PRACTICAL
Australla $\$ 1.50$ New Zeaiand $\$ 1.60$ Malaysia $\$ 4.95$ (R £1.23 (inc. VAT)

AUGUST 1983

85p

i(0): जनलिता

Get moving with these new developments in UK Robotics

- advanced electrohydraulic designs for education, industry and now available to the home constructor.

$E 145.00$
E
f .5 .50

printing. call to machine code routines. hexadecimal support and user friendly textual error trapping messages

If computers interest you then the Cortex will expand your under standing infinitely more than off the shelf machines. Use it in business, education, research or just play with the incredible graphics capability. At Powertran we are using these machines in conventional roles, in product control and $\mathrm{R} \& \mathrm{D}$. We shall coordinate the Cortex user group and distribute soffware for the TMS 9995 CPU Complete 16 bit 64 K computer kit $\mathbf{£ 2 9 5 . 0 0}$
Up to the nano-second hard, firm and software developments embodied in a complete system. 12 Mega Hertz 16 bit CPU: 64 K upwardly compatible DRAM: separate 16 K video DRAM and 24 K TI Power Basic with overwrite Supports up to four Disc drives of mixed type with 16 serial I/O ports. Programmable Baud rate and comprehensive E Bus interface designed to support real world applications.

Very high resolution graphics gives 3D simulation in 16 colours on 36 prioritised planes of user definable characters. Software FORTH coming includes this trendy language along with NOS C/PM
Hardware components available separately with details in Nov. Dec, and Jan issues of ETI. Software features include: Real time clock. full renumber command buffered I/O to free machine whilst

Top of the range is the Genesis P102 which has dual speed control continuous servo operation and double acting cylinders for increased torque on the wrist and arm rotation points The microprocessor based control system has additional memory position interrogation via the RS232C interlace increasing the versatility of computer control and inputs are provided for machine tool interfacing.
¢1950.00

Example prices and specifications Gonesis $S 101$
Base: $19.5^{*} \times 11^{*} \times 7.5^{*}$ Lifting capacity: 1500 gm Arm lift: 6.6° Weight: 29 Kg
4 axis model in kil form 5 axis model in kit form
$\mathbf{6 4 2 5}$
$\mathbf{f 4 7 5}$
Genesis P101
Base: $19.5^{\prime \prime} \times 11^{\prime \prime} \times 7.5^{\circ}$
Liting capacir: 2000 gm Arm lengths between axles: $14.0^{\prime \prime}$
Weight: 34 kg
Weight: 34 kg
6 axis model in kle form 6675
Complete Systems as shown in Photograph on right
Ganesis S101
4 axis system in kit form $\mathbf{f 6 8 1 . 5 0}$ 4 axis system in kit form
5 axis system in kit form
E 737.50
5 5 axis system in kit form
$\mathbf{5}$ axis system Ready Buile
E 1450
Genesis P101
6 axis system in kit form $£ 945.00$ 6 axis system Ready 8 uilt $£ 1650$ All prices exclusive of Vat

GENESIS P102 PROCESSOR BOX AND HAND HELD CONTROLLER

With prices starting below $£ 1000$ the Genesis range of general purpose robots provide a tirst rate introduction to robotics for both education and industry Each has a sell-contaned hydraulic power source which enables loads of several pouncts to be sinoothly handled The system operated from a single phase 240 or 120 V AC supply or a 12 V DC supply The machine can be supplied with up 106 axes each of which is fully independent but capable af simultaneous operation Posilion conliol is achieved by means of a closed-loop feedback system based around a dedicated microprocessor Movement sequences can system based around a dedicated microprocessor Movement sequences can systems can also be intertaced to an external computer via a standard RS 232C

GENESIS S101 AND GENESIS P101 WITH PROCESSOR BOXES AND HAND-HELD CONTROLLERS

WORLD
PRACTICAL
EL ECTRCONSTRUCTIONAL PROJECTSSOLAR POWERED PROJECTS by R. A. Penfold22
MM Radio 22
Soil Moisture Meter 25
Thermometer 26
Inebriation Detector 27
Continuity Tester 29
Transistor Checker 30
LOGIC ANALYSER by D. Mandelzweig 46Stores 1 K or 8 -bit words at up to 5 MHz
GENERAL FEATURES
ROBOT VISION by Geoff Mortimer and Liz Newbury 34
The latest systems explained
VERNON TRENT AT LARGE 38
SEMICONDUCTOR CIRCUITS by Tom Gaskell BA (Hons) 40
Voltage converter (ICL 7660) 58
Defining and overcoming unwelcome transients
MICROPROMPT 60
Hardware and software ideas for PE computer projects
NEWS AND COMMENT
EDITORIAL 15
NEWS AND MARKET PLACE 16
Including Countdown
SPECIAL OFFER-CASSETTES 32
SPACEWATCH by Frank W. Hyde 33
Extra-terrestrial activities chronicled 42, 72
Free readers' advertisements
INDUSTRY NOTEBOOK by Nexus 45
News and views on the electronics industry
PATENTS REVIEW 57
Infra-red link-Stereo TV
STRICTLY INSTRUMENTAL by K. Lenton-Smith 65
Yamaha pianos
READOUT 66
INGENUITY UNLIMITED 67
Transistor analyser-Electronic die-Car lights on reminder-Micro multiplexed displayRoger 'bleep bleep'-Steam whistle—Ni-Cad battery charger-High Z input for valtmetersOVERSEAS SUBSCRIPTION AGENTS72
SPECIAL SUPPLEMENTMICRO-FILE by R. W. Coles

[^0]

FREE CAREER BOOKLET

Train for success in Electronics Engineering, T.V. Servicing, Electrical Engineering-or running your own business!

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the fields of electronics, T.V., electrical engineering-now it can be your turn. Whether you are a newcomer to the field or already working in these industries, ICS can provide you with the specialised training so essential to success.

Personal Tuition and 80 Years of Success The expert and personal guidance by fully qualified tutors, backed by the long ICS record of success, is the key to our outstanding performance in the technical field. You study at the time and pace that suits you best and in your own home.

You study the subjects you enjoy, receive a formal Diploma, and you're ready for that better job, better pay

TICK THE FREE BOOKLET YOU

 WANT AND POST TODAY
ELECTRONICS ENGINEERING

A Diploma Course, recognised by the Institute of Engineers \& Technicians as meeting all academic standards for application as an Associate
T.V. \& AUDIO SERVICING
A Diploma Course, training you in all aspects of installing. maintaining and repairing T.V and Audio equipment, domestic and industrial

RUNNING YOUR

 OWN BUSINESSIf running your own electronics. T.V. servicing or electrical business appeals, then this Diploma Course trains you in the vital business knowledge and techniques you'll need

Name

Address

JUST OUT!

OUR GREAT NEW CATALOGUE

Presented with a Professional Approach and Appeal to ALL who require Quality Electronic Components, Semiconductors and other Accessories ALL at realistic prices.
There are no wasted pages of useless information so often included in Catalogues published nowadays Just solid facts i.e. price, description and individual features of what we have available. But remember BI-PAK's policy has always been to sell quality components at competitive prices and THAT WE STILL DO

We hold vast Stocks "in
 stock ${ }^{\text {" }}$ for fast immediate delivery, all items in our Catalogue are available ex stock.
The Catalogue is designed for use with our 24 hours "ansaphone" service and the Visa/ Access credit cards, which we accept over the telephone.

To receive your NEW 1983 BI-PAK Catalogue, send 75p PLUS 25p p\&p to:-

${ }^{\text {Oopp PE8 }}$ (Cutlopues Po Bor 6 Access $\begin{aligned} \text { USA accerico }\end{aligned}$ Ring 09203182 for immediote despater

MAIL ORDER ADVERTISING

British Code of Advertising Practice

Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mai order advertisements where money is paid in advance, the code requires advertisers to fulfil orders within 28 days, unless a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please retain proof of postage/despatch, as this may be needed.

Mail Order Protection Scheme

If you order goods from Mail Order advertisements in this magazine and pay by post in advance of delivery, PRACTICAL ELECTRONICS will consider you for compensation if the Advertiser should become insolvent or bankrupt, provided
(1) You have not received the goods or had your money returned; and
(2) You write to the Publisher of PRACTICAL ELECTRONICS summarising the situation not earlier than 28 days from the day you sent your order and not later than two months from that day

Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.
We guarantee 10 meet clais from readers made in accordance with the above procedure a soon as possible after the Advertiser has been declared bankrupt or insolvent.
This guarantee covers only advance payment sent in direct response to an advertisement in this magazine not, for example payment made in response to catalogues etc, received as a result of answering such advertisements. Classified advertisements are excluded

WHAT USE A MICRO WITHOUT A PRINTER?

NEW A.D.M. 80 COL. DOT MATRIX WITH TRACTOR FEED. BACKED BY ONE OF BRITAINS LARGEST MANUFACTURERS, IT IS NOW STOCKED BY US.

SPECIAL LAUNCH PRICE

$£ 311.00$ +VAT. Carriage $£ 7.50$ ar collect fram our warehouse.

CROFTON ELECTRONICS LTD.
 35 GROSVENOR ROAD, TWICKENHAM, MIODX 01-89\% 1923/1513 Telea 295093

Oric 1 48K computer 1147 (4158). Oric 1 16K na (N / a). sinclar spectrum 48K 1113 (C133). Spectrum 16K C84.91 (C107). 32k memory upgrade kit for 16K spectrum (lssue 2 ondy) 226.09 (C28). Fulier master unit for the spectrum including speech synthesizer. sound symthesizer. amplifier and joystick ports 47.78 (CS6). $2 \times$ microdrive $n / a(n / a) 2 X r 332 \mathrm{n} / \mathrm{a}$ $(\mathrm{n} / \mathrm{a})$. Kertoards with space bars for the ZX81 and the Spectrum 03 (441). $2 \times$ primer 034.74 (650) 5 primer rolls © 10.43 (1616) 2×81 (43.43 (C52), 2×81 16 K ram packs $\mathbf{6} 26.04$ (228). New luxury spectrum computers 48K with full sized typewriter keyboards complete with normal space bar enclosed in a larger plastic case which also houses the power supply and the computer pcb $\subset 138.20$ ((174).
COMMODORE COMPUTERS
Commodore $64 \leq 20$ (C309). Vk $20 \leq 130$ (C14). Special offer package:- Vic $20+$ cassette recorder ${ }^{+}$basic course ${ }^{+}+$ the use of most prdimary mon cassete recorders with the Vic 20 and the Com recorders w buile (s) (c) kit is (c7) Commodore ciuserte recorder 435.50 (44). We stock most accessories.

OTHE虫 COMPUTERS 1424 (449) Texas (1169) Aeri 800 C347 (c389) Atari 400 6 K with basic $\subset 173$ (4215).

PRINTERS

The Epson MX8OFT/3 has been replaced by the almost identical CTI CP80 $\mathbf{6 1 6 2}$ (1282) and the very simitar Star DPS10 E262 (C282) Epson FX8O ©378 (440e), Epson M×100/3 4425 (4465). New Star OP515 15^{n} carriage primer 474 ((414). Seikosha GP100A 4199 (L219). Oki Microline 80 C227 (1227). Oki Microline 82 A Microline 92 ©4i Microline 04 C730. Oku Microline 92 470. The Bytewriter, the latest miracle, a combined dasy wheel c4ls (446). We can supply intertaces 5 un any of the thove printers from sharp un any of the above printers from Sharp omputers

Dept PE, 32 Gotdsel Rd., Swanioy, Kent BRe 8EZ, England.

GET BIC

$\begin{aligned} & \text { Module } \\ & \text { Number } \end{aligned}$	Outpent Pewter Wents P摬	$\begin{array}{\|c\|} \hline \text { Loed } \\ 1 \text { impobnee } \\ \Omega \end{array}$	Distohtion		Smeply Votrey Ty	Size men	WT	$\begin{aligned} & \text { Prive } \\ & \text { ime. } \end{aligned}$VAT
			T.H.D. Tvp at 1 KHz					
11, 31	13	4.9	0.015\%	<0.008\%	218	$76 \times 68 \times 40$	240	¢8,40
H14*	30	4.8	4.015\%	<0.006\%	± 25	76x68:40	240	c9,55
$1+6 \mathrm{~F}_{6} 60$	3) 30	4.H	0.015\%	<0.006\%	± 25	120* 78×40	420	£18.69
$12+174$	60	4	0.014	<0.006\%	- 26	$120 \times 78 \times 40$	410	¢20.75
HYY/Ps	50	H	0.01%	<0.006\%	± 35	$120 \times 78 \times 40$	410	t20.75
wrysid	120	4	0.u1\%	<0006\%	± 35	120×78×50	520	[25,47
H\%/AB	120	н	0.01\%	<0.006\%	150	120×76:50	520	[25,47
Mr. 664	130	4	0.01\%	<0.006\%	± 45	$120 \times 78 \times 100$	1030	C38.41
HY 664	180	8	0.01\%	<0.006\%	+60	120×78×100	1030	¢38.41

Fiequency response (-3dB) $15 \mathrm{~Hz}-50 \mathrm{KHz}$. Input sensinvity: 500 mV rms .
Input Impedance $100 \mathrm{~K} \Omega$. Damping Iacior $100 \mathrm{~Hz}>400$.
PREAMP SYSTEMS

$\begin{aligned} & \text { Module } \\ & \text { Mumber } \end{aligned}$	Mockulo	Functions	$\begin{aligned} & \text { Cuncent } \\ & \text { Renured } \end{aligned}$	Price ine. VAT
Hirg	Mino pre mimp	Mic/Mas. Cartudge/Tune//T ape/ Aux + Vol/Bass/Treble	10ma	$f 7.60$
-1v66	Steres prea siote	Mn/Mag. Catridge/Tune/ / Tape/ Aux, Vol/Bess/T/mble/Bolance	20 ma	¢14.32
HV/3	cruslar preamp	Two Gutar (Bass Lead) and Mic * seoparme Volume Bass Trebie , Min	20 ma	C15.36
Hr78	Stereo pre ame	Ay HY6is less tone cantrots	20 ma	§14.80

Most pre-amp modules can be diven by the PSU deiving the man powet amp.
E5.47 fine. VATI. Prasmp and mix mg modutes in 18 diftorent vefiations.
Pease send lor deralls.
Mounting Boards
For ease of construetion we recommend the B6 for modules HY6-HYI 3 \& 1.05
linc. VATl and the $\mathbf{B 6 6}$ for modules HY66-HY78 £1.29 (inc. VAT).

Number	For Une Win	Prico ine. VAT
PSU21x	$10^{2} \mathbf{H Y} 30$	C11.93
PSU 41 x	1 ar 2 HY60, 1 \| MV6060. 1 n HY 124	¢13.83
PSU 42x	$1 \times$ нYIz8	¢15.90
PSU 43x	1: MOS128	£16.70
PSUSix	2\% HY 128, 1 - HY244	¢17.07

$\begin{aligned} & \text { Moded } \\ & \text { Mumber } \end{aligned}$	For Use With	Price ine VAT
PSU 52x	2-MY124	¢17.07
PSU 53x	2*MOS 128	¢17.86
PSU 54 x	$1 \times \mathrm{HY} 248$	¢17.86
PSUS5x	1 m MOS248	¢19.52
PSU71x	2 mHY 244	¢21.75

Moder Number	For Use With	Prue ine VAT
pSu 72 x	2x 4×248	${ }^{122.54}$
PSU 73 x	1. HY364	:22.94
PSU 74x	1 ¢ Mr 368	124.20
PSUS $75 \times$	$2 \times \mathrm{MOS} 248.1$ - MOS368	¢24.20

[^1]
WTH ALOT OF MELP niom Q!e:

PROFESSIONAL HIFFI THAT EVERY ENTHUSIAST CAN HANDLE...

Unicase

Over the years ILP has been aware of the need for a complete packaging system for it's products, it has now developed a unique system which meets all the requirements for ease of assembly, adaptability, ruggedness, modern styling and above all price.
Each Unicase kit contains all the hardware required down to the last nut and bolt to build a complete unit without the need for any special tools.

Because of ILP's modular approach, "open plan" constrúction is used and final assembly of the unit parts forms a compact aesthetic unit. By this method construction can be achieved in under two hours with little experience of electronic wiring and mechanical assembly.

Hi Fi Separates

UC1 PRE AMP UNIT: Incorporates the HY78 to provide a "no frills", low distortion, (<0.01\%), stereo control unit, providing inputs for magnetic cartridge, tuner, and tape/ monitor facilities. This unit provides the heart of the hi fi system and can be used in conjunction with any of the UP Unicase series of power amps. For ultimate hum rejection the UC1 draws its power from the power amp unit. POWER AMPS: The UP series feature a clean line front panel incorporating on/off switch and concealed indicator. They are designed to compliment the style of the UC1 pre-amp. Performance for each unit which includes the appropriate power supply, is as specified on the facing page.

Power Slaves

Our power slaves, which have numerous uses i.e. instrument, discotheque, sound reinforcement, feature in addition to the hi fi series, front panel input jack, level control, and a carrying handle. Providing the smallest, lowest cost, slave on the market in this format.

HIFI Separates					Price inc. VAT
UCI	Preamp				£29.95
LPIX	$30+30 \mathrm{~W} / 4-8 \Omega$	Bipolar	Stereo	HiFi	$¢ 54.95$
UP2X	$60 \mathrm{~W} / 4 \Omega$	Biporar	Mono	Hifi	E54.95
UP3x	$60 \mathrm{~W} / 8 \Omega$	Bipolar	Monu	HiFi	¢54.95
UP4X	$120 \mathrm{~W} / 4 \Omega$	Bipolar	Mono	HiF,	[74.95
UPSX	120w/8	Bipolar	Mono	HiF:	E74.95
UP6X	$60 \mathrm{~W} / 4-8 \Omega$	MOS	Mono	$H_{1} F_{1}$	¢64.95
UP7X	$120 W / 4-8 \Omega$	MOS	Mono	$H_{1} \mathrm{~F}_{1}$	¢84.95
Power Slaves					
USIX	$60 \mathrm{~W} / 4 \Omega$	Bipolar	Power	Slave	£59.95
US2x	$120 \mathrm{~W} / \square \Omega$	Bipolar	Power	Slave	¢ 79.95
us3 x	60W/A-8 $\boldsymbol{\Omega}$	MOS	Power	Slave	169.96
US4 x	120W/4-8ת	MOS	Power	Slave	189.95

Piease note X in part number denotes mans voltage. Please insert ' O ' in place of \mathbf{x} for 110 V . ' ' in place of \mathbf{x} for 220 V (Europe), and ' 2 ' in place of \mathbf{x} for 240 V U.K.I All units except UC1 incorporate our own sorordal transtormers.

CLEF ELEGTRONIC MUSTC MICROSYNTH
21 Octave Music Synthesizer with two
Oscillators, two Sub-Octs. Switched Rout-
ing and Thumbwheel A comprehensiv instrument offering the full range of Synth. Music \& effects,
PERCUSSION MICROSYNTH
Two Channel touch Sensitive unit plus
variable angle L.F.O., phaser, internal (Published in P.E.)

88/72 NOTE PIANOS
SPECIALISTS SINCE 1972
Using Patented electronic technique to give ad
vanced simulation of Piano Koy Inertia.

MASTER RHYTHM PROGRAMMABLE DRUMS Twenty-Four Rhythm programmable Drum Machine with twelve instruments, Eight sections wit er programming Se quence operation and instrument tone adjust ETE KIT E79 OTING ENSEMBLE \quad £79 ROTOR-CHORUS E198.50 SQUARE FRONT KEYBOARDS 88 NOTE $\mathbf{f 6 0} 49$ NOTE E29 30 NOTE f19 KEYSWITCH ITEMS ALSO AVAILABLE
ELECTROVALITE
Understandably
Britain's most popular
and relied-upon
suppliers of
SEMI-CONDUCTORS
I.C.s
COMPONENTS
COMPUTING EQUIPMENT
TOOLS, BOXES, CONNECTORS
and much, much more
OUR SUMMER PRICE LIST TELLS ALL

Send for your FREE copy by refurn BETTER PRICES, BETTER CHOICE, BETTER SERVICE Don't forget to mention PRACTICAL ELECTRONICS with your request ELECTROVALUE LTD.
Mad Office Mail Order Dept and Shop 28 d St. Judes Road, Englofieid Green, Egham, Surrey TW20 OHB Telephone Egham (STD 0784; London 87) 33603; Telex 264475 A/so in Manchester tor personal shoppers at:
680 Burnage Lane, Burnage, Manchester M19 INA. Telephone 061-432 4945 Computing Shop

700 Burabge Lane, Manchester, Telaphone 061-4314866

 year warranty on 1983. as from 5 83 as from 5 May 1983

NOW WITH IMPROVED SPECIFICATIONS

Y Deflection

Bendvnidth: DC-10 MHz (-3dB)
Overshioot: Less than 1\%
Sensit vity: $2 m \mathrm{~m}-20 \mathrm{~V} / \mathrm{cm}$
Input Imp: 1M ohm//25pf Variab a Control

X Deflection

Timebase: 0.2s-0.2lis/cm Teiggering: $2 \mathrm{~Hz}-30 \mathrm{MHz}$ (3mm) Auta - level contro?
Bandwidth: $\mathbf{2 H z} \cdot \mathbf{1 N H z}$ Variable Conircl

GENERAL INFORMATION

Component Tester For single components arad in cirevit

Calithrator
Power Supplies
A.C. I pout

Weight
Sizs $\quad 4 y^{\prime \prime}(\mathrm{H}) \times 83 / 8^{\prime \prime}(\mathrm{W}) \times 107 / 43^{\circ \prime}(\mathrm{D})$
CAT Pecting ar intornal gretuccla
Accursey $\quad 3 \%$ in verticsi emolifier
Filvar \quad T.V. urigger Pilter
Trace notation vis Jront oy-el

For more information on LiA ME G's full range of tap performance oscilloscopes contact:
HAMEG LTD.
74. 78 Collingdon Street, Lutan, Beds. LU1 1 RX Tel: (0582) 413174

satisfactiony status - send for details, We are pleased to receive overseas orders (please allow adequate postage - surplus
refunded) which, unless accompanled by Bankers Dratt in UK Currency may be subject to Bankers Commission and stight deloy in
 range of components available - 30 p refundable with first order. Please sent SAE

COMM QUIP Ltd

ADVANCED TELECOMMUNICATIONS
 Careers with extensive scope at Cheltenham

Join the Government Communications Headquarters, one of the world's foremost centres for R \& D and production in voice/data communications ranging from HF to satellite - and their security. Some of GCHQ's facilities are unique and tere is substantial emphasis on creative solutions for solving complex communications problems using stateof-the-art techniques including computer/microprocessor applications. Current opportunities are for:

Telecommunication Technical OfficersTwo levels of entry providing two salary scales: $£ 5,980-£ 8,180 \& £ 8,065-£ 9,085$ Minimum qualifications are TEC/SCOTEC in Electronics/Telecommunications or a similar discipline or C \& G Part II Telecommunications Technicians Certificate or Part I plus Maths B, equivalent:ONC in Electrical, Electronics or Telecommunications Engineering or a CIE part I Pass, or formal approved Service Technical training. Additionally, at least 4 years' (lower level) or seven years' (higher level) appropriate experience is essential in either radio communications or radar, data, computer or similar electronic systems.
At the lower entry level first line technical/supervisory control of technicians involves "handson" participation and may involve individual work of a highly technical nature. The higher level involves application of technical knowledge and experience to work planning including implementation of medium to large scale projects.
Radio Technicians - £5,232-£7,450
To provide all aspects of technical support. Promotion prospects are good and linked with active encouragement to acquire further skills and experience. Minimum qualifications are a TEC Certificate in Telecommunications or equivalent plus 2 or more vears' practical experience

Cheltenham, a handsome Regency town, is finely-endowed with cultural, sports and other facilities which are equally available in nearby Gloucester. Close to some of Britain's most magnificent countryside, the area also offers reasonably-priced housing. Relocation assistance
For further information and your application form, please write to
Recruitment Office, GCHO Oakley, Priors Road,
Cheltenham, Gloucestershire
GL52 5AJ
or phone 024221491 ext 2269

THE RADIO AMATEUR'S HANDBOOK

1983 ed. A.R.R.L

Price: $£ 10.00$

WORLD RADIO T.V. HANDBOOK 1983
by J. M. Frost
Price: $£ 12.00$
THE ART OF ELECTRONICS
by Horowitz/Hill
Price: $£ 16.00$
ASSEMBLY LANGUAGE PROGRAMMING FOR THE BBC MICROCOMPUTER
by I. Birnbaum
Price: $£ 9.50$
PRACTICAL DESIGN OF DIGITAL CIRCUITS by I. Kampel Price
OPTOELECTRONICS: AN INTRODUCTION by J. Wilson Price: $£ 13.00$ TESTING METHODS \& RELIABILITY ELECTRONICS by A. Simpson

Price: $\mathbf{f 5} 50$
THE COMPLETE H/B OF MAGNETIC RECORDING by F. Jorgensen Price: $£ 9$
ESSENTLAL ELECTRONICS AN A TO Z GUIDE by G. Loveday Price: $£ 6.50$ BASIC PROGRAMMING ON THE BBC MICROCOMPUTER
by N . Cryer
Price: $\mathbf{£ 6 . 5 0}$

* All prices include postage *

THE MODERN BOOK CO.

bRITAIN'S LARGEST STOCKIST
of British and American Technical Books

19-21 PRAED STREET

 LONDON W2 1 NPPhone 01.402 9176 Closed Saturday 1 p.m Please allow 14 days for reply or delivery.

The
 Big
 Eu

Sponsored by Practical Electronics, Practical Wireless and Everyday Electronics

The first Electronic Hobbies Fair in 1982 immediately established itself as the foremost consumer electronics exhibition-the biggest attendance and the largest number of exhibitors.

The 1983 Fair will build on the success and the experience of the first year. It will be 1983's largest and most influential
shop window for the whole range of electronic equipment and components for the electronics hobby enthusiast-constructional projects, home computers, amateur radio, video games, musical instruments and peripheral equipment-whether for the beginner, the specialist or the all-round enthusiast

Make a date for 1983. October 27-30, Alexandra Palace, London For more details contact: The Exhibition Manager, Electronic Hobbies Fair, Reed Exhibitions, Surrey House,
Throwley Way, Sutton, Surrey SM1 4QQ

Compact 31/2-Digit 16-Range Multimeter
 NEW!
 £ 344^{95}
 - Fused and Overload Protected
 - Diode Check Function For Testing Semiconductors

- 10 Megohm Input

Digital accuracy at a practical price. Features easy-to-read display. Single-IC design assures extremely low battery drain and high accuracy. Single-knob switch, full auto-polarity operation. Low-battery and overrange indicators. Diode check on/off switch. DC volts: 2-20-200-2000V (max. 1000V), AC volts: 2-20-200-2000V (max. 500 V), accurate from 45 Hz to 10 kHz . DC Current: 2-20-200mA-2A. Resistance: 2-20-2002000k Ohms. $53 / 16 \times 31 / 4 \times 17 / 16^{\prime \prime}$. Includes spare fuse, test leads. Requires 2 " $A A$ " batteries. 22-189

CABLE—A BREAKTHROUGH?

WITH the recent news of a cable service for most UK homes and the exciting possibilities that have been dreamed up by the media it is sobering to read what follows, written more than eleven years ago by Fred Bennett who was then editor of PE.
"With commendable boldness and confidence in the future growth of telecommunications for domestic purposes, the Post Office is currently involved in the installation of a communication main' system in the new city of Milton Keynes, now arising in Buckinghamshire. Every house in the new city will be linked to this communication system. The cables will, so far as possible, be laid in a communal trench, with the other essential services, water, gas, electricity, and drainage.
"A standard telephone pair forms part of this 'main'. This cable is accompanied throughout, right up to every front door, by a high performance
coaxial cable. Besides being capable of carrying radio and television signals, this wideband coaxial cable provides for the transmission of two-way signals. such as could be employed to operate viewphones and computer data terminals, and permits the carrying out of other useful functions, like the remote reading of gas and electricity supply meters.
"What happens in Milton Keynes may become the pattern for the future throughout the country. At any rate, this pioneer installation is worth noting and musing upon. It could herald another technological explosion making direct impact upon the domestic or 'consumer' section. We don't doubt that fertile minds will seize eagerly the opportunity it promises for further imaginative and useful exploitation of electronics."

Obviously with the increase in consumers resulting from wide scale cabling the cost of suitable equipment will fall. However, we cannot help wonder-
ing if it will all be worthwhile when the use of Viewdata is still so limited. The wonders of Information Technology will not be forced on a community that sees little advantage in the system. The availability of a vast range of cheaply hired video cassettes already reduces the chance of any "film channel" being successful.

As Vernon Trent indicates this month, technology can move as fast as it likes, the consumers are setting their own pace.

PRICEINCREASE

Unfortunately rising costs have forced us to make a cover price increase. From next month PE will cost an extra five pence; this is slightly less than a six per cent increase. The last increase was a year ago.

EDITOR Mike Kenward

Gordon Godbold ASSISTANT EDITOR
David Shortland ASSISTANT EDITOR/PRODUCTION
Mike Abbott TECHNICAL EDITOR
Brian Butler TECHNICAL SUB EDITOR

Jack Pountney ART EDITOR
 Keith Woodruff ASSISTANT ART EDITOR
 John Pickering SEN. TECH. ILLUSTRATOR
 Isabelle Greenaway TECH. ILLUSTRATOR
 Jenny Tremaine SECRETARY

SECRETARY AD. SALES EXEC

CLASSIFIED SUPERVISOR
AD. MAKE-UP/COPY
D. W. B. Tilleard

Christine Pocknell
01-261 6676

Alfred Tonge 01-2616819
Barbara Blake 01-2615897
Brian Lamb 01-261 6601

Technical and Editorial queries and letters Isee note belowl to:
Practical Electronics Editorial.
Westover House.
West Quay Road, Poole,
Dorset BH15 1JG
Phone: Editorial Poole 671191
We regret that lengthy technical onquiries cannot be answered over the telephone

Queries and letters concerning advertisements to:
Practical Electronics Advertisements, King's Reach Tower, King's Reach, Stamford Street, SE1 9LS Telex: 915748 MAGDIV-G

Abstract

Letters and Queries We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in PE. All letters requiring a reply should be accompanied by a stamped, self addressed envelope, or addressed envelope and international reply coupons, and each letter should relate to one published project only.

Components and p.c.b.s are usually available from advertisers; where we anticipate difficulties a source will be suggested.

Back Numbers

Copies of most of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, at £ 1 each including Inland/Overseas p\&p. Please state month and year of issue required.

Binders

Binders for PE are available from the same address as back numbers at $£ 5.50$ each to UK or overseas addresses, including
postage and packing, and VAT where approprlate. State year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for f 13.00 per 12 issues, from: Practical Electronics. Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH 16 3DH. Cheques, postal orders and international money orders should be made payable to IPC Magazines Limited. Payment can also be made using any credit card and orders placed via Teledata Tel. 01-200 0200.

Items mentioned are available through normal retail outlets, unless otherwise specified. Prices correct at time of going to press.

farewell Analogue TV

It was hardly likely that the humble domestic television receiver would remain outside the swelling compass of digital technology for much longer. The bell tolls, and ITT is the campanologer with its "Digivision" system.

Until now, digital electronics has been applied only to two sections of the television set, these being the infra-red remote control and the local oscillator of the tuner. The situation has changed dramatically. In what is claimed to be the biggest revolution in television since the introduction of colour 30 years ago, ITT's Digivision offers an entirely new system which changes fundamentally almost every section of the receiver. Although Digivision is designed to receive conventional TV broadcast signals, it is almost 100 per cent digital in operation, and it is already on the commercial horizon. Receivers based on the Digivision chip set will be on sale in West Germany, the country of origin, in late 1983. They will become available in the UK in early 1984. ITT expects that in the future 50 per cent of all television sets sold throughout the world will incorporate Digivision. An understandable anticipation, it being the culmination of a 10 year, $£ 20 \mathrm{~m}$ investment project.

The benefits of a micro' based receiver, to both the user and the service engineer, are manifold. The end-user gets a television which makes an "intelligent" effort to op-
timise reception under all conditions (including ageing) by comparing performance characteristics with factory preset values stored in memory, and, naturally, making all necessary adjustments automatically. Sound quality is also improved with digital processing right to the loudspeaker (mono or stereol using pulse-width modulation.

The service engineer will benefit from a tool that ITT calls an "electronic screwdriver". This diagnostics computer runs tests and makes adjustments to the receiver's EAROM data by way of an umbilical cable. The chassis has only one preset potentiometer. The engineer will be able to carry out most adjustments from the front of the set, following prompts on the screen.

Some amazing possibilities accompany the digital television era. Line and field storage is envisaged, which will allow display scanning standards to be defined and varied locally. For example, a 625 line, 50 fields/sec interlaced picture could be displayed at 1250 line, 150 fields/sec noninterlaced, yielding improvements in subjective definition and stability. Picture data
storage will also make possible selective "zoom" and "freeze" of any broadcast picture. Noise, interference and flicker will be eliminated, and ghost images will be "exorcised". The intriguing prospect of pictures from other channels being inset into one corner of the channel being watched, is with us.

These features by no means represent the extent of exciting possibilities that

The Digivision component board

should become reality between 1983 and 1986. Digivision will be able to accept signals directly from Prestel or a home computer, or from a video cassette recorder or video disc player operating on any television standard (PAL, SECAM, NTSC).

