EDEOTICS - MICROS - ELECTRONICS - INTERFACING

\& Flanger

asers \& Holograms

construction details

TAKIE COMPLLETE CONTROL OF YOUR MUSIC with the
 protessional quality MIDD-controlled sampling unii

Once again, Powertran and E\&MM combine to bring you versafility and top quality from a product out of the realms of fantasy and within the reach of the active musician.

The MCS-1 will take any sound, store it and play it back from a keyboard (either MIDI or Iv/octave). Pitch bend or vibrato can be added and infinite sustain is possible thanks to a sophisticated, looping system.

All the usual delay line features (Vibrato, Phasing, Flanging, ADT, Echo) are available with delays of up to 32 secs. A special interface enables sampled sounds to be stored digitally on a floppy disc via a BBC
microcomputer.
The MCS-1 gives you many of the effects created by top professional units such as the Fairlight or Emulator. But the MCS-1 doesn't come with a 5 -figure price tag. And, if you're prepared to invest your time, it's almost cheap!

Introduced in-1982, Powerran's DDL has brought digital qualliy effects to thousands of musicians. Still available in kit form at only $£ 179.00$ + VAT.

Specification

Memory Size: Variable from 8 bytes to 64 K bytes.
Storage time at 32 KHz sampling rate: 2 seconds. Storage time at 8 KHz sampling rate: 8 seconds. Longest replay time (for special effects): 32 seconds. Converters, ADC \& DAC: 8 bit companding. Dynamic range: 72 dB .
Audio Bandwidth: Variable from 12 KHz to 300 Hz . Internal 4 pole tracking filters for anti-aliasing and recovery.
Programmable wide range sinewave sweep generaior. MIDI control range: 5 octaves.
$+1 N /$ octave control range: 2 octaves with optional transpose of a further 5 octaves.

Digital Delay Line	
	Introduced in 1982, Powerran's DDL has brought digital quality effects to thousands of musicians. Sill available in kit form of only $£ 179.00+$ VAT.

Write or phone now to place an order.

 Powertran Cybernetics Limited,
VOLUME 21 No1

CONSTRUCTIONAL PROJECTS
MONO/STEREO CHORUS FLANGER by John M. H. Becker 10
Part One: Effects and circuit description
CAR COMPUTER-Part 2 by S. H. Cousins.BSc PhD and P. D. Wilson BEng 24
Construction, installation and setting-up
NEPTUNE AND MENTOR ROBOTS by Richard Becker and Tim Orr 34
Part Five: Component list and p.c.b. layouts for Mentor
RADAR SECURITY ALARM-Part 2 49
Build this project and be secure-Improved transmitter design
MICROCOMPUTER "WATCHDOG" TIMER by Tom Gaskell BA(Hons) CEng MIEE 61
Warning system for computers
CENERAL FEATURES
SEQUENTIAL LOGIC TECHNIQUES by M. Tooley BA and D. Whitfield MA MSc CEng MIEE 18
Part Four: Psuedo random numbers and shift registers
LASERS AND HOLOGRAMS by Richard Barron 30
An enLIGHTening feature on LASERs and Holograms
INGENUITY UNLIMITED 40
Readers' circuit ideas
CELLULAR RADIO by Barry Fox 44
Direct-dialling from your car or handphone
SEMICONDUCTOR CIRCUITS by Tom Gaskell BAlHons) CEng MIEE 59
Programmable Delay Timer (LS7210)SPACEWATCH by Dr. Patrick Moore OBE56
NEWS \& COMIMENT
EDITORIALNEWS \& MARKET
PLACE
BAZAAR

7 INDUSTRY NOTEBOOK SPECIAL OFFER
8 VERNON TRENT
16, 33 P.C.B. SERVICE

17

27

54
57
LEADING EDGE 64
INSTRUMENTAL 66
MICROBUS 67

THIS MONTHS COVER...

Internal "anatomy" of the Stereo/Mono Chorus \& Flanger project.

Our inset photograph shows a British Telecom technician checking for Laser radiation emission. This month's article, LASERS \& HOLOGRAMS explains how they are created and what they are used for.

OUR FEBRUARY ISSUE WILL BE ON SALE FRIDAY, JANUARY 4th, 1985 (see page 28)
© IPC Magazines Limited 1985. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

VAT
Export orders no VAT. U.K. outomerr plas as ond 15% VAT ro totul coit incl. plpp.
Wo

\qquad


```
TANTALUM BEAD CAPACITORS:
```


SIEMENS mulitlayer miniature

8СЗ088 8C327/8	16
ВС337/8	15
$8 \mathrm{BC41}$	34
8C461	34
	40
BC516/7	40
BC547/8	12
${ }^{8 C 549 C}$	15
BC556/7	15
BC558/9	18
8CY41/42	30
8с7\%	T8
BCV1/2	20
$8 \mathrm{BC7} 2$	28
8С778	30
8D131/2	85
${ }^{80} 133$	80
80135	
80136/7	40
80138/9	40
80140	40
80158	68
80245	85
	70
806954	150
${ }^{80696 A}$	150
8F115	${ }_{30}^{45}$
8F154/8	30
8F187	38
8 F 173	36
${ }_{8 F} 8178$	${ }^{35}$
8F179	40
BF194/5	12
BF198/9	18
8F200	30
${ }^{8 F 224}$	40
8F244A	28
8F244B	28
$8{ }^{8245}$	80
8F2568	${ }^{50}$
${ }_{8 F 259}$	40
8F394	40
8F45?	40
8F494/5	40
8F594/5	30
BFR39/40	25
ERR80/81	${ }_{25}{ }^{5}$

CLBAR SALI

All products new with money back guarantees

Professional Audio (Literature available on request)
100 Watt Compression Drivers $\mathbf{6 5 5 . 0 0}$ 100 Watt Tweeters $\mathbf{¢ 5 0 . 0 0}$ 12" 60 Watt Bass Units $\mathbf{\$ 2 6 . 0 0}$ HD 30 Watt Tweeters. 26.00 15" 100 Watt Bass Units . 7.00 (Many more items - send for list)

Components:
Green Clock Displays \qquad 61.50 Clock Driver Chips \qquad 1.50 Transformer for above 1.25 PC Board 60.20

Mounting Mardware for LED Modern professional system for mounting digital indicators. Includes sockets and attractive front bazel with polarized screen. From 2 to 8 digits.
Price for $0.3^{\prime \prime} \& 0.5$ " LEDS 63.50 plus 50 p per digit over 2 digits.
Price for 0.6 " and I" Reds $\mathbf{4 . 5 0}$ plus 60 p per digit over 2 digits.
Front Bazel only $1 / 2$ price. P\&P 50.

Opto Electronics	
Red LEDs	10
Green LEDs	60.25
Orange LEDs	60.25
7 Segment Displays	
LED 0.3"	
LED 0.6"	61.40
LED 1.0"	
477 Driver Decoder	60.80

Panel Meter
Centre zero 100uA 61.60
Level Meter 100uA 41.50
VU Meter I00uA 61.50

Capacitors

Ceramics 0.01 50 for $\mathbf{£ 1 . 0 0}$ Full range of Mica Types available

Switches Min. Toggle
I pole. 2 way $\mathbf{C 0 . 6 2}$

3 pole, 2 way ... $\mathbb{C 1} 10$
4 pole, 2 way .. CI. 30
2 pole. 3 way $\mathbf{C 0 . 9 7}$

Switches Slide Min
pole, 2 way .. $\mathbf{C 0 . 1 0}$
2 pole. 2 way

Unit 4, Airport Trading Estate, Biggin. Hill, Westerham, Kent TN16 3BW Tel: Biggin Hill 71011-15 Telex: 957353

GARDENING THIS WINIER?

8th December issue for winter tips, hints and plant care

ELECTRONIC SIREN KIT

Produces an extremely loud piercing swep frequency ione from a $9-15 \mathrm{~V}$ supply. Enable Includes Sin. Horn Speaker.

Mini Siran
As above, but with a small speaker finstead of horn speaker) for internal use
f4.30
SECURITY PRODUCTS

Protect vour home
and property and
save by building save by building
your own bûrglar your own bú

Stair Mat 23×7 in (950 120)

 Floor Mat 29×16 in (950 125) Tomper-proof connecting block (950 110)Door/Window Contacts. Flush mounting, 4 wire, Magnet/switc
Per Pair. 1950 140) Per Pair. 1950140
Window
Window Tape $0.5^{\prime \prime}$ wide 50 m
1950145
Window Tape Terminations
Key-operated Switch, 1.5A/250V
SPST Heavy chrome metal.
(350 128)
(350 128)
Passive Infra-Red Detector
Detects intruder's body heat. Range 10 metres. 12 V DC, n/o \& n/c contact Alarm Control Unit. 4 input circuits, instant and 2 delayed. Adjustable entry exit and alarm times. Built and tested. Full instructions supplied. Size: $180 \times 130 \times$ 30 mm . Supply: (950 160) Ultrasonic Burglar Alarm $\quad \mathbf{\$ 2 6 . 0 0}$ mains or battery powered unit complete with horn and AC adaptor.
DW Hom Sperter $5.545 .00+\mathrm{p} £ \mathrm{p} £ 2.20$ $8 W$ Horn Speaker. 5.5 ins. 8 ohm. Idea for sirens, etc. 2.5 m lead and 3.5 mm jack
plug (403148) plug. 1403148)

IR GARAGE DOOR CONTROLLER KIT

For controlling motorised garage doors and switching
garage and dive lights on/oft up to a range of 40 ft .
Lots of apph
cations like
controlling lights
and TV
etc, in the home. Ideal for aged of dis abled persons, this coded kit comprises of a mains-powered infra-red receiver with a normally open relay output plus iwo
latched transistor outputs, batery powered transmitter and opto-isolated solid state mains switch.
XK 103
£25.00

PANTEC KITS

PN2 FMMicro Transmitter PN3 Stabilised Power Supply PN5 2×1 Ww Stereo Amplifier PN6 $2 \times 40 \mathrm{w}$ Siereo Amplifier PN7 Pushbutton Stereo Pream PN8 Tone \& Volume Contral PN 1.1 3w FM Transmitte Transmitter
PN14 Receiverto

TOP QUALITY
TOP SERVICE BOTTOM PRICES!
For FREE CATALOGUE send $9^{\prime \prime} \times 6^{\prime \prime}$ SAE - contains full list of stoc range all at very competitive prices. Cash with order (except account customers). Access or Barclaycard telephone orders welcome. Add $65 p p \& p+15 \%$ VAT to all UK orders. Overseas customers add $£ 2.50$ $p \& p$ Europe, £6.OO elsewhere. Giro No. 529314002. Goods by return subject to availability. Shop open 9am-5pm (Mon-Fri). 10am-4pm Sat). ALL PRICESEXCLUDE VAT

CHRISTMAS PRESENTS GALORE

STOCKING FILLERS

All full spec. branded devices.
PACK (1) 650 Resistors 47 ohm to $10 \mathrm{Mohm}-10$ per value £ 4.00 PACK (2) $40 \times 16 \mathrm{~V}$ Electrolytic Capacitors $10 \mu \mathrm{~F}$ to $1000 \mu \mathrm{~F} £ 3.25$ PACK (3) 60 Polyester Capacitors 0.01 to $1 \mu \mathrm{~F} / 250 \mathrm{~V}-5$ per value $£ 5.55$ PACK (4) 45 Sub-miniature Presets 100 ohm to 1 Mohm - 5 per value $£ 2.90$ PACK (5) 30 Low Profile IC Sockets 8. 14, and 16 pin - 10 of each $£ 2.40$ PACK (6) 25 Red LEDs (5 mm dia.) $£ 1.50$

INFRA-RED REMOTE CONTROL KITS

These kits are designed to enable infrared remote control to be incorporated into virtually any application from switching
car locks or alarms to consrolling Hi-Fi or TV. The application will determine the interface circuitry between the receiver and the controlled device. General in. structions and applications are supphed. The kits are coded and provide a high dearee of security and noise immunity. MK 18 Transmitter Kit - for use with MK $11 / \mathrm{MK} 12$ receivers. Requires PP3 battery. Size: $8 \times 2 \times 13 \mathrm{cms}$. Range approx.
Keyboards for MK 18
MK9 4-way for use with MK $12 \quad$ £ 1.90 MK 10 16-way for use with MK $12 \quad £ 5.40$ MK 11 Receiver Kit with MK 11 £4.35 Provides 10 larched plus 3 analogue out. puts ideal for controlling audio amplifiers TV or lighting where control of light brightness is required. $£ 13.50$ MK 14 AC Power Controller Kit - for MK 14 AC Power Controiler Kit $\overline{M K} 1$
(phase) controlling AC loads from 1 analogue outputs, eg lamp dimming.

MK 19 Stereo Amplifier Controller Kit for remote control of bass, treble and 10 decoter remote channel or input selection May be connected between the pre-amp and May be connected between the pre-amp and
oower amp of almost any audio system.

MK12 Receiver Kit - mains powered with 16 latched or momentary outputs. Latched version is for applications requiring one output on at a time, eg TV channel selection. Momentary type gives an output onty during transmission. Lines may be latched as required.
Size: $9 \times 4 \times 2 \mathrm{cms}$.
$£ 13.50$
MK 15 Dual Latched Solid State Relay for switching mains loads such as lamps. rVs, etc, from the outputs of the MK 12 independently using 8 MK 15 s . Triacs inot suppliedl switch at mains zero to reduce interference. $£ 4.50$

ELECTRONICS

11-13 Boston Road
London W7 3SJ ORDERS
01-5678910
ENQUIRIES
01-579 9794

Designed to con- irol 4 outputs irol 4 outpu independently

 switching on and off at preset times cycle. LED dis-play of time and day, easily programmed via 20 -way keyboard. Ideal for centrai heating control lincluding different switching limes for weekends). Battery back-up circuit. Includes box.
18 time settings
CT6000K
$£ 39.00$
XK114. Relay Kit foc CT 6000 includes PCB, connectors and relays. $3 \mathrm{~A} / 240 \mathrm{~V}$ c/o contacts £3.90 701115 Additional Relays £1.65

ELECTRONIC LOCK KIT

With hundreds of uses indoors, garages, car anti-theft devices, electronic equipment, etc. Only the correct easily quires a 5 -15V DC supply. Output 750 mA . Fits into standard electrical wall box.
Complete kit (except front panel XK 101
f11.50
Electric Lock Mechanism for use with existing door locks and the above kit. (Requires relay.) 12 V AC/OC coit
7011501

HOME LIGHTING KITS

These kits are
designed to
eplace a stan-
io control up to
300 w of lighting

TDR300K Remote Controlled Light Dimmer

MK 6
Transmitter for
f4.50
TD 300 K Touch Dimmer £7.75
TS300K Touch Switch £7.75
TDE/K 2 way extension
for above kits $\quad £ 2.5$
D300K Rotary controlled
Light Dimmer
£3.95

DISCO LIGHTING KITS

DL 1000K - This value for-money 4-way chaser features bi-directional sequence and dimming. 1 kW per channel. E1000K 15.95 version of the above. Zero switching to
$\mathbf{8 8 . 9 5}$ reduce interference.
Optional opto input allowing audio 'beat / $/ 9$ Optional opto input allowing audio beat
light response (DLA/1) ighe response
DL $3000 \mathrm{~K}-3$-channel sound to light kit features zero voltage switching, automatic level control and built-in micro-
phone. 1 kW per channel.
$£ 12.95$

OTHER KITS
 EALINGS NOATM
CIRCULAR AD

01-579 2842 TECHNICAL AFTER 3pm

P官

VOLUME 21 No1 JANUARY 1985

BEWARE

IT is sad to reflect that with all the technology available to us we are still unable to control the general level of theft. With sophisticated detection and alarm systems protecting so many areas one would assume the likelihood of theft would be reduced. However, we simply seem to be breeding an ever-more sophisticated criminal.

Of course, electronics is often the reason for the theft. With tasty loot like video recorders, colour TVs and home computers in most homes, the ease with which thousands of pounds worth of equipment can be removed is frightening. With this in mind we are constantly publishing new alarm systems and looking at ways in which the householder can help himself. We bring you the means to do it in this issue with the radar alarm system.

This article was started in our October issue but we had to delay publication of the second part due to problems with the transmitter design. These problems have been overcome with a new, more simple and compact transmitter and we show all the constructional details of this sophisticated unit in this issue. For any readers who missed part one (see what you miss by not buying every issuel) we can supply a photostat for 75 p.

The system can work through walls and floors/ceilings so you can detect that intruder without any telltale wires and switches; because of this it is also much more difflcult to avold. Such a systimm is of course
easier to install than a "wires and switches" type of unit.

COMPUTER CHRISTMAS

At the time of writing all the signs are pointing to another boom in sales of microcomputers this Christmas. Once you have the new machine and are becoming tired of continual games, what do you do with it? While a magazine like Software Index can inform you of software avallability (It now lists over 5000 programs 1), we on PE and our sister publication Everyday Electronics and Computer Projects can give some extra abilities to the micro with our add-on, projects.

Robots are a specialised area of add-ons but we also carry many other ideas. Next month PE will publish a Spectrum DAC/ADC board and the following month a low cost speech synthesiser for the BBC. In March we will also start a monthly page on the BBC micro, looking at hardware, interfacing and giving general information on the machine. The page will be written by our regular contributor David Whitfield, a self confessed BBC fanatic and professional software man to boot.

GREETINGS

The staff of PE extend seasonal greetings to all our readers.

BACK NUMBERS and BINDERS...

Snçane matriymexi MEAD CIARMSR

Editor Mike Kenward
Secretary Pauline Mltchell
Editoriai Tel: Poole (0202) 671191
Advertisement Manager
David Tilleard 01-261 6676

Secretary

Christine Pocknell 01-261 6676
Classlfied Supervisor
Barbara Blake 01-261 5897

Ad. Make-up/Copy

Brian Lamb 01-261 6601

Queries and letters concerning
advertisements to:
Practical Electronics Advertisements,
King's Reach Tower,
Stamford Street, London SE1 9LS
Telex: 915748 MAGDIV-G

Letters and Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in PE. All letters requiring a reply should be accompanied by a stamped addressed envelope, or addressed envelope and international reply coupons, and each letter should relate to one published project only.

Components are usually available from advertisers; where we anticipate difficultles a source will be suggested.

Old Projects

We advise readers to check that all parts are still available before commencing any project in a back-dated issue, as we cannot guarantee the indefinite avallability of components used.

Technical and editorial queries and letters to: Practlcal Electronics Editorial,
Westover House,
West Quay Road, Poole,
Dorset BH15 1JG

SUBSCRIPTIONS

Copies of Practical Electronics are available by post, inland for $£ 13$, overseas for $£ 14$ per 12 issues, from: Practical Electronics, Subsceription Department, IPC Magazines Ltd., Room 2816, King's Reach Tower, Stamford Street, London SE1 9LS. Cheques, postal orders and international money orders should be made payable to IPC Magazines Limited. Payment for subscriptions can also be made using arcredit card.

Phone:
 Editorial Poole (0202) 671191

We regret that lengthy technical enquiries cannot be answered over the telephone.

WINWERSTO TOWITIESO LAUNCH

Industry sponsored schools' competitions are an interesting, if not new marketing method. Some of you may remember the annual 'Cocoa Project' from Cadbury/Bournville, when the prizewinners won a decorative tin-box filled with a chocolate assortment. Some of the prizes these days are certainly less edible but are nevertheless a great deal more exciting. A trip to see the Space Shuttle launch, including a trip to see Walt Disney's EPCOT centre is presently on offer from the Bradford based displaymonitor manufacturers, Microvitec PLC.

Children in around ten and a half thousand secondary schools throughout the UK are presently busying themselves with the problems posed in the preliminary rounds of the CUB British Schools Computer Challenge. These initial rounds require the entrant to provide hard-copy proof when a set of programming problems has been solved. Each of the rounds is being dealt with on a mail-out basis. The quarter finals will deal with more complex programming and robot interfacing problems, negotiations are at present being held for the televising of the final stages of the competition in April or May. The competition involves teams of three contestants with a maximum upper age limit of 16 , so as to encourage young people in as many schools as possible to take part. The rounds have been organised with the natural cycle of the academic year in mind, so that it can be run during term time with the major prize being taken in August. It has been structured so as to accommodate a challenge between British and American schools, possibly in 1986.

Microvitec is a new company, only four years old. During that time, according to
their Managing Director Tony Martinez, they have managed to supply over 92 per cent of all UK schools with their CUB colour monitors.

The Shuttle launch trip will be awarded to the winning team of three and their competition support teacher.

FREE COMPONENTS PACK

A new components supplier is operating a service from Deeside, North Wales. Systems Electronique have a new slant on giving their customers information about the components they supply. A4 size price cards are supplied
free of charge along with cards containing kits' information and special offers, they are automatically updated by post.

Six basic component-cards are used which cover the general ranges required by hobbyists, schools and colleges etc; they are Connectors, Passive components, Opto-electronics, Hardware and Semiconductors (2). A return-of-post service is promised and a telephoneorder service via Barclaycard and Access will soon be introduced. The company $H Q$ also operate a counter service, and will be retaining their 10 per cent off kits and components offer until the end of January.

A free sample pack of components is available along with a set of cards and easy to use order forms from, Systems Electronique (UK) Ltd., Unit 26, Engineer Park, Sandycroft, Deeside, Clwyd. (0244 536700).

Down Under
A shroud of mystery surrounds an artifical intelligence system, developed in secret by a Western Australian company. The system 'HiQ' is being marketed by the Government of Western Australia as an entirely new approach to artificial intelligence. Few details have yet been released, what follows therefore is a brief summary of information so far received by this office.

Three years ago, a team of researchers from Formulab Technology (Australia) Pty Ltd. stubbed its toe on a particular 'effect' which was studied for four months before it was fully understood. It is this as yet unqualified effect that forms the basis of the new technology, or autonomic intelligence.

Further work was carried out in wellguarded research premises in close liaison with the Government until, over a year ago, a graphics recorder using the system "astonished" visitors to an international electronics exhibition in Sydney. The veil was partially lifted recently when Mr. Bryce, Deputy Premier and Minister for Technology, announced that one of the keys to the security of the system was an LSI custom chip commissioned by a US manufacturer. The recorder has many skills. The most basic is the clever and simple production of graphics for promotional and teaching purposes. Another capability is the recording of complete books in its silicon circuits.

Formulab say, "Our secret is that we are able to produce the system and its ancillary devices in an extremely compact form and at only a fraction of the cost-perhaps only five per cent-of equipment with similar functions. We further believe that, as a generic technology, it has more potential than anything else known to us in the world. Its potential is enormous." Moreover, the recorder is "a computer-like structure incorporating non-volatile solid state cartridges-and advanced enough to be analogous to the human brain. It makes possible the high-speed storage of more data than ever before in an extremely compact area; one solid stảte memory brick alone has the capacity of eight standard ${ }^{\prime}$ micros and the recorder's memory can be easily trebled."

The versatile recorder can also be used for the electro-mechanical control of machine tools. At the touch of a switch it becomes a. security system. The intelligence system is also the heart of a non-volatile portable memory pack that makes possible low voltage recording of data in almost any area.

The language used is called Confluent, because it has many streams whose values merge to expand the language. It is believed to be the first exponential language. A Formulab spokesman said: "We hope to bring the recorder to the UK in the near future."

NHWPFCGRUWIN

The new $Z \times$ Spectrum + has been in the shops now since last October. It is the latest offering from Sinclair, expecting to grab yet another slice of the micro market's Christmas pie.

This new machine is essentially the standard Spectrum with seventeen function keys and a space bar added. It is housed in a similar case to the $Q L$ and costs E179.95, the price includes six applications programs, Scrabble, Make a Chip, Chequered Flag, Chess, VU-3D-a design and graphics program and Tasword 2-a 'Spectrum range' word processing program. Also supplied is an 80 page user guide complemented by an introductory cassette.

The machine's most obvious advantage is the more professional typewriter action keyboad. It is fully compatible with all existing Spectrum software and peripherals. Features such as, eight colours, high resolution graphics, and sound over ten octaves, have been retained.

The Spectum + was actually available in the shops on the day it was announced, which went some way to retrieving the good-will lost by Sinclair during the $O L$ saga. They believe that their main competitor in this venture will be the Commodore 64, followed by the Amstrad CPC 464 and the MSX machines from Japan.

State of the Art PSU's

West Hyde Developments Ltd., has come of age and as part of its twenty first birthday celebrations has launched a new range of switched mode power supplies-designed by Powertron.

Traditionally West Hyde has been known as suppliers of cases and onclosures for electronic and electrical equipment, and has always worked in close liason with the hobbyist market.

The power supplies represent a big step forward in power supply technology in that they have eliminated the need for bulky 50 Hz transformers and huge capacitors. The state of the art high frequency switching techniques and high output power to volume ratios have also contributed to reducing weight and heat generation. There are eight models in the range giving a choice of either 5, 12, 15 or 24 volts at 60 or 100 watts. Further details from, West Hyde Developments Ltd., 9-10

POINTS ARISING...

INGENUITY UNLIMITED

October '84

We have received a letter concerning the 'Automatic Bilge Pump' control circuit, which points out some potential hazards in deploying this kind of circuitry.

Designers of bilge sensor probes have to compromise between high sensitivity to

Park Street Ind. Est., Aylesbury, Bucks. HP20 1 ET (0296 20441).
*The general principles of switched mode power supplies will be the subject of a feature article in PE later this year.
'work through probes fouled by oll and dirt, and low sensitivity to avoid false triggering caused by condensation. Electrolytic corrosion by salt water is yet another problem.

Most important of all is that the relay contacts which energise the pump be sealed from the potentially explosive engine fumes. The pump is a highly inductive load and therefore, apart from the current surge across the contacts on closure, there is also a spark generated by back e.m.f. each time the contacts open. In the confined atmosphere of an engine compartment any spark can cause a disaster.

Fountdonun

Please check dates before setting out, as we cannot guarantee the accuracy of the information presented below. Note: some exhibitions may be trade only. If you are organising any electrical/electronics, radio or scientific event, big or small, we shall be glad to include it here. Address details to Mike Abbott.
Amusement Trades International Dec. 18-Jan. 14. Olympia. E5
Your Computer Xmas Fair Dec. 30-Jan. 2. Olympia. K2
International Light Show Jan. 14-28. Olympia. E6
British Toy \& Hobby Fair Jan. 18-Feb. 2. Olympia. D6
Windmills (IEEIE meeting) Jan 24. Seeboard H.Q. Hove, Sussex B3
Component Fair March 10. Carleton Community Cntr., Pontefract (on A1 to Darrington). F2
Circuit Technology March 26-28. E
IFSSEC (fire/security) April 4-22. Earls Court, London. S
Cast (Cable \& Satellite) April 16-18. NEC, Birmingham F5
Photoworld April 23-May 6. Earls Court. I
Fibre Optics \& Lasers April 30-May 2. Olympia. E
Custom Electronics \& Design Technlques April 30-May 2. E

All Electronics Show/ECIF April 30-May 2. Olympia 2. E
Field Service \& Repairs April 30-May 2. Olympia 2. E
Automan (manufacturing) May. NEC. T1
IBM Computer User May 14-16. NEC, Birmingham. O
Business Telecom May 21-23. Barbican, London. O
Networks June 25-27. Wembley Conf. Cntr. O
Cable July 9-11. Metropole, Brighton O
Personal Computer World Show Sept. 18-22. Olympia 2. M
D6 01-7017127
B3 IEEIE 01-836 3357 (non-members welcome. Tickets not required)
E Evan Steadman $\int 079926699$
E5 01-2284107
E6 ك 05884658
F2 Pontefract Am. Rad. Soc. N. Whittingham $\int 0977792784$
F5 (01-4874397
I ITF © 021-705 6707
K2 Reed Exhibitions, Surrey Ho., 1 Throwley Way, Sutton, Surrey
M Montbuild / 01-486 1951
0 Online 6 01-8684466
S O1-3875050
T1 Cahners 048338085

THE majority of circuits published for musical effects units are usually only designed for mono use, and as such are ideal for the performing musician. However, there are many instances where the effects can be beneficially used with stereo prerecorded sources such as cassettes or record players. Home studio recordings can also benefit from special effects enhancement of a composite stereo mix, when facilities do not run to separate multitrack processing.

ACOUSTIC ENHANCEMENT

Solo tracks sometimes lack depth to their acoustic quality, and can sound flat and dull, particularly when close microphone recording techniques have been used. Frequently the microphone has to be kept close to the performer in order to provide sufficient signal strength, and to minimise the intrusion of background sounds. With most recording requirements it is vital to allocate separate microphones to individual performers, or groups of performers, so that with multitrack recording each track can subsequently be treated to its own mix down characteristics. Restoration of acoustic depth can then be given by several methods including echo and reverb units, of which a stereo version was published in PE September 1984. Greater depth can also be simulated by introducing a chorus effect.

CHORUS

Basically chorus is the sound produced by two or more performers singing or playing identical music. Naturally none of the performers, however professional, will be precisely in identical pitch, amplitude or synchronisation with the others, and consequently the sound will be characteristically fuller. It is not always possible or desirable to use several performers to produce a full sound, and other techniques are sometimes preferable. One method is to use several identical recordings played back simultaneously, though with a short time displacement between them. This though is not practical for live performances and anyway the sound is subject to the same amount of time and amplitude displacement on each track, and without pitch modification. For a better simulated chorus effect the relationships between the various time and pitch displacements should be perpetually varying. It is feasible, though not very convenient, to constantly vary the playing speeds of the same recorders to give this changing synchronisation, but modern electronics allow a simpler method to be employed, and one that can be used with both live and recorded sources.

ELECTRONIC DELAY

Several chips have become available which can be fed with a signal, and then emit it at the other end after a suitable delay. By varying the amount of delay on a regular or irregular basis, the relationship of the delayed signal to the original can be kept constantly shifting and by mixing the two together the chorus effect can be simulated. The use of such a unit will not replace the need for multi-musician
groups, but an enhanced and fuller sound can be created by this simple technique.

Very usable chorus effects can be produced by using only one modulated delay circuit, though if several are used with differently varying delays a closer approximation to the true natural chorus effect can be obtained. Unfortunately in simple electronic chorus units it is not straightforward to satisfactorily provide differently varying delay rates to several delay chips. Certainly each can be driven by a separate delay controlling signal, but there is the danger of reaction between the control signals as these are produced by high frequency oscillators having their clock frequency varied by a modulating voltage. Although the clock signals are normally outside the audio range, if two or more interact then an additional composite signal can be produced that contains low frequency sub-harmonics. As the high frequency signals vary in relation to each other, the subharmonics can intrude into the audio spectrum, and cannot be filtered out without also losing essential information from the required audio signal. There are techniques for eliminating the harmonic interaction, but these add to the complexity and the cost. None the less, excellent results can be achieved just by using one or more delays in series all controlled by the same modulated clock frequency. If each delay is fed separately to a mixer stage and combined with the original unprocessed signal, multitracked chorusing results.

DELAY OSCILLOGRAMS

Using a pulse as the signal source, the varying delay relationships of a double tracked chorus unit can be easily seen on an oscilloscope. In the oscillograms shown in Fig. 1a to 1 c the first peak is that of the original pulse and the other two are the signals emerging from two cascaded delay chips. The amplitude of the peaks is shown to be different, but it can be readily varied. The clocking frequency is being modulated so that the time delay is constantly increasing and decreasing. The photographs show the progression of the delay from its shortest to its longest. It will be seen that not only are the delayed peaks changing their time delay in relatlon to the original, but that they are also changing with regard to each other. In addition to the delay changes, pitch

Fig. 1. Progression of pulse echo as delay is lengthened by the modulation control. Peak 1 is the original click, peak 2 is the first echo and peak 3 is the second echo
changes also occur. Consider a note of 440 Hz , concert ' A '. Normally the time of each cycle remains constant at $1 / 440$ 'of a second. If the time between the cycles is varied by introducing a changing delay then by definition the note is no longer the same. In effect the doppler shift principle often associated with approaching or receding fire engine sirens is being introduced. As the distance between the cycles shortens so the pitch increases, and vice versa. Thus in a modulated chorus unit not only is the synchronisation between the original and processed sounds changing, but also the frequency relationship, just as occurs with natural chorus. It will also be apparent that if pitch is being constantly varied, then vibrato is also occurring.

