PRACTICAL
FEBRUAFY 19E5 - P1-00

ROEOTICS - Mic-as - = =CTAONICS-INTEAFACING

MODULAR AUD
POWIOR SYSTEM
SPAGTRUM
DAG/ADC BOARD
SICNAL
cENERATOR
F-V CONV =RTER
MICROWRITNG
The Principle and the Product

Have you one of these?

BBC * COMMODORE 64 DRAGON * VIC 2O ORIC1/ATMOS ATARI 400/800 SPECTRUM * ZX81

Then you need one of these

Best Guide to Microcomputer

SOFTWaRe
 INDEX mameseso

Now with 5,000 programs
more educational, games, business \& management listings than ever \& personal號

ON SALE NOW!

MODULAR AUDIO POWER SYSTEM—Part 1 by M. Tooley BA and D. Whitfield MA MSc CEng MIEE. 10
Main power amp module
SPECTRUM DAC/ADC BOARD by R. A. Penfold 15
Interface board for control applications
MICROPROCESSOR CONTROLLED D.C. MOTOR DRIVERS by Tom Gaskell BA(Hons) CEng MIEE. 31
Enables analogue driving of d.c. motors
SIGNAL GENERATOR \& F-V CONVERTER by John M. H. Becker 34
Quality test instrumentNEPTUNE AND MENTOR ROBOTS by Richard Becker and Tim Orr49Part Six: Commissioning and testing of Neptune
MONO/STEREO CHORUS \& FLANGER by John M. H. Becker 59Part Two: Construction and setting up
GENERAL FEATURES
MICROWRITER by Tom Gaskell BA(Hons) CEng MIEE 22
An ingenious six-key alternative to the QWERTY keyboard
SEMICONDUCTOR CIRCUITS by Tom Gaskell BA(Hons) CEng MIEE 28
Power Op-Amps (TCA 365 and TCA 2365)
40
SPACEWATCH by Dr. Patrick Moore OBE
INGENUITY UNLIMITED
42
42
Readers' circuit ideas 55
SEQUENTIAL LOGIC TECHNIQUES by M. Tooley BA and D. Whitfield MA MSc CEng MIEE
Part Five: Data multiplexers
NEWS \& COMIMENT
EDITORIAL
NEWS \& MARKET
PLACE..

7 BAZAARMICROBUS65PLACEVERNON TRENT67

INDUSTRY NOTEBOOK.. 2121

25
8 LEADING EDGE P.C.B. SERVICE 68

THIS MONTH'S COVER...

Our cover photograph shows silicon wafers in a furnace during the production of integrated circuits. Photograph courtesy of National Semiconductor.

OUR MARCH ISSUE WILL BE ON SALE FRIDAY, FEBRUARY 1 st, 1985 (see page 47)

[^0]| WATFORD ELECTRONIGS
 33，CARDIFF ROAD，WATFORD，HERTS WD1 8ED；ENGLAND Tel．Watford（0923）40588．Telex： 8956095 WAELEC | | | | | | 硡 | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | | $\begin{gathered} 20 \\ 50 \\ 50 \\ \text { 30 } \\ 160 \end{gathered}$ | |
|

 POLYESTER RADIAL LEAD CAPACITORS： $250 V ; 10 \mathrm{n}, 20 \mathrm{n}, 15 \mathrm{n}, 22 \mathrm{n}, 27 \mathrm{n} 6 p ; 33 \mathrm{n}, 47 \mathrm{n}, 68 \mathrm{n}, 100 \mathrm{n}$ 8p；150n． 220 n ， $330 \mathrm{n}, 470 \mathrm{n} 15 p ; 680 \mathrm{n} 19 p ; 1 \mu 23 p ; 1 \mu 540 p ; 2 \mu 246 p$. | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
|
 | | | | | | | | | | | | | | | |
|
 TANTALUM BEAD CAPACTIOSS：

 | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
| | | | | SLIDER POTENTIOMETERS$0.25 W$ log and linear values 60 mm track$5 \mathrm{~K} \Omega-500 \mathrm{~K} \Omega$ Single gang $80 p$ | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
| | | | | | RENE Caps： | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |
| LINEAR IC＇s | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | |
| | ${ }^{48} \mathrm{~L}$［133 | | | | ctiol | | | | | | | | | | | | |
| | | | | | | | | | | （7asa | ${ }_{\substack{120}}^{120} 5$ | | | | | | |
| | 159 | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | |
| | 99 | | | | 退 28 | | | 375 | | | | | | | | | |
| | | | | | \％ | | | 325 | 200 | | 100 Is 124 | 124 | | | | | |
| | 500 | | | | 5 | | | 800 | | | | ${ }^{126}$ | | | | | |
| | | | | | | | | a | | | | | | | | |
| | 86 | | | | | | | | | | | | | | | |
| | 210 L | | | | | | | | | | | | | | | |
| | ${ }_{130}^{210}$ | | | | | | | | | | | | | | | |
| | ${ }_{270}^{237}$ | cose | | | ${ }^{1255} 77{ }^{75500}$ | | | 90 | | | | | | | | |
| | 365 | | | | \％ 7 | | | $\substack { 125 \\ \begin{subarray}{c}{15 \\ 150{ 1 2 5 \\ \begin{subarray} { c } { 1 5 \\ 1 5 0 } } \\{150} \end{subarray}$ | 5 | 6 | 60 Ist155 | | | 100 | | |
| | 22 | | | | ， | | | | | | | | | ， 30 | | |
| | ${ }_{7}^{23}$ | | | | | | | cois | | | | | | ， | | |
| | | | | | coin | | | 190 | | | | | 边 | 180 | | |
| | | | | | | | | | | | ${ }^{180}$ LStics | cose | 硡 | － | | |
| | | | | | | | | ${ }^{\text {col }}$ | | | 885 | ${ }_{70}^{50}$ | | ${ }_{\substack{40 \\ 140}}$ | | |
| | | ${ }^{150}$ | | | | | | | | | | ${ }_{125}^{150}$ | 5 | 155 | | |
| | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | co | | | | |
| | | | | | | | | | | | | | | | | |
| | | | | | 旡 | | | | | | | （esme | 边 | | | |
| | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |

TOROIDALS

IF YOU'RE CRAFTY YOU'RE BOUND TOPICK UPA LOT OF TIPS AT OUR SHOW

WEMBLEY CONFERENCE CENTRE
 10-13 JANUARY, 1985
 Thursday to Saturday 10am-7pm Sunday 10am-6pm

manco WOOD

Whether you're a craftsman creating fine furniture or a beginner making a simple bookshelf, you'll find everything you could possibly need under one roof. See the latest ideas and equipment for woodworking. Talk to the experts about timber and finishes.
\star CRAFT MARKET See the very latest ideas and equipment for woodworking. \star FREE CHRISTIES VALUATIONS Let Christies value your antiques. An expert will be available at the show, so bring along your interesting pieces, or photographs of them, if you prefer. Admission prices: Adults $£ 2.50$ Children under 16 and Senior Citizens £1.50. Advanced Party Booking for groups of 20 or more. Adults £2.00 Children £1.00 (Plus one free ticket per 20 sold for the organiser or teacher).

ELECTRONIC SIREN
KIT

SECURITY PRODUCTS

IR GARAGEDOOR
 CONTROLLER KIT

For contralling motorised garage doors and switching
garage and drive
lights on of vo to
Lots of appli
cations like
controlling lig
and TVs
etc. in the home ideat for aged or dis abled persons. this coded kit comprises of a mains. powered infra-red receiver with a
normally open relay output plus iwo latched transistor outputs. battery powered transmitter a
solid state mains switch

XK 103 10.50

PANTEC KITS

PN2	FM Micro Transmitter	¢7.50
PN3	Stabitised Power Supply	£13.70
PN5	$2 \times 10 \mathrm{w}$ Stereo Amplifier	¢14.50
PN6	$2 \times 40 w$ Stereo Amplifier	224.95
PN7	Pushbution Stereo Preamp	¢12.80
PN8	Tone $\&$ Volume Control	¢13.60
PN 11	3w FM Transmitter	¢11.95
PN 13	Single Channel FM	
	Transmitter	¢9.80
PN 14	Receiver for above	C15.50

TOP QUALITY . . TOP SERVICE BOTTOM PRICES!

For FREE CATALOGUE send $9^{\prime \prime} \times 6^{\prime \prime}$ SAE - contains full list of stock range all at very competitive prices. Cash with order (except account customers). Access or Barclaycard telephone orders welcome. Add $75 p p \& p+15 \%$ VAT to all UK orders. Overseas customers add $£ 2.75$ p\&p Europe, $£ 6.50$ elsewhere. Giro No. 529314002. Goods by return subject to availability. Shop open Gam - 5pm (Mon-Fri), 10am-4pm Sat). ALL PRICES EXCLUDE VAT

INFRA.RED REMOTE CONTROL KITS

These kits are designed to enable infra red remote control to be incoiporated into virtually any application from switching car locks or alarms to controlling Hi.Fi or TV. The application will determine the interface cricuitry between the recerver and the controlled device. General in structions and applications are supplied The kits are coded and provide a high dearee of security and noise immunity MK 11 MK 12 receivers. Requises PP 3 bat MKy Size $8 \times 2 \times 13 \mathrm{cms}$ Range approx 60 ft . C . 8.80 Keyboards for MK 18
MK 94 -way for use with MK 12 £ 1.90 MK 10 16. way for use with MK 12 E5. 40 MK 13 11-way for use with MK $11 \quad € 4.35$ MK11 Receiver Kit mans powered Provides 10 taiched plus 3 analogue out puts ideal for controlling audio amplitiers. TV or lighuing where control of light
brightness is required
$£ 13.50$ brightness is required
MK14 AC Power Controller Kit (phase) controlling AC loads from MK analogue outputs. eg lamp dimming

\section*{COMPONENT.PACKS PACK 1650 Resistors 47 R 10M PACK 240 per value

10.1000 V Elecr:al 5 per
 10. 1000 HF 5 per
 PACK 360 value Polvester Capa
 citors 001 luF 250 V
 5 values

 \Rightarrow
 - x}

LCDDIGITAL MULTIMETERS

MICROPROCESSOR TMMER KIT

Designed to con
 rol 4 outpu

 independently switching on andover a 7 day
ycle. LED dis-
play of time and day, easily programmed via 20 way keyboard. Ideal for central heating control lincluding different back up circuit. Includes box
18 time settings

CT 6000 K

$£ 39.00$
XK 114 . Relay Kit for CT 6000
ncludes PCB, connectors and
relays $3 \mathrm{~A} / 240 \mathrm{~V}$ clo contacts
¢3.90
701115 Additional Relays
ع. 65
ELECTRONIC LOCK KIT
With hundreds of uses indoors. garages. car anti theft devices. electronic equip ment, etc. Only the correct easily
changed four.digit code will open it! Requires a 5.15 V OC supply. Output 750 mA . Fits into standard electrical watl Complete kit lexcept front panell XK 101
111.50

Electric Lock Mechanism for use with existing door locks and the above kit. Requires relay 112 V AC/DC coil (701 150)
f14.95
HOME LIGHTING KITS

These kits are
designed to
eplace a stan ard wall switch 300 w of lighting

TDR300K Remote Controllede Light Dimnier
f14.95

MK6 Transmitter tor

T0300K Touch Dimmer $£ 7.75$
TS300K Touch Switch £7.75
TDE/K 2 way exiension
D300K Rotary controlled
Lighi Dimmer
c3.95

DISCO LIGHTING KITS

DL 1000K - This value-for-money 4 -way chaser features bi directional sequence
and dimming. 1 kW per channel. $£ 15.95$ and dimming. 1 kW per channel. $£ 15.95$
0 L 21000 K - A lower cost uni-directional verslon of the above Zero switching to reduce interference Optional opto input altowing audio beat OC Volts: 0-0.2.2-20.200.1000 AC Current: 0.200 mA .0 .10 A . DC Curtent: $0-200 \mathrm{~mA} / 0-10 \mathrm{~A}$. R . M Size: $160 \times 85 \times 29 \mathrm{~mm}$
(405 206)
High Sensitivity Temperature Probe For use with a multimeter to measure temperatures from $-50^{\circ} \mathrm{C}$ to $+250^{\circ} \mathrm{C}$. Accuracy: $1.5^{\circ} \mathrm{C} @ 25^{\circ} \mathrm{C} .2^{\circ} \mathrm{C} @ 100^{\circ} \mathrm{C}$ fesponse time (in wateri. 5 seconds. Includes case, calibrated scale and in-
ight response (DLA/1)
DL3000K -3 - channel sound to light kit features zero voltage switching, auto phone. 1 kW perchannel $\mathbf{£ 1 2 . 9 5}$

DVMIULTRA SENSITIVE THERMOMETER KIT
AC Volts: 02.20 ing case supplied
[44.85
Auto Ranging. digit 10 mm display Continuity buzzer. and range indication. 10A internal shunt for ACIDC current measurement. Carry

Based on the ICL 7126 and a $31 / 2$ digit hiquid crystal display, this kit will form the basis of a digital multimeter lonly a few additional resistors and switches are required - details supplied), or a sensitive digital thermometer $150^{\circ} \mathrm{C}$ 10 $+150^{\circ} \mathrm{C}$)

reading $0.1^{\circ} \mathrm{C}$. The kit has a sensitivity of 200 mV for a full-scale leading automatic polarity and overload indication. Typical | polarity and overioad indication. Typical |
| :--- |
| battery life of 2 years (PP3). |
| 15.50 |

ELECTRONICS 11-13 Boston Road London W7 3SJ

ENQUIRIES $01-5678910$ 01-5799794

01-579 2842 TECHNICAL AFTER 3pm

SAFETY

E
LECTRONICS has done much to - benefit our way of life and standard of living in all areas from entertainment to safety at sea and in the air. Of course it has also enabled development of more sophisticated weapons and defence systems but that is another story. Our exploration of space is totally dependent on electronics and navigation about our own planet is also now based mainly on high technology.

What a pity then that the modes of transport we all use every day have not benefited more from the introduction of electronics to aid safety. The car you drive may have a computer to show fuel consumption, it may have a talking dash panel or even an engine management computer, but have the electronics been used to improve safety? How many vehicles are fitted with an anti-locking braking system? How often do you see vehicles skidding even on dry roads? How often do the back wheels of unladen lorries lock up when they stop? How many motorcyclists come off in the wet when braking or skid into the back of the car in front?

Admittedly many of the skids that do occur result in no damage or injury but of course some do. Surely it is better to make vehicles safer with an electronically controlled failsafe braking system than to get them talking to you? This is one area where the amateur in electronics can do little himself. We would not encourage readers to modify any
vehicle braking system, so we cannot fit a system to help ourselves.

The sad thing is that the technology and mechanics to perform the necessary tasks has been around for some years. Perhaps the manufacturers feel we will not pay for the extra safety; maybe they do not feel it is necessary? The next time you see a minor skid that could have been dangerous, a motorcyclist fall off, or a lorry stopping slightly sideways just think about what could have gone badly wrong and see if you feel anti-skid braking would be worth another couple of hundred pounds on the already inflated price of a new vehicle in the UK.

LEGISLATION

Maybe you will even think that legislation would be a good thing, even if it might not save as many lives as compulsory seat belt wearing!

Incidentally, the motorcyclist I saw come off this morning was shaken but not badly injured, although his bike was probably a write-off and the car he ran into badly damaged. Think about it if you buy a new vehicle! The extra cost could be worth the time, trouble and heartache alone.

BACK NUMBERS and BINDERS...

Copies of most of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Lid., Lavington House; 25 Lavington Street, London SE1 OPF, at $£ 1$ each including Inland/Overseas p\&p. Please state month and year of issue required.

Binders for PE are available from the same address as back numbers at $£ 5.50$ each to UK or overseas addresses, including postage, packing and VAT

Editor Mike Kenward

Secretary Pauline Mitchell
Editorial Tel: Poole (0202) 671191

Advertisement Manager

David Tilleard 01-261 6676

Secretary

Christine Pocknell 01-26! 6676

Classified Supervisor

Barbara Blake 01-2615897

Ad. Make-up/Copy

Brian LambiO1-261 6601
Queries and letters concerning
advertisements to:
Practical Electronics Advertisements.
King's Reach Tower,
Stamford Street, London SE1 9LS
Telex: 915748 MAGDIV-G

Letters and Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in PE. All letters requiring a reply should be accompanied by a stamped addressed envelope, or addressed envelope and international reply coupons, and each letter should relate to one published project only.

Components are usually available from advertisers; where we anticipate difficulties a source will be suggested.

Old Projects

We advise readers to check that all parts are still available before commencing any project in a back-dated issue, as we cannot guarantee the indefinite availability of components used.

Technical and editorial queries and letters to:
Practical Electronics Editorial
Westover House.
West Quay Road, Poole,
Dorset BH 15 1JG

SUBSCRIPTIONS

Copies of Practical Electronics are available by post, inland for £13, overseas for £14 per 12 issues, from: Practical Electronics, Subsceription Department, IPC Magazines Ltd., Room 2816, King's Reach Tower, Stamford Street, London SE1 9LS. Cheques, postal orders and international money orders should be made payable to IPC Magazines Limited. Payment for subscriptions can also be made using a credit card.

Phone:
Editorial Poole (0202) 671191
We regret that lengthy technical enquiries cannot be answered over the telephone. unless otherwise specified. Prices correct at time of going to press.

HIGH CGST IMSULITION

Most constructors will be painfully aware of the annoying shrink-back properties of insulation, encountered when soldering wires into place. Over the years manufacturers have developed heat-proof insulation materials for specialised cable applications which eventually filter through industry to the home-constructor-and very welcome they are, too. It.may surprise you to know, however, just how far, and to what expense, manufacturers will go in order to optimise the insulating properties of the materials they use.
B.I.C.C. for instance has just completed the installation of a new electron beam accelerator plant at its Electronic Cables factory in Cheshire, the cost? A staggering £2. 5 million. The facility is considered to be the most sophisticated and versatile of its kind in the Western world. The accelerator produces high velocity electrons which have sufficient energy to penetrate the cable insulation.

Once inside a polymeric insulation, the electrons initiate chemical reactions which lead to the formation of chemical bonds or crosslinks. Increasing the number of crosslinks leads to eventual formation of a three-dimensional network which substantially enhances the physical properties of the insulant.

The most obvious effect of crosslinking is that the material loses its thermoplastic characteristics and becomes a non-melting

thermoset with a better balance of mechanical properties at both high and low temperatures; chemical resistance is also enhanced.

The whole facility is enclosed in 1500 tonnes of concrete for personnel protection during plant operation. The picture shows the plants computer control room.

TKTEIEVISOON MONTIOR

The latest in the TX range from Ferguson is a 14 inch monitor/colour television. It will offer those who can afford a second or even third set a very flexible visual display tool.

The MCO1 has separate RGB, composite video and aerial inputs enabling the user to get the best possible display from broadcast TV, video recorders, teletext and home computers.

Perhaps the most interesting of these options is the ability to directly connect a home computer without the modulation/demodulation problems that occur when using a standard TV set. It must be borne in mind that not all currently available home computers have a direct video output. The machines without this facility have on-board modulation/demodulation and were so designed for use with a visual display medium that most people already possessed-a standard TV set.

The provision of separate RGB, composite video and aerial sockets also allows the home computer, video recorder or game and TV aerial to be connected simultaneously; the set senses the signal selected and switches to it automatically.

A range of special connector leads is available to cover the different home computer options. The set is manufactured in the UK at the company's Gosport plant. It is expected to retail at circa $£ 230$.

All too often the most worrying aspect for the creator of an original design is, how to protect that idea from those who would copy and exploit it for their own gain. This has been the case since the first inventor brought forth a brainchild, only to stand by helplessly as someone else marketed his idea and made a fortune. The laws governing Patents, Trademarks, Designs and Copyright are complex indeed, without guidance the layman may be forgiven for getting confused. Laurence Shaw's recently reprinted guide can be of great help to inventors and innovators alike.

The Practical Guide for people with a new idea is a book which explains in clear language how to protect a new idea, product or scheme and exploit it to the full. Market research, approaching a manufacturer, telling the world about an idea without losing your rights and patenting an invention are all covered together with secret patents.

This publication is available from booksellers at $£ 5.50$, or by mail order at $£ 5.95$ from The Patent Eye, George House, George Road, Edgbaston, Birmingham B15 1PG. (021 454 2165).

MAGIC LANTERN

Question: If you are exposed to radiation do you glow in the dark? Answer: Of course not. Not unless you are first coated with a phosphor of some kind. It is a useful fact that beta particles from a radioactive source will, when they strike a phosphor such as zinc sulphide, cause light to be emitted from it. Battelle's Pacific Northwest Laboratories are lesting a novel application of this phenomenon. Scientists are evaluating a portable runway lamp for setting up landing strips in out-of-the-way places, or during emergencies in which the electricity supply is lost.

The lamp comprises a glass tube, its inside surface coated with a phosphor, and which is filled with tritium gas, the radioactive isotope of hydrogen. The lamp can not be turned off, it simply continues to glow for the twelve years half-life of the gas. Keeping the glass clean is the only maintenance operation required during that time. The quantity of radioactive material used is so minute that it is harmless even if the glass breaks, it is claimed.

During field tests in Alaska pilots reported that they perceived light from the radioluminescent lamps differently from that of conventional light, and human response now needs to be assessed to find out how useful these lamps may be.

BTs rumble machine

It's new from British Telecom, For paging far-off staff.
 A little pocket thing,

That could well cause a laugh.
You see instead of 'bleeping', It's been made to 'vibrate'.
So you're the only one that knows, HQ and you have got a date.

The waveforms coming through the air, Will go right through your pants.
And trigger-off this rumble-box, Like a herd of elephants.

So if you're in a meeting,
Friends might still get the rise.
When they notice that your eyeballs, Are looking like mince pies.

HEASSOUWIN

Ensuring peak response and high-quality reproduction, Electrolube's Video Tape Head Cleaner is a safety solvent designed for use on all magnetic tape heads.

The cleaner loosens and removes accumulated deposits of dirt and tape oxide and dries quickly without leaving any residues on the tape. The cleaner is nonflammable, and non-conductive, it will not damage plastics or rubber.

The solvent comes in handy 110 gram aerosols and is conveniently applied by spraying directly onto the heads and mechanisms. In addition, the cleaner is ideal for spraying onto cleaning tapes and other tape cleaning devices, such as cotton buds or felt and chamois leather sticks.

Available on its own at circa $£ 1.20$, or with 25 extra long cotton buds at circa £1.60 from electrical retail outlets.

BBC's go Bang

Following a tongue-in-cheek comment from Mike Cook, the Technical Editor of Micro User, several hundred BBC micro owners recently returned their machines to their respective dealers, in the fear that they were about to detonate.

The unfortunate comment was printed in the magazine's problem page as part of a reply to a reader's query regarding an 'error message'. Mr Cook, believing himself to be the subject of a "wind-up", answered in kind. "Take your computer immediately to the dealer as this error message indicates that it is about to explode."

The manufacturers, Acorn Computers, were not amused, neither was the middle-aged housewife who reportedly surrounded her machine with a bucket of water.

POINTS
 ARISING...

RING MODULATOR

December, 1984

Alterations to this project must be made as follows:

In Fig. 9 the component marked C35 should be marked R35.

The capacitor C21 should have its +ve terminal connected to R10.

In Fig. 10 the unmarked component mounted between JK1 and JK2 is R47.

A wire link should be connected between JK3 (C25 -ve) and JK4 (C26 +ve).

Fountidounl...
Please check dates before setting out, as we cannot guarantee the accuracy of the information presented below. Note: some exhibitions may be trade only. If you are organising any electrical/electronics, radio or scientific event, big or small, we shall be glad to include it here. Address details to Mike Abbott.

International Light Show Jan. 14-28. Olympia. E6
British Toy \& Hobby Fair Jan. 18-Feb. 2. Olympia. D6
Component Fair March 10. Carleton Community Cntr., Pontefract (on A1 to Darrington). F2
London Medical March 12-15. Earls Court. S2
IFSSEC (fire/security) April 15-19. Earls Court, London. S
Cast (Cable \& Satellite) April 16-18. NEC, Birmingham F5
Communications April 23-25. Olympia. I
Photoworld April 23-May 6. Earls Court. I
CAD April 26-28. Metropole, Brighton. K2
Fibre Optics \& Lasers April 30-May 2. Olympia. E
Custom Electronics \& Design Techniques April 30-May 2. E

All Electronics Show/ECIF April 30-May 2. Olympia 2. E
Circuit Technology April 30-May 2. E
Field Service \& Repairs April 30-May 2. Olympia 2. E
Automan (manufacturing) May. NEC. T1
Scotelex June 4-6. Royal Highland Soc., ex. Hall, Ingliston,
Edinburgh. A1
Personal Computer World Show Sept. 18-22. Olympia 2. M

[^1]
MODLLAR ADDIO PगH:

ecent years, improvements in semiconductor technology and, in particular, the introduction of a number of highly versatlle consumer integrated circuits and power Darlington stages', have resulted in audio equipment which is both compact and very straightforward. This new series deals with the construction of a variety of modules for use in the custom design of sound reinforcing systems and for public address work generally.

We start, this month, with full constructional details of a 50 W power amplifier module. This unit forms the basic building block for several complete designs to be described later. Details of suitable pre-amplifiers, line drivers, tone controls and mixers will also be included; the aim being that of affording the individual constructor the widest possible choice of audio system configuration.

THE 50W POWER AMPLIFIER MODULE

The power amplifier module is electrically robust, is simple to construct, and uses low-cost readily available components. In its basic form, the module is capable of delivering a continuous r.m.s. sine wave output of 50 W into a 4 ohm load. The design may be easily modified for operation with alternative output transistors and/or supply rails, as shown in Table 1.

Whilst every effort has been made to avoid the pitfalls, it should be stated at the outset that this project, together with its higher power derivatives, is not for the faint hearted. Indeed, the prototype amplifier was not developed without a few disasters, including four output transistors which literally melted during the testing stage!

An important requirement of this project (and one which readers ignore at their peril) is that the loudspeaker systems employed should be capable of handling the full amplifier output power. However, readers who do not have immediate access to correctly rated loudspeakers need not despair since we shall, next month, be describing a calibrated test load rated at continuous r.m.s. powers well in excess of 100 W . A dummy load of this type should prove to be an
invaluable accessory for those wishing to "run-up" the amplifier without destroying their ear drums.

Having started on a cautionary note it is perhaps worth saying that, provided readers carefully follow the setting-up procedure and observe the recommendations concerning heat sinks, component ratings, and supply rails, there should be few, if any, problems.

CIRCUIT DESCRIPTION

A simplified block schematic of the power amplifier module is shown in Fig. 1. The corresponding circuit diagram is shown in Fig. 2. The module consists essentially of a differential input stage followed by a driver and complementary power Darlington output stage. The unit runs from balanced (i.e. separate positive and negative) supply rails with a common OV rail at earth potential.

The input stage is formed by TR1 and TR2 which are connected as a long-tailed differential pair with TR3 acting as a constant current source. The emitter currents of TR1 and TR2 are determined by VR1 which provides a range of adjustment from about 1.5 mA to 3.0 mA total current. The signal input is applied to the base of TR1, via a switched d.c. blocking capacitor arrangement, whilst negative feedback (both d.c. and a.c.) is applied to the base of TR2. The overall voltage gain of the module is determined by the amount of feedback applied and is approximately equal to the ratio of

Max. r.m.s. output power	Rec. supply rail voltages	Max. rec. heatsink thermal resistance	TR6 (npn)	TR7 (pnp)	T1 sec. rating $2 \times$
30 W	$\pm 30 \mathrm{~V}$	4 deg.CM	TIP121	TIP126	20V/1.5A
45 W	$\pm 30 \mathrm{~V}$	2 deg.CM	TIP141	TIP146	20V/2A
80W	$\pm 40 \mathrm{~V}$	1 deg.C/W	10 K 80	11 K 80	25V/2.5A
			MJ3001	MJ2501	
			2N6058	2N6051	
120W	$\pm 50 \mathrm{~V}$	0.5 deg. CN	MJ11016	MJ11015	32V/3A

Table 1. Output device selection table

CUSTOM DESIGN YOUR OWN HIGH POWER AUDIO SYSTEM

AUDIO PROJECT

R3 to R4
Direct coupling of input signals is provided by means of S1 which bypasses the d.c. blocking capacitor, C1. In order to preserve symmetry of the differential stage, the following resistors are made equal: R2 and R3, R5 and R6, R1 and R4 (note that the latter assumes that the amplifier is fed from a relatively low-impedance source).

TR4 forms a conventional common emitter driver stage using an npn transistor. Since the quiescent power

Fig. 2. Complete circuit diagram of the Power Amplifier Module

SPECIFICATION

Maximum power output: (measured at 1 kHz)

Minimum recommended load impedance:
Voltage gain:
Voltage gain. for max. rated output:
Input voltage for max. rated output: less than 2 V r.m.s.
Input impedance:
Recommended source impedance: Total harmonic distortion: 50k approx.
600ohm
0.05\% typical at 30W output into 80 hm
Frequency response (a.c. coupled): 15 Hz to 50 kHz at -3 dB
(d.c. coupled): d.c. to 50 kHz at -3 dB less than -85 dB related to max. rated output
dissipation for this stage is in the region of 125 mW , a metal cased TO5 style device is much to be preferred. Bias for the output transistors is provided by TR5 which acts as a constant voltage source, adjustable by means of VR2. The output stage is a conventional complementary symmetricai arrangement using Darlington pairs, TR6 and TR7. A variety of different devices may be employed in the output stage depending upon output power requirements and the available supply voltage rails. These configurations are summarised in Table 1. The output stage is protected by means of two 5A quick-blow fuses, FS2 and FS3. It should perhaps be mentioned that this form of protection is not completely foolproof but will normally cope with a short-circuited load or failure of one of the output Darlingtons.

C6 and R17 form à Zobel network whilst L1 ensures unconditional stability of the amplifier when operating into a severely capacitive load. Bootstrap feedback is applied via C4 in order to raise the effective impedance of the collector load for TR4. C5 provides high-frequency roll-off since the bandwidth of the amplifier is otherwise somewhat excessive. The power supply arrangement is fairly conventional and
provides symmetrical supply rails of nominally +30 V and -30 V .

CONSTRUCTION

With the exception of the power supply (T1, FS1, REC1, C9 and C10) and the output transistors (TR6 and TR7), all components are mounted on a single-sided p.c.b. measuring approximatly $65 \mathrm{~mm} \times 115 \mathrm{~mm}$. The component overlay of the p.c.b. is shown in Fig. 3. Components should be assembled on the p.c.b. in the following sequence: terminal pins, resistors, capacitors, transistors, pre-set resistors, fuse clips, and inductor. The latter component consists of 20 turns of $20 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. wire wound with an inside diameter of 8 mm . Care should be taken to carefully remove the enamel at each end of this component in order to facilitate an effective soldered connection to the p.c.b.

Fig. 5. Frequency response (8ohm load)

[EE1555P
Fig. 3. Component layout of the p.c.b.

Fig. 4. Wiring diagram for the Power Module

COMPONENTS

Resistors

$R 1, R 4, R 7$	$4 k 7$ (3 off)
R2,R3	$47 k$ (2 off)
R5,R6	470 (2 off)
R8	$10 k$
R9	220
$R 10, R 14, R 15, R 16$	$1 \mathrm{k}(4$ off)
R11,R12	$2 k 7$ (2 off)
R13	1 k 8
R17	$100.5 \mathrm{~W} 5 \%$ carbon

VR1 220 min . hor. skeleton pre-set
VR2 1 k min . hor. skeleton pre-set
Except where otherwise stated, all fixed resistors are 0.25W 5\% carbon.

Capacitors

C1	220 n 250 V polyester
C2	$100 \mu 16 \mathrm{~V}$ p.c. electrolytic
C3	$100 \mu 63 \mathrm{~V}$ p.c. electrolytic
C4	$220 \mu 25 \mathrm{~V}$ tubular electrolytic
C5	33 p ceramic
C6	100 n 250 V polyester
C7.C8	100 n 100 V disc ceramic (2 off)
C9,C10	$4700 \mu 63 \mathrm{~V}$ can elect. (2 off)

Semiconductors

D1,D2	1N4148 (2 off)
TR1,TR2,TR3	BC212L (3 off)
TR4,TR5	BC142 (2 off)
TR6	$10 K 80$ (see Table 1)
TR7	11 K80 (see Table 1)
REC1	KBPC802 (200V/6A)

Miscellaneous

p.c.b. s.p.d.t. miniẩture p.c. slide switch

T1 80VA mains transformer with 220 V primary and two secondary windings each rated at $20 \mathrm{~V} / 2 \mathrm{~A}$ minimum (see Table 1)
L1 (see text) p.c. mounting fuse clips (4 off)
FS1 2A 20 mm quick-blow mains fuse and holder
FS2 and FS3 5A 20 mm quick-blow fuses
Heatsinks (see text)
Silicone impregnated heatsink washers \{thermal resist-
tance 0.33 deg.C/W) and bushes (two sets required)
Terminal pins (13 required)
SK1 5-pin 270 deg. DIN socket
SK2 and SK3 4 mm sockets (1 red and 1 black)
Mains connector
Printed circuit board (502-01)

The Darlington transistors must be mounted on a substantial heatsink of no more than 1 deg.CW thermal resistance. To facilitate effective heat transfer the use of silicone impregnated washers is highly recommended (it should be noted that the collector connections of the Darlington power transistors are formed by their respective cases and these will have to be insulated from a heatsink which will invariably be at earth potential).