ITT's first production designs would comprise up to 300 components if they were analogue, but will instead comprise just seven VLSI chips.

Piezoelectric Plastic

The electronics hobbyist of yore, enthused by experimentation with an OC71 transistor, a piece of paxolin and a tobacco tin, would have scoffed at the idea of discovering electronics, or physics using pre-designed circuits conveniently packed into little plastic bricks, no matter how many leads emerge from them. But he wouldn't have scoffed at the opportunities afforded by a new product from Metal Box's R\&D lab's at Wantage, which opens up a whole new can of worms (as they say) for the experimentalist.

Think what could be done with a sheet of piezoelectric plastic which can be cut to any shape or size, to make a custom transducer. The idea is not new; the Japanese (of course) have been making a similar material for some time, but it has never been widely available. Metal Box make theirs from polyvinylidene fluoride (PVDF) which is metallised, and undergoes rather special treatment to give it the potential to be used in microphones, loudspeakers, impact detectors and push buttons, and who knows what else?

When acting as an audio transducer the material can be its own diaphragm, opening up amazing possibilities, which include large area microphones, flat loudspeakers, vibrating surfaces or platforms and ultrasonics. Other applications spring 10 mind: How about a flexometer (if there is such a thingl? Or an optical deflector. or perhaps an acoustically controlled LF oscillator? Or even a liquid atomiser?

The pure experimentalist's odyssey is assured with this film, because it is also pyroelectric, enabling it to be used for thermal im-
aging, heat sensing, fire detection, temperature measurement, and doubtless other applications as yet to be conjured. The plastic film is readily formed into complex shapes. The film is available in thicknesses of 10 and 22 micrometre, and is already proving valuable in medical applications.

Sadly, at E 20 for 200 sq. cm. (minimum qty.) Metal Box's piezoelectric film is at the moment a little expensive for dabbling with, but the manufacturer sees the price coming down as its use increases. Perhaps in the meantime, hobbyist suppliers will bulk buy and make the film available in less costly amounts.

Viewdata Bargain

The PAT Viewdata adaptor shown here is available for $£ 55$ (including VAT, plus postage) but before you reach for your cheque book there is just one point we should mention! Although they are in the manufacturer's packing and are new and unused they can only be purchased from J. Bull (Electrical) Ltd., untested and without guarantee. However, the components alone

are worth more than the cost and "if all else fails" the GI chips could be used for your own design system. The unit shown in the photo is now providing Prestel in the PE office, following installation of a jack ($£ 15$) by British Telecom. The equipment is beautifully made and at the price is obviously too good to miss, provided you are prepared to take a chance. But make up your mind quickly as the quantity is limited.

Also from J. Bull is an excellent Amstrad a.m.f.m. tuner head. F.M. coverage is $87.5-108 \mathrm{MHz}$ at $2.5 \mu \mathrm{~V}$ for 30 dB signal to noise and a.m. coverage is: m.w. 525 1650 kHz ; I.w. $155-270 \mathrm{kHz}$ at $320 \mu \mathrm{~V} / \mathrm{M}$.

Connections for a tuning meter, stereo beacon and a.f.c. switch are provided. With the addition of a 12 V supply and simple stereo amp this would make a high quality portable radio or it could form the heart of a hi-fi system, as it was originally intended to do in the EX222 receiver. The tuners are new and the price is $£ 6$, including VAT plus postage.
J. Bull (Electrical) Ltd. (Dept PE), 34-36 America Lane, Haywards Heath, Sussex RH16 3QU. Tel: 0444454563.

Amorphous Solar Cells

Mitsubishi Electric Corporation of Japan has managed the successful manufacture of an experimental $100 \mathrm{~cm}^{2}$ solar cell with an energy conversion efficiency of 8.25%. Although this may not sound like a very exciting event, this level of efficiency is claimed to be the world's highest for such a large element size.

The high performance solar cell, which comprises one amorphous germanium and two amorphous silicon layers, has an opencircuit output of 2.24 V . It is low cost, using less than 1% of semiconductor materials as compared with a single crystal solar cell, and furthermore large element sizes are possible. Exposure to the sun gradually changes the characteristics of conventional cells, but does so far less with Mitsubishi's cells. Production costs are also lower, since the amorphous cell can use a cheap and comparatively unsmooth steel plate as its substrate.

As part of the solar cell research venture called the "Sunshine Project" Mitsubishi is in charge of amorphous cell development The project, started in 1980 by the

Japanese Agency of Industrial Science and Technology, had targeted the objective of a $10 \times 10 \mathrm{~cm}$ element with an efficiency greater than 8% by the close of 1982. This it achieved, and now Mitsubishi is working towards the production item.

Amorphous solar cell panels of Mitsubishi Electric

Silicon News Corner

Bulletins announcing new semiconductor devices arrive at PE daily, so it is possible only to describe them briefly. Details of how to obtain further information are included, however.
United Components Two new enhancement mode, 400 MHz power f.e.t.s, UMP1 \& UMP2. Operating from $25-30 \mathrm{~V}, \mathrm{UMP} 1$ gives 5 W at 110 dB gain, and UMP2 gives 10 W at 7 dB . Almosi infinite VSWR mismatch tol.

- New stactable rectangular $(2 \times 5 \mathrm{~mm})$ l.e.d. series. The high efficiency MV5X123 is available in red and yellow and high brightness green.
- Optically isolated gate, triac driver i.c. (6pin) called MCP30XX series. $120 \& 240 \mathrm{~V}$ versions can drive up to 24VA loads. Pin replacements for MOC 3000 series.
- Data Books: Gl Opto £2.50. Plessey High Speed Data Processing $£ 1 \cdot 20$, High Speed Dividers $£ 1 \cdot 50$, Consumer Devices (inc. remote control) $£ 1 \cdot 50$, Telecoms $£ 1 \cdot 50$, \& Linear (inc. power control) $£ 1 \cdot 50$. Siliconix FET Design cat. £1.75, Analogue Switch $£ 2 \cdot 50$, MOSpower Design cat. $£ 2 \cdot 50$. United Components, Unit 5, Wye Industrial Estate, London Road, High Wycombe, Bucks HPII ILH.
Rastra The CH1812 module provides Direct Connect Protective Hybrid (DCPH) interface to telephone line, conforming to regulations. Measures $0.66 \times 2.1 \times 1.1 \mathrm{in}$.
- DAC 9331-16 series comprises 16 -bit latched D to A in monolithic technology. Features 0.0008% linearity, 2-chip construction, I/P registers, low power, HI-REL 24 -pin d.i.p., 2 \& 4 quadrant multiplication, single +15 V supply. Cheap, ultra-robust commercial device. Rastra Electronics, 275 King Street, Hammersmith, London W6 9NF.
Ferranti TO92 style radio receiver, designated ZN414Z is the widely available TRF circuit, now in alternative package.
- Motor speed controller i.c. called ZN411E provides precise speed control for electric power drills. On-chip shunt regulator, softstart and reverse capability. Hall effect compatible "Tacho" $1 / \mathrm{P}$, and current limit. Ferranti Electronics, Fields New Road, Chadderton, Oldham, Lancs OL9 8NP.
Siliconix Six new additions to the VN series power f.e.t.s offer 250 W ratings, BVdss from $60-500 \mathrm{~V}$ at 20A. These TO-3 packaged devices have on-resistance of $0.035-0.3$. Siliconix Lid., Morriston, Swansea SA6 6NE.
Motorola The marriage of the DIAC and the TRIAC results in a bilateral switch called the SIDAC, which conducts up to IA when the voltage across it exceeds 115 V for the MKIV-115, and 135V for the MKIV-135. Housed in "surmetic" 50 axial lead package, it is intended for pulse applications and fluorescent lamp starters. Motorola Ltd., York House, Empire Way, Wembley, Middlesex.

Quiteron

 In the quest for the superconducting switch one early attempt (called the Cryotron) achieved a switching action by way of the transition from superconductor to normal metal-an action that was too slow for practical application. Another attempt, a threeterminal device invented at Argonne National Laboratory, did show small-signal current gain; but the most widely known breakthrough, called the Josephson TunnelJunction switch, functions with promisingly high speed and low power.However, IBM's Thomas J. Watson research centre in Yorktown Heights, New York, has come up with a superconducting "transistor." The patented device is called the "quiteron" by its inventor, Sadeg M. Faris (shown in the photograph, holding a wafer of experimental samples).

The quiteron has yet to be optimised, but it is the first three-terminal superconducting device that can both amplify and switch, consequently having potential applications in analogue and digital circuitry. Like the familiar Josephson Junction, the quiteron is a cryogenic device that employs superconductivity, a phenomenon occurring near absolute zero (0 deg . K, or -273 deg . C) at which temperature certain metals lose all resistance to electrical current flow. The two devices are, nevertheless, based on entirely different principles.

The quiteron consists of two tunnel junctions formed by three thin films of superconducting materiais separated from one another by two, even thinner, films of insulating material. Structures of this nature have been studied before, but the quiteron is the first to make use of the "non-equilibrium" superconductivity phenomenon known as the "heavy-QUasiparticle-Injection Tunnelling Effect" (pardon?). The name qu-i-t-e-ron was derived from this.

Plasma Display Breadthrough

The secret of Siemens' success, where others have failed, in combining the flatness of the plasma display with the high intensity/resolution and colour potential of the c.r.t., is in the fact that its plasma is not used as a source of light, but as a source of electrons. The electrons are then guided by a speciaily developed grid to a conventional phosphor screen. The flat display developed by Siemens of Munich, West Germany, can illuminate up to 10^{6} pixels without compromising other parameters-as in the past. The 14 inch plasma-discharge panel shown in the photograph is only six centimetres thick.

Because plasma acts as an electron source, as opposed to the hot cathode in a conventional c.r.t., this display requires a mere 4 kV for its acceleration electrode (c.r.t. requires 20 kV), and so it produces virtually no X-rays. This is a nice feature since the display will first begin to appear in VDU applications; and
with a resolution of 3.1 dots $/ \mathrm{mm}$ horizontally, and 2.5 dots $/ \mathrm{mm}$ vertically, arbitrary graphical images are possible. Power drain for the entire panel is 20 W , and flicker is eliminated by a refresh frequency of 80 Hz .

The display surface is perfectly flat, which allows a good focus right into its extreme corners. Also the electron flight-path is much shorter than in a c.r.t., being one millimetre between the control plate and the phosphor, so that the natural divergence of the beam electrons due to mutual electrostatic repulsion is minimised. This improves the focal sharpness still further.

As a VDU, the display may be driven entirely digitally, each pixel being addressable on a row-and-column basis. Pulse durations determine illumination levels, thereby allowing a full greyscale. But there is nothing grey about the future of this development, which is quite capable of invading the television market in due course.

Trains and Bats and Planes

"What is this life if, full of care, We have no time to stand and stare?'"William Henry Davies.

And what better place to stand and stare than the South Kensingtom Science Museum's new gallery called '"Telecommunications - A Technology For Change," which is heavily sponsored for its first year of life by STC to mark the company's Centenary.
The public may enjoy the story of telecommunications by way of two adjoining galleries. The first describes the subject's chronology, whilst the second demonstrates the technologies that make distant communication possible.

Life size mock-ups include the telegraph office at Tonbridge railway station in 1850, a ship's radio cabin of 1910 and the radio operator's position
in a World War II Lancaster bomber.
Tape recorded reminiscences of life in the service of cable companies throughout the period 1920-1950 add to the atmosphere, and working demonstrations and computer graphics displays illustrate aspects of modern telecommunications techniques. Packet switching and pulse code modulation principles are illustrated in this way, and a simulation of the System X digital exchange increases the visitor's understanding of services we all take for granted. A purposebuilt cinema shows films produced by STC, but for those with an itch to twiddie knobs there is the remote tontrolled camera and monitor which may be operated by visitors. This installation oversees the museum's entrance, from a vantage point on the neighbouring Victoria and Albert Museum.

PANEL METERS

A recently formed company called Martel has been set up to manufacture and market low cost, high quality instruments, control modules and counter timers.

Two particularly interesting items, from their range, are the MCM 3554/1 voltmeter and the MCF 4544/1 frequency meter. Both of these versatile digital panel mounting instruments have been designed

by Martin Kent the author of many projects published in PE.

The two instruments which are fully assembled and calibrated have many applications including uses in multimeter, thermometer and pH meter designs.

The voltmeter, based around the 7126 chip, has a $\pm 200 \mathrm{mV}$ full scale and $3 \frac{1}{2}$ digits 10.5 in high). The frequency meter, based
around the 7224 chip, has three ranges $\left(2 \mathrm{MHz}, 200 \mathrm{kHz}\right.$ and 20 kHz) and $4 \frac{1}{2}$ digits.

Both meters are available to PE readers at a special offer price (valid to 31.8 .83) of £9.95 plus VAT for the voltmeter and £19.95 plus VAT for the frequency meter. Data sheets are supplied with both devices.

Martel Instruments Limited, Knight House, Foxhill Road, Southminster, Essex.

PRINTERS

Two new printers have just been launched by Oric Products and Crofton Electronics. The Oric unit which is the first peripheral for the Oric 1 is a colour system with an inter-

nal power supply and a standard Centronics interface. The printer is priced at $£ 169.95$.

The second unit is the AMD printer which is similar to the Epson having the Graftrax plus facility and is a 80 column, tractor feed machine with a paraliel Cen-

tronics port. Crofton are offering the machine at a special launch price of £311.00 plus VAT and $£ 7.50$ carriage.

Crofton Electronics Ltd., 35 Grosvenor Road, Twickenham, Middlesex.

and Finally...
 The recently formed Irish Amateur

 Computer Club is seeking to add to its throng of $70+$ members, with a particular desire to enrol more "hardware specialísts" ". The IACC currently meets at least once a month in the Power's Hotel, Dublin (second Sunday of each month 10am to 2 pm). Members receive regular bulletins and newsletters, and enjoy a good range of benefits and events. Sub-groups are envisaged, concentrating on specific tasks, topics and brands of computer.For further details contact: Nigel Carey, 166 McKee Avenue, Finglas East, Dublin 11.

Founidnunl...

Please check dates before setting out, as we cannot guarantee the accuracy of the information presented below. Note: some exhibitions may be trade only. If you are organising any electrical/electronics, radio or scientific event, big or small, we shall be glad to include it here. Address details to Mike Abbott.

IBM User Show July 12-14. Wembley. 0

Internoise (noise control conf.) July 13-15. A7
BAEC Amateur Electronics July 16-24. Shelter, Esplanade, Penarth,
S. Glamorgan. B9

Laboratory Edinburgh July 18-20. University. E
Star "83 Aerospace July 21-24. RAF Greenham Common. Z1
Acorn Exhibition Aug. 25-28. Cunard Int. Hotel, Hammersmith, London. J3
BARTAG Rally (radio teleprinter) Aug. 29. Sandown Park, Esher, Surrey. E2
Light Aviation Show Sept. 1-3. Cranfield Institute, Bedfordshire. Z1
Electro West Sept. 6-8. Bristol Exhibition Centre. Q
CAST (Cable And Satellite Television) Sept. 11-14. NEC. F5
Weldex Sept. 12-16. NEC B/ham. I
Testmex Sept. 13-15. Grosvenor House, Park Lane, London. E
Home Entertainment Spectacular Sept. 17-25. Olympia. I2
Peterborough R \& ES Mobile Rally Sept. 18. Wirrina Stadium, Bishops Rd., Peterborough. L2
Personal Computer World Show Sept. 28-Oct. 2. London. M
Laboratory London Oct. 12-14. Barbican Centre. E

Drives/Motors/Controls Oct. 12-14. Leeds University. E Computer Graphics Oct. 18-20. Wembley. O
PARC (computers in architecture, conf.) Oct. 18-20.Wembley. O International Business Show Oct. 18-26. NEC. T
Business Efficiency Exhibition Oct. 22-26. Earls Court, London. Z
Electronics Hobbies Fair Oct. 27-30. Alex Pavilion, London. Z1
Electronic Displays Nov, 1-3. Kensington Ex. Centre, London. D4
Brainwave (computing/video) Nov. 4-6. NEC Birmingham. G2
Compec Nov. 15-18. Olympia, London. Z 1
Northern Computer Fair Nov. 24-26. Belle Vue, Manchester, Z1
Intron Nov. 22-24. RDS Hall, Dublin. V
Automatic Testing/Test/Instruments. Dec. 13-15. Metropole, Brighton. D4

A7 Institute of Acoustics 031-225 2143
B9 Cyril Bogod, British Am. Elect. Club / 0222707813
D4 Network f 028025226
Evansteadman 0122612
E2 BARTG 89 Linden Gdns., Enfield, Middx.
F5 Cable \& Satellite \& 01-4874937
G2 Clapp \& Poliak 01-747 3131
1 Industrial Trade Fairs 60217056707
12 Alan Taylor \& 01-486 1951
J3 Computer Marketplace 01.930 1612
L2 D. T. Wilson, 4 Conway Ave., Peterborough
M Montbuild \& 01-486 1951
O Online 0927428211

0
\mathbf{T}
V
2
Exhibitions for Industry 088334371
Trident $\$ 08224671$
SDL Exhibitions \& Dublin 763871
BETA Exhibitions \& 01-405 6233
Z1 IPC Exhibitions 8 01-643 8040

COMPACT DISC SISTEMS

This year's Spring Trade Shows saw the arrival of the audio compact disc (CD), the revolution in recorded sound. Since its launch back in March of this year every major record company has announced that it will enthusiastically support the CD format.
It is estimated that over 1000 titles will be available by the end of the year and most of these will be made in Hanover, West Germany by PolyGram but plans are already underway by two UK manufacturing companies to establish CD pressing plants in this country.

The Fisher AD800

The real breakthrough with CD has been that both the hardware and software producers worldwide have accepted the format originally developed jointly by Sony and Philips as the world standard with over 30 manufacturers now licensed.
Although at around $£ 500$ the systems are expensive many retailers believe the sales of $C D$ units will be followed by an increase in speaker and amplifier sales because many people will prefer to buy their new systems from scratch.

For this reason Philips have produced a "flat membrane" range of speakers which they have designed for use with CD. The company say the new speakers reduce distortion and improve the overall sound quality when compared to normal speakers on both CD and conventional systems.

Another manufacturer following this line of thought is Pioneer who have updated their HPM series of speakers with power capabilities ranging from 90 W to 240 W .

Included in the wide range of models on show were the Fisher AD800, the Marantz CD-73 and the Hitachi DA100.

The Fisher AD800 model is fitted with a detachable storage unit which can hold up

The Marantz CD-73

to five discs and enables the AD800 to fit a 19 in . rack system. Once the disc is placed in the holder it is automatically taken into the unit and the front loading door closed. The AD800 allows easy selection search of 16 tracks in any sequence and touch controls include fast forward, reverse/play/ pause and stop. Priced at $£ 479.95$ inc. VAT the AD800 comes complete with the ADP105CD storage unit.

The Marantz CD-73 system is a drawer loading unit which can be programmed to play track selections in any order, to skip specific tracks or to repeat them. The CD-73 is priced at $£ 559.90$ including VAT

The Hitachi DA100 also has random programming and skip features and includes a disc scan facility which when used will give a brief sample of the current disc program and then advances to a point 30 seconds ahead on the disc and plays another brief sample. The DA100 is priced at around $£ 500$.

The Hitachi DA100

SORD GAMES

The home computer market abounds with versatile machines competing for our custom and the M5 is no exception. Manufactured by Sord of Japan and marketed in the UK by Computer Games Ltd its graphic capabilities will undoubtedly be the main selling point. With sixteen colours available the user will be able to create impressive animations from scratch or by using a preprogrammed cassette. With a BASIC 1 manual, p.s.u., connecting leads and two game cassette the M5 will retail at around $£ 190$ inc VAT.

Interestingly, 'joypads' will also be available-the joy 'stick' being replaced by a rather large button which when pressed at the relevant point on its circumference will transfer that directional information.

Also from CGL are a range of chess computer games including the Pocket Micro with a folding board. Players will be able to interrupt a game at any stage, pack it away and re-start at a later date. This feature will make the game unique, it will retail at around $£ \mathbf{£ 3 2}$.

With the ever-increasing popularity of home intruder detection systems comes the inevitable jockeying for market position by the manufacturers.

Songuard are offering a system which incorporates an ultrasonic device that can be placed where protection is needed without actually running any wires. Known as the Songuard Bug it will act as a miniature detector and can be attached to doors, win-
dows, cupboards or even the jewellery box. What's the catch? Well the only non-wiring is between the device and its receiver, but it is indeed a very handy contrivance. The freestanding detector and alarm unit will retail at around E169.

The Songuard system is modular and also includes personal attack buttons, entry/exit keyswitch units and internall. external siren units. All auxiliary paraphernalia is also available from Songuard, Sales and Service, Mill Mead, Staines, Middlesex (0784 62016).

fPaDE sstouss

WATER BABY

Remember when the Walkman units first encouraged us to whistle while we worked, or jog with Jimmy Young? Well lf you so desire you can now sing in the surf with a completely waterproof and sand-resistant model. The Sony Sports Walkman WMF5 has a disc drive system designed to reduce distortion. It incorporates an FM tuner and belt-clamp.

The Walkman will soon be available from retailers at around $£ 111$.

On the other side of the microelectronic fence comes a new range of calculators from Sharp. A series of packs is the latest idea and besides the usual scientific types we now have one for the shopper, motorist, student, handyman, salesman and lady. There is also of course the inevitable schoolpack which includes the ever-popular ruler, protractor and compasses etc. Function permutations are immense and it seems to make good sense to keep calculators simple and direct the resultant machines at a particular market requirement, hence the new range.

HOME PHONE SISTEMS

The telephone which seems to have been forgotten by everyone as a consumer product has recently been enjoying a revival of interest due to two new designs from Fidelity Radio.

The Wanderer
The first is the Fidelity Wanderer a completely cordless handset which can be used up to 200 metres from its base unit. The base unit itself is plugged into the normal BT socket and is also connected to the mains. The cordless handset incorporates a push-button dialling system and operates on frequencies of $47.46 / 47.54 \mathrm{MHz}$ from the handset to the base and $1.642 / 1.782$

NO CHAREE

Rechargeable batteries are becoming increasingly popular and Sanyo, the largest manufacturer of Ni-Cads, have experienced a doubling of demand over the last year for batteries and chargers in the UK.
To maintain their market position Sanvo have updated their Cadnica range of batteries, improving their sealing so they remain leakproof longer and enhancing the

MHz from the base to the handset. The unit also features a unique digital coding system to prevent unauthorised dialling from other handsets in the same locality, a single push-button redial facility, a memory which stores a number entered whilst the phone is in use (ideal for Directory Enquiries), a call button on the base unit to page the handset user and an automatic recharging system for the Ni-Cad batteries. The Wanderer will retail at around $£ 170$.

The TAS-1G
The second design is the clock radio phone, the CRP 100, which incorporates the three facilities of a radio, alarm clock and telephone in one unit. It operates in precisely the same way as a conventional clock radio but has an automatic cut off when the telephone receiver is lifted. The radio operates an LW, MW and FM with selector switches for the radio, alarm radio, alarm buzz and off. A snooze touch sensor is provided and the readout is from a red l.e.d. display.

The TAS-1G from Sanyo is a basic telephone answering system which has several interesting features particularly its ability to detect the pay-tone from callboxes. The machine accepts the call but automatically pauses until the pay-tone has finished before giving its recorded message. This avoids the caller losing part or possibly all of the message whilst the coins are being inserted. It will retail at around $£ 148$.

M/W RADIO

THE MW radio, like the other five projects in this set, has been designed to operate at low levels of supply voltage and current. In fact, this receiver will operate quite well at a supply voltage of 1 volt with a current consumption of under 1 milliamp. In other words it requires an input power of under 1 milliwatt for satisfactory results! Under reasonably bright conditions this enables the set to operate from just two small solar cells.

THE CIRCUIT

The receiver is a simple MW Band type which has a ferrite rod aerial and an output which is intended to drive a crystal earphone (and which is unlikely to be suitable for any other type of earphone or headphones). Circuits using a couple of silicon transistors were tried, but the final design gave significantly superior results using a ZN4 14 plus a single transistor audio stage, and the full circuit of the set is shown in Fig. 1.

The ZN414 is ideal for this type of application as it gives a level of performance which is superior to that provided by most discrete T.R.F. designs, and it requires a nominal supply potential of only about 1.2 volts at a supply current of approximately 1 milliamp. It provides r.f. amplification, a.m. demodulation, and a simple automatic gain control (A.G.C.) action.

The ZN414 has a high input impedance so that it can be fed direct from the tuned winding of the ferrite aerial and the low impedance coupling winding is left unused. R1 is used to bias IC1 via the aerial winding (so that this resistor does not shunt the input impedance of (C1), and C1 couples one end of the ferrite aerial to the negative supply rail. R2 is the load resistor for IC1 and C2 is the r.f. filter capacitor for the detector stage of IC 1. Note that IC1 obtains its positive supply only via R2 and there is no direct connection from IC1 to the positive supply rail.
The audio output level from IC1 is up to about 30

Fig. 1. Circuit diagram of the MW Radio
millivolts r.m.s., and this is just about sufficient to drive a crystal earphone at reasonable volume. However, better results are obtained using a small amount of audio amplification, especially when receiving weaker stations or when the supply voltage has fallen to a barely adequate level.

A simple common emitter audio amplifier based on TR1 is therefore used to boost the output from IC1. An amplifier of this type would normally be expected to have a voltage gain of about 40 dB (one hundred times) or more, but in this case the voltage gain obtained is only about 20 dB (ten times) or

Fig. 2. P.c.b. design
so due to the very low levels of collector current and voltage that are used.

D1 and D2 are used to prevent the supply voltage from exceeding a suitable level, and C1 is a supply decoupling and smoothing capacitor. The output from the solar cells can contain a certain amount of noise, including mains hum if an artificial light source is used to power the circuit. Noise is not too much of a problem, though, mainly due to the very slow
response time of solar cells, and C4 should give adequate smoothing when necessary.

CONSTRUCTION

With the only exceptions being the earphone socket (SK 1) and solar cells the components are mounted on the printed circuit board. Details of the printed circuit are shown in Fig. 2 with the component layout shown in Fig. 3.

The specified tuning capacitor requires a single 10 mm diameter mounting hole, and the mounting bush and nut of this component can be used to effectively bolt the completed board inside the case. Note that the case must be made from a non-metallic substance, otherwise it will screen the ferrite aerial and prevent any signal pick-up. With a little ingenuity it should be possible to use any variable capacitor having a maximum value of about 250 p to 350 p in the VC1 position.

The ferrite aerial used in the prototype is an Ambit MWC2 aerial coil fitted on a $140 \mathrm{~mm} \times 9.5 \mathrm{~mm}$ ferrite rod which is in turn mounted on the printed circuit board using a pair of plastic mounting clips. These are bolted to the board using short 6BA bolts and fixing nuts. The set also works well using a Denco MW5FR ferrite aerial (which comes complete with a 140 mm long ferrite rod), and this can be mounted on the board using a couple of large " P " type cable grips. The unit should, in fact, work perfectly well using any normal

Fig. 3. Component layout
medium-wave ferrite aerial. Whatever aerial is used, only the larger winding is used and the small coupling winding is either removed or just ignored.

It is possible to use a shorter ferrite rod if a 140 mm type will be too long to fit in the selected case. It is also possible to break a piece from a ferrite rod to shorten it, but sawing through the rod is practically impossible as ferrite is an extremely hard material. The rod can usually be persuaded to break at the desired point by filing or cutting a groove around the rod at this point, but great care must be taken when breaking the rod. It can easily take three whole rods to make one half if due care is not taken. Do not use a ferrite rod of less than about 75 mm in length.

Obviously the solar cells must be mounted on the exterior of the case with the sensitive surface facing outwards. The set will operate from a couple of MS4A solar cells in direct sunlight, even if this is of the weak winter variety. However, three cells give better results and enables the set to work even in bright overcast conditions. The solar cells are connected in series, and with the MS4A type the sensitive surface is the dark side of the component. It is the negative leadout wire which connects to this side of the cell and the positive leadout which connects to the underside of the device.
As the circuit has such a low current requirement it should be possible to use any other solar cells as a power source. although very high current types would not be a very practical choice. Medium current types do not really have any advantage over low current types in applications where only a low current is required. The output voltage from a solar cell remains virtually constant as the load current is increased until a certain threshold level is reached, and the output voltage then falls sharply with the output current remaining virtually constant. If the light level received by the cell is reduced this gives a reduction in the output voltage, and the voltage obtained will be virtually the same whether a low or high current cell is used.

For operation in relatively low light levels it is therefore necessary to use several cells in series rather than just using two or three high current cells. Using a dozen or more cells in series is not an economically attractive proposition, but inexpensive 6, 9 and 12 volt solar panels are available and represent a more practical alternative. Using a 9 volt panel it was found to be possible to operate the set even on a dull winter day, or from artificial light (which provides a similar light level).

IN USE

The position of the coil on the ferrite rod controls the frequency coverage of the receiver to some extent, and the coil must be placed in a position that permits full coverage of the band VC1 gives slightly more than complete coverage of the

COMPONENTS

Resistors	
R1, R3	
R2 100 k (2 off) R4 820 All resistors 10 k	

Capacitors

C1	10n polyester
C2	220 n polyester
C3	100 n polyester
C4	$33 \mu \mathrm{I} \mathrm{V}$ axial elec

Semiconductors

D1, D2	1N4148 (2 off)
TR1	BC109C
IC1	ZN414

Miscellaneous
Medium wave ferrite aerial with mounting clips
VC
$\begin{array}{ll}\text { SK } 1 & 3.5 \mathrm{~mm} \text { jack socket } \\ & \text { Printed circuit board }\end{array}$
Printed circuit board
Control knobs
Three MS4A solar cells or solar panel
(RK23A)
Wire, solder, etc

Constructor's Note

The solar power cells MS4A and panels are available from Maplin Electronic Supplies Ltd., P.O. Box 3, Rayleigh, Essex.

Fig. 4. Connection diagram for the MS4A solar cell

E6T203

MW Band, and this slight excess of coverage prevents the positioning of the coil from being too critical.

Despite the simple A.G.C. action of the ZN414 the set can be overloaded in strong reception areas, but if necessary the directivity of the ferrite aerial can be used to reduce the strength of received signals.

SOIL MOISTURE METER

A^{s}SOIL moisture meter is really just a form of resistance indicator, and units of this type rely on the fact that the resistance through dry soil is very much higher than the resistance through a comparable sample of moist soil. Soil moisture meters are used primarily with potted plants where the surface of the soil can be very dry even though the soil only a little deeper may be quite wet. This can lead to overwatering and possibly the demise of the plant. The probes of a soil moisture meter avoid this by penetrating about 25 to 50 mm below the surface of the soil so that the moisture reading obtained does not just indicate the moisture content of the surface soil, and can be used as a reliable guide.

Circuits of this kind indicate the soil moisture content in a variety of ways such as producing an audio tone that rises in pitch with increasing moisture content, or having a l.e.d. indicator which flashes at a rate that depends on the water content of the soil. A number of systems were tried, and the one finally adopted was to simply use a low cost moving coil meter to provide the moisture indication. This may seem less imaginative than the alternative methods, but it gives a clear and unambiguous indication of the soil's moisture content, and it enables a low voltage low current circuit to be used.

THECIRCUIT

The very simple circuit of the Soil Moisture Meter appears in Fig. 1. Using a circuit consisting merely of the probes and the meter connected in series across a low voltage supply was found to give a slightly inadequate level of sensitivity. The final circuit, therefore, uses an emitter follower buffer stage to drive the meter, and R2 is used to shunt the input of this stage so that the sensitivity of the unit can be adjusted and set at a level that makes it easy to interpret meter readings.

D1 and D2 stabilise the supply voltage at about 1.3 volts so that consistent results are obtained. S1 can be used to switch ME1 across the supply lines (via series resistor R1) so that a check to ensure that an adequate supply voltage is present can be made.

Under direct sunlight two solar cells in series are sufficient to power the circuit, but it would probably be better to use three cells in series as the unit would then operate on any reasonably bright day. Using a solar panet as the power source, the unit would operate under comparatively dim conditions, and the actual power level taken by the circuit is only about 0.5 mW or less.

CONSTRUCTION

Fig. 2 shows the printed circuit design for the Soil Moisture Meter. If the specified meter is used the completed board can be soldered onto the tags of the meter, and the tags can be bent through 90 degrees so that the board fits
vertically behind the meter. It should be possible to use any meter having a full scale deflection sensitivity of about 1 mA or less.
The probes can be made from a pair of inexpensive test prods of the type sold as replacements for multimeters. The two prods must be fixed together so that they are a constant distance apart when measurements are made and consistent results are obtained. There should be no problem in gluing or taping the two prods firmly together. Of course, any similar arrangement which provides a couple of thin metal prods about 25 to 50 mm long should work equally well.