MODULATION

There is an optimum modulation rate that produces the most interesting and satisfying results and is associated with the consequent vibrato depth and rate. If too slow a modulation rate is given, the effect tends to sound similar to a 'wowing' record deck due to the pitch change. Too fast a modulation rate either will produce delay changes too fast to be noticed, or at its worst, will have a frequency that is within the audio spectrum, and will be heard as a low hum. Certainly this could be filtered out, but again only at the expense of the frequency response of the original. The
generally accepted ideal modulation rate is about 6.5 Hz and analysis of most vibrato and tremolo rates shows a rate within this region. However, slightly faster rates can also produce interesting results. The maximum depth of modulation and thus the maximum degree of pitch change can also be quantified from analysis of the recordings of professional musicians. The results show a strong tendency towards the maximum pitch change of about a quarter to half a tone of the original frequency. With a delay chip the degree of pitch change will only be the same for identical frequencies. Other frequencies present at the same time will be subject to greater or lesser degrees of pitch change. Thus for a composite signal passing through a chorus unit, true vibrato can only be approximated.

FLANGING

Flanging is an effect somewhat related to reverberation and phasing, and can be readily produced with only slight modification to a chorus unit circuit. It has similar feedback qualities to reverb, though with greater resonance, and at the same time consists of a modulated phase change relationship both to itself and to the original signal. It produces a strong tunnel-like effect with an accentuated upper frequency pitch change and under some conditions of speech or singing, this can sound like an eerie additional

Fig. 2a. Square-wave input

Fig. 2b. Square-wave input with a different delay setting

Fig. 2c. Sine-wave input

Fig. 2d to $\mathbf{2 f}$. Flanging resonance as modulating sweep progresses.

Fig. 2. The bottom trace is the original and the top trace is the mixed output
background voice accompanying the performer. The effect is produced by passing the signal through the delay stage, the delay rate of which is constantly changing, though at a slower rate than for chorusing. After passing through the delay stage, the signal is fed back upon itself to the start of the delay loop. The amount of feedback is critical. If too much is given, the signal level will increase each time round the loop, resalting in perpetual howl. Whilst howl can be used if well controlled in some effects units, in this instance it is definitely undesirable. If too little feedback is given, the flanging effect does not develop. The correct amount lies within a narrow band, so that the maximum enhancement results without howl. At the correct settings and with the optimum delay times and modulation rate changes, the phase and pitch changes of the feedback loop result in repeated emphasis and de-emphasis of particular frequencies and their harmonics. The oscillograms of Fig. 2a to $2 f$ show some of the effects visible on an oscilloscope.
The filtering occurs of course because the time delay produces a full 180° phase shift at particular frequencies, and when the shifted signal is mixed with the unshifted one, they cancel each other out. The counterpart of the cancellation is when both are in phase, and so enhance each other. (Oscillograms Fig. 3a to 3c.) The enhancement occurs at the peaks of the waveforms, in other words at their edges. By definition a flange is a raised edge, so presumably this is where the name of the effect comes from. The most noticeable flange effect is created with higher frequencies having a high harmonic content, with short delay times modulated at a slow rate. Although the effect is still produced with purer or lower frequency tones, it is less noticeable to the ear. Paradoxically a very pronounced different effect is produced by fast modulation with deep sweeping delay changes. Music then loses its tonal qualities and takes on a very deep whooshing effect, but although it is unmusical, it none the less can be used for dramatic sound changes.

CIRCUIT DESCRIPTION

The dual chorus and flanging unit to be described here has been designed to produce strong chorus and flanging effects with both mono and stereo signals. For normal stereo use each channel retains its independence with the effects being produced by separate processing circuits. With mono signals there is a choice of single or double chorusing, and single or double flanging. Stereo signals can also be combined for treating as a mixed mono signal and given the same doubly enhanced processing, though with the loss of channel separation for the processed part of the signal. A block diagram is given in Fig. 4. In essence the unit consists of two identical signal routes each providing a delay, controlled
feedback, and controlled mixing producing separate composite processed signals suitable for presenting to a normal amplifier system. However, the two delay and feedback paths can be cascaded to produce enhanced chorus and flanging with identical composites appearing at both outputs.

BASIC SIGNAL ROUTING

The complete circuit diagram of the Chorus and Flanger unit is shown in Fig. 5. A mono signal, or one half of a stereo pair, is brought into the initial buffer stage IC1a. Two inputs are provided to this stage, one via R1, the other bypassing R1. The route via R1 is more suited to higher level signals from a preamplified source up to about 1.5 V r.m.s. The stage gain here is nominally at unity, that is, the same level comes out from IC1 a as goes in. The low input bypasses R1, and the gain is then about 10 . This input is more sulted to sources producing an output up to about 150 mV r.m.s., but for retention of the best signal to noise characteristics any input signal should be capable of producing an output from IC1a in the region of 1 to 1.5 V r.m.s. and so ideally should be pre-amplified. From IC1a the signal is split, one path going direct to the output mixer stage IC1d, and the other to the filter and mixer stage IC1b. To achieve greater clarity of the processed signal, slight pre-emphasis of the treble regions is given by the parallel path of R5 and C2. The gain of stage IC1b is set by the relationships of R5 to R8, but higher frequencies bypass R5 via C2 and so are given greater gain. Lower frequency signals are forced to pass through R5 as they cannot get through C2, and so only achieve normal gain. The low pass characteristics of IC1b are set by C3 and C33, and limit the very high frequencies which could otherwise produce distortion within the delay stage IC2. Normal waveform balancing through IC2 is trimmed by applying an optimum d.c. bias to its input via VR3. At the correct setting of VR3, equal emphasis is given to both phases of the a.c. signal passing through. IC2 is a superb delay line chip that consists of 1536 separate delay stages within its small 8 -pin di.i.l. format. It is a bucket brigade type analogue delay unit that passes a sampled amplitude charge from stage to stage at a rate determined by a controlling clock frequency. The time taken for a sample charge to pass through can be calculated from the formula: time $=($ delay stages/clock frequency)/2000 where the frequency is in hertz and the ariswer in milliseconds. The stream of sampled charges emerge from two outputs at the end of the delay, are summed at VR1 and are typically at the same level as they went in. Because the signal has been sampled, a residual trace of the clocking frequency is also contained in the output. This is partially cancelled out by adjustment of VR1. The remainder is filtered out in the stage

Fig. 3a. In-phase (accentuated)

Fig. 3b. Nearly out of phase

Fig. 3c. Out of phase

Fig. 3. Phase enhancement and cancellation. Top trace combined output, bottom trace original signal

P.E. AUDIO EFFECTS AND OTHER SUPER SOUND KITS!

P.E. MONO-STEREO ECHO-REVERB (SEP84) 200 ms echo, lengthy reverb, multi-tracking kit as published - BLK box: SET 218 £55.66

P.E. FILTER SHMF PHASER YOCT84). Enhancet Fnasing with
modulated filter shifting. Kit as published -BLK box: SET $226 £ 39.13$

P.E. RING MODULATOR (NOV84). With multi-waveform VCO, Noise Gate \& Auto-level Control. Kit as published - BLK box: SET 231 £39.99

P.E. MONO-STEREO CHORUS FLANGER (JAN84). Superb dual mode music enhancement. Kit as published - BLK box: SET 235 $£ 55.66$

ASS BOOST: Increases valume of lower octaves OW BOX. Voice operated VCF \& VCA for 咜cinating effect CHORUS (SIMPIE): Multiplied solo enhancement COMPRESSOR: Limits \& levels maximum signal strength COMPRESSOR: Limits \& levels maximum signal strength EOUALISER: Variable combinations of Low, Mid, Top \& Notc EOUALISER: 10 Channels fully variable
FADER: Voice operated with 5 response conerols
FLANGER (SIMPLE): Fascinating phased resonance effects FREQUENCY CHANGER: Tunable note \& waveform modifier FREQUENCY DOUBLER: Guitar octave raiser \& tone changer FUNKY-WOBULO: Modulates a singing voice
FUZZ: Smooth distortion, retains attack \& decay
GUITAR OVERDRIVE: Heawy fuzz with selectable qualities GUITAR SUSTAIN: Extends note decay time, with noise gate GUITAR TO SYNTH INTERFACE: With voltage \& trig outputs HAND CLAPPER: Auto \& manual variable clap effects HEAOPHONE AMP: 2 watts into phones or speaker, variable JABBERVOX: Voice disquiser with reverb \& tremolo METRONOME: With audio output $\&$ visual beat $\&$ downbeat NIİ PRE-ANP: Variable again \& switched tone response MIXERS: Several in catalogue
MOCK STEREO: Splits mono signat into stereo simulation MULTIPROCESSOR: Fing, Rvb, Faze, Fuzz, Wah, Trem, VID UNIC M NL SIGN: Progral call sign generator UNEAL CALL : BN. Progra OHASER (SIMPLE): A tope \& system noise
HASER SIMPLE). Auto a manual rate a depth controls RHYTHM GENERATOR. RHYTHM GENERATOR: 15 pre-programmed ruthm 9 othe ROBOVOX-Versatile robot type voice modifier SPEECH PROCESSOR: Clearer speech and level control STORMS EFFECTS: Auto \& manual wind, rain \& surf effects SWEEP GENERATOR: Auto sine wave $20 \mathrm{~Hz}-15 \mathrm{~K} \mathrm{Mz}$, variable TOM-TOM SYNTH: Sound triggered, multivariab:
TONE CONTROL: Bass, mid, treble, gain \& cut
TREBLE BOOST: Increases voiume of upper octaves MOITAGE MONO variable rate a dep waiale VOCODAVOX. Modular vocoder 7 hans, axtendable VODALEK. Rohot type voice modulator
VOICE OP SWITCH: Variable sensitivity \& delay
WAH-WAH. AUto .
MAIL ORDEP. Add 15% VAT \& 61 P\&P all orders

Fig. 4. Block diagram of the Chorus and Flanger unit

\section*{COMPONENTS
 Resistors
 | R1, R28 | 91k (2 off) |
| :---: | :---: |
| R2, R29, R73, R75, R82, | 10 k (6 off) |
| R83 | |
| R3, R4, R6, R7, R8, R9, | 100 k (40 off) |
| R10, R14, R15, R16, R17. | |
| R21, R22, R23, R24, R25, | |
| R26, R30, R31, R33, R34, | |
| R35, R36, R37, R41, R42, | |
| R43, R44, R45, R49, R50, | |
| R51, R52, R56, R57, R66, | |
| R71, R72, R74, R80 | |
| R5, R32, R63 | 390k (3 off) |
| R11, R12, R13, R38, R39, | 47k (8 off) |
| R40, R54, R55 | |
| R18, R19, R46, R47, R59, | 1 k (11 off) |
| R60, R61, R65, R67, R69, | |
| R70 | |
| R20, R48 | 200 k (2 off) |
| R27, R53, R62 | 470 (3 off) |
| R58, R64 | 180 k (2 off) |
| R68 | 4 k 7 |
| R76, R78 | 2 k (2 off) |
| R77 | 82k |
| R79 | 300k |
| R81 | 1M2 |

All resistors $\frac{1}{4} \mathrm{~W} 5 \%$ high stab. carbon

Capacitors

C1, C4, C8, C9, C13, C18, $\uparrow \mu 63 \mathrm{~V}$ elect. (9 off) C20, C21, C23

C2, C10
C3, C12, 25
C5, C6, C15, C16
C7, C17
C11, C33, C34, C35, C36
C14
C19

4700p polystyrene (2 off) 56 p polystyrene (3 off) 330p polystyrene (4 off) 180p polystyrene (2 off) 100p polystyrene (5 off) $4 \mu 763 \mathrm{~V}$ elect. $470 \mu 6 \mathrm{~V}$ elect.

C22, C26

C24
C27. C28
C29, C30, C31, C32

Potentiometers

VR1, VR2
VR3
VR4
VR5. VR6, VR8, VR9
VR7

Semiconductors

IC1, IC4

IC2, IC3
IC5, IC6
1C7
IC8
IC9
IC10
IC11

Miscellaneous

PP3 battery clips (2 off)
P.c.b. clips (8 off)

Knobs (5 off)
Stereo jack socket (3 off)
8 -pin d.i.I. socket (3 off)
14-pin di.i.l. socket (5 off)
16 -pin d.i.l. socket (3 off)
S2, S3, S4 s.p.d.t. (3 off)
S1, S5 d.p.d.t. (2 off)
Case BK 3
P.c.b.s 235A, 235B

4 rubber stick-on feet
Wire, solder

Constructor's Note

A complete kit of parts for the Chorus and Flanger unit is available from Phonosonics, 8 Finucane Drive, Orpington, Kent BR5 4ED. Price $£ 55.66$ excluding VAT and p\&p.
Plus $£ 1.00$ p\&p $£ 8.34$ VAT.

Fig. 5. Circuit diagram of the Chorus and Flanger unit
around IC1c. C5, C6 and C7 perform the cleanup job, leaving only the required delayed audio signal to pass.

VCAs

IC1c is followed by two transconductance amplifiers, IC5a and IC5b. They both conduct a signal through in response to a current on their control nodes. This is derived from the voltage seen at the wiper of the controlling potentiometers VR5 and VR6, and is in proportion to the resistance between the wiper and the control node. IC5b is the VCA controlling the amount of signal fed back to the stárt of the delay loop at the mixer-filter IC1b. With VR5 at its negative end, IC5b cannot conduct but as VR5 is rotated towards the ground end, so conductance increases. The maximum conductance available is deliberately higher than actually required, so that the precise feedback level can be tightly adjusted by VR4. Switch S2 allows for the feedback to be switched in and out as required. With S 2 open the wiper of VR5 is automatically held at a negative level, so that IC5b ceases to conduct. The presence of C20 gives a slight fade in and fade out effect when S2 is used. IC5a governs the amount of processed signal that is allowed to pass through to the final mixer IC1d via the high impedance buffer IC5c. VR6 controls the amount of conductance, S3 permits the effect to be switched in and out, and C21 creates a similar fade slope to that produced by C 20 . The maximum signal strength arriving from IC5C is set at a little above the original signal level arriving on the bypass route via R25. The combined processed and unprocessed signals pass through the unity gain mixer IC1d, and thence can be fed to a normal amplifier system. Although IC1d contains output short circuit limiting, R27 is included as an additional current limiter so that using a mono jack plug in the stereo socket will not over-tax the endurance of the i.c. The value of R27 is too low to significantly affect the output level.

CHANNEL TWO

Up to this point both channels are essentially identical. The equivalent channel 2 stages consist of the input buffer IC4a, filter mixer IC4b, delay stage IC3, filter IC4c, feedback VCA IC6b, effect level VCA IC6a, buffer IC6c and final output mixer stage IC4d. The control nodes of IC5b and IC6b are directly coupled so that VR5 controls the feedback of both channels simultaneously. Likewise the control nodes of IC5a and IC6a are coupled to the effect level control VR6.
back. The circuit has been arranged though so that the effect created by channel one can be added to the effect from channel two. Switch S1 in conjunction with the quadruple electronic gate IC7 performs the switchover to the dual emphasis route. With S1 off IC7b-d are held closed to signals by the negative voltage from R54, whilst IC7a allows signals through due to the positive voltage from S1a thus allowing signals to pass from IC4a to IC4b. Switching on S1 reverses the polarity seen at the control nodes of the gates. IC7a then prevents the output of IC4a from reaching IC4b. Instead any signal from IC4a is routed now via IC7b to join up with the signal from IC1a of channel one at IC1b, so presenting a mono composite to the input of IC2. The delay occurs as before, passing through IC4b and IC5a as desired. However, from IC1c the first delay signal is additionally routed via S1b across to the start of the second delay loop at IC4b. The signal is then given further delay and feedback treatment via IC3, IC4c, and IC6b. The signal coming from IC6c then contains double the delay and feedback enhancement to that coming from IC5c. Each of these signals is now cross switched to the opposite output mixers IC1d and IC4d via IC7c and IC7d respectively. The mono doubly enriched chorus or flanging effect is thus present at both outputs. Obviously the stereo processed signal has lost its channel separation identity, though in both channels the bypass signals arriving at the outputs retain their separate identities. The original stereo image is thus preserved but can be overlaid with the mono doubly enhanced composite. If a mono only signal is input to the unit via IC1a, the output at IC1d will consist of the original plus the first and second delays. The output at IC4d will contain only the doubly processed signal without the original. Remember though that with this variety of feedback and enhancement available, signal levels are going to be modified and that IC2 and IC3 prefer a maximum input level of no more than 1.5 V r.m.s. On each feedback path when the phase shift is positive the level of the feedback signal is added to the original signal, the total thus being about twice the original. If both delay paths are cascaded, then the levels of these signals are also added, resulting in a further increase in the final output level. When switching across to the dual emphasis route with a signal present on both inputs, the amplitude of these two signals is also added. Therefore before switching between single and double enhancement modes with stereo signals it is preferable to reduce VR6 first.

NEXT MONTH: Clock circuit, p.s.u., construction and setting up.

ENHANCED MODE

In the normal mono and stereo modes, each channel can give weight to the amount of effect passed through and fed

AVO Model 8 MKS multimeter £80. Edgcumbe insulation test meter £40. Sinclair digital DM2 multimeter $£ 30$. Tel; 0482848951
KEMPSTON interface S Spectrum Seikosha printer with software good working order $£ 20$ or near offer. Ralph Lovelock, 14 Knightley Road, Exeter. Tel: 75896.
TERMINET 300 printers RS232 300 Baud letter quality print. Fully working 2 off $£ 70$ each. Buyer collects. A. G. Seagrave, 175 Sorrel Bank, Linton Glade, Forestdale, Croydon CRO 9LZ. Tel: 01-6514885.
HELP circuit to work 24 V triac (type 8223-TIC 2530) controlling bulb in slide projector. R. Henly, Mount Temple School, Malahide Road, Dublin 3.

CHIPS Z80A S 10/0, 2 for $£ 10.8202$ A- $£ 10$. 8086-£5. 25165 for £8, 411616 for £7. J. Walker, 7 Warwick Place, Peteflee, Co. Durham SR8 2EZ. Tel: Peterlee 868255 after 7.00 p.m.
CRT DG7 132 still boxed and unused. £25 plus postage. W. Mawson, 8 Elsdon Drive, Forest Hall, Newcastle upon Tyne NE 12 9RH. Tel: 0632 662082.

FOR SALE 215 magazines PW, ETI Elektor 1967 onward. Also counter/timer A.C. bridge 2 scopes. Alan Auden. Tel: 01-568 5458.
NEWNES Radio \& TV Servicing, 15 volumes up to 1970 E20 good condition. T. D. Jennings 0734780514 after 6.30 p.m. or 0734586429 during day.
WANTED service manual for Tektronix 53C plug-in buy, borrow or swap other Tektronix manuals, parts etc. T. J. L. Haley. Tel: 01-B6B 4221.

DESYNN transmitter pot wanted please. About $3^{\prime \prime}$ diameter or less, for wind vane project. Mr. S. Gibbons, 77 Windlehurst Road, High Lane, Stockport SK6 BAE. Tel: 0614274317.

WANTED Ferguson model 3 T11 3-band radio cassette recorder. Tel:01-451 3093.
SOLARTRON scope plug-in unit CX1441 or CX1449 wanted. Could swap for CX1442. Patrick O'Donohoe, 29 Devon Close, Perivale, Middx. Tel: 01-997 0181.
INFORMATION wanted on LA30 Decwriter. G8004 board or circuit diagram required. C. Adams, 10 St. Annes Place, Neyland, Dyfed.
WANTED superboard OH10 expansion system by Watford Electronics either complete or p.c.b.s only as in PE June 79. G. S. Houghton, Well Farm, Great Ouse Burn, York YO5 9RQ. Tel: Green Hammerton 30620.
WANTED modern dot matrix printer. Serial or parallel. Must be working. Mr. P. Hale, 31 South Road, Stourbridge, West Midlands DY8 3YA. Tel: 0384379120.

RAMS ex comp. All good. 16×411650 p each $16 \times 2114 \mathrm{f} 1$ each. $4 \times 4118 \mathrm{£} 1.50$ each. $1 \times$ 6116 £2. Wavemeter type 'D' no lid, £12. Mr. A. Glover, 13 South Close, Braunston, Nr. Daventry, Northants NN11 7JE.

Nyion yarn to automatic stabilisation of the early 'flying bedsteads', forerunners of the Harrier vertical take-off aircraft. Since his professional life is largely devoted to electronics and control problems his new hobby is now philately in which he enjoys a considerable reputation.

Obviously we can't all be Professor Wests but as keen hobbyists with no less enthusiasm than he had there are still openings for those determined to make electronics their profession. And there is a crying shortage, increasing yearly, mainly for qualified engineers but also for maintenance engineers, testers and installers. And the spread of automation has meant that electronics posts are available throughout the whole of industry, not just a few sectors.

A final note of encouragement. I know a builder's labourer, scarcely even a 'brickie', who became interested in electronics. He was entirely self-taught and has just retired. His last post over several years was as laboratory technician in a university.

Let me indulge in a final final note! Sir Robert Telford has been made Life President of The Marconi Company on his retirement as Chairman. His only predecessor with the title was Guglielmo Marconi himself, the original founder. Sir Robert has been with Marconi (and parent GEC) all his working life having served initially a twoyear apprenticeship as a management trainee.

Yes, there is life north of Watford. Sir Robert was born in Liverpool.

Pioneers

Last month I mentioned Jack Kilby and Bob Noyce who are credited with being first with the integrated circuit in the late 1950 s, actually in 1958 and 1959. They, of course, produced practical i.c.s but the concept of the i.c. had a much earlier mention and by none other than the Englishman G.W.A. Dummer when giving an address before the US Electronic Components Symposium in May 1952.

He put forward the idea that it would now seem possible to envisage electronic equipment in a solid block with no connecting wires. In 1957 Dummer, then employed at the presently named RSRE at Malvern, actually showed a model not unlike that later patented by Kilby. The model was made by Plessey and unveiled at Malvern for the first time.

Although Dummer's ideas, through no fault of his own, never came to full fruition at that time he deserves every credit for his vision of the future. Another Englishman whose idea was in fact adopted is Charles J. Hughes who was awarded the Martlesham Medal, 1984, by British Telecom.
It was Hughes who developed the idea of using a MPU as the vital component in a telephone exchange. He called his device a 'mini-processor' as it came in 1968-1969, long before the MPU as we know it today. But Hughes' invention was essentially the same animal which in a more compact, more efficient and cheaper package has but changed its name.

Tempest

A friend of mine has recently, and at some personal expense, invested in a pushbutton telephone. His enthusiasm for electronics in all its variety has led to him being a licensed radio amateur.
Alas, he finds the telephone and his transmitter entirely incompatible. His wife can't use the telephone during radio transmission. There were no such problems with his old dial telephone. Readers will also recall CB operators (mainly those with illegal 'afterburners') who disabled the electronics in petrol pumps. Better screening of apparatus and filtering against outside interference is the solution.

The other problem is just the reverse. How to keep signals inside the box, particularly with computers involved in processing confidential data. Modern surveillance technology is such that transfer of data within the machine is detectable from the outside unless precautions are taken.

The name of the precautionary game is Tempest for which there are stringent specifications. Tempest evaluation is expensive. Large electrically screened rooms are necessary to exclude all external interference and the test equipment is exceptionally sensitive and also expensive.
Racal-SES at Tewkesbury, Gloucestershire, has three screened rooms for Tempest evaluation operated under contract from the UK Government for securtiy sensitive equipment. The company has just installed an additional facility for industrial equipment and offers a consultancy service on modifications to meet Tempest requirements.

Outlook

As we move into 1985 the outlook for electronics remains good. Particularly welcome is a move towards a semblance of balance in the two-way street on military .procurement between the UK and the USA. This has been almost one-way for so many years that it became a joke. The order for 300 Hawk aircraft for the US Navy was a triumph and on the purely electronics front a recent order for British positioning and data processing equipment for mine countermeasure activities is a straw in the wind, as is further US orders for British naval communications equipment.

China is still good news with their navy buying Marconi communications equipment. A huge market is opening up which is likely to develop into joint ventures as the Chinese develop their own skills and manufacturing capability.

Scotland will benefit from further growth with Hewlett-Packard investing yet another £12 million on factory expansion and Honeywell at Newhouse geared up to a 30 percent increase in output.

On the labour front the electricians union, EEPTU, continues a campaign for more orderly and sensible relations with employers. Despite violent opposition from other unions there is every indication that the new approach, including no-strike agreements, will prove popular.

Sequential Logic Techniques Part

M.TOOLEY BA and D.WHITFIELD MA MSc CEng MIEE

We shall begin Part Four with an interesting and unusual shift register application in the form of a pseudo random sequence generator. Whilst such a device may at first appear to be nothing more than a mere curiosity, a number of electronic circuits and devices do require a signal which has an apparently random value. Typical of these are data scrambling devices as well as the more obvious 'pink' noise sources used in audio work.

A shift reglster can be used to generate a signal that is repetitive but also random. All that is required is some simple external gating and, where an analogue output is required (as would be the case with an audio system) a digital to analogue converter. Such an arrangement is shown in Fig. 4.1. The pseudo nolse generated by this arrangement consists of a sequence of random voltage levels which repeats each time the shift register is clocked through $2 n-1$ clock cycles, where n is the number of blstable stages contained in the register. Thus, for example, the six stage shift register shown in Fig. 4.1 produces 63 random states before repeating the sequence.

A practical 4-bit pseudo random sequence generator using a 74195 shift register and a 7486 exclusive-OR gate is shown in Fig. 4.2. To ensure that this circuit starts, a capacitor is used to place a logic 1 at the data input of the shift register whenever power is applied.

The 7486 and 74195 devices should be inserted into sockets A and B respectively of the Logic Tutor, taking care to ensure that the usual orientation is observed. The following connections are required:-
A1 to D4
A2 to D3
A3 to B2 via a 220 ohm resistor
A7 to OV (common)
A1 6 to +5 V
(supply)
B1 to logic 1
B2 to B3
B3 to +5 V via a $10 \mu \mathrm{~F}$ capacitor
B4 to B5
B5 to B6
B6 to B7
B7 to logic 0
B 8 to 0 V
B9 to logic 1
B10 to clock
B12 to D4 (D4 shows the state of Q3) B13 to D3 (D3 shows the state of Q2) B14 to D2 (D2 shows the state of Q1)

B15 to D1 (D1 shows the state of Q0) B 16 to +5 V (supply)
(A total of 18 links and 2 compenents)
The above arrangement conforms to the circuit of Fig. 4.2. Readers should note down the output states produced by the pseudo random sequence generator and compare these with those shown in Table 4.1.

Flg. 4.2, Practical 4-bit psaudo random sequence generetor

Fig. 4.1. Pseudo random sequence generator

\mathbf{a}_{0} (MSB)	\mathbf{a}_{1}	$\mathbf{a}_{\mathbf{2}}$	\mathbf{a}_{3} (LSB)	DENARY VALUE
1	0	0	0	8
0	1	0	0	4
0	0	1	0	2
1	0	0	1	9
1	1	0	0	12
0	1	1	0	6
1	0	1	1	11
0	1	0	1	5
1	0	1	0	10
1	1	0	1	13
1	1	1	0	14
1	1	1	1	15
0	1	1	1	7
0	0	1	1	3
0	0	0	1	1

Table 4.1. Pseudo rendom sequence produced by the circuit of Fig. 4.2.

SEQUENTIAL LOGIC

An alternative sequence can be generated by removing the two startup components (C and R) and replacing them by an inverter, as shown in Fig. 4.3. Unlike the previous arrangement, this circuit always starts when power is applied. The resulting sequence is, however, complementary to that produced by the previous circuit.

Fig. 4.3. Alternative arrangement to that shown In Fig. 4.2.

To investigate the performance of the alternative pseudo random sequence generator it is first necessary to remove the $10 \mu \mathrm{~F}$ capacitor from B3 to +5 V and the 220 ohm resistor from A3 to B2. Then insert the 7404 into socket E (checking that pin-1 aligns with D1) and make the following connections:-

D1 to A3
D2 to B2
$\begin{array}{ll}\text { D7 to OV } & \text { (common) } \\ \text { D16 to }+5 \mathrm{~V} & \text { (supply) }\end{array}$
The random sequence produced by this arrangement should follow the pattern shown in Table 4.2.

UNIVERSAL SHIFT REGISTERS

We have previously examined several simple shift register arrangements using both the 74175 quad data latch and the 74195 4-bit parallel access shift register. Unfortunately, whereas this latter device can be configured for both right and left shifting, the left shifting arrangement was not only inelegant but also precluded the parallel loading of data.

Such problems can be easily solved with the aid of the so-called "univer-

\mathbf{Q}_{0} $(\mathbf{M S B})$	\mathbf{Q}_{1}	\mathbf{Q}_{2}	\mathbf{Q}_{3} $($ LSB $)$	DENARY VALUE
1	0	0	0	8
1	1	0	0	12
1	1	1	0	14
0	1	1	1	7
1	0	1	1	11
1	1	0	1	13
0	1	1	0	6
0	0	1	1	3
1	0	0	1	9
0	1	0	0	4
1	0	1	0	10
0	1	0	1	5
0	0	1	0	2
0	0	0	1	1
0	0	0	0	0

Table 4.2. Pseudo random sequence produced by the circuit of Fig. 4.3.
sal" shift register. Such devices earn their somewhat grandiose title by virtue of their ability to shift data in either direction whilst retaining the ability to input and output data in parallel form. It thus becomes possible to realise all of the basic shift register types (SISO, SIPO, PISO and PIPO) using just one devicel

We shall continue our series on Sequential Logic with a detailed examination of the operation of a typical 4-bit universal shift register. We will show how this device can be configured to perform both right and left shifting without sacrificing the ability to load data in parallel form.

THE 74LS194 UNIVERSAL SHIFT REGISTER

The 74LS 194 is a true bi-directional 4-bit shift register capable of all four (SISO, SIPO, PISO, and PIPO) modes of operation. The device is housed in a 16-pin d.i.l. package having the pin connections shown in Fig. 4.4. The internal logic of the 74LS194 is shown in Fig. 4.5. From this it should be noted that mode select inputs, S1 and SO, are gated, together with serial and parallel data inputs, into the SET and RESET inputs of each of the four internal bistable stages. The truth table for the mode select inputs is shown in Table 4.3.

The 74LS194 has separate serial data inputs for right and left shifting whereas, like other shift registers, the CLOCK and CLEAR inputs remain common to each stage. The 74LS194 is thus very easily cascaded, in multiples of four bits, to make shift registers of any desired length. All data transfers are synchronous with positive going transitions of the clock.

To investigate the 74LS 194 we shall make use of the circuit shown in Fig. 4.6. Since the Logic Tutor has only four logic level generating switches, we shall hard-wire the four parallel data inputs (to produce an input of 1010) and the active low clear input (to logic 1). The serial data inputs for right and left shifting are respectively driven from the momentary switches, S1 and S2. The two mode select lines are connected to the two latching switch outputs, S3 and S4.

