PRACTICAL

Get moving with these new developments in UK Robotics

- advanced electrohydraulic designs for education, industry and now available to the home constructor.

printing, call to machine code routines, hexadecimal support and use friendly textual error trapping messages

If computers interest you then the Cortex will expand your understanding infinitely more than off the shelf machines Use it in business, education, research or Just play with the incredible graphics capability. At Powertran we are using these machınes in conventional roles, in product control and $R \& D$ We shall coordinate the Cortex user group and distribute software for the TMS 9995 CPU. Complete 16 bit 64 K computer kit $£ 295.00$ Up to the nano-second hard, firm and software \quad VAT Cumptrete 16 bit $9.2 k$ computer waty bult $£ 395.00+V A$ developments embodied in a complete system. 1 Mega Hertz 16 bit CPU: 64 K upwardly compatible DRAM. separate 16 K video DRAM and 24 K TI Power Basic with overwrite Supports up to four Disc drives of mixed type with 16 serial I/O ports. Programmable Baud rate and comprehensive E Bus interface designed to support real world applications.
Very high resolution graphics gives 3D simulation in 16 colours on 36 prioritised planes of user definable characters Software FORTH coming includes this trendy language along with NOS C/PM
Hardware components avallable separately with detals in Nov. Dec, and Jan issues of ETI Software features include. Real time clock. full renumber command, buffered $1 / 0$ to free machine whilst

Top of the range is the Genteris P1O2 wher h has dual speed control contmuous servo opordtom and double acting cylinders for ine reased torque on the wrist and arm rotation fonts The mucroprocusor based control system has add tonal memory position interrogation via the RS232C interface increasing the versatilty of computer control and inputs are provided for marhine wor interfacing
£ 1950.00
$£ 395.00$

GENESIS P102 PROCESSOR BOX, HAND HELD CONTROLLER AND CORTEX COMPUTER

Example prices and specifications

Base: $19.5^{\prime \prime} \times 11^{\prime \prime} \times 7.5^{\prime \prime}$ Lifting capacity: 1500 gm Arm lift: 6.6"
Weight: 29 Kg
4 axis model in kit form £ 425 5 axis model in kit form $£ \mathbf{\& 7 5}$
Genesis P101
Base: $19.5^{\prime \prime}$. $11^{\prime \prime} \times 7.5^{\prime \prime}$
Lifting capacity:
Arm lengths between axles: $140^{\prime \prime}$
Weight: 34 Kg
Weight: 34 Kg
axismodel in kir
Complete Systems as shown in Photograph on right
Genesis S 101
4 axis system in kit form $£ 681.50$ 5 axis system in kit form $£ 737.50$ 5 axis system Ready Built $£ 1450$
Genesis P101
6 axis system in kit form $£ 945.00$ 6 axis system Ready Built $£ 1650$
All prices exclusive of VAT

 link

GENESIS S 101 AND GENESIS P101 WITH PR OCESSOR BOXES AND HAND-HELD CONTROLLERS

CONSTRUCTIONAL PROJECTS

DIGIT TALKER by A. Wiggin 21
Interface system
AUTOMOBILE TEST SET by M. Tooley BA and D. Whitfield MA MSc 34
Offers a test facility for car electrics
ZEAKER by David Buckley 42
Low cost computer controlled robot
MAINS WATCHDOG by Chris Lare 50
Audio/visual warning system for mains failures
PERSONAL STEREO AMPLIFIER by R. A. Penfold 55
General purpose 6 watts per channel system
ULTIMUM by William Edwards 70
Three chip sound generator

GENERAL FEATURES

SEMICONDUCTOR CIRCUITS by Tom Gaskell BA(Hons) 26
Combination lock (LS7225): 3 tone chime (SAB0600)
MICROBUS by DJD
INTO THE REAL WORLD by M. Tooley BA and D. Whitfield MA MSc 62
Conclusion of series

NEWS AND COMMENT

EDITORIAL 15

NEWS AND MARKET PLACE 16
$\begin{aligned} & \text { Including Countdown } \\ & \text { BAZAAR }\end{aligned} . . \quad . \quad$ 25, 30, 39, 59
Free readers' advertisements SPACEWATCH by Frank W. Hyde 32
Extra-terrestrial activities chronicled
INDUSTRY NOTEBOOK by Nexus 40
News and views on the electronics industry
SPECIAL OFFER—CASSETTES 53
PATENTS REVIEW 60
TV Warning and Automatic Cut-Out
MICROCONTROLLER DATA SHEET 4 by M. Tooley BA and D. Whitfield MA MSc 69

We regret that due to circumstances beyond our control we are unable to publish Micro-file this month

OUR JUNE ISSUE WILL BE ON SALE FRIDAY, MAY 6th, 1983
(for details of contents see page 31)

[^0]

PRACTICALLY ALL THE PARTS FOR ELECTRONICS

ENTHUSIASTS $\binom{$ and Computing, Communications, }{ Audio \& Video Enthusiasts too!! }

INCLUDING
$3 \times £ 1$ VOUCHERS

The Spring ' 83 catalogue continues to expand to meet the needs of the electronics user - from the novice enthusiast to the professional aerospace designer.

AT YOUR NEWSAGENT OR DIRECT

ambit INTERNATIONAL

200 North Service Road,
Brentwood, Essex CM14 4SG
Telephone (Consumer Sales/Enquiries) 0277-230909 - Telephone (Industrial
Sales/Enquiries) 0277-231616 -
Telex 995194 AMBIT G
Data 24 hrs (RS232/300baud) 0277-232628 -
REWTEL

- Prices exclude VAT except where otherwise shown
- Postage and Packing 60p per pre-paid order
- Orders submitted using Ambit Stock Codes will be processed first
- Orders for in-stock items processed same day
- Hours - (consumer sales) 8am-7pm MonSat: (Industrial) 8am-6pm (Mon-Fi)

CIRCUIT MAKER

Revolution in circuit board maker kits from leading manufacturer

The Electrolube CM100 Circuit Maker provides everything necessary to produce positive photographic film masters from same-size published circuit layouts and to make either single or double-sided boards from these or other positive film masters.

Features

- Economic and simple to use.
- No expensive equipment required e.g. darkroom, cameras etc.
- Photographic experience not needed.
- Simple etching process.
- Universal exposure and assembly frame custom-designed, professional quality.
- Ergonomically designed storage pack which includes free-standing shelf for chemicals.
- Step-by-step instruction manual, workbench and trouble-shooting charts provided.
- Special clearing process ensures excellent clear positive film masters.
- Photoresist available in non-aerosol form to eliminate 'spotting' when applied to the board.

Mercia Electronics, Coronet House, Upper Well St., Coventry CV1 4AF.

Send for full illustrated brochure and price details, post to:
Name
Address

Signature

Coronet House, Upper Well Street Coventry CV1 4AF Tel: (0203) 58541

PARNDON ELECTRONICS LTD.