The encapsulated bridge rectifier, REC1, also requires mounting on a heatsink. The requirement for this heatsink is somewhat less stringent than that needed for the output transistors and a rating of 5 deg.C/W (or approx. $110 \mathrm{~mm} \times$ $110 \mathrm{~mm} 16 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. aluminium) should prove to be quite adequate. Happily, with this component, there is no need for an insulating washer but a liberal application of silicone grease is recommended before assembly. For most practical pur-

TR1	$\left\{\begin{array}{l}\text { c } \\ \text { b } \\ \text { e }\end{array}\right.$	$\begin{array}{r} -28.4 \mathrm{~V} \\ 0 \mathrm{~V} \\ +0.6 \mathrm{~V} \end{array}$
TR2	$\left\{\begin{array}{l}c \\ b \\ e\end{array}\right.$	$\begin{array}{r} -28.4 \mathrm{~V} \\ 0 \mathrm{~V} \\ +0.6 \mathrm{~V} \end{array}$
TR3	$\left\{\begin{array}{l}c \\ b \\ e\end{array}\right.$	$\begin{array}{r} +0.6 \mathrm{~V} \\ +20.8 \mathrm{~V} \\ +21.4 \mathrm{~V} \end{array}$
TR4	$\left\{\begin{array}{l}c \\ b \\ e\end{array}\right.$	$\begin{array}{r} -1.0 \mathrm{~V} \\ -28.5 \mathrm{~V} \\ -29.2 \mathrm{~V} \end{array}$
TR5	$\left\{\begin{array}{l}c \\ b \\ e\end{array}\right.$	$\begin{aligned} & +1.0 \mathrm{~V} \\ & -0.5 \mathrm{~V} \\ & -1.0 \mathrm{~V} \end{aligned}$
TR6	$\left\{\begin{array}{l}\text { c } \\ b \\ e\end{array}\right.$	$\begin{array}{r} +29.2 \mathrm{~V} \\ +1.0 \mathrm{~V} \\ 0 \mathrm{~V} \end{array}$
TR7	$\left\{\begin{array}{l}c \\ b \\ e\end{array}\right.$	$\begin{array}{r} -29.2 \mathrm{~V} \\ -1.0 \mathrm{~V} \\ 0 \mathrm{~V} \end{array}$

All test voltages measured with a 20 k ohm $/ \mathrm{V}$ multimeter.

Table 2. Test voltages

poses the rectifier heatsink can simply be provided by the external case or chassis of the equipment. This expedient will. however, not normally apply to the output transistors unless the case is specially designed with heat sinking in mind!

When the p.c.b. wiring is complete, the underside of the board should be carefully checked for solder bridges and dry joints, whereas the component side should be examined, paying particular attention to the correct placement and orientation of polarised components.

Connections to the heatsink mounted components (TR6, TR7 and REC1) and reservoir capacitors (C9 and C10) should be made by short lengths (typically not more than $150 \mathrm{~mm})$ of $16 / 0.2 \mathrm{~mm}\left(0.5 \mathrm{~mm}^{2}\right)$ stranded pvc covered wire. A typical wiring layout is shown in Fig. 4.

Internal view of the Power Amp

INITIAL TESTS AND SETTING-UP

Before connecting to the mains supply and switching 'on' it is important to observe the following procedure:-

1. Adjust VR1 and VR2 so that they are both in the fully clockwise position.
2. Switch S1 to d.c. and temporarily short-circuit the signal input connector, SK 1.
3. Connect the loudspeaker for dummy load described next month). The loudspeaker should have an impedance in the range 40 hm to 160 hm and should be rated for a continuous power dissipation of 50 W .
4. Switch 'on' and measure the positive and negative supply rail voltages. These measurements can be most conveniently made using the terminal voltages developed across C9 and C10, respectively. The supply rail voltages, in the quiescent state, should be in the range $\pm 27 \mathrm{~V}$ to $\pm 30 \mathrm{~V}$. If the voltages differ appreciably, or if FS1 blows on switching 'on', the wiring

INPUT

output

POWER

of the transformer and bridge rectifier should be carefully checked.
5. Switch-off and disconnect from the mains supply. Temporarily insert two 100 hm 1 W resistors in place of FS2 and FS3. This can be done quite simply by trimming and folding back the leads of the resistors so that the body of the resistor is gripped firmly by the fuse clips whilst electrical connection is achieved without the need to solder.
6. Transfer the d.c. voltmeter to the output terminals, SK2 and SK3. Reconnect the mains supply and switch 'on'. Adjust VR1 for exactly OV. If the adjustment has no effect or if the resistors get hot, carefully check the p.c.b. and wiring to the output transistors.
7. Switch 'off' and transfer the d.c. voltmeter to the

10ohm resistor fitted in place of FS2. Switch 'on' and adjust VR2 to produce a reading of 0.2 V . Check that a similar reading is obtained across the 10 hm resistor fitted in place of FS3.
8. Switch 'off' and disconnect from the mains supply. Replace FS2 and FS3 and remove the shorting link from SK1. Finally, select normal operation by switching S1 to the 'a.c.' position.

This completes the setting-up procedure and the amplifier is now ready for use. It is advisable to check the adequacy of the heat sinking arrangements by observing the temperature rise of the output transistor after, say, 15 minutes continuous operation at a reasonable output level (i.e. 10 W or more). If the rise in temperature is more than 25 deg.C above ambient, the heatsinking should be improved

NEXT MONTH: We shall provide constructional details of a 100 W dummy löad and a simple preamplifier/line driver.

Spectrum DAC/ADC Board
 R.A.PENFOLD

WITH something like a million ZX Spectrum computers now in circulation there are, no doubt, a great many in the possession of electronics enthusiasts who would like to use them in computer based measurement and control applications. One of the $Z \times$ Spectrum's main shortcomings is a lack of built-in interfaces, and there are no ports ready fitted to the machine that are suitable for applications of this type. However, it is quite easy to fit interfaces onto the expansion port, and an analogue interface is one of the most useful from the electronics enthusiasts' point of view.

The port featured in this article gives both analogue-todigital and digital-to-analogue conversion. Both have 8 bit resolution, which is more than adequate for most practical applications. The analogue output has an output voltage range which is adjustable from 0 to 2.55 volts to about 0 to 10 volts, but with additional circuitry the output voltage range could easily be converted to any desired span within reason. The analogue input has adjustable sensitivity, with the full scale value variable from 2.55 volts to about 25 volts. Again, with suitable additional circuitry practically any input voltage range could be accommodated. The maximum rate of conversion is guaranteed to be no less than 66000 per second, and in most cases in excess of 100000 per second can be achieved. Even the guaranteed rate is fast enough for most high speed applications such as digitising audio signals.

SYSTEM OPERATION

The block diagram of Fig. 1 helps to explain the overall way in which the unit functions. The digital-to-analogue converter is the more simple of the two converters. This consists basically of a precision 2.55 volt reference source, a resistor network (known as an R-2R network) and eight electronic switches. The electronic switches are controlled by the eight

Fig. 1. Block diagram
digital inputs, and when activated they connect the precision reference source through to the output via some or all of the resistors in the R-2R network. Things are arranged so that each input, when set high, causes the output to be incremented by the appropriate amount. The operation of this type of converter has been covered in past issues of this magazine, and will not be considered in more detail here.

In order to drive the DAC from the data bus of the Spectrum an 8 bit latch is needed, so that data written to the converter can be stored in the latch and used to drive the inputs of the converter. The converter then gives a continuous output, and ignores signais on the data bus that are intended for other devices. The converter used in this project has a builtin data latch, and it can therefore be fed direct from the computer's data bus. An address decoder circuit provides the latching pulse when data is written to the converter

The DAC has a 2.55 volt reference source, which sets the maximum output voltage at the same figure. This gives a nominal 0 to 2.55 volt output range in 10 millivolt 10.01 volt) steps. A variable gain amplifier enables higher maximum output voltages to be obtained, up to a maximum of a little over 10 volts. Of course, with a higher maximum output voltage there are still only 256 different output levels, and the output increments in steps of more than 10 millivolts. However, for most applications, such as motor speed controllers and even audio applications, the resolution of an 8 bit converter is at least adequate. The amplifier gives the unit a low output impedance, but without additional buffering output currents of no more than a few milliamps should be drawn.

The analogue-to-digital converter is of the successive approximation type. This incorporates a digital-to-analogue converter which is driven by a fairly complex control logic circuit. The eight outputs of this control circuit constitute the

COMPUNING PROJECT

output of the $A D C$. The output of the DAC is fed to one input of a comparator, and the input signal is fed to the other input of the comparator. When a trigger pulse is received at the "start conversion" input the most significant bit is set at one, but the other bits are all set at zero. If the output from the DAC is at a higher potential than the input signal the most significant bit is left at one, otherwise it is reset to zero. On the next clock cycle bit 6 is set to one, and, as before, it is either left at one or reset to zero depending on whether or not the output of the DAC is at a higher voltage than the input signal. On the next clock cycle bit 5 is set to one, and the process is repeated with this bit. In fact the same process is used for all eight bits, and at the end of this procedure the 8 bit binary number fed to the DAC is a valid digital representation of the input voltage. This method is reasonably fast, with the conversion taking no more than nine clock cycles, but successive approximation converters are reasonably inexpensive.

Fig. 2. Circuit diagram of the DAC/ADC board

The device used in this project does not have a built-in clock oscillator, and a simple C-R oscillator is used to provide the clock signal. The "start conversion" pulse is provided by the address decoder. The converter provides its output via an 8 bit buffer which has three-state outputs, and it can therefore be connected direct to the Spectrum's data bus. The "enable" pulse for the outputs is obtained from the address decoder, but an inverter is needed to give a signal of the right polarity. The converter has a nominal full. scale sensitivity of 2.55 volts, but a variable attenuator at the input of the unit enables this to be reduced somewhat if required.

CIRCUIT DESCRIPTION

The full circuit diagram of the Spectrum Analogue Board appears in Fig. 2.

All the address decoding is carried out by IC3 which is a 74LS138 3 to 8 line decoder. The Spectrum has a Z80A microprocessor, but it uses a non-standard method of input/output mapping. The general scheme of things is to have the address lines normally high, with one of the lower lines being taken low to activate an input/output device. Some of the upper address lines are occasionally used to provide additional information to an input/output device. This leaves address lines A5 to A7 free for user add-ons. In this case A5 and the IORQ lines are fed to the negative enable inputs of IC3, and A5 must be taken low when reading from or writing to either section of the port (the IORQ line automatically goes low when a BASIC IN or OUT instruction is used).

The three main inputs of IC3 are fed from the read (RD) and write (WR) lines plus address line A6. This gives four usable outputs from IC3, two when reading and two when writing (four outputs are always high since the read and write lines never go low simultaneously). This is adequate for our purposes as only two write outputs and one read output are needed in this application. When writing data to the DAC the instruction OUT 65439, X is used, where X is the value written to the converter. This takes the write and $A 6$ lines low while the value written is present on the data bus, giving an output pulse from output 2 (pin 13) of IC3. Other addresses can in fact be used, but it is best to use 65439 as this places the address lines apart from A5 and A6 high, so that unwanted operation of any internal input/output circuits is avoided.

IC1 is the DAC device, and this is the popular Ferranti ZN428. It has an integral 2.55 volt reference source, but this requires discrete load resistor R1 and decoupling capacitor C1. IC4 is an ordinary operational amplifier non-inverting mode circuit, and this amplifies and buffers the output of IC1. VR1 enables the closed loop voltage gain to be varied from unity to about 5 or so, but in practice the +12 volt supply used for IC4 limits the maximum output potential to about 10 or 11 volts. VR2 is the offset null control, and this is adjusted to trim the minimum output voltage of the unit to zero volts.

The ADC- is based on IC2 which is a Ferranti ZN427. Like the ZN428, this has a built-in 2.55 volt reference source which requires a discrete load resistor and decoupling capacitor (R3 and C2 respectively). R1 is part of the high speed comparator, and this is fed from a negative supply so that comparator will respond properly to voltages right down to zero volts. R7 biases the input of IC2 to the earth rail and VR3 plus R5 are.used to provide a small. positive bias which gives improved accuracy at low input voltges. VR4, together with the input resistance of the circuit, acts as a variable attenuator.

Fig. 3. Component layout of the p.c.b.

COMPONENTS

Resistors	
R1	68k
R2, R3	390 (2 off)
R4	22k
R5	820k
R6	2k2
R7	8 k 2
VR1, VR4	100k 0.1 W hor. pre-set (2 off)
VR2	10 kO .1 W hor. pre-set
VR3	$1 \mathrm{M} \mathrm{O.1W} \mathrm{hor}. \mathrm{pre-set}$
All fixed resistors are 0.25W 5\% carbon	

Capacitors

C1, C2
$2 \mu 263 \vee$ radial elect (2 off)
C3
1 nF carbonate
100 nF ceramic
Semiconductors

IC1	ZN428E
IC2	ZN427E
IC3	744 ST138
IC4	LF351
IC5	$74 L S 14$

Miscellaneous

Printed circuit board (502-02)
2×28 way 0.1 inch pitch edge connector
8 pin d.i.l. i.c. socket
14 pin d.i.l. i.c. socket
Two 16 pin d.i.1. i.c. sockets
18 pin d.i.l. i.c. socket
Ribbon cable, wire, Veropins, solder, etc.

IC5 is a 74LS14 hex inverting Schmitt Trigger, but in this circuit only three sections of IC5 are utilised. One of these (IC5c) acts as the clock oscillator in conjunction with feedback resistor R6 and timing capacitor C3. IC5b merely acts as a buffer at the output of IC5c. The clock frequency is approximately 600 kHz , which is the maximum guaranteed clock frequency for the ZN427. However, with most devices a substantially higher clock frequency is quite acceptable, and where high operating speed is essential using a somewhat lower value for C3 to give a higher clock frequency of up to about 1 MHz should give satisfactory results.

The "start conversion" pulse is taken from output 6 (pin 9) of IC3, and is generated using the instruction "OUT $65503,0^{\prime \prime}$ (the value written can be any valid quantity since the pulse is obtained direct from the address decoder and not from the data bus). The port is read using the instruction
"IN 65503". This gives a negative pulse from output 5 (pin 10) of IC3, but this is inverted by IC5a to give the required positive pulse to IC2.

At least nine clock cycles must be allowed to elapse between sending the "start conversion" pulse and reading the port, to ensure that the circuit has had time to complete the conversion. There is no problem in BASIC since the slow speed of this language means that the conversion will always have been comfortably completed before the port is read. The situation is different when using machine code, and it may them be necessary to use a delay loop to prevent a premature reading of the converter from being taken. The ZN427 has an "end of conversion" status output, but no means of reading this have been included in this unit, and as
the length of time taken for a conversion is virtually constant a delay loop is a perfectly practical way of doing things.

The circuit requires $+5,+12$, and -5 volt supplies. These are all provided by the Spectrum from its expansion bus, and no other power source is required.

CONSTRUCTION

The component layout of the printed circuit board is shown in Fig. 3. There are a number of link wires and it is probably best to fit these first. 22 s.w.g. tinned copper wịre is suitable for the links. None of the integrated circuits are MOS types, but it is advisable to use sockets for these, especially in the cases of IC1 and IC2 which are not the cheapest of devices. The integrated circuits do no all have the same orientation, so be careful to fit them onto the board the right way round.

Connection to the Spectrum is via a piece of 17 way ribbon cable about 0.5 metres long. It is unlikely that 17 way cable will be available, but it is easy to cut down a piece of 20 way cable to the required number of ways. Connection to the board should not prove to be difficult provided the end of each lead first has a small amount of insulation removed and is tinned with a small amount of solder. A 2 by 28 way 0.1 inch edge connector is needed to make the connections to the expansion bus of the Spectrum. Suitable connectors complete with a polarising key are now readily available. Fig. 4 gives connection details for the edge connector.

ADJUSTMENT

Connect the unit to the Spectrum prior to switching on. The Spectrum should then operate normally - switch off immediately and recheck all the wiring if it does not.

Assuming all is well, adjust the DAC first. Set VR1 and VR2, at a roughly midway setting, and then type the followin'g command into the computer:-
OUT 65439,0
This should give a low output voltage from the unit, and by adjusting VR2 it should be possible to trim the outputipotential to precisely zero volts. Next type into the computer the command:-
OUT 65439.255

Fig. 4. Connection details for the Spectrum edge connector

An output potential of around 7 to 8 volts should then be obtained. By adjusting VR1 any desired maximum output voltage of between 2.55 volts and about 10 volts or so can be set. Repeat this procedure a couple of times to make sure that everything is set up as accurately as possible.

To check the ADC and facilitate its adjustment type in the following short test program:-

10 OUT 65503.0

20 PRINT IN 65503
30 GOTO 10
When the program is run it should return a series of very low readings (0 or 1). Set VR4 at maximum resistance (fully counterclockwise), VR3 at a midway setting, and connect an input voltage to the unit that is equal to the desired full scale value. This should be in the range 2.55 to 25 volts. Run the program and set VR4 just far enough in a clockwise direction to give returned values of 255 .
In order to adjust VR3 an input voltage that produces 5 millivolts at pin 6 of IC2 should be applied to the cirrcuit. In other words an input potential that is $1 / 510$ th of the full scale input voltage is required. VR3 is then adjusted to give a series of reading that (more or less) alternate between 0 and 1. It is not essential to carry out this procedure, and accurate results will be obtained if VR3 is simply set for about half maximum resistance.
 SWOP Brothers EP44 computer printer/ typewriter RS232 for oscilloscope. Mr. Simall, 8 Cherrytree Road, Chinnor, Oxon.
WANTED Texas Microprocessor TMS 1000. Please write to: Abbass Rezaei. PO Box 62. Najafabad, Isfahąn, Iran
FREE-sacks of old components. Mostly TV/valves, to be collected in Oldham 'Details'; 092320751 , Mr. V. R. Halsall.
FOUR pairs matched boxed speakers, $£ 8$ per pair. T.A. J. Cooling. 4 Norfolk Road, East Ham, London E6 2NJ.
WANTED Manuals for Cossor oscilioscope type 1035, and Harley oscilloscope type 13A. M. O. A. Chari, Ladersattravagen 973 Tr, 17570 Jarfalla, Sweden.
PAL: information on PCBs making, from amateur and experts. A. Larry, 56 Becher Street, Derby DE3 8 NN
UK101 software for sale or swops. Send for list of programs. Mr. P. Hale, 31 South Road, Stourbridge, West Midlands DY8 3YA.
'NIGHTRIDER' car lights sequencers, drives nine channels vari-speed. Easy wiring all negative-ground cars $£ 40$ complete. Mr. S. M. Budzinski, 16 Laburnum House, Malpas Road, London SE4 1 BL.

SURPLUS to requirements MC6809E SN74LS783 Synchronous address multiplexer chips. $£ 4.00$ each. $10+£ 35$. SN74LS783 data £2.50. Mr. N. E. Spiers, 114 Green Way, Tunbridge Wells, Kent TN2 3JN.
CLEARTONE graphic equaliser (bảttery) 7 channel mono, with master volume control. New $£ 22$ inc. p\&ip. F. C. Smith. 283 Leeds Road, Newton Hill, Wakefield WF1 2JQ. Tel: 0924 374122.
$10 \times 8255 A \cdot f 70$ the lot or $£ 8$ each. Also printer leads for Dragon 32, BBC £9.95 each. R. Vowles, 3 Orchard Waye, Uxbridge. Middx. UB8 2BN. Tel: 089554720.
WANTED two SN76001 i / c as used in the Heathfield TV. Mr. Kendall, 4 Howlets Terrace, Chelmondiston, Ipswich IP9 10X
5×7 dot Matrix printer 7 colours: 80 cols. parallel interface adjustable tractor teed VGC $£ 220$ on:o. S. Walker. Tel: 0865750600 evenings.
CAR battery voltage monitor - graces añy car As new in immaculate condition £3.45. Russell Oakes, 32 Wigan Road, Winstanley, Wigan, Lancs. WN5 7XS.
COPIES available from private çollection early service sheets radios TVs etc. $£ 1+$ large SAE. State make, model. Maurice Small, 8 Cherry Tree Road, Chinnor, Oxon. OX9 4QY.
HAMEG oscilloscope HM203-4 dual beam 20 MHz with probes f 195 . Tel: Southampton 557386. Mr. D. Couctiman, 8 Grosvenor Gardens, Southampton.

OSCILLOSCOPE Heath $10-4555$ E150 ono also other instruments P.C. bridge etc Offers, good condition, sold separately. Mr. A. Ewing, 9 Croft Crescent, Markinch, Glenrothes, Fife KY7 6EH, Scotland.
WANTED AY-3-1270 linear i.c., or RS-3-1270. Mr. J. F. Wilson, 233 Broomlee Close. Newton Aycliffe, Co. Durham. Tel: Avcliffe 312130.

WANTED two track record head for B \& O record 1800 RTOR deck. Mr. C. Bressington, 17 Station Road, Ystrad Mynach, Mid-Glamorgan. Tel: 0443813005.
EIGHT Philips LVC $1502 \frac{1}{2} \mathrm{hr}$. video tapes. Hardly used. Offers plus postage. Mr. L. T. Hill, 14 Rothesay Terrace, Bedlington. Northumberland. Tel: Bedlington 825967
WANTED data or specimens of early transistor types. Good prices paid. Write for full details: Mr Andrew Wylie, 18 Rue de Lausanne, 1201 Geneva, Switzerland.
MICROSYNTH Synthesiser built and tested with speaker and homemade stand $£ 150$. 8 Stourton Road, Witham, Essex. Tel: Witham 514556.

COMPONENTS transistors mainly OC/AC/BC capacitors, resistors, chips, pots, relays, motors and other. $16 \mathrm{lb} . £ 20$. Mr. Turner, 4 Mill Fields, Newtown, Powys. Tel: 068627862.
WANTED service circuit diagrams Sugden C51 A51 purchase hire to copy. Good price paid. Richards, Maesyffynnon, Caehopkin Raad, Abercrave, Swansea. Tel: 0639730629.

							Range of heat Shing available ration. SPEAKERS Miniature buzzer Ultrasonic 600p Elliptical $5 \times 3^{\prime \prime}$ pair Elliptical $6^{\prime \prime} \times 4^{\prime \prime}$ $262 p$. ${ }^{2} \times 4^{\prime \prime}$ Elliptical $7 " x 4^{\prime \prime}$ 3140 Elliptical 7 " $\times 5$ " $338{ }^{2}$ Eliptical $8^{\prime \prime} \times 5^{\prime \prime}$ Elliptical g" $^{\circ} 5^{306}$ $8 W$ Elliptical 9.5610 Miniature 1". 90p Ministure $1 / h \quad . . .90 p$ Miniature Miniature $\quad . \quad .99$ ${ }^{2 \prime \prime}$ Miniature90p 90 p Miature $2 \%^{\prime \prime}$ 64R...... 100p Round $5 *$ iW 1740 Round $5^{*} 25 \mathrm{~W}$ 409p Round $5^{\circ} 60 \mathrm{~W}$ 15870 Round 5% " 10 W Round 5 \% 15 W Round 6" $6^{\prime \prime}$ W 297p Round $6^{\circ "} 60 \mathrm{~W}$ 1632p Round 6 \%"		TRANS. FORMERS $6-0-6 \mathrm{~V}, 100 \mathrm{~mA}$ ${ }^{6-0.6} \mathrm{~V}$. 250 mA . 100 mA. 9.0 .9 V . 87p 12.0 .12 V . 50 mA 100 mA 12.0 .12 250 mA $0.12 / 0.12 \mathrm{~V}$. 9.0.9 V VA 283 p $12.0-12 \mathrm{~V}, 1 \mathrm{~A} 350 \mathrm{p}$ 20.0 .20 V. 1 A 433 p $\begin{array}{lll}1.5 \mathrm{~A} \\ 0.12-15 & 20 & 24.30 \mathrm{~V} \\ \\ 0\end{array}$ $\begin{array}{lll}1 A & 665 \mathrm{p} \\ 6-0-8 & \mathrm{~V}, 2 \mathrm{~A} & 440 \mathrm{p} \\ 9.0 .9 & \mathrm{~V} & 2 \mathrm{AA}\end{array}$ $12.0-12^{\circ}, 2 A \leqslant 38 p$ $2 A$ $0.12-15-20-24.30$ $2 A$ $20-0-20 \vee .2 A 745 p$ $30.0-30$ $12-0.12 \mathrm{~V}$. 3 A 721D $0.15 \mathrm{~V}, 3 \mathrm{~A} \quad .647 \mathrm{p}$ $6.0 .6 \mathrm{~V}, 4 \mathrm{~A} \quad .538 \mathrm{p}$ $12-0-12 V 4 A 845 p$ $6.0 .6 \mathrm{~V} \cdot 8 \mathrm{~A} \quad .960 \mathrm{p}$ 12.0 .12 V 8 A 1615p Toroids: 30VA 3 V . $9 \mathrm{~V} . .950 \mathrm{p}$ $30 \mathrm{VA} 12 \mathrm{~V} . .950 \mathrm{p}$ 30 VA 15 V .950 p 30 VA 18 V ...950p 50VA 6V 50VA 9V. 50 VA 12 V. 50 VA 15 V 80VA 18V. $80 V A \mathrm{BV} \quad 1200 \mathrm{P}$ $120 \mathrm{VA} 30 \mathrm{~V} \quad 1300 \mathrm{p}$ 160 VA 35 V . 1500 p 300 VA 35 V .2000 p 500 VA 35 V .2650 p All loroids have condaries at volta ges shown.

SENO THIS IOUCHER WITH YOUR OROER OR BRING IT

DIGITAL CAPACITANCE METER (UK C/P 65 p) Large CCD a sppay 8 ranges 0. ip 10 WITH YOUCHER EE2.55

 OC POWER SUPPLIES

$203 \$ 3.8$ voll 3 Amp DC outpul (For all 12 volt DCequipent) £ 1.95 WITH YOUCHER E10.76 241 Meter indicalor Amps/Volls or 30 voll 243 3 Amp version (〔59.95)

WITH VOUCMER $E 53.96$

ANALOGUE
 MULTIMETERS (UK C/P 65p) 15 Range pocke! (E8.95)
 WH56R 1OK/voll 22 Range ($£ 12.95$ 1 102BZ 20 k tvoll 22 Range 10 ADC i£ 15.95$)$ WITH YOUCHER $£ 14$ YM360TR $20 \mathrm{~K} / \mathrm{volt} 19$ Range plus Hie test (E14.50) WITH VOUCMER E13.05 $500150 \mathrm{k} / \mathrm{volh}$ Range doubier 10 O DCROM ohm ($£ 21.95$) \quad WITH YOUCHER $£ 19.76$ WITH YOUC $820 \mathrm{~A} 30 \mathrm{~K} / \mathrm{V} 26$ range $10 \mathrm{~A} A C / D C$
 WITH YOUCHER £22.46
 Prices correct af lime of press appro 6 weeks prior to publication. E\&OE

OIGITAL

 MULTIMETERS
$S=$ Slide 5 K
$\mathrm{~h}=$ Rolary
$\mathrm{PB}=$ Push bution

- KD305 (S) 14 Range 10A DC 2 M onm ($£ 2980$ 6010 (PB) 28 Ränge 10A AC/DC 20 M ohm (24350) WITH YOUCHER $£ 39.15$
- KD 55C (R) 26 Range 1OA ACIOC 20 M - KD 55C (R) 26 Range 10A AC/OC 20M ohm (E 4450) WITH YOUCHER £ 40.05 - 3510 (A) Range 10A AC/DC 20 M onm He teste)
cont buzzer ($£ .46 .52$) WITH YOUCHER E41.89 cont buzzer ($£ 46.52$) WITH vOUCHER E 41.69
ME540 (A) Man/Auto 19 Range IOA AC/DC ME540 (A) Man/Auto 19 Range IOA AC/DC
20 M onm ($£ 47$ 77) WITH VOUCHER E 2.98 - OM3350 (A) Autorange 18 Range 10A AC/OC 2M onm Cont. Buzzer £49.95)
- with carry case

TRANSISTOR TESTER

 (UK C/P 65p)Direci reading of Hie and leakage
tor NPN/PNP transistors
\& diodes (£27 95) WITH YOUCHER £25. 16
PROBE KIT (UK C/P 45p) For all scopes etc. BNC connector swithable $\times 1 \cdot \times 10$

SICNAL INJECTOR (UK C/P P 45p)
Pencil type AF/RF oulpul 1000's sold VOUCHER E 4.46
4.

IELEPHONE: 01: 7240323

- THE START OF SOMETHING NEW

If you are leaving college and planning a career in modern communications or if your present job lacks interest and challenge then why not join us in government communications headquarters? We are recruiting RADIO OFFICERS who after initial training will become members of an organisation that is in the forefront of communications technology. Government Communications Headquarters can offer you a satisfying and rewarding career in the wide field of communications.
Training involves a 32 week course (38 weeks' if you come straight from nautical college) which will fit you for appointment to RADIO OFFICER.
Not only will you find the work as a RADIO OFFICER extremely interesting but there are also good prospects for promotion, opportunities for overseas service and a good salary. Add to this the security of working for an important government department and you could really have the start of something new.
The basic requirement for the job is two years' radio operating experience or hold a PMG, MPT, MRGC or be about to obtain MRGC. Registered disabied people are welcome to apply.
For full details and application form 'phone $024232912 / 3$ or write to the Recruitment Officer, Room All08, GCHQ; Priors Road, Cheltenham, Glos.

[FCHIT

Recruitment Office, Government Communications Headquarters, Oakley, Priors Road, Cheltenham, Gloucestershire, GL52 5AJ.

Outlook

- Everyone in business breathed a sigh of relief once the US presidential election was over. The two-year run-up is almost unbearable for its unsettling effect:

All indications, are that 1985 will be a good, though possibly hard year for the electronics industry. In 1983 the number of spmall companies starting up provided a net gain of 47,000 , The 1984 figures, not yet avallable, are expected to beat this record and there is no reason why 1985 should be worsé. A sighificant number of the new start-ups will, be in or associated with the electronics industry.

Foreign investment in the UK continues at a high level: The prolonged miners' strike was apparently seen overseas as a one-off out-of-character industrial relations problem and not typical of the 'new realism' in British jndustry. In any case no foreign companies would want to invest in coal mining and potential investors may be impressed by the relative ease with which British industry carried on through what was intended to be a crippling exercise.
Expansions and new starts planned last year will begin to take effect. If wé look at Scotland's Silicon Glen there are now nearly 300 electronics companies employing more 'than 40,000 people. Inward investment since the Locate in Scot/and agency was'founded in 1981 has now topped $\uparrow 1,000$ million, most of it finding its way into hign-tech projects. And suibstantial iqvestment is similarly going into other areas. Even so they will not create many new jobs, one recent estimate being for 10,000 in the electronics industry this year. - Intenșe competition in personal computers will force prices down so intending buyers, would probably profit by delaying purchase. Alternatively, prices could stabilise but the product improved in the classic "more-bits-per-buck" context. But despite all the difficulties it will still be possible to score well in the consumer market as proved by Alan Sugar's Amstrad whose pre-tax profits topped $£ 9$ million in its last financial year?

Information Technology

Information Technology which seemed so novel (although hardly new) only three years ago has now become accepted as the norm and no more exciting than radio or television. Some pessimists are already saying that Britain has been losing ground in this growing sector of industry. Their fears are based on the, increase in imported equipmen't compared 'with indigenous production.

At the higher levels of the technique the Alvey programme is now gaining momentum. Two new major contracts were awarded towards the end of last year. One carries the painfully contrived acronym of ADMIRAL derived from. ADvanced Mega Internet Research for Alvey. The other is merely called the Speech Recognition Project.

The ADMIRAL contract is a $£ 3$ million joint venture peing coordinated by GEC Research Laboratories. Partners are University College, London, The University of Lon-. don Computer Centre and British Telecom Research Laboratories.
The system will-link local area networks (LANS) through a 'mega internet overlay' to produce a single large system of data networks. The key feature is to allow high speed intercommunication between dissimilar equipment. It appears to be a fe-jlg of part of the Project Universe programme originally initiated by the Department of Trade and Industry and later transferred to the Alvey Directorate.

The voice recognition project is funded with $£ 2$ million and is centred on British Telecom Research Laboratories with collaboration from Cambridge University and Logica. Although most schoolchildren are acquiring keyboard skills it is also recognised that speech is the most natural form of communication between people and the same applies between people and computers.

Present voice recognition systems are primitive and generally respond only to single-word voice commands. It is hoped to expand into true verbal, dialogue between person and computer so that anyone who can talk can, for example, find what is 'required from' a data base without necessarily having any keyboard skill.

Time for Schools

It is heartening to see that schools are .now to be networked through The Times Network for Schools (TTNS) which will give any school access to more than 200,000 pages of information by the end of the year. Secondary schools of which there are 6,500 will be first to join, followed by27,000 primary schools.

Future plans exist to network British schools to those on the continental mainland. Joining the network will be optional but the fees are modest and the scheme should prove popular and exciting.

Then we have the proposal for a university devoted entirely to information technology. It has the backing of a host of leading electronics companies but students
will have to pay fees to make the university self-financing.

Fears have already been expressed by egalitarians that the university will be antisocial because it will create an elite of the already advantaged who can afford the fees. Nonsense, of course. We need more, not less, centres of educational excellence.

Improvisation

1 remember at a press conference organised by a Ministry of Defence electronics establishment asking how we would get on in a real war when the time scale of equipment development stretched over a period of years even when the equipment was comparatively simple. I had in mind the very few weeks which elapsed in 1940 between the alarming discovery that the Germans were using magnetic mines, and the countermeasute (degaussing of ships) devised and implemented. And this was only one example of many rapid developments of that war.

