

IEDRTW TOULS

P101Mk2

The P101 Mk 2 Hydraulic Robot Arm offers unrivalled value for money in the field of educational robots. Either as a selfcontained system or linked to an external micro, the P101 Mk 2 gives a realistic simulation of industrial robots. The P101 Mk 2's robust construction makes it an excellent basis for experimentation and general robotics research. Six-axis Robot System kit $\quad £ 1200$ + VAT

P102Mk2

The two-speed Hydraulic Robot Arm is designed to provide"hands-on" experience in practical robotics courses.The Genesis P102 Mk 2 has most of the features of large industrial robots costing from 10 times the price.
The P102 Mk 2 is supplied with its own micro-processor control system and remote control box. Alternatively an external microcomputer can be used to control the robot via its RS232C interface or parallel port. Complete Six-axis

for

VOLUME 21 N: 4

CONSTRUCTIONAL PROJECTS
POWER CONTROL INTERFACE by R. A. Penfold 10
Proportional mains control up to 10A
DISC DRIVE PSU by J. R. W. Barnes18
Power for second BBC disc drive
MODULAR AUDIO POWER SYSTEM-Part 3 by M. Tooley BA and D. Whitfield MA MSc CEng MIEE 23
Power supply and test signal source
RUGBY CONTROLLED CLOCK—Part 1 by Stephen lbbs 47
A receiver and decoder for the 'Rugby' time signal
POWER SUPPLY WATCHDOG by Tom Gaskell BA(Hons) CEng MIEE 58
An over and under voltage warning system
CENERAL FEATURES
SEQUENTIAL LOGIC TECHNIQUES by M. Tooley BA and D. Whitfield MA MSc CEng MIEE 14
Part Seven: Binary full-adders. Index to the series
SPACEWATCH by Dr. Patrick Moore OBE
28
PRINTER BUYER'S GUIDE 30
An introduction to printer specifications plus a comprehensive buyer's guide BBC MICRO FORUM by D. Whitfield MA MSc CEng MIEE 40
A scintillating cauldron of new ideas for BBC wizards
SEMICONDUCTOR CIRCUITS by Tom Gaskell BA(Hons) CEng MIEE 56
Programmable voltage detectors ICL8211CPA and ICL8212CPA
NEWS \& COMIMENT
EDITORIAL NEWS \& MARKET
PLACE

7 SPECIAL OFFER 26
BAZAAR 29
LEADING EDGE

INDUSTRY NOTEBOOK52
VERNON TRENT 54
P.C.B. SERVICE 60

This month's cover shows a digitised photograph, designed and created by Alex Kempkens, of a National Semiconductor 32-bit microprocessor. The Series 32000 Family from National includes the first commercially available 32-bit c.p.u.

OUR MAY ISSUE WILL BE ON SALE FRIDAY, APRIL 4th, 1985 (see page 43)

[^0]

SUPER HY－LIGHT STROBE KIT
Approx． 16 joules．Adjustable speed．Price $£ 45+£ 2$ p\＆p（Total inc， （19．55）；Foolscap SAE for further details including Hy－Light and Industrial Strobe Kits．
ULTRA VIOLET BLACK LIGHT
FLUORESCENT TUBES
4t 40 watt 10.44 （F1200 inc VAT）
2420 watt $\mathbf{2 7 . 4}+\mathrm{fl} .25 \mathrm{p} 8 \mathrm{p}$（59．99 inc．VAT） $18 i$ ． 15 watt $£ 5.00+75 \mathrm{p} p \& \mathrm{q}$（ $\mathrm{E6} .61 \mathrm{inc}$ ．VAT）
 gin． 6 watt $E 3.00+500$ p\＆p（ 84.02 inc．VAT） bin． 4 wall $\xi 3.00+500$ p 80 （ $£ 4.02$ inc．VA） （6．96 inc．VAT or 13 in ．\＆ 18 in ．Tubes $\mathrm{f6} \mathrm{p} \& \mathrm{p} 75 \mathrm{p}$（ $\mathbf{E 7} 76 \mathrm{inc}$ ．VAT） or 12 V DC oo． 12 in \＆ 13 in ．tubes only $£ 5.50 \mathrm{p} \& \mathrm{p} 75 \mathrm{p}$（£7． 18 inc 175 WATT SELF－BALLASTED BLACK LGGT MERCURY BULBS． Available for either B．C．or E．S．fitting．price $£ 10.80+p \& p \mathbf{C} .25$ itotai inc．VAT £13．85）．
400 W UV LAMP BALLAST Complete $-£ 48.80+p \& p \varepsilon 3.50$（ $£ 52.30$ nol VAT）
OOW UV LAMP only，$£ 20.00+p \& . p £ 2.50$（ $£ 25.88$ incl．VAT）

ROBOT ENTHUSIASTS

this field：

this field： MOtor with $70-1$ gearbos． 6 V DC -16 r．p．m． $3 \mathrm{~V}-8$ r．p．m．amazing
M power；no load current；only 10 ma approx．Size： $4 \times 21 / 2 \mathrm{~cm}$ ．Ex－ power；no load current；only equipment，tested and guaranteed．ONLY $\mathrm{E4.50}+50 \mathrm{p}$ p\＆p fotal inc．VAT E5．75）．
2．12／24V O．C．Reversible Precision buite motor manufactured by Escap－will operate from 24 V down to $2 \mathrm{~V} D \mathrm{DC}$－Current consump－ tion negligible．A range of speeds between 2 to 36 e．p．m．obip able．Approx．half manufacturers price：$£ 15.00$ p\＆p $\mathbf{E 2 . 0 0}$－total MICRO－SWITCH

撸 90 for 10 post paid．inc．VAT VORTEX BLOWER \＆SUCTION UNIT
Powerful multi－stage dynamically balanced totally enclosed rotors

VBL 4 CÉNTRIFUGAL BLOWER
240 V AC powerful $1 / 50 \mathrm{~h} . \mathrm{p}$ ． 0.23 A motor．$£ 18.00+£ 2.00 \mathrm{p} \& \mathrm{p}-\mathrm{total}$ inc．VAT $£ 23.00$ ．N．M．S．
$12 / 24 \mathrm{~V}$ DC CENTRIFUGAL BLOWER 0.44 producing 30 cu．ft． $\mathbf{E 7 . 5 0}+\mathrm{f} 1.00$ p 8 p － otal inc．VAT 23．78．N．M．S．
COOLING or EXTRACTOR FAN Quiet smooth running．Size $43 / 4 \times 43 / 4 \times 11 / 2$ ． Supplied for 240 V AC operation．Price $£ 4.7$
$+£ 1$ p\＆n - total inc．VAT $£ 6.62$ N．M．S． 240V AC SOLENOID VALVE
 $240 V$ AC SOLEN
Designed for Air／Gas at 0.7 ．Water 5 psi．Inlet－outilet $3 / 8$ ．Forged brass
body．Manuf．Dewraswitch Asco．Price $£ 5.50+£ 1$ p\＆ip－total $£ 7.48$

VARIABLE VOLTAGE TRAN SF RMERS

INPUT 230． 240 V a．c． $50 / 60$ OUTPUT $0-260 \mathrm{~V}$

 200W，1A Max． 5KVA $2^{1 / 2 A M a}$ 1KVA 5A Max． 2KVA 10A Max3KVA $15 A$ Max 3KVV 25A Max 10KVA 50A Max
$0-260 \mathrm{~V}$.
f 15.00 £54．00
$\mathbf{f 9 9}$
$\mathbf{f 1 8 1 . 0 0}$

3－PHASE VARIABI E VOL Dual input $200-240 \mathrm{~V}$ or $380-415 \mathrm{~V}$ TAGE TRA
3KVA Samp per phase max．
GKVA
E1 $\begin{array}{lll}\text { GKVA } 10 \text { amp per phase max．} & £ 170.10 \text { plus carriage } \\ \text { TOKVA } 16 a m p \text { per phase max．} \\ \text { £345．45 } & \text { and VAT }\end{array}$ Comprehensive range of TRANSFORMERS L．T．ISOLATION \＆AUTO （ $110-240 \mathrm{~V}$ ）．Either cased with American socket and mains lead o 12V D．C．BILGE PUMPS
400 G．P．H． 15 ft ．head， $3 \mathrm{mp}, \mathbf{£ 8 . 0 0}+\mathbf{£ 1 . 0 0} \mathrm{p} \& \mathrm{p}$ （E10．35 inc．VAT
700 G．P．H． 10 ft ．head， $3.5 \mathrm{amp} . \mathbf{£ 1 1 . 5 0 + £ 1 . 5 0 \mathrm { p } \& \mathrm { p }}$
（I14．95 inc．VAT）．
1750 G．P．H． 15 ft ．head， 9 amp ．$£ 15.00+\mathbf{£} 1.75$ p\＆ip
（ $\mathbf{~} 19.26$ inc．VAT）．
SINGIE DIAPH．
SINGLE DIAPHRAGM COMPRESSOR NMS 11 ， 11

EPROM ERASURE KIT

Why waste money？Build your own EPROM ERASURE for a fraction of the price of a made－up unit．Complete kit of parts less
case to include 12,8 watt 2537 Angst．Tube．Ballast unit，pair of case to include 12， 8 wath 253 Angst．micreswitch，on／off switch
 Warning：Tube used in this circuit is highly dangerous to the

SOLID STATE E．H．T．UNIT
tnput 230 V A．C．Approx． 15 KV ．Producing 10 mm spark．Built－in 10 sec timer．Eastly modified for $20 \mathrm{sec}, 30 \mathrm{sec}$ ，to continuous．Designed for boiler ignition．Dozens of uses in the field of physics and etectronics， e．g．supplying neo
VAT E8．50）N．M．S．

FROM STOCK AT PRICES THAT DEFY COMPETITION
 AC GEARED MOTORS
 DC MOTORS SMALL MICROSWITCHES RELAYS REED SWITCHES SOLENOIDS A．C．or D．C PROGRAMME TIMERS SYNCHRONO WIDE RANGE OF XENON TUBES WRITE／PHONE IN YOUR ENQUIRIES

Superior Quality Precision Made NEW POWER RHEOSTATS New ceramic construction，heavy duty brush assembly，continuously rated．
25 WATH＇ $5 / 10 / 25 / 50 / 100 / 150 / 250 / 300 / 500 / 1 \mathrm{k} \Omega$
$1.5 \mathrm{KQ} £ 4.25+30 \mathrm{p} 8 \mathrm{pp}$ ．（ 85.23 incl VAT）．
50 WATM $2500 £ 6.50+50 \mathrm{p}$ p p （ 88.05 incl VAT
100 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 7 \mathrm{kO} / 1.5 \mathrm{kQ} / 2.5 \mathrm{kO} / 3.5 \mathrm{kQ}$ $\varepsilon 10.25+75 p$ p $\& . \mathrm{p}$（ 12.65 incl VAT）
slack Silver Skirted Knob calibrated in Nos 1－9，1／2in．dia．brass bush deal for above Rheostas 30p ea＋VAT
 INSULATED TESTERS NEW！ est to I．E．E．Spec．Rugged metai construction suitable
 VAT）． $1000 \mathrm{~V} 1000 \mathrm{M} \Omega \in 55+\mathrm{p} \& \mathrm{p} E 2$（ $£ 65.55 \mathrm{inc}$ VATH SAE for leaflet

L．T．TRANSFORMERS ＂Special Offer＂O－6．3V－0．6．3V at 10 Amp 112 V ． 010 Amp or 6 V at 20 GEARED MOTORS
5 rpm 240 V AC MI．by Carter， $66.05 \mathrm{f} 1 \mathrm{p} 8 \mathrm{p}(58.11 \mathrm{inc}$ ．VATI．N M． 5
 28 rpm Torque 201 b ．in，reversible 1／80th h．p．Hov AC．Price： $99.50+$ p\＆p 51.80 TTotal inc．VAT E12．99）． Suitable TRANSFORMER for $\mathbf{2 3 0 - 2 4 0 V}$ AC operation．Price： $\mathbf{5 5} 20+p \& ⿴ 囗\{1.40$ Total inc．VAT E7．591．NM．S
38.3 rpm GEARED MOTOR．Torque 351 b in．reversible 115 V －AC inc．stan capacity
Price $£ 11.5 \mathrm{~F}+\mathrm{p} \& \mathrm{l}$ ．

VAT）
CROWN 37 rpm 20001b in approx 1 10V AC，reversible geated motor＇Price： p\＆ep t4．50（f 4542 inc．VAT）N．M．S
Suitable TRANSFORMER for above $£ 10$ p\＆p $E 1.50$（ $£ 132 \mathrm{zinc}$ VAT）
 p\＆op lincl VAT $£ 15$ ．ideal for garage doors，curtainsetc．ONLY $12.00+22.00$ 71 rpm Torque 101b．in reversible 1 Moth $\mathrm{h} \rho$ ． 110 V AC molor．Price： $29.50+\mathrm{fl} .80$ pesp（Total inc．VAT E129s）．
 TTotal inc．VAT E7．59）．N．M．S．
$24 \mathrm{VaC} 200 \mathrm{rpm} 10 \mathrm{bb} / \mathrm{in} \mathrm{Ml}$ ．by Carter．Ex－equip．tested．$\varepsilon 8.00+£ 1.50 \mathrm{p} \& \mathrm{p}$（Total inc．VAT 120.93 ）
perp（Total inc．VAT 65.10 ）
CHECK METER
$230 / 240$ AC 40 amp ．fully reconditioned $£ 7.50 * £ 1.75 \mathrm{p} \& \rho$（Total inc．VAT ［10．64）
SANGAMO WESTON TIME SWITCH
Type $\$ 251200 / 250$ A．C． 2 on $/ 2$ off every 24 hours． 20 amps contacts with override switch．Dimaeter 4 ． 3 ．Pai Paser available with solar dia R\＆T．Other types avallable trom slock．

N．M．S．New Manufacturers＇Surplus
R\＆T Reconditioned and tested
Goods normally despatched within 7 day
Personal caliers only．Open Saturdays 9 Little Newport Street London WC2H 7JJ
Tel：01－437 0576

Ample parking sṕace Showroom open Monday－Friday

BANG GOES THE BOOM

While the computer boom appears to be over and a price battle under way, interest in our computer projects is showing a steady increase. We believe that many thousands of computers have been bought by people with little real interest in them and virtually no idea of what to do with them apart from play games. It is likely that many good computers will appear on the secondhand market quite soon; that some of the manufacturers will go out of business or move out of the computer marketplace and that as many as half the software houses will disappear during the next year.

With such a down-turn in the industry why are our readers more interested in 'computer projects'? Our projects either add extra facilities, abilities or aid the understanding and testing of computer systems. It seems therefore that a significant number of hobby computer owners are what we might call serious users. They are interested in getting past the game playing, giving their computer a more educational role or putting it to use in control applications.

PE readers want to know how the system functions, how to interface it, how to control mains loads or how to provide mechanical ability. Many of you already have the ability to write software of a high standard, to blow your own EPROMS and connect your c.p.u. to other peripherals.

With all this in mind we have developed PE to meet your needs and we have planned some interesting projects and features for future months. They are not all directly aimed at computer buffs, indeed we will still be retaining our strong interest and involvement in all other areas, but items like switched mode power supplies, logic analysers and even sound effects units are all related to the wider area of computers these days.

For those that want more information on micro-computer systems, without perhaps wanting to buy a home computer or even to ever use one, we are planning an excellent introduction series for later in the year. We will also be widening our horizons and hopefully yours in the area of low cost educational robotics. While many readers have shown considerable interest in robotics, the relatively high initial outlay has been a stumbling block. We have been working on ways to overcome this and a series of educational ideas and designs, coming soon, is the result. We also have a mobile robot project designed to be developed in 'easy' stages which will soon be manoeuvring into oụr pages.

BACK NUMBERS and BINDERS . . .

Copies of most of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, at $£ 1$ each including Inland/Overseas $\mathrm{p} \& \mathrm{p}$. When ordering please state title, month and/or issue required.

Binders for PE are available from the same address as back numbers at $£ 5.50$ each to UK or overseas addresses, including postage, packing and VAT.

Editor Mike Kenward

Secretary Pauline Mitchell
Editorial Tel: Poole (0202) 67119 9

Advertisement Manager

David Tilleard 01-261 6676

Secretary

Christine Pocknell 01-261 6676
Classified Supervisor
Barbara Blake 01-2615897

Ad. Make-up/Copy

Brian Lamb 01-261 6601

Queries and letters concerning

advertisements to:
Practical Electronics Advertisements,
King's Reach Tower,
Stamford Street, London SE 1 9LS
Telex: 915748 MAGDIV-G

Letters and Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in PE. All letters requiring a reply should be accompanied by a stamped addressed envelope, or addressed envelope and international reply coupons, and each letter should relate to one published project only.

Components are usually available from advertisers; where we anticipate difficulties a source will be suggested.

Old Projects

We advise readers to check that all parts are still available before commencing any project in a back-dated issue, as we cannot guarantee the indefinite availability of components used.

Technical and editorial queries and letters to: Practical Electronics Editorial,
Westover House,
West Quay Road, Poole,
Dorset BH15 1JG

SUBSCRIPTIONS

Copies of Practical Electronics are available by post, inland for $£ 13$, overseas for $£ 14$ per 12 issues, from: Practical Electronics, Subsceription Department, IPC Magazines Ltd., Room 2816, King's Reach Tower, Stamford Street, London SE1 9LS. Cheques, postal orders and international money orders should be made payable to IPC Magazines Limited. Payment for subscriptions can also be made using a credit card.

Phone:
 Editorial Poole (0202) 671191

We regret that lengthy technical enquiries cannot be answered over the telephone.

SEEOND PROCESSOR
Cambridge Microprocessor Systems has developed a 'second processor' that will really open up the outside world for BBC micro owners. Via the tube interface the CMS 6502 2nd processor is programmed using BBC Basic (or using any other BBC language ROM) then disconnected from the machine to run as the 'hub' of a completely separate microprocessor system suitable for an unlimited range of control applications with a large analogue or digital I/O capability.

Feasibly such systems as intelligent alarms, machine control, experimental and domestic monitoring, etc. can be developed.

Relatively inexperienced programmers can write, develop and test application programs in BBC Basic and run them in the target environment before transferring the program to the 2 nd processor's EPROM.

The real time calendar clock provides time of day, month, and year, interval timing and alarm facilities, and can also be configured as non-volatile battery backedup RAM (8k). In the event of power failure,
correct operation of the clock circuitry is maintained and the on-board battery is automatically recharged from the 5 V power supply. PROM decoding allows the memory map to be re-defined

The 64 -way bus connector allows the user direct access to a comprehensive range of interface boards, all are Eurocard size ($100 \mathrm{~mm} \times 160 \mathrm{~mm}$) and a complete racking system is available. The CMS 6502 costs $£ 229$ inc. VAT and the tube interface board $£ 90$ inc. VAT. Contact: Cambridge Microprocessor Systems, 44a Honson Street, Cambridge, CB1 1 NL (0223 324141)

The Diamond Anvil

Take two diamonds, then squeeze them together with such incredible force so as to recreate the pressure levels at the centre of the earth. Using this method American scientists are reported to be close to a breakthrough in semiconductor technology.

Theoretically under these pressures (around 2.5 million atmospheres) hydrogen would be transformed into a metallic state that would be retained, even when normal conditions were resumed. Furthermore the resultant metal would possess superconductive
properties, enabling the conduction of electricity at the speed of light, without generating any heat caused by resistance.

Present technology can only employ the superconductive properties of metals by operating them at extremely low temperatures which is proving to be prohibitively expensive. The machine being used by the researchers at the Carnegie Institution of Washington has been nicknamed the 'diamond anvil'; so far it has managed to maintain the enormous pressures for forty consecutive days.

BYTE BY BYTE MICRO AID

Flight Electronics has a fine reputation in the field of microprocessor based learning aids, and has recently introduced two new products to their microprofessor range-the MPF-1/88 and the MPF-1/65.

The MPF-1/88 is a learning kit based on the Intel 8088 microprocessor, it teaches the 'fundamentals' of 16 -bit microprocessing. The unique design approach enables the user to open the case and see the components, which aids hardware as well as software understanding. Three informative manuals are supplied ranging from an introduction for beginners to a complete specification.

The MPF-1/65 deals in a similar way with the 6502 microprocessor. Once again a comprehensive approach has been adopted and all aspects of hardware and software are dealt with. Both the Users Manual and the Monitor Program Source Listing Manual are written with both beginner and professional in mind.

These new products follow in the footsteps of their popular predecessors-the MPF-1B and the MPF-1 Plus, the subject of a review by M. Tooley in PE April 1984.
A catalogue containing more detailed information, full specifications and prices (including accessories) can be obtained free of charge from, Flight Electronics Ltd., Quayside Road, Bitterne Manor, Southampton SO2 4AD (0703 34003).

VIIEO HEAO

 SHOP IIII

 SHOP IIII}Whether it's Star Wars or Raiders of the Lost Ark, or even home-recorded re-runs, they all have one thing in common-slowly but surely they cause the video tape head to wear.

It is unlikely that most of us will adhere to the service industry's advice and replace our video heads 'every two or three years (or 1000hrs). It is likely, however, that sooner or later the job.will have to be done. To have this work done professionally could cost over $£ 100$.

Monolith Electronics have an option for those of us who might like to do the job ourselves, in the form of a video head replacement kit. It is not an understatement to say that this kit is very comprehensive as the following list of inclusions will prove. The kit's storage box contains a novel headconcentricity gauge for the alignment of

Betamax heads to an accuracy of better than three hundredths of a millimetre, a stroboscopic tacho disc which verifies the head speeds of VHS machines, a pair of handling gloves, a cross-head screwdriver, an anti-static cloth, cleaning fluid and shaped spatulas, replacement service labels, and last but not least a mains soldering iron with solder.

A step-by-step instructions and stock list of available heads is also provided, and customers can make use of the telephone advisory service. The VMC-02 video head replacement and maintenance kit costs £22.45 inc VAT and $p \& p$. The average cost of Monolith's replacement heads are-VHS £41 and Betamax £53, prices inc VAT. For further details contact, Monolith Electronics Co. Ltd., 5-7 Church Street, Crewkerne, Somerset (0460 743210).

LAST CHANCE FOR 11 YEARS

In these times of regular space travel most of us know what weightlessness 'looks' like having witnessed much television coverage of the Space Shuttle crews.

It is a little known fact, however, that once in every eleven years we can actually experience a level of weightlessness right here on earth.

At exactly 8.17 a.m. on Monday Ist April the planet Pluto will pass directly behind the planet Jupiter, bringing about a strong, albeit momentary, increase in the combined gravitational pull. At the precise moment when the planets are in exact spacial alignment, a sense of elation can be felt. Indeed jumping into the air at this exact moment will bring about a real sensation of weightlessness.

This phenomenon was originally discovered in 1899 when a Mr. Y. S. Dilloss made an incredible high jump of 3.47 metres, a record incidentally that has never been broken.

Fountidoun ...

Please check dates before setting out, as we cannot guarantee the accuracy of the information presented below. Note: some exhibitions may be trade only. If you are organising any electrical/electronics, radio or scientific event, big or small, we shall be glad to include it here. Address details to Mike Abbott.
The Northern Computer Show April 16-18. Belle Vue, Manchester. K2 British Electronics Week (includes: All Electronics, Circuit Technology \& Fibre Optics) April 30-May 2. Olympia. E
IFSSEC (fire/security) April 15-19. Earls Court, London. S
Cast (Cable \& Satellite) April 16-18. NEC, Birmingham. F5 Communications April 23-25. Olympia. I
Photoworld April 23-May 6. Earls Court. I
CAD April 26-28. Metropole, Brighton. K2

Fibre Optics \& Lasers April 30-May 2. Olympia. E
Custom Electronics \& Design Techniques April 30-May 2. E
All Electronics Show/ECIF April 30-May 2. Olympia 2. E
Field Service \& Repairs April 30-May 2. Olympia 2. E
Automan (manufacturing) May. NEC. T1
IBM Computer User May 14-16. NEC B/ham. O
Business Telecom May 21-23. Barbican, London. O

[^1]
Power Conirol ดnterfece
 R.A.PENFOLD

SIMPLE on/off control using a computer is a relatively straightforward affair with a digital output being used to control the load by way of a relay, triac, or other power switching device. Proportional power control, where intermediate power levels as well as on and off are required, represents a more difficult proposition, especially where a mains powered load is concerned. The high voltages involved with the mains supply do not in themselves represent a real difficulty since high voltage semiconductor control devices are readily available at quite reasonable prices. However, proper isolation of the computer from the mains supply is an important factor and one which must be adequately taken care of. This is not just to ensure that the computer comes to no harm, but is also necessary to safeguard the user against an electric shock.
face was designed. The interface is ideal for use in a high quality computer based thermostat.

Normally thermostats use simple on/off switching of the heating element, but with a proportional set up, a more sophisticated approach is possible, with the heat from the element being adjusted to match the heat loss from the system. This gives better stabilisation than is possible using a simple on/off thermostat.

SYSTEM OPERATION

The block diagram of Fig. 1 shows the arrangement used in the power controller.

A digital to analogue converter is fed from an 8-bit latching output of a computer. Several home computers, including the BBC model B, VIC-20, Commodore 64, and

POWER CONTROL

The power controller circuit described here gives proportional control over a mains load, and with the specified triac which has a current rating of 10 amps (provided suitable heatsinking is used) the unit can handle loads of up to about 2 killowatts or so. A triac-isolator (a form of opto-isolator device) ensures that the connections to the computer are properly isolated from the mains supply. As the unit is digitally controlled it does not give an infinite number of output power levels, but the use of an 8 bit input gives some 256 different power levels (including zero and maximum), and this should be more than adequate for the vast majority of practical applications. The simple method of power control used in the unit does preclude its use with some type of equipment, but it is suitable for use with a heating element, which was the principal application in mind when the inter-

Memotech MTX500 have a user port which provides a suitable output. For use with some machines, such as the Sinclair Spectrum and 2×81, the unit would have to be driven via an add-on parallel port. The converter requires a precision reference voltage, and in this case the built-in 2.55 volt reference source of the converter chip is used.

The 0 to 2.55 volt output of the digital to analogue converter is used as the control voltage for a VCO. The latter has an output frequency that is roughly proportional to the control voltage, with no output when the control voltage is zero. The squarewave output of the VCO is processed by a simple highpass filter circuit to give a series of brief positive and negative pulses. The negative pulses trigger a monostable multivibrator. With maximum control voltage to the VCO the monostable is retriggered almost instantly as each pulse ends, so that there is no significant gap between the pulses.

Photograph illustrating the Power Controller Interface

COMPUTHNG PROJECT

Lower control voltages and frequencies give greater gaps between pulses, and with zero control voltage the monostable is not triggered at all.

TRIAC ISOLATOR

The positive output pulses from the monostable multivibrator operate a triac-isolator. This is similar to a conventional opto-isolator where an infra-red light emitting diode drives a phototransistor, but the phototransistor is replaced by a triac. The gate terminal of the triac is not externally accessible though. When the l.e.d. is not activated and the triac is in darkness, the device is switched off and passes only small leakage currents. If the l.e.d. is provided with a suitably high current it produces sufficient "light" output to cause large leakage currents to flow in the triac. These currents produce a regenerative action that cause the device to conduct strongly, just as if it had been switched on in the normal way by a gate current. The triac remains in conduction for as long as the l.e.d. is activated, and like an ordinary triac, it will also remain in conduction until the current flow between the MT1 and MT2 terminals falls to a very low level (usually just a few milliamps).
The triac section of the triac-isolator has a current rating of only 100 milliamps, which represents just 24 watts with the 240 volt a.c. mains supply. This is obviously not sufficient for most power controller applications, but it is very easy to use the isolator to drive an ordinary triac having a much higher current rating so that high power loads can be controlled.

Fig. 2. shows the output waveforms of the controller at low, medium, and maximum outpult powers. The circuit actually functions in what is essentially the same way as an ordinary pulsed type power controller of the type that is commonly used for the control of small d.c. electric motors. The output waveform consists of bursts of a.c. signal rather than
that the mains signal is chopped up into bursts of several half cycles. It will not give the desired result if a higher VCO frequency is used, since the circuit can not chop up each half mains half cycle. This would not work because of the holdon characteristic of a triac, which causes it to remain in conduction until the current flow through the device falls to a low level. Once switched on the triac must therefore remain in conduction until virtually the end of each mains half cycle.

PE1586P
Fig. 2. Output waveforms at various power levels
In most practical power controller applications the simple method of power control adopted here will operate perfectly well, but it is not suitable for all purposes. It will give good results if the unit is being used in something like a thermostat where a heating element is being controlled. Results are less likely to be satisfactory if a lamp was being controlled, since at medium and low powers there would certainly be very noticeable flickering of the lamp.

As is often the case, it would be possible to simplify the hardware at the expense of more complicated and difficult

Fig. 3. The complete circuit diagram of the Power Controller Interface
d.c. pulses, but the effect is much the same. At low output powers there is no output for the majority of the time, giving a low average output power. At medium power levels the power is switched on for about half the time, giving an average output power of about 50 per cent. At maximum output the current is switched on for virtually all the time. There are actually brief gaps in the signal, but these are too small to significantly reduce the output power, and for most practical purposes can be ignored.

There is a limitation to this system in that it can only work properly if the VCO has a fairly low maximum frequency so
software. In this case it would be quite feasable to drive the triac isolator from a digital output of the computer, with the software being used to generate an output signal of suitable frequency and mark-space ratio.

For those who are more interested in hardware than in software the adopted approach has the obvious attraction of requiring very simple driving software with only one value to be written to the appropriate address in order to set the required output power. The alternative approach outlined above would make an interesting project for someone who is software orientated.

CIRCUIT OPERATION

The circuit is reasonably simple, as can be seen by refering to the circuit diagram which appears in Fig. 3.

IC1 is the digital to analogue converter, and this is a Ferranti ZN426E low current consumption type. This is a conventional converter having an R-2R resistor network and a bank of eight electronic switches. The integral 2.55 volt reference source requires load resistor R1 and decoupling capacitor C1. These are the only discrete components needed by the ZN426.