Dept No 2144 Paddock Mead. Harlow. Essex. CM18 7RR Tel 027932700

RESISTORS: $1 / 4$ Watt Carbon Film E24 range $\pm 5^{\prime \prime}$ "tolerance High qualite resistors made under strictly controlled conditions by automatic machines Bandohered coded
£1.00 per hundred mixed (Min 10 per value) E8.50 per thousand mixed $\mid \mathrm{Min}^{5} 50$ per value \rangle
Special stock pack 60 values. 10 off each $£ 5.50$
DIODES: IN4148 3p each Min order quantity - 15 item £1.60 per hundred
DIL SOCKETS: High quality low protile sockets 8 pin-10p. 14 pin-11p. 16 pin-12p. 18 pin-19p. 20 pin-21p. 22 pin-23p. 24 pin - 25p. 28 pin - 27p. 40 pin-42p.
CAPACITORS, REGULATORS, SWITCHES, IC. TRANSISTORS, DIODES, ETC. ETC. Full List Available - Send SAE
ALLL PRICES INCLUDE V.A.T. \& POST \& PACKING - NO EXTRAS MIN ORDER - UK $t 100$ OVERSEAS 55 CASH WITH ORDER PLEASE Same Day Despatch

TALK TOTHE WHOLE WORLD

Study now for the
RADIO AMATEUR'S EXAMINATION
We have had 40 years successful experience in training men and women for the
 G.P.O. Transmitting licence.

- FREE R.A.E. brochure without obligation from:British National Radio \& Electromics School READING, BERKS. RG1 1BR
Name
Address
L

Git 818 -

Due to continous improvements in components and design ILP now launch the largest and most advanced generation of modules ever.

WE'RE INSTRUMENTAL IN MAKING A LOT OF POWER

In keeping with ILP's tradition of entirely self-contained modules featuring, integral heatsinks, no external components and only 5 connections required, the range has been optimized for efficiency, flexibility, reliability, easy usage, outstanding performance, value for money.
With over 10 years experience in audio amplifier technology ILP are recognised as world leaders.

Modula Number	Outper Power Watts rms	$\begin{gathered} \text { Lond } \\ \text { Impeadence } \\ \Omega \end{gathered}$	distortion		Supply Voltase Typ	$\begin{aligned} & \text { Size } \\ & \mathrm{mm} \end{aligned}$	$\begin{aligned} & W T \\ & \text { GTM } \end{aligned}$	Priea nec. VAT
			T.M.D. Typat $\mathbf{1 K H z}$	$\begin{gathered} \text { I.M.D. } \\ \text { 80Hz/ } \\ 7 \mathrm{KHz} \mathrm{4:} 1 \end{gathered}$				
-17 31	14	9.8	0.015\%	<0.006\%	* 18	$76 \times 68 \times 40$	240	${ }^{2} 8.40$
1704	30	1.8	0.015\%	<0.006\%	+ 25	$76 \times 68,40$	240	[9.55
	$30+30$	4.18	4,015\%\%	<0.006\%	123	$120 \times 78 \times 40$	420	¢ 18.69
Hva, ${ }^{\text {d }}$	(i)	4	0.018	<0,006\%	± 26	$120 \times 78 \times 40$	410	E20.75
ivide	60	*	0.31 \%	<0.006\%	± 35	$120 \times 78 \times 40$	410	¢20.75
Wיjus	124	4	0.01\%	<0.006\%	+ 35	$120 \times 78 \times 50$	520	¢25.47
H2048	12.1	$\stackrel{H}{*}$	0.01\%	<0.006\%	± 50	$120 \times 78 \times 50$	520	[25.47
i+r rima	(14)	4	0.01\%	<0.006\%	± 45	:20 $28 \times 78 \times 100$	1030	¢38.41
4restin	+8\|1	8	0.01\%	<0,006\%	± 60	$120 \times 78 \times 100$	1030	[38.41

Protection Full load line. Siew Pare $15 \mathrm{v} / \mathrm{Hs}$. Risetime $5 \mathrm{Sus} \mathrm{~S} /$.N gatio 100 db Input Impedance $100 \mathrm{~K} \Omega 1$. Damping factor $100 \mathrm{~Hz}>4.00$

PRE.AMP SySTEMS

Modul Numben	Module	Functions	Currone Required	Price inc. vat
+1Y6	M nuo pen amp	Mn: 'Mag Carthidge:/Tuner/Tape/ Aux : Vol/Bass/T/eble	10 mA	¢7.60
hyseo	Sipreos pray amin	Mic/Mag. Ca widge/Tuner/Tunel Aux - Vol/bias/Treble/83ance	20 mA	¢14.32
+1v7s	<ivilat pra.ump	Two Guitar (Bass Leact) and Mic * separdie Volume Bass 1 reble + Mix	20 mA	¢ 15.36
+1Y78	Steren pre amp	As HY66 less tone controls	20 mA	E14.20

Most Dre-amp modules can be driven by the PSU driving the main power amp
A separate PSU 30 is available purely for pre amp modutes if required for
65.47 timc. VATI. Pre-amn and mixing modulas in 18 different variations.

Please send lor detai
Mounting Boards
for ease of construction we tecommend the BE for modules MY6-MY 13 \& 1.05
For ease of construction we tecommend the B6 for modules MY6-WY
inc. VATI and the B66 4 or modules MY66-HY 78 f 1.29 finc. VATI.

Moden Nu mber	For Use With	Prices inc. VAT
PSU 52 x	$2 \times \mathrm{HY} 124$	¢ 17.07
PSU 53X	2. MOS128	[17.86
PSU 54x	$1 \times \mathrm{HY} 248$	[17.86
PSU 55x	$1 \times$ MOS248	¢19.52
PSU 71x	$2 \times \mathrm{HY} 244$	¢21.75

Model Number	For Use Writh	Price ine Vat
PSU $72 \times$	$2 \times$ nr248	E22-bi
PSU 73 x	1 ¢ HY 364	t22,54
PSU 74 x	$1 \times$ ヶと 368	124.20
PSU $75 \times$	2*MOS248. $1 \times$ M05358	124.20

Pigase note: X in pari no. indicates primary voftrage. Ple aste insert "O" in place of

WIHALIT OF MELP raom
 Qner

PROFESSIOWAL HI-FI THAT EVERY ENTHUSIAST CAN HANDLE...
 Unicase

Over the years ILP has been aware of the need for a complete packaging system for it's products, it has now developed a unique system which meets all the requirements for ease of assembly, adaptability, ruggedness, modern styling and above all price.
Each Unicase kit contains all the hardware required down to the last nut and bolt to build a complete unit without the need for any special tools.
Because of ILP's modular approach, "open plan" construction is used and final assembly of the unit parts forms a compact aesthetic unit. By this method construction can be achieved in under two hours with little experience of electronic wiring and mechanical assembly.