Fig. 4.4. Pin connections for the 74 LS194

Fig. 4.6. Basic universal shift register arrangement using the 74LS 194

MODE SELECT INPUT		MODE OF OPERATION
S1	SO	
0	0	Inhibit shift (hold)
0	1	Shift right
1	0	Shift left
1	1	Load parallel data

Table 4.3. Truth table for the 74LS194 mode select inputs

SEQUENTIAL LOGIC

The 74LS194 should be inserted into socket B of the Logic Tutor, taking care to observe the usual orientation in which pin-1 aligns with B1. The following connections should then be made:-
B1 to logic 1 (active low clear input)
B2 to S1 (serial data inputright shift)
B3 to logic 1 (parallel data input -DO)
B4 to logic 0 (parallel data inputD1)
B5 to logic 1 (parallel data inputD2)
B6 to logic 0 (parallel data inputD3
B7 to S2 (serial data inputleft shift)
B8 to OV
(common)
(mode select inputSO)
B10 to S4 (mode select inputS1)
B11 to clock
(clock)
B12 to D4
(D4 shows state of Q3)
B13 to D3 (D3 shows state of Q2)

B14 to D2
(D2 shows state of Q1)
B15 to D1 (D1 shows state of QO)
B16 to +5 V
(A total of 16 links)
Adjust S3 and S4 to produce logic 0 inputs on the mode select inputs. In the absence of a depression, the logical state of the two momentary switches, S1 and S2, will of course be zero. In this condition, the four Q outputs (indicated by D1 to D4) should all remain at logic 0 as, in this state, shift operation is inhibited.

Now wait until the clock next goes low and then adjust S3 and S4 to produce logic 1 on both of the select inputs. When the clock next goes high, D1 and D3 should become illuminated (while D2 and D4 remain extinguished) showing that the data on the parallel data inputs (1010) has been loaded into the register and transferred to the Q outputs.

Now adjust S3 for logic 1 and S4 for logic 0 . Wait a few clock cycles for the pre-loaded data to shift out and then, when the clock next goes low, depress

S1 and note that D1 becomes illuminated when the clock next goes high. Release S1 and note how the logic 1 data shifts right through the register (from QO to Q3), as shown in the timing diagram of Fig. 4.7. In this condition the left shift serial data input (S2) should have no effect.

S3 should then be adjusted for logic 0 whilst S 4 is set to produce logic 1. Again wait a few clock cycles for any transitory data to be shifted out of the register and then, when the clock next goes low, depress S2. D4 should become illuminated when the clock next goes high. Release S2 and note how the logic 1 data shifts left through the register (from Q3 to QO), as shown in the timing diagram of Fig. 4.8. In this condition the right shift serial data input (S1) should have no effect.

To further familiarise themselves with the operation of the universal shift register, readers should experiment with parallel loading data into the register and then shifting first left and then right. This can be readily accomplished using the two mode select lines driven from S3 and S4. Finally, it should be noted that the register con-

Fig. 4.5. Internal loglc of the 74LS194

SEQUENTIAL LOGIC

Fig. 4.7. Timing dlagram for shift right operation

Fig. 4.8. Timing dlagram for shift left operation
tents can be 'frozen' simply by taking both of the mode select lines to logic 0 .

BI-DIRECTIONAL SEQUENCER USING THE 74LS194

A sequencer is an arrangement based on a shift register which can be used to produce a recurrent binary pattern in much the same manner as that produced by a binary counter. Typical applications for sequencers involve scanning a number of data lines placing a logic 1 (or logic 0) on each line in turn. A 4-bit sequencer might, for example, produce the output states shown in Table 4.4. Such a pattern can be produced quite simply by circulating a logic 1 through a shift register which has its output fed back to its input. All transfers through the register will, of

Parallei data output				Clock transition
$\mathbf{0 0}$	$\mathbf{Q} \mathbf{1}$	$\mathbf{Q} \mathbf{2}$	$\mathbf{0 3}$	$\mathbf{(0}-\mathbf{>} \mathbf{1 1}$
1	0	0	0	1
0	1	0	0	2
0	0	1	0	3
0	0	0	1	4
1	0	0	0	5
0	1	0	0	6
0	0	1	0	7
0	0	0	1	8
1	0	0	0	9
etc.				

Table 4.4. Typlcal output sequence of a 4 -bit sequencer
course, occur synchronously with the clock.

A practical bi-directional 4-bit sequencer is shown in Fig. 4.9. The serial data inputs for right and left shifting are respectively connected to the Q3 and Q0 parallel data outputs. The parallel data input lines are used to initialise the shift register so that it always starts with the 00 output going to logic 1. Thereafter, shifting can be to the right or left depending upon the mode selection Inputs. These latter inputs also allow us to freeze the output state or to re-Initlallse the register.

Fig. 4.9. 4-bit sequencer using the 74LS194

The previous arrangement can be modified as follows:-
B1 to logic 1 (active low clear)
B1 to B12
B3 to logic 1
B4 to logic 0
B5 to logic 0
(initial data to

B6 to logic 0
B7 to D15
B 8 to 0 V
(common)
B9 to S3
B10 to S4
B 11 to clock
B12 to D4

B13 to D3
B14 to D2
B15 to D1
B16 to +5 V (supply)

(A total of 16 links)

S3 and S4 should initially be set to logic 1 in order to load the parallel data into the register. As soon as the clock next goes high D1 will become illuminated whilst all of the other l.e.d. indicators should remain extinguished. The register remains in this state as long as S3 and S4 are held at logic 1.

Now set S3 to produce a logic 1 leaving 54 generating a logic 0 . On the next rising clock edge the data in the shift register should shift to the right, circulating through the register with the logic 1 re-appearing at the first stage (OO) of the register as soon as D4 becomes extinguished. This action is shown Fig. 4.10.

Fig. 4.10. Timing diagram for the 74LS194 sequencer (right shift operation)

Fig. 4.11. Timing diagram for the 74 LS194 (left shift operation)

Now set S3 to produce a logic 0 and S4 to produce a logic 1 . In this state the data within the register should start to shift to the left on the next rising clock edge. Data will then circulate through the register with the logic 1 reappearing at the last stage (O3) of the register as soon as D1 becomes extinguished. This action is illustrated in the timing diagram of Fig. 4.11.

S3 and S4 should now both be set to logic 0 . On the next rising clock edge the data within the register should remain frozen for as long as both of the mode select inputs are held low. Finally, readers may wish to experiment with hard-wiring some alternative data patterns using the four links connected to B3, B4, B5 and B6.

NEXT MONTH: we shall be takIng a look at data multiplexers.

TERMS OF BUSINESS

* All prices exclude V.A.T. and carriage. Please add carriage to order total before adding V.A.T.
* Carriage charges extra on all orders as follows: Components
books/Data/Software
4.00
* Stri only.
* Delivery is normally from stock but please allow up to 28 days.
* Any query or complaint regarding an order should be made in writing within 7 days of receipt of the order. No telephone queries will be entertained
* Goods incorrectly ordered cannot be accepted for replacement without our prior agreement. Due' to high processing costs, a minimum of 15% handling charge may be levied on any returns or cancelled orders
* We will issue a full immediate refund, if requested, for out of stock items
All items carry full manufacturers warranty
* A V.A.T. receipt will be supplied with all orders.
* Prices quoted are correct at the time of going to press but we reserve the right to effect changes without prior notice.

6502

6502 FAMILY

1.44 F.D. CONTROLLERS $6502 \quad 3.50\left|\begin{array}{ll}8086 & 29.50\end{array}\right| \begin{aligned} & 2532-300 \mathrm{~ns} \\ & 2532-450 \mathrm{~ns}\end{aligned}$

6520	2.25	8216	0.75	$2708-450 \mathrm{~ns}$
$652716-450 \mathrm{~ns}$				

$6520 \mathrm{~A} \quad 2.45|8237 \mathrm{~A}-523.50| 2716-450 \mathrm{~ns}$

6522	3.40	8251 A	7.50	$2716-3$ RAIL
6522 A	4.45	$8253-5$	7.50	$2732-350 \mathrm{~ns}$
6532				

6522 A	4.45	$8253-5$	7.50	$2732-450 \mathrm{~ns}$
6532	5.45	$8255 \mathrm{~A}-5$	7.00	$2764-200 \mathrm{~ns}$

6532 A
6551

M ${ }^{75173 \mathrm{~N}}$

4.95
.95
3.95 75174
75175
75182

75183 2.82 8272 \begin{tabular}{l|l}
86 \& 8272

FD1771

 0.50 .86 FD1791-02

0.86 \& FD

0.22 \& FD

0.29 \& FD
\end{tabular} FD1793-02 FD1795

FD1797
WD1691
WD2143

FAIRCHILD

6800
FAMILY

6800
$\begin{array}{ll}6800 & 2 \\ 6802 & 2 \\ 6803 C & 8 \\ 6809 E & 6\end{array}$
$\begin{array}{ll}\text { 6809E } & 6 \\ 6809 \mathrm{P} & 6 \\ 6810 & 1.70\end{array}$

6810	1.70
6821	1.70
6840	3.70
6845	6.45
6850	1.70
6862	3.75
6875	4.95
68800	4.30
68809	9.95
68810	1.88
68821	3.70
68840	6.60
68850	1.58
$68 B 54$	7.95

6805 FAMILY
MC1468052P
MC146818P
MC146818P
MC146823p
MC146823P
MC68705KT3
MC68705R3L
MC68705U3L
68000 FAMILY
MC68000G10
MC68000L8
MC68230L8
MC68451L8
TI 9900 FAMILY
TMS9901-95
TMS9902
TMS9918
TM59927
TMS9928
TMS9929
TMS9980 TM59995 25LS2539
$26 L 531 P C$
$26 L 532 P C$ 26LS32
6402 75107 BN 75110 AN
75150 P 75150 P
75154 N
75159 75159
75160 AN 75161AN 75162AN 75172 NG

components

WSULATION DISPLACEMENT ONNECTOR SYSTEM

Connecting cables for personal computers

comprehensive range of high quality intersonnecting cables for popular micro computers. All cables rilise high quality connectors and are individually tested to ensure trouble free use

Part number Video cables	Description	Computer	
ton 100	Phono plug to phono plug (2M)		1.20
CON101	Phono plug to BNC plug (2M)		2.95
CON102	BNC plug to BNC plug (2M)		3.95
ON107	6 Pin DIN to open end (1 M)	BBC	1.05
ON108	6 pin DIN to 6 pin DIN (1M)	BBC	1.50
ON119	Phono plug to coax plug		1.35
CON160	DIN plug to 2 phono plugs	Dragon	1.20
Cassette recorder cables			
ON109	7 pin DIN to open end	B8C	1.25
ON110	7 pin DIN to $2 \times 3.5 \mathrm{~mm}+1 \times 2.5 \mathrm{~mm} \mathrm{~J} / \mathrm{plug}$	BBC	2.50
¢ON111	7 pin DIN to 5 pin DIN + 2.5 mm J/plug	BBC	2.50
Con118	5 pin DIN to $2 \times 3.5 \mathrm{~mm} \mathrm{~J} / \mathrm{plugs}$	Spectrum/ZX	2.50
CON117	5 pin DIN to $2 \times 3.5 \mathrm{~mm}+1 \times 2.5 \mathrm{~mm} / / \mathrm{plug}$	Dragon	2.50
Parallel printer cables			
ON130	36 way plug to 36 way plug (2M)	Sirius/Apricot	18.00
6.0N331	36 way plug to 36 way plug (5M)	Sirius/Apricot	26.50
60v132	36 way plug to 36 way socket (2M)		18.00
CON133	36 way plug to 36 way socket (5M)		26.50
CON144	36 way plug to 25 way male D type (2M)	BBM/TIPC	19.00
CoN145	36 way plug to 25 way male D type (5 M)	IBM/TIPC	27.50
CON134	36 way plug to 25 way male D type (2M)	RML/Apple	19.00
Sov135	36 way plug to 25 way Male D type (5M)	RML/Apple	27.50
5 SoN142	36 way plug to 20 way IDC socket (2M)	Dragon	13.95
S l N139	36 way plug to 26 way IDC socket (2M)		9.95
Gron140	36 way piug to 26 way IDC socket (5M)	BBC	22.95
3 ON141	36 way plug to 34 way card edge (2M)	TRS80 Lev. 1	18.50
IoN143	36 way plug to 34 way IDC socket (2M)	TRS80 Lev. 21	
		Memotech	10.95
76232 Cables			
(0nto6	25 way male D type to 5 pin DIN	BBC	5.85
Conl28	'Universal' RS232 cable (pins 1-8, 20 connected		
	and 20 jumpered as required) 2 M		15.95
Kon164	'Universal' RS232 cable as above but 5M		20.95
CON120	25 way male to male 1-25 connected (2M)		16.95
CON121	25 way male to male $1-25$ connected (5M)		22.50
Cov122	25 way male to male $1-25$ connected (10 M)		32.50
CON123	25 way male to male 1.25 connected (30M)		68.00
CON124	25 way male to female 1-25 connected (2M)		15.45
CON125	25 way male to female 1-25 connected (5M)		21.00
CON126	25 way male to female 1-25 connected (10M)		31.00
CON127	25 way male to female 1-25 connected (30M)		66.50
O-ON129	25 way male to 9 way male	Spectrum	15.95
CON162		Mackintosh	15.95
Con163	25 way male to 5 pin DIN	RML 4802	14.95

PART NO	DESCRIPTION	AIL ORDER
BBC MICROS AND ACCESSORIES		PRICE
ANB01 ANBO2 ANBO 3 ANB04 ALAO ANB21 ANB23 ANB14 ANK01 ANB22 BBC 45 STAND SRE1	BBC Model B Micro BBC Model B Micro with Econet 1/F BBC Model B Micro with Disc I/F BBC Model B Misro with Disc \& Econet Acorn Electron DNFS ROM Disc Interface Kit Speech Interface IEEE488 Interface Adaptor Econet I/F Kits Joysticks Monitor 5tand Sideways ROM Expansion Board	$\begin{aligned} & £ 325.00 \\ & £ 385.00 \\ & £ 406.00 \\ & £ 445.00 \\ & £ 139.00 \\ & £ 17.91 \\ & £ 71.65 \\ & £ 40.00 \\ & £ 277.75 \\ & £ 35.00 \\ & £ 8.00 \\ & £ 7.50 \\ & £ 25.95 \end{aligned}$
DISC DRIVES WITHOUT POWER SUPPLY		
BBC30 B8C315 BBC31D BBC34 BBC345 BBC 34 SW BBC 34 D BBC345/80 BBC34D/80	Single 100 K TEC 40 track single sided Single 100k TEC (expandable to dual) 40 track Dual ($2 \times 100 \mathrm{k}$) TEC 40 track single sided Single 400 k TEC 80 track double sided Single 400 k TEC (expandable to dual) 40/80 track switchable double sided Single 400 k TEC $40 / 80$ track switchable double sided Dual ($2 \times 400 \mathrm{k}$) TEC 40/80 track switchable double sided Singie 400 k TEC (expandable to dual) 80 track double sided Dual ($2 \times 400 \mathrm{k}$) TEC 80 track double sided	$\begin{aligned} & £ 99.95 \\ & £ 115.00 \\ & £ 225.00 \\ & £ 174.00 \\ & £ 194.00 \\ & £ 184.00 \\ & £ 310.00 \\ & £ 184.00 \\ & £ 300.00 \end{aligned}$
DISC DRIVES WITH POWER SUPPLY		
BBC30P BBC315P BBC31DP BBC34P BBC34SP BBC34DP	Single 100k TEC 40 track single sided with P.S.U Single 100k TEC (expandable to dual) 40 track with P.S.U Dual ($2 \times 100 \mathrm{k}$) TEC 40 track single side with P. S.U Single 400 k TEC 80 track double sided with P.S U Single 400 k TEC (expandable to dual) 80 track with P.S.U Dual $(2 \times 400 \mathrm{k})$ TEC $40 / 80$ track switchable with P.S.U	$\begin{aligned} & £ 130.00 \\ & £ 150.00 \\ & £ 250.00 \\ & £ 209.00 \\ & £ 229.00 \\ & £ 345.00 \end{aligned}$
MECHANISMS		
$\begin{aligned} & \text { F8501 } \\ & \text { FB504 } \end{aligned}$	TEC 100 k single sided TEC 400 k double sided	$\begin{aligned} & £ 91.00 \\ & £ 150.00 \\ & \hline \end{aligned}$
FLOPPY DISCS		
$\begin{aligned} & \mathrm{MD}-1 \mathrm{C} / \mathrm{B} \\ & \mathrm{MD}-1 \mathrm{DC} / \mathrm{B} \\ & \mathrm{MD}-2 \mathrm{DC} / \mathrm{B} \\ & \mathrm{MD}-2 \mathrm{FC} / \mathrm{B} \end{aligned}$	Nashua single sided, single density 40 track (10 discs) Nashua single sided, double density 40 track (10 discs) Nashua double sided, double density 40 track (10 discs) Nashua double sided, quad density 80 track (10 discs)	$\begin{array}{r} £ 12.00 \\ £ 13.00 \\ £ 15.50 \\ £ 17.85 \end{array}$
SPECIAL OFFER		
BBC40TD	FF double sided, double density 40 track (10 discs)	£14.00
DISC STORAGE BOXES		
$\begin{aligned} & \text { MDT25/3 } \\ & \text { DT25/5 } \\ & \text { DT60/5 } \end{aligned}$	31^{\prime} Flip ' N ' file Micro disc box (cap. 25) 51^{*} Flip ' N ' file lockable disc box (cap. 25) 51^{*} Standard lockable disc box (cap. 60)	$\begin{aligned} & \text { £7.75 } \\ & \text { £ } 18.77 \\ & \text { £ } 10.65 \end{aligned}$
MONITORS		
9MON 12 MON 1431 1449 1451 1431/AP/MS	9 inch green screen high resolution NEC high quality monitor 12 inch green screen high resolution NEC high quality monito Misrovitec 14° RGB colour monitor Microvitec 14^{*} RGB colour monitar high resolution Microvitec 14" RGB colour monitor medium resolution Microvitec 1431 PAL \& RGB inputs and sound facility	 $\$ 125.00$ $£ 135.00$ $£ 175.00$ $£ 410.00$ $£ 295.00$ $£ 225.00$
BBC COMPATIBLE SOFTWARE		
	View Rom View Printer Driver Fileserver Level 1.40 track Fileserver Level 2-80 track Acornsoft Invoiking program Acornsoft Mailing System program Acornsoft Accounts Receivable program Acornsoft Stock Control program Acornsoft Order Processing program Acornsoft Acounts Payable program Acornsoft Purchasing program Forth - 40 track Lisp - 40 track Misrotext - 40 track	$\begin{aligned} & £ 45.00 \\ & £ 7.50 \\ & £ 80.50 \\ & £ 202.00 \\ & £ 16.00 \\ & £ 16.00 \\ & £ 16.00 \\ & £ 16.00 \\ & £ 16.00 \\ & £ 16.00 \\ & £ 16.00 \\ & £ 15.00 \\ & £ 15.00 \\ & £ 47.50 \end{aligned}$
MATRIX PRINTERS		
$\begin{aligned} & \text { RX80 } \\ & \text { RX80F/T } \\ & \text { FX80 } \\ & \text { MT80SP } \end{aligned}$	Epson $R \times 80100<p s$ matrix printer Epson RX80F/T 100 cps matrix printer frietion or tractor feed Epson FX80 150 cps matrix printer Mannesmann Tally MT80 matrix printer friction or tractor feed with film ribbon and tear off facility	$£ 204.00$ $£ 231.00$ $£ 328.50$ 209.00
LETTER QUALITY PRINTERS		
HR5 HR15 HR25 UCHIDA	Brother HRS Thermal printer A / C mains or battery Brother HR15 Daisy wheel printer (13cps) Brother HR25 Daisy wheel printer (23cps) Uchida DWX305 Daisy wheel printer (20cps)	$\begin{aligned} & £ 115.00 \\ & £ 326.00 \\ & £ 550.00 \\ & £ 227.00 \end{aligned}$
PRINTER SUPPLIES		
11241 P160 11241 P 2 Cl 11241P3CI 11370 R160 11370 R2NC 11370R2CI 12235P1605 HR1R R181 19 GP205 M×80 MT80 R1B117 HR5R HR15R HR25R LAB089361C LAB0893615 LAB070363F	$11 \times 9\} 1$ part plain listing paper $(2,000)$ $11 \times 9\} 2$ part (otc) plain listing paper (1,000) $11 \times 9,3$ part (otc) plain listing paper (700) $11 \times 14!1$ part ruled listing paper $(2,000)$ $11 \times 14\} 2$ part (ncr) ruled listing paper (1,000) $11 \times 14_{2}^{1} 2$ part (otc) ruled listing paper (1,000) $12 \times 9,1$ part plain listing paper with side perfs. $(2,000)$ Brother HR1 ribbon Diablo Hytype II Multistrike film ribbon Diablo Hytype II fabric ribbon Epson MX80, R $\times 80$, FX80, fabris ribbon Mannesmann Tally MT80 film ribbon Uehida DWX 305 multistrike film ribbon Brother HRS ribbon Brother HR15 multistrike ribbon Brother HR25 multistrike ribbon Brother daisy wheels Uchida/Qume daisywheels 3 3 $\times 1.7 / 16$ Labels -1 wide $(12,000)$ 3:2 $1.7 / 16$ Labels -1 wide (2.000) 2! $1.7 / 16$ Labels -3 wide $\left(1 / 10^{\circ}\right)(2.000)$	£11.25 £14.00 £16.25 £13.50 £22.50 £15.00 £12.00 £2.20 £1.75 £2.50 £3.00 £6.50 £2.75 £2.20 $£ 4.00$ £4.00 £14.00 £4.00 £20.00 £13.00 $£ 8.00$

S.H.COUSINS bSc PhD P.D.WILSON beng

PART TWO

IF YOU are building up your own boards then all holes are to be drilled to 0.8 mm except for specific instances. On the main board the 1 N 4003 diodes and the voltage regulator require 1 mm and the variable resistor 1.5 mm . The $0 \mathrm{~V},+12 \mathrm{~V}$ and ignition connections also require 1 mm . On the front panel the two locating lugs on each of the five switches require 1 mm holes; the upper lug goes into the 5 mm pad at the top of the switch position on the p.c.b. and the lower lug into the vacant small pad directly below this on the 5 V rail. The case-front has a locating lug which requires a 3.5 mm hole in the p.c.b. and a pad is provided between the switches and the 7 -segment l.e.d.s for this purpose.

When trimming the boards to size check the fit to the case as you proceed; trim to sit well in the case and allow room for connector wires to pass between them.

CONSTRUCTION

Put in the 10 wire links first. The five indicator l.e.d.s come next and a 5 mm gap should be left between the board and the base of each l.e.d. This will allow the I.e.d.s to protrude into the holes provided in the case-front.

The 7 -segment l.e.d.s can be placed in sockets which are soldered to the board, or soldered direct into the board themselves. The appearance of the computer when finished

COMPONENTS

Resistors

R1,R5
R2,R11
R3
R4,R9,R15
R6
R7.R14,R20-24
R8
R12
R13
R16,R10
R17
R18
R19
R25
Potentiometers VR1

Capacitors
C1
C2,C8,C9,C10 C3,C5

C4
C6, C7
C11
Semiconductors IC1
IC2
IC3,1C4
IC5
IC6
IC7
IC8
$\times 1-4$
$10 \mathrm{~K} / 2.5 \mathrm{~W}$ skeleton vert. preset
270 (2 off)
3k3 (2 off)
22/2W
10k (3 off)
470
1 k (7 off)
12k
620k
2k2
220 k (2 off)
22k
6 k 8
100k
4k7
$1000 \mu / 40 \mathrm{~V}$ elect.
$47 n$ (4 off)
$47 \mu / 16 \mathrm{~V}$ elect. (2 off)
$470 \mathrm{n} / 16 \mathrm{~V}$ elect.
22p (2 off)
$10 n$

7805 reg. (TO220)
6803 uP
3140 op amp (2 off)
74LS 10
74LS373
2716 EPROM
74LS374
D201PA 7-seg, disp. (4 off)

D1,D3,D4
D2,D5,D6
D7-11

2N3706 (7 off)
2N3703
i N4003 (3 off)
1N4148 (3 off)
3 mm yellow I.e.d. (5 off)

Milscellaneous
S 1-5
REKN1A switch (5 off)
XTAL $\quad 3.5795545 \mathrm{MHz}$
Sockets for i.c.s, sensor coil and clip, wire, flexible connectors, p.c.b.s, fuse and holder.

CONSTRUCTORS' NOTE

The Outrider fits nearly all makes of car including diesel and fuel injected vehicles. A kit of basic parts containing the complete case with labels, the high brightness 7 -segment l.e.d.s, the five switches (REKN1A), the p.c.b.s and the programmed PROM are avaliable at $£ 29.95$; the full kit is available at $£ 59.95$; both prices include VAT and P\&P, from Mark Space Enterprises, 11 Church Green Road, Bletchley, Milton Keynes MK3 6BJ. With your order please specify the make and model of the car to which it is to be fitted if this is known.

Please note the following corrections to the circuit diagram in Part One. There are two R18s; the left-hand one should read R14 (1k). There are two R10s; the right-hand one should read R11 (3k3).
R26 should be omitted. C9, R10, R13 and IC8 were given the wrong identification but this month's components list is correct. Note that pin 18 of the 2716 is not connected OV. The unreferenced pin on IC2 (6803) is R/W and is pin 38, not pin 28. Pin 4 is NMI. The top end of C10 should be connected to Vcc . The inset drawings of 373 and 374 at the top of the circuit diagram show an alternative wiring pattern as used on the p.c.b. layout. The Car Computer design is protected by British Patent GB2086577 and application 8221832.

is enhanced if these l.e.d.s are soldered direct to the board. The other components can now be fitted but check that the five switches are correctly mounted with the location lugs in the board. The connecting wires from the front panel to the main board should remain on the rear of the front for soldering, i.e. the connector wires should not wrap round onto the component side of the front panel, see Fig. 2.2. But do not at this stage connect the front panel p.c.b. to the main board.

Fig. 2.3 (above). Speed sensor arrangement. (Left), Instanteneous MPG readouts, and (bottom reading) Trip Average MPG readout, displayed below 20 m.p.h. Note bar positions.

Fig. 2.2. Displey p.c.b. component layout (actual size)

MAIN BOARD

The main board is double sided and begin by soldering the connections required between the two sides. There are 67 of these illustrated as single "black dots" in Fig. 2.1 (the p.c.b. diag. with the component layout). Next fit those components which require soldering on the top of the board. They are as follows:
3 k3 pull-up resistor on pin 1374
$3 k 3$ pull-up resistor on the reset line
6 k 8 resistor into pin 8 of the 6803
$2 k 2$ into the +5 V rail, potential divider in sensor circuit
$1 k$ resistors on pins 13 to 17 on the 6803
470 pull-down resistor on pin 12 of the 6803
diode anode on pins 10,8 of 6803
Then go on to fit the remaining components which are soldered to the rear of the board. Note that the five 1 k resistors on pins 13 to 17 of the 6803 have the +5 V connection taken along their tops. The variable resistor is mounted vertically. Do not connect to the front panel yet.

CASE ASSEMBLY

Bend forward the heat sink vanes so that the main board fits snugly into the bottom runners of the case. Place the assembled front panel in position too. In the main case there are two slots on each side which retain the case-front in position. These should be visible when both boards are in position and any obstructions trimmed off if this is required.

We do not advise frequent opening and closing of the case so therefore do the bench tests (next section) before completing the assembly. Now solder the connections between the two boards and again check that the slots in the case are visible before closing the case. The connection wires should not be pinched when the case is closed, i.e. it should close easily.

SET-UP AND TEST

You should check the operation of the Outrider before connecting it to your car. Here are some guidelines:

With the 12 V connected but with the ignition line open circuit check that there is 5 V on the output of the regulator and Vcc standby (pin 21 6803), and that Vcc and reset are low (pins 6 and 7). Take the ignition to 12 V and Vcc and the reset will go to 5 V . The Outrider should draw a current of about 400 mA with the display on and 300 mA with the display immediately off which is reduced to 10 mA after 15 minutes.

The crystal frequency should be clearly seen on pins 2 and 3 of the 6803.

The keyboard/display strobes (pins 13 and 17) have a cycle period of 1.8 ms . The cycle starts with all lines going high for the first 0.3 ms . The remaining 1.5 ms are divided into five time slots in each of which one strobe line goes high.

The variable resistor (10 k pot.) should be adjusted until 1.5 V is given on pin 6 of the op amp directly connected to the sensor. Care should be taken to set this voltage when the system has warmed up. To test the operation of the distance sensor hold the coil close to a mains transformer. A 50 Hz signal should appear on pin 8 of the 6803. With the default calibration of the computer a 50 Hz signal corresponds to a speed of around $180 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. which is outside the range of normal operation of the m.p.g. function.

INSTALLATION

Begin by choosing where you are going to mount the computer. It is very important to place it where you can read the display without taking your eves from the road. Therefore the computer should be placed on top of the dashboard or high in the dashboard area. To mount the computer low in the dashboard can be dangerous.

ELEC‘fRICAL CONNECTIONS

There are just three electrical connections to be made between the computer and your car, these are the $\mathrm{OV},+12 \mathrm{~V}$ permanent and +12 V when ignition on. The computer is designed for fitting to negative earthed vehicles only. Use a test light to identify the required connection points on the car. Each of these connections should be firm clean connections. The existing terminals and connectors on the car battery should also be in good condition. For positive earth cars write to M.S.E. for circuit modifications.

Fitting the distance sensor is shown in Fig. 2.3 and discussed in the transducer section (last month).

CALIBRATION

The computer does require calibration in the car when it is first fitted. The calibration mode CAL is obtained by pressing the SET key for four seconds. Begin calibration by entering,

CAL DIST 0001 SET

Now go for a drive. Drive for one mile and note the number which is displayed on the computer. Suppose this number were 1530, then enter this number (which is the number of pulses per mile detected by your distance transducer on the back of the speedometer) thus,

CAL DIST 1530 SET

That completes the distance calibration.
The next function to calibrate is FUEL. You should enter the volume of the fuel tank in gallons here. It is ESSENTIAL that you enter a value for tank volume for your computer to function. Suppose it is 10 gallons

CAL FUEL 10.00 SET
That completes the fuel tank calibration.
The next function is MPG. You should enter an estimate of what the average fuel consumption of your vehicle is, in miles per gallon. Accuracy is not important here as the computer will compute this figure for itself once it is fitted and a tank of petrol has been used. Suppose your estimated MPG is 35 mpg , then,

CAL MPG 35.00 SET

That completes MPG calibration.
The remaining function is COST. You should enter an estimate of the costs per mile other than petrol. These costs should certainly include the cost of oil, tyres and an amount for wear and tear on the engine, exhaust etc. Depreciation is also affected by how far you drive-high mileage cars are worth less than low mileage ones when it comes to selling your vehicle.

Suppose you set these additional costs at 10 pence a mile, then enter,

$$
\text { CAL COST } 00.10 \text { SET }
$$

That concludes all calibration.

To: RT-VC, 21 B High St., Acton, London W3 6NG

In April 1982 PE, in conjunction with RT-VC, published the PE Quasar Stereo Cassette Deck design. The design provides some outstanding features, including variable recording bias and a gate noise reduction system. As a result of this successful design we are now pleased to be able to offer kits to PE readers at this exclusive price. The kits, including a wrap round simulated wood finish case, will be accompanied with a reprint of the PE articles which fully describe the unit and its construction.