Fig. 2: P.c.b. design

Fig. 3. Component layout

ADJUSTMENT

It is important to carefully adjust VR2 to give the unit a suitable level of sensitivity if the unit is to give useful and helpful results. The most reliable way of setting VR2 is to first set up a few samples of soil having various moisture levels. VR2 should be given a setting that only gives a large deflection of the meter with the probes pushed into moist soil

COMPONENTS

```
Resistors
    R1 4k7 \frac{1}{6} 5% carbon
    VR1 470k0.1W hor. preset
```


Semiconductors

$$
\begin{array}{ll}
\text { D1.D2 } & \text { IN4148 (2 off) } \\
\text { TR1 } & \text { BC109C }
\end{array}
$$

Miscellaneous

ME1 $250 \mu \mathrm{~A}$ moving coil meter (Maplin, see text)
S1 Toggle, push-button or slider type switch s.p.d.t.
Pair of test prods and leads
Printed circuit board
Three MS4A solar cells or solar panel (Maplin)
Wire, solder, etc.

samples. The purpose of the unit is really to indicate whether or not the soil is excessively dry rather than how wet it is,
and with the unit adjusted in this way a low reading on the meter will indicate that watering is needed. Always make sure that the probes are pushed right down into the soil and are making good contact with it.

With the solar cells subjected to a strong light level, set S1 to the "check" position and make a note of the reading on the meter (this should be about 80 or 90% of full scale deflection). On any future occasions when the unit is used, if there are any doubts about the adequacy of the light level the battery check facility can be used to check the supply voltage, and the reading obtained should not be substantially lower than that obtained when making this initial trial. Note that the value of R1 will need to be altered if a meter having a full scale sensitivity other than $250 \mu \mathrm{~A}$ is used, and the change in value is inversely proportional to the change in meter sensitivity (e.g. R1 should be about 1 k 2 using a 1 mA meter.

THERMOMETER

THIS thermometer covers a range of zero to one hundred degrees centigrade, and despite the simplicity of the circuit it provides accurate results that are primarily limited by the accuracy with which the meter can be read. The sensor is a silicon diode which can be located remotely if desired, and connected to the rest of the circuit by a twin lead.

The circuit is designed to be powered from a solar panel, but a supply potential of only about 1.2 volts at a current of approximately 1.2 milliamps is required and the unit could be powered from three small solar cells under reasonably strong light.

THE CIRCUIT

A simple bridge circuit is used, and the circuit diagram of the thermometer appears in Fig. 1. One side of the bridge circuit is formed by R4 and sensor diode D2. The latter is forward biased and a potential of about 0.6 volts is therefore produced across this component, but the precise voltage produced will vary slightly from one component to another, and more importantly, it varies with temperature. A reasonably linear relationship between temperature change and voltage change is obtained, with increased temperature giving a reduction in voltage. However, the voltage change is not very great, and is likely to be only about 2 millivolts or so per degree centigrade. With a thermometer that covers a range of one hundred degrees centigrade this gives a voltage swing of about two hundred to two hundred and fifty millivolts over the full temperature span, and this is sufficient to drive a moving coil meter without the need for any amplification.

The second section of the bridge circuit is formed by R1,

R2 and VR1 is adjusted so that the bridge is balanced and the meter reads zero with D2 at zero degrees centigrade. If the sensor is then raised in temperature the voltage at the negative terminal of ME1 reduces, and a forward deflection of the meter is produced. VR2 is adjusted to give the circuit the correct sensitivity so that (say) a fifty degree rise in temperature would give a reading of fifty microamps on ME1. The existing zero to one hundred scale of the meter can therefore be retained.

It is essential for the supply fed to the bridge circuit to be extremely stable indeed as a change in supply voltage of just a few tens of millivolts would give a significant change in the reading on ME1 and hopeless accuracy. Using a simple shunt regulator circuit with a couple of forward biased silicon diodes in series would not be adequate in this case, and it is necessary to use a precision, temperature compensated, voltage reference. D1 is a precision 1.2 volt shunt stabiliser, and R5 is its load resistor. D3 ensures that the input potential cannot rise to a level that would produce an excessive current through D1 and a consequent loss of regulation efficiency.

Fig. 1. Circuit diagram

Fig. 2. P.c.b. design

Fig. 3. Component layout
If the circuit is operated from three small solar cells in series (such as MS4As) D3 can be omitted since the available supply current would be inadequate to overdrive D1. R5 should be reduced to about 56 ohms in value as well.

S1 can be used to connect ME1 across the input from the solar cells, and series resistor R3 gives ME 1 a full scale sensitivity of about 4 volts. This enables a check to be made to ensure that an adequate input voltage is present.

CONSTRUCTION

The printed circuit design and wiring are shown in Figs. 2 and 3. Sensor diode D2 is shown as being mounted on the printed circuit board, but as mentioned earlier, it can be remotely located and connected to the main unit via a twin cable if desired. Even if it will eventually be mounted on the board it is a good idea to initially connect it to the board by way of a twin lead about half a metre or so in length as this

COMPONENTS . . .

Resistors	
R1, R 5	560 (2 off)
R2	470
R3	39k
R4	1 k
VR1, VR2	1k 0.1W hor. preset (2 off)
All resistors $\frac{1}{4} \mathrm{~W} 5 \%$ carbon	

Capacitor

C1 $\quad 10 \mu 25 \mathrm{~V}$ axial elect

Semiconductors

D1	8069 precision 1.2 volt reference
D2	1N4148
D3	BZY88C3V3 3.3 volt 400 mW Zener

Miscellaneous

ME 1
S1

100 μ A moving coil panel meter Miniature toggle type d.p.d.t. Solar cells or solar panel (Maplin) Printed circuit board Wire, solder, etc.
will make it easier to set-up the unit ready for use.
Initially VR1 should be set with the wiper at about the middle of its track, and VR2 should be adjusted for maximum resistance (set fully anticlockwise). With D2 placed in ice cubes or iced water to reduce its temperature to zero centigrade and S1 set to the "normal" position, with power connected to the circuit VR1 should be adjusted immediately to zero the meter. D2 is then placed in warm water to increase its temperature to anything from about 50 to 100 degrees centigrade, but a thermometer must be used to measure the temperature of the water so that VR2 can be adjusted to give the appropriate reading on ME1. This procedure should then be repeated a few times to make sure VR1 and VR2 are set accurately.

With S1 placed in the "check" position ME1 should read at least half full scale deflection, and there is inadequate voltage from the solar cells if it does not. If the unit is powered from three small solar cells a slightly lower reading of about 30% of full scale deflection is acceptable. If this method of powering the unit is adopted it is a good idea to check the reading obtained with the cells in direct and fairly strong sunlight. If a significantly lower reading is obtained at some later occasion the supply potential is inadequate.

INEBRIATION DETECTOR

THIS inebriation detector is really a simple reaction testing game using a row of eight light emitting diodes to give a relative indication of the operator's reaction speed. The unit is very simple to use, and about ten seconds after switch-on the first l.e.d. in the display switches on, and a push button switch must then be operated as quickly as possible. Soon after the first l.e.d. has switched on it cuts off again and the second I.e.d. lights instead, then this l.e.d. cuts off and the third I.e.d. lights up, and so on with the light appearing to move along the display. Operating the push button halts the display, and the quicker the button is operated the less far the light will have progressed along the display. Thus any degradation in reaction speed due to the consumption of alcohol can be detected.

To start a new sequence the push button is released, the
circuit is reset by switching off, and a new cycle commences when the unit is switched on again. The push button must be held down until the score has been read from the display as the display will continue to operate when the button is released.
This circuit requires somewhat more power than the other five solar powered projects, but it still only requires about 4 to 9 volts at a few milliamps in order to operate reliably. It can therefore be powered from a 6 or 9 volt solar panel in reasonably strong light.

THE CIRCUIT

The circuit is comprised of two main stages: a clock oscillator and the display driver. Fig. 1 shows the full circuit diagram of the Inebriation Detector.

[56180]

Fig. 1. Circuit diagram
The clock oscillator uses an ICM7555 (IC1) and this also provides the delay between switch-on and the display starting to count. IC1 is used in what is virtually the standard 555 astable configuration, and the values used for timing components R1, R2 and C2, give an operating frequency of about 20 hertz. With an eight l.e.d. display and human reaction times normally between about 200 and 400 milliseconds, this clock frequency should be suitable, but if necessary the clock can be made to run a little faster by reducing C2 to 47 n , or a little slower by increasing it to 100 n .

The clock oscillator is given a switch-on delay by providing a suitable control voltage to pin 4 of the device using a simple $C-R$ timing circuit. Operation of IC1 is blocked if pin 4 is taken to less than about 0.5 volts, and at switch-on R5 takes this terminal to the negative supply

Fig. 2. P.c.b. design

Fig. 3. Component layout

potential so that oscillation is blocked. However, as C3 charges via R3 part of the potential across C3 is fed to pin 4 of IC1 by the potential divider formed by R4 and R5. After approximately ten seconds the potential at pin 4 becomes sufficient to activate IC1 and the clock signal is produced at pin 3 of the device.

It is impossible to specify the switch-on delay time with any degree of accuracy since it varies considerably with fluctuations in the supply voltage. However, this is not really a disadvantage since it makes it impossible to predict the time when the display will start to operate and prevents contestants from obtaining low scores by having good anticipation rather than good reactions.

A CMOS 4017 BE is used as the display driver, and at switch-on this is reset by the positive pulse generated by C4 and R6. Output " 0 " of the device then goes high while the other nine outputs are low. There is no l.e.d. connected to this output of the device (pin 3) and all eight display l.e.d.s are therefore switched off at this stage.

When the clock oscillator starts to operate, the 4017 is incremented by each clock pulse. Thus the first clock pulse causes output " 1 " to go high and D2 is switched on, the next clock pulse sends output "2" high and D3 switches on in place of D2, then output " 3 " goes high and D4 switches on, and so on. This continues until S1 is operated so that the

COMPONENTS . . .

Resistors

R1, R2	330 k (2 off)
R3	560 k
R4	3 M 9
R5	1 M
R6	100 k
R7	3 k 9

Capacitors

C 1	$10 \mu 16 \mathrm{~V}$ radial elect
C 2	68 n polyester
C 3	$1.0 \mu 16 \mathrm{~V}$ tantalum
C 4	100 n polyester

Semiconductors

D1	1N4148
D2 to D9	TIL209 3 mm red l.e.d.s (8 off)
IC1	ICM7555
IC2	$4017 B E$

Miscellaneous

S1	Push to make, release to break type
S2	Miniature toggle switch s.p.d.t.
	Printed circuit board
	Solar panel (Maplin)
	Wire, solder, etc.

clock inhibit terminal of IC2 is taken high and the counting action is halted. The display then stops, and whatever l.e.d. happened to be switched on at the instant S1 was operated remains switched on so that the player's score is shown on the display.

If S1 is operated too slowly, output " 9 " of IC2 (pin 11) goes high, and due to the coupling through R7 it takes the clock inhibit terminal high so that the count is halted and the display does not continuously cycle through " 0 " to " 9 ". This prevents a score from being obtained if S1 is operated too slowly.

When S2 is set to the "reset" position a short circuit is placed on the supply lines so that C1 and C4 discharge fairly rapidly, and the unit operates properly when S2 is set back to the "on" position. D1 is included so that C3 is also discharged and a new switch-on delay is produced when the unit is switched on again.

CONSTRUCTION

Construction of the unit is quite straight forward using the printed circuit design shown in Fig. 2. Note that there are three link wires on the board (Fig. 3) just above the display l.e.d.s. IC2 is a CMOS device and the usual MOS handling precautions should therefore be implemented, and IC2
should be fitted in a 16 pin di.i.l. socket. IC1 is also a CMOS component, but it has internal protection circuitry which renders MOS handling precautions unnecessary. As the ICM7555 is not the cheapest of i.c.s it is still probably worthwhile using a socket for this device.

As mentioned earlier, a solar panel is probably the best power source for this project since it would be uneconomic to buy a sufficiently large number of single cells (at least eight would be needed). The solar panel could be mounted on the case of the unit, but in use it would probably be more convenient to leave the inebriation detector and solar panel as separate units. The panels are provided complete with about one metre of twin cable, and this can be terminated in a 3.5 mm jack plug with a matching power socket being mounted on the case of the inebriation detector.

If the output from the panel falls to an inadequate level either no operation at all will be obtained, or the first l.e.d. in the display might light up after the switch-on delay, but loading of the supply will produce a large voltage drop which will result in the display progressing no further. Adding a capacitor of about 680μ in value across the solar panel helps to give proper results in marginal lighting conditions, but obviously this can be of no help if the light level is totally inadequate.

CONTINUITY TESTER

THIS very simple continuity tester produces an audio tone when a suitably low resistance is present across the test probes, and unlike some continuity tester designs it will not indicate continuity if a forward biased silicon junction is placed across the test prods. This helps to avoid confusing results when checking complex circuit boards where there can be a large number of semiconductor junctions and continuity would otherwise be indicated between virtually any two points in the circuit!

In order to keep the voltage and current requirements of the circuit to a minimum, it is based on the LM3909N low power oscillator i.c. This gives a very high level of efficiency and the unit will produce an audio tone of moderate volume from an input of only about 1.3 volts at a supply current of around 3 milliamps.

Fig. 1 shows the LM3909N in block diagram form, and as can be seen from this, the device is little more than an electronic switch. The LM3909N can be used in a variety of configurations to suit particular applications, but it is always used in what is really a simple relaxation oscillator circuit.

THE CIRCUIT

The full circuit diagram of the Continuity Tester is shown in Fig. 2. In this circuit the LM3909N is used in its most simple configuration, and although this does not give quite the efficiency of some of the alternative configurations, it gives good results and excellent relíability at very low supply voltages. All that happens using this arrangement is that C 2 charges via LS1 and R1 until the control voltage for the electronic switch falls below the trigger threshold, and the switch then closes so that LS1 is effectively connected across the supply rails and therefore passes a high current. It is not necessary for the solar cells to be able to provide the full current required by LS1 since it is only a short pulse of current that flows, and supply decoupling capacitor C1 can provide some of this current. During the periods when the electronic switch is in the off state the current consumption of the circuit is quite low and C1 can then recharge so that it is ready to supply another current pulse when the switch closes again. The circuit will oscillate with C1 removed, but the volume obtained is reduced drastically.

The electronic switch does not hold in the on state because once it has closed C2 discharges through R1 and

E61/22

Fig. 1. Basic circuit

Fig. 2. Full circuit

Fig. 3. P.c.b. design

Fig. 4. Component layout

COMPONENTS ...

Resistor

R1 $1 \mathrm{k} \frac{1}{4} \mathrm{~W} 5 \%$ carbon

Capacitors

C1 $33 \mu 16 \mathrm{~V}$ axial elect
C2 $2 \mu 263 \mathrm{~V}$ axial elect

Semiconductors

D1, D2 1N4148 (2 off)
IC1 LM3909N

Miscellaneous

LS1 64 ohm impedance miniature loudspeaker
Test prods
Printed circuit board
Three solar cells type MS4A or solar panel (Maplin)
Wire, solder, etc.
the switch until the control voltage goes above the switchoff threshold voltage. C2 then starts to charge via LS 1 and R1 again, and continuous oscillation is produced.

D1 and D2 are used to limit the supply voltage to no more than about 1.4 volts. This is essential since the circuit will cease to operate if the supply voltage goes substantially above this figure.

CONSTRUCTION

Details of the Continuity Tester printed circuit board are given in Fig. 3, and construction of the unit is perfectly straightforward (Fig. 4). The unit will work using an 8 ohm impedance loudspeaker for LS 1, but this would increase the current consumption of the circuit and it is better to use a component having an impedance of 40 ohms or more.

In direct sunlight two small solar cells are sufficient to power the circuit, but three cells in series or a solar panel would be a more realistic power source.

The maximum voltage across the test prods is only about 1.4 volts and the maximum current flow between them is only about four milliamps or so. Both figures are sufficiently low to give no real risk of damaging delicate components when using the unit.

TRANSISTOR CHECKER

SOLAR POWER has an obvious appeal for items of equipment that will receive only brief and intermittent use, and where the use of ordinary batteries would result in them running flat largely due to ageing rather than use. Solar cells are more expensive initially, but will go on operating year after year and have a certain novelty appeal as well.

A Transistor Checker is a good example of a piece of equipment in the category mentioned above. It is not a piece of test gear that is likely to be used every day, but on occasions a transistor checker of some kind is an essential piece of equipment. This simple design is a go/no go checker which can be used to test low, high, or medium gain devices, and an I.e.d. indicator light flashes on and off if the test device is serviceable. If the l.e.d. lights continuously the device under test has gone closed circuit, and if the l.e.d. fails to light the test device is open circuit.

The circuit requires a supply potential of 2 volts at a current of a few milliamps, and it could therefore be run from
four MS4A or similar solar cells under bright conditions. However, a 6 or 9 volt solar panel would permit operation under lower light levels and would be less expensive.

THE CIRCUIT

Fig. 1 shows the circuit diagram of the Transistor Checker. The circuit is little more than an oscillator which pulses the base of the transistor under investigation with a small current, plus an l.e.d. indicator connected in the collector circuit of the transistor so that it lights up when the device is pulsed into conduction. The oscillator is based on an ICM7555 (IC1) and this has a couple of advantages over the standard 555 device in this application. One is simply that it requires a much lower supply current and will operate at a supply current of only about 50 to 100 microamps rather than the 5 to 10 milliamps required by the standard 555 . Of greater importance though, the ICM 7555 will operate from a supply potential of only about 2 volts which compares with

E6T106
Fig. 1. Circuit diagram
a minimum figure of about 5 volts for the 555 .
IC1 is used in the standard 555 astable configuration, and timing resistors R1 and R2 have been given fairly high values in order to keep the supply current drawn by this part of the circuit down to a reasonable level. Timing capacitor C2 has a value which gives an operating frequency of nearly 2 hertz. R2 has been made fairly high in value when compared to R1 so that an almost squarewave signal is produced at the output of IC1. This signal has a peak to peak value that is virtually equal to the supply voltage, and it therefore switches the test device fully on and fully off so that unreliable and ambiguous results are avoided.

The output of IC1 is connected to the base of the device under test via whichever of the three resistors ($R 3$ to R5) is selected using S1. With R3 in circuit the test device is fed with a base current of about 0.6 milliamps or so, and a current gain of only about 5 times or more through the test transistor is sufficient to give a collector current of a few milliamps and cause the l.e.d. indicator to light up.

With R4 switched into circuit the base current is reduced by a factor of ten, and the device under test then requires a current gain of about 50 or more in order to operate the l.e.d. indicator. With R5 switched into circuit the base current is reduced by a further factor of ten, and a current gain of about 500 times or more through the test device is needed in order to operate the indicator l.e.d. This gives only a very rough assessment of the current gain provided by the device being checked, but it does avoid the situation which can occur with some simple checkers where only a single base current is used, and a high gain device seems to be fully operational, whereas it actually has a very low level of current gain.

S2 is the npn/pnp mode switch, and one pole of this connects the emitter terminal of test socket SK1 to either the positive supply rail or the negative one, as appropriate. The other pole of S2 provides complementary switching in the collector circuit of the test device. In order to enable simple npn/pnp switching to be used, two l.e.d. indicators are incorporated in the circuit. D2 is connected with the correct polarity when the unit is used in the npn mode while D1 becomes operational in the pnp mode. These l.e.d.s are different colours so that they indicate the mode in use and help to prevent the unit from being used with the mode switch

Fig. 2. P.c.b. design

Fig. 3. Component layout
inadvertently left in the wrong position. R6 is simply a current limiting resistor

D3 to D5 are used to stabilise the supply voltage at about 2 volts so that a reasonably consistent base current is produced by the unit, even if a solar panel (which would otherwise give a very unstable supply voltage) is used as the power source.

CONSTRUCTION

The printed circuit board for the Transistor Checker is shown in Fig. 2. This takes all the components apart from the solar cells and test socket SK1. The latter is a three way DIN type and most transistors can be plugged direct into one of these. A set of crocodile clip test leads must be made up so that other types can be connected to the unit.

If the two rotary switches used for S1 and S2 have printed circuit tags, they will fit onto the board without difficulty, but most component suppliers sell the type which has ordinary tags. It is possible to use this type of switch, but the ends of the tags must be cut off to leave what are effectively printed circuit pins, but do not remove any more of the tags than is absolutely essential. Push the switches right down onto the board before soldering them in place. The printed circuit board is mounted securely in the case when S1 and S2 are fitted onto the front panel, and no additional mounting of any kind is required.

The finished unit is very easy to use, but always make quite sure that S 1 is set to a suitable position for the device being checked, and that S2 is set to the correct mode. Also make sure that the device under test is connected properly if D1 or D2 fail to flash on and off and the device appears to be faulty.

A simple way to check that the supply voltage is adequate is to simply place a short circuit across the emitter and

COMPONENTS . . .

\author{

Resistors
 | R1 | 1 M |
| :--- | :--- |
| R2 | 10 M |
| R3 | 2 k 2 |
| R4 | 22 k |
| R5 | 220 k |
| R6 | 100 |
 All resistors $\frac{1}{4} \mathrm{~W} 5 \%$ carbon
 \section*{Capacitors}
 C1 $\quad 33 \mu 16 \mathrm{~V}$ axial elect
 C2 47 n polyester

}

Semiconductors

IC1	ICM7555
D1	TIL209 3 mm red I.e.d.
D2	TIL210 3mm green l.e.d.
D3, D4, D5	iN4148 (3 off)

Miscellaneous

S1	3 way 4 pole rotary switch
S2	6 way 2 pole rotary switch with adjustable
	end-stop
SK1	3 way DIN socket
	Printed circuit board
	Control knobs
	Solar panel (Maplin)
	Wire, solder, etc.

collector terminals of SK1. D1 or D2 (depending on the setting of S2) should light up if the supply voltage is adequate.

CHROME C60 \& C90

PE SPECIAL CASSETTES OFFER

CR02 C60 CASSETTES

90p each (minimum of 5); 80p each (minimum of 25)
CR02 C90 CASSETTES
115p each (minimum of 5); 105p each (minimum of 25)

FERRIC C90 AUDIO

 C90LH CASSETTES56p each (minimum of 5); 53p each (minimum of 25).

PRICES INCLUDE VAT AND POSTAGE.

These European-made tapes are excellent value and we are pleased to offer them to readers. They are covered by a money back guarantee (return within 21 days for refund). Not only are the tapes of high quality but the cassettes are of screw together construction and the case labels have space for notes on the recordings.

Send coupon to: Videotone Ltd., 98 Crofton Park Road, Crofton Park, London SE4.

EVERYDAY

ELECTRONICS and computer PROJECTS

\star 1kW POWER CONTROLLER

Designed especially for dimming large filament lamps of the kind used for stage lighting

* STORAGE 'SCOPE INTERFACE FOR BBC MICRO

Will be found useful when experimenting with musical sound effects, synthesiser and other sound generator circuits

Plus
 - HOME SYSTEMS MONITOR
 * CAR INTRUDER ALARM * CIRCUIT EXCHANGE-
 Readers' circuit ideas

AUGUST ISSUE ON SALE JULY 15

Place a regular order with your NEWSAGENT-NowI

SHUTTLE 6 RE-ENTRY

The precisely guided re-entry of Challenger6 into touchdown at the Edwards Air Force Base, California, at precisely 10.53 am , was a triumph for the team of Astronauts. They were Paul J. Weitz, USAF Col. Karol J. Bodko, Donald H. Peterson and Dr. Story Musgrave. This flight has increased the confidence in the procedures for the next Shuttle at Kennedy Space Centre, Florida.

Hypersonic and Supersonic manoeuvres carried out by the Shuttle were entirely satisfactory. They were carried out on re-entry before touchdown at Edwards Field. Confidence in the procedures for re-entry in the way of Lateral control, Stability and Reaction control were satisfactory, and so were the manoeuvres designed to check system capability and Rudder Authority.

There were three main questions to be answered about flight characteristics. These were designed to involve some thirty firings of jet-energy during descent. They were commanded instructions but were monitored by the astronauts for safety. The three hypersonic S-turns were made as is usual with re-entry. However, this time there were eight other sets of instructions to be accomplished.

The re-entry was made first at an angle of 40° as usual. The initial nlight testing was made at $24,000 \mathrm{ft} / \mathrm{s}$ at an altitude of 261,000 ft . The test involved an aileron pulse followed by right-hand jet input as well as right-hand yaw jet pulse input. The crew then fired the orbital system engines for the vehicle to leave its orbit and commence its descent south of the Mauritius Islands of the Indian Ocean. The spacecraft then had a 27 second burn which brought it to $292,000 \mathrm{ft} / \mathrm{s}$ and a height of $400,000 \mathrm{ft}$, an interface required to bring it 4043 miles to Edwards Field. When the spacecraft reached a speed of $230,000 \mathrm{ft} / \mathrm{s}$ and sensed it was at 0.76 g . the first command to roll $80-85^{\circ}$ was made. It was held at this speed until it had reached the crossrange of 377 n . miles from touchdown. At this point the attitude was corrected and Challenger's nose was pointed in Azimuth 10° to the north of the landing site.

The next test was made at $240,000 \mathrm{ft}$, and when the speed was $23,000 \mathrm{ft} / \mathrm{s}$. This test involved yaw thrusters and was designed to check the behaviour of the ailerons and other surfaces which experience very thin air when reaching thin atmosphere. Another test was made at a height of $205,000 \mathrm{ft}$ and at speeds of 18 and 15.6 mach to check the effec-
tiveness of the ailerons and their resistance to the pressure put on them at this time. Aileron stability is very necessary when carrying heavy loads such as will be encountered with Space-lab. This successful trip surely means that the re-usable vehicle is here to stay.

Many photographs were taken during this trip and some of these will be described, they are important. One of these pictures showed the astronauts climbing around the shuttle, and it was clear that they were making rather heavy weather of it. They did have some training in a water tank but it seems that this had not been sufficient. This may of course be lack of training, but this seems a little unusual. If this part of the de-briefing is released there might be some better understanding. There seems to have been trouble with the tethering lines. These did not work according to plan, though they had appeared satisfactory in the water tank. It is a little difficult for those on Earth to realise that as far as the astronauts are concerned they are free to move in any direction, it is not just a matter of up and down and side to side. It has already been decided that in the next trip a non-tethered extra-vehicular exercise would take place.

One of the pictures also showed the Earth and its clouds against the background of Space while the astronauts were working in the payload bay. All the pictures were taken with a 35 mm camera attached to the spacesuit. Another thing was noticed by the monitoring devices: the heartbeat of Musgrave was still at 60 beats per minute whilst Peter son's had jumped to between 130 and 140 ; readers will remember that this happened with a previous crew. Challenger- 6 was at that time in darkness and all lights were on as the 35 ft long Tracking and Data Relay satellite was raised to 59°. After the satellite had been launched the upper stage could be seen attached and inert to the disappointment of all concerned. At the moment it is not yet decided what its future fate might be.

THE RED SHIFT AS A MEASURE

At last there seems to be a real attack on the question of the Red Shift. It has been more than a decade since Chris Arp of the California Institute of Technology was displaying photographs and models of objects which have thrown doubt on the idea that Doppler shift and Red shift are always the same. Several teams have sought to refute his views and even suggested that the connecting filaments which he saw were a figment of his imagination. It so happens that Jack Sulentic of the University of Alabama has recently confirmed Chris Arp's and his team's results. This was done using some hitherto unpublished photographic plates of the galaxy NGC 4319 and the object Markarion 205. When it is confirmed it will show that at least part of the Red shift in the light from astronomical objects is not produced simply by their receding from us in the expanding Universe.

Arguments have been made before about the Red shift with regard to some very important bodies and not all astronomers demand that the Doppler effect of sound is exactly the same as Red shift. That it applies to ordinary galaxies is true-this can easily be checked by measuring the speed in different ways simultaneously or by using different methods
and comparing measurements. However, there have been protagonists on both sides. It is therefore now becoming more and more important that some solution be found. As time passes, new discoveries are made and more sophisticated techniques devised so it is now imperative that what we believe to be true, is proved to be true. It is significant that recently a small group of people who were interested in this subject because very long baseline interferometry (VLBI) had revealed 'faster than light' speeds in Quasars. VLBI had shown that the quasar 3C279 showed an expansion rate which, when converted by the Hubble law, gave a figure 10 times the speed of light. The astronomers at Jodrell Bank, a small group set up to look into this matter and to provide at least some ideas about the future procedure, set out to discuss it.

There are now seven known radio sources that show these superluminal characteristics. These range up to at least 10 times the speed of light in their motions. These are 3C120, BL Lac, 3C273, 3C279, 3C345, 3C 179 and NRAO 140. These were revealed because of the increased technique reliability. This was due to the many VLBI arrays and the routine production of milli-arc-second-scale maps. Some indirect measurements show that the yariable velocities in some cases may be due to several components. The theoreticians do not believe the results, they do not believe that real faster-than-light motions exist. This treaks Einstein's light speed limit, therefore it must be an illusion. It is true that initially it had been admitted that, seen from a certain angle, it appeared that the law was violated; indeed the law itself was disputed. This was a very serious discussion and the matter was thrashed out thoroughly. No answers were found, though many suggestions were made.

The conclusion was that during the past 12 years more questions had been raised than had been answered. What now then, stalemate? Surely not. Are mathematics confounded or has something been missed? Are matters, then, to be left to others more adventurous? If one reporter is to be believed, the matter is to be left there and hope that during the next 12 years some solution will emerge. Is it then a return to the past, must Einstein be preserved right or wrong? Who mentioned Darwin . . ?

TAILPIECE

It is rare for this column to be concerned with such mundane matters as insurance, yet this is the second time that it has arisen, since it directly involves the recent failure of the Tracking and Data Relay satellite which failed to be sent to its planned orbit. There has been some criticism lately about insuring against this sort of thing. It seems that the constant failure of Ariane has already led to some rethinking in London and New York. The average cost of a rocket is high and the composite of satellite and launch runs on average at three-quarters of a million pounds. The normal premium now seems to be about 10%, but only about 5% for a shuttle launch. It is easy to see that those looking for the biggest profit will prefer the shuttle.

BEFORE we can start discussing any particular aspect of robotics it is only sensible to ask the question, 'What exactly is a robot?" The word was coined in 1921 by Czech playwright Karel Capek and is derived from a Czech word meaning 'worker'. Capek's play, entitled 'RUR' (Rossum's Universal Robots), tells how a brilliant scientist named Rossum manufactures an army of mechanical 'robot' slaves to free mankind from the drudgery of work. However, after an irresponsible scientist in Rossum's laboratory gives the robots feelings, they grow to resent their lot and rebel against their creators, finally annihilating the human race.

Clearly Rossum's robots were far more sophisticated compared with those that current technology is capable of producing. The modern industrial robot is a cumbersome beast by comparison, needing many thousands of instructions to perform even a simple task, and certainly lacking both initiative and ability to oil its own springs. So what distinguishes a robot from just another piece of computercontrolled machinery? There are those who would say there is no difference, in Japan for example, any NC (numerically controlled) machine is considered for statistical purposes to be a robot. Since this is obviously not a very useful definition, we must draw a line somewhere.

Consider the difference between a digital alarm clock chip and a microprocessor. The former will undoubtedly be programmable (since the alarm would be of little use if the manufacturer had pre-set it to say, 7 a.m!) but even the most ingenious electronics engineer would have difficulty adapting that chip to control his washing machine. Although a microprocessor can easily be programmed to perform the same function as the digital alarm clock chip, everyone knows that this is by no means the limit of its capabilities.

We can usefully think of the robot then, as the 'microprocessor' of the machinery world. As with the micro, the robot's hallmark is versatility, so there is no need for its designer to try and foresee its every possible use. A robot arm for instance, given an adequate reach, speed and lift capability, should be able to turn its hand (or gripper perhaps) to anything.

WHY SENSORS?

Imagine a human brain completely divorced from its senses, unable to touch, hear, smell or see anything of its surroundings, and unaware of the positions of the limbs in its body. It is most unlikely that the brain would develop at all under these circumstances, and it is arguable that intelligence as we understand it depends entirely on the brain's ability to acquire sensory information. A computer without sensors would likewise be unprogrammable, since it would be impossible to input any code.

A robot cannot be 'intelligent' if it cannot directly acquire information about itself or its surroundings. Thus when you give a robot the ability to 'perceive' and so acquire information, you reap the immediate benefits of an artificial intelligence. These benefits are considerable: Firstly, programming can be simplified, and carried out at a higher level, and be more readily understood by the user. Secondly, the machine is able to learn about its environment during operation; and thirdly, obstacles can be avoided automatically without the need for specific programmed commands.

If a visual perception system is implemented, a robot can distinguish patterns and objects, and then act on the information. In manufacturing, for instance, it can identify and automatically reject broken or damaged parts on a production line. Another example might be a robot which picks up chocolates and automatically deposits them in the correct compartments of a box. Besides performing regular activities like these a seeing robot may intervene in abnormal situations, such as tools accidentally being dropped on to a conveyor belt, where the outcome is potentially dangerous or costly. Evidently, sensors in general and visual ones in particular are going to play a very important role in the advancement of robotics engineering.

HOW CAN ROBOTS SEE?

In human beings the seeing process is essentially a dual one: Visual information is acquired by the eye, then processed or 'understood' by the brain. Neither the eye nor
the brajn can 'see' on its own-both are necessary if the visual perception system is to function. So in order for a robot to see, it must be equipped with mechanisms for acquiring and for processing images. In the area of vision, as in many fields of robotics, engineers have attempted to simulate human systems as far as possible. Visual data is normally acquired by some form of camera which transmits the visual signal to a computer for processing. Camera technology is generally agreed to be adequate for most current requirements but, as has been the case in other fields, the computer technology itself is still lagging behind.