Hi Fi Separates

UC1 PRE AMP UNIT: Incorporates the HY78 to provide a "no frills", low distortion, $(<0.01 \%)$, stereo control unit, providing inputs for magnetic cartridge, tuner, and tape/ monitor facilities. This unit provides the heart of the hi fi system and can be used in conjunction with any of the UP Unicase series of power amps. For ultimate hum rejection the UC1 draws its power from the power amp unit
POWER AMPS: The UP series feature a clean line front panel incorporating on/off switch and concealed indicator. They are designed to compliment the style of the UC1 pre-amp. Performance for each unit which includes the appropriate power supply, is as specified on the facing page

Power Slaves

Our power slaves, which have numerous uses i.e instrument, discotheque, sound reinforcement, feature in addition to the hi fi series, front panel input jack, leve control, and a carrying handle. Providing the smallest, lowest cost, slave on the market in this format.

HIFI Separates					Price inc VAT
UC?	Preamp				£29.95
LP1X	$30+30 W / 4-8 \Omega$	Bipolar	Stered	HiF	£54.95
UP2X	$60 \mathrm{~W} / 4 \Omega$	Bipolar	Mono	H.F	£54.9 ${ }^{\text {b }}$
UP3X	$60 \mathrm{~W} / 8 \Omega$	Bipolar	Mons	H, F	$£ 54.95$
UPAX	$120 \mathrm{~W} / 4 \Omega$	Bipolar	Mono	HIF_{1}	£74.95
UP5X	$120 \mathrm{~W} 8 \Omega$	Brpolar	Mono	H, F	¢74.95
UP6X	60W/4-8	MOS	Mono	H,F	£64.95
UP7X	120W/4-8	MOS	Mono	$H_{1} F_{1}$	£8495
Power Slaves					
USIX	$60 \mathrm{~W} 4 \mathrm{\Omega}$	B poiar	Power	Slave	£59.95
US2X	120W 4Ω	Broor	Power	Slave	£79.95
US3x	$60 \mathrm{~W}-8 \mathrm{~S}$,	MOS	Power	Slave	£69.96
US4X	120W/4 8	MOS	Power	Slave	$£ 89.95$

[^1]

TO ORDER USING OUR FREEPOST FACILITY
Fill in the coupon as shown, or write details on a separate sheet of paper, quoting the name and date of this journal. By sending your order to our address as shown at the bottom of the page opposite, with FREEPOST clearly shown on the envelope, you need not stamp it. We pay postage for you. Cheques and money orders must be crossed and made payable to I. L.P Electronics Ltd. if sending cash, it must be by registered post. To pay C.O.D please add $£ 1$ to TOTAL value of order.

PAYMENT MAY BE MADE BY ACCESS OR BARCLAYCARD IF REQUIRED. Allow 28 days for delivery.

Please send me the following
Total purchase price- \quad Postal Orders \square Int. Money Order \square
I enclose Cheque \square
Please debit my Access/Barclaycard No.
Name
Address
Signature

CAMBRIDGE LEARNING
 SELF-INSTRUCTION COURSES

NEW MICROPROCESSORS \& Microelectronics $£ 6.50$

Now you can learn all about microprocessors their construction, design, and operation - using our programmed learning technique. Suitable for all ages, all levels of interest, this course has been designed for ease of understanding. It assumes no prior knowledge other than arithmetic; and at the end you will know what that piece of "black plastic" in your computer is actually doing. Contents include: algorithm design, programmable logic, microcomputer architecture, a microprocessor family, semiconductor technology, number systems, arithmetic - integer and floating point, data representation and scaling, programming, microprocessor development system.
GSC SUPERKIT
$£ 19.90$

DIGITAL COMPUTER DESIGN

Learn the wonders of digital electronics - without the problems of soldering.
This practical beginners. kit comes complete with instruction manual, components, and EXP300 breadboard to teach you all the basics of digital electronics. The only extra you need to buy is a $4 \frac{1}{2} V$ battery.
This self-instruction course teaches gating, boolean logic, R-S and J-K flipflops, shift registers, ripple counters, and half-adders.
28.50

This up-to-date theory course covers the design of digital computers, both from their individual logic elements and from integrated circuits. You are first shown the way in which simple logic circuits operate and then, through a series of exercises, arrive at a design for a working machine.
Please send for our free booklist for further information on these and our other courses.
GUARANTEE No risk to you. If you are riot completely satisfied. your money will be refunded upon return of the item in good condition within 28 days of recelpt.
CAMBRIDGE LEARNING LIMITED, UNIT 26 RIVERMILL SITE,
FREEPOST, ST IVES, CAMBS, PEI7 $\angle B R$, ENGLAND.
TELEPHONE: ST IVES (0480) 67446. VAT NO 313026022
All prices include worldwide postage (airmail is extra
please ask for prepayment invoice). Giro A/C No 2789159
Please allow 28 days for delivery in UK.
SUPERKIT(S) £19.90
DIGITAL COMPUTER DESIGN(S) £ 8.50
MICROPROCESSORS \& MICROELECTRONICS @ ¢6.50

*Access / American Express / Barclaycard / Diners Clibb

Telephone orders from card holders accepted on 0480 67.46 Overseas customers (including Eire) should send a bank drafi

```
number.
```

Name.
Address

Cambridge Learning Limited, Unit 26, Rivermill Site, FREEPOST,
St lves, Huntingdon, Cambs, PE17 4BR, England. (Registered
in England No 1328762)

Test Instruments from Sifam

These instruments have all the features, accuracy and reliability you would expect from professional-quality equipment at less than you might expect them to cost

3112-DIGITAL MULTIMETERS

Both these instruments have the following features:

- Only two input terminals, common to all functions.
- Overload protection, autozero, autopolarity, over-range and low battery indications.
- Basic 0.3\% DCV accuracy.
- Supplied with test leads, spare fuse, 9 V battery and operator's manual

DMM2500

(bench model) Push-button operation providing 24 ranges in 5 modes.
± 2 A A.C./D.C. ± 1000 V A.C./D.C. 200Ω to $20 \mathrm{M} \Omega$ resistance Re-seltable overload circuit breaker
2000 hours operation from 9 V battery
Size: $155 \times 120 \times 57 \mathrm{~mm}$

DMM2200B

(hand-held model)
2 Teflon-bushed rotary switches providing 21 ranges in 5 modes. ± 2 A A.C./D.C. $\pm 1000 \mathrm{~V}$ A.C./D.C.
2000Ω to $20 \mathrm{M} \Omega$ resistance 1000 hours operation from 9 V battery
Size: $165 \times 110 \times 43 \mathrm{~mm}$

