PRACTICAL

ROEOTICS-MICROS ELECTRONICS-INTERFACINE

> M,

Semiconductor circultsUniversellimer oomputer Gnvelope Sheper

SAVE EVEN MORE!
 THE PRACTICAL ELECTRONICS FILM SERVICE

So many satisfied customers harve been delighted with this award-winning film service that the economies made are now being passed on to you in the form of substantial price reductions. You can now save up to 75 p on last year's prices For 36 successful Superprints you pay only $£ 2.95$ inc. VAT Compare this with last year's $£ 3.70$ and with the prices in the shops. Postage and packing is 30p extra as before Here is the new price range - and remember, Superprints give you 30 per cent more picture area than standard prints at no extra charge
$\left.\begin{array}{ll}\text { No. of Superprints } & \text { Price (inc. VAT) } \\ 12-15 & £ 1.65 \\ 24 & £ 2.20 \\ 36 & £ 2.95\end{array}\right\}$ PLUS P/P

RELIABILITY AND QUALITY

All our colour prints aré made on Kodak Luxury Lustre paper. Prints have square corners and are borderless to give you maximum picture area. All prints are checked at every processing stage for accurate colour reproduction in a laboratory which is the winner of five recent successive Kodak Gold Awards for Quality. No other processing laboratory has been able to match this record. Atter allowing for postal and peak-period delcyys, you should normally expect your prints after seven to ten days

ALL. YOU HAVE TO DO

Send any make of colour print film together with your cheque or postal order inside the Freepost envelope enclosed with this issue. Or fill in the coupon below and send together with your film and remittance in a strong envelope to: Practical Electronics Film Service, FREEPOST, Watiord WDI 8FP. Half frame films are welcome, and these are charged at double the full-frame price

PERSONALISED SERVICE

Readers know we care for their prints. If you have any queries, contact our service's ten-line switchboard:
(01) 9539911

Approx sizes of Superprints: $6^{\prime \prime} \times 4^{\prime \prime}(35 \mathrm{~mm}) 51 / 4^{\prime \prime} \times 4^{\prime \prime}(110$, Disc and 135 Half Frame) $4^{\prime \prime} \times 4^{\prime \prime}$ (126).

*Print my enclosed film *Rush me___of 110/24
\qquad of $135 / 36$ of 126/24. only.

SPECLAL FILM OFFER

Films from the high-resolution emulsion 'ColorFast' range are crvailable to all readers at highly competitive prices. And when you order three, you get another FREE.

110/24, 126/24, 135/24 $£ 1.40$ each OR 4 for price of $3-£ 4.20$. Konica disc $£ 1.60$ OR 4 for price of $3-£ 4.80$. $135 / 36$ £1.80 OR 4 for price of $3-£ 5.40$.

SPECLAL ALBUM OFFER

An attractive flip-type album, padded in black with gold embossing and holding 100 Supersize prints (in the shops £5.75) is offered to readers for only $£ 3.99$ inc. p\&p
All prices are correct of the time of going to press and are for UK readers
*Rush me \qquad albumis)
for which I enclose cheque/P0 payable to Practical $£$ Electronics Film Service.
PES

VOLUME 21 Nọ

CONSTRUCTIONAL PROJECTS

COMPUTER ENVELOPE SHAPER by R. A. Penfold 10An inexpensive add-on to upgrade your synthesiser'RUR' HOBBY ROBOT by Ralph P. Magee16Part Two: Electronics and software
AUTOMATIC FISH FEEDER by Mike Abbott 28
Dispenses pond pellets daily
DIGITAL DELAY \& SOUND SAMPLER WITH COMPUTER INTERFACE by John M. H. Becker 38
Part Three: Assembly and testing procedures
DIGITAL TIMER by Tom Gaskell BA (Hons) CEng MIEE 50
General purpose timer with a wide range of applications
GENERAL FEATURES
MODEMS by M. Tooley BA \& D. Whitfield MA MSc CEng MIEE 24
Part Three: How to get started. Also includes a "mini" Buyer's GuideSPACEWATCH by Dr Patrick Moore OBE34
BBC MICRO FORUM by D. Whitfield MA MSc CEng MIEE 44
ADC explored
ROBOTICS REVIEWED 46
New regular look at robotics and cybernetics
SEMICONDUCTOR CIRCUITS by Tom Gaskell.BA (Hons) CEng MIEE 47
Universal Timer (HEF4753B)
INGENUITY UNLIMITED 52Readers' circuit ideas
NEWS \& COMIMENT

EDITORIAL
NEWS \& MARKET PLACE

7
7 INDUSTRY NOTEBOOK
BAZAAR

15 LEADING EDGE
35 P.C.B. SERVICE3653

CALLING CLIFFORD HONES

The Editor would very much like to contact Mr Clifford Hones (Harlow) who was pictured in the first issue of PE (Nov '64) at the age of 13 receiving a prize from Harry Secombe.

This month's cover is a photographic abstract of various components supplied by Mullard Ltd.

OUR SEPTEMBER ISSUE WILL BE ON SALE FRIDAY, AUGUST 2nd, 1985 (see page 33)

[^0]

VARIABLE VOLTAGE TRANSFORMERS INPUT 230, 240 V e.c. $50 / 60$ OUTPUT $0-260 \mathrm{~V}$. 200W. 1A Max.
0.5KVA $1 / 2 \mathrm{Ma}$ Max
1KVA 5 M Max.

2KVA 10A Max
3KVA 15A Max
5KVA 25A Max OKVA 50A Max

3-PHASE VARIABLE VOLTAGE TRANSFORMERS Dual input $200-240 \mathrm{~V}$ or $380-415 \mathrm{~V}$. Star connected
3 KVA 5 mp per phase max.
E13.40 V.V.Ts $\begin{array}{lll}\text { 3KVA 5amp per phase max. } & \text { £113.40 } & \text { All V.V.Ts } \\ \text { 6KVA 10amp per phase max. } & \text { £170.10 } & \text { plus carriage }\end{array}$ $10 \mathrm{KVA} 16 a m p$ per phase max $(110-240 V)$. Either cased with American socket and mains lead or open frame type available for immediate delivery. Leaflet on request. 12V D.C. BILGE PUMPS
400 G.P.H. 15tt. heed, $3 \mathrm{mmp}, \mathrm{E8.00}+\mathrm{f} 1.00 \mathrm{p} 8 \mathrm{p}$
($£ 10.35 \mathrm{inc}$. VAT).
$700 \mathrm{G} . \mathrm{P} . \mathrm{H} .10 \mathrm{ft} . \mathrm{head}, 3.5 \mathrm{amp}, \mathrm{E} 11.50+£ 1.50 \mathrm{p} \& \mathrm{p}$ £14.95 inc. VAT)
(19.26 inc. VAT)
SINGLE DIAPHRAGM COMPRESSOR NMS

EPROM ERASURE KIT

Why waste money? Build your own EPROM ERASURE for a fraction of the price of a made-up unit. Complete kit of partstess case to include 12,8 watt
2537 Angst. Tube. Baliast unit, pair of $\overline{\mathrm{D}}$-pin leads, Neon indicator, sately 2537 Angst. Tube. Ballast unit, pair of
microswich, onioff switch and circuit.
LESS CASE: Price £ £3.60 + 75 p p p p (Total inc. VAT £16.50).

de fitted in sulable cas
SOLID STATE E.H.T. UNIT
Input 230 V A.C. Approx 15 FKV . Producing 10 mm spark. Built in 10 sec timer Dozens of uses in the field of physics and eiectronics e.g. suppolying neon or argon

A.C. CAPACITOR

15UF. 900 V A. A. . . 52600 Hz Id Ideal power factor correction etc. $91 / 4 \times 6 \times 43 / 4$ ins. Wh

Superior Quality Precision Made NEW POWER RHEOSTATS

New ceramic construction, heavy duty brush assembly, continuously rated.
25 WATI $5 / 10 / 25 / 50 / 100 / 150 / 250 / 300 / 500 / 1 \mathrm{k} \Omega$ $1.5 \mathrm{k} \Omega \mathrm{E4.25}+30 \mathrm{p}$ p\&p (E5. 23 inc . VAT).
50 WATT 250Ω £6.50 +50 p p\& (E8.05 inc. VAT) 100 WATT. $1 / 5 / 130 / 25 / 50 / 100 / 250.500 / 1 \mathrm{k} \Omega / 1.5 \mathrm{~K} \Omega / 2.5 \mathrm{~K} \Omega / 3.5 \mathrm{k} \Omega$ £10.25 +75 p p p ($\mathbf{f 1 2 . 6 5 \text { inc. VAT). }}$ Black Sitver Skited Knob
ldeal for above Rheostats 30 o ea. + VAT 1-9, $11 / 2 i n$. dia. brass bush. INSULATED TESTERS NEW! Test to I.E.E. Spec. Rugged metal construction clutch. Size $L 8 \mathrm{in}$. W W 4 in ., H 6 in . Weight 61 lb .
500 V . 300 m 500 V . 300 megohms. $£ 49$ p\&p $£ 2$ ($£ 585.65$ incl.
VAT). $1000 \mathrm{~V} 100 \mathrm{M} \Omega £ 55+\mathrm{p} \& \mathrm{p} £ 2$ ($£ 65.55$ incl. VAT). $1000 \mathrm{~V} 1000 \mathrm{M} \Omega$ £55 $+\mathrm{p} \& \mathrm{p} £ 2$ ($£ 65.55$ incl
-Special 0ffere 0-6.3V-0-6.3V at $10 \mathrm{Amp}(12 \mathrm{~V} 0-10$ Amp or 6 V at 20 Amp$)$ Price GEARED MOTORS
 VAT (27.60) N.M.S
TRANSFORMER 240 V operation, $\mathbf{2 9 . 1 5 +} \mathbf{f 2 . 0 0}$ p\&p (Total inc. VAT f12.82). 28 rpm Torque 201 b in. reversible $1 / 80$ th h.p. 110 V AC. Price: $83.50+p \& \mathrm{f} £ 1.80$ Toal inc. VAT f1299).
Sutable TRANSFORMER for $230-240 \mathrm{~V}$ AC operation. Price: $£ 520+p 8 p \mathrm{Ec} .40$ 33 rPm GEAREO MOTOR. T
3.3 rpm GEAREO MOTOR. Torque 35ibin. reversible 115 V AC
Price: E11.5 + E2.00 pAR TVotal inc. VAT f 95.58 . N.M.S

Suitable TRANSFRRMER 230V AC OReration Price: $5520+50$ Per

VAD. CROW

CROWN 37 rpm 2000 ib in. approx. 1
p\&.p $£ 4.50$ ($\mathbf{f} 45.42$ inc. VAFI). N.M.S.
 57 rpm $240 \mathrm{~V} 1 / 22 \mathrm{~h} . \mathrm{p}$. continuously rated REVERSIBLE 501 bin . manuf. by
Wynstruments. New. Ideal for garage doors, cunains etc. ONLY $12.00+\mathbf{2} .00$ Wynsiruments. New. deat for garage doors,
p\&p fincl. VAT $\mathbf{E 1 6 . 1 0) , ~ i n c l u s i v e ~ c a p a c i t o r , ~}$
71 rpm Torque 10ib. in. reversible $1 / 70$ th h.p. 110 V AC motor. Price: $\mathrm{c9.50}+\mathrm{\$ 1.80}$ p\&p (Total inc VAT f12991.
Suitable TRANSFORMER for $230-240 \mathrm{~V}$ AC operation. Price: $\mathbf{£ 5 2 0}+\mathrm{p} \& \mathrm{p} \mathbf{£ 1 . 4 0}$ Total inc. VAT E7.59). N.M S.
24 V OC 200 rpm 10ibin Mt .
24V OC 200 rpm 10ibin. Mr. by eithar Parvalux or Cater. Ex-equip, tested. 58.00 230200 N AC SYNCHRONOUS, $2 \mathrm{rpm}, 6 \mathrm{rpm}, 6$ rev per day. Arly type. $\mathbf{5 4 . 8 0}+50 \mathrm{p}$ o\&p (Total inc. VAT £6.10).
CHECK METER
200-240V A.C. 50 amp. fully reconditioned. $\mathbf{£ 7 . 5 0}+\boldsymbol{£ 1 . 7 5}$ p\&sp ITotal inc. VAT SANGAMO WESTON TIME SWITCH
Type $\$$ zo1 $200 / 250$ A.C. 2 an/2 off every 24 hours, 20 amps contacts with override switch. Dimaeter $4^{\prime \prime} \times \mathcal{K}^{\prime \prime}$. Price $89.50+£ 1.50$ p $\&$ ip (E1206 inc. VAT \& p\&p). Also available with solar dia R\&T. Other types available from stock.
N.M.S. New Manufacturers' Surplu R\&T Reconditioned and tested
Goods normally despatched within 7 d

BAKER'S DOZEN PACKS
 SUPER BARGAIN PACKS £1 EACH ORDER 12 AND GET ONE EXTRA FREE! ALL GOODS BRAND NEW EXCEPT WHERE STATED

Pack Oty		Pack 0ty	
	13 amp rinc main junction boxes	No.	Rocker switches 10 amp SPDT Centre Off
2	13 amp ring main spur boxes	44	Rocker switches 10 amp DPDT
3. 25	13 amp fuses for ring mains	45	24 hour time swich mains operated (s.h.)
4.	surface mounting switches suit	46	6 hour ciackwork time swich
	insulated for mains voltage	47.	2 lever switches 4 pole changeover up and
5. 3	Hush switches intermediate type, will also replace 1 or 2 way switches	48	ditto down Gy operated reed switch relays
6.	in flex line switches	49. 10	neon valves - make good night
7.4	in fiex line switches with neons	50	$\times 12 \mathrm{OC}$ or 2
8.2	80 watt brass cased elements	51.1	$\times 12 \mathrm{2} 2 \mathrm{C} 0$ very Sensitive relay
9-2	mains transformers with 6v la secondaries	52.	$\times 1244 C 0$ relay
10	mains transtomers with $12 v^{1 / 2 a}$ secondaries	53	mains operatad re
11.	extension speaker cabinet for 61/2' speaker		changeovers (second hand)
12	octal bases for relays or valves	$54 \cdot 10$	rows of 32 gold plated IC sockets ftotal 320
13-12	glass reed switches		sockets)
14	OCP 70 photo transistors	55.	locking mechanism wth 2 kevs
15. 25	assorted gemanium transistors OC45 etc	56	Miniature Uniselector with circuit for
16	tape heads, 2 record, 2 erase		adectric Higsaw puzze
17 -	uttrasonic transmiters and 2 dito recevers	57.	dolls house switches
18	15000 mfd computer grade electrolics	58-2	telephone handsets incorporating
19.	light dependent resistors similar ORP 12		ear piece and mike (p)
20.	diff micro switches	59.	filat solenoids - ideal to make
21.	mains interference suppressors		transformer atc
22.	25 watt crossover units	60-5	rite rod
23.	40 watt 3 way crossover unit	61.	ferrite slab aerials with L \& M wave coils
24-250	various screws and self tappers	62	200 ear pieces
25	of each water switches - 6p 2 way. $4 p 3$ way; $2 p 6$ way; $1 p 12$ way	63. $\begin{array}{r}\text { 64- } \\ 6\end{array}$	Mullard Thyristor trigger and module assorted knobs $1 / 4$ spindles
26	tape deck coutters	65.	different thermostats, mainly bi-metal
27 -	6 digit counter 12v	66	Magnetic brake - slops rotation instant
28.	6 digit counter mains voltage	67.	Low pressure 3 level swich
29.	B0AC in flight stereo unit (second hand)		Heavy duty 4 pole contactor - 24 v coil
30.	NICAD batery chargers	69.	25 wath pots 8 ohm
31.	key switch with key	70	25 watt pots 1000 oh
32	humidity switches		wire wound pots - 18, 33,50 and 100 ohm
33.	aerosot cans of ICl Ory Lubricant	72.	1250 watt dimmer titra ref SE20
34.96	$\times 1$ metre lengths colour-coded	73.	3 watt wire wound
	connecting wires	74- 50	1/3 watt carbon film resistors food spread
35	battery operated model motors		10 values
36	air spaced 2 gang tuning condensors	75-20	2 watt carbon resistors 10 valu
37.	solid diaelectric 2 gang tuning condensors	76-30	
38-10	compression trimme	77.	time reminder adiustable 0-60 mins
39.	Long \& medium wave tuner kit	78.	5.5 amp stud rectifiers 400 V
40	$\times 465 \mathrm{KC}$ IF transformers		2a bridge rectifiers 400 V
41	Rocker switches 10 amp mains SPST		10a bridge rectifiers 30V
42	Rocker switches 10 amp mains SPDT	81.2	30a panel moumting slydiok fuses

Most fems available in quantity at good discounts.

SUPERB EFFECTS

MONO-STEREO ECHO-REVERB (P.E. Sept. '84) 200 ms echo (extendable), lengthy reverb, multitacking. Kit as published. Set 218BK \qquad ENHANCED PHASER (P.E. Oct '84) Enhanced phasing with modulated filter shifting Kit as published. Set 226BK
£39.13 RING MODULATOR (P.E. NOV. '84) Fabulous effects generation. With multiwaveform VCO, noise gate \& ALC. Kit as published. Set 231BK E39.99 MONO-STEREO CHORUS-FLANGER (P.E. Jan. '84) Superb dual mode music enhancement. Kit as published. Set 235BK \quad C55.66 CYBERVOX (E.E. Apr. '85) Amazing robot type voice unit, with ring modulator and
reverb. Kits as published. Set 228BK
$\mathbf{E 3 7 . 4 0}$ STEREO NOISE GATE \& VCA (P.E. May '85) Automatic noise reduction circuit for mono or stereo. Kit as published. Set 227BK E 26.61 SIGNAL GENERATOR \& F.V (P.E. Jan. '85) Audio test equipment. Multiwaveform VCO, \& frequency to voltage converter, \& sweep generator. Kit as published. Se

BLOW BOX: Voice operated VCF \& VCA for fascinating effects COMPANDER: Mono of stereo compression-expansion, switchable ENVELOPE SHAPER: Note triggered ADSR with VCA
FREQUENCY DOUBLER: Guitar octave raiser \& tone changer FUZZ: Smooth distortion, retains attack \& decay character GUITAR SUSTAIN: Extends note tecay time, with noise gate GUITAR TO SYNTH INTERFACE: With voltage \& trigger outputs HAND CLAPPER: Auto \& manual variable clap effects MOCK STEREO: Splits mono signal into stereo simulation MUSIC MODULO: 8 variable tremolo \& wah guitar effects RHYTHM GENERATOR: Computer driven, BBC, Apple, 64 \& similar STORM EFFECTS: Auto \& manual wind, rain \& surf effects TOM-TOM SYNTH: Sound triggered, multivariable drum effects TREM0L0: Mono variable depth \& rate modulation VOCODAVOX: Modular vocoder, 7 chans extendable VDDALEK: Simple robot type voice modulator WAH-WAH: Auto, manual \& note triggered, switchable

Add 15\% VAT. Add P\&P $£ 150$ each kit. (Overseas Rates in Cataloque)
Project texts \& circuits can be bought separately at 50 p each plus large S.A.E. Boxes are steel \& aluminium with black finish. All kits include PCBs, parts, instructions, boxes wire, solder
See other advert for more audia effects kits. For catalogue of over 70 kits send 9×4 S.A.E. (For overseas catalogue send $\mathbf{£ 1}$ or 5 IRC's). Mail Order. Payment to Phonosonics, CWO, CHO, PO, Access, Visa. Insurance cover 50 p per $\mathbf{£ 5 0}$ lobligatory on credit card orders. Details correct at press. E\&OE

BECKER-PHONOSONICS,

MAIL ORDER DEPT PE58, 8 FINUCANE DRIVE, ORPINGTON, KENT, BR5 4ED: TEL: 068937821.

Master Isectronics-Microprocessors - Now! the Practical Way!

Electronics - Microprocessors - Computer Technology is the career and hobby of the future. We can train you at home in a simple, practical and interesting way.
Recognise and handle all current electronic components and 'chips'.

Carry out full programme of experimental work on electronic computer circuits including modern digital technology.
Build an oscilloscope and master circuit diagram.
Testing and servicing radio - T.V. - hi-fi and all types of electronic/computer/industrial equipment.

NewJob? New Career? New Hobby?

 SEND THIS COUPON NOWFRIE! COLOUR BROCHURE OR TELEPHONE US 0626872598 am interested in
\qquad ELECTRONICS MICROPROCESSORS RADIO AMATEUR LICENCE
苃
British National Radio \&e Flectronics School P.O. Box'7, Teignmouth,Devon,TQ14 OHS

Serpent SCARA assembly robot
Available as kit or ready built, 5 axes, 2 kg capacity. 12 bit control system, Serpent I reach 400 mm . Serpent II reach 650 mm .
BEING FEATURED IN PRACTICAL ELECTRONICS September issue

Please phone for brochure: 026450093.
West Portway Industrial Estate, Andover SP10 3 PE,
A private and independent company giving prompt. personal service.
 CCTV CAMERAS ONLY £69 EACH!

INCLUDING VAT \& CARRIAGE

Crofton Electronics are pleased to announce that they are now able to supply a C.C.T.V. camera, complete with a standard lens for the amazing price of f 69 inclusive of V.A.T. and carriage. Though not new, each camera has been completely refurbished to a high standard in our own workshops and comes ready to work with any suitable monitor, digitiser, VCR etc. (may also be used with a domestic T.V. set by the addition of a simple modulator - kit available). From an input of 240 volts ac, the cameras give an output of 1 volt peak to peak and are equipped with mounting points for standard tripods. With applications as diverse as education, amateur dramatics and shop/industrial/domestic security systems demand is sure to be high and orders will be dealt with in strict rotation.

DONT DELAY - PLACE YOUR ORDER TODAY!

Be sure to request our free catalogue describing our range of T.V. cameras, fixed and zoom lenses, sequential switchers, special and general monitors (colour and b/w), video digitisers, light pens, eprom erasers etc.

MOST MAJOR CREDIT CARDS ACCEPTED
CROFTON ELECTRONICS
雰 01-891 1923
35 GROSVENOR ROAD, TWICKENHAM, MIDDLESEX TW1 4AD

NOVEX 1414 COLOUR MONITORS ONLY £150 EACH

EXCLUDING VAT \& CARRIAGE

Crofton Electronics - Probably the best known name in the monitor field now offer the superb metal cased NOVEX 1414 RGB/COMPOSITE COMPUTER COLOUR MONITOR at the incredible end user price of $£ 150$ plus P.\&P. \& VAT (Total $£ 184$). Full 12 month guarantee.
FREE SERVICE MANUAL (WORTH £5) WITH FIRST 100 ORDERS! Supplies of metal cased 9 inch monitors (green tube) will soon be available at $£ 69$ each plus p.\&p. \& VAT:
DONT DELAY - PHONE YOUR ORDER TODAY!
Other monitors available - PHILIPS 7502, PHILIPS 7522 and PHILIPS 2007 plus the full IKEGAMI range. Phone your order through today using your plastic card.

MOST MAJOR CREDIT CARDS ACCEPTED
CROFTON ELECTRONICS
䨌 01-891 1923
35 GROSVENOR ROAD, TWICKENHAM, MIDDLESEX TW1 4AD

HOLIDAY HELP

YOU HAVE all seen the reports in your local paper of burglaries or the scare style advertisements placed by those selling alarm sys－ tems．While we would not wish to frighten anyone it does seem that crime figures are not encouraging． With this in mind and more particu－ larly with the thought of summer holidays coming up we felt a review of the di．y．alarm market was in order．

Rather than just look at what is available we have delved into the various systems explaining in basic terms what they are，how they work and their various uses－ everything from reed switches to radar and seismic detectors！We have also gone on to look at dis－ cussing the set up with your local crime prevention officer，false alarms and the various governing bodies and specifications．All this plus a buyer＇s guide on d．i．y．sys－ tems should ensure you can be at ease in the sun on holiday．

Another＂holiday＂project is the Automatic Fish Feeder．While this sounds very specialised it could easily be adapted to water the house plants or tomatoes while you are away，or for that matter with a little ingenuity perform any task that is required once or twice a day．

RUR

Both the above items will no doubt set readers thinking about just how they might help them－

selves．One project that should alss

 get the inventive moving is＇RUR＇ Hobby Robot．The control electro－ nics published this month would form an excellent basis for any project．Incidentally，we should apologise for the delay in publishing the second part which was unfortu－ nate but unavoidable（part one was in June－for those who missed it）．While on the subject of＂experi－ menting with robots＂，those very words form the title of a short series aimed at the hobbyist who does not want to spend a small fortune．The series should get you started in developing your own ideas and inventing robots and other electronically controlled me－ chanical items．Experimenting With Robots is in next month＇s issue．

While we are getting you inter－ ested in the subject，we have some copies of our November＇ 84 Robo－ tics supplement to spare．This $16-$ page booklet carried two feature articles on Robots and their Tech－ nology plus a Buyer＇s Guide show－ ing more than 25 small robots and giving basic information on them． Anyone wanting a free copy of this booklet should send an A4 size stamped self－addressed envelope to the editorial office with a note requesting a copy of＂Robotics＂．

BACK NUMBERS and BINDERS ．．．

Copies of most of our recent issues are available from：Post Sales Department（Practical Electronics），IPC Magazines Ltd．， Lavington House， 25 Lavington Street，London SE1 OPF，at £1 each including Inland／Overseas p\＆p．When ordering please state title，month and／or issue required．
Binders for PE are available from the same address as back numbers at $£ 5.50$ each to UK or overseas addresses，including postage，packing and VAT．

Editor Mike Kenward
Secretary Pauline Mitchell
Editorial Tel：Poole（O2O2） 671191

Advertisement Manager

David Tilleard 01－2616676

Secretary

Christine Pocknell 01－261 6676
Ad．Make－up／Copy
Brian Lamb 01－261 6601
Classified Ads
Mandy Morton 01－2615846
Queries and letters concerning
advertisements to：
Practical Electronics Advertisements．
King＇s Reach Tower，
Stamford Street，London SE1 9LS
Telex： 915748 MAGDIV－G

Letters and Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in PE．All letters requiring a reply should be accompanied by a stam－ ped addressed envelope，or addressed en－ velope and international reply coupons，and each letter should relate to one published project only．We are unable to answer letters relating to articles more than five years old．

Components are usually available from advertisers；where we anticipate difficulties a source will be suggested．

Old Projects

We advise readers to check that all parts are still available before commencing any project in a back－dated issue，as we cannot guarantee the indefinite availability of com－ ponents used．We are unable to answer letters relating to articles more than five years old．
Technical and editorial queries and letters to： Practical Electronics Editorial，
Westover House
West Quay Road，Poole．
Dorset BH 15 1JG

SUBSCRIPTIONS

Copies of Practical Electronics are available by post，inland for $£ 13$ ，overseas for $£ 15$ per 12 issues，from：Practical Electronics， Subscription Department，IPC Magazines Ltd．，Room 2816，King＇s Reach Tower， Stamford Street，London SE1 9LS． Cheques，postal orders and international money orders should be made payable to IPC Magazines Limited．Payment for sub－ scriptions can also be made using a credit card．
Phone：
Editorial Poole（0202） 671191
We regret that lengthy technical enquiries cennot be answered over the telephone． unless otherwise specified. Prices correct at time of going to press.