Ideally a computer should 'understand' an image by describing it in terms similar to those a human being might employ, then use the 'knowledge' so gained in future problem-solving situations. The way to achieving this lies in the development of more powerful computers, and more importantly, the improvement of software techniques. In many industrial situations, potential robot applications have needed some form of visual feedback, and recent developments have provided solutions to a number of such problems. It is also true that many situations exist which do not demand an ideal vision system, and with which current technology can cope quite adequately. Let us now consider some of the techniques in use today.

VISION SENSORS

The simplest form of optical sensor is the photo-electric cell, the original 'electric eye'. A single photo-cell, however, is able to convey only one piece of information at a time. A robot (or computer) vision system usually requires a large amount of picture information to be supplied relatively quickly, and the solution lies in the use of some form of camera. Until quite recently the best sensor available was the TV camera tube, unfortunately rather a fragile device. Now, however, solid state 'retinas' employing charge
coupled device (CCD) technology have been developed. These units are far more robust than their glass counterparts, so are more suitable for use in industrial environments. They also have the advantage that they are much easier to interface to computers.

VISION BASICS

Although computer vision systems may vary considerably in sophistication, a number of techniques are common to all of them. Before an image from a camera can be usefully processed, it has to be converted to a form which can be understood by the computer. This conversion process, known as digitisation, involves the division of the image into a grid of squares (or pixels), each of which is then stored in memory as a number (or pixel value). In a 'grey-scale" system the pixel value is called the grey-level, and is proportional to the brightness of that portion of the image represented by the pixel. In binary systems, the pixel value is either 1 or 0 , corresponding to a brightness greater or less than a predetermined threshold, the stored image being basically a silhouette.

The resolution of a system is a measure of the number of pixels into which the image is digitised. Thus the higher the resolution, the more precise and detailed the stored image. However, if a very large amount of information is stored, the computing power required to process it becomes prohibitively large: a 256×256 pixel image contains 65536 pixels, a number equal to the total addressable memory capacity of most of today's microcomputers! A technique known as run-length encoding is often used to overcome the space problem, in which a string of numbers called a run code is set up, instead of storing every pixel. Each number corresponds to a number of adjacent pixels with the same value, together with the value itself. This allows a considerable reduction of the memory required, especially when

A typical example of the use of visual feedback: A two vision system enabling a nobot arm to pick up different objects from a conveyor belt and place them in appropriate containers.
high resolution binary images are being processed. Let us look in detail at two vision systems representative of existing techniques

high resolution

GREY-SCALE SYSTEMS

The most sophisticated vision systems in use today attempt to extract and process the maximum possible information from an image. The resolution of such a system is typically 100,000 or more pixels, and perhaps 256 or more grey levels are distinguished.
Comprehensive signal processing and feature extraction algorithms are used to determine the shape, size, position and orientation of an object (or a number of objects) in view. Powerful mainframe or mini-computers are used in the processing of the image, often needing several processors to achieve sufficient computing power. By storing information about an object such as the relative positions of features like corners and holes, complex networks of tubes and pipes or contoured metal castings can be consistently recognised. Powerful contrast enhancement techniques enable information invisible to the human eye, such as hairline cracks in printed circuit board tracks, to be detected.

Using systems such as these in conjunction with robots it is possible to automate processes in which the type and orientation of parts to be manipulated is outside the control of the programmer. Here the robot uses its 'eye' to direct it in its task. However, even high-resolution systems have their limitations. Three-dimensional and mobile vision technology is still in its infancy, and it is not normally possible to compensate for the effects of variable lighting conditions. The high level of performance indicated above is generally attainable only in clear environments, using a fixed camera position and carefully controlled lighting. The advantages of high resolution systems lie in their increased informationhandling capacity. These are offset though, by drawbacks such as considerable bulk, slow operation and high cost (typically over £20,000).

LOW RESOLUTION BINARY SYSTEMS

An alternative approach is gaining favour in some areas of robotics applications. This minimises processing overheads, cost and complexity by using very low resolution (VLR) binary (i.e. silhouette) vision systems. These use typically only one or two thousand pixels of digitisation, and a limited number of feature extraction functions. They are able to process visual information at speeds comparable to that at which an efficient robot arm might move. In other words, direct real-time visual feedback loops can be established. The recognition-ability of such systems is usually limited to a small set of criteria. These might include area, perimeter, the number of 'holes' in an image, and so on. Nonetheless, since the camera is compact enough to be mounted on the end of the robot arm itself, areas of interest can be magnified simply by moving it nearer to the object. Calculating the position of the centre of gravity, provides a basis for location and orientation algorithms which are often fast and precise enough for the arm to follow a moving object. Unimation Ltd recently demonstrated this ability using a PUMA robot arm fitted with a 32×32 pixel camera. The robot followed a plastic toy building brick as it was moved across a surface, picking it up correctly when it remained stationary for longe than about four seconds.

VLR systems are of greatest use in situations where the identity of an object has been pre-determined, and where high-speed operation is important. Because VLR systems are simple and relatively inexpensive (typically under $£ 1,000$), they are popular among hobbyists and educational establishments. Though less sophisticated than their high-resolution counterparts, they employ many of the same techniques.

THE COLVIS VLR VISION SYSTEM

An example of VLR technology is the COLVIS vision system, manufactured in the UK by Colne Robotics Co Ltd. This system employs a 32×32 pixel, binary solid-state camera using a dedicated Z80-based micro-

A typical configuration of the COLVIS high-speed system: Commands may be entered either with the light pen or via the user I/O channel. The host computer interrogates the system for visual information which it then uses to control the robot
computer. It can be used either on its own, or under the control of any micro or mini-computer fitted with an 8 -bit bidirectional port. In stand-alone mode the system can perform simple vision-based control functions, and is programmed via a TV monitor and light pen. When under computer control, the system can be interrogated for either raw or processed vision data which is then transmitted back to the 'host' computer. In this way, a computer controlling a robot arm can be supplied with vision information on demand, and at no cost to its own processing time.

The system is supplied with software enabling it to determine the position, orientation and identity of objects in its field of view. The commands available to the user are in three groups:
(i) Data acquisition
(ii) Image processing (including feature extraction)
(iii) Learning/recognition

Eight picture stores are provided, and the camera image can be read into any one of these, one at a time. Each picture store has an associated area of memory in which any of the following parameters can be updated on command:

PARAMETER	FUNCTION
Centre of gravity:	Position, orientation
Direction of longest dia: Direction of shortest dia:	Orientation Orientation
Area:	Recognition
Perimeter:	Recognition
Number of holes:	Recognition
Perimeter ${ }^{\text {/ }}$:	
\quad (compactness):	Recognition
Longest diameter:	Recognition
Shortest diameter:	Recognition

Measures are taken to ensure that the system always operates at its fastest possible speed. A comprehensive range of learning functions has been implemented, enabling the system to be taught to identify objects on the basis of some or all of the recognition parameters listed above. A 'Learn' command is given, together with a name for the object to be learnt. The system then calculates, and records the required recognition parameters in a data structure which incorporates a set of tolerances associated with each parameter. These tolerances are automatically initialised to a useful set of values, but for each learnt object the user can adjust them individually, in both the positive and negative axis. Learnt objects can be deleted or re-learnt; they can be saved on cassette tape or loaded from it. When the 'Recognise' command is given, the list of learnt objects is scanned, and those parameters in use are compared with ones calculated from the camera image. If the new parameters all fall within the specified tolerance for a learnt object, the system notifies the user (or host computer) that it has recognised that particular object. Up to 64 different kind of objects can be learnt at any one time. In normal use an operator would teach the system a new object, adjusting tolerances and changing the criteria (i.e. parameters used) for recognition, until optimum performance was achieved, before handing back control to the host computer.

Additional commands enable the system to pre-process picture information before parameters are calculated. These include picture inversion, exposure control, choice of light or dark background and several noise-reducing functions which strip or fill-in isolated pixels. A macro construction facility enables strings of commands to be stored in memory and executed as single instructions. The contents of any two frame stores may be displayed simultaneously on the

Fig. 1. VDU showing object identification
monitor screen, together with their associated parameter lists. When under computer control, all parameter, learning and frame store information can be transmitted on request to the master system.

In Fig. 1, the VDU shows an object (coded BLNK) which the system has learnt and identified: In the top right of the screen the parameter requirements are shown and are represented by the picture in the square. The list of parameters closest to those learnt, is shown in the lower part of the display, and has been identified as TRUE; the other possibilities being rejected as FALSE.

The COLVIS system is simple to use and fast-operating, making it ideal for educational purposes, though undoubtedly it will find its way into a number of industrial situations as well. An important aspect, particularly for educational establishments, is the low cost of this system; around $£ 400$.

LOOKING ĀT THE FUTURE

There is considerable scope at present for improving visual perception techniques. The vision system of the future will be able to process picture information far more efficiently than its relatively primitive predecessors, using extremely sophisticated high-level programming languages developed solely for such a purpose. We can expect computers themselves to be hundreds, perhaps thousands of times faster and more powerful. If technology within this field continues to advance at its present rate, some seemingly far-fetched predictions will rapidly become probabilities rather than remote fantasies. We can foresee vision systems installed overlooking large and complicated scenes-factory floors or perhaps crowded city centres. There, they will survey the area for abnormal events, capable of detecting fires, accidents and maybe even crimes! We must remain alert to the value and importance of robot vision, a field whose enormous potential is still to be explored and exploited.

HRNON al IREN"Laige!

V.T.'s views and opinions are entirely his own and not necessarily those of PE

You must have heard of the House of Floggit, to my mind one of the most interesting department stores in South London. Family-owned, it first opened its doors towards the end of the 19 th century and, until recently, remained an undying echo of the Victorian era of retail trading when the customer was king.
Floggit's merchandise was, and still is, of superb quality. Its standards of service impeccable. The lady assistants wore modest frocks that suppressed any gender-indicating undulations. The gentlemen were dressed in formal suits, the jackets of which were never discarded, even on the most sweltering day. And such frivolities as the use of forenames and remarks of a jokey nature were OUT.
Accounting and stock control systems were equally traditional. Cash was handled with genteel disdain. The customer's payment-he wasn't up to much if he didn't have an account-would be placed in a kind of torpedo tube and shot off to the counting house by an overhead railway. If change was involved, it would be returned by the same means. All this gave the impression that so far as the management was concerned, the handing over of the money was no more than a slightly indecent incidental.
In those pre-VDU days a basement-based covey of brown-coated retainers, all with unnaturally-tapered index fingers, carried out a digital stock count at the end of each day, recording their findings in copperplate handwriting on a series of lists. The store was open six days a week and no matter how late the hour, no one was allowed to leave their post so long as there was a customer about.

This respectable, dependable and thoroughtly stuffy and unprogressive profile began to change after Arnold Floggit took over the helm a few months ago. He succeeded his uncle Horace, the former chairman, who died without notice from a fit of the vapours on discovering Miss Playful (Toys and Games) up to no good in the stockroom with Mr. Stiff (Hardware).
Arnold, a very much younger man than his predecessor, was well and truly into electronics and-having once been stuck with Kenneth Baker at a cocktail party-had developed a special interest in information technology. And he was therefore aghast at the archaic and non-technical way in which the outfit was being run. There had to be fundamental changes.

His first tycoonic ploy was to set up an indepth survey. This is, of course, standard procedure for anyone who can spell Harvard and consists of hiring hordes of expensive young analysts who dash around asking irrelevant questions and getting equally irrelevant answers. This leads to the production of a report, sometimes bound in limp leather and always costing a fortune.

On the basis of the report which eventually landed on his desk, Arnold decided to sink an odd million or so quid in a computer-based system which would do away with that absurd overhead railway, pep up accounting and stock-control and provide a constant flow of management information.

One day a team of young experts wearing Imperial College ties arrived to set up the computer. The staff didn't take much notice at first. All they knew was that a load of layabouts were mucking about in the basement.

But the course of events was soon brought home to them when one day one of the layabouts marched into Perfumery and dumped an electronic cash register on the counter. Miss Sniff, the buyer, 30 years with the firm, - ignored it completely to begin with and continued to have fun with her overhead railway. The next sinister happening was a summons from above for all senior buyers. It was there that Arnold unveiled his grand plan and then handed the group over to Mr . Teachem, the training officer, for an intensive course of instruction in the modern miracle which was to transform their lives.

It was a frightening contraption so far as the conservative senior staff was concerned. It had more buttons than a cardinal's cassock and a habit of bleeping and popping whenever anyone laid a finger on it.

That first training session is not a happy occasion to record. Miss Silk of Haberdashery announced her intention to seek early retirement. Miss Swish of Ladies Fashions went all hysterical and had to be sedated with a swig of mint tea from the canteen. Mr. Spark (Major Domestic Appliances) eased his feelings by giving the thing a sly kick.

One cannot blame any of those present for their attitude when you consider the circumstances. Here they were, loyal servants who had grown grey in service, brought up in a world of dignified and calm, if stick-in-themud, working methods, being asked to become user-friendly with something which, in their opinion, belonged to another planet.

Arnold Floggit had not done things by halves and had gone all-out for sophistication. The cash register-which was not a cash register at all, but a thing called a terminal-was a multi-function beast. It could record both cash and credit transactions, log the date and time of each sale, with the identity number of the assistant concerned, and provide accurate, highly-detailed and easily-accessible data on stock movements. "I bet," said Mr. Crepe (Footwear) with dry cynicism, "it would boil an egg if you asked it nicely."

The day that the new system came into active public service had, for the younger members of the staff, a touch of carnival. Weaned on digital watches, up-miarket calculators and even home computers, they found little dif-
ficulty in adapting themselves to the revolution. Indeed, some of them regarded the occasion as the start of an era of liberation from the outmoded and sometimes despotic Floggit regime. Hopes were expressed by a few, including fashion-conscious little Wendy Penn (Stationery), that they could soon start turning up for work in flashy tops instead of bustflattening blouses. Young Tom Channel (Radio and TV) prophesied that soon he'd be wearing cords and bomber jacket.

The over-40s were not so happy. The complicated procedures needed a strong mental digestion. An ordinary cash transaction, for example, involved the pressing of some 15 buttons, all in the correct order without, alas, a comforting cancel facility for the correction of cock-ups. Credit sales were even more complex. Barclaycard and Access, popular and convenient as they are, brought fresh terrors, as did the handling of cheques. And when some clever dick decided he wanted a refund, the effect on the hard-pressed salesperson was frightful to behold.

It will come as no surprise to you that all this sophisticated technology had adverse repercussions on customer-relations. The chap who'd just popped in for a set of batteries for his tranny on the way to the betting shop instinctively resented having to stand for 15 minutes witnessing a dazzling display of terminal trickery instead of merely slapping his money on the counter and pushing off.

In those departments where the older generation presided long queues were the order of the day. There was much muttering of "things aren't like this at Comet". The carriage trade, accustomed for generations to sedate service, switched to Harrods where they could hope for service almost as efficient as that accorded to the Queen. Turnover dipped, morale sagged and the star called Floggit began to dim in the retail firmanent.

Arnold Floggit, dedicated technologist as he was, began to wonder whether or not he hadn't dropped one. A realistic fellow, he reasoned that by equipping his goose with a golden facility he may well have retarded her ability to lay golden eggs. And it was with a sigh of resignation and a fondly wave to his not inconsiderable investment that he did a swift turnabout. One could not help salute him.

Out went the computer and its attendant terminals. Back went the overhead railway and the brown-coated stock counters. All hopes of dress reform faded into the middle distance. The older generation had their happiness restored.

There is an obvious moral to this story. You will recall that in a previous issuc of PE I enjoined the Church to adopt electronics techniques in the name of greater efficiency.
Perhaps at the same time I should have pondered on the problems of such retail houses as the House of Floggit and exhorted leaders like whiz-kid Arnold to pause before hurling themselves headlong into the electronics age.

Mind you, it's only a matter of time before Floggits, like other concerns, will have to succumb. In the meantime I shall take a middleaged satisfaction in guessing at the mysteries of the formal frock, watching my money whizzing between counting house and counter by overhead railway and sympathising with youngsters in their heavy serge.

all in your

5PT =M $B=R$ issue!

PRACTICAL

SEPTEMBER ISSUE ON SALE FRIDAY, AUGUST 5

SEMICONDUCTOR cir

VOLTAGE CONVERTER (ICL 7660)

MOST modern logic and microprocessor circuitry take power from a single supply rail; either +5 V for TTL and microprocessorbased systems, or higher voltages for some CMOS circuitry. The incorporation of any other supply rails within such a system can be a considerable nuisance, adding complexity, size, and cost to the final project. A frequent requirement is for a low current negative supply, used to provide power to a small amount of analogue circuitry within the logic system. Digital to analogue, and analogue to digital converters are examples of circuitry which sometimes requires this negative rail; likewise many op-amp circuits, and certain memory i.c.s. (especially dynamic RAMs). In all cases the power requirements are so small that it seems to be an 'overkill' to have to provide a complete negative supply system, whether derived from the mains supply or from extra batteries. The ICL 7660 is designed to help solve this problem. It is an 8 pin CMOS i.c. which converts a positive supply into a negative supply voltage. Hence, any nominal supply of +1.5 V to +10 V is converted to a negative supply of -1.5 V to -10 V , with sufficient drive current for most applications (typically up to 40 mA for $\mathrm{a}+5 \mathrm{~V}$ input).

BASIC CIRCUIT

Fig. 2 shows the circuit design principle on which the 1CL 7660 is based. Under the control of an internal 10 kHz oscillator and switch control logic, four MOS power switches are used to charge up, and transfer charge between, C1 and C2. These capacitors are external to the i.c., since they must be relatively large; $10 \mu \mathrm{~F}$ is typical. The sequence is as follows: S1 and S2 turn on, while S3 and S4 remain off. As a result, C 1 is charged up to the positive supply voltage. Then, S1 and S2 turn off, while S3 and S4 turn on. The positive end of Cl_{1} is now taken from the positive supply down to 0 V . The negative end of Cl , which was previously at 0 V , then becomes forced negative; for a positive supply of +5 V , the negative end of Cl is taken to -5 V . The charge on C1 transfers to C 2 , the reservoir capacitor, which then supplies current into the
load. S3 and S4 turn off, S1 and S2 turn on, Cl charges up again, and the whole cycle repeats continuously.

USING THE CHIP

The pin-out of the ICL 7660 is shown in Fig. 1, complete with its specifications. There are several important points to note about the

Fig. 1 Voltage converter integrated circuit pin-out with its specification below

Characteristic	Notes	Min. Value	Typic- ally	Max. Value	Units
Supply voltage	All spec's measured at +5V supply	1.5	5	10.5	V
Quiescent current	No load on negative output		170	500	$\mu \mathrm{~A}$
Temperature range					
Power dissipation					

specifications, and about the way that the i.c. is used in practical circuits. The absolute maximum supply voltage is +10.5 V , so do not try to use it with supplies of over $10 \mathrm{~V} ; 15 \mathrm{~V}$ CMOS is definitely not on! As with most CMOS i.c.s, connecting any pin to voltages outside its supply rails will cause damage, so ensure that no external signals are applied to the i.c. before its own supply is turned on. An internal voltage regulator is provided to prevent latching up (and potential damage) when supply voltages higher than +3.5 V are used. This can adversely affect low voltage performance, so for voltages below +3.5 V connect pin 6 to 0 volts, disabling this regulator. However, when voltages of +3.5 V or more are used, this pin must be left floating, i.e. unconnected.

Finally, for supplies of +6.5 V or more, or
use at high temperatures, a diode must be added in series with the output. Fig. 3 shows the basic voltage converter circuit, and D1 is the extra series diode if required. For the lowest forward voltage drop a germanium diode is the best choice; an OA47 is specified, but any similar diode will do. A 1 N 4148 or similar will work satisfactorily, but will drop slightly more voltage. Take care with the polarity of D1; the feed from pin 5 of the i.c. is a negative, not a positive one!

Because the negative supply is generated by the charging up and discharging of capacitors, it is far from being a perfect voltage source. As would be expected, the output voltage becomes less (i.e. nearer to OV) as more current is drawn. In practice, the relationship between the output voltage and the current drawn is linear; the effect is the same as

Fig. 2 Principle of isc. operation putting a resistor in series with a perfect voltage source. The value of this effective output resistance is dependent on the supply voltage, with 55 ohms being typical for a 5 V supply, and 150 ohms for a 2 V supply.
The graph of output voltage versus output current for a +5 V supply is shown in Fig. 4. For most op-amps, A-D converters, D-A converters, etc., the current drawn is small, and the slight variations in negative supply voltage have no significant effect, but this characteristic of the i.c. should be borne in mind when designing appropriate circuitry.

Similarly, the relatively high level of ripple (typically up to a few hundred millivolts) should be noted, although again this should not normally cause any problems.

Fig. 3 Basic voltage converter circuit. D1 is not necessary for supplies $>6.5 \mathrm{~V}$. Include it if high temperatures are anticipated

IMPROVING PERFORMANCE

Figs. 5, 6 and 7 show ways of improving the output characteristics of the ICL 7660. In Fig. 5 two devices are connected in parallel to give a lower effective output resistance to the negative supply. The reservoir capacitor C2 can be shared between the i.c.s. Any number of devices can be connected in parallel, the overall output resistance being the individual i.c. output resistance divided by the number of i.c.s used. For best performance, the output diodes, D1, D2, should be used at all voltages above 3.5 V .
output

E61196
Fig. 4 Graph of output voltage versus output current for positive supply

Fig. 5 Parallel connection if i.c.s
Fig. 6 shows a way of using the i.c. to provide a positive to positive voltage conversion! In this circuit the output voltage is twice the input voltage, less the two forward diode drops. This can provide up to approximately

Fig. 6 Positive voltage converter circuit
19 V , since the voltage doubling is performed only by C1, C2, D1 and D2. The $+10 \cdot 5$ voltage limit on the i.c. is not exceeded, since D2 prevents the high voltage ever feeding back into the i.c. Note that C2 can't be a 16 V type for all supply voltages, so use a 25 V type instead.

Fig. 7 shows three devices connected in series to provide a larger negative supply voltage. Up to ten i.c.s can be connected in this manner, within the limits of a maximum negative voltage of -10 V . However, in this configuration, the output resistances sum.

EXTERNAL CLOCK

Finally, the oscillator frequency of the ICL 7660 can be changed, if required, by feeding an external clock into pin 7. When fed from CMOS logic, a 1 k series resistor should be provided, while for TTL a 4 k 7 pull-up resistor to the positive supply is needed. If an external clock is to be used, note that the conversion frequency is half the applied clock frequency, due to an internal divide-by-two circuit. The internal oscillator can be lowered in frequency by adding a capacitor (typically 33 to 330 pF) between pin 7 and the positive supply. If the frequency is lowered, Cl and C 2 should be increased proportionally to maintain the performance.

Veroboard application of Fig. 8

E61200
Fig. 8 Logic level to analogue converter circuit

APPLICATIONS CIRCUIT

Fig. 8 shows a simple application of this i.c. The circuit provides a logic system with a d.c. coupled analogue output, which is variable in level and symmetrical about 0 V , rather than between $O V$ and the positive supply voltage. IC1 is the voltage converter used in a standard configuration to provide the negative supply to IC2, a high slew rate (i.e. high speed) op-amp. It is all powered from the logic system's own power rails, which are unlikely to be below 3.5 V , so pin 6 of IC1 should be left open circuit. D1 can be replaced by a wire link for supplies of less than 6.5 V . IC2 is used as an inverting amplifier, so precede this circuit with an inverting logic gate if polarity is important. The gain is variable between $\times 0.1$ and $\times 2$, and is adjusted via VR2. VR1 provides an offset control, which provides biassing from the negative supply to the inverting input of IC2. This ensures that the output can be corrected to be exactly symmetrical about 0 V , although it does put a small amount of high frequency ripple on the output, of course. Typically, a few tens of millivolts.
An NE 531 op-amp has been used to provide a very fast edge on the square wave output, but if this is not critical it can be replaced by a 741 . If this is done, omit C 3 , the compensation capacitor, as 741 s have internal compensation. Finally, C4 and C5 are extra supply decoupling capacitors, and C1 and C2

Fig. 9 Logic system with a d.c. coupled analogue output. Omit R1 if input is CMOS logic
can be 16 V types or higher; 25 V is quite acceptable.

This circuit is a fairly simple, but hopefully effective, demonstration of the way in which voltage conversion can provide a low power alternative supply rail in a larger system. Bear in mind the intrinsic limitations of the device,
and it can prove to be an extremely useful circuit element. The ICL 7660 is readily available from a number of suppliers, such as Technomatic, Maplin, and Watford Elec tronics.
Note: in Semiconductor Circuits (June 1983): ln Fig. 1 pin 8 should be positive supply.

FREE! READERS' ADVERTISEMENT SERVICE

WEMON for UK101 E8: Wanted January and March 1981 articles on OS65D published in Compute! Chris (O252) 546739 Farnborough, Hampshire.
FLOPPY disc controller 32K DRAM Romdos Link 6 and Vortex for UK 101 only £ 150 possibly will deliver. Mr. M. Andrews, 'Collifers', Lyne Lane, Chertsey, Surrey. Tel: Ottershaw 3327
BUSH A823 EMI Pye Philips G6 chassis and spares cheap to clear + working panels. Mr. A. Bouskill, 129 Lyminster Road, Sheffield S6 1HY. Tel: 0742/311191 after 4p.m
DATA-DYNAMICS 390 workshop manual wanted. Help-how can it be changed to RS232 from 90-0-90V? M. Foreman, 5 Manor Place, Frenchay, Bristol BS 16 1PS. Tel: 566479
NAD 6040 cassetle deck-with sendust head and Dolby HX. 20 months old £60. Tel: So'ton 332586 evenings. R. Dudley, 64 Hartington Road, Newtown, Southampton SO2 OEU.

SCOPEX 4 D 2525 MHz 'scope, exc. condition £250. Sugden S1453 audio Gen. £40. AVO d.m.m. DA116 £60. J. P. Evans, 90 Cedar Ave., Kidsgrove, Stoke-on-Trent ST7 1JZ. Tel: 0782 615351 Ext. 29.
TEXAS Instruments 58 Programmable calculator + master library book and programming book + mains adaptor E25. Mr. Toni Wales, 1 Sandringham Close, Thurlstone, Nr. Penistone, Sheffield S30 6RW.
TEKTRONIX oscilloscopes 545 ABB, 581549 storage, loads plug-ins sampler, four channel, differential, all working, sensible offers. Mel Purcell, 3 Carrick Gardens, Carnbroe Estate, Bellshill ML4 1 NU Scotland. Tel: (0698) 749317
MICRONTA dynamic transistor tester. Tests transistors in or out of circuit. New with battery. f7.50. Call Chang $04133276959 \mathrm{p} . \mathrm{m}$. K. Y. Chang, 70 1-up. Ashley Streer, Glasgow G3

Please publish the following small ad. FREE in the next available issue. I am not a dealer in electronics or associated equipment. I have read the rules. I enclose a cut-out valid date corner.

Signature

Date
Please read the RULES then write your advertisement hereone word to each box. Add your name, address and/or phone no
COUPON VALID FOR POSTING BEFORE 5 AUGUST 1983 (One month later for overseas readers.)
SEND TO: PE BAZAAR, PRACTICAL ELECTRONICS, WESTOVER HOUSE, WEST QUAY ROAD, POOLE, DORSET BH15 1JG.

Niodwich
 COMPUTER COMPANY LIMITED

35 choice for microcomputer components

T．V．SOUND TUNER

BUILT AND TESTED

onsumer electronics，one of the questions designers apparently ponder over is＂Will anvone notice if we save money by chopb ing this out？＂In the domestic TV set，one of the Iirst casualties seems to be
 the sound quality．Small speakers and no tone controls are common
TV companies do their best to transmit the highest quality sound G compact and independent TV tuner that connects direct yo your Hi_{i} ．Fi is a must for qual eproduction．The unit is mains－operated
This TV SOUND TUNER offers full UHF coverage with 5 pre－selected tuning controls．It also be used in confunction with your video recorder．Dimensions： $11 \frac{13 / 4}{} \times 8 \frac{1 / 2 " x}{} \times 3 / 4$
E．T．I kit version of above without chassis，case and hardware，$£ 12.95$ plus $£ 1.50$ p $\& p$ ．

PRACTICAL ELECTRONICS SPECIAL OFFER STEREO CASSETTE RECORDER KIT
 ONLY $£ 31.00$ plus $£ 2.75$ p\＆p． －NOISE REDUCTION SYSTEM．－AUTO STOP．＇TAPE COUNTER．－SWITCHABLE E，O．INDEPENDENT LEVEL CONTROLS 1\％BECORD M WOW \＆FLUTTER LECT VARIABLE RECORDING BIAS FOR ACCURATE MATCHING OF ALL TYPES Kit includes tape transport mechanism，reacy punched and back
 printed quality circuit board and all electronic par is．is．semiconductors
 resistors，capacitors，hardware，top cover，printed scale and mains transforme
 STEREO TUNER KIT
 This easy to build 3 band
 build 3 band
 STEREO CASSETTE DECK

FM tuner kit
is designed
in conjunction

＂81）．For ease of constructlon and alignment It incorporates three Multard modules and an I．C．IF Sysiem FEATURES：VHF，MW，LW Bands，intersta Two back printed PCB＇s．Ready made chassis and scale．Aerlal：AM．ferrite rod，FM． 75 or 300 ohms．Stabilised power supply with＇C＇ core mains transtormer．All components supp lied are to P．E．strict speclfication．Front scale size $10 \frac{1}{2} " \times 2 K^{\prime \prime}$ approx．Complete with dia－ gram and instructions
SPECIAL OFFER！$£ 13.95+\mathbf{£ 2 . 5 0 p \& p}$ ． Self assembly simulated wood cabinet sleeve £3．50 Plus $£ 1.50$ p\＆p．

125W HIGH POWER

 AMP MODULESThe power amp kit is a module for high power applications－disco units，guirar amplit iers，public address dyst and even high against short circuiting of the load and is safe in an open circuit ondition．A lar ze safeiy margin exists by use of generously rated com ponents，result，a high powered rugged unit The PC board is back printed，eqched and ready 10 drlll for ease of construction and the aluminium chassis is preformed and ready to use．Supplied with all parts，circuit diagrams and instruction
ACCESSORIES：Stereo／mono mains power sup
kit with transformer：$£ 10.50$ plus $£ 2.00$ p

AUDAX $8^{\prime \prime}$
HIGH QUALITY 40 WA
RMS BASS／MIORANGE RMS BASS／MIORANGE deal for either Hi－Fi or Dlsco use this speaker coil a heavy 70 mm diamerer magnet．Frequency res： $20 \mathrm{~Hz} \quad £ 5.95$ to 7 KHz ．Impedance： 8 ohms．$+\mathbb{\mathrm { om }} .20 \mathrm{P} \mathrm{\& P}$ AUDAX 40W Ferro－Fluid Hi．Fi Tweeter

square． 8 ohm ．
21B HIGH STREET，ACTON，W3 6NG．
Note：Goods despatched 10 U．K．postal addresses oniy $31 / 5 / 83$ snd subiect to change．wincout norke． Please sllow 14 working ctavs from receipt of ordier tor despatth．RTVC Limited reserve the right to up． S．A．E．Telephone of mail orders by ACCESS Wetcome．

Max．output power（RMS）： 125 W．Operating votage（OC）： 50 － 80 max．Loads：4． 16 ohm ， Frequency response measured＠ 100 watts； $25 \mathrm{~Hz}-20 \mathrm{KHz}$ ．Sensitivity for $100 \mathrm{w}: 400 \mathrm{mV}$ $@ 47 \mathrm{~K}$ ．Typical T．H．D，＠ 50 watts， 4 ohms：
0.1% ．Dimensions： 205×90 and $190 \times 36 \mathrm{~mm}$ ．

KIT $\mathbf{E 1 0 . 5 0}$
BUILT £14．25 + ＋1．15p\＆p ＋£1．15 p\＆o．

SPEAKER BARGAINS

ALL CALLERS TO 323 EOGWARE ROAD，

 LONDON W2．Teleplione：01．723 8432
回四回

SUPERKITS！ NOW WITH NEW CHOICE OF CASES

BOXES SUPPUIED WTT STANDARD UNITS ARE PLAIN ALUMINIUM MTH A LIPPED UD．THE ＇BLK UNITS HAVE ALUMIMIUM BOXES WITH STEEL TOP COVERED IN STYISH BLACX STELVITITE LAMINATE，UNITS MARKED WITH．＊＊DO NOT INCLUDE BOXES（FURTHER DETAILS IN LIST）．

SETS INCL．PCBs，ELECTRONIC PARTS，INSTRUCTIONS．MOST ALSO INCL KNOBS，SKTS，WRE， SOLEER．BATTERIES NOT INCL BUT MDST WILL RUN FROM ON TO I5V DC SUPPLIES．FOR FULLER DETAILS SEE CATALIGGUE（SEE BELOW）．