$£ 49.95$

 incl.VAT plus p\&p at $£ 1.00$

DIGITAL LOGIC PROBE DLP50

- Wide frequency range: DC to 50 MHz
- Minimum detectable input pulse width of 10 nsec
- High input impedence of 10 megohms - Compatible with DTL, TL and CMOS in a wide range of power supply voltages of 4.5 to 30 V D.C
- Protected up to ± 120 V.C./A.C. in input signal plus audible warning function
- Rugged, modern plastic-housed unit supplied packaged in a de-luxe moulded plastic carrying case, with ground lead, IC-clip lead and operator's manual
Size: $195 \times 26 \times 16 \mathrm{~mm}$ with 800 mm power lead
$£ 44.95_{\text {incl.VWT Pus }}$ RPQ at $£ 1.00$

All these instruments are guaranteed against defective parts/workmanship for 12 months. If not satisfied, please return within 14 days for full refund. Fran The telephone number for Access/Barclaycard orders enquiries and literature is 0803 63822, Ext. 8 .
Post to: Sifam Ltd, Woodland Road, Torquay, Devon TQ2 7AY
Please send me \qquad Total purchase price

I enclose Cheque \square
Please debit my
\square Access/Barclaycard No. Postal Order \square

Name Int. Money Order \square
Address
Signature
Please allow up to 28 days for delvery Official orders accepted from colleges, schools, companues. etc.

SINCLAIR AND ORIC COMPUTERS

UK prices are shown first. The bracketed prices are export prices which inkude insured air-mail postage to al the countries of Europe including Norway, Sweden. Findand and Denmark. For overseas customers ouvide Europe an extra $f 5$ postage per item is charged. Oric I 48K Computer (147 ($\mathbf{6} 158$). ZX81 ©43.43 (E52). ZX Printer ©52.13 (E61). ZX Spectrum C108.70 (c129). ZX Spectrum 48K C152 ($(172$). 32k Memory Upgrade for 16 K Spectrum (Issue 2 onty) 644 ((45), $2 \times$ Microdrive n / a (n / a). ZX RS232 n / a (n / a). 5 Printer Rolla $\mathbb{E} 10.43$ ((16). $Z \times 81$ Ram Packs:- 16K E26.04 (E28), 32K 639 ($£ 41$), 56 K €49 (E 51).

DRAGON 32 6173
COMMODORE COMPUTERS
Commodore 64 6299. Vic 20 E130. Kit to aliow the use of an ordinary mono cassette recorder with the Vic 20 and the Commodore 64 66. Commodore cassette recorder for these computers $\mathbf{6 3 6 . 5 0}$. Super expander high resolution cartridge $\mathbf{6 2 7 . 9 5}$. We stock most accessories.

BBC MICROCOMPUTERS

A Model C260. B Model 6347.

GENIE COMPUTERS

New colour Genie E179, Cassette Recorder 625, 16K Ram Card 633. Light Pen 615. Accessories for Genie I and Genie 2:- EG3014 32 K ¢189. Disc drives single ¢199, dual 6369. Double Density Convertor $\mathbf{6 7 2}$. High Resolution Graphics ©82. Printer Interface $\mathbf{6 3 6}$.

SWANLEY ELECTRONICS Dept PE, 32 Goldsel Rd., Swanley, Kent BR8 8EZ. Tel. Swanley (0322) 64851 Please allow 7 doys for delivery.

UKIOI AND SUPERBOARD
32×48 Display Exparsion Kits UKIOI C9, Series I Supertoard E14.32K Memory Expansion Boand 660. Cegmon 622.50. Word Pro cessor Prog. 610 . Centronics Interface Kit 610. Cased Disc Drives with DOS single E275, double C415. Stand alone floppy disc control ler 685 .

ORIC-I 48K COMPUTER C147.

Low coss Daisy Wheels:- Smith-Corora TP 418, Brother HR1 6520. Oivett Praxis 30 Byewriter:- the latest murade, a combined Daisy Wheel Printer and Electric Typewriter only E418. Epson FX80 6387. Epson (100)3 E425. Oki Mucroline $80 \mathrm{C199}$. Ok Ontine 82A R343. Okj Mucroline 83A 6467 437. Mroline 84 E684. Oki Maroline 92 3). OkI Microline 93 E599.

5V POWER KITS
Fully stabilized 5 V Comouter and TTL Power Kits. $1.5 \mathrm{~A} £ 7.83,3 \mathrm{~A} \in 12.17,6 \mathrm{~A} £ 20.87$.

SHARP COMPUTERS

We can supply Epson printers to run direct from the MZ80K (I/O box not needed) for 672 plus printer price. We also specialize in interfacing printers to the MZ80K, MZ80A and MZ80B both with and without the i/o box.

Postage El on Sinclare products (UK), $\mathbf{E 3 . 5 0}$ on other computers, $E 4.50$ on printers and 50 p on other orders. Please odd VAT to all prices. Official credit and oversecs orders welcome.
necessary and
the end result is
ConstructorSeriesSpeakers
a proven top-
quality design
that vou'll be proud of
Each kıt contains all cabınet components. accurately inachined for easy assembly, speaker drive units, crossovers, wadding, grille fabric, terminals, nuts, bolts, etc
The cabinets can be painted or stained or finished with tron-on veneer or self adhesive woodgrain vynul
Easy foolproof a ssembly instructions supplied. Set of constructor leaflets sent free on receipt of large S A E

Prices:CS 1 (As 101)
$\mathbf{f 1 1 0} \mathbf{p r}$. Inc. VAT, pius carr./ins $£ 5.50$ CS 1A (simplified LS3/5A) $\mathbf{£ 1 0 3} \mathbf{p r}$. Inc. VAT. plus carr./ins. f 5.50 CS3 (as 1032) $\mathbf{f 1 2 9}$ pr. וnc. VAT. plus carr./ins. $£ 10.00$ CS5 (as Carlton II)
 $\mathbf{f} \mathbf{2 5 0}$ pr inc. VAT, plus carr./ıns. £ 18.00
CS7 las Cantatal

The frrm for Spoakers

35/39 Church Street, Wilmslow, Cheshire SK9 1AS £ 1.50 post free
Lightning service on telephoned credit card orders' Catalogue please allow 7 days for delivery.
including CMOS，LS TTL，linear，microprocessors and memories；full range of LEDs．capacitors，resistors，hardware，relays，switches etc．We also stock VERO and Antex products as well as books from＇Texas Instrumenis，Babani and Elektor． ALL AT VERY COMPETITIVE PRICES ORDERING IS EVEN EASIER－JUST RING THE NUMBER YOU CAN＇T FORGET FOR PAICES YOU CAN＇T RESIST．Answering 5－6－7 8－9－10 service evngs and give us your Access or Barclaycard No or write enclosing，service evngs
cheque or postal order Official orders accepted from schools，etc．\＆weekends cheque or postal ordet．Official orders accepted from schools，erc．\＆weekend

MK1 TEMEANUGE CONTROUEATHERMOSTAT CONTROLERTHEAMOSTAT

 Ideos for switching motors，lights，
heoters，
erc．
trom logic．
Opto
 MR3BARDOT DISPACAY Disploys an andiogua voltapo

