2 and cores of LI, I? 1.3 all midway and $L 5$ on a level with the forme: 1op. Tune L5 stowly and rock C12. Vision may be received at two places on 15 . but only one where sound and vision is received together, this is the correct one. Tune for maximum sound tune L2. this may be a little sharper than usual for this position, and il the gain is set too near maximum the removal of this core or the aerial may cause V1 to oscillate with a bright plain raster. and no signal will be received. Keep tuning 12 and L5, and when a signal is received tune $L 3$ for maximum vision. This tunes rather broadly. Now tune L4 for maximum vision, and turn core slightly towards the sound if necessary and increase gain with R3. Now tune L1 if patterning is experieneed: this may not seem to have mush effect. as it turies broadly - but it removes BRC patterns. Finally set C12 oscillator trimmer for maximum sound.

The gain control was a 300 ? $W$ /W midget. as it was to hand but it can be soos! or up to lk!? but then R4 is omitted. The slider being taken direct to chassis. If a wire-wound control is used Vaseline the track. For those who like to evperiment. the circuit in Fig. \& with EF50 valves. has slightly less gain. L? lines rather thater. Do not onit the condenser in the aerial lead. With the


A view of the complete converter.
first. pull spindle through the hole and fix to chassis in the usual way: bunch the top of the bag logether and hold logether will Sellotape.
Chassis
Any type of chassis will do provided is is rigid. The chassis used was the two-valive platform from the 3170 A unit. The tuner and hand swith are under the chassis. buill on a smaller phatiorm so as to be near the witing.

[^0]
# BBC U.H.F. Transmissions DETAILS OF THE LATEST EXPERIMENTS FOR TV 

THIS month. November, the BBC will begin a series of test transmissions on 654.25 $\mathrm{Mc} / \mathrm{s}$ to collect propagation data relating to the U.H.F. bands (Bands IV and V) which were allocated to television at the International Radio Conference at Atlantic City, 1947, but are not so far used for this purpose.

Following earlier laboratory work, the BBC embarked on its first series of U.H.F. propagation measurements in 1955. These were directed towards the investigation of propagation on frequencies between 470 and $960 \mathrm{Mc} / \mathrm{s}$ over distances representing a normal service area, and over longer distances to obtain data necessary for the evaluation of co-channel interference. The initial tests were for the latter purpose and employed transmitters, modulated by square waves. manufactured for the BBC by Mullard Electronic Products Ltd. The transmitters were installed at various television transmitting stations, the aerials being erected high up on the television masts. Regular field-strength measurements were made over long periods at various locations. some as far away as the Shetland Islands. These transmissions are still in progress.

The long-distance tests were followed in 1956 by a series to determine propagation conditions within a typical service area using a transmitter at the Crystal Palace. working into a Yagi aerial and radiating a peak power of 1 kW over a fairly narrow beam when modulated with square waves; pulse modulation was also used for some of the tests. The bearing of the aerial. which was at a height of 440 ft ., was changed from time to time so that field-strengths could be measured over the whole circle from Crystal Palace. These measurements have been completed and the resulting information concerning field-strength contours and an assessment of shadow and echo effects are now being studied.

The information collected in this way was. however. insufficient to determine fully the suitability or otherwise of Bands IV and V for television broadcasting. and at the request of the Television Advisory Committee the BBC decided earlier this year to embark on a more ambitious series of experiments using a high-power transmitter and radiating full television signals. initially on 405 lines and later on 625 lines (C.C.I.R. standards). These tests have been planned by the BBC in co-operation with the committee and the radio industry.

## New Equipment

The BBC has installed at the Crystal Palace a 10 kW peak-white U.H.F. vision transmitter and a $2 \frac{1}{2} \mathrm{~kW}$ carrier power sound transmitter manufactured by E.M.I. Electronics Ltd., the vision frequency being $654.25 \mathrm{Mc} / \mathrm{s}$. The equipment is low-power modulated on both sound and vision channels and employs Eimac 3K 50000 LF klystrons in both audio and video final stages. These
klystrons use three external cavity resonators and operate as linear amplifiers with a power gain of approximately 100 . They are driven by a modulated amplifier stage operating with a cathode modulated circuit. The output of the transmitters is combined in a circuit of the filter bridge type constructed in rectangular section waveguide. The combined output is then conveyed to the aerial by an elliptical waveguide having dimensions of 12 in $\times 6$ in. The elliptical waveguide is made of 99.5 per cent. aluminium in 12 ft . lengths. At the top of the television mast the waveguide is transformed into a Sin. concentric feeder to take power to the four driving points of the helical aerial. the pole supporting the aerial being arranged to form the outer of the concentric fecder.

The helical aerial made of $\frac{1}{2}$ in. diameter copper rod comprises four bays. mounted one above the other on the same vertical axis, each having a linear height of five uavelengths. Each bay is fed at the centre. the helix being wound from the centre point of the bay in opposing directions to cancel the vertical component of radiation. In the four bays there is a total of 48 turns. each turn being approximately two wavelengths long. The aerial is mounted at the summit of the Crystal Palace tower, the top of the $6 \frac{1}{2}$ in. diameter pole supporting the aerial being 707 ft . above the ground, while the centre line of the aerial is 691 ft . above the ground. The aerial has a power gain of 20 and after allowing for losses in the feeder and waveguide system, the effective radiated power of the vision signal is of the order of 125 kW peak-white in the horizontal plane. Provision is made for de-icing the aerial by electrical heating.

When put into use, the transmitter will be in use for several hours a day radiating pictures on the 405 -line standard. The pictures will be the same as those radiated by the Band I transmitter installed in the same building. Later on. the pictures on 625 lines will be produced at Lime Grove from flying spot telecine equipment supplied by Cinema-Television Ltd.. and sent over a specially equipped coaxial cable to the Crystal Palace.

## Change in March, 1958

The tests on 405 lines will continue until about March, 1958. when there will be an interval for the transmitter to be adjusted to radiate on 625 lines. A second series of tests will then begin and will continue for a period not yet decided. For these latter tests, the programme will usually be different from that being radiated by the Band I transmitter. but at certain times duplicate copies of films scanned on the two systems will be radiated by the two transmitters simultaneously.

The BBC, the radio industry, the Post Office, , the D.S.I.R.. and the I.T.A. are organising comprehensive studies of the received pictures. The receivers themselves will be of various types.

# Simplified Sound TV Receivers <br> PICK UP SOUND ONIY ON THESE SIMPLE CIRCUITS <br> By F. G. Rayer 

ARECEIVER for the reception of the sound signal only can be very easily made, and can prove more useful than might at first be supposed. A fair number of TV programmes. such as orchestral items, are satisfactory without the visual component, and the improved reception is worth while in areas where the usual mediumwave transmitters sulfer from interference and where no F.M. receiver is available. Other programmes remain intelligible and interesting with sound only, though naturally a fair number


Fig. 2.-Twin cap V.H.F. triode.
depend so much on the visual clement that they are not satisfactory for listening only.

If an amplifier is available, a single valve will suffice in the sound receiver. Such an arrangement (detector followed by two-stage amplifier) has been found to give ample volume at some 40 miles from a transmitter, without any need for a conventional TV type aerial. However, range naturally depends upon local conditions.

The popular 954 V.H.F. acorn pentode operates well on these frequencies, and pin connections for it are shown in Fig 1. The elongated end carries the anode pin. This valve has a 6.3 V . 15A heater, and can be operated from the 6.3 V . supply of an amplifier. Maximum anode and S.G. roltages are 250 V . and 100 V . respectively.

A ring holder, with clips, may be used for the


Fig. 3.-The detector circuit.
valse, though these are not casy to obtain. Soldered connections can be made successfully, but the iron must on no account be kept in contact with the pins longer than necessary. or the glass seal may crack. Leads should also be attached to the extreme ends of the pins, the iron being removed immediately the joint is made.


Fig. 1.-Connections for 954 V.H.F. pentode.
The twin cap or " horned" V.H.F. triode shown in Fig. 2 also appears from time to time in ex-Service valve lists, at very low cost. It can be used instead of the 954 in detector circuits.

## Onc-value Receiver

This will operate phones. with a 90 V . to 120 V . battery H.T. supply and 6 V . heater supply. Or it can be employed to feed an amplifier. as mentioned. The circuit is shown in Fig. 3. Super-regenerative circuits are not recommended, because they may so easily cause interference. Nor shoukd an ordinary regenerative detector be operated at oscillation point for this reason. If this is remembered no interference can be caused.
A compact layout, with short wiring is necessary. and the circuit will readily tune from 40 to $70 \mathrm{Mc} / \mathrm{s}$. or about 7.5 to 4.25 metres. Other transmitters (such as Amateurs) within the band tuned will. of course be heard also. To reach the higher frequencies stray capacity must be kept very low, or a coil with fewer turns will be required.


Fig, 4.-A:ternative aerial couplings.

RI may be 50 K . for a H.T. line of 175 V . to 200 V . For 350 V . supplies a larger value is required, or a dropping resistor in the amplifier. The 954 may be used as a triode by strapping

coupled to the receiver by either of the methods shown in Fig. 4. Tight aerial couplings should not be used, or adequate reaction will be impossible. The aerial wire may be indoors (except in metal buildings) and may be cut one $\frac{1}{2}$-wave long.

## Tuning Coils

For continuous tuning with a 35 pF to 75 pF variable condenser, a self-supporting coil such as that shown in Fig. 5 will be satisfactory. A length of wire is pulled out straight and wound tightly on a suitable object. The coil is then removed, and the turns pulled out slightly to separate them. Higher frequencies can be reached by taking off a turn or two at each end of the coil.

If the receiver is to be left tuned to the sound programme. and not employed for the reception of other V.H.F. A.M. transmissions. then a slugtuned coil can be used. The number of turns required will depend upon the station frequency and receiver layout. As the coil is not required
anode and screen grid, suppressor being returned to cathode. Excessive anode voltages must be avoided, or reaction will be diflicult to control.

A simple wire dipole, using a few feet of conductor for each clement, is satisfactory. If circumstances result in poor volume, signal strength can be increased by cutting the dipole to suit the station, or by using an improved form of aerial. The distance between aerial coupling winding and tuned winding will considerably influence results. With very weak signals, reaction is also quite critical.

In many areas a single vertical wire a few feet long will be sufficient. This may be


Fig. 6.-The R.F. stage.


Fig. 7.-A simple amplifier.
to gang with other tuned circuits, modification of the number of turns is a simple matter, until the station is found. Between four and eight turns on the tuned section will normally suffice with a $\frac{3}{8} \mathrm{in}$. or similar former. Slightly fewer turns are used on the reaction section. The band covered may also be modified by changing the parallel capacity, and a pre-set can be used here.

## Adding an R.F. Stage

An R.F. stage will improve volume. and a circuit for this is shown in Fig. 6. Slug tuning will be simplest, to avoid two tuning condensers or possible instability associated with continuous tuning with a ganged condenser. If any difficulty arises in aligning, the R.F. coil may be temporarily disconnected, a H.F. choke or .25 megohm grid load being provided. The detector coil can then be tuned, as for the one-valve circuit. The aerial coil can then be replaced in circuit, and tuned.

# Scanning \&Synchnonisation 

4.-FRAME SCANNING CIRCUITS (2)

By G. K. Fairfield

## High-impedance Coils

IN an attempt to dispense with an output transformer and its attendant disadvantages, high-impedance coils have been used for the frame scanning circuit. A simplified arrangement used for the output stage is shown in Fig. 25. An isolating capacitor $C$ is necessary to prevent direct curient from flowing through coils Ry , included in the anode circuit. A resistor R1 is


Fig. 25. -Frame scanning output stage for high impedance coils.
connected between anode and H.T. rail and will inevitably absorb some of the output current and result in a fairly low efficiency for the circuit. The limiting factors for scan distortion will now be the reactance of the coupling capacitor C and value of the load resistance and it can be shown that the percentage scan distortion produced by the circuit is given by

$$
\% \text { distortion }=\frac{1.9}{\text { C. }(\mathrm{R}+\mathrm{Ry})}
$$

where $\mathbf{R}$ is the resistance of the parallel combination of R1 and the valve anode impedance Ra.

The value of $R y$ is governed by the practical difficulties of winding a suitable deflection coil and the most one can hope for is a figure of around 2,000s. The resistance R/ cannot be too large or the anode will "bottom" at the peak of the sawtooth current swing. let Kl be 6.8000 using a valve of Ra=5.000s, then for a maximum of 5 per cent. distortion a capacity value of aboui $80 \mu \mathrm{~F}$ is required. This is not ant unreasonable figure, although the cost of such a capacitor-at a working potential of 200 to 250 volts--together with the practical difficulties of coil construction (a subject to which it is hoped to return later in this series) will hate to be balanced against the cost of a transformer circuit. A further point to consider is the power dissipated in R1. In the example given abour 20 per cent. of that supplied by $V$ will not reach the scanning coils, and whilst this low efficiency
may be tolerated for the older 53 deg. scanningangle tubes. it would be difficult to justify for the wide-angled tubes in use to-day.

## Sawtooth Current Generators

The third class of scanning circuits mentioned in the introductory article (part 1) were those which generated a sawtooth current directly without the need for first producing a controlling sawtooth potential. The inductive transition circuit to be described below is of this type and is suitable for scanning a 12in. tube with an applied EHT of 10 kV . This circuit has several points of difference with the Miller transitron used for electrostatic timebases and before describing these it is as well brielly to run over the working of this latter circuit.
Referring to Fig. 26, the transitron can be regarded as a means of periodically shortcircuiting the capacitor $C$ between intervals of slow charging via a large resistor $R$ from the H.T. supply. Thus it resembles the sawtooth generators described in an earlier article (part 2) although, in this case, the positive feedback necessary for repetitive action is obtained between screen and suppressor grid via coupling capacitor Cl.

Consider the sawtooth cycle to commence with C fully charged and with g 3 at zero potential. Screen-grid current Ig2 is at minimum and allows the screen-grid voltage V ? to take up its maximum potential. As C discharges linearly through R the grid g 1 becomes less negative, allowing Ig ? to increase slightly; Vg2 falls gradually until the "knee" of the pentode characteristic is reached, when anode current ia begins to decrease. This causes a sharper reduction in $\mathrm{Vg2}$ which is communicated to g 3 , causing this electrode to be biased negatively and ia is now rapidly decreased until the anode current is cut oil. g3 is now left with a large negative bias and g2 is drawing

lig. 26.-Miller transitron sawtooth voltage generator.
all the cathode current. With no drop across RI and the capacitor now almost completely discharged. gl assumes a positive potential and C is rapidly charged by grid current via RI. This tends to increase g 2 current and reduces vg2 still further causing g3 to become yet more negalive. When $C$ is nearly fully charged, vgl becomes nearly zero potential and $\lg 2$ is reduced. $V \mathrm{~g} 3$ rises and allows anode current to flow once more. The cycle then repeats with $C$ discharging gradually through $R$ once more. This rather complicated sequence of events will be made clearer by reference to Fig. 27. which shows the waveforms experienced at the different electrodes during the sawtooth cycle.

The modified transitron circuit for EM scanning is shown in Fig. 28. An output transformer takes the place of R1 and low-impedance coils are connected across the secondary circuit. Correction for the distortion introduced by the transformer is obtained by feedback from the primary circuit to gl via C2R4, and R4 is made variable to provide a linearity adjustment. Some compression at the top of the picture may be experienced and is due to the small inductive component of the deflection coils. This may be removed by suitable choice of R5 inserted in series with the charging capacitor C. Sawtooth amplitude is best adjusted by variation of total H.T. supply, in order to have as little effect on the operating frequency as possible. R6 achieves this and is bypassed by a decoupling capacitor C3.

The transformer used can follow the general lines of that described in the previous article with the turns ratio adjusted to:
primary: 3.900 turns .0092 en. copper wire
secondary: 420 turns .018 en . copper wire.
This will then be suitable for matching $26 \Omega$ coils


Fig. 28.-Inductive Miller transitron frame scanning circuit.
and later in this series will be described the construction of a suitable set of coils.

## 90 Deg. Scanning

To complete this section on frame circuits let us now consider the latest of frame scanning problems: that of beam-deflection in the new


Fig. 27.-Waveforms at the various valve efectrodes of the transitron circuit.
90 deg. scanning-angle tubes now appearing on the British market.
As the cathode-ray tube neck diameter in these new tubes is unchanged ( 35 mm .) a decrease in the deflector coil sensitivity can be expected due to the necessity to avoid beam cut-off or "shadowing" of the picture. Even with an unchanged sensitivity, a 20 per cent. increase in scanning current will be required. so that the design must be capable of delivering. say, 30 per cent. more scanning current than a 70 deg . circuit. Fortunately the increase in mean anode current (Cominued on page 238)


Fig. 29.-Method of obtaining bias suppiy in a frame scanning output stage.

# FIYWHEEL SYNC. \& A.G.C. 

AN EXPLANATION OF THESE CIRCUITS, AND METHODS OF INCLUDING OR ELIMINATING THEM IN EXISTING RECEIVER CIRCUITS<br>By H. Peters

TWO blessings have been hestowed upon the manufacturer by his designer to "make his set "elastic." and these are "Flywheel Sync." and "A.G.C.", and athough these are usually accorded separate paragraphs in the manual they are almost Siamese twins in the set, as engineers sometimes discover when things go wrong. The purpose of these notes is to attempt to break up the circuits physically and diagrammatically so that fault finding can be done in logical progression. In addition suggestions will be made to help those who wish to remove either or both, and details are given to enable both types of control to be fitted to receivers without them.

In order to establish how the two systems are linked Fig. 1 (a) is a block diagram and (b) waveforms. They do not relate to any particular set. but form the basis of most systems used.

Beginning at the left-hand side there is the sync. separator, which is similar to the type cmployed in non-flywheel receivers. At its grid there is a composite video waveform which is inverted to feed the C.R.T. cathode and ar its anode there is available an amplified upright (negative going) line sync. pulse.

This is passed on to the discriminating device. but may be inver:ed or amplified-or both on the way. Here the sync pulses are compared with a reference waveform, usually derived from the line amplifier, and a resultant D.C. voltage. whose amplitude and polarity is according to the difference. is used to vary the speed ol the line timebase by means of a control device.

The "flywheeling" of the line sybc. system s due to a smoothing device at the discriminator output, shown as a box labelled "Time Constant." This ensures that the control only varies according to the average of the difference between the sync. and the reference pulse, and not to individuat pulses.

Whilst all this is going on the inverted video waveform at the sync. separator grid is quiedy
passed to the box marked "gate," where the short period of black level which follows the line sync. pulse is measured and the output voltage so derived is used as A.G.C. to control the gain of the R.F. and I.F. valves. If everything from the camera to the video detector is working right this "back porch" of black level corresponds to the strength of the received signal and will produce an accurate control of gain regardless of picture content. The last box in the bottom row is labelled "protection" and covers the devices incorporated in the set to prevent overloading of the video stage before the A.G.C. system warms up and at other odd times.

The bonds which link these two systems, and which make servicing awhward at times. are the reference pulses which are derived from the line timebase stage, and which for manutacturing convenience can even be one and the same pulse.

The state of affairs can be better visualised by a stedy of Fig. I (b). where the composite video waveform (i) is shown in register with the idealised wavelorms required to work the flywhel sync. (ii) and the A.G.C. (iii).
As far as the flywheel sync. is concerned the middle of the line flyback (m) should come halfway between the end of the picture on one line (e) and the beginning of the picture on the next (b). This centres the picture electrically in the raster and prevents foldover, and as can be seen in the drawing, the line $(\mathrm{m})$ is to the right of the centre of the sync. pulse itself. In actual practice slight variations from the ideal do occur, but they do not materially affect the action of the control.

The A.G.C. gating pulse (iii) has to be positioned in the centre of the back porch, and it can be seen that it also coincides with the end


Fig. 1 (a).-This is a hock diagram of a modern TV receiva
of the flyback line, which provides the clue as to why the two systems are sometimes fed with the same pulse and how faults in one can affect the other. Consider, for example, a fault in the fine timebase which causes the picture to move slighty to the right; the gating pulse (iii) for the A.C.C. will then occur at the end of the sync. pulse and


Fig. 1 (b).-The ideal waveforms to be expected in a receiver.
no voltage will be developed at the output of the gate. The set will then run at maximum gain and probably produce a negative picture. If the phase of the line oscillator was such that the picture shifted the other way, to the left. that is. the gating pulse would sample the picture instead of the back porch. and the voltage at the output of the gate would increase and thus black out the picture.
These two examples serve to illustrate the dependence of the A.G.C. on the line timebase,
and the two effects may be sometimes seen together when hum gets into the line oscillator, causing bent verticals. Where the picture is bent to the right it will brighten up. and where it bends to the left it will darken. giving the appearance of a hum bar. A variety of interesting laults can arise from this association, and in order to set about them logically it is usually desirable to disconnect the one whilst working on the other. This can be done at various points and these will come to light as the circuits are analysed.

## Discriminator Flywheel Sync. System

The circuit in Fig. 2 (a) represents the commonest type of fly wheel timebase. It is by no means "the original in this country, where the honours go to English Electric's Synchrophase. but is representative of the systems used by Bush. Ekco, Murphy. Pye. Philips, Philco and others. V1. the sync. separator. is a conventional pentode, cumulatively biased back to cut off the negative-going picture inpat and to amplify only the positive going sync. pulses. Its anode load is the transformer T1. which may be augmented by a resistor to develop a larger frame pulse. The secondary of this translormer is centre tapped and ficeds equal and oppositc pulses of about 20 volis amplitude to the rectifiers D1 and D2. The sense of these pulses is shown in the diagram. and it will be seen that the two diodes conduct at the same time. developing equal and opposite voltages across R1 and R2. and leaving their junction, from which the output is taken to V2. at zero.

