PRACTICAL $=1=1$

Standard features -

- High speed 24K byte extended basic interpreter
- Powerful TMS9995 16 bit microcprocessor
- 48 bit floating point gives 11 digit accuracy
- High resolution (256×192) colour graphics
- Screen memory does not use up user memory space
- 16 colours available on the screen together in graphic mode
- Fast line drawing and point plotting basic commands
- High speed colour shape manipulation from basic
- Full textual error messages
- String and Array size limited only by memory size
- Real time clock included in basic
- Interval timing with 10 mS resolution via TIC function
- Named load and save of basic or machine code programs
- Auto-run available for any program
- Powerful machine code monitor
- Assembler and Disassembler included as standard
- Auto line numbering facility
- Full renumber command
- Simple but powerful line editor
- Buffered i/o allows you to continue executing the program while still printing
- Flexible CALL statement allows linkage to machine code routines with up to 12 parameters
- Basic programs may contain spaces between key words to make programs readable without using more memory
- Over 34 K bytes available for basic programs
- Extended basic includes IF-THEN-ELSE
- Supports up to 16 output devices: Screen and cassette interfaces included as standard
- Supports bit manipulation of variables from basic
- Error trapping to a basic routine included
- Basic supports Hexadecimal numbers
- Separate 16K video RAM for graphics

With this powerful machine (featured in Electronics Today International as a constructional project) you have access to highly advanced systems and software developed specially by MPE Ltd for the CORTEX. For business, education, R \& D - or simply increasing your knowledge and understanding of computers - it beats comparably priced off-the-shelf machines hands down!

STATEMENTS	PRINT	TIME	RENUM	MAG	MWD		(1)	INT	POS
IF	?	$\begin{aligned} & \text { WAIT } \\ & \text { SAVE } \end{aligned}$	BOOT GRAPH	$\begin{aligned} & \text { TOF } \\ & \text { TON } \end{aligned}$	BASE	@	[1]	LOG	COL
ON		LOAD	TEXT	DIM	Commanos	\#	FUNCTIONS	SYA	MND
GOTO	1 UNI	MOTOR	PLOT	LET	SIZE		FNA-FNZ	TIC	KEY
GOSUB	BAUD	ESCAPE	UNPLOT	DEF	CONT	?		SGN	OPERATORS
POP	CALL	NOESC	COLOUR	NEW	MON	\%		BIT	OR
ROR	READ	ENTER	SPRITE	EIT	DELIMITERS	\$	ATN	CRE	LOR
NEXT	RESTOR	LIST	SHAPE	CRB			SIN	MEM	AND
ERROR	RETURN	PURGE	SPUT	CRF	TAB		COS		LANO
INPUT	STOP	NUMBER	SGET	MEM	STEP		EXP		NOT
el	CII		\12				FR	MCH	LXOR

Ready built £395
All prices exclusive of
VAT. Carriage paid.

Optional extras

RS232C interface kit Floppy disc interface Pair of $51 / 4^{\prime \prime}$ disc drives Hardware kit \& connectors
£9.20 Ready built
$\mathbf{£ 6 5 . 5 0}$ CORTEX B - Basic machine £300.00 + RS232C $\mathbf{£ 4 9 . 5 0}$ CORTEX C - as above + disc drives $\mathbf{£ 8 9 5 . 0 0}$

Full assembly instructions and 216 page user's manual.

POWERTRAN cybernetics

Portway Industrial Estate, Andover SP10 3PE. Tel: 026464455

PRACTICAL
 ELECTRONICS
 VOLUME 19
 No. 12
 DECEMBER 1983

CONSTRUCTIONAL PROJECTS

GAS SAVER by Mike Abbott 22
Electronic thermostat for gas central heating
ZAP GUN
32
A fun gun featuring a flash tube and sound effects
EXPANDING THE VIC 20 Part Three by Sam Withey 54
Low voltage Driver Board
LOGIC ANALYSER Part 5 by D. Mandelzweig MSc Eng 58
CMOS input option

GENERAL FEATURES

DINORWIG by Brian Butler 38
The CEGB's Pumped Storage Power Station
INTRODUCTION TO DIGITAL ELECTRONICS by M. Tooley BA and D. Whitfield MA MSc CEng MIEE 44
Part 3 of our electronics course
VERNON TRENT AT LARGE 53
An interview with Evan Steadman
MICRO-BUS
A monthly focus on micro's for the home constructor
SEMICONDUCTOR CIRCUITS by Tom Gaskell BA(Hons)62

Logic controlled dual regulator (LT 1005 CT)

NEWS AND COMMENT

EDITORIAL 15
NEWS AND MARKET PLACE 16
Including Silicon News Corner INDUSTRY NOTEBOOK by Nexus 18
News and views on the electronics industry PATENTS REVIEW 21
Instant digital disc-US broadcast battle
SPECIAL OFFER-CASSETTES 31
READOUT 36
SPACEWATCH by Frank W. Hyde 51
Extra-terrestrial activities chronicled 57
BAZAAR 60,64
ree readers advertisements 66Complete index for PE 1983

DUE TO LACK OF SPACE PART TWO OF SIMPLE SPEECH AND MICRO-FILE HAVE BEEN HELD OVER TILL NEXT MONTH

OUR JANUARY ISSUE WILL BE ON SALE FRIDAY, DECEMBER 2nd, 1983
(for details of contents see page 65)

[^0]

Build and test your own circuit with the New Verobloc Kit

Try the new prototyping method of building and testing circuits with the l3ritish-made Verobloc kit It consists of:

1. Verobloc. 2. A pad of design sheets for planning the circuits. 3. A component mounting panel for the larger components, i.e. switches, etc.

You can expand the circuit area by simply interlocking two or more Veroblocs and, of course, with normal usage, they can be used time and time again without damaging contacts or component leads. The glass nylon naterial is sirually unbreakable and able to withstand temperatures from $-60^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$.

So take advantage of our special price of $£ 5$ per kit (including VAT) by completing the coupon below, or telephone 04215) 62829 (24 hours). This offer closes December 31st, 1983.

Our new catalogue containing over 150 new products is available from midOctober.

BICC Vero l:lectronics Limited, Reail l)ept., Industrial Estate, Chandiers IFord, Hampshire, SO5 3\%R.
Please allow 2-3 weeks for delivery.

I wish to purchase at $L 5$ per kit inclusive ol \'Al for a total of \mathcal{L} ! enclose my cheque/postal order or Debit ny Access/harclaycard No. | Access/harclaycard No. Deke where apmopriase |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 VISA Name: Address:
1.
$\square=-\quad$ losicode

Mridwich
EAST ANGLLA'S LEADING SUPPLIER OF MICROCOMPUTERS AND COMPONENTS TO EDUCATIONAL ESTABLISHMENTS.

THE 1984 GREENWELD CATALOGUE
Now in the course of production, the 1984 GREENWELD catalogue will be pubilished in November. It's Bigger, Brighter, Better, more components than ever before. With each copy there's discount vouchers. Bargain List, Wholesale Discount List, Bulk Buyers List, Order Form and Reply Paid Envelope. All for lust $£ 1.001$ Order now for early delivery!

MOTORRED GEARBOX

These units are as used in a computerized tank, and offer the experimenter in robotics the opportunity to buy the lectro-mechanical parts required in ullding remote controlled vehicles. The unit has $2 \times 3 \mathrm{~V}$ motors, linked by a magnetic clutch, thus enabling turning of the vehicle, and a gearbox contained within the black ABS housing, reducing the final drive speed 10 approx 50 rpm . Data is supplied with the unit showing various options on driving the motors etc. $£ 5.95$. Suitable wheels also avait able: $3^{\prime \prime}$ Dia plastic with black tyre, drilled to push-fit on spindle. 2 for $£ 1.30$ (imited qty). $3^{\prime \prime}$ dia aluminium disc 3 mm thick, drilled to push-fit on spindle. 2 for 68 p .
NUTS. SCREWS, WASHERS \& BOLTS
Over 2 million in stock, metric, BA, self tappers etc. SAE for list.

VEROBLOC £1 OFF!
Our biggest selling breadboard on offer at a special price of $\mathbf{E 4 . 1 0}$.

2N3055 SCOOP!

Made by Texas - full spec devices 60 p each; 10 for £4; 25 for $£ 9 ; 100$ for $£ 34$: 250 for $\mathbf{£ 7 5 ;} 1000$ for $\mathbf{E 2 6 5}$.

STABILRED PSU PANEL

A199 A versatile stabilized power supply with both voltage $(2-30 \mathrm{~V})$ and current ($20 \mathrm{~mA}-2 \mathrm{~A}$) fully variable Many uses inc. bench PSU, Ni-cad charger gen purposes testing Panel ready buit, tested and calibrated. $\mathbf{7 7 . 7 5}$. Suitable transformer and pots, E6.00. Full data supplied.

FERRIC CHLORIDE

New supplies just arrived - 250 mg oags of granules, easily disolved in sive polishing block 95p

ELECTRO-DIAL

Electrical combination lock - for maximum security - pick proof. 1 million combinations! Disi is turned to the right on one number, left to a second number, then right again to a third number. Only when this has been completed in the correct sequence will the electrical comacts close. These can be used to $65 \mathrm{~mm} \times 60 \mathrm{~mm}$ deep. Oniy E3.95.

COMPUTER GAMES

2901 Can you follow the flashing light pulsating tone sequence of this famou game Suppied as a fy working PCB tions Only 84 95 2902 Probably
2902 Probably the most popular elec tronic game on the market - based on the old fashioned pencil and paper bat tleship game, this computerized ver sion has brought it bang up to datel We supply a ready built PCB containing 76477 sound effect chip. TMS 1000 mi cro-processor chip, R's, C's etc. Offered for its component value only (board may be cracked of chipped, it's only £1.95. Instructions and circuit. 30p.

LIE DETECTOR
Not a toy, this precision instrument was Originally part of an Open University course, used to measure the change in emotional balance, or as a lie detector Full details of how to use it are given and a circuit diagram. Supptied com plete with probes, leads and conductive jelly. Needs 24 , batts. Overall size 15 $\times 100 \times 100 \mathrm{~mm}$. Only $£ 9.95-$ worth that for the case and meter alonell

RIBBON CABLE
Special purchase of multicoloured 14 way ribbon cable - $40 \rho /$ metre; 50 m £18.00; $100 \mathrm{~m} £ 32.00 ; 250 \mathrm{~m} \mathrm{E} 65.00$.

TTL PANELS

Panels with assorted TM inc. LS types Big variety. 20 chips $£ 1.00$; 100 chips £4.00; 1000 chips $£ 30.00$.

RELAYS
Reed relays inke RS 348-970 etc W950 12V SP make 500R W953 12V SPCO 500R W955 24V DP make 750R
W955 24V DP make 750R
HEATSINK
2905 Finned black ally heatsink 125 $198 \times 23 \mathrm{~mm}$ with 4×2 N3055 and $4 \times$ OR25 R's. Only $\in 2.50$

TREAT YOURSELF TO A NICE NEW DIGITAL MULTIMETER!! KD55C A DVM for the professional this 3 f digh muhtester has overload protection, low battery and over range indication. Full auto-polarity operation. AC Vors: $0.2-700$
DC Vors: $0.2-1000$
AC Current: 200uA-10A
DC Current: 200ua-10A
Total 28 ranges for iust $£ 44.95$
$443 c$ Millbrook Road Southampton SO1 DHX
ALL PRICES INCLUDE VAT; JUST ADD 60p P\&P

in

FREE CAREER BOOKLET

Train for success in Electronics Engineering, T.V. Servicing, Electrical Engineering-or running your own business!

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the fields of electronics, T.V., electrical engineering - now it can be your turn. Whether you are a newcomer to the field or already working in these industries, ICS can provide you with the specialised training so essential to success
Personal Tuition and 80 Years of Success The expert and personal guidance by fully qualified tutors, backed by the long ICS record of success, is the key to our outstanding performance in the technical field. You study at the time and pace that suits you best and in your own home.
You study the subjects you enjoy, receive a formal Diploma, and you're ready for that better job, better pay.

TICK THE FREE BOOKLET YOU WANT AND POST TODAY

ELECTRONICS
ENGINEERING
A Diploma Course, recognised by the Institute of Engineers \& Techmcians as meeting all acalenic standards for
application as an Associate

ELECTRICAL

ENGINEERING
A further Diploma Course recognised by the Institute of Engineers \& Technicians, also covering business aspects of electrical contracing

RUNNING YOUR OWN BUSINESS electronics. T.V.servicing or electrical business appeals. then this Diploma Course trains you th the vital business knowledge and techniques you'll need

T.V. \& AUDIO SERVICING

A Diploma Course, training you in all aspects of installing mamtanning and repairing T.V anct Audio equipment. domestic and industrial

125W HIGH POWER AMP MODULES

The power amp kit is a module for high
power applications. disco units, guitar ampllf. iers, public address systems and even high
power domestic systems. The unit is protected against short circuiting of the load and is safe In an open circuit condltion. A large safety margin exists by use of generously rated com ponents, result, a high powered rugged unit The PC board is back printed, etched and ready to drill for ease of construction and the aluminium chassis is preformed and ready to
use. Supplied with all parts, circult diagrams use. Supplied with
and Instructions.
ACCESSORIES: Stereo/mono mains power supply
kit with transformer: $£ 10.50$ plus $£ 2.00$ p\&p.

SPECIFICATIONS

Max. output power (RMS): 125 W . Operating voltage (DC): 50 . 80 max. Loads: 4. 16 ohm Frequency response measured @ 100 watts: $25 \mathrm{~Hz}-20 \mathrm{KHz}$. Sensitivity for $100 \mathrm{w}: 400 \mathrm{~m}$ @ 47 K . Typicat T.H.D. @ 50 watts, 4 ohms 0.1%. Dimensions: 205×90 and $190 \times 36 \mathrm{~mm}$

KIT $£ 10.50$
BUILT £14.25

AUDAX 8"
 SPEAKER BARGAINS

2 WAY 10 WATT SPEAKERKIT
8 " bass/mid range and 3% " tweeter. Complete with screw wire, crossover components and cablinet. All wood precut - no cutting required. Finish chipboard covered mood simulate, size $14 \%_{2}$ " x
$8 \%{ }^{\circ} \times 4^{\prime \prime}$. PAIR for ONLY $£ 12.50$ plus $£ 1.75$ p\&p.

ALL CALLERS TO: 323 EDGWARE ROAD,
LONOON W2. Telephone: 01.7238432. 15 minutes walk trom Edgware Road Tube Station)
Now open 6 davs a week 9 - 6 . Prices (nclude VAT

5°
 昭
 PRICES REDUCED ON SUPER SAVE D.I.Y. KITS
 SELF ASSEMBLY ELECTRONIC KITS

SX 1000

Electronic Ignition

- Inductive Discharge - Extended dwell circuit stores greater energy in switch - Patented clip-to-coil fitting - Easy to assemble, easy to fit Contact breaker triggered - includes bounce suppression circuit.

TX 1002
Electronic Ignition

- Inductive discharge Extended dwell circuit stores preater energy in coil thangeover switche Contactless or contact breaker triggered Clip-to coil or remote mounting Rugged die cast case Contactless adaptors
included formajority of 486 cylinder vehicles Easy to build For details of vehicles fitted by contactless trigger, fing
Technical Service Oept on (0922)611338.9.

SX 2000 Electronic Ignition

- Reactive Discharge Combines Inductive \& capacitive energy storage Gives highest possible spark energy Patented clip-10-coil fiting Easy assembly sequence bounce suppression circuit.

SUPERSAVE

TX2002

Electronic Ignition

- Two separate systems in ene unit! - Reactive Discharge OR Inductive Discharge. with three position
changeover switch Gives highes! changeover switch Gives highest of remote mounting - Rugged die-cas case Coner Contless adaptors iriggered Contactess adaptors vehicles For details of vehicles fitted by contactless trigger, ring Technical Service Dept on (0922) $611338 \cdot 9$.

AT-80 Electronic Car Security System

- Guards doors, boot, bonnet Irom unauthorised entry Armed/ sensor pad adhered to inside of programmable code 30 second delay-io-arm - Flashes headlights and sounds horn intermittently for 60 seconds when activated Security loop protects accessories - Function lights to assist setting up Low consumption C.MOS circuitry.

SUPERSAVE

VOYAGER Car Drive Computer

- 12 functions centred on Fuel, Speed, Distance and Time Single chip
microprocessor Large high brightmess fluorescent display with auto dimming feature High accuracy distance \& fuel transducers included - Displays MPG. L/100km and miles/litre at the flick of a switch Visual \& audible warnings of excess speed. ice, lightstleft-on
Independent LOG \& TRIP functions Low consumption crystal Independent LOG \& TRIP functions Low consumption crystal controlled circuitry

かor circury

SPECIAL OFFER
"FREE" MAGIDICE KIT WITH ALL ORDERS OVER $£ 40.00$

SPARKRITE (A Division of Stadium Lid.) 82 Bath Street. Walsall. WS 130 England Tel: (0922) 614791

KIT	OLDPRICE	NEW PRICE
5X 1000	81295	¢11.95
SX 2000	C1995	$¢ 18.95$
TX 1002	¢22.95	£22.35
TX 2002	¢3295	¢32.95
AT-40		99.95
AT. 80	53295	¢24.95
ULTRASONIC		$£ 17.95$
vovager	¢6495	$\underline{64.95}$
MAGIDICE	c9.95	£6.95

MAGIDICE Electronic Dice

- Triggered by waving hand over fice Completely random selection
- Bleeps 8 flashes during 4 sec tumble Throw displayed for 10
seconds then flashes to conserve battery Low consumption C-MOS circuitry

NAME
ADDRESS

CUT OUT THE COUPON NOW!

AMPLIFIERS

Over the last few years we have received feedback via the general public and industry that our products are from Taiwan, Singapore, Japan, etc... ILP are one of the few 'All British' electronics Companies manufacturing their own products in the United Kingdom. We have proved that we can compete in the world market during the past 12 years and currently export in excess of 60% of our production to over twenty different countries - including USA, Australia and Hong Kong. At the same time we are able to invest in research and development for the future, assuring security for the personnel, directly and indirectly, employed within the UK. We feell very proud of all this and hope you can reap some of our success.
I.L.Potts - Chairman

Protection: Full load line. Slew Rate: $15 \mathrm{w} / \mu \mathrm{s}$. Risetime: $5 \mu \mathrm{~s}$. S / N ratio: 100 db
Frequency response $(-3 \mathrm{~dB}) 15 \mathrm{~Hz}-50 \mathrm{~K} \mathrm{~Hz}$. Input sensitivity: 500 mV rms
input Impedance: $100 \mathrm{~K} \Omega$. Oamping factor: $100 \mathrm{H}_{2}>400$

PRE-AMP SYSTEMS

Modula Number	Module	Functions	Currant Required	Prica ine. VAT
Hy6	Muno pre amp	Mic/Mag. Cartidge/Tuner/Tape/ Aux • Vol/Bass/Treble	10 mA	¢ 7.60
HYGE	Stereo pre amb	$\mathrm{Mic} / \mathrm{Mag}$. Cartidge/Tuner/Tape/ Aus \& Vol/Bass/Treble/Balance	20 mA	¢14.32
HY73	Civinder preamp	Two Guitar (Bass Lead) and Mic 4 separate Volume Bass Treble \& Mix	20 ma	£15.36
HY78	Steren pre amp	As HY66 less tone controls	20 mA	¢14.20

Most pre amp modules can be driven by the PSU driving the mann powet amp
A separate PSU 30 is available purely for pre amp modules if required for
C5.47 finc. VATI. Pre-amp and mixing modules in $\mathbf{t 8}$ ditferent varlations.
Please send for derails.
Moumang Boards
For ease ol construction we recommend the BE for modules HY6-MY 13 \&1.05
(inc. VATI and the 86610 modules HY66-MY78 £1,29 linc. VA TI,
POWER SUPPLY UNIFS \|incorDorating our own toroldal iranstomest

$\begin{aligned} & \text { Mortel } \\ & \text { Number } \end{aligned}$	For Use Wish	Priee ine. VAT
PSU $21 \times$	1or 2 HY30	¢19,93
PSU 41 x	1 or 2 HY60, 1 n HY6060. $1 \times$ MY 124	£13.83
PSU 42x	¢ x HY128	¢15.90
PSU 43x	1. MOS128	¢16.70
PSU $51 \times$	2:HY128.1 ¢ HY244	£17.07

Modot Number	For Use With	Priee ine. VAT
PSU 52x	$2 \times \mathrm{HY124}$	¢17.07
PSU $53 x$	$2 \times$ MOS 128	${ }^{17} 17.86$
PSU $54 \times$	1×HY2AB	£17.86
PSU 55x	$1 \times \operatorname{MOS} 248$	¢14.52
PSU 71x	2^HY244	¢21.75

Modal Number	For Use With	Pries inc. VAT
PSL 72x	2× 14 Y 248	122.9
PSU. 73 x	$1 \times \mathrm{HY} 364$	1/2.9
PSU 74x	12 MY368	124.80
PSU $75 \times$	2EMOS248.1-MOS 368	182.81

Please note: X in part no. indicates primery voltage. Please insert O in place of
X for $110 \mathrm{~V}, ~ " 1$ " in place of X for 220 V , and " 2 " in piace of X for 240 V .

TOROIDALS

The toroidal transformer is now accepted as the standard in industry overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, welght, lower radiated field and, thanks to I.L.P., PRICE

Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS together with a shorf lead fime on quantity orders which can be programmed so vour requirements with no price penalty.

OUR GREAT NEW ILLUSTRATED CATALOGUE IS PACKED WITH INFORMATION ON SUPERB QUALITY PROFESSIONAL BUFGLAR ALARM EQUIPMENT

\therefore AT UNBEATABLE PRICES!

SEND SAE OR PHONE NOW FOR YOUR COPY

AINTREE LIVERPOOL

TWO FABULOUS OFFERS FROM

SUPER 20
20k $/$ /V a.c. 8 d.c.

A SUPER PROTECTED UNIVERSAL MULTIMETER

Undestructible, with automatic protection on all ranges but 10A.

ONLY £33-50

inc. VAT, P\&P, complete with
carrying case, leads and instructions
This special offers is a wonderful opportunity to acquire an essential piece of test gear with a saving of nearly $£ 20.00$.
Accuracy: d.c. ranges and $\Omega 2 \%$ a.c. 3% (of f.s.d.)
39 ranges: d.c. $\mathrm{V} 100 \mathrm{mV}, 10 \mathrm{~V}, 3.0 \mathrm{~V}, 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$. d.c. $150 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 300 \mu \mathrm{~A}, 1.0 \mu \mathrm{~mA}, 3 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$, $100 \mathrm{~mA}, 1 \mathrm{~A}, 10 \mathrm{~A}$
a.c. $\mathrm{V} 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$.
a.c. $13 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}, 100 \mathrm{~mA}, 1.0 \mathrm{~A}, 10 \mathrm{~A}$ $\Omega 0-5.0 \mathrm{k} \Omega, 0-50 \mathrm{k} \Omega, 0-500 \mathrm{k} \Omega, 5 \mathrm{M} \Omega, 50 \mathrm{M} \Omega$. dB from -10 to +61 in 5 ranges.
Dimensions: $105 \times 130 \times 40 \mathrm{~mm}$.

SUPER TESTER $5050 \mathrm{k} \Omega \mathrm{V}$ a.c. and d.c.

The best instrument for the workshop, school, toolbox, TV shop and anywhere accurate measurement is needed quickly and simply.

Accuracy: d.c. ranges and 122% a.c. 3% (off.s.d)
39 ranges: d.c. $V 150 \mathrm{mV}, 1 \mathrm{~V}, 3 \mathrm{~V}, 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$; d.c. $120 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 300 \mu \mathrm{~A}, 1.0 \mathrm{~mA}, 3 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$, $100 \mathrm{~mA}, 1 \mathrm{~A}, 3 \mathrm{~A}$.
a.c. $\mathrm{V} 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$;
a.c. $13 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}, 100 \mathrm{~mA}, 1 \mathrm{~A}, 3 \mathrm{~A}$.

Ohms 5 k ?, $50 \mathrm{k} \Omega, 500 \mathrm{k} \Omega, 5 \mathrm{M} \Omega, 50 \mathrm{MS}$.
dB from -10 to +61 in 5 ranges.
Dimensions: $105 \times 130 \times 40 \mathrm{~mm}$.

For details of these and the many other instruments in the Alcon range, including multimeters, components measuring, automotive and electronic instruments, please write or telephone:

[^1]
PRINCE MONITOR

A 24 mhz. green screen monitor for LESS THAN \&90this is the best price ever.

Send $£ 89.69$ today for yours. 12 months guarantee. Ex-stock

CROFTON ELECTRONICS LTD.

36 GROSVENOR ROAD, TWICKENHAM, MIDDX 01 -991 1923/1613Tritax 295093

The K5000 Metal Detector Kit combines the challenge of DIY electronics assembly with the reward and excitement of discovering Britain's buried past.

As a Metal Detector-the K5000 boasts the proven pedigree of C-Scope, Europe's leading detector manufacturer As a Kit-simplified assembly techniques require little technical knowledge, and no complex electronic test equipment. All stages of assembly are covered in a finely-detailed 36 page manual.
Detector Features Analytical Discrimination \&Ground Exclusion
Ask at your local Hobby/Electronics shop or use the coupon and send with your remittance to:-
C-Scope International Ltd., Wotton Rd., Ashford, Kent TN23 2LN
Flease send me K5000 Kits@ £119.99(+£3.00 p+p) each. T

\square Please debit my Barclaycard/Access
(\square I enclose Cheque/PO
E
| Name
\qquad
I Address ..
-. - - - - - Please allow 14 days for delivery.]

YOURCAREER.YOUR FUTURE.YOUR OWNBUSNESS..YOUR HOBBY THIS IS THEAGE-OF ELECTRONICS! the world's fastest growth industry...

There is a wo-ld wide demand for designers/engi eers and for men to service and maintain all the electronic equipment on the markez tocay - industrial - commercial and domestic. No uemployment in th s walk of life! Also - the məst exciting of all hobbies - especially if you know the basic essentials of the subject. . . .
A few jours a week for less than a year - and the knowledge will be yours. . .
We have had over 40 years of experience in training men and women successfully in this subject.

> Our news style course will enable anyone zo have a real understanding of electronics by a modern, practical and visual method. Ne previous
> knowlecge is required no maths, and an absolute minumum of theory.

> You learn by the practical way in easy steps, mastering zll the essentials of your hobby or to sart, or further, a career in electronics o^{-}as a self. employed servic ng engineer.

> All the training can be carried out in the corrfort of your cwn home and at your own pace. A tutor is available to whom wou can write personally at any time, for advice br he p during your work. A Certificate is given at the end work, A Centrice.

You will do the following:

- Build a misdern oscilloscope
- Recognise and handle current electronic components
- Read, dran and understand circait diagrams
- Carry out 40 experiments on basic electronic circuits used in modern equipment using the oscilloscoce
- Build and use digital electronic sircuits and currext solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V. Hi-Fi, VCR and microprocessor/computer equipmert.

CACC British National Radio \& Jlectronios Shhool Reading,Berks.RGI 1BR

COLOUR BROCHURE

POST NOW TO

Features single-knob range switch, full auto-polarity operation. Low-battery and over-range indicators. DC Volts! 2-20-200-2000V (max. 1000V). AC Volts: 2-20-200-2000V (max. 500 V), Accurate from 45 Hz to 10 kHz . DC Current: 2-20-200 mA - 2A. Resistance: 2-20-2002000K Ohms. Measures: $53 / 16 \times 31 / 4 \times 17 / 16 "$. Requires 9 V battery. 22-189

Digital Logic Probe With
 Tone and LED Indicators

- Overload and Polarity Protected The fast way to "peek inside" TTL, LS and CMOS digital circuits, Colour coded LED's indicate high, low or pulsed logic states (up to 10 MHz). Minimum detectable pulse widths: 50 ns . 36" leads with clips ohtain power from tested circuit. With instructions and users tips. 22-302

Deluxe Competition Joystick

Eg95

Features a "jet fighter" contoured handle and two firing buttons - one on the handle and, another on the base. You can grip the base for "two-hand" operation also, and it includes a 4 ft . cable. With universal nine position connector. 270-1701

Electronics Books

(A) Semiconductor Reference Guide. Cross-reference and substitution section lists over 80,000 types and their low-cost Tandy equivalents.
276-4007
£2.99
[B] Getting Started in Electronics. Introduction to electronics written in clear, easy-to-understand language, the book encourages "hands-on" experience. 276-5003

[^2]
POP SOFTWARE

THE personal computer has now been with us for five years and in that time has moved from a strictly specialist hobby item to a mass interest consumer product. The problem is that the real reasons for the development of the microprocessor and ultimately the personal microcomputer, for problem solving, accounting, design and development, filing and similar tasks, have been overshadowed -in the eyes of most consumers-by the ability of the micro to play exotic klingon-zapping games.
The sales of software cassettes for games are rivalling pop records and record companies are being forced into software sales to assure their futures Don't get us wrong, we enjoy frog hopping and flying war planes (fictional ones of course) as much as the next person. We also believe the fun side of computing, which has led to the massive sale in the UK of home compouters, can ultimately be blamed for providing the basis of an exciting new development in home computing: the use of micros for "serious" applicatrons.

As regular readers will know, PE has shown the way in both microcomputer
development, with publication of a number of basic designs in the early days, and in developing systems for control purposes. Our Into The Real World series proved very popular with those wishing to interface their computers to the outside world. With eleatrical control systems for Aquarius and Electron being announced recently the manufacturers are also moving in this direction. It is noticeable that much of the new software is for applications like word processing, education, data bases and personal accounting; no doubt the software houses realise that game playing will eventually wane.

Where does PE come in? We will continue to provide designs to stretch microcomputers, to interface them with other items and to develop other uses. We will also provide designs using dedicated micros in control situatons.

HOW THEY WORK

With so many children learning programming it is unlikely that there will be many jobs available in that area in years to come, but those with an additional understanding of electronics will no doubt be better placed to secure employment. Not so many
months ago parents encouraged their children to learn electronics-the technology of the future -now they seem to feel computing is more impertent, let's not forget we need to know how the damn things work. For those that are interested our Introduction to Digital Electronics course is essential reading.

Incidentally we find it frustrating to buy some software in a microcomputer shop and have to wait while the assistan laboriously writes out a sales docket with full name and address and then separates the copies before taking the money. With all that high technology around surely just one micro could be switched from games to perform a sensible task of stock controt and mailing list recording. Or is that just too much to expect?
We would be interested to hear of other areas where mundane tasks are still periormed "by hand" while the staff are surrounded by high technology.

EDITOR Mike Kenward

Gordon Godbold ASSISTANT EDITOR
David Shorthand ASSISTANT
EDITOR/PRODUCTION
Mike Abbott TECHNICAL EDITOR
Brian Butler TECHNICAL SUB EDITOR

SECRETARY

ADVERTISEMENT MANAGER

Jack Pountney ART EDITOR
Keith Woodruff ASSISTANT ART EDITOR
John Pickering SEN. TECH. ILLUSTRATOR
Isabelle Greenaway TECH. ILLUSTRATOR
Jenny Tremaine SECRETARY
D. W. B. Tilleard AD. SALES EXEC. Alfred Tinge 01-261 6819 CLASSIFIED SUPERVISOR AD. MAKE-UP/COPY

Barbara Blake 01-261 5897
Brian Lamb 01-261 6601

Technical and Editorial queries and letters (see note below) to:
Practical Electronics Editorial, Westover House,
West Quay Road, Poole.
Dorset CHis IJG
Phone: Editorial Poole 671191
We regret that lengthy technical enquiries cannot be answered over the telephone

Queries and letters concerning advertisements to: Practical Electronics Advertisements, King's Reach Tower,
Stamford Street, London SE 1 9LS
Telex: 915748 MAGDIV-G

Letters and Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in PE. All letters requiring a reply should be accompanied by a stanped, self addressed envelope, or addressed envelope and international reply coupons, and each letter should relate to one published project only.