 Maccked too bobein 20 to 1000 element dienays．Requires 5 －20V supoly． MEM PAOROMTOMA： teme erature controuea Bazad on that SL441 zero voltog

 closure to be maintained to within
$0.5^{\circ} \mathrm{C}$ ．Max．load 3 KW MOES MANS NMER
Besed on the ZN1034E Timer IC this for a proserat time from 20 mins．to 35 hrs．Loniger or shorter periods may
be rosisod by bina

• 3－NOTE DOOR CHIME δ

Based on the SAB0600 IC the kit is supplied with all components，including loudspeaker，printed circuit

board，a pre－drilled box $95 \times 71 \times 35 \mathrm{~mm})$ and full instructions．Requires onlya PP39V battery and push． | swith 10 complete．AN |
| :--- |
| $\begin{array}{l}\text { sEGINNERS．Ordet as } \times K 102\end{array} \quad £ 5.00$ |

XK113 MW RADIO KIT

Based on ZNA 14 IC ，knt includes PCB，wound aerial and
crvstal earpiece and crystal earpiece and ahl components to make a sensitive
miniature radio Size $55 \times 27 \times 2 \mathrm{cms}$ ． miniature radio．Size： $5.5 \times 2.7 \times 2 \mathrm{cms}$ ．Requires PP3
9V battery．IDEAL FOR BEGINNERS．
E500

COMPONENT PACKS

PACK $1 \begin{gathered}\text { V50 Resistor } \\ \text { value } \\ \text { E4．00 }\end{gathered}$

PACK value $£ 4.00$ ． PACK $240 \times 16 \mathrm{~V}$ Electrolytic Capacitors 10 HF to PACK 360 Polyester
PACK 4 per value $£ 5$ S． 5 ． 55
PACK 5 － 5 per value $£ 290$ PACK 530 Low Profie ic Sockets 8 ． 14 and 16 －pin PACK 625 Red LEDS（ 5 mm dia．／$£ 1.25$

WUPITHR AGE

MICROCOMPUTER
uses FORTH which executes about 10 times faster and requires less program mendory than a comparable program sing＇basic．Features 8K ROM，3K RAM，built in speaker． 40 key keyboard and a 32×24 line－flicker free display on TV ．
Comes supplied complete with leads，mains adaptor，a comprehensive casy－to－follow manual on Forth programming＋FREE cassette containing 5 sample programs． JUPITER ACE SOFTWARE －J5 DOT MAN
e75

83.90 J3 SPACE INVADERS 83.90 J7 ZAP＇EM（ASTEROIDS）DUCK
DVM／ULTRA SENSITIVE THERMOMETER KIT
This new design is based on
the ICL7126（a lower power
version of the ICL7106 chip）
display．This kit will form the
basis of digital multimeter
Ionly a few additional resistors and switches
digital thermomets supplied），
reading to $0.1^{\circ} \mathrm{C}$
sensitivity of 200 mV for a basic kit has a automatic polarity indication scale reading， tow power requirement－giving a 2 vear typical battery life from a standard $9 V$ Price £15．50

DISCO LIGHTING KITS

£14．60
DLZ100K
E．feaut
Only $£ 8.00$
\qquad
DL 3000 K
60p
Only $£ 11.95$
＂OPEN－SESAME＂ The Xk103 is a general purpose infra－red trans－
mitterifeceiver with one momentary（normally open）relay contact and two latched transistor
output．Designad primafily for controling output．Designed primarily for controlling
motorised garage doors and two auxillisy out－ motorised garage doors and two auxillary out－
puts for driveigarage lights at a range of up to puts for drivegarage lights at a range of up to
40 ft ．The unit also has numerous applications in the home for switching lights，fV，closing curtains，
persons．

porsons．

four button tras a mains powered receivar，a four button transmitter，complete with pre－
drilled box，requiring a 9 V battery and one opto－isolated solid state switch kit for inter－ acing the receiver to maine sppliances．A
with all our kits，full instructions are supplied

ONLY £23．75 Hundreds of uses for doors and gareges， anti－theft device，electronic equipment，etc． Will drive most relays direct．Full instructions supplied．

ONLY £10．50
Electric lock mechanism for use with tatch
locks end above kh $£ 13.50$

LCD $3 ½$ DIGIT MULTIMETER

 6 ranges including $D C$ voltage（ $200 \mathrm{mv} \cdot 1000 \mathrm{v}$ ）and AC voltage，DC current（ 200 mA －10A）and resist－ ance $10-2 \mathrm{M} \mid+$ NPN $\&$ PNP transistor gain anddiode check．input impedance 10 M ．Size $155 \times$ $88 \times 31 \mathrm{~mm}$ ．Requires PP3 9V battery． $\mathbf{5} 29.00$

THE MULTI－PURPOSE TIMER HAS ARRIVED

Now you can run your centra！heating，lighting，hi－fi system and lote
designed to control four mains outputs independently，switching on
and off at pre－set timas over a 7 day cycle，e．g．to control your central hasting lincluding different switching times for weekends），just
clock will do the rest．
FEATURES INCLUDE
0．5＂LED 12 hour display．
Day of woek，sm／pm and output status indicators． 4 zero voltage switchad mains outputs．
$50 / 60 \mathrm{~Hz}$ mains $50 / 60 \mathrm{~Hz}$ maina operation
Bartery backup saves stored programmes and continues time keeping during power failures．（Batrery not supplied）， 18 programme time seti．
18 programme time sete．
Powerful＂Everyday＂fun
to wwitch every day but use only one fin output
Useful＂sleep＂function－surns on output for one hour
Direct iwhich control enabling output to be turned on immediately or sher a specified time interval． 20 function keypad for programme ontry．
（Kit includes all components，PCB，assembly and programming instructions）．ORDER AS CT5000

For a detailed bookiet on
remote control－send us 30p
and S．A．E．$\left(6^{\prime \prime} \times 9^{\prime \prime}\right)$ today．
PRICES EXCLUDE VAT