The offer is for a limited period only and a coupon should be sent to the address shown. The specification of the made-up unit is given below:

SPECIFICATION

Case size $285 \times 260 \times 90 \mathrm{~mm}$ approx.
Mechanism with automatic stop and tape counter with reset button.
Tape Speed: $4.76 \mathrm{~cm} / \mathrm{sec}$. ($11 \mathrm{in} / \mathrm{sec}$.).
Wow \& Flutter: Typlcally 0.1%.
Drive Motor: 12 V d.c. with electrical governor.
Play Torque: $40-75 \mathrm{~g} / \mathrm{cm}$ (DYNAMIC).
Rewind \& Fast Forward Torque: $60-140 \mathrm{~g} / \mathrm{cm}$ (STATIC).
Rewind \& Forward Time: Less than 100 sec . for C60 tapes.
Blas/Erase Oscillator: Externally variable, frequency $90-100 \mathrm{kHz}$.
Output: (Adjustable) Up to 1 volt r.m.s.
Mic. Sensitivity: $1 \mathrm{mV} @ 47 \mathrm{k}$.
DIN Sensitivity: 30 mV @ 47 k .
Frequency Response; $30 \mathrm{~Hz}-12.5 \mathrm{kHz}(-3 \mathrm{~dB})$.
Signal to Nolse Ratio.
Noise reduction OFF -50 dB
Noise reduction H.F. -56 dB
Noise reduction FLAT -70dB
Cross Talk: Typically -50 dB .

all in your

Powis sisit

This new series deals with the construction of a flexible audio system giving up to 150 W output. The basis of this system is a 50 W power amplifier module which can be used with pre-amps, line drivers, tone controls and mixers to construct a wide range of high powered sound reinforcing systems.

One of the most useful pieces of test equipment after the multimeter is the signal generator. A must for the home constructor, this multifunction Signal Generator with built-in Frequency-to-Voltage converter.

(1)

This DAC/ADC board for the ZX Spectrum plugs into the expansion port and enables both analogue-to-digital and digital-to-analogue conversions, with an 8 -bit resolution, to be achieved.

MEeromariting The Principle and the Product...

The Microwriter is a handheld box with only six keys and a liquid crystal display, but it represents a real alternative to the QWERTY keyboard.

PRACTICAL

 ROEOTICS MicROS ELECTAONICS-INTEAFACINE FEBRUARY 1985 ISSUE ON SALE FRIDAY, JANUARY 4

5

MARCO TRADING

Wem, Shropshire SY4 5EN
Tel: 093932763 Telex: 35565

LASERS \&HOLOGRAMS RICHARD BARRON

T would be futile to try to describe the fantastic experience of LASER light, as it can only be fully appreciated by seeing first hand its absolute uniqueness. Similarly a hologram is the equivalent of a thousand pictures, and since it takes a thousand words to describe a picture, then it must require a million words to adequately describe a hologram. Because paper, ink and my patience are in short supply, I shall not attempt to do this, instead I shall try to explain the nature of, and the methods by which LASERS and holograms are produced.

MICROWAVE AMPLIFICATION BY THE STIMULATED EMISSION OF RADIATION (MASER)

A MASER is a device which produces intensified electromagnetic radiation by a method first predicted by Einstein in 1947. It is the process of stimulated emission that renders the unique characteristics of the radiation produced. The electromagnetic spectrum includes Gamma-waves, radio waves and visible light, which differ only in their frequency and wavelengths. Infra-red radiation and visible light have wavelengths between 1 mm and 0.001 mm and it is this part of the MASER spectrum which constitutes a LASER... Light Amplification by the Stimulated Emission of Radiation. Before considering the meaning of stimulated emission we must first understand a little about the nature of atoms and the energy states within them.

Fig. 1. The energy states within atoms causing spontaneous emission

All elements are made from atoms which consist of a number of electrons surrounding a central nucleus containing tightly packed particles known as protons and reutrons. In the early days it was thought that electrons orbited the nucleus in a similar manner to that of the planets round the sun, but the theory relating to the energy and motions of these particles has developed to such an extent that we no longer believe this to be true. Electrons are arranged in
'shells' around the nucleus; the number of shells and electrons depending on the particular type of atom. At norma! temperatures the radii of the various electron shells are fixed and the electrons in them possess a fixed amount of energy. Under these conditions the atom is said to be in its lowest energy state, or ground state. However if the atom is given extra energy by being heated or struck by a fast moving ion then one or more electrons may jump from one shell to another. It is then excited, i.e. in a high energy state. This state is not maintained for long and the electrons will soon jump back to its 'natural' shell thus giving out energy in the form of electromagnetic wave pulses called photons.

According to Plancks quantum theory the amounts of energy involved in the high to low transitions are considered to be finite bundles of energy called quanta; the quantity of energy being termed a photon. The frequency and wavelength of the emitted photon depends upon its energy and the type of energy transition involved. For example if an ordinary filament lamp is heated then the light produced contains a wide range of wavelengths, since the number of energy states and possible transitions are high. The time between gaining thermal energy and emission of energy will also differ, thus giving out random photons which are out of phase with each other. This process, random emission is said to be incoherent. Another process which may also occur is absorption, where a quantum of radiation strikes an atom which will absorb the energy causing excitement. Once excited, the atom may emit a photon and return to ground state at a later stage, causing spontaneous emission.

LET'S GET STIMULATED

If an atom is bombarded by a photon with an energy content or wavelength such that it causes it to emit a photon, then the emitted photon will be exactly the same wavelength and in phase with the striking photon. The atom will then be reduced to a lower energy state which is the reverse of the absorption process. This gives rise to a situation where the striking photon carrying on its journey is added to by the emitted photon. If this is repeated with each collision, then an intensified beam of photons is produced all of which have the same wave motion and phase. This is called coherent light and the process is termed stimulated emission. Under these conditions we have Light Amplification by the Stimulated Emission of Radiation, yes a LASER.

So far so good but in practice most electrons will have low energy states which will reduce the intensity of the beam by absorbing energy. What is required is an external energy source to keep the beam 'topped up.'

THE RUBY LASER

The first real development in the successful production of light amplification by this process was the construction of the ruby laser. Ruby is a crystal of aluminium oxide with some of the aluminium atoms replaced with chromium which gives it its deep red colour. This also accounts for the amplification effects of the ruby LASER.

A practical ruby LASER consists of a crystal ruby rod with its ends ground flat, polished and coated with a highly reflective material (one end partially coated). Surrounding the crystal is an external flashlight source which is used to 'pump' light energy into the crystal causing the chromium atoms to be raised to a high energy state. This causes spon-

Fig. 2. The principles of LASER operation
taneous emission of light, most of which escapes through the sides of the crystal rod. However some of the spontaneous energy is emitted in the direction of the mirrored ends and is reflected back into the crystal. When this radiation strikes a chromium atom, stimulated emission occurs thus amplifying the radiation. As the light travels back and forth between the ends of the rod it becomes more and more intense giving rise to an effective LASER. For continuous operation the ruby has to be cooled, as a great amount of heat can be produced as energy is transferred.

GAS LASERS

Since the development of the ruby LASER there have been many types of LASER devices, most of which have employed the use of gas as their amplifying medium. The first device of this kind contained a mixture of Helium and Neon which was excited by passing an electric-current through the gas; a similar technique to that used in Neon signs and Sodium street lighting. With Helium and Neon it was found that it was possible to excite the gas causing stimulated emission which produces radiation of 1.15 micrometers wavelength, which is of course in the infra-red spectrum. The radiation is once again reflected back and forth within the gas chamber increasing in intensity as more and more electrons become stimulated.

Fig. 3. Basic construction of a Ruby LASER
There are many other combinations of gas used, particularly Argon and Krypton which produces amplification in more than one region of the visible spectrum. This results in an emitted beam giving the appearance of intense white light.

Modern LASERS make use of the principles already described, but many advances in technology have been made, enabling complex and very powerful LASERS to be produced. The energy source for these 'machines' is now often high frequency radio energy operating at very high powers.

The thyratron shown in the photograph below is capable of providing energy pulses of 30 kV with peak currents in the range of $15,000 \mathrm{Amps}$. These are used in modern gas discharge LASERS.

APPLICATION OF LASERS

Today there are many applications of LASERS in the fields of industry, medicine and communication. This is largely due to the great versatility in aiming and focusing of LASER energy, using optical lenses and mirrors. In industry LASERS have been focused onto very tiny areas and used for cutting, welding and drilling and in medicine have been successfully used in the treatment of eye disorders such as detached retinas, and more recently shown promise in the treatment of cancer and similar illnesses. Because the nature of light is similar to that of 'conventional radio' LASERS have found many applications in electronics and communication, employing speech and data transmission.

LASERS are now widely used in the printing industry to produce mass copies, and are now even employed on small printers associated with personal computers. Fig. 4 shows a LASER being used in the printing industry.

Another use of LASERS is in the production of holograms.

Fig. 4. LASERS used in the printing industry

HOLOGRAPHY

Like photography, holography is a technique used for storing images on film, however, the two processes are fundamentally different. In conventional photography the light source essential to the production of an image is white light, that is to say a jumbled mixture of frequencies ranging from infra-red to ultra-violet. Because of this wide spectrum of frequencies it is impossible to record information regarding the depth of a scene or object. In 1947 the British scientist Dennis Gabor conceived and predicted the hologram which was capable of recording 3 -dimensional (3D) detail on film, but the practical demonstration had to wait for the invention of a particular type of light source, that being the LASER. The essential properties being monochromatic, i.e. single frequency and also coherence (each wave being in phase with each other). As was suggested the details of the depth of the scene illuminated by LASER light can be contained in the phase relationship of the light reflected off the subject. A wave coming from a closer point in a scene will lead a wave arriving from a further point, this being true because the speed of light is constant.

Fig. 5. Schematic representation of a LASER being used in the production of a holographic image, and stored on a photographic plate

To record this information a LASER source is set up and split into two beams, one being aimed at the subject, the other being used as a reference beam. If the reflected beam arriving back from the subject is recombined with the reference then constructive or destructive interference will occur. That is to say if the two waves are in phase with each other, a crest coinciding with a crest, then constructive interference occurs, If they are out of phase, a trough coinciding with a crest, then destructive interference occurs, producing a phase difference of half a wavelength. With this principle, all the variations between these two extremes will contain the detail of depth.

The resulting amplitudes of the waves reaching the holographic plate at particular points do not vary with time, but standing wave patterns are established and recorded on the sensitive plate or film. When the holographic film is developed, the recording looks nothing like the original. The light reflected from the subject and combined with the reference causes the film to be made up of a complex series of concentric circles and bands of varying intensity.

Fig. 6. Schematic representation of the reconstructed image

RECONSTRUCTION

There are several methods of recording a holographic sčene, the most common being as a transparency. The image is reconstructed by illuminating the transparency with a reference beam of the same frequency and wavelength as the recording beam. As it passes through the recording, interference will occur which will be exactly the same as the interference which occurred during recording. This will produce a three-dimensional virtual image which is apparently behind the film. There is also a real image formed in front of the film, but cannot be seen as it is a 'focused image'. However, different parts of the image can be seen by moving a screen back and forth, bringing it into the focal area.

The methods outlined so far have one major drawback. Because of the nature of the light source, the resulting image is monochromatic; one frequency, one colour. Nowadays modern techniques allow us to use three separate reference beams employing different frequencies relating to the three primary colours; red, green and blue. By clever manipulation of the beams a scene can be reconstructed in 3-D colour, to give a faithful reproduction of the original.

In practice the quality of holographic images is often impaired by dust particles on lenses or in the air, and imperfections in the glass. This causes the LASER to be diffracted, and because of its coherence odd patterns are created on the image, giving it a 'spotted' effect. To some extent this can be overcome by careful cleaning and use of top quality polished glass. Another method widely used, nowadays, is to deliberately spread diffraction patterns over the whole image giving an overall speckled effect.

Photo showing a Thyratron capable of producing $\mathbf{3 0 k V}$. Used in Gas Discharge Lasers (Courtesy of EEV Co.)

APPLICATIONS OF HOLOGRAMS

Like LASERRS, holograms are being used in all areas of industry and new ideas are being developed all the time. By changing the direction (angle) of a reference beam between exposures it is possible to create a vast amount of entirely different images on one film. Each image can be reconstructed using the same technique, giving rise to many applications in the field of information and data storage and 3-D motion films.

Scientists and technologists are using holograms to measure minute size differences in similar objects. A hologram is made of an object and a reference beam is reflected off a copy to produce interference patterns on the plate. When the image is viewed, interference fringes will be apparent representing a size difference of half a wave length for each fringe. Using this technique it is possible to measure sizes as small as three hundred millionths of a millimeter.

One application of holograms is becoming very common, that being their use in security systems. Many banks are now issuing credit and bankers cards with a holographic monogram or signature. Because of the complexity of holograms it is almost impossible to forge.

As more and more scientists become interested in light energy and its applications, holograms and LASERS are certain to play a major role in all areas of our future industries and everyday lives. By the turn of the century 3-D films will be commonplace and the first 'optical computers' will be brought into service.

Holographic images used to avoid credit card fraud. (By courtesy of Barclays Bank PLC)

FREE! READERS' ADVERTISEMENT SERVICE

RULES Maximum of 16 words plus address and/or phone no. Private advertisers only (trade or business ads. can be placed in our classified columns). Items related to electronics only. No computer software. PE cannot accept responsibility for the accuracy of ads. or for any transaction arising between readers as a result of a free ad. We reserve the right to refuse advertisements. Each ad. must be accompanied by a cut-out valid "date corner". Ads. will not appear (or be returned) if these rules are broken.

OSCILLOSCOPE Tele S31R in working order. £30 o.n.o. Mr. G. Graham. Tel: Burton Latimer 6413.

RADIO Shack TRS-80 acoustic coupler mint condition E75. Mr. A. Ding. Tel: Wickford 62943 WANTED service manual \& circuit diagram for UK 101/broken board. Write, stating value: Mr. Y. J. Qalanzi, PO Box 182739, Amman, Jordan. VIC 20 with cassette recorder, printer, 16 k expansion, joystick, lots of software £200 o.n.o. Vernon Carter, Fitznells, 2 Chessington Road, Ewell, Surrey, Tel: 01-393 1577.
TWELVE 7" reels of Tandberg TGB professional recording tape 1800 ft . New. Made by 3 M company. Offers. L. T. Hill, 14 Rothesay Terrace, Bedlington. Northumberland. Tel: Bedlington 825967.

CENTRONICS 306120 CPS dot matrix printer full working order with manual $£ 60$. Tel: 0473 328013.

WANTED headshell for Goldring Lenco GL78 turntable. Good price offered. Mr. V. J. Owen, 14 Lower Oxford Road, Newcastle, Staffs. ST5 OPB. Tel: 0782619698.

TEKTRONIX oscilloscope dual trace delay sweep $24 \mathrm{MHz} £ 145$. Manuals H.P. DVM $£ 20$. Texas printer £45. Mr. T. J. L. Haley. Tel: 01-868 4221
TEXAS calculators: T1 57, new battery £14. T 130 rechargeable battery $£ 7$. New Sharp EL345, solar powered, £4. N. G. Savill, 31 Jubilee Avenue, Ascot. Berks. Tel: 0344 884832.

POWERTRAN density mixer modules wanted, kit or assembled. Contact D. Hanley. Tel: 0875 20692.

MAPLIN 5600 p.c.b.s, front panel and some components - over $£ 100$ worth. Only $£ 50$. Peter Makin, Tel: Atherton (0942) 892193.
ALUMINIUM boxes $\frac{1}{4} \times 1 \frac{1}{4} \times 2$ inches hinged lid. Suit small item storage $£ 5$ per 100. SAE + 20p for sample (unused). R. H. Pearce. 8 Holly Oak Road, Coxford, Southampton SO1 6GD. Tel: Southampton 788278.
WANTED circuit diagram of wireless remote control range up to two kilometres. Ajaz Jalal, A237 Sector 11.A, Gulshan-E-Usman, North Karachi, Pakistan.

DISC DRIVE, controller, PSU fits any machine VIA PIA. Fiex O/S for 6800. £250. Mike Davies 01-543 4977.
TOSHIBA 25 W Hi-Fi speakers $£ 30$. Fisher $\mathrm{Hi}-\mathrm{Fi}$ remote control/timer unit. 25 channel IR £ $£ 30$. Tel: 020648603.
I AM interested in communicating with someone who has information on electronic science. Please write to: Abbas Rezaei, PO Box 62, Nagafabad, Isfahan, Iran.
SUPERBOARD MKII $8 K$ with case and p.s.u. 2 MHz CIS monitorum centronics. Parallel interface £45 o.n.o. Tel: 0519242611.
WANTED manual or circuit diagram for Solartron type CD523S oscilloscope. Tel: 01-274 7566.

I NEED to buy LSIs AY-3-8710 and T.M.S 1000 with price of $£ 30$. Please write to: Abbas Rezaei, PO Box 62, Nagafabad, Isfahan, Iran. WANTED any unusable, broken, computercheap, with real keyboard; keyboard must be in working order. Mr. M. West, 28 Rectory Lane, Houghton Conquest, Beds. MK45 3LD. Tel: Bedford 740332 .

Please publish the following small ad. FREE in the next available issue. I am not a dealer in electronics or associated equipment. I. have read the rules. I enclose a cut-out valid date corner.

Signature .. Date .
Please read the RULES then write your advertisement hereone word to each box. Add your name, address and/or phone no. COUPON VALID FOR POSTING BEFORE 4 JANUARY 1985 (One month later for overseas readers.)
SEND TO: PE BAZAAR, PRACTICAL ELECTRONICS, WESTOVER HOUSE, WEST QUAY ROAD, POOLE, DORSET BH 15 1JG.

[^0]ROBOT nop

THE BASIC construction and the electro-mechanics of the MENTOR robot were explained last month, and circuit diagrams for computer interfacing were given, as well as the circuits for writing to, and reading from, the robot. This month the servo-control and the power supply circuits are published.

SERVOING

The robot has dedicated hardware which performs the servoing tasks as shown in Fig. 5.2. This can be illustrated by examining the "axis \emptyset " electronics. IC200 buffers the feedback signal from the position feedback potentiometer, provides gain and a variable d.c. offset (VR200). It is almost impossible to fit the potentiometers to give exactly 0 V at exactly the axis minimum positions so they are fitted with about 5% of travel still to go and the residual voltage is then nulled out with the pre-set potentiometer. The next operational amplifier (IC201) produces two signals, the feedback VFB voltage which is sent to the ADC and the MP (Measured Position) voltage.

The MP voltage and the DP (Desired Position) are subtracted from each other by the voltage comparator IC202 pins 1,2,3. The output of this operational amplifier is an error voltage which is a measurement of the difference between the axis current position and where the computer has instructed it to go to. The error voltage is further amplified by the second half of IC202. This stage has a non-linear gain-to-output voltage relationship. The gain is greater when the output is near to 0 V , but falls by a factor of 10 for large signals. The additional gain at low signal levels ensures that there is sufficient voltage on the motor to keep it moving when close to the desired position and the error voltage is low.

The final stage, IC203, is a power operational amplifier which can deliver up to 350 mA but otherwise behaves like a 741 or similar. The i.c. amplifies the error voltage and sends its output directly to the servo motor. These are d.c. motors which can operate with as little as 20 mA drive but have peak demands of about 100 mA . If the servo loop has not been wired up backwards the axis will always move towards a position dictated to it by the data from the computer. A pair of l.e.d.s (D204,205) are also connected to the output of IC203 and these give a visual display of the drive to the motors.

POWER SUPPLY

The transformer T500 which has tappings for use on 110 , 130,220 or 240 V mains has 3 secondaries which supply separate circuits for the logic, analog and motor drive circuitry. This prevents the voltage spikes on the power rails of the motor drive circuits and logic from interfering with the operation of the

PART FIVE

Fig. 5.1. Power Supply for MENTOR
other parts of the system. CN502 leads to a double-pole switch to allow for the de-powering of the motors during initial setting up of the computer.

ROBOTICS PROJECT

Fig. 5.2. Servo-control electronics. The circuits for axes 1 to 5 are identical to the circuit for axis 9

To position-sensing potentiometers on each of six axes. See Fig. 5.2.

Also difference voltages for motors on each of six axes (MO-M5). See Fig. 5.2.

To CN501, Power Supply. Logic, analog, and motor supply voltages See Figs. 4.7 and 5.1

Fig. 5.3. P.c.b. and component layout for ME

MENTOR interfacing and control electronics

COMPONENTS . . .

MENTOR COMPUTER INTERFACE BOARD

Resistors

R100-117.2105
R118
$5 k 1$ (19 off)
R119,120,122,123,2000.
2008-2011,2013,2018,
2026-2029,2031,2036,
2044-2047,2049,2062-
2065,2067,2080-2083.
2085,2090,2098-2103
R121,124
R125
10k (39 off)
100 (2 off)
1
R2001,2003,2004,2014,
2019,2021,2022,2032,2037.
2039,2040,2050,2055,2057.
2058,2068,2073,2075,2076,
2086,2091,2093,2094,2104.
401,404,407,410,413,416 100k (30 off)
R2002 16k
R2005,2007,2020,2023.
2025,2038,2041,2043,
2056,2059,2061,2074,
2077,2079,2092,2095.
2097
R2006,2024,2042,2060,
2078,2096
R2012
R2015
R2016,2034,2052,2070,
2088,2106
R2017,2035,2053,2071.
2089,2107
R2030,2048
R2033,2051
R2054,2072
R2066,2084
R2069,2087
R300,302
R301,303,304
R400
R $402,405,408,411,414,41791 \mathrm{k}$ (6 off)
R403,406,409,412,415,418 1 M (6 off)
SIP400-402
$2 \mathrm{k} 2 \times 4$ sil (3 off)

Pre-set resistors

VR200-205,400-405
VR210-215
10k (12 off)
4 k 7 (6 off)

Capacitors

C100,101,103-105,
107-109,111-113,115-
117,119-121,123,131.
132,201,204,205,207.
210,211,213,216,217.
219,222,223,225,228,
$229,231,234,235 \quad 100 \mathrm{n}$ polyester (38 off)
C102,106,110,114,118,
122,125,126,200,206.
212,218,224,230
C124,400,403,404
10 n polyester (14 off)
C127-130,133,134,236.
237,300-303,401,402,
405
47 n ceramic (15 off)
C203,209,215,221,227.
233,202,208,214,220,
226,232,406-411
In ceramic (18 off)

Refer to Figs. 4.6, 4.7, 4.8, 5.1 and 5.2.

Semiconductors

D200-203,206-209,212-215,
218-221,224-227,230-233,
400,402-413
300-302
D205,211,217,223,229,235
IC100
ed.e.d. (9 off)
green l.e.d. (6 off)
74LS245
74LS244
74LS 138 (2 off)
IC102,406
IC103,106,111,116,200-202,
204-206,208-210,212-214.
216-218,220-222,403-405
IC104,107,109,112,114,117
IC105,108,110,113,115,118
IC203,207,211,215,219,223
IC300,303,305
$\begin{array}{ll}\text { IC301,304 } & 74 \text { LS } 21 \text { (2 off) }\end{array}$
IC302 74LS153
IC306 74LS11
IC307 74LS27
IC308 74LS74
IC309 74LS20
IC400,402 ADCO809 (2 off)
IC401 74LSOO
TR100 BC182L
TR101,200-205,400-405 BC212L(13 off)

Miscellaneous

CN100 8-way 0.156" Molex
CN200,201 $\quad 15$-way 0.1" Molex (2 off)
S300 RS334-117
8 -pin d.i.1. socket (25 off)
14 -pin di.i.l. socket (10 off)
16 -pin d.i.I. socket (9 off)
20 -pin d.i.l. socket (20 off)
28-pin di.i.l socket (2 off)
TV5 heatsink (6 off)

MENTOR POWER SUPPLY

Capacitors

C500,506-509 $4,700 \mu 1.6 \mathrm{~V}$ electrolytic (5 off) C501,503,505 $1 \mu \mathrm{~F} 35 \mathrm{~V}$ tantalum (3 off) C502,504 $\quad 2,200 \mu 35 \mathrm{~V}$ electrolytic (2 off)

Semiconductors

D500-511	1N4004 (12 off)
IC500	7805
IC501	7815
IC502	7915

Miscellaneous

CN500	10-way terminal block
CN501	8-way 0.156" MOLEX
T500	Laminated transformer

Fig. 5.4. Power Supply p.c.b. and companent layout

All components (except those for the power supply) are mounted on one double-sided p.c.b., as shown in Fig. 5.3. This main board performs the functions of computer interfacing, digital-toanalog and analog-to-digital conversion, and the control of the servo-motors for the six axes. The p.c.b. should be looked at in conjunction with Figs $4.6,4.7$ and 4.8 , and also Fig. 5.2, which together detail the circuitry involved in performing the opera-
tions of conversion, control and interfacing.
The p.c.b. for the power supply shown above (Fig. 5.4), can be related to the circuit diagram of Fig. 5.1. The ten-way terminal block CN500 connects directly to transformer T500 secondary, and all rectification, smoothing, and voltageregulation components are then mounted on this p.c.b.
NEXT MONTH: The assembly and use of the robots.

Ingenuity Unlimited

INGENUITY UNLIMITED has been a regular feature in Practical Electronics for many years, and has been a good reflection of the changing face of electronics, giving an up to date guide to new devices and circuit ideas. More recently we have introduced "I U of the month" for which we pay an additional $£ 10$ for especially good ideas.

We are looking for interesting circuit ideas, with useful or unusual applications. Test gear, micro interfacing and peripheral devices, domestic and automobile circuits are all areas of considerable interest. This month's "I U special" should give a good guide to the type of circuits we are looking for.

Each idea submitted must be accompanied by a declaration to the effect that it is the original work of the undersigned and that it has not been offered for or accepted for publication elsewhere. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.

Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not in the text.

PEBM

WIDE RANGE HIGH CURRENT SUPPLY

VIDEO TIMER INTERFACE

THIS design enables the internal timer of a video recorder to be used to control external equipment.

The circuit is connected to the video output of the recorder and detects the presence of sync pulses, whenever the machine is recording. These are then used to fire a 555 monostable, which operates a relay.

The composite video signal, at the input, is fed to the base of TR 1 . This acts as a sync separator, producing positive going pulses at its collector. These are inverted by TR2, and used to trigger the 555. The pulses also drive TR3 which periodically discharges the timing capacitor, preventing the mono from timing out.

When the video timer switches off, the 555 is allowed to complete its cycle, and the relay drops out, de-energising the load.
P. Thompson,

Lennoxtown,
Glasgow.

NTEGRATED circuit, variable voltage regulators offer a simple means of constructing high spec. power supplies. Unfortunately, when used over a wide voltage range, the power limitations of the i.c. impose a restriction on the current available. In the case of an LM317K, providing up to 30 V , the 20 W maximum dissipation means that at 5 V only about 0.7 A may be taken. This is due to the voltage difference across the regulator.

The circuit shown below overcomes this by switching the rectifier configuration, to reduce the raw d.c. applied to the regulator. IC1 is an LM 317 K with a continuously variable output from 1.5 V to 30 V . This is sensed by a 741 (IC2) used as a Schmitt trigger. The threshold is set so that when the supply output goes below 13 V , the Schmitt pulls in a relay, switching the rectifier from full wave bridge to full wave centre tap. This reduces the input to the regulator from 33 V to 16.5 V .
The circuit will supply 1.5 A over the range 3 V to 12 V , and up to 1 A for all other voltages.
P. Thompson, Lennoxtown, Glasgow.

PRACTICAL

ELECTRONICS

 SUBSCRIPTION SERVICEA faulty connection is the last thing you want in an electronic gadget. And the last thing you want in your regular reading is to miss just one copy of Practical Electronics.

From now on, why not arrange to have no more missed issues, no more worries, no more halffinished jobs. Avoid these breakdowns by taking advantage of the Practical Electronics subscription service: the most reliable method of ensuring you get each issue delivered to your door everymonth. Just fill in the order form overleaf and use the addressed envelope attached. Then leave us to do the rest.

GIFT SUBSCRIPTIONS

A subscription to Practical Electronics makes an ideal gift for a friend or relative with the same interests. All you have to do is complete the appropriate section of the order form and post it in the same way. We take over from there. We even send a card announcing your gift with your own personal message on it.

PRACTICALELECTRONICS
 Subscription Service ...we'll keep you posted.

PEGM

BAR-GRAPH DISPLAY

HJERE is a little circuit that is very flexible, which depends upon a characteristic of CMOS devices often forgotten when designing logic circuits. It can, however, be used to advantage in the circuit shown to produce an inexpensive, programmable, bar-graph display. The only limitation being the Vcc of 18 V quoted in most specifications for the device used. With luck though, this could be stretched to about 24 V as very often the low-current avalanche comes out between 25 and 35 volts. Nevertheless 18 V will do quite nicely to give a bar-graph display of $18 \times 1 \mathrm{~V}$ steps (or $36 \times \frac{1}{2} \mathrm{~V}$ steps) or whatever you choose, so long as the control voltage does not exceed the device maximum.

The effect used here (the one that is not too often considered) is the variation in switching threshold resulting from changes in Vcc. The threshold normally occurs at about 45% of power supply voltage and is constant throughout the supply voltage range. Thus if we were to hold the inputs of a device at a constant voltage reference level and vary Vcc, then when Vcc exceeds Vin by 55% a transition of the output would occur. This effect is not of much use at the lower end of the range but above a couple of volts can produce useful results by causing l.e.d.s to turn on.

The 4049 chip used here is capable of
sinking adequate current to drive the transistors. So, taking into account the earlier statement about varying Vcc and holding input levels constant, the hex-inverter package, with suitable input biasing, forms the basis of a l.e.d. bar-graph driver which can be preset for a given range using the potential dividers at the input pins. The Vcc pin then becomes the "Control" ($\mathrm{V}_{\text {cont }}$) input.

A couple of disadvantages lie in store of course, these are:
(a) The drive to the new "input" (Vcc pin) must be capable of supplying adequate current $(20-25 \mathrm{~mA})$ for the device without self-limiting. A 741 op.amp. would suffice if inserted at $x-x$ shown. This does, however, introduce a limitation insofar ($\mathrm{V}_{\text {cont }}$) into pin 1 of the 4049 can only swing to half the 741 's supply line voltage. Nevertheless, it is then possible to obtain gain from the circuit so that only a few millivolts will drive the display.
(b) The l.e.d.s can only be illuminated ther mometer style and not on a rising dot pattern.
The above are only minor considerations when one considers the cost-saving against bar-graph drivers. Stackable? Yes, of course, the only limitation being, as stated earlier, the Vcc factor.

Three 4049's could be used (stacked) with all their pin l's commoned to give an 18 step range to a maximum of $18 \mathrm{~V}\left(\mathrm{~V}_{\text {cont }}\right)$ input.

The design application here was for a variable power supply unit which did not
use the $741 \mathrm{op} . \mathrm{amp}$. as plenty of current was available but applications are numerous as readers will no doubt realise. Especially when used with an op.amp. front end.

OPERATION/CALIBRATION

The operation is already explained in principle and results from the switching threshold shift of the hex inverter package(s) used. The preset input bias being obtained from a simple zener reference of 9.1 V and the 6 (or more) potential dividers. The relationship of the input bias voltage to the control voltage $\left(\mathrm{V}_{\text {cont }}\right)$ is shown in the table and it will be seen that 9.1 V is adequate for the full range.

On the outputs of the hex inverter are 22 k resistors to limit the base current of the transistors and the output source current of the inverters. Transistors also give the inversion required to drive the 1.e.d.'s and thus sink current from the main supply line (12 V) rather than from pin 1 of the inverter package ($\mathrm{V}_{\text {con }}$) as this would be a less desirable condition. It would also preclude the use of the 741 op .amp add-on.

To calibrate the display, simply supply $\mathrm{V}_{\text {cont }}$ with a variable source (metered) and adjust the input bias potentiometers to the required steps. Re-check again after initial setting to account for minor variations in adjustment.

> A. M. Owen,
> Reading,
> Berks.