1 contrasted this with over 10 years of development of the Clansman radio system before it came into service. I was not very impressed with the reply which was more or less that we would probably muddle through as we always had done in the past.

My confidence has now been restored (well, almost) by Alfred Price in his new book 'Harrier \& Sea Harrier at War', published by Ian Allan Ltd. In it he describes 'Blue Eric', an electronic countermeasure system needed urgently for the Falklands war. If Harriers were to be operationally successful in the South Atlantic they would need self-protection against Argentine radar installations.

The threat was evaluated from normal military intelligence which already had details of the characteristics of radar equipment in service with Argentine forces. Existing electronic warfare pods (e.g. for Tornadb and Buccaneer) were too large and heavy for the Harrier so it was decided to use elements of the Sky Shadow equipment and fit them in a modified gun pod which would meet the weight and size requirements as well as the Jamming capability.

Marconi Defence' Systems were prime contractors and completed the design, testing and delivery of operational units, within 15 days instead of an estimated two years'at normal pace and at a quarter of the cost.

Blue Eric (named after its MOD project officer Squadron Leader Eric Annal) was never used in the Falklands. When the EWequipped Harriers arrived they were grounded for four days by bad weather and by the time they got airborne the conflict was virtually over, the Harriers then being used for front line ground attack where the radar threat was negligible or non-existent.
While it is comforting to know that the improvisational skills of yesterday have not been lost, one is still left wondering why an EW pod for Harrier was not already available and why, in peacetime conditions, equipment development times are so long and the "cos't so great.

The Principle and the Product
 Tom Gaskell ba(Hons) ceng miee

THE electronics industry is one of extremely rapid change. New products, ideas, and standards spring up continually, promoting a continuous state of flux and development. As a fairly young industry it is successful in discarding old and outdated principles in favour of newer, more beneficial ones; if change can be shown to be worthwhile in any specific situation, then that change is almost invariably made.
It comes as somewhat of a surprise, therefore, that for the production of documentation, text, correspondence, and computer programs, the primary means of interface between the human being and the machine is still a QWERTY keyboard. QWERTY is the standard layout of typewriter keys which was devised very many years ago with the principle intention of Slowing Down the typist to prevent jamming of the mechanism. In this age of mechanical sophistication and electronic keyboards the same requirement is no longer true since we can easily prevent jamming by other means. Hence, we are left with a legacy from a bygone age. The QWERTY layout is slow and complex to learn, with months of training being required before any proficiency is achieved. For many people such training is impractical, so they are reduced to 'two finger' typing, which is usually a slow and frustrating exercise.

A NEWIDEA

When a company brings-forth a new idea for entering text into machines, it is bound to attract considerable interest. A few years ago a device called the 'Microwriter' appeared. It is a small, self-contained machine with only six keys, which is used with one hand only. The Microwriter company has been producing these devices in modest quantities ever since, and has recently started to advertise and promote the product in a more aggressive way, with various options and accessories now available.

WHAT IS A MICROWRITER?

A Microwriter is no less than a battery powered portable word processor. It is just a little larger than a paperback book and has very few controls-some connectors, an ON/OFF switch, a liquid crystal display, and six keys. It is placed on a desk or held in the left hand, and typed on with the right hand. (As yet there isn't a left handed version since there would be problems connected with the way that the 'alphabet' of letter shapes are formed, as we shall see later.) The Microwriter can communicate over a bi-directional RS232 serial link with printers, full-sized word processors, computers, etc., and can store text either internally on battery backed-up RAM, or on any conventional external cassette recorder.

Characters or numerals are entered into the machine by pressing combinations of keys, rather than one key at a time as in the case of the QWERTY system. There are no markings on the keys since they can have different functions at different times, so the user is immediately forced into the excellent principle of touch typing, and looks at the display rather than at the keys being pressed. The user, therefore, has to learn all the sequences of keys to be pressed before being able to type correctly. This is the make-or-break aspect of the Microwritermany people are immediately put off by having to learn a potentially complex typing language. Fortunately, the people at Microwriter Ltd. have been very clever indeed in the choice of
keys to be pressed per character. The right hand is always held in the same place above the keyboard, one finger above each key, and the shape formed by the fingers pressing the keys bears a relationship with the shape, or some aspect, of the character which becomes entered into the machine. That relationship is sometimes obvious and direct, sometimes humorous, sometimes very corny, but inevitably is easily memorable. Fig. 1 shows some of these relationships, based on a slightly stylised layout of keys. The manufacturers suggest that they can be memorised in typically one hour, and certainly I have found this to be the case as far as friends, colleagues, and myself have been concerned. It is very easy indeed to learn to Microwrite; far, far easier than touch typing, and I have tried both!

USING THE MACHINE

As each character is entered from the keyboard it is displayed on a single line liquid crystal display which can show up to 14 characters and two control symbols. The display acts as a 'window' on the text, and can be moved around within the text, either following new characters entered or to review what has already been written under the control of special commands. The text, as shown by the display, normally appears to shift to the left as each new character is entered by the keyboard and appears at the right hand end of the display. The sixth key on the Microwriter is a second thumb key, a little below the normal one, and it acts as a control key, allowing comprehensive control of the machine's functions. It is used either on its own, or with other keys in place of the normal thumb key. For example, entering the letter ' f ' (the First Four keys pressed), but using the control key instead of the thumb key, moves the display window in the text Forward one position; ' ρ ' for Forward-it is corny, but it works! Doing the same thing with the letter ' k ' moves the window backwards. In this case, ' k ' stands for Korrect, so you use it when Korrecting errors!

WILL THIS EVER REPLACE THE 'aWERTY' KEYBOARD?

Pressing the control key once, on its own, puts the Microwriter into upper case characters for just one entry, after which it reverts to lower case. Pressing it twice in succession, on the other hand, locks the machine into upper case continuously until the two thumb keys are pressed together to revert to lower case. The status of the machine is continuously shown by two control symbols in a yellow coloured area at the right of the display

Simple punctuation is provided as part of the normal lower case letter set, but more complex punctuation and numerals have to be accessed by a 'numerals shift' function. Entering the letter ' n ', but with the control key pressed at the same time, shifts the Microwriter into the numerals mode for one character only; entering this combination twice in succession locks in the numerals mode, just like the upper case mode. There's another set of character/key relationships for the punctuation, with numbers being entered by a 'count on the fingers of one hand' type of technique. The requirement to shift for numerals is acceptable for word processing applications, but would make the Microwriter somewhat laborious for writing computer programs; for example.

To avoid timing problems when keys are pressed together, the Microwriter works on a key accumulation principle, and the character is only entered when all the keys have been released. Hence, you can start to press keys in any order, so long as at least one of them is being held down at any given time. When all the keys are eventually released, the result is as if all the keys that were depressed in that sequence, irrespective of their chronological order, were pressed simultaneously. This makes the keyboard action very 'forgiving', and allows characters to be entered very slowly and deliberately when required. The speed which can be obtained after only a few weeks' use is very high not as fast as touch typing, but certainly up to twice as fast as handwriting.

EDITING AND WORD PROCESSING

When text has been written it can be edited (both deletion and insertion) and reviewed by appropriate use of the control key. To read through the written material, the user has to Jump back to the beginning (control $+j$) then scroll Forwards (control on its own, followed by control +f ; this then moves the display window along the text one word at a time, at a user selectable slow or fast rate, until you tell it to stop. The machine automatically enters 'carriage returns' at the end of each line, and ensures that these are between words, not in the middle of them. Via the control key the user can access tabulation, margin indents, document markers, page separators, alter line length, and do many other complex word processor functions. These become very difficult to memorise, and even more difficult to implement, and I would have thought that they would have only limited usefulness to most people.

The control key is also used to suitably configure the RS232 link. Although this can be used to load text into the Microwriter, its primary use is to transmit text to a computer, word processor, or printer from the Microwriter. Full handshaking is provided, and there are user selectable baud rates, data lengths, etc., so it will interface with most RS232 based systems. All settings and text are stored in RAM with battery back-up, so nothing is lost when the power is turned off. The machine even turns the power off itself if it is not used for a few minutes, to

Microwniber

ALPHABET RECOMMENDED LEARNING SEQUENCE

Fig. 1. Sometimes corny; but inevitably memorable
conserve battery life. The batteries are rechargable types, and a suitable charger is provided with the machine. Up to 1600 words, or typically 5 pages of A4 size, can be stored in the memory of the machine. (Much more if cassettes are used.)

THE HARDWARE

The packaging of the Microwriter inspires confidence! It is housed in a very solid injection moulded plastic case. The keys are ultra-low activațing-forçe microswitches with moulded keys. Their action is light but positive, and their positioning is ergonomically spot-on. Inside there is just one main p.c.b. holding the RCA CDP1802A CMOS microprocessor, four HM6116 CMOS 2k Byte static RAMs, and a 2564 8k Byte CMOS EPROM, along with an 'intelligent' liquid crystal display above it as a sub-assembly, and other assorted CMOS i.c.s. The batteries are housed between the microswitches in the upper half of the case. It's a well laid out and professionally built product.

With the Microwriter itself comes a good quality soft carrying case, a battery charger, a cassette recorder connecting lead, some 'crib cards' giving a quick reference to control codes, characters, punctuation, etc., and two instruction manuals; a new user's guide, and a more complex systems manual for setting up communications protocol and the like. The new user's guide is effectively the main instruction manual for the machine, and without doubt is the best manuat that I have seen for a piece of consumer electronics. The cartoon characters used might annoy some, but they will drive the points firmly home to just about anybody, whatever age or ability. Other product manufacturers would do well to study this manual and compare its high standards with their own!

There is an optional television interface unit available for the Microwriter which I'm somewhat less happy with. It interfaces to the RS232 port, and allows the display of text on a domestic television set or a composite video monitor. It is expensive (around the $£ 100$ mark) and gives very limited facilities. Writing onto the screen as you enter text works reasonably well, but if you just want to dump a letter, for example, onto the screer, to check its layout, the use of the Microwriter becomes somewhat more contrived. It's very difficult to put a letter onto the screen without the top of the letter scrolling off the screen as soon as the bottom of the screen is reached. The unit that I tested also failed to get the ends of the lines correct when dumping onto the screen; parts of words were left at the end of some lines, then the whole word reappeared again on the next line. For the majority of potential Microwriter users I would question the necessity for the television interface unit-when you've got the hang of Microwriting you probably don't need it. It seems to be more suitable as a shared facility between several users, and generally seems to be somewhat of an afterthought rather than an integral part of the Microwriter system.

THE OUINKEY

For many people, the cost of a Microwriter ($£ 299$ plus VAT), although low by office equipment standards, is too high for them to consider it as a personal purchase. However, they could consider investing in a 'Quinkey'. This appears to be an ordinary Microwriter at first glance, but lacks most of the connectors and the display. In fact, it contains no electronics, just a set of microswitches and resistors which enables up to four of them, ingeniously, to plug into the analogue inputs of a BBC microcomputer. For just under $£ 50$ the full Quinkey package provides good value, consisting of the the Quinkey itself, a manual, some crib cards, a connecting lead, and the software to run the system. Further Quinkeys on their own cost around $£ 30$.

The software enables the Quinkey to be used as well as the standard BBC QWERTY keyboard, not only with software within the BBC micro such as BASIC, the Acorn DFS, etc., but
also with software packages such as Wordwise and similar. A version for the Spectrum is soon to be made available, and Microwriter are working on versions for other popular personal computers too. All this helps to bring the unique qualities of Microwriting to the private individual, schools, colleges, etc.

APPLICATIONS—WHO USES IT?

The most obvious market for the Microwriter is with professionals on the move-salesmen, executives, engineers, and anybody who does an amount of documentation, report writing, letter writing, etc. On the train or 'plane they can write their meeting reports, or they can keep notes in the field or by their work benches, and either print the results out so that they are legible to themselves and to their colleagues, or if necessary dump them onto the office computer or word processor to be tidied up before final printing. There's no duplication of effort, the typists no longer having to work from handwritten notes.

The small size, portability, and ease of use of the Microwriter are attractions which a QWERTY keyboard has never had. Microwriting can never be as fast as good touch typing, so it will not be used to replace QWERTY keyboards in typing pools or secretarial offices, but for thousands of unqualified typists it offers a refreshing 'alternative to the two-fingered struggle, so it should be of great interest to small businesses, the police, sales personnel (especially those working from home), budding novelists, and even to the writers of magazine articles! For schools it has the advantage of allowing the connection of four Quinkeys to each BBC microcomputer, which immediately shares out normally limited resources to many more children If accepted for these applications, it can only help establish Microwriting as a world-wide standard in' years to come.

THE FUTURE OF MICROWRITING

Until recent months the promotion of the Microwriter was a very low-key process, although some rather more prominent advertising is now being seen. Oyer 7000 have been sold, which can only be the very tip of the potential iceberg. I must express reservations, however, about the approach that Microwriter are making on the market place, which seems to be rather uncertain and lacking in self-confidence. I first saw a Microwriter 'in the flesh' in the latter part of 1983, when I had a demonstration and a loan from a distributor for' a couple of weeks. I expressed a great interest when I returned the machine to him, and was promised more information and a follow-up call shortly. I néver heard from him, or another distributor I contacted, ever again. At the end of January 1984 I approached Microwriter themselves for information and a review sample to help, prepare this article. I also ordered two Quinkeys for my own use. I am writing this article in mid August; the review sample only arrived three weeks ago! The Quinkeys arrived in the middle of June, some 19 weeks after they were ordered, and only after telephone calls at the rate of once per fortnight for most of that period. I persevered-I wonder how many others did not?

I hope that the future is very rosy for Microwriting. Amongst friends and colleagues the Microwriter has created more interest than any other piece of equipment that I can remember. The concept of the Microwriter is a work of genius. The market is potentially vast, the product works, well, and the presentation is superb. The price is a little high, but should not deter the professional market, with the lower cost market being satisfied by the Quinkey: Let's just hope that Microwriter can improve on the delivery and planning side of it, put some more aggression into the marketing, and produce a commercial, not just a technical winner. What a great shame it would be if the Microwriter concept was lost to an overseas supplier, as has happened to so many other viable products from the UK.

More information can be obtained from Microwriter Ltd;, 31 Southampton Row, London WC1B 5HJ. (01-831 6801).

DIGITISATION

Everyone talks about the information explosion. The key is digitisation. With digital telephone systems what goes down the line is a series of PCM pulses, rather than analogue waves. Once you have that situation, the sky's the limit.

PCM pulses can carry telephone quality speech, high quality stereo radio, TV pictures, computer data, teletext, viewdata; in fact any information that can be converted into an electrical signal. Switching is by microchip, instead of the primitive Strowger electro-mechanical relay which phone systems have used for the best part of a hundred years.
By interieaving different calls in the same data stream, the capacity of a link goes up around 15 times, i.e. a pair of copper wires that normally carry one analogue telephone call, can carry fifteen digitals. With optical fibres, and the signals carried as light pulses rather than electrons, capacity rises much, much higher.
The British Post Office started working on PCM phone links 20 years ago. Few people know that the PO installed an experimental digital exchange at Earl's Court in 1968 and had it running until 1975: That was when talk about System X started.
Cynics say that the System was called X because no-one really knew what it was going to do or how it was going to do it. Essentially it's a computer switching service for PCM streams and there are now six System X exchanges working in London. One is at Baynard House in the City of London. The first five were prototypes.
Once data streams are digitally switched and connected, the options available open up wide. There is no problem in providing conference calls, automatically re-directing calls to other numbers or displaying the telephone number of origin when you receive a call.

ELECTRONIC MAIL

Already many people in Britain are using electronic mail, which is a hybrid system of sending digital data down an analogue telephone line. I'm one of them and there are quite a few stories to tell about how the system works in practice, as opposed to theory!

More of that in a future month. At the moment I am trying to find out why the main computer used by Telecom Gold for electronic mail keeps going wrong and leaving users like me stranded!

Why worry about information technology? There's a very short answer. It is always far cheaper to send electronic data down a telephone line, or over a wireless link, than shift people or bits of paper from town to town or country to country.

The best example of this is what happens at the Economist magazine. This Londonbased publication also prints in America and the Far East. Printing master plates are sent by airline courier to the Orient. Until a year ago they were also sent to America.
The plum job on the Economist was to take a day trip on Concorde to New York and back, with the print plates, for safe keeping. Now the magazine text is converted to digiţal data and sent by satellite direct to a Connecticut printing works, which publishes virtually simultaneously with London.

Wisely the Economist still sends a back up text by 'plane just in case the satellite link breaks down. But no-one gets the plum job of going along with them any,more.

VIDEO NEWS

Polaroid has joined Kodak in 8 mm video. Sony may follow next year but so far everyone else is sticking with their existing VHS and Beta formats. Ironically by joining Kodak, Polaroid may well have helped its rival succeed. The extra name gives the new format credibility.

At the Chicago Consumer Electronics Show both companies were demonstrating NTSC camcorders using the 8 mm cassette. Picture quality was good and sound, using f.m. mono, seemed OK. The big question mark is over tape supply.
Video writing speed is very low; 3.8 metres a second for NTSC and 3.1 metres a second for PAL and SECAM. So packing density must be very high. You can get it either from tape coated with metal powder (MP) and coercivity around 1600 oersted. But this needs video heads which are expensive and may be short lived. The other way is to use lower coercivity tape coated by evaporation of cobalt-ferric metal in a vacuum (ME). No one has yet succeeded in making ME tape reliably in bulk.

Kodak started shipping 8 mm camcorders to US traders last September. A 90 minute cassette costs $\$ 24$ and the system $\$ 2000$. There is no sign yet of a PAL or SECAM prototype. Although 8 mm video almost certainly comes too late and too expensive to catch the domestic market, it could well form the basis of a new professional camcorder format.

Sony has both domestic and pro interests. Kodak and Polaroid are paying Matsushita, Toshiba and TDK to get the technology right for domestic use. Professional use is the logical follow on.

CLEAN CUT

I have now seen inside several compact disc and videodisc manufacturing plants in Britain, Germany and Japan. They all have one thing in common with a microchip factory, that is absolute cleanliness.

Exactly the same situation exists in magnetic tape factories, where any dirt in the atmosphere will end up as nonmagnetic blemishes in the coating and cause dropout.
Air in the so-called "clean areas" is filtered to Class 100, that is to say less than 100 particles of less than 0.5 micron size in every cubic foot of air. The pressure of air inside these clean areas is higher than the atmosphere outside, so when a door opens clean air blows out and dirty air leaks in.
The staff must wear full length lint-free jump suits, like space clothing, and only a few visitors are allowed in. Usually there is an air shower, where blasts of clean air flush dirt, dust; dead skin and dandruff off every human passing through.
If only, I think every time I visit one of these plants, factories which press ordinary records would take even remotely comparable steps to preserve cleanliness. The official answer is that it's not necessary.

Certainly, by comparison, the technology of LP production looks like a blunt instrument. But it is easy to forget that a vinyl LP record is by far the most precise product mass produced from plastics!
The groove of an LP record is specified by IEC standard to be never less than 25 microns (or millionths of a metre) wide and preferably not less than 35 microns wide. As a "yardstick" a human hair is around 50 microns in width. The IEC puts stylus tip radius at between 15 and 18 microns.

Now let's look at a Laservision videodisc, and a compact dise digital audio record. Both have a spiral of information pits with a track pitch of 1.6 microns.

For videodisc the pits are 0.5 microns wide, and for compact disc they are 0.6 microns wide. Video pit depth is 0.1 micron and CD depth 0.12 microns.
In other words there is very little difference in the dimensions; both are at least 50 times smaller than the LP groove. The laser spot for videodisc playback is focused to a circle of 0.9 micron diameter and for compact dise it is 1 micron: The layer of protective lacquer in a compact disc has to be exactly 1.2 millimetres thick, or jit will 'affect the laser focus.

PARTY TURN

If you collect useless information to bring out of the bag at boring cocktail parties, here's one for the bag. A CD player rotates the disc at a speed which varies between 3.5 revolutions a second and 8 revolutions a second, to give a constant tracking velocity of 1.25 metres a second.
That means that for a one hour disc there are 4.5 kilometres of track on a single side. For a laser videodisc the track length is 31 kilometres

BARRY FOX

TERMS OF BUSINESS

* All prices exclude V. A T. and carriage. Please add carriage to order total before adding V.A.T.
* Carriage charges extra on all orders as follows: Components
Books/Data/Software
£2.00
Printers, Monitors, Disc drives, etc
E4.50
* Strictly cash with order or credit card (Access or VISA) only.
* Delivery is normally from stock but please allow up to 28 days.
* Any query or complaint regarding an order should be made in writing within 7 days of receipt of the
order. No telephone queries will be entertained
* Goods incorrectly ordered cannot be accepted for replacement without our prior agreement. Due to high processing costs, a minimum of 15% handling charge may be levied on any returns or cancelled orders

We will issue a full immediate refund, if requested for out of stock items

* All items carry full manufacturers warranty
* A VA T receipt will be supplied with all orders.
* Prices quoted are correct at the time of going to press but we reserve the right to effect changes without prior notice.

SEMICONDUCTOR

POWER OP-AMPS (TCA365 and TCA2365)

ONE of the most important components available to the analogue circuit designer is the operational amplifier, or 'op-amp'. The majority of these, however, are somewhat limited in their load driving capabilities. Simple devices such as the 741 can only output 25 mA under short circuit conditions, or 10 mA in normal operation. For much higher currents it is usually necessary to add extra driving transistors to a conventional op-amp.

The TCA365 and TCA2365 are power opamps which allow the designer to use a single i.c. in high power applications rather than the more cumbersome 'op-amp plus components' approach. In practice, they behave as fairly ordinary op-amps with the exception that their output stages can drive up to 3 amps in the case of the TCA365, or 2.5 amps per amplifier in the case of the dual op-amp TCA2365. The two i.c.s are very similar, with both sets of specifications being given in Fig. 2. The main points to watch are supply voltage maxima, output currents, and power dissipation; these all vary between the 365 and the 2365. (Note that the output current shown for the TCA 2365 is 2.5 A per amplifier, not for the whole i.c.) Fig. 1 shows the pinouts of the i.c.s. For moderate to high power applications, heatsinks should be used. These should be insulated from the i.c.s' tabs if the internal connections to the -ve supply could cause short circuits or problems.
The TCA2365 has an 'inhibit' input which can be used to turn the outputs of the op-amps off, ie. high impedance (approximately 4 k). Inhibiting is effective when pin 6 is taken to the -ve supply rail, and the amplifiers operate normally when pin 6 is taken above 3.0 V referred to the -ve supply, or left unconnected. Both the TCA 365 and the TCA 2365 have extensive protection; they are d.c. short circuit proof and have thermal overload and safe operating area protection. The internal current limiting makes them ideal for driving complex loads, and especially for driving filament lamps, whose low resistance in the 'cold' state can cause problems with other types of driver.

BASIC CIRCUITS

Some basic circuits for use with these power op-amps is shown in Fig. 3. In all cases there is an external Zobel network (sometimes known as a Boucherot network) fitted between the output and 0 volts to help to maintain stability under widely varying load conditions.

The 1 ohm resistor does not have to be high power ($\frac{1}{3}$ watt will do) and the capacitor must be 100 nF for the TCA365, or 220 nF for the TCA2365. It is unimportant which way up the network is fitted; the capacitor can be connected to 0 V and the resistor to the output, or vice versa. Both power op-amps can be used with either split or singie rail supplies, just as would be possible with most conventional op-amps.
Figs. 3a and 3c are very straightforward conventional op-amp circuits, and apply perfectly weil to the TCA365 and TCA2365. For minimum offsets, R_{g} in Fig. 3a and R_{i} in Fig. 3 c should be included as shown, although in many circuits these are unnecessary and can be replaced by short circuits for economy. Both these circuits, however, should really only be used for higher gain circuits; +10 dB or more, or preferably +20 dB . For lower gain circuits, and certainly for anything less than 10 dB (approximately $\times 3$), the configurations of Figs. 3b and 3d should be used. For unity gain, use typically between 10 k and 100 k for both R_{i} and R_{f}, with R_{0} approximately one tenth of that value, in Fig. 3b, and typically between 10 k and 100 k for R_{f} in Fig. 3d, with R_{o} one tenth of that and R_{g} an open circuit. The reason for all this is concerned with The rea
stability. stability.

STABILITY

There are many factors influencing stability in operational amplifiers. These tend to be involved, complicated, steeped in complex-plane mathematics, and certainly beyond the scope of Semiconductor Circuits! Empirically, most electronics engineers and enthusiasts learn some straightforward rules of thumb about how to keep amplifiers stable and prevent problems of self-oscillation at several megahertz. A common 'cure-all' is to connect a small value capacitor, typically less than 100 pF , between the output and the inverting (-ve) input. Don't do this to a TCA365 or 2365 ! Even if it doesn't actually cause oscillation (which it probably will) it will certainly make oscillation much more likely. This is basically due to the fact that the opamps have poor stability at low gains, and a capacitor across the feedback loop ensures low gains at high frequencies. For gains of more than $20 \mathrm{~dB}(\times 10 \mathrm{gain}$) the i.c.s are normally quite stable, assuming that the Zobel network is fitted and that P.S.U. decoupling is taken care of. More than 10 dB ($\times 3 \mathrm{gain}$) is normally acceptable, but below this there can be problems with transient responsse

		TCA365	(Single 0	p-Amp)	TCA2365 (Dual Op-Amp)			
Characteristic	Notes	Minimum Value	Typically	Maximum Value	$\begin{array}{\|c} \text { Minimum } \\ \text { Value } \\ \hline \end{array}$	Typically	Maximum Value	Units
Supply voltage	All spec's quoted at $\pm 15 \mathrm{~V}$ for TCA365 and $\pm 10 \mathrm{~V}$ for TCA2365 In normal operation:	$\begin{gathered} \pm 4 \\ *(\operatorname{or} 8 \mathrm{~V}) \end{gathered}$	± 15 20	$\begin{gathered} \pm 18 \\ \left(\begin{array}{c} \operatorname{cor} 36 \mathrm{~V} \\ 40 \end{array}\right. \end{gathered}$	$\begin{gathered} \pm 4 \\ *(\operatorname{or} 8 V) \end{gathered}$	± 10	$\frac{+13}{(\text { or } 26 \mathrm{~V})}$	\checkmark
Quiescent current	$\left\{\begin{array}{l}\text { In normal operation: } \\ \text { with amps inhibited: }\end{array}\right.$		20	40		30 5	50 8	mA
	(TCA2365 only)			-			8	mA
Temperature range		0		+ 70	-25		+85	${ }^{\circ} \mathrm{C}$
Maximum O/P current	Per amplifier			3.0			$2 \cdot 5$	A
Maximum I/P voltage:	(Differential)			Supply rails			Supply rails	
1/P offset voltage		-10		+10	-10		+10	mV
I/P offset current-...		-0.2		+0.2	-0.1		+0.1	$\mu \mathrm{A}$
Temperature coefficient	(Of input offset current)			0. 1				$n A /{ }^{\circ} \mathrm{C}$
Input current			0.2	1.0		0.25	1.0	$\mu \mathrm{A}$
Input resistance	At 1 kHz				1.0	5		$\mathrm{M} \Omega$
Output voltage	Load resistance $=470 \Omega \quad$ at Load resistance $=4.7 \Omega \quad 1 \mathrm{kHz}$	$\begin{array}{r} \pm 13.0 \\ \pm 11.7 \\ \hline \end{array}$	$\begin{array}{r} \pm 13.2 \\ \pm 12.0 \end{array}$		+8.0	± 8.5		V
Slew rate			4			4		$\mathrm{V} / \mathrm{\mu s}$
Voltage gain	Open loop, at 100 Hz		90		70	80		dB
1/P common mode	Load resistance $=470 \Omega$	+13.4 +15.0	+13.5 +15.0		+7.0 +10	+ 7.5 -10.5		V
voltage range	Load resistance $=470 \Omega$	-15.0	-15.0		-10	-10.5		\checkmark
Common mode rejection ratio	Load resistance $=470 \Omega$	75	83		70	80		dB
Supply voltage rejection ratio	Gain $=\times 100$, frequency $=20 \mathrm{~Hz}$ Gain $=\times 10$ frequency $=100 \mathrm{~Hz}$	50	62		70	80		dB
Power dissipation	Total for package, at $90^{\circ} \mathrm{C}$			15.0			6.0	W
Equivalent I/P noise	Gain $=\times 11,1 / P$ resistor $=10 \mathrm{k}$					3.0		$\mu \mathrm{V}$
Inhibit input	For i.c. turned off	-		-	0		1.0	V
(TCA2365 only)	For i.c. turned on	\square		-	3.0		(+ve supply)	V

Fig. 2. Specifications (note different supply rails used in measuring spec's.)
(overshoot of the output on square waves) and stability,

Hence, the circuits of Figs: 3b and 3d should be used for low gain applications. Although the actual voltage gains of these circuits are exactly the same as the equivalent gains of Figs. 3a and 3c, the inclusion of R_{o} actually causes the op-amps to be working in a 'high gain' way. Normally, this is rather undesirable, since there is no apparent benefit to the user and the amplifier has a much noisier output voltage, but in this application the 'pseudo gain' helps to ensure stability at low real gains, and is to be recommended: for use with any circuitry demanding a gain of less than $\times 4$, or even less than $\times 10$ to be on the safe side.

POWER SUPPLIES

The capabilities of these op-amps to dump several amps from the supply rails into a load puts considerable strain on the P.S.U.s used. The best general guidance that can be given is to consider the devices as audio power amplifiers, and to use the same constraints about removing earth loops, supply decoupling, keeping inputs away from outputs, etc. As with audio power amplifiers, the TCA365 and TCA2365 will overheat very rapidly when oscillating at very high frequencies, so any debugging of stability problems should be done very rapidly, and for short periods only! Specifically, it is good practice to take the 0 V connection to the feedback resistor, input resistors, input decoupling, etc, as appropriate, to the power supply as a separate connection from the load, Zobel network, etc, to isolate the input as far as possible from the output. In all cases, each power op-amp should have

GAIN $=\frac{R^{\dagger}}{R_{1}}$
FOR MINIMUM OFFSET. MAKE
DE564]

$$
R g=\frac{R_{i} \times R i}{R i+R_{i}}
$$

Fig. 3c. Non-inverting, high gain

Fig. 3d. Non-inverting; low gain

Fig. 3. Basic power op-amp circuits

Fig. 4. Simple sensor detector and switch
$100 \mu \mathrm{~F}$ capacitors between its supply rails and 0 volts, or simply across its rails in the case of single supply sysțems.

When inductive loads are to be driven, diodes should be connected between the opamp output and the supply rails, as shown in Figs. 4, 6 and 8. This protects the op-amp's driver transistors from the huge back e.m.f. spikes generated when inductive loads are suddenly turned off.

APPLICATIONS

The uses for these i.c.s fall mostly into the realms of control and switching. They will amplify and drive audio signals, but not with the fidelity that can be achieved by audio power amplifiers specifically designed for the task. Essentially, these i.c.s are excellent for use on many occasions when an ordinary opamp simply runs out of drive capability. Some examples of switching applications are shown in Figs. 4, 5 and 6.

A simple sensor circuit is shown in Fig. 4 using the power op-amp as a comparator and directly driving relays 1 and 2 . The sensor can be any device which varies in resistance in

PE59M
proportion to a required effect. For example, a light dependent resistor (e.g. ORP12) or thermistor would allow the sensing of light level or temperature respectively. The sensor preset scales the voltage range produced by the sensor at the op-amps non-inverting input, while the threshold preset alters the level at which the op-amp changes state. \mathbf{R}_{h} provides some hysteresis to stop the op-amp 'hunting' or 'chattering' when the sensed value is just on the threshold point.

A square wave oscillator is formed by the power op-amp in Fig. 5. The mark/space ratio potentiometer adjusts the charge and discharge paths for C_{T} such that their sum is always constant (i.e. the frequency does not vary) but the mark/space ratio can be adjusted over a wide range. The frequency itself is set by a combination of the value of C_{T} and the setting of the 100 k 'frequency' potentiometer. This circuit is capable, by virtue of the power op-amp, of driving pulses of several
amps into any suitable load. Output diodes should be added, as shown in the other circuits, if the load is to be an inductive one.

DIFFERENTIAL DRIVING

Finally, Fig. 6 shows two power op-amps driving a d.c. motor in a 'bridge', or differential drive mode. This allows the direction of rotation of the motor to be changed. IC1 and IC2 are arranged as comparators with R_{H} and R_{L} setting the threshold voitage V_{T}, and are designed to be driven by logic signals \mathbf{A} and \mathbf{B}. If both inputs A and B are at a low level (logic 0), both sides of the motor will be at a low level (0 V). If both inputs are high (logic 1), then both sides of the motor will be at a high level, near to the + ve supply rail. In both these cases the motor will not run, since there is no differential voltage across it-both terminals of the motor are at the same voltage. However, if one input is high, and the other low, the motor will run in one direction or the other. Normally, V_{T} should be set to a suitable level for the logic family which is used to control IC1 and IC2; ideally, R_{H} and R_{L} should be taken from the logic's power supplies, not the + ve poweí supply as shown, to ensure accuracy of the threshold voltage.

The TCA365 and TCA2365 are ideal for use in controlling motors, relays, magnetic valves, and solenoids. They can also make a good basis for the design of regulated power supplies. Their current limiting makes them especially suitable for driving filament lamps and other unusual loads, and their op-amp configuration makes for easy interfacing of these loads with both analogue and digital circuitry. When stability is taken into consideration these are easy and effective to use, and provide an economic solution to many power driving problems. Both i.c.s are available from Electrovalue, 28 St. Jude's Road, Englefield Green, Egham, Surrey.