FRIS SERYICE－TOP QUUUITY－LOW LOW PRICES

No circuit is complete without a call to－

REMÖTE CONTROL KITS

makg simple inffa red transmitter

Pulsed infra red source comp
MK7 INFRA RED RECEIVER
Single channal，range approx．20ft．Mains powered with a trisc output to a witch loads up to 500 W MK8 COCED INFRA RED TRANSMITTER
Based on the SL490，the kit includes all componants to maka a coded transmitter and only
requires a $9 \mathrm{~V}(\mathrm{PP} 3)$ batrery and keyboard． $8 \times 2 \times 1.3 \mathrm{cms}$
年 MK10 18－WAY KFYBOARO
For use with MK8 and MK18 one
MK 110 Chanol +3 Analogue o／p IR Recoiver
Based on ML922 decoder IC．Functions include on／standby output，toggie，control of volume， tone and lamp brightness．Includes its own mains supply．
MK12 15 GOANELIR
For Use with MK8 kit with 16 onioff outputs，which with fur
－rwacs，will switch up to 16 items of equipmench with further intarface circuirry，such as relay
 MK16 Mains Powered if Transmitter
Mains powered for continuous alarms，automatic door openers，etc．Range approx． 6 ft ．
MK17 12 V d．c．$⿴ 囗 十 一$ RECEIVER
latched，momentary or＂break beam＂receiver．Operates from $6-13 \mathrm{~V}$ d．c．
f． MK 18 HIGH POWER HR THANSMITTER
Similiar to MK8 but with range of approx．60tt．$£ 6.20$
Ancillitry Kita：MK2 Solid State Relay
Opto－isolated with zero voltage switching．No．eriac supplied． $\mathbf{\$ 2 . 6 0}$
MK15 DUAL LATCHED SOLD STATE RELAY
MK15 DUAL LATCHED SOLD STATE RELAY
Comprises $2 \times$ solid state relays and latch for
version of the MK12． 2 output triacs required with momentary

24 HOUR CLOCK／APPLIANCE TIMER KIT

Add 65p postage \＆packing＋15\％VAT to total
1556
Add $£ 2.50$（Europe）， 66.00 （elsewhere）for $p \&$ end S．A．E．for further STOCK DETAILS

10am to 4pm（Sat）

When you need to update yourself with all that is available in the "Do-it-yourself" market, then you need the Hobby Herald.

Packed with product information essential to the electronics enthusiast, this new electronics catalogue lists over 60 exciting products ranging from All Purpose Cutters to Verobloc, the solderless breadboard. All products are available throughout the U.K. from over 200 stockists.

HOBBY
 HERALD

Alternatively ordering products through the Herald is simplicity itself, and you can pay by either cheque, Barclaycard or
Access. So make sure you get your copy of Hobby Herald by ringing
(04215) 62829.

BICC-Vero Electronics Ltd., Industrial Estate, Chandlers Ford, Hampshire,

SUPER KITS!

SETS INCL. PCBS, ELECTRONIC PARTS, INSTRUCTIONS. MOST ALSO INCL. KNOBS, SKTS, WIRE, SOLDER, BOX. BATTERIES NOT INCL. BUT MOST WILL RUN FROM 9V TO 15V DC SUPPLIES. ALSO SEE BELOW.

AUTOWAH: Gultar-iriggered wah-wah
BASS BOOST: Increases volume of lower octaves
CALL SIGN: Programmable 8 -note musical call sign
CHORUS GENERATOR: Makes a solo voice or instrument sound
like more
COMPARATOR: LED level indicator for 2 channels
COMPRESSOR: Limits \& tevels maximum signal strength
FREQUENCY DOUBLER: Raises quitar frequency by 1 octave
FREQUENCY-GENERATOR: Multiple waveform test osc, variable 5 Hz to 470 KHz
FUNKY-WOBULO: Novelty vorce modulator for funny effects FLANGER: Fascinating delayed-feed-back effects plus phasing FUZZ: Smooth distortion whilst keeping natural attack \& decay GUITAR EFFECTS: Multiple variation of level \& fitter modulation gUITAR OVERDRIVE: Fuzz plus varlable filter quality GUITAR SUSTAIN: Extends effective note duration HARMONOLA: 3-Octave organ with variable voicing attack,
sustain vibrato
4-Octave version
HUM CUT: Tunable filter for reducing low frequency noise JABBERVOX: Voice disguiser with clever use of reverb \& tremolo MAD-ROJ Variable sirens, incl. police, galaxy machine-guns etc METRONOME: With audible \& visual beat \& down-beat marking MICROPHONE PRE-AMP: with switchable bass \& treble response MINISONIC (PE) MK2: 3-octave very versatile music synthesiser MXERS: Several - details in catalogue (see below) NOISE LIMITER: reduces tape \& system hiss
PHASER: with automatic \& manual rate \& depth controls
POWER SUPPLIES $(300 \mathrm{~mA})$: 9 v
or preset 12 to 15 v
REVERB: Analogue unit with variable delay \& depth controls RHYTHM GENERATOR: 15 switchable rhythms controlling 10
instruments
RING MODULATOR: for intermodulating 2 separate sine frequencies ROGER 2-GONG: 2 gongs sounded at end of transmision ROGER BLEEP: Single bleep sounded at end of transmission SCRAMBLER: Codes \& decodes transmissions authorised channels SEQUENCERS: 128 -note keyboard controlled (keyboard incl.)

16-note (up to 64 bit pattern) panel controlled
SPEECH PROCESSOR: for clearer transmission \& better level control
STORM EFFECTS: Automatic \& manual wind, rain \& surf generator
SYNTHESISER INT ERFACE: allows instrument to trigger synth functions
TREMOLO: Deep tremolo with depth \& rate controls
TREBLE BOOST: Increases volume of upper octaves
TONE CONTROL: bass \& treble cut, gain \& range (6 controls)
VIBRATO: variable rate \& depth plus additional phasing
VODALEK: Robot type voice modulator with depth \& rate controls VOICE FILYER: Tunable for selected freq bandwitth \& gain
VOICE-OP-FAOER; for reduction of music level during talk-over VDICE-OP-SWITCH: with variable sensitivity \& delay, IA 2PCO relay WAH-WAH: with auto-trigger, manual oscillator control
WHEEBY-JEEBY: 2 intercoupled oscillators produce variable sirens WIND \& RAIN: manual control of these two effects
WOBBLE-WAH: Osclliator controlled wah-wah for fascinating effects

SET 58
SET 138-B
SET 121-Ls
SET162
SET 129
SET 129-LS
SET 133 LS SET 98

SET 128
SET 149
SET 153
SET 91
SET 42
SET 56
SET 75
SET 124-T
SET 124-F
SET 141
SET 150
SET 146
SET 143
SET 144
SET 38
SET 145
SET 164
SET $130-\mathrm{N}$
SET 130 T
SET 122-LS
SET 103 F
SET 87
SET 126-LS
SET 127-LS
SET 117.LS
SET 76
SET 86
SET 110 tS
SET 154
SET 81
SET 136
SET 138-T
SET 139
SET 137
SET-155-LS
SET 142
SET 30
SET 123-S
SET 140
SET 151
SET 28
SET 161
£14.01
f8. 87
£1423
£31.59
£16.70
£12.37
£11.75
$E 18.44$
£11.79
¢22.49

E21.17
£11.77
f162.15

f184.71 | £11.43 |
| :---: |
| f23.46 |

£9.99
£13.52 £181.56
£9.99
$[2120$
$£ 1350$
£13.85
£20.39
£61.71
£13.62
£12.31
£10.07
$£ 120.45$
£64.63
£11.77
£16.72 £10.71 f8.46 £13.62 £23.99 f12.40
f9.69 f9.85 £13.80 £17.31 £13.78 £11.39 £13.40