ACCENTED BEAT METRONOME

T
HE circuit shown is an Accented Beat Metronome, which can accent each second, third, fourth, sixth or ninth beat, making it an ideal tool for producing musical time signatures.
The start of an accented beat is indicated by a flash of D7 (red l.e.d.) and a low frequency bleep from WD1, whilst the start of an unaccented beat is indicated by a flash of D8 (green l.e.d.) and a high frequency bleep. The audible output may be turned off by opening $\$ 7$, and the l.e.d.s turned off via $\mathbf{S 6}$. S 8 is the on/off switch.
The audible output for the accented beat is produced by IC4a, IC4b, R5, R6 and C4 and the audible output for the unaccen-
ted beat by IC4c, IC4d, R7, R8 and C5. IC1a, IC1b, R1, R2, R3 and C2 form the oscillator which produces the beat, controlled by VR1. With the values shown and R3 equal to 15 k , a range of 30 to 300 beats per minute is possible. The output of the oscillator is converted to sharp positive spikes by C3 and R4.

IC2 is a decade counter with ten decoded outputs, which can cause a reset via S1 to S5, the lowest taking priority. An accented beat starts when both inputs to IC3a are high and an unaccented beat when the output of IC3a (pin 3) is high and the junction of C3-R4 is high.

The prototype was assembled on a

DUAL LED LOGIC PROBE

THE circuit diagram shown is for a TTL logic probe using a bi-colour l.e.d. to indicate five possible logic states.

The input is fed to a dual comparator, with switching thresholds set by the potential divider, at 0.4 V and 2.4 V , i.e. worst case TTL output levels. With the probe connected to a logic ' 0 ' the output from ICla is low and IC1b is high, turning on the red l.e.d. If the signal lies between ' 0 '
and ' 1 ' indicating an open circuit or a floating gate input, both the comparator outputs are low and the l.e.d. is unlit. For a logic 'l' ICl a switches high and IC1b stays low, switching the green l.e.d. A slow pulse train flashes alternately red and green, while higher frequencies cause the l.e.d. to glow yellow.

The probe may be also used with CMOS, in which case the potential divider should be made up with three 10 k resistors, setting the logic thresholds at $1 / 3 \mathrm{Vcc}$ and $2 / 3 \mathrm{Vcc}$ respectively.
P. Thompson, Lennoxtown Glasgow.
small piece of stripboard and the switches S1 to S 8 were all contained in a d.i.l. package mounted on the board.
H. J. Karmazyn,

Handsworth, Birmingham.

PETM
The circuit diagram of the Logic Probe

IU SPECIAL
ELECTRONIC DICE

Number Displayed	IC2 (4017) Output (high)	A	B	C	D	Pattern	
1	3	on	off	off	off	0	\otimes

Truth table showing display outputs

THE circuit shown gives a 'spot pattern' readout, similar to conventional dice. To all intents and purposes the output is random as it operates at 5 kHz , being much too fast to see during the 'roll'.

The oscillator is constructed using three CMOS inverters contained in IC1 and is used to drive a 10 stage divider (IC2) whose outputs are decoded to drive the

display. The oscillator is inhibited by pin 13 being held high via R3. When the 'roll' switch $\mathbf{S} 2$ is depressed the oscillator is enabled and counting begins.
On release of S2, IC2 is once again inhibited and the output remains stable. The display decoding and driving is arranged via the simple logic circuit and is best understood by referring to the truth table shown.

The prototype was built using two identical circuits and together with the battery, fitted into a box measuring $115 \times$ $77 \times 36 \mathrm{~mm}$. To give a slightly more interesting effect the second die is set up to stop after the first by changing C1 to 680 pF . The l.e.d.s can also be different colours.
P. Clarke,
Thame,
Oxon.

- BAKER \star

GROUP P.A. DISCO AMPLIFIERS post E2

AMPLIFIERS post $E 2$
150 watt Output, A input Mixer pre-amp. Illustrated
150 watt Output, Slove 500 mv. Input 3 Spa aker Outputs 889
580
50 . 150
 100 watt Valve Model, 4 inputs, 5 Outputs. Heavy duty.... 80 watt Valve Model, 4 inputs. Low Imp and 100 v inne output... E88 60 watt Moblle 240 V AC and 12 V DC, $4-8-16$ ohm +100 v line E 89 Reverb Unit for Microphone or Guitar $£ 35$ PP $£ 1$.
Electronig Echo Machine for miclgultar $£ 85$ PP $£ 1$.

DISCO CONSOLE Twin Decks, mixer pre amp £145. Carr $£ 10$. Ditto Powered 120 watt £ 199; or Complete Disco E300.
120 watt $£ 300$: 150 watt $£ 360 ; 360$ watt $£ 410$. Carr $£ 30$
DISCO MIXER. 240 V , 4 stereo channels, 2 magnetic, 2 ceramid tape, 1 mono mic channel, twin v.u. meters, headphone monitor outlet, slider controls, panel or desk mounting, grained aluminium DELUXE STEREO DISCO MIXER/EQUALISER as obove plus ©124 P Headphone Monitor, Mike Talkover Switch

2124 PP 2
As above with 7 Band Graphic $£ 138$.
P.A CABINETS (empty) Single 12 E32; Double 12 £38. carr $£ 10$.
WITH SPEAKERS 60 W £27: 75 W £54; 90 W £73; 150 W £ 82. HORNBOXES 200 W £27: 75W £54; 90W 173 ; 150W $£ 82$. HORNBOXES 200 Watt £32, 300 Watt E38. Post £4.
WATERPROOF HORNS 8 ohms. 25 watt $£ 20.30$ watt $£ 23.40$ watt f29. 20W plus 100 volt line £38. Post £2.
MOTOAOLA PIEZO ELECR Rowired, 4-8-16 ohm, $7^{3 / 8} \times 3^{3 / 8 / 8 i n}$, squar
100 watts. No crossover required. 4-8-16 ohm, $738 \times 3 / 8 \mathrm{Bin}$
CROSSOVERS. TWO-WAY $3000 \mathrm{c} / \mathrm{s} 30$ watt $\mathrm{E3} .60$ watt E5. 100 watt $\mathrm{E6}$. 3 way 950 coss 3000 cps. 40 watt rating, $£ 4,60$ watt $\mathrm{EB} .50,100$ watt

 $25 \mathrm{ohm}, 3 \mathrm{in} . \mathrm{E2}: 5 \times 3 \mathrm{in}, 6 \times 4 \mathrm{in}, 7 \times 4 \mathrm{in}, \underline{2} .50 .120 \mathrm{ohm}, 3^{1 / 4 i n}$ dia. $\mathrm{E1}$.

Make	Model	Size Watt	Ohms	Price	Pos
AUDAX	WOOFER	$51 / \mathrm{in}$. 25		¢10.50	
GO00MANS	Hifax	$71 / 2 \times 4 / / 4 \mathrm{in} .100$	8	530	
GOOOMANS	HB WOOFER	Bin. 80	8	E13.50	
WHARFEGALE	WODFER	8 Bin .30	-	${ }_{5} \mathrm{f} 9.50$	
CELESTION	01SCO/Group	10 in .50	$8 / 16$	21	
AKAI	WOOFER	122. 80		${ }^{166}$	
GOOOMANS	HPG/GROUP	12in. 120	$8 / 15$	$\underline{530}$	
GOODMANS	HPO/OISCO	12in. 120	${ }^{8 / 15}$	${ }^{530}$	
GOOOMANS	HP/BASS	15 in .250	8	E72	
G000MANS	HPD/BASS	18 in .230	8	E4	

METAL GRILLES $\sin E 3,10 \mathrm{in}$ E3.50, $12 \mathrm{in} \mathbf{6 4 . 5 0}, 1 \sin E 5.50,18 \mathrm{in} £ 7.50$.
RCS SOUND TO LIGHT CONTROLLER KIT. Printed Circuit Cabinet. 3 channels. 1,000 watts each. Will operate from Mi-Fi or Disco. £19. Post £1.
READY BUILT DELUXE 4 CHANNEL 4.000 WATT sound chaser + speed + programme controls £69. Mk2 15 programs, E89 PP E2. MAINS TRANSFORMERS
$250-0-250 \mathrm{~V} 80 \mathrm{~mA}$. 6.3 V 3.5 A . 6.3 V 1 A .

 Low voltage tapped outputs available
$1 \mathrm{amp} 6,8,10,12.18,18,20,24,30.36 .40,48,60 \quad \mathrm{E} .00 \mathrm{f}$. ditto $2 \mathrm{amp} \varepsilon 10.50 \quad 3 \mathrm{amp} E 12.50$
31-26-0-26-31 volt 6 amp
OW VOLTAGE MAINS TRANSFORMERS $\mathbf{5 5} 50$ E19.00 2 $9 \mathrm{~V}, 3 \mathrm{~A} ; 12 \mathrm{~V}, 3 \mathrm{~A} ; 16 \mathrm{~V}, 2 \mathrm{~A} ; 20 \mathrm{~V}, 1 \mathrm{~A} ; 30 \mathrm{~V}, 11 / 2 \mathrm{~A} ; 30 \mathrm{~V}, 5 \mathrm{~A}+17-17 \mathrm{~V}$ $2 \mathrm{~A} ; 3 \mathrm{VV}, 2 \mathrm{~A}: 20-40-60 \mathrm{~V}, 1 \mathrm{~A}: 12-0-12 \mathrm{~V}, 2 \mathrm{~A}: 20-0-20 \mathrm{~V}, 1 \mathrm{~A} ; 50 \mathrm{~V}, 2 \mathrm{~A}$
 E8.50 post 50 p MINI-MULTI TESTER
Pocket size instument, O.D.V. DC Voits 5 Pocket size instrument, O. D.V. DC voits 5 ,
$25,250,500$. AC volts $10,50,500,1000$. DC De-Luxe Range Doubler Meter, 50,000 o.p. v. $7 \times 5 \times 2 \mathrm{in}$. Resistance $0 / 20$ meg in

PANEL METERS $50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 500 \mu \mathrm{~A}, 1 \mathrm{~mA}, 5 \mathrm{~mA}, 100 \mathrm{~mA}, 500 \mathrm{~mA}$ 1 amp, 2 amp. $5 \mathrm{amp}, 25$ voth, VU $21 / 4 \times 2 \times 1 / 4 \mathrm{in}$. 88.50 post 50 pp
EQUIPMENT CASES. Black Vinyl Covered Top Ali Base $4 \times 21 / 2 \times 2^{1 / 4 i n . ~} £ 2.50 ; 6 \times 4 \times 1 / 2 \mathrm{in}$. $£ 3.60 ; \mathrm{B} \times 5 \times 2 \mathrm{in} . £ 4.00$; $11 \times 6 \times 3 \ln$. $£ 5.50 ; 113 / 4 \times 6 \times 5 \mathrm{in}$. $\mathbf{E 9 . 0 0 ; 1 5 \times 8 \times 4 \mathrm { in } \text { . } £ 1 2 . 0 0}$. ALI ANGLE BRACKET $6 \times 3 / 4 \times 3 / 4 \mathrm{in}$. 30p.
ALUMINIUM PANELS 18 s.w.g. $12 \times$ 92in. $£ 1.80 ; 14 \times 9 \mathrm{in} . \mathrm{£1.75}$; $6 \times 4 \mathrm{in}$. $55 \mathrm{p} ; 12 \times \operatorname{Bin} \mathrm{Et} 30 ; 10 \times 7 \ln .96 \mathrm{p} ; 8 \times 6 \mathrm{in}, 90 \mathrm{p} ; 14 \times 3 \mathrm{in}$.

$4 \times 21 / 2 \times 2 \mathrm{in} .51 .20 ; 3 \times 2 \times 1 \mathrm{in} . \mathrm{E1} ; 6 \times 4 \times 2 \mathrm{in} . £ 1.90 ; 8 \times 6 \times 3$
 HIGH VOLTAGE ELECTROLYTICS $\quad 32+32500 \mathrm{~V} \quad . \quad . \quad . \quad$.

EECCA TEAK VENEERED PINTH EPA EA, DECCA TEAK VENEERED PUNTH space for small amplifier.
Board cut for BSR or Garrard $183 / 4 \mathrm{in} . \times 141 / 4 \mathrm{in} . \times 4$ in $\mathrm{E5}$. Post $£ 1$
 TINTED PLASTC COVERS for Decks. E5 oach.
$17^{7 / 8} \times 13^{1 / 3} \times 31 / 4$ in. $11^{1 / 4} \times 12^{1 / 2} \times 3 \mathrm{in} .21 / 2$ $17^{7 / 8} \times 13^{1 / / 2} \times 3^{1 / 4 i n n .181 / 4} \times 12^{1 / 2} \times 3 \mathrm{in} .211 / 2 \times 14^{1 / 4} \times 2^{1 / 2 \mathrm{in} .}$.
$17 \times 12^{7 / 8} \times 3^{1 / 2 i n .} 14^{1 / 8} \times 13^{1 / 4} \times 3^{1 / 4} \times 13^{1 / 3} \times 2^{3 / 4 i n}$. $\begin{array}{lll}17 \times 12^{7 / 8} \times 31 / 2 \mathrm{in} . & 141 / 8 \times 13 \times 31 / 4 & 141 / 2 \times 13^{1 / 3} \times 2^{3 / 4 i n} . \\ 22^{5} / 8 \times 137 / 8 \times 3 \mathrm{in} . & 165 / 8 \times 13 \times 4 \mathrm{in} . & 21 \times 13^{3 / 8} \times 41 / 3 \mathrm{in} .\end{array}$

RADIO COMPONENT SPECIALISTS
Dept 4, 337. WHITEHORSE ROAD, CROYDON
SURRY, U.K. TEL: 01-684 1665
ACCESS

RADIO COMPONENT SPECIALISTS
Dept 4, 337, WHITEHORSE ROAD, CRO
SUREY, U.K. TEL: 01-684 1665

April 85

June 85

After first year
Proposed coverage of the British Telecom/Securicor service (Cellnet)
businessmen already using or queueing for a congested service. Now the system has to be sold, to people who do not yet know they cannot live without it.

Inevitably the fast-buck merchants are already climbing on the bandwagon in the US, offering cellular radio at cut price. It is bound to happen in Britain, too. The most important lesson learned by Ameritech, is that businessmen want to buy at a "one-stop" sales outfit. You take the car in to a garage in the morning and collect it that night, with the telephone unit, onboard transmitter and aerial installed. The engine interference has been suppressed, the number is allocated and all the forms for service ready to sign. What the busy businessman wants is a dial tone in the car in exchange for a single signature.

UNKNOWN POTENTIAL

Privately, engineers admit that they do not know how far a cellular system can be expanded if it becomes too successful. When use is light, each cell can be several miles wide. As radio traffic increases the cells are sub-divided, with another transmitter of lower power installed in each newly created cell. To

Basic cellular structure showing honeycomb format
economise on transmitter construction they can be located at the cell corners and designed to beam sectored signals of different frequency into free adjacent cells. But there has to be a bottom limit on practical cell size and transmitter power. Nobody will know what this limit is until it has been reached. This is why engineers are already looking for ways of using existing channel space more efficiently.

The Science and Engineering Research Council in Britain is working behind the scenes to stimulate research into cellular radio. The SERC believes there will be room for a completely new generation of cellular radio telephone technology in the 1990 s, probably using satellites, which will give everyone the chance to communicate on the move. The hope is that the technology will be British. Bath and Liverpool Universities already have SERC grants to work on the key problem, which is cramming more speech into less radio bandwidth. University College Swansea and Southampton are also working on it.

All current mobile radio systems transmit the speech as analogue waves, by frequency modulation (f.m.). Reducing the bandwidth of each channel makes more channels available but lowers audio quality. There are two ways of maintaining audio quality, while reducing bandwidth: the use of single sideband modulation (s.s.b.) or digital encoding of the analogue speech before transmission. It should even be possible to combine both and transmit digital speech by s.s.b. Until recently s.s.b. was unusable at the high frequencies, of around 900 MHz , allocated for cellular radio. This is because there is no carrier wave for s.s.b. to hold the receiver on tune, and tuning becomes inherently less stable as the frequencies get higher. Bath University believes it has licked the problem by transmitting a pilot tone to lock the receiver onto the right frequency. With s.s.b., bandwidth can be reduced to 5 kHz per channel, but Bath complains of trade apathy. "Everyone says it looks interesting, but no-one is interested," says a researcher.

Digital transmission on a narrow channel relies on breaking down the speech into crude code which is then used to trigger a speech generator at the receiver. So far the coding circuits consume too much power for a portable set which must rely on small batteries. Fortunately the existing cellular system chosen for Britain should not run out of capacity until the 1990's. Because no new system of reduced bandwidth could be compatible with existing cellular technology, engineers can afford to consider using satellite transmissions to give nationwide coverage with s.s.b. and/or digital coding.

BRITAIN'S CHOICE

The cellular technology adopted for Britain and due to start this month, is the Total Access Communications System (TACS) which is a modified version of the US technology AMPS. The choice was made only after much high level soul searching, and it caused a rift with other European countries which had hoped for a 'standard' Pan-European system.

Norway, Sweden and Denmark developed their own systems. So did Japan and Siemens in Germany. Philips and CIT-Alcatel developed the MATS-E system, This boasts an advantage over AMPS in that it does not tie up a speech channel while a call is being dialled, rung and connected. Another dedicated channel is used for this instead. But when, in December 1983, Britain opted for TACS, the MATS-E system was still only a paper proposal. Europe will decide what to do at the end of 1986. In 1979 the World Administrative Radio Conference released enough air space for 1,000 channels of mobile radio throughout Europe at around 900 MHz . Four hundred of these channels are being kept in reserve for the European system. If Europe adopts British TACS (which is unlikely) the UK gets a bonus of another 400 channels. If (more likely) Europe goes it alone with MATSE, anyone driving across Europe will need two different reception systems; one to cover Britain and one the Continent. But whatever happens there will be a delay because the 400 channels reserved for Europe are still being used by NATO. Any premature attempt at transmitting the digital control signals needed for cellular radio on these frequencies might well launch a missile!

RIVAL SYSTEMS

The British Government has licensed two rival consortia to operate cellular radio in the UK. British Telecom and Securicor Cellular Radio (TSCR) is a joint venture between British Telecom and Securicor which will offer the Cellnet service. Racal will offer Vodafone as a private sector rival. Both consortia are promising a service from the beginning of 1985. But I, for one, wonder how comprehensive these services will be. Racal will not even start trials until December. The Racal news sheet of "technical information", which has been re-published by the

mobile radio trade press, contains at best a misleading description of how the system works. It talks of clusters of five cells and explains how this means that 200 channels can be split into 5 groups of 40 . Perhaps Racal has discovered its own version of the 4 colour map theorem which can group hexagonal cells into clusters of 5. After a TSCR press conference, where spokesmen seemed thoroughly confused on technical points, I tried to telephone the BT/Securior consortium to check some points. There was no reply from the numbers they had given me. TSCR, although part owned by BT, had changed its office telephone number without making reliable arrangements for calls to be rerouted.

If would-be users of Cellnet cannot get through, they might just as well subscribe to Vodafone. But the cost of both services will be similar, under $£ 20$ a week for moderate use. "There will be no price war," says Racal. But there may be a publicity war. Racal recently embarked on an astonishing series of image building television adverts even though the company sells nothing to consumers. The cost is estimated at $£ 0.3$ million a month.

REAGAN RUCKUS

Cellnet upset the American White House by running full page advertisements in the press, including The Times, showing President Reagan apparently using a Cellnet phone during the economic summit held in London in June. The White House has since confirmed that it was not asked permission, and would have refused it if asked. TCSR admits that the photo was a fake, with Reagan's head grafted onto a British model's body. One thing Cellnet did not advertise was the fact that the Summit politicians had to be warned that they should not say anything sensitive over the air. Although it is more difficult to eavesdrop on cellular radio, because the frequency is liable to switch, there is no real security unless speech is additionally scrambled.

The Chicago system started with 17 cells; it is now up to 23 and should be 30 by the end of the year. Almost every original Chicago cell has now been split to cope with extra demand. Ameritech saves money by buying small unusable corners of land for its transmitters; the back of a golf course, the corner of a police car pound or the side of a public parking lot. Unforseen technical problems are still turning up. Because the cells are small, the transmitters are of low power with relatively low aerials. Mysteriously, reception was found to be better in the winter. It turned out that this was because in the summer, leaves on the trees can materially attenuate the high frequency, low power signals.

BLACK SPOTS

Normally, "hand-off" is inaudible. But, as the Chicago operators have found in practice, there will always be reception black spots where the mobile receiver hunts vainly for a strong enough signal, switching between every transmitter and spare frequency in the area. Under these circumstances the switching process can be heard.

In Britain, TCSR has demonstrated a prototype data communications system, which enables electronic mail messages to be sent to and from a moving vehicle, using a portable computer like a Tandy TRS100. The snag, already encountered in Chicago, is that there is a loss of data in the 300 millisecond gap which occurs at each "hand-off". This can be important, especially for data transmitted in a bank statement with strings of zeros! The prototype TCSR system uses data buffering, to bridge the gap and correct digital errors. But this is not yet a commercial service.

ACKNOWLEDGEMENTS

We would like to thank The Board of Trade and British Telecom/Securicor who furnished the illustrations used in this article.

As you can see, the Burgess range of tools is expertly designed and superbly styled So you know such well presented products can give you only the best results. The performance of Burgess products will please you just as much as their appearance Of course, we understand there are people who believe that good looks in themselves are not enough. However, a Burgess tool is not just a pretty face, and here are some hard facts about the versatility and performance of our extensive range.
Bandsaw - Two speed, converts to iigsaw/fretsaw, with blades for hard and soft materials.
Fretsaw - Sealed long life motor, table with tilt, blades adjustable for changing direction of cut, throat capacity of $18^{\prime \prime}$, power take-off Sprayers - Electrical sprayers for a range of liquids including insecticides, solvents, preservatives, varnish and cellulose paints. Grinders - Compact grinders with rough and smooth wheels; low speed whetstone sharpener for home, hobby and workshop; sanders for heavy duty and craft applications.

fortiose who don't

Soldering Irons - From 15 to 80 watts, a range to suit applications from light electronics through to DIY and craftwork
Engravers - Hand held, craft and profess ional, vibro and rotary engravers, with special purpose points for applications as varied as glass engraving through to

security marking
Staplers - An extensive range of mechanical and electric staplers and nailers, top of range electric staplers have 'multi-tack' feature for up to 30 mm staples and nails.
Now that we've convinced you, we're sure you'll agree - with Burgess, there's always a happy ending.
For further information, please complete the coupon.

BURGESS

Burgess Power Tools Limited, Sapcote, Leicester LE9 6JW.

TWO FABULOUS OFFERS FROM

소
 GOM

The incredible ' MINI 20'

28 rances

$20 k \Omega / V$ d.c. $4 k \Omega / V$ a.c.
(With protective fuse)
Accuracy: 2% d.c. and resistance, 3\% a.c.
28 ranges: d.c. $V 100 \mathrm{mV}, 3 \mathrm{~V}, 10 \mathrm{~V}$, $30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 600 \mathrm{~V}$, d.c. $150 \mu \mathrm{~A}$, $600 \mu \mathrm{~A}, 6 \mathrm{~mA}, 600 \mathrm{~mA}$. a.c. V 15 V , $50 \mathrm{~V}, 150 \mathrm{~V}, 500 \mathrm{~V}, 1500 \mathrm{~V}$, a.c. I $30 \mathrm{~mA}, 300 \mathrm{~mA}, 3.0 \mathrm{~A}$. Ohms $0-2 \mathrm{k} \Omega$, $0-2 \mathrm{M} \Omega \mathrm{dB}$ from -10 to $+62 \ln 6$ ranges.
Dimensions: $105 \times 130 \times 40 \mathrm{~mm}$.
The 28 ranges cover all likely requirements. Operatlon Is stralghtforward, just turn the selection switch to the required range.

This special offer Is a wonderful opportunity to acquire an essentlal plece of test gear with a savIng of nearly $£ 10.00$.
THE IDEAL INSTRUMENT FOR THE CONSTRUCTOR

(complete with carrying case, leads and instructions)

'SUPER 20'
 A SUPER PROTECTED UNIVERSAL MULTIMETER

Accuracy: d.c.-ranges and $\Omega 2 \%$ a.c. 3% (of f.s.d.)
39 ranges: d.c. $\mathrm{V} 100 \mathrm{mV}, 1.0 \mathrm{~V}, 3.0 \mathrm{~V}, 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$. d.c. $150 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 300 \mu \mathrm{~A}, 1.0 \mu \mathrm{~mA}, 3 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$,
$100 \mathrm{~mA}, 1 \mathrm{~A}, 10 \mathrm{~A}$
a.c. $\mathrm{V} 10,30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$;
a.c. $13 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}, 100 \mathrm{~mA}, 1.0 \mathrm{~A}, 10 \mathrm{~A}$.
$\Omega 0-5.0 \mathrm{k} \Omega, 0-50 \mathrm{k} \Omega, 0-500 \mathrm{k} \Omega, 5 \mathrm{M} \Omega, 50 \mathrm{M} \Omega$. dB from -10 to +61 in 5 ranges.
Dimensions: $105 \times 130 \times 40 \mathrm{~mm}$.
These special offers is a wonderful opportunity to acquire an essential piece of test gear with a saving of nearly $£ 20.00$.
(complete with carrying case,
leads and Instructions)
ONLY £33.50
PRICES Our prices include VAT and postage and goods are normally despatched by return.

For details of these and the many other instruments in the Alcon range, including multimeters, components measuring, automotive and electronic instruments, please write or telephone:

[^1]
DRA 100

(SEE "RADAR SECURITY" PROJECT IN THIS ISSUE)

SIMPLY THE BEST

\star The best because its blanket coverage means that all doors and windows can be covered without the need for individual switches and wiring.
\star The best because its low power RF radiation pattern is unaffected by air disturbance- - unlike ultrasonic or passive IR systems.
\star The best because movement can be detected through brick walls. Intruders can be deterred before they intrude!
\star The best because the system can be enlarged by the addition of passive detectors such as reed switches, heat detectors, personal attack buttons etc.
\star The best because the size of the protected area is variable. Careful adjustment of the transmitters allows "safe areas" to be created, enabling legitimate callers to avoid triggering the alarm.
\star The best because it represents top value, the DRA 100 kit form costs less than most perimeter wiring systems - and offers so much more protection for your money.
Standard Kit (lincluding 2 transmitters) $\quad \mathbf{£ 1 9 . 0 0}+$ VAT
Pair of extra transmitters

$$
\mathrm{f} 29.00+\text { VAT }
$$

Special Offer

Extended Kit (including 4 transmitters) $£ 139.50+$ VAT
The DRA 100 is available from

POWEATIAN ghenatis mu

PORTWAY INDUSTRIAL ESTATE, ANDOVER, HANTS. SP10 3PE. TEL (0264) 64455

Radar Security Alarm

A DESIGN BY POWERTRAN CYBERNETICS

A^{s}S some readers may have noticed, Part Two of this project has been delayed for some time. This was due to modifications which have been made to the Oscillator/Detector units to alter the operating frequency. The improved version has several advantages over the original: fewer components, single p.c.b., increased sensitivity.

The new circuit diagram is shown in Fig. 11 and the p.c.b. design and component layout is shown in Fig. 12. The rest of the circuitry and construction remains unchanged.

In Part One of this article, the operation of the complete unit was described in detail and the construction of the Oscillator/Detector modules was fully covered. Part Two, the final part, deals with the construction, assembly and setting up of the main unit. Fig. 9 shows the p.c.b. and component layout of the main unit. Fig. 10 shows the wiring diagram and the photographs below illustrate the various stages of assembly of the Radar Alarm.

MAIN ASSEMBLY

The chassis assembly is shown in the following photographs, and should be completed as follows:

1) Assemble 4 tapped spacers to the alloy base in the 2 corner holes. Use 6 mm CSK screws.
2) Fix end brackets to base plate using 6 mm CSK screws. Ensure that the holes for fixing the front and rear panels are towards the centre.
3) Insert alarm ON-OFF switch through the front of the panel and bend the retaining tags outwards.
4) Insert l.e.d. grommets from front panel.
5) Bend solder tags on VR101, 201, 301 and 401 at right angles and mount the sensitivity controls with the tags under the l.e.d.s.
6) Cut the 1.2 metre length of 2 core miniature screened cable to lengths required to wire from channels $1,2,3,4$ to

Front panel components
the relevant inputs. As only the screen and one wire is required the red and blue can be bound together at each end. 7) Insert l.e.d.s (red left, green right) for channels 1 to 4 , with long lead uppermost. Take the 200 mm length of tinned copper wire and connect all the anodes (long leads) about 5 mm from the l.e.d.s. Cut off the excess length.
8) Using white wire connect the cathodes (short leads) of the red l.e.d.s to the p.c.b. Use the 1 mm sleeving over the cathodes of the l.e.d.s.
9) Using orange wire connect the cathodes of the green l.e.d.s. to the l.e.d. $108,208,308,408$ positions on the p.c.b.
10) Wire the alarm ON/OFF switch with three colours.
11) Connect the top terminal of ME1a to VU+ on p.c.b. adjacent to VR2 using red wire, and the VU- to the bottom meter terminal using the black wire. At the same time connect a red wire to the common l.e.d. rail to provide a common HT line (+12 V).
12) Connect the bottom terminal of ME1b to $V U+$ adjacent to the piezo sounder, with red wire and the top terminal to VU- with black wire.
13) In order to record the wiring from front panel to p.c.b., take the grey screened wire, white and orange from each channel, tape the ends and label 1,2,3,4. The cables can then be routed to the board and held together with cable

14) Wire the relay coil solder tags to the relay coil p.c.b. holes below the piezo sounder and wire a pair of the normally open contacts of the relay to the relevant holes. Wire the piezo flying leads to the p.c.b.
15) Using 2 core miniature screened cable, wire the p.c.b. to the 3 -pole jack sockets, CH 1 to CH 4 . The connections on the jack socket starting nearest the panel are screen (earth) blue (detector) red (transmit). On the p.c.b. the connections are as follows:
(1) Under the 100Ω resistor-blue
(2) Bottom of 100Ω resistor-red
(3) Earth-screen
16) Wire up all the pots on the front panel, and the p.c.b. as shown on the wiring diagram.
17) Now connect the labelled groups from each channel

SECURITY PROJECT

Complete rear panel view

control to the appropriate holes in each channel on the p.c.b. i.e. screened cable-screen to earth
blue and red-VR101, 201,301, 401
orange-D 108, 208, 308, 408
white-D 109, 209, 309, 409
18) Connect the $V U$ meters to the appropriate p.c.b. holes.
19) Connect VR3 to blue and grey.
20) Connect the switch wires, white, orange and blue as shown in the wiring diagram.
21) Route the wires under the board to exit through the grommet and into the terminal block 1 and 2 (viewed from rear).

Using red and black wire, wound together, connect $B A T+$ and BATT-on p.c.b. 3 and 4 on term block.
22) Twist together 20 cm blue and wire the contacts of the relay to 5 and 6 on term block. Strap up wires with tie tags.
23) Connect $2 \times 25 \mathrm{~cm}$ lengths of white to the $\sim 12 \mathrm{~V}$ holes in the p.c.b. and one 25 cm length of orange into GND. Wind the three wires together and connect to the transformer terminal block.
24) All the wiring must be checked for bad connections and dry joints. The inside of the case must be cleaned to remove any stray bits of wire and solder. Before switching on give the unit a final check for any obvious errors in the construction or wiring.

TESTING

The oscillator detector boards can be tested using a 9 V supply. Connect the positive to the red wire and the negative to the screen, with the antenna extended to about 330 mm . A d.c. voltmeter should be connected across the screen and the blue wire and if the oscillator is working, it should read between 1 and 2 volts. Any movement close to the antenna should produce a small variation in the d.c. voltage which can be just seen on a moving coil meter, or fairly easily on a digital meter.