		STD	BLK
		UNIT	UNIT
AUTOWAH：Gultar－triggered wah－wah	SET 58	¢14．01	\＄16．41
BASS BOOST：Increases volume of lower octaves	SET 138.8	£9．40	¢11．80
CALL SIGN：Programmable 8－note musical call sign	SET 121	£14．23	¢16．23
CHORUS UNTT：A solo voice or instr．sounds like more！	SET 162	E11．59	E34．49
COMPARATOR：LED level indicator for 2 channels	SET 129	£16．73	¢18．73
COMPAESSOR：Limits \＆levels maximum signal strength	SET 133	¢12．37	614.77
ECHO UNT：With double tracking	SET 168	¢44．82	［47．72
FREQUENCY DOUBLER：Raises guitar frequency by 1 octave	SET 98	£11．75	$\underline{813.75}$
FREQUENCY－GENERATOR：Multiple waveform test osc	SET 128	¢19．15	E22．05
FUNKY－WOBULO：Novelty vaice modulator for funmy effects	SET 149	£12．78	£14．78
FLANGER：Fascinating delayes－feed－back effects plus phasing	SET 153	E22．54	25.44
FUZ2：Smooth distortion whilst keeping natural attack \＆decay	SET 91	\＄11．68	£14．08
GUTAR EFFECTS：Multiple wariation of level \＆fiter modulation	SET 42	¢16．58	［18．38］
GUTTAR OVERDRNE：Fuzz plus variable fiter quality	SET 56	¢21．17	¢24．07
GUITAR SUSTAIN：Extends uffective note duration	SET 75	£11．71	814.17
HARMONOLA：Versatile 3 octave organ＊	SET 125－T	¢166．97	
HUM CUT：Tunabie fiter for reducing low frequency noise	SET 141	¢12．02	514.42
JABBERVOX：Voice disguiser with reverb \＆tremeio	SET 150	E23．64	275.4
MAD－ROJ：Variable sirens，inel police，gataxy machine－guns etc	SET 146	£10．47	£12．47
METRONOME：With audible \＆visual beat \＆down－beat marking	SET 143	£13． 58	¢15．98
MICROPHONE PRE－AMP：with switchable bass $\&$ treble re－ sponse	SET 144	¢9．12	£11．52
MINISONIC（PE）MIZ：3－octave very versatile music synthe－ siser＊	SET 38	1181．92	
MLXERS：Several－details in catalogue（see below）			
NOISE LIMTTER：reduces tape 8 system hiss	SET 145	\＄10．59	¢12．99
PHASER：with automatic \＆manual rate \＆depth controls	SET 164	52120	¢24．10
REVER8：Analogue unit with variable delay \＆depth controls	SET 122	E20．39	E22．19
RHYTHM GENERATOR： 15 switchable riythms（NEW UNIT）	SET 170	¢38 27	841.17
RING MODULATOR：for intermodulating？separate sine freqs．	SET 87	£13．62	£15．42
ROBO BOX：Versebie Robot iype voice modfier	SET 165	¢21．89	$¢ 24.79$
ROGER 2－GONG： 2 gongs sounded at end of transmission	SET 126－LS	¢12．55	¢14．55
ROGER BLEEP：Single bleep sounded at end of transmission	SET 127－LS	£10．07	£12．47
SCRAMBLER：Codes 8 decodes transmissions authorised chens	SET 117	¢21．81	$\underline{523.61 ~}$
SEQUENCERS：128－note keyboard controlled（keyboard incl．）	SET 76	¢110．99	£114．59
16 note（up to 64－bit pettemi）penel controlled	SET 86	¢53．15	¢56．95
SPEECH PROCESSOR：for clearer transmission	SET 110	¢12．10	£14．50
STORM EFFECTS：Automatic \＆manuel wind，rein \＆surf	SET 154	£16．72	£19．62
SWEEP GENERATOR：Audio test unit	SET 169	£16．42	618.22
SYNTHESISER INTERFACE：allows instrument to trigger symth	SET 81	59.59	¢11．99
TREMOLO：Desp tremolo vath depth \＆rate controls	SET 136	¢10．71	¢13．11
TREBLE BOOST：Increases volume of upper octaves	SET 138－T	¢9．24	¢11．64
TONE CONTROL：bass \＆treole cut．gain \＆range（ 6 controls）	SET 139	¢13．82	£16．72
VIBRATO：variable rate \＆depth plus additional phasing	SET 137	123.99	［26．79
VOCODAVOX：Modular Vocoter	SET 152	E68．96	£72．76
VODALEK：Robot type voios modulator with depth \＆rate controls	SET 155	［12．75	£14．75
VOICE FILTER：tunable for selected freq bandwitth \＆gain	SET 142	¢10．21	f12．61
VOICE－OP－FADER：for reduction of music level during talk－over	SET 30	¢10．0．	£12．42
VOICE－OP－SWTICH：with varable sensitivity \＆delay	SET 123－LS	f13．80	¢15．80
WAH－WAH：with auto－trigger，manual \＆oscillator control	SET 140	¢17 31	$£ 20.21$
WHEEBY－JEEBY： 2 intercoupled oscillators produce variable sirens	SET 151	¢13．78	E15．58
WINO \＆RAIN：manual conttol of these two effects	SET 28	［11．39	£13．79
WOBBLEWAH：Oscillator controlled wathewh	SET 161	［13．40	£15．40

KIMBER ALLEN KEYBOARD＇（surely the best？） KEYBOARD CONTACTS GJ ISPCO）：

3－0ct 532.43 .4 －0ct $540.68,5-0 \mathrm{ct} £ 48.52$
KEYBOARD CONTACTS GB（DPST） 3－0ct $£ 20.29$ ，4－0ct $526.50,5$－0ct EX2．71 3－0ct $£ 23.27,4$－Oct $530.45,5$－0ct 637.62

PHONOSONICS
PHONOSONICS MAIL ORDER，DEPT PE38， 22 HIGH STREET，SIOCUP．KENT DA14 6EH． $01-3026184$

Please use full addrass．Peyment CWO，CHO，PO．Access，Barclay，or pre－arranged collection Prices inct UK P\＆P \＆15\％VAT．E\＆OE．Despatch usually $10-14$ days on most items．For comprehensive catalogue send S．A．E．（if you live overseas send $£ 1.00$ or equiv．）．MORE KITS ARE IN CATALOGUE．

Go-Ahead

The recommendations of the Alvey Committee that some $£ 300$ million should be invested in a cooperative research programme on advanced information technology have been endorsed by the Government. The taxpayers' contribution via the Department of Education and Science, the Ministry of Defence and the Department of Industry will cover half the cost with the remainder coming from industry. Hard-cash involvement by industry should ensure that research will be down-to-earth with marketable end-products both in software and hardware.
The Department of Industry will run the programme through a five-member directorate under Brian Oakley, seconded from his post as head of the Science and Engineering Research Council, and the directorate will report to a supervisory board of industrialists headed by Sir Robert Telford who is chairman of Marconi.

The Cabling of Britain programme has also got the go-ahead with the publication of the Government White Paper. It will be recalled that when first mooted the idea was universally applauded. Since that early flush of enthusiasm potential investors and manufacturers have had second thoughts. The flop of TV-am and generally reduced viewing figures suggest that a possible 30 channels of cable TV will not be a licence to print money. Those days are gone. Nonetheless, if cabling goes ahead as it inevitably will there will be a steady living as a reward for success.

Predictably the Opposition wanted monopoly powers granted to British Telecom and complained that the whole idea was divisive in that some poor people may not be able to afford the service. But, of course, there is nothing to prevent BT competing in the market and BT's chairman, Sir George Jefferson, positively welcomed the go-ahead and appointed Donald Wray as supremo of BT's spearhead thrust into the whole area of broadband local networks including interactive services. The argument on divisiveness is
plainly silly. Few of us can afford to motor in a Rolls-Royce but that is no reason why luxury cars shouldn't be built for those who can. The provisional indication of a $£ 5$ per week subscription is hardly likely to deter keen viewers.

Industry will benefit almost immediately. Racal-Oak have announced a $£ 3$ million initial contract from British Telecom for the supply of decoding equipment which ensures that viewers can access only those programmes and services to which they have subscribed.

Inmos

Since my last comment on Inmos the company has revealed at a press conference the latest state of play. For newcomers, Inmos was born in 1978 during Labour's last administration using as midwife the National Enterprise Board who were to finance the company with $£ 50$ million in two instalments of E 25 million. The objective was to build up an all-British VLSI chip capability while at the same time creating 4,000 new jobs in the UK. The business target was set at $£ 150$ million of profitable turnover by 1984.

Inmos started trading in 1981 and in that year (to December 31) achieved $\mathrm{E} 2 \cdot 1$ million turnover with a trading loss of $£ 13$ million. Last year sales accelerated to $£ 13.7$ million and the loss rose to $£ 20.4$ million. This year turnover is running at some $£ 20$ million, whether profitably or not is as yet unclear.

Total new jobs created in the UK are 275, expected to increase to 575 during the coming year. Current forecast is that no more than 1,000 jobs will be available at the Newport, Gwent, factory and a second factory, scheduled in the original plans, is not shelved but certainly far in the future.

All is not gloom. The Transputer, described as a single-chip micro-computer. should hit the market at the end of next year although not contributing profit until 1985. Meantime the memory products can reasonably expect to be generating profits as the capacity for high volume production at Newport is steadily increased.

Back-Up

No manufacturer can succeed without adequate after-sales service. But good engineers are in short supply, transport costs are high and hotels and meals don't get any cheaper. But even more important than cost is speed and quality of service on which the whole reputation of a company may well depend.

Engineering for reliability, testability and maintainability has made great advances in electronics manufacturing and overall reliability has greatly improved through LSI and other modern techniques. Against this there is the ever-increasing complexity of equipment and systems. At the end of the day things can and do go wrong and service engineers continue to be needed.

With high costs and a shortage of skilled people is there a better way of organising service visits, particularly those occasioned by panic? Digital Equipment has found an
answer not by putting more men on the road but taking their most skilled engineers off the road completely.

Not for them the tedium of traffic jams or living out of a suitcase. Instead, 16 of the best are housed in air-conditioned comfort at the company's Basingstoke customer service centre, offering a 24 hr service.

The key to successful service is diagnosis and it is in this key role that the Basingstoke experts excel. Once the fault has been pin-pointed to component or, at worst, p.c.b. level, rectification is a simple matter and can be completed by a less skilled travelling engineer.

The operation depends on a data communications network over which the Basingstoke diagnosticians can access the faulty DEC minicomputer and, backed up by a large mainframe computer, perform powerful test routines even though the remote faulty mini may be hundreds of miles away. The European network is continually extended as every new DEC mini delivered is supplied with the necessary modem and auto-dialler to complete the remote testing link.

So now the experts, instead of making one or at most two service calls a day, can service many more just by staying put.

Upturn

It is now clear that the current upturn in activity started last year with an increase in consumer spending. It is heartening to report that consumer electronics is back in business after so long in the doldrums. TV sales were a record last year and this year looks even better. Home computers are a brisk and expanding market and it is a pity that of over two million VTRs sold in the UK none were manufactured here

Capital equipment sales remain buoyant with the defence sector aided by the replacement programme following the Falklands campaign. The Electronic Engineering Association reported an eight percent increase in output during the past year at $£ 2.125$ million. Direct exports totalled $£ 740$ million but is probably about £ 1,000 million after taking account of equipment fitted in, for example, aircraft or other systems sold as a complete package.

Some sectors have fared better than others. Marine electronics has slipped back as a direct reflection of the world slump in shipping. The UK market for military tactical radio has slackened now that the British army has been re-equipped but exports are still doing well. Avionics remains in the superstar class and won Marconi Avionics two Queen's Awards this year, one each in technology and exports. Latest Marconi scoop is a $£ 25$ million order from the Royal Australian Air Force for airborne antisubmarine systems. The company has also teamed with Honeywell in military application of ring laser gyroscopes for inertial navigation.

The EEA reports a drop in employment in the capital goods sector of three percent to 98,000 , the result of modernisation in manufacturing and assembly techniques. A chief constraint to rapid expansion is the shortage of engineers, a perennial problem.

にOGTC
 Part One D. MANDELZWEIG ANARZYSER

${ }^{\top}$T IS evident by looking at recent projects in this magazine, that digital electronics in general, and microprocessors in particular, are playing an ever-increasing role in amateur projects. Many hobbyists are designing their own, building from kits, or just using home computers. There comes a time when it is necessary to test new designs, debug built projects, or fault-find digital circuitry. The most useful piece of test equipment for this is a logic analyser. However, due to the price of commercially available equipment, such a luxury is normally out of reach of the amateur.
The logic analyser to be described was designed to overcome this problem. The unit is used with an oscilloscope (when the 'scope display option is fitted), a piece of test equipment more easily affordable to the hobbyist. With a guaranteed maximum working frequency of 5 MHz (the prototype worked to 7.9 MHz), the analyser can cope with nearly all microprocessor systems found in the home today. Even systems working at a faster clock frequency can be tested by running the system (while testing) at a lower clock frequency. Comparison of the logic analyser's specifications (see Table 1.1) with those of commercially available units shows that the facilities offered compare favourably, for a much smaller outlay.

The analyser was designed to be as modular as possible. This allows the power of the analyser to be increased as and when it is needed, and is affordable. Five options can be fitted to the basic unit. Only one option is required to have a useful instrument. All the options are plug-in, and therefore have retrofit capability, and can be fitted in virtually any order.

Since the majority of microprocessors run with a clock frequency less than 5 MHz , and it was a design requirement to be able to test 5 MHz systems, the use of a $\mu \mathrm{P}$ was ruled out. However, even using Schottky TTL, some clever use had to be made of available i.c.s, in order to achieve the design requirement. For this reason, it may still be of interest to readers who do not intend building the unit to read the paragraphs on the circuit operation description.

WHAT IS A LOGIC ANALYSER?

An oscilloscope can display two (four on expensive models) traces of real-time information. When testing digital circuits, it is useful to be able to see the timing relationship between various signals, or alternatively, if looking for example at a data bus, to be able to look at the sequential data being put out on the bus. A logic analyser enables one to do this. Synchronously with the clock of the system under test, it captures and stores a number (depending on the memory size) of bytes, each byte being 8,16 or 32 bits wide, depending on the design. The analyser then subsequently displays the timing diagram of the captured data on a CRT
display. In order to make the analyser more useful, a number of facilities are usually incorporated. As mentioned, the analyser can be driven synchronously with an external clock. When using the external clock, the negative or positive edge can be selected, and clock qualifiers are provided. These can be switch-selected such that a logical 1, 0 or X (don't care) makes the input valid, so that external signals can control when the analyser stores information. There are usually three methods of triggering an analyser to start (or stop) storing data. A word recogniser can be used to compare the incoming data with a previously set up bank of switches (one switch for each input, allowing a 1,0 or X to be selected) when the data is equal to the present word, the analyser is triggered. An external input, with the rising or falling edge selectable, is also provided for triggering, or manual trigger is possible with a switch. To further enhance the triggering capability, the user can select how the analyser must store the data with respect to the trigger. The trigger can be used to stop storing data (for a 1 K byte memory, the analyser will store 1024 bytes before the trigger occurs), called post trigger, start storing data on the trigger (store 1024 bytes after the trigger), called pre trigger, or store 512 bytes before and 512 bytes after the trigger, called centre trigger. A more detailed explanation of the uses and working of these facilities will be given below. Since it is normally impossible to display all the bytes of data stored simultaneously (the display would be unreadable) only a portion of the memory is displayed, and the user can scan up and down the memory. Expand facilities can also be provided, so that although less bytes are displayed, more display resolution is achieved. The more expensive analysers provide cursors which can be moved across the display. Some also provide the capability to store two sets of data in two separate memories, and then compare the memories for differences.

This logic analyser includes most of these facilities. Eight input lines and a $1 \mathrm{~K} \times 8$ memory allow 1 K bytes of 8 bit

SPECIFICATION

TABLE 1.1. Specifications, modes and facilities

DATAIN:

CLOCK:

CLOCK OUT:

CLOCK QUALIFIERS:
NUMBER: 3 POS OR PJEG LEVEL SENSITIVE
Any or all may be chosen as negative, positive or don't care.

LEVELS MUST BE VALID A MINIMUM OF 2rs BEFORE THE CLOCK EDGE.

NOTE: The qualifiers are level sensitive, and must be valid foi the duration of the sample.

ARMING:
THE UNIT IS MANUALL` ARMED, AND CAN BE RESET AT ANY TIME

NOTE: To ensure that all old data is ove written by the new data when POST or CENTRE trigger is selected, the unit must be armed at least $\frac{1024}{\text { fin }}$ secs before the trigger occurs.

TRIGGERING:

WORD RECOGNISER	:SELECT INPU- WORD ON
	SWITCHES, INCLUDING DONT CARES.
EXT TRIG	:RISING OR FALLING EDGE SELECTABLE
	TRIGGER IS EDGE SENSITIVE
	TRIGGER MUST OCCUR WITHIN
	7Ons OF THE R SING (FALLING) EDGE OF THE CLOCK
MANUAL TRIGGER	:MANUAL SW TCH
TRIGGER SELECT	:PRE TRIGGER, POST TRIGGER
	OR CENTRE TRIGGER SELECTAELE.

HEX DATA DISPLAY (OPTION 2) 2 DIGIT HEX DISPLAY OF DATA BYTE. ANY DATA BYTE WITH RESPECT TO THE TRIGGER WORD CAN BE DISPLAYED BY THE UP/DOWN SWITCH. THERE IS A DECIMAL DISPLAY OF THE ADIRESS OF THE DATA. WORD BEING DISPLAYED

SCOPE DISPLAY
IOPTION 1)
DISPLAYS 8 BITS BY 54.32 or 16 BYTES. THE START BYTE IS SELECTED BY THE UP/ DOWN SWITCH, AND THE DECIMAL DISPLAY SHOWS THE ADDRESS OF THE START BYTE. BOTH OPTIONS MAY BE FITTED SIMULTANEOUSLY. IF THE SCOPE OPTION IS USED, A FURTHER OPTION MAY BE ADDED. THIS OPTION HIGHLIG -TTS THE TRIGGER WORD WHEN IT IS DISPLAYED ON THE SCOPE.
data words to be stored. The analyser has an external clock input (up to 5 MHz), with the clock edge switch selectable. Three clock qualifiers are provided, and each can be selected for a 1,0 or X . With the clock option fitted, the analyser can also run asynchronously at three selectable frequencies$5 \mathrm{MHz}, 1 \mathrm{MHz}$ and 100 kHz . The selected clock frequency is buffered and is brought out to the front panel, so that the circuit under test can be driven by the analyser's clock. The three modes of triggering discussed above are provided: external (edge selectable), manual, and word recogniser. A bank of 8 switches is provided for this, and each input line can individually be set for a 1,0 or X . The analyser allows the selection of pre, centre and post triggering as defined above. Two data display options are possible, one of which must be fitted to make the unit useful, although both can be fitted if desired. The one option displays 64 bytes by 8 bits (8 traces) of timing diagrams on a normal oscilloscope display (the oscilloscope must be a dual trace one with $X-Y$ capability). The display can be expanded so that only 32 or 16 bytes are displayed. The display can also be scanned up and down the memory. The other option allows the Hex value of the data to be displayed on two 7-segment displays. For both options, a 4-digit display indicates the address of the data byte with respect to the trigger point for either the data being displayed in Hex for the Hex display option, or the first data byte of the set of 16,32 or 64 bytes being displayed by the scope option. When both options are installed, the Hex data corresponds to the first (left-most) byte being displayed on the scope. A further option available which can only be used in conjunction with the scope display option, uses the Z-MOD input of the oscilloscope to brighten up the

Fig. 1.1. Analyser timing diagram

trigger byte (the byte at which the analyser was triggered) when that byte is being displayed on the oscilloscope. Finally, the basic analyser accepts TL compatible inputs, however the last option available will allow the testing of CMOS or other circuitry, at user defined supply rails.

SPECIFICATIONS

A complete list of specifications is given in Table 1.1, and these are self-explanatory. Perhaps the only extra explanation required is that of ARMing. Normally the analyser is in the display mode, displaying previously captured data. To get the analyser ready to capture new data, the unit must be ARMed. This is done manually with a switch, and when it occurs, the ARM l.e.d. lights, the data being displayed becomes invalid, and the analyser awaits the trigger. During this time, the analyser is storing data, so that when a trigger comes, and POST triggering, for example, has been selected, the analyser can stop storing data immediately. If the trigger arrives too soon after the analyser is armed, then in this case (POST triggering) the memory will not be completely overwritten, and some old data will remain. This is the reason for the note given in the specifications. In any event, when the trigger arrives, the TRIG l.e.d. lights, and both remain on until the data has been stored. At this point, the l.e.d.s extinguish, and the analyser automatically reverts to displaying the new data. At any stage, the ARM/RESET switch can be used to reset the analyser from the ARMed state to the display state.

CIRCUIT DESCRIPTION

Before considering how the circuit works, it is necessary to keep two factors in mind. The first is that with a 5 MHz clock, only 200 ns is available to do the following: increment the RAM address; check for a valid trigger, generate the Write pulse to the RAM, and then be ready to repeat the sequence. A look at the circuit diagram shows that signals

Fig. 1.2. Simple positive/negative selection

Fig. 1.3. Improved positive/negative selection
have to pass through quite a few i.c.s, and the propagation delays through each begin to add up. For this reason, one has to firstly be careful that the total worst case time to complete a cycle does not exceed 200 ns , and secondly that the Enable, Latch, Data, and Clock pulses are generated in the correct time slots and sequence, to ensure reliable operation. With the aid of the timing diagram shown in Fig. 1.1, we will be looking at how correct timing was achieved.

The second factor concerns data skew. For example, consider the EXT. TRIG. input where either positive or negative edge triggering is possible. A simple way to achieve selection is shown in Fig. 1.2. The problem with this circuit is that:

1. When negative edge is selected, the input sees only one gate input, and when positive edge triggered, the input sees two gates.
2. Because of the extra invertor, the propagation delay for negative edge triggering is longer than that for positive .edge triggering.
To overcome this, the circuit of Fig. 1.3 is used. This circuit has one further advantage, that the input signal itself is not physically switched-the switching is done by a d.c. level applied to the EX-OR gate. This second factor also applies to the clock and qualifiers' inputs, as well as to the word recogniser. In these two cases a different method was used to overcome the problem.

Refer to Figs. 1.4, 1.5 and 1.6 for the block diagram, front panel circuitry, and main board circuitry respectively. Assume that the unit is on, and has been reset. We now want to store data, so we must ARM the analyser using switch S16. This sets the master flip-flop consisting of IC28c \& d L (low) on STORE, and H (high) on STORE become valid, with the following effect: IC1's outputs become valid (no longer in Tri-State). IC15 gates data from the data bus to the RAM, the RAM is put in the WRITE mode, IC27b and IC31 are enabled. Depending on the setting of S14, IC31 selects either the SYNC CLOCK, or one of the three asynchronous clock frequencies from the CLOCK OPTION, if it is fitted. Since the inputs to the i.c. are paralleled to both halves of the i.c., the same selected clock appears at both outputs (except in the case of SYNC CLOCK
selection, where the internal 5 MHz clock appears at output 2 Y . Thus the internal clock frequencies are buffered and made available at SK7 on the front panel. The output of 1 Y is called the STORE CK. Normal gates were considered for the selection of STORE CK, but calculations of propagation delays proved that using IC3 1 would be faster, with the advantage of a smaller total chip count. Assume now that the SYNCH CLOCK has been selected. However, before continuing with the STORE CK, let us see how the SYNCH CLOCK was derived. Since the clock qualifiers must act on the input clock, some sort of gating must be incorporated. We also want to be able to select positive or negative clock edge, and the qualifier level. At the same time we must be careful of data skew. To solve the problem, all four inputs are buffered with a single LS TTL gate (IC5) each. This allows the lowest possible load to be applied to the circuit under test. The clock and qualifier inputs are fed to one set of inputs of a 4bit magnitude comparator, IC4. The i.c. gives an output on pin 6 only when all the bits in one set of inputs correspond to the bits in the second set of inputs. Consider selecting positive edge for the CLOCK, positive level for CO1, negative level for CQ2, and don't care for CO3. For CQ1 positive, B2 input is low, and thus S 2 a is switched such that A 2 is low. Similarly, for CO2, B3 will be high, and with S3a in the position shown, R20 will hold A3 high. In the don't care case, S4 is switched such that R25 and R21 pull B4 and A4 high respectively. So when the correct inputs are applied to the qualifiers, the respective B inputs will be equal to the A inputs. For positive clack edge S1a wiper is at OV, i.e. A1 is low, when the clock goes high, B1 will become low (due to the inverter) and because these inputs as well as the qualifier inputs are now equal, IC4 pin 6 goes high. When the clock falls, $A 1$ is not equal to B1, so pin 6 goes low, and

thus follows the input clock. If a qualifier became invalid, the clock would stop, and that if negative clock edge is selected, the output at pin 6 would be an inverted version of the input clock. By the use of only one i.c., all the clock functions have been implemented, propagation delay has been kept to a minimum, and data skew has been avoided, as all inputs to the i.c. have similar propagation delays through the i.c.

Now to come back to the STORE CK. IC24b has been disabled by L on STORE, and its output is high. The STORE CK passes through IC36c, and is applied to the RAM address counters' clocks (ICs 17-19). Pin 1 of IC23a is low, and therefore pin 3 is high, with the result that the LD inputs of the RAM counters are high. Therefore the counters are being clocked, and the RAM is being addressed in time with the input clock. Now every time IC31 pin 7 (STORE CK) goes high, the output of IC30a (LE) goes low, latching the data into IC1. There are two further requirements of the STORE CK. Firstly a WRITE pulse with a minimum width of 40 ns must be generated to store the data in the RAM, but only when the address and the data are valid. Secondly, the input latch, IC1, must remain latched for just long enough so that the memory stores valid data. The circuit works like this. When the analyser is ARMED. H on STORE goes high, and this sets the 01 and 02 outputs of IC34 (via the CLR inputs) to low. The output of IC29d is thus low, and because pin 12 of IC31 is still low, $\overline{L E}$ is high. When the STORE CK goes high, $\overline{L E}$ goes low, and the input data is latched. One cannot rely on the STORE CK to hold $\overline{\mathrm{LE}}$ low, because for a $1: 1$ mark-space ratio 5 MHz clock, the high level is only valid for 100 ns which, as we will see, is too short. So what happens is that the STORE CK clocks the first D-TYPE, and Q1 goes high. IC29d output thus goes high, and now regardless of whether the STORE CK falls away or not, $\overline{\text { LE }}$ remains low. Q1 of IC35 goes low after the propagation delays of IC33b and IC35, and remains low for approximately 43 ns , which is long enough to write the data into RAM. On the rising edge of 01 (IC35), 02 of IC34 is clocked high, IC29d goes low. and if the STORE CK has become low, $\overline{\overline{L E}}$ once again becomes high. If STORE CK is not yet low, $\overline{\text { LE }}$ will remain low until this occurs. When the next STORE CK comes, the sequence is repeated. With this little bit of circuitry then, input data is latched, held long enough to be stored, the store pulse (WE) is produced, and the latch is disabled once again.

At this stage we have the input clock clocking the RAM, and input data being stored in the RAM. The counters IC17 to IC19 are cycling through a count of 1023. Now we must consider the trigger circuitry. The type of trigger is selected by S19, and IC25a, b \& d. Manual trigger is simple: IC26 produces a pulse, IC25b goes low, IC27a goes high and IC2 7b goes low. EXT works similarly, with IC29c and S18 allowing the rising or falling edge to be selected. For this case S19 enables IC25a.

WORD RECOGNISER

The word recogniser works in a similar fashion to the clock and its qualifiers, in that the incoming data is compared to data set up on switches S6 to S13. ICs 2 and 3 do the comparison, and produce a high level output when the data sets are equal. This output is gated via IC24a through IC25d to IC27a, if the word recogniser trigger has been selected. The requirement for gating the output is that a false trigger may occur while the latch outputs are settling, or input data is changing. To avoid this, $\overline{\mathrm{EE}}$, suitably inverted (by IC25c) and delayed (IC24d) to allow for latch settling time, only enables IC24a when the data at the output of IC1 is valid.

Now when IC27b goes low, the flip-flop consisting of

IC28a \& b sets. The flip-flop is capacitively coupled, and this allows pin 5 to go high even if IC27b stays low so that the flip-flop can be reset when necessary (this ensures that triggering is only edge sensitive for all the triggering modes). IC28a goes low, lighting the TRIG I.e.d. The flip-flop consisting of IC30c \& d is set by IC28b via C7, which again allows the second flip-flop to reset before the first one does. The flip-flop triggers the monostable IC32, which provides a positive and negative pulse. The positive pulse is used to reset the second flip-flop, and also for the Z-MOD option, to be described in a future part. The reason for the second flipflop being necessary, as will shortly be explained, is that the first flip-flop can be reset immediately after being set. Thus the time for which the flip-flop is set is virtually that of the propagation delays of two STTL gates, being approximately 10 ns . Since a 74121 requires a minimum input pulse of 50 ns , this lengthened pulse is provided by the second flipflop. The negative pulse produced by IC32 (ADL) firstly loads the address that was on the address bus into ICs 20-22, so that the address at. which the analyser was triggered, is stored. ADL also loads the preset binary number 0,511 or 1023, depending on S5 into the counters ICs 7-9. IC10 and IC11, two EPROMS, decode the binary number into BCD, and the number is displayed on displays $1-4$. Thus the display is preset with a number depending on which TRIG POSition is selected- 0 for POST, 511 for CENTRE, or 1023 for PRE trigger. With IC28b output low, counters IC37-39 are preset to zero, and when POST goes high, the counters and IC24c are enabled. This allows STORE CK to clock ICs 37-39. Again, depending on position of S5, either POST, or QA or QB is switched to IC30b. If PRE trigger is selected, QB is connected, allowing the counter to count to 1023 before a pulse is produced which resets the main flipflop. The count of 1023 allows the memory to be filled with 1 K of data from when the trigger occurs. In other words, the analyser was triggered to start storing data, and this is thus called PRE-trigger. If CENTRE trigger is selected, the counters count to 511 before resetting the main flip-flop. Here the memory is only filled with 512 bytes of data after the trigger and thus contains 512 bytes of stored data before the trigger occurred. Hence the name centre trigger.

POST TRIGGER

Finally for POST trigger, it is required that the analyser stops storing immediately, so POST signal is connected directly to the reset. As can now be seen, when POST is selected, IC28b causes itself to be reset via the switch and IC30b, and for this reason IC3O c \& d are required as explained above. Once the main flip-flop and IC28 a \& b have been reset, the ARM and TRIG l.e.d.s extinguish, IC1 becomes Tristate, IC 15 gates RAM data to the data bus, the RAM goes into its read mode, IC31 (and thus the STORE CK) is disabled, and ICs 17-19 have their LD input taken low by IC23a, so that the trigger address loaded into ICs 20-22 now passes through ICs 17-19. This means that the data stored when the analyser was triggered is on the data bus, and the data corresponds to the trigger position being displayed on the address display. If POST trigger had been selected, 0 would be displayed, showing that the data byte on the bus is the first data byte stored, i.e. the trigger data byte. For CENTRE trigger, 511 would be displayed, implying that the trigger data byte is in the middle of the RAM, and similarly, for PRE trigger, 1023 will be displayed, indicating that the trigger byte was the last byte stored. Before discussing briefly how the data is displayed (the display options will be described in Part 3), let us now look at the timing diagram, Fig. 1.1.

SYSTEM TIMING

We will take the rising edge of the input clock as reference. Using maximum and minimum propagation delays as given in the Texas Instruments TTL Data Book, STORE CK will go high a maximum of 42 ns later and a minimum of 25 ns, due to the delays through IC5, IC4 and IC31. Taking into account the delay through IC30a, $\overline{\text { LE }}$ goes low 5 ns later. Also, 44.5 ns after STORE CK goes high, the address on the data bus becomes valid (delays are due to IC36c and the counters IC17-19). Now if IC33b is not in circuit, and the minimum propagation time across IC35 is assumed, it is possible that WE will become valid 2.5 ns before the address is valid. Thus the delay through IC33b is included to ensure that this cannot happen. Now since it takes (worst case) 47ns for $\overline{L E}$ to go low, and then 10 ns for $\overline{L E}$ to latch the data, the input data must remain valid for 57 ns , hence the 60 ns data hold time specified. Also, to ensure that $\overline{L E}$ remains low for fast clocks, the input clock must remain high for at least 62 ns , to allow the clock propagated through IC34 and IC29d to hold $\overline{\text { LE }}$ low. After a worst case delay of 65 ns across IC35, the WE becomes valid for 43ns
and then 24.5 ns later (due to IC34, IC29d and IC30a) $\overline{\text { LE }}$ goes high again lassuming of course that the STORE CK is already low). This would then be a worst case total of 182 ns after the input clock edge, which allows 18 ns spare before the next clock edge arrives. As is specified, the data input must be valid at the rising edge of the input clock, and becomes valid at the output of IC1 10ns later due to the delay through IC1. The comparators take 28 ns for the compare, and including the delay of $I C 1$, the $A=B$ output is valid 38 ns after the rising clock edge. Now including the delay of IC25c, $\overline{\text { LE }}$ applied to IC24a (without IC24d) would take a minimum of $29+3=32 \mathrm{~ns}$, which would mean that IC24a could be enabled 6 ns too early. Thus the delay of IC24d is included to ensure that the $\mathrm{A}=\mathrm{B}$ signal is valid before IC24a is enabled. IC24a adds 7.5 ns and then the trigger path adds a further 78.5 ns before the master flip-flop is reset. This means that the time taken between the rising edge of the input clock and the point at which a word recogniser trigger stops the STORE CK, is 157.5 ns . This last calculation ensures that the analyser is reset within $200 n s$, i.e. before the next clock edge arrives.