The other ends of the two diodes are joined, and at this point is fed a sawtooth waveform (3) from the line oatput stage. This is an A.C. waveform and therefore balances about its middle
(Contmued on page 219)



BAND 3 TV CONVERTER $185 \mathrm{Mc} / \mathrm{s}-199 \mathrm{Mc} / \mathrm{s}$
Euitable London, Birmingham, Northern and Mk. 2 Model, as illugtraten!. Littest Cavcode circuit usitag FCOM, and JiFBg valves giving improved entrifivity ( 12 tlb,) oper standard circuits. luilt-ili
 61 im . 3 in. H4. 4 in . Simple and emsy to fit-only eaternis ylug-il cofnections. Wired, slimed sud fested resdy for use. Stata Channel Required. Guar. Bargain Offer-goud results or fulf refund, only £3.19.6. Carr $\&$ Pkg. 2 \%
Mr. 1 Model. Using a 8bas or EFBos. Full condructor's kit of l'urta fucluching drilled rliassis, Fia. $x$ tha, $x$ "sin., blueprint, valves and all componests, etc.. cxeludiag Power thupplies to moditied
 omplete, 20/- 1'. \& 1', 1/b. Bawd 1-13and 3 switch Ji1, 6/6.
CONVERTER ACCESSORLES. Mand 1.Hand ? rusn-over Thit, 7/6. Viar. Attenustors 6ub-3Gdh, 8/8. Bbiy Fit tern Filter, 8/6. Band 3 Aeriala-ontside lisgle dipole with 4 yds, coax., 13/9. " eleruent Volume Controls 80 cihme COAX Log. ratins, 10,000 ohrus
Megohns.
Long
STANARO
din. diam. phitillos. 11 zear gharantee. Minget Eliswan type.
Nio. Sv. Sh S. Sw, D.P. Sw. 3/- 4/+ 4/9
 bess switch, $3 /-$ each. Coax plugs, 1/2. Coar sockets, 1/-. Cunplers chaviem nam in

## 8d. yd.

SPECIAL - Serai-nir spiucd molrtbcut. strabded core Losse cut 50 or

9d. yd.
TWIN FEEDER, 80 ohms, 6d. 5d. : 300 ohms, $8 \mathrm{~d}, 5 \mathrm{~d}$. TWIN SCREEN FEEDER, 80 ohms. $1 / 3 \mathrm{yd}$. 50 OHM CABLE, 8d, per sil. hin. dia.


 CARBON WIRE WOUND


 1\% Hi-Stab. Win, 2/-WIRE-WOOND POTS. Jre-snt Min. IM, Type hourled Blotled Kuoh. A. $\mathrm{K}^{\prime}-\mathrm{eq} 50 \mathrm{~K}, 4 /-$ Dito Carbon Trick.
 3w. LAB, COLVERN, ete spindle. High dratle. All Values. 100 ohma to F1/ K., $5 / 6$; 100 K., $6 / 6$. W/W EXT. SPEAKER pitt 5 . to 3 Heg., $3 /$. CONTROL $10 \Omega, 3 /-$ SOLON SOLDERING IRONS ( $200-200 \%$, or $230 / 50$
 Perce Comprehorivize stock of Erares avaitable SPEAKER FRET,-Evpanded Bronze ancdisei raeta! $8 \times 8 \mathrm{in}, 2 / 3 ; 12 \times 8 \mathrm{in} ., 3 / \% ; 12 \times 10 \mathrm{jn}, 4 / 6$ 12x 10 ith.. $8 /-;-3 \times 12$ in.. $9,-$ e TYGAN FRET (Murphy fotteri) $12 \mathrm{iu} . \times 12 \mathrm{ib} . . \mathbf{2}^{2}-$

aLL WAVE RADIOGRAM CHASSIS 3 WAVEBANDS 3. $\mathrm{w}, 16 \mathrm{~m} .-50 \mathrm{~m}$.

LATEST MIDGET S. W, 16 m - -50 m.
$\mathrm{M} . \mathrm{W} .200 \mathrm{~m}-500$ ml .
In . BERA
 Brand new and glar. A.C.
ew. Short-Medium-Long-(Gram. I'U. socket. High 4 dust care coils. Latest circuit tochnique, detayeds AlC inkl mek. feedback. O/R \& watts. Chassi
 choice Aligned anul calibrated reiwly ior use. Senaitivity and quality at Low Cost.
Double waund maing trans. BARGAIN $9 \frac{1}{9}$ gits.
 7 Valve De Lure push-pull Elal version, output with H/luty trans. £12.10.0. Cart wat

## RECORD Player bargains

SINGLE PLAYERS.-S ED, BSR (TN9), 92/8
 £7.10.0. Carr. \& ins., उ/fi.
AUTO CHANGERS. - 4 gr. HSR (UAR) £8.15.0. ${ }^{-1} \mathrm{sp}$. COLLARO, $99 / 15 /$ \& $4 \rho$ GARRARD, 9! Kns. Carr, is ins., $4 / 6$. Alt above modela | Brand New and Gatest style |'weight Xtal. I'U. with furnoves head intul thin sapphire stytii. SPECIAL OFFER.-GARRARD 6 . 5 . hatters operated single 13 r.p.m. Remorl player with portalle ue PU. lieal und portable te
£5. 1


RECORD Player cabinet3
Contenmorary biyte rexine coveret cabinet in mottled rel with eream interior. Size $13 t$ is $184 \times$ at 8 in., fitte: with all aecersories, including speaker buttle hoary anit plastic fret. Space arainalio for al record player mounting board If 3 1sin. Cut mownt ing buards avablathe
Cabiant Price, £3.3.0. Carr. and in. q/ac.
2 Valve Ampluper (10 it aboriz cabibinet) midern eircnit with, ELS. 1 ontput, rewly build. yit. 6in. ppeaker atnd
carr. and ins, 26.
WEARITE " $\mathbf{P}$ " TYPE COLLS.-All ranges 1 to 7. 2/B eis. Osmor Q meries noily. Biug luntad. All ritrged


I.F. TRANSFORMER-465 kc/s.

Bramd thew ex.matmiacturer"s milgei I.F.T. size 23 in. $x$ in. Y fir1, Nust eute turning. Litz

CONDENSERS. Mica or E. Mica. All pref, valueg. 3 pi to 680 pf . 6 d . en. Ceramic 1 spes, 8.2 pt to pi., 9d. each. Tubalars, 400 F., Munts and T.C.C .0005 . . $0101, .005, .01$ athil 1. 350 v., 9d. .02, . $\sqrt{4}$ I/Fuvv. Hunts, TCC. 1'-. 25 IIunts. 1/6. Funts 1/9. 1, 1, 5011 v, T.C.C. (Risnplex), 3,6. .001 6 k T.C.C.,5/6. . $001 \underline{2} 0 \mathrm{kV}$. T.C.C., $9 / 8$.

SLLVER MICA CONDENSERS-
 $1 \% 1.5 \mathrm{pf}$. to $500 \mathrm{pff}$.1.9 . $515 \mathrm{pf}$. to $0,000 \mathrm{pf}$., 2:-
 Gooduans, 18,6; birt. R.A., 17/6; bin. Celeation $18 / 6$ : $\ddagger$ x 4 cournink, $18 / 8$ : 8in. E*ac, 20,-
JASON F.M. TUNER UNIT ( 87 me; B ] 10 J nc's). As hescribel in Jistio Constructor. Desigher Approved k"it of farts to huild this modern highls successfal unil, drilled chassis and superior 1 ppe Iluminated glas diab, coils, cans and all quatit componerits etc., for Mily 5 gas., bost free. Bet ol theris Miniale Vill fill Thubrated hamhoon with full detaila, $2=$ post frec. 2-DAY ALIGNMENT SERVICE NOW AVAIUABLE. $\underset{\text { NOWED }}{\text { NEW }} \boldsymbol{V}$ ATE GUARANTEED $\begin{array}{llll}\text { BOXED } \\ 1 \text { Ri, } 1 \text { T } 47 / 8 & \text { DAF } 96 & \text { g/- ECL } 80 & 10 / B \text { JCL } 33 \\ 12 / 8\end{array}$







 $7 \mathrm{Y} \ddagger \quad 8 / \mathrm{B}$ HCUSL 10/8 PCFH2 10, BUY41 8 SPECIAL PRICE PER SET
 IKYm, DFOF, DAF96, DH96



## ELECTROLYTICS ALL TYPES NEW STOCX

Tubalar Wire Ends Can. Types, Clips 3d. ea $2.5 / 25$ v. 50/19 r. $1 / 9$ 8/450 7 . $\quad 2 / 6$
 $8 / 4.0$ अ. B.F.C. $8 / 3 \quad 16+10 / 450$ V.T.C.C. 5
 $8+8516 v$, 以uh, $4 / 6 \quad 32+32 / 275$ v. Huatg $4 / 8$


 32/010 v. lub. $5 /-141+20025$
 TRANSISTOR B.1s.C. $5 / 6$ 2,000 thil. 1 mit., 8 miti. 6 wi, $3 / 6$. 6 mfl., $10 \mathrm{mid} ., 16 \mathrm{mfd}$ צ., 3 8. $3 \%$ mfin, it vi. 3/6. SENTERCEL RECTIFIERS. E.H.T. TYPE FLYBACK VOLTAGES.--K3/25 KV., 5/-: K3/40
 MAINS TYPES.-KMi 1थS V.. 60 mA.. $4 / 9$ : JM3
 RM/ 250 V. 250 mA., 16/-; RMAB lyDe 270 LLA
MAINS TRANSFORMERS.-Mibde in our own
 TYPE Impregnaterl. RADIO AND AMPLIFIER rect. 6.3 v. 2.5 , me' Itra., 22/b, etc., C.R.T. HTR ISOLATION TYPE-LOw leakage with or withont
 Ditto with mains frimarien 200,250 v., $12 / 8$, SPECIAL TRANS,- Wound to your requirements

## TRANSISTORS

Mfr's. Eurplus I'N Jupetion tone. Audio Trpe, 800 Vic'e, Eng M.w, 9 . R.F. and L.O. Wixer Type. 2.5 Mu, 19/6 Transistor Components.-Midyet I.k'. transf :310 kc/s. 5/- i Ferrite Slab, Aerial (tual ribnge)
 I'uli output trensf. 8
M/Coil Farpiece. Hin, diatri, 150 ohm, 49


Listed above are only a few items from our very larre stock. Sond 3d. stamp today for Complete Bargain stock.
List.

TRANSFORMER AND COIL/WINDING CAPACITY
AVAILABLE FOR PROTOTYPES AND SMALI RUNS
OPEN ALL DAY SAT


## COMMERCIAL TV

DON'T GIVE UP BEFORE YOU HAVE TRIED OUR BAND III PRE-AMP


Separate coaxial inputs for Band I and III Aerial Downleads. No changing of Aerial leads. No Diplexor required. Attractive black crackle finished case fitted with nonscratch rubber feet. Easily installed-just plug in mains and aerial leads.
A sensitive unit complete with built-in power supply specially designed for use in ultra-fringe areas. High signal to noise ratio. Will produce excellent results in localities where the signal is normally unusable.
Dimensions 6 in. $\times 4 \mathrm{in}, \times 2 \mathrm{in}$. Will fit inside most receiver cabinets. $200-50 \mathrm{v}$. A.C.

PRICE 66.6.8. C.W.O. OR C.O.D. (Fly Leâd $3 / 6$ extra.)

## "ATRTTSTON ${ }^{\text {M }}$

(Electronic Equipment Manufacturers) 14 Boulton Road, SOUTHSEA

## BAND III CONVERTOR for ANY SET in ANY AREA

This unit has been widely used since I.T.A. Transmissions began to convert all types of sets, Superhec and T.R.F., to receive on Band 'tII.

Unlike many other convertors this unit is small enough to be fitted inside your cabinet, enabling the job to appear finished and perfectly safe for alt to use.

The wiring is simple to follow, and alignment is not difficult. $\star$ IT will convert any set, any age, T.R.F. or Superhet.
$\star$ IT includes scation switching.
$\star$ IT provides preset contrast balancing.
$\star$ IT uses only one aerial input for both bands

* IT provides manual tuning on Band III.
$\star$ IT is cotally screened.
$\star$ IT completely rejects unwanted signals.
$\star$ IT requires no additional power supply where either 6.3 v . or .3 amp. heater line is available.
CONVERTOR wired and aligned with fitting
instructions ... ... ... ... ... $\leq 3106$ KIT complete in every detail, less knobs ... $\quad . .$. KNOBS each ...
CIRCUIT and instructions in detail (free with kir)
KITS made up by customers checked and aligned.
including post
126
When ordering please state present B.B.C. Station and I.T.A. Orders over $\mathbf{2} 2$ post free. C. \&. G. KITS

285, LOWER ADDISCOMBE ROAD, ADDISCOMBE, CROYDON, SURREY

Phone: ADDiscombe 5262
as scen in oscillogram (3). D2 conducts for the portion of the wavetorm above the line and DI for the portion below the line, and although RI and R2 are charged up on alternate half cyeles the voltage at their junction over a period of time averages zero.

Nou provided that the sync. pulses are fed in at the same tince as the sawtooth waveform passes across the zero line the voltage at the junction of RI and R2 will still be zero. Such a moment occurs halfway through the flyback period and as we saw in Fig. 1 (b) this is just when we want it to be. If the svnc. pulses arrive at that instant the line oscillator is running at the right speed and all is well.

What if the line oscillator tries to go fast? The nybach period will have passed by the time the wo balanced sync. pulses get to the diodes and


Fig. 2 (b).-Waveforms out of syme and locked.
the sawtooth waveform will be causing D2 to conduct heavily and at the same time lift the cathode of DI positive, cutting it well off. Thus the negative going sync. pulse to D2 adds itself to the curient passing through the diode and makes the charge at the bottom end of R2 more positive. (If you find this confusing, remember that a negative voltage applied to the cathode of a diode causes conduction just as much as a positive one applied at the anode.)

At DI conditions are rather different; the diode is biased beyond cut-ofl by the positive pulse at its cathode, and because the amplitude of the positive sync. pulse is less in value it cannot overcome this bias and DI remains cut off. So the voltage at the top end of RI becomes less negative than before.

It follows from this that the voltage at their junction-which hitherto was zero-will now be positive by an amount ecpual to half the voltage at the bottom end of R2, and will ultimately be used to control the line speed.

The reverse happens if the timebase runs slow. In this instance the sync. pulse arrives betore the flyback period, and D1 will be approaching the peak of its conduction. Thus the positive pulse tapplied to D1 anode will cause the diode to concluct all the more and build up a greater negative charge at the top of K1. DI will this time be
cut ofl and the negative syace pulse, being of less amplitude than the cut-of voltage is ineffective. So the bottom of $R 2$ remains at zero and the junction voltage is now negative by an amount equal to half the voltage at the top of R1.

We now have available a control voltage which is positive when the timebase runs fast and negative when the timebase runs slow. It is still responsive to random noise and interference. but can easily be smoothed out to present a reasonably clean D.C. This is done by C 3, R4 and C4. with R3 thrown in to provide a lixed delay time. and this section corresponds to the box in Fig. I marked "Time Constant.

## Horizontal Hold Control

We jump ahead a bit to the blocking oscillator V. which generates the line scan, and which is conventional except for the horizontal hold control. It is common practice to use a potentioneter across the H.T. supply to perform this function, the higher the voltage on the slider the faster the timebase and vice versa. This enables R9 to be a high stability type, for it is the value of this resistor and $C 5$ which determines the repetition frequency of the scanning voltage. In out case R 4 is made variable, and the potential divider across the H.T. supply comprises 3 fived resistors, R6, R7. R8. It the voltage at the junction of R7, R8 was to rise, the timebase would run faster. and this could be done by applying the D.C. which is avalable at the end of R4. but unfortunately it is of the wrong polarity. V2, the D.C. amplifier, is therefore interposed between the two, and this not only inverts the sense of the control voltage, but amplities it as well, thus increasing the "pull-in" range. K6 not only happens to be the top resistor in the blocking oscillator potential divider, but is also the anode load for V2.

Variations on the above circuit are manifold. Pye and Bush use a multivibrator line oscillator and dispense with the D.C. amplifier, and although this would be expected to reduce the pull-in range. it does not in practice appear to do so. This is partly because of the greater stability of the multivibrator as a sawtooth oscillator and partly due to greater control voltages being made available from the discriminator.

In some instances the sense of the control voltage is reversed by inverting the applied sautooth, and it is instructive to permute the possible combinations available by inverting the sync. pulses, reversing the sense of the diodes, applying the sawtooth at the other side of them.

## Fault-finding

Faults in the flywheel system are usually difficult to locate because they seldom stop the set from working altogether. Drift in the oscillator will not show itself until it exceeds the pullout range of the discriminator or until the transmission breaks momentarily. when sync. is lost and the horizontal hold has to be reset. Unfortunately similar symptoms can arise if the pull-in range is low due to a fault in the control device or discriminator. To settle which half of the circuit is at fault, the line oscillator can be made free running by disconnecting the "flywhecl."
$\Lambda$ suitable way in Fig. 2 (a) is to ground the grid of V2. or disconnect its anode from the junction of R6, R7.

In the case of multivibrators, or where no D.C. amplifier is used it is better to disconnect right back at the discriminator at the points marked $X$. In strong signal areas where conventional sync. is quite adequate this can then be fitted and, if desired. left permanently in the circuit. In Fig. 2 (a) this would be done by connecting a 5 pF condenser between the anode of $V 1$ and the anode of V3. A similar link can be fitted from the same point to other ypes of timebase. In the case of multivibrators it is best to try it on both anodes and grids in turn, as although the sync. pulse will lock the oscillator almost anywhere, it can, if applied at the wrong electrode, give


Fig. 3. A pentode coincidence detector. The screen is tied down to the line output valve cathode.
rise to false lock when the set warms up (i.e., blanking pulse appears down the centre of tube).

The time constant section can give rise to short pull-in or erratic behaviour. C3 is usually in the order of $1.0 \mu \mathrm{~F}$ (paper) and is likely to leak, and although this will not have much effect in the circuic as shown, il its hottom end is returned 10 a positive potential, as in the $P y e$, it can cause intermittent oscillator drift.

If C 3 loses its capacity, ragged edges may result. or even "hunting," which is a continual overcorrection of the system and which produces oscillating verticals and a corrugated picture.

Bent verticals normally indicate mains hum in the timebase, and in Fig. 2 (a) will usually be piched up in the grid of $V_{2}$, perhaps on R4. A hint here is to reverse the polarity of the mains supply. If the verticals bend the other way the cause is due to mains; if they do not, the frame timebase should be suspected.

Trouble in the discriminator can be caused if the diodes have unequal emission. If this is the case, and the unbalance due to it is within the pull-in range of the system, it will be corrected automatically, but will result in the free-running speed of the oscillator being ollset from normal by an amount due to the voltage required to correct the discriminator's unbalance. The symp-
toms to the user are that the horizontal hold control is over to one end and the picture often warms up out of sync. This sort of trouble is more likely to crop up where semi-conductors are used, and fortunately these can be checled by an ohms test both ways round.

## The Coincidence Detector (Fig. 3)

This circuit, which is about the simplest type of flywheel sync., is centred around a valve. usually a pentode, which is biased beyond cut-off on two electrodes, in our case on the control and screen grids. Positive going sync. pulses are fed to the grid at an amplitude suflicient to lift it above cut-off on the peaks and positive line flyback pulses are fed to the screen, which in turn raise it to sufficient a potential to enable the valve to conduct.

It can be seen that the valve will only pass current when the grid pulses and screen pulses arrive at the same time, and that the amount of current passed will be greatest when they overlap exactly. At this point the anode voltage will be at its lowest and it is this " dip" which is used to control the line timebase speed. A disadvantage of this system is that if the timebase runs either fast or slow it will cause the anode voltage to rise. and so the pull-in only works one way. For this reason the free-running speed of the timebase is offset from the correct one. usually on the high side. so that the circuit is held on lock when the pulses only partly coincide. By this means the device can pult-in both ways. Another. disadvantage is that the pull-in range is small compared with the previous system. and this can lead to the hold control requiring resetting every time the receiver is switched on. This can be overcome by designing the line oscillator to warm up slouly and pass through 10,125 c.p.s. on its way to its slightly oflset free ruming speed. Provided it does so slower than the time constant circuits can smooth out its effect the coineidence detector will " latch on" to the timebase and hold its speed sleady.
(To be continued.)

## PRACTICAL WIRELESS DEC. ISSUE NOW ON SALE PRICE 1s. 3d.

A small push-pull 3 -stage Gramophone Amplifier for A.C. mains operation is the main constructional fcature in the December issue of our companion paper PRACTICAL WIRELESS w/hich is now on sale.

There is also an article on making a Coil and Transformer winder which is invaluable to the kecn experimenter.

The Applications of the OCP71 deals with the Phototransistor, whilst the article which forms the sulject of this month's stage in the Beginner's Constructional Course deals with the addition of a transistor and of a Long Wave מinding for the coils.

Other articles deal with the Tape Recorder Dictation Syitch, Transistors in Practice, a Transistorised Pulsc Gencrator, Component Faults and Testing, Microphones and further notes on the conversion of the Comnand Receiver. The usual features on Transmission, Programme Notes, etc., complete the issue.
 correct heater voltages and its emission cheched, any leakage between cathode and heates, cathode and anode grid and anode being located. All these tests can be carried out without removing the tube or having the set on and, of course, this can be done at a customers home. Another advantage is that new tubes can be tested without

tating them out of their cartons and thus time is saved. for it has been known for new tubes to be faulty and the fault only becomes apparent when it has been fitted to a set. The operation of the tester is quite simple and consists of applying a low H.T. voltage between cathode and grid and cheching the reading on a meter. The right heater roltage is selected by means of a switch and the test is selected by means of another switeh. Adaptors are used to suit the particular tube to be lested and thus any make of tube can be lested. The reason for using a low H.T. voltage is to avoid breaking down the insulation between electrodes and thus creating faults. The tester can also be used to rejusenate old tubes by applying the H.T. between the cathode and grid and gradually increasing the heater voltage by means of the variable resistor and heater switch until the emission current rises as tar as possible.