SIR CIIIPS BRAVE FIGET

As the Hoover factory at Merthyr Tydfil in South Wales was drastically cutting back its production of the Sinclair C5 electric trike, Sir Clive himself was putting on a brave face to the retailers who he hopes will help him sell it. Speaking at the annual Radio, Electrical and Television Retailers Association (RETRA) conference at Bournemouth, in April, Sir Clive raised cynical smiles and silent laughter from High Street dealers when he told them they could sell as many C5 trikes as video recorders.

They were equally unimpressed when Sir Clive went on to suggest that his pocket TV set would sell at a rate of over 2 million a year, like portable stereo systems.
Production of the TV has now been shifted back to the Timex factory in Dundee, after the temporary involvement of Thorn-EMI-Ferguson. The Enfield factory made a few sets, and said no thank you, telling Sinclair that it needed extensive re-design for successful mass production. According to Sinclair the Timex factory in Dundee is now mass producing and there are certainly

sets in the shops.
Sinclair admitted at Bournemouth, that the home computer market has gone flat. He promised dealers that he will launch a "no compromise" portable computer next year. "The next big, vital step is a portable with a real TV screen, and no compromise over battery power and memory storage. Liquid crystal displays are totally unsatisfactory. We are confident that we can be ahead of everyone else. The Japanese will fail because they have continued to back l.c.d.s. We shall launch the new portable in 1986"

Sinclair reiterated his previously reported promise, of a real electric car with " 300 mile range and 80 mile per hour top speed" by 1990. He acknowledges that his promised vehicle depends on completely new technology.

More recently, rumours suggest that the C5 company is up for sale in an attempt to provide cash for his computer business commitments. Debts to Thorn EMI and Timex amount to around £ 10 million, with an additional overdraft estimated at $£ 5$ million. Over $£ 30$. million worth of equipment is said to be held in stock-directly reflecting the disappointing sales of the QL .

City of York exibibit

EXHIBIT, the prestigious high technology exhibition will be staged in the centre of the City of York by IBM, in the gardens of the Yorkshire Museum, from Monday, July 1 st to Sunday, July 28th.

Designed to stand in a natural parkland setting. IBM's pavilion is a light, flexible structure incorporating advanced architectural features and was itself developed with the aid of a computer.

An arcade, with 34 arches, is the framework for the large, covered pavilion (48 metres long, 12 metres wide and 7 metres high). The polycarbonate pyramids which make up the pavilion are completely transparent.

Entirely free of charge, the exhibition will feature a wide range of information
technology demonstrations aimed at informing and stimulating young people's interest in creative computer applications of the future.
Up to 45 temporary summer jobs, with specialist IBM training, will be creáted for local students, acting as demonstration staff.

HIERMSMII IIf:GNER

The 'Powerbreaker-H2O' from Electrosafe, a division of Featmarks Ltd, is designed to prevent death or injury from an electrical accident.

Frayed or cut wires on garden or DIY power tools, etc., can be lethal, either through electric shocks or through causing fires. The H2O senses any small leak of current to earth-perhaps through a person. It cuts off the electricity supply in a split second when this happens.

Made in the UK to BS4293 and BS1363. the H2O has a durable, tamper-proof plastic

casing. The fuse can be changed in seconds without the use of a tool. The device can be used on all standard 13 amp sockets. A foolproof and abuse-proof reset mechanism has been incorporated. There is a red "flag" on its side which indicates "on/off" and it has a test button so that you know it is working properly.
Finally, the H2O has a neon light which will. indicate a dangerous, incorrectly-wired socket, and it will trip automatically if plugged into one of these sockets. It can also be used with extension cables, even a four-in-line trailing socket, so you can use up to four appliances at once.

The Powerbreaker-H2O costs $£ 19.95$ inc. VAT and $p \& p$. It is available from Electrosafe, P.O. Box 16 F, Chessington, Surrey KT9 2DA (01-391 0985).

mANBGE PRACE

Softurure directory

In part with the aid of central government， computers have now been acquired by virtu－ ally every primary and secondary school， and further and higher educational estab－ lishments in Britain．
The last two years have seen an explosion in the amount of educational software com－ mercially available－quite apart from that produced within the educational sector，and quite apart from pure＂games＂
With more than 1,000 entries，the M \＆E Educational Software Directory will be a reference for teachers，students and home computer owners alike．The software is classified under subject and specialist head－ ings．Each entry includes a short description of what the software will do，specifies the machines for which versions of the software are available，and gives the name of the supplier and a price guide．

Compiled and written by J．Arthur and T． Russell，the directory is published by Mac－ donald and Evans and retails at $£ 12.50$ ．

The following three kits，from Powertran Cybernetics，should be of interest to our musically orientated readers．
Specially designed to meet the unique demands of keyboard players，the Synth Mix（SM－6）features three auxiliary sends on each of its six channels．External effects units can thus be utilised properly．All connections are made via the back panel to keep the front of the rack mounting（4U） unit clear．A stereo headphone output is incorporated for private practice or pre－gig tuning．Price $£ 194.35$ ．

Avoid cable tangles with the＇patchbox＇ which will enable you to make all your connections on one panel． 16 Pairs of jack sockets are presented in a neat 19 －inch rack
mounting panel with spaces for labelling． Contacts between pairs of sockets can be normalised if required．Phono sockets at the rear connect to your instruments，effects， mixer，etc．Price $£ 40.25$ ．

For studio work and for practice this amplifier enables up to six pairs of stereo headphones to be used from a single input source．Alternatively，two input signals can be used，each being fed to a group of three pairs of headphones（HA－6）．Price $£ 102.35$ ．

All prices include VAT and p．\＆p．From Powertran Cybernetics Ltd．，Portway In－ dustrial Estate，Andover，Hants SP10 3NN （0264） 64455.

Source for valves

T．O．Supplies（Export）Ltd．，has joined the Selectron Group of companies at their new headquarters at Gravesend in Kent．They have been a major exporter of electronic components for over 25 years，and will be working with P．M．Components，the Selec－ tron Group main distributor，to provide a comprehensive range of electronic tubes， valves，integrated circuits，semiconductors． A wide range of video and TV products will also be available．

Peter Watson and Mike Leeper of the

Selectron Group have also announced that the Meopham Green warehouse，home of P．M．Components for the last few years，will shortly be re－opening as a surplus superstore in conjunction with Bernard Welling，for－ merly of B \＆T Electronics．

Further information and lists of surplus electronic goods will be published later this year．Details from P．M．Components Ltd．， Selectron House，Wrotham Road，Meo－ pham Green，Meopham，Kent DA13 0QY （0474 813225）．

Hountidoun

Please check dates before setting out，as we cannot guarantee the accuracy of the information presented below．Note：some exhibi－ tions may be trade only．If you are organising any electrical／ electronics，radio or scientific event，big or small，we shall be glad to include it here．Address details to Brian Butler．
Video Software Sept．1－3，Olympia，G3
Personal Computer World Show Sept．18－22．Olympia 22 Leeds Electronics Show Sept．24－26．University E
Electron \＆BBC User Sept 27－29．UMIST，Manchester L
Cellular Communications Iut．Nov．5－7．Wembley Conf．Cntr．O

Electronic Publishing Nov．5－7 Wembley Conf．Cntr．O Compec Nov．12－15．Olympia K2
Electron and BBC User Nov 14－17．New Horticultural Hall， London L
Computers In The City Nov 19－21．Barbican Conf．Cntr．O
Computêr Graphics Oct．16－18．Wembley Conf．Cntr．O
A1 Inst．Electronics © 070643661
E Evan Steadman 079926699
G3 Link House Video こ01－686 2599
K2 Reed Exhibitions，Surrey Ho．， 1 Throwley Way，Sutton， Surrey．
L Database 玉 061－420 8157
M Montbuild © 01－486 1951
O Online 2 01－868 4466
T1 Cahners 玉 048338085

CONVENTIONAL synthesisers use an ADSR envelope shaper, or in the case of the more simple instruments an attack/decay type might be fitted. A wide range of envelope shapes and effects can be obtained from an ADSR envelope shaper, including envelope shapes that enable good simulations of many "real" sounds to be produced. Nevertheless, just four stages of shaping plus the restrictions on the way in which the volume can be altered during each of these stages makes it impossible to produce really intricate envelope shapes.

DIGITAL SHAPING

Digital techniques are being applied to electronic music in more and more ways, including digital systems of envelope shaping. These enable practically any desired envelope to be generated. For instance, shapes such as a "backwards" ADSR or one having several peaks and troughs can be generated just as easily as the classic ADSR shape.
It is perfectly feasible to use an external digital envelope shaper with an ordinary analogue synthesiser provided the instrument has a gate output socket. Building an add-on of this type from scratch would be quite a costly business, but with the aid of a suitable home computer a fairly simple circuit will suffice, with the computer providing the complex control and memory circuits.
The unit described in this article has been designed for use with the VIC-20, Commodore 64, and BBC model B computers, together with a synthesiser which has a gate output signal at normal $0-5 \mathrm{~V}$ logic levels. It should in fact be possible to use it with any computer that can provide 7 digital outputs and one digital input (the Memotech MTX computers for example). The way in which the unit is used is largely dependent on the software. A simple routine for the Commodore machines is provided, and with this the envelope shape is controlled by placing a series of numbers in a data statement. The program for the BBC machine is a little more sophisticated, and it operates by entering the required envelope shape via a joystick, with the shape being displayed onscreen. There is plenty of scope for users to develop software to precisely match their needs, and the advantage of a digital approach is the almost unlimited scope for customising that it provides.

SYSTEM OPERATION

The block diagram of Fig. 1 shows the way in which the system functions. The audio output from the synthesiser is processed by a VCA and buffer stage in the add-on envelope shaper. It is not possible to utilize the internal VCA of the synthesiser due to a lack of an input socket to provide access to the control input of the VCA. Any CV inputs are usually for the VCOs and the VCF. The buffer amplifier is merely needed to give the circuit a low output impedance.

The gate output is fed to a digital input of the computer. This input monitors the state of the gate output, and with the aid of a software routine it starts a new eñvelope each time a low-to-high transition is detected. The leading edge of the gate pulse is then effectively used as a trigger signal rather than a true gate pulse. However, with suitable software the length of the gate pulse could be used to control the envelope shape in some way, and it would be perfectly feasible to provide more sophisticated control than is possible with an ADSR envelope shaper. The signal could be made to slowly decay during the gate period rather than just hold on indefinitely at a certain level, or a sort of tremolo effect could be used during this period. With digital envelope shaping it is possible to obtain any type of envelope shaping you desire.
The control voltage for the VCA is obtained from a digital-toanalogue converter. This is actually an 8-bit type, but here it functions as a 7 -bit converter as the least significant input is just connected to earth. This leaves the least significant line of an 8 -bit input/output port free to act as the input to monitor the gate signal. This gives 128 gain levels in theory, but in practice the VCA cuts off at low output values and not just zero. Even so, this gives over 100 different gain levels, enabling a very wide dynamic range to be covered with an average increment of under 1 dB . Unlike most computer sound generators (which have only sixteen volume levels) this enables the volume to be varied without the stepping action being apparent.

The digital-to-analogue converter is a standard R - $2 R$ type which consists of a resistor network, eight electronic switches that are controlled by the input signals, and a 2.55 V precision reference source. The reference source sets the full scale output voltage of the converter, since the maximum output voltage is equal to this reference potential. An amplifier is used to boost the output to just over 5 V in order to give a better drive level for the VCA, and this stage also provides buffering.

A supply voltage of 5 V is needed for the digital-to-analogue converter, but the other stages of the unit require a supply potential of about 9 to 12 V . This higher potential is not available at

COMPUTING PROJECT

Fig. 1. Block diagram of the Computer Envelope Shaper
the user port of the VIC-20, Commodore 64 , or the $B B C$ model B. In the case of the BBC model B the +12 V output of the power port is utilised. The user port of both the Commodore 64 and VIC-20 computers has two 9 V a.c. outputs, and one of these is fed to a rectifier and smoothing circuit which provides a supply of about +9 to 10 V .

CIRCUIT OPERATION

The full circuit diagram of the Computer Envelope Shaper appears in Fig. 2

IC1 is the digital-to-analogue converter, and this is a Ferranti ZN426E low current consumption type. It does not have a built-in data latch and must be driven from latching outputs, but the user ports of all three machines provide suitable outputs. The only discrete components required by IC1 are R1 and C1 which are respectively the load resistor and decoupling capacitor for the integral 2.55 V precision reference source

Operational amplifier IC2 is used as the output amplifier and buffer stage for the converter. IC2 is used in the standard noninverting mode and the negative feedback network formed by $R 2$ and R3 set the nominal voltage gain at two times. The CA3 140 E
device used in the IC2 position is a type which can operate with its output at virtually the negative supply potential. This is advantagous in this application since it avoids the need for a negative supply for IC2. Devices such as the 741 C and LF351 do not have suitable output stages and are not suitable substitutes for the CA3140E in this circuit.

The voltage controlled amplifier uses one section of an LM13600N (or the almost identical LM13700N) dual transconductance operational amplifier. The other section of the device is not needed and is totally ignored. Even though only one section of IC3 is utilized, the LM13600N is still competitive with the alternatives in terms of both cost and performance
Transconductance operational amplifiers are very different to ordinary operational amplifiers, the main difference being that they are current- rather than voltage-operated devices. It is the differential input current that determines the output current, and not the differential input voltage that determines the output voitage. In practice this is not very convenient, and it is normal for the input signal to be applied to the device via a series resistor so that the input current is proportional to the input voltage. Also, the output is given a load resistor so that the output voltage is proportional to the output current. This effectively converts the device to voltage operation. In this circuit R10 is the resistor in series with the input and $R 9$ is the output load resistor.
The output voltage of the circuit is a function of the input voltage and the bias current fed to the "amplifier bias" input at pin 1. The gain of the amplifier can therefore be controlled by means of this bias current. R4 is connected in series with the bias input so that the current flow is roughly proportional to the applied voltage, and the required voltage control is obtained. C3 prevents any large and very rapid changes in control current. This smoothes out the steps in the control signal and prevents relatively high frequencies from being modulated onto the output signal (which would produce "clicking" sounds). This is not absolutely necessary if the gain is being incremented and decremented one step at a time, but it can give much better results if the unit is used with fairly simple software which gives relatively coarse control of the envelope shape.
R5, R6, and C4 provide a centre tapping on the supply lines which is used to bias the inputs of IC3 via R7 and R8. The output load resistor (R9) must also be returned to this point in the circuit. The output from the transconductance amplifier is at a fairly high impedance, but the LM13600N has a Darlington Pair emitter follower buffer stage for each amplifier. This provides the unit with a low output impedance. R12 is the load for the output buffer.

Fig. 2. Complete circuit diagram for the Computer Envelope Shaper

The amplifiers of the LM13600N feature linearising diodes at the inputs, and by feeding a bias current to these it is possible to obtain improved distortion performance and dynamic range. R11 is used to supply a suitable bias current to the linearising diodes.
For the Commodore 64 and VIC-20 computers one 9 V a.c output of the user port is rectified by C8, R13, D1 and D2, and then smoothed by C7. This is a quite crude way of obtaining a 9 to 10 V supply, but it gives an adequately smoothed supply with no significant hum or noise detectable at the output of the unit. Of course, if the unit is used with the BBC model B computer and its 12 V d.c. output the rectifier circuit is not needed.

CONSTRUCTION

Details of the printed circuit design are reproduced in Fig. 3.
In general, construction of the board is quite straight forward, but note that IC2 has a MOS input stage and consequently requires. the normal MOS antistatic handling precautions to be observed. Do not overlook the single link-wire next to C2 and IC1. Omit C8, R13. D1, and D2 if the unit is only to be used with a BBC model B computer.

The user ports of the VIC-20 and Commodore 64 computers can be regarded as identical as far as connection to this unit is concerned. Connection to either machine is via a piece of 11 -way

Fig. 3. Details of the component layout and p.c.b. design, actual size: see also the photographs opposite. The board is available from the PE PCB Service

COMPONENTS . . .

Resistors	
R1	390
R2, R3, R10	$10 k$ (3 off)
R4, R11	$22 k$ (2 off)
R5, R6, R12	$4 k 7$ (3 off)
R7, R8	330 (2 off)
R9	$18 k$
R13	22
All $\frac{1}{4} W \pm 5 \%$ carbon	

Capacitors

C1, C3 $\quad 1 \mu 63 \mathrm{~V}$ radial elect. (2 off)

C2 100n ceramic
C4 $100 \mu 10 \mathrm{~V}$ radial elect.
C5 $\quad 2 \mu 263 \mathrm{~V}$ radial elect.
C6 $\quad 10 \mu 25 \mathrm{~V}$ radial elect.
$\mathrm{C} 7 \quad 470 \mu 16 \mathrm{~V}$ radial elect.
C8 $220 \mu 25 \mathrm{~V}$ radial elect.
Semiconductors

D1, D2	1N4001 (2 off)
IC1	ZN426E
IC2	CA3140E
IC3	LM13600N or LM13700N

Miscellaneous

SK1
20 -way IDC header socket or 2 by
12 -way 0.156 inch edge
connector
JK1, JK2, JK3 Standard jacks (3 off)
Case about $180 \times 120 \times 39 \mathrm{~mm}$; Printed circuit board-available from the PE PCB Service, order code 508-01; BBC power connection plug; 8 pin d.i.l. i.c. holder; 14 pin d.i.l. i.c. holder; 16 pin d.i.l. i.c. holder; wire, pins, solder, 6BA fixings, etc.
ribbon cable up to about one metre or so in length, and a 2 by 12way 0.156 inch edge connector. Fig. 4(a) shows the correct method of connection for this. It is unlikely that the edge connector will be fitted with a polarising key, and care must therefore be taken to ensure that it is always fitted to the user port the right way round. It is advisable to clearly label the top and bottom edges of the connector as such.

Connection to the user port of the BBC machine is by way of an 8 -way ribbon cable and 20-way IDC header socket. Probably the easiest way of making these connections is to use a readyassembled 20-way socket and lead, ignoring the 12 leads that are

Fig. 4. Connection details for (a) VIC-20/Commodore 64, and (b) BBC Model B, also showing the power port
not required in this case. The $+12,+5$, and OV signals are taken from the power port of the computer using a three way cable terminated with the appropriate type of plug. Fig. 4(b) gives connection details for both the user and power ports.
The case for the prototype is a Verocase having dimensions of $180 \times 120 \times 39$ millimetres. This is a neat and practical case, but is admittedly somewhat larger than is really necessary. The three sockets, which are all standard jack types, are mounted on the front panel. A notch must be filed in the rear panel of the case to provide an exit point for the lead or leads to the computer. Alternatively, a multiway socket or sockets could be fitted on the rear panel and connected to the printed circuit board. These sockets could then be connected to the computer via a suitable lead or leads. This is a neater but more difficult and costly solution. On the prototype, which is used mainly with a BBC model B computer, a compromise was adopted with the connections to the user port being made direct while the connections to the power port are made through a 3-way DIN socket mounted on the rear panel.

SOFTWARE

All three computers have a user port which has each input/output line individually programmable to provide the required function.

This is accomplished by writing the appropriate value to the data direction register. Setting a bit to 1 designates the corresponding input/output line as an output-setting a bit to 0 designates the corresponding line as an input. In this case the least significant bit must be an input while the other seven bits are all outputs. A value of 254 must therefore be written to the data direction register which is at address \&FE62 in the BBC model B, 56579 in the Corrimodore 64, and 37138 in the VIC-20. Data is then written to and read from addresses \&FE60, 56577, or 37136 respectively.

The basic action of the software is to read the input line and loop until this goes high (indicating the start of a note and an envelope). The series of values are then written to the user port to generate the required envelope shape. However, there is a.slight complication in that the program must continue to monitor the input line, and must go back to the beginning of the envelope if the input line goes through a low to high transition before the end of the envelope.

COMMODORE 64 AND BBC ROUTINES

In the routine for the Commodore 64 the envelope shape is controlled by the values in the DATA statements. The same routine will operate with the VIC-20 if the two user port addresses are changed to suit. The program will only output about 30 values per second which limits the precision with which the required envelope shape can be obtained, although quite good results are still obtained. The speed of a machine code program would be needed to fully utilize the capabilities of the unit with the Commodore computers. Envelope shapes can be saved simply by saving the whole program including the DATA statements.
The BBC program is more sophisticated and has envelope shapes entered. using a joystick. If you do not have a BBC joystick an alternative is to connect a potentiometer to the analogue port in the manner shown in Fig. 5. The trace is automatically swept across the screen and the joystick is used to control the trace

Fig. 5. Connecting a potentiometer to the BBC computer's analogue port

The top photograph shows the completed circuit board.