COMPONENTS . . .

Resistors	
R1-R25, R34, R35, R40,	
R68, R70	
R26-R29, R36-R39, R63-R67,	
R72-R75, R77-R88 (30 off)	
R30, R32, R69	1 k (29 off)
R31, R33	100 k (3 off)
R42-R62	$27 \mathrm{k}(2$ off)
R41	470 (21 off)
R71	270
R76	220

All resistors are $5 \% \frac{1}{4} \mathrm{~W}$ unless otherwise stated

Capacitors

C1, C2
C3, C4, C9-C26
C5
C6, C7
C8
C28, C30, C32
C27, C29, C31
C33
C34, C35
Transistors \& Diodes

TR1 REC 1
 REC2

D1, D2, D3
Integrated Circuits

IC1	74LS373
IC2, IC3, IC4	74 S85 (3 off)
IC5	74 LS04
IC6	ICM7556
IC7-9, IC20-22	74 LS193 (6 off)
IC10, IC11	2716 (2 off)
IC12-14	74 LS47 (3 off)
IC15	74 LS245
IC16	MK4801A-55
IC17-19, IC37-39	74 LS191 (6 off)
IC23	74 LS00
IC24, IC33	$74 S 08$ (2 off)

$2 \mu 2 / 16 \mathrm{~V}$ tant. (2 off)
$100 \mathrm{n} / 16 \mathrm{~V}$ tant. (18 off)
$4 \mu 7 / 16 \mathrm{~V}$ tant.
150 p ceramic (2 off) 30p ceramic
$1 \mu / 35 \mathrm{~V}$ tant. (3 off)
$10 \mu / 35 \mathrm{~V}$ tant. (3 off)
$4700 \mu / 25 \mathrm{~V}$ elect.
$2200 \mu / 25 \mathrm{~V}$ elect.

BC108
100 V p.i.v. 5 A
100 V p.i.v. 1A
3 mm red l.e.d. (3 off)

74 LS373
4 S85 (3 off)
74LSO4
74LS193 (6 off)
ブ1

MK4801A-55

74S08 (2 off)

IC25, IC28	74500 (2 off)
IC26, IC32, IC35	741211 (3 off)
IC27	74520
IC29	74586
IC30	74502
IC31	745153
IC34	745744
IC36	74532
IC40	$7912 C T$
IC41	$7812 C T$
IC42	LM323K

Switches

S1,S18.S21
S2-4, S6-13
S5, S19, S20*
S14
S15
S16,S17

Miscellaneous

T1

T2
SK101*
SK102*
SK103*
SK7
SK4, SK5
SK3
SK1, SK2, SK6, SK8 toggle (11 off) 4P3W rotary (3 off) 3 P 4 W rotary centre off) (2 off)

Transformer 9V @ 3A
15-0-15@150mA
Red banana socket
Black banana socket
Green banana socket 14 pin i.c. socket

DPDT min. toggle (3 off) DPDT (with centre off) min

DPDT momentary action DPDT momentary action (with

BNC female chassis mount 16 pin i.c. socket (2 off)

Double-sided wire-wrap p.c.b. edge connector. See text (4 off)
14 pin wire-wrap sockets for displays (6 off)
Sockets for i.c.s: See text
Heatsink, nuts \& bolts, stand-off pillars.
Case: $440 \mathrm{~mm} \times 110 \mathrm{~m} \times 200 \mathrm{~mm}$ deep.
Soldercon i.c. socket strips (see text)
16 -way ribbon cable
Ribbon cable headers to fit 16 -pin i.c. sockets (4 off)
Fuse and fuseholder (chassis mount 500 mA)
Coloured "Easy-Hooks'
X1-X4 $0 \cdot 3^{\prime \prime}$ l.e.d. 7 -seg. display (Maplin common anode type)
X5-X6 0.3" I.e.d. 7 -seg. display (FND357)
"These items are used with the display options. Since they are relatively cheap, it is recommended that they are fitted to ease retro-fitting of these options. Refer to text.

The clock modifiers must be valid before the trigger word appears, to get the analyser triggered. Once triggered, the modifiers can then be used to select data to be stored, i.e. to start and stop storage as required. The reason for this requirement is that the trigger pulse is gated through by IC24a, which is enabled by $\overline{L E}$, which is in turn derived from the STORE CK. So if the modifiers are invalid there is no SYNC CLOCK, which means no STORE CK. Hence the trigger word will never get through. Once IC28b and IC28a have been set, it does not matter if no more pulses come through, therefore the modifiers can be used.

All unused inputs of the probe (including unused modifiers and EXT input) should be tied high or low, especially when operating at higher frequencies. Floating gate inputs can affect other inputs of the same i.c., and although no problems were experienced with the prototype, this is good practice.

DATA DISPLAY

Assuming no scope option, the input to IC23d (LD) is low, and the output of IC23a is therefore low. As already explained, the address on the outputs of ICs 20-22 are therefore passed through ICs 17-19, and the data corresponding to that address is on the data bus. Because LD is low, the latch on the Hex display option is disabled (not latched) and the data on the data bus is displayed. If S17 is now activated, one of the halves of IC6 oscillates, and the counters ICs 7-9 and ICs 20-22 increment or decrement in unison. ICs 7-9 keep track of the address of the data byte being displayed, while the RAM address is being set by ICs 20-22. If now the scope option is fitted, the option applies a $64 \mathrm{kHz}, 32 \mathrm{kHz}$ or 16 kHz clock (depending on the option's expand switch) to IC24b, which at this time is enabled. This clocks ICs 17-19. LD is also being held high, so the LD in-
puts of ICs 17-19 are invalid. However, every 64, 32 or 16 clock pulses, LD is pulsed low, reloading ICs 17-19 with the base address stored in ICs 20-22. Also, the Hex display option gets the pulse, so the latch on the option latches in the data only when the base address (from ICs 20-22) is valid. Now similarly, when S17 is operated, the base address in ICs 20-22 change, and so the starting point from which the scope displays its 64,32 or 16 bytes is changed. In this way, the whole memory can be scanned up and down in segments of 64, 32 or 16 bytes.

POWER SUPFLY

The power supply is conventional, using 3 -terminal regulators. Although the $\pm 12 \mathrm{~V}$ has not yet been made use of, it is used for the CMOS input option, and the scope display option. The transformer supplying the +5 V must have a rating of at least 2 A , as the total current consumption of the complete unit exceeds 1 A .

COMPONENTS

Full constructional details of the basic unit will be given in the next issue; however, a comment on the components is necessary. The Schottky TLL must not be replaced by LS $T \mathrm{~L}$, otherwise the 5 MHz specification will not be achieved. Double-sided p.c.b.s have had to be used, but do not have to be through-hole plated. Since it is not wise to solder i.c.s direct to the p.c.b., it is recommended that Soldercon i.c. socket strips are used. These allow soldering on both sides of the p.c.b. and are cost effective. The alternative is to use wire-wrap sockets, to allow the sockets to stand proud of the p.c.b., so that the pins can be soldered both sides where necessary. The prototype was built using Soldercon strips. and these worked well, while providing a neat solution.

Beckman instruments are used worldwide in medicine and science, in industry and environmental technology, where precision and reliability are vital: from the Beckman photospectrometer in a space probe scanning for signs of life to a Beckman clinical electrolyte analyser.

World's widest range of hand-held multimeters

This same perfection in design and manufacture goes into Beckman digital multimeters, themselves widely used in testing, measurement, research and engineering because of their accuracy and their intelligent features.

Now the electronics enthus-
 iast has access to the same standard of reliability in the T90, T100 and T110 models.

Digital performance at analogue cost

All models undergo 100\% factory testing. Their accuracy is guaranteed to be held over a long period and reliability is outstanding, thanks to fewer components and interconnections. All components are of the highest quality and include a CMOS integrated circuit and gold inlaid switch contacts.

The digital display can be read at a glance, and all functions are selected with a single rotary switch, rather than with confusing rows of push buttons.

Battery life is exceptional -200 hours at continuous operation.

The T90 gives an accuracy of $0.8 \% \mathrm{Vac}$ and is remarkable value for money at $£ 43.45$ (+VAT).

The T100 is a full range function meter with 0.5% accuracy at $£ 49.00$ (+VAT), while the T110 offers even greater accuracy of 0.25% plus an audible continuity indicator at $£ 59.00$ (+VAT).

To feel like a professional you can order your Beckman straight off the coupon, or send for full technical data.

BECKMAN
 World leaders in multimeters

Beckman Instruments Lid
Electronic Components UK Sales and Marketing Organisation Mylen House, 11 Wagon Lane, Sheldon, Birmingham B26 3DU. Tel: $021-7427921$ Telex: 336659

LOW COST/HIGH QUALITY INSTRUMENTS

Designed by Martin Kent, author of digital instrument projects published previously in Practical Electronics.
Versatile digital panel mounting instruments, fully assembled and calibrated, at special prices to enable you to complete a range of projects this summer.
LCD displays and CMOS LSI result in ultra-low power consumption for portable applications. Top-grade components and p.t.h. p.c. boards used throughout.
Applications ideas included for making multimeter, thermometer, pH meter, h.f. dfm, etc

MARTELMNSTRUMENTS LMTMED $\begin{aligned} & \text { Knight House, Foxhall Road, Southminster Essex CM0 7LB } \\ & \text { Tel: Maldon (0621) 772151 }\end{aligned}$

TOROIDALS

The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and, thanks to I.L.P., PRICE
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty.

*Gold service available. 21 days manufacture for urgent deliveries.

*Orders despatched within 7 days of receipt for single or small quantity orders.
*5 year no quibble guarantee.

		 ALSO AVAILABLE Sizes up to and including 5KVA are manufactured to order.

The benefitts of ILP toroidal transtormers
ILP toroidal transtormers are only hali the weight and height of their laminated equivalents. and are available with 110 V . 220 V or 240 V primaries coded as follows.
IMPORTANT: Regulation - All voltages quoted are FULL LOAO. Please add regulation ligure to secondary voltage to oblain oft load vollage.
For 110 V primary insert " 0 " in place of " X " in type number
For 220 V primary (Europe) insert " 1 " in place of " x " in type number
For 240V primary (UK) insen " 2 " in place of " X " in lype number.
Also available at Electrovalue, Maplin, Technomatic and Barrie Electronics.

For mail order please make your crossed cheques or postal orders payable to ILP Electronics Ltd. Barclaycard/Access welcome. Trade orders standard terms.

> Posito IIP Electronic Lid. Granam Bell House Roder Close

Canterbury CI2 7 EP . Kent. England
Teephone (0227)54778 Telex 965780
TRANSE日BRMERE

Copies of Patents can be obtained from: the Patents Office Sales, St. Mary Cray, Orpington, Kent. Price $£ 1.60$ each.

INFRA-RED HELMET LINK

Motor cyclists and their pillion passengers have a problem with communication, largely because British law (very reasonably) compels them to wear crash helmets. The obvious solution is a radio link. But if the legal CB wavelengths are used the link is likely to be useless, especially in city areas, because these frequencies are now so cluttered and blitzed by illegal high-powered transmitters, that normal use is impractical.

David Thompson of London W8 and Nicholas Hobson of SW3 have filed a British patent application (2 103 043) on an alternative approach. They suggest using an infra-red transmitter and receiver system built into the crash helmets. This seems a sensible approach, because the distance between rider and passenger is small, and their front-back positioning is fixed. The system can be modified, however, for sideways use with a side car.

Fig. 1 shows two helmets, each with microphone 3 and headphones 4 inside. L.e.d. 5 serves as an infra-red emitter and photo diode 6 as a receiver, on the front, rear and/or side of the helmet as necessary.

Inside each helmet there is an infra-red transceiver, shown schematically in Fig. 2. Speech picked up by microphone 14 is amplified at 15 and split into two paths. One path triggers threshold switch 16 and the other controls AGC circuit 17. The controlled signal is limited at 18 and band-pass filtered at 19 to around $300-330 \mathrm{~Hz}$. The processed signal is then fed to one input of Pulse Width Modulator 20, while the other input receives a triangle carrier generated by oscillator 21 at around 20 kHz . The pulse width modulated output is converted to Pulse Position Modulation by circuit 22. The inventors say PPM allows average transmitted power to be greatly reduced.

The pulse train is applied via amplifier 23 to l.e.d. 24 , operated on a 940 nm wavelength (eg Siemens type LD 241).

In the receiver photo diode 26 (type

BPW 34, for instance) outputs to LC filter 27 , so that d.c. and low frequency components are shunted to earth. The wanted HF signal is amplified at 28 and band limited at 29 to optimize signal-to-noise ratio at the input of amplifier 30. This outputs a pulse train similar to that produced at converter 22 in the transmitter. Demodulator 32 uses the pulse train to sample a triangle wave locally generated by oscillator 33, phase locked to the transmitter oscillator. Both the positive and negative slopes of the triangle are sampled. The difference between the samples corresponds to the phase error between the two oscillators and is used to control the oscillator 33 to close the phase locked loop. The sum voltage of the samples is the audio signal which is band-pass filtered at 35 , amplified at 38 and fed to earphone loudspeaker 39.

DOUBLE-CARRIER STEREOTV

There is currently a move in Germany to protect the native TV manufacturers from foreign competition, by the use of a patented stereo sound system. For the last sixteen years Europe has been able to limit the number and type of colour sets made by Far Eastern firms, both in the Far East and in Europe, by clever use of the Telefunken patents on the PAL signal coding system. But now the PAL patents are running out and in Germany IGR (Interessengemeinschaft fur Rundfunkschutzrechte GmbH) is hoping to
do the same with a folio of patents on the double-carrier system now being used to transmit stereo sound with some TV programmes in West Germany. This is one very good reason why the Germans adopted a very different approach to that used in Japan.

In that country the two channels of sound are multiplexed on a single carrier, whereas in Germany they are transmitted on two separate carriers. Unfortunately the German patents on stereo TV sound are likely to prove far weaker than the PAL patents, for the simple reason that there is nothing new in twin carrier transmission.

IGR's only hope is to patent details of the system.

European patent application 0069864 is an example of what looks increasingly like a doomed attempt at fending off foreign competition. The patent application, in the name of IGR, has been filed in all the major European countries, including Britain. This is an expensive tactic but the application covers only a trivial circuit detail.

Even if IGR can persuade the European Patent Office that such a simple idea is new, and worthy of a patent, it is hard to see how it can be used to ward off the Japanese competition.

TO most hobbyists the function or even existence of a Deglitcher is somewhat obscure. However, with the increasing interest generated in these pages over recent years concerning microprocessor interfacing, particularly in digital to analogue conversion, a number of experimenters may well have been 'glitched' without being fully aware of their situation, the results being curious logic spikes and consequently distortion of the desired output.

THE GLITCH DEFINED

A glitch is a transient spike which occurs at the output of any DAC (digital to analogue converter) when the input code is changed. All DACs suffer from glitching. The transients are due to the finite, variable times taken for digital signals to drive analogue switches. These variations are caused by small imperfections introduced to the integrated circuit during fabrication, hence stored charge, or gate to drain capacity, is inconsistent. The resultant effect is that both digital and analogue switches turn on and off at different rates at different times. Consequently a series of states is experienced when the input, and hence the output, is changed.

This behaviour is most pronounced when small changes occur about the most significant bit (MSB). To illustrate this point consider the incrementing of data from 127_{10} to $12810 ; ~_{12}$; in binary form this corresponds to a transfer of 01111111_{2} to 10000000_{2}; in other words a complete change of state is

Fig. 1. Glitch effects

Fig. 2. Effect of damping
required for each logic input. If this is analysed further the DAC must switch the MSB on and switch off the other lesser seven bits in order to synthesise the corresponding analogue voltage. However these switches of logic level do not occur simultaneously and thus for a small space of time there are many possible input values. The two worst cases are 11111111_{2} the MSB switches on while the lesser bits are still on) and 00000000_{2} (the lesser bits turn off prior to the MSB turning on). Both of these cases are shown in Fig. 1.

DEGLITCHING

The immediate concern is the various methods of glitch elimination. The first point to make is that complete deglitching is only possible by over-damping the system. In most cases this is possible but wholly undesirable due to the sluggish response. However the principle of damping is a useful one and is commonplace in comparatively slower systems.

In its simplest form a capacitor strapped across the DAC's output acts as a reservoir for smoothing purposes. The choice of capacitance depends on a compromise between response time and glitch amplitude. Unfortunately these two parameters work against each other and hence alternative methods are necessary for higher speeds (Fig. 2).
One such method is to load all the logic bits into a storage register before updating the DAC. In this way the skew time of the digital drive circuitry is reduced simply by ensuring

Fig. 3. Switched feedback Deglitcher
that all the data bits are input at the same time. However the output stages are still prone to fabrication problems as mentioned earlier. Another problem with the storage register system is that significant propagation delay times are added to the signal processing and this hinders fast operation.

This leads to the third, and most efficient, method of reducing glitches: a Deglitcher. In making this statement it must be noted that glitches cannot be eliminated, only reduced. A Deglitcher is a switched feedback element, and as such a device it must be included in the feedback loop of an operational amplifier used at the output stage of the DAC. They are essentially analogue devices with some clock functions, closely related to sample and hold amplifiers. The principle of a Deglitcher circuit is to isolate a DAC glitch and substitute its own small glitch. This latter glitch comes from charge dumping on the Deglitcher hold capacitor during transitions from sample to hold and hold to sample. Since this is independent of the DAC, changes in the digital input codes will have no bearing on the glitch size. Therefore the glitch is small and constant.

Implementation of a Deglitcher is shown in the block diagram of a DAC system in Fig. 3. The timing of the circuit is given in Fig. 4. Here, when the external storage registers are full a pulse, 'Strobe $1 n$ ', is applied to the Deglitcher. The rising edge of this pulse places the Deglitcher into its hold mode and then triggers an internal mode control gate pulse. At a small but specified time after the 'Strobe In' pulse has been received, a 'Strobe Out' pulse is generated. This allows data to be transmitted from the storage registers to update the DAC. After the DAC has assumed its new data level the falling edge of the Deglitcher mode control switches the mode from hold to sample and hence reconnects the DAC output to the amplifier, which quickly assumes its new value. Obviously a sufficiently fast op-amp must be used.

Minimising glitches in this manner results in an essentially linear analogue representation of a digital input. This is extremely important in applications such as cathode ray tube display driving where large high speed transients are integrated over a number of microseconds thus affecting accuracy, lengthening system settling time and creating distortion.

Fig. 4. Timing diagram

PRACTICALSYSTEM

Such a system is realised in Fig. 5. In this particular example the DAC is an 8 bit device, but it could be of any resolution. The particular Deglitcher is the Teledyne Philbrick 4902 which is a high reliability hybrid module. This device requires an f.e.t. op-amp and hence an LF 35$\}$ is used. The Deglitcher has three externally controllable variables. The 'Jump Trim' determines the voltage of the hold signal_and the 'EOS Trim' is the offset voltage compensation for the device.

Other features of the circuit are the clamped output of the DAC using two Schottky diodes, the debounce of the strobe input and the feedback resistor R_{f}. The diodes prevent damage due to over voltage, and glitches, by supplying a low resistance path to ground. The debounce network consists of low value components in order to attain a reasonably fast. clean edge for the Deglitcher to trigger from; situations such as these always call for a compromise between speed and effectiveness. The feedback resistor R_{f} is one of the major components in the circuit. During the sample mode the constant glitch is generated. The amplitude of the glitch is a function of the DAC output current and the feedback resistor. Hence, during the sample mode $V_{0}=-l_{0} R_{f}$. The output becomes that of Fig. 6. Pin 11 is the strobe $0 / p$ which enables the data latches to update their registers.

Typical applications where this sort of circuit is employed are CRT display systems, fast process controllers. camp generators, automatic test equipment and symbol recognition devices.

The hardware and software exchange point for PE computer projects

Increasing RAM to $\mathbf{3 K}$

Sir-The available user-RAM on the PE Microcontroller is $1 K$ bytes. More complex control programs become restricted due to lack of user-RAM. The circuit described increases this memory by $2 K$ bytes whilst retaining:
a) battery backup facility
b) "DISBUG" monitor facilities
with the minimum of p.c.b. modifications, and at very low cost.
8) IC27 pin 3 to IC7 pin 1 (i.c. pin only)
9) IC26 pin 24 to VRAM
10) Connect $3 k 3$ resistor from /C7 pin 1 $t o+V c c$
IC6 (address decoder) output $Y 1$ is enabled for a valid memory address between 0000 and 03FF, generating a chip select for the 1 K RAM (IC8, 9). The additional $2 K$ RAM is located at addresses 0400 to ØBFF, utilising the outputs Y2 and

The RAM chip used is the Hitachi HM6116LP-3. Being pin compatible with the 2516 EPROM, it will plug into the spare 24-pin socket (for IC26) on the Microcontroller. As with the DISBUG EPROM (IC3) the use of an additional low profile socket is required with pins 18, 20, 21 and 24 being bent out before insertion, allowing access for modifications. The p.c.b. wiring of address and data lines are compatible. Modifications are however required for the control signals-p.c.b. modifications being:

1) cut track between IC24 pin 4 and IC25 pin 1
2) cut track to IC7 pin 3 (near IC7) and join the now isolated track to $/ C 7$ pin 4
3) carefully lift IC7 pin 1 (to allow access to this pin only, for wiring)
Additional wiring required is as shown on the circuit diagram. The 741500 chip (IC27) can be sited above IC10 (spare socket) on the Microcontroller or on adjacent Veroboard. All wiring connections can be made on top of the p.c.b. wire as follows (6116 chip removed):
4) 74LSOO interconnections, power supplv, ground
5) IC25 pin 6 to IC26 pin 21
6) Join IC26 pins 18 and 20, wire to $1 C 7$ pin 3
7) IC27 pins 12, 13 to IC6 pins 13,14 respectively
8) IC27 pin 2 to BUS 02
9) IC27 $\operatorname{pin} 4$ to IC6 pin 15
10) IC27 pin 6 to IC24 pin 4

Fig. 1. Circuit diagram (with added 2K memory and Chip Select and Write Enable)

Y3 of IC6. If either of these outputs is true, IC27 pin 11 goes high. This enables IC27 pin 1. which is phased with BUS 02 clock, to generate chip select to IC26, provided the +5 volt power supply rail is held.

The Microcontroller uses a clock stretching input to IC1 (clock generator) whenever any address in RAM is assessed. For compatibility of software timing this is used in the modified circuit. IC27 gates provide a preset to IC24 (dual D type flipflop) whenever any of IC6 outputs Y1. Y2 or Y3 are true. This enables the clock and D inputs to generate: i) memory ready to IC1 pin 6; ii) enable to the other flip-flop (IC24).

This second flip-flop (IC24) generating the "write enable" signal to IC25 pin 5. enabling this gate to provide a read or write signal to all of the RAMs.

Memory standby/supply power is taken from the supply (VRAM) and Use of the HM 6116 LP RAM device ensures low power consumption. This device has a standby power of 20 microwatts (typical), ensuring the Microcontroller will still retain memory data for many months, when not used-a prime requirement.

The memory map shows the user locations of RAM. It must be remembered to avoid the area of DISBUG RAM when combining the existing $1 K$ RAM and the additional $2 K$ RAM in any sofiware routine.

Before making any modifications to the Microcontroller p.c.b. it is essential the wiring of IC25 is examined. The gates used within this package may differ from the circuit diagram supplied with the Microcontroller. Modification details refer to IC25 pin/gates as on my Microcontroller p.c.b. Use a low-profile 24-pin d.i.l. socket for IC26:
S. Marke,

Towcester.

Table 1. Memory map

FFFF

DISBUG MONITOR	
KEYBOARD P.I.A.	$1 \mathrm{COO} \longrightarrow \mathrm{ICO} 3$
DISPLAY P.I.A.	$1800 \longrightarrow 1803$
USER P.I.A.	$1400 \longrightarrow 1403$
USER P.I.A.	$1000 \longrightarrow 1003$

OBFF
(OBFF)

07FF
0400

0000

QUADRUPLES

48		PHA	85 F9		STA 25	A5 F0	B9A	LDA X0	85 FD		STA 23
A 5 FA		LDA YI	85 FA		STA 26	18		CLC	A5 F0		LDA X0
85 F 1		STA Y0	A901		LDA 1 \$01	65 FE		ADC Z_{4}	18		CLC
68		PLA	85 FE		STA Z 4	85 F0		STA X0	65 FA		ADC Z_{6}
85 FA		STA Y1	85 FF		STA 27	A5 FD		LDA 23	85 F 0		STA X0
20 BIIE	B1A	JSR POINT	A 5 FB		LDA Z 1	18		CLC	A5 EF		LDA FLAG
A5 F9		LDA X1	C5 FC		CMP Z2	65 FC		ADC $\mathrm{Z2}$	C9 01		CMP $\# \$ 01$
38		SEC	B0 1A		BCS B4A	85 FD		STA 23	9009		BCC B8A
E5 F0		SBC X0	48		PHA	A5 EF		LDA FLAG	A5 F1		LDA Y0
85 FB		STA ZI	A5 FC		LDA 22	C9 03		CMP $\# \$ 03$	38		SEC
A5 FA		LDA Y1	85 FB		STA Z1	B0 09		BCS B5A	E5 FF		SBC 27
C5 F1		CMP Y0	68		PLA	A5 Fi		LDA Y0	85 Fl		STA Y0
B0 0D		BCS B2A	85 FC		STA Z2	18		CLC	B0 07		BCS B7A
A9 01		LDA \#S01	A5 FE		LDA 24	$65 \mathrm{F9}$		ADC 25	A5 F1	B8A	LDA Y0
85 EF		STA FLAG	85 FA		STA 26	85 Fl		STA Y0	18		CLC
A5 Fi		LDA Y0	A5 FF		LDA 77	9007		BCC B6A	65 FF		ADC 27
38		SEC	85 F 9		STA 25	A5 F1	B5A	LDA Y0	85 Fl		STA Y0
E5 FA		SBC Y 1	E6 EF		INC FLAG	38		SEC	8A	B7A	TXA
85 FC		STA Z2	E6EF		INC FLAG	E5 F9		SBC 25	48		PHA
B0 09		BCS B3A	A9 00		LDA \#\$00	85 FI		STA Y0	20 BILE		JSR POINT
38	B2A	SEC	85 FE		STA Z4	A5 FB	B6A	LDA Z1	68		PLA
E5 F1		SBC Y0	85 FF		STA 27	C5 FD		CMP Z3	AA		TAX
85 FC		STA Z2	A5 FB	B4A	LDA ZI	B0 24		BCS B7A	E8		INX
A9 00		LDA \#\$00	85 FD		STA 23	AS FD		LDA $\mathrm{Z3}$	E4 FB		CPX ZI
85 EF		STA FLAG	46 FD		LSR 23	38		SEC	90 A6		BCC B9A
A9 00	B3A	LDA $\# \$ 00$	A2 00		LDX \#\$00	E5 FB		SBC Z 1	60		RTS

MICROCONTROLLER CLOCK

Many people have noticed that the Microcontroller clock is not accurate and typically loses 10 to 20 secs every 24 hours. David Whitfield, a co-author of the project, has investigated this problem and encountered difficulty in tracing a missing second every 5 to 10 minutes. In the end he used a BBC micro programmed as a rather crude logic analyser to monitor the 1 Hz clock and compare it with the internal clock on the BBC machine. This, in conjunction with the test program published in the December copy of PE, showed the following:
1 The 1 Hz clock does not "swallow" whole seconds due to the circuitry associated with 1C2. This would have been a convenient solution.
2 The accuracy of the Microcontroller's 1 Hz clock is better than that of the BBC micro's system clock over a long period. This is probably due to the higher interrupt load on the BBC's CPU and its dependence on the CPU clock for timing.
3 The internal DISBUG clock does lose count at a long term rate of around 1 in 400. The loss is in the form of a random "missed" second, which seems to occur at random intervals.
These observations confirm the behaviour of the unit can be repeated, and is therefore probably shown by all units. To try and ex-

amine the problem further, David ran the program listed. This sets up an alternative count to TICK (which he called TOCK!) at RAM location $\emptyset 3 \mathrm{CI}$. TOCK is driven by the IRQ interrupt handler which already manages the 1 Hz count in TICK; the modification to the interrupt handler starts at address 0032 , and is added by the first two instructions (see the data sheet in May PE). The TOCK count uses a spare space in DISBUG RAM to set up the clock.

The main difference between TICK and TOCK is that TICK only updates the count when an interrupt has occurred AND the Bside of PIA IC12 shows that it was caused by the 1 Hz clock. TOCK, however, is updated whenever an interrupt occurs. Since there is only one interrupt set up by DISBUG (the 1 Hz clock), the results from TICK and TOCK should be the same. If anything, TOCK might be expected to gain on TICK due to the effects of spurious noise-induced interrupts; TICK does a check on the PIA status to avoid this problem. The test program, when run from 0 , and compared with a "real" clock, allows the two counts to be displayed simultaneously. The full TICK count is shown in the address area of the display, while only the two least significant digits of TOCK are shown in the data area. After a few hours of running, watching and comparing, it is evident that TICK loses counts, but that TOCK does not appear to gain any.
Further tests show that the problem is that
ex

$$
\text { LDX } \nRightarrow \text { DATADIS CE } \quad 03 \quad \text { F8 }
$$

the control register of PIA ICI2. As to why this might be so, David is still investigating. In the meantime he has developed a short "fix" to allow TOCK to be used in place of TICK; just use $\emptyset 3 \mathrm{Cl} 1 / 2$ in place of $\emptyset 3 \mathrm{E} 2 / 3$. The "fix" should be included in the initialisation code of any program (remembering to set the address shown accordingly), just before the main loop. DISBUG will initialise TOCK in the same way as TICK, setting it to at power-up $\dot{\sim}$ restart.

Table 1. Software fix for the real time clock: setting up 'TOCK'. Include this code at the start of a user program which wants to use TOCK, which is located at $\mathbf{0 3 C 1 / 2}$, instead of TICK (which is located at 03E2/3)

| LDX HALTINT CE | Put address
 where code
 below starts
 $($ e.g. $\emptyset 380) ~ i n$ |
| :--- | :--- | :--- |
| these two bytes | |
| $\emptyset 3 \mathrm{DC}$ | |

Include this code IN ADDITION to that above at any convenient position in KAM which is unused (suggestion is to locate it at location Ø380)

ALTINT: LDX	TOCK	FE	$\emptyset 3$	Cl
INX		$\emptyset 8$		
STX	TOCK	FF	$\emptyset 3$	Cl
RTI		3 B		

If an addition to the IRQ interrupt handier is already made by the program, omit the first patch (since the program must already contain an equivalent), and add the first 3 instructions only of the last patch to the new interrupt handler. The reason is that only one additional handler may be defined.

LDA	A (TOCK +1$)$	B6	$\emptyset 3$	C2
JSR	TWODIG	BD	F8	F7
JSR	DISPLAY	BD	F8	14
JMP	AGAIN	7E	14	
ALTINT:	LDX	TOCK	FE	14
INX		$\emptyset 8$	C1	
STX	TOCK	FF		
RTI		$3 B$		

LOW COGT PROFEGGIONAL TEGT INGTRUMENTG

OUR GREAT NEW ILLUSTRATED CATALOGUE IS PACKED WITH INFORMATION ON SUPERB QUALITY, PROFESSIONAL BURGLAR ALARM EQUIPMENT AT AT UNEATABLE PRICES!
SEND SAE OR PHONE NOW FOR YOUR COPY A.D. ELECTRONICS DEPT. PE 217 WARBECK MOOR
ALARM D-H-Y SYSTEM THFFOHE

DISTRIBUTOR
MAIN

L9 OHU/051 5238440

MASIMFR THTHOYRONTOS NOW! The PRACHICAT way!

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a self. employed servicing engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.

You will do the following:

- Build a modern oscilloscope
- Recognise and handle current electronic components
- Read, draw and understand circuit diagram
- Carry out 40 experiments on basic electronic circuits used in modern equipment
- Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V $\mathrm{Hi}-\mathrm{Fi}$ and microprocessor/computer equipment

NewJob?NewCareer?NewHobby?Getinto Electronics Now!

Strictly

by K. Lenton-Smith

GLENN MILLER

Students of light music will be familiar with the problem that faced Glenn Miller 45 years ago. He was searching for a particular sound that would set his band apart from others-and inadvertently found his answer through a mishap to his lead trumpet. The player concerned had split his lip and the trumpet part had to be taken by the clarinet (both instruments being pitched in Bb, the same music could be used).
In fact, Miller re-arranged his parts to suit this event and the resulting blend of soli saxes and clarinet produced a sound unmistakable today
I feel sure that modern combo groups have that same problem-how to sound different from the rest. In the Miller era, pure musicianship was the only method: if the mains supply failed, only the announcer's microphone was affected. Today, complete failure of the electronics would bring most music to an abrupt halt, and render vocalists inaudible!