## Construction

First mark off on a sheet of aluminium as in Fig. 6 and cut ofl the shaded portions, then bend up the $\frac{1}{2}$ in. sides. Note that the one edge has no $\frac{1}{2}$ in. side and this is the bottom of the front panel. Next mark ofl as in Fig. 2 and drill and file holes as shown, the
hole marked A is first drilled $\frac{3}{8} \mathrm{in}$. and then filed larger to suit the size of toggle switch used. The hole marked B may be $\frac{3}{6} \mathrm{in}$. or $\frac{1}{4} \mathrm{in}$. according to the type of variable resistor used. Now mark off and cut out the chassis, as Fig. 3 , and bend up the $\frac{1}{4}$ in sides and mark out and drill as Fig. 4. The front panel and chassis may now be placed together, and by marking through the centre $\frac{1}{8}$ in. hole and drilling through the chassis the panel can be secured temporarily with a 6BA screw whilst the other two holes are then drilled and secured with 6BA screws. Now fit the mains transformer, using 4BA screws, then the rectifier, twin fuseholder, 3 switches, resistor and meter. In fitting the meter place it in the hole and get it level and then mark through the holes on to the panel and drill $\frac{1}{8}$ in. holes securing with 6BA screws. Make up the bracket as in Fig. 5 and bend the two ends at right angles so that it appears as in Fig. 7. It will be seen that one end of the


Fig. 8.-The front panel details.
bracket is secured to a bracket on the mains transformer whilst the other end is fastened to the front panel with 4BA serews. The object of this bracket is first to strengthen the support of the panel and second to provide a position for a dial bulb bracket. The cover can now be made as Fig. 6, bending the two 7in. sides first, then the $\frac{1}{2}$ in. sides and finally the remaining 7 in . side. Now drill holes marked A in Fig. 6 and secure with 6 BA screws. Next mount the valveholder by means of two suitable brackets, as Fig. 10 in position as Fig. 7. Place cover in position and mark and drill a 3/32in. hole in the centre of the


Fig. 3.-Details of the top of chassis.
top and secure with a self tapping screw, 6BA. Then get cover to fit properly and drill one hole at a time, securing with a self tap screw each time.


Fig. 2.-Drilling details for the panel.
The holes in the bottom of the cover where they go through the chassis are secured with-6BA screws. Finally remove cover and mark off position of a suitable hole to allow access to the valveholder and cut out the hole.

## Wiring

Wire up the heaters, first using 20 s.w.g. T.C. wire and cover with sleeving. It may happen that the mains transformer heater windings are phased differently from that shown in Fig. 1: if so. then the circuit will be as Fig. 11. A check should be


Fig. 7.-The layout.
made with an A.C. voltmeter across the two windings in series and if the voltage is about 13 volts then the two windings are phased correctly. If, on the other hand, the voltage is very low, then they are out of phase and the connections will need to be altered. Now complete the rest of the wiring, taking note of the correct polarity on the rectifiers and on the meter. The adaptors are made up, using an old valve 5 -pin type with the glass envelope removed and the wires unsoldered from the pins and $7 / 33$ coloured flex used to make a lead 3 ft . long. Three adaptors are sufficient to cover most C.R.T.s. one with a

B12 valveholder. the other two a Mazda and an International octal valveholder. These are wired up as in Fig. 9.


Fig. 11.-Alternative switch circuit.

## Testing

Before testing C.R.T.s check all the voltages at the adaptors with difterent settings of the suitches and R1. The voltages should be as follows: H.T. volts off load between cathode and grid 90 volts. and on load 15 volts: Н.Т. current off load is $3.5 \mathrm{~m} \Lambda$ : the heater voltage on 12.6 position of Sl off load will be about 14 volts: on load voltage on 6.3 v . range with resistor RI at max volts is 6.5 v . and with resistor at min. volts is 4.7 .5 v .: on the 8 volt range resistor at max volts is 8.4 v . and at min. volts at 6.5 v . Having made sure that all the voltages and adaptors are correct a C.R.T. may now be tested. First put $S 2$ to off, next


Fig. 4.-Drilling details for the chassis.
select the correct heater voltage to suit the tube to be tested, plug on the adaptor to suit the tube after first removing its holder. Now plug in to the mains and allow the heater to warm up. and then with $S 3$ in position 1 switch on $S 2$ and read off the value on the meter. This should be around 15 mA for a new tube and will be below 5 mA for a tube that has lost its emission, whilst for a complete loss of emission the meter will read zero. Having read the emission the switch S3 is put to position 2 and the cathode/heater leakage will be shown if the meter reads at all. A good tube will have a zero reading. Similarly,
on position. 3 the cathode/A1 leakage is checked. and on this it is quite in order for the meter to read slightly, providing it does not read more than the first division of the meter. Finally, on position 4 the grid/Al leakage is read. and this should be zero for a good tube.

## Rejuvenation

This is carried out by first running the tube at its correct heater voltage and then putting RI to min . volts position (i.e., with all resistance in circuit) and switching $S i$ to the next highest heater range and gradually increasing the heater voltage by means of R 1 until the meter reading will not increase any more or until it reads 15 mA . To take an evample. say a 6.3v. C.R.T. First switch S1 to 6.3 v . and advance R1 to max. volts and allow C.R.T. to heat up. then put R1 to min. volts and switch Si to 8 v , , allow C.R.T. to heat


A view of the layout and wiring.
up and watch meter until current will not rise any more. Then advance RI until current rises again. leave until current stops rising. and then increase RI again and continue like this until


Fig. 9.-Tube base connections.
current ceases or meter reaches 15 mA . Not all tubes will respond to this treatment, but a good proportion will have their useful life extended.

CRM92A. CRMI2I, CRMI2IA. CRMI2IR. CRMI23 and CRMISf all call for the Mazda Octal base.

## Tube Data

It is a good idea to type out a list of the tubes covered by the adaptors and to give their heater voltages. and then to glue this to the top cover of the tester. This will avoid the danger of putting the wrong voltage on at C. K.T. when cheching at customer's house, and no data is available normally.

An examination of the various tube makers catalogues will show that various tubes come under the different categories of bases. For instance, the majority of 6.3 volt lubes. with the exception of certain G.E.C. models, have the duodecal base and will therefore call for the B12A adaptor. The C.E.C. tubes 6501, 6502. 6504. $6504 \mathrm{~A} \quad 6506 \mathrm{~A} .6703 \mathrm{~A} .6705 \mathrm{~A}$. $6802 \mathrm{~A}, \quad 6801 \mathrm{~A} \quad 7101 \mathrm{~A}$ and 6102 A . although having 6.3 wolt heaters. utilise the International Octal base. The Ferranti $8:$ tubes. types T1271U. T12/81U and $\mathrm{T} 12 / 82 \mathrm{U}$ also require the Octal base.

The Mazda tubes C9A, C12A. CRM91, CRM9?


Fis. 5.-Bracket for buls.


Tig. 10.-Valichelder brachices (two reeded)


A front view of the panel.

## Radio-telegraph Reception

$\mathrm{I}^{\mathrm{N}}$ telecommunications circles it is well known that errors can occur in messages transmitted by radio-telegraphy. Consequently, some messages, or parts of them. have to be re-transmitted so that the errors can be eliminated before the message is delivered.

In a new technique, developed by the G.P.O., frequency-shift heying is still used, but whereas in conventional equipment used for the reception of such signals a limiter and discriminator are employed. the new method makes use of the fact that all the signalling intelligence is impressed both on the marking


Fig. 6.-Details of the chassis cover. and spacing frequencies. In other words the information in the mark-channel duplicates that in the space-channel. Consequently, if all the available intelligence is derived independently from each frequency and then combined, a double-diversity arrangement is obtained. Frequency selective fading conditions of ten cause trouble on R.-T. circuits. but using the new arrangement they can be turned to advan-tage-if the signal on the marking frequency has faded. there is a second chance of obtaining the required information from the spacing frequency.

# SIMPLIFIED <br> TV SERVICING 

3.-SETS USING R.F. OSCILLATORS FOR EHT<br>(Continued from page 160 Novem')er issue?)

ALTHOUGH the general practice , nowadays is to provide EHT by the line flyback method: there are still many sets. of about the time T.V. broadcasting restarted, which use the R.F. oscillator method for obtaining EHT for the picture tube. In present-day sets it will only be found in projection models where about 25 Kv is required on the tube. Fig. 4 gives a circuit showing a typical R.F. oscillator. Fig. 10 shows a line output stage used with it. It will be noticed that with this type of set the failure of the line output stage does not stop the EHT so that it is necessary in a set where the line fails to keep the brilliance control well down: otherwise damage will be caused to the C.R.T. In the larger projection sets this is covered by electronic circuits which disconnect the EHT from the C.R.T. should either the line or frame circuits fail. This is very necessary in these sets owing to the very high EHT provided. The oscillation frequency varies according to make and will be between $85 \mathrm{Kc} / \mathrm{s}$ and $300 \mathrm{Kc} / \mathrm{s}$. The oscillator valve is generally a beam tetrode. Troubles that can arise here are mostly cither faulty valves or shorting or arcing across the coil. Replacements are about the only solution.

Sets With EHT Supplied from Mains Transformer
This type of set. which is the earliest type of television set of which there are still some in use. used a mains transformer for supplying EHT. The C.R.T.s were nearly all electrostatic and a circuit is given in Fig. 11. The main

trouble on this section of these sets was generally the EHT secondary of the transformer going O.C. or shorting to the core. Valve trouble was not so common. As replacement transformers ar: very difficult to obtain it is best, if the job is required to be done. to have them rewound. The 1/ F EHT smoothing condensers should always be checked. Be careful to short them out before


Fig. 12.-Simple sync separator.
checking. They can retain a very hefty charge for quite a time.

Set With Synchronising Faults
The sync separator stage is between the video system and the horizontal and vertical timebases. Any fault in this section will nearly always cause both the frame and line timebases to fall out of


Fig. 10.-A line output stage for use with Fig. 9.
sync. The fault will be shown as a continnally rolling picture (frame) or a torn-up picture (line). Sometimes it will be found that one can lock the picture but it will soon fall out of sync again. With only a meter to assist you here it is difticult to trace a fault. but after valve checking the following should be carried out. Fig. 12 shows a simple sync separator. Fig. 13 shows another

If the video amplifier circuit becomes completely inoperative, there will. of course be no picture on the screen. but it there are any faults in this stage they will be indicated by the picture shown. The following faults may occur. A faulty low frequency network, a faulty high frequency network or incorrect voltages on the valve electrodes. Should the first occur, a "smeary"


Fig. 11.-An A.C. mains-fed EHT supply. picture will be noticed. In this case check coupling and bypass condensers, grid resistors. It could also be due to overloading the video amplitier. Check the grid leak. The second fault will appear as ghost lines after any sharply defined line and especially noticeable on test card. Check the peaking coils in anocle circuit of video amplifier and especiatly any resistors paralleled across them.

Sets With Twostage Video Amplifiers
Many of present-day seis are now using two-stage video amplifiers. Some of these utilise the cathode follower technique. There are no more troubles to be expected here than from an ordinary video amplifier stage. If necessary the
type. Condensers and resistors from the sync. separator to the line and frame circuits should be carefully checked. In the case of condensers, replacement is the best method, but be careful to use the correct value, as given in the service sheet. Do not forget to take voltages on the sync separator valve electrodes. It should be realised that faulty synchronisation of frame and line timebases does not necessarily mean that the trouble lies in the sync stage. Chech the timebase circuits first. If. having checked the timebase circuits and the sync stage, trouble is still apparent, then it can possibly be due to compression or limiting of the sync. pulses. This can be caused by a fault in the set anywhere in front of the sync. stage. A faulty valve, a defective A.G.C. system, too strong a signal or any change in component values can be responsible.

## Sets With Faulty or Poor

## Picture

Faults of this description can be in many cases due to the video amplifier circuit. Fig. 14 gives a typical video amplifier stage.


Fig. 13.-_Another type of syne separator.
(To be continued)


Fis. 14.-A iypical video output stage.

BEABEXXEXEXEXEXEXEX Uses high-efficiency coils, covers long and medlum wavebands and fits into the neat white or brown bakelite cabinet-limited quantity only. All the parts, including cabinet, valves, in fact everything, 84.10.0, plus 4.6 post $\&$ ins. Constructional data free with the parts, or avallable separately 16. dON'T BE CAUGHT LIKE THIS


CAR STARTER CHARGER KIT
All parts to build 6- and 12-volt charger which can be connected to a "fat," battery and will enable the car to be started instantly. Kit comprising the following
Mains transformer
5-amp. rectifier
г................ 226

Regulator Stud Sw
Resistance Wire
Resistance Formet
Malas on'off Switrh.
0-5 amp. Moving Coil Meter. Construction Data. or if bought all tomether price is 52 '6, plus $3^{\prime} 6$ post and packing.

$$
\begin{aligned}
& \text { Waterpronf 1". .a. coverad } \\
& \text { Heating liloment, } 16 \text { ohm } \\
& \text { ber foot. 1/- mer vart }
\end{aligned}
$$

BUILD THIS IN AN EVENING

Undoubtedily the most up-to-date televisol for the home constructor. You can build it in an evening and the set whin finished wil be equal to a factory made equivalent. What other constructor 1.y. has all these features?

* No technical knowledse require:l
* All ministure valves.
* Metal rectifier
* Turret Tuner.
* 12-channel circuitry.
* Multi-vibrator lime bases.
* Ferruxcube, E.H.T. and scan coils
-3438 Mcis l.F
* Sujtable for any modern 12. 14 or 17 tube.
The building cost (less tube) is only $£ 29.10 .0$. plus 10 :rarriage and insurance. or $\$ 16$ deposit \& 12 monthly payments of $27^{\prime}-$ All parts guaranteed 12 months. Full Information and data, prise $3^{/ 6} 6$.


## THIS MONTH'S SNIP

TAPE: DN'K.-Made by the famous Truvox Company. This contains exactly the same is diferent it also tates the stereophonic head is difent. an silent friction ditve aliminating wow and futter Puch-button controls electrically and mechanically interlocked patented electric rype pushbutton controlled brake. Tape loading on the drop-in principled accommodation for reels of $7^{*}$ diameter. Trackingsense to Britishand American standards Playing times: up to 3 hours with L.P. Tape or' 2 hours with Stindard Tapes. Two urarks side by side with safety gap. Positive Ararks sime adjustment of RecordPlayer head. High 1 mpedance Heads. Overall size $141^{-} \mathrm{x} 124^{\circ}$ High 1 mpedance Heads. Overall size $14 f$ X $x$. 12 approx. 120 only of these fine decks offered at ninn-repeatable price of 817.10 .0 or 23.10 .0 down and eight monthly payments of e2. Non-callers add 10/- carrjage and insurance.

## MULLARD AMPLIFIER " 510 "

YOURS FOR 30.' DOWN


## MULLARD PRE-AMPLIFIER

For extragain and fielity this unit gives ideal results. It is arranged to plug into the amplifier and has two switches to provide compensation of radio. microphone. L.P., and 78 records. Complete with valve, made up ready to work, s4. Post and insurance $3 / 6$,
or $10 /$ deposit and eight monthly payments of $10 /-$.

## OUR 19/6 COLUMN



THE SKYSEARCHER
This is a 2 -valve plus-metal receiver set useful as an educational set lon beginners. also makes a fine second set for the bedroonn. Workshop. etc. All parts, less cabinet, chassis and speaker. 19/6. post and ins. 26. separately $1 / 6$ pardur separately 1.6 . repion also avaliable at the sam price.
ALL-MAINS AMPLIFIER


Powerif three-valve Main amplifier ideal for dances parties etc. Complete less chassis, cabinet and speaker (available if required)data $1 / 6$ (free with parts). Price 19.6, plus $2 / 6$ post and insurance.


It is a hall light as well as a double chime and you can make it in a couple of evenings for the total cost of only $19: 6$ including instructions, post 2--data avallable separately price 2/*.
Simplex Transistor Kit
 Makes Ideal bedroom radio. uses one transistor and one ervistal diode. Complete less case 19'6. case 5 $1 / 6$.
A.C./D.C. Multimeter Kit Measures A.C./D.C volts and ohms.All the essential parts frcluding metal case, 2in. Moving coil meter, selected resistors. wire for shunts, range sele etor. switches, call-
brated scale brated scale
and full in-
structions. structions.
ptice $19 / 6$ plus
19 post and insurance.

## ELECTRONIC PRECISION EQUIPMENT, LTD.

Post orders should be addressed to E.P.E., Ltd., Dept. 5, 66, Grove Road, Eistbourne,
266. Inndon Itoat, (rosdon. Phone: CRO 6558 Half day. Wednesday

42-46. Wimalonill $11 i l l$.
Ruivib. Widdtx.
Phone : RUISI,IP5780
Half day, Wednesday.

159-3. Flea sitreet.
Phone :FLEET 2833
Half day. Saturday.
29. Stroud Green Road.

Phone: ARChway 1049
Phone Hali day, Thursday.


| 0\％4 | $5 / 6$ | 6A下： |  | 6F6at | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 A \％ | 36 | 6AG7 | 9／5 | 6KうG | 5 － |
| 1A5GT | 6／－ | 6.115 | $6 / 6$ | 6K\％界 | 7 |
| 1 A 7 | 126 | liamb | $9 /-$ | 6K丁M | 6.9 |
| 103 | 8,6 | 6AQ： | 76 | BK8 ${ }^{\text {b }}$ | 9 － |
| 1H5CT | $10 \cdot 6$ | 6AT／ | $8 / 6$ | 6Kscit | $8 / 6$ |
| 1 L .4 | 6.6 | 6al＇g | $10 / 6$ | 161．46 | 9 |
| 11， 15 | $3 / 8$ | fibl | 51－ | 6 L 7 | 86 |
| 1，N゙5 | 10，6 | （iBRE | 4／－ | 61,18 | 11 ＇6 |
| 1 R 5 | 81－ | ［iBAG | $7 / 6$ | $6{ }^{657}$ | $\bigcirc$ |
| 181 | 10.6 | 6 BE | 8／． | 6P95 | 136 |
| 19．） | 7，8 | 612J6 | 8／－ | 6076T | 0／－ |
| 17： | 716 | $6 \mathrm{BR7}$ | 11／6 | 6＊A7cti | 8 |
| 2C2l | 216 | 6 BS 7 | 13－ | ${ }^{6897}$ | 7／6 |
| $\because \times 1$ | 4／8 | 6BW゙ら | $8 / 6$ | 6．317 | $0 \cdot$ |
| 8 A 4 | $7{ }^{\circ}$ | 6BW\％ | 10／－ |  | 8.6 |
| S 54 | $5 /-$ | 6 C 4 | $71-$ | 6NKT | 6：－ |
| SQ | 96 | GCJTGT | $8 / 6$ | 6inl 6 | 8 |
| 205 | $9 / 6$ | ${ }^{16}$ | $5 /-$ | 64 N 7 | 8 |
| 384 | 8.8 | 6СН6 | 7／6 | 6307 | 93 |
| 304 | $9 \%$ | （51）${ }^{\text {a }}$ | $5 /$. | 6U4CT | 14．－ |
| 4 DI | $3 /-$ | 6 Fl | 13／6 | 6 ${ }^{\text {a }}$ | 88 |
| 42 | $8 \%$ | ${ }_{6} \mathrm{~F} \mathrm{~F} \mathrm{FG}$ | $7 / 6$ | らUず产 | 8 8 |
| 万R4GY | 9／6 | 6FGM | 7／6 | 6U76 | 86 |
| SU3： | $8 /$ | $61 / 13$ | 14／－ | 6する 6 | 710 |
| 5 Y 34 | 8／． | 6F33 | 5／6 | 6Vfar | $7 / 6$ |
| 5YSGT | 8＇－ | GF15 | 14／－ | 6 X 4 | $7 / 6$ |
| 5\％4 | 10： | 606G | 4／6 | $6 \times 5 \mathrm{G}$ | 7／6 |
| $8 \mathrm{A7}$ | 13：－ | ${ }^{6} \mathrm{H} / 8$ | 2／8 | 6X5G＇T | $7{ }^{\prime} 8$ |
| 6489 | 10／． | － | $5 / 7$ | 6／30L？ | 12.6 |
| 6 AC 4 | 8／6 | tiJout | $5 / 6$ | 万15 | 8.6 |
| 6actit | $5 / 6$ | ${ }^{6}$ | 6／6 | － CO | 8 |
| 6AK．＇） | C／6 | 6J76 | 6／－ | 7H7 | $\boldsymbol{\theta}_{1}-$ |


 $\qquad$ Klaid 1





 OUR 1957／58 ILLUSTRATED CATALOGUE IS
AVAILABLE NOW．Send I／－in stamps foryour copy．


TERMS ：Cash with order or C．O．D．Postage and Packing charges extra，as follows：Orders value $10 /=$ add $1 /=: 20 /-$ add $1 / 6 \div 40 /-$ add $2 /-; \leq 5$ add $3 / \%$ unless otherwise stated． Minimum C．O．D．fee and postage $3 /-$－All single valves postage 6d．Personal shoppers Monday－Friday 9 a．m．to 5 p．m． Saturiays 9 a．m．to 1 p．m．

## ATPTHA＂wun WINTOUN STREET <br> LEEDS 7

## SA <br>  <br> IRVotrage



## MAINS FLUCTUATION OF 150－300 V

will have no observable effect on the performance of your TV set if this revolutionary new Auto－ matic A．C．Mains Regulator is fitted．At the same time，the complete elimination of surges witl greaty lengthen the life of all components， especially of tube and valves．
Price Ell．15．3．Write now for illustrated tech－ nical leaflet．giving full specifications．


MERCIA ENTERPRISES LTD． Godiva House．Allesley Old Road Coventry

## ARTHURS HAVE IT！

LARGE STOCKS OF VALVES and C．R．T．s： METERS，Avo，Advance，Taylor and Philips Service Pattern Generators．Oscilloscopes， Cossor and Philips．AMPLIFIERS，Leak，Trix \＆Quad．GRAM UNITS，Garrard \＆Collaro． LOUDSPEAKERS，Goodmans，Wharfedale，WB， Tannoy and leading makes．PICK－UPS and STYLI of most makes．TAPE RECORDERS， Grundig，Philips，Truvox，Playtime \＆Ferrograph．

## LATEST VALVE MANUALS

Mullard 10／6．Osram Revised 7／6，Brimar No． 7 6／． Philips meters，ask for Lists．
POST AND PACKING 9d．EACH． CASH WITH ORDER．

# Cirthurs 

FROPS：ARTHUR GRAY．LTD．
OUR ONLY ADDRESS：Gray House， 150－152 Charing Cross Road，London，W．C． 2 TEMpie Bar 5833／4 and 4765
telegrams．．－＂telegray．Westcent，lonroon CABLES－＂TELEGRAY．＂LONDON．


Television Receiving Licences

THE following statement shows the approximate number of Television Receiving Licences in force at the end of September, 1957, in respect of recciving stations situated within the various Postal Regions of England, Wales, Scotland and Northern Ireland.

| Region |  |  | To |
| :---: | :---: | :---: | :---: |
| London Postal .. | $\ldots$ | $\ldots$ | 1.516,535 |
| Home Counties |  |  | 889,325 |
| Midland |  | ... | 1,212,406 |
| North Eastern |  | ... | 1,170,335 |
| Norih Western... |  | ... | 1.048,311 |
| South Western. |  | ... | 548.611 |
| Wales and Border Coun | Counties |  | 415.574 |
| Total England and | Wales |  | 6.801 .097 |
| Scolland |  |  | 526.015 |
| Northern Ireland | ... |  | 71.073 |
| Grand Total |  |  |  |

Television Really Comes of Age $W^{\text {Hine }}$ definite figures will after we go to Press. it is now pretty certain that the number of combined sound and TVWireless licences now exceeds that for sound radio only.

In 1935 when the figure for sound receiving licences reached $7 \frac{1}{4}$ million-approximately the same as the number of licences for combined sound and television now issued-there was no licence for television. Introduced on June 1st. 1946. for the post-war opening of the service from Alexandra Palace. there were then only 1.343 TV licences.

In little over 11 years. however, users of both sound and television have caught up with sound-only enthusiasts. who took 13 years- 1922 to 1935-to reach the $7 \frac{1}{4}$ million figure.
Chillerton Down, Isle of Wight CHILLERTON DOWN. on the Station will of Wigerate on Channel
11. and the precise frequencies will be: vision $204.75 \mathrm{Mc} / \mathrm{s}$. sound $201.25 \mathrm{Mc} / \mathrm{s}$. Signals will be vertically polarised.

This station will serve an area roughly semi-circular in shape stretching along its base from Weymouth through Ventnor to Brighton and reaching to Newbury in the north. Lying in the service area will be Hampshire and the Isle of Wight. almost the whole of Dorset. West Sussex. the south-eastern part of Wiltshire and the southwestern part of Surrey. The Independent Television Authority hopes to bring the station into service next summer.
An approach road to the site is now under construstion and the Authority plans to begin work on the building in October.
I.T.A. in the West
FROM ber $\underset{2 n d}{\text { Sem- }}$ onwards low power test signals have been radiated from the site of the Independent Television Authority's new transmitting station at St. Hilary in G 1 a morganshire. The purpose of these test signals is to cinable viewers to have their scts adjusted and Channel 10 aerials fitted in time for the
reception of Independent Television programmes which are planned to start before Christmas. Lying in the area which will be served by St. Hilary when it is operating on full power will be the South of Pembrokeshire, the South of Carmarthenshire, Glamorganshire, Monmouthshire, the South of Gloucestershire. Somerset and the North of Devenshire.

Construction work on the permanent station is proceeding citremely rapidly. The mast has been completed and transmission equipment is now being installed.

The St. Hilary transmitting station will be the sixth to be opened by the Independent Telenision Authority and test transmission have commenced.


This picture of a J. Beam Aerials operative making aerials was exhibited at the exhibition of professional photographers recently.

Transmissions from Black Hill

$S$INCE the start of high power test transmissions from the 1.T.A.s Black Hill station, it has been found that in some localities outside the primary service area a strong horizontally polarised signal has been received. In consequence some dealers have been able to secure better pictures by mounting aerials horizontally instead of vertically.

The cause of this unforeseen
date originally announced as December 17th.

This delay is due to unforeseen technical defects in the acrial system which would lead to inferior reception in some areas so that the general technical quality of the service would not be good enough.

Hungary Makes O.B. TV Unit
IUUNGARY'S first outside broadcast television unit has been completed in the Postal


The producer and his staff watching a rehearsal for an advertising TV system which has been recently introduced
development is now being investigated and it is hoped that the trouble can soon be corrected in order that a uniform vertically polarised signal will be available throughout the service area.

In these circumstances dealers are strongly advised to proceed with their instaltation work in the normal way, mounting all aerials vertically, and deferring installation where the vertical signal is not at present sufficient for reasonable reception.

## I.T.A. Opening Delay

THE Independent Television Authority regrets to announce that the opening of its transmissions in South Wales and the West must be postponcel to a date now expected to be between the middle of January and the middle of Februars 1958, involving a delay of four to eight weeks in the opening

Research Institute. Plans were drawn up by 15 young engineers
to link it with studios in various parts of Budapesi. It can also be used for long-distance calls to the studios from outside of the capital.

## Peterborough and Orkney

 StationsNEW BBC television stations are to be built, with the approval of the PostmasterGeneral. near Peterborough and in Orkney. The Orkney station will in addition carry sound broadcasts on V.H.F.

The Peterborough station will serve about 11,000 people and the Orkney station 30,000 . No dates can yet be given for the completion of the stations.

## Delay at Black Hill

HIGH power test transmissions from the Black Hill (Central Scotland) transmitting station of the Independent Television Authority were delayed

Duc to weather conditions, difficulties occurred in making the final adjustments to the transmitting aerial.

Radio Show, 1958
$\int$ HE RADIO INDUSTRY COUNCIL announces that the 25th National Radio and Television Exhibition will be held at Earls Court. London, from Wednesday, August 27th, to Saturday, September 6th. with a preview on Tuesday, August $26 t 11$.
who experimented unti.l every piece of the unit was made in Hungary.

An institute spokesman told the new'spaper Népakarat: "After trial tests the unit is operating to perfection and surpasses the one bought from Britain last year from many points of view. The Hungarianmade cameras proved to be faultless."

The television car is equipped with a telephone

## LAST-MINUTE CHRISTMAS GIFTS

There's still time to send your friends who are TV enthusiasts the ideal Christmas gift... a ycar's subscription for PRACTICAL TELEVISION. All through the year your gift will bring them repeated plasure . . . every new issue, reminding them of your good wishes.

But hurry! You must send now to make sure that first copies arrive in time for Christmas. Simply send your friends' names and addresses, together with your own, and remittance* to cover cach subscription to Subscription Manager (G.2), George Newnes, Lid., Toner House, Southampton Street, Strand, London, W.C.2. An attractive Christmas Grectings Card will be sent in your name to announce each gift.

RATES (INCLUDING POSTAGE) FOR ONE YEAR (12 ISSUES): U.K. 19s. Od., OVERSEAS 17s. 6d., CANADA 16s. Od., U.S. $\$ 2.50$.

C．R．T．ISOLATION TRANSFORMER Type A．Low leakage uindings．Ratio $1: 1.25$ giving a $25 \%$ boose un secondars．

Dito with mains primaries，12／6 each
Type B．Mairs inmut 220 ／atu volts．Mult Ontpute $2,4,6,3,7.3$ 10 and 18 volts ，Mrnut has two taps which increase output volte by suitable for most Gathode Ray Tubs，21： Ditoofor 6 v ．C．R．Tuthea ouly．17／6．
Type C．Jow capacity wound transfurmer for ＂1se with 2 volt Tubes with falling emispion． wols at 2 amps．With Tag lanel， 176 each． NOTE．－It is essential to use mains primary trpes with T．Y．receivers hiving series－ cimnectell heaters．
TRIMMERS，Ceramic．30， 50,70 pf．， $9 \mathrm{~d} .:$ 1160 p


 $100 \mathrm{mam}+$ to 111 meg．Ditto， $10^{\circ} \ldots$ ． 8 dd ．
I watt
I WIRE－WOUND RESISTORS
wat t lit wat t ：5 watt）

## 12／6 PURETONE RECORDING TAPE

 $1,200 \mathrm{ft}$ ．on standard $7^{\prime \prime}$ Metal reels＊ Spools $5^{*}$ metal，1／6，7＂metal，2／3．FERROVOICE 1，200ft．Plastic Tape 25／ on Plastic Spools．
DP TRSMSFORNEES Hesus DIt？TO WA．． 4 \＆ L．F．CROKES R $0 \mathrm{~mA}, 8 / \mathrm{B}$ ； $10 \mathrm{H} .1: 11 \mathrm{m4}, 12 / 6$ ．

 HEATER TRANS．Tapped prini．， 11 amp．， 7,8 ；tapped sec． 2,4 ，fi． 3 v v．， 12 amp， $8 / 6$

ALADDIN FORMERS and core，in．，8d，： $\mathrm{sin}, 10 \mathrm{~d}$ ． O．3in．FORHERS $5937 / 8$ and Cans TV1／2．
Tin．and Bin．scl．x 1 lin．，2！－ean，with cores．
TYANA．－Midget Moldering Iton．Sulpepo 230／250 r．，18／9．Solon Instrament Iron， $241-$
 LIN E CORD．． 3 amp． 60 ohne per inct，． 2 amp．， 1 tyo ohms per foot， 2 －way， 8 d ．per foot． 3 －wisy 7 d ，per inot． LOUDSPEAEER，P．M． 3 OHM．2！in．ке⿴囗十ate．17／6．



 15 ohm P！essey 10 xt． 1 ivin．with Tweeter， $97 / B$ ． CRYSTAL DIODE 6．E．C．2／－．GEX34，4／－
HIGH RESISTANCE PHONES．tom ohans， $16 / 6 \mathrm{pr}$ mike transf． $50: 1,3 / 9$ ead．； $1 / 11$ ： 1 ．Pottel．10／8． SWITCH CLEANER Flnid，syuit， $1 *$ ， $4 / 3$ tin． TWIN GANG TUNING CONDENSERS． 3 ． ph ．

 Holid dielectric $1(m, 3(4)$, ，win pF．，3／8．
SPEAKER FRET．Expadded Metal silver，15？in． x 4 fin．， 2 ，－tach．
 Tygan dit．din．witic， $10 /-\mathrm{ft}$ ：it．3in．uile， 5 －it
All Bozed VALVES New \＆Guaranteed

| 16．） |  | ${ }^{\text {NKX }}$ | $8 / 6$ | EB91 |  | 13114N | 1，6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.45 | $8 / 6$ | ¢icts | $10 \cdot 8$ | Ebcsa | 8 ＇E |  |  |
| T 4 | $8 / 6$ | ¢97 | 106 | EBC＇ 1 | $10 \cdot 6$ |  | 12.8 |
| 2 x 2 | $3 / 6$ | ［ima7 | 7 ＇ | EBFP6 | 帾 |  |  |
| $\mathrm{ck}_{4}$ | 86 | 12， 67 | 8／8 | ECC＇s4 | $12 \cdot 6$ | M | 10.6 |
| V4 4 | $8 / 6$ | －56ti | 7／6 | ECF4） | 10.6 | Pd | 6，8 |
| U4 | 8／6 | dibid | 8，8 | BCF82 | $10 / 6$ | PCor | 12：8 |
| Y3 | 8／6 | 0x ${ }^{\text {d }}$ | 7／8 | Ef（H4 | 1018 | PCP | 10／6 |
| 24 | $10 / 6$ | －x． | $7{ }^{7} 6$ | ECldo | $8 / 6$ | Pf＇F | 10／6 |
| iA M | $8 / 6$ | lipab | 7／6 | belsez | $12 / 8$ | P＇L | 10／6 |
| 388 | $5 / 8$ | 12AH8 | 10 \％ | EF3 | 76 | I＇EN2 |  |
| GBE4 | $7 / 6$ | $12 \mathrm{~A}^{\text {¢ }} 17$ | $10^{\prime} 6$ | EF゙＋1 | 10，6 | PLes | 10.8 |
| ABH0 | 10／6 | lizau7 | 10／6 | EFPo | 5／6 | ${ }^{1} \mathrm{Y} \mathrm{Y}$ | 108 |
| $6 \mathrm{BW} \mathrm{N}^{6}$ | $8 \cdot 6$ | 12 Ax 7 | $10^{\prime \prime}$ | Equip． |  | PYa | $10 \cdot 6$ |
| W | 8.6 | 12BE6 | 10＇8 | H：501 | $5 \cdot 6$ | PYM | 10／6 |
| His | 10＇6 | $12 \mathrm{BH} \mathrm{C}^{\text {d }}$ | 10／6 | symy | 8，6 | SPid |  |
| S16 | $7 / 6$ | 12K7 | $8 / 6$ | EF\％ | 108 | ［BCH1 | 8 ／8 |
|  | 76 | 1207 | 8／6 | EF92 | 5／6 | C＇H | 8／6 |
|  | 3.6 | 35Z | 10／6 | EL32 | $5: 6$ | UF41 | 8／6 |
|  | ${ }_{6}^{6 / 6}$ |  | $8 / 6$ | EL84 | $10 / 8$ | ＇L | 8／6 |
|  | 76 $8 / 6$ | 92.4 | 16 | EY：51 | 11／8 | UY 41 | 8,6 |
|  | $8_{6} 6$ | EASo | 1.6 | ERSO | 10；8 | U22 | 10：6 |
| K7 |  | （aAb | 888 | eza | 11.6 | X7 | 10／6 |



1557 RADIOGRAM
THREE WAVEBANDS．
CHASSIS five valyes


 $\cdots$ momth gratratee．



 Atigreed und willil．ated．Chaspiy isolited iron

10

 MATCHED SPEAKERS FOR ABOVECHASSIS．


IECOMMENDED FOR ABONE （11Astis －CHII．ARO
HBGH－FIDEIITY ACTOCHANGER 1957 Model 1 （4456
inn．， 10 in ．， 12 in ．Reeorts 16，33，45，${ }^{78}$ ripint
With Studio＂o＂pirk－11p
HRANI NEW IN MAKFIR＇S BONLA， 0氏I PRICE $\mathbf{8} 9.15 .0$ jons free TERMS：Dejosit $£ 5.5 .0$ and six monthty payments uf el． Spane required 14 nh．$x$ 12tin．5int aknwand Bin，below，CutOutboard，6／－

GARRARD 4－SPEED RECORD CHANGERS RC120／4H 1957 MODEL8 Brand new and fully kuaranteed 12 months．

AUDIOPEKFECTION Desisned to play 10．33，45， 78 r．7．m．Records Fin．， 10 iv ．，12in．Lightyeigtt Xtal pick－up， trinover hicad，two separate sapphire siyli， for Standard and L．P．，cach tlass 2，c00 tecoids Vollafe aco 250
oUR PRICE $\$ 10.15 .0$ each．Post Free． Terms ：Sepcsit 86 and 6 monthly payments of $£ 1$ ．Spsce required 14 in ． z 12 in ．Sin． above and Bin．below．（int Uut liatil．
AMPLIFIER－RECORD PLAYER CABINETS －；abint size lyt $x$ 1：ty IIt．Stin．，with

ALUMINIUM GHASSIS． 18 s．w．Hmbinem Winhtwides，riveted commers and hittice livimp



TRANSISTORS．Allilio， $10, \boldsymbol{R}$ R．F，${ }^{2} .1 \mathrm{M}_{4}$ 21 －．Mnhan（o＇71， 20 －
SUPERHET COIL PACK．2Z／8．Mirtiatilre size 2！ill．${ }^{2}{ }^{2}$＂in．x l！in．Hllif＂\＆\＆＂bust suitching．dingle hate fiviug wilh ，olmuet．

COLLARO．t－speed Matar abil Tumatable with electing witih for 13，i．．t． $45, \quad$ is
 Xtal turnover head，separate Nitobhim styll
 SUITABLE AMPLIFIER－PLAYER CABINET． Cauty unt ont fur ilota， 45

CRYSTAL MIKE INSERT Ly Acos，Itecivion entineereal．Nize only $1: x$ ilfin．Rarghin Price 6．6．No frabsiumber tequired．

CHAMPION VHF（FM）TUNER， 88－96 mc／s．
－Mullam valses and wherhet tuning heart Marmon ath rrabla receiver styled cabinet
 operating athl ervicing data and ator with leal for $\cdot$ annection fop pick－up sockets of any Falite， 1 iwlio－grath，or amplitier．
Branh riew with 1 O monthe gukrantec．List
mice，Its ghe．Uur uice， 10 ghS．，carr．+6.
Volume Controls 80 （anmue COAX

 $\begin{array}{ccc}3- & 4 & 49 \\ \text { Lincar or Lor Tiack．} & \text { Fringe Quality＂} \\ \text { Air SFace，}\end{array} / 6$ COAX PLUGS ．．． $1,-\quad$ DOUBLE SOCKET 13
 SCREENED De WIRE－WOUND POTS． 3 WATT．Pre－net Mir T．f：＇J，An All talues ohthe 1 is $30 \mathrm{~K}, 3_{3}=$ kit （0） $\mathrm{m} \cdot, \mathrm{s}$
WIRE－WOUND \＆WATT．Pots－ 1 In．Mpitudie． Galres， 100 whme to 00 K．． $5 / 6$ ； 1101 K．． 6 ＇8． CONDENSERS．New stock：． 111 l mid． 7 k 1．4．e．，s／6；Ditio，\＆k


 CERAMIC CONDS．IN $V ., .3$ pf．th ． 01 nifl．， 10 d ． SILVER MICA CONDENSERS． $10 . a$ g ph to तitl



I．F．TRANSFORMERS 7／6．pair
$465 \mathrm{Kc}, \mathrm{s}$ Stug funing miniatare Csin． 2 inn． lin，$z$ lin．High 0 and good bandwidth By Pye Radic．Data sheet mpplied．
Wearite 1800 IF $485 \mathrm{Kc} / \mathrm{s} 128$ per pair．
NEW ELECTROLYTICS．FAMOUS MAKES TUBULAR TUBULAR，CAN TYPES








SENTERCEL RECTIFIERS．E．H．T．TYPE FLY－ BACK VOLTAGES．K3 25 $2 \mathrm{kV}_{\mathrm{i}} 5$ ， $\mathrm{K} 3 / 403$
 MAINS TYPE CONTACT COOLED $\because 50 \%$ ． 19 MA．， 8 ©

 4 －All ranges．TELETRON．L．\＆Merl．T．R．F

 ${ }_{2} \mathbf{2}, \mathbf{F}$.

JASON F．M．TUNER COIL SET． 26 ＇－：H．F． cull，apilal cuit，Uxeillater coil，tho I．F．thath heater cloke．＂irenit twouk using four bAMti，


With Jawen superior cablinited diab，e8．15．0
FULL WAVE BRIDGE SELENIUM RECTIFIERS．
 $\because 2$ ），for tharging at $\because, 6$ or $12 \mathfrak{2}, 1^{1}$ anlp．， $15 / 6$ $\because$ amp．．I7 6： 4 anlp．， 22 6．
VALVE and T．V．TVBE ectilialent hooks，5：－
 WAVECHANGE SWITCHES．
5 D．A－wEy 2 water loce spindie
2 p．2－way 3 p．2－way short apindle $\quad \cdots \quad \cdots \quad 6 / 6$ 2 p．6－way 4 r．2－way 4 F．3－way long apindle 38
3 3 p．4－way， 1 p．12－way，long spindie VALVEHOLDERS．Pay．Int．Oct．，4d．EF50，EA50 6d．B12A，CRT．13．Eng，and Amer．4，5，6，7，and 9 pin，J－－MOULDED Hazda and Int．Oct．，6d． B\％G，B8A．，B8G，B9A，9d．，B7G with can． 18. VCR97， 2 ＇6，B98 with can，2，6．CERAMIC EF50． B7G．B9A．Int．Oct．，1：．B7G with can， 19.
ELACK CRACKLE PAINT，Bir drying，3：tin． CICAL TELEVISION

## TELEVISION TUBES

| MULLARD | $\ldots$ | $\ldots$ | $12 \mathrm{in} . \mathfrak{£ 6 . 1 0 . 0}$ | 14in. $£ 7.0 .0$ | 17in. $£ 8.10 .0$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| COSSOR | $\ldots$ | $\ldots$ | $12 \mathrm{in} . \mathfrak{£ 6 . 1 0 . 0}$ | 14in. $£ 6.10 .0$ | 17in. $£ 8.10 .0$ |
| EMITRON | $\ldots$ | $\ldots$ | $12 \mathrm{in} . £ 6.10 .0$ | $14 \mathrm{in} . \mathfrak{£ 7 . 0 . 0}$ | $17 \mathrm{in} . £ 8.10 .0$ |

MULLARD. 12in. now 6 weeks delivery. All ather types ex-stock.
MONTHLY CLEARANCE REDUCTIONS

| MAZDA $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $14 \mathrm{in} . £ 5.10 .0$ | $17 \mathrm{in} . £ 7.0 .0$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CATHODEON | $\ldots$ | $\ldots$ | $\ldots$ | $14 \mathrm{in} . £ 6.0 .0$ | $17 \mathrm{in} . £ 7.0 .0$ |  |

All Tubes plus $12 / 6$ carriage and insurance.