The VCO is the oscillator section of a CMOS 4046BE low power phase locked loop (IC2). The phase comparators and other sections of IC2 are not used in this circuit. C2, R4, and VR2 are the timing components for the oscillator. R2 couples the output of the digital to analogue converter to the control input of IC2, and VR1 with R3 are used to give a small positive bias to the control input. Without this bias all values from about 0 to 50 would give zero output from the VCO, and therefore from the controller as well. With the correct bias added the circuit gives greatly improved results with low values giving low output powers.

TIMING

The monostable multivibrator uses a 555 timer device, IC3 in the standard 555 monostable configuration. R6 and C4 are the timing components for the monostable, and these set the output pulse duration at approximately 50 milliseconds. IC3 is triggered by taking pin 2 to less than one third of the supply voltage. However, the trigger pulses must be very brief as the monostable is a retriggerable type, and long trigger pulses could result in the output pulses being extended.

R5 is used to bias the trigger input of IC3 to the positive supply rail, and C3 couples the output signal of IC2 to this input. IC2 has a squarewave output signal, but the highpass filtering provided by C3 and R5 modifies this to a short positive pulse on each rising edge of the squarewave, and a brief negative pulse on each trailing edge. These negative pulses provide a suitable trigger signal for IC3.

IC3 has more than adequate current drive to operate the l.e.d. in the triac-isolator, and R7 is in fact needed to provide current limiting here. The triac section of the isolator is used to trigger the main triac via R8 which limits the gate current to a safe level.

CONSTRUCTION

The component layout and full-size track pattern for the printed circuit board are shown in Fig. 4. Construction of the board does not present any real difficulties, but as the mains supply is involved it is obviously essential to take great care to avoid errors, and to thoroughly check the finished board.

If desired the interface could be constructed as a self contained unit with the board fitted in a case with a multiway input socket and a mains outlet for the controlled equipment. Alternatively, it could be built into a larger system. This is something that must be varied to suit individual requirements. In either case the triac will need a heatsink if it is to control currents of more than about two amps, and for high currents of around six to eight amps a substantial heatsink (about $2.5^{\circ} \mathrm{C}$ per watt or better) with adequate ventilation would be needed. Bear in mind that the heat-tab of the triac connects to the MT2 terminal, and that the heatsink will therefore be connected to the mains supply unless it is properly insulated from the triac.

DRIVING THE UNIT

For use with the VIC-20, Commodore 64, and BBC model B computers the 8 -bit input of the interface is fed from the eight data lines of the user port (PBO to PB7). The OV and 5 V lines of the port are also connected to the interface. The two Commodore machines require a 2 by 12 way, 0.156 inch pitch edge connector, and as you are unlikely to be able to obtain a connector which has the appropriate polarising key, care must be taken to fit it to the computer the right way round. It is advisable to clearly label the top and bottom edges of the connector so that mistakes are avoided. Connections to the user port of the BBC model B computer are made by way of a 20 way IDC header socket. Connection details for the user ports of all three computers are provided in the relevant manuals.

Before data can be written to the interface the lines of the user port must be set as outputs. This is achieved by writing 255 to the appropriate address, as detailed below:-
?\&FE62 $=255 \quad(B B C$ model B)
POKE 37138,255 (VIC-20)
POKE 56579,255 (CBM 64)
Data is then written to address \&FE60 in the case of the BBC model B, 37136 for the VIC-20, and 56577 for the CBM 64.

The circuit requires a single 5 volt supply and has a current consumption of about 30 milliamps or so. The user or expansion port of most computers is capable of supplying this.

The connections to the user port of the Memotech MTX$500 / 512$ computers the 20 pin di.l. i.c. socket on the printed circuit board) are made via a d.i.p. plug. Rather than PBO to PB7 lines POTO to POT7 are used. These do not

COMPONENTS . . .

Resistors	
R1	390
R2,R4,R5,	10 k (3 off)
R3	47 k
R6	100 k
R7	470
R8	2 k 2

All resistors $\frac{1}{4}$ W 5\% carbon
Potentiometers
VR1 470k 0.1W horizontal preset
VR2 220k 0.1W horizontal preset

Capacitors

C1 $\quad 1 \mu 63 \mathrm{~V}$ radial elect
C2 470 n carbonate
C3 10 n carbonate
C4 330n carbonate C5 $\quad 100 \mu 10 \mathrm{~V}$ radial elect C6 100n ceramic

Semiconductors

IC1	ZN426E D to A converter
IC2	$4046 B E$ phase locked loop i.c.

IC4

 IC5 -.
MOC3020 Triac-Isolator C146D (400V 10A) or similar Triac

Miscellaneous

Printed circuit board (PE 504-01)
Heatsink (see text)
Computer connéctor and cable
16 pin d.i.l. i.c. holder
14 pin d.i..l i.c. holder
8 pin d.i.l. i.c. holder
Veropins, wire, etc.
require any setting up software to set them as outputs, but the OTSTB line must be linked to the OV line in order to take the outputs into the active state. Data for the interface is sent from BASIC using the OUT instruction, and the user port is at address 7 .

ADJUSTMENT

When setting up the interface ready for use it does not need to be connected to the mains supply, and in the interest of safety it is probably best not to do so. Write a value of 0 to the interface, and then adjust VR1 for the lowest resistance that does not produce oscillation from IC2 (i.e. set it as far in an anticlockwise direction as possible without
oscillation occuring). An oscilloscope, audio amplifier, or a crystal earphone can be used to detect the output pulses at pin 4 of IC2.

Next write 255 to the interface, and use a multimeter set to a low voltage range (about 5 or 10 volts f.s.d.) to monitor the output voltage at pin 3 of IC3. With VR2 set fully clockwise there should be only a fairly low voltage present, but adjusting VR2 in an anticlockwise direction should result in the voltage rising. Adjusting VR2 too far will cause the voltage to suddenly drop to about half its peak level. VR2 should then be backed off slightly to reinstate the peak reading. After repeating this procedure a couple of times the unit is ready for use.

FULL FEATURE MODEM KIT

A complete kit including case, leads, power supply, plug and manual,', based on AMD 7910 chip supplied. Easy to follow instructions, all you need is a fine soldering iron, some super glue and a steady hand. Full technical information included for you to write your own software.

* Auto Answer - answers, then uploads or downloads datainto your micro.
* Auto Baud Rate Scan - scans incoming data and selects correct baud rate to receive.
* Full and Half Duplex - one or two-way simultaneous transmission.
* Full UK, European and USA standards. * 300/300, 1200/75, 75/1200, 1200/1200 baud rates. * Fits all RS232/423 interfaces. All components BT approved. Software (on ROM) available for BBC micro at $£ 20$ (Electron, Amstrad, Commodore, Sinclair and IBM.PC to follow). Dealer inquiries ring Mark Simon on 019301612

Software features include: Remote, enables you or your friends to dial and download or upload your micro from any other modem. * Prestel * Terminal for teletype and Prestel terminals * Password for bulletin board. Credit cards ring 01-839 $3348 \quad 182$ Royal College Street London NW1 9NN please allow 28 days delivery

To: Demon Electronics Ltd., 182 Royal College Street London NW1 9NN
PE1
Please send me ___(qty) complete Modem kit(s) at $£ 53$ and __ (qty) BBC ROMS at $£ 23$ (Prices include VAT and p\&p). l enclose cheque to the value of f \qquad or debit my Access/Nisa/American Express/Diners Card No.
Name \qquad Signature
Address
\qquad
Postcode

Sequential Logic Techniques Part 7

M.TOOLEY BA and D.WHITFIELD MA MSc C Eng MIEE

\mathbb{V}^{E} conclude our series on wequential Logic Tech with a brief look at binary full-adders. This topic was first introduced in our earlier series (Introduction to Digital Electronics) which described the characteristics and basic gate arrangements of both half and full-adders. As with most popular gate arrangements,

Fig. 7.1. Pin connections for the 74283
the TTL chip designer has come to our aid with d.i.l. packaged devices which provide the complete function of a fulladder. We shall examine one such device which can be readily cascaded to cope with binary words of any desired length.

THE 74283 BINARY FULL-ADDER

The 74283 is a high speed 4-bit binary full-adder with internal carry 'look-ahead', the pin connections and internal logic of which are respectively shown in Figs. 7.1 and 7.2.

The 74283 accepts two 4-bit binary words (A1 to A4 and B1 to B4) and a carry input (Cin). The sum of the two 4 bit words is combined with the carry input and presented as four sum outputs ($\Sigma 1$ to $\Sigma 4$) and a carry output (Cout). This arrangement permits
cascading of the device.
We shall begin our investigation of the 74283 with the simple full-adder shown in Fig. 7.3. This arrangement uses only three inputs; A1, B1 and Cin. The 'sum' output appears as $\Sigma 1$ whilst the 'carry' output appears as $\Sigma 2$.

The 74283 should be inserted into socket E of the Logic Tutor (taking care to align pin- \uparrow with E1) and the following links should then be made:

| E1 to D3 | (D3 shows the state
 of $\sum 1$) |
| :--- | :--- | :--- |
| E4 to D4 | (D4 shows the state
 of $\sum 2$) |
| E5 to 51 | (A1 input) |
| E6 to S2 | (B1 input) |
| E7 to 33 | (carry input) |
| E8 to OV | (common) |
| E16 ta +5 V | (supply) |

(a total of 7 links)

Fig. 7.2. Internal logic of the $\mathbf{7 4 2 8 3}$

Fig. 7.3. Simple, full-adder arrangement using the 74283
Logic Tutor switches S1, S2 and S3 should all be initially adjusted to produce logic 0 inputs on A1, B1 and Cin. In this condition D3 and D4 should both be extinguished showing that the 'sum' and 'carry' outputs are both at logic 0 . Now depress, and hold down, momentary action switch, S1. This produces a logic 1 at the A1 input. D4 will then become illuminated whilst D3 should remain extinguished showing that the 'sum' is 1 whilst the 'carry' is 0.

S1 should now be released and S2 held down to produce logic 0 and logic 1 on the A1 and B1 inputs respectively. This should again produce 'sum' and 'carry' outputs of 1 and 0 respectively.

S2 should now be released whilst latching action switch S3 should be depressed. This produces a logic 1 on the carry input whilst the A1 and B1 inputs remain at logic 0 . D4 will become illuminated whilst D3 should remain extinguished, again indicating 'sum' and 'carry' ouputs of 1 and 0 respectively.
S3 should now be depressed a second time so that the carry input reverts to logic 0. S1 and S2 should now be held down to produce logic 1 on both A1 and B1. D4 should become extinguished whilst D3 should become illuminated. This shows a 'sum' output of 0 and a 'carry' ouput of 1 .

S3 should now be depressed a third time in order to produce a logic 1 carry input. Now depress first S1 and then

INPUTS			OUTPUTS	
$\begin{gathered} \hline \text { A1 } \\ \text { (S1) } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { B1 } \\ \text { (S2) } \\ \hline \end{array}$	$\begin{gathered} \hline \mathrm{Cin} \\ \text { (S3) } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { Carry } \\ & (\Sigma 2) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Sum } \\ & (\Sigma 1) \end{aligned}$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Table 7.1. Truth table for the simple full-adder of Fig. 7.3

S2. Notice that both of these input conditions result in a 'sum' output of 0 and a 'carry' output of 1 .

Finally, hold down both S1 and S2 to produce a logic 1 on all three inputs. A1, B1 and Cin. In this condition D3 and D4 will both be illuminated indicating that both the 'sum' and 'carry' outputs have become logic 1. The results of the investigation are summarised in Table 7.1.

Having shown how the 74283 can be used as a simple full-adder let's extend the arrangement to provide a fourth input derived from the remaining unused Logic Tutor switch, S4. Make the following extra connections:
E3 to S4
(A2 input) E13 to D2
(D2 shows the state of $\Sigma 3$)

This modified arrangement is shown in Fig. 7.4, and uses $\Sigma 1$ and $\Sigma 3$ to respectively denote the least (LSB) and the most (MSB) significant bits of the sum.

All four Logic Tutor switches should initially be adjusted for logic 0 inputs. D2 and D4 will be extinguished but D3 will have become illuminated to indicate a result of '010'. Clearly we must have forgotten something!

Unused inputs of TTL devices normally float 'high' thus, with the B1 input left unconnected, the B1 input receives a logic 1. We shall therefore need to 'hard-wire' this input to logic 0 using the following additional link:

E2 to logic 0

All three output indicators should now be extinguished showing that the sum is '000'. Readers should experiment with all possible input combinations (there are sixteen of them!) and confirm that the arrangement conforms to the truth table that is shown in Table 7.2. It should be noted that the A2 and A1 inputs are the MSB and LSB of the two-bit number generated by S4 and S1 respectively, and that the remaining switches, S2 and S3, generate single bit inputs. For clarity; the equivalent decimal sum is also shown in the truth table with the leftmost digit corresponding to the two-bit A input.

A SIMPLE ADDING MACHINE

We shall conclude with an extension of the previous arrangement which forms a simple 'adding machine' and incorporates several of the techniques and devices introduced in the series. This simple arrangement accepts a 4 binary input (derived from the Logic

INPUTS				OUTPUTS			SUM
$\begin{gathered} \text { A2 } \\ \text { (S4) } \end{gathered}$	$\begin{gathered} \text { A1 } \\ \text { (S1) } \end{gathered}$	$\begin{gathered} \hline \text { B1 } \\ \text { (S2) } \end{gathered}$	$\begin{gathered} \hline \text { Cin } \\ \text { (S3) } \end{gathered}$	$\begin{gathered} \Sigma 3 \\ \text { (D2) } \end{gathered}$	$\begin{aligned} & \Sigma 2 \\ & \text { (D4) } \end{aligned}$	$\begin{gathered} \Sigma 1 \\ \text { (D3) } \end{gathered}$	$\mathbf{A}+\mathbf{B}+\mathbf{C}=\mathbf{S}$
0	0	0	0	0	0	0	$0+0+0=0$
0	0	0		0	0.	1	$0+0+1=1$
0	0	1	0	0	0	1	$0+1+0=1$
0	0	1	1	0	1	0	$0+1+1=2$
0	1	0	0	0	0	1	$1+0+0=1$
0	1	0	1	0	1	0	$1+0+1=2$
0	1	1	0	0	1	0	$1+1+0=2$
0	1	1	1	0	\uparrow		$1+1+1=3$
1	0	0	0	0	1	0	$2+0+0=2$
1	0	0	1	0	1	1	$2+0+1=3$
1	0	1	0	0	1	1	$2+1+0=3$
1	0	-	,	1	0	0	$2+1+1=4$
1	1	0	0	0	1	1	$3+0+0=3$
1	1	0	1	1	0	0	$3+0+1=4$
1	1	1	0	1	0	0	$3+1+0=4$
1	1	1	1	1	0	,	$3+1+1=5$

Table 7.2. Truth table for the arrangement shown in Fig. 7.4

SEQUENTIAL LOGIC

Tutor switches) and displays the resulting sum on a seven segment l.e.d. display.

The circuit of the 'adding machine' is shown in Fig. 7.5. The binary output from the 74283 adder, IC 1 , is fed to a 7447 seven segment decoder, IC2. Since only three bits are used, the fourth input to the 7447 must be wired to logic 0 . The seven active low outputs of IC2 are connected to the display by means of a series resistor network comprising seven 150 ohm resistors contained within a single d.i.l. package. Where readers have difficulty in obtaining such a device, seven discrete 0.25 W 150 ohm resistors may be substituted. These should be connected from B1 to B16, B2 to B15, B3 to B14, and so on, ending with B7 to B10. The pin-outs and characteristics of the 7447 and seven segment d.i.l. indicator were described in Parts One and Two and thus will not be repeated here.
The 74283 should be left in socket E of the Logic Tutor and the remaining devices inserted as follows: the 7447 in socket A, the 150 ohm d.i.t. resistor network in socket B, and the seven segment common anode lie.d. indicator in socket C. The usual convention for connectiong these devices should be observed.

The following links are required:
A1 to E1
A2 toE13
A6 to logic 0
A7 to E4

Fig. 7.5. The simple adding machine

A 8 to 0 V
A9 to B5
A10 to B4
A11 to B3
A12 to B2
A13 to B1
A14 to B7
A15 to B6
A16 to +5 V
(common)

B10 to C13
B11 to C2
B12 to C7
B13 to C10
B14 to C12
B15 to C 15
B16 to C1
C16 to +5 V
(common anode supply)

E2 to logic 0

E3 to S4	
E5 to S1	
E6 to S2	
E7 to S3	
E8 to OV	(common)
E16 to +5 V	(supply)

(A total of 28 links)
Readers should confirm that the 'adding machine' produces a decimal indication of the sum of the two-bit number generated by switches S4 and S1, and the two one-bit numbers generated by switches S2 and S3.

This concludes our series on Sequential Logic Techniques. Readers wishing to progrees further will, no doubt, be interested to learn that we shall be returning in the autumn with a new series designed to provide an introduction to microprocessor systems. \star

Adder	7.14
Address decoder	6.75
Analyser	3.17
Bi-directional sequencer	4.21
Binary coded decimal (BCD)	1.18,
Binary full-adder	$1.19,2.53$
Blanking	7.14
Carry	7.14
Chip select	7.14
Counter	6.56
Crystal oscillator	$1.16,3.19$
Data latch	2.55
Data multiplexer	$2.54,3.16$
Decade counter	5.55
Decade divider	1.17
Demultiplexer	2.56
DIL resistor network	6.54
Displays	1.19
Divider	1.19
	2.56

THE advantages of using a disc drive over a cassette recorder have been covered in great depth elsewhere and are well known. To obtain full benefit from the BBC computer a disc drive is essential. The cheapest, and the most popular solution is to add a single drive and power this from the computer's internal power supply. Whilst this arrangement is satisfactory under most circumstances, the addition of a second drive and or a large number of sideways ROMs may result in the power supply being overloaded.

The unit described here is intended to provide the power for the extra disc drive. There is nothing particularly special about the power supply and constructors may find other uses for it . The prototype was made as a stand-alone unit but it may also be built inside a suitable disc drive housing.

REQUIREMENTS

The majority of disc drives require two power supply voltages, five volts for the logic integrated circuits and 12 volts for the various motors. The load on the five volt output is reasonably constant but, the load on the 12 volt output varies considerably depending whether the drive is idle or running. The output current required will also vary depending on the make and vintage of the drives. According to the label on the bottom of the BBC micro, 1.25 A is available for the operation of external equipment. So as to allow a margin of safety this unit has been designed to provide 2A at each output.

Provision has been made so that the current limit can be reduced by changing the value of a resistor. The output voltages are variable by 10% either side of their nominal value.

CIRCUIT DESCRIPTION

The complete circuit diagram of the unit is shown in Fig. 1. The circuit can be split into two sections, the five volt output and the 12 volt output. These two sections are very similar in their mode of operation but there are some important differences.

Regular readers of PE will be surprised by the absence of three terminal regulator integrated circuits. While these can be used to provide simple regulated power supplies, those with high output current capability are relatively expensive and only the very expensive ones have facilities for being able to adjust the output voltage and current limit setting. The discrete arrangement as used here tends to offer better thermal stability. The reason for this, is that the series pass
transistor dissipates a large amount of power raising the chip's temperature. In this discrete design the voltage reference and the pass transistor are in thermal isolation.

CIRCUIT OPERATION

The control circuits used in both outputs are examples of classic feedback systems. The differences arise because in the five volt case, the required output voltage is less than the reference voltage, and in the 12 volt case the output is greater than the reference. Both regulators are based on the LM723 i.c.

The mains transformer, T1 has two output windings; a nine volt winding for the five volt supply and a 16 volt winding for the 12 volt output. The two bridge rectifiers, D1-D4 and D5-D8 convert the a.c. to d.c., and smoothing is provided by C1 and C2.

Consider the 12 volt output first. TR1 and TR2 are connected in the Darlington configuration and are used as an emitter follower. An emitter follower provides current gain only, i.e. the output voltage is the same as the input voltage minus ($2 \times V_{\text {be }}$). This is used to boost the output capability of the control i.c. Resistors R4 and R5 together with the preset potentiometer VR2 form a voltage divider and feed a percentage of the output voltage to the inverting input of the error amplifier.

VR2 allows the output voltage of the power supply to be adjusted to cope with small variations in the reference voltage. The non-inverting input is connected to the voltage reference output of IC1. This configuration provides negative feedback resulting in the output of the power supply being held constant for varying load conditions. The capacitor C3 provides frequency compensation for the error amplifier.

SHORT CIRCUIT PROTECTION

A constant current type of short circuit protection is implemented. R6 is used as a shunt to sense the output current. When the voltage across this resistor equals 0.7 volts the control i.c. reduces its output voltage to keep the current constant. Since $V=I R$ it is possible to select the maximum current by a suitable choice of R6.

$$
R 6=0 \cdot 7 / I_{\text {output max }}
$$

In the prototype the maximum output current was set to 3 A . As with all linear regulators, short circuiting the output will cause the dissipation in the series pass transistor to rise. This will lead to the junction temperature of the transistor rising

COMPUTING PROJECT

and may lead to its eventual destruction. Whilst the power supply will withstand short term overloads it is not recommended that power supply is shorted for long periods.

Operation of the five volt output is very similar. The power supply for the control i.c. is derived from C1, this enables the five volt output to operate with a lower input to output voltage difference and leads to higher efficiency.

Constructors' note:-

T1-Mains transformer 9 volt and 16 volt secondaries on 50 V/A Core. (Available from Samsons Electronics Ltd., 9-10 Chapel Street, Marylebone Road, London NW1. Note that this transformer has been specially designed.

Fig. 1. The complete circuit diagram of the Disc Drive PSU

Because the desired output voltage is lower than the voltage reference a different configuration is employed. R1, R2 and VR1 act as a voltage divider on the reference voltage, the output of which is fed to the non-inverting input of the error amplifier. VR1 allows fine adjustment of the fiye volt output. The output voltage of the power supply is fed
back via R3 to the inverting input of the error amplifier. The output of the control i.c. is boosted by the Darlington consisting of TR3 and TR4.

Current limiting is provided by R9 in an identical way to the 12 volt output, and the two l.e.d.s and their limiting resistors give an indication that the outputs are on.

COMPONENTS . . .

Resistors	
R1	1 k 2
R2	$4 \mathrm{k7}$
R3	$1 \mathrm{k5}$
R4	2 k 2
R5	3 k 3
R6,R8	$0 \Omega 223$ watt WW(2 off)
R7	1 K 0.5 watt carbon
R9	2700.5 watt carbon

All resistors $\frac{1}{4} \mathrm{~W} \pm 5 \%$ unless stated otherwise

Potentiometers
VR1. VR2 1 k sub. min. pre-set pot. (2 off)

Capacitors
C1, C2
C3,C4
C5, C6
$4700 \mu 25$ volt elect. axial (2 off)
470 p disc ceramic (2 off)
$10 \mu 25$ volt elect. radial (2 off)

Semiconductors

$$
\begin{array}{ll}
\text { D1-D8 } & \text { IN5402 (8 off) } \\
\text { D9-D10 } & 0.2 \text { inch I.e.d.s with panel mounting clips (2 off) } \\
\text { TR1,TR3 } & \text { BC107 silicon npn (2 off) } \\
\text { TR2,TR4 } & \text { TIP3055 silicon npn plastic power } \\
& \text { transistors (2 off) } \\
\text { IC1,IC2 } & \text { LM723 voltage regulator i.c.s (2 off) }
\end{array}
$$

Miscellaneous

S1 d.p.s.t. rotary mains switch
SK1-SK3 Binding posts colour to sult (3 off)
T1 Transformer, 9 V and 16 V secondaries
Verobox
P.c.b. PE 504-02

Knob for S1
Heatsink
Fixing screws
Captive grommet
Connecting wire
Insulating kits for TR2, TR4 (2 off)

CONSTRUCTION

With the exception of the mains transformer all the components are mounted on a single p.c.b. and front panel. The printed circuit board track layout is shown in Fig. 2. The design can be transferred to the circuit board by any of the usual methods and subsequently etched and drilled.

To allow some of the components to be mounted some of the holes may need to be enlarged. The normal practice of constructing circuit boards should be followed. The Veropins if used should be fitted first, then the wire links and the smaller components. It will assist if the bulky electrolytic capacitors are left till last. Care should be taken to ensure that all the polarised components such as capacitors and diodes are correctly orientated. Constructors are advised to use sockets for the two i.c.s.

The prototype was built in a Verobox and before the transformer can be bolted in position, it is essential to remove some of the internal mouldings. This can be done with a Jarge twist drill and then any remaining plastic should be removed using a sharp knife.

ADJUSTMENT

Before the power supply is connected to a disc drive it is essential to test it and adjust the output voltage. Connect an accurate volt meter to the five volt output and turn the unit on. The meter should read approximately five volts, adjust VR1 until the output is exactly five volts, switch off. Set the
meter to a. range greater than three amps d.c. and connect this across the output and turn the unit on. If all is well the meter should read about 3 A .

Repeat for the 12 volt output, but this time set the voltage with VR2.

From your student days...

An instant answer to every calculation you will ever make? With a HewlettPackard Professional Calculator, the answer is yes. We introduced Calculators for Professionalssophisticated, powerful calculating facilities - around ten years ago, and our range has a calculator built for the kind of work you do.
There is a professional calculator for scientists and engineers, for software and computer specialists, for higher mathematics activities and for business users.
Pre-programmed for your needs
Each one is pre-programmed to perform your usual calculations automatically - and in addition, all of them can be programmed by you so you can solve your problems in your own way.
So wherever you are, you can have

A complete manual of instructions and programs has been written for each of the HP professional calculator range. answers you can depend on, always at your fingertips. With the minimum of effort, in the minimum of time. Each has a memiory that will store information even with the power off. And will come with an owner's handbook, so you are operational right from the start. You can see the Hewlett-Packard professional calculators at your dealer. Or complete the coupon below, and we will send you full details of the Hewlett-Packard professional calculator range and how it can help you.
Hewlett-Packard Calculators for Professionals All the calculating power you will ever need. SEND TO: FREEPOST, Enquiry Section, Hewlett-Packard Ltd, Eskdale Road, Winnersh,

Wokingham, Berkshire, RG11 1BR. Please send me details of the Hewlett-Packard professional calculator range (together with details of my local stockists). I am particularly interested in \square Science and engineering applications Software and computer applications \square Higher mathematics applications \quad Business applications
Name Company Address Postcode
Tel No:
HEWLETT
PACKARD

P.E. AUDIO EFFECTS AND OTHER SUPER SOUND KITS!

P.E. MONO-STEREO ECHO-REVERB (SEP84) 200ms echo, lengthy reverb, multi-tracking kit as published - BLK box: SET 218 £55.66

P.E. FILTER-SHIFT PHASER (OCT84). Enhanced Phasing with modulated fitter shifting. Kit as published - BLK box: SET 226

P.E. RING MODULATOR (NOV84). With multi-waveform VCO, Noise Gate \& Auto-level Control. Kit as published - BLK box.

SET $231 £ 39.99$

P.E. MONO-STEREO CHORUS FLANGER (JAN85). Superb dual mode music enhancement. Kit as published - BLK box: SET 235 £55.66
BLK BOX - steel \& aluminium, black plastic finish. STO BOX - plain aluminium, lipped lid. SET codes include PCBs, parts, instructions, boxes, wire, solder.
More details $\&$ kits in catalogue - send S.A.E. (Overseas $£ 1$ or 5 IRC's).

BASS BOOST: Increases volume of lower octaves BIOW BOX. Voice SET 1388 BLOW BOX: Voice operated VCF \& VCA for fascinating effectSSET 214 CHORUS (SIMPLE): Multiplied solo enhancement COMPRESSOR: Limits \& levels maximum signal strength NVELOPE SHAPER: Note triggered AOSR unit with VCA SET 174 QUALISER. Variable combinations of Low, Mid, Top \& NotcrSET 217 EQUALISER: 10 Channels fully variable
FAOER: Voice operated with 5 response controls AOER: Voice operated with 5 response controls SET 134 LANGER (SIMPLE): Fascinating phased resonance effects SET 153 FREQUENCY CHANGER: Tunable note \& waveform modifier SEI 172 FREOUENCY OOUBLER: Guitar octave raiser \& tone changer SET 98 FUNKY-WOBULO: Modulates a singing voice FUZZ: Smooth distortion, retains attack \& decay GUITAR OVERORIVE: Heavy fuzz with selectable qualities UITAR OVERORIVE: Heavy fuzz with seiectable qualities SET 91 UITAR SUSTAIN: Extends note decay time, with noise gate SET 222 UITAR TO SYNTH INTERFACE: With voltage \& trig outputs SET 173 HANO CLAPPER: Auto \& manual variable clap effects SET 197 HEAOPHONE AMP: 2 watts into phones or speaker, variable SET 156 M JABBERVOX: Voice disguiser with reverb \& tremolo SET 150 MIC PRE-AMP. Variable ouin a switched tone response SET 147 MIXERS. Several in able
MOCK STEREO. Splits mono signal into stereo simulation SET 213 MULTIPROCESSOR. Fing Rvb Faze Fuzz Wah Trem Vib SET 189 MUIIC MOOUUO: 8 variable treme, Fuzz, Wah, Trem, Vib SET 189 USIC MOUULO : FIV Prome then MUSICAL CALL SIGN: Programmed call sign generator OISE GATE: Reduces tape \& system nojse HASER (SIMPLE); Auto a manual rate a depth controls
619.87

RHYTHM GENERATOR: Computer driven, 9 drum effects MYTHM GENERATOR: 15 preprogramme druthms 9 ROBOVOX: Versatile robot type voice modifier
SPEECH PROCESSOR: Clearer speech and level control STORMS EFFECTS: Auto \& manual wind, rain \& surf effec SWEEP GENERATOR: Auto sine wave $20 \mathrm{~Hz}-15 \mathrm{KHz}$, variable TOM-TOM SYNTH: Sound triggered, mutivariable OM-TOM SYNTH: Sound triggered, mutivariabl TREBLE BOOST: Increases volume of upper octave TREMOLO: Mono variable rate \& depth modulation VOLTAGE CONTROLLEO FILTER: 12 dB , variable modes VOCOOAVOX: Modular vocoder, 7 chans, extendable VOOALEK: Robot type voice modulator VOICE OP SWITCH: Variable sensitivity \& delay WAH-WAH: Auto, manual \& note triggered
$\begin{array}{ll}\text { E35.64 } & \text { E34. } \\ & \text { E71.03 }\end{array}$
$\begin{array}{ll} & \text { E9.68 } \\ \mathbf{7 2 4 . 5 3} \\ \mathbf{f 1 2 . 6 8}\end{array}$
$\begin{array}{ll}15.86 & \mathbf{E 1 9 . 6 8} \\ & 19.36\end{array}$
$\begin{array}{ll}16.41 & \mathbf{8 1 9 . 9 1} \\ \mathbf{1 5 . 0 5} & \mathbf{8} 8.85\end{array}$
$\begin{array}{ll}\mathbf{1 5 . 0 5} & \mathbf{£ 1 8 . 0 5} \\ \mathbf{1 3 . 1 7} & £ 16.67\end{array}$
$£ 8.13 \quad \mathbf{~} 11.13$
$\begin{array}{ll}£ 9.71 & \varepsilon 12.71 \\ & 520.52\end{array}$
¢64.31 $\quad \mathbf{6 6 8 . 3 1}$
£12.44
$\begin{array}{ll}17.26 & \text { E20.76 }\end{array}$
MAIL ORDER: Add 15% VAT \& $\mathrm{£1}$ P\&P to all orders (overseas details in cat). Payment CWO, CHO, MAIL ORDER: Add 15% VAT \& $£ 1$ P\&P to all orders (overseas details in cat). Pay
PO, ACCESS, VISA. Oetails correct at press. E\&OE Oespatch usually $10-14$ days.