Electronic effects, especially those used in recording studios, are limitless in popular music today, and it is a moot point whether the standard of musicianship has fallen as a direct result. Combo groups look carefully at the equipment they buy and how to make the most of it. In this article we will look at what the world's largest manufacturer, Yamaha, has to offer

COMBO

As the electric guitar is the mainstay of the group, it ought to be dealt with before other instruments. Yamaha has introduced new instruments recently, many of them featuring 'through-neck' design: in this case the neck extends right through the body of the instrument to its heel, giving more uniform transmission of string vibration to the pick-up. The SG series and SF series have solid bodies with humbucking coils. The SC series use a single coil. SA series guitars are semi-acoustic with single coil/humbucking and have exceptional tonal ability. AE series are acoustic and provide that warm and intimate sound for contemporary jazz. Among these, the hard-rock musician would probably choose the SF series for its extensive distortion control and powerful Alnico-5 pick up magnets.

The new BB series of electric basses has been developed with the aid of leading performers. They offer full, balanced response with plenty of punch and definition.

A range of effectors that can be fitted in-line include phasing, chorus, flanger,
octaver, distortion, tone booster, compressor, parametric EQ, limiter, noise gate and noise selector. When the inbuilt guitar controls are also taken into account, performers have ample scope for modifying waveforms from the pickup.

KEYBOARDS

Among Yamaha's pianos, one of the most interesting is Digital Keyboard GS 1 . This 88 -key model looks like a small baby grand and features touch-response: up to 16 notes may be played simultaneously, 16 voices are available and it will read magnetic cards for voicing, vibrato may be applied and piano-type pedals control this, damper and tremolo are also featured. GS2 is a smaller, 73-key version with a similar specification.

Models CP-80 and CP-70B are 88 and 73-key acoustic pianos with amplification, the latter model being portable despite the metal frame carrying the strings. Both instruments allow the player to control timbre over three distinct parts of the keyboard compass, with variable tremolo depth and speed.

CP35 and CP25 are 73 and 61-key digital pianos with 16 note capacity in two pitches, decay, tremolo, flanger, filter and equaliser controls. The CP 25 keyboard may be split, when each section then allows 8 note capacity.

A useful keyboard to use at home is the CP11. This is also digital $(10$ note polyphonic) but the keyboard can be split and 6 notes are then reserved for the chord section. Eight rhythm patterns are provided and these control the auto-accompaniment. The available tones are Piano 1, Piano 2 and Harpsichord. Sustain operates normally but the EG control allows decay only after the playing key has been releasedproducing organ-like tones. Tremolo is fitted and the instrument has an internal 5 W speaker.

Yamaha's Symphonic Ensembles are best described as very comprehensive portable organs: they have oneitwo manuals with organ tone, solo synth, poly synth and string chorus etc. Optional 13 note pedalboards may be attached. This Sk series is ideally suited to a skilled keyboard player in a group.

Synthesisers from Yamaha range from CS70M-a polyphonic programmable instrument with 61 keys and 12 VCOs - to the CS-5, a 3-octave monophonic keyboard with a single VCO.

'PRODUCER SERIES

This idea from Yamaha should be very welcome to any neighbour of a practising poo enthusiast! The sound capabilities of stage and recording equipment have been compressed into a small and affordable system that can be used without disturbance to others. It is based on three unitsMA10, MM10 and CSO1

MA10 is a headphone amplifier which will drive two sets of MH10 stereo phones and has a Monitor Out facility to feed other MA1Os or a power amplifier. The input jack accepts signals from guitar or keyboard and input connections can also be made thiough Monitor In and Aux.

MM10 is a stereo Mic/Line mixer, each of the four channels having individual pan pots and level controls. CSO1 is a $2 \frac{1}{2}$ octave monophonic synthesiser with VCO. VCF, VCA and EG (Envelope Generator): a Breath Controller allows alteration of the VC:O and VCF characteristics, leaving both hands free to use the keyboard and sliders. All three units run from mains adaptors providing 9-12 v.d.c. (Type PA-1)

By interconnecting these units, a group of instrumentalist/vocalists can hear the combined stereo output through headphones with total realism and clarity. Interconnections require some thought, though Yamaha can offer suggestions in this respect. The Producer Series should be a boon to practising musicians and neighbours alike as one word that appears to be synonymous with combo music is decibels!

AMPLIFIERS

These are comprehensive and fall into three categories. The JX series cover outputs from 20W to 50W into 8. . at 3\% THD and have integral controls. G and B Mk II series handle from 50W to 100W into 8 . at 10% THD. Alternatively, stackable amplifiers can be supplied using G100II amplifier head or B1001l head with one of the S Series speaker enclosures in conjunction: outputs up to 240 W are available by this method. Different amplifiers are used for guitar and bass (indicated by codes G and B) because of the differences in tonal spectrum. New preamplifiers PG1 and PB1 (for bass) have recently been introduced.

Mixing consoles from Yamaha will accept up to 32 inputs, depending on the model concerned, with faders, equaliser, echo panpots and talkback. Analogue Delay Units E1010 and E1005, Graphic Equaliser Q1027. frequency Dividing Networks F1040 and F1030 are other items to interest groups. General speaker systems, individual drivers and horns are supplied for those that prefer to assemble to their own specification

PERCUSSION

The company is well known for its orchestral instruments, including its System Drums. The YD-9000RA system includes two bass drums, snare drum, seven mounted toms, hi-hat and seven mounted cymbals of various sizes-surely enough for any
drummer to be in his element? Certainly, Peter Erskine, Cozy Powell, Al Foster and Jim Keltner appear to be. as users of Yamaha percussion.

Individual drum units in any of 14 colour finishes are available. Shell and hardware sets, cymbal stands, snare drum stands, single and double tom stands, foot pedals, thrones, mutes and other hardware can be purchased singly to build up a user-defined system.

ORGANS

While looking at Yamaha's products, their highly reliable organs must be included, especially as the musical back-up-through the Yamaha Music School-is excellent: it is the world's largest teaching organisation. How it came into being and has helped 6 million people with a
systematic approach to music is a long story, obtainable from Kemble (Organ Sales) Milton Keynes, the UK end of Nippon Gakki. I am sure that Len Rawle, Musical Director and a well-known organist, will be prepared to help.

The whole of the Yamaha organ family is based on the 'block-builder' principle where each time you move up the range you find all the previous features plus extra ones. All are based on PASS (Pulse Analogue Synthesis System), which produces a range of instrument sounds unobtainable until recently.
A and B series organs have two 37 or 44-note manuals, 13 pedals, presets and 12 auto rhythms. From $8-55 \mathrm{~N}$ upwards, organs are fitted with an arpeggiator and Variable Tone Levers. C series instruments have a roll-top fallboard to exclude dust (and small children's intrusion) when not in
use. A doppler speaker is fitted from C55-N onwards.
Programmable Rhythm comes with the D series, also polyphonic synthesiser voices and multi-channel sound. Model DB5 has an extra 37 note manual with 12 synthesiser presets and can be coupled to upper or pedal.
Serious musicians will choose the E series for its full 5 -octave manuals and 25note pedalboard. Preset pistons allow instant change 'from baroque to cinema or entertainment organ.

Flagship of the organ range is the EX models, which are space age designs both in terms of the console (column mounted) and the electronics. PASS technology has been taken to its limits to produce a vast number of instrumental voices and sound effects. But you will need $£ 50,000$ to purchase the GX1!

Readout...

INMOS

Sir-Re the little note about INMOS in the April Industry Notebook.

Some of the things that Nexus says about INMOS may very well be true but don't forget that the company was messed around by the present government for political reasons. They were forced to set-up their factory in a place they didn't want and their second investment payment of some $£ 50$ million was delayed for several months whilst the government tried to wriggle out of the original contract.

In fact the original INMOS investment was made by the NEB and any loss to the taxpayer must be taken from the NEB books and not INMOS. Your view-sorry the view of Nexus that if a product is worthwhile then private capital will automatically be attracted to it is naive. How does he explain the problem Ferranti had when they wanted money for their ULA project. Not one merchant bank would look at them. In the end they went to the NEB and asked Tony Benn for $£ 7$ million. Obviously the NEB could smell success better than the banks. Later Thatcher sold those Ferranti shares on the open market for $£ 54$ million to the very people who refused the original investment. Could we possibly offset the losses that INMOS are making with the profits made on the Ferranti deal? Nexus should be criticising the government for killing off the NEB when it was doing a good job helping small business men (and large), creating jobs and making a profit as well. Does Nexus imagine that the Japanese stand back and let private enterprise do everything-their government hands out plenty of money for their banks to invest in industrial research and development-and where would the American electronics industry be without those big defence contracts?

And anyway what is $£ 100$ million? It represents just 4 or 5 weeks subsidy to the EEC agricultural fund for food that could be bought cheaper on the world market and is either
destroyed or sold off cheaply to the Russians. Or it represents 3 months for the defence of those barren rocks in the South Atlantic, and that after an initial investment of some $£ 2000$ million.

The remarks about C\&W were equally silly. C\&W were making handsome profits during the whole time they were owned by the taxpayer. Selling them off was a political not economic decision.

Please keep us informed about what is happening in the industrial world with a more balanced view of the political and economic problems that have to be faced by governments and industries.

If any of the statements I have made in this letter are inaccurate then it is partly your fault for not keeping me better informed. I do not wish to offend but if I need puerile political views then I would subscribe to the Telegraph or the Mail-they do it so much better than your magazine. John Hunt UNDP Rangoon Burma.

Nexus comments:-

Inmos cannot be compared directly with Ferranti. The respective investments were different in kind, in quantity, in time and made for quite different reasons. It remains true that a worthwhile product or service attracts private capital. Indeed, as Mr Hunt points out, Ferranti had no difficulty in attracting $£ 54$ million once it became worthwhile. Similarly, Cable \& Wireless, modestly profitable, was heavily oversubscribed when brought to the market. C\&W's performance and profit can only now be fairly described as 'handsome'. The problem, as I am sure Mr Hunt would agree, is spotting the winners and although he may think $£ 100$ million is peanuts, by ordinary investment standards it is a large gamble on an outsider only just beginning, after four years, to show any form. The NEB's betting record has been no better than the average punter.

POSITIVE FEEDBACK

Sir-In response to your recent encouragement to readers to provide some feedback I am putting pen to paper.
I have subscribed regularly to your magazine for many years, am aged 32 and my interest in electronics is through hobby only. I often buy the odd issue of your competitors' magazines to see what's available and find I prefer your magazine for the following reasons:

The projects are presented clearly, are detailed and complete.
The content on the whole is what I want.
The style avoids the chatty slightly flippant style evident in at least one competitor.
Now some criticisms:-
Why terminate "Semiconductor Update", I certainly appreciated the feature.
I'm afraid this new feature 'Vernon Trent' just leaves me cold. I buy your magazine for information, not the sort of article common in the daily press.
My PE Micro-controller does not keep good time. The internal clock in the monitor loses approximately 1 second every 300 seconds or so. Is the crystal at fault or is there a bug in the monitor? I know I can allow for this in my own software but I may be short of space for this. I enclose s.a.e. Colin A. Kerr Edinburgh.
Thank you for all your comments; we are always pleased to receive them. The only other comments we have had regarding VT have been in favour-more views welcome! Regarding Semiconductor Update this was replaced by Semiconductor Circuits, which not only introduces a new chip each month but provides data plus a working circuit and layout. We have also added Silicon News Corner to News and Market Place, thus providing information on a range of new chips as they are announced. Our intention was to cover this area more fully and show how to use the chips that are now available.

Your query on the Micro-controller is answered in Microprompt.

Ingenuity Unlimited

A selection of readers' original circuit ideas.
Why not submit your idea? Any idea published will be awarded payment according to its merits.

Each idea submitted must be accompanied by a declaration to the effect that it has been tried and tested, is the original work of the undersigned, and that it has not been offered or accepted for publication elsewhere. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.

Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not in the text.

TRANSISTOR ANALYSER

THIS unit was designed and built to help with the sorting out of large bags of untested transistors. It indicates whether the transistor under test is:

1) Functional/non-functional
2) $n p n / \mathrm{pnp}$
3) Germanium/silicon.

IC I and associated components forms a conventional astable multivibrator, the output of which drives the collector and base (through R4) of TR I, the transistor under test, alternately positive and negative with respect to ground. If the transistor is of the pnp type, negative pulses -will drive it into conduction so lighting indicator D1; if it is npn D2 will be lit (a faulty transistor will either light both lights or neither).

Simultancously, the base voltage of the transistor (which will be varying between ground and Vbe) is fed to window detector IC2/3 and associated components, which gives a high output in the range $\pm 4 \mathrm{~V}$. A high output will light D8 indicating a germanium transistor whilst a low output will light D7 indicating a silicon transistor. D3-D6 can be any medium power diodes which come to hand, whilst the output is more legible if different colour diodes are used for D1 and D2, and for D3 and D4.
S. D. Draper,

Sudbrooke,
Lincoln.

THIS circuit is for an electronic die. When the 'spin' button (S1) is pressed then released the l.e.d. display shows a random number between! and 6, arranged in the standard die format.

The 555 (IC1) is in the astable mode running at 1 kHz . When Sl is pressed pulses are fed into the 401.7 (IC2) decade counter, this sends a pulse out of each of the nine outputs in turn. The sixth pin is connected to the reset pin (15) so that it counts up to 6 then resets. When SI is released the counter will stop at one output and current will flow through the OR gates of the 4075 (IC3) and light up the l.e.d.s at a number between I and 6. While SI is depressed all the l.e.d.s will appear to light up at once as the unit flashes through its cycle.

Stephen Ives,
Burnham-on-Crouch, Essex.

ELECTRONIC DIE

CAR

LIGHTS-ON
 WARNING

The circuit in Fig. 1 has been fitted to the author's car for over a year and works well. It is an audible alarm which sounds when the door is opened with the lights on. An extra feature of this simple design is a time limit so that the alarm does not continue to sound if the door is left open with the lights on. This could be the case at a petrol station or when dropping off a passenger.
The alarm needs only two connections to the car electrics (Fig. 2). The first is to the feed for the panel lights and the second is to the wire which runs from the door courtesy-light switch to the light itself. The whole circuit, including the speaker, was mounted on Veroboard behind the dashboard

The key to the design is DI. This detects the closure of the necessary switches and feeds current to the alarm. The alarm itself is an NE555 timer i.c. connected as an astable oscillator, running at audio frequency. The output from this component is sufficient to directly drive the speaker.
The time limit is provided by the combination of C1 and R4, connected to the

Fig. 1

Alarm circuit

Connections to car electrics

reset pin of the timer. When the alarm initially sounds, C1 is discharged and gates the timer into oscillation. As C1 charges, the voltage at pin 4 becomes more negative and eventually turns off the sound. In fact, the result is not an abruptly ending tone, owing to a feature of the internal design of the NE555. The pitch of the oscillation is low for about three seconds, then quite high for three seconds-before it stops.
D. J. Greaves,
Cambridge.

MICRO

MULTIPLEXED DISPLAY

THE circuit shown (Fig. 1) is driven from a 6802 evaluation unit and can operate up to eighteen displays although only six are used in this application. HARDWARE: The hex display requires four data lines, therefore the 8 bits on the PIA output lines (PBO-PB7) can supply data to two displays at any instance.

The P1A CB2 port is programmed to produce a strobe pulse on each 'write' operation and this is used via the 7493 and 7442 to generate three 'blanking' signals in sequence which multiplex two displays per occasion.

Decimal 3 output from the 7442 is used to reset the 7493 following generation of the blanking pulses.

Before transmitting data to the display, it is necessary to ensure that the 7493 is in the 'ready' position. This is achieved by means of the 74LSI32 (IC9). When the reset switch ($\mathbf{~} 1$) is depressed then the oscillator formed by IC 9 is enabled via TR2 and the 7493 is clocked until output 3 (Pin 4) on the 7442 is low. The reset circuit 'locks up' at this point and the 'ready' l.e.d. is energised via TR1. The display is now ready to accept data from the 6802 .

SOFTWARE: The 6821 PIA is iniatiated with ' B ' side as outputs and CB2 producing a strobe pulse on each write operation. Address 0030 is used as a scan counter and is loaded with 04 (pin). The first data byte is obtained from address 0040 and after sending to the display, the

Flow chart

Add	Code	Mnemonics	Comments
0000	7F 4003	CLR PIA CRB	Set all PlA
0003	86 FF	LDAA\#\#F	'8' $1 / 0$ lines
0005	B7 4001	STAA PIA DRB	as outputs
0008	$862 C$	LDAA\#\# 2C	and select
0004	874003	Staa PIa crb	CB2 to
			produce o/p
			strobe pulse.
0000	C6 04	LDAB ${ }^{\text {d }}$ ¢4	Set up scan
000 F	0730	StAB $\$ 30$	count
			addr 0030
0611	CE 0046		Fetch 1st
0014	A6 00	LDAA\#\#0	data byte
			from addr
			0040
016	874061	STAA PIA DRB	Send byte to
6019	01	NOP	
001 A	01	NOP	
			time delay
0018	08	NX	Fetch next
			byte
001C	7A003D	DEC S0630	Adjust
			count
0 Cb	27 EC	8E0	Start new
			scan
0021	2 F 1	BRA	Send next
			byte to
			display
Notes: 1 Scan Count is located at addr 0030. 2 PIA CBR is located at addr 4003. 3 PIA DRB is located at addr 4001. 4 Display data located at addr's 1040,41 and 42.			

Software table

next byte is read from 004 etc. When three bytes have been transmitted to the display the programme jumps back to re-load the scan counter, and thus the cycle is repeated. As mentioned earlier, it is possible to expand the system to cater for 18
displays this being limited only by the 0-9 outputs on the 7442 i.c. Also, further development work is possible on the 'reset' circuitry along the lines of a software solution.

> R.G. Caldwell,
> N. Ireland.

ROGER 'BLEEP BLEEP'

UNLIKE most published designs which only bleep at the end of transmission, this design bleeps both at the beginning and the end of transmission.

When the push to talk button (PTT) is pressed, flip-flop one (ICla and b) controls bleep one via D1 and R3. Flip-flop two (IClc and d) controls bleep two via D2 and R 3 when the button is released.

The 555 tone generator (IC2) is switched on and off by pin 4 through TR1

D5, C4 and R5 control the carrier delay via Darlington transistors TR2, TR3 and the relay (RLA1). The length of each bleep and carrier delay can be adjusted by altering the value of the electrolytics $\mathrm{C} 2, \mathrm{C} 3$ and C 4 .

A single bleep only at the end of transmission can be achieved by omitting D1, and the tone can be varied by altering the value of R6.

> J. L. Colwill, North Devon.

E6995

T
HIS circuit produces a sound similar to that of a steam locomotive whistle. TRI and TR2 form a multivibrator, the frequency of which is set by VR3. This is the "toot" part of the whistle. TR4 amplifies white noise generated
across the reverse biased transistor TR3. White noise and "toot" are mixed by IC I, the ratio of each being set by VR2. The output from ICI is fed to a simple amplifier based around the TBA 810 device.
The positive 12 V could be fed to the
circuit by a push switch near the controller or by the model train itself by means of reeds or microswitch devices.

David John,
Alvaston,
Derby.

561014

THE circuit shown is for a constant current Ni-Cad battery charger. It features a timed charge rate followed by a trickle charge for an indefinite period.

At switch on the output of the ZN 1034 timer goes low bringing on the relay. This in turn passes a constant current from a 7805 voltage regulator to charge the batteries. After a delay of up to 12 hours, as set by the potentiometer, the output goes high switching off the relay. The cells now pass only the quiescent current of the circuit which is approximately 12 mA .

Up to six cells may be charged in series and an l.e.d. is included to indicate when the batteries are on full charge.
P. Thompson,

Glasgow.

FOR measuring voltages in circuits where currents are very small and resistances large, an ordinary multimeter is unsuitable because it draws an appreciable current from the circuit and therefore gives erroneous readings. It may also upset the operation of the circuit. This very simple impedance converter makes it possible to get true readings with even the most ordinary meter.

HIGH ZINPUT FOR VOLTMETER

The op amp is connected as a unity-gain voltage follower. The voltage 10 be measured is applied between the noninverting terminal and 0 V . In this mode the input impedance can be very high-many tens of megohms maybe-but the output of the op amp is of very low impedance and will easily drive an ordinary meter. The voltage at the output will follow exactly that at the input, and the use of the offset nulling facility in a $74!$ ensures precise tracking between input and output. The nulling preset should be adjusted so that, with the input shorted, there is exactly nil voltage between output and the OV line, as measured with the most sen sitive range of a meter. The current drawn
from the supply is minimal, and if two little 9 V batteries are used, voltages up to about 8 V may be measured. If only one battery is used, the junction between two Ik resistors across the supply will provide the 0 V point, allowing measurement of voltages up to about 4.5 V . To avoid any interference or hum pick-up, the input must be screened to 0 V , and the whole ought to be in a metal case grounded to 0 V .

Make input and output connections before switching power on; if pin 3 is left floating pin 6 will quickly drift into saturation and perhaps damage the sensitive range of a good meter.
S. A. R. Guest,

Truro.

Computer Hobbyists...近(for your program!
 PE is interested in buying software written by hobbyists for popular microcomputers. If you have a game, biorhythm, mortgage, bank, filing, calendar or other general purpose program you have written yourself we would like to see it-even if you are new to software writing.
 We will offer $£ 50$ for each accepted program, so send it in, you have nothing to lose.
 Program tapes carrying your name and address and, if possible, a listing should be sent to Practical Electronics Software, IPC Magazines Ltd., Westover House, West Quay Road, Poole, Dorset. Each program should be accompanied by the following signed declaration:
 \footnotetext{ \qquad
 \qquad

 The enclosed program entitled . is my own work and has not been offered to any other company. The program is for a . requiresK of memory.
 If you are under 16 years please get your parent or guardian to countersign the declaration.
 All tapes will be returned. . . machine (state typ \rightarrow of computer it will run on). It}
Grab

Pantec's revolutionary hand held multimeter introduces a new
 concept in low cost, high sensitivity meters. Banana's full range of functions make it a must for the electronics hobbyist

- It's shock-proof - It's totally protected upto250v AC/DC - It's got audible bleeper for continuity checks and battery test
- It's got permanently connected probes (no socket selection)
- You can operate it with one hand
- lt's only $225 \cdot 90$ ind. VATandUK P/P
SPECIFICATIONS
- Sensitivity: $20 \mathrm{kI} 2 / \mathrm{V}$ DC and $10 \mathrm{k} \Omega /$
VAC
DC Volts: $0.5-5-25-100-500 \mathrm{~V}$
- ACVolts : $50-250-1000 \mathrm{~V}$ (max
750 V)
DC Current: $50 \mu \mathrm{~A}-50 \mathrm{~mA}-500 \mathrm{~mA}$ -
2.5A
Resistance: Up to $2 \mathrm{M} \Omega 2$ in 3 ranges
- Accuracy: $2 \% \mathrm{DC}-4 \% \mathrm{AC}$
Dimensions: $173 \times 86 \times 29 \mathrm{~mm}$
- Weight: 200 g
- Supplied with soft carrying case and
spare fuse

Write or phone for details

The Banana

 Multimeter
Carlo Gavazzi (UK) Ltd.,
162/164 Upper Richmond Road,
London SW15 2SL
Tel: 01-7859022 Telex: 8952493
bazmar

WIRELESS World 1953 to 1963. Electronic Eng. bound volumes 1960 to 1963 offers. B. M. Faller, 25 Manor Road, Barnet, Herts.
SPECTRUM wanted. Please state price. postage and eventual faults (if any, detailed). Andre Bakken, Wergelandsvegen 26, 8500 Narvik, Norway.
WANTED heads for Truvox R94 tape recorder or R94 series recorder deck. B. T. Hughes, 25 The Drive, Arden Park, Bredbury, Cheshire SK6 2ED. Tel: 0614305068.
KEYBOARD Carter 75 COMF ASCII professional metal frame type. Brand new unused $£ 30$ plus p\&p. N. F. Harris, 4 Field Rise, Burton on Trent. Tel: 028342558
GRAND clearout of my surplus components. Both new and used. Many bargains s.a.e. for list. J. H. Rudge, 20 Blackthorne Close, Sollhull, West Midlands B9 1 1PF
BARGAIN: PE Microsynth without case, needs slight attention. Constructed kit. £85 o.n.o. K. P. Holloway, 63 Highlands Road, Andover, Hants SP10 2PZ. Tel: 026462438 after 6 pm .
WANTED circuit diagram for Kenwood trio tuner amp KR 3200. Loan, sale, all replies acknowledged. Mr. A. Jeremiah, 77 Gwendoline Street, Treherbert, Rhondda, Mid. Glam. CF4 1 5BP.
PRACTICAL Electronics Jan. 1978 to May 1983 in good condition £15, o.n.o. Buyer collects. Tel: Ringwood 6730. F. Crane, 'Homeland', 20 School Lane. St. Ives, Ringwood, Hants. BH24 2PF.
UK101 8K cased Cegmon, new BASIC 4 and sound including programs and books. D. Callender-Tel: Banbury 029553475.
WANTED borrow, buy operating instructions and or circuit for "Eagle International" Proa 120 power amp. A. Ross, 109 Balnagask Road, Aberdeen $A B 13 H P$.
NEW: Thandar TG 100 Func/Gen, logic probe LP-1. TRS-80 pocket computer printer. Tel: Newcastle 674196 after 6p.m. Mr. P. A. Jackson, 38 Alverston Close, Lemington Rise, Newcastle NE 158 TB.
CHIPS 8085 £2-8755 4 off £4 each. TMS 403040 off 75 pence each. G. Heath. 103 Pollards Oak Road, Oxted, Surrey. Tel: Oxted 4503

URGENTLY wanted, Practical Wireless December 1975. NAD 3020 stereo amplifier for sale. Perfect. Ring 09062 5615. S. Busbridge, 29 Clarence Drive, East Preston, Littlehampton, Sussex BN161EJ
WANTED circuit diagram for Telequipment oscilloscope, lype D43 also manual. Mr. A Cockerill, 23 Cortina Ave, High Barnes, Sunderland SR4 8NE. Tel: 284962.
UK101 $32 \times 4812 \mathrm{~K}$ BASIC 16 K RAM Motherboard, EPROMS + programmer, sound $1 / 2 \mathrm{MHz} 3 / 600 \mathrm{~B}+$ software $\mathbf{£} 200$ o.n.o. Tel: 01-868 9524. N. Brooks, 103 Drake Rd Harrow, Middlesex HA2 9DZ.
WANTED (ideal for beginner) a walkie talkie and telephone amplifier. Circuit diagram and construction details. Francis Anthony, Apt. Blk 34, Whampoa West. 12-87. Singapore 1233. Republic of Singapore
VARIOUS University laboratory instruments for sale. Scalers, counters, stabilised e.h.t. high voltage generators. S.a.e. for details. Mr. J. Gardner. 84 Old Lansdowne Rd, West Didsbury. Manchester M2O.
ROLAND Rhythm 77 £50. Harvard 40 channel hand-held C.B. £25 or swap both for synthesiser. John Hill, 28 South Rd, Watchet, Somerset lany time).
PAIR 16 ohm 12W peak $1 T$ speakers in teak cabinets $£ 10$ or near. J. H. Bailey, 10 Henley Lodge, Yatton, Bristol. Tel: 0934832025.
MICROTAN 65 cased with p/supply, Tanex. XBug, graphics, keyboard, leads \& manuals. E110.00 or Exchange good SC1 10 scope. Mr. E. Read, 23 Ditchbury, Lymington, Hants. Tel: Lymington 77473.
WANTED Hamlin type 3920-313-050, 6 digit I.c.d. to complete project. G. M. Kenny. 5 Hapcourt Ave, Wallasey, Merseyside. Tel: 051639 8956.

WANTED blown up ZX81 or similar RAM pack etc. up to $£ 10$ paid. Mr. C. Cox, 8 Levana Close, London SW19 6HP. Tel: 01-7898754.
YAMAHA CSO1 mono synth, as new. Only £120. M. Read, The Old Punch Bowl \& Grapes. Adstock. Buckingham. Bucks. Tel: Winslow 2757.

WELLER soldering gun, case, spare tips £16; Benkson personal stereo cassette, headphones, case, batteries £3qo.n.o. Mr. D. Evans. 27 Summerhill Rd, Onchan, Isle of Man. Tel: 06243634. HAMEG HM312 scope, one year old, pristine. £ 170 inc delivery. Mr, C. Bowden, 7 Parc Eglos, Helston, Cornwall TR 13 8UP

BINATONE 5 -star 40-channel 4 watt FM-CB mobile transceiver. Full controls. New. $£ 30$. Call Chang 0413327695 after 9p.m. K. Y. Chang, 70. 1 -up. Ashley St., Glasgow G3 6HW.
O.S.I. C2 16K, Cegmon, software, user group mags. £175 o.n.o. Tel: Redditch (0527) 44952. W. J. Partridge, 31 Duxford Cl , Redditch, Worcs. B9758S.
300 plus electronic mags, for sale. All popular publications from 1972 £ 40 buyer collects. J. Parsons, 31 Ball Rd, Llancumney. Cardiff CF3 9BW. Tel: 0222793169.
WANTED service manual/parts list for Olivetti TE300/329 teletype. R. Caradine, Naworth Casthe, Brampton, Cumbria. Tel: (06977) 3408.
PW Dec. 68 to May 83, good condition, offers. C. Wooff, 38 Wigan Road, Ashton-in-Makerfield, Wigan, Lancs WN4 98J. Tel: 724207.
UK101: 40K. Cegmon, 20-screens, hi-rb board, tool kit, twin-disks, $2 \times$ DOS + much more, write/phone for details. C. Mellen, Vine Cott, Main Road, Alresford, Colchester, Essex CO7 8DD. Tel: Wivenhoe (020622) 5671
ACORN System 1 c.p.u. board wanted. Working or faulty. Tel: Bob Brookes, 090551303 daytime.
AVO 8 MKV as new £45. Tel: Newport, Gwent 063363241 after 6p.m
AVO multimeter 240 V supply 40,000 ohms/volt usual functions plus capacitance-power £15. Tel: Rochdale (0706) 76590. D. R. Halsall, 6 Lincoln Drive, Smithybridge, Littleborough. Lancs.
WANTED information or circuit cards from the Metropolitan Vickers 950 computer. Mr. Andrew Wylie, 18 Rue De Lausanne, 1201 Geneva.

Switzerland

YAMAHA PS-10 automatic bass chord portable full-size keyboard. $3 \frac{1}{2}$ octave. Auto-Rhythm. New. £165. Call Chang 0413327695 after 9p.m. K. Y. Chang. 70, 1-up Ashley Street, Glasgow G3 6HW.
COMPONENTS surplus BC207, 0.15 $\mu \mathrm{F} / 250 \mathrm{~V}, 0.22 \mu \mathrm{~F} / 400 \mathrm{~V}, 4.7 \mathrm{nF}$ polystyrene. $2 \cdot 2 \mu \mathrm{~F} / 40 \mathrm{~V}$ elec, $2 \mu \mathrm{~F} / 10 \mathrm{~V}$ elec. All $£ 3$ per $100+$ p\&p. D. G. Robins, 21 Mounttield Rd, Bramhall, Stockport, Cheshire. Tel: 0614393648.
WANTED JVC Turntable as supplied by BK Electronics approx. 18 months ago. Tel: Alan 01 8664579.

LARGE box of new electronic components Value over $£ 80.00$. Accept $£ 10.00$. Mr. G Nicholson, 95 Priory Estate, South Elmsall, Pontefract WF9 2ST.

OVERSEAS AGENTS

Subscriptions to PE are available direct from us - see notice on page 54 - however, there are also a number of overseas agents around the world who can accept your subscription order. These agents are listed below for your information and assistance.

BELGIUM

Agence et Messageries
De La Press SA
1 Rue de la Petite-Ile
B-1070 Brussels
Industrial \& Business Pubs. 200 Avenue de Messidor
BTE 4
1180 Brussels
Office International De Librarie S.P.R.L.

30 Avenue Marnix
1050 Brussels 5
Sclentific \& Technical Book Centre
Rue de Neutchatel 12
1060 Brussels
W. H. Smith \& Son (Belgium) S.A.N.V

Boulevard A Max Lean 71-79 B-1000 Brussels

DENMAAKK

Arnold Busck Boghandel
Kjobmagergade 49 Copenhagen K DK 1150

Dansk Centralagentur D C A Inc Tidskrift Service/
Slusholmen 6-8
DK-2450 Copenhagen SV
Dansk Bladdistribution v/Mogens Schroder Rosenberggade 54 P.O. Box 2125 DK-1015 Copenhagen K

DBK Subscription Service Siljangade 6
DK-2300 Copenhagen 5
Jul Gjallerups Boghandel Solvgade 87
DK-1307 Copenhagen K
$\mathrm{N} J$ Haaseg Bogimport A / S Loevstraede 8
1132 Copenhagen K
Munksgaard Int.
Book \& Pubs Ltd
35 Norre Sogade
DK-1370 Copenhagen K
Rhodos International Subscription Agency
Surandgade 36
Copenhagen DK-1401

SCIENTIA
International Sub Agency Aps Loevsiraede 4A
DK-1152 Copenhagen K

FINLAND

Akateeminen Kirjakauppa Oy P.O. Box 128 S F 00101 Helsinki 10

Lehtimarket Oy

P.O. Box 16

SF-00311
Helsinki 51
Lehtitolmisto Kankainen
P 119
SF-28101 Pori 10
Suomalainen Kirjakauppa Oy C/o Rautakirja Oy
Subscription Department
P.O. Box 2

01641 Vantaa 64

FRANCE

BED
8 Place de la Republique
7501 1 Paris
S. Brentano

Subscripilon Department
37 Avenue de L.Opera 75002 Paris

Dawson-France SA BP40
F-91121 Palaisseau
Europerlodiques SA
31 Avenue de Versailles
78170 La Celle St. Cloud
France Publications
108 Rue Reaumur
Paris 75002
Lavoisier Abonnements Technique et Documentation 11 Rue Lavoisler
F-75384 Cedex 08
Mons. R. Martin
Boite Postale 22
92420 Vaucresson
Office International de
Documentation et Librairie
48 Rue Gay-Lussac
75240 Paris Cedex 05
W. H. Smith \& Son SA

248 Rue de Rivoli
75001 Paris
Altn: Miss M. Nolot
Subscription Deparment
W. GERMANY

Ex Libris Buchhandelsges
Ferdinand-Dirichs-Weg 28
6 Frankfurt-AM-Main
Philip Korter \& Co.
Mode-Presse-Vertiob
P.O. Box 1536

D-6800 Mannheim 1
Kunst \& Wissen-Erich Bleber
Postfach 46
Wilhelmstrasse 4
7000 Stuttgart 1
W. E. Saarbach GmbH

Postfach 101610
Follerstrasse 2
5 Cologne 1
H. G. Schaderbrode St. Andre Strasse 26A 6105 Ober-Ramstadt
Buchhdlg Konrad Wittwer Koenigstr 30
Postfach 147
7 Stuttgart

D.D.R.