KIMBER ALLEN KEYBDARDS (surely the best?): KEYBOARD CONTACTS GJ (SPCO : KEYBOARD CONTACTS GB (DPST):

3-0ct £32.43. 4-Oct $£ 40.68$, 5-0ct $£ 48.52$ 3 Oct £2029, 4-Oct £26.50, 5-0ct £32.71 3-Oct £23.27, 4 - $\mathrm{Ct} £ 30.45,5-\mathrm{Oct} £ 37.62$

PHONOSONICS

PhONOSONICS MAIL ORDER, DEPT PE3/5, 22 HIGH STREET, SIDCUP, KENT DA14 6EH, 01.3025184

Please use full address. Payment CWO, CHO, PO, ACCESS, BARCLAY, or pre-arranged collection. Prices inci. UK P\&P \& 15% VAT. E\&DE. Despatch usually 7 days on most items. Detaits of parts in above kits are stated in our comprehensive catalogue. Send SA.E. (9×4 or bigger) for Catalogue (if you live overseas please send $£ 1.00$ or equiv). MORE KITS ARE IN CATALOGUE.

BhPAK BARGANS

TRIACS - PLASTIC

SX63 5×470 ohms Lirt $S \times 675 \times 47 \mathrm{kLint}$
SX64 $5 \times 1 \mathrm{kLin} \quad S \times 685 \times 47 \mathrm{kLOg}$
$\mathbf{S} \times 665 \times 22 \mathrm{k} \log \quad \$ \times 705 \times 1$ meg Lin
5140250 Siticon Olodes -5 witchning ine in4118 0035 All good-uncoded Worth double out price $45 \% 75 \mathrm{~mA} \quad[1.25$
sull 250 Silicon Orodes-General Pupose like 0a200:202 baxi3:16 uncode 30.100 .200 ma 00.7

OPTD 7-Segment Displays

Brand Now 1st Ouslity
LITRONIX DL 707R 14-pin
Red 0.3" Common Anode Display 0-9 with right hand decimal point TTL compatible 5v DC Supply. Data supplied
 THE MORE YOU BUY

THE LESS YOU PAY

BI-PAK'S OPTO 83 SPECIAL

A selection of Large \& Small size LED's in Red Green, Yellow and Clear, plus shaped devices of ditlerent iypes. 7 Segment displays, photo transisiors, emitters and deteciors.
Types like MEL11, FPT100 etc. Plus Cadmium Cell ORP12 and germ. photo transistor OCP71. TOTAL OF 25 pieces v) Yalueo Normal Relan E17

£5.00

"IRRESISTABLE RESISTOR BARGAINS"

Patina.			
5×10		Mixed All Iype Resistors	
\$ 511	400	Pielormed th-4 watt Cat Resistors	
5112	200	\% watt Carbon Resistors	
5×13	200	4-watt Carbon Resistors	
5114	150	4 watt Resistors 22 ohm 2 m 2 Mixed	
S115	100	1 and 2 watt Resistors 22 ohm 2m2 Mixed	1
Paks 5×12.15 contain a range of Carbon Film Resistors of assorted values trom 22 ohms to 22 mes Save pounds on these resistor paks and have a lull iange to cover your propects - Quantities approsimate count by weight			

GUARANTEED TO SAVE YOU MONEY sx27a 60 Assorted Polystyrene Bead Capacitors Type 9500 Series PPD
SX28A 50 Assorted Siver Mica Caps 50 Assorted
$5.6 \mathrm{pF}-150 \mathrm{pF}$

$$
\begin{aligned}
& 450 \text { Assorted } \\
& 180 \mathrm{pF}-4700 \mathrm{pF}
\end{aligned}
$$

$$
\begin{aligned}
& 180 \mathrm{pF}-4700 \mathrm{pF} \\
& \text { S1.00 } \\
& \text { Sx30A } 50 \text { High Voltage Disc Ceramics } 750 \mathrm{~V} \text { min }
\end{aligned}
$$

$$
\begin{aligned}
& 50 \text { High voltage Uisc Ceramics } \\
& \text { up to } 8 \mathrm{KV} \text {. Assorted useful values min } \\
& £ 1.00
\end{aligned}
$$ SX31A 50 Wirewound 9 watt (arg) Resistors.

$$
\begin{aligned}
& \text { Assorted values } 1 \text { ohm-12K } \\
& \text { AUTO SCREWDRIVERIDRIL }
\end{aligned}
$$

AUTO SCREWVATVEKIDKILL Automatic spiral ratchet. Complete with 2
screwdriver blades, 5 \& 65 mm . 1 screwedriver cross point No. 1 \& three drills - 2, 2.8 and 3.65 mm - A MUST FOR ALL HOBBY-BUILDERS \& CONSTRUCTORS. Order No. ASD $/ 1 £ 3.50$ each CAPACITORPAKS'
Pat Mo.
Pat Mo.
516.6 $\begin{array}{ll}516 & 250 \\ \$ 117 & 200\end{array}$$5 \times 18$518
5×19
5×20
5×20
5×21
5×21
5×22
5
$\begin{array}{ll}5 \times 22 & 100 \\ 5 \times 23 & 50\end{array}$

Description Capacitors Mixed Iypes Ceramic Capacitors Miniature Mixed Mixed Ceramics / pl 56pt Mised Ceramics $680 \mathrm{ot} \cdot 0.5 \mathrm{mi}$ Assorted Polyester/Polystyren Capacilors Mined C2 80 type caparitors metal toil Electroigtics, all sonts Quality Electroiptics

-Quanitites approximate count by werght

BARGAINS

SX91 $20 \times$ Large $2^{\prime \prime}$ REOLEO 5×4220 small 125 Red LCD's 5×4310 Rectangular Green LED's $2 \quad \mathrm{Il}$ 5×46 Assorted Zener Diodes
$250 \mathrm{mw}-2$ watt mixed voltages. all coded. New
SXA7 Blach instiument
Knobs-winged with pointer ${ }^{3 / 4}$ Standard sciew Fit size 29 a 20 mm
5x49 20 Assorted Slider knobs Blach/Chrome etc
SKeO 12 Meons and F lament Lamps Low valtape and mairs - various types and colours - some panel mounting \&

VOLTAGE REGULATORS

10220

5152

6 Black Heatsink wilifit 103 and 10.220 Ready dulled Hall pue value
Sx53 : Power tinned reat sink Inis heatsink gives the gleatest possible neat cissipatio in the smallest space owing to :s unique taggered lon design pre difled T0. 3 Size 45 mm squarex 20 mm high $\mathbf{4 0 p}$ 5×54 10.66sice $35 \mathrm{~mm} \times 30 \mathrm{~mm} \times 12 \mathrm{~mm} \quad 35 \mathrm{p}$
5×55 I Heas t thiciency Powel finned Heatsink $90 \mathrm{~mm} \times 80 \mathrm{~mm} \times 35 \mathrm{~mm}$ High Prilled to ake up to 4 : 0.3 dences $\$ 1.50$ each
 118