PE60M

INPUTS		
B	A	EFFEC T
0	0	STOPPEO
0	1	RUN CLOCKWISE
1	0	RUN ANTICLOCKWISE
1	1	STOPPEO

Fig. 6. Bi-directional motor control

Fig. 5. Power pulse generator

MICROPROCESSOR CONTROLLED DC MOTOR DRIVERS

AST month we looked at a timer circuit - triggered by a microprocessor. This month we have another microprocessor based project, to allow the analogue driving of d.c. motors. Again, the circuit assumes the use of the Z 80 microprocessor, although it is very easily adaptable for other devices. The circuitry is shown in Figs. 7 and 8 and the Veroboard layout in Fig. 9. The circuit consists of two separate sections; the decodet, and the driver. Up to 8 drivers can be operated by one common decoder.

The address decoding is done in a similar way to last month's project. IC 1 compares the most significant nibble (4 bits) of the 8 bit port address with the settings of S1 to S4. Each switch is turned off to correspond to a logic 1 , and on for a logic 0 . The comparison is only enabled when both $\overline{I O R Q}$ and $\overline{W R}$ are at logic 0 (determined by IC5c), corresponding to the microprocessor performing an I/O write instruction. IC2 is a 3 -to- 8 line decoder used for the least significant nibble of the port address. Address line A3 must be held at logic 0 and the other 3 lines then provide the address of the driver circuit required. The least significant nibble of the driver address will therefore be \emptyset to 7 , as determined by the latch output of IC2 used. The outputs of IC2 are inverted, and are wired to the LATCH inputs of any required driver circuits. Hence, if one particular driver circuit LATCH input was connected to LATCH output 3 of IC2, switch S1 was off and switches S2 to S4 were all on, that driver circuit would respond to address 13 H (i.e. 19 in decimal). Driver circuits can thus be provided at port addresses $\emptyset \emptyset \mathrm{H}$ to $\emptyset 7 \mathrm{H}, 1 \emptyset \mathrm{H}$ to $17 \mathrm{H}, 20 \mathrm{H}$ to $27 \mathrm{H}, 30$ to 37 H , etc.

IC3, with associated components, provides a 5 volt regulated supply. This can be omitted if the microcomputer's own 5 V supply is to be used to power the logic supply to the circuitry. IC4 provides a reference voltage which tracks the Vp power supply. This reference will be approximately 1.8 V for a 12 V supply.

THE DRIVER CIRCUITRY

IC6 is a digital to analogue (D / A) converter with a built-in data latch, which connects to the microprocessor's data bus. Data is latched in by the required output of IC2. IC7 is a TCA 2365 dual power op-amp which drives the motor differentially to provide both forward and reverse control from a single supply voltage. (It's based on an analogue version of the differential driver in Fig. 6). IC7a amplifies the output of IC6 and provides the positive output phase, while IC 7 b inverts this positive drive signal about a half-rail reference voltage set by R17, R18 and VR2, and provides the negative output phase.

When the output of IC 6 is at 0 V, pin 1 of IC7a is near to 0 V and pin 9 of IC7b is near to the + ve supply. When the output of IC 6 is at $V_{\text {ref, }}$ the reverse is true. When IC6's output is at half $\mathrm{V}_{\text {ref, }}$, both power op-amp outputs are at half the supply rail and the motor is stationary. Presets VR1 and VR2 aiter the gain and offset of the output voltages, and D1,

Fig. 7. Decoder circuit
a 'Bi-Colour' l.e.d., glows green for forward direction, red for reverse and turns off in the stationary condition.

The use of an 8 bit D/A converter allows 127 forward speeds and 127 in reverse, although it is unlikely that the electric motor in use will operate all the way down to OV. Note that $0 \mathrm{~V}_{\mathrm{L}}$, the logic zero voits supply, and the power zero volts $0 \mathrm{~V}_{\mathrm{P}}$, have been wired back separately to the power input area around IC3 to help ensure stability and an absence of noise problems with the logic supplies. GREAT CARE must be taken when wiring up the circuitry and assembling components on the Veroboard, and tests should be done prior to connecting to the computer as far as
possible. I can assure you, from practical experience, that connecting +12 V to the data lines by accident will certainly cause some interesting permanent changes to the way that your computer operates!
$\mathrm{V}_{\text {ref, }}$, and the half rail reference to IC7 pin 7, are both derived from the $+V_{P}$ rail to ensure tracking of the motor drive outputs if V_{P} varies at all under different load conditions.

This circuit has successfully been used to control a 12 volt model train set by microcomputer. The only programming requirement is to output the relevant motor speed values to the port or ports in question. Hence, for a port address of 24 (Hex) for example, the assembled Z80 machine code for full speed forwards

Fig. 9. Veroboard layout
could look like this

3E Øの LD A, ØFFH
; Put required value in Accumulator.
D3 24 OUT (24 H), A
; Output the Accumulator to the port.
In BASIC, the simple instruction OUT 36,

255 would suffice. (36 is the decimal equivalent of 24 H , the port address, and 255 the decimal equivalent of 0 FFH .) For full speed reverse use the value $\emptyset \emptyset \mathrm{H}$ (\varnothing decimal), for stopped use $\emptyset 7 \mathrm{FH}$ (127 decimal), and for slower speeds use values in between. Finally,
don't forget the heatsink on IC7! The i.c. has been placed at the edge of the board to allow for this. The resulting motor speed control provides a simple illustration of a typical use for power op-amps, either as two single devices or a pair as used specifically in Fig. 9.

MAINS MONITOR PROJECT

EyERYDAY ROMTCS
 and computer PROJ=cTS

FEBRUARY 1985 ISSUE ON SALE FRIDAY, JANUARY 18

JOHN M. H. BECKER

ANY electronics enthusiast needs a signal generator and frequency meter nearly as much as a soldering iron and multimeter. The last two should be part of anyone's workshop but the degree of enthusiasm does not necessarily warrant the expense of highly accurate generators and côunters. Often only an indication of approximate frequencies is required, together with a unit that makes readily controllable sounds with suitably shaped waveforms.

GENERATOR CHIP

An XR2206 function generator chip has been chosen in preferance to the normally selected type 8038 as it has a greater variety of waveforms available, together with a wider sweep range on each selected setting. The oscillograms show the wide range of waveforms available. The basic frequency range is selected by S 1, bringing in the desired frequency setting capacitor $\mathrm{C} 4-\mathrm{C} 7$. The frequency generated

This unit has been designed as a reasonable quality, moderate cost, dual purpose unit suitable for average and addicted constructors alike. It produces well shaped waveforms of frequencies ranging from 2 Hz to 78 kHz in-four tunable ranges, and includes automatic ramp control of a frequency sweep, both upwards and downwards. Additionally it includes a frequency to voltage converter that can be coupled to an ordinary multimeter, or digital voltmeter to give a direct read out of the approximate frequency being generated, or fed in from an external source. It is intended for use with an existing power supply or, for short periods with batteries, from 9 V up to 18 V dc. Provision has also been made to mount discrete power supply components directly onto the p.c.b. so that the unit can be fulfy independent of other equipment.
can then be controlled by either a varying voltage or a varying current. For normal manual selection of the desired frequency, current control is used, and is relative to the resistance of the total of VR4, VR5 and R8. In this mode VR5 is taken directly to ground by S5. As the resistance of these potentiometers decreases, so the output frequency rises in relation to the formula: $f=1 /(R \times(C / 1000)) \times$ 1000, where C is the value of the selected capacitor C4 to C 7 in microfarads, and R is the total resistance in circuit with pin 8 of IC2.

VR4 provides coarse tuning of the frequency, and VR5 fine tuning. The maximum resistance range that is permissible with $I C 2$ is from 1 K to 2 M , though is limited to a maxjmum of about 1 M in this unit. This allows a reasonable overlap between the switched ranges, without making the

Photograph illustrating the external assembly of the Signal Generator and-F-V Converter

TEST GEAR PROJECT

SPECIFICATION...

TOLERANCE

The figures quoted refer to those obtained on the prototype and may vary slightly in other units in accordance with normal component tolerance factors.

FREQUENCY TO VOLTAGE CONVERTER

Good linearity from 200 Hz to 30 kHz directly readable on a standard multimeter or digital voltmeter. Accessible internally and externally.

FREQUENCY GENERATOR

Basic switched frequency ranges $=(1) 2 \mathrm{~Hz}$ to 81 Hz , (2) 20 Hz to 851 Hz , (3) 200 Hz to 8400 Hz , (4) 1970 Hz to 78800 Hz . Coarse and fine tuning of selected frequency range. Switch selected waveformssine, triangle, square, ramp, pulse, and variations (see photographs $1-6$). Sweep modulator-rising and falling ramps, switch selectable, rate 6 to 40 cycles per minute. Frequency outputs-switched, buffered or unbuffered via amplitude control from nil to 5 V peak to peak. Fixed $O V /+5 \mathrm{~V}$ amplitude square wave derived from internal oscillator or external source up to about 80 kHz . Four switched reference frequencies.

Fig. 2. Complete circuit diagram of the Signal Generator and Frequency-Voltage Converter
fine tuning too coarse. Switching in VR3 by S6 instead of VR4 and 5, a preset reference frequency can be selected. The i.c. contains its own current controlled amplifier and the amplitude of the signal generated as seen at pin 2, is presettable by VR6. This controls the sine, triangle, and ramp waveform maximum levels. The squarewave however is derived from a different section and is at approximately full line level amplitude as determined by the current through the load resistor R12. The shape of the triangle and ramp waveforms is predetermined within IC2 itself. For sine wave related waveforms, shaping is preset by VR8, and the symmetry trimmed by VR7.

WAVEFORM SELECTION

Three basic waveform selections can be chosen with S2. With S8 open, the choice is sine, triangle and square. In position 1 (sinewave) the output comes from pin 2 of IC2, and VR8 is in circuit, controlling the sine shape. In position 2 , (triangle wave), the output again is from pin 2, but at a level approximately twice that of the sine wave and VR8 is out of circuit. In position three (squarewave), the output is taken from pin 11 IC2. With S8 closed the squarewave is directly fed to the control pin 9, and internal circuitry of the chip is automatically switched by it to produce ramp related waveforms in the first two positions of S2. In this mode the frequency of oscillation now becomes affected by the value of R9 and the formula changes to: $f=(2 / C / 1000) \times(1 / R) \times$ 1000, using the same parameters as before. Effectively this means that the frequency with S 8 closed will be approximately twice that with it open. In position S2, looking at the inverted output of IC1C, the rising ramp is sine shaped, followed by the steep drop. In position 2 the rising ramp is linear, again followed by a steep drop. Study of the second formula though will show that the steepness of the drop is related to values of R9, and the controlling resistance on pin 8. As the two resistances approach equality, so the steepness lessens, and a falling ramp also develops. The best ramps are thus created with the resistance on pin 8 at the greater end of the scale. In position 3 the output is again from pin 11, but consists of a mark-space pulse, the duty cycle of which determined by the formula: $R A /(R A+R B)$, where RA is the resistance on pin 7, and RB that on pin 8 . The negative going pulse length is moderately constant throughout the range for the same capacitance selection. The mark-space factor is also reflected in the shape of the ramps with a flattening of the apex, but is really only noticeable at small values of capacitance.

OUTPUT ROUTING

In most instances it is preferable for the amplitude of the different waveforms seen at the final output to be roughly equal. As previously seen there is an inherent level difference between the three main waveform ranges, IC1C is thus included to even these out. The gain of this stage is of course dependent upon the relationship of the total input resistance to the value of the feedback resistor R16. The choice of resistors R13-R15 ensures a reasonable match of the levels. The inverted phase output from IC1C is decoupled by C9, taken via S3 to the level control VR9 and then to the output via S9. However the frequency pass range of IC1C is less than that of the range available from IC2. For normal audio applications, the frequency response of IC1C is sufficiently adequate, but distortion becomes more prevalent as the frequency rises above about 30 kHz , as shown in the oscillograms.

Additionally the loading of C9 causes square wave distortion at lower frequencies. S3 is thus included to bypass IC 1C so that the output is unbuffered allowing the full range of IC2 to be used. Note though that the unbuffered output also contains a d.c. bias that is approximately half line level with S2 in positions $1 \& 2$, and that the phase is inverted.

SWEEP OSCILLATOR

When testing out some circuits it is sometimes preferable for the frequency range to be swept upward or downwards at a controlled automatic rate rather than by manual control of a potentiometer. The ramp generating circuit around IC1A \& IC1B provides this control. The frequency range of ramp generation is determined by C1 with larger values giving slower rates. VR1 provides the tuning of the sweep rate setting. The direction of the ramp produced is governed by the direction of voltage flow through D1 and D2. S4 selects the diode routing, and reverses the polarity of the controlling voltage through VR1 in relation to the reference level at C2. The changing d.c. voltage produced by the ramp controls IC2 via VR2, S9, VR4 and VR5. In this mode voltage control of IC2 is being employed in additior to current control. For correct operation of IC2 the voltage sweep seen at the wiper of VR2 must lie below 3 V , above this and the oscillator of IC2 will cease. VR2 thus needs adjustment to keep the sweep voltage within this range. The frequency control range provided by the varying voltage is less than that produced in the manual mode, and VR4 and VR5 are used to select the desired band width.

Sine (normal) S2,

Sine (ramp) S2 $\mathbf{1}_{1}$

Triangle (normal) S2 $\mathbf{2}_{2}$

Triangle (ramp) $\mathbf{S 2}_{\mathbf{2}}$

Square (normal) \$23

Square (pulse) $\mathbf{S 2}_{3}$

Sine (high freq) $\$ 2{ }_{1}$

Triangle (high freq) $\mathbf{S 2}_{2}$

Ramp (high freq) $\mathbf{S 2}_{3}$

FREQUENCY TO VOLTAGE CONVERTER

IC3 performs the f-to-v conversion, producing an output voltage that, within the range, is related linearly to the frequency fed in. The range available is determined by the gain given to the feedback via R27 and VR11, with a slew rate and ripple reduction level set by C14. High values for C14 will give reduced ripple for lower frequency signals, but will increase the time taken for the voltage to stabilise when the frequency is changed. The relative minimum output voltage in the absence of an input frequency should be as close to zero as can be set by the bias control VR10. VR11 is used to set the maximum range. The output voltage is referenced to an intermediate level of about 5 V as set by Zener diode D5. The negative lead of the meter used to monitor the voltage is taken to this level, and the positive lead to the output from pin 12, IC3. If the meter negative lead were to be taken to the normal OV or ground line then the reading would also contain the reference voltage of 5 V and inaccurate readings would result. For stable operation of the conversion, the input frequency seen at pin 11, IC3 should be at a constant level of about iV p-p. To maintain this amplitude even for low level input signals, the signals are taken via the gain stage IC1D for external signals which gives an amplification of about, a little over 100. The signal is then attenuated to the optimum level by diodes D3 \& D4. For internal frequency reading, the signal is taken direct from the output of IC1C, and similarly attenuated. S7 selects the choice of internal or external frequency monitoring. In addition to producing a frequency related voltage, IC3 also produces a square wave output of 5 V amplitude. There is a slight time lag between the edges of the input frequency and of the out-
put 5 V squarewave. S 9 can switch in this frequency output in place of that produced directly by IC2. This means that an external frequency of indifferent level and shape can be converted for controlling circuits that require a 5 volt squarewave. The external loading permissible though is limited by the value of R30 and too great a load will reduce the voltage.

POWER SUPPLY

Most enthusiasts probably already have power supplies in their workshop capable of driving this unit, and so a separate one is not included. The minimum voltage requirement is 9 V , and the maximum permissible +18 V as dictated by the limits of IC3. The current drawn is about 30 mA , up to 20 mA of which is consumed by IC2. This current is a bit too high for the unit to be powered for long periods from a battery supply, though one could be used briefly in an emergency. Alternatively a battery eliminator might be suitable, providing it can tolerate the current without the voltage dropping below 9 V and that the ripple content is negligible. The printed circuit board though includes positions for the mounting of the rectifier and voltage regulator as shown in the suggested optional 12 V power supply circuit. This supply was not used in the prototype and is not regarded as an integral part of the project. The transformer should be bolted to the metal box, and normal mains electricity safety precautions observed. Note that with this suggested power supply C18 has its positive end connected to a different track position, and it may be necessary to mount it vertically rather than horizontally. The use of a heat sink with the regulator i.c. should not be necessařy.

COMPONENTS

RESISTORS

R1,R7,R15,R17,R22. R25-R27
R2,R3,R18,R19
R4
R5
R6
R8,R10,R11,R12,R21
R28-R30
R9, R24, R31
R13
R14
R16
R20
R23
All resistors $\frac{1}{6} W \pm 5 \%$
CAPACITORS
C1-C3,C8-C10,C17 C4
C5,C11,C12,C14-C16, C19,C20
C6
C7

C13
C18

SEMICONDUCTORS

IC1

IC2

IC3
D1-D4
D5

56 p polystyrene
$470 \mu, 25 \mathrm{~V}$ elect.

MISCELLANEOUS

P.c.b. and p.c.b. clips (4 off)

Round knobs (6 off)
I.c. sockets, 16 pin, 14 pin (2 off)

Jack socket, 3.5 mm
Jack sockets mono (2 off)
Box and rubber feet
Meter terminals (2 off)

SWITCHES

S1,S2	3P4W (2 off)
S3,S5,S7-S9	SPDT (5 off)
S4,S6	DPDT (2 off)

Constructor's Note

A complete kit of parts is available from: Phonosonics, 8 Finucane Drive, Orpington, Kent BR5 4ED. Price $£ 54.00$, inclusive of VAT. Post and packing £1.00.

ASsEMELY

After the straight forward component assembly and subsequent joint checking procedure has been carried out, wiring should be commenced in a methodical fashion, ticking off each wire on the wiring diagram as connections are made. First connect up all the panel controls between themselves. Secondly wire up to all the p.c.b. points closest to the front panel. Finally connect up the rear and remaining connection points. These latter wires should preferably be brought under or round the edges of the p.c.b. Taking them over makes the wiring untidy. Keep the wiring short, but long enough for turning the board over for examination without over straining the connections (too much flexing of taut wires can cause breaking at the joins). The prototype has the meter terminals on the front, but with hindsight, mounting them on the back would be better.

The regulator IC4, and the rectifier REC1, are part of the optional power supply, together with the transformer T1. These components may be omitted if not required as the unit will run quite efficiently from any 9 V battery.

SETTING UP

A fair selection of presets has been included to enable the maximum accuracy to be obtained throughout the unit. The only really critical one is VR2, as the sweep control may not operate if this is incorrectly set. Inadequate setting of the others will only cause lack of linearity. If an osćilloscope is not available intelligent decisions will need to be made, listening to the sounds while adjusting the presets.

First, S1 position 1 (lowest freq), S2 position 1 (sine), S3 on (buffered output), S4 either way, S5 off (sweep off), S6 off (manual freq control), S7 off (internal f-v), S8 off (standard waveforms), S9 off (vco output), VR1-3 midway, VR4-5 max clockwise (highest freq), VR6-8 midway, VR9 max, VR10-11 midway. Switch on and check that pin 3 IC1A, pin 3 IC2 are at approximately half line voltage, and that the positive end of D5 is at about 5 V . Plug in to normal amplifier. If no sound is heard then check the wiring, and that the switches are wired the correct way up. Assuming that sound is heard, check that VR4 and 5 vary the frequency, and that S1 changes the ranges. Switch on S6, and adjust VR3 to the desired fixed frequency on the second range of S1. In the author's unit this was set for approximately 440 Hz . Check that S 8 brings in the ramp associated

Fig. 3. (Above) Showing the p.c.b. design and component layout of the Signal Generator. (Left) Photograph illustrating the internal view of the chassis assembly showing the switch, sockets and p.c.b. layout

Fig. 4. Wiring diagram of the Signal Generator
ranges of waveforms, then switch back to the normal range, and to squarewave. Monitor the output jack socket and note the squarewave amplitude level. Switch to triangle wave and adjust VR6 untif the amplitude is similar without flattening of the waveform peaks. Switch to sine wave and adjust VR8 for the best sine shape, then VR7 for the best symmetry. If necessary readjust VR8

Switch S3 to bypass and check all waveforms can be switched in, though as previously stated they will be at widely varying levels. Switch S6 back to manual control, then S5 to sweep control. Check that a ramp waveform appears at pin 1 IC1A, and that switching 54 varies the direction, also that VR1 varies the rate with the ramp in both directions. Return scope probe to the output jack socket, and adjust VR2 for the smoothest sweep response. If the wiper is too far to the OV end the generator frequency will dwell at the high end, with it too far towards IC1 the generator will cut out at the low frequency end. With careful adjustment a smoothly varying rising or falling sweep range can be set. Switch off the sweep control and set a frequency output from IC2 of precisely 10 kHz . Check that an attenuated version of this frequency reaches pin 11 IC3 via S7. With the external input jack socket grounded (as it will be without a jack plug in), switch S 7 to external. Connect a multimeter across the meter output terminals and adjust VR10 for a reading of exactly zero volts. Start off with a meter range of
about 5 volts, then after the initial adjustment has been made the meter can be switched to its lowest range for greater precision. Set meter to a range for monitoring exactly 1 V . Switch S 7 back so that the 10 kHz signal reaches IC3. Very carefully adjust VR11 until a precise voltage of 1 volt is obtained.

The maximum frequency that can be read will be about 30 kHz to 35 kHz , beyond this IC3 will fail to respond and show a constant reading of around 3.5 V . Applying a 1 kHz signal should produce approximately 0.1 V . Tracking downwards in frequency, linearity will be roughly maintained until about 200 Hz or so, depending on the accuracy of the setting of VR10 and VR11. Once the boundary extremes have been established, a direct reading of frequency can be taken from the multimeter by converting the voltage into the readily calculable frequency. Thus if $1 \mathrm{~V}=10 \mathrm{kHz}, 3 \mathrm{~V}=$ $30 \mathrm{kHz}, 0.5 \mathrm{~V}=5 \mathrm{kHz}, 0.05 \mathrm{~V}=500 \mathrm{~Hz}$, etc. Check that an external frequency can be monitored in the same way, then finally that a squarewave output of about 5 V is available from pin 8 to IC2

After setting up the $f-v$ converter the frequency controls of the unit can be calibrated and control legends applied to the panel, using a rub down lettering like letraset or similar, then coating them with a suitable spray protector. If care has been taken in the setting up, the end result will be a marvellously versatile dual purpose new unit for the workshop. \star

RING MASTER

Perhaps the most interesting development during the past few months has been the visual detection of the ring-system surrounding Uranus. The rings were first found indirectly, because they produced a series of occultations of a faint star; subsequently, D. A. Allen and J. Crawford, at Siding Spring Observatory in Australia, photographed them in infra-red.

Studies of them have now been carried out by Richard Terrile and Bradford Smith, using the $2 \cdot 5$-metre reflector at the Las Campanas Observatory in Chile together with a highly sensitive CCD or Charge-Coupled Device. The ring-system is clearly shown, together with all five known satellites-Miranda, Ariel, Uimbriel, Titania and Oberon. The pictures show the great power of the CCD, which is at least thirty times more sensitive than any photographic plate.

The rings of Uranus are quite unlike those of Saturn. Terrile and Smith find that their albedo or reflecting power is only about 2 per cent, so that they are blacker than coal-dust. They are also narrow; there are at least eight
rings, not all of which are perfectly circular, and their composition is unknown.

If all goes well, we should learn more about them in January 1986, when the Voyager 2 spacecraft makes its pass of Uranus, Meanwhile, there is speculation about the possibility of a ring-system round the outermost giant, Neptune, but the presence there of a large retrograde satellite (Triton) may have prevented any rings from being formed. Again, we pin our hopes on Voyager 2, which will rendezvous with Neptune in the late summer of 1989.

HALLEY'S COMET

Halley's Comet is, of course, still much too faint to be detected except with very powerful instruments, but recent studies show that it may prove to be somewhat brighter than had been expected. Unfortunately, this does not mean that it will be a brilliant spectacle, as it has been on many past returns.

It should become a naked-eye object at the end of 1985 , before perihelion passage on 9 February, 1986, but British observers will need clear skies. When at its best, after perihelion, the comet will be in the far southwell placed for Australians and South Africans, but not for Europeans, who will not see it at all until it has faded considerably.

NOVA CYGNI-A NEW LOOK

On the evening of 29 August, 1975, I went into my observatory to make some routine observations of variable stars. When I looked up at the familiar constellation of Cygnus, I had a surprise. There, shining down unmistakably, was a bright star which had certainly not been there on the previous night. I estimated its magnitude as 2.4 , slightly fainter than Gamma Cygni, the central star of the "cross" of Cygnus.

Having satisfied myself that it really was a new star or nova, I made a telephone call to the observatory at Herstmonceux. I was, of course, fairly sure that the star had already been reported-and so it proved; it had been discovered some hours earlier by Kentaro Osada in Japan, before darkness fell over England. I imagine that I was äbout sixtieth in the list of independent discoverers; the star could not possibly have been overlooked by anyone with more than a rudimentary knowledge of the constellations.

The most remarkable fact about Nova Cygni was that it brightened up by at least nineteen magnitudes in only a'few hours. This was a record, both for amplitude and for speed. Its decline was also unusually quick. I estimated its magnitude as 1.8 on 30 August, so that it was then much the brightest star in the constellation apart from Deneb; but it had dropped to below 3 by 1 September, below 5 by 4 September, and faded below naked-eye visibility by 7 September, when I saw it as fiery red-in fact, as red as any star I have ever seen. Within a few months it had become too faint to be observed except with powerful telescopes.

Apart from Nova Cygni, only three novae seen since 1930 have attained the first magnitude: DQ Herculis (1934), CP Lacertae (1936) and CP Puppis (1942), though others have become visible with the naked eyenotably HR Delphini, which was discovered in 1967 by the well-known English amateur George Alcock and had a very prolonged maximum of around the fourth magnitude. It is still above magnitude 13 , and probably will not fade much further, as this was also its preoutburst magnitude.

However, the exceptional behaviour of Nova Cygni has led to particularly detailed studies of it, and efforts have been made to detect a cloud of débris round it. This has now been a successful operation.

THE SKY THIS MONTH

Winter skies are always glorious, thanks to the presence of Orion, the Hunter, and his magnificent retinue, but at the moment the dearth of bright planets continues-apart from Venus, which is at its very best in the evenings. Mercury is, in theory, a morning object, and may indeed be glimpsed just before sunrise, but it is well south of the celestial equator, so that European observers are unfavourably placed.

Mars may be seen in the south-west during the early evening, and moves from A quarius into Pisces by the end of the month, but its magnitude is now onlv 1-2, and no telescope will show much upon its surface. Saturn, in Libra, rises well before the Sun, but is low down and by no means prominent, while Jupiter passes through conjunction on 14 January and is therefore out of view altogether. There are no eclipses this month, and no bright comets are expected. The Moon is full on 7 January, and new on the 21 st.

During winter evenings the brilliant yellow star Capella is almost overhead (a position occupied by the equally brilliant Vega during evenings in summer). Close beside Capella lie the three fainter stars making up a triangle. They have been nicknamed the Haedi or 'Kids', and two of them are very remarkable objects.

Epsilon Aurigae, at the apex of the triangle, is an extremely luminous supergiant, at least 60,000 times as powerful as the Sun. Every 27 years it fades down by almost a magnitude, not because it is intrinsically variable but because it is being eclipsed by a companion which has never been seen at all.

The nature of the invisible secondary is still a matter for debate. It was once believed to be a very young star, not vet hot enough to shine; there were also suggestions that it might be a black hole, but it now seems more likely that it is a relatively small, hot star with an associated extensive shell of material. The last eclipse ended in 1984, so that for more than two decades nothing further will be happening.

Look at the 'Kids' and you will see that Epsilon is now the brightest member of the trio. The faintest, Sadatoni or Zeta Aurigae, is also an eclipsing binary with a period of 972 days, but we know much more about it; the primary is a red supergiant, while the secondary is a much smaller and hotter star.

It is sheer coincidence that these two exceptional eclipsing binaries lie side by side in the sky. There is no true connection between them; Epsilon is much further away from us than Zeta.

Using the 82 -inch reflector at the McDonald observatory in Texas, G. and A. de Vaucouleurs have recorded the debris unmistakably. The cloud shows up as an elliptical blur, 3.5×2.5 seconds of arc across, with an integrated magnitude of about $16 \frac{1}{2}$. Presumably it is expanding; and if the distance of the nova is 4,500 light-years, as seems likely, the expansion rate is approximately 800 miles per second.

BINARY SYSTEM

According to modern theory, a nova is a binary system, made up of an ordinary main sequence star together with a white dwarf. White dwarfs are stars far advanced in their evolution; they have used up their nuclear "fuel", and have become very small and almost incredibly dense.

In a nova, the white dwarf pulls material away from its larger, less dense companion, and there is a build-up of material around the dwarf, leading eventually to instability and a violent, usually short-lived outburst. Associated débris is only to be expected, and has been detected with many former novaesuch as Nova Persei 1901 and Nova Aquilae

1918, both of which became much more brilliant than Nova Cygni. Indeed, for a brief period Nova Aquilae outshone every star in the sky with the exception of Sirius.

SUPERNOVAE

There is a fundamental difference between ordinary novae and the much more powerful supernovae, which are much less common. Only four supernovae have been seen in our Galaxy during the past thousand years; those of $1006,1054,1572$ and 1604 -all before the invention of the telescope, though supernovae are so luminous that they may be detected in external galaxies many millions of light-years away.

From the few accounts which have come down to us, the 1006 supernovae, in the southern constellation of Lupus, became as bright as the quarter-moon, while the other three outshone Venus. The 1054 supernova has left the gas-cloud of the Crab Nebula, which contains a pulsar.

For many years the Crab was regarded as unique, but recently a very similar supernova remnant, including a pulsar, has been. found in the Large Cloud of Magellan, more than

150,000 light-years from us. Pulsars are rapidly-spinning neutron stars which slow down as they age. From the measured slowing-down of the Large Cloud pulsar, it has been estimated that the outburst occurred about a thousand years before our present-day view of it.

The rapid increase of Nova Cygni 1975 raised initial hopes that it might be a supernova-something which astronomers would warmly welcome, because it cannot be said that our knowledge of supernova mechanism is at all reliable (there seem, indeed, to be two quite different types of supernovae, one of which involves the collapse of a massive star while the other indicates the complete destruction of a white dwarf).

We could learn much more if we had the opportunity to study a relatively nearby supernova with modern equipment. Nova Cygni was therefore something of a disappointment; but it is still extremely interesting, and it will be important to find out how the newlydiscovered cloud of débris develops.

There is one rather sobering thought. When we look out into the Galaxy, we are also looking into the past. Nova Cygni exploded well over four thousand years ago; the expanding cloud we see today was produced long before astronomy had become a true science!

DONT MISSA
 VITAL COPY!

Ever been in the middle of a project only to find the next issue sold out? An annual subscription to PRACTICAL ELECTRONICS solves the problem.

Wherever you live you'll receive every copy regularly each month. It's the quick, practical way to solve delivery problems.

SUBSCRIPTION RATES

Overseas

 £14.00COMPLETE AND POST THIS ORDER FORM TODAY!

PRACTICAL

Complete this form and post it, with payment or credit card authorisation to:
Practical Electronics
Subscription Dept.
Oakfield House,
35 Perrymount Road,
Haywards Heath,
West Sussex RH16 3DH

Ingenuity Unlimited

 that it has not been offered or accepted for publication elsewhere. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not in the text.

THERMISTOR

THERMOMETER

CALIERATION OF METER 1 mA FS. 0
Construction and calibration of the Thermistor Thermometer

${ }^{\circ} \mathrm{C}$. AT	0	30	70	100
	+3.3	-2.0	+ 1.7	-2.6
	+4.0	-2.5	+2.2	-3. 2
TABLE	+			

THE conventional bridge circuit recommended for thermistors is somewhat inaccurate. Better results can be obtained using the arrangement shown here. The op.amp, IC2 acts as a voltage source, with current measured by the meter ME1. This configuration corrects for most of the thermistor's non-linearity. An offset current flows through R5 and VR 1, and sensitivity is set by VR2 and R6. Assuming a fullscale current of 1 mA , an output of $1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ is conveniently obtained at the output and this can be used to drive a chart recorder, for example. The supply voltage is regulated by IC 1 , and a 3 -way switch allows the battery to be checked. Resistor values for two types of NTC thermistor are given in Table 1. JA-03 is metal-sheathed (RS no. 151-120) and VA3704 (Mullard no. 2322-62711472) is a glass-bead device. Both have a resistance at $50^{\circ} \mathrm{C}$, of the order of 1 k 7 .

Kettles and ice-buckets are unpredictable gadgets! Calibration was done at 10 , 50 and $90^{\circ} \mathrm{C}$, using a water-bath and laboratory-grade mercury thermometer. The error curve is cubic, with a deviation within 2 or 3 degrees centigrade over most of the range, increasing near the 0° and $100^{\circ} \mathrm{C}$ limits.
C. J. D. Catto,

Elsworth,
Cambridge.

PEIOM

LOGIC RECORDER

THE logic recorder is designed to fill the gap between the logic probe and the logic analyser by displaying a sequence of eight data bits on a bank of l.e.d.s. Data is stored synchronously with the system clock after a trigger pulse from the circuit under test.

Data is fed into 1C4, an octal D-type flip-flop wired as a shift register, though a 74LSI 64 shift register could be used instead. D2 represents the most recent data.

Suppose that latch $1 \mathrm{Cl} 1 \mathrm{a} / \mathrm{b}$ is set so that D10 is unlit. IC1 pin 6 is high so IC3 is reset, its ' A ' output is low, IC Id is disabled and IC1C is enabled via IC2b. When the ARM button is pressed the latch sets, lighting DIO and freeing IC3 to count. On the rising edge of IC 2 c pin 8 , the single-bit counter in IC3 clocks, disabling IC1c and the ARM button and enabling ICId to clock IC4 and, via IC2d, the 3-bit section of IC3.

After eight clock pulses from the system under test, IC3 pin 11 goes low, resetting the latch via C1. Provided that the ARM button has been released the logic recorder resets and displays the data received until it is rearmed.

IC2a and IC2c are used as programmable inverters to select the desired trigger and clock edges. DI protects the recorder against reverse polarity on its power supply leads which are connected to the test circuit.
G. Strange,

Loughborough, Leics.

May be I or 0
D7 D6 D5 D4 D3 D2 D1 D0 $\begin{array}{cccccccc}\text { I } & \text { I } & \text { X } \\ 128 & 64 & 32 & 16 & 8 & 4 & 2 & 1\end{array}$ $\begin{array}{llllllll}1 & 1 & 1 & 0 & 1 & 0 & 1 & 1\end{array}$
e.g. D2 and D4 are low
$128+64+32+0+8+0+2+7=235$

Table 1. Showing example of IN127 command

A. Moran

Reading,
Berks.

Ingenuity Unlimited

DIN LEAD

TESTER

H-AVE you ever wondered whether all your problems might just be due to a faulty DIN lead? If so, you'll no doubt have discovered what an awkward operation it can be to test one; but here is a simple solution.

The following design will test DIN leads for open circuit, short circuit and wrong connections all in one go. Whereas with a continuity tester you need to test each pin individually, this circuit gives an immediate indication of the connections (or lack of connections) between pins at either end.

IC1 is a 4017, which is a decade counter with decoded outputs. It sends each pin high, in sequence, moving on to the next
one every time it receives a clock pulse. For a 5 pin DIN, the sixth output is connected to reset and thus counts through $0,1,2,3,4$ and 5 . Six pulses are allowed to enable the screen to the tested separately (note however that this is often connected to the middle pin). The clock used to drive ICI is produced by a standard CMOS oscillator based around IC2 (a 4011 quad NAND), the NAND inputs being shorted together as shown to act as inverters. This i.c. type was chosen merely so that fewer gates were left unused. A hex inverter would serve just as well. IC3 and IC4 are 4050 hex buffers used to drive the l.e.d.s.
The clock frequency is normally about 1 kHz , providing an apparently constant display. In this mode any broken connections will immediately show up as unlit l.e.d.s. at ' B '. By pressing switch S1 the 68 k resistor R 1 , is disconnected and the clock frequency reduced so that a more detailed representation of the condition of the DIN lead is given. Two common types of 5 pin DIN lead exist; straight through and mirror image.
STRAIGHT THROUGH-L.e.d.s at 'A' and ' B ' should light in the same order.
MIRROR IMAGE-L.e.d.s at ' A ' and ' B ' should light in opposite orders. Crossed leads can thus be detected by incorrect orders at ' B '

Any two l.e.d.s lit simultaneously at one end in this mode indicate shorted leads at that end.

Some sample displays are given. Using CMOS logic, the unit can be readily powered by a 9 V (PP3) battery.
C. Walden,

Selby,
S. Yorks.
(Above) Some possible fault indications
(Below) Complete circuit diagram of the DIN Load Tester

An instant answer to every calculation you will ever make? With a HewlettPackard Professional Calculator, the answer is yes. We introduced Calculators for Professionals sophisticated, powerful calculating facilities-around ten years ago, and ourr range has a calculator built for the kind of work you do.
There is a professional calculator for scientists and engineers, for software and computer specialists, for higher mathematics activities and for business users.
Pre-programmed for your needs
Each one is pre-programmed to

to your first job...

A complete manual of instructions and programs has been written for each of the HP professional calculator range.
answers you can depend on, always at your fingertips. With the minimum of effort, in the minimum of time. Each has a memory that will store information even with the power off. And will come with an owner's handbook, so you are operational right from the start. You can see the Hewlett-Packard professional calculators at your dealer. Or complete the coupon below, and we will send you full details of the Hewlett-Packard professional calculator range and how it can help you.

Hewlett-Packard Calculators for Professionals All the calculating power you will ever need.

SUPER HY-LIGHT STROBE KIT
Approx. 16 jouties. Adjustable speed. Price $\mathbf{£ 4 5}+\mathbf{E 2} 2$ p\&p (Total inc. £19.55); Foolscap SAE: for further details including Hy-Light and Industrial Strobe Kils.

ULTRA VIOLET BLACK LIGHT FLUORESCENT TUBES

 12 in 8 wall 84.00
gin 6 wath $3000+50 p p 8 p$ (E4.71 inc. VAT) 230 V AC Ballast Kit for either 6 in , 9 in or tizin tubes $\mathbf{E 5 . 5 0} \mathrm{p}$ \& p 55 p
 175 WATT SELF-BALLASIED BLACK UGHT MERCURY BULBS.
Availabie for either B.C. or E.S. fitting, price $£ 10.80+p \& p \mathrm{p} 1.25$ (totai inc. VAT $£ 13.85$).
LT. TRANSFORMERS
Ampl Price $£ 9.00$ p\&p $£ 2.00$ - inclusive of VAT $£ 12.65$ N.M.S.

ROBOT ENTHUSIASTS

this field:

1. ESCAP precision Swiss-made ironless rotor, 6 V DC geared
 equipment, tested and guaranteed. ONLY $£ 4.50+50$ p p\&p (total
inc VAT $\mathrm{E5} .75$). 2. $12 / 24 \mathrm{~V}$ D.C. Reversible Precision built motor manulactured
Escap - will operate from 24 V down to 2 V DC-Current consump Escap - will operate from 24 of speeds between 2 to 36 r.p. obtainable: 6 Volti $0 C-9$ r.p.m. NL 6 MA, $12 V D C-18$ r.p.m. NL 10 MA, 24 V DC -36 r.p.m. NLL 18 MA . Total lenth of motor and
gearbox 90 MM . Max. Dia $42 \mathrm{M} / \mathrm{M}$. Shaft tength $5 \mathrm{M} / \mathrm{M}$. Shatit Dia 6MIM. Approx half manufacturers price: $£ 15.00$ p\&p $£ 2.00$-total

VBL4 CENTRIFUGAL BLOWER
240 AC powerful $1 / 50 \mathrm{~h} . \mathrm{p} .23 \mathrm{~A}$ motor. $£ 18.00+£ 2.00$ p $\&$ p (Total inc. 121248 DC. C
E9.78) N.M.S.

COOLING or EXTRACTOR FAN

 inc. VAT $£ 6.62$) N.M. S

VARIABLE VOLTAGE TRANSFORMERS

NPUT $230,240 \mathrm{~V}$ a.c. $50 / 60$ OUTPUT 0.260 V

200W. 1A Max.
1KVA 5 A Max.
2KVA 0 M
3KVA 15A Max
5 KVA $25 A$ Max.
10KVA 50A Max

3-PHASE VARIABLE VOLTAGE TRANSFORMERS

Dual input 200 240V or
3KVA 5amp per phase max. $6 K V A$
KOM
 Ci10-240V1, Either cased with Americian socket and mains leat or open frame type available for immediate delivery. L.eaflet an request 12 V D.C. BILGE PUMPS
400 G.P.H. 15 tt . head, $3 \mathrm{mmp}, \mathbf{E 8 . 0 0}+\mathrm{c} 1.00$ p 8 p

(E14.95 inc. VAT).
1750 G.P.H. 15tt. head, $9 \mathrm{amp}, \mathrm{E} 15.00+\mathrm{C} 1.75 \mathrm{p} \& \mathrm{p}$
SINGLE DIAPHRAGM COMPRESSOR NMS SINGLE DIAPHRAGM COX. 240 voits A.C. $\mathrm{E} 18+\mathfrak{E} 2$ p\&o (E23 inc. VA

EPROM ERASURE KIT

Why waste money? Build your own EPROM ERASURE for a fraction of the price of a made-up unit. Complete kit of parts less base in includs. Neon indicator, safety microswitch onfoff switch
and circuit: Warning: Tube used in this circuit is highly dangerous to the eyes. Unit must be firted in suitable case.

SOLID STATE E.H.T. UNIT

Input 230V A.C. Approx. 15 KK. Producing 10 mm spark. Builh in 10 sec timer. Easily moditied for $20 \mathrm{sec}, 30 \mathrm{sec}$, to continuous. Designed for
boiler ignition. Dozens of uses in the field of physics and electronics, e.g. supplying neon or argon tubes etc. $\mathbf{\varepsilon 6 . 5 0}+90 \mathrm{p}$ p\&p (Total inc. e.g. supplying neo
VAT
E8.50) N.M.S.

FROM STOCK AT PRICES
THAT DEFY COMPETITION
AC GEARED MOTORS
DC MOTORS
MICROSWITCHES

Superior Quality Precision Made NEW POWER RHEOSTATS

 New ceramic consiruclinatiedassembly, continuus)
25 WAATI , $5 / 10 / 25 / 50 / 100 / 150 / 250 / 300 / 500 / 1 \mathrm{k} \Omega$ $1.5 \mathrm{k} \Omega$ E3.80 $+30 \mathrm{p} p 8 \mathrm{p}$ (E4.71 inc. VAT).
50 WATT $250 \Omega \mathrm{f5} .50+50 \mathrm{p}$ p (E6.90 inc. VAT)
100 WATT $15 / 1025 / 50 / 100 / 250 / 500 / \mathrm{k} \Omega 1.5 \mathrm{k} \Omega / 2.5$ 100 WATT. $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 3 \mathrm{k} \Omega 1.5 \mathrm{k} \Omega / 2.5 \mathrm{k} \Omega / 3.5 \mathrm{k} \Omega$ ¢99.50 $+75 p$ p 8 p ($£ 11.78 \mathrm{inc}$. VAT).
Black Silver Skited Knob calibrated in

$1, \mathcal{L}$ INSULATED TESTERS NEW!

 Test to I.E.E. Spec. Rugged metal construction suitable for bench or field work onstant speedclutch. Size L gin., $W 4$ in., H 6 in. weight 6 tb . 500 V . 300 megohms. £49 p \&p $£ 2$ (E58. 65 incl VAT). $1000 \mathrm{~V} 1000 \mathrm{M} \Omega \mathrm{E55}+\mathrm{p} \& \mathrm{p}$ £2 ($£ 65.55$ incl SPECIAL OFFER
AUTO TRANSFORMER tapped $90-260 \mathrm{~V}$. 3.5 FK VA phase totally yenclosed in metal case, mf. Woden. Price: EC0. 00 + carriage at cost + VAT. NM.S. GEARED MOTORS
 VAT EZ7.60). N.M.S.
 28 rpm Torque
(Total inc. VAT E12.99).
Suitable TRANSFORMER for $230-240 \mathrm{~V}$ AC operation. Price: $\mathbb{£ 5 7 0}+\mathrm{p} \& \mathrm{p} £ 1.40$ Total inc. VAT E7.591. N M.S
3 rpm GEAKED MOTOR. Torque 351 b .in. reversible 115 V AC inc stan capacin Ruitable TRANSFORMER 230 V AC DTotat E15.58). N.M.S

VaI B7 3 I
CROWN
p\& $£ 4.50$ (£ 4542 inc. VA). N.M.S.
Suiable TRANSFORMER for above $£ 10 \mathrm{p} \& \mathrm{p} £ 1.50$ [£13.22 inc. VAT).
57 rpm $240 \mathrm{~V} 1 / 22 \mathrm{~h}$.p continuously rated REVERSIBLE 501 b.in. manul. by Wynstruments. New. Ideal for garage doors,
1 ipm Torque 10 tb in_ reversible 1 ITOTh h.p. llov AC motor. Price: $\mathrm{E}, 50+\mathrm{Cl} 80$ \% o (Total inc. VAT £12.s9).
uitable TRANSFORMER for $230-240 \mathrm{~V}$ AC operation. Price: $\mathrm{E5} 20+\mathrm{p} 9 \mathrm{p} \mathrm{f} 1.40$
2NO OC 200 rpm 101b/in. Mf. by
E1.50 pap iToal inc. VAT f10.93,
pop ITotal inc. VAT E6.30).
CHECK METER
200-240V A.C. 50amp. fully reconditioned. $£ 7.50+£ 1.75$ p 8 p (Total , inc. VAT
SANGAMO WESTON TIME SWITCH
Type $\$ 251200 / 250$ A.C. 2 onv2 off every 24 hours, 20 amps contacts with override
switch. Oimaeter $4^{\prime \times} \times 3^{\prime}$. Price $£ 8.50+51.50$ p 8 p ($£ 12.65$ inc. VAT $\& 1$ p\&p). Also available with solar dia R\&T. Other rypes available from stock.
$\begin{array}{cl}\text { N.M.S. } & \text { New Manufacturers } \\ \text { R\&T } & \text { Surplus } \\ \text { Reconditioned and tested }\end{array}$
Goods normally despatched within 7 day
Designed for Air/Gas at 0.7 . Water 5 psi. Indet-outlet $3 / 8$. Forged brass
Personal callers only. Open Saturdays 9 Little Newport Street London WC2H 7JJ Tel: 01-437 0576

One of the best BBC projects yet, giving effective speech synthesis for less than fifteen pounds.

This is to be a new regular item for BBC Micro enthusiasts. The page may be viewed as an $1 / 0$ port configured for bidirectional operation because we invite you, the reader, to contribute your hints and discoveries. It promises to be an exciting page with the aim of making an important contribution to understanding the BBC machine.

You have one month to prepare for the interface. So order your copy from your Newsagent now!

HEART BEAT MONITOR

If you're interest is in the sports, training or medical field then you'll always need to measure pulse/heart beats. This instrument will monitor heart beats from 40 to 200 beats per minute to an accuracy of within 1 beat per minute and display the result on an I.e.d. display.

$B E A B C D C A L$

ROEOTRE-MIPRES-FLECTRONIPE-INTE-ITACINE MARCH 1985 ISSUE ON SALE FRIDAY, FEBRUARY 1

FREE! READERS' ADVERTISEMENTSERVICE

RULES Maximum of 16 words plus address and/or phone no. Private advertisers only (trade or business ads. can be placed in our classified columns). Items related to electronics only. No computer software. PE cannot accept responsibility for the accuracy of ads. or for any transaction arising between readers as a result of a free ad. We reserve the right to refuse advertisements. Each ad must be accompanied by a cut-out valid "date corner". Ads. will not appear (or be returned) if these rules are broken.

WANTED service manual or circuit for Cossor 1049 MK4 scope, to borrow or buy please. J. Rudrum, 2 Princes Road, Eastbourne, Sussex BN23 6HG. Tel: Eastbourne (0323) 29440.
WANTED Watford Uitimum system any condition. Phone Burntwood (05436) 6043 evenings-ask for Steve
WANTED MCP40, Tandy or similar graphics printer and Thandar PFM200A frequency meter or similar. Cheapish please! Dr. Andrew Brown, Department of Oral Surgery; John Radcliffe Hospital, Oxford OX3 9DU. Tel: Oxford (0865) 65164.

280A computer system including 10 MB Winchester back-up cartridge drive. Can be seen working. £ 170 or split. Tel: 0223277272
DISCS! DD/SS $£ 1.35$. DD/DS for S drives £1.45. Disc boxes: 50 disc $£ 8,10$ disc $£ 1.95$. Martin Harlow, 194 Old Woking Road, Woking. Surrey GU22 8HR
FLUKE 8000 A DMM E40, p.s.u. and many unused i.c.'s and components. For more information send SAE. Mr. T. Pomphrey, 347 Church Road, Redfield, Bristol BS5 8AA. Tel: 0272 558980.

PYE 'Westminster' 70 cm TX/RX fitted 5 repeater channels +2 Simplex. 15 W TX O/P. tone burst. £75. D. C. Chapman, 6 Pickhurst Green, Hayes, Bromley, Kent. Tel: 01-462 2178. 48 K ZX Spectrum and full size keyboard now fails to output logo when switched on $£ 40$. Ralph Lovelock, 14 Knightley Road, Exeter EX2 4SR. Tel: Exeter 75892
WANTED, loan or purchase; handbook/service sheets Waltham music centre STM 50 or photostat. Costs paid. Mr. W. Hammond-Haley. Holmeleigh', Sleaford Road, Dunston, Lincoln LN4 2EZ. Tel: Metheringham (0526) 20661
PE Quasar cassette deck, not working, £15 ZX81, 16K Ram, tapes £35, two unused TDM 1010's £5. Mr. J.C. D. Darwent. Tel: Dronfield 413667
UK101 with Cegmon and $8^{\prime \prime}$ disk system. Needs memory expansion. $£ 200$ or best offer. Mr. S. Morgan, 17 Willenhall Road, Bilston, West Midlands WV14 6NW. Tel: Bilston 403416
TEXAS TI-53 17 months old, working, E7. L. Stewart, 32 Cross House, Wolverhampton WY2 3EX.
WANTED PE January, March, April 1984; July 1983, April 1980, February 1978 and all before July 1977. Kenny Robertson, 82 Willow Drive, Airdrie, Lanarkshire, Scotland ML6 8JX.

TELEPRINTERS Creed 7B, 54R and 54N. Also two C37 and J37 tape recorders. Offers invited or why? Mr. John Radley. 81 Drayton Avenue West Ealing, London W13 OLE. Tel: 01-997 4835.

SYNTHESISER, 4600, mostly working (not completely finished). Large wooden case. Internal amps/speakers. Large patchboard £180. Mr. Gaskell. Tel: Cambridge (O223) 893593.
SAFGAN 12 MHz dual beam oscilloscope, unused, as new conditon, with manual and $\times 10$ probe set £150. Peter Cunningham, 11 Berwyn Avenue. Penyffordd, Nr. Chester. Tel: Caergwrle 760172.

FOR sale PE August 1977 to October 1983. ETI February 1978 to March 1982. Offers to: R. M. James, Yew Tree House, Preston Wynne, Hereford HR1 3PE
WANTED high resolution graphic board for UK101 (Sprite from Premier). J. Ockier, Mgr. Christiaensstraat 16, 8880-Tielt, Belgium
300 watt switched mode PSU. Set to 60 amps 5 volts. $6^{\prime \prime} \times 5^{\prime \prime} \times 14^{\prime \prime}$. Diagrams available. Mr. P. Kirton, 4 The Grove, Shaw Heath, Stockport, Greater Manchester SK2 6QU. Tel: 061480 4690.

TECHTRONICS 515A 15 MHz single beam oscilloscope $£ 50$. Advance SG66 audio generator $£ 40$. Eddystone 830 Receiver $£ 95$. Tel: Peterborough 235042
TELEQUIPMENT double beam oscilloscope model D43. Full working order. Also instruction manual. £60. Buyer collects. Mr. Naylor, 26 Highfield Road, Stretford, Manchester M32 8NF Tel: 0618654320
PE November 64 to December 81 less five. Some extras. Plus most 82-83. All mint. Offers. Phil Simpson, 37 Larkholme Parade, Fleetwood FY7 8LL. Tel: 039176317.
WANTED PE December 1975 or copy of Minimix item from that issue. Call weekday evenings only. John Cołson 01-253 3176.
PRACTICAL Electronics from 1967 to 1983. Instruction manual for Tektronics 545B oscilloscope. Offers. Buyer collects. Mr. L. T. Cowell, 69 Crew Road, Haslington; Crewe, Cheshire. Tel: 0270581157
RANGER P.E.C.B. two for sale working order. Offers invited. Will separate if required, 27 MHz legal. Mr. G. T. McDermid, 4 Aspian Drive, Coxheath. Maidstone, Kent ME17 4JZ. Tel: 0622 46354 (evenings)
TANDON disc drive D/S D/D 80 track 640 k

〔99 each. Acron DFS E80. Tel: 01-892 1909
MONO valve amplifier, 3 watt, and motor, in portable timber cabinet. Two available. £ 10 each if collected. Tel: Oxford (0865) 779855.
AVAILABLE BD139-140, BC146 Micrn TR 7806, 09 and 12 vol. reg.s all new for less than half price $+p \& p$. Write to: Saied Z. Fathy, No 25. Alric Avenue, Neasden, London NW 10.

FOUR mains PCB retays type 265/4A/G2v D.P.C.O. $£ 5$ or $£ 1.40$ each including postage David White. Tel: 0248722697 (evenings).
'NIGHTRIDER' car lights sequencers, drives nine channels vari-speed. Easy wiring all negative-ground cars $£ 40$ complete. Mr. S. M. Budzinski, 16 Laburnum House, Malpas Road, London SE4 1BL.
OSCILLOSCOPE Heath $10-4555 £ 150$ ono also other instruments P.C. bridge etc. Offers, good condition, sold separately. Mr. A. Ewing, 9 Croft Crescent. Markinch, Glenrothes, Fife KY7 6 EH, Scotland
WANTED AY-3-1270 linear i.c. or RS-3-1270. Mr. J. F. Wilso, 233 Broomlee Close, Newton Aycliffe, Co. Durham. Tel: Avcliffe 312130.

WANTED two track record head for B \& O record 1800 RTOR deck. Mr. C. Bressington, 17 Station Road, Ystrad Mynach, Mid-Glamorgan Tel: 0443813005
EIGHT Philips LVC $1502 \frac{1}{2} \mathrm{hr}$. video tapes. Hardiy used. Offers plus postage. Mr. L. T. Hill, 14 Rothesay Terrace, Bedlington, Northumberland. Tel: Bedlington 825967
WANTED data or specimens of early transistor types. Good prices paid. Write for full details: Mr. Andrew Wylie, 18 Rue de Lausanne, 1201 Geneva, Switzerland.
MICROSYNTH Synthesiser built and tested with speakers and homemade stand £150. 8 Stourton Road, Witham, Essex. Tel: Witham 514556.

COMPONENTS transistors mainly OC/AC/BC capacitors, resistors, chips, pots, relays, motors and other. 16 lb. E20. Mr. Turner, 4 Mill Fields, Newtown, Powys. Tel: 068627862.
WANTED service circuit diagrams Sugden C51 A51 purchase hire to copy. Good price paid. Richards, Maesyffnnon, Caehopkin Road, Abercrave, Swansea. Tel: 0639730629
10×8255 A $£ 70$ the lot or $£ 8$ each. Also printer leads for Dragon 32, BBC £9.95 each. R Vowles, 3 Orchard Waye, Uxbridge, Middx. U88 2BN. Tel: 089554720 .

Please publish the following small ad. FREE in the next available issue. I am not a dealer in electronics or associated equipment. have read the rules. I enclose a cut-out valid date corner.

Signature
Date
Please read the RULES then write your advertisement hereone word to each box. Add your name, address and/or phone no.
COUPON VALID FOR POSTING BEFORE 1 FEBRUARY 1985 (One month later for overseas readers.)
SEND TO: PE BAZAAR, PRACTICAL ELECTRONICS, WESTOVER HOUSE, WEST QUAY ROAD, POOLE, DORSET BH 15 1JG.

[^2]
CONSTRUCTION

Construction starts with axis 0 and progresses upwards from there. The hydraulic cylinders of the NEPTUNE are supplied pre-assembled. First axis 0 cylinder is fitted to its sensor potentiometer, on a bracket beneath it , and then to the base plate and front plate (Fig. 6:1). There are support brackets to ensure a rigid structure and there are triangular brackets with feet on them to prevent the robot from tipping over when under load. The top slot in the rear plate is for fitting the computer interface leads to the edge connectors on the interface board. The slot beneath it is for the cables leading to the power supply which fit onto the rear plate later.

Next the top plate is fitted. Being 3 mm steel this is quite heavy but this is necessary to ensure rigidity. On top of axis 0 cylinder goes the shoulder rotating axle with axis 1 mounting plate on top of it (Fig. 6.2). The weight of the arm is carried by a large thrust ball race fitted round the axle. Through the axle passes the plumbing/wiring harness which is secured to axis - 1 cylinder fitted to the mounting plate.

Onto mounting rings on axis 1 cylinder the lower arms are fitted and to the upper end of these are fitted axis 2 cylinder with the upper arms attached to it (Fig. 6.3). To the end of the upper arms is fitted axis 3 cylinder which provides the wrist raising function.

A pair of mounting plates is used to secure axis 4 cylinder to the front end of axis 3 cylinder (Fig. 6.4). This applies to NEPTUNE II only, where it provides wrist yaw, a function immensely useful when picking up objects lying flat or in other difficult positions. It also greatly assists spraying into corners. Yaw is a feature usually found on only the most expensive of robots used in industry. Axis 5 , the wrist rotation cylinder fits to the axle of axis 4 cylinder by means of a short plate. On NEPTUNE I where there is no wrist yaw, axis 5 fits to the top of axis 3 cylinder. The gripper clamps onto the axle of axis 5 cylinder with a single set screw enabling it to be rapidly changed. The NEPTUNES are supplied with a choice of gripper types. The robot is now ready for plumbling and wiring.

Fig. 6.1. (above): base plate and axis 0 cylinder
Fig. 6.2. (opposite): shoulder-rotating axle with axis 1 cylinder fitted to the mounting plate

ROBOTICS PROJECT

The harness is strapped onto the arms at the fixing holes with cable ties. The position for these is marked, with dabs of paint, on the harness. The pipes press into 'banjo' fittings attached to the cylinder ends with Delrin hollow bolts and the cables are trimmed and soldered to the sensor potentiometers (Fig. 6.5).

The solenoid operated valves, which control the water flow, fit with hollow bolts to a Delrin manifold (Fig. 6.6) which acts like a printed circuit board routing the water to the correct valve. The other end of the valves fit to bored Delrin bars to which the restrictors and flow rate control valves also fit (Fig. 6.7). Brackets to which the solenoid driver boards will fit are screwed to the solenoids and ensure correct alignment for the boards which clip onto the connector tags of the solenoids (Fig. 6.8). This arrangement avoids soldering to the solenoids and greatly simplifies maintenance in that the boards can be rapidly unplugged from the system. Connections to the plumbing harnes's
again are made with "banjo" push-on fittings and hollow bolts.
After wiring up the power supply (Fig. 6.9) and connecting to the computer interface board (no need to connect to a computer yet) the system is ready for commissioning. The sump of the hydraulic power pack is filled with water and the pump is operated with its outlet and inlet connected together with one of the plug-in pipes. This expels the air from the pipe which, after switching off the pump, is plugged into the manifold as the pressure source; the return pipe is taken from the outlet of the manifold to the sump. After pressurising the system and checking that there are no leaks the axes are tested one at a time by plugging in a solenoid driver board and the axis operated by means of a potentiometer on CN401 extend-contract connector. This will drive out most of the air. The rest of it will gradually disappear by dissolving in the water when under pressure. It then comes out of solution when returned to the sump.

Hydraulic cylinder assembly

Fig. 6.4. Shoulder, upper arm and wrist assembly

Fig. 6.5, Plumbing and wiring loom

Fig. 6.6. Hydraulic control manifold

Fig. 6.7. Assembly showing restrictors and flow-rate control valves

Fig. 6.8. Completed hydraulic flow-control sub-system for all seven axes

All the solenoid driver boards may now be fitted (Fig. 6.10), the computer interface board connected to the computer and the "NEPDYN" program run. This sends and returns the chosen axis between 2 points and generates, on the monitor screen, a graph of error in the axis position against time. The error is the difference between where the axis is, as measured by the ADC, and where the axis has been told to go. With the aid of this program the restrictors are set to achieve rapid convergence of the send and return graphs without any overshooting.

After setting the restrictors of each axis, the pre-sets on the solenoid driver boards are set so that sending position 0 from the computer, by means of the "NEPTROL" program, sends each axis to just before the end of its travel. The pre-sets on the interface board are set to match the positions of the simulator (Fig. 6.11) with the positions of the robot.

The interface board is next mounted over the manifold assembly (Fig. 6.12) which is then slid into the robot base and bolted down. Following fitting of side plates and covers the robot is then ready for use.

OPERATION OF THE ROBOT

Operating the robot basically consists of using POKE and PEEK instructions sent to the robot as if it were part of the memory of the computer. To move axis 0 of the NEPTUNE II

Fig. 6.10. All sub-assemblies completed and wired up for

Fig. 6.11. NEPTUNE simulator arm
to position DO, the start of the 'memory' is first defined. This is also the address for the most significant byte of axis 0 . The least significant byte is at the next address. On the BBC, POKE and PEEK are represented by '?' and hexadecimal numbers are indicated by ' $\&$ '.

$$
\begin{aligned}
& 10 \mathrm{~A}=\& \text { FCOO } \\
& 20 \text { ?A=DO DIV } 16 \\
& 30 \text { ? (A + } 16=(\text { DO MOD } 16)^{*} 16
\end{aligned}
$$

The data DO can be any integer from 0 to $4095\left(2^{12}-1\right)$ because it is a 12 -bit control system. On the NEPTUNE I it is an 8 -bit system so the range is 0 to $255\left(2^{8}-1\right)$ so only one byte is sent for each axis move. For the msb the data is divided by 16 and the remainder ignored. For the lsb this remainder is multiplied by 16 because it is the top 4 bits of the Isb that are used.

The addresses of the axes follow successively so to move axis 4 to position D4 the instructions are as below.

$$
\begin{aligned}
& 40 ?(\mathrm{~A}+8)=\text { D4 DIV } 16 \\
& 50 ?(\mathrm{~A}+9)=(\mathrm{D} 4 \text { MOD } 16)^{*} 16
\end{aligned}
$$

Similarly for axis 5

$$
\begin{aligned}
& 60 ?(\mathrm{~A}+10)=\text { D5 DIV } 16 \\
& 70 ?(\mathrm{~A}+11)=(\mathrm{D} 5 \text { MOD } 16)^{*} 16
\end{aligned}
$$

The servo system of the robot then makes the axis go to this position with no further computer intervention but with the ADC the position of the axis can be followed as it is moving. To operate the ADC it is written to at $\mathrm{A}+14$. Data bit 7 is toggled and the multiplexer axis address set up. The axis address is in the bottom 4 data lines (see Table 1 October 1984). Axis 0 is at address 0000 . The msb is read at $\mathrm{A}+17$ and the 1 sb at $\mathrm{A}+16$.

$$
\begin{aligned}
& 80 ?(\mathrm{~A}+14)=128 \\
& 90 ?(\mathrm{~A}+14)=0 \\
& 100 ?(\mathrm{~A}+14)=128 \\
& 110 \mathrm{DAO}=?(\mathrm{~A}+17)^{*} 16+?(\mathrm{~A}+16) / 16
\end{aligned}
$$

Fig. 6.12. Control and servo

Similarly for àxis 4
$120 ?(\mathrm{~A}+14)=132$
$130 ?(\mathrm{~A}+14)=4$
$140 ?(\mathrm{~A}+14)=132$
150 DA $4=?(\mathrm{~A}+17)^{*} 16+?(\mathrm{~A}+16) / 16$

Reading the simulator is performed similarly but at the multiplexer axis address 8 bits higher so to read simulator axis 0 :

$$
\begin{aligned}
& 160 ?(\mathrm{~A}+14)=136 \\
& 170 ?(\mathrm{~A}+14)=8 \\
& 180 ?(\mathrm{~A}+14)=136 \\
& 190 \text { DSO }=?(\mathrm{~A}+17)^{*} 16+?(\mathrm{~A}+16) / 16
\end{aligned}
$$

If the simulator is constantly read and the data returned to the robot then the robot will follow the movement of the simulator.

NEXT MONTH: details of the assembly and use of MENTOR.

The complete NEPTUNE 2 robot system, showing the pump, computer and monitor, and the simulator

for low-cost training in real-life robotics

industrial robot it is electro-hydraulically powered, using a revolutionary water based

Pybarne Cle COBERNETIC APPLICATIONS LIMITED Applicatlons TEL: 10264) 50093 Telex: 477019

TOOLTRONICS

MINIATURE TOOLS

PRECISION JEWELLERS' TOOLS Plated Handles. Swivel Heads for use on Precision 5 T21 SCREWDRIVER SET 5 T31 NUT DRIVER SET 5 precision nut drivers in hinged plastic case. With 5T41 TOOL SET Crosspoinit Philipsisi screwariverss - Ho and Hitex 5T51 WRENCH SET

SIGNAL INJECTOR

Simple push button operation. Oscilates at
$700-1 \mathrm{kHz}$ with harmonics to 30 MHz .4 V op output. Impedance 10Ω Ideal for trouble penlight batrery supplied o/No vP96 $£ 2.50$

LOGIC PROBE

Autom catic levelling white LED indication. Minmum width of measuring pulse 30 millisec Maximum input frequency 10 MHz .
Input impedance.
Power consump
ORDER No. VP97 £10.50
CURRENT/POL CHECKER

TESTER

Unversal tester with ceramic buzzer. Tests diodes. transistors, resisitors, capacitiors and incluced One "AA" pentight batten

Testic udren.
Test volage

Response rànge
Max voltage:
CIPCUIT

CIRCUIT

O.C. continuity rester for cirtuit checking on athow voliage equipment and componenis. Siode checkng also oossible. Takes 7 To
batteries. Socm lead has crocodile clip. Bod length 145 mm O/No. VPIoc 75p

MINIATURE VICE

Ne, Miniaure plastic and meteal for portability. Singtie action to secure or release suction. Plastic jaws with rubhe Plastic iaws with rubber pads 20 mm wide omm. Dims. $85 \times 65 \times$ fantastic valle
 OINo. vp9s ONLY $£ 1.60$

METRIC 8

 BRITISH MEASURESSteel tapes wrist strap. These vellow coated case. Silk push button return. 2 m long $\times 13 \mathrm{~mm}$ wide

3 PIECE TOOL KIT AND CASE

SPECIAL DRIVERS

 flexy driver
 aukward to get at screws. Vverall engith
inch. Order No. ES. 1 Ela: bace $4 m m$ Cross point No ift. 75 each

$=+2=0=3$ 8 inch iong screwartiver with spring toaded grip on and to hold screws in postition
reaching into those dificult places.