Above, the board fixed in its case, with connections to the three jack sockets, and the ribbon cable to the computer user port

The program listing opposite is for the VIC-20 or Commodore 64 machines. The envelope shape is determined by the values in the DATA statements

```
5 REM COMTMDDRE E4 PRDGRAM
& REM CHANGE FDRT AODRESSES FDR WIC-ZG
    9 FEM OGTA STRTEMEHTS GIVE EXAMPLE ENVELOPE SHAPE
    10 FOKE 56573,254
    10 FOKE 5EST3,254, (HO i) = Q THEH GOTO 2Q
    20. IF (PEE
    30 READ A
    40 IF A =0 THEN GOTO 100
    50 POKE SEETT, A
    50 IF (FEEK<5657%) ALD 1) = 1 THEN GOTO 30
    FG RESTGRE
    S0 GOTO 20
    \BG, RESTDRE 
    129 GOTO 2Q
1000 OATH 255, 245. 235,225.215,255,195,165
1010 DATA 175,165,155,155,165,175,165,195
1020 DRTA 265,215,225,215,205,195,185,175,165,155,150,150,150,150
1050 DATH 150, 150,140,130,120,110,180, 35,94, 85, 20,75,70,65,60,55,50,45,40, 35
1040 DRTA 30, 25,20, 15,10,5,0
```

statements
Complete listing for the BBC Model B. The envelope shape is drawn by means of a joystick, or alternatively by making use of a potentiometer, as explained in the text

```
700 DEF PROCconfirm
```

700 DEF PROCconfirm

```
700 DEF PROCconfirm
710 CLG
710 CLG
710 CLG
720 GCOL 0, 2
720 GCOL 0, 2
720 GCOL 0, 2
720 GCOL 0,2
720 GCOL 0,2
720 GCOL 0,2
740 FOR X=0 TO 127
740 FOR X=0 TO 127
740 FOR X=0 TO 127
750 DRAW }x*10,5TOFE?X*
750 DRAW }x*10,5TOFE?X*
750 DRAW }x*10,5TOFE?X*
760 NEXT X
760 NEXT X
760 NEXT X
770 GCOL O, 3
770 GCOL O, 3
770 GCOL O, 3
780 ENDPROC
780 ENDPROC
780 ENDPROC
7 9 0
7 9 0
7 9 0
800
800
800
810 DEF PROCplay
810 DEF PROCplay
810 DEF PROCplay
820 PROCmessage p
820 PROCmessage p
820 PROCmessage p
830 C%=FALSE
830 C%=FALSE
830 C%=FALSE
840 REPEAT
840 REPEAT
840 REPEAT
850 FEPEAT UNTIL (?&FEG| AND 1)=1
850 FEPEAT UNTIL (?&FEG| AND 1)=1
850 FEPEAT UNTIL (?&FEG| AND 1)=1
860 FOR V=0 TO 127
860 FOR V=0 TO 127
860 FOR V=0 TO 127
870 ?&FEG0=STORE?N
870 ?&FEG0=STORE?N
870 ?&FEG0=STORE?N
880 IF (?&FEGQ AND 1)=\emptyset THEN C%=TRUE
880 IF (?&FEGQ AND 1)=\emptyset THEN C%=TRUE
880 IF (?&FEGQ AND 1)=\emptyset THEN C%=TRUE
880 IF (?&FEG| AND 1)=\emptyset THEN C%=TRUE 
880 IF (?&FEG| AND 1)=\emptyset THEN C%=TRUE 
880 IF (?&FEG| AND 1)=\emptyset THEN C%=TRUE 
900 NEXT V
900 NEXT V
900 NEXT V
9 1 0 ~ R E P E A T ~ U N T I L ~ ( ? \& F E G D ~ A N D ~ 1 ) = 0
9 1 0 ~ R E P E A T ~ U N T I L ~ ( ? \& F E G D ~ A N D ~ 1 ) = 0
9 1 0 ~ R E P E A T ~ U N T I L ~ ( ? \& F E G D ~ A N D ~ 1 ) = 0
920 UNTIL INKEY$(0)<>""
920 UNTIL INKEY$(0)<>""
920 UNTIL INKEY$(0)<>""
930 ENDPROC
930 ENDPROC
930 ENDPROC
940
940
940
950
950
950
9 6 0 ~ D E F ~ P R O C 1 0 n g ~
9 6 0 ~ D E F ~ P R O C 1 0 n g ~
9 6 0 ~ D E F ~ P R O C 1 0 n g ~
970 PROCmessage f
970 PROCmessage f
970 PROCmessage f
980 C%=FALSE
980 C%=FALSE
980 C%=FALSE
990 REPEAT
990 REPEAT
990 REPEAT
1000 REPEAT UNTIL (?NFEGO AND 1)=1
1000 REPEAT UNTIL (?NFEGO AND 1)=1
1000 REPEAT UNTIL (?NFEGO AND 1)=1
1010 FOR V=0 TO 127
1010 FOR V=0 TO 127
1010 FOR V=0 TO 127
1020 ?&FE6|=STORE?V
1020 ?&FE6|=STORE?V
1020 ?&FE6|=STORE?V
1020 ll
1020 ll
1020 ll
            lallol
            lallol
            lallol
            lom| IF (?&FEGQ AND 1)=0 THEN C%=TRUE 
            lom| IF (?&FEGQ AND 1)=0 THEN C%=TRUE 
            lom| IF (?&FEGQ AND 1)=0 THEN C%=TRUE 
            lol
            lol
            lol
1070 REPEAT UNTIL (?&FEGO AND 1)=0
1070 REPEAT UNTIL (?&FEGO AND 1)=0
1070 REPEAT UNTIL (?&FEGO AND 1)=0
1070 REPEAT UNTIL (?&FEGQ
1070 REPEAT UNTIL (?&FEGQ
1070 REPEAT UNTIL (?&FEGQ
1090 ENDPROC
1090 ENDPROC
1090 ENDPROC
1090 ENDPROC
1090 ENDPROC
1090 ENDPROC
1100
1100
1100
1110
1110
1110
1120 DEF FROCmessage_e
1120 DEF FROCmessage_e
1120 DEF FROCmessage_e
1130 X%=POS: Y%=UPOS
1130 X%=POS: Y%=UPOS
1130 X%=POS: Y%=UPOS
1140 VDU 28,20,28,39,18
1140 VDU 28,20,28,39,18
1140 VDU 28,20,28,39,18
1150 PRINT"Draw envelope shape"'"with joystick."
1150 PRINT"Draw envelope shape"'"with joystick."
1150 PRINT"Draw envelope shape"'"with joystick."
1160 PRINT
1160 PRINT
1160 PRINT
1170 PRINT"Press fire button"""when satisfactory."
1170 PRINT"Press fire button"""when satisfactory."
1170 PRINT"Press fire button"""when satisfactory."
1180 ENDPROC
1180 ENDPROC
1180 ENDPROC
1180
1180
1180
1200
1200
1200
1200 DEF PROCmessage_\rho
1200 DEF PROCmessage_\rho
1200 DEF PROCmessage_\rho
1220 X%=POS:Y%=VPOS
1220 X%=POS:Y%=VPOS
1220 X%=POS:Y%=VPOS
1230 VDU 28,20,28,39,18
1230 VDU 28,20,28,39,18
1230 VDU 28,20,28,39,18
1240 PRINT"Press any key to"""return to command"""mode.
1240 PRINT"Press any key to"""return to command"""mode.
1240 PRINT"Press any key to"""return to command"""mode.
1250 PRINT 
1250 PRINT 
1250 PRINT 
1260 FRINT" (ESCAPE for instant" " return.)"
1260 FRINT" (ESCAPE for instant" " return.)"
1260 FRINT" (ESCAPE for instant" " return.)"
1270 ENDPRDC
```

1270 ENDPRDC

```
1270 ENDPRDC
```

```
OU UNTIL
```

OU UNTIL

```
OU UNTIL
900% - |
900% - |
900% - |
1030 FOR T=1 TO 10:NEXT
```

1030 FOR T=1 TO 10:NEXT

```
1030 FOR T=1 TO 10:NEXT
```

```
```

10 FEM ENVELOFE SHAPEFi PROGRAM

```
```

10 FEM ENVELOFE SHAPEFi PROGRAM
20 REM FOR BBC MODEL B
20 REM FOR BBC MODEL B
30 REM J.W.P. 10/84
30 REM J.W.P. 10/84
40 MODE 1
40 MODE 1
50 ?\&FE62=254
50 ?\&FE62=254
60 C%=FALSE
60 C%=FALSE
70 DIM STOFEE 127
70 DIM STOFEE 127
80 UDU 24,5;500;1275;1020;29,5;500;
80 UDU 24,5;500;1275;1020;29,5;500;
90 ON ERROF GOTO 240
90 ON ERROF GOTO 240
100
100
110
110
1 2 0 ~ C L S ~ S
1 2 0 ~ C L S ~ S
130 PROCl abels
130 PROCl abels
140 REPEAT
140 REPEAT
150 choice$=GET$
150 choice$=GET$
l60 IF choice$="E" OR choice$="e" THEN PROCenvelope
l60 IF choice$="E" OR choice$="e" THEN PROCenvelope
170 IF choice$="P" OR choice$="p" THEN PROCplay
190 CLS
190 CLS
200 VDU 28,0,28,19,18,31,X%,Y%
200 VDU 28,0,28,19,18,31,X%,Y%
210 UNTIL FALSE
210 UNTIL FALSE
220
220
240 IF ERR<>17 THEN REFORT:FRINT" at line ";ERL:STOP
240 IF ERR<>17 THEN REFORT:FRINT" at line ";ERL:STOP
CLS
CLS
GOTO 13\Omega
GOTO 13\Omega
270
270
280
280
290 DEF PROClabels
290 DEF PROClabels
300 VDU 28,0,28,19,18
300 VDU 28,0,28,19,18
310 COLOUR 3
310 COLOUR 3
320 PRINT "Please select:-"
320 PRINT "Please select:-"
330 PRINT
330 PRINT
340 COLDUR 1
340 COLDUR 1
350 COLOUR 1:PRINT"E";
350 COLOUR 1:PRINT"E";
360 COLOUR 3:PRINT"nvelope"
360 COLOUR 3:PRINT"nvelope"
370 PRINT
370 PRINT
380 COLOUR 1:PRINT"P";
380 COLOUR 1:PRINT"P";
390 COLOUR 3:PRINT"lay"
390 COLOUR 3:PRINT"lay"
400 PRINT
400 PRINT
410 PRINT"P1ay "
410 PRINT"P1ay "
4 2 0 ~ C O L O U R ~ 1 : P R I N T " L " ;
4 2 0 ~ C O L O U R ~ 1 : P R I N T " L " ;
430 COLOUR 3:PFINT"ong"
430 COLOUR 3:PFINT"ong"
440 PRINT
440 PRINT
4 5 0 ~ C O L O U R ~ 1 / ~
4 5 0 ~ C O L O U R ~ 1 / ~
460 PRINT"Press letter key";
460 PRINT"Press letter key";
470 COLOUR 3
470 COLOUR 3
4 8 0 ~ E N D P R O C ~
4 8 0 ~ E N D P R O C ~
490
490
5 0 0
5 0 0
5 1 0 DEF PROCenvelope
5 1 0 DEF PROCenvelope
510 DEF PROCenvel op
510 DEF PROCenvel op
530 REPEAT
530 REPEAT
540 CLG:GCOL D,.3
540 CLG:GCOL D,.3
55\# MOVE D,\emptyset
55\# MOVE D,\emptyset
550 MOVE D,0
550 MOVE D,0
560 VDU7
560 VDU7
570 FOR T=0 TO 100:NEXT
570 FOR T=0 TO 100:NEXT
580 FOR X=0 TO 127
580 FOR X=0 TO 127
FOR X=O TO 127
FOR X=O TO 127
STORE?X=Y
STORE?X=Y
DRAW }X*10,Y*
DRAW }X*10,Y*
FOR T=0 TO 100: NEXT
FOR T=0 TO 100: NEXT
NEXT X
NEXT X
UNTIL (ADVAL (O) AND 3)<>0
UNTIL (ADVAL (O) AND 3)<>0
SOUND 1,-15,-110,20
SOUND 1,-15,-110,20
PROCconfirm
PROCconfirm
ENDPROC
ENDPROC
6 8 0
6 8 0
670 ENDPROC
670 ENDPROC

```
    CLS
```