Components and p.c.b.s are usually available from advertisers; where we anticipate difficulties a source will be suggested.

Back Numbers and Binders

Copies of most of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE 1 OPF, at $£ 1$ each including Inland/Overseas p\&p. Please state month and year of issue required.

Binders for PE are available from the same address as back numbers at $£ 5.50$ each to UK or overseas addresses, including postage, packing and VAT where appropriate. State year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 13.00$ per 12 issues, from: Practical Electronics, Subscription Department, IPC Magazines Ltd., Room 2816, King's Reach Tower, Stamford Street, London SE1 9LS. Cheques, postal orders and international money orders should be friade payable to IPC Magazines Limited. Payment can also be made using any credit card and orders placed via Teledata. Tel. 01-200 0200.

Items mentioned are available through normal retail outlets, unless otherwise specified. Prices correct at time of going to press.

$D \square$ 8

ELAN'S ENTERPRISE

The home-micro market is without doubt an expensive and difficult place in which to compete for business. By the spring Elan Computers will add their machine to the list, which by that time is likely to exceed 30 options under $£ 250$. Elan feel they will not be missing out on the Christmas sales bonanza by launching the Enterprise 64 K in the spring. 'It's a product of the future' they say, and are confident that it will remain when its contemporaries bite the dust.

The Enterprise has 69 contoured full travel keys with an extra 8 being user-definable. On the right of the keyboard is an integral joystick that can be used for games or text manipulation. Two memory options are available, the 64 K and the 128 K , both are ultimately expandable to 4 Megabytes with add-on units.

The machine has a built-in word processor and can handle 56 lines of text at any one time, each with 84 columns. Two cassette recorder connections enable the user to read text or data from one tape machine while writing on the other, an indicator ensuring correct volume level setting when loading programs.

Another unique feature is stereo sound, via connection to a hi-fi or to headphones.

The graphics and sound are both controlled from customised chips. The colour of each pixel is controllable and therefore
high-resolution graphics are a reality rather than a claim. Four sound sources are available each with full volume control on stereo output. Tone generation is from 30 Hz to 125 kHz giving a musical range of is full 8 octaves. Multiple combinations of white noise generation, low/high pass filtering and ring modulation are possible.
The peripherals are modular and designed to stack together in an effort to make interconnecting spaghetti-junctions redundant. The machine is connected to the stack 'base unit' via a flexible ducting which contains all the necessary wiring. The base unit has an adaptor which supplies all the peripherals in the stack with their needs.

Separate 64 K ROM cartridges can be plugged into the machine, with games and education dominating this aspect. Languages include FORTH and LISP with BASIC as the norm.

ULTRASONIC MOVEMENT DETECTOR

Riscomp Limited have just launched the US 5063 which is an u/trasonic movement detection module employing digital techniques for processing the received signal. Such an approach not only provides a superior performance when compared to the conventional analogue circuitry, but also allows a choice of three levels of discrimination against false alarms. An exit delay and fixed alarm time have been incorporated, together with a selectable entrance delay. The transmitter section of the module is crystal controlled which allows several units to be used without inter-action problems where large areas are to be
covered. A 'hold' facility, together with a built-in l.e.d. indicator, is provided for setting-up purposes. Priced at $£ 13.95$, the module is supplied with a comprehensive data sheet.
Riscomp Ltd., 21 Duke Street, Princes Risborough, Bucks HP17 OAT (084446326).

LOGIC PROBES

Two brand new logic probes from Trio are now available from House of Instruments, DP-71 for TTL and CMOS up to 50 MHz and the DP-70 for TTL up to 30 MHz .
Logic probes enable the quick determination of the operational state of logic circuits, providing the user with a powerful troubleshooting and development tool.

These new probes feature response to input frequencies up to 50 MHz and pulse widths down to $20 n \mathrm{~ns}$, achieved by an extremely short ground lead, inherent in the clever design. A light compact plastic case that can be held neatly in one hand, housès the probe and I.e.d.s, while switches have been grouped for easy viewing and use on one side only.

The operational status of logic circuits is clearly indicated by three l.e.d.s, one for logic high (1), one for logic low (0) and one to indicate the existence of a continuous pulse. By placing the probe to memory mode, single pulses down to $20 n s$ in width, leading or trailing edges, can be detected with a reset switch to return to normal pulse mode.

Inputs are protected up to $\pm 100 \mathrm{~V}$ d.c. continuous and $\pm 250 \mathrm{~V}$ d.c. or 175 V r.m.s. up to 15 seconds. DP-70 with a 50 kohm input impedance, operates from internal batteries, while DP-71 has a 1 Mohm impedance and may be powered from a 4.5 to 18 V d.c. source.

The DP-70 is priced at $£ 24.00$ plus p\&p and VAT and the DP-71 is priced at $£ 49.00$ plus p\&p and VAT.
Quiswood Ltd. 30 Lancaster Road, St. Albans, Herts AL1 4ET (0799 24922).

POINTS ARISING...

INGENUITY UNLIMITED

 Pseudo Telephone Ringer Sept. 83IC2 should be a 7490 decade counter-not a 555 timer as printed.

Thermionic Integrated Circuits

A valve renaissance? Thermionic valve versions of integrated circuits, for reall No need to check, this is not the April issue, nor are integrated thermionic circuits (i.t.c.s) the work of Ireland's Ballygoback wards. They are, according to a report in Electronic Times, the joint creation of Arizona University and Los Alamos Scientific Laboratory. Circuits are delineated using conventional i.c. photolithographic techniques. Everything one would expect is sputtered onto an insulating sapphire substrate-grids, cathodes, anodes and heaters lthe latter in the form of metalisation films).

But why? Because the i.t.c. will run at 600 deg. C compared with silicon's ceiling of 150 deg. C. And i.t.c.s, with as many as 1000 switches per square inch, are radiation resistant. Los Alamos, which had to develop a high temperature ceramic package for the device, has produced i.t.c.s which could be used commercially right now, although, as vet, there are no takers.

Cool Chips

An ingenious and cost-effective system for keeping i.c.s cool is being marketed by Welwyn Electric after experimental work in conjunction with British Telecom's engineers at Martlesham. The chip carriers are mounted on a flexible p.c.b. which has holes punched through it. Each i.c. is sited over one of these holes, holes which accommodate steps, or pillars, in an alloy backplate type heatsink. The flexible p.c.b. ensures that each i.c. is tensioned against its metal pillar to give good thermal contact, and to evenly distribute mechanical stress. Thermally conductive grease is used to improve heat transfer from the chip carriers to the heat sink.

During production of an assembly, the fact that the flexible polyimide circuit has holes in it makes it easier to clean off flux. Once assembled, another plate is clipped to the top of the module to create a sandwich of only a few centimetres thick, which may be stacked one upon another.

DISC SYSTEM FOR MICRO-B

Advanced Memory Systems have produced the smallest possible disc system for the BBC Microcomputer using the new Hitachi $3^{\prime \prime}$ drives.

The drives are cased in rigid steel and cost $£ 225$ and $£ 399$ for the single and double versions. The system comes complete with cables, manuals, utilities on disc and EPROM as well as free discs.

The Hitachi drive has a brushless direct motor and when cased fits neatly on top of the BBC Micro. The casing has been textured and painted to match the computer.

Each side holds 100 K of storage. The small light on the drive casing reminds you which side you are using

At present the product is only available by mail order from Advanced Memory Services Lid., Woodside Technalogy Centre, Green Lane, Appleton. Warrington. 10925 62682).

BATTERY DMM
The TM356 is a battery-operated $3 \frac{1}{2}$ digit multimeter with a large 0.5" liquid crystal display.

It has a full measurement capability of d.c. and a.c. volts, d.c. and a.c. current, resistance and diode check in 29 ranges permitting measurement of voltages from $100 \mu \mathrm{~V}$ to 1000 V 1750 V a.c.), current from 100 nA to 10A, and resistance from $100 \mathrm{~m} \Omega$ to $20 \mathrm{M} \Omega$.

Battery life from alkaline 'C' cells is typically in excess of 3000 hours and a low battery indicator shows when approximately 10% of life remains.

The instrument is housed in a tough ABS moulded case with carrying hand/e/stand making it suitable for portable applications as well as bench work.

The TM356 is priced at 885.00 p/us VAT. Thandor Electronics Limited, London Road, St. Ives, Huntingdon, Cambs. PE17 4HJ (0480 64646).

Silicon News Corner

Bulletins announcing new semiconductor devices arrive at PE daily, so it is possible only to describe them briefly. Details of how to obtain further information are included, however.
Motorola Darlingtons added to 25 kVA line are complements to MJ10042/45/47. The MJ10041 handles 25A © 850V. MJ 10047 handles 100A@ 250 V . MJ 10044 handles 50A (a) 450 V

- Formerly available $350-600 \mathrm{~V}$ (150W) nchannel TMOS power MOSFETs now available in TO-218AC package.
- 48 complementary transistors added to bipolar line (TO-220 package) are direct replacements for GE devices, available as D44C, D45C, D44H \& D45VH series.
- MOSFET "Energy Management" series raises power by 250%. Typical device: 100A/60V @ $20 \mathrm{~m} \Omega$ on-resistance.
- MCIOHO16 high speed binary counter joins MECL 10KH line. Has improved propagation delay ovet Fairchild F10016. - TL438 is a 3 -terminal adjustable shunt regulator $2 \cdot 5-36 \mathrm{~V}$ with low temp. coef. $1-100 \mathrm{~mA}$ range, \& dynamic impedance of $220 \mathrm{~m} \Omega$.
- MC3424 is a dual channel supervisory chip for power supply protection. Every function on board to sense overvoltage transients, regulator failures, input line loss etc.
- Slotted opto-couplers/interrupters are replacements for GE H21 \& H22 series. Infrared diode faces silicon n.p.n. photo-transistor in plastic housing. Slot allows beam to be interrupted. Called MOC7811-23. Motorola European Literature Centre, Motorola Semiconductors, 88 Tanners Drive, Blakelands, Milton Keynes.
Litronix/Siemens Intelligent alpha-numeric displays called DL1814. $8 \times 17 \mathrm{seg} .0 \cdot 112^{\prime \prime}$ chars incorporating CMOS memory, decode \& drive etc.
- 35 dot intelligent display is DLO 7135 series. In red, yellow or green, produces full ASCII range chars. On board memory, decode \& drive simplifies row/address signalling from $\mu \mathrm{P}$.
- "World's smallest" production reflective switch is the SFH900 (match head size). Up to 5 mm position sensing and has ambient light filtering, and excellent light/dark ratio.
- 10 kV r.m.s. opto-isolator HIL 10. Synchro Services, High St., Harrold, Bedford.

NEW LOOK

The most heartening event for industry and the general economic climate this year was the Trades Union Congress. It followed, of course, the general election which revealed that fewer than 40 per cent of union members supported the Labour Party while the majority voted either Conservative or Liberal/SDP Alliance.

Congress had few doubts on the survival of trade unions but many on the credibility of their traditional ally-the Labour Party, which they had themselves created and supported financially.

Thus, at the 115 th Annual Congress, questions which would have been unthinkable only a few years ago were now being openly asked. Should Congress now consider distancing itself from Labour if not actually parting company completely? Would not the membership benefit more by co-operation with the Government in union reform rather than resisting? Is it not time for union leaders to recognise that they are servants of their members rather than their bosses? Was it not just conceivable that the union leadership had got it all wrong. in policies, in union management, in leadership itself?

Of course there were cries of betrayal, invocation of memories of the Tolpuddle Martyrs, the tradition of working class solidarity. But all this sounded hollow in 1983 when the majority of members are property-owning consumer-oriented men and women inclined to consider themselves middle rather than working class.

The truth is that the membership has changed while the leadership has been left behind. The cloth cap and choker, traditional badge of the union member, is in decline, the business suit and briefcase in the ascendancy. Service industry membership now exceeds that of the industrial shop floor.

Yes, Congress would re-consider general
policy, would talk to the Conservatives, would participate in the 'little Neddy' working parties. The old hard-liners still had their way through block votes on withdrawal from the Common Market, on anti-nuclear policy but not convincingly.

The new-look unions which could emerge in the year ahead might well conclude that the interests of their members are best served through generating new wealth by co-operation rather than by obstruction and old-fashioned confrontation. Much of the old rhetoric was still mouthed at Congress but one detects a positive shift to moderation.

ACORNS INTO OAKS

Those who complain of the power of the big corporations and multi-nationals often conveniently forget that they all started as virtually one-man bands and this includes even mighty IBM. And the opportunities of the small business to grow are as great today as ever they were. Anyone can join at any time in getting a start. Success, however, is dependent on entrepreneurial flair, the right product or service offered, hard work, sound financial management and a modicum of luck:

The Racal Group started off with two partners and $£ 100$ capital. In the last six years of general economic recession Racal's peripheral small companies, the odds and ends making accessories and components, are now recording over $£ 120$ million in sales, equal to the whole Group turnover as recently as 1977. So growth is possible even in recessionary periods.

The Racal founders worked at Plessey before deciding to break out on their own. History repeats itself with iwo Racal employees breaking out in 1978 to form their own company, Telemetrix. Roy Cole and John Westover offered their expertise first as consultants, later becoming manufacturers as well, mainly through a subsidiary company, Westward Micro Systems, building graphic terminals. Telemetrix, after five years, are turning over $£ 5$ million a year with profits of $£ 1.5$ million and have made their debut on the Stock Exchange.

So the list of new-generation electronics millionaires and potential millionaires grows. Cole and Westover had good jobs in Racal. Now they have better jobs and a fortune in prospect. Any hard feelings? Not at all. Racal is a valued customer of Telemetrix, as are GEC, Plessey and Ferranti.

Another newcomer to the Stock Exchange is Oxford Instruments. When I first came across this company it was a tiny outfit working closely with the Clarendon Laboratory. Oxford University. on their programme of cryomagnetic research which involved the use of powerful magnets operating at cryogenic temperatures. The company's founder and deputy chairman, Martin F. Wood, is a mechanical and mining engineer who joined the Clarendon in 1955 and designed all their giant magnets, later leaving to start Oxford Instruments but with the Clarendon still a major customer.

Today Oxford Instruments is still in
magnets which are used in nuclear magnetic resonance body scanners, the latest wonder in medical diagnosis. Martin Wood has a 30 per cent stake in a company which is now putting up a new $£ 5$ million factory and is expected to improve profits to over E 8 million next year from increased capacity. His present success owes much to the Clarendon Laboratory, to Sir Nicholas Kurti who headed the cryomagnetic research programme and, incidentally, to Mullard Lid who generously endowed the Laboratory with a sum which covered most of the costs of a new building to house the experiments and was formally inaugurated on 30th June, 1965.

PRICE WAR

Meantime, the violence characteristic of so many computer games is now matched, if not exceeded, by the violence of price competition between personal computer manufacturers. Some have already been forced out of business, others are subject to panic 'rescue' measures.

The long hot summer carries some of the blame as demand slumped when millions took to the beaches and forgot about shopping for electronic novelties. But the autumn is the build-up period for stocks in preparation for the Christmas rush and many companies hadn't the cash-flow nor the financial backing in support. Such are the hazards of the consumer market.

Viewing the current scene and recalling what happened to the pocket calculator and the digital watch it is understandable that investors are jittery. As prices tumble so margins are squeezed. This must mean that more of the hardware will be made in low-cost areas in the Far East, leaving most of the profit, if any, in sofiware.

If the expected Christmas boom turns out to be a bust, look out for real give-away prices in the New Year.

OUTLOOK

Economists remain in stubborn disagreement on the general economic outlook although the optimists still appear to outnumber the pessimists. The August unemployment figures were down for the first time in four years but still depressingly high and forecast to rise again. But three million unemployed needs to be set against 23.5 million who are employed and record car sales, video recorders and other consumer durables don't exactly give a picture of a nation on its knees. Nor do the record crowds at Test matches and other sporting events, not to mention the level of overseas holidays and simultaneous record personal savings.

Of course the distribution of wealth is unequal both geographically and financially in the UK, it always has been. Attempts by governments over the past 30 years at levelling have been universally unsuccessful. But with information technology and light industry (e.g. electronics), the distance from the centre is becoming less critical and herein lies the hope that manufacturing and prosperity can be more equally spread.

The

Proto－Soard

Now circuit designing is as easy as pushing a lead into a hole．．． No soldering No de－soldering No heat－spoilt components
No manual labour No wasted time

For quick signal tracing and circuit modification For quick circuit analysis and diagramming
With or without built－in regulated power supplies Use with virtually all parts－most plug in directly，in seconds． Ideal for design，prototype and hobby

N0	MODEL NO	NO Of SOLDERESS TIE－POUNTS	IC CAPACITY 114 pm DIP 31	UNIT PRICE	PPICE INC P⿳⺈⿴囗十一日寸品 15% VAT	OTHER FEATUPES
1	PB6	630	6	11.00	13.80	Kit
2	P8100	760	10	14.25	17.53	Kit
3	PB101	940	10	19.65	24.32	
4	P8102	1240	12	24.95	30.41	
5	P8103	2250	24	40.95	48.81	
6	P8104	3060	32	51.45	61.46	
7	P8105	4560	48	74.50	87.97	
8	PB203	2250	24	76.00	89.70	5V＠1A
9	PB203A	2250	24	105.00	124.20	$5 \mathrm{~V}=15 \mathrm{~V}$
10	PB203AK	2250	24	85.00	100.05	$\begin{aligned} & 5 \mathrm{~V}=15 \mathrm{~V} \\ & \text { \& Kit } \end{aligned}$

Tomorrow＇s tools for today＇s problems

GLOBAL SPECIALTIES CORPORATION

\square

सहामाII Build your own sretem and gate molius!

DIGITAL ULTRASONIC DETECTOR

- Adjustable range Trom 5.251

This popular low cost ulfrasnnic detector is intruder detectors to autornatic light switche and door opening equipmert, featuring 2 LED
indicators for ease of setting up. the unit selv
[10.95 + V.A.T
INFRA-RED SYSTEM IR 1470

Consisting of separate transmitter and recerver cases. the system provides an invisíble modulated bearn over distances of up to 5011 , operating a relay when the beam is broken.
Intended for use in security systems, but also ideal tor photographic and measuremen applications, the sy stem is available at only $£ 25.61$ + V.A.T. Size: $80 \times 50 \times$

POWER SUPPLY \& RELAY UNIT PS 4012

Provides stabulised 12 V output at 85 mA and
contans d felar with 3 amp contacts. The unit is designed topper ate withupto 2 ultras
of I Intranains

SIREN MODULE SL 157
Produces aloudpenerrating sliding tone which when coupled 10 a suitable horn speaker Operating from 9.15 V , the module contains an curcuits. Price $\mathbf{C 2} 95$ + VAT

5 $1 / 2^{\prime \prime}$ HORN SPEAKER HS 588
This weather.prool horn speaker provides at 2 metres) when used with the CA 1250, PS 3.POS KEY SWITCH 3901

Single pole. ${ }^{3}$-pos. key switch intende
with the CA 1250 . Price $[3.43$ - V.A.t.

[^3]Add VAT to all prices.
Add 50p post $\&$ packing to all
orders. Please allow 7 dove for delivery.
Order by telephone or post
using
your credit card.

ALARM CONTROL UNIT CA 1250
 The heart of any alarmsystemis thecontioluni is likely to be required when constructing system whethet a highly sophisticated installation, or simply controlling a single magnetic switch on the from door. - Euils inelectronic sirendrivas 2 loud speakers - Provides exit and entrance delays together - Wattery back alarm time - Opartery back- up with trickle wharging facility - pads, ultrasonic or I.R. units

- Anti-ramper and pantc lacility
- Stabilised outpul voltage
and panic lacilify
- Screw connections for ease of installation - Separate relay contacts for switching external - Test loop facility

Price $£ 19.95$ + V.A.T
SIREN \& POWER SUPPLY MODULE PSL 1865

capate ol previding sound levels of 110 it 12 metres when used with a hornspeaket in additoon, the unitporovides astabilised 12 V output up to 100 mA . A swithingrelay is alsoincluded so that the unit may be used in conjunction with
the US 5063 of US 4012 to form a complete Price $£ 9.95$ + V.A.T

HARDWARE KIT
HW 1250

only

[9.50
V.A.T.

Thls attractive case is designed to house the control unit CA 1250 . logether with the appropriate LED indicators and key swlith
Supplied with necessary mounting pillars and Supplied with necessary mouming pillars and protessional appearance by an adhesive silk protessional appearance by
screened labei Size: $200 \times 180 \times 70 \mathrm{~mm}$.

HARDWARE KIT
HW 5063
only
〔9.95

+ V.A.T.

This hardware kit provides the necessary enclosure for a complete self-contained alem system which compnses the US 5063 , PS 1865. loud speaker type 3515 and key swith pleted, provides an effective waming system without installation problems. Size: 200 \% 180 ULTRASONIC MODULE ENCLOSURE

only

£2.95

V.A.T.

Sultable metal enclosure for housing an ind vidual ultrasonic module type US 5063 or US pillars and screws etc For US 5063 order SC pilsers and screws etc. For US 5063
5063 : for US 4012 order SC 4012.

RISCOMP LIMITED

 Dept. PE721 Duke Street,
Princes Risboroưgh
Bucks. HP17 0AT
Princes Risborough (084 44) 6326

FULL KIT £137 Also avaiable in 3 parts

PERCUSSION

MICROSYNTH

vo Channel touch Sensitive unit plus
variable angle L.F.O. phaser, infernal
variable angle L.F.O., phaser, inferna

88/72 NOTE PIANOS
SPECIALISTS SINCE 1972
Using Patented evectronic technique to give
Using Patented esectronic rechnique
vanced simulation of Piano Key Inertia.

COMPONENT KITS including Kevboard $\begin{array}{ll}88 \\ 72 \text { NOTE } & \text { NOTE } \\ 7266\end{array}$ The above may also be The above may also be DOMESTIC KTS inc. Cabinet. P.A. \& Splur. 88 NOTE $£ 442$ 72 NOTE $£ 398$ STAGE MODEL 72 NOTE £383 ALL PRICES INC. VAT. CARA \& TELEPHONE ADVICE SA.E for full Specs \& MAMF. PRICES. VISA.ACCESS Competitive quotations can be givan for export. Please allow 3.14 days for normal despatch
CLEF PRODUCTS (EL EETRONCS) LIMMED
 STOAKPORT CHESHIRE SK7 1AH

PE CAR COMPUTER

\& Economy - save petrol by improving your driving technique and improving the tuning of your car.
मे Performance - dynamic checks on timing to improve performance and economy.
\& Security - protect your car by disabling the ignition. Enter a personal listed combination to restart.
is Attractive, easy to fit, easy to operate - comes complete with all parts needed. Full instructions provided.
\& Imperial or metric read outs.
FREE IGNITION CUT-OUT WITH EVERY CAR COMPUTER (kit or unit) worth $£ 7.75$

PE CAR COMPUTER
 $£ 88.50$

Easy-to-assemble kit of parts
$£ 78.50$
Send SAE for list of separately avaiable parts.

PE Ice warning and lights left on Alarm Kit
 (PE March '83)

NO MORE FLAT BATTERY! NO MORE FLAT CAR!
Ideal Christmas Gift at $\mathbf{£ 9 . 7 5}$
All prices include VAT and post and package. GOODS BY RETURN
PIMAC SYSTEMS LTD
20 Bloomfield Road, Moseley, Birmingham B13 9BY Tel: 0214490384

Copies of British Patents can be obtained from: The Patent Office, Sales, St. Mary Cray, Orpington, Kent ($\mathbf{E 1 . 7 5}$); and copies of Foreign Patents can be obtained from The Science Reference Library, 25 Southampton Buildings, London, WC2A 1AJ. (Prices on application.)

BROADCAST BATTLE IN USA

In the USA, there's currently a pitched battle on the open market over AM stereo broadcasting. There are five different systems of transmitting mono-compatible stereo on AM and the Federal Communications Commission originally intended to choose a single system as the US standard But now the FCC has adopted the free market approach. Record radio stations across America can use any system they like. In theory, the broadcasters, press, electronics trade and public are supposed to choose the best system. But of course in practice it isn't working that way. Receiver manufacturers won't invest in any one system until it is a standard. Nor will the public. So almost no-one receives the broacast transmissions in stereo.

In an effort to break the deadlock Leonard Kahn, inventor of one of the five systems, is patenting a multi system receiver. His British patent application 210555 B gives a useful run down on the five systems proposed. One uses a mixture of amplitude and frequency modulation; another uses phase modulation instead of frequency modulation; a third uses compatible quadrature amplitude modulation: the fourth is a modification of the third, compatible phase multiplex; and the fifth is an independent side band system which modulates the carrier so that the left channel is on the lower side band and the right channel is on the upper side band. Although they are different, all five systems have one feature in common. They all rely on a pilot tone to switch the receiver into stereo mode. Kahn observes that the pilot frequencies are different for each system. For $A M / F M$ it's 20 Hz , for $A M / P M$ it's 5 Hz , for CQUAM it's 25 Hz , for CPM it's $55-96 \mathrm{~Hz}$ and for ISB it's 15 Hz . What Kahn proposes is a multi-system AM stereo receiver which has tone sensing circuitry and can decode two or more of the five systems.

The circuit in Fig. 1 can cope with ISB, $A M / P M$ and CQUAM signals.

Logic circuit 96 determines which system is being received from the frequency of the pilot tone. It then switches gates $46,4 B$ and 50 for appropriate decoding; gates 102,110 are used where the decoder can handle other systems. Of course, some of the circuitry for one system can be used for another system, but it is still an inelegant approach which underlines the dangers of a free market choice. philosophy.

INSTANT DIGITAL DISC

Although it was Philips who invented the Compact Disc system, Sony contributed valuable improvements to the digital coding and error correction. The company is now pushing ahead with further improvements. One is described in British patent application 2106698 . The aim is to offer broadcasters a Compact Disc player with instant start.

When a Compact Disc player is in the stand-by mode, the disc is spinning and the laser is trading one turn of the pit spiral over and over again. The time taken to scan one full turn varies from 0.126 seconds, at the inside of the disc, to 0.292 seconds at the outside of the disc. So when the player is switched from standby to play mode (like lowering the stylus of a conventional gramophone), there will be a delay of up to 0.292 seconds before the laser can read from the beginning of the turn and start to reproduce sound. Although inconsequential for domestic use, this brief delay can be a problem for broadcasters. The Sony broadcast player will have a RAM which can store sufficient bits from the disc to buffer the delay and make a genuinely instant start possible. In standby mode the player stores the buffer bits and reads out these
bits from its RAM before changing over to direct readout from the disc. The RAM needs to store over 0.5 megabits of information to cope with the delay of up to 0.292 seconds, because the data stream coming off the disc is running at over 4 megabits a second.

Fig. 1 is a cut-away view of a typical disc player to which this system may be applied.

The broadcast player also incorporates fosward and reverse and slow playback modes. These allow a broadcaster to "spot" a chosen passage of a recording down to the split second for instant start. In these modes the laser keeps skipping back and forth over the same tracks to expand the music in time.

WITH "white goods" manufacturers at last coming to terms with microelectronics control, we are fast moving away from the world of springs and contacts towards an era in which flexibility, convenience and efficient energy management will be taken for granted. The latter is of particular importance now that fuel is no longer cheapdomestic gas consumers are still smarting from swingeing increases-and yet the average gas central heating system wastes this precious fuel in two ways.

As for those springs and contacts, they will not disappear overnight, and many of us (author included) still depend upon them in equipments of an earlier generation. In a typical gas central heating system, the boiler is fired when the gas valve is opened, this valve being energised by a simple thermo-mechanical switch. This presettable thermomechanical switch, known to the user as the "Water Temperature" thermostat, is linked to the nearby boiler jacket. Heat from the jacket travels slowly along a heat-conducting copper wire to the thermostat, causing it to cut off the gas valve again when the required temperature is reached. Alas, this is a sluggish process in which the termostat is expensively out of step with the boiler. Also, an ideal gas controller

would sense the temperature of the hot water storage tank in addition to the boiler, but presumably the average-priced system could not be stretched to include this featurecertainly a heat-conductive copper wire cóuld not be stretched as far as the tank, usually a "cool" distance away from the boiler/control unit. Even were this extra sensor at the tank to be included, what would the thermostat do with two inputs? If, on a cost basis, the manufacturer of the day had ruled out electronics, whilst electronics was the only technology capable of the logic necessary in a two-input thermostat, then we may hazard a guess at why gas central heating storage tanks are generally minus a temperature sensor.

CONVENTIONAL GAS SYSTEMS

Gas central heating systems vary in detail, Gas Saver being designed to improve the efficiency of the author's particular system, this being an "Ideal Standard Concord". Gas Saver will almost certainly make any comparable system run much more economically. The type this applies to is described in Fig. 1, in which the circulation pump is energised only whilst radiator heating is required. It can also be seen that only the boiler temperature is sensed, and that the thermostat is at the opposite end of a heat-conducting copper wire-a linkage that is painfully slow to respond, and which takes no account of the temperature of the hot water storage tank. Both of these shortcomings cost the consumer money. Fig. 2 shows the gas ignition pattern and temperature curves of the conventional CH system outlined.

GAS SAVER

If nothing else, Gas Saver senses the boiler water temperature electronically, and therefore responds instantaneously to changes in heat level. But more importantly than this "secondary" economising mode, it senses the temperature of the hot water tank, in order to compute more logically the control signal to the gas burner. What this means, in short, is that with the radiators off, once the hot water tank has reached its preset temperature the system will shut down until hot water is next drawn off. And with

the radiators on, Gas Saver will ignore the tank water temperature but at least regulate the gas burner duty cycle more precisely than the conventional system. Fig. 4 shows how Gas Saver behaves with the radiators turned off-its "primary" economising mode.
The entire project was designed to be as cheap as possible to construct, without compromising reliability and safety-essential requirements in such a utility.

Gas Saver, when installed, renders the original water thermostat redundant, water temperature from then on being set

Fig. 2. Temperature patterns of a conventional gas
 central heating system starting from cold, and with no demand. The graph is simplified, and assumes no heat loss through the hot water tank insulating jacket. Shaded portions show when the gas is fired
by potentiometer VR 1 , and controlled via a triac mains switch that replaces the electrical contacts of the old thermostat (see Fig. 3). The original thermostat may be left in place, so that should a fault develop in Gas Saver, it is possible to convert quite quickly back to the original system. The plans given in this article adhere to a policy of plug-andsocket interconnection compatibility with the central heating's own distribution panel. If this policy is complied with, the original system, albeit less efficient, is always only a few seconds away from standby operation. Gas Saver can take its mains supply from the timer switch, and its only other claim on the central heating unit's wiring is the direct in-out rerouting of the circulation pump wires.
Once the heat sensor at the hot water tank is installed (which will probably require drilling through an internal wall) the Gas Saver is virtually an add-on device.

ENERGY CONSERVATION DEVICE

CIRCUIT DESCRIPTION

The circuit (Fig. 5) is easier to understand once the three criteria of the design are appreciated. The three functions are:

1) To take an instruction from the user to establish the water temperature required, this being achieved via the "Temperature" control VR1, and then regulate the gas burner duty cycle to average that temperature. The boiler temperature sensor, TR1, is the controlling agent for this function. As with a conventional controller, the temperature selected applies to both the radiators and/or the hot water storage tank.

Fig. 4. Gas Saver shuts down the burner whilst there is no demand
2) To temperature-sense the hot water storage tank (TR4), and shut down the system when the water in the tank has reached the preselected temperature (this is the primary economising mode) and is achieved by inhibiting function 1.
3) To sense whether or not the radiator circulation pump is energised, and if so, release function 1 from the override capability of function 2 . In other words, if the system is shut down because the water tank is up to the required temperature, switching on the radiator heating will again allow the gas to ignite, irrespective of the hot water tank condition. By sensing the pump itself, the system will respond, whether the radiators are turning on and off due to the hall thermostat, or due to manual intervention.
In essence, the circuit section comprising TR1 and IC1a onwards takes care of function 1. The identical circuit comprising TR4 and IC1b onwards takes care of function 2. This latter circuit, the tank-sense circuit, overrides the boilersense circuit at IC4a. Function 3 is realised by a simple mains voltage detector, using T3 for step-down and isolation. This is followed by a PSU style circuit which drives TR7 into conduction whenever the pump is energised. Therefore whilst the radiator heating is on, the tank circuit's ability to inhibit the boiler control section is removed (at IC4C). There is, in effect, a cascaded override function.

BC109 silicon transistors are used as temperature sensors. Although each circuit could have monitored the voltage generated across a silicon junction diode, transistors were chosen because in a three-terminal mode they offer gain at the sensors themselves.

Taking the boiler half of the circuit as an example, what happens is this: the chosen temperature setting manifests itself as a voltage on the wiper of VR1a, and ignoring the voltage follower IC1a for a moment, this voltage is delivered to the base of the sensing transistor TR1. When this transistor is cold, the threshold, or "knee" voltage between its base and emitter is higher than the potentiometer voltage, and so the transistor is switched off. It follows then, that TR2 will be switched fully on, and likewise TR3. When illuminated, D3 shows that the boiler is below the preset temperature. To IC4a, the conduction of TR3 represents a logic 1 and so, unless overridden by the second sense circuit, IC 4 a outputs a 0 . This output is tapped via $R 8$ to provide positive feedback, modifying the original VR1 potentiometer voltage by something equivalent to a few degrees C. Thus the conditions which hold TR1 off are enhanced. This hysteresis is necessary for stable operation.

With the circuit in this state IC4b output is at logic 1, which enables the 555 oscillator, IC5. The pulse transformer is pulsed, the triac driven into conduction, and the gas valve

Fig. 5. Circuit dlagram of Gas Saver. Output " X " is explained under "OTHER CH SYSTEMS", but can otherwise be ignored
opened. With the gas fired, the temperature of the boiler begins to rise, and with it the temperature of TR 1.

At the preset temperature, TR1 will begin to conduct. This is because its base-emitter "knee" voltage will have fallen to, or below, the voltage generated by VR1. As TR1 moves into conduction, TR2 and TR3 are forced out of conduction, producing a logic 0 at pin 1 of IC4a.

Any temptation for the circuit to "hover" in a halfswitched state is eliminated by the positive feedback via R8 and D1. Because now R8 is no longer stealing current from VR1's potentiometer network, the voltage to the base of TR1 will rise, tipping that transistor further into conduction. IC4 is a Schmitt trigger NAND, adding to the "snap" action of this bistable circuit.

The presets VR2 and VR3 are included in the potentiometer network because, like human beings, no two transistors are identical. It is necessary to be able to modify VR1's voltage swing by an amount capable of offsetting the Vbe production spread of BC109s. TR 1 and TR4 should at least switch at the same temperature even though VR1 is
not calibrated in deg. C at its dial, and the procedure for setting up presets for this is described later.

Returning to IC1; this is merely an impedance converter, or voltage follower, necessary because the silicon junction is a current device and will switch more rapidly if driven from a low impedance source. Impedance conversion would not be needed if dual-ganged 100 Ohm potentiometers were readily available to the hobbyist. Such potentiometers as appear "off the shelf" begin at $4 k 7$ or $5 k$, and so one of these was selected, and its characteristics modified by a cheap op. amp. Resistor R2 protects the transistor from overdrive, whilst C1 acts as a short-circuit to r.f. interference picked up along the cable to the sensor. Ideally, this capacitor should be positioned at the sensing transistor end of the cable, but this may be mechanically inconvenient. It works perfectly well within the main unit on the prototype system, even though this effectively puts it in series with the lead inductance as far as the transistor is concerned.

Independent regulation for the two identical circuit sections is provided (by IC2 and IC3) so that neither is affected by the other's switching transients.

The circulation pump-sense override is now described. Obviously, if the central heating radiators are turned on, then the fact that the hot water tank has reached its required temperature should no longer be allowed to inhibit the gas burner. It is therefore necessary to detect whether or not the radiator circulation pump is running, and if so, to lock out the hot-tank signal. The pump detector is a simple PS N type circuit, taking its mains input when the pump does. This PSU simply inhibits the hot-tank signal by driving TR7 into conduction.

The illumination of D7 indicates that the radiators are being driven by the circulation pump, and it will thus light up and go out again repeatedly, in step with the hall thermostat (air temp.). Actually, although D7 lights up immediately as the pump energises, there is a delay of about four seconds before going out, due to the time constant of C14 and R30. This is of no consequence. The transformer, T3, may seem a clumsy way of detecting the state of the pump, but it is quite the cheapest, and the idea of this project is, after all, to avoid wasting money.

DRIVING THE GAS VALVE

The gas valve in the author's central heating system was found to be highly inductive. As a result, the pulse frequency from IC5 needed to be quite high; and more importantly, capacitor C17 had to be included for power factor correction. In plain English, this last point means that because current builds up slowly in an inductor, and because a triac is a current avalanche device it will fail to fire early enough for a full 360 degree conduction angle. Capacitor C17 provides
some "lead" current for the triac to latch on to, If the gas valve makes an audible buzz, C17 may not be large enough (assuming nothing else is wrong). If the gas valve makes any kind of noise, switch off the system until the fault is rectified. Do not try to achieve a smooth triac action by connecting a capacitor/resistor snubber network across the triac itself, as this will probably leak enough current to prevent the gas valve dropping out again, once energised.

HEAT SENSORS

Transistors make economic, and conveniently linear temperature sensors-as long as the operating parameters are within certain limits. Silicon devices, including specifically designed silicon temperature sensors, will work up to 150 deg. C, a figure which gives a 50% safety margin in the application of sensing water temperature to boiling point at atmospheric pressure. So, unless an explosion is imminent, the two metal cannistered BC109s are not likely to run away thermally. If they were to, they would shut down the gas burner anyway!

A transistor used in its natural three-terminal mode of operation can integrally perform the dual function of being both temperature sensor and comparator. A potentiometer provides the reference voltage, whilst the transistor's base-to-emitter threshold provides the temperature related voltage. This technique is not original though; it is seen in P. J. McFarlane's "Ice Warning \& Lights Reminder" of P.E. March '83.

On a more practical note, the boiler sensor TR 1 should be situated so as to detect the water temperature near the top of the boiler jacket, not the hot gases rising from the burner. The transistor should, therefore, be positioned with this in mind. Some CH boilers, probably most, have a receptacle at the top-centre of the boiler jacket to accommodate the conventional heat sensor, and this, in the case of the prototype installation, was eminently suitable. It was possible to push the transistor sensor well inside, without removing the original.

Both heat sensor transistors, TR1 and TR4, should be mounted and sleeved as shown in Fig. 6.

CONSTRUCTION

As can be seen in the photographs, Gas Saver is built using stripboards. The main control electronics board is housed

in a diecast alloy box, which is situated inside the CH boiler unit. The Potentiometer box (plastic), also containing the l.e.d.s and impedance converter op. amps, is mounted against the outside of the CH boiler housing in such a way that the temperature control knob (VR1) is readily accessed. The two boxes are linked by a multicore cable. This umbilical link should ideally be a 14 -way screened cable, although 15 instrument wires bound by "spiral wrap" will probably suffice, or even ribbon cable. The stripboard and box layouts are shown in Figs. 7-9

This dual box approach was dictated by the geometry of the author's CH system, and the fact that the boiler unit is fitted tightly in a corner with little external space. An alternative approach, if there is space around the boiler housing, would be to put all the electronics, including the potentiometer, in the alloy box, and mount it externally. This could make use of a p.c.b., or a large stripboard (although in the latter case the mains transformers should still be mounted on a separate non-clad board). The "single box" approach would have a number of advantages, one being the avoidance of the multiway connector and cable (and metalwork to fit it). Another is that of finding sufficient space within the boiler unit (space which is not subject to too much heat from the boiler itself) to take the main control box. It also involves one less mounting bracket, for those who do not enjoy metal bashing.

There are no special points concerning construction. Any hobbyist experienced enough to undertake this project will find the illustrations adequate, and will know that the CMOS 4093 requires careful handling and should be mounted in an i.c. socket.

Insulation should be placed beneath each of the component boards in the alloy box. PVC tape can be used, but in the prototype, plastic sheeting cut to the same dimensions as the boards themselves are used. These were cut from a

Fig. 6 (right). Transistor heat sensor assembly (two are required). The top board edge, against which the transistor should be closely mounted, is bevelled to truncate the copper tracks. Heatproof sleeving is required to electrically insulate the assembly from its surroundings, and this should be of a material that is rated to 150 deg. C minimum. Silicone rubber $\left(180^{\circ} \mathrm{C}\right)$ will do, or expandable

jumbo bleach bottle, drilled with the same fixing holes as the stripboards, and dropped over the stand-offs first.

The main unit board is mounted on p.c.b. stand-off clips, and the high voltage (mains) board is mounted on 4BA screws with locking nuts-this providing greater security for the heavy transformers. The easiest and most accurate way of ensuring that the holes in the boxes line up with the mounting holes in the component boards, is to use the component boards as templates for marking out. The stripboards make ideal templates once they have been cut and drilled, but before any components have been mounted on them.

All mains earths must be observed when wiring the main control box, and these earths must be affixed to the metal box itself, using a nut and screw and solder tag for reliable connection.

INSTALLATION

Apart from making brackets appropriate to the particular installation layout, it is necessary to hack out a fairly large hole (about 60 mm square) through the side of the boiler housing. This can be done with an Abrafile or nibbler, after which the edges are filed smooth and covered with polythene grommet strip. This hole is required to pass the interconnecting cable between the two boxes (prototype layout), or to carry the pump, valve and other CH unit cables through to the electronics control box (in the case of the "single box" alternative layout).

An extended masonry drill will undoubtedly be necessary to drill a hole through an internal wall separating the boiler unit from the hat water tank (airing cupboard). This is to carry the hot water tank temperature sensor lead. If this lead is more than four feet long it will be wise to consider the use of screened three-core cable, this to be wired as shown in Fig. 6.

SETTING UP

The only setting up required is that of VR2 and VR3. The simplest way to do this is to power up Gas Saver with the gas valve socket disconnected, and place both sensors in some recently boiled water. VR2 and VR3 are then adjusted

Fig. 7. Main electronics stripboard layout
R10,R11, R24, R25.
R27, R28, R30
R12, R26, R
All resistors 0.25 W high-stab carbon film

Potentiometers

VR1
5k dual rotary, lin law (may be 4k7)
VR2, VR3
00 vert preset (2 off)

Capacitors

C1-4, C8-10, C12, C16100n disc cer (9 off)

C14
C17*
"See text

Integrated circuits

IC1
IC2. IC3
IC4
IC5
iC6
IC7
$10 \mu / 16 \mathrm{~V}$ elect. radial (2 off)
1 n ceramic
10n ceramic
$470 \mu / 25 \mathrm{~V}$ elect. axial (2 off)
$100 \mu / 15 \mathrm{~V}$ elect. axial
$150 \mathrm{n} / 400 \mathrm{~V}$ (may be 100 n)*
47k (3 off) 100 (4 off) 1 k (4 off) 1k2 (2 off) 180 (2 off) 82 k (2 off) 2k2 (2 off)

10k (7 off) 680 (3 off) 120k

$$
4
$$

Plugs 8 Sockets

SK1	P430SE (line socket)
SK2	P650
SK3	SA2404
PL1	P429 (chassis plug)
PL2	P649
PL3 PL4	SA2403 (2 off)

Note: These were the plugs and sockets required to install Gas Saver into the author's "Ideal Standard Concord" central heating system, in which PL2 and PL3 already exist. In other systems it will be necessary to inspect the interconnecting arrangements before ordering parts.
(Maplin YX37S + male pins)
Any 24-way socket
(Maplin YX43W + female pins)
Note: If the suggested Maplin "Multicon" 4×6 contact connectors are used the "receptacle" type socket will require a $28 \times 18 \mathrm{~mm}$ cut-out.

Transformers

T1
$\mathrm{T} 2 \quad 12 \mathrm{~V}+12 \mathrm{~V}, 3 \mathrm{VA}$ mains (p.c.b.
mounting)
T3 $\quad 6 \mathrm{~V}+6 \mathrm{~V}, 3 \mathrm{VA}$ mains (p.c.b mounting)

Miscellaneous

Plastic case* (65 x $100 \times 52 \mathrm{~mm}$) type TEKP2P (West Hyde)
Diecast alloy case (171×121×5mm)
Brackets for mounting the above case/cases
Stripboards: Main $=\mathbf{3 5}$ holes $\times 34$ tracks
High voltage $=45$ holes $\times 16$ holes (no copper tracks)
Potentiometer $=30$ holes $\times 20$ tracks
6 mm stand-offs, or nylon nuts and bolts

Fig. 8. High Voltage (mains) board layout, and overall wiring of main box. The High Voltage board is unclad
until both sensing transistors can be made to switch at exactly the same point on VR1's scale. The front panel l.e.d.s will indicate the switching points. In fact, it is most probable that Gas Saver will function correctly with VR2 and VR3 both set to midway position, without conducting this test.

The dial on VR1 can be numbered, or simply lettered subjectively warm, hot, very hot, with intermediate temperatures being interpolated by the user. The point on VR1's dial that switches the I.e.d.s on and off whilst setting up VR2 and VR3 will, if using recently boiled water, serve as a marker for very hot.

SAFETY

Naturally, safety is all important in any equipment using gas and electricity simultaneously, particularly when running continuously without supervision. No short cuts should be taken during construction, and any part of the electronics housed within the boiler unit should be cased in a well ventilated metal (fireproof) box

The possibility of a lost connection during service has to be considered. For example, it would not be desirable to lose a connection to any one of the wires to a heat sensor, and come home to a loft swirling with steam, or worsel A completely independent "over-temperature" cut-out must be considered, that will cut off power to the control box should

the boiler water temperature rise above 100 deg . C
An obvious solution exists; the original thermostat! Other than ignoring its electrical contacts in the new system, it is left fully functional, so why not wire its contacts in series with the mains supply to the electronics controller? Then, if this original thermostat is turned up to a temperature setting way above those being selected for everyday use, it will limit the gas duty cycle should boiler overheating occur due to an electronic "latch-up". With this safety feature, the plug-andsocket compatibility for quick reversion to conventional operation might need to be partially sacrificed.

The safety option described here will not shut down the system indefinitely in the event of the type of failure that keeps the gas on, but will limit the gas duty cycle to a "ceiling" temperature. At least a hot bath may be taken whilst the fault is considered.

QUANTITY, AND THE TANK SENSOR

The hot water tank sensor need only be tucked in between the side of the tank and the insulation jacket. The position of this sensor will be about halfway down.

Since hot water builds up from the top of the tank downwards (it is possible to have cool water at the bottom and piping hot water at the top) the vertical position of TR4 needs to be considered with this in mind.

SAVINGS

The important question is: How much money does a Gas Saver save? Just a short summertime test has so far been possible (hot water only), during which Gas Saver reduced fuel consumption by 21%. One manufacturer of a similar energy conservation device guarantees a minimum saving of 16%. Savings also depend upon how efficiently the old "pot luck" mechanical system happened to be working, and the operating regime in any particular household.

Throughout 1981/82, gas prices increased four times, each time between $10-15 \%$. It seems that the consumer is to be financially coerced into more efficient use of this "precious" fuel, whilst at the same time being sold equipment that wastes it! After-sale conservation devices will often provide the consumer's only escape route.

SK5 WIRING TABLE			
FROM(main unit)	PIN	WIRE COLOUR	TO (potentiometer box)
+12V	1		D7 (CH l.e.d.) anode
R29	2		D7 cathode
R26	3		D6 (TANK l.e.d.) a node
OV	4		D6 cathode
R12	5		D3 (BOILER I.e.d.) anode
OV	6		D3 cathode
$-12 \mathrm{~V}$	7		$-12 \mathrm{~V}$
+12V	8		+12V
R16	12		1C1b pin 10
R2	16		IC1a pin 12
R18	17		VR1b c.c.w.
R20	18		VR1b c.w.
OV	20	Screen*	OV
R4	21		VR1a c.c.w.
R6	22		VR1a c.w.
			TO (sensor)
R16			TR4 (TANK) base
OV	10		TR4 emitter
R15	11		TR4 collector
R2	13		TR 1 (BOILER) base
OV	14		TR 1 emitter
R1	15		TR1 collector

NOTE: c.w./c.c.w. = clockwise/counter-clockwise viewed from rear of pot.

OTHER CH SYSTEMS

Alas, the author is no expert on central heating systems in general, and therefore not in a position to suggest modifications to Gas Saver to adapt it to all other systems.

However, one common departure from the type of central heating Gas Saver was designed to work with, is one in which the circulation pump runs continuously. In this type, it is believed that for geometric reasons thermal currents cannot be relied upon to transfer hot water from the boiler to the storage tank-perhaps because the airing cupboard is no higher than the boiler. Consequently, a permanently energised pump is needed to circulate hot water from the boiler to the tank, and a motorised valve is used to bring in the radiators when required.

At first, it might seem that the obvious modification to Gas Saver is merely to sense the state of the motorised

> Gas Saver is an electronic thermostat that eliminates unnecessary firing in gas central heating, and can cut bills by up to 20%. Gas Saver can be built for around $£ 30$, and do the job of economisers costing four times as much.
valve instead of the pump (sensor C of Fig. 3). The problem with this, is that whilst the gas burner is off for prolonged periods (as in the "primary" economising mode shown in Fig. 4) the pump will remove hot water from the tank and circulate it through a cold boiler jacket-the exact opposite to heating! It is not certain that Gas Saver will deserve its name in this situation.

A further modification is therefore necessary if Gas Saver is to be put to work fruitfully in such a CH system, and a suggested way to do it is illustrated in Fig. 10. It is emphasised that this modification has not been built and tested. The additional circuit is intended to shut down the circulation pump as soon as the boiler jacket becomes cold (having no more useful heat to impart), and re-energise the pump again as soon as the boiler is at least as hot as the storage tank. Any constructor embarking on this version of Gas Saver will need to run the system under observation, and arrive at his/her own conclusions as to its merits.

PE SPECIAL CASSETTES OFFER

CHROME C60 \& C90

CR02 C60 CASSETTES

90p each (minimum of 5): 80p each (minimum of 25)
CR02 C90 CASSETTES
115 p each (minimum of 5); 105p each
(minimum of 25)

FERRIC C90 AUDIO

C90LH CASSETTES

56p each (minimum of 5): 53p each (minimum of 25).

PRICES INCLUDE VAT AND POSTAGE.

These European-made tapes are excellent value and we are pleased to offer them to readers. They are covered by a money-back guarantee (return within 21 days for refund). Not only are the tapes of high quality but the cassettes are of screw together construction and the case labels have space for notes on the recordings.

Send coupon to: Videotone Ltd., Unit 4, The Airport Industrial Estate, Biggin Hill, Kent.

	Please send me \qquad CRO2 C90 Audio cassettes atp each (115p for 5 to 24. 105p for 25 or more; including VAT and postage).
$\begin{aligned} & w \\ & u \\ & \vdots \\ & \hline \end{aligned}$	Please send me \qquad C90LH Audio tapes at \qquad p each. (56p for 5 to 24,53 p for 25 or more; including VAT \& postage.)
a	I enclose cheque/PO for $£ .$. . No.
$\stackrel{\downarrow}{\&}$	Name
$\begin{aligned} & \bar{a} \\ & \underset{U}{⿺} \end{aligned}$	Address
	Coupon valid for posting before 2 Dec ' 83 (or one month later for overseas readers).

EVERYDAY ELECTRONICS and computer PROJECTS

NOVEL IDEAS FOR XMAS

* CHILDREN'S DISCO LIGHTS *

Effective light display ideal for parties.
Triggered by sound output from record player or radio. Battery powered for safety.

* MAGIC CANDLE *

Filament lamp that can be extinguished by blowing out just like a candle

* EGG TIMER *

Announces your egg is cooked by emitting a credible imitation of a cackling chicken.

FOR THE COMPUTER USER

* TRS80 TWIN CASSETTE INTERFACE * * ENVIRONMENTAL DATA RECORDER *

PLUS THE POPULAR

 SERIES- MICROCOMPUTER INTERFACING TECHNIQUES-Part 6
Practical projects for your computer
- TEACH-IN 84 —Part 3

Home-Study Course for the newcomer
DECEMBER ISSUE ON SALE
FRIDAY, NOVEMBER 18
Place a regular order with your Newsagent Nowl

FUN PROJECT

HIS project has its origins in a production meeting of an amateur stage review, when the author was foolish enough to suggest e sci-fi sketch.

The main requirement was for a number of lightweight hand guns, capable of producing a flash of 'death rays' when fired, having a rapid recharge rate and a negligible standby pówer drain. Directed energy weapon technology being what it is, the source of 'death rays' reduced to a Xenon photographic flash tube. Most commercial flash gun circuits will not fulfil the last two criteria however, and so a suitable circuit was developed.

The other requirement was for the sound which every death ray' is presumed to produce, i.e. the 'zap'. Flash tubes themselves are embarrassingly quiet, and so a tone generator was developed, to be triggered by the flash. Such a circuit can be made to work in normal light, even fluorescent, because of the very rapid rise time of the flash tube output. In practice, reflection from dull surroundings at distances of up to 50 ft or so is sufficient to trigger the circuit.

TONE CIRCUIT

The tone generator circuit is shown in Fig. 1. Here IC1 operates as a current to voltage converter, the output of which is high pass filtered by C1 and R1, to produce a spike on receipt of a sudden increase in the light level by way of the phototransistor TR1.

VR1 sets the gain, and VR2 sets the trigger threshold of the comparator IC2.

IC3 is a retriggerable monostable, and VR3 sets the period, and hence the 'sustain' of the tone generated. The output at pin 6 charges C5 via D1, holding the voltage high until IC3 turns off, when C5 discharges at a rate set by VR4. The voltage on C5 is used to control IC4, a PLL chip used only as a voltage controlled oscillator. This has a square wave output which is not really ideal, but it was used because it conveniently switches off when the control voltage drops to zero.

VR5 sets the frequency range of the sweep. The amplitude of the output is reduced by R4 and R5. Control of the tone may be achieved in the power amplifier used.

The tone generator is constructed on Veroboard as in Fig.
2. On completion first set VRI and VR4 to maximum, VR2

to minimum and VR3 and VR5 to mid position. A jack plity should be connected to a suitable power amplifier and loudspeaker and inserted at JK1.

Increase VR2 until triggering due to circuit noise and residual hum ceases. Obtain a photographic flash gun and charge it up then switch on the

COMPONENTS . . .

TONE GENERATOR

Resistors		Semiconductors	
R1	220k	IC1	CA3140
R2	68k	IC2	741
R3	68k	IC3	4098
R4	10k	IC4	4046
R5	1 k	D1	1N4148
All resistors \mathfrak{f} W 5\% carbon		TR1	FPT100A
		Potentiometers	
Capacitors		VR1	1M
		VR2	5 k
C2	$47 \mu 16 \mathrm{~V}$	VR3	1M
C3	$100 \mu 16 \mathrm{~V}$	VR4	500k
C4	470 n	VR5	100k
C5	$470 n$	Miscellaneous	
C6	47 n	S1 - Single pole switch,	
C7	$10 \mu 16 \mathrm{~V}$	Veroboard, pins	

GUN CIRCUIT

The heart of the gun circuit is a push-pull inverter (Fig. 4) each half being driven by non-overlapping square wave inputs. The drive waveforms from the gates (Fig. 3) are inverted and buffered by TR1 and TR3, and the emitter followers TR2 and TR4 drive the output pair, TR5 and TR6. If is important that the output transistors are of the metal can variety. as the plastic versions have a lower minimum current gain, and may not completely saturate. Under normal operating conditions little heat is dissipated and large heatsinks are not needed. D4 and D5 protect the output transistors against reverse biasing voltages, and D6 and D7 with R11 and C5 limit positive going spikes to approximately $2 \mathrm{~V}_{\mathrm{cc}}$.

The high voltage output from $T 2$ is rectified by $D 8-D 17$ and charges the main storage capacitor C6. The voltage on C6 is sensed by the potential divider R15/18 and R2, and compared with the reference voltage of D15 through IC1.
When the voltage on C6 is less than about 230 V , the output of IC1 is high, enabling the CMOS astable oscillator, IC2(a) and providing an inhibit signal to the trigger circuit to prevent the gun being fired before it is fully charged. The output of the oscillator has an unequal mark-space ratio, which is gated by IC2 (c) and (d) and IC3, a dual 'D' type flipflop. This produces the non-overlapping drive waveform.

As the voltage on C6 rises to about 240 V , IC1 output goes low, inhibiting the inverter, and arming the trigger circuit, TR7 etc. Two possible trigger circuits are given: a single shot circuit (for the bad guys); and a continuous repeat 'automatic fire' trigger (for the good guys). The single shot

Fig. 2. Veroboard assembly of tone generator

Fig. 3. Low voltage part of gun circuit. In the prototype the single shot trigger was used. An alternative continuous trigger is shown lower left

COMPONENTS ...

GUN CIRCUIT		Capacitors
		C1 5n
Resistors		C2.9 100n (2 off)
R1	2k7	C3 10n
R2	220k	C4 220ん16V
R3	10k	C5 $47 \mu 40 \mathrm{~V}$
R4	100k	C6 $32 \mu 450 \mathrm{~V}$
R5	470k	C7 47n450V
R6	10k	C8 $47 \mu 16 \mathrm{~V}$
R7	22k	Transformers and tube
R8	1 k	Pri - $12+12$ turns of
R9	22k	24 s.w.g. enamelled wire
R10	1k	Sec - 800 turns of
R11	680R	$42 \mathrm{~s} . \mathrm{w} . \mathrm{g}$ enamelled wire
R112	18k	Xenon trigger transformer
R14	100R	(Maplin Y063T)
R15	10 M	Xenon tube (Maplin YQ62S)
R16	10 M	Miscellaneous
R17	1 M	S1 D.P.S.T. toggle switch,
R18	180R	S2-S3 S.P.D.T. toggle with
R19	22k	single bias to one position,
R20	180R	20 in length of $3 \times 3 \mathrm{in}$ plastic
All resistors $\frac{1}{2}$ W 5\% carbon		trunking, VR1-100K. B1—PP3, B2 -PP9
Semiconductors		
TR 1,3,7,8,9		BC182LB (5 off)
TR2.4		BD137 (2 off)
TR5,6		2N3055 metal can (TO3) (2 off)
D1,2,3,12.13,		1 N4148 (6 off)
D4-11		1 N4007 (8 off)
D15		BZY88 3V3
CSR 1		2 N 4443
IC1		CA3140
IC2		4093
IC3		4013

circuit used charges C8 via TR8 when TR7 is turned on by IC1; this charge is transferred to the gate of CSR1 when the trigger S2 is operated. CSR1 discharges C7 through the pulse transformer T2, providing 3 or 4 kV to the trigger electrode of the flash tube, causing the tube to strike.

The falling voltage on C6 causes the cycle to repeat, with a delay due to C2 and R5 to prevent the inverter starting before the discharge is complete.

The continuous firing trigger circuit uses C9, R19 and D13 to differentiate the positive going edge generated when S3 wiper connects with TR7 collector, and IC1 output is

low. This pulse briefly turns on TR9, firing CSR1 and hence the tube. The recharge cycle begins, with IC1 output going high, and when C6 is fully charged, going low again. TR7 collector goes from low to high, and if S3 wiper is still connected, this transition initiates the triggering, and so the cycle repeats until S3 is opened.

TRANSFORMERS

The construction of T1 deserves some comment. The primary winding consists of 12 plus 12 turns of 24 s.w.g. enamelled wire, bifilar wound on the core bobbin, and then insulated with a layer of tape. The secondary is made up of 800 turns of 42 s.w.g. enamelled wire, wound in four layers, each insulated from each other by a layer of tape. Sleeving should be placed over the free ends of the windings before covering with insulation to avoid chafing. The core used was a 36 mm diameter item, of Siemens T26 material (available from Electrovalue).

T2 may be obtained from Tandy, Maplin, or may be recovered from a complete flash gun. Physical construction may vary so modify layout accordingly. Tubes for the prototype models were obtained complete with reflectors by purchasing a quantity of used photographic flash guns from a dealer (four for f6). Most Japanese items are suitable; tubes from German made units seem to require a higher supply voltage.

TESTING

The circuit may seem rather complex, but it has the virtue

Fig. 5. High voltage gun board

Fig. 6. Low voltage board

Flash gun showing stacked board assemblies consisting of the high and low voltage boards, battery and flash tube to the fore. Two 4 in sections of broom handle are used as a butt and steady

that the standby current is only a few milliamps and only fires when fully charged. Recycle time depends on the value of C6 and the internal resistance of the power source. With the value shown, and a PP9 supplying power to the output stages, recycling takes about 0.5 S . The prototype automatic version used two 6 V lantern batteries in series to give a very satisfying flash rate.

Test the low voltage section of the circuit first. Connect TR1 and TR3 bases to $V_{c c}$ via R7 and R9 to inhibit the output stages. Ground IC1 pin 2, and check that the oscillator is operating. Next, connect a high wattage resistor bf about

The separate tone generator with phototransistor on right panel

15-20k in place of C6, and connect the inverter output stages to IC2, still keeping IC1 pin 2 at OV. About 300V should appear across this resistor. Tune VR1 for a voltage maximum before restoring the circuit to its original form.

Note that if the circuit is tested with a bench power supply, the current trip will almost certainly operate, as the current demand is large.

HOUSING

The prototype units were built into 20 in lengths of 3×3 in plastic electrical trunking, with the flash tube secured in the gutted body of a defunct flash gun. Chamfered lengths of broom handle were screwed and glued to the trunking to act as butt and steady, and a biased toggle switch made a very effective trigger.

Six prototypes were built to this circuit and the only problems encountered were due to mechanical considerations, inasmuch as the finished products were thrown about with gay abandon by a troupe of scantily uniformed imperial stormtrooperettes.

Readout...

Off The Rails

Sir-With reference to Tom Gaskell's article in the August edition Semiconductor Circuits-ICL 7660, the stated absolute maximum voltage of +10.5 V applies for the chip when it is used in its negative voltage generating mode only. If the chip is used as a positive to positive voltage converter then this maximum can be increased. An example of this is to provide $a+7.5 \mathrm{~V}$ supply from a +15 V rail when using the ICL 7650 chopper stabilized operational amplifier. The 7660 can also be used as a negative to negative voltage

Fig. 1
converter in a similar manner. The circuit configuration is shown in Fig. 1:
L. N. Owen BSc.,

Blackfield,
Hants.
Tom Gaskell comments:
My thanks to Mr. Owen for providing us with an ingenious application for the ICL 7660. He is quite right in stating that this circuit allows operation from $a+15 \mathrm{~V}$ rail, rather than the specified +10.5 volts. In practice, though, the +10.5 volt limit still stands; it is the maximum permitted voltage between pin 3 and pin 8 (the 'OV' pin and the +ve supply pin).

In Mr. Owen's circuit, the i.c. is 'floated' up to a nominal +7.5 volts; the 'negative' ouiput of the i.c., pin 5 , is connected to 0 volts, which (in combination with $a+15$ volt supply) forces pin 3 to +7.5 volts; this is our new supply rail. Reference was made in the original article to a diode in series with pin 5; this should ideally be included (between pin 5 of the i.c. and everything else) for supply vollages in excess of 13 volts (ie. twice 6.5 volts). Allowance should be made for its forward voltage drop. The maximum permitted supply voltage with
this circuit arrangement is +21 volts.
Altogether, a most useful and interesting application of the device, showing that even fairly simple i.c.s such as this can often be extraordinarily versatilel

Finally, please note that there is a small but important error in Fig. 3 of August's Semiconductor Circuits, on the ICL 7660: The caption should read DI is not necessary for supplies $<6.5 \mathrm{~V}$. Not $>6.5 \mathrm{~V}$ as printed.

Help Sought

Sir-I have just purchased a BBC model 'B' micro and the high resolution graphics, on a large colour TV are good.

I do not normally use a large colour TV, however, for my computing, having instead a $14^{\prime \prime}$ monochrome portable. A problem which your readers may be able to help me with is that the characters tend to flicker at the edges when this monochrome TV is used. My previous computer, a UK 101, exhibited the same effect until I changed the value of capacitor C60 as advised in the manual, when the display became rock steady and clear.

Is there a corresponding cure for the BBC ?
I would also be interested to hear of a good user group for this micro.

Seamus McKenna
Co. Donegal Ireland.

HENEW MPFIPLUS...

 -0
THE LOWEST COST Z8O SINGLE BOARD COMPUTER AVAILABLEWTH ALITHESE FEATURES!

The MPF1 PLUS incorporates the $\mathbf{Z 8 0}$ - the most widely used 8-bit microprocessor in the world, to form a Single Board Computer (SBC).
Packed in a plastic bookcase together with three comprehensive manuals and power supply (to BS3651 standard), the MPF1 FLUS is a microprocessor learning tool for every apolication.

FLIGHT
 Electronics Ltd.

Teaching you in a step-bystep method the MPF1 PLUS helps the user fully understand the Software and Hardware of a microprocessor easily and conveniently - as opposed to micro-computers that aim to teach high-level languages instead of microprocessor systems fundamentals.

Not only is the MPF1 PLUS a teaching tool but with the available accessories it can also be used as a low-cost development tool or simply for OEMs.

THE MPFIPLUS

Just look at the specification:-

Technical Specification

CPU: Z80A - 158 instructions
Software:

- Z80/8080/8085 machine code

Z80 Assembler, line and 2 pass. - 8 K BASIC interpreter (Extra) - 8K FORTH (Extra)

ROM: 8K Monitor (full listing and comments)
RAM: 4 K CMOS (2×6116)
Input/Ouput: 48 system I/O lines
Speaker: $2.25^{\prime \prime}$ coned linear
Display: 20 character 14 segment green phosphorescent
Expansion:

- Socket for 8 K ROM
- Cassette interface
- Connectors 40 way, complete CPU bus Keyboard: 49 key. Full "QWERTY" real movement good tactile feedback
Eatteries: $4 \times$ U11 for memory back-up (batteries not included)
Serial Interface: 165 baud for read/write va audio cassette

Manuals

1. User's Manual. 8 chapters.
2. Over view and installation
3. Specification (hardware and software). 3. Description of
Operation. 4. Operating the MPF-1 Plus. 5. 44 Useful Sub-Routines 6. The Text Editor
4. Assembler and Disassembler 8. System Hardware Configuration.
5. Experiment Manual. 16 experiments.
6. Monitor Program Source Listing with full commenting.
c. Also available the MPF-1 Plus Student Work Book (self-learning text).

Accessories

- PRT-MPF-1P: 20 character printer Ready to plug in. Memory dump.
- EPB-MPF-1P: Copy/list/verify $1 \mathrm{~K} / 2 \mathrm{~K} / 4 \mathrm{~K} / 8 \mathrm{~K}$ ROMS. Ready to plug in
- SSB-MPF-1P: Speech Synthesizer. Inc. 20 words and clock program. 1200 words available.
- SGB-MPF-1P: Sound Synthesizer Board.
- I/O - MPF-1P: Input/output board

ALTHOUGH hydro-electric power is a very efficient method of producing electricity-you simply collect a few million gallons of water, store it in a dam and then dispose of it through a turbine-generator placed somewhere well below the water level-an ingenious alternative to the traditional hydro-electric plant has been developed by the CEGB (Central Electricity Generating Board) at Dinorwig, North Wales. The massive underground plant is a pumped-storage system which can supply 1300 MW of electricity to the national grid system in just 10 seconds, ovencoming the costly business of stand-by stations.

With the introduction into our homes of infinite numbers of electrical appliances over the last couple of decades came the inevitable load on the national grid system. The coal- and oil-fired power stations of the fifties proving less and less capable of supplying large amourts of electricity to the grid system when a sudden demand occurs. To keep these stations in a stand-by moce, awaiting a peak demand, is a costly business.

At the same time as these significant changes were occurring in the daily patter of electricity demand it was realised that there was ar increasing need for reserve generating capacity to mate ap for the sudden loss of a large modern generator.

EARLY STUDIES

In the latc sixties it was estimated that the stand-by capacity needed to cover the worst possible unplanned loss of large generetors curing the two following decades were calculated by the CEGB to be abrout 1300 MW within some six seconds (a tall êrder andeec).

It was therefore decided to compare the engineering and eccuomic reerits of gas turbines with pumped-storage, for prcyiding generating capacity able to respond rapidly to sudden demands for electricity in the long term. Pumped-storage generation offered a significant advantage for this duty because of its unique ability to spin without load, ready for generation withir a few seconds. This technique allows the turbines to be spun on compressed air via hydraulically controlled valves when neither generating or pumping, thus allowing a quick-start time for either operation. The results of the economic studies in the late 1960s demonstrated that overall system costs were in farour of jumped-storage. The system costs represented the overall tifet me capital, fuel and other operational charges, but of course the fuel estimates did not anticipate the subsequent drastic change in oil costs. This provided an even more attractive case for pumped-storage, and also changed the balance in favour of nuclear energy compared with fossil-fired stations.
therefore cheaper, being provided by the most efficient base-load power stations. The scheme in effect uses the massive body of water in the upper reservoir to store potential electrical energy for almost instant use at peak demand periods.

ENGINEERING MARVEL

Construction began in 1975 and the station is now undergoing its final commissioning deep beneath the old Dinorwig slate quarry at Llanberis in North Wales. The site was chosen for its geological characteristics, hydrology and reservoir potential, construction requirements, power transmission line routes, environmental impact and, of course, pure economics.

Marchlyn Mawr, an existing lake, has been enlarged to provide Dinorwig's upper reservoir. Llyn Peris, a lake about 500 metres (1,640 feet) below, has also been enlarged to provide the lower reservoir. The high head of water (over 500 metres) available from the top reservoir gives the advantage of a smaller reservoir capacity for a given station output and it was possible to use Llyn Peris with very little extra capacity being required to form the lower reservoir. Indeed work was carried out on both reservoirs to optimise their usage for their precise roles in this project.

At all times during construction the CEGB placed paramount importance on the effect to the environment. Dinorwig is almost invisible from above ground which makes it all the more difficult to relate just how massive the underground workings really are.

This $£ 425$ million project is civil engineering on a vast scale. Around three million tonnes of slate has been excavated to create the station's network of huge tunnels and caverns, requiring the use of some 4,500 tonnes of gelignite. The main civil engineering contract was believed to be the largest ever let in the UK when it was placed in 1975. The underground chamber housing the main plant is one of the largest excavated caverns in the world-twice as long and half as wide as a football pitch and higher than a 16 -storey building.

HYDROLOGY

Dinorwig uses more than 6.6 million cubic metres $(1,462$ million gallons) of water during a full generating cycle. The water is retained in Marchlyn Mawr by a 600 -metre-long rock fill dam, landscaped on the downward face to blend with the scenery. The upstream side is faced with asphalt to provide the necessary water seal and the flexibility to meet the pressure changes caused by such a vast weight of water being continually moved in and out of the lake.

1. purped-starage power station differs from a normal ryde-alectric station because it has two reservoirs-one above end one Eelow the generating plant-and it uses the same water again and again.

After flowing from the upper reservoir to drive the turbines, the water is then pumped back from the lower reservoir to be uset again (see Fig. 1). The turbine generators at Dinorwig work in neverse as motor-pumps and use power from the national grid when in the pumping mode. The water is pumped back at night than demand for electricity is low and electricity for pumping is

As can be imagined when the generators are shut-down there is a tremendous back pressure created in the feed tunnel and for this reason a massive surge shaft was incorporated in the hydraulic system. Being open ended the 43 metres high, 10 metres diameter surge shaft allows the excess pressure to be dissipated; it surmounts the 439 metre deep, high-pressure shaft.

Maximum station water demand is 420 cubic metres per second, and the system velocities were selected by balancing the cost of various tunnel sizes and their energy losses within limits of previous experience to ensure a satisfactory tunnel lining and

Fig. 1. Cross-sectional view showing the basic layout at Dinorwig. The overall distance between the upper and lower reservoirs is around 3.2 kilometres. The high-pressure and surge shafts together form a vertical shaft $\frac{1}{2}$ kilometre deep-nine times the height of Nelson's Column
acceptable pressure surge levels. The power/time criterion was also an important factor in tunnel sizing because of the need to accelerate the 2 km water column from standstill to full flow in just a few seconds.

THE STATION LAYOUT

The underground tunnels were integrated with caverns housing the mechanical and electrical plant and access tunnels for construction and operation. An important factor in settling the

Section through station. Electricity generated in the machine hall at 18 kV is conducted via aluminium bus-bars to the transformer hall, then at 400 kV to the national grid system through a 6 mile underground tunnel
level of the main cavern was the submergence needed by the pump-turbines below the bottom reservoir to minimise air bubbles forming which could damage the pump-turbines. Other important features include: the cavern width, determined by the structural and water-bearing properties of the rock, provisions for maintenance, disposition of electrical busbars, the number of machines connected to transformers which supply the power to the high voltage grid system, equipment for starting the machines when they are operated as pumps, location of high voltage switchgear, control rooms and welfare facilities.

The 24 metre wide main cavern houses the six pump-turbines, and has adequate maintenace and plant provisions. In elevation, the cavern is a three-level arrangement dictated by access to the turbine/generators (Fig. 2.). The control room and equipment, low voltage switchgear and batteries utilise the space above the machine busbar routes. Workshops are arranged at one end of the main cavern with direct access to the plant. Three main busbar galleries, one per pair of machines, connect the machines and transformers. These galleries also house high voltage switchgear.

The six vertical pump-turbines are directly coupled through intermediate shafts to the generator motors mounted immediately above them. Each pump-turbine is reversible and has a single runner which rotates in one direction as a turbine when generating, and the other direction as a pump when being driven by the generator motor.

in fact, one of the six main inlet valves. Its diameter is some 2.5 metres and each of the counterbalances weigh 16 tonnes

TURBINE/GENERATORS

Each generator unit, operating in the turbine/generating condition, has a nominal water flow of 65 cubic metres per second, and delivers 300 MW to the national grid. Flow regulation is achieved by 24 guide vanes which incorporates a restraint device to prevent extreme movement. The vanes, operating in conjunction with an electro-hydraulic governor, are powered by balanced double acting servo motors acting on a regulating ring.

The air-cooled generator motors, rated at 330MVA, are designed for direct coupling to the pump-turbine via intermediate shafts. The rotating parts are supported by a thrust bearing above the top joint of the generator-motor. Eight air coolers using circulating water from the lower reservoir are located on the stator frame which is totally enclosed within a

One of the six generator/motors, the rotating parts of which weigh 484 tonnes
concrete housing. Electrical and mechanical braking systems are included so that the operating mode of generating and pumping can be quickly changed.

Under normal working circumstances a generator unit may be required to perform $5.000 \mathrm{start} /$ stops per year. The generator shaft is the largest mild steel forging ever produced by British Steel. The total weight of the rotating parts of each of the generator motors is 484 tonnes.

The construction of the generator assemblies was completed on site, as transportation limitations precluded shipment of the huge one-piece stators.

It is planned that under normal working conditions only four of the six generator units will be used, the remaining two will be reserved for emergency and sudden demand use. These two stand-by units have a slightly different winding in order that comparisons may be made between the two types with regard to circulating current losses, cost and installation considerations. The basic specification remains the same.

The one-man operations room incorporates many automatic monitoring systems

CONTROLSYSTEMS

The control room is situated in the main cavern overlooking the machine hall. Automatic operation is provided for all generating and pumping conditions, including changing from full load pumping to full load generation.

The control room was designed for use by a single operator

In its excavated form the machine hall was 179 metres long, 24 metres wide and 60 metres high. It is belioved to be the largest single man-made cavern in Europe
but the layout allows for two operators if necessary.
The electronic analogue control system enables the equipment racks to be mounted remotely from the control panels and the system is built up from function modules which, in addition to basic control elements such as high/low alarms etc., include computing functions that enable complex signal manipulation to be carried out.

Other interesting control features include environmental equipment, turbine vibration monitoring and pressure resonance detection equipment used to monitor the underground hydraulic system and guard against damaging resonance phenomena. Level switches have been incorporated to guard against station flooding. An ingenious "radiating feeder" communication system has been incorporated throughout the underground network. A narrow co-axial cable can be found all through the labyrinth, this being a feeder cable that "leaks" radio signals which would otherwise be screened by the mass of solid rock; this system enables immediate radio contact to be maintained within the plant. Radio pagers are also incorporated for staff location.

INDUSTRIAL RELATIONS

From the outset of this project the CEGB placed great importance on using local labour wherever possible. For this reason a multi-skill training centre was established at Dinorwig to train the 95% strong local labour force in the many skill requirements needed. Highly experienced representatives were drafted in from each of the contractors supplying equipment to Dinorwig, and it was they who passed on their skills to the new workforce. Of course, there already existed an important skill which only the Welsh could supply, namely their invaluable knowledge of local slate mining techniques.

ACKNOWLEDGEMENTS

The technical data in this article was supplied by the CEGB who also furnished the photographs and illustrations.

The surge-shaft under construction. 584 metres below this point the water from Marchlyn reservoir enters the high-pressure feed tunnel

MICHAEL TOOLEY ba DAVID WHITFIELD ma msce cng miee

O \& A Level

We have seen in the PE Logic Tutor how useful it is to be able to indicate logic states using l.e.d.s. This idea may be extended further to the point where the output of a logic network is actually intended to drive l.e.d.s as the primary function of the circuit. For example, with the advent of different coloured l.e.d.s, model engineers are now able to build replica traffic lights using l.e.d.s driven by logic. The problem, however, is how to interface the logic gates to the l.e.d.s?

In order to drive an l.e.d. to reasonable brightness, it is necessary to pass a current of around 10 mA to 20 mA through the diode. In general, a nominal 10 mA will produce adequate brightness for red diodes, with the other colours often requiring somewhat more (due to their lower efficiencies). A typical red l.e.d. will have a voltage drop of approximately 2 V across its terminals under these conditions, other colours slightly more (up to around 2.5 V). This in effect is a description of the characteristics of the load which we want to drive from a logic circuit. We must now look again at the capabilities of TTL gate outputs to see if this is possible directly, or whether some intermediate circuitry is necessary.
We have already seen that a standard TTL gate output is capable of sinking a current of at least 16 mA in the low state. In this condition we know, from the TTL level definitions, that the output voltage will not exceed 0.8 volts. This means that it is possible to connect a load between the gate output and the +5 V supply, and draw 16 mA through it, with a voltage of 4.2 V (minimum) being dropped across the load.

A voltage drop of 4.2 V is too great for an l.e.d. on its own. However, if we connect a resistor in series with the I.e.d., as shown in Fig. 3.1, the current then flows through both the resistor and diode. Selecting the value of

Fig. 3.1. Driving an l.e.d. from a TTL gate in the 0 state
resistor allows us to set the volt drop across the diode to an appropriate value. Assuming the worst case, we calculate the resistor value such that it will drop (5-l.e.d. drop) volts at the selected operating current, which must be less than 16 mA . Thus, typical resistor values are around 220Ω to 270Ω, although 330Ω is also a common value. Using this method, we can still use the gate to drive normal logic loads, although the effective fan-out has been reduced by approximately six. The rule, as before, is that the total current which the gate can sink and still operate reliably is unchanged at 16 mA . A disadvantage of this method is that the l.e.d. is illuminated when the output is in a 0 state, and this can be confusing if not properly considered. The second method offers an alter-
native which overcomes this minor problem.

Looking at the drive capabilities of a TTL gate in the 1 state, we might think that this could not be used directly to drive an l.e.d.; only $400 \mu \mathrm{~A}$ of drive is available. The voltage in the 1 state is a minimum of 2.4 V , and is typically 3.4 V . So much for the theory. In practice, if we are willing to accept that using a gate output to drive an l.e.d. will make its output unavailable for other uses, then something can be done. In fact, the result is one of the simplest ways of driving an l.e.d., since it requires no additional components. Simply connect the diode between the gate output and OV, as shown in Fig. 3.2 , and all should be OK. The question now is "Why does it work at all?".

Fig. 3.2. Driving an l.e.d. from a TTL gate in the 1 state

The reasons once again relate to the detailed characteristics of the TTL gate output circuit. Suffice it to say that the load represented by the l.e.d. is such that the output voltage of the gate falls to approximately 2 V at a current of around 5 to 10 mA . This is exactly what is required to drive the l.e.d., even though it is not a legal TTL logic level. All-in-all a very simple (and safe) way of driving an l.e.d. from a TTL circuit. This is in fact a common way of using up 'spare' gates in i.c.s when the main circuit design has been completed without needing all of the gates in

DIGITAL ELECTRONICS

every i.c., and is a useful way of providing test indicators. The nice additional feature of this method is that the l.e.d. is illuminated when the gate output is at a 1 level.

LOGIC INTEGRATION

With the advent of integrated circuit technology, the electronic subassemblies which had previously been used in the construction of logic circuits disappeared. In their place came ranges of integrated circuits (i.c.s) which contained standard gates fabricated on silicon 'chips'. As the technology has advanced, it has become possible to include more numerous and more complex circuits inside such i.c.s. We have seen, from the TTL i.c.s described so far in the series, that one effect of this progress has been the inclusion of more than one of a particular gate within a single package. Indeed, the number of gates is now often limited solely by the number of pins available on the package. In the interests of standardisation, the number of pins is restricted to 14 or 16 wherever possible, although 18- and 24-pin devices are now becoming increasingly common.

To try and give some idea of the scale of integration involved, a typical TTL gate currently occupies a piece of semiconductor which measures less than 0.2 mm square; smaller than the proverbial pin head! By comparison, the black package of a 14-pin i.c. is approximately 19 mm by 6 mm . With such a degree of integration available at low cost (e.g. a 7408 costs around 20p), it is not perhaps surprising, therefore, to find that ever more complex logic functions are being integrated into single i.c.s. It is interesting, therefore, to look at some of the reasons behind this move, and some of the advantages which result.

One of the first things that we notice when we look at complex logic circuits is that they can involve quite a number of i.c.s. This in turn means that there are many interconnections, and that the boards required for the circuit become quite large. Two consequences of this are that such circuits are expensive to make, and that they are less reliable due to the greater number of components. Ideally, the rule in this respect is the smaller the physical circuit, the better. If, therefore, we can identify arrangements of logic gates which occur frequently, it should be possible to make the complete
arrangement inside an i.c., and so keep the number of i.c.s required to a minimum.

Much of the rest of this series is concerned exactly with these types of logic elements, i.e. standard arrangements of basic logic gates. Originally, many logical functions were performed by circuits made up from arrangements of discrete gates, but as the TTL family has developed, many of these arrangements have themselves become available as 'standard' components. In this part of the series we will begin by looking at some simple combinations of the basic gates covered so far. Future parts will then move on to look at some of the more complex logic elements which are available in the TTL family. We will also be looking at the ways in which even these familiar gates can be built up from only a single type.

THE NAND GATE

In many discussions of logic, the first gate discussed is the NAND gate. This is often for no other reason than that it is the gate which is fundamental to the TTL family. The internal circuit for a TL gate shown in part one of the series was in fact that for a 2-input NAND gate. This, however, is incidental to any progressive introduction to logic, and we have therefore waited until this point to consider the NAND gate. We will look on the NAND gate at this point as a gate which represents a combiriation of two of the basic logical functions already described.

The NAND gate combines the action of an AND gate and an inverter (NOT gate). Fig. 3.3 shows the way in which these gates may be connected to make up a NAND gate. Table 3.1 shows the truth table for a 2 -input NAND

Fig. 3.3. The NAND gate as a combination of AND and NOT gates

INPUTS		OUTPUTS	
A	B	AND	NAND
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

[1P206]
Table 3.1. Truth table for 2 -input AND and 2 -input NAND gates
gate, side-by-side with that for a 2 input AND gate for comparison. From the table it can be seen that the output of a NAND gate is a 1 unless both of its inputs are a 1, when the output changes to a 0 .
Much of the usefulness of the NAND gate stems from the fact that it produces an inverting action, and Fig. 3.4 even shows how a 2 -input NAND

Fig. 3.4. Connecting a 2 -input NAND gate to behave as an inverter
gate may be connected to behave exactly like an inverter. We shall be returning to this point again later on, but for the moment we will take a look at a practical NAND gate in the TTL family.

7400 TTL NAND GATE

The 7400 is a quadruple 2 -input NAND gate whose pin configuration is shown in Fig. 3.5. As before, each of

Fig. 3.5. Pin configuration for a 7400 quadruple 2 -input NAND gate
the four gates is identical, and the power supply connections are quite standard. The 7400 is perhaps the most commonly used of all the TL family. There are those, perhaps cynically inclined, who would claim that this is only because it is first in any list of TTL i.c.s! Whilst there may be some truth in this, it is nevertheless true that a 7400 will always 'do' to implement any logic function, and so it is probably deserving of at least some of its popularity.

In the previous section we introduced the NAND gate as a combination of an AND gate and a NOT gate (inverter). If we connect a further inverter to the output of the NAND gate, therefore, we would expect to get back to a simple AND gate, since two inverters connected in series behave as a buffer. Fig. 3.6 shows a circuit which allows us to investigate this AND and NAND gate action available from the

DIGITAL ELECTRONICS

7400. Indicator D3 should respond as an AND, while D4 should respond as a NAND, in accordance with Table 3.1.

Fig. 3.6. Test circuit for NAND and AND operation from 7400

This circuit is set up by inserting a 7400 into the B socket, with pin 1 in position B1, and adding the following links.

S3	to	B1	(Input signal A)
S4	to	B2	(Input signal B)
B3	to	D4	(NAND o/p signal)
B3	to	B4	(Link)
B4	to	B5	(Tie i/p together)
B6	to	D3	(AND o/p signal)
B7	to	OV	(Supply)
B16	to	$+5 V$	(Supply)

In this circuit we have used a NAND gate connected (as previously shown in Fig. 3.4) to behave as an inverter. The B socket has been used for the i.c. in preference to the usual A socket simply to spread the wear and tear on the breadboarding sockets!

As a final test of skill in constructing truth tables, the circuit in Fig. 3.7 is offered as a challenge. To which 2 -input gate does the behaviour of this circuit correspond? The circuit is set up using

Fig. 3.7. A combination of NAND gates with an equivalent?
the same i.c. as above, but with the following (different) set of links.

S3	to	B1	(Input signal A)
B1	to	B2	(Tie i/p together)
S4	to	B11	(Input signal B)
B11	to	B12	(Tie i/p together)
B3	to	B4	(Inverted A i/p)
B10	to	B5	(Inverted B i/p)
B6 to	D3	(Output signal)	

B7 to OV (Supply) B16 to +5 V (Supply)

We will now go on to look at another common combination of basic gates, the NOR gate.

THE NOR GATE

As with the NAND gate, the NOR gate combines the action of an already encountered gate with that of an inverter. Fig. 3.8 shows how a NOR gate can be considered to be made up of an OR gate and an inverter, and the truth table for the arrangement is shown in Table 3.2. The output from a NOR gate will be a 0 unless both of its inputs are a 0 , in which case the output changes to a 1.

[EP129]
Fig. 3.8. The NOR gate as a combination of OR and NOT gates

INPUTS		OUTPUTS	
A	B	OR	NOR
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

[EP1282]

Table 3.2. Truth table for 2-input OR and 2-input NOR gates

If both of the inputs of a NOR gate are connected together, as shown in Fig. 3.9, it behaves in the same way as a similarly arranged NAND gate, and produces an inverting action. The

Fig. 3.9. Connecting a 2 -input NOR gate to behave as an inverter
figure also shows an alternative method of constructing an inverter, using the second input tied to the 0 volt supply rail.

The NOR gate can equally well be used to construct any of the logic gates in the TL family. The NAND gate is usually used in preference, however, since its internal gate circuit involves significantly fewer components and
also dissipates less power. Either gate type will nevertheless produce an equally valid solution, and in different applications one type may require fewer physical gates than the other.

7402 TTL NOR GATE

The 7402 is a quadruple 2-input NOR gate whose pin configuration and internal layout is shown in Fig. 3.10.

Fig. 3.10. Pin configuration for the $\mathbf{7 4 0 2}$ quadruple $\mathbf{2}$-input NOR gate

Each of the four gates is electrically identical, but it should be noted that the layout of inputs and outputs does not follow the pattern of the previous 2 -input gates. The power supply connections are, however, quite standard.

The 7402 essentially completes the basic set of 2 -input gates for the present. We are now able to select the most appropriate i.c. for the task in hand, knowing that many of the gates may also be adapted to perform the functions of other i.c.s, thereby allowing us to keep the total number of i.c.s in a circuit to a minimum. As a final demonstration for the present, Fig. 3.11 shows two NOR gates connected as a NOR-NOT pair. The circuit is set

Fig. 3.11. Combination of NOR gates
up by inserting a 7402 in the C socket (for another change!), with pin 1 in position C1, and adding the following links.

S3	to	C2	(Input signal A)
S4	to	C3	(Input signal B)
C1	to	D3	(NOR o/p signal)
C1	to	C5	(Link)
C6	to	OV	(Tie i/p to ground)
C4	to	D4	(OR o/p signal)

DIGITAL ELECTRONICS

| C7 | to $O V$ | (Supply) |
| :--- | :--- | :--- | :--- |
| C16 | to | |

It is interesting to check the overall operation of the circuit against the truth table In addition, however, certain similarities may be noticed between the behaviour of this circuit and that shown in Fig. 3.7, and we shall return to this point later. Another point to note is the effect of disconnecting the link from C6, and observing that the result is the same as setting the input to a logic 1.

BOOLEAN ALGEBRA

In Part Two we discovered that the actions of gates can be described in the form of truth tables. A truth table indicates the output that will be obtained from a gate for any given combination of inputs. The technique can be applied equally well to individual gates, and to gate combinations. When more than two inputs are involved, however, the truth tables very quickly become quite large and cumbersome. Each additional input to be considered doubles the number of lines in the table. There is then a very real danger that the overall function of the circuit will become obscured by the sheer quantity of information presented in the table.
What we need then is a more compact way of representing the logical functions involved in logic circuits. It is also useful if any such representation can subsequently be expanded into a truth table should it prove necessary. What we are effectively grasping for here is a form of logical shorthand; something whose meaning we can readily understand, but which can expand at will to provide the same detail as the truth table. To be useful, therefore, we must choose a shorthand which has a very close relationship to the gates whose workings are being represented, and one which is widely understood. The most common shorthand in use today is known as Boolean Algebra.

Boolean Algebra is a logical shorthand which was developed by an English mathematician, George Boole, long before the introduction of digital electronics. Its purpose was to provide a simple way of writing the complicated logical statements encountered in the study of logic. The idea was to be able to determine rapidly whether a particular statement was true or false, depending on the outcome of other related statements. If we now relate logical statements to digital
logic gates, and the result true/false to gate outputs of $1 / 0$, we can see how easily Boolean Algebra can be applied to the analysis of logic circuits. It also helps to explain why we so often see digital gates referred to as logic gates.

BOOLEAN EXPRESSIONS

In order to be useful, a shorthand must have an established set of symbols. Algebra in turn must have a set of rules in order to be able to determine the outcome of a particular problem. We will start by looking at the way in which Boolean Algebra allows logic situations to be expressed in what are known as Boolean Expressions. Later on we will return to look at some of the basic rules of Boolean Algebra itself, which will allow us to manipulate such Boolean expressions.

The fundamental gate actions of digital logic are, as we have already seen in this series, those of AND, OR and NOT. Boolean Algebra uses special symbols to represent each of these gate actions, and these are shown in Table 3.3. As with any shorthand, alternative symbols are sometimes used, but the symbols shown in the table are those in common use, and they will therefore be adopted for this series.

Now that we have a set of shorthand symbols, it is appropriate to see how they are used in practice. We will stay, for the moment, with the three basic
gate actions of AND, OR and NOT. Fig. 3.12 shows three examples of the use of the shorthand notation introduced

LOGICAL	EXAMPLE
FUNCTION	A.B
AND	$A \cdot B$
OR	$A+B$
NOT	\bar{A}

Table 3.3. Boolean symbols for fundamental gate actions

Fig. 3.12. Boolean expressions for basic gate functions
above. In the first example, concerning the AND function, the expression shown as $X=A$. B indicates that the X output signal is the result of passing signals A and B through an AND gate. Put another way, X equals A and $B ; X$ is 1 if, and only if, both the A and B inputs are at a logic 1.

The second example treats the OR gate in a similar way. The output from

Fig. 3.13. Circuit labelled with Boolean expressions
the gate, X, is shown as $X=A+B$, indicating that X is the result of passing signals A and B through an OR gate. The action of the gate is \mathbf{A} or \mathbf{B}, and X is 1 if either A or B is a logic 1 . The action of the inverter, shown in the third example, is to cause the output X to become equal to \bar{A}, read as A-bar or NOT-A.

Now that we have a shorthand for writing down Boolean expressions, let us pause for a moment to look at the circuit shown in Fig. 3.13. In this circuit the signals still have simple names (A, B, C, etc.), even though these would be replaced in a real circuit by the names of actual signals. The circuit has outputs labelled with their appropriate Boolean expressions, but can you think of a use for this type of circuit? Hint: this is actually available as a standard function in the TL family. (74LS157)

NEGATIVE LOGIC

At this point it is perhaps timely to stand back for a moment and ask ourselves about the way in which we describe and use logic signals. For example, when we call a signal Motor On or Light Off, what do we actually mean? The answer is hopefully selfevident; we assume that the motor will be turned on, or the light turned off, respectively, whenever the signal is at a logic 1 . So far, so good, but is this the only way to use logic signals?

If we always have logic signals of the type described above, there can be unexpected, but predictable, problems with TTL circuits. Consider, for example, part of the motor control circuitry for a milk float, shown in Fig. 3.14. As we can see, the control unit is situated in the driver's cab and only requests motor movement when the ignition key is on, when the driver has pressed the foot pedal, and has also selected either 1 st or 2 nd gear. Unless all of these conditions are satisfied (i.e. all necessary inputs are 1), the Motor On signal will be a 0 , and the milk float will therefore not move. When all of the necessary conditions are satisfied, the Motor On signal will change from 0 to 1. The signal will then pass to the motor compartment, and the motor will be activated via a suitable buffer. In reality there is likely to be further stages between the buffer and the motor, but the principle is unchanged. The circuit seems to work ideally, so what is the problem?

As with many situations in the real world, the danger in this circuit is when something goes wrong. The most common problem in this type of situation, where different parts of the circuit are physically separated, is that the interconnecting wiring may become broken. This is an unexpectedly common occurrence, and may be caused by vibration, traffic damage, or even the printed

Fig. 3.14. Milk float motor control circuit

Fig. 3.15. Motor control circuit using negative logic
circuit board containing the control unit being removed from its socket for testing. In any event, the situation we then have is that the link between points X and Y on the circuit is broken, at least in electrical terms. This is where the trouble really starts! Although the control unit output may be a O (say the driver has turned the ignition key to off), because the $X-Y$ link is now broken, the input to the buffer in the motor compartment will float high, turning the motor on. What we have then is a runaway milk float.

The example above is obviously rather contrived, and hopefully nonrepresentitive of milk floats, but it does show the type of situation which we must avoid at all costs. The simplest solution to this type of problem is to use what are known as Negative Logic control signals. What we have explained so far in this series is known as Positive Logic; the signal condition is true (e.g. the motor is to be turned on) when the signal (Motor On) is at a logic 1. In negative logic, we use the opposite convention, and the signal condition is true when the signal level is a logic 0 . In order to distinguish between the two types of signal, we use the bar notation introduced earlier. In this way, Motor On should turn the motor on when at a logic 1, whereas Motor On will turn the motor on when at a logic 0.

To illustrate this idea in practice, the motor control circuit described earlier has been re-designed in Fig. 3.1^{5} to make use of negative logic. Should there be any doubt about the correct operation of the circuit, a truth table will demonstrate that the motor is only turned on when the appropriate combination of negative logic signals are input.

MORE ON BOOLEAN ALGEBRA

In the discussion above we have seen that there are many situations where it is useful to use inverted logical signals. Boolean Algebra has, as we have seen in Fig. 3.12, a shorthand way to indicate the operation of logical NOT, using the over-rule notation. This is readily extended to cover all types of negative logic signals, as shown by the Boolean representations for NAND and NOR in Fig. 3.16.
The general rule for logical inversion, therefore, is that an over-rule is added to the output signal whenever the gate performs an inversion. Thus the output from a NOR gate whose inputs are A

Fig. 3.16. Boolean shorthand for NAND and NOR gates
and B will be $A+B$. If the output from this gate is now fed through an inverter, as shown in Fig. 3.17, the output will then have two over-rules, $\overline{A+B}$. If we draw the truth table for this circuit, we can probably deduce that a double over-rule of this type has a very simple equivalent, but what is it?

Fig. 3.17. Boolean doubleinversion

SLOW SIGNALS

In Part One we saw the way in which the output of a TTL buffer changes as a steadily increasing voltage is applied to its input. We saw that the output will be below 0.8 V until the input has risen to over 0.8 V . Similarly, we saw that the ouput will be at least 2.4 V whenever the input voltage exceeds 2.0 V . In the middle range, however, where the input is between 0.8 V and 2.0 V , the behaviour of the gate is somewhat unpredictable. The output could be either above 2.4 V or below 0.8 V , or anywhere in between, without any real guarantee of where it might be. These features are summarised in Fig. 3.18, in what is known as the Transfer Characteristic of

Fig. 3.18. TTL buffer transfer characteristics

Fig. 3.19. Variation of switching point
a TTL gate. From this graph we are able to predict the behaviour of a TTL gate which has an input signal level that is not within the indeterminate region. There are, however, problems which can arise when a signal crosses this indeterminate region.

If we look at a signal which has a slowly changing level (in TTL terms at least), we see that, as it varies between 0 and 1 , it crosses and re-crosses the indeterminate region. Fig. 3.19 shows a typical such input waveform, together with a corresponding output signal. This seems at first sight to be quite straightforward, but in fact there are a number of hidden problems. The first is that the point at which the output changes from 0 to 1 can be quite variable, being particularly sensitive to changes in temperature and supply voltage. The results of this effect are shown by the dotted lines in Fig. 3.19, and a degree of uncertainty therefore exists in predicting the instant at which the output will change.

The next problem, however, can have a much more dramatic effect on the overall behaviour of a logic circuit. The difficulty arises from the fact that, in any real circuit, the laws of physics dictate that there will always be some electrical noise present. This will usually be small by comparison with the standard TTL levels and, even when it becomes superimposed on the logic signals, it is not usually enough to upset the 0 and 1 levels. The effect of the noise, however, is to cause the signals to vary slightly above and below their ideal levels. The amounts, and the intervals between these variations are random, but they are usually fairly small, and it is only usually when we have a slowly varying signal that this noise can become troublesome.

As before, the problems arise near the point at which the gate output switches between 0 and 1. Near the switching point, the noise on the input signal can be sufficient to take the input above and below the switching
point a number of times, before it finally settles down. At all times, the general trend of the signal (which is equivalent to a perfect, noise-free signal), remains steadily upwards or downwards through the indeterminate region. It is while the signal is near the switching point, however, that noise can upset the expected smooth transition of the output level.

The overall effect of noise on the output of a gate being used to process a slowly varying input signal can be as shown in Fig. 3.20. The output here can be seen to 'chatter' quite a number of times, before finally settling down. If the circuit following the input gate is counting pulses, or is affected in any way by the number of transitions, the result of this chattering can be quite dramatic: errors of up to 500% can easily occur for slowly varying input signals. It should be remembered here that TTL gates switch in a very small fraction of a micro-second, so many signals unexpectedly fall into the category of 'slow'.

So much for the problem, but what about a solution? What we ideally require here is a gate which has a 'snapaction' transfer characteristic. By this we mean that, once the input signal has passed a defined level, a significant change in the opposite direction is required in order for it to have any effect. This characteristic would result in a circuit which is immune from small changes in level around the switching point, and would obviate the possibility of the chatter effect. As might have been guessed, special TTL gates exist which have such a snap-action property, and they are known as Schmitt Gates.

SCHMITT GATES

The most important feature of a Schmitt-input TTL gate is its behaviour in the so-called indeterminate region. In almost every other respect a Schmitt gate behaves just like any other TTL gate, but it is more versatile since

Fig. 3.20. Effect of noise on switching

DIGITAL ELECTRONICS

Schmitt gates can be used in place of ordinary gates, but not necessarily vice versa.

The transfer characteristic for a Schmitt buffer is shown in Fig. 3.21. When looking at this characteristic, it is important to note the directions of the arrows, otherwise the figure can make no sense at all. If we consider, by way of illustration, an input signal which

Fig. 3.21. Schmitt gate transfer characteristic
varies smoothly from OV to +5 V , and then back again, this will help us explain the shape of the graph.

The input signal starts at point A with a level of $O V$, and the corresponding output here is less than 0.8 V , as for any other type of TTL gate. As the input voltage increases from zero towards point B, the output stays at or around this level. At point B, the first switching threshold is reached, and the output jumps (snap-action), from below 0.8 V , to above 2.4 V . Further increasing the input voltage, towards the maximum allowed input at point C, has little or no effect. Thus, with a steadily increasing input voltage, the gate behaviour follows the path A-B-C.

Following the reverse path, the output level stays above 2.4 V until the input level falls to the second switching threshold, at point D. The snap-action switching effect is then repeated, but in the reverse direction, and the output falls to below 0.8 V . For the steadily falling input voltage, therefore, the gate behaviour follows path C-D-A.

The real points to note here are the snap-action switching behaviour and the difference that exists between the two switching thresholds known as the 'hysteresis'. Once the gate has switched, therefore, change of input level equal to at least the hysteresis of
the gate and in the opposite direction, is required in order to make the gate output change state again. This combination of snap-action switching and the hysteresis of Schmitt gates combine to substantially remove the problems associated with slow signals. Other uses of Schmitt gates will be examined later in the series. For the present, however, we will look briefly at some practical details of Schmitt gates.

Typical circuit symbols or Schmitt gates are shown in Fig. 3.22, from

EPros
Fig. 3.22. Circuit symbols for Schmitt gates
which it can be seen that the standard outlines are used, but with an additional symbol inside. The extra symbol is, in fact, in the form of the transfer characteristic shown earlier in Fig. 3.21. One of the most common Schmitt gates in the 7400 TTL family is probably the 7414 the Schmitt equivalent of the 7404 hex inverter. The pin-out is shown in Fig. 3.23, and it can be seen that the 7404 and the 7414 are pin-compatible.

56128
Fig. 3.23. Pin configuration for the $\mathbf{7 4 1 4}$ hex Schmitt inverter

To conclude this brief look at Schmitt gates, the circuit of Fig. 3.24 allows us to compare the operation of the 7404 and the 7414. A variable resistor, or a variable power supply, is used here to provide the input signal which varies over the range 0 to +5 V .

Fig. 3.24. Comparison of gate performance

This circuit is wired by placing a 7404 in socket A, and a 7414 in socket B, and adding the following wire links.

VAR	to	A 1	(Variable supply i/p)
A1	to	B1	(Tie i/p together)
A2	to	A3	(Link)
B2	to	B3	(Link)
A4	to	D1	(Ordinary gate o/p)
B4	to	D2	(Schmitt gate o/p).
A7	to	OV	(Supply)
B7	to	OV	(Supply)
A16	to	$+5 \mathrm{~V}$	(Supply)
B16	to	$+5 \mathrm{~V}$	(Supply)

The variable supply (VAR) may be taken either from a 0 to +5 V supply or, as shown, from a potentiometer connected between the two supply rails. As the input voltage is slowly increased, it should be noted that a point is reached where D1 will flicker on and off for small adjustments of input voltage. D2, on the other hand, will have a definite snap-action, with two quite distinct and separate switching points. It is an interesting exercise to try and plot the transfer characteristics for the two types of gate on the same axes for comparison; the differences are quite noticeable!
NEXT MONTH: The exclusive OR gate and power supplies.

LOGIC TUTOR BOARD KITS
Complete kits for the Logic Tutor are available from the following suppliers:
Howard Associates, 59 Oatlands Avenue, Weybridge, Surrey KT13 9SU (0932 42376)
Riscomp Limited, Electronic Component Distributors, 21 Duke Street, Princes Risborough, Bucks HP17 OAT (084 44 6326)
TK Electronics, 11 Boston Road, London W7 3SJ (01-579 2842)
Magenta Electronics Ltd., 135 Hunter St., Burton-on-Trent, Staffs DE14 2ST (O283 65435)
G. D. \& P. Cowan Services, 9 Harcourt Terrace, Headington, Oxford (0865 60741)
Electronics World, 1C Dews Road, Salisbury SP2 7SN
Microstate Led., 5 Northfield Close, Fernhill Heath, Worcester WR3 $7 \times B(0905$ 56322)
Bi-Pak, PO Box 6, Ware, Herts (O920 3182)

PLEASE NOTE

The R19 shown on the Logic Tutor Board next to link 3 should be R15. Under the heading 'Initial Tests' diode D9 is referred to as diode D5; diodes D5 and D6 are referred to as D6 and D7 whilst diodes D7 and D8 are referred to as D8 and D9.

Space Watch

NEW USSR RADAR

A new radar installation has appeared in central Siberia. Since it is near to the heavy missile fields of that region it is to be assumed that it is for the detection of ballistic missiles. If this is so, then it will be highly sensitive as an early warning device. The actual site is situated at approximately $58.08^{\circ} \mathrm{N}$ and $92.4^{\circ} \mathrm{E}$.

The United States discovered this late last July. It was not detected earlier because for reasons of economy America had restricted activity for some months. The Americans used a Big Bird satellite and analysts have now verified this installation. A map has been released showing where the principal missile bases are together with the radar sites. According to this map there is every sign of readiness exhibited. There has been quite a large coverage of the subject recently. As has been pointed out on previous occasions it is not the policy to deal with these matters in Spacewatch. The excuse for bringing it forward now is that the event of the Korean jet airliner has brought the matter to serious proportions and many people in all parts of the world now seem more concerned with accidents precipitating events leading to a holocaust.

THE SHUTTLE

The success of the latest shuttle flight was a new venture, a night landing and the highly successful launch of another satellite, this time for India. The mission has considerably enhanced the prestige of NASA. Naturally officials are full of a very real pride in all concerned.

An aspect of night landings is the 'seeing' ability available to the crew. The last critical phases of the touch-down were very important in this respect. The portable lighting system was set up on the lake bed at runway 17 . Lights were also available for the ground crew. The shuttle could not be seen by observers at Edwards until it entered the Xenon beams before touchdown, but a rumbling sound could be heard before the craft came into view.

A statement made by Lt. General J. A. Abrahamson, a NASA associate administrator, confirming the advantages of night landings,
went on to say, "this opens up another 12 hour door for launching at Kennedy. It is vital because then we can take advantage of the best weather." Abrahamson also said that it was certain that night landings in future would exceed those made in daylight. The Orbitor turnround was delayed because of manifold drainage problems. Altogether there was a 16 hour delay, the reason for this lengthy procedure was the result of playing it safe. There were often minor faults which were referred to investigation.

The set manoeuvres carried out were done so successfully, much new information on the shuttle performance has been gained, hitherto there has been a radio blackout during the landing phase, and there is a suggestion that the aerials on the top of the vehicle should be used. The method of penetrating the ionized atmosphere was overcome some years ago in manned satellite investigation and was given some coverage in these columns. However if it can be done with existing equipment it will save weight. It is to be hoped that the American government will not inflict economies on space activity for scientific and commercial purposes, since there is much to be done if the full use is to be made of advances in these fields.

GERMANY

The German Infrared Laboratory has now completed its first tests and design review. It now remains for the German government to give assent to proceed with the project. The observatory was planned as a successor to IRAS. The plans are aimed at a launch date around September 1987. This is hoped to be attained, and launch is to be by shuttle. The Laboratory was approved by an independent review board in July. The further work required is for the manufacture of the qualification and flight models of the laboratory. Four scientific experiments are proposed and the estimated cost is some 1.9 million pounds. The experiments will be made by subcontractors.

The satellite is expected to provide more detailed observations than is possible with IRAS and is expected to be as much as ten times more sensitive. It will use the infrared survey being carried out by IRAS and help to select targets for more detailed study. The laboratory would be in space for several years before two other observatories are ready. These will be the infrared facility on the Shuttle and the Infrared Space Observatory put up by the European Space Agency. The time scale for these is 1990 for the American telescope and 1992 for ISO. The purpose of these vehicles will be complementary.

The immediate German programme will hope to gather information that could help to clarify whether the Universe is 'closed' or "open'. -That is to discover if there is enough matter in the Universe to generate gravitational force to prevent expansion. Oiher questions to be settled include 'Is the Universe made of hydrogen and protostars like Jupiter"? More details of the equipment and programme will be available when the vital question of the funding is settled.

JAPANESE ACTIVITIES

The Japanese are planning a new launcher with a capacity of two tons of payload. They
expect to launch 78 satellites between now and the year 2000. It is Japan's stated intention to compete with America. They are asking for an annual increase in funding of up to 10% per annum for 17 years.

The programme is for launching several satellites at the same time. This is necessary because of an agreement they have with local fishermen. The fishermen claim substantial losses at each launch. The agreement beingthe authorities will only launch during February and August of each year. A detailed list of the launch plans will be available at a later date.

The long term plan would be to offer launch services to construct ground stations and to derelop software.

SOYUZ RENDEZVOUS FAILURE

The Russian Soyuz crew failed to rendezvous with the Salyut 7 Space Station earlier this year. This was because the radar antenna would not deploy and an optically guided approach to the station had to be aborted in darkness when the cosmonauts feared a collision between the two vehicles. The Soyuz crew did not attempt to dock. Mission Commander Vladimir Titov said " I was unable to approach closer than some 525 feet."

The Soyuz problems began on the second orbit when the crew found that the dish antenna mounted on a large boom had only deployed partially. This antenna is a key element in the Soyuz automatic docking system. The crew received ground control permission to make several attitude control manoeuvres at rates high enough to swing the antenna into position. The attempt failed. Titov said that Soyuz mission rules dictate that after such a failure no attempts to try other methods are allowed. Nevertheless the crew sought and obtained permission to attempt a rendezvous with Salyut by optical means with the aid of ground radar signals. Such a situation was new and the crew had little hope of success.

Without ranging data to provide distance and closing information Titov had to tell the ground 'how large' the Salyut appeared compared with the reticle markings on the sight and then the ground team computed what type of manoeuvring to perform. On the 19th orbit Titov saw the Salyut in his alignment sight and reported the data. The ground control told him to fire the spacecraft's manoeuvring engine for 50 seconds. He then reported to the ground that the Salyut was closing.

At that point both vehicles flew out of the ground radar sight for 35 minutes. Titov was able to approach within 1000 feet of the Salyut and shine a searchlight from Soyuz onto the passing Salyut station until they went into darkness. Commander Titov tried braking and other methods without success. When they were again in radar sight they were found to be about 2.5 miles apart. Further attempts were abandoned. It was then decided to return to earth. Titov was naturally disappointed. Subsequently another vehicle made the rendezvous without any trouble at all.

When one looks back it is quite remarkable that beyond these limited scares, spaceflight seems safe enough.

Frank W. Hyde

Pantec's revolutionary hand held multimeter introduces a new concept in low cost, high sensitivity meters. Banana's full range of functions make it a must for the electronics hobbyist.

- It's shock-proof
- It's totally protected up to 250 v AC/DC
- It's got audible bleeper for continuity checks and battery test
- It's got permanently connected probes (no socket selection)
- You can operate it with one hand

SPECIFICATIONS
Sensitivity: 20 k ! $2 / \mathrm{VDC}$ and 10 k ! $/$ VAC

- DC Volis: 0.5-5-25-100-500V
- AC Volis: 50-250-1000V (max 750V)
- DC Current: $50 \mu \mathrm{~A}-50 \mathrm{~mA}-500 \mathrm{~mA}$. 2.5A
- Resistance: Up to $2 M \$$ in 3 ranges
- Accuracy: 2% DC -4% AC
- Dimensions: $173 \times 86 \times 29 \mathrm{~mm}$
- Weight: 200 g
- Supplied with soft carrying case and spare fuse

Write or phone for details

The Banana

 Multimeter
Carlo Gavazzi (UK) Ltd. 162/164 Upper Richmond Road, London SW152SL Tel: 01-7859022 Telex: 8952493

OMNEW 100 WAT TMS

 MOSFET POWER AMPLIFIER MODULESMost power Mosfet amplifiers are based on the Mosfet manufacturer's application notes which by no means utilises the full potential of these devices. Our new Mosfet amplifier designs incorporate BRAND NEW sophisticated circuits that out-perform in al respects AEMEMBER complete with power supply and integral toroidal mains transformer. All that is required is the connection of a toad (loudspeaker etc.), mains lead and input source, thus eliminating wiring problems. The units are open and short circuit proof insuring stress free power delivery into virtually any load. On board drive clrcuits are incorporated to power a compatible 11 segment L.E.D. Vu meter available as an optional extra.

APPLICATIONS:
HI-FI. PA. DISCO. INDUSTRY
SPECIFICATIONS
OMP/MF 100 OMP/MF 200
OUTPUT OUTER AMS $100 \mathrm{~W} / 4$ ohm $200 \mathrm{~W} / 4$ ohm
PANER
BADTH $\quad 1 \mathrm{~Hz}-160 \mathrm{KHz} 0.5 \mathrm{~Hz}-160 \mathrm{KHz}$ BANDWIDTH $1 \mathrm{~Hz}-160 \mathrm{KHz} 0.5 \mathrm{~Hz}-160 \mathrm{KHz}$
MODEL OMP/MF100
 SENS. FOR SLEW RATE S.N.R. T.H.D. FULL POWER T.H.D. SUPPLY SIZE
10.1 dB
$500 \mathrm{mV} \quad 500 \mathrm{mV}$ $45 \mathrm{~V} \mu \mathrm{~S}$ 1250 B
0.002
0.001 240 V AC $\quad 240 \mathrm{~V}$ AC
$\begin{array}{ll}50 \mathrm{~Hz} & 50 \mathrm{~Hz} \\ 300 \times 123 & 300 \times 150\end{array}$
$\times 60 \mathrm{~mm} \quad 300 \times 150$

PRICES
MODEL OMP/MF200
OMP/MF100 $£ 39.00+£ 5.85$ V.A.T $+£ 2.00$ P \& P OMP/MF200 $£ 65.00+£ 9.75$ V.A.T. $+£ 4.00$ P \& P Vu Meter $£ 9.00+£ 1.35$ V.A.T. +50 p P\&P
[300WATT]
VERSION $\left[\begin{array}{c}\text { AVAILABLE } \\ \text { POA }\end{array}\right.$

Large S.A,E. brings details of loudspeakers, Piezos, Mixers etc
Terms: Cash/Cheque/Postal Orders/Bank Draft/Visa/Access with ofder. Official orders welcome. Please allow 14 days for delivery

VERNONal TRENTLaige!

V.T.'s views and opinions are entirely his own and not necessarily those of PE

Evan Steadman is 45 years old and wellbuilt. He's tastefully tailored, except perhaps for the tie-of-the-day-the badge of your true extrovert. The abundance of greying hair is studiously ruffled and he keeps his loose change-which, in his case, could include a $C 50$ note-in a little purse. A minus point this. Men of substance should at least appear to be less concerned about their petty cash. But I quibble.

Evan is a man who's unoffended, even tickled, to be labelled an exhibitionist. He knows that in the sense people use the description about him it has nothing to do with the dictionary definition of 'one who has a compulsive desire to attract attention by exaggerated behaviour or boasting'. Or, in another listed sense, 'by indecent exposure'.

He is one of the woefully few 'characters' who has survived the creeping standardisation of so much about the electronics industry and whose drive and personality is behind many of the best-known and most-successful high-technology exhibitions to which hundreds of thousands of hobbyists and professionals alike flock year after year.

A one-time schoolteacher, he entered the world of publicity via Fleet Street as a feature writer. "My only gift," he says, "was an ability to turn out 1,500 words to order on any subject my editor demanded. It was usually sheer bloody rubbish, of course. But no matter." This led to work with advertising agencies and publicists and eventually to the post of European advertising and publicity manager for Texas Instruments.
"But deep down," he said, "there was this congenital desire to go off and do my own thing-if only because this was the sole way I could make more money. I was based in the South of France at the time of the big decision. I was living in Christian Dior's villa, if that matters, and life was magnificent. My salary was on an American scale, but even so I managed to spend it. Very naughty of me. So I made tracks for the UK and set up a PR business in the bedroom of the house I'd kept on in Cambridge. My capital was $£ 75$."

Today he owns three advertising agencies and three PR companies. "I don't work much on them personally because it wouldn't be cost-effective. I devote the bulk of my time to exhibitions. The sums of money involved here are fantastic. Take the Antiques Fair at Grosvenor House, London-the only nontechnical show I handle. There's a $\mathcal{L} 5$ entrance fee, the catalogue costs $£ 4$ and we get around 20,000 visitors. That, if your maths are right, adds up to $£ 180,000$ in cash taken at the door. Even so, mine's a chancy game. When an exhibition fails I lose a lot of money. When it works I make a lot. But when it fails it only fails once. When it works it works several times."

He pays tribute to the professionalism of the talented guys who run his companies. "But they find exhibition work 100 nauseating, too stressful, too tough. I thrive on stress and toughness. Don't ask me why. But if you find you like it you try it again."

The All-Electronics Show-an allSteadman production-started nine years ago at Grosvenor House with 180 stands. The idea was born when some of his clients said that to stage the IEA and RECMF exhibitions at Birmingham when the electronics industry was based mainly in the South was absolute nonsense. "I agreed. And I told them that they didn't have to go to Birmingham. I'd put on a show right here. It worked, and it's been working ever since. Now l've become involved with two major annual exhibitionsall in the high-technology sector-plus six conferences. And the list is growing at a rate of four a year."
I asked Evan whether he ever found his lack of formal training in high-technology a drawback. He was visibly affronted. "You underestimate me, madam," he replied with some coolness, putting me by way of riposte into a sexual category to which I clearly do

"'I thrive on stress and toughness

not belong. "I've spent the last 13 years right in the thick of high-technology. And it hasn't been simply a matter of learning the buzzwords. It's been a matter of seizing on definitions and opportunities and employing lateral thinking ... I won't go on. It would be too boring.
"But let me give you an instance. I claim to be the first to realise that the need for fibre optics had to be brought home to the world. That grandiose statement is justified by the fact that I put on the first-ever exhibition devoted to the subject. That show attracted 7,000 visitors, the next 12,000 . Last year 70 companies took part. Next year it'll be 140 .
"Of course, I'm no good at design and I couldn't wire up a p.c.b. But I reckon I know more about high-technology and all its implications than any of the guys working on the benches at Marconi or wherever. Certainly they know all about copper and wire and the rest of it. They understand circuit construction inside out. But they don't know where it all fits in, what it's all leading to. It's the understanding, the appreciation of significance and the breadth of experience that matters. And l've got it. That's not meant to be an arrogant statement-though I have been known to make them.
"Let me give you another illustration. I recognised when the time was ripe for a p.c.b. exhibition. Internepcon used to cover the subject, but then gave it up and became simply a major general electronics exhibition held on the South Coast. The baby had been passed out with the bath water. So I knew it was time to act.
"So now you'll see why I marginally resent the suggestion that old Evan hasn't got the qualifications, because he bloody well has. Anyone with an IQ of 140 has all the qualifications he needs."

What material rewards has his energy, imagination, acumen and, in large measure, audacity brought? He's quite frank about that. "Oh I'm a millionaire (he might well have been telling me he was an expert on the banjo). I've a chauffeur-driven Bentley, three houses and a farm. I also own the building we work from."
I asked the stock question: had he yet reached the height of his ambition? "I've hardly started," he said. "A person who is really ambitious never really achieves the ultimate. He goes on. I don't mean that it's a sort of drug. It's like a way of life. But it's not just for money, power, sex with your secretary or the other things that people believe that ambitious men seek. It's the need to get into things where there is an aching void which you think you can fill. Nature abhors a vacuum. And I'm one of Nature's abhorrers. There are not millions of us like that, but there are lots who are prepared to grasp the nettle, given the chance.
Evan Steadman does not rely for his remarkable stamina on such aids as specially prescribed diets, Swedish exercises or transcendental meditation. "I believe in excess in everything," he freely admits. "As a result I'm exhausted all the time. I'm fat. I've got spots before the eyes and spots on the skin and I'm all hyped-up. But, for me, sitting down relaxing in the sun for a couple of hours would be the kiss of death.
"Mind you, that doesn't mean that I haven't any relaxation at all. I've lots of children and I'm heavily into child culture. One son is a drummer and I have a daugh ter training to be an actress. Then there are my homes, the farm and so on. These need a lot of attention and in a way this adds up to a kind of hobby. Also, l've a private cinema in one of my homes. It's always there if I want it. And I'm a voracious reader. I get through two or three books a week. But the best type of relaxation is the business of living."

For all the success he has enjoyed and the excitement of his life, Evan Steadman is not a man I envy. Anymore than he envies me. As he says, his life style demands a hefty price. It can mean stress, ulcers, long hours, overindulgence in most of the things which should be taken in moderation. "But," he says. "If you're like me you'll know that it's all part of what your body's been telling you to do since the day you were born. Better to have been a has-been than a never-been.
"Joy, you know, is never present. You always feel you've failed to get to the point you wanted to reach. That's why you go on. You'll find it hard to believe that sometimes when I climb into the Bentley and say: Take me home Bernie, I feel pain."

OUTPUT DRIVER BOARD ...

FOR AROUND £12

THE next stage in interfacing the Vic 20 involves the dedication of lines as outputs and inputs. As these lines are now to connect the computer to external electrical devices, it becomes necessary to physically isolate the computer from such devices. We can carry this out by using opto-couplers and relays. This makes the interface rather more costly than the l.e.d.s and switches board, but it opens up exciting new fields for the serious computer enthusiast and hobbyist, and turns the home computer into a useful precision control instrument.

After much deliberation about the allocation of output and input lines, it was decided to give first consideration to dedicating all lines to output applications. This gives great potential to those who wish to control models and small motors, as well as those who wish to experiment with light displays.

This article deals with two output control boards and an input control board.

INPUT/OUTPUT CONTROL BOARDS

In the first interface, all 8 lines are set up as outputs. They are isolated by relays suitable for use with voltages up to 50 V , and current handling capabilities up to 500 mA .

The second interface uses opto-isolated triacs capable of controlling mains voltages and currents up to 1.2A. In both circuits, disabling of the outputs, when not under computer control is carried out by pulling the output lines down to ground potential. This must incorporate the use of insulated mechanical switches as with the l.e.d.s and switches board.

Whilst most control applications are likely to be in output mode, there are many instances when the computer has to be called upon to sense inputs. These can include counters and alarm sensors of many types.

The input board (to follow next month) uses opto-isolators.
All these options can be mixed by using a simple connector block suggested in this article.

LOW VOLTAGE OUTPUT BOARD

The principal devices used in the first control interface are the ULN2803A, octal driver integrated circuit and 700R, 500 mA relays. See Fig. 3.3.

The ULN2803A is an 18 pin d.i.I. integrated circuit, which contains 8 open collector, darlington driver stages with a maximum operating voltage of 50 V and each capable of sinking 500 mA . Each stage incorporates a diode, which offers protection when switching inductive loads.

Applications include relay, lamp, solenoid and small motor switching, and individual stages may be paralleled to increase the output sink current.

The relays used incorporate a 6 to 9 Vd.c., 700 ohm coil, and normally-open contacts rated at $500 \mathrm{~mA}, 200 \mathrm{Vd} . \mathrm{c} ., 10$ Watt maximum; whilst other similar relays have contacts rated at $200 \mathrm{~mA}, 50 \mathrm{Vd} . \mathrm{c}$., 5 Watt maximum. No diode is included in the encapsulation, but the top of the moulded case of both types clearly illustrate the position of the coil and contacts.

See Figs. 3.4 and 3.5 for construction.
Provision has been made for 4 way, $0 \cdot 2$ in. pitch terminals, but these are optional.

There are many options available from the ULN2803A, being capable of directly driving lamps, solenoids and small motors up to $50 \mathrm{Vd.c}$. and the additional advantage of being able to parallel the stages to increase the output sink current. Here it must be remembered that the Vic 20 is only capable of providing 100 mA @ 5 V . making the external power supply necessary. Also, without relays, there is not complete electrical isolation between the computer and peripheral.

The cost of the i.c. and relays is in the region of $£ 10$, whilst the inclusion of terminal blocks would increase the cost by approximately $£ 3$. Of course, there is no need to completely build the board at first, as each line of the port can be used individually. Each board can be just partially furnished for initial experiments and extended as required.

The principle of operation is similar to that of the l.e.d.s and switches board. A logic " 1 " at the port is inverted by the driver. The logic " 0 " at the output of the driver, being low relative to the supply voltage induces current to flow through the coil, the electromagnetic field of which causes the contacts of the relay to close.

Again, provision is made for disabling the logic " 1 " at the port by pulling the output down to ground potential. This could be brought about by microswitches to limit the travel of a moving piece of apparatus, the level of liquids or the lapse of a preset period of time.

Making up this connector will allow flexible use of the expansion boards

Fig. 3.1. Single stage schematic of ULN2803A

Fig. 3.2. ULN2803A octal Darlington driveri.c.

Fig. 3.3. Low voltage output control board circuit diagram

Project prices quoted are based on home etched p.c.b.s and "shop around" component prices, therefore some general purpose components are not specified to exact manufacturers or part numbers. If p.c.b.s are found to be unavailable from PE's usual suppliers, they may be obtained from Bradley P.c.b.s Ltd.

Fig. 3.4. Low voltage output control board printed circuit layout (actual size)

FEEDBACK

The current series on Expanding the Vic 20 has brought a new and enthusiastic group of computer fans to the pages of P.E. A group which, having gained valuable experience at programming techniques, now wants to turn its machines to further use about the home. Some readers with little or no experience in construction have asked for some information on soldering and making p.c.b.'s, whilst others, having some difficulty in understanding the Vic 20 manual, have asked for a little more information on connections to the RAM/ROM Blocks. There is difficulty in choosing the most economical method of buying components. Some want more information about the Super Expander/Nicmon ROMs, and where to get them. Enquiries also concern the feasibility of getting
even greater versatility from the RAM and ROM boards. Others ask for an extension of the series to include other computers.

The last request is the easiest to answer, because all the rest of the series, whilst aimed primarily at the Vic 20, is equally suitable for use on any home computer, having been developed some time ago for Nascom. All that is required is a suitable connector for your computer I/O port and some adaptation of the sample program routines.

NEXT MONTH: All the above points will be gone into, the topics being based on readers letters during the series. A high voltage (mains) driver board will be featured, and an opto-isolated input board, along with details of construction and manufacturers' applications notes.

Fig. 3.5.
Component
layout of low voltage output control board

An offer from COLIINS to all PRACTICAL EEECTRONICS'Readers ...THEIR 1984 ELECTRONICS DIARY

The diary is: $121 \times 73 \mathrm{~mm}\left(4 \frac{3^{\prime \prime}}{4} \times 2 \frac{77^{\prime \prime}}{}\right)$

* With sections on the fundamental principles and on some of the important applications of electronics in radio and line communications, in television and in computers
* A glossary and an index help to make this diary a handy source of information for professionals and amateurs alike
* There is space, of course, for appointments and expenses, and there are monthly cash account pages, sectional paper for plans or graphs, a motorway map, and London Underground and Inter-City maps
\star Send now for your 1984 Diary by completing the form below:

Enclosed is my cheque/postal order payable to: Wm. Collins Ltd. for the sum of \mathbf{E}. (E2.70 per diary, including postage and packing).

[^4]
ルOCICC
 Part Five D. MANDELZWEIG msc Eng ANALYSER

PREVIOUS articles in this series have detailed the design and construction of a modular logic analyser. The basic unit as described has TTL compatible inputs. This final article in the series presents a fifth option, allowing the analyser to be adapted for use with CMOS circuitry.

REQUIREMENTS

Let us consider the requirements. Although today most computer systems run from a 5 V supply rail, many other circuits use CMOS technology running from higher voltage levels. Thus the first requirement is to be able to level shift the CMOS power rails and logic levels to those compatible with TTL. The next requirement is of sufficient drive capability of the circuit under test. A LSTTL input represents on the average a tenth of the drive capability of a TTL output. Therefore using the analyser on TL circuitry will not affect the operation of the circuitry /very seldom do good circuit designers allow TTL outputs to drive the maximum number of inputs). On the other hand, however, a common limit to the drive capability of CMOS outputs (as far as TTL is concerned) is two LSTTL inputs. If one, or two LSTTL gates have already been used in the design being tested, another LSTTL load may affect the operation of the circuitry. So the load applied to the circuit by any test probe should be as small as possible, and in the design presented here, is the equivalent of a single CMOS input. A third consideration, closely connected to drive capability, is of test lead length. Long leads, necessary to reach into the circuit being tested, represent capacitive loads to the drive circuitry as the frequency of the signals increase. Circuits with low drive capability may not be able to drive these capacitive loads, and the switching from one true logic level to another may be prevented. To overcome this problem, the input circuitry must be as close as possible to the test points of the circuit being tested.

SOLUTION

There are a few possibilities for the required solution. One would be to use comparators as input buffers, but many i.c.s would have to be used making the p.c.b. large and cumbersome. A better way is to use i.c.s specifically designed for the task. Two such i.c.s are available. The first is the RCA CD40116 high speed 8-bit bi-directional CMOS/TTL convertor, and is ideal for the application. Propagation delays through the i.c. are typically 15 ns -of the order of those in the analyser itself. There are two disadvantages to this i.c. A minor one is that the CMOS side maximum level is 12 V some CMOS circuits work on 15 V . The other one, somewhat larger, is the availability of the i.c., and especially its price, which does not make it (at present!) economical to use. The second i.c., a RCA CD40109B, is more readily available and is much cheaper. This device was designed to be a low-tohigh voltage converter, but can be used in the opposite mode, as is done in the circuit to be described. There has to
be a trade-off in performance to approximately 1 MHz . If higher speeds are to be encountered (fast CMOS i.c.s are becoming available today) then it is recommended that a design using the first i.c. be considered. Although the i.c. is not pin-for-pin compatible with the one being used here, the three CD40109Bs can be replaced with two CD40116Bs with suitable modification to the p.c.b. layout. Remember, though, that the analysis maximum input frequency is 5 MHz , and it is possible to test circuitry at lower speeds, as discussed in previous articles. Another problem arising out of slow propagation delays is that of data skew. (See part 1.) To avoid this problem, it is important that all the signals being observed (and being used for control, such as the clock modifiers etc) must be connected through the translator. This will ensure equal propagation delays, and all signals will arrive at the analyser simultaneously.

CIRCUIT DESCRIPTION AND CONSTRUCTION

Fig. 5.1 shows the logic diagram of a single translator. There are four translators per i.c., and using three i.c.s allows twelve lines to be translated. There are thirteen input lines to the analyser. It was decided that a fourth i.c. was not necessary for translating only one line, and the CQ3 input is therefore not used in this option. Referring to Fig. 5.2, the unused CQ3 input is held high by R513. (When using the analyser, the CO3 input switch should be in the 'don't care' position.) In Fig. 5.2, all the Vcc inputs and the enable inputs are commoned, and taken to point A. All the translator inputs are also held 'high' to this common line via resistors R501-R512. These resistors present minimal loading, and prevent open inputs from floating (and possible damage). Linking A to B makes the option compatible with circuitry using 12 V supplies. Linking A to C connects the option to the + Vin line, which must be connected to the supply line of the circuitry being tested. Input voltage range is +5 V to +15 V . A choice can be made at the construction stage as to which link to use. Alternatively, a small switch can be mounted on the case allowing easy change-over. VDD, the TTL level side of the i.c.s, is supplied by the 5 V supply in the analyser. The supply line is decoupled by C501.

Fig. 5.1. Logic diagram of a single translator in the CD40109B

COMPONENTS
 Integrated Circuits

IC501-503 40109B
Resistors

R501-R512	1M $\frac{1}{4}$ W 5 5
R513	$10 k+W 5 \%$

Capacitors
C501
$10 \mu 16 \mathrm{~V}$ Tant

Miscellaneous

Ribbon cable, Eezy-hooks, plastic case, p.c.b. SPDT switch (optional)

Fig. 5.3. Track side p.c.b. layout of CMOS input option board (actual size)

Fig. 5.4. Component-side p.c.b. layout of CMOS input option board (actual size)

Fig. 5.2. CMOS input option circuit diagram

Fig. 5.5. Component layout

Construction of the unit is straightforward. Use soldercon i.c. socket strips for the i.c.s. Handle the i.c.s with care as they are CMOS devices. All necessary through-hole connections are made with component leads soldered to pads on both sides of the board. Extra pins are not necessary.

Link A to B or C, or if a switch is to be used, connect some lead wire to the p.c.b. 16-way ribbon cable is used to connect the p.c.b. to the analyser. This cable can be up to 0.5 m long, and is connected to the analyser using the same method as the probe described in Part 2. The order of the connections from the p.c.b. match the order of the inputs to the analyser, so connections are made one-to-one. Part 2 shows these connection details. Note that the -12 V supply is not used, and remember that CQ3 is not used. A piece of 14 -way ribbon cable, no longer than 100 mm , is used between the p.c.b. and the circuit under test. Coloured Eezyhooks are again used as convenient probes on the circuit under test side. The p.c.b. can be mounted in a small plastic case, and the optional switch installed. The nearest sized, commercially available case is the Vero 202-21029J. This may be a little long, though. The author used a suitable
plastic case found in the junk-box. Slots are cut on each side of the box to allow cable entry and exit.

TESTING

A circuit similar to that shown in Part 3 can be used for testing. Replace the 74LS90 with a 74C90, and use, say, 12 V as a supply voltage. The clock input used must also be a signal switching from 0 V to +12 V . Use the +Vin line connected to the test circuit supply. (If A was linked to B, then use a supply voltage of 12 V , but the +Vin line need not be connected.) A similar display to that seen during the original testing (Part 3) should be observed.

This concludes the series. It is hoped that those who have built the project have found the instrument useful, and those who have just followed the series have learnt something of interest. Finally, the author would like to thank P. Duggan for his assistance in checking the analyser timing diagrams.

NOTE: A hex dump of the contents of the IC 10 and IC 11 of the analyser's display board may be obtained from PE (Poole office) by sending a SAE.

FREE! READERS' ADVERTISEMENTSERVICE

WANTED Rotary speaker system for E/organ mechanical or electronic condition immaterial if repairable. Detail 0234 68433. G. C. Rogers, 39 Goodmayes Close, Bedford MK42 OLX.
MK14 Micro (expanded) E20. P.E. v.d.u. board $£ 15$. Kemitron boards $£ 10$. Postage extra. Tel: 0283 42558. N. F. Harris. 4 Field Rise, Burton-on-Trent DE13 OHR.
VARIAC 250 V .50 Hz . input $0-275 \mathrm{~V}$ output 4 amps, Claude Lyons. Two; $£ 20$ with knob $£ 18$ without o.n.o. G. D. Cannon, 236 Westdale Lane, Gedling, Nottingham. Tel: 0602876915.
ACORN Atom 12 K RAM, 8 KROM . Manual, power pack, leads. Various software. Offers wanted. Mr. N. P. Archibald, 1 Downs View Road, Horsham, West Sussex RH 12 4PF. Tel: Horsham (0403) 69400.

ACORN Atom fully expanded with toolkit p.s.u. and much software (mostly games) £ 140 o.n.o. S. D. Brett, The Orchard. Church Path, Swanley, Kent BR8 7NZ. Tel: 0322865213.
SEIKOSHA GP 100A graphics printer. Parallel interface. Box of paper. V.g.c. $£ 165$. Call Chang. 0413327695 after 9p.m. K. Y. Chang, 70, 1-up Ashley St.. Glasgow G3 6HW.
P.E. magazines; offers for sets from No. 1 to Dec. 81 Vol. 17 No. 12. Ring 0245466251 . A. C. Holvy, 14 Sussex Close, Boreham, Chelmsford, Essex CM3 3ED.
UK101 with case BK £75 or offers. Sunbury 80300.

CHIPS: 8202A £10. 8253, 8275, 8259 €3 Each. 2716 (5V) £1.75. Z80AS/10/0 £7. $41 / 6$ 16 for £7. J. E. Walker. 7 Warwick Place, Peterlee, County Durham. Tel: Peterlee 868255 after 7 pm .
UK101 8K Clegmon, cased, 300/600 baud. Lots of software and information offers. D. Callender, 17 Badger Way, Banbury. Oxon OX16 9UD. Tel: Banbury 53475
VIDEO Computer, Interton VC4000 + Chess 2 Draughts, Solitaire, Super Space, Cartridges. New. Unused £125 o.n.o. Or "Spectrum" or "Ultimum interface" projects. Colm Merlehan. Doon, Rathronan, Clonmel, Co. Tipperary. |reland. Tel: 05222133.
YAMAHA PS-10 Automatic Bass Chord. Portable. Full size keyboard. $3 \frac{1}{2}$ octave. Auto rhythm £150. Call Chang. 0413327695 after 9pm. K Y. Chang, 70 1-UP Ashley Sireet. Glasgow G3 6HW.

RULES Maximum of 16 words plus address and/or phone no. Private advertisers only (trade or business ads. can be placed in our classified columns). Items related to electronics only. No computer software. PE cannot accept responsibility for the accuracy of ads. or for any transaction arising between readers as a result of a free ad. We reserve the right to refuse advertisements. Each ad, must be accompanied by a cut-out valid "date corner". Ads. will not appear (or be returned) if these rules are broken. issue. I am not a dealer in electronics or associated equipment. I have read the rules. I enclose a cut-out valid date corner.

Signature .. Date .
Please read the RULES then write your advertisement hereone word to each box. Add your name, address and/or phone no. COUPON VALID FOR POSTING BEFORE 2 DECEMBER 1983 (One month later for overseas readers.)
SEND TO: PE BAZAAR, PRACTICAL ELECTRONICS, WESTOVER HOUSE, WEST QUAY ROAD. POOLE, DORSET BH15 1JG.

MICRO-BUS

 and MICROPROMPT

 and MICROPROMPT}

Appearing every month, Micro-Bus now presents ideas, applications and programs for the most popular micro-
computers and all micro-related projects so far published in PE. Ideas must be original, and payment will be made for any contribution featured.

ATARI VARIABLES

OWNERS of Atari 400/800 machines may be interested in this program, sent in by C. Leech of Leicester. It lists the names of all scalar and string variables referenced by BASIC, along with their current values. Once loaded, the BASIC program can be deleted and the m / c program called by an $\mathrm{X}=$ USR
(ADR(VARILIST\$)) command.
10 DIM VARILISTS(283)
20 FOR $1=1$ TO 283
30 READ Z
40 VARILIST $\$(1)=$ CHR $\$(Z)$
50 NEXTI
60 DATA $104,165,130,133,205,165,131,133$, 206,169,255,133
70 DATA 209,165,206,197,133,208,7,165,205, 197,132,48
80 DATA $1,96,230,209,160,255,200,177,205$, 16,251,132
90 DATA 224,230,224,201,168,208,2,240,60. 41,127,145
100 DATA 205,152,72,162,0,169,11,141,66,3, 165,205
110 DATA $141,68,3,165,206,141,69,3,165,224$, 141,72
120 DATA $3,169,0,141,73,3,32,86,228,169,0$, 141
130 DATA $72,3,169,61,32,86,228,104,168,177$, 205,9
140 DATA 128,145,205,56,176,6,56,176,164,56. 176,43
150 DATA $165,209,133,203,169,0,133.204,6$. 203,38,204
$16 \emptyset$ DATA $6,203,38,204,6,203,38,204,24,165$, 203,101
170 DATA $134,133,207,165,204,101,135,133$, 208,160.0.177
180 DATA 207,201, $0,240,8,208,74,56,176,115$, 56.176

199 DATA 201,162, $0,160,2,177,207,149,212$. 232,200.224
200 DATA 6,208,246,32,230,216,160,255,200, 177,243,16
210 DATA $251,41,127,145,243,200,169,155,145$, 243,162,0
220 DATA $169,9,141,66,3,165,243,141,68,3,165$, 244
230 DATA $141,69,3,169,40,141,72,3,169,0,141$, 73
240 DATA $3,32,86,228,16,47,56,176,185,201$, 129,208
250 DATA $40,160,2,24,177,207,101,140,141,68$, 3,200
260 DATA $177,207,101,141,141,69,3,162,0,169$, 9,141
270 DATA $66,3,200,177,207,141,72,3,200,177$. 207,141
280 DATA $73,3,32,86,228,24,165,205,101.224$,

133,205

290 DATA $144,2,230,206,56,176,195$

TRANSMISSION LINE CALCULATIONS

Sir-This program, for UK101, is derived from the standard transmission line equations, but assumes a loss-free line, sufficiently accurate for the lengths used by radio amateurs. It is more convenient to use than the Smith chart, and numerous cut-and-dry results can be obtained rapidly.

R. J. Newman,
 Chesham.

30 PRINT"THE MEASURED IMPEDANCE AT LINE INPUT IS $\mathbf{R}+/-\mathbf{j X}$ "
40 PRINT"OHMS. THE LOAD ON THE LINE IS A $+/-\mathrm{jB}$ OHMS"
50 PRINT* ENTER A OR B FOR REQUIRED TRANSFORM"
60 PRINT"A-LINE IMPEDANCE FOR GIVEN LOAD IMPEDANCE"
70 PRINT"B-LINE IMPEDANCE TO GIVE REQD. INPUT IMPEDANCE"
80 INPUT AS
90 IF AS="A"THEN310
100 IF AS="B"THEN 110
110 INPUT"Give line characteristic impedance"; $\mathbf{Z O}$
120 INPUT"Give line length (wavelengths)";LL
$130 \mathrm{~L}=\mathrm{LL} * \mathbf{2}^{*} 3.14159$
140 PRINT" !!!!!!!!!!!!!!!!!!!!!!!!!!! ! !!!!!!!!!!!!"
150 INPUT"Give desired $\mathbf{R " ; R R}: \mathbf{R}=$ RR/Z
160 INPUT"Give desired $\mathbf{j} \mathbf{X "}^{"} ; \mathbf{X X}: \mathbf{X}=$ $\mathbf{X X} / \mathbf{Z} \boldsymbol{1}$
$170 \mathrm{D} 1=\left(\left(1+\mathrm{X}^{*}\right.\right.$ TAN(L) $)-2+$ (R*TAN(L)) -2)
$180 \mathrm{~A}=\mathrm{Z} \boldsymbol{\phi}^{*} \mathrm{R}^{*}\left(1+\mathrm{TAN}(\mathrm{L})^{*}\right.$ TAN(L)) /D1
$190 \mathrm{~B}=\mathbf{Z} \boldsymbol{N}^{*}(\mathbf{(X - T A N}(\mathrm{~L}))^{*}\left(1+\mathbf{X}^{*}\right.$ TAN(L)) $+\mathrm{R}^{*} \mathrm{R}^{*}$ TAN(L))/D1
$200 \quad \mathrm{P}=((\mathrm{B}-2)+(\mathrm{A}-2)-(\mathrm{Z})-2)) /$ $((A+Z 0)-2+B-2)$
$210 \quad \mathrm{Q}=2^{*} \mathrm{~B}^{*} \mathrm{Z} \phi /\left((\mathrm{A}+\mathrm{Z} 0)-2+\mathrm{B}^{*} \mathrm{~B}\right)$
$220 \mathrm{MRC}=\mathrm{SQR}\left(\mathrm{P}^{+} \mathrm{P}+\mathrm{Q}^{+} \mathrm{Q}\right)$
$230 S W R=(1+A B S(M R C)) /(1-A B S$ (MRC))
240 SWR=(INT(SWR*100))/100
250 A=(INT(A*100))/100:B=(INT
(${ }^{*}{ }^{*} 100$) $) / 100$
260 IFB<OTHEN290
270 PRINT" $A+/-j B=" ; A ; "+j " ; B ;$
"SWR=";SWR
280 GOTO140
290 PRINT" $\mathrm{A}+/-\mathrm{j} \mathrm{B}=" ; \mathrm{A} ;$; $-\mathrm{j} " ; \mathrm{B}$;
"SWR=";SWR
300 GOTO140
310 INPUT"Give line characteristic impedance";Z
320 INPUT"Give line length in wavelengths": L
$330 \mathrm{~L}=\mathrm{L} * 2^{*} \mathbf{3} .14159$
340 PRINT" ...
350 INPUT"If the termination is A $+\mathbf{j B}$, enter $A " ; A$
360 INPUT"Enter the series reactive component $\mathrm{jB}^{\text {" }} ; \mathrm{B}$
$370 \mathrm{D}=\left(\left(\mathrm{ZO}-\mathrm{B}^{*} \mathrm{TAN}(\mathrm{L})\right)-2+\right.$ (A*TAN(L)) -2$) / \mathrm{Z}$ ©
$380 \mathrm{R}=\left(\mathrm{A}^{*} \mathrm{Z} 0\right)^{*}(1+\mathrm{TAN}(\mathrm{L})-2) / \mathrm{D}$
$390 \mathrm{X}=\left((\mathrm{ZO}-2-\mathrm{A}-2-\mathrm{B}-2)^{*}\right.$

TAN(L) ${ }^{}$ TAN(L)/D
$400 \quad \mathrm{R}=\left(\mathrm{INT}\left(\mathrm{R}^{*} 100\right)\right) / 100: \mathrm{X}=(\mathrm{INT}$ ($\left.\mathrm{X}^{*} 100\right)$)/100
410 REM: $\mathbf{P}=$ Real part of reflection coeff. $\mathrm{Q}=\mathrm{j}$ part
$420 \quad \mathrm{P}=((\mathrm{B}-2)+(\mathrm{A}-2)-(\mathrm{ZO}-2)) /$
$((A+Z \theta)-2+B=2$
$\left.430 \quad \mathrm{Q}=2^{*} \mathrm{~B}^{*} \mathrm{Z} \phi\right) /((\mathrm{A}+\mathrm{Z} \phi)-2+\mathrm{B}-2)$
$440 \quad$ MRC $=\operatorname{SQR}\left(P^{*} P+Q^{*} Q\right)$
$450 \quad \mathrm{SWR}=(1+\mathrm{ABS}(\mathrm{MRC})) /(1-\mathrm{ABS}$ (MRC))
460 SWR=(INT(SWR * 100))/100
470 IFX/D<THEN500
480 PRINT" $\mathrm{R}+/-\mathrm{jX}=" ; \mathbf{R} ;{ }^{*}+\mathrm{j}$ "; \mathbf{X}; "SWR=";SWR
490 GOTO340
500 PRINT"R $+/-\mathrm{jX}=$ "; $\mathrm{R}^{\mathbf{*}}{ }^{6}-\mathrm{j} " ; \mathbf{X}$;
"SWR=";SWR
510 GOTO340

SEMICONDUCTOR CIRCUITS LOGIC CONTROLLED DUAL REGULATOR (LT 1005CT)

THE voltage regulator i.c. has been with us for many years, and is an almost indispensable part of the design and construction of simple, compact, and low cost regulated power supplies. Although occasional variants do appear, most regulator i.c.s are the simple three terminal type: 7805, 7812, 7815, LM340, and similar series. This situation is about to change, however, because a new American company, Linear Technology, has produced a brand new and innovative design of 5 V regulator: the LT 1005CT.
The i.c. contains two voltage regulators, one providing a 'main' output with supply currents of up to 1 A , and the other providing an 'auxiliary' output for lighter loads of up to 50 mA . Furthermore, an 'enable' control is provided which allows the main output to be turned on and off by suitable logic or voltage control. This enable facility has no effect on the auxiliary output which remains at +5 V irrespective of the state of the main output.

Both outputs are short circuit protected, and the main output has thermal shutdown protection. Again, any such shutdown or fault condition on the main output has no effect on the auxiliary output.

POTENTIAL APPLICATIONS

For such an apparently simple device, the LT 1005 CT has a vast array of potential applications in power control and voltage regulation. Because of its unique enable circuitry it can be used as a very effective control element for motors, lamps, and many other types of d.c. load. Several i.c.s can be connected together with suitable timing circuitry to ensure the correct sequencing of power supplies in systems which require the power to be turned on in a certain specific order. Finally, power to a system can be split, to provide some areas with power only occasionally, and others with power continuously. This would enable the bulk of a microprocessor system to be shut down while not in use, while certain areas of RAM could be kept powered up for the storage of important data, for example. Alternatively, any combination of ROM and RAM could be powered up or down, and data transferred between them as required.

The pin out and specifications of the LT 1005 CT are shown in Fig. 1. The specifications show quite reasonable performance for both regulators; note that the 'aux' regulator can operate with input voltages down to 6.8 V , half a volt less than the main regulator, making it even more suitable for battery use. Also note that the enable input to the i.c. (pin 2) can have up to 20 V applied to it; even if the 'input voltage' is lower than this, no damage will be done.

USING IT

Fig. 2 shows a functional diagram of the i.c. As with most i.c. voltage regulators, it is good practice to bypass both the input and the outputs with capacitors, C1, C2, and C3. These should be as close to the i.c. as possible. Cl should be a 1μ tantalum bead, and the other two should be 220 n or more; 1μ tantalums will be satisfactory here, too. The use of the enable input is very simple; a logic 1 level (high) turns the main output on, and a logic 0

LT 1005 CT
E6122]
Fig. 1. Pin out with specification below

Characteristic		Notes	Min	Max	Units
Max supply voltage		All specs measured over full range of 7.5-20V d.c.		20	V
Quiescent current				5	mA
Temperature range		Measured at junction	0	125	${ }^{\circ} \mathrm{C}$
Main output	Output voltage	$\left\{\begin{array}{l}\text { Enabled }(\text { lout }=5 \mathrm{~mA}-1 \mathrm{~A}) \\ \text { Disabled }(\text { Load }=1 \mathrm{k})\end{array}\right.$	$4 \cdot 8$	$\begin{aligned} & 5.2 \\ & 0.3 \end{aligned}$	$\begin{aligned} & V \\ & V \end{aligned}$
	Load regulation	lout $=5 \mathrm{~mA}-1 \mathrm{~A}$		25	mV
	Line regulation			2	mV / N
	Ripple rejection	$\mathrm{Vin}=8 \mathrm{~V}$, Freq $=50-500 \mathrm{~Hz}$	54		dB
	Thermal regulation			0.02	\%/W
	Max output current		1.0		A
	Short circuit current			$2 \cdot 2$	A
	Min input voltage	lout $=5 \mathrm{~mA}-1.4$	7.3		V
Aux output	Output voltage	lout $=0-35 \mathrm{~mA}$	4.8	$5 \cdot 2$	V
	Load regulation	lout $=0-35 \mathrm{~mA}$		25	mV
	Line regulation			1.5	mV / N
	Ripple rejection	$\mathrm{Vin}=8 \mathrm{~V}$, Freq $=50-500 \mathrm{~Hz}$	60		dB
	Max output current		50		mA
	Short circuit current			150	mA
	Min input voltage	lout $=30 \mathrm{~mA}$	6.8		V
Enable input (pin 2)	Input voltage	$\left\{\begin{array}{l} \text { For logic } 1 \text { (high) level } \\ \text { For logic 0 (low) level } \end{array}\right.$	2	1	$\begin{aligned} & V \\ & v \end{aligned}$
	Max input voltage			20	V
	Input current	$\left\{\begin{array}{c} \text { For input of } \mathrm{OV} \\ \text { For input of } 2.4-20 \mathrm{~V} \end{array}\right.$		$\begin{gathered} -150 \\ 1 \end{gathered}$	$\begin{aligned} & \mu A \\ & \mu A \end{aligned}$

level (low) turns it off. It should be connected directly to pin 4 or 5 when this facility is not being used. The input is compatible with both TTL and CMOS, although a pull up resistor will be needed if open collector TTL is used.

Fig. 3 shows a simple example of a circuit using the enable facility for optimising battery usage. A potential divider formed by VRI and R2 controls the voltage fed to the enable pin. Once the battery discharges to below a certain voltage the main output regulator is disabled. Hence, most of the circuitry is turned off and the power consumption falls. The aux output
can then feed warning circuitry, critical areas of the main circuit, etc. R3 adds hysteresis to the system, without which the increase in battery voltage when the load is suddenly turned off could cause the regulator to oscillate. The aux output will continue to supply power, of course, until the battery voltage drops to approximately 6.8 V .

Many applications of the LT 1005CT will fall broadly into the category shown in Fig. 4. A small block of circuitry is powered from the aux output, and this circuitry is used to control the enable input to the i.c., amongst other

[601328
Fig. 2. Functional diagram of i.c.
things. This is exactly the arrangement used in this month's applications circuit. (Note that bypass capacitors $\mathrm{Cl}, \mathrm{C} 2$, and C 3 have been omitted for clarity in Figs. 3 and 4; in practice, they are still necessary).

APPLICATIONS CIRCUIT

Fig. 5 shows the circuit diagram of a power supply regulator with automatic shut-down and start-up facilities. The system responds to a short on its main output by shutting down that output, eliminating the large short circuit currents which would otherwise flow for the duration of the short. The circuit tries to turn the regulator on again for brief periods every few seconds. If it fails after seven attempts it then stops trying, and sounds a warning tone. All the circuitry is powered from the aux supply, making it independent of any shorts or other faults in the main system.

When a short occurs, IC4d pin 11 goes to logic 1, which causes IC5a pin 3 to go to logic 0 . This then causes IC5b pin 4 to go to logic I, starting IC2 oscillating at a very low frequency. When IC5a pin 3 goes to logic 0 , it

[66132]

Fig. 3. 'Battery saver' circuit
also turns off the enable input to ICI, via IC5c and IC5d. The oscillator, IC2, gives out a very short pulse every three seconds, the wide mark/space ratio being achieved by the use of D2 in an otherwise standard ' 555 ' circuit. The output pulses from IC2 enable IC1 (via IC5c and IC5d) for short periods, and also clock the decade counter IC3. If the short circuit across the main output of ICI is removed, the next pulse from IC2 will cause the main output of IC1 to go to +5 V . This will produce a pulse through C4 which in turn will reset IC3 via IC4c. IC2 will be disabled via IC5b, preventing further pulses from being generated. If, however, the short remains, IC3 will count up until pin 11 goes to logic 1, at which point it will turn on the audio frequency oscillator formed by IC4b, which drives a small piezo ceramic sounder in a simple bridge configuration with IC4a. This warning tone is turned off by removing the short circuit then connecting the 'reset' pins together with a

Fig. 4. Using both the 'Enable' and -Aux' facilities
suitable switch. The main output can be turned off permanently by connecting the two "disable" pins together, again via a suitable switch. D3 is lit by TRI whenever a pulse is put out by IC2, showing that the circuit is actually 'trying' to turn on the main supply again.

ASSEMBLY

The Veroboard layout for the circuit is shown in Fig. 6, and is largely selfexplanatory. Allow plenty of space for a suitable heatsink for IC1, as large currents can be passed during perfectly normal operation of the main circuitry. Many small piezo ceramic sounders will suffice for producing the warning tone, although their mounting arrangements may vary; do ensure, though, that the sounder chosen only requires a current of a few milliamps at the most; i.e. it is compatible

with CMOS logic. C9 provides some supply decoupling, and D5 and D6 help to protect against short circuits to any negative voltages. The positive unregulated supply can be any voltage from approximately 7.5 to 20 V , although it should be ensured that this range is not exceeded for either on-load or off-load conditions. Generally speaking, it is wisest to keep the unregulated supply down to 8 or 9 V on load, to prevent excessive power dissipation. Change R11, and possibly C8, to vary the speed at which the circuit tries to 'start up' the main regulator, and take IC4 pin 6 and IC5 pin 6 to other output pins of IC3 to give different numbers of attempts before the alarm is sounded.

The LT 1005 CT is a beautifully simple and effective i.c., the type of device that prompts one into wondering why nobody had thought of it before! It is available from Ace Mailtronix Ltd, 3A, Commercial St., Batley, West Yorkshire.
bazalar

VIC 2016 Ram Pack. Brand new. £25. M Johanson, Treetops; London Road, Kelvedon, Colchester, Essex CO5 9AR. Tel: Kelvedon 71296.

OPTISCAN SBE 125 M $12 / 240 \mathrm{~V}$ AM/FM Scanning Receiver, Daiwa Search 912 V —YE E FM Manual Tune $+10 x t a l$ switchable marine bands. I. M. Tasker, Colsterworth Road, Stainby, Nr Grantham. Tel: 0476860421.
PRINTERS, Creed Envoy and ITT3320 excellent condition. 550 each. Powertran LindseyHood $75+75 \mathrm{~W}$. Amplifier needs attention, offers. Mr. S. D. Holden, 1 Bacons Yard, Ashwell, Herts. SG7 5NH. Tel: 0462742000.
WANTED any old computers for voluntary emergency service, also old oscilloscope to align our equipment. I. Bugden (Director MUM), 2 Morden Court, John Street, Rochester, Kent ME1 IYR.
UK101 40K Ram, 4/8000 baud cassette interface fitted but faulty, also slight video fault. £220 o.n.o. Mr. S. Nicholls, 18 Warwick Terrace, St. George's Road, Barnstaple, Devon EX32 7AR.
WALTERS "Datec" Dot matrix printer Centronics or serial interface £175. "Sharp" I/O box + serial $1 / O$ card $£ 100$. Painted alloy tins $54 \times$ $44 \times 7 \mathrm{~mm}, 50$ for $£ 5$ post free. Suitable res, caps or small transistor storage. Sample tin $25 p$, and s.a.e. Pearce, 8 Hollyoak Road, Southampton SO 1 6GD. Tel: 788278
TELETYPE including tape punch, reader, stand, dust cover 20 mA . All manuals $£ 40$. Buyer collects. C. Marshall, 9 Mountfield Road, Witney, Oxon. Tel: 4867.
ELECTRONIC dwell angle (points) adapter for spot on ignition timing, new, with instructions, connectors, etc. £3.95. Duncan Head, 113 Raleigh Crescent, Stevenage, Herts. Tel: 0438 62179.

HITACHI de-55 Cassette Deck. Soft touch computer mechanism. Dolby, CRO2, metal facilities. 24 I.e.d. level indicator $£ 65$. Nicholas Brasier, Trilleck, Cliff Road, North Petherton, Bridgwater, Somerset TA6 6PA
SINCLAIR 2×81 all complete. Unused (Sinclair built). Also 16 K Ram. Offers. Mr. P. J. Green, Harbour Cottage, Whitehills, Banff. Tel: (02617) 566.

FOUR KT88 Five EL34 Two E.M.I. 10667M 1 inch Vidicon tubes. Unused. Offers. Early transistors s.a.e. details R. Atkinson, 7 St. Melen's Lane, Corbridge, Northumberland.

OSCILLOSCOPE Scopex. Dual trace 10 MHz £165. Regulated p.s.u. $0-30 \mathrm{~V}$ O-1 amp £23 R.F. Generator $100 \mathrm{kHz}-500 \mathrm{MHz}$ E27. C. P. Dunlop, 11 Buckingham Gardens, Hurst Park, East Molesey. Surrey KT8 9TH. Tel: 01979 9102
MK14 and MK 14 p.c.b. INS8060 3×2708 EPROM \times Nascom operating system. Offers. M. Gynane, 164 Stockbridge Lane, Liverpool L36 8EH. Tel: 0514492044.
CLEF Microsynth perfect £175. Pair OHM 100W Speakers new £150. Pair $2 \times 12180 \mathrm{~W}$ sult disco £200. Allan Bradford, 76 Holly Lane, Erdington, Birmingham 824 GJR. Tel: 021373 0461.

VINTAGE radios. McMichael 137. Murphy A8, Ekco AD65, Invicta A29 £15 each. You collect. John Dykes, 2 Aire Place, Winsford, Cheshire CW7 3LW. Tel: (06065) 51303.
CENTRONICS 737-2 printer. Parallel interface. Friction and pin feed. Plus box of paper. £ 175 . Call Chang 0413327695 after 9pm. K. Y. Chang, 70, 1-UP Ashley Street, Glasgow G3 6 HW .
200 transistors, equivalents to popular typess.a.e. Accurate miniature multimeter, large ranges, leads, good condition £90. A. R. Cooper, Broomside, Loggerheads, M K T. Drayton, Salop IF9 4NZ. Tel: Ashley 2634.
FOR UK 10148×32 CEGMON. Assembler $3 \times$ 2716. Word Processor. New Basic 4 Toolkit Medium res chip $£ 10$ each. Tel: 0642484122. BIG board Complete with iwin 8 inch disk drives, power supplies, cased, runs CP/M wordstar etc. E600 o.n.o. Stuart Higgins, 138 Lower Farnham Road, Aldershot, Mants. Tel Aldershot 28796.
WANTED circuit details or info. 220 a.c. razor to run off 12 V d.c. will pay or what. G. T. Weston, "Lunar Hilladora", M.G. 39 Javea (Alicante) Spain.
WANTED PE Ranger CB transceiver. Any conditlon, unfinished kit or non-working etc. Tel: Nottingham 599250. J. Eite, 28 Windmill Lane, Snienton, Nottingham.
SCOPE Heathkit laboratory type working $£ 15$ AVO 8 MKV as new £80. Ring 015944126.
CROTECH 303015 MHz single trace triggered scope £85. Taylor, 34 Durban Road, Kettering, Northants NN 16 OJA.
TV to oscilloscope converter, plugs into aerial socket, working £9. Dave, 0925815970 (Warrington). D. Coleman, 137 Berkshlre Drive. Woolston, Warrington WA 14 HB
ATOM (expanded) £85. BBC board £30. Rack frame inc. sockets $£ 30$. Postage extra. Harris (0283) 42558, N. F. Harris, 4 Field Rise, Burton-on-Trent DE 13 OHR.
$\mathbf{Z X 8 1}+16 \mathrm{~K}$ with 11 software tapes including ZX Chess II and set of quizzes. Tel: 013610930. Mr. A. Dervish, 68 Friars Walk, Southgate, London N 14 5LN.
$7106+3 \frac{1}{2}$ l.c.d. £8.50. $7126+3 \frac{1}{2}$ l.c.d. £9.25. $47 \mathrm{n} / 100 \mathrm{~V} \times 28 \mathrm{£} 7.40$ or 30 p each. BD $131 \times$ 12. £3.00. P. Whittle, 2 Ridley Road. London NW10 5UA Tel: 019616658.
SWR/ Power meter; 10 watt power amplifier: 100W antenna matcher; All 27 MHz ; All as new; All for £35. Flat 32, Evergreens, Butterwick, Boston, Lincs. PE22 OHF. A. Petrovic.
CASES, i.c.s, components, key locks, alarms books, displays, etc. List large s.a.e. No callers please. G. A. Noble, 50 Crofthill Road, Slough, Berks. SL2 1 HF.
PAIR JBL L100 Stereo speakers. Walnut cabinets un-used. In storage 2 years. Cost $£ 575$. Accept $£ 175$. Write Raymond Fearnley, 29 Plane Court, Churchill Way, Salford M6, Lancs.
OLIVETTI PR 1350 dot matrix printer. Complete with service and reference manuals. £130 o.n.o. or swop. Twin beam oscilloscope.

VOLTAGE stabiliser for sale. Excellent condition. Never been used. $£ 25$ each (three to sell). Ring 0617365843 ext. 7256. G. R. Smart, 114 Pear Tree Court, Salford, Manchester M6 5AX.
HITACHI HMA 7500 stereo power amplifier. Excellent condition £140 o.v.n.o. Tel: 0404 3013. P. Lowman, 4 Glen View, Honiton, Devon EX148NT.
RELIABLE circuit diagram wanted for $78 \cdot 1 \mathrm{MHz}$ Portable transceiver. Project for local A.T.C. cadets (amplitude modulated). R. K. Rees, 16 Eskdale Road, Telford Estate, Shrewsbury, Salop SY2 5UE. Tel: Shrewsbury 59340.
WANTED user instructions for Metrix 232 Wobuloscope also working rotactor for same unit. M. J. Parier, 18 Partridge Way, High Wycombe, Bucks HP135JX.
2X81 wanted. Must be in good condition. Swap for 30 pounds of electronic components. Steven McNeil, 35 Sutors Avenue, Nairn IV12 5AZ.
COLLECTOR seeks very old transistors and diodes. Good prices paid for rare specimens. Write for details. Mr. Andrew Wylie, 18 Rue De Lausanne, 1201 Geneva, Switzerland.
APPLE II Europlus $48 \mathrm{~K}+$ software + books. Private ownership v.g.c. $£ 500$ o.n.o. For details telephone 019810604 (evenings).
UK101 Wemon, 8K, RAM, p.s.g. Simple robot car with interface. Lots of games and utilities. Cased. M. Hollingworth, 17 Leslie Rise, Tividale, Warley, West Midlands. (Not on phone).
ADVANCE signal generator $15 \mathrm{~Hz}-50 \mathrm{kHz}$, no manual, £ 75 o.n.o. Includes post and packing. Brian McNeill, 27 Philip Avenue, Boghall. Bathgate EH48 1LP.

INDEX
 JANUARY 1983 TO DECEMBER 1983 VOLUME 19

CONSTRUCTIONAL PROJECTS

Alarm, Case .. Mar 36
Ulraligh
July 20
Amplifier, I.F. Filter April 63
ay 5
Audio Booster by M. Tooley BA and D. Whitfield tomobile Test Set by M. Tooley BA and D. Whitfield MA MSc .. May 34, June 60

Battery Tester by Chris Lare Aprield
Battery to Mains Inverter by M. Tooley BA and D. Whitfield Oct 26
Booster, Audio

Car Accessory PSU by M. Tooley BA and D. Whitfield
Mar 36
Communication System, Ground Sept 42
Conditioner, Program ... 20

Delay, Wiper
April 28, May 21
Digital Panel Meter by Brian Currie Oct 34
Digital Tachometer by M. Tooley BA and D. Whitfield MA MSc

Oct 64, Nov 56,

June 26
Frost Warning Indicator by M. Tooley BA and D. Whitfield MA MSc

Dec 22
Gas Saver by Mike Abbott Sept 42
Guit Active Tone Coniroby A. Scragg Sept 39Ice Warning and Lights Reminder by P.J. McFarlanMar 22Indicator, Frost WarningJan 36
ndicator, Twilight Warning eb 40May 70 June 68 Aply 62
eb 22

Lights Reminder, Ice WarningMar 22
Logic Analyser by D. Mandelzweig Aug 46. Sept 52. Oct 52 ,
Nov 34, Dec 58
Logic Tutor by M. Tooley BA and D. Whitfield MA MSc
ains Watchdog by Chris Lare
May 50
Memory System, Soft Error Detection and Correction Board
Sept 32
Meter, Digital Panel Oct 34
Meter, $4 \frac{1}{3}$ Digit Frequency Mar 28
Microcontroller by M. Tooley BA and D. Whitfield MA MSc Jan 20
Micrograsp by Richard Becker Jan 44
Multimeter, $4 \frac{1}{2}$ Digit LCD Nov 20
Percussion Microsynth Jun 50, July 26
Personal Stereo Amplifier by R.A. Penfold May 55
Phaser, Switched Capacitor April 40
Program Conditioner by lan Hickman June 20
Projects, Solar Powered Aug 22
Projects, Timer July 44
PSU, Car Accessory Mar 46
Radio Booster by M. Tooley BA and D. Whitfield MA MSc. Feb 46
Relaxometer by Ralph Lovelock Oct 18
Robot, Micrograsp Jan 44
Robot, Zeaker May 42. June 36
Rocktone June 26
Saver, Gas Dec 22
Simple Speech by P. Creighton Nov 24
Soft Error Detection and Correction Board by A TrebarSept 32
Solar Powered Projects by R.A. Penfold Aug 22
Speech System, Digit Talker April 28, May 21
Switched Capacitor Phaser by R.A. Penfold April 40
Tachometer, Digital Jan 2B
Test Set, Automobile May 34, Jun 60
Tester, Battery April 22
Tester, 555/741 ept 22
Timer Projects by Stephen /bbs July 44
Timer, Versatile Nov 48
Tone Control, Guitar Active Sept 39
Twilight Warning Indicator by M. Tooley BA and D. WhitfieldMA MScFeb 40
Uitimum by William Edwards
Jan 52, Feb 56, Mar 58 April 56, May 70, June 6B, July 62
Ultralight by Gilbert Davies July 20
Versatile Timer by R.A. Penfold Nov 4 B
Vic 20, Expanding the

\qquad
Oct 64, Nov 56, Dec 54
Watchdog, Mains May 50 MSc April 36
Zap Gun Dec 32
une 36
$4 \frac{1}{2}$ Digit Frequency Meter by Stephen lbbs Mar 28
$4 \frac{1}{2}$ Digit LCD Multimeter by Brian
$555 / 741$ Tester by Stephen /bbs Sept 22

GENERAL FEATURES

Deglitching Techniques by L.N. Owen Aug 58
Dinorwig by Brian But/er..................................... Oct 60
Electronics in Photography by Clifford Stokes Oct

[^5]INGENUITY UNLIMITEDJan 62, Feb 54, March 61, April 60, June 65, Aug 67, Sept 62, Nov 54

Telephone 'Bell' by-B. C̄ragie Jan 63
Touch-Switched Speaker Muting by A. Fogg Mar 63
Transistor Analyser by S.D. Draper Aug 67
TLL Logic Probe by G. Coleman Mar 62
Versatile Controller by S.A.R. Guest April 62
Windscreen Wiper Control by A:D. Billington , Mar 62
Wine Heater Thermostat by A. Fogg Mar 61
Into the Real World by M. Tooley BA and D. Whitfield
MA MSc Feb 30, Mar 50. April 48, May 62Introduction to Digital Electronics by M. Tooley BA andD. Whitfield MA MSC Oct 42, Nov 42, Dec 44
Microbus by DJD Mar 66, May 48, July 69, Sept 70 Nov 60. Dec 61
Microprompt Feb 64, April 65, June 57, Aug 60
Not Such a Rumb Dobot by L.N. Owen BSc Mar 39
Programmable Unijunction Transistors by P. Gatehouse Feb 50
Robot Vision by Geoff Mortimer and Liz Newbury Aug 34
SEMICONDUCTOR CIRCUITS by Tom Gaskell BA(Hons)
May 26, June 44, July 40, Aug 40, Sept 26, Oct 39, Nov 39, Dec 62
Combination Lock (LS 7225) May 26
3 Tone Chime (SAB 0600) May 26
Programmable Crystal Oscillator (PXO-600) ..July 40
Voltage Converter (ICL 7660) Aug 40
Light Spot Driver (UAA 170) Oct 39
Touch Switch (MM 58312 N) Nov 39
SEMICONDUCTOR UPDATE by Ray Coles Jan 57.
Feb 38, Mar 32, April 55
Seeq Technology 8001, Siliconix DG221 Jan 57
Advanced Micro Devices Am 7910, LinearTechnology incorporated LC502, DECMicro/J-11Feb 38
IT MAA2000, Intel 7114 , Siemens BUZ15. Mar 32
The Motocar by P.E.V. Phillips Nov 30
Vernon Trent at Large Jun 49, July 61. Aug 38, Sept 24 Oct 33, Nov 29. Dec 53

NEWS AND COMMENT

BAZAAR Jan 34, 38, 64, Feb 36, 48, 52, Mar 48, 56. April 25, 33, 64. May 25, 30, 39, 59, June 46. 63. July 58, 65, 70, Aug 42, 72, Sept 28, 60, Oct 22,38, 41 Nov 37, 41, Dec 60, 64

CIRCUIT LAYOUT SIMPLIFIED
Mar 36
COUNTDOWNJan 18, Feb 21, Mar 20, April 21. May 19, June 19, July 19, Aug 19. Sept 19, Nov 18 EDITORIALJan 15, Feb 17, Mar 17, April 17, May 15, June 15. July 15, Aug 15, Sept 15, Oct 15, Nov 15, Dec 15

ELECTRONIC HOBBIES FAIR REVIEW

Feb 28
INDUSTRY NOTEBOOK by NexusJan 43, Feb 39 Mar 35, April 27. May 40, June 43, July 66. Aug 45, Sept 31. Oct 25, Nov 19, Dec 18

NEWS AND MARKET PLACEJan 16, Feb 18, Mar 18 April 18, May 16, June 16, July 16, Aug 16, Sept 1.6 Oct 16, Nov 16. Dec 16

OVERSEAS SUBSCRIPTION AGENTS
Sept 66
PATENTS REVIEW Feb 42, Mar 45, April 34, May 60, June 25. July 38, Aug 57. Sept 69, Nov 53, Dec 21

PE MICROCONTROLLER: DATA SHEETS
Feb 49,
Mar 27. April 47. May 69
READOUT
June 56, Aug 66, Dec 36
SPACEWATCH by Frank W. HydeJan 51, Feb 27.
Mar 21 , April 44, May 32, June 42, July 24, Aug 33
Sept 61, Oct 51, Nov 38, Dec 51
STRICTLY INSTRUMENTAL by K. Lenton-Smith Feb 63
Aug 65

NEW SYMBOLS
Oct 41 , Nov 23

SPECIALSUPPLEMENTS

Micro-File by Ray Coles

Filesheet 3	Z80	Jan
Filesheet 4	6502	Feb
Filesheet 5	1802	Mar
Filesheet 6	6809	April
Filesheet 7	9900	June

Filesheet 8	808
Filesheet 9	68000
Filesheet 10	28000
Filesheet 11	8748
Filesheet 12	68701

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

RECEIVERS AND COMPONENTS

Basic Oscilloscope Unit, 240V AC. Contains X and Y amps, all solid state size $14^{\prime \prime} \times 7^{\prime \prime} \times 5^{\prime \prime}$, Tube Dia $5^{\prime \prime}$. Most units have burn marks and are untested $£ 15$ + £4 p/p. Aircraft mounted 35 mm camera, contains precision mirror, lens, small 24 V motor etc. $\mathrm{E} 10+$ E 3 P/p. 24 V Ni-Cad Battery contains 20×0.4 A/H Cells, new, in makers box $£ 7+⿷ 2$ p/p. 24 V Ni-Cad Battery. Contalins $20 \times$ Type cells, used condition $£ 10+£ 3$ p/p. Smail Japanese CCTV Cameras used but working with lens $£ 45+£ 3 \mathrm{p} / \mathrm{p}$. Pre Pocket Phone, Type PF1 complete but untested $£ 4.50+50 \mathrm{p}$ p/p. Small | Ex-Govt. Microphones made by S.G. Brown E1.00 |
| :--- |
| 50 p | $50 \mathrm{p} / \mathrm{P}$. Storno Type. BU802, Battery. Contains $9 x$ $225 \mathrm{ma/h}$ cells, used condition $\mathrm{E3}+50 \mathrm{p} / \mathrm{p}$. Ex-

Govt. field telephones Type $J \subset 8+£ 3$ p/p. Ex-Govt Gov. field
Manpack Type A14 2 to 3 MHz VFO or XTAL Control. AM/CW, 12 V working $£ 80+£ 5 \mathrm{p} / \mathrm{p}$. Pen type pocket AMation, 12 w working $£ 80+£ 5 \mathrm{p} / \mathrm{p}$. Pen type pocket
radiation meter, no information but new in box $£ 2.50$ $+50 \mathrm{p} / \mathrm{p}$. Ex-Govt. Small Rugged Telephone Handset with press to send switch for radiotelephone use (used) $\mathrm{E} 3+50 \mathrm{p} \mathrm{p} / \mathrm{p}$. Ditto, but with terminals for remote controt on Larkspure Equipment $€ 3+50$ p p / p. Philips Fully enclosed Bench Transformers lapped at $6 \mathrm{~V}, 7 \mathrm{~V}, 8 \mathrm{~V}$, at $13 \mathrm{~A} \mathbf{E 5}+£ 2 \mathrm{p} / \mathrm{p}$. Redifon Keyer Converter (Tones/OC) 240 V mains. No information but new in box $\mathbf{\varepsilon 7}+\varepsilon 3 \mathrm{p} / \mathrm{p}$. Ex-Govt. Whip Aerial bases $£ 2 \cdot 50+£ 1$ p/p. Many items of $E x$-Govt. Equipment in stock. Callers by appointment.

AC ELECTRONIC SERVICES
 17 APPLETON GROVE, LEEDS 1 LS9
 Telephone 053249604 B

SMALL ADS

The prepaid rate for classified advertisements is 36 pence per word (minimum 12 words), box number 60 p extra. Semi-display setting $\mathbf{£ 1 2 . 0 0}$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Banks Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Practical Electronics, Room 2612, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

nOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

TURN YOUR SURPLUS capacitors, transistors, etc. into cash. Contact COLES HARDING \& CO. 103 SOUTH BRINK. WISBECH, CAMBS. TEL; 0945 584188. Immediate settlement.

MICRO-TRANSMITTERS VHF/FM, complete kit, and microphone £5.00. Assembled $£ 10.00$. Electro-kit. (Mr T. Owens). 62 Candlish Street. Westoe. South Shields. NE 33 3JP.
300 SMALL COMPONENTS including Transistors. Diodes, £2.20. 7 lbs Assorted Components $£ 5.10 \mathrm{lbs} £ 6.50 .500$ Capacitors £4. Forty 74 Series ICs on Panel £2.10. Post Paid. J.W.B. RADIO, 2 Barnfield Crescent, Sale, Cheshire M33 INL.

GOT AN IDEA? Use our circuit and P.C.B. design services. Tantek. PO Box 54. Stevenage. SG2 9DO. (0438) 350471.
ELECTRONIC COMPONENTS MERSEYSIDE, MYCA EJectronics. 2 Victoria Place, Seacombe Ferry Square, Wallasey, Merseyside L44 6NR. Tel: 051-638 8647. Open Mon - Sat. $10 \mathrm{am} \mathrm{-}$ 5.30 pm .

BRANO NEW COMPONENTS BY RETURN Electrolytic Capacitors $16 \mathrm{~V}, \mathbf{2 5 V}, 50 \mathrm{~V}$. $\begin{array}{lllll} 047, & 1.0 & 2.2 & 4.7 & \& \end{array}$ $1000 / 40 \mathrm{v}-35 \mathrm{p}$ Subminiature bead Tantalum electrolytica. E12 22 pf , to 1000 pf . E6 1500 pf. to $47000 \mathrm{pf}-2 \mathrm{p}$. Polystvpene E12 Series 63 V . Horizontal Mntg 10 pf to $820 \mathrm{pt}-3 \mathrm{p} 1000 \mathrm{pt}$ to 10,000 pf.-4a Miniature Polyester $\mathbf{2 5 0 V}$ Vort Mig E6 Series $\begin{array}{lllllllll}01 & 10 & 068 & 4 p & 1-5 p . & 15 & 22-4 p . & 33 . & 47-10 p \\ 68 & - & 12 p . & 1.0-15 p & 1.5 & -22 p . & 2 \cdot 2 & 24 p\end{array}$ Mylar (Polvaster) Film 100V. Vertical Mounting. High Stablity Miniature Film Resistore 5% JW E24 Series 0.51R - 10MO. (Except 7M5) JW E12 Serfes IRO to 10MO. IW E12 Series 10R to 10 Mo . IW metal film $E 12$ Series 10R-1MO. 5% - 2p. 1\%-3p 1N4 148-2p $1 N 4002-4 p$. $1 N 4006-6 p$. 1N4007-7p. BC107/8/9-12p. 8C147/8/9. 8C157/8/9, BF195 \& 7-10p. LED's. 3 \& 5 mm Red-10p Green \& Vellow-1ap Grommels for $3 \mathrm{~mm}-1$ ip. Grommets for $5 \mathrm{~mm}-2 \mathrm{p}$. 20 mm , Ant Surge F.C. 100 mA Chassis Mrg. 8 mp . THE C.R. SUPPLY CO. 127, Chesterfield Rd., Sheffield S8 ORN.

BOURNEMOUTH/BOSCOMBE. Electranic components specialists for 33 years. Forresters (National Radio Supplies). Late Holdenhurst: Road. Now at 36. Ashley Road, Boscombe Tel. 302204. Closed Weds.
S.M. 3 MICRO TRANSMITTER. Range up to 1 mile. Picks up speach from 25 ft . Receive on VHF radio. Self contained. Size $\left.2\}^{\prime \prime} \times 11^{\prime \prime} \times 1\right\}^{\prime \prime}$. 15 inc. (not licensable in U.K.). Send SAE for full specification. P.D. ELECTRONICS, il Bluebell Close, Orpington, Kent BR6 8HS.
LOOK AT THESE PAICES: 7805/7815 Regulators $£ 0.32$ each. 25 Way D Plug $\$ 1.30$ each. 25 Way D Socket $£ 1.80$ each. All types of D Connectors available and many other items. S.A.E. for full list FREE IC with each order received during the month of December. Please add $£ 0.40 \mathrm{P}+\mathrm{P}$. + VAT. LODDON ELECTRONICS LIMITED, Hamble House. Meadrow. Godalming. Surrey GU7 3HJ.
PRACTICAL ELECTRONICS VIC-20 SERIES: 8K RAM £1.52, 8K ROM £1.52, Motherboard $£ 2.56$. Boards now in stock for same day despatch. All prices include postage and packing. gRADLEY PRINTED CIRCUITS. 9 Harcourt Terrace. Headdington, Oxford OX3 70F. Tel. 0235-32681.

> NOW OPEN IN NEWCASTLE
> or the best in Electronic Components, MARLBOROUGH
> MARLBOROUGH
> 15 Waterloo Street, Newcasple NE1 4DE Street, Newc
Tel. 618377
> Open Gam-6pm Mon-Sat - Easy Parking Stockists of:
> Transistors, Resistors, Capacitors, I.C. Diodes, Electronic Books, Etc.

SERVICE SHEETS

BELL'S TELEVISION SERVICES for service sheets on Radio, TV etc. $£ 1.50$ plus SAE. Colour TV Service Manuals on request. SAE with enquiries to B.T.S. 190 Kings Road. Harrogate, N. Yorkshire. Tel. (0423) 55885.

AERIALS

B45H/G-UHF TV, gain about 20dbs, Tunable over the complete UHF TV band PRICE 88.70 .
Bll-VHF/FM RADID, gain about 14dbs, when on the off
position connects the aeral direct to the mia $f 770$ position connects the aerial direct to the radio. $\mathbf{f 7 . 7 0}$. or $8 v$ to 18 V OC P P A P 300 PER ORDER.
ELECTRONIC MAILORDER LTD, 62 Bridge SI. Ramsbottom,
Access Nisa Cards Weicome

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS
Please insert the advertisement below in the next available issue of Practical Electronics for
insertions. I enclose Cheque/P.O. for E .
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Electronics)

Send to: Classified Department,

PRACTICAL ELECTRONICS

Classified Advertisement Dept, Room 2612.
NAME
King's Reach Tower, Stamford Street ADDRESS

London SE1 9LS. Telephone 01-2615846 Rate:
36p per word, minimum 12 words. Box No. 60p exira.
Company registered in England. Registered No. 53626. Registerad Office: King's Reach Tower, Stamford Street, London SE1 9LS.

SITUATIONS VACANT

SOFTWARE DESIGN ENGINEER required with experience on real-time micro/minkomputer systems. C.V. to MICROTEC, 96 High Street, Hurst Pier Point, West Sussex.

FOR SALE

P.C.B. KIT CM100. 1 board, 1 film and small quantity of chemicals used. Etching erystals unused $\mathbf{£ 4 5}$ ono. Tel. 0437 721304

REPAIRS

micho computer repairs $Z X$ Spectrums. Vic 20. COA. Pets, Commodore Compulers. Pinters and Floppy Disks. Phone Slough (0753) 48785 Monday to Saturday.

ALARMS

SECURITY

EDUCATIONAL
CAREERS IN MARINE ELECTRONICS. Courses commencing September and January. Further details, The Nautical College. Fleetwood FY7 8IZ. Tel: 0391779123.

COURSES

CONQUER THE CHIP... Master modern electronics the PRACTICAL way by SEEING and DOING in your own home. Write for your free colour brochure now to British National Radio \& Electronics School. Dept. C2. Reading. Berks. RG1 1BR

BOOKS AND PUBLICATIONS

[^6]
MISCELLANEOUS

EPROMS COPIED, washed etc. SAE details. Banks. 4 Windsor Close. Oadby, Leicester.

SUPERB INSTRUMENT CASES by Bazelfi. manufactured from PVC faced steel. Vast range. Competitive prices stan at a low £1.50. Punching facilities at very competitive prices. - Bazelli (Dept 23). St Wifreds. Foundry Lane, Halton. Lancaster LA2 6LT.
SUPERB 12 V MINTORILI with sland. three chucks, four bits and one grinding hit Only $£ 23.99$ including VAI. Postage and packing. Access and Barclaycard accepted. VIN GELDER (U.K.) Lid. P.O. Box 10. Southend Airpor. Southend on Sea. Essex SS2 6OG. Tel. (0702) 548681 . Full details supplied on request.

BARGAIN PRICE electronic and computer components, ZX Spectrum and cassette accessories. low cost electronic goods dighal watches etc. SAE for detailed price lists. NESS MICRO SYSTEMS. 100 Drakies Avenue. Invemess IV2 3SD.

BURGLAR ALARM EQUIPMENT. Ring Bradford (0274) 308920 for our Catalogue or call at our large showrooms opposite Odsal Stadium.

CLEARING LABORATORY; scopes, generators. P.S.U's. bridges. analysers, meters, recorders, etc. 0403-76236.

MAKE YOUR OWN PRINTED CIRCUTTS
Etch Resist Transfers - Starter pack 15 sheets, lines, pads, I.C. pads) $\mathbf{Q} .50$. Large range of single sheets in stock at 50p per sheet.
Master Positive Transparencies from P.C. layouts in magazines by simple photographic process. 2 sheets negative paper, 2 sheets positive film (A 4) E 2.25 Photo-resist spray $(200 \mathrm{mi}) \in 3.90$ ($p+p$ 65p).
Drafting Film (A4) 25p. Precision Grids (A4) 65p $20 p$ stamp for lists and information. P\&P 50p per order plus extra where indicatec.
P.K.G. ELECTRONICS

OAK LODGE, TANSLEY, DERBYSHIRE

WRONG TIME?

MSF CLOCK is ALWAYS CORRECT - never gains of loses, SELF SETTING at switch-on, 8 digits show Date, Hours, Minutes and Seconds, also GMT BST and leap year, also parallel BCD output for computer, receives Rugby 60 KHz atomic time signals, buit-in antenna, 1000 Km range, $\mathbf{E 7 2 . 7 0}$ 60KHZ RUGBY RECEIVEA, as in MSF Clock serial data output, decoding details, $\mathbf{E 2 4 . 2 0}$
V.LF. 7 EXPIORE $10-150 \mathrm{KHz}$. Receiver £ 21.20

Each fun-to-build kit includes all parts, printed circuit, instructions, case, by-return postage etc., money back assurance, SEND away NOW.

CAMBRIDGE KTTS
45 (FZ) Old School Lane

THE SCIENTIFIC WIRE COMPANY 811 Forest hoad, London E17. Telephone 01-531 1568				
ENAMELLED COPPER WIRE				
SWG	1 lb	8 Oz	402	202
8 to 34	3.63	2.09	1.10	0.88
351039	3.82	2.31	1.27	0.93
401043	6.00	3.20	2.25	1.61
44 to 47	8.67	5.80	3.49	2.75
48 SILVER PLATED COPPER WIRE ${ }^{15.96}$				
TINNED COPPER WIRE				
14 to 30	3.97	2.41	1.39	0.94
Fluxcore				
Solder	5.90	3.25	1.82	0.94
Prices include P\&P VAT. Orders under $\mathbf{£ 2}$ add 20 p SAE for list of copper and resistance wire. Dealer enquiries welcome.				

GUITAR/PA/MUSIC AMPLIFIERS

100 watt Superb Treble Bass overdrive 12 months guarantee $£ 5660$ watt $£ 52100$ watt twin-chan Sep treble/bass per chan., $£ 72$ slaves 100 watt £4 250 watt $£ 79$ speakers 100 watt 12 in . 8615 in . $£ 37$ 80 watt mini combo $£ 89$ speakers 100 watt lead combo castors etc, $£ 125100$ watt bass combo 15 in . refex cab E135 Auto/sound/light chasers 1 K per chan., 3 chan., $£ 294$ chan., $£ 35$.

> Send cheque or P.O.

WILLIAMSON AMPLIFICATION
62 Thorncliffe Avenue, Dukinfield, Cheshire
Tel. 0613082064.

RAOIO COMPONENT SPECIALSTS

Dept 3, 337, WHITEHORSE ROAD, CROYDON SURREY, U.K. TeI: 01-684 1665
 Cash prices include VAT

BBC BASIC

by R. B. Coats
Price: $\mathbf{E 7 . 0 0}$
DIGITAL TECHNIOUES \& SYSTEMS
by D. C. Green Price: $\mathbb{E 6 . 7 0}$
ELECTRONIC CIRCUITS \& APPLICATIONS
by B. Grob Price: $\mathbf{E 9 . 5 0}$
ELECTRONIC TESTING \& FAULT DIAGNOSIS by 6. C. Loveday Price: $£ 6.7$

TELEVISION PRINCIPLES \& PRACTICE
by J. S. Zarach
Price: $£ 7.95$
DOMESTIC VIDEOCASSETTE RECORDERS
A SERVICING GUIDE
by S. Beeching
Price: $£ 15.00$
MICROPROCESSORS: ESSENTIALS,
COMPONENTS \& SYSTEMS
by R. Meadows
Price: $£ 7.95$
THE BBC MICROCOPAPUTER FOR BEGINNERS
by S. Dunn
Price: $£ 7.95$
INTRODUCING SPECTRUM MACHINE CODE
HOW TO GET MORE SPEED \& POWER
by il Sinclair
Price: $\mathbf{£ 8 . 5 0}$
THE UNIX SYSTEM
by S. . . Bourne
Price: £12.50

* All prices include postage *

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books

19-21 PRAED STREET LONDON W2 1NP

Phone 01-402 9176
Closed Saturday 1 p.m
Please allow 14 days for reply or dellvery.

METERS: $110 \times 82 \times$
35 mm
$30 \mu \mathrm{~A}, 50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$. £6.75. Post 50p.
METERS: $45 \times 50 \times 34 \mathrm{~mm}$
$50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 5 \mathrm{~mA}, 10 \mathrm{~mA}$,
$25 \mathrm{v}, 1 \mathrm{~A}, 2 \mathrm{~A}, 5 \mathrm{~A} 25 \mathrm{~V}$
E3.54. Post 30 p .
METERS: $60 \times 47 \times 33 \mathrm{~mm}$
$50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 5 \mathrm{~mA}, 10 \mathrm{~mA}$, $100 \mathrm{~mA}, 1 \mathrm{~A}, 2 \mathrm{~A}, 25 \mathrm{v}, 50 \mathrm{v}$,
$50-0-50 \mu \mathrm{~A}, 100-0-100 \mu \mathrm{~A}$. $\mathbf{£ 5} .87$.
VU meters $£ 5.87$.
Post on above meters 30p
Silicone grease $50 \mathrm{~g} £ 1.32$.
Post 16p.

NI-CAD BATTERY

CHARGER

Led indicators charge-test switch. For PP3, HP7, HP11 \& HP2 size betteries.
Price £5.85. Pos: 94p.
T.V. UHF Aerial Amplifier 300$890 \mathrm{MHz} \quad$ E6.03 post 57p $2\}^{\prime \prime} 8 \mathrm{ohm}$ Speaker 46 p post 21 p $2 l^{\prime \prime} 64$ ohm Speaker 56 p post 21 p Desoldering Pumpe4.25 post 27p Resistance Substitution Box £3.97 post 17p
Vernier Dial 50 mm Dia.
E2.31 post 17p
Tape Head Demagnetizer
£2.60 post 39p
Min. Buzer 6 or 12V 63p post 21p

TRANSFORMERS		
240v Primary		
$3-0-3 \mathrm{v}$	100 mA	82p
6-0-6v	100 mA	87 p
$6-0.6 \mathrm{v}$	250 mA	£1.21
12-0.12v	50 mA	87p
12-0-12v	100 mA	97p
$9-0-9 \mathrm{v}$	75 mA	87 p
9-0-9v	250 mA	£1.33
Post on above transformers 48 p .		
9-0-9v	1 A	£2.00
12-0-12v	1 A	£2.50
15-0-15c	1 A	£2.95
$6.3 v$	12A	$\underline{2.00}$
6-0-6v	13A	E2.20

Post on above transformers 94 p .
All above prices include V.A.T. Send $\mathbf{f 1} 1$ for a new comprehensive 1983/84 fully illustrated catalogue with a new price list. Send S.A.E. with all enquiries. Special prices for quantity on request.

All goods despatched within 3 days from receipt of the order.

158 Bradshawgate, Bolton, Lancs. BL2 1BA.

ADVANCED
 TELECOMMUNICATIONS
 Careers with extensive scope at Cheltenham

Join the Government Communications Headquarters, one of the world's foremost centres for R \& D and production in voice/data communications ranging from HF to satellite - and their securirity. Some of GCHO's facilities are unique and tere is substantial emphasis on creative solutions for solving complex communications problems using state-of-the-art techniques including computer/microprocessor applications. Current opportunities are for:
Telecommunication Technical Officers
Two levels of entry providing two salary scales: £5,980-£8,180 \& £8,065-£9,085
Minimum qualifications are TEC/SCOTEC in Electronics/Telecommunications or a similar discipline or C \& G Part II Telecommunications Technicians Centificate or Part I plus Maths B Telecommunications Principles B and either Radio Line Transmission B or Computers B or equivalent:ONC in Electrical, Electronics or Telecommunications Engineering or a CIE part I Pass, or formal approved Service Technical training. Additionally, at least 4 years' (lower level) or seven years' (higher level) appropriate experience is essential in either radio communications or radar, data, computer or similar electronic systems.
At the lower entry level first line technical/supervisory control of technicians involves "handson" participation and may involve individual work of a highly technical nature. The higher level involves application of technical knowledge and experience to work planning including implementation of medium to large scale projects.
Radio Technicians - £5,232-£7,450
To provide all aspects of technical support. Promotion prospects are good and linked with active encouragement to acquire further skills and experience. Minimum qualifications are a TEC Certificate in Telecommunications or equivalent plus 2 of more years' practical experience.
Chehenham, a handsome Regency town, is finely-endowed with cultural, sports and other facilities which are equally available in nearby Gloucester. Close to some of Britain's most magnificent countryside, the area also offers reasonably-priced housing. Relocation assistance my be available.
For further information and your application form, please write to:
Recruitment Office, GCHO Oakley, Prlors Road,
Cheltenham, Gloucestershire
GL52 5AJ
or phone 024221491 ext 2269.

PE Logic TUTOR

FULL KIT: Official EPP21 fibre-glass PCB, drilled \& roller-tinned, all resistors, capacitors, semiconductors, IC's, LED's. All connectors, 6 turned-pin DIL sockets, 15 20-way socket-strips, 4 PCB switches, ribbon cable, solder, everything as specified. (Feet \& Transformer Extra).

* ONLY £22.20

HALF BREADBOARD: Everything as full kit, fexcept only 3 turned-pin DIL sockets and 820 -way socket-strips), for less-complex circuits.

$$
\star \text { ONLY £17.90 }
$$

all prices include postage \& vat
5 stick-on feet for PCB: 35p EXTRA Mains Transformer: $£ 2.40$ EXTRA

TOP QUALITY PARTS AT ROCK-BOTTOM PRICES FROM

MICRQSTATE LIMITED
THE 'VALUE-FOR-MONEY" PEOPLE 5 NORTHFIELD CLOSE, FERNHILL HEÁTH, WORCESTER, WR3 7XB.

ALL Parts Available Separately
S.A.E. For List

FREOUENCY COUNTERS

The brand new Meteor series of 8-digit Frequency Counters offer the lowest cost professional performance avarlable anywhere

* Measuring typically $2 \mathrm{~Hz}-1.2 \mathrm{GHz}$ * Low Pass Filter
* Sensitivity $<50 \mathrm{mV}$ at 1 GHz
* Setability 0.5 ppm
* Battery or Mains
* High Accuracy
* Factory Calibrated
* 3 Gate Times
* 1-Year Guarantee

PRICES (Inc. adaptor/charger, P \& P and VAT)

METEOR 100	$(100 \mathrm{MHz})$	$£ 104.07$	(Hustrated colour brochure
METEOR 600	$(600 \mathrm{MHz})$	$£ 133.97$	with technical specification

METEOR 1000
$(1 \mathrm{GHz}) \quad £ 184.57$ and prices available on request in Britain.

Black

BLACK STAR LTD, 9A Crown Street. St.lves Huntingdon, Cambs, PE17 4EB. England. Tel: (0480) 62440 Telex: 32339

OVERSEAS ORDERS

Overseas readers are reminded that unless otherwise stated, postage and packing charges published in advertisements apply to the United Kingdom only.
Readers wishing to import goods from the United Kingdom are advised to first obtain from the advertiser(s) concerned an exact quotation of the cost of supplying their requirements carriage paid home.

BUY NOW WHILE STOCKS LAST! MULTI-METER SPECIAL
Complete with rechargeable cells and leads, etc Russian type U4324 20,000 O.P.V
D.C. Voltage: $0.6,1.2,3,12,30,60,120,600,1200$.C Intensity M/A 0.06, $0.60,600,900$. D.C. Intensity M/A $0.06,0.6,6,60,600,3000$ D. C. Resistance: $025 \quad 50500,5000 \mathrm{kOhm}$ C.e. level dB: -10 10 +12
c 12 FANTASTIC SPECIAL PAICE: \& 12 FANTAS Including P/P and VAT
 MULTBLOC TRANSFORMERS
British made transformers at very aftractive prices. Primary Secondary Current $1+10+100+$ 240v: 4.5-0-4.5v $400 \mathrm{~m} / \mathrm{a}$ 50p 45p 35p 240v: $\quad 6-0-6 \mathrm{v} \quad 100 \mathrm{~m} / \mathrm{a} \quad 58 \mathrm{p} \quad 52 \mathrm{p} \quad 43 \mathrm{p}$ 6-0-6v $500 \mathrm{~m} / \mathrm{a}$ 65p 60p 48p (Posiage \& Packing: 45ρ per transformer or $£ 1.60$ per $10 . \mathbb{L}^{48 \mathrm{p}} .50$ per 100) complete range of components. Includes Special Ofter hist order form and pre-paid envelope. lease add 15% VAI to the above prices

MARCO TRADING, DEPT. PE12,
THE MALTINGS, HIGH STREET, WEM, SHROPSHIRE, SY4 5EN All orders despatched by retum of mad. Tel: (0939) 3276

SUBSCRIPTION ORDER FORM
Complete this form and post
Complete this form and post
it, with payment or Credit
Card authorisation to:
IPC Magazines Ltd
Room 2816, King's Reach
Tower, Stamford Street,
London SE1 9LS
| You can use this form to order a gift subscription too Hotline. Phone TELEDATA 01-200 0200 with your Credit Card No. Allow 4 weeks for order processing

HOTLINE PHONE TELEDATA
012000200
Post copies to
NAME:
ADDRESS: Card Valid from: Signature

Post Code
If a Gift Subscription enter your own name and address here.
NAME:
ADDRESS - |

Penclose Post Code: ___ Charge my Credit Card A/C at quoted rate. $\vee \square \vee \square \vee \square \vee \square$

INDEX TO ADVERTISERS

A.C. Electronics 68
A.D. Electronics 11
Alcon 12
Audio Electronics 4
Bicc-Vero 4
Bimsales 11
Bi-Pal 7
BK Electronics 52
Blackstar 71
British National Radio \& Electronics School 13 \& 43
J. Bull 11
Cambridge Kits 69
Centre Electronics 72
Clef Products 20
Computonics (Security Alarms) 69
Cricklewood Cover 3
Crofton 12
C.R. Supply Co., The 68
C-Scope 12
M. Dziubas 70
Electronic Mailorder Co. 68
Electrovalue 70
Flight Electronics 37
Carlo Gavazzi (Pantec) 43
GCHO 70
Greenweld6
Global Specialties 19
ICS - Interext 8
ILP Electronics 10 \& 11
Magenta 43
Maplin Cover 4
Marco Trading 71
Marlborough Electronics 68
Martel Instruments 43
Microstate 70
Midwich 6
Modern Book Co. 69
Parndon 72
Phonosonics 52
Pimac Systems 20
PKG Electronics 69
Powertran Cover 2
Proto Design 69
Radio Component Specialties 69
Riscomp 20
Radio \& T.V. Components 8
Scientific Wire Co., The 69
Service Trading 52
Simpsons Electronic Alarms 69
Sparkrite 9
Swanley 72
Tandy 14
T.K. Electronics 5
Watford Electronics 2 \& 3
Williamson Amplification 69

Oric 1 computer 48K £143 ($£ 141$) $£ 151$ Oric 1 16K $£ 110$ ($£ 112$) $£ 122$. Oric Col our Printer $£ 165$ ($£ 159$) $£ 169$. Sinclai Spectrum 48 K £ 131 ($£ 131$) $£ 143$. Spec trum $16 \mathrm{~K} £ 101$ ($£ 105$) £117. 32 K memory upgrade kit for 16 K Spectrum (lissue 2 only) £31 (£28) £30. Fuller master unit for the Spectrum Including speech synf56 (556) mp k and jopsick port 256 (E56) 62 . Keybards wick prope £43 ($£ 411$) £47 $2 \times$ printer with 5 fre £43 (241) £47. $2 X$ printer with 5 ree rolls paper $£ 41$. ZX printer alone $£ 36$ EX81 £37 (37) £47. Special offer pack 2×81 computer +16 K ram pack + game tape £49 (655) 65 . $\mathbf{Z \times 8 1} 16 \mathrm{~K}$ ram game tape $£ 49$ (255) 665 . 2×81 16K ram packs $\mathbf{E 3 1}$ (E28) £30. New luxury specrum computers 48k with hull sized normal space bar enclosed in a larger plastic case which also houses the computer pcb $£ 162$ ($£ 174$) £190.
COMMODORE COMPUTERS
Commodore 64 £233 (£209) £229. Vic 20 with free cassente recorder, basic course and games £143 (£149) £179. Convertor to allow most ordinary mono cassette recorders to be used with the Vic 20 and Commodore 64:- built $£ 9.78$ (£9) £ £1, kit £7.47 (£7) £9. Commodore cassette recorder £43 (£43) E50. 1541er $£ 235$ ($£ 220$) $£ 245$. 1526 Printer $£ 350$ ($£ 330$) $£ 360$.

SWANLEY ELECTRONICS
 The Computer Export Specialists
 Dept PE, 32 Goldsel Rd., Swanley, Kent BR8 8EZ, England
 please allow 7 days for delivery.

Tel: Swanley (0322) 64851. Nothing extra to pay. All prices are inclusive UK prices are shown first and include post and VAT. The second price in brackets is for export customers in Europe and includes insured air mail postage. The third price is for export customers outside Europe (including Austrafis etc) and includes insured
airmail postage. Official orders wetcome.

CENTRE ELECTRONICS
 SPECIAL OFFER

Only 12p per metre, P\&P FREE on 50 metre or over. UK ONLY.

TWIN AXIAL CABLE

A coaxial cable with two separate cores, each core $7 / 0.25 \mathrm{~mm}$ stranded copper wire. Both cores are insulated and sheathed with polythene fone plain, one black), laminated tape and tinned - copper wire braid form outer screen, covered with black PVC outer sheath. Impedance 100 ohms, overall diameter 6.75 mm .
This cable can be used for Data Transmission, also process and control applications, etc.

FREE SAMPLE

ACORN COMPUTERS

 Electron p.o.a. BBC Model B £404 (£368) E388. Kenda double density disk interface system for beeb £139 ($£ 124$) £134. We stock the whole range of Cumana disc drives for the beeb e.g. 100K single £230 (£220) £240, Double 2 $\times 400 \mathrm{~K} \mathbf{£} 65$ ($\mathbf{E 5 6 0}$) $\mathbf{£ 5 8 0}$.
PRINTERS

Epson RX80 £326 (£309) £340. Epson RX80F/T £346 (£316) £346. Shinwa CT CP80 £293 (f271) E312. Epson FX80 £440 (£408) £438, Epson MX100/3 £494 (£465) £495. Seikosha GP100A £234 (£219) £254. Oki Microline 80 £243 (モ227) £268. Oki Microline 84 £831. The Ultra 21 combined daisy wheel and electric typewriter $£ 438$ ($\mathbf{£ 4 1 5 \text {) } £ 4 4 5 .}$ The brother EP22 combined matrix printer and electric typewriter $£ 173$
$(£ 166)$
$£ 186$. Juki 6100 ($£ 166$) £186. Juki 6100 proportional daisy wheel printer £423 ($\mathbf{(4 0 4)} \mathbf{\text { ¢ }} \mathbf{8 3 4}$. MCP40 colour printer $\mathbf{£ 1 6 5}(\mathbf{£ 1 5 9}$) £169. Star STX80 thermal printer £165 (£159) £169. We can supply interfaces to run all the above from Sharp computers E58 (E52) E55.

ON REQUEST

549 STATION ROAD,
 BALSALL COMMON, COVENTRY,

WEST MIDLANDS CV7 7EF.
Telephone Berkswell 067632560

PARNDON ELECTRONICS LTD.
Dept. 21, 44 Paddock Mead, Harlow, Essex CM18 7RR Tel: 027932700
RESISTORS: \ddagger Watt Carbon Film E24 range $\pm 5 \%$ tole rance.
Bandollered and colour coded. Full Range $\mathrm{f} 0.10 \mathrm{M} £ 1.00$ per hundred mixed (Min 10 per value), 88.50 per thousand mixed (Min 50 per value).

Special stock pack 60 values, 10 of each $\mathbf{E 5 . 5 0}$

RECTIFIERS	
	1A 3A
coov	3p 14p
${ }^{2000}$	5p 14p
${ }^{4000}$	
${ }^{10000}$	

$3 \frac{1}{2}$ Digit LCD Display: 1 colon, 3 decimal points,
1A 3A
plus/minus sign and lo bat indicator. Complete with low power 7106 display driver.
Driver set at $£ 8.95$
Display 5.50 each Driver $\mathbf{5 6} .50$ each
DIODES: IN4148 £1.60 per hundred.

SOCKETS 22 pin -23 p. 24 pin -25 p. 28 pin -27 p. 40 pin -42 p.

Full List Available - Send SAE

ALL PRICES INCLUDE V.A.T. \& POST \& PACKING - NO EXTRAS MIN ORDER - UK $£ 1.00$ OVERSEAS $£ 5$ CASH WITH ORDER PLEASE Same Day Despatch

						Here's a selection from our vast stocks. Full price list free on request. Orders by 'phone quoting credit card no. or by mail order. Callers welcome. All products first grade franchised source. All in-stock items despatched same day. Official orders weicóme trom Govt. Depis, schools, etc. Please add 60p p6p + 45\% VAT. Overseas orders no VAT bur allow 52.00 min . pEp. Quantity discounts negotiabie.							
LOW NOISE		Prices per MetreSolid conner Inmp	$\begin{array}{lll} & 2 N 350 \\ & 360 \\ 2 N 351 & 360 \\ 2 N 3439 & 36 \\ 2 N \end{array}$	$\begin{array}{ll} & \\ A C 153 & 55 p \\ A C 1535 & 64 p \\ \text { AC176 } & 27 p \end{array}$	3 3C558A BC55R	EAT3	DIODES				5253 320		
- E22 50									TPA5000		57 ${ }^{\text {290 }}$	\%19	
	$\begin{array}{rlr}22 & 63 \\ 22 \\ 100\end{array}$					M, 3002	(1N821		0	(109	S258 350	1880	
Low ohmic	47 47 25 40 1 10	ma				901	IN914	\%	-	1480		680	
10						$\begin{array}{lll}1000 & 2.50 \\ 001 & 300 \\ 300\end{array}$	in916	(-		3 540	- 45278	
62411 p	${ }^{47} 1000$	ЗCrie 2\%, amp				50 3.60	203		-				
	100025	3 Core 6 mmp 31p					NN4004 5 \%						
	$\begin{array}{llll}100 \\ 100 & 40 & 220 \\ 103 & 23\end{array}$		${ }^{2 \times 3553} \quad 2.65$	12p		5	(Natas		5550		(15889		
	22			P		225		(20) 2.30	 $A 5500$ 45600 3.27		145		
	$\begin{array}{lll}220 & 10 \\ 200 & 16 \\ 16 \\ 170\end{array}$			20		20 3.99	O9	- 1280	${ }^{18}$				
	$\begin{array}{llll}220 & 25 & 220 \\ 220 & 40 & 250\end{array}$	+				504 5.55	1 Na 150	,	39		7415298 7415299 1.49		
	22	$\left\lvert\, \begin{aligned} & \text { Mim Stereo 15s } \\ & 4 \text { Core } 4 \text { Screens }\end{aligned}\right.$		$\begin{aligned} & \text { BC 109 } \\ & \text { BC } \\ & \text { BC } 109 \mathrm{~B} \\ & \text { BC } \\ & \hline \end{aligned}$					$\xrightarrow{\text { ToA }}$ TOAOM	741989 7490 408	74.53331 .59	${ }^{14669} 1.195$	
POTS ${ }^{\text {E }}$					${ }_{8}^{80139}$			OPTO					
PRESETS	478	54 p 8 Coue 61 p 12 Core $80 p$	$\begin{array}{ll} \text { 2N } 3709 & 10 p \\ 2 N 3710 & 10 p \end{array}$		(ex		(1)			741988889 74189 890	$\begin{array}{lll}74 L \text { S } 326 & 2.39 \\ 74.5327 & 2.39\end{array}$		
								隹	H06\%				
	100016	Abrial Cable		(elial	BD2 20 A 39 D BD240C 73 p BD241A 610	MPSAOG 250 MPSA10 28 p MPSA12 29 P		Yellow		$\begin{array}{ll}74188 & 2.50 \\ 74190 & \text { 48p } \\ 74191 & 485\end{array}$	74L.5348 88p	LOGIC	
		${ }^{\text {SJIT UHFA }}$									边	1802 6.50	
		Vfal								74191 7492 7450			
		,	${ }_{\substack{1.99}}^{\text {3, }}$										
-	2000 00 70 2000 03 134		${ }_{\substack{360 \\ 380}}$		$\begin{array}{ll} \text { BD242A } & 1.50 \\ \text { BD2420 } \\ \text { B0243A } & 720 \end{array}$			Smald ditusett					
	$2700{ }^{63}$	25			(ender	M MPSAA 499	(enter	(1)			74LS378 68p		
(sabave stereo	RADIALS IPCB		$\begin{aligned} & 90 p \\ & \text { 450 } \end{aligned}$							74221 53.			
PRE-SETS PIMER tDUSTPROOF)				$\begin{array}{ll} \text { BC152 } & 350 \\ \text { BCC } & 235 \\ \text { BC154 } & 230 \\ \hline 270 \end{array}$		MPSAS6					(1)	$\begin{array}{ll}\text { SCMP1 } & 20.00 \\ 280 A & 2.98 \\ 2800 & 8.60\end{array}$	
	Mark ushera miv						BA. 159 $32 p$ BA. 182 $40 p$ BA.201 $18 p$			74LS TTL			
												MEMORIES	
	$\begin{array}{ll} 20 & 10 \\ 22 & 10 \\ 10 \end{array}$	64 Way 149		$8 C 158$ 100 $8 C 158 A$ 12 p BC158B 13 p 8	BD250C 246 BD 419 249 BD4 129		$\begin{array}{ll} \text { BA316 } & \text { 25p } \\ \text { BA37 } & 25 p \end{array}$						
	47	RECMARGE GATTERIES				$\begin{array}{ll}\text { MPSLO1 } & 420 \\ \text { MPSL51 } & 480 \\ \text { MPSU01 } & 840\end{array}$							
	47.168												
MET 20	100	Top qualiy						RSU 38p 29 p					
											cmos		
10 500k 89p													
CAPS	Itano 10	HP2112AM1 2.10				MpSus5 MPSU57 590 10			200516				
	220019								${ }_{\text {sp }}$				
	16								,		(107) 198		
	TRANS							LINICS					
Polycafb 5\%									9				
to							GuE		Sp				
								AO					
								390	9 p				
							triacs	501					
for 270 ur						(350 360	diacs		6 p				
Sonf 10, 390		sol					HYR	50	220				
		ANTEX 5010				2A 38p	8612 Ams		250				
		ERINGIRONS			Bors 6.15	5p	${ }_{4}$	[1C1755	190	$7^{74583} 3196$		SAASO30	
.."1						$\begin{array}{lll}\text { H1P33C } \\ \text { H1P3A } \\ & 789 \\ 789\end{array}$	30						
ester						\%		(c)		741592298			
				${ }^{\text {chi83 }} 181{ }^{\text {10p }}$		28	Ticima	50		7.7593			
		${ }^{\text {girs cza }}$ 22s					C A8p	20		,			
	,	'11				990			(10	74			
${ }_{4} 2 \mathrm{Conk}$		No 61 Micicol 850	${ }^{2 \times 5524} 8$			550		$1{ }^{\text {Lf3 }}$					
						-	P		${ }_{\text {190 }}^{150}$				
45. 2.2 39pp						${ }^{40}$			15p				
EEEDTHROUC		Sters	2N5295			58	16 M 80	(1M37395 ${ }^{\text {a }}$	50				
	Tran Cuther 148	22304 310					1C17\%68 120						
high voltage		UGS 8					HCL 126 Cb		55p				
Capaciors		SOCKETS		30		699		$\begin{array}{ll}\text { M } 381 \mathrm{~N} & 190 \\ \text { M } 382 \mathrm{~N} & 112 \\ 12\end{array}$	cisp			(8216	
	Soseme						TRIACS		${ }_{63} 6$				
tant bet													
							50.6Al 780	N660 $\begin{gathered}243 \\ 1\end{gathered}$	${ }_{\substack{690 \\ 600}}$	\%		$\begin{array}{ll}\text { 280ADAA } \\ \text { z80AOMA } & 550 \\ 670\end{array}$	
						990		,	${ }_{188}^{198}$				
				(ex		T1P140 10,							
												V.REGS	
	- 69											ive	
						${ }^{770}$	21	cos				$\begin{aligned} & .05 A \\ & -12 \lambda \end{aligned}$	
6885 V 683 V 6810	1 Than ines							${ }^{350}$					
		$0^{\text {onut }} 40 \mathrm{P}$				M600		${ }^{23}$	${ }^{2 / 4104}$			TO	
${ }^{22}$	${ }_{4}^{4}$ Thick					990							
5V		istors					5						
						(2) $\times 109100$						${ }^{8241}{ }^{\text {Negative }} 3$	
30p				${ }_{\text {BCL } 238 \mathrm{Ca}}$		$\begin{array}{lll}21 \times 300 & 135 \\ 21 \times 301 \\ 150\end{array}$		189 165				Noqaite	
1											${ }_{49} 9$		
							${ }^{482}$	50	${ }^{74122} 335 \mathrm{p}$				
100 10 v 550								S00				Amp 10220	
ectrolytics				${ }_{\text {BCO }}$		21×312 21×313 360	R1	50	${ }^{26}{ }_{88}^{290}$				
		${ }_{\text {2N2219 }}$						ом335 120				1924	
								(e)				F SOCKET	
	CH												
${ }_{6}{ }^{\circ}$	RESIST PEN ${ }_{\text {spar }}$							NE556 45t					
100		${ }_{2}^{2 N 22272}$					St 4×3					SWITCHES	
63		3A						18					
\%	for	(10368						43			8		
									5p	${ }_{7415851} 7298$			
63						6550 45p	S021701400						

THENEW MAPLN CATALOGUEFOR 84!

NOW WITH PRICES ON THEPAGE

More data, more circuits, more pictures, in the brand new 480 page Maplin catalogue. Take a look at the completely revised Semiconductor section or the new Heathkit section with descriptions and pictures of dozens of kits and educational products from digital clocks to 16-bit business computers. The much expanded computer section itself, gives details of hundreds of pieces of software for Atari, BBC, Commodore 64, Dragon, Spectrum and VIC20. In addition to all this you'll find hundreds of fascinating new items spread through the rest of the catalogue.

As always, the Maplin catalogue is tremendous value for money and now has prices on the page!

Pick up a copy at any branch of W.H.Smith or in one of our shops for just $£ 1.35$ or send $£ 1.65$ including postage to our Rayleigh address. On sale from Ist Nov 1983

PRONECTS FOR THE HOME CONSTRUGTOR

Choose from our huge range of value-formoney projects. Projects like our Modem, Mosfet Stereo Amplifier, Home Security System, Frequency Counter and

Matids Mhpldy Mapun Mall
 Home Computer add-
on kits. Full construction details in our Project Books and brief specifications in our new catalogue. Dozens of fascinating new projects coming soon including a Keyboard for the ZX Spectrum with electronics to make all shifts, single-key operations. Full details in Project Book 9 on sale 11th November 1983. Order As XA09K. Price 70p.

NEW MAPLN STORE IN SOUTHAMPTON

Opening on 1st November 1983, our new
south coast store is at $46-48$ Bevois Valley Road, Southampton (Tel: 0703 25831). You will find our full range of components, projects and computers on sale. We are within easy reach of the city centre with good parking close by. Call in and see us soon.

Post this coupon now for jour copy of the 1984 catalogue. Price $£ 1.35+30$ p post and packing. If you live outside the U.K. send $£ 2.20$ or 11 International Reply Coupons. I enclose £1.65.

Name

Address.

ก7TR|PLIIn

ELECTRONIC SUPPLIES LTD

Mail Order: P.O. Box 3, Raylelgh, Essex SS6 8LR. Tel: Southend (0702) 552911 Shops at: 159-161 King Street, Hammersmith, London W6. Tel: 01-748-0926 8 Oxford Raad, Manchester. Tel: 061-236-0281 Lynton Square, Perry Barr, Birmingham. Tel: 021-356-7292-282-284 London Road, Westcliff-on-Sea Essex. Tel: 0702554000 "46-48 Bevois Valley Road, Southampton. Tel: 070325831.
-Opens 1st November 1983.
All shops closed Mondays. All prices include VAT and carriage. Please add 50p handling charge to orders under $\mathbf{\Sigma 5}$ total value (except catalogue).

[^0]: C IPC Magazines Limited 1983. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: 19 MULAERRY WALK LONDON SW3 6DZ TEL: 01-352 1897 TELEX: 918867

[^2]: Pror to this advenisement, all quoted regular prices have been charged during the last six months at the Tandy Store, Tameway Tower, Bndge Street, Walsall, West Midands. WSi ILA

[^3]: All modules are supplied with comprehensive instructions.

 Units on demonstration Shop hours 9.00-5.30 p.m.
 Wed. 9.00-1.00 p.m.
 SAE with all enquiries.

[^4]: The form, together with your cheque/postal order should be returned to: Collins Diary Offer, P.O. Box, Glasgow, G4 ONB.

[^5]: Fairlight Music Computer by Ray Hammond July 32
 Fusion-Towards Reality by Mike Abbott
 June 30
 Getting to Grips with Mac by Pat Hawker
 Sept 46

[^6]: COMPLETE FULLSIZE SETS any published service sheets, $£ 2+$ LSAE except CTVs/Music Centres from $£ 3$ + LSAE. Manuals from 1930 to latest. Quotations, free 50p magazine, price lists unique technical publications for LSAE. Repair data/circs almost any named TV/VCR $£ 8.50$ by retum. TISPE, 76 Church Street. Larkhall, Lanarks, ML9 IHE Phone (0698. 883334).