Order No so. 1 Flat blade 4 mm
cutter and sorrated faws-insulated handle
YO 42. 13-piece tool ser housed,
atractive moulded plastí
case with clear sliding cove case with clear sliding cove Pliers with side culters ${ }^{1}$ s of $4^{1 / 2}$ " side cutters 1 off
$4^{1 / 2 / 2}$ end cutters 2 off hex.
"Allen" key $2.5 \mathrm{~mm}, 2$ off 2 mm and Philips" drivers No. 0 and
No. 1 (with toment off precision screwdrivers
Sizes from 1 mm to 3.5 mm

BRAND NEW LCD
DISPLAY MULTITESTER
CD 10 MEGOHM INPUT IMPEDANCE 3/2 digit 16 ranges plus hFE test facility polarity ' Single-handed, push-button operation CD readout 'Diode check. Fast ciccuit large protection. Test leads, battery and instruction cluded.
Max indicarion - 1999 or 1999 Polarity indication Negative only without i sign erò ddiusi

Sampling time Alutomatic

empérature raig 250 millisecono
Power Supply.
Cohsumption' $\begin{aligned} & \text { battery } \\ & 20 \mathrm{~mW}\end{aligned}$
RANGGES
R 1200 mV
AC Voltage o $0-200-1000 \mathrm{~V}$
Acc, 1.7% DC Cyrrent $0-200 \mathrm{u}$
$0-2-20-200 \mathrm{~mA} .0-10 \mathrm{~A}$ Acc. 1.2%
Ręsistance $0-2 \cdot 20-200 \mathrm{k}$ ohms
BI-PAK VERY LOWEST PRICE

$$
\text { \& } 45.00 \text { - ead }
$$

Leather case for $188 \mathrm{~m} \mathbf{£} 2.50 \mathrm{EACH}$

MULTITESTER 1.000 opv including test leads Battery

(2) volis - 0.15-150-500-1.000

100 K ohms
Dimst $90=$ 61 " 30 mm
O/No. 1322 OUR PRICE $\mathbf{£} 6.80$ ONLY
HT320 MULTITESTER
Mirror Scale leads and bairs
SPEC

AC Volt;

AC Votr

esistance $\quad 25 \mathrm{~K} \cdot 20 \mathrm{~K}-2 \mathrm{M}-20 \mathrm{M}$ Ohms $A F$ Oularut:, 10 dB to 22 dB tor (dB)

As a Trans Téster lests'Leakàgé. Current liceol. OC Curren
$46 \times 95 \times 55 \mathrm{~m}$.
Order No. 1323 £15.40

BI-PAK PCB ETCHANT AND DRILL KIT
Compleye PCB Kit camprises
24 che rincl. a collets \&
Sheet PCB Transicis $210 \mathrm{~mm}^{1}$
150 mm
EIct Resist Pen
1/210 pack FERRIC CHLORIDE
crystals
sheets copped clad board sheets Fibreglass copper clad bo full instructions for måking your

PCB boards

- Retail Value over £15.00

OUR BI-PAK SPECIAL KIT PRIC

$£ 9.95$

RATCHET SCREWDRIVER KIT

AUIOMATIC WIRE STRIPPER
emove the insulation in one singte operation Accepts wires of dia. $1 \mathrm{~mm}, 1.6 \mathrm{~mm}, 2 \mathrm{~mm}, 2.6 \mathrm{~mm}$ spring loaded insulated handles.

O/No. VP89 £1.75

Sequential Logic Techniques Part 5

M.TOOLEY BA and D.WHITFIELD MA MSc CEng MIEE

AST month we carried out a detailed investigation of the operation of a universal shift register. This month we shall turn our attention to another device which finds a wide range of applications in the digital world, the data multiplexer.

Data multiplexers, or data selectors as they are sometimes known, generally have one output and several inputs. Any one of the inputs can, by placing appropriate logic levels on its control inputs, be routed to its output, Data multiplexers thus provide us with a means of sending several different digital signals along a common signal line.

In essence the data multiplexer acts as a multi-way switch however, by virtue of its internal logic and unlike its conventional analogue counterpart, the device will only operate with digital signals.

The switch equivalent of the simplest form of data multiplexer is shown in Fig. 5.1. This two-way arrangement

Fig. 5.1. Simplified switch equivalent of a two-way data multiplexer
is equivalent to a single-pole double throw (SPDT) logic switch. The two switch states are controlled by means of a third select input. When a logic 0 appears on the SELECT input the switch moves to position A whereas, when a logic 1 appears on the SELECT input the switch moves to position B.

The internal logic of the two-way data multiplexer is shown in Fig. 5.2

Fig. 5.2. Logic arrangement of a twoway data multiplexer

This simply consists of two two-input AND gates, a two-input OR gate and an inverter. The truth table for this arrangement is given in Table 5.1. As

\mathbf{A}	\mathbf{B}	\mathbf{S}	\mathbf{Y}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Table 5.1. Truth table for simple twoway data multiplexer
can be seen, whenever the SELECT input is at logic O the output, Y, takes the state of the A input wheras, when the SELECT input is at logic 1, the output takes the state of the B input.

By grouping together the states for which the output remains unaffected by one or other of the inputs (we shall, for obvious reasons, call these the "don't care" states!), the truth table of the two-way multiplexer can be reduced to that shown in Table 5.2.

\mathbf{A}	\mathbf{B}	\mathbf{S}	\mathbf{Y}
0	\times	0	0
1	\times	0	1
\times	0	1	0
\times	1	1	1

$x=$ don't care
Table 5.2. Simplified version of table 5.1

This truth table shows rather more clearly than its predecessor how the SELECT input operates; the X 's in the truth table being, used to denote, the "don't care" states

Thé switch equivalent of a four-way data multiplexer is showri in . Fig. 5.3.

PE47M

Fig. 5.3. Simplified switch equivaient of a four-way data multiplexer

Here the output: Y, can be connected to any one of the four data input lines, A to D, by means of an appropriate input on the two select lines, SO and S1. The truth table for the four-way data multiplexer is shown in Table 5.3. The corresponding Boolean expressions are:-

Output	Select Inputs
$Y=A$	$\overline{S 0} \cdot \overline{S 1}$
$Y=B$	$\overline{S O} \cdot \bar{S} 1$
$Y=C$	S0. 1
$Y=D$	S0. S 1

We shall now investigate the operation of a practical four-way data multiplexer, the 74LS 153.

DATAINPUTS				SELECT INPUTS		OUTPUT
A	B	C	D	S0	S1	Y
0	X	\times	\times	0	0	0
1	\times	- \times	x	0	0	1
x	0	\times	\times	0	1	0
\times	1.	+ \times	\times	0	11	1
\times	x	'0	x	1	0)	0
\times	\times	1	x^{7}		$\therefore \quad 0$	1
\times	\dot{x}	x	0	1	1	0
\times	\times	\times	1	1	1	1

$x=$ don't care

SEQUENTIAL LOGIC

THE 74LS153
The 74LS153 contains two fourway data multiplexers which have common select inputs. The pin connections of the 74LS153 are shown in Fig. 5.4. The two halves of the device

Fig. 5.4. Pin connections for the 74LS153
(referred to as A and B) are conveniently brought out to pins on opposite sides of the package; the A-side using pins 1 to 7 whilst the B-side uses pins 9 to 15 . Supply connections, using the conventional pins $8(0 \mathrm{~V})$ and $16(+5 \mathrm{~V})$. are common to both halves of the device.

Each half of the 74LS153 has its own active low enable, $\overline{E N}$, input. When these inputs are taken to logic 1 the corresponding outputs immediately go to logic 0 irrespective of the state of
any of the data (DO to D3) or select (SO and S1) inputs.

The internal logic of the 74LS153 is shown in Fig. 5.5. This clearly shows how the $\overline{E N}$ inputs are gated with the select, inverted select, and data inputs at each of the four four-input AND gates on both sides of the device. The outputs of each set of AND gates are then combined in a four-input OR gate. The 74LS153 is effectively nothing more complex than a two-pole fourway switch!

The complete truth table for the 74LS153 is shown in Table 5.4. This truth table is, of course, identical for each half of the device. When both select inputs (SO and S1) are at logic 0 , the output (Y) reflects the state of the DO input. With SO at logic 1 and S1 at logic 0 , the output takes the state of the D1 input, and so on.

The circuit used for our practical investigation of the 74LS153 data multiplexer is shown in Fig. 5.6. It should

Fig. 5.6. Practical arrangement used to demonstrate the action of the 741.S153

SELECTINPUTS		DATA INPUTS				ENABLE	OUTPUT
S	S1	Dø	D1	D2	D3	EN	Y
\times	\times	\times	\times	\times	\times	1	0
0	0	0	\times	\times	\times	0	0
0	0	1	\times	\times	\times	0	1
1	0	x	0	x	\times	0	0
1	0	\times	1	\times	\times	0	1
0	1	\times	\times	0	\times	0	0
0	1	\times	\times	1	\times	0	1
1	1	\times	\times	x	0	0	0
1	1	\times	\times	\times	1	0	1

$x=$ don't care

Table 5.4. Truth table for the 74LS153 data multiplexer

Fig. 5.5. Internal logic of the 74LS153

SEQUENTIAL LOGIC

be noted that only one half of the device is used. In order to provide four different data inputs which may be readily distinguished from one another, DO is fed from the clock whilst D1 and D2 are fed from the Logic Tutor's momentary push buttons, S1 and S2 respectively. The remaining data input, D3, is fed from an inverted clock signal derived from a 7414 inverter. The relevant half of the device is enabled by hard wiring the $\overline{\mathrm{EN}}$ input to logic 0 whilst the two latching Logic Tutor switches, S3 and S4, are used to determine the state of the select inputs, S1 and SO respectively.

The 7414 should be inserted into socket D whilst the 74LS153 should be inserted into socket E with the usual orientation convention (pin-1 of each device to the respective connection marked on the Logic Tutor PCB) being observed. The following links are required:-

D1 to clock		
D2 to E3	(data input D3)	
D7 to OV	(common)	
D16 to +5 V	(supply)	
E1 to logic 0	(active low enable)	
E2 to S3	(select input S1)	
E4 to S2	(data input D2)	
E5 to S1	(data input D1)	
E6 to clock	(data input D0)	
E7 to D1	(D1 indicates the	
		output)
E8 to 0 V	(common)	
E14 to S4	(select input S0)	
E16 to +5 V	(supply)	

(A total of 13 links)

The select inputs should initially both be set to logic 0 by appropriate adjustment of S3 and S4. The output indicator, l.e.d. D1, should then be seen to flash 'on' and 'off' in sympathy with the clock which is connected to the DO input line.

S4 should now be adjusted to produce a logic 1 on the SO line whilst S3 remains at logic 0 . In this condition the l.e.d. will stop flashing and become extinguished. Now depress S1 to produce a logic 1 on the D1 input. The l.e.d. will become illuminated whilst S 1 is held down and will become extinguished again when S1 is released.

S3 and S4 should now be adjusted to produce logic 1 and logic 0 on the S1 and S0 select inputs respectively. S2 should now be depressed to produce a logic 1 on the D2 input. The l.e.d. input will become illuminated for as long as S2 is held down.

Finally, S4 should be adjusted to produce a logic 1 input whilst S3 remains at logic 1 . In this condition D1 should be seen to flash 'on' and 'off' in sympathy with the inverted clock. (i.e. when the clock l.e.d. is 'on', the output l.e.d. is 'off', and vice versa). We can summarise these observations as shown in Table 5.5.

SELECT		INPUTS
OUTPUT		
	SO	
(S4)	(S3)	(D1)
0	0	D0 (CLOCK)
0	1	D1 (S1)
1	0	D2 (S2)
1	1	D3 (CLOCK)

Table 5.5. Outputs provided by the circuit of Fig. 5.7. (Note: brackets indicate Logic Tutor functions)

A PRACTICAL APPLICATION OF THE 74LS153

We shall now turn our attention to a simple practical application of the 74LS153 four-way data multiplexer. Let's assume that we wish ta provide digital selection of the output frequencies of a four-stage binary counter. The four Q outputs of the binary counter can be fed to the four data inputs of the multiplexer whilst the two select inputs are fed with a two-bit control signal.

The circuit of a suitable arrangement is shown in Fig. 5.7. 1C1a forms a simple relaxation oscillator in which the output frequency is determined by the time constant, CXR. IC1b forms an inverting buffer, the output of which is a rectangular pulse wave having a duty cycle of approximately 1:2 and a frequency of approximately 32 Hz . This signal is then fed to the CLOCK input of IC2, a 7493 four stage binary counter.

In order to enable the normal counting sequence, the two master reset inputs, MR1 and MR2, are taken to logic 0 and the four Q outputs then have frequencies of $16 \mathrm{~Hz}, 8 \mathrm{~Hz}, 4 \mathrm{~Hz}$ and 2 Hz approximately.

The 7414 and 74LS153 devices should be left in sockets D and E whilst the 7493 should be inserted in socket B checking, as usual, that pin- 1 aligns with B1. The following links should then be made:-
B 1 to B14
B2 to B3
B3 to logic 0
B5 to +5 V (supply)
B10 to E4
B11 to E5
B12 to OV (common)
B13 to E3
B14 to E6
B16 to D4
D1 to logic 0 (via a $47 \mu \mathrm{~F} 25 \mathrm{~V}$ cap)
D1 to D2 (via a 470 ohm 0.25 W)
D2 to D3
D7 to OV (common)
D16 to +5 V (supply)
E1 to logic 0
E2 to S3
E7 to D1 (D1 shows o/p freq.)
E8 to OV
E14 to S4
E16 to +5 V (supply)
(A total of 20 links and 2 components)
The two select inputs should first be set to logic 0 using S3 and S4. The output indicator (l.e.d. D1) should then be seen to flash rapidly 'on' and 'off' with a frequency of approximately 16 Hz . The three other possible settings of S3 and S4 should then be tested.

NEXT MONTH: De-multiplexers and time domain multiplexing.

Fig. 5.7. Simple application of the 74LS153

Heathkit - IT'S A PLEASURE TO BUILD

Bring the enjoyment back into your hobby with a kit from Heathkit. The beautifully illustrated documentation and step-bystep instructions make building a Heathkit a relaxing, absorbing pleasure! Choose from their huge range of fascinating kits and self-instruction electronics and computing courses. The Heathkit range includes the ultimate in amateur radio kits, computerised weather stations, a highly sophisticated robot, a 16-bit computer kit and a range of home (or classroom) leaming courses. These state-of-the-art courses have easy-to-understand texts and illustrations, divided into sections so that you can progress at your own pace, whilst the hands-on experiments ensure longterm retention of the material covered.

You'll find Heathkits available for Amateur Radio Gear - Car Test Equipment - Kits For The Home - Self-Instruction Courses - Computer Kits - Test Instrument Kits - Kits For Weather Measurements.

All the most popular kits and educational products are fully detailed in the 1984 Maplin catalogue (see outside back cover of this magazine for details) or for the full list of Heathkit products send 50p for the Heathkit International Catalogue complete with a UK price list of all items.

All Heathkit products available in the UK from:

Maplin Electronic Supplies Ltd.

 P.O. Box 3, Rayleigh, Essex, SS6 8LR. Tel: (0702) 552911.(For shop addresses see back cover.)

NEW THIS MONTH

2917 PSU PANEL - $320 \times 190 \mathrm{~mm}$ with MJ802 130 A toov 200 W on large heatsink 7 smaller heatsinks contain $2 \times 7805 ; 7812 ; 7905 ; 2 \times$ MJE2955; 2SA473. Also 555 . $3 \times 4 \mathrm{~A}$ bridge rects, large smoothing
caps multiway plugs and sockets etc. Ex-equip caps multiway plugs and sockets etc. Ex-equip working order Only 58.50 . DIP BOARD
Fibreglass DIP board $158 \times 165 \mathrm{~mm}$ double sided with $58 \mathrm{w} 0.1^{\prime \prime}$ edge connector gold plated. Vero. £3.50.

20 WAY RIBBON CABLE
Twisted and liat computer grade for lower crosstalk. Reformed into llat sections every $21^{\prime \prime}$ for 10 C connectors. Only $70 \mathrm{p} / 21^{\circ}$ or f 25 per 100 t reet $31 / 2$ DIGIT LCD DPM Type 900 S self powered. Input range $4-20 \mathrm{~mA}$. Contained in std OIN enclosure $96 \times 48 \times 100 \mathrm{~mm}$. E15.

"TREKKER"

Computer-controlled Robot built around the gearbox described below. Complete kit of parts inc PCB. program listings for BBC (other micros soon) 5 m beter) f 130 m . SAE for illustrated leafleL.

The unit has $2 \times 3 \mathrm{~V}$ motors, linked by a magnetic clutch. thus enabling turning of the vehicle, and a gearbox contained within the black ABS housing, reducing the linal drive speed to approx 50 rpm. Data is supplied with the unjt showing various optrons on diving the mools erc. E.s.j. Sultable. Two new types of wheels can be supplied the sold out). Type A has 7 spokes with a round black tyre and is 100 mm dia. Type B is a solid heavy dury wheel 107 mm dia with a llat rigid lyre 17 mm wide. Photo shows gearbox with one of each type of wheel on in
PRICES: Gearbox with data sheets Wheel type A
Wheel rype B
$£ 5.95$ ea
f0.70 ea
10.90 ea

1984/85 CATALOGUE 84 page A4 size - Bigger, Brighter, Better - more components than ever before! With each copy there's discount vouchers, Bargain List, Wholesale Oiscount Lisi, Bulk Buyers List, Order Form and Supplement due out November - Send large SAE for your free copy November - Send large SAE for your tree copy.

1W AMPLIFIER
2914 - Audio amp panel $95 \times 65 \mathrm{~mm}$ with TBA.820 chip Gives IW output with $9 V$ supply. Switch and details supplied. Only $£ 1.50$, 10 for $£ 12$; 25 for $£ 25$.

FIBRE OPTICS

Scoop purchase of single and twin cable. For use with visible light of infra-red. Core 1 mm dia, overail $\mathrm{m}: 20 \mathrm{~m}$ coil E 11.00 .

MINIATURE RELAYS
PCB mounting. DPCO size $20 \times 15 \times 15 \mathrm{~mm}$. Available in 3.9 or 12 V .51 each

AM TUNER PANEL 2916 - For use with mono amp above. Neat panel $60 \times 45 \mathrm{~mm}$. Only $£ 1.50$; 10 for $£ 12.00$.

These digital multimeter cases are moulded in hinh impact black plastic and are offered at an extremely attractive price to clear stocks.
OP2010 - $110 \times 80 \times 20 \mathrm{~mm}$, this 100 has cut-outs for range switches and terminals with a smart aluminble by removeable cover on back 75p
DP100 - Same size as above, but this was for use as a digital thermometer, so there's only a single Inm 0 hole in the tront panel 75 .
Official orders welcome - minimum invoice charge £10. No. min on CWO.
Wur slore has enormous stocks of component
9.530 Mon Manem G35 Millo NWELD $\begin{array}{ll}\text { SO1 OHX } & \text { Southampton } \\ \text { Sal (0703) } 772501 / 783740\end{array}$ SO1 OHX
ALL PRICES INCLUOE VAT: JUST ADO 600

Mono/Stereo Chorus \& Flanger JOHN M.H.BECKER PART TWO

THE clock signal that causes the delay chips to sample and transfer their charges from stage to stage is produced by 1C9 (Fig. 6). This is a standard linear voltage controlled oscillator chip that produces a squarewave output the frequency of which is related to the value of C24, the current through VR9, and the voltage present on pin 9. The single output from IC9 needs to be split into two opposing phases as required by the delay chips. If a normal phase split were to be given then the opposing edges of the antiphase square waves would coincide. This overlap is prone to causing system noise from the delay chip outputs even though the TDA1097 is basically a low noise device, capable of a 77 dB signal-to-noise ratio at a 100 kHz clock frequency, though this degrades slightly with lower clock rates. The overlap on the edges of the clock is eliminated by the flip flop stage IC10 in conjunction with the NAND gates IC11a-b. C25 and R83 slow down the mutual triggering of the flip flop and gates, resulting in a twin phase output having a short delay between the respective squarewave edges. Oscillograms Fig. 7a to 7c show the 'with' and 'without' effect of the overlap elimination.

Varying the voltage applied to pin 9 of IC9 varies the clock frequency. For the automatic modulation of the clock a constantly varying voltage is produced by the low speed triangle wave oscillator around IC8a-b, and having a frequency governed by the resistance of VR7 and the value of C22. (Oscillogram Fig. 8.) Decreasing either increases the output frequency. The modulation can be switched in and out by S4, and the level varied from nil to full by the depth control VR8. C23 slightly rounds off the triangle peaks at faster modulation speeds. The modulating frequency range is controllable between about 50 milliseconds and 30 seconds, the clock frequency range is between about 12 kHz and 100 kHz . For a single delay chip the delay time range is thus
about 64 ms to 7.68 ms , cascading two delays doubles the delay times. With the modulating oscillator switched out of circuit the unit can of course be used as a standard reverb or short-echo unit, though these effects will not be so pronounced as those obtainable with the September 1984 PE EchoReverb unit.

POWER SUPPLY

The unit has been designed to operate from two 9 volt batteries producing $+9 \mathrm{~V} / 0 \mathrm{~V} /-9 \mathrm{~V}$, and drawing between 13 mA and 20 mA , depending on the clock oscillator rate. IC2 and IC3 though do not like a total voltage drop across them in excess of 16 V , which also means that controlling voltages must not exceed this either. The positive voltage delivered to IC2,3,9, 10 and 11 is thus reduced to a more suitable level by the drop across the resistor R 62 in the delay line bias divider network. The voltage at $R 62$ is within limits with all i.c.s in circuit, but may rise if any of the said 5 are not in their sockets when power is applied. IC9-1 1 will not mind, but IC2 and 3 may object. The unit may be operated from a stabilised power supply if preferred. The acceptable range is from $+5 \mathrm{~V} / 0 \mathrm{~V} /-5 \mathrm{~V}$ to $+9 \mathrm{~V} / 0 \mathrm{~V} /-9 \mathrm{~V}$. If it is necessary to run from a power supply greater than $+9 \mathrm{~V} / 0 \mathrm{~V} /-9 \mathrm{~V}$ then two voltage regulator devices should be inserted between the power supply and the unit as shown in Fig. 9. The voltage drop across the regulators must be greater than 2 V , and R 62 may be replaced by a link wire.

CONSTRUCTION

The component layouts for both boards are shown in Figs. 10 and 11. The short link wires on the p.c.b.s can be made from resistor cut-off leads shaped to the correct spacing with thin nosed pliers. Sockets should be used with all i.c.s. The wiring diagram for the unit is shown in Fig. 13. Bring the

PE16276

Fig. 6. Circuit diagram of the Clock Circuit

Fig. 7a. Usual appearance of two square-waves without overlap

Fig. 7b. Close up of overlap

Fig. 7c. Accentuated overlap removal as used in unit

Fig. 7. Clock edge overlap of two anti-phase square-waves

Fig. 8. Modulation oscillator waveform
connecting wires neatly around the edges of the p.c.b.s to the controls. The clock leads to IC2 and IC3 should be brought forward past C19, turn left at the front panel, then along to the small p.c.b., turn right and connect. Do not take them on what appears to be the shorter route across the main p.c.b. as this would direct them across some parts that might pick up any stray radiation signal. Unless you have the

PE16336
Fig. 9. Optional regulator circuit

Fig. 10. Component layout of the Main Board

Fig. 11. Component layout for the Clock Board

SETTING UP

This is quite straightforward and specialised equipment is not needed. First, VR1 to VR3 midway, VR4 max resistance (anticlockwise), VR5 and VR6 min, VR7 to VR9 max, S1 to S4 off. Plug in a music signal from a prerecorded source into the X 1 socket. Check that the output level reaching the main amplifier used is the same as the original. Switch on S3 enabling the VCA, and bringing up VR6 a change in amplitude and tonal quality should increase. Rotating the clock oscillator speed control VR9 to its maximum resistance will slow down the delay and emphasise the double tracking effect. This will be more apparent with staccato sounds rather than mellow drawn out notes. Adjust VR3 around its midway point until minimum waveform distortion is heard, which will also coincide with the best delay effect. If an oscilloscope is available, the waveform balance will be obvious when monitoring the output at VR1 and VR2 in the presence of a strong input signal. (Oscillograms Figs. 12a and 12b.) Switch on S4 bringing in the sweep modulator. Varying VR8 will vary the modulation depth, and VR7 will vary the modulation rate. Switch off S4, reset VR9 to slowest clock speed, VR6 to maximum level, switch on S2 for feedback enabling. Slowly bring up VR5 and a hollowness to the signal should come in. Maximise VR5 and carefully reduce the resistance of VR4 until the circuit almost goes into full feedback howl. If howl occurs, sharply

Fig. 12a. Sine-wave with VR3 unbalanced but VR1 correct

Fig. 12b. Sine-wave with both VR1 and VR3 correct

Fig. 12. Traces seen at the wiper of VR1

Fig. 14a. Clock residual with VR1 unbalanced (no signal)

Fig. 14b. Clock residual with VR1 balanced (no signal)

Fig. 14c. Sine-wave signal with VR1 unbalanced but VR3 correct

Fig. 14. Traces seen at the wiper of VR1
reduce VR4 and start again. Aim for the closest possible to the howl point. Howl is more likely to occur with strong bass notes. Switch on S 1 to couple the two delay circuits in series and so produce the double emphasis. If necessary back off VR4 slightly as the increase in level may kick the circuit into howl again. If an oscilloscope is not available VR1 and VR2 should be left midway and ignored, otherwise adjust them for the best balance point of the residual clock frequency in the absence of an input signal. (Oscillograms Figs. 14a to 14c.) Switch on S4 and experiment with the various settings until familiar with the control options available, if necessary readjusting VR3 or VR4.

USE

There are no restrictions to the type of signal fed in provided that the amplitude is less than the distortion level, and that the type of music lends itself to enhancement within the factors discussed earlier and summarised below. It will soon become obvious which type of music requires which particular control setting for the best effect. This is a
matter of personal preference, but the authorfeels that as with any effects unit, moderation is the keyword. Certainly overemphasis of an effect is dramatic, but it is easier to become tired of an over dramatic effect than one which produces a discrete change. In general terms music having a high harmonic content, but otherwise of a simple nature, will benefit most. Mellow or full orchestral sounds will not show the same degree of change. In the first case there is insufficient harmonic information available in the signal for the effect to fully develop. In the second case, the sound is already so full that the effect will probably be lost amongst the tonal complexity unless the original sound is full of spiky waveforms. The harsher sounds of voice, drums, harmonically rich synthesiser and organ music produce excellent effects as the waveforms involved are complex. Pure sine tones and muted waveforms̄, especially in the lower octaves, will be less apparent. For the chorusing effect a slower clock oscillator speed is preferable as the delay time is greater, for flanging, faster clock speeds are better as the phase shift occurs then at a more marked rate and spacing.

Photograph illustrating the internal details of the Chorus and Flanger Unit

P.E. AUDIO EFFECTS AND OTHER SUPER SOUND KITS!

P.E. MONO-STEREO ECHO-REVERB (SEP84) 200 ms echo lengthy reverb, multi-tracking kit as published-BLK box: SET 218 £55.66

P.E. FILTER-SHIFT PHASER (OCT84). Enhanced Phasing with modulated filter shifting. Kit as published - BLK box: SET 226

P.E. RING MODULATOR (NOV84). With multi-waveform VCO, Noise Gate \& Auto-level Control. Kit as published - BLK box: SET 231 £39.99

P.E. MONO-STEREO CHORUS FLANGER (JAN85). Superb dual mode music enhancement. Kit as published - BLK box: SET 235 £55. 66
BLK BOX - steel \& aluminium, black plastic finish. STO BOX - plain aluminium, lipped lid. SET codes include PCBs, parts, instructions, boxes, wire, solder.
More details $\&$ kits in catalague - send S.A.E. (Overseas $£ 1$ or 5 IRC's).

BASS BOOST Increases volume of lower octaves
CODE BASS BOOST: Increases volume of lower octaves SET 1388
BLOW BOX: Voice operated VCF \& VCA for fascinating effectsSET 214 BLOW BOX: Voice operated VCF \& VCA for fascinati
CHORUS (SIMPLE): Multiplied solo enhancement CHORUS (SIMPLE): Multiplied solo enhancement
COMPRESSOR: Limits \& levels maximum signal strength
ENVELOPE SHAPER: Note triggered AOSR unit with VCA ENVELOPE SHAPER: Note triggered AOSR unit with VCA EQUALISER: Variable combinations of Low, Mid, Top \& Notc EQUALISER: 10 Channels fully variable
FADER: Voice operated with 5 response controls
FLANGER (SIMPLE): Fascinating phased resonance effects FREQUENCY CHANGER: Tunable note \& waveform modifier FREQUENCY DOUBLER: Guitar octave ralser \& tone chang FUNKY-WOBULO: Modulates a singing voice
FUZZ: Smooth distorion, retains attack \& decay
GUITAR OVERDRIVE: Heavy fuzz with selectable qualities GUITAR SUSTAIN: Extends note decay time, with noise gate GUITAR TO SYNTH INTERFACE: With voltage \& trig outputs HAND CLAPPER: Auto \& manual variable clap effects HEADPHONE AMP: 2 watts into phones or speaker, variable SET 197 JABBERVOX. Voice disguiser with revert \& tremolo variable SET 156M METRONOME: With audio output \& visual beat \& downbeat SET 143 MIC PRE-AMP Variable again \& switched tone response SET 147 MIXERS: Several in catalogue
MOCK STEREO: Splits mono signal into stereo simulation MULTIPROCESSOR: FIng, Rivb, Faze, Fuzz, Wah, Trem, Vib MUSIC MODULO: 8 variable tremolo \& wah guitar effects MUSICAL CALL SIGN: Programmed catl sign generator NOISE GATE: Reduces tape \& system noise
PHASER ISIMPLEI: Auto \& manual rate \& depth controls REVERB: (SIMPLE) Mono/stereo, variable depth \& delay RHYTHM GENERATOR: Computer driven, 9 drum effects RHYTHM GENERATOR: 15 pre-programmed rhythms, 9 effec ROBOVOX: Versatile robot type voice modifier
SPEECH PROCESSOR: Clearer speech and level control STORMS EFFECTS: Auto \& manual wind, rain \& surf effects
SWEEP GENERATOR: Auto sine wave $20 \mathrm{~Hz}-15 \mathrm{KHz}$, variable SWEEP GENERATOR: Auto sine wave $20 \mathrm{~Hz}-15 \mathrm{KHz}$, variable TOM-TOM SYNTH: Sound triggered, multivariable TONE CONTROL: Bass, mid, treble, gain \& cut TREBLE BOOST: Increases volume of upper octaves TREMOLO: Mono variable rate \& depth modulation VOLTAGE CONTROLLEO FILTER: 12 dB , variable modes VOCOOAVOX: Modular vocoder, 7 chans, extendable VODALEK: Robot type voice modulator VOICE OP SWITCH: Variable sensitivity \& delay WAH-WAH: Auto, manual \& note triggered SET 162

STD BOX
$\mathbf{f 8 . 4 6}$
BLK BOX $\mathbf{f 8 . 4 6}$
$\mathbf{f} 24.33$ £11.46 $\begin{array}{ll}\mathbf{f} 24.33 & £ 28.33\end{array}$ $\mathbf{f 3 1 . 4 0}$ $£ 10.86$
$\mathbf{£ 1 7 . 1 5}$

$£ 17.15$
$£ \mathbf{£ 2 . 3 3}$
$\mathbf{f} 37$

£37.83
$\begin{array}{r}512.40 \\ \hline\end{array}$
$\begin{array}{ll}10.57 & \mathbf{f} 15.4 \\ \mathbf{1} 13.57\end{array}$
$\begin{array}{rr}\text { E15.73 } & \text { € } 23.23\end{array}$
$\begin{array}{r}\text { E23.87 } \\ \boxed{625.31} \\ \hline\end{array}$
$22.69 \quad$ E36.37
E $1.81 .81 \quad$ E27.34

	E .13

$£ 19.87 \quad £ 23.37$
557.14 £61.14
$8.79 \quad £ 21.79$
12.91 £16.41
$£ 9.97$ £12.97
£8.40 $£ 21.90$
$£ 25.54$
£ 30.64
621.03
£16.41
£15.05
$£ 15.05$
$£ 13.17$
f8. 13
69.71
$£ 17.02$
$£ 64.31$
$\mathbf{£ 1 7 . 2 6 ~ £ 2 0 . 7 6 ~}$
MAIL ORDER: Add 15% VAT \& £1 P\&P to all orders (overseas details in cat). Payment CWO, CHQ,

PHONOSONICS, DEPT PE52, 8 FINUCANE DRIVE, ORPINGTON, KENT, BR5 4ED.
Tel: Orpington 37821 (STD 0689, Londòn 66), Mon-Fri 10-7.

.
£29.54
$£ 34.64$
$\begin{array}{r}\text { £39. } 14 \\ \hline\end{array}$
$£ 34.14$
$£$
24.53
34.90
13.86
$\mathbf{8 2 0 . 6 5}$

96

0

-

69
.53
81

4

4

8

Oric 1 computer $48 \mathrm{~K} \mathbf{£ 8 5}(\mathbf{£ 8 2}) \mathbf{£ 9 2}$. Oric Atmos computer $48 \mathrm{~K} £ 171$ ($\mathbf{£ 1 5 8)}$ f168 Oric Colour Printer $£ 134$ ($\mathbf{f 1 2 3 \text {) } £ 1 4 0 \text { . Sin- }}$ clair flat screen TV (£113) (£105) £115. Sinclair Spectrum Plus Computer £182 (£176) £187. Sinclair QL Computer $£ 406$ £385) £410. Sinclair Spectrum 48K £131 (£131) £143. Microdrive $£ 51$ ($£ 50$) $£ 60$. RS232 interface 1 f51 ($£ 50$) $£ 60$. Special offer:- Microdrive + Interface $1+4$ cardrive cartridges $\mathbf{£ 5} 50$ ($\mathbf{f} 6$) $\mathbf{£ 7} \mathbf{7}$. Standard drive cartridges $\mathbf{£ 5} 50$ ($\mathbf{£} 6$) $\mathbf{£ 7}$. Standard
floppy disc interface for $S p e c t r u m ~ £ 102$ (£92) f112. (See Cumana disc section for suitable disc drives). Fuller FDS keyboard for spectrum £52 (£52) £62. Fuller master unit £56 (£56) £62. Interface $2 £ 20.45$ (£20) £24. 32 K memory upgrade kit for 16 K spectrum (issue 2 and 3 only) £31 (£28)
£30. Spectrum Centronics printer inter£30. Spectrum Centronics printer interface $\mathbf{£ 5 1}$ (£47) £52. ZX printer has been
replaced by the Alphacom 32 f71 replaced by the Alphacom 32 £71 (f69)
f82. 5 printer rolls (state whether Sinclair f82. 5 printer rolls (slate whether Sinclair
or Alphacom) $\mathbf{f 1 3}\{\mathbf{£ 1 6)} \mathbf{f 2 1 . 7 \times 8 1} \mathbf{c o m}$. or Aler £45 (£44) £54. 16K ram packs for 2X81 £28 (£25) £30.

COMMODORE COMPUTERS
Commodore C16 Starter Pack £145 ($£ 142$) £162. Commodore Plus/4 £305 (£281) £301. Commodore 64 £722 (f215) £235. Convertor to allow most ordinary mono cassette recorders to be used with the Vic 20 and the Commodore 64: $£ 9.78$ ($£ 9$) f11. Bargain package:- cassette convertor + compatible cassette recorder $£ \mathbf{£} 7$ ($£ \mathbf{~} 38$) (£44) $£ 50$. Printer interfaces for Vic 20 and the Commodore 64 :- Centronics $\mathbf{f} 45$ (£41) f46. RS232 £45 (f41) £46. Disc drive £233 (£209) £234. 1520 printer/plotter £165 (£149) £159. MPS801 Printer £235 (£220) £245. Light pen $£ 29$ (£29) $£ 33$.

ACORN COMPUTERS
Electron £173 (£179) £199. BBC Model B £404 ($\mathbf{£ 3 5 7 \text {) } \mathbf { £ 3 8 7 } \text { . Kenda double density }}$ disk interface system $£ 149$ ($£ 131$) $£ 141$. See below for suitable disc drives.
CUMANA DISC DRIVES
To suit disC interfaces of Sinclair spec-
trum, BBC B and Videogenie. Single:- 40 track single sided $£ 176$ ($£ 158$) f 178 , 40 tr double sided $£ 218$ ($£ 195$) £215), 80tr ss $£ 207$ (£186) $£ 206$. 80 tr ds $£ 234$ ($£ 209$) 229. Dual: 40 tr ss f299 ($£ 280$) £320, 40tr ds £395 (£353) £393, 80ir ss £372 (£334) £374, 80 Ir ds £437 (£390) 430 .
PRINTERS PRINTERS
\qquad

Oki Microline $80 £ 138$ ($£ 135$) $£ 165$. Brother HR5 £162 (£146) £170. Shinwa CTI CP80 (f299) f329 E248. Cannon PWIO80A E332 (£299) £329. Epson RX80 £277 (£251) Epson FX80 £399 (£358) £388. Combined matrix printers and electric typewriters:Brother EP22 £173 (E166) £186. Brother EP44 £258 (£235) £260. MCP40 Oric colour printer/plotier $£ 134$ ($£ 123$) $£ 140$. Interfaces to run the above printers from Vic and the Commodore $64 £ 45$ ($£ 41$) £46. We can supply interfaces to run the above printers from Sharp computers $£ 58$ ($£ 52$) E 55 . VIDEOGENE
We still sup
We still support these Computers. Write for our list.
COMPUTER REPAIRS
We offer a world-wide repair service. Write for a quotation
SWANLEY ELECTRONICS
The Computer Export Specialists
Dept PE, 32 Goldsel Rd., Swanley, Kent BR8 8EZ, England Please allow 7 days for delivery
Tel: Swanley (0322) 64851. Official orders welcome. UK prices are shown first and include post and VAT. The second price in brackets is for export customers in Europe
and includes insured air mail postage. The third price is for export customers outside Europe (including Australia etc) and includes insured airmail postage.
\square

FREE CAREER BOOKLET

 obligation at all.Over 40 ' O ' and ' A ' Level subjects from which to
choose. Your vital passport to career success.
ICOMPUTER \quad RADIO AMATEUR'S PROGRAMMING

IELECTRONICS

COMMERCIAL
I ART
TV, RADIO \&
[AUDIO SERVICING
CAR MECHANICS
BOOK-KEEPING \& ACCOUNTANCY

Address
I

ICS Dept. EDS 25 8 Elliot Place
Clydeway Centre Glasgow G3 8EF LICENCE

INTERIOR
DESIGN
WRITING FOR PROFIT

Train for success, for a better job, better pay
 Enjoy alt the advantages of an ICS Diploma Course, training you ready for a new, higher pald, more exciting career. Learn in your own home, in your own time, at your own pace, through ICS home study, used by over 8 million already! Look at the wide range of opportunities awaiting you.
 Whatever your interest or skill, there's an ICS Diploma Course there for you to use.
 Send for your FREE CAREER BOOKLET today - at no cost or

 e,

,

DRA 100

DOPPLER RADAR INTRUDER ALARM

SIMPLY THE BEST

* The best because its blanket coverage means that all doors and windows can be covered without the need for individual switches and wiring.
* The best because its low power RF radiation pattern is unaffected by air disturbance - unlike ultrasonic or passive $\mathbb{I R}$ systems.
* The best because movement can be detected through brick walls. Intruders can be deterred before they intrude!
* The best because the system can be enlarged by the addition of passive detectors such as reed switches, heat detectors, personal attack buttons etc.
* The best because the size of the protected area is variable. Careful adjustment of the transmitters allows "safe areas" to be created, enabling legitimate callers to avoid triggering the alarm.
* The best because it represents top value, the DRA 100 in kit form costs less than most perimeter wiring systems - and offers so much more protection for your money.

Pair of extra transmitters $\quad \mathbf{£ 2 9 . 0 0}+$ VAT

Special Offer

Extended Kit (including 4 transmitters) $\mathbf{£ 1 3 9 . 5 0}+$ VAT
The DRA 100 is available from

POWH:ITRMW oluantisum

The incredible 'MINI 20'

28 ranges
$20 \mathrm{k} \Omega / \mathrm{V}$ d.c. $84 \mathrm{k} \Omega / \mathrm{V}$ a.c.
(With protective fuse)
Accuracy: 2% d.c. and resistance, 3% a.c.
28 ranges: d.c. $V 100 \mathrm{mV}, 3 \mathrm{~V}, 10 \mathrm{~V}$, $30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 600 \mathrm{~V}$. d.c. $150 \mu \mathrm{~A}$, $600 \mu \mathrm{~A}, 6 \mathrm{~mA}, 600 \mathrm{~mA}$ a.c. V 15 V , $50 \mathrm{~V}, 150 \mathrm{~V}, 500 \mathrm{~V}, 1500 \mathrm{~V}$. a.c. I $30 \mathrm{~mA}, 300 \mathrm{~mA}, 3.0 \mathrm{~A}$. Ohms 0-2k Ω, $0-2 \mathrm{M} \Omega \mathrm{dB}$ from -10 to +62 in 6 ranges.
Dimensions: $105 \times 130 \times 40 \mathrm{~mm}$.
The 28 ranges cover all likely requirements. Operation is straightforward, just turn the selection switch to the required range.

This special offer is a wonderful opportunity to acquire an essential piece of test gear with a saving of nearly $£ 10.00$.
THE IDEAL INSTRUMENT
FOR THE CONSTRUCTOR

(complete with carrying case, leads and instructions)

'SUPER 20'

A SUPER PROTECTED UNIVERSAL MULTIMETER

Accuracy: d.c. ranges and $\Omega 2 \%$ a.c. 3% (of f.s.d.)
39 ranges: d.c. $\mathrm{V} 100 \mathrm{mV}, 1.0 \mathrm{~V}, 3.0 \mathrm{~V}, 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$. d.c. $150 \mu \mathrm{~A},{ }^{2} 100 \mu \mathrm{~A}, 300 \mu \mathrm{~A}, 1.0 \mu \mathrm{~mA}, 3 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$, $100 \mathrm{~mA}, 1 \mathrm{~A}, 10 \mathrm{~A}$
a.c. $\mathrm{V} 10,30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$;
a.c. $13 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}, 100 \mathrm{~mA}, 1.0 \mathrm{~A}, 10 \mathrm{~A}$.
$\Omega 0-5.0 \mathrm{k} \Omega, 0-50 \mathrm{k} \Omega, 0-500 \mathrm{k} \Omega, 5 \mathrm{M} \Omega, 50 \mathrm{M} \Omega$. dB from -10 to +61 in 5 ranges.
Dimensions: $105 \times 130 \times 40 \mathrm{~mm}$.
These special offers is a wonderful opportunity to acquire an essential piece of test gear with a saving of nearly $£ 20.00$.
(complete with carrying case, leads and instructions)

ONLY £33-50
PRICES Our prices include VAT and postage and goods are normally despatched by return.

For details of these and the many other instruments in the Alcon range, including multimeters, components measuring, automotive and electronic instruments, please write or telephone:

[^3]
and MICROPROMPT

ECONOMIC DIGITISER

Sir-Here is a low cost, easy to make project for use with an X / Y plotter, that can be connetted to the expansion interface of the UK 101 , or virtually any other micro.

The system consists of a flexible arm, equipped with two linear potentiometers and a pointer. This pointer moves over a limited surface of $20 \times 20 \mathrm{~cm}$. The voltages, generated by the movement are a measure of the position of the pointer. Those potentials cannot be used directly for X / Y plotting, because of their nonlinear output.
A solution of that problem is found, by the application of the formula, which gives the relationship between X, Y and the angles of rotation V and H .
If now the analogue values of these angles are translated to digital, the calculation with a BASIC program becomes possible.

The BASIC program can be perceived as a limited loop with continuous conversion, so that the manual movement of the pointer can be digitally stored in memory. It permits also direct writing to a high resolution display.

Table 1 shows a typical BASIC program for illustration, and the following notes apply:

5-30 Initialisation of the PIA (A and B) for input.
VIA (A and B) for output.
40-180 Loop for storing data in memory.
190-280 Loop for playback to X/Y recorder.
If the digitiser is used with the UK 101, it may be used with the PE-Expansion Interface published in Jan-July 1981.
I do not use the internal A / D and D / A converters, because I wanted a binary indication for the D/A output and also there is only one output in the interface. You will find the schematics joined.

The potentiometers must be of good quality and very linear. A resolution of approximately 2 mm is possible on a surface of $20 \times 20 \mathrm{~cm}$.

During storing in memory, the values of X and Y are continually displayed, and must be integer, positive and between 0 and 255 .

The value of L (line 100) is a multiplication constant to certify an optimum sweep between 0 and 255 .

The number 255 (line 110) is added to invert the value of Y, which is negative in this area.

Line 50 in the program is the number of points you wish to fix. The movement of the pointer shall not exceed $3 \mathrm{~cm} / \mathrm{sec}$.

Line 255 defines the speed of playback, and

Prototype digitiser

5 REM : X/Y PLOTTING ROUTINE
$10 \mathrm{P}=61340: \mathrm{Q}=61342$
$15 \mathrm{U}=61344: \mathrm{W}=61345$
17 POKE $+2,255$: POKE $+2,255$
20 POKER $+1,0$:POKEP,0:POKEP $+1,255$
30 POKEQ+1,0:POKEQ,0:POKEQ+1, 255
40 INPUT "READY.FOR START";A\$
$45 \mathrm{R}=5000: \mathrm{S}=6000$
50 FOR N=1 TO 200
60 POKER $+1,60:$ POKER $+1,52$
$70 \mathrm{~V}=\mathrm{PEEK}(\mathrm{P}) / 100$
80 POKEQ + 1,60:POKEQ + 1,52
$90 \mathrm{H}=\mathrm{PEEK}(\mathrm{Q}) / 100$
$100 \mathrm{~L}=150$
$110 \mathrm{Y}=\mathrm{L}^{*} \operatorname{Cos}(\mathrm{~V})+\mathrm{L}^{*} \operatorname{COS}(\mathrm{~V}+\mathrm{H}): \mathrm{Y}=$ INT (Y) +255
$120 \mathrm{X}=\mathrm{L} * \operatorname{SIN}(\mathrm{~V})+\mathrm{L}^{*} \operatorname{SIN}(\mathrm{H}+\mathrm{V}): \mathrm{X}=$ INT (X)
130 PRINT X,Y
140 POKER,X:POKES.Y
145 POKEU,X:POKEW,Y
$150 \mathrm{R}=\mathrm{R}+1: \mathrm{S}=\mathrm{S}+1$
160 NEXT N
180 PRINT"END OF LOOP"
190 INPUT" DO YOU WANT A PLAYBACK";B\$
195 IF BS ="Y" THEN 210
200 IF B $\$=$ " N " THEN 40
$210 \mathrm{R}=5000: \mathrm{S}=6000$
220 FOR $\mathrm{N}=1$ TO 200
$230 \mathrm{X}=\mathrm{PEEK}(\mathrm{R}): \mathrm{Y}=\mathrm{PEEK}(\mathrm{S})$
240 POKEU,X:POKEW,Y
$250 \mathrm{R}=\mathrm{R}+1: \mathrm{S}=\mathrm{S}+1$
255 FOR D=1 TO 50:NEXT
260 NEXT N
270 PRINT"END OF PLAYBACK"
280 GOTO 190

Table 1. Suggested software for calculating the angular coordinates

Fig. 1. Mechanical construesion of the digitiser

Fig. 2. Sample of handwriting traced and stored from the digitiser

MICRO-BUS

and MICROPROMPT

depends on the type of X / Y recorder (graphic, scope, screen).

Fig. 4. Block diagram of the digitiser

Fig. 5. The ADC channel

Fig. 3. Block diagram of principle

Fig. 6. A plan view showing the geometrics of the digitiser. Good quality highly linear potentiometers must be used to obtain a resolution of around $\mathbf{2 m m}$

Fig. 7. Converting back to analogue for driving a plotter
\star BAKER *

GROUP PA. DISCO

AMPLIFIERS post C2
150 wats Output, 4 input Mixer pre-amp. Illustrated
150 watt Output, Slave 500 mv . Input 3 Speaker Outputs
$150+150$ watt Stereo, 300 watt Mono Slave 500 mv , 150 watt Valve Mocal, 8 inputs. High/Low Mixer Echo Socket $£ 129$ 100 watt Valve Model, 4 inputs. 5 Outputs. Heavy duty ... $£ 125$
60 watt Mobile 240 v AC and 12 v DC. $4-8.16$ ohm+ 100 v line $£ 89$ Reverb"Unit for Microphone or Guitar £35 PP E1.
Elecrronic Echo Machine for mic/guitar 885 PP $\mathbf{£ 1}$. Deluxe $£ 95$.
BAKER LOUDSPEAKERS
$\begin{array}{lll} & \text { Model } & \text { Size Watts Ohims Price each } \\ \text { Type } \\ \text { PA.DiscolGroup }\end{array}$ $\begin{array}{llllll}\text { P.A./Disco/Group } & \text { DG50/10 } & 10 & 50 & 8 / 16 & £ 18.00 \\ \text { Midrange } & \text { Mid } 100 / 10 & 10 & 100 & 8 & \mathbf{2 5 . 0 0}\end{array}$ Midrange
$\mathrm{Hi}-\mathrm{Fi}$
Hi-Fi
P.A./Disco/Group
$\mathrm{Hi}-\mathrm{F}_{1}$
Hi Fi
P.A.Jisco/Group P.A.Jisco/Group

DISCO CONSOLE Twin Decks, mixer pre amp E145. Carr C10. 120 watt $£ 300$: 150 watt $£ 360$: 300 watt $£ 410$. Carr $£ 30$.

DELUXE STEREO DISCO MIXERIEOUAUSER aS above plus L.E.D. V.U. displays 6 band graphic equaliser, ieftright fader, switchable

As above with 7 Band Graphic £138.
£124 pp 2
P.A. CABINETS (empty) Single 12 £32; Double 12 £38. carr C10. HORNBOXES 200 Wat E32, 300 Wart 539 . 882 ; 200 W £ 90.

WATERPROOF HORNS 8 ohms. 25 watt $£ 22.30$ watt 25.40 watt E33. 20W plus 100 volt line $£ 38$. Post 12
100 warts. No crossover required $4.8-15$ ohm $73 / 8 \times 3^{1 / 8 i n}$,
CROSSOVERS. TWO-WAY $3000 \mathrm{c} / \mathrm{S} 30$ wall E3. 60 wall E5. 100 wall E6 3 way 950 cps 3000 cps. 40 watt rating. $£ 4.60$ watt $£ 6.50 .100$ watt $£ 10$

 £4.50; 10 in E5; $12 \mathrm{in} . \mathrm{E6}$. 8 in . 25 W £6.50. 8in. hi-li $60 \mathrm{~W} £ 1250$.
 25 ohm, 3 in. $£ 2: 5 \times 3 \mathrm{in}, 6 \times 4 \mathrm{in}, 7 \times 4 \mathrm{in}$. $\mathcal{F} .50 .120 \mathrm{ohm}, 31 / 4 \mathrm{in}$ dia. $£ 1$.

Make	Model	Size Want	Ohms	Price	
AUDAX	WOOFER	51/2in. 25	8	¢10.50	$f 1$
G00DMANS	hifax	$71 / 2 \times 41 / 4 \mathrm{in} 100$	8	130	\%
600DMANS	H8 WOOFER	$8 \mathrm{Bin}$.	8	¢1350	1
WHARFEDALE	WOOFER	$8 \mathrm{in}$.	8	2.50	0
CELESTION	DISCO/Group	10in. 50	816	21	
AKAI	WOOFER	12in. 80		f16	8
G00DMANS	HPG/GROUP	12 in. 120	815	530.00	52
G00DMANS	HPO/OISCO	12 mm .120	$8 / 15$	c3000	\%
HNH	DISCO/GROUP	15 in .	4/8/16		¢ 4
GOODMANS	HP/BASS	15 in .250	8	c72	¢
GOODMANS	HPO/BASS	18 in .230	8	CBA	

METAL GRILLES $8 \mathrm{in} . \mathfrak{£ 3 . 0 0}, 10 \mathrm{in} \mathbf{£ 3} 50.12 \mathrm{in} . \mathfrak{£ 4 . 5 0}, 15 \mathrm{in} . \mathfrak{£} 5.50$, 18in. $\boldsymbol{\text { E }} 50$.

RCS SOUND TO LIGHT CONTROLLER KII
Printed circuit. Cabinet. 3 channels. 1,000 watts each. Will operate Prom Hi-Fi or Disco. £19. Post E1.
Ready Built Deluxe 4 Channel 4000 wath sound chaser + speed + programme controls £69. Mk 216 programmes, £89. PP E2. MAINS TRANSFORMERS
$250-0-250 \mathrm{~V} 80 \mathrm{~mA} .6 .3 \mathrm{~V} 3.5 \mathrm{~A} .6 .3 \mathrm{~V} \mathrm{iA} \quad$ Price Post $350-0-350 \mathrm{~V} 250 \mathrm{~mA} .6 .3 \mathrm{~V}$ EA CT £ 12.00 Shrouded $£ 14.00$ €2 250 V 60 mA .6 .3 V 2A. $64.75 \mathrm{E1}$ 220 V 25 mA . $6 \mathrm{~V} 1 \mathrm{Amp} \mathbf{E 3 . 0 0} 220 \mathrm{~V} 45 \mathrm{~mA}$. 6 V 2 Amp $\mathbf{f 4 . 0 0} \mathrm{E} 1$ Low voltage tapped outputs avaitable
 $31-26-0-26-33$ voli 6 amp (14.00 E 2 LOW VOLTAGE MAINS TRANSFORMERS 25.50 each post paid $9 \mathrm{~V} .3 \mathrm{~A} ; 12 \mathrm{~V}, 3 \mathrm{~A}: 16 \mathrm{~V}, 2 \mathrm{~A} ; 20 \mathrm{~V}, 1 \mathrm{~A}: 30 \mathrm{~V}, 1 / 2 \mathrm{~A}: 30 \mathrm{~V}, 5 \mathrm{~A}+17-0-17 \mathrm{~V}$

Pocket size instrument. o.p.v. DC volts 5 , $25,250,500$. AC volts $10,50,500,1000$. DC De-Luxe Range Doubler Meter, 50,000 o.p.v. $7 \times 5 \times 2 \mathrm{in}$. Resistance $0 / 20$ meg in $1000 \vee \mathrm{DC}, 10 \mathrm{v} / 1000 \mathrm{v}$ AC. $E 25.00$ posi E^{1}
PANEL METERS $50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 500 \mu \mathrm{~A}, \mathrm{ImA}, 5 \mathrm{~mA}, 100 \mathrm{~mA}, 500 \mathrm{~mA}$ $1 \mathrm{amp}, 2 \mathrm{amp}, 5 \mathrm{amp}, 25 \mathrm{volt}, \mathrm{Vu} 21 / 4 \times 2 \times 1 / 4 \mathrm{in}$. $£ 5.50$ post 50 p

EQUIPMENT CASES. Black Vinyl Covered ToD, Ali Base
 ALI ANGLE BRACKET $6 \times 3 / 4 \times 3 / 4 \mathrm{in}$. 30p.
ALUMINIUM PANELS 18 s.w.g. $12 \times 12 \mathrm{in} . \mathbf{£ 1 . 8 0} ; 14 \times 9 \mathrm{in} . \mathbf{£ 1 . 7 5}$; $6 \times 4 \mathrm{in} .55 \mathrm{p} ; 12 \times$ Bin. £1.30; $10 \times 7 \mathrm{in} .96 \mathrm{p} ; 8 \times 6 \mathrm{in}, 90 \mathrm{p} ; 14 \times 3 \mathrm{in}$.

$4 \times 2^{1 / 2} \times 2$ in. $£ 1.20 ; 3 \times 2 \times 1 \mathrm{in} . \mathrm{f1} ; 6 \times 4 \times 2 \mathrm{in}$. $\mathbf{f 1} .90 ; 8 \times 6 \times 3$ in. £3.00; $12 \times 5 \times 3 \mathrm{in}$. $\mathbf{£ 3} .60 ; 6 \times 4 \times 3 \mathrm{in} . £ 2.20 ; 10 \times 7 \times 3 \mathrm{in}$. in. 8.60 . $\begin{array}{llll} & 20 / 500 \mathrm{~V} & 75 \mathrm{p} & 8+8 / 500 \mathrm{~V}\end{array} \begin{array}{lll} & \text { £ } 1 & 32+32 / 500 \mathrm{~V} \\ 32+32 / 350 \mathrm{~V}\end{array}$

SINGIE PLAY DECKS. Post C2
Make Drive Model Cartridge $\begin{array}{lll}\text { GARRARD } & \text { Rim } & 6200 \\ \text { BSR } & \text { Belt } & 12 \text { Volt }\end{array}$

	Belt	P232
BSR	Rim	P207
BSR		

AUTOCHANGER BSR
Ceramic
OECCA TEAK VENEERED PUNTH space for small amplifie Board cut for BSR or Garrard $18^{3 / 4 i n} \times 14^{1 / 4 i n} \times$ sin. E5 . Post Ci TINTED PLASTIC COVERS for Decks. $£ 5$ each. Post $\mathrm{E1}$ $171 / 8 \times 131 / 3 \times 3^{1 / 4 i n} .181 / 4 \times 12^{1 / 2} \times 3 \mathrm{in}$. $211 / 2 \times 14^{1 / 4} \times 21 / 2$ in

RADIO COMPONENT SPECIALISTS Dept 4, 337, WHITEHORSE ROAD, CROYOON
ACCESS SURREY, UK. TEI: O1-684 1665 Post 65 p Minimum. Callers Welcome. Lists 340 . Same day despatch. Welcome.

VERTVON al TRZAN Sampe!

V.T.'s views and opinions are entirely his own and not necessarily those of PE

I'VE JUST had an idea. It doesn't happen all that often. So when it does I like to tell somebody about it.

I've been thinking that as we become more and more a button-pushing civilisation, our ability to communicate with each other, in the way we have been doing since the dawn of mankind, is going to take a nasty knock.

Here's an extreme instance. If and when we reach the stage where we wish our workmates good morning by punching up the salutation on a keyboard-even though we may be no more than an office apart-then sooner or later there can only be one consequence: total atrophy of the vocal chords. There's a lot in the old saying, if you don't use it you'll lose it.

And think what that could lead to in the years after you and I are laid in earth.

The end of live theatre as we know it. The death of opera. The finish of slanging matches in the House of Commons. The demise of spicy revelations at posh cocktail parties. Wholesale redundancy of bingo callers. No more air-cleaning rows between married couples. No more whispered exchanges of sweet nothings between young lovers. The start of mute TV and the passing of radio. The amputation of vocal links with people of other lands... Try that little lot for starters. Of course, cynics will say that out of such evil there comes much good

No more screeching prima donnas. The end of pompous party political gas. The boon of being able to get happily stoned at social functions without having to endure a load of inconsequential chitchat. No more having to bear-though Mum might be upset-the twice-weekly yap of Coronation Street. No more having to study impossible foreign languages. Enhanced matrimonial bliss, made possible by the blessing of mutual silence. Goodbye, the saints be praised, to Russel Harty and Michael Parkinson; and a merciful deliverance from all that is worst in imported American TV.

There's another aspect worth considering, now that we're diving at an ever-increasing pace into the electronic age. How is the keyboard syndrome going to affect the way we educate our children? What, for example, is to be the fate of the good old three Rs?

If you can bear a mioment of near-geriatric nostalgia, let me recall Miss Richardson. She was a grey-haired lady who was totally dedicated to thumping the rudiments of good English into the skulls of her elementary school charges. She had no time for anyone unwilling to share her love of the glories of language and gems of literature. We went
through hell with the old girl. But we emerged with enriched minds.

Then there was old Bandy Andrews. I take off my hat to him as well. He firmly believed that the only worthwhile subjects in the curriculum were simple addition, division, multiplication and subtraction. These were the intellectual vitamins on which he thrived. Anyone who resisted the same diet was beyond the pale.

Finally there was Charlie Atkinson-long since departed for that great big college of calligraphy in the sky. It was he who trained us to express our callow thoughts in splendidly-rounded hands that were a joy to behold. It was his good luck to pass on before the ballpoint pen-which some people feel killed individual style stone dead-came into universal use.

"We must all accept, indeed embrace, progress as our sires did the wheel."

I agree that our education in those days was pretty elementary. But it had soul and substance. It nurtured the development of latent talents and equipped us for the years ahead. Some of us even got places on the strength of it.

Leaving aside the emotional ramblings, let's look at things in perspective.

The computer, the microprocessor and all their derivatives, with us and yet to come, cannot fail to play an enormous part in our future lives. Nobody but an idiot would deny that. We must all accept, indeed embrace, progress as our sires did the wheel.

But I can't help feeling that we still need the basic support of established educational practices as a preliminary to hurling ourselves headlong into the fresh technologies. There is no substitute for a grounding in the three Rs. Nothing can replace the human larynx as a channel for human understanding.

Someone is bound to say that writing as I do for an electronics journal 1 ought to be more aware of which side my wafer is diffused. Point taken. As I said at the beginning, it's just an idea. But I still reckon that Miss Richardson, Bandy Andrews and Chaplie, Atkinson still have a job to do.

We're all TV critics. Whenever we moan from our armchairs we're carrying out the function, even though it's without an audience or a reward.
I'm no exception. The other night I was watching a programme called "It'll Be Alright On The Night". Presented by that brilliant jester, Denis Norden, it purports to be a collection of rejected sequences resuling from cockups by distinguished performers while recording their programmes.
It is passable entertainment and moderately funny. And, I suppose, acceptable to the gullible. But, because I have that kind of mind, I suspect that some of these boobs are specifically produced in order to provide a relatively inexpensive spin-off. Alright, such conning is perfectly legitimate if it keeps people happy and laughing.

On the other hand, if these lapses from professional standards, which betray a rather irresponsible approach to the job, are genuine, then ought we not to be just a little concerned?
Television is a voracious consumer of time, talent and, above all, money. Money, by the way, which you and I help to provide by passing our crisp oncers across the Post Office counter every year.
Thinking along those lines, it's not easy to accept as a matter of mirth - perhaps even affectionate sympathy-the banalities which such programmes offer.

Sorry Denis. I'm sure it's not your fault.

According to a recent newspaper report, the robots of the future are going to be a lot more cuddly. Apparently 'not tonight darling' will not be a feature of their synthesised vocabulary. Sounds promising.

A spokesman for Cardiff University claims that whispering words of love and affectionate snuggling-up will present no problems for these romantic devices.

Moreover, he promises us, they will be endowded with limitless energy. Sounds even more promising.

But will there be anything in the circuitry to handle that well-known limitation -the headache?

In the meantime, it is reported that America has added a new category to census statistics:-Robots.

The first robot count is underway this month and will be aimed at robots on factory assembly lines. The special census form also has a section to collect information about home robots.

A more frightening rumour is the news that special robots are being seriously considered for duties as "personal" and home security guards. These robots are, it is claimed, programmed to deliver varying degrees of bodily harm; from simple electric shocks to "dismemberment".
It appears that the only obstacle is the expected multi-million dollar lawsuits that could be lodged by injured parties.-A case for Robot against Robot?

PRACTICAL ELECTRONICS printen circuit biaro service

Printed circuit boards for certain PE constructional projects are now available from the PE PCB Service, see list. They are fully drilled and roller tinned. All prices include VAT and postage and packing. Add E 1 per board for overseas airmail. Remittances should be sent to: PE PCB Service, Practical Electronics Editorial Offices, Westover Hoüse, West Quay Road, Poole, Dorset BH15 1JG. Cheques should be crossed and made payable to IPC Magazines Ltd.

Please note that when ordering it is important to give project title, order code and the quantity. Please print name and address in Block Caps. Do not send any other correspondence with your order.

Readers are advised to check with prices appearing in the current issue before ordering.

NOTE: Please allow 28 days for delivery. We can only supply boards listed here or in the November 1984 issue.

PROJECT TITLE	Order Code	Cost
FEB '81 Slave Light Dimmer	102-01	f1.88
$\text { MAR ' } 81$ $27 / 28 \mathrm{MHz}$ Converter Microphone Mixer Period Power Tester	$\begin{aligned} & 103-01 \\ & 103-02 \\ & 103-03 \end{aligned}$	£ 1.79 £ 1.83 £2.25
APRIL '81 Speech Processor Mini Drill	$\begin{aligned} & 104-01 \\ & 104-02 \end{aligned}$	$\begin{aligned} & £ 1.55 \\ & £ 1.50 \end{aligned}$
Digisounder MAY'81 Thermometer	$\begin{aligned} & 105-01 \\ & 105-02 \\ & \hline \end{aligned}$	$\begin{array}{r} f 6.65 \\ \mathrm{r} 1.49 \\ \hline \end{array}$
JUNE '81 pH Meter	106-01	£2.06
Horologicum SEPT'81 " Analogue Frequency Meter Ignition System	$\begin{aligned} & 109-01 \\ & 109-02 \\ & 109-03 \\ & 109-04 \\ & 109-05 \\ & 109-06 \\ & \hline \end{aligned}$	£3.16 £ 3.11 £2.97 £2.87 £2.47 £2.28
APRIL • 82 Med. Resolution Equaliser (UK 101) Enlarger Timer	$\begin{aligned} & 204-01 \\ & 204-02 \end{aligned}$	$\begin{aligned} & £ 1.73 \\ & £ 4.02 \end{aligned}$
$\text { AUG } 82$ Automatic Photographer Home Alarm	$\begin{array}{r} 208-01 \\ 208-02 \\ \hline \end{array}$	$\begin{array}{r} \text { £ } 1.94 \\ £ 3.21 \end{array}$
Waveform Digitiser	209-01	£8 24
Radio Booster FEB . 83	302-02	£1.80
$\text { MAR ' } 83$ Into the Real World Accessory PSU $4 \frac{1}{2}$ Digit Frequency Meter	$\begin{aligned} & 303-01 \\ & 303-02 \\ & 303-03 \\ & \hline \end{aligned}$	£3.99 £ 1.35 $£ 3.69$
APRIL' 83 Phaser	304-01	¢3.41
JUNE '83 Program Conditioner	306-01	£2.30
SEPT ' 83 Guitar Active Tone Control Ground Communication System	$\begin{aligned} & 309-01 \\ & 309-02 \\ & 309-03 \end{aligned}$	£2.27 £2.13 £2.31
$\text { Expanding the Vic } 20$	312-01	£5.18

PROJECT TITLE	Order Code	Cost
$\text { MAR } 84$ Spectrum Autosave	403-01	f1.83
APRIL' 84 Microstepper	404-01	£10.74
MAY 84 Sustain Unit Audio Signal Generator	$\begin{aligned} & 405-02 \\ & 405-03 \\ & 405-04 \end{aligned}$	$\begin{aligned} & \mathrm{f} 2.82 \\ & \mathrm{f} 4.28 \\ & \mathrm{f} 2.51 \\ & \hline \end{aligned}$
JUNE '84 Cross Hatch Generator	406-01	£3.52
JULY '84 Simple Logic Generator EPROM Duplicator Alarm System Oscilloscope Calibrator	$\begin{aligned} & 407-01 \\ & 407-02 \\ & 407-03 \\ & 407-04 \end{aligned}$	$\begin{aligned} & £ 7.73 \\ & £ 3.74 \\ & £ 3.19 \\ & £ 4.23 \\ & \hline \end{aligned}$
AUG'84 Comm. 64 RS232C Interface Field Measurement Digital Dice Simple Logic Analyser Alarm System	$\begin{aligned} & 408-01 \\ & 408-02 \\ & 408-03 \\ & 408-04 \\ & 408-05 \\ & 408-06 \\ & 408-07 \\ & 408-08 \end{aligned}$	$\begin{aligned} & \mathrm{£} 3.02 \\ & £ 3.19 \\ & £ 2.76 \\ & £ 4.23 \\ & £ 2.93 \\ & £ 4.24 \\ & £ 3.14 \\ & £ 3.23 \end{aligned}$
SEPT ' 84 Parallel to Serial Converter Through the Mains Controller	$\begin{aligned} & 409-01 \\ & 409-02 \\ & 409-03 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{f} 2.92 \\ & \mathrm{f} 2.88 \\ & \mathrm{f} 2.71 \end{aligned}$
ОСТ ${ }^{\circ} 84$ Lógic Probe	410-01	£ 1.90
$\text { NOV } 84$ Computer DFM Adaptor	411-01	¢2.76
Ni-Cad Charger DEC 84	412-01	E2.40
JAN '85 Outrider Car Computer. (Set of 2 boards)	501-01/2	£9.10
FEB '85 Modular Audio Power System Pt-1: Power Amp Board Spectrum DAC/ADC Board	$\begin{aligned} & 502-01 \\ & 502-02 \end{aligned}$	$\begin{aligned} & \text { £ } 4.19 \\ & \text { £ } 3.69 \end{aligned}$

\star * NI-CAD BARGAINS * *
Re-chargeable Nickel-cadmium hatteries in stock. Ex-equipment bu:
very lifile used condition. DEAC Yoonok Buton Stacks 6 cells very litile used condition. DEAC Yo000K Button Stacks 6 cells
72 V . Size $2^{1 / 4} \times 2^{2}$ diam Canacity $\mid A H$. EJ inc. VAT (p 8 . $2501.0 E A C$ G6000KZ Button stacks 3 cells -3.6 V . Size $11 / 4 \times 1 / 4 \mathrm{~A}^{2}$ diam Capacity 6 AH. $£ 1.50 \mathrm{inc}$, ($p 8 \mathrm{ip}$ 20p).
Aiso available -
hatteries have been removed containing Transformer. Diode rectifiers, smoothing ach inc. VAT to 0 p p 75 p) batteries ES ($\mathrm{p} \& \mathrm{p} \mathrm{f}$)

1t t STEPRER MMTOR

Brand new stock of 'ASTROSWN' Type 20PM-A055 stepper motors. 28 V DC. 24 steps per rev. 1502 in terque (tu 100PPS Body length $21 / c^{\prime \prime}$, diameter $2^{\prime \prime}$, shath $1 / 4^{\prime \prime}$ diam. $\times 4 / 4^{\prime \prime}$ spirally threaded. Weight 1601 . Price each $\mathrm{E11.50}$ ($\mathrm{p} \& \mathrm{p} 50 \mathrm{p}$) Connec-
tions supplied. INC. VAT.

* * STEPPER MOTORS * *

In sfock - used, but excellent condition, 4 -phase sleppers. 50
steossrev motor with (remavablel steps/rev motor with (removabie) gearbox giving a $300: 1$ reduction
$6 V D C$ operated. Complete with a driver board requiring iust a sinqle $6 V$ rail and pulse input. Motor measures $1^{\prime \prime} \times 2^{\prime \prime}$ diameter. gearbox
$3 / 4^{\prime \prime} \times 2^{3} 4^{\prime \prime}$ 3/16". Sold comphatt with connections. CCT diagram of motor, CCT details of hali-stepping etc. All for just
VAT (psip 50p).

RALFE ELECTRONICS 10 CHAPEL STREET, LONOON, NW1 TEL: 01-7238753

HEWLETT.PACKARD 141A Slorage Oscilloscope
HEWLETT-PACKARD 1707A dual trace 75 MHz E 750 TEKTRONIX $454 A$ duäl trade 150 MHz sweep delay 5950 TEKTRONIX 453 dual trace 50 MHz sweep delay f509TELEQUIPMENT D75 dual trace 50 MHz sweep delay $£ 450$ TEKTRONIX 7704 frame and plug-in units. TEKTRONIX 7704 frame and plug-in uni
GOULD OS 1000 B dual-trace 20 MHz .

All these units are sol in full operational
condition and GOULD OS1000B dual-trace 20 MH All prices to spec. Afl prices are subject
to additional VAT \& carriage (Securicor $)+\mathbf{f}$
(Se

MARCONI TF1313A 0.1\% Universal Bridg
WAYNE KERR B221 Universal Bridge.
SULIVAN R4000 Inductance Bridge.
MARCONI TrsoA Electronic Mult-Meter.
MARCONI TFZ502 RF Power Meters. DC-1GHz. 10w isd Eas
 UNAOHM EO584 PAL Colour-bar and Pattem Generator 127.
ORTING 82512 PALNTSC Colour Pattern Generator KDRTING 88512 PALANSSC, Colour Pattern Generator E275.
ROHDE \& SCHWARZ SDR' AM Signal Generator $0.3-1 \mathrm{GHz}$. DATRON MODEL 1051 Digital Vottmete
OHDE \& SCHWARZ Resonance Frequency Mater $470 \mathrm{MHz}-2.5 \mathrm{GHz}$
GRUEE \& KJAER Heterodyne Voltmeter $0.5-240 \mathrm{MHz}$
AIRMEC Display Oscilloscope 279, 4-race, $14 \times 10^{\prime}$ CRT E195
RIKADENKI 3 -channel Chart Recorder. Model B. 341

t $125 W$ MAINS INVERTERS

t STEPPER MOTORIS $t+$
VDC Barry (a) 125 watts input to 230V AC. Output Brand new stock of ASTROSYN time-base oscillator, fully enclosed in Type 20PM-A055 stepper motors. time-base oscillator, fully enclosed in Dimensions approx. $4 \times 6 \times 10^{\circ}$. BRAND

VEW. fE5 + VAT (p\&p E2).

* MAINS SIABILISEPS *

Small quantity available of brand-new Gould ECVN250A constant voitage transtormers. 190-

* SWEEPERS

TELONIC 2003 System. 800.1500 MHz E325 TELONIC SM2000 with $5000-900 \mathrm{MHz}$ plug-in $£ 175$ KNIGHT KG-697 $3-220 \mathrm{MHz}$ E150

Type 20PM-A055 stepper motors.
28V DC. 24 steps per rev. 15 oz-in $28 V$ DC. 24 steps per rev. 15 oz -in torque @100ppS. Body length $2^{1 / 2^{\prime \prime}}$, diameter $2^{\prime \prime}$, shaft $1 / 4^{\prime \prime}$ diam \times $41 / 4^{\prime \prime}$ spirally threaded. Weight $160 z$. Price each $£ 11.50$ (p\&p 50p). Connections supplied. INC. VAT.

* TEKTRONIX * FILE MANAGER SYSTEM MODEL 4907 Option 31 (Third dise divel. 4051 Grapnic Sysiem compatible.
GPIB (IEEE 488-1975) compatible.

PiEASE NOTE. All the pre-Owned equipment shown has been carefuly fested in our workshop and
reconditioned where necessary. ti is soid in furst-class operational condrion and most tems carry a three months guarantee. For our mad order customers we have a monay-back scheme. Repairs and servicning to
equip ment at very reasoneble rates. PIEASE ADD 15% VAT TO ALL PRICES. EQUPMEN WANTED

- COMPUTER PERTPHERALS t
1.6MB 8" FLOPPY OISC DRIVES

New Stock
Atter our recent sell-out of the DRE7100 FODs, we are pleased to offer another bargain package as folliows: 8RAND NEW
American 'MFE Corp' model M-700 DOUBIE SIDED $8^{\prime \prime}$ Disc Amencan MFE Corp model M-To DOUBLE SIDED 8 Disc Drives. Massive storage capability up to 1.6 M 8 ytes. Full 18 M compatability. Extemal power requirements are $\pm .5 \mathrm{~V}$ at 1.2 A tic's). Current list is over $£ 315$.

* * NOW LOWEST FRTC EVER C160-NNCLUOING

MANUAL INC CARZACE \& INC VAT $* *$
$\star 19 \mathrm{M}$: Y HE WINCHESER
Now available again, UNITED PERIPHERALS 3100 Minidisc Drives 13×8 sealed plattens) capable of tion for just $£ 125$ inc VAT, carriage and copy it tion for just £ 125 inc VAT, carriage and copy of

- MULIGRAL LINEAR PSU's

Recent stock of brand new COUTANT ESM-Series Power Supplies at surplus prices. Model ESM 15.2 and $\pm 12 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ (a. 1.5 A each and an un-stabitised 24 V (out 2 A . 240 V AC input. Measures $5 \times 8 \times 11^{\prime \prime}$ Fully enclosed. In original cartons with handbooks $£ 45$ each + VAT ($p \& p$ f 2).

\star SWITCH-MOOE POWER SUPPLISS *

 Fully tested and guaranteed PSU's now at LOWEST EVER PRICES. Manufactured by FARNELL, GOULD/ADVANCE
 All prices now include VAT, packing and posting.

MASTMR 페ectronics-Microprocessors-Now! The PRACHCAL WOy!

- Electronics - Microprocessors - Computer Technology is the career and hobby of the future. We can train you at home in a simple, practical and interesting way.
- Recognise and handle all current electronic components and 'chips"
- Carry out full programme of experimental work on electronic \& computer circuits including modern. digital technology.
- Build an oscilloscope and master circuit diagrams.
- Testing and servicing radio - T.V. - hi-fi and all types of electrionic/ computcr/industrial equipment.

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.

This will assist advertisers in processing and despatching orders with the minimum of delay.

RECEIVERS AND COMPONENTS

BOURNEM OUTH/BOSCOMBE. Electronic components specialists for 33 years. FORRESTERS (NATIONAL RADIO SUPPLIES), Late Holdenhurst Road. Now at 36, Ashley Road, Boscombe. Tel. 302204. Closed Weds.

TURN YOUR SURPLUS capacitors, transistors, etc into cash. Contact COLES HARDING \& CO. 103 South Brink. Wisbech, Cambs. Tel. 0945584188 . Immediate settlement.

RESISTORS 1,000 MIXEO $1 / \mathrm{sw} .1 / 4 \mathrm{w} .1 / 2 \mathrm{~W} .2 \% .5 \%, 10 \%$, C. Film £3. 45 inc P\&P. D. J. HOOKER. Romney Marsh Electronics, Pennywood. Clark Road. Greatsione, Romney Marsh, Kent TN2 8 APB.

BELLS TELEVISION SERVICES for service sheets of Radio, TV, etc $£ 1.50$ plus SAE. Colour TV Service Manuals on request. SAE with enquiries to B.T.S., 190 Kings Road, Harrogate, N. Yorkshire. Tel. (0423) 55885.

SMALL ADS

The prepaid rate for classified advertisements is 36 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 12.00$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Banks Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Practical Electronics, Room 2612, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

NOTICETO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ardering from non-current issues of the magazine.

HOME SECURITY

FREE COMPREHENSIVE CATALOGUEI

- LOWEST DISCOUNT PRICES
- HIGHEST OUALITY EQUIPMENT
- FREE DIV DESIGN GUIDE - FULLY ILLUSTRATED - MKCROCHIP CIRCUITRY - QUICK DESPATCH SERVICE - FULL INSTRUCTIONS C-TEC SECURITY, Dept PE 60 Market St, Wigan WN1 1HX Telephone (0942) 42444

HOME SECURITY CONT.

ALARMS
Manufacturers of Prafessional Alarm Equipment, for DIY \& the TRADE. Send now for our New 16page Brochure, Full of Information \& the lowest prices.

CENTURION Dept PE 93 Wakefield Road, Huddersfield. HD5 9AB W. Yorks.

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS
Please insert the advertisement below in the next available issue of Practical Electronics for
insertions. I enclose Cheque/P.O. for $£$
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Electronics)

		\ddots		
	\cdots			

NAME

ADDRESS

PRACTICAL ELECTRONICS

Classified Advertisement Dept. Hoom 2612.
King's Reach Tower, Stamford Street,
London SE1 9LS. Telephone.01-2615846
Rate:
36p per word, minimum 12 words. Box Nó. GÓp extra

Company registered in England. Registered No. 53626. Registered Office: King's Reach Tower, Stämford Street, London SE1 9LS

EDUCATIONALTUITION

IMPROVE YOUR PROSPECTS
with skills that employers want - leam the easy way with modern home study courses from ldeal Schools.

MODERN ELECTRONICS
Train for success in the fastest ever growing industrial sector.
COMPUTER PROGRAMMING The demand for Programmers is increasing constantly - don't miss out! For free booklet write today to

COURSES

FULL-TIME TRANING courises

15 MONTHS
 B-TEC NATIONAL CERTIFICATE in TELEVISION 8 VIDEO SERVICING

15 MONTHS

B-TEC NATIONAL CERTIFICATE

 in COMPUTING TECHNOLOGY
9 MONTHS

B-TEC HIGHER CERT (HNC) in COMPUTING TECHNOLOGY 8 ROBOTICS

- PRINCIPLES OF ELECTRONICS

TELEVISION (MONO/COLOUR)
VIDEO CASSETTE RECORDERS \& CCTV

- COMPUTERS \& MICROPROCESSORS
- INDUSTRIAL ROBOTICS

Short courses (from 6 weeks) with previous electronics knowledge.
Courses commence
Jan '85, April '85, September '85.
Prospectus from:

LONDON ELECTRONICS COLLEGE

Dept: AA, 20 Penywern Road, London SW5 9SU. Tel: 01-3738721

SERVICES

INVENTORS

Think of something new?
Write it down! -
American industry offers potential royalties for your innovations and new products. We offer free confidential disclosure registration and initial consultation in London regarding your idea's potential value. Write without delay for your free information package.

American Inventors Corporation 82, Broad Street, Dept PT
Westfield, Massachusetts 01086 United States of America.
A fee based marketing company

BOOKS AND PUBLICATIONS

FULL SIZE, top quality service sheets $£ 2.50+1$.s.a.e. CTV/ Music Centres $£ 3.50+$ I.s.a.e. Repair data almost any named TV.Video $£ 10.50$ inc. circuits. L.s.a.e. brings any quote free magazine/price lists. TISPE, 76 Churches, Larkhall, Lanarkshire. 0698883334

FOR SALE

P.E. BACK NUMBERS May 76 to February 82. Offers: Tadley 3743.

PRACTICAL ELECTRONICS MAGAZINES. Believed to be complete set. From issue one. Offers. $01-6424029$

OSCILLOSCOPES: Tektronix 516 (duai) £140, RM17 £65, Dumomt 50 MHz duat $\mathrm{f} 14(1)-\mathrm{f} 260$. Try-uut welcome. Insured delivery $+\$ 7$. PDP $11 / 05$ system $£ 370$. Teletypes $£ 40$. SINCLARE $01-3161779$.

SPECIAL OFFERS. SE250C signal injector $£ 2.20 .15$ watt amplifier board $\mathbf{2 7 . 6 5}$. Antex C siron $£ 5.95$ P\&P 40p. Thousands of components in stock. Phone or write for price list. SPECTRUM RADIO \& ELECTRONICS LTD, 36 Slater Street, Liverpool LI 4BX. 051-709 4628.

MISCELLANEOUS

ADAPTORS - Power supplies for calculators, TV games, computers etc. Send for details. RTE ELECTRONICS. Britania Mill, Rossendale Lancs. BB4 8BA.

BURGLAR ALARM EQUIPMENT. Ring Bradford (0274) 308920 for our catalogue or call at our large showroom, opposite Odsal Stadium.

SUPERB INSTRUMENT CASES by Bazelli, manufactured from PVC. Faced steel. Vast range, competitive prices start at a low $£ 1.50$. Punching facilities at very competitive prices. BAZELLI, (Dept. 23), St. Wiffreds. Foundry Lane. Hatoon, Lancaster LA2 6 LT T

THE SCIENTIFIC WIRE COMPANY 811 Forest Road, London E17. Telephone 01-531 1568					
ENAMELLED COPPER WIRE					
SWG	1 lb	802	$40 z$		20
8 to 34	3.63	2.09	1.10		0.88
35 to 39	3.82	2.31	1.27		0.93
40 to 43	6.00	3.20	2.25		1.61
44 to 47	8.67	5.80	3.49		2.75
48	15.96	9.58	6.38		3.6
	SILVER P	ED C	ER W		
14 to 30	9.09	5.20	2.93		1.9
	TINA	CDPP	WIRE		
14 to 30	3.97	2.41	1.39		0.94
Fluxcore					
Soider	5.90	3.25	1.82		
Prices include P\&P VAT. Orders under £2 add 20p. SAE for list of copper and resistance wire. Dealer enquiries welcome.					

COMPUTER LEADS, made to order. Please send S.A.E. with requirements to: S \& A LEADS, 94 Ladies Grove, St Albans AL3 5UB

ELECTRONIC ORGAN KEYBOARDS and other pats being cleared out as special offer. ELVINS ELECTRONIC MUSICAL INSTRUMENTS. 4iad Datston Late. London E8. Tel. 01-986 8455.

CLEARING LABORATORY, scopes, generators, P.S.U.'s, bridges, analysers, meters, recorders etc. Tel. 0403-76236

HEATHKIT. U.K. spares and service centre CEDAR ELECTRONICS, Unit 12, Station Drive, Bredon, Tewkes bury, Glos. Tel. (0684) 73127.

CABNET FITTMGS

Fretcloths, Coverings, Handles, Castors,
Fligh't Case Locks \& Parts, Jacks; XL.Rs,
Bulgins, Reverb Trays, P \& N mic Stands, ASS Glassfibre Horns,

CELESTION POWER

Speakers.
SUPPLIES LTD. 30picheque/ P.O. for ill strated catalogue: Adam Hall (P ̌'Supplies), Unit G, Carlton Court, Grainger Road, Southend-on-Sea.

AC/DC COMPONENT PACKS

Pack No.	Qty	Description	Price
TF 11	12	RED 5 mm LED	£1.00
TF 12	30	500 mz ZENERS 5\%	£1.00
TF 15	50	1 amp Rect. Diodes in 4000 series	£1.00
TF 16	6	I amp Bridge Rect.	E1.00
TF 17	100	Transistor pads	£1.00
TF 18	20	A/S Fuses 20 mm	£1.00
TF 19	10	3A Rect. Diodes	£1.00
TF 110	2	ORP 12	£1.00
TF 111	5	BR 100 DIAC	f1.00
TF 112	10	BC1098	£1.00
TF 113	10	LC's all different	£1.00
TF 114	50	BFR 86	£1.00
TF 115	12	8 pin DIL sockets	£1.00
TF 116	20	10 mm Horiz. Pre set (10 values)	£1.00
TF 117	10	Slide Pots - 3 K all the same	£1.00
TF 118	10	Mixed Pots	£1.00
TF 119	10	Feed throughs	f1.00
TF 120	25	Electrolytic Caps	£1.00
TF 121	50	Polvester Caps	£1.00
TF 122	100	Mixed Resistors incl. Wire Wound	£1.00
TF 123	100	Mixed Transistor Hardware	£1.00
TF 124	25	5 mm LED clips and rings	£1.00
TF 125	10	8C 107	£1.00
TF 126	10	8C 108	£1.00
TF 127	6	Green 5 mm LED	£1.00
TF 128	6	Yellow 5mm LED	£1.00
TF 129	150 approx.	Mixed nuts/bolts/washers/ self tapper	£1.00
TF 130°	25	Mixed Electrolytics Axial	£ $¢ .00$
TF 131	25	Mixed Electrolytics Radial	£1.00
TF 132	50	Mixed Polyester Axial	£1.00
TF 133	50	Mixed Polyester Radial	£1.00
TF 134	15	BC 337	f1.00
TF 135	20	500MA AS 20 mm fuse	£1.00
TF 136	50	Mixed Ceramic Discs	f1.00
TF 137	50	Mixed Ceramic Plates	£1.00
TF 21	200	47 pf 160V Polystorte Cap	$\mathbf{6 2 . 0 0}$
TF 22	10	LM 3900 N	¢2.00
TF 23	10	Mixed DTL	62.00
TF 24	5	4700 mf 25 V Tag Elect $2^{\prime \prime} \times 1^{\prime \prime}$	22.00
TF 25	10	1000 ml 63 V Ax Elect	E2.00
TF 26	50	. 022 mf 400 V RAD POLY	$\underline{52.00}$
TF 27	10	$100 \mathrm{mf} \mathrm{250V} \mathrm{Ax}$	£2.00
TF 28	10	2.2 mf 160V Polyester RAD	¢2.00
TF 29	10	VDR's	f2.00
TF 210	10	Mixed TTL (74 series)	52.00
TF 211	4	2N 3055 H(RCA)	¢2.00
TF 213	200	IN. 4151 Diodes	E2.00
TF 214	200	IN 4148 Diodes	£2.00
TF 51	100	White/Red 5 mm LED	£5.00
TF 52	50	BC 108C	£5.00
TF 54	1/2K6	Reel 22 g ersin multicore	£5.00
TF 55	10	2 N 3055 H(RCA)	£5.00
TF 56	5	OCP71	£5.00
TF 57	3	$10,000 \mathrm{mf} 40 \mathrm{~V}$ Comp. grade elect	£5.00
TF 58	720	1/4W Carbon film $1 \mathrm{w}-10 \mathrm{Mw}$ ten values	£5.00
TF 59	25	$1,000 \mathrm{mf} 25 \mathrm{~V}$ Axial	£5.00
TF 510-	25	$1,000 \mathrm{mf} 25 \mathrm{~V}$ Radial	f5.00

ALI PRICES INCLUDE VAT - ALL GOODS.
BRAND NEW \& NORMALLY DESPATCHED BY RETURN POST
TERMS: Cash with order. POST \& PACKING Please add $75 p$ to total order.

> AC/DC ELECTRONICS COMPONENTS
> DEPT P.E., 45 CHURCH STREET ENFIELD, MIDDLESEX.

We are the main stockists for 'BEARPARTS', the new name in electrical. electronic and audio components.
Interested? Seńd S.A.E and receive your

'BEARPARTS'

BEARPARTS CONTENTS OF PACK: BC 612 Transisfor, Red LED, 1 N4004 Diode, TI 846 Diode, 560 pt 200 v Capocitor, $10 \mathrm{k}, 150 \mathrm{k}$ Resistors 2 k Mulfiturn Potentlometer, 48A Crimp Eyelet. Rubber Grommet, Instrument Wire, Sleeving.

COMPLETE SOLDERING KIT (For the ho
Engineer)

FOR LESS THAN $£ 10!!$

Comprises of:-

- Antex Minialure 15W 240v AC Soldering Iron
- Antex Iron Stand c/w Sponge
- Desolder Pump
- 2 mir Solder

Desolder Braid - 13A Plug

ONLY£9.85
Please add 80p P \& P
$+15 \%$ VAT

Call in and see our new counternow open. 9.00-5.00 Mon-Fri \& 9.00-12.00 Sat Too far to call? Don't worry, export/mail order is our speciality. Why not write and find out more.
 SYSTEMS EEECTRONIQUE
(U.K.) LTD.

26 Engineer Park, Sandycroft, Deeside, Clwyd CH5 2QD. Tel: (0244) 536700.

OVERSEAS ORDERS

Overseas readers are reminded that unless otherwise stated, postage and packing charges published in advertisements apply to the United Kingdom only.
Readers wishing to import goods from the United Kingdom are advised to first obtain from the advertiser(s) concerned an exact quotation of the cost of supplying their requirements carriage paid home.

P.E. HYPERCHASER

I CHANNEL PSEUDO INTELLIGENT LIGHT UNIT

\& 16 Programmes
Manual/Auto Programme Not just a light unit but a sophisticated \& comprehensive affects unit. A full kit of parts including P.C.B. Facia, Case. atc. Reprint of articie on request. $£ 84.95$

P.E. STAR DESK

$8+4$ CHANNEL LIGHT MIXING DESK * 8 Channel Twin Preset Mixer \star Strobe Outputs * 4. Independent Channels $* 4 / 8$ Channel Sequences * 8 Programmes * Manual Rash Buttons * 1 KW Output/Channal (can be boosted to $2 \mathrm{KW} / \mathrm{Ch}$) \star Timed Crossfade \quad Soft/Hard Sequence
A truly magnificent unit ideat for clubs, groups, drama, otc. A fult kit of parts
inc. PCB, Facia, Case, etc. Reprint of article on request.PRICE INCLUDING P\&P 209

\square

INDEX TO ADVERTISERS

| AC/DC Electronics | |
| :--- | :--- | :--- |
| 71 | ICS Intertext 63 |
| Adam Hall Supplies | Ideal Schools.......... 71 |

Adam Hall Supplies

Ltd
A.D.E.

Alcon Instruments American Inventors

71 ILP Electronics:
70
64 London Electronic
71 College.
Bensham Recordings 72 Mapplin Supplies..... 58,
Bi Pak
B.N.R.S.

54
69 Marco Trading.......... 46
Centurian Alarms 70 Phonosonics 63
Cirkit Holdings..... 5 Pan
Cirkit Holdings.
Clef Products
Computonics
C.R. Supply Co.

Cybernetic
Applications
Electrovalue.
G.C.H.Q.

Grandata
Greenweld
Henry's Electronics.
Hewlett Packard
Hi-Tech
Components

72 Powertran .. Cover II, 64
70 Ralfe Electronics ….... 69 69
66

Riscomp........................ 53

53

58 Scientific Wire Co. 71
20 Skybridge 20
53 Swanley.................... 63
58 Systems Electronique 72
20 Tandy
45 T.K. Electronics 6
26-27 Watford Electronics...2-3

[^4]

From a gentle purr to a mighty roar, the tightly controlled power of the beast is yours to command!

BiUFEs 11140104

A new range of superb quality loudspeakers.

* Virtually indestructible high temperature voice-coil reinforced with glass-fibre
* 100% heàt overload tolerance
* Advanced technology magnet system
* Rigid cast alloy chassis
* Linen or Plastiflex elastomer surrounds
* 5 -year guarantee (in addition to statutory rights)

Available in $5,8,10,12,15$ and 18 inch models with 8Ω and some 16Ω impedances and with input powers ranging from 50 W to $300 \mathrm{We.g}$.
5 in . 50 W 95dB 8Ω : XG39N/16 Ω : XG40T £17.95§
8in. 100 W 98dB 8 Ω : XG43W £29.95§
10in. 100W 100dB 8Ω : XG46A £29.95§
12in. 100W $101 \mathrm{~dB} 8 \Omega$: XG49D £29.95§
12in. Twin Cone 100W 100dB 8 Ω : XG50E / 16ת: XG51F £31.95§ Note - the outputpower doubles for each 3dB increase (ref $1 \mathrm{~W} @ 1 \mathrm{~m}$).

PREGSION COLD MULTIMETERS

A new range of very high quality multimeters offering truly amazing quality at the price.
Pocket Multimeter, 16 ranges, 2000Ω N DC/AC $£ 6.95 \S$ (YJ06G)
M-102BZ with Continuity buzzer, battery tester and 10 ADC range, 23 ranges, $20,000 \Omega \mathrm{NDC} £ 14.95 \S^{(Y \mathrm{Y} 07 \mathrm{H})}$
M-2020S with Transistor; Diode \& LED tester and 10A DC range, 27 ranges 20,000 \sim V DC £19.95§ (YJ08J)
M-5050E Electronic Multimeter with very high impedance, FET input, 53 ranges including peak-to-peak $A C$, centre-zero and 12A AC/DC ranges £34.95§ (YJ09K)
M-5010 Digital Multimeter with 31 ranges including 20Ω and $20 \mu \mathrm{~A}$ DC/AC FSD ranges, continuity buzzer, diode test, and gold-plated PCB for long-term reliability and consistent high accuracy ($0.25 \%+1$ digit DCV) $£ 42.50 \S$ (YJ10L)
N.B. All our prices include VAT and Carriage. A 500 handling charge must be added if your total order is less than $£ 5$ on mail order (except catalogue).

MAPLIN ELECTRONIC SUPPLIES LTO.

Mail Order: P.O. Box 3, Rayleigh, Essex SS6 8LR. Tel: Southend (0702) 552911 SHOPS

- BIRMINGHAM Lynton Square, Perry Barr, Tel: 021-356 7292.
- LONDON 159-161 King Street, Hammersmith, W6. Tel: 01-748 0926.
- MANCHESTER 8 Oxford Road, Tel: 061-236 0281
- SOUTHAMPTON 46-48 Bevois Valley Road, Tel: 070325831
- SOUTHEND 282-284 London Rd, Westclift-on-Sea, Essex. Tel: 0702-554000 Shops closed all day Monday.

Our huge range of top quality electronic components at very competitive prices are all detailed in our catalogue, and with well over 600 new lines in our 1985 edition and many design improvements, it's well worth getting a copy. Here are just a few examples from the catalogue.
(The items below are NOT kits).

* Most phono and jack plugs now with integral strain relief sleeve - gold-plated types also available from 14p (gold from 70p)
* Stereo Disco Mixer with cross-fade, talk-over, cue monitoring, aux input, slide controls. Only £58.95 (AF99H)

* 10-Channel Stereo Graphic Equalisers - 3 models - basic; with peak level meter; and with spectrum analyser - from £77.95

* Digital Delay Line permits Slap-back, Doubling, Flanging, Chorus and Echo. 11 controls. Only $£ 195.00$ (AF98G)
\star Video Enhancer improves picture quality when recording from one VTR to another, and with TV's with monitor input. Only 28.95 (XG59P)
* Detailed descriptions of the exciting new 74 HC range of IC's which combine the advantages of CMOS and TTTL. From 46p
\# Keyboards: sloping keys, two-tone grey, mounted in steel frame, very smart cases (extra) available. 61 keys, only $£ 33.95$ (YJ12N)

79 keys, only £37.95 (YJ13P)

* 1% Resistors now $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}, 0.4 \mathrm{~W}$, only 2 p each!
* Auto transformers $120 / 240 \mathrm{~V} 50 \mathrm{VA}, £ 10.75 \S$ (YJ56L). 100VA £14.95§
(YJ57M). 150VA £16.95§ (YJ58N). 250VA £21.95§ (YJ59P).
* Digital Clinical Thermometer Only $£ 13.95$ (FK51F)

Pick up a copy now at any branch of W.H. Smith or in one of our shops. The price is still just $£ 1.35$, or $£ 1.75$ by post from our Rayieigh address (quote CA02C).

protessional quality MilDl-controlled sampling unit

Once again, Powertran and E\&MM combine to bring you versatility and top quality from a product out of the realms of fantasy and within the reach of the active musician.

The MCS-1 will take any sound, store it and play it back from a keyboard (either MIDI or Iv/octave). Pifch bend or vibrato can be added and infinite sustain is possible thanks to a sophisticated, looping system.

All the usual delay line features (Vibrato, Phasing, Flanging, ADT, Echo) are available with delays of up to 32 secs. A special interface enables sampled sounds to be stored digitally on a floppy disc via a BBC
microcomputer.
The MCS-1 gives you many of the effects created by top professional units such as the Fairlight or Emulator. But the MCS-1 doesn'f come with a 5 -figure price tag. And, if you're prepared to invest your time, it's almost cheap!

Specification

Memory Size: Variable from 8 byles to 64 K byles. Storage time at 32 KHz sampling raie: 2 seconds. Storage time at 8 KHz sampling rate: 8 seconds. Longest replay time (for special effects): 32 seconds. Converters, ADC \& DAC: 8 bit companding. Dynamic range: 72 dB .
Audio Bandwidth: Variable from 12 KHz to 300 Hz . Internal 4 pole tracking fillers for anti-aliasing and recovery.
Programmable wide range sinewave sweep generator. MIDI control range: 5 octaves.
$+1 \mathrm{~N} /$ octave cöntrol range: 2 octaves with optional transpose of a further 5 octaves.

Diğital Dēlay Line

Introduced in 1982, Powertran's DDL has brought digital quality effects to thousands of musicions. Still available in kit form at only £ 179.00 + VAT.

Write or phone now to place an order

[^0]: © IPC Magazines Limited 1985. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fulty protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: S2

[^2]: For readers who don't want to damage the issue send a photostat or a copy of the coupon (filled in of course) with a cut-out valid "date corner'

[^3]: 19 MULBERRY WALK : LONDON SW3 6DZ • TEL: 01-352 1897 • TELEX: 918867

[^4]:

 affixed to or as part of any publication or advertising, literary or pictorial matter whatsoeverb