Buchexport Volkselgener Aussenhandelesbetrieb Der D.D.R.

701 Leipzig Postfach 960 Leninstrasse 16

ITALY

Anglo American Book Co. SRL
Via Della Vite 57
00187 Roma
Bozzi F. Illi S.A.S
Piazza Della Meridiana 2
16124 Genova
Centre Edizioni Tachniche
Internazionali SRL
Via Pordonone 17
20132 Milan
Attn: Mr. A. Vais
Goerlich \& Co.
Via San Sentatore 6/2
Casella Postale 1712
Milan 20100
Ulricho Hoepli
Casa Ediftrice Libraria
Via U Hoepli 5
20121 Milan
Interscientia
Via Mazze 28
10149
Nuova Stampamerlca Subs
Agency SAS
Via PMicca 3
10121 Torino
Sperling \& Kupfer
Piazza San Babila 1
20122 Milan
Lib. Internazionale Di Stefano Via C Roccatagliata Ceccardi 16121 Genova

NETHERLANDS

Bookimpex B.V.
Veenkade 26/27
The Hague 2513 EG
D \& N-Faxon B. V
Subscription Service
P.O. Box 1971000 AD

Amsterdam
International Journals Group P.O. 80×2192

1000 CD Amsterdam
For the attention of: Ms. W Boenker
Kniphorsts Boekhandel
Postbus 67
6700 VB Wageningen
De Muiderkring NV
Nijverheidswerf 17-21
1400 AA Bussum
Martinus Nlihoffs Boekhandel
P.O. 80×269

250 AX The Hague
Swets Subscription Service
P.O. Box 830

2160 SZ Lisse

NORWAY
AS Narvesens
Litteraturtjensie
Box 6125 Etterstad
Oslo 6
Tidsskriften Sentralen Tanum-
A/S
PO. Box 1177 Sentrum
Oslo 1
SPAIN
Commercial Atheneum S.A
Apartado De Correos 1148 de
Barcelona
E-Barcelona
Diaz De Santos
Wholesale Subscription Ageıny Lagasca 95
Madrid 6
Distribuidora Internacional-
Dinter
Apartado 9156
Duque de Sesto 38
Madrid 9
Libreria Mundi-Prensa
Apartado 1223
Castello 37
Madrid 1

SWEDEN

Esselte Tidskrifts Centralen
Subscription Agency
P.O. Box 62

Gamla Brogatan 26
S-101 20 Stockholm
Attn: Mr. D. Schuttz-Subs
Manager
Lundgrens Bokhandel
Sodergatan 3
S-211 34 Malmo
SCI-TECH Publications AB
80×73
12221 Enskede 1
Utlandsk Facklitteratur
Tage Nilsson
Tranaskvarnsgatan 6 C
S-57300 Tranas
Wennergren Williams AB
Fack
S-104 25 Stockholm 30

SWITZERLAND

J. de Croze International

Establishment
81 Avenue Louis Casai
P.O. Box 44-1216

Geneva
Hans Huber Booksellers
Langgasstrasse 76
CH 3000 Bem 9
Naville and CIE
5-7 Rue Levrier
Case Postale 887
CH 1211 Geneva
Kurt Staheli \& Co.
Bahnhofstrasse 70
CH-8021 Zurich
U.S.S.R.

Mezhdundarodnaja Kniga
G-200
Moscow

australia

Collins Booksellers Pity Ltd
115 Elizabeth Street
Melbourne
Victoria 3000
Attn: Subscription Dept. 2nd Floor
Engineering Publications (Aust)
P.O. Box 319

Spit Junction
N.S.W. 2088

Globe Subscription Agency Pty
Ltd
P.O. Box 471

Double Bay
N.S.W. 2028

Gordon \& Gotch Limited
P.O. 80×29

Burwood 3125
Victoria

John Hinton Ply Lid
P.O. Box 31

Chatswood
N.S.W. 2067
international Subscription
Agencies Piy Ltd
P.O. Box 709

Toowong Old 4066
McGills Authorised
Newsagency Pty Ltd
187-193 Elizabeth Street
Melbourne
Victoria 3000
Robinson Manton Pty Ltd
190 Bourke Street
Melbourne
Victoria 3000
Standard Book Suppliers Pty Ltd
Subs Department
136 Rundle Street
Adelaide 5000
Tait Book Shop
415 Bourke Street Melbourne C1
Mrs. Camille Sandham
The Technical Book \& Magazine Co.
289-299 Swanston Street
GPO Box 2192 T
Melbourne
Victoria 3000
Thoroughbred \& Classic
Agencies
321 Warrigal Road
Chellenham
Victoria 3192
University Co-operative
Bookshop
76-84 Bay St
Broadway
N.S.W. 2007
argentina
Carlos A. Traboulsi (Bookstore)
Casilla de Correo 4574
1000 Buenos Alres

Brazil

P.T.I. Lida

Subscription Agents
Calxa Postale 1703
01000 Sao Paulo SP

CHINA

China National Pubs Import
CDR
P.O. Box 88

Peking

INDIA

Allieal Publishers Ltd
Post Box 155
13/14 Asaf Ali Road
New Delhi 110002
Allied Pubtishers Subscription

Agency

15 J.N. Heredia Marg
Ballard Estate
Bombay 400038
Allied Publishers Subscription

Agency

750 Mount Road
Madras 600002
Central News Agency
23/90 Connaught Circus New Delhi 110001
Creative Books \& Periodicals
Put Lid
7 Nanabhai Lane
Bombay 400-023
Higginbothams Private Ltd
165 Anna Salai
(Post Box 311)
Madras 600002
Global Publishers Service Pte Ltd
Block A31 3rd Floor
Shai Ram Industrial Estate
GD Ambakar Road, POB No
7121
Bombay 400031

International Book House Pte
Ltd
Indian Mercantile Mansion Extn
Madame Cama Road
Bombay 400039
L. B. Publlshers \& Distributors
(Private) Lid
90-91 Mahatma Gandhi Road
Bangalore 560001
Macmillan India Limited
Subscription Department
21 Patullo Road
Madras 600002
Tamil Nadu
Mahajan Brothers
Super Market-Basemunt
Ashram Road
Ahmedabad-9 (GS)
Strand Book Stall
Dhannur
Sir PM Road
Bombay 1
Subscribers Subscription
Services India
21 Raghunath Dadaji Street
2 nd Floor
Bombay 400001
Universal Subscription Agency
Pvt Lid
117/H-1/294-8 Model Town
Pandu Nagar
Kanpur 208005

ISRAEL

Hakhen Agencies Lid
44 Derekh Petah Tikvi
Rooms 410-412
P.O. Box 36125

Tel Aviv
ABC Bookstore
71 Allenby Road
P.O. Box 1283

Tel Aviv
Sifriat Poalim Limited
Supply Department
73 Allenby Sireet
Post Box 526
Tel Aviv

JAPAN

Asahiya Shoten Ltd
Foreign Books Dept
Central PO8 398
Osaka 530-91
Hokuto Trading Co. Lid
4-5 Aizumi-Cho
Shinjyuku-Ku
Tokyo 160
Kinokuniya Company Ltd
Attn: Teruzo Kubota
General Manager. Journal Dept
Odakyu West-Shinjuku Bldg
47-1. 1 Chome, Matsudai
Shibuya-Ku
Tokyo 151
Japan Pub Trading Co. Lid
P.O. Box 5030

Tokyo International
Tokyo 100-3 1
Kaigai Publications Lid
P.O. Box 5020

Tokyo International
100-31 Tokvo
Kitao Publications Trading Co. Ltd
New Asaki Bldg
3-18 Nakanoshima 2-chome
Kita-ku C P O Box 936
Osaka 530-91
Kokusai Shobo Lid
5 Ogawamachi 3-chome
Kanda
Chiyoda-ku
Tokyo 101
Koyo Shoji Co. Lid
Nitto BIdg
4-10 Nihonbashi Mongoku-Cho
Chuo-Ku
Tokyo 103

Maruzen Co. Ltd
P.O. Box 5050

Tokyo International
100-31
Oriental Book Service Co. Lid
C/o Roppongi Building
11-4 Roppongi 4-chome
Minato-Ku
Tokyo 106
O.T.O. Research Corporation

Takeuchi Bldg
1-34-12 Takatanobaba
Shinjuku-Ku
Tokyo 160
Pacific Book Inc
Morikawa Bullding
7-41 Idabashi 1-Chome
Chiyoda-Ku
Tokyo 102
Sanyo Shuppan Boeki Co. Inc
Chief Foreign Dept
P.O. Box 5037

Tokyo International 100-31
Shimada \& Co.Inc
9-29 Minami-Aoyama 5-Chome
Minatu-Ku
Tokyo 107

When replying to Classified Advertisements please ensure:
(A) That your have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

RECEIVERS AND COMPONENTS

FANTASTIC ELECTRONIC BARGAINS

VERSATLE BENCH POWER SUPPLY UNITS
Contains high quality trans former made to exacting specifications giving one 20 v output and one $20-0-20 \mathrm{v}$ oulput. All outputs 3 amps, D.C. Input $110 / 250 \mathrm{v}$. $50 \mathrm{c} / \mathrm{s}$. Bridge Rectifica tion Contained on metal chassis with robust compact case siue $7^{\prime \prime} \times 55^{\prime \prime} \times 44^{\prime \prime}$, easily modified to give 40 v or 60 v output. EbOMO. OUR PRIEE AS NEW WiAh CIICUits 50.50 Carr. EB. 2 units for 200 carr tree.
AMPLIVOX ULTRA LIGHTWEIGHT TRANSDUCER EAR. AMPNES. Impedance 300 ohms. Made to fil inside protective and crash helmets. or can be used as pillow earphines. As
new fi per pair. P \& $\mathrm{P} E 1.002$ pairs ca post free 4 pairs f15 new ff per pair. P \& P E1.00 2 pairs c8 post tree 4 pairs $£ 15$ post tree.
Now release of MODERN DYMAMC MOVNG COL MICROPHONES, 200 ohms impedance. Switch incorporated. With lead and DIN plug. Used bur nice condition, 3 dasigns of case housing. Price one mike our choice \mathbb{Z} plus 50p p.p. Borgain FOOT SMTCH Mains. Fod swich. Mains operation). Contains two micro Switches and lead. Meral case. Good condition. $\mathbf{~ B} 50$ each. HAVE YOU SEEN THE GREEN CAT. $1000 x$ of new compo nents, radio, electronic, audio at unbelievably low prices. Send 50 for caralogue (refundable on purchase). Try a $\mathbf{~ M M E O}$ PACX. Contains transistors, resisiors. caps. pots. swliches, radio and electronic devices. OVER E50 worth M 1 WI Lerriage and packing 12.50 . MINI JUMBO PACC (ICZ worth) for Es5 P \& P © 1.50 Please add 15% VAT to all orders including carriage and $P . P$

Dept PE1, 12/T4 Herper Street Leeds LS2 7EA. Leeds 450015 New retail premises at above address lopposite Corals)
Callers welcome 9 to 5 Mon. 10 Sat. Sunday 10 to 1 by Callers weicome 9 to 5 Mon, to Sat. Sunday 10 to 1 by
appointment. GOVT. SURPIUS ${ }^{1 / 2}$ TEMS ALWAYS IN STOCX.

SMALL ADS
The prepaid rate for classified advertisements is 34 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 11.20$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Banks Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Practical Electronics, Room 2612, IPC Mągazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

PE CAR STEREO AUDIO BOOSTER (Jan '33) 20w RMS/Charnel 0.2% thd: Full stereo kit of semiconductors (inc $\sum x$ TDA2004 power (Cs), resistors \& capacitors, Only $£ 12.45$ inc VAT \& P\&P. Also new improved PE Miniature Soorpio CD electronic ignition: Full kit, down to last nut \& bolt, inc drilled metalwork, wound transformer; unbeatable price/ performance, Only $£ 13.50$ inc VAT \& P\&P. MICROSTATE LTD, 5 Northfield Close, Fernhill Heath. Worcester, WR3 $7 \times B$.

ELECTRONICS COMPONENTS, MERSEYSIDE MyCa Electronics. 2 Victoria Place, Seacombe Ferry, Wallasey, L44 6NR_Mail Order send 50 p. For price list refundable off first order. TeL 051-638-8647.

PE PCB's EP9 5 ¢ $£ 0.72$, EG1138 $£ 1.03$, EA421 10.48 , EC90 £1.48, EA398 £0.99, EC84 £0.95, EG1076 £0.80, EG1074 £0.84, EG $1000 £ 2.25$, EA1060 $£ 0.54$, EA400 £2.16. Kits also available. 10% discount $2+$ boards. Tel. (0865) 60741 for latest prices. BRADLEY PRINTED CIRCUTS (G. D. Cowan). 9 Harcourt Terrace, Headington, Oxford, OX3 7QF.

TURN YOUR SURPLUS capacitors, transistors, etc. into cash. Contact COLES HARDING \& CO. 103 SOUTH BRINK, WISBECH. CAMBS. TEL; 0945 584188. Immediate settiement.
BOURNEMOUTH/BOSCOMBE. Electronic components specialists for 33 years. Foresters (National Radio Supplies), Late Holdenhurst Road, Now at 36, Ashley Road, Boscombe. TeL 302204. Closed Weds.

300 SMALL COMPONENTS, including transistors, tiodes $£ 2.20$ 7 lbs assorted components $£ 6.00$. Fiffy 74 series I.C.s on panel §2.20 poss paid. List 25 p refundable. J.W.B. RADIO, 2 Bamfield Crescent, Sale, Cheshire, M33 iNL.

> NOW OPEN IN NEWCASTLE
> For the best in Electronic Components. MARLBOROUGH
> ELECTRONIC COMPONENTS
> 15 Waterloo Street, Newcastle NE1 4DE Street, Newc
Tel. 618377
> Open 9am-6pm Mon-Sat - Easy Parking Stockists of:
> Transistors, Resistors, Capacitors, I.C. Diodes, Electronic Books, Etc.

SOFTWARE

CONVERY ZX81 to EPROM programmer with ZP4000 unit S.A.E. details, ENTERPRISE TECHNOLOGY LTD, P.O. Box 140 , Wigan, WN3 6LF, Lancs.

AERIALS

BOOKS AND PUBLICATIONS

COMPLETE FULL-SIZE SETS any published service sheets, $£ 2+$ LSAE except CTV $\mathrm{s} /$ Music Centres from $£ 3$ + LSAE. Man uals from 1930 to latest. Quotations, free 50 p magazine, price Lists unique technical publications for LSAE. Repair data/circs almost any named TV/VCR 18.50° by return. TIS PE, 76 Church Street, Larkhall. Lanarks, ML9 1HE. Phone (0698. 883334).

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS
Please insert the advertisement below in the next available issue of Practical Electronics for
insertions. I enclose Cheque/P.O. for $£$.
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Electronics)

Send ro: Classified Department,
PRACTICAL ELECTRONICS
Classified Advertisement Dept, Room 2612,
King's Reach Tower, Stamford Street
NAME..
London SE1 9LS. Telephone 01-261 5846
Rate:
34p per word, minimum 12 words. Box No. 60p extra.
Company registered in England. Registered No. 53626. Registered Office: King's Reach Tower, Stamford Street, London SE1 9LS.

MISCELLANEOUS

IONQER. Feel alert, invigorated and heal thier with the amazing ZEPHION negative ion generator. Kit: $£ 21.50 \mathrm{p}$. Built: £29.80p or S.a.e. brings leaflets. Dataplus Developments, 81 Cholmeley Road, Reading. Berks, RGi 3LY. Tel. 0734
67027.

ELECTRONIC ORGAN KEVBOARDS and other parts being cleared out as special offer. Elvins Electronic Musical Instruments, 40A Dalston Lave, London E8. Tel: OI-986 8455.

CABINET FITTINGS

Fretcloths, Coverings, Handles, Castors,
Flight Case Locks \& Parts, Jacks, XLRs.
Bulgins, Reverb Trays, P \& N mic Stands,
ASS Glassfibre Horns,
CELESTION POWER
Speakers.

Southend-on-Sea.

BURGLAR ALARM EQUIPMENT. Ring Bradford (0274) 308920 for our Catalogue or cal! at our large showrooms opposite Odsal Stadium.

CLEARING LABORATORY: scopes, generators. P.S.U's, bridges. analysers, meters, recorders, eic. 0403-76236.

THE SCIENTIFIC WIRE COMPANY 811 Forest Road, London E17. Teleptrone $01-5310574$				
ENAMELLED COPPER WIRE				
SWG	1 lb	8 oz	402	202
8 to 34	3.63	2.09	1.10	0.88
35 to 39	3.82	2.31	1.27	0.93
40 to 43	6.00	3.20	2.25	1.61
44 to 47	8.67	5.80	3.49	2.75
48	15.96	9.58	6.38	3.69
SILVER PLATED COPPER WIRE				
14 to 30	9.09	5.20	2.98	1.97
TINNED COPPER WIRE				
14 to 30	3.97	2.41	1.39	0.94
Fluxcore				
Solder	5.90	3.25	1.82	0.94
Prices include P\&P VAT. Orders under \mathbb{Z} add 20p. SAE for list of copper and resistance wire.				
Dealer enquiries welcome.				

BUSINESS OPPORTUNITIES

BORE? FRUSTRATED? ANGRY? AMBITIOUS? Then read THE ENTREPRENEUR, probably the world's most exciting ENIREPRIy publication for self-retiant men and women wishing montbly publication for self-retiant men and women wishing to create/develop/survive in their own business. Free introduc
tory mffer: S.a.e. THE ENTREPRENEUR. Dept. B38A Alston, Cumbria CA9 3RP.

EDUCATIONAL

CAREERS IN MARINE ELECTRONICS. Courses Commencing September and January. Further details. The Nautical College. Fleetwood FY7 8JZ. Tel: 0391779123.

COURSES

 CONQUER THE CHIP ... Master modern electronics thePRACTICAL way by SEEING and DOING in your own CONDUER THE CHIP ... Master modern electronics the
PRACTICAL way by SEEING and DOING in your own home. Write for your free colour brochure now to British National Radio \& Electronic School. Dept C2. Reading. Berks RGI IBR.

service sheets

BELL's TELEVISION SERVICES for service sheets on radio. TV etc. £1.25 plus SAE. Service Manuals on Colour TV and Video Recorders, prices on request. SAE with enquiries to B.T.S. 190 Kings Road, Harrogate. N. Yorkshire. Tel. (0423) 5588:

FOR SALE

SHEETMETAL FOLDERS. $18^{\prime} \times 18 \mathrm{G}$ steel, 16 G Aluminium, Bench or Vice held. £38. Carriage £4. Leaflet $01-8907838$.

KITS \& PCB's PROJECTS

Full Kits including PCB's, Hardware and Cases (unless listed separately), I.C. Sockets, Veropins, Wire, Nuts \& Bolts all included. Reprints 45p extra. Program Conditioner Juna 83. Automobile Test Set Mey 83.f16.88 Mains Warchdog May 83 E32.56 Personal Stereo Amplifer May 83 fless case and transtormer) Switched Capacitance Phaser April $82 \ldots$...E2..48

Battery Tester April 83 12.55 Wiper Delay April 83 |Less Relay)7.4 Car Audio Booster (Stereo) Jan 83 (Less Case)....
Diecast Case extra Frost/Overheating Waming Jan 83 $\begin{array}{r}.518 .98 \\ . . .54 .75 \\ \hline\end{array}$
haser April 82 ...E20.48

PCB's

Top quality printed Circuit Boards made from P. masters glass fibre board, roller tinned $\&$ drilled.
2 Digh Down Counter July $83 \ldots 127$
4 Digit LCD Up Counter July 83 (2) $\quad 2488$ 4 Digit LCD Up Counter July 83 12) 5488 4 Digit LED Down Counter July 83 (3) 88.8 4 Digit LCD Down Counter July 83 (3) _...f Program Conditioner June 83 .. Automobite Test Set June 83 Personal Stereo Amp May 83 Battery Tester April 83 Digital Stop watch Oct. 82, ${ }_{525}^{123}$ Wiper Delay Aprl 83
Switched Capactor Phaser April 83 Switched Capactor Phas
Digital Frequency Mater Car Accesson, P.S.U. March 83 Audio Sweep Osc. Oct. 82 Audio Debug Probe Sept. 82 Wevaform Dightiser Sept. $B 2$ Combo Amp (Main) Aug. 82 Combo Amp (Preemp) Aug. 82 Audio Test Set July 82 Instrument Tuner July 12 (2) 85.52
57.55 Digital Tacho Jan. 83 (3) Car Audio Boosier Jan. 83 Stylochord Dec. 82 (3)
MORE KITS AND
COMPONENTS IN OUR LISTS FREE PRICE LIST Price list included with orders or send sae (9 $\times 4$)

PCBS \& COMPONENTS
Versatile Car Alamm July 88 (2) Burglar Deterrent July B2 Auto Flash Slave June B2 Prescaler + Freq. Meter May $8 Q$ (3) Prog. Timer/Controller May B2 131... Prog. Timer/Controlier May 82 is
Battery Backup June B2 Function Generator May 82

ELECTRONICS
 \section*{CATALOGUE}

Illustrations, product descriptions, circuits all included. Up-to-date price list enclosed. All products are stock lines for fast delivery. Send 80 p in stamps or add 80 p to order Free to Schools/Colleges requested on official letterhead.

OVERSEAS ORDERS

Overseas readers are reminded that unless otherwise stated, postage and packing charges published in advertisements apply to the United Kingdom only.
Readers wishing to import goods from the United Kingdom are advised to first obtain from the advertiser(s) concerned an exact quotation of the cost of supplying their requirements carriage paid home.

TALK TOTHE WHOLE WORLD
 Study now far the

RADIO AMATEUR'S EXAMINATION

We have had 40 years successful experience in training men and women for the G.P.O. Transmitting licence.

- - FREE R.A.E. brochure without obligation from:-

MAGENTA ELECTRONICS LTD

MAGENTA ELECTRONICS LTD.
PC12, 135 HUNTER ST BURTON-ON-TRENT, STAFFS. DE14 2ST MAIL ORDER ONLY
0283 65435. MON-FRI 9-5.
ACCESS/BARCLAYCARD (VISA) BY PHONE OR POST.

ADD 45p P\&P TO ALL ORDERS PRICES INCLUDE VAT OFFICIAL SCHOOL ORDERS WEL COME OVERSEAS. Payment must be in sterting. IRISH REPUBLIC and BFPO - UK PRICES. EUROPE UK PRICES $+10 \%$ ELSEWHERE - Write for Quote.

British National Radio \& Electronics School READING, BERKS. RG1 1BR

Name
Address
L

INDEX TO ADVERTISERS

A. D. Electronics64
Audio Electronics 8
Beckmann 55
Bi-Pak 4
Blackstar Limited 65
Boss Industrial Mouldings 10
British National Radio \& Electronics School 64 \& 75
Centurion Alarms 75
Clef Products 8
Commquip 12
Cricklewood Electronics 11
Crofton 5
The C.R. Supply Co 74
Electronic Mail Order 75
Electrovalue 8
G.C.H.Q. 12
Adam Hall Supplies Ltd 75
Hameg 10
House of Instruments 5
ICS Intertext 4
I.L.P. Electronics 6 \& 7, 56
Magenta 75
Maplin Electronics Cover IV
Marlborough Electronics 74
Martel 56
Micro State 74
Midwich 43
Modern Book Co 12
Myers Electronics 74
Pantec (Carlo Gavazzi) 71
Parndon Electronics 64
Phonosonics 44
Powertran Cover II
Proto Design 74
Radio \& T.V. Components 44
Scientific Wire Co. 75
Sparkrite 9
Swanley 5
Tandy 14
Technomatic Ltd. 76 \& Cover III
T.K. Electronics 63
Watford Electronics 2 \& 3

Technomatic LTD 01-452 1500 01-450 6597

I.D. CONNECTORS - (Speedblock Type) No. of Header Recep ways Plug tacle $\begin{array}{lll}20 & 145 p & 125 p \\ 26 & 175 p & 150 p\end{array}$ $\begin{array}{ll}34 & 20 \\ 40 & 2\end{array}$ $\begin{array}{ll}220 p & 190 p \\ 235 p & 200 p\end{array}$ \qquad		ONNETTO mait				
RS 232 JUMPERS$(25$ wow D)le ond Moleine ond Fornaleale Femaleo Malegle-Male						
$0 \mathrm{oll}$						
- SPECIAL OFFER						
	$1-24$	25-99			350	
4164		430p	${ }_{4116-200}$			
$\left.{ }_{2532}^{2716}+5 \mathrm{~V}\right)$	250p		6116-1			

OFFICIAL BBC DEALER

BBC Model B £399 including VAT. (Carr. £8) Model A to B upgrade kit $£ 49.50$ Installation charge $£ 15$
Individual upgrades and all mating connectors available BBC DISC DRIVES
Disc Interface Kit £95
Installation £20
BBC Single Drive 100K £235. BBC Dual Drive $£ 799$ bBC COMPATIBLE DRIVES

| Single 100 K | f 180 | 200 K | £ 250 | 400 K | £ 330 |
| :--- | :--- | :--- | :--- | :--- | :--- | Dual 200K £350 400K £475 800K £590 Cable for Single Drive $£ 8$. Dual Drive $£ 12$. (Carr. Single Drive £6, Dual Drive £8)

Disc Manual \& Formatting Diskette
£17.50
Diskettes: 40 track SS $£ 15,80$ track SS $£ 24.80$ track DS $£ 32$.
(Price for 10 carr. £2)
VIEW 16K WORD PROCESSOR ROM 552
TELETEXT RECEEVER $£ 195.65+\mp 2$ p\&p TORCH 280 DISC PACK $£ 780.00+£ 2$ WORDWISE BK ROM $£ 39+£ 2$ p\&p BUSINESS, EDUCATION AND FUN SOFT WARE IN STOCK
Please phone to confirm delivery details. B00KS (No VAT £1 p\&p
BASIC PROGRAMMING ON BBC
LET YOUR BBC TEACH YOU TO PROGRAM
$£ 5.95$
BBC MICRO REVEALED
£6.95
BBC MICRO AN EXPERT GUIDE $£ 7.95$
BBC COMPUTERS PLAY
66.95

ASSY LONG PROGRAM ON BBC
f 6.95

PRINTERS
 NECPC 8023 3 B

60 col 100 cps dot matrix printer. Bidirectional. Logic seeking, 2K butfer. Forward and Reverse line feed. Hi Res \& Block Graphics, Proportional Spacing, International and Greek character sets, Auto underline, Friction/tractor selectable E345 + 18 carr.

EPSON EX80 and FPFON 7×80

RX80 100CPS 80 cyl Tractor Feed. XX80 $160 C P S 80$ col F \& I Feed. Logic seaking
Bi-directional, Bit Inage Printing, 9×9 Matrix, Auto Undertine. RX80 [299. FX80 5389
MX100 F/T3 4425
Carr. £8/Unit'
SEIKOSHA GP100A 82504
80 col .30 cps dot matrix printer. High Res Graphics - Std \& double with
characters. $\mathbf{5 1 8 0}+\mathbf{f 6}$ carr
GP250A $\mathbf{E 2 3 5}+\mathbf{E 8}$ carr.

Sole UK Agents for Heathkit

NOW THE world-famous Heathkit range of superb electronic kits is available from Maplin - the newly appointed exclusive UK distributor. hits range from a simple clock for beginners to a unique Robot (see pic) with which you can learn about robotics.

There is a range of training courses covering electronics and computing topics, many containing constructional projects. For full details, pich up a copy of the latest Maplin magazine or write for a free copy of our Heathkit catalogue. Order As XH62S.

GREAT PROJECTS FROM E\&MM

OUR NEW book "Best of E\&MM Projects Vol. 1"" brings together 21 fascinating and novel projects from E\&MM's first year.

Projects include Harmony Generator, Guitar Tuner, Hexadrum. Syntom. Auto Swell. Partylite. Car Aerial Booster. MOS-FET Amp and other musical. hi-fi and car projects. ORDER AS XHGIR. PRICE £I.

Maplin's Fantastic Projects

FUIL DETAILS in our project books. Price 70p each.

In Book 1 (X 101 B) 120 W rms MOSFET Combo-Amplifier Universal Timer with 18 program times and 4 outputs - Temperature Gauge - Six Vero Projects.

In Book 2 (XA02C) Home Security System - Train Controller for 14 trains on one circuit Stopwatch with multiple modes - Miles-per-Gallon Meter.

In Booh 3 (XA03D) ZX81 Keyboard with electronics - Stereo 25W MOSFET Amplifier - Doppler Kadar Intruder Detector Remote Conirol for Train Controller.

In Booh 4 (X104E) Telephone Exchange for 16 extensions Frequency Counter 10 Hz to

$600 \mathrm{MHz} \bullet$ Ultrasonic Intruder Detector - 1/O Pori for ZX8I - Car Burglar Alarm - Remote Control for 25 W Stereo Amp.

In Booh 5 (X A05F) Modem 10 European standard - 100 W 240 V AC dnverter - Sounds Generator for ZX81 - Central Heating

25W Stereo MOSFET Amplifier

* Over 26 W /channel into 8 sl at lkHz both channels driven.
- Frequency response $20 \mathrm{H}_{2} 10$ $40 \mathrm{kHz} \pm \mathrm{IdB}$.
* Low distortion. low noise and high reliability power MOSFET output stage.
* Extremely easy to build. Almost everything fits on main pcb. cutting interwiring to just 7

wires (plus toroidal transformer and mains lead terminations). - Complete kit contains everything you reed including predrilled and printed chassis and wooden cabinet
Full details in Projects Book 3 Price 70p (XA03D). Complete kit only $£ 55.20 \mathrm{incl}$. VAT and carriage (I.W7|N).

POST THIS COUPON NOW:

Please send me a copy of your 1983 cat alogue. I enclose f 1.50 (inc. P\&P). If I am not completely satisfied I may return the catalogue to you and have my money refunded. If you live out side the UK send $£ 1.90$ or 10 Interna tional Reply Coupons. Despatch by return of post where goods available.

Name

Address

Post Code

Controller - Panic Button Jor Home Security System • Model Train Projects - Timer for External Sounder.

In Booh 6 (XA06G) Specech Synthesiser for 2×81 \& VIC 20 • Module to Bridge two of our MOSFET Amps to make a 350W Amp • ZX8I Sound on your TV • Scratch Filter - Damp Meter Four Simple Projects.

In Book 7 (XA07H) Modem Interface for ZX81/VIC20 - Digital Enlarger Cimer/Controller DXers Audio Processor - Sweep Oscillator - CMOS Crystal Catibrator.

Computer Shopping Arrives

AS FROM June 1st you can place orders directly with our computer from your personal computer. The computer shopping revolution has arrived! To communicate, you'll need a modem (our RS232 compatible modem kit is LW99H price £39.95) and an interface (our ZX81 interface LK08.] price $£ 24.95$ is available already with many more for most popular micros coming soon).

Just dial us up on 0702552941 and you'll be able to interrogate our stock file then place your order. type in your credit card number and a few minutes after you hang up your order will print out in our warehouse ready for paching. And all without saying a word

Try out the future way of shopping now! You'll see immediately what stock we've got available and you'll discover how easy it is to ensure your order is exaclly right. And you'll see precisely what the current price is for each item and what total amount will be charged to your credit card. It all helps to make buying easier. So give us a ring now!

MATINEE ORGAN

EASY-TO-BUILD, superb specification. Comparable with organs selling for up to $£ 1000$.

Full construction details in our book (XH55K). Price £2.50. Complete kits available. Electronics (XY9|ケ) £299.95*. Cabinel (XY93B) £99.50*. Demo casselte ($\mathrm{XX}+3 \mathrm{~W}$) £1.99.

Maplin's New 1983 Catalogue

Over 390 pages packed with
data and pictures and all completely revised and including over 1000 new items.
 On sale in all branches WH SMITH. Price $£ 1.25$.

[^0]: (C) IPC Magazines Limited 1983. Copyright in all drawings, pholographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]:

