PRACTICAL

(a) 5 ? 1 Juhy 1933

ESp

bahcit Whivozr alarm plus RiJomata LeHTINe

UPIDOWN TIMER - TIMER CONTROLLER

-omorirarexplained

Get moving with these new developments in UK Robotics

- advanced electrohydraulic designs for education, industry and now available to the home constructor.

printing. call to machine code routines, hexadecimal support and userfriendly textual error trapping messages.

If computers interest you then the Cortex will expand your understanding infinitely more than off the shelf machines Use it in business. education. research or just play with the incredible graphics capability At Powertran we are using these machines in conventional roles, in product control and R \& D. We shall coordinate the Cortex user group and distribute software for the TMS 9995 CPU Complete 16 bit 64 K computer kit $£ 295.00$ Mega Hertz 16 bit CPU, 64 K upwardly compatible DRAM. separate 16 K video DRAM and 24 K TI Power Basic with overwrite Supports up to four Disc drives of mixed type with 16 serial I/O ports Programmable Baud rate and comprehensive E Bus interface designed to support real world applications
Very high resolution graphics gives 3D simulation in 16 colours on 36 prioritised planes of user definable characters Software FORTH coming includes this trendy language along with NOS C/PM
Hardware components avalable separately with details in Nov. Dec, and Jan issues of ETI. Software features include. Real time clock. full renumbel command. buffered 1 . O to free machine whifst

 ife bo dod for mat mbe tout itwode ind

£ 1950.00
Example prices and specifications
Genesis S101 Base: 19.5" : $11^{\prime \prime}$ * $7.5^{\prime \prime}$ Lifting capacity: 1500 gm Arm lift: $66^{\prime \prime}$
Weight: 29 Kg

4 axis model in kit form £425 5 axis model in kit form E475

Genesis P101
Base 19.5" $\times 11^{\prime \prime} \times 7.5^{\prime \prime}$
Arm lengths between axles $14.0^{\prime \prime}$
Weight: 34 kg .
6 axis model in kit form
Complete Systems as shown in Photograph on right
Genesis S101
4 axis system in kit form E 681.50
5 axis system in ktt form $\mathbf{E 7 3 7 . 5 0}$ 5 axis system Ready Built $\mathbf{£ 1 4 5 0}$ Genesis P10才
6 axis system in kit form $£ 945.00$ 6 axis system Ready Built $£ 1650$

GENESIS P102 PROCESSOR BOX AND HAND HELD CONTROLLER

GENESIS S101 AND GENESIS P101 WITH PROCESSOR BOXES AND HAND-HELD CONTROLLERS

WORLD LEADERS IN ELECTRONIC KIT DESIGN AND SUPPLY

PRACTICAL ELECTRONICS
 VOLUME 19
 No. 7
 JULY 1983

CONSTRUCTIONAL PROJECTS

Analogue card

GENERAL FEATURES

FAIRLIGHT MUSIC COMPUTER by Ray Hammond 32
An in-depth look at this instrument
SEMICONDUCTOR CIRCUITS by Tom Gaskell BA(Hons) 40
Programmable Crystal Oscillator (PXO-600)
VERNON TRENT AT LARGE 61
MICROBUS by DJD 69
A bi-monthly focus on micro's for the home constructor
NEWS AND COMMENT
EDITORIAL 15

NEWS AND MARKET PLACE 16
Including Countdown and Points Arising
SPACEWATC H by Frank W. Hyde 24
Extra-terrestrial activities chronicled
PATE NTS REVIEW . $38 ~$
US Disc Alternative SPECIAL OFFER—CASSETTES 38

Free readers' advertisements
INDUSTRY NOTEBOOK by Nexus 66
News and views on the electronics industry

SPECIAL SUPPLEMENT
MICRO-FILE by R. W. Coles
between pages 38 and 39
Filesheet 88086

OUR AUGUST ISSUE WILL BE ON SALE FRIDAY, JULY 1st, 1983
(for details of contents see page 39)
The sundial and thourglass shown on the cover were supplied by Seaway Chandtery, Poole.

[^0]

GTT 810
 powni

Modula Number	Outant Pown Watts rm	$\begin{gathered} \text { Loed } \\ \text { Impedance } \\ \Omega \end{gathered}$	$\begin{array}{\|c} \hline \text { DISTI } \\ \text { T.H.O. } \\ \text { Typat } \\ \text { 1 } \mathrm{KHz} \\ \hline \end{array}$	ATION I.M.D. 60Hzl 7 KHz \&: 1	Supply Voltape TYp	$\begin{aligned} & \text { Size } \\ & \mathrm{mm} \end{aligned}$	WT	Prica inc. VAT
11/ 10	1 13	4.8	$0.01{ }^{\text {\% \% }}$	<0,006\%	± 18	$76 \times 68 \times 10$	240	¢8.40
Hevil	30	1.4	11.015\%	<0.006\%	± 25	$76 \times 68=40$	240	¢9,55
1110 comal	$30+36$	4.4	0,015\%	<11.006\%	± 25	$120 \times 78 \times 40$	420	C 18.69
Hrion	631	1	10.11\%	< 0.006%	± 26	$120 \times 78 \times 41$	410	C20.75
IIY İH	64)	H	15.613\%	< 0.006%	+35	120×78*40	410	c20.75
112094	120	4	10.01\%	< 0006%	135	$120 \times 78 \times 50$	520	125.47
$11+9$ м\%	120	8	0.01\%	< 0.00016%	± 50	$120 \times 78 \times 50$	520	125.47
Hy mism	186	4	0.01\%	< 1.0006	± 45	$120 \times 78 \times 100$	1030	${ }^{138.41}$
	1819	8	0,01\%	<0.006\%	± 60	$120 \times 78 \times 100$	1030	f38.41

Prolection. Full load line. Siew Rate 15 wi/us. Risetime 5us S / N ratio 1000 ob .
input impedance $100 \mathrm{~K} \Omega$. Oamping lactor $100 \mathrm{~Hz}>400$.

Modula Number	Modula	Furictions	Current Required	Prite inc. VAT
HV6	M	Mr:/Maq. Carlisige/Tuner/Tape/. Aux + Vol/Buss/Teble	10 mA	¢7.60
HYe\%	Stereo prat amin	Mac/Mag. Cartridge/I uner/Tape/ Aux + Vol/tass/Treble/Hal ance	21 mA	114.32
HY73	Giutar Doparap	Two Guitur (Bass Lead) and M.c * separate volume"Bass Treble - Mos	20 mA	[15,36
11978	Sterea) pre amb	A5 MV66 less tone controls	20 mA	£14.20

Most pre-amp modules can be driven by the PSU driving the main powet amp. A separate PSU 30 is avariabte purely tor pre amp modules it required lor Piease send for detais.
Mounting Bozrds
Mounting Boards
For ease construction we recommend the B6 for modules HY6-HY $13 £ 1.05$
(inc. VAT) and the $\mathbf{B . 6 6}$ for modutes HY66-HY 78 £1.29 (Hinc. VAT).

Model	For Use With	Price ance VAT	Model Numbem	For Use Wirt	Price unc. VAT	$\begin{array}{\|c\|} \hline \text { Model } \\ \text { Number } \end{array}$	For Use With	Price inc. VAT
PSU 21 x	For 2 HY 30	F11.93	PSU 52x	$2 \times \mathrm{HY} 124$	[17.07	PSt. 72x	2n H Y208	[122,5\%
PSU 4ix	Yor 2 HY60. $1 \times \mathrm{HY} 6060.1 \times \mathrm{MY} 12 \mathrm{C}$	E13.83	PSU 53x	$2 \times \mathrm{MOS} 128$	[17.86	PStu 73 x	1 * HY364	122.54
PSU47x	1 \times HY128	E15.90	PSU 54 x	$1 \times 14 \mathrm{Y} 248$	£17.86	PSU 74 x	$1 \times$ + 4 Y 368	124.20
pSU 43x	1. MOS128	E16.70	PSUS 55x	$1 \times \mathrm{MOS248}$	£19.52	PSU 73 x	$2 \times \mathrm{MuS248}, 1$, MOS369	424.20
pSu six	2×HY128, $1 \times$ HY2A4	[17.07	PSU $71 \times$	2×11 Y244	[21.75			

[^1]| Module
 Number | Oesput Power Wattis rms | $\begin{array}{\|c\|} \hline \text { Lomd } \\ \hline 1 \text { mpendence } \\ \Omega \\ \hline \end{array}$ | DISTORTION | | Supply Voltere Ivp | Sue mm | WTgms | $\begin{aligned} & \text { Price } \\ & \text { inc. } \\ & \text { VAT } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | T.M.D. TYpat 1 KHz | $\begin{aligned} & \text { I.M.D. } \\ & \text { COHz! } \\ & \text { 7KHz \&: } 1 \end{aligned}$ | | | | |
| Mus 128 | 60 | 4-8 | <0.005\% | <0.006\% | ± 45 | 120.78.40 | 220. | t.50) 51 |
| Mos 248 | 120 | 4.8 | <0,005\% | <0.006\% | ± 55 | $120 \times 18 \times 80$ | Hhu | +3! 31.86 |
| Mos 364 | 180 | , | <0.005\% | <0.006\% | - 55 | $120 \times 78 \times 100$ | - 225 | \& 45. |

Protection. Able to cone with comolex loads withoul the need for very special
Slew rate $20 \mathrm{v} / \mathrm{ks}$. Rise lume $3 \mu \mathrm{~s}$. S/N ratia 100db

'NEW to ILP' In $\mathrm{C}_{\text {ar }}$ Entertainments
C15
or cassete neyer to a nominal 15 walts rms.
Very easy 10 use.
Robust construction. $\mathbf{£ 9 . 1 4 \text { (inc. VAT) }}$
Mounts any where in ca
Aluomatic switch on.
Output power maxamum 22 w peak into 4Ω
Frequency response (- 3 dB$) 15 \mathrm{~Hz}$ to 30 KHz . T. H.D. 0.9% at $10 \mathrm{w} / \mathrm{KH}$
S/N rallo IDIN AUDIOI 80 dB. Load Impedance $\Omega \Omega$
Size $95 \times 48 \times 50 \mathrm{~mm}$. Weight 256 gms
C1515
Sterea version a1 C15
f17. 19 (inc. VAT)
Size $95 \times 40 \times 80$. Weight 410 gms

WITHALOT OF GELP mom
 ORE ELECTRANICS LTO

PROFISSSINNAL IIIFIT THAT EVERY ENTHUSIAST

 CAN HANDIL...
Unicase

Over the years ILP has been aware of the need for a complete packaging system for it's products, it has now developed a unique system which meets all the requirements for ease of assembly, adaptability, ruggedness, modern styling and above all price.
Each Unicase kit contains all the hardware required down to the last nut and bolt to build a complete unit without the need for any special tools.

Because of ILP's modular approach, "open plan" construction is used and final assembly of the unit parts forms a compact aesthetic unit. By this method construction can be achieved in under two hours with little experience of electronic wiring and mechanical assembly.

Hi Fi Separates

UC1 PRE AMP UNIT: Incorporates the HY78 to provide a "no frills", low distortion, $(<0.01 \%)$, stereo control unit, providing inputs for magnetic cartridge, tuner, and tape/ monitor facilities. This unit provides the heart of the hi fi system and can be used in conjunction with any of the UP Unicase series of power amps. For ultimate hum rejection the UC1 draws its power from the power amp unit.
POWER AMPS: The UP series feature a clean line front panel incorporating on/off switch and concealed indicator. They are designed to compliment the style of the UC1 pre-amp. Performance for each unit which includes the appropriate power supply, is as specified on the facing page

Power Slaves

Our power slaves, which have numerous uses i.e. instrument, discotheque, sound reinforcement, feature in addition to the hi fi series, front panel input jack, level control, and a carrying handle. Providing the smallest, lowest cost, slave on the market in this format.

UNICASES					
HIFI Separates					Price inc. VAT
UC1	Preamp				E29.95
UP1X	$30+30 \mathrm{~W} / 4-8 \Omega$	Bipolar	Stereo	HiF_{1}	£54.95
UP2X	$60 \mathrm{~W} / 4 \Omega$	Bipotar	Mono	$H_{1} F_{1}$	$¢ 54.95$
UP3X	$60 \mathrm{~W} / 8 \Omega$	Bipolar	Monu	HIF	£54.95
UP4X	$120 \mathrm{~W} / 4 \Omega$	B polar	Mone	$\mathrm{H}_{1} \mathrm{~F}_{1}$	£74.95
UP5 X	$120 \mathrm{~W} / 8 \Omega$	Bipolar	Mono	$H_{1} F_{1}$	¢74.95
UP6X	60W/4-8	MOS	Mono	$H_{1} \mathrm{~F}^{\prime}$	¢64.95
UP7X	120W/4-8	MOS	Mono	$\mathrm{H}_{1} \mathrm{~F}_{1}$	£84.95
Power Slaves					
USIX	$60 \mathrm{~W} / 4 \Omega$	Biporar	Power	Slave	£59.95
US2 x	$120 \mathrm{~W} / 4 \Omega$	Bipolar	Power	Slave	£79.95
US3X	60W/4-8	MOS	Power	Slave	$¢ 69.96$
US4 x	120W/4-8	MOS	Power	Slave	189.95

[^2]

Sinclair ZX Spect

The growing range of Spectrum Software

You'll know already that the Spectrum has generated an enormous range of peripherals and independent software. Our own range is growing very fast and is shown in the Sinclair Software Catalogue - free with every ZX Spectrum.

um-news:

16K now f99.95 Previously $£ 125$.

48K now £129.95

Previously $£ 175$.

At last, a 16K colour computer with graphics for under £100!

Why have we done it?
Partly because the sheer volume of Spectrums sold (over 300,000 so far) has brought down unit production costs.

And partly, of course, because we hope you'll buy a Sinclair computer - and not some competitor's promise! We've all heard about colour computers breaking the £100 barrier. Here's the computer that's done it. A colour computer with advanced graphics that's fully supported, and widely available.

Right now, you can order a Sinclair Spectrum at these prices direct from Sinclair on the order form below. And to make it even easier to handle high-level computing at the
lowest possible price, we've cut the cost of the printer, too. At £39.95, it's almost unbelievable!

At prices like these, there's really no reason to wait.

ZXPrinter now £39.95

How to order your ZX Spectrum
Access, Barclaycard or Trustcard holders - call 01-200 020024 hours a day, every day. By FREEPOST - use the coupon below. Please allow up to 28 days for delivery. 14-day money-back option.

Sinclair Research Ltd., Stanhope Road, Camberley, Surrey, GU15 3PS.
Tel: 0276 685311. Reg, no 1135105.

JUST OUT!

OUR GREAT NEW CATALOGUE

Presented with a Professional Approach and Appeal to ALL who require Quality Electronic Components, Semiconductors and other Accessories ALL at realistic prices.
There are no wasted pages of useless information so often included in Catalogues published nowadays. Just solid facts i.e. price, description and individual features of what we have available. But remember, BI-PAK's policy has always been to sell quality components at competitive prices and THAT WE STILL DO.

We hold vast Stocks "in stock" for fast immediate delivery, all items in our Catalogue are available ex stock.
The Catalogue is designed for use with our 24 hours "ansaphone" service and the Visa/ Access credit cards, which we accept over the telephone.
To receive your NEW 1983 BI-PAK Catalogue, send 75p PLUS 25p p\&p to:

[^3]
KITS \& PCB's

Full Kits including PCB's, Hardware and Cases (unless listed separately). I.C. Sockets, Veropins, Wire, Nuts \& Bolts all included.

Reprints 45p extra.

Automobile Test Set May 83 ...f32.56 Mains Watchdog May 83 $\mathbf{f 1 4 . 4 7}$ Personal Stereo Amplifier May 83 (less case and transformer) ... $£ 26.98$ Switched Capacitance Phaser April 82 ... $\mathbf{~} 48$ Battery Tester April 83 $\mathbf{f 1 2 . 5 5}$

Wiper Delay April 83 (Less Relay) $\mathbf{E 7 . 4 4}$

 Car Audio Booster (Stereo) Jan 83 (Less Case) …….................. $£ 18.98$ Diecast Case extra $£ 45$ Frost/Overheating Warning $\begin{array}{r}\text { Jan } \\ \mathbf{6} .20\end{array}$PCB's
Top quality printed Circuit Boards made from P.E. masters glass fibre board, roller tinned \& drilled.

Program Conditioner June 83 Automobile Test Set June 83 Mains Watchdog May 83 Personal Stereo Amp May 83 Battery Tester April 83 Battery Tester April 83
Wiper Delay April 83 Switched Capacitor Phaser April 032.08 Digital Frequency Meter Dar Accessory P.S.U. March $83 \quad$ _.. $\mathbf{F 1 . 5 3}$ Car Radio Booster Feb. 83 Digital Tacho Jan. 83 (3). Car Audio Booster Jan. 83 Stylochord Dec. 82 (3) Digital Stopwatch Oct. 82 Audio Sweep Osc. Oct. 82
 E 3.47 Audio Debug Probe Sept. $82 \ldots . . . \quad \mathbf{E 1 . 5 8}$ $\mathrm{f2.07}$ Waveform Digitiser Sept. 82 $£ 12.60$ £4.54 Combo Amp (Main) Aug. $82 \quad £ .45$ Combo Amp (Preamp) Aug. $82 \ldots . . . \mathrm{£3.62}$ Audio Test Set July 82 $\mathbf{6 6 . 3 8}$ Instrument Tuner July 82 2.01

 Auto Flash Slave June 82 ….......... $\mathrm{E1.34}$ Prescaler + Freq. Meter
May 82 (3) f2.80 Prog. Timer/Controller May 82 (3) £9.08 Battery Backup June 822.34 Function Generator May $82 \ldots \ldots53 .58$

MAGENTA ELECTRONICS LTD

PB11, 135 HUNTER ST., BURTON-ON-TRENT, STAFFS DE14 2ST 0283 65435. MON-FRI 9-5. MAIL ORDER ONLY

ADD 45p P\&P TO ALL ORDERS
ACCESS and BARCLAYCARD (VISA) ORDERS ACCEPTED BY PHONE OR POST. SAE ALL ENQUIRIES

Prices inc. VAT
Prificial ORDERS WELCOME OVERSEAS Payment must be in sterling IRISH REPUBULC and BFPO - UK PRICES EUROPE - UK PRICES $+10 \%$. ELSEWHERE - Write for Quote.

T.V. SOUND TUNER BUILT AND TESTED

In the cut-throat world of consumer electronics, one of the questions designers apparently ponder over we save money by chopp. ing this out?"' In the domestlc TV set, one first casualties seems of the the sound quality. Small speakers and no tone controls are common

$£ 24.95+£ 2.00 \mathrm{p} \& \mathrm{p}$ TV companies do their best to transmit the highest quality sound. Given this background a compact and independent TV tuner that connects direct to your Hi-Fi is a must for quality reproduction. The unit is mains-operated.
This TV SOUND TUNER offers full UHF coverage with 5 pre-selected tuning controls. It can also be used in conjunction with your video recorder. Dimensions: $113^{\prime \prime} \times 8 \frac{1}{\prime \prime} \times 3 y^{\prime \prime}$ "
E.T.I. kit version of above without chassis, case and hardware. $£ 12.95$ plus $£ 1.50$ p\&p

\section*{PRACTICAL ELECTRONICS SPECIAL OFFERI STEREO CASSETTE RECORDER KIT | coaplere |
| :---: |
| with case |
 ONLY £ 31.00 plus $£ 2.75$ p\&p.
 - NOISE REDUCTION SYSTEM. • AUTO STOP. TAPE COUNTER. - SWITCHABLE E.O. - INDEPENDENT LEVEL CONTROLS - TWINVU. METER. WOW \& FLUTTER ELECTRONIC SWITCHING. FULIY VARIABLE RECORDING BIAS FOR} ACCURATE MATCHING OF ALL TYPES.

Kit includes tape transport mechanism, ready punched and back
printed quality circuit board and all electronic parts. ie. semiconductors
resistors, capacitors, hardware, top cover, printed scale and mains transformer.

STEREO TUNER KIT
build 3 band
stereo AM/
FM tuner kit
is designed
in conjunction
with P.E. (July 81). For ease of construction and alignment it incorporates three Mullard modules and an .C. AF SNES: FEATURES: VHF, MW, LW Bands, interstat on muting and AFC on VHF. Tuning meter and scale. Aerial: AM-ferrite rod FM. 75 or 300 ohms. Stabilised power supply with ' C ' core mains transformer. All components supp lied are to P E strict specification. Front scale lied are to P.E. strict specification. Front scale
size $1011^{\prime \prime} \times 2^{\prime \prime} z^{\prime \prime}$ approx. Complete with dig. gram and instructions.
SPECIAL OFFER! £13.95 +£2.50p\&p. Self assembly simulated wood cabinet sleeve to suit tuner only. Finish size: $11 \%^{\prime \prime} \times 88^{\prime \prime \prime} \times 3 \%$ "
$£ 3.50$ Plus $£ 9.50$ p\&p.

STEREO CASSETTE DECK

125W HIGH POWER AMP MODULES

The power am power applications - disco units, guitar amplif iers, public address systems and even high power domestic systems. The unit is protected against short circuiting of the load and is safe in an open circuit condition. A large safety margin exists by use of generously rated comThe PC board is back printed, etched und The PC board is back printed, etched and resdy to drill for ease of construction and the use Supplied with all parts, circuit diagrams and inspructions. ACCESSORIES: Stereo/mono mains power supply

SPECIFICATIONS
Max. output power (RMS): 125 W . Operating voltage (DC): 50-80 max. Loads: 4-16 ohm Frequency response measured @ 100 watts: $25 \mathrm{~Hz}-20 \mathrm{KHz}$. Sensitivity for $100 \mathrm{w}: 400 \mathrm{mV}$ 0.1%. Dimensions: 205×90 and $190 \times 36 \mathrm{~mm}$. $.1 \%$. Dimensions: 205×90 and $190 \times 36 \mathrm{~mm}$ kit with transformer: $\mathbf{£ 1 0 . 5 0}$ plus $£ 2.00 \mathrm{p} \& \mathrm{p}$.

BSR RECORD DECK

Manual single play reco
deck with auto return and cueing lever. Fitted with sterao ceramic cart. ridge 2 speeds with 45 rpm spindle adaptor ideally
 $\mathbf{£ 1 2 . 9 5 + £ 1 . 7 5 ~ p \& p . ~}$

SPECIAL OFFERI Replacement Stereo cass each. Erase: $f 0.70$ en

All mail to:

218 HIGH STREET, ACTON, W3 6NG
Alle. Gooca despatched to U.K. postal addresses oniv $31 / 5 / 83$ subject to availimbility. Prices correct so Pleas ellow 14 working deys from receipt of ord tor despatch. RTVC Limited reserve the right to updere their products without notice. All onquirites rond
S.A.E. Teleohone or mail orders OY ACCESS welcome

SPEAKER BARGAINS

2 WAY 10 WATT
SPEAKER KIT
$8^{\prime \prime}$ bass/mid range and $3^{1 / 4}$
tweeter. Complete with screw
wire, crossover components and eabinet. All wood pre cut - no cutting required. Finish - chipboard covered wood simulate. size $14 / 2{ }^{2} \times$ £ 12.50 plus $£ 1.75$ p \& p
ALL CALLERS TO: 323 EDGWARE ROAD. LONDON W2. Telephone: 01.7238432. 15 minutes walk from Edgware Road Tube Station
Now open 6 days $\begin{aligned} & \text { week } 9-6 \text {, Prices include }\end{aligned}$.

BIG ELECTROLYTICS

from

IEMOS

* Computer grade
* Made by Sprague or G.E.
*Short shelf life
BARGAIN PRICES TO CLEAR * ONLY £2.50 EACH *
any of the following valves

300,000	@	7 V	100,000	@ 30V
185,000	@	15V	71,000	@ 40V
120,000	@	15V	60,000	@ 40V

IMMEDIATE DELIVERY

p\&p 1 or 2 capacitors $£ 1.00$
3 to 6
$£ 1.50$
$6+\quad$ " $£ 2.00$

Dept. 1G , High March, Daventry, NN11 4HQ Tel. 032725523

Please add 15\% V.A.T
Send large s.a.e. for catalogue giving details of our vast range of components
Walk round supermarket open Mon. Sat 9.4 E/N Come and see our tantastic offers.

ELEGTROVALIE

THE LARGEST RANGE OF WORLD-FAMOUS SIEMENS COMPONENTS IN THE U.K -
24 HOUR NORMAL DESPATCH TIME - BETTER
PRICES - BETTER SERVICE - BETTER CHOICE

Beckman instruments are used worldwide in medicine and science, in industry and environmental technology, where precision and reliability are vital: from the Beckman photospectrometer in a space probe scanning for signs of life to a Beckman clinical electrolyte analyser.

World's widest range of hand-held multimeters

This same perfection in design and manufacture goes into Beckman digital multimeters, themselves widely used in testing, measurement, research and engineering because of their accuracy and their intelligent features.

Now the electronics enthusiast has access to the same standard of reliability in the T90, T100 and T110 models.

Digital performance at analogue cost

All models undergo 100% factory testing. Their accuracy is guaranteed to be held over a long period and reliability is outstanding, thanks to fewer components and interconnections. All components are of the highest quality and include a CMOS integrated circuit and gold inlaid switch contacts.

The digital display can be read at a glance, and all functions are selected with a single rotary switch, rather than with confusing rows of push buttons.

Battery life is exceptional -200 hours at continuous operation.

The T90 gives an accuracy of $0.8 \% \mathrm{Vac}$ and is remarkable value for money at $£ 43.45$ (+VAT).

The T 100 is a full range function meter with 0.5% accuracy at $£ 49.00$ (+ VAT), while the T110 offers even greater accuracy of 0.25% plus an audible continuity indicator at $£ 59.00$ (+VAT).

To feel like a professional you can order your Beckman straight off the coupon, or send for full technical data.

BECKMAN

World leaders in multimeters

Beckman Instruments Ltd
Electronic Components UK Sales and Marketing Organisation Mylen House, 11 Wagon Lane, Sheldon, Birmingham B26 3DU. Tel: 021-7427921 Telex: 336659
Please send me: I

- T100 meters at $£ 57.00$ (inc. VAT, p\&p)

\qquad
I enclose a cheque/P.O. payable to: Beckman Instruments Lid for £ I
Please send me full data on the Beckman
enthusiast's multimeter range. (Tick box if required)
NAMEI
ADDRESS I
Please allow 14 days for delivery

MICROCHIPS AND MEDICINE

N these days when we read so much about nuclear armaments and defence electronics and when so many electronics companies rely heavily on Ministry of Defence contracts, it is good to hear how British electronics is to the forefront in the medical world. We do not intend to look at the ethics of the engineer in the armaments industry. The subject of "Microchips and Megadeaths" has been well aired in Wireless World and indeed has made fascinating reading and provided plenty of food for thought. The multi-faceted subject will no doubt be discussed at even greater length around the world in the coming years-we hope so anyway.
Much less controversial but just as important is the contribution electronics can make to the everyday lives of many who suffer from various illnesses. Most of us are well aware of the contribution to medicine of the X ray scanner or ultrasonic sonar techniques, even of home dialysis machines, but next time you are in a hospital just take in the amount of electronics involved, starting with the doctor's bleeper and electronic notepad. It doesn't take long to realise that over the years just about every aspect of
medical practice has been assisted by some form of electronics. For instance many G.P.s have been at the forefront of "real" applications for the microcomputer and now specialist systems and software are available just for them.

This spread of electronics is becoming apparent in our everyday lives. It is not unusual to find a pulse rate monitor in a sports centre or gym, a faradic massager or electrolysis unit in a beauty parlour, even electronic scales in our homes. They are all related to medicine-perhaps loosely-and demonstrate our acceptance of electronics in this area.

The application of electronics in research is also fascinating.- Relaxometers are being used in cancer treatment and e.s.p. research, areas which are relatively new and controversial in the medical profession. (PE will be returning to this subject in future issues.)

Perhaps the best examples of applied electronics are those that assist patients to "treat themselves" and to lead normal lives instead of being hospitalised. This year two pieces of electronic equipment that do just that have been given Design Council Awards for outstanding British
products in the medical field. Both items are relatively inexpensive, as medical equipment goes, and both have been designed for patient use.

The items are:
A portable syringe driver from Graseby Medical, designed to provide a continuous infusion of a drug from 1 to 99 mm per hour. The unit is small enough to fit a normal pocket for ambulant patients.

A blood glucose monitor which enables diabetics to monitor their own blood glucose level. The unit has automatic calibration and temperature and humidity correction, is also pocket sized and has been designed by Hypoguard Ltd. to be easily used by the patient.

We would like to add our congratulations to these award winning companies and to the engineers behind the products. Perhaps this is one of the best applications of modern technology and therefore one of the most rewarding in which to work. It is an area of interest we will return to in the coming months.

EDITOR Mike Kenward

Gordon Godbold ASSISTANTEDITOR
David Shortland ASSISTANT EDITOR/PRODUCTION
Mike Abbott TECHNICAL EDITOR
Brian Butler TECHNICAL SUB EDITOR

Jack Pountney ART EDITOR
Keith Woodruff ASSISTANT ART EDITOR
John Pickering SEN. TECH. ILLUSTRATOR
Isabelle Greenaway TECH. ILLUSTRATOR
Jenny Tremaine SECRETARY

ADVERTISEMENT MANAGER
SECRETARY AD. SALES EXEC. CLASSIFIED SUPERVISOR AD. MAKE-UP/COPY
D. W. B. Tilleard

Christine Pocknell 01-261 6676

Alfred Tonge 01-2616819
Barbara Blake 01-261 5897
Brian Lamb 01-2616601

Technical and Editorial queries and letters (see note below) to: Practical Electronics Editorial, Westover House West Quay Road, Poole, Dorset BH15 1JG
Phone: Editorial Poole 671191
We regret that lengthy technical enquiries cannot be answered over the telephone

Queries and letters concerning advertisements to:
Practical Electronics Advertisements, King's Reach Tower, King's Reach, Stamford Street, SE1 9LS Telex: 915748 MAGDIV-G

[^4]Back Numbers
Copies of most of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, at $£ 1$ each including Inland/Overseas p\&p. Please state month and year of issue required.

