PRACTBAL
 ELECTRONILS
 AB-7n4 10Ea

Low-price robots from POWERTRAN

- hydraulically powered
- microprocessor controlled

The UK-designed and manufactured range of Genesis general purpose robots provides a first-rate introduction to robotics for both education and industry. With prices from as low as $£ 470$, even the home enthusiast can aspire to his or her own robot.

Each robot in the Genesis range has a self-contained hydraulic power source operated from single phase 240 or 120 v AC or from a 12 V DC supply. Up to six independent
 axes are capable of simultaneous operation and all except the grip axis have sensing devices fitted to provide positional control by a closed loop system based on a dedicated microprocessor. Movement sequences can be programmed by means of a hand-held controller or the systems can be interfaced

with an external

 computer via a

GENESIS P101

The top-of-the-range P102 has dual speed control, enhanced memory and double acting cylinders for increased torque on the wrist and arm joints. There is position interrogation via the RS232C interface, increasing the versatility of computer control and inputs are provided for machine tool interfacing.

All Genesis robots are available either ready-built or in kit form. The latter provides not only extra economy but also valuable additional training as an assembly project.

For a litle over $£ 100$. Herbot Il takes programming off the VDU and into the real world. Each wheel is independently controlled by a compute; enabling the robot to perform an almost infinite number of noves. It has blinking eyes, a two-tone bleep and a solenoid-o serated pen to chart its moves. Touch sensors, coupled to its shell return data about its environment to the computer enabling evasive or exploratory action to be calculated.

The rosot connects directly to an l/O port or, via the interface board, to the expansion bus of a 2×81 or other microcomputer

HEBOT II

Weight 1.8 kg
complete kit with assembly instructions $£ 95$ Interface toord kit £11

MICROGRASP

A real, programmable robot for a little over £200! Micrograsp has an artizulated arm jointed at shoulder. elbow and wrist positions. The entire arm rotates about its base and there is a motor driven gripper. All five axes are motor driven and four of these are servo controlled giving positive positioning. The robot can be cor trolled by any microcomputer with an expansion bus the Sinclai $\mathrm{ZX81}$ being particularly suitable.

MICROGRASP

Weight 8.7 kg , max. lifting capacity 1 Jog
Robot kit with power
Universal computer interface board kit [54.00 splitter board
$£ 3.50$

E

GENESIS S101

Weight 29kg, max. lifting capacity 1.5 kg 4-axis model (kit form) $£ 470$

5-axis model (kit form) 5-axis complete system (kit form)

GENESIS P101

Weight 34 kg , max lifting capacity 18 kg 6-axis model (kit form) $\quad \mathbf{7 5 0}$ 6-axis complete system (kit form)

GENESIS P102

Weight 36 kg , max lifting capacity 2 kg 6-axis system (kit form) C1350

Powertran Cortex microcomputer self-assembly kit \quad E295.00

PRACTICALELECTRONICSVOLUME 20No. 4APRIL 1984
CONSTRUCTIONAL PROJECTS
MICROSTEPPER by L. G. Parkin BA 18
Debug and educational tool for micro's
CAR INTERIOR LIGHT DELAY SWITCH by N. J. Chaffey 36
Easy to fit car accessory project
PLANT WATERING METER by Tom Gaskel/ BA(Hons) 39
A project from Semiconductor Circuits
HEADS AND TAILS GENERATOR by M. Tooley BA and D. Whitfield MA MSc CEng MIEE 42
Electronic 'coin' game
EXPANDING THE VIC 20 Part Six by Sam Withey 46
ADC/DAC board
GENERAL FEATURES
INGENUITY UNLIMITED 25, 31, 41
35 I.e.d. Tacho - Monostable frequency divider
TRANSPUTER by R. W. Coles 26
We look at a component for the fifth generation
VERNON TRENT AT LARGE 32
MICRO-BUS 35
A monthly focus on micro's for the home constructor SEMICONDUCTOR CIRCUITS by Tom Gaskel/ B.A(Hons) 38
Window discriminator (TCA 965)
MICROPROFESSOR REVIEW by M. Tooley BA 58
The updated MPF 1 Plus learning aid
INTRODUCTION TO DIGITAL ELECTRONICS by M. Tooley BA and D. Whitfield MA MSc CEng MIEE 62
Part 7 of our electronics course
NEWS AND COMMENT
EDITORIAL 15
NEWS AND MARKET PLACE 16
Including Countdown. Silicon News Corner and Points Arising
SPECIAL OFFER-CASSETTES 40
PATENTS REVIEW 44
Hi-Fi video systems 53, 60
Free readers' advertisements
INDUSTRY NOTEBOOK by Nexus 54
News and views on the electronics industry
SPACEWATCH by Frank W. Hyde 57Halley's Comet mission
OUR MAY ISSUE WILL BE ON SALE FRIDAY, APRIL 6th, 1984(for details of contents see page 61)

[^0]

SPEAKERS 80			OPTO LEDS price includes Clips TIL209 Red 3 mm TIL211 Green 3 mm TIL2 12 Yellow TIL220-2゙ Red		0.5- LOUID CRYSTAL DISPLAYS 3y digit 4 digit 6 digit									
OוOD		RRIDGE			BPX25 250									
AAII2	20	${ }^{\text {(pastic case) }} 18$	$0.22^{\text {Vel, Grn, Amber }}$ Rectangular LeDs with			322								
AAY30	15		two par clip. R. G \& Y		${ }_{\text {BPX }}$	320								
BA100	15													
BAX13	20	1-400V 25	LEDS											
		$\begin{array}{ll}\text { 1A/600V } & 34 \\ \text { 2A } 500 & 30\end{array}$	Triangular LEDS R8G$02^{\text {P Fashing LED Red }}$											
					LLO74									
		2A $200 \mathrm{~V} \quad 40$			Isolator									
C	50				OCP71									
OA	40			Green/ Yello										
	12	2A/600V 65	Red/Green/Yellow			120								
		6A/600V 125			${ }_{4}^{2 N 5777}$									
		10A 200 V 215	027 Red High Brig		${ }_{\text {Pin diode }}$									
	5				Schmint									
			L											
		$\begin{array}{lr} 25 A / 600 V & 396 \\ \text { BY164 } & 58 \\ \hline \end{array}$	SFF205 (detector)		Op									
	8	$8 \mathrm{YY164}$ 56 VM18 50												
			T1L38 ${ }_{\text {TL81 }} \mathbf{8 2}$		effective									
					rit139									
1 N			7 Segment Disp		to RS ${ }^{186}$									
		8p each	$\begin{array}{ll}\text { Tlu32 } 5^{\circ} \mathrm{C} \text {. An } & 120 \\ \text { Til322 5 } 5^{\circ} \mathrm{C} \text {.th } & 120 \\ & 120\end{array}$		UMM.BOXES									
1 N 400 A		Range: 3V3 to 33V. 1.3W												
1 12006/			DL704-3* C.Cth DL707. $3^{\circ} \mathrm{C}$ Anod 3^{-}Gren or 500 3^{*} Green C.A. $=1 \cdot 3^{\prime \prime}$ Red or Green Bargraph 10 seg. Fed Bargraph NSM3914	125										
		$15 p$ anch												
		VARIC												
				150	5×21x									
	19			Bargraph NSM3914		54x								
${ }_{15921}$						$6 \times 4 \times 7$$6 \times 4 \times 3$								
	$\begin{aligned} & 90 \\ & 50 \\ & 50 \\ & 65 \end{aligned}$		ric chlorioe											
			Crystals IIb		$7 \times 5 \times 3$									
		3 3/400V3 A 800 V	195p + 50p p ${ }^{\text {p }}$		$8 \times 6 \times 3$ $10 \times 41 \times 3$ $10 \times 7 \times 3$									
			DALO ETCH RESIS											
SCR's					121)									
		Pen plus spare tip	100p											
Thyristors			$8 A / 800 V$ $12 A N T O O V$ 88	COPPER CLAD Boards										
5 A 300 V	38	12ANAOVV 82												
5A/400			Glass sided 6×6 $100 p$											
		12A $300 V$ 164.135 16000 103		$\begin{array}{lll} 6 \times 6 \\ 6 \times 12 & 175 p & 125 p \\ \hline \end{array}$										
$8 \mathrm{~A} / 300 \mathrm{~V}$		16A 4000 V 105												
		25A 4000 V 185	VEROBOARDS $0.1{ }^{\circ}$											
12 A 400 V	95		$2\} \times 31^{-}=85-95-\text { Plain Board }$											
80	188													
${ }^{\text {BTI }} 106$		$30 \mathrm{~A} 400 \mathrm{~V} \begin{aligned} & 480 \\ & 525\end{aligned}$	${ }_{31}^{2, \times 5^{\circ}} \times{ }^{2}=100-110$ - Vero Strip											
	180													
		T28000 120												
	29	SOLDERCONPHNS		S-Dec Eurobreadboard Bimboard 1 Superstrip SS2		$\begin{aligned} & 495 \\ & \mathbf{5 9 0} \\ & 695 \\ & \mathbf{5 1 3} \end{aligned}$								
TIC47	35		Pkt of 100 plns 55p Spot Face Cutter 150pPin Insertion Tool 185p											
2 N 444 4	130													
$\begin{aligned} & \text { DIAC } \\ & \text { ST2 } \end{aligned}$														

COMPUTER CORNER

- SEIKOSHA GP100A - Unihammer Printer, normal \& double width characters, dot resolution graphics 10° Tractor feed, parallel interface standard. FREE 500 Sheets
- SEIKOSHA GP 250X Printer
- EPSON FX80 PRINTER 160 CPS, 11×9 matrix proportional spacing, superscript, subscript, dot addressable graphics, Normal, Italic \& Elite characters. Up to 256 user definable characters. Down loadable character set. Condensed and double width printing. 4 user define margin positions. Tractor and Friction feed. $10^{\prime \prime}$ maximum width, Bidirectional, logic seeking. Centronix Interface standard.
- EPSON RX80 PRINTER

- EPSON RX80 FT PRINTER

 monitors Connecting lead for KAGA monitorsf215
ZENITH 12" Hi-RES Green Monitor column select switch, value for money.

- MICROVITEC $14^{\prime \prime}$ colour monitor. RGB input. Lead incl.
MICROVITEC 1451 Hi-res 14" Monitor inct Lead 15-30 min.
- Spare 'UV lamp bulbs

POWER SUPPIY Regulated, Variable from +5 V to $+15 \mathrm{~V}, 4 \mathrm{~A}$. Fully Cased

$+59$

- MULTIRAIL PSU KIT. Output: $+5 \mathrm{~V} / 5 A_{\text {; }}+12 \mathrm{~V}$; $+25 \mathrm{~V} ;-5 \mathrm{~V} ;-12 \mathrm{~V} @ 1 \mathrm{~A}$ f40
- 4×4 matrix keypad (reed switch assembly) $\mathbf{£ 4}$
- C12 COMPUTER Grade BASF Cassettes in Library Cases

40p

- $8 \mathbf{l}^{\prime \prime}$ or $91^{\prime \prime}$ Fan fold paper (1000 sheets) (150p)
- Teleprinter Roll (no VAT)
$E 3.50$
MANY MORE PRINTERS, MONITORS, INTERFACES, AVAILABLE. CALL IN AT OUR SHOP FOR DEMONSTRATION OR WRITE IN FOR OUR DESCRIPTIVE LEAFLET.
(P\&P on some of the above items is extra)
Call in at our shop for demonstration of any of the above items. Be satisfied before you buy.

BROTHER HR-15 DAISEY-WHEEL

 PRINTER/An exceptionally high quality Daisy Wheel printer at the price of a Dot matrix printer. 18CPS; Bi-directional, has 3 K of Buffer; has clear buffer facility, Carriage skip movement, Proportiona spacing; underlining; Bold print and Shadow print. Prints in two colours; Super and subscript fa cility. Impact control facility to vary pressure on paper for mak ing carbon copies. Has Centron ics parallel or RS-232 interface Connects directly to BBC Micro. A ribbon cassette plus a sepa rate red ribbon. Optional extras Single Sheet Feeder takes up to 150 A4 sheets; \& Keyboard that transforms HR15 into a sophisticated electronics typewriter. At tractively finished in Beige. Special Introductory Offer:

Only $£ 375$ (Carr. £7)
NEW LAUNCH 280A 2nd PROCESSOR

BOARD for BBC
With CP/M and Double Density Disc interface Yes it's here. Z80A $4 \mathrm{MHz} 2 n d$ processor Board with 64K memory, 4 K Monitor EPROM, Paral lel printer interface, CP/M handling, double density board will handle, $3 \frac{1}{2}^{\prime \prime}, 54^{\prime \prime} \& 8^{\prime \prime}$ Floppy Disk Drives and many more fa cilities. All neatly housed in win slimline disc drive case.

Only E 350

510 Spare birs 525
530

CRYSTAL

BBC MICROCOMPUTER

Model A £299; Model B £399 (incl. VAT). We stock the full range of BBC Micro peripherals, Hardware \& Soft ware like, Disc Drives (Top quality Cumana \& Mitsubishi), Diskettes ${ }^{n}$ Printers, Printer Paper, Interface Cable, Dust Covers, Cassette Recorder \& Cassettes, Monitors Connectors (Ready made Cables, Plugs \& Sockets), Plot ter (Graphic Tablet) EPROM Programmer, Lightpen Kit, Joysticks, Sideways ROM Board, EPROM Eraser, Machinecode ROM, The highly sophisticated Watford's 16 K BEEB DFS, WORDWISE, BEEBCALC, Software (Educational Application \& Games), BOOKS, etc. etc. Please send SAE for our descriptive leaflet.

DISC DRIVES FOR BBC MICRO

- CS100 - TEAC Cased with own Power Sup-
 S/S, 40 track, 5 t", 200K
£350
- CS200 - TEAC Single Cased with own PSU, S/S, 80 track, 5 l'" $^{\prime \prime}, 200 \mathrm{~K}$ £250
- CD400 - TEAC Twin Cased with own PSU, S/S, 80 track, $5{ }^{1 \prime \prime}, 400 \mathrm{~K}$
£475
- SINGLE MITSUBISHI Slim line - Cased with own PSU, DS/DD, 1 Megabytes (400K with BBC)
$\mathbf{£ 2 7 5}$
- TWIN MITSUBISHI Slim line - Cased with own PSU, DS/DD, 2 Megabytes (800 K with BBC)
- Single Drive Cable for BBC Micro
$£ 535$
- Twin Drive Cable for BBC Micro 15 year warranty)
- 10 Verbatim or 3 M Diskettes; S/S £18

10 Verbatim or 3 M Diskettes, D/S £28
12 year warranty on WABASH Diskettes)

- 10 WABASH Diskettes, $5{ }^{1 / \prime}$, S/S

Many more types available.
Please send SAE for our detailed leaflet. N.B. Carriage is extra on drives.

MIDWICH
 COMPUTER COMPANY LIMITED

RICEINGHALL HOUSE, HINDERCLAY ROAD. RICKINGHALL SUFFOLI IP22 IHR TEL.DISS (OS79) 30E751. BBC Microcomputers Model B
Model B + Dise Int NB Credit casds are nor
BBC Microcompule

BBC Micro Ecomet
Full range of prod
BBC Compatible Disc Drivés

34226
43321
nitiop
65
6500 Fcm
6502
6502 A
6520
6520 A
6522
6522 A
6532
6532 A ily

0.24
1.08
0.46
0.61
0.38
0.28
0.47
0.89
0.28
0.28
0.47
0.91
0.24
0.41
0.85
0.41
0.60
137
035
055
1.66
030
1.02
5.25
6.38
25.65
s 690
0.95%
T.V. SOUND TUNER

SERIES II
BUILT AND TESTED
In the cut-throat world of of the questions designers apparently ponder over
is we save monay by chopp ing thls out?"' In the
 first casualties seems to be the sound quallty. Small speakers and no tone controls are common Also available with built-in headphon and all this is resily quite sad, as the amp. ONLY £32.50 $+\mathbf{£ 2 . 0 0} p \& \mathrm{p}$. TV companies do their best to transmit the highest quality sound. Given this background a compact and independent TV tuner that connects direct to your Hi-Fi is a must for quality Thi TV SOUND TUNEA oifs operated
This TV SOUND TUNER offers full UHF coverage with 5 pre-selected tuning controls. It can E.T.I. kit version of above without chassis, case and hardware. $\mathbb{£ 1 6 . 2 0}$ plus $£ 1.50 \mathrm{p} \&$

PRACTICAL ELECTRONICS STEREO CASSETTE RECORDER KIT COMPLENE

ONLY $£ 34.50$ plus $£ 2.75$ p\&p - NOISE REDUCTION SYSTEM. - AUTO STOP. TAPE COUNTER. - SWITCHABLE E. TWIN V.U. METERT. WOW \& FLUTTER 0.1\%. RECORD/PLAYBACK I.C. WITH ELECTRONIC SWITCHING. FULLY ACCURATE MATCHING OFALL TY ACCURATE includes tape transport mechanism, read Kit íncludes tape transport mechanism, ready punched and back printed quality circuit board and all electronic par is. ie. semiconductors, resisto capars, hard ha, top cove. priped

Auro-Changer model - rakes up
to 6 records with manual over 106 records with manual over
ride. Supolied with stereo ride. Supplied with £12.95 plus $\mathbf{E} 1.75 \mathrm{p}$ \& p

3 speed, auto, set-down; with
auto return. Fitted with vis. auto return. Fitted whit vis minlum counter, wiouhted armfitted with ceramic head Ideall suited for home oi disco use. $\mathbf{£ 1 7 . 5 0}$ plus $\mathbf{E 1 . 7 5} \mathbf{p \& p}$

Manual single play record deck with auto return and cueing nic cartridge 2 speeds with 45 rpm spindle adaptor ideally suited for home or disco.
$13^{\prime \prime} \times 11^{\prime \prime}$ approx. $£ 14.95$ plus $£ 1.75$ p\& p

125W HIGH POWER AMPIMODULES

power applications - disco units, guitar ampl

 iers, public address systems and even high power domestic systems. The unit is protected against short circuiting of the load and is safe In an open circuit condition. A large safety margin exists by use of generously rated com ponents, result, a high powered rugged unit The PC board is back printed, etched and essminium chassis is preformed and ready to use. Supplied with all parts, circuit diagrams and instructions.Accessor ies: Stereo msins power supply kit with £10.50 $+£ 2 \mathrm{p}$ \& p. Mono: $£ 7.50+£ 2 \mathrm{p} \%$.
HI-FI SPEAKER BARGAINS
AUDAX B" $^{\prime \prime}$ SPEAKER $£ 5.95+£ 2.20$ p\&p. High quality 40 watts RMS bass/mid. Ideal for either
HiFi or Disco use this speaker features an aluminium voice coil and a heavy 70 mm dia, magnet. Freq, Res.: 20 Hz
to 7 kHz imp.: 8 ohms.

AUDAX 4OW FERRO. FLUID HI-FI TWEETER Freq. res.: 5 KHz - 22 KHz . Imp.: 8 ohms . 60 mm sq. $\mathbf{f 5 . 5 0 + 6 0 p p \& p . ~}$ GOODMANS TWEETERS 8 ohm softdome radiator tweeter 137 . for use in systems up to 40 W .
$£ 3.95$ ea $+£ 1$ p\&ip. $£ 6.95$ pr $+£ 1.50$.
All mail to: 21A HIGH ST, ACTON W3 6NG. Callers: Mon Sat 9.30-5.30. Haif day Wed Access phone orders on 01-992 8430
All items subject to svailublity. Prices correct st
$30 / 11 / 83$ and subject to change without notice. Please allow 14 working davis from recelipt of order
lor despatch. ATVC Limised reserve the right to lor despatch. ATVC Limited ressive the right to up-
date their products withoul notice. All enquiries send
SA. . Telephone or mail orders by ACCESS welcom

SPECIAL OFFERI Replacement nl. Cessette Philips st, mag, cartridge. $£ 3.95+60 \mathrm{p}$ p\&p. PLINTH to suit BSR Record Player Deck (with covar). Size $161^{\prime \prime} \times 14 y^{\prime \prime} \times 23^{\prime \prime \prime}$. Cover nature, Buyer collect only. Price: 88.95 .
STEREO TUNER KIT
SPECIAL
OFFERI
£13.95

+ £2.50 p\&p

 uner kit is design P.E. (July 81). For ease of construction and alignment it incorporates three Mullard mod ules and an I.C. If System. Front scale size 10% " $\times 2 \%^{\prime \prime}$ approx. Complete with diagram and instructions. SPECIFICATIONS: Max, output power (RMS): 125 W. Operating
voltage (DC): $50-80$ max. Loads: 4.16 ohm . Frequency response measured @ 100 watts: @ 47 K . Typical T.H.D.@ 50 watts, 4 ohms. 0.1%. Dimensions: 205×90 and $190 \times 36 \mathrm{~mm}$

MONO MIXER AMP

Ideal for
halls and halls and £45.00

+ £2 p\& 50 Watt, six individually mixed inpues for 2 pickups (Cer. or mag), 2 moving coil microetc. Eight slider controls -6 for level and 2 for master controls forss and treble, 4 extra treble $13 \%^{\prime \prime} \times 6 \%^{\prime \prime} \times 3 \%{ }^{\prime \prime}$ " Power output 50 W RMS (cont.) for use with 4 to 8 ohm matching fascia and knobs. Ready to use.

CALLERS TO: 323 EDGWARE ROAD
15 minutes walk from Edoware: $01-7238432$.
5 minutes walk from Edgware Road Tube Sturion\}

FREE CAREER BOOKLET

Train for success in Electronics
 Engineering, T.V. Servicing, Electrical Engineering-or running your own business!

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the fields of electronics, T.V., electrical engineering-now it can be your turn. Whether you are a newcomer to the field or already working in these industries, ICS can provide you with the specialised training so essential to success.

Personal Tuition and 80 Years of Success

The expert and personal guidance by fully qualified tutors, backed by the long ICS record of success, is the key to our outstanding performance in the technical field. You study at the time and pace that suits you best and in your own home.

You study the subjects you enjoy, receive a formal Diploma, and you're ready for that better job, better pay.

TICK THE FREE BOOKLET YOU

 WANT AND POST TODAY
ELECTRONICS ENGINEERING

A Diploma Course, recognised by the Institute of Engineers \& Technicians as meeting ali academic standards for application as an Associate.

T.V. \& AUDIO SERVICING

A Diploma Course, training you in all aspects of installing. nlaintaining and repairing $T . V$ and Audio equipment. ctomestic and industrial

THE 1984 GREENWELD CATALOGUE

 NOW AVAILABLEIt's Bigger, Brighter, Better, more components than ever before. With each copy there's discount vouchers, Bargain List, Wholesale Discount List. Bulk Buyers List, Order Form and Reply Paid Envelope. All for just $£ 1.001$ Order now for early delivery?

MOTORIZED GEARBOX

These units are as used in a computerized tank, and offer the experimenter in robotics the opportunity to buy the electro-mechanical parts required in building remote controlled vehicles. The unit has $2 \times 3 \mathrm{~V}$ motors, linked by a magnetic clutch, thus enabling turning of the vehicle, and a gearbox contalned within the black ABS housing, reducing the final drive speed to approx 50 rpm . Data is supplied with the unit showing various options on driving the motors etc. $£ 5.95$. Suitable wheels also available: $3^{\prime \prime}$ Dia plastic with black tyre, dritled to push-fit on spindle. 2 for $\mathbf{£ 1 . 3 0}$ (limited giv). 3 dia aluminium disc 3 mm thick, drilled to push-fit on spindle. 2 for 68 p

COMPUTER GAMES
2901 Can you follow the flashing light/ pulsating tone sequence of this famous game? Supplied as a fully working PCB with speaker (no case) plus full instructions. Only £4.95
2902 Probably the most popular electronic game on the market - based on the old fashioned pencil and paper battleship game, this computerized version has brought it bang up to date! We supply a ready built PCB containing 76477 sound effect chip. TMS1000 mi-cro-processor chip, R's, C's etc. Offered for its component value only (board may be cracked or chipped, it's only 81.95. Instructions and circult, 30p.

"THE SENSIBLE 64"

David Highmores new book on the Commodore 64 now available $\mathbf{E 5 . 9 5}$.

BUUK BUYERS LIST
Send for our latest wholesale list - IC's from 5p, R's E2/1000, transistors 21p. C's 0.8 p etc. Bargains galorel!

PACKS PACKS PACKS
K517 Transistor Pack. 50 assorted full spec marked plastic devices PNP NPN RF AF. Type numbers include BC114, 117, 172, 182., 183. 198, 239, 251, 214, 255, 320, BF198, 255, 394, 2N3904 etc etc. Retail cost $\mathbf{R} 7+$ Special low
price 5523 Presistor Pack. 1000 - ves. 1000 d and $\frac{1}{}$ watt 5% hi-stab carbon film esistors with pre-formed leads for PCB mounting. Enormous ange of preferred values from a few ohms to a several megohms. Only 250p: 5000 £ $10 ; 20,000 £ 36$.
K520 Switch Pack. 20 different assorted switches - rocker, slide, push, rotary, toggle, micro etc. Amazing value at only $\quad 200 \mathrm{p}$. K522 Copper clad board. All pieces too small for ouf etching kits. Mostly double sided fibreglass. 250 g (approx 110 sq ins) for 100 p

STABILIZED PSU PANE A199 A versatile stabilized power supply with both voltage $(2-30 \mathrm{~V})$ and current ($20 \mathrm{~mA}-2 \mathrm{~A}$) fully variable. Many uses inc. bench PSU, Ni-cad charger, gen purposes testing Panel ready buitt, tested and calibrated. 87.75 . Suitable transformer and pots, $\mathbf{£ 6 . 0 0}$. Full data supplied.

PUSH BUTTON BANKS
W4700 An assortment of latching and independent switches on banks from 2 to 7 way, DPCO to 6DPCO. A total of an least 40 switches for $£ 2.95$; $100 £ 6.50$; 250 £ 14.00 ; 1000 £ 45.00

SEAT BELT ALARM
Originally for sale at $\mathbb{E 8 . 9 5}$, these well made units $70 \times 50 \times 25 \mathrm{~mm}$ provide both audible and visual alarms. Uses 2 IC's, PB2720 transducer, etc. Available ready built, with circuit and instructions for just $£ 3.95$. Also available as a kit, $\mathrm{PCB}+$ all components, box, wire, efc, PCB + all componens, box, wre, enc

LOGIC POWER SUPPLY
This ready built mains adaptor supplies $4.5 \mathrm{~V} @ 150 \mathrm{~mA}$ DC, so can easily be modified to a stabilized 5 V supply. Buik in continental plug for standard mains supply. Only $£ 1.95$; 10 £16; $25 £ 32 ; 100$ £ 110 .

1 N5400 3A 50V RECTS
Bulk purchase enables us to offer these at special low prices: $25 £ 1.50$; 100 £4.50; $250 £ 12$; $1000 £ 43 ; 5000 £ 200$.

5 mm RED LED SCOOP!!
Full spec brand new devices at a low low price!! 25 £ 1.95 ; 100 £6; 250 £13.50: 1000 £39.50

2N3055 SCOOPII
Made by Texas - full spec devices 60p each; 10 for $£ 4 ; 25$ for $£ 9 ; 100$ for $£ 34$: 250 for $£ 75: 1000$ for $£ 265$

VEROBLOC \&1 OFF!
Our biggest selling breadboard on offer at a special price of $£ 4.10$.

FERRIC CHLORIDE
New supplies just arrived - 250 mg bags of granules, easity disolved in 500 ml of water. Only £1.15, 10 for £8, 100 for E 60 . Also abrasive polishing block 95p.

TELESCOPIC AERIALS
As used in Sinclair microvislon, 9 secition $100-610 \mathrm{~mm}$. Only 95p

TIL PANELS

Panels with assorted TTL inc. LS types Big variety. 20 chips $£ 1.00 ; 100$ chips £4.00; 1000 chips $£ 30.00$.

> RIBBON CABLE

Special purchase of multicoloured 14 way ribbon cable - 40 p /metre; 50 m £18.00; $100 \mathrm{~m} £ 32.00 ; 250 \mathrm{~m} £ 65.00$.

NICAD CHARGERS
Versatile unit for charging $A A, C, D$ and PP3 batteries. Charge/test switch, LED Indicators at each of the 5 -charging points. Mains powered. $210 \times 100 \times 55$ mm £7.95.
Model A124. Unit plugs directly Into 13A sociket, and will charge up to 4 AA cells at a time. Only $£ 4.80$

NI-CAD BATTERIES
AA size 99p each; C size 199p; D size 220p; PP3 size 395p.

PRECISION PCB DRILI
Small size, 35 mm dia $\times 165 \mathrm{~mm}$ long 12 V operation. Supplied with collett + 1 mm bit 6000RPM. Only $£ 7.50$.

5000 COMPONENTS £25!
Amazing variety of passive compo nents - carbon, film, oxide, wirewound resistors from WW to 10 W , ceramic polystyrene, polyester and electrolytic capacitors in an extremely wide range of values and types from a few pF to 1000 uFll All parts are brand new, full spec devices. The best value compo nents parcel offer aroundll Cost o parts if bought individually would be well over $\mathbf{f 2 0 0 1 !}$

CLOCK CASES
We must clear these to make more room in our storel! This attractive white plastic case with rear panel drilled for switches etc is oval in shape $130 \times 68 \times 87 \mathrm{~mm}$. (no front. panel). 4 (yes, four!!) for $\mathrm{E1.0011}$

43c MILLBROOK RD., SOUTHAMPTON SO1 OHX
ALL PRICES INCLUDE VAT; JUST ADD 60p P\&P X-STOCK

BHPAK BARGA/VS

MINIATURE TOOLS FOR HOBBYISTS

Miniature round nose side cutters-
insuated handes 4 inch length. Order
No. You No: Yo43.
Miniature long nose phers Order No: YO44.
Miniture bend nose pliers insulated handles 5 inch
length Drder NO . YO45. Miniature end nippers insulated handles 4 inch
length Order No: $\mathrm{YO4}$

Miniature snipe nose pliers with side cutter and serrated jaws - insulated handles 5 in
length. Order No: YO42. Capacitors: All types, sorts and sizes includinano values. Potentiometers - single, dual, slider and preset. Switches, Fuses, Heatsinks, Wire, P.C.B. Board, Plugs. Sockets etc., PLUS a selectio of Semiconductors for everyday use in popular Hobby Projects These include: SCR's, Diodes, Rectifiers, Triacs \& Bridges as well as a first class mix of Transistors and I.C.'s. In all, we estimate the yourself to a great surprise and order a Box TODAY for just $£ 6.50$

TECASBOTY

The Electronic Components and Semi-

 conductor Bargain of the Year! This collection of Components \& Semiconductors tor the hobbyist is probably the most it consists of Resistors, carbon and wirewound due of this in current retail catalogues to be over f25 So NLY al BrPAK. Remember, stocks are limited sowh your Barclaycard or Access Card -244 hr
Answerphone Service NOW. Order No. V.P. 85
-

MULTITESTERS

H000 opr including lest heaos'ty Ealten

 x volss: 0.15.150-500-1.000 DC currenis - $0.1 \mathrm{ma}-150 \mathrm{ma}$ Resistance - 0-25 ohms 100 K jhms C. Dims. $90.61 \times 30 \mathrm{~mm}$
. O/Ne. 1322.0 UR PRICE e6.50 onty

5T21 SCREWDRIVER SET

6 precision screwdrivers in hinged plastic case, Sizes $-0.8,1.4,2,2.4,2.9$ and

3.8 mm
 5 T31 NUT DRIVER SET

5 precision nut drivers in hinged plastic case With turning rod. Sizes $-3,3.5,4,4.5$ and
GRIP-DRIVER
Binch long screwdriver with spring loaded grip on end to hold screws in position while reaching into SD-1 Flat blade 4 mm SD-2 Cross point no 0 blade 4 mm S

SILICON BRIDGE RECTIFIERS
Comprising $4 \times$
amp rectifiers amp rectifiers
mounted on PCB VRM - 150 vits IFM - 1.5 Amps Size: 1 inch squar 10 of E1.00 50 OHE4.50 100 off E7.50 Order No. As:4R

BRect.

5 mm .

included Drder No. VPS30 KIT ZZO
MINIATURE FM TRANSMITTER
Freq: 95. 106 MHz . Range: 1 mie ONLY
Size $45 \times 20 \mathrm{~mm}$
Not incenced in $u k$ E5.50
5 T41 TOOL SET£1.75

5 precision instruments in hinged plastic case. Crosspoint (Philips) screwdrivers - HO and HI Hex key wrenches, - 1.5, 2 and 2.5 mm

5 T51 WRENCH SET
5 precision wrenches in hinged plastic case Sizes - 4, 4.5, 5, 5.5 and 6 mm

ELECTRONIC SIREN 12v DC Red plastic case with adjustable fixing bracket. Emils hightpitched wailing note of varying pitch - 100 cycles per minute Dims - 90 mm (dia) 60 mm (depth). Powe - 12v DC.

Our Price: $£ 5.50$

BRAND NEW LCD DISPLAY MULTITESTER

LCD 10 MEGOHM INPUT IMPEDANCE
${ }^{*} 3$ digit " 16 ranges plus nFE test facility for PNP and NPN transistors *Auto zero, auto polarity *Single-handed, pushbutton operation - Over range indication ${ }^{\circ} 12.5 \mathrm{~mm}$ g-inch) large LCD readout "Diode check "Fast circyit protection "Test leads, battery and instructions included.
Max indication 1999 or -1999
Pobarity indication Negative only Positive readings appear without $+\operatorname{sign}$ Input impedance 10 Megohms Zero adjust Sampling time 250 milliseconds
Temperature range $-5^{\circ} \mathrm{C}$ 10 $50^{\circ} \mathrm{C}$ Power Supply
$1 \times \mathrm{PP} 3$ or equivalent 9 V batter
Consumption 20 mW
Size
RANGES $155 \times 88 \times 31 \mathrm{~mm}$
$0.2 .20-200-1000 \mathrm{~V}$ Acc AC Vohage $0-200 \cdot 1000 \mathrm{~V}$
AC Voltage $0-200 \cdot 1000 \mathrm{~V}$
Acc. 12% OC Current $0-200 \mathrm{u}$ 0-2-20-200mA, 0.10A Acc 12% Resistance $0-2 \cdot 20-200 \mathrm{~K}$ ohms 0-2 Megohms. Acc. \% BI-PAK VERY LOWEST PRICE

Gital volt metea mooul

3×7 segment displays Basic Cirtur
0.2 V 土
$0.2 \mathrm{~V} \pm$ instructions provided to extend voltage 8 current ranges
jerating voltage $9 / 12 \mathrm{v}$. Typ. Power Consumption 50 mA f9.95

SIREN ALARM MODULE American Police type screamer powered from any 12 volt supply into 4 or 8 ohm speaker. Ideal for car burglar alarm, freezer breakdown and other security purposes. 5 watt, 12v max.
£3.85
Order No
BP124.

iFourth Hand

never got until now. This hetphut unit with Rod mounted horizontally

 Heavy Base Crocodile clips attached to od ends. Six ball \& socket joints give finite variation and positions through 360° also avalable attached to Rod a z_{1} diam magnifier giving $25 \times$ magnification. Helping hand unit available with or without magnifier. Our price with magnifier as ilustrated OROER NO. T402 £5.50 Without magnifier ORDER NO. T400 £4.75
MW398 NI-CAD CHARGER

Universal Ni-Cad battery charger. All plastic indicators it up lid Charge Test switch. LED Charges - \quad Power PP3 (gV) Power - PO U12 (1.5V penlite) 220-240V AC

U2 (1.5V -D") $210 \times$
$\mathbf{f} 6.95$

POWER SUPPLY OUR PRICE $\mathbf{E 3 . 2 5}$

Power supply fits darectly into 13 amp socket
Fused for ssfert. Polarity reversing sochet.
Vohage switch Lead with muht plug input - 240V AC 50 HZ . Output - $3,4,5,6$

TRIACS - PLASTIC

4 AMP - 400v - T0202 - TAG 136G

1 OFF	10 OFF	50 OFF	100 OFF
$40 p$	$£ 3.75$	$£ 17.50$	$£ 30.00$
8 AMP $400 \mathrm{~N}-\mathrm{T} 0202$	- TAG 425		
60 p	$£ 5.75$	$£ 27.50$	$£ 50.00$

VOLTAGE REGULATORS T0220

$\begin{array}{ll}7805-40 \mathrm{p} & 7905-50 \mathrm{p}\end{array}$
 $7812-40 \mathrm{p} \quad 7912-50 \mathrm{p}$
 $\begin{array}{ll}7815-40 p & 7915-50 p \\ 7824-40 p & 7924-50 p\end{array}$

BUMPPER SPPRING ISSUES

> LITTLE CHEF MAP

20 FISCHER WALLPLUGS

Heathkit - ITS A PLEASURE TO BUILD

Bring the enjoyment back into your hobby with a kit from Heathkit. The beautifully illustrated documentation and step-bystep instructions make building a Heathkit a relaxing, absorbing pleasure! Choose from their huge range of fascinating kits and self-instruction electronics and computing courses. The Heathkit range includes the ultimate in amateur radio kits, computerised weather stations, a highly sophisticated robot, a 16-bit computer kit and a range of home (or classroom) learning courses. These state-of-the-art courses have easy-to-understand texts and illustrations, divided into sections so that you can progress at your own pace, whilst the hands-on experiments ensure longterm retention of the material covered.

You'll find Heathkits available for Amateur Radio Gear - Car Test Equipment - Kits For The Home - Self-Instruction Courses - Computer Kits - Test Instrument Kits - Kits For Weather Measurements.

All the most popular kits and educational products are fully detailed in the 1984 Maplin catalogue (see outside back cover of this magazine for details) or for the full list of Heathkit products send 50p for the Heathkit International Catalogue complete with a UK price list of all items.

You'll be proud to say,
"I built it myself?"

All Heathkit products available in the UK from:

Maplin Electronic Supplies Ltd.

 P.O. Box 3, Rayleigh, Essex, SS6 8LR. Tel: (0702) 552911.(For shop addresses see back cover.)

MERTRIII
 Install your own
 system and save using built and tested modules

 A COMPLETE INTRUDER ALARM EASILY aSSEMBled ULTRASDNIC UNIT CK 5063
 Kequires no installation. Essily assembied using our professionally buill and tested modulues

Now rou can assemble a really effective int iuder alarm at thus low price using wied and tested hiscomp

OIGİTAL ULTRASONIC DETECTOR
US 5063

- 3 leve

- Adjustable range from $5-251 \mathrm{l}$

This popular how cost uitrasonic detector is infruder detectors to aulomabclight switches and
door opening equipment. leaturing 2 LED

INFRA-RED SYSTEM
IR 1470 only $£ 25.61$ +V.AT.

Consisting of separate transmitter and receive both or which are housed in alltractive moulde
cases. the system provides an invisible
 oneratimg a relara, when the beam is broken
Intendeg lor use in securiry systems but Intended for use in security systems, but also
roeal for photogiahic and measuremen applicalions Size 80 by 50 by 35 mm

POWER SUPPIY \& RELAY UNIT PS 4012

Provides slabilised 12 V oulput at 85 mA and
contans a relay with 3 amp contacis The wnitis contains a relay with 3 amp contacis The unir is
de signed to operate whit
on
102
SIREN MODULE SL 157
toouces a foud penewaling gliting tone which

5 $1 / 2^{\prime \prime}$ HORN SPEAKER HS 588
This weather-proot horn speaker provides
extremely high sound oressure levels extremely high sound pressure levels (11 Oabs
at 2 metres) when used with ihe CA 1250. PS 3 POS KEY SWITCU 3901
3-POS. KEY SWITCH 3901

your crodit card

ALARM CONTROL UNIT

Price $£ 19.95$ + V.A.
The heart ol any alarm system is the control unit The CA 1250 ofters every possible feature that systerm whether highty sophisticated installation or simply controlling a single - Buill-in electronic siren dfives 2 loud speakers - Provides exil and entronce delays rogether with fixed alarm tume - Battery bach tup with trickle charging facitity - Anti tamper ana panic facility

- Stabilised oulput voltage
- 2 operating modes - full alarmvanti-tampe
- Screw connections tor ease of installation - Separate relay contacis for external loads

SIREN \& POWER SUPPLY MODULE PSL 1865
only
$\begin{array}{r}69.95 \\ +\quad .17 \\ \hline\end{array}$

amplete siren and power supply module which is capable of providing sound levels of 11 odb
at 2 metres when used with a horn speaker. In
and addition, the untiprovides a stabilised 12 Voutpu
up to 100 mA . A switching relay is also included up to 100 mA A switching relay is also included
so that the unil may be used in conjunction with the US 5063 to form a complete alarm.

HAROWARE KIT
HW 1250

This atractive case 65 designed to house the
control unit CAS 1250 . rogether with the approptrate LED indicators sind key swith
Supplied with the necessary mounting pullars and punched front panel. the unit is given a ULTRASONIC MODULE ENCLOSURE

Surtable me tal enclosure for housing an individual
utirasonic module type US 5063 or US 4012 Supplied with the necessaty mounting pillars and
screws etc For US 5063 ordet SC 5063 ; fo

RISCOMP LMMITED Dept PE10
21 Duke Street
Princes Risborough Bucks. HP170AT

T.V. UHF Aerial Amplifier $300-890 \mathrm{MHz}$ £6.03 post 57 p 2 "" 8 ohm Speaker 46 p post 21 p $21^{\prime \prime} 64$ ohm Speaker 56 p post 21p Desoldering Pump £4.25 pos 27p
Resistance Substitution Box
E3.97 post 17p
Vemier Dial 50 mm Dia.
E2.31 post 17p
Tape Head Demagnetizer
£2.60 post 39p
Min. Buzzer 6 or 12v 63p post 21p

TRANSFORMERS
 240v Primary

240v		
$3-0-3 v$	100 mA	$\mathbf{8 2 p}$
$6-0.6 \mathrm{v}$	100 mA	$\mathbf{£ 1 . 2 0}$
$6-0.6 \mathrm{v}$	250 mA	$£ 1.33$
$12-0.12 \mathrm{v}$	50 mA	$\mathbf{£ 1 . 1 3}$
$12-0.12 \mathrm{v}$	100 mA	$\mathbf{£ 1 . 2 1}$
$9-0-9 \mathrm{v}$	75 mA	$87 p$
$9-0.9 \mathrm{v}$	250 mA	$\mathbf{8 1 . 3 7}$

$9-0-9 \mathrm{~V}$	1 A	$\mathrm{E2.05}$
$12-0-12 \mathrm{~V}$	1 A	$£ 2.52$
$15-0-15 \mathrm{~V}$	1 A	$£ 3.11$
$6-0-6 \mathrm{~V}$	$1 \frac{1}{2} \mathrm{~A}$	$\mathrm{E2.20}$

All above prices include V.A.T. Send $£ 1$ for a new comprehensive 1983/84 fully illustrated catalogue with a new price list. Send S.A.E. with all enquiries. Special prices for quantity on request.

All goods despatched within 3 days from receipt of the order.

M. DZIUBAS

158 Bradshawgate, Bolton, Lancs. BL2 1BA.

ORIC AND SINCLAIR COMPUTERS

Oric 1 computer 48 K £143 ($£ 141$) $£ 151$. Oric Colour Printer £134 (£123) £140. Sinclair Spectrum 48K $\mathbf{E 1 3 1}$ ($\mathbf{E 1 3 1)}$ £143. Specirum 16K £101 ($£ 105$) 1117. Microdrive £70 (£65) £75. RS232 interrace £70 (£65) £75. Blank microdrive cartridges $\mathbf{2 8}$ (E8) 29. 32K memory upgrade kit for 16 K Spectrum (Issue 2 and 3 only) £31 (£28) £30. Fuller Master Unit for the spectrum including speech unit, sound synthesizer, amplifier and joystick port $\mathbf{£ 5 6}$ (E56) £62. Fuller full sized FDS keyboard for the spectrum with proper space bar 552 ($\mathbf{5 5 2}$) $\mathbf{6 6 2}$. Spec trum printer interfaces with cables:Centronics $£ 57$ (£53) £58, RS232 £35 (E33) E38, ZX printer with 5 free rolis
 31 (x81 . 5 prter 45 (44 (54 2×81 16K 2x
СомMODO
Commodore 64 £204 ($£ 184$) £204. Vic 20 £104 (£97) £117. Convertor to allow most ordnary mono cassette recorders dore 64. $£ 10.95$ (111) $£ 13$ Bargain orbe casserte convertor Bargain patible cassette recorder E 37 ($\mathbf{f 3 9 \text {) } £ 4 4 .}$ Commodore cassette recorder $£ 43$ ($£ 44$) $£ 50$. Centronizs printer inter-faces:- for Vic 20 £42 ($\mathbf{4 4 1)}$ £46, for Commodore 64 € 45 (844) E50 1541 Disc drlve $£ 233$ (£209) £234 1525 Printer $£ 235$ ($£ 220$) $£ 245$. 1526 Printer £ $350(£ 330)$ £ 360 .

SWANLEY ELECTRONICS
 The Computer Export Specialists

Dept PE, 32 Goldsel Rd., Swanley, Kent BR8 8EZ, England
Please allow 7 days for delivery
Tel: Swanley (0322) 64851. Nothing extra to pay, All prices are inclusive. UK prices are shown first and include post and VAT. The second price in brackets is for expor customers in Europe and includes insured air mail postage. The third price is for
export customers outside Europe fincluding Australia etc) and includes insured export customers outside Europe finciuding Australia etc) and includes insured
airmail postage Official orders welcome.

PRACTICAL DESIGN GUIDES

A Guide to Printed Circuit Board Design

Charles Hamilton

Printed circuit boards can look, and sometimes are, extremely complicated. The high density of components on modern boards combined with the mass tracking can deter the would-be designer. This new book strips away the aura of mystique surrounding PCB design. A practical book covering design methods and practice currently employed in the modern drawing office, it describes a logical step by step approach to PCB design. Fully illustrated throughout, the book is an invaluable guide and practical aid to the young or inexperienced designer in the drawing office.
Softcover 104 pages $216 \times 138 \mathrm{~mm}$ Illustrated $0408013982 \quad £ 7.50$ March 1984

The Art of Micro Design

A A Berk

The Art of Micro Design has been written for engineers, technicians and students looking for a practical guide to the design of microprocessor-based systems. It presents down-to-earth information to allow the reader to begin immediate design of anything using microprocessors, from control systems to large computers. Throughout the book the emphasis is on hardware. and the practical 'cookbook' style of presenting information reflects the author's many years of micro systems design.
$\begin{array}{llllllll}\text { Softcover } \quad 320 \text { pages } & 216 \times 138 \mathrm{~mm} & \text { Illustrated } & 0408014032 & £ 13.95 & 1984\end{array}$

Available from your nearest bookseller

G.S.C. (UK) Limited, Dept. 5D,

Unit 1, Shire Hill Industrial Estate,
Saffron Walden, Essex CB11 3AQ.
Telephone: Saffron Walden (0799) 21682
Telex: 817477

Instant frequency indication from 5 Hz to 100 MHz ; no range selection problems; a brilliant 8 -digit LED display; mains or battery operation; an accuracy of 4 parts per million ± 1 count; and totally automatic operation - all this for only $£ 116.00^{*}$ with GSC's new Max-100 frequency counter.

Just take a look at our spec. Where else could you find anything similar at the price? *Frequency range 5 Hz - 100 MHz *Input impedance 1 M shunted by 10 pF *Sensitivity 30 mV from 1 KHz up to $50 \mathrm{MHz} ; 120 \mathrm{mV}$ r.ms. over full frequency range "Timebase accuracy ± 4 parts in 106 (from 5 to $45^{\circ} \mathrm{C}$) "Maximum aging rate 10 parts in 106 per year "Over-frequency indication "Low-bāttery-power alarm "Operates from dry or rechargeable cells, an external 7.5 to 10 VDC supply, or a car battery (via an adaptor) "Dimensions: $45 \times 187 \times 143 \mathrm{~mm}$ "Options: 12 V adaptor; battery eliminator; r.f. antenna, low-loss r.f. tap, carrying case.
Fill in the coupon for further details . .

- price excludes post, packing and VAT Goods despatched within 48 hrs.
G.S.C. (UK) Limited, Dept. 5D, Unit 1, Shire Hill Industrial Estate, Saffron Waiden, Essex CB11 3AO.

Name
Address
ienclose cheque/P.O. for $£$ \qquad or debit my Barclaycard/Access/ American Express card no. \qquad exp. date
FOR IMMEDIATE ACTION - The G.S.C. 24 hour, 5 day a week service. Telephone (0799) 21682 and give us your Barclaycard, Access, American Express number and your order will be in the post immediately. For Free
cataloque catalogue tick box b box

BIGK is the nation's most colourful, fact-filled, stylish, unusual, obnoxious and irritatingly well-informed computer games magazine. BIG K gives you -
Great games listings for the top micros. Reviews to drive you insane with excitement. Technical know-how to make your fingers itch. Facts to help you expand your micro and your brain.

85p

FRIE $=$ Ciscomputer

BIG K - On sale 15 th March

THENEW MPFIPLUS...

 -14

Features include fuse and surge-absomer protection, banana-type probe jacks and $4^{*} 3$-colour mirrored meter with automatic shunt protection (when folded shut). DC Volts: 0 to 1200. AC Volts: 0 to 1200. DC Current: $0-60 \mu \mathrm{~A}$ 3-30-300 mA. Resistance: 0-2-20-200K-2 megohms (centre scale 24). $\mathrm{dB}:-20$ to +63 dB . Requires "AA" battery. 22-211

Compact 31/2-Digit, 16-Range Multimeter

£3495

- Fused and Overload Protected
- Diode Check Function For Testing Semiconductors
- Measures $53 / 16 \times 31 / 4$ $\times 17 / 16^{\prime \prime}$

Single-IC design assures extremely low battery drain and high accuracy. Single-knob range switch, fuil auto-polarity operation. Low-battery and over-range indicators. DC Volts: $2-20-200-2000 \mathrm{~V}$ (max. 1000V). AC Volts: 2-20-200-2000V mA-2A. Resistance: 2-20-200-2000 kohms. Includes spare fuse, test leads. Requires 9 battery. 22-189

Digital Logic Probe With Tone and LED Indicators
\& 12^{95}

- Overload and Polartity Profected

The fast way to "peek inside" TL. LS and CMOS digital circuits. Colour-coded LEDs indicate high, low or pulsed logic states (up to 10 MHz). Simultaneous tone output frees your eyes - really speeds up testing. Minimum detachable pulse width: 50 ns . 36° leads with clips obtain power from circuit under test. Low current drain. With instructions and user's tips. 22-302

Transistor Checker Tests In Or Out of Circuit \&@95

- Indicates Reiative Current Gain
- With Coded Test Leads and Instruction Manuals

Makes Go/No-Go tests on small-signal and power types and allows you to motch similar transistors. Indicates relative current gair, "opens" and "shorts". Tests in or out of circuit. Has a front panel sacket plus hook-clip leads for in-circuit tests. Requires "AA" bottery. 22-025

Archer ${ }^{\text {m" }}$ Voltage Inverter

- For Cars, Trucks and Imports

Compact vollage inverter means you can easily connect and use your 12 V DC equipment in vehicles with 12 V DC positive ground or 6V DC negative ground electrical systems. For radios, CBs, and tape players. Gives up to 3A. Fused. 22-129

E
ELECTRONICS has really emerged from recession with a predicted growth for 1984 in every area of the market. Much can be blamed on the microprocessor which has made possible the integration of computers in automation, manufacture and communications. Fastest growth predicted, not surprisingly, is for memories, but the microprocessor is dragging along all the associated areas like p.s.urs, lithium batteries, connectors, switches, displays-l.c.d. for hand held compouters and c.r.t.s for v.d.u.s-and of course the passives, capacitors and resistors.

SID

The humble resistor is about to lead (no pun intended) the march into SMDs (surface mounted devices) with a market which is expected to grow from $\$ 90 \mathrm{~m}$ in 1983 to $\$ 140 \mathrm{~m}$ in ' 84 . The introduction of SMDs has already started in a big way, with the Japanese (who else?) setting the pace. The technology is concerned with cost saving by doing away with costly p.c.b. holes, the space they take and the simplification achieved when mounting on both sides of the p.c.b. or with multilayer boards. Fast, automatic "onserton" (as opposed to insertion) and
additional savings on connectors and mechanical hardware, as a result of smaller boards, also provide significant cost reductions. We will be publishing a feature on SMDs in the near future.

Of course a whole new area of industry has now come of age, again with thanks to the m.p.u. CAD/CAM or computer aided design and manufactore has taken off with a predicted growth for ' 84 of $30-40$ per cent. CAE (computer aided engineering) has also taken on a significant role and it is predicted that this area will stay on 80 per cent growth rate for the next few years. Clearly the potential is vast.

HOBBY

What does all this mean to the hobbyist? It is obvious that components with leads will be around for a long time yet; although it is possible to hand mount SMD's, so even with them we will be able to continue our hobby.

Of course the microprocessor has had a significant impact on what the hobbyist can build and indeed on what he wants to build. Would we have needed a Logic Analyser or the Microstepper (see page 18) a few years ago? How many people would have wanted an EPROM Duplicator or a Computer Terminal in the 70's?

It is obvious that each time industry steps forward the benefits are quickly felt in the hobby area, usually long before they become obvious to the general consumer. We can however see one disadvantage in this fast growth-component shortages and the resulting price increases.

Three years ago I wrote the following:

Unfortunately the present buying spree by industry is creating component supply problems and once again we suspect the hobbyist is beginning to suffer. Delivery dates are lengthening and sometimes being broken by manufacturers, so have some sympathy with your component retailer if he is out of stock and says it could be a month or two before a certain device is again available-very often he can only pass on informatimon from the manufacturer and that information has sometimes proved to be unreliable."
We anticipate that this situation may return towards the end of ' 84 so it may not be a bad time to stock up with a few components!

EDITOR
 Mike Kenward

David Shorthand ASSISTANT EDITOR/PRODUCTION
Mike Abbott TECHNICAL EDITOR
Brian Butler TECHNICAL SUB EDITOR

Jack Pountney ART EDITOR
Keith Woodruff ASSISTANT ART EDITOR
John Pickering SEN. TECH. ILLUSTRATOR
Isabelle Greenaway TECH. ILLUSTRATOR
Jenny Tremaine SECRETARY

ADVERTISEMENT MANAGER SECRETARY AD. SALES EXEC. CLASSIFIED SUPERVISOR

AD. MAKE-UP/COPY
D. W. B. Tlileard

Christine Pocknell
Alfred Tong 01-2616819
Barbara Blake 01-261 5897
Brian Lamb 01-261 6601

Technical and Editorial queries and letters (see note below) to: Practical Electronics Editorial, Westover House, West Quay Road, Poole, Dorset BH15 IJG

Phone: Editorial/ Poole 671191

We regret that lengthy technical enquiries cannot be answered over the telephone

Queries and letters concerning advertisements to:
Practical Electronics Advertisements, King's Reach Tower,
Stamford Street, London SE 1 ILS
Telex: 915748 MAGDIV-G

Letters and Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in PE. All letters requiring a reply should be accompanied by a stamped, self addressed envelope, or addressed envelope and international reply coupons, and each letter should relate to one published project only.

Components and p.c.b.s are usually available from advertisers; where we anticpate difficulties a source will be suggested.

Back Numbers and Binders

Copies of most of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE 1 OPF, at $£ 1$ each including Inland/Overseas p\&p. Please state month and year of issue required.

Binders for PE are available from the same address as back numbers at $£ 5.50$ each to UK or overseas addresses, including postage, packing and VAT where appropriate. State year and volume required.

Subscriptions

Copies of Practical Electronics are available by post, inland for $£ 13$, overseas for $£ 14$ per 12 issues, from: Practical Electronics, Subscription Department, IPC Magazines Ltd., Room 2816, King's Reach Tower, Stamford Street, London SE 1 9LS. Cheques, postal orders and international money orders should be made payable to IPC Magazines Limited. Payment for subscriptions can also be made using any credit card and orders placed via Teledata. Tel. 01-200 0200. unless otherwise specified.
Prices correct at time of going to press.

ORAGON MEMORY UP 32K

Following in the steps of the Dragon 32 home computer is their latest model, the Dragon 64K which utilises the 6809E microprocessor. Compared to the 8055 and 6502 processors used by many of Dragon's competitors, the 6809 contains several 16-bit registers to allow for flexible address mode capabilities, making high level language implementation more practical. BASIC, PASCAL and COBOL can all be used in conjunction with the Dragon 64.

The new model was launched late last year along with their disk based OS-9 operating system designed specifically for the Dragon 64, which will give the user a wide range of possible business applications.

The OS-9 system is seen by Dragon Data as the user's passport to professional software, which will include packages for stock control, invoicing, accounting, payroll and even spreadsheet analysis.

The Dragon 32 has proved to be a successful machine and has placed Dragon Data high in the home computer market.

The introduction of the powerful Dragon 64 , the OS-9 operating system and the recent introduction of their disk drives gives them the means to enter other markets, where they are confident and expect to achieve equal success.

The Dragon 64 offers three different operating modes. The ' 32 ' mode allows the user to operate the machine as a Dragon 32. The ' 48 K Mode' gives 48 K RAM and 16 K Basic Interpreter and the ' 64 K Mode' enables full use of the 64 K RAM.

It is important to note that all the features on the Dragon 64 are in addition to, and not at the expense of, those offered on the Dragon 32. The high resolution display of 256×192 pixels is retained and all the currently available software for the 32 . both in plug-in cartridge and cassette form, is compatible with the 64.

In addition the recently launched Dragon Disk Drives will run on both the 32 and 64.

The Dragon 64 costs $£ 225$ and will be available through the usual Dragon dealerships, including both Boots and Dixons.

Match That

An ultra-miniature 50-voll microswitch with actuator arm has been announced by Semiconductor Supplies International. This 300 mA single pole changeover switch weighs 0.3 grams. Dimensions are height (inclusive of pins and with lever compressed) 10 mm , width 8 mm , thickness 3 mm . The actuating lever of this switch is shaped for cam-follower applicalions as well as for ordinary compression applications.

Uses include the tamper proofing or safety switching of small equipment including security equipmemt such as sensors or for switching models etc. Price per pack of 10 is 44.00 inc p \& p. Semiconductor Supplies, Sution, Surrey SMI 4 RS (016431126).

DESOIDERER
A new electric desoldering iron from OK Industries combines the virtues of a handheld, manual unit with the performance of an industrial desolder station. The lightweight SA-6 features 'one-hand' desoldering and eliminates the need for two tools, combining heat and suction in one.

The vacuum chamber is easily removed for cleaning, and replacement tips are available with 1.5 mm and 1.77 mm hole diameters. 115 or 230 V a.c. $50 / 60 \mathrm{~Hz}$ versions are offered; the 230 V type costs $£ 18$ all inc.

OK Industries UK Ltd, Dutton Lane, Eastleigh, Hants SOS 4AA (O703 619841).

DKYGEN IONS

A $£ 1.2 \mathrm{~m}$ ion blasting machine, to be built at the Atomic Energy Authority's Harwell research laboratories, could give Britain a world lead in an area of advanced chip production.

To be completed by next year, the machine will be capable of creating a circuit beneath the surface of a slice of silicon.

What happens is this: The silicon is bombarded with high energy oxygen ions at a minimum of 10^{17} ions $/ \mathrm{sq}$. cm . Because of their high energy, these ions rip through the surface of the silicon and come to rest at about one micron deep, where they form a subsurface layer of silicon dioxide. The technique is currently known as ion implantation, and is used to introduce dopants, such as boron and arsenic. But with ten times the ion current, Harwell's machine will be able to create a "buried dielectric" because the absorbed oxygen ions form an insulating layer which can be patterned so as to create circuit elements. It is necessary to maintain the silicon at a temperature of $500 \mathrm{deg} . \mathrm{C}$ in order to create a self-healing effect where the ions tear through the silicon's surface.

Meatamorphnosis

A simple vet innovative joystick has been developed by E.E.C. Ltd. It is designed for use with the $Z X$ Spectrum and is purely a mechanical device.

The joystick clips onto the machine and directly depresses the relevant keys without obstructing any other command keys, neither will it interfere with any of the Spectrum peripherals. This UK patented invention was launched late last vear and is already being exported to many European countries. Although High Street availability is planned by the company the device is only presently available on a mail order basis.

Perhaps the most appealing feature of this unit is its price, $£ 9.95$ plus $55 p$ p\&p. Details from, E.E.C. Ltd, 1 Whitehouse Close, Chalfont St Peter, Bucks SL9 ODA (0753 885401).

Briefly...

Whilst the Home Office's position is that the protection afforded UK laboratory animals represents a satisfactory balance between the need to experiment on living creatures and public revulsion at their suffering, it does point out that the 1876 Cruelty to Animals Act is to be reviewed when Parliamentary time permits.

Meanwhile, the rodents and monkeys behind bars may diminish in numbers thanks io computer models of their body chemistry. Computers that can simulate the cardiovascular and respiratory systems, and graphically illustrate changes therein, will increasingly be substituted as research aids.

Available from Verospeed, is a unique nonvolatile RAM that can retain its data for ten years without a power supply.
Manufactured by Mostek, the MK48ZO2 incorporates 16 K ($2 \mathrm{~K} \times 8$ bits) of static RAM and two moulded-in lithium batteries, all in a standard 24 -pin di.i.l. package. The device operates from 5 V at 385 mW (10 mW standby), at a speed of 250 ns .

Sir Keith Joseph's proposed changes in the school curriculum should improve skills in school-leavers, better fitting them for immediate employment. Surprisingly, for Sir Keith has many critics, there was general agreement from all sectors of education that this was a good thing. The young are also getting the message as is shown by the sharp increase in demand for Polytechnic places in science, mathematics, engineering and technology.

Silicon News Corner

Burr-Brown MPY 100 is a low cost, precision multiplier/divider. Four quadrant multiplication, square root, r.m.s. to d.c., linearisation and algebraic computation often without need of amps or potentiometers.

- JFET op amp, called OPA 100, has initial bias current of 0.5 pA © room temp., and only 35 pA at $125^{\circ} \mathrm{C}$!
Burr-Brown, Cassiobury House, Station Rd., Waford WDI IEA.
National Semiconductor New series of 16 large 0.43 in. 7 -seg. I.e.d. display. Red, yellow and green are $5082-760,5082-7660$ \& 50827670 respectively.
National Semiconductor, 301 Harpur Centre, Horne Lane, Bedford.
TRW LSI Launches 3 member family of economical Flash ADCs. TDC 1029 offers 6 bits at 100 MSPS at bandwidth of 50 MHz . Places video speed A/D within reach of more applications.
MCP Electronics, 38 Rosemont Rd., Alperton, Wembley, Mddsx HAO 4PE.

Plessey New range of CCDs. MS 1002-1/3 is 850 bit register. MS $1003-1 / 3$ is 910 bit register. Both have video bandwidth above 5 MHz and clock frequency of 13.3 MHz .
High speed ECL 10 -bit synchronous up/down counter is SP9215. Clock to 50 MHz . Information: Charles Baker Lyons, 30 Farringdon St., London EC4A 4EA.
IR Two new ranges to power MOSFETs (HEXFETs). Range I: 30 parts in TO39 package in N \& P channel, eight different voltages. Range 2: Extension to d.i.l. MOSFETs. 4-pin device is "stackable" to make arrays of N or P channel switches. Rated 200 V .
International Rectifier, Hurst Green, Oxted, Surrey RH8 9BB.
TI First two in series of CMOS 8 -bit, singlechip microcomputers add to TMS 7000 family. NMOS capability with CMOS power advantage. TMS70C00 and TMS70C20.
Texas Insiruments, Manton Lane, Bedford MK41 7PA.

POINTS ARISING...

COMPUTER TERMINAL
 February ' 84

The CRT controller chip SFF96364 (manufactured by Thomson CSF) will continue its existence under a new part number, and although it may be seen in
catalogues as 96364E (E for plastic) for some time to come, as far as the maker is concerned it is now known as the EF9364. with suffix P for plastic and C for ceramic. The device is available from Technomatic Lid., and Watford Electronics.

CLOCK TIMER
February '84
The value of C 2 should be 15 nF not 150 nF .

Houndoloun

Please check dates before setting out, as we cannot guarantee the accuracy of the information presented below. Note: some exhibitions may be trade only. If you are organising any electrical/electronics, radio or scientific event, big or small, we shall be glad to include it here. Address details to Mike Abbott.

Computer Trade Show March 13-15. Wemb. Conf. Cntr. $\mathbf{Z} 1$ Business Telecom March 13-15. Barbican Cntr., London. 0 Visit to Firefly Electric Vehicles (Milton Keynes). March 17. RI Electro-Optics/Laser Int. March 20-22. Metropole, Brighton. T1 Information Technology (Conf. \& Ex.) March 20-22. London. 8 $01-8282333$
Nortest March 20-22. Spectrum Centre, Birchwood, Warrington. T Sensors \& Systems (concurrent with Nortest) Scottish Computer Show March '84. Holiday Inn, Glasgow. T 1 Tectronica April 16-18. Earls Court, London. T London Computer Fair 19th, 21st \& 23rd April. J3 Fibre Optics May 1-3. Porter Tun Room, Whitbread Brewery. E All Electronics/ECIF May 1-3. Barbican, London. E
Biotech Europe May 15-17. Wembley Conf. Cntr., London. 0
Micro City May 15-17. Exhibition Complex, Bristol. F3

Scotelex June 5-7. Royal Highland Exhibition Halls, Ingliston, Edinburgh. 05
1BM System User Show June 12-14. Wembley Conf. Cntr., London. O Qualex June 19-21. Corn Exchange, Brighton. D4
Surface Treatment \& Finishing Show June 25-29. Birmingham. M Networks July 3-5. Wembley Conf. Cntr., London. O Cable July 10-12. Wembley Conf. Cntr., London. O Testmex Sept. 11-13. Grosvenor Ho. Pk. Lane, London. E
Building \& Home Improvement Sept. 25-30. Earls Court, London. M
Computer Graphics Oct. 9-11. Wemb. Conf. Cntr., London. O
Software Expo Oct. 16-18. Wemb. Conf. Cntr., London. O
Computers In The City Nov. 20-22. Barbican, London. O
Data Security Nov. 20-22. Barbican, London. O

D4

E
F3
J3
M
0
05
RI
T
T1
ZI IPC \& 01-6438040

THE Microstepper described here is a "clip-on" device which allows you to follow the operation of a microprocessor system. Unlike other electronic systems, the operation of a microprocessor system cannot be seen with standard test equipment such as the C.R.O. and multimeter etc. The address bus and data bus lines transfer large amounts of data at high speed-typically 24 bits of data one million times per second.

To understand or debug such a system. a detailed analysis is required of all this, slowed down to "human" speed, and presented on some form of visual display.

The professional answer is to use a logic analyser. This is a very versatile instrument, which can store, and then display, a sequence of binary states of bus and control lines in any logic system. Logic analysers are expensive, and considerable expertise is required in setting up the instrument, and interpreting results.

The Microstepper device is dedicated to microprocessor systems. In use, it is attached to the system under test, and puts it into "single step" mode. In this mode, each individual step of a program can be followed. Data can be "seen" going to or from memory, I/O ports etc.

Quite apart from the obvious hardware and software debugging uses, a fascinating method of self teaching is provided. To see a program executed by the hardware before your eyes is the surest way to understand both hardware and software.

OPERATION

There are only three controls:
S1-A push button labelled "GO" which, when pressed. runs the system to the next step.

S2-A three position switch, labelled "RUN". "STEP" and "BREAK". These functions are explained later.

S3-10 and S11-18—a total of 16 "in-line" switches, for setting up a binary address "break point"

Data display is by six 7 -segment l.e.d.s, four for the address bus, and two for the data bus. Connections to the Microstepper are shown for a $\mathrm{Z8O}$, but the device is adaptable to other microprocessors. A 40 pin test clip is used to attach the Microstepper to the microprocessor chip in the system under test. In the illustrations, this is shown wired directly to the circuit board.

If, however, operation with more than one type of microprocessor is envisaged, the Microstepper connections to the 40 pin test clip should be made via a 30 pin plug/socket on the Microstepper board. Each different type of microprocessor can then have a separate test connector, wired appropriately for that chip.

Power supply may be taken from the system under test, or from an external supply, the choice being made by S 19 . Power supply requirements are 5 V at 600 mA .

To use the device, attach the test clip to the microprocessor, before applying power. Switch S2 to "STEP". Apply power, and press "GO" to reset the Microstepper. Reset the system being tested.

SINGLE STEP MODE

The first address $(0000$ Hex in the case of the 280) will appear on the address display, and the contents of that memory address, will appear on the data display, both in hexadecimal form.

Step through the program by pressing "GO". Each time "GO" is pressed, the next "read" or "write" operation will be displayed. Compare the observed results with the program at each step. Any software bugs will be evident because the system does exactly what the program tells it to do, which may not be what the programer intended! Hardware faults are evident when the program is correct, but the system responds incorrectly-perhaps with unexpected address or data displays. Frequent causes of this type of fault are bus lines open circuit, earthed, or interconnected, producing strange symptoms.

This is the printed circuit version of Microstepper. Sheer speed in a computer creates the illusion of intelligence, but the illusion can be removed to allow measurements and readings to be taken step by step

COMPUTING PROJECT

Fig. 1. Full circuit diagram of the Microstepper. As an educational aid, or diagnostic tool, Microstepper can "action replay" your computer in slow motion

An example will show how to deal with this type of fault. Suppose part of a program reads:

Address	Code	Mnemonic
0010	3E 34	LD. A 34
0012	321210	LD. (3012). A

In a good system, stepping through from address 0010 should show on the displays-

Address	Data	Operation
0010	3 E	Opcode fetch
0011	34	Second byte
0012	32	Opcode fetch
0013	12	Low byte address
0014	10	High byte address 1012
	34	Write from Accumulator to memory location 1012

Note that we see not only code held in ROM, but also data being written to RAM. Now, suppose a faulty system gives these displays-

Address	Data	Operation
0010	3 E	Opcode fetch
0011	34	Second byte
0012	32	Opcode fetch
0013	12	Low byte of address
0010	3 E	High byte of address WE12
	34	Write from Accumulator to memory location 3E12 (?)

The last step shows the processor attempting to write data into a strange address-3E12 Hex. This is because, in the previous step, the high byte of the address was read from RCM location 0010 instead of 0014 . If we reset the system, and go to the 5 th. step, where things appeared to go awry, a simple voltage check on bit 3 of the address bus shows zero volts (logic 0) instead of logic 1, possibly caused by an earth.

That caused binary address 0000000000010100

$$
=0014 \mathrm{Hex}
$$

to become 0000000000010000

$$
=0010 \mathrm{Hex}
$$

This example illustrates another point, which is, hold the process at any point, and you can check for correct logic levels, under static conditions, with a simple multimeter.

Fig. 2. Printed circuit board layout of the Microstepper. This is the "copper-side" view at full size

BREAK POINT OPERATION

Pressing "GO" to get to a particular part of a program can be tedious. Imagine going round a counting loop 10,000 times! To go to a particular address quickly, set S 2 to "BREAK", and set up the desired address as a binary pattern on S3-18. Reset the processor, and press "GO". The system will run normally until the required address is reached, ${ }^{-}$when the Microstepper holds the processor, displaying address and data as before. Now switch to "STEP" and step through the program from there. Alternatively, set S3-18 to a new address, press "GO", and the program will run up to the new address.

RUN MODE

With S2 in the "RUN" position, press "GO", and normal program execution will result.

DYNAMIC RAM

Note that where any dynamic RAM in the system is refreshed by the microprocessor, as in the 280, refresh will not take place whilst the processor is halted by the Microstepper. In this case, ROM and program operation can still be observed, using "break" operation to skip over all data storage operations up to an area of interest in the program.

CIRCUIT DESCRIPTION

Consider first S2 at "STEP". Pressing "GO" takes IC14 pins 1, 2 low, making IC14 pin 3 high. IC13 is an edge triggered data bistable, so it is "set" by the rising voltage on IC13 pin 3. The resulting "high" on IC13 pin 5 is connected to the microprocessor "WAIT" line, so the processor is free to run normally. After reset of the processor, the first address $(0000$ Hex in the case of the 280) appears on bits 0 to 15 of the address bus, and the processor signals a READ operation, by pulling RD low. IC14 pin 11 goes high, IC14 pin 5 is high due to S2, so IC14 pin 6 is low, and IC14 pin 8 goes high to set IC13b. IC13b pin 5, now low, resets IC 13a, and pulls the WAIT line low, stopping the processor.

In this state, the 16 bits of the address bus are buffered by IC1, IC2, to drive the comparators IC9, IC10, IC11, IC12, and decoders IC5, IC6, IC7, IC8. Each decoder takes one 4bit "nibble" to produce a hexadecimal readout on the 7segment displays X3 to X6.

Meanwhile, the memory in the system under test responds by placing data on the data bus, which is decoded by IC3, IC4, and displayed on X1 and X2.

This condition holds until the "GO" button is pressed, taking IC14 pins 1, 2 low, IC14 pin 3 high, thus setting IC13b. IC13b pin 5, now high, removes the reset from IC13a, and places a "high" on the WAIT line. The processor now runs to

Fig. 3. P.c.b. layout of "component-side" (actual size)

COMPONENTS ...

Resistors

R1,2,19
10k (3 off)
R3-10, R1 $1-188 \times 10 \mathrm{k}$ s.i.l. (2 off)

Capacitors

C1
C2. C3 220 n poly (2 off)

Integrated Circuits

IC1. IC2	74LS244 (2 off)
IC3-8	9368 PC (6 off)
IC9-12	74 LS85 (4 off)
IC13	74 LS74
IC14	74 LS 132

Displays
X1-6
DL704 comm. cath. (6 off)

Diodes
01

Switches
S1
Keyboard push-button (p.c.b. mounting) 2 P3W slide switch (only one pole used) S3-10. S11-18 8-way d.i.l. switch (2 off) S19 1P2W toggle switch
I.c. sockets

20-pin	2 off
16 -pin	10 off
14 -pin	2 off

Sockets for the d.i.l. switches and displays may also be desired

Miscellaneous

Printed circuit board
40-pin test clip (RS 424 153)
Ribbon cable for above
Supply leads (for power supply)
Evelets, or pins for "through board" connections
Solder pins for wire terminations

Constructor's Note

If the test clip can only be found in the RS Components catalogue, it may interest non-trade readers to know that components can be obtained from RS indirectly, via Ace Mailtronix, 3a Commercial St., Batley, West Yorkshire.

Fig. 4. Component layout of the Microstepper

GOODIES FOR THE BBC MICROCOMPUTER

RH Lightpen

The RH lightpen is compact, little bigger than a felt-tip. It is versatile, with a sophisticated microswith at its point which responds to the slightest pressure, and an LED lamp at the user's end to indicate data transmission. Both microswitch and LED are fully programmable.
The RH lightpen is reliable, with a rugged metal case to provide physical and electronic protection. Its sensitivity can be adjusted to the thickness and type of your TV screen, giving the highest levels of accuracy.
With the lightpen connected to your BBC Micro you can draw lines on the screen, or give commands simply by pointing to a menu.

Colour-Graphic software

This additional software is available so that all the colours of the BBC Micro's palette are available at the tip of your pen. Complex graphics can be created in minutes.

Art-Fun software

This program is guaranteed to bring out the artist in you. It provides inspiration for users of the lightpen and provides full interaction between pen and screen.
Lightpen $£ 45.95$ - 40 track disc version of lightpen software $\mathbf{£ 5 . 9 5}$ - Colour-graphic software (tape) $\mathbf{£ 9 . 9 5}$ - Art-fun software (tape) $\mathbf{£ 9 . 9 5}$

RH Software

RH Electronics has a whole series of excellent software for the BBC Microcomputer Model B. For games, business and education, they will be highly valued by any BBC Micro owner.
Plegaron People Eaters
$£ 8.95$
Stop the Plegaron's path of destruction by walling them in. A game of skill (9 levels) and cunning.
Galactic Wipeout $£ 8.95$
Fight off alien attackers and meteor showers as you transport the survivors of the human race to a new planet.
Ski Slalom $\mathbf{£ 8 . 9 5}$
Guide the skier through the 40 gate course avoiding deadly ice and landsliding snowballs.
Viper
£8.95
Guide the snake around its electric cage devouring as much food as you can. Avoid touching the electrified walls, swallowing unsavoury food or causing the snake to eat its own tail.
$3 \ln 1(A)$
This set of three games for the vounger enthusiast includes: Task Fore $\mathbf{\varepsilon 7} 50$ strategic battle of sea and air; Demolish - blast your way to freedom avoiding radioactive fall-out and falling masonry as you go; Cosmos where you have to defend the earth from an invading battle fleet.
Ed-master
£12.95
This program uses the quiz format, combining the element of fun with educational teaching. 160 questions may be programmed by the teacher, divided into eight subject areas of 20 questions each. Questions and answers can be changed as often as you wish. The computer will tell the pupil whether he or she has the correct answer or not, but cheating is prevented as pupils cannot access the program to find out the correct answers. The scores of up to 40 pupils are stored in the quiz memory and easily recalled for comparison. Snail Trail
£4.95
Help the snail escape from the maze he's fallen into before he starves to death. There are two skill levels to this cassette.
Database
£12.95
A cassette for the business of home. It enables you to file, sort and access a great number of items such as diary entries, addresses, telephone numbers, accounts or other information.

AT LAST!! A worthwhile peripheral

"These computers are all very well but they can't REALLY do anything can they?"
R.H.ELECTRONICS (SALES) LTD

Exclusive Distributors of DCP
Microdevelopment products

How many times have you heard that sentence and realised that you are inclined to agree? That's all in the past with these long awaited exciting new products from DCP.

For the BBC Microcomputer:
INTERBEEB
The self-powered INTERBEEB is a rugged new peripheral, housed in a neat thermo-plastic case the INTERBEEB housed in a neat thermo-plastic case the INTERBEEB to control the outside world... and get an answer WITHOUT having to re-invent the wheell

1) an 8 bit, 8 channel Analogue to Digital convertor (ADC). 2) 4 high current relay outputs. 3) an 8 bit input port and a SEPARATE 8 bit output port. 4) 4 switch inputs. 5) DCP bus connection allows communication with other units in the DCP range.
The unit comes complete with all the necessary cables, a mains power unit and a manual giving examples for beglnners, all for $£ 59.95$ + postage and packing.

For the ZX Spectrum or $\mathrm{ZX81}$:
INTERSPEC
The INTERSPEC gives users of Sinclair computers the same facilities for control and interrogation of the outside world as the INTERBEEB and with the advantage of the OCP bus connector, which presents all the necessary bus connections and power lines to the user, upto 4 further packs may be added allowing (for instance) proportional control of analogue driven equipment.
The INTERSPEC comes complete with a comprehensive manual including examples of use and hints for $\mathrm{Z} \times 81$ users. Control of your environment can be yours for only £39.95 + post and packing.
DAC PACK
The DAC PACK (Digital to Analogue Convertor) will give your computer, for the first time, the capability to
communicate with the outside world in its own language The DAC PACK features a 2.55 volt internal reference voltage for rock-steady output and a step resolution of 10 mv in 255 levels and high quality connectors for rellable operatlon. The DAC PACK connects to the DCP rellable and therefore requires that eithe the INTERSPEC or INTERBEEB be present
As with all other DCP products al DAC PACK comes complete with a comprehensive manual and costs £19.95 + post \& packing.

AD PACK
The AD PACK (Analogue to Digital Convertor) is easy to both use and understand and consists of a fast A to D convertor with an internal precislon voltage reference source for accurate conversions. The input voltage swing is 0 to 2.55 V with a tolerance allowable of $\pm 5 \%$, therefore giving a 10 mV input resolution. The AD PACK is connecied using the DCP bus and will therefore require either the NTERSPEC or INTERBEEB to be connected to
the host computer. The AD PACK comes with a manual which includes
examples of operation and costs $£ 19.95+$ postage \& examples of operation and costs $£ 19.95+$ postage \& packing.

S-PACK

The Speech Pack is a completely self-contained add-on speech synthesiser for the $\mathbf{Z \times 8 1}$ or Spectrum Computers which may be used in addition to a ZX RAM PACK, DCP PACK and/or $2 X$ printer. The S-PACX is supplied com plete with Word Pack ROM 1 which contains all the letters of the alphabet, numbers 0 to over a million and some other general words which can all be 'spoken' under computer control. Up to three more Word Pack Rom's
can be fitted to expand the vocabulary, detaiks of which are available on request. The 2 versions of the speech pack for the ZX81 and Spectrum operate in similar manners but are NOT interchangeable, therefore the type of host computer should be specified when ordering. The S-PACK comes complete with an operating man and is available for $\mathbf{E 5 9 . 9 5}$ plus postage \& packing. Word Packs 2.3 and 4 are $\mathbf{£ 1 4 . 9 5 + \text { postage } \& \text { packing. }}$ Dealer and Quantity enquiries welcome. For further information regarding the above range please contact RH Electronics (Sales) Ltd.

Make cheque or PO payable to RH Electronics (Sales) Ltd. allowing 28 days for delivery. All prices include VAT and p\&p Send or telephone your order to: RH Electronics (Sales) Ltd., Chesterton Mill, French's Rd, Cambridge CB4 3NP. Tel: (0223) 311290

TOROIDALS

The toroidal transformer is now accepted as the standard in industry. overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and, thanks to I.L.P., PRICE

Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS together with a shorl lead time on quantity orders which can be programmed to your requirements with no price penalty.


```
62*34mm 0.35Kg
    Regulation 19%
```


$$
\begin{gathered}
50 \mathrm{VA} \\
80 \times 35 \mathrm{~mm} \text { Regulation } 13 \%
\end{gathered}
$$

$$
\begin{aligned}
& 120 \mathrm{VA} \\
& 90 \times 40 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& 120 \mathrm{VA} \\
& 90 \times 40 \mathrm{~mm} \\
& \text { Regulation } 11 \%
\end{aligned}
$$

$$
\begin{aligned}
& \text { Regulation } 11 \% \\
& 4 \times 010 \\
& 4.646 \\
& 4.011
\end{aligned} \quad 9+9
$$2 Kg

 140×
6×012
6×013
$\begin{array}{lll}8.016 & 25+25 & 1000 \\ 8.017 & 30+30 & 8.33 \\ 8 \times 018 & 35+35 & 714 \\ 81026 & 40+40 & 625 \\ 8 \times 025 & 454+45 & 555 \\ 8 \times 033 & 50+50 & 500 \\ 8 \times 042 & 55+55 & 454 \\ 81028 & 110 & 454 \\ 8 \pi 029 & 220 & 2.27 \\ 8 \times 030 & 240 & 2.08 \\ & 8248 & \end{array}$
$140 \times 75 \mathrm{~mm}$ x 75 mm
Regulation 5K
$\times 40 \mathrm{~mm}$
Regulation 8%
10.00
Why a Toroid?Smaller size \& weight to meetmodern 'slimline' requirements.- Low smmine requiremenLow electrically inducednoise demanded by compacequipment.
Hign effictency enablingconservative rating whilst maintaining size advantages.

Why ILP?
Ex-stock delivery for smal quantitles.

Gold service available. 21 days manufacture for urgent deliveries.

- 5 year ño quibble guarantee.

Realistic delivery for volume orders.
No price penalty for call off orders.

Prices fócluding P\&P and VAT

VA	Size	\mathbf{C}	VA	Size	\mathbb{E}
15	0	7.43	160	5	12.90
30	1	8.08	225	6	16.30
50	2	10.10	300	7	18.55
80	3	10.81	500	8	25.73
120	4	11.73	625	9	31.63

Mail Order - Please make your crossed cheques or postal orders payable to ILP Electronics Led
rade - We will open your credil accoun immediately upon receipt of your first order.

Post to: ILP Electronics Litd., Dept. 6 Graham Bell House, Roper Close, Canterbury, Kent. CT2 7EP Tel: (0227) 54778 Telex: 965780

For 110 V primary insert " O " in place of " X " in rype number For 220 V primary (Europe) insert " 1 " In place of " X " in type number For 240 V primary lUK1 insert " 2 " in place of " X " In yype number.
Please add regulation figure to secondary voltage to obtaln ote load vol imge.

SUPER LINKAFEX

FOR BETTER MUSIC AND EFFECTS

ROBUST MATCHED LINKING FOOT SWITCHED EFFECTS KITS FOR
STRENUOUS STAGE USE. FOR BATTERY OR POWER SUPPLY OPERATION.

P.E. STAR DESK
 $8+4$ CHANNEL COMPREHENSIVE EFFECTS LIGHTING DESK

\& 1KW/Channel 4 Twin Presets \& 4 Independent Channels 8 Chase Routines 4 Sound to Light and Manual Flash Functions

A full kit of parts for this exciting project including case f195* -Includes VAT \& Carr.
SMOSFETSA
AMPLIFIERS - $\mathbf{1 0 0} / 200 \mathrm{~W}$ KIT or COMPLETE A range of top quality amplifiers to suit all requirements. Two tone front panel - compact - reliable up to date circuitry.

Two outputs 48 ohms	AP200 200W	$\begin{aligned} & £ 42 \\ & £ 62 \end{aligned}$	f49 $\mathbf{6 6 9}$
two Input general purpose - two volume controls - wide range bass/ treble $4 / 8 \mathrm{ohm}$	(Mllustrated) APloos 100 W	f51	f59

outputs - suit mics \& all AP200S 200W $\mathbf{f} 69$ instruments, disco etc.
SIX Input PA amphiers Six volume controls - three sets bass treble controls - presence - master - echo in out - slave output - two outputs $4 / 8$ ohms - suits all mics, musical instruments. disco etc.

AP100M $100 \mathrm{~W} \quad \begin{gathered}\text { Kit Complete } \\ \mathbf{f 6 9}\end{gathered}$ AP2COM 200W 589 N.B. Carr. on all amplifiers f 4

LINKAFEX CHORUS: with rate, depth, intensity, feedbac
INKAFEX FLANGE: with rate, depth, intensity, feedback
LINKAFEX DELAY: delay $10 \mathrm{~ms}-450 \mathrm{~ms}$, plus repeat, feedback
LINKAFEX PHASER: wht rate, depth, intensity, feedback
LINKAFEX EQUALISER: low, high, bandpass, notch, witth, 12 dB LINKAFEX TONE CNTRL: bass cut \& gain, treble cut \& gain INK AFEX DISTORTION: with level \& tone cnit. v. smooth IINKAFEX MODULO: 8 forms of level \& frea. modulation LINKAFEX OVERDRIVE: with overdrive, clipping, bright, pulse

CHORUS UNIT: A solo voice or instrument sounds like morel COMPRESSOR: Limites \& levels maximum signal strength COMPUTER RHYTHM GEN. 9 drums for digital control COMPUTER-SYNTH INTERFACE: Sequencing \& composing aid DRUM SIRENS: Triggered variable siren effects
ECHO UNIT: With double tracking
FREQUENCY DOUBLER: Raises guitar frequency by 1 octave FREQUENCY CHANGER \& WAVEFORM MODIFIER - Tunable
FLANGER: Fascinating effects plus phasing
FUZZ: Smooth distortion whilst keeping natural attack \& decay GUITAR EFFECTS: Multiple varlatlon of level \& filter modulation GUITAR OVERDRIVE: Fuzz plus variable filter quality GUITAR SUSTAN: Extends effective note duralion
GUITAR TO SYNTH INTERFACE: With voltage \& trig outputs HAND CLAPPER: Triggered \& auto claps, variable tone METRONOME: With audio \& visual beat \& down beat MULTIPROCESSOR: Ring, Rvb, Faze, Fuz, Wah, Trem, Vib HASER: with automalic \& manual depth \& rate controls REVERB: Mono/stereo, variable depth \& delays
RHYTHM GENERATOR: 15 switchable rhythms
RING MODULATOR: with integral oscillator control ROBOVOX: versatile robot type voice modifier STORM EFFECTS: Automatic \& manual, wind, rain, sur TOM-TOM SYNTH: Triggered variable tone drum effect TREMELO: deep tremelo with depth \& rate control VOCODAVOX: modular vocoder
VOICE-OP SWITCH: with variable sensitivity \& delay

WAH-WAH: with auto-trigger, manual \& oscillator control
SETS INCL PCBS PARTS INSTRUCTIONS, BOXES, WIRE SOLDER MORE DETALS \& KITS IN CATALOGUE - SEND S.A.E. IOVERSEAS E1 OR 5 HRC's)

Add $£ 1$ p\&p \& 15\% VAT to all orders (overseas details in cat.). Payment CWO, CHO PO, Access, Barclay, or pre-arranged collection. Details correct at press. E\&OE Despatch within 10-14 days
PHONOSONICS, DEPT EE44, 8 FINUCANE DRIVE, ORPINGTON, KENT, BA5 4ED Tel. Orpington 37821 (STD 0689, London 66). Monday-Friday 10-7.
the next $\overline{R D}$ or $\overline{W R}$ signal, when the next program step appears on the displays.
"Break point" operation is selected by S2 on "BK". Now, a "low" can only appear on IC14 pin 6 to set IC13a and stop the processor if IC14 pin 5 and IC14 pin 4 are both high. This will happen only if the processor is performing a read or write operation, and the address bus bit pattern matches that on S3-18. When this happens, comparators IC12, IC11. IC10, IC9, will all give " $=$ " outputs, producing a "high" on ICI5 pin 6, giving the required "high" on IC14 pin 5.

If "RUN" is selected by S2, IC14 pin 5 is held low, so, after pressing "GO" IC13a cannot be set, IC13b cannot be reset, and WAIT is held high. S19 selects 5 V supply from either the system 5 V . rail, labelled "Sys. 5 V ." on the diagram, or from an external, separate supply, labelled "Ext. 5 V ."

CONSTRUCTION

All i.c.s and displays are in sockets on my prototype (see photograph) mounted on matrix board, and connected by the "Vero" or "Roadrunner" pen wiring system. The technique is based on a "wiring pen", carrying a spool of fine, polyurethane insulated wire, which emerges from the tip. Using the pen, wire is connected from pin to pin of i.c. sockets, along "wiring combs" which hold the wires neatly. Subsequently, connections are soldered, using a very hot

$\left(800^{\circ} \mathrm{F}\right)$ soldering iron which melts the insulation and solders the joint at the same time. A very neat, high density circuit board results, but the wiring must be systematic.

It was decided to present a p.c.b. layout for this article. which, although is less compact than that which can be achieved using the prototype approach, does allow an easier and neater approach for the less experienced. The p.c.b. and its component layout is shown in Figs. 2-4.

Ingenuity Unlimited

A selection of readers original circuit ideas. Why not submit your idea? Any idea published will be awarded payment according to its merits.

Each idea submitted must be accompanied by a declaration to the effect that it has been tried and tested, is the original work of the undersigned, and that it has not been offered or accepted for publication elsewhere. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.

Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not in the text.

MONOSTABLE FREQUENCY DIVIDER

AMONOSTABLE may be used as a versatile frequency divider, as in the circuit shown in Fig. 1.

Here the monostable is triggered by the positive edge of a signal applied to the B input. The R / C timing components are chosen so that the monostable will timeout in the centre of the positive half of the number of cycles that it is being divided by. So that in a divide by three situation such as this the output will time-out in the centre of the positive half of the third cycle of the input (Fig. 2). This provides enough leeway to allow for timing drift whilst maintaining an adequate duty cycle for jitter-free operation.

This circuit will divide an incoming waveform by any integer up to a practical maximum of eight. The waveforms shown illustrate the circuit in operation for a divide by three.

Fig. 2

ThI Thnveroiti A COMPONENT FOR THEFIFTH GENERATION R.W.COLES

0VER the last ten years or so we have witnessed an exponential rise in the performance of microprocessor chips. Four bit processors rapidly gave way to eight bits, then sixteen, and now manufacturers are jostling for position in the race to introduce thity two bit devices which promise to bestow the power of a midi-computer to the most humble office and domestic applications well before the end of the decade, the new Sinctair Quantum Leap (QL) being a fine example both in name and computing capability. Clock speeds have increased from a few hundred kHz to several MHz , and already 25 MHz has been promised for advanced versions of devices now in production. To make all this possible, semiconductor manufacturers have been shrinking the geometrics of the individual active components on the chip so that line widths of only one micron (10^{-6} metres) will soon be routine, and up to one million components will be possible en each chip.

An uninformed statistician could no doubt analyse these trends and draw elegant graphs which would probably predict that by the year 2000 the average home computer would have a 512 bit word size, a clock speed of 1 GHz , and would contain a CPU chip with one thousand million active components using line widths of one hundredth of a micron. A similar exercise carried out at the zenith of railway development would probably have predicted that by now, every house would be on a branch line carrying Mach 2 locomotives. A prediction which, fortunately, has not been fulfilled due both to a strictly limited need for such travel facilities, and to the development of other more convenient forms of travel which have, to some extent, made railway travel obsolete.

Similar limitations apply to microprocessor development. There is no real need for word sizes much beyond 32 bits, and although we may get as far as 64 bits for some specialised applications, we wil scon see this particular growth curve flatten out. As to sh-inking chip component geometrics, unfortunately this fundamental route to growth will soon be up against limits set by the physies of semiconductor materials and the resolution available, even theoretically, from the lithographic process used in chip manufacture. Clock speeds too, are unlikely to go much above 100 MHz .

One of the few remaining routes to growth will involve the eventual production of targer chips, using the so-called waferscale integration technique, but this process is more likely to be used for building complete systems which include lots of memory and $1 / O$, than it is for the creation of bigger and better microprocessor devices. So, are we about to witness the end of the microprocesser revolution? Not if Inmos have their way!

The real root of the problem is that nearly all current computers and microprocessors use the same conceptual approach to data processing, ant approach which relies on a single, central, processur. which car run only one program at a time. This concept is so fundamental to our thinking that in the constant deluge of microprocessor enhancements and developments, we
hardly even notice that all the "new" devices are based on exactly the same basic principles; principles which were in fact laid down as the bed-rock of digital data processing way back in the nineteen forties. This so-called Von Neumann approach to computer architecture has served us well, but the limits to growth we have already examined will ensure that it will eventually have to be replaced by something radically different, and one of the first attempts to formulate a new approach has come from the British based semiconductor manufacturer, Inmos.

INMOS

Inmos, you may recall, was set up by a group of expatriate British chip designers based in the USA with the help of massive financial backing from the good old British taxpayer. For once, our money was not used to subsidise or prop-up ailing industries within the UK, but was instead bet fairly and squarely on the roulette wheel of international semiconductor development, an enterprise renowned for its high stakes, high risks, and high payoffs for the winners.

Inmos was not set up to be a half hearted "me-too" semiconductor house to second-source other manufacturers' successful products. From the outset it was planned and organised to become just one thing: a market leader. To begin with, Inmos concentrated on the memory market, introducing a string of innovative devices which quickly established its reputation as a supplier of the fastest memories available. Its first products, the 1400 series of 16 K static RAM chips, were designed in the USA and launched on a receptive worid in 1981. Since then, Inmos has built a new manufacturing facility in South Wales and has introduced a family of high speed 64 K dynamic RAMs which will assure them a secure place among the memory leaders.

While building up its capabilities in the specialist memory area though, Inmos has not forgotten other aspects of system design, and has been very busy at its second design centre in Bristol working on the development of a show-stopping new microprocessor concept, which, if it succeeds, will change the

whole face of digital data processing as we know it today.
Inmos itself does not use the word "microprocessor" very often when describing its new processor. Instead, the new term "Transputer" (which is a contraction of Trans(istor) and (com)puter) has been coined to underline the expectation that its new devices will become universal components, used together in large quantities just as transistors are today.

TRANSPUTER

The first Transputer product, the T424, is a 32 bit microcomputer with all the resources normally required by a computer system, including processor, memory and communications, all available on a single chip of silicon containing 250,000 separate active devices. The first T424 devices are not planned for release until late 1984, but in view of the radical design and programm= ing concepts involved, Inmos have wisely decided to "launch" the Transputer concept early so that potential users can become familiar with its capabilities. No doubt the need to raise further funding to complete development also figured in the decision!

The basic architecture of the T424 is shown in Fig. 1, and at first sight there is nothing particularly remarkable about it, except perhaps the ambitious scale of the device with a 32 bit processor, memory, and I/O all on one chip. The most important features of the Transputer though, are not to be found in its sheer size (or lack of it), but are more intimately related to its communications links and its simple, even primitive, instruction set.

The Transputer is not designed, as most other processors are, to be the Prima Donna of a microcomputer system, sitting in the centre of a large supporting cast of memory and peripheral devices. Instead, it is at its best when used as part of a team of other Transputers, all tightly coupled and working closely together to increase processing power and system throughput.

Despite this unusual propensity for team-work, a Transputer can be used alone like a conventional processor if required, and many of the initial applications for this device will probably use it alone or in small numbers, if for no other reason than that it will initially be quite expensive. Later, as prices fall and as other processors run out of steam in the continuing race for higher performance, the building-block capabilities of the Transputer will enable powerful data processing systems to be built up on a single circuit board containing tens, or even hundreds, of separate T424 chips, all working in concert. Furthermore, when the wafer-scale integration technique mentioned earlier becomes a practical reality, large arrays of Transputers can be interconnected directly on a single wafer of silicon to create, for example, a processing engine for the supercomputers of the so-called fifth generation.

As can be seen in Fig. 1, the T424 is unusual in having six separate interface channels on the chip. The memory interface is a 32 bit, multiplexed address/data channel with a 25 Mbytes per second bandwidth, able to access up to four gigabytes of external static or dynamic memory at very high speed. The 32 bit address range includes the 4 Kbytes of 50 ns on-chip RAM, and when the Transputer is used as a jelly-bean component in an array, this may be all the memory required to hold both instructions and data. Even in array applications however, there will probably need to be at least one Transputer with access to a large conventional memory array holding the main operating program and the data base.

The peripheral interface is unusual in that it is separated from, and can act concurrently with, the memory interface to access standard peripheral devices such as I/O processors and controllers at high speed, while normal external memory operations

Fig. 1. The revolutionary architecture of the new T424 Inmos Transputer chip
take place at the same time. At 4Mbytes per second, the bidirectional peripheral interface is no slouch, and can even be used to perform block memory transfers (from ROM for example) if required.

Finally, and most importantly, there are four bi-directional serial communications channels which can also operate concurrently with each other and with the memory or peripheral interfaces. A collection of four serial interfaces would be of benefit to any microprocessor of course, but the serial channels on the T424 are not intended for traditional and mundane tasks such as driving printers or Modems. These serial interfaces are provided purely as inter-Transputer communication links, and with four available, a two dimensional array of Transputers can easily be constructed with tight coupling to neighbours in the up, down, left and right directions. Each inter-Transputer link can transfer data at 1.5 Mbytes per second in both directions simultaneously, using a byte organised message format which can transmit data blocks of any length for memory to memory or CPU to CPU communications. The use of a serial protocol and separate links for each channel has obvious advantages over the shared parallel bus approach used by other inter-processor communications schemes, simplifying board layout and increasing the overall communications data rate by facilitating the simultaneous operation of multiple links in each system.

The on-chip memory array uses the much vaunted high-speed static memory technology already in use in other Inmos products to achieve an impressive 50 ns cycle time with separate access ports for the CPU, the peripheral interface, and all four of the serial channels.

The CPU itself is a very fast 32 bit parallel processor which can execute most of its instructions in just 50 ns . The CPU utilises the "Reduced Instruction Set Computer" or RISC approach, having only 70 instructions in all, and keeping data access operations separate from logical or arithmetic operations. This approach avoids the usual requirement to cater for multiple combination of data types and addressing modes which often cause the total instruction sets of more conventional microprocessors to mushroom to many thousands of variations. Despite the simplicity of the RISC approach however, Inmos
claim that the functionality of the instruction set is high, and that programs require no more code than would be required by the more conventional approach used in most other microprocessors.

CONCURRENCY

As we saw earlier, current computer architectures are based on the historical premise that the processor is more expensive than the memory which serves it, and this has resulted in the "Von Neumann bottleneck" which puts constant emphasis on improvements to the central processing "engine" for the achievement of increased performance. With the coming of VLSI (Very Large Scale Integration) this economic perspective no longer holds true, and perhaps even more significant, the performance which can be squeezed from a single processor is fast approaching a physical limit. It is therefore time for the "railwayengine" approach of the all-powerful Von Neumann architecture to give way to the "private-car" approach of multiple, concurrent processing activity. This approach is at the very heart of the Transputer concept.

Unfortunately, the tangled infrastructure of today's data processing methodology, including all the high level languages such as BASIC and PASCAL, caters only for the Von Neumann approach to computer design, making the reeducation burden now shouldered by Inmos all the more daunting. Realising the problems they would face in overcoming the inertia inherent in such an ingrained methodology, Inmos wisely recognised that simply presenting the world with a revolutionary piece of new hardware would not be enough to effect any change. To back up their Transputer they needed to introduce a new software approach to handle concurrency, and to satisfy this need they have developed a brand new computer language called Occam after the fourteenth century philosopher who first formalised the concept known as "Occam's razor" which in a nutshell states: keep it simple!

Occam and the Transputer operate hand-in-glove to implement what is known as the "process model" of computing as illustrated in Fig. 2. A process is an independent sequential computation, complete with its own program and data, which can communicate with other processes executing at the same time. Communication between processes is by message passing using explicitly defined channels which may either be implemented using physical links (such as an inter-Transputer serial channel) or by using software organised channels using memory buffers as the link. Communication between processes is synchronised so that a message can only be sent over a channel when both the sender and receiver are ready, and as a consequence, the process
which first becomes ready must wait for the second process before the link is completed.

The Transputer directly implements the Occam model of a process to the extent that internally it can behave like any Occam process which is within its capability. In particular, a Transputer can implement internal concurrency by timesharing processes using the instruction set facilities provided directly for that purpose, and can implement external concurrency by using its inter-Transputer links for message exchange with processes running on other devices. As a result, the same Occam program may be executed either by a single Transputer, or by a whole network, with consequent gains in performance.

OCCAM

The Occam language is a high level language when judged against conventional criteria, but it is also the lowest level at which a Transputer will be programmed. The instruction set of the processor is not pure Occam however, and represents a somewhat more primitive level of operation which is optimised for direct compilation from Occam itself. Direct use of the Transputer instruction set is not supported, and no assembler will be available, because compiled Occam will be at least as efficient as a hand coded alternative.

Occam may have been developed specifically for the Transputer, but it is not limited to use on that processor and software development tools are already available to facilitate its use on a number of other systems including the Apple II, the Sirius, and the IBM PC. Although practical working Occam software can therefore be developed for other processors, the full potential of the language will not be realised until the Transputer itself is in widespread use.

Even the Transputer, though, is not limited to the use of Occam alone, since its instruction set has also been optimised for efficient compilation from other high level languages such as PASCAL, ADA, and even BASIC. As a result, the Transputer programmer may use Occam alone to take advantage of its efficient handling of concurrency, or may simply use it as a harness to link software modules written in other high level languages which may be better suited to certain types of data processing task.

CPU ARCHITECTURE

The Transputer CPU architecture (Fig. 3) overturns many of the old established concepts of "desirability" which have been preached in the PE Microfile series and elsewhere. An array of general purpose registers is nowhere to be seen, there is no stack

Fig. 2. The process model

A process is an independent computation with its own program, data and communications links

Processes can be linked together by channels to build more complex concurrent systems

A collection of processes is itself a process, so that processes may have internal concurrency

Fig. 3. CPU architecture of the Transputer showing the six dedicated registers
in the conventional sense, and the long sought after concept of virtual memory addressing is ignored. The reason for this upturned apple-cart, however, is not hard to find.

Take a look at any conventional 16 or 32 bit microprocessor and you can see the lengths to which chip designers have had to go to squeeze the ultimate in performance from their Prima-

Donna processor. Every conceivable useful concept and add-on hardware extra has been included to overcome the restrictions which result directly from the Von Neumann bottleneck. As a result, data manuals are getting thicker, and learning a new processor has become a time-consuming business for both the hardware designer and the programmer.

A Transputer system, on the other hand, is not constrained by the single CPU bottleneck, and as a result "Occam's razor" can be applied to the processor architecture to keep everything as simple as possible. Unlike other microprocessors the Transputer does not have a large register file, instead, it has a minimum set of functionally dedicated registers and an evaluation stack. This approach simplifies compiler design since all of the operands are in a uniformly addressed data space. It also minimises the context switching time required for interrupts by eliminating the need to save lots of registers on a stack. This in turn reduces the time overheads involved when executing concurrent processes and improves the real-time response of the system.

A sequential process is executed using just six registers, each one word long, or 32 bits for the T424. This register arrangement is also shown in Fig. 3, and is the ultimate in simplicity.

The instruction pointer defines the next instruction to be executed, and is therefore what we generally call a program counter, the operand register is used in the formation of instruction operands, and the workspace pointer defines an area of RAM memory where local variables are held. Programmers never have to refer to these registers directly since their function is implicit in any instruction which uses them, as is the function of the remaining three registers together forming the evaluation stack.

The evaluation stack operates in a similar way to the stack used in the famous Hewlett Packard range of scientific calculators, and anyone who has learned to use one of those would never swop it for the messy algebraic notation used by most of the competition. Expressions are evaluated on the three entry stack, and instructions refer to the stack implicitly. When an Add instruction is executed for example, the top two values in the stack are added and their sum is placed on the top of the stack. The use of an evaluation stack removes the need for

One address instructions	
Load local	L.oad constant
Store local	Add constant
Load local pointer	Add to memory
Load non-tocal	Jump
Store non-local	Conditional jump
Load non-local	Call
pointer	Adjust workspace
Zero address instructions	
Add	Load byte
Subtract	Store byle Byte count
Multiply	
Divide	Byte counl Word count
Remainder	Byte subscript
Long add	Word subscript
Long subtract	Check subscripl
Long multiply	Extend to word
Long divide Normalise	Check partword
	Extend to double Check word
Diference	Pead limer
Greater than	Test error
Equal zero	Reverse
	Minimum integer Initialise
Of	
Xor	Start process End process
	End process Alt stant
Shift right	Enable channel Enable timer
Move message	Disable channel
Inpul message	Disable timer
Output message	Alt wait

Fig. 4. The basic Transputer machine code instruction set

		Program size (bytes)	$\begin{gathered} \text { Execution } \\ \text { time } \\ \text { (ns) } \end{gathered}$	External program accesst (ns) (ns)	External data access (ns)
Arithmetic operators	+,-	1	50	p	0
	\star (multiplication)	1	950	0	0
	/ (division)	2	1950	0	0
	1 (remainder)	2	1950	0	0
Comparison operators	$>_{1}=,<>,<,<=,>=$	2	100	2 p	0
Logical operators	AND, OR	1	50	p	0
	ハ,				
, \gg $<$ (XOO)	2	100	2 p	0	
Shift operators	$\ll[n],\rangle>[n]$	2	$50 \mathrm{n}+50$	0	0
Identifiers	variable	1.7	120	1.7p	d
	vector variable	2.7	160	2.7p	d
Expression evaluation	constant	1.3	70	1.3 p	0
	parenthesis	0.5	50	0.5p	0.5d
Constructors	SEQ (n)	0	0	0	0
	PAR [n]	$9 \mathrm{n}-7$	450n-200	$7 \mathrm{np}+\mathrm{nd}$	d +4 + $n d$
	ALT $\mid \mathrm{n})$	$8 \mathrm{n}+7$	$600 n+600$	$8 p+2 d$	$5 d+4 n d$
	IF (n)	3 n	150 n	2nd	0
	WHILE	4	200	20	0
Primitives	! (outpul), ? (input)	4	625	3 p	5d
	$![\mathrm{n}], ?$ [n$]$ (vector)	4	$50 n+625$	3 p	5d + +nd
	:= (assignment)	0	0	0	0
	$:=[\mathrm{n})$ (vector)	4	$100 n+300$	3 p	2nd

Fig. 5. The Occam language syntax. The 'program size" column shows how few bytes are required for machine code instruction sequences
the additional time for access to external memory depends.on the type of memory. The parameters for various types of INMOS memory are:

	p	d
IMS 1400-70 static RAM	20	100
IMS 2600-12 dynamuc RAM	40	150
IMS 2600-15 dynam c RAM	55	200
IMS 3630-20 erasable ROM	55	200

instructions to continually respecify their operand locations.
Also implemented in the CPU logic is a hardware scheduler which enables any number of concurrent processes to be executed together and to share the processor time in a controlled way. Two process status levels are supported, normal and priority, with the priority classification reserved for processes which would normally be performed using interrupt routines.

If a normal process is being executed and a message arrives from a priority process (over an inter-Transputer link for example), the processor saves the context of the current process in the RAM workspace area and begins to execute the priority process within 2 microseconds. Normal processes will only be resumed when all priority processes are unable to proceed or have been completed. Special instructions are provided to support the concept of concurrent processing on the Transputer.

INSTRUCTION SET

Like the architecture of the Transputer CPU, the instruction set is simple and straightforward, with all instructions being only one byte long. One consequence of this simple approach is the incredible speed of processing which the Transputer can attain, up to 10 Million Instructions Per Second (10 MIPS) when running from internal memory. The very best conventional microprocessors, such as the Motorola 68000, can manage only about 1 MIPS.

Each one byte instruction is divided into two four bit fields:

1 Byte							
7	6	5	4	3	2	1	0
Function				Data			

The four most significant bits are a function code, and the four least significant bits are a data or address offset value. There are two basic types of instructions as follows:

One Address Instructions:

These instructions, of which there are thirteen, represent the most common operations performed by a program such as loading or storing one of a small number of variables, or loading a constant. With only four bits available for variable addressing there is clearly no way to access the 4Gbyte memory space directly. To overcome this limitation, the four bits are used as an offset, relative to either the 32 bit workspace pointer or to a previously computed 32 bit pointer in the operand register. The basic single address instruction format therefore provides for
immediate access to 16 locations in the workspace area and another 16 locations which may be located anywhere in memory. This is considered sufficient for over 80% of memory access operations. When larger offsets are required, the rather unusual approach of using a sequence of instructions to extend the offset by four bits for each instruction can be employed. In effect, memory addresses are frequency encoded which is more efficient overall than the use of a fixed, full width address for every access, even for locations in close proximity.

Zero Address Instructions:

All the remaining instructions use the evaluation stack as the implicit source for operands, and this type can be subdivided into the following classes:-Arithmetic, Logical, Conditional, Data Structure and Process.

The arithmetic operations include multiplication and division, and support multilength and floating point arithmetic with overflow monitoring. The basic division operation, for example, is division of a signed 32 bit number, giving a signed 32 bit result and remainder.

The data structure operations provide the means to access byte and word data structures which may include multidimensional arrays, and enable data structure access to be independent of word length.

The process instructions support the Occam model of processes. They include instructions analogous to the input, output, block move and procedure call instructions of other microprocessors, with the difference that the Transputer instructions are designed to support a well-defined model of concurrency in which all process communication is synchronised.

As mentioned earlier, it is not proposed that Transputer programmers will have access to the basic instruction set, but it is listed here for completeness in Fig. 4. Of more relevance to programmers is the Occam syntax, which is listed in Fig. 5. It is easy to see why the basic machine code instruction set can be ignored in favour of Occam by looking at the "Program Size" column which shows that most Occam statements compile into very short machine code instruction sequences, often of only I or 2 bytes.

TRANSPUTER SYSTEMS

So far we have looked exclusively at the 32 bit T424 Transputer which will be the first device to become available in late 1984. A great advantage of the Transputer concept, though, is the fact that many other compatible configurations are

Fig. 6. A single Transputer microcomputer circmit

Fig. 7. Two examples of multi-Transputer networks. Such configurations are possible with other microprocessors but the complexities of interconnection and the nightmare of software design make the concept generally impracticable
possible without the need to change the Occam syntax.
Also planned is a 16 bit version, the T222, which will have an identical instruction set and will operate at the same speed as the T424 within the restrictions of its shorter word length. Also planned are specialised Transputer devices such as the G213 graphics processor, and the M212 disc processor which will both be based on the 16 bit architecture of the T222.

The package style chosen for all Transputer products is the ceramic Leadless Chip Carrier (LCC) which is also being used for advanced conventional microprocessors such as the Intel 80286. The T424 will use an 84 connection LCC roughly one inch square (Page 26), while the T222 will use a 68 connection package. All Transputers will be fabricated using a CMOS process and will run from a 5 MHz system clock. The T424 will operate from a 5 volt supply and will dissipate only 900 mW .

A basic single Transputer system can be assembled with relatively few components as shown in Fig. 6. This simple system is comparable to any other high performance single CPU disc based microcomputer and demonstrates how conventional a Transputer system can be. The two arrangements shown in outline form in Fig. 7 provide a glimpse of the more exotic system architectures which are more likely to justify the use of the Transputer in large numbers. With networks like these available, the age of the truly intelligent supercomputer cannot be far away!

35 LED TACHO

TH1S circuit uses the MM5451N shift register and l.e.d. driver to provide a bargraph display of engine revs.

The circuit operates as follows: When the output of ICId is high, pulses are received from the points via ICla \& b which operate as a Schmilt trigger, and are used to clock the shift register-the data input is held high. When the output of 1 Cl is low the data input is low and IC le \& f provide clock pulses to fill the shift register with zeros-the shift register will not accept any more data after it is full until the data input goes high again. Thus, a number of l.e.d.s are switched on corresponding to the number of ignition pulses received. The display updates every 0.3 seconds.

The ICla \& b clock should be set to $3 \cdot 33 \mathrm{~Hz}$ for a four cylinder engine (5 Hz for a six- and 6.67 Hz for an eight-cylinder engine). This gives a maximum reading of 7000 r.p.m. The value of capacitor C2 may need to be decreased.

C4, 5 and 6 are decoupling capacitors and should be connected as close to the i.c.s as possible. $C 7$ decouples the brightness input which is set to maximum. IC4 provides a stable 5 V supply and requires a heatsink.

The MM5450N could be used instead-this only has 34 outputs and a 'data enable' input on pin 23 which should be tied to 0 V

This circuit is suitable for negative earth vehicles.
I. Benton,

Bardney, Lincoln.

VERNONaI "RENTILaige!

V.T.'s views and opinions are entirely his own and not necessarily those of PE

HAVE never, as a journalist, been much of a scoop-artist. Let others, if they must, spend fruitless nights on the steps of No. 10 in the vain hope that, as the result of a dubious tip-off, they'll nab the PM coming home stoned from a summit meeting. Let others seek to build up evidence that Dean Martin is secretly addicted to lemonade and that Robert Mitchum really lives. Personally I've always taken the authenticated news as it comes.

Yet this philosophy, Kismet being what it is, does not prevent one stumbling across the occasional exclusive. Such a thing happened to me last week when taking a milk and honey in one of the better class bars with someone in a high place in the engineering indusiry who ought to have kept his mouth shut-or stuck to the straight milk.

To explain the importance of his revelations to me, it would help to hark back to August 1982 when an article appeared in a leading industry weekly. It told how a group of senior engineers-long in both tooth and memory-were planning to mark the 100 th anniversary of the discovery of Gummidge's Gangulating Gyrator.
Without going into a lot of technical detail, this was a contrivance of incredible versatility. It was capable of performing a host of functions, from the liquidisation of solids to the taking of passport pictures, from cutting keys to playing simulated versions of the light classics. The fact that it was eventually superseded by the American-born Goldblatter's Gyrating Gangulator-which could also fell a forest in a matter of minutes--is neither here nor there. The seed of multi-function had been well and truly sown.

But Gummidge and Goldblatter were reduced in my mind to the status of bungling rat-finks by the story unfolded to me by this milk-and-honey-sodden mole whose tongue flapped untiringly for the best part of an hour like the Royal Standard in a high wind. If only half of what he told me comes to pass, it will create turmoil in the race for technological supremacy throughout the world.

In case you think that, in my usual fashion, I am treating what could be a major revolution in the electronics industry in a flippant manner, let me give you some solid facts.

A powerful consortium of top US engineers, drawn from every interested discipline-electronic, electrical, medical, ergonomic, constructional and so on-and funded by massive sums from both State and Federal resources, have set up a research and development facility, the size of a small town, in the wastes of the Nevada desert, to produce what they believe is the ultimate in robotics.

The project has been provisionally named 'Manservant'. It is virtually a single unit, utilising to the full all the potential of advanced engineering technology, designed to
cater for every conceivable human need.
The concept is based on a set of micromin modules-supported by scaled-down mechanical assemblies-and a micro-processor-controlled master unit at the heart.

My informant, being a sot rather than a scientist, was unable to go very deeply into specifications. But he was obviously near enough to the centre of things to reveal with some authority what 'Manservant' is likely to be capable of doing.

First of all, as might be expected, it provides the full range of consumer services: cable/satellite colour TV and stereo sound on an almost limitless number of channels. In addition it comprises a full range of recording facilities, video and audio, and an impressive selection of high-quality reproduction equipment.

On the professional side, it embodies a sophisticated data processing unit and inputs not only to our very own Prestel, but also to lesser-known foreign electronic information services such as Denmark's 'Danksgen', West Germany's 'Informatzionengas', and Spain's new and promising 'El Tellu'.

"A shoe polishing unit is an optional extra"

Perhaps the most exciting feature is a stunningly-designed personal helicopter. It consists of an ultra-lightweight yoke assembly which, when clipped to the shoulders, enables the user to cruise comfortably at an altitude of 50 ft at a speed of about five miles an hour-ideal for getting from shop to shop when doing your Christmas shopping in Ox ford Street. Power is supplied by one of 'Manservant's' vast range of modules. Controls, set in a chest-mounted panel, are no more complicated than those of a basic gas cooker.

Talking of cooking, 'Manservant' includes, as well as a super high-speed microwave oven, a subsidiary unit, tentatively named 'Maidservant', which will peel potatoes, slice meat, shred cabbage, skin onions, dice carrots and turn out an acceptable strawberry mousse. It can even handle the washing-up and serve coffee and brandy
'Manservant', let it be made clear, is no illchosen name. For the lonely and helpless bachelor it will handle-including ironing and trouser pressing-a full 14 lb load of washing and, if needs be, remove soup stains from the lapels of sloppy diners. A shoepolishing unit is an optional extra.

These are but a few of the blessings-there are many more too numerous to be mentioned here-which in the near future will enrich the lives and increase the leisure of those of us
fortunate enough to have been born in the electronic age. The fact that the complete 'Manservant' unit packs compactly into a carrying case the size of a piano accordian is a consideration not to be sneezed (or should it be squeezed?) at.
As usual, the one obstacle to its universal adoption could be the matter of cost. So far around $\$ 200$ million has been sunk into R\&D. The cost of manufacture has not yet been looked at. However, it is probable that 'Manservant', if and when available in the UK, would rank in price with a sevenbedroom, two-bathroom, double-garage, centrally-heated family house standing in six acres in the stockbroker belt of South-East England. Maybe some enterprising building society will come up with a 'Manservant' mortgage scheme.

In the meantime, the US consortium cannot afford to be complacent. A state research establishment, sited in the bowels of a defunct volcano on the shores of the Black Sea, is already working on a Soviet version called 'Dogsbodya'.
The race, then, will be to the swiftest.

You may recall that I recently drew attention to the plight of the middle-aged engineer who couldn't come to terms with modern technology. In particular he was bugged by the new gobbledegook which is so cruelly disfiguring the noble English tongue.

Since then I've been reflecting upon his distress and l've come to the conclusion that I've got a touch of the same trouble. Every day some fresh distortion is thrust upon us. Indeed, I have the feeling that somewhere in the electronics industry there is a little clique whose only contribution to progress is to think up grotesque words and phrases for foisting upon those who once took a pride in speaking English as she ought to be spoken.

My view was not changed when there plopped through my letter-box the other day-along with some bumph about doubleglazing and a red notice from the Gas Board-a newly-published glossary of terms used in Satellite and cable TV.

The document was a revelation. And to show the extent to which the mists of my misunderstanding have been dispelled, let me give you some examples of my former interpretations of well-known expressions which are now being bandied about-with entirely new meanings-by those in the SCT know.

Tiers: Lachrymal secretions which exude from the eyes when watching a sick-making wedding or convenient demise on Coronation Street. Another form of this condition is called the Russell Harty syndrome. Premium Channels: The electronic means we shall shortly be using to pay our life, house and car insurance contributions. Narrowcasters: News readers on diets. Addressability: The possibility of communication with anybody with a fixed abode. MAC: What you leave at home-because Michael Fish seems such a reliable lad-and subsequently need. Scrambling: Something fighter pilots used to do during World War II and what housewives have been doing with eggs ever since the hen was invented.
(It is the April issue! Ed.)

MOW ANAILABLEI
Complete Car Kit and Transmitter Kit
Clear build-up instructions included
only $\mathbf{E 9 . 9 5}+50 \mathrm{p}$ Pap
Also
Porsche 935 Turbo Kit (2 speed)
Kit includes transmitter and full build-up instructions only $£ 17.00$ + 50p PaP

Order now from:-
Tomorrow's World Car Kit Dept. Hadleigh Road In
Hadleigh Road, Ipswich. Suffolk.
Tel: Ipswich (0473) 59175
Flease send me:
\square Lamborghini Kit
\square BMW MI Kit
\square Porsche 935 Kit
Name
Address
Mease allow 14 days delivery in U.K

No Project Is Complete Without The Right Housing..

KMT
The unique new modular enclosure.
Suitable for alarm systems, counters interfaces amplifiers, model control units and many other projects.

- Panels-Satin anodised aluminium

Send 50 p for a copy of the calalogue with details of the full range available.
these handsome two-toned grey boxes are suitable for wall mounting and free tanding instruments. The two halves of the box are held together by screws inserted from the base

- Material-High impact polystyrene
- Colour-Top light grey: base dark grey

Plastic Boxes
Type A
Plastic boxes consisting of a top and bottom moulding with front and rear aluminlum panels, positively retained in the two halves. ABS

- Colour-Light grey top dark grey base
- Front and rear panels-Satin anodised aluminium 1.6 mm thick
Type B
Constructed of high impact polystyrene

Retail Department, Industrial Estate,
 Chandlers Ford, Hants SO5 32R Tel (04215) 62829

This box is moulded in two sections and has a textured finish. The battery compartment accepts a PP3 or nickel cadmium stack $25 \times 45 \mathrm{~mm}$ long. A circuit board $56 \times 105 \mathrm{~mm}$ may be mounted on three pillars in the base, location being provided by a 3 mm spigot. The top moulding will accept a circuit board 71 $\times 107 \mathrm{~mm}$.

- Material-Textured ABS
- Colour-Dark brown

Hi-Style Desk Top Case
Designed to house keyboards and displays on two $1,6 \mathrm{~mm}$ silver anodised is manufactured from high impact polystyrene and has a textured finish

- Casing-High impact textured ABS

Colour-Brown, front and base panels 1.6 mm satin anodised áluminlum

Hand Held Box

Easy on the pocket - house your projects economically and protessionally.

For full size eurocards ($100 \times 160 \mathrm{~mm}$) mounted horizontally in the 35TE fron

Hall size eurocards ($100 \times 80 \mathrm{~mm}$ mounted vertically included as part of all front panel kits (except $35 T E$), with connector included. th

ULTRA VIOLET BLACK LIGHT FLUORESCENT TUBES
 20V AC $2.50+450$ p8p IE339 inc VA) . 6.96 inc. VAT) For 12 V DC op. 12 in . E 13 in p 75 p (C 7.76 inc . VAT) VAI 175 WATT SELF-BALLASTED MERCURY BULBS Available for $400 W$ UV LAMP AND BALLAST Complete $£ 38$ post $\mathrm{C3} .50$ ($\mathbf{E 4 7 . 7 3}$ inc. VAT \& wipl. 400W UV LAMP only £ 14 post $£ 2$ ($£ 18.40 \mathrm{inc}$ VAT p\& 1 p)

SUPER HY-LIGHT STROBE KIT Designed for Disco. Theatrical uses, etc
 Approx. 16 joules. Adjustable speed. Price $£ 45+£ 2 p 8 \mathrm{p}$ fTotal inc. VAT $£ 54.05$: Case and reflector price $£ 15+\mathbb{Z}$
 p\&p (total incl. VAT $\mathbf{f 1 9 . 5 5 1 \text { ; Foolscap SAE for furt }}$ detaits including Hy-Lyght and Industrial Strobe Kits.

COMPRESSOR
Max 20 PSI. One CFM approx. 240 volts A.C.
12 V DC SOLENOIDS

240 V AC SOLENOID
Approw 616 pull (4 75 p p\&o ($\$ 5.46 \mathrm{inc}$, VAT) N.M.S
HEAVY DUTY SOLENOID. Int by Magne
tic Devices, 240 V AC intermittent opera tic Devices, 240 VAC intermittent opera.
tion Approx. 2001 p pull at 1.25 in. ER.
 comichic

VORTEX BLOWER \& SUCTION UNIT

owenul mult. stage dynamicalivy blanced totally enclosed 9 , 220. Sutabte transloimet for 240 V AC E5. 3 p 80 (llot3l incl VAT c32.20) NMS

TOR Smooth-running COOLING or EXTRAC. 200 FAN . Soze. $\mathbf{4}^{3 / 4 \times x^{3 / / 4 x} 1^{1 / 2} \text {. Supplied for }}$ fotal incl VAT EEG.62IN.M.S

240V A.C. SOLENOID VALVE
Designed for Alr/Gas at 0.7 Water 5 psit iniet brass body Manul Dewraswith Asco. Price ES 50 . 11 p\&p ich.48 brass body Man
inc. VAT) N.M.S

VARIABLE VOLTAGE TRANSFORMERS

200W 230, 24 OV a.c. $50 / 60$ OUTPUT 0.260 V 200 W .1 A. Max
0.5 KVA
24 M Max ikVA 5A Max. 2KVA 10A Max. 3KVA 15A Max 5KVA 25A Max. 15KVA 75 A Max

3-PHASE VARIABLE VOLTAGE TRANSFORMERS Dual unput 200-240V or 380 4 15 V , Star connected All V.V. is 3KVA Samp per phase max plus $\begin{array}{lll}\text { 6KVA } 10 \text { amp per phase max } & \text { £170.10 } \\ \text { 10KVA } 16 a m p \text { per phase max } & £ 345.45 & \text { carriage }\end{array}$ 2KYA VOLTACE CHANGING TRANSFOAMER A ZKVA VOLTAGE CHANGING TRANSFOAMER. Auto WOUnd with
taps 0.5-100-125.150.175.190-200 225-230 240-250 Voll. Price: E22 fs p\&p tototal incl VAT £29.901 N.M.S. Comprehensive range of TRANSFORMERS L.T. ISOLATION \& Auto (110-240V). Either cased with American socket and mains

12V D.C. BILGE PUMPS

00 G.P.M. 10tt, head, $3.5 \mathrm{mp}, \mathrm{E} .50 \cdot[1.50$

EPROM ERASURE KIT
Why waste moner? Build your own EPROM ERASURE for a traction of the price of a made up unt. Complete kit of parts pair of br-pin leads. Neon indicator, safery mictoswitch. on/ofi. Switch and circuit
LESS CASE Price C13.60-75D
D\& Warning: Tube used in this crecut is highly dangerous to the

FROM STOCK AT PRICES THAT DEFY COMPETITION!

AC GEARED MOTORS DC MOTORS MICROSWITCHES RELAYS
REED SWITCHES
SOLENOIDS A.C. or D.C
PROGRAMME TIMERS
Phone in your enquiries

Ample parking space Showroom open Monday-Friday

SERVICE TRADING CO
57 BRIDGMAN ROAD, CHISWICK, LONDON W4 5BB. 01-995 1560 ACCOUNT CUSTOMERS MIN. ORDER £10

Superior Quality Precision Made NEW POWER RIEOSTATS

New ceramic construction, he

25 WaTf $5 / 10 / 25 / 50 / 100 / 150$ 50 WATT 250 ก $55.50+50 \mathrm{p}$ p\& P (Ef .90 inc. VAT) 100 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{k} \Omega / 7.5 \mathrm{k} \Omega / 2.5 \mathrm{k} \Omega 3.5 \mathrm{k} \Omega$ £7.75 $+75 \rho$ p\& $\$ 27.77$ inc. VAT).
lack Silver Skirted Knob calibrated in Nos 1-9, 1 1 in. dia
brass bush. Ideal for above Rheostats 30 D a. + VAT. WHY PAY MORE?
MULTI RANGE METER. TVDe MF15A a c. -100 Sensitivity 2000 V . 24 range diameter 133 by 93 by 46 mm including test leads. Price $f 10.35$ inc. VAT \& $p \& p$.

INSULATED TESTERS NEW!
Test to I.E.E Spec. Rugged metal construe tion suilable for bench or tield work con-
stant speed clutch. Size L Bin. W 4 in H 6 in weight $61 \mathrm{~b}, 500 \mathrm{~V}$, 300 megohms, E49, p\&p

\section*{GEARED MOTORS

PDm 240 V AC MI by

PDm 240 V AC MI by

38.3 rPM GEARED MOTOR, Torque 351 bin reversible 115 V AC inc. start capacity. Price £11.55-p\&p (total inc. VAT f15.58) N.M.S. Suitable TRANSFORMER 230 V A.C. operation Price $\mathbb{C 4} .50 \cdot 50 \mathrm{p}$ plep liotal incl.VAT ©5.75)
CROWN 37 rpm 20016 in. approx. 110 V AC reversible geared motor, Price C35 p \&ip CA. 50 ($\mathbf{E 4 5} .42$ inc VAT) N. M. S

$$
\begin{aligned}
& \text { chitable thansformer for above (} 42 \text { ppm } 110 / 230 \mathrm{~V} \text { A.C. } 50 \mathrm{~Hz} \text {. } 100 \text { th.in. approx. Reversibl }
\end{aligned}
$$ geared Motor. Price $\mathbb{E} 18.15+\mathbb{C} .50$ p\&p (total incl. VAT $£ 23.75$) 120 RPM 1/10 HP APPROX. 15 lb .in 230 V AC Cont Rating Non-reversible. Sise $150 \mathrm{~mm} x$ $90 \mathrm{~mm} \times 85 \mathrm{~mm}$ spindle 8 mm dia. $\times 30 \mathrm{~mm}$ long. Complete with capacitor and relay for

max load staring. Offered at mere fraction of mifs price - $£ 11.50$ inc. p\&p \& VAT
 N.M.S.
$24 V$ D.C. 200 mpm GEARED MOTOR 10 lb in
58.00 p\&p E? (total inc. VAT E11.50) R\&T

CHECK METER
200.240 V A.C. S0amp, fully reconditioned. $\mathbf{c 7 . 5 0}$ - € 9.75 p\&ip fota)

SANGAMO WESTON TIME SWITCH
Type S25 $200 / 250$ A C. 2 on/2 off every 24 hours. 20 amps conlacts
 Other types avalable from stock.
N.M.S. New Manufacturers' Surplus Ner. Now Mionied and iested

and MICROPROITPT

Appearing every month, Micro-Bus now presents ideas, applications and programs for the most popular microcomputers and all micro-related projects so far published in PE. Ideas must be original, and payment will be made for any contribution featured.

UK101

Sir-This program will display an enlarged character set on the UK 101 in which the full ASCII upper case character set may be displayed. The program will ask you to input your message. This is stored in N\$ and may contain any upper case ASCII character. To start a new line use CONTRL N. The space bar inserts a space between characters. The display is 9 character wide by 5 high on a 32 line screen. For a 16 line screen the variable TX should be 54272 . The character definitions are stored in A\$(J).

> P. N. Martin, Weymouth.

170 REM****READ IN THE CHARAC TER DEFINITIONS
180 READ A\$:IF A\$<>"O" THEN $\mathrm{NC}=\mathrm{NC}+1:$ GOTO 180
190 RESTORE:DIM AS(NC-1)
200 FOR J=0 TO NC-1:READ AS (J):NEXT

210 READ A\$:J=ø
220 READ CH(J):IF CH(J) THEN $\mathrm{J}=\mathrm{J}+1:$ GOTO $22 \emptyset$
$230 \mathrm{~T} \emptyset=53261: T X=55296:$ REM $^{* * * *}$ START AND FINISH OF DISPLAY 32 LINES
$24 \emptyset$ A=ASC ("A"):Z=ASC("Z")
$25 \emptyset \mathrm{ZE}=\mathrm{ASC}(" \emptyset "): \mathrm{NI}=\mathrm{ASC}($ " 9 ")
260 PRINTCHR\$(26);:REM**** CLEAR SRCREEN CEGMON
270 INPUT "Message"; IN\$
280 PRINT CHR\$(26);:T1=T0:TL=T0
290 FOR T=1 TO 6:PRINT;:NEXT:PRINTCHR\$(13);
300 FOR I=1 TO LEN(IN\$):REM ** EXTRACT THE CHARACTER TO BE DISPLAYED
$310 \mathrm{CH}=$ ASC(MID\$(IN\$,I,1))
320 IF CH $>=32$ THEN360:REM IF NOT SPACE THEN SKIP
330 FOR T=1 TO 6:PRINT:NEXT
340 $\mathrm{T} 1=\mathrm{T} 1+384: \mathrm{IF} \quad \mathrm{T} 1>\mathrm{TX}$ THEN $\mathrm{T} 1=\mathrm{TX}$
$350 \mathrm{TL}=\mathrm{T} 1: G O T O 480$
$360 \mathrm{CH} \$=\mathrm{A}(\mathrm{CH}-32)$:REM EXTRACT THE RELEVANT DEFINITION STRING
370 FOR J=2 TOLEN(CH\$)
$380 \mathrm{C}=161$

390 C $0=A S C(M I D \$(C H \$, J))$
400 IF C $0>=$ A AND $C \emptyset<=2$ THEN430
$410 \mathrm{C}=\mathrm{CH}(\mathrm{C} 0-\mathrm{ZE}): \mathrm{J}=\mathrm{J}+1: \mathrm{IF}$ J<=LEN(CH\$) THEN39の
420 GOTO470
$430 \mathrm{Y}=\mathrm{INT}((\mathrm{C}(\mathrm{D}-\mathrm{A}) / 5)$
$440 \mathrm{X}=\mathrm{CD}-\mathrm{A}-5^{*} \mathrm{Y}$
450 POKE TL $+\mathrm{X}+\mathrm{Y}^{*} 64, \mathrm{C}$
460 NEXTJ
$47 \emptyset \mathrm{TL}=\mathrm{TL}+\mathrm{ASC}(\mathrm{CH} \$)-\mathrm{ZE}+1$
480 NEXT 1
490 GOTO270
500 REM*** DEFINITIONS OF CHARACTERS, ARRANGED IN ASCENDING ASCII
510 REM**** VALUE, STARTING WITH ASCII SPACE
520 DATA 40A
530 DATA 1 AFKU
540 DATA 3AC
550 DATA 45A6B5C6DFGHI5K6L5M6 NPQRSSU6V5W6X
560 DATA 4DCB1AF3KLM2NS4X WVU5G6H5Q6R
570 DATA 41 D 411 H 4 M 1 L 4 Q 1 P 4 UAX
580 DATA 43X6SR2ML2G3F1AB2 C4H1KP3UV4WIN
590 DATA 1 AF
600 DATA 24 BIAFKP3U2V
610 DATA 23A2BGLQ4VIU
620 DATA 4KLMN3F2G3R2S411H4Q1P
630 DATA 4GLQKM
640 DATA 2 Q4V1U
650 DATA 3KLM
660 DATA IU
670 DATA 41D4IH4MM1L4Q1P4U
680 DATA 4B1AFKP3UVW4XSNI2DC
690 DATA 331ABGLQUVW
700 DATA 41ABC2DI4NML1KPUVWX
710 DATA 41ABC2D4IIHLM2NS4X WV3U
720 DATA 41CHIG4LIKPQRSHMW
730 DATA 4DCBAFKLM2NS4XWV3U
740 DATA 42DCB1AFKP3UVW4X S2NML
750 DATA 4ABCD411H4M1L4Q1P4U
760 DATA 4B1A3F2G3LM2NS4X WV3UP1KLIH412DC
$77 \emptyset$ DATA 4ML3KFIABC2DINS4X WV3U
780 DATA IFP
790 DATA IFPIU

800 DATA 21G4LIK3P2Q3V
810 DATA 3FGHPQR
820 DATA 22F3K2L4Q1P4U
830 DATA 41 ABC2DI4NMILV
840 DATA 40A:REM at(can't be typed!)
850 DATA 4UPKFIABC2DINSXQR
860 DATA 4AFK PUBC2D1H4ILM2NS 4XWV
870 DATA 42DCBIAFKP3UVW4X
$88 \emptyset$ DATA 4AFKPUBC2DINS4XWV
890 DATA 4DCBAFKPUVWXLM
900 DATA 4DCBAFKPULM
910 DATA 42DCBIAFKP3UVWXSNM
$92 \emptyset$ DATA 4AFK PULMDINSX
930 DATA 2AB5F6G5K6L5P6QUV
940 DATA 4CHMR4WV3U2PABD
$95 \emptyset$ DATA 4AFKPU4DIC4HIGL3 Q2R3W2X
960 DATA 4AFKPUVWX
970 DATA 5UPKF2A2G3LM4N1IIE JOTY
989 DATA 4UPKFA2G3L2M3RXSNID
990 DATA 4B1AFKP3UVW4XSNI2DC
1000 DATA 4UPKFABC2DI4NML
1010 DATA 4BIAFKP3UVW4X SN12DCX2Y
1020 DATA 4UPKFABC2DI4NML3 Q2R3W2X
1030 DATA 42DCB1AF3KLM2NS4X WV3U
1040 DATA 45B6C5G6H5L6M5 Q6R5V6WABCD
1050 DATA 4AFKP3UVW4XSNID
1060 DATA 4AFK3P2Q3V4WIR4SNID
1070 DATA 5AFKP3U4V1QRM2S3X 4YTOJE
1080 DATA 4A3F2G3L2M3R2SX D4IIHML4Q1PU
1090 DATA 53A2B3GH4IID4EMRW
1100 DATA 4ABCD4I1H4M1L4 QIPUVWX
1110 DATA 2BAFKPUV
1120 DATA 42A3F2G3L2M3R2S3X
1130 DATA 2ABGLQVU
1140 DATA 41F1B2C2IGH5L6M5 Q6R5V6W
1150 DATA 40A:REM -:USE FOR BLANK
1160 DATA $\emptyset:$ REM** INDICATES THE END OF DEFINITIONS
1170 DATA $32,176,178,177,175,157,156,0$: REM** GRAPHIC VALUES

Let there be light! And let it remain whilst we are grappling with our seat belts.

THIS circuit, for a car interior light delay switch, is designed for permanent addition to the car wiring system without having to break any wires in the existing harness. Other features include low quiescent current consumptionless than $100 \mu \mathrm{~A}$, solid state switching, and an abort facility if the door is reopened during the timing cycle.

The circuit is designed around the popular CMOS 555 timer package. Although the bipolar device may be used as a direct substitute, the quiescent current consumption will rise to about 4 mA . The device is suitable only for NEGATIVE ground vehicles with a +12 volt battery supply and with ground line door switches.

The design is economical in that costly electromechanical devices such as relays are eliminated through the use of semiconductor switching. Samples of the design have been fitted to British and foreign cars, and they have shown total reliability over a period of six months.

Typical cost of the components involved is about £3. exclusive of the printed circuit board or Veroboard, and the wiring connectors.

CIRCUIT DESCRIPTION

The CMOS 555 is wired as a monostable or "one-shot". The length of the on period is determined by R4 and C3. Capacitor C3 should be a low-leakage tantalum capacitor to
ensure good timing consistency. The timing period is determined by the following formula:

$$
\begin{aligned}
\text { T seconds } & =1.1 \times R \times C(R=\text { Ohms. } C=\text { Farads }) \\
& \text { or } 1.1 \times R \times C(R=\text { Mohms } . C=\mu F)
\end{aligned}
$$

In the circuit illustrated: $T=1.1 \times 1 \times 10$ seconds

$=11$ seconds

Desired variations in the timing cycle may be made using the formula above, bearing in mind the limited availability of high value low leakage tantalum capacitors at the specified voltage. Also, that the value of R4 should preferably lie between 3 k 3 and 10 M .

Diode D1 is a polarity protection diode in the positive supply line. Resistor R1 and capacitor C1 provide s̀moothing and filtering of the supply line.

OPERATION
Whilst the car door is shut, S1 is open and the circuit is in its quiescent state. If the door is opened, S1 closes and the interior lightcomes on, but the circuit remains inactive since pin 4 (Reset) is momentarily held low through D2 to ground, disabling the fimer. When the door is closed S1 opens, pin 4 goes high via the pull-up resistor R5-there are now two diode drops to ground, D2 and transistor TR3. At the same time a positive' pulse appears by way of R8 at the base of TR1. This pulse is blocked by D2 which is forward biased so pin 4 is not affected. Transistor TR1 is a switch and also an inverter so the pulse which now appears af the collector of TR1 is negative going. This negative pulse is a.c. coupled by C2 to pin 2 (Trigger) of the 555, and initiates the timing cycle. Pin 2 is returned to rail voltage by the resistor R3. Resistor R2 supplies the collector of TR1. Any further pulses arriving at pin 2 are ignored during the timing cycle unless the cycle is aborted and reset.

As soon as the timing cycle begins, the output from pin 3 goes high, turning the solid state switch, transistors TR2 and TR3 fully on and shunting the switch S1 so that the interior light remains on for the duration of the timing cycle.

Transistors TR2 and TR3 are a made up complementary Darlington pair in order to reduce the total V_{be} to one diode drop, that is, to about 0.7 volt. An n.p.n. Darlington, which is available as an on-chip device would have added offset voltages of about 1.4 volts causing a decrease in lamp brightness. If this is tolerable then an n.p.n. device such as the ZTX 600 may be used. R7 and TR2 and TR3 are omitted and the $Z T \times 600$ is used in place of TR2, R 7 being replaced with a wire link.

Fig. 1. Full circuit diagram

Transistors TR2 and TR3 are silicon devices, so the base of TR3 would provide an adequate collector current for TR2. However, for peace of mind R7 is included to ensure that TR2 operates correctly.

When the delay period is over, pin 3 goes low, snapping off TR2 and TR3 extinguishing the interior light. If the door is opened during the delay period, a negative pulse arising from the closure of S1 passes through the diode D2 to the reset pin 4 of the 555 pulling it below its operational voltage and aborting the timing cycle. Thus every time the door is opened and closed a complete delay cycle occurs regardless of the state of the circuit.

CONSTRUCTION

A printed circuit layout is shown in Fig. 2, and a component overlay is shown in Fig. 3. Alternatively the circuit may be built on a small piece of stripboard. If the bipolar 555 is to be used then a 10 capacitor (C4) should be connected from pin 5 to ground. It is omitted if the CMOS 555 is used.

All the resistors are soldered in place first, followed by diodes and capacitors-observe polarity! The use of a socket is recommended for the integrated circuit. Finally, solder the three connecting wires in place.

Insert the 555 correctly in its socket. Although CMOS devices can be damaged by static discharge, they are usually robust enough to withstand normal handling. However, the device should be removed if any soldering "afterwork" is to be done. Also the i.c. should neither be inserted nor removed from its socket whilst the circuit is connected to a power supply.

The circuit may now be added to the car wiring system. Scotchlok connectors are useful at this stage (available from motoring accessory dealers), or spade connectors can be used. It is a good idea to disconnect the car battery whilst wiring up. It is also worthwhile to add an in-line fuse in series with the positive line-the lowest value fuse available will do. Reconnect the battery and operate the car doors to check for correct action.
Two, possibly three 6 watt lamps may be operated with this circuit. If it is required to operate more lamps then a "beefier" transistor must be used in place of TR3, possibly

COMPONENTS . . .

Resistors
R1 1 k
R2,3,4,5 $\quad 1 \mathrm{M}$ (4 off)
R6,7,8 10k (3 off)
All resistors $\frac{1}{4}$ W (or $\frac{1}{3}$ Wi 5% carbon film
\section*{Capacitors}
C1 $\quad 100 \mu 25 \mathrm{~V}$ elect. axial
C2 $10 n$ polyester
C3 $\quad 10 \mu 25 \mathrm{~V}$. tant.
C4* 10 n polyester
- Not necessary if IC 1 is CMOS

Semiconductors

D1 1 N400
D2 OA202 or similar gen. purpose silicon
IC1 CMOS 555 (sometimes called low power 555)

TR1, 2
TR3
ZTX107/8/9 (Ferranti E-line or similar) ZTX750/1/2/3 Ferranti E-line only.
(Technomatic)

Miscellaneous

P.C.B. or stripboard

8 pin d.i.l. socket
Wire and connectors
In-line fuse holder and fuse at 1 or 2 A
with a heatsink, A BD140 or a PNP 3055 may be used, mounted on a small piece of aluminium, away from the circuit board. The circuit board inself may be mounted in a small box, or bolted to the car metalwork with spacers or brackets, or merely wrapped in stout plastic and wedged in the wiring loom.

Fig. 3. Component layout

Fig. 2. P.c.b. track layout (actual size)

SE CIRCUITS mumanum

WINDOW DISCRIMINATOR (TCA 965)

THERE are many instances in electronic circuitry where analogue voltages must be compared with each other. The conventional way to implement this is to use a comparator with a differential input stage. If one of the two inputs is higher in voltage than the other, the output is at a "high' level, and if the reverse is true, then the output becomes a 'low' level.
In many cases, however, a simple com parison of two voltages is insufficient. We may wish to know if a voltage lies within a certain range, and if not, whether it is above the top limit of that range, or below the bottom limit. The range of voltage in question is known as a 'window', and we look for voltages within the window, or outside it, as appropriate. The voltage range is referred to as the 'width' of the window, and is defined as the difference between the upper voltage limit and the lower voltage limit. This type of circuit arrangement can be implemented by a pair of comparators with their inputs fed by a common input signal and by voltage references, as appropriate Logic gates can be used to derive the inside window' and 'outside window' signals. Fortunately, Siemens now produce the TCA 965 , a 14 pin i.c. which provides a complete window discrimination circuit, including an internal voltage reference.

BASIC OPERATION

Fig. I shows the pinout and specification for the device, and Fig. 2 the block diagram. A pair of comparators are used to detect the upper and lower voltage limits of the window. These comparators have a small hysteresis built-in, to help suppress unwanted oscilla tions. The output of comparator ' A ' goes high when the signal fed to its non-inverting input exceeds the upper voltage limit as defined at pin 6. Similarly, the output of comparator ' B ' goes high when the signal fed to its inverting input falls below the lower voltage limit as defined at pin 7. A NOR gate is used to combine the two comparator outputs so that if either comparator turns on, the input signal is deemed to be outside the window. The complement of this, derived by an inverter, is that the signal must be inside the window. Either comparator can be inhibited by connecting its inhibit line, pin 4 or pin 12, to 0 volts.

All four logic outputs, pins 2, 3, 13 and 14, are provided as open collector negative logic, or 'active low' outputs, so any load should be connected between the relevant pin and the positive supply rail. Even if the i.c. is driving into high impedance loads, such as logic i.c.s,
pullup resistors should be fitted; typically 10k to 100 k for CMOS, and Ik for TTL. Because of the negative logic used, logic 0 means that the output is turned On, and logic 1 means that the output is turned Off.

OPERATING MODES

There are actually two window inputs to the comparators, one defining the centre of the window, and the other defining the width of 'Half the window. The voltage V_{h} at pin 9 is added to the voltage V_{c} at pin 8 and fed to

[66160
Fig. 1. Pin out with specification below

Characteristic	Notes	Minimum value	Typically	Maximum value	Units
Supply voltage	All spec's measured at $+10 \mathrm{~V}$	4.75	10	27	V
Quiescent current	Pins 2 and 13 at high level (logic 1)		5	7	mA
Temperature range		-25		85	${ }^{\circ} \mathrm{C}$
Input current	Pins 6, 7, 8		20	50	nA
Input current	Pin 9		-0.4	-3	$\mu \mathrm{A}$
Input current	Pins 4, 12 (inhibit)		-100		$\mu \mathrm{A}$
Output current	Pins 2, 3, 13, 14			50	mA
Output current	$\mathrm{V}_{\text {stab }}(\mathrm{pin} 10)$			10	mA
Input voltage range	Pins 6, 7, 8	1.5		$\left\|\begin{array}{c} + \text { ve supply } \\ -1 \end{array}\right\|$	V
Input voltage range	Pin 9	0.05		(tee supply	V
Input offset voltage	Pins 6 \& 8, or pins 7 \& 8	-20	± 10	+20	mV
$\mathrm{V}_{\text {ref }}$	Without load	2.8	3.0	3.2	V
$\mathrm{V}_{\text {stab }}$	Supply voltage $>7.9 \mathrm{~V}$	5.5	6.0	6.5	\checkmark
$V_{\text {ref }}$ line regulation			3		mV / N
$V_{\text {ref }}$ temp. coefficient			0.5		$m \mathrm{~m} /{ }^{\circ} \mathrm{C}$
O/P saturation voltage	Pins 2, 3, 13, 14; (current $=10 \mathrm{~mA}$)			200	mV
0/P reverse current	Pins $2,3,13,14$			10	$\mu \mathrm{A}$
Comparator hysteresis Inhibit threshold	Pull pins 4 \& 12 towards OV to inhibit	14	$\begin{aligned} & 22 \\ & 1.5 \end{aligned}$	30	$m v$

comparator B, but is subtracted from before being fed to comparator A ; the difference between the voltages fed to the comparators is therefore the full window width. This allows the i.c. to be used in two different modes, as shown in Figs. 3 \& 4. The limits mode shown in Fig. 3 is the simpler of the two. Here, the resistive divider R1, R2, and R3 sets the upper and lower window limits at pins 6 and 7. Although R4 and R5 are shown setting a half window width voltage at pin 9 , this would only rarely be used in the limits mode, and would normally be set near to 0 volts. Hence, the voltage at pin 8 is directly com-
pared with the voltage at pins 6 and 7. The results of this comparison are presented at pins $2,3,13$ and 14 , as shown.

In the window mode of Fig. 4 we provide the limit conditions in a rather different way. The voltage at pin 8, set by RI and R2, defines the centre of the voltage window, and the voltage at pin 9, set by R3 and R4, defines the half window width. This mode is especially useful when the window remains constant in width, but needs to be 'tuned' in its position, i.e. its centre voltage. Pins 6 and 7 are commoned and fed with the input signal. Because this input signal is now being fed into the op-

Fig. 3. Basic circuit, limits mode

Fig. 4. Basic circuit, window mode

Fig. 2. Block diagram of the TCA 965

Fig. 5. Circuit diagram of the Plant Watering Meter (N.B. There is no D5 in the circuit)
posite comparator inputs to those used in Fig. 3 , the output polarities at pin 2 and pin 14 are reversed; pin 2 is now the 'above' output, and pin 14 is the "below' output.

VOLTAGE REFERENCE

Although resistive dividers between the supply rails can be used to set the various limit or window voltages, this is not usually a very accurate arrangement due to the possibility of supply voltage variations, noise, etc. The TCA 965 has an internal reference voltage generator to help overcome these problems. Fig. 2 shows the arrangement of this generator. A 3 volt reference voltage is amplified by a non-inverting amplifier. R1 and R2 set the gain at $\times 2$, so the voltage $V_{\text {stab }}$ at pin 10 is nominally 6 volts. This voltage can
be changed, however, by connecting external resistors between pin 5 and 0 volts, or between pin 5 and pin 10. To stabilise the output voltage, a $10 \mu \mathrm{~F}$ electrolytic capacitor must be provided between pin 10 and 0 volts, as close to the i.c. as possible. Up to 10 mA is available from this $V_{\text {stab }}$ output.

APPLICATIONS

Because of its very flexible internal configuration, this i.c. lends itself well to a whole myriad of applications. It can be run from supplies as low as 4.75 volts, enabling its use within 5 volt logic systems, yet can also handle supplies of up to 27 volts. The main outputs (pins 2, 3, 13 and 14) can each sink up to 50 mA current from a load, enabling the direct driving of relays, lamps, l.e.d.s, etc. Be
cautious, however, with the input voltage range which the i.c. will work normally with; on pins 6,7 and 8 , this is defined as 1.5 V to the positive supply less 1 volt. The upper limit should present no problems, but the 1.5 volt lower one might limit its usefulness in some situations.

The TCA 965 will be an obvious choice in many system control applications. The window can be configured as a 'dead space' between a control turning on and turning off again, and as such the i.c. is ideal for use with temperature control systems, providing a flexible and easily defined hysteresis. The other main area of use is within measurement systems, setting limits of acceptance on incoming d.c. values. For example, coupled to a simple analogue measurement system it could

Fig. 6. Veroboard layout
make a limits tester for checking batches of components; components within a certain tolerance of a specified value would be indicated as 'OK', but outside that tolerance would be indicated as 'reject'.

PLANT WATERING METER

To illustrate the basic principles of use of the i.c., Fig. 5 shows a simple plant watering meter, loosely based on the front end of the moisture meter described in Semiconductor Circuits last September. IC2a forms a square wave oscillator with a frequency of approximately 2.8 kHz . This is a.c. coupled via C2 to one probe, with the other probe in turn feeding into IC2b, which is configured as an inverting amplifier. D6, C5 and R8 provide rectification and smoothing of the received waveform. The TCA 965 is set up in the limits mode as shown in Fig. 3, but using $V_{\text {stab }}(+6 \mathrm{~V})$ as the reference supply for resistive dividers. R10,

R11 and R13 provide voltages of approximately +4.5 V on pin 7 , and +5.5 V on pin 6 . Pin 9 is biased to only 60 mV by R12 and R14, just enough to be inside the specifications shown in Fig. 1. L.e.d.s D2, D3 and D4 show the state of the soil when the probes are pushed in. If required, up to 40 mA extra sink current is available from each of the l.e.d. driving outputs to control other transducers, etc. In this case the 'dry' output has been made available to drive an external relay, with D8 protecting against back e.m.f. spikes. This relay could be used to drive a small pump motor, for example, to automatically top-up the plant pot with water. As soon as the soil became wet enough, the pump would turn off again.

Fig. 6 shows the Veroboard layout for this circuit. The probes can be made from stiff copper wire glued inside old ball-point pen cases. The components specified have been deliberately chosen to be very small devices,
since the aim was to get the size down as far as possible, so $\frac{1}{3}$ watt resistors, or $\frac{1}{4}$ watt, should be used throughout to be consistent. with this. In use, adjust VRI to give the correct reading for your preferred moisture level, or change R10, R1I, and R13 to give an even greater range of possible settings. IC2 is a dual op-amp of the 741 type, so almost any similar device would suffice. Finally, note that diode DI protects against reverse connection if a battery is being used to supply the current; be extremely careful if a mains-derived supply is to be used, since the proximity of water or moisture could be very dangerous indeed.

Although this is an extremely simple applications circuit, it does demonstrate the great versatility of the TCA 965, which should find considerable use in the field of analogue control and measurement.

The TCA 965 is available from Electrovalue Ltd, 28 St Jude's Road, Englefield Green, Egham, Surrey.

PE SPECIAL CASSETTES OFFER

CHROME C60 \& C90

CRO2 C60 CASSETTES
90p each (minimum of 5); 80p each (minimum of 25)
CR02 C90 CASSETTES
115 p each (minimum of 5):

FERRIC C90 AUDIO

 C90LH CASSETTES56p each (minimum of 5); 53p each (minimum of 25).
PRICES INCLUDE VAT AND POSTAGE.

Send coupon to: Videotone Ltd., Unit 4, The Airport Industrial Estate, Biggin Hill, Kent.

EVERYDAY ELECTRONICS and computer PROJECTS

\star STEREO AMPLIFIER \star

A budget project, ideal for the beginner. Output: 2.5 watts per channel.

* DIGITAL MULTIMETER ADDON FOR COMPUTERS *

Connects to the user and analogue ports to produce an accurate DMM.

\star REVERSING BLEEPER *

Loud bleeping sound warns pedestrians when driver moves into "reverse".

* NiCad BATTERY CHARGER *

For use with a car battery charger. Caters for PP3, HD7, MP1 1 and HP2.

* BLACK BOX—DIN LEAD TESTER *

The first in an occasional series of short projects, all utilising the same case.

MARCH ISSUE ON SALE
FRIDAY, 17 FEBRUARY

Ingenuity Unimited

Each idea submitted must be accompanied by a declaration to the effect that it has been tried and tested, is the original work of the undersigned, and that It has not been offered or accepted for publlcation elsewhere. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.
Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separatig sheets, not in the text.

THIS circuit allows four momentary action switches to be used as a push button bank, whereby the last button operated is latched electronically, and if another button is operated, its output supersedes. This of course may be achieved mechanically as indeed it is; however, mechanical switch banks do not guard against more than one switch being operated at the same time. This may prove disastrous in say motor control systems, as if Forward and Reverse were operated simultaneously something would have to give. This circuit is automatically reset if more than one button is operated at the same time. The circuit was originally designed for a logic controlled reel to reel tape deck for the function keyboard, so that say 'play' and 'rewind' pressed at the same time would not result in ten yards of tape on the floor and a pair of smoking motors inside the deck.
The switches are debounced using S-R latches formed around ICI, 2 and 3. The outputs which are normally high go to a falling edge detector formed around a Schmitt trigger in IC4. The outputs of these are commoned via diodes so as to give a short pulse every time a switch is operated. This strobes the latches.

The outputs of the debouncing latches which are normally low, go to IC5, the heart of the circuit. IC5, a 4514, latches the binary input when strobed, and converts it into a one of sixteen output. As the inputs are connected each to a binary input pin, if one switch is pressed, the appropriate ' 1 ', ' 2 ', '4' or ' 8 ' output latches high. If, however, more than one switch is pressed simultaneously, a binary input other than $1,2,4$ or 8 is set up at the input, so another output pin goes high. An optional 'reset' output may be built by commoning all the unused outputs via diodes. Also, an optional 'reset' switch may be added as shown by making it form a non single bit number to appear at the input.
Many variations of this circuit may be designed, including the use of more than one 4514 to give more switch capability. It may also be useful to note that if IC5 is substituted for a 4515 , the outputs will all be inverted, as this i.c. uses negative output logic.
G. Durant,

Selby,
N. Yorks.

FOOLPROOF
SWITCH BANK

HEADS GTAIILS GENERATOR

MICHAEL TOOLEY ba DAVID WHITFIELD ma msc ceng miee

SEVERAL popular games rely on the toss of a coin to introduce an element of chance when a simple decision is to be made. Furthermore, the teaching of statistics also invariably involves some reference to the probability of obtaining a 'head' or 'tail' when tossing a coin. Students are usually asked to investigate this by repeatedly throwing a coin and noting the outcome on each occasion. The results of a large number of observations are then collated and the probability of a 'head' or 'tail' is verified as being 0.5 , or $1: 2$. Such an outcome is, of course, independent of a previous result, i.e. if tossing a coin five times produces a 'head' on each occasion, there is still an even chance of producing a 'head' on the sixth throw. Since the outcome of tossing a conventional coin is quite predictable, the teacher of statistics may require a teaching aid in which there are similarly only two outcomes (we will dismiss the possibility that the coin might land on its edge! ! but in which the odds can be loaded in favour of one or other of the states.

This month's Digital Project, therefore, is a device which finds applications in both the classroom and home. The Heads and Tails Generator produces an output consisting of a letter ' h ' or ' t ' displayed on a seven segment l.e.d. indicator. A coin toss is initiated from a momentary push-button; as soon as the button is depressed, the display is blanked but returns a few seconds later to display the outcome. The odds may be weighted in favour of either a 'head' or 'tail', or may be set precisely to an even chance.

CIRCUIT DESCRIPTION

The complete circuit of the Heads and Tails Generator is shown in Fig. 1. IC1a acts as a clock oscillator which produces a square wave of near 50% duty çcle. This stage is followed by an inverting buffer, IC 1b, and a further inverter. IC1c. Complementary outputs are derived from these latter two stages and fed to D-type bistables, C2a and IC2b. The clock fiputs to the bistables are commoned and fed from the de-bounced switch arrangement fermed by IC1d
and associated components. This circuit produces a logic 1 on the clock line whenever the switch is depressed. The outputs of the bistable stages, IC2a and IC2b, are fed to the two-input NAND gates, IC3b and IC3a, respectivley. These are used to gate the outputs of the bistables to the display such that the outputs of IC3a and IC3b will only go low when their common input is taken high. Readers should note that it is only necessary to make changes to the state of two of the display segments on the transition from ' h ' to ' t ', and vice versa. The remaining unaffected segments are simply wired permanently 'on'. It is, however, necessary to ensure that the whole display is blanked during the period in which a convertional coin is in the air. This is achieved by means of the monostable, IC4, and series pass transistor TR1. This latter device interrupts the positive supply to the common anodes of the display during the monostable timing period.

CONSTRUCTION

The Heads and Tails Generator is built on a single sided p.c.b. measuring approximately $120 \times 70 \mathrm{~mm}$, the copper foil layout of which is shown in Fig. 2. The corresponding componen: layout on the top surface of the p.c.b. is shown in Fig. 3. Interconnection from the p.c.b. to the 5 Vd.c. supply is made via a $0.1^{\prime \prime}$ matrix p.c.b. connector, the wiring scheme for which is also shown in Fig. 1.

Components should be assembled on the p.c.b. in the following sequence: d.i.l. sockets, p.c.b. connector, links, resistors, capacitors, switch, transistor, and l.e.d display. Once assembly is complete, the underside of the p.c.b. should be carefully checked for solder splashes, bridges between adjacent tracks, and dry joints. Finally, the i.c.s may be inserted in their respective holders, taking care to ensure the correct ofientation of each device. Constructional details of the enclasure have not been given since this will undoubtedly be a mat:er cf preference for the individual constructor. A smal ABS sase will normally be found to be quite adequate in this respect. Constructional details of a suitable

Fig. 1. Circuit diagram of the Heads and Tails Generator

Fig. 2. P.c.b. design

Fig. 3. Component layout

COMPONENTS

Resistors	
R1	1 k
R2	470
R3	4 k 7
R4	100
R5	10k
R6-R10	270 (5 off)
R11-R13	1k (3 off)
All resistor	rs are 0.25W 5\% carbon
Capacitors	
C1	$22 \mu 25 \mathrm{~V}$ tantalum
C2	$10 \mu 16 \mathrm{~V}$ p.c. electrolytic
C3	$220 \mu 16 \mathrm{~V}$ p.c. electrolytic
C4-C7	4 n 7 ceramic (4 off)
C8	$100 \mu 16 \mathrm{~V}$ p.c. electrolytic

Semiconductors
TR1 BC548
IC1 7414

IC2 7474
IC3 7400
IC4 74121
X1 Seven segment common anode l.e.d. indicator
Miscellaneous
p.c.b.

Push-to-make p.c.b. mounting switch
14 -pin di.i. sockets (4 off)
3 -way $0.1^{\prime \prime}$ p.c.b. plug and socket
power supply module were given in the January issue of PE; alternatively, for porteble applications, power may be derived from three fresh 1.5 V dry cells connected in series. These should be connected to the Heads and Tails Generator via a suitable miniature toggle or slide switch.

CHANGING THE ODDS

The probability of obtaining a 'head' or 'tail' depends primarily upon the mark to space ratio of the square wave produced by the clock oscillator. The odds can thus easily be changed by means of appropriate modifications to the clock

Fig. 4. Modification for changing the odds

Fig. 5. Modification for a precise evens chance
oscillator. With the values of R1 and R2 as specified, the mark to space ratio is very nearly 50%. If, however, R1 is made variable, the mark to space ratio can be varied and the odds changed in favour of either 'heads' or 'tails', as desired. The appropriate circuit modification is depicted in Fig. 4.

If, alternatively, a precise evens chance is required, it is only necessary to ensure that the clock waveform is a perfectly symmetrical square wave. This can be accomplished by inserting an extra J-K bistable stage between IC1a and IC1b, as shown in Fig. 5. The bistable produces a symmetrical square wave output regardless of the mark to space ratio of its clock input. It should be noted that, since the output of the bistable is at half the frequency of its clock input, it is necessary to alter the value of C1 if the clock frequency is to remain approximately the same.

Copies of British Patents can be obtained from: The Patent Office, Sales, St. Mary Cray, Orpington, Kent (£1.75); and copies of Foreign Patents can be obtained from The Science Reference Library, 25 Southampton Buildings, London, WC2A 1AJ. (Prices on application.)

HI-FI VIDEO SYSTEMS

This year both the VHS and Beta home video manufacturers will be launching hi-fi sound systems. In a conventional helical scan domestic video recorder, the luminance and chrominance vision signals are recorded by rotating video heads and the sound is recorded by a stationary head. Because tape speed is low fone inch per second or less) the sound quality is poor, especially in stereo where the already narrow track must be split into two. In June

1982 Sony announced an alternative approach; using the video heads to record stereo sound as f.m. buried in the video waveform.

The Sony Beta Hi-Fi system has been on sale in NTSC countries, Japan and the USA. since last summer. But Sony has been cagey over exactly how the system works. This is because the Beta Hi-Fi system to be launched in Europe, for PAL and SECAM, will not be the same as Beta Hi-Fi in the USA and Japan. In fact Beta Hi-Fi in Europe will be almost exactly the same as
the VHS Hi-Fi system. Two extra heads on the rotating drum lay down the f.m. sound carriers a fraction of a second in advance of the video heads. The f.m. sound carrier is of relatively low frequency. consequently it records deep into the magnetic coating of the tape.

The video signal is on a higher frequency f.m. carrier which wipes out and replaces the top layer of the sound carrier. The result is a layered recording, video on top and audio below. The technique is called depth multiplex recording.

depth multiplex recording. But why is Sony filing patents in Europe for a system which won't be used in Europe? Probably because when the patents were filed here (December 1982) the company still hoped to make the NTSC system work for PAL and SECAM.

Incidentally, anyone checking application 2113894 in a library, should also look at the patent on the shelf next to it. Number 2113893 was filed by JVC and describes the technology used to reduce the size of the head drum in a portable video recorder and camera combined 'camcorder' while still retaining compatibility with machines of standard drum size. In fact this patent reveals the startling news that JVC is working on a VHS camcorder with video drum hatf the normal size. JVC's prototype camcorder, VHS Video Movie, sneak-previewed at the Berlin Radio Show, uses a head drum two thirds normal size. So a camcorder with half size drum and commensurately smaller mechanics, could be even smaller than VHS Video Movie.

Recent British patent application 2113894 from Sony explains how the iwo head Beta Hi-Fi system works and gives a clue to the problems which Sony has found insuperable for Europe.

Fig. 1 shows the schematic circuit. Left channel audio enters at 11 , and right channel audio at 12 . The right channel frequency modulates a carrier of frequency F1 $(1.325 \mathrm{MHz})$ at 16 , and simultaneously modulates a second carrier at frequency F2 $(1.475 \mathrm{MHz})$ at 17 . The right hand channel modulates carrier F3 $(1.625 \mathrm{MHz})$ at 18 and carrier F4 $(1.775 \mathrm{MHz})$ at 19 . One left channel signal (LF1) and one right channel signal (RF3) are combined at 31 , mixed with the luminance (LM) and chrominance (C) video signals at 33 and sent to helical scan recording head 46 . The other left signal LF2, and the other right signal, RF4, are combined at 32 , mixed with chrominance and luminance at 34 and sent to recording head 47 . The frequency spectrum is shown in Fig. 2.
Fig. 3 shows the signals sent to video head 46, and Fig. 4 shows the signals sent to video head 47. So the helical tracks across the tape alternately have the spectrum of Fig. 3, then the spectrum of Fig. 4. then the spectrum of Fig. 3 again, and so on. As a result, adjacent tracks do not use the same frequencies. This reduces the problem of crosstalk between the sound carriers of adjacent tracks. Video crosstalk is handled in the usual way, by making two video heads with gaps of different azimuth and altering the video signal phase so that unwanted signals are ignored. The level of the carriers is automatically adjusted before recording, to compensate for the non-linear characteristic of magnetic tape at high frequencies.

The system works, for NTSC recorders in Japan and the USA, because NTSC video needs less bandwidth than European video. So there is room in the spectrum for the four carriers needed. But in Europe there is not enough room in the spectrum. Hence the adoption by both Beta and VHS of systems which rely on extra heads and

ADC/DAC BOARD ...

FOR AROUND £8

|AST month we looked at a stepper motor controller. This - month we examine the applications and control techniques of stepper motors, and include suitable software. This is followed by a new interface for VIC 20 which allows DAC and ADC.

Apart from robotic applications, where all four motors could be used to control separate functions, yet be used simultaneously, the most likely use will be for control of linear movement or plotting on an $X-Y$ axis.

A single motor has many useful applications including control of length and depth as well as rack and pinion linear positioning. Two motors enable $X-Y$ plotting as well as applications such as for azimuth and elevation control.

Simple BASIC programming is best carried out by the use of subroutines. To start with, a simple forward and reverse step for each motor, with timing accessible from the keyboard. Next a subroutine to be able to step one pair of motors (two if required) diagonally either on a horizontal or a vertical plane. To give three dimensional movement, such as to move from a corner of a cube towards the centre, three motors need to be stepped simultaneously. These three motors would normally work in association with each other, in pairs, or on their own. Then there is the fourth motor, which might work simultaneously with, yet independent of, the others. The four motors can be controlled independently in 8 subroutines and $X-Y$ movement of two motors in another four. This is sufficient to get moving.

First we'll try a short program to make one motor step CCW, then CW.

SDB 520 CONTROLLER

Let P0 control Motor 1 CCW and P1 control it CW. P2 and P3 would control Motor 2 similarly. Finally P4 and P5 to Motor 3 and P6 and P7 to Motor 4

SAA 1027 CONTROLLER

Let P0 pulse Motor 1 and P1 logic " 0 " step it CCW, P1 logic " 1 " to step it CW. Because of the opto-isolator, the logic for direction is the reverse of that expected, as stated in the manufacturer's specifications. The change of logic does not affect the pulse. Pair off P2/P3 to Motor 2, etc.

Write subroutines for stepping CCW and CW.

SDB 520
 200 POKE 37136,1:REM Set I/O for pulse to IC1 pin 1 (CCW)
 201 POKE 37136,0:REM Negative going puise
 202 FOR I=1 TO 200:NEXT:RETURN:REM Set speed
 300 POKE 37136,2:REM Set I/O for pulse to IC1 pin 2 (CW)
 301 POKE 37136,0:REM Negative going pulse
 302 FOR I=1 TO 200:NEXT:RETURN

SAA 1027

200 POKE 37136,1:REM Set I/O for pulse to IC1 pin 15 (Pulse)
201 POKE 37136,0:REM Step CCW (See note on reversed logic)
202 FOR I=1 TO 200:NEXT:RETURN
300 POKE 37136,3:REM Set I/O for pulse to IC1 pins 15 and 3
301 PJKE 37136,0:REM Step CW
302 FOR I=1 TO 200:NEXT:RETURN

EITHER CONTROLLER

10 POKE 37138,255:REM Set DDR for all ports as outputs
20 GOSUB200:GOSUB200:GOSUB200:GOSUB200:REM Step CCW 4 steps
25 FOR I=1 TO 800:NEXT:REM Delay before changing direction
30 GOSUB300:GOSUB300:GOSUB300:GOSUB300:REM Step CW 4 steps
35 FOR I=1 TO 800:NEXT
40 GOTO20:REM Loop until stopped from keyboard
Having already written subroutines for stepping Motor 1 CCW and CW, we now do the same for Motor 2.

SDB 520
400 POKE 37136,4:REM Set I/O for pulse to IC2 pin I (CCW)
401 POKE 37136,0:REM Negative going pulse
402 FOR I=1 TO 200:NEXT:RETURN:REM Set speed
500 POKE 37136,8:REM Set I/O for pulse to IC2 pin 2 (CW)
501 POKE 37136,0:REM Negative going pulse
502 FOR I=1 TO 200:NEXT:RETURN
SAA 1027
400 POKE 37136,4:REM Set I/O for pulse to IC2 pin 15 (Pulse)
401 POKE 37136,0:REM Step CCW (See note on reversed logic)
402 FOR I=1 TO 200:NEXT:RETURN
500 POKE 37136,12:REM Set I/O for pulse to IC2 pins 15 and 3
501 POKE 37136,0:REM Step CW
502 FOR I=1 TO 200:NEXT:RETURN
The next stage is to program motors 1 and 2 to provide an $X-Y$ plot movement.

SDB 520
600 POKE 37136,5:REM Motors 1 \& 2 CCW Binary 00000101
601 POKE 37136,0
602 FOR I=1 TO 200:NEXT:RETURN
605 POKE 37136,10:REM Motors 1 \& 2 CW Binary 00001010
606 POKE 37136,0
607 FOR I=I TO 200:NEXT:RETURN
610 POKE 37136,9:REM M1 CCW M2 CW Binary 00001001
611 POKE 37136,0
612 FOR I=1 TO 200:NEXT:RETURN
615 POKE 37136,6:REM M1 CW M2 CCW Binary 00000110
616 POKE 37136,0
617 FOR I=1 TO 200:NEXT:RETURN
SAA 1027
600 POKE 37136,5:REM Motors 1 \& 2 CCW Binary 00000101
601 POKE 37136,0
602 FORI=1 TO 200:NEXT:RETURN
605 POKE 37136,15:REM Motors 1 \& 2 CW Binary 00001111
606 POKE 37136,0
607 FOR I=1 TO 200:NEXT:RETURN
610 POKE 37136,13:REM M1 CCW M2 CW Binary 00001101
611 POKE 37136,0
612 FOR I=1 TO 200:NEXT:RETURN
615 POKE 37136,7:REM M1 CW M2 CCW Binary 00000111
616 POKE 37136,0
617 FOR I=1 TO 200:NEXT:RETURN
We'll try some $X-Y$ movements. Motor 1 moves plotter vertical. Motor 2 moves plotter horizontal.

EITHER CONTROLLER

10 POKE 37138,255:REM Set DDR for output at all ports
20 GOSUB300:GOSUB300:GOSUB300:GOSUB300 Start
30 GOSUB500:GOSUB500:GOSUB500:GOSUB500
40 GOSUB610:GOSUB610:GOSUB610:GOSUB610
50 GOSUB600:GOSUB600:GOSUB600:GOSUB600
60 GOSUB615:GOSUB615:GOSUB615:GOSUB615
70 GOSUB605:GOSUB605:GOSUB605:GOSUB605
80 END

For users of 280 based computers the method of programming is similar to that for the l.e.d.s simulator. Stepping movement values are the same as for those used with the VIC 20, but are placed in the A register in Hex form. In summary, these are as follows:

SDB 520

Motor 1 CCW 01H CW 02H
Motor 2 CCW 04H CW 08H
Motors 1 \& 2 CCW 05H CW OAH
Motor 1 CCW Motor 2 CW 09H
Motor 1 CW Motor 2 CCW 06H
SAA 1027
Motor 1 CCW 01H CW 03H
Motor 2 CCW 04H CW OCH
Motors 1 \& 2 CCW 05H CW OFH
Motor 1 CCW Motor 2 CW ODH
Motor 1 CW Motor 2 CCW 07H
Again, the delay is put at the beginning of the program to enable easy introduction of stepping sequences and is placed at 1000 H to allow relocation. No system monitor routines are included, so the program should work on any 280 computer without further modification.

An X-Y program similar to that for the VIC 20 could take a similar form.

1000	0010	ORG	£1000;X-Y Plot Routine
10000640	0020 DELAY	LD.	B£40;Set up delay count
100208	0030 DELY 1	EX	AF.AF'
1003 AF	0040	XOR	A;Set A to zero to start
1004 F5	0050 DELY2	PUSH	AF:Loop 256 times
1005 F1	0060	POP	AF:Recall contents of A
1006 F5	0070	PUSH	AF:Repeat last 2 steps
1007 F1	0080:	POP	AF
1008 3D	0090	DEC	A:Decrement A register
1009 20F9	0100	JR	NZ,DELY2;Repeat until A is zero
100800	0110	NOP	
100C 10F4	0120	DJNZ	DELY1:Repeat until count is zero
100E C9	0130	RET;	Return to program
100F 00	0140	NOP	
SDB 520			
10103 E0 1	$0150 \mathrm{M1CCW}$	LD	A,EO1;Motor 1 CCW
1012 D304	0160	OUT	(EO4).A:Output through PIO
1014 3E00	0170	LD	A, £OO:Clear A to complete
1016 D304	0180	OUT	(E04), A;pulse shape
1018 C9	0190	RET	
101900	0200	NOP	
101A 3 E02	0210 M 1 CW	LD	A,£02;Motor 1 CW
101C D304	0220	OUT	(¢04), A
101E 3E00	0230	LD	A,EOO
1020 D304	0240	OUT	(E04), A
1022 C9	0250	RET	
102300	0260	NOP	
1024 3E04	0270 M2CCW	LD	A,£O4;Motor 2 CCW
1026 D304	0280	OUT	(EO4),A;Output through PIO
1028 3E00	0290	LD	A, ©OO;Clear A to complete
102A D304	0300	OUT	($£ 04$), A;pulse shape
102C C9	0310	RET	
102D 00	0320	NOP	
102E 3E08	0330 M 2 CW	LD	A,f08:Motor 2 CW
1030 D304	0340	OUT	(¢04), A
1032 3E00	0350	LD	A, ¢OO
1034 D304	0360	OUT	(£04), A
1036 C9	0370	RET	
103700	0380	NOP	-

$10383 \mathrm{EO5}$	0390 1/2CCW	LD	A.f05:Motors 1/2 CCW
103A D304	0400	OUT	(£04),A:Output through PIO
103C 3E00	0410	LD	A, £OO:Clear A to complete
103 E D304	0420	OUT	(£04), A;pulse shape
1040 C9	0430	RET	
104100	0440	NOP	
1042 3EOA	0450 1/2CW	LD	A,COA;Motors 1/2 CW
1044 D304	0460	OUT	(£04); A
10463 E00	0470	LD	A,£00
1048 D304	0480	OUT	(f04).A
104A C9	0490	RET	
104B 00	0500	NOP	
104C 3E09	0510 CCWCW	LD	A,f09;Motor 1 CCW Motor 2 CW
104E D304	0520	OUT	(£O4), A:Output through PIO
10503 E00	0530	LD	A, f00;Clear A to complete
1052 D304	0540	OUT	(£04),A;pulse shape
1054 C9	0550	RET	
105500	0560	NOP	
1056 3E06	0570 CWCCW	LD	A,£06;Motor 1 CW Motor 2 CCW
1058 D304	0580	OUT	(£04), A
105A 3E00	0590	LD	A, £OO
105C D304	0600	OUT	(£04), A
105E C9	0610	RET	
105F 00	0620	NOP	
SAA 1027			
10103 E01	$0150 \mathrm{M1CCW}$	LD	A,£01;Motor 1 CCW
1012 D304	0160	OUT	(£O4),A:Output through PIO
1014 3EOO	0170	LD	A, £00;Clear A to complete
1016 D304	0180	OUT	(£O4), A; pulse shape
1018 C9	0190	RET	
101900	0200	NOP	
101A 3E03	0210 M1CW	LD	A,f03:Motor 1 CW
101C D304	0220	OUT	(£04), A
101 E 3 EOO	0230	LD	A,£OO
1020 D304	0240	OUT	(£04), A
1022 C9	0250	RET	
102300	0260	NOP	
1024 3E04	0270 M 2 CCW	LD	A,f04;Motor 2 CCW
1026 D304	0280	OUT	(£O4),A:Output through PIO
1028 3E00	0290	LD	A, £OO;Clear A to complete
102A D304	0300	OUT	(£O4), A; pulse shape
102C C9	0310	RET	
102000	0320	NOP	
102E 3E0C	0330 M 2 CW	LD	A,f0C; Motor 2 CW
1030 D304	0340	OUT	(£04), A
1032 3E00	0350	LD	A, ¢00
1034 D304	0360	OUT	$(£ 04), \mathrm{A} \quad \longrightarrow$
1036 C9	0370	RET	
103700	0380	NOP	
1038 3E05	0390 1/2CCW	LD	A,f05:Motors 1/2 CCW
103A D304	0400	OUT	(£O4),A;Output through PIO
103C 3E00	0410	LD	A, fOO;Clear A to complete
103E D304	0420	OUT	(£04), A;pulse shape
1040 C9	0430	RET	
104100	0440	NOP	
1042 3EOF	0450 1/2CW	LD	A,EOF;Motors 1/2 CW
1044 D304	0460	OUT	(£04), A
1046 3EOO	0470	LD	A,£00
1048 D304	0480	OUT	(£04).A
104A C9	0490	RET	
104B 00	0500	NOP	
104C 3EOD	0510 CCWCW	LD	A,£OD;Motor 1 CCW Motor 2 CW

104E D304	0520	OUT	(£04),A:Output through PIO
1050 3E00	0530	LD	A, £00;Clear A to complete
1052 D304	0540	OUT	(£04), A;pulse shape
1054 C9	0550	RET	
105500	0560	NOP	
1056 3E07	0570 CWCCW	LD	A,£07;Motor 1 CW Motor 2 CCW
1058 D304	0580	OUT	(¢04), A
105A 3E00	0590	LD	A, ¢00
105C D304	0600	OUT	(£04).A
105E C9	0610	RET	
105F 00	0620	NOP	

EITHER CONTROLLER

1100 3EOF	0630 START'	LD	A,OF:Set up Port A
1102 D306	0640	OUT	(06), A; all lines as outputs
1104 CDIA 10	0650	CALL	MiCW
1107 CD0010	0660	CALL	DELAY
110A CD2E10	0670	CALL	M2CW
1100 CD0010	0680	CALL	DELAY
1110 CD4C10	0690	CALL	CCWCW
1113 CD0010	0700	CALL	DELAY
1116 CD3810	0710	CALL	1/2CCW
1119 CD0010	0720	CALL	DELAY
111C CD5610	0730	CALL	CWCCW
111FCDO010	0740	CALL	delay
1122 CD4210	0750	CALL	1/2CW
112500	0760	NOP	

The start can be moved back to Memory Location 1060 if space is at a premium. The SAA 1027 is being advertised currently at around $£ 5 \cdot 50$, but it should be possible to better this price with careful shopping.

ADC/DAC CONVERTERS

In any electronic system, two basic kinds of signals are generated or measured. These are analogue or digital signals. Analogue signals exist as a continuous range of values, whereas digital signals are only apparent when a predetermined threshold level is reached. Typical examples of analogue signals are the varying speed of a motor, the varying intensity of a light source and the changing temperature of an oven. Each of these, being an analogue variable, are able to assume an infinite number of intermediate values between zero and maximum. On the other hand, a binary signal is a digital signal, which assumes one of two states. Either "on", logic 1, or "off", logic 0.

In this part of the series we explain briefly the principles of digital to analogue conversion (DAC) and analogue to digital conversion (ADC) and describe the construction of a low priced board which performs both functions, whilst using the minimum of components. The heart of the system is the Ferranti ZN425E 8 bit D-to-A/A-to-D Converter i.c.

In DAC and ADC applications, two important factors arise, resolution and speed, and these generally relate to the cost of the system. Converters are normally designed as 4 bit, with 16 stages of resolution; 8 bit, with 256 stages of resolution and 16 bit, with 65536 stages of resolution. With 16 bit systems, problems regarding stability are encountered, which leads to complexity of circuit design and a corresponding increase in cost. There are many low priced separate 8 bit DACs and ADCs on the market, including some in the Ferranti range. However, the ZN425E is an easy i.c. to use. It makes an ideal compromise with regard to resolution and though a little slow for some practical purposes, serves to illustrate the functions of D / A and A / D conversion with little outlay.

Fig. 6.2. DAC using binary weighted resistors and a current summing amplifier

THE ZN425E 8BIT D TO A/A TO D CONVERTER

The ZN425E is an 8 -bit dual mode analogue/digital, digital to analogue converter. It contains an 8 bit D-to-A converter, using an advance design of R-2R ladder network and an array of precision bipolar switches, which results in full 8 bit accuracy. The inclusion of an 8 bit binary counter on the chip and the addition of an external camparator enables analogue to digital conversion. A logic input select switch is incorporated, which determines whether the precision switches accept the outputs from the binary counter or external inputs, depending upon whether the control signal is respectively high or low. Use of the on-chip 2.5 V precision voltage reference is pin optional to retain flexibility. An external fixed or varying reference may therefore be substituted. The ZN425E gives an analogue voltage output directly from pin 14, therefore the usual current to voltage converting amplifier is not required. A buffer amplifier is necessary, however, in order to remove the offset voltage and to calibrate the converter.

The problem of converting a binary number into an analogue voltage is solved by the following simple solution: a voltage is generated for each bit position of the binary number, the value of this voltage being proportional to the binary weighting of the bit. For example, bit 0 will generate a voltage $\mathrm{V}(2 \times 0)$; bit 1 will generate a voltage $2 \mathrm{~V}(2 \times 1)$; bit 2 , a voltage $4 \mathrm{~V}(2 \times 2)$ and bit ' n ' a voltage $2 n \times V$. The resulting voltages are added and the result is proportional to the original binary number. This is simply illustrated in Fig. 6.2. The D/A consists of 4 switches, 4 summing resistors in the proportion 1,2,4,8, an operational amplifier and a proportional feedback resistor. Resulting in gains of: $-1 / 8,-1 / 4$, $-1 / 2$, and -1 . With the switches in the open position, there is no input to the operational amplifier, therefore the output will be OV. The operational amplifier is in inverting and adding mode. Closing bit ' O ' switch results in the formula $-V \frac{R f}{8 \mathrm{~A}}$ being applied $=\frac{1}{8} \mathrm{~V}$. By closing bit switch ' 1 ' a gain of $-1 / 4 \mathrm{~V}$ is added at the output. And so on. The 4 bit binary number represented by the 4 switches is converted into a voltage, which is the analogue representation of one of the 16 possible digital values that can be derived from this circuit.

In practical applications, a precision $R-2 R$ ladder network and fixed reference voltage is employed, switching being carried out by f.e.t. transistors. A typical arrangement of an $R-2 R$ network is depicted in Fig: 6.3. If a bit is set to logic ' 1 ', its associated f.e.t. switch is closed, connecting

VRef into the R-2R network. It is clear from the previous example that in an 8 bit Digital to Analogue converter, Data Bit 7 would provide a greater contribution to the analogue output when set, than Bit 0 . As the number increases, its contribution to the output is double that of the previous bit, the ladder being binary weighted. In an 8 bit converter, Bit 7 is weighted at $1 / 2$, whilst Bit 0 is weighted at $1 / 256$. Note, that whilst there are 256 stages of resolution in an 8 bit converter, this only realises 255/256VRef when all bits are set. As opposed to the circuits used in Figs. 6.2 and 6.3 to illustrate the operation of DACs, the ZN425E is a unipolar device, assuming all inputs to be positive and its output is always a positive value.

The conversion of an analogue signal into a digital quantity is always a sampling process, the instantaneous value of an analogue signal being read and stored as a binary number at different instances of time. In the circuit which is to be described later, the output port of the computer is connected to the DAC's inputs, the output from which is fed into a comparator. The analogue signal to be converted is fed into the other input of the comparator, whose output is fed back into an input port of the computer. The digital value from the computer is then scanned until a comparison occurs between the analogue input signal and the output from the DAC. The digital value at the output from the computer then represents the analogue input signal to the comparator at that instant of time. There are several methods of arriving at this value and we will discuss some of them in the following paragraphs.

SINGLE RAMP OR STEPWISE CONVERSION

This technique uses an upwards count whose final value is controlled by the comparator output. The conversion starts at zero and the count is incremented until the output from the DAC compares with the value of the analogue input to the comparator. This causes the comparator output to switch to logic 0 , which in turn inhibits the counter. The digital value now existing on the input to the DAC represents the analogue voltage at the input to the comparator. This can be converted from a digital value into an analogue value displayed on the screen by the writing of a short software routine. The disadvantage of this method is that whilst a near zero signal can be rapidly compared and converted, a full scale input requires 256 iterations.

THE TRACKING CONVERTER

In a tracking type ADC, the up-count is replaced by an up/down count. The condition of the comparator output dic-
tates the direction of the count so that the DAC output can track the analogue input. The starting point for each conversion is the end point of the previous conversion. Obviously, the success or failure of this type of conversion depends on the frequency of value changes and the differential values of the changes.

CONVERSION BY SUCCESSIVE APPROXIMATION

The successive approximation technique of A / D conversion is probably the one most frequently used with microprocessors, as it is characterised by high speed, high resolution and low cost. This method of conversion, whilst being based upon trial and error principles, ensures a result in a finite number of steps. It involves making a preliminary guess at the analogue value and then, from the result of that guess, making a series of intelligent guesses, each based upon the previous result until a final conversion value is reached. In practice, for an 8 bit DAC, the number of iterations is always 8 . The preliminary value sampled is always half the full scale for the converter of Bit 7 of the computer output port. The comparator output then indicates whether the input analogue signal is greater than or less than half the full scale value. If it is more than half full scale value a further quarter scale value or Bit 6 of the computer output port is added to make three quarters full scale. If it is less than half full scale value, Bit 7 is removed and is substituted by Bit 6 , or half of half full scale value. By successive addition or subtraction of half the previous set value, a new test value is produced. This method requires ' N ' iterations where ' N ' is the computer word size or the DAC word size. As stated earlier, in our case 8 iterations are needed to find the final value. The convert time is therefore independent of the size of the analogue quantity to be converted. In the event of the analogue value being in excess of the full scale value of the converter, the conversion stops at the full scale value.

EXAMPLE OF 8 BIT SUCCESSIVE APPROXIMATION

Initial Value
$>$ (1)
< (2)
$>$ (3)
$\begin{array}{ccccc}\text { (1) } 10000000 & \text { (2) } & 11000000 & \text { (3) } & 10100000 \\ <(4) & >(5) & >(6) & 10110000 \\ \text { (5) } 10101000 & \text { (6) } & 10101100 & <(7) & >(7)\end{array}$
(5) 10101000 (6) 10101100 (7) 10101110 (8) 10101101

The result is $173 / 256$ of the full scale value of the signal. If the full scale value of the input signal is expected to be 5 volts, this would be displayed on the screen through a software routine as 3.37890625 volts.

Whichever method of sampling is used, programming for ADC is carried out by putting an analogue signal into the non-inverting input of the comparator and another signal from the DAC into the inverting input of the comparator. On the signals becoming of equal value, the output of the comparator becomes 0 volts. The computer looks for this signal and on it being present, should stop the sampling from the DAC. The state of the DAC output at that stage indicates the value of the analogue signal input to the comparator. The direct output from the DAC via switch 1 with all bits set (255) is approximately 2.53 volts and near enough to FSR $(2.56 \mathrm{~V})-1$ LSB. With bit 7 set (128), the outpuit is 1.28 volts etc. This makes a useful starting point. Should the FSR of the comparator also be adjusted to 2.53 volts, this makes initial experiments fairly easy. Using 4.5 volt batteries to power the board, the output from the 741 is approx. 3.8 volts and provision is made for linking this to the comparator by making a small underside link on the board from the base pad of Transistor 1, to the small pad provided. Also, of course, the switch can be left out and the output from the converter connected directly to both op-amp and comparator.

Fig. 6.4. Full circuit diagram
If CB1 Control-Bit 4 of the Peripheral Control Register (PCR) (37148) is used to input the output of the comparator into the computer, Bit 4 is set to logic " 0 ". The CB1 interrupt flag will then be set by a negative transition on the CB1 line. (The line goes from a logic High to a logic Low.) The PCR cannot be read directly. It is designed to set a flag (Bit 4 for CB1) in the Interrupt Flag Register (IFR) (37149) when a transition occurs in the CB1 line. Once the CB1 flag is set, it will stay set until cleared by a POKE to PORT B, which resets the CB 1 flag bit.

Initial experiments should be carried out by following these lines:
Set DDR with all lines as outputs, POKE 37138,255
Input a small, known, analogue value
INPUT values into I/O register
Set PCR-Bit 4, POKE 37148
If the IFR is set by a transition, PEEK(37149)
PRINT message on screen
Clear I/O register, POKE 37136,0
Restart sampling.
The following listing is suitable for running the DAC from the keyboard with very quick response.

[^1]```
 05 PRINT"The greater the value the greater the output"
0 8
 FOR I=1 TO 10000:NEXT
 PRINT"Shift/ClrHome":REM Clear screen
 POKE 37138,255:REM Set DDR to required state
 PRINT"DDR SET WITH ALL PORTS FOR OUTPUT"
 PRINT PEEK(37138):REM Display DDR setting
 PRINT:PRINT:REM Spaces
 PRINT"TO STAR DAC OUTPUT:"
20 PRINT"SET I/O REGISTER WITH A VALUE 0 TO
 255"
30 INPUT X:REM To put a decimal value in I/O Register
35 IF X<0 OR X>255 GOTO 20:REM Must be 0 to 255 in-
 clusive
40 POKE 37136,X:REM Enter decimal value
4 2 ~ P R I N T : P R I N T
4 5 ~ P R I N T " I N I T I A L ~ S T A T E ~ O F ~ P O R T " ~ '
50 Z=X:REM Put value in X into Z
55 GOSUB 200:REM Go to decimal to binary conversion
 routine
60 PRINT"CHANGE OUTPUT VALUE?":PRINT:PRINT
65 INPUT Y:REM Enter decimal value
70 IF Y <0 OR Y>255 GOTO }6
72 Z=Y:REM Put value of Y into Z
7 5 \text { GOSUB } 2 0 0
90 POKE 37136,Y
95 PRINT:PRINT:PRINT:PRINT
100 PRINT"VALUE SENT TO I/O REGISTER"
105 PRINT PEEK(37136):REM Display it:PRINT:PRINT
110 PRINT"STATE OF PORTS"
120 PRINT*P7 P6 P5 P4 P3 P2 P1 P0":Z =Y
130 GOSUB 200:REM Go to Decimal to Binary conversion
 routine
140 GOTO 60:REM To reset I/O Registers
200 P0=Z-INT (Z/2) *2:REM Decimal to Binary conversion
205 Z=INT (Z/2)
210 Pl=Z-INT (Z/2)*2
215 Z=INT (Z/2)
220 P2=Z-INT (Z/2)*2
25 Z=INT (Z/2)
230 P3=Z-INT (Z/2)*2
235 Z=INT (Z/2)
240 P4=Z-INT (Z/2) *2
245 Z = INT (Z/2)
250 P5=Z-INT (Z/2) *2
255 Z=INT (Z/2)
260 P6=Z-INT (Z/2) *2
265 Z=INT (Z/2)
270 P7=Z-INT (Z/2)*2
275 Z=INT (Z/2)
200 PRINT P7;P6;P5;P4;P3;P2;P1;P0:REM Display ports in
 Binary
205 PRINT:PRINT
210 RETURN:REM Return to line 140 in program
```


## CIRCUIT DESCRIPTION AND CONSTRUCTION

The circuit is a combined DAC and ADC using the Ferranti ZN425E 8 Bit converter i.c. When used in DAC mode, a 741 operational amplifier is used as a buffer in order to adjust offset voltage and calibrate Full Scale Reading. These functions are carried out by way of VR2 and VR1 respectively. (a) The offset null is adjusted by setting all bits to OFF (Low) and adjusting VR2 until Vout $=0.000 \mathrm{~V}$.
(b) Calibrate with all bits set to ON (High) and adjust VR1 until Vout=Normal Full Scale Reading-1LSB (FSR/256) e.g. Set f.s.r. to $2.5 \mathrm{~V}-1 \mathrm{LSB}=2.49 \mathrm{~V}$. (Where $1 \mathrm{LSB}=$ 10 mV .)
(c) Repeat stages (a) and (b).

A SPDT switch is provided at pin 14 of IC1 to switch the output of the ZN425E between the 741 (IC2) and the LM311N (IC3) comparator, which is used when in the ADC mode.

The author used a small p.c.b. type switch, but pads have been provided, so that for those who wish to use a toggle, a hole can be drilled and connecting leads taken from the switch to the pads.

The output of the comparator is taken to CB1, pin B of the I/O port. (Bit 7 Port 4 for $Z 80 \mathrm{PIO}$ ).

Provision has been made for adjustment of offset voltage and normal full scale reading at the comparator with VR4 and VR3 respectively. These are adjusted in the same manner as described above. Once set there should be no need for re-adjustment, apart from periodic checks or following accidental displacement.

A small power transistor of the 2 N $3055 /$ BFY 51700 mW . 1 A n.p.n. type has been included at the output from the DAC circuit to enable small motors to be driven and bulbs to be lit up. Power is taken from the 5 volt rail which supplies the 741 and 311 , the ZN425E being powered by the host computer. A -5 volt supply is also used by the 741 op-amp. This is taken from the negative side of two batteries connected in series, the centre +- , point being connected to ground. Two short links are made on the component side of the board. These should not be mounted flush, because they are useful as a test point at the output of the converter and a ground rail for all tests. A test point is also provided at the output from the 741 op-amp. The DAC function can be tested at these points with a meter.

Pads at the front edge of the board include CB1 and CB2 in addition to +5 volts, Ground and Data bits 0 to 7 . Notice that on the ZN425E, Data Bits are marked from 1 to 8 , with Bit 1 as most significant bit (MSB) and Bit 8 as the least significant bit (LSB). The reverse value of bits from the.I/O ports of a computer.

Whilst the author has used 2 mm p.c.b. test points (excomputer panels) for input, output and power sockets, large copper pads are provided so that the constructor can choose to use whatever type of connector is available or preferred.

No provision has been made for opto-isolation from the computer since the circuit is intended for use with external supplies up to 5 volts. Provided care is taken with the polarity of the external power lines and the analogue input to the comparator everything should work fine.

## TESTING

After typing in the DAC program, test it with the "l.e.d.s and switches" board (Part 2), to ensure that you have copied the listing correctly. When satisfied that the program is working, record it and turn the machine off.

First tests on the board should be to ensure that there are no shorts or badly soldered joints. If satisfied, plug into the I/O port of the computer without the ZN425E on board. Load and run the DAC program, placing 0 value at the ports. Test that you have +5 volts on the correct rail. Now put in 128 and check that you have approximately +5 volts on Data Bit 7 (Bit 1 of converter). Next input 64 through to 1 , each time checking for the +5 volt signal. If satisfied that your leads are connected correctly, turn off the computer, insert the ZN425E and start again. This time, connect your meter, digital if you have one, between the two links previously mentianed. Having read the instruction set for the DAC program type in RUN10 to start program without having to wait. On initialisation the output to the ports should be 00000000 and the output from the DAC also 0.00 . Enter 255. The ports show 11111111 and the meter reads 2.53


Fig. 6.5. Printed circuit layout (actual size)


EP1396
Fig. 6.6. Component layout

## COMPONENTS ...

| Resistors |  |
| :---: | :---: |
| R1 | 6 k 8 |
| R2 | 18k |
| R3 | 15k |
| R4 | 3k3 |
| R5 | 1 k |
| All resistor | W 5\% |

## Potentiometers

| VR1, VR4 | 4 k 7 (2 off) |
| :--- | :--- |
| VR2 | $10 k$ |
| VR3 | $22 k$ |
|  |  |
| Capacitors |  |
| C1 | 220 n |

## Semiconductors

| TR1 | BFY51 or 2N3053 |
| :--- | :--- |
| IC1 | 2N425E AD/DA converter |
| IC2 | 741 op. amp. |
| IC3 | LM311N comparator |

Miscellaneous
S1 SPDT p.c.b. mounting
Sockets 2 mm p.c.b. mounting
Printed circuit board

## Constructors' Note

Printed circuit boards for this series are available from Proto Design, 14 Downham Rd., Ramsden Heath, Billericay, Essex CM11 1PU (0268 710722) and Bradley Printed Circuits, 9 Harcourt Terrace, Oxford OX3 7aF (0235 32681).
volts (approx.). Next enter 128. The ports show 10000000 and the meter 1.28 (approx.). By changing over your meter range you should get more accurate readings, but the numerals are fairly relative to the decimal value of the binary signal on your screen. Go through $64,32,16,8,4,2$ and 1. Any intermediate values will be approx. proportional to the reference voltage.

When happy that your DAC is working, turn to the output of the 741 op -amp. With 4.5 volt batteries, the output for an input of 255 will be around 3.8 volts, for 128 , around 1.9 volts etc. Connect a small motor of lamp at the output and observe the results. Don't forget that there is a minimum voltage at which a motor will run and before the glow of a lamp becomes apparent.
it is assumed that you have set your offset nulls by now. That is, for no inputs there should be zero output. Put an analogue voltage of 3 to 5 volts at the analogue input and adjust the FSR to 2.53 volts. Input 255 from the keyboard and your meter should read 0 volts. This proves that the comparator is working. Try other values. Programs in BASIC that bring the results automatically to the screen will present only a moderate challenge to the computerist.

Having made the initial tests, experiments can now be made in conjunction with a low range voltmeter, passing on to small motors, 6 volt bulbs etc. Broken Christmas toys can provide a useful source for some of these. Why not connect up to a model car with a couple of wires. Not as good as some of the small robots on the market, but a start in the right direction. To test the ADC, a potential divider can be made with a 10 k linear pot. across a battery.

Test the ADC with 1.5 batteries, LDRs, transducers and solar cells. If you have no solar cells, cut the top off a surplus n.p.n. power transistor. Do not use p.n.p. as some of these are filled with a poisonous paste. Do not be disappointed that this interface only measures small voltages. In industrial applications, such as temperature control, the output voltage

[EP1384]
Transistor
as photocell

## TEST CIRCUITS

from a thermo-coupled device is very small. Some simple test circuits are illustrated above.
NEXT MONTH: The hardware for an EPROM programmer.

bazmar
SINCLAIR 48 K Spectrum Interface, 12 X Microdrive ZX-Printer Kempston Interface + Spectrum Specific books and other items £280. Tel: Uxbridge 34704.
YESTERYEAR equipment: Scopes, Counters with Temperature Controlled Crystals, large photo flash reduction gear motors. Offers 01 9049432 Mr. A.G. Hurrion, 193 Woodcock Hill, Kenton, Harrow, Middlesex.
SPEAKER Drive Units (Radford) X-Over, Wood and plans for floor-mounting pair of Radford Speakers. E30. Mr. Peter Brearey, Flat 3. 36 Leopold Road, Wimbledon, London SW19 Tel: 01-946 8861.
3 BOXES assorted valves. All new incl. DA 42 KT66, SU46, 263, EL34, etc. No reasonable offer refused. Mrs. E. Moult, 81 Knutsford Road. Alderley Edge, Cheshire. Tel: 0625582098.
MAPLIN 4600 Synth:-Home built case, unfinished project. Need the space. Offers. Mr. D. Lewing, 94 Carville Crescent, Brentford, Middlesex TW8 9RD. Tel: 01-568 4018.
TRANSCENDENT DPX Polyphonic TouchSensitive Synth. with built-In chorus, minor filtering problem, £200 ono (£350 new). Mr. 2. Kowszun, 4 Witan Way. Wantage, Oxon $0 \times 12$ 9EU. Tel: 023573560.
UK101 40K RAM, 4/8000 Baud Cass. I/F fitted but faulty, also slight video fault, Offers? Mr. S. Nicholls, 18 Warwick Terrace, St. George's Road. Barnstaple, Devon EX32 7AR.

COLOUR Genie 32 K + Joysticks Total value £200. Asking £110 ono. Tel: Wickford 62943 after 6 pm . Mr. A.A. Ding. 71 Ethelred Gardens. Wickford, Essex SS 11 7ET.
UK 101 8K RAM, cased with leads, new monitor, eleven cassettes software including Exmon, disassembler and assembler. Mr. T.J. West. 354 Wolverhampton Road, Cannock, Staffs. Tel: Cannock 4963.
FOR Sale Clef Bandbox with Master Rhythm, fully working £150. Telephone: 01-670 8420 evenings. Mr. R.C. Smith. 62 South Croxted Road, West Dulwich SE2 1 8BD.
WANTED Sinclair IC12 Amplifier buil/unbuilt. Mr. D. Clark Tel: (Aberdeen) 0224321336.
SHARP scientific Calculator EL-508A book price $£ 5$ + postage. Mr. A.C. Holdway, No. 20 Studland Close, Millbrook, Southampton, Hants. SINCLAIR DM2 Meter © 40 Heath IG-4505 Scope Calibrator £40. DSI frequency counter 512 MHz £ 75 Buyers collect. Mr. A.Y. Parekh, 34 St. Margarets Road. Great Barr. Birmingham B43 6LD. Tel: 021-3586299.
EPROM and manual for wordwise £25. Tel: Oxford (0865) 779855.
HELP $2 \times 81$ computer details, program in order to use Creed 7E teleprinter as a printer. P. Wilkins, 12 Chadcote Way, Catshill, Bromsgrove, Worcs. B61 OJT. Tel: Bromsgrove 71692.
WANTED Sinclair ZX printer. Must be in working order. Please write with offers. Stephen Jones, 48 Irsha Sireet, Appledore, 8ideford, Devon.
CENTRONICS 306 dot matrix printer 120 cps . tractor feed with manual, £120 o.n.o. Tel: (0473) 328013. D. S. Francis, 22 Clifton Wood, Holbrook, Ispwich IP9 2PY.

WANTED Manual for telequipment scope model No. D1010, will copy or buy. D. Jeynes, No. 3 Moorend Cottages, Muchcouarne, Bromyard. Herefordshire.
CURRAH Mini-digital recorder $6,000 \mathrm{bits} / \mathrm{sec}$ : suit UK101, connects direct to expansion BUS, almost new, £ 140 . Brian Faller, 25 Manor Road, Barnet, Herts. Tel: 01-449 1808, after 6p.m.
DUAL drive/computer case, $15^{\prime \prime} \times 12^{\prime \prime} \times 5^{\prime \prime}$. 40/80 units, p+d leads, £35 Astec PSU £35. 0516446568 Mr. D. Edwards, 216 A Bebington Road, Birkenhead, Merseyside L42 4QF.
NASCOM 2 48K RAM NAS-SYS 3 ZEAP NAS-DIS DEE-BUG Parallel Printer Cable £250 Ian Doble Tel: (087255) 2121. Mr. I. Doble, "Wickham", Quay Road, St. Agnes, Cornwall TR5 ORP.
R.S. Components $19^{\prime \prime}$ Sub Rack Kit Stock No. 504-434 new in box £10. Buyer collects/postage. Mr. F. Lucas, 6 West Fryerne, Yateley, Nr. Camberley. Surrey GU1 7 7SU.
SIGNAL Generator, Marconi TF1066B a.m./t.m., $10-470 \mathrm{MHz}, 10 \mathrm{mV}$ to $0.5 \mu \mathrm{~V}$, fully working £195 o.n.o., Guildford 34954. Mr. A.C. Hewat, Redwood, Blanchards Hill, Jacobs Well. Surrey.
A FEW components previously advertised still available. Must now clear or dump. List sae. No callers. Mr. G.A. Noble, 50 Croft Hill Road, Slough, Berks. SG2 1 HF.
BASS Guitar and bass ampolifier for sale. Good condition £250 o.n.o. Mail only please a.s.a.p. G. Wheating. Allhallows School, Rousden, Nr. Lyme Regis, Dorset.


## Lost Hope?

Those of us who had hoped for a constructive alternative to Thatcherite economic policy from a rejuvenated Labour party must be disappointed. The 'dream ticket leadership has produced nothing new and the 1983 manifesto stays intact.

Of course there are vague statements about back-room boys (possibly girls, too) engaged in long-term planning and some new policies will have to emerge in time for the autumn party conference.

The snag is that as economic recovery continues, as is now generally agreed, Mrs Thatcher's claim that There Is No Alternative (TINA) will appear to be more than justified. It will appear that her resolute approach has made British industry more competitive, more efficient. I say 'appear' because, at least in part, the US economy is the locomotive that is pulling the world out of recession, including Britain. Nonetheless it has been Thatcher toughness that has thinned out, if not entirely eliminated, gross overmanning and other deficiencies affecting economic performance.

So where does this leave Mr Kinnock? He can move to the right and try to outThatcher Thatcher, beating her at her own game. Or agree, as is his natural inclination, to retain his loyalty to full-blooded socialism. The first would be totally unacceptable by the trade unions, his party paymasters. The second is largely unacceptable by the electorate at the present time.

Labour had hoped that the success of socialist France would have been the example to highlight the comparative failure of Thatcherism. Alas, even this hope has now disappeared in economic failure in France.

With the middle ground already occupied by the Liberal/SDP alliance and with the handicap of inexperience in government Mr Kinnock has a difficult future. The revelation that he, equally with Mrs Thatcher, shops at Marks and Spencer is no substitute for a realistic policy. Nor does his pledge to return the Elgin marbles to Greece if he gains power look like being a vote-winner.

## ASMI

Recent runway collisions involving loss of life as well as aircraft is bound to stimulate new demand for Airport Surface Movement Indicator (ASMI) installations ASMI is a very high definition radar system which concentrates entirely on ground movements. It surveys main and auxiliary runways, aprons, entry and departure lanes, and perimeter tracks. Definition is such that aircraft types can be identified by wing shape and size, tugs, tankers and other replenishment vehicles equally so. Even birds are detectable through fog and rain as well as darkness.

The high cost of such equipment has resulted in a sluggish market. Only those airports with very high international traffic density have so far been equipped, such as those at Heathrow, Rome and Paris.

Racal Avionics has now gone some way to easing the cost barrier by using a massproduced existing output stage in their latest ASMI, the 18 X . One is being installed at Australia's busiest airport at Sydney with follow-ons at London-Gatwick and Stockholm. The Sydney installation has another cost-cutting feature. The ASM scanner is sited 1.5 km from the contro tower and the radar data is transmitted by fibre optic links, thus enabling existing cable trunks to be used without fear of external electrical interference or cross-talk with other services

## 200kHz Switch

There seems no limit to ingenuity in extending applications to existing systems. A prime example is the novel idea of using the BBC's 200 kHz broadcast transmitters at Droitwich. Burghead and Westerglen to switch on and off our off-peak tariff electricity supply. Bad news maybe for existing time-switch manufacturers but a bright opening for the replacement device which will incorporate a narrow-bandwidth fixedtuned radio receiver.

Switching to the off-peak tariff at consumers' premises will be by phase modulating the 200 kHz carrier and, because of the narrow bandwidth of the receiver, reception will be possible even in basements of steel-framed buildings.

The new system has been developed by GEC Meters and technical trials have apparently been running for at least four years. Now the Electricity Council has signed a contract with the BBC and consumer acceptance is being evaluated on a sample of 1,500 consumers.

Don't assume that if this idea reaches fruition that the whole nation's off-peak electricity will be switched simultaneously. By signal coding, each electricity area board can operate its own switching regime. And within each area there can be as many as 256 groups of consumers which can be separately controlled.

For the electricity boards there is the tremendous advantage of flexible load control. For the consumer the extra goodie of, say, an afternoon boost to his water heater at off-peak rate.

## Airborne

Marconi Avionics continues to demonstrate outstanding ability both in technology and marketing. After developing digital speech communications which had successful trials at the Royal Aircraft Establishment the company has won a $£ 12$ million plus order for production equipment. The new digital speech system is scheduled for air-to-air and air-to-surface duty in all Royal Navy aircraft and in RAF maritime reconnaissance Nimrods. It is the biggest order ever to be won by the Basildon plant.

The Rochester plant also got off to a good start in 1984 with an order for submarine detection systems for the Royal Swedish Navy who have chosen the AQS 902 which won a Queen's Award for Technological Achievement last year. I don't often have an opportunity to thank the Soviet Union for anything but I do so on this occasion because their suspected submarine intrusions into Swedish territorial waters prompted Sweden to improve her underwater detection. The AQS 902 has already proved itself in Sea King helicopters of the Royal Navy.

## Pioneer

Few of the younger generation will have heard of Sir Harold Bishop who died recently at the good age of 82. Apart from his first two years he spent the whole of his working life in broadcasting, first at 2 LO run by Marconi Wireless Telegraph Company and in 1922 transferring with the station to the BBC. As an engineer he progressed upwards, eventually becoming BBC Director of Engineering leading a team of 5,000 . He was connected with every major development in broadcasting, including television, and he and his colleagues in the BBC set technical standards which led and still lead the world to the benefit of UK electronics.

Sir Harold was a true pioneer. He was there at 2 LO when it had a single microphone feeding a 500 watt transmitter in London's Strand with an aerial on the roof and only a handful of listeners. The latest BBC handbook estimates that there are now 1.500 million radio sets in use around the world. How's that for explosive growth in a single lifetime?

Apropos of the increasing pace of life today I was much taken with a comment from the US politician George W. Ball's autobiography, 'The increasing compression of events now means that by medieval standards I have lived at least five centuries'.

## Cable

Britain is not the only country gearing up for the cable TV revolution. East Germany is reported to be speeding up plans for a network. Western observers are probably correct in assuming that this, far from increasing the number of programmes, is a restrictive move. Large numbers of East German viewers regularly watch Western programmes transmitted from Berlin. By installing cable and then banning TV aerials their minds would remain uncontaminated by Western influence.


Are you bewildered by the choice of Software Programs on the market?
Not sure what Program you really need, what it does or where to get it?

## 

The most comprehensive magazine listing of Software programs for the eight leading Microcomputers. - BBC COMMODORE 64 - DRAGON VIC 20 - ORIC - ATARI 400/800 - SPECTRUM - ZX81

Software Index takes the headache out of choosing the programs suited to your Micro. For people involved in electronics and specialist programs, Software Index will provide the information you need and be a valuable time-saving guide.
Games, education, business and persorial management are also covered.
DON’TLET SOFTWARE GIVE YOU A HARD TIME, GET THE USER GUIDE TO MICROCOMPUTER SOFTWARE-

## 2,511 PROGRAMS LSTED

IN YOUR NEWSAGENT'S NOW

## User Guide to Microcomputer Software

 (1) 1984 No. 2 £ 1.50
## FREOUENCY COUNTERS

The brand new Meteor series of 8 -digit Frequency Counters offer the lowest cost professional performance available anywhere

* Measuring typically $2 \mathrm{~Hz}-1.2 \mathrm{GHz}$ Low Pass Filter
* Sensitivity $<50 \mathrm{mV}$ at 1 GHz * Battery or Mains
* Setability 0.5ppm
* Factory Calibrated
- High Accuracy
* 1-Year Guarantee
- 3 Gate Times
* $0.5^{\prime \prime}$ easy to read L.E.D. Display

PRICES (Inc. adaptor/charger, P \& P and VAT)
METEOR $100 \quad(100 \mathrm{MHz}) \quad £ 104.36$
METEOR $600 \quad(600 \mathrm{MHz}) \quad \mathbf{£ 1 3 4 . 2 6}$
METEOR 1000
(1GHz)
£184.86
Illustrated colour brochure with technical specification and prices available on request


Black ${ }^{\text {事Star }}$
BLACK STAR LTD (Dept. P.E.), 9 A Crown Street, St. Ives, Huntingdon, Cambs. PE17 4EB, England. Tel: (0480) 62440 Telex: 32339

| STORAGE CABINETS | Steel cabinets. <br> $12^{\prime \prime}$ wide $\times 55^{\prime \prime}$ deep $\times 22^{\prime \prime}$ high finished blue with clear <br> plastic drawers. |
| :---: | :---: |
|  |  |
|  | Orawers |
|  | ${ }_{2208}^{2216 . . . . . . . . . . . . . . . . . . . .16 \times 0 ~}$ |
|  | $\times \mathrm{O} .2 \times \mathrm{E}$ |
|  | Price each $\quad \mathbf{£ 2 2 . 7 5}$ |
|  | Price per 3 ONLY £60.00 (inc. p\&ip and VAT) |
|  |  |
| Access/Barclaycard 66 THE STREET CROWMARSH, WALLINGFORDwelleomercheque/PO to:- |  |

# ELEGTROVALIE Your SPECLALIST SUPPLLERS for CONNECTORS 

Not only will you find a wide selection of all the usual types you may require in our A. 2 products list. nere are also many others made electronics - jusi one more example of how much better Electrovalue better Electrovalue


Please mention this journal when getting in touch with Electrovalue

D SERIES CONNECTORS
$9,15,25,37$ or 50 way connectors with corresponding covers and retalners. Goldplated contacts. Max current per contact -5 A .
D CONNECTORS
For connecting ribbon cable to PCBs. Insulation Displacement Type: 16, 20, 26, 34 or 40 way. 1A per contact. Straight or right angle plug fitting; cable socket has strain

5 way and 7 way chassis plus and sockets. DIN style layout. Gold-plated pins 250V 5A rating per socket
OTHER TYPES
Edge connectors, DIN, jack plugs and sockets, phono, XLR, BNC, UHF andi power

## BRITAM'S LEADING OUALITY COMPONENT SUPPLIERS-SEND FOR FREE 36 PAGE A-Z LIST ATRACTIVE DISCOUNTS-FREE POSTAGE•GOOD SERVICE \& DELIVERY



28 St Jude's Road Englefieid Gm, Egham Surrey TWZO OHE
Phone (0784) 33603. Telex 264475
North: 680 Bumage Lane, Manchester (061) 4324345
EV Computing Shoo: 700 Bumage Lane, Manchester (061) 4314866


|  |  |
| :---: | :---: |
| MICROSYNTH |  |
|  |  |
| PERCUSSION |  |
|  |  |
| MICROSYNTH |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
| $88 / 72$ NOTE PLANOS FULL KIT E335 ExTension |  |
| 88/72 NOTE PIANOS |  |
| dis |  |
| ${ }_{\text {205 }}^{2054}$ |  |
|  |  |
|  |  |
|  |  |
|  |  |
| Competitive quotations can be given for exporPleese allow $3-14$ days for normai despatch. |  |
| EF PRODUCTS (ELECTHONICS) LIMITED(Dept PE) |  |
| siownel |  |

## Space Watch

## THE HALLEY COMET MISSION

Now that agreement has been reached by the agencies involved as to 'who does what', the general scheme of the mission may be said to be finalised. The three agencies involved are the European Space Agency, the Soviet Union and the United States of America. The general strategy of these three has also been reinforced by the Japanese with their two spacecraft: Planet and MS-T5. Thus, this is now a truly international undertaking. It is hoped that the mission's close look at Halley's comet will answer some of the age-old questions regarding comet composition and formation. We have, since the last return of Halley's comet in 1910, developed the technology which may solve the puzzle, in a century that will see two returns.

A few of the important facts of the strategy will be helpful in getting the feeling for the mission. First, the position of the Nucleus of the comet must be established. At the moment we have to make an educated guess because the Halley Nucleus is only ten kilometres or so in diameter, and has never been seen from Earth. This is because although the Coma, that is the cometary atmosphere that surrounds the Nucleus, extends for hundreds of thousands of kilometres, and is so bright that the Nucleus is not discernible. Therefore the European Space Agency has asked the Soviet Union to use the Vega spacecraft to provide the latest information. This is because the launch date of the first Vega will be up to seven days before that of Giotto, the ESA Halley spacecraft. Giotto will then be able to plot the orbit and make its final encounter manoeuvre. The final manoeuvre will be made about two days before the actual fly-by. The ESA want Gioto to intercept the comet's orbit at a point some 500 to 1000 km from the Nucleus on the sunward side of the Nucleus. We shall be relying on the Soviet Union for the correction and monitoring data.

Comets are usually described as very primitive bodies that are formed of debris, the most popular theory is that this is from the debris which remained after the formation of sun-like bodies, and that it was mostly ice and dust. Whatever ideas exist at the moment, the encounter will certainly provide sound evidence on which to discuss this matter in the future. One of the matters creating much interest will be the puzzle of the way in which the Coma grows spectacularly as the comet approaches the Sun. There is also the inter
action of the atmosphere of a comet with the Solar wind.

Solar heating causes the molecules to become sublimed out of the Nucleus, or as sometimes happens to pass from solid to the vapour state as the comet is heated up. During the time that a comet is being subjected to chianges of environment the various reactions that take place often give rise to the creation of a variety of compounds. The Nucleus is so small and its gravity so low that the Coma becomes enormous, and may be millions of kilometres in extent. Under these circunistances the mechanism which makes it appear so bright must be directly related to a considerable amount of dust being present; the extent of this must be important. The Solar wind's ultra-violet radiation ionises the neutral molecules and this creates a plasma that is swept up in a tail. The effect of this reaction is that the Solar wind and the embedded magnetic field creates large electric currents. This, in turn, generates an induced magnetosphere much larger than that of the Earth itself. There may be a bow-shock in the Solar wind that is ahead of the Nucleus, so that the comet experiences a bow-shock within its ionosphere.

The five spacecraft will have similar experiments on board which will be in addition to their routine assignments. Each encounter will therefore be carried out over a period of eight days in March 1986. The information will vary, thus giving the maximum data to pass to scientists. The actual tasks to be carried out, so far as the comet is concerned, are quite varied, but the broad details are set out here as they are known at the moment. It is certain, however, that there will be changes.

## MISSION TASKS

The imagery from the Soviet Union spacecraft, Vega 1 and Vega 2, will be at two levels. A resolution of 180 metres is aimed at. For Giotto, however, this will be 50 metres at the Nucleus.
Identification of the composition of gases and dust particles of the comet and the confirmation and examination of the physical processes and chemical reactions in the Coma will also be carried out. Other tasks include measurement of gas production rates and the dust flux and the study of cometary plasma and Solar wind reactions.

## SPACECRAFT DEPLOYMENT

The pathfinder will be the Soviet Union's Vega 1. This is to be launched in midDecember 1984. It will fly past Halley at a distance of 10,000 kilometres on March 6th 1986. Japan is sending their first spacecraft to escape the Earth's gravitational field; this will be the MS-T5. It will be launched in January 1985, and will cross Halley's path at about one million kilometres from the Nucleus. This will be on the 8th March 1986. Planet-A will be sent by the Japanese in the middle of August 1985 and fly past at 200,000 kilometres on March 7th 1986.
Vega 2 will be launched in late December 1984 and is planned to intercept the comet on March 9 th, 1986 ;,the distance from the comet being 3000 kilometres. The spacecraft involved deserve a general description.

The two Vegas are three axis stabilised Venera class spacecraft. They are modified for the Venus/Halley international mission. The modified features include an extended Solar array There are other optical instruments and television cameras for which a special platform has been provided. The spacecraft will be fitted also with a multilayer dust shield to protect the most sensitive areas from potentially lethal dust.
The Venus part of the Soviet Union mission will be accomplished first. The spacecraft will fly past Venus in mid-June 1985, and each will eject a probe into the Venusian atmosphere.

The velocity of the encounter with Halley will be $78 \mathrm{~km} / \mathrm{sec}$ and each Vega will carry 129 kilogrammes of load for the Halley mission. About two and a half hours before the encounter with the comet, the Vega telemetry will be switched to 65 kilobits/sec data rate. Forty kilobits/sec of this will be required for the television monitoring.
The Japanese spacecraft MS-T5 was planned initially as a test vehicle for Planet-A. It was made as part of the Halley mission to overcome pay-load weight problems. The MST5 will carry a magnetometer, solar wind detector and plasma wave probes. Planet-A will carry an ultra-violet imager and a magnetic particles detector. It is not expected that these craft will fly close to the comet Nucleus. They should, however, be able to detect the bow-shock waves if they exist, and may encounter the ionosphere boundary. These two spacecraft, each of which weighs 150 kilogrammes, will be launched by an M382 rocket. They too are spin-stabilised craft and will spin at 5 rpm .
The Giotto has 10 experiments on board using 16 sensors which are to be switched on 4 hours before the point of closest approach. Because of the close approach the pointing accuracy must be held to within I degree. The spacecraft is spin-stabilised and will spin at 15 rpm. As it will be travelling in an unknown environment it will carry batteries to back-up the solar cells. This is in case the dust degrades the array. The actual velocity of fly-past is expected to be $68 \mathrm{~km} / \mathrm{sec}$. At that time the Halley comet is expected to be somewhere about 0.89 AU from the Sun and 0.97AU from Earth. The spacecraft will approach the comet from the antisun side. This means that the chance of being overwhelmed by dust is minimised and therefore increases the chances of its survival.

## IMAGING

Four of the spacecraft of the Halley mission are carrying imaging instruments and will therefore pass to the Sunward side of the comet to avoid as much interference as possible. The only craft which does not is the ISEE3. This is well equipped to observe solar wind interaction with a cometary atmosphere. It will, therefore, be possible to observe from the comet side of the Sun. The spacecraft is expected to cross the comet's tail at about 15,000 kilometres from the Nucleus.


# Micno-Professon MPF-1 Plus <br> <br> *MICHAEL TOOLEY ba 

 <br> <br> *MICHAEL TOOLEY ba}

SOME eighteen months ago I was fortunate enough to be asked to carry out a review of the Microprofessor MPF1; a low-cost Z80 based microprocessor learning aid. This basic system, of which over 4000 have been sold, consisted of a single-board fitted with a 280 CPU , 2K ROM, 2K RAM, 36 -key keyboard, and a display comprising six seven-segment LED indicators. The package was supported with documentation including a monitor listing, and a "User's Experiment Manual". Although I had a few minor reservations about the package, I was able to give it a firm recommendation and my overall conclusion was that it represented good value for money for those about to enter the world of microprocessors. I am now pleased to report that Multitech have produced a new and much improved version of the Microprofessor, known appropriately as the Microprofessor MPF-1 PLUS.

## MICROPROFESSOR LEARNING AIDS

Hardware, software and documentation make up the trio of essential components in any microprocessor learning package. Whereas these items may appear at first sight to be quite separate and distinct, there is a high degree of interdependence. Indeed, if any one of the three is found to have serious shortcomings then this is likely to be to the detriment of the package as a whole. It is a great shame that some learning aids fail quite badly in this respect. Excellent hardware, for example, is of little use if the accompanying software and documentation are lacking in depth and clarity.

Hardware must be built to a high standard such that it is both reliable and durable. As far as possible all i.c. devices should be mounted in sockets which facilitate easy removal in the event of failure. Connectors should be both electrically and mechanically robust, and only first quality 'industry standard' components should be used. In addition, the printed circuit board should be neatly laid out and screen printed so that all components can be readily identified.

Software, which will invariably be resident in ROM, should incorporate monitor facilities with commands and prompts which are both easy to understand and simple to remember! Ideally, both assembler and disassembler facilities should be incorporated. The accompanying documentation should be properly structured and should cater for the complete newcomer as well as those having some previous knowledge. Texts should incorporate relevant examples and applications should be introduced where appropriate. A full commented monitor source listing should be considered essential.
securely packed in a corrugated cardboard box and, inside, the unit itself is contained in a neat, if rather 'plastic', book-style case. The case, which measures $255 \times 200 \times 48 \mathrm{~mm}$ (approx), is secured by means of a press-stud fastener and opens to reveal the microprocessor board in the right hand leaf and a recess in the left hand leaf. This latter space is designed to accommodate one or more of the various options available which include an EPROM programmer, speech synthesiser, printer/disassembler, and I/O board. A separate a.c. mains adaptor is supplied which operates from a 240 V 50 Hz supply and provides a nominal 9 V output at 600 mA . The mains unit is fully encapsulated and is fitted with an integral 13A mains plug.

A 49-key keyboard, which uses a conventional QWERTY layout, replaces the previous 36 -key hex and dedicated function unit. Despite the relatively small size of the keys, there is plenty of clearance around them and they have a pleasantly reassuring positive action.

Another very significant area of improvement is the twentycharacter fourteen-segment vacuum fluorescent display. This is angled for convenient viewing and replaces the six seven-segment LED displays of its predecessor. The display is bright and extremely easy to read even in difficult lighting conditions. The fourteen-segment display is naturally capable of displaying a much wider range of characters and symbols than its seven-segment counterpart.

## CLOSER EXAMINATION

Close examination of the p.c.b. reveals the same high standard of construction common to all Multitech products. The screen printed p.c.b. is neatly laid out and all major devices are socketed. The monolithic voltage regulator (a 7805) has been relocated to the centre of the p.c.b. and now uses the substantial heatsinking properties of the aluminium sub-frame which supports the vacuum fluorescent display. Consequently, the regulator now runs very much cooler than previously. The breadboard area of the original Microprofessor is absent. This, however, is no great loss since breadboarding directly onto the MPF-1 p.c.b. cannot really be recommended since it invariably tends to be a 'one-off operation!

Removal of the p.c.b. (it is simply a press-fit into the plastic book) reveals a battery holder designed to accommodate four UM3 dry batteries. This new faclity provides back-up of the RAM such that, with the CMOS devices fitted, memory can be retained for up to twelve montlis. This was found to be a most useful facility, enabling partly
"Mike Tooley is Principal Lecturer in Electronics at Brooklands Technical College, Weybridge.
finished programs to be retained during software development without the need to perform a tape load/save on each occasion of use.

The Microprofessor now uses an 8K ROM (2764) and has 4 K static RAM $(2 \times 6116)$. An optional 8 K BASIC ROM is available. FORTH is also planned for the MPF-1 PLUS but the ROM was unfortunately not available at the time of review.

## DOCUMENTATION

In keeping with other changes, MPF-1 PLUS documentation is also vastly improved. The basic unit is supplied with three handbooks; a User's Manual, Experiment Manual, and a Monitor Source Listing. In addition, a Student Work Book is also available. The User's Manual contains chapters entitled Overview and Installation, Specification, System Description, Operating MPF-1P, Useful Subroutines, Text Editor, Assembler and Disassembler, and System Hardware Configuration. The English is still a little quaint in places however the manual is otherwise extremely good.

The 311-page Student Workbook also has some 'oriental' English and does contain a few rather obvious errors (why on earth don't Multitech get someone proficient in English to proof read their texts?). The manual is well structured, and includes questions or exercises at the end of each chapter. The Work book is suitable for an absolute beginner and is also ideal for the individual who is not following a formal course of instruction. Chapters are included on Keyboard Familiarisation, Hand Assembly, Introduction to Hardware, Using the Text Editor, Using the Two Pass Assembler, and How to Read a Schematic. This last title is somewhat misleading and the chapter leaves a number of questions unanswered.

## ASSEMBLER AND DISASSEMBLER

One of the main criticisms of the original Microprofessor was the absence of a resident assembler. This meant that all programs had to be hand assembled and entered in hex. This tedious process is prone to error and rarely used for serious software development. Multitech have recognised this fact and have included a two-pass $\mathbf{Z 8 0}$ assembler in the MPF-1 PLUS.

Programs are entered, using standard $\mathbf{Z 8 0}$ mnemonics, line-by-line from the keyboard and resident text editor. The programs are then assembled and the appropriate source code is generated. An unfortunate disadvantage is that the reverse process (i.e. disassembly) can only be carried out in conjunction with the companion printer module, PRT-MPF-IP. This unit contains the disassembler software in ROM and, whilst one might argue that program disassembly is usually made direct to a printer, it would be nice to be able to disassemble on a minimum system without a printer.

## BASIC

The optional BASIC ROM is entered from the keyboard via 'CON-TROL-B'. BASIC statements exceeding twenty characters in length are automatically scrolled left when the display is filled. When editing long program lines the overflow may be displayed by appropriate use of

## SPECIFICATION

CPU
RAM

## ROM

DISPLAY

## KEYBOARD

CASSETTE INTERFACE
LOUDSPEAKER
1/0
SOFTWARE

POWER SUPPLY

280A
$2 \times 6116 \mathrm{CMOS}$ static (4K total)
8 K system monitor 8K BASIC or 8 K FORTH (optional) 20 character 14 segment vacuum fluorescent 49-key 'QWERTY' layout 165 baud serial read/write 63 mm ( 2.5 inch) 48 parallel system lines Z80/8080 machine code plus resident line and two-pass assembler 240 V 5 Hz mains fplus four 1.5 V dry batteries for memory back-up)
the left-arrow. It is, however, a little disconcerting to find that later use of the right-arrow does not restore the display (i.e. characters shifted to the left of the first display digit are lost!). Three characters, '<', '?', and '@', are used to indicate monitor, input, and command level.

The 8K BASIC is reasonably powerful and will accept hex as well as decimal inputs. Editing is somewhat crude and lacking in the facilities which are normally found in low-cost personal computers. Furthermore, since only one line is displayed at a time, a printer soon becomes almost essential for any other than the most elementary of programs.

The 181-page BASIC manual is quite acceptable and consists of a step-by-step introduction to Microprofessor BASIC. It is ideal for the beginner wishing to make a first step into programming in a high level language. By the time that you read this review, an alternative 8 K FORTH ROM should be available. This should bridge the gap between BASIC and assembler and appeal to those wishing to explore this excellent control-oriented language.

## PRINTER

The first Microprofessor option which most users will want to consider is the high speed twenty character thermal printer. I frankly admit that my first reaction on unpacking the unit was surprise and reinforcement of the commonly held conviction that one doesn't get very much for one's money these days! I am now prepared to admit that I was wrong since, despite its apparent simplicity, the unit does work extremely well. It is quiet and reliable in operation and the printed text is very pleasing. The printer is supplied with a roll of thermal paper, a connecting cable, and the necessary mains adaptor. The printer is accompanied by a brief but perfectly adequate manual.

## INPUT/OUTPUT

One of the most commendable features of the Microprofessor system is the level of expansion which is possible. An option which will undoubtedly prove to be very popular with both the electronic enthusiast and the equipment designer is the I/O board. This cxciting module facilitates connection to the outside world in a variety of different forms. The hands-on experience of microprocessor interfacing which can be gained from this board is second to none!

The $1 / O$ board is the same size as the basic Microprofessor p.c.b. and incorporates both serial I/O in the form of an 8251 programmable communications interface and parallel I/O in the form of the Z80-P10 (programmable input/output). Thrown in for good measure is the Z80-CTC (counter timer circuit) and a sizeable breadboarding area. A further 4 K ROM and 6 K RAM are also provided. Like the printer, the 1/O board has its own mains power supply and connects to the CPU board using a short length of 40 -way ribbon cable.

A 113 page manual contains applications examples for the
The MPF-1 PLUS with the PRT, EPB and I/O boards and manuâls


Z80-P10, Z80-CTC and 8251 devices together with relevant data sheets for each device contained in an appendix. Applications discussed are respectively a traffic light system, clock, and an RS- 232 C selectable baud rate interface. Demonstration software is contained in ROM and entered by means of an appropriate monitor command and starting address.

## CONCLUSIONS

The MPF-1 PLUS is ideal for use both in the formal educational environment and for the individual working on his own. Hardware, software, and documentation have all been much improved. An alternative approach to learning assembly language programming involves the use of an assembler package based on a personal computer. Whilst the cost of such a package is commensurate with that of the Microprofessor (when one includes the cost of the microcomputer itself) it has several drawbacks as far as the electronic enthusiast is concerned. Firstly this is because few home computers are designed with a view to extensive hardware development and, secondly, a computer designed primarily for the domestic and games market is unlikely to have the I/O capability of a machine intended for real-world control applications.

At $£ 140$ (plus VAT and carriage) the MPF-1 PLUS costs nearly twice as much as its predecessor. For this one gets a very much enhanced machine and one that still represents good value for money. It is, however, important to also bear in mind at the outset the cost of further expanding the system. Whilst the additional cost of a printer and $\mathbf{I} / \mathrm{O}$ board may prove to be prohibitive for the hobbyist it may be affordable for the educational institution (particularly where several Microprofessors may share an I/O board, printer, or EPROM programmer).

For those concerned rather more with the hardware than the software aspects of microprocessors and wishing to gain a firm grounding in Z 80 family applications, the Microprofessor can be very strongly recommended. It is bound to be another winner for Multitech!

The Microprofessor MPF-1 PLUS is available from Flight Electronics Lid., Quayside Road, Southampton, Hants, SO2 4AD. Tel. (0703) 34003/27721.

The following accessories are currently available:
PRT-MPF-IP Twenty character high speed thermal printer
EPB-MPF-1P EPROM programmer
SSB-MPF-1P Speech Synthesiser
SGB-MPF-IP Sound Synthesiser
1/O-MPF-1P Input/output board

## FREE! READERS' ADVERTISEMENT SERVICE



DK Tronics graphics ROM board for $2 X-81$, including extra 2 K RAM and defender tape. All for £15. N. J. 8utters, 6 Lewis Street, Church Village. Pontypridd. Mid. Glam. Tel: (0443) 206305.

URGENT ULA chip for $2 \times 81$ needed, up to £5.00: also graphic ROM for same needed, up to £10.00. C. Tuckwood (Chris). 19 Holmwood Avenue, Plymstock, Plymouth, Devon PL9 9JP. WANTED Image intensifier tube Mullard type, XX1060 ideally. Must be in excellent working order, cash offered. M. Gillett, 11 Broadway, 'Rodbourne Cheney', Swindon, Wilts SN2 3BN. PYE AM 258 crystal 4 metres 70.26 mH TX RX, vgc $£ 12$. OX2001 receiver covers all bands to 30 MH, £75 v.g.c. Mr. R. Pearson. Tel: Swansea 582941.

WANTED Frame and plug or complete chassls CX1571 XY plotter for CD 1400 solatron oscilloscope, J. F. Radley, 28 Queen Street. Geddington, Northants. Tel: (0536) 743524.
WANTED ASCII coded keyboard, upper and lower case plus positive strobe. Computer bits, etc. What have you? Cash waiting. Mel Saunders, 7 Drumcliff Road, Thurnby Lodge, Leicester LE5 2LH.
COMPONENTS 16.5 mm chassis punch, £2.50; timer display. £1.50, new. Many others, list, large sae. No callers. G. A. Noble, 50 Crofthill Road, Slough, Berks SL2 1 HF.

ACE-Telecom Prestel TV converter (unwanted prize), new, still boxed, £45 o.n.o. Tel: ( 0482 ) 866546. Mr. E. Lovett. 3 Woodhall Way. Beverley, North Humberside HU17 7AZ.
ATARI 800, £ $190,810 \mathrm{~d} /$ drive, f 200 ; 850 in terface, $£ 100$ : also 80 col . printer, $£ 260$, or of fers. Steve Nicholls, 18 Warwick Terrace, St George's Road, Barnstaple, Devon EX 32 7AR.
WANTED, please, pair Goodmans Axiom L.S. chassis types 201/301. Also modern oscilloscope. Dual/t, would arrange collection. E. Bardwell-Jones, 15 Deer Park, Saltash, Cornwall PL12 6HE. Tel: Saltash 2144.
TEST equipment, including scope, for sale. Magazines, books, components. Work forces hobbyist to sell upll John Rinaldi-01-947 2020.

ELF II Micro expanded S/B based on 1802. Offers also Systime KSR terminal 120 CPS printer. Tel: After 7p.m. Maidsione (0622) 38388.
SCOPE probe. $\times 1 / \times 10$ switch, 4 ft . lead with BNC plug. As new. $£ 10$ including postage. Tel: Oxford (0865) 779855.
MAPLIN 3800 synth paris from unfinished synth, keyboard p.c.b.s., pots, knobs etc. Tel: 01393 1577. V. Carter, Fitznells, 2 Chessington Road, Ewell, Epsom, Surrey KT17 1 TF,
MULLARD high-speed valve testing machine. complete with box of cards. Can deliver locally. Derek Smith, 01-366 7115 (North London).

RULES Maximum of 16 words plus address and/or phone no. Private advertisers only (trade or business ads. can be placed in our classified columns). Items related to electronics only. No computer software. P'E cannot accept responsibility for the accuracy of ads. or for any iransaction arising between readers as a result of a free ad. We reserve the right to refuse advertisements. Each ad. must be accompanied by a cut-out valid "date corner". Ads. will not appear (or be returned) if these rules are broken.

Please publish the following small ad. FREE in the next available issue. I am not a dealer in electronics or associated equipment. I have read the rules. I enclose a cut-out valid date corner.

[^2]$\square$


# InTRODUCTION Etectroinids 

## MICHAEL TOOLEY ba DAVID WHITFIELD ma msc Ceng miee O 8. A Level Part Seven

THE 74121 is an integrated circuit monostable which can be triggered by either positive or negative edges depending upon the configuration employed. The device has complementary outputs and requires only two components (one resistor and one capacitor) to define the monostable pulse duration. The internal arrangement of the i.c. is shown in Fig. 7.1. Control inputs,


E61296
Fig. 7.1. Internal arrangement of the 74121 monostable

A1, A2 and B are used to determine the trigger mode and may be connected in the following three ways:
(a) A1 and A2 connected to logic 0 . The monostable will trigger on a positive-going transition at B .
(b) A1 and B connected to logic 1. The monostable will trigger on a negative edge applied to A2.
(c) A2 and B connected to logic 1 . The monostable will trigger on a negative edge applied to A1.

It should be noted that, unlike some other monostable types, the 74121 is not retriggerable during its monostable period. This means that any input transitions received during the period of
the output pulse will be ignored. Furthermore, in normal use, a recovery time equal in length to the monostable pulse should be allowed before attempting to re-trigger the device.

## PULSE STRETCHER USING THE 74121 MONOSTABLE

The following investigation involves using the 74121 monostable as a 'pulse stretcher'. As the name implies, a pulse stretcher is a device for elongating the duration of a pulse. A 74121 monostable is an ideal device to provide this function; it can be triggered by a pulse of fairly short duration and will continue to provide its fixed duration output pulse long after the input signal has reverted to its original state. The only requirement is that, to ensure reliable triggering, the

| $\underset{R}{\text { RESISTANCE }}$ | $\underset{C}{\text { CAPACITANCE. }}$ | APPX. MONOSTABLE PERIOD. 1 |
| :---: | :---: | :---: |
| 10k | 10 p | 70 ns |
| 2k2 | 100p | 150 ns |
| 10k | 100p | 700 ns |
| 2k2 | in | $1.5 \mu \mathrm{~s}$ |
| 10k | in | $7 \mu \mathrm{~s}$ |
| 2k2 | 10 n | $15 \mu \mathrm{~s}$ |
| 10k | $10 n$ | $70 \mu \mathrm{~s}$ |
| 2k2 | 100 n | 150 us |
| 10k | 100 n | 700 us |
| 2k2 | $1 \mu$ | 1.5 ms |
| 10k | $1 \mu$ | 7 ms |
| 2 k 2 | $10 \mu$ | 15 ms |
| 10k | ر | 70 ms |
| 2k2 | $100 \mu$ | 150 ms |
| 10k | $100 \mu$ | 700 ms |

[61270]
Table 7.1. Typical values of CR and monostable period for the circuit of Fig. 7.1
input pulse should have a width of at least 50 ns . For a 74121, the values of external timing resistor should normally lie in the range 1.5 kohm to 39 kohm . The minimum recommended value of external capacitor is 10 pF ; however, the maximum value is only dictated by leakage .current of the capacitor employed. In practice this means that, if necessary, values of several hundred $\mu \mathrm{F}$ can be used. This results in a monostable device which can provide a very much wider range of monostable periods than the simple types discussed earlier. Typical values of monostable period for some common $\mathrm{C}-\mathrm{R}$ values are given in Table 7.1. In this particular example we are concerned with relatively long monostable periods, i.e. ones which we can detect using the l.e.d. indicators of the Logic Tutor. In practical circuits we will generally find that the monostable periods are a great deal shorter than this!

The circuit diagram of the pulse stretcher is shown in Fig. 7.2. The following links are required on the Logic Tutor:


Fig. 7.2. Monostable pulse stretcher using the 74121

## DIGITAL ELECTRONICS

$\left.\begin{array}{llll}\text { A3 } & \text { to } & \text { OV } & (\mathrm{A} 1 \text { control input } \\ \text { logic } \mathrm{O})\end{array}\right)$

Insert the 74121 in socket A of the Logic Tutor. Check that D1 is initially extinguished. Press, and immediately release, S1 to generate a short $0 \rightarrow 1$ $\rightarrow 0$ pulse. D1 should become illuminated immediately S 1 is depressed and should remain illuminated for approximately 3 seconds. Once the monostable period has started, the 74121 will ignore any further attempts at triggering. Readers should find that D1 must be extinguished before another monostable timing period can be generated. If desired, the investigation can be repeated using different values of capacitor and resistor in order to obtain other monostable periods.

## VARIABLE WIDTH REPETITIVE PULSE GENERATOR

To conclude our look at monostables this exercise involves putting into practice several of the techniques introduced thus far. It will, however, be necessary for readers to have access to an oscilloscope in order to derive full benefit from this particular investigation. Such an instrument will allow readers to display time related waveforms within the circuit and, ideally, it should be a dual beam type.
The investigation uses a 74S124 to

[66129]
Fig. 7.3. Circuit diagram of the variable repetitive pulse generator
provide a symmetrical square wave clock operating at approximately 11 kHz . The output of the clock is taken to a 74121 monostable which has a variable resistance connected as part of its timing circuit as shown in Fig. 7.3. The configuration and values employed produces a monostable period which is adjustable over a range of approximately $10: 1 \quad(30 \mu \mathrm{~s}$ maximum to $3 \mu$ s minimum approximately). The output of the monostable is repetitive since it is retriggered on the falling edge of each clock cycle the clock cycle has a period of approximately $90 \mu \mathrm{~s}$ which is, of course, smaller than the monostable period). The monostable output thus consists of a train of pulses having a duty cycle which may be varied by means of the variable resistor. Typical waveforms for the pulse generator are shown in Fig. 7.4.


Fig. 7.4. Typical waveforms for the pulse generator of Fig. 7.3

The 74S124 and 74121 devices should be inserted into sockets $A$ and $B$ of the Logic Tutor respectively. As usual, pin 1 of each device should be orientated so that it aligns correctly with pin 1 of the relevant socket. The following links are required:

| A4 | to | A5 | via 47n capacitor |
| :---: | :---: | :---: | :---: |
| A6 | to | A8 |  |
| A7 | to | B3 | (clock output) |
| A8 | to | OV | (0V) |
| A15 | to | A16 |  |
| A16 | to | +5V | (positive supply) |
| B3 | to | Y1 | (clock displayed on Y1 channel of 'scope) |
| B4 | to | $\log$ | (A2 control input logic 1) |
| B5 | to | logic | ( $B$ control input logic 1) |
| B6 | to | Y2 | (output displayed on Y2 channel) |
| B7 | to | OV | (0V) |
| B12 | to | B13 | via 2 n 2 capacitor |
| B13 | to | $+5 \mathrm{~V}$ | via $22 k$ variable and 2 k 2 fixed resistors |
| B16 | to | +5V | (positive supply) |
| OV | to | oscill | cope common earth |

Now we will look at a problem. Suppose that a certain logic control system requires an input signal consisting of a logic 1 pulse for precisely the duration of one complete clock cycle. The input signal is to be obtained from a push button whilst the output signal should not be retriggerable until the push button is released and pressed again. The problem can be solved using the devices and techniques described earlier.

## DE MORGAN'S THEOREM

De Morgan's theorem is an extremely useful tool in the analysis and simplification of logic expressions. By applying De Morgan's theorem it is possible to construct arrangements of logic gates using either NAND or NOR (or a mixture of both) to satisfy any desired logical function. Furthermore, the technique can help us to use the minimum number of logic gates, This process, which is essential in many practical applications, is known as "minimisation".

In Part Six we mentioned that a particular pattern in the output column of a truth table could help us find an alternative Boolean expression for the gate concerned. It is worth looking at this again as a prelude to De Morgan's theorem.

Table 7.2 shows the truth table for two-input NAND and two-input OR gates, arranged with their output

561.30

Table 7.2. Truth tables for twoinput NAND and OR gates
columns side by side. It should immediately be obvious that, although the two output columns look almost the same, the three 1's and 0's in each column are not quite coincident. If, however, we were to invert the $A$ and $B$ inputs for one of the gates and then compare the truth tables again we would get two identical output columns, as shown in Table 7.3. We therefore conclude that the NAND function is identical to the OR function with both inputs inverted. Thus, for two

## DIGITAL ELECTRONICS



## E6T638

Table 7.3. Comparison of truth tables for a two-input NAND gate and a two-input OR gate with inverted inputs
inputs, NOT ( $A$ AND $B$ ) is the same as (NOT A) OR (NOT B). In Boolean form this is written:

$$
\overline{A \cdot B}=\bar{A}+\bar{B}
$$

Complementing each side of the expression, and recalling that a double complement cancels, gives:

$$
A \cdot B=\overline{\bar{A}+\bar{B}}
$$

Had we started with NOR rather than NAND gates, we would have obtained the truth tables shown in Table 7.4. This in turn vields the result that


501660
Table 7.4. Comparison of truth tables for a two-input NOR gate and a two-input AND gate with inverted inputs

NOT (A OR B) is the same as (NOT A) AND (NOT B). Writing this in Boolean form gives:

$$
\overline{\mathrm{A}+\mathrm{B}}=\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}}
$$

Similarly, complementing both sides gives:

$$
\mathrm{A}+\mathrm{B}=\overline{\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}}}
$$

These two expressions, which jointly constitute De Morgan's theorem are, of course, exactly the same as those arrived at earlier. Whichever type of gate we start with the result is the same. So much for the theorem, now let's see what we can do with it!

Suppose that we need to construct a two-input OR gate but we only have two-input NAND gates available. De Morgan makes it simple; all we need to do is to invert each input, using NAND
gates with the two inputs tied together to act as an inverter, and then apply the outputs to a third NAND gate, as shown in Fig. 7.5. If, alternatively, we had a quantity of two-input NOR gates and needed a two-input AND gate this


E61461
Fig. 7.5. Two-input OR gate from two-input NAND gates
could be easily achieved by means of the arrangement shown in Fig. 7.6.

Readers wishing to put De Morgan's theorem to the test may like to try the following exercises based on the 7400 quad two-input NAND and 7402 quad two-input NOR gates.


## [61662]

Fig. 7.6. Two-input AND gate from two-input NOR gates

## ORFROM NAND

This investigation shows how a twoinput OR gate can be built using three of the four two-input NAND gates of a 7400. The logic arrangement is the same as that already seen in Fig. 7.5. The 7400 should be inserted in socket A of the Logic Tutor, checking as usual that pin 1 aligns with ' A 1 '. The following links are then required:

| A1 to S3 | (S3 acts as the $A$ input) |
| :---: | :---: |
| A2 to A1 |  |
| A3 to A15 | $(\bar{A})$ |
| A4 to S4 | (S4 acts as the B input) |
| A5 to A4 |  |
| A6 to A14 | $(\bar{B})$ |
| A7 to OV | ( OV ) |
| A13 to D1 | (D1 indicates the output) |
| A16 to +5V | (positive supply) |

Operating S3 and S4 whilst observing the state of D1 should confirm that the combination behaves as an OR gate. D1 should become illuminated whenever either S3 or S4 (or both) are providing logic 1.

## AND FROM NOR

This investigation shows how an AND gate can be realised from three of
the four two-input NOR gates of a 7402 following the arrangement shown in Fig. 7.6. Insert the 7402 into socket $A$ of the Logic Tutor (checking that pin 1 aligns with ' A 1 ') and make the following connections:

| A1 to $A 14$ | $(\bar{A})$ |
| :--- | :--- | :--- |
| A2 to $S 3$ | $(S 3$ acts as the $A$ input) |
| A3 to $A 2$ |  |
| A4 to $A 13$ | $(\bar{B})$ |
| $A 5$ to $S 4$ | (S4 acts as the $B$ input) |
| $A 6$ to $A 5$ |  |
| $A 7$ to $O V$ | (OV) |
| $A 15$ to $D 1$ | (D1 indicates the |
| output) |  |
| A16 to $+5 V$ | (positive supply) |

Operating S3 and S4 whilst observing D1 should confirm that the combination behaves as an AND gate. D1 should only become illuminated when both S3 and S4 are producing logic 1.

## EXCLUSIVE-OR FROM NAND

As a final example of the use of De Morgan's theorem, and of the technique of minimisation, let us assume that we need an Exclusive-OR gate but only have NAND gates available. (The 7400 quad two-input NAND gate is, in any event, far more plentiful than the 7486 quad two-input Exclusive-OR gate.) To make the example easier to follow we shall divide the task into several simple stages and draw the logic arrangement of each.
Stage 1. Write down the Boolean expression for the desired output. In this case we require the output, $X$, to be:

$$
X=A \cdot \bar{B}+B \cdot \bar{A}
$$

Stage 2. Separate the expression into its constituent parts and identify the logical connective between them. In this case we have two expressions: $A$ AND (NOT B) and B AND (NOT A) which are OR'd together to produce the final output, $X$. This allows us to establish the nature of the last logic gate (OR in this case), and we can then write down the Boolean expressions for its inputs, as shown in Fig. 7.7(b).
Stage 3. Repeat the process of Stage 2 again dividing the Boolean expressions into constituent terms or expressions. The A AND (NOT B) term, for example, can be produced by using an AND gate fed with inputs of $A$ and $\bar{B}$. Similarly, B AND (NOT A) can be produced by a further AND gate which, in this case, is fed with inputs of $B$ and $\bar{A}$.
Stage 4. By further repetition (if necessary) one should eventually arrive at individual terms (e.g. A, B, etc.).

## DIGITAL ELECTRONICS


(a)

(b)

(c)

(d)
[0664]
Where these are inverted (e.g. $\bar{A}$ ) this can be easily achieved by means of additional inverter stages. Now draw the complete logic diagram, as shown in Fig. 7.7(d). Check that there are as many gates present as there are logical connectives (i.e. . + , and -) in the original expression. In this case there are five such connectives and we have numbered them below in the order in which they have been dealt with:


Stage 5. Replace each gate by its De Morgan equivalent using NAND or NOR, as required. Remember that inverters may be produced by linking two, or more, inputs together. In this case we are constrained to using twoinput NAND gates only, the result of using these connected to form the required OR, AND and inverters, is shown in Fig. 7.7(e). At this stage the logic gate arrangement may begin to look rather complex and it is, therefore. often a good idea to number the logic gates.
Stage 6. Simplify the arrangement arrived at in Stage 5 by removing all redundant gates (e.g. two inverters following one another) and then group together all of the inputs. In this particular example gates 4, 7, 6 and 8 are redundant. Sketch the final logic

(e)


Fig. 7.7 (a to f). Stages in producing an Ex-OR gate from two-input NAND gates
arrangement and, if desired, check by means of Boolean algebra following the logical inputs through, stage by stage, from input to output.

Readers may now like to check for themselves that the Exclusive-OR arrangement really does work! Since we shall require a total of five gates, two 7400's will be required. These should be inserted into sockets $A$ and $B$ of the Logic Tutor, laking care to observe the usual convention of pin 1 to 'A1' etc. The following links are required:

| A1 to S3 | (S3 acts as the A input) |
| :---: | :---: |
| A2 to A1 |  |
| A3 to A14 | ( $\bar{A}$ ) |
| A4 to S4 | (S4 acts as the B input) |
| A5 to A4 |  |
| A6 to A11 | ( $\bar{B}$ ) |
| A7 10 OV | (OV) |
| A10 to B2 | ( $\mathrm{A}, \overline{\mathrm{B}}$ ) |
| A12 to A2 |  |
| A13 to B1 | $(\bar{B} \cdot \overline{\bar{A}})$ |
| A15 to A5 |  |
| A 16 to +5 V | (positive supply) |
| B3 to D1 | (D1 indicates the output) |
| B7 to OV | ( OV ) |
| B16 to +5 V | (positive supply) |

D1 should, of course, become illuminated when either S3 or S4 is producing a logic 1. It should not, however, remain illuminated when both S3 and S4 are at logic 1, or both at logic 0 .

## KARNAUGH MAPS

Karnaugh Maps form the basis of a powerful graphical technique which can be used to minimise logic systems.

The map simply consists of a number of cells linked together, each cell representing a unique logical condition. The number of cells in the map depends upon the number of variables present; a system with one variable will have two cells, a system with two variables will have four cells, a system with three variables will have eight cells, and so on. in general, a system with $n$ variables can be mapped using $2^{n}$ cells. To put this into perspective let's consider a simple system with just two variables, $A$ and $B$. The four cells of the map are arranged in two columns ( $A$ and $\bar{A}$ ) and two rows ( $B$ and $\bar{B}$ ), as shown in Fig. 7.8. The cell coincident


Fig. 7.8. Karnaugh Map for two variables
with column $\bar{A}$ and row $\bar{B}$ is equivalent to the Boolean condition (NOT A) AND (NOT B) or $\bar{A} \cdot \bar{B}$.

In terms of the truth table this corresponds to the input condition $\mathrm{A}=$ $0, B=0$. Fig. 7.9 shows all four possible input conditions together with their corresponding cells on the Map.


Fig. 7.9. Relationship between a Karnaugh Map and a truth table

## DIGITAL ELECTRONICS

To show how the Karnaugh Map works, a useful exercise is to consider the pattern produced by some familiar two-input logic gates: AND, NAND, OR and NOR. These are shown in Fig. 7.10. The shaded area in each map is equivalent to a logic 1 in the output column of the respective truth table. Sometimes 1's and O's are used instead of shaded and unshaded areas, respectively. in this series, we shall use shading exclusively, if for no other reason than it is a little clearer! The maps shown in Fig. 7.10 clearly show the complementary relationships which exist between AND and NAND, and OR and NOR. What else can we do with the maps?


Fig. 7.10. Karnaugh Maps for AND, NAND, OR and NOR gates with two inputs

A single shaded cell involves two variables. Adjacent cells can be grouped together and, by so doing, we can eliminate one of the two variables. Let's take the OR gate for example. The three shaded cells can be considered as two adjacent pairs with one cell common to both, as shown ringed in Fig. 7.11. One of the pairs occupies all


## EG164

Fig. 7.11. Grouping together adjacent cells in a Karnaugh Map
of column A, the other occupies all of row $B$. The shaded area is thus, as we might expect $A$ OR B or, in Boolean, $A+B$. We could, however, have represented the shaded area using the expressions for each of its constituent cells. The Boolean expression for this would be $(\bar{A}, B)+(A \cdot \bar{B})+(A \cdot B)$.

Since the shaded area has remained the same we must conclude that:

$$
A+B=(\bar{A} \cdot B)+(A \cdot \bar{B})+(A \cdot B)
$$

At first sight this result may not appear to be very useful and we may have easily arrived at it from the truth table. Let's go on, however, to see the result of carrying out a similar exercise using a NOR gate. The shaded area is the opposite (complement) of that for the corresponding OR gate. It should be noted that the shaded area is coincident with the $\bar{A}$ column and the $\bar{B}$ row. It may thus be represented by (NOT A) AND (NOT B) or, in Boolean terms, $\bar{A}$. $\bar{B}$. We could, however, also represent it by NOT ( $A$ OR B) or $\overline{A+B}$. Thus we may conclude that:

$$
\overline{\mathrm{A}+\mathrm{B}}=\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}}
$$

If this doesn't ring a loud bell-it should! It's simply De Morgan's theorem yet again.

Karnaugh Maps really come into their own when it is necessary to simplify complex logic arrangements. This usually occurs when we are dealing with gate circuits which have three, or more, inputs. A Karnaugh Map with three variables is shown in Fig. 7.12.


## [60142

Fig. 7.12. Karnaugh Map for three variables

Here there are $2^{3}(=8)$ cells which we have arranged in two columns and four rows. (We could have used four columns and two rows, but the result is the same.) Note that $B, \bar{B}, C$ and $\bar{C}$ cover two rows each and an overlap is arranged so that all eight different logical states are included. Each of the eight cells has a unique Boolean expression in terms of the three variables, A, B and C. Where two adjacent cells are grouped together, the result is a Boolean expression which eliminates one of the three variables, i.e. the resulting Boolean expression involves only two variables. Similarly, if four adjacent cells are grouped together the
resulting Boolean expression involves one single variable only.

When dealing with adjacent cells it is important to note that the map is continuous in either axis. This means that it is possible to 'wraparound' the opposite ends to produce adjacent cells which may otherwise appear to be widely separated. Fig. $7.13 \mathrm{ii}-$ lustrates this point. Here we have


Fig. 7.13. Grouping cells at opposite ends of the Karnaugh Map
grouped together two cells to form a two-variable expression: A AND (NOT C) or, in Boolean form, A. $\bar{C}$.

To conclude this section on Karnaugh Maps it is worth considering a simple example of their use. Suppose that we have been asked to provide a simple electronic system to assist in a voting procedure. There are to be three judges and a simple majority vote is required to determine a successful candidate. Each member of the judging panel is equipped with a switch with which he makes a simple 'yes/no' decision. If two, or more, of the judges vote 'yes' then a light is to come on. Let us suppose that the three judges are called Andrew, Brian and Charles. There are four conditions in which a candidate would be successful:

| Andrew | Brian | Charles | Boolean <br> Equivalent |
| :---: | :---: | :---: | :---: |
| NO | YES | YES | $\bar{A} \cdot B . C$ |
| YES | NO | YES | A.B.C |
| YES | YES | NO | A.B.C |
| YES | YES | YES | A.B.C |

Plotting the Boolean expressions on the Karnaugh Map gives the resulting area marked in Fig. 7.14. The shaded area comprises three pairs of adjacent cells, the Boolean expressions for which are: A.C, B.C and A.B. The output, $X$, of our logic arrangement (corresponding to the entire shaded area) should thus be:

$$
X=(A \cdot C)+(B \cdot C)+(A \cdot B)
$$

This can be obtained from a three-

## DIGITAL ELECTRONICS



E61451
Fig. 7.14. Karnaugh Map for the majority vote
input OR gate preceded by three twoinput AND gates in an arrangement similar to that of Fig. 7.15. Note that, had we not attempted to simplify the expression first, we might have ended up with a much more complex arrangement.


Fig. 7.15. Logic arrangement for the majority vote

## BINARY COUNTERS

In Part Five we showed how a Dtype bistable could form the basis of a simple binary counter. With such a circuit, a single bistable stage produces, in any given time interval, half as many output pulses as clock input pulses, thus effectively dividing the input frequency by two. This concept can be extended in order to produce circuits which can count the number of input pulses. If several bistables are connected in tandem such that the O output drives the subsequent CLOCK input, the state of the Q outputs is dependent upon the number of input pulses received. If we take the simple two stage arrangement shown in Fig. 7.16, for example, the state of the Q outputs in response to a number of clock input pulses, $n$, is shown below:

| $\boldsymbol{n}$ | $\mathbf{Q 1}$ | $\mathbf{0 2}$ |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| 1 | 1 | 0 |
| 2 | 0 | 1 |
| 3 | 1 | 1 |
| 4 | 0 | 0 |
| 5 | 1 | 0 |
| 6 | 0 | 1 |
| 7 | 1 | 1 |
| 8 | 0 | 0 |
| etc | etc | etc |



## [66165]

## Fig. 7.16. Simple two-stage binary divider

We have, of course, assumed that the initial state of both the Q outputs is logic 0 . In practice this could be easily accomplished using the CLEAR inputs provided on the bistables. It should be noted that the pattern of 0 's and 1's repeats itself after the third clock input pulse, i.e. the output state for a count of 4 is the same as that for a count of O. Furthermore, if we just concentrate on the first four states ( $n=0$ to $n=3$ ). the Q outputs are a binary representation of the number of input pulses, Q2 being the most significant bit (MSB). whilst Q 1 is the least significant bit (LSB). The circuit thus effectively counts to 3 and then repeats itself. If we wish to know the state of the count (number of pulses which have arrived) all we need to do is examine the 02 and Q1 outputs and convert back from binary.

A four stage binary counter is shown in Fig. 7.17. Here four J-K bistable elements have been connected in cascade. The J and $K$ inputs of each stage are connected to logic 1 , and the Q output of each stage is connected to the CLOCK input of the subsequent stage. The circuit will count 15 input pulses before reverting to an output state of zero and recommencing. Since there are 16 different output states (including 0000), the circuit forms a divide-by-16 arrangement. We shall now examine a practical divide-by-16 arrangement based upon the 7473 bistable.

## BINARY $\div 16$ COUNTER USING TWO 7473's

The circuit of the $7473 \div 16$ binary counter is shown in Fig. 7.17. In order to enable operation as a binary divider, the $J$ and $K$ inputs are all taken to logic 1. So that the counter can be reset to zero at the start of counting, the CLEAR inputs are all linked together and taken to S3. A logic 0 from this switch resets the counter whereas a logic 1 permits normal counting (remember that the CLEAR input is "active low"). The 7473's should be inserted in sockets $A$ and $B$ carefully ensuring that pin-1 aligns with socket 1 in each case. The following interconnecting links are required:
$\begin{array}{ll}\text { A1 to clock } \\ \text { A2 } & \text { to } A 6\end{array}$
A3 to logic 1
A4 to +5 V (positive supply)
A5 to A14
A6 to B2
A7 to logic 1
A11 to D3 (D3 indicates the Q2 output)
A12 to A7

| A13 to OV (OV) |  |
| :---: | :---: |
| A14 to D4 | (D4 indicates the Q1 <br> output) |

A16 to A3
B1 to A11
B2 to B6
B3 to logic 1
B4 to +5 V (positive supply)
B5 to B14
B6 to S3 (S3 provides the reset facility)
B7 to logic 1
B11 to D1 (D1 indicates the Q4

B12 to B7
B13 to OV (OV)
B14 to D2 (D2 indicates the Q3 output)
B16 to B3
(Total of 24 links)
It should be noted that the l.e.d.s have been arranged in the conventional


E01654
Fig. 7.17. Four-stage binary divider using JK bistables (NB All J and K inputs are taken to logic 1)

## DIGITAL ELECTRONICS

order with the most significant bit appearing on the left (D1) and the least significant on the right (D4).

S3 should be set initially to produce logic O. D1 to D4 should now all be extinguished, indicating an output of 0000 in the reset condition. Wait until the clock goes to OV (I.e.d. off) and then press S3 again. This produces a logic 1 on the CLEAR line and counting should commence with the first falling $(1 \longleftrightarrow 0)$ clock pulse. When this happens lat the point where the clock I.e.d. goes off again), D4 should become illuminated indicating a count of 0001 (binary 1). After the next clock pulse, and again on the falling edge, the count should increase by 1 to 0010 (binary 2). Note that all changes are initiated on the falling edge of the clock pulse. Carefully observe the subsequent binary counting sequence and confirm that the arrangement follows the timing diagram shown in Fig. 7.18 and the logic state table shown below:

| Clock pulse number | $\mathbf{0 4}$ | $\mathbf{0 3}$ | $\mathbf{0 2}$ | $\mathbf{Q 1}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 (reset) | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 1 |
| 2 | 0 | 0 | 1 | 0 |
| 3 | 0 | 0 | 1 | 1 |
| 4 | 0 | 1 | 0 | 0 |
| 5 | 0 | 1 | 0 | 1 |
| 6 | 0 | 1 | 1 | 0 |
| 7 | 0 | 1 | 1 | 1 |
| 8 | 1 | 0 | 0 | 0 |
| 9 | 1 | 0 | 0 | 1 |
| 10 | 1 | 0 | 1 | 0 |
| 11 | 1 | 0 | 1 | 1 |
| 12 | 1 | 1 | 0 | 0 |
| 13 | 1 | 1 | 0 | 1 |
| 14 | 1 | 1 | 1 | 0 |
| 15 | 1 | 1 | 1 | 1 |

The counting sequence should then recommence with 0000. At any time, however, it should be possible to interrupt the counting sequence using S3 to reset the count to 0000 .

## DECADE COUNTERS

In many applications we require counters which are capable of counting to a base other than a power of 2 . We might, for example, be concerned with packing items into boxes in batches of six, ten or twelve. At a particular stage in the process a counter would be required to check that the correct number of items are present before sealing the boxes. In order to do this, we can easily modify the basic binary counter such that a reset signal is automatically generated to clear the counter when a specific state of count has been reached.

Taking the decade counter $(\div 10)$ as an example, let us imagine that an electrical component manufacturer produces 13A plugs using a simple
automated assembly line. After the assembly process is complete, each plug is visually inspected on a moving conveyor belt, before being passed to the packing machine. The machine arranges the plugs into batches of ten and then seals them into a plastic container in which the wholesaler receives the plugs.

After inspection, the plugs can be detected by a photocell as they arrive at the packing machine. The photocell can be arranged such that, after suitable processing, a $0 \rightarrow 1 \rightarrow 0$ pulse is produced as each plug passes by. This pulse is fed to the clock input of a counter which counts to ten before activating the heat-shrink sealing process. The state of the count corresponding to 10 (binary 1010) can be easily detected using a logic gate which not only initiates the sealing process but also resets the counter to zero (binary 0000). The counter is thus made ready for the next batch of 10 plugs.


Fig. 7.19. Simplified block schematic of a batch counting system


Fig. 7.18. Timing diagram for the four-stage binary divider of Fig. 7.17

The process is shown in block schematic form in Fig. 7.19. The circuit of a typical decade counter is shown in Fig. 7.20. This arrangement uses a two-input NAND gate to detect the count of 10 (binary 1010). Note that this is only a transitory state and the counter will be immediately cleared whenever O2 and Q4 are both at logic 1. The counter thus has ten states 10 to 9) and counting will recommence with an output of 0000 immediately after resetting.

The $\div 16$ arrangement using two 7473 's can easily be modified for use as a decade counter by adding an additional 7400 (fitted in socket C) and making the following links:
C1 to D1
C2 to D3
C3 to B6
(remove the link from S3 to B6)

## DIGITAL ELECTRONICS



Fig. 7.20. Typical decade counter (NB All J and K inputs are taken to logic 1)

ClOCK (09)
at OUTPUT(OG)
clear


STATE OF COUNT
661650
Fig. 7.21. Timing diagram for the decade counter of Fig. $\mathbf{7 . 2 0}$

C 7 to 0 V (OV)
C16 to +5 V (positive supply)
(New total of 28 links)
The decade counter should follow the timing diagram shown in Fig. 7.21 and obey the logic state table shown below:

| Clock pulse number | $\mathbf{0} 4$ | $\mathbf{Q 3}$ | $\mathbf{Q} \mathbf{2}$ | $\mathbf{Q 1}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 1 |
| 2 | 0 | 0 | 1 | 0 |
| 3 | 0 | 0 | 1 | 1 |
| 4 | 0 | 1 | 0 | 0 |
| 5 | 0 | 1 | 0 | 1 |
| 6 | 0 | 1 | 1 | 0 |
| 7 | 0 | 1 | 1 | 1 |
| 8 | 1 | 0 | 0 | 0 |
| 9 | 1 | 0 | 0 | 1 |
| $10(0)$ | 0 | 0 | 0 | 0 |
| $11(1)$ | 0 | 0 | 0 | 1 |
| $12(2)$ | 0 | 0 | 1 | 0 |
| $13(3)$ | 0 | 0 | 1 | 1 |
| etc. | etc. |  |  |  |

## Please Note

In Part 6 Table 6.8 should refer to Fig. 6.8 and Table 6.9 should refer to Fig. 6.9. Table 6.10 should be ignored.

NEXT MQNTH: We will be looking at an intruder alarm and also a traffic lights simulator.



## FOR FURTHER <br> INFORMATION RING MANDI 01-261 5846

## RECEIVERS AND COMPONENTS

RESISTOR PACKS
FOR ALL PROJECTS
I watt carbon film resistors $5 \% 1$ ohm to 10 M E24 series. Packs of 10 each value $(1690$ resistors) $£ 10.00$. Your choice of quantities/ values 125 for $£ 1.00$. VAT and Post Free. GORDON HALLETT 20 Bull Lane, Malden Newton Dorchester, Dorset DT2 0BQ

| IC SPECIAL OFFESE - ALL NEW, FULL SPEC. <br> These are just a lew of those available <br> All Guramteed SEND FOR FREE UST |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7400 | 8 p | 7403 | 8 p | 7405 |  | 741 |  |
| 7413 | 10 p | 741 | 10 p |  |  | 7422 | 15p |
| 7430 | $8_{8 p}$ | 7440 | 8 p | 7441A | 45p | 7450 | ${ }^{8 p}$ |
| 7486 | 12p | 7493 | 16p | 7496 | 20p | 74100 | Op |
| 74122 | 23 p | 74126 | 25p | 74145 | 30 p | 74190 | p |
| 280 | 150 p | 8085A | 200p | 8255A | 80p | 6800 | 180p |
| All prices include VAT. Drders aver 25 póst tree. Under 55 add 300 p \& . SEND FOR FREE LIST |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

## SMALL ADS

The prepaid rate for classified advertisements is 36 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 12.00$ per single column centimetre (minimum 2.5 cms ). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Banks Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Practical Electronics, Room 2612. IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

## NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

## RECEIVERS AND COMPONENTS CONT

KTTS AND PCBs for quality home recording effects. Send s.a.e. for catalogue. TANTEK SERVICES, Dept. P.E., P.O. Box 54, Sievenage, SG2 9DQ.
PCB's FOR FEBRUARY 1994. Clock. Timer EG1402 $£ 1.95$ EG1404 £1.20. Temperature Controller EG1433 £1.82. EG1435 £1.05. EG1429 £1.82. For latest prices, phone 0235-32681 or S.A.E. for current price list. Capacity for custom design also available. BRADLEY PRINTED CIRCUITS, Unit 17, 70 Wooton Road, Abingdon, OX14 ILD.


BOUNNEMDUTW/BOSCOMBE. Electronic components specialists for 33 years. FORRESTERS (NATIONAL RADIO SUPPLIES), Late Holdenhurst Road. Now at 36, Ashley Road, Boscombe. Tel 302204. Closed Weds
TURN YOUR SURPLUS capacitors, transistors, etc. into cash. Contact COLES HARDING \& CO. 103 SOUTH BRINK, WISBECH, CAMBS. TEL: 0945 584188. Immediate settlement.

PRACTICAL ELECTHONICS PCBs 1.5 mm GB
ALL TO PRACTICAL ELECTRDNICS SUPPLIED MASTEAS
Oct 83 Exp Vic 20 EP1214 $\mathbf{2 3 . 8 5}, 16$ £2.65, $18 \mathbf{£ 4 . 0 0}$ Jan 84 Exp Vic EC1 12 \&4.43, 13 £2. 26

Ultrasoníc Camera Trig EC1 $16 \$ 2.73$
Feb 84 Clock Timer ECl $402 \times 2.41,11.79$
Temp Control EG1433£1.85, $35 £ 1.50,29 £ 2.20$
VAT ind Postage 35p UK. Please send SAE for complete list.
14 Downham Road, Ramsden Heath
3illericay. Essex CM11 1PU, Telephone 0268-710722

## SOFTWARE

BARGAIN COMPUTER BREAKDDWN PACK. Ptinted circuit boards fitted with $0.1^{\prime \prime}$ edge connectors and containing a minimum of thirty integrated circuits including eight $8 \mathrm{k} \times 1$ bit 4116 RAM and one $2 \mathrm{k} \times 8$ bit EPROM plus other components housed in neat black aluminium case. Ideal for breakdown or experimentation. Price per pack, $£ 5.50$ plus $£ 2$ postage and packing. HOWARD ASSOCS, 59 Oatlands Avenue, Weybridge, Surrey KT13 9SU.

## AERIALS

## AERIAL BOOSTERS

Noxt to the set fitting
B45H/G-UHF T. gain about 20dbs. Tunable over the complete UHF TV hand. PRICE f8.70
BII-VHF FFM RADIO, gain about 14dbs, when on the off position connects the aerial direct to the radio. E7.70. All Boosters we make work off a PP3/006p/5F22 type battery By to 18v DC P8P 30p PER ORDER
ELECTRONIC MAILORDER, 62 Bridge St Ramsbonam
Lancs BLO 9AG. Tol (070682̆) 3036
Access Nisa Cards Welcome
SAE Leafleus

## ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Practical Electronics for............................. insertions. I enclose Cheque/P.O. for £ ...............................................
(Cheques and Postal Orders should be crossed Lloyds Bank PLC, and made payable to Practical Electronics)

|  |  |  |  |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

NAME

PRACTICAL ELECTRONICS
Classified Advertisement Dept., Room 2612, King's Reach Tower, Stamford Street,
London SEI 9LS. Telephone 01-2615846 Rate
36p per word, minimum 12 words. Box No. 60p extra.

[^3]
## SECURITY



## FOR SALE

SCOPEX 140-10 (Dual Beam) in excellent condition, with manual - $£ 135$. Also 'AlM' Digital Capacitance meter - $£ 45$ Telephone 0767-260997 evenings or weekend.

FREE PARCEL OF L.E.O's decoders, components worth $\mathbf{\varepsilon 1 0}$ Send only 80 p postage. HORSLEY, 1.13 Clare Road, Braintree. Essex.

COMPONENTS E EQUIPMENT - 1984 Catalogue $70 \mathrm{p}+20 \mathrm{p}$ P\&P. Callers: 18 Vicioria Road, Tamworth. 369 Alumrock Road, Birmingham. 103 Coventry Street, Kidderminster. Express Mail Order Service. LIGHTNING ELECTRONICS. P.O. Box 8, Tamworth Staffs.

## SERVICE SHEETS

BELLS TELEVISION SERVICES for service sheets on Radio, TV etc. $£ 1.50$ plus SAE. Colour TV Service Manuals on request. SAE with enquiries to B.T.S., 190 Kings Road. Harrogale, N. Yorkshire. Tel, (0423) 55885.

## BOOKS AND PUBLICATIONS

Full size service sheets $£ 2+$ L.S.A.E; CTV/Music $£ 3+$ L.S.A.E. Repair/eires almost any named TV/VCR $\mathbf{9 9 . 5 0}$. L.S.A.E. free quotations for manuals, sheets - free mag inc. service sheets. T.I.S.P.E., 76 Church Street, Larkhall, Lanarks. Phone 0698883334.

## COURSES

CONQUER THE CAIP
Master modern electronics the PRACTICAL way by SEEING and DOING in your own home. Write for your free colour brochure now to British National Radio Electronics School, Dept. C2, Reading. Berls. RG1 1BR.

## MISCELLANEOUS

| THE SCIENTIFIC WIRE COMPANY <br> 811 Forest Road, London E17. Telephone 01-531 1568 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| ENAMELLED COPPER WIRE |  |  |  |  |
| SWG | 1 lb | 8 oz | 4 oz |  |
| 8 to 34 | 3.63 | 2.09 | 1.10 |  |
| 35 to 39 | 3.82 | 2.31 | 1.27 |  |
| 40 to 43 | 6.00 | 3.20 | 2.25 |  |
| 44 to 47 | 8.67 | 5.80 | 3.49 |  |
| 48 SILVER ${ }^{15} 96$ PLATED 9.58 COPPER WRE |  |  |  |  |
|  |  |  |  |  |
| 14 to $30 \quad$ TiNNED COPPER WIRE |  |  |  |  |
|  |  |  |  |  |
| 14 to 30 Fluxcore | 3.97 | 2.41 | 1.39 |  |
| Solder | 5.90 | 3.25 |  |  |
|  | ine forlist of copper and resistance wire. |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

PROGRAMMED LOGIC SERVICES programme Eproms and other programmable devices. Also erasing, testing, marking, manual entry, PLS, Victoria House, London Road. Cheam, Surrey SM3 8HY. Phone 01-644 8095
burglar alarm equipment. Ring Bradiord (0274) 308920 for our Catalogue or call at our large showrooms opposite Odsal Stadium.

## MISCELLANEOUS CONT

SUPERB INSTRUMENT CASES by Bazelli. manufactured from PVC faxed steel. Vast range. Competitive prices start at a low £1.50. Punching facilities at very competitive prices. - Bazelt (Dept 23). St Wifreds. Foundry Lane, Hatton, Lancaster LA2 6LT.

CLEARING LABORATORY: scopes, generators, P.S.U's, bridges, analysers, meters, recorders, etc. 0403-76236.

## MAKE YOUR OWN PRINTED CIRCUITS

Alhae Etch Resist Transfers - Starter pack ( 5 sheets) lines, pads, I.C. pads) $£ 2.80$. Large range of single sheets in stock at 56 p per sheet.
Master Positive Transparencies from P.C. layouts in magazines by simple photographic process. 2 sheets document paper, 2 sheets MSM film (A4) £2.50. Photo-resist spray (200 ml) $£ 3.90$ ( $p+p 65 \mathrm{p}$ ). Drafting Film (AA) 30p. Precision Grids (A4) 65p. 20p stamp for lists and information. P\&P 50p pe order plus extra where indicated. No VAT payable. P.K.G. ELECTRONICS

OAK LODGE, TANSLEY, DERBYSHURE.

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

## ADVANCED TELECOMMUNICATIONS

## Careers with extensive scope at Cheltenham

Join the Government Communications Headquarters, one of the world's foremost centres for R \& D and production in voice/data communications ranging from HF to satellite - and their security. Some of GCHO's facilities are unique and there is substantial emphasis on creative solutions for solving complex communications problems using state-of-the-art techniques including computer/microprocessor applications. Current opportunities are for:
Telecommunication Technical Officers
Two levels of entry providing two salary scales: £6262-£8580 \& £8420 - £9522
Minimum qualifications are TEC/SCOTEC in Electronics/Telecommunications or a similar discipline or C \& G Part II Telecommunications Technicians Certificate or Part I plus Maths B Telecommunication Principles B and either Radio Line Transmission B or Computers B or equivalent: ONC in Electrical, Electronics or Telecommunications Engineering or a CIE Part 1 Pass, or formal approved Service technical training. Additionally, at least 4 years' (lower level) or seven years' (higher level) appropriate experience is essential in either radio communications or radar, data, computer or similar electronic systems.
At the lower entry level first line techinical/supervisory control of technicians involves "handson" participation and may involve individual work of a highly technical nature. The higher leve involves application of technical knowledge and experience to work planning including implementation of medium to large scale projects.
Radio Techniclans - £5485-£7818
To provide all aspects of technical support. Promotion prospects are good and linked with active encouragement to acquire further skills and experience. Minimum qualifications are a TEC Certificate in Telecommunications or equivalent plus 2 or more years' practical experience.
Cheltentam, a handsome Regency town, is finely-endowed with cultural, sports and other facilities which are equally available in nearby Gloucester. Close to some of Britain's most magnificent countryside, the area also offers reasonably-priced housing. Relocation assistance may be available.
For further information and your application form, please telephone
Cheltenham (0242) 32912/3 or write to:

## E $\mathrm{FH} H \mathrm{~F}$

Recruitment Office, Government Communications Headquarters, Oakley, Priors Road, Cheltenham,

Gloucestershire, GL52 5AJ.


## FREECATALOGUE

## ALL GOODS BRAND NEW \& PERFECT

 ALL PRICES INCLUDE VATTERMS. Cash with order
Post \& Packing. Please add 75 p to total order
Goods normally despatched by return of post

## AC/DC ELECTRONICS COMPONENTS <br> dept P.E., 45 CHURCH STREET, ENFIELD, MIDDLESEX.

## WORLD RADIO T.V. HANDBOOK

## 1984 ed.

Price: $\mathbf{£ 1 2 . 0 0}$
1984 THE RADHO AMATEUR'S H/B by A.R.R.L.

Price: $\mathbf{£ 1 2 . 5 0}$
beginner's guide to integrated circuits by I. R. Sinclair

Price: $\mathbf{E A}^{4.50}$

## ELECTRONIC PROTOTYPE CONSTRUCTION

 by S. D. KastenPrice: $\mathbf{£ 1 5 . 9 5}$
UNDERSTANDING ELECTRONIC SECURITY
SYSTEMS
by M. D. LaMont
Price: $£ \mathbf{£ 2 0}$
UNDERSTANDING DIGITAL ELECTRONICS
by G. McWhorter
Price: $£ 4.30$
INTRODUCTION TO ELECTRONIC SPEECH
SYNTHESIS
Price: $\mathbf{£ 8 . 0 0}$
ELECTRONICS FOR HIGHER TEC
by S. A. Knight
Price: $\mathbf{£ 1 0 . 0 0}$
DOMESTIC VIDEOCASSETTE RECORDERS
A SERVICING GUIDE
by S . Beeching
Price: $\mathbf{£ 1 5 . 5 0}$
SEMICONDUCTOR DATA BOOK
by A. M. Ball
Price: $\mathbf{£ 7 . 5 0}$

* ALL PRICES INClUDE POSTAGE *

THE MODERN BOOK CO.
BRITAIN: LARGEST STOCKIST
of British and American Technical Books

## 19-21 PRAED STREET LONDON W2 1NP

Phone 01-402 $9176 \quad$ Closed Saturday 1 p.m.
Please allow 14 days for reply or delivery

## MAIL ORDER ADVERTISING

British Code of Advertising Practice
Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mall order advertisments where money is paid in advance, the code requires advertisers to fulfil orders within 28 days, unless a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please retain proof of postage/despatch, as this may be needed.

## Mail Order Protection Schame

If you order goods from Mail Order adver tisements in this magazine and pay by post in ad vance of delivery. PRACTICAL ELECTRONICS will consider you for compensafion if the Advertiser should become insolvent or bankrupt. provided:
(1) You have not received the goods or had your money returned; and
(2) You write to the Publisher of PRACTICAL

ELECTRONICS summarising the situation no earlier than 28 days from the day you sent your order and not later than two months from that day.
Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.
We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiser has been declared bankrupt or insolvent.
This guarantee covers polly advance payment sent in direct response to an advertisement in this magazine not. for example, payment made in response to catalogues etc, received as a result of answering such advertisements. Classified advertisements are excluded.

## INDEX TO ADVERTISERS

AC DC Electronics<br>72

Barrie Electronics ..... 33
Bensham Recordings ..... 24
BICC Vero ..... 34
Bimsales. ..... 56
Bi-Pak ..... 7
Blackstar ..... 56
British National Radio \&
Electronics School ..... 9
Butterworths ..... 11
Clef Products ..... 56
Cricklewood ..... Cover 3
C.R. Supply Co ..... 70
C-Tec Security ..... 71
M.Dziubas ..... 10
Electronic Mail Order ..... 70
Electrovalue ..... 56
Flight Electronics ..... 13
G.C.H.Q. ..... 71
Greenweld ..... 6
G.S.C. ..... 11
Hallett Gordon ..... 70
ICS Intertext ..... 6
ILP Electronics ..... 24
Jones J.C. ..... 70
Maplin ..... $9+$ Cover 4
Midwich ..... 4
Millhill ..... 56
Modern Book Co. ..... 72
Phonosonics ..... 24
PKG Electronics ..... 71
Powertran ..... Cover 2
Proto Design ..... 70
Radio Component Specialists ..... 71
Radio \& T.V. Components . ..... 4
R.H. Supplies ..... 23
Riscomp ..... 10
Scientific Wire Co. ..... 71
Service Trading ..... 34
Swanley Electronics ..... 10
Tandy ..... 14
T.K. Electronics ..... 5
Tomorrows World ..... 33
Watford Electronics ..... 2 \& 3
Wersi ..... 33

[^4] affixed to or as part of any publication or advertising, literary or pictorlal matter whatsoever.


* Single-key selection of all' major multi-key functions.
* Plugs directly into Spectrum expansion port and extends port for other peripherals.
* Can accept Atari-type joysticks (optional extra).
* Absolutely no soldering or dismantling of Spectrum.
* Available in kit-form or ready-built.

The kit is sold in three parts - the Keyboard Main Kit which allows you to make your own arrangements for connection to the Spectrum - the Adaptor Kit which contains the extension board and socket for the expansion port and the cable between the

## KIT ONLY READY.95 <br> $£ 44.95$

Case
luded in both prices
extension board and the keyboard and the Case Kit which includes all the necessary mounting hardware
Order As LK29G (Keyboard Main Kit) Price $£ 28.50$

LK30H (Adaptor Kit) XG35Q (Case)
Full construction details in Projects Book 9.
Also available ready-built for direct connection and including case Order As XG36P (Spectrum Keyboard) Price £44.95

## Maplin's Fantastic Projects

Full details in our project books. Price 70p each.
In Book 1 (XA018) 120W rms MOSFET Comba-Amplifier • Universal Timer with 18 program times and 4 outputs - Temperature Gauge Six Vero Projects.
In Book 2 (XA02C) Home Security System - Train Controller for 14 trains on one circuit Stopwatch with multiple modes • Miles-per-Gallon Meter.

In Book 3 (XA03D) ZX81 Keyboard with electronics © Stereo 25 W MOSFET Amplifier - Doppler Radar intruder Detector • Remote Control for Train Controller

In Book 4 (XA04E) Telephone Exchange for 16 extensions Frequency Counter 10 Hz to 600 MHz . Ultrasonic Intruder Detector • I/O Port for $2 \times 81$ - Car Burglar Alarm Remote Contol for 25W Stereo Amp.
In Book 5 (XA05F) Modem to
European standard - 100 W 240 V AC

## CATALOGUE

A massive 480 big pages of description, pictures and data and now with prices on the page. The new Maplin catalogue is the one book no constructor should be without. Now includes new Heathkit section. On sale in all branches of W.H. Smith. Price $£ 1.35$ - It's incredible value for money. Or send $£ 1.65$ (including $p \& p$ ) to our mail-order address.



Inverter - Sounds Generator for ZX81 - Central Heating Controller - Panic Button for Home Security System Model Train Projects - Timer for External Sounder.
In Book 6 (XA06G) Speech Synthesiser for $\mathrm{ZX81}$ \& VIC20 Module to Bridge two of our MOSFET amps to make a 350W Amp - ZX81 Sound on your TV - Scratch Filter Damp Meter - Four Simple Projects
In Book 7 (XA07H) Modem (RS232) intertace for ZX81NIC20 - Digital Enlarger Timer/Controller - DXers Audio Processor - Sweep Oscillator CMOS Crystal Calibrator.

## Great Projects From E\&MM

Our book "Best of E\&MM Projects Vol. 1" brings together 21 fascinating and novel projects from E\&MM's first Year.
Projects include Harmony Generator, Guitar Tuner, Hexadrum, Syntom, Auto Swell, Partylite, Car Aerial Booster, MOS-FET Amp and other musical, hi-fi and car projects. Order As XH61R. Price $£ 1$.

In Book 8 (XA08J) Modem (RS232) Interface for Dragon and Spectrum Synchime - 1/O Ports for Dragon Electronic Lock - Minilab Power Supply - Logic Probe - Doorbell for the Deat
In Book 9 (XA09K) Keyboard with electronics for ZX Spectrum - InfraRed Intruder Detector - Multimeter to Frequency Meter Converter - FM

Radio with no alignment - Hi-Res Graphics for Z×81 - Speech Synthesiser for Oric - VIC Extendiboard •ZX81 ExtendiRAM Dynamic Noise Limiter for Personal Cassette Players - TTL Levels to Modem/RS232 Converter - Logic Pulser - Psuedo-Stereo AM Radio -Ni-Cad Charger Timer - AdderSubtractor - Syndrums' Interface Microphone Pre-Amp Limiter

## THE MAPLIN MODEM KIT

## Exchange programs

 with friends, leave or read messages from the various Billboard services, talk to computer bureaux, or place orders and check stock levels on Maplin's Cashtel service. A Maplin Modem will bring a whole new world to your computer and vastly increase its potential.
Now you can exchange data with any other computer using a 300 baud European standard (CCITT) modem and because the Maplin Modem uses this standard, you could talk to any one of tens of thousands of existing users.
Some computers need an interface and we have kits for the ZX81, VIC20/Commodore 64, Dragon and Spectrum and shortly Atari, whilst the BBC needs only a short program which is listed in Projects Book 8
A Maplin Modem will add a new dimension to your hobby.
Order As LW99H (Modem Kit) excluding case. Price £39.95. YK62S (Modem Case) Price $£ 9.95$.
Full construction details in Projects Book 5.

Post this coupon now for your copy of the 1984 catalogue. Price $£ 1.35+30$ p post and packaging If you live outside the U.K. send $£ 2.20$ or 11 International Reply Coupons. I enclose £1.65

## Name

Address



ELECTRONIC
SUPPLIES LTD
Mail Order. P.O. Box 3, Rayleigh, Essex SS6 8LR. Tel: Southend (0702) 552911 - Shops at: 159-161 King Street, Hammersmith, London W6. Tel: 01-748-0926. - 8 Oxford Road, Manchester. Tel: 061-236-0281. - Lynton Square, Perry Barr, Birmingham. Tel: 021-3567292. - 282-284 London Road, Westclift-on-Sea, Essex. Tel: 0702 554000. 46-48 Bevois Valley Road, Southampton. Tel: 070325831. All shops closed all day Monday.
All prices include VAT and carriage. Please add 50p handling charge to orders under $£ 5$ total value (except catalogue).

## PE LOCIC DESIGICARD

## LOGIC SOURCES

The standard TTL levels for 0 and 1 are well defined. In many cases, a circuit will need to use one of these levels to either prevent or ensure particular circuit behaviour, e.g. to be certain that the RESET input of a latch is kept inactive. A logic 0 or 1 source (as appropriate) is then used to drive the appropriate gate input. Some of the standard ways of generating logic 0 and logic 1 are shown below. Also included is the number of standard TTL gates which can be connected to each type of source.


$\int_{0}$

## UNUSED INPUTS

When the input of a TTL gate is left unconnected, the gate will behave as if that input is at logic 1. However, even though a 1 may be what is logically appropriate, leaving gate inputs 'floating' makes the circuit susceptible to noise, and affects the maximum operating speed. The recommended action, therefore, is to 'tie' a floating input to an appropriate logic source. The most convenient ways of doing this use either a $1 \mathrm{k} \Omega$ resistor between the input and +5 volt (for 1 ), or a direct link to OV (for 0 ). Up to 25 unused inputs can be tied to logic 1 with a single resistor. For unused inputs on multi-input gates, an alternative approach is to connect them to one of the used inputs on the same gate; this will have no effect on the fan-in.

$\square$


## TTL SUPPLIES

TLL operates from a single +5 V d.c. supply. At no time should the voltage at the i.c. supply pin exceed +7 V . The supply should ideally be regulated to within 250 mV of the nominal +5 V , and the ripple should be less than 250 mV . The greater the number of i.c.s in a circuit, the more important is the need for a well-regulated supply. When designing power supplies for TTL, there are three important requirements to be satisfied:-

$$
\star \text { A regulated supply of voltage. }
$$

* Low-impedance supply distribution.
$\star$ Effective supply decoupling.
These are all necessary characteristics if a TTL circuit's behaviour is to be unaffected by its power supply.


## LOAD CURRENT

Designing a power supply unit (p.s.u.) for a TTL circuit requires a knowledge of the maximum current to be supplied. The TTL data books give supply figures in either mA or mW, quoted either pergate or per-package. Any mW figures should first be converted to mA by dividing by 5 . The total current for each package is then worked out by multiplying any per-gate figures by the number of gates in the i.c. (whether or not they are actually used). Then total up the current for all of the TTL i.c.s, and add in any other circuit loads (relays, l.e.d.s, etc.). This gives the expected overall load current for the circuit. A useful p.s.u. design current is obtained by adding a safety margin of (say) $20 \%$ to this last figure.


## PSUs FOR TTL

The most convenient p.s.u.s for TTL essentially use a mains transformer, a bridge rectifier and an i.c. voltage regulator. This arrangement provides an extremely stable, protected supply at reasonable cost, using only a small number of readily available components. By selection of an appropriate transformer, bridge and regulator, the same circuit may be used for a wide range of applications. The circuit shown below is suitable for use with TTL circuits which impose a load of up to 1A.

## SUPPLY DISTRIBUTION

Good power distribution is essential in any TTL circuit. The power supply wiring must have a low impedance at all frequencies up to around 35 MHz ( 125 MHz for Schottky TTL). This prevents sudden bursts of high speed operation in one part of the circuit affecting another area via the power supply lines. A low impedance supply requires both good distribution and good decoupling (see later). A number of simple rules will help avoid problems with supply distribution.

1. Use wide p.c.b. tracks for the main 0 V and +5 V rails.
2. The main OV rail should ideally be at least 8 mm wide.
3. The main +5 V rail should ideally be at least 6 mm wide.
4. Try to run the main OV track around the edge of the board.
5. Keep connections between the i.c. and OV short.
6. Use supply leads rated at $5-10$ times the expected load.
7. Use connectors rated at 5-10




##  <br> 7428 Quad 2-input NOR buffer





7438 Quad
2-input NAND buffer oc


4-input NAND buffer










74104 Gated J-K preset and clear


74105 Gated J-K preset and clear



74110 J-K
with data lock-out


74111 Dual
J-K with data lock-out


[^0]:    C) IPC Magazines Limited 1984. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]:    01 PRINT"Shift/CIrHome":REM Clear screen
    02 PRINT"To start the DAC function you must"
    03 PRINT"enter a value 0 to 255 in the I/O register": PRINT:PRINT
    04 PRINT"Typing in a new value changes the status of the port":PRINT:PRINT

[^2]:    Signature
    Date
    Please read the RULES then write your advertisement hereone word to each box. Add your name, address and/or phone no.
    COUPON VALID FOR POSTING BEFORE 6 APRIL 1984 (One month later for overseás readers.)
    SEND TO: PE BAZAAR, PRACTICAL ELECTRONICS, WESTOVER HOUSE, WEST QUAY ROAD, POOLE, DORSET BH 15 1JG.

[^3]:    Company registered in England. Registeied No. 53626. Registered OHice: King"s Reach Tower. Stamford Street. London SEI 9LS

[^4]:    Published on approximately the 7th of each month by IPC Magazines Limited, Westover House, West Quay Road, Poole, Dorset BHis 1 JG . Printed in England by Chapel River Press, Andover, Hants. sole Agents for Australia and New Zealand - Gordon and Gotch (Asia) Lid.; South Africa - Central News Agency Lid. Subscriptions INLAND E13 and OVERSEAS $£ 14$ payable to IPC Magazines Ltd., "Practical Electronics" Subscription Department, Room 2816, KIng's Reach Tower, Stamford Street. London SE1 9LS. PRACTICAL ELECTRONICS is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having beengiven, be lent, resold, hired out or otherwise disposed of by way of Trade at more than the recommended selling price shown on the cover, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or