N the series thus far we have assumed that all of the ancillary modules described have derived their d.c. supplies from an associated power amplifier module. Whilst this arrangement is convenient when pre-amplifier and power amplifier modules are assembled together within a common external enclosure, it is less attractive when the power amplifier module is remotely located.

A somewhat simpler, and far more flexible solution is that of including a 'local' power supply within the pre-amplifier enclosure, thus obviating the need to provide three additional conductors in order to convey the positive and negative supply rails and common earth.

Such a supply need only be capable of delivering a few tens of milliamps from symmetrical output voltage rails of between 15 V and 30 V . Furthermore, there is no need for electronic regulation of the d.c. Output voltage as shunt Zener stabilisation is incorporated within each ancillary module.

The complete circuit diagram of the power supply module is shown in Fig. 1. This relatively straightforward arrangement is capable of supplying up to five parallel connected ancillary modules and employs a mains transformer, T1, having either two series connected 12 V windings or a single centre tapped secondary of nominally 24 V . In either case, a conventional plastic encapsulated bridge rectifier, REC1, is employed.

The power supply is built on a single sided p.c.b. measuring approximately $65 \mathrm{~mm} \times 195 \mathrm{~mm}$ (i.e. identical in size to all other modules). The component overlay is shown in Fig 2.

Components should be assembled on the p.c.b. in the following sequence: terminal pins, transformer, resistors, capacitors, and bridge rectifier. As always, care should be taken to ensure the correct orientation of the polarised components (including the bridge rectifier).

When the p.c.b. wiring is complete, the underside of the board should be carefully checked for solder bridges and dry joints whereas the component side should be examined paying particular attention to the correct placement and orientation of components.

Although the power supply will normally be mounted in the same enclosure as that used for the pre-amplifier module (see last month) some constructors may prefer to use a separate enclosure. In such cases the authors strongly

Fig. 1. Circuit diagram of the power supply module

COMPONENTS . . .

POWER SUPPLY
Resistors

R1	$1 \mathrm{k} 50.25 \mathrm{~W} 5 \%$
R2, R3	$3900.5 \mathrm{~W} 5 \%$ (2 off)

Capacitors

C1, C2
$470 \mu 50 \mathrm{~V}$ p.c. electrolytic (2 off)
C3, C4 $\quad 1000 \mu 16 \mathrm{~V}$ p.c. electrolytic (2 off)
Semiconductors
REC1 50 V 1 A bridge rectifier
D1 Red l.e.d.

Miscellaneous

P.c.b.

Terminal pins (8 required)
113 VA mains transformer with $2 \times 120 \mathrm{~V}$ primaries and 2
$\times 12 \mathrm{~V}$ secondaries each rated at 120 mA
D.p.s.t. mains switch

Mains connector

[^2]

Fig. 2. Component layout of the power supply module
recommend the use of a small diecast box, being both neat and robust. Ventilation of such an enclosure will not normally be required.

TEST SIGNAL SOURCE

This final ancillary module generates a sinusoidal signal of reasonable purity at a frequency of approximately 1 kHz . It thus not only provides a means of testing the complete power amplifier system but also enables a realisitic measurement of the r.m.s. output power when used in conjunction with the test load described previously.

Fig. 3. Circuit diagram of the test signal source
The test signal source is based on a 741 operational amplifier and its complete circuit diagram is shown in Fig. 3. The oscillator uses a simple Wien bridge network, R1, C1 and R2 C2, with negative feedback amplitude control provided by means of R3 and LP1. This arrangement ensures reasonable purity without the need to use a more expensive thermistor device in the feedback network.

With the component values shown, the frequency of

COMPONENTS . . .

TEST SIGNAL SOURCE
Resistors

R1, R2	1 k 5 (2 off)
R3	47
R4, R5	1 k 0.5 W (2 off)
VR1	1 k horizontal mounting min. skeleton pre-set
Unless otherwise stated, all fixed resistors are 0.25W 5\%	
Capacitors	
C1, C2	100n polyester (2 off)
C3	$10 \mu 16 \mathrm{~V}$ p.c. electrolytic
C4, C5	$100 \mu 16 \mathrm{~V}$ p.c. electrolytic (2 off)

Semiconductors

IC1	741
D1. D2	BZY88 C9V1 (2 off)

Miscellaneous
P.c.b.

Terminal pins (5 required)
LP1 6V 60mA wire ended pilot lamp
8 -pin low profile d.i.l. socket

Pre-amplifier

Fig. 4. Component layout for the test signal source

The photograph shown above is of the test signal source p.c.b. whilst the power supply p.c.b. is shown on the right.
operation is approximately 1 kHz . If desired, however, constructors may readily change the frequency of oscillation by altering the values of R1, R2 and C1, C2. The frequency of oscillation is given by:
$\mathrm{f}=\frac{159}{\mathrm{C} \times R}(\mathrm{kHz})$
Where $C=C 1=C 2$ (expressed in μF) and $R=R 1=R 2$ (expressed in kohm).

Adjustment of the output voltage level is provided by means of VR1. With this control in mid-position, the output voltage produced will be of the order of 1 V pk-pk. As mentioned previously, simple Zener diode shunt regulators, D1 and D2, are provided to stabilise the incoming positive and negative supply rails.

The test signal source is again built using a single sided p.c.b. measuring approximately $65 \mathrm{~mm} \times 115 \mathrm{~mm}$. The component overlay is shown in Fig. 4. Components should be assembled on the p.c.b. in the following sequence; terminal pins, i.c. holder, resistors, capacitors, diodes, variable resistor and filament lamp. This latter component should be secured to the p.c.b. using a small drop of epoxy resin based adhesive.

When complete, the p.c.b. should be carefully checked for solder bridges, dry joints, and correct orientation of all polarised components. The test signal source may be tested by simply connecting its output to the input of any of the other modules and listening for a signal output from the system. If available, an oscilloscope may be used both to confirm that the output waveform is sinusoidal and to accurately set the level of the output signal.

In a practical system the output of the test signal source may either be made available at a standard jack or d.i.n. connector so that it may be 'patched' into the system when required or may be switched directly to any of the inputs of the pre-amplifier/line driver or pre-amplifier-mixer modules described last month.

Post to: Crotech Instruments Ltd., 2 Stephenson Road, St. Ives, Huntingdon, Cambridgeshire, PE17 4WJ. Tef. (0480) 301818.

Erutech
Type 3132 Dual Trace 20MHz ع299

* $2 \mathrm{mV} /$ division to $10 \mathrm{~V} /$ division (12 steps) calibrated sensitivity ($\pm 3 \%$)
* DC-20MHz bandwidth (-3 dB). Rise time 17 ns
$\star \times-Y$ operation
* 130 mm cathode ray tube
$\star 40 \mathrm{~ns} /$ division to $0.2 \mathrm{~s} /$ division (18 steps) timebase ($\pm 5 \%$)
* 14 trigger functions
* Triggering to 40 MHz
$\star \mathrm{Z}$ modulation
* 10×8 division display
\star Component comparator
* DC source outputs
\star Measures $210 \mathrm{H} \times 280 \mathrm{~W} \times 450 \mathrm{D}(\mathrm{mm})$, weight 8 kg (approx.)

Crotech Type 3030 Single Trace 15 MHz

 $\Sigma 183$

Cratech Type 3035 SingleTrace 15 MHz £199

* $5 \mathrm{mV} /$ division to $20 \mathrm{~V} /$ division (12 steps) calibrated sensitivity ($\pm 3 \%$)
Ł $\mathrm{DC}-15 \mathrm{MHz}$ bandwidth $(-3 \mathrm{~dB})$. Rise time 23 ns .
* X-Y operation
\star 130mm cathode ray tube
$\star 200 \mathrm{~ns} /$ division to $0.2 \mathrm{~s} /$ division (18 steps) timebase ($\pm 5 \%$)
* 6 trigger functions
\star Triggering to 20 MHz
* 10×8 division display
\star Component tester
\star Measures $160 \mathrm{H} \times 265 \mathrm{~W} \times 317 \mathrm{D}(\mathrm{mm})$, weight 6 kg (approx.)

PRICES INCLUDE VAT AND DELIVERY

$\star 5 \mathrm{mV} /$ division to $20 \mathrm{~V} /$ division (12 steps) calibrated sensitivity ($\pm 3 \%$)
\star DC -15 MHz bandwidth (-3 dB). Rise time 23 ns .

* X-Y operation
$\star 95 \mathrm{~mm}$ rectangular cathode ray tube
$\star 200 \mathrm{rs} /$ division to $0.2 \mathrm{~s} /$ division (18 steps) timebase ($\pm 5 \%$)
$\star 6$ trigger functions
\star Triggering to 20 MHz
* 10×8 division display
\star Component tester
\star Measures $125 \mathrm{H} \times 240 \mathrm{~W} \times 335 \mathrm{D}(\mathrm{mm})$, weight 4.6 kg (approx.)

PRACTICAL ELECTRONICS is pleased to be able to offer these quality CROTECH oscilloscopes to readers at special discount prices which include VAT and delivery. The 'scopes can be purchased using Access to spread the load.
Any of these three items would be an invaluable addition to the test gear used by an amateur or professional engineer. Each unit is supplied with an input lead, instruction manual and a free copy of "Getting The Best From Your Scope". Additional probes and accessories are also available.
The 'scopes have the additional facility of a built-in component comparator or tester which allows in-circuit testing of both passive and active devices and, on the 3132 direct comparison of components. Each 'scope employs regulated internal supplies and features a $1 \mathrm{KHz}, 200 \mathrm{mV}$ P-P calibration output.
THESE CROTECH PRODUCTS ARE ALL COVERED BY A TWELVE MONTH GUARANTEE.
Unfortunately we can only make this offer to UK readers due to delivery problems overseas.

APRIL 1985 ISSUE ON SALE FRIDAY, MARCH 15 ORDER YOUR COPY FROM YOUR NEWSAGENT NOW!
 CYBERUOX ROBOT VOICE
Voice synthesisers, whether fitted to a car or a robot, tend to sound like depressed Daleks with a cold. Cybervox. interfacing between microphone and amplifier, can make your voice sound equally weird! This project offers endless

DARK RINGS

Using a C.C.D. (Charge-Coupled Device) on the 100 -inch reflector at the Las Campanas Observatory, in Chile, the American astronomers Richard Terrile and Bradford Smith have succeeded in imaging the rings of Uranus, together with all five known satelites (Miranda, Ariel, Umbriel, Titania and Oberon). Infra-red images have been obtained by D. A. Allen and J. Crawford from the Siding Spring Observatory in New South Wales, but this is the first record of them at visual wavelengths.

The rings are quite unlike those of Saturn; instead of being bright and icy, they are made up of material which is as dark as coal-dust.
Meanwhile, occulation observations by F. Vilas and L. Elicer at the Cerro Tololo Observatory, also in Chile, give the first indications
that the outermost giant planet, Neptune, may also have a dark ring. Previously no signs of a Neptunian ring had been found, and it had been thought that none might exist because of the presence of Triton, a large satellite with retrograde motion. The Chilean observations are far from conclusive, but they are certainly very interesting.
Russia's two Vega probes to Halley's Comet are now on their way, first to rendezvous with Venus and then to encounter the comet in March 1986-at about the same time as the Japanese Planet A, and shortly before the European probe, Giotto, is scheduled to pass right into the heart of the comet on March 13, 1986.

HORSE SENSE

There has been an interesting suggestion with respect to the famous Horse's Head Nebula in Orion, which is spectacular when photographed and really does give the impression of a knight's head in chess-though it is hard to see visually (with my 15 -inch reflector I always find it an excessively difficult object). B. Reipurth of Denmark and P. Bouchet of France suggest that it may be an embryo Bok Globule.
These Globules, named in honour of the late Bart J. Bok (who first drew attention to them) are formed when strong radiation from very hot stars strips away all but the compact centres of large interstellar clouds, and are believed to form into stars of rather low mass.

In the case of the Horse's Head, the radiating star is Sigma Orionis. Reipurth and Bouchet believe that eventually the Horse's Head will emerge from the surrounding nebulosity and become typically spherical in
form, though obviously the process will be a very slow one indeed.

MERCURY

March this year is the best time for seeing the rather elusive planet Mercury, which reaches its greatest eastern elongation (18 degrees) on the 17 th. It is well north of the celestial equator, and should be visible above the horizon for about half an hour after sunset. On the evening of the 22 nd , Venus, Mercury and the 30 hour-old crescent Moon will be almost in a straight line, pointing downward and to the left-photographic enthusiasts, please note!

The phase of Mercury decreases from almost 90 per cent at the beginning of the month to less than 12 per cent at the end. Mercury passes through inferior conjunction on April 3, about eight hours before Venus does so-though the two planets are not in conjunction with each other until April 18.

Ordinary telescopes will show practically nothing on Mercury apart from the characteristic phase. Maps of the surface were drawn by G. V. Schiaparelli in 1881-9 and by E. M. Antoniadi in 1934. Antoniadi, who used the great 33 -inch refractor at Meudon Observatory, was probably the best planetary observer of his time, and his maps of Mars have proved to be remarkably accurate, but he was less successful with Mercury, and showed only some rather vague shadings.

He also believed that there could be an appreciable atmosphere, and that the rotation was synchronous-that is to say, equal to the planet's revolution period or 'year', amounting to 88 Earth-days. This would have meant that

THE SKY THIS MONTH

Several planets are on view this month, though only Mercury and Venus are well placed. Venus continues to dominate the western sky after sunset, and its magnitude at the beginning of the month is -4.3, far brighter than any other planet and about three magnitudes brighter than Sirius, the most brilliant star in the sky.

However, Venus sets earlier and earlier as the month progresses, and the phase decreases from 25 per cent on March 1 to only 4 per cent on March 30. Inferior conjunction is reached on April 3.

This is a good time to see whether the phase of Venus can be seen with the naked eye. Very keen-sighted people can do so (though I certainly cannot!) and of course binoculars will show the phase easily.

Telescopically, this is also the right time to look for the Ashen Light, or faint luminosity of the night side of the planet. Observations of it have been made so often that it can hardly be dismissed as a contrast effect-though we can hardly agree with the last-century German astronomer Franz von Paula Gruithuisen that it is due to fires lit on the planet's surface by the local inhabitants to celebrate the election of a new Government! More probably it is due to electrical effects in the upper atmosphere of Venius.

Mars, in the evening sky, is now only of magnitude $1 \frac{1}{2}$. Jupiter rises well before the Sun by mid-March, and so does Saturn, but both are low, as they are well to the south of the celestial equator. The Moon is full on March 7, and new on the 21 st.

Halley's Comet, brightening steadily, is still beyond the range of any but very powerful telescopes; however, its nucleus is already showing marked signs of activity, and we may hope that the comet will be rather more of a spectacle than was originally feared. For the record: the position on March 1 is R.A. 4h 56 m , dec. N. $13^{\circ} 3^{\prime}$; on March 31, R.A. 4 h 51 m , dec. N. $14^{\circ} 49^{\prime}$. This is close to the boundary between Orion and Taurus-roughly midway between Aldebaran and Betelgeux.

Orion, of course, is still the most striking constellation on view, though by the end of the month it is starting to run into the evening twilight. (Do not forget that Summer Time starts on March 31.) Capella is still very high, which means that Vega is low in the north and may not be seen at all even though it never actually sets over Britain.

The Great Bear, Ursa Major, is high in the north-east, and Leo, the Lion, has become prominent; to locate Leo it is helpful to use the Pointers in the Great Bear 'the wrong way (that is to say, away from the Pole Star). Regulus, leader of Leo, is at the foot of a curved line of stars making up the pattern known as the Sickle.

Below Leo the sky appears rather blank; this is the region of Hydra, the Watersnake, whose only bright star. the reddish Alphard, may be found by using the Twins, Castor and Pollux, as direction indicators. Alphard is often nicknamed 'the Solitary One' because of its somewhat isolated position. It is of the second magnitude, but has been suspected of variability.
part of Mercury would be in constant sunlight and another part in constant darkness, with only a narrow 'twilight zone' in between over which the Sun fould bob up and down over the horizon.

Antoniadi was wrong on both counts, though he can hardly be blamed. The Mercurian atmosphere is negligible, and the rotation period is only 58.6 days, two-thirds of the planet's 'year'-which means that each time Mercury is best placed for observation from the Earth, the same regions are turned in our direction.

MISSION ACCOMPLISHED

Virtually all our detailed knowledge of Mercury comes from a single space-probe, Mariner 10, which made three active passes of the planet: in March and September 1974 and March 1975. Since Mercury, with a diameter of 3030 miles, is not a great deal larger than the Moon, it was expected that the surface features would be basically of lunar type, and this proved to be correct. There are craters, mountains, valleys, scarps and ridges; some of the craters have central peaks, and some are
the centres of systems of bright rays. In fact, the first crater to be identified as Mariner 10 drew in toward Mercury is a ray-centre; it has been named Kuiper, in honour of the late Dutch-American astronomer G. P. Kuiper, who placed such an important role in the early days of planetary probe research.

The most imposing formation is the Caloris Basin, which is a huge ringed structure. Unfortunately we have mapped only part of it. Each time Mariner 10 by-passed Mercury the same regions of the planet were in sunlight, so that a large area remains unknown, though there is no reason to believe that these regions are basically different from those which we have been able to study.

Though the crater distribution on Mercury follows the same laws as on the Moon, with smaller formations breaking into larger ones instead of vice versa, there are no smooth 'seas' comparable with the lunar Mare Imbrium or Mare Serenitatis, and there are intercrater plains of a type not found on the Moon.

One distinct surprise was that Mercury, unlike Venus, Mars or the Moon, has a detectable magnetic field, with a strength about $1 / 30$ of that of the Earth's field. The field is
dipolar, with two equal magnetic poles of opposite polarity aligned with the rotational axis of the planet-which is almost perpendicular to the plane of the orbit.

Moreover, Mercury is about as dense as the Earth, with a specific gravity of 5.5 . Presumably it has a large iron-rich core, which may in fact be larger than the whole globe of the Moon.

HOSTILE WORLD

Contact with Mariner 10 was finally lost on 24 March 1975, though no doubt the probe is still in solar orbit and still makes regular close approaches to Mercury. No further missions have been announced as yet, though new launchings will probably be made in the foreseeable future.

Obviously Mercury is a very hostile world, and there is no chance of any life there; neither does it seem likely that manned landings will be practicable for a long time. However, it is always worth seeking out this curious, elusive little planet, and March this year provides an excellent opportunity.

FREE! READERS' ADVERTISEMENTSERVICE

RULES Maximum of 16 words plus address and/or phone no Private advertisers only (trade or business ads. can be placed in our classified columns). Items related to electronics only. No computer software. PE cannot accept responsibility for the accuracy of ads. or for any transaction arising between readers as a result of a free ad We reserve the right to refuse advertisements. Each ad. must be accompanied by a cut-out valid "date corner". Ads. will not appear (or be returned) if these rules are broken.

COMPUTER Jupiter Ace with tape recorder for sale $£ 30$ o.n.o., plus postage, or buyer collects. Roy Fletcher, 29 Hirst Close, Long Lawford, Nr. Rugby, Warwicks.
SERVICE manuals. Marconi TR 144 Sig Gen $£ 2 \cdot 50$. AVO CT1 60 Valve tester $£ 4 \cdot 00$. Heathkit GD-IU £3.50. HD-10 Keyer £4.00. Mr. M. Small, 8 Cherry Tree Road, Chinnor Oxon. OX9 4QY.
SIX unused microprocessor power supplies +5 V at $4 A+/-12 V$ at $0.3 A$ with full data $£ 15$ each. J. A. Hewitt, 26 Tamar Close. High Wycombe, Bucks HP 13 7BG
FERROGRAPH $8 \frac{1}{4} \mathrm{in}$. diameter spools in storage cases, excellent conditions, offers. Wanted: data on Minirack DB-Scope M977. W. R. Critchley, 11 Hale Road, Helpringham, Steaford, Lincs. NG34 ORL. Tel: 052921273. HEWLETT Packard signal generator HP606A $50 \mathrm{kHz}-65 \mathrm{MHz}$. Handbook. Offers, or exchange radio control equipment. Chelmsford 59033. J. H. Gooday, 53 Lawn Lane, Chelmsford, Essex. PHILIPS 1700 video for spares also 40 tapes and manual. Offers. Tel: 0416325408

WANTED Bogen $\frac{1}{4}$ track erase heads type UL296 or address of supplier. Mr. B. Langmead. Bowd Cottage, Sidmouth, E. Devon EC10 OND. Tel: 039553328.
WANTED manual or circuit diagram to repair Sinclair R3000 amplifier. K. J. Steward, 8 Langley Close, Church Crookham, Aldershot GU13 OPX.
WANTED circuit diagrams on quality pre-amps and mosfets and Bipolar and p.c.b.s and special offer on components and 2 N 3773 etc. Contact: A. Larrc, 56 Becher St., Derby DE3 8NN.

FULL size keyboard from NCR accounting machine £20. Sinclair ZX80 complete with instruction book £20. Mr. W. E. Ames, 33 Beach Rd. West, Portishead, Bristol. Tel: 0272848273. WANTED manual or circuit for Heathkit EU70A scope. Buy or copy. D. J. Looker, 96 Fernhill Road, Begbroke, Oxford OX4 2JP.
COMPLETE PE except for November 1973 and June 1983. First 12 volumes bound. Offers. Mike Hudson, 51 The Crofts, Little Paxton, Cambs. Tel: 0480 74919

JVC AK10 amplifier 60 watts neat condition £45. Transistor not valve amplifier. C. Gooding. 01-385 3228 after 4 p.m. Anytime at weekends. WANTED WKSP manuals video Genie and Sanyo reel to reel model MR939. Any information appreciated. Roy Morrish, 4 Allen Bank, Barnstaple, Devon. Tel: 027176908.
DRAGON 32 K computer plus leads assemble editor and games for $£ 55$. Phone after 5 p.m. or weekend. S. Akhtar, 79 Mayola Road, London E5 ORF. Tel: 01-986 2658.
MULTICORE cable new 20 way felephone type. Any length cut $45 \mathrm{p} /$ metre 1600 m available). Tel: 021-4723688.
TERMINET 300 Baud band printer with keyboard, RS232C interface, tractor feed. £100 plus carriage. Fully working. Tel: Wivenhoe (0206) 5671

VARIAC 2 KVA variable voltage 8 A transformer. As new. £25. Buyer collects or carriage extra. Mr. J. Brearley, 26 Knowsley Avenue, Davyhulme, Manchester M31 2BT. Tel: 061-74B 5307.

Please publish the following small ad. FREE in the next available issue. I am not a dealer in electronics or associated equipment. I have read the rules. I enclose a cut-out valid date corner.

Signature

> Date .

Please read the RULES then write your advertisement hereone word to each box. Add your name, address and/or phone no. COUPON VALID FOR POSTING BEFORE 4 APRIL, 1985 (One month later for overseas readers.)
SEND TO: PE BAZAAR, PRACTICAL ELECTRONICS, WESTOVER HOUSE, WEST QUAY ROAD, POOLE, DORSET BH 15 1JG.

$V \mathrm{~V} X$	48 K	INFO	REGARDING
MEMORY	EXPANSION	INTERFACING	MEMORY
AND	SCREEN	ADP RESS	LOCATONS
ETC	REGOIRED	Puerase	CONZCT
Name \& Address: S.J. RURN			
TEL. W W WA			
TYNE Y VEAK			

For readers who don't want to damage the issue send a photostat or a copy of the coupon (filled in of course) with a cut-out valid "date corner

UNTIL recently, printers for computers were large, noisy and expensive pieces of equipment. This picture has changed, however, with the introduction of increasingly powerful small computers in business and the home. The different needs of these new groups of computer users have brought about a re-think in printer design, resulting in desktop printers which meet the needs, and fall within the price range of today's small computer systems. This month's printer survey looks at the wide range of printers currently on the market at around $£ 500$ or less. Before we do this, however, we will take a look at some of the basic features of these printers, and suggest some points to consider when choosing a printer.

WHO NEEDS A PRINTER

The need for a printer is not something which is immediately obviou's when 'The Computer' first arrives in the home. If your computer is to be more than just a passing fancy, however, the pre-packaged games used to get things started will soon give way to an urge to 'have a go' yourșelf. Copying programs from magazines is usually the first step, but one which soon shows itself to have a few hidden snags. These usually take the form of the almost inevitable typing mistakes; the well-known 'finger trouble' syndrome. Tracking down these bugs can be a nightmare of "is that a ' 1 ' or is it a 'l'?", particularly if you are restricted to debugging on a shimmering TV screen. However, the problem can be greatly simplified if you are able to put down a printed listing of the program side-by-side with the original.

Next, you will probably move on from published listings to writing your own programs. Here a printer will help you to develop a clear and well-structured programming style, since these are features which will stand out clearly from your listings. By the time you reach this stage, however, you are really hooked, and a terminal case of computeritis is usually diagnosed!

The discussion so far has been restricted to using the resources of the computer itself. However, computers really come into their own when we can set them to work in our everyday lives. One of the best examples in this area is probably word processing, which is arguably the greatest advance since the introduction of the typewriter. With a word processing program running on your computer, you can type letters, correct your mistakes, change your mind as often as you like, and still end up with perfectly presented letters at the end of the day; all assuming of course that you have a printer!

Whatever your reasons for wanting a printer, choosing the right one can be as important as the selection of your computer. The decision to buy a printer can easily involve spending at least as much again as the computer itself (a printer will typically cost between $£ 180$ and $£ 450$), so it is nportant to choose one which really is suited to your needs. choice available is now quite considerable, and the
range of facilities offered can be bewildering, so before looking at some of the printers available, we will start by looking at the basic features to be found on today's machines.

A FEW PRINTER BASICS

Inside the computer there are essentially two types of information which concern us when we talk about using a printer to produce a permanent copy; we usually think of these two types as characters and graphics. We will start by looking at characters, and will come back to graphics a little later.

Characters are the numbers, letters, and punctuation marks which make up the so-called character set of the computer. They also appear on the display screen and on the keyboard. Internally these characters are usually represented by a set of one-byte ASCII codes. When we want to print a sequence of characters, therefore, the computer simply has to send the corresponding stream of ASCII codes to the printer. There are two ways to transfer this byte stream from the computer to the printer; serial and parallel. The serial link transfers bytes one bit at a time, and usually conforms to the RS232C standard (or an equivalent). The more popular parallel interface usually conforms to the Centronics standard, and transfers a complete byte at a time. The important thing to bear in mind here is to make sure that the printer bort on the computer is compatible with that on the printer!

At the receiving end, the printer decodes each byte as it arrives, and sends the appropriate commands to the printer mechanism to cause the corresponding character to be printed. The actual form of the printed character depends on the 'font' of the printer, and is something which may or may not be variable, depending on the type and model of the printer.

Many printers have a number of built-in fonts which are selectable by the computer, whilst others have a facility to allow the operator to change fonts when required. However, and at any instant, the currently selected font determines the way in which the printer will interpret each ASCII code sent by the computer. In the main these codes correspond to the keyboard and screen symbols, but there are ranges (particularly of the lower-numbered codes) which are usually reserved for commands from the computer to the printer, e.g. new page, change font. These control codes are often referred to as escape sequences because they frequently involve a pre-defined sequence of codes, starting with an 'ESCAPE' code (decimal 27).

So far we have seen how the computer tells the printer which characters it wants printed, and how it controls various features such as the font. We will now go on to look at how the characters themselves are actually printed.

PRINTER TYPES

There are quite a number of different types of printing mechanism used today, but the major difference between them is the way in which the individual characters are formed on the paper. The most popular printers for small computers today are undoubtedly the daisywheel and dot matrix types. Printer technology is not static, however, and cheaper, quieter, and more versatile machines are constantly being announced. A particular driving force at present is the quest for low power printers suitable for portable computers. Below we look briefly at the features of today's popular types of printers which fall within our price range.

Daisywheel

The daisywheel printer works in a similar way to an electric typewriter. The font is on a plastic daisywheel with flat spokes (so called because of its similarity in appearance to the petals of a daisy), and the characters are embossed on

Model: Tandata M82A Print format: Dot Matrix C.P.S.: Variable Interface: Serial/Parallel Paper: Sprocket Feed Notes: Viewdata graphics Price: $£ 299+$ VAT Supplier: Tandata, Albert Rd. North, Malvern, Worcs 106845 68421).

Model: DW12 Print format: Daisywheel C.P.S.: 12 Interface: Centronics Paper: 300 mm Friction Notes: Tractor option Price: £275+VAT Supplier: X-Data, 750-751 Deal Ave., The Trading Estate, Slough, Berks (0753 72331).

Model: Tandata PPX Compact Print format: Thermal C.P.S.: Variable Interface: Centronics Paper: 110 mm Thermal Notes: Viewdata Price: £171.35 inc. VAT Supplier: Tandata Marketing, Albert Rd. North, Malvern, Worcs (06845 68421).

Model: Geveke C150 Print format: Dot Matrix C.P.S.: 20 Interface: Parallel Paper: Friction Notes: Optional Interface Price: £1095+VAT Supplier: Geveke Electronics, Unit 201, Landsbury Est., 102 Lower Guildford Rd., Knaphill, Woking, Surrey (04867 88676).

Model: Paper Tiger, 8010, 8020 Print format: Dot Matrix C.P.S.: 180 Interface: RS232/Centronics Paper: 200, 305mm Tractor Notes: Block graphics Price: £469, f645+VAT Supplier: Data Products International, Data Products House, 136-1 38 High St., Evesham, Worcs (078431161).

the ends of the spokes. The wheel is rotated until the appropriate spoke is aligned with the print hammer. An electromagnetic hammer then strikes the character, which presses it against the ribbon, producing an imprint on the paper. The print head then moves across one character position, ready for the next printing operation. Daisywheel printers are capable of the very highest print quality, but are relatively slow and noisy in operation. Changing fonts is a simple matter of changing daisywheels.

Dot Matrix

A dot matrix printer is one which works by placing a pattern (matrix) of dots on the paper to form the characters. This is done by firing a vertical bank of fine wires (usually there are between seven and nine wires, but it can be just one) at the paper through the ribbon. The wires are fired by individual solenoids as the print-head moves across the paper. In this way each character is built up one column at a time, with the print-head moving across the paper one dot position at a time. The dot pattern for each character is usually held in ROM inside the printer; some models include more than one font, selectable by special codes from the computer. In addition, matrix printers usually allow more than one size of any particular font to be printed fagain selected by the computer). This is usually done by changing the horizontal spacing and/or repeating each dot column twice, but the basic dot pattern (which defines the font) remains unchanged.

Typical matrix printers use an array of seven-by-nine dots for their standard character fonts, but larger matrix sizes are also available. In general, the larger the number of dots per line of print, the better the appearance of the characters; a typical figure is 480 dots per line. Many dot matrix printers now include a so-called near letter quality (NLQ) font. This usually makes use of columns of dots at a half-dot pitch (whereas most fonts use a whole-dot pitch), and although slower to print, the NLQ fonts do give a much smoother appearance to the printed characters.

Overall, matrix printers are typically 5 to. 10 times faster than daisywheels, usually offer a good range of print styles, but are noisy and do not offer quite the same print quality as daisywheel printers. As we shall see later, many dot matrix printers also offer the possibility of graphics.

Ink Jet

Both daisywheels and dot matrix printers are inherently noisy because they work by physically striking the paper through a ribbon. Ink jet printers, on the other hand, are much quieter because they have no ribbon. Instead, they fire a stream of charged ink droplets at the paper. An electrostatic arrangement then deflects the stream in much the same way as a television tube, and causes the characters to be drawn on the paper.

A recent simplification of the ink jet principle is to do away with the electrostatic deflection, and use a bank of ink nozzles instead. In much the same way as an impact dot matrix print-head, the characters are then made up from a matrix of ink dots. This approach has also been cleverly adapted to allow printing in colour; each jet produces dots of a different colour, with the characters then being built up one row at a time. The result is rather slower than with single-colour printing, and the character fonts tend to be more limited, but colour printers of this type are a very cost-effective way of producing multi-colour hard copy.

Electro-sensitive

The electro-sensitive system uses a special paper which is adwich of aluminium foil, ink and paper. Printing is per-
formed by wires which are in contact with the foil side of this sandwich. When a wire is momentarily raised to a high voltage, a small hole is melted in the foil, exposing the ink below. The result is a black dot on a silvery background. Electro-sensitive printers are not widely used due to their need for special paper, but they are quite common in lower cost, narrow-paper applications.

Thermal Matrix

This is another type of printer which requires special paper. It is similar to the impact dot matrix printer discussed above, but instead of striking wires through the ribbon, the printhead burns spots directly on heat-sensitive paper. Thermal printers are very quiet and relatively cheap, but the cost and need for special paper can be a distinct disadvantage.

Thermal Transfer

Thermal transfer printers are a relatively new development. A special heat-sensitive ribbon is used with the same sort of print-head as used in the thermal matrix printers. Plain paper is used, however, and spots of dye are transferred from the ribbon to the paper when heated. Thermal printers are quiet in operation, but the ribbons are still rather expensive, and the technology would probably benefit from a chance to mature before they become a real force to be reckoned with.

PRINTER FEATURES EXPLAINED

When choosing a printer there are a nurmber of features which we must consider carefully before making a final selection. Inevitably, any choice will involve some form of trade-off between those features which are desirable, those which are essential, and cost.

Paper Width

The paper width quoted in the manufacturer's specification usually relates to the maximum width that can be used in the printer. Some cheaper printers will only operate on a special size of paper (often supplied only in rolls), but most will now accept paper up to about 240 mm wide. This means that standard cut-sheet or narrow fan-fold paper can be used, depending on the type of paper feed fitted (see below), and usually allows up to 80 standard characters to be printed on a line.

Paper Feed

There are two main types of paper feed in common use, and most printers support one or both types. Friction-feed relies on the same principle as used in typewriters, where the paper is squeezed between two rollers, one of which is driven by a motor. This type of paper feed allows the use of either cut-sheet or roll paper.

Tractor-feed requires the use of paper which has sprocket holes down its edges; the holes are often on perforated strips which can be removed after printing. The sprockets are fed over toothed (tractor) wheels which are driven by the paper feed motor. The separation between the wheels is adjustable, so different widths of paper can be used.

Pin-feed is a variation of tractor-feed, but with either a small or no range of width adjustment. A number of printers with pin-feed also have an optional tractor-feed accessory. If you need to use narrow paper (or sets of labels), it is important to check whether the range of adjusment is adquate for your requirements.

Tractor-feed printers are suitable for many applications, but they do mean that only sprocketed paper can be used.

Model: Commodore 1520 Print format: 4-Colour Broken Lirie C.P.S.: 14 Interface: Serial (Commodore) Paper: 114 mm Continuous Roll Notes: Interface available Price: £ 99.99 inc. VAT Supplier: Commodore, 1 Hunters Rd. Weldon, Corby, Northampton (02365608).

Model: Commodore MPS 801 Print format: Dot Matrix C.P.S.: 50 Interface: Serial (Commodore) Paper: 250 mm Pin Feed Notes: Interface avāilable Price: £200 inc. VAT Supplier: Commodore, 1 Hunters Rd., Weldon, Corby, Northampton (02365608).

Model: Ibico Mini Print format: Daisywheel C.P.S.: Not known Interface: Centronics Paper: Friction Price: Not known Supplier: Ibico Ltd., 181 Spring Grove Rd., Isleworth, Middlesex (01-568 2379).

Model: Epson FX-100 Print format: Dot Matrix C.P.S.: 160 Interface: Centronics Paper: 210 mm Friction Notes: Serial option Price: $£ 569+$ VAT Supplier: Epson, Dorland House, 388 High Rd., Wembley, Middlesex (0.1-902 8892).

Model: Fastext 80 Print format: Daisywheel C.P.S.: 80 Interface: Centronics Paper: Friction Notes: Tractor option Price: £195+VAT Supplier: Smith-Corona, Unit 23, Northfield Ind. Est., Beresford Ave., Wembley, Middlesex (01-900 1222).

Model: TRD 7020 Print format: Daisywheel C.P.S.: 20 Interface: RS232/Centronics Paper: 360 mm Friction Notes: Tractor available Price: $£ 375+$ VAT Supplier: Triumph Adler, Jordañ House, 47 Brunswick Place, London (01-250 1717).

Print Styles

The range and ease of use of different print styles depends significantly on the type of printer. Changing styles on a daisywheel printer is a simple matter of changing the wheel, but this is not something which can usually be done in the middle of a print run. Mixing print styles with a daisywheel is therefore not usually possible, unless all of the characters are available on the same wheel.

Dot matrix printers normally have a small number of basic fonts (often only one). However, a variety of printing styles for the font(s) provided is usually possible on all but the most basic models. The change of style, in the same way as any change of font, is caused by a series of control codes sent by the computer. There is, unfortunately, little agreement between different manufacturers on the control code sequences used for this purpose.

Proportional Spacing

Proportional spacing is a facility which is available on some printers. Instead of treating each character as if it is of equal width, a proportional spacing facility takes account of the fact that, say, a ' W ' is wider than an ' I '. This means that, instead of the gaps between letters being unequal, as usually produced on a computer display, there is a constant gap between adjacent letters. The result is very pleasing to the eye, and is the same as produced by conventional typesetting; the only problem is that few word processors are sophisticated enough to be able to produce both left and right margins aligned with such a print style!

Ribbons

Mundane maybe, but daisywheel and impact dot matrix printers all require ribbons in order to be able to operate. These are almost invariably now of the easily changed cartridge variety, and contain either a plastic film or an inked ribbon. The film types are common in daisywheel printers, where the highest quality print is to be expected. Inked ribbon still predominates for dot matrix printers, where they have the advantage of being re-usable (unlike the single-use films), and hence longer lasting.

GRAPHICS

As we mentioned earlier, characters are only one of the two types of potentially printable information which can be manipulated by a computer; the other is graphics. We will now look at some of the facilities which are available for producing graphical output on today's printers.

There are basically two types of graphics printing available, and these tend to complement the low-resolution and high-resolution graphics modes on computers. The first, known as a block graphics facility, is usually controlled by ASCII codes in the range decimal 128 to 192. The block graphics facility defines a set of shapes, based on a matrix of two blocks wide and three blocks high, which fill the space defined for a character. Each block within the matrix is either completely filled or empty. By printing a series of such graphics symbols, it is possible to build up a pictorial output, although it can require a significant amount of programming.

Block graphics is often available on daisywheel printers (although it may require a special wheel), and is offered on a number of other printers. Where a higher resolution facility is available, however, the block graphics facility is frequently omitted and the ASCII codes re-allocated for another purpose, e.g. the italic character set. Such printers also often allow the user to programme his own character set (although it must be said that working out the necessary sequence of control codes for the first time can lead to an acute case of mental indigestion!), and if need be, a block
graphics facility can then always be added by the user.
The second type of graphics involves the ability to be able to control the positioning of individual dots from the print-head. With such a capability, the programmer is able to produce any dot pattern he desires. With this type of graphics facility, the number of dots per line and the degree of control are critical to the performance. To achieve true screen images of high resolution displays will typically require a minimum of 640 dots per print line; more if the ability to produce shaded dumps of multi-colour displays is required. For a true high resolution graphics dump, therefore, a minimum of 640 dots, and desirably 960 dots per line are necessary.

A BUYER'S CHECKLIST

Now that we have looked at the basic features of today's printers, we will conclude this section of our printer guide by suggesting a buyer's checklist. The first step, however, before trying to decide on a printer, is to decide exactly what it is that you want to be able to do with it. Only then are you in a position to start the selection process in earnest. By answering the questions below, you should be able to narrow down your field of choice. Many printers will probably give you more facilities than the minimum that you require, but at least you will have narrowed the field, and cost will then probably also have an effect on your final choice.

Print quality-letter quality, NLQ, or is standard dot matrix quite adequate?
Paper width-wide, standard, or is a non-standard width acceptable?
Paper handling-friction (essential for cut sheet), pin-feed, tractor-feed, or a combination?
Paper-standard or special? If you want to use multi-copy stationery, then either a daisywheel or an impact dot matrix printer is essential.
Graphics-none, block or dot-addressable (matrix only)?
Print styles-more than one font (e.g. italics), number of styles for each font, facility to have user-defined characters, proportional spacing, sub-/super-scripts, underlining?
Interface-serial or parallel?
Speed-the figures quoted in Characters Per Second are always only a guide, but they are useful for comparisons; first ask how important is speed?
Size-will it fit on the bench?
Options/Extras-what is available?
Other-always check that what you expect is provided, e.g. true descenders (tails on g, p, etc.), and bi-directional logicseeking printing are now usual but are not yet universal features.

EXTRAS

When you have made your choice and set out to buy a printer, it is worth thinking of a few extras which you might add to your shopping list to make life with a printer a little easier, sooner or later.
Interface cable-this is absolutely essential, but not likely to be cheap at around $£ 15$.
Paper-easy to forget!
Dust cover-keep the dust out of the moving parts and avoid problems.
Spare ribbons-keep spares; the shop is always shut when you need one!
Stand-allows paper to be kept under the printer, saving precious space.
Software - word processors and screen dumps are easy to use, but difficult to write.

Model: X-Data Microline 82A, 83A Print format: Dot Matrix C.P.S.: 120 Interface: Centronics/RS232 Paper: $201 \mathrm{~mm}, 308 \mathrm{~mm}$ Friction Notes: Optional Interfaces Price: £299+VAT, £489+VAT Supplier: XData, 750-751 Deal Ave., The Trading Estate, Slough, Berks 10753 72331).

Model: Geveke L32 Print format: Dot Matrix C.P.S.: 150 Interface: Centronics compatible Paper: 381 mm Friction/Tractor Notes: Adjustable tractor Price: Not known Supplier: Geveke Electronics, Unit 201, Landsbury Est., 102 Lower Guildford Rd., Knaphill, Woking, Surrey (04867 88676).

Model: Silver Reed EXP400 Print format: Daisywheel C.P.S.: 10 Interface: Centronics compatible Paper: 300mm Friction Notes: Tractor option Price: $£ 275+$ VAT Supplier: Silver Reed (UK) Ltd., Silver Seiko House, 19-23 Exchange Rd., Watford, Herts (0923 35616).

Model: Riteman Plus Print format: Dot Matrix C.P.S.: 120 Interface: Centronics Paper: 300 mm Friction Notes: Tractor option Price: $£ 249+$ VAT Supplier: Micro Peripherals, 69 The Street, Basing, Basingstoke, Hants (0256 473232).

Model: Datafax SCP 800 Print format: Colour Pen C.P.S. 6-12 Interface: Centronics Paper: 220 mm Pin feed Notes: 4-colour plotter Price: $£ 199+$ VAT Supplier: Datafax House, Bounty Rd., Basingstoke (025664187)

Model: Epson P-40 Print format: Thermal C.P.S.: 45 Interface: Serial/Parallel Paper: 250 mm Thermal/Friction Notes: Bit-image Graphics Price: $£ 95+$ VAT Supplier: Epson (UK) Ltd., Dorland House, 388 High Rd., Wembley, Middlesex (01-902 8892)

Model: Electronic Compact RO Print format: Daisywheel C.P.S.: 14 Interface: RS232/Centronics Paper: 305 mm Friction/Tractor Notes: Software available Price: £ 399 +VAT Supplier: Intelligent Interfaces, 436 Wood St., Stratford-upon-Avon, Warwickshire (0789 296879).

Model: Commodore DPS 1101 Print format: Daisywheel C.P.S.: 18 Interface: Serial (Commodore) Paper: 303 mm Friction Notes: Interface option Price: £399 inc. VAT Supplier: Commodore, 1 Hunters Rd., Weldon, Corby, Northampton (0536 205252).

Model: Micro Peripherals CPP 40 Print format: Pens C.P.S.: 12 Interface: Centronics Paper: 115 mm Friction Notes: MCP 40 Illustrated Price: $£ 99+$ VAT Supplier: Micro Peripherals, 69 The Street, Basing, Basingstoke, Hants (0256 473232).

Model: Smith-Corona D100 Print format: Dot Matrix C.P.S.: 120 Interface: Centronics Paper: 270 mm Tractor Notes: Friction option Price: $£ 249+$ VAT Supplier: Smith-Corona, Unit 23, Northfield Ind Est., Beresford Ave., Wembley, Middlesex (01-900 1222).

Model: X-Data Microline 92 Print format: Dot Matrix C.P..S.: 160 Interface: Centronics Paper: 240 mm Tractor/Friction Notes: Various interfaces and feeds Price: $£ 429+$ VAT Supplier: X-Data, 750-751 Deal Ave., The Trading Estate, Slough; Berks 10753 72331).

Model: Taxàn Kaga KP 810, 910 Print format: Daisywheel C.P.S.: 140 Interface: Centronics Paper: 240 mm Friction Notes: Serial option Price: $£ 319, £ 399+$ VAT Supplier: Data Efficiency, Finway Rd., Hemel Hempstead, Herts (0869 253361)

Model: Silver Reed EXP500 Print format: Daisywheel C.P.S.: 16 Interface: Centronics/RS232 Paper: 330 mm Friction Notes: Tractor option Price: $£ 329+$ VAT Supplier: Silver Reed (UK) Ltd., Silver Seiko House, 19-23 Exchange Rd., Watford, Herts (0923 35616).

Model: Epson FX80 Print format: Dot Matrix C.P.S.: 160 Interface: Centronics Paper: 210 mm Friction Notes: Serial option Price: Not known Supplier: Epson (UK) Lt., Dorland House, 388 High Rd., Wembley, Middlesex (01-902 8892).

Model: Honeywell L38 Print format: Dot Matrix C.P.S.: 400 Interface: Centronics Compatible Paper: 381 mm Tractor Notes: Adjustable tractor Price: $£ 438+$ VAT Supplier: Geveke Electronics, Landsbury Ind. Est., 102 Lower Guildford Rd. Knaphill, Surrey (04867 88676).

Model: PhiPrint Print format: Thermal Dot C.P.S.: 20 Interface: Centronics Paper: 112 mm Thermal Notes: Bit-image graphics Price: Not known Supplier: Phi Mag Systems Ltd., Trigoniggie Ind. Est., Falmouth, Cornwall (0326 76060).

Model: X-Data DW16 Print format: Daisywheel C.P.S.: 16 Interface: Parallel/Serial Paper: 300 mm Friction Notes: Tractor option Price: $£ 329+$ VAT Supplier: X-Data, 750-751 Deal Ave., The Trading Estate, Slough, Berks (0753 72331).

Model: Smith-Corona L1000 Print format: Daisywheel C.P.S.: 12 Interface: Centronics/Serial Paper: 330 mm Friction Notes: Tractor option Price: $£ 260+$ VAT Supplier: Smith-Corona, Unit 23, Northfield Ind. Est., Wembley, Middlesex (01-900 1222).

Model: X-Data Microline 84 Print format: Dot Matrix C.P.S.: 200 Interface: Centronics Paper: 308 mm Friction Notes: Serial interface option Price: £489+VAT Supplier: X-Data, 750-751 Deal Ave., The Trading Estate, Slough, Berks (075372331).

Model: Taxan KP 910PC Print format: Dot Matrix C.P.S.: 140 Interface: Centronics Paper: 390mm Friction/Tractor Notes: Various types Price: $£ 499+$ VAT Supplier: Data Efficiency, Finway Rd., Hemel Hempstead, Herts (0442 60155).

MARCO TRADING

LINEAR I.C.s

CA3011	$\mathbf{1 . 8 0}$	$1 / 4$ W Pack 10 each va
CA3012	1.75	Total: 610 resist

1.75 Total: 610 resistor

CA3018
CA3020
CA3028A
CA3035
CA3080E
CA3085
CA3086 CA3090AO
CA3130E
CA3140E
HA1336W
LM324N
LM339
LM348 LM380 LM381N LM382N LM386 LM387 LM389N LM3914N LM3915N ML2328 555 555 C-mos555 SAS SAS560S SAS570S SL901B SL917B TA7205AP TA7222P TDA1004 TLO72 TLO8 TLO84 TLO84 Total: 305 resistors Total: 730 resistors
1/2W Pack 5 each value E12 2R2-2M2 Total: 365 resistors

SOLDERING AIDS

Antex 15 W iron
Antex 15 W iron
Antex 18 W iron Antex 18W iron
Antex 25 W iron Antex 25W iron Antex Elemen
Antex Bits Antex stands Desolder Tool
Spaze nozie Spare nozzle
25 W Kit-iron with 13A phis \& stand ONLY 6.20

MARCO TRADING (DEPT PE4)
The Maltings High Street

Wem, Shropshire SY4 5EN
Tel: 093932763 Telex: 35565
E12 10R-1M
E12 $10 \mathrm{R}-1 \mathrm{M}$
$1 / 2 \mathrm{~W}$ Pack 10 each value E12 2R2-2M2

OROERING. All com
ONLY 4.80 ONLY 2.75 ONLY 5.25
ONLY 5.25
ONLY 3.50

MULTI METER SPECIAL
Requires AA cells (not supplied) and leads, et Russian Type A U4324 20,000 D.P. D.C. Voltage: $0.6,1.2,3,12,30,60,120$,
A.C. Voltage: $3.6,15,60,150,300,600,900 ;$ D.C. Intensity M/A: 0.06, $0.6,6,60,600,3000$. A.C. Intensity M/A: $0.3,3,30,300,3000$, D.C. Resistance: $0.2,5,50,500,5000 \mathrm{kDhm} ;$ g.e. level dB: -10 to +12

E 12 FANTASTIC SPECIAL PRIC

C.MOS

$\begin{array}{llllll}4000 & 0.24 & 4021 & 0.58 & 4036 A & 275 \\ 4001 & 0.24 & 4022 & 0.96 & 4038 & 0.75 \\ 4002 & 0.25 & 4023 & 0.35 & 4039 A & 2.80\end{array}$
$\begin{array}{llllll}4002 & 0.25 & 4023 & 0.35 & 4039 A & 2.80 \\ 4007 & 0.25 & 4024 & 0.50 & 4040 & 0.60\end{array}$
$\begin{array}{llllll}4007 & 0.25 & 4024 & 0.50 & 4040 & 0.60 \\ & 0.24 & 4025 & 0.24 & 4042 & 0.50\end{array}$

4011	0.24	4025	0.24	4042	0.50	A
012	0.24	4027	0.45	4043	0.42	
013	0.56	4028	0.45	4044	0.50	a

4012	0.24	4027	0.45	4043	0.42
4013	0.56	4028	0.45	4044	0.50
4014	0.60	4029	0.75	4046	0.60

$\begin{array}{llllll}4015 & 0.60 & 4030 & 0.35 & 4049 & 0.38 \\ 4016 & 0.40 & 4031 & 1.30 & 4050 & 0.36 \\ 4017 & 0.60 & 4033 & 1.25 & 4051 & 0.70\end{array}$
$\begin{array}{llllll}4017 & 0.60 & 4033 & 1.25 & 4051 & 0.70 \\ 4018 & 0.60 & 4034 & 1.46 & 4052 & 0.60\end{array}$
$4020 \quad 0.85$
IN916

IN4001 iN4004

N4005	0.06	BA100	0.16
IN4007	0.07	BY126	0.24

0.12

IN4149
0.05 BY126
0.05 BY127
0.06 BY 133
the total. Either send cheque/cash/postal order or send/telephone vour Access or to Visa number. afficial orders ffom scliools, universities. colleghes, etc, most
welcome. (Do not forget to send for our 1985 catalogue - only, 55 p per welcome. (Do not forget to send for our 1985 catalogue - only 65 p per copy.
All orders despatched by return of mail All orders despatched by return of mail.
NEW RETAIL. 1,000 sc th shop now
$\begin{array}{lllll}0.12 & \text { BY184 } & 0.16 & 41 / 2 \times 4 \times 11 / 2^{\prime \prime} & 0.83 \\ 0.15 & 0.40 & 6 \times 4 \times 21 / 2^{\prime \prime} & 1.15\end{array}$
screws.

SERVICE AIDS

Plastic Seal	1.08	BC182L
Excel Polish	0.92	BC184
Fre Extinguisher, 640 g	BC184L	
	$2: 8$	BC212

Switch Cleaner 0.58

AC176 AF239

 28 BFX2 0.380.28
0.24

0.28 $\begin{array}{ll} & 0.98 \\ \text { Circuit Freezer } & 1.14 \\ \text { Foam Cleanser } & 0.95\end{array}$ \begin{tabular}{ll|l}
Foam Cleanser 0.96 \& BC108

Aero Klene Silicone \& BC109

Grease (Aerosoll \& A.B.C.

Grease (Aerosol) \& 122 \& A.B.C.

Antistatic Spray \& 0.58 \& BC147

BC182
\end{tabular}

	280	BC212
Video Head Cleaner		BC212L
	088	BCY70
Solda Mop (Std)	0.94	BDI31/2

Additional PEP on 0.74
VOLTAGE $\begin{array}{lll}6 \times 4 \times 21 / 2^{\prime \prime} & 1.15 \\ 81 / 2 \times 5 \times 31 / 4^{\prime \prime} & 2.15\end{array}$ Colour Black, all boxes with lids and

Our latest 123 page catalogue over 4000 items fully now for vour copy now for your copy Rer with orders

Auto-Electronics of the future.

5×2000KITS FOR SELF-ASSEMBLY CONTACT TRIGGERED ELECTRONIC IGNITION * SX 1000 - Inductive Discharge. * SX 2000 - Reactive Discharge. * Step-by-step assembly instructions. * Highest Quality components. * Patented clip-to-coil fitting.

Other kits in the SPARKRITE range include:
Electronic Ignitions TX1002 (£24.95), TX2002 (E37.95), AT-40 Electronic Car Alarm ($£ 11.95$). AT-80 Car Security ($£ 33.45$) and AT-UL Ultrasonic Detector ($£ 17.95$).

[^3]
David Whitfield mamsc ceng miee

THIS MONTH, in BBC Forum, we are looking at how to build an 8 -line driver for the user port. The interface described will allow you to drive a range of external hardware (such as relays and lamps, etc.), and will also serve as a useful buffer between your micro and the outside world. Then, if anything does go wrong, it is an external interface in need of repair, rather than a micro which requires return to a service centre for attention.
As mentioned last month it is our intention in these pages to look at the hardware behind the port, so that the why and the how of the interfacing techniques become a little clearer. We will begin, therefore, with a look at the user port. To do this, however, an introduction to the'system as a whole is necessary.

INSIDE THE BBC MICRO

What goes on jnside the BBC Micro is often a complete mystery to many owners. Indeed, the fear of an invalidated warranty often prevents even the lid being taken off for inspection. On the other hand an engineer has been described as someone whose first action with a new 'toy' is to dismantle it. Most owners fall somewhere between these two extremes, although your scribe tends towards the latter extreme. If you venture inside the case, however, the view is of a keyboard, power supply, and a large double-sided printed circuit board, and you may be left little the wiser. The problem here is the traditional one of not being able to discern the wood for the trees. The components may be familiar, if only by repute, but what do they all do?

In simple equipment, the usual approach is to try to work out the design by seeing what everything is connected to, but this seems rather inappropriate in this case. Anyone trying this with anything as complex as a micro is assured of hours of entertainment, but may be left little the wiser if the exercise is undertaken without at least a few hints and pointers.

Fig. 1 shows the overall block schematic for the BBC Micro. We shall be referring back to parts of this complete picture many times in the future when we look at the various interface ports, but for the moment the drawing is presented in its entirety to serve as a reference. Rather than attempt to describe the system's configuration in one month, we will confine ourselves to looking at any new area as we meet it, month by month. For readers who wish to look further into the design of the micro, there are now many good books available, and we shall be including brief reviews of a selection of useful books in future columns. For the moment our concern is with
the user port, so let us look a little closer at what lies behind the port.

THE USER PORT

The hardware in the BBC Micro is memory mapped, which means that the registers in the hardware devices (i.e. in the interface hardware inside the computer) appear as addresses in the main memory. It also means that the registers may be set-up/read-back using ordinary CPU write/read instructions. There are in fact 3 pages of addresses which have been reserved for memory mapped hardware operations; a page is 256 bytes of memory, starting at an address which is a multiple of 256 . The addresses from \&FEOO to \&FEFF (page \&FE) are reserved specially for the system hardware. This page of memory has been given the name 'SHEILA', while two other pages (\&FC $=$ 'FRED' and $\& F D=' J I M ')$ have been reserved for use with the 1 MHz bus. Be assured that these names are not misprints! The 256 addresses within Sheila are allocated as shown in Table 1.

Address (Hex)	Description
FEOO-07	Video controller
FEO8-OF	Serial controller
FE10-1F	Serial ULA
FE20-2F	Video ULA
FE30-3F	Paged ROM selector
FE40-5F	System VIA
FE6O-7F	User VIA
FE80-9F	Floppy disc controller
FEAO-BF	ECONET controller
FECO-DF	A-to-D converter
FEEO-FF	Tube interface

Table 1. Sheila addresses

Looking at Fig. 1 and Table 1, we see that the user port is connected to the user VIA (Versatile Interface Adaptor), which is allocated addresses FE60-FE7F. This VIA has two sections (A and B) which are used for the printer and user ports, respectively. As shown last month, all of the port B lines (i.e. PB0-PB7 and CB1/2) appear on the user port connector (on even-numbered pins 6-20 and $2 / 4$, respectively). The circuit behind the connector (see p. 503 of the User Guide) shows that there are direct connections from the VIA pins to the user port's connector.

The 6522 is a 40 -pin pack which contains two 8 -bit programmable bidirectional ports (A and \mathbf{B}), two 16 -bit programmable timer/counters, a serial-parallel shift register and latched I/O registers. It must be said that the VIA is
an extremely complex device, but its basic features are really quite easy to use for most applications. Let us have a look therefore at some of the VIA's basic features to see how they can be used.

The 8 lines in the B port can be individually programmed as inputs or outputs using the Data Direction Register (DDRB). When the VIA is reset (as when the BREAK key is pressed, for example), all of the lines are programmed as inputs. Table 2 shows that DDRB is VIA register 2, which appears as address \&FE62 (i.e. \&FE60 + register number). Setting a bit to a 0 in DDRB configures the corresponding I/O line as an input, while a 1 makes it an output. Thus, for example, writing \&F0 to DDRB will set PB7-4 as outputs and PB3 0 as inputs. Each time a new byte is written to DDRB, it overwrites the previous settings.

Address (Hex)	Register Number	Designation
FE60	0	ORB/IRB
FE61	$\mathbf{1}$	ORAIRA
FE62	$\mathbf{2}$	DDRB
FE63	$\mathbf{3}$	DDRA
FE64	$\mathbf{4}$	T1C-L
FE65	$\mathbf{5}$	T1C-H
FE66	$\mathbf{6}$	T1L-L
FE67	$\mathbf{7}$	T1L-H
FE68	$\mathbf{8}$	T2C-L
FE69	9	T2C-H
FE6A	$\mathbf{1 0}$	SR
FE6B	$\mathbf{1 1}$	ACR
FE6C	$\mathbf{1 2}$	PCR
FE6D	$\mathbf{1 3}$	IFR
FE7E	$\mathbf{1 4}$	IER
FE7F	$\mathbf{1 5}$	ORA/IRA

Table 2. User VIA Registers
The data lines which have been configured as outputs may be set high or low by writing 1 or 0 , respectively, to the output/input register ORB/IRB at address \&FE60. Writing a value to a line configured as an input will have no effect. Sensing the state of a line configured as an input is accomplished by reading from \&FE60. So much for how to control the PB0-PB7 data lines, but how can we use them as outputs to drive real loads?