Binders

Binders for PE are available from the same address as back numbers at $£ 5.50$ each
to UK or overseas addresses, including postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 13.00$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH 16 3DH. Cheques and postal orders should be made payable to IPC Magazines Limited. unless otherwise specified. Prices correct at time of going to press.

HYDRO-ELECTRIC CIINT

Around three million tonnes of slate have been excavated in North Wales to create a subterranean engineering marvel: the Dinorwig generator. The pump chamber which houses the main plant is in itself one of the largest man-made caverns in the world-twice as long and half as wide as a football pitch and higher than a 16 storey building.

The Dinorwig pumped-storage power station is presently being commissioned by CEGB engineers in the Welsh mountains. Pumped-storage schemes are used to store 'potential electrical energy' in a massive body of water in the higher of two reservoirs. When electricity is needed by the national grid, the plant is used like an ordinary hydro-electric system. On its path from the higher to the lower reservoir the water drives six huge turbines which in this case can provide a constant output of $1,680 \mathrm{MW}$ over a five hour period.

It then uses cheap rate electricity to return the water to the higher level by reversing the role of the turbines and using them as motor pumps. Power for pumping is used only during 'off peak' periods. Generated power is used only at times of 'peak demand' and at lower cost than the old (and less efficient) power stations that would otherwise have to be brought into operation. Consequently, large sums of money can be saved-even though only three units of electricity can be generated for every four used in pumping.

Dinorwig will provide a faster, more reliable and cheaper 'immediate reserve' than that provided by steam stations. It will give the national grid greater flexibility and cheaper power at a price that could be approached in no other way. It is expected to save millions of pounds during each year of its operational life.

This project will be the subject of a detailed feature article to be published in PE later this year.

Surrogate Companion

Once upon a time children's story books were chunky, stiff-paged affairs, with cartoon pictures at the top of each page and a boldprinted storyline along the bottom. The scheme was that the words would be large in typesize, small in length, and most important of all, English! Mum or dad would personally teach their offspring to read with the help of the funny stories therein, and all would live happily ever after.

Now, in another decade it may not be uncommon to encounter youths who deliver their words with the intonation (or lack of it) of a voice synthesiser, and who can only read bar code. These will be the ones growing up now with the latest concept in twentieth century story books.

The photograph shows the Texas Instruments computerised storybook reader. To learn to read, the child simply runs a light pen across the bar code accompanying each picture, which instructs the voice synthesiser what to "say". Sound effects and music may also emanate from the "Magic W and Speaking Reader" as it is called, making it a real boon to the tone deaf parent.

Does this teaching aid live up to the standard set by TI's excellent "Little Professor" and "Speak \& Spell"? The spectre of the thoroughly modern family unit, in which Mr. and Mrs. Gizmo are wrestling over the cable TV selector, whilst junior tucks himself up in bed to the metallic voice of a silicon storyteller, is forming its first pixels, so to speak.

TOWERS

The fifth title in the series of Towers' Selectors now brings the list of these classic data books to: FET, OP-AMP LINEAR IC, TRANSISTOR, MICROPROCESSOR, and DIGITAL IC Selectors. The author, T. D. Towers MBE MA BSc CEng MIERE has created a handy 'user-slanted'
reference work covering the vast field of digital i.c.s. The latest selector includes a full introduction which describes the various i.c. technologies and types, followed by tabulations giving device descriptions and control specifications. Devices are listed in alpha-numerical order, and the contents are, as expected, international, covering products from the UK, USA, Europe, Eastern Europe and Japan. Current and obsolete devices are copiously described, pin compatible
equivalents indicated, and crossreferences included where common specifications between manufacturers occur.

The tables are supported by separate appendices to give pin-out and package information, and manufacturers' proprietary house codings. Towers' International Digital IC Selector measures $248 \times 174 \mathrm{~mm}$, has 256 pages, and costs $\mathbf{f 9} 95$. Published by W. Foulsham \& Co. Ltd., Yeovil Road, Slough, Berkshire.

Prestel Experiment

Go on, you remember Prestel, don't you? Interactive Information Technology brought to your lounge. Okay, perhaps not to your lounge, but to your office, at least. No? Well, in the words of British Telecoms' Prestel supremo, Richard Hooper, the service "had the method of delivery but the package of information services was not right."

All has changed with the introduction of Club 403, an experiment designed to probe the potential of a mass market, and which scrolled into life in March this year. The pilot scheme is confined to the West Midlands, and returns with it the prospect of teleshopping from the chaise longue, if only for 2500 bargain rate subscribers. At the outset, about fifty vendors were seriously interested in participating at the business end, among them Curry's, DER and Radio Rentals. Citibank Savings cite the occasion as being a "valuable step towards home banking/shopping", whilst the marketing manager of Imperial Life Assurance of Canada says, of formulating personalised quotes, enquirers "can be led through an analysis of just what income they would need to exist in an emergency". Peugeot Talbot UK take test drive bookings through what is known as the "response frame."

The reality of life for Club 403 members is that they either have, or may look forward to, such services as a swop-shop, electronic message board, local weather and road situation reports; they may send flowers and gifts from stores like Lewis's and Rackhams (and video greetings), book theatre seats, and even enrol on local courses. The service includes what is claimed to be the world's first electronic newspaper. Might the Commons debates on shop opening hours become academic in the long term? Twenty-four hour electronic trading is quite legal.

Of course, information about local entertainments and public transport timetables is included, but subscribers will, for example, find all restaurants listed by area and food type, rather than only those prepared to pay for advertising.

Club 403 is a service provided by Viewtel Services Ltd. (sister company of Birmingham Post \& Mail) and Prestel. This pilot system combines the use of Ceefax, Oracle and Prestel, the latter providing the interactive database. Ultimately, telepurchasing of "low risk" goods-those which require no inspection prior to purchase-is envisaged. The customer's bank account would be automatically debited, and then the goods delivered to the door. The question is: would this require an army of delivery boys, or robots?

Soaring through the skies, duelling with laser-guided obliteration, where all that stands between a pilot and eternity is the wits to outmanoeuvre a tenacious air-to-air missile, split seconds have a currency few can appreciate.
The scientists and engineers who develop military hardware are very familiar

with the split second, particularly those involved with aviation; which is why HUD (Head Up Display) exists. Its purpose is to allow the pilot of a fighter aircraft to view his instruments without having to glance down at the instrument panel-a movement which costs living seconds. The HUD reflects the digital read-outs and such data as the artificial horizon, on to the cockpit glass, with focus at infinity. The pilot neither has to move his head, nor refocus his eyes from the horizon (or target) in order to assimilate flight/combat information.

Apart from a navigation mode, the HUD can also superimpose the weapons-aiming computer's cross-hairs, and other graphics,

on the real target when attacking a surface or air alien. Ferranti's type FD4500 HUD (shown in the photograph) can control the entire weapons system, and will project a drift-compensated bomb fall line down the pilot's field of view during the run-in to a surface attack. In this, one of many modes of operation and display formats, elapsed time-to-bomb release is graphed as an uncoiling circle. If the target has already been entered into the computer as a waypoint, the attack can take place in the absence of visibility. The inertial navigator, laser rangefinder, computer and HUD combine to make a combat system which has a distinctly Starwars flavour.

Patents,Copyright,Trade Marks...

Laurence Shaw is the author of "The Practical Guide for people with a new idea", which explains the need for, and the ins and outs of, patents, copyrights and trade marks.

The purpose of the book is to show how the fruits of ingenuity can be protected, and innovation made profitable. Market research is explained, along with how to approach a manufacturer with an idea, the importance of design registration, patenting and the secret patent. The reader may discover how to search to check that his or her idea is original, and how much a patent will cost, and for how long its protection will last. The relationship between the UK and overseas patent is explored, and how to arrange licensed manufacture.

The work is easy to read; it puts its reader in touch with the correct ter-
minology, and is peppered with entertaining facts. For example, did you know that the Rolls-Royce Silver Cloud was at first to be called the Silver Mist, until their German distributor pointed out that mist in German means manure? On a more serious note, did you know that if a patented invention is not put to use, its owner can be instructed to license a third party to use it, like it or not? Does something invented at work belong to the employer, or the employee? The Practical Guide for people with a new idea will show how to distinguish who is the rightful owner. Well worth reading.

The 98 page paperback (measuring $150 \times 210 \mathrm{~mm}$) costs $£ 5.95$ post paid, and is available from Laurence Shaw, George House, George Road, Edgbaston, Birmingham B15 1PG.

Items mentioned are available through normal retail outlets unless otherwise specified. Prices correct at time of going

Hetrinoncs in

Midland Ross Cambion have produced a low cost experimental kit to help in the teaching and understanding of basic electronics in schools and for use by Training Officers responsible for training apprentices

The kit, which offers 31 different experiments and applications complete with teachers' notes, has been developed and tested over the past two years before being introduced this Spring.

No soldering is required and each of the 31 experiments is produced on a hard wearing laminated card. To ensure that teachers have a regular supply of worksheets, photocopy masters are provided free of copyright.

Stage two of the kit will be launched in the Autumn of this year

The full kit is priced at $£ 35 \cdot 21$ including

VAT and $p \& p$. Part kits and replacement components are also available.

For further details contact Cambion Electronics Products Ltd., Castleton, Sheffield S30 2WR (0433 20831).

Silicon News Corner

Bulletins announcing new semiconductor devices arrive at PE daily, so it is possible only to describe them briefly. Details of how to obtain further information are included, however.

Intersil The 1 CL 7135 is a precision $4 \frac{1}{2}$ digit, single chip A-to-D converter features multiplexed BCD output and digit drivers, combining dual slope conversion reliability with ± 1 in 20,000 count accuracy. Auto-Zero to less than $10 \mu \mathrm{~V}$, zero drift of $<1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, input bias of 10 pA and rollover error $<$ one count. - IM6657/1M6658 are 8192-bit, fully decoded CMOS UV EPROMs. $550 \mu \mathrm{~W}$ standby with 300 ns access time, these TTL compatible memories are also fuily compatible with Intersil's standard CMOS ROM/EPROM family. - IM6716 is a 16,384 -bit CMOS UV EPR OM requiring a single 5 V supply. Fully decoded, and organised as 20488 -bit words, this device has TTL compatible tristate outputs.

- ADC0801-ADC0804 8-bit $\mu \mathrm{P}$ compatible A/D converters are MCS-48 and MCS-80/85 compatible on memory or $1 / \mathrm{O}$ mapped basis. Conversion time is $<100 \mu \mathrm{~s}$. Incorporate onchip clock generators, $0-5 \mathrm{~V}$ input range, differential input, and no zero-adjust necessary Will operate "stand-alone"
- A/D converter with direct drive multiplexed LCD output, is called the ICL7129. A $4-\frac{1}{2}$ digit CMOS converter, it uses "successive in tegration" to obtain 0.005% FSR accuracy, and $10 \mu \mathrm{~V}$ resolution. Draws 1 mA at 9 V , and has "Low Battery" indication. Intersil Datel (UK) Ltd., Snamprogetti House, Basing View, Basingstoke, Hants.
Mullard A high performance 14 -bit hybrid DAC called the OM901 contains the nakid
chip of the established TDA150, plus the peripheral components needed for a 14 -bit DAC. Has high linearity and excellent \mathbf{S} / N ratio (85 dB typical). Can handle 16 -bit signal if used with SAA 7030 digital filter.
- Two new hybrid inductive proximity detector i.c.s from Mullard are the OM386 and OM387, for +Ve and -Ve supply voltages respectively. Small enough to fit M8 size Cenelec hollow stud, yet have direct relay drive O/P (400 mA @ 10-30V). Detection range 1.5 mm when used in M8 tube.
-The BU505 is a $1500 \mathrm{~V} / 2 \mathrm{~A}$ transistor for CTV deflection circuits. This TO-220 transistor has 75 W power and typical t_{f} of $0.7 \mu \mathrm{~s}$.
- Three new Schottky diodes: BA481, BAT81/82/83 and BAT85 are DO-34 glass encapsulated. These offer forward voltage similar to germanium and short recovery time, being majority carrier there are no storage delay problems.
Three new high voltage, glass passivated n.p.n. switching transistors: BUW11/12/13. Plastic SOT-93 encapsulation, intended for power converters, inverters, switch-mode PSUs and motor control. Typical Vceo 450V, and power 125 W .
- New AM/FM radio i.c. called TEA5570 is resistor programmable and of hi-fi quality. Has wide a.g.c. for car radios, and consumes only $6 \mathrm{~mA} @ 6 \mathrm{~V}$ (supply 2.7-12V) making it suitable for portable equipment. Can be diode tuned and works up to 30 MHz .
- Electronic humidity sensor, type 2322691 90001 , offers $10 \%-90 \%$ relative humidity range. Works capacitively from 110 pF to 150 pF using metallised film. Worst case accuracy is 5% mid-range. Mullard Ltd., Mullard House, Torrington Place, London WCIE 7HD.

Postal Course

There are a number of postal tuition courses available from British companies and we are often asked, especially by overseas readers, if we can recommend them. We recently visited one of the companies involved and were impressed with the thoroughly professional approach and back up provided.

The British National Radio \& Electronics School operate from Reading and provide a wide range of home study courses from basic electronics right up to City \& Guilds Telecommunications Certificates. This long established company has just added a microprocessor course to its list.

The course is based on the well known Micro-Professor microcomputer equipment and the combination gives a complete theory and practical self study training programme in this field. The course comes complete with a Micro-Professor and provides a new four book user manual for the unit. Students have the advantage of having continuous contact with a specialised teacher who will guide them through the course and set a number of exercises to test knowledge at various stages

Some of the courses are available in many different languages and the electronics course is also used in many industrial training schemes by firms in the UK and abroad. The School is recognised and approved by the Council for the Accreditation of Correspondence Colleges in the United Kingdom.

Full details from BNRES, 55 Russell Street, Reading, Berks or Tel: 073451515.

Laser Light

The light beam from a CO_{2} laser is used in Ferranti's MF400 drawing system, which can precision cut quartz, paper, silica, rubber, thin gauge metal, plastic, fibre glass and ceramics-almost any sheet material, in fact, including carpet and cloth. The Dundee plant's workshop laser can cut out patterns, etch signs, weld, and bore holes. The pattern to be burned out is first digitised by the CNC (Computer Numerical Control) unit, reproduced on a graphics VDU, and then rescaled to any size.

The advantages of laser cutting seem endless, and include improved speed of production, reduction in waste due to more efficient pattern nesting, precision repeatability (essential for inlay work), and low distortion of material from heat.

One of the interesting features of the MF400 is that it recirculates its gases, reconstituting them for re-use. Most CO_{2} lasers waste their helium, nitrogen and carbon dioxide because once thay have passed through the laser resonator, the CO_{2} decomposes into carbon monoxide, and the helium becomes contaminated. These unusable gases are consequently expelled into the atmosphere. The MF400's recirculation system cuts gas costs by a factor of ten.

Briefly...

Konica, the long-established Japanese photographic company, is this month entering the tape market with a range of audio and video cassettes. The tapes will be launched under the Konica brand name and will be available in a full range of lengths and formats. Konica have developed their tape technology in association with Ampex, a name long-associated with the highest standards in the tape market. The products stemming from this association are, according to Konica, of outstanding quality.

A truly "unbreakable" code has been developed, which is based on prime numbers. Professor Adi Shamir of the Weizmann Institute, who developed the code jointly with Leonard Adelman of the Massachusetts Institute of Technology, claims that this is an entirely novel concept in public communications. It should soon be widely used, particularly in the coming era of home banking, as security is one of the stumbling blocks to this. A prototype chip which can do the cryptographic computations is currently being tested.

Fairchild is withdrawing from the optoelectronics business, closing its Santa Clara and San Jose plants. The company is also pulling back from the MOS market.

Japan's Kyoto University has created an optical transistor that could become the basis of a completely optical computer. The device is a natural for optical fibre communications; once activated by a low voltage it can amplify a 50 mW laser beam applied from beneath, with a gain of four. The device emits the amplified light from its upper surface. Signals below a threshold are not amplified, and the device has the potential to store data indicating which signals have been amplified, and which have not.

A toothbrush that uses ultrasonics to mix the toothpaste with water, without shattering teeth, has been developed by scientists at NASA. The resultant, mildly abrasive spray is directed at the teeth during brushing.

A low-cost, high-integrity edge connector which eliminates 'RAM-pack wobble' and allied problems on home computers has been developed by BICC-Vero Connectors. The new 908 Series uses a novel plating process that does not involve gold, thereby keeping the cost down, but the contact design ensures a retention force and reliability much higher than that of normal mass-produced types. The new connector is to be used in proprietary RAM-packs and Sinclair RAM-packs for the ZX range of computers.

POINTS ARISING...

INGENUITY UNLIMITED

Lighting Effects Unit April '83
In Fig. 2 a 1 N914 diode should be inserted between VR101 and the junction of VR102 and C101 with the anode towards VR101.

hnunidinunI ...

Please check dates before setting out, as we cannot guarantee the accuracy of the information presented below. Note: some exhibitions may be trade only. If you are organising any electrical/electronics, radio or scientific event, big or small, we shall be glad to include it here. Address details to Mike Abbott.

The Computer Fair June 16-19. Earls Court. Z1
Compec North June 21-23. Belle Vue, Manchester. Z1
Transducer/Tempcon June 28-30. Wembley Conf. Cntr. T
Leeds Electronics Show July 5-7. University. E
Satellite TV \& Cable TV July 5-7. Alex. Palace, London. G4
IBM User Show July 12-14. Wembley. O A7
Internoise (noise control conf.) July 13-15. A7
BAEC Amateur Electronics July 16-24. Shelter, Esplanade, Penarth,
S. Glamorgan. B9

Laboratory Edinburgh July 18-20. University. E
Star '83 Aerospace July 21-24. RAF Greenham Common. Z 1
Acorn Exhibition Aug. 25-28. Cunard Int. Hotel, Hammersmith,
London. J3
BARTAG Rally (radio teleprinter) Aug. 29. Sandown Park, Esher,
Surrey. E2
ElectroWest Sept. 6-8. Bristol Exhibition Centre. Q
Weldex Sept. 12-16. NEC B/ham. I
Testmex Sept. 13-15. Grosvenor House, Park Lane, London. E
Home Entertainment Spectacular Sept. 17-25. Olympia. I2
Personal Computer World Show Sept. 28-Oct. 2. London. M
Laboratory London Oct. 12-14. Barbican Centre. E D4

Drives/Motors/Controls Oct. 12-14. Leeds University. E
Computer Graphics Oct. 18-20. Wembley. O
PARC (computers in architecture, conf.) Oct. 18-20. Wembley. 0 International Business Show Oct. 18-26. NEC. T
Business Efficiency Exhibition Oct. 22-26. Earls Court, London. Z
Electronics Hobbies Fair Oct. 27-30. Alex Pavilion, London. Z1
Electronic Displays Nov. 1-3. Kensington Exhibition Centre, London.
Compec Nov. 15-18. Olympia, London.
Northern Computer Fair Nov, 24-26. Belle Vue, Manchester. $\mathbf{Z I}$
Intron Nov. 22-24. RDS Hall, Dublin. V
Automatic Testing/Test/Instrumentation. Dec. 13-15. Metropole, Brighton. D4

Institute of Acoustics \& 031-225 2143
Cyril Bogod, British Am. Elect. Club $\$ 0222707813$
Network \& 028025226
Evan Steadman \& 079922612
BARTG 89 Linden Gdns., Enfield, Middx.
Intech Exhibitions, 55 London Rd., St. Albans
Industrial Trade Fairs \& 0217056707
Alan Taylor \& 01-486 1951
Computer Marketplace \subset 01-930 1612
Montbuild $\S 01-4861951$
Online ${ }^{6} 0927428211$
Exhibitions for Industry $\int 088334371$
Trident 『 08224671
SDL Exhibitions \& Dublin 763871
BETA Exhibitions \& 01-405 6233
IPC Exhibitions 『 01-6438040

ULTRALIGHT

 INTRUDER ALARM Plus

 INTRUDER ALARM Plus AUTOMATIC LIGHTING AUTOMATIC LIGHTING G.DAVIES

 G.DAVIES}

THE Ultralight/Ultralarm system is designed to allow the detection of movement within a secure envelope to operate a light switch or trigger an alarm. Built into the attractive case specified it can be used to foil housebreakers, or simply to make the light come on in a room as soon as it is entered. An ambient light detector is inbuilt for this purpose. In the latter application the low-power consumption Ultralight is ideal for stairways and corridors, and may be adjusted in situ for the most appropriate sensitivity. Many as yet unthought of applications may be dreamed up for this movement detector.

CIRCUIT DESCRIPTION

Device IC1a, R1, R2, C2 and Xtal form a self starting 32.7 kHz crystal oscillator, the output of which feeds a bridge buffer stage comprising IC1c,d,e and f to increase the drive voltage to the ultrasonic transmitter X1. R3 limits the loading on IC1. R4 and C1 decouple the oscillator stage from the 8 V stabilised rail to lower the power consumption of the driver stage for low quiescent current-a major power saver in this circuit, and essential for direct mains operation with optional mains adaptor

The output of the ultrasonic receiver X2 feeds IC2 via C4 whilst R5, R6, C3 and R7 form the bias for IC2, R9, R8 and C5 determine the gain at 32.7 kHz . The output of this stage goes via R10 to the detector D1, R11 and C6 to remove the 32.7 kHz and obtain the "Doppler" frequency produced from the 32.7 kHz envelope. The resultant Doppler frequency is amplified by IC3a, the bias derived from the diode pump detector and the gain of the stage determined by the Range control VR1, R13, R12 and C7 before passing through R29 to the modified diode pump detector formed by IC3b, C8, D3, D2, R15, R14 and Sensitivity control VR2. The values of C8, C9, R14 and R15 and the setting of VR2 optimise the response of the detector for individual requirements, either responding to a half-step of movement or two steps to reduce the possibility of a false alarm considerably.

The output of the diode pump detector, which is a varying d.c. level with movement, feeds the comparator stages formed by IC3c and IC3d. R22, R17, R18 and IC3d form a Schmitt trigger driving RLA1 on via TR1 and drive resistors R19, R20 and D4 suppressing the back e.m.f. of the reed relay coil. IC3c inverts the output of IC3d before driving the Walk Test I.e.d. D5 via R23.

To prevent lead capacitance effects on long runs, R21 was included so as to prevent the reed relay contacts "sticking".

LIGHT LOGiC

In high ambient light conditions the l.d.r. is a low resistance pulling pin 6, IC5 high (dependent upon the setting of VR3 and value of R24). Initially IC5 pin 5 is,high, causing IC5 pin 4 to be low, thus closing gate IC5a, and

The same p.c.b. Layout will accept either the relay or the triac alternative output components

ULTRASONIC MOVEMENT DETECTOR

Fig. 1. Circuit diagram (showing triac output)
preventing the "movement" signal from activating this stage. If the ambient light level is low the input of IC5b pin 6 is low, the output on IC5 pin 4 is high, opening the gate IC5a, allowing the "movement" signal to cause IC5 pin 3 to go low. This passes through R25, D18 rapidly charging C12, causing IC5C pin 12 to go low, and the output on IC5 pin 11 high. IC5d inverts the signal and its output on pin 10 ,
goes low, driving the emitter follower TR2 and opto coupled triac IC6, the current being limited by R27, causing the slave triac to fire the master triac, CSR1, via R28. FS1 is included for overioad protection for CSR1. Note that this output stage is for filament lamps only.

Once CSR1 is on, the output of IC5d feeds IC5b pin 5 with a low signal to prevent the ambient lighting affecting

SPECIFICATION

Model	20002001	2002
Frequency	32.765 kHz	
Linear Range	8 metres	
Operating Temp	-10C to +40C	
Voltage	10.5 to 16 V d.c. or 240 V a.ce with mains adapter (not 2002)	
Current	16 mA quiescent	
Alarm	A normally closed contact rated 200 mA at 30 V d.c.	
Walk test	Green l.e.d.	
Controls	(a) Range pot 2 m to 8 m	
	(b) Sensitivity pot $\frac{1}{2}$ step to 2 step (normal)	
Controller Load	Triac 240V 300W	$\begin{gathered} \text { Relay } \\ 240 \mathrm{~V} 1 \mathrm{~kW} \end{gathered}$
Protection	Internally fused	
Dimensions	$122 \times 70 \times 44 \mathrm{~mm}$	
Net weight	160 gm	
Colour	Black and white	

Compatibility

Both the alarm and tamper outputs are left uncommitted to enable the unit to match any alarm installation. The alarm section complies with BS4737 Part 3 Section 3.5 .

RF Screening

An important feature of the unit has been to ensure that the sensitive electronics are screened from radio frequency interference. This can reduce false alagms considerably. (If screen can fitted as supplied in the kit.)

Crystal Control

By the use of crystal control precise setting of the stable operating frequency is achieved allowing a number of single units to be fitted in the same environment without mutual interference.

Walk Test LED Indicator

To simplify the installation the unit has a walk test l.e.d. which indicates the trip state of the detector.

COMPONENTS . . .

Resistors

R1, R16
R2, R14, R15
R3, R25
R4, R8, R12, R27
R5, R6
R7, R13, R19, R24,
R29
R9, R11, R17, R18, 100 k (5 off)
R22
R 10
R20
21
R26 10
R23 270
R28 150
R29 CDS cell
All resistors $\frac{1}{8}$ W $\mathrm{W} \%$

Potentiometers

VR1, VR2, VR3
1 M hor. preset (3 off)

Capacitors

C1
C2
C3, C10, C12
C4
C5
C6
C7
C8
C9
C11

4k7
10M (2 off)
1 M (3 off)
1 k (2 off)
470 (4 off)
220k (2 off)
10k (5 off)

2

10
10μ elect.
33p ceramic
$22 \mu / 25 \mathrm{~V}$ elect. (3 off)
1 n ceramic
10 n poly
100n poly
$4 \mu 7$ submin elect.
22 n poly
220 n submin
$220 \mu / 16 \mathrm{~V}$ elect.

Transistors \& Diodes

D1-4, D8, D9	1N4148 (6 off)
D5	Green l.e.d. $(5 \mathrm{~mm})$

D6
D7
CSR1
TR1
TR2

Integrated Circuits

IC1	4069UB
IC2	TLO81CP
IC3	LM324N
IC4	$78 L 08$
IC5	$4093 B$
IC6	MOC3020
IC7	T32-18
IC8	R32-18

Miscellaneous

D.i.I. reed relay (RLA)

XL1: 32.7 kHz
Tamper switch: norm. closed μ switch
FS1: 5A plus clips
4 -way p.c.b. mounting terminals (2 off)
Printed circuit board
Case
Screen can (optional)
AT Foam
Bracket
Relay (if uséd as alternative to IC6, CSR1, R28 \& R27)
$\mathrm{X} 1, \mathrm{X} 2: 32 \mathrm{kHz}$ ultrasonic transducers (2 off)

Constructors' Note

A complete kit is available for the ULTRALIGHT, from GJD Electronics 105 Harper Fold Road, Radcliffe, Manchester M26 ORQ.

The full kit is available at the special price of $£ 24.50$ +60 p p p plus VAT to $P E$ readers.

Fig. 3. PSU printed circuit layout (actual size)

Fig. 6. Interconnecting the Ulitralight

Fig. 4. PSU component layout

the control section which can now be repeatedly retriggered by movement only. After a period of no movement and the time-out of C12 and R25 the lamp will extinguish.

The d.c. power supply is fed via R26, reverse polarity protection diode D7 and overvoltage and transient suppression diode D6 before feeding the decoupling capacitor C12, IC4 stabilises the input voltage to 8 V for the internal rail of the alarm and further decoupled by C12.

The unit can be powered directly from the mains supply whilst the alarm output and tamper switch contacts remain isolated. The 240 V a.c. supply feeds the Zener diode D10 via R29, R30 and C13, the current being limited by the reactance of C13 at 50 Hz , and any fast transients by R29. R31 is included to discharge C14 after disconnection from the supply for safety. The Zener diode clamps the positive

Fig. 5 left. Ultralight p.c.b. (actual size)

COMPONENTS \ldots	
PSU	
Resistors	
R29	
R30	470 k
R31	$22 \frac{1}{2} \mathrm{~W}$
Capacitors	4 k 7
C13	
C14	$1 \mu / 400 \mathrm{~V}$
Diodes	$220 \mu / 16 \mathrm{~V}$
D10	
D11	15 V 1 W

Miscellaneous
Printed circuit board

NB. FOR MAXIMUM SAFETY ENSURE THE NEUTRAL OF THE MAINS IS CONNECTED TO THE

OF THE ULTRALIGHT -THE ALARM IS NOW OPERATING AT MAINS POTENTIAL AND THIS MUST BE CONSIDERED WHEN TESTING THE UNIT.
half cycle to +15 V and the negative half cycle to -0.6 V . The positive half cycle goes via D11 and smoothed by C14. The 15 V can then be fed to the d.c. supply of the unit.

ASSEMBLY/INSTALLATION

All resistors and diodes are on a 0.4 inch pitch to ease assembly and all components are p.c.b. mounted. No securing holes have been included in the p.c.b. as guide slots are incorporated in the attractive two part case to make assembly, installation and service simple.

The outputs of all sections are left uncommitted to allow easy connection to existing lighting circuits and alarm systems.

