```
PRACTICAL
```


NEMO: Towards Reality

SAVE ON THE PRICE OF YOUR COLOUR PRINTS! with the Practical Electronics Colour Print Service

While prices go up elsewhere, Practical Electronics makes a bargain offer in its Colour Print Service. Now you can have as many films printed as you like, including Giant Superprints, at only 12 pa print. There is no developing charge and just 25p towards postage and packing.

At his new price, the magazine Colour Print Service, already used by hundreds of thousands of readers, is as fast and efficient as ever. Here's all you have to do to enjoy its advantages.

Send any make of colour print film, including disc film, inside the envelope enclosed with this issue. Or fill in the coupon below and send with your colour print film in a strong envelope to:
Practical Electronics Colour Print Service, FREEPOST, READING RG1 1BR. No stamp is required.

SEND NO MONEY

We are so confident in the reliability of our service and the quality of our prints (each one date-stamped with the month and year of developing) that you don't pay until you've seen them. LUXURY COLOUR PRINTS

You will be amazed at the beautiful colours and sheen finish of these prints. They have elegant rounded corners and are borderless to give you maximum picture area. And with the Giant Superprints, you get 30 per cent more picture area than the standard enprints at no extra cost!

UNBEATABLE VALUE
All you pay for the Colour Print Service is 12 p for each good print received plus 25 p towards postage and packing. The most you would pay us for processing and printing a 24 -exposure film for example is $£ 3.13$. Compare that with the price you would pay in the shops.

FREE ALBUM PAGES

With each film we process, you receive an album page voucher. Collect and return three vouchers, and you receive a set of FREE album pages to fit into our specially designed album for any size of print up to 4 in . by 6 in .

HOW YOU BENEIFTT

You benefit in three ways. Firstly, you pay nothing for the actual processing - only for prints and postage and packing. Secondly, you enjoy a personal service with every care taken over each individual order. And thirdly, you pay only for what you get - with no credit vouchers as with many other companies. An invoice comes with your prints, so it is a straight business transaction.

48 HOURS IN-LAB SERVICE

Your films will be processed within 48 hours* of receipt, but please allow for postal delays.

The price of this offer is limited to the U.K.
*C41 Process cassette and cartridge film only.

Offer excludes Black \& White, Iransparency, suh-miniature, C22 \& Agfa CNS film. Superprints can only'be produced from Kodacolour II, CAI cassette, cartridge and dise film not half frame. Prices correct at time of going to press.
PRACTICALELECTRONICS

CONSTRUCTIONAL PROJECTS

PROGRAM CONDITIONER by lan Hickman 20
Obviates problems when copying computer programs ROCKTONE by D. Head BSc(Hons) and P. D'Lemos BSc 26
A versatile frequency generator for setting up sound systems ZEAKER Part 2 by David Buckley 36
Construction and programming
PERCUSSION MICROSYNTH Part 1 by A. R. Bradford 50
A broad voiced drum kit
AUTOMOBILE TEST SET Part 2 by M. Tooley BA and D. Whitfield MA MSc 60
Construction and use
ULTIMUM Part 8 by William Edwards 68Port Card
GENERAL FEATURES
FUSION: TOWARDS REALITY by Mike Abbott 30
Europe's Tokamak experiment
SEMICONDUCTOR CIRCUITS by Tom Gaskell BA(Hons) 44
High quality audio preamplifier (HA 12017)
VERNON TRENT AT LARGE 49
MICROPROMPT 57
Hardware and software ideas for PE computer projects NGENUITY UNLIMITED 65Car intruder alarm-PWM motor controller with centre off
NEWS AND COMMENT
EDITORIAL 15
NEWS AND MARKET PLACE 16
Including Countdown
PATENTS REVIEW 25
Theft detector
SPECIAL OFFER-CASSETTES 34
SPACEWATCH by Frank W. Hyde 42
Extra-terrestrial activities chronicled 43
News and views on the electronics industry
BAZAAR 46,63
Free readers' advertisements
READOUT 56
SPECIAL SUPPLEMENT
MICRO-FILE by R. W. Coles between pages 42 and 43

OUR JULY ISSUE WILL BE ON SALE FRIDAY, JUNE 3rd, 1983
(for details of contents see page 41)

[^0]

GTT 819
 powsi

Mocoule Number	Oubeut Power Wavte cma	$\begin{gathered} \text { Losd } \\ \text { Impendence } \\ \Omega \end{gathered}$			$\begin{aligned} & \text { Sumply } \\ & \text { Vormep } \\ & \text { TVP } \end{aligned}$	Sise －min	WT	$\begin{aligned} & \text { mive } \\ & \text { vac. } \\ & \text { vat } \end{aligned}$
1123	13	4．${ }^{\text {H }}$	1．015\％	＜0．006\％	118	76：68．10	240	¢8．40
い上キ！	30	4.4	0．015\％	＜0．006\％	± 25	76x 68.40	240	［9．55
114106	$30 \cdot 30$	4．4	0．015\％	＜0．006\％	125	$120 \times 18 \times 40$	420	¢18．69
Wr174	60	4	0.017	＜0．006\％	126	$120=78 \times 40$	410	［20．75
Wri／g	60	${ }^{*}$	0．01\％	＜0．006\％	± 35	120＾48×40	410	f20．75
1．7244	120	4	0．01\％	＜0．006\％	± 35	120＝78＝50	520	f25．47
wrats	120	－	0．01\％	＜0．006\％	± 50	120：78＝50	520	t25．47
HY 36A	180	4	0．01\％	＜0．006\％	± 45	120＾78． 100	1030	138．41
H－96\％	180	8	0．01\％	＜0．006\％	260	120 \％78＝ 100	1030	［38．41

Nodut Numbion	Hodule	Functions	Cueromt	$\begin{aligned} & \text { Prise me } \\ & \forall A T \end{aligned}$
＋196	Mina pre amp	MiciMan Cantidge／Tune／Ticel Aux＊Yollassi／T reble	10 ma	¢ 1.60
nefeg	Stereo preamb	Mк／Mao．Cartidge／Tune／Tade／ Aun ，Vol／Bass Trecte／Bal mince	20 mA	¢14．32
Hy＞a	Giulla preamo	Two Guits IBass Leadl and Mic－ separate Volume Bass Treole Mis	20 mA	［15．36
ниソ 78	Stiemo pre amo	As HY66 less tore controls	20 mA	［14．20

Most pre－amp modules can be driven by the PSU driving the main power amp
A separate PSU 30 ts available purely for pre amp modutes 11 requited for
A ebstate PSU 30 In aveilable durely for ore amp modules in required ior
Please wend tor derati
Moumting Board
For esue of construction we recommend the BE for modulen HYE－WYi3 El， 05
finc．VATI and the $\mathbf{B 6 6}$ for modules HY66－HY 78 E 1.29 （ine．VAT）
POWER SUPPLV UWITS（Incopporating our own toroidal（tanstionmens）

$\begin{aligned} & \text { Moden } \\ & \text { Wumben } \end{aligned}$	For Unee Wilt	Price ine． VAT	$\begin{aligned} & \text { Moodel } \\ & \text { Murnith } \end{aligned}$	For Une with	Proce ine． VAT
PSU $\mathrm{IV}^{1 \times}$	1002 MY 30	$[17.93$	PSU52x	2＊HY124	F17．02
PSU41x		¢13．83	PSU 33 x	2 x M0S 128	［17．86
PSU 42x	？n＋MY128	［15．90	PSU 54x	1 \％HY248	¢17．86
PSU 43x	$1 \times \operatorname{mos} 128$	¢16．70	PSU 55x	1 ＝MOS248	［19．5？
PSU 51x	2，HY178，${ }^{\text {a }}$ HY244	117.07	pSU 71x	2．HY244	¢2 1.75

[^1]| Mondurif Number | | LavedΩ | DISTORTION | | $\begin{array}{\|c\|} \hline \text { Supply } \\ \text { Voriege } \\ \text { Tve } \\ \hline \end{array}$ | $\begin{aligned} & \text { sixe } \\ & \mathrm{mm} \end{aligned}$ | $$ | Priee nes． VAT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | T．M．D． Typat 1 KHz | $\begin{gathered} \text { I.M.O. } \\ \begin{array}{c} \mathrm{BOHz} \\ 7 \mathrm{KMz} / \mathrm{A}: 1 \end{array} \end{gathered}$ | | | | |
| MOS 128 | 60 | 4.8 | ＜0．005\％ | ＜0．006\％ | ± 45 | 120＊78＊40 | 420 | ［30 24 |
| mOS 248 | ：20 | 4.8 | ＜0．005\％ | ＜0．006\％ | ＊ 55 | 120： 78.80 | 850 | 139.86 |
| mos 364 | 180 | 4 | ＜0．005\％ | ＜0．006\％ | ± 5 | 120：78： 7 （0） | －025 | 425 |

Protection：Abie to cope with complea losds without the need for verv seecial
Sew eale 20v／us．Gise time：3us．S／N fatio：10000
Frequency esponse（－3dB） $15 \mathrm{~Hz}-100 \mathrm{~K} \mathrm{~Hz}$ ．Inpur sensitivity： 500 mV rmi
input impedionce： $100 \mathrm{~K} \Omega \quad$ Damping factor： $100 \mathrm{~Hz}>400$
＇NEW to ILP＇In Cer Entertainments
Mono Pomer Booster Amplifier to inctease the output of your existing car radio
or casserte nlever to a nominal 15 werts mm．
den eay to use．
Robusi construction．
Hounts sny where in
Oulput pomer manamum 22w peak into 4 ת
Frequencr cmoonse（ $-308 \mathrm{~B}) 15 \mathrm{~Hz}$ to 30 KHz ，T．H．D． 0.1% as fow 1 KHz
S／N aftio（DIN AUDIOI 8OdB．Load Impedance 3Ω
Siec $95 \times 48 \times 50 \mathrm{~mm}$ ，Werght 256 gms ．
C1515
Sterco vertion of C15．
$£ 17.19$（inc．VAT）
Sizt $95 \times 40 \approx 80$ ．Weight 410 gms ．

Model Nurmber	For Use Wurth	Price the． VAT
PSU $72 x$	2n HY248	c2254
PSU 73x	$1 \mathrm{mHY364}$	L22．54
PSU $74 \times$	$1 \mathrm{AHY368}$	124.20
PSU $75 \times$	2 M MOS248，1 n MOS 368	¢24．20

WITH ALOT OF MELP raom

PROFIGSIONAL CAN HANDIF...
 Unicase

Over the vears ILP has been aware of the need for a complete packaging system for it's products, it has now developed a unique system which meets all the requirements for ease of assembly, adaptability, ruggedness, modern styling and above all price.
Each Unicase kit contains all the hardware required down to the last nut and bolt to build a complete unit without the need for any special tools.
Because of ILP's modular approach, "open plan" construction is used and final assembly of the unit parts forms a compact aesthetic unit. By this method construction can be achieved in under two hours with little experience of electronic wiring and mechanical assembly.

Hi Fi Separates

UC1 PRE AMP UNIT: Incorporates the HY78 to provide a "no frills", low distortion, ($<0.01 \%$), stereo control unit, providing inputs for magnetic cartridge, tuner, and tape/ monitor facilities. This unit provides the heart of the hifi system and can be used in conjunction with any of the UP Unicase series of power amps. For ultimate hum rejection the UC1 draws its power from the power amp unit.
POWER AMPS: The UP series feature a clean line front panel incorporating on/off switch and concealed indicator. They are designed to compliment the style of the UC1 pre-amp. Performance for each unit which includes the appropriate power supply, is as specified on the facing page.

Power Slaves

Our power slaves, which have numerous uses i.e. instrument, discotheque, sound reinforcement, feature in addition to the hi fi series, front panel input jack, level control, and a carrying handle. Providing the smallest. lowest cost, slave on the market in this format.

-					
HIFI Soparates					Price Inc. VAT
UCI	Preamp				E29.95
LPIX	$30 * 30 W / 4-8 \Omega$	Bipolar	Stereo	Hifi	¢54.95
UP2X	$60 \mathrm{~W} / 4 \Omega$	Brpolar	Mono	Hif,	¢54.95
UP3X	$60 \mathrm{~W} / 8 \Omega$	Bipolar	Monu	Hif,	$¢ 54.95$
UPAX	$120 \mathrm{~W} / 4 \Omega$	Bipolar	Mono	Hif,	£74.95
UP5 X	$120 \mathrm{~W} / 8 \Omega$	Bipolar	Mono	HiF,	¢74.95
UP6X	60W/4-8	MOS	Mono	Mif	¢64.95
UP7X	120W/4-8	MOS	Mono	HiFi	¢84.95
Power Slaves					
USIX	$60 \mathrm{~W} / 4 \Omega$	Brpolar	Power	Slave	¢59.95
US2X	$120 \mathrm{~W} / 4 \Omega$	Bupolar	Power	Slave	¢79.95
US3X	60W/4-8	MOS	Power	Stave	£69.96
USAX	120W/4-8	MOS	Power	Slave	£89.95

Please note X in part mumber denotes mains voltage. Please insert ' O ' in place of

$!$

- Please debit my Access/Barclaycard No.-
- Name

Fill in the ccupon as shown or write detalis on a separate sheet of paper, quoting the name and date of this journal. By sending your order to our address as shown at the bottom of the page opposite, with FREEPOST clearly shown on the envelope, you need not stamp it. We pay postage for you. Cheques and money orders must be crossed and made payable to I,L.P. Electronics Ltd. if sending cash, it musi be by registered post. To pay C.O.D. please add £1 to TOTAL value of order.

PAYMENT MAY BE MADE BY ACCESS OR BARCLAYCARD IF REQUIRED. Allow 28 days for dellvery.
Addres

EHPAK

CATALOGUE

'JIRRESISTABLE RESISTOR BARGAINS Patha Of ${ }^{\circ}$ O Description Mured "All Tyoe" Price Sx11 400 Preformed 4 . H watt Carbo Resistors
4. watt Carbon Resistors
$\begin{array}{lll}\text { SX12 } & 200 & \text { watt Cabon Resisiors } \\ \text { SX13 } & 200 & \text { watt Carbon Resistors }\end{array}$
$\begin{array}{lll}\$ \times 13 & 200 & 5 \text { watt Carbon Resistiors } \\ \$ \times 14 & 150 & 4 \text { watt Resistors } 22 \text { ohm }\end{array}$ 2m? Mixed
Sx15 $\quad 100 \quad 1$ and 2 watt Ressistors 22 ohm 2 m 2 Mixed
Paks Su12-15 contan a range of Carbon Film Resisions
of assorted values from 22 ohms 102.2 meg. Save Dounds on these esesistor paks and have a full range to coner your poopects.
-Puantities appronimate. counl br weighl
5×52
6 Blach Heatsinh will lit T0.3 ano 10.220. Ready orilled. Halt price value.
S153 - Powel inned Hersinh furs heasin gives the greatest possible heatiolssipation in the smaliest space owing to its unique staggered fin design, ore drilled
10. 3 Suze 45 mm squarez 20 mm high. 40 p \$154 $\quad 10.66$ size. $35 \mathrm{~mm} \times 30 \mathrm{mma} 12 \mathrm{~mm}$. 35 p Sx55 I Heal Efliciency 1 : wei Finned Heatsint $90 \mathrm{~mm} a \mathrm{BOmm} x, \mathrm{lamm}$ High. Drllted lo take up to 4 " 103 devices
E1.50 each

CAPABLE CAPACITOR PAK ${ }^{\prime \prime}$ Pall Mo Ot3" Description S116 250 Capacitors Mired Iypes Pick Ceramic Capacitors Miniature Mixed Mired Ceramics lol 56pl Mired Ceramics 68 pl .0 .5 ml Assorted Polyestel/Polystyrene Mired C280 type capacitors metal foil lectrotytics, all sors Quality Electrolytics 50.1000 mi

Tanlalum Beads. muxed
Sx24 20 Tanlalum Beads. muxed

- Ouantifies approximate count by weight.

BARGAINS

$\$ 14220$ small 125 RedLEO's E
5143 Reciangular Green LEO 30 Assorted Zener Diodes $250 \mathrm{mw}-2$ watt maxed voltages all coded New.
S147 Blach Instiument
hnobs-winged with pointer y Standard screw. Fil size 29 a Standard screw. fit suze 29 x
20 mm .
SX49 20 Assorted slider Knobs. Black/Chróme etc
suso $\quad 12$ Heons and Filament Lamps. Low voltage and malins - various types and colours - some panel mounting E1

SEMICONDUCTORS FROM

 AROUND THE WORLDA Collection of Transistors. Diodes. Rectitiers. Bridges. SCR's. 100
Itracs IC's both Logic and Linear plus Opto's all of which are current everyday usable devices

BI.PAK'S OPTO BARGAIN OF THE YEARI

Valued at over $£ 10$-Noumal Retall-we offer you a pach of 25 Opto dences to include LED's Large and Small in Red. Green. Yellow and Clear. 7 Segment Displays both Common Cathode and Common Anod PLUS bubble type displays-like DL-33. Photo Transistors-similar to OCP71 Photo Detectors-lue MEL1-12 This whole pack of 25

$25 £ 4: 00$

BI-PAKS NEW 1983 CATALOGUE IS OUT!
Presented with a Professional Approach and Appeal to ALL who require Quality Electronic Components, Semiconductors and other Accessories ALL at realistic prices.
There are no wasted pages of useless information so often included in Catalogues published nowadays. Just solid facts i.e. price, description and individual features of what we have available. But remember, BI-PAK's policy has always been to sell quality components at competitive prices and THAT WE STILL DO.

We hold vast Stocks "in stock" for fast immediate delivery, all items in our Catalogue are available ex stock.
The Catalogue is designed for use with our 24 hours "ansaphone" service and the Visa/ Access credit cards, which we accept over the telephone.
To receive your NEW 1983 BI-PAK Catalogue, send 75p PLUS 25p p\&p to:-

BHPAK=xicer

 SOUND with SINCLAIRMAKE AMAZING SOUND EFFECTS WITH YOUR ZX 81, TIMEX Sinclair 1000 or SPECTRUM
THE ZON X81

£25.95

 +14-2

- The ZON SOUND UNIT is completely self-contained and especially designed for use with the 2×81, TIMEX Sinclair 1000 and Spectrum Computers. It just plugs in - no dismantling or soldering.
- No power pack. batteries, leads or other extras."
- Manual Volume Control on panel - ample volume from built-in loud-speaker.
- Standard Sinclair - 16 K Rampack or printer can be plugged into ZON X Sound Unit without affecting normal computer operation.
- Huge range of possible sounds for Games, Music, Helicopters, SciFi, Space Invaders, Explosions, Gun-shots, Drums, Planes, Lasers, Organs, Bells, Tunes, Chords, etc., or whatever you devisel
- 8 full octaves. Uses 3-Channel sound chip giving programme control of pitch, volume of tones and noise all with envelope
Easily added to existing games or programmes using a few simple 'BASIC" lines or machine code.
- No memory addresses used - 10 mapped.

FUL instructions with many examples of how to obtain effects and the programmes, supplied. Fully guaranteed. British Made.
"Except with Spectrum. you need the Spectrum Extension Board Order No. SE 1 - PRICE $\mathbf{f 6 . 8 0}$ inc. VAT.
Payment may be made by Cheque, P.O. Girg No. 388 7006. Postal Order or Credit Card.
Export orders:- Bank Cheque, International
Sterling.

Sinclair ZX Spect

The growing range of Spectrum Software

You'll know already that the Spectrum has generated an enormous range of bolt-ons and independent software. Our own range is growing very fast. You'll see some cassettes here The rest are detailed in the Sinclair Software Cataloguefree with every ZX Spectrum.

rum-news!

16K now £99'95 Previously $£ 125$.

48K now f129.95
 Previously $£ 175$.

At last, a 16K colour computer with graphics for under £100! Why have we done it? Partly because the sheer volume of Spectrums sold (over 300,000 so far) has brought down unit production costs.

And partly, of course, because we hope you'll buy a Sinclair computer - and not some competitor's promise! We've all heard rumours that other colour computers will break the £100 barrier. Here's the computer that's done it - in a big way. A colour computer with advanced graphics that's fully supported, and fully available.

Right now, you can order a Sinclair Spectrum at these prices direct from Sinclair on the order form below. And to make it even easier to handle high-level computing at the
lowest possible price, we've cut the cost of the printer, too. At £39.95, it's almost unbelievable!

At prices like these, there's really no reason to wait.

ZX Printernow £39.95
 Previously $f 59.95$

How to order your ZX Spectrum
Access, Barclaycard or Trustcard holders - call 01-200 020024 hours a day, every day. By FREEPOST - use the coupon below. Please allow up to 28 days for delivery. 14 -day money-back option.

Sinclair Research Ltd., Stanhope Road, Camberley, Surrey, GU15 3PS.
Tel: 0276 685311. Reg. no: 1135105.
To:Sinclair Research, FREEPOST, Camberley, Surrey, GU15 38R.

XK113 MW RADIO KIT
MuPITER ACE

MICROCOMPUTER

uses FORTH which executes about 10 times faster and requires less program memory than a comaarable program using basic. Features 8 K ROM. 3K RAM, bu It in speaker. 40 key keyboard and a 32×24 line-flicker free display on TV. Comes supplied complete with leads, mains adaptor, a comprehensive easy-fo-follow manual on Forth programming + FREE casserte containing 5 sample programs. 0 N1v $75.00^{1+02.00 \text { carriage }}$ JUPITER ACE SOFTWARE - J5 DOTMAN $\mathbf{~} 3.90$ J3 SPACE INVADERS $£ 3.90$ J7 ZAP EM (ASTEROIOS) DUCK J4 SWAMP MONSTERS 83.90 SHOOT \& MINEFIELD (き programs) 85.20

COMPONENT PACKS

PACK 1650 Resistors 47 ohm to 10 Mohm - 10 per PACK value £4.00
PACK $240 \times 16 \mathrm{~V}$ Electrolytlc Capacitors $10 \mu \mathrm{~F}$ to PACK 360 Polvester Capacitors 0.01 to $1 \mu \mathrm{~F} / 250 \mathrm{~V}$ PACK 4 per value $\mathrm{E5} .55$
. PACK 5 - 50 per value $\mathbb{E 2 . 9 0}$
PACK 50 Low Profile IC Sockets 8, 14 and 16 - pin
-10 of each $f 240$ PACK 625 Red LEDs (5 mm dia,) E 1.25

\int 3-NOTE

 DOOR CHIME d Based on the SAB0600 IC the kit is suppled with all components, including loudspeaker,printed circuli board, a pre-drilled box $(95 \times 71 \times 35 \mathrm{~mm})$ and full instructions. Requires only a
PP3 9V battery and push-svitch to complete AN IDEAL PRO. JECT FOR EEGINNERS. Order as XK 102
¢5.00

Have you got our FREE ORANGE CATALOGUE yEt?

DVM/ULTRA SENSITIVE THERMOMETER KIT
This now dotign la based on the
ICL7128 (e iower power verion of the ICl 7106 chip) and o $31 / 2$ digit liquid criatal diaplay. This ith will meter lonly a few edditional to-
sistors and ewitchen sre requlred-detsils supplied)

 dication and an uhra low power requirement-oiving

Price $£ 15.50$

Nol Send SAE G" \times O"TODAYI

it's packed with dekeils of all our KiTS plus large range of SEMICONDUCTORS
including CMOS. LS TTL, linear, microprocessors and memories; full range of
LEDS, capacitors, resistors, hardware, relays, switches etc. We a so stock VERO and Antex producis as well as books from Texas Instruments, Baoani and Elektor ALL AT VERY COMPETITIVE PRICES
ORDERING IS EVEN EASIER - JUST RING THE NUMBER YOU CAN'T FORGET FOR PRICES YOU CAN'T RESIST 5-67-8-9-10

Answering
service evngs
and give us your Access or Barclaycard No. or write enclosing
cheque or postal order. Olficial orders accepted from schools, etc. \&iweekends

LCD $31 / 2$ DIGIT MULTIMETEP 18 ranges including DC vortage $(200 \mathrm{mv}-1000$ 4) and AC voltoge. DC current ($200 \mathrm{~mA}-10 \mathrm{~A}$ gain end diode check. inpur impedence 10 M . Size $155 \times 88 \times 31 \mathrm{~mm}$. Requifos $\mathrm{P} \mathrm{P}_{3}$ gV banery. Toat lesds included ONLY EZ0.00

ELECTRONIC LOCK KIT XK101

 This KIT contains a purpose designed lock IC. 10 -way keyboard, PCBs and all Lock open and providing over 5000 different combinations. The open sequence may combinations. The open sequence may wired plug Size: $7 \times 6 \times 3 \mathrm{cms}$ Supoly: $5 v$ io 15 V di 143 Ms . 750 mA max. Hundreds of uses for coors and garaes car anti-the doors and garages. Car anic drive most relays direct Full listruc tions supplied. ONLY $\in 10.50$ Electric lock mechanlsms for use with latch locks and above kin£13.50

DISCO LIGHTING KITS

 means. of pering varibiole by mearporates a master dimm

212100K

A lowar co 4.60

A lowar cost version of the above, featuring variable by means of a pre-zal wot speed swirched only at maina zero crosting pointe to reduce radio interference to a minimum.

Only $£ 8.00$ Optional opto input OLA 60p -light response.

DL. 3000 K

This 3 channei sound to light kit features rero voltage switching, eutomatic leved control a bullt in mic. No connections to speater or amp requined. No knobs to adfust - simpir connect to mains supoly a tampe (1Kw/Channel)

Only E11.95

CLEF ELECTRONIC MUSIC мя:

ELECTRONIC PIANOS SPECIALISTS SINCE 1972

71 1 OCTAVE DOMESTIC MODEL COMPONENT KIT f266 COMPLETE KIT $\mathbf{f} 442$ MANUFACTUAED f695

 SIX OCTAVE DOMESTIC MODEL COMPONENT KIT £234 COMPLETE KIT E 39 MAN. 6620 Component Kits include Keyboard

SIX OCTAVE STAGE MODEL
COMPONENT KIT £234
manuractuand f fso

Published in P.E.
THE COMPACT MUSIC SYNTHESIZER

COMPLETE

XIT f129 * SWITCH ROUTING* 2 OSCILLATOR MANF $\because 15$ * THUMBWHEEL * 2 SUB-OCTAVES

STRING
ENSEMBLE
(As Published in conjuncrion
"ith 'Practical Elecuronics?
A very popular Keyboard
Synthesizer Kit. for Group or
Home use, with a four cetave
compass and split Keyboard
faciliey.
COMPONENT KIT
fi97.50

 COMPONENT KIT C98.00 KEYBOARDS

88 NOTE (A-C) 56 13 NOTE (F-F) 550 FIVE OCTAVE f39 FOUR OCTAVE 2 Since 1972 Clef Products have consistently produced leading design in the field of Electronic Musical isstruments, many musical qualizy of Paramount importance. new technigues have been evolved and the which have been successfully completed by constructors over a' wide
range of rechnical capability. Back up TELEPHONE advíe is PRICES INCLUDE VAT. UK CARRIAOE \& INSURANCE (CARRIAGE EXTRA ON MFD PIANOS). Please iend S.A.E. for
ouf complete lists, or ure our telephone VISA/ACCESS bervice. Compretitive quolations can be given for EXPORT orders - in Pleaso allow 1 days for normal despatch

CLEF PRODUCTS (ELECTRONICS)
LIMITED
(Dept. P.E.) AAA Bramhall Lane South, Bramhall,
Stochport. Cheshire SK7 AAM 061 -439-3297
"THE computer BAND-BOX
(As Published in conjunction with "Practical Electrontes") COMPLETE KIT
£235
£327

MANFD.
MASTER RHYTHM ALSO REQUIRED
PROGRAMMABLE BACKING BAND FOR THE SOLOIST $10 \sqrt{ }{ }^{\text {INCLUDES PROGRAMMABLE BASS }}$ EXTENDABLE TO 9,500 LINES
The BAND-BOX provides an Electronic Backing Trio consisting of Drums. Bass, and a. Chord Instrument (one of 16
Waveform/Envelope combinations), with the capacity to store ove 3.000 User Programmable Chord Cinanges on more than 120 different Chords. Using advanced Microprocessor technology Playback of 50100 Scores can be execured in any Key and at chosen
Tempo. Complete Music Pad is eiectronically indexod and stored on empo. Complete Music Pad is eiectronically indexod and stored on Repeat Chorus. and Coda sections including Muttipie Score Se quences. Sockets are provided for Volume Pedal and Footswitch plus
separate and mixed instrument Outputs. Total size $19^{\prime \prime} \times 11^{\prime \prime} \times 44^{\prime \prime}$

THE Progerammable DRUM MACHINE

 EIGRT TRACKEIGRT TRACK
PROGRAMMING
TWENTY-FOUR
PATIERNS
TNELVE
INSTAUMENTS
SEOUENCE
OPERATIUN.

COMPLETE XIT $£ 79$
MANFD. $£ 122$

The Cief Master Rhythm is capable of storing 24 selectable rhythmic Eight linstrums, invented, modified, and entered by the Operator on to rol expands into sounds typical of playing with Drumsticks to tweive, grouped American Bongos and Claves. Sequence operation allows two rhythm sections to be coupled with ion. All drums can be adjusted for level and resonance on interna
controls to suit individual 1asse. thus producing good musical sound

MIDWICH COMPUTER COMPANY LIMITED
 FAST EX-STOCK DELIVERY OF MICROCOMPUTER COMPONENTS AT UNBEATABLE PRICES

FEATURE

T
HIS issue of PE carries the first of a regular line of feature articles on various aspects of electronics and its applications. The first article could not get further from the hobbyist concept of $P E$. It describes a piece of equipment costing some $£ 500$ million to build, requiring 700 megawatts of power just to start it up and being quite simply gigantic in size.

No doubt some readers will be aware of the JET Tokamak, of the fact that its trials will be starting within the next month and that it has been built in the heart of Oxfordshire. But how many will know what it is designed to find out, the problems involved in generating and containing a plasma at 100 million degrees Centigrade and what impact it could have on our future energy supply? We must say that until recently we were not conscious of its existence and this article would not have appeared if our Technical Editor had not read a small piece in a newspaper he was standing on whilst decorating!

It is our intention on PE to bring you a wide range of feature articles, some
relating directly to our hobby and some, like Fusion, giving a glimpse into the future and showing how the application of complex electronics can change our world. Next month our feature will investigate the Fairlight Music Computer, an instrument that has changed the world of music. Ray Hammond, author of the recently released book The Musician And The Micro, takes an in-depth look at what the Fairlight is, what it can do and just how it does it. The feature will make fascinating reading to anyone with any interest in electronics, computing or music.

After that we are planning to look at such things as robot vision, satellite TV, fibre optics, radio astronomy and one or two other exciting and possibly "unknown" areas. We will reveal more at a later date.

Most of the articles will be written by experts at the sharp end of the developments or researched and written by experienced technical authors. They will be revealing, factual and authoritative. In fact just what you have come to expect from PE.

CARTE BLANCHE

This issue also sees a new page from our very own "V.T.", Vernon Trent. We have given Vernon carte blanche to write what he likes about anything he likes, when he likes - provided it's linked to electronics and he does it every month (writes that is). Only his name has been changed to protect him from the wrath of anyone he takes to task!

Vemon Trent at Large should make entertaining reading, it will sometimes have a message or moral behind it. It might be instructive or informative, it could even be funny and it may well add to our post bag when all you "worthy sextons" start writing in. As we have said V.T. speaks for himself and not necessarily PE (or anyone else). Perhaps this is something you didn't expect from PE!

We hope these new features add to your enjoyment of the magazine.

EDITOR Mike Kenward

Gordon Godbold ASSISTANT EDITOR David Shortland ASSISTANT
EDITOR/PRODUCTION
Mike Abbott TECHNICAL EDITOR Brian Butler TECHNICAL SUB EDITOR

Jack Pountney ART EDITOR
 Keith Woodruff ASSISTANT ART EDITOR
 John Pickering SEN. TECH. ILLUSTRATOR
 Isabelle Greenaway TECH. ILLUSTRATOR
 Jenny Tremaine SECRETARY

ADVERTISEMENT MANAGER

SECRETARY AD. SALES EXEC.

CLASSIFIED SUPERVISOR
AD. MAKE-UP/COPY
D. W. B. Tilleard

Christine Pocknell
Alfred Tonge 01-2616819
Barbara Blake 01-2615897
Brian Lamb 01-2616601

Letters and Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in PE. All letters requiring a reply should be accompanied by a stamped, self addressed envelope, or addressed envelope and international reply coupons, and each letter should relate to one published project only.

Components and p.c.b.s are usually available from advertisers; where we anticipate difficulties a source will be suggested.

Back Numbers

Copies of most of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, at $£ 1$ each including Inland/Overseas p\&p. Please state month and year of issue required.

Binders

Binders for PE are available from the same address as back numbers at $£ 5.50$ each
to UK or @querseas addresses, including postage and packing, and VAT where appropriate. Ordars should state the year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 13.00$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywzrds Heath, West Sussex RH16 3DH. Cheques and postal orders should be made payable to IPC Magazines Limited. unless otherwise specified. Prices correct at time of going to press.

Y's and Wherefores

Why QWERTY? Do we stop at Y because it sounds friendly? Full name, then: QWERTYUIOP I But this is the lesser mystery surrounding the conventional typewriter keyboard. Why are the letters so arranged to start with. Conflicting reports have been published as to the historical explanation of this configuration, but in PE we now present the truth (of course).

Over a century ago Frederick Sholes, E P. Curry and G. W. Carr described the forerunner of today's typewriter in British patent 2418 of 1879 . This is a fact stated in the UK PIN (Patents Information Network) Bulletin, and it is also a fact that the early keyboard was designed so that frequently adjacent characters in use are not adjacent mechanically. The letters E and F are an example of this, and by keeping them apart they will not jam together when the word "efficient" is typed rapidly. Sholes's typewriter comprised a circle of hammers, with T and H on opposite sides of the basket. It is a myth that the designer's intention was to avoid key jamming by deliberately slowing down the typist through the use of a quirky keyboard.

Why do we couple the high technology keyboard of today's word processor, for example, to a key layout philosophy governed by archaic mechanics? Answer: Commerce thrives on providing for people's needs, and people need what their fingers are familiar with . . . when it comes to typing.

Attempts to shatter the mould do exist. The first photograph shows PCD Maltron's ergonomically designed keyboard. Although this looks like a fire damaged item, it is shaped to accommodate the contours, and finger positions and lengths, of the human hand: The character positions are scientifically placed so that the most frequently used keys are the most convenient to press Typing speed improvements of up to 40% have been achieved, and tests have shown that re-training the QWERTYite is surprisingly quick, leaving her confidently bidextrous. Humans, after all, are curvey, so this keyboard might be a guide to future architecture. Why should machines which we human beings have to work with be rigid, and squared off with sharp corners? Machines should bend to suit people, not vice versa.

Another key approach is the Microwriter, which completely abandons the concept of having a button to represent each alphanumeric character. Combinational use of only six keys enables one-handed operation. Imaginary linking of the shape of the required character, to the shape formed by the buttons to be pressed, allows the Microwriter to be mastered in as little as 20 minutes. A single-line display shows what has been keyed into this portable unit, and an integral word processor allows subsequent editing. Later the writer can be linked
to a host computer to download the day's work. The reclined executive, typing on the Microwriter, takes on the appearance of

someone impatiently tapping his fingers on the desk. Pen and paper are endangered species!

ROBOTC SHEEP SHEARING

Robotic sheep shearing is here (in Australia, at least Bruce), according to a report in Electronics Times. In it, John Mathews, of the National Institute of Agricultural Engineering is said to believe that robotic sheep shearing, and even robotic artificial insemination is a workable idea. The Australian Wool Board has issued contracts to researchers to look into these possibilities. Melbouine and Perth, it is claimed, already have robotic shearers.

Not for animal lovers, the Perth system
takes a computerised picture of the sheep's contours as it moves along a conveyor belt. The computer then controls the shearing arm in accordance with this information. stored in its memory. In a demonstration, the sheep was held still whilst being shorn, using an electric current passed via an electrode in its mouth. This apparently freezes the animal's muscles, keeping nicks to a similar level to that of manual shearing. Mathews predicts that farmers will be using robotic sheep shearers by 1990.

[^2]
Pallution Monitor

A personal pollution monitor in use by the Environmental Protection Agency in the USA has been designed to be worn by people as they go about their daily business in urban areas, the unit weighs only 2 lb and continuously sucks in air to measure the level of carbon monoxide. It stores and displays hourly averages of the pollution that its wearer has inhaled, and can later chart a graph. The system is far more indicative of pollution dangers than the conventional fixed point sampling method, and Federal officials say that the study could lead to changes in carbon monoxide regulations in 90 US cities.

DBS News

On March 7th. 1983, Bryce McCrirrick, BBC Director of Engineering, and Alan Jefferis, Managing Director of United Satellites Limited (Unisat), signed Heads of Agreement for provision by Unisat of two direct broadcasting by satellite television channels for the BBC DBS services due to start in 1986

Unisat, jointly owned by British Telecom, British Aerospace and the General Electric Company, will be responsible for building and launching two satellites in 1986, the first to be operational and the second as a flying spare. A third spacecraft will be available on the ground as an additional safeguard. Launch will be by the European Ariane rocket or by the American Space Shuttle, the final choice to be made nearer the time. The satellites will be in geostationary orbit $36,000 \mathrm{~km}$ above the equator and will provide signals of sufficient power for high-quality reception by individual households, with suitable receivers and small dish antennas less than 1 metre in diameter, within a "footprint" covering the United Kingdom and parts of Western Europe. The agreement covers a period of operation of the satellite service of at least seven years

The satellite will carry transponders for two BBC DBS services; DBS 1 will be a Subscription Channel carrying feature films and other attractions; and DBS 2 will have an international flavour. There will also be a number of digital sound channels affording stereo sound with television and some high-quality radio channels.

The signing of the Heads of Agreement represents a notable landmark in the development of British broadcasting. It will be followed later by completion of a full Agreement covering the finer details.
PE will be publishing an article on the proposed new system in a few months time

Lamentably, Solid State Micro Technology (for Music Inc.) has no current UK outlet. Although the SSM2040 Voltage Controlled Filter fused in the Audio Sweep Oscillator of PE Oct. '821 is available from Digisound (14 Queen St., Blackpool), this is a residual stock, since that company is no longer an outlet for Solid State Micro.
However, we are informed by Solid State Micro that they will take overseas orders from hobbyists, for their popular range of i.c.s. They require prepayment in the form of a money order in US dollars, allowing \$2 for p\&p for small packets. Prices (1-24) are indicated:

$\begin{aligned} & \text { SSM-2000, 2010, 2020 } \\ & 2030,2040,2024,2050 \end{aligned}$. 5
SSM-2011, 2022, 2031,	
SSM-2015, 2033, 2038	\$10
SSM-2012/2012A	\$9.5
SM-2100	\$10

Solid State Micro are on the lookout for a non-OEM outlet in the UK, but
for the meantime, here is their US address: Solid State Micro Technology for Music Inc., 2076B Walsh Ave, Santa Clara, CA95050, USA.

Static Bike

One day, when the final tree has fallen, the last lawn has gone nylon, and the world is artificially oxygenated, people may wonder what it must have been like to go for a leisurely bicycle ride down a country lane. The technology to simulate this experience will be old hat by then, but today it's the very latest thing if only for Americans with sufficient disposable income to accommodate the dismissal of $\$ 20,000$.

The static exercise bike is connected to a laser video disc system which projects the way ahead onto a 45 inch screen. As the rider imbibes the fresh office air, the bike is electromechanically punched up and down to simulate bumps in the road. That's not all; a choice of directions accompanies each fork in the lane, selectable by push button. The video disc has the capacity to store many parallel route options from which the laser head can be instructed to select by computer.

Silicon News Corner

Bulletins announcing new semiconductor devices arrive at PE daily, so it is possible only to describe them briefly. Details of how to obtain further information are included, however.
National Semiconductor CMOS UART with near-NMOS speed. The NSC858 inter faces to NSC800, 8085 and 1802μ Ps. Has internal diagnostics and Baud generator, and consumes 50 mW

- The NMC9306/COP494 is a low cost 256bit serial Electrically Erasable Programmable Memory. Needing only 5 V to operate, this TTL compatible, non-volatile 16×16 serial read/write memory has Microwire ${ }^{\text {TM }}$ I/O. It employs floating gate technology and is compatible with COP400 processors
- Combined 4 -digit alphanemeric display and CMOS driver i.c. is called the NSM 1416. It features a $4 \mathrm{~mm}, 16$ segment fount, and an onboard memory to store four 7-bit ASCII words (the four display chars), and an ASCIIto 16 seg. alphanumeric ROM decoder plus multiplexing Other features: Cascade ability, $\mu \mathrm{P}$ bus compatibility with 300 ns access time.
- New 4 MHz version of NSC $800 \mu \mathrm{P}$ speed compatible with all $\mathrm{Z80} 4 \mathrm{MHz} 8$-bit micros. The NSC800D-4 has 60% speed improvement over NSC800. Set of 158 instructions; consumes 16 mA typical. Also houses internal DRAM refresh circuitry. National Semiconductor, 301 Harpur Centre, Horne Lane, Bedford.

Synertek (Honeywell) Low cost SY68045 CRT Controller. 5V device pin compatible with industry standard 6845. Although flexible, primarily for interface with 6500/6800/68000 μ Ps. Adds to Synertek's CRT device family, of which the SY6545R is addressable up to 16 K of video RAM, incorporating light pen interface. Synertek, 3001 Stender Way MS-34, Santa Clara, CA 95054. Mite Complete monolithic DTMF receiver (18 pin) incorporating bandsplit filter and digital decoder functions. Called the MT8870, this 1SO-CMOS device also includes differential amp, clock osc., and latched tristate bus interface. Power is 15 mW at 5 V . Pronto Electronic Systems Ltd., 466-478 Cranbrook Road, Gants Hill, IIford, Essex.
Precision Monolithics 1983 Product Selection Guide. Bourns Electronics Ltd., Hodford House, 17/27 High Street, Hounslow, Middx. Intersil Two-stage, differential output, wideband video amp, the NE/SE592 offers fixed gains of 100 and 400 using no external components, or variable gain. Bandpass capability makes this ideal for pulse amplification in floppy disc units. Pin-for-pin replacement for $\mu \mathrm{A} 733$.

- ICL7415 is a 16 -bit, $\mu \mathrm{P}$ compatible multiplying D/A converter. Has 16 -bit resolution, linearity of 0.003% FSR, output current settling time of $3 \mu \mathrm{~s}$, and four quadrant multiplication.. Intersil Datel (UK) Ltd, Snamprogetti House, Basing View, Basingstoke.

IBN's COOL CHIPS

Researchers at $1 B M$'s East Fishkill laboratories have found an ingenious way to remove heat from the silicon devices used in today's generation of fast computers. Their solution comes in the shape of a Thermal Conduction Module (TCM) which comprises up to 118 LSI chips mounted on a 30 layer ceramic substrate. The considerable heat generated in a densely packed TCM, typically containing over 25,000 logic circuits and 65,000 array bits of storage, is removed through a matrix of aluminium pistons, each spring-loaded against a chip. Backed up by water circulation, a TCM has a cooling capacity of up to 300 W .

The ceramic layers carry interwiring between the chips, with power distribution dominating the lower levels, and signal routes occupying the upper levels. A key feature is the routing of all signal connections from each chip via an array of surface pads, which in turn are connected to internal wiring layers. In the event of modifications, connections to buried layers may be removed and substitute wires ultrasonically bonded to the gold-plated pads.

The same function of one typical TCM would, using the technology of the IBM 3033 processor, require 1,880 single-chip logic modules, 80 array modules with associated terminating devices, 52 multilayer printed circuit cards and four large

Exploded view of a TCM. Measures $15 \times 15 \times 6$ cm.

Robot Trainer

The robot arm shown in the photograph is called Armatron. It is manufactured by Tomy Corp, and has surprising flexibility due to the number of controllable axes. Armatron stands about 250 mm high, being made out of blue/grey plastic, and comes with a set of important looking components for manipulation practice. This robot arm is intended to teach the geometrics of robot manipulation to youngsters, for it cannot be programmed and will not interface to a computer, but is operated entirely by way of two joysticks. It nevertheless is a fascinating and instructive gadget with which to experiment; any combination of axes can be simultaneously activated.

The robot's console has an integral timer switch that shuts off power from the battery (two D-cells) after a preset time period. One's progress can be monitored, or competitions held using this timer, during tasks using the "industrial components" supplied. The timer's lapsing "energy level" as it is called, can be seen through a row of windows on the robot's console, where orange squares disappear one by one.

Armatron is entirely mechanical, being powered from a single d.c. motor. Revolving drive shafts carry power through the arm to each axis, a system involving numerous differential gears. The joysticks
operate into a drum of centrifugal gears which distributes power from a single drive shaft. The mechanics alone of Armatron are intriguing enough, but by the same token a disappointment to the micro/robotics buff. There's no rational way to interface Armatron to a micro (our original reason for examining the robot). In any case, the machine lacks the necessary precision for simple operation from a program of instructions, and would therefore require positional feedback, making the modifications still more disproportionate.

By the time this item is in print, Armatron (called Robo I outside the UK) should be available through high street shops at around $£ 35$.

multilayer p.c.b.s with associated interconnecting cables. The reduction in hardware using TCM's results in greater reliability and cost saving. A reduction factor of $7: 1$ in interwiring length increases execution

Cut-away view of a TCM, revealing the pistons that bear down on each LSI chip. The TCM is used in IBM's new 3081 series processor.
speed by reducing what is called "time-offlight" circuit delay. This also limits the drive circuit pówer requirements.

The Japanese are said to be working on water-cooled computers, but it is believed that IBM has a clear lead at this stage.

GSGLaunch

Global Specialties have just launched three new test instruments: an autoranging capacitance meter, a frequency counter and a handheld frequency counter-timer.

The autoranging capacitance meter, model 3002, incorporates a $3 \frac{1}{2}$ digit I.c.d. and measures $193 \times 95 \times 44 \mathrm{~mm}$. The unit provides direct readings of capacitance from 1 pF to $19990 \mu \mathrm{~F}$ over eight automatically selected ranges with an accuracy within 0.2% (\pm one count) from 1 pF to $199 \mu \mathrm{~F}$ and 1.0% (\pm one count) between

$200 \mu \mathrm{~F}$ and $19990 \mu \mathrm{~F}$. The 3002 is priced at $£ 165.50$ including VAT.

The frequency counter, model 6000, can measure from 50 Hz to 650 MHz and has an 8 -digit l.e.d. display, simple push-button controls with l.e.d. indicators for selecting the input, gate time and low pass filter.

Two BNC inputs are provided: one covering the range 5 Hz to 100 MHz with a $1 \mathrm{M} \Omega$ input impedance and the other for signals between 40 MHz and 650 MHz with a 50Ω impedance. Gate times of $0.1,1.0$ and 10 seconds are available. The instrument which measures $76 \times 254 \times 178 \mathrm{~mm}$ is priced at $£ 315.39$ including VAT

The last unit in the range is the model 5000 handheld counter-timer which is battery operated and includes pulse-width measurement facilities in addition to frequency and period.

The unit has an 8 -digit I.c.d. and covers the frequency range from $0 \cdot 1 \mathrm{~Hz}$ to 50 MHz incorporating a wide range of signalconditioning facilities including attenuation, slope selection, a.c. or d.c. coupling and a variable trigger level.

The model 5000 is priced at $£ 274.85$ including VAT.

For complete details of these and the rest of the GSC range of instruments send a self-addressed envelope to GSC, Shire Hill Industrial Estate, Saffron Walden, Essex CB113AQ.

Fair News

Those readers who came to the first Electronics Hobbies Fair last November will not want to miss the second one, so make a note of the dates now: October 27th to the 30th 1983. The event will take place in the same excellent venue (Alexandra Pavilion) and it will have all the best attractions of "number one" with plenty of new ones. Something for everyone with any interest in electronics.

The foremost consumer electronics exhibition goes forward so make sure you are there.

Briefly...

A team of scientists from Lockheed's Palo Alto Research Laboratory and Stanford University have achieved a breakthrough in understanding how radio waves interact with the Earth's magnetosphere and ionosphere. The SEEP (Stimulated Emission of Energetic Particles)
study, sponsored by the Office of Naval Research, is said to have confirmed a long believed theory that man-made Very Low Frequency (v.l.f.) radio waves traverse earth's magnetic field lines to great altitudes and dislodge electrons. In a process identical to that caused by sunspot activity these electrons are dumped into the ionosphere, causing a miniature aurora borealis, and the release of X-rays. Remarkable improvements in radio communications could result from this discovery. It may be possible to use magnetic field lines to capture and amplify v.l.f. radio waves.

A new component, developed by Ferranti at Dalkeith, is believed to be the most accurate and first of its kind in the world. It is an encoder. Type 35HA, and is used to measure the rotation of a shaft down to $1 / 3000$ th of a degree. According to Ferranti News, if you were to plot a triangle between the outer edges of a house brick and an observation point 24 miles away, this would be the angle formed at the observer's point!
Encoders are used for radio telescope tracking, laser pointing systems and robotics. The computerised 35HA can work accurately up to 1000 r.p.m.

hiundidur

Please check dates before setting out, as we cannot guarantee the accuracy of the information presented below. Note: some exhibitions may be trade only. If you are organising any electrical/electronics, radio or scientific event, big or small, we shall be glad to include it here. Address details to Mike Abbott.

Compec Scotland May 17-19. Kelvin Hall, Glasgow. Z1
Welsh Amateur Radio, TV \& Electronics Rally May 22. Barry
Memorial Hall, S. Glam. C
Computers In The City (conf. \& ex.) May 24-26. Barbican. O
Business Telecom May 24-26. Barbican. O
International Word Processing May 24-27. Wembley Conf. Cntr. Z
Motradex May 25-27. Sandown Exhibition Centre, Surrey. Z1
East Suffolk Wireless Revival May 29. Ipswich Civil Service
Sportsground. V1
Russian Holography June-Sept. Inc. Light Fantastic Gallery. A8
Apple Exhibition June 3-5. Fulcrum Cntr., Slough. JI
Semlab June. Olympia. I
IBM Productivity (conf. \& small ex.) June 14-16. Tara Hotel, London. 0
The Computer Fair June 16-19. Earls Court. Z1
Compec North June 21-23. Belle Vue, Manchester, Z1
Transducer/Tempcon June 28-30. Wembley Conf. Cntr. T
Leeds Electronics Show July 5-7. University. E
Satellite TV \& Cable TV July 5-7. Alex. Palace, London. G4
IBM User Show July 12-14. Wembley. O
BAEC Amateur Electronics July 16-24. Sheiter, Esplanade, Penarth,
S. Glamorgan. B9

Laboratory Edinburgh July 18-20. University. E
Acorn Exhibition Aug. 25-28. Cunard Int. Hotel, Hammersmith,
London. J3
BARTAG Rally (radio teleprinter) Aug. 29. Sandown Park, Esher, Surrey. E2
Weldex Sept. 12-16. NEC B/ham. I
Testmex Sept. 13-15. Grosvenor House, Park Lane, London. E Personad Computer World Show Sept. 28-Oct. 2. Barbican, London. M
Laboratory London Oct. 12-14. Barbican Centre. E
Drives/Motors/Controls Oct. 12-14. Leeds University, E
Computer Graphics Oct. 18-20. Wembley. O
PARC (computers in architecture, conf.) Oct. 18-20. Wembley. 0 International Business Show Oct. 18-26. NEC. T
Business Efficiency Exhibition Oct. 22-26. Earls Court, London. Z Electronics Hobbies Fair Oct. 27-30. Alex Pavilion, London. ZI Compec Nov. 15-18. Olympia, London.
Northern Computer Fair Nov, 24-26. Belle Vue, Manchester. Z1
A8 Holographic Exhibitions (01-826 6423
B9 Cyril Bogod, British Am. Elect. Club ; 0222707813
C Reg. Rowles Cardiff 565656
E Evan Steadman f 079922612
E2 BARTG 89 Linden Gdns., Enfield, Middx.
G4 Intech Exhibitions, 55 London Rd., St. Albans
I
J.

J3
M
0
0
T
V1 Jack Tootill, 76 Fircroft Rd., Ipswich IP1 6PX
Z BETA Exhibitions 01-405 6233
Z1 IPC Exhibitions 01-643 8040

PROGRAM CON 1 II

THE usual way to copy a personal computer program stored on cassette is to load the program into the computer and record it onto another cassette. This method has both advantages and disadvantages. On the plus side, only one cassette recorder is required, and the program listing can be checked for errors on the visual display unit screenusually a TV set-as it loads. Further, when it is recorded, the new recording is retimed by the computer so that any timing imperfections on the original due to flutter or other cassette deck limitations are not compounded.

On the debit side, the computer is tied up whilst loading and recording are in progress. Also, it is sometimes found that the program won't load correctly in the first place, due to inadequacies in the original recording or in the cassette machine used for playback, or due to the combination of the two-there are fairly startling differences in performance between different models.
The circuit forming the subject of this article can often circumvent this problem and is thus useful as a signal conditioner to rescue poor recordings and enable them to be successfully loaded into a computer. Also, if two recorders are available, it permits programs to be copied directly without tying up a computer. The latter method is particularly useful for the enthusiast who is still saving up for a computer system but who wants to be able to collect programs from friends in the meantime.

The circuit consists of four sections-a selectable highpass filter, an adjustable all-pass filter, an output stage providing clipping and shaping, and an audio stage driving a monitor loudspeaker. To understand the purpose of the various stages-particularly the all-pass filter (also known as a phase equaliser) -one needs to know a little of how tape recording works.

RECORDING ON TAPE

Magnetic recording tape consists of thin plastic, coated with finely divided iron oxide or other suitable magnetic powder. You may have noticed that once pins have been picked up with a magnet, they will tend to stick together even in the absence of a magnet. This effect is called remanence and is the basis of tape recording. Fig. 1 shows how a recording head records the signal onto the tape.

The relation between the record current and the remanent magnetism is nonlinear, so a high frequency (50 to 100 kHz) bias current is added to spread the recording to the linear parts of the characteristic. On cassette recorders the same head is usually used for playback, so that monitoring from

Fig. 1. Magnetic tape recording with (a) no bias and (b) the effect of bias
the tape is not possible. Another head uses the a.c. bias current at a much higher power to erase previous recordings. Quarter track heads are used in stereo cassette recorders, providing two tracks in either direction. Mono recorders use half track heads in the same way as older half track reel to reel recorders. With stereo cassette machines, the two tracks of the stereo signal are on the same side of the tape, and both are erased at the same time by the erase head. As with reel to reel recorders, the erase head is energised during recording and the tape passes over it first, before reaching the record head. Thus four track mono use is not available, but mono cassette recordings can be played on

Fig. 2. Typical tape playback curve for constant peak recorded flux density
stereo cassette decks and vice versa. Of course the result is always mono except in the case of a cassette recorded on a stereo machine being replayed on a stereo machine.

There is nothing to prevent one using an older reel to reel recorder for storing personal computer programs on tape. though cassette machines are almost invariably used because of their greater convenience.

Also, the greater demands made on the tape by the very low tape speed ($1 \frac{7}{8}$ in per second) and narrow track of the heads used in cassette machines has resulted in the development of much better tape, suffering less from drop outs (random areas of low sensitivity along the tape) than older reel to reel tapes. However, whatever type of tape is used, one still has to cope with the basic frequency response of magnetic recording tape, as shown in Fig. 2. The 6 dB per octave roll-off in the middle and lower frequency region is a result of the law of induction, the induced voltage on playback (for constant peak recorded flux level) is directly proportional to the rate of change of flux density, and hence to the frequency.

Fig. 3. Bode plot of phase and amplitude against frequency for a top-cut circuit

At higher frequencies, another effect takes over. The shorter and fatter a magnet, the greater the tendency to self-demagnetisation-which explains why, before the invention of modern improved magnetic materials, magnets were always long and thin. The same effect is observed in tape recording where the shorter recorded wavelength along the tape results in a falling high frequency response. The effect is compounded by the bias waveform, which unfortunately acts increasingly as an erase signal as the recorded frequency rises. The signal applied to the erase head is simply the bias waveform, but at a very much higher level.

To obtain a level overall response independent of frequency, on playback the middle and bass are boosted by 6 dB per octave and the high frequencies, above the frequency of maximum response are also boosted. The rate of fall-off of the high frequency response is in fact faster than 6 dB per octave, so boost is also applied during recording.

EFFECT OF PHASE

It is usually claimed that the phase response of audio equipment is unimportant as the ear is not sensitive to phase, and this is certainly largely true as otherwise tape recordings would all sound awful. The fact is that audio tape recorders of all types do dreadful things to the relative phase of the harmonics of, for example, a squarewave. To see why we must now digress a moment and look at phase and amplitude responses versus frequency for various circuits and processes, usually called bode plots.

Fig. 3 shows a top cut or high frequency roll-off circuit, together with its Bode plots. It can be seen that at low frequencies, where the response is level, there is little if any phase shift; whilst at high frequencies, where the response is falling off at 6 dB per octave, the phase shift approaches 90° lagging. At the point where the $6 \mathrm{~dB} /$ octave asymptote crosses the level asymptote, the amplitude response is -3 dB , and the phase shift is $-45^{\circ}\left(45^{\circ}\right.$ lagging). Bode's relations show that generally a lagging or negative phase shift is associated with an amplitude response which is falling with increase of frequency, and a leading or positive phase shift with a rising amplitude response. The change in amplitude of response in dBs (decibels) between two frequencies f_{1} and f_{2} is proportional to the integral of the phase shift between limits f_{1} and f_{2}, and the phase shift at any frequency is proportional to the rate of change of amplitude response. The going rate of exchange is 90° (lead or lag) for a $6 \mathrm{~dB} /$ octave rate of change of amplitude (rising or falling with frequency respectively).

Does this apply universally? Well, almost; that is it applies to all "minimum phase" circuits and processes and this includes most tone control networks and filters. There are, however, "non minimum phase" networks. This can occur for example where there are two parallel paths through a network. In such cases Bode's relationships do not apply-a well known example is the twin tee network. There are a number of non minimum phase processes and two other examples are all-pass filters and tape recorders.

In tape recording, it has been explained that the high frequency roll off is due to self- and bias-demagnetisation, and in fact there is no associated phase shift involved-a non minimum phase process. The treble boost applied on both record and playback to maintain a level response is a minimum phase process and thus, overall, the amplitude response is level, but the phase advanced.
 phase response. Here gain is unity at all frequencies
The all pass filter in Fig. 4 has an amplitude response independent of frequency, but provides a phase response which varies with frequency. At very low frequencies, it is a non inverting amplifier with unity gain, i.e. 0° phase shift. At a frequency $f_{90}=1 /(2 \pi \mathrm{CR})$ it has a 90° phase lag and at high frequencies the phase shift becomes 180° lagging, all the while with a flat amplitude response. Fig. 5 shows the effect on a square wave of changing the product CR. When $1 /(2 \pi C R)$ is very much lower than the fundamental frequency of the square wave, f_{f}, all the frequency components of the square wave are shifted by -180°, so the waveform is unaffected. If f_{90} rises-say by reducing the value of R-the
effect on the squarewave at first is not unlike the slope or tilt produced by an inadequate coupling capacitor-Fig. 5(a). As f_{90} approaches f_{f}. the effect is more marked, but as the fundamental is now shifted in phase relative to the harmonics without its amplitude being reduced, we see the waveform of Fig. $5(\mathrm{~b})$, and as f_{90} becomes higher and then much higher than f_{f} we see waveforms like Figs. 5(c) and (d).

Fig. 5. Effect of the all pass filter on an ideal square wave of frequency f_{f}

RECORDING PROGRAMS

Returning now to the topic of recording programs on cassettes, the usual format is CUTS (computer users' tape system), also known as the Kansas City interface. This is an FSK (frequency shift keying) system where a frequency of 1200 Hz represents a zero and 2400 Hz a 1 . As the signalling rate is 300 bauds (300 signal elements per second) one signal element consists of either 4 cycles of 1200 Hz tone (a zero) or 8 cycles of 2400 Hz tone (a 1). The format is a 1 as a start bit, eight data bits (1s or Os according to the byte to be transmitted) and two stop bits. On replay, the computer looks for a 0 (start bit) following a long string of 1 s , and thereafter for succeeding start bits following the two stop bits. Signal conditioning circuitry in the computer's CUTS input turns the two tones into 0 or 1 levels as appropriate.

Thus the system is asynchronous, and provided the difference in speed between the recorder used to make the recording and that used to reproduce it lallowing also for the effects of flutter and noise) is not more than a few percent then no problems should arise. Nevertheless, the phase distortion already noted is bound to occur in the cassette recording/playback process, so compensation for the phase advance of the harmonics is applied by a phase retard (top cut) circuit in the computer's CUTS output-Fig. 6(b). Allowing for the limited frequency response of most cassette recorders, this would ideally appear on playback as in Fig. 6(c).

Several deviations from the ideal playback waveform are commonly observed. The waveform often has superimposed hum at 50 Hz (poor layout, induced hum from the recorder's mains transformer), at 100 Hz (inadequate smoothing of full wave rectifier output), and at 150 Hz (a third harmonic component of the mains transformer's magnetising current due to using the core laminations at a peak flux density approaching saturation). The smallish internal speaker used in many machines is relatively insensitive at 150 Hz and completely dead at 50 Hz , so the manufacturer has little incentive to worry over much about these hum components in the playback signal. To cope with this problem, the circuit described later has an active 2 pole high pass filter which can be switched into circuit if required.

Another problem one encounters is excessive phase distortion, due to a variety of causes. One commercially produced program appeared to have been recorded without sufficient phase retard, or maybe excessive peaking in the record circuitry. The result was that playback on the author's
[a]

[b]

[c]

[d]

[e]

Fig. 6. Waveforms associated with cassette program recording

Trophy CR100 cassette recorder resulted in the 1200 Hz tone appearing as in Fig. 6(d). The program loaded o.k., but on a colleague's cassette deck (which was evidently equipped with extra enthusiastic treble peaking in the playback equalisation section) the waveform appeared as in Fig. 6(e). The additional zero crossings got sliced in the computer's CUTS input circuit, turning occasional $0 s$ into 1 s and corrupting the program. The extraneous wiggles could be reduced with the aid of the tone control (which, like the volume control, controlled the output at the recorder's 5 pin DIN auxiliary socket) but that also had the undesirable effect of attenuating the 2400 Hz 1 tone. The all pass filter in the signal conditioner described in this article permits the harmonics to be properly relocated in phase relative to the fundamental, resulting in the 1200 Hz tone again resembling a squarewave, without attenuating the 2400 Hz tone at all. So, having prepared the ground, let's look at the full circuit of the Program Conditioner, Fig. 7.

THE SIGNAL CONDITIONER

This uses a TLO84 quad op-amp and the whole instrument fits in a small sloping panel plastic case, powered from an internal PP7 battery. Two input sockets are provided, the first (JK 1) being a 3.5 mm jack socket. This accepts a jack to jack lead from a cassette recorder's earphone socket, a suitable level being set with the recorder's volume control. The second input socket (SK2) accepts an input from the recorder's auxiliary socket. The latter is usually a 5 pin 180° DIN socket and to prevent the DIN plug to DIN plug lead from being connected the wrong way round, a 5 pin 270° DIN socket is used on the Program Conditioner. On the 180° DIN plug, the two signal output pins (usually pins 3 and 5) are connected in parallel so that a stereo cassette deck is used in the mono mode. Most recorders provide the AUX output signal at a fixed standard level, unaffected by the volume control or tone control (if any), but on some machines the AUX level is affected by these controls-in which case a medium volume setting (and no top cut) should be selected.

The input signal is applied to IC1b which acts as a non inverting buffer amplifier when S1 is closed, and as a high pass filter when S1 is open. In this mode, it provides, nominally, a 300 Hz corner frequency with 12 dB attenuation at 150 Hz and 30 dB at 50 Hz , with little effect at 1200 Hz -the lower of the two tones used in recording programs.

Fig. 8. Printed circult detail and component overlay
The output of the high pass filter stage is applied to the all pass filter, IC1a. The turnover frequency of this stage (at which the phase shift is 90°) is adjustable by VR1 from about 200 Hz to 20 kHz . At the latter setting (VR 1 fully anticlockwise) the all pass filter is effectively out of circuit since the vast majority of cassette recorders cannot reproduce frequencies this high. Thus, with VR1 set anticlockwise and S1 closed (high pass filter bypassed) the playback signal from the recorder can be observed by connecting an oscilloscope to SK 1, the "Input Monitor" socket. Any hum or phase distortion can thus be observed, as can the corrective effect of the two filters. The filtered, phase corrected signal is fed to

COMPONENTS ...			
Resistors		Integrated Circuit	
R1	100 k	IC1	TLO84
R2	390 k	Potentiometer	
R3	100k	VR1	500 k log
R4 R R	4.7 k 100 k	VR2	50 klog
R6	22k	Switches	
R7	100k	S1	S.p.s.t.
R8	180k		miniature toggle
R9	10k	S2	S.p.s.t.
$R 10$	1 k		miniature toggle
R11	100	Battery	
R12-R13	4.7 k (2 off)	81	PP7
All resistors $\frac{1}{\text { W }}$ W\%		Loudspeaker	
Capacitors		LS 1	80 ohm 2 in
C1	0.1μ	Sockets	
C2-C3	$2.7 n$ (2 off)	JK1, JK2	miniature sockets
C4	$1.5 n$	SK1, SK3	BNC connectors
C5-C7	10 n (3 off	SK2, SK4	5 way 240°
C8	$8 \mu 16 \mathrm{~V}$		chassis
C9-C10	0.1μ (2 off)		mounting
C11	$10 \mu 16 \mathrm{~V}$		sockets

IC1d where it is sliced to produce a near ideal squarewave, as this op-amp is run open loop a.c. coupled as a comparator. IC1c, controlled by volume control VR2, provides a drive to the miniature loudspeaker, permitting audible monitoring. This is useful when using the EAR output of the cassette deck, as this cuts out the recorder's internal loudspeaker. R8, 9, 10 and C7 provide shaping, phase retard and level adjustment for the two outputs and the monitor output. The latter (SK3) is provided to permit viewing of the output waveform on a 'scope, whilst the output to a computer's cuts input (or to a second cassette machine for direct copying) is taken from SK4, or from JK2 if the cassette's microphone input is used instead of AUX.

CONSTRUCTION

With a quad op-amp and modern miniature components the circuit board takes up very little space and weighs very little. The p.c.b. assembly is stood off from the front panel as shown in Fig. 9 and the latter includes all circuit components

SKI_INPUT MONITOR
SK2 _INPUT FROM "AUX'
SK3_OUTPUT MONITOR
SK4. OUTPUT TO 'AUX*
JK1 _ INPUT FROM 'EAR'
JK2_OUTPUT TO 'MIC'
SI_HP $\mathbb{N} / O U T$
S2_ON /OFF
VRI_FREQUENCY
VR2_VOLUME

Fig. 9. Placement of case mounted components with board interwiring
except the battery. This combines for neatness and easy access if servicing is required.

Etching details for the printed circuit and the component overlay are shown in Fig. 8. Other layouts, such as on Veroboard, can be used but watch out for op-amp outputs running close to inputs-this could cause instability. The component assembly is built in to a plastic box with a sloping front panel 12.5 by 21 cm . This provides space for an uncluttered panel layout and just sufficient depth to accommodate a PP7 layer type battery. As the whole instrument draws only about 8 milliamps with intermittent use battery life should be almost indefinite. A photograph of the front panel is shown with appropriate legends.

USE

To obtain the best from the Program Conditioner one really needs to observe the signal at the input monitor socket on a 'scope. The simplest of these suffices, e.g. a single trace instrument with a bandwidth covering the audio band is quite adequate, though good triggering is, as always, important. One can soon tell from the appearance of the trace and the sound from the monitor speaker whether the playback signal is of good quality. If the trace is fuzzy in the vertical direction, this usually indicates hum, as can be verified by switching to a slow timebase setting-switching in the high pass filter should cure this. Fuzziness of the trace in the horizontal direction usually indicates speed variations (wow and flutter), either due to the machine which recorded the program in the first place, or due to the cassette deck being used for playback. The ear becomes quite good at detecting this with practice. There is little that can be done about this (other than using a better cassette deck if the flutter is due to playback) but it does make correct equalisation more important. If the 1200 Hz tone looks a bit peaky and triangular, advance the phase equaliser control VR1 from the fully
anticlockwise position. You should see the 1200 Hz tone become squarer, with faster rise and fall times as it passes through the mean value, when the fundamental is correctly phased with respect to the harmonics.

This is the correct condition, over compensation will result in a return to the peaky, triangular waveform. There will be comparatively little effect on the 2400 Hz tone on most small cassette machines as they will already be falling off considerably in frequency response at the odd harmonics of this frequency.

Use of this Program Conditioner can enable a program to be successfully loaded which otherwise might be difficult or impossible; it should then of course be recorded from the computer to avoid further problems. Alternatively, the Program Conditioner can be used to clean up and optimise a program on cassette for rerecording on another machine without tying up a computer at all. Providing the original recording loads, the rerecorded copies should likewise do so.

Coples of Patents can be obtained from:
the Patents Office Sales, St. Mary Cray, Orpington, Kent. Price £1.60 each.

THEFT DETECTOR

The Knogo Corporation of Hicksville USA (yes, there really is a Hicksville, USA!) has filed a British application, 2101454 , on an elaborate approach to theft detection in shops. In Fig. 1 transmitter aerial 10 and receiver aerial 12 are arranged on opposite sides of a shop check-out point. All the goods in the shop carry targets 16 which are thin strips of magnetic material which is easily saturated in a strong field. The transmitter aerial 10 produces an alternating magnetic field of fixed frequency, around 2.5 kHz , which is strong enough to cause a target strip in the check-out zone to become magnetically saturated and unsaturated in cycles synchronised to the alternating magnetic field. This makes the target emit its own alternating fields, which are at harmonics of the basic field frequency. A receiver, connected to aerial 12 , responds to a selected harmonic e.g. the sixth at 15 kHz , to set off an alarm when it senses a cyclically varying signal.

In practice the transmitter aerial 10 is a single one turn loop and the receiver aerial 12 is a pair of single turn loops. Mains power is fed through a zero crossing detector 24, which produces a pulse each time the voltage passes through zero. These pulses are applied through logic circuit 26 to an oscillator 28 which produces high frequency signal bursts. The oscillator output is divided down and converted into four separate 15 kHz signals, each of different phase. The signals are fed to 2.5 kHz generator 30 which divides them down again to produce square waves at 2.5 kHz during the time periods when the oscillator 28 is on. The square wave outputs from the 2.5 kHz generator 30 are filtered at 32 to produce a sine wave, which is applied to a series resonance circuit. made up from capacitor 36 and transformer primary 38

Large currents, of over 100 amps r.m.s., are fed to the aerial 10. The receiver aerial 12 is in the form of two parallel loops, so a changing magnetic field applied uniformly to both loops induces bucking currents which cancel each other out. In this way the effect of direct transmission between the aerial 10 and 12 is eliminated. When a target strip 16 passes by the aerials it will always be closer to one of the two receiver aerial loops than the other. So its harmonic magnetic field gives a detectable current in receiver transformer coil 46. The signal is filtered to separate any sixth harmonic content. This is then pulsed and stored. When a
pre-determined number of pulses, for instance two, have accumulated during successive transmitter signal intervals alarm 82 is tripped. The storage feature prevents
false alarms through spurious harmonics getting into the system. The patent gives full details of the circuit, including componens types and values.

BOCRTONE

THE ROCKTONE is intended as a versatile aid for technicians working within the music industry, such as soundcrew, DJs and engineers, and provides a compact and robust unit which allows accurate adjustment of tone controls, graphic equalisers and crossover units of a PA system or disco amplifier. It allows correct tonal balance to be obtained by pinpointing irregularities in frequency response thus achieving a true-to-life sound system.

A sinewave is injected into the input of the amplifier/mixer of the sound system to be tested or adjusted. This signal automatically sweeps through the audio band ($20 \mathrm{~Hz}-20 \mathrm{kHz}$), and by adjusting parameters such as the graphics, speaker combinations, position and direction, tape or phono de-emphasis etc, a superior sound may be obtained. This method, unlike expensive real-time bandwidth analysers, which need a display and precision microphone and pre-amp set-up, requires only a trained ear to set up a complete PA system in minutes, free of any spurious resonances and dropouts that may occur.

GENERAL

The Rocktone is based on two i.c.s-the XR2206 and the LM324 quad op-amp. The XR2206 is a high-quality waveform generator which can produce sinewave frequencies ranging from a fraction of a Hz to several hundred kHz , and which may be swept over a large range using an external current source or variable resistance.

The swept frequency output is buffered/amplified and inverted by two of the op-amps to produce a balanced line output of 0 dB . The other two op-amps form a comparator and monostable which produce a reset mechanism enabling the circuitry to automatically sweep and resweep through the audio band at an adjustable rate.

OPERATION

The output frequency of the generator is proportional to the current drawn from pin 7 of IC1, given a fixed value of C3. This variable current is generated by TR 1, the base current of this device being supplied by the charge stored on C4 via a limiting resistor, R2. The discharge time of C4 is determined by the setting of VR1. D2, D3 and R5, D4 in this path produce a rate of discharge that allows even time spacing between octaves, as the frequency sweeps across the audio band. The voltage on C4 is monitored by IC2a which compares this to a preset value, determined by D6 and the variable potential divider, R7 and VR4. When the voltage on C4 falls to about 0.7 volts, i.e. the base-emitter threshold of TR1, the output of IC2a goes high which triggers IC2b, the monostable. The current through TR1 is now at a minimum and thus the output frequency also falls to a minimum value.

The monostable time period (approx 10 ms) is determined by R15, C6 and the hysteresis produced by R13 and R14. D8 clamps the inverting input of 1 C 2 b pin 6 , to a diode drop below

0 volts. When the monostable is triggered IC2b is switched on, charging up C4 via R3, and D1 to D5 producing a constant charging voltage. D1 is introduced to prevent C4 from discharging via the charging path. TRI consequently conducts and the output frequency rapidly increases to its upper limit, determined by R1. The frequency then sweeps down as described earlier.

The automatic sweep may be disabled, and the frequency set manualiy by VR2. S2a disables the comparator, while S2b discharges C4 and switches in VR2. Note that VR2 is connected in the 'anti-log' configuration.

IC2c acts as a buffer/amplifier, the gain set at $-1 / 3$ by R16, 17. IC2d acts as an inverter and together with the complementary output of IC2c produces a balanced output at 'line' level, about $2 \cdot 2 \mathrm{~V} \mathrm{pk}-\mathrm{pk}$.

CONSTRUCTION

Assemble the p.c.b. in the usual order, i.e. resistors first, then capacitors and diodes followed by semiconductors and i.c.s using the component layout in Fig. 3 as a guide. Check the polarity and orientation of the i.c.s, diodes and capacitors before soldering. On the prototype unit C5 was mounted on the track side of the p.c.b., care must be taken to ensure that the compo-

Fig. 1. Circuit diagram
nent body remains clear of the tracks. Once the p.c.b. has been assembled, solder in the connecting wires, battery clips and potentiometers, taking care to wire up VR2 in the 'anti-log' configuration, i.e. maximum resistance between the potentiometer connections in the 'off' position.

TESTING AND ALIGNMENT

Connect up the batteries and switch the unit on with the manual override control (VR2) set to $3 / 4$ maximum. Monitor the output of IC1 (pin 2) with the aid of an oscilloscope and
check that a $3 \mathrm{~V} \mathrm{pk}-\mathrm{pk} 1 \mathrm{kHz}$ signal is present. If no signal is present, check ICl and associated components.

Adjust VR3 for best sinewave purity, i.e. with least 'triangle ramping' distortion. Monitor the outputs of IC2c-d (pins 8 \& 14), and check that there is just over $1 \mathrm{~V} \mathrm{pk}-\mathrm{pk}$ of signal with respect to 0 V and approximately $2 \cdot 2 \mathrm{~V}$ between outputs. If there is any variation check R16 and R17, and IC2d associated components. Adjusting VR2 should give a range of frequencies between 20 Hz and 20 kHz . Switch over to automatic sweep and monitor the falling frequency waveform with VRI set maximum

Fig. 2. P.c.b. design

EG611]6

Fig. 3. Component layout
anticlock wise, i.e. slowest sweep rate. Adjust VR4 anticlockwise to decrease the lowest frequency output, which should be set at 20 Hz . The sweep rate should be adjustable between about 5 and 20 seconds via VR1 and produce an even time span between octaves. If this is incorrect then check C4, TR1, VR1 and associated components.

Fig. 4. Wiring details

USAGE

The PA should first be set up approximately using a vocal microphone or tape, the input equalisation being bypassed or set flat. Consideration should be given to the type of sound that is to be reproduced, thus providing a reasonable starting point for frequency analysis. The Rocktone can then replace the input to provide an accurate signal reference.

Using the Rocktone in its sweep mode and set to a long sweep time, the output of the speakers as affected by the acoustics of their environment can be heard. Careful attention to the volume

Final assembly showing p.c.b. in position

COMPONENTS . . .

Resistors

R1, R7, R9, R25	1 k (4 off)
R2, R15	470 k (2 off)
R3	470
R4, R13, R16, R20,	
R23	10 k (5 off)
R5, R8, R10	100 k (3 off)
R6	100
R11, R24	22 k (2 off)
R12, R14, R18, R19,	
R21, R22	47 k (6 off)
R17	$3 k 3$
All resistors $\frac{1}{4} \mathrm{~W} 10 \%$	

Capacitors

C1, C2, C6 to C10
C3, C5
C4
Semiconductors
D1 to D4. D6 to D9 D5
TR1,TR2
IC1
IC2
$22 \mu 16 \mathrm{~V}$ electrolytic (7 off) $47 n$ ceramic (2 off) $47 \mu 16 \mathrm{~V}$ electrolytic

Potentiomelers

VR1	100k Lin (miniature) plus dpst switch
VR2	1 M Log (miniature) plus dpst switch
VR3	470 preset
VR4	10 k preset

Miscellaneows

P.c.b. (see Constructor's note) Case, about $40 \times 65 \times 180 \mathrm{~mm}$ PL11, XLR Series Connector, 3 -pin plug 9V PP3 battery (2 off)
Battery clips (2 off)
Knobs (2 off)

Constructor's note

A complete kit of parts for this project is available from Watford Electronics, 33 Cardiff Road, Watford, Herts (0923 40588). The kit is priced at $£ 19.95$ including VAT and $p \& p$.
present in the room as each frequency sweeps through will reveal resonances of loud peaks and weaknesses where response is poor or absorption is high. Output equalisation should now be readjusted to provide a smoother response. As the response becomes increasingly flat with adjustment, smaller variations will become audibly apparent. It is common with most sound systems to have frequency bands of particularly high irregularity, often at $100-300 \mathrm{~Hz}, 1-2.5 \mathrm{kHz}$, and at $5-6 \mathrm{kHz}$ as cross-over points, cabinets, drivers, filters and amplifiers peak. These points will produce a warbling sound during incorrect adjustment when swept.

Use should also be made of the manual frequency control facility to pinpoint the frequencies concerned, rolling the frequency back and forth over the band required. With some practice and attention to detail a smooth response will be obtained. As a final check, the whole band should be covered at a fast sweep rate. Professional use of this unit at major European and UK concerts has revealed several additional uses for the Rocktone. It has proved invaluable for testing speakers, filters, signal cables, channel and effects patching and in the workshop as a general purpose frequency generator.

Get moving with these new developments in UK Robotics

- advanced electrohydraulic designs for education, industry and now available to the home constructor.

Robotic expenence is jeconung as essential a subiect as computing VICROGRASP provices the lowes! cosi means of as computing expertence but despite is ultra low price ine robol has considerable leedback from each of the arm movemenis Control is there is computer with an expansion bus - the 2×81 Deing parlicularly sulable Servoing is achieved with hardware on the interlace board to keep programming sunple and the robol is operaled under BASIC commands with no conpuler specilic soltware requires The inlerlace
board is memory mapped using only 64 bytes al any of 1024 swich board is memory ma
selectable locations

MiCROGRASP robot hit with dower Supply
2xel peripherat PAM Pack splthet boarc
$€ 145.00$
[48.50
${ }_{\text {E3.00 }}^{\text {E2.50 }}$ MICROGRASP, INTERFACE BOARD AND $\mathrm{ZX81}$

HEBOT KIT ${ }^{\text {E85.00 }}$

printing, call to machine code routines, hexadecimal support and userfriendly textual error trapping messages.

If computers interest you then the Cortex will expand you understanding infinitely more than off the shelf machines. Use it in business, education, research or just play with the incredible graphics capability. At Powertran we are using these machines in conventional rales. in product control and R \& D. We shall coordinate the Cortex user group and distribute software for the TMS 9995 CPU. Complete 16 bit 64 K computer kit $£ 295.00$ +
Up to the nano-second hard, firm and software developments embodied in a complete system. 12 Mega Hertz 16 bit CPU: 64 K upwardly compatible DRAM; separate 16 K video DRAM and 24 K TI Power Basic with overwrite. Supports up to four Disc drives of mixed type with 16 serial $1 / O$ ports. Programmable Baud rate and comprehensive E Bus interface designed to support real world applications
Very high resolution graphics gives 3D simulation in 16 colours on 36 prioritised planes of user definable characters Software FORTH coming includes this trendy language along with NOS C/PM.
Hardware components available separately with details in Nov Dec. and Jan issues of ETI. Software features include; Real time clock, full renumber command, buffered $1 / O$ to free machine whilst

Top of the range is the Genesis P102 which has dual speed control. contınuous servo operation and double acling cylinders for increased torque on the wrist and arm rotation joints The microprocessor based control system has additıonal memory. position interrogation via the RS232C interface increasing the versatility of computer control and inputs are provided for machine 1001 interfacing

[^3]

Genesis S101
Base: $19.5^{\circ} \times 11^{\prime \prime} \times 7.5^{\prime \prime}$ Lifting capacity: 1500 gm Arm lift: $6.6^{\prime \prime}$
Weight: 29 Kg
4 axis model in kit form 5 axis model in hit form

Genesis P101
Base: $19.5^{\prime \prime} \times 11^{\prime \prime} \times 7.5^{\prime \prime}$
Litting capacity: 2000 gm
A. lengins between axies: 14.0^{-}

Weight: 34 Kg
6 axis model in kis form $\mathbf{6} 675$
Complete Systems as shown in Photograph on right
Genesis 5101
4 axls system in kit form $\mathbf{6} 681.50$
5 axis system in kit form $\mathbf{6 7 3 7 . 5 0}$ 5 axis system Ready Buill £1450
Genasis P101
5 axis system in kih lorm $£ 945.00$ 6 axis system Ready Buill C 1650

All prices exclusive of VAT
GENESIS P102 PROCESSOR BOX AND HAND HELD CONTROLLER

T
HE DREAM a few decades ago, of abundant cheap energy, began as a nightmare. The power of the atom first flashed its awesome might across two Japanese cities. Yet as the horror subsided into that dream of peacetime nuclear power, mankind's fleeting phantasm of a clean, cheap energy culture threatened to revert to a nightmare again. Many feel that the unstable dream, in its original form at least, now lies at the bottom of the sea in a cannister marked "Radio Active Waste". Some argue that it has been stamped "Unmanageable", and laid to rest on Three Mile Island. Whatever the case, in the 1980s energy is neither cheap, nor abundant. The great illusionist is fission-the process of splitting atoms to generate heat, to generate steam, to generate electricity. Fission produces high energy radiation, and creates spent fuel that is a menace for generations.

INCREDIBLE OBJECTIVE

Matter to energy! Is the alchemy not safely possible? Collectively, Europe intends to find out. Whilst the Sizewell debate radiates through the media, a far more portentious project which really could change our lives, is quietly forcing back the frontier of nuclear engineering. The project, based at Culham in Oxfordshire, is known as the Joint European Torus (JET). The complex houses the most ambitious fusion venture of the European Atomic Energy Community (Eurotom). As far as the fusion alternative is concerned, only one mechanism has the potential to produce enough heat to generate commercially viable electric power. This toroidal machine is called a Tokamak, and at Culham they have constructed a leviathan.

Fig. 1. Aerial view of the JET laboratories at Culham, in Oxfordshire

Fig. 2. The JET Tokamak. The scale of this machine will be appreciated by comparing it with the figure standing alongside

Fission's only attribute is the bare fact that it can generate electricity, but because of its deadly pollution it lacks widespread approbation. Fusion, on the other hand, could fulfil the promise of a renewable energy source without the need to handle and dump toxic wastes. An elegant, but demanding alternative, as you will see.

The objective of the JET project is to create a plasma with a size, density and temperature comparable to that required by a power producing reactor. This plasma will need to reach a temperature of 100 million degrees centigrade. The plasma column will be about two metres in diameter, and have a density 100 million million atoms per cubic centimetre. Although many other difficulties lie in the path towards an economic fusion power station, achieving these parameters on the JET will be a quantum leap forward.

Plasmas, and their physics are complicated, and not yet fully understood by scientists. There is no guarantee that the JET apparatus, designed in 1974, will be able to achieve the specified parameters. The Joint European Torus is nevertheless thought to be the most advanced Tokamak of its type in the world. In it incredible electric power is required to heat up the plasma. Even the 4.8 million amperes heating current is totally inadequate to generate the plasma temperatures necessary for nuclear fusion.

Towards

 REALITY 繯Fig. 3. The neutral injection system. This beams energetic neutral hydrogen atoms into the plasma. The power supply for this system is regulated and switched by large tetrode values
the cluster of protons and neutrons varies from element to element, but it is possible to create a nuclear reshuffle in which a surplus quantity of that binding energy is released. Fusion is such a reshuffle, for it is the fusing together of two or more elements into one or more heavier elements, during which there is a yield of surplus binding energy. In the case of deuterium (D) and tritium (T), helium, and a neutron are also released upon fusing.

Deuterium and tritium (the two heavy isotopes of hydrogen) are favoured because they have a high reaction rate whilst imposing the least stringent conditions. Deuterium could not be more plentiful on this planet, as it is obtained from ordinary water. Tritium, however, is rare, but can be manufactured from the fusion process itself. By bombarding a blanket containing lithium (which is plentiful) with those expelled neutrons, both tritium and helium are produced.

THE NEED FOR HEATING

Because the deuterium and tritium nuclei each have a positive electric charge they strongly repel each other. They simply will not come close enough together for a fusion reaction to occur. The way to overcome this obstacle is to impart sufficient energy to their nuclei to overcome the mutual electrostatic repulsion. Heating the gaseous fuels to a very high temperature will do just that, by ionising them-stripping the electrons away from their parent nuclei. The result is a mixture of positively and negatively charged particles. A gas in this disrupted condition is called a

Further heating must be introduced by squirting in highly energetic neutral atoms, a process called Neutral Injection heating (Fig. 3). Still more energy has to be found by way of high energy Radio Frequency heating (Fig. 4).

Over a period of some four years, starting in 1983, the plasma power capability of the Tokamak will be increased in stages until it reaches 25 megawatts. At full power, temperatures averaging 50 million degrees are anticipated; at which stage the thermonuclear reactions brought about by the introduction of deuterium-tritium plasmas, will push the temperature up to the required 100 million degrees centigrade. If ignition is achieved, the powerful external heating systems can be turned off, leaving the plasma temperature to rise by itself until the end of the pulse. The less fortunate outcome would be that the plasma simply does not reach a high enough temperature to justify the use of tritium.

WHAT IS FUSION?

At the centre of every atom is a nucleus comprising positively charged protons, and uncharged neutrons. Orbiting this cluster, as if in a microscopic solar system, are negatively charged electrons. The strength of the invisible force which holds together

Fig. 4. Radio frequency heating antenna. Operates at the ion cyclotron frequency ($25-55 \mathrm{MHz}$ on the JET)
plasma. See Fig. 5: At 100 million degrees centigrade, äbundant fusion reactions occur in a deuterium-tritium plasma, releasing large amounts of energy.

WHAT IS A TOKAMAK?

There is no known material out of which a vessel could be made, to contain a one hundred million degree inferno without itself vapourising. Yet containment is essential if the amount of energy produced by fusion is to exceed the amount of power required to run the system. The latter requirement is an obvious precondition, and is expressed as the product of fuel density and confinement time (known as Lawson's Criterion).

Since a plasma is a mixture of charged particles it can be influenced by a magnetic field, and for over thirty years investigations into how to achieve the magnetic suspension of a fusion reaction have led to a machine called the Tokamak. In this configuration, even though high temperature plasmas have a natural tendency to expand, they remain in a compressed column, held there by a magnetic force for periods in excess of one second. The plasma's charges whirl around randomly, unable to escape. See Fig. 6. Because of this, heat is not lost, nor are impurities released through contact with any physical objectin theory at least. But even the Tokamak is only partially efficient in these aims.

THE JET TOKAMAK

A complex array of magnetic circuits are required to activate the JET Tokamak. The main component of the system is the set of toroidal field windings which are used to suspend the plasma. In shaping the plasma column, these toroidal coils, shown in Fig. 7, are assisted by poloidal coils. However, the most interesting field action is that of the transformer which induces the plasma heating current. Whilst the primary of this is also a poloidal winding, its secondary is the plasma itself. The toroidal circuit of plasma acts as a single-turn secondary winding.

The JET will use hydrogen plasmas during its early life, before moving on, if successful, to deuterium-tritium plasmas to obtain a fusion ignition.

ENGINEERING STATISTICS

The accompanying photographs show the standard of engineering required to build the 100 tonne vacuum vessel and its peripherals. The 32 toroidal field coils alone add up to 384 tonnes (12 tonnes a piece), and these are each 24 turns of heavy

Fig. 5. Heat turns gas into plasma by dislodging the electrons from their orbits

Fig. 8 (leftmost). A poloidal field coil suspended during construction

Fig. 9. An octant is seen being lowered into position
Fig. 10. Complexity of the JET hardware is apparent during construction

copper bar capable of conducting 66,000 amperes. It takes 700 litres of water per second to cool these coils. In the fully completed design, the total magnetic field at the plasma centre will be 3.4 Teslas. The coils are " D " shaped because this is the shape they would deform to, if flexible, under the 2000 tonnes of mechanical force developed by their own magnetic field. This geometry, therefore, gives rise to minimum stress. Magnetic effects produce an enormous twisting moment throughout the entire structure, which is designed to withstand up to 20,000 tonnes metre.

The torus hall is built around a pit housing the ring manifolds which supply water, the vacuum and hot carbon dioxide to the machine. The massive limbs of the magnetic circuit (Fig. 12), the bulkiest components of all, support the toroidal structure. This toroidal vacuum vessel is fabricated from eight welded sections, called octants. The vessel has to support a very high vacuum, and so before each run is baked at $500^{\circ} \mathrm{C}$ for several hours to "descale" its surfaces of potential gas forming particles, otherwise outgassing would offset the pressure. This is the purpose of the hot carbon dioxide supply. Welding between octants is so superb that it would take 3000 years for one litre of air to penetrate the system.

In use, conventional heating elements attached to the vessel help to achieve the base pressure of 10^{-10} torr. required to minimise the level of impurities in the plasma.

Materials and engineering parts for the JET have been manufactured by industry throughout Europe, and the project has cost around $£ 500$ million.

FLYWHEEL GENERATOR

It would be unfair to dim the lights of Oxfordshire every time the JET is pulsed. With its 700 megawatt thirst for power, a substantial part of the supply has to come from two flywheel generators, each accelerated by a 8.8 megawatt pony motor. Flywheels weighing 775 tonnes rotate at $225 \mathrm{rev} / \mathrm{min}$ to make 2600 megajoules available to the Tokamak (Fig. 14). Four rectifier stacks convert the first rotor's output to d.c. for the toroidal coils. In the case of the poloidal field, specially designed fast air-blast circuit breakers initially interrupt 80 kiloamperes to generate a back e.m.f. capable of ionising the gas. This system also allows reversal of the poloidal coil connections to obtain maximum flux change in the heating current transformer.

COMPUTER CONTROL

The JET is a learning tool, and because of this its computers have a dual task; the first being to control the operating parameters, the second being data acquisition and storage. A network of 25 Norsk Data ND-100 and ND-500 minicomputers is used in a hierarchical structure, in which each processor monitors its own part of the machine. Information is transmitted along fibre-optic loops at a rate of 5 million bits per second, and each pulse of the JET results in the collection of over one million datum entries.

The Control Room's ND-560 computer files the data for use by the experimentalists, before transferring it to Culham Laboratory's large computers for further analysis, and archiving.

DIAGNOSTICS

Gathering information about the behaviour of high temperature plasmas obviously cannot employ sensors requiring physical contact with it. Passive, and active particle beams, light, and electromagnetic radiations are used. Fig. 15 shows the complexity of the diagnostic equipment.

Plasma position within the vessel is detected using inductive coils integrated into the vacuum vessel wall.

Interferometers detect the delay, measured against a microwave or infra-red reference beam, caused by electrons in the plasma. This allows measurement of electron density.

The type, density and temperature of energetic atoms within the plasma determines the wavelength and intensity of emitted light. Spectrometers are used to detect this light emission.

Local values of electron density and temperature are discovered by a technique called Thomson Scattering. In this, the degree of scattering of high intensity, pulsed laser light is observed.

Plasma ion temperature is ascertained by observing the neutral particles escaping from the plasma. These particles have thermal equilibrium, and escape through the magnetic barrier because of their neutrality

A bolometer measures the broad spectrum of radiated energy loss. A temperature-sensitive resistor mounted on a foil absorber acts as the detector.

Measurement of the plasma's X-ray emission yields information on density, temperature and impurity content.

Fig. 11. Octants awaiting assembly. A toroidal field winding assembly is in the foreground

Fig. 12. Apparatus under construction, showing the massive transformer limbs

All photographs courtesy of the JET Joint Undertaking

Fig. 13. Octants in position between the transformer limbs

Fig. 14. One of the 400 MW flywheel generators under construction. Two of these generators supply power to the Tokamak, which, when surge loaded, drop to half speed. The rotors weigh 775 tonnes each!

In the latter phase of the JET's life, measurement of the neutron emission during fusion will reveal the reaction rate.

Once deuterium-tritium fusion has occurred, this high energy neutron radiation will have activated the machinery, seriously restricting access by personnel. For this reason, all sensory transmitting and receiving equipment has been mounted outside the biological shield, despite the alignment exactitudes this imposed.

SERVOMANIPULATORS

Once irradiated, it will be unsafe for human beings to inspect the torus walls, or service the machine's auxiliary equipment. However, the unpredictable nature of the handling places this work outside the realm of programmable robots. It was decided to employ remote handling manipulators which operators control by viewing through closed circuit television links. The slave unit, at work in the radio active area, is designed to reflect back to the operator the forces exerted by its manipulator. This gives a "feel" to the operator as he remotely uses power tools, spanners and welding torches, etc.

LEAGUE OF FOUR

Only four large Tokamaks exist, either completed or under construction. Apart from the European torus, there is the

Fig. 15. JET diagnostic system

USSR's T15, the USA's TFTR, and Japan's JT-60.
The release of energetic neutrons from this type of machine could be used to heat up a surrounding blanket, in order to raise steam for a conventional steam-turbine generator. No such provision to generate electricity has been made on the JET, as this will be the subject of study for the next generation of fusion experiments.

At the time of going to press, it was thought that the JET would be powered up for the first time in June 1983.

The Sun is a typical star, producing 3.3×10^{26} joules per second by fusion, and is consequently reducing in mass at a rate of $4.2 \times 10^{9} \mathrm{~kg} / \mathrm{s}$ (one millionth of its total mass every ten million years).

The thermonuclear reactions which make our sun shine will not be casually mastered; notwithstanding Culham's wrestling ground, the commonplace fusion power station is reckoned to be sixty years away. In the meantime, therefore, fission, with all its imperfections, will continue to serve in an era of its own.

ACKNOWLEDGEMENTS

The technical data in this article is based entirely on material supplied by the JET Joint Undertaking. All photographs and diagrams shown are courtesy of same.

PE SPECIAL CASSETTES OFFER

CHROME C60 \& C90

FERRIC C90 AUDIO

Videotone Ltd., 98 Crofton Park Road, Crofton Park, London SE4.

EVERYDAY ELECTRONICS and computer PROJECTS

THE JUNE ISSUE IS BURSTING WITH IDEAS
\star COMPUTER USERS \star
EPROM PROGRAMMER-TRS80 \& VIDEO GENIE

* CARA VANNERS \& CAMPERS * CARAVAN POWER SUPPLY CARAVAN FRIDGE ALARM

\star MUSICIAN *

ENVELOPE SHAPER FOR BASS GUITAR
\star FOR THE HOME *
PUSH BUTTON COMBINATION LOCK
PLUS ALL THE REGIILAR FEATURES

JUNE ISSUE ON SALE

 MAY 20Place a regular order with your NEWSAGENT-Now!

NEW AND FREE FROM GSC.
NEW an exciting range of projects to bu ld on the EXP300 breadboards.
NOW anybody can build electronic projects using "Electronics-by-numbers", its as "Zasy as A B, C with G.S.C!"
FREE project
MUSICAL DOORBELL OF THE 3RD FIND
You ve seen the film, now haunt your visitors with the tune!
Eact time the doorbell is pushed the eerie tune plays out, then switches off to conserve battery power.

HOW DO YOU MAKE IT.
Our FREE project gives you clear "step-כystep" instructions. For example "take
Resistor No. 1 and plug it into hole numbers B45 and B47'
"Tabe IC No. 1 and plug it into hole numbers E35 to E42 and F35 to F42, (pin 1 on t 7
IC goes into F 35)
"Tare. . "Well! why not. "clip-the coupon" and get your FREE step-by-step instruction shee: and your FREE 12 projects with each EXP300 bought and your FREE cataloge and.

EXPERIMENTOR BREADBOAFDS
The larget rance of brezobourds from SSC Each hole is isentilied by a lecter nummet sysuem
 All modula construction meins man ay Engerimentor brexdboard can be 'shop locked together to buito breadboards of any wire

ExP300

The most "wnely bought' breadboad Don't miss oct on our NEw AND FAEE' prorects They ean be wull on the EXP 300

Exp600
The Mobby sts microprocesuor bowo
Expsso
The "one chap mictepoctewor" bave
Expas
Sheos on' tocr ecitra hus bus
P86
The ultamate recthourd lit
PB100
ine mosi het so the leint moner

NEW AND FREE FROM G.S.C. 24 HOUR SERVICE.
Tel (0\%93) 21832 with your Access. Americ on Express, Barclevcerd numeer and your order will be put in the post immedictely.

TO EADE A JUST CLIP TME COUPON.

Escerrmentor Br-adhourds	Unit Price Inc. PGP. 15\% VAT	Quantir Aecgureri
Esa 325	13 16	
E10 350	1483	
Ex0 300	1805	
E10 600	1948	
Ex0 650	1515	
E® 48	[3) 13	
P8,	11380	
P8. 100	11753	

NEME
ACOMESS
eaclose chertuer Po for If
Desit my credre card No
Enary date
Plesse send tree catalogue Fick \square Dept 5P

GLOE Sercialtis corporation

GSC Unit 1, Shive Will ind GSC Unil Shire Will Ind, Estare
Sation Walien. Essex. CBII 3 AC Telephone ro7991 21682
Telex 817477 . Depl 5 P

ZEAKER MICRO-ROBOT PART 2 DAVID BUCKLEY

IN the Control Station the holder for the four C-cell Nicads is bolted to the bottom of the box (actually the lid, but the box is used upside down), offset towards one side to allow room for the power/charge lamp. The Nicad supply on/off switch and indicator l.e.d. are fitted to the front of the box. The 3.5 mm jack socket for the ZX81 power supply and $2 \frac{1}{2}$ foot link to the $\mathbf{Z X 8 1}$ are fitted to the rear.

The three 16 way ribbon cables (two to the computer interface board and the umbilical to Zeaker) leave the box through cut outs in what is now the lid, these should be of a size such that the ribbon cable is just clamped when the box is closed.

CONTROL STATION CIRCUIT DESCRIPTION

The circuit (Fig. 1) can be divided into two distinct parts: the computer READ port and the computer WRITE port. In the prototype both these ports are memory mapped at address 35000 decimal.

Dealing first with the READ port. Data lines DO to D7 are normally held high by resistor pack IC3. Lines D6 and D7 terminate on pads inside Zeaker and are not used hence D6 and D7 are always high. The remaining lines D0 to D5 terminate at the insulated pillars set into the sides of Zeaker and indicate the state of the tactile sensor switches, a low data line implying that Zeaker is touching something (see table of sensor codes). All the fenders are connected to OV and on impact with an obstacle a fender will move in and make contact with one or more pillars, hence shorting the respective data lines to OV .

Turning now to the WRITE port. DO, D1 control the port drive motor; D1, D2 control the starboard drive motor; D4 the pen; D5 the lights; and D6 and D7 the horn.

One end of the port drive motor goes to the centre tag of the battery and the other to the junction of TR3 and TR4. Turning on TR3 will cause the motor to run forwards and turning on TR4 will cause it to run in reverse.

D0 high is port motor forwards and D1 high is port motor reverse. IC1a and IC1b are wired as a set reset latch which ignores the condition DO high and D1 high, so preventing destruction of TR3 and TR4.

When DO goes high the output of IC1 a goes low, so turning on TR2 which turns on TR3, when DO is low TR2 is held off by R2 and R3. TR 1 is normally held on by R1 and R4 and so shorts TR4 base to earth but when D1 goes high the output of IC1b goes low and turns off TR1, TR4 is now able to turn on by base current through R5.

The operation of the starboard motor is similar except that forward and reverse are switched around so TR8 on gives starboard motor forwards. This evens out battery drain when going forwards or backwards.

Data line D4 high turns on TR9 which turns on TR10, switching on the solenoid which lowers the pen. The I.e.d. D3 provides indication that the solenoid is activated. Diode D4 is to short out the inductive high reverse voltage when current through the solenoid is halted by TR 10 turning off.

Data line D5 high turns on TR11 which turns on TR12. lighting D1 and D2, the red and green l.e.d.s.

Data lines D6 and D7 control the horn, via the reset lines of IC2 which is wired as two astables. The frequency components R20, R21, C2 and R22, R23, C5 were chosen by experiment so that the tones sounded right when both are on together. C3 and C4 are the usual blocking capacitors.

CONTROL STATION PCB

The p.c.b. for the control station is shown in Fig. 2 with the component layout shown in Fig. 3. The resistors by the 556 are mounted on end but the others are mounted flat. There are a number of wire links to be soldered in place and these are best done with insulated wire. None of the transistors need heatsinks and are all mounted vertically. The three 16 way flying leads can be soldered directly into the p.c.b. but it is easier to use headers on the leads and plug them into the p.c.b.

CONTROL STATION CHECKOUT

The easiest way is to plug the read and write cables into the interface board, plug the ZX81 power supply into the back of the control station and plug the flying power lead

[56134]
Fig. 1. Circuit diagram of the Control Station
into the ZX81 9 V socket and check that the computer still works. The computer is only connected to the control station and Zeaker by the OV line and the data lines from the buffer chips on the interface board so this shouldn't be a problem.

Plug the umbilical into Zeaker and POKE the interface board port with zero; this turns off all the outputs. Now switch on the 5 V supply and nothing should happen. POKE the port with the various control codes (Table 1) and check
that Zeaker functions. When any of the BD power transistors are turned on there should only be about 0.5 volt between collector and emitter and about 0.1 volt between collector and emitter of their driving transistors.

PROGRAMMING ZEAKER

To program Zeaker all that is needed is a computer with an 8 -bit output latch and an unlatched input port with 6 or 8

Fig. 2. P.c.b. design

Fig. 3. Component layout
bits (6 for the unexpanded Zeaker). The particular way that these are available will depend upon the microcomputer and interface used. The signal allocation for the output and input connector leads are shown in Fig. 5.

Writing (POKEing for a memory mapped port) a word to the port sets the respective bits of the output latch. Reading (PEEKing) the port will return the status of the bump sensors.

A list of the control codes and their effect is given in Table 1. Any combination of control codes can be written to the port and Zeaker will be controlled by their combined effect e.g. Writing a 1 will set the port motor to forwards and writing a 4 will sat the starboard motor to forwards, hence writing $5(=4+1)$ will set both motors on forwards. Writing $37(=5+32)$ will set both motors on forwards and also switch on the lights.

COMPONENTS

CONTROL STATION

Resistors

R1,R2,R3,R4,R8,R9,R11. R19,R20.R22	10k (10 off)
R5.R 12 - ${ }^{\text {W W }}$ 10\% carbon	820 (2 off)
R6.R13 $\frac{1}{2}$ W 5\%	470 (2 off)
R7	100
R14.R17 ${ }^{\frac{1}{2} W}$ W 2%	1 M (2 off)
R15,R18 ${ }^{\text {L }}$ W 5\%	4 k 7 (2 off)
R16,R19 $\frac{1}{2}$ W 2\%	220 (2 off)
R21 $\frac{1}{2}$ W 5\%	220k
R23 $\frac{1}{2}$ W 5\%	56k

All resistors $\frac{1}{4}$ W 5\% carbon except where otherwise stated

Capacitors

C1
C2
C3.C4
C5

Semiconductors

D1
TR1,TR5.TR9,TR11
TR2,TR6
TR3.TR7.TR10.TR12
TR4,TR8
IC1
IC2
IC3

100n ceramic disc 10 n ceramic disc $47 \mu 16 \mathrm{~V}$ elect (2 off) 22 n ceramic disc
red l.e.d.
BC238 (4 off)
BC308 (2 off)
BD132 (4 off)
BD131 (2 off)
74LSOO
556
pack of 8 commoned resistors RS type 140271

Miscellaneous

ABS plastic box $150 \times 100 \times 60 \mathrm{~mm}$
Battery holder for 4 C -cells
Nicad C-cells (4 off)
MES lampholder
MES 12 V 280 mA bulb
Double pole on/off switch
3.5 mm jack plug and socket

16 pin d.i.I. IDC header (5 off)
16 pin d.i.l. sockets (3 off)
14 pin di.i. sockets (2 off)
3 metres of 16 way grey ribbon cable
Molex 16 pin JD connector to mate with the 5332
series connector on Zeaker

Constructor's Note

The toe cover cap is available from most hardware stores and the wheels and motor gearboxes assemblies are obtainable from hobby shops.
A complete kit of parts for the vehicle (including machined, cut and ready-bent items) and control station with a manual and software is available from Colne Robotics Ltd., Beaufort Road, off Richmond Road, Twickenham TW1 2 PH (01-892 8197/8241). Price $£ 59.95$ inc. VAT.

Colne Robotics are also able to supply the separate parts. please write or phone for details.

The two longer programs mentioned in the text are avallable from Colne either on cassette or as a print-gut. Please state the type of computer being used with Zeaker when ordering programs.

Fig. 4. Wiring diagram

Interior views of the Control Station showing the battery housing and the p.c.b. mounting details

FROM COMPUTER WRITE PORT

D7	D6						
OV	OV	D5	D4	D3	D2	D1	D0
5V	5V						

TO COMPUTER READ PORT

D7	D6	D5	D4	D3	D2	D1	D0
OV							
OV							

UMBILICAL CORD

OV	Motor Common $2.5 V$	Motor Starboard	Lights	Spare	Sensor Starboard Rear	Sensor Starboard Side	Sensor Starboard Front
Solenoid	Motor Common $2.5 V$	Motor	Speakers	Spare	Sensor Port Rear	Sensor Port Side	Sensor Port Front

Fig. 5. PSU DIL headers Signal Allocations

```
KEYBOARD TEACH PROGRAM
1K 2X81
\begin{tabular}{|c|c|}
\hline & COMMENTS \\
\hline \multicolumn{2}{|l|}{(1 REM TEACH/DOIT)} \\
\hline \multicolumn{2}{|l|}{5 FAST} \\
\hline 10 LET A=35000 & 35000 IS A PORT ADDRESS \\
\hline 20 POKE A,O & SWITCH OFF VEHICLE \\
\hline 30 DIM M \(8(10,2)\) & \\
\hline 40 LET K1=. 6 & STRAIGHT RUN CONSTANT \\
\hline 50 LET K2 =. 61 & TURN CONSTANT \\
\hline
\end{tabular}
60 FOR S=1 TO 10
65 CLS
70 PRINT ''TEACH",''STEP"';S,
        "MOVE AND DIST/ANGLE/
        TIME"*
80 INPUTCS
90 INPUTD
100 IF C$="'F'' THEN LET
        M$(S,1)=CHR$5
110 IF C$="B" THEN LET
        M$(S,1)=CHR$ }1
120 IF C$="L" THEN LET
        M$(S,1)=CHR$6
130 IF C$="'R"THEN LET
        M$(S,1)=CHR$ }
140 IF C$ =''S"THEN LET
        M$(S,1)=CHR$ 0
150 LET M$(S,2)=CHR$ D
160 IF C$='"F''ORC$="B'
        THEN LET M$(S,2)=CHR$
        (D\timesK1)
170 IF C$= "R'"OR C $ = ''L"
        THEN LET M$(S,2)=CHR$
        (D\timesK2)
210 NEXTS
220 PRINT "TO DOIT PRESS D"
230 PAUSE 50000
    WAIT UNTIL ANY KEY
    PRESSED
240 FOR S=1 TO 10
250 POKE A,CODE M$(S,1)
260 PAUSE CODE M$(S,2)
270 NEXTS
280 POKE A,O
290 GOTO 230
```

When a port is read the resulting number will depend on which if any of the six sensor switches are closed. If none are closed i.e. if Zeaker is not touching anything then all 8 bits will be high and a read will return 255. If say the starboard front sensor is pressed then from Table 3, D3 will be low and hence a read will return 247. If both front sensors are pressed in then both D2 and D3 will be low and hence a read will return 243.

RANDOM MOVE PROGRAM 1 K Z X 81

CONTROL CODES

Port forward
Port back
Starboard forward
Starboard back
Solenoid on
32 Lights on
64 Horn 1
128 Horn 2
192 Horn 1 plus Horn 2
Table 1

SENSOR CODES
DO Starboard sensor Aft closed
D1 Starboard sensor Side closed
D2 Starboard sensor Front closed
D3 Port sensor Front closed
D4 Port sensor Side closed
D5 Port sensor Aft closed
D6 Spare
D7 Spare
Table 2

It is reasonably easy to determine which sensors are closed by subtracting the return value from 255 and transforming the result into binary. For the previous example of both front sensors closed this returns 243. Now $255-243=12=8+4=2^{3}+2^{2}$ hence data lines 3 and 2 are at OV which from Table 2 means that both front sensors are closed.

Although this may seem a complicated procedure to go through each time, remember a computer controls Zeaker and it will do all the tiresome calculations.

The initial software consists of two short programs, one which allows you to build a simple pattern and repeat it and the other lets Zeaker find its own way around obstacles, and two longer programs, which are available from Colne, one of which allows several patterns to be built up and joined together and the other allowing Zeaker to memorise its environment and to avoid obstacles sensibly.

For the initial ZX81 version of Zeaker the two short programs will each fit into 1 K of memory and so can be run on an unexpanded ZX81. Writing a 1 K program to control Zeaker from BASIC does not allow the full range of Zeaker's capabilities to be used. However, the two ZX81 1 K programs here should give an idea of the ease with which Zeaker may be controlled from BASIC.

PROGRAM NOTES

Encoding the move code and time of move into the character array M\$ saves 80 bytes over using the numerical array. Against this must be set the 18 bytes for the CODE, CHR $\$$ and $\$$ used in the listing, resulting in 62 bytes saved, The program just fits in 1 K and can be edited and run. Report code 4 (out of memory) comes up most of the time but should be ignored. The program can store up to 10 moves and prompts for the move.

F=Forward
B=Backward
$\mathrm{R}=$ Rotate Right
L=Rotate Left
S=Stop
and Distance millimetres Distance millimetres Angle degrees Angle degrees Time in 50th second

To escape from the program press break.
The constants K1 and K2 should be fine tuned to the particular vehicle. The maximum value of any entry in $M \$$ is 255 and hence entering numbers greater than this in response to the prompt will cause the program to halt with an error code.

FURTHER DEVELOPMENTS

Although all 8 data read lines are connected to Zeaker only 6 of them are actually used, the remaining two terminate at pads by the Molex connector on the p.c.b. in the lid of Zeaker.

It is intended that these spare lines should be used to interface to add-on circuitry which will enable Zeaker to follow a white line, induction loop cable or simply seek or avoid light or heat.

Also instead of sending just the horn tones down the umbilical cord to the speaker it is possible to connect the output of a complex sound generator or a computer speech board to a pad by the umbilical cord connection on the p.s.u. board and Zeaker will be able to chuff along like a steam train or emit some more appropriate sound. It could also give a running commentary on its progress e.g. "Forward". "Right". "Left", "Ouch"! "Hit something at Left Front" etc.

Whilst Zeaker is relatively simple it is capable of quite complex interactions with its environment and in many respects it is only limited by the ingenuity of the controlling software
issue!
 provides automatic lighting and a burglar alarm. Invaluable in any home.

TIIMER PROJECTS

Based on an Intersil chip these four timer projects cover a wide range. They are: Hand Held Two Digit Down Counter; Hand Held Four Digit LCD Up Counter; Four Digit LCD Down Counter/Controller; and Four Digit LED Down Counter/Controller.

FARILITHT IIUSIC COMPUTER

The computer that has changed the world of music. We take an in-depth look at this digital ear on the world of sound. A computer that listens, stores and reproduces the sound as music.

PRACTICAL

THE IRAS SATELLITE SyCCESS

If the International Infrared Astronomical Satellite continues as it has begun it will have added much to offset some of the other disappointing news in other directions. First then the good news.

Another pass of the satellite was witnessed by the Parliamentary Under Secretary of State for the Department of Education and Science, Mr. William Shelton MP. Certain initiating commands made from Chilton, Oxon, the control station for the satellite, were performed by Mr. Shelton. This second event to which the press were invited was also a great success. Already a large amount of data had been collected. It is clear that there may be quite a long gap between the cessation of operations and publication of all the data.

It was expected that the useful life of the satellite would be in the order of 200 days, but as the boiling off of the coolant (superfluid Heliym) is slower than was expected it may be possible to extend the time to 300 days. Altogether this has been a most satisfactory scientific satellite. The actual planned survey was scheduled to be complete in 200 days and the principal scan may well be so completed. This will enable the bonus time to be used for extra scans by the Dutch special additional experiment (DAX). This was a special 'close-up' facility which means that if something unusual is seen it will be possible to look at it in greater detail. Already such a situation has arisen in that during the scan of the Greater Magellanic Cloud it was noticed that there was intense emission round the Tarantula Nebula. Also just one minute of time spent on surveying the Galaxy away from the Earth's atmosphere has yielded more than all previous surveys.

The wide range of the telescope enables it to assess the cool clouds and the hot new clouds. It has thus been possible to say that the cool clouds are large and extensive and that as they get hotter clouds or cloudlets formed are consistent with the present theories of the evolution of new stars. That is that the large and diffuse clouds at wavelengths of 100 micrometres are beginning to condense under gravitational pressure. As the clouds become smaller and are under the influence of the increased internal pressure giving rise to nuclear reactions they shine as stars in their own right. The telescope therefore can give extremely adequate proof of the theories of stellar evolution. It is no exaggeration to say that this 'eye' is another of those vital milestones that
precede not only acceptance of recent thinking but provide the impetus for the thinking of the immediate future.

A footnote here might be appropriate. During a private conversation with Mr. Shelton and in answer to some of his questions about the publication of scientific progress the author took the opportunity to emphasise that the change of name from SRC to SERC (Science and Engineering Research Council) had already been reflected in a more useful spread of information which enabled the very efficient publicity section to spread its wings.

PROJECT UNIVERSE

This venture which involves the Orbital Test Satellite (OTS) was again a task for Mr. William Shelton to play the role of initiator of this new joint effort. In the early development of microelectronics there seemed to be much misapplication as well as a great deal of incompatibility and no doubt this was the partial cause of high prices. The new techniques and especially proper attention to the importance of compatibility has brought some order out of chaos, with the fall of prices and the increasing sophistication of both hardware and software, giving impetus to the number of users in business and at home, which now opens the way for real improvement and standardisation. In this regard the most exciting development has been the setting up of Local Area Networks. These set up communication links between computers and their peripherals whose performance in terms of speed and reliability is comparable to that of the computers themselves. Local Area Networks (LANs) can provide electronic mail, the sharing within an office of costly printers etc., and scope for integrating computer aided design and manufacture.

A single LAN can link scores of computers, work stations and peripherals. Like $L E G O$ it can go on and on. All this means that computer technology is pushed to its limits. This is as it should be. There is in operation a ring LAN known as the Cambridge Ring. This was developed by the Cambridge University Computer Laboratory and can offer a capacity of 4.2 Megabits. In the literature this is the equivalent of 50 pages of the Concise Oxford Dictionary every second. Even so the Ring with all its facilities can only cope over short distances. To extend such a facility nationally or internationally requires another facility. This really is what Project Universe is all about. The name of that facility is provided by the consortium involved: The Universities Expanded Ring Experiment. The consortium comprises the Department of Industry, The Rutherford and Appleton Laboratory of the Science and Engineering Research Council, British Telecom, Cambridge University, GEC, Logica, Loughborough University of Technology and University College, London.

The operational set-up is as follows--the LANs at Rutherford, Loughborough, Cambridge, Martlesham (Telecom Research Laboratory), Chelmsford (GEC/Marconi Research Centre), and London (University College and Logica) with (a terrestrial link between them) are all linked via the Orbital Test Satellite, which provides the high bandwidth capacity required for fast transmission of data. To take data from a network and transmit it to a satellite requires a Satellite Bridge.

THE LINK DRIVING COMPUTER

This is a major element of the Satellite Bridge. In the Project Universe sites this is provided by the GEC 4065 mini-computer with 64 K bytes of semiconductor memory, a four-channel synchronous communications controller and cartridge discs. The LDC applies the necessary procedures, holds enormous amounts of data in buffer stores to await transmission and keeps account of the amount of traffic the Ring wants to send. It of course provides complementary functions for incoming data.

For the outward path the next step involves the Computer Interface Module which is responsible for controlling access to the satellite. There is a master Earth station which establishes a time frame by broadcasting every 130 milliseconds a reference burst which lasts for 100 to 200 microseconds, available to lock all the stations. Full assurance of uconfidentiality is achieved. The data is transmitted via a 3 metre dish at a frequency of 14 GHz transmitting and 11 GHz receiving. The real time for the out and return time is approaching 0.25 seconds.

THE ORBITING SATELLITE

The European Space Agency satellite (Orbital Test Satellite), is a three axis stabilised geosynchronous satellite launched in 1978. It is in orbit $36,000 \mathrm{~km}$ above equatorial Gabon. One of the purposes of the satellite was to prepare for the European Communications Satellite system with services such as British Telecom SatStream. It has a polar power transponder to re-broadcast up to 7,200 simultaneous telephone conversations. This project heralds the future in which the electronic office becomes truly international.

SPACE POWER EFFORT

Three Energy Agencies, the Defence Department, the Energy Department and the Aeronautics and Space Research Projects Agency have agreed to proceed with the high power project which will be known as SP-100 (solar power 100 kW) for future deployment in space. The organisation controlling the project will be the Defence Advanced Research Projects Agency. This decision marks the end of a ten year delay in coming to agreement among the parties. The escalation, promoted by defence authorities for military considerations and fear that America has of a space war, has overcome the profitability point of view.

Because the new agency, DARPA, is responsible for the space-borne laser technology, particle beam technology and space-borne radar techniques, it is in a position to assess the needs of such activities; and more closely when they will be needed DARPA will have disposition control. The scheme has far reaching consequences because some of the thinking is in terms of nuclear units of hundreds of kilowatts, and further to tens of megawatts into the 21 st century. It is envisaged that this work could result in 100 kilowatt units using a combination of systems; reactors could be available in the second half of this decade.

China Trade

Since writing a couple of months ago of prospects in China, more heartening news has emerged. At least two Racal Group companies are active in the market. RacalDana Instruments has concluded a deal with the Government of the People's Republic which involves assembly of the '99 series' frequency counters in Shanghai.
Kits will be shipped to Shanghai from the company's Windsor base, and although all details have not been revealed it is more than probable that the agreement includes provision of production aids including jigs, automated assembly and automatic test equipment. In fact a literal Chinese 'copy' of the UK production facility.
A couple of weeks after the instrument assembly deal Racal Recorders was able to announce that the Chinese Civil Aviation Authority had chosen the Racal International Communications Recorder as 'standard fit' at major airports. The ICR is a multi-channel (typically 20) long-play tape recorder which records all ground-air communications. Together with the aircraftfitted 'black box' it provides major evidence in disaster enquiries. Thus, quality and reliability are all-important and it seems the Racal product was chosen after competitive trials with other makes.

At present such orders are marginal, a trickle rather than a flood of trade, and they need a lot of hard work and considerable investment in time and travel to obtain. Racal-Dana, for example, has been building bridges with 40 Import/Export Corporation branches in Shanghai, Beijing, Guanzhou and Harbin. Patience and dedication now could be richly rewarded by future business.
Cable \& Wireless runs the hub of international telecommunications traffic in the Far East from its Hong Kong base. C \& W's chairman and chief executive, Eric Sharp, asserts that the Far East is the region with fastest economic growth and that 'our involvement with the Chinese Telecommunications Authority is a major development of our established business there'. The extent of the involvement is not
revealed but is probably already considerable and increasing if enly because C \& W have a highly trained and Chinese speaking staff on the spot. Again, growth potential is clearly enormous, the number of telephones in the world 30 years ago was 70 million-today it is over 500 million; and China must be near the bottom of the world league in telephone sales penetration.

Lesson

The recent water strike provided some much needed education. Few people outside the industry itself had the faintest idea of what is involved in gathering, purifying and distributing the precious liquid to our houses, offices and factories. Almost daily exposure on TV gave us a glimpse of the technologv involved.

But the most potent lesson was in what didn't happen. City streets were not awash with sewage after a few days. Nor after a few weeks. Public health did not break down. Stand-by troops were never used.

Much of the credit for the maintenance of supply must go to automation, water supply may be the oldest of the distributive industries, preceding gas and electricity. Some of our town sewers are still 19th century but elsewhere the industry is far from old-fashioned, and new equipment and systems are going in all the while.

An example is a Marconi contract for radio monitoring and alarm for a network of 35 unattended sewage pumping stations in South Northamptonshire. The system is microprocessor-based and each pumping station is fitted with an 'intelligent' alarm to alert the control centre of any malfunction. A visual display and hard-copy printout of system status is at the control centre. Standard practice so far, except that the base control centre itself is open only in normal office hours.

To cover all contingencies Marconi is supplying two transportable control stations so that a duty controller can be in touch with system status from anywhere in the area and at any time.

We shall never know how long it would have been before public health became endangered. And we were lucky with the weather (fewer burst mains than expected) and with some essential maintenance carried out by management personnel. There was inconvenience to the public but no disaster. Which leaves us wondering whether the water industry might, perhaps, be a little overmanned.

Recession?

What recession? Where? The electronics industry is clearly a special case but here, for the record, are a few success stories.

Marconi Avionics has signed a contract worth $£ 30$ million for the supply of 'headup' displays for use in General Dynamics F16 combat aircraft. This however, is for initial development and production, signifying follow-on orders.

Applied Computer Techniques (ACT) is investing $£ 10$ million in a new plant at Glenrothes. Fife, said to be one of the
world's biggest start-ups in microcomputers. Two hundred jobs this year, 400 by 1984

Hewlett-Packard Ltd in the UK has enjoyed a 42 per cent increase in turnover. Exports were up 34 per cent and sales per employee have rocketed from $£ 63,000$ to £83.000 per year. Amazing!

IBM United Kingdom-Turnover up by 24 per cent to $£ 1.24$ billion. Pre-tax profits up 40 per cent to $£ 225$ million.

Standard Telephones and Cables-Turnover up 11 per cent, pre-tax profits up by 27 per cent. Exports at £ 143 million, 14 per cent up.

Plessey-Pre-tax profits up 29 per cent in the first nine months of the financial year.
Digital Equipment is spending $£ 7$ million setting up an office systems software development facility at Reading. Jobs for $250-300$ in addition to the existing 120 in the present DEC software group.

Of course it's not all sweetness and light for every company but if these are hard times what's it going to be like in a boom?

Jobs and Pay

The Institution of Electrical Engineers 1983 Salary Survey is full of interest. The sample totalled 7616 Fellows, Members and Associates in the UK and Republic of Ireland. The dominant field of occupation remains 'Electronic or telecommunications equipment development or manufacture .

Compared with the 1982 Survey, unemplopment is down from 1.2 per cent to 0.7 per cent, reflecting continued and indeed increasing demand for qualified engineers. But there is a small shift in employment from the public sector to the private sector of industry, up $2 \cdot 1$ per cent at 56.1 per cent. In 1976 only 45.8 per cent were in the private sector.

Sialaries, however, are still higher in the public than in the private sector although the gap is narrowing. Taking all members in all grades and types of job, the salary range is from $£ 6,000$ for a young Associate up to £25.000 p.a. for a Member or Fellow in a senior positon.

Its good to see salaries rising. But better still the low unemployment in the profession. Less than 1 per cent leads us to ask again, what recession?

Shifting Pattern

The personal micro boom is shifting the pattern of trade. Many electronic nobbyists are spending on factory produced micros money they would otherwise be spending on components or kits. But perhaps only a temporary diversion of funds. The hard core of home constructors get as much if not more satisfaction from the making of a project and the understanding of how it works as from its end-use.

My own view is, that out of the thousands of purchasers of personal micros, quite a proportion will feel encouraged to take an interest in home construction where no interest had hitherto been shown. In fact a wider general enthusiasm for electronics could add to the ranks of the di.i.y. hobbyist.

EMILONDUCTOR CIREUITS тимеsilluma

HIGH QUALITY AUDIO PREAMPLIFIER (HA 12017)

HI-FI preamplifier designs of recent years have tended to use one of two basic circuits for the 'disc' input amplifier; either a conventional high performance opamp, or a discrete transistor based design. Opamps are simple, cheap, and easy to use, but in the highest quality systems they can sometimes create problems of noise or distortion. Furthermore, their maximum supply voltage is normally limited to around $+/-15$ volts, thus limiting their dynamic range and overload handling capability. Discrete transistor preamps, on the other hand, can be very complex to design and build. They are usually rather bulky, requiring large areas of Veroboard or p.c.b., and are often difficult to modify and experiment with. The performance, however, can be made very good indeed. The Hitachi HA 12017 is an i.c. which is specifically designed as a low noise, very low distortion audio preamplifier, and is able to offer the high performance of complex discrete designs with all the advantages and simplicity of integrated circuit technology. The i.c. has been developed from a similar device produced by Hitachi a few years ago, which has become somewhat of a standard in Japanese hi-fi equipment.

Although the i.c. can be used in a flat configuration (i.e. with no audible frequency dependent response characteristics), it is primarily designed and optimised for use as an R.I.A.A. equalised magnetic pick up preamplifier, for use with audio discs. (R.I.A.A. is the response characteristic standardised for use in record reproduction; it is the exact converse of the filtration which is applied to the cutting head when the master disc of the record in question is first made. By using such an arrangement of filtration, the modulation level recorded onto the disc can be made relatively high, improving the signal-to-noise ratio substantially.)

The pin configuration is shown in Fig. 1, and probably the most notable point to make about this is that the device comes in a single-in-line package; there is only one row of pins which stick straight out of the side so that
when mounted on its circuit board, the package stands vertically off the board. For experimental purposes, you could plug the two i.c.s (for stereo) into one ordinary 16 pin i.c. socket, but for a permanent installation this is not recommended, since at very low signal levels the quality of the connection could be a little suspect.
The specifications for the HA 12017 are

Charscteristic	Notes	Min. value	Typically	Max. value	Unit
Supply Voltage	All specs below are measured at $\pm 24 \mathrm{~V}$	± 6	± 24	± 26.5	V
Quiescent current	No input signal		4.0	6.0	mA
Temp. range		-30		+75	${ }^{\circ} \mathrm{C}$
Dissipation				500	mW
Total harmonic distortion	$20 \mathrm{~Hz}-20 \mathrm{kHz}$ output 10 V r.m.s.		0.002	0.01	\%
Dutput voltage	Freq. $1 \mathrm{kHz}, \mathrm{THD}-0.1 \%$	13.5	14.7		Vims
Opan loop gain	Freq. 1 kHz	95	105		dB
Max. input level	Freq. 1 kHz , THD -0.1%		235		mVims
Dutput noise A	Source resistance -43Ω Waighting curve used		11.5	15.6	$\mu \mathrm{V}$
Dutput noise B	Source resistance -3 k 3 Wide band (20Hz-20kHz)		53	90	$\mu \mathrm{V}$
Supply rejection	+ve supply @ 100Hz		56		dB
ratios	-ve supply fripple		45		dB

shown in Fig. 1, and they make interesting reading for all those interested in high quality performance! All the figures are based on the use of the i.c. in a complete R.I.A.A. equalised circuit, as shown in Fig. 2, so they are realistic indicators of the performance of the whole dise preamplifier stage.

SUPPLY AND OUTPUT VOLTAGES

Although the supply voltage can be as low as $+/-6 \mathrm{~V}$, the recommended rails are $+/-24 \mathrm{~V}$. This is intended to allow a very high output level to be obtained from the device before clipping occurs; typically 14.7 V r.m.s., or $41.6 \mathrm{~V} \mathrm{pk} / \mathrm{pk}$. The R.I.A.A. equalised circuit of Fig. 2 has a gain of 35.9 dB at 1 kHz (a voltage gain of 62 times), so the maximum in put level is defined as $1 / 62$ of the maximum

Fig. 1 (right) HA12017 pin-out and (below) its specification. Note that this refers to the R.I.A.A. equalised circuit of Fig. 2

output voltage; this works out as in input of 235 mV r.m.s. Most magnetic pick up cartridges only produce a typical signal level of a few millivolts, so this may seem to be an unnecessarily large input signal handling capability. However, some audio sounds and effects, especially those of a percussive or synthesised nature, can include much higher voltage short duration spikes or transients, which generate cartridge outputs much higher in level than the nominal few millivolts. By allowing up to $235 \mathrm{mV}(664 \mathrm{mV} \mathrm{pk} / \mathrm{pk})$ before clipping occurs, the i.c. allows plenty of headroom before these transients are distorted in any way. (Typically in the order of 30 to 40 dB , depending on the cartridge used.) As a result, the audible quality is excellent, and the sound is very clean. Many low supply rail designs are somewhat lacking in this
respect, so don't reduce the supply rails below $+/-24 \mathrm{~V}$ unless it's absolutely necessary!

DISTORTION

A large signal overload handling capability is of very little use to us if the device produces unacceptable amounts of distortion. In fact, the distortion specification is one of the HA 12017's most impressive features; typically 0.002% (1 kHz at 10 V r.m.s. out). The actual graph of third harmonic distortion versus output signal level is shown in Fig. 5, and it can be seen that clipping (i.e. the sudden onset of large amounts of distortion) occurs at around 15 V r.m.s. (as we have already established), and distortion slowly starts to rise at below 1 to 2 V r.m.s., which is not unreasonable. The distortion of this i.c. is so low that it could well be used in audio test equipment; as a front end amplifier in a distortion measuring set, or even

Fig. 2. Audio preamplifier circuit

Fig. 3. Feedback components for
R.I.A.A. equalisation; extremely
high accuracy system

E61126

as the central building block of a low distortion oscillator, for example. In this type of application, its own distortion is so low that it will have virtually no effect on the measurements of most audio system performance.

NOISE

Noise is one of the most important and fundamental specifications in any audio system. Arguments may rage over the audibility of phase changes or certain types of distortion, but the undesirable and intrusive nature of noise in audio reproduction is not under dispute.

As the front end amplifier in the audio signal path, the disc preamplifier is required to add the most gain to the signal, and hence also adds the most noise, defining the overall noise level generated by the complete system. As with the other operational parameters of this device, the noise specifications are very good;

with a source resistance of 3 k 3 , and a 20 Hz to 20 kHz bandwidth, the output noise voltage is typically $53 \mu \mathrm{~V}$, or -83 dBu . This gives a dynamic range of 109 dB (i.e. the difference between the maximum output signal level and the output noise), and a signal-to-noise ratio for a typical magnetic cartridge, producing 5 mV r.m.s. signal, of 75 dB (assuming a cartridge impedance of 3 k 3). In practice, the prototype circuit gave an output noise, in cluding residual hum, of $-84 \mathrm{dBu}(49 \mu \mathrm{~V})$ with a 3 k 3 resistor across its input, and -90 dBu $(25 \mu \mathrm{~V})$ with the input short circuited; both these figures were measured for the range 20 Hz to 20 kHz . The equivalent input noise, as derived from the specifications, is $0.85 \mu \mathrm{~V}$ or -119 dBu .

Fig. 6. Board assembly

Feedback components for R.I.A.A. equalisation; non-critical accuracy

Fig. 5. Graph of distortion against output voltage for main circuit

CONSTRUCTION

Fig. 6 shows the Veroboard layout for a complete mono disc preamplifier. 24 V power supply regulators have been added to allow any d.c. unregulated supply of $+/-27 \mathrm{~V}$ to $+/-35 \mathrm{~V}$ to be used. The regulated supplies can be used to feed a second preamplifier, of course, as in the case of a stereo system. The layout has been arranged to use the circuitry of Fig. 3, i.e. the high accuracy equalisation components, but the non-critical components of Fig. 4 could easily be fitted if preferred. For optimum performance, all resistors should be metal film types, and the capacitors should be as follows:

C2, C3, C5, C6 ceramic plate

$\mathrm{Cl}, \mathrm{C} 17, \mathrm{C} 19$ tantalum bead, 35 V rating or more
$\mathrm{C} 10, \mathrm{C} 13$ (or C15, C16) polycarbonate
C11, C12, C14 polystyrene
$\mathrm{C} 4, \mathrm{C} 7, \mathrm{C}, \mathrm{C} 9$ electrolytic, 63 V rating (50 V will also do)
$\mathrm{C} 18, \mathrm{C} 20$ disc ceramic, 50 V rating or more
All the normal rules and conventions of audio practice should be adhered to; plenty of supply decoupling, mains transformer far away from the preamplifier inputs, short signal leads, very thick earth wires, taken down to just one central common earth point, good quality connectors, etc. Somie of the interconnections and layout of components in Fig. 6 may seem a little strange at first sight. Do beware of changing the layout arbitrarily, however, because some of the layout and linking is critical for achieving low hum and good stability from the system. Designing your own
p.c.b. for the circuit, in that respect, offers the chance of achieving even better performance than the Veroboard layout, but be prepared for some experimentation! The input impedance of the circuit is approximately 47 k , to match the most popular magnetic pick-up cartridges (change C2 to suit the loading requirements of the cartridge in question). No volume or tone controlling is shown, of course, since our primary concern is the preamplifier i.c. We'll look at devices to do these other audio functions at a later date! However, we do now have a very high quality, very low distortion, low cost disc preamplifier design based on the HA 12017. The only problem now is the designing of the power amplifier to fully do the preamp justice!

The HA 12017 is readily available from Ambit International.

FREE!READERS' ADVERTISEMENT SERVICE

ROLAND company THM. CR-78, 11 percussion, 34 preset rhythm patterns 4 channel programmer plus lots more £200. C. Stocken, 5 Dormie Cl, St. Albans, Herts. Tel: St. Albans 33304.

CASIO 202, JHS amp 3 watts. Ibarez FL.301DX, £4 Talking pedal. Almost original showroom condition. Pete Tel: Eastbourne 31320.

ACORN Atom $12+12 \mathrm{~K}$, power supply, colour board, program software, 6522 VIA, LS2 44 buffer, excellent condition £179. Michael Payne, 8 Gossamer Lane, Bognor Regis, West Sussex. Phone: (Pagham) 5101
$5 \mathbf{t}^{\prime \prime}$ floppy disc drives. Industry standard Tandom TM100-1. SSDD-300K byte per diskette. New ex-equipment f 85 ea. Philip Kane, 29 Cobourg Rd, Camberwell, London SE5 OHT. Tel: 01-701 6665.

ZX81, TV, cassette recorder, 3 tapes, book and all leads, very good condition. $£ 60$ buyer collects. Simon Jones, 3 Carrington Ave, Borehamwood, Herts WD6 2EZ. 9535713.
WIRELESS World 1950 to 1953 and 1956 to 1958. Offers, Collect or pay postage. Tel: (0865) 779855. G. Dean, 66 Fern Hill Rd, Oxford.

EXCHANGE Texet photocopier, used once, smart portable in its own briefcase. Swap for ZX81 and RAM. A. Jones, 52 Evenwood, Tranhouse 4. Skelmersdale, Lancashire.
WANTED supplier of electronic components for Practical Electronics projects. Payment in local currency. James K. Duah, Protection \& Control Section, Kpong Generating Station, V.R.A., Akuse Ghana.

HARVARD 40 channel hand-held CB plus rechargeable batteries and charger E40. Tel 0343820217 evenings. John Smith, 50 High Si., Fochabers, Moray IV32 7DU.
SWAP cased 125 watt stereo Crimson slave amp for Tangerine motherboard plus Tanram or graphics BASIC offers. Mr. Malcolm Dixon, 4 Ox leys Square, Mount Outlane. Huddersfield, West Yorks HD3 3XL
WANTED Lafayette HA-63 communication receiver. Send details to J. Heraty, 1 New Hall House, New Hall Street. Walsall, West Mids. WS 1 3DY
VIDEO Genie Computer 16 K RAM, 12 K ROM extended Microsoft BASIC, manuals, 10 C12 blank cassettes $£ 150$ o.n.o. A. Lyons, 4 Hunsdon House, Cotts, Hunsdon, Nr. Ware, Herts SG12 8PP. Tel: Ware 870102
PE NOV 68 Rhythm Generator complete faulted £10. p and p. £4 Full instruction. L.T. Hill, 14 Rothesay Terr., Bedlington, Northumberland.
TELETYPE service manuals for type $32 / 33$ models. 7 volumes $£ 15$ plus postage. Tel: Oxford (0865) 779855. G. Dean, 66 Fern Hill Rd, Oxford OX4 2JP.
STARCHESS video game + adaptor and plug nearly new only £15. Phone Empingham 671. S Taylor, 35 Willoughby Dr., Empingham, Oakham, Rutland.
MONO DX TV for sale isolated chassis, pro. conversion audio video in/out all band tuner $£ 25$ o.n.o. Mr. A. Bouskill, 129 Lyminster Rd, Sheffield, S. Yorkshire S6 1HY. Tel: 0742311191 after 4.30p.m.

RULES Maximum of 16 words plus address and/or phone no. Private advertisers only (trade or business ads. can be placed in our classified columns). Items related to electronics only. No computer software. PE cannot accept responsibility for the accuracy of ads. or for any transaction arising between readers as a result of a free ad. We reserve the right to refuse advertisements. Each ad. must be accompanied by a cut-out valid "date corner". Ads. will not appear (or be returned) if these rules are broken.

PCW Sep. 80, Feb 83. 35 issues £ 10. PE Apr. 81 Feb 83, 24 issues £8. Kings Lynn 055386 618. Mr. S.V. Windebank. 36 Springvale, Gayton, Kings Lynn. Norfolk PE32 10Z.
WANTED circuit diagram and/or service manual for Telequipment type D31 servicescope can return. Mr. A.C. Wheatley, c/o 17 Fairfield Rd, Chesterfield, Derbyshire.
TR2300 2 M transceiver with Nicads, mag mount, rubber duck, etc. Good condition £135. Tel: 0202 886021. P. Higgins, 57 Countess Close, Wimborne, Dorset.
STARCHESS video game + adaptor and plug. Only £18. Phone Empingham 671 evenings. Stephen Taylor, 35 Willoughby Drive, Empingham, Nr. Oakham, Rutland.
MANCHESTER. Swap Hitachi Dolby front loader plus Grundig TK 124 reel to reel. VGC. For 2 -metre rig. Martin Black, 11 Moorland Av, Crumpsall, Manchester 8. Tel: 061-795 5025.
APPLE $\mid 1$ Europlus 48 K and software including Sargon chess, Lunar Lander etc. £500. Mr. R. Whitton, Berry Brow, The Knoll, Cranham, Gloucestershire. Tel: (0452) 812417.
SINCLAIR SC110 scope X 1 probe, hardly used. Slight scratch on cabinet. £100. Buyer collect. Mr. A. Parekh, 34 St. Margarets Rd, Great Barr, Birmingham B43 6LD. Tel: 021358 6299.

UK101 16K cased CEGMONX SEK (20 screen formats) BASIC 5. 300/600 Baud $1-2 \mathrm{MHz} 5$ amp p.s.u. RS232 interface £130 o.n.o. M.E. Wride, 84 Wentworth Dr, Nuneaton. Tel: Nuneaton 381177.

Please publish the following small ad. FREE in the next available issue. I am not a dealer in electronics or associated equipment. I have read the rules. I enclose a cut-out valid date corner

Signature

Date
Please read the RULES then write your advertisement hereone word to each box. Add your name, address and/or phone no.
COUPON VALID FOR POSTING BEFORE 3 JUNE 1983 (One month later for overseas readers.)
SEND TO: PE BAZAAR, PRACTICAL ELECTRONICS, WESTOVER HOUSE, WEST QUAY ROAD, POOLE, DORSET BH 15 1JG

All devices guaranteed Brand Now and to full spec. Items ox stock despatched same day Prices are EXCLUSIVE of VAT. Please add 60 p to order to cover P\&P BEFORE calculating VAT. Payment by cheque, Postal Order, Bankers Draft or Cash (PLEASE register) with order. Officiai orders from Govt. Depts and Educational Institutes Welcome. Trade Accounts opened subject io satistactory status - send for detalls. We are pleased to receive overseas orders (please allow adequate postage - surplus
refunded) which, unless accompanied by Bankers Dratt in UK Currency may be subject to Bankers Commission and siont deal despatch Overseas trade enquiries welcome - send for full details VAT not applicabte to export orders. Price list ditaing all range of componems available - 30p refundable with frst order. Piease send SAE 10 export orders. Price List detaling full range of componems avallable - $30 p$ refundable with first order. Piease send SAE

COMM QUIP Ltd.

hamilton house, 11 WALKERN ROAO, STEVENAGE, HERTS. SG1 300.

With the aid of revolutionary electronics, easy-to-follow lastructions and our superb technical back-up service ... anyone can build a WERSI organ from a kit - and save half the recommended retail price. Want to know more? Just fill in the coupon and we'll send you FREE details of the superb WERSI range - you'll get the facts - inside and out!

WERSI ORGANS \& PIANOS LTD
14.15 Royal Oak Centre, Brighton Road,

Purley, Surrey. Tel: 01-668 9733.

LeASE SEND ME FURTHER DETAILS OF THE WERSI RANGE UK \& Northern Ireland only
NAME
ADDRESS \qquad

Send to WERSI ORGANS \& PIANOS LTD.
4.15 Royal Oal Centre, Brighton Road, Purley, Sarrey

T.V. SOUND TUNER BUILT AND TESTED

in the cur inroat world of of the questions designers apparently ponder over is 'Will anyone notice we save money by chopp ing this out?" In the domestic TV set, one of the first casualties seems to be the sound quality. Small speakers and all this is really quite sad, as th

£24.95 + £2.000 \&
TV companies do their best to transmit the highest quallty sound. Given this background a compact and Independent TV tuner that connects direct to your Mi.Fi is a must for quality reproduction. The unlt is mains-operated.
This TV SOUNO TUNER offers full UHF coverage with 5 pre-selected tuning controls. It can also be used in conjunction with your video recorder. Dimensions: $11 \frac{11}{6} \times 81_{2}{ }^{\prime \prime} \times 316^{\circ}$ E.T.I. kit version of above without chassis, case and hardware. $\mathbb{£ 1 2 . 9 5}$ plus $\mathbb{£ 1 . 5 0} \mathbf{p} \& \mathrm{p}$

PRACTICAL ELECTRONICS STEREO CASSETTE RECORDER KIT $\begin{gathered}\text { COMPLETE } \\ \text { WIHCASE }\end{gathered}$
 ONLY $£ 31.00$ plus $£ 2.75$ p\&p

 - NOISE REDUCTION SYSTEM. • AUTO STOP. TAPE COUNTER. SWITCHABLE E.Q. INDEPENDENT LEVEL CONTROLS - TWIN V.U. METER. WOW \& FLUTTER 0.1%. RECORD/PLAYBACK I.C. WITH ELECTRONIC SWITCHING. FULLY ACCURATE MATCHING OF ALL TYPES.Kit includes tape transport mechanism, ready punched and back
printed quality circuit board and all electronic parts, ie, semiconductors
resistors, capacitors, hardware, top cover. Printed scale and mains transforme

STEREO TUNER KIT

This easy to bulld 3 band stereo AM/
is designed is designed with P.E. July
 "81). For ease of construction and alignment it incorporates three Mullard modules and an I.C. IF System. FEATURES: VHF, MW, LW Bands, interstatfon muting and AFC on VHF. Tuning meter Two back printed PCB's. Ready made chassis and scale. Aerlal: AM-ferrite rod, FM. 75 or 300 ohms. Stabillsed power supply with 'C' core mains transformer. All components supplied are to P.E. strict specification. Front scale size $101^{\prime \prime} \times 21^{\prime \prime}$ approx. Complete with dlagram and instructions.
SPECIAL OFFERI £13.95 $+\mathbb{£} 2.50$ p\&D. Self assembly simulated wood cabinet sleeve £3.50 Plus $£ 1.50 \mathrm{p} \& \mathrm{p}$.

125W HIGH POWER AMP MODULES

The power amp kit is a module for high power applications - disco units, guitar ampllif. ers, public address systems and even high power domestic systems. The unit is protected in an open circuit tondition. A large safety margin exists by use of generously rated com ponents, result, a high powered rugged unit. The PC board is back printed, otched and ready to drill for ease of construction and the aluminium chassis is preformed and ready to use. Supplied with all parts, circuit diagrams and instructions.
ACCESSORIES: Stereo/mono mains power supply kit with transformer: $\mathbf{£ 1 0 . 5 0}$ plus $£ 2.00$ p $\$ \mathrm{p}$.

STEREO CASSETTE DECK
 plete. Supplled with full connection detalls.

SPECIFICATIONS:
Max, output power (RMS): 125 W . Operating voltage (DC); 50-80 max. Loads: 4-16 ohm. Fequency response measured @ 100 watrs.
25 Hz .20 KHz . Sensitivity for $100 \mathrm{w}: 400 \mathrm{mV}$ @ 47K. Typical T.M.D.@ 50 watts, 4 ohms: 0.1%. Dimensions: 205×90 and $190 \times 36 \mathrm{~mm}$.

KIT £10.50 BUILT £14.25

+ 1.15 p\& +1. 15 pep.

TWO FABULOUS OFFERS FROM

RㄹㅗㄸN

SUPER 20
$20 k \Omega / V$ a.c. 8 d.c.

A SUPER PROTECTED UNIVERSAL MULTIMETER

Undestructible, with automatic protection on all ranges but 10A.

ONLY £33.50

inc. VAT, P\&P, complete with carrying case, leads and instructions.

This special offers is a wonderful opportunity to acquire
essential piece of test gear with a saving of nearly $£ 20.00$
Accuracy: d.c. ranges and $\Omega \mathbf{2 \%}$ a.c. 3% (of f.s.d.)
39 ranges: d.c. $\mathrm{V} 100 \mathrm{mV}, 1.0 \mathrm{~V}, 3.0 \mathrm{~V}, 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$. d.c. $150 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 300 \mu \mathrm{~A}, 1.0 \mu \mathrm{~mA}, 3 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$. $100 \mathrm{~mA}, 1 \mathrm{~A}, 10 \mathrm{~A}$
a.c. $\mathrm{V} 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$.
a.c. $13 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}, 100 \mathrm{~mA}, 1.0 \mathrm{~A}, 10 \mathrm{~A}$. $\Omega 0-5.0 \mathrm{k} \Omega, 0-50 \mathrm{k} \Omega, 0-500 \mathrm{k} \Omega, 5 \mathrm{M} \Omega, 50 \mathrm{M} \Omega$. dB from -10 to +61 in 5 ranges.
Dimensions: $105 \times 130 \times 40 \mathrm{~mm}$.

TESTER 5039 ranges

$50 \mathrm{k} \Omega \mathrm{V}$ a.c. and d.c.
 With protective diodes and quick-acting 1.25A fuse.
THE
PROFESSIONAL SOLUTION TO GENERAL MEASUREMENT PROBLEMS
ONLY £36.30
incl. VAT, P\&P, complete with carrying case, leads and instructions. Goods normally by return of post.

The best instrument for the workshop, school, toolbox, TV shop and anywhere accurate measurement is needed quickly and simply.
Accuracy: d.c. ranges and $\Omega 2 \%$ a.c. 3% (off.s.d)
39 ranges: d.c. $\mathrm{V} 150 \mathrm{mV}, 1 \mathrm{~V}, 3 \mathrm{~V}, 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$;
d.c. $120 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 300 \mu \mathrm{~A}, 1.0 \mathrm{~mA}, 3 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$, $100 \mathrm{~mA}, 1 \mathrm{~A}, 3 \mathrm{~A}$.
a.c. $\mathrm{V} 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$; a.c. $13 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}, 100 \mathrm{~mA}, 1 \mathrm{~A}, 3 \mathrm{~A}$. Ohms $5 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 500 \mathrm{k} \Omega, 5 \mathrm{M} \Omega, 50 \mathrm{M} \Omega$. dB from -10 to +61 in 5 ranges.
Dimensions: $105 \times 130 \times 40 \mathrm{~mm}$.

For details of these and the many other instruments in the Alcon range, including multimeters, components measuring, automotive and electronic instruments, please write or telephone:

A $\mathbb{A C O N}$
 Instruments Ltd.

[^4]
WHRNO al HD= 'Caige!

THE other night I had to go to one of those ghastly industry dinners. But for once it didn't turn out too badly. My table-mate chanced to be something of a high-flyer in the Patent Office and his witty conversation helped the steamed cod and mash down a treat. Over the brandy, which was extra (I could only afford one-he had three), he told me that his office cellars are full and running over with clever inventions which for some strange reasons never made it to the retail counters.

There was this harness for long-distance rail travellers. The idea was for the user to clamber into it and fix the free end to the luggage rack. Then whenever the train lurched he could go on snoozing without being shot into the lap of his unfortunate neighbour. I wonder why this excellent aid to passenger-comfort never rocked the marketplace? Maybe it was blacked by ASLEF.

Another innovation was a pair of plastic sleeves for melon-eaters. It was to stop the succulent juice oozing down to their armpits. It's believed that this one failed because the inventor didn't bother to find out that your genuine melon-lover looks upon the juice-flow as part of the ecstasy.

Happily such piffling restraints have not, in the main, held up the acceptance of that particle which all of us in the business prefer, the electron. Yet though it has wormed its way into most walks of life, there are still one or two areas where it has tended to be given the big elbow.

An outstanding example is the Church. Now, let's face it. Apart from fringe elements who scorn the dog-collar in favour of the Tshirt with the rude inscription ("Good grief man. I'm one of the lads, just like you") and who back the twang of the guitar against the swell of the organ, there is no body more resistant to change.

That could be good for the soul. After all, there's much to be said for stability in a world where standards and values change with the speed of a mannequin.

For all that, it's time the Church stopped standing still and for those at the pinnacle to have another think. So let's have a quick word with the Archbishop of Canterbury, Cardinal Hume, the chaps on the Nonconformist front and, naturally, the chief Rabbi. We have a duty to make them aware of the ways in which modern technology can do nothing but good for their missions.

Every day you can read about the sad financial plight of churches all over the country. There's hardly a parish which hasn't its crumbling tower (almost always Norman), on-the-blink heating, a cracked font or a bronchitic organ.

What about a set of microprocessor-
controlled doors which will not open until after the collection has been taken up? We all know the mean skivers who slip through the offertory net by pretending they've a bus to catch or feign an urgent need for the loo. This would stop them creeping out the minute the churchwarden picked up the plate.

A more sophisticated system would be one that linked the door-control to a collectioncalculator, with a read-out in the vestry. Then all present would remain virtual prisoners until a previously-determined cash target had been reached.
One of the deadliest things that can happen to a clergyman -apart from dropping the first-born of the patron of the living in the font-is to watch horrified as members of his congregation nod off during what he thought was a pretty rivetting sermon. It's the sort of thing that's likely to happen at Sunday evensong. Dieticians reckon it's the lunchtime meat and two veg followed by spotted dick and custard that does it.

A low-vohtage electric shock, controlled from the pulpit and applied via the pew seat, would jolly soon remind these laggards that if they want to get to the pearly gates they'd better pay more attention to the directions. This shock therapy could also be made to work the other way. A high-intensity infrared beam-governed by a simple timerwould gendy heat up the seat of the preacher's irousers if he droned on for longer than was decently acceptable.

Of course, you'd have to reckon with the wily old prelate-probably a reader of PEwho knew the drill and had equipped himself with a pair of pants insensitive to infra-red. One way to put him in his place would be to install an ejector apparatus under the pulpit floor instead. However, for reasons of sheer Christian charity it shouldn't be used on any incumbent over the age of 80 .

You may think, if you have a business background, that a squad of robot choirboys is something of an extravagant capital investment yielding a small return. This is not so. Those clergymen who have been bold enough to take such a step are over the moon-which for them is a step in the right direction anyway.

One of them, a diocesan bishop no less, told me: "Ah, the blessed relief of witnessing the end of the placing of rude-sounding cushions on minor canons' stalls and the demise of bubble gum popping during the Venite." But, he admitted to me privately with a sigh, he did sometimes miss the pleasure of cuffing the little perishers round the lughole.

Baptisms have a special hazard for men of the cloth. They never know what to expect. All too often they are called upon to handle
infants who are either equipped with Tannoytype voiceboxes or who have forgotten to go before they came out. Frequently both.
Apart from stuffing his stole down the baby's throat, there's not much a parson can do about the former. But if he's technicallyminded enough to insert moisture-detectors in his cassock sleeves, he has a sporting chance of whipping junior back into mum's arms before any damage arises out of the latter. Electronics saves pounds on cleaning bills.

Most clerics are like actors. They must have the smell of the crowd and simply cannot do their stuff well in the hollowness of half-empty churches. They become about as helpful to the propagation of the Word as a pork butcher is to a vegetarian. Their confidence can be speedily restored by the use of holographic laser techniques to project images of large congregations.

There are three standard features of church weddings: The nudge-nudge innuendo of the groom's mates; snivelling matrons; and an appeal by the old knot-tier about scattering confetti in the churchyard. ("Not only does it spoil the beauty of the church's environment, but we have to pay our worthy sexton overtime to clear it up. And that grasping swine doesn't come cheap.")

The solution is as simple to me as the theory of relativity was to our Albert. You get yourself an electrostatically-charged cat and chase it round until not a scrap of confetti remains.

Satellite TV is something else that could also come in handy on the Church's march. Whe knows? The way things move nowadays, it may eventually become possible to establish two-way communication (using triphonic lechniques, of course, during Trinity) with Paradise. Such a facility would have to be used with dignity and care, being restricted in the first instance to ordained ministers only. We couldn't have laymen trying to get in by the back door.
I'm not daft enough to expect an early and positive response to my case, well-founded as it is: Down the centuries the Church has al ways moved in a pedestrian way its wonders to perform. There are, for example, still places with hand-pumped organs, reserved pews for the squire and his brood and venerable vergers who double-up as gravediggers and pull at their forelocks whenever the vicar comes within 50 yards. It takes a powerful electronic device to get through barriers like that.

But a seed has been sown. Let us trust that it has not fallen upon stony ground but will become fruifful and multiply.
V.T.'s views and opinions are entirely his own and not necessarily those of PE or anyone else.

Effectively two complete synthesisers in one package, together with a variable angle LFO to modulate the VCOs or filters, and a voltage controlled phaser to phase either or both synthesiser outputs

A.R. BRADFORD m.Se.

THE Percussion Microsynth is provided with internal trigger pads of variable sensitivity so that it may be played with hands or drum sticks. Thus it may be used either to augment an existing drum kit (whether mechanical or electronic) or as a self contained free standing unit in the manner of a pair of electronic "bongos". While the unit is quite capable of imitating conventional drums, cymbals, etc, this is hardly the purpose for which it was conceived - it would for example be simpler and cheaper to use a real pair of bongos if this was all that was required. The strength of an instrument like this is that it is capable of creating a vast range of different sounds from bells to explosions, triangles to "Big Ben", gongs and metallic "dustbin lid" sounds, to rockets, marching feet, steam trains, wind and surf effects, as well as a vast array of abstract sounds. In this respect it should not be confused with the range of low cost "percussion synthesisers" currently on the market, which tend to be of extremely limited capability.

The Percussion Microsynth may also be triggered from an external microphone so as to respond to a particular part of a drum kit, as well as to voices, etc. It may also be triggered electronically from one output of a drum machine such as the PE Master Fhythm, as well as from the gate outputs of a isequencer. In relation to this, the 1 V per octave control inputs to the VCOs enable the Percussion Microsynth to be used as a dual "slave" synthesiser in conjunction with a sequencer or a polyphonic keyboard controller.

In addition a dynamic sensitivity function is provided. That is, the harder you hit the drum pads, the greater the effect produced, be it loudness or sweep of pitch, etc.

In spite of the tremendous range of sounds available greater than most commercial units - simple low cost circuitry has been employed throughout. The entire unit is built on one $16 \mathrm{in} \times 5 \frac{1}{2}$ in printed circuit board.

PRINCIPLES OF OPERATION

The general scheme of the unit is shown in Fig. 1. The signal from the transducer is used both to trigger the envelope shaper and to provide the control voltage which is the basis of the touch sensitivity. The latter part of the circuitry comprises an envelope follower and a sample and hold which samples the rectified voltage from the transducer instantaneously, each time a new signal is received from the transducer. The output voltage from the envelope shaper is then multiplied by the output voltage from the sample and hold, so as to achieve envelopes of amplitude proportional to the size of the signal received from the transducer. With the "Touch" switch off, the envelope is multiplied by a constant factor of 1 . Although no provision has been made for it as such, the astute synthesist will spot here a facility for external voltage control of the envelope size, and a possible modification for implementing this will be mentioned later.

The envelope is hard-wired to the VCA to effect volume contours, and may also be switched in to the VCO or VCF to produce sweeps in pitch or harmonic content. The envelope shaper itself is of the Attack/Release type, the provision of

Fig. 1. Block diagram of one channel of the drum synth, plus phaser and LFO
an attack control greatly extending the range of sounds available (that is, they need not be percussive at all! They could for example be reversed starting slowly and finishing abruptly, or be of a gentle, singing quality).

The VCO produces either smooth sounding triangular, or harsh square waveforms, with provision for external voltage control of the pitch. A simple circuit provides a sub-octave. The triangle waveform goes straight to the VCA, while the square wave and/or sub-octave go to the VCF. In this way the instrument can produce warm sounds in which the VCF filters out the higher harmonics in the sub-octave waveform without affecting the triangular waveform an octave higher. The mix control cross-fades continuously from white noise (which is fed into the VCF) to oscillator output, including the sub-octave when it is switched in.

The VCF is a low-pass type with variable resonance, which has been modified so that it will also oscillate when the resonance control is turned fully clockwise. Thus the VCF can be used as an auxiliary sound source in conjunction with the triangle from the VCO, in order to produce bell-like sounds.

Each channel of the instrument may be switched through the phaser (VCØ), in which the phasing rate is manually controlled.

The LFO (low frequency oscillator) can be used to modulate either the VCO or VCFs, from 0.2 Hz to 30 Hz to any degree set by the "Depth" control. The LFO is of a novel design in which the "Shape" control varies the shape of the LFO waveform continuously from rising ramp, through triangular, to falling ramp, and many interesting effects can be obtained in the manipulation of this one control.

CIRCUIT DESCRIPTION

The complete circuit of one channel of the synthesiser is shown in Fig. 2. IC1 pins 5, 6, and 7 (IC101 pins 1, 2 and 3) is a microphone preamplifier with a sensitivity of about -50 dB , catering for the low impedance microphones found in stage or studio environments, although high impedance microphones will work just as well. C1 to C3 (C101 to

C103) form a band-pass network so that the unit responds neither to low frequency noises transmitted through the floor (vital on stage), nor to radio signals. The resultant signal is mixed with the output from the internal transducer which is of a high impedance crystal type. From here the signal takes two separate paths. IC1 pins 12,13 and 14 (IC101 pins 8, 9 and 10) is a hard limiting amplifier and triggers the CMOS monostable (half of IC3, IC103), producing a 10 msec pulse, which in turn triggers the envelope shaper. VR1 (VR101) is the sensitivity control, while C4 (C104) removes radio pickup and local decoupling of the trigger circuitry also helps to eliminate spurious triggering.

The pulse from the monostable sets the set-reset flip-flop (the other half of IC3. (IC103) which turns on the CMOS switch connecting the "Attack" pot to C11 (C111). This capacitor therefore charges down from +8.5 V towards -8.5 V . The voltage or C11 (C111) is inverted by IC7 (IC107) to give a positive going envelope, and this is fed back via divider R20, R21 (R120, R121) to the reset input of the flip-flop. Thus the flip-flop is reset when the output of IC7 (IC107) reaches about +6 V . The "Attack" pot is then disconnected from C11 (C111) and connected instead by the other CMOS switch to the "Release" pot. Thus C11 (C111) discharges back up to +8.5 V at a rate set by VR4 (VR104). The positive going envelope from IC7 (IC107) pins 1,2 and 3 is reinverted by the other half of IC7 (IC107), pins 5, 6 and 7, and the "Level" control VR5 (VR105) cross fades between positive and negative going envelopes, with the back-to-back diodes creating a dead band around the centre (zero) position. The output is used via S4 (S104) to modulate the VCO or VCF.

The voltage from the microphone input or transducer is also amplified to a lesser extent by IC1 pins 1, 2 and 3 (IC 101 pins 5, 6 and 7). D1, R12 and C8 (D101, R112 and C 108) produce a d.c. envelope of the shape indicated and of amplitude proportional to the size of the signal coming from the microphone or transducer. This envelope, added to a d.c. offset from VR2 (VR102) is amplifed and inverted by IC4 (IC104)

CMOS switch IC6 pins 3,4 and 5 (IC106 pins 3, 4 and 5) together with C10 (C110) and IC5 pins 12, 13 and 14 (IC105 pins 8,9 and 10) form a sample and hold circuit, sampling the "touch" envelope each time the CMOS switch IC6 pins 3, 4, and 5 receives a pulse from the monostable. The output of IC7 (IC107) pin 1 passes through a divider formed by R22 (R122) and a CMOS FET IC2 pins 9, 10 and 12 (pins 6, 7 and 8). With the "Touch" switch S3 (S 103) in the off position the gate of this FET is connected to the negative rail so that the FET is biased off and the envelope shaper output is unattenuated. With S3 (S103) on, the resistance of the FET, and therefore the size of the envelope, is determined by the touch circuitry.

It has been mentioned that there is potential for externally controlling the size of the envelopes. This could be achieved by feeding a control voltage into pin 2 of IC4 (IC104) - say 0 to 10 V positive via a 180k resistor. Alternatively the connection between S3 (S103) and the negative rail could be broken, and a control voltage fed in directly to the gate of the FET. In doing this the gate of the FET should be connected to the negative rail via a 1 M resistor.

SOUND SOURCES

The VCO is a simple triangle/square oscillator. IC8 is a dual operational transconductance amplifier (OTA) configured as an integrator which ramps positive at a rate proportional to the current flowing into its control input, until the threshold of the Schmitt trigger IC5 pins 5, 6 and 7 (pins 1,2 and 3) is exceeded. IC5 then changes state and the OTA output ramps downwards, and so on. The control current for the OTA is sourced by TR2 (TR102), temperature compensated by TR1 (TR101). The exponential law provided by the use of a transistor is not entirely necessary, but is preferred in this application as it renders the pitch of the VCO more controllable at low frequencies. Also it allows the control voltage inputs to be referenced to OV instead of 1 V above the negative rail, as is the case of OTA control input pins. In addition this arrangement allows the Percussion Microsynth to play musical scales when slaved to a standard 1 V per octave sequencer or potyphonic keyboard controller. The external control voltage is applied via R33 (R133). (In connection with this usage, the sequencer or controller could also be made to determine the note length were it to provide the reset pulse, to the envelope flip-flop, instead of the resistive divider.) Such applications are however left entirely to constructors' ingenuity.

TR4, TR5 and TR6 form a white noise generator feeding both channels of the instrument, and VR7 (VR107) cross fades between noise and oscillator outputs.
IC9 contains two divide-by-two gates, each driven by the Schmitt output of its respective VCO in order to provide a square wave one octave below the VCO pitch. Each suboctave may be switched into its respective filter, regardless of whether a triangular or square wave output is selected from the VCO.

FILTERS

Each VCF is a standard state-variable design built round a dual OTA chip IC11 (IC111). This provides a low pass output into the VCA, with the degree of resonance controlled by VR10 (VR110). Although basically the same as used in the Microsynth, here the VCF has been modified so that with VR10 (VR110) at maximum, the circuit will oscillate in the range of a few hundred hertz to 10 kHz , depending on the setting of VR9 (VR109) as well as any other modulating voltages selected from the envelope and/or the LFO. This is achieved by increasing the feedback, that is decreasing the value of R66 (R166); at the same time the diode network

Showing control panel and trigger pads
around R62 (R162) limits the output excursions of IC11 (IC111) pin 8. The overall gain of the filter is fixed so that the output waveform is a reasonable facsimile of a sine wave.

The control current for the VCF is sourced by TR3 (TR103), temperature stabilised by D6 (D106). This arrangement is not accurate enough to drive a VCO for musical purposes, but is quite adequate for the filter in this application.

VCA

IC10 pins 1 to 8 (pins 9 to 16) is another OTA without the time constants in the form of R-C networks that would otherwise make it a filter. Thus it behaves as a current controlled amplifier, with the gain determined by the current supplied by the envelope shaper.

PHASER AND OUTPUT

The output from each VCA may be switched via S6 (S106) so that part of the output signal passes through the four stages of phase shift (IC12). The overall degree of phase shift is controlled by four CMOS FETs (IC15, IC2). Dual opamp IC13 forms an oscillator providing a slow triangle waveform to sweep the phase shift at a rate set by VR15, while VR13 biases the FETs to the centre of their useful ranges. In order to actually create the phasing effect, the phase shifted signals are mixed back together with the original signals in TR7 (Fig. 3).

Three outputs are provided from the Percussion Microsynth: a line level output for feeding to a mixing desk or external amplifier, and two low impedance outputs, one for a speaker and the other for headphones. The line level is trimmed by VR12, and the amplified outputs by VR14, each of which is accessible by a screwdriver through holes in the front paneI. IC14 is a monolithic power amplifier which can deliver 2 watts into 8 ohms. R101 and R102 attenuate this output to suit standard headphones.

LOW FREQUENCY OSCILLATOR

The standard integrator/Schmitt oscillator of Fig. 4 is fed alternately with positive and negative going control voltages, selected by the CMOS switches which are driven in antiphase by the Schmitt output. The "Shape" control VR18 varies the relative rates at which the integrator ramps up and down but the overall time period remains constant, being determined only by the input control voltage from the "Rate" control VR16.

The LFO oscillates over the range 0.2 Hz to 30 Hz , and is used to modulate the VCOs or VCFs as selected by S 5 (S105), to a degree set by the "Level" control VR17.

COMPONENTS

Resistors		R70	2k2	VR11 SW pot $\log 10 \mathrm{k}$	VR16	pot $\log 100 \mathrm{k}$
		R71	2k2	VR111 pot log 10k	VR17	pot $\log 10 \mathrm{k}$
R1,101	47k	R72	68k	VR12 preset 22 k	VR18	pot lin 100k
R2,102	1k	R73	68k	VR13 preset 100k	VR19	preset 1 k
R3,103	1 M	R74	1k	VR14 preset 22 k	VR20	preset 1 k
R4,104	8k2	R75 to R87	100 k (13 off)	VR15 pot $\log 1 \mathrm{M}$		
R5, 105	1 M	R88	2 M 2			
R6,106	820k	R89	1 k	Capacitors		
R7, 107	1 M	R90	4 k 7	C1.101 polyester		
R8.108	8k2	R91	10k	C2.102 polyeste		
R9,109	1 M	R92	2M2	C3,103 polyeste		
R10,110	180k	R93	1M	C4,104 polystyre		
R11,111	1 M	R94	15k	C5,105 polystyre		
R12,112	100k	R95	47k	C6,106 p.c. elec		
R13,113	39k	896	100k	C7,107 polystyre		
R14,114	180k	R97	1 M	C8,108 p.c. elec		
R15,115	47k	R98	\pm watt 10R	C9,109 polyeste		
R16,116	47k	$R 99$	$2 \mathrm{R7}$	C10,110 polyeste		
R17.117	1 k	R100	100R	C11,111 p.c. elec		
R18.118	10 M	R167	2208	C12,112 polyeste		
R19, 119	10M	R168	220 R	C13,113 polyeste		
R20.120	100k	R169	10k	C14,114 polyester		
R21,121	82k	R170 to R174	$1 \mathrm{M}(50 \mathrm{off})$	C15,115 polycarb	$220 n$	
R22,122	2k2	R175	10k	C16,116 polycarb	$220 n$	
R23,123	1M	R176	1k	C17.117 polycarb	$220 n$	
R24.124	1 M	R177	820R	C18,118 p.c.elec		
R25,125	39k	R178	2708	C19,119 p.c. elec		
R26,126	470k	R179	820R	C20.120 polystyr	1p	
R27,127	1 k	R180	270R	C21.121 polystyr	Op	
R28,128	12k	R181	820R	C22.122 polycarb	$220 n$	
R29, 129	1k	R182	4 k 7	C23,123 polycarb	$220 n$	
R30,130	10k			C24 polyeste		
R31.131	10k	Semiconductor		C25 polyester		
R32.132	10k	IC1.101	LM348	C26 polyester		
R33.133	56k	IC2	4007	C27 polystyr		
R34,134	10k	IC3,103	4001	C28 to C30 polyester	(3 off)	
R35,135	82k	IC4,104	741	C31 to C35 p.c. elec	$4 \mu 715$	
R36,136	47k	IC5	LF347	C36 polystyr		
R37,137	33 k	IC6. 106	4016	C37 tantalum		
R38,138	120k	1C7.107	1458	C38 p.c. elec		
R39. 139	1k	IC8	LM13600N	C39 polyeste		
R40,140	1 k	IC9	4013	C40 p.c. elec	470 μ	
R41.141	10k	IC10	LM13600N	C41 polycarb	$470 n$	
R42.142	120k	IC 11.111	LM13600N	C42, C43 polyester		
R 43.143	12k	IC12	LM348	C44, C45 p.c. elec	2,200	
R44,144	12k	${ }_{1} 13$	1458	C46.C47 p.c. elec	10μ	
R45,145	100k	IC14	LM380N	C48, C49 p.c. elec	$1,000$	
R46.146	4 k 7	IC15	4007	C50, C5 1 polyest		
R47.147	8 k 2	IC16	LM348			
R48,148	5 k 6	1 C 17	4016	Switches		
R49,149	33 k	IC18, IC19	LM317U	S 1,101 to S3,103, and	06 ar	ole. 2-position
R50,150	47k	D1,101 to		p.c.b. mounting slide swi	(8 off)	104 and S5,105
R51,151	1k	D10,110	1N914 (20 off)	are 2-pole, 3-position		slide switches
R52,152	82k	D11 to D18	1 N4001 (8 off)			
R53,153	1k	TR1,101 0				
R54,154	12k	TR3,103	BC212L (3 off)	Miscellaneous		
R55,155	12k	TR4 to TR7	BC548C (4 off)	T1-Transformer 0-12V.	$\checkmark 500$	older tag, panel
R56,156	12 k	D19	red l.e.d.	fuseholder 20 mm , FS $1-$	m fuse	mA, mono jack
R57,157	100R			sockets (4 off), stereo jack	ket 11	inlatch 5-pin A
R58,158	100R			socket (1 off), miniature	s cabl	grommet (${ }_{\text {B }} \mathrm{in}$.
R59.159	18k	Potentiomete		dia) to suit, 0.5 m 4-w	bon	1 m miniature
R60,160	100R	VR1.101	preset 1 M	screened cable, p.c.b.,	panel.	synth cabinet,
R61.161	100R	VR2,102	preset 100k	Percussion Microsynth	igger	ssembly, push-
R62,162	18k	VR3,103	pot $\log 470 \mathrm{k}$	on knobs plus colour	caps	ste, R.S. type
R63,163	4 k 7	VR4.104	pot $\log 1 \mathrm{M}$	(20) ofi). 68A $\frac{1}{2}$ in spacer	ff), 6B	bolts (10 off),
R64.164	4 k 7	VR5,105	pot lin 100k	6BA nuts (20 off), do	head	elf-tap screws
R65,165	18k	VR6,106	pot lin 100k	(6 off), stick-on feet (4	crystal	ophone inserts
R66,166	4 k 7	VR7.107	dual pot lin 22 k /	(2 off). M 5 bolts $\frac{1}{t i n . ~} 140$		
R67	6 k 8	VR8.108	preset 1k	Parts and complete kits	be fro	Clef Products
R68	3M9	VR9,109	pot lin 100k	Ltd., 44A, Bramhall Lane	th, Br	II, Stockport,
R69	12k	VR10,110	pot lin 1k	Cheshire SK7 1AH.		

Fig. 3. Phaser and output

Fig. 4. Low frequency oscillator

Fig. 5. Power supply unit

Board assembly

POWER SUPPLY

This is a highly stable, monolithic regulator type providing $\pm 8.5 \mathrm{~V}$, trimmed by VR18 and VR19. Since the CMOS i.c.s are run directly across the positive and negative supply rails for economy of design, on no account must these voltages be exceeded, and the power supply voltages must be set before connecting power to the main part of the circuit board. Wire links are provided on the p.c.b. for this reason and these should not be inserted until the supply rails are set.
Next Month: Construction, setting-up and test programs.

Readout...

Help Sought

I wonder if any of your readers can come up with a design to overcome a problem in AV (Audio-Visual) presentation. In this, a minimum of two slide projectors are used with a fade unit to dissolve from one picture to another throughout a continuous sequence of colour transparencies, usually shown on a large screen to an audience. Rather than cine's frames-per-second, the AV viewer has so many seconds-per-frame to take in the picture, this being controlled by a programme stored on tape via an electronic fade unit.

The problem is that the lamp fade system has eclipsed the old iris diaphragm mechanism used to regulate the projector's light source. Basic though the iris mechanism is, it can be exploited to obtain a wide range of effects that the lamp fade system cannot. Unfortunately, as things stand at present, use of the iris method necessitates manual operation of the AV performance, for there is no way by which this mechanism can be automatically controlled from tape.

Although PE has never published an automatic iris controller, I wondered if any of its readers have cracked this problem, or would be interested in having a go at it. I have been told that radio control type feedback servos might do the trick, but to maximise the special effects capability of the iris, timing and positional instructions would need to be able to go into the taped programme.

Tony Hadfield Wimborne, Dorset.
If anyone would like to contact Mr. Hadfield, would they please write to him clo PE.

Greed

I noticed in your Nexus column (issue April 1983), the glee or should I say greed, at the sale of Cable \& Wireless, and the proposed sale of British Telecom.

Do you not feel there are greater issues at stake than the prospect of lining ones own pockets?

To de-nationalise British Telecom means that the profit will instead be shared by the few lucky enough to be able to buy sufficient shares. Therefore, the British public will be robbed of the money.

Services such as call boxes, emergency services and telephones for the disabled will be threatened.

Despite these services which are loss makers, British Telecom is a profitable and efficient service. In the past ten years telephones have doubled while staff has increased by only six per cent. What private firm can boast this productivity?

British Telecom belongs to the people. Help to keep it that way.

R.G.A. Dewhurst, Hoddesdon.

Nexus comments:-

The Littlechild Report on BT privatisation makes provision for safeguarding emergency and rural call box services. The objective is io inject private capital to provide a more ef. ficient service with lower costs. Far from robbing the public, lower costs will benefit private as well as business subscribers. Cable \& Wireless was not sold outright. The Government, representing the people, retained a majority shareholding. C \& W's 57 percent profit rise in its first year of privatisation yielded extra tax revenue. Profit and social responsibility are not incompatible. Without generating profit from trade and industry there would be no funds for education, health and other social services.

Sexist

I have just ordered a back issue of PE: and noticed your preview of the Electronics Hobby Fair at Alexandra Pavilion.

In your description of the event, you mention that "For wives/girl friends there is the added attraction of the nearby Wood Green Shopping City . . . although we are sure they will find plenty to interest them in the special exhibits at the Fair".

Reaction such as "sexist!" and "promu patriarchy!" are probably a bit strong, but I feel that your comment might have caused offence to the many competent women electrical engineers who read PE;

At a time when the number of women entering the field is disappointingly low (and a quote from the IEE is appropriate: Extract from IEE booklet "Training Requirements",
published 1979. "The Council of Engineering is concerned that few women take up electrical engineering as a profession, and is most anxious to see an increase in the number of women Members of the Institution") I feel that what you said was not encouraging.

I realise that at the moment, the majority of electronic enthusiasts are male, and that PE is targeted at this population, but I believe that such discrimination is to the disadvantage of expanding interest in the field.

Brian Carse,
Coventry.
No offence intended-Ed.

Slow Industry

With reference to the January edition of Practical Electronics concerning the slow approach to electronics of the motor industry. Isn't it the wrong way round? Isn't the electronic industry slow in taking in millions of pounds by designing and producing an all electric car (with one or two electric motors) with both speed and range (200 miles approx. before recharging). Are not the hybrid cars a sort of half way house?

I am quite confident that sooner or later an efficient electric car will arrive and the internal combusion engine will be an interested relic of the past.

Edwin R. Caruth,
Leeds.
This may well start to happen when Clive Sinclair launches his long awaited electric vehicle-Ed.

Excellent!

The recent issues of PE prompt me to send my congratulations to you and your staff on the excellent articles on microprocessors which have appeared.

Following the early articles on the UK101 to the Ulimum and Microfile, all have proved very useful. The Ultimum motherboard will give my UK101 some more years of interesting work.

The Microfile series, giving the characteristics and applications of i.c.s, is most welcome-an essential addition to tense manufacturers' data sheets.

As well as a "hobby interest" in the subject I. lecture at a college of technology, and PE is an essential ingredient in keeping up with the subject.

With best wishes for the future.
George Small,
Chesham, Bucks.
Thank you.

The hardware and software exchange point for PE computer projects

ULTIMUM UPDATE

We have now moved to Issue 2 of the Motherboard, to correct as many original errors as possible. As always, some anomalies have crept in.

The known errata for Issue 1 are as follows:

Link 11--Z80 position should be GND, not open (available near IC8, connects to IC8 pin 7).

Link 12-does not exist.
Link 13-located next to IC4 pin 11. should be open for $\mathbf{Z 8 0}$ systems and made for 65/68 systems.

There is insufficient provision for $1 / 0$ mapping and external buffering close to the host.
The relevant part of the circuit in Issue 2 is as shown in Fig. 1, below.

Note that LK13 has been renamed LK14. LK1 2 now allows more reliable production of $\overline{B R D}, \overline{B W R}$ in exclusively memorymapped $Z 80$ systems: ' B ' should be connected to ' A ' for $Z 80$ and to ' C ' for 65/68 systems. If $/ / 0$ mapping is required then the LK13 default ' M ' connections should be cut and the ' $/ / O$ ' connections made. Pins 10 and 11 of the 40 -way host connector ISK1. 2, 3) have been assigned and connected to, respectively, data buffer gate and +5 V to simplify buffering at the host end of a cable. R/W or WR should be used for the data buffer direction on such buffering.

Yes, we will produce a complete manual but it will be available only after the series is completed. We are very keen to see an Ulimum user group. At present due to lack of space at 33, Cardiff Road, Watford we can't start the ball rolling, but in the latter part of 1983 we shall certainly make sure

ROMDOS TO VORTEX

Sir-This short machine code routine should be of interest to any UK101 superboard owners who have upgraded their systems to $5 \frac{1}{4}$ " floppy disks.

The routine allows users of the new Vortex Disk system to read program files from the ROMDOS Disk system.

The need for the program arises because:

1) the directory is on a different track on both systems, and
2) the BASIC work space is different on both systems.

The routine is instant compared to the alternatives i.e. saving the program to tape, then booting up vortex and reloading the tape or indirect files, which limits the size of program to be moved to less than half the size of the free BASIC workspace labout 10 K in $A 32 \mathrm{~K}$ system). This routine only requires 70-80 Bytes of memory anywhere in RAM and is totally relocatable.
The routine works by loading a ROMDOS program into Vortex workspace then updating all the pointers and line links, allowing you to run or reSAVE the program on a Vortex Disk.

To use the program

1) Make a note of the starting tracks of BASIC programs to be transferred.
2) Boot up Vortex Disk.
one is organised lwe have already spoken to West London and North London computer users' groups and they are both keen to help us).

William Edwards
Watford Electronics.

SERIAL TO CENTRONICS PARALLEL INTERFACE

 sound generators etc. clock chain differences may be noted the approximate baud/frequency relationship is shown on the circuit diagram.The circuit is based on a low cost AY-5-1013 UART configured for even parity, two stop and eight data bits. A clock signal equal to sixteen times the baud rate is required at pins 17 and 40 (i.e. 300 baud $\times 16=4800 \mathrm{hz}$). It is recommended that a data sheet be obtained with the chip. This will allow the constructor to configure the circuit for any computer.

ICI provides a C-MOS buffer to the heavily loaded clock chain, whilst ICs 2 and 3 are divide-by-10 counters to feed the UART clock. The UART is frequency tolerant and a TTL clock could be constructed separately.

The RS-232 input is fed to the UART via an inverting gate IC4. this helps reestablish signal levels after the ribbon cable. The circuit is not critical and may be constructed on perforated board.

A -12 volt level is essential to proper UART operation. This can be provided with a small 12 volt transformer, bridge rectifier and $470 \mu \mathrm{~F} / 25$ volt capacitor. A simple 12 volt Zener diode will ensure the recommended stability.

Ohio users must locate and cut the track connecting pin 7 of $J 3$ to O volts. For those opposed to track cutting, the -12 volts mav alternatively be fed to the collector of transistor (PNP) Q1 through a $1 \mathrm{k} 5 \%$ resistor.

The link between pin 9 of $\mathrm{J} 3(\overline{\mathrm{CTS}})$ and O volts must also be removed, connecting a $1 k 5 \%$ resistor between pin 9 and 0 volts will ensure computer operation with the peripheral disconnected.

Connections are best made with ribbon cable using the centronic recommendation, i.e. (1) O volts, (2) strobe, (3) 0 volts, (4) BDI, (5) O volts etc., this will minimise cross talk.

For cable lengths exceeding a metre, ICs 1-3 should be at the computer and ICs. 4 and 5 at the peripheral.

Ohio/UK-101 users can turn on the inter-
face with POKE 517.1 (or SAVE) and turn off with POKE 517.0. OS-65D users should use POKE 8994,1 to turn on and POKE 8994,2 to disable.

Owners of Series Two dual display format boards and OS-65D version 3.3 will note that the Baud rate doubles from 300 to 600 when the 48 character mode is selected.

A word of caution; semiconductor junctions take exception to negative voltage inputs so be careful where you connect the -12 volts. If in doubt consult your local users' group which will have a number of members willing and competent to help you.

Experimentation with Busy and $\overline{A C K}$ will show which is best for connection to $\overline{C T S}$.

It has been found in some instances both may be connected to CTS each via a 120 ohms series resistor. POKE 13,40 for ROM BASIC or 21.40 with disc will allow running without the CTS handshake,
P. Whittaker,

Transvaal,
S. Africa

UK101 as clock

Sir-l have written a short program which displays a digital clock on the screen. Time is kept by the delay in line 190, which might have to be changed to suit other UK101's. The delay lasts approximately 1 second. At the beginning of the program you enter the current time, using the 24 hour clock, and then press return.

David C. Howarth,
Bathgate.

[^5]
MICROCONTROLLER KEYBOARD

Sir-I have found the keyboard of the Microcontroller awkward to use owing to the unusual layout of the hex keys. The method used to decode which key is pressed makes it a relatively simple process to alter the keyboard layout with software modifications, without affecting the rest of the controller, its routines, or any programs already being used.

The keycode converter starting at F877 uses a table of key addresses at F89CF8BB to determine which key is pressed, the value from this table is then converted to the key code with the aid of a subroutine at F86D.

All that is necessary to modify the keyboard layout to suit your personal taste is to re-arrange the order of the key address table. Table 1 shows the present order of the key address table in the monitor. Table 2 shows the order necessary to give a keyboard layout as shown adjacent.
W.T. Baillie Milton Keynes

TABLE 1. DISBUG KEY ADDRESS TABLE

ADDRESS CONTENTS

F89C	00	01	11	12	20	21	22	30
F8A4	31	32	42	43	44	64	63	41
F8AC	33	23	13	03	35	17	27	37
F8B4	25	01	06	07	05	16	40	54

TABLE 2. MODIFIED TABLE FOR LAYOUT AS SHOWN BELOW

ADDRESS CONTENTS

| F89C | 42 | 00 | 02 | 01 | 43 | 10 | 11 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| F8A4 | 44 | 20 | 21 | 22 | 64 | 30 | 31 | 32 |
| F8AC | 25 | 33 | 23 | 13 | 63 | 17 | 27 | 37 |
| F8B4 | 41 | 03 | 06 | 07 | 05 | 16 | 40 | 54 |

PF1	C	D	E	F	breakpoint	$\begin{aligned} & \mathrm{R} \\ & \stackrel{\mathrm{E}}{\mathrm{G}} \end{aligned}$	-	GO
PF2	8	9	A	B	PRESE t	$\underset{R}{E}$	$1 / 2$	proceed
SHIFT	4	5	6	7	memory		*	RESTART
H	\emptyset	1	2	3	ENTER		NEXT	PRIOR

M/C PROGRAM SEARCH

Sir-As this is my first attempt to write a program in machine code, it may be a little crude. But it works well and achieves the intended results.

The program is for UK 101 owners, who like myself save several programs on one tape. It enables you to leave the searching for the start of the program to the computer. The first line of each program should be the name or code for that program, e.g. 1REM * Ai23. In this case the code word is 4 digits long. But by changing the contents of $02 A B$ it can be made to the length you require.
To operate the program you just type LOAD as usual. Then you give the code number. The computer then searches for, and loads, the required program. At the end it displays the message "Program Loaded" and disables the load flag so the next program is not loaded.

The program works by altering the load vectors at 021E O21F to cause a jump to the search routine. This is done by poking 542, 75 and 543, 2. When the code is found, the program jumps back to the load routine (FF8B). Within the program, the addresses 0004 and 0005 are altered to contain the address 0222. This causes a jump at the end of loading to this address, instead of the usual syntax error signal, followed by OK. The message "Program Loaded" is displayed, and the load flag is set to 0 .

Although this routine takes up pretty well all the unused RAM, I think it is very useful. And no doubt the more skilful programmers will be able to shorten it.

O222	A9	C3		LD\#SC3
0224	85	O4		STASOOO4
O226	A9	A8		LDA $\$ 8 A 8$
0228	85	05		STASOOO5
O22A	A9	00		LDA $\$ 00$
O22C	$8 D$	03	02	STASO2O3
O2F	20	$5 F$	02	JSR\$ZO25F

0232	A2	00		LDX $\$ \$ 00$
0234	20	B8	02	JSR802B8
0237	A2	OA		LDX\$80A
0239	20	B8	02	JSR80238
023C	A2	1 F		LDX\#\$1F
023E	20	B8	02	JSR802B8
0241	60			RTS
0242	A9	22		LDA\$\$22
0244	85	04		STAS0004
0246	A9	02		LDA\$802
0248	85	05		STAS0005
024A	60			RTS
024B	48			PHA
024C	8A			TXA
024D	48			PHA
024E	A9	42		LDA\$\$42
0250	85	04		STASOOO4
0252	A9	02		LDA\#SO2
0254	85	05		STA80005
0256	20	73	02	JSR\$0273
0259	68			PLA
025A	AA			TAX
025B	68			PLA
025C	4 C	8B	FF	JMP\$FF8B
025F	AO	00		LDY $\$ \$ 00$
0261	A9	20		LDA\$820
0263	99	00	D3	STASD300, Y
0266	99	00	D2	STASD200, Y
0269	99	00	D1	STASD100, Y
026C	99	00	DO	STASD000, Y
026F	C8			1 NY
0270	DO	F1		BNESO261
0272	60			RTS
0273	20	5F	02	JSP8025F
0276	A2	00		LDX\$800
0278	20	B8	02	JSR802B4
027B	A2	11		LDXH8\$11
0270	20	B8	02	JSR80238
0280	A2	00		LDX ${ }^{\text {S }}$ \$00
0282	20	00	FD	JSRSFD00
0285	C9	1 C		CMP \$ ${ }^{\text {P }}$
0287	FO	EA		BEOSO273
0289	20	2D	BF	JSR8BF2D
028C	C9	OD		CMP ${ }^{\text {S }}$ S0D
028E	FO	07		BE080297
0290	9D	FO	00	STASOOFO, X
0293	E8			INX
0294	4 C	82	02	JMP\$0282

AUTOMOBILE

N the first part of this article the principles of operation of the various functions of the Auto Test Set were described in detail, together with their usefulness to the troubleshooting and performance-conscious motorist. This article carries on from the detailed circuit description by covering the construction of the complete instrument, and concludes with a detailed series of tests and calibration steps, together with some fault-finding hints and suggestions.

CONSTRUCTION

A diecast box is used in the construction of the Auto Test Set to ensure that the final unit is rugged enough to with stand hard use. The majority of the small components are mounted inside the box on a single-sided printed circuit board. The copper foil pattern for the board is shown in Fig. 7, with the corresponding component layout in Fig. 8. The interconnection wiring points have been labelled for later identification. No special handling procedures need to be observed in mounting the components on the p.c.b., but constructors may wish to use 14 -pin d.i.l. sockets for mounting IC1 and IC2. Care should be taken to ensure the correct orientation of all of the polarised components (semiconductors and electrolytic capacitors) before soldering them in place. The use of terminal pins is recommended for ease of installation of the interconnection wiring.

When all of the components have been mounted on the p.c.b., a careful visual inspection of the track side of the board should be made before proceeding. Particular attention should be paid to soldered joints, and all dry joints and solder bridges should be rectified at this stage. After a final check on the orientation of polarised components, the p.c.b. may be mounted in the base of the diecast box using four short pillars. When positioning the board, adequate clearance should be left for the d.c. supply sockets, SK3 and SK4, which should be mounted on the side of the box and adjacent to pins A and B. Short lengths of insulated wire should then be used to connect SK3 (red) to pin B, and SK4 (black) to pin A; the wire links used should be long enough to allow the p.c.b. to be easily removed from the box for troubleshooting.

The remaining components are mounted on the lid of the diecast box, as shown in Fig. 9. The assembly sequence is simplified if all of the necessary holes are cut before any of the components are mounted. Marking out of the holes is simplified if the lid is first covered with masking tape, and the hole positions marked on the tape before being centrepunched. The cutout for the meter is most easily made by
drilling a series of holes around the circumference to remove the majority of the metal, and then cleaning up the hole with a file until the meter is an easy fit. When the meter, switches, terminals and I.e.d.s have been mounted, the next step is to fit the remaining components to the switch and meter terminals as shown in Fig. 9. It should be noted that, when making up the necessary values for R28 to R31, it may be easier to use a number of standard values in series/parallel, e.g. R28 may be made up from two 100 kilohm resistors in parallel.

The final assembly step is to install the interconnection wiring between the p.c.b. and the components mounted on the lid of the bax. Ribbon cable provides one of the most convenient methods of installing the wiring, and it is suggested that one piece be used for each of the four groups of terminal pins. The cable lengths should be adequate to allow the lid to be laid flat alongside the box during calibration. The wire from S2 to one end of R33 should be connected as shown by the solid line, and R33 should temporarily be fitted as a short length of wire. A final check of the wiring should show that pins J and K on the p.c.b. are the only ones left unconnected; these may be used if an alternative buzzer is to be used off the board, but otherwise they may remain unconnected.

TESTS AND ADJUSTMENTS

The initial tests and adjustments require the use of a power supply or battery capable of delivering 12 volts at up to approximately 120 mA . Ideally, the supply should have an electronic over-current trip, but if this is not available, an appropriately rated line fuse will suffice to protect against catastrophic failures or errors. Before connecting the supply, the controls on the Auto Test Set should be set to the following: S1 to the 'Carry' position; S2 to the '4 cyl' position; S3 to 'Off'. The power supply should be connected to SK3/SK4 via a multimeter set to the d.c. current range rated at a minimum of 100 mA .

Switching on the supply to the Auto Test Set should cause the 'NOGO' and the 'Power' l.e.d.s to be illuminated; no other l.e.d.s should be illuminated. The supply current indicated should be approximately 40 mA , but only significant variations from this value should be considered as significant. Should neither of the l.e.d.s be illuminated and no supply current be drawn, the polarity of D12 and the power supply wiring should be carefully checked. Moving the instrument sharply should show that the meter movement is significantly damped; if not, the wiring to S1 and ME1

Fig. 7. Foil pattern for board underside
should be re-examined. If the supply current is significantly lower than expected, and everything appears as normal except that no l.e.d.s are illuminated, then it is possible that the polarity of the l.e.d.s is incorrect. When these initial tests are satisfactory, the functions may be tested.
The function switch should now be moved to the ' 0 to 15 V ' position, and the circuit shown in Fig. 10 set up to allow testing of the two voltmeter ranges. As the potentiometer is varied from minimum to maximum setting, the meter indication should move over the full scale. Significant scale errors should lead to investigation of the wiring to ME1, S1, and the value of R12. As the setting of the potentiometer is increased from minimum, D4 should become illuminated at a potential of approximately 1 V . Should the l.e.d. fail to illuminate, the polarity of D3, D4, D5 and TR 1 , and the power supply to IC2 should be checked to determine the source of the problem.

The offset zero voltage range is checked using the same arrangement as shown in Fig. 10, but with the function switch now set to ' 10 to 15 V '. Varying the voltage applied to

Fig. 8. Component layout. Note that in Fig. 2 pins 3/2 of IC2a should be reversed

SK1/SK2 over the range 10 to 15 V by means of the potentiometer, and comparing the measured voltage with that indicated by the test set should produce a response of the type shown in Fig. 11. Any significant movement of the curve up or down the axis, representing consistently high or low indications, should initially lead to a check on the value of R13. The most likely cause, however, is that the nominal Zener voltage of D18 is at one end (high or low) of the tolerance band, and this may be cured by either replacing the diode with an alternative, or by padding the diode.

Calibration of the dwell range involves selecting the 'Dwell' position on the function switch, and disconnecting all inputs from SK 1/SK2. In this condition the meter should indicate very close to zero, and D4 should be extinguished. Possible problems in the I.e.d. circuitry should already have been eliminated, so any significant meter indication would suggest a fault around IC2b. Calibration of the range involves the correct adjustment of VR2, and this, is done most easily by connecting a lead between SK 1 and SK3. VR2 is then adjusted to produce a full-scale meter indication,

6 Filto 5 . Interconnection wiring
equivalent to 100% duty cycle. With the component values and types specified, it is possible that the maximum indication which may be achieved by adjusting VR2 will be just below full-scale on the meter. In such cases D6 may be replaced by a diode rated at 6.2 volts, or a silicon diode (e.g. 1N4148) may be wired forward-biased in series with the existing diode. The calibration of the dwell meter scale is independent of the setting of S2, and depends only on the number of engine cylinders; Table 1 shows the way in which the meter markings correspond to the dwell angle. As a final stage in the calibration the scale may optionally be checked at mid-scale by applying a square wave signal, amplitude between 5 and 12 V pk-pk and frequency between 10 and 300 Hz , and verifying that a half-scale indication is obtained.

The tachometer ranges are calibrated by adjusting the setting of VR1, and determining the value and position of R33. The setting up procedure starts by selecting the ' 1500 RPM' position on S1, and ensuring that S2 is still set to '4 cyl . A signal generator producing a signal at 50 Hz (corresponding to a 4 cylinder engine at 1500 RPM) and an amplitude of 5 to 12 V pk-pk should be applied to SK $1 / \mathrm{SK} 2$. The circuit shown in Fig. 12 may be used in place of a signal generator if none is available. The setting of VR1 should now be increased from minimum until a full-scale indication is achieved. If such an adjustment is not possible, then the values of C3, VR 1 and R28 should be checked, followed by a check to the wiring of IC1 and S1/S2 if this does not reveal

Table 1. Showing meter indication of dwell angle

Meter Indication	Equivalent Dwell Angle (${ }^{\circ}$)			
$(\mu \mathbf{A})$	4 cyl	5 cyl	6 cyl	8 cyl
$\mathbf{0}$	90	72	60	45
$\mathbf{1 0}$	72	57.6	48	36
$\mathbf{2 0}$	54	43.2	36	27
$\mathbf{3 0}$	36	28.8	24	18
$\mathbf{4 0}$	18	14.4	12	9
$\mathbf{5 0}$	0	0	0	0

Flg. 10. Test configuration for the voltmeter ranges
the fault. When a full-scale indication has been obtained, S2 should be moved from the 4 cylinder position through the other positions. The meter indications should change from 1500 RPM (4 cylinders) through 1200 RPM, 1000 RPM to 750 RPM (8 cylinders) as the switch is rotated. Any errors would indicate that the values of R28 to R31 should be rechecked. The calibration of the basic range is now complete, but now the two ranges must be made to track correctly, and this involves R33. S2 should be set to the ' 4 cyl ' position again.

[66164]
Fig. 11. Typical response for the offset zero voltmeter range

Fig. 12. A tachometer calibration signal source
If moving S1 from '1500 RPM' to '5000 RPM' still produces an indication of 1500 RPM, then R33 is unnecessary, and the wire link should be retained in its place. The more likely result, however, is that the value indicated will be either too high or too low, by up to approximately 10%. If the new indication is too high, the temporary wire
link should be replaced by a suitable fixed resistor (typically in the range 1 to 4.7 kilohms) to restore the correct reading. If the new reading is too low, the wire from S1 to S2 should be reconnected in the position shown by the dotted line, i.e. at the other end of where R33 will be. VR1 should now be re-adjusted to produce an indication of 1500 RPM. S 1 should then be moved back to the ' 1500 RPM', where the reading will now be too high. R33 is now selected to return the reading to 1500 RPM, and a value in the same 1 to 4.7 kilohms range is to be expected. It should be noted that the use of a single tracking correction resistor is a compromise to simplify the interconnection wiring; ideally a different value should be used for each of the ranges selected by S2. However, the error introduced will be small enough to be ignored in most cases, but the unused half of S 2 may be used if necessary to allow individual calibration of the four ranges.

Verifying the correct operation of the lamp/fuse testing facility requires two fixed resistors, having values of 100 and 270 ohms, respectively. S 2 should be set to the ' Z ' position, and with nothing connected to SK5, D14 should be illuminated, D15 should be extinguished and the buzzer should be sitent. With the 270 ohm resistor connected be-
tween SK5 and SK6 there should be no change in this situation. Replacing the 270 ohm resistor by the 100 ohm resistor, however, should cause the buzzer to sound and D15 to become illuminated. It is quite normal for D14 not to be totally extinguished. Ary deviation from this behaviour should lead to investigation of IC2d and its associated components. Moving S3 to the 'Off' or 'V' position while the 100 ohm resistor is connected should silence the buzzer but have no other effect. If the buzzer remains on, a check of the wiring of S3, the value of R34 and the polarity of TR2 should be made.

The circuit tracer facility is the only remaining part of the Auto Test Set to be tested. The configuration of Fig. 10 may be re-used for this purpose, but with SK7 and SK6 substituted for SK1 and SK2, respectively. S3 should be switched to the 'V' position. As the input voltage is increased from zero, D16 should become illuminated and the buzzer should sound at a level of approximately 9 to 10 volts. Moving S3 to 'Off' should silence the buzzer. Any error in the operation of the circuit tracer should lead to an investigation of the circuitry associated with IC2c.

This completes the testing and calibration of the Auto Test Set, which is now ready for use.

bazair

IIP audio modules Mullard f.m. modules i.c.'s cases switches many small components. All very cheap s.a.e. G.A. Noble, 50 Crofthill Road, Slough, Berks SL2 1 HF.
CALSCOPE Super 10 dual trace. Function gen. DMM. Exchange four track, 15 i.p.s. reel/reel tape recorder. P. Cooper, 27 Leeswood, Ashurst, Skelmersdale, Lancs WN8 6TH.
ZX81 wanted must be in reasonable condition, have power supply and be in working order. 22 Primrose Drive, Haltons, Leeds 15. Tel: 641505. RARE collector's item; 1938 "Cossor" television set, walnut cabinet $£ 150$. F. Ashworth, 76 Hampton Road, London E7. Tel: 01-519 2286.
WEMON monitor for Superboard II series II £6. Old BASICS Mon, 1, 3, 4 ROMS. Any offers? J. Ellis, 44 Copthorne Road, Rickmansworth, Herts. Tel: Rickmansworth 772139.
WANTED video/audio/television test equipment in good condition and also service manuals. M, Patel, 46 Lockerbie Avenue, Rushymead, Leicester. Tel: (0533) 65009.
BINATONE 5 -star 40 channel 4 watt FM-CB mobile transceiver. Full controls. New. £35. Call Chang 041-332 7695 after 8p.m.
PRACTICAL Electronics 1964 to 1982. Everyday Electronics 1971 to 1982 buyer collects. Offers to 01-274 5495
WANTED XBug plus manual for Microtan 65 system. C.W. Murray, 21 Canterbury Rd, Ash, Aldershot, Hants GU12 65P. Tel: Ald 310661 after 6 p.m.
UK101 BK Cegmon 32/16 $\times 48$ new BASICS $1,3,4,300 / 600 B$ cased part built P.E. interface boards 180 o.n.o. Somerton (SOM) 72663 evenings.
CRYSTAL radios wanted from the 1920 s and 1930's and other wireless and radio sets and material. J.L. Troe, 111 Skyline Drive, Morristown, New Jersey 07960 U.S.A.
OSCILLOSCOPE. Telequipment mod 543 . good condition £40.00. Tel: Thatcham 64617 evenings and weekends. A. Napier, 1 Elmgrove, Thatcham, Berks
GOLDRING turntable with Shure cartridge plus Amstrad amp., both need repair $£ 25$ o.n.o. both. Buyer to collect. G. Wheaton-Tel (Bolton) 591449.

AC 240 V power unit- $900 \mathrm{~V} / .5 \mathrm{~A} \quad 213 \mathrm{~V} / 60 \mathrm{~mA}$ $24 \mathrm{~V} / 4.5 \mathrm{~A} \quad 15 \mathrm{~V} / 750 \mathrm{~mA} \quad 25 \mathrm{~V} / 2 \cdot 5 \mathrm{~A}$ in sturdy metal case. S.a.e. for details $£ 50$. J.B. Carlile, 10 Cedric Ave, Romford, Essex. Tel: Fomford 67627.

ATOM 12 K . Acorn built, utlity EPROM, leads. Manuals, magic book, 3 A p.s.u., 2 MHz option. software. Offers. G. Gray, 64 Lindisfarne Rd, Bessemar Park, Spennymoor, Co. Durham.
NEWBRAIN £199, Accessories available. Used for short time on systems communications and software tests. HX20 needed. Anthony Hode, 15 St Johns Court, Wakefield WF1 2RY.
ATARI Video computer 22 programs (Approx £400). Three sets controls £200 on.o. Tel: Derby 556294. G.H. Scott, 58 Buttermere Dr, Allestree, Derby.
SEVEN Digisound 80 modules for sale including keyboard controller, power amplifier, p.s.u. Offers. Will separate. Adam Rae, 34 Newtondale, Sutton Park, North Humberside.
2X81 Sinclair computer, brand new including power supply. Only $£ 32$ inc. postage. Mr. C.E. Nicholas, "Sunrays", 37 Phernyssick Rd, St. Austell, Cornwall. Tel: 072663938.
EPSON TX80 friction feed dot matrix printer, connector and paper mint condition. £200. Tel: 0213508271 . Mr. A. Webster, 30 Blounts Rd, Erdington, Birmingham.
PAIR Ditton 161 speakers $£ 60$. Wharfedale Denton speakers 125 , Neal 4 -channel resolver £10. w.h.y. Mr. Mel Saunders, 7 Drumcliff Rd, Thurnby Lodge, Leicester LE5 2LH.
PERTEC 6840-9-25 tape transport £ 40 . Memorex 651 disc drive £40. Both with manuals, buyer collects. N.R. Horder, 24 Kinsbourne Ave, Ensbury Park, Bournemouth BH1O 4HE. Tel: 0202512062.
UK101 8K cased, programmable sound board, many programs: invaders, supertrek $£ 100$. Sean Carey, 82 Firs Rd, Winterslow, Salisbury, Wilts SP5 1SW. Tel: Winterslow 862348.
BRAND new full size moving key QUERTY keyboard, 60 keys £8.00. Phone 0613301309. B. Curry, 21 Cranbourne Rd, Ashton under Lyne, Gr. Manchester.
WATFORD Phaser £16, fuzz boxes also other projects and components. Space needed. S.a.e. for list. Martin, 6 Downland Gdns, Tattenham Corner, Epsom, Surrey.
TRANCENDENT DPX must be sold now. £270. Please ring soon with an offer. J. Bedward, 21 Hartshill Rd, Olton, Birmingham B27 6PB. Tel: 0217069465.

SHUGART eight inch floppy drive with manual and diagrams for experienced constructor $£ 75$ o.n.o. J. McCarthy, 13 Gipsy Lane, Wokingham, Berks. Tel: Wokingham (0734) 789529.
FOR Compukit RAM/EPROM board E20, Sound Board £5, Tookit £5 BASIC 5 £ 5 Mother $£ 5 . \mathrm{Mr}$ N. Odell, 31 Humphrey Rd, Greenhill, Sheffield S8 7SE. Phone (0742) 745027.
TE 20D signal generator £25. 680R Multimeter £12. Kamoden transistor tester £20. Goodmans Audiom 100/Axent 100 speakers E40. P.A. Joinet, Speyside Cottage, Old Distillery Rd, Kingussie, Invernesshire, Tel: 05402677,
CHALLENGER $1 P, 8$ K, Cegmon, 48×32, Four speed cassette save, software, lots of info. Bargain £140 o.n.o. John, Leics. Tel: Thistleton (057283) 332

PE years 1966 to 1973 £5 p\&p \&4. Tel: St. Albans (0727) 39171 Ask for Martin.
SINCLAIR stereo-60 units. Preamp, active filter. 2×230 power amps, power supply $£ 20$ o.n.o Tel: Wivenhoe (020622) 5671. C. Hellen, Vine Cott. Main Rd, Alresford, Colchester, Essex CO7 BDD.
PE/CLEF Bandbox music programmes Q/step, Waltz, S/fox, beat etc. Specials written also unlimited memory mod. Enquiries F.P. Jones, 20 Blunham Rd, Mogerhanger, Bedford MK 44 3RA. Phone: 076740220.
SELMAR 50 watt valve guitar amp with 4×12 speaker cab E65. Ronn Ferguson, 11 Avondale High, Croydon Road, Caterham, Surrey CR3 60J. Tel: Caterham 46376.
GOOD prices paid for very old junction and point contact transistors and diodes. Write for details. Mr. Andrew Wylie, 18 Rue De Lausanne, 1201 Geneva, Switzerland.
TRS 80 PC-2 8K RAM pack. Brand new, unused, present. Normal price £79.95; selling for £51.00 including p\&p. Zakariya Ahad, 92 Princes Park Ave., Golders Green, London NW1 1 OJX. Tel: 014552800 (After 8p.m.).
DAMAGED Casio FX-602P required for spare parts reasonable price paid. M. Brown, 19 The Baulk, Worksop, Notts 581 OHU. Tel: 0909 485738.

RS signal injector $£ 5,30 \mathrm{kV}$ probe $£ 10$. Plenty strip board, prototype board £4. Phone Reading 694445. M. Harris, 32 Wilmington CI, Woodley, Reading RG5 4LR.
RS Logic Pulser, RS CMOS Logic Probe, RS TTL Logic Probe $£ 15$ each. Phone Reading 694445 M. Harris, 32 Wilmington Cl . Woodley, Reading RG5 4LR.

The Big Event fr' 8
 Sponsored by Practical Electronics, Practical Wireless and Everyday Electronics

The first Electronic Hobbies Fair in 1982 immediately established itself as the foremost consumer electronics exhibition-the biggest attendance and the largest number of exhibitors

The 1983 Fair will build on the success and the experience of the first year. It will be 1983's largest and most influential
shop window for the whole range of electronic equipment and components for the electronics hobby enthusiast-constructional projects, home computers, amateur radio, video games, musical instruments and peripheral equipment-whether for the beginner, the specialist or the all-round enthusiast

Throwley Way, Sutton, Surrey SM1 4QQ

 \title{
Ingenuity
 \title{
Ingenuity Unlimited
} Unlimited
}

A selection of readers' original circuit ideas.
Why not submit your idea? Any idea published will be awarded payment according to its merits.

Each idea submitted must be accompanied by a declaration to the effect that it has been tried and tested, is the original work of the undersigned, and that it has not been offered or accepted for publication elsewhere. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.

Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not in the text.

THE design requirements for this were as follows.
Able to be triggered by any electrical equipment in the car being operated, i.e. courtesy light, ignition, lights etc., but not the horn when being used to provide the alarm. To provide a delay of about 15 seconds to allow the car owner time to leave the vehicle after switching on the internal arning switch and a delay of about $8-10$ seconds before the alarm operates to allow time for the owner to disarm on reentry to the vehicle.
It must have a pulsating alarm which ceases after 30 seconds, but re-arms the circuit after $10-15$ seconds.
On closure of S 1 it takes approximately 10 to 15 seconds for C3 to become positively charged via R2. This puts a positive potential on pin 5 of ICl a and the
base of TR6 which in turn makes the base of TR7 negative, which means that RLA I is de-energised. R12 and C7 are included to stop TR6 collector going positive before its base goes positive.

On opening the car door the courtesy light operates, which causes a negative pulse at TR1 collector and pin 1 of ICla. This causes the bistable to operate which turns on TR3 allowing C6 to charge, putting a negative potential on the base of TR4. The time for C6 to charge is determined by R8 and VR1. Discharge time is determined by VR2. The base of TR2 is now positive, causing the collector to go negative. This causes two functions.

The base of TR6 is made negative turning it off, which puts the base of TR7 positive, this is modulated by 1 Clb which is oscillating at about 1 hertz, thereby
switching TR8 on and off allowing alternate operation of the relay.

The second function causes pin 5 of 1Cla to be held negative thus preventing operation of the bistable whilst the relay is operating.

When C6 has discharged the relay ceases to operate and the bistable returns to an operational state.

The relay in the prototype was used to pulsate the horn but it could also be used to pulsate the headlights or operate a siren. The relay contacts must be capable of carrying the current demanded by the warning devices being used. VR 1 is used to adjust the re-entry time delay and VR2 to adjust the relay operation time.
W. Fairhurst, Anderton, Chorley,

Lancs.

Fig. 1

I'HIS circuit was designed so that the direction in which a train speed potentiometer moves away from its centre off position controls the direction in which the train travels. The pulse frequency to the motor is obtained from an astable so can be any value (40 Hz used) and enables battery operation.
Fig. 1 shows the power supply used to supply two controllers. Fig. 2 shows the voltage decoding circuit in which VRI is the speed potentiometer. The voltage on VR3 is modified by IC2 and 3 and appears at D as an increasing voltage whenever VR3 is moved further from its central position. An inertia network R16, VR4 and C3 gives simulated inertia which is shorted by S2 being closed. S1 is an emergency stop and IC4 buffers the voltage on C3. TR2 was included for remote or automatic switching and E for injecting a minimum voltage on C3 during automatic control. ICl's output swings positive or negative depending on the direction that VRI is moved from the centre off position. R2 is a 10k trim potentiometer next to VRI and a 4k 7 resistor.

Fig. 3 shows IC 5 the astable 555 , which triggers IC6 the monostable 555. The period of the monostable 555 is controlled by the voltage on pin 5 and this comes from the output of IC4. This creates a pulse width modulated output from IC6 which is fed to the power transistor. IC6 needs to gate off when there is a minimum voltage of about 2 V on pin 5. To achieve this the negative pulse arriving at IC6's trigger pin is prevented from reaching zero by R18 and VR5 on the output of IC5.

Fig. 4 shows a power stage using a relay for controlling the direction. D5, TR4 and R26 provide overload protection at 2 A and TR5, R27 and l.e.d. provide indication. Due to slight differences in relays R23 and R24 may need some adjustments. Try to get TR3 to run at the same temperature in each direction.

To set up the decoder (Fig. 2) monitor the voltage at D . Set the dead band pots VR2 and VR3 to the mid point. Turn VR3 to full speed, adjust equally the trim pots each side of VRI until the maximum voltage possible is obtained at D ($10-11 \mathrm{~V}$). Turn VRI to full speed in the other direction and check the voltage is the same as the other full speed voltage.

Fig. 2

E61020
Fig. 4

To set up the PWM (Fig. 3) set VR6 to minimum, VRI to full speed, monitor IC6's output and gradually increase VR6. As VR6 is increased a point will be reached when IC6's output suddenly falls to half its previous value. IC6 is now firing from every other pulse from IC5 and VR6
must be reduced slightly. Turn VRI to off and adjust VR5 until IC6's output is just gated off.
S. Woodall,

Mangotsfield,
Bristol.
 \title{
MODULES FOR SECURITY \& DETECTION
 \title{
MODULES FOR SECURITY \& DETECTION

 - Built-in electronic siren drives 2 loúd speakers
 - Provides exit and mrmance delays together with fixed alarm time
 - Battery keck-up with trickle charging facility
 - Operates with magnetic switches, $4 /$ sonic or I.R. units
 - Anti-tamper and panic facility

 CA 1250

 CA 1250
 This exciting new module offers all tha possible features likely to be required when bualding an intruder alarm system. Whether used with only 1 or 2 magnetic switches or in conjunction with several ultrasonic alarm modules or infrared units. a really effective system can be constructed at a fraction of the cost of comparable readrmade urits. Supplied with a fully explanatory Data Sheet that makes installation straight forward. the module is fully lested and guaranteed - svailable in kit form $£ 16.96$ plus VAT.
 - Stabilised output voltage
 2 operating modes - full alarm/anti-ramper and panic facility
 - Screw connections for ease of installation
 - Separate relay contacts for switching external loads
 ALARM
 US 4012
 Fuily built \& testec
 Test loop facility Adjustable range from 5 ft to 25 ft .
 OIGITAL VOLTMETER MOOULE OVM 314 3 digit. Full/ built \& tested

 \section*{ULTRASONIC}

 \section*{ULTRASONIC}

 \section*{MODULE}

 \section*{MODULE}

 INFRA-RED SYSTEM
 IR 1470
 Fully built \& tested
 - Range up to 50
 - 12 V operttion
 - Supplied with full instruction
 - Easily instalied
 Now avallable a really effective infra-red system bult to the high standards demanded by the security industry. and et offered at this low price. Thesystem consists of a transmitter and receiver which provide an invisible beam over distances from 1-50ti or more. When the beam is interrupted. a relay is energised in the receiver unit. The use of a modulated be am combined with the intra- red filters. prevent interference from artificial or sunlight. whilst LED indiczors ensure easy alignment of the beam. Both units are housed in attractive black moulded enclosures which are easily mounted. Supplied with full instructions. the unit is ideal for use in conjunction with the Control Unit CA 1250 or as an independant unit
 Power Supply \& Relay Units PS 4012
 $£ 4.25$ + VAT
 Provides a stabilised 12 V output and relay with 3A contacts. The unit is designed to operate one or two of the uttrasonic units. Fully buith and tested.
 effective fully buith Trodule containing both iltrasonic transmitter and and circuitry for providing false alarm suppression. This module together with a suitable 12 V power supply and relay unit as shown, forms an effective though inexpensive intruder alarm. Eupplied with comprehensive Data Sheet it is easily nounted in a A ready-drilled case a od necessar hardware is available (see right)

 \section*{Siren Module

 \section*{Siren Module

 $£ 2.95+$ vat}

 $£ 2.95+$ vat}
 Produces a loud and penetrating sliding tone oper at ing from 9-1 EV. Capable of driving 2 off 8 zm speakers to $\mathrm{S}^{2} \mathrm{~L}$ of 110 db at 2 M .
 Contains an ir hibit facility for use with shor lifting loops or other break to activate circuits.
 Add VAT 650 p post and packing to all orders
 Shop hours 9.00 - 5.30 p.m.
 (Wad. $9.00 \cdot 1.00$ p.m.)
 Units on demonstration - callers wolcomo. S.A.E. with all enquiries
 पish
 VIS
 Hardware Kit
 HW 4012
 $£ 4.25$ + vat
 A suitable readr-drilled case with the various mounting pillars, mains switch socket and nuts and bolts. Designed to house the ultrasonic alarm module together with its power supoly. Size: $153 \mathrm{~mm} \times 120 \mathrm{~mm} \times 45 \mathrm{~mm}$.
 ACCESSORIES *
 3-position Key Switch for use with
CA 1250 , supplied with 2 keys
 21 Duke Street
 Princes Risborough, Bucks.
 Princes Risborough (084 44) 6326
 Please allow 7 days for delivery

 \section*{RISCOMP LIMITED}

 \section*{RISCOMP LIMITED}

 \section*{Dept. PE6}
}

 \section*{Dept. PE6}
}

MASIMFR THTHCYRONTCS NOWT The Prachichat way!

This new style course will enable anyone to hare a real understanding of elec-ronice by a modern, practical and vis」al method. No previous knowledge is required, no maths, and an absolute rminimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby ar to start or further a career in electronics or as a self employed servicing engineer.
All the trailing can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you cen write personally at any time, for adv ce or help during your work. A Certificate is given at the end of every course.

You will do the fol owing:
Build a modern cscilloscope

- Recognise and handle current electronic components
- Read,draw and understand circuit diagram
- Carry out 40 experiments on basic electronic circuits used in modern equipment
- Build and use digital electronic circuits
and current solid state 'chips'
- Learn how to test and service every type of electronic dev ce used in industr\% and commerce today Servicing of radic, T.V $\mathrm{Hi}-\mathrm{Fi}$ and microfrocessor/computer equipment.

Newdob?NewCareer?NewHobby?Getinto:Ilectronics Now!

FREE!

Please send your brochure without a my obligation to
\square COURSE IN ELECTRONICS
—AAOIO AMATEUR LICENCE MICROPROCESSORS OTHERSUBJECTS

Ulimum Connouter
 Interface Park \&

WILLIAM EDWARDS
 WATFORD ELECTRONICS

THE PORT card for the Ultimum system provides all the facilities one is ever likely to need for running printers, terminals and so on, plus a few extra goodies. A real-time clock with battery backup is included, allowing your system to always know the correct date and time. Both this, and all of the ports provided by the card have interrupt facilities, to allow any or all of them to be run in an interrupt-driven mode with all its attendant advantages of software efficiency. All handshakes on the two parallel ports are performed by hardware, again reducing the software load. The serial port provides and accepts both full V24 level and TTL level RS232 signals in full-duplex mode with complete modem handshaking provision.

MARDWARE

The circuit divides very neatly into four parts, as may be seen from the diagram (Fig, 8.1). The decoding section is fairly standard; ICs 7 \& 8 compare the top eight address bits with those set up on link 1. IC6 decodes further using four more address bits to give sixteen outputs covering sixteen locations each, any of which is available (on link 2) for the master selects MS 1 and MS2.

The 58174 reat-time clock (IC2) consumes only ten microamps in standby mode and operates down to 2.2 volts. Since the trickle charge current for the battery is 1 mA , rather odd but simple circuitry may be used in the backup supply. R9, charges the battery in normal operation and, when power is removed from the card, has very little effect on the 3.6 volts from the battery. The open collector output of IC5 combined with R10 ensures that the clock remains deselected under power-down conditions. Link 4 allows connection of the internal timer to the system interrupt line.

The serial port is handled by IC 1 , a 6551 asynchronous communications interface adaptor. This handles conversion between serial and parallel formats including some error checking features. Buffering and level conversion on the output side is provided by IC11. The CCITT recommendation V 24 specifies a minimum $\pm 3 \mathrm{~V}$ signal and a typical $\pm 12 \mathrm{~V}$. The EIA standard RS-232C is similar, and specifies in addition a maximum output slew rate of $30 \mathrm{~V} / \mu \mathrm{s}$, data rate of $20 \mathrm{~kb} / \mathrm{s}$ and cable length of 50 feet. The purpose of the slew rate specification is to control emission (which causes crosstalk) and reflection problems. The capacitors C1-3 perform this function, the outputs of the line drivers being current limited. Input buffering and level conversion is provided by IC10. Resistors R14-17, which are not normally fitted, allow correct termination of electrically long transmis-
sion lines. The transition points of the line receivers are about 1.3 volts. This has two useful effects. First, an open or shorted input will be seen as continuous "mark" (as if no characters were being output by the remote transmitter) rather than noise, and secondly, a TTL specification input ($<0.8 \mathrm{~V}={ }^{\prime \prime} 0^{\circ},>2.4 \mathrm{~V}={ }^{\prime \prime} 1^{\prime \prime}$) can be correctly read. IC10 also provides for filtering (C4-7) and about 500 mV of hysteresis to eliminate noise on the input. The value of capacitor given causes the receiver to reject a 3 V noise pulse less than 400 ns wide. If noise problems are experienced they may be increased, paying careful attention to the Baud rate in use.

The values of C1-3 may be similarly modified if necessary. The supply-line diodes around IC10 protect it from damage when a signal is received with the power supply off.

Both the parallel ports are handled by (surprise, surprise!) an 8255 , IC3. The circuitry is designed to take best advantage of the 8255 using port B in mode 1, output, for the Centronics parallel port and port A in mode 2, bidirectional, for the auxiliary port. ICs 4 and 5 provide increased current driving capability for the Centronics output. Link 3 may be used to select BUSY for the handshaking if $\overline{A C K}$ is not available. In mode 1 the 8255 handles the required handshaking for the Centronics protocol on port B using lines 1 and 2 of port C. An interrupt request is available out of port C line zero; if interrupts will never be required for the Centronics port R5 may be omitted. Port A requires four handshake lines to run in full bidirectional mode; these are provided by port C lines 4-7 and consist of:
a) Output Buffer Full and Acknowledge (output operations)
b) Strobe and Input Buffer Full (input operations)

An interrupt request is available for the port on C3; R4 may be omitted if it will never be used. If no interrupts from the 8255 will ever be required then TR 1 and R6 may also be omitted. It should be noted that the drive capability of port A is limited to $200 \mu \mathrm{~A}$ (source), 1.7 mA (sink) and buffering may be required for any particular application. The port may of course be used as a purely unidirectional one without modifying the 8255 mode (two parallel printers?).

CONSTRUCTION

The usual order of construction applies: Sockets first followed by discrete components. Then fit the i.c.s and finally solder the battery in, being careful at all times not to short it out. Try not to subject the crystals to excessive brutality; they don't appreciate it. Finally choose and fit your

COMPONENTS	
Resistors	
R 1,R10	330 (2 off)
R2,R3,R7,R8, R 11 , R12	3 k 3 (6 off)
R4,R5	10k (2 off)
$R 6$	100k
R9	$1 \mathrm{k} 2$
R13	$4 \mathrm{k} 7$
R14-17	not supplied in kit
Capacitors	
$\mathrm{C} 1-7$	470p ceramic (7 off)
C8.C11.C12	$10 \mu / 16 \mathrm{~V}$ tant. (3 off)
C9	$1 \mu / 16 \mathrm{~V}$ tant.
C10	5-65p trimmer
C13	$470 \mu / 6$ V3
C14-20	100 n ceramic (7 off)
Semiconductors	
D1-5	OA90 (5 off)
TR1	2TX109
IC1	6551 ACIA
IC2	58174 RTC
IC3	8255 PPI
IC4	74LS244
IC5	74LS05

IC6
IC7.1C8
IC9
IC10
IC11
IC12

Miscellaneous
X 1
X 2
B 1
EC 1

PL1, PL2
PL3
sockets
14 pin 4 off
16 pin 3 off
20 pin 1 off
24 pin 1 off
28 pin 1 off
40 pin 1 off
Printed circuit board WEO5PRT

Constructors' Note

Kits for all parts of the Ultimum will be available from Watford Electronics, 33 Cardiff Rd., Watford, Herts, WD1 8ED. Send SAE for price list of boards now avallable.

Table 8.1. LInk options

1. Addressing: Top eight bits. Mode $={ }^{\prime} \mathrm{O}^{\prime}$. Marked end is least significant.
2. Addressing: Page subdivisions. Marked end is lowest address.
3. Centronics handshake: Default is $\overline{A C K}$. Alternative is BUSY
4. Timer interrupt
5. ACIA interrupt.
6. Address space: Default is memory-mapped. Alternative is I/O mapped.
7. Address space size: Make for 8 -bit space and remove ICs 7 \& 8
8. Mapping: Default is 'permanent'. Alternative is 'mappable"
9. $280 / 65$ or 68 : No default.

Table 8.3. Year status codes for register 13 of 58174

Address 13 Write Mode

	DB3	DB2	DB1	DB0
Leap year	1	0	0	0
Leap year +1	0	1	0	0
Leap year +2	0	0	1	0
Leap year +3	0	0	0	1

Selected counter	Address bits				Mode
	AD3	AD2	AD 1	ADO	
0 Test only	0	0	0	0	Write only
1 Tenths of sec.	0	0	0	1	Read only
2 Units of secs.	0	0	1	0	Read only
3 Tens of secs.	0	0	1	1	Read only
4 Units of mins.	0	1	0	0	Read or Write
5 Tens of mins.	0	1	0	1	Read or Write
6 Units of hours	0	1	1	0	Read or Write
7 Tens of hours	0	1	1	1	Read or Write
8 Units of days	1	0	0	0	Read or Write
9 Tens of days	1	0	0	1	Read or Write
10 Day of week	1	0	1	0	Read or Write
11 Units of months	1	0	1	1	Read or Write
12 Tens of months	1	1	0	0	Read or Write
13 Years	1	1	0	1	Write only
14 Stop/Start	1	1	1	0	Write only
15 Interrupt and status	1	1	1	1	Read or Write

Table 8.4. Register 15 of $\mathbf{5 8 1 7 4}$. Interrupt selection data

Fig. 8.3. Example clock program	
10	MS2 =address of clock
20	R=9:GOSUB 1000
30	R=8:GOSUB 1000
40	PRINT " ";
50	R=12:GOSUB 1000
60	R=11:GOSUB 1000
70	PRINT " ";
80	R=7:GOSUB 1000
90	R=6:GOSUB 1000
100	PRINT ":";
110	R=5:GOSUB 1000
120	R=4:GOSUB 1000
130	PRINT ":";
140	R=3:GOSUB 1000
150	R=2:GOSUB 1000
160	PRINT
170	GOTO 20
1000	A=PEEK (MS2+R)
1010	IF $\mathrm{A}=15$ THEN 1000
1020	PRINT A;
1030	RETURN

| Address 15 Write Mode | | | | |
| :--- | :---: | :--- | :--- | :--- | :--- |
| | | | | |
| Function | DB3 | DB2 | DB1 | DB0 |
| No Interrupt | X | 0 | 0 | 0 |
| Interrupt at 60 sec. intervals** | $0 / 1$ | 1 | 0 | 0 |
| Interrupt at 5.0 sec. intervals* | $0 / 1$ | 0 | 1 | 0 |
| Interrupt at 0.5 sec. intervals* | $0 / 1$ | 0 | 0 | 1 |

* +16.6 mS
$D B 3=0$, single interrupt $\quad D B 3=1$, repeated interrupt
required link options. The card occupies two sixteen-location chunks of address space which must be in the same 256 location page. Link 1 sets (in binary, made $=$ " 0 ") the page number and link 2 selects two of sixteen subdivisions of the page. In hexadecimal terms, link 1 defines the first two digits and link 2 the third of the four required to describe a 64 K address space. If the I/O option is being used in a machine with only one page of I/O space, ICs $7 \& 8$ should be omitted.

SOFTWARE

The 58174 maintains sixteen internal registers (Table 8.2) and as such uses the entire address space selected by MS2. The counter registers (1 to 12) hold the date-time in BCD format. If a counter is being updated at the time it is read, the value 15 will be returned which is an illegal BCD code and thus may be detected. The most significant four data bits will be ignored on a write and are undefined on a read and should be masked out by software. Register zero is used during manufacture and should not be accessed apart from writing a zero to it at system initialisation time. The value zero when written into register 14 will stop the clock; the

Table 8.5. Internal registers of 6551

RS,	RS $_{0}$	Write	Read
0	0	Transmit Data Register	Receiver Data Register
0	1	Programmed Reset (Data is Rtatus Register	
1	0		"Don't Care")

value one will re-start it. This allows time data to be loaded and the clock then to be started precisely. Register 13 may be used to set the year status according to Table 8.3 Register 15 is the interrupt status register. It may be set in accordance with Table 8.4 to request single or repeated interrupts in one of three time periods. Once set, the interrupt request will be cleared by a read of the status register. Fig. 8.3 is an example program which reads the date and time.

The 6551 has six internal locations mapped onto four addresses (Table 8.5). On the card these appear at MS1 +4 to MS $1+7$. Figs. 4 to 7 give information on their function. The conditions reflected by bits 3 to 6 of the status register can cause an interrupt if enabled by bits 0 to 3 of the command register. The interrupt from status register bits 5 and 6 occurs on a change of state.

Note that CTS must be input to the 6551 for the transmit side to operate. If no suitable signal is available from the remote terminal then connect it to DTR/V24 at PL3. Fig. 8.8 gives an example program which uses the 6551 for output without using interrupts, and a suggested sequence of checks when interrupts are being used.

CONTROL REGISTER

The Control Register is used to select the desired mode for the SY6551. The word length, number of stop bits, and clock controls are all determined by the Control Register, which is depicted in Figure 6.

STOP BITS

```
\(0=1\) Stop Bit
\(1=2\) Stop Bits
1 Stop Bit if Word Length
\(=8\) Bits and Parity"
\(1 \frac{1}{2}\) Stop Bits if Word Length
    \(=5\) Bits and No Parity
```

WORD LENGTH

BIT		DATA WORD
6	5	LENGTH
0	0	8
0	1	7
1	0	6
1	1	5

RECEIVER CLOCK SOURCE

*This allows for 9 -bit transmission (8 data bits plus parity)

HARDWARE RESET
PROGRAM RESET
baud rate GENERATOR

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0
-	-	-	-	-	-	-	

Fig. 8.4. Control register format

COMMAND REGISTER

The Command Register is used to control Specific Transmit/Receive functions and is shown in Figure 7.

STATUS REGISTER

The Status Register is used to indicate to the processor the status of various SY6551 functions and is outlined in Figure 8.

STATUS REGISTER OPERATION

Because of the special functions of the various status bits, there is a suggested sequence for checking them. When an interrupt occurs, the R6551 should be Interrogated, as follows:

1. Read Status Register

This operation automatically clears Bit 7 (IRQ).
Subsequent transitions on DSR and DCD will cause
another interrupt.
2. Check IRQ Bit.

If not set, interrupt source is not the R6551.
3. Check $\overline{D C D}$ and $\overline{D S R}$.

These must be compared to their previous levels, which must have been saved by the processor. If they are both " 0 " (modem "on-line") and they are unchanged then the remaining bits must be checked.
4. Check RDRF (Bit 3)

Check for Receiver Data Register Full.
5. Check Parity, Overrun, and Framing Error (Bits 0-2). Only if Receiver Data Register is full.
6. Check TDRE (Bit 4).

Check for Transmitter Data Register Empty.
7. If none of the above, then CTS must have gone to the FALSE (high) state.

Fig. 8.8. Example serial output program

- NO INTERRUPT GENERATED FOR THESE CONDITIONS.
${ }^{-}$CLEARED AUTOMATICALLY AFTER A READ OF RDR AND THE NEXT ERROR FREE RECEIPT OF DATA.

HARDWARE RESET
PROGRAM RESET

Fig. 8.6. Status registor format

These registers are used as temporary data storage for the 6551 Transmit and Receive circuits. The Transmit
Data Register is characterized as follows:

- Bit 0 is the leading bit to be transmitted.
- Unused data bits are high-order bits and are "don't care" for transmission.
The Receive Data Register is characterized in a similar fashion:
- Bit 0 is the leading bit received.
- Unused data bits are the high-order bits and are " 0 " for the recelver.
- Parity bits are not contained in the Receive Data Register, but are stripped-off after being used for external parity checking. Parity and all unused high-order bits are " 0 ".
Figure 9 illustrates a single transmitted or received data word, for the example of 8 data bits, parity, and 1 stop bit.

Fig. 8.7. Tranemit and Receive data registors

Micro Controller Expansion
 A range of hardware and software backing up PE's 6800 System, adding

 power and flexibility to the micro. Only available from SAT ELECTRONICS.- EXPANSION SOCKET A unique design whlch only requires 5 soldered connections and the rest just plug in. Gives full access to all busses and controi lines. Installed in less than 5 minutes. Full kit of parts £11.91, order code CT100
- VOU INTERFACE 4 selectable pages of 512 characters on any TV or monitor. A set of 128 characters can be displayed normally in inverse video or flashing. The card has $2 k$ of Ram and can be used as memory expansion on full battery back up.
socket supplied free with this card *
Supplied ready built and tested E42.20 Order as CT101
- SPEECH SYNTHESISER This board is capable of speech of the highest order. Uses extended allophones as a key to the dictionary. UNLIMITED VOCABULARY, any word or sentence can be spoken. Has its own built-in amplifler. Easily programmed with worked examples. Supplied ready built and tested $£ 27.65$ Order as CT102/B Complete kit of parts $£ 22.00$ Drder as CT102/A
- 8k RAM EXTENOER This card contains a total of $8 k$ of RAM on full battery back-up. Ideal for those larger programmes. 2 or more cards can be used with the mother board, to gain ever bigger memary space. Full kit of parts $£ 19.59$ Order as CT 103/A Supplied, built and tested $\mathbf{\text { E23.70 Order as }}$ CT103/B
- ANOLOGUE INPUT/OUTPUT Up to 16 anologue inputs and 2 anologue outputs can be added using this card. Plugs directly into expansion socket The board is supplled with 8 inputs and 1 output extra $1 / 0$ available. Measuring pressure, voltage, amps, light etc. is detailed in manual, Full kit of parts $\mathbf{E 2 4 . 6 4}$ Order as CT 104/A Supplied ready built and tested $£ 29.76$ Order as CT104/B
- REAL TIME CARD Gives the controller an input of time and calendar down to $1 / 10$ of a sec. Crystal controlled for accuracy whith battery to maintain time keeping. Full kit of parts E21.89 Order as CT105/A. Supplied ready built and tested $£ 26.44$ Order as CT 105/B
- MOTHER BOARO This unlt plugs into the expansion socket to allow up to 6 expansion boards 10 be used simultaneously. Contains all logic required when using more than one board. Complete kit of parts $£ 16.90$ Order as CT106/A Supplied ready built and tested £19.83 Order as CT106/B
Available shortly will be sofiware and literature for use with micro-controller. All the boards are supplied with full construction details and a comprehensive manual containing many programme examples. Please add f P 8 P PER BOARD and 15% VAT TO TOTALORDER. Cheques and postal orders made payable to SAT ELECTRONICS
SAT ELECTRONICS, THE DESIGN CONSULTANTS. 235 CROSS ST SALE, CHESHIRE, M33 1JR Technical enquiry line 0619737882

Nowe is

 nore! Mare value, more useful,more informative, more up to date, more interesting, more rewarding, more fun, mare colourful, more exciting, more striking! The price stays the same.

PRACTICAL

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
OBF	INTE	IBF	INTE	INTR	INTE	OBF	INTR
A	AO	A	AI	A	B	B	B

INTE=Interrupt Enable
INTR=Interrupt Request
Fig. 8.9. 8255 status word, mode $2+1$
Fig. 8.10. Bit Set/Reset format
CONTROL WORD

The 8255 has the usual four registers, located in the address space at MS1 to MS1 + 3. Having defined ports A and B to be working in modes requiring handshaking, port C is dedicated to these control functions and attempting to use it normally does not make much sense. Bits in it however do have specific uses as is shown in Fig. 8.9. It will often be most appropriate to manipulate them using the individual bit set/reset capability which the 8255 provides for port C. The required format is given in Fig. 8.10.
NEXT MONTH: The analogue I/O card.

EXPANSION SYSTEM

Motherboard
Dynamic 16/64K RAM card
ROM \& Battery Back-up card
Universal PROM Programmer
ROMulator card
Speech card
Sound Generator card (3-chip)
Port \& Real-time Clock
Analogue card
Disk Controller (intelligent)
Display card (intelligent)
Processor card
Breadboarding card
ULTIMUM interfaces to: Acorn Atom, Apple II, Atari, BBC Micro, Commodore PET, Dragon 32.
Jupiter ACE, Oric 1, RML 380Z, Spectrum,
Superboard, Superbrain, S 100 bus machines, UK101,
Video Genie, ZX81.
 ~ always
"The legendary "MINIMAX" - the small speaker producing " Large speaker" sounds. Peak handling 100 watts.
ONLY £74.95

VIDEOTONE - For full range of loudspeakers, in-car, C.B., Video, audio \& video cassettes, etc. Write for full details.

 Quality plus value

Moving Coil Cartridge - The MC88E is a high output cartridge - so you do not need to use a head amp. EXCEPTIONAL VALUE AT ONLY £29.95

Seoum Hi-Fi represents EXCELLENT QUALITY AT A REALISTICPRICE! The range offers a choice of amplifiers, tuner/amplifier, tuner, and the excellent SC4200 stereo cassette recorder.

A Miero-Mobile you CAN afford!

Colne Robotics brings you the ZEAKER MICRO-MOBILE (as featured in this month's construction project), a low-cost mobile robot for use with microcomputers. It's compact ($5 \times 5 \times 22^{\prime \prime}$) and rugged, with two separately-driven DC motors powering its wheels. Eight touch sensors indicate collision with obstacles to the computer, which can then instruct ZEAKER to take evasive action. Touching an obstacle triggers a two-tone alarm horn which changes in pitch according to direction of travel. A retractable pen, controlled by the computer, is provided to enable ZEAKER to trace its path and, if provided with appropriate software, produce logo graphics. LEDs indicate direction of motion and pen status, and with its two metres of umbilical ribbon cable ZEAKER can roam over any flat surface. Drive ZEAKER with any microcomputer fitted with an 8-bit bi-directional port (ZX81/SPECTRUM users note - we can supply a special interface).
Complete with power supply, operation manual and basic software, ZEAKER is available at the special introductory price

Ring 01-891 1923 for details of Crofton Monitors. They take all the prizes.
CROFTOM ELECTRONICS
Crofton Electronics Lid., 35 Grosvenor Road, Twickenham, Middx. TWI 4AD. Tel: 01 -891 1923/1513.

TIME WRONG?

MSF CLOCK is ALWAYS CORRECT - never gains or loses, SELF SETTING at switch-on, 8 digits show Date, Hours, Minutes and Seconds, auto GMT/BST and leap year, can expand to Years, Months and Milliseconds, parallel BCD (including Weekday) output for alarm etc and audio to record and show time on playback, receives Rugby 60 KHz atomic time signals, built-in antenna, 1000 Km range, GET the TIME RIGHT, £69.60.
60KHZ RUGBY RECEIVER, as in MSF Clock, serial data output, decoding details, Basic listings, $£ \mathbf{2 2}$.20.

FREE ZX81-games programs with May/June orders, each fun-to-build kit includes all parts, printed circuit, case etc, by-return postage, money back assurance, GET yours NOW.

CAMBRIDGE KITS
45 (FT) Old School Lane, Milton, Cambridge.

VAST STOCKS OF COMPONENTS AT RIDICULOUSLY LOW PRICES

MAIL ORDER

we offer the best component prices in the business, and no order is too small to receive our first class attention.

COMPONENT WAREHOUSE

we have a huge warehouse full of components, test equipment - in fact virtually everything you will ever need. Come and have a browse around. Open Mon. to Sat. - 9am to 4pm. You will easily find us opposite the John O'Gaunt Hotel on the A45.

SEND A LARGE S.A.E. FOR OUR FREE COMPREHENSIVE CATALOGUE

DEPT 1F HIGH MARCH, DAVENTRY

TOYO MINI DRILLS, MO-1 and MD-1H - IDEAL FOR ELECTRONICS WOZK MiNI DRILL MD.1 - Baslc Mochine Price (inc. Drill Chuck) £124.75 SPECIFICSTION
Drillng Capaciry 6.5 mmm
inaximum "eed of mair spindle -45 mm
Maximum height of drill chuck above tabl: 178 mm
inaximum "eed of mair sping
Table size $-170 \times 170 \mathrm{~mm}$
Motor inpus - 110 W
Motor - 220/240v-50Hz A.C
Motor - $20 / 240 \mathrm{v}-$ EOHz A.C.
Mzin spincle speeds (unlogded) - 850, 1150. 1550, $1700,2300,3400 \mathrm{rpm}$ Overall dimensions $-170 \mathrm{~N} \times 350 \mathrm{~d} \times 430 \mathrm{~h}(\mathrm{~mm})$

MINI DRILL (HIGH SPEED) MD-IH - Basic Machine Drill (inc. Drill Chuck)
£12975
SPECIFICATION
As for MO-1 excepi as follows -
As for MO-1 excepf as follows -
Maximum "eed of mein spindle - 25 mm
Maximum eed of main spindle - 25 mm

- Main spir dle speeds -8000 \& 12000 rpm
Overall dimensions $-170 \mathrm{w} \times 315 \mathrm{~d} \times 395 \mathrm{~h}(\mathrm{~mm})$
Accessory
Mini drill wice 145 mm (zws) 50 mm max opening) £14.00
(Prices inc ude p\&op ard VAT)
MILLHILL SUPPLIES
Access/Berclaycard 66 THE STREET, CROWMARSH, WALLINGFORD welcome or OXON. OX10 8ES. Tel: 049138653
cheque/P0 to:-
Delivery within 7 days.

TALK TOTHE WHOLE WORLD

Study now for the

RADIO AMATEUR'S

 EXAMINATIONWe have had 40 years successful experience in training men and women for the G.P.O. Transmitting licence. - FREE R.A.E. brochure without obligation from:British National Radio \& Electronics School READING, BERKS. RG1 1BR

Name
Address

SUPER KITS!

SETS INCL. PCBS, ELECTRONIC PARTS, INSTRUCTIONS. MOST ALSO INCL. KNDBS, SKTS, WIRE, SOLDER, BOX. BATTERIES NOT INCL. BUT MOST WILL RUN FROM 9 V TO 15 V DC SUPPLEES. ALSO SEE BELOW.

AUTOWAH: Guitar-triggered wahweh
BASS BOOST: Increases volume of lower octeves
CALL SIGN: Programmable 8 -note musical call sign CHORUS GENERATOR: Makes a soo voice or instrument sound like more
COMPARATOA: LED level indicator of 2 chanuels
COMPRESSOR Limits \& levels maxomum sigh- strength FREQUENCY OOUBLER: Ralses gular frequency by loctave FREQUENCY-GENERATOR: MuItiple waveform test OSc, variable. 5 Hz 10470 KHz
FUNKY-WOBULO: Novelty voice matulator fon funny effects FLANGER: Fascinating delayed-leed-Jack effecs plus phasing FUIZ: Smooth distontion whilst keeling nature artack \& decay GUITAR EFFECTS: Multiple veriatiop of level हf fiter modulation GUTAR OVERDRNE: Fuzz plus voriable fiter quality GUTAR SUSTAIN: Extends effectivs note duation HARMONOLA: 3 -Octave organ with varibble ve icing artack sustain vibrato
4-Octave versien
HUM CUT: Tunable fitter for reducirg low freauency noise JABBERVOX: Voice disguisar with slever use of reverb \& tremoto MAD-ROJ Varéble sirens, incl. police, galaxy nachine-guns etc METRONOME With audible \& visual beat \& o own-beat manking MICROPHONE PRE-AMP: with swichable bas \& trable response MINISONIC (PE) MK2: 3.octave veq versatile music synthesiser MIXERS: Severat - detalis in catalonue (see below) NOISE LIMITE: reduces tape \& sistem hiss PHASER: with automatic \& manual ate \& dej th controls POWER SUPPLIES (300 mA): 9
or preset 121015 V
REVERB: Analague unit with variabe delay \& depth controls RHYTHM GENERATOR: 15 switchable rhythres controlling 10
instruments
RING MODULATOR: for intarmodulating 2 sesarate sine frequencies ROBO BOX: Versatile Robot type wice modrier
ROGER 2-GONG: 2 gongs sounded at and of ransmision ROGER BLEEP: Single bleep sound at at and if transmission SCRAMBLER: Codes \& decodes transmission authorised channels SEQUENCERS 128 -note keyboard Ditrolled tayboard incli 16 -note (up to 64 -bit pattern) panal controlled

ASCSSOR: for clearer tansmission \& bettar level control STORM EFFECTS: Automatic \& ma aual wind, rain \& surf generator SYNTHESISEF INTERFACE: Blows רstrumentto trigger synth function TREMOLO: Ocep tremolo with depth \& rate entrols fREBLE BOOKT: Increases volume 2 upper ctaves TONE CONTROL: bass \& treble cut gain \& range 16 controls) VIBRATO: vareble rate \& depth pls addition al phasing vOCODA-BOX: Modular Vocoder
VODALEK Ratoot type volce modulitor with eepth \& rate controls VOHCE FLLTER Tunable for selected freq banowith \& gain voIcE-OP-FADER: for reduction of muskic levvel during tall-over VDICE-OP-SUITCH: with variable sensitivity a delay, 1A 2PCO relay WAM-WAH: with auto-trigger, manual \& oscilator control WHEEBY-JEESY: 2 intercoupled oscillators pmoduce variable sirens WIND \& RAIE: manual control of these two effects WOBBLE-WAM: Oscilleror controlled wath-wa, for fascinating effects

SET 58 SET $138-\mathrm{B}$ SET 121-Ls

SET162
SET 129-LS
SET 133-LS SET $\$$

SET 128
SET 149
SET 153
SET 91
SET 42
SET 56
SET 75
SET 124-T SET 124.F SET 141
SET 150
SET 146
SET 143
SET 144
SET 38
SET 145
SET 164 SET 130-N SET $130 \cdot T$ SET 122.LS

SET $103 F$ SET 87 SET 165 SET 126-LS SET 127 LS SET 11% LS SET 76 SET 86 SET 110-LS SET 154 SET 81
SET 136 SET 138-T SET 139 SET 137 SET 152 SET-155-LS SET 142 SET 30 SET 123.4 S SET 140 SET 151 SET 28 SET 161

KIMBER ALLEN KEYBOAROS (sursly the Dest?): $\quad 3-0 \mathrm{ct}$ £32.43, 4.0ct $£ 40.58,5$-0ct $£ 48.52$

KEYBOARD CONTACTS GB (OPST)

 3-0ct $£ 2327,4.0 \mathrm{ct} £ 30.45,5$-Oct $£ 37.62$
PHONOSONICS

PHONOSONICS MAIL ORDER, JEPTPE 622 HIGH STHEET, SIDCUP, KENT OA14 6EH 013026184

Please use full address. Payment cWO, CHO PO, ACCESS, BARCLAY, or prearranged collection Prices incl. U\&: P\&P \& 15% VAT. E2 OEE Oespatch usually 7 days on most items. Derails of parts in above kits are stated in our comprehensive catalogue. Send SA.E. 9×4 or bigger) for Catalogue lif you live overseas please send E1.OT or equiv: MORE KTTS ARE IN CATALOGUE.

ELEGTROLILIUE FIRST FOR NASCOM 3

Highly recommended for its versatility and reliability, this latest Nascom microprocessor can be the foundation of a superb professionally styled system of excitingly processor can be the foundation of a superb professionally styled system of exciongly
useful applications and development ... and of course, Electrovalue are accredited useful applications and development ... and ol course, Electrovalue are

Nascom 3 Mlaroprocesao
(to drive monitor or TV set)
Monitor for above c549 + V.A.T

Nescom Dual Dlec
Takes standard 5i")
Nascom Hloh Capacity Du Divo
Nascom 2 in kit form inc keyboard but less power supply and RAM
Nascom 2 in kitay form inc. keyboard but less power supply and RAM
$\Sigma 225+$ V.AT
DID YOU KNOW that for almost 20 years Electrovalue have been foremost suppiers of components eic. costing from pennies to hundreds of pounds? So send for our latest price list and see why it pays to buy trom us.
ELECTROVALUE LTD Head otflce, Mall Order Dept and Shop 28C St Judes Road, Englefield Green, Egham,Surrey TW200HB.Egham(STD0784: London87)33603: Telex 264475.North -personaishoppersonly. 680Burnage Lane, Burnage, ManchesterM191NA(0614324945)
EV Computing Shop 700 Burnage Lane, Manchester (061 431 4866)

KITS\&PCB's fane PROJECTS

Full Kits including PCB's, Hardware and Cases (unless listed separately), I.C. Sockets, Veropins, Wire, Nuts \& Bolts all included

Switched Capacitance Phaser April 82 ...48

Wiper Delay April 83 (Less Relayl ...44
Ice Warning \& Lights Reminder March 83 .. 19
Car Audio Booster (Stereo) Jan 83 (Less Case)f18.98
Diecast Case extra ... $\mathbf{4 5}$
Frost/Overheating Warning Jan 83 ... $\mathbf{£ 6}$
PCB's
Top quality printed Circuit Boards made from P.E. masters glass fibre board, roller tinned \& drilled.

兂
ersonal Stereo Amp May 83f4.54
attery Tester April $83 ¢ 1,56$
witched Capacitor Phaser April $83 E 2.26$
Marc
£1.5
Digital Frequency Meter 83.73
ar Accessory P.S.U. March 83 ...§1.53
ar Radio Booster Feb. $83 \ldots81,74$
Digital Tacho Jan. 83 (3) 54.8
Audio Booster Jan. $83 . . .$.
ylochord Dec. 82 (3) 57.49
Stopwatch Oct. $8212 .23$

Audio Debug Probe Sept. 82 $£ 1.58$ Waveform Digitiser Sept. 82 $\mathbf{£ 1 2 . 6 0}$ Combo Amp (Main) Aug. 82 $£ 3.45$ Combo Amp (Preamp) Aug. 82f3. 62 Audio Test Set Juty 82 Instrument Tuner July 82 $\mathbf{£ 2 . 0 1}$ Versatile Car Alarm July 82 (2) $£ 3.65$ Burglar Deterrent July 82 $£ 2.74$ Auto Flash Slave June 82f1.34 Prescaler + Freq. Meter
May 82 (3). 62.80 Prog. Timer/Controller May 82 (3) $£ 9.08$ Battery Backup June 82 ,i.............3.3 Function Generator May 82 $£ 3.58$ Mini Scorpio Ignition Feb. 82f1,56

MAGENTA ELECTRONICS LTD
 PA10, 135 HUNTER ST., BURTON-ON-TRENT, STAFFS

DE14 2ST 0283 65435. MON-FRI 9-5. MAIL ORDER ONLY

ADD 45p P\&P
TO ALL ORDERS
ACCESS and BARCLAYCARD (VISA) ORDERS ACCEPTED BY PHONE OR POST. SAE ALL ENQUIRIES

Prices inc. VAT

OFFICIAL ORDERS WELCOME OVERSEAS Payment must be in sterling. IRISH REPUBLIC and BFPO - UK PRICES. EUROPE - UK PRICES + 10\% ELSEWHERE - Write for Quote

\rightarrow

ADVANCED TELECOMMUNICATIONS
 Careers with extensive scope at Cheltenham

Join the Government Communications Headquarters, one of the world's foremost centres for R\&D and production in voice/data communications ranging from HF to satellite - and their security. Some of GCHO's facilities are unique and tere is substantial emphasis on creative solutions for soiving complex communications problems using state-of-the-art techniques including computer/microprocessor applications. Current opportunities are for:

Telecommunication Technical Officers

Two levels of entry providing two salary scales: $£ 5,980-£ 8,180 \& £ 8,065-£ 9,085$
Minimum qualifications are TEC/SCOTEC in Electronics/Telecommunications or a similar discipline or C \& G Part II Telecommunications Technicians Certificate or Part I plus Maths B Telecommunications Principles B and either Radio Line Transmission B or Computers B or equivalent:ONC in Electrical, Electronics or Telecommunications Engineering or a CIE part I Pass, or formal approved Service Technical training. Additionally, at least 4 years' (lower level) or seven years" (higher level) appropriate experience is essential in either radio communications or radar, data, computer or similar electronic systems.
At the lower entry level first line technical/supervisory control of technicians involves "handson" participation and may involve individual work of a highly technical nature. The higher level involves application of technical knowledge and experience to work planning including implementation of medium to large scale projects.
Radio Technicians - £5,232- £7,450
To provide all aspects of technical support. Promotion prospects are good and linked with active encouragement to acquire further skills and experience. Minimum qualifications are a TEC Certificate in Telecommunications or equivalent plus 2 or more years' practical experience.

Cheltenham, a handsome Regency town, is finely-endowed with cultural, sports and other facilities which are equally available in nearby Gloucester. Close to some of Britain's most magnificent countryside, the area also offers reasonably-priced housing. Relocation assistance my be available.
For further information and your application form, please write to:
Recruitment Office, GCHO Oakley, Priors Road,
Cheltenham, Gloucestershire
GL52 5AJ
or phone 024221491 ext 2269.

THE RADIO AMATEUR'S HANDBOOK

983 ed. A.R.R.L
Price: $£ 10.00$

WORLD RADIO T.V. HANDBOOK 1983 by J. M. Frost

Price: $£ 12.00$ THE ART OF ELECTRONICS by Horowitz/Hill

Price: $£ 16.00$
ASSEMBLY LANGUAGE PROGRAMMING FOR THE BBC MICROCOMPUTER
by I. Birnbaum
Price: $£ 9.50$
PRACTICAL DESIGN OF DIGITAL CIRCUITS
by I. Kampel Price:
OPTOELECTRONICS: AN INTRODUCTION by J. Wilison Price: $\mathbf{f 1 3 . 0 0}$ TESTING METHODS \& RELLABILITY ELECTRONICS by A. Simpson Price: $\mathbf{E 5 . 5 0}$ THE COMPLETE H/B OF MAGNETIC RECORDING by F. Jorgensen

Price: $\mathbf{f 9 . 2 0}$
ESSENTLAL ELECTRONICS AN A TO Z GUIDE
by G. Loveday BASIC PROGRAMMING ON THE BBC MIGROCOMPUTER

Price: $\mathbf{£ 6 . 5 0}$

* ALL PRICES INCLUDE POSTAGE *

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books

19-21 PRAED STREET LONDON W2 1NP

Phone 01-402 9176 Closed Saturday 1 p.m.
Please allow 14 days for reply or delivery.

TORODDIS

The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and, thanks to I.L.P., PRICE.
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty.
*Gold service available.
21 days manufacture for urgent deliveries.
*Orders despatched within 7 days of receipt for single or small quantity orders.
*5 year no quibble guarantee.

TYPE	$\begin{gathered} \text { SERIISS } \\ \text { No } \end{gathered}$	$\begin{aligned} & \text { ECONDAAY } \\ & \text { Volts } \end{aligned}$	$\underset{\text { RMS }}{\text { Rurent }}$	PRICE
NEW!		NEW'		NEW!
	0x010	${ }^{6+6}$	1.25	£5.12 TOTAL $\varepsilon 6.79$
	- $\begin{aligned} & 0 \times 11 \\ & 0 \times 012\end{aligned}$			
	0x013	$15+15$	0.50	
	-	$18+18$ $22+22$	${ }^{0.42}$	
	${ }_{0 \times 016}$	$25+25$ $\substack{\text { 25 }}$	0.30	
(encased in ABS plastic)				

30 VA	1×010	6+6	2.50	25.49
$70 \times 30 \mathrm{~mm}$	1×011	$9+9$	1.66	
0.45 Kg	1×012	$12+12$	1.25	
Regulation	1×013	$15+15$	1.00	+p8p¢1.10
18\%	1×014	$18+18$	0.83	+ VATE0.99
	1×015	$22+22$	0.68	TOTAL £7.58
	1×016	$25+25$	0.60	
	1×017	30+30	0.50	
50 VA	2×010	6+6	4.16	
$80 \times 35 \mathrm{~mm}$	2×011	$9+9$	2.77	
09 kg	2×012	12+12	2.08	
Regulation	2×013	$15+15$	1.66	C6, 3
13\%	2×014	$18+18$	1.38	20.13

	$\begin{aligned} & 4 \times 028 \\ & 4 \times 029 \end{aligned}$
	4×030
160 VA	5×017
$110 \times 40 \mathrm{~mm}$	5×012

+ PADE1.35 +VATE1.12 TOTAL 88.60

$\begin{gathered} 225 \mathrm{VA} \\ 410 \times 45 \mathrm{~mm} \\ 2.2 \mathrm{Kg} \\ \text { Regulation } \\ 7 \% \end{gathered}$	6×012 6×013 6×014 $6 \times 0 \uparrow 5$ 6×016 6×017 6×018 6×026 6×025 6×033 6×028 6×029 6×030	$\begin{aligned} & 12+12 \\ & 15+15 \\ & 18+18 \\ & 22+22 \\ & 25+25 \\ & 30+30 \\ & 35+35 \\ & 40+40 \\ & 45+45 \\ & 50+50 \\ & 110 \\ & 220 \\ & 240 \end{aligned}$	9.38 7.50 6.25 5.11 4.50 3.75 3.21 2.89 2.50 2.25 2.04 1.02 0.93	$\begin{aligned} & \text { \&Q } 81 \\ & +\rho B \rho £ 2.05 \\ & + \text { VATI1.78 } \\ & \text { TOTAL I13.64 } \end{aligned}$

The benefits of ILP toroidal translormers
ILP toroidal transiormers are only hall the weight and height of their lammnated equivalents, and are available with 110 V 220 V or 240 V primaries coded as tollows
IMPORTANT: Regulation - All voltages quoted are FULL LOAD. Please add Iegulation figure to seciondary voltage to oblain of load voltage.
For 110 v primary insent - 0 in place of " X " in type number For 220 V primary (Europe) insen "1" in place of " X " in type number For 240V primary (UK) insert " 2 " in place of " X " in lype number
Also available at Electrovalue, Maplin, Technomatic and Barrie Electronics.

For mail order please make your crossed cheques or postal orders payable to ILP Electronics Lid. Barclaycard/Access welcome. Trade orders standard terms.

ALSO AVAILABLE
Sizes up to and including 5 KVA are manufactured to order.

When replying to Classified Advertisements please ensure
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay

RECEIVERS AND COMPONENTS

En-Govt. Transceiver type A40 complete station in used powered) new in box [4. Basic Oscilloscope unit 240V AC contains X \& Y amps all solid state. size $147^{\prime \prime} 5^{\prime}$ tube dia 5^{-}. most units have lube burn marks $\mathbf{f 1 5}$. Aircratt mounted 35 mm Camera contains precision mirror lens. small 24 V motor efc. E10. 24V Ni-Cad Baltery contains 20 < 0.4 A/K cells Inew) E7. CCTV Cameras sold for spares t20. Reel to Reel VTRs lor spares $£ 30$. 24 V Ni-Cad Battery contains 200 type cells, used condition f10. All goods are surplus Ex.Ministry.
A.C. ELECTRONICS

Tel: 0532496048 after 6.30 pm

FANTASTIC ELECTRONIC BARGAINS

VERSATLLE BENCH POWER SUPPLY UNTTS
Contains high quality transformer made to exacting specifica. tions giving one 20v output and one $20-0 \cdot 20 \mathrm{v}$. Output. Al
outputs 3 amps $0 . \mathrm{C}$ Input $110 / 250 \mathrm{v}$. $50 \mathrm{c} / \mathrm{s}$. Bridge Rectifica outpuls tion. Contained on metal chassis with robust compact cas size $7^{-}, ~ 51^{\circ}$ \& $41^{\prime \prime}$. easily modified to give 40 v . or 60 v oulput Makes an ideal variable power supply. Normally cost around
G60.00 OUR PRICE AS NEW wht circuits 88.50 . Cart $£ 3$. ¢60.00. OUR PRICE AS
unins lor $Z 0$ carr free
unis lor fZo cart free.
AMPLVOX ULTRA LIGNTWEIGMT TRANSOUCER EAAAMPLIVOX ULTRA LIGHTWEIGNT TRANSDUCER EAR-
PHONES. tmpedance 300 ohms. Made to fit inside protective and crasin helmets, or can be used as pilow earphines. As new free
New release ol mooeran ornamic moving coll micho PHONES 200 ohms impedance. Swith incorporated. MDS with lead and DilN plug. Used but nice condition. 3 designs of case housing. Price one mike our choice $\mathbf{\Sigma}$ plus 50 p P. D Bargain offer all 3 mixes $\mathrm{C4} 50$ p.p. ©1
foof Swrch. (Mains operation).
Foot SWITC. (Mains operation). Comains iwo micro switches and lead. Metal case Good condition. $\Xi .50$ each Postage 50 p. 2 for 27.50 posi tree.
WAVE YOU SEEN TME GREEN CAT. 1000 x of new compo nents. radio, electronic. audio at unbelievably low prices. Try a HMBO PACR. Contains uansistors, resistors, caps pots, switches radio and electronic devices. OVER ESO wort lor 511.00 . Carriage and packing $\sum 2.50$.
MINI JUMEO PACX (E20 worth) lor ES. P \& P E1.50 Please add 15% VAT to all orders including carriage and P.P

Dopt PE, $12 / 14$ Harper Street Leeds LS2 7EA Loeds 452045 New relail premises at above address lopposite Corals). Caliers welcome 9 to 5 Mon. Io Sal. Sunday 10 to 1 by
appointment. GOVT, SURPLUS ITEMS ALWAYS IN STOCX

SMALL ADS

The prepaid rate for classified advertisements is 34 pence per word (minimum 12 words), box number 60 p extra, Semi-display setting $£ 11.20$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Banks Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Practical Electronics, Room 2612, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

NOTICETO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

BRANDNE WCOMPONENTS BY AETURN

 $150 \mathrm{~V}-1001.470 \quad 110.140 \mathrm{~V}-16$ $1000 / 25 \mathrm{~V}$ 25p	
Subminiotura bead Tantaium aiactrody	
	025
2216 V	310 V
	2225 V
Yertical Mounting Coremic	
Hiah Stability Miniature Film Resietors 5%	
	Series
THEC.R.SUPPLYCO. 127. Chesterfield Rd., Sheffield S8 ORN.	

ELECTRONIC COMPONENTS, MERSEYSIDE NiEI I:Cutrunic -

 1151-2ix.mat

AERIALS

SOFTWARE

UK 101 SOFTWARE - x - Wanciller hat in the jumple, cat youl make it hach los cimp wilhout heimet cillen. cursemels

COURSES

CONQUER THE CHIP

Miner mendern devirnmis the

digital logic course, unizue lwume simes. Pay in leamit.
 Shle Hedingham. Exsex cron 31'A.

BOOKS AND PUBLICATIONS

EDUCATIONAL

CAREERS IN MARINE ELECTRONICS. (inurves cymumbeine ScpAcmber amel datman. Further detaik. The Samtical (inlecte

SERVICE SHEETS

 A. Yorkshire I I ا $(10423) 55 \times 85$

FOR SALE

PRACTICAL ELECTRONICS P.C.B's \mid sman fill requirm. drilleat thal

 price lisi. AECTROPRINT, I7 Showell Rasial. Buehturn

KSR TELETYPE in thmal workin! urder with piper pumch

MISCELLANEOUS

BUILDING A TAPE DECK? We supply PayN precisinu tape drive

 Rown. Westringes. Surrey KTliz Ul:
PARAPHYSICAL JOURNAL (Ruwian Iramalintional. Pacho

 () SNal Sardium

HONLER, Febl alert, invigurated and heillhicr with the ambring

CABNET FITTINGS

Fretcloths, Coverings, Handles, Castors, Flight Case Locks \& Parts, Jacks, XLRs, Bulgins, Reverb Trays, P \& N mic Siands, ASS Glassfibre Horns. CELESTION POWER Speakers. 30 p cheque)
P.O: for illustrated
catalogue: Adam Hall (PE Supplies), Unit G, Cartion Court, Grainger Road, Southend-on-Sea.

MAKE YOUR OWN PRINTEDCIRCUITS Etch Resiat Transfers - Starter pack (5 sheets, lines, pads, I.C. pads) $\mathbf{2 2 5 0}$. Large range of single sheets in stock at 50 p per sheet.
Master Positive Transparencies from P.C. layouts in magazines by simple photographic process. 2 sheets inegative paper, 2 sheets positive film (A4) E2.25. Photo-resiet spray (200 mi) E3.90 (pro 0.p). Dran ing Film (A4) $25 p$. Precision Grids 20 . $65 p$. 22p stamp for lists and information. P\& P 50 p per order plus extra where indicated

OAK LODGE. TANSLEY OEREY

Design Engineers satellite Communications

Major expansion of our Space Division has created numerous opportunities for engineers to be involved in some of the most technologically challenging work on meteorological and communications satellites
Qualified Hardware and Software Design Engineers of various levels of experience are required for posts which vary from Engineering Manager/Group Leader to membership of a Design Team Disciplines include

Spacecraft Systems

 Communications Systems Microwave systems and Equipment Radar and Signal Processing Electronic Circuit Design Mechanical, Thermal and Dynamics Design Power Supplies Switch-ModeSalaries and benefits will reflect the importance we attach to the positions and relocation assistance is available if required
Please write or telephone stating your qualifications, recent experience and area of interest to Jack Burnie, Marconi Space \& Defence Systems Limited, Browns Lane, The Airport, Portsmouth, Hants. Tel (0705) 674019 Ref: BL 34
(All posts are open to men and women)

Marconi

Space \& Defence Systems

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS
Please insert the advertisement below in the next available issue of Practical Electronics for
insertions. I enclose Cheque/P.O. for \mathcal{E}
(Cheques and Postal Orders should be crossed Lloyds Bank PLC, and made payable to Practical Electronics)

NAME

ADDRESS

PRACTICAL ELECTRONICS
Classified Advertisement Dept., Room 2612, King's Aeach Tower, Stamford Street,
London SE 1 9LS
Telephone 01-2615846
Rate
34p per word, minimum 12 words. Box No. 60 p extra

FREE CAREER BOOKLET

Train for success in Electronics Engineering，T．V．Servicing， Electrical Engineering－or running your own business！

ICS have helped thousands of ambitious people to move up into higher paid，more secure jobs in the fields of electronics，T．V．，electrical engineering－now it can be your turn．Whether you are a newcomer to the field or already working in these industries，ICS can provide you with the specialised training so essential to success．
Personal Tuition and 80 Years of Success
The expert and personal guidance by fully qualified tutors，backed by the long ICS record of success，is the key to our outstanding performance in the technical field．You study at the time and pace that suits you best and in your own home

You study the subjects you enjoy，receive a formal Diploma，and you＇re ready for that better job，better pay

TICK THE FREE BOOKLET YOU WANT AND POST TODAY

ELECTRONICS

ENGINEERING
A Diploma Course，recognised by the Institute of Engineers \＆Technicians as meeting all academic standards for application as an Associate

ELECTRICAL
ENGINEERING
A further Diploma Course recognised by the Institute of Engineers \＆Technicians，also covering business aspects of electrical contracting
Name

T．V．\＆AUDIO

 SERVICINGA Diploma Course，training you in all aspects of installing maintaining and repairing T．V and Audio equipment． domestic and industrial

RUNNING YOUR OWN BUSINESS

It running your own electronics．T．V．servicing or electrical business appeals then this Diploma Course trains you in the vital business knowledge and techniques you＇ll need
\square
Name
－ーコールーヒ
 UK prices are shown first．The bracketed cludte insured air－mall postage to all the coun－ tries of Europe including Norway，Sweden Findland．Denmerk，Spain and lraly．For over seas customers curside Europe an extra ES postage per item is charged
At last our new luxury versions of the 48 K Sinclar Spectrum are here with full sized rypewriter keyboards enclosed in a tough larger plastic case which also houses the power supply and the computer pas．Fulf travel，god－plated swita comacis whth a ine these cost only a tiny bit more than the standard model．Spectrum ZXK C161（C181） Spectrum ZXKS（As above but also fitted with a space bar and souble sized shift and ente kevi）$(169$（ 1189 ）．Sandard $7 \times$ Spectrum 16K \＆108．70（C129）．Standard ZX Spectrum 16K 16152 （C172）．32K memory Lugrade for 16K spectrum（ksie 2 only）c44（ $\mathbf{1 4 5 \text { ）．Fule }}$ master unrt for the spectrum including speech jossick ports（47．76（ $\mathbf{E 5 6}$ ）．$Z \mathrm{ZX}$ microdrive $n / a(n / a)$ ．ZXRS232 n／a（n／a）．ZX printer C52． 13 （ $(61) .5$ printer rols Cl 10.43 （ $\$ 16$ ZX81 433.43 （ 522 ）．ZX81 ram packs 16 K C26．04（ 628 ）64K 649 （C51）．Oric 148 K and 7X spectrum．whthout spacebar 628 （C33），with spacebar C36（C41）．
DRAGON 32 C173
COMMODORE COMPUTERS
Commodore G4 E299．Vic 20 C130．Kir to
alow the we of an ordinary mono cassette recorder widh the Vic 20 and the Com modore 64 C6．Commodore cassette re corder for these computers 636.50 ．Super expander high resolution cartndge $\mathbf{C 2 7 . 9 5}$ We stock most accessones

SWANLEY ELECTRONICS
Dept PE， 32 Goldsel Rd．
Swanley，Kent BRB BEZ．
Tel．Swanley（0322）64851
please allow 7 doys for deliven．

GENIE COMPUTERS
New colour Genie C179，Cassette Recorder C25，I6K Ram Card 633．Light Pen C15． Accessories for Genie I and Genie 2－ dual 6369 C189．Dise drives single C199 High Resolvioion Graphics $\mathbf{8 2}$ ．Printer Inter－ face C36．
UKIOI AND SUPERBOARD
32×48 Display Expansion Kits UKIOI C9， series Superboard $\mathbf{~ 1 4}$ ．32K Memory Expansion Board 160．Cegmon L21．50．Word C10．Cased Disc Drives with DOS single C275，double C415．Stand alone floppy disc controller C85．
 C418，Brother HRI C520．Olivetti Praxis 30 Bytewriter－－the latest miracie，a combined Oasy Wheel Printer and Electnc Typewriter MX100／3 C425．Ops Microline 80 C199．Oki Microline 82A C343．Oki Microline B3A $\mathbf{6 4 6 7}$ ． Ok Mirroline 84 C684．Oki Microline 92 C437．Oki Microline 93 C599．
$5 V$ POWER KITS
Fully stabilized $5 V$ Compurer and TLL Power Kirs 15A C7．83，3A ¢12．17，6A $\mathbf{C 2 0 . 8 7}$

SHARP COMPUTERS

We can supply Epson printers to run direct from the MZ80A．MZ8OK（i／a box not needed）for $\mathbf{\$ 7 2}$ plus printer price．We also specialize in interfacing printers to the MZ8OK．MZ80A and MZ80B both with and mhout the Vo box

Postage（I）on Sinclair products（UK）．© 3.50 on other computers． 64.50 on printers and 50 p on other orders．Pleose add VAT to all prices．Official credit and overseas orders weicome

CIRCUIT MAKER

Revolution in circuit board maker kits from leading manufacturer

The Electrolube CM100 Circuit Maker provides everything necessary to produce positive photographic film masters from same－size published circuit layouts and to make either
single or double－sided boards from these or other positive film masters．

Features

－Economic and simple to use
－No expensive equipment required e．g．darkroom，cameras etc
－Photographic experience not needed．
－Simple etching process．
Universal exposure and assembly frame custom－designed， professional quality
－Ergonomically designed storage pack which includes free－standing shelf for chemicals．
－Step－by－step instruction manual，workbench and trouble－shooting charts provided．
－Special clearing process ensures excellent clear positive film masters．
－Photoresist available in non－aerosol form to eliminate＇spotting＇ when applied to the board

Mercia Electronics，Coronet House，Upper Well St．，Coventry CV1 4AF

Send for full illustrated brochure and price details，post to：

Name
Address

Signature

Coronet House，
Upper Well Street
Coventry CV1 4AF
Tel：（0203） 58541

If you have trouble understanding chopper circuits and protection arrangements, want to know about flywheel line sync, are deeply interested in all things from pattern generators to satellite TV receiving techniques-w
got the magazine for you! specialist Whai would you say to a unce to enthusiasts as magazine whichofs technicians on all aspects of well as electroo including servicing, news and TV and Video, .it's well worth a closer look... *June project: In situ transistor SCR and diode tester-simple and inexpensive-uses l.e.d.s to indicate polarity and device condition.

PARNDON ELECTRONICS LTD.
Dept. No. 2144 Paddock Mead. Harlow. Essex. CM18 7RR. Tel: 02793270 u
RESISTORS: $1 /$ War Carbon Film E24 range $\pm 5 \%$ roderance High qualliry reststrors made under strictly controlled conditions by aulomatic machines. Bandoliered and colour coded.
$\mathbf{E 1} 00$ per hurdred mixed. (Min 10 per value) $\mathbf{£ 8 . 5 0}$ per thousand mixed (Min 50 per value) Special stock pack 60 values. 10 off each $£ 5.50$

DIODES: IN4148 3p each. Min order quantity - 15 titems £1.60 per hundred

DIL SOCKETS: High qualiry low profile sockens
8 pin-10p. 14 pin-11p. 16 pin-12p. 18 pin-19p. 20 pin-21p 22 pin-23p. 24 pin-25p. 28 pin-27p. 40 pin-42p.
CAPACITORS, REGULATORS, SWITCHES,
IC. TRANSISTORS, DIODES, ETC. ETC.
Full List Available - Send SAE
all prices include v.ait \& post \& Packing - no extras
MIN. ORDER - UK. £1-00. OVERSEAS CS CASH WITH ORDER PLEASE

When you need to update yourself with all that is available in the "Do-it-yourself" market, then you need the Hobby Herald.

Packed with product information essential to the electronics enthusiast, this new electronics catalogue lists over 60 exciting products ranging from All Purpose Cutters to Verobloc, the solderless breadboard. All products are available throughout the U.K. from over 200 stockists.

HOBBY

Alternatively ordering products through the Herald is simplicity itself, and you can pay by either cheque,
Barclaycard or Access.
So make sure you get your copy of Hobby Herald by ringing

(04215) 62829.

BICC-Vero Electronics Ltd.,
Industrial Estate,
Chandlers Ford, Hampshire,

vero
SO5 3ZR.

INDEX TO ADVERTISERS

AC Electronics 80
A. D. Electronics 76
Alcon 48
Audio Electronics 76
Aura Sounds (Wersi) 47
Bicc Vero 83
Bi-Pak 6
Blackstar Limited 79
British National Radio \& Electronics School 67 \& 77
Cambridge Kits 76
Centurion Alarms 80
Clef Products 12
Colne Robotics 75
Commquip 47
Cricklewood Electronics 10
Crofton 76
The C.R. Supply Co. 80
Dataman Design 14
Electrovalue 78
Enfield Electronics 83
Flight Electronics 11
G.C.H.O. 78
Grenson (EMOS) 77
G.S.C 35
Adam Hall Supplies Ltd 81
ICS Intertext 82
I.L.P. Electronics $4 \& 5,79$
Magenta 78
Maplin Electronics IV
Marconi Space \& Defence Systems 81
Mercia 82
Midwich 13
Millhill Supplies 77
Modern Book Co. 78
Myers Electronics 80
Parndon Electronics 83
Phonosonics 77
P.K.G. Electronics 81
Powertran 29
Proto Design 81
Radio \& T.V. Components 48
Riscomp Ltd 67
S.A.T. 74
Scientific Wire Co 81
Sinclair 8 \& 9
Sparkrite 82
Swanley
Technomatic Ltd 84 \& Cover III
T.K. Electronics 12
Videotone 75
Watford Electronics 2 \& 3

Technomatic Ltid 01-452 $1500 \quad 01-4506597$

official BBC dealer
BBC Model B $£ 399$ including VAT. (Carr. $£ 8$) Model A to B upgrade kit $£ 49.50$ Installation charge $£ 15$
Individual upgrades and all mating connectors available.
BBC DISC DRIVES
Disc Interface Kit £95
Installation £20
BBC Single Drive 100K £235. BBC Dual Drive £799 BBC COMPATIBLE DRIVES
Single 100K $£ 190 \quad$ 200K $£ 255$ 400K $£ 345$
Dual 200K $£ 360 \quad 400 \mathrm{~K} \quad £ 480$ 800K $£ 610$ Cable for Single Drive $£ 8$. Dual Drive $£ 12$.
(Carr. Single Drive £6, Dual Drive £8)
Diskettes: $\mathbf{4 0}$ track SS $£ 15,80$ track SS $£ 24.80$ track DS $£ 32$. (Price for 10 carr. £2)
VIEW 16K WORD PROCESSOR ROM £52 TELETEXT RECEIVER $£ 195.65+£ 2 \mathrm{p} \& \mathrm{p}$ PRESTEL RECEIVER $£ 90.00+\mathbb{L} p \& p$ 2ND PROCESSOR + 64K RAM $\mathbf{£ 1 9 5}$ p\&p
Please phone to confirm delivery details.

PRINTERS

NECPC:8023: ${ }^{2}$

80 col 100 cps dot matrix printer. Bi-directional. Logic seeking, 2 K buffer, Forward and Reverse line feed. Hi Res \& Block Graphics, Proportional Spacing. International and Greek character sets, Auto underline, Friction/tractor selectable $\mathbf{£ 3 4 5}+£ 8$ carr.

EPSON RX80 and EPSON FX80

RX80 100CPS 80 col Tractor Feed. FX80 160CPS 80 col F \& T Feed. Logic seeking Bi-directional, Bit Image Printing, 9×9 Matrix, Auto Underline. RX80 £298, FX80 £438 (Carr. ©8/Unit)

SIIKOSHA CPTOOA

80 col .30 cps dot matrix printer. High Res Graphics - Std \& double with
characters. $\mathbf{£ 1 8 0}+\mathrm{E} 6$ carr
OLIVETII SPARK-JET PRINTER
50 Lines/min or 83 cps , 1 K buffer, full graphics, 96ASCII Characters, 7×7 dot matrix
$\mathbf{5} 365+\mathrm{f} 8$ carr
As recommended by ACORN
ACORN ATOMS ALSO AVAILABLE IN STOCK SEND FOR OUR BBC/ATOM LIST.

Sole UK Agents for Heathkit

NOW THE norld-famous Heathkit range of superb electronic kits is available from Maplin - the newly appointed exclusive UK distributor. Kits range from a simple clock for beginners to a unique Robot (see pic) with which you can learn about robotics.

There is a range of training courses covering electronics and computing topics, many containing constructional projects. For futl details, pick up a copy of the latest Maplin magazine or write for a free copy of our Heathkil catalogue.

Order As XH62S.

GREAT PROJECTS FROM E\&MM

OUR NEW book "Best of E\&MM Projects Vol. 1" brings together 21 fascinating and novel projects from E\&MM's first year.

Projects include Harmony Generator. Guitar Tuner, Hexadrum, Syntom, Auto Swell, Partylite, Car Aerial Boosier, MOS-FET Amp and other musical, hi-fi and car projects. ORDER AS XH6IR. PRICE £1.

Maplin's Fantastic Projects

FULIL DETAILS in our project books. Price 70p each.

In Book 1 (XA01B) 120W rms MOSFET Combo-Amplifier Universal Timer with 18 program times and 4 outputs - Temperature Gauge - Six Vero Projects.

In Book 2 (XA02C) Home Security System - Train Controller for 14 trains on one circuit Stopwatch with multiple modes - Miles-per-Gallon Meter.

In Book 3 (XA03D) ZX8I Keyboard with electronics - Sterco 25W MOSFET Amplifier - Doppler Radar Intruder Detector Remote Control for Train Controller.

In Book 4 (XA04E) Teleplione Exchange for 16 extensions Frequency Counter 10 Hz to

600 MHz - Ulerasonic Intruder Detector - $1 / 0$ Port for ZX8 1 - Car Burglar Alarm - Remote Control for 25 W Stereo Amp.

In Book 5 (XA05F) Modem to European standard - 100 W 240 V AC Inverter - Sounds Generator for ZX81 - Central Heating Controller - Panic Button for Home Security System - Model Train Projects - Timer for External Sounder.

In Book 6 (XA06G) Speech Synthesiser for ZX81 \& VIC $20 \bullet$

25W Stereo MOSFET Amplifier

Moduie to Bridge two of our MOSFET Amps to make a 350 W Amp - 2X8I Sound on your TV \bullet Scratch Filter - Damp Meter Four Simple Projects.

In Book 7 (XA07H) *Modem Interface for $\mathrm{ZX} 81 / \mathrm{VIC} 20 \bullet$ Digital Enlarger Timer/Controller DXers Audio Processor - Sweep Oscillator - Minilab Power Supply - Electronic Lock - and others.
*Projects for Book 7 were in an advanced state at the time of writing. but contents may change prior to publication (due Ifih May 1983).

MATINEE ORGAN

EASY-TO-BUILD, superb specification. Comparable with organs selling for up to $£ 1000$.

Full construction details in our book (XH55K). Price £2.50. Com-

Computer Shopping Arrives

AS FROM June ist you can place orders directly with our computer from your personal computer. The computer shopping revolution has arrived! To communicate, you'll need a modem (our RS232 compatible modem kit is LW 99 H price £39.95) and an interface (our ZX81 interface LK08.J price £24.95 is available already with many more for most popular micros coming soon).

Just dial us up on 0702552941 and you'll be able to interrogate our stock file then place your order, type in your credit card number and a few minutes after you hang up your order will print out in our warehouse ready for packing. And all without saying a word.

Try out the future way of shopping now! You'll see immediately what stock we've got available and you'll discover how easy it is to ensure your order is exactly right. And you'll see precisely what the current price is for each item and what total amount will be charged to your credit card. It all helps to make buying easier. So give us a ring now?

- Over 26 W /channel into 8 se at 1 kHz both channels driven.
*Frequency response 20 Hz to $40 \mathrm{kHz} \pm 1 \mathrm{~dB}$.
* Low distortion, low noise and high reliability power MOSFET output stage
- Exiremely easy to build. Almosi everything fits on main pcb, cutting interwiring to just 7 plete kits available. Electronics (XY91Y) £299.95*. Cabinet (XY93B) £99.50*. Demo cassette (XX43W) £1.99.

Maplin's New 1983 Catalogue

 Post Code

POST THIS COUPON NOW:

Please send me a copy of your
1983 catalogue. I enclose $£ 1.50$ (inc. P\&P). If I am not completely satisfied 1 may return the catalogue to you and have my money refunded. If you live outside the UK send $£ 1.90$ or 10 International Reply Coupons
wires (plus toroidal transformer and mains lead terminations). Complete kit contains everything you reed including predrilled and printed chassis and wooden cabinet.
Full details in Projects Book 3. Price 70 p (XA03D). Complete kit only $£ 55.20$ incl. VAT and carriage (LW71N).

Name

Address

MAPI.IN EIECTRONIC SUPPLIES LIMITED, P.O. Box 3, Rayleigh, Essex SS6 8LR. Telephone: Sales (0702) 552911 General (0702) 554155.

Shops at: 159 King St., Hammersmith, London W6. Tel: 01-748 0926. 284 London Rd., Westcliff-on-Sea, Essex. Tel: (0702) 554000. Lynton Square, Perry Barr, Birmingham. Tel: (021) 3567292.
Shops closed Mondays.
All prices include VAT \& carriage. Please add 50p handling charge to orders under $£ 5$ total value.

[^0]: C) IPC Magazines Limited 1983. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]:

[^2]: "THATS A PRETTY VOLATILE RAM BRUCE..... YER'LL NEED A BYTE CHECK ON
 YER BUFFER WHEN ME'S OONE WITH YER!!"

[^3]: 6 axis system READY BUILT

[^4]: 19 MULBERRY WALK LONDON SW3 6DZ TEL: 01-352 1897. TELEX: 918867

[^5]: 10 PRINTCHR $\$(12) ;: K=48$
 20 PRINT:PRINT:PRINTTAB(12)"DIGITALCLOCK"
 30 PRINT:INPUT"TENS OF HOURS"; $\mathrm{H} 2: \mathrm{H} 2=\mathrm{H} 2+\mathrm{K}$
 40 INPUT"UNITS OF HOURS"; $\mathrm{HI}: \mathrm{HI}=\mathrm{H} 1+\mathrm{K}$
 50 INPUT"TENS OF MINUTES . . .";M2:M2=M2+K
 60 INPUT"UNITS OF MINUTES . . \because;M1:MI $=$ M1 + K
 70 INPUT"TENS OF SECONDS . . .";S2:S2=S2+K
 80 INPUT"UNITS OF SECONDS . .";S1:S1=S1+K
 90 PRINTCHRS(12):POKE53325,32:PRINTTAB(12)"DIGITALCLOCK"
 100 POKE53732,58:POKE53727,58
 110 POKE53735,S1:POKE53734,S2:POKE53730,M1:POKE53729,M2
 120 POKE53725,H1:POKE53724,H2
 $130 \mathrm{~S} 1=\mathrm{S} 1+1: \mathrm{IFS} 1=58 \mathrm{THENS} 2=\mathrm{S} 2+1: \mathrm{S} 1=\mathrm{K}$
 140 IFS $2=54$ ANDS $1=$ KTHENM $1=$ M $1+1:$ S2 $=K$
 $150 \mathrm{IFMI}=58 \mathrm{THENM} 2=\mathrm{M} 2+1: \mathrm{MI}=\mathrm{K}$
 160 IFM2 $=54$ ANDM $1=\mathrm{KTHENH} 1=\mathrm{H} 1+1: \mathrm{M} 2=\mathrm{K}$
 170 IFH $1=58$ THENH $2=\mathrm{H} 2+1: \mathrm{HI}=\mathrm{K}$
 180 IFH2=50ANDH1=52ANDM2=KANDM $1=K A N D S 2=K A N D S 1=K T H E N G O$ SUB200
 190 FORI=1TO1042:NEXT:GOTO110
 $200 \mathrm{Ml}=\mathrm{K}: \mathbf{M} 2=\mathrm{K}: \mathbf{S 2}=\mathrm{K}: \mathbf{S} 1=\mathrm{K}: \mathrm{HI}=\mathrm{K}: \mathrm{H} 2=\mathrm{K}:$ RETURN
 OK