SETTING UP

With the detectors plugged into their relative jack sockets, turn the individual gain controls to zero (counter clockwise). Adjust VR1 so that the green l.e.d.s (line break detectors) just extinguish. Verify correct operation by pulling out the jack plugs one at a time and see that the green l.e.d.s light.

The detectors can be placed in positions best suited to cover entry and access points in the premises being protected. It should be borne in mind that if a detector is placed on the inside of an outside wall of a building, although some attenuation of the signal occurs, a moving target on the outside wall will trigger the alarm. This can be a positive advantage in covering the approaches to the building provided there is no right of way over the protected area.

A plan of the premises being protected can be overlaid with circles representing up to 20 feet radius and if protection should stop inside the front door then the approximate site can be found for the detector. The patterns from individual detectors can overlap with no adverse effect on each other. For man-size targets, the antenna of the detector should be about 5 ft from ground level. It is possible to screen off areas from pattern radiation by using aluminium foil a few inches from the antenna, thus casting a 'shadow'. This small variation is the Doppler frequency appearing at the output and is visible as a voltage variation because the Doppler frequency is only about 1 Hz . Extend or retract the antenna 1 cm at a time until the highest reading is obtained on the meter. This is optimum tuning, so measure the length and write on the base, the length for future reference.

If spurious triggering at high sensitivity settings is experienced, then it can be reduced as follows:-
Connect the anode of a diode to the junctions of R115 \& R116. Add $10 \mathrm{k} \Omega$ in series and hard wire to the collector of TR3. When incoming signals trigger the timers and TR3, the collector goes low. This allows C111, the pump capacitor, a quick discharge and holds it low for the alarm period. Wire the 3 remaining channels in the same way.

An additional decoupling capacitor may be required to prevent a pulse on the 12 volt line when the relay contacts supply power to the Noise Generator Circuit. This is a $100 \mu \mathrm{~F}$ 25 V electrolytic which can be wired from the ground end of R13 to the +12 V which is located on Link 5 .

The internal details of the Main Unit

Fig. 10. The wiring diagram of the Main Unit

IMPROVED OSCILLATOR/DETECTOR UNIT

The improved Oscillator/Detector Unit can be connected to the main unit as described in Part One. Most of the circuit acts in the same way to that described in Part One, the only difference is the oscillator operation, which now is at a

Fig. 11. The circult diagram of the improved Oecillator Unit
higher frequency. The oscillator in Fig. 11 is a 'one transistor' Hartley oscillator which relies on feedback from the inductance of the circult.

Fig. 12. P.c.b. dasign and component layout at the Oscillator Unit.

Isn't it time you traded your micro for one of our home computers?

This is the RAF Mark-3 Nimrod AEW, one of the world's most sophisticated space invaders machines.

It's packed with computer hardware, software and radar to help it identify potentially hostile aircraft before they enter NATO airspace.

If you have a talent for electronics you could soon be working with technology as revolutionary as this.

The three-year RAF Apprenticeship will earn you internationally recognised qualifications and an RAF career in mechanical or electronic engineering.

It's regarded by industry as the finest technical training this country has to offer. So naturally we have high hopes for our Apprentices, many of whom will go on to become Officers.

Places are offered in spring and autumn to young men aged $16-181 / 2$ (with a minimum four ' O ' levels at Grade C or above, including Maths and an appropriate Science). But competition is fierce, so apply well in advance.

Don't let the thought of leaving school put you off, remember this isn't a typical apprenticeship. It pays well and you'll learn as much as you would at a college, with friends of your own age.

Cut the coupon for more details. Or invade your local RAF Careers Information Office. (The address is in the phone book.)

APPLY NOW FOR ONE OF THE 120 PLACES NEXT SPRING.

[^2]
MRNON al IRENHLaige!

V.T.'s views and opinions are entirely his own and not necessarily those of PE

THE festive season, as your family probably keeps reminding you, is at hand. Or, if you prefer it, the time of the great ripoff is almost upon us. So let's make ourselves even more miserable by looking into the likely future.

The time is early evening on Christmas Eve. The place: Santa Claus's workshop. I was always brought up to believe that this was somewhere in Greenland. Not any more. Like the rest of us, Santa has been sucked into the vortex of modern electronic technology and so as to keep in the swim is now doing his stuff in Silicon Valley. At least it's warmer there.

By the way, he doesn't have a workshop anymore. It's now called his Manufacturing \& Distribution Headquarters Operations Unit. If you could find two more words to add to that title you'd have an acronym of MADHOUSE.
> ". . . the time of the great rip-off is almost upon us' ${ }^{\prime \prime}$

The old man himself has changed a bit, too. Remember that snowy beard into which he used to mutter, in his grotty department store grotto, warnings to be good and get to kipearly or you'd get nothing?

That's gone. It has fallen a sad victim to the Philips and the Brauns and others on the lucrative hair-removal circuit. And the passing of the fuzz has meant also, for some of us, the passing of a lot of dignity and romance.

How long, I wonder, before the rot really sets in and that familiar red robe is replaced by Farah cords and a T-shirt bearing the declaration: 'I Hate Kids'?

Relaxing quietly in preparation for his night of global travel, Santa reclines on a vibrating water bed. He's wearing headphones through which quadrophonic white noise replenishes his mental and physical tissues and stimulates his phagocytes. His what? Well, we've all got them. Take my word for it.

A carton of electronically-energised, highprotein junk food, fresh from its microwave oven, stands at his elbow. Vitamin-reinforced, decaffeinated and rich in polyunsaturates (I got that word from Terry Wogan) it is likely to be his only sustenance until the morn. The days when he could find a slab of indigestible home-made Christmas cake-prepared by loving if inexpert hands-on the doorstep are over.

"What a pity that this childish fun has gone by the printed circuit board'

An adjacent VDU keeps him briefed on the progress of the gift-stacking operation. On to his sleigh (sorry, his all-purpose, containerised freight transportation module) go the wrist-worn personal computers, the toppocket TVs and multi-dimensional advanced video games-complete with their own totes.

You'll have to look hard to find a bus conductor's outfit or a nappy-wetting doll of former and, dare I say it, happier years. Organised squads of lively elves-all paid-up members of the TGWU on a treble-time bonus agreement-labour at their computerised loading programme like demented ants.

What of the reindeer, whose red noses were once immortalised in song, who used to leap gleefully across the chimney pots of the world? They are no more the bearers of Santa's blessed load. In their place have come long-life, self-rechargeable power packs, sufficient to take the old man from California to Colchester, from Siberia to Surbiton and back via Wogga Wogga to Weston-superMare.

In the days of my blameless youth (I don't know about yours) we used to write letters to Santa at the beginning of November telling what we'd like to find on the end of the bed on Christmas Day. Sometimes we'd get a reply, written in not very well disguised parental handwriting, promising us that the old chap would do his best.

What a pity that this childish fun has gone by the printed circuit board. Now, if you don't get your order in, by punching it up on Prestel before the end of Lent, you've had it. Provided the system hasn't gone down under the weight of traffic, you can access a formal acknowledgement around Guy Fawkes Night. This will allocate your requisition number and give your gift applications a degree-ofpriority rating.

You may well be told that your request is 'temporarily out of stock'. In such instances you will be instructed to re-submit after Candlemass the following February. This tends to make December 25th a rather bleak day.

In other cases you may be advised that your choice is a 'discontinued line' and be offered a wildly inappropriate substitute. And, most chilling of all, is to be told that your
desires are so outrageously extravagant they have been referred back to Mum and Dad for a 'merit status report'. When things have sunk that low you might as well resign yourself to settling for a couple of specky oranges and a polished five pence piece.

The day wears on and things are hotting up. Toffee-nosed, superior robots, seasonably wearing holly in their antennae, check on weather, wind direction, deep and shallow depressions and other Michael Fish type data. These robot gentry are, of course, pulling down a much higher rake-off than the TGWU elves. The latter are but glorified labourers. The former all have Ph.Ds in Yule physics-a rare but essential qualification.

Santa downs a final dollop of balanced diet and climbs into his customised, multicontinental, air-conditioned delivery suit. This is designed to meet every kind of environmental and atmospheric condition, from the stiffening zero temperatures of wintertime Lapland to the torrid heat of a honeymoon hotel bedroom at Eastbourne.

We're getting near lift-off time now. The Christmas Operations Controller (known to his intimates as COC) makes a final check on every graph, meter and monitor in sight. Then, giving a shrill blast on his ultrasonic whistle (this is a purely symbolic exercise, for only the depot dog can hear it) he sets the annual journey of goodwill and financial embarrassment in motion.

Although Santa still remains the star of the whole operation, he really hasn't much to do from that point onwards. Chimney climbing is virtually out. The central heating industry has done a fine takeover job.

He may even find it hard to get a foot inside the house at all. Electronic sensors may betray his presence. Every move he makes may be followed on an image-intensifier night surveillance unit. The actuating of a central station alarm could bring carloads of police on the scene. Fancy Santa, of 'all people, having to spend Christmas Eve in the local nick.

But suppose he manages to gain entry. What will he find? Not slumbering kiddiwinks dreaming happily of the morrow. No. In all probability they'll still be wide awake, drooling, with their boy and girl friends maybe, over their video nasties. Innocent deception belongs to yesterday.

Now, I ask you. Is this really the kind of world we want? Isn't there still room for some of the un-chipped things of life, like the Christmas joys of olden times?

We move too fast for our own good. This obsessive race to be bigger, better and more complex than the next man is perhaps summed up in the story of the two bulls. One is young and raring to go. The other is old and a bit of a seasoned philosopher.

Young bull: "I say, why don't we belt up that hill and make love to some of those smashing cows?" Old bull: "I've got a better idea. Why don't we stroll up that hill and make love to all of them?"

Maybe we still have something to learn from the animals.

101 ELECTRONIC CONTROLLED SOLDERING STATION

for precision soldering with accuracy suitable for use on MOS, FET etc 240 V input - 24 V on tool. Temperature range $120-420^{\circ} \mathrm{C}$
Many extra features
'K' SERIES
SOLDERING TOOLS FOR ALL
APPLICATIONS
K1000 micro soldering K2000 general electronic soldering
K3000 heavy duty soldering

- Small selection of AD-IRON ${ }^{\circledR}$ LONG LIFE SOLDERING TIPS suitable for all Adcola soldering irons.

SNIPE NOSE PLIERS

- Desoldering Braid
- Desoldering Guns
- Tip cleaners
- Soldering aids
- Lamps, Lenses etc

MIRRORIMAGES

Plans have now been announced for the construction in America of the N.N.N.T., or National New Technology Telescope, which will be by far the most powerful in the world, equal to a 15 -metre reflector. Making a single mirror of this size would be virtually impossible, so the N.N.N.T. will make use of four $7 \frac{1}{2}$. metre mirrors working together-a principle which has already been satisfactorily tested with the M.M.T. or Multiple-Mirror Telescope on Mount Hopkins in Arizona.
It is hoped to have the N.N.N.T. ready by 1992. A site has not been selected as yet; the top of Mauna Kea, in Hawaii (14,000 feet high) is one possibility.

Meanwhile, design work has already started on the 10 -metre telescope for the University of California. This time the mirror will be segmented-that is to say, made up of many smaller mirrors fitted together to produce a perfect optical curve.

It may well be that the Russian 6 -metre reflector in the Caucasus will remain the largest single-mirror telescope. It does not in fact work well, mainly because the thick glass mirror never cools down quickly enough or
uniformly enough to produce really good images. Meanwhile, the Isaac Newton Telescope in La Palma is functioning excellently, and the construction of the even larger William Herschel Telescope is proceeding satisfactorily,

Observations of the occultation of a star by the planet Neptune, made by three Indian astronomers, indicate that Neptune may have one or two small satellites in addition to the two already known, Triton (larger than our Moon) and Nereid (much smaller).

It is also suggested that there may be a ring system similar to that of Uranus-though the fact that Triton has retrograde motion may well make for unstable conditions, preventing the formation of rings. We may find out in 1989 if Voyager 2 survives operationally to send back data from close range.

VOLCANOES OF VENUS

This month Venus is so brilliant that it cannot be overlooked. Inevitably it will be asked "Can Venus have been the Star of Bethlehem?" The answer seems to be a decisive "No", because Venus is a familiar object, and if the Wise Men were deceived by it they can hardly have been véry wise!

The same objection disposes of all other normal planets and stars. No planetary conjunction was visible from the Holy Land around the time of Christ's birth (which was probably in B.C.4, not A.D.1); Halley's Comet came back a dozen years too early, and again would have been on view for some time; no novae or supernovae were recorded by contemporary astronomers.

All in all, it seems that the Star has no scientific explanation, and it is hardly likely that the mystery will ever be solved now.

GODDESS OF BEAUTY

Venus is named after the Goddess of Beauty, and with the naked eye it is superb; at its best it can even cast shadows. Telescopically it is a disappointment, since its
surface is permanently hidden by its dense, cloudy atmosphere. This month it is at gibbous phase: about 70 per cent illuminated at the start of December, 60 per cent at the end.

Before the Space Age, very little was known about Venus. It was even suggested that there might be broad oceans, containing primitive life-forms which might eventually develop just as they have done on Earth.

The early space missions ruled this attractive idea out of court. The temperature at the surface is not far short of 1000 degrees Fahrenheit; the surface pressure of the atmosphere is 90 times that of the Earth's air at sea-level; the atmosphere itself is made up principally of carbon dioxide, and those lovely clouds prove to contain large amounts of sulphuric acid. As I have said on various oceasions, anyone who lands on Venus and steps outside his spacecraft will be immediately fried, poisoned, squashed and corroded.

LIFELESS

No life can be expected there now; but there is a chance that life may have gained a foothold in the early days of the Solar System, over 4000 million years ago. The Sun was then about 30 per cent less luminous than it is now, and it is possible that Venus and the Earth, which are of very similar size and mass, may have started to evolve along similar lines. But when the Sun became more powerful, the oceans of Venus evaporated, the carbonates were driven out of the rocks, and there was what has been called a "runaway greenhouse" effect, transforming Venus into the furnacelike environment of today.

Russian automatic vehicles have softlanded there, and sent back pictures of a gloomy, rock-strewn landscape under a bright orange sky. Both Soviet and American vehicles have been put into closed orbits, and by now the surface has been reliably mapped by radar; the US Pioneer has been particularly successful in this respect.

THE SKY THIS MONTH

The last weeks of 1984 show that the night skies are still short of planets! The exception is, of course. Venus, which is a magnificent object in the west after sunset; at the end of December it will be visible for over three hours after the Sun has disappeared, so that it will be seen against a dark background.

Mercury is technically an evening object in the first part of the month and a morning object after the 14 th, but it is so far south in the sky that British observers will probably not be able to see it with the naked eye. Mars moves into Aquarius, and is visible in the early evening, but it is now no brighter than Aldebaran, and no telescope will show much upon its disc.

Jupiter is to all intents and purposes out of view; Saturn, in Libra, rises shortly before the Sun at the end of the month, but is not well placed. There are no eclipses of the Sun or Moon, and no bright comets are expected; Hallev's Comet is still beyond the range of any but very large telescopes.

The starlit sky is dominated by Orion, now high in the south-east by late evening; it is interesting to compare its two leaders-Rigel and Betelgeux-which are very different. Rigel is a true "cosmic searchlight", white and
hot, shining some 60,000 times as powerfully as the Sun. Betelgeux, "only" 15,000 Sun-power, is a lovely orange-red. It is decidedly variable in light, and at times it may rival Rigel, though probably never quite equals it.

Look also for the Orion Nebula, below the three stars of the Belt; this is the most famous of the gaseous nebulae, and is a stellar birthplace, where fresh stars are condensing out of the thinly-spread gas and dust. Deep in the heart of the Nebula is the mysterious BecklinNeugebauer Object, detectable only in infra-red, which may be a very luminous star permanently hidden from us by the intervening nebular material.

Of Orion's retinue, Capella in Auriga (the Charioteer) is almost overhead, while Aldebaran in Taurus (the Bull) is high up; also in Taurus is the lovely star-cluster of the Pleiades or Seven Sisters. Most people can see seven stars without optical aid, and binoculars will show many more.

The Square of Pegasus is sinking in the west. Below it lies Cetus, the Whale, distinguished mainly by its longperiod variable star Mira. At maximum Mira becomes as bright as the Pole Star, but this month it is well below naked-eve visibility.

Venus is a world of craters and plains, together with two major upland areas, now called Ishtar and Aphrodite. There is also Beta Regio, a highland area which seems to consist of two giant shield volcanoes, Rhea and Theia.

Recent results indicate that these volcanoes-and at least one other, in the region called Atla Regio-are active. There has been a sudden, marked increase in the amount of sulphur dioxide in the planet's atmosphere, attributed to violent vulcanism.

The situation on Venus is however very different from that on the Earth. Our world has several major "plates" which drift very slowly around; vulcanism occurs at the boundaries of these plates (remember the "Ring of Fire" round the Pacific). Venus, on the other hand, is probably a one-plate planet, so that vulcanism is restricted to a few areas. Because of the lack of movement, a volcano on Venus will persist for much longer than a similar volcano on Earth.

Hawaii gives an example of this. Mauna Kea used to lie over a "hot spot", but has now shifted away and become extinct (at least, one
hopes so in view of the major observatories now on its summit). Mauna Loa has taken its place over the hot spot, and is active.

PROBING SPACE

One of the most effective space-probes to date has been Pioneer Venus. It has also been used for other studies. In April 1984 it was tilted so as to examine Encke's periodical comet, and found that the comet is losing water at three times the expected rate.

In February 1986 it will be tilted again, this time to study Halley's Comet. Halley reaches perihelion (its closest point to the Sun) on 9 February 1986, but will then be out of view from Earth, because it is on the other side of the Sun.

However, it will be observable from Venus, and Pioneer is to be pressed into service. The information will be of immense value at that particular time, since the various comet probes are scheduled to rendezvous with Halley in the following month.

Less than thirty years ago it was widely believed that as a potential colony, Venus
might be more promising than Mars. This has turned out to be quite wrong, and the chances of any manned expeditions to Venus in the foreseeable future seem to be nil.

Carl Sagan has suggested that it may even tually be possible to "seed" the planet's atmosphere, break up the carbon dioxide and sulphuric acid, and make conditions there tolerable, but at the moment any such procedure is quite beyond us. We must be content to study Venus from a respectable distance.

One other experiment is worth noting. On their way to Halley's Comet, two Russian Vega probes will by-pass Venus and, it is hoped, drop balloons into the atmosphere, so that information can be obtained from different levels as the balloons float around. Whether this experiment will be successful remains to be seen.

Another Venus orbiting probe is planned for the late 1980 s , and will be of tremendous interest. We have learned a great deal about this strange, unfriendly world, but there is still much that we do not know.

$$
\begin{aligned}
& \text { pRACTICAL ELECTRONICS } \\
& \text { PRINTET CRICUTIBUARD SERIVE }
\end{aligned}
$$

Printed circuit boards for certain PE constructional projects are now available from the PE PCB Service, see list. They are fully drilled and roller tinned. All prices include VAT and postage and packing. Add $£ 1$ per board for overseas airmail. Remittances should be sent to: PE PCB Service, Practical Electronics Editorial Offices, Westover House, West Quay Road, Poole, Dorset BH15 1JG. Cheques should be crossed and made payable to IPC Magazines Ltd.

Please note that when ordering it is important to give project title, order code and the quantity. Please print name and address in Block Caps. Do not send any other correspondence with your order.

Readers are advised to check with prices appearing in the current issue before ordering.

NOTE: Please allow 28 days for delivery. We can only supply boards iisted here or in the November 1984 issue.

PROJECT TITLE	Order Code	Cost
APRIL'82 Med. Resolution Equaliser (UK 101) Enlarger Timer	$\begin{aligned} & 204-01 \\ & 204-02 \end{aligned}$	$\begin{aligned} & £ 1.73 \\ & £ 4.02 \end{aligned}$
AUG '82 Automatic Photographer Home Alarm	$\begin{aligned} & 208-01 \\ & 208-02 \\ & \hline \end{aligned}$	$\begin{array}{r} £ 1.94 \\ £ 3.21 \end{array}$
Waveform Digitiser SEPT '82	209-01	£8 24
Radio Booster FEB '83	302-02	£1.80
MAR '83 Into the Real World Accessory PSU $4 \frac{1}{2}$ Digit Frequency Meter	$\begin{aligned} & 303-01 \\ & 303-02 \\ & 303-03 \\ & \hline \end{aligned}$	£3.99 £ 1.35 £3.69
Phaser APRIL '83	304-01	£3.41
JUNE ' 83 Program Conditioner	306-01	£2.30
SEPT ' 83 Guitar Active Tone Control Ground Communication System	$\begin{aligned} & 309-01 \\ & 309-02 \\ & 309-03 \end{aligned}$	$\begin{aligned} & £ 2.27 \\ & £ 2.13 \\ & £ 2.31 \end{aligned}$

PROJECT TITLE	Order Code	Cost
DEC'83 Expanding the Vic 20	312-01	£5.18
MAR'84 Spectrum Autosave	403-01	£1.83
Microstepper APRIL'84	404-01	£10.74
MAY' 84 Sustain Unit Audio Signal Generator	$\begin{aligned} & 405-02 \\ & 405-03 \\ & 405-04 \end{aligned}$	$\begin{aligned} & £ 2.82 \\ & £ 4.28 \\ & £ 2.51 \end{aligned}$
JUNE 84 Cross Hatch Generator	406-01	£3.52
Simple Logic Generator EPROM Duplicator Alarm System Oscilloscope Calibrator	$\begin{aligned} & 407-01 \\ & 407-02 \\ & 407-03 \\ & 407-04 \end{aligned}$	$\begin{aligned} & £ 7.73 \\ & £ 3.74 \\ & £ 3.19 \\ & £ 4.23 \end{aligned}$
AUG '84 Comm. 64 RS232C Interface Field Measurement Digital Dice Simple Logic Analyser Alarm System	$\begin{aligned} & 408-01 \\ & 408-02 \\ & 408-03 \\ & 408-04 \\ & 408-05 \\ & 408-06 \\ & 408-07 \\ & 408-08 \end{aligned}$	$£ 3.02$ $£ 3.19$ $£ 2.76$ $£ 4.23$ $£ 2.93$ $£ 4.24$ $£ 3.14$ $£ 3.23$
SEPT ' 84 Parallel to Serial Converter Through the Mains Controller	$\begin{aligned} & 409-01 \\ & 409-02 \\ & 409-03 \\ & \hline \end{aligned}$	£2.92 f 2.88 £2.71
Logic Probe OCT '84	410-01	£1.90
$\text { NOV' } 84$ Computer DFM Adaptor	411-01	£2.76
Ni-Cad Charger DEC'84	412-01	£2.40
JAN '85 Outrider Car Computer (Set of 2 boards)	501-01/2	£9.10

Oric 1 computer $48 \mathrm{~K} £ 95$ ($£ 92$) £102. Oric Atmos computer 48 K £ 171 (158) £ 168 . Oric Colour Printer £134 (E123) E140. Oric
disc drive $£ 304(278)$ £298. New Sinclair Spectrum Plus computer with 6 free programs while Sinclair make this offer $£ 182$ (178) E187. New SIncial OL Computer E406 (E385) ε^{410}. Sinclair Spectrum 48K (with 6 free programs while Sinclalr's offe (lasti) $\in 131$ (1631) $£ 143$. Microdrive 551 (E50) f 60 . RS232 interface 1251 (250) $E 60$. Limited period speciel otter:-Microdrive
Interface $1+4$ Blank carricges $£ 102$ Interface 1.
(E100) E120. Blank microdrive cartridges £5.50 (£6) £7. Interface 2 € 20.45 ($£ 20$) \& 24 32 K memory upgrade kit for 6 K spectrum irum printer interfaces with cables:- Cen tronics £51 (E47) E52, RS232 E35 (£33) £38. com 32 E 71 ($\mathbf{E 6 9)} \mathbf{6 8 2}$. 5 printer rolls (State Whether Sinclair or Alphacom) £13 (E16) €21. ZX81 computer £45 (£44) £5
ram packs for ZX81 £28 (Е25) 230 . ram packs for ZX81 $\mathrm{E}_{28}(£ 25$)
COMMODORE COMPUTERS
Commodore C16 Starter Pack $£ 145$ (E142) £162. Commodore Plus/4 $\mathbf{8 3 0 5}$ (281) €301. Commodore 64 £222 (£215) £235. Vic 20 starter pack $£ 75$ ($\mathbf{£ 8 5}$) £118. Conver-
tor to allow most ordinary mono cassette tor to allow most ordinary mono cassette recorders to be used with (£9) £11. Bargain package:- cassette convertor + com patible cassette recorder 537 (E38) £44. Commodore cassette recorder $\mathbf{E 4 3}$ ($£ 44$ e50. Printer interfaces for Vic 20 and the C46. RS232 44 : Centronics e4s (C41) £46. RS232 f45 (E41) E46. Disc drive £233 (£209) £234, 1520 printer/plotter £165 (£149) £159. MPS801 Printer E235 ($\mathbf{E 2 2 0}$)
£245. MPS802 Printer $£ 350$ ($\mathbf{5 3 0}$) £245. MPS802 Printer E350 (2330) £360. ries:- Super expander high res cartridge E33 (£29) E34; Proorammers aid cartridge

E33 (229) E34, Extra memory ram packs 8 K $\mathbf{£ 1 9}$ (£17) $\mathbf{E 2 0}, 3 \mathrm{~K} £ 6$ (£7) £9. ACORN COMPUTERS Electron £203 (E209) f229. Electron joystick and printer interface £61 (E62) E69,
BBC Model B E404 (E357) z387, BBC Light BBC Model B E404 ($£ 357$) E387, BBC Light Pen $£ 29$ ($£ 29$) $£ 33$. 14" Colour monitor $£ 228$ ($£ 299$) $£ 319$. Kende double denslty disk Interface system £149 (£131) £141. Disc drives $5.25 " 40$ track:- single
($\mathbf{1} 154$) £184, dual $£ 295$ ($£ 270$) $£ 308$. PRINTERS

Brother HR5 £162 (£146) £170. Shinwa CT CP80 £25 ($£ 218$) £248. Cannon PW1080A £332 ($£ 299$) E329. Epson RX80 £271 ($£ 251$) E282. Epson RX80F/T E14 (E286) E316 Epson FX80 £399 (E358) E388. Combined Brother EP22 £173 (E166) £ 886 , Brother EP44 £258 (£235) £260. Smith Corona TP1 Daisy wheel printer $£ 252$ (5225) $E 255$. MCP40 Oric colour printer/plotter $£ 134$ (£123) £140. Interfaces to run the above printers from Vic and the Commodore 64 E45 (e41) £46. We can supply interiaces to
run the above printers from Sharp comrun the above printe
puters 258 (252) $\mathrm{E55}$.
16 DIL SUB-MINIATURE RELAYS
$5 V 56$ ohm coil 1 SPDT contact 1 amp D.C UK price $67 p$ each plus 35 p postage on UK101, SU
VIDEOGENIE COMPUTERS
VIDEOGENIE COMPUTERS
write for our free fist
SWANLEY ELECTRONICS
Dept PE, 32 Goldsel Rd., Swanley, Kant BR8 8EZ, England. Please allow 7 days for delivery
Tel: Swanley 10322$\} 64851$. Official orders walcome. UK prices are shown first and include post and VAT. The second price in brackets is for export customers in Europe Europe (includlng Australia eic) and includes insured airmail postage.

1984/85 CATALOGUE 84. page A4 size - Bigger, Brighter, Better - more components than ever beforel With aach copy ohere's discount vouchers, Bargain List, Wholesaie Raply Paid Envelope. All fos just $£ 1,0011$ Winter Sipplement due out November - Send large SAE

NEN PACKS:

K524 OPTO PACK - 8 variety of single point and seven segment LEDS (incl. dual types) of various colours and sizes, opto solators, numicators, multi
diglt gas discharge displays, photo transistors, intra igit gas discharge cisplays, photo transistors, intra £14.95; 250 E35.
K525 PRESET PACK - Big, Big variaty of types and sizes - submin, min and std, MP, slider, multiturn and cermats are all included. Wide range of values from 20R to 5M. 100 assorted $£ 6.75$; $250 £ 12.95$ 1000 £48.
K526 HEATSINK PACK - Lots of different sizes and shapes of heatsink for most diode and transistor case styles. A pack of 25 assorted including several large finned types - total weight over 1 kg 55.50;
100 f19.50. 100 E19.50.
K 527 HARO
K527 HAROWARE PACK - This has a large variety of pk and self tapper screws from $2 \times 2^{\prime \prime}$ up to
$8 \times 1 \mathrm{t}^{\prime \prime}$ also washers, some BA, motric and Whit. screws plus other misceilaneous brackets, captive nuts and bits and pleces. Ikg (up to 1000 pleces) £4; 3 kg £9; 10 kg f25.
K528 ELECTRDLYTIC PACK - All ready cropped for PCB mounting, this pack offers excellent value for money. Good range of values and voltages from
$0.47 \mu \mathrm{~F}$ to $1000 \mu \mathrm{~F}$, 6 V to 100 v . $100 \mathrm{EJ.95}$; $250 \mathrm{cs.95}$; $0.47 \mu \mathrm{~F}$ to
1000 f 32.
1000 E32.
K531 PRECISION RESISTOR PACK - High quality. close tolerance R 's with an extremaly varied selec-
tion of values mostly 0.1% to 2% - ideal for meters, test gear utc. 250 E3; 1000 EIO.
K532 RELAYS - Wide selection of styles voltages
and contacts. $4 \mathrm{v}-240 \mathrm{v}, ~ A C / 0 C$, SP to 4 PCO .20 for and contacts. $4 \mathrm{v}-240 \mathrm{v}$, AC/0C, SP to 4 PCO .20 for

1W AMPLIFIER
2914 - Audio amp panel $95 \times 65 \mathrm{~mm}$ with TBA820 chip. Gives IW output with 9 V supply. Switch and vol. control. Just connect batt. Bnd spaaker. Full
details supplied. Only $£ 1.50 ; 10$ for $£ 12 ; 25$ for $£ 25$: 100 £75 Pplied. Only £1.50; 10 for $£ 12 ; 25$ for £25; $100 £ 75$.
$2915-$ Stereo version of above $115 \times 65 \mathrm{~mm}$ featur-
ing $2 \times T 8 A 820 \mathrm{M}$ and dual vol conteol $£ 3.50 ; 10$ ing $2 \times \mathrm{T84820M}$ and dual vol. control. $£ 3.50$; 10

AM TUNER PANEL
2916 - For use with mono amp above. Nest panal
$60 \times 45 \mathrm{~mm}$. Dnly $\mathrm{E1} 50 ; 10$ for $£ 1200$
NI-CAD CHARGER SCOOPI
Ever Ready model CH4, this charger will take up to $4 \mathrm{AA}, \mathrm{c}$ or ceils plus 2 Pp if required. Smar
tone grey case $212 \times 97 \times 60 \mathrm{~mm}$. Only $£ 7.95$.
"TORUS"
Computer-controtted Robot buit around the gearbox described below. Complete kit of arts ine PCB, program listings for BBC lother micros, soon). £44.85. 20W ribbon cable (min 3 m recommended -5 m better) $£ 1.30 / \mathrm{m}$. SAE for illustrated leaflet.

The unit has $2 \times 3 \mathrm{~V}$ motors, linked by a magnetic clutch, thus enabling turning of the vehicle, and a gearbox contained within the black ABS housing. Date is supplled with the unit showing varlous options on driving the motors etc. $£ 5.95$. Suitable wheels also avail able: 79 mm dia plastic with blue tyre, drilled to push-fit on spindle. 2 for f 1.30 (limited qty). 3^{n} dia aluminium disc 3 m

FIBRE OPTICS

Scoop purchase of single and twin cable. For use with visible light or infra-red. Core 1 mm dia, overalh 2.25 mm dia. Single $50 \mathrm{p} / \mathrm{m} ; 20 \mathrm{~m}$ coil 6.30. Twin 90p/m; 20 m coll $\mathrm{£11.00}$.

MINIATURE RELAYS

CB mounting, DPCD size $20 \times 15 \times 15 \mathrm{~mm}$ Avalable in 3.9 or 12 V . f 1 each.

PCB MOUNTING NI-CADS Much sought after 4.8 V 150 mA batts with PCB $m \mathrm{ntg}$ tags on 25 mm pitch. Batt size 25×160.
ideal for paralleling 99 p ea; $10+85 \mathrm{p} ; 25+$ Ideal for paralleling. $99 p$ ea; $10+85 p ; 25+$ $70 \mathrm{p}: 100+60 \mathrm{p}$.
Official orders welcome - minimum invoice charge £10. No min. on CWO.
\qquad
GREENWNELD
433C Millbrook Road Southampton
$\begin{array}{ll}\text { SO1 OHX Tol (O703) } & 772: 01 / 783740 \\ \text { ALL PRICES INCLUDE VAT: JUST ADD 60p P\&P }\end{array}$

FREE CAREER BOOKLET

Train for success, for a better job, better pay
Enjoy all the advantages of an ICS Diploma Course, training you ready for a new, higher pald, more exciting career. Learn in your own home, in your own time, at your own pace, through ICS home study, used by over 8 million already! Look at the wide range of opportunities awaiting you Whatever your interest or skill, there's an ICS Diploma Course there for you to use.
Send for your FREE CAREER BOOKLET today - at no cost or obligation at all.

GCE

 Over $40^{\prime} O^{\prime}$ and ' A ' Level subjects from whichchoose. Your vital passport to career success.
COMPUTER
PROGRAMMING
| ELECTRONICS
COMMERCIAL
| ART
TV, RADIO \& [AUDIO SERVICING

RADIO AMATEUR'S	
LICENCE	
INTERIOR	\square
DESIGN	\square
WRITING FOR	
PROFIT	\square
CAR MECHANICS	\square

IBOOK-KEEPING \& ACCOUNTANCY

Please send FREE DETAILS for the course tlcked above.
Name
Address

ICS Dept. EDS 15
8 Elliot Place Clydeway Centre Glasgow G3 8EF

SEMICONDUCTOO RCUITS mumanuer

PROGRAMMABLE DELAY TIMER (LS7210)

THE digital timer i.c. is a very common building block in all kinds of circuitry, and can vary in complexity from simple devices such as the '555' up to programmable microprocessor peripheral i.c.s. This month we look at the LS7210 from LSI Computer Systems, an interesting PMOS device with several novel features.

Essentially, the LS7210 consists of a digital timer with a period which can be programmed by a 5 bit binary code, giving a range of periods from 1 to 31 times the basic time interval. The basic time interval itself is determined by a clock which can either be generated internally or fed in from an external source. The feature that sets this timer i.c. apart from other similar devices is that it can be made to operate in four distinctly different modes; delayed operate, delayed release, dual delay, or monostable ('one-shot').
The block diagram is shown in Fig. 2. The internal oscillator requires only an external
capacitor and resistor to be connected to pin 5 as shown. If preferred, an external clock can be fed in to pin 6. A logic 1 on pin 4 (high level, or open circuit because of the internal pull-up resistor) selects the external clock, and a logic 0 (low level) the internal clock oscillator. The selected clock is then divided by 1023 and fed into a programmable timer/counter. This block of circuitry divides the incoming signal by anything from 1 to 31 , depending on the code set up on pins 8 to 12 . The timer/counter output is then latched and used to drive a MOSFET output stage.
An unusual feature of this i.c. is that the trigger input and the two mode select inputs are latched by the clock. Hence, no action will be taken when pins 1, 2 or 3 change state until the next negative transition of the clock. Master control logic arranges for the correct sequence of events to occur, and power-on reset circuitry ensures that all parts of the i.c. are reset when power is first applied.

OPERATING MODES

The selection of operating modes of the LS7210 is made by applying the following codes to the mode select inputs A and B:

Characteristic		Notes		Minimum Value	Typically	Maximum Value	Units	
Supply Voltage Quiescent Current Temperature Range		+15 V supply, output turned off		$\begin{gathered} +4.75 \\ -25 \end{gathered}$		$\begin{gathered} +15.0 \\ 3.0 \\ +70 \end{gathered}$	$\underset{{ }_{\mathrm{mA}}^{\circ} \mathrm{C}}{ }$	
Trigger Input Voltage, Pin 3.	For Logic 1	$\begin{aligned} & + \text { ve supply }=+5 \mathrm{~V} \\ & + \text { ve supply }=+15 \mathrm{~V} \end{aligned}$		$\begin{gathered} 4.0 \\ 12: 0 \end{gathered}$		$\begin{gathered} 5.0 \\ 15.0 \end{gathered}$	$\begin{aligned} & v \\ & v \end{aligned}$	
	$\begin{gathered} \text { For } \\ \text { Logic } 0 \end{gathered}$	$\begin{aligned} & + \text { ve supply }=+5 \mathrm{~V} \\ & \text { +ve supply }=+15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	
Input Voltage (All other Inputs)	$\begin{gathered} \text { For } \\ \text { Logic } 1 \end{gathered}$	$\begin{aligned} & \text { +ve supply }=+5 \mathrm{~V} \\ & \text { +ve supply }=+15 \mathrm{~V} \end{aligned}$		$\begin{gathered} 3.5 \\ 10.5 \\ \hline \end{gathered}$		$\begin{gathered} 5.0 \\ 15.0 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	
	$\begin{aligned} & \text { For } \\ & \text { Logic } 0 \end{aligned}$	$\begin{aligned} & \text { +ve supply }=+5 \mathrm{~V} \\ & + \text { ve supply }=+15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 4.5 \end{aligned}$	v	
Output Source Current		+ve supply$=+5 \mathrm{~V}$	Output $=+4.5 \mathrm{~V}$	0.55			mA	
		Output $=+4.0 \mathrm{~V}$	1.0			mA		
		+ve supply $=+15 \mathrm{~V}$	Output $=+14.0 \mathrm{~V}$	$4 \cdot 2$			mA	
		Output $=+13: 0 \mathrm{~V}$	8.1			mA		
Internal Oscillator Frequency External Clock Frequency					$\begin{aligned} & 0.01 \\ & \text { D.C. } \end{aligned}$		$\begin{aligned} & 100 \mathrm{k} \\ & 160 \mathrm{k} \end{aligned}$	$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{H} \end{aligned}$
External Clock Pulse Widths		t_{H} and t_{L}		3.0			$\mu \mathrm{s}$	
1/P Set-up time, pins 1, 2 and 3		ts	External		200	300	ns	
Ext. Clock to Output Delay Ext. Clock to Output Delay (At Time-out)		t_{nd}	Clock-		700	1000	ns	
		$t \mathrm{tad}$	$\begin{aligned} & \text { Clock- } \\ & \text { Se } \end{aligned}$		1.0	1.6	HS	
Ext. Clock to Output Delay		$t_{\text {sd }}$	Fig. 4		400	600	ns	
(Monostable Mode)								
"Pull-up Resistor" Constant Current					$3 \cdot 0$		$\mu \mathrm{A}$	

Fig. 1. Pinout and specification

$\mathbf{A}($ pin 2)	\mathbf{B} (pin 1)	MODE
0	0	Monstable ('one-shot').
0	1	Delayed Operate.
1	0	Delayed Release.
1	1	Dual Delay.

A logic 1 corresponds to either a high level, or open circuit due to the internal pull-up resistors. Fig. 3 shows the effect of these different modes on the output. Dual delay provides a time delay when both turning on and turning off the output. Once turned on, the output will remain on as long as the trigger input is at logic 0 . Once turned off, the output will remain off as long as the trigger input is at logic 1 . (Note that the output is inverted with respect to the input; a logic 1 on the trigger input results in a logic 0 being present, with or without a time delay, at the output.)

The delayed release mode causes a retriggerable delay to occur before the output is turned off whenever there is a positive going transition at the trigger input, while negative going trigger edges turn on the output immediately. The converse of this is true for the delayed operate mode. In the monostable mode the i.c. operates as a retriggerable monostable multivibrator. The output is turned on whenever there is a negative going transition at the trigger input. At the end of the programmed delay the output is turned off automatically. If there is a negative going trigger edge before the time period has ended, the delay is re-started. A positive going edge has no effect on the output or the time delay. Fig. 3 shows all the variations of output
operating modes for the trigger input.
Although the operating mode of the. LS7210 can be changed as often as required by altering the logic states of pins 1 and 2 , this should NOT be done while a timing period is in progress, or erroneous effects will be caused. The internal pull-up resistors on the mode select inputs, in common with all other pull-up resistors in the i.c., are actually $3 \mu \mathrm{~A}$ constant current sources. Their resistance is effectively 1.6 M with a +5 V supply, or 5 M with a +15 V supply.

THE WEIGHTING FACTOR

The 'weighting inputs', i.e. the binary inputs that determine the programmed division ratio,
are active low; a logic 0 turns that bit on, and a logic 1 or open circuit turns it.off. Hence, for a weighting factor of 31 (the highest possible number) pins 8 to 12 should all be at logic 0 . The exact delay is given by the formula:

$$
\text { Delay }=\left(\frac{1+1023 N}{f}\right)
$$

N is the binary weighting factor as defined on pins 8 to 12 (8 is the most significant bit, and 12 the least), and f is the clock frequency used. The internal clock frequency range is shown in Table 1. The tolerance on all these frequencies, i.e. the variation from i.c. to i.c., is $\pm 5 \%$.

RESISTORR_{1}	CAPACITOR$\mathbf{C}_{\mathbf{t}}$	SUPPLY	
		+5V	+15V
47k	200p	79 kHz	85 kHz
	500p	37 kHz	36 kHz
	1 n	22 kHz	20 kHz
	50n	610 Hz	475 Hz
470k	100p	15 kHz	16.5 kHz
	200p	9 kHz	9.5 kHz
	500p	4 kHz	4 kHz
	1 n	2.4 kHz	2 kHz
	50n	63 Hz	47 Hz
2M	100p	4.2 kHz	5 kHz
	200p	2.5 kHz	2.8 kHz
	500p	1.1 kHz	1.1 kHz
	1 n	670 Hz	610 Hz
	50n	17 Hz	14 Hz
10M	$10 \mu \mathrm{~F}$	0.02 Hz	0.013 Hz

Table 1. Oscillator Frequencies as Determined by External Components

Fig. 2. Block diagram of the LS7210

Fig. 3 (top). Timing diagram for the four modes of operation
Fig. 4 (middle). Timing diagram for the external clock
Fig. 5 (bottom). Typical simple applicetion

USING THE I.C.

This is a fairly straightforward chip to use, although there certainly are some pitfalls for the unwary! The most obvious of these are the inverted logic levels on the weighting factor binary inputs, and the requirement that the clock should latch in both mode select inputs and the trigger input. Hence, when using the internal clock, the trigger pulse must always be wider than the clock period or it may never get latched in at all. The clock can operate down to very low frequencies, so this trigger pulse duration requirement could present problems if not catered for in the circuit design.

The output is an open drain f.e.t. which must be pulled down to 0 V with an appropriate load resistor to obtain an output voltage swing. The available current drive is not very high, as shown in Fig. 1, so any loading should carefully take account of these current limits. Fig. 4 shows the exact timing relationships when the external clock is being used. The time periods $t_{H}, t_{n d}$, etc., are specified in Fig. 1.

APPLICATIONS

A typical application of the LS7210 is shown in Fig. 5. The internal clock is used, so no input is needed to pin 6. Pins 1 and 2 are connected to 0 V , to the positive supply, or just left floating as required. The i.c. has a wide supply range of +4.75 V to +15 V , and features CMOS, PMOS and TTL compatible inputs. The value of R_{t} and C_{t} can be varied over a wide range, although it should be borne in mind that the internal oscillator (pin 5) can source a maximum of 0.6 mA at +5 V supply, and 2.7 mA at +15 V supply. These limits must not be exceeded.
The ability of this i.c. to produce delays varying from only a few microseconds up to several hours is a great attraction. Several units can even be cascaded to give extremely long delays or sequential switching effects. Altogether, it makes for an extraordinarily versatile programmable delay timer. The LS7210 is available from Macro Marketing, Burnham Lane, Slough, Berks.

A MICROCOMPUTER 'WATCHDOG' TIMER

GENERALLY speaking, microcomputers are very reliable devices. They rarely 'give up' part way through running a program as long as sensible precautions have been taken with regard to power supplies, transient protection, etc. However, when they do go wrong, it's usually very dramatic! When a microprocessor has jumped to an incorrect or non-existent memory location, it will almost never recover from that error. This can cause
serious problems in dedicated control applications: robot arms thrashing wildly about, washing machines doing a cold rinse for ever more, etc.

One way of minimising any damage done is to provide a 'watchdog' or 'lock-up' timer. This requires that the microprocessor triggers a timer at regular intervals in such a way that the timer never quite reaches the end of its time period before being re-triggered. If this re-
triggering fails to happen it is assumed that the computer has developed a fault, so the timer finishing its time period signals a warning. The ending of the time period can also be used to try to re-establish correct operation by resetting the microprocessor and running the program again.
Such a circuit is shown in Fig. 6, with the Veroboard layout (a rather complex one this month, as all-digital circuits tend to be) shown

Fig. 6. Microcomputer 'Watchdog' Timer circuit
in Fig. 7. It was designed for a $\mathbf{Z 8 0}$ based system, but is easily adapted for other microprocessors or systems. In this circuit the microprocessor is able to control the actual time delay before resetting. This allows fast reactions to a failure during a period when the microprocessor is able to regularly re-trigger the timer, but also enables a longer time period to be allowed when a more complex and lengthy part of the program is being executed.

IC3 and IC4 are comparators used to decode a unique port address from the Z 80 address bus. The port address required is programmed in binary on switches S1 to S8. These switches should be turned on for a logic 0 , and turned off for a logic 1. IC5c, IC5d and IC6c arrange for the output of the comparators to be enabled only when the microprocessor is performing a WRITE operation to an I/O address. D1, C2 and R1I stretch the resultant pulse to typically 30 or $40 \mu \mathrm{~s}$, i.e. longer than the period of the oscillator of IC1, to allow the clock to latch in the trigger pulse from the output of IC6d. ICl has the $\overline{\mathrm{LSB}}$ of the weighting input always tied to logic 0 to ensure that the weighting input is always greater than zero. The other four weighting bits are fed from IC2, an 8 bit latch, which holds the data written to that port address. The top nibble (4 bits) is spare, so these
lines can be used for other output functions if required. When writing data to the port to control ICl , it should be remembered that all the weighting inputs must be inverted. Hence $\emptyset \mathrm{FH}$ (i.e. $\emptyset \emptyset \emptyset \emptyset 1111$ in binary) is the shortest time delay, and $\emptyset \emptyset \mathrm{H}$ (i.e. $\emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset$ in binary) is the longest delay.

The output of IC 1 , loaded by R14, is buffered by IC6a, then fed to IC6b via C3, D2 and R12 to ensure that the output can never sit at a logic 0 level continuously. The output can be used as a nonmaskable interrupt line, $\overline{\mathrm{NMI}}$, or a reset line, RESET, as appropriate.

It is unwise to use this output to feed into any form of maskable interrupt or polled input, because there is every chance that the computer would disable such facilities as part of its

Circuit board component layout for the Microcomputer 'Watchdog' Timer circuit
random 'crashing' effect, preventing any remedial action by the watchdog circuit.

Note that the output of IC6a is also fed back to IC6d. This arranges that ICl retriggers itself at the end of every timing period, so that if the resetting action doesn't work the first time, it will try over and over again. In-

dication of lock-up is given by D3, which is turned on by the flip-flop formed by IC $5 a$ and IC5b, via TR1. This flip-flop is turned on by the output of IC 1 changing state (i.e. trying to re-start the processor) and turned off again by a WRITE operation to re-start the timer.

In practice, the circuit is connected to the address, data, and control lines as shown. The program should start (usually after loading the stack pointer) by writing a word out to the watchdog timer port; it's a good idea to start with the longest time delay. For example, if the output port is at address 44 H , the assembled code for a Z80 could read:
$3 E \emptyset D \quad$ LD A, $\emptyset \quad$; Put req'd value in Accumulator
D3 44
OUT (44H), A ; Output the Accumulator to the port.
In BASIC, the simple instruction OUT 68,0 would normally be used. The program should then continue, but must repeat this code regularly. The value \emptyset can be changed up to $\emptyset \mathrm{FH}$, or 15 in the case of BASIC, to vary the delay. Higher numbers, of course, will cause the 'spare' bits to be changed in IC2. The code must be repeated before ICl finishes its time period, which is approximately 350 ms for the maximum delay ($\varnothing \emptyset \mathrm{H}$, or \emptyset decimal) or 12 ms for the minimum delay (0 FH , or 15 decimal). Programs written in assembler or directly in machine code usually run very much quicker than interpreted BASIC, so if used with the latter it might be necessary to extend the 350 ms to even longer. This should be done by increasing the value of Cl or R13 (or both). C2, C3, R11 and R12 should all be

Fig. 7. Veroboard layout
changed by the same amount, too.
At the reset address (normally $\emptyset \emptyset \emptyset \emptyset \mathrm{H}$) and/or at the NMI vector address ($\varnothing 066 \mathrm{H}$ for the Z80) the above code should again be loaded in, or at least jumped to or passed through very shortly in the program path. Af-
ter execution of this code, the program should then jump to a suitable place where the system can be re-initialised and re-started. Again, the port must be written to on a regular basis to prevent the timer ever reaching the end of its period.

MASI녈 mechonics-Microprocessors-Now! The PRACHCAL Way!

- Electronics - Microprocessors - Computer Technology is the career and hobby of the future. We can train you at home in a simple, practical and interesting way.
- Recognise and handle all current electronic components and 'chips'.
- Carry out full programme of experimental work on electronic \& computer circuits including modern digital technology.
- Build an oscilloscope and master circuit diagrams.
- Testing and servicing radio - T.V. - hi-fi and all types of electronic/ computcr/industrial equipment.

BARRY FOX

PROPHYLACTIC DISCLOSURE

There has been a spate of patents and research disclosures recently on still picture cameras that use electronic memory instead of film. A research disclosure, by the way, is the opposite of a patent.

If you invent something and don't patent it, you run the risk that someone else may also invent it, patent it, and perhaps stop you using your own invention. But once an idea has been published, it cannot be patented. So the safest way to ensure that no-one; including yourself, can patent an idea is to publish it.

Some firms play the sneaky trick of publishing in an obscure language, like Finnish or Danish, and choosing a little known publication in that country. Remember that once you have published an idea without patenting it, you have effectively made it a gift to anyone who reads what you have written.

By publishing in an obscure language there is a good chance that no-one will read it. But if the idea is later patented, the obscure language publication can still be used to invalidate the patent. This technique is quaintly known as "prophylactic disclosure"

A more normal approach is to publish openly, for instance in a learned journal. But this takes time. It is quicker to take advantage of the services offered by some firms which exist solely to publish ideas on which inventors want to block patents. Research Disclosures is one such British publication and a British journal recently devoted two pages to a not very intereśting idea for electronic still picture cameras which an anonymous firm had published as a patent blocking procedure.

IN THE FRAME

The electronic picture bandwaggon started rolling with Sony's Mavica. Note incidentally that Mavica was the word originally used by Sony to describe a very wide video tape format which ran very slowly past a helical scan head. The wide tape format was dropped and the name Mavica was later switched to an SLR camera with CCD image sensor and magnetic disc instead of film:

They built and demonstrated some Mavica prototypes back in August 1981 and before long the popular press was talking about the end of film cameras. One American vídeo magazine reported Mavica as if it were already on sale. Sony talked about a launch in Japan "sometime in 1983'. But it never happened!

Instead Sony did a quiet deal with one of the leading Japanese daily newspapers to field test Mavica electronic cameras. The idea was to let newspaper reporters on location send their pictures back to head
office by telephone wire.
The original Mavica was a colour camera but the newspaper version was black-andwhite only to offer improved resolution. The last I heard, the field trials were still going on and Sony was planning a big announcement for when the newspaper made a full scale switch to electronic camera work.

So far this has not happened. But I noticed a recent patent from Sony for a multi-coloured ink ribbon for printing Mavica colour pictures onto paper. This is a modification of a printer demonstrated in London in March 1982.

Normally the pictures from an electronic camera are displayed on a TV screen and the screen image can of course be photographed with an instant picture film camera. But there is inevitably loss of definition so they devised a hard copy printer which worked independently of the TV screen.

The electronic image is read out four times, with a thermal printer working over four dye sheets, one at a time. The dye sheets are yellow, magenta, cyan and black. The dye works by sublimation, that is to say it changes from solid to gaseous state when heated and then goes back to solid powder again, without an intermediary liquid stage. The snag with all electronic film photography so far (and virtually every major Japanese company has a system under development) is that definition is limited to well below photographic film level.

Kodak, with most to lose, has made much public noise about this. The company responded to the threat of Mavica by launching the Kodak film disc camera. This works like a dream, making it almost impossible for anyone to take a really dud picture. But unfortunately the picture quality available from the very small film frame is so poor that it undermines the Kodak argument about the benefits of using film rather than electronic storage.

Polaroid has also stuck with film, although, like Kodak, it has professional interests that extend to electronic imaging. As emphasised to me when I visited Polaroid in their Cambridge, Massachussets headquarters recently, the real hurdle is to produce an electronically stored image of photographic film quality on equipment which matches conventional film cameras in price and reliability.

No-one has come anywhere near achieving this aim. It will happen, eventually, but not yet. In the meantime the popular press will continue to proclaim the end of film is nigh. When next you read this, bear in mind some of the hard technical facts.

The Mavica camera records its pictures on a small magnetic disc, looking like a computer floppy. In April 1983 a group of 20 Japanese companies agreed on a standard format for the discs: 47 mm in
diameter, coated with metal powder and capable of recording either 50 pictures with single field definition or 25 pictures with interlaced full frame quality.

The camera uses a CCD light sensor with 280,000 individual light sensitive elements, under a striped three colour filter. This gives colour resolution of 350 lines, that is to say the camera can resolve 350 separate vertical lines. Resolution is trebled by removing the three colour filter to give a black-and-white image.

The Sony printer could resolve up to 700 lines. Picture quality on screen, and on the hard copy print outs, could best be described as reasonable. The limiting factor was the CCD with its 280,000 individual picture elements.

When I talked with Sony they told me they hoped to raise definition by developing a CCD with 350,000 elements. But even the 280,000 element CCD stretched the technology. When Hitachi launched a video camera (for use with a portable video recorder), which had a solid state sensor instead of a conventional miniature picture tube, it had only 220,000 elements; and it costs more than a similar camera with a conventional tube that offers better resolution.

PERSPECTIVE IMAGES

To put these figures into perspective let's think about what happens when a broadcast quality TV signal is converted into digital code, for instance to enable the use of special effects of the type you see every day on sports broadcasts and pop music promo films. The technique used is to sample the black and white, or luminance, picture content at 13.5 MHz while sampling the two colour component signals at 6.75 MHz each.

There is no point in sampling any faster, because the picture is already broken up into individual lines, around 575 of which are active picture lines in the European 625 line system. Each sample is then described in 8-bit words, which means you need around one million 8-bit bytes of memory to freeze just one 625 line TV picture without quality loss.

Sampling at this rate breaks the picture up into around 0.4 million individual picture points or pixels (around 575 picture lines each divided into 720 picture points). So the sampling needed to store a broadcast quality TV picture is far in excess of the sampling available from a CCD sensor.

The unseen part of the equation is that CCD sensors are far more expensive to make than miniature TV tubes. So hard truth number one is that it costs more to get less quality if you use a solid state sensor. Hard truth number two is that the amount of memory needed to capture a TV picture is far in excess of anything currently
available at reasonable price.
Although Sony taiked only vaguely about the technology used to record Mavica pictures onto disc, the company's engineers did confirm to me that it was stored in analogue format by frequency modulation rather than digital code.

Now let's look at the kind of definition offered by film with silver halide emulsion. Kodak estimates that only a video system with around 2,000 active picture lines can convey all the information available in a frame of 35 mm film.

Even this does not solve the problem of contrast, the ratio between lightest and darkest picture content. For film it is around $500: 1$ and for video it is around 50:1. A single film frame of 35 mm film has around 3.5 million silver halide memory elements, each capable of recording blue, green and red light information separately with a range of contrast which is roughly equivalent to a 5 -bit digital word. So each frame of 35 mm film is a memory for over 50 million bits of information.

Now compare this with a 625 line TV picture, which at very best has around 0.7 million discrete pixels. Compare it also with solid state sensors which still have less than 0.3 million picture elements.

Polaroid makes the same point in a different way. The company says it believes that "silver halide photography will dominate for some years to come".

To prove the point Polaroid points to its new machine for giving magazine and
newspaper printers a chance to produce a pre-proof copy of a colour picture stored in digital code on Winchester discs. The storage is achieved by scanning the original photograph in a matrix of $2,000 \times 3,000$ lines to give a total of 6 million individual picture points or pixels.

Each pixel is then coded into three eightbit words, one for red, one for green and one for blue. This creates a total data stream for just one photograph of well over 100 million bits.

For printout this data stream is used to control an oscillating light beam. The 100 million bit stream takes around 5 minutes to print out and quality is almost as good as an original photographic picture. But around twice the number of bits would be necessary for no quality loss at all from an original 10×8 photo.

Even as it currently stands the Polaroid equipment costs over 100,000 dollars and takes up half a small office. All this to get from an electronic memory store the kind of quality you can get from a single sheet of photographic film!

COST OF QUALITY

As the price of electronic memory plummets and the storage density of magnetic disc rockets, the balance of convenience, cost and quality will change. Bit reduction techniques, as for instance used for teleconferencing to cram the 140 megabits a second needed for moving video into a 2
megabit stream, will also help the trend towards electronic imaging. But the high quality, low cost electronic camera that slips in your pocket is still a long way off.

The low quality, high cost pocket video recorder is however promised for America later this year and for Europe who-knowswhen. Earlier this year Kodak announced its intention of selling a camcorder (combined video camera and recorder) that uses the new format of 8 mm magnetic tape. The Kodak camcorder will be made by Japanese company Matsushita and a big question mark hangs over its commercial and technical viability.

When I visited Polaroid in Boston I was subjected to three days of the broadest hints imaginable that the company would NOT be following the same route. Less than a week later the company announced that it had signed a deal with Toshiba to do just that ! I was left re-writing articles hastily pulled back from the printing presses of several magazines. I shall be very wary of anything Polaroid in America tells me in the future.

The 8 mm video format is questionable because it comes late on the market, with VHS already the de facto world video standard and a very small VHS camcorder already on sale in the US and Japan and promised for the UK about now. The 8 mm camcorder price will be high, around $£ 1000$, which is far out of the price range of most of Kodak and Polaroid's traditional customers.

Prices including P\&ıP and VAT					
VA	Size	¢	VA	Size	£
15	0	7.06	160	5	12.17
30	1	7.67	225	6	13.75
50	2	8.90	300	7	14.97
80	3	10.06	500	8	19.60
120	4	10.65	625	9	22.30

Mail Order - Please make your crossed cheques or postal orders payable to ILP Electronics Ltd. Trade - We wil open your credit account immediately upon receipt of your first order.

Why a Toroid?

* Smaller size \& weight to meet modern 'slimline' requirements. * Low electrically induced noise demanded by compact equipment.
* High efficiency enabling conservtive rating whilst maintaining size advantages. * Lower operating temperature.

Why ILP?

* Ex-stock delivery for standard 240 v range.
- Fast prototype service
available.
- 3 weeks despatch for special orders.
- 2 year no quibble guarantee.
- No price penalty for call-off orders.

For 110 V primary insert " 0 " In place of " X " in type number.
For 220 V primary (Europe) insert " 1 " in place of " X " in type number.
For 220 V primary (europe) insert in in place of " X in type num
IMPORTANT: Regulation - All voltages quoted are FULL LOAD.
Prease add regulation figure to secondary voltage to obrain off load voltage.

by K. Lenton-Smith

MEmbers of COS (The Cinema Organ Society) spend a great deal of their time in rescuing and reviving the diminishing number of cinema organs still in existence and will happily travel long distances to hear a well-known organist's recital. Those of us interested in electronic keyboard instruments owe a great debt of gratitude to the near-extinct cinema organ.

CINEMA ORGANS

It is probable that most readers of $P E$ will not have experienced hearing a cinema organ played live. The BBC's programme "The Organist Entertains" may give an idea of the scope of the Wurlitzer, Compton and other cinema organs and of the immense skill of the masters of their keyboards but broadcasts and recordings are not to be compared with the "happening" itself.

The cinema organist was an entertainer in the full sense-a showman and not simply a skilled musician able to cope with three or four manuals, pedals and the myriad of controls round his horseshoe console. He even controlled the lighting beamed on him from above (by means of tabs on the console) to suit the particular mood of the music, and the hydraulic ram that brought him up from the pit.

There were no rhythm units in those days but he had a very comprehensive percussion department in the pipe chambers, including piano (at several pitches), chimes, xylophone etc., remotely controlled from his console. Drums and cymbals could be coupled to pedals and manuals-much as they were with electronic instruments 30 years ago.

The cinema organ's original function was to replace the piano accompaniment for silent movies, but eventually became part of the entertainment programme. Many of these instruments had four manuals and, at the height of the era, a seven manual instrument was built for general entertainment.

I suspect that the cinema itself was in its heyday 35 years ago and that the popularity of its organ has run in parallel. Patrons saw two full-length films, newsreel, cartoon, the resident organist gave his recital and there was possibly a stage show as well. All good family stuff-and the films mostly had a happy ending! The cinema catered for complete escapism and even the grand architecture of the picture palacte (and indeed they were palaces) was geared towards that ideal.

The cinema has suffered in many "ways. TV was in existence before the Second World War but viewers were few and it was the BBC's poor relation. Transmissions were halted during the war to avoid presenting the enemy with perfect direction finding facilities. Resumption of the BBC's service, the addition of ITV and eventually colour have tended to make the public seek entertainment in the home. Videotapes have made further inroads in this respect.

Many cinemas were demolished during the Blitz, or so badly damaged that their organs were lost. Those that survived often fell into disrepair and, while the pipework was relatively sound, the electrical circuitry rotted away. These instruments were electrically blown-at fairly high pressure-and wind allowed from wind-chest to pipe by means of pallets operated by pneumatics and solenoids wired to the console. Miles of wire was involved and the flexible cable connected to the rising console was very substantial. Disuse, exposure to the elements and the high cost of an overhaul for the cinema chain resulted in the expiry of many a fine instrument.

Consequently, most of the surviving instruments have become museum pieces and are still operating because of the hard work put in by COS members. To preserve them, whole instruments were dismantled and re-built elsewhere and relatively fow cinema organs are still to be found in their original locations. Some are in private houses and public halls and the pipework has been known to find its way into churches-although only part of the tonal arsenal can be used in that situation I

POP MUSIC

The cinema organ's struggle for survival was not only due to old age but also to the public's changing musical taste. Among the junk in the attic, there may be a pile of sheet music inherited from an earlier age. Sixpence may well have bought the score for the latest popular melody. Those were the days when music was composed to be played and sung by everyone-big bands, small combos, popular vocalists and those round the family piano.