Adjusting VR1 clockwise increases the detection range, VR2 increases the sensitivity to movement and VR3 increases the ambient light threshold for the light controller. \star

THE SUN
From Russia there comes a new look at the Sun. The theory says that the Sun is in a 'special place' in the Galaxy. These conclusions could be very far reaching. They have been put forward by L. S. Marochnik of the USSR Academy of Science in Moscow. The home of the Solar System is in a spiral Galaxy more popularly called the Milky Way Galaxy. The new theory stems from some revision work that has been carried out in Russia. So far no details have been published outside the Soviet Union. The revision was directed at the rotation rate of the Galaxy. So far there has been no opportunity for the rest of the world to study the far reaching implications of Marochnik's extrapolations of the accepted state.

At present it is widely accepted that the spiral pattern formed by the stars of a Galaxy is produced by a density wave moving through the stars. The general view is that this density wave rotates around the Galaxy. The Solar System orbits the centre of the Galaxy at a distance of 32,500 light years and passes through the wave repeatedly. From this it is supposed that the repeated passes compresses the dust or presolar material until it collapses to form a system.

Marochnik does not agree with this. He rejects the view that the wave is a short wave mode coming from the periphery of the Galaxy inwards and claims that in fact it is a long wave mode and comes from the centre of the Galaxy outwards. This is not only a revolutionary thought but alters the whole conception, for it is in fact reversing the present thought. If this new picture is correct it means that the Solar System is at a place in the Galaxy where it would be rotating at almost the same speed as the wave. This is a special position in that a spiral Galaxy has only one co-rotation circle.

This produces a very unique situation and suggests that if it is so then a complete revaluation of the history of the Solar System will need to be written. The cloud of material of which the Solar System is formed would have taken something like 4.6 thousand million years to travel from one spiral arm to the next. Moreover it would have taken
something of the order of several hundred million years for it to have passed through the highly compressed region of the spiral arm. This would mean that the whole geological history would have to be re-structured. This is the picture which has perhaps prevented Marochnik making any kind of drastic or dramatic statement. One possible conclusion might be suggested. If the co-rotation theory produces planetary systems then it would suggest that this is the most likely place to look for/other life. This reduces speculation as to contact or indeed that invasion is imminent here.

LARGE SPACE TELESCOPE
The launch of this important piece of scientific equipment due to be put into orbit in 1985 may be delayed for as much as a year. This is rather sad news. There had been rumours of delays and minor problems but it would seem that the difficulties are rather more than minor. It is not confined to failures of the equipment or even of assembly snags and wider implications caused the NASA administrator to set up an enquiry. The administrator James Beggs has stated that at least two months will be necessary to reach a stage of report for study and then conclusions have to be drawn and the project restructured. From the Marshall Spaceflight Centre in Alabama the spokesman Tim Tyson stated that there were two types of problem. First there had been delays in installing the large mirror in its supporting ring in a 'strain free' condition. Because the telecope will be in orbit for many years it is vital that the mirror is free from deforming stresses. Allowance has to be 'guesstimated' as to what will take place in free space caused by temperature stresses alone, though much practical knowhow has been accumulated over the years. Also there have arisen some difficulties with the guidance systems that will affect pointing of the telescope as it moves in orbit. The Perkin Elmer Corporation who are dealing with the assembly of the telescope have met with technical problems. In addition to this there have been other delays and not least of these is Congress. Delays always seem to mean increased costs and therefore each successive delay results in escalation of costs.

Such has been the concern of all those involved that even the staff have been asked not to talk about the situation. This could well be necessary on more than one count. One very serious casualty of the delay in getting the vehicle operational relates to the closer look at the planet Uranus when the Voyager approaches it in 1986. The facility of the telescope to examine the situation and to redirect the spacecraft from Earth represents an opportunity that may not again be possible for decades. Some of the difficulties are not easily resolved because they are related to the loss of skilled personnel who have moved on, thus causing continuity breaks. Clearly it is again time for finger crossing. What would science do without such aids?

INTELSAT 5A MODIFICATION
A modification for the 14 th and 15th spacecraft 5 A is required to meet the needs of
a Ku-band digital business communications service. The Board of Governors of the International Telecommunications Satellite Organisation awarded the contract worth 23.8 million dollars to Ford Aerospace. The contract is for a downlink capability in the 11.7 to 11.95 GHz band allocated to fixed satellite service in North and South America. This implements the decision of the 1979 World Administrative Radio Conference.

This downlink will add to the facilities of the existing downlink 10.95 to 11.2 GHz . There was also an allocation of three 72 MHz spot beam transponders in the 11 GHz band to begin operation in January 1984. The modified design plans will include in-orbit switching between two frequency bands in order to provide the flexibility needed to accommodate future interpretation of a conference ruling that restricts the 11.7 to 11.7 GHz band to domestic or regional service in the Western Hemisphere. The business service will become available in the atlantic ocean region in 1985. It will include video teleconferencing, digitally compressed voice, electronic mail, highspeed facsimile and interactive computer networking. There are proposals under consideration which include the incorporation of similar modifications in the INTELSAT-6 design and the leasing of capacity on the British Unisat communications satellite.

THE EUROPEAN SPACE AGENCY PROGRAMME
This has come as a great disappointment to scientists and industry. Complaints have already been directed from some research groups because of what they regard as the neglect of planetary science. As usual it is lack of funds and not expertise that has reduced the programme. It seems too, that unless some revolution in funding takes place, much that was hoped for in this century must wait till the next. Certainly it does not seem that there will be the hoped for re-visit to Mars even unmanned for this is one of the items put back. Similarly the very important and worrying question of the oscillation of the Sun. Though intensive new work has been published on this subject (NATURE vol. 302, 28) it will not be supported by DISCO, the spacecraft which was one of the projects not qualified for a place. MAGELLAN for u.v. studies was not qualified and also X80, an X-ray telescope.

Those that are to go forward are the EXOSAT which is an X-ray satellite launched by NASA at the end of May this year. GHIOTTO-the probe to do a fly-past of Halley's comet, this is for launch in mid- 1985. HIPPARCOS—for astrometry studies. ISO-the infra-red astronomical observatory satellite; this satellite is the successor to the IRAS infra-red satellite and is about 100 times more sensitive. It will have liquid hydrogen and liquid helium to $13^{\circ} \mathrm{K}$. Its life will be determined by the speed of evaporation of the coolants, which in the light of experience with IRAS will be greater than the design anticipation. This telescope will complement the work of IRAS. It will be used to study extra-galactic objects.
Frank W. Hyde

Part Two A.R.BRADFORD m.sc.

ALL components with the exception of the headphone attenuating resistors mount directly onto the p.c.b. (Fig. 6). This should be assembled in the usual manner, first soldering in all the through-board connection pins, checking very thoroughly that each has been soldered on both sides of the board. A lot of time and trouble can be saved later on by ensuring that none of these essential connections have been omitted. Next solder in the resistors, followed by semiconductors and capacitors. Mount the switches, pots and large capacitors last, or they will get in the way. Remember to cut the pot spindles to length before fixing and soldering to the pads on the p.c.b. Check construction against the component overlay and component schedule and double check against the circuit diagrams, then thoroughly scrub the underside of the board and check for solder bridges, etc.

Complete kits including cabinets, front panels and trigger pads are available from Clef, but for diehards and those wishing to customise units to their own requirements complete constructional details are given. One obvious modification is build two Percussion Microsynths into one cabinet making a four-channel unit; another is to make the control panel(s) 19 in long so that they can be rack mounted while free standing trigger pads for remote use could be devised for mounting on a drum kit, or whatever.

The cabinet used for the prototype was essentially the same as for the keyboard Microsynth, and details are shown in Fig. 8. The end cheeks are first cut from $\frac{3}{4}$ in timber to the
size shown and three battens screwed to the insides. The top two are cut from $\frac{3}{4}$ in $\times \frac{1}{2}$ in timber and support the trigger pad base plate and the front panel. The bottom one is made from $\frac{1}{2}$ in square timber and provides fixing for the bottom of the cabinet, which is of $\frac{1}{8}$ in plywood or hardboard. The lower battens should therefore be fixed to the end cheeks $\frac{1}{8}$ in from the lower edge to allow clearance. The cabinet bottom is $13 \frac{5}{\frac{5}{⿱ ㇒}} \mathrm{in} \times 17 \frac{3}{4} \mathrm{in}$, and the end cheeks should be fixed to the bottom panel next, leaving $\underset{4}{ } \mathrm{in}$ gap at the front and back edges. This leaves the frontispiece, and the back batten to which the metal back panel is screwed. These are each $17 \frac{3}{4}$ in long and should be chamfered on their lower edges as shown in Fig. 8. The bottom panel should be screwed to these, and the frontispiece and back batten themselves should be glued and/or bracketed to the end cheeks. This should give quite a strong construction, although ultimately an extremely rigid unit is obtained once the trigger pad base plate and the metal panel are screwed in place.

Many different designs of trigger pad have been tried, and tested under prolonged conditions ranging from severe (such as on stands at exhibitions) to positively brutal (namely heavy handed drummers on stage), and the end product of this research is shown in Fig. 9.

Fig. 8. Construction details for the cabinet

Fig. 9. Trigger pad assembly

The transducers are crystal microphone inserts, bracketed onto a metal plate to provide a large hitting area. If heavy usage is expected, this plate should be steel. The bracket, which goes under the microphone capsule and holds it against the plate, is fixed to the plate with two M5 countersunk bolts. The wooden base plate provides a firm platform for the pads, but since there are two triggers, they must be mechanically isolated from each other to prevent crosstriggering. For this reason holes are cut in the base plate with plenty of clearance around the bracket and transducer, and a sandwich of foam rubber with a similar hole in the middle, is interposed between the wooden base plate and the metal hitting plate. Good quality foam rubber should be

Fig. 7. Wiring diagram for the rear panel

Fig. 10. Front panel details

Fig. 6. Component layout for the p.c.b.
used here, as some types can be rather crumbly, and the sandwich should be assembled using a strongly bonding adhesive such as "Thixofix". To reduce shock to the transducer, as well as for appearances sake, a layer of rubber is glued to the top of the metal plate. Suitable rubber, as well as the foam rubber, can be obtained from craft or model shops.

As for finishing touches, the cabinet and the trigger pad base plate can either be covered with cabinet cloth, or veneered, or simply polish up the wood I Stick-on or screwon cabinet feet are a nice addition too.

The front panel should be made from 16 s.w.g. aluminium as shown in Fig. 10. After drilling, filing and bending, the panel should be flatted with emery cloth and thoroughly cleaned with a Brillo pad taking care not to get any grease back onto the metal. It should then be sprayed with several coats of matt or gloss car paint, preferably flatting between each coat with fine wet or dry paper (used wet) and finally rubbing gently with car "cutting paste". This will ensure a sufficiently tough, lasting finish.

The lettering is applied with white Letraset or similar rubdown dry transfer lettering and the white lines with Letraline or similar 0.1 in . striping. The completed panel should be sprayed with a clear matt or gloss fixative (available from good stationers or drawing materials shops) to prevent scratching of the lettering.

The p.c.b. bolts directly behind the front panel: use $\frac{3}{8}$ in spacers and attach these to the six holes in the panel using

6BA nuts and bolts ($\frac{3}{4} \mathrm{in}$). This will give the correct clearance for the slide switches. All other components, transformer, fuse, sockets, etc, fix to the rear of the panel.

Finally complete all the interwiring, including connections to the sequencer socket (see Fig. 7).

SETTINGUP

First check the power supply, adjusting VR18 and VR19 to give +8.5 V and -8.5 V respectively. Do not exceed these voltages: remember the CMOS is being run across both rails! Connect power to the rest of the circuitry by installing the two wire links near VR11, and switch on while monitoring the supply voltages with a meter. If there is any drastic departure from the nominal $\pm 8.5 \mathrm{~V}$ switch off immediately and re-check the board for shorts, incorrect components, etc. When all is well re-trim VR18 and VR19.

With S3 and S103 off, the sensitivity presets at minimum resistance, short attack, medium release, and VCF and "Envelope Level" controls all set mid-way, check that striking the trigger pads produces a sound in the appropriate channel. Check that all the VCO outputs as well as noise are available in each channel, remembering to have the VCF Frequency controls turned up, otherwise you may filter out what you are trying to hear. VR8 (VR108) should be adjusted to give a clean start to the sound with minimum audible thump when the "Attack" control is at zero (fully anticlockwise). Now switch on the touch sensitivity and adjust VR2 (VR102) about its mid position to achieve the desired range

clockwise. Hitting the pad will now produce a descending pitch. Now move the "Touch" switch to "On". A gentle tap on the pad will produce a sort of "boo" sound, and as the pad is struck harder both the sweep in VCO pitch and the duration of the sound will increase. We are already beyond the capability of a simple percussion synthesiser, so let's see how we can further extend the effect. Setting the "Attack" control mid way, the "Release" control to zero and the envelope "Level" control fully anticlockwise creates a curious effect where the pitch still descends, but the sound starts quietly, gets louder and stops abruptly. Next try using a square wave of low frequency together with the sub octave. Switch the "Envelope Modulation" to "VCF" say with the "Attack" one third clockwise, Release at zero and envelope "Level" nearly fully clockwise. This will produce a bassy sound like a croaking frog. All you need now for the complete disco treatment is some hand-claps.

Hand-claps

A short pulse of noise will generally be mistaken for a hand-clap, and this is the principle on which most hand-clap synthesisers work. To get this effect turn the "Mix" control right round to noise, with zero "Attack", very short "Release", and with the VCF "Frequency" about two thirds clockwise and " Q " (resonance) at zero.

Bells

Turn the "Mix" control right round to "VCO" and select a

triangle waveform at a frequency to taste. Set "Attack" at zero and "Release" three quarters clockwise. Switch the LFO "Modulation" to "VCO", with LFO "Rate" one third clockwise, "Shape" mid way and "Level" one quarter turn clockwise. Switch on the Phaser with its "Rate" control fully clockwise for a more reverberant quality.

Next turn up the VCF "Q" knob so that the VCF itself oscillates, and tune in the VCF to the VCO using the VCF "Frequency" control. With the VCO and VCF nearly at the same frequency or some harmonic interval, the sound will be fairly mellow, while de-tuning them will create a harsh, metallic sound. Mix in a little noise and turn up the LFO "Rate" and "Level" for the "dustbin lid" sound. The sub octave can also be used to good effect with the bell programs, by having the resonance fairly high and tuning the VCF to pick out the fundamental of the sub octave. A slight negative modulation (that is, anticlockwise from the vertical) from the envelope to the VCF may be effective here.

CONVENTIONAL DRUM SOUNDS Cymbal

Select "Noise" only and set "Attack" one quarter clockwise and "Release" two thirds clockwise. With the VCF "Frequency" knob at maximum advance the " Q " control until the VCF is just short of oscillating. Phase the sound at a fairly brisk rate if required. Mix in a small amount of high frequency VCO modulated by a fast triangle from the LFO for added zest.

Hi hat

As for Cymbal but with the "Attack" at zero, the VCF "Frequency" slightly lower and the "Touch" switch on. Hitting the pad hard and soft will give an open and closed hi hat respectively.

Snare

As above, but shorten the "Release" time further, set VCF "Frequency" two thirds clockwise and " Q " to zero.

Tom toms

Use VCO triangle waveforms alone, at minimum frequency, perhaps with a very slight negative modulation from the envelope.

Bass drum

Use noise only, with a very short "Release", VCF "Frequency" at zero and " O " mid way.

It should be emphasised that the above programs are suggestions only as the best effects are a matter of personal taste. Finally try anything and everything, keeping a note of all useful programs.

EVERYDAY
 ELECRRONES
 and computer PROJECTS

Our Sister Publication
 everyday electronics
 features the following projects in the July issue.
 On sale 17 June.

 aUTOMATIC GREENHOUSE WATERING SYSTEM

 aUTOMATIC GREENHOUSE WATERING SYSTEM tri boost guitar tone controller tri boost guitar tone controller DIGI ALARM WRISTWATCH AMPLIFIER

 DIGI ALARM WRISTWATCH AMPLIFIER}

A^{L}LTHOUGH microcomputers are particularly good at music making, the first microcomputer package dedicated solely to music production did not appear until 1980. It was developed in Sydney, Australia, and was named 'The Fairlight'-after a hydrofoil that skims its way across Sydney harbour.

There are now about ten systems manufactured in the world which might reasonably be described as dedicated music computers. The Fairlight has now been surpassed in some areas, but the system, in common with all 'soft' packages, is under constant revision and it has certainly become the most widely-played computer musical instrument (CMI) in the world. As a result, there is now a considerable amount of user feedback available.

POLYPHONIC SYSTEM

The Fairlight was the end product of five years of research by Peter Vogel, Kim Ryrie and Tony Furse. Vogel and Ryrie were, and still are, precocious young Australian designers with a talent for electronics and a love of music. Furse was a computer engineer of 20 years' standing who in 1974 brought to the partnership a monster machine, already capable of producing digital music. The team then developed a system called the Qasar M8 which was an eight channel polyphonic system. The unusual element in this machine was the 'dual processing' carried out by two microprocessors working in tandem. Whilst one controlled information exchange with the human users, the other saw to it that the hardware did what was necessary. The Qasar was a large expensive system and as improved microchips became available, the team redesigned the package making it both smaller and cheaper.

The Fairlight is a 'digital ear' on the world of sound. It is markedly different to most other musical instruments in that it is capable of 'listening' to the external world, storing what it hears and reproducing that sound as music. The symphony of windows breaking is a reality with the Fairlight. This ability was developed from Tony Furse's original system of digital music production. Rather than opting for FM index synthesis, or any of the other methods of sound production, he worked with digitally produced waveforms, a system that later allowed information to be entered from the outside world.

The Fairlight is larger (in total RAM terms) than most microcomputers. Its total RAM of 208 K -coupled with dual processing capacity-almost brings it up to the minicomputer, although processor RAM (excluding that used for waveform storage) is currently the regular 64 K . The concept, successfully developed in the Qasar, of running two microprocessors as independent but linked central processing units, became a central part of the Fairlight design. There have long been problems in running two, linked microprocessors and gaining maximum speed from both-one tends to take on capacity work leaving the other partly idle. The Qasar development provided the answer.

Software may reliably be regarded as the really clever part of dedicated computer design and the Fairlight system contains the end product of six years of solid work by several programmers. The present program, in 'assembler language', occupies over 300 K of memory space and understandably the team are now

Fairlight Instruments provide a starting disc on which a wide variety of digitally-stored sounds are pre-recorded. These may be loaded into the Fairlight by inserting the disc into the righthand disc drive and issuing the appropriate command via the alphanumeric keyboard-the left-hand drive contains the system disc. The sounds may also be loaded into RAM via the calculator-type keypad on the musical keyboard and via the light pen and screen. After loading, any one of the sounds is instantly available under the musical keyboard and can be played in real-time, i.e. the response time of the Fairlight is rapid enough to allow instant recall of sound when a key is depressed.

VISUALINFORMATION

The operating software of the Fairlight is 'menu-driven' throughout. On powering up and loading the system disc containing the operating software, and a disc containing sounds, an index appears on the screen. This index lists a total of 12 pages (menus) that the user may go to and several new pages are due to be added. Page 1 is the index itself. Page 2 is Disc Control, a menu for the store of voices and for the disc-control system which will create space for a new voice or file. Page 3 is Keyboard Control and this menu allows the playing parameters to be set, such as tuning, scale, etc. Page 4 is Harmonic Envelopes which will allow the user to draw envelopes on the screen and hear the result, and so on.

While using any of the pages except Page C (Composition) described later, the user may request 'Help'. This command clears the screen temporarily and lists operating instructions which should solve the user's problem. The page currently in hand is restored when the help page is no longer needed.

The musician selects the page required-perhaps Page 2-to load a voice or an 'instrument' (an instrument is a generic name for a set of keyboard controls). The musician may then start to work with these. Page 2 is also the page that allows the storage of new voices or instruments to take place and the transfer of information, e.g. from one disc to another. It is the disc control page.

At any time during the user's work on a voice, a sequence or during the creation of a sound, the user may call up any of the pages necessary and issue the next command without the risk of losing any work completed.

Most users I have spoken with say that although the system seems daunting initially, basic understanding arrives after two days of experimentation, and fluency develops after a few weeks. All, however, complain that the operating manual is inadequate and poorly written, although like all aspects of the Fairlight, this is (and will remain) under constant revision.

CONCEPT

The concept of the Fairlight is-as a soft instrument the owner will never have to replace the system, the company has promised that it will never produce a Mark II which makes the Mark I obsolete. Improvements in software will be supplied on disc, and improvements in hardware will be supplied as plugin cards for the user to fit. Kim Ryrie, Fairlight's Managing Director, estimates that the cost to the Fairlight owner of keeping a system up to date would be 'one thousand dollars a year'.

The keyboard unit in the Fairlight package is itself 'intelligent'. A microprocessor is installed in the keyboard unit and this pre-processes key-strokes and control information. External controls such as pedals may be plugged into this unit and in a performance situation the VDU can be replaced by a 16 button control panel and small alphanumeric display which interfaces with the keyboard. The input commands are simplified using these buttons and long strings of pre-programmed sounds can be accessed in a shorthand form through this separate keypad. This adapts the unwieldy Fairlight package to a format as close to performance requirements as possible.

The master keyboard with its own processor can calculate the velocity of any key depression

OPTIONS

Performance is an area that the Fairlight engineers are currently studying. Plans are afoot to provide the instrument with several new performance aids. Amongst these will be dynamic pitch-bend controls and other analog-type controls. Bob Moog-the father of modern analog synthesis, is working on a new keyboard for the company which will be pressure sensitive. It will be an expensive optional extra. It is also possible that the Fairlight will become the first dedicated music computer to offer input from a guitar-type instrument. At the time of writing a London company working in association with Fairlight, was developing a guitar-type instrument that could replace the musical keyboard. This type of input device would open up the world of the real-time music computer to the millions of guitarists who can't play a note on a keyboard.

The Fairlight CMI is an expensive musical tool. The price at the time of publication was hovering around $£ 18,000$ in the UK, plus or minus $£ 3,000$ depending on options purchased. This market position is unlikely to change. As micro-power becomes cheaper, Fairlight will opt to improve the package, rather than reduce the price of the existing system.

The eight voice modules installed in a standard Fairlight allow eight-voice polyphony or simultaneous playing of up to eight sounds. Sound can be inserted into the Fairlight's memory banks in several ways. The pre-recorded sounds may be loaded from disc. Most users with whom I have discussed the subject agree that the pre-set sounds are useful at the beginning, but are rapidly replaced by sounds created by the user. Another method of creating a sound for the Fairlight is to sample an external sound-the Fairlight has an input line which will accept signals from a microphone, mixer or any other line carrying sound signals. Inside the hardware an A to D converter changes the sound into digital form which is stored for later use.

The A to D converter in the Fairlight samples sound waves at a rate determined by the user up to a maximum of 32 K . In practice the optimum rate will depend on the nature of the sound to be recorded. The duration of sample that the Fairlight is capable of taking is one area where the system has been surpassed by its rivals (although any disadvantage in this fast-moving field is likely to be temporary). The duration depends on the frequency of the sound to be sampled. A bass drum may be sampled for about four seconds, whereas a high harmonic spectrum sound will be sampled for about one second. To overcome the shortage of sample, the waveform is looped so that it may be sustained indefinitely. Some of the pitfalls of this sampling system may be overcome by setting internal high and low-pass filters to narrow the frequency bandwidth that the computer has to sample. The limitation with this system is that some fidelity of reproduction is lost, particularly at high frequencies. The reason for this is logical-the higher the frequency, the more rapid the soundwave and the more information there is to be measured.

COMPARISONS

If a middle C from a Steinway grand piano is captured using a high quality microphone and the note is sampled by the Fairlight, the sound may be stored on a disc as a voice. The voice may be recalled (from Page 2), stored in the 16K RAM voice modules and reproduced at will by the user. In raw terms the user may choose the sound to be reproduced at middle C and the 'piano' sound that is reproduced is virtually indistinguishable from the original acoustic instrument. Any alteration to the sound will come from loudspeakers and their enclosures, but remember that if recording is the goal, the acoustic will suffer equally when a recording of it is replayed through loudspeakers.

Without any further modification the user may then play the grand piano sound back at any pitch, using the musical keyboard. In raw terms, the digits representing the timbre and envelope of the middle C remain unchanged, but the digits governing frequency are those of upper C . Thus a sound like a top C is produced but it doesn't sound like a grand piano. The reason is that the envelope and amplitude of the top C on the piano changes as well as the frequency, but the digital store did not have this information.

One answer available is to take several samples from the grand piano keyboard, from top to bottom. The Fairlight has eight voices, each may receive a sample from the grand piano. Now the computer has a store of information from a range of sounds. This store may be organized so that the nearest appropriate sample may be used to generate the piano note required. Thus A above middle C would draw its envelope and amplitude from the sample of C above middle C -its nearest sample source. This is far more accurate, and for some purposes will produce a sound acceptably close to the grand. But in filling up all eight voices with separate samples, the polyphony has been used up and thus the object is defeated.

A better option would be to take the eight samples and then ask the computer to work out what percentage of which sample should be applied to the note called for. Software changes are now becoming available which will compute these changes but the reduction in polyphony still remains directly proportionate to the number of samples taken.

I have deliberately picked the piano as an example as it is one of the few instrument sounds that the Fairlight, and its rivals, find impossible to reproduce accurately. It is important to say that no musician would use a computer to reproduce a piano, it

Entire musical scores can be fed into the computer via the VDU's alphanumeric keyboard
would be far better to use the original instrument. In a survey of users, Fairlight discovered that the single most important feature on the instrument was its ability to capture natural sounds and place them on the music keyboard, the computer's ability to reproduce conventional instrument sounds was rated as a low priority.

CPU UPDATE

However, the problem of inaccurate reproduction should be solved when the promised new hardware is available for the Fairlight. This is scheduled to appear towards the end of 1983. Although this new hardware will fit all Fairlights, it is quite a major revision. The central 6800 CPU is to be replaced with the new (but related) 6809 which works internally as a 16 -bit processor and offers a RAM of 256 K as opposed to the existing 64 K . This major jump, accompanied by similar upward leaps in individual voice card RAM capacity, will end most of the limitations now affecting the Fairlight. Sampling rate will go up to around 40 K and this will make possible every kind of natural sound sampling. Currently the Fairlight has difficulty sampling long sounds, such as running water, because of limited RAM storage in voice channels. With the new capacity, quite long sounds-six seconds for example-may be captured. The bandwidth will jump from its present low-ceiling cut-off to the point where almost perfect fidelity will be possible. With this combination of new hardware and software the eight voices from the grand piano discussed in our hypothetical example will be stored in just one of the eight voices available. Accurate sound and full polyphony will be the result.

The Fairlight software offers the user absolute control over the musical scale in use-this is accessed from Page 3, Keyboard Control. The default setting that the software specifies is the equal-tempered scale, and a few key strokes alters this scale at the user's will. The grand piano can become perfectly tuned for the first time in its life.

It must be pointed out that although the perfect reproduction of a grand piano or any conventional instrument is a highly useful tool, particularly for recording and composing, to use the Fairlight exclusively for this purpose would be to miss a major advantage.

All sound produced by conventional musical instruments is artificial. The only reasonable definition of musical sound is sound which is pleasing and the Fairlight, and some others in its class, allows the composer and artist to use sounds from our environment in a musical way. Thus a sample of a chain saw, a canary's song or an explosion, may be taken at its naturallyoccurring frequency and stored digitally, allowing the mightymicro control of all its elements.

Much of the music that is now produced with computer aid still 'apes' conventional instruments, but this is changing. The composer is required to shake free from mental prejudice about musical sounds and start experimenting with sound itself all over again.

ABSTRACT COMPOSITION

Experimentation with the essence of sound is at the centre of the philosophy that is behind the design of the third system for entering sound into the Fairlight's memory banks. This system allows the user to create sound by a variety of abstract methods. The best known of these is additive harmonic synthesis which is based on Fourier transforms, which are a series of formulae creating a bridge between the dimensionally complex relationships of frequency and time. The human ear hears sound and the mind notes the frequency, but when stored the time elapsed must also be recorded and stored. The Fourier mathematical principle shows that all repeating waveforms can be resolved into sine-wave components, consisting of a fundamental and a series of harmonics at multiples of the frequency.

In use, additive synthesis allows sounds to be built up one harmonic layer at a time. Arbitrary waveform synthesis is also possible, demanding the maximum from the user, and a system unique to Fairlight allows sounds to be drawn on the screen with a light pen.

This last method of creating abstract synthesis is particularly intriguing. The light pen may be used to draw harmonic envelopes or actual waveforms on the VDU-from Page 4 (Harmonic Envelopes). The light pen is also able to adjust index information on the screen and a total of 128 waveforms may be created and loaded in the waveform memory of each voice module.
When shaping harmonic envelopes with the light pen, up to eight may be shown at a time, the fundamental harmonic being shown in bold, although recent software revisions allow the 'energy' and 'duration' profiles to be displayed bringing the total envelopes that may be shown on the screen at one time up to 34. The desired harmonic number is selected by the light pen and the pen may then be used to modify an existing envelope or draw a new one.

An alternative method of abstract sound creation is offered from Page 5, Waveform Generation. Here the musician is presented with a graphic representation of 32 'faders' such as might be found on a mixing desk. These faders each represent a harmonic in a sound. A light point on each represents the level of volume in each harmonic. This level may be altered by the light pen or by using the alphanumeric keyboard. A voice must be either loaded from disc or newly created before this page can operate. On 'start-up' this page displays the appropriate amplitude plot of the voice held in RAM. This voice may be modified as described and then saved.

Page 6, Waveform Drawing, allows sound to be created by drawing waveforms. As might be expected, sounds are saved via the control page, Page 2. With this facility, waveforms are put directly into waveform memory by drawing waveshapes on the screen. A plot function ensures the light pen is followed no matter how complex the route, and 'Join' allows the user to input dots at various stages on the wave, the Fairlight computes the gaps and joins them up. The main advantage this method has over methods such as additive synthesis is that the harmonics involved are automatically computed as the wave shape changes. Joining up separate wave shapes is also made easy, with the Fairlight guessing the correct bridging shapes under the 'Merge' function.