## SIX MONTHS' GUARANTEE

Terms to the Trade.

# RE-VIEW (LONDON) LTD. <br> 8I, HIGH STREET <br> MERTON S.W. 19 <br> Teiephone: CHERRYVOOOD 3255 

##  SEISVICE

## All Guaranteed New and Boxed

1.4v. midget. 1R5, 1S5. 1T4, 3S4. DAF91. DF91, DK91, DL92, DK92,


[^1]
## JASON FM SWITCHED TUNERS

All BBC Programmes at the turn of a switch MERCURY KiT. Includes front-end unit already built and aligned. E9.19.0 Post Free.
Credit Terms: Deposit $\mathbf{6} 1.10 .0$ and seven monthly payments of El .7.0.
Instruction Book 2/3 post free. Included in kit. Fully detailed price list free.
PREFECT TUNER. A ready-built unit. Less power supply. El5.12.6. Credit Terms: Deposit £2.4.6 and seven monthly payments of $\mathbf{6 2 . 2} \mathbf{2}$. Illustrated leaflet free.
Both these tuners incorporate a good A.F.C. system which ensures freedom from drift.

## NEW AVO MULTIMINOR

A brand new test instrument at a very attractive price. A.C. and D.C. Volts. D.C. Current. Two ohms ranges. Movement is 100 microamps ( 10,000 ohms per volt). 69.10.0. Credit Terms: Deposit fil8.0 and seven monthly payments of El .6 .0 . lilustrated leafiet available.

WATTS RADIO (Mail Orders), LTD.,
54, Church Street, Weybridge, Surrey.
Telephone : Weybridge 4556.
PLEASE NOTE : Post orders only to this address.


## RIVERSIDE LIGHTING

THE fine new lighting equipment at the BBC's Riverside studios has been admired by all the I.T.A. engineers, especially the new lightweight 1,000 watt lighting units by G.E.C., which weigh only 561 l . each as compared with the more normal weight of about 84 lb . The ease with which these lights can be manipulated mechanically has surprised everyone. The amount of capital invested by the BBC in TV premises and equipment must be enormous. The I.T.A. companies now have plenty of money coming in, and both their producers and engineers look with envy at the plushy BBC facilities. Let us hope that this envy doesn't lead to rashness. Pounds can be profitably invested in Personalities as well as Premises.

## THE DISTORTION DRUG

 THESE Hi-Fi demonstrations of sound radio and records do bring you down to earth and make you realise the shortcomings of your sound radio. Time marches on and valves get tired, but so slowly that one does not notice the slow deterioration in quality. In fact, one becomes drugged to accept quite serious distortion. The same applies to TV reproduction, unless one makes regular use of the transmitted test cards. The BBC clock is a constant reminder of horizontal or vertical egg-shaped distortions, but even these tend to become accepted. When I visit friends' houses and see their TV in operation, I am often shocked by the obvious distortions which are quite happily tolerated. Constant fiddling, with the controls -"meggling," they call it in Lancashire-is apt to annoy one"s family. But they should be trained to accept at least part of one evening a month for devoting to a routine check up."THE PIER"

A.B.C.'s Armchair Theatre has - not had a very even run of plays up to now, but surely the most creaky armchair it has ever turned out was The Pier. The producer and writer of this play tried to put over a story about Teddy boys (and girls) with a background of a seaside resort and its pier. presented with a new style of production technique. Breaking almost every rule of theatrical. film and television conventions. the continuity of The Pier jerked inconsequentially from scene to scene. scattering close-ups without meaning amidst a farrago of partially inaudible dialogue. If
pretentious nonsense of this kind qualifies for recognition as "new art," then I will be proud to call myself a Philistine! Still, A.B.C.-television deserves a pat on the back for daring to experiment. Even the best of experimental rockets sometimes lurns out to be a damp squib.

## THOSE ANGRY YOUNG MEN

I HAVE an idea that A.B.C.television intended The Pier to be another offering in the idiom of the angry young men. who are the current symptoms of indigestion in modern art. I suppose that 1957 will go down in history as


Hehind the scenes at a TV broadcast. Note the microphone arrangements, and the orchestra being directed by Eric Rohinson who follows the singer through headphones.
the year when the Russian satellite and the angry young men of the British theatre both started bleeping. Joha Osborne set the ball rolling with his provocative play, look Back in Anger, which achieved a great deal of success through the shock effect of its wild attacks upon conventions, traditions and constitutions. Anger being contagious amongst authors, especially when it pays off well, there has been something of a spate of angry young men frantically looking for targets to aim at in their plays for theatre. television and films. Come to think of it. Gilbert Harding must really have started the "anger" cult, with Malcolm Muggeridge following him up with his own special style of attack. Both achieved immediate public attention when their anger was assisted by the combined sound-and-sight impact of television. Fortunately, television has a way of dealing with such repetitions of exhibitionism. The wiser ones, like Gilbert Harding. modify or vary their techniques before the television viewing public gets too angry. I may be wrong, but 1 have formed the opinion that the mass audience television now commands has no real liking for irresponsible intellectuals. The advertisers on I.T.A. certainly don't love them!

## COMMERCIALS IN THE WEST

$I^{T}$was a good idea to invite potential advertisers on the T.W.W. channel to a preview of various types of filmed commercial, local and national, which will be transmitted from the I.T.A. station at St. Hilary Down. With a probable viewing public of three million, the T.W.W. organisation claims that the relative prices to be charged for advertising space are lower than any other I.T.A. programme contractor. But a friend who was present at the preview. which was held at a local cinema. tell me that the ideas and execution of many of the local advertising commercials was poor and amateurish. not in the same street as some of the nationally advertised products. Still, the local men will soon settle down to work, first to acquire experience in the difficult art of animation draughts-
manship and then to find the ideas which catch public attention. Have you noticed the growing importance of "character" voices in television advertising? I think it was the husky cockney voice of the "one for the-er-pot" tea advertisement which started this craze.

## TECHNAMATION

THE latest gadget for putting over animated diagrams clearly, simply and cheaply (it is claimed) is the Technamation system, recently imported from America. This is a mechanical device in which several layers of clear plastic material can be moved separately. Each plastic sheet carries a part of the diagram to be animated. The mechanical movements can be pre-set. Apparently Technamation scored a big success on the Columbia Broadcasting system when it was used with great effect to demonstrate the working of an automobile suspension system. It sounds to me to be a wonderful toy, with immense possibilities in the specialised tields of machinery demonstrations or any kind of repetitive movement. Makers of commercials might find this useful.

## MAGNETIC PICTURE RECORDING

Progress continues to be made in U.S.A. with the recording of television pictures on magnetic tape. which is now known as "Video Tape Recording " or V.T.R. V.T.R. machines have been in regular operation on the Columbia Broadcasting system since November, 1956. Valuable experience has been gained in their operation, which. to date, has shown little or no economy as compared with telerecording or: as they call it in U.S.A.. Kinescoping. The Amper video tape recorders scan the tape with four heads, and sixteen television lines are recorded for each sweep of a head across the tape. Since the scanning lines are interlaced, a total of 32 lines per picture field are affected when one head or its associated amplifiers goes out of adjustment. It has been found almost essential to reserve the particular set of heads used for a
recording until that recording is reproduced. Otherwise, the wear on the heads (if used for other recordings in the meantime) will change the characteristic of the pick-up and give bad distortion when the tape is played off. If the V.T.R. recording is sent elsewhere, the magnetic heads have to go with it. The tape has to be very carefully coated to standards infinitely higher than those which are quite satisfactory for sound recording. Nevertheless. steady improvements are being made and already some excellent results have been obtained by Columbia in their regular programme schedules. The V.T.R. system is used for the time delay of a programme for different time zones from coast to coast. and there is no doubt that it will eventually supersede the telefilm recording methods, when used within the same organisation. For picture recordings to be exchanged between networks. or exported abroad, telefilm recording is likely to be used for many years to come.

## SOUND QUALITY

$\mathrm{O}^{\mathrm{N}}$ many occasions I have mentioned the question of poor sound quality on televison plays. the 1T.A. companies being the principal olfenders. Plays or spectaculars from the television theatres, such as the Wood Green Empire (A-T.V.) or the Palace, Chelsea (Granada), often suffier on the sound side when the local loudspeakers for the audience in the auditorium are turned up slightly too high. on the verge of oscillation through feed back. This is a case where an acoustic sound delay system such as that developed by B.T.H. would help matters. both for the transmitted sound quality and for the intelligibility on the auditorium loudspeakers. An acoustic or electronic delay system is adjusted critically so that the sound on the local loudspeaker synchronises with the arrival of the same sound through the air from the stage. In a very large theatre this delay might be half a second for some distant loudspeakers, or even more for a Cathedral. The resultant improvement in intelligibility is quite remarkable.

## TELEVISION TUBES

## RECTANGULAR T.V. TUBES



## 12 MONTHS' GUARANTEE 17" $\neq 7.10 .0$. $14^{\prime \prime}$ £5.10.0

6 months full replacement, 6 months progressive. Made possible by the high quality of our tubes. Ins. carr. 15/6.
SPECIAL OFFEIt of $14^{\prime \prime}, 15^{\circ}, 16^{*}$ Round T.V. Tubes at 45.3 months' guarantoe, CONVERT YOUIR $9^{* \prime} 10^{\prime \prime}$. $12^{\prime \prime}$ to these larger sizes. Details on how to Do-it-Yourself in our free catalogue, $12^{\prime \prime}$ T.V. TLBLS $£ 6.3$ months' guarantee. $15 / 6$ Carr. \& Ins, on all tubes.


## 17" T. V. CHASSIS

Latest improved circuits. Hizher E.H.T. (brilliant picture). Improved sensitivity (for greater range). Chassis easily adapted to any cabinet. 171n. rectangular tube on adapted chassis. All channels. TURRET TUNER 50/- extra. Valve line-up ( 5 valves) : 6SN7G. 6V6, EY51. 26 D 2 s . Others: 6L18. EL38, 76 F 1 s . Chassis size 114 in . $x$ 14!in. x 11 in . 12 MONTHS' GUARANTEE on tube, 3 months' guarantee on valves and chassts. Less valves. With 5 valves, £R1.19.6. With all valves, £25.19.6. Ins. carr. 25j- (incl. tube). State B.B.C. Channel (and I.T.A. if turret tuner required).

## $14^{\prime \prime}$ T.V. CHASSIS, TUBE AND SPEAKER $£ 13.19 .6$

As above with round type tube. Less valves. 3 months' guarantee. With 5 valves, els.19.6. With all valves. £19.19.6. Ins. carr. 25/- (incl. tube). Turret Tuner, 50/- extra.

MIDGET EverREADY BATRYMAX, I/9
" B" type battery. $22{ }^{1}$ v. No. B155. Ideal for Midget or Personal Radio, Hearing Aid and Plotography Flash. Size $\frac{1}{2} \mathrm{in} . \times 2 \mathrm{in}$.

1 for 19. Post 3d.
12 for $12 \%$. Post 9d.

## CONSTRUCTOR T.V. CHASSIS

SOUNI A VIGION STItIP, 25,6. Tested working. Complete vision strip. LESS valves. ITF. S i6-19.5 Mc's. Drawings FREE with order. P. \& P. 2/6. Size $18 \mathrm{l}_{2}$ in. $x 41 \mathrm{in}$. $x 4 i \mathrm{in}$.
TIMFBASE, 15/6. Complete with focus unit., etr. Tested working. LESS valves. Size : 9!in. $x$ bin. $x$ fin. Drawings free with order. P. \& P. 3'f.
POWER PACK. 29/6. R.F. E.H.T. $7-9 \mathrm{kV}$. Amplifier stage6 V 6 with o.P. transformer 3 ohms matching. Smoothed H.T. 350 . at 250 mA .6 .3 V . at 5 amp .in. v. at 4 vin . Tested working. and 4 v. centre-tapped. Size 14in. x 8 in. $x$ in
Drawings FREE with order. Ins. carr: $5 / 6$.

HEAIDPIIONES, 1/9. Single earphone and headband. C-LR. Ideal for crystal sets, extension on radio, etc. P. \& P. 1/3.
CANDELCBRIM, 19/9, 3-light lounge fitting, with tiex, and lampholders and 3 shades of plastic. P. \& P. 29.
T.V. AEIRIALS, 256, For all I.T.A. and F.M. ckannels. For 2.6.

CNR AHIRALS. 6 9. Whip antennae, 50 in . Jong. collapsins to 1lin., one-hole fixing. Post 1,-
MIDCiET IR.ADIO. $996.5-$ valvi-CCH35. EF'39, EBC33. CL33, 35Z4, or metal rec., 3 control knobs. Switched for gram. In attractive brown plastic cabinet. $15 i n . x 7!\ln . x$ 9in. Ins, carr. 4/6.

POPDIAAR RADIO OR RGRAMM CHASSIS, 39.6 .
 3 w band and gram Superhet. 5-valve. International. Octal. Ideal table gram. but still giving high quality output. 4-knob control. 81n. P.M. Speaker, 7/9 extra. Set of knobs. 2:Chassis size : 12 in . x 6 in. x 9 in. Less valves. Ins. carr. 4/6.

## SUPER CHASSIS, E4.19.6

5 -valve superhet chassis including an 8in. Speaker. 4 control knobs (Tone, Volume, Tuning). W.C. switch; 4 waveband, with position for Gram. P.U. and for extension speaker. A.C.ID.C. P.\&.P. 5/6.

ENTENSION SPEAKEIRS. 29 9. Complete, fitted with $8 i n$. P.M. Speaker. "W.B." or "Goodmans." of the highest quality. Standard matching to any receiver (2-5 ohms. Fex and switch inciuded. Unrepeatable at this price. Money refunded


8in. P.M. SPEAKEIRS, 8/9. Let the lady of the house listen to that T. V. or radio programme. Complete with O.P. trans. 10:- P. \& P. 28.
P,Y. SPEAKLKS, 12/9. Elac or Goodmans. High quality, 2-5 ohms. Complete with o.P. trans., 14-A P. \& P. 2/9.
12in. T. V. CHASSIS \& SPEAKIIR. 59'B. These chassis can be adapted to take 14in.. 151 n . or 17 in . tubes. Complete chassts by famous manufacturer. R.F. E.H.T. untt included, also bin. P.M. Speaker. Chassis is in 3 separate units (power, s/vision and timebase inter-connected). These chassis can easily be fitted jnto existing console cablnets. Less valves and tube. Channels 1-2. 3-5. I.F.s 16-19.5 Mc/s. Easily converted to I.T.A. channel. Ins. carr. $10 / 6$.


HELETRIC CONVECTOR HEATEIR, 99/6.
Cleaner, cheapel. safer than paraffin. A.C. D.C. Switched for 1 or' $2 \mathrm{k} / \mathrm{W}$. Illuminated grille. Ins. carr.. 10;6.
HLECTRIC FIRE: 1\%'6. Hammered finish. A.C.ID.C. $200-250$ volt $1 \mathrm{~K} /$ watt. Post $3 / 6$.

PORTABLIE ELEA THIC FIIES, $29 / 6$. Pencil element. $1 \mathrm{k} /$ W, beautiful finish. Reflector type, carrying handle. A.C./ D.C. 220-250 volt, Post 3/6.

SELIF-FEEIM SOLIDERING 'TOOL.. $19 / 6$. 6-12 volt, $110-12 \mathrm{~J}$ volt. Made for the American market. Car battery or mains. Export quality. Complete in light carrying case Reel of solder and spare parts. P. \& P 2 . A rew of the above in $6-12$ volt, $200-240$ volt. 35,6 .

## MAINS THANSFORMERS

350-0-350 v. 80 m 'a., 4 v.-4 v. heaters. $200-250$ v. Prim. $350-0-350$ v. $80 \mathrm{~m} / \mathrm{a} .1212$ v.-4 v. heaters. $200-250 \mathrm{v}$. Prim. $2830-0-280$ v. $80 \mathrm{~m} / \mathrm{a} ., 6$ v. 4 vv ., $200-250 \mathrm{v}$. Prim.
 (Drop through. half shrouded.) Ali above $2 / 3$ post."
 -TIDON 5-HIANNEL TR NEIR, 8 9. Ideal to convert to I.T.V.B.B.C. converter. Post $1 / 3$.

Terms available (over 64).
DULE \& CO. (Dept. 2), 621/3, Romford Rd., Manor Park, E.12. Tel.: ILF 600I-3. OPEN SALL DAY.

## SIGNAL GENERATOR

|  |
| :---: |
| cicke |
|  |
| 边 |
|  |
|  |
|  |
| SIGNAL \& PATTERN GENERATOR |

Coverage 7 M'cs-210 Mc.s in five bands, all on fundamentals. slow-motion tuning audio output, 8 yertical scale. In grey hammer scale, In grey hammer handle. Ac uracy carroing A.C. mains 200-250

or $2 \% 6$ gosit and 4 mthly. pyint COVIMEIG1AL TELEVINION conveif Tlit suta WHIII 35 NHES OF JTA. No AITERATIONS 'rostr. Complete with built-in power supply. 230-250 v. A.C. mains. Crackie finish case 5 fin long. 31 in . wide. 41 in . high. Incorborating gain control and band
£3.19.6 Plus P. \& P. 26.

3 clement folded dipole I.T.A. loft AERLAL, 15?-, P. \& P. 2/-Co-is cable, 81, yard. H.P. TERNS IVAIL.IBEI:


## AC/DC MULTI-METER KIT

 Comprising 2in, moving coil meter, scale canbrated in ACDC volts, AC/DC $0-10$ ( 100 and $0-500$ Mill range $0-10$. (0-100. Ohms 0-1.400 and 0-10,000 Front panel. ranse switch, wirewound pot (tor ohms zero setting) two logyte switches, resistors and metal rectiner. In grey hamnerflalsh case. $19 / 6$ P. \& Pius 16 .Point to proint wiring diagram I/- freelwith"kit.

## 4 VaLVE ALL-DRY SUPERHET PORTABLE KIT

indurnoriting Fratiterodnarint Medium and long waves. In gres
 3y4. Complete kit of barts (less batterles).
55.19 .6

Plus Post $\&$

COMPLETELY BUILT PORTABLE AMPLIFIER approx. stze $6 \| n . x 21 i n$. incorporating 2 talves. contact-cooled metal rectifier, bass and treble lift controls $39 / 6$ p Plus 5in HM MPAKER © MP TH NSFORMEIR, if DUMCHESEd with the above. 18/6. Plus 1 . \& $5,1 / 6$.

## COLLARO 4-SPEED AUTOMATIC CHANGER

## Model 456 (suitable for use with above ampliler). A.C. mains

 $200-250 \mathrm{~V}$., turnover crystal head. Brand new, fully guaranteed.£8. 19.6 Or' $£ 3$ deposit plus P. \& ${ }^{\prime} .5$ - and 6 mthly. payments of $£ 1.4 .0$.

## RADIO \& T.V. COMPONENTS (Acton) LTD.

23. HIGH STREET, ACTON, LONDON, W.3 GOODS NOT DESPATCHED OUTSIDE U.K.

## TRANSISTORS

## JUNCTION TYPE P-N.P

(British Manu*acture)


White-sipr 2.5 Mo's R.F. and I.F. Amp...................... 201-
All Transistors are 'Iested and Guarantced.
N.1s, The lied Spot is similar to Mithard of 1


## "EAVESDROPPER" <br>  <br> No Aerial or Farth regwirad

Variable Tuning, Fotal cost, as specifled inchuing Transistors, Transformers. Coils, Condencers arid Batteis etc. with circuit and plastic case.

77/6 pOST fref Wht single phome. 89

With Acos Mike, 90 . With Min Hearing Ald 92/6.

## MINI-TWO

TWO-TIR.INISTOR MINE.ITEIREPOCKET IR IIIO The smallost lransistor set offered on tho market. Variable Tuning, Drilled Chassis. Pinstic Casc slyesin. $x$ 2in. x inn. Minia ture Hearing Ald, 2 Transistorc and all comphnents including Total Cost $\quad 49 / 6$

Complete



| 6 V. VIBR ITOR 1PAKKS |
| :--- |
| Output 120 \&. $40 \mathrm{~mA} .12 / 6$. |

R.F.24, $10-\quad$ R F. $25,12 / 8$.


SENI GUI ST LDPS, FOIR NF:VV 1958 28-PAGE CATAIAGUL UPEN MONDAY to SAT. 9-6. THUTS. 1 o'clock.

## HENRY'S RADIOLTD.

5 HARROW ROAD, EDGWARE, ROAD, LONDON, W. 2
TEL.: PADDINGTON 1008-7

The Editor does not necessarily agree with the opinions expressed by his correspondents. All letters must be accompanied by the aame and address of the sender (not necessarily for publication).

## SIMPLIFIED SERVICING

SIR,-Articles on testing without elaborate test gear are always interesting, and there is one part of a modern receiver which I think gives rise to more troubles than any other. I refer to the sync. separator so far as it is tied up with the frame timebase. We often hear of bad interlacing. or failure to interlace, but how many amateurs can tell whether the set is interlacing or not? My picture looks as good as most others. yet a friend who comes to see me from time to time always tells me the set is not interlacing. When I ask him how he can tell. all he can say is "You get to know. I can just see that it isn t.". and he can't tell me how 1 can tell. What is the secret, and if it is possible to tell others. how can one really check it and make improvements without a scope or something equally unintelligible to the amateur? Perhaps one of your more experienced readers will lend a helping hand to those of us, and I am sure there are literally hundreds. who are lost in this particular wilderness.-J. Y. Timamis (Kensington).

## SOME USEFUL AERIAL DEVICES

SR,-May I, with all due respect, submit a correction to the article by J. Brown-" Some Useful Aerial Devices "-in your August issue.

The Star Delta Theorem used to find the value of resistor for equally dividing the output of a TV aerial between any number of receivers is as follows:

$$
\mathrm{R}=\mathrm{Za} \frac{\mathrm{n}-1}{\mathrm{n}+1}
$$

where Za is the impedance of feeder, $n$ is the number of outlets.
For $75 \Omega$ and 3 outlets:

$$
\mathrm{R}=75 \times \frac{2}{4}-37 \Omega \text { approximately }
$$

For $75 \Omega$ and 2 outlets:

$$
\mathrm{R}=\frac{75}{3}=25 \Omega
$$

The cireuit would be then as shown.
It is seen quite simply that the impedance presented to us at $\mathrm{A}, \mathrm{B}$ or C is $75 \Omega$,

$$
\text { i.c., } \left.\quad 25 \Omega+\frac{(25 \Omega}{-75 \Omega} \frac{9}{2}\right)
$$

These notes should also apply to the splitter/combiner unit in Fig. 3 of the same article.-D. C. Emmerson (Northampton).

## DABBLERS

R.-The recent remarks on "dabblers" were most interesting, especially as 1 am what might be classed as one. I am a lecturer on
radio at a well-known institute, was a signals officer in the R.A.F. at a fairly high rank during the war, and consider I am fairly well up in most techniques in modern radio and television. Yet. when I wrote to a well-hnown firm recently for a service manual for my on'n set, not one I was servicing for someone else and for which I might have been accused of doing a service man out of a job, I was told that I couldn't have it--in spitc of having listed my qualifications. I agree with the amateur who suggested that manufacturers treat those who ask for a service manual as though they were

## SPECIAL NOTE

Will readers please note that we are unable to supply Service Sheets or Circuits of exgovernment apparatus, or of proprietary makes of commercial receivers. We regret that we are also unable to publish letters from readers seeking a source of supply of such apparatus.
asking for a working drawing of a guided missile. What is so sceret about a set, anyway? The circuit can be traced out by anyone with the slightest knowledge and one's own circuit prepared, but why have to go to all this trouble when you have spent 660 to $f 80$ on the set? I would venture to suggest that in many cases; manufacturers are ashamed of some of the arrangements. not jealous that someone will steal their ideas. I remember, before the war, one judged the quality of a radio set by the size of the service department it had. The bigger the service section. the worse the sets. I think I am correct in saying that one of the big firms had no service section at all-the number of faults was so small that local men could put them right and they did not have to go back to the makers. Let us hope that the correspondence and remarks which have been made under this heading will give the manufacturers food for thought and maybe these manuals will be more frcely available. even if a slight charge is made for printing, etc.-G. P. Rall ton (Manchester).
$S^{I R}$.-I. am 100 per cent. in agreement with the letter from R. Purdey, of Brighton, in your November issue.

When, as an electrical engineer in a position of responsibility. I have installed complex equipment. a wiring diagram, etc., has bcen asked for and readily obtained.

Indeed, why not for TV sets. as this writer remarks?: £100 spent surely merits full information, if only for the use of the serviceman called in.

I submit that if you must buy, before you buy demand a service sheet. If not given, don't buy and try elsewhere.

I recall a "superior" serviceman attending to my own vacuum cleaner, and impressively grinding out on a megger to prove the said vacuum cleaner was finished. He gleefully anticipated commission on the sale of a new one.

He didn't notice. as I did, a little blue spark busily buzzing brightly to frame. He left sadly as

1 refused to buy a new one. The old vacuum cleaner is still singing soothingly.-E. B. Douciilly (Bearsden).

SR,-I, too. would like to add a note or two on "dabblers."
Being a dabbler myself. I have done quite a few jobs on TV sets which have been returned from incompetent radio dealers with small shops and radio service departments. Many of these so-called dealers seem quite unable to diagnose lube faults as such, and when a customer calls him in he blithely tells the customer his tube is done. while all the time all that is required is a new H.T. valve. I do think that the radio dealer should try to be fair in his dealings with a very gullible public, and, to further my argument, 1 enclose a copy of a letter from an old man of 82 years of age who had similar dealings with a "service engincer" on "the make." 'This same old man is a cripple with only a pension. I did the job free of charge.

## MULTUM IN PARVO

The other day, with much regret, they took my television set.
Not for lack of payment-no!
But just the darned thing wouldn't go.
Some weeks ago it lost its sound, "a new valve needed" the expert found.
As he twiddled knobs and scanned the view he said, "Is this the best the set will do?
"Your screen should be just twice as bright, a new tube's wanted here, all right.
" ['ll fix the lot for 20 quid and mate it just like new, no kid."
With gleaming eyes he grabbed the set: a voice within me said not yet.
This man thinks you are a boob, Im sure it doesn't need a tube.
I said "I think I'll let it stay and send for yout another day."
And so, fearing that the set would burst, another expert called, to do his worst.
Then to my extreme delight, he found another valve won't light.
And upon replacement was found, to wit, it worked like new, yes. every bit.
The valve cost six and twenty bob, I gucss that expert knew his job.
The moral of this I hope you'il take.

> Be sure your man's not on the make.
R. E. Woodill (Hove).

## USING A CONVERTER

CIR.-I would like to pass on a little hint which I think may not be familiar to many viewers. It concerns the addition of a converter which gives rise to patterning on the set, not on those of neighbours. In trying to overconse this trouble I was told of an arrangement which in my case and those of several of my friends really worked. Round an ordinary lead pencil wind 10 tums of the coaxial normally used. A piece of Sellotape will keep the turns together and then the ends are cut to reach from the normal aerial terminal to the set. The position of the converter should be such that there are
$1 \frac{1}{2} \mathrm{in}$. or 2 in . kft befween the coil and the converter and set. In other words. the connection between the converter and the set consists of a short length of coavial. 10 turns, and then another short piece. This acts as a sort of wavetrap and, as already mentioned, works very effectively.G. H. Rivisome (Woolwich).

## PECULIAR FAULTS

CiR,-With reference to recent notes on pectiliar lauts, I thought you would be interested to see the attached newspaper cutting relating to the new transmissions in Scolland. I think it is extremely cute. No doubt some of your "expert" readers would be able to explain it! -G. Fonsymi (Edinburgh).
[The cotting related that during the experiment tal tests on the hew Bamd $1 / 1$ station dealers erected aerials for viewers in a vertical position instead of horizontal, with the result that the pictures which nere reccived wore lying on their side. When the complaints started coming in, the aerials wete turned to swit horizontal polarisation. and the pictures were then the right way "p'-ED. $]$

## PROJECTION SCREEN

SIR,-I have a small cinema screen which has a beaded surface apparently painted on. This works very well and 1 would like to paint a similar screen for my projection receiver. I have been unable to find any firm who can supply a suitable paint and wondered if any reader could help me in this direction.-G. M. Worthington (Burslem).

## SCANNING AND SYNCHRONISATION

## (Continued from page 214)

required for the output valve will be within the maximum ratings for the type of valve found in 70 deg. practice, e.g., N329, PL82. etc., and the additional scanning current can be obtained with the type of circuit described in part 3 of this series, merely by increasing the H.T. potential to the output stage.

With the low-voltage line obtained with direct halt-wave rectification of the supply mains this cannot easily be done and a useful way of providing an overall increase in anode-cathode potential for the output valve is shown in Fig. 5. The cathode bias required for this valve is normally of about 12 to 16 volts. If this could be applied separately as negative grid bias then an effective increase in H.T. potential would be realised. This is obtained in Fig. 5 by rectifying the sawtooth potential across the transformer secondary and applying this as negative bias to the grid. As extremely little grid current flows a point-contact germanium diode can be used. A large capacitor $C$ is necessary 10 smooth the bias supply, which if insufficiently smoothed will cause a pronounced modulation of the sawtooth waveform.
(To be contimed)
 necessary qualifications-such posts that will bring personal satisfaction, happiness, good money and security. As part of a modern industrial organisation, we have skilled knowledge of what is required in industry to-day and the best means of training personnel for its present day and future requirements. We specialise also in teaching for hobbies, new interests or part-time occupations in any of the subjects listed below. Make your own choice and write to us to-day for further information. There is no obligation of any kind.


The only Home Study College operated by a world-wide manufacturing organisation

# EMI INSTITUTES 

persomal \& individual training in-

| Accountancy | Customs Officer |
| :---: | :---: |
| Advertising | Oraughtsmanship |
| Aeronautical Eng. | Economics |
| A.R.B. Licences | Electrical Eng. |
| Art (Fashiom, llius- | Electrical |
| erating, Humorous) | Installations |
| Automobile Eng. | Electronics |
| Banking | Electronic |
| Book-keping | Draughtsmanship |
| Euilding | Eng. Drawing |
| Eusinest | Expo |
| Management | Heating ${ }^{\text {a }}$ |
| Carpentry | Ventilation |
| Chemistry | High Speed |
| City ${ }^{\text {B Guitda }}$ | Oit Engines |
| Civit Serviceman | Industrial Admin. |
| Civil Service Commercial | Jig Tool Design |
| Subiect: | deurnalism |
| ornmercial |  |
| Arte Drawine |  |



Kefrigeration
Salee Management
Sanitary
Salesmanohip
Secretaryship
Shorthand 2 Typing Short Story Writing ShortWave Radio Sound Recording

免 Reproduction TelecommuniTeleviaion cations Televigion Time Motion Tracine Study Tracine
Workshop Practice
Workshop Practic Works M'gernent
and many others

Atso courses for GENERAL CERTIFICATE OF EDUCATION, A.M.I.M. EV.E., A.M.S.E., A.M.Erit.I.R.E., A.M.I.Mech.E., A.M.I.E.D., A.M.I.M.I., A.F.R.A G.S., A.M.IP.E. A.M.I.I.A., A.C.C.A., A.C.I.S., A.C.C.S., A.C.W.A., City g Guilds Enaminations, R.T.E.B. Serv. Cert., R.S.A. Certificates, etc.

## NEWM Correse with

PRAGTICAL EQUIPMENT
in RADIO - TELEVISION : MECHANICS CHEMISTRY - ELECTRICITY
DRAUGHTSMANSHIP • PHOTOGRAPHY Etc., etc.


DEC. 157 We sholl not worry you with persenol visits

## BAND 3 T.V. CONVERTERS BY RETURN OF POST

ALL with 12 months' guarantec (B.V.A. valves, 3 montlis' guarantec). All $3 /$ - cach, extra postage. All 2/- C.O.D.

For all I.T.A. stations and all sets except Philips (see nexl columm).
Pattern rejector fitted. All fully wired, aligned and ready for use. All whith power pack, bnobs, acrial switching, metal rectifier and 2 valves ECC81. Direct switching from B.B.C. to I.T.A. Fine funing on front. No drift State B.B.C.


## £4.7.6

With metal cabinet as illustrated. Stove enamel grey hammer finish.
Or Walnut cabinct, £4.17.6. Lizard Rexine, £4.12.6.
Or chassis, i.e., less cabinet, £3.17.6 (p. \& p. 2/6). Variable attenuator, 7/6 ( $\Gamma$. \& p. 1/-). Aerial Splitter, 8/- (p. \& p. 1/~).
Band III Aerials, mast mounting
Carr. Patid
3-clement, 27/-; 5 -clement, $35 /-: 8$-element, $55 /-$ Our aerials are suitable for loft mounting. Low-loss Co-axial, 8d. yard. External Crossover unit. 7/6 (post 1/6) Belling Lee 6 -ekment Loft Band 111 aerial, 30 : POST ORDERS TO CAMBERLEY PLEASE.

HIGHLY SUCCESSFUL $13-$
CHANNEL CONVERTER
Designed and made by a world-famous organisation regardless of expense. Tunable over the whole of Band I and Band III to give
 £5-5-0 one Band I and two Band III stations at the turn of the swifch. Acts as Two-valve Preamplifier on Band II. Valves PCC84 and PCF.80. No drift. In Moulded Bakelite Cabinet, $8 \frac{1}{2} \mathrm{in}$. $\times 4 \frac{1}{2} \mathrm{in}, x 6 \mathrm{in}$. high. With full operating insiructions. Built-in Power Pack added by us. Separate gain controls for I.T.A. and B.B.C.

CONVERTER available for Philips' receivers, to above specification complete with built-in power pack, at $\mathbf{5 5 5 . 0}$.
AUTOMATIC RECORD CHANGERS are in short supply. Collaro RC456 Studio hurnover crystal pick-up. 4 -speed mixer. A.C. mains 200 - 250 v., see illus. ALSO Collaro single player AC3/554, 3 -speed, turnover crystal pick-up with "T" head, $56 / 16 / 6$ (3/6 p. \& p.).


## GLADSTONE RADIO

3, CHURCH RD., REDFIELD, BRISTOL and 82B, HIGH ST., CAMBERLEY, SURREY

## 1957 EDITION <br> TV FAULT FINDING

New, enlarged and completely revised edition, covering borh BBC and ITA.
5 Data Publication.
Postage 60.
RAPID TV REPAIR. BY G. W. Heath. 23/-. Postage 1/-.
TELEVISION RECEIVINGEQUIPMENT. By W. T. Cocking. 30/Postage 1/6.
TELEVISION EXPLAINED. BY W. E. Miller and revised by E. A. W. Spreadbury. 12/6. Postage $1 /$ -
F.M. RADIO SERVICING HANDBOOK. By G. J. King. 25/-. Postage 1/3.
UNDERSTANDING HI-FI CIRCUITS. By N. H. Crowhurst 23/. Postage $1 /$ -
THE OSCILLOSCOPEAT WORK. By A. Hass and R. W. Hallows. 15/-. Fostage 9 d .
RADIO VALVE DATA. Compiled by "WW." 5/-. Postage 9d.

## The MODERN BOOK CO.

BRITAIN'S LARGEST STOCKISTS of British and American Technical Books

## 19-23 PRAED STREET LONDON, W. 2

Complete eatalogue $6 d$.
Phone : Paddington 4185.
Open 6 days 9.6 p.m.

## oindill



Television offers unlimited scope to the technically qualified. Details of the easiest way to study for A.M.Brit.I.R.E., R.T.E.B. Cert., City and Guilds, Telcvision, Television Servicing, Sound Film Projection, $\quad$ ad io Diploma Courses, etc., are given in our 148-page Handbook "ENGINEERING OPPORTUNITIES" which also explains the benefits of our Appointments Dept.

## We Guarantee

'NO PASS-NO FEE'
If you are earning less than fis a week you must read this enlightening book.
Send for your copy NOW-FREE and without obligation

WRITE TO-DAY!
British Iastifute of Engineering Technoiogy 237, College Howse, $D$ जा है 29-31. Wright's Laae. D S Kensington. W.B.



Whils we wre aluabs pleased to assint reaters with their technical difficulties, we regret that we are whable to supply diagrams or provide instructions for modifying surphas equipment. We camot supply alternarive deresils for comstructional arricles which appeor in these pages. WE CANNOT UNDERTAKE TO ANSHER OL'ERIES OYER THE TELEPHONE. The coupon from p. 245 must be aftached to all Queries, and if a posidl reply is recuired a stamiled and addressed envelope must be enclosed.

## FERRANT1 17 K 3

For about 12 months, the operation of width control, on mairowing of the picture, produces a "wickerwork" pattern at the top of the tulbe face. Further operation of this control produces multiple images; by returning the width control to almost fully clockwise a good picture can be obtained, except that the picture seems to "blow" slightiy and clips detail at the sides. Height and frame hold work correctly.

Operating the line hold away from fully anticlockwise results in a complete break up of the picture, and one position of the line hold produces loss of line scan, i.e., a ragged vertical line only. Could this be a faulty potentioneter.D. T. White (Ely).

We would advise you to change the 1 M : horizontal hold control. and also to check the parallel 100 K and 150 K which are wired in series with it.

## R.G.D. 1755 T

This set has been in use for about 12 montbs. The set had wot been in use for a week due to holidays. On returning back home I tricd the set and it appeared to be O.K. The following day the set appeared to have developed a fauth, i.e., the raster was O.K. and slight hum from the speaker, but no sound or picture. I suspected the F.C. stage as the most likely suspect. A friend fitted a new PCC84; the set then semed to function. The line linearity and width controls were also adjusted. The trouble appears from here on. The aerial is a dipole. The picture now appears slightly blurred. The focus control used to make the pieture sharp but it is not as good now. The white content of the pieture at times appears as a glare, turning down the brilliance makes the black content lifeless and devoid of detail.

I find that by advancing the brilliance slightly the picture is flat, just as though the interference limiter had been adjusted. The interference
limiter is turned out as far as possible so as not to limit the maximum whites.-K. Holding (Liverpool).
We are rather inclined to suspect the PL81 line output valve of failing, but the symptoms described could be misleading. The V12 ECL80 sig. cathode follower/A.P.C. output valve could he at fault or the 39 KI (MR2) A.P.C. rectifier could be defective. If the contrast cannot be controlled properly this would appear to be extremely likely.

## PHILIPS MODEL 1115 U

Iine hold is very unslable, the slightest drop in volts on the mains causes the picture to slip from the right. This takes place every day, and has been so ever since I bought the set. The engineer put all the blame on the mains, but I could not help thinking that it was a case of $50-50$. Last week the supply company fitted an exira transformer on to the supply; this has made a big difierence to the supply; we now only get about 5 V . drop on peak load, but the line hold still slips.

The ECL 80 line oscillator has been changed with other ECLD8s in the set, but makes no difference. This change over took place in the first weeh when the valves were new. The set is now three years old and has given no other trouble. The frame only slips when there is a big drop on the mains, by that time the picture is not worth loohing al. I have service sheet for this model.-J. Blake (Bridgwater).

We would advise you to change the $220 \mathrm{~K} s$ (ied. red. yellow.) load resistor of the 2nd line sync clipper. Reduce the value to $150 \mathrm{~K} s 2$ if necessary.

## FERGUSON 306T

The set is six months old. In that time I have had to replace E.II.T. rectifier (EY86) four times. Can you please tell me where to looh for the trouble? I have a "Avominor" test instrument and service shect.-J. Ford (Willenhall).
The EY86 heater connections should be examined to ensure that the 4.75 s resistor, which should be wired in series wth the heater. is actually included in the circuit. If no resistor is found your dealer should be consulted. If the resistor is in the circuit it may be necessary to increase its value to prevent overrunning the EY86 heater.

## P.T. BAND III CONVERTER

I wonder if you will be good enough to kindly advise me on the following:

1. Can it be comnected to my set, Philips 1100L', by simply plugging the output into the aerial input?
2. My channels are: Band I Channel 5 and Band III, Channel 10. Will the coils as shown be O.K.?
3. Is there sufficient H.T. and L.T. available to energise it from my set? Can the converter heaters be linked into the set chain? Where will I take my 200 V . H.T. fron?
4. This set, as you know, is fed with a balanced twin feeder. Can twin feeder and its sockets be used in place of the coax and its
fittings on the converter?-(i. G. D. Evans (Swanseä).
5. Although your receiver uses a balanced aerial input circuit, provided the signal due to the local Band I station is not unduly high in your area a short length of coaxial feeder can be used successfully to connect the converter to the receiver in the usual manner. If the Band I signal is high, however. trouble will be experienced with Band I breakthrough.
6. L7 should be wound with eight turns of wire of the kind indicaled. 16 may also require alteration by increasing the turns spacing or winding with four turns of wire, instead of $4 \frac{1}{2}$ turns.
7. A separate powee pach shouk be used in your case.
8. Yes. See 1 above

## PYE LV51

The picture keeps tumbling aromul and only hatis for short periods, even wilh the control (frame hold) at its maximum. I also note that the position is worsened when :un electric fire is switched on.-W. M. Thompon (Radleit).

We would advise you to replace the 470 K !? resistor (yellow. violet. yellow) which is wired in series with the centre tag of the frame hold control.

## FERRANTI MODEL T T1325

My problem is that, on switching on in the evening, the picture is perfect but the brillance control is almost fully retarded. After about two hours' viewing the brilliance has increased to such a degree that I cannot reduce it on the control any further and, athough the picture itself is perfect, flybach lines are clearly visibie and, of course, it is most uncomiortable to watch. If the set is switched off for about three or four hours it then becomes normal for a time but gradually the brilliance increases again.

Can you advise me what to look for? suspect a resistor is worhing above load and gradually altering in value. I have no service sheet for this set.-H. I. Toms (Banbury).

Since the picture quality remains good. the increasing brilliance must be due to a rise in potential applied to the grid of the C.R.T. This could well be due to leahage through the $.1 \mu \mathrm{~F}$ capacitor connected from pin 5 of the C.R.T. to the H.T. line. This capacitor should he changed and the associated 470ks? resistor (yellow, violet, yellow) checked.

## BUSH DAC90A

My Bush has developed a hum which is getting unbearable when trying to listen to a proganme. Directly I switch on, the set bums and heeps on all the time it is switched on. I have looked to sec if any connections to earth have come unsoldered but there does not seem to be anything wrong. I am only a norice so perhaps with you: valuable howledge you could entighten me where else to looh for the froulle. The se $i$ is four years old.- A. Pring (kew).

If the hum is present when the volume control is turned right down then the trouble is probably
caused by a defective electrolvtic smoothing capacitor. A dual $32+16{ }_{\mu} \mathrm{F}$ unit is used in your model. and both sections should be tested or substituted with a part known to be in good order. Also check the condition of the CL33 output valve.

## Ultra V7116

I would like to hnow if this model is suitable for conversion to Band III, if so what would be the best to fit, a converter or a channel tuner?Norman Dewey (Bourne).

Since the oscillator in this model is working below the signal frequancy. giving a sound I.F. of $16 \mathrm{Mc} / \mathrm{s}$ and a vision IF. of $19.5 \mathrm{Mc} / \mathrm{s}$, it is not possible to employ a turret converter as these are made only for sets using an oscillator working above the signal frequency.
A simple add-on type Band 111 converter will need to be used in your case. therefore, such as the Speneer West Type 80 unit.

## replacing a tube

I have replaced a burned out tube, G.E.C. 6706A, with a Mazda CRN1122, which the dealer said would fit in. The picture is quite bright, but there is very little contrast, and the raster cannot be cent off with the brightness control at minimam.
Is this a sign of a faulty tube, or is it something in the set which daes not agree with the (ube ratings?-R. Baitey (Beeston).

Is the tube base comected correctly? The base connections of the G.E.C tube do not conform with the connections of the Mazda tube. The connections on the Mazda tube are as follows: pins 1 and 8. heater; pin 3, cathode; pin 5, grid; while the connections on the G.E.C. Tube are: pins 2 and 7 , heater; pin 5, grid: pin 8, cathode. If the base connections are correct uncontrollable brightness may be caused by a defect in the tube.

## RAYMOND 14 in .

The vision went completely off, the sound being O.K. At the same time smoke came from the rear of the set. On inspection 1 found that the smoke was coming from the $1 K$ resistor situated in the E.H.T. section. The resistor is R72 on the service sheet which I have.

The $10 \mathrm{Kc} / \mathrm{s}$ whistle is present and the E.H.T. rectifier I had tested and found O.K.
I would be very grateful if you could help me locate the trouble. Il do not have any test equipment.-R. M. Ball (Wallasey).
This trouble is almost certainly caused either by a fault in the line deflector coils or in the line output transformer.

## PYE MODEL T18

I an trying to modify my Pye to a 1 tin. I have got a CRM142 tube which has the same size neck as the gin. tube had (the latter had become guite wors out, hence the idea of trying to adapt a 14 in . instead of buying another 9in. tube). I have altered the base connections and fitted a 12 volt filament transformer, raised the tube support and focusing coils and titted the tuise.
(Cominued on page 245)

## SETS \& COMPONENTS

 TEST SETS: 74A with 10 valves. VCR, 139a and 50-cycle power pack; fair condition, $50 /-$ carr. $8 / 6$. Transformers: Pri. 50 v . 50 c . to ${ }_{2 / 61}^{10 / 15 / 20}{ }^{25} ; 30 / 50 \mathrm{v}, \quad 2 \mathrm{~A}, 7 / 6$ (post $2 / 61 \quad$ C ${ }^{2}$ core: 230 v, in: outputs:$315-0-315 \mathrm{v}, ~$
60 mA.
5 v .2 a.
6.3 v .1 .5 a, $315-0-315 \mathrm{v}, \quad 60 \mathrm{~mA} .5 \mathrm{~V}$. $2 \mathrm{a} . / 6.3 \mathrm{v}$. ${ }^{1.5 \mathrm{a}}$,
$25 / \mathrm{m}$ (p.p. $3 / 6$ ). Input $200 / 250 \mathrm{v}$. Outputs: i2v., 3 a, and $5 \mathrm{v} ., 3 \mathrm{~A}, 12 / 6$; $360-0-300 \mathrm{v}$. 200 mA , and 4 v . twice. 17/6. Indicator Units. new. with VCR97. $3^{/ V R 91.2 / C V 18.2 / V R 54, ~ 24 / . ~}$ tcarr. 7/-1.' Responser ZC8931, $160 /$ 190 mes., with valves, $15 /$ - icarr. 7/61. Brand new RF. 26 . 27, 25/post 3/1; RF25. $10 / 6$. Metal Rectifiers: $240 \mathrm{v}, 100 \mathrm{~mA}, 4 /-; 240 \mathrm{v}, 30 \mathrm{~mA}$. $3 / \mathbf{0}: 1.000 \mathrm{~V} ., \quad 30 \mathrm{~mA}, 7 / 6$. Chokes.
 List and enquiries s.a.e. please! Terms, c.w.o. Postage extra. Immediate despatch. W. A. BENSON (PT.) 136. Rathbone Road, Liverpool. 15.
GUARANTEED TELEVISION, 12 in . 5-Channel models. first-class picture. £23 each. carriage paid. THE GRAMOPHONE SHOP, 19-21, Brockley Rise. London, S.E.23.

LOUDSPEAKERS repaired promptly. MODEL LOUDSPEAKER SERVICE, MODEL LOUDSPEAKER
I.T.V. CONVERTERS from $£ 3 / 19 / 6$, self-contained, guaranteed. H.P without fuss. Aerials from $14 / 6$. Trade enquiries invited, G. A Chippenlam, Wilts.

TELEVISIONS. 9in. models £ $7 / 10 /$. 12 in . models $£ 13 / 10 /-12 \mathrm{in}$. 5 -Channel models $£ 19 / 10 /$ - each; all working; carriage paid. Send for list. TOMLINS. 127, Brockley Rise. Forest Hill S.E.23. FOR 5497.1

## Elstone Transformers from M. FOY.

BUILD YOUR I.T.A. AERIAL from our machined parts. Supplied with folded dipole a:ready made with insulator fitted, and cranked arm with clamp for any size of existing mast. or wall bracket. State which when ordering. I Only a screwdriver needed to complete a rigid. Waterproof array, 3 Element, $32 / 6$; 5 Element. 42/6; 8 Element. 55/-i post free. Lashing Kit if required, $15 /$ extra.
Special Offers.-F.M. Indoor Dipole. complete on mast and base. 12/6. 4 B.A Steel Screws. sin. or in. long and 6 B.A. Steel Screws. $7 / 16$ in. long, all at $1 / 9$ gross, post paid.
all at $1 / 9$ gross, post paid ${ }^{\text {post }}$ ing. rods. 4/- each, post paid.
Illustrated lists of all Aerial Fittings. with Technical Data for Aerial Construction, all bands, $1 /-\mathrm{P} . \mathrm{O}_{\text {. All }}$ goods post free. Write for details. GKyLine WORKS. Burnsall Rd., Coventry. TTel.: 60418.)

DO YOU EVER repair Radios and TV.s? Then sou require a Service Sheet. We have 1,000 s and 1.000 s of the actual ones used by the Trade. for sale or hire; s.a.e. with enquiry. You also require our new, larger Catalogue, packed with exact replacement and servicing components, price $1 /, \mathrm{M}$. FOY. 6, Wykebeck price 1/- Leeds, 9.
New, Larger Catalogue from M. FOY.
5-CHANNEL TELEVISIONS: 12 in . screen Ferguson 988, Ekco 161, etc.. $\$ 22$ each. A good selection of 12 in . T/Vs (London), $100 \%$ condition, from £12; 9 in . from £7, also 12 in . T/Vs, slight faults, from E5; 9in. from £3. TYLER TELEVISION, 63, Lee High Rd. Lewisham, S.E.13. (LEE 5979.)

> HATES: 4/- per line or part minimum 2 lines. box No. $1 /$-extrat. minimum 2 ines. mox No. prepaid and addressed to Adverlisement Manager, "Practical Television!", Towrr ifouse, Southampton sirand, London, iv.c.2. TRANSISTOR K V'T, complete. $£ 4 / 19 / 6$.
 and guaranteed. A.F. (Red Spot). 8.6. M.F.er and FiCi (Blue Spot) 14/8, R.F. and IF: Amp Whit spot ioc. PA74 P.fP. 6d. The If AIAR KIL. P. Pange 3 -30 kV . Neasures E.H.T. volts £3/15/0, post/ins. 2/6. The famous is IR AI:
 set make and model No. £6/19/6, post/ins. 2.6. Send 3d. stamp for 1ists.

> WESTWAY HADIO

5 Westward Way, Harrow. Midels.

## Replacement Components from M,FOY

 TELEVISIONS, NEEDING ATTENTION. 9in.-10in. models £4/10/- each. 12in. models C6/6/e each. 15in. modelsand Philips Projection models and Philips Projection models carringe paid. BARKERS. 325. Brock ley Road. S.E.4. (TID 5752.)
TELEVISION TUBES. Good quality reclaimed and guaranteed for 6 months, as supplied to the trade throughout the British Isles; 14-15-16-in. £5; 17 in . £6; c.w.o.. or pro-$16-\mathrm{m}$.
forma carriage $15 /-$.
ismaller sizes available. but in short supply. avalable but in short supply. 1 Parade. Rye Lane Peckliam, S.E. 15. 1Tel.: New Cross 4551.1
T.V. TUBES as new; revacuumed: all makes; 6 months straight guarantee; 12 in . $\mathbf{E 5}, 14 \mathrm{in}$. $\mathbf{E 5} / 10 / \cdot, 17 \mathrm{in}$. £7/10/-; carriage and insurance $12 / 6$. U.K. Free delivery Greater London. VIDIO REPLACEMENT CO.. Hales St.. Deptford High St., London. S.E.8. $\quad$ Tideway 4506.

## T/V TUBES

All Types and Sizes in Stock. First-class picture guaranteed. All Sizes, 66 each.
With 6 months' Full Guarantee.
Terms C.W.O. or C.O.D.
All orders dispatched within 3 days.

## GRANTS

104 Church Rd., Tranmere Birkenhead

121N. T.V.: out of order. $£ 5$; working O.K., £10; 12 in ., 5 -channel. $£ 15$; 14 in . trom 518 Auto/Radiograms from £15. Callers only. JOHN GILBERT TELEVISION (SHE 8441). 1B, Shepherds Eush Rd., London, W.6.
TRANSFORMERS, built to specification, up to 10 kVA ; singiy or quantities: 2 years guarantee: quick service. NOTTINGHAM TRANSFORMER SERVICE, 179. Wollaton St., Notrm. , Tel.: 41992.1
TELEVISIONS, 12 in.. 5 channel, £14; 14in., E18; 17in.. \&27; Faulty Sets from e2. WILKINSON'S, 146, Goldhawk Rd., W.12. (SHE 4379.) Callers only.
TELEVISIONS, all sizes and channels, at lowest prices ever! Also a few tubes. Trade supplied. HYNES, 9, Cumberland St., Victoria, S.W.1. (TAT 9140.)

UNREPEATABLE OFFER, - 12 in. 5 channel T.V.. £15; 14in., £22; good
working order. C. EDWARDS. 1070 . Harrow Rd., London. N.W.10. (Phone: LADbroke 1734.)
13-CHANNEL 12 in , turret-tuned Sets. suitable any transmitter. £25, plus carriage: $14 i n .0$. $£ 30$ many others from £8. C.C.W.. 12 Dockhead, S.E.1. (BER 3756.)
"TELEVISIONS," $12 \mathrm{in} .{ }^{5}$ channel. tunable anywhere. models from £19/10/- each; carriage paid; satisfaction guaranteed. RYAN ELECTRICS. 134. Acre Lane. Brixton. London, S.W.2. (BRI 4533.)
CATHODE RAY TUBES, used, but in good working order, and with 3 months' guarantee. All $12 i n$. to 17in. Mazda. Mullard and Emitron types at $84 / 10 / \%$ each. plus 13,6 carriage. Orders and enquiries by letter only to: BHP DISTRIBUTORS, 379. Staines Road, Hounslow, Middlesex.
R.F. UNITS. Types 27 or $26.22 /-\mathrm{i}$ 25 or 24.9 -i brand new, with valves: post, 3/-. E.W.S. CO.. 69. Church Rd.. Moseley. Birmingham.
DIPOLE INSULATORS, 1 in . boom, iin. elements, suitable T.V. or F.M. Dipoles. 5/-. P.O. with order. C. \& H., 2a, Mona Street. Liverpool. 7.

NEW AND USED VALVES and Components at low prices; all guaranteed; s.a.e. lists. Service Sheets. S.a.e. enquiries. Reconditioned Radios and enquiries. Reconditioned Radios and
T. V.s from $£ 2$, for callers. J. PALMER T.V.s from 22 , for callers. J.PALM.
(PT). 32, Neasden Lane, N.W. 10 .

MAKING YOUR OWN? Telescopes, Enlargers, Binoculars. Microscopes. Projectors. or, in fact. anything that needs lenses. Then get our booklets "How to Use ex-Gov. Lenses \& Prisms," Nos. 1 \& 2. price $2 / 6$ ea. Also our stereo book. . 3-D Without Viewers," price $7 / 6$. Comprehensive list of lenses. optical, radio and scientific gear free for s.a.e. H. W. ENGLISH, Rayleigh Road, Hutton, Brentwood, Essex.

ELECTRADIO.-Dual Wave Coil 2/6 with circuit, ditto, plus Reaction $4 /-$ runing Condenser 3/14, Crystal Diode $1 / 6$ tested 4 Transistor Set Circuit, 1/3. All Transistor Components stocked. Post free. 18. Broadlands Av,, Keynsham. Somerset.

PCF80s, 5/6, post paid; sorry no other types; all first class: mall cnly; posted Sats. Please don ${ }^{\text {t. cross }}$ P.O. G. EDWARDS (PT1), 38, Crawford Street, W. 1.

## FOR SALE

AERIAL CURRENT METERS, reading in micro-amps, render decibels obsolete. HOBLEY, 109, The Drive, Wellingborough.
YALVE CARTONS. Miniatures $10 / 6$. "GT's, 12/-. "G's' $4 /$ per 100 .
p!us $2 /-$ p. \& p. RHS $155 . ~ S w a n ~$ Arcade. Bradford. 1. Lists free.
T.V. CONSOLE CABINET, $43 / 64$ tube. megger, etc.; all brand new; halfprice. S.A.E. Box No. 196, c/o practical Television.
SUPERTONIC SUNLAMPS, listed £7/10; 80/\% S.A.E. SCIENTIFIC PRODUCTS CO.. Cleveleys. Lancs.

## SITUATIONS VACANT

PART TIME Television Service Engineer; Essex area; own transport required. CHA. 8493.

## SERVICE SHEETS

TELEVISION and Radio sheets for sale; not reprints; going cheap Box No. 198, c/o Practical Tina. VISION.
SERVICE SHEETS FROM M. FOY. SERVICE MANUALS/Sheets Tel/Radio for hire. Sale and wanted. Mixed Manuals and Sheets. 12 foi $10 /-1$ S.T.E. enquiries W. J. Gilleserf w.E.' 24. Frithtide Gdels., London.

## WANTED

NEW VALVES WANTED. EVFI EY86. PCF80, PL81, 5Z4G, U?5. or what have you? Prompt cash. RHS. 155, Swan Arcade, Bradfori. 1

## WANTED VALVES

All types ior erompt cash. Must be new. State quantity,
WILLIAM CARVIS LTD.
103, North Street, Leeds, 7.

ALL TYPES QF VALVES REQUiRED for cash State gmantity and condition. RADIO FACILITIES ITD. 38. Chalcot Road. N.W.1. (PRImirose 9090 .
WANTED, reconditioned Catiocde
Ras T/V. Tubes. Piense state makes.
sizes and prices. Eox No. 197. co Practical. Television.

## EDUCATIONAL

FREE: Brochure giving details of Home Stady Training in Radio, Teievision and all branches of Electronics. Courses for the Hoblby Enthusiast or for those aiming at the A.M.Brit I.R.E.. City and Guids. R.T.E.B. and other professional examinations. Train with college operated by Britain's largest electronics organiBritains Margest electronics organiE.M.I. INSTITUTES. Dept. PT28. London. W. 4
A.M.I.P.R.E. For details of sultable study courses roniy a limited number of students accepted, send for free Syllabus of Instruciona! Text. I.P.R.E. Conditions of membership booklet 1/-. The Practical Radio Engineei. journal, saniple copy. Engmeei. journal, sanple cops:
$2 / 3 ;$
6.000 alignment peaks for 2/3; 6.000 aligmment beaks for SECRETARY. I.P.R.E., 20, Fairfield Road. London. N. 8.
BUILD YOUR OWN T/V and learn about its operation, mintenance and servicing. Qualified enginesi-tulor available while you are learning and building. Free Brochure from E.M. INSTITUTES. Dept. PTS8. London. W.4. (Associated with H.M.

$$
11
$$

EXAMINATION.
Writ = for FREE 20-paye GUIDE, and Test, stating age of child lo: THE REGISTRAR 'Dept. M7. Nercer's Correspondencs Coliege. 69. Wimpole St. London. W.1.

## OSMOR CONVERTERS

## ALL CHANNELS

Simple, efflelent for all TV rincluding TRF, Guaranteed no break-throukh of band or We-radiation. Approx. bhic io to any Band fornnel. A.C. or A.C. ID. C Kit. £3.5.0. Ready wired. £4.0.0. Post free. Terms: C.W.O. Post orders only.
 29 1.eigh kit.. Hightury, Lomdon, N. 5

A WONDERFUL MONEY-SAVING OPPORTUNITY FOR READERS OF PRACTICAL TELEVISION :


## Now's the time to join the

 SCIENTHFTC HDAF CLUHYou BUY Books published at 10/6, $12 / 6$ and more-for oniy 4/-
Each month, the Scientific Book Club brings to its members the fascinating story of the march ol modern science, told in thoroughly dependable books by the fromtrank sciemitic writers of our time-rivid, vital, constructive contributions to Man's unceasing struggle to solve the probiems of the Universe. And although the ordinary editions of these books aie sold to the genera! public at $10 / 6,12 / 615 /$, or more, THE PRICE TO MEMBERS OF THE SCIENTIFIC BOOK CLUB IS ONLY 4/-. Remember, too, that Scientific Book Club selections are fulllenghand unab:idged. They are printed on good quality raper, well bound, with an attractive picture jacker. These are, we say with certainty, books that you will be glad to read, proud to own. The Scientific Booh Club brings these great books to you each montio ; heiping you to build up, at remarkably low cost, a lirst-chass collection of scientific books. Now is the time 10 join!
fublished at 16s.
is. TO MEMBERS
WINDOW IN THE SEA
By Ralph Nading-Hill
Fublished at 18 s .
45. TO MEMBERS

SCIENCE UNFOLDS
THE FUTURE
Ey J. G Crowther
Published of 18s.
A 5 TO MEMBERS
$\boldsymbol{F} \boldsymbol{I} \boldsymbol{E} \boldsymbol{E} \boldsymbol{E}$ ! You can obiain the OXFORD DICTIONARY (published at 18s.) FREE if you enrol a friend in the Club. Send your friend's name and address with 5 s. (4s. plus is, pustage) for first book, mentioning this oller, and your gifit will be sent to you.

## - - - - FILL IN THIS ENROLMENT FORM TO-DAY :-mmem

To The Scientific Book Club, 121 Chariug Cross Road, London, W.C. 2
I wish to join the Scientific Book Club, and agree to purchase the book issued each month to members at a cost of 4 s . (postage is.). I agree to continue my membership for a minimum of six books and thereafter until countermanded.

Prac. Te! ${ }^{\text {revisin Dec, }} 57$.

* 1 will may for selections on receipt.

Or if you wish to sise time, resiage and tostal order cooss you nay send ant aciance subscription. 6 months 30 s : 12 nounths 603.

* I creicse 30s 60 s . (Strike out amount not applicable.)
* Place $\sqrt{ }$ in the space above, as resuired.


## NA IE

(Block leturs, please)
ADDRESS

[^2]When I tried it out the sound is still O.K. and all the valves appear to light up O.K.-that is the glass ones-but all I get on the tube is a bright horizontal band about $\frac{3}{4}$ in. wide which is unaltered by any of the controls. Only novement of the ion trap either widens or narrows it within limits. The people who supplied the tube did warn me that I-might need more E.H.T. Do you think this is what is wrong? The E.H.T. that is fitted is a cylindrical affair with a Paxolin tube that slides up and down which gives a very slight adjustment to the picture-or rather did do -and two leads-a long one to the C.R.T. and a short one to the top cap of a PL 38 valve.S. L. F. Seares (Letchworth).

Modern wide-angle picture tubes require greater scanning power, E.H.T. voltage and video drive than your yin. chassis is capable of supplying. Some form of picture should be obtained, however, and from your description of the symptom we feel that a fault has developed in the frame timebase circuits. Make sure that you have not damaged or disconnected any wires or windings associated with the scanning coils.

## EKCO TC185N

My set was converted for Band III, using a Clydon Turret Tuner. My trouble on the set is a varying white line or edging on the bottom of the picture. Adjustment on the frame linearity and height controls, plus the C.R.T. adjustments, removes it to some extent, but still leaves me a gap at the bottom. On some occasions the line seemis to disappear on its own accord.
A month ago I had trouble with the picture width but a new 20 L 1 valve rectified it. Checking over recently I found that on switching on occasionally the U801 H.T. rectifier would flash a little or sliow a blue tint.
Could this valve or the frame oscillator have any effect with the white line? Also on one occasion I heard a gentle plop in the set and wondered if you could explain this to me.-S. Flox (Leeds).

The flashes around the U801 (and the "plops" probably) are due to small emissive particles flaking off the cathode. One day one of these will lodge between cathode and anode and the valve will need replacing. Your foldover could be due to a low emission frame output valve, which is a 6L18 in some sets and a 10P13 in others. Failing this check the 4.700 pF feedback condenser from the anode of the output valve to the linearity control.

## MURI'HY V114 9in. TV

The lower half of the picture is marred by black or white lines (horizontal) and these usually start at the very bottom and run up to half way and then disappear. Picture quality is excellent. Close investigation of the picture was made and it appears that the spot misses sonte six or more horizontal traces and then carries on normally
until it repeats itself. This causes this part of the picture to "jump up and down" because of the displacement. Sometimes the trace piles up on itself, causing a white line. Frame hold and other frame controls will not correct this.

Frame output valve (Pen45) checked O.K. Thyratron oscillator (T+1) interchanged with line timebase valve. No change. Sync sep. (DD41) interchanged with sound section valve. No change. Frame output transformer windings checked with ohmeter. O.K. Video output valve replaced with new valve ( 6 F 12 ). No change. C52 ( $32 \mu \mathrm{~F}$ ) electrolytic shows signs of "bulging" on its end but "hicks" the meter O.K. H.T. voltage O.K. Various resistors associated with frame timebase valves and controls checked and appear to be O.K.-D. Goodey (Farnhorough).

The trouble you are having could either be oscillation of the frame output valve or a breakdown in the frame output transformer. As neither of these troubles would show on a tester the only sure way to check is to replace.
A fairly large cored audio transformer will do as a makeshift frame output transformer. It almost certainly will not match, or produce a full linear scan. but it should suffice to enable you to check the original.

## MASTERADIO TG7T

The trouble is that, after the set has been switched on, the picture always comes on in broken horizontal lines, with a vertical line down the centre, and duit, and turning up the brightness control does not make much difference. By turning the line hold control I can get two or more dull pictures side by side, and after manipulating the controls for some time the screen will brighten suddenly, and by turning the line hold control I can get a picture which will immediately go dull and break up again. After about half an hour I may finally get a steady picture which may last half to one hour when it will break into two pictures with a wide vertical black band in the middle. Sometimes the picture can be restored by turning the line hold or it may right itself, and may last for an hour or two. The frame hold and contrast controls seem to work all right. I have fitted a new line output valve, 50CD6G, but it did not cure the trouble.-P. F. Wilson (Walthamstow).

Make sure that the aerial is supplying a good signal to the receiver. If all is well here. suspect trouble in the line sync circuits. Change the capacitor between pins 1 and 6 on V11 for one valued 22 pF . This will improve the line lock. line drift may be caused by trouble in V1I itself, and this is best checked by substitution.


[^3]
## RADIO SUPPLY CO (LLEDS) LTD.

Post Terms C.W.O. or C.O.1). No C. 6.0 . under £1. Po-tari $1 / 9$ estra muder $£ 2$


## R.S.C. TRANSFORMERS

 Fully Guarantemeliterfararal and Inprernated.
 TOI SIIKOMEN DIROR TIIEOL(il $200-0-200$ v 10 ma, $6.3 \mathrm{r} \mathrm{a}_{1}$ b v 2 a ... 16 . $350-0-350$ v $80 \mathrm{ma}, 6.3$ v $2 \mathrm{a}, 5$ v2a $250-0-250$ v $100 \mathrm{ma}, 6.3 \mathrm{v} 4 \mathrm{a} .5$ v. 3 a $\ldots 23$... 28 $350-0-350$ v 100 ma, 6.3 v 4 a, 5 v 3 a $\ldots 23.9$ $350-0-350$ v $150 \mathrm{ma}, 6.3$ v $4 \mathrm{a}, 5$ v 3 a $\ldots 298$ FWL.LV SHIROWDED CPIGIAT $250-0-250$ y 60 mai 6.3 y 2 a 5 v 2 a
Midget type 2 -3-3in Midget type 25-3-31n.
 for R1335 Conversion $300-0-300$ y $100 \mathrm{ma}, 6.3$ y $4 \mathrm{~s}, 5$ y 3 a $350-0-350$ v $100 \mathrm{ma}, 6.3$ v 4 a, 5 v 3 a $425-0-425$ v 200 ma .6 .3 v 4 a, С.T. 6.3 4a,C.T.5v3a
FILAMENT TRANSEGRNEIRS All with. $200-250$ v $50 \mathrm{c} / 3$ Primaries 1.5 w. $5,9,6.3$ y 2 , $8: 0-4-6.3$ v $2: 6.3 \mathrm{v}$ 12 v1 \&. $11: 6.3$ v3a, $8111: 6.3$ v6a, $1 \% 9$ CHI NRGEIR TRANSFORMIIR $200-250$ v0-9-15 v $1 / \mathrm{a}, 119: 0-9-15$ ץु 3 a, $16 / 9$ 0-8-15 v Sa. 19/9:0-9-15 y 6 a, 22.8 Stan RRANN Standard Pentode 5,000 to 3 nhin
Small Pentode 5,000 to 3 ohms
Small rentode 5,000 to 3
250 ma 5 h 500 hms
80 ma 10 h 350 omm
b0 ma 10 h 400 ohms
 G.F.C. 300 v 250 ma. 129 : 120 v 10 mFERS




6 ohms $143 ;$
Twin-screened Fceder
H.NTELEV NET CONVI:NTH: KIT Alf barts for converting any normal type of Battery Receiter to A. C. mains $200-250$ V Fully smoothed and fully smoothod ma. of 2 at 0.4 a to 1 a. Price including circuit 499 . Or ready for use, $9 / 9$ extra.

AII, DKY IRECEIVISR BATELIEY EISIINATOR KIT.-All parts for the (onstruction of a unit (metal-case 5h-1 -2in.) to supply Battery Portable receivers requiring 90 v and 1.5 v . Fully smoothed. From $200-250$ v 50 o/s mains. 'rice inc, point-ot-point wiring diagrams, 39/9. Oi ready for use. 46.

 $10-0-100-200-220-240$ vु to $5-0-75-115-135 \mathrm{~V}$ or REVEHSE. $80 / 100$ watts. Only $11 / 9$. lus 29 nost. $10-0-100-200-220-240$ v to 9-(1)-110-122-136-148 v O1 REVERSE, 200 watts, 35 . plus $7 / 6$ carr. Both 50 c.p.s.
WX-ionT. CASNS. Weli ventilated black crarkle finithed, undrilled cover. Size 14 \& 16 x 8 in. high. IIDEAL FOR BATTERY CHARCER OR INSTRUMENT CASE OR CUVER COULD BE LTSED FOR AMPIIFIER, OnIY 9/9, plus 29 postare ated cover finished stoved zrey enamel 79 , ulus 2,9 post.
(X-GOVT. VLVES (NEW)

|  | \% 79 | 6KJG | 3.9 | GATG | $7 / 9$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1Sis | 79 | 6×5CT | 79 | EBGI | 8/9 |
| Sind | 89 | 6L6G | 119 | EF\%O | $8 / 9$ |
| 6 K 8 G | 99 | 807 | $7 / 9$ | EF35 | 49 |
| 6S7JMT | 6.8 | 12.46 | $7 / 8$ | ELS2 | 37 |
| EF゙吅 | 59 | ${ }^{1582} 4 \mathrm{C}$ | 99 | EL31 | 5 |
| 6V6CT | 7.9 | 3 Z 4 | 69 | KT66 | 119 |
| 6J5C: | 39 | MH4 | 49 | SP61 | 2.9 |

## Dept. N.

## 32, THE CALLS, LEEDS 2.

## -(iOST. MIINS TRANSF

## emoved from New ex-cove <br> $\qquad$

 100 ma, 6.3 v 7 a, 5 y 3 aEX-GOUT. NMOHTHING CHONEK80 ma 10 h 150 olims
100 ma 5 h 100 ohms Tropicallised
100 ma $8-10$ h 100 ohms Parmeko
120 ma 12 h 100 ohms
120 ma 6 h 100 ohms
150 ma 6 150 ohms Trop.
150 ma 10 h 150 ohms
250 ma 5 h 50 ohms
300 ma 20 h 200 ohms
$12 / 9$
$19 / 9$
02 mfd 5000 v Cans
(ex-Govt.), $2 / 11$ HATIURI CIINRGUIRKITS.-Consisting of attractive Blue Hammer Case ransformer, F.W, Rectifier, Fuse, Fuse holder". Tag Strip Grommets and Circuits. For mains mput $200-230-250$ v 50 c 5.6 v 2 a 53.9 . Any type assembled and tested for 6/9 extra.
Bifrisy or 12 y, 4 m
For normal actink For normal A.C. mains input $200-230-250 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}$ Selector panel for 6 v or charge rate of up to 4 charre rate of $u p$ to 4 Anirs Fuse, and with meter. Well ventilated case with attractive
hammer finish, Guaranteed for 12 months 75/-. Carr ${ }^{12} 6$


HNTEFIRY CHNLEGERS.-FOI mains $200-250$ y 50 c 's. Output for charging 6 or or 127 . train Above can aiso be used for electric D.C sulpiv Min
D.C. SUPIVY KIT,-Suitable for Elec tric Trains. Consists of mains trans F. $\mathbf{W}$. Bridge Rectifier. 12 v 1 a. Selenium Fuses. Change Direction Switch Variabi speed Regulator. Partially $29 / 9$

## A SPENCER-WEST BAND III CONVERTER <br> FOR 66.5 .0



The Type 80 with printed circuits, panel controls for Band switch and fine tuning and a performance which ensures enthusiastic satisfaction. Handsomely designed and finished to stand on your receiver with its self-contained power supply it just plugs siraight in.
Full descriptive leaflet on request.
Available from all good dealers or post free direct from the manufacturers if any difficulty.

## SPENCER - WEST LTD. Quay Works, Great Yarmouth, Norfolk.

Phones: Works 4794; Sales 3009
Grams: Spencer-West, Great Yarmouth.
dir-xpaced coavial cabir, 75,80 ohms. new, 9d. per yd. 70 - per 100 yds. Metere, 500 micloamps. F.S.D. marked 16600 v. 2 in .
 new, 2r 6 . Telfvinion Acrials. Band III Channels 8910,3 -element. 28'6; 5-element. 386. 8-ctement, 586 : Rand Iall channels.
 aerial enquiry and we will reply by return. We only stock the well-known guaranteed made aerials. thereby giving hetter value tor money. Pifeo Allinionne landiometer, A.C. D.C. ranges $0.6-240$ volts, $0-30 \mathrm{in}$ a. atso conimuity and valye nlament tester. 328. F.W. Freder Calsle. new. standard 300 ohms. 6il: per yd. Volume controls. spectal offer meg. S/P Long spindle. 3 -t Volmme HiM. 1,46 , RM. 5 . 56 , R.M.3, 26
 Marnets. 5 - (hromi dar derial. 376 .
 18 iord plaser new and guaranteed. 18 zis. Pifro ELectricad Btanhets, new,
Single. 6 ; 6 ; Double. $8 \% / 6$.

G1 ALANTEFD VALVES

|  | 6 6 8 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 607 | 9 | EB91 | 5. |  | 126 |
|  | 6AT6 |  | E184 | $10^{\prime} 8$ |  | 8.6 |
| 4. | $6{ }^{68 \mathrm{SL}}$ / | 8 | ECL8 | $12 / 6$ | ULA | 6 |
| 6 | 6647 | 10 |  |  | W81 | 136 |
| 96 | 6 68w6 | 8 | EY5 | 126 | W76 | 106 |
|  | - 9BGSG |  | Pr82 | 8 |  |  |
| 6 |  | $19 / 8$ | PYOT |  | ECC | 196 |

MAIL ORDER ONLE
NO.CALLERS.
Terms: C.W.O. or C.O.D. Minimum C.O.D.
 carrlate.

ELECTRO-SERVICES \& Co.
221 BATTERSEA PARK ROAD, LONDON, S.W.11.

## IIRST-CLASS TELEVISION and RADIO COURSES

## GET A CERTIFICATE!

After brief, intensely interesting study -undertaken at home in your spare time-YOU can secure your professional qualification or learn Servicing and Theory. Let us show you how!

## .....FREE GUIDE

The New Free Guide contains 132 : pages of information of the greatest importance to those seeking such success compelling qualifications as A.M.Brit.l.R.E., City and Guilds Final Radio, P.M.G. Radio Amateurs' Exams., Gen. Cert. of Educ., London B.Sc. (Eng.), A.M.I.P.E. A.M.I.Mech.E. Draughtsmanship (all branches). otc., sogether with particulars o SUCCESS OR NO FEE
Write now for your copy of this invaluable publication. it may well prove to be the turning point in your

FOUNDED 1885-OVER
. . . . . 150,000 SUCCESSES. . . . .
NATIONAL INSTITUTE OF ENGINEERING

## (Dept. 462), 149, HOLBORN,

LONDON, E.C.I

## AMAZING OFFER IN COMMERCIAL TELEVISION AERIALS



This powerful 4-element, pre-assembled, widespaced Band III beam Aerial by a leading manufacturer. Supplied complete with cranked pole and wall fixing bracket can also be loft mounted. Listed at $55 / 6$. OUR PRICE, BRAND NEW, in maker's sealed carton, 39/6.
G.C.EQUIPMENTCO.LTD., 2, Park Row, Leeds, I.

## EDDY'S (Vottm.) LTD. <br> (DEPT. P.T.)

172, ALFRETON ROAD, NOTTINGHAM

## THIS MONTH'S SPECIAL OFFERS

RECORDING TAPE. $1,200 \mathrm{ft}$. reels $9 / 11$ each, post, etc. $1 /-$ extra.
GERMANIUM DIODES. New and Guaranteed $1 /$ - each. 10/- a dozen, post extra 3d.
MIDGET BATTERY ELIMINATORS. To convert all low consumption portables for mains operation. Mains output $220 / 240$ v. A.C. H.T. Output 85 v .10 mA . L.T. cutput 1.3 v . 125 mA . Size $3.7 \mathrm{~mm} \times 2.5 \mathrm{in}$. Actually smaller than H.T. battery alone! Amazing price of $55 /$-, plus $2 / 6$ extra post and packing. ALL NEW AND GUARANTEED.

\footnotetext{
Any parcel
Any parcel Supplus Nostage and
 damage in \& Guaranteed - - per Va!ve transit ALL TESTED BEFORE DESPATCH. extra. Over



QUALITY TELEVISION COMPONENTS SCANNING COILS, $6 / 10 \mathrm{kV}$. and $13 / 15 \mathrm{kV}$., R.F. E.H.T. UNITS, E.H.T. and OUTPUT TRANSFORMERS, LINE FLYBACK Ë.H.T. UNITS. COIL KITS FOR "P.T." BAND III CONVERTERS Write for illustrated list (Publication 75)
HAYNES RADIO Lid., $\begin{gathered}\text { Queensway, Enfield, } \\ \text { Middlesex. }\end{gathered}$

## "Werwhasir"

PrintedCircuit Converter No Patterning or Breakthrough

We can supply the complete kit of parts including valves, £5.0.0.
Send for detailed list of this kit and others, POST FREE.

Set of coils for conversion of Viewmaster receiver, £1.0.0.
please note new address
AUDIO LTD.
162 Gray's Inn Rd, London, W.C. 1
Telephone TERminus 0228-9.


60 PAGES OF SPARES IN NEW CATALOGUE
81 exact replacement V/Cs. 37 Mains droppers. Line output transformers, Condensers. Resistors, Tools. Everything for the engineer or amateur. Price $1 /=$.

> M. FOY

6, Wykebeck Gdns., Leeds, 9.
RES/CAP BRIDGE
35/p. \& p. $1 / 6$ types of
condensers
Easy to Build ${ }^{\text {cond }} \mathrm{U}_{\mathrm{p}}$ ensers Easy to Use READY CALIBRATED
Stamp for details of this and other kits. RADIO MAIL (Dept. z)
Raleigh Mews, Raleigh Street, Nottingham
TELEVISION COMPONENT SERVICE
Replacement components available for the popular home constructor designs. Catalogue available on request.

J. T. FILMER | 日2, Darford Road, |
| :---: |
| Dareford, |
| Kent | Tel. : Dortford 4057

RADIO AND TELEVISION COMPONENTS
All parts in stock tor
Viewmaster, Soundmaster, Teleling, etc. Fasy Terms avalable. 3u. stamp (only) for Calalogue
JAMES H. MARTIN \& CO. IINSTIWNGTG, NEWB MHIDGE

ALUMINIUM, LIGHT ALLOYS, BRASS, COPPER, BRONZE,
in rod, bar, sheet, tube, strip Wire, angle, channel. tee

3000 STANDARD STOCK SIZES
H. ROLLET \& CO., LTD.

6, CHESHAMPLACE, LONDON, S.W.1.
SLOane 3463
Works:
36, ROS EBERY AVE., LONDON, E.C.1. Branches at Liverpool, Manchester. Birmingham, Leeds.
"No Quantity too Small."
CERAMIC CAPACITORS
Non-inductive $\mathrm{Hi}-\mathrm{k}$ midget tubular ceramic, 500 v . d.c. wkg. Ideal for T.V., etc. :-. $0005 \mu \mathrm{~F}, .001 / / \mathrm{F}$, $.0015 \mu \mathrm{~F}, \quad .002 \mu \mathrm{~F}, \quad .003 \mu \mathrm{~F}, \quad 10 \mathrm{~d}$ each ; $.005 \mu \mathrm{~F}$ and $.01 \mathrm{\prime F}, 1 /$ each.
Minimum postage 9d. on orders under $\mathfrak{f 3}$
SOUTHERN RADIO \& ELECTRICAL SUPPLIES SORAD WORKS
REDLYNCH, SALISBURY

## TECHNICAL TRADING CO.

RECTAXQIIAITV TEIBES. 12 MONTH Guarantee. 14 in .



13-GHANNEL $\begin{gathered}\text { Unrepeatable } \\ \text { mwnortunity, complete, }\end{gathered}$
QONVERTERS extra coils required, easily adapted most
mounting models, each, $23 / 15$.

[^4]
## LINE OUTPUT TRANSFORMERS

Most types available. State Make and Model Number of Receiver when ordering.
S.A.E. please with all enquiries.

HOWORTH
51 POLLARD LANE, BRADFORD, 2, YORKS
Tel. 37030

## TRANSISTOR

 TRANSFORMERS
... Two examples - a Driver and an Outpul type-from our miniature lightweight range

| 150 mW | R:mge Size | Weight | Freyuency | 1rice |
| :---: | :---: | :---: | :---: | :---: |
| Driver | $1.1132{ }^{\prime \prime} \times 13^{\prime} 16^{\prime \prime} \times 13 / 16^{\prime \prime}$ | loz. | $120 \mathrm{c} / \mathrm{s}-17 \mathrm{Kc} / \mathrm{s}$ | 13/- |
| Output | do. do. do. | do. | 100c/s-17 Kc/s | $5 / 6$ |
| 250 mW Kange |  |  |  |  |
| Driver | 1.3/4"×13/16"×1.1 $3^{\prime \prime}$ | $20 z$. | 50 cts -16 Kcss | $14 / 6$ |
| Output | do. do. do. | do | 50 c s-16 Ḱc |  |



## The NERA R.F. E.H.T. UNIT

... designed to provide a safe and reliable source of D.C. high voltage for all C.R.T.'s including the new wide angle aluminised types. Outpus is continuously variable between $8-12 \mathrm{kV}$ at approximately $500 \mu \mathrm{~A}$. Power supplies necessary are 6.3 v . at 1 amp., and $250 / 350 \mathrm{v}$. at 40 mA . Ample shiedling prevents radiation and interlerence to broadeast receivers.

Price: $£ 7$. 10.0
Coil and rectifier assembly only: it . 10 . 0


MERROW GUILDFORI) SURREY

Tel. Guildford 2211
(One of the group of companies associated with the Sourlimern Areas Electric Corporation Lad.)

Moulel J07/K Double Beam Kil Oscilloscope. List Price f69-().0).
Hire Purchase Facilities.
Trade terms on application

AN INSTRUMENT RANGE IN KIT FORM
Q. $H^{\prime}$ hy has Cossor /nstrmments decided mpon this innc:ation?
A. To mahe available a range ol first-ciass measurime instruments at a considerahle saving in cost to the buyer.
Q. Are kit instruments inferior in performance to their Factor:buili c'quivalonts?
A. Certainly not. If assembled and wired eaactly in accordance with lise Manual of Instructions.
Q. A certaill skill must, surely, be required to build these instroments?
A. Nonc beyond the ability to use a smatl soldering iron.
Q. How rall a nerformance specification be maintained without solting up with rest equipment?
A. Largely by the uscoll'RINTEI) CIRCUITS which allow no interference with the layout of cricical parts ol the circuit.
Q. How many kit instrments are at present a a ailable?
A. Three Two Oscilloscopes, a Single-Beam and a DoubleBeam, and a Valve Voltmeter. Oblers will follow shortly.
Q. Canld $/$ hate more information on thewe interessing instrmments?
A. With the greatest of pleasure. fust write to

## COSSOR <br> INSTRUMENTS LIMITED

The Instrument Compan! of the Cossor Group
COSSOR HOUSE - HIGHIBURY GROUE - LONDON, N.5.
Teiephone: CANonbury 12.34 ( 33 lines) Telegrams: Cossor. "Vorphone, "London Cables: Cossor. London


[^0]:    "practical televilion circilis"
    288 pages, 156 illustrations
    15/- net or $15 / 6$ by post from :
    GEO. NEWNES LTD.
    Tower House, Southampton Street, Strand, W.C. 2

[^1]:    Any Parcel Insured Against Damage In Transit 6d. Extra.

    ## IREADEIRS RADIO

    24, COLBERG PLACE, STAMFORD HILL, LONDON, N. 16

    STA. 4587

[^2]:    Overseas enrulments (prices as for inkand) should
    Le accompanied by an advance subscription.

[^3]:    Published on the 22nd of each month by GEORGE NEWNES, LIMITED, Tower House. Scuthampton Street, Strand. London. W.C. 2 . and printed in England by W. SPEAIGHT \& SONS, Exmoor Street. London. W. io. Sole Agents for Australia and New Zealand : GORDON \& GOTCH (A/sia), LTD, south AIrica: CENTRAL NEWS.AGENCY. LTD. Subscription rate including postage for one year : Inland 19s., Abroad 17s: 6d. (Canada I6s.). Registered at the General Post Office for the Canadian Magazine Post.

[^4]:    ATTLACIIVE 14in. TAIBIE T.N. CAIING'IS. Size 17in. $x$
    16 in. $x 16 i n . m a s k, ~ g l a s s, 7 \times 4$ front speaker baffle, $29-$ post $6 /-$ S.A.E FREE LIST 400 AMAZING SNIPS

    Including EF50. $2 / 6$ E EF91. 7/-: W.A. Focus Magnets, $8 /-$ Sereened Slugged Alladin Coils. 6/: doz. Etc., etc.
    10,000 O'IHER BARGAINS 'JO CALLERS AT :-
    350/352 FRATTON ROAD, PORTSMOUTH