Apart from being played over the air these melodies formed the basis for a cinema organ performance-and were exactly what the patrons wanted and expected. The position today is vastly different as pop music is quite often written by a mem-
ber of a group that records that number for its own popularity. And so the disco is overtaking the dance band.

Melody hardly applies to modern pop music, which seems to emphasise intricate rhythm patterns and often has little melodic content. Vocals are often banal and not in the 'sing-along' category: much of this output will be here today and gone tomorrow. Oh yes, there are exceptions, such as the Beatles' compositions. Fortunately we still have a few composers of note-such as Mancini, Ie Grand and Joabim-who write songs that can be sung and will be remembered.

Musical tastes also changed with the arrival of rock and skiffle, when the guitar suddenly became the centre of interest for aspiring pop fans. Keyboard instruments began to lose favour, especially the family piano; a "sport" at that time was breaking up pianos against the clock.

No wonder the cinema organ fell out of favour. Good tunes were becoming scarce, keyboards were less popular and the lugubrious style of the cinema organ couldn't cope with the new wave of pop music. Many cinema organists gave in as, whilst they could please the mums in the audience, the kids made it plain that this sort of music was not to their liking.

ELECTRIC ORGANS

I hope that COS members will forgive me for concluding that the cinema organ is a musical dinosaur but we should be grateful to that Society because, like the animal species, this dinosaur has evolved.

The Hammond organ was around in the late 1930 s, if you could afford one, but was rare in this country. It was offered to the public as an electric organ capable of completely new tones. It sounded unlike the cinema organ, largely due to the early methods of vibrato it used. Some time elapsed before the public took to the electric organ but, because of its portability, gained popularity during the war for outside broadcasts. Jazz performers found its rapid attack useful and even liked the key-click.

The generation that grew up with films with organ recitals were sufficiently hooked to be among the first home-organ owners. The average age of Organ Clubs will support this fact and, as they sit at their 'plugins' crunching through 'Spanish Eyes' in the instruction book, they are mentally back in that long-gone picture-palace of their youth, seated at the Mighty Wurlitzer and bathed in purple limelight!

Whereas the finest pipe organs have complete ranks for each stop, cinema organs were usually based on extension principles-and today's electronic instrument follows that principle in general. For a complete 5 -octave manual, 61 pipes are required for each stop of a given pitch.

The alternative is extension, where, say, 97 Tibia pipes can be made to cover all pitches between 16^{\prime} and 2^{\prime}, any 61 being brought into play by a stop tab. Notes were thus 'borrowed' or duplicated liberally: this is noticeable only by the most critical ear, but it did reduce the cost.

The electronic organ with Top Octave Synthesiser and bistable divider strings is also an extension organ. When reverberation and other effects have been added to the signal, it is difficult to hear the shortcomings.

The percussion department of a cinema organ was not limited to drums etc. There were bird whistles, hooters, thunder and other effects-not surprising, as the original task was to accompany films.

Today the percussion or rhythm section probably comprises some eight instrument voices, triggered by a ring counter, all of which were available on a cinema organ. The piano stop today also derives from that source, where a grand piano in the chamber could be played from the console.

The modern electronic counterpart is just as complex because it will probably embody synthesisers (mono- and polyphonic) as well as 'organ tone'. Organ tones of entertainment, as distinct from classical, organs owe their origins to the cinema and basically fall into three categories.

The backbone of the tonal array is the Tibia (for the classical organ, the Diapason) which comes under the generic group of Flue pipes. The pipe itself is of wide scale without much harmonic content and in electronic terms is close to a sine wave. Square waves contain odd harmonics but the output from a bistable divider may be low-pass filtered to remove most of the harmonics.

Selective filtering and mixing will allow some overtones to pass, so that other flues may be produced. Stopped pipes, where the pipe is literally capped so that the pulses of air are bounced back and emerge at the mouth, contain some odd harmonics.

Stopped Flutes are therefore easily arranged from a square wave source.

The second group form the Strings, the pipes being of smaller scale: the fundamental is weaker and plenty of harmonics exist. If square waves are the starting point, super-octave frequency has to be added to provide even harmonics. By staircasing several octaves together, an almost full harmonic series can be obtained; a high-pass filter will suitably reduce the fundamental. If there is a choice of waveform, sawtooth provides a ready-made full harmonic series.

The last group, Reeds, is not quite as simple if the correct result is to be obtained. The reed pipe itself actually contains a reed at its base, the pipe in this case simply acting as a resonator. To duplicate the sound, a full harmonic series is treated by band-pass filtering.

It should be emphasised that pipe organ tones were never intended to be replicas of their orchestral counterparts, the Trumpet being a good example. To copy a trumpet reasonably well you need synthesised tones as both portamento and the envelope are adjustable-and these are not really organ facilities.

SPINET

I have visited private houses where cinema organs were installed. For this purpose, you need a large house or a large outbuilding! So the organ has been scaled down over the years. If you are classically inclined, you still need a minimum of two manuals and a 32-note pedalboard. With anything less, you soon run out of notes.

For entertainment purposes, you can get by with far less and the so-called 'Spinet'
organ thus came into being: it is lighter, smaller and less expensive. The two manuals are normally shortened to $3 \frac{1}{2}$ or 4 octaves each and are offset.

The top manual is the solo and its bottom note around tenor F but the addition of a 16^{\prime} stop brings it one octave lower. The accompaniment (lower) manual is offset to be one octave below the solo but the lowest pitch available is usually 8^{\prime} : thus, the lowest frequency is generally the same on both keyboards.

A full size pedalboard is probably too large for most living rooms and most of its compass probably unnecessary for light music. Hence an octave of stub pedals is usually fitted-even so, an expert can do wonders with those ' 12 sticks'.

NO ABDICATION

The King is Dead-but long live the King of Instruments. He may have changed somewhat, fitted with synthesisers, memories, automatic chords and rhythm units. Some home-organs still feature a horseshoe console and we should remember that the King has sired some related instruments--the electric piano, computer keyboard and polyphonic synthesiser.

So, although nearly extinct, the entertainment pipe organ has set a few precedents in the design of electronic instruments and given many people the opportunity to make music on what is still the most complete and complex of all instruments. We must hope that COS members will continue to preserve those mighty giants so that we can still enjoy hearing them-and venerating them for their contribution to the Art of Electronic Music.

Appearing every month, Micro-Bus now presents ideas, applications and programs for the most popular microcomputers and all micro-related projects so far published in PE. Ideas must be original, and payment will be made for any contribution featured.

ZX80 TESTS

Sir-The first of my two programs for the ZX80 should be of interest to all ZX80 owners, while the second is mainly of use to students of mathematics and physics. They
will run on any memory size.
Program One will test the user's mental arithmetic by firing twenty questions including the four major operations at him. The answer is always a whole number, by design, and after the test you are given your score. If you score
eleven or more correctly then you can either finish or have another test; however, if you do not then the program forces another test.

Program Two solves simultaneous equations of three unknowns, and having recently completed my second sixth form year I can
recommend the program to any user wishing to check his matrix multiplication solutions of these equations．One merely enters the infor－ mation requested and the solution is displayed． Remember to enter \emptyset where no variable exists and don＇t forget negative coefficients．

Conversion to run on other machines should not cause many problems；however， major modification would have to be perfor－ med to RUN either program on a 1 K ZX8！ （limited memory）．

M．J．Davies， Dyfed．

SOFTWARE

Program 1

10 RANDOMISE
2ø PRINT，＂MATHS TEST＂
30 PRINT＂I WILL ASK YOU 20
MATHEMATICS＂，＂QUESTIONS．
INVOLVING＋，－，＊OR／．＂
40 PRINT＂ENTER NO．TO ANSWER＂
50 GO SUB 550
60 LET RI＝\emptyset
70 FOR G＝1 TO 20
80 LET R＝RND（4）
90 CLS
95 PRINT＂QUESTION＂；G
100 GO SUB $280+$ R＊40
110 PRINT＂＝？＂
120 INPUT A\＄
130 LET B\＄＝STR\＄（B）
135 LET C＝\emptyset
140 IF AS $=\mathrm{BS}$ OR $(\operatorname{CODE}(\mathrm{A} \$)=220$ AND
$\operatorname{CODE}(\mathrm{BS})=18$ AND TLS（AS）＝TLS（B\＄））
THEN LET C＝－1
150 IF C THEN PRINT＂CORRECT＂
155 IF C THEN LET RI＝RI＋1
160 IF NOT C THEN PRINT
＂WRONG ．．．ANSWER＝＂；B\＄
170 GO SUB $55 \emptyset$
180 NEXT G
190 CLS
$2 \emptyset 0$ PRINT＂YOU GOT＂；RI；＂RIGHT＂
210 IF RI $=20$ THEN PRINT
＂EXCELLENT＂
220 IF RI＜2 AND RI＞1 0 THEN PRINT
＂NOT BAD＂
230 IF RI＜11 THEN PRINT＂YOU NEED
SOME MORE PRACTICE＂
240 GO SUB 55 \emptyset
250 CLS
260 IF RI＜11 THEN RUN
$27 \varnothing$ PRINT＂MORE？（Y／N）＂
280 INPUT A\＄
290 IF A\＄＝＂Y＂THEN RUN
300 IF AS＝＂N＂THEN STOP
310 GO TO 280
32ø GO SUB 490
330 PRINT A；＂＋＂；B；
340 LET $B=A+B$
350 RETURN

360 GO SUB 490
370 PRINT A；＂－＂；B；
380 LET B＝A－B 390 RETURN
400 GO SUB 490
410 GO SUB 520
420 PRINT A；＂＊＂；${ }^{*}$ ；
430 LET $B=A * B$
435 RETURN
440 GO SUB 490
450 GO SUB 520
460 LET C＝A＊B
470 PRINT C；＂／＂；A；
480 RETURN
490 LET A＝RND（10めの）
500 LET B＝RND（10めळ）
510 RETURN
520 LET A＝A／10
530 LET B＝B／10
540 RETURN
550 PRINT＂PRESS NEWLINE＂
560 INPUT A\＄
570 RETURN
READY．

Program 2
1 LET CH＝38
2 GO SUB 57
3 INPUT A
4 GO SUB 57
5 INPUT B
6 GO SUB 57
7 INPUT C
8 GO SUB 57
9 INPUTD
10 GO SUB 57
11 INPUT E
12 GO SUB 57
13 INPUT F
14 GO SUB 57
15 INPUT G
16 GO SUB 57
17 INPUT H
18 GO SUB 57
19 INPUT I
20 GO SUB 57
21 INPUT J
22 GO SUB 57
23 INPUT K
24 GO SUB 57
25 INPUT L
26 CLS
27 LET D $0=\mathrm{A}^{*} \mathrm{~F}^{*} \mathrm{~K}+\mathrm{E}^{*} \mathrm{~J}^{*} \mathrm{C}+\mathrm{I}^{*} \mathrm{~B}^{*} \mathrm{G}-$
C＊F＊I－G＊J＊A－K＊B＊E
28 LET D $1=$ D $^{*} G^{*} \mathrm{~J}+\mathrm{H}^{*} \mathrm{~K} * \mathrm{~B}+\mathrm{L}^{*} \mathrm{C}^{*} \mathrm{~F}-$
$B^{*} G^{*} L-F^{*} K^{*} D-J{ }^{*} C^{*} H$
29 LET D $2=$ D $^{*} \mathrm{G}^{*} \mathrm{I}+\mathrm{H}^{*} \mathrm{~K}^{*} \mathrm{~A}+\mathrm{L}^{*} \mathrm{C}^{*} \mathrm{E}-$
$A^{*} G^{*} L-E^{*} K^{*} D-I^{*} C^{*} H$
30 LET D3 $=\mathrm{D}^{*} \mathrm{~F}^{*} \mathrm{I}+\mathrm{H}^{*} \mathrm{~J}^{*} \mathrm{~A}+\mathrm{L}^{*} \mathrm{~B}^{*} \mathrm{E}-$
$\mathrm{A}^{*} \mathrm{~F}^{*} \mathrm{~L}-\mathrm{E}^{*} \mathrm{~J}^{*} \mathrm{D}-\mathrm{I}^{*} \mathrm{~B}^{*} \mathrm{H}$
$31 \mathrm{IF} \mathrm{D} \emptyset=\emptyset \mathrm{OR} \mathrm{D} 1=\emptyset \mathrm{OR} \mathrm{D} 2=\emptyset \mathrm{OR}$
D3 $=0$ THEN GO TO 65
32 PRINT＂SOLN．：＂
33 LET Q＝－D1
34 PRINT＂X＝＂；
35 GO SUB 47

36 LET Q＝D2
37 PRINT＂Y＝＂；
38 GO SUB 47
39 LET Q＝－D3
4 D PRINT＂$Z=$＂；
41 GO SUB 47
42 PRINT＂MORE？（Y／N）＂
43 INPUT AS
44 IF NOT（A\＄＝＂Y＂OR A\＄＝＂N＂）THEN
GO TO 43
45 IF AS＝＂Y＂THEN RUN
46 STOP
47 LET C＝Q／D \emptyset
48 LET A＝Q－D D＊ C
49 PRINT C；＂‘＂；
50 FOR B＝1 TO 3
51 LET C＝1 \emptyset^{*} A／D \emptyset
52 LET A＝1 $\emptyset^{*} \mathrm{~A}-\mathrm{C}^{*} \mathrm{D} \emptyset$
53 PRINT C；
54 NEXT B
55 PRINT
56 RETURN
57 CLS
58 PRINT＂EQUATIONS WITH 3
UNKNOWNS＂
59 PRINT＂AX $+\mathrm{BY}+\mathrm{CZ}=\mathrm{D}$＂
60 PRINT＂$E X+F Y+G Z=H$＂
61 PRINT＂IX＋JY＋KZ＝L＂
62 PRINT＂GIVE＂；CHR\＄（CH）
63 LET CH＝CH +1
64 RETURN
65 PRINT＂EQUATIONS ARE
INCONSISTENT＂
66 GO TO 42
READY．

SPECTRUM SECONDS AWAY

Sir－Here is a program for the Spectrum which is basically a seconds counter． However，its main importance to Spectrum owners is the use that can be made of line 35 ，in view of the fact that there is no SCROLL instruction in the machine＇s vocabulary．

J．W．H．King， Cambridge．

5 REM＂SECONDS COUNTER＂and ＂SCROLL CONTROL＂for Spectrum．
$1 \emptyset$ LET $\mathrm{p}=1$ ：PAUSE 48
$2 \emptyset$ PRINT p
$3 \emptyset$ LET $p=p+1$
35 POKE 23692，2：PAUSE 48
$4 \emptyset$ GO TO $2 \emptyset$
50 REM This programme COUNTS SECONDS．It can be stopped by pressing CAPS SHIFT and BREAK．ENTER RUN to start．
60 REM Line 35 entered in any programme before a GOTO line will produce scrolling at one line per second．
$7 \emptyset$ REM If entered as POKE 23692，1，it will scroll one line at each depression of almost any key．POKE 23692,2 without the PAUSE will give continuous scrolling at a very fast rate．

MJI 102 - a new number IN BRITISH 'SCOPES ...

Simple Operation - Fully Automatic Trigger Single Beam - 100 mV to 50V/Div. - Sensitivity 10 mS to $1 \mu \mathrm{~S} /$ Div. - Sweep - X - Y Facility Lightweight and Compact
and at a very lightweight price SEND for detalls NOW!

MJ Instruments

HILLTOP HOUSE, THINGOE HIL.
BURY St. EDMUNDS, SUFFOLK, IP32 6BE. Tel: (0284) 67104

IF YOURE CRAFTY, YOURE BOUND TOPICK UPA LOT OF TIPS ATOURSHOW

WEMBLEY CONFERENCE CENTRE

10-13 JANLARY, 1985
Thursday to Saturday $10 \mathrm{am}-7 \mathrm{pm}$ Sunday 10 am -6pm

PRACTICAL VIOCO VOAR EXAIBITION

Whether you're a craftsman creating fine furniture or a beginner making a simple bookshelf, you'll find everything you could possibly need under one roof. See the latest ideas and equipment for woodworking. Talk to the experts about timber and finishes.
\star CRAFT MARKET See the very latest ideas and equipment for woodworking. \star FREE CHRISTIES VALUATIONS Let Christies value your antiques. An expert will be available at the show, so bring along your interesting pieces, or photographs of them, if you prefer.
Admission prices: Adults $£ 2.50$ Children under 16 and Senior Citizens $£ 1.50$. Advanced Party Booking for groups of 20 or more. Adults $£ 2.00$ Children $£ 1.00$ (Plus one free ticket per 20 sold for the organiser or teacher).

Further details from: Practical Woodworking Tickets, Reed Exhibitions, Surrey House.

SMALL ADS

The prepaid rate for classified advertisements is 36 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 12.00$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Banks Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Practical Electronics, Room 2612, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

RECEIVERS AND COMPONENTS

FREE! Parcel of components worth $£ 10$. Send only 80 p postage! D. HORSLEY, 113 Clare Road, Braintree, Essex.

FIFTY 74 SERIES I.Cs on panel $£ 2.20$. Assorted components $£ 5.00 / £ 6.507 \mathrm{lbs}$ or 10 ibs post paid J. W. BLANSHARD, 2 Barnfield Crescent, Sale, Cheshire M33 1NL.

RESISTOR PACKS

 FOR ALL PROJECTSI watt carbon film resistors $5 \% 1$ ohm to 10 M E24 series. Packs of 10 each value $(1690$ resistors) $£ 10.00$. Your choice of quantities/ values 125 for $£ 1.00$. VAT and Post Free. GORDON HALLETT 20 Bull Lane, Malden Newton,
Dorchester, Dorset DT2 OBO.

BOURNEMOUTH BOSCOMBE. Electronic components specialists for 33 years. FORRESTERS (NATIONAL RADIO SUPPLIES), Late Holdenhurst Road. Now at 36, Ashley Road, Boscombe. Tel. 302204. Closed Weds.
TURN YOUR SURPLUS capacitors, transistors, etc into cash. Contact COLES HARDING \& CO., 103 South Brink, Wisbech, Cambs. Tel. 0945 584188. Immediate settlement.

SERVICE SHEETS

beLl TELEVISION SERVICES for service sheets of Radio, TV, etc $£ 1.50$ plus SAE. Colour TV Service Manuals on request. SAE with enquiries to B.T.S., 190 Kings Road, Harrogate, N. Yorkshire. Tel. (0423) 55885.

SOFTWARE

UK101 SOFTWARE ON TAPE

GALACTIC HITCHHOEER (BK). An adventure, all in machine code. A beatyl (87.00)
 ing Klingons in real time. Superb graphics. (E7.00)
STARTREK (8K). The old favourite, beautifully presented. (E6.00) than 3 hours. ($£ 3.00$)
HANGMANS. Excellient graphics. P.E. sald sol ($£ 3.00$)
BASIC TUTOR ($8 \times 4 \times$). The only way to learn - at the keyboard. (E 12.00)
[PASSE-TEMPS. You NEED this, if you haven't already got it (E3.00) MONK (BK). t's ready at last! A machine code adventure
MAD MONK with some truly remarkable graphics, this programme is in a class by itself. (ce9.50)
These ORIGINAL PROGRAMS are compatible all 2 K Monitors and are available for 16×48 and 32×48 displays lincluding enhanced Superboards).

HARDWARE
These kits are complete in every war:- Fuly socketed high quality PCB, all components, switches etc, pius preformed cable assembly for easy interconnection to J , or our easity. Provides eight, yes EIGHT, fully butfered JI type sockets. ($£ 19.50$)
8K STATIC RAM BOARD. (E39.50)
HI-SPEED CASSETTE INTERFACE. At last, a system that works. COMPLETELY RELIABLE 4000 baud 18000 with reasonable cassette) pus software for named file handing. A delight io use,
($£ 19.50$). For software in EPROM, add $£ 6.00$. VDEO ENHANCEMENT. Switch selectable 16×48 or 32×48 displays withour butchering your computer, (19.50) Monitor EPROMS re-blown to suit for just $£ 2.50$ 8K EPROM BOARD (£19.50). A 2 K Extended Monitor is available in EPROM for $£ 12.00$ plus, coming soon, TOOLKIT in EPROM and BASIC V.
MONITOR BOARD. Plug into Monitor socket to provide switch selection of up to 4 EPROMS. (E9.50)
All inclusive prices - absolutely no hidden extra
Please write or phona for further
KNIGHT SOFTWARE.
938 High Street, Eston, Cleveland TS6 9io. Tel: (0642) 454883.

PHILIPS DIGITAL MULTIMETER PM 2521. COSt $£ 365$, accept £250 with operating manual. Tel. 070431153.

BOOKS AND PUBLICATIONS

FUL SIZE, top quality service sheets $£ 2.50+1$.s.a.e. CTV/ Music Centres $£ 3.50+$ lis.a.e. Repair data almost any named TV-Video $£ 10.50$ inc. circuits. L.s.a.e. brings any quote free magazine/price lists. TISPE, 76 Churches, Larkhall, Lanarkshire. 0698883334.

COURSES

FULL-TIME TRAINING COURSES
 15 MONTHS
 B-TEC NATIONAL CERTIFICATE in TELEVISION \& VIDEO SERVICING

15 MONTHS

B-TEC NATIONAL CERTIFICATE

 in COMPUTING TECHNOLOGY
9 MONTHS
 B-TEC HIGHER CERT (HNC) in COMPUTING TECHNOLOGY R ROBOTICS

- PRINCIPLES OF ELECTRONICS
- TELEVISION (MONO/COLOUR)

VIDEO CASSEITE RECORDERS \& CCTV

- COMPUTERS \& MICROPROCESSORS
- INDUSTRIAL ROBOTICS

Short courses (from 6 weeks) with previous electronics knowledge.
Courses commence
Jan '85, April '85, September '85.
Prospectus from:

LONDON ELECTRONICS

COLLEGE

Dept: AA, 20 Penywern Road, London SW5 9SU. Tel: 01-373 8721

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS
Please insert the advertisement below in the next available issue of Practical Electronics for
insertions. I enclose Cheque/P.O. for $£$.
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Electronics)

NAME
ADDRESS

PRACTICAL ELECTRONICS

Classified Advertisement Dept, Room 2612,
King's Reach Tower, Stamford Street,
London SE1 9LS. Telephone 01-261 5846
Rate:
$36 p$ per word, minimum 12 words. Box No. 60p extra.

IMPROVE YOUR PROSPECTS

with skills that employers want - learn the easy way with modem home study courses from Ideal Schools.

MODERN ELECTRONICS Train for success in the lastest ever growing industrial sector.

COMPUTER PROGRAMMING

The demand for Programmers is increasing constantly - don't miss out! For free booklet write today to

IDEAL SCHOOLS
(Reí. PE2) (Ref. PE2) 60 St. Enoch Sq Glasgow G1 UK.

HOME SECURITY

- 3 -1 14
 Alarm Systems

FREE COMPREHENSIVE CATALQOUE!

- LOWEST DISCOUNT PRICES

HIGHEST QUALITY EQUIPMENT

- FREE DIY DESIGN GUIDE
- FULLY ILLUSTRATED
- MICROCHIP CIRCUITRY
- QUICK DESPATCH SERVICE
- FULL INSTRUCTIONS

C-TEC SECURITY, Dept PW
60 Market St, Wigan WN1 1HX EnMon
Telephone (0942) 42444

CENTURION

ALARMS

Manufacturers of Professional Alarm Equipment, for DIY \& the TRADE. Send now for oup New 10 page Brochure, Full of Information \& the Lowest prlces.

CENTURION Dept PE 93 Wakefield Road, Huddersfileld. HD5 9AB
or 3552724 hr .
W. Yorks.

SERVICES

INVENTORS

Think of something new? Write it downi-
American industry offers potential royalties for your innovations and new products. We offer free confidential disclosure registration and initial consultation in London regarding your idea's potential value. Write without delay for your free information package.

> American Inventors Corporation 82, Broad Street, Dept PT
> Westield, Massachusetts 01086 United States of America.
> A fee based marketing company.

MISCELLANEOUS

SUPERE INSTRUMENT CASES by Bazelli, manufactured from PVC. Faced steel. Vast range, competitive prices start at a low £1.50. Punching facilities at very competitive prices. BAZELLI, (Dept. 23), St. Wilfreds, Foundry Lane, Halton, Lancaster LA2 6LT.

AOAPTORS - Power supplies for calculators, TV games, computers etc. Send for details. RTE ELECTRONICS, Britania Mill, Rossendale, Lancs. BB4 8BA.

HEATHKIT. U.K. spares and service centre. CEDAR ELECTRONICS, Unit 12, Station Drive, Bredon, Tewkesbury, Glos. Tel. (0684) 73127.

TERMINET PRINTER RS232. Working $£ 70.00$. Everyday Elec tronics No. 1 to Vol. $9 £ 20.00$. Buyer collects. Tel. $01-651$ 4885.

CLEARING LABORATORY, sCOpes, generators, P.S.U.'s, bridges, analysers, meters, recorders etc. Tel. 0403-76236.

BURGLAR ALARM EQUIPMENT. Ring Bradford (0274) 308920 for our catalogue or call at our large showroom, opposite Odsal Stadium.

THE SCIENTIFIC WIAE COMPANY 811 Forest Road, London E17. Telephone 01.5311568				
ENAMELLED COPPER WIRE				
SWG	1 lb	8 oz	4 oz	202
8 to 34	3.63	2.09	1.10	0.88
35 to 39	3.82	2.31	1.27	0.93
40 to 43	6.00	3.20	2.25	1.61
44 to 47	8.67	5.80	3.49	2.75
48	15.96	9.58	6.38	3.69
	ILVER P	TED 5.20	ER M	
14 to 30	$\begin{aligned} & 9.09 \\ & \text { TINN } \end{aligned}$	$\begin{aligned} & 5.20 \\ & \text { COPP } \end{aligned}$	$\begin{array}{r} 2,93 \\ \text { NIRE } \end{array}$	1.97
14 to 30	3.97	2.41	1.39	0.94
Solder	5.90	3.25	1.82	
Prices include P\&P VAT. Orders under $£ 2$ add 20 p. SAE for Ilst of copper and resistance wire.				

NEW ANO SURPLUS components and equipment now in stock Also amateur F.M. and T.V. aerials, and a complete range of burglar alarm equipment. Write or phone for price list: SPECTRUM RADIO \& ELECTRONICS LTD, 36 Slater Street, Liverpool L1 4BX. 051 7094628.

ELECTRONIC ORQAN KEYBOAROS and other parts being cleared out as special offer. ELVINS ELECTRONIC MUSICAL INSTRUMENTS, 40a Dalston Lane, London E8. Tel. 01-986 8455.

CABINET FITTINGS

Fretcloths, Coverings, Handles, Castors: Flight Case Locks \& Parts. Jacks. XLRs.
Bulgins, Reverb Trays': \& \& N mic Stands. ASS Glassfibre Horns.
CELESTION POWER
Speakers
SUPPLESIID TD.

Unit G, Carlton Court, Grainger Road, Southend-on-Sea.

BRITAIN'S LARGEST STOCKIST OF BRITISH AND AMERICAN TECHNICAL BOOKS

* TOWERS INTERNATIONAL TRANSISTOR

SELECTOR
New Edition
Price $£ 14.50$

* FUNDAMENTALS OF MODERN DIGITAL

SYSTEMS
By Bannister
Price $\mathbf{~} 9.50^{5}$

* FOUNDATIONS OF WIRELESS AND

ELECTRONICS
By Scroggie (New Ed)
Price $£ 10.50$

* THE ART OF ELECTRONICS

By Horowitz
Price $£ 18.00$

* PRACTICAL INTERFACE CIRCUITS FOR MICROS

By G. Loveday
Price $£ 8.50$

* RADIO \& TELEVISION SERVICING 1983-84

MODELS
By R.N. Wainwright
Price $£ 24.00$

* UNDERSTANDING SOLID STATE ELECTRONICS By Texas Ins.

Price $£ 4.50$

* ESSENTIAL ELECTRONICS AN A TO Z GUIDE

By G. Loveday
Price $£ 7.00$

* OPERATIONAL AMPLIFIER EXPERIMENTAL

MANUAL
By G.8. Clayton
Price $£ 7.30$

* TELEVISION PRINCIPLES \& PRACTICE. COLOUR \& MONOCHROME
By J.S. Zarach
Price $£ 7.60$
* PRICES INCLUDE POSTAGE \& PACKING *

THE MODERN BOOK CO.
1921 PRAED STREET, LONDON W2 1NP
Phone: 01-402 9176
OPENED SATURDAYS UNTIL 1 PM
Please allow 14 davs for delivery

PLEASE

 MENTION PE WHENREPLYING TO

ADVERTS

P.E. HYPERCHASER

CHANNEL PSEUDD INTELLIGENT LIGHT UNIT

 * 16 Programmes \quad Manual Rash Butto * Manual/Auto Programme \star Strobe Outputs \star Individual Dimming \star Sound To Light Not just a light unit but a sophisticated \& comprehensive effects unit. A full kit of parts including P.C.B., Facia, Case, atc. Reprint of article on request. 884.95PRICE INCLUDING P\&P P P E. STAR DESK

$8+4$ CHANNEL LIGHT MIXING OESK

 * 8 Channel Twin Preset Mixer *Strobe Outputs * 4 Independent Channels $* 4 / 8$ Channel Sequences $\star 8$ Programmes $\quad \pm$ Manual Rash Buttons - 1 KW Output/Channei (can be boosted to $2 \mathrm{KW} /$ Ch) - Timed Crossfade \quad Soft/Hard SequenceA truly magnificent unit idaal for clubs, groups, drama, etc. A full kit of parts
£209
inc. PCB, Facia, Case, etc. Reprint of article on request. PRICE INCLUDING P\&P
BENSHAM RECORDING LTD

327 Whitehorse Road, Croydon, Surrey CRO 2HS

INDEX TO ADVERTISERS

AC/DC Electronics ... 7	71	ICS Intertext.	58
Adcola Products .. 5	55	Ideal Schools.	1
Advanced Security Products 7	71	ILP Electronics	65
Alcon Instruments ... 4	78	London Electronics College	70
American Inventive Corp...................................... 7	71		
Bensham Recordings .. 7	72	Maplin Supplies Marco Trading	
B.N.R.E.S. .. 6	63	Marco Trading M.J. Instruments	29 69
Burgess Power Tools.. 47	47	Modern Book Co	72
Centurion ... 7	71	Phonosonics	13
Cirkit Holdings ..	$7{ }^{5}$	Powertran ...	C. 848
Clef Products .. 7	72		
C.R. Suply Co. ... 7	71	R,A.F. Recruiting.	53
Cybernetic Applications 3	39	Radio Component Specialists	43
bar	4	Riscomp	29
Electrovalue .. 6	69	Scientific Wire Co.	71
		Skybridge	13
Grandata Greenweld	58	Software Index	1.8.C.
Hall Adam, Supplies .. 7	71	Swanley Electronics	58
	70		
Hallett, Gordon.........	39	T.K. Electronics	6
Henry's Electronics ... 22	39 23	Watford Electronics	283

ILP Electronics
London Electronics College

Have you one of these?

BBC * COMMODORE 64 DRAGON * VIC 2O ORIC1/ATMOS ATARI 400/800 SPECTRUM * ZX81

Then you need one of these

Best Guide to Microcomputer Software

Now with 5,000 programs
more educational, games, business \&
management listings than ever \& personal 1 NOW!

[^0]: For readers who don't want to damage the issue send a photostat or a copy of the coupon (filled in of course) with a cut-out valid "date corner

[^1]: 19 MULBERRY WALK LONDON SW3 6DZ • TEL: 01-352 1897 • TELEX: 918867

[^2]: To:RAFCAREERS (877/AG/01), LONDONROAD, STANMORE MIDDX HA74PZ. Please send me details.

 Name
 Address

 Date of birth