Page 7, the control page, is loaded whenever a voice is loaded into RAM. This page allows the musician to specify the limits of such events as sustain, level, filters, attack and vibrato depth etc-the sort of controls found for voice-shaping on an analog synth. A new software modification will marry this page into individual voice files.

Sound samping is controlled from Page 8 and the sequencer section of the Fairlight is accessed from Page 9. The sequencer is programmed by playing the music keyboard in real-time. Key velocity information and foot pedal movements etc are automatically recorded. Sequence lengths are limited by the space available on the disc-an empty disc will store about 50,000 notes. Discs are the subject of much research in Sydney-the hard disc, an advanced version of the floppy disc, allows huge amounts of information to be stored and retrieved rapidly, typically two or three million bytes against 500,000 on a standard 8 in . floppy-but the systems are too fragile for road use and Fairlight's declared policy of making the Fairlight 'performance proof currently excludes their great storage power.

Up to eight separate parts may be overdubbed, each having its own voice. Page 9 requires control decisions such as a name for the sequence and speed for playback. A sequence is recorded by using the light-pen to select 'record'; the part is then played. To play back the sequence, the musician uses the light pen to
select 'replay'. The speed of replay must also be selected. Parts using the same voice may be merged and all settings may be stored on disc along with the sequence.

Page L is the Disc Library. This allows the updating of a list of files, voices, control, instrument files, etc. Whenever a new voice or other file is saved it can be added to the library list.

LANGUAGE

Page C loads the Music Composition Language that Fairlight have developed to aid composers and provide musicians who cannot play keyboards with a way to play their compositions on the Fairlight. It is also true that someone who cannot play 'any' musical instrument but who understands the theory of music can compose and play with this system. This software opens up the world of music to those with imagination and a little theoretical knowledge but who have not mastered the discipline of a musical instrument--singers for example. This is likely to prove a very exciting development. The Fairlight survey also revealed that 70% of users who 'can' play a keyboard still choose to use MCL for some purposes.

John Lewis, a London film-music and jingle writer, at his Fairlight CMI

Fairlight describe MCL as being a tree-structured language operating on several levels of hierarchy. Top of the tree is the 'Piece', followed by the 'Part' and finally the 'Sequence'. These are all terms musicians are familiar with and throughout MCL, musical language is adopted wherever possible.

A piece consists of up to eight parts to be played simultaneously and each part consists of up to 32 sequences which are played sequentially-although a larger number of sequences may be written and the overflow stored on disc. Fairlight suggest the analogy of parts representing independent musicians, each playing their own instruments through written sequences. Each part is independent although capable of playing at the same time.

Continuing Fairlight's imagery; the piece is the conductor, instructing each part when to come in. The system has the power to allow chords inside each individual part, and each part may be played by a different voice. Each sequence may be between 1 and 2,000 notes long and individual sequences may be used by individual parts independently.

To the question 'what's the longest piece of music I can compose and have played back at one time?' Fairlight respond, 'that depends'. The final answer is that it is adequate for most purposes. Certainly piece lengths of 30 minutes or an hour usually present no problem.

In use, the composer has to write a program for his music. It
is this hurdle that some manufacturers believe musicians are unwilling to try. Substantial sales of the Fairlight over the last few years indicate that some musicians are prepared to learn a simple programming language, but Fairlight also think that this requirement is a barrier to expression for some users and have just produced a software revision which adds a new option to the system 'page R', described later.

It takes a little time to learn the Music Composition Language and like any learning task in life, success depends upon motivation. The motivation appears to be intense when absolute control over music is the goal.

The MCL program includes a 'debugger', a self-diagnostic device that tells the user if any errors have occurred during the writing of the program. Writing programs can be tedious and it is all too easy to misspell a command. The usual result is that the program execution stops, or 'hiccups' over the command. In the MCL program, the software locates the line written incorrectly and prints it on the screen for the user to amend.

WRITING MUSIC

To write a piece of music into the Fairlight the composer opens a 'piece file' (top of the tree) and specifies how many parts there will be: part A, part B, etc. The composer then opens one of the 'Part Files'-Part A for example-and specifies how and what the sequences will play: sequence One will play keyboard area number One and sequences Two and Three will play keyboard areas number Two and Three etc.

The composer then opens the first sequence file. It is here the user starts to write musical notation. Although the sequence of events calls for a specification of numbers of parts and sequence allocation before getting down to writing the dots, these decisions may be altered endlessly during composition.

Typically a composer might always start by deciding to write four parts, each of four sequences and all sequences to play on one keyboard. That might be considered the composer's 'default' setting. Only as the part progresses might the composer decide to add more parts or to change around the allocation of sequences to different voices. The composer can go back and do this at any stage.

Working with a computer means endless decision making and the first notation decisions the Fairlight composer has to make are as follows-BEAT: this is the number of sub-divisions within each time unit. Setting a value of 16 , means each beat has a sub-division of 16 available. The GAP specifies the time between the end of the current note and the start of the next note and it is calculated in beat units. OCTAVE specifies in which keyboard octave the note falls. TRANSPOSITION adds an offset to the note requested; e.g. a note which is a specified number of keys up or down is played instead of the original note.

VELOCITY specifies the key velocity used when playing the note and the data is used exactly as if it had come from an actual keystroke on the musical keyboard. KEY SELECTION allows the key to be set, i.e. amount of sharps, flats and naturals. Most of these control options have default values and the composer will be able to settle for these on many occasions.

Once these parameters are established the entering of the notation may begin. Each note may be fully specified by Pitch, Velocity, Time and Gap. For Pitch the name of the note is typed in: A, D or F for example. Any accidentals may precede it, overriding the key signature set up in the sequence specification.

Each individual note may have its own velocity specified and each note will have its time expressed in the number of beats. The gap, between the conceptual 'key release' and the start of the next note, will also be set. In practice the pitch of the note must always be set, in other instances the controls for Time, Velocity and Gap may be default settings taken from the information entered when the sequence controls were specified. Rests
may be entered by an ' R '. Notes to be played together as chords are grouped in brackets.

In this way, and with quite a few other control specifications, music may be entered. The procedure becomes rapid with practice and several composers insist it is a very efficient way of writing music.

PROGRAMMING MADE EASY

Fairlight have produced Page R so that musicians may compose on the Fairlight without having to learn MCL. Kim Ryrie describes this system as 'working rather like a Linn drum machine, but with the ability to add melody and expression' and the system allows the composer to build bars which constantly repeat. The composer can play notes in real-time which are read by the Fairlight and appear as notation on the screen. Adding another few bars builds up a sequence. Instruments may then be added to that polyphonically. Each pattern created can be linked together and the Fairlight user has up to 250 patterns to link together. Any eight patterns can be linked together to form up to 26 sections (labelled from A to Z). Patterns and sections can be mixed during linking to create a complete piece.

The all-important high quality disc unit
Software is being developed to make Page R and Page 9 (the real-time sequencers) act as real-time input sources for MCL. The music created through these pages in real-time will write itself as MCL in the Fairlight memory. For editing the musician can then refer to the MCL read-out and edit through this language-a precise and easy-to-use system. With the new highlevel language that has been created in these software updates, Fairlight have overcome the requirement for the musician to learn programming techniques. As microprocessor memory capacity increases, so the demands made upon the musician's non-musical abilities will further diminish.

The ultimate goal for the Fairlight team is to develop the CMI so that it is totally software based. Such a system would have an analog-to-digital converter at one end, a massive amount of RAM and some super-high-speed processors in the middle and a few A to D converters at the output end. This system will arrive within a few years. Once this happens, hardware development is effectively at an end and the software teams will then have no limit to the programs they can write.

With its ability to 'listen' to the sounds of the outside world and then place them under the musician's control, the Fairlight represents the current 'state of the art' in commercial computer musical instruments.
Ray Hammond has recently completed a book which takes an in-depth look at music electronics, entitled 'The Musician and the Micro'. It is published by Blandford Press at 4.95 (paperback).

Copies of Patents can be obtained from: the Patents Office Sales, St. Mary Cray, Orpington, Kent. Price £1.60 each.

US DISC ALTERNATIVE

Although Compact Disc, the digital audio sound system, is already on sale in Japan, Britain and the USA, some Americans still have faith in the Soundstream digital audio recording card.

Soundstream, based in Utah, is already known for its digital audio tape recordings. Many of the vinyl records on sale today were made from digital masters, recorded with Soundstream equipment. Three years ago Soundstream was bought out by the Digital Recording Corporation of Connecticut. The result was Audio File, an optical card that can store computer data or hi-fi stereo. The difference between Audio File and Compact Disc, is that the Audio File card remains stationary while tracked by a moving laser beam, whereas Compact Disc rotates over a notionally stationary beam.

Soundstream and DRC have been cagey about technical details, preferring simply to quote the sampling frequency at 50 kHz and quantization as 16 bit linear. But patents are now beginning to issue on the technology. Although more details will doubtless follow in later patents, the first three give useful basic information. US patent 4320488 was issued in March 1982, but dates back to an application made in March 1975. US patent 4321700 was issued in the same month, but dates back to an even earlier application, filed in October 1974. European patent application 0056683, dates back to January 1981 and is still in the pending stages.

This patent application is however the most interesting to read. Fig. 1 shows the basic system. The beam from laser 12 is focussed by lens 22 through pinhole 24 and directed under galvanometer control 28 onto lens 34. This lens is an axicon, which has the special optical characteristic of focussing light rays not in a single spot, but along a line in a common plane.

The line-focussed beam passes through prism 32 onto a five sided pyramid mirror 44 mounted slight off-axis on a shaft 40 which is rotated by motor 42 . The shaft also rotates scanning wheel 38 which carries five prism and lens arrangements 48, 46. Because the pyramid 44 is offset slightly from the axicon lens axis, it distributes a light beam to the five sets of lenses 46 , one at a time. As a result the scanning wheel traces a series of horizontal lines over the surface of a flat card 10. This card carries a digital audio recording on the surface as microscopic pits of data 56 arranged in a raster of lines. The card 10 is
moved slowly sideways by a screw drive so that the light beams scan the data lines one by one. Because the lens 34 is an axicon, the card data is in focus anywhere between points 52 and 54 on the reading zone.

Although the idea of optical card readers is old, the idea has not been practical on a domestic scale because of the problems of focussing. With an ordinary lens, a warped card goes out of focus, whereas the use of an axicon overcomes this problem. Although the idea of axicon optics is old,
 of axicon technology.

PE SPECIAL CASSETTES OFFER

CHROME C60 \& C90

FERRIC C90 AUDIO

Videotone Ltd., 98 Crofton Park Road, Crofton Park, London SE4.

PE
 ie

 file FILESHEET 8
 R.W.Coles
 8086

WITH their 8 bit designs behind them, and sales taking off nicely, the leading microprocessor manufacturers recognised that the next prize would be awarded for the introduction of a powerful new generation of 16 bit devices, able to compete directly with the big mini-computers in business, science, and engineering applications.

First on the scene was the 9900 from Texas Instruments, but although this chip was a true 16 bit processor, it lacked memory addressing range and in performance terms was not much better than some 8 bit designs. Worse still, the 9900 was too expensive to be used in applications where its 16 bit architecture was not absolutely essential, and in the mid 1970s there were very few system builders ready to take the plunge into full-blown 16 bit microcomputers because memory was still very expensive, and you needed a lot of it to do justice to a 16 bit machine. The lessons of the 9900 were not lost on the other chip manufacturers. They could see that before 16 bit processors could take off in a big way they would need to be many times more powerful than their 8 bit predecessors and they would also have to have access to lots of cheap memory. In effect, they had to design a microcomputer for the 1980s and not for the 1970 s .

The 8086 was the first of the "second wave" of 16 bit processors, and its introduction in 1979 fitted in well with the rockbottom price of 16 K dynamic RAMs and with the promise of 64 K just around the corner. Unlike the 9900, the 8086 fell on fertile ground, and almost at once it was being designed into a multitude of powerful new systems for both data processing and control tasks. To ensure that their new design was up to the job, Intel had to pack 29,000 transistors onto a small 225 mil square chip, and to achieve that they used a new high resolution NMOS process called HMOS to get the gates smaller and the speeds higher. The result is a processor which is at least ten times more powerful than the 8 bit 8080A.

Whereas the previous generation of 8 bit processors had used a primitive low performance version of the architecture employed by mini-computers, the 8086 set out to beat the minis on the basis not only of price, but of performance too. With the investment many users already had in 8080/8085 software, however, it was also considered necessary for the 8086 to be compatible with its 8 bit predecessors to the extent that 8080 assembly language programs could be easily converted to run, albeit inefficiently, on the new processor.

Inside the 8086 there are actually two processing blocks operating in parallel. One, the Bus Interface Unit (BIU), is responsible for address calculation and the fetching of instructions and operands from main memory. The other, the Execution Unit (EU), receives a stream of instructions from the BIU and interprets these to execute the intended program. Because the Fetch and Execute activities have been separated in this way, the processor can operate very efficiently. The BIU maintains a "queue" of prefetched instructions for the EU, and will attempt to top up the 6 byte queue by performing a word fetch whenever it sees a minimum of 2 bytes free. Since the BIU can operate independently of the EU, it can be fetching the next or the next but one instruction while the current instruction is executing, a technique known as "pipelining". This system falls down when the executing instruction is a JUMP of course, because the BIU is not clever enough to anticipate the need to fetch the next instruction from the destination address, but the need to clear the queue on these occasions is not a serious penalty, because in the average program most time is spent executing in-line code rather than JUMPs

To overcome the limitations of the 9900 and its 32 K word ad dress space, the 8086 uses a 20 bit address which can reach 1
megabyte. To avoid the need for a large expensive package, Intel have chosen to multiplex the address and data bus onto sixteen pins so that a cheap 40 pin unit can be used. The sixteen bits of address available on these pins will only reach 64 K bytes of memory by themselves, of course, and so four other pins are used to provide the most significant address bits A16 to A19. To make the most of the small 40 pin package, Intel have provided an $M N / \overline{M X}$ pin which can be used to put the 8086 into either a "Minimum" or a "Maximum" mode by changing the function of package pins 24 to 31 . In Maximum mode the 8086 interfaces to the rest of the system using an 8288 bus controller chip which decodes the SO S1 and S2 status lines to generate memory and I/O control signats. In this mode the 8086 is capable of operating in large multiprocessor systems, and has an expanded set of control facilities provided on pins 24, 25 and 29 to 31.

In Minimum mode, pins 24 to 31 provide the memory and I/O control signals without the need for an 8288 . To gain these extra facilities on-chip however, the multiprocessing features of Maximum mode are lost, so Minimum mode is mainly intended for applications which fit onto a single circuit board. The full 1 megabyte address range is available in either mode.
As mentioned in the 6809 file article, Intel never attempted to produce a "super" 8 bit processor to compete with the $Z 80$ and the 6809. Instead they concentrated on the high performance 8086 so that they could be the first with a "second wave" 16 bit device which would give them a higher profit margin than direct competition in the cut throat "super-8" market.

Having captured the high ground with the 8086 however, Intel were quick to see the advantage of producing an 8086 derivative which would not incur the high system costs which follow inevitably from using a 16 bit data bus. The resulting 8088 variant is really an 8086 with full 16 bit performance inside but with a modified BIU so that the data bus is only 8 bits wide outside.
When executing, say, a 16 bit register addition, the 8088 is just as fast as the 8086 . When 16 bit instruction or data words are fatched from memory, however, the 8088 takes twice as long as the 8086, but this disadvantage is offset by the much lower cost of byte-wide memory and peripheral circuitry for small to medium sized systems.

What Intel had done was to produce a stepping stone from 8 bits to 16 bits, a processor which could compete for the high end of the 8 bit market and the low end of the 16 bit market. A wise move for a company which was already doing well at the low end of the 8 bit market $(8085,8048)$ and at the high end of the 16 bit market (8086)! The advantages of a processor family with instruction set compatibility from the lowly 8080A, through the 8085 and 8088 , to the 8086 and beyond was not lost on many system designers, and, needless to say, Intel have done very well indeed.

Many of the so-called 16 bit personal computers like the IBM PC and the ACT SIRIUS actually use the 8088 , and it would appear that many more 8088s are currently finding sockets than are 8086 s . When the quest for still higher performance drives these and other manufacturers to move up to full 16 bit bus operation, they can do so without changing so much as a full stop in their software, a very important consideration!

To cope with the challenge from the Zilog $Z 8000$ and the Motorola 68000 which are (arguably) better 16 bit processors than the 8086, the fast moving Intel design team have now come up with a two pronged attack which leapfrogs the competition. Soon to be available will be the 80186 which is an 8086 with most of the necessary system "glue" parts, such as a clock generator, interrupt controller, memory decoder, bus controller, a DMA controller and three 16 bit timers, integrated on to the same chip as

the CPU to reduce system cost. For those who want more performance and never mind the cost, Intel will be offering the powerful 80286 which has six times the processing power of the basic 8086 together with big-system features such as memory protection and the on-chip management of a virtual memory space extending to one thousand megabytes!

In all the foregoing text I have used actual device part numbers, but to avoid confusion I should point out that some whizz kids in the Intel marketing department have decided to complicate things by using an alternative terminology based on the i APX prefix (meaning Intel Advanced Processor or something). In this scheme i APX 86 equals 8086 , i APX 286 means 80286 and so on, but suffixes may be added to denote a combination of devices e.g.:
i APX 86/10 $=8086$ alone
i APX $86 / 20=8086+8087$
To quote from the Intel manual, "This improved numbering system will enable us to provide you with a more meaningful view of the capabilities of our evolving microsystems"!

REGISTERS

The 8086 has a set of fourteen 16 bit registers divided into three files of four registers each and two specials, namely the Instruction Pointer (Program counter) and the Flag register.

The General Register File can be accessed as either four 16 bit register pairs or as eight individual 8 bit registers, and is intended for use as temporary data storage and counters. Although the nomenclature is different, all of the 8080A data registers have an equivalent in this file. For example the 8080A accumulator is represented here as $A L$, and the register pair H and L now becomes DH, DL, all done in the interests of software compatibility. In general these registers can be used interchangeably in the arithmetic and logical operations of the 8086 , and unlike those of the 8080 A , are general purpose in nature. There are still a few instructions, however, which use these registers in a dedicated role.

The Segment Register File holds the key to the wide address range of the 8086, and introduces the new concept of segmented addressing. To address 1 megabyte the processor has to generate a 20 bit address, but to keep the chip reasonably simple, the data paths, registers, and arithmetic unit all handle 16 bit quantities only. To solve this conflict the required addresses are generated by adding together two 16 bit quantities in such a way that a 20 bit result is formed. One of the segment registers is always used as one operand in this addition, but the other operand can come from the Program Counter, Stack Pointer, Index Register, General Register, or memory, all of which provide 16 bit data.

If there was only one segment register in the 8086 , then it would only be possible to address a single 64 K slice of memory at any one time without changing the contents of the segment register by issuing an explicit instruction. Fortunately, the 8086 has four segment registers, and so the 8086 programmer can gain simultaneous access to 256 K bytes of memory at any given time, and 1 megabyte by reloading one or more of the segment registers. Each of the four segment registers has a specific function so that it may be automatically used to form an appropriate address. Instruction fetches always access the "code" segment of memory and so use the Code Segment register, while stack operations always use the separate Stack Segment register, for example. Data memory can be accessed using either the Data Segment or the Extra Segment register, giving a 128 K byte range.

No doubt you have already spotted the fact that 16 bits from the segment register tacked on to 16 bits from elsewhere would give 32 bits, or if you added them, a maximum of 17 bits. What actually happens is that the 16 segment bits are effectively "left-shifted" by four bits before the addition is carreid out, giving the required 20 bit result. But there are still some loose ends. Why, for example, use 16 bit segment registers when 4 bit registers would give the required 1 megabyte range (sixteen 64 K byte segments possible)? Well, by using 16 bit registers, the start address of any given segment can be defined with a resolution of 16 bytes, and the four segments available can be overlapped in any desired manner.

The third register file contains memory pointers and index registers. The Stack Pointer (SP) is quite conventional, although it is joined in the 8086 by a new companion called the Base Pointer (BP) which is also used to generate addresses in the Stack Segment of memory. Also here are the Source Index register (SI) and
the Destination Index register (DI) which are both used to generate addresses in one of the two data segments. We have seen in previous file articles just how important it is to have two index registers available for accessing tables of data stored in memory.

One of the new flags, OVF, is a very useful addition which provides an indication of a signed arithmetic overflow condition, the other three are used to control processor operation. INTR is used to enable or disable interrupts, TRAP puts the processor into a single step mode, and DIR specifies auto increment or auto decrement during string manipulations.

INSTRUCTION SET

With the advent of microprocessors with a 1 megabyte (or greater) address range like the 8086, and with the availability of cheap 64 K bit dynamic RAMs and 8 K byte EPROMs, it has become inevitable that future software will mainly be written in a High Level Language (HLL) such as PASCAL or PL/M. Certainly no one in their right mind would sit down and compose a one megabyte program in Assembly language, since using an accepted rule of thumb of ten lines of debugged code per day, whatever the language, this gargantuan task could take one programmer the best part of a century!

This simple fact of life was not lost on the designers of the 8086 instruction set, and they have done a creditable job in ensuring a good registration between what the HLL compiler needs and what the machine provides.

Anyone used to the 8080A or the 8085 will recognise quite a number of familiar landmarks when taking a walk through the 8086 instruction set, and this is not surprising when it is considered that a direct equivalent for most 8080A instructions is to be found there. Despite these occasional similarities however, the 8086 is really a totally new machine with many new instructions and operating modes. New features of particular note are:

Signed and unsigned multiply and divide.
Bit tests.
String (block) operations.
Word/byte translation instructions.
Multiprocessor co-ordinating instructions.
Like the 6809 and the 9900 the 8086 uses the concept of general purpose instruction types which are modified by qualifiers and operand expressions to give a large number of machine code possibilities from relatively few basic mnemonics. There are in fact about 100 mnemonics in the 8086 set, which keeps life tolerable for the assembly language programmer. (Yes, some programs, or parts of programs, will still use assembler.)

Being a 16 bit processor, the 8086 uses an instruction format which can nominate two operand locations, and it does not therefore suffer from the 8 bit limitation of implied sources and/or destinations. Unlike the 9900 however, the 8086 generates an address which can uniquely specify a single byte not just a single 16 bit word, and this makes it possible to use instructions which are a minimum of one byte, and a maximum of six bytes in length. An example of a one byte instruction is CLC (clear carry) which has no operands, and an example of a six byte instruction is ADD FRED, OFFFOH which adds the immediate data FFFOH contained in bytes 5 and 6 of the instruction to the memory location FRED which is specified by bytes 3 and 4 . The use of single byte encoding for instructions with no explicit operands is an efficient way to speed up processing and to reduce memory requirements, but remember that the 8086 BIU will always fetch two instruction bytes at a time from memory, because a 16 bit wide data bus is used. Byte encoding is of course particularly beneficial to the 8088 , which does fetch data a byte at a time.

The 8086 instruction set can be divided into major groups:
DATA TRANSFER GROUP: which includes word or byte transfers to or from registers, memory, and I/O ports and all stack operations.
ARITHMETIC GROUP: which includes addition, subtraction, multiplication and division of signed, unsigned, and decimal numbers as well as increments, decrements and decimal-adjust instructions.
BIT MANIPULATION GROUP: which adds the ability to nondestructively test bits in registers or memory (like the Z80) to the 8080A-like logical operations, shifts, and rotates.
STRING GROUP: which with single instructions can search,
compare, or move, byte or word organised "strings" of up to 64 K bytes. These are similar to the $\mathbf{Z 8 0}$ 'block" instructions but with some nice extra facilities.
PROGRAM TRANSFER GROUP: which includes the usual jump, call and return instructions together with the new facility of interrupt instructions which can generate standard interrupts without external stimulation. A very versatile form of the 6800 software interrupt.
PROCESSOR CONTROL GROUP: which combines 8080A style flag manipulations and the NOP instruction with a new group for synchronising the 8086 with external events. Of particular note here is the ESC instruction which allows an associated processor (such as the 8087) to obtain a 6 bit opcode from the 8086
To complement the capable, if not exactly elegant, instruction set of the 8086 there is of course a wide choice of addressing modes which may be used to specify the Effective Address (EA) of an operand. Unlike the simpler 8 bit processors which usually specify an EA by means of explicit data contained in a register or following the opcode in instruction memory with only minimal computation possible, the 8086 is capable of performing considerable arithmetical gymnastics to compute an operand address by summing up to three 16 bit quantities. Since the resulting 16 bit EA is really just an offset from the start of a memory segment, yet another addition is performed in the BIU to create the final 20 bit address before the operand can be accessed.

Addressing modes are: REGISTER, IMMEDIATE, DIRECT, REGISTER INDIRECT (which are conventional) and:

BASED in which the EA is computed by summing a displacement value contained in the instruction with the contents of the BX or BP register. If the BP register is specified, access to data on the stack is gained without the need for POP instructions. If $B X$ is specified, the result is similar to indexing as applied to the Z 80 IX register for example.
INDEXED in which the EA is computed by summing a displacement with the contents of register SI or DI. In this case it is usual to use the displacement value as the "base" address of a table, and the index register value as the table pointer. Arithmetic manipulation or incrementing of the index register can then be used to step through the table.
BASED INDEXED in which the EA is generated by the summation of a base register, an index register and a displacement. Since two separate address components, the base and the index. can be varied at run time, this mode is useful for accessing two dimensional arrays of data.
STRING is really a cop-out since it is not possible to use the above modes with string instructions. Instead, the index registers are implicity used as source (S) and destination (DI) pointers.
I/O PORT DIRECT which uses an 8 bit direct address to access one of 256 I/O ports.

SOFTWARE

It is probably fair to say that the 8086 will not make a significant impact on the hobby scene until about 1985, and even then it may be in the form of the 80186 which should be cheaper. The 8088 is already here however, or at least it is in the shape of personal computers like the IBM PC and the ACT SIRIUS, and it should be remembered that there is not a jot of difference in software terms between the 8086 and the 8088 variant.

Thanks to 8080 compatibility it should be possible to convert the 8 bit CP/M DOS for use on the 8086 , but this would not be a very effective way of using a powerful 16 bit processor and fortunately it is not necessary because Digital Research have come up with a brand new $C P / M$ called $C P / M 86$. CP/M86 is written in 8086 code, and is already available from Intel in the form of the 8015016 K byte ROM complete with an I/O control package for driving standard Intel peripheral chips. We can expect that CP/M86 will gain a big following and that plenty of cheap software will become available in due course, an important consideration when choosing a microprocessor for a data processing application! In the past CP/M has had the market pretty much to itself, but this is no longer true for the 16 bit CP/M86. Strong competition will come from MSDOS, designed by Microsoft and used on the IBM PC, or even from VENIX and XENIX which are versions of the very popular UNIX operating system widely used in universities.

Already available from Intel for use under their own ISIS DOS is a compiler for PLM/86, an assembler (ASM86), and an 8080A to

8086 Converter programme (CONV86). For real time applications they also have a useful piece of software called RMX86 (Real-time Multi-tasking eXecutive) which provides a skeleton on which communicating software modules can be hung.

Intel software is very good but it is expensive, so go for CP/M86 or MSDOS for hobby applications!

INTERFACING

The 8086 is a 5 volt NMOS device and is therefore easy to hook up. Most hobby applications will use it in its MINIMUM mode, doing away with the need for an 8288 bus controller, but an 8284 clock generator will be required until the 80186 is widely available.

The bus connections are straightforward and are patterned after the 8085 model, which is not surprising since the 8086 needs to be compatible with the popular intel MULTIBUS which is used for inter-card communication. Using the MULTIBUS it is possible to build systems with multiple CPU boards employing the 8080A, 8085,8088 , and 8086 all acting in consort, because the original specifiers of the bus had the foresight to make provision for 16 bit as well as 8 bit processors.

The use of a 16 bit data bus does put more of a strain on the system designer because EPROMs for example are only 8 bits wide and so it is necessary to use two of them in parallel. This is why many designers have plumped for the simpler system interconnections of the 8088!

The 8086 data and address buses are multiplexed like those of the 8085, so it is necessary to use an external address latch built from two or three TTL 8 bit latches to do the demultiplexing. Like the 8085, the 8086 generates a special Address Latch Enable (ALE) strobe to synchronise this feature.

Rather than design a new souped-up interrupt scheme, Intel decided to stick with the original 8080A concept, which used external hardware in the shape of the 8259 interrupt controller to take care of prioritisation and vectoring. This keeps the CPU simple but does require the use of yet another external package. This problem is overcome by the 80186 which puts the interrupt logic on the CPU chip.

Thanks to the family compatibility built in by Intel, all the 8080A peripheral chips such as the 8255 PIO and the 8251 USART can be used without modification. In addition, the 8088 can be usefully teamed with the two 8085 "combo" chips, the 8155 RAM, TIMER, I/O and the 8755 EPROM, I/O. These will interface directly to the multiplexed 8088 bus and permit the assembly of complete 16 bit controller systems using only 4 to 5 devices.

Although compatibility with pre-existing peripheral devices was a definite advantage, Intel have not left it at that. To multiply the power of their 8086 and 8088 still further, Intel have introduced a number of co-processor devices which unload some of the more onerous chores from the 16 bit CPUs.

Even with hardware multiply and divide available on-chip, the execution times of a software based floating arithmetic library are disappointing to say the least, and to boost performance in this area Intel have introduced the 8087 numeric co-processor which can perform a wide variety of arithmetic and trigonometric operations at very high speed.

Also available is the $80891 / 0$ processor which is really a separate 16 bit microprocessor in its own right, but one which has an instruction set optimised for input/output operations. The 8089 can be used to control high speed DMA transfers, and to buffer and control complex peripheral devices such as disc drives by virtue of its two external I/O channels each capable of 1.25 M bytes per second transfer rate. The 8089 executes programs stored in memory shared with the main CPU, and is directed to a particular program by the 8088 or 8086 which passes Control, Parameter, and Task blocks using a simple communication scheme.

APPLICATIONS

The 8086 is unlikely to be chosen for hobby projects due to the complexity of the hardware required to use it effectively, but the 8088, and, in the future, the 80186, are worth considering where 16 bit power is needed.

The 8086 instruction set and architecture are both equally suited to data processing and controller applications, and anyone with an 8088 based personal computer can be satisfied that they have one of the best price/performance combinations currently available.

all in your

 issue!

COMPUTER DIAGNOSIS... LOCIC ANAHYSER

PartOne

Des gred to trā̆ and displey theese floeting signats deop in reur computen. Will go where a scope is hopelassily ill eqnipped to go. Will seacch and tre3ze, using a word recogniser. Moduler construczion for modalar income.

ROBOT VISION

PE looks at present day Image Reproduction Techniques in this relatively unexplored field.

PlisLlisei Bomputerfitiuipment Bargains

PRACTICAL

 AUGUST ISSUE ON SALE FRIDAY JULY 1

THIS month we feature a brand new, and very unusual, semiconductor device. The PXO-600 is a 16 pin i.c. from the American Statec Corporation, which contains a complete programmable crystal oscillator, including the crystal itself! Internal programmable dividers allow for the production of frequencies between 0.005 Hz and 600 kHz , all with the same stability and accuracy as the basic crystal oscillator itself. The internal circuitry is based on CMOS technology, so the complete i.c. consumes very little power.

Fig. 1 shows the pin-out of the PXO-600, with the crystal fixed at the pin $1 / \mathrm{pin} 16$ end of the package. A transparent window is provided in the top surface of the i.c., so the crystal is clearly visible. The internal block diagram is shown in Fig. 2. The crystal oscillator runs at a fixed frequency of 600 kHz , and its signal is always available at pin 11. Following this, a selection circuit allows for either this internal clock, or an external one, to be fed into the rest of the circuitry. Programmable dividers then divide the frequency down to provide the final output from the i.c. Fig. 3 shows the different division ratios possible, which are selected by providing the required logic levels on pins 2 to 7 . (As usual, ' 0 ' is a low level, or 0 V , and ' l ' is a high level, or +5 V .) The overall division ratio is a combination of the first programmable division ($1 / 1$ to $1 / 12$) and the second ($1 / 1$ to $1 / 10^{7}$). The complete table of output frequencies is shown in Fig. 4; note that the output is a square wave except where indicated. The specifications for the PXO-600 are shown in Fig. 1, and are largely self-explanatory. Unlike many CMOS circuits, the maximum supply voltage is +6 V , so normally the i.c. should be run from a 5 V supply. As we shall see in the applications circuit, the i.c. is capable of driving LS TTL inputs as well as CMOS.

EXTRA FACILITIES

Various extra facilities are provided in this i.c. to add a little flexibility to the way that it can be used.

Test (Pin 10)
Setting this pin to a high level (logic 1) multiplies the output frequency by 1000 , except

when the division ratio is already less than $1 / 1000$ (i.e. $1 / 10^{3}$). This enables quick testing of some of the very low frequencies.

Exc (Pin 12)

This is the external clock input to the i.c., allowing the programmable dividers to be used to divide down any suitable external clock.
Csel (Pin 13)
Setting this pin high (logic 1) causes the divider to operate on the external clock, rather than the internal crystal oscillator.

Reset (Pin 14)
Setting this pin low (logic 0) resets the dividers and sets the output to logic 0 .

All the inputs except EXC have pull up/puil down resistors, as appropriate, fitted internally to the i.c. Hence, leaving any of these inputs open circuit will cause that facility to be nonoperational, removing the necessity for many external resistors.

APPLICATIONS CIRCUIT

The PXO-600 is such a compact and ver-

Fig. 2. Block diagram

$\begin{gathered} \hline \text { Prog } \\ 1 \end{gathered}$	$\begin{gathered} \text { Prog } \\ 2 \end{gathered}$	$\begin{gathered} \text { Prog } \\ 3 \\ \hline \end{gathered}$	Dividing Ratio	$\begin{gathered} \text { Prog } \\ 4 \end{gathered}$	$\begin{gathered} \text { Prog } \\ 5 \end{gathered}$	$\begin{gathered} \text { Prog } \\ 6 \end{gathered}$	Dividing Ratio
0	0	0	1	0	0	0	1
0	0	1	$\frac{1}{10}$	0	0	1	$\frac{1}{10}$
0	1	0	$\frac{1}{2}$	0	1	0	$\frac{1}{10}{ }^{2}$
0	1	1	$\frac{1}{3}$	0	1	1	$\frac{1}{10}$
1	0	0	${ }^{4}$	1	0	0	$\frac{1}{10} 4$
1	0	1	$\frac{1}{5}$	1	0	-	$\frac{1}{19} 5$
1	1	0	$\frac{1}{6}$	1	1	0	$\frac{1}{10}{ }^{6}$
1	1	1	$\frac{1}{12}$	1	1	1	$\frac{1}{10} 7$

Fig. 3. Programmable dividing ratios

Prog pins $\mathbf{1}$ $\mathbf{1}$ $\mathbf{2}$		$\mathbf{3} \mathbf{5}$	$\mathbf{6}$	0	0	0	0	0	1	1
0	1	1	1	0	0	1	1			
0	0	0	600 k	60 k	6 k	600	60	6	0.6	0.06
0	0	1	60 k	6 k	600	60	6	0.6	0.06	0.006
0	1	0	300 k	30 k	3 k	300	30	3	0.3	0.03
			\star							
0	1	1	200 k	20 k	2 k	200	20	2	0.2	0.02
1	0	0	150 k	15 k	1 k 5	150	15	1.5	0.15	0.015
1	0	1	$\star \star$	120 k	12 k	1 k 2	120	12	1.2	
1	0.12	0.012								
1	1	0	100 k	10 k	1 k	100	10	1	0.1	0.01
1	1	1	50 k	5 k	500	50	5	0.5	0.05	0.005

$\star=33 \%$ DUTY CYCLE
$\star \star=40 \%$ DUTY CYCLE

Fig. 4. Output frequencies

connected in parallel to increase the drive capability of the TTL output signal. IC6 should be a 7400 , not a 74 LS 00 , to ensure that sufficient output drive is available.

The CMOS output is provided in rather a different manner. IC4 is an 'open collector' LS TTL i.c., which means that it can only sink current to 0 V ; there is no pull-up circuitry provided within the i.c. For IC4a, c and d we have to use a 1 k pull up resistor on the gate output to +5 V ; these are R15, R18, and R9 respectively. IC4b provides the CMOS output of the instrument. If the 'CMOS +ve supply' terminal is left unconnected externally, D5 and R12 provide the pull-up to ensure a full voltage swing from IC4b, hence the CMOS output is a square wave with an amplitude of +4.5 V maximum. If the CMOS circuit under test is run from a higher voltage, up to +18 V , then by connecting the +ve supply to the 'CMOS + ve supply' terminal on the instrument, the CMOS output is now pulled up by R13 (via D6) to this higher supply rail, which matches the square wave amplitude to the circuit under test. At very high frequencies, typically above 100 kHz , this output will be a
little rounded in shape, which is caused by the discrete time taken for R12 or R13 to charge up stray capacitance and any capacitive loading on the CMOS output. This will not normally cause any problems, but should be borne in mind. If faster edges were found to be necessary, and the CMOS supply rails were to remain fixed, then a 4049 CMOS buffer i.c. could be added to the circuitry as a permanent feature, with extra power supply components being added as necessary.

IC7 is a 5 V regulator i.c. mounted on a small heatsink. D1 to D4 rectify the incoming a.c. from the secondary of the mains transformer, with smoothing provided by C1. C2 and C3 ensure the stability of IC7, with C4, C5, and C6 (all disc ceramic capacitors) providing extra supply decoupling, a very important factor when dealing with TTL i.c.s.

CONSTRUCTION

Two Veroboard layouts are provided this month, Fig. 6 and Fig. 7. The power supply and the main circuitry have been separated for convenience. If the choice of mains transformer is made carefully, the whole instrument,
including power supply, will fit into a very small Verobox: type 212 (Vero part number 202-21041C). Naturally, any box larger than this nominal $155 \mathrm{~mm} \times 85 \mathrm{~mm} \times 60 \mathrm{~mm}$ will be able to accommodate the circuitry with even greater ease. The l.e.d.s have their legs bent very carefully to fit onto the edge of the Veroboard. Treat them with care, because it's very easy to crack and destroy the l.e.d. body when bending the legs. The front panel should have its holes marked and drilled very carefully, too, as any inaccuracy at this stage will result in the l.e.d.s on the Veroboard and the front panel holes not meeting up when the case is assembled. Remember, the board is designed to fasten to the top of the case; in other words, if fastens upside down in the case, with the components pointing downwards.

Due to the fairly high cost of the PXO600 , it is a good idea to mount this in an i.c. socket (use a good one) so that the correct wiring of power supplies to the i.c., etc., can be checked before the i.c. itself is inserted. Note that the PXO-600 fits into the board the opposite way round to all the other i.c.s; pin 1 of

Fig. 5. Circuit of programmable crystal oscillator

Fig. 6. Veroboard layout for the Crystal Oscillator

Fig. 7. Veroboard layout for the Power Supply
the PXO-600 faces the front panel, whereas pin 1 on all the other i.c.s faces the back panel. When wiring up the thumbwheels, use only pins A, B, and C, along with the common pin; do not use pin D. These may be marked 1,2, and 4 , with the common pin marked C.

When wiring up the mains supply take great care and use sleeves and insulators over all mains connections. An old film transparency box lid, cut up and fixed on with "sticky fixers", makes a good cover for transformer connections. A few holes in the case should be provided to allow ventilation around the transformer and the heatsink for IC 7, both of which can get quite warm. The operation of the 5 volt regulated supply should
be checked out before it is connected to the rest of the circuitry.

For simplicity, and to keep the size down, this project has not included the extra facilities of the PXO-600 such as external clock, reset, and test. These could easily be added to the instrument if required, however. Other circuit configurations are also possible; by connecting the output (pin 9) back to the CSEL input (pin 13) we can make the device 'freeze' itself after half a cycle of its output. Using reset (pin 14) to trigger the device then effectively gives us a crystal controlled, wide range, one shot timer or monostable. Versions of this i.c. are also available which use different base frequencies. the PXO-768 has a base fre-
quency of 768 kHz , which provides outputs of 0.0064 Hz to 768 kHz , and the $\mathrm{PXO}-1000$ has a base frequency of 1 MHz , providing outputs of 0.0083 Hz to 1 MHz .

These different i.c.s, with their common programming and controlling facilities, offer an ideal solution to many high accuracy timing and controlling problems, all in a 16 pin package! The PXO series of i.c.s is just now becoming readily available. They can be obtained from:
I.Q.D. Ltd.,

29, Market Street,
Crewkerne,
Somerset TA187JU

Introduction...

Stephen Ibbs

ALL the timer projects shown here use the Intersil ICM 7217 4-digit up/down counter. This is a very versatile, presettable counter, which it is worthwhile understanding in more detail. The pin-out is given in Fig. 1 for the 7217A and 7217C, both of which drive a CC (common cathode) type display, the difference being the A version counts up to 9999 and the C up to 5959 (useful for clock type circuits). There is also a 7217 and 7217 B , but these drive a CA (common anode) display, and have a different pin-out, so are not used here.

The carry/borrow pin provides the facility for direct cascading of counters, by connecting it for example to the count input of another 7217 to give an 8-digit counter.

The zero output, normally high, goes low when the counter reaches zero. This is useful for triggering alarms, controlling the input pulses etc. N.B. The bar over the word indicates a low level status, i.e. it goes low at zero.

The equal output is similar except that it assumes a low state when the counter is equal to the amount preset in the register. This will be explained in more detail when pins 11 and 12 are described.

Fig. 1. Pin configuration of the 7217A and 7217C
Pins 4,5,6,7 are BCD coded in/out pins and can be used either as inputs to load data, or as BCD outputs, giving the code of the counter level. Pin $4={ }^{\prime} 8 \prime, 5={ }^{\prime} 4 \prime, 6=' 2 \prime, 7=' 1^{\prime}$ '.

Pin 8 is the count input pin and is provided with a Schmitt trigger as protection against noisy input signals. The input frequency is guaranteed to at least 2 MHz .

The store input will hold the display output latches with the last count and as will be shown later this can be used to give a simple frequency meter (or tachometer).

The up/down pin 10 is self explanatory and decides whether the i.c. counts up, with the pin positive, or down, with pin 10 at OV .

Pins 11 and 12 are really clever, each having 3 states: high, low and floating (which is the normal level for operation). When either pin is taken high, the register or counter respectively is loaded with the data contained on the BCD pins. Thus if for example the register (pin 11) was preset with 1000, and the counter (pin 12) with 1500 , and pin 10 (up/down) was low, the equal (pin 3) would go low after 500 input pulses. The counter section does not affect the data loaded in the register so if pin 11 was loaded with 2400 , and the equal output used to reset the counter, a simple 24 hour clock with BCD output is provided. When pin 11 or 12 is low, the BCD pins assume a high impedance state, and various other functions are disabled. Diodes have to be included to isolate the BCD pins from each other when using BCD switches.

Pin 13 is the scan pin, used to over-ride the multiple scan oscillator, and using the circuit in Fig. 2, will provide a brightness control. This is a square wave oscillator with the duty cycle made variable by the $47 \mathrm{k} \Omega$ preset controlling the charging and discharging rates through D1 and D2.

Pin 14 resets the counter to zero when pulled low. This can be done with a push to make switch, or automatically using the circuit in

Fig. 3 containing a manual button as well. Pins 15-18 are the digit drivers to control the l.e.d. display (common cathode). Pin $15=\mathrm{D} 4$, pin $18=\mathrm{D} 1$.

Pin 19 is connected to $0 V$, and pin 20 is another tri-state pin, controlling the display. It is left floating for normal operation, but when pulled high the display is turned off. When, however, it is pulled low, the leading zero feature of the i.c. is disabled. Apart from pin 24, connected to 5 V , all the other pins to drive the display segments are multiplexed. The maximum supply voltage is 6 V , so all the projects incorporate a 5 V regulator.

If the count, store and reset pins are considered, it is possible to build a 4-digit frequency meter by counting the pulses, for e.g. one second, storing the result and displaying it, then resetting the counter ready for the next 'one second package' (Fig. 4). However, these controlling pulses have to be very carefully timed and this can be achieved using CMOS i.c.'s, but a much neater solution is to use the ICM7207A (crystal controlled) to give the desired pulse sequence with the necessary accuracy (Fig. 5).

For timing circuits the usual requirement would be for a 1

HAND HELD 2DIGTT DOWN COUNTER

THIS project uses the presettable capability of the 7217A to provide a 2 digit counter capable of being preset to any number of seconds or minutes up to 99 , producing an alarm when the counter reaches zero. Because it uses an l.e.d. display that has quite a high current drain, a switch is included to blank the display, whilst not upsetting the counter. The project uses the case given free by PE some time ago, and these are still available from the editorial offices at Poole (50p inclusivel. The p.c.b. mounting switches solve many construction problems and the result is a highly useful timer, e.g. for parking meters, or (as the author does) as a fuel timer for radio controlled aircraft, to avoid landings with no fuel . . . a well known cause of ulcers, and increased profits for model shops.

HOW IT WORKS

The circuit diagram of the 2 digit down-counter is shown in Fig. 1. The oscillator is a 7555 , selected for its low current drain, connected in its astable mode, and adjusted to 1 Hz by VR1, which together with R1 and C1 provide the time constant. The output is switched either into the counter via the switching logic or into two 4017 s , the first connected as a
second and a 1 minute pulse. This can be produced easily in at least two ways, using either a 555 oscillator with its output divided by 60 (switchable), as used in the two handhelds, and the darkroom timer (which only has a 1 Hz oscillator), or by using the ICM 7213 oscillator as used in the
kitchen timer. More details are given in the individual circuit oscillator), or by using the ICM 7213 oscillator as used in the
kitchen timer. More details are given in the individual circuit diagrams.

The BCD //O pins interested the author most because some new $B C D$ p.c.b.-mounting switches have been insome new BCD p.c.b.-mounting switches have been in-
troduced, and these are used in three of the projects to preset the counter, as they enable easy programming of the
counter; in fact it's so easy that the counter would prove preset the counter, as they enable easy programming of the
counter; in fact it's so easy that the counter would prove useful for blind people. However, the fact that the pins can be used as outputs as well means that if a BCD decoder is be used as outputs as well means that if a BCD decoder is
used, other devices may be driven from the master i.c. . . hence the two I.c.d. counters. These use the BCD outputs
(inverted) which are fed into an ICM 7211 BCD to l.c.d. hence the two I.c.d. Counters. These use the BCD outputs
(inverted) which are fed into an ICM 7211 BCD to l.c.d. decoder/driver i.c. This provides a real opportunity for simple battery-powered timers because the displays consume such little current.

divide-by-ten, the second as a divide-by-six, to provide a pulse every 60 seconds. These dividers have to be reset at power-on to ensure the ' O ' outputs are high, and this is accomplished by R2/C2, and R3/C3, providing a brief reset pulse to pin 15 of each i.c. The output from IC3 is inverted, otherwise because of the various logic levels involved, a spurious count would result after 10 seconds. IC4d is a gate controlled by the 'zero' output of the 7217 , allowing pulses to go through until zero is reached when the gate closes.

Fig. 1. Circuit diagram of the 2 digit down counter

This is necessary otherwise the counter would continue through zero and switch the alarm off. The 'zero' output also controls the gated audio alarm, driving a piezo transducer, and please note that a 4093 quad NAND Schmitt trigger is used for IC4. A 4011 will not work because it requires two gates to produce an oscillator, and there was not one spare.

The inclusion of a capacitor between pin 12 (IC5) and +ve needs explanation. It was felt by the author that to include yet another switch to manually load the counter would clutter up the appearance, and make the unit more cumbersome to use. Experiments were carried out for various ways of loading data, and it was found that a capacitor provided the necessary high pulse whilst not tying the pin high or low. Thus the counter is automatically loaded at 'switch-on', and immediately starts counting down. This results in a very simple-to-use unit.

CONSTRUCTION

Provided care is taken, necessary because of the restrictions due to the size of the case, no problems should be experienced. However the use of a p.c.b. is highly recommended, and

a suggested design is given in Fig. 2. Mount all the components, including the BCD switches which should have all their unnecessary pins clipped short according to Fig. 3. All components should be mounted as close to the board as possible, with the capacitors bent over flush. A piece of black plastic was cut to fit the case aperture, and two slide

COMPONENTS . . .

Resistors

R1	10 k
R2, R3, R4	100 k (3 off)
R5	680 k
VR1	220 k sub-min cermet

All resistors $\frac{1}{4}$ W 10% carbon

Capacitors

C1, C7	10μ tant (2 off)
C2, C3, C4	100 n polyester (3 off)
C5	1000 p ceramic
C6	220 n tant

Semiconductors

D1 to D8	1 N4148 (8 off)
IC1	7555
IC2, IC3	4017 (2 off)
IC4	4093
IC5	$7217 A$
IC6	7805

Miscellaneous

X1, X2: CC displays (2 off) DL-704
BCD switches (RS type 327-939) (2 off)
Slide switches 2 -pole min (3 off)
Battery clip
PB 2720 piezo transducer (Ambit)
p.c.b.

Case

-Constructor's Note

Care must be taken to obtain the correct switches and main i.c. The 7217 is available from many stockists but the version may not be the correct one, and the pin-out will be wrong. The 7217A is available from Ambit, and is the version required for this project. They can also supply the subminiature cermet preset, needed because of its small size. Ambit (0277 230909).

Fig. 2. P.c.b. design
switches were mounted either side of the display using epoxy resin. Holes were drilled for the display pins which were then mounted through the plastic onto the display board (Fig. 4). The piezo transducer was stuck on top of IC2 and IC3 and small lengths of insulated lead used to make the necessary interconnections. The third switch was mounted on the edge of the battery compartment. (Please ignore the 4th switch in the prototype. This was included for other purposes and not used.)

Two holes were drilled in the case for the BCD switches and constructors should make the holes large enough for the threaded bushes which by good fortune protrude to exactly the right height. The unit is then calibrated simply by switching on, with the 1 Hz rate selected and adjusting VR1 until the display counts down at the correct rate. Do not forget to load some data in, otherwise the counter will load itself with zero! In use the counter is loaded and the count rate selected before the unit is turned on. A separate start switch could be included, as could a load button, reset button etc, but it would make construction more difficult.

E61158
Fig. 3. Component layout

Fig. 4. Display wiring
Because of the space limitation, various desirable decoupling capacitors could not be built in, so do not change the rate switch whilst a count is in progress because it may cause the unit to 'jump' a digit. The unit is then clipped together, the switch nuts tightened down, and two knobs added. With all the digit segments lit the prototype consumed 53 mA ; however this dropped to 4 mA with the display blanked. Thus it is wise to blank the display whenever possible, or arrange a mortgage to cover battery costs.

Constructors will note that pin 10 is connected to OV via a wire link to make the i.c. count down. For those who intend to leave it like that, the wire link can be omitted, and pin 10 permanently connected to OV by altering the p.c.b. slightly. However, if a 4 th switch is included, placed for example as in the prototype, with pin 10 running to the centre contact, with +ve and $O V$ on the other two, the unit becomes a switchable up/down counter. However, it would not be able to start from zero because the input gate would be closed; thus the circuit would require a simple modification. This can be done most simply by breaking the connection between pin 2 and the input gate, pin 13 , and running a wire from the zero output to the one contact of the second pole of the 4th switch, with pin 13 to the centre, and pin 12 to the final contact. The effect of this is to join 12 and 13 together when counting up, the gate being permanently open, and 13 and the zero pin together when counting down. Make sure the connection between pin 2 (IC5) and pins 1 and 2 (IC4) is maintained.

MAND HELD 4DIGIT LCD UP COUNTER

THIS project demonstrates the ease with which a low power portable counter can be built using the 7217C. As with the 2 -digit counter, constructors can make the unit count up or down, but no alarm is included. It uses a handheld case (R'S 507-983), painted black to match the I.c.d. display bezel, and although the prototype is not presettable, suggestions are given as to how further facilities can be added, to make the unit more versatile.

HOW IT WORKS

The circuit diagram of the unit is shown in Fig. 1, and the input circuit attacks the problem of getting a 1 Hz and $1 / 60 \mathrm{~Hz}$ pulse in a different way. The 1 Hz is again generated by a 7555 , but instead of going into two 4017 s , the signal is fed into a 4024 ripple binary counter. This i.c. produces outputs that are related in a binary manner to the input. This means that, e.g. pin $4\left(2^{6}\right)$ produces a square wave $1 / 64$ of the input frequency, i.e. it will go high after 32 pulses, low after 64 etc. Similarly pin 5 will go high after 16, pin 6 after 8, and pin 9 after 4 pulses. If these four pins are ANDed together, a 'high' will occur after 60 pulses. This 'high' is then used not only to clock the main counter, but also to reset the 4024 , repeating the process ad infinitum. The second AND gate of the 4082 can be controlled by the 'zero' output for those readers who want a down option, or all the pins are connected together and it acts as a buffer. The pulses direct from the 7555 are fed via an inverter to achieve the right logic state at switch on.

As was explained in the introductory article to this series, it was decided (for various reasons) to use the A and C versions, and because of this, four inverters are needed between the digit output lines and the 7211, because the levels are the wrong way round. The BCD data is fed into pins 27-30, and the segment pins connected direct to the display, with the backplane of the display connected to pin

5. It was felt that a colon might be useful and this is most easily done by connecting two diodes between the 3 b and 3 c segments and the colon pin 28. One or both of b or care always active, and the diodes prevent them from interacting with each other. However, a better and cheaper way is to connect the backplane to the input of the final inverter of the 4049 (pin 3) and connect the output (2) to the colon pin 28.

CONSTRUCTION

This is not difficult as there is plenty of room inside the case. Mount the components onto the p.c.b. according to Fig. 3, taking care not to forget the wire links. The aperture in the case needs enlarging slightly for the display bezel, by far the most convenient way the author has found of mounting I.c.d. displays. Short lengths of ribbon cable connected the switches and display to the board (Fig. 5).

After the usual check to confirm that there are no solder joins, track breaks, or components in the wrong way round, switch the unit on, with the 'seconds' rate selected via S2. Calibrate to a 1 Hz rate by adjusting VR1. The unit can then be mounted in the case.

There is space below the display to mount a second p.c.b. and with care it should be possible to incorporate 4

Fig. 1. Circuit diagram of the 4 digit LCD up counter

Fig. 2. P.c.b. design

Fig. 3. Component layout

COMPONENTS . . .

Resistors

R1	10 k
R2, R3	100 k (2 off)
VR1	220 k min hor preset

Capacitors
C1, C5
C2, C3
C4
$10 \mu \operatorname{tant}$ (2 off)
100n polyester (2 off) $220 n$ tant

Semiconductors

D1, D2	1N4148 (2 off)
IC1	7555
IC2	4024
IC3	4082
IC4	7217 C
IC5	4049
IC6	7211
IC7	7805

Miscellaneous
4-digit l.c.d. (RS type 587-305)
Display bezel (RS type 587-282).
If RS bezel is purchased
the p.c.b. EG 1162 is included.
Case (RS 507-983)
Battery clip
Switch s.p.s.t.
Switch s.p.d.t.

Fig. 4. Display p.c.b.
miniature BCD switches (which provide a screwdriver slot adjustment). The circuit would be similar to that used in the 'kitchen timer', and it is for this reason that spare pads are provided on the BCD and digit lines on the p.c.b., and why

Fig. 5. Display board wiring
wire links are included around the logic gate and 'zero' output, as they enable the input circuit to be modified as suggested in the 2 digit counter. To count up, omit link 1b and insert link 2a. To count down, insert link 1 and link $2 b$

4DIGIT LED DOWN COUNTER/ CONTROLLER

THIS project is a development from the 2 digit counter, and uses a 555 gated by a 4093. However, because its prime purpose is as a photographic timer it was felt unnecessary to include the divide-by-60 section because 59 mins 59 secs is long enough for almost any photographic process. The unit has two output devices, the first being a relay that switches on at the start of the timing cycle, and off when the counter reaches zero, the second being an alarm. Thus the relay could be used to control the enlarger, whilst the alarm will be useful for the various development processes. A switch is included to power the relay manually, independent of the counter, e.g. for focusing etc. It was decided to use three p.c.b.s, the main one carrying the timer circuitry, alarm and the display (soldered direct to the board). This makes mounting and interwiring extremely easy, and produces a very neat result. The second p.c.b. carries the BCD switches, as used in the 2 digit counter, with the unused pins cut off, and the diodes, and is mounted in the top of the case. The third and final p.c.b. carries the mains supply, relay, and its associated switching circuitry. Parts of this board are at mains potential, so extreme care must be taken.

Two fuses are included, a 250 mA for the unit itself, and a fuse incorporated in the relay output line, whose value should be chosen to match the enlarger etc. The transformer is p.c.b. mounting to make construction easier and safer. A switch is also included to blank the l.e.d. display, useful when timing colour print exposures.

HOW IT WORKS

The circuit (Fig. 1) needs little explanation if the introductory article has been read. The output from the 555 is controlled by one gate of the 4093, gated by the 'zero' output, which also gates the audio alarm, and the output uses the final gate of the 4093 as an inverter with the piezo transducer connected across it to greatly increase the power. The 'zero' output is also used (it's kept very busy!) to switch on a relay via R3 and TR1, using unregulated d.c. supply to ensure enough voltage to drive the relay. When the count is over, pin 2 goes low, switching off the relay, turning on the alarm, and shutting the input gate. Please note that a second pair of relay contacts are provided to control, e.g. the safelight.

Fig. 1. Circuit diagram of the 4 digit LED down counter/controller

CONSTRUCTION

Printed circuit boards make the construction very easy, and the p.c.b. designs are shown in Figs. 2, 3 and 4 with the component layouts shown in Figs. 5, 6 and 7. Please refer to the components list carefully to ensure that the correctly fitting components are purchased. Construct the main board, not forgetting the three wire links, and make sure the capacitors and i.c.s are inserted the right way round. The display is stuck on top of the p.c.b. with its edge holes lined up over the appropriate p.c.b. hole. With small pieces of tinned

wire then solder the two boards together. This method of mounting also ensures that the display is absolutely central on the p.c.b., useful when mounting the board in the case. The piezo transducer is also stuck onto the p.c.b., with its leads connected to pins 9 and 10 of IC2.

Eight way ribbon cable joins the BCD and digit lines to the switch board which is constructed next. Only switch pins B, D, F, I, J, N are used so all the other contacts should be clipped off. Mount the diodes, ensuring the correct polarity, otherwise some weird BCD data will be loaded, then mount the switches, and join the ribbon cable from the main p.c.b. Switches 4 and 6 should have a stop inserted in each to prevent them going past position 5 . The author slightly cut down two Veropins and inserted them into the appropriate holes. These will then be held in place when the switches are

Fig. 2. P.c.b. design for the main board

Fig. 3. P.c.b. design for the switch panel

Fig. 4. P.c.b. design for the p.s.u.

E 51160
Fig. 5. Component layout for main board

$\xrightarrow[\longrightarrow]{\rightarrow} \mathrm{S}$
[6T1350
$\xrightarrow{\substack{s}}$

Fig. 6. Component layout for switch panel

EG1152
Fig. 7. Component layout for p.s.u.

COMPONENTS ...

Resistors
 R1, R3
 R2
 VR1
 10k (2 off)
 680k
 220 kminh hor preset

Capacitors

C1, C7
C2
C3
C4
C5
C6
$10 \mu \operatorname{tant}$ (2 off)
100n polyester
1000p
220μ elect
1000μ elect
$220 n$ tant

Semiconductore

D1 to D16	1N4148 (16 off)
TR1	BC109
IC1	555
IC2	4093
IC3	7217 C
IC4	7805

Miscellaneous

4-digit CC multiplexed display (RS type 587-507)
Transformer 6V 3VA p.c.b. (RS type 207-829)
Relay 6 V 2 -pole changeover (RS type 349-642)
Bridge rectifier 50V 1 A
BCD switches (RS type 327-939) (4 off)
Fuseholder p.c.b. type (2 off)
Ribbon cable
Piezo transducer
Case (RS type 508-194)

Main board

P.s.u. board
the switch p.c.b., and mount the board which is held in place by the switch nuts. Though holes were drilled into the prototype p.c.b. for mounting bolts these are totally unnecessary and can be ignored. The sloping front panel is prepared as shown in the photographs, and care must be taken to make sure that the holes line up properly. The p.c.b. is then mounted using nuts, bolts and sufficient spacers to make the display just protrude through the aperture, taking care not to short its contacts onto the back of the front panel. However, it is obviously necessary to calibrate the unit as described for the 2 digit counter, before mounting the main board. Give the unit a final check, particularly with regard to the mains connections, before bolting the case together.

4DIGIT LCD DOWN COUNTER/ CONTROLLER

FOR greater accuracy than can be achieved with a 555 oscillator, this version of the counter uses an ICM7213, designed specifically for the purpose of providing a 1 Hz and $1 / 60 \mathrm{~Hz}$ pulse, derived from a crystal oscillator running at $4 \cdot 194304 \mathrm{MHz}$ (divided by 2^{22} to give 1 Hz). This requires a commonly available crystal and 2 capacitors to pins 5 and 6.

Because this i.c. is happier at a lower voltage, two diodes, each with a forward voltage drop of approx 0.6 V , are included to provide approx 3.8 V to the 7213 . Once power is supplied the 7213 is self starting and this causes a problem in the overall design because when the counter is finally activated by the user, there may not be, for example, 60

Fig. 1. Circuit diagram of the 4 digit LCD down counter/controller
seconds remaining before the next pulse arrives, causing a spurious count. This can be overcome (Fig. 1) using a 'flipflop', constructed around IC1c and d. At 'power-on', a pulse is fed to pin 13 to ensure that pin 10 is high and 11 low. This achieves two things. First, the logic gated IC3d is closed, and the Inhibit pin 3 (IC2) is high, stopping the oscillator. When the start button is pressed, the flip-flop changes state, the gate opens and the INH pin goes low, enabling the oscillator to run, and the interval from this point to the first pulse arriving, whether 1 Hz or $1 / 60 \mathrm{~Hz}$, will be accurate to $\frac{1}{4} \mathrm{sec}$. Thereafter it should be accurate to the tolerance of the crystal. The two rates are selected by S3, and R3 is necessary to ensure the correct voltage swing from the oscillator. The resulting pulses are controlled by another gate using the 'zero' output, and the signal is then inverted to achieve the correct logic status prior to entry into the counter. The rest of the circuit should be self explanatory if the introductory article has been read, being very similar to the 4 digit I.e.d. version. Provision has been made on the p.c.b. for a relay output, but if constructors wish to use this option it is advisable to build a mains supply unit. Without the relay, the circuit draws less than 1 mA from a 5 V supply, even with the alarm running, and this rises to only 3 mA when powered from a 9 V battery with a 5 V regulator.

IC $1 a$ and b provide the gated audio alarm, and the output is connected to the spare gate of IC3 to boost the output power. Also note that resistors are included on the switch board. These help to isolate the switches during the BCD output.

CONSTRUCTION

The project uses two p.c.b.s, designs for which are given in Figs. 2 and 3 with their respective component layouts shown in Figs. 4 and 5. Insert the diodes and resistors onto the switch p.c.b. before mounting the switches themselves,
which should have the unnecessary pins clipped short. Construct the main board, not forgetting the links, and ensuring that the components are inserted the correct way round. If the relay option is not required simply omit R25, TR 1 and the relay. Insert Veropins for the necessary interconnections. The front panel and case top should be cut and drilled and the display mounted using the bezel and associated hardware. Ribbon cable is used to make the necessary connections, and to make this easier for the display, the two rows of p.c.b. pads closest to IC6 go to the bottom set of display pins, whilst the two rows further away from the i.c. go to the top set. Fig. 7 should make the interwiring more clear.

Two diodes are again used to drive the colon, as with the 4 digit l.c.d. up counter, being connected to 3 b and 3 c as shown below but as was stated in the hand held counter ar-

Fig. 3. Switch p.c.b. design

Fig. 4. Component layout for the main p.c.b.

Fig. 5. Component layout for the switchboard

Fig. 6. Display p.c.b.

Fig. 7. Display wiring

ticle, it is better to connect the backplane to the input of one of the spare inverters (pin 3, 4049) and connect the output (2) to the colon (28). Connect up the switches and after a final check switch on and adjust the trimmer capacitor if necessary.

CONCLUSION

As mentioned in the introductory article, the ease with which the counter can be set up, by counting the switch clicks, makes it especially useful for people with poor or no sight. The display can simply be omitted, and a useful piece of equipment still remains.

FREE! READERS' ADVERTISEMENTSERVICE

PE

WEMON for UK 101 £8: Wanted January and March 1981 articles on OS65D published in Compute! Chris (0252) 546739 Farnborough, Hampshire.
FLOPPY disc controller 32 K DRAM Romdos Link 6 and Vortex for UK 101 only $£ 150$ possibly will deliver. Mr. M. Andrews, 'Conifers', Lyne Lane, Chertsey, Surrey. Tel: Ottershaw 3327. BUSH A823 EMI Pye Philips G6 chassis and spares cheap to clear + working panels. Mr. A. Bouskill, 129 Lyminster Road, Sheffield S61HY. Tel: 0742/311 191 after 4p.m.
DATA-DYNAMICS 390 workshop manual wanted. Help-how can it be changed to RS232 from 90-0-90V? M. Foreman, 5 Manor Place, Frenchay, Bristol BS 16 1PS. Tel: 566479.
NAD 6040 cassette deck-with sendust head and Dolby HX. 20 months old $£ 60$. Tel: So'ton 332586 evenings. R. Dudley, 64 Hartington Road, Newtown, Southampton SO2 OEU.

SCOPEX 4 D 2525 MHz 'scope, exc. condition £250. Sugden SI453 audio Gen. £40. AVO d.m.m. DA116 £60. J. P. Evans, 90 Cedar Ave., Kidsgrove, Stoke-on-Trent ST7 1JZ. Tel: 0782 615351 Ext. 29.
TEXAS Instruments 58 Programmable calculator + master library book and programming book + mains adaptor $£ 25$. Mr. Toni Wales, 1 Sandringham Close, Thurlstone, Nr. Penistone, Sheffield S30 6RW.
TEKTRONIX oscilloscopes 545 A/B, 581549 storage, loads plug-ins sampler, four channel, differential, all working, sensible offers. Mel Purcell, 3 Carrick Gardens, Carnbroe Estate, Bellshill ML4 1 NU Scotland. Tel: (0698) 749317.
MICRONTA dynamic transistor tester. Tests transistors in or out of circuit. New with battery. £7.50. Call Chang 0413327695 9p.m. K. Y. Chang, 70 1-up. Ashley Street, Glasgow G3 6HW.

RULES Maximum of 16 words plus address and/or phone no. Private advertisers only (trade or business ads. can be placed in our classified columns). Items related to electronics only. No computer software. PE cannot accept responsibility for the accuracy of ads. or for any transaction arising between readers as a result of a free ad. We reserve the right to refuse advertisements. Each ad must be accompanied by a cut-out valid "date corner". Ads. will not appear (or be returned) if these rules are broken.

Please publish the following small ad. FREE in the next available issue. I am not a dealer in electronics or associated equipment. I have read the rules. I enclose a cut-out valid date corner.

Signature Date
Please read the RULES then write your advertisement hereone word to each box. Add your name, address and/or phone no. COUPON VALID FOR POSTING BEFORE 1 JULY 1983 (One month later for overseas readers.)
SEND TO: PE BAZAAR, PRACTICAL ELECTRONICS, WESTOVER HOUSE, WEST QUAY ROAD, POOLE, DORSET BH 15 1JG.

For readers who don t want to damage the issue send a photostat or a copy of the coupon (filled in of course) with a cut-out valid "date corner

CLEF ELECtROnIC MUSIC virow

ELECTRONIC PIANOS
SPECIALISTS SINCE 1972

$7 \frac{1}{4}$ OCTAVE DOMESTIC MODEL COMPONENT KIT £266 COMPLETE KIT £442 Mandfactured e695

Piano tence. ind in a hide variation o
Bont Sof and Sustann Peedais are in
corporated in the Design and intern
corporated in the Design and interna
Frfects are provided . The form o
Tremolo. Honks. Chorus
Phase/Flanger

SIX OCTAVE
DOMESTIC MODEL COMPONENT KIT £234 COMPLETE KIT P 398 MAN. $\mathbf{f 6 2 0}$

SIX OCTAVE
STAGE MODEL
COMPONENT KIT £234
MANUFACTURED e58O

MICROSYNTH $\begin{gathered}\text { Dasign - Allan Bradford } \\ \text { Published in P.E. }\end{gathered}$
THE COMPACT MUSIC SYNTHESIZER

COMPLETE * $2 \frac{1}{2}$ OCTAVES
KIT £129 * SWITCH ROUTING * 2 OSCILLATORS MANF 2215 * THUMBWHEEL * 2 SUB-OCTAVES
ENSEMBLE
(As Pablished in conjumcrion
\qquad Sunthesizer Kit. for Group or
Home use with a four ociave
compass and splill Keyboard
facility
companent kit
$£ 197.50$

Since 197 in the fiel

in the field of Elecironic Yausical Instruments. many of which have
paramouns imporance. new techniques. With muse been evolves quality of latest musically valid technologt has been incorporated into and the

avane of technical capability Back un TELEPHONE

PRICES INCLUDE VAT, UK CARRIAGE \& INSURANCE (CARRIAGE EXTRA ON MFD PIANOS). Please send S.A.E. for our complete lists, or ase our telephone VISA/ACCESS service.
Compelitive quotations can be given for EXPORT orders - in Compelitive quotations can be given for EXPORT orders - in Plase allow 3-14 days for normal despatc

CLEF PRODUCTS (ELECTRONICS)
LIMITED

"THE computer BAND-BOX"

MANFD. MASTER RHYTHM ALSO AEQUIRED PROGRAMMABLE BACKING BAND FOR THE SOLOIST
 EXTENDABLE TO 9,500 LINES
The BAND-BOX provdes an Electronic Backing Trio consisting of Drums. Bass, and a. Chord Instrument (one of 16
Waveform/Envelope combinations), with the capacity to store over Waveform/Envelope combinations), with the capacity to store over
3.000 User
Hrogrammable Chord Changes on more than 120 different Chords. Using advanced Microprocessor technotogy, Playback of $50-100$ Scores can be executed in any Key and at chosen Tempo Complete Music Pad is electronically Indexed and stored on
secondary battery back-up. Facility exists for composition of Intro. Repcat Chorus and Coda sections including Multiple Score Sequences. Sockets are provided for Volume Pedal and Footswitch plus
separate and mived instrument Outputs. Total size $19^{\prime \prime} \times 11^{\prime \prime} \times$ 4t"

THE Progaramnale DRUM MACHINE

MASHMR HMFGHRONICS NOW! The PRACHICAT way!

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a selfemployed servicing engineer.
All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.

You will do the following:

- Build a modern oscilloscope
- Recognise and handle current electronic components
- Read, draw and understand circuit diagrams
- Carry out 40 experiments on basic electronic circuits used in modern equipment
- Build and use digital electronic circuits and current solid state 'chips' - Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V Hi-Fi and microprocessor/computer

Newdob?NewCareer?NewHobby?Getinto Electronics Now!

Practical Electronics July 1983

ambit
 INTERNATIONAL

THE MOST COMPREHENSIVE RANGE OF COMPONENTS, KITS AND MODULES IN THE WORLD \& THERE'S ONLY ROOM FOR A FRACTION HERE, GET THE CATALOGUE AND FIND THE REST.

V.T.'s views and opinions are entirely his own and not necessarily those of PE

IN Who's Who that brilliant humorist, Frank Muir, lists 'staring blankly into space' as one of his recreations. A few pages further on in the same volume, his equally gifted sidekick, Denis Norden, confesses to a liking for 'loitering'.

What splendid fellows they both are. Can you think of anything more eminently sane than, when matters press and the toils of this troublesome life build up, to shut off the outside world and simply stare and mentally loiter? It's therapy at its best.

One of the fringe benefits of drifting into this beautiful state is that the mind tends to move backwards into calmer times. The other day, emulating these two top-class gurus, I underwent one of these journeys into times past. Mind you, I was ripe for a bit of wandering. I'd just returned from a hefty farewell lunch for a colleague who was going out to Saudi Arabia to work as a consultant in electronic engineering for some gullible sheik. His first project, I understand, was to design a microprocessor-controlled system for ensuring that the ladies of the harem all got their fair share of attention in an orderly way. Some guys have all the luck.

Anyway, as I sat there, restoring mokka in hand, my mind began moving in a backward direction to a couple of hundred years earlier when I was a boy. In those days we lived in a large house, the heart of which was the front parlour. It was an impressive chamber, full of dark and heavy furniture and floored with green linoleum. An ornate Japanese screen stood in the fireplace and cheap reproductions of Stag at Bay and The Light of the World brooded down upon us from the walls. It was in this impressive tomb of a room that we celebrated the usual Christian festivals, knocked back our birthday teas and mourned the passing of Uncle Charlie.

In one corner of the room stood a handsome wind-up gramophone. Its magnificent brass horn was regularly polished with the kind of devotion only a doting wife and mother can administer. Technically it was utterly reliable, except when the motor ran down in the middle of some Caruso aria. This, of course, would transform the great tenor into a bass of the greatest profundity. For us it was a plus-point rather than a defect and we would roll about the floor whenever it happened.

My father, a progressive if ever there was one, later invested in a crystal radio set. He'd spend hours setting it up before it would emit so much as a squawk. We'd sit there round the table, firmly lashed to a jack plug, serving as a kind of umbilical cord, waiting for the entertainment. Then one of us, forgetting our attachment, would cough or jog and the whole business would have to start all over again.

The day our first loudspeaker radio arrived was an occasion ranking in importance with
the Delhi durbars the British monarch used to hold in the days of the Raj. Father bore the thing aloft like a dish of rare spices and the rest of the family processed in his train to the parlour. Our new possession utilised all the advantages of then modern technology, including an accumulator and an eliminator. What they accumulated and eliminated was something of a closed book. All this was gradually made clear as we eventually cottoned on.

As one innovation followed another over the years, so our range of domestic entertainment broadened. After the war, in a fit of d.i.y., my father built the family a TV receiver. It took about six months to produce, put the parlour almost permanently out of bounds and when finished looked like an elephant's coffin. It contained enough components to stock a set-maker's service department and sufficient wiring to stretch from Winchester to Wick. The picture tube had been nicked from a 'scope, measured six inches in diameter and, of course, glowed a mal de mer green.

On opening night, Ally Pally was putting out some ungripping play which involved passages of complete darkness while the hardpressed riggers changed the scenery. The Trent brood, which by now had swelled its numbers (though I never know how the old man found the time with all his other hobbies) grouped themselves enthralled round the narrow viewing aperture. To the casual observer we must have looked like huskies huddling together for warmth until the arctic blizzard abated. We had great fun out of that set until we found the intense heat it generated was warping the furniture. So it had to go.

All these ramblings add up to one inescapable truth: In those days of yore the inventiveness of the entertainment industry never tried to swamp us with advances and refinements to the point where we became bemused. Technology moved forward with dignity and consideration for those whom it sought to serve. We were given time to understand and appreciate each new marvel before the next was sprung upon us. Whether this was by design or not I don't know. It could have been that research and development was a bit gropier than it is today.

Now, of course, we're in a vastly different situation. If you've got money to spend on home entertainment, you've immediately got problems. You're faced with a jungle of systems, units, add-ons, accessories, adjuncts and options. It turns fun into a chore.

Take TV. You can get a monochrome set in a whole range of sizes. The same goes for colour. You can choose a table model or a portable (and some of them palpably aren't). You can opt for a standard model or one able to receive teletext. And if you're a real informaniac you can put yourself in hock by
purchasing a receiver that will bring Prestel into your sitting room as well.

For the complete home, you'll need a VCR-or risk the contempt of the neighbours. And those who haven't a comprehensive selection of video games had better keep their mouths shut.

What can one say about video games? Well, I suppose it's a matter of taste. Do you prefer playing tennis by the fire or on a sun-baked hard court? Do you prefer whacking leather with a stick of willow on the village green to , doing so by pressing a button indoors? Are you content to let invading creatures from outer space walk calmly into your home, or are you British enough to go out and slay them as soon as they land?

Sometimes I pine like a puppy deprived of his mother for the days of the wind-up gramophone and all that it stood for. So much that is regrettable has been perpetrated in the audio field. Today you don't go out and buy some simple mechanism on which to play a disc for pleasure. No, you do one of two things: You swing on the bank manager's ear for a loan to purchase a battery of hi-fi equipment of near professional standard. Or you treat yourself to a music centre-the early 1980s equivalent of plastic ducks streaking across the chimney breast or an illuminated picture of a dusky maiden from Asia.

Take up the first option and you take up anxiety. Instead of leaning back in your armchair, sipping Remy Martin and sopping up a bit of Bach, you're worrying about other things. Surely that tweeter should be tweeting a bit more actively. Is that woofer falling down on the job? Has Dolby taken the night off? And you haven't even paid the first instalment on the bank loan.

Plump for a music centre and you risk becoming like the owner of a many-gadgeted car. Instead of using the thing as the manufacturer intended, you'll find yourself in no time at all hopping from disc to tape, tuning across the scale in all wavebands and generally behaving like a small boy with his first toy sweet shop or bus conductor's outfit.

All in all, the quality and reliability standards of most home entertainment equipment are uniformly high. And as circuitry and component counts are all very much the same, it doesn't matter much which brand you go for, so long as the manufacturer is reputable.

This situation means that competition for your money is of a high order. The manufacturers meet it by hiring wordsmiths to think up deathless names and phrases which imply that their product has something the others wish they had too. This, in turn, creates another decision-taking state of affairs for the consumer.
"Can I," he asks himself, "afford to do without 'Poke-at-It' instant channel selection? Is it fair to my children that they should have to watch Metal Mickey on a set that hasn't a picture that's "Acid Drop Sharp'?"

During the coming months I will be touring the UK, speaking at various public halls (see your local Press for details) as part of my campaign for a nationally-concerted return to the days of the front parlour and the wind-up gramophone.

If you're the kind of readers I think you are, then I'm sure I can count on your unstinted support.

FFOR interfacing a computer to the real world, analogue input and output devices are always required, this being an analogue world we live in. Even a TV or monitor can be considered as an analogue device; the optical information as presented is modulated on carriers and expanded in space. And who said that a computer graphic was worth a thousand words? This month's Ultimum card offers analogue facilities in the more generally accepted sense, with bandwidths up to about $500 \mathrm{~kb} / \mathrm{s}$ lone byte every sixteen microseconds). This is about the limit of capability of the average microcomputer anyway, so there is little point in paying extra for faster devices than the ones used here. The facilities provided by the card are:

1) Four analogue input channels with 10 -bit resolution and 5 millisecond conversion time (8 -bit, 2 ms software controllable option);
2) One analogue input channel with 8 -bit resolution and 15 microseconds conversion time;
3) Four analogue output channels with 12-bit resolution and 2.5 microsecond theoretical minimum time between successive outputs (not achievable by most micros).
Eleven locations of address space are used by the card. The unused ones of the block of sixteen have been positioned to allow efficient integration with other Ultimum system components (e.g. the motherboard and a speech card). The full-scale value of all analogue inputs and outputs is approximately 2.55 volts.

HARDWARE

The only novel part of the address decoding for this card is the final stage. A dual two-to-four line decoder (IC14 in Fig. 9.1) is used to decode the block of sixteen locations selected by ICs 10-13 into four groups of four, and one of those into individual locations. One of the single and one of the groups of four locations are not used by the card and may be assigned to other devices on the same motherboard.

The four slow analogue input chanels are handled by IC1. This device, the UPD7002, was originally designed as a 12bit converter but the manufacturers have not been able to attain this accuracy and have had to modify their catalogue entry on the device (a new 12-bit device is apparently under development). BBC owners take note! The 7002 does all the conversion work internally and the only points of interest on the hardware are the guard ring on the integrating capacitor, and the separate analogue and digital grounds. This means that the signal ground does not carry large currents, thus reducing noise, and is a common feature of many types of interfacing system.

Fast conversion on a single analogue input channel is done by IC2, a ZN427. This uses the successive approximation method of conversion which gives a complete eight-bit result in only nine cycles of its input clock. This effects a considerable time saving over the integration methods of conversion used by ADC's such as the 7002 . The 427 includes a voltage reference which is used by all the converters on the card, thus providing compatibility between the analogue voltages. The data output enable is driven by TR1, which combines RD and a single decoded address location, and the start conversion input is provided from an adjacent single location.

Digital-to-analogue conversion is provided by IC3, an AD7542. This is a 12-bit D-to-A requiring only an op-amp buffer on its output. The conversion time is negligible as the internal operation consists of twelve switches on an R, 2 R ladder. The first op-amp provides an inverted signal, from zero to -Vref; this is again inverted by the second half of IC4. IC5 performs the switching function (controlled by IC7, 8) for four sample-and-hold channels $C 6,7,8,9$, IC6. Note the guard rings run from the outputs of IC6. These ensure very small voltage gradients across the p.c.b. next to the protected lines, thus reducing leakage. IC5 uses CMOS switches, IC6 has f.e.t. inputs, and low-leakage types have been specified for the capacitors. All these details help to extend the hold time of the sample-and-hold circuits to more than one-tenth of a second for one least-significant bit drift. IC7 is simply a data latch defining the sample-and-hold channel. IC8 controls the switch, closing it after the channel has been defined, and opening it when the DAC is next written to.

Finally, IC9 provides clock signals for the two analogue-to-digital converters.

CONSTRUCTION

No problems should be encountered building this card. Try not to spread too much flux around the guarded lines and, if greasy fingers have been around them, swab them with a light non-deposit solvent. Switches S1-S12 should be set up to the corresponding address bit A15-A4 of the required location, noting that a closed switch selects a zero bit. Link options should be chosen and fitted according to Table 9.1. To finish, before powering the board for the first time, check all the component positions, orientations and joints once more.

SOFTWARE

The 7002 has three registers (Table 9.2) which are accessible to the user at consecutive locations starting at $A+4$,

Link 1 Memory mapped/IO mapped
Link 2 Z80/6502
Link 3 Memory mapped/IO mapped
Link 4 Default-permanent. Alternative-mappable
Link 5 Interrupt connection for slow conversion

Table 9.1. Links

		7	6	5	4	3	2	0	
A+4	R/W	EOC	BUSY	*MSB	*2nd MSB	10/8	Not used	CHANNEL	Command/ status
A+5	R	(MSB)		DAT	HIGH				Data
A+6	R	Low	Data	Not gu	anteed		t used		Data

Table 9.2. 7002 registers

			$6 \quad 5 \quad 4$	3.2	0	
A+11	W	Not used			CHANNEL	Channel
$A+12$	W		Not used		Data	Low nibble
A+13	W		Not used		Data	Mid nibble
A +14	W		Not used		Data	High nibble
A+15	W			Not u		Convert

Table 9.3. D/A registers
where A is the card base address. Use consists of writing the required channel number and resolution to the control \& status register, reading it until the end of conversion is signalled, and then reading the result from the two data registers.

The 427 is accessed through two address locations on the card. Conversion is initiated by a read (or write) of location $A+9$. The data is meaningless in either case. The converted value is available on a read of $A+8$ after $15 \mu \mathrm{~s}$. We felt that this was fast enough for an end-of-conversion signal to the processor not to be justifiable. A very short no-op loop in machine code is sufficient. High-level languages will rarely need to be slowed down at all.

The digital-to-analogue subsystem uses five address locations (Table 9.3). Operation consists of three basic steps. First, the data should be loaded (into $A+12,13,14$) in fourbit nibbles. The low half of the data byte is used, the high part ignored. Any order of writing may be used and any nibble may be left unchanged from a previous write. Second, A+15 must be written to for the 7542 to convert the value previously loaded. The data written is ignored. If only one output channel is required, the analogue value is now available on the un-demultiplexed output from the board. The third operation, selecting the channel, consists simply of writing the desired channel number to location $A+11$. Each channel in use requires refreshing at least once every 100 ms to retain full 12 -bit accuracy, though this time may be increased proportionately if a lower accuracy is being used. Writing in all cases may be done at the full speed of the Ultimum bus.

The board as a whole may be most conveniently tested by connecting the outputs of the D-to-A on to the inputs of the A / D converters.

Fig. 9.2. Component layout (actual size)

COMPONENTS . .

Resistors	
R1, R2	47 k (2 off)
R3	4 k 7
R4, R6, R7	390 (3 off)
R5	82 k
R8, R9	$100 \mathrm{k} 2 \%$

IC4	TL072
IC5	4051
IC6	TLO74
IC7	74 LS378
IC8	74 LS76A
IC9, IC10	74 LS 13 (2 off)
IC11-13	74 LS85 (3 off)
IC14	74 LS139
IC15, IC16	$8 \times 4 k 7$ s.i.I. resistor pack (2 off)
TR1	ZTX109

Capacitors	
C1	$22 n$
C2	$1 \mu / 16 \mathrm{~V}$ tant. bead
C3	2 n 2
C4	470 p
C5	22 p
C6-9	1 n metal plate (4 off)
C10	$47 \mu / 16 \mathrm{~V}$ tant.
C11, C12	$10 \mu / 16 \mathrm{~V}$ tant. 2 off)
C13-21	100 n disc cer. (9 off)

Semiconductors

IC1	UPD7002
IC2	ZN427E
IC3	AD7542

Miscellaneous

Printed circuit board
D.i.I. switch pack ($\mathrm{S} 1-8$)

14 pin d.i.l. socket (2 off)
16 pin d.i.i. socket (6 off)
18 pin d.i.l. socket (1 off)
8 pin d.i.I. socket (1 off)
28 pin d.i.l. socket (1 off)

Constructors' Note
 Send S.A.E. to Watford Electronics for price list of all available boards

CONCLUSION

As stated throughout this series of articles, the Ultimum interface system will include a number of intelligent plug-in cards in addition to those cards already published in PE. These latter interfaces require the development of extensive
m / c software, and therefore cannot be completed to meet a monthly publication cycle. From this point on, details of new boards will be announced in PE as and when they are fully designed and debugged.

TRS-80 Model 1 Level II 16K complete with monitor manuals, etc. Tel: 01-595 6675. G. Bowen, 107 Cartwright Road, Dagenham, Essex. ZX Spectrum working £75. L.C.D. Multimeter £29 other gear. Tank t.v. game wanted, s.a.e. no callers. D. Martin, 29 St. Johns Close, Leatherhead, Surrey.
UK101 16×48 Cegmon and handbook guaranteed working ok. Upgrading to $32 \times 48 \mathrm{f} 12$. Phone: Stoke on Trent 550684
MICROTAN 65 + Tanex extension, 4K RAM XBug Assembler/Disassembler, MiniMotherboard uncased no keyboard, fully working + manuals $£ 60$ o.n.o. N. J. Counihan 19 Robertson Road, Grantham, Lincs NG31 8AQ.
SYKES $8^{\prime \prime}$ Drive Commstor II 22 K RAM 4 K RAM 3 Ports EIA R232 S100 Bds. IBM 3740 ASC II Conv. available. Forms entry variable length f200. Tel: 0532 579387. 8 Kent Crescent (M. S. Smith) Pudsey, Nr. Leeds LS28 9EB.
VDU case attractive steel construction fits $14-15^{\prime \prime}$ screen $£ 30$ matching keyboard case £12. Norman Simons, 01-9696150
UK101 for (reluctant) sale. 8K MON 2, invaders etc. Must sell. Only £125. Tel: (024282) 274 (Evenings). Mr. J. P. Hawkes-Reed, Cotehax Farm, Brockhampton, Cheltenham, Glos. GLS 5 TH .
UK101 24 K colour, sound, Ohio S/Disk drive tape. Printer Ports, disk, tapes, software f 350 Steve Gifford, 20 Lime Street, Nelson, Lancs. Tel: 692388.

COMPUKIT 8 K , Wemon. $1 / 2 \mathrm{MHz}, 300 / 600$ Baud, Sound, improved p.s.u., cassette relay, manual and software $£ 120$ o.n.o. Mr. A. Burns, 3 St. Andrews Road, Spalding, Lincs. Tel: Spalding (0775) 3197

WANTED supplier for electronic inverter using 12 V d.c. battery output 220V. a.c. Eng. Maqued G. Helmy, 159 El-Fosha St. Saint Stefano Alex Egypt.
HARVARD 40 Channel hand-held C.B. with rechargeable batteries and charger, E40. Hardly used. Tel: (0343) 820217 (evenings). John Smith, 50 High Street, Fochabers, Moray 9 V32 7DU.
SIEL HB490 organ, £ 150 o.n.o. Buyer collects. Tel: Southampton 694856, after 4p.m. Mr. J. Brier, 19 Grangewood Gardens, Fairoak Eastleigh, Hants SO5 7ER.
COMMODORE PET 4016 with cassette deck, toolkit and MIKRO assembler chips, manuals and cover. Offers. M. Thompson, 25 Impington Lane, Histon, Cambs CB4 4LT. Tel: Histon 3014
AMSTRAD 5050 tuner/amp. Good condition £35, or exchange computer or w.h.y. Mr. C. Shaw, 123 Ironside Road, Hemsworth, Sheffield S14 1 FL. Tel: 657898
APPLE 11 Europlus printer, communications and colour cards. 80 col printer, software. Books f695. A. P. Smith (0602) 211601 (evenings).
MICROTAN. Tanex. BASIC. X-Bug. Tanbug Separate Qwerty keyboard fitted in cabinet. Documentation. £200. Bargain. T.V. f50. Tel: 01-764 0839. M. Goonewardane, $24 \uparrow$ Norbury Crescent, London SW16 4LF.
RESISTANCE bridge set. Section aerial 25 ft Mobile 432 MHz aerial. Various meters etc. Of fers/exchange, will split. J. M. Hill. Tel: (06462) 78497

NON-WORKING $2 \times 80 / 81$ and other computers wanted for cash, new components, also PE back issues wanted. Bimal Jain, 97 Taylors Lane, London NW10 9JH. Tel: 01-459 2553.
UK101 wanted. Bare p.c.b. or unfinished kit or complete non-working unit. Mr. M. Lancaster, Boundary Cottage, West Dean, Salisbury, Wilts SP5 1JL. Tel: Lockerley (0794) 40718.
PE • 71 Gemini stereo amp boards, power supply made up working, transformer included $£ 25$. p\&p £5. L. T. Hill, 14 Rothesay Terrace, Bedlington, Northumberland.
QUAD 22 pre and power amps (valve). One amplifier defective $£ 50$ o.n.o. or swap for ZX81.
C. Wallace, 9 Wilton Grove, Leeds LS6 4ES. Tel: 0532740300 evenings.
COLOUR cartridge TV game with 4 cartridges pair joysticks f 30 . Will swop part-exchange for ZX 81. Alex Lindsay, 16 Dalziel Dr., Glasgow G414PT. Tel: 0414238440 (evenings).
DOUBLE beam scope $15 \mathrm{MHz} 8 \times 10 \mathrm{~cm}$ display 4 kV tube with manuals excellent condition. E 100 , s.a.e. for datasheet. J. S. Hind, 7 Carlyle Road, West Bridgtord, Nottingham.
WANTED AVO meter for spares also output transformer for Impact 60 watt valve amp. R. Kelsall 58 Queen Street, Leek, Staffs. Tel: Leek 0538372198.

WANTED SE3A c.r.t. and Telequipment S32 circuit diagram. J. Glover, 1 Bryony Cottages, Hambledon, Godalming, Surrey GU8 4HJ. Tel: Wormley 4649
SUPERBOARD Series 216 K Cegmon, Basic 4, Basic 5 ROMS. Cassette relay control f60. Afternoon only. Mr. R. Hall, 22 Stilwell House, Barncroft Close, Hillingdon, Uxbridge, Middlesex UB8 3JN

Tiddlers

Doom-watchers have had an enjoyable time during the recession. Never have we had it so bad. Just look at the monthly list of company bankruptcies, and this was true back in 1980. There were some new startups but they failed to stem the tide. Firms going out of business exceeded the newly established by some 2,000. The doomsters still point out the failures but today with far less conviction. And they avoid any good news such as by 1981 there was a surplus of some 15,000 start-ups over closedowns. Last year's final figures are not available as I write but are forecast to be even better.

The vast majority of new starts are inevitably small businesses. They seldom get publicity and therefore great credit must go to the Daily Telegraph and the National Westminster Bank for sponsoring an enterprise award for small businesses. From an entry of 228, a short-list of 20 was finally whittled down to four. And it comes as no surprise that two of the four finalists are in electronics. The other two are in chemicals and in plastic throw-aways for hospitals.

Outright winner of the $£ 10,000$ prize was Noblelight of Cambridge manufacturing krypton lamps mainly for use in lasers. The electronics runner-up was Laser Scientific Services of :Huntingdon in the industrial laser business.

The popular myth that all high-tech businesses need huge capital backing is now exploded. Both Noblelight and Laser Scientific were launched on capital resources of $£ 1,000$. In today's money values this is far less than the $£ 100$ with which Ray Brown (today Sir Raymond) and the late Calder Cunningham started the Racal Group empire some 30 years ago.

At the time of the award Noblelight employed 13 people, Laser Scientific one person less. Tiddlers, both of them, as indeed at one time were Hewlett-Packard, IBM, GEC and all the present big fish in the electronics sea. These new tiddlers are anything but parochial in outlook or ambition. They are busy in the competitive export markets
of the United States, West Germany and Japan. But perhaps the most surprising fact that emerged is that none of the four finalists had used any of the government schemes intended to help small businesses. With good products, bright ideas and plenty of hard work they seemingly had little difficulty in convincing their local bank managers they were worth backing.

Losers

Against the success stories must be balanced the losers, by no means all in the old-fashioned heavy industries. Aero engines are high-tech but this didn't stop Rolls-Royce losing money at over $£ 2$ million a week in the past year. This one nationalised company has had $£ 364$ million in government aid over two years. Then there is the mystery of government-backed De Lorean, set up to make up-market autos. Accountants are still unravelling where all the money went. There are still millions of losses in coal-mining, steel, ship building, railways and airlines, on a weekly, often daily, basis. Even BL cars now with two winners in the stable and expecting soon to break even may yet stumble over labour disputes.

After allowing for difficult trading conditions it is hard to stomach such massive handicaps on the overall economy. Much has been achieved in eliminating waste but much clearly remains to be done.

AB Electronics

$A B$ Electronics has had a history of ups and downs. Well known as a components and sub-assembly manufacturer, largely dependent on consumer electronics, it is no wonder that the company's fortunes have varied over the years. But it was one of the first to get into mass-produced thick films and now, like any electronics company wishing to succeed, has demonstrated its flexibility by taking on the manufacture of Acorn computers and later this year will be producing PRESTEL and TELETEXT adaptors for the Acorn ready for broadcast and phone-line software availability.

It is quite extraordinary that in a period of so-called recession there should be so much spare cash available to buy personal minicomputers as well as video tape recorders. A recent survey (Mintel Publications) suggested that the immediate market in the UK is for at least a further 1.25 million home computers. Longer term the market will be much larger.
$A B$, making the Acorn, has been fortunate in having all the publicity afforded by the BBC courses. Even so, the product still has to be made successfully. Investors in $A B$ have had the satisfaction of seeing the share price rocket from 200p to nearly 700p over a nine-month period on very solid prospects of dramatically increased profits.

One appeal of the home computer is its versatility. Thus, we discover that the Christian Church, ancient in tradition, is not backward in computer use. One of a 200strong Church Computer Users Group is the appropriately named Rev. Peter Goodlad
who has used his to assist in redesign of his church and meeting hall interiors. The good lad has also bumped up his Sunday School attendance with video games based on existing games but with software modified to depict Biblical stories. From the report on this development I understand that the software has been 'doctored' so that good inevitably triumphs over evil. More generally, church computers are used for accounts and parish records. Any reader interested in the computer as a spiritual and moral teaching aid can find the Rev. Peter Goodlad at the United Free Church, Seven Kings, Essex. I add my congratulations on his originality.

First Hundred Thousand

Whatever the merits of competing claims on who 'invented' radar there is no dispute on Britain being first to install an effective defensive radar network against air attack and, once the war was over, in exploiting radar commercially. Among the first to get going was Decca Radar who had considerable success in popularising marine radar.

The first ship to be fitted by Decca 34 years ago in 1949 was the 'Ocean Monarch', a luxury liner on the New York-Bermuda millionaires run. The order came from Furness Withy. I am always suspicious of startling coincidences but this time I give the PR department the benefit of the doubt. Yes, you've guessed correctly. The hundred thousandth marine radar order is for another Furness Withy ship, this time a $38,000 \mathrm{dwt}$ container vessel.

Decca Radar in the meantime has become Racal Marine Radar but the Decca name and reputation live on in the designation of the set as the Racal-Decca 1629C. Over the years the company has collected five Queen's Awards for technological achievement.

Learning Putonghua

It used to be called Mandarin. Now it's called Putonghua, literally in Chinese 'common language' and the official dialect of the People's Republic. At Cable \& Wireless head office in London members of the newly established Far East Business Unit have been giving up their lunch breaks in favour of a crash course in Chinese. All in preparation, of course, for the big telecommunications drive in the Far East.

Such enthusiasm understandably terrifies Post Office Engineering Union employees fearful of both loss of monopoly and eventually privatisation. So on the one hand the POEU is trying to black connection of the Mercury network in the UK (in which C \& W is involved) and on the other stopping maintenance on selected government computer networks so that the work of government will be eventually halted. As in all such cases there is the pious rider that there will be minimum inconvenience to the public or private sector business. If government departments are affected everyone is affected. The POEU should be looking forward, not backwards. They might start by updating their own name.

Technical Training in Radio, Television and Electronics

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the field of electronics-now it can be your turn. Whether you are a newcomer to the field or already working in the industry, ICS can provide you with the specialised training so essential to success.

Personal Tuition and Guaranteed Success
The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed'

CITY AND GUILDS CERTIFICATES

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for
Basic Electronic Engineering (C\&G/ICS)
Radio Amateurs
CERTIFICATE COURSES
TV \& Audio Servicing
TV, Radio and Audio Engineering
Radio \& Amplifier Construction
Electronic Engineering*
Computer Electronics*
Industrial Electronics*
Radio Frequency Electronics*
Electrical Engineering*
Electrical Contracting \& Installation

- Quality for IET Associate Membership

Approved by CACC

POST OR PHONE TODAY FOR FREE BOOKLET

CAMBRIDGE LEARNING

SELF-INSTRUCTION COURSES

NEW
 MICROPROCESSORS \& Microelectronics $£ 6.50$

Now you can learn all about microprocessors their construction, design, and operation - using our programmed learning technique. Suitable for all ages, all levels of interest, this course has been designed for ease of understanding. It assumes no prior knowledge other than arithmetic; and at the end you will know what that piece of "black plastic" in your computer is actually doing.
Contents include: algorithm design, programmable logic, microcomputer architecture, a microprocessor family, semiconductor technology, number systems, arithmetic - integer and floating point, data representation and scaling, programming, microprocessor development system.
GSC SUPERKIT
$£ 19.90$

DIGITAL

COMPUTER DESIGN

Learn the wonders of digital electronics - without the problems of soldering.
This practical beginners kit comes complete with instruction manual, components, and EXP300 breadboard to teach you all the basics of digital electronics. The only extra you need to buy is a $4 \frac{1}{2} V$ battery.

This self-instruction course teaches gating, boolean logic, R-S and J-K flipflops, shift registers, ripple counters, and half-adders.

This up-10-date theory course covers digital computers, both from their individual logic elements and from integrated circuits. You are first shown the way in which simple logic circuits operate and then, through a series of exercises, arrive at a design for a working machine.
Please send for our free booklist for further information on these and our other courses.
GUARANTEE No risk 10 you. If you are riot completely satisfied, your money will be refunded upon return of the ltem in good condition within 28 days of receipt
CAMBRIDGE LEARNING LIMITED, UNIT 28 RIVERMILLSITE, FREEPOST, ST IVES, CAMBS, PE 17 4BR. ENGLAND. TELEPHONE: ST IVES (0480) 67446. VAT No 313026022
All prices include worldwide postage (airmail is extra please ask for prepayment invoicel. Giro A/c No 2789159.

SUPERKIT(S) £ 19.90
DIGITAL COMPUTER DESIGN(S) $£ 8.50$
MICROPROCESSORS \& MICROELECTRONICS @ £6.50

Please charge my
*Access / American Expiress / Barclaycard/ Diners Giub
Expiry Daie..... Credil Gard No
Signalure
Telephone orders from card holders accepled on 068067 u66
Overseas customers (including Eire) should send a bank draft
in slerling drawn on d London bank, or quote credil card
number.
Name.
Address

Cambridge Learning Limited, Unit 28, Rivermill Site, FREEPOST,
St Ives, Huntingdon, Cambs, PE17 4BR, England. (Registered in England No 1328762).

TOROIDHS

The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and, thanks to I.L.P., PRICE.
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty.
*Gold service available.
21 days manufacture for urgent deliveries.
*Orders despatched within 7 days of receipt for single or small quantity orders.
*5 year no quibble guarantee.

The benefits of ILP toroidal transformers
IP toroidal transtormers are only half the weight and herght of their laminated equivalents and are avalable with 110 V . 220 V or 240 V primaries coded as lo lows

IMPORTANT: Regulation - Ah vollages quoted are full LOAD. Please add regulation ligure to secondary vollage to obtain oft load voltage
For 110 V primary insent " 0 in place of " X " in type numbe
For 220 V primary (Europe) insent "1 in place of X in type number
For 240 V primary (UK) insent 2" in place of X in type number
Also available at Electrovalue, Maplin, Technomatic and Barrie Electronics,

For mail order please make your crossed cheques or postal orders payable to ILP Electronics Ltd. Barclaycard/Access welcome. Trade orders standard terms.

Posi to ILP Eleclronics LId. Graham Bell House Roper Close
Canterbury CT2 7EP Kent England
Canterbury C12 7EP Kent England
Telephone (0227)54778 Telex 965780
ILP Electronics LId)

TRANSFORMERS

Appearing every two months, Micro-Bus presents ideas, applications, and programs for the most popular microprocessors; ones that you are unlikely to find in the manufacturers' data. The most original ideas often come from readers working on their own systems; payment will be made for any contribution featured.

THIS month Micro-Bus presents a puzzling miscellany of programs, related only by the fact that their behaviour will be left unexplained until the next Micro-Bus. All the programs were originally written on a BBC Microcomputer (model A or B), but most of them could equally well be run on other machines with similar BASICs.

NUMBER TRICK

The first mysterious program, shown in Fig. 1, performs a number trick in which the spectator is asked to select from one of 60 random numbers displayed on the computer screen. The computer then displays selections of these numbers and asks in each case whether the chosen number is present. Finally, the computer discovers the spectator's number!

After first displaying the selection of 60 numbers, the computer waits for the spectator to type a key. Then, for each subsequent selection of numbers the spectator should either type " Y " or " N " to indicate whether the chosen number is present.

The problem in this case is to explain how the trick works; having solved this you may also like to consider whether the trick can ever fail, and if so, why?

```
10 DIM A(60)
    15 CLS
    20 PRINT"THINK OF A NUMBER:"
    30 FOR N=1 TO 60: A (N)=RND(1000)
    32 PRINT A(N);
    33 NEXT
    35 PRINT 1'"READY?": A=GET
    T=0
    50 FOR M=1 TO 6: CLS: T=T*2
    60 FOR N=1 TO }6
70 IF (N DIV 2^(6-M)) MOD 2 THEN PRINT A(N);
    8 0 ~ N E X T ~ N ~ N
90 PRINT''"IS IT SHOWN HERE?"
100 A $=GETS
110 IF AS="Y" OR AS="Y" THEN T=T+
130 NEXT M
140 PRINT "I THINK IT'S m;A(T)
```

Fig. 1. Number Trick program in which the computer guesses a spectator's number

MYSTERIOUS SEQUENCE

The puzzling program shown in Fig. 2 sets up an array of 100 numbers, initially all FALSE (i.e. with value zero) and then manipulates them. The statement " $\mathrm{A}(\mathrm{J})=$ NOT A(J)" is simply a way of converting TRUE values to FALSE, and vice-versa. Finally, the
program prints out those elements of the array that end up with the value TRUE (i.e. nonzero). The puzzle is to explain why those particular values, and no others, are printed out!

```
10 DIM A(100)
30 FOR N=1 TO 100 sTEP N
30 FOR J=1 TO 100
50 NEXT J: N: NEXT N
6 0 ~ R E M ~ J : ~ N E X T ~ N ~
70 FOR N=1 TO 100
80 IF A(N) THEN PRINT N:
```

Fig. 2. Mysterious Sequence program prints out a puzzling sequence of numbers. Why?

NUMBER TRAILS

The next program, shown in Fig. 3, first asks you to type in a number; it then takes each digit of the number you typed in, squares them, and adds the squares together to give a second number. This is then taken as the new starting number, and the process is repeated. Finally, when a stable result is reached, the result is printed out. For example, starting with 7 we obtain: $7^{\wedge} 2=49,4^{\wedge} 2+9^{\wedge} 2=97$, $9^{\wedge} 2+7^{\wedge} 2=130,1^{\wedge} 2+3^{\wedge} 2+0^{\wedge} 2=10$, and $1^{\wedge} 2+0^{\wedge} 2=1$.
The sequence then repeats 1 , and so this is the value finally printed out. Similarly, starting with 19 again ends up with 1 .

The question is, do all starting values end with 1? If not, can you predict where a particular number will end, without actually following it?

If you find this problem interesting, you may like to investigate the behaviour when you take the cube of each digit before adding.

```
10 INPUT T
15 REPEAT S=
25 T=0
35 T=0 NOR N=1 TO LEN(AS)
40 J=EVAL(MIDS(A$,N,1))
45 T=T+J^2
50 NEXT N
6 0 \text { UNTIL S=T}
70 PRINT T
```

Fig. 3. Number Trails program starts with a given number, and follows it until a stable result is obtained

DECIMAL TO HEX

The main part of the program shown in Fig. 4 is the function definition FNHEX which takes a decimal number, DEC, and converts it
into hexadecimal (i.e. base 16). The program uses a string DIGITS $\$$ to contain a list of the 16 hexadecimal digits, and it looks up the relevant digit using the mid-string function MID\$

The rest of the program uses FNHEX to print out the hexadecimal equivalents of the decimal numbers which form the series 1,11 , 111,1111, etc. These numbers are constructed using the STRING\$ function, which repeats a string (in this case " 1 ") any specified number of times. The results are shown in Fig. 5.

The puzzle in this case is to explain why, for numbers in this series beyond 111 , their hexadecimal equivalent appears always to end in the digit " 7 ". Is this a coincidence? In answering this question you may also be interested in trying other series, such as 2,22 222,2222 . . etc.
10 DIGITS $\$=0123456789$ ABCDEF
20 PRIN'T" DECIMAL"," HEX"
30 FOR $\mathrm{N}=1$ TO 9
$40 \mathrm{~J}=\operatorname{EVAL}\left(\mathrm{STRING}\left(\mathrm{N}, \mathrm{ml}^{\prime \prime}\right)\right)$
50 PRINTJ: ${ }^{n}={ }^{n}$; FNHEX (J)
60 NEXT: END
70 DEF FNHEX(DEC)
80 IF DEC <16 THEN $=M I D S(D I G I T S \$, D E C+1,1)$
$90=$ FNHEX (DEC DIV 16) +FNHEX (DEC MOD 16)
Fig. 4. Decimal to Hex program uses the FNHEX function

>RUN	
DECIMAL HEX	
1	$=1$
11	$=8$
111	$=6 F$
1111	$=457$
11111	$=2 B 67$
111111	$=18207$
1111111	$=109447$
11111111	$=A 98 A C 7$
11111111	$=69 \mathrm{~F} 6 \mathrm{BC} 7$

Fig. 5. Decimal numbers 1, 11, 111 , etc. converted into hex. Why do they tend to end in "'7']?

RECURSIVE FUNCTION

The last program, shown in Fig. 6, prints out the first 10 values of a mystery function FNH which is defined in the last three lines of the program; the values generated by this program are shown in Fig. 7. The function appears to behave in a somewhat erratic way, increasing unsteadily in value. In fact, the function is a very interesting one, and poses some intriguing questions: For example, is $\mathrm{FNH}(\mathrm{N})$ always smalier than N ? And, what does the curve of $\mathrm{FNH}(\mathrm{N})$ look like?

TWICE FUNCTION

As a final challenge to those who like con-

5 FOR $\mathrm{N}=0$ TO 10: PRINT N,FNH(N): NEXT
10 DEF FNH (N)
20 IF N<2 THEN $=1$
$30=F N H(N-F N H(N-1))+F N H(N-F N H(N-2))$
Fig. 6. Recursive Function program explores the function FNH
structing functions in BBC BASIC, write a function FNTWICE which will perform any given function twice in succession. It should have two arguments, the first being the function name, and the second being the argument. Thus:
PRINT FNTWICE("SQR",256)
will print 4 , the fourth-root of 256 , and:

Fig. 7. First ten values of the function FNH

PRINT FNTWICE("LOG",100)
should print 0.3010 .

ANSWERS

For the best brief solutions to these problems we will be giving away a VIEW wordprocessing ROM for the BBC microcomputer, and some subscriptions to Practical Electronics. Solutions should be sent to the Editor of PE at the Poole office, to arrive before June 24.

The solutions to all of these problems, with explanations, will be published in the September Micro-Bus, and the names of the readers who contributed the best solutions will be published in the November issue.

WANTED ZX81 assm/kit + accessories in exchange of new components FND-500, MM5314, 1 N4002-7, TL and linear I.C. etc. Dr. R. Avinery, P.O. Box 404, Hedera 38103 , Israel. UK101 $32 \times 48 \quad 16 \mathrm{~K}$ VDU green screen manuals software f260. Tel: Reading 584206. Office, 22410 Home after 6 p.m. P. R. Border, 73 Hawkesbury Drive, Calcot, Reading RG3 52R.
DATONG Morse Tutor, as new, £40, wanted, ZX80 or ZX81. Tel: Gainsboro (0427) 5848. D. Trebble, 2 Pendeen Close, Gainsboro, Lincs DN21 IYE.
ACORN Atom $12 \mathrm{~K} / 16 \mathrm{~K}$ including utility EPROM also software including invaders, lunar lander, breakout and others E 175 . M. S. PriceTel: 0923775966.
MAINS transformers 12V-5A $£ 5.50$ 30V-1A £4.50. Transistors, capacitors, resistors, 500 items E7. Free post s.a.e. please. Dave, 29 St Johns Close, Leatherhead, Surrey.
WANTED P.E. Microtune as featured in P.E. December 1980--January 1981. Pete Forrester, 201 Broadoak Road, Ashton-u-Lyne, Lancashire OL6 8RR. Tel: 0613303736.
G.S.C. frequency counter MAXI-100. GSC 2001 function generator. Both as new, virtually unused. Both $\mathrm{f} 120+$ new. $£ 80$ each. Tel: 05402 677.

WANTED 4" 'scope c.r.t. type 95474-D 10-260 GH. Tel: 0622 41455. Mr. B. Wilkins, 16 Chestnut Drive, Coxheath, Maidstone, Kent.
ZX80, p.s.u., manual, space invaders, pools program, two books. E 40 o.n.o. Tel: Cross 642 after $7 \mathrm{p} . \mathrm{m}$. S. Wilson, 10 Green Road, Ardmore, Co. Derry, N. Ireland BT47 3RG.
UK101: $32 \times 48,12 \mathrm{~K}$ Basic 16 K RAM Motherboard, EPROMS + programmer, sound $1 / 2 \mathrm{MHz}$ $3 / 600 \mathrm{~B}+$ software. £220 o.n.o. Tel: 01868 9524. N. Brooks, 103 Drake Road, Harrow, Middlesex HA2 9DZ.
MASSIVE Toshiba calculator, model B.C. 1621 (museum piece) complete with manuals c/diagram. Offers or exchange w.h.y. W. H. Davis, Gate House, Little Barford, St Neots, Cambs. PW19 4YB. Tel: (0480) 72480.
TRANSCENDENT 2000 Monophonic Synthesiser. Built to specifications, good condition £140 o.n.o. Barry Birchall, 3 Oldway Walk, Newton Heath, Manchester.
WANTED valve 1.6 MHz i.f. transformers also coils, old type Raymart six and four pin. Mr. G. Fowle, 12 Lytham Road, Broadstone, Dorset BH188JS.
WANTED Acornsoft Forth and Lisp for Atom. Will pay. K. Y. Chang, 70, 1-up Ashley Street, Glasgow G3 6HW.
MINISONIC and transcendant synthesisers perfect working, very cheap, digital frequency meters (professional). Only $£ 15$ each. Hugh Bridge, 363 Kennington Lane, Vauxhall, London SE11 5OY.

QUAD One 22 control two II amplifiers f.m. tuner £ 75 o.n.o. Evenings, Tel: Ipswich (0473) 327011. J. R. Clarke, 11 Reade Road, Holbrook, Ipswich, Suffolk.
No. 7 AVO needs repair offers. Sony TC377 open reel (Real) stereo recorder S.O.S. Echo 3speed $£ 65$. w.h.y. Mel Saunders, 7 Drumcliff Road, Thurnby Lodge, Leicester LE5 2LH. ACORN Atom 12 K RAM 16 K ROM. Two extra books. Lots of professionally written software only £250. Gary Read-Upminster 24589.
ATARI Console with a free game plus starmaster by Activision for $£ 100$ used once. Tel: 01 800 2570. B. Kontash, 43 Lincoln Court, Bethune Road, Stamford Hill, London N 16 5EB.
SUPERBOARD 8 K , Sound, Cegmon, 2 MHz , $300 / 600$ Baud. Professional case. Free Creed Teletype. $£ 90$. Tel: Wakefield (0924) 363043. M. S. Gilling, 62 Brandy Carr Road, Kirkhamgate, Wakefield.
IC'S modules cases components. All must be sold, send s.a.e. for list. Offers considered. Mr. G. A. Noble, 50 Crofthill Road, Slough, Berks SL2 1 HF .
MAGNETIC core memory 16 Bit 64 K . Plus ass. circuit boards. Exchange for test equip. or offers. Hugh Muir, 9 Cannich Place, Newmains, Lanarkshire ML2 9LE.
ZX81 + 16K RAM + keyboard p.s.u. leads manual 4 months old as new $£ 70$ o.n.o. W. Sardjono, 90 Lawmill Gardens, St Andrews, Fife KY16 8QZ.
MINISONIC Mkll synth with carrying case, includes extra circuits, working, needs attention. Tel: Farn. 54587 (evenings). Rod Clarke, 262 Crofton Road, Orpington, Kent BR6 8JF.
WANTED A UK 101 p.c.b. transformer and full set of keys (must be cheap). David Rose, 104 Longfellow Road, The Straits, Dudley, West Midlands DY3 3EH. Tel: Sedgley 74804.
INFORMATION required Hartley oscilloscope CT436 with tube connections for ETEL 3AZP31. Mr. N. Wilkinson, 11 Highland Drive, Worlingham, Beccies, Suffolk NR34 7AP. Tel: Beccles 715480.
TANDY 2 -station intercom f.m. as new f 18 . Seon Smyth, "De Porres", 67 East Princes Street, Helensburgh G84 7DG, Scotland. Tel: 043671181.

REEL 3-head 4-track deck plus all components for Stuart stereo pre-amp (cased partially built) $£ 40$. A. Stauber, 13 Southwood Gardens, Esher, Surrey KT10 0DF. Tel: 013986022.
STEREO cassette deck. Sharpes RT480H. Dolby Nr, Auto Programme finder, CRO2 Bias, Crystal Ferrite heads. Bargain £50. K. Wolsey, "Puffins", Seaview Lane, Seaview, I.O.W.
FERROGRAPH ATU + RTS-Z tape machine alignment and test centre boxed as new, cost £750 accept £495 o.n.o. Tel: 016435608 , eve., w/ends. J. G. Cooper, 4 Cranford Ct., Cressingham Grove, Sutton, Surrey.
LEAK stereo 30 amplifier pioneer TX500A AM/FM stereo tuner exc. condition with circuits £35, carriage extra. David Clark, 2 Eriskay Ave., Hamilton, Strathclyde, Scotland ML3 8QB. Tel: Hamilton 421757.

WANTED ZX Spectrum in good condition. Rota Lucid, Via U. Levi 5, 42100 Reggid Emilia, Italy. SL437D, IF amplifier and detector IC, wanted. R. Bardelang, 133 Foxcroft Drive, Brighouse, West Yorks.
WANTED circuit diagram of ZX81 will pay copying of diagram or loan fees. Mr. Faulks, 218 Watford Road, Croxley Green, Rickmansworth, Hertfordshire WD3 3DD. Tel: Watford 30584.
AVO valve characteristic meter for sale or exchange offers-wanted 24 V p.s.u.-alarm items or w.h.y. K. Burkey, 74 Victoria Avenue, Grays, Essex. Tel: 03754410.
TELEVISION large screen colour project, panels built, cheap. Offers full information. George Heslop-Tel: 0228 38772, 37 Eden Park Crescent, Carlisle, Cumbria CA 1 2UG.
LEAK Varislope stereo valve preamp and Leak stereo 20 valve amplifier for sale. Offers to: P. Freeman, Stanhope, Fernleigh Road, Wadebridge, Cornwall. Tel: 0808812712.
WHARFEDALE "Kingsdale" speakers 3-way system 50 watts. Offers around $£ 110$. Tel: Bradford 617160 evenings/weekend. D. Priestley, 32, Leyton Drive, Idle, Bradford, West Yorkshire BD10 8RQ.
MENTA the assembly language computer, $\mathbf{Z 8 0}$ based. Hardly used. $£ 80$ o.n.o. Brand new. Tel: 021707 4875. Sana Khan, 83 Richmond Road, Olton, West Midlands or 160 Garratt Lane, London SW18.
HAMEG HM3 12 scope, one year old, hardly used. £253 new. My price $£ 170$ inc. delivery. Mr. C. Bowden, 7 Parc Eglos, Helston, Cornwall TR13 8UP.
PET2001 8 K small keyboard, cassette, monitor, books, software. Excellent condition. £275 o.n.o. N. Hall. 132 Springfield Avenue, Elloughton, Brough, N. Humberside. Tel: 0482667957.
WANTED circuits and/or manual for Tech. model T03 oscilloscope. Will pay for copying or originals. D. G. Trechsler, 6 Whiteways, Eastwood, Essex SS9 5SS. Tel: 0702526176.
WANTED SE3A scope tube. Tel; Wormley 4649. J. Glover, 1 Bryony Cottages, Hambledon, Godalming, Surrey GU8 4HJ.
MICROPROCESSOR Model 1 A v.g.c. (manual a bit battered). £ 40 (o.n.o.) with mains lead + c.t.c. Jeffrey Davies, The Waverley, 79 Rhosmaen Street, Llandeilo, Dyfed SA19 6HD. Tel: (0558) 822509 after 5 pm .

WANTED ZX81 or printer cheap or swap 32 K dynamic RAM board brand new. Chris S. Warwick, 44 Wellington Road, Birmingham.
TRANSCENDENT 2000 synth. Fully working £200. 16K ZX81, full size keyboard, user port, manual, p.s.u. £100. D. J. Elliston, 52 Penshurst Road, Ipswich IP3 8QX. Tel: 047378758.
UK101, cased, 24 K MonO2, Wemon. Many extras + software, hardly used. $£ 100$ o.n.o. Dr. P. D. Coker, 23 Darwin Close, Orpington, Kent BR6 7EP. Tel: 068958510.
WANTED Practical Electronics back issues from Jan. ' 79 till May ' 81 in good condition required. Offers. Hamid-Reza-Tajzadeh, 4th floor-No. 11 -Street No. 3, Noarmack, Tehran 16479. Iran.

The Big Event for'83

Sponsored by Practical Electronics, Practical Wireless and Everyday Electronics

Alexandra Palace, London - October 27-30, 1983

The first Electronic Hobbies Fair in 1982 immediately established itself as the foremost consumer electronics exhibition - the biggest attendance and the largest umber of exhibitors.
The 1983 Fair will build on the success and the experience of the first year. It will be 1983 's largest and most influential shop window for the whole range of eiectronic equipment and components for the electronics hobby enthusiast - constructional projects, home computers, amateur radio. video games. musical instruments and peripheral equipment - whether tor the beginner, the specialist or the all-round enthusiast

All devices guaranteed Brand New and to full spec. Items ex stock despatched same day. Prices are EXCLUSIVE of VAT. Please add 60p to order to cover P\&P BEFORE calculating VAT Payment by cheque, Postal Order, Bankers Draft or Cash (PLEASE register) with order. Official orders from Govt. Depts and Educational institutes Welcome Irade Accounts opened subject to
satisfactory status - send for details. We are pleased to receive overseas orders (please allow adequate postage - surplus refunded) which, unless accompanied by Bankers Draft in UK Currency may be subject to Bankers Commission and slight delay in despatch. Overseas trade enquiries weicome - send for full details. VAT not applicable to export orders. Price List detailing full range of components available - 30 p refundable with first order. Please send SAE.

COMM QUIP Ltd.

HAMILTON HOUSE, 11 WALKERN ROAD. STEVENAGE, HERTS. SG1 300.

Selling or Buying

A Classified

 Advertisement could solve your problem at very little cost.Ring 01-261 5846

EDUCATIONAL

CAREERS IN MARINE ELECTRONICS. Courses commencing September and January. Further details, The Nautical College. Fleetwood FY7 8IZ. Tel: 0391779123

FULL-TIME
 TRAINING COURSES

15 MONTHS
TEC CERTIFICATE in TELEVISION \& VIDEO SERVICING

15 MONTHS
 TEC CERTIFICATE in COMPUTING TECHNOLOGY
 6 MONTHS
 TEC HIGHER CERT in COMPUTING TECHNOLOGY \& ROBOTICS

- PRINCIPLES OF ELECTRONICS
- TELEVISION (MONO/COLOUR)
- VIDEO CASSETTE RECORDERS \& CCTV
- COMPUTERS \& MICROPROCESSORS
- INDUSTRIAL ROBOTICS

Short courses (from 6 weeks) with previous electronics knowledge.
Next course starts Sept. 19th.
Prospectus from:

LONDON ELECTRONICS

 COLLEGEDept: AA, 20 Penywern Road, London SWE 9SU. Tel: 01-373 8721

SMALL ADS

The prepaid rate for classified advertisements is 34 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 11.20$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Banks Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Practical Electronics, Room 2612, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

COURSES

CONQUER THE CHIP... Master modern electronics the PRACTICAL way by SEEING and DOING in your own home. Write for your free colour brochure now to British National Radio \& Electronics School, Dept. C2, Reading. Berks. RGI IBR

SERVICE SHEETS

BELL'S TELEVISION SERVICES for service sheets on radio, TV, etc. $£ 1.25$ plus SAE. Service Manuals on Colour TV and Video Recorders, prices on request. SAE with enquiries to B.T.S., 190 Kings Road, Harrogate, N. Yorkshire. Tel. (0423) 55885.

RECEIVERS AND COMPONENTS

TURN YOUR SURPLUS capacitors, transistors, etc. into cash. Contact COLES HARDING \& CO. 103 SOUTH BRINK WISBECH. CAMBS. .TEL.: 0945 584188. Immediate settlement.

BOURNEMOUTH/BOSCOMBE. Electronic components specialists for 33 years. Forresters (National Radio Supplies). Late Holdenhurst Road. Now at 36. Ashley Road. Boscombe. Tel. 302204. Closed Weds.

Ex-Govt. Transceiver type A40 complete station in used condition E17. Telephomists Headse cone unit 240V AC contains $X \& Y$ amps, all solid state, size $14 \times 7^{\prime \prime} \times 5^{\prime \prime}$. tube dia. $5^{\prime \prime}$, most units have tube burn marks f 15 . Aircraft mounted 35 mm Camera contains precision mirror, lens, small 24 V motor etc. $£ 10.24 \mathrm{~V} \mathrm{Ni}$-Cad Battery contains $20 \times 0.4 \mathrm{~A} / \mathrm{H}$ cells (new) E7. CCTV Cameras sold for spares $£ 20$. Reel to Reel VTRs for spares $£ 30$. 24 V Ni-Cad Battery contains 20 D type cells, used condition $\mathbf{f 1 0}$.

All goods are surplus Ex-Ministry.
A.C. ELECTRONICS

Tel: 0532496048 after 6.30 pm

ELECTRONICS COMPONENTS, MERSEYSIDE. Myca Electronics, 2 Victoria Place, Seacombe Ferry, Wallasey, L44 6NR. Mail Order send 50 p . For price list refundable off first order. Tel 051-638-8647.

PE PCBS EA400 £2.16, EA1060 £0.54. EG1000 $£ 2.25$, EG1076 £0.80. EG84 £0.95, EA 398 £0.99, EC90 £1.48, EG1076 £0.80. EG84 £0.95, EA398 £0.99, EC90 £1.48, EA421 £0.48. P\&P inc. C.W.O. 10% Discount $2+$ boards. Bradley Printed Circuits (G. D. Cowan). 9 Harcourt Terrace.
Headington. Oxford. OX 3 7OF.

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.

This will assist advertisers in processing and despatching orders with the minimum of delay.

AERIALS

AERIAL BOOSTERS Trebles incoming signal. Price $£ 7.00$. SAE leaflets. ELECTRONIC MAIL ORDER LTD., Ramsbottom, Lancashire BL0 9AG.

SOFTWARE

CONVERT ZXA1 to Eprom programmer with ZP 4000 unit SAE details, Enterprise Technology Lid., P.O. Box 140, Wigan WN3 6LF, lancs.

BOOKS AND PUBLICATIONS

COMPLETE, PULL-SRE SETS any published service sheets $£ 2+$ large sae except CTVs/Music Centres from $£ 3+$ large sae. Manuals from 1930 to latest. Quotations, free 50p magazine, price lists unique technical publications for large sae. Repair data/circs almost any named TV/VCR $£ 8.50$ by return. TIS [PE], 76 Church St., Larkhall, Lanarks ML9 1HE. Phone (0698-883334).

BUSINESS OPPORTUNITIES

BORED? FRUSTRATED? ANGRY? AMBITIOUS? Then read THE ENTREPRENEUR, probably the world's most exciting monthly publication for self-reliant men and women wishing to create/develop/survive in their own business. Free introductory offer: S.a.e. THE ENTREPRENEUR, Dept. B38A, Alston, Cumbria CA9 3RP.

mISCELLANEOUS

MAKE YOUR OWN PRINTED CIRCUITS Etch Resist Transfers - Starter pack (5 sheets, lines, Etch Resist Transfers - Starter pack (5 sheets, lines,
pads, I.C. pads) $\mathbf{2 . 5 0}$. Large range of single sheets in pads, I.C. pads) $\mathbf{2 . 5 0}$.
stock at 50 p per sheet
stock at 50 p per sheet.
Master Positive Transparencies from P.C. layouts in
magazines by simple photographic process, 2 sheets magazines by simple photographic process. 2 sheets negative paper, 2 sheets positive film (A4) E>25. ing Film (A4) 25 p. Precision Gride (A4) 65p. ing Film (A4) 25p. Precision Grids (A4) $65 p$
22p stamp for lists and information. P\&P $50 p$ per order 22 p stamp for lists and info
plus extra where indicated.

OAK P.K.G. ELECTRONICS
OAK LODGE, TANSLEY, DERBYSHIRE.

ELECTRONIC ORGAN KEYBOARDS and other parts being cleared out as special offer. Elvins Electronic Musical Instruments. 40A Daiston Lane. London E8. Tel: 01-986 8455.

THE SCIENTIFIC WIRE COMPANY PO Box 30, London, E.4. 01-531 1568. ENAMELLED COPPER WIRE				
SWG	11 b	8 Oz	40z	202
8 to 34	3.30	1.90	1.00	0.80
35 to 39	3.52	2.10	1.15	0.85
40 to 43	4.87	2.65	2.05	1.46
44 to 47	8.37	5.32	3.19	2.50
48 to 49	15.96	9.58	6.38	3.69
14 to 30 SLLV	SLVER PLA	COP	WIRE	
14 to 30	7.09	4.20	2.43	1.72
TINNED COPPER WIRE				
14 to 30	3.97	2.41	1.39	0.94
Fluxcor Solder	Ider 5.75	3.16	1.73	0.96
Prices include P\&P, VAT. Orders under $£ 2$ add 20p. SAE for list of copper and resistance Wire. Dealer enquiries welcome.				

BURGLAR ALARM EQUIPMENT. Ring Bradford (0274) 308920 for our catalogue or call at our large showrooms opposite Odsal Stadium.

CLEARING LABORATORY: scopes, generators, P.S.U's, hridges, analysers, meters, recorders. etc. 0403-76236.

IONRER. Feel alert. invigorated and healthier with the amazing ZEPHION negative ion generator. Kit: £21.50p. Built: $£ 29.80 \mathrm{p}$ or S.a.e. brings leaflets. Dataplus Developments. 81 Cholmeley Road, Reading. Berks. RG1 3L.Y. Tel. 0734 67027.

centuran ALABMS

We manufacture, you save $£ £ £^{f}$'s Send s.a.e. or phone for our Free list of professional D.I.Y. Burglar Alarm Equipment and accessories.
Discount up to 20% off list prices. e.g. Control Equipment from $£ 15.98$, Decoy Bell Boxes from $£ 5.95$ inc.

Access \& Visa
Orders Welcomed
VISA

MAIL ORDER ADVERTISING

British Code of Advertising Practice

Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requires adverisers to fulfil orders within 28 days, unless a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please retain proof of postage/despatch, as this may be needed.
Mail Order Protection Scheme
If you order goods from Mail Order advertisements in this magazine and pay by post in advance of delivery, Practical Electronics will consider you for compensation if the Advertiser should become insolvent or bankrupt, provided
(1) You have not received the goods nor had your money returned, and
(2) You write to the Publisher of Practical Electronics summarising the situation not earlier than 28 days from the day you sent your order and not later than two months from that day
Please do not wait until the lasi moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.
We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiser has been declared bankrupt or insolvent.
This guarantee covers only advanced payment sent in direct response to an advertisement in this magazine not, for example, payments made in response to catalogues etc., received as a result of answering such advertisements. Classified advertisements are excluded.

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Practical Electronics for.............................. insertions. I enclose Cheque/P.O. for $£$
(Cheques and Postal Orders should be crossed Lloyds Bank PLC, and made payable to Practical Electronics)

Send to: Classified Advertisement Department
PRACTICAL ELECTRONICS
Classified Advertisement Dept., Room 2612,
King's Reach Tower, Stamford Street,
London SE1 9LS. Telephone 01-2615846
Rate:
34p per word, minimum 12 words. Box No. 80p extra.

SUPER KITS!

SETS INCL PCBS, ELECTRONIC PARTS, INSTRUCTIONS. MOST ALSO INCL. KNOBS, SKTS, WIRE, SOLDER, BOX. BATTERIES NOT INCL. BUT MOST WILL RUN FROM 9 V TO 15 V DC SUPPLIES. ALSO SEE BELOW

AUTOWAH: Guitar-triggered wah-wah
BASS BOOST: Increases volume of lower octaves
CALL SIGN: Programmable 8 -note musical call sign
CHORUS GENERATOR: Makes a solo voice or instrument sound
like more

COMPARATOR: LED level indicator for 2 channels
COMPRESSOR: Limits \& levels maximum signal strength
FREQUENCY DOUBLER: Raises guitar frequency by 1 octave
FREQUENCY-GENERATOR: Multiple waveform test ose, variable .5 Hz to 470 KHz
FUNKY-WOBULO: Novelty voice modulator for funny effects
FLANGER: Fascinating delayed-feed-back effects plus phasing FUZZ: Smooth distortion whilst keeping natural attack \& decay GUITAR EFFECTS: Multiple variation of level \& filter modulation GUITAR OVERORIVE: Fuzz plus variable filter quality
GUITAR SUSTAIN: Extends effective note duration
HARMONOLA: 3-Octave organ with variable voicing attack.
sustain vibrato
4-Octave version
HUM CUT: Tunable filter for reducing low frequency noise JABBERVOX: Voice disguiser with clever use of reverb \& tremolo MAO-ROJ Vanable sirens, incl. police, galaxy machine-guns etc METRONOME: With audible \& visual beat \& down-beat marking MICROPHONE PRE-AMP: with switchable bass \& treble response MINISONIC (PE) MK2: 3-octave very versatile music synthesiser MIXERS: Several - details in catalogue (see below)
NOISE LIMITER: reduces tape \& system hiss
PHASER: with automatic \& manual rate \& depth controls POWER SUPPLIES (300 mA): 9 v
or preset 12 to 15 v
REVERB: Analogue unit with variable delay $\&$ depth controls RHYTHM GENERATOR: 15 switchable rhythms controiling 10
instruments
RING MODULATOR: for intermodulating 2 separate sine frequencies ROBO BOX: Versatile Robot type voice modifer
ROGER 2-GONG: 2 gongs sounded at end of transmision
ROGER BLEEP: Single bleep sounded at end of transmission
SCRAMBLER: Codes \& decodes transmissions authorised channels
SEQUENCERS: 128 -note keyboard controlled theyboard incl.)
16-rote (up to 64-bit pattern) panel controlled
SPEECH PROCESSOR: for clearer transmission $\&$ better level control STDRM EFFECTS: Automatic \& manual wind, rain \& surf generator SYNTHESISER INTERFACE: allows instrument to trigger synth function TREMOLO: Deep tremolo with depth 8 rate controls TREBLE BOOST: Increases volume of upper octaves
TONE CONTROL: bass \& treble cut, gain \& range (6 controls) VIBRATO: variable rate \& depth plus additional phasing vOCODA-BOX: Modular Vocoder
VODALEK. Robot type voice modulator with depth \& rate controls VOICE FILTER: Tunable for selected freq bandwidth 8 gain VOICE-OP-FADER: for reduction of music level during talk-over VOICE-OP-SWITCH: with variable sensitvity \& delay, 1A 2 PCO relay WAH-WAH: with auto-trigger, manual $\&$ oscillator control
WHEEBY-JEEBY: 2 intercoupled osciliators produce variable sirens WIND \& RAIN: manual control of these two effects WOBBLE-WAH: Oscillator controlled wah-wah for fascinating effects

SET 58 SET 138-B SET 121-LS

SET162 SET $129 . \mathrm{LS}$ SET 133.LS SET 98

SET 128
SET 149
SET 153
SET 91
SET 42
SET 56
SET 75
SET 124-T \quad f162.15
SET 124F $\quad \mathbf{f 1 8 4 . 7 1}$
SET 141
SET 150
SET 146
SET 143
SET 144
SET 38

SET 145
SET 164 SET 130-N SET $130-T$ SET 122-LS

SET 103F SET 87 SET 165 SET $126-\mathrm{LS}$ SET 127-LS SET 117-LS SET 76 SET 86 SET 110-LS SET 154 ET 81
SET 136 SET 138-T SET 139 SET 137 SET 152 SET-155-LS SET 142 SET 30 SET 123-LS SET 140 SET 151 SET 28 SET 161

KIMBER ALLEN KEYBOARDS (surely the best?): 3 -Oct $£ 32.43,4$-0ct $£ 40.68,5$-0ct $£ 48.52$ KEYBOARD CONTACTS GJ (SPCO): KEYBDARD CONTACTS GB (DPST): 3-0ct £20.29, 4-0ct $£ 26.50$, 5-0ct $£ 32.71$ 3-0ct £23.27. 4-0ct $£ 30.45,5-0 \mathrm{ct} £ 37.62$

PHONOSONICS

PHONOSONICS MAIL ORDER, DEPT PE3/7, 22 HIGH STREET. SIDCUP, KENT DA14 6EH. 013026184

Please use full address. Payment CWO, CHO, PO, ACCESS, BARCLAY, or pre-arranged collection Prices incl UK P\&P \& 15\% VAT. E\&DE. Despatch usually 7 days on most items. Details of parts in above kits are stated in our comprehenstve catalogue. Send SA.E. (9×4 or bigger) for Catalogue in you live overseas please send $\mathbf{£ 1 . 0 0}$ or equiv). MORE KITS ARE IN CATALOGUE

UK prices are shown first. The bracketed prices are European export prices which in prices are European export prices which in clude insureu ar-mail postage Norway. Sweden Fines of Europe incuding Norway. Sweden custor Deride Europe an exta $f 5$ posage per irem is charged Oric I 48 K computer G147 (C158).

At last our new luxury versions of the 48 K Sinclair Spectrum are here with full sized cypewriter keyboards enclosed in a tough larger plastic case which also houses the power supply and the computer pcb. Full-travel, goid plated switen concacs wha a lie of oper anly a tiny bit more than the standard model. only a tiny but more than the standard mode.

Spectrum ZXK 6161 (6181). Spectrum ZXKS (As above bur also fitted with a space bar and (189) Standard $7 \times$ Spectrum $16 K$ \& 108.70 (1129) Standard 7X Spectrum 48K $\leqslant 152$ (172) 32 K memory upgrade for 16 K sper trum (Issue 2 only) (44 (C45). Fuller master unit for the Spectrum including speech synthe sizer sound synthesizer. amplifier and joystick ports 647.78 ($\mathbf{C 5 6}$). ZX microdrive n / a (n a). ZX RS232 $\mathrm{n} / \mathrm{a}(\mathrm{n} / \mathrm{a})$. ZX printer $\mathbf{6 5 2 . 1 3}$ (661). 5 printer rolk 610.43 ($\mathbb{1} 16$). ZX81 E43.43 (452). ZX81 ram packs $16 \mathrm{~K} \mathbf{6} \mathbf{2 6 . 0 4}$ (128) 64 K (49 (651). Keyboards for ZX8 and ZX Spectrum: without spacebar $\mathbf{6 2}$ (633), with space bar $\mathbf{6 3 6}$ (C41).

COMMODORE COMPUTERS Commodore 64 6299. Vic 20 6130. Kit to recorder with the Vic 20 and the Commodore 64 E6. Commodore cassette recorder for these computers 636,50 . Super expander hugh resolution cartridge $\mathbf{6 2 7 . 9 5}$. We stock most accessories.

GENIE COMPUTERS
New Colour Genie 6179. Accessories for Genie I and Genie 2: EG3014 32K K189. Disc drives: single 6199, dual 6369. Printer inter face 636

PRINTERS

The Epson $\mathrm{M} \times 80 \mathrm{FT} 3$ has been replaced by th He Epsict CP80 6299 Epson FX8O 6387 Epson MXIOO/3 4425 Oki Microline 80 6207. Oki Microline 82 A 6360 . Oki Micro line 83A 6503 . Okı Microline 84 ©730. Ok Microtine 92 G470. Okı Microline 93 C640 Microme 92 100 A 6199 . Low cost dasy wheel printers: Smith-Corora TP। C418, Brocher HRI ©520. The Bytewriter, the latest miracle a combined dasy wheel printer and electric a combined daisy wheel printer and electrk
typewriter for only $\mathrm{C4} 18$. We can supply interfaces to run any of the above printers from Sharp Computers.

SWANLEY ELECTRONICS
Dept PE, 32 Goldsel Rd.
Swanley, Kent BR8 8EZ
Please allow 7 doys for delivery

Postoge (1 on Sinclair prochicts (UK) 6.50 on ather computers $t 4.50$ on printers and 500 an other arders please odd VAT to UK orders. Official credit and overseas orders welcame.

Phone for details of cased and open frame monitors.

RADIO COMPONENT SPECIALSTS

Dept 3, 337, WHITEHORSE ROAD, CROYDON SUREEY, UK. Tel: 01-684 1665
 Clowed Wed. Same day despatich

SO

 EASY Have fun, save money, building a Kef design with a Wilmslow Audio CS Total kit. No electronic or woodworking knowledge necessary and the end result is a proven top quality designthat you'll be proud of
Each kit contains ail cabinet components, accurately machıned for easy assembly, speaker drive units, crossovers, wadding, grilte fabric. terminals, nuts, bolts, etc
The cabinets can be painted or stained or finished with fon-on veneer or self adhesive woodgrain vynil.
Easy foolproof assembly instructions supplied. Set of constructor leafleis sent free on receipt of large S.A.E

Prices: CS1 (As 101)
$\mathbf{£ 1 1 0}$ pr inc VAT, plus carr./ins. £ 5.50 CS1A (simplified LS3/5A) £103 pr. inc. VAT, plus carr. /ııs. £ 550 CS3 (as 703.2) $\mathbf{f 1 2 9}$ pr inc. VAT, plus carr./ins £ $£ 0.00$ CS5 (as Carton li) £192 pr. inc. VAT. plus carr./ins. $£ 75.00$ CS7 (as Cantata) £250 pr inc. VAT, pluscarr/Ins. £18.00
 M1 $11+10$ $\therefore \sqrt{0}](0)$ The firm tor Speakers
$\stackrel{8}{8}$
0625529599

35/39 Church Street, Wilmslow, Cheshire SK9 1AS E1.50 post free
ghtning service on telephoned credit card orders Catalogue please allow 7 days for delivery.

OUR GREAT NEW ILLUSTRATED CATALOGUE IS PACKED WITH INFORMATION ON SUPERB QUALITY, PROFESSIONAL BURGLAR ALARM EQUIPMENT

RI AT UNBEATABLE PRICES!

SEND SAE OR PHONE NOW FOR YOUR COPY
A.0. ELECTRONICS DEPT. PE
217 WARBECK MOOR
AINTREE LIVERPOOL
THIEFCHECK BURGLAR

MAIN
DISTRIBUTOR

TALK TOTHE WHOLE WORLD

Study now for the

RADIO AMATEUR'S EXAMINATION

We have had 40 years successful experience in training men and women for the

G.P.O. Transmitting licence.

- - $\overline{\text { FREE }} \overline{\text { R.A.E. }}$. brochure without obligation from:- -7

British National Radio \& Electronics School READING, BERKS. RG1 1BR

Name

Address

[^5]

Sole UK Agents for Heathkit

NOW THE world-famous Heathkit range of superb electronic kits is available from Maplin - the newly appointed exclusive UK distributor. Kits range from a simple clock for beginners to a unique Robot (see pic) with which you can learn about robotics.

There is a range of training courses covering electronics and computing topics, many containing constructional projects. For full details, pick up a copy of the latest Maplin magazine or write for a free copy of our Heathkit catalogue. Order As XH62S.

OUR NEW book "Best of E\&MM Projects Vol. 1" brings together 21 fascinating and novel projects from E\&MM's first year.

Projects include Harmony Generator, Guitar Tuner, Hexadrum, Syntom, Auto Swell, Partylite, Car Aerial Booster, MOS-FET Amp and other musical, hi-fi and car projects. ORDER AS XHG1R. PRICE £I.

Maplin's Fantastic Projects

FUIII. DETAII.S in our project books. Price 70p each.

In Book 1 (XA01B) 120 W rms MOSFET Combo-Amplifier Universal Iimer with I 8 program limes and 4 outputs - Temperature Gauge - Six Vero Projects.

In Book 2 (XA02C) Home Security System - Train Controller for 14 trains on one circuit Stopwatch with multiple modes - Miles-per-Gallon Meter

In Book 3 (XA03D) ZX8I Keyboard with electronics - Sterco 25 W MOSFFT Amplifier - Doppler Radar Intruder Detector Remote Control for Train Controller.

In Book 4 (XA04E) Telephone Exchange for 16 extensions Frequency Counter 10 H \% 10

660 MHz - Ultrasonic Intruder Detector - I/O Port for ZX8I - Car Burglar Alarm - Remote Control for 25 W Stereo Amp.

In Book 5 (XA05F) Modem to Furopean standard - 100 W 240 V AC Inverter - Sounds Generator for ZXX1 - Central Heating Controller - Panic Button for Home Security System - Model Train Projects - Timer for External Sounder.

In Book 6 (XA06G) Speech Synthesiser for ZX8I \& VIC $20 \bullet$

25W Stereo MOSFET Amplifier

* Over $26 \mathrm{~W} /$ channel into $8 s 2$ at 1 kHz both channels driven.
*Frequency response 20 Hz to $40 \mathrm{kHz} \pm 1 \mathrm{~dB}$.
* Low distortion, low noise and high reliability power MOSFET output stage.
* Extremely casy to build. Almost everything fits on main pcb, cutting interwiring to just 7
wires (plus toroidal transformer and mains lead terminations). *Complete kit contains everything you reed including predrilled and printed chassis and wooden cabinet.
Full details in Projects Book 3. Price 70 p (XA03D). Complete kit only $\mathfrak{f} 55.20$ incl. VAT and carriage (LW7IN).

Module to Bridge two of our MOSIEET Amps to make a 350 W Amp - ZX8I Sound on your TV \bullet Scratch Filter - Damp Meter Four Simple Projects.

In Book 7 (XA071H) * Modem Interface for $2 \mathrm{X} 81 / \mathrm{VIC} 20 \bullet$ Digital Enlarger Timer/Controller D Xers Audio Processor - Sweep Oscillator - Minilab Power Supply - Electronic Lock - and others
*Projects for Book 7 were in an advanced state at the time of writing. but contents may change prior to publication (due 14th May 198.3).

Computer Shopping Arrives

AS FROM June 1st you can place orders directly with our computer from your personal computer. The computer shopping revolution has arrived! To communicate, you'll need a modem (our RS232 compatible modem kit is LW99H price £39.95) and an interface (our ZX81 interface LK08.J price $£ 24.95$ is available already with many more for most popular micros coming soon).

Just dial us up on 0702552941 and you'll be able to interrogate our stock file then place your order, type in your credit card number and a few minutes after you hang up your order will print out in our warchouse ready for packing. And all without saying a word.

Try out the future way of shopping now! You'll see immediately what stock we've got available and you'll discover how easy it is to ensure your order is exactly right. And you'll see precisely what the current price is for cach item and what total amount will be charged to your credit card. It all helps to make buying easier. So give us a ring now!

MATINEE ORGAN

EASY-TO-BUILD, superb specification. Comparable with organs selling for up to $£ 1000$.

Full construction details in our book (XH55K). Price £2.50. Complete kits available. Electronics (XY91Y) £299.95*. Cabinet (XY93B) f99.50*. Demo cassette (XX43W) £1.99.

Maplin's New 1983 Catalogue

Over 390 pages packed with data and pictures and all completely revised and including over 1000 new items. On sale in all branches of WH SMITH. Price $£ 1.25$.

MAPLIN ELECTRONIC SUP. Pl.IES LIMITED, P.O. Box 3, Rayleigh, Essex SS6 8LR. Telephone: Sales (0702) 552911 General (0702) 554155.

Shops at: 159 King St., Hammersmith, London W6. Tel: 01-748 0926. 284 London Rd., Westeliff-on-Sea, Essex. Tel: (0702) 554000. Lynton Square, Perry Barr, Birmingham. Tel: (021) 3567292.
Shops closed Mondays.
All prices include VAT \& carriage. Please add 50 p handling charge to orders under $£ 5$ total value.

[^0]: c IPC Magazines Limited 1983. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]:

[^2]: Pease note X in odry number denotes mainsvoliage. Please insert ' O ' in place uf X ior 110 V . ' ' in place of X for 220 V (Europe) and ' 2 ' in place of X ior 240 V (U.K.) All units excep: UCI incurporate ou- own torondal transformers.

[^3]: Amode

[^4]: Letters and Queries
 We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in PE. All letters requiring a reply should be accompanied by a stamped, self addressed envelope, or addressed envelope and international reply coupons, and each letter should relate to one published project only.

 Components and p.c.b.s are usually available from advertisers; where we anticipate difficulties a source will be suggested.

[^5]: Australia and New Zealand - Gordon \& Gotch (A/sia) Led.; South Africa - Ceniral News Agency Lid.
 Subscriptions INLAND and OVERSEAS $£ 13.00$ payable to IPC Services. Oakfled Hougency Lid.
 保
 隹
 than the recommended selling price shown on the cover. and that it shalt not be lent. resold or hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade, or Trade at more