 CLS
 220
220
40
40
40
long
long
long
-a-
-a-
-a-
ENDPROC (

```
ENDPROC (
```

ENDPROC (

```
vertically and draw out the required shape. This process will repeat automatically, but when exactly the required shape has been obtained the program can be halted by pressing the firebutton. If you are using a potentiometer to control the trace the following line should be substituted at line 640 .
640 UNTIL INKEY \(\$(0)<>\) ""
The program can then be halted by pressing any key on the computer's keyboard. The envelope can be reproduced at two speeds. Operating instructions are included in the program.

The routines provided are really only intended as starting points, and there is ample scope for the user to develop software to exactly suit his or her needs.
with nuclear power capacity and the present state of play reveals some surprising statistics. The yardstick is the percentage share of nuclear to total generating capacity.
France is world leader with 58.7 percent of all its capacity being nuclear with Belgium ( 50.8 percent) and Finland (41.4 percent) second and third. Bulgaria, not generally regarded as a high-tech country is sixth ( 28.6 percent) while the Soviet Union generally regarded as high-tech rates a lowly 14th spot with a modest 9 percent.
The United Kingdom is running 11 th (17.3 percent) but ahead of the United States (13.5 percent) and Canada (11.6 percent). Of course not too much should be read into the figures because each country has different needs in respect of availability and cost of indigenous fuels, electricity demand and economic development.
Our own future programme is seriously obstructed by a noisy anti-nuclear lobby which has already delayed the planned Sizewell installation by at least two years. Nonetheless, for obvious reasons of reliability of supply, the Central Electricity Generating Board is dedicated to reducing dependence on coal and expects to expand nuclear capacity to 40 percent or more of the total by the end of the century.
But France, already world leader, expects to achieve 75 percent nuclear power by 1990. French tariffs, largely due to nuclear power, are some 20 percent lower than in Britain and the large industrial users in France are claimed to have a 30 percent cost advantage in energy over their competitors in the UK. It leaves one wondering whether the anti-nuclear groups realise the economic damage they do or, indeed, whether the 'greens' among them know that burning coal and oil is infinitely more damaging to the environment than the 3,500 operating years already clocked up by the world's nuclear power stations.

\section*{Japanese Connections}

When, forty years ago, Japan was forced into military surrender by a devastating atomic left and right, the inherent militancy of the nation re-emerged in a bid for world domination with results which are plain to see.
Perhaps from a sense of guilt over Hiroshima and Nagasaki the west has been tolerant of some of the worst excesses of Japanese trading practices. Today there is a hardening of attitude that Japan should fall into line and stop blocking imports while still free to export her own products worldwide. If and how this problem will be resolved only the next few months will tell.

Meantime, we perhaps need Japan more than she needs us. ICL's new super-fast Series 39 mainframe computer would not have been possible without cooperation with Fujitsu on chip manufacture. BL has made good use of cooperation with Honda. Nissan at Sunderland is already recruiting in anticipation of starting car production in the UK. And Trade and Industry Minister Norman Tebbit was recently in Japan and is reported to have a list of over 300 Japa-
nese firms interested in establishing subsidiary companies in Europe. Mr Tebbit hopes a good proportion will choose the UK as a base and he has some good examples to influence them in their choice.

\section*{Good Relations}

When looking at the Japanese electronic companies already established in the UK one sees instantly why Japan succeeds so consistently while we so often fail. It is often thought that the Japanese do well in the UK only if starting fresh on a green field site recruiting only those untainted by oldfashioned, inefficient work practices. But Hitachi and Toshiba both took over existing factories and turned loss into profit. Albeit at a price in jobs. But when Toshiba, for example after a period of five years is now producing the same number of TV sets with only one fifth of the staff of the previous British employers and turned huge losses into profit it demonstrates that there are no bad troops, only bad officers.
We have here a fine paradox. When I was at social occasions in Japan I found it somewhat embarrasing to find the polite introductory bow between the Japanese prolonged while, by careful hedging, it was discovered which person was the more senior and therefore the one to be deferred to. Yet in industry everyone is equal though mutual respect is encouraged, in fact mandatory. One works restaurant, one worker status, one trade union, one standard for all in clocking on, holidays and sick pay.
Naturally there are differentials in pay and managers will still manage. But the concept of officers and troops, of directors dining rooms and staff canteens is absent, as is the shop steward constantly on the alert for any grievance capable of exploitation. He or she is now a representative, has a good working relationship with management and the workforce and differences are resolved by discussion, not walk-outs.

\section*{Smart Buy}

There is little doubt that, during the period leading up to privatisation, British Telecom was keeping a sharp eye on Cable and Wireless whose liberation from Government restraint came much earlier. And now BT has followed C \& W's example of expansion with the acquisition of 51 percent of the Canadian Mitel Corporation.
This brings two great assets to BT. First it brings to BT a large scale manufacturing operation. Second, perhaps even more important, it gives BT an opening, in the North American as well as other world markets.
Mitel, whose UK manufacturing base is in South Wales, also has factories in the USA, Germany, Hong Kong, Mexico, New Zealand and Puerto Rico and sells microprocessor controlled PABXs to 80 countries. Mitel was in financial difficulties but over a medium term it looks a smart buy for BT. Mitels' founders, Terry Matthews and Mike Copeland are, in effect, 'coming home' as they were both ex-BT employees before seeking a fortune in Canada.

\title{
RUR' ROBOT \({ }_{\text {parar }}\) Ralph P. Magee \\ Continued from the June issue \\ 3-to-8 decoder which decodes address range 0000 HEX to 3FFF
}
(N this, the final part of the R.U.R. (Reekie Universal Robot) we look at the electronics (designed by James Chisholm) and the Tiny BASIC software.
The control card for the R.U.R. is based around the \(Z 8671\) single chip Microcomputer from Zilog. It is an industrial micro controller in the \(Z 8\) range. It was chosen as it has a 2 K Tiny BASIC internally held in ROM. Two fully programmable timer counters, full duplex USART/RS232/432 as well as I/O ports and addressing capabilities up to 62 K , enough for most control, vision, speech recognition, speech synthesis, and enough internal registers for any machine code programs.
The basic electronics supplied with the robot has 2 K RAM and 4 K EPROM containing programs described later. An 8255 I/O post giving another 24 lines of I/O. A TTL to RS232/432 (almost) converter. A clock running at 7.37 MHz and a Polaroid ultrasonic range finder which is connected to timer T1 and used as object and path sensing system. Two Darlington drivers are connected to the output lines to the 8255 that provide for the direction relays, motors and l.e.d. eyes.
The Address Range is decoded from 0000 HEX to 3FFF HEX into 2 K blocks. These can be set-up as either ROM or RAM by changing the links so that as much or as little RAM can be used. However, with an all ROM system there are only about a 100 usable registers inside the CPU and the stack grows down from the top of memory and takes up most of the registers. With RAM in place the stack sits on top of external RAM and grows down. The bottom 4K of this area is taken up with the internal ROM and I/O ports. Also two 8 -bit bi-directional 1/O ports have been set aside for experimental use, One port, the individual lines of the byte can be set to be input or open-drain, and under software control can be set-up to be of type active input or open-drain. The other port is set-up to be input or output and is a byte wide.

\section*{THE ELECTRONICS}

On reset the Z8 (Fig. 4) non-destructively tests the memory to find areas occupied by RAM. The micro-processor sets up the output port and prints a colon (i) and then jumps to \% 1020 where it starts the software held in EPROM. If the EPROM is removed and replaced by 6116 the whole system, without any of the Reekie software, is available to the user. With the Reekie EPROM it autoruns the software as described later

\section*{DECODING}

The \(Z 8\) has a multiplex data/address bus and to decode it AS and DS are required. The data is valid when DS is at logic 1 and address bus bits 0 to 7 are valid when AS is logic 1. The address bus is latched by the 74LS373 and brought out to the edge. Bits 8 to 15 are valid throughout both cycles. These.feed into 74LS138
into 2 K bloćks suitable for the 6116 and 27162 K by 8 RAMs and EPROMs. To decode for 2732 two of these bits are ANDed together to form a 4 K chip select suitable for the 2732 . And line A 11 must also be exchanged for the read write R/W for the signal. This can be achieved by changing the links.

\section*{PORT 2}

Port 2 is ávailable for the user. It can split into individual bits of either input or output type by setting the internal register @ 246 to 1 for input, and 0 for output, on each individual bit, then writing the data to be sent out by using @ \(2=\) data, e.g
\[
\begin{array}{ll}
10 @ 246=0 & : \text { REM sets port } 2 \text { to output } \\
20 @ 2=255 & : \text { REM output } 255 \text { to port } 2
\end{array}
\]

And the ports as follows:
\[
\begin{aligned}
& @ \% 800=\text { Port A } \\
& @ \% 801=\text { Port B } \\
& \text { @\%802 }=\text { Port C }
\end{aligned}
\]

This echoed through the block \% 0800 to \% OFFF
Port A drives into a Darlington driver i.c. which can sink 500 mA as long as the whole package does not dissipate more than 1.8 watts. This is used to drive the eye l.e.d.s on lines 0 to 5 and the head motor on and off on bit 6 , and direction on bit 7

Port B is brought to the edge of the printed circuit board and is free for users use

Port C is split, the lower bits are set-up as mainly inputs to monitor switches on the head position (if fitted) and a demonstration button. Bits 4 to 7 are set as outputs and control the direction of the main motors. Bit 4 controls the left motor, bit 5 controls the direction of the left motor: \(1=\) forward. Bit 6 controls the right motor on logic 1 , and bit 7 controls the direction of the right motor: 1 = forward. See Table 1 for guidance of driving the motors.

\section*{INTERRUPTS}

The 28 has 6 interrupts, 4 internal and 4 external, i.e. two both internal and external. Of these, two are taken by the USART INT 3 and 4 , and a further two are taken by the ultrasonic range-finder system, these being INT5 and INT2, leaving 0 and INT1 for the user. These are vectored by 16 -bit addresses stored in RAM, and should point to the start of service routines. All these interrupts can be prioritised and enabled by very powerful interrupts system. See Table 2.

INTO and INT1 are negative edge-triggered and brought out on port 3,2 and 3,3 . These can also be set-up as input and output lines by changing the port 3 register \(247 \%\) F7



Fig. 5. Ultrasonic ranging unit wiring

\section*{ULTRASONICS}

The ultrasonics signal VSW is the Pulse Transmit signal and is connected to port 3,5 when it is taken low, transistor TR3 conducts and transmits a pulse. Once the pulse is transmitted XLG goes low, thus setting the RS latch built around IC5 so starting the clock T1 in the Z8. Upon first echo from the object in its path FLG goes low, resetting the latch and stopping the clock. The distance



Fig. 6. Regulator circuit


Fig. 7. Ultrasonic ranging unit interface



Fig. 9. Relay circuits for sound and motor drives


Fig. 8. Robot l.e.d. eye circuits (mounted on separate p.c.b.)

COMPONENTS . . .
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Resistors} \\
\hline R1-R16 & 100 (16 off) \\
\hline R17, R36, R37 & \(4 \Omega 7,4 \mathrm{~W}\) (3 off) \\
\hline R18 & 100k \\
\hline R19, R24, R25, R27, & 4 k 7 (7 off) \\
\hline R30-R32 & \\
\hline R20 & 12k \\
\hline R21, R22 & 5 k 6 (2 off) \\
\hline R23, R26 & 330 (2 off) \\
\hline R29, R35 & 10 k (2 off) \\
\hline R33 & 2k2 \\
\hline R34 & 1 k \\
\hline R38, R4 1 & 470 (2 off) \\
\hline R39, R42 & 82 (2 off) \\
\hline R40, R43 & 39 (2 off) \\
\hline
\end{tabular}

All resistors \(\frac{1}{4} \mathrm{~W} 5 \%\) unless otherwise specified
Capacitors

C1, C17
C2, C22, C23
C3-C10, C13-C16
C18-C21
C11, C12
C19-C21
Semiconductors
\begin{tabular}{ll} 
IC1 & Z8671 micro \\
IC2 & 74 LS138 \\
IC3 & 74 LSO4 \\
IC4 & 74 LS08 \\
IC5 & 74 LS00 \\
IC6 & 8255 \\
IC7, IC8 & \(2001 \mathrm{~A}(2\) off) \\
IC9 & 74 LS373 \\
IC10 & 2732 or 6116 \\
IC11 & 6116 \\
IC12 & 2732 or 6116 \\
IC13 & 6116 \\
IC14 & 2732 or 6116 \\
IC15 & 6116 \\
IC16, IC17 & 7805 (2 off) \\
TR1 & BC182L. \\
TR2 & BC212L \\
TR3, TR5 & BC108 (2 off) \\
TR4 & ZTX751 \\
D1, D3, D4 & 1 N4148 (3 off) \\
D2 & 5 V 6 Zener \\
D5, D6, D7 & 1 N4001 (3 off) \\
D8, D27 & 0.2 in. green I.e.d. (2 off) \\
D9-D26, D28-D45 & 0.2 in. red I.e.d. (36 off)
\end{tabular}

Miscellaneous
LSI 2 in. \(8 \Omega\) loudspeaker
S1, S2 keyboard type "click" switches (2 off) Main p.c.b., Relay p.c.b., Eye p.c.b. (2 off), RLA, RLB, RLC 12 V two-pole changeover relays (3 off), 3A fuse plus p.c.b. holder, heatsink for regulator IC16, XL1 \(7 \cdot 382 \mathrm{MHz}\) crystal, 24pin di.i. i.c. socket ( 6 off), \(16-\) pin d.i.l. i.c. socket ( 3 off), 20 -pin d.i.l. i.c. socket, 14 -pin d.i.l. i.c. socket ( 4 off), \(40-\) pin d.i.l. i.c. socket ( 2 off), p.c.b. mounting 5 -way di.n. socket for RS232, 5 -way p.c.b. plug, 4 -way p.c.b. plug ( 4 off), 6 -way p.c.b. plug, 8 -way p.c.b. plug ( 3 off), PP3 battery lead with studs, 12V battery lead with spare connector.
Note
A full kit of parts for the RUR is available from Reekie Robots. Tel: 01-892 2877.

The kit is supplied with one 6116 and one 2732. Ports 2, 3 are for future expansion.


Fig. 11. Ultrasonic unit timing and operation diagram
in front of the transducer is given by the formula:
\[
D=331.4 \times(K / 273)^{0.5} \times \frac{t}{2}
\]
\(D\) is in metres
K is the air temp. in Kelvin
\(t\) is time in seconds
This can be simplified to \(D=170 \cdot 2^{*} t\) at 15 deg . C. If there is no object in the path, i.e. the distance to any wall which is over 35 feet after 62 ms , then FLG automatically goes low.

The internal software routine returns the distance in cm at 15


Fig. 12. 8255 addressing
deg. \(C\) and makes use of INT 5 to increment the count in the register overflows.
Port 3,0 and 3,7 are used to connect the USART to the outside world and are fed directly to the RS232/432 driver and receiver

Table 1. Motor control logic
SIDE A
SIDE B
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{} & left free \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& 5 V \text { on } A+B \\
& \text { left free }
\end{aligned}
\]} & left free \\
\hline \multicolumn{2}{|l|}{DS} & AS \\
\hline \multicolumn{2}{|l|}{A14 and A15} & reset \\
\hline \multicolumn{2}{|l|}{AO} & A1 \\
\hline \multicolumn{2}{|l|}{A2} & A3 \\
\hline \multicolumn{2}{|l|}{A4} & A5 \\
\hline \multicolumn{2}{|l|}{A6} & A7 \\
\hline \multicolumn{2}{|l|}{A8} & A9 \\
\hline \multicolumn{2}{|l|}{A10} & A11 \\
\hline \multicolumn{2}{|l|}{A12} & A13 \\
\hline \multicolumn{2}{|l|}{A14} & A15 \\
\hline 3.3 & in & -3,2 \\
\hline 3. 1 & in & 3,0 \\
\hline 3.7 & 00 & 3,6 \\
\hline 3, 5 & 00 & 3,4 \\
\hline \multicolumn{2}{|l|}{RM} & SP \\
\hline \multicolumn{2}{|l|}{SP} & SP \\
\hline \multicolumn{2}{|l|}{DO} & 2,0 \\
\hline \multicolumn{2}{|l|}{D1} & 2,1 \\
\hline \multicolumn{2}{|l|}{D2} & 2, 2 \\
\hline \multicolumn{2}{|l|}{D3} & 2,3 \\
\hline \multicolumn{2}{|l|}{D4} & 2,4 \\
\hline \multicolumn{2}{|l|}{D5} & 2,5 \\
\hline \multicolumn{2}{|l|}{D6} & 2, 6 \\
\hline \multicolumn{2}{|l|}{D7} & 2,7 \\
\hline \multicolumn{2}{|l|}{SP} & SP \\
\hline \multicolumn{2}{|l|}{SP} & SP \\
\hline \multicolumn{2}{|l|}{SP} & SP \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{SP}} & SP \\
\hline & & \(+12 \mathrm{~V}\) \\
\hline OV & & OV \\
\hline
\end{tabular}

Table 2. Interrupt priorities

R249 IPR
Interrupt Priority Register
(F9H: Write Only)

1 ENABLES INTERRUPT

R250 IRQ
Interrupt Request Register (FAH: Read/write)
\[
1=\mid \operatorname{RQ} 4>\operatorname{RQ} 1
\]

D7 D6 D5 D4 D3 D2 D1 D0
INTERRUPT GROUP PRIORITY
RESERVED \(=000\)
\(C>A>B=001\)
\(\mathrm{A}>\mathrm{B}>\mathrm{C}=010\)
\(A>C>B=011\)
\(B>C>A=100\)
\(C>B>A=101\)
\(B>A>C=110\)
RESERVED \(=111\)
R251 IMR Interrupt Mask Register (FBH: Read/write)
\[
0=I R Q 2>I R Q 4
\]
\(1=|\mathrm{RQ} 4\rangle \operatorname{RQ} 2\)
IRO1,IRO4 PRIORITY (GROUP C)
\[
0=|R Q 1>| R Q 4
\]


\(\operatorname{IROO}=\mathrm{P} 33\) INPUT \((D 5=\operatorname{IROO})\)
IRO1 = P32 INPUT
IRQ2 \(=\) P31 INPUT
1RQ3 \(=\) P3O INPUT, SERIAL INPUT
IRQ4 = TO SERIAL OUTPUT

IRQ5 \(=T 1\)


Fig. 13. Component layout and wiring for the relay p.c.b.

circuits built around transistors TR1 and TR2, and various other associated components. This circuitry is powered by two PP3 batteries giving a voltage swing of 18 volts, enough for quite long lengths but this can easily be modified to give a potential of 24 V for standard RS232 interfaces

\section*{PORT 3}

Port 3,6 is connected directly to a Darlington and drives a speaker which enables beeps to be created from timer T1.
The internal UART in the \(Z 8\) is set-up to transmit the 8 bits with no parity and 2 stop bits. It is fully interrupt driven using interrupts 3 and 4 so is fully duplex (repeating everything sent to it), employing the timer TO for the generation for its Baud rates.

\section*{THE 8255}

This is an Intel chip which happens to work with the 28 . To control it, it has a Data Direction Register (DDR) addressed by @\%803HEX as shown in Fig. 12.

\section*{ASSEMBLY AND CHECKING}

To construct the relay board the passive components should be inserted first, then the d.i.l. sockets, and then the relays and transistors etc. Power up and check the +5 V rail from the regulator before plugging in the i.c. When everything is found to be satisfactory, power down again and plug in IC5.

Assemble the main board to the same general rules and, again, check the supply voltages throughout before plugging in the i.c.s.

When ready, connect the relay board with the main board. Plug in IC1 and power up. Do not yet plug in the ROM. Using the terminal, check that a colon (:) appears on the screen. If the colon does not appear, the fault is almost certainly in the power, clock, RS232 or reset circuit. Check these areas and rectify.

Table 3. This is only a minor selection of what can be done with this powerful system and some novel and interesting extensions to normal BASIC keywords can be used allowing such things as relative, index, immediate and indirect register addressing from BASIC.

\section*{Expressions:}

Variable names \(A-Z\)
Signed decimal numbers in the range -32768 to +32767 .
Hexadecimal numbers (preceded by " \(\%\) ") in the range 0 to 65535.

Operators:
\(=\) equal.
\(<=\) less than or equal.
\(<\) less than.
\(<>\) not equal.
\(>\) greater than.
\(>=\) greater than or equal.

\section*{Memory Operators:}
@ Any byte may be referenced by placing the byte signal character "@" in front of the address. For example, LET \(\mathrm{X}=@ 1000\) assigns the value at address 1000 to X ; LET @ ( \(\left.\mathrm{C}^{*} 100\right)=\mathrm{A}\) assigns the value of A to the byte at address ( \(\mathrm{C}^{*} 100\) ).

Sixteen-bit words may be referenced with an address preceded by the word signal character " \(\uparrow\) ". For example, PRINT \(\uparrow \uparrow 8\) will print the sixteen-bit value pointed to by the contents of the word at location 8 .
- subtraction.
* multiplication.
division.
unsigned division.

Functions
AND ( \(\mathrm{a}, \mathrm{b}\) ) Performs a logical AND of the expressions \(\mathrm{a}, \mathrm{b}\).
USR ( \(a, b, c\) ) Calls an assembly language routine at address a. The expressions b,c may be used to pass arguments to the routine. The assembly language routine must return a value.

\section*{Statements:}

GO@

GOSUB
GOTO
IF/THEN Used for conditional operations and branches.
INPUT
IN
Branches to an assembly language routine. This statement is similar to USR except no value is returned by the assembly language routine.
Calls a subroutine at line number.
Branches to a line number.
Inputs expressions separated by commas.
Same as INPUT except values remaining in the input buffer are used first, then new data is requested
LET Assigns the value of an expression to a variable or memory location.
LIST Lists the current program.
NEW Establishes a new start-of-program address.
PRINT Lists its arguments, which may be text messages or numerical values, on the output terminal.
REM Used to insert comments.
RETURN Returns control to line following GOSUB statement.
RUN Initiates sequential execution of all instructions in current program.
STOP Gracefully ends program execution.

\section*{SOFTWARE}

Software for the RUR initially consists of a learning and then repeat routine. A demonstration program is activated upon powerup and press of the Demp button, so the robot can be used
without a keyboard with the auto-Baud rate selection program, as well as a program to return the distance to any object in front of the SONAR. A delay routine is included to set-up delays as well as other routines for forward, backward, left and right chasing of the eyes and scanning the head.

The auto-Baud rate selection. After reset, if the Demo routine is not activated the resident software held in EPROM prints up a message at standard Baud rates and then waits for a user to return
a Carriage Return (\%OD). It then counts the number of Os received and sets the Baud rate accordingly.

The Demo routine sends the robot off to do a demonstration of its skills, and ends up with a short random walk under sonar control. If the demo button is repressed three times in quick succession it will keep repeating the demo routine until it is reset, or worse!

The Learn program is a simple learn program written in Tiny BASIC machine code with sections to outputs. Some of it is stored in RAM so the user can supply actual routines and extend and tailor the program to any individual robot, or any modification the user might have added. Options also exist to load and save sequences, EDIT LIST the program.

COMMANDS: \(F D=\) forward, \(B K=\) backward, \(L T=\) left, \(R T=\) Right, \(J P=\) jump, \(P A=\) pause, \(G O=\) go/execute, \(C L=\) clear, \(L I=\) list,\(L D=\) load, \(S A=\) save, \(S T=\) stop.

\section*{THE BASIC}

On existing to BASIC the program stops. The choice can then be made to list and change the teach program, or reset. This allows access to Tiny BASIC and excellent language developed from Dartmough BASIC which is modified specifically for control and debugging of programs. A summary of Commands is listed in Table 3.

\section*{LISTING 1. Demo A. To stop the program press RESET or ESCAPE}

10 REM PROGRAM TO CHASE
\(20 @ 246=0\) Port 2 outputs
\(30 \mathrm{~A}=0\)
40 @ 2 = \(A\)
\(50 \mathrm{~A}=\mathrm{A}+1\)
60 GOTO 40

\section*{LISTING 2. Demo B.}

\section*{10 REM EYE CHASING}
\(20 @ 803\) = 128 SET DDR 8255
\(30 \mathrm{~A}=0 \quad\) INITIALISE
\(40 @ 800=\mathbf{A}\) OUTPUT TO 8255
\(50 \mathrm{~A}=\mathrm{A}^{*} \mathbf{R}\)
60 IF A \(>256\) THEN GOTO 30 CHECK IF TOO LARGE 70 GOTO 40 LOOP ROUND

It is after conducting these checks that the motors, sonar range finder and eye l.e.d.s should be wired up.
Now is the time to plug in the ROM (with the power off), press the DEMO button and with any luck, see the RUR in action.

\section*{DEMO PROGRAM}

A demonstration program is supplied with the RUR. At this stage the demo program should be typed in (See LISTING 1) and the functions checked.

\title{
modems
}

\section*{M.TOOLEY BA and D. WHITFIELD MA MSc CEng MIEE}

\begin{abstract}
THIS month sees the conclusion of the modem series, and looks at what is involved in getting started 'on-line'. The objective here is to give an idea of what to expect once you've taken the plunge and decided to go on-line. The approach we have taken is to provide a number of illustrated examples of modem usage in conjunction with a BBC Micro. As described in previous articles, you will need to extend your computer configuration to include the following items in order to put your decision into practice: a BABT approved modem, a power supply/mains lead, a communications software package, a computer-to-modem lead, and a modem-to-BT socket lead or an acoustic coupler. To assist in choosing a modem, details of a selection of currently available (BABT approved) modems are given overleaf, together with a list of contact telephone numbers to get you started.
\end{abstract}

\section*{SETTING UP}

The details of setting up your system to include a modem will depend very much on the computer involved. In the case of the BBC Micro model B, however, it is fairly straightforward because the serial port is already fitted, and the majority of modem software for the BBC Micro is provided on ROM. The Modem 84 package from Watford Electronics has been used in the examples of modem applications. This comes complete with the following items: a basic Prestel-type direct-connect modem ( \(1200 / 75\) and 1200/1200 baud rates) with integral mains power supply, modem manual, software in ROM, software manual, and leads for mains power, computer-tomodem and modem-to-BT connection. The configuration is illustrated in Fig. 1
Installation is simplified by the provision of a socket on the back of the modem to allow connection of an existing telephone. This avoids the need for an additional telephone socket or a two-way adaptor by allowing the modem and telephone to share a single BT outlet. The software is installed by inserting the ROM into a convenient socket, and a function key overlay is added to identify the additional functions supported by the package. The two signal leads from the modem (to the computer and the BT socket), and the mains supply complete the installation. Once the installation is established, the next step is to try it out in action.

Fig. 1. Basic modem configuration


\section*{LOGGING ON TO PRESTEL.}

Once the system is set up, the inevitable question arises: "What next?", The easiest first step is probably to try out one of the readymade demonstration facilities available on an on-line database. Depending on your interests, you may then choose to take a subscription with, say, Prestel, but initially a demonstration will help you get the feel of this type of system. What follows, therefore, is a step-by-step guide to using the Prestel demonstration with the BBC Micro and Watford Modem 84. This is only a simple demonstration, and for clarity it does not make use of many of the software facilities.

Assuming that the system is configured as shown in Fig. 1, the first step is to switch on the system and activate the software package. This is done using the *PRESTEL command provided by the ROM. This causes the introductory display shown in Fig. 2 to be produced. The next step is to obtain legal access to the Prestel computer for a free demonstration of its capabilities. This, for example is available on the London 'Enterprise' computer, but is also available on a number of other Prestel computers. The telephone number of the Enterprise computer is 01-618 1111, and ringing this number should result in a continuous tone being heard. When this occurs, switch the modem on-line, and replace the telephone handset; the modem will then hold the connection until you 'log off' the computer.
After a short pause, the Prestel computer will respond with the display in Fig. 3, which requests you to enter your customer identity. For the demonstration database you should type in 4444444444 ( 10 fours); anything you type will be echoed as a 'for security reasons. After the last ' 4 ', the computer will automatically move on to the display in Fig. 4, and request your password Entering a code of 4444 gives access to the demonstration database, and the welcome page in Fig. 5 is then displayed. Pressing any number moves on to the second welcome page, Fig. 6. Pressing any number then displays the top level 'menu' of choices, as shown in Fig. 7; you are now in the database proper. All of the subsequent pages are accessed from menus like this, all with accompanying messages to help you find your way around. The menu approach allows you to move down and back up the tree-structure of menus. Thus, for example, selecting 1 from the menu in Fig. 7 moves you into the Micronet 800 demonstration area of the database.
For further details of Prestel and Micronet 800 , you can apply directly from your terminal. Although there is a charge for many Prestel pages when viewed, the demonstration is free, other than your telephone call costs. Various choices allow you to be shown the whole demonstration one page at a time, or just see the highlights.

\section*{PRESTEL TERMHML}

To.LOG OH to PRESTEL
1. Hake sure telephone is not in use. 2. Dial computer
3. When gou hear the tone
switch MODEH on line.
4. Type in number or if programed the computer does it for you

PRESS SPAEE WHEN READY
Waiting for data

Fig. 2. WE Prestel ROM display

\section*{PREDEL}

ENTERPRISE COMPUTER
Please enter below your Customer Identity. (key ** if you make a mistake)