8-LINE DRIVER

The I/O lines on the B port are capable of sourcing up to 1 mA at 1.5 volts in output mode, while in the low state they can sink up to one standard TTL load of 1.6 mA at 0.4 volts. This is not enough to drive the majority of 'real-life' loads, but it does allow the

PB0-PB7 to drive Darlington transistor circuits directly. A Darlington driver then allows loads requiring much heavier currents to be switched on and off, and provides a useful safety barrier between the loads and the VIA.

Fig. 2 shows a high current Darlington out put driver arrangement. An octal driver of this type is shown in Fig. 3 connected to eight l.e.d.s, which are acting as loads and indicate the state of the output lines. The driver i.c. comes in an 18-pin package, and is type ULN2803A, available from 'RS Components' as part number 303-422. In this arrangement a logic 1 at the input of a driver will illuminate the corresponding diode. Each of the eight drivers is an open collector stage which has a maximum operating voltage of 50 V , and will sink up to 500 mA . The stages all incorporate diodes to protect them when switching inductive loads, and more than one stage may be paralleled to increase the output sink current. In a practical application, the 1.e.d.s can be replaced by relay coils, lamps, or another type
of load. The l.e.d.s are shown connected between the driver output and the +5 V supply, but any other supply (up to the maximum) can be used, as shown in Fig. 2.

The prototype 8 -line driver unit was built on a small piece of veroboard. A piece of 20 way ribbon cable with a 20 -way IDC socket at the computer end (RS 469-881, 467-289, or equivalent) was used for the connection between the computer and the unit. Pin 1 at the computer's connector is indicated by a small triangular symbol on the case. At the board end in the prototype a second IDC socket/plug pair was used, but the wires may just as easily be soldered directly to the vero tracks. The exact constructional details are not critical, and will depend very much on the load arrangement you wish to drive.
The adjacent listing is a simple test program which sets up the user port, and then causes the eight l.e.d.s to count continuously in binary from 0 to 255 . Exit from the program by pressing ESCAPE. As we shall see next

Fig. 1. System block diagram

10	REM User Port Test
20	REM ***********
30	REM
40	REM Produces a
50	REM binary count
60	REM on PBO $->$ PB7.
70	REM
90	REM Initialise to
90	REM all O/Ps and
100	REM reset time.
110	REM
120	P(\&FE62) $=\&$ \&F
130	TIME=0
140	REPEAT
150	Count $=$ TIME DIV 100
160	?(\&FE6O)=Count MOD256
170	UNTIL FALSE
180	END
.	

Fig. 2. Darlington driver
month, this type of direct programming of the hardware is not the only way to control the system's hardware (and is certainly not the recommended method for compatibility with 2nd processors, etc.), but it is a simple and effective demonstration (after all this is not a software column!). A reminder in passing is that, at start-up, PB0-7 are configured as inputs, and the driver behaves as if these are outputs set to logic 1 , so beware that the loads will all be on! The driver described next month will overcome this problem.

Fig. 3. 8-line output driver

FINALLY

It is now over to you to develop some practical applications for this unit. Your scribe's test project involved some flashing lights for the festive season, but the range of applications for this simple interface is enormous.

NEXT MONTH

We have looked at how to connect the computer to the outside world. Next month we look at a more sophisticated interface, and then move on to connecting inputs to the micro.

DON'T MISS A VITAL COPY!

Ever been in the middle of a project only to find the next issue sold out? An annual subscription to PRACTICAL ELECTRONICS solves the problem.

Wherever you live you'll receive a copy regularly each month. It's the quick, practical way to solve delivery problems.

SUBSCRIPTION RATES

U:K.	$£ 13.00$
Overseas	$£ 14.00$

Overseas
COMPLETE AND POST THIS ORDER FORM TODAY!

PAACTICAL

ㄹ.

Annual Subscription Rates	
U.K.	$£ 13.00$
Overseas	$£ 14.00$
(Students: deduct $£ 1$ and quote	

Complete this form and post it, with payment or credit card authorisation to: Practical Electronics
Subscription Dept. Oakfield House 35 Perrymount Road, Haywards Heath, West Sussex RH16 3DH

POST COPIES TO

NAME

ADORESS

all in your

PRACTICAL

ROEOTIDS•MICROS ELEBTRONIPS-INTERFACINE MAY 1985 ISSUE ON SALE THURSDAY, APRIL 4

BLACK WATCH ON WHEELS?

What surprises me about the Sinclair car, or more accurately pedal-powered side-car with battery on board, is how no-one seems to have done the obvious and simple sums. It brings to mind one of Sir Clive Sinclair's. past disasters, the 'Black Watch: People who bought construction kits found the component parts too large to fit into the housing.

No launch in history can ever have been so widely leaked as the Sinclair vehicle. But even after the launch, at which a very nervous Sir Clive corrected the press, people were still reporting that the drive motor is a modified Hoover washing machine motor.

It is not. It is a 12 V d.c. brush motor made by Polymotor, an Italian subsidiary of Philips. This motor uses ceramic permanent magnets, a 2-pole commutator and a pair of brushes.
To comply with the Government 1983 regulations for electrically or assisted cycles, which allow untaxed, uninsured, untrained, unbelted, unhelmeted, 14 years olds or disqualified drivers to drive and park with impunity, the onboard motor must have a maximum power consumption of 250 watts.

The Polymotor drive has a maximum free running speed of 4100 rpm ; the 250 W rating is for continous running at 3300 rpm . This is geared down in two stages (epicyclic and belt) by a ratio of $13: 1$. Obviously this is necessary to increase torque.

The front brake is a bicycle calliper and the rear brake is a drum. There is no attempt at recharging the battery with regenerative braking. So all inertial energy is lost as heat when the brakes are applied.

For no-load 250 W running, the motor is drawing just over 20 amps from a 12 volt battery. When the motor starts to work, for instance over grassy ground or up a slight incline, the current drain increases to 80 or 90 amps .

When the motor is labouring, it gets slower-and slower with increasing torque until there is maximum torque at stall speed. At this point 140 amps are running through the windings.

Obviously this would very soon burn out the motor and drain the battery, probably buckling the plates. So the Sinclair vehicle has a chip which integrates current and time whenever the battery is connected.

At stand still with 140A drain, this circuit trips a relay after around 4 seconds. At 80 or 90A consumption it trips in two or three minutes. At high running speed, with minimal load, there is no need for tripping. Warning lights tell the driver to "get pedalling" as an early warning before switching the relay.

Because the vehicle body and component parts are moulded from plastics, which will melt and might even burn if there is
serious overheating, there are two back up systems for the control chip. The first back up is a temperature sensitive thermistor mounted in a probe inside the motor housing. The second back-up is a primitive bimetallic strip on the housing.

PEDAL POWER

The battery is a 35 ampere hour lead acid unit. This around the size of a car battery. The press and media have talked about 20 or 24 miles per charge. Sinclair's own publicity material puts the range for a single battery charge at "up to 20 miles" and promises "one thousand miles running for the average price of a gallon of petrol"

Although strictly true these claims are very misleading and are bound to be misreported by the popular media. There is no way in the world that a 35 ampere battery can run the vehicle over average terrain for 20 - miles on a single charge, unless the driver is doing most of the work with pedals. Without pedalling, and with starts, stops and slopes without regenerative braking, the driver will be lucky to get more than a few miles.

Sinclair might just as well have claimed 200 or 2000 miles per charge, for all the sense the 20 mile claim makes. With almost 100 per cent pedalling, the battery could stay charged for hundreds of miles.

Is this a joke? someone said to me at the press conference. Someone else had a wonderful idea: Summer holiday camps should buy a fleet of these vehicles, keep them permanently on charge and let campers drive them round the safe private roads and pathways, like dodgem funfair cars.

A nice idea, but by no means what Sir Clive Sinclair has in mind. He says he stands to lose around £7 or £8 million of his own money. Personally 1 should think that loss is a guaranteed certainty.

VIDEO CHANGE

Watch out for a major change in policy from Philips over LaserVision. The company is now going to stop trying to flog a dead horse and sell its videodisc system as a dumb carrier for feature films.

If. videodisc had come on the market before video tape, everyone would have raved about the clear pictures, clean sound and convenience of use. They would have bought a videodisc player first and then bought a video tape recorder when they later became available.

But because videodisc came late on the market there was already a large park of video recorders in people's homes. Libraries by then were renting feature films on prerecorded video tape. Not surprisingly only a very few people were prepared to buy videodisc instead of, or as well as, video tape.

Foolishly RCA and Hitachi tried launching their technically primitive, grooved capacitance disc system, CED. Predictably it failed commercially.

Wisely Thorn EMI decided not to launch JVC's VHD grooveless capacitance disc system on the domestic market. Instead Thorn invested money in producing interactive programmes, so that industry and education could use VHD players under computer control with interactive programmes. But still Philips spent a fortune trying to persuade the public to watch films on optical videodisc.

In 1984 Philips cut player prices to less than half the original 1982 launch price of £500. Because film companies didn't think it was worth issuing and distributing programmes on videodisc for the few people buying players. Philips cooked up a convoluted subsidy system.

The film company pays Philips disc pressing plant in Blackburn to press discs. Philips then buys the discs from the film company and tries to sell them to the public through trade dealers. In return for making programmes available, the film companies get guaranteed payment and Phillps shoulders the burden of selling the unsaleable mountains of discs.

In July 1984 Philips claimed that LaserVision sales were "double" those for the corresponding period for 1983 and that disc purchases had "greatly increased". But the company would not say double what or quantify the great increase!

Now the Philips headquarters in Eindhoven has taken a hand. It has sold a large quantity of players to China, which uses the same PAL TV system as Britain. and has cancelled a domestic launch in France.

Philips subsidiaries in Britain, Germany, Holland, Austria and Switzerland, where LaserVision is already on sale; have been told that they must adopt a completely new strategy. Instead of pushing the system for feature films, they must spend money on developing its potential for interactive video, and at the same time try to sell fo specialist markets. This is exactly what Thorn EMI has been doing all along.

Philips in Britain has struck a deal with the BBC, whereby Philips puts up E 0.5 million to help the BBC produce a modern version of the Doomesday Book on videodisc. Philips has also mailed out 90.000 direct advertisements to opera and ballet lovers, using the subscription lists from Covent.Garden, Glyndebourne and the National Opera, offering them performances on disc at around $£ 20$ a time.

Now Philips is looking at other specialist groups, like fishermen, naturalists, sports enthusiasts and car buffs. Although Philips says bravely that some feature films will still be Issued, it's clear that this market is being phased out.

The specialist ploy could well work. The only puzzle Is why Philips spent so long and so much money flogging what was so obviously the dead horse of feature film release.

BARRY FOX

BAKERS DOZEN PARCELS

All the parceis insted below are brand new components
Price per parcel is £ 1.00 , but if you order 12 you get one extra free.

513 amp ring main junction boxes

513 amp ring main spur boxes
513 mmp fuses for
513 amp fuses for ring mains
5 surface mounting switches s
voltrage moun ing swithes surtable insulated for main voltag
replace il 2 witches intermediate type, will also
5 in flex line switches
4 in flex line switches with neons
2 Bo watt brass cased elements
2 mains transformers with 6v 1 a secondaries
2 mains transformers with $12 \mathrm{Y} 1 / \mathrm{a}$ a secondarie
1 extension speaker cabinet for $6 \%{ }^{\prime \prime}$ speaker
2 glass reed switches
2 glass reed switches
4 OCP 70 photo transistors
5 assorted gemanium transistors OC45 etc
4 tpae heads, 2 record, 2 erase
2 ultra sonic transmitters and 2 ditto receiver
215000 mid computer grade electrolic:
2 light dependent resis tors similar ORP12
5 dift micro switches
mains interference suppressor
25 watt crossover units
40 watt 3 way crossover
50 various screws and self tappers
10 12 way
2 tape deck counters
16 digit counter 12
6 digit counter mains voltage
1 BOAC in flight stereo u
2 Nicad battery chargers
1 Nicad battery charges
1
key switch with key
2 humidity switches
96×1 matrelengths colourccoded
4 battery operated model motor
2 air spaced 2 gang tuning condensors
2 solid diaeiectric 2 gang tuning condensor
compression trimmers
Ong and Medium wave tun
$\times 465 \mathrm{KC}$ IF
8 Rocker Switches 10 amp Mains SPS
Rocker Switches 10 amp Main SPD
5 Rocker Switches 10 amp SP DT Centr
4 Rocker Switches 10 amp DPDT
124 hour time switch mains op
16 hour clockwork timesw itch
2 tever switches 4 pole changeov
2 voperated reed switch relays
$2 \times 12 \mathrm{~V}$ DC or $24 \mathrm{~V} A \mathrm{AC} 4 \mathrm{CO}$ relays
$\times 12 v 4 C 0$ rela
2 mains operated relays 3×8 amp changeovers (secondh 0 rows of 32 gold plated ic sockets (total 320 sockets) Minckiang mechanism with- 2 keys. Miniature Uniselector with circult for electric jigsaw puzzle 5 lins' H use sur
2 telephone hand sets incorporating ear piece \& mike (s/hand) 5 ferrite rods $4^{\prime \prime} \times 5 / 16^{\prime \prime}$ diameter aerials ${ }^{2}$
4 territe slab aerials, with $L \& M$ wave coils 4200 earpieces
10 assorted knobs $\%$ spinger module
ost items knobs $\%$ spindles
save on postage costs.

+

Completi kit or parts or a three channel sound to light unit controlling over 2000 watts of lighting. Use this at home if yo wish but it is plenty rugged enough for disco work. The unit is housed in an attractive two tone metal case and has controls for
each channel, and s master on loff. The audio input and output are by $/ 4$ " sockets and three panel mounting fuse holders provid sre by sockers and three panel mounting fuse holders provide connecting lemps. Special price is $£ 14.95$ in kit form or £25.00 assembled and tested.

MINI MONO AMP
Fitred volume control and a hole for
trol should you require it. The amplift trol should you require it. The amp ate the output to be $3 W \mathrm{rms}$.
More technical data will be includ ed with the amp. Brand new. dition. offered ot th low price of $£ 1.15$ each, or 10 for $£ 10.00$

The AMSTRAD Stereo Tuner.
This ready assembied unit is the ideal tuner for a music centre or an amplifier, it can also be quitcly made into a personal stereo racio- - easy to carry about and which will
give you superb reception.
orer sub
Other uses are as a "get you to sleep radio", you could even
take it with you to use in the teke it with you to use in the lounge when the rest of the
family want to view programmes in which you are not family want to view programmes in which you are
interested. You can listen to some music instead.
Some of the features are: long wave band $115-270 \mathrm{KHz}$ Some or the features are: long wave band $115-270$
medium wave band $525-1650 \mathrm{KHz}$ FMband 87 and fully aligned. Full wiring up data showing you connect to amplifier or headphones and details of suitable FM aerial (note ferrite rod aerial is included for medium and long wave bands. All made up on very compact board
Offered at a fraction of its cost: only $£ 6.00$

25w SPEAKER SYSTEMS
By Amstrad
25 watt RMS loading $8^{\prime \prime}$ wooter
$4^{\prime \prime}$ tweeter with crossover. $£ 12.00$ put cabinets stightily damaged hence this low price, carry our normal guarantee.

CAR STARTER/CHARGER KIT Flat Battervi Don worry you will start your car in a few minutes with this unit- -250
watt transformer 20 amp rectifiers, case and all parts with data $£ 16.50$ or without case $£ 15.00$. post paid.

4/5A BATTERY CHARGER Transformer and rectifier

 € 3.95 \& $£ 1$ post. 3 kits $£ 12$ post paid.PRESTEL UNITS These are brand new
and we understand
and we underst
tested, came with
tested catme
manufacturer
guarantee now void
as the manufacturer
no longer trades

These originally
sold for over $£ 150$
sold tor over $£$.
We offer them
complere, except for
7 plug in i.c.'s and price is only $£ 14.95$ (less than the value of the
STABILISED POWER SUPPLY (Fmains Input BV LAMMDA (UAA) - Ideal for computer add-ons, d.c. output.
Requiated for line volts and load current. Voltage regulation. load to full load or tult loed io 1 lad Complete in heary case -Models avallable: 5 v - 9 A £23.12v-1.5 £13.25.15v-1.2A £13.25.24v-2A £23.

25A ELECTRICAL PROGRAMMER Learn ebour sleep: Have ratio plaving and
kettle boiling as you wake - switch on lights to ward off intruders - have a warm house to com nome to. You can do all these and more.
tamous maker with 25 amp on/off switch. Independent 60 minute memory iogger. beautiful unit at $£ 2.50$.
 THIS MONTH'S SNIP TOP OF THE POPS LIGHTING if you use our disco switch
These have $12 \times 10 \mathrm{amp}$ changeover switches each rated at 10 amps so a whole street could easily be lit with one. Switches adjustable and could be se to give a running light, random flashes, etc etc. 230 volts main operation. Brand new, made by Honey ONLY $£ 6.90$

COMPUTER DESKS
Again available desks - size approx $4^{\prime} \times 2^{\prime}$
2'6" high formica a covered,
cost cost over $£ 100$ each. Our pric
only from $£ 9.50$ - you must collect - hundreds supplied to FROZEN PIPES. Can be avoided by winding our heating cable around them -15 merrs connected to mains costs only about fop per
week to run. Hundreds of other uses as it is wateroroof and veny week to run. Hundreds of other uses as it is waterproof and very
flexible. Resistance 60 ohms $/$ metre. Price $28 \mathrm{p} /$ metre or 15 m for E .95

FLEXIBLE EXTENSION LEAD twin rubber 5 mm ideal grass cutte et. 250 metre coil $£ 25.00$. 50 metre coil $£ 6.75$.

50 THINGS YOU CAN MAKE

Things you can make include Multi range meter, Low
ohms tester, A.C. amps meter. Alarm clock, Soldering iron minder, Two way telephone, Memory jogger, Live line tester, Continuity checker, etc. etc., and you will st have hundreds of parts for future projects. Our 10 Kg
parcel contains not less than 1.000 items. panel meters, parcel contains not less than 1.000 items. -panel meters, timers, thermai trips, relays, switches, motors, drills, tap neons, earphone/microphones, nicad charger, power unit 90% are unused componants.
YOURS FOR ONLY $£ 11.50$ plus $£ 3.00$ post
REVERSIBLE MOTOR WITH CONTROL GEAR size approximately $71_{2} /^{\prime \prime}$ long, $312^{\prime \prime}$ dia. $3 / 8^{\prime \prime}$ shaft Tremendously powerful motor, almost impossible to stop. Idéal for operating stage curtains, sliding doors, ventlators erc., even garage doors If adequately counter-oblanced. We offer the motor complete with control gear as follows?
1 Framco motor with gear box
1 manual reversing $\&$ on/off swi
1 push to start switch
2 limit stop switches
£19.50 plus postage $\mathbf{£ 2 . 5 0}$
1 circuit diag. of connections

J. BULL(Electrical) Ltd.
 (Dept. PE), 34-36 AMERICA LANE,
 HAYWARDS HEATH, SUSSEX RH16 3QU
 Established 30 VEARS

PRICES: All prices include VAT.

MAIL ORDER TERMS: Cash, P.O. or cheque with order. Orders under E12 ad bop service charge. Monthiy account orders accepted from schoois and public companies. Access 8 B/card orders accepted day o
night. Haywards Heath (0444) 454563 . Bulk orders: phone for quote. night, Hay wards Heath (0444) 454563 . Bulk order
Shop open $9.00-5.30$, Mon to Fri, not Saturday.

VENNER TIME SWITCH
Mains operated with 20 amp switch, on
on and one off per 24 hrs . repeats daily
automatically correcting for the length ing or shor tening day. An expensive time switch but you can have it for only $£ \mathbf{\Sigma 2 . 9 5}$ without case, metal case - £2.95, adaptor kit to convert this into a normal 24 hr . tim switch but with the added advantage of u to 12 on/offs per 24 hrs . This makes an Price of adaptor kit is $£ 2.30$. Ex-Electricity Board. Guaranteed 12 month

EXTRACTOR FANS - MAINS OPERATED

 £6.50. Post $£ 1.25$ " 4 ". Muffin 115 v . £4.50. 230 v . E5, 75. Post $75 p$
All the above All the above ex-comput those below are unused
$4^{\prime \prime} \times 4^{\prime \prime}$ e8.50 Post 75 p $9^{\prime \prime}$ American made Tangential Blower $10 \times$ air outlet, dual speed

TANGENTIAL BLOW HEATER
used in best blow heaters.
$\mathbf{3 K w}$ E6.95 complete with 'cold' 'half' and heat switch, safety cut out and connection diagram

25 add post $£ 1.50$ for 1 or 3 for $£ 20$ post paid 2.5 Kw KIT Still available. $£ 4.95+£ 1.50$ post

ROCKER SWITCHES Standard size fit $11.5 \times 28 \mathrm{~mm}$ out. Single pole onfoff $-15 p$ each 1000 for $£ 75$. Single pole
changeover 200 each -1000 for $£ 100$ single with centre off - 25 peach -1000 for $\mathbf{£ 1 2 5}$. Single pole on/off
with neon $-36 p-1000$ for $£ 180$.
ROCKER SWITCH DP/DT 15 amp 250 volts suitable f MICRO reversing erc. - 46p - 100 for $£ 34.50,1000$ for $£ 230$ MICRO SWITCHES V3 type all 25010 amp SpST 20p $1000-£ 100$ Spdt $3001000-£ 150$, very low tongue Spdt

EX-G.P.O. TELEPHONES

Black heavy type
Lightweight 746 type
Ex-G.P.O. plug
Ex-G.P.O. socke
WALL MOUNTING ROOM THERMOSTAT By Danfoss has a really pretty two tone grey case with circular
white scate and dial. Setting temperature from $0-30 \mathrm{c}-13 \mathrm{amp}$ white scate and dial. Setting temperature f
250 v contacts. Price $£ 4.60$. -10 for $£ 40$.
BLEEPERS 6 or 12 v battery or transformer operated, ideal for using in alarm circuits but particularly suitable for can and motor evcle alarms. These give aloud shrill note. Price 69p. 000 for f345. Jap mad

12 volt MOTOR BY SMITHS Made for use in cars, etc. these are very powerful and easity reversible. Size $3 /$ " $^{\text {" long by }}{ }^{\text {3" dia. They have a good }}$
fength of $1 / 4^{\prime \prime}$ spindle -

Price $£ 3.45$

MAINS MOTORS

We have very large stocks of motors from 2 watts to $1 / 4 \mathrm{hp}$. Most at

IONISER KIT

Refresh your home, office, shop, work room, etc. with
negative ION génerator. Makes you feel better and work
harder - a complete mains operated kit, case included.
£ 11.95 plus $£ 2.00$ post.

OTHER POPULAR PROJECTS

R C Bridge K
 3 Channet Sound to Light - with fully prepared metal case $£ 14,9$

 Big Ear, listen through watlsSilent sentinel Ultra Sonic Tránsmitter and receiver
Car Light 'left on' alarm
Secret switch - fools friends and enemies allike
$3-30 v$ Variable Power Supply
2 Short \& Medium wave Crystar Radio
$3 v$ to $16 v$ Mains Power Supply Kit
Radio stethoscope - fault finding ald
Mug stop - emits piercing squark
Morse Trainer -
Drill contról kit
Interrupted beam kit
Transmitter surveillance kit
Radio Mike
FM receiver kit - for surveillance or normal FM
Insulation Tester - electronic megger
Battery shaver or fluorescent from 12 v
Matchbox Radio - receives Medium Wave
40 watt amp - hifi $20 \mathrm{hz}-20 \mathrm{kHz}$
Pwer supply for 115 wz 25 kHz

AC/DC ELECTRONICS COMPONENTS

DEPT PE, 45 CHURCH STREET ENFIELD. MIDDLESEX.

MAIL ORDER ADVERTISING

British Code of Advertising Practice
Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requires advertisers to fulfil orders within 28 days, unless a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please retain proof of postage/despatch, as this may be needed.

Mail Order Protection Scheme

If you order goods from Mail Order advertisements in this magazine and pay by post in advance of delivery, PRACTICAL ELECTRONICS will consider you for compensation if the Advertiser should become insolvent or bankrupt, provided:
(1) You have not received the goods or had your money returned; and
(2) You write to the Publisher of PRACTICAL ELECTRONICS summarising the situation not earlier than 28 days from the day you sent your order and not later than two months from that day.

Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.
We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiser has been declared bankrupt or insolvent.
This guarantee covers only advance payment sent in direct response to an advertisement in this magazine not, for example payment made in response to catalogues etc, received as a result of answering such advertisements. Classified advertisements are excluded.

Master Mectronics-Microprocessors -Now! The Practical Way!

Electronics - Microprocessors - Computer Technology is the career and hobby of the future. We can train you at home in a simple, practical and interesting way.

- Recognise and handle all current electronic components and 'chips'.

- Carry out full programme of experimental work on electronic computer circuits including modern digital technology.
Build an oscilloscope and master circuit diagram.
Testing and servicing radio - T.V. - hi-fi and all types of electronic/computer/industrial equipment.

New Job? New Career? New Hobby?

SEND THIS COUPON NOW.
FRWE! COLOUR BROCHURE
OA TELEPHONE US 0626872598 OR TELEX 22758 (24 HR SERVICE) CACC
NAME ADDRESS
adoress
 ELECTRONICS

Is榙 \qquad
British National Radio\& Electronics School P.O. Box 7, Teignmouth, Devou,TQ14OHS

"Rugby" Controlled Clock

THE National Physical Laboratory at Teddington in Middlesex contains one of the master time standards that exist around the world, others being in Germany, Canada, U.S.A., etc. These are maintained and referenced to each other so that all precision timings can be related to a known constant. The actual definition of the SI unit of time, the second, was decided in 1967 at the 13th General Conference of Weights and Measures as: "the duration of $9,192,631,770$ periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the Caesium 133 atom" . . . out goes Big Ben!!

The 1 Hz signal derived from the standard is transmitted as a radio signal from Rugby, and is coded by interrupting the carrier wave with 100 or 200 ms breaks to indicate a binary 0 or 1 , the binary code containing information about the time, date, year, etc. The code is transmitted during each cycle of 1 minute, and becomes correct at the following 60 th or 0 second, when the same information is sent again as a fast code on second 0 . Originally, only the fast code was sent, with carrier interruptions only marking the start of each second, but the introduction of the slow code has enabled decoders to be designed with relative ease.

The time transmitted is UK CIVIL TIME, i.e. changing automatically for GMT and BST, and each minute contains the following information: minute, hour, day, date,. month, year. In addition, data about GMT/BST indication, parity checks, etc., are sent by continuing some carrier breaks for an extra 100 ms and seconds $1-16$ transmit data about Universal time as obtained from the Caesium standard, and the time obtained from the earth's rotation.
Because the earth's rotation is not exactly uniform, the time obtained by these two forms of measurement varies, and the difference is transmitted as double carrier breaks, the number of seconds affected being multiples of 0.1 secs. in difference. Double breaks of seconds 1 and following show a positive difference . . . i.e., earth's rotational time is ahead of Universal time, and double breaks from seconds 9 and following show a negative difference. When either ex-
ceeds 0.8 secs., a 'leap' second is inserted or deleted at the 16 th second during June or December. This happens every few years and readers may remember such an occurrence a short time ago. At the time of writing, the earth's rotational count is 0.1 sec . ahead of Universal time, indicated by one double break at the 1 st sec . If the Rugby transmitter requires maintenance, this is scheduled for a few hours on the first Tuesday of the month.

This project will show how you can decode the time pips to produce a digital display of the date, hours, minutes and seconds. Further options will show how you can obtain the day information as well. It has been deliberately kept quite simple; consequently it will not be able to tell valid from invalid data, e.g., caused by radio interference, and it will obviously not display the correct time when 'Rugby' is off the air for maintenance. However, it will always reset itself as soon as it has received correct data. Green and yellow 7 segment displays have been used, and with a 'G' range Vero case, the result is a very smart and accurate clock that will baffle people because it has no setting buttons!

CIRCUIT DESCRIPTION

The circuit (Fig. 1) for this receiver was designed by John Robinson, to whom many thanks are extended for permission to publish it here. It should be stated at the outset that if readers have not had any experience of building an RF project, they might find some of the construction details a little awkward. For this reason the decoder has been designed to accept a receiver kit that can be purchased from 'Cirkit' and built without special test equipment.

This design is not difficult to build and align if an oscilloscope is available. L1, C1 and C3 form a resonant circuit, tuned by C 3 to 60 kHz , the frequency of the Rugby transmission. Pin 11 and 10 of IC1e are joined together and, being an inverter gate, the only stable state it can maintain is exactly $\frac{1}{2}$ supply voltage. Thus it acts as a very stiff bias source for pin 9 of IC1d, L1 providing the d.c. path. This causes IC1 d to perform within its linear region, acting as an

Fig. 1. Circuit diagram of the Receiver

Fig. 2. Circuit diagram of the Decoder
amplifier for the received signal. The signal is further amplified by two transistors contained within the 3046 before being fed to the emitters of the long-tailed pair of transistors, one of which has L 2 as its collector load, tuned to 60 kHz by a ferrite core.

The signal then goes to IC1c, again biased into its linear region by IC1b, where it is amplified before being fed into the emitter-follower TR1, acting as a buffer. Feedback is provided by R3, D1 and C6 for stability, and the signal goes into TR2. VR1 acts as a gain control, and D2 cuts off the negative peaks. The Rugby pulses consist of breaks in the otherwise very pure carrier wave, and so during these breaks

Fig. 3. The 'Rugby' pulse waveforms

COMPONENTS ...

OECDOER BOARD

Resistors	
R1	560 k
R2	220 k
R3-R59	150 (57 off) o
	packs (RS 140
Capacitors	
C1, C2	1μ tant (2 off)
Semiconductors	
IC1	4001
IC2	4093
IC3	4068
IC4-IC7	4008 (4 off)
IC8-IC13	4511 (6 off)
IC14, IC15	4026 (2 off)

Miscellaneous
AEG/Telefunken yellow displays D353 (4 off)
AEG/Telefunken green displays D352 (4 off)
Soldercon pins
P.c.b.s.

Vero case G-range 3G
3.5 mm stereo jack plug and socket

20 mm fuseholder and fuse $(250 \mathrm{~mA})$

PDWER SUPPLY

Capacitors

C
C2
C3
$2200 \mu 16 \mathrm{~V}$ elect
220 n
$2 \mu 2$ tant

Semiconductors

REC 1
IC1
1 A bridge rectifier
7805
Miscellaneous
9 V 1 A transformer P.c.b.

OAY OPTION

Resistors	
R1	150
Semiconductors	
IC1	4029
IC2	4051
7red l.e.d.s	

RECEIVER

Resistors

R1	12 k
R2, R5, R6	10 k (3 off)
R3	1 k
R4	39 k
R7	27 k
R8	330 k
VR1	100 k min. 3 mm preset (Cirkit)

$\begin{array}{ll}\text { Inductors } \\ \text { L1 } & \text { Ferrite rod (F14, 200 mm, } 10 \mathrm{~mm} \text { dia. } \\ & \text { Maplin) } 40 \text { s.w. wire }\end{array}$
2 Maplin) 40 s.w.g. wire

Semiconductors

D1	1N4148
D2	OA91
TR1, TR2	BC109 (2 off)
IC1	4069
IC2	3046

Capacitors
C 1
$\mathrm{C} 2, \mathrm{C} 7, \mathrm{C}$
$\mathrm{C}, \mathrm{C} 9$
$470 p$ (see text)
C10, C11, C12,

C14, C15
C3
C4
C5
C6
C13
100 nmin , ceramic (9 off)
5-60p trimmer
100 p ceramic
3 n ceramic
47μ tant
10μ tant

YEAR ANO MONTH OPTION

Resistors

R1-R28 150 (28 off) or 4 off d.i.l. resistor packs

Semiconductors

$\begin{array}{ll}\text { IC1 } & 4015 \\ \text { IC2, IC3, IC4, IC5 } & 4511 \text { (4 off) }\end{array}$

Constructor's Note

The Rugby receiver and Toko coil is available from Cirkit, Park Lane, Broxbourne, Herts. Receiver stock no. 40-06002.
The displays are available from AEG/Telefunken, 217 Bath Road, Slough, Berkshire.

TR2 will have nothing to amplify; consequently its collector will be pulled high by R6, taking with it pin 1 of IC1a. This gate, along with IC1f, is arranged as a Schmitt trigger to ensure a clean, fast rise and fall time to the final pulse train which then goes to the decoder board. When the carrier resumes, after either 100 ms or 200 ms , TR2 conducts, pulling pins 1 and 12 of IC1 down to OV (Fig. 3).

DECODER

The circuit diagram of the Decoder is shown in Fig. 2. The reason for so many i.c.s is to avoid multiplexing the data into the display drivers. This can produce so much noise with the digits constantly switching, causing sudden currentdumping, that the 'Rugby' signal would be swamped by the noise.

The pulses coming from the receiver enter pin 13 of the first monostable formed by IC1c and d. This acts as a latch to prevent the circuit being triggered twice (by the double pulses), by lasting for approx. $600-700 \mathrm{~ms}$. Its output changes state 'at the same time as the trigger pulse, and fires another monostable, IC1a and b, which, after approx. 150 ms , via IC2d, clocks the shift register formed by IC4 to 7. Note that a Schmitt trigger is specified for IC2d to ensure that the rise time is fast enough.

Fig. 4. Data level at pin 13 IC1
It will be seen from Fig. 4 that the data level sampled at pin 13 of IC1 (pin 15, IC4), 150 ms after triggering will be the required ' 0 ' or ' 1 '. On each subsequent clock-pulse, this serial data stream shifts through the eight outputs of each of the four registers cascaded together. Thus IC4 to 7 act almost as a serial to parallel converter because, on the 59th sec., the 32 output pins will be displaying the state dictated by the last 32 secs. of 'Rugby' pulses.
The six ' 1 's from the framing pattern will form six of the outputs of IC4, and these are connected to seven of the inputs of a 4068 NAND gate. The 8th and final NAND input comes from the rising edge of the 60th sec. data pulse (taken from the 150 ms monostable to avoid double-loading of data caused by the double pulses), at which point the output of the 4068 goes low, latching the data from the register outputs into the display drivers, providing the date, hours and minutes display.

SECONDS DISPLAY

The seconds display is produced by using the data pulses from the 150 ms monostable to clock two cascaded BCD counters with built-in 7-segment decoders and display drivers. The '60th sec.' pulse from the 4068 is inverted and used to reset the counters so that they constantly re-cycle through $0-59$. All the display drivers require current-limiting resistors and readers can either use separate resistors (150 ohms), which is the cheaper alternative, or, as in the

Internal view of the Decoder
prototype, d.i.l. resistor packs which are more expensive but much quicker to install, and give a neater finish. The decimal point of one of the displays is activated to mark the separation of the hours from the minutes.

POWER SUPPLY

The power supply (Fig. 5), being a standard transformer, bridge rectifier and regulator circuit needs little comment, but it is mounted on its own p.c.b. for safety reasons.

Fig. 5. Circuit diagram of the p.s.u.

NEXT MONTH: Layout and wiring of the p.c.b.s and alignment procedure

The

 first digital self-bulidorgan-5yn interfacesRS232 \& MDi
odigreel Wersi nomes The Alpho has o star-sudded pedigree Wersi nomes the Alph Helios ond Goloxy - ployed by fredigree onew and Klous Wunderlich
star is bom - Alpho!
Availoble in kit form lopp 40 hours to build) or

- Availoble in
reody buill.
- Weighs only 58 lbs (pontoble modell). - Using buith-in RS232 ond Mid-interfaces, Apputer.
be ployed and programmed vio home comput - Buitt-in computer con programme your own sounds - Butr-in computer cossette.
storable on dato cole - Surprisingly low price! Post the coupon tockist.
of nearest sto Enclose fi) (returnoble) for Alpho demonstration recor Also in digital range:

See and hear the new generation of Wersi!

Alpha kits
from $£ 1356$

BETA S, T, CP. 4 octaves DELTA \& GAMMA 5 octaves, full pedal board.

RUGBY TIME?

MSF CLOCK is EXACT

8 DIGIT display of Date, Hours, Minutes and Seconds.
SELF SETTING at switch-on, never gains or loses, automatic GMT/BST and leap year, and leap seconds.
EXPANDABLE to Years, Months, Weekday and Milliseconds, and use as a STOPCLOCK to show when something happened.
COMPUTER or ALARM output also, parallel BCD (including Weekday) and audio to record and show time on playback.
DECODES Rugby 60 KHz atomic time signals, superhet receiver (available separately), built-in antenna, 1000 Km range.
FUN-TO-BUILD kit $£ 79.70$ includes ALL parts, $5 \times 8 \times 15 \mathrm{~cm}$ case, pcb , by return postage etc and list of other kits.

CAMBRIDGE KITS

45 (FR) Old School Lane, Milton, Cambridge.

Low Cost Transducers
 Speed Sensor
 This optoelectronic sensor fits to any
 speedometer cable with cable core dia up to 3.2 mm and gives an output frequency of 10 pulses per revolution. £14 (incl. VAT) del. UK
 Flow Sensor
 This versatile flow sensor can be used for a variety of liquids flowing in either direction, giving a linear digital output signal related to flow over the range of $1.5-500 \mathrm{~L} / \mathrm{HR}$. Connects to hoses with an intemal diameter of $4-8 \mathrm{~mm}$.
 £17.50 (up to $100 \mathrm{~L} / \mathrm{HR}$) Enviro Systems Ltd, Hampsfell Road, Grange-over-Sands, Cumbria. Tel: 04484 4233/4

FREE CAREER BOOKLET

Train for success, for a better job, better pay Enjoy ali the advantages of an ICS Diploma Course, training you ready for a new, higher pald, more exclting career. Learn in your own home, in your own time, at your own pace, through ICS home study, used by over 8 million already! Look at the wide range of opportunities awaiting you. Whatever your interest or skill, there's an ICS Diploma Course there for you to use.
Send for your FREE CAREER BOOKLET today- at no cost or obligation at all.

Over $40^{\circ} O^{\prime}$ and ' A ' Level subjects from which to
choose, Your vital passport to career success.
I COMPUTER PROGRAMMING
|ELECTRONICS
COMMERCIAL
| ART
TV, RADIO \&
[AUDIO SERVICING

RADIO AMATEUR'S
LICENCE
INTERIOR
DESIGN
WRITING FOR
PROFIT

CAR MECHANICS
IbOOK-KEEPING \& ACCOUNTANCY
I

Value for Money

The ever-rising cost of defence equipment is, or should be, a matter of concern for every taxpayer. The Ministry of Defence has, in fact, a newly aggressive stance to ensure value for money for every taxpayer's pound. The Minister himself, a successful businessman needs no lessons from the Chancellor or the Prime Minister in economic discipline.

Thus the move to open competitive tender of which the contract for Type 2050 sonars for the Royal Navy is a fine example. They are destined for Type 22 Batch 3 and Type 23 frigates.

The competition was won by Ferranti's Cheadle Heath Division who submitted four different proposals, that with Marconi as subcontractor being the Ministry selection. For Ferranti the contract is worth $£ 24$ million if successfully completed plus the possibility of export orders which could bring the total to $£ 50$ million or more.

Heady stuff, indeed! Ferranti has now become the prime contractor for Type 2050, the successor to Type 2016 in which the company was only subcontractor to , Plessey. But all is not yet in the bag. When Ferranti has completed the first set to Ministry satisfaction the production of the remaining sets will still be open to competitive tender so that everyone will stilf need to be alert on performance not only in design and development but also on production.

The principal advances in technology to be incorporated in Type 2050 sonars are a switch from a single large mainframe computer to distributed processing using microcomputers and the use of digital instead of analogue signal processing. The latter will lean heavily on original work of the Admiralty research establishment.

Another welcome development in defence procurement is Thorn EMI's involvement in the development of a terminally guided warhead for the US Multiple Launch Rocket System (MLRS). Thorn EMI is in a consortium of French, West German and US companies on the project with

Thorn EMI's share being worth some $£ 15$ million.

It is the first major co-development programme under a Memorandum of Understanding between the four nations. The two-way street across the Atlantic which has been virtually one-way for many years could now start to have real substance.

Social Responsibility

Ferranti is actively recruiting engineers for the sonar contract and, in fact, most defence equipment contractors are constantly searching for new talent. But in the background is a debate that has been running for a number of years. Should an engineer use his talent for potentially destructive activities or, on principle, undertake only constructive or humanitarian work?

A number of the early atomic scientists, shocked at the monster bomb they created, pulled out. An extreme case, perhaps, but illustrating the point. It is estimated that 40 per cent of the world's scientists and engineers are engaged in one form or another on designing and building military equipment. So clearly very large numbers are prepared to tolerate if not actually relish such employment.

Social responsibility is very much a matter of personal conscience. The IEE lays down rules of conduct for professional engineers. A member's work should constitute no avoidable danger of death or injury or ill health to any person.

A member must also take all reasonable steps not to waste natural resources, and not to damage the environment. But lawful work in connection with equipment intended for the defence of a nation is not considered an infringement of the guidelines although it obviously, if the equipment is used in anger, kills people, wastes natural resources and damages the environment.

If one works in a munitions factory the choice is clear cutt. One helps make shells, bullets and bombs or, if a pacifist in the true sense, one finds more congenial employment elsewhere.

For the scientist and engineer the position is ambiguous. The laser scientist is interested in lasers. They have many beneficial applications in fields as diverse as surveying and eye surgery. But also as military target markers and rangefinders, not to mention potential use in the US Strategic Defence Initiative, popularly described as'Star Wars, although in this case they would be purely protective against incoming missiles and thus arguably humanitarian.

The communications engineer is in equal difficulty. His military radios may be used to order a salvo to be fired, aiding destructión. Or to call up an ambulance to save a life. Even civil broadcasting is used by many countries to poison the mind (evil) as well as to educate and entertain (good).

Sonar and radar have both peaceful and aggressive applications and the same may be said of any engineering discipline or any type of product. Even the humble toilet roll
gives aid and comfort to those engaged in military operations just as much as to those in the home.

It is worth remembering that the armed services have beneficial use in other than military operations. Hundreds of lives are saved annually by air-sea and mountain rescue military helicopters. Armies throughout the world are employed in natural disasters, building temporary bridges, providing transport and other relief facilities. Naval craft are often first on the scene of a shipwreck.

It is right that social responsibility should be a subject of discussion among engineers, always bearing in mind that even good intentions can have evil consequences. It could be argued from a high moral stand-point that the whole of Britain's defence industry should be closed down and the armed forces disbanded. But the resultant unemployment and economic disturbance would be disastrous for thousands of families immediately and for the whole nation in the event of attempted subjugation by a foreign power.

Cellular War

No moral dilemma was involved in Racal's decision to sponsor Grand Prix yachting as part of the publicity campaign for Vodafone. The 45 ft craft with its 12 man crew is to compete under the name of Vodafone Venture ' 85 and is expected to provide a strong challenge in the classic Admirals Cup as well as other races during the working-up period.

Racal won the race to get Vodafone cellular radio into service a few days before rival Cellnet. No doubt Cellnet will be responding with some publicity ideas of like nature.

With so many new names around it is good to see that cellular radio has brought back a real old timer, Marconiphone. This brand name was popular in the 1930s on domestic radio receivers made in the Hayes factory of EMI alongside the HMV models. Both had the same chassis internally, the difference being in cabinet styling when a radio was a piece of furniture as well as a source of entertainment.

Marconi, the original owners I suspect, must have reacquired the brand name because it now appears as Marconiphone cellular products in a range of telephones for the cellular market.

How commercially successful the new service will be is anyone's guess at the moment. The other much-heralded innovation, the cabling of Britain, is proceeding more slowly than anticipated with no overnight fortunes being made. Cellular radio has the advantage of being directed, initially at least, to the professional person where the cost benefit equation is fairly easy to work out. Also to the well-heeled such as fellow competitors to Vodafone Venture '85. I pecall yacht-racing once described as equivalent' to standing fully clothed under a cold shower tearing up $£ 5$ notes. Cellular radio costs peanuts in comparison.

Don't put it off ony longer!

Protect your family and property

 with your know how and our security modules. Complete systems start from as little asA COMPLETE SECURITY SYSTEM FOR ONLY $£ 39.95$

+ V.A.T.
Control Unit
Enclosure
Enclosure
Key Switch \& 2 keys
L.E.D.'s

4 quality surface Magnetic
MS 1025
With only a few hours of your time it is possible to assemble and install an effective security system to protect your family and property, at the amazingly
low cost of $£ 39.95+$ V.A.T. No compromises have been made and no corners have been cut. The outstanding value results from volume production and direci
supply. Assembly is straight forward with the detailed instructions provided supply. Assembly is straight forward with the detailed instructions provided
When installed you can enjoy the peace of mind that results from a secure home
Should you wish to increase the level of securty, the sygtem When installed you can enjoy the peace of mind that results from a secure home.
Should you wish to increase the level of security, the system may be extended at
any time with additional magnetic switches, pressure any time with additional magnetic switches, pressure pads or ultrasonic sensors. Don't wait until it's too late-order today

CA 1250-2 zone alarm control unit with buit in alarm \& power supply
HW 1250 Enclosure \& Hardware Kit $f 19.95+$ VA.T LED 1 - Set of 4 l.e.d.'s in chrome bezels + Push KS 3901 - 3 position Key Switch $915+$ YA.T. KS 3901-3 position Key Switch $f 3.43+$ VAT.
HS 588-5 $5^{1 / 2}$ Horn Speaker, output of 11 -dbs with CA 1250 or SL 157 fex + yat. Wide range of modules and accessories etc. Send S.A.E. for details.
US 5063 - advanced Digital Ultra sonic Detector, high sensitivity, with false alarm suppression $f 13.95+$ YA.T.
SC 5063 - Enclosure for US $5063-27.95$ + VAT. IR 1470 - infrared system to provide 50^{\prime} invisible beam, includes both transmitter and receiver SL 157 - Siren Module 12V

SELF-CONTAINED ULTRASONIC UNIT CK 5063
 protessionally built and tested modules.

- Adjustable ranga up to 25 ft . Kuilt-in timed alarm Key operated switch. OH, Test and Operate only
Provision for an extension speaker Fully self-contained £37.00 3901, 3^{-}Speaker 3515
+V.A.T
Now you can assemble a really effective intruder alarm at this low price using contains evervthing necessary to provide an effective warning systems, the kit house or flat. With a built-in LED indicator and test position the unit is easily set up requiring no installation. It may simply be placed on a cupboard or desk, Movement within its range will then cause the buit-in siren to produce a parts included and supplied with full instructions for ease of assembly. parts included and supplied with full instruction

Add 15\% Vat to all prices	Saturday 9.00 to 1.00 p	Dept PE8,
Add 70p post end petking to all orders	SAE with sll enquiries	
Uniks on demonstration Shop hours 9.00 to 5.30 pm .	Order ty tolephome or post	Princes Risborough,
Shop haurs 9.00 to $5.30 \mathrm{p} . \mathrm{m}$. Closed Wodnesday	- your creotit card [a	Bucks. HP17 0AT.
Please allow 7 deys for defivery		Princes Risborough (084 44) 6326

* * NI-CAD BARGAINS * *

Exequipment, guaranted 100%, rech
Cadmum bate
Tus 1AH. Measures $2^{1 / 4}$ \& 2° Diamene
E3.00 each inc. VAT (pepp 25p).
3 cells 13.6 VV Capaciry 600 mAH . Measures i1/4 $\times 11 / 4$ Diameler

* * STEPPER MOTORIS * \downarrow

Brand new stock ol 'Astrosyn' Type expm.aoss stepper

ions supplied. WC. VA
PANTEC 'banana' multi-meters
We are stockists of the Pantec range
of instrumenis induding the tamous
BANANA' Meler IIUStrated. FUU ONE-YEAR GUARANIEE. LOWEST
U.K. PRICE Only Ez5 Inc. VAT and C.... PRick only Ez5 inc. VAT and

 ACV. DC 1 io 2.5 A

OPTICAL ISOLATORS

SPEERYY UNIVAC M4000 opto--solater vints providing 2RV of insula. dion bebween Modems and Temminals, 25, way oc connectors

C

BECKMAN TURNS COUNTER DIALS

wur Helipots Brad new wee famm dampl. Counting up to 15 eann tor a

- CROSS HATCH GENERATOAS *

LABGEAR COLOURMATCH CMGOOAPG
UHF teievision pattern generators giving
cross-katch, dot and grey scale patiens
Fully tested and guaranteed. NOW JUST
foo inc VAT \& pap.
Labgear colourmaich cmgoiorg Gated Rainbow colo pattern generators. Cross-hatch/dot \& gated rainbow (RGB B UNAOHM EOESA PAL Colour-bar 8 pattem gen. $\quad £ 275$ + KORTNG 82512 PAL/NTSC Colour \& pattem gen Mail Order customers please add E250 postage each item
,
RALFE ELECTRONICS
 OSCILLOSCOPES
HEWLET-PACKARD 141A Storage DSill

1KW POWER AMPS

H\&H PROFESSIONAL AUOIO POWER AMPUFERS MOOEL $S 5000$ available from stock in litue used condition at vasty reduced price. Specification includes: Two channel $500+500 \mathrm{~W}$. Distortion
 PRICE JUST 2275 inc. VAT. (p\&pis).

* 125W MAINS INVERTERS *

2. Bottery input to 230 V AC. Output time-base oscillator, fully endod 50 Hz blue-steel cases with integral $13 A$ socket Dimensions approx. $4 \times 6 \times 10^{\circ}$. BRAND NEW. f60 inc VAT and carriage.

- MAINS STABILISFRS * Small quantity available of brand-new Gouid ECVN250A constant voltage transformers. 190
260 V AC input to 240 V AC output @ 250 wats
 \qquad
* SWEEPERS

TELONIC 2003 System. 800-1500MHz E3ES TELONIC SM2000 with $500-900 \mathrm{MHz}$ plug-in E 17 KNIGHT KG-687 $3-220 \mathrm{MHz}$ E150

TEKTRONIX TYPE 529
Television Waveform Monitors

E450 + VAT

- TEKTRONIX

FLIF MANAGER SYSTEM MODE 4007 Option 31 Third disc drive) GOS1 Graphic System compatible

PLEASE NOTE All the pre owned equipmem showm has been carefuly tested in our workshop and recondfioned where necessany. It is sold in first-class operational condition and most tems carry a three
months guaramee. For our mail order customers we have a money-back scheme. Repars and servicing to all

* COMPUTER PERIPHE ALS *
1.6MB $8^{\prime \prime}$ FLOPPY DISC ORIVES -

New Stock

BRAMD-NEW AT SURPLUS PRICE, Fully Shugarn compatible MFE COROATION Model M-700 DOUBLE SIDED industry standard $8^{\prime \prime}$ Floppy disc drives. Double-density up to 1.6MBytes. Power requirements $\pm 5 \mathrm{~V}$. and $+24 \mathrm{~V} @$
1.1A. 240 V 50 Hz LOWEST PRICE EVER $-\mathbf{5 1 6 0}$ inc. VAT, CARRIAGE \& HANDBOOK.

* 19M BYTES WINCHESTERS *

Now available again, UNITED PERIPHERALS 3100 Minidisc Drives (3×8^{n} sealed platens) capable of over 19M8. Sold in un-tested, un-guaranteed condition for just $£ 125$ inc VAT, carriage and copy of handbook.

* MULTI-RAIL LINEAR PSU's *

Recent stock of brand new COUTANT ESM-Series Power Supplies at surplus prices. Model ESM15.2 giving regulated, stabilsed DC outputs 5 V @ 24 V @2A.240V AC input.Measures $5 \times 8 \times 11^{\prime \prime}$ Fully enclosed. In original cartons with handbooks. $£ 45$ each + VAT ($p \& p \notin 2$).

* SWITCH-MODE POWER SUPPLIES * Fully tested and guaranteed PSU's now at LOWEST EVER PRICES. Manufactured by FARNELL, GOULD/ADVANCE.

 All prices now include VAT, packing and posting.

* CENTRIFUGAL BL MWFESS *

 TORIN' Type U62B1. 230V Cap'Start (supplied), very powerful ($200 \mathrm{~W}, 3,000 \mathrm{rpm}$) centrifugal fans for large rack cooling or enclosure extraction applications.Overall dimensions $20 \times 12 \mathrm{cms}$, outlet $6 \times 4 \mathrm{cms}$. BRAND NEW. Surplus stock. $\mathbf{E 1 5}$ each inc. VAT, p\&p $\mathbf{~} \mathbf{8 1} .50$.

MRNON al IRE HLLage!
 V.T. s views and opinions are entirely his own and not necessarily those of PE

MWELL-THUMBED copy of Collins English Dictionary which, I may have mentioned before, doubles as a doorstop, defines the word 'materialism' as 'interest in and desire for money and possessions rathèr than spiritual or ethical values'.

This is why I hesitated at first to label an old friend of mine, Dr. Max Smollett, a materialist. Nevertheless, that's what he is alright. But in quite another and much more complimentary sense of the monniker.

Dr. Smollett heads a tight-knit 45 -strong team, of which $25-30$ are qualified scientists and engineers, which forms the Central Materials Laboratory of the Philips organisation in the UK. In these modest numbers the Laboratory serves in many vital ways the 20 odd establishments that make up the manufacturing side of the group.

But let Max take up the story which puts into perspective the key role that materials research has played and is still playing in the forward march of electronic technology.
"We're organised into a number of groups," he said. "One of the most important in this safety-conscious age deals with hazardous materials and environmental hygiene. Here we're intimately concerned with the proper protection of the company's employees.
"Our hazardous materials adviser assists local plant managements on all aspects of the measurement and control of potentially dangerous situations arising from the use of various chemical products. He also works closely with the company's medical advisers and sites are visited regularly to inspect and advise on current procedures. Backing this activity we have an environmental hygiene coordinator whose field covers the legal situation, modification of production processes to reduce the quantity of materials discharged, the design of eflluent disposal and treatment processes, air filtration, the storage of hazardous materials on site, water treatment, soil pollution and so on.
> "OOr development group works on what l'd call non-standard projects"

"The analysis and measurement of various materials used in the manufacture of Philips products is another of our responsibilities. We also undertake short-run pilot production of components and devices on an experimental basis. Particularly we concentrate on metals, chemicals, PCBs and ceramic boards.
"Our development group works on what I'd call non-standard projects. In other words,
those which do not fall easily into any other category. This group's job is to exploit new technologies in order to provide devices either for selling in the market place or for use in our plants. And all along the line we are adding to our knowledge and experience of new materials as they come into use.
"A wide range of services is provided by the metallurgical section. They include the manufacture of trial quantities of experimental alloys, the production of microsections for examination and interpretation, microhardness testing and advice on the metallurgical suitability of components and materials and quality checks in terms of mechanical properties and dimensions.
"Finally, there is our technical photography section which, among other tasks, produces high-precision artworks which have a role in the manufacture of thick film circuits, thermoelectric coolers, high-precision graticules and the photo-chemical etching of components."

New materials, many with exciting potentialities, are always coming on to the scene. At present CML is taking a long hard look at lithium niobate, used in the manufacture of surface wave filters. When suitably processed it can replace inductors, capacitors and resistors. And it can make a solid contribution to the continuing crusade for smaller size and volume of equipments.

With such a wide range of responsibilities and interests; CML needs and has an equally wide range of disciplines in its ranks. "Of course," said Max, "we have physicists. We also have chemists, some specialising in analysis, and other 'general' chemists who are undaunted by any problem, organic or inorganic, whether or not it involves materials to which they are accustomed. They really thrive on investigation. Then there are our metallurgists, plastic technologists and 'natural' engineers who are able to design engineering and mechanical processes."

Talking of the contribution made to electronics by materials research, Max said: "The range of materials in direct use in electronic equipment is far wider than you might suppose and stretches from silicon and germanium to high-grade plastics with electronic properties. But getting some of these materials into active use in equipment is no overnight job. It can take $10-15$ years from conception to inception."

What does Max recall in the way of milestones in materials research? "There are several," he said. "One of them is the progress made in the purification of silicon. The present standard was undreamed of 20 years ago. The same goes for cadmium mercury telluride, used in the infrared sector. Here again, we have achieved remarkably high standards of
purity. But there are still problems to be licked. And licked they will be:"

Anything exciting on the stocks? Currently CML is looking at the new molecular beam epitaxy machines (costing $£ 500,000$ a throw) which have the ability to build up a material atomic layer by atomic layer, thus revealing all kinds of properties that lie in the quantum mechanical field.

An example of this is to build up a material in such a way that instead of giving out an invisible ray of light when a voltage is applied, it can be constrained to emit light for different wavelenghts. This means an entirely new dimension in physics. It means that materials can be tamed and controlled to a remarkable degree.

It seems likely, therefore, that the physicists of today will have to start learning new tricks. This, I suspect, is unlikely to put off Max Smollett. A man in his fifties, with a lifetime's association with electronics, he has seen plenty of changes, accepted them and added to his store of knowledge and experience.
> "It seems likely that the physicists of today will have to start learning new tricks"

He took his doctorate at the Imperial Collegè, London, in solid state physics, with a concentration on epitaxial layers, conditions of growth and stability, etc. Then, feeling he might benefit by getting out of his own backyard for a time, he applied for and won a 2-year scholarship in theoretical physics at the Sorbonne in France.

After that he began, at the ripe old age of 26, to think about a job. He hankered after an academic career, but jobs were scarce and the pay was low. So he offered his experience in semiconductor physics to the Mullard (now Philips) Research Laboratories at Redhill, Surrey, and joined them in 1953.

Then as the commercial markets began to open up he moved to the company's purposebuilt semiconductor plant at Southampton. There he held a number of posts of great diversity working in the infrared field, in transistors and then, more recently, integrated circuits.

To his latest appointment he has brought an intimate acquaintance with many of the triumphs, setbacks, but always challenging phases in the development and high-speed advance of electronic technology.

Like others who take the reasoned view, Max Smollett believes that the standards of quality, reliability and long life that both manufacturers and consumers are seeking, in a greater degree than ever before, have their roots in the materials that industry sells and the public buys.

Any competent chef can serve you a satisfying dish. But only if he has the right ingredients.

NEW THIS MONTH

iec flter plug
Made by Rendar, integrated chassis mounted plug with mains filter rated 2A. Like RS 238 514. Only 83.00 .

MAN8910 0.8" 7. REG LEDS
MANB90.8 red seven segment LED's comOIL SOCXETS
Gold plated low-profile at unbeatable prices:
14DIL E71/00
16DIL 681100
24 DIL E12100
VOLTAGE REG SCOOP
7924UC 1A 24V 40p
uA $3127 U C$ 1/A vanable $50 p$
78MGUIC Variable $55 p$
78MGUIC Variable 65p
LEADS AT SILLY PRICES!!
PL616 DC adaptor lead for Walkman, 1.8 m long 30 p .
PL5z8 2 pin DIN line skt to phono plug 0.2 m long 20 p .
PL5es 5 pin DIN to 3 pin DIN audio lead 1.2 m long 40p.
PL541 Intercom extn lead. 3.5 mm line skt to
3.5 mm plug. 6 m long 80 p .

PL708 Video lead. PL259 plug to F type plug. 3 m low loss coax 85 p .
FM TUNING MOOULE. This neat unit $75 \times 40 \times 19 \mathrm{~mm}$ as used in car radios etc Stan dard 10.7 MHz IF output. $9-12 \mathrm{~V}$ DC supply. Full connexion data supplied. $\mathbf{E 2 4 0}$. Stereo Cassette Head. Only $£ 1.00$.

1W AMPLIFIER

2914 - Audio amp panel $95 \times 65 \mathrm{~mm}$ with TBAB20 chip. Gives iW output with 9V supply Switch and vol. control. Just connect batt and speaker. Full det
£12: 25 for $£ 25$

AM TUNER PANEL
2916 - For use with mono amp 'above. Neat panel $60 \times 45 \mathrm{~mm}$. Only $\mathbf{£ 1 . 5 0 ; ~} 10$ for $\mathbf{£ 1 2 0 0}$.
PCB MOUNTTNG NI-CADS Much sought after 4.8 V 150 mA batts with PCB Much sought after 4.8 V 150mA batts with PCB
mintg tags on 25 mm pitch. Batt size $25 \times 16 \mathrm{~g}$. $\begin{aligned} & \text { mint } \\ & \text { Jdags on } \\ & \text { for paralleling. } 95 p \text { ea; } 10+85 ;\end{aligned} 25+$ $70 \mathrm{p}: 100+60 \mathrm{p}$.

1984/85 CATALOGUE 84 page 44 size - Bigger, Brighter, Better - more components than ever beforel With each copy there's disčount vouchers, Bargain List. Wholesale
Discount List Bulk Buyers List Order Form and Discount List, Bulk Buyers List, Order Form and
Reply Paid Envelope. All for iust $£ 1.00!!$ Winter Supplement out Now. - Send large SAE for your free copy.

'TREKKER'

Computer-controlled Robot built around the gearbox described below. Complete kit of parts inc PCB, program listings for BBC (other micros soon).
f4s.85. 20W ribbon cable (min 3 m recommended 5 m better) $£ 1.30 \mathrm{~m}$. SAE for illustrated leaflet.

The unit has $2 \times 3 V$ motors, finked by a magnetic clutch, thus enabling tuming of the vehicle, and a gearbox contained within the black ABS housing, reducing the final drive speed to approx 50 rpm . Data is supplied with the unit showing various options on driving the motors etc. E5.9. Suitable. Two new types of wheels can be supplied the
aluminium discs and smatler plastic wheels are now sold out). Type A has 7 spokes with a round bläck tyre and is 100 mm dia. Type \mathbf{B} is a solid heavy duty wheel 107 mm dia with a flat rigid tyre 17 mm wide.
$\begin{array}{ll}\text { Wide. } \\ \text { PRICES: Gearbox with data sheets: } & \text { e5.95 ea } \\ & \text { Wheal type } A \text { : }\end{array}$ Wheel type B
f0.70 ea FIBRE OPTICS
coop purchase of single and twin cable, for use with yisible light or infra-red. Core 1 mm dia, overall 2.25 mm dia. Single $50 \mathrm{p} / \mathrm{m} ; 20 \mathrm{~m}$ coil E 6.30 . Twin $90 \mathrm{p} /$ $\mathrm{m} ; 20 \mathrm{~m}$ coil $\mathbf{f 1 1 . 0 0}$.
Official orders welcome-minimum invoice
charge $\mathbf{E 1 0}$. No. min on CWO charge $£ 10$. No. min. on CW Our store has enormous stock of

CREENWELD	443 C Milbrook Road	
SO 1 OHX	Southamption	
10703$)$	$772501 / 783740$	SO1 OHX Tol (0703) $772501 / 783740$

ALL PRICES INCUUDE VAT: JUST ADD Elp P\&AP

ORIC AND SINCLAIR COMPUTERS

Oric 1 computer 48K $\mathbf{5 8 5}$ (E82) $\mathbf{E 9 2}$. Oric Atmos computer 48 K £171 ($\mathbf{E 1 5 8 \text {) £168. }}$ CCP40 Oric colour printer $\mathbf{£ 1 2 4}$ (£115)
£132. Sinclair flat screen TV (£113)
$\mathbf{(f 1 0 5}$ £132. Sinclair flát screen TV (£113) (£105)
f115. Sinclair Spectrum Plus Computer £182 (£176) £187. Sinclair OL Computer £406 (E385) £410. Sinclair Spectrum 48K $\mathbf{£ 1 3 1}(\mathbf{£ 1 3 1)} \mathbf{£ 1 4 3}$. Microdrive $\mathbf{£ 5 1}$ ($\mathbf{E 5 0}$ £60. RS232 interface $\mathbf{1} \mathbf{£ 5 1}$ ($\mathbf{£ 5 0}$) £60. Spe cial offer: Microdrive + Interface $1+4$ cartridges $£ 102$ ($£ 100$) £120. Blank microdrive cartridges $\mathbf{5 5 . 5 0}$ (E6) E7. Standar fioppy disc interface for Spectrum E102 suitable disc drives). Fuller FDS keyboard suitable disc drives). Fuller ros keyboard unit $\mathbf{2 5 6}$ (£56) £62. Interface $2 \mathbf{£ 2 0 . 4 5 (£ 2 0)}$ E24. 32 K memory upgrade kit for 16 K spectrum (issue 2 and 3 only) E31 ($\mathbf{(2 8)}$ £30. Spectrum Centronics printer interface $\mathrm{f51}$ (f47) £52. ZX printer has beer replaced by the Alphacom 32 E 71 (f69) E82. 5 printer rolls (state whether Sinclair puter f45 (f4) F54. 16K ram packs for puter £45 (E44) E54. 16K ram packs for COMMODORE COMPUTERS Commodore C16 Starter Pack £145 (£142) f162. Commodore Plus/4 £305 (E281) £301. Commodore 64 f222 (E215) £235. Convertor to allow most ordinary mono cassette recorders to be used with the Vic 20 and the Commodore 64: $£ 9.78$ ($£ 9$) E11. Bargain package:- cassette convertor

+ compatible cassette recorder $£ 37$ ($£ 38$) f44. Commodore cassette recorder $£ 43$ (E44) $\mathbf{E 5 0}$. Printer interfaces for Vic 20 and the Commodore 64:- Centronics $\mathbf{£ 4 5}$ (£41) f46. RS232 £45 (E41) £46. Disc drive £233 (£209) £234. 1520 printer/plotter £165 (£149) f159. MPS801 Printer £235 (£220) £245. Light pen £29 (£29) £33.

ACORN COMPUTERS
Electron E173 (E179) £199. BBC Model B E404 (E357) E387. Kenda double densit disk interface system £149 (£131) £141 See below for suitable disc drives CUMANA DISC DRIVES
To suit disc interfaces of Sinclair spectrum, BBC B and Videogenie. Single: 40 double sided $€ 218$ ($£ 195$) $£ 15$), 80tr s $\mathrm{f}_{207}(\mathrm{E} 186$) £206. 80tr ds £234 (E209) E229. Dual: 40 tr SS E299 (f280) £320, 40t ds £395 (£353) £393, 80tr ss E372 (£334) £ 374,80 tr ds $£ 437$ (£3s0) £430. PRINTERS

Oki Microline 80 £138 ($£ 135$) $£ 165$, Brother HR5 $£ 162$ ($£ 146$) $£ 170$. Shinwa CTI CPA80 (E344) £374. Epson R $\times 80$ F $\rightarrow 77$ (E344) Es74. Epson RX80 $\underset{(£ 286)}{〔 2516}$ Epson FX80 £3s9 ($\mathbf{E 3 5 8)}$ £388. Combined matrix printers and electric typewriters: Brother EP22 £173 (f166) f185. Brother EP44 £258 (£235) £260. MCP40 Oric colour printer/plotter £134 (£123) £140. Interfaces to run the above printers from Vic and the Commodore $64 \mathbf{£} 45$ (241) £46. We can supply interfaces to run the above print UK101, SUPERBOARD AND
VIDEOGENIE
We still support these Computers. Write for our list.
COMPUTER REPAIRS
We offer a world-wide repair service. Write for a quotation.
SWANLEY ELECTRONICS
Dept PE, 32 Goldsel Rd., Swanley, Kent BR8 8EZ, England Please allow 7 days for delivery
Teł: Swanley $\{0322$) 64851 . Official orders welcome. UK prices are shown first and Include post and VAT. The second price in brackets is for export customers in Europe and includes insured air mail postage. The third price is for export customers outside Europe (including Australia etc) and includes insured airmail postage.

Mail order \& shops
441 PRINCES ROAD, DARTFORD, KENT DA1 1RB Telephone: (0322) 91454
ORDERING INFORMATION: P/P 50p on orders less than $£ 20$ in value otherwise post free. All components full spec \& guaranteed Discounts available on orders over $£ 50$ - phone for details. For unlisted components phone for price. Goods normally despatched by return post.

NEW CATALOGUE NOW AVAILABLE CONTAINING THOUSANDS OF LINES MANY ILLUSTRATED

This incredible volume contains everything required by the home constructor, amateur radio and CB user and computer enthusiast.

We think the semiconductor section contains more types than have ever been offered to the hobbyist.
Sections are headed as follows:
Aerials, Amplifiers, Audio Accessories, Batteries, Boxes, Bulbs, Capacitors, Crystals, Car Components, Car Audio, CB \& Ham Equipment, Computer Connectors, Fuseware, Hardware, Headphones, Knobs, Lamps, Leads, Loudspeakers, Microphones, Meters, OPTO, PCB, Resistors,
Semiconductors, Special Effect Equipment, Switches, Power Supplies, Test Equipment, Tools, Transformers, Wound Components.
In addition to listed items we continue to provide a procurement service for obsolete and difficult to obtain types.
How many suppliers do you have at the moment that offer a service like this?
Please fill in coupon below and send with $£ 1.25$. Print clearly as coupon is used as address label.
Catalogue contains $£ 2.50$ discount order form - You make a profit straight away.

NAME
ADDRESS

POSTCODE

PROGRAMMABLE VOLTAGE DETECTORS (ICL8211CPA \& ICL8212CPA)

L
AST month we looked at an i.c. which could monitor four voltage levels simultaneously in a very sophisticated way. This month we stay on the theme of voltage monitoring and look at a couple of fairly simple yet extremely useful programmable voltage detectors made by Intersil.
The ICL821I and ICL8212 (the 'CPA' suffix simply refers to their temperature range and package type) are very low power bipolar i.c.s intended for precise voltage detection or generation. Each device contains an accurate voltage reference, a comparator, and a pair of output buffer/drivers. Fig. 1 shows the pinout for both i.c.s, and Fig. 2 their specifications.

BASIC OPERATION

The internal voltage reference for both i.c.s is Tomimdily 1.154 . The voltage whint is fed to the threshold input (pin 3) by the external circuitry is compared with this internal reference voltage. In the case of the 8211 , when the threshold input voltage drops below the reference, the output turns on. The 8212 operates in the inverse mode; when the threshold input voltage rises above the reference, its output turns on.

The output for both i.c.s is an open collector npn transistor, with its emitter connected to 0 volt. Hence, when the output turns on, current will be sunk from the load into pin 4 . The output of the 8211 is current limited to typically 7 mA , which makes it suitable both for general use and for directly driving an indicator l.e.d. without the need for a series resistor. The output of the 8212 has no current limit, so care must be taken to avoid exceeding the 30 mA maximum current shown in the specification. (An upper limit of 25 mA is recommended in practice.) In both cases the load should be connected between a positive supply rail (not necessarily the i.c.'s own supply: the load supply should not exceed +30 volts, however) and pin 4.

TYPICAL USE OF THE I.C.s

Fig. 3 shows a typical application of the 8211. (Assume that R3 is omitted for the moment.) A potential divider, R1 and R2, across the supply rails feeds a voltage to the threshold input of the i.c. If this voltage drops below 1.15 V the output of the i.c. turns on, sinking typically 7 mA from the 'low voltage' warning l.e.d. into pin 4 . The values of R1 and R2 are chosen to scale the voltage at pin 3
such that the i.c. output turns on at the re quired supply voltage. The i.c. itself can work over a range of 2.2 to 30 V , allowing considerable flexibility in the range of voltages which can be monitored. The values of R1 and R2 are determined by:

Supply voltage to cause i.c. to "trip' $=$ $\frac{1 \cdot 15(\mathrm{R} 1+\mathrm{R} 2)}{\mathrm{R} 1}$
 R1

The current which is allowed to flow down the resistor chain could be as high as $50 \mu \mathrm{~A}$. On the other hand, an obvious application of the i.c. is in monitoring battery voltages, where high current consumption is undesirable. Both i.c.s are optimised for low quiescent current consumption in their 'output turned off' state $(22 \mu \mathrm{~A}$ for the 8211 and $20 \mu \mathrm{~A}$ for the 8212$)$ to minimise their effect on hattery life Hence, very low resistor chain current is to be aimed for when designing within battery powered systems. The practical minimum is $6 \mu \mathrm{~A}$, since currents below this become comparable with the input current at pin 3 of the i.c.; and inaccuracies can result. In conjunction with the equation shown above for the 'trip' voltage, we can therefore add the current determining equation:

Resistor chain current $=$ supply voltage (i.e. 0.000006 A up to
(R1 + R2)
0.000050 A)

HYSTERESIS

Both i.c.s have a low current switched output, the 'hysteresis' output, connected to pin 2. This is an open collector pnp transistor with its emitter connected to the positive supply rail, and is switched on (causing pin 2 to be pulled up to near the positive supply) for input voltages to pin 3 in excess of the nominal 1.15 V . It can be used with simple feedback arrangements (for example, R3 in Fig. 3) to provide some positive feedback, or hysteresis, around the i.c. The hyteresis ensures that once the i.c. output has turned on, the input voltage has to change by a considerable amount before the i.c. will turn off again. This is very useful in stopping oscillation or 'hunting' around the threshold point. In the case of 8212 without hysteresis, for example, the i.c. turns on as soon as the threshold input exceeds $1 \cdot 15 \mathrm{~V}$. This causes the output to be turned on, sinking current from the load, which as a result might cause the supply voltage to drop slightly, turning off the i.c.
again ... etc, etc! Hysteresis establishes a 'dead band', helping to prevent or reduce this oscillatory effect.

There are several ways of introducing hysteresis into the system, the two most common ones being shown in Fig. 4. The circuit of Fig. 4 a requires that all of the current flowing in the resistor network should be able to be sourced by the hysteresis output, which is capable of supplying $15 \mu \mathrm{~A}$ according to the specifications. For the circuit of Fig. 4b, the current to be sourced by the hysteresis output will be defined by the values of the two trip voltages. For low values of hysteresis, circuit (b) is to be preferred. The equations shown define the low and high trip voltages; the low trip voltage is the voltage at which the i.c. output changes state when the supply voltage is decteasing, and the high trin poltage is the voltage at which the output changes when the supply is increasing. If used for other purposes in the circuitry (other that simply switching the threshold resistor network as shown in Fig. 4), it is recommended that the hysteresis output current should be limited to $10 \mu \mathrm{~A}$.

USING THE I.C.s

Although any voltage between -5 V and the positive supply rail may be applied to the threshold input (pin 3), it is advisable to limit it to below +6 V , since above that voltage the input current increases dramatically. Prolonged operation above this voltage can cause a decrease in performance of the i.c. When resistive dividers are used to feed the threshold input, the monitored voltage can be higher than the i.c.s own supply voltage, as long as the voltage at pin 3 (and pin 2 if appropriate) is kept below the i.c. positive supply, and preferably below +6 V as explained above.

If the output is to be used to feed into logic circuitry, a pull-up resistor must be provided

Fig. 1. Pinout

Characteristic	Notes	Minimum Value	Typically	Maximum Value	Minimum Value	Typically	Maximum Value	Units
Supply Voltage	0 to $+70^{\circ} \mathrm{C}$ (Spec's are measured at +5 V unless otherwise stated)	2.2		30	$2 \cdot 2$		30	V
Quiescent current	Voltage at Pin $3\left(V_{T}\right)=1.3 \mathrm{~V}$ Voltage at pin $3\left(V_{T}\right)=0.9 \mathrm{~V}$	10 50	22 140	40 250	50 10	110 20	250 40 +70	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Temperature range	Spec's are measured at $+25^{\circ} \mathrm{C}$ unless otherwise stated	0		+70	0		+ 70	${ }^{\circ} \mathrm{C}$
Output current, max Current into any pin of I.C.	Sunk into pin 4 (or out of any pin), absolute maximum	4	7	$\begin{gathered} 12 \\ \pm 30 \end{gathered}$	15		$\begin{array}{r} 30 \\ +30 \end{array}$	$\mathrm{m}_{\mathrm{m} A}$
Output voltage	At pin 4	-0.5		$+30$	-0.5		$+30$	mA
Threshold input voltage (pin 3)	For supply voltages of 2.2 to 25 V	-5		$\begin{aligned} & \text { (+ve } \\ & \text { supply) } \end{aligned}$	-5		$\begin{aligned} & \text { (+ve } \\ & \text { supply) } \end{aligned}$	V
	For supply voltages of 25 to 30 V	1+ve supply -30)		$\begin{aligned} & \text { (+ve } \\ & \text { supply) } \end{aligned}$	1+ve supply $-30)$		$\begin{gathered} \text { (+ve } \\ \text { supply) } \end{gathered}$	V
Hysteresis voltage	i.e. voltage at pin 2	I + ve supply -10)		[+ve supply $+0.5)$	(+ve supply -10)		(+ve supply $+0.5)$	V
$\begin{aligned} & \text { Threshold trip } \\ & \text { voltage (at pin } 3 \text {) } \end{aligned}$	$\begin{aligned} & \text { Ouput current + ve supply }=2.2 \mathrm{~V} \\ & =4 \mathrm{~mA} \\ & \begin{array}{cl} \text { Output voltage } & + \text { ve supply }=5 \mathrm{~V} \\ =2.0 \mathrm{~V} & + \text { ve supply }=30 \mathrm{~V} \end{array} \end{aligned}$	0.98	1.145	1.19	1.00	1.145	1.19	V
		$\begin{aligned} & 0.98 \\ & 1.00 \end{aligned}$	1.15	1.19	1.00	1.15	1.19	V
			1.165	1.20	1.05	$1 \cdot 165$	1.20	\checkmark
Threshold voltage temp. coefficient	Output current $=4 \mathrm{~mA}$, output voltage $=2.0 \mathrm{~V}$		+200	250		+200		m/ $/{ }^{\circ} \mathrm{C}$
Threshold line regulation	Variation in threshold voltage for $\pm 10 \%$ supply change		± 1.0			± 1.0		$m V$
Threshold input current (into pin 3)	Voltage at pin $3=1.15 \mathrm{~V}$ Voltage at pin $3=1.00 \mathrm{~V}$		100 5			$\begin{gathered} 100 \\ 5 \end{gathered}$	250	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Maximum Hysteresis current	i.e. Available from pin 2 (voltage at pin $3=1.3 \mathrm{~V}$) $7 \mu \mathrm{~A}$ flowing from pin 2 (voltage at $\operatorname{pin} 3=1 \cdot 3 \mathrm{~V}$)	1+ve supply -0.2)	21	0.1	15	21		$\mu \mathrm{A}$
Hysteresis saturation voltage			(+ve supply -0.1)		1+ve supply -0.2)	1+ve supply -0.1)		V
Hysteresis leakage current	$\begin{aligned} & \text { +ve supply }=+10 \mathrm{~V}, \operatorname{pin} 2= \\ & 0 \mathrm{~V}, \operatorname{pin} 3=1.0 \mathrm{~V} \end{aligned}$						0.1	$\mu \mathrm{A}$
Output saturation voltage	Pin 4, output current $=4 \mathrm{~mA}$		0.17	0.4		0.17	0.4	V
Output leakage current	+ve supply $=+5 \mathrm{~V}$			1.0			1.0	$\mu \mathrm{A}$
Output leakage current	+ve supply $=+30 \mathrm{~V}$			10			10	$\mu \mathrm{A}$
Power dissipation	Up to $50^{\circ} \mathrm{C}$			300			300	mW

Fig. 2-Specifications

Fig. 3. Low voltage supply indicator
between pin 4 and the logic positive supply rail. For TTL use 1 k , for LSTTL use 4 k 7 , or in the case of CMOS logic use any suitable value, typically between 10 k and 1 M . The 8211 is guaranteed to be able to drive 2 conventional TTL or 8 LSTTL inputs, and the 8212 to drive 4 conventional or 16 LSTTL inputs.

APPLICATIONS

There are many applications of the ICL8211CPA and ICL82.12CPA which are

$$
\begin{aligned}
& \text { Low trip } \\
& \text { voltage }
\end{aligned}=\left(\frac{(R 1+R 2) \times 1.15}{R 1}\right)+0.10
$$

Low trip $=\left(\frac{R 2 R 3}{(R 2+R 3)}+R 1\right) \times \frac{1.15}{R 1}$
$\underset{\text { voltage }}{\text { High trip }}=\left(\frac{(R 1+R 2)}{R 1}\right) \times 1.15$

Fig. 4. Two alternative methods of adding hysteresis
in the area of voltage monitoring, supply monitoring, transducer level detection, etc. Such is the versatility of these i.c.s, however, that more diverse uses for them are possible. Fig. 5, for example, shows a simple voitage regulator using an external npn power tran-
sistor as the series pass element. The output voltage is defined by:

$$
\mathrm{V}_{\mathrm{out}}=\frac{1 \cdot 15(\mathrm{R} 1+\mathrm{R} 2)}{\mathrm{R} 1}
$$

The two capacitors are necessary to ensure

Fig. 5. Simple voltage regulator
stability, since the 8212 has no internal frequency compensation. This regulator can be used with lower input voltages than most commercially available regulators, and uses less power than almost any commercially available device. It is ideal, therefore, for use as a supply regulator in battery powered systems.
Fig. 6 shows the 8212 being used as a 'programmable Zener diode'. R2 is the resistor which would normally be provided between the positive supply rail and the Zener's cathode. VRI and R1 set the 'Zener' output voltage, and C 1 stabilises the circuit, again due to the lack of internal compensation in the i.c. The value of the Zener voltage is given by:
$V_{\text {Zener }}=\frac{1 \cdot 15(\text { R1 }+ \text { the set value of VR1) }}{R 1}$
Typical 'Zener' equivalent impedances over the current range $300 \mu \mathrm{~A}$ to 25 mA will vary from 4 to 7 ohms.
Finally, the i.c.s can be used as a constant
current source or sink, as shown in Fig. 7. The 8211 will provide approximately $130 \mu \mathrm{~A}$, and the 82.12 approximately $25 \mu \mathrm{~A}$ of current. The equivalent parallel resistance is in the tens of megohms, making them fairly accurate current sources and sinks which are suitable for many biasing applications in differential amplifiers, comparators, etc.

Although nominally intended as voltage monitoring devices, especially in low power or battery powered systems, the ICL8211 and 8212 can be seen to have numerous applications in different types of circuitry. The ICL8211CPA is widely available, although the price seems to vary considerably so shop around. It is sometimes referred to as the ICL8211A, or even just the ICL8211-these usually do mean the 8 pin di.i. version described here. Both the ICL8211CPA, and the ICL8212CPA, are available from Hawke Electronics, Amotex House, 45 Hamworth Road, Sunbury-on-Thames, Middlesex.

Fig. 6. 'Programmable Zener' (voltage reference)

Fig. 7. Using the i.c.s as constant current sources

A POWVER

last month's applications project provided us - with a very comprehensively monitored three rail power supply system. One of the things that it couldn't do, though, was to warn us if the power failed completely. Fig. 8 shows a circuit which is capable of warning us of both over- and under-voltage conditions on a supply, even if that supply has dropped to zero.
IC1 is used to monitor over-voltage conditions, and IC2 to monitor under-voltage conditions. Normally, the outputs of IC1 and IC2 are both turned off, and hence the logic output is at logic 1 (a high level). If an excessively high voltage appears on the supply, the voltage at pin 3 of IC1 rises above 1.15 V and the output of IC 1 turns on, taking pin 4 down almost to 0 V . This forces the threshold input of IC2 $(\operatorname{pin} 3)$ aimost to 0 V , which turns on the output of IC2 providing a logic 0 (low level) on the logic output. Likewise, a very low voltage on the supply will cause IC2 to trip of its own accord since the voltage presented at pin 3 by the network R3, R4 and R5 will drop below 1.15 V .

Hysteresis is provided for IC2, as shown in Fig. 4a. The high trip voltage (i.e. the voltage at which the i.c. turns off when the power supply voltage is increasing) is chosen to be higher than the voltage at which IC1 trips. The low trip voltage is chosen to be the voltage at which the power supply is considered to be excessively low. By this means the 'watchdog' circuit is non-volatile-once tripped it cannot reset itself, even if the power supply has gone down to 0 V and back up again, since the voltage applied to the IC2 resistor chain would have to exceed the voltage necessary to turn IC1 on if IC2 were to be turned off, and this in turn would force IC2 to turn hard on again! A momentary reset switch is provided to set up the system when power is first applied. It must be pressed to reset the system after every occasion on which the cirucit is tripped.

THE ALARM

IC3 with its associated components forms an audible alarm to warn that the circuit has been tripped. IC3a and.IC3b act as a slow
running oscillator with a wide mark/space ratio, which in turn gates on and off the audio oscillator formed by IC3c and IC3d. The audio oscillator directly drives a small piezo sounder XI. The slow running oscillator is arranged to turn on the audio oscillator for only a fraction of a second, once every few seconds, providing a slow regular 'blip' sound. R8 determines the 'off' time, and R9 the 'on' time; varyng either of these will vary the respective durations of the silence and the audible tone. This has been arranged to minimise power consumption, since the triggering of the alarm indicates that the power supply might be failing-a situation which might be made even worse by a dramatic increase in power consumption of the circuit.

D1 and D2 allow for a standby battery to be provided for the audible alarm, to allow it to function even with the main power supply turned off. The alarm battery should preferably have a voltage just below that of the main power supply, so that it will only be used if the main supply drops significantly in

Fig. 8. Power supply 'Watchdog'

Fig. 9. Veroboard layout

Photograph of Veroboard layout

voltage. Although it may be allowed to exceed the main supply in voltage, it should not do so by more than 25% or so, since there is a danger of a high level at pin 1 of IC3a not being sufficiently high to act as a valid logic 1 level.

APPLICATIONS

This circuit is ideal for long term monitoring of a supply which must be continuously present. For example, this could be a battery backup supply for an otherwise volatile
memory system or a comprehensive timing circuit. Any failure of the supply, either high or low, will cause a logic 0 to appear at the logic output and the alarm to sound, even if the supply is quickly reinstated, until the reset button is pressed.

Resistors R1, R2, R3, R4, R5 and the alarm battery, are all shown for a 5 volt supply rail, but they can all be scaled for other voltages using the principles described earlier. With such high values used for the resistors, the trip voltages can be a little in error from those predicted by the equations, so some ex-
perimentation may be necessary. Variations in the 1.15 V internal reference should be borne in mind, also; these are shown in the specifications, Fig. 2. The logic output should feed into CMOS logic, or into suitable buffering prior to TTL circuitry, since the input of TTL or LSTTL, if connected directly to the logic output, could feed a logic 1 into IC3 pin 1 in the absence of a power supply to IC1 and IC2, preventing correct alarm operation. This circuit is ideal for use in battery systems, largely due to its low current consumption (well under $100 \mu \mathrm{~A}$) in the 'normal' state.

PRACTICAL ELECTRONICS PRINTED CIREUII BUARD SERVILE

Printed circuit boards for certain PE constructional projects are now available from the PE PCB Service, see list. They are fully drilled and roller tinned. All prices include VAT and postage and packing Add $\mathbf{£ 1} 1$ per board for overseas airmail. Remittances should be sent to: PE PCB Service, Practical Electronics Editorial Offices, Westover House, West Quay Road, Poole, Dorset BH 15 1JG. Cheques should be crossed and made payable to IPC Magazines Ltd.

Please note that when ordering it is important to give project fitle, order code and the quantity. Please print name and address in Block Caps. Do not send any other correspondence with your order.

Readers are advised to check with prices appearing in the current issue before ordering.

NOTE: Please allow 28 days for delivery. We can only supply boards listed here.

PROJECT TITLE	Order Code	Cost
FEB '81 Slave Light Dimmer	102-01	£1.88
MAR ' 81 $27 / 28 \mathrm{MHz}$ Converter Microphone Mixer Period Power Tester	$\begin{aligned} & 103-01 \\ & 103-02 \\ & 103-03 \\ & \hline \end{aligned}$	f 1.79 f 1.83 E 2.25
Speech Processor APRIL'81 Mini Drill	$\begin{aligned} & 104-01 \\ & 104-02 \end{aligned}$	$\begin{aligned} & \mathrm{f} 1.55 \\ & \mathrm{f} 1.50 \end{aligned}$
Digisounder MAY'81 Thermometer	$\begin{aligned} & 105-01 \\ & 105-02 \end{aligned}$	$\begin{array}{r} £ 6.65 \\ £ 1.49 \end{array}$
JUNE '81 pH Meter	106-01	£2.06
SEPT' 81 Horologicum Analogue Frequency Meter Ignition System	$\begin{aligned} & 109-01 \\ & 109-02 \\ & 109-03 \\ & 109-04 \\ & 109-05 \\ & 109-06 \\ & \hline \end{aligned}$	£3.16 £3.11 £2.97 £2.87 £2.47 £2.28
APRIL'82 Med. Resolution Equaliser (UK 101) Enlarger Timer	$\begin{aligned} & 204-01 \\ & 204-02 \end{aligned}$	$£ 1.73$ £4.02
$\text { AUG } 82$ Áutomatic Photographer Home Alarm	$\begin{aligned} & 208-01 \\ & 208-02 \\ & \hline \end{aligned}$	$\begin{array}{r} £ 1.94 \\ £ 3.21 \end{array}$
Audio Booster JAN'83	301-01	£3.32
Radio Booster FEB '83	302-02	£1.80
MAR '83 Into the Real World Accessory PSU $4 \frac{1}{2}$ Digit Frequency Meter	$\begin{aligned} & 303-01 \\ & 303-02 \\ & 303-03 \\ & \hline \end{aligned}$	£3.99 £ 1.35 $£ 3.69$
JUNE '83 Program Conditioner	306-01	£2.30
SEPT ' 83 Guitar Active Tone Control Ground Communication System	$\begin{aligned} & 309-01 \\ & 309-02 \\ & 309-03 \\ & \hline \end{aligned}$	£2.27 £2.13 £2.31
DEC' 83 Expanding the Vic 20 FEB. 84	312-01	£5.18
Temp. Çontrolier	$\begin{aligned} & 402-04 \\ & 402-05 \\ & \hline \end{aligned}$	$\begin{array}{r} \mathrm{f} 1.85 \\ \mathrm{f} 2.61 \end{array}$
MAR ${ }^{\prime} 84$ Spectrum Autosave	403-01	f 1.83

EACH INSTRUMENT HAS A CLEAR MIRRORED SCALE AND COMES COMPLETE WITH A ROBUST CARRYING CASE, LEADS \& INSTRUCTIONS
PRICES Our prices include VAT and postage and goods are normally despatched by return Please write or telephone for details of these and the many other instruments in the Alcon range including multimeters, components measuring, automotive and electronic instruments.

스 [çay

 Instruments Ltd19 MULBERRY WALK LONDON SW3 6DZ TEL: 01-352 1897 - TELEX: 918867

$\star \star \star$ STEPPER MOTORS $\star \star \star$

 For robotics, turtles and X / Y PlottersType ID35.014. Low Current Model $\uparrow 48$ steps/rev. 17 deg steps. $)$ Wt 300 Grms. Price $£ 13.50$ inc. Type HR23. (Higher Resolution) +200 steps pecrev. (1.8 deg steps.) $\boldsymbol{*}$ W 600 Grms. Price $\mathbf{f 7 9 0 0}$ inc. P/P \& VAT.
RS 8 stage Darlington Drives 2 I035's from the User Port Price 975 inc. P/P \& VAT SA1027. I.C. Single Pulsed input datermines speed. Second input datermines diraction. Suitable for direct Drive of one ID35. (HR23 requires additional Power Transistors). Price 56.50 inc. P/P \& VAT Book, DIV Robotics $\&$ Sensors with the BBC MICRD. $\mathbf{7} .95$ inc. P/P. (Commodore 64 versien same price.)
NOTE Motor prices vary with foreign exchange rates. If ordering after 1.4.85, please telephone first.

Telephoned ACCESS \& VISA orders welcome.
We cannot help with advice on projects, but a Price List of the RS components mentioned in the above books, plus limited Stepper Motor data is available free, BUT will be sent ONLY ON RECEIPT OF AN A4 SELF ADORESSED ENVELDPE, STAMPED WITH $24 p$.

CARDIGAN ELECTRONICS

Dept PE, Chancery Lane, Cardigan, Dyfed, Wales. Tel: (0239) 614483 Shop Hours: Mon-Sat, 10 to 5

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.

This will assist advertisers in processing and despatching orders with the minimum of delay.

RECEIVERS ANO COMPONENTS

TURN YOUR SURPLUS capacitors, transistors, etc into cash Contact COLES HARDING \& CO., 103 South Brink Wisbech, Cambs. Tel. 0945584188 . Immediate settlement.

BOURNEMOUTM/BOSCOMBE. Electronic components specialist for 33 years. FORRESTERS (NATIONAL RADIO SUPPLIES), Late Holdenhurst Road. Now at 36, Ashley Road, Boscombe. Tel. 302204. Closed Weds.

ELECTRONIC "GOODIE" PACKS. First 40 contain moving coil meter. 55 including P/P. S.A.E. details: J. WYER, 2 St. Edmond Place, Dundee. 0382-827163.

HUNT EEECTRONICS 1985 components catalogue. Send 50 p in stamps, refunded with first order, to P.O. 57, Derby DE6 6SN. (0283) 703071.

SMALL ADS

The prepaid rate for classified advertisements is 36 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 12.00$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Banks Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Practical Electronics, Room 2612, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

HOME SECURITY

SECURITY Alarm Systems

FREE COMPREHENSIVE CATALOGUE!
LOWEST DISCOUNT PRICES

- HIGHEST QUALITY EQUIPMENT

FREE DIY DESIGN GUIDE
FULL Y IILLUSTRATED
MICROCHIP CIRCUITRY
QUICK DESPATCH SERVICE
FULL INSTRUCTIONS
SEND SAE OR PHONE
C-TEC SECURITY. Dept PE.
Unif 1. Stephensway Ind. Estate. Goose Green.
Wigan WN3 6PH. Telephone (0942) 42444

HOME SECURITY CONT.

Manufacturers of Professional Alarm Equipment, for DIY \& the TRADE. Send now for our New 16page Brochure, Full of Information $\&$ the Lowest prices.

Tel: (0484)
21000
CENTURION Dept PE 93 Wakefield Road, Huddersfield HD5 9AB W. Yorks.

SERVICES

INVENTORS
 Think of something new?

Write it down!
American industry offers potential royalties for your innovations and new products. We offer free confidential disclosure registration and initial consultation in London regarding your idea's potential value. Write without delay for your free information package.

American Inventors Corporation 82, Broad Street, Dept PT
Westfield, Massachusetts 01086 United States of America.
A fee based marketing company.

books and publications

FUL SIZE, top quality service sheets $£ 2.50+$ i.s.a.e. CTV/ Music Centres $£ 3.50+$ L.s.a.e. Repair data almost any named TV-Video $£ 10.50 \mathrm{inc}$. circuits. L.s.a.e. brings any quote free magazine/price lists. TISPE, 76 Churches, Larkhall, Lanarkshire. 0698883334 :

BOOKS WANTED FOR CASH

Top prices paid for your unwanted electronics and computer books.
We also have a wide selection of new and used books and magazines in stock.
S.A.E. for list and further details:

JAMES ELECTRONICS (DEPT. P.E.) P.O. Box 2, Rothwell,

Leeds LS26 OUY

COURSES

FULL-TIME TRAINING COURSES

2 YEAR

B-TEC NATIONAL DIPLOMA (ONO) ELECTRONICS \&
COMMUNICATIONS ENGINEERING 15 MONTHS
B-TEC NATIONAL CERTIFICATE (ONC)
ELECTRONIC EQUIPMENT SERVICING 15 MONTHS
B-TEC NATIONAL CERTIFICATE (ONC) COMPUTING TECHNOLOGY 9 MDNTHS
B-TEC HIGHER NATIONAL CERT (HNC) COMPUTING TECHNOLOGY \& ROBOTICS
THESE COURSES INCLUDE A HIGH
PERCENTAGE OF COLLEGE BASED
PRACTICAL WORK TO ENHANCE FUTURE EMPLOYMENT PROSPECTS
SHORT COURSES WITH PREVIOUS KNOWLEDGE
Prospectus from:

LONDON ELECTRONICS

 COLLEGEDept: AA, 20 Penywern Road,
London SW5 9SU. Tel: 01-373 8721.

SERVICE SHEETS

BELLS TELEVISION SERVICES' for service sheets of Radio, TV; etc $£ 1.50$ plus SAE. Colour TV Service Manuals on request. SAE with enquiries to B.T.S., 190 Kings Road, Harrogate, N. Yorkshire. Tel. (0423) 55885.

miscellaneous

CLEARING LABORATORY, scopes, generators, P.S.U.'s, bridges, analysers, meters, recorders etc. Tel. 0403-76236.

SUPERB INSTRUMENT CASES by Bazelih, manufactured from PVC. Faced steel. Vast range, competitive prices start at a low £1.50. Punching facilities at very competitive prices. BAZELLI, (Dept. 23), St. Wilfreds, Foundry Lane, Halton, Lancaster LA2 6LT.

PARTS DEPARTMENT ADDRESSES of most TV audio manufacturers, phone no's etc., only $£ 4.75$ inclusive. DOWNS ELECTRONICS, 79 High Street, Dalkieth, Midlothian EH22 1JA.

SERVICE MANUALS. Test equipment, audio, television, video etc. From $£ 1.00$. L.S.A.E. enquiries: MAURITRON (PE), 8 Cherrytree Road, Chinnor, Oxon.

THE SCIENTIFIC WIRE COMPANY 811 Forest Road, London E17. Telephone 01-531 1568				
ENAMELLEO COPPER WIRE				
SWG	1 lb	8 oz	4 oz	202
8 to 34	3.63	2.09	1.10	0.88
35 to 39	3.82	2.31	1.27	0.93
40 to 43	6.00	3.20	2.25	1.61
44 to 47	8.67	5.80	3.49	2.75
48	15.96	9.58	6.38	3.69
	SILVER P	EO C	RR	
14 to 30	9.09	$\begin{aligned} & 5.20 \\ & \text { COPP } \end{aligned}$	2.93	1.97
14 to 30	3.97	2.41	1.39	0.94
Fluxcore				
Solder	5.90	3.25	1.82	
Prices include P\&P VAT. Orders under $£ 2$ add 20p. SAE for list of copper and resistance wire.				

BENCH AND PROJECT POWER SUPPLES Complement your electronics project with one of our quality British designed and manufactured power supplies. Send S.A.E. with your requirements for immediate quotation. COLTECH ELECTRONIC CONTROLS LTD, Holly Lane Industrial Estate. Atherstone, Warwickshire CV9 2HA. Telephone 082774299.

TEKTRONIX SCOPES, computers, recorders, rack cabinets, all cheap to clear. SINCLARE 01-316-1779.

BURGLAR ALARM EQUIPMENT. Ring Bradford (0274) 308920 for our catalogue or call at our large showroom, opposite Odsal Stadium.

CABINET FITTINGS

Fretcloths, Coverings, Handles, Castors, Flight Case Locks \& Parts, Jacks. XLRs, Bulgins, Reverb Trays, P\& N mic Stands, ASS Glasstibre Horns.
CELESTION POWER Speakers.

TO ADVERTISE ON THESE PAGES PHONE MANDI 01-261-5846

$\underset{\substack{\star \\ \text { GROUP PA D DISCO }}}{ }$
SxRER

GROUP PA. DISCO
AMPUFERS post $£ 2$

150 watt Output, 4 input Mixer pre-amp. Illustrated | 150 watt Output, Slave 500 mv . Input 3 Speaker Outputs. | $£ 99$ |
| :--- | :--- |
| $150+150$ | |
| $£ 80$ | |

 150 watt PA. Vocal, 8 inputs. High/Low Mixer Echo Socket 129 60 watt Mobile 240 v AC and 12 v DC \& $8-16$ ohm +100 v line $£ 89$
Reverb Unit for Microphone or Musical Instruments $£ 35$ PP $£ 9$. Revert Unii for Microphone or Musical Instruments £35 PP $£ 1$.
Electronic Echo Machine for midetc $£ 85$ PP $\mathbf{1} 1$. Deluxe $\mathbf{£ 9 5}$. Electronic Echo Machine for michetc $£ 85$ PP fl . Deluxe $\mathrm{E95}$.
BAKER LOUDSPEAKERS Post E 2 eac
Type type P.A./Disco/G
Midrange
Hi-Fi Midran
$\mathrm{Hi}-\mathrm{Fi}$
$\mathrm{Hi}-\mathrm{Fi}$
P.A.Disco/Group

Hi-Fi
Hisin
P.A.Jisco/Group
P.A.Jisco/Group

DC $50 / 10$
Mid $100 / 10$

DISCO CONSOLE
120 watt $£ 300$; 120 watt £199; or Complete Disco $£ 300$
DELUXE STEREO DISCO MIXER/EQUAUSER as above plus L E.D V.U. displays 5 band graphic equaliser, left/right fader, switchable
inputs for phonefline, mikelline. inputs tor phonefline, Mikelline.
Headphone Monitor, Mike Tatkover Switch f124 pp
f As above but 3 Deck inputs, 4 Line/Aux inputs. 2 Mic. inputs,
Headphone Monitors $£ 145$.
P.A. CABINETS (empty) Single 12 £32; Double 12 £38. carr $£ 10$.
WTH SPEAKERS $75 \mathrm{~W} £ 54 ; 90 \mathrm{~W}$ £73; $150 \mathrm{~W} £ 82$; 200 W E 90 . HORNBOXES 200 Watt $£ 32$, 300 Watt $£ 38$. Post $£ 4$.

WATERPROOF HORNS 8 ohms. 25 watt $£ 22.30$ watt $£ 25.40$ wat E33. 20W plus 100 volt line E38. Post £2.
MOTOROLA PIEZO EECTRONIC HORN TWEETER, ${ }^{33}$, 8 , ${ }^{\text {In, square }}$
100 watts. No crossover required. $4-8-16$ ohm, $7 \% 8 \times 3 / 8 \mathrm{in}$.
CROSSOVERS. TWO-WAY $3000 \mathrm{c} / \mathrm{s} 40$ watt $£ 4.50 .60$ watt $\mathbf{5 5} .100$ watt $£$
3 way 950 cps 3000 cps .60 watt $£ 6.50,80$ watt $\varepsilon 7,100$ watt $£ 10$.

Make	Model	Site	Watts	Ohms	Pr
AUDAX	WOOFER	$51 / \mathrm{in}$			110.50
GOODMANS	HIFAX	$7^{1 / 2 \times 4}{ }^{1 / 4}$ in	100	8	
GOODMANS	HB WOOFER	8 in.	60	8	¢13.50
WHARFEDALE	WOOFER	Bin.	30		99.50
CELESTION	DISCO/Group	10 in .	50	8116	
SEAS	WOOFER	10 in	50	8	¢19.50
GOOOMANS	HPG/GROUP	12 in	120	815	1355.00
G000mans	HPD/OISCO	12 in .	120	8115	23.00
HNH	discolgroup	15 in .	100	48/16	¢ 44
GOODMANS	HPIBASS	15m.	250	8	174
GOOOMANS	HP0/BASS	18in	230	8	887

18in. $\mathbf{E 7 . 5 0}$. Loudspeaker Covering Vynair etc. Sam
Ready Built Deluxe 4 Channel 4,000 watt sound chaser + speed + programme controls $£ 69$. Mk. 216 programmes, $£ 89$. PP $£ 2$.
MAINS TRANSFORMERS
$\begin{array}{ll}250-0-250 \mathrm{~V} 80 \mathrm{~mA} .6 .3 \mathrm{~V} 3.5 \mathrm{~A} .6 .3 \mathrm{~V} \cdot 1 \mathrm{~A} & \text { Price Pos } \\ \mathbf{E 7 . 0 0} \mathrm{f} 2\end{array}$ $220 \mathrm{~V} 25 \mathrm{~mA} .6 \mathrm{~V} 1 \mathrm{Amp} £ 3.00 \quad 220 \mathrm{~V} 45 \mathrm{~mA}$. $6 \mathrm{~V} 2 \mathrm{Amp} \quad £ 4.00 \frac{\mathrm{c}}{\mathrm{f}}$ 250 V 60 mA .6 .3 V 2 A .
Low voltage tapped outputs available
7 amp $6,8,10,12,16,18,20,24,30$
$\mathrm{Famp} 6,8,10,12,16,18,20,24,30,36,40,48,60 \quad \mathrm{E} .00 \mathrm{£} 2$ ditto $2 \mathrm{amp} £ 10.50 \mathrm{amp}$
$31-26-0-26-33$ volt $6 \mathrm{amp} £ 12.50$$\quad 5 \mathrm{amp} \sum_{£ 14.00}^{£ 16.00} \mathrm{£} 2$ LOW VOLTAGE MAINS TRANSFORMERS 25.50 each poss paid $9 \mathrm{~V}, 3 \mathrm{~A} ; 12 \mathrm{~V}, 3 \mathrm{~A} ; 16 \mathrm{~V}, 2 \mathrm{~A} ; 20 \mathrm{~V}, 1 \mathrm{~A} ; 30 \mathrm{~V}, 11 / 2 \mathrm{~A} ; 30 \mathrm{~V}, 5 \mathrm{~A}+17-0-17 \mathrm{~V}$.
$2 \mathrm{~A} ; 35 \mathrm{~V}, 2 \mathrm{~A} ; 20-40-60 \mathrm{~V}, 1 \mathrm{~A} ; 12-0-12 \mathrm{~V}, 2 \mathrm{~A} ; 20-0-20 \mathrm{~V}, 1 \mathrm{~A} ; 50 \mathrm{~V}, 2 \mathrm{~A}$.

£8.50 post 50 p MINI-MULTI TESTER Pocket size instrument. op.p.v. DC volts $5,25,250,500$.
AC volts $10,50,500$, to00. DC $0-250 \mu \mathrm{a} ; 0-250 \mathrm{ma}$ AC volts $10,50,500,1000$. DC $0-250$ ua; $0-250 \mathrm{ma}$.
Resistance 010 fook. De-Luxe Range Doubler Meter, 50,000 o.p. $\% 7 \times 5 \times 2 \mathrm{in}$. Resistance 20 meg in 5
ranges. Current 50 HA to 10 V Volts 0251000 y ranges. Current $50 \mu \mathrm{~A}$ to 10 A . Volts $0.25 / 1000 \mathrm{vDC}$
$10 \mathrm{v} / 1000 \mathrm{v}$ AC.
$£ 25.00$ post f . PANEL METERS $50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 500 \mu \mathrm{~A}, 1 \mathrm{~mA}, 5 \mathrm{~mA}, 100 \mathrm{~mA}, 500 \mathrm{~mA}$,
$1 \mathrm{amp}, 2 \mathrm{amp}, 5 \mathrm{amp}, 25 \mathrm{votr}, \mathrm{VU} 21 / 4 \times 2 \times 1 / 4 \mathrm{in}$. f5. 50 post 50 p EQURPMENT CASES. Black Vinyl Covered Top, Ali Base
$4 \times 2^{1 / 2} \times 2^{1 / 4 \mathrm{in} . ~} £ 2.50 ; 6 \times 4 \times 1 / 2 \mathrm{in} . £ 3.60 ; 8 \times 5 \times 2 \mathrm{in} . \mathrm{E4.00}$ $11 \times 6 \times 3 \mathrm{in}$. $£ 5.50 ; 113 / 4 \times 6 \times 5 \mathrm{in}$. $£ 9.00 ; 15 \times 8 \times 4 \mathrm{in}$. $£ 12.00$.
AL ANGLE BRACKET $6 \times 3 / 4 \times 3 / 4 \mathrm{in}$. 30 p .
ALUMINUM PANELS $18 \mathrm{~s} . \mathrm{w} . \mathrm{g} .12 \times 12 \mathrm{in} . \mathrm{E1.80} ; 14 \times 9 \mathrm{in} . \mathrm{E1.75}$
$6 \times \sin .55 \mathrm{p} ; 12 \times 8 \mathrm{in} . \mathrm{Ef} .30 ; 10 \times 7 \mathrm{in} .96 \mathrm{p} ; 8 \times 6 \mathrm{in} .90 \mathrm{p}: 14 \times 3 \mathrm{in}$

ALUMINIUM BOXES. MANY OTHER SIZES IN STOCK
$3 \times 2 \times 1 \mathrm{in} . £ 1 ; 4 \times 21 / 2 \times 2 \mathrm{in}, £ 1.20 ; 4 \times 4 \times 11 / 2 \mathrm{in} . £ 1.50 ; 6 \times 4 \times$
$2 \mathrm{in} . \mathrm{E1.90;6} \mathrm{\times 4} \mathrm{\times 3in.£2.20;8} \mathrm{\times 6} \mathrm{\times 3} \mathrm{\ln . £ 3.00 ; 10} \mathrm{\times 7} \mathrm{\times 3in}$.

HIGH	E	EcTROIYTICS			
16/45		2201400 V	E2	$32+32 / 500 \mathrm{~V}$	
$20 / 500 \mathrm{~V}$	75p	$8+8 / 500 \mathrm{~V}$	f1	$32+32 / 350 \mathrm{~V}$	
$32 / 350 \mathrm{~V}$	45p	$8+16 / 450 \mathrm{~V}$	75p	$32+32+32 / 450 \mathrm{~V}$	
$32 / 500 \mathrm{~V}$	95 p	$16+16 / 350 \mathrm{~V}$	770	$16+32+32 / 500 \mathrm{~V}$	

DECCA TEAK VENEERED PUNTH space for small amplifier Board cut for BSR or Garrard $18^{3} / 4 \mathrm{in}$. $\times 141 / 4 \mathrm{in}$. $\times 4 \mathrm{in}$. E5. Post $£ 1$ "STOP PRESS"
H \& H 1000 Watt stereormono
Amplifiers S5000 Reconditioned, guaranteed. E275, carriage E5.
RADIO COMPONENT SPECIALISTS
Dept 4, 337. WHITEHORSE ROAD, CROVDON
ACCESS

SURREY, UK Tel: 01-684 1605

Post Esp Minimum. Callers Welcome
Same day despach. Closed Wed. Lists 34 p

FREE A4 SIZE PRICECARDS
We supply tree cards cantaining kits and special offers information plus six basic component-cards. These cover the general ranges requred by hobbyists,
schools and colleges elc; they are Connectors, Passive components, Optoelectronics, Hardware and Semiconductors. Cards are automatically ypdated
post. Send now for your tree cands and free SANPLE COMPONENT PACK.

GET YOUR FREE INFORMATION CARDS
 \& SAMPLE COMPONENT PACK!

COMPLETE

SOLDERING KIT For the Hobbyist/Electronics Engineer)
FOR LESS THAN $£ 10!$!
Comprises of:

- Antex Miniature 15W 240 v AC Soldering Iron Antex Iron Stand c/w Sponge Desolder Pump 2 mtr Solder Desolder Braid 13A Plug ur speciality. Why not write and find out more. ur speciality. Why not write and find out more.

0i] DONT MISS OUT ON CROFTON CASH \& CARRY BARGAINS

TELEPHONE 01-891 1923 NOW for details of

Computer Monitors Colour TV/Monitors ZX81 Keyboards Light Pens (BBC) TV Cameras Lenses Qideo Digitisers - Eprom Erasers etc.

HIGH QUALITY PRODUCTS AT AMAZING PRICES

CROFTON ELECTRONICS

35 GROSVENOR ROAD, TWICKENHAM, MIDDLESEX TW1 4AD

INDEX TO ADVERTISERS

ACIDCElectronics

A.D. Electronics

Alcon Instruments
American Inventive Corp
Bi-Pak
B.N.R.E.S

Buil J.
Cambridge Kits
Cardigan Electronics
Centurion Alarm
Clef Products
Cricklewood Electronics
Crofton Electronics
C.R.Supply Co.
C.Tech Security
C.Tech Security

Demon Electronics
Electrovalue
Envirosystems
Grandata.
Greenweld
Hall, Adam Supplies
Hewlett Packard.
ICS Intertext
James Electrical
London Electronics College a.................... 63
Maplin Supplies
Marco Trading
Phonosonics 22
Powertran.
Ralfe Electronics
Riscomp
Scientific Wire Co
Service Trading
Skybridge
Sparkrite.
Swantey Electronics
Systems Electronique
Tandy
T.K. Electronics

Watford Electronics
Wersi Organs

46
62
61 63 5
.46 46
45 51 61
62 62

From a gentle purr to a mighty roar, the tightly controlled power of the beast is yours to command!

PROE ESCIDNAL QUALITY HCH POWERLOUISDEAKERS

A new range of superb quality loudspeakers.

* Virtually indestructible high temperature voice-coil reinforced with glass-fibre
* 100% heat overload tolerance
* Advanced technology magnet system
* Rigid cast alloy chassis
* Linen or Plastiflex elastomer surrounds
* 5 -year guarantee (in addition to statutory rights)

Available in $5,8,10,12,15$ and 18 inch models with 8Ω and some 16Ω impedances and with input powers ranging from 50 W to 300 W e.g.
5in. $50 \mathrm{~W} 95 \mathrm{~dB} 8 \Omega: \times G 39 \mathrm{~N} / 16 \Omega$: XG40T $£ 17.95 \S$
8in. 100W 98dB 8 Ω : XG43W £29.95§
10in. 100W 100dB-8 Ω : XG46A £29.95§
12in. 100W 101dB 8 8 : XG49D $£ 29.95 \S$
12in. Twin Cone 100W 100dB 8 Ω : XG50E / 16Ω : XG51F £31.95§
Note • the output power doubles for each 30 B increase (ref $1 \mathrm{~W} @ 1 \mathrm{~m}$).

PREGSON COLD MULTIMETERS

A new range of very high quality multimeters offering truly amazing quality at the price.

Pocket Multimeter, 16 ranges, 2000 2 /V DC/AC $£ 6.95 \S$ (YJ06G)
M-102BZ with Continuity buzzer, battery tester and 10ADC range, 23 ranges, 20,000 2 N DC $£ 14.95 \S$ (YJ07H)
M-2020S with Transistor, Diode \& LED tester and 10A DC range, 27 ranges 20,000 กN DC $£ 19.95 \S$ (YJ08J)
M-5050E Electronic Multimeter with very high impedance, FET input, 53 ranges including peak-to-peak AC, centre-zero and 12A AC/DC ranges £34.95§ (Y J 09 K)
M-5010 Digital Multimeter with 31 ranges including 20Ω and $20 \mu \mathrm{ADC} / \mathrm{AC}$ FSD ranges, continuity buzzer, diode test, and gold-plated PCB for long-term reliability and consistent high accuracy ($0.25 \%+1$ digit DCV) $£ 42.50 \S$ (YJ10L)
N.B. All our prices include VAT and Carriage. A 50 p handling charge must be added if your total order is less than E5 on mail order (except catalogue)
MAPLIN ELECTRONIC SUPPLIES LTD.
Mail Order: P.O. Box 3, Rayleigh, Essex SS6 8LR. Tel: Southend (0702) 552911 SHOPS

- BIRMINGHAM Lynton Square, Perry Barr, Tel: 021-356 7292
- LONDON 159-161 King Street, Hammersmitḥ, W6. Tel: 01-7480926.
- MANCHESTER 8 Oxford Road, Tel: 061-236 0281.
- SOUTHAMPTON 46-48 Bevois Valley Road, Tel: 070325831.
- SOUTHEND 282-284 London Rd, Westcliff-on-Sea, Essex. Tel: 0702-554000 Shops closed all day Monday.

Our huge range of top quality electronic components at very competitive prices are all detailed in our catalogue, and with well over 600 new lines in our 1985 edition and many design improvements, it's well worth getting a copy. Here are just a few examples from the catalogue.

(The items below are NOT kits).

\star Most phono and jack plugs now with integral staín relief sleeve -gold-plated types also available from 14p (gold from 70p)
\star Stereo Disco Mixer with cross-fade, talk-over, cue monitoring, aux input, slide controls. Only $£ 58.95$ (AF99H)

* 10-Channel Stereo Graphic Equalisers - 3 models - basic; with peak level meter; and with spectrum analyser - from $£ 77.95$

* Digital Delay Line permits Slap-back, Doubling, Flanging, Chorus and Echo. 11 controls. Only £195.00 (AF98G)
* Video Enhancer improves picture quality when recording from one VTR to another, and with TV's with monitor input. Only 28.95 (XG59P)
\star Detailed descriptions of the exciting new 74 HC range of IC's which combine the advantages of CMOS and TTL. From 46p
* Keyboards: sloping keys, two-tone grey, mounted in steel frame, very smart cases (extra) available. 61 keys, only $£ 33.95$ (YJ12N) 79 keys, only £37.95 (YJ13P)
* 1% Resistors now $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}, 0.4 \mathrm{~W}$, only $2 \mathrm{p} \mathrm{each!}$
* Auto transformers 120/240V 50VA, £10.75§ (Y J56L). 100VA £14.95§
(YJ57M). 150VA 16.35 (YJ58N). 250 VA £21.95§ (YJ59P).
\star Digital Clinical Thermometer. Only £13.95 (FK51F)

Pick up a copy now at any branch of W.H Smith or in one of our shops. The price is still just $£ 1.35$, or $£ 1.75$ by post from our Rayleigh address (quote CA02C).

Post this coupon now for your copy of the 1985 catalogue.
Price $£ 1.35+40$ p post and packing. If you live outside the U.K send $£ 2.40$ or 11 International Reply Coupons. I enclose $£ 1.75$

Name
Address

PE/4/85

TAKKE COMPPIETE CONTROL OFPOUR MUSIC with the

professional qualliy NDDL-controlled sampling unit

Once again, Powertran and E\&MM combine to bring you versatility and top quality from a product out of the realms of fantasy and within the reach of the active musicios.

The MCS- 1 will take any sound, store it and play it back from a keyboard (either MIDI or lv/octave). Pitch bend or vibrato can be added and infinite sustain is possible thanks to a sophisticated, looping system.

All the usual delay line features (Vibrato, Phasing,
Flanging, ADT,Echo) are available with delays of up to 32 secs. A special interface enables sampled sounds to be stored digifally on a floppy disc via a BBC microcomputer.

The MCS-1 gives you many of the effects created by top professional units such as the Fairlight or Emulator. But the MCS- 1 doesn't come with a 5 -figure price tag. And, if you're prepared to invest your time, if's almost cheap!

Specification

Memory Size: Varioble from 8 bytes to 64 K bytes. Storage fime af 32 KHz sampling rafe: 2 seconds. Storage time at 8 KHz sampling rate: 8 seconds. Longest replay time (for special effects): 32 seconds. Converters, ADC \& DAC: 8 bit companding. Dynamic range: 72 dB .
Audio Bandwidth: Variable from 12 KHz to 300 Hz . Internal 4 pole tracking fillers for anti-aliasing and recovery.
Programmable wide range sinewave sweep generator. MIDI control range: 5 octaves.

> +1 N/octave conirol range: 2 octaves with optional transpose of a further 5 octaves.

Digital Délay Line

Introduced in 1982, Powettran's DDL has brought digital quality effects to thousands of musicians. Still available in kif form of only $\$ 179.00$ + VAT.

Write or phone now to place an order. Powertran Cybernetics Limited, Portway Industrial Estate, Andover, Hants, SP10 3PE. Telephone: 026464455

[^0]: C IPC Magazines Limited 1985. Copyright. in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: A1 Institute Electronics 070643661
 E Evan Steadman $\int 079926699$
 F2 Pontefract Am. Rad. Soc. N. Whittingham \& 0977792784
 F5 O 01-4874397
 1 ITF © 021-7056707
 K2 Reed Exhibitions, Surrey Ho., 1 Throwley Way, Sutton, Surrey
 M Montbuild © 01-486 1951
 0 Online \& 01-868 4466
 S 01-3875050
 S2 Fairs \& Exhibitions Ltd., © 01 -831 8981
 T1 Cahners \& 048338085

[^2]: Power amplifier module

[^3]: Name
 Address

 I enclose Postal Order/Cheque/Access/Barclaycard No.
 for E_{-}, Kit Ref.
 Prices include VAT, Postage and Packing.
 Sparkrite, Charles Street, Walsall, West Midlands W/S2 9XWW.
 Telephone: (0922) 614791 . Alow 28 days for delivery.