You may progran this Identity into your set by going to PACE 924 (after receiving the Welcome to Prestel frame).
customer Identity

Fig. 3. customer identification
EHTERPRTSE COMPUTER


Please enter your PERSOMAL PASSWORD (Key ** if you make a mistake)

Fig. 4. password request


Fig. 5. Prestel-welcome


Fig. 6. Prestel-'logged on'
\begin{tabular}{|c|}
\hline  \\
\hline
\end{tabular}

The above symbol is the BABT green circle of approval. It is illegal to connect to the public network any piece of apparatus showing the red triangle (below).

Guides for suppliers and users covering the Marking Orders and advertising of telecommunications apparatus, including extension telephones-'What you need to know before you buy' can be obtained free of charge from, Mr. R. Smith, D. P. Mailing Ltd., Streatham Road, Mitcham, Surrey, CR4 2AA. (01-640 7418).

The Department of Trade and Industry also issue a free leaflet educating users in the importance of the Marking Order. Available from, Ringing the Changes, Marketing Solutions Ltd., 70 Salusbury Road, Queen's Park, London, NW6 6NU.

\section*{PROHIBITED rom} direct or indirect connection to any telecommunication system run by British Telecommunications Actionmay be taken against anyone so connecling this apparatus


Fig. 7. Prestel-options


Fig. 8. Techno-Line-welcome


Fig. 9. Techno-Line-main index


Fig. 10. Techno-Line-peripherals


Fig. 11. Techno-Line-information

TANDATA MARKETING 'TM \(110^{\circ}\)


SCICON 'BUZZBOX-AA'
PACE SOFTWARE 'NIGHTINGALE'
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & cx-21 & MODEM-84 & TM-110 & WS 2000 & BUZZBOX-AA & NIGHTINGALE \\
\hline BAUD RATES & 300 & 1200/75 & 1200/75 & \[
\begin{aligned}
& 300,600, \\
& 1200 / 75 \\
& \hline
\end{aligned}
\] & 300 & \[
\begin{gathered}
300 \\
1200 / 75 \\
\hline
\end{gathered}
\] \\
\hline INTERFACE & RS 232 & RS 232 (BBC) & RS 232 & RS 232 & RS 232 & RS 423/232 \\
\hline OTHER FEATURES & Self-check Test \& Answer Facility. & Auto-log-on. -Price Includes BBC Software. & Autodial. Autorecall. Autotransmit. 8 Number Memory & Autodial. Autoanswer. Many Baud Rate Options. & Power Supply Included. Also Modular Jack Adaptor. & Self-check Facility. BBC Lead Included. \\
\hline PRICE & £187.45 & £71.00* & £119.60 & £149.00 & \(£ 127.50\) & £136.85 \\
\hline SUPPLIER & STC Electronic Services, Edinburgh Way, Harlow, Essex. CM20 2DE (0279 26777) & Watford Electronics 250 High St., Watford, WD1 2AN. (0923 40588) & Tandata Marketing Ltd., Albert Road North, Malvern Works, WR14 2TL. (06845 68421) & \begin{tabular}{l}
Technomatic Ltd., 17 Burnley Rd., London. NW10 1ED. \\
(01-452 1500)
\end{tabular} & Scicon Ltd., 44 Berners St., London, W1P 4AO. (01-580 5599) & Pace Software Supplies Ltd., 42 New Cross St., Bradford, BD5 8BS. (0274729306) \\
\hline
\end{tabular}

All prices were correct at time of going to press, they include VAT and p\&p.
As software requirements and prices are so varied they have been omitted from this brief guide (unless an allinclusive price has been quoted). Further software information can be gleaned from the addresses given in the table.
All the modems featured in this guide are BABT approved.

Full specifications are obtainable from the addresses given in the table.
STOP PRESS The Watford-'Modem-84' is shortly to be superseded by a superior model. 'The Modem' (for the BBC) will be a \(75 / 1200\) and 300 baud machine with autodial, autoanswer and a ten number memory. It will retail at around f100 including software. (BABT approval applied for).

All-in-all it is well worth browsing through the pages on offer, but suggest you do so in off-peak periods to avoid large telephone bills. One final point is the answer to a question which often causes a momentary panic: "How do you log off!". This is quite easy, if not exactly obvious; in reply to a request for a page selection, simply type "*90\#". This will cause Prestel to display the log-off page and drop the carrier tone. The modem software should then drop the call, and you should return the mode switch to the off-line position.

\section*{ELECTRONIC MAIL ORDER}

Returning to the theme of the first article, our second example is Techno-Line, which includes facilities for ordering components electronically. Techno-Line is a 24 hour service offered by Technomatic Limited on 01-450 9764. It provides a range of news and
information services, in addition to telephone ordering facilities. Techno-Line operates with Viewdata/Prestel protocols on 300/300 or \(1200 / 75\) baud (automatic recognition). In the same way as Prestel, Techno-Line is organised around menus which allow you to get rapidly to what you are looking for. To give an impression of the facilities offered by Techno-Line, Figs. 8 to 11 provide examples of screen displays. Techno-Line provides a good example of the way in which suppliers are taking the new technology on board. Is this the shape of things to come?

\section*{CONTACTS}

The following listing is a necessarily brief selection of contact telephone numbers for electronic bulletin boards and databases. The information was correct at the time of going to press.

\section*{Microweb}
(The Micro User)
061-456 4157
Daily 24 hours
3008 -bit no parity/1 stop
Mailbox-80, Liverpool
051-428 8924
Daily 24 hours
3008 -bit no parity/1 stop

\section*{Micro Live}

01-579 2288
Daily 24 hours
300 8-bit no parity/1 stop

\section*{Computer Answers Bulletin Board}

01-636 3076
Daily 24 hours:
3008 -bit no parity/1 stop
Weekdays:
1200/75 Viewdata

C-View
(Rochford District Council, Essex) 0702546373
Daily 24 hours
1200/75 Viewdata
Hackney B.C.
(Hackney Borough Council, London)
01-985 3322
Daily 24 hours
1200/75 Viewdata
Techno-Line
(Technomatic Limited)
01-450 9764
Daily 24 hours
1200/75 \& 300/300 Viewdata
Distel
(Display Electronics)
01-679 1888
Daily 24 hours

CBBS Surrey
0486225174
Daily 24 hours
3008 -bit no parity/1 stop

\section*{North Birmingham Bulletin Board}

0827288810
Daily 24 hours
3008 -bit no parity/1 stop

\section*{South-West Bulletin Board}

0626890014
Daily 24 hours
3008 -bit no parity/1 stop

\section*{Aberdeen ITEC}

0224641585
Daily 24 hours 1200/75 Viewdata
Micronet 800,
155 Farringdon Road,
London, EC1 3AD

THE TIMER was designed to be the brains of an automatic pond fish feeder that performs dutifully whilst I stretch my toes in the sand at a holiday resort each year. In fact, because I am forgetful, and it isn't, I let the fish feeder operate all summer long.
The circuit has many other uses, however, and so my particular application of it occupies only a section of this article.

The 9 volt battery-powered circuit uses CMOS technology to minimise power consumption, which is considerably less than one milliamp (worst case) in quiescent condition. The timing period may be selected by switch for either 12 or 24 hours, and at the end of each time-out a pulse is delivered to the reed relay. With the values given, the period of this pulse is adjustable from a fraction of a second to several seconds, but component values may be altered to suit individual requirements. In my application the potentiometer controlling this period called for the label Dispense Quàntity. Equally, the çircuit could control a water valve (via a suitably rated relay) which enables your tomatoes to enjoy a regular sprinkling.

\section*{CIRCUIT DESCRIPTION}

A block diagram is shown in Fig. 1, and a circuit diagram in Fig. 2. The heart of the timer is a 4020 divider/counter i.c. This divides by 16384 , and by clocking it with a slow multivibrator running at a period of 5.27 seconds a 24 hour period is obtained. IC1a forms the required clock multivibrator. A dual 555 timer was chosen because the other haif conveniently provides the monostable function required at the system output.
In essence, the 4020's fully divided output, and its halfway output are taken to switch S2 for 12/24 hour selection. The chosen signal is routed from there to the trigger input of the output monostable.

The circuit's operation is that simple, but there is a subtlety. Whilst designing the circuit I decided that before I could head for the sun with any peace of mind I would need proof that the electronics are working. What is more, I did not wish to stand over the unit for twelve hours to find out. So, I designed a test function that accelerates the clock to the point where the whole system counts through in a minute or so.
Take a look at the multivibrator IC1a. It can be seen that the timing has two resistor chains feeding C3. Accelerated oscillation is achieved when R4 is selected by the bistable IC3a and b.

Accelerated test is automatically selected at switch-on because C 9 acts as a momentary closure switch to OV until it is charged up by R7. Once the system has cycled through, the output from the
monostable IC5 \(a\) and \(b\) is also used to reset the bistable IC3a and \(b\) and return the circuit to normal operation. It is the negative pulse that achieves this, bringing VR2 and R2 back into the timing network with C3. VR2 provides the multivibrator with a trimming function to allow the unit to be adjusted to exactly 24 hours. Really, VR2 goes beyond being a mere trimmer, as its value would imply. Quite a range of periods can be squeezed out of the 1 M preset.

The other gates, IC3c and \(d\), and IC4a and \(d\) form a 1 ms monostable which generates a short reset pulse for the divider/counter IC2. This ensures that the very first time-out period after the switch-on is of full duration.
Finally, the remaining gates IC5a and \(b\), and IC4b form another monostable to limit the output pulse from IC2 to 1 ms to trigger the main output monostable IC 1b.

There is one other subtlety, and this is the line (inverted by IC4c) between IC2's output and the reset input of IC 1b. If r.f. noise from a nearby lawnmower is excessive, corruption of the counting circuit will not be avoided unless the electronics are housed in. a metal case, however, that much interference is unlikely, and we can at least stabilise the output monostable during the count period. The line in question does this by holding the monostable in reset mode right up to the moment it is to be triggered. A sparky lawn mower cannot now bury the fish in pellets or flood the tomatoes.

Note that spare gates are wired input-to-ground to prevent them oscillating.

\section*{BENDING IT}

The output monostable period may be varied if its range as published does not suit you. You may alter the value of C1 or the values of VR1 and R1. The most likely alteration will be to increase the period, in which case increasing these component values will do the trick

Capacitor C10 is included to decouple noise from the supply rail and may not actually be necessary; it depends upon what you connect to the timer that is also powered by the battery. If you include C10 then use a high working voltage capacitor or a good low leakage type.

The reed relay contacts are rated at about 500 mA and should not be used to switch mains under any circumstances. Neither should they be used to switch an unsuppressed inductive load.



PETE60 0


Fig. 2. Full circuit diagram of the Handy Timer/ Controller. The annotations are applicable to the fish feeder application


PE1638

\section*{. . . OR HANDY TIMER/CONTROLLER}

\section*{FEATURES:}

Auto self-test for applications which demand reliability.
12 or 24 hour cycle selection.
Variable output pulse duration.
Very low current consumption (PP9 life 3 months typical).

\section*{APPLICATIONS:}

Automatic fish feeding station.
Daily reminder alarm.
Greenhouse sprinkler control.
Process timer or controller.


Fig. 3. Stripboard layout (actual size). The photograph below shows the prototype stripboard layout, and therefore differs from this diagram. If horizontal presets are used, and the board mounted on spacers attached to the lid of the box, then these presets may be adjusted by screwdriver through holes in the "id

\section*{COMPONENTS}
\begin{tabular}{ll} 
Resistors & \\
R1, R7 & 120 k (2 off) \\
R2 & 6 M 8 \\
R3 & 150 \\
R4 & 1 k 5 \\
R5 & 330 \\
R6 & 470 \\
R8-10 & 15 k (3 off) \\
All resistors \(\frac{1}{4} \mathrm{~W}\) & \(5 \%\)
\end{tabular}

\section*{Capacitors}
C1
\(10 \mu / 16 \mathrm{~V}\) tant. bead
C2, C4, C5
10 n disc ( 3 off)
C3 \(1 \mu\) metallised polyester
C6
220n polyester.
C7-C9, C11
100 n disc ( 4 off )
C10
\(10 \mu / 63 \mathrm{~V}\) elect. (radial)
Potentiometers
VR1, VR2
1M hor. cermet preset (2 off)
Transistors \& Diodes
\begin{tabular}{ll} 
TR1, TR2 & ZTX107 (2 off) \\
D1, D2 & 1N4148 (2 off) \\
D3 & L.e.d. 01 inch red \\
D4 & L.e.d. 0.1 inch yellow \\
D5, D6 & 1N4001 (2 off)
\end{tabular}

Integrated Circuits
\begin{tabular}{ll} 
IC1 & ICM7556 \\
IC2 & 4020BE Counter \\
IC3, IC5 & CD4011BE (2 off) \\
IC4 & CD4069UBE
\end{tabular}

Miscellaneous
RLA 5 V d.i.I. reed relay (Maplin FX88V) PP9 battery
PP9 battery studs

Snap-lid Tupperware container or case (weatherproof) Stripboard
Single-pole c/o toggle switch S2 (plus weatherproof boot?)
Single-pole single-throw toggle switch S1 (plus weatherproof boot?)
6 V electric motor, mains relay, or whatever is required at output
Veropins, wire, etc
Dispenser paddle \({ }^{\bullet}\)
16 s.w.g. sheet alloy*
Timber*
Plastic drainpipe of 70 mm dia.
Drainpipe clamps (2 off)
Wood screws (brass pref.)
Wood preserver and lacquer
Plastic sheet (for roof and base if desired)
Instrument wire
P.c.b. mounting pillars
- See text and diagrams

 APLEDDR

Fig. 4. A few hints on how to build an automatic fish feeding station. The system is intended to dispense pellets, and would not work with powdered food (the pellets illustrated above are not to scale). The paddle can be made from a solid spun aluminium knob screwed on the motor spindle in the normal way. Two pairs of holes may be drilled into the knob to accommodate loops of springy steel wire. If the wire loops are not fully formed before insertion, their own tension will keep them in place

\section*{CONSTRUCTION}

The circuit may be constructed on stripboard as shown in Fig. 3. If the unit is to be operated whilst exposed to the elements then the circuit board must be housed in a watertight case. This is a worthwhile precaution anyway when using CMOS devices, particularly if mounted on stripboard, because whilst condensation may look like water to you, to CMOS it looks like a lot of resistors soldered randomly across the circuit board. At least spray both sides of the finished and tested board with lacquer.

\section*{FISH FEEDER}

A few hints on the construction of a fish feeding station are given graphically in Fig. 4. A motor and gearbox assembly, which I think came from a car electric window winder, was found to be ideal. A reduction gearchain giving considerable mechanical advantage is necessary, so use a motor incorporating a gearbox.

The house comprises two parts; the wooden base mounted on stilts, and which incorporates the chute and electronics box, and the roof which has its own legs to act as guides which insert into the base. The roof incorporates the chimney, or hopper, and the dispenser which is a motorised paddle arrangement. The hopper chimney passes through the roof and is sealed with a liberal quantity. of Cow Gum. The roof is fabricated from treated plywood covered with stippled cement (now complete with lichen), and the hopper is a piece of 70 mm diameter plastic drainpipe. An excellent cap for the hopper is the end cap from the cardboard tube in which a leading brand of fish pellets is sold. The hopper is slotted at the top in order to locate the cap.
The paddle dispenser is not mechanically linked to the chute; the pellets drop from the first stage to the second by gravity, which means that the roof can be lifted off once the motor wires have been disconnected


Fig. 5. In any application the timer / controller may be fitted in a plastic "sandwich box" of the type that can be sealed, if costs are to be kept down. Where appearances count, any good quality case will suffice. The prototype (in a sandwich box!) was laid out as above

The paddle dispenser principle is shown in Fig. 4, and it is made from sheet alloy (as is the chute). A pop rivet gun is essential, and I advise the mocking up of your metalwork using cardboard first so that you start out with a reliable template.

\section*{ \\ With only a few hours of your time it is possible to assemble and install an effective security system to protect your family and property, at the amazingly
low cost of \(£ 39.95+\) V.A.T. No compromises have been made and no corners low cost of \(\mathrm{E} 39.95+\) V.A.T. No compromises have been made and no corners have been cut. The outstanding value results from volume production and direct

When instalied you can enjoy the peace of mind that results from a secure home Should you wish to increase the level of security, the system may be extended at any time with additional magnetic switches, pressure pads or ultrasonic sensors. Don't wait untid if's too late - order today Order code CS 1370 \\ }


SELF-CONTAINED ULTRASONIC UNIT CK 5063 Requires no installation, Easily assembled using our
professionally built and tested modules.
- Adjustable range up 2025 H . - Built-in entrance and exit delay - Built-in timed alarm Key oper ated switth-Off. Test and Operate only
Provision for an extension speaker
Fully self-contained
Ont - Fully self-contained 3901. \(3^{\circ}\) Speaker 3515
+ VAT Now you can assemble a really effective intruder alarm at this low price using
tried and tested Riscomp modules. Supplied with full instructions, the kit contains everything necessary to provide an effective warning system for your house or flat. With a built-in LED indicator and test position the unit is easily set-
up requiring no installation. It may simply be placed on a cupboard or desk. up requiring no installation. It may simply be placed on a cupboard or desk.
Movement within its range will then cause the built-in siren to produce a penetrating 900dbs of sound, or even 190 dbs with an additlonal speaker. All parts included and supplied with full instructions for ease of assembly.
Size \(200 \times 180 \times 70 \mathrm{~mm}\) Order as CK 5063


TRANSISTORS - RESISTORS - CAPACITORS DIODES - LED'S - SCR'S - ICS - VOLTAGE REGULATORS - DISPLAYS - AUDIO \& EDGE CONNECTORS - VERO/PCB'S - INSTRUMENT CASES \& BOXES - POWER AMPLIFIERS \&

13a Station Road Cullercoats - North Shields Tyne \& Wear - NE30 4PQ Telephone 0912514363


MODULES - MICROPHONES \& STANDS.
 Ohm. In file box. \(\mathbf{£ 8 . 5 0}\) for \(£ 4.50\) above with screw terminals \(£ 1.00\) each

\section*{RISCOMP LMTED}

Dept PE32
51 Poppy Road
51 Poppy Road,
Princes Risborough
Bucks. HP1790B Bucks. HP17 9DB
Princes Risborougl) \(\{084\) 44) 6326

WRITE OR PHONE FOR FREE PRICE LIST.

\section*{PORTABLE POWER SUPPLY!}

High efficiency using modern FET power transistors useful tor standby power High efficiency using modern FEI power transistors usetul for standby power
tor household equipment, central heating pumps, aquariums, lighting, N. N. stereo, cash registers, soldering irons, drills, computers and even hair curlers. Ideal atso for camping, caravaning, market stalls, public address Silent operation from 12 voil car battery using 1 Amp per io Watts output. SPECIAL INTRODUCTORY OFFEA OF 150 WATT OUTPUT MODEL £80.00 plus £3.50 p\&
for this item. Made in U.K by DEEKO LTD. Fully fested \& guaranteed. Larger RESISTORS 73 pkts of 10 each \(5 \% 1 / 4 \mathrm{~W}\) carbon film. Continuous E12 range, from 100 hm . to 10 M

RESISTORS bas of 400 mixed values and Watts mainly \(1 / 4\) and \(1 / 2 \mathrm{~W} ~ £ 1.00\) CARBON POTENTIOMETERS mixed values some miniature some standard size. 15 for \(\mathbf{£ 1 . 5 0}\) BRIDGE RECTIFIERS 4 Amp, 200V PIV \(20 \times 20 \times 14 \mathrm{~mm}\) Bolt down type. \(80 \mathrm{peach}, 5\) for \(\mathbf{8 . 0 0}\) or 10
\(5 V\) D.C. RELAYS by Elliots 170 R P.C.B. mounting. Single pole norm. Open - 0.1 inch centres \(94 p\) A.C. RELAYS \(12 V 2\) POLE C/O CONTACTS RATED \(10 A\) MAX. \(40 \times 35 \times 30 \mathrm{~mm} .3 / 16\) in spade connectors or plug in octal (state which type) \(£ 1\) each, 5 for \(£ 3.75\) or 10 -for \(£ 5.00\). LARGE OCTAL BASES for

Please add \(80 p\) p\&o - or visit our shop
Open 10-5.30 except Wedresday, Next to POPS
40 Lower Addiscombe Road, Croydon CR0 6AA. Tel. 01-688 2950

\section*{all in your}

issue!


\section*{BUVER'S'SUIID}

The constant media coverage of soaring crime rates has brought about a boom in the production of DIY intruder alarm products and kits. This guide looks at the elementary functions of available detection devices, control units and warning devices and their relevance within a system. It goes on to cover a good number of currently available kits and products.

\section*{EXPERIMENTING WITH ROBOTS}

Robots are fun to use, but even more fun to invent, along with other kinds of servo machinery. This can be a cheaper hobby than buying a ready-built machine to use; and a lot more fun. We hope this new series will provide a platform for what is a whole new playground for the imagination.

\section*{CAR BOOT ALARM}

Once the alarm is armed, the action of light falling on a hidden sensor will cause the car horn to sound continuously if the boot is opened by an intruder.



\section*{SPACE PROBES}

Two important events take place this month. The new Observatory on La Palma is being opened, and the European spaceprobe Giotto is due to be launched towards Halley's Comet. Inevitably I am writing these notes ahead of time, but by publication we ought to know whether or not Giotto has been sent safely on its way.

If not, then we must resign ourselves to waiting 76 years for another chance, since the Russian and Japanese probes are designed merely to by-pass the comet, whereas Giotto should penetrate its coma and-we hope-send back close-range information about the nucleus. The encounter date is the night of March 13-14, 1986. By then Halley will have passed perihelion, and will have begun its journey back into the far reaches of the Solar System.

The Spacelab-2 is scheduled for launching this month from Cape Canaveral, on the Space Shuttle. Two British experiments will be carried. One is an X-ray telescope, which will detect X-ray images of interesting regions in the Milky Way; actually there are two telescopes mounted side by side, carried on their own mounting which means that they can be aimed at targets independently of the attitude of the Spacelab itself. The other, a joint project of the SERC, the Rutherford-Appleton Laboratory, and the Mullard Space Science Laboratory, is CHASE (Coronal Helium Abundance Spacelab Experiment).

At the moment we are by no means sure how much helium is contained in the Sun's corona, and estimates range between 5 per cent and as much as 25 per cent. It is usually thought that the amount of helium in the corona will be much the same as that in the Sun as a whole, and that this in turn will be linked to the helium abundance in the universe as a whole-which is cosmologically very important indeed. CHASE should give a value accurate to within 10 per cent of the true figure. It consists of a two-metre grazing incidence spectrometer covering the wavelength range from 140 to 1350 Ångstroms, illuminated by a tworeflection grazing incidence telescópe. Studies will also be made of the temperatures and densities of other regions of the Sun.

In my May article I referred to the forthcoming mutual occultations of Pluto and Charon. These have now been fully confirmed-and we are lucky, since from Earth the phenomena takes place for only limited period once ever 124 years, or half Pluto's revolution period. Spectroscopic
work has already indicated that Pluto's surface is partly covered with methane ice, with less reflective regions whose composition is not known.
It is now thought that as Charon's shadow sweeps over Pluto during the next few years, we may even be able to define these dark regions. It would indeed be a major feat to draw up even a rough map of a world which from Earth looks like nothing more than a speck of light!

\section*{PHAETHON}

Asteriod 1983 TB, discovered by instruments on board IRAS (the Infra-Red Astronomical Satellite) has now been given a number, 3200 , and the name Phaethon has been suggested for it. This would be appropriate. Phaethon was the mythological youth who was allowed to drive the Sunchariot for one day, and almost set the world on fire before Jupiter toppled him with a thunderbolt: Asteriod 3200 goes much closer to the Sun than any other known body apart from comets.

It has been suggested that it is a dead comet-that is to say, a comet which has lost all its volatiles-and could even be the parent comet of the Geminid meteor stream. True, the orbits are very similar, but very recent work indicates that Phaethon is "stony" rather than icy, in which case it can hardly have been a comet. I will have more to say about it in December, when the Geminid meteors are on view.

\section*{TOP OBSERVATORY}

The observatory in La Palma, in the Canary Islands-officially opened this month by the King of Spain-is known

\section*{THE SKY THIS MONTH}

The Moon is full on 2 July, so that for the first few nights of the month there will be no real darkness; but even the Moon cannot drown Venus, which is now of magnitude -3.7. and is a brilliant object in the east before dawn. It is now gibbous-that is to say, between half and full-and by the end of July it will be almost 70 per cent illuminated. On July 15 it will be just north of Aldebaran, in Taurus.

Of the other planets, Jupiter is in Capricornus, and is approaching opposition, due on August 4. It too is very brilliant, with a magnitude of \(-2 \cdot 3\), so that even small telescopes will show the main belts; and, of course, the four Galilean satellites which have proved to be such fascinating worlds.

Saturn, magnitude 0.6 , is in Libra, and visible in the south-west during evenings. Mars and Mercury are to all intents and purposes out of view. Mars completely so. since it is in conjunction with the Sun on July 18.

The Perseid meteor shower begins around July 27. though the first part of it will be partly hidden by moonlight. However, during the maximum of the shower, around August 12. the Moon will be out of the way.

The Perseids are associated with Comet Swift-Tuttle of 1862, which has a somewhat uncertain period; it was expected back before now, but has yet to put in an appearance. Halley's Comet is brightening, but is still beyond the range of modest telescopes, though it will start to become more accessible during August.

\section*{SUMMER TRIANGLE}

In the absence of strong moonlight, the unofficial "Summer Triangle" of Vega, Deneb and Altair continues to dominate the evening sky, with Vega more or less overhead after sunset. Ursa Major, the Great Bear loften nicknamed the Plough) is low in the north-west, though it never sets from anywhere in the British Isles; we can still see Arcturus, in Boötes, for some time after sunset.

Arcturus, that lovely orange star, is actually the brightest star in the northern hemisphere of the sky, with a magnitude of -0.04 . Its only superiors-Sirius, Canopus and Alpha Centauri-are all south of the celestial equator, and of course Canopus and Alpha Centauri never rise at all in our latitudes.

Cassiopeia, with its characteristic W-form, is high in the north-east Below it is the Square of Pegasus, which is distinctive even though maps tend to make it look smaller and brighter than it really is. In the south, not far above the horizon, look for the constellation of Sagittarius, the Archer; it has no particular shape, though it has several bright stars. (Some people have likened its pattern to that of a teapot, though I have never been able to understand why!)

If you have binoculars, or a rich-field telescope, it is fascinating to sweep among the lovely Sagittarius starclouds which indicate the direction of the centre of the Galaxy. We can never see the actual centre, which lies around 30,000 light-years from us, because there is too much intervening dust; we are not at all sure precisely what lies in that decidedly mysterious region.
officially as El Observatorio del Roque de los Muchachos. Los Muchachos, or "the Boys", are rocks on the summit of the ancient volcano upon which the observatory has been built; I am sure that there must be a local legend about them, though I have never been able to find out what it is!
The island is Spanish, but the observatory is international, and the Royal Greenwich Observatory has played a very major role throughout; Dr. Paul Murdin, who is in charge of the British telescopes there, is a Greenwich astronomer. The first major British telescopes were the 40 -inch Kapteyn reflector (named in honour of the famous Dutch astronomer) and of course the I.N.T. or Isaac Newton reflector
The I.N.T. was originally set up at Herstmonceux in Sussex, the present headquarters of the Royal Greenwich Observatory, and had a 98 -inch mirror (officially, at least; the usable aperture was slightly less). However, Sussex skies are not suited to astronomical work, and the decision was made to transfer the I.N.T. to La Palma, giving it a new mirror with an aperture of just over 100 inches.
The I.N.T. has been in use there for some time; I will not forget a night when I took part in a "commissioning run", and we
managed to obtain a colour video of the Ring Nebula in Lyra-the first time that this had been achieved for an object beyond the Solar System. At present the even larger William Herschel Telescope is being made ready, and the dome is almost complete, though it is likely to be some months yet before the W.H.T. can be brought into operation.

There are other telescopes, too. The Swedes have a large solar tower, for instance, and the Danes have set up an 'automatic transit instrument' which takes star transits all by itself-with a somewhat uncanny effect if you happen to be present when a transit is due! Also planned is the Nordic Telescope, which will be a 100 -inch reflector and is a joint project from Norway, Sweden, Denmark and Finland. The Dutch are deeply involved, too, and before long La Palma will be recognized as one of the major observatories of the world.

\section*{THE SKY FROM LA PALMA}

What is the sky really like? Well, the high altitude means that seeing conditions are usually excellent (which is why the site was chosen, of course), and one often finds that the cloud-layers lie below the summit.

There is also the question of latitude Though La Palma is well north of the celestial equator, so that features such as the Clouds of Magellan are inaccessible, the difference between their skies and ours is quite striking.

When I was there, a few weeks ago, I was surprised to see how high up the grand globular cluster of Omega Centauri was. You can also have superb views of the Sagittarius star-clouds, which are always inconveniently low from Britain. I was just able to see Canopus, though it skirts the horizon even when at its greatest altitude.

Of course, the telescopes are fully automatic, and today the observer is not even in the dome which contains the telescope itself during observing runs; everything is done from a comfortable control room, and the results come up on a television screen. Gone are the times when the observer had to spend long hours at the eyepiece, guiding the telescope during photography. Moreover, it will be possible to operate the teleseopes from afar, so that the observer need not even be in the Canary Islands. Things have changed; La Palma is the most modern of all observatories, and we may confidently expect great developments there in the near future.

\section*{FREE! READERS' ADVERTISEMENT SERVICE}

\section*{PE \\ }

POLAROID ultrasonic ranging system designer's kit. Not used. \(£ 50\). Tel: 0484 48392/25589.
PE STRING MACHINE, E.T. 1 synth parts, scope, back issues PE, PW. Other bits. Offers. Details, 01-421 1513. FOR SALE-Dartron oscilloscope, dualtrace, 10 MHz ; probe and manual. \(£ 125\) Good condition. Tel: 023333177.
WANTED-OK 1 Microline 82A printer. G Bayne, 20 Sugden Court, Princes Street Dunstable, Beds. LU6 3DS. Tel: 0582 600913.

SINCLAIR Executive Calculator wanted Any condition. Tony Smith, 168 Kendal Rise Road, Rednal, Birmingham B45 9PS. WANTED-Circuit and data for Scopex/ Griffin dual-trace scope MK 3. Tel: 0527 62436.

RULES Maximum of 16 words plus address and/or phone no Private advertisers onty (trade or business ads. can be placed in our classified columns), Items related to electronics only. No computer software. PE cannot accept responsibility for the accuracy of ads. or for any transaction arising between readers as a result of a free ad. We reserve the right to refuse advertisements. Each ad. must be accompanied by a cut-out valid "date corner:". Ads. will not appear (or be returned) if these rules are broken.

TAMRON \(35-70 \mathrm{~mm}\) and \(80-210 \mathrm{~mm}\) lenses, also Olympus 28 mm lens. Sell or swap test-kit computer and/or peripherals Mr . Mel Saunders, 7 Drumcliff Road, Thurnby Lodge, Leicester LE5 2LH.
PRINTER, 300 Baud (also 110). Works UK101. Offers? Also Datavet P.S.U. Many V/A outlets. Ring for details. C. Hellen. Tet: 0206225671.

AVO 8 MK il leads, manuals, G.W.O Offers. Record player, B \& O 1000, 3 speed, small size, \(36 \times 31 \times 15 \mathrm{cms}\). Spare cartridge Offers. A. D. Jones, Penwood, The Avenue, Ross-on-Wye, Herefordshire HR9 5AW.
50 pounds weight old electronics magazines, \(£ 25\). Atari 400 computer, \(£ 50\). J. Hulton, Derrymaster, Drogmore, Co. Tyrone BT78 3BE.

CASIO MT70 keyboard. Almost new. Boxed with manuals, \(£ 110\) ono. R. Manning, 1 Homer Park, Hooe, Plymstock, Plymouth, Devon. Tel: 075243588.
PROFESSIONAL electronics kit, build oscilloscope, other projects. All parts included, manuals and instructions. \(£ 125\) or offers. Steve Byhurst, Caterham, Surrey. Tel: 088345979 (after 6 p.m.).
PHILIPS VC-60 video cassettes, little used. Also some LVC-120s, \(£ 2\) each. N1500 VCR, no modulator, £35. Kevin Jones, 24 Clifton Drive, Lytham, Lancs. FY8 1 AX.
WANTED - Mephisto-III portable chess computer. Boxed with instructions preferred. Good price paid. Mr. S. Braid, 40 Hilleys Croft, Chelmsley Wood, Birmingham 37 5BW.

Please publish the following small ad. FREE in the next available issue. I am not a dealer in electronics or associated equipment. I have read the rules. I enclose a cut-out valid date corner.

Signature
Date
Please read the RULES then write your advertisement hereone word to each box. Add your name, address and/or phone no. COUPON VALID FOR POSTING BEFORE 2 AUGUST, 1985 (One month later for overseas readers.)
SEND TO: PE BAZAAR, PRACTICAL ELECTRONICS, WESTOVER HOUSE, WEST QUAY ROAD, POOLE, DORSET BE 15 IJG.


\footnotetext{
For readers who don't want to damage the issue send a photostat or a copy of the coupon (filled in of course) with a cut-out valid "date corner'
}

\section*{THE LEADNGEDGE}

\section*{CLIVE'S PUZZLE}

There is some little known background to the decision by Sir Clive Sinclair now to use wafer scale integration (WSI) techniques proposed and patented by Ivor Catt, ten years ago. When Sinclair first announced the decision, last August, the word soon went round that Catt had previously failed to sell his idea to Plessey, STC and ICL.

This seemed puzzling, because Sinclair had teamed with Robb Wilmot, Chairman of ICL. At around the same time, Trilogy, the US company formed by Gene Amdahl to make wafer scale i.c.s, ditched the idea. The big question, which Sir Clive Sinclair's company will have to pay millions to answer, is this: was Ivor Catt's idea feasible but ahead of its time, or an armchair theory that can never be put into practice.

The public records at the British Patent Office tell an interesting tale on this. Ivor Catt filed a patent application on the WSI idea in August 1972. This was issued as British patent 1377859 in the mid-70s. Annual renewal fees have been paid ever since, to keep it in force, even though a string of UK companies has reputedly turned down the chance of a licence. If Sinclair now manages to exploit the Catt patent, he will embarrass not only these companies, but the Government's Department of Trade and Industry and its Ministry of Defence as well.

In June 1975 Ivor Catt signed an agreement with the Department of Industry for more accurately, the Secretary of State for Industry). The DI then authorised the Ministry of Defence to sign a contract with Middlesex Polytechnic, as part of the Advanced Computer Technology Project. The contract was for a feasibility study on Computer Associative Memory. Catt was given \(£ 500\) to act as a consultant.

Under the terms of the agreement, the rights to any know-how which emerged as a result of the research project were to become the property of the Department of Industry. But the DI had to agree to grant Catt licence to use any such know-how. In return Catt agreed to pay back a share of any proceeds. He also had to promise to licence only UK companies, unless special permission were granted to deal with foreign firms.
Clearly Middlesex Poly, the MOD and the DI did not think the invention was worth exploiting. It was not until ten years later that Sinclair took the patent on board. The interesting question now is whether Catt
and Sinclair will have to pay the Government a share of any proceeds if the Sinclair Research WSI project proves successfull

\section*{SELF TESTING}

The patent, readily available for anyone to read or buy for a couple of pounds, explains the usual procedure for making individual microchips. Several hundred at a time are formed on a single slice or wafer of silicon. Each i.c. area is then automatically tested and marked good or bad. The wafer is diced into individual chips, the good ones saved and the bad ones thrown away.

Catt's idea, back in 1972, was that all the circuits on the silicon slice should incorporate a flip-flop logic switch and the wafer be left intact instead of diced. A testsignal is fed into one circuit near the centre of the wafer. If the test is positive its switch flips over to connect it to the next adjacent i.c. The test is run over and over again, with the connections spiralling out from the wafer centre, and the chips by-passed whenever the test fails. So the final result is a single silicon slice, with a large total memory capacity. This is doubtless how Sinclair plans to provide its first WSI product, a large plug-in memory for the QL.

The Catt patent suggests that chips made this way can be self-repairing. If one of the circuit areas fails in use, it is bypassed by the routing switches of the chips around it. Another advantage is that a memory made this way should be cheaper than a batch of separate i.c.s of comparable total capacity, because no time is spent dicing the wafer. Also the chip can operate faster, because there is no need for an external web of connecting wires.

\section*{SOUND SENSE}

No-one has yet cracked the anti-sound problem. In theory it sounds such a simple idea. Use a microphone to listen to an unwanted noise, generate a replica in opposite phase and of equal volume, and hey presto the original is cancelled out.

In practice it's nowhere near that easy. If the sound to be cancelled is not constant, the anti-phase sound has to track it without any time delay.

This is obviously impossible. Every circuit has a finite response time. Room reflections, standing waves and absorption by people and furnishings mean that the sound in any environment will vary with listening position. Accurate cancellation in
one area may even increase the sound in other areas.

But still inventors press on. Several universities have anti-sound research contracts and a recent British Aerospace patent (BP 2 126 837) explores another approach.

The aim here is to cut background noise in an aircraft, especially a prop plane. where the noise is particularly loud and annoying through beat effects caused by different engines running at slightly different speeds. British Aerospace have previously patented a system which relies on giving everyone a pair of headphones with a built-in microphone and amplifier that produces an anti-phase signal that is fed through the headphones. But if aircraft passengers must wear headphones, why not simply give them headphone ear muffs?

The new patent doesn't answer this simple question. Presumably British Aerospace have found that passengers don't want to wear anything over their ears anyway, because the new patent takes a different tack.

Inside the passenger cabin there is a microphone which picks up soundwaves coming in from the engines and produces a corresponding output signal. A notched wheel on the drive shaft of one of the engines spins past a magnetic pickup to produce a train of reference pulses which gives a firm tell tale of engine speed. These pulses are impressed on the microphone output and the mixed signal fed to a synchroniser which delays it before inversion and amplification.

The synchroniser calculates the interval between successive engine pulses and then delays the signal from the microphone by an interval equivalent to one full period. In this way the inverted and amplified noise signal, which is fed to a loudspeaker replica irrespective of the propeller speed.

British Aerospace suggest that the same basic idea could be adopted for use in an airport building or bus terminal, by replacing the engine pulse train sensor with a variable frequency oscillator which impresses a series of notional reference pulses on the signal. The interval between the pulses is altered by trial and error until the noise is suppressed, either manually or automatically.

It's an interesting idea, but if it works why are airports all still so noisy?

BARRY FOX
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \[
\begin{aligned}
& \text { BABCLAYCA } \\
& \text { VISA }
\end{aligned}
\] & & & \multicolumn{6}{|l|}{MA CROMS} & \\
\hline \multicolumn{4}{|l|}{TRANSISTORS} & \multicolumn{2}{|l|}{74LS} & \multicolumn{2}{|l|}{TOR KITS} & HEADPHONES & TELECOM EQUIP & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline \multirow[t]{23}{*}{} & \multicolumn{2}{|l|}{0.30} & & \multirow[t]{2}{*}{LS00} & 28p & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{} & & \multirow[t]{2}{*}{边 \(5 . .00\)} \\
\hline & 0.28 & BF＞26 & －2 & & 28 p & & & & & \multirow[t]{2}{*}{} & \\
\hline & 0．10 & \({ }_{\text {Brex }}^{8 \times 88}\) & 0.26 & LS02 & 28p & \multicolumn{2}{|l|}{} & & & & \multirow[t]{2}{*}{（1．90} \\
\hline & 0.10 & 限限87 & 0.26 & LS03 & \({ }^{28}\) & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(1 / 2 \mathrm{~W}\) Pack 10 each value E12 2R2－2M2
Total： 730 resistors
ONLY
5.25 \(1 / 2 \mathrm{~W}\) Pack 5 each value E 12 2R2－2M2}} & & & Antex stands & \\
\hline & \({ }_{0}^{0.12}\) & BFF52 & 0.21 & LS08 & \({ }^{32 p}\) & & & STEREO & ROTARY POTS & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & 0.09 & BFY90 & 0 & LS09 & 28p & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & CASSETTE & \multirow[t]{2}{*}{} & & \\
\hline & 0.09 & BU20 & 1.55 & LS10 & 28p & & & & & \multicolumn{2}{|l|}{NI－CAD CHARGER} \\
\hline & 0.09 & M 5295 & 0.90 & & 25 p & \multicolumn{2}{|l|}{PRE－SETS} & \multirow[t]{2}{*}{plus 50p extra \({ }_{\text {den }}\)} & \multirow[b]{2}{*}{PLASTIC Box} & \multicolumn{2}{|l|}{} \\
\hline & & & & LS13 & 33p & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Vert＋Horiz 100}} & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{NI－CADS}} \\
\hline & 0.15 & OC72 & & LS14 & & & & \multirow[t]{3}{*}{Omega make． Complete with headphones and carring strap．} & \multirow[t]{4}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & 0．35 & \({ }_{\text {TIP32 }}^{\text {T1 }}\) A & 0．42 & LS15 & 25p & CERAMIC CAPA & ORS & & & & \\
\hline & 0.32 & \＃P3 & 0.88 & LS20 & 28 p & \multicolumn{2}{|l|}{All 50 V ． 1 p to 10 nt 4 p each， 100 for E .75} & & & & \\
\hline & 0．32 & TP & & LS & \({ }^{28 p}\) & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Tinned＋Enamelled Copper Wire． 202 reels： 14 to 30 swg \(£ 1.00\) per ree}} & & & \multicolumn{2}{|l|}{Fuseholders} \\
\hline & \({ }_{0}^{0.32}\) & & & \({ }^{15}\) & & & & \multirow[b]{3}{*}{Black－ 3 core \({ }^{2}\) metres excended）75p each．£6．00／10} & \multirow[t]{2}{*}{CLOCK RADIO} & \multirow[t]{3}{*}{} & \\
\hline & 0.08 & 7588 & & \({ }_{\text {LS33 }}^{1}\) & & & & & & & \\
\hline & 0.10 & & & LS74 & 38p & \multicolumn{2}{|l|}{14 to 30 swg El .00 per reet．} & & \multirow[t]{4}{*}{} & & \\
\hline & 0.10 & & & LS12 & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(400 \mathrm{~m} / \mathrm{w} 3 v\) to 75 v ：Bp each， 100 for E 6.00 .1}} & \multirow[t]{2}{*}{FLEXIBLE MAINS CABLE} & & \multicolumn{2}{|l|}{FUSES} \\
\hline & 0.20 & & & LS & & & & & & \({ }^{08} 2.2 \mathrm{~mm}\) & \\
\hline & 0.26 & & & LS151 & 75p & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{SWITCHES}} & \multirow[t]{5}{*}{\begin{tabular}{l}
0.5 mm 2－core 3amp round 12 p．m e9．75－100 0.75 mm 2 －core circula 6amp round 17p．m E13．50－100 \\
0.5 mm 3 －core 3 amp round \(180 \cdot \mathrm{~m}\) f15．10－100
\end{tabular}} & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & 0.30 & \({ }^{2 S C 2}\) & & LS155 & 45p & & & & \multirow[t]{2}{*}{WALKMAN TYPE SPEAKERS} & & \\
\hline & \({ }_{0}^{0.32}\) & 2SC & & \({ }^{\text {LS } 157}\) & \({ }^{48 p}\) & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & & ．E．D．s & \\
\hline & － 0.38 & & & LS1 & 60 p & & & & \multirow[t]{4}{*}{\begin{tabular}{l}
Powered Stereeo Speakers compiete Mith carring strap Buitrup Pre－amp \\
 postage fl set）
\end{tabular}} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{ each， 1000 tor flo．00．GREEN： \(3 \mathrm{~mm}+\) 5 mm 13 p each 100 for fl 10.00 ．}} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{DIODES}} & & 70． & DPDT Centre off 85p & & & & & \\
\hline & & & & & & \multirow[t]{2}{*}{Standard Toggle SPST On／OHf Plate
DPDT ON／Off Plate} & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Oc Moror } 6-12 \mathrm{~V} 75 \mathrm{p} \text {, } \\
& 5 \mathrm{~F} \text { for } \$ 3.00
\end{aligned}
\]} & & & \\
\hline IN & & AA1 & & LS & 80p
195 & & & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{SPECIAL OFFER}} \\
\hline （1N4001 & \({ }_{0}^{0.06}\) & AAA130 & 16 & \({ }^{\text {LS } 1780}\) & 1.75 & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} & \multirow[t]{3}{*}{} & \multirow[t]{4}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{l}
The complete se of three stip－fix pissic signs，congaining over wo
thousand words
Transminers． \\

\end{tabular}}} \\
\hline （1N4005 & &  & 12 & \({ }_{\text {LS }}\) LS24 & 1.00 & & & & & & \\
\hline NTN4148 & & BY127 & 10 & & 2.00 & & & & & & \\
\hline  & 0.06
0.12 & BY133
BY 184 & & \({ }_{\text {LS393 }}\) & 73p
1.15 & 1 pole 12 way， 2
pole 3 way & ， 3 pole 4 war，\({ }^{\text {chop }}\) &  & & & \\
\hline \multicolumn{8}{|l|}{\multirow[t]{6}{*}{\begin{tabular}{l}
ORDERING．All components are brand new and to full specification．Please add 50p postage／packing（unless otherwise specitied to alf orders then add \(15^{*}\) ．VAT 10 the total．Either send cheque／cash／postal order or send／telephone your Access or Visa number．Official orders from schools，universiţies，colleges，etc．most welcome．（Do not forget to send for our 1985 catalogye - only \(65 p\) per copy All orders despatched by return of mail． \\
AEW RETAll 1 o00 sq ft shop now open．Mon－Fri 9．00－5．00．Sat 9．00－12．00
\end{tabular}}} & \multirow[t]{6}{*}{1985 CATALOGUE Our current 123 page catalogue over 4000 items ully illustrazed．Send \(65 p\) now for your copy． 25.00 ．} & \multicolumn{3}{|l|}{\multirow[t]{6}{*}{\begin{tabular}{l}
MARCO TRADING（DEPT PE8） \\
The Maltings \\
High Street \\
Wem，Shiropshire SY4 5EN \\
Tel： 093932763 Telex： 35565
\end{tabular}}} \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{}

Now Distributed by Riscomp

\section*{POWER AMPLIFIERS}

AL 1030 （AL30）－Low cost general purpose 10 W
Bohmmodule supply voltage range 18.30 V
\(£ 3.30+\) V．A．T
AL 1540 －At 15 W／8ohm medium power madule incorporating over－load protection．Operating
voltage range 20.40 V ．

\(\mathbf{£ 3} .65+\) V．A．T

AL 2550 （AL60）－Compact 25 W 8ohm module for ALmestic applications with a distontion figure

f 4.25 ＋V．A．T
AL 5070 （AL 1200 －Top ctass 50 Wironm module with selff－contained heat sink and built－in
protection circuitry，produces really ist class protection circuitry，produces really ist class
sound with a distontion level at an incretible sound
\(02 \%\) ．

f 10.50 ＋V．A．T
AL 12580 （AL250）．A rugged top of the range module providing output powers of up to 125 W into 4 ohms which employs 4 heary duty outibut
transistors to ensure a stable and reliable transistors to ensure a stable and reiriale
performance．Currently used in disco units．public perdr
add
\(H\)
\begin{tabular}{l} 
addres． \\
\(\mathrm{H}_{1}-\mathrm{Fi}_{\mathrm{i}}\) \\
\hline
\end{tabular}
\(\mathbf{1} 14.70\)＋V．A．T

\section*{Order by post，order by＇phone \(=\square\)
Add \(5 \%\) V．A．T． 0 all prices U．K．orders add 70 p post and packing Expor orders－post \(\&\) packing a
Please allow 7 davs for delivery}

PRE－AMPLIFIERS \＆MIXERS
PA 207 ．A qualiay stereo pre－amplifier and tone control unit suitabie for driving any of the above
amplifigrs．Operates from a supolv rail of 40.70 V ．
\(\mathbf{f 1 3 . 9 5}+\) V．A．T．
MM \(100-3\) inpur mixer featuring individual tevel controls．master volume．treble \＆base conirols． with inputs for microphone．magnetic pick－up
and tape or second pick－up（selectabte）．Operates and tape or s
from 45.70 V

\(\mathbf{f 1 0 . 9 5}+\) V．A．T．

MM 100G．As MM 100 except inpuls are for 2
guitar + microphone．
f10．95 \(+V\) A T
POWER SUPPLY
SPM \(90 / 45 / 55 / 65\)－A stabiliser module avaitable in 3 voltages， 4555 \＆ 65 V providing a stabilised output of \(u p 102 \mathrm{~A}\) and providing a superio
performance especially with the nigher powe periormance especially with the nigher power
audio modules．（Requires an appropriate audio modules．Requires an
transformer＋reservoir capacitort

\(\mathbf{f 5 . 7 5}+\) V．A． \(\bar{T}\)

All modules supplied with a comprehensive Data Sheet

\title{
Digital Delay \& Sound Sampler WITH COMPUTER INTERFACE John M.H. Becker Part 3
}

THIS month we will take a further look at the constructional details and begin the various testing procedures for the Digital Delay line. To help with testing, a simple I.e.d. test board has been made as shown in Figs. 10 and 11

\section*{BEWARE OF MAINS VOLTAGES!}

From this point onwards you will be dealing with a unit that is coupled to the mains. Although there is a transformer, a switch and a fuse, it is still possible to be careless and accidentally touch a mains connection. Until the unit is completely assembled and fully tested, I suggest that the transformer be kept well away from the unit, in an insulated box for example, and bring out long 6 volt leads from it to the PSU connection on the p.c.b. If you are in any doubt or inexperienced, seek authoritative advice.

\section*{FIRST TEST}

If you haven't yet checked all your joins with a magnifying glass do so now! Then connect the 6 V a.c. leads between the transformer and the PSU. Switch on and check that approximately 8 volts or so is at the positive end of C47, and that 5 volts is present on p.c.b. pin 23. If it isn't in either case, switch off and check what you have done wrong. It is permissible for the voltages to be slightly higher, but any large difference is wrong, especially if the readings are too low. As you progressively bring in more circuitry during the testing, the voltage at C47 will drop, but the 5 V line should remain about the same. This should be checked for at each stage of testing. IC36 is short circuit protected, so if a short occurs on the 5 V line, correct the fault and leave IC36 to cool for ten minutes.

\section*{ANALOGUE TESTING}

Until the unit is fully operational, keep any connecting wires slightly longer than they need to be. At the end of testing they can all be tidied up into neat harnesses and trimmed to a better length. Refer to the wiring diagram (next month) and connect VR1, 2, 3, 4, 10, 11, 12, the input and output sockets, S2 and S3. Insert IC1 and IC4. Plug in a cassette recorder to the input, and plug the output into your normal amplifier. Set VR1, 4 and 12 fully up, VR2 min, S2, S3 open.

Check that the signal passes through at about the same strength as it goes in, and that the level can be varied by any of VR1, 2, 4 or 12. Temporarily take p.c.b. pin wire 11 to point 9 instead of to the centre of VR4, check that the signal still passes through. Return wire 11 to VR4. Take the second p.c.b., connect it to the power points designated, and insert IC2 and IC3. Connect points 9 to 42, and 5 to 45 . Temporarily take a short length of wire and solder it carefully to the negative ends of C11 and C15. The signal is now routed through the preamp stages, compressor, expander, filter and the output. Set VR6 to VR9 midway, VR1, 10, 11, 12 max, VR2, 4 min, S2 open, S3 closed.

Check that the signal still passes through to the amplifier, that S3 switches it off and on, that VR11 controls its level, and that VR10 acts as a treble control. The fine setting of the presets can be left until later. Disconnect the wire between C11 and C15. The analogue circuits can now be ignored for a while.

\section*{TIMING BOARD}

Connect up the designated power line connections of the timing p.c.b. plus VR18, \(19,20, S 4, S 5, S 6\), and insert all of the i.c.s. With a meter or scope check that with S4 closed and VR19 max a varying slow speed voltage change occurs on pin 9 of IC26, and that VR18 varies the rate of change. Temporarily take point 88 to any of points 19 to 22 (OV line). Next, S4 and S5 open, S6 closed. If a scope is used, check that \(h . f\). oscillation occurs at the outputs of IC26 and IC23b, and that each output pin of IC27 goes up and down at one tenth of the rate of its input.

Alternatively if you don't have a scope and have built up the optional l.e.d. test board, this is connected to the \(8 \mathrm{~V}(136\) or 138) p.s.u. line and to the p.c.b. output pins \(74,75,76,77,78,87,89\). Check that the l.e.d.s light in the correct sequence. If the flashing rate is too fast at the slowest clock setting, put a larger capacitor temporarily across C38 to reduce the rate. A scope can be synchronised to the test point on this p.c.b. and all outputs checked in turn. Additionally check that VR2O varies the clock rate, that S 6 raises and lowers the range, and that S 5 affects the control range of VR20. Then check that with 54 closed VR19 varies the depth of clock modulation. Disconnect point 88 from the OV line.

\section*{ADDRESSING BOARD}

Connect up the addressing and memory boards, complete all the remaining wiring, and insert the remaining i.c.s except for the memory chips IC15 to IC22. Switch S7 down and S8 up. Check that a negative voltage of about -3.5 V is present at pin 36 of the first p.c.b., and that a bias voltage of about 2.5 V is present at C30 and R45, and at C33 and R51. If using the l.e.d. test p.c.b. connect the board so that the l.e.d.s will flash in sequence when connected to p.c.b. pins \(110,107,109,106,114,113,111,112\), in that order. Temporarily connect pin 108 to +5 V (any of pins 23 to 25) instead of 74 , connect 97 to +5 V instead of S8, take 95 temporarily to OV instead of 76 . These three temporary connections put the multiplexer in Column mode, hold IC8 and IC9 at reset, and open IC7. Temporarily take 17 and solder directly to the track connected to pin 3 of IC23a instead of to 86 , so bypassing this part of the IC. The l.e.d.s should now be monitoring the output of IC7 while it converts the voltage data from VR15 to binary. Set VR14 to min, and sweep VR15 from one end to the other and back again at a slow rate. The l.e.d.s should flash in a binary sequence. Now rotate VR15 to its zero end and VR16 to maximum resistance. Adjust VR17 until only the l.e.d. connected to pin 110

\section*{MUSIC PROJECT}


Fig. 11. P.c.b. construction of the optional L.e.d. Test Board

\section*{Components . . .}

Resistors
\begin{tabular}{ll} 
R1-R8 & 100k (8 off) \\
R9-R16 & \(1 \mathrm{k}(8\) off) \\
R17 & \(6 k 8\) \\
R18 & \(2 k 2\)
\end{tabular}

Semiconductors
D1—D8 0.2" l.e.d. (8 off)
IC 1 , IC2 LM324 (2 off)

\section*{Miscellaneous}
P.c.b.; sockets; p.c.b. clips.
 optional L.e.d. Test Board
is on, if necessary reducing VR16. Swing VR15 fully the other way to the full positive end, and adjust VR16 until all l.e.d.s are just on, if necessary readjusting VR17. Repeat this procedure until the displacement range is set from 1 to 255 decimal, but allow the minimum end to favour 2 rather than zero. Remake all temporary connections back to their correct points, except for the 108 connection. Leave the I.e.d.s connected. They will now monitor the main column address numbering. Temporarily take 95 to +5 V instead of 76, so disabling the IC7 outputs. This ensures that nothing is added to the column address. Set VR20 to maximum frequency, open S4, S6, and close S5. IC8 and IC9 will now be counting up in sequence, the column addresses will be seen to change in binary order, and varying VR20 will vary the rate of counting.
Now take point 108 to 0 V so that you can monitor and check the row addresses. The clock oscillator will probably need to be set to its slowest rate for the binary counting sequence to be individually seen on the l.e.d.s. Again remake all temporary connections to their correct points. Out of interest you can watch the various
binary sequences taking shape whilst varying VR15, but it probably won't be too meaningful because of the rates of change.

\section*{A TO D SETTING UP}

Connect the l.e.d. test board to points 55 to 62 in that order. Set VR1, 2, 3 to minimum. Adjust VR13 around its midway point until a binary reading of 10000000 (decimal 128) is shown. This is the midway point in the absence of a signal. It is not too critical, and a place or two to either side is acceptable.

\section*{MEMORY BOARD}

Until you are sure that all is well with your connection of the memory board, only insert 4 memory chips to begin with, IC17, 18, 19 and 20. This covers the mid binary range, and thus lower level signals. Plug in the cassette recorder again, check that the signal still reaches the amplifier via VR4, then turn down VR4, close S3, and bring up VR11. Set the clock oscillator to its fastest rate, and set the address displacement controls VR14 and VR15 to minimum. An approximate representation of the original signal
should now be heard, having been sampled, stored, and reconstituted again. It will probably be distorted at this point, for only 4 memory chips are used and some presets have yet to be set. Switch off, insert the other remaining chips IC15, 16, 21, 22. Switch on again and an improvement in quality should be apparent, especially at higher signal levels.

\section*{COMPANDER ALIGNMENT}

VR6 to VR9 control the accuracy of the waveforms through the compander. If a scope and signal generator are available the correct setting will be obvious with a triangle wave. If you don't have a scope they can be readily set while listening to the ouput, in which case monitor the wipers of VR6 and VR8 with a voltmeter and adjust each until the voltage reads half the line voltage. In other words, if the line is 7.8 V then set them for 3.9 V . Feed in a signal from a cassette or signal generator, and increase the signal level until a little distortion is just heard, then adjust VR7 and VR9 until this is minimal, at which point both phases of the signal should be balanced. If you can hear no difference leave them midway and ignore.

\section*{FEEDBACK ALIGNMENT}

For effects such as reverberation, repeating echo and flanging, feedback of the delayed signal is required, so that it is mixed with the original. In any delay unit the amount of signal fed back is fairly critical, particularly for flanging, where the effect can only be produced when feedback is close to the point at which 'howl' occurs. This point, though, only holds true for particular frequencies related to the phase of the original and processed waveforms. If the delay between the two is such that the waveforms of the frequency are out of phase with each other, then adding the two results in subtraction! One cancels out the other. If they are in phase, then full repetitive addition can occur each time round the loop.

Change the delay, and the phase relationships change and thus the howl point level. With such a wide delay range variable from a
few milliseconds to well over a minute, virtually any frequency can at some point be in the correct phase for successive enhancement in feedback. A compromise has thus to be struck between the need to prevent howl, and sufficient feedback to allow a good number of repeating echoes to develop, plus adequate reverb and flanging enrichment. The compander circuits give a degree of self limiting to the howl effect even under some quite severe feedback situations, but an average amount of feedback must still be found by experimenting with the setting of VR5. Start off with this at a midway setting, turn VR3 up full with S2 closed. Feed in signals of various strengths, and give different delay settings, particularly around the shorter delay regions. Adjust VR5 until the best reverb or flanging effect is produced without the unit going into full feedback howl

\section*{PHRASE HOLD SWITCH}

At any time a particular phrase can be retained in memory indefinitely by switching off S7. This puts the memory into perpetual read mode, and data already stored will be repeatedly looped back. The length of the loop will depend upon the original delay setting of the sampling rate control VR20. Having frozen that phrase in memory, its pitch and duration can be changed by adjusting VR20. Varying VR14 and VR15 will have a short term effect while you move them, but-nothing permanent. For very long, loops with speech or special effects, the address counter can be reset to zero by switching S8 down. Switch it up again to commence recording, then switch 57 up to Hold mode at a suitable point before the end of the address sequence. 58 , though, should only be used in the knowledge of its effect upon the RAS line.

\section*{MEMORY REFRESH}

Each time RAS is strobed during the timing cycle, the data in all 256 locations associated with that Row is refreshed. Without this strobe, the data eventually decays to a level below which it cannot be retrieved. When \(\mathrm{S8}\) is switched down to the reset and external


DE17006
Fig. 12. Timing circuit p.c.b.


PE16996
Fig. 13 (above) and Fig. 14 (below)



Fig. 15. Memory board p.c.b. details
modes, the timing sequence stops, refresh ceases and a gradual data decay starts, though on the prototype it remains accessible for several minutes before deterioration becomes unacceptable.

\section*{EFFECTS GUIDE}

The ultimate setting of controls is largely personal preference, but as a general guide:-
\begin{tabular}{lcccc} 
EFFECT & LFO & DELAY & FEEDBACK & ORIGINAL \\
Echo & off & any & plenty & full \\
Reverb & off & v. short & plenty & full \\
Double track & off & shortish & off & full \\
Flainging & on & short & full & off \\
Phasing & slow & short & off & equal \\
Vibrato & fast & short & off & off \\
Chorus & fast & shortish & off & equal \\
Unnamed 1 & some & short & full & equal \\
Unnamed 2 & full & short & full & equal
\end{tabular}

\section*{TIDYING UP}

When you are satisfied with your assembly, the boards can be stacked, p.c.b. Fig. 8 bottom LHS, Fig. 13 above it, and Fig. 12 above that, Fig. 15 bottom RHS, Fig. 14 above it. Now the wiring can be drawn into neat harnesses, trimming to a better length where necessary. Keep signal and control leads in separate harnesses. Cable ties can be used to ensure harness permanence. Finally mount the transformer at the top right of the back of the box, as looking from the front, and secure the mains earth lead to one of the transformer bolts.

\section*{EXTERNAL SAMPLING}

The internal memory can be switched off by S 8 which then puts the unit under control from external equipment such as a computer. In switching off S8, the timing and address counters are held at reset, and the gates of IC33 and IC34 act as changeover switches, rerouting the control of the signal \(A\) to \(D\) Enable and Convert triggers, the \(D\) to \(A\) Latch trigger, and additionally opens an output Ready command line. In this mode the internal memory chips have their data lines held at a high impedance state and so have no effect upon the signal data conversion.

The signal conversion p.c.b. has been given an edge connection facility, configured to suit the User Port of my Commodore 3032 , and has a track spacing of 0.156 inches. The external connections can alternatively be soldered direct to pins 53 to 64 . The order of these tracks is unimportant and could have been any random order, providing that the ultimate destination order is correct. The track notations are those for the 3032 and their functions are as follows:-

GND (53)=Digital Ground (OV). CA 1 (54)=Output to computer to tell it that data is ready to be taken. PAO to PA7 (55 to 62)=data bits 0 to 7 in order. PAO is LSB, PA7 is MSB. CA2 (63)=Line to tell unit to convert signal data from computer, needs to go up then down. GND (64) Digital Ground (OV), but via a \(10 \Omega\) resistor. On the prototype I found that a low level earth loop existed when connecting the computer digital ground direct to the unit ground at point 53. This resulted in a low level hum. Taking the computer ground to the unit ground via the \(10 \Omega\) resistor cured this without affecting the logic levels. Try your unit first connected to point 53,
then if hum exists, use point 64 instead. All of these lines also have their equivalents on the usual IEEE computer connections.

\section*{AUXILIARY TRIGGERS}

When the unit receives a positive going trigger pulse on the CB2 line, a faster pulse is developed by IC24b which triggers the conversion process of the signal A to D IC5. At this point the computer should have its output data ready on the data lines PAO to PA7. The pulse from IC24b triggers IC35A to send a pulse to the \(D\) to \(A\) converter IC6 which reads and latches in the data from the computer. IC6 is only open to the computer for the duration of the pulse. Whilst this is happening the \(A\) to \(D\) is doing its conversion, and when complete the Ready output of IC5 goes high, is inverted by IC31c, passes through the gate IC33b and enables the output of IC5. Simultaneously a positive going pulse is sent by IC35b, via gate IC34d back to the computer on the CA1 line. Upon receipt of the pulse the computer knows that it can take and latch in the data from IC5. It can then do what it wants with the data before commencing the next cycle.


Photos illustrating the internal and external constructional details of the Digital Delay Line.

Constructors' note:-
A complete kit of parts or separate p.c.b.s are available from:

Becker Phonosonics; Dept. DDL, 8 Finucane Drive, Orpington, Kent, BR5 4ED (send s.a.e. for details):

NEXT MONTH: Final points and wiring


PE1632

AST month in this column I started to look at the BBC Micro's analogue port. As we saw just by looking at the electrical connector, there is rather more to this port than its name might at first suggest. Essentially, the port is a connector which is shared by the analogue-to-digital (A-to-D) converter, the CRT controller, and the system VIA. For convenience, the destination(s) of these various input signals are summarised in Table d. This month I will be starting to explore the A-to-D section of the analogue port in greater detail.
\begin{tabular}{c|l|c} 
Pin & Signal & Destination \\
\hline \(4,7,12,15\) & ADC channels 0-3 & ADC \\
5,8 & Analogue ground & ADC \\
11,14 & Reference volts & ADC \\
10,13 & Push buttons & System VIA \\
9 & Lightpen strobe & \begin{tabular}{l} 
System VIA \\
and CRTC
\end{tabular}
\end{tabular}

Table 1. Analogue port signal destinations

\section*{A-to-D CONVERSION}

Typically, signals in the real world are essentially analogue rather than digital, and are not usually electrical in form. Thus, for example, when considering water being heated in a kettle, there is a continuous temperature rise, rather than jumps of (say) one degree at a time as might appear on a digital thermometer. The A-to-D converter in the BBC Micro provides the means to convert such analogue signals into digital values. Once this has been done, these digital quantities can then be read and processed by user programs.
When looking at the use of micros in the real world, one of the fundamental tasks is clearly to provide a link between the analogue and digital areas. This usually involves two distinct stages, as shown in Fig. 1. The first is to convert the quantity to be measured (temperature in the example) into an analogue electrical signal. This is necessary because in the majority of cases the quantity being measured is not itself electrical. The conversion process is performed by a transducer, whose form depends on what is to be measured, but which rarely has a digital output. Having produced a signal representing the quantity being measured (e.g. a number of mV . per degree Celsius), the next step is to convert this signal into a digital value. This process is normally performed by an A-to-D converter i.c. (ADC), which in the case of the BBC Micro is built into the analogue port and connected to the main system bus.

\section*{BBC MICRO'S ADC}

The ADC device in the BBC Micro is a \(\mu\) PD 7002 , which is a 4 -channel 12 -bit converter. This means that it is capable of measuring up to four different analogue signals, one at a time. When the ADC is measuring the signal on one of these channels, each measurement takes a finite amount of time to complete. For example, when a 12 -bit reading is required, each measurement takes approximately 10 ms . Since only one of the input channels can be read at a time, this means that when all four channels are in operation, the measurements on each channel will be 40 ms apart. One effect of this measurement interval is to limit the maximum frequencies which can be handled in signals being measured. At 10 ms per sample, this maximum is around 50 Hz , and falls to around 12 Hz if all four channels are being used. Although this effect imposes a number of limitations, it is still perfectly adequate for a wide range of
bits, unless some special precautions are taken. This resolution will, however, be more than adequate for many applications, and gives a resolution of \(0.2 \%\) or \(0.1 \%\) respectively. The ADC may be configured to give 8,10 or 12 -bit resolution, but by default gives 1.2 bits.

\section*{SOFTWARE FACILITIES}

Unlike the user port, the analogue port is quite well provided with software facilities which can be used from BASIC. These are primarily ADVAL, *FX16 and *FX17. ADVAL( n ) numbers the ADC channels from 1 to 4 , and when called it returns the latest value read for channel n . In normal operation the ADC is continually measuring the signal on each channel in turn, and the MOS stores these latest values from each channel. The values returned are all multiplied by 16 to allow for future expansion, and thus the ADC steps appear to be 16 apart (rather than 1) as far as the

applications, particularly where the quantity to be measured varies relatively slowly.
The ADC output from each measurement is a 12 -bit digital value (although it is possible to trade resolution for speed by using fewer bits). This 12 -bit range means that the \(A D C\) divides up its measurement range into 4096 steps between 0 and 4095. The measurement range is set by the reference voltage (Vref) used by the ADC. The same Vref is used on all four channels of the ADC , and is approximately 1.8 V . Vref appears on pins 11 and 14 of the analogue port connector, and care should be taken to ensure that any input signal to the ADC does not exceed its value. The overall effect of the resolution and the value of Vref is that the 4096 steps from the ADC each represent approximately 0.44 mV . From this it is clear that any electrical noise on the input signal will easily affect the \(A D C\) output. Typically, therefore, the usable range of the ADC will be limited to 9 or 10
program is concerned. To establish the latest value read from channel 1, for example, a BASIC statement might be:

\section*{\(X=\operatorname{ADVAL}(1)\) DIV 16}

If you wish to convert the value directly into volts, and have already measured and stored the value of Vref, then the alternative form is:

\section*{X = ADVAL(1)*VREF/65520}

The accuracy of this conversion clearly depends on the accuracy and stability of Vref, which is not too good. If this is important, it is a good idea to connect a known reference voltage (e.g. a band gap reference device) to one of the ADC channels, and then compare the readings.
The ADVAL keyword has a number of other functions which are not related to the ADC channels, and these will be found described in Chapter 33 of the User Manual. One function which does relate to the
\(\operatorname{ADC}\), however, is \(\operatorname{ADVAL}(0)\). This call allows the identity of the latest ADC channel read (multiplied by 256) to be determined. Thus, this will identify the latest channel:
PRINT "Current channel = ";ADVAL(0)
DIV 256
The *FX 16 command allows the default situation of the four ADC channels each being measured in turn to be altered. As shown in Table 2, the sequence can be limited to any number of channels from 0 to 4. This can be explored by using the method above to check that the range is limited.

In order to obtain the latest value from any given channel, the *FX17, n command (where n is the channel number) will start a measurement on the selected channel. The measurement will be available 10 ms later. When using the *FX16/17 commands, do remember not to use them in multi-statement lines with BASIC commands after them; the remainder of the line is passed to the MOS for action.
\begin{tabular}{l|l} 
Command & Channel Measuring Sequence \\
\hline *FX16,0 & No channels measured \\
*FX16,1 & Channel 1 only \\
*FX16,2 & Channels 1, 2 alternately \\
*FX16,3 & Channels 1, 2, 3 in turn \\
*FX16,4 & Each channel in turn
\end{tabular}

Table 2. ADC measurement sequence control

\section*{DIGITAL THERMOMETER}

After the theory, it is now time to see how some of these ADC facilities can be put to work. Fig. 2 shows the circuit for a digital thermometer which can be connected to the analogue port. As is clear from the circuit, the number of components involved is best described as 'minimal'. The most important component in the circuit is the temperature sensor. This is a type 590 kH , which is also available from RS as \(308-809\). The complete thermometer may be built for less than £10.
The 590 kH semiconductor temperature sensor is a two-terminal i.c. which produces an output current which is proportional to the absolute temperature. If, like me, your physics has become just a little rusty, you may like to be reminded that the absolute temperature in degrees Kelvin is the temperature in Celsius plus 273-2 degrees. Thus, for example, a room temperature of \(20^{\circ}\) Celsius is equivalent to \(293 \cdot 2^{\circ}\) Kelvin. For supply voltages between +4 volts and +30 volts d.c. the 590 kH acts as a high impedance constant current regulator. The current passed is \(1 \mu \mathrm{~A}\) per degree Kelvin, and thus the voltage developed across any resistance wired in series with the sensor is proportional to temperature.

With a series resistance of \(1 \mathrm{k} \Omega\), for example, the output from the thermometer will be \(1 \mathrm{mV} / \mathrm{deg}\). The rated temperature range of the sensor is \(-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\), and over this range a maximum error of \(\pm 5.5^{\circ} \mathrm{C}\) is specified if no compensation is included in the circuit. If the preset in Fig. 2 is adjusted to give the correct output at \(25^{\circ} \mathrm{C}\) \((298.2 \mu \mathrm{~A})\), this maximum error over the range is reduced to \(\pm 2^{\circ} \mathrm{C}\); the effect is illustrated in Fig. 3.


Construction of the thermometer is a straightforward matter. The resistors are most conveniently mounted on the rear of the 15 -pin D-type plug used for the analogue port. The temperature sensor should be connected by a convenient length of a twisted pair of insulated wires. The circuit


Fig. 3. Sensor calibration error


This month a new book which could have been written with your scribe in mind. The Epson/Kaga Printer Commands Revealed, by David Smith, is published by Watford Electronics at \(£ 5.95\). This book caters specifically for BBC Micro owners with an Epson FX-80 compatible printer. If you have a Wordwise ROM, it is even more useful because all of the examples include the commands to use with Wordwise (the OC. . . . strings).

But what, I hear some ask, is wrong with the substantial manuals which come complete with these printers; surely they are detailed enough? The real problem is not that they lack detail, but that they are written (or should I say "loosely translated from Japanese"?) for a wide market. As such, the commands (of which the printers in question support a great number) are illustrated in Microsoft BASIC. Although this has become an international standard of sorts, it does not help the BBC Micro owner who cannot get any response other than "Mistake" when the LPRINT examples given in the manuals are tried.

The introduction makes the point that this book is really a supplement for a
shows channel 0 (ADVAL channel 1) being used, but any of the other channels could equally well have been used. The leads on the sensor should also be sleeved to avoid accidental short circuits. If the sensor is to be immersed in liquid, the electrical connections will need to be totally encapsulated to avoid current leakage through the liquid, and hence false (high) readings, The sensor can be calibrated conveniently by using another thermometer, or by using a known standard such as the fact that melting ice in its own water will be at \(0^{\circ} \mathrm{C}\).

NEXT MONTH: BBC Micro Forum will be listing some suitable software for the digital thermometer, and then looking at some other uses of the basic temperature sensor.
standard printer manual, and not a replacement for it. To this end, every command description includes references to pages in the Kaga, FX80 and RX80 manuals, where full definitions of the commands will be found. Within the book there are 90 pages describing all of the commands available on the printers mentioned. Each command is described in a standard format, showing how to issue the necessary control codes from BASIC and Wordwise. This is followed by a description of the action of the command, and then a BBC BASIC example listing, with illustrations of the results where appropriate. The commands are arranged in eight logical groups, and each command description starts on a new page. The command described is indicated at the top of each page, and the book includes an index.
Verdict: If you have already mastered your existing manual, this book may well be a more convenient reference, but do not expect to learn anything new. However, if Microsoft BASIC is a mystery to you, and you have a new FX-80 compatible printer, this book could save you many hours of "manualgazing". The choice of whether this is a book for you depends very much on your needs, but I would have been happy to have had a copy by my side when my printer first arrived.


SCARA robots seem to be the fashionable devices to be producing at the moment. No sooner had we announced in the last issue that Cybernetic Applications was launching its version at Automan than we discovered that two competitors also had plans for using Automan as the event at which they would unveil their own SCARAS.
For the uninitiated SCARA is an acronym for selective compliance assembly robot arm and apparently they are finding increasing favour in industry
Powertran Cybernetics, those close neighbours and rivals of Cybernetic Applications have a version called IVAX. It has four axes plus a gripper, three with rotational movement and the fourth vertical movement on the central pillar.
It is powered by d.c. motors with feedback provided by optical encoders. Constant torque springs have been used to eliminate the effect of backlash and it is strong enough to lift 1 kg

All the rotational axes, the two limbs of the arm and the wrist, can move through 270 degrees and it has a 40 mm range of vertical movement. IVAX can work within an arc with radii of between 108 mm and 280 mm

\section*{.. give the co-ordinates ..}

On board it has a Z80A processor with options for either 2 K or 8 K of RAM, which allows storage of three or 15 sequences. Extra storage is available of either 512 or 2 K bytes.

Powertran says that it has written the software to make it as easy as possible to write control programs. One example is that the only instruction needed for the arm to reach a particular point is to give the coordinates, rather than the operator having to calculate the movements of each section. A graphical simulation of the robot's movements is provided so that routines can be run and tested on screen before being passed to IVAX.

All of the software is written in BASIC and versions are at present available for the BBC B and the Apple. IVAX has been designed to work in a restricted area or cell and a work cell has been developed to illustrate some of the robot's abilities.
The company says that it has been working on the SCARA for about six months. Further add-ons such as conveyors and go/no go gauges are also available. IVAX will be sold both in kit form for just under \(£ 2,000\) (for the robot, controller, software, teach pendant and power unit) and ready-built, at almost \(£ 2,500\), mainly to the educational market.

\section*{. . interest from the States . .}

The other entrant in the SCARA stakes is a new company, Universal Machine Intelligence of London. UMI hit the headlines last year with the news that the company's products were attracting great interest from the States where two were having extensive trials.

The first device to result from that work is the RTX, which has a modified SCARA design. It is a little more sophisticated than IVAX having six axes plus a gripper and the strength to lift 4 kg . While having the same two limb axes and vertical movement, the wrist has three axes, pitch, yaw and roll.
Although its vertical travel, at 920 mm , is much greater than the IVAX, the angular movements are more limited. The shoulder can move through 180 degrees, elbow 160 degrees, yaw 180 degrees, roll 165 degrees in either direction and pitch 110 degrees
But the two machines are not comparable. The RTX at a price which has yet to be fixed but is thought to be in the region of \(£ 3,000\), is intended for light industrial

Powertran's
SCARA robot
as well as educational and health care use.
Power is provided by d.c. motors with optical encoders giving feedback. The controller is based on two Intel 8031 chips. It has to be hooked up to a micro via the RS232 port and software is available for the IBM PC.
For the future UMI is looking to include two RTX arms on a mobile base on a mobile robot called \(R\)-Theta. Details are not being given at the moment but it is known that it will be intended for industry rather than education.
Powertran, meanwhile, has been upgrading its existing Genesis hydraulicallypowered arms. While retaining the same basic design and capabilities, the overall quality and reliability of the P101 and P102 have been improved. In particular the company says that the tendency of the oil to leak from the hydraulic cylinders has been reduced.

The major change has been the addition of a parallel \(1 / 0\) port
L. W. Staines is also on the up-grade. Celebrating getting one of its sturdy Ogres in Oxford University it is bringing out two new versions. It is now possible to get the basic for £240, the Super Ogre at £295 and the Ogre Supreme at \(£ 350\).

The company says that it has been surprised by the reaction to its arm, particulary from industry and higher education so it was decided to provide machines which would better suit their requirements.

It has another robot at the development stage. Called Troll it will have two arms, one similar to the Ogre and the other an extending arm. Details are limited at the moment but it is hoped to have it ready in the next few months with a price of less than \(£ 1,000\).

\section*{. . good future for the toy market .}

Finally the toy market is still proving popular. Tomy Toys is planning an autumn launch for a new top of the range robot. Peter Brown, sales and marketing manager, was reluctant to give away too many details, because of worries about the competition, but he did reveal that it would probably cost about \(£ 400\) and be a much more manipulative machine than the present top of the range. Omnibot, and be radio controlled.
He added that Omnibot had been very successful and Tomy saw a very good future for the toy market

For \(£ 150\) you can now push a robot around. Cybernetic Applications has produced a set of touch sensors for its Neptune arm which allows operators to guide it by hand. The kit comes complete with the necessary software and the ability to store routines.

\title{
s \\ 
}

T- HE ‘ 4000 ' series of CMOS logic i.c.s. is a popular and widely used logic family. Many of the i.c.s. in the series have become industry standards, cropping up in thousands of different applications, and most of these are produced by a considerable number of different semiconductor manufacturers. Occasionally, though, it is possible to find a device in the 4000 series which is only made by one or two companies, and is rarley seen, yet which may have many useful attributes.
The 4753 by Mullard is just such a device. It is known as a universal timer, which is a little anomalous since it has no timing components as such (ie, no on-chip oscillator circuitry), but it does have a very comprehensive set of counting circuits which make it a very interesting and useful i.c. for inclusion in timing and counting circuitry.
The pinout and specifications of the 4753 i.c. is shown in Fig.1. The specifications are a little unusual in that they miss out many parameters such as input current, etc., but since this i.c. is one of the standard 4000 CMOS series of devices all the normal family specifications apply. Fig. 2 shows the block diagram.

The clock input is used to synchronise all circuit activity, and can be divided by 1, 16, 256 , or 4096 to provide the clock input to a programmable counter. This counter in turn can divide the clock by any number from 1 to 255 , as defined by the programming inputs on pins 1 to 8 . The output is

Programming inputs

PE622A


Fig. 1. Pinout and specifications


Fig. 2. Block diagram for the HEF 4753B i.c.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Notes & \begin{tabular}{l}
At \\
Supply Voltage of
\end{tabular} & Minimum Value & Typically & Maximum Value & Units \\
\hline Supply voltage & & - & 3.0 & & 18.0 & V \\
\hline \multirow[t]{3}{*}{Maximum clock Frequency} & \multirow[t]{3}{*}{\begin{tabular}{l}
(At Pin 17) \\
Square wave clock50/50 mark space ratio
\end{tabular}} & 5 & 3.0 & 6 & & MHz \\
\hline & & 10 & 7.0 & 14 & & MHz \\
\hline & & 15 & 8.0 & 17 & & MHz \\
\hline \multirow[t]{3}{*}{Output sink Current, maximum (Pin \(10=\) low)} & \(0 / \mathrm{p}\) voltage \(=0.4 \mathrm{~V}\) & 4.75 & \(2 \cdot 3\) & & & mA \\
\hline & \(0 / \mathrm{p}\) voltage \(=0.5 \mathrm{~V}\) & 10 & 8.0 & & & mA \\
\hline & \(0 / \mathrm{p}\) voltage \(=1.5 \mathrm{~V}\) & 15 & 20 & & & mA \\
\hline \multirow[t]{3}{*}{Output source current, maximum (Pin \(10=\) high)} & \(0 / \mathrm{p}\) voltage \(=4.6 \mathrm{~V}\) & 5 & 0.5 & & & mA \\
\hline & \(0 / \mathrm{p}\) voltage \(=9.5 \mathrm{~V}\) & 10 & 1.5 & & & mA \\
\hline & \(0 / \mathrm{p}\) voltage \(=13.5 \mathrm{~V}\) & 15 & \(5 \cdot 0\) & & & mA \\
\hline \multirow[t]{6}{*}{PROPOGATION DELAY
(Delay between clock
changing and
output changing
state)
(Load capacitance \(=50 \mathrm{pf}\) )} & \multirow{3}{*}{High to low transition} & 5 & & 420 & 850 & ns \\
\hline & & 10 & & 180 & 360 & ns \\
\hline & & 15 & & 120 & 250 & ns \\
\hline & \multirow{3}{*}{Low to high transition} & 5 & & 450 & 900 & ns \\
\hline & & 10 & & 200 & 400 & ns \\
\hline & & 15 & & 140 & 280 & ns \\
\hline \multirow[t]{6}{*}{\begin{tabular}{l}
OUTPUT TRANSITION TIMES \\
(Load capacitance \(=50 \mathrm{pf}\) )
\end{tabular}} & \multirow{3}{*}{High to low transition} & 5 & & 30 & 60 & ns \\
\hline & & 10 & & 15 & 30 & ns \\
\hline & & 15 & & 10 & 20 & ns \\
\hline & \multirow{3}{*}{Low to high transition} & 5 & & 60 & 120 & ns \\
\hline & & 10 & & 30 & 60 & ns \\
\hline & & 15 & & 20 & 40 & ns \\
\hline
\end{tabular}

\footnotetext{
Other specifications follow typical spec's for the CMOS '40008' series
}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|c|}{ Inputs } & \multirow{2}{*}{\begin{tabular}{c} 
Clock to programmable counter \\
is clock input to pin 17 \\
divided by:
\end{tabular}} \\
\hline W & \(\mathbf{X}\) & \\
\hline Pin 16 & Pin 15 & 1 \\
\hline 0 & 0 & 16 \\
0 & 1 & 256 \\
1 & 0 & 4096 \\
1 & 1 & \\
\hline
\end{tabular}

Fig. 3. Clock selection
controlled by 'event flip-flops' and three mode select inputs, which arrange for the different timing modes to be implemented.

\section*{CLOCK SELECTION AND TIMING}

The method of selecting the clock input to the internal programmable counter is shown in Fig. 3. (In all descriptions of logic levels, logic 0 is a low level, ie. near to 0 volts, and logic 1 is a high level, near to the positive supply voltage.) If both the W and X inputs are at logic 0 , the clock input to pin 17 is fed directly to the programmable divider. Otherwise, it is divided by a factor as shown. For example, if an 8.192 kHz square wave was fed into pin 17, and both \(W\) and \(X\) were at logic 1 , then the clock input of the 8 -bit programmable counter would be fed with 2 Hz square wave; it would therefore begin counting up at the rate of 2 counts per second.
The programming inputs determine how far the counter must count up before its output changes state. These inputs act as a binary number, but with inverse logic; a logic 0 turns that bit on, whereas a logic 1 turns it off. For example, if pins 1 and 2 were at logic 1 , and the rest at hogic 1, the counter would reach three before the output changed state. If pins 2, 3, and 4 were at logic 0 , and the rest at logic 1, the counter would reach 14 before the output changed.

The counter has a range of 1 to 255 ; an input of zero (pins 1 to 8 all at logic 1) is not allowed. Note that unlike some i.c.s. featured in Semiconductor Circuits, no inputs have internal pull-up or pull-down resistors, so if switches are to be used resistors must be provided externally. (See Fig. 12.)

\section*{OPERATING MODES}

The seven different operating modes are selected by applying the appropriate logic signals to the LFC, \(Y\), and \(Z\) inputs as shown in Fig. 4. The counter mode is shown in Fig. 5. Here, the input is synchronised with the first positive going clock transition after it goes high, and at the next negative clock transition the timing interval starts. After a period \(\mathrm{T}_{3}\) (determined by the clock select and programming inputs) the output goes to logic 0 for 1 clock cycle, then returns to logic I again. The divider mode shown in Fig. 6 is similar, but in this case the output stays low after the time period has ended, until the input drops to logic 0 , causing the output to go high again after a period \(\mathrm{T}_{1}+\) \(\mathrm{T}_{2}+\mathrm{T}_{3}\).

In both the counter and divider modes it is normally intended that the output should be connected back to the input to make the
\begin{tabular}{|c|c|c|l|l|}
\hline \multicolumn{3}{|c|}{ Inputs } & \multicolumn{2}{c|}{ Operating Mode } \\
\hline LFC & Y & Z & Mode & Description \\
\hline PIN 13 & PIN 12 & PiN 11 & No. & \\
\hline 0 & 0 & 1 & 1 & Counter \\
0 & 1 & 0 & 2 & Divider \\
1 & 1 & 0 & 3 & Delayed low to high edge \\
1 & 0 & 1 & 4 & Delayed high to low edge \\
1 & 1 & 1 & 5 & Transient pulse suppression \\
0 & 1 & 1 & 6 & Frequency recognition \\
SEE & 0 & 0 & 7 & Digital 'filter' \\
\hline EIG. 11 & & \\
\hline
\end{tabular}

Fig. 4. Mode selection


TI = DELAY befdre synchronisation
T2 = DELAY TD SET 8-BIT COUNTER
T3 = DELAY DEFINED ey PROGRAMMING inputs
Th = delay until next negative clock edge
TS = delay until next positive clock edge
[PED26A]
Fig. 7. Operating mode three-Delayed Low to High Edge

ti - ts. AS in fig. 7
PE627A
Fig. 8. Operating mode four-Delayed High to Low Edge
i.c. self-triggering. The output will then be a square or rectangulár waveform with a frequency dependent on the clock rate and the value of \(\mathrm{T}_{3}\). If this feedback is not implemented then only one cycle of the counter occurs after the input changes state, but then the output will change at a very slow rate (1/4096 of the clock at pin 17) irrespective of the settings of the programming inputs or the clock select pins.
The delayed low to high edge mode is shown in Fig. 7. When the input goes to logic 1, the output goes to logic 1 after a time \(T_{1}+T_{2}+T_{3}\). When the input changes back to a logic 0 level, the output changes back much faster, however; it waits for the first negative going clock edge, then the next positive going clock edge, then the output changes back to logic 0 . Fig. 8 is the opposite of this-a 0 to 1 change at the input gets passed through to the output fairly rapidly, whereas a 1 to 0 change is delayed by \(T_{1}+T_{2}+T_{3}\).

A representation of the transient pulse suppression mode is shown in Fig. 9. For input pulses wider than \(T_{1}+T_{2}+T_{3}\), the output is merely delayed by \(T_{1}+T_{2}+T_{3}\). However, if the input pulse is shorter than \(\mathrm{T}_{1}+\mathrm{T}_{2}+\mathrm{T}_{3}\) it is ignored-no changes take place as a result of it. This circuit is therefore acting as a sort of digital low-pass filter. Short pulses are eliminated, but longer pulses (ie. low frequencies) are merely delayed, not suppressed.

This principle is taken further in the frequency recognition mode shown in Fig. 10. The incoming signal should be symmetrical (ie. a square wave of \(50 / 50 \mathrm{mark} / \mathrm{space}\) ratio). If the input pulse width \(T_{7}\) is shorter than the programmed period \(\mathrm{T}_{3}+\mathrm{T}_{1}+\mathrm{T}_{2}\), then the output goes to logic 1 , whereas if the input period is longer than \(T_{1}+T_{2}+T_{3}\), the output goes to logic 0 .

This allows us to recognise incoming frequencies as being above or below the frequency:
\[
f=\frac{1}{2\left(T_{1}+T_{2}+T_{3}\right)}
\]

In this mode it is important to note that the minimum programmed count number is 3 .

Finally, in Fig. 11, two 4753 s are used to provide a "digital filter" function. The two i.c.s have different programmed time periods, \(\mathrm{T}_{\mathrm{a}}\) being greater than \(\mathrm{T}_{\mathrm{b}}\). The output stays at logic 0 unless the incoming pulses (again the input should be a \(50 / 50\) square wave) are longer than \(T_{b}\) but shorter than \(T_{a}\) (plus the appropriate synchronising delays in each case, as appropriate) at which point the output becomes a delayed version of the input wave form. As with the previous mode, the minimum programmed count should be 3 .

The HEF4753B is an extraordinarily versatile i.c. capable of extremely complex timing and counting operations. It's subtleties shouldn't disguise the fact that it is an excellent general purpose timer/counter with as many simple applications as complex ones. To illustrate this point, the applications project this month shows an economical timer design which uses both mode and clock selection facilities.


Fig. 9. Operating mode five-Transient Pulse Suppression


Fig. 10. Operating mode six-Frequency Recognition


Fig. 11. Operating mode seven-Digital Filter

\section*{A DIGITAL TIMER}

THE circuit diagram of a Digital Timer (which can be used as an egg timer) is shown in Fig. 12, with Fig. 13 giving the Veroboard layout. To start the timer, switch S9 is opened. This causes IC2c pin 10 to go to logic 1 , which provides a pulse to pin 5 of the flip-flop formed by IC3a and IC3b. Pin 3 of IC3 therefore goes to logic 1, and pin 4 to logic 0 . This in turn causes the \(W\) input to ICl to go to logic 1, and the LFC input to go to logic 1. (The main input to IC1 (pin 14) also goes to logic 1.) Hence, the 4753 has it's clock divided by 4096 . With a \(546 \cdot 1 \mathrm{~Hz}\) clock input to pin 17, this provides 1 count every 7.5 seconds, with IC1 in the delayed low to high mode
Switches S1 to S8, with their pull-up resistors R1 to R8, provide the programming inputs to IC1. After the programmed time has elapsed, the output of IC1 goes to logic 1. This turns on the audio oscillator formed by IC2b, which causes X1 to sound a tone. It also produces a pulse, via C6, to reset the IC3a/IC3b flip-flop. As a result of this, pin 3 of IC 3 is now at logic 0 , and pin 4 is at logic 1
The W input of IC 1 also goes to logic 0 , so the 4753 now has its clock only divided by 16 , not by 4096 . The LFC goes to logic 0 , so


ICl is now working in the divider mode Via the time delay of R15 and C4, and IC3c and IC3d, the output of IC1 is now connected back to its input. It therefore oscillates at a very low frequency (the exact frequency
depending on the settings of S 1 to S 8 ), causing the piezo sounder X1 to send out bursts of tone. Closing the switch S9's contacts against forces ICl back into the delayed low to high mode, and turns off the



Fig. 13. Veroboard component layout for the Digital Timer
clock oscillator formed by IC2a, with associated components.

\section*{PRACTICAL CONSIDERATONS}

There are several small but important areas of circuitry incorporated into this design. D2, C1, and R9 form a switch de-bouncing network for S9. Without this, the multiple triggers feeding into IC3b due to switch
bouncing could cause mis-operation. The clock oscillator, IC2a, is turned off when the timer is not in use to lower the power consumption. However, it was found that this should not be done immediately after changing the mode of ICl , or, again, misoperation occurred. Hence D3, C3, and R13 delay the turning off of the oscillator after S9 is closed, to allow IC1 to complete its internal synchronisation, etc. R15 and C4 delay the output of ICl reaching IC3c
pin 8 until after the IC3a/IC3b flip-flop has changed state. Finally, DI helps to protect against reverse connection of the battery, C8 and C9 decouple the supply, and R11, R12,R14, and R18 protect the CMOS gate inputs when power is turned off.

In use, the switches S1 to S8 set the timing interval. Several of these can be turned on at once, of course, to add up the required time period. VR1 should be adjusted to give the correct clock frequency, or the correct time intervals if no frequency counter is available.

No on/off switch as such is required, as the circuit only draws typically \(17 \mu \mathrm{~A}\) in the 'off' state with no programming switches turned on. In the 'on' state, the current drawn is approximately \(130 \mu \mathrm{~A}\), and with the tone sounding it averages \(300 \mu \mathrm{~A}\).

If the circuit is to be used for fixed time periods only, then S1 to S8 can be replaced by wire links or a d. itl. switch. S 9 was made to be a mercury tilt switch (salvaged from an old digital alarm clock!) so that the timer could be started by turning it up-side down, and stopped by turning it the right way up again. If you do decide to use such a switch, be very careful not to break it, as mercury is a very toxic substance. As an alternative, an ordinary switch can be used, of course.
The Veroboard layout has been made as small as possible to enable it to fit into a small case, so care must be taken with its assembly. The use of a 4753 in this circuit provides us with a compact and economical way of implementing what is actually quite a complex timing system.

\title{
TECHNICIAN ENGINEERS COMMUNICATIONS AND ELECTRONICS A Planned Career in Technology in the Cotswolds Salaries up to \(£ 11,445\)
}
- VACANCIES at both TECHNICIAN ENGINEER and ENGINEERING TECHNICIAN level. - CHALLENGING WORK in the development and support of highly sophisticated communications andcomputer systems.
- OPPORTUNITIES for gaining experience in a wide variety of technical roles.
- EXTENSIVE ENGINEERING FACILITIES
- CAREER PLANNING aided by regular assessments of performance.
- ADVANCEMENT opportunities on the basis of proven ability.

OVERSEAS service (voluntary).
- FLEXIBLE working hours with up to six weeks leave.
- RELOCATION EXPENSES in most cases.
experience is required. Registration as a Technician Engineer
(T.Eng) would be an advantage. Salary Scale: \(£ 9,113\) - £11,445

Applicants with BTEC ONC or equivalent and at least 4 years relevant training and experience are eligible for posts at the .ENGINEERING TECHNICIAN level for which a structured training programme is provided. Salary Scale: \(£ 6,599-£ 9,135\)

\footnotetext{
INTERESTED? Then for either post send for full details and application form to the address below, quoting Ref: T/6523/85
}

\title{
Ingenuity Unimited
}

Why not submit your idea? Any idea published will be awarded payment at £40 per magazine page.

Each idea submitted must be accompanied by a declaration to the effect that it has been tried and tested, is the original work of the undersigned, and that it has not been offered or accepted for publication elsewhere. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.

ANUMBER of friends of mine have said that they have had difficulty in telephoning me. This Telephone Monitor enables the user to check if there have been any calls in his absence.
A standard pick-up coil is stuck to the side of the telephone and connected to the circuit shown. ICla is biased into the linear mode by R1 and gives very high gain. C2 and D2 send the input of IC1b low when a signal is received; R 2 provides a path for charge to escape from the capacitor-diode junction.

IC1b and c form a latch, which can be reset by pressing S2. S3 causes D3 to light if the telephone has rung.
On the prototype, S1 was incorporated into a jack socket, although the current consumption of the unit on standby renders this strictly unnecessary. The circuit was also found to work on the doorbell!
K. Jones, Fairhaven, Lancs.

EVERYONE who has visited the Royal Festival Hall in London could not have failed to notice the gentle electronic "pinging" sound used to indicate the end-of-interval, at concerts. The circuit

shown here will emulate this sound and has been used with great success at various 'home-grown' productions.

IC1 is a dual monostable with equal mark/space ratio: the output at pin 5 oscillates at around 0.2 Hz and pin 9 at around 400 Hz . The latter can be tuned by changing R2 if required. When pin 5


\section*{PRACTICAL ELECTRONICS PRINTEI CREIIT BOARI SERVIEE}

Printed circuit boards for certain PE constructional projects are now available from the PE PCB Service, see list. They are fully drilled and roller tinned. All prices include VAT and postage and packing. Add \(£ 1\) per board for overseas airmail. Remittances should be sent to: PE PCB Service, Practical Electronics Editorial Offices, Westover House, West Quay Road; Poole, Dorset BH15 1JG. Cheques should be crossed and made payable to IPC Magazines Ltd.

Please note that when ordering it is important to give project title, order code and the quantity. Please print name and address in Block Caps. Do not send any other correspondence with your order.

Readers are advised to check with prices appearing in the current issue before ordering.
NOTE: Please allow 28 days for delivery. We càn only supply boards listed here.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{PROJECT TITLE} & Order Code & Cost \\
\hline Spectrum Autosave & MAR '84 & 403-01 & £1.83 \\
\hline Sustain Unit Audio Signal Generator & MAY'84 & \[
\begin{aligned}
& 405-02 \\
& 405-03 \\
& 405-04
\end{aligned}
\] & \[
\begin{array}{r}
£ 2.82 \\
£ 4.28 \\
£ 2.51
\end{array}
\] \\
\hline Cross Hatch Generator & JUNE '84 & 406-01 & £3.52 \\
\hline \begin{tabular}{l}
Simple Logic Analyser I \\
EPROM Duplicator \\
Alarm System \\
Oscilloscope Calibrator
\end{tabular} & JULY '84 & \[
\begin{aligned}
& 407-01 \\
& 407-02 \\
& 407-03 \\
& 407-04 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
£ 7.73 \\
£ 3.74 \\
£ 3.19 \\
£ 4.23 \\
\hline
\end{array}
\] \\
\hline Comm. 64 RS232C Interface Field Measurement Simple Logic Analyser II & AUG '84 & \[
\begin{aligned}
& 408-01 \\
& 408-02 \\
& 408-03 \\
& 408-05
\end{aligned}
\] & \[
\begin{aligned}
& £ 3.02 \\
& £ 3.19 \\
& £ 2.76 \\
& £ 2.93
\end{aligned}
\] \\
\hline
\end{tabular}


\title{
DON'T MISS AVITAL COPY!
}

Ever been in the middle of a project only to find the next issue sold out? An annual subscription to PRACTICAL ELECTRONICS solves the problem.

Wherever you live you'll receive a copy regularly each month: It's the quick, practical way to solve delivery problems.

SUBSCRIPTION RATES
U.K.
£13.00
Overseas £15.00

COMPLETE AND POST THIS ORDER FORM TODAY!

\section*{PRACTICAL}

\begin{tabular}{|lr|}
\hline Annual Subscription Rates \\
U.K & E 13.00 \\
Overseas & \& 1.00 \\
(Students: deduct \(£ 1\) and quote \\
Student number) \\
\hline
\end{tabular}

Complete this form and post it, with payment or credit card authorisation to: Practical Electronics
SubscriptionDept. Oakfield House, 35 Perrymount Road, Haywards Heath, West Sussex RH16.3DH

POST COPIES TO

NAME

ADDRESS


Card valid from:
10
Signature


When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.

This will assist advertisers in processing and despatching orders with the minimum of delay.

\section*{RECEIVERS ANO COMPONENTS}
P.C.B.s SINGIE AND DOUBLE SIDED (not through plated). P.C.B.s prepared to customers specifications. High quality, quick service. Send transparency or scale drawing, making clear whether view is from copper side or component side. and we will send you a quote by return. GOVAN ITEC. Holmfauld Road, Linthouse, Glasgow G5I 4RY.

TURN YOUR SURPLUS capacitors, transistors, etc into cash. Contact COLES HARDING \& CO., 103 South Brinik, Wisbech, Cambs. Tel. 0945 584188. Immediate settlement.

BOURNEMOUTH BOSCOMBE. Electronic components specialists for 33 years. FORRESTERS (NATIONAL RADIO SUPPLIES), Late Holdenhurst Road. Now at 36, Ashley Road, Boscombe Tel. 302204. Closed Weds.

\section*{SMALL ADS}

The prepaid rate for classified advertisements is 36 pence per word (minimum 12 words), box number 60p extra. Semi-display setting \(£ 12.00\) per single column centimetre (minimum 2.5 cms ). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Lid". Treasury notes should always be sent registered post. Advertisements, together with remittance should be sent to the Classified Advertisement Dept., Practical Electronics, IPC Magazines Limited, King's Reach Tower, Stamford St., London SE1 9LS. (Telephone 01-261 5846.)

\section*{BARGAIN BUMPER BOX OF BITS}

Contains: working calculator, working watch module, Various ICs, transistors, display tubes PCBs, diodes batteries, gears, switches etc., etc., etc. All useful items. Would cost much, mush more if bought separately. ONLY \(\mathbf{f 1 5}\) (inc VAT and P\&P). Send cheque/PO to:
Barbara Page, Spares Dept., Decimo Ltd, 4-18 Chobham St., Luton LU1 3BS

TRANSCEIVERS, RECENERS. Large selection. Send SAE with enquiries to: KRAMER COMMUNICATIONS, 86 Ferndalc, Waterlooville, Portsmouth, Hants.


\section*{NOTICE TO READERS}

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

7 SEGMENT LED DISPLAYS. 4 inch C.AN. Six displays on P.C.B. \(£ 1.00\) per board, p\&p 25 p. BLUE ELECTRONICS, 13 Sketty Avenue, Sketty, Swansea SA2 OTE. Tel. (0792) 476584.

\section*{SOFTWARE}

CMOS SINGLE-CHIP PROCESSORS. User configurable macro assembler for \(6301 / 6303\) devices. Fast execution on BBC, Apple or Pet. f 16 each. Versions also available for 6805 , 65002 \& 6809 devices. SAE full details: M. J. TYLER, 2 Parkview, Cashes Green, Stroud, Glos. 0453677257.

\section*{HDME SECURITY}


\section*{ORDER FORM PLEASE WRITE IN BLOCK CAPITALS}

Please insert the advertisement below in the next availble issue of Practical Electronics for
insertions. I enclose Cheque/P.O. for \(£\).
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Electronics)
\begin{tabular}{|l|l|l|l|}
\hline & & & \\
\hline
\end{tabular}

NAME
ADDRESS

\section*{PRACTICAL ELECTRONICS}

Classified Advertisement Dept., Room 2612,
King's Reach Tower, Stamford Street,
London SE1 9LS Telephone 01-261 5846
Rate:
36 p per word, minimum 12 words. Box No. 60p extra.

\section*{HOME SECURITY CONT.}

\section*{CENTURIDN* ALARMS}

Manufacturers of Professional Alarm Equipment, for DIY \& the trade. Send now for our New 16 page Brochure, Full of Information \& the Lowest prices.


21000
or 3552724 hr .


CENTURION Dept PE 93 Wakefield Road. Huddersfield. HD5 9AB W. Yorks.

\section*{MISCELLANEOUS}

\section*{CABINET FITTINGS}

Fretcloths, Coverings, Handles, Castors Flight Case Locks \& Parts, Jacks, XLRs Bulgins, Reverb Trays, P \& N mic Stands. ASS Glassfibre Horns CELESTION POWER Speakers

- 30p cheque/

\section*{Unit G, Carlton Court, Grainger Road,} Southend-on-Sea.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
THE SCIENTIFIC WIRE COMPANY \\
811 Forest Road, London E17. Telephone 01-531 1568
\end{tabular}} \\
\hline \multicolumn{6}{|c|}{ENAMELLED COPPER WIRE} \\
\hline SWG & 1 lb & 8 ox & 4 oz & & 08 \\
\hline 8 to 34 & 3.63 & 2.09 & 1.10 & & \\
\hline 35 to 39 & 3.82 & 2.31 & 1.27 & & . 93 \\
\hline 40 to 43 & 6.00 & 3.20 & 2.25 & & . 61 \\
\hline 44 to 47 & 8.67 & 5.80 & 3.49 & & 275 \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{48 SILVER PLATED \({ }^{15.96}\) COPPER WIRE}} \\
\hline & & & & & \\
\hline 14 to 30 & & 5.20 & \[
2.93
\] & & \\
\hline \multicolumn{6}{|l|}{TINNED COPPER WIRE} \\
\hline \multicolumn{6}{|l|}{\(\begin{array}{llll}14 \text { to } 30 & 3.97 & 2.41 & 1.39\end{array}\)} \\
\hline \multicolumn{6}{|l|}{Fluxcore} \\
\hline \multicolumn{6}{|l|}{\multirow[t]{3}{*}{ SAE for list of copper and resistance wire.}} \\
\hline & & & & & \\
\hline \multicolumn{2}{|l|}{SAE for list of copper and resistance wire.} & & & & \\
\hline \multicolumn{6}{|c|}{SAE for list of copper and resisan} \\
\hline
\end{tabular}
heathint u.k spares and service centre. Cedar Electron ics, Unit 12 Station Drive, Bredon Tewkesbury, Gloucester shire. Tel. (0684) 73127
sURGLAR ALARM EQUIPMENT. Ring Bradford (0274) 308920 for our catalogue or call at our large showroom, opposite Odsal Stadium.

CLEARING LÄBORATORY, scopes, generators, P.S.U.'s, bridges, analysers, meters, recorders etc. Tel. 0403-76236.

SUPERB INSTRUMENT CASES by Bazelli, manufactured from PVC. Faced steel Vast range, competitive prices start at a low \(£ 1.50\). Punching facilities at very competitive prices BAZELLI, (Dept. 23), St. Wilfreds, Foundry Lane, Halton, Lancaster LA2 6LT

\section*{SERVICE SHEETS}
bells television services for service sheets of Radio, TV, etc \(£ 1.50\) plus SAE. Colour TV Service Manuals on request SAE with enquiries to B.T.S., 190 Kings Road, Harrogate, N. Yorkshire. Tel. (0423) 55885

\section*{FOR SALE}

PROMS - EPROMS - PALS
EPROMS from \(£ 3.25\) ( \(2716 / 2732 / 2764 \mathrm{etc}\) ) PAL from \(\mathrm{E4} 25\) (12H6/16C1/16L8 etcl Full Programming Service available SAE for full price list (incl. RAMs etc) Any i.c. supplied - if it exists we will find it PLS. 16 Wordsworth Drive, Cheam, Surrey SM3 8HF. Phone 01-644 8095 (usually manned \(0800-2000 \mathrm{hrs}\) )

Private and professional enquiries welcome.

SHEETMETAL FOLDERS \(24^{\prime \prime} \times 16 \mathrm{G}\) vice or bench model, \(£ 50\) Leaflet 01-890 7838, day/eves.

\section*{SERVICES}

\section*{INVENTORS \\ Think of something new? Write it down! -}

American industry offers potential royalties for your innovations and new products. We offer free confidential disclosure registration and initial consultation in London regarding your idea's potential value. Write without delay for your free information package.

American Inventors Corporation 82, Broad Street, Dept PT Westfield, Massachusetts 01086 United States of America. A tee based marketing company

\section*{COURSES}

\section*{FULL-TIME TRAINING COURSES}

\section*{2 VEAR}

B-TEC National Diploma (OND) ELECTRONICS \&
COMMUNICATIONS ENGINEERING
(Television \& Computing)
15 MONTHS
B-TEC National Certificate (ONC)
ELECTRONIC EQUIPMENT SERVICING relevision \& Videol
15 MONTHS
B-TEC National Certificate (ONC) COMPUTING TECHNOLOGY

9 MONTHS
B-TEC Hígher National Certificate (HNC) COMPUTING TECHNOLOGY \& ROBOTICS
HIGH PERCENTAGE OF COLLEGE BASED
PRACTICAL WORK
SHORT COURSES WITH PREVIOUS KNOWLEDGE
NO EXTRA CHARGES FOR OVERSEAS STUDENTS
Prospectus from:

\section*{LONDON ELECTRONICS COLLEGE}

Dept: AA, 20 Penywern Road, London SW5 9SU. Tel: 01-373 8721.



\section*{TRAIN FOR A BETTER JOB IN ELECTRONICS}

Everyday more people are needed to design, install, operate and service electronic systems.
It's big business and the career opportunities are both limitless and richly rewarding.
Prepare yourself for a future in Electronics with an ICS Home-Study Caurse quickly, easily and in your own time.

\section*{Proven teaching methods}

ICS is the world's largest correspondence school with over 90 years experience. So far nearly 9 million people have taken advantage of our tried and tested teaching methods.
Find out how we can help you. Send today for your FREE information pack. No obligation.
ICS Please send me full details of the Electronics Course.
NAME
ADDRESS

\section*{INDEX TO ADVERTISERS}
A.D.E.

American Inventors Corp.
B.N.R.E.S

Bull J.
E.S.

CMS
Centurion Alarm
ClefProducts 55

Cricklewood Electronics
Crofton Electronics
Croydon Discount Electronics
C.R. Supply Co.

Cybernetic Application
Decimo.
Den Fer Electronics
\(\qquad\)
Electrovalue..
ESR
Film Service \(\qquad\)
G.C.H.Q........ \(\qquad\)IF.C

Grandata Ltd. \(\qquad\)51

Hall Adam Supplies 23

ICS Intertext
London Electronics College ................ 55
Maplin Supplies.. O.B.C

Marco Trading
Phonosonics \(5 \& 37\)
ProgramLogic Services..................... 55
R.C.S.

55
Reekie Robots
Riscomp Ltd
Scientific Wire Co.
55
Service Trading
T.K. Electronics

Watford Electronics

\section*{MAIL ORDER ADVERTISING}

\section*{British Code of Advertising Practice}

Advertisements in this publication are required to conform to the British Code of Advertising Prac tice. In respect of mail order advertisments where money is paid in advance, the code requires advertisers to fulfil orders within 28 days. unless a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please re tain proof of postage/despatch. as this may be needed.

\section*{Mail Order Protection Scheme}

If you order goods from Mail Order advertisements in this magazine and pay by post in ảdvance of delivery, PRACTICAL ELECTRONICS will consider you for compensation if the Advertiser should become insolvent or bankrupt provided:
(1) You have not received the goods or had your money returned; and
(2) You write to the Publisher of PRACTICAL ELECTRONICS summarising the situation not earlier than 28 days from the day you sent your order and nof later than two months from that day.
Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.
We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiser has been declared bankrupt or insolvent.
This guarantee covers only advance payment sent in direct response to an advertisement in this magazine not, for example, payment made in response to catalogues etc, received as a result of answering such advertisements. C̄lassified advertisements are excluded.

\title{
PUT BBC BASIC IN CONTROL USE THE 6502 2ND PROCESSOR WITH BIG CONNECTIONS
}

- Single Eurocard - can stand alone and run BBC BASIC programs
- Program your control applications in BBC BASIC .. .

FORTH, PASCAL or any other language ROM.
- Adds I/O expansion to your BBC via the 6502 bus connector.
- Tube Interface for fast development.
- Battery backed up Real Time calendar clock.
- Runs BASIC programs in ROM or from battery backed up RAM.
- Complete set of software utility modules available in ROM.
- A full range of Eurocards for use in target applications
- Ideal for industry, education, research and commerce.

\section*{Move over to CMS today}
\begin{tabular}{|l|l|}
\hline CMS (113/1 & \begin{tabular}{l} 
Cambridge \\
Cambridge CB1 1 NL \\
\((0223) 324141\)
\end{tabular}
\end{tabular} \begin{tabular}{l} 
Microprocessor \\
Systems Limited
\end{tabular}

\section*{More This Month at Maplin}

256K D-RAM 41256-150ns ONLY £6. 95 (QY74R).
256K EPROM 27256-250ns ONLY £14.95 (QY75S).
Right-angle pcb mounting rotary switches
1P12W - FT56L; 2P6W - FT57M; 3P4W FT58N; 4P3W - FT59P. All £2. 95 each Stepper motor 48 steps \(/\) rev, 12 V 0.13 A per phase, 4 -phase unipolar, 57 g , working torque 8 mNm max. ONLY £9. 95 (FT73Q).
Driver chip for motor: SAA 1027 ONLY \(£ 3.75\) (QY76H).
\(\star\) SAVE 1 Kit containing everything you need motor, SAA 1027, data sheet and passives ONLY£13.35 (LK76H)


\section*{Sounds Terrific}


Protessional Quality High Power Loudspeakers featuring
* Virtually indestructible high-temperature voice-coil reinforced with glass-fibre
* \(100 \%\) heat overload tolerance
* Advanced technology magnet system
* Rigid cast alloy chassis.
* Linen or Plastiflex elastomer surrounds
* 5-year guarantee lin addition to statutory rights)
Prices from £17.97
Send S.A.E. for our free leaflet XH62S

\section*{Top Ten Kits}


THIS/LAST
MONTH DESCRIPTION CODE PRICE BOOK
\begin{tabular}{|c|c|c|c|c|}
\hline (1) & Wir & & £2.95 & \\
\hline [2] & - 75W & LW51F & £15.9 & Best \\
\hline (4) & Cor Burglor Alorm & LW78K & £7.49 & A0 \\
\hline (3) & Portylite & LW93 & £10.95 & Best E\& \\
\hline 5. (5) & - U/sonic Intrudr Dtctr & LW83 & £10.95 & \(4 \times\) AC4E \\
\hline 6. [9] & 8W Amplifio & LW36 & 4.95 & Cotologu \\
\hline 7. [7] & - light Pen & LK51F & £10.9 & \(12 \times 412 \mathrm{~N}\) \\
\hline 8. [8] & - Syntom Drum Syn & LW86I & ¢12.95 & Best E \\
\hline 9. \(|6|\) & Computadrum & IK52G & ¢9.95 & XAI \\
\hline 10. H & Logic Probe & IK13F & f10.9 & \(8 \times 408\) \\
\hline
\end{tabular}


Over 100 other kits also available. All kits supplied with instructions. The descriptions above are necessarily short. Please ensure you know exactly what the kit is and what it comprises before ordering, by checking the appropriate Project Book mentioned in the list above


More Choice In Multimeters


A new range of very high quality multimeters
offering truty amazing quality at the price Pocket Multimeter, 16 ranges, 2,000 2 N DC/AC £6.95 (YJ06G)
M-1028Z with continuity buzzer, battery tester and 10A DC range, 23 ranges, \(20,000 \Omega \mathrm{NDC}\) E4.95 (YJO7H)
M-2020S with transistor, diode and LED tester and 10A DC range, 27 ranges, \(20,000 \Omega \mathrm{NDC}\) £19.95 (YJ08J)
M-5050E Electronic Multimeter with very high impedance FET input, 53 ranges, including peak-to-peak \(A C\), centre-zero and 12 A AC/DC ranges \(£ 34.95\) (YJ09K)
M-5010 Digital Multimeter with 31 ranges including \(20 \Omega\) and \(20 \mu \mathrm{~A}\) DC/AC FSD ranges continuity buzzer, diode test, and gold-plated pcb for long-term reliability and consistent high accuracy \((0.25 \%+1 \cdot\) digit DCV) \(£ 42.50\) (YJIOL)


\section*{The Maplin Service}

All in-stock goods despatched same day for all orders received before 2.00 pm
All our prices include VAT and carriage ifirst class up to 750 g )
A 50p handling charge must be added if your total order is less than \(£ 5.00\) on mail-order (except catalogue).


Rhone before 2.00 p.m. for same day despatch.

\section*{1985 CATALOGUE}

Pick up a copy now at any branch of W.H. Smith or in one of our shops. Price \(£ 1.35\), or by post \(£ 1.75\) from our Rayleigh address
(quote CAO2C).


All offers subject to availability Prices firm until 10 th August 1985.```


[^0]:    © IPC Magazines Limited 1985. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