PROGRAMMABLE UMIJUNCTION TRANSISTOR "FUT case to106 plastic MEU22 Similar to
2N6027/6028 PNPN iticon 2NGO27/6028 PNPN Sificon Price 1-9 10-49 $50-99 \quad$ to0+ \quad Normal Retal

SX33A 6 small IminiSOST/SPOT Toggle SX35A 6 small (min) Rocker
${ }_{\text {gile }}$ $£ 1.00$ SX35A 6 smam 240 mam Switches 11.00

SX32A: 2 Assorted Jack \& Phono plugs sockets and adaptors. 25 m
S $\times 7150$ Clos "Fallouts" Manufacfure, s out of spec on volis or
©x72 gain You test.
Amixed bundie of Copper clad Board Fibre glass and papei.
Single and double sided A. lanlastic bargain

5×38 100 Silicon NPN Transistors-ail data and eqvit sheet. No rejects Real value SX39 100 Slicion all per iect Coded mixed types with data and eqve sheet. No ejects Fantastic value
2n305s The best known Power Transistors in the World - 2 N3055 NPN 115 w. Our BI-PAK Soecial Ofter Price 10 oft 50 ofl 100 of

00312 COMPLLMENTARY PNP POWER TRANSISTORS T0 2 N3055. Equiralent H12955-80312 - T03 SPECIM PACE EO. 70 exh

TECASBOTY

The Electronic Comonnents and Semiconductor Bargain of the Year A host of Electronic mponents includino potentiomelers - cotary and slider presets - horzontal and vertical Resistors of mixed vatues 220 hms to $2 \mathrm{M} 2-1 / 8$ to 2 Watt A comprehen sive range of capacitors inchuding electrolytic and polyesler types plus disc ceramics eicetera Audio plugs and sockets of various types plus switches. luses, heatsirks. wife nuts. bolls. gromets. cable clips and tyes, knobs and PC Board. Inen add to that 100 Semiconductor to include transistors diodes. SCR's opto's. all of which are current everyday usable devices in aH a Fantastic Parcel No ubbishalid identiliable and valued in curreni calarogues at well Over 525 (0) Our Fight Againsl infiation - Beat the Budget

JUS

SEMICONDUCTORS FROM AROUND THE WORLD

100
Collection of Jransistors. Diodes Rectiliers Bridges. SCR s
huch are current everyday usable devices

PE EDUCATION

THE Dol recognises the value of PE projects in the educational environment! Well that might be a bit strong, but it is a fact that the Department of Industry is proposing a scheme to give robots to schools. In this country there are three companies making suitable small robots and now two of them, Powertran Cybernetics and Colne Robotics, have been involved with publication of robot designs in this magazine. In fact we have now published four designs for robots available from Powertran.

PE's commitment to education goes without saying and just as we were at the forefront of microprocessor learning and the development of personal computing, with publication of the UK101, we are also keeping up the pressure with a continuing involvement in robotics. This issue carries the first part of the highly educational project Zeaker, designed by David Buckley and for which Colne Robotics will be marketing kits.

BASIC PRINCIPLES

The schemes to give school children hands on experience, first of computers
and now possibly of robots, are to be applauded but we begin to wonder if in its haste to help youngsters the Government is not failing to teach the technology behind these developments-electronics. It's all very grand to educate our youngsters to be aware of developments, to be able to use them and to appreciate the benefits they bring, but much of the wealth of industrial countries is based on the development and production of these very items that can assist the industrial world. We must never become so reliant on developments that we forget the basic principles of electronics on which they are built.

It is perhaps time to encourage the teaching of electronics in the way we now do computing lest this fundamental is trodden underfoot in the rush to keep up with the new developments it spawns. Computing and robotics are interesting and exciting but many PE readers can vouch that the experience is heightened by construction and understanding of the equipment in use. Such deep involvement in the tool being used also leads to new ideas and to the ability to fully understand limitations and develop ways to overcome them by basic design.

INNOVATION

We must make sure our country continues in the field at which it is best-innovative design in every area. Our software engineers are achieving a worldwide reputation for excellence, Clive Sinclair's achievements need no underlining and we are up with the rest in development of robots. We must not throw all this away by simply teaching our children how to use these tools and not providing them with sufficient basic knowledge of electronics and engineering to make them want to invent and develop the next generations of hardware.

Computers are not blessed with innovative thinking, they can only help achieve an end product from the basic ideas. One thing you can be sure of, PE will continue to thrive on ideas of a fundamental nature-even if these fundamentals do get overlooked elsewhere from time to time. We will also continue to employ these ideas in the design of equipment which is applicable to modern systems, be they computers, robots or whatever else comes along.

Letters and Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in PE. All letters requiring a reply should be accompanied by a stamped, self addressed envelope, or addressed envelope and international reply coupons, and each letter should relate to one published project only.

Components and p.c.b.s are usually available from advertisers; where we anticipate difficulties a source will be suggested.

Back Numbers
Copies of most of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, at $£ 1$ each including Inland/Overseas p\&p. Please state month and year of issue required.

Binders

Binders for PE are available from the same address as back numbers at $£ 4.60$ each
to UK or overseas addresses, including postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 13.00$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH 16 3DH. Cheques and postal orders should be made payable to IPC Magazines Limited. unless otherwise specified. Prices correct at time of going to press.

Clef Products... Kits-Update Information

It is not always clear from the advertising that when specialist Kit Suppliers make a long term commitment to PE projects they are able to capitalise on constructor feedback to make modifications in specification or ease of construction. Some of these changes can be very minor but add considerably to the value of the final unit. This is particularly true of Clef Products who have recently provided the following update information on three of their popular musical projects.

MASTER RHYTHM: The facility to vary both tone colour and level of the instruments in this fully programmable DrumMachine is one of the factors which continue to make the PE Master Rhythm very competitive with any of the commercial units available today. This feature has been extended by incorporating access holes with identification, into the bottom of the case to give rapid E.Q. for varying situations and musical requirements. Following publication of the PE Bandbox a 7 pin DIN socket was fitted to the front of the Master Rhythm to link the two units and to provide external connection of start, stop, clock, programmed pulse etc., to give sequencer drive and footswitch operation. The complete Master Rhythm Kit incorporates both these changes and costs $£ 79$
$B A N D B O X$: The heart of this unique "Backing Band" is a 6502 based Microcontroller, which has allowed specification improvements to be developed purely in software, i.e. by relatively cheap replacement of the Monitor EPROM integrated cir cuit. Existing customers are notified when a
new facility becomes available and around 80% take advantage of the offer to part exchange the old EPROM, at a cost of around ten pounds.

MICROSYNTH: Allan Bradford, the designer of the Microsynth, had made various models of his basic concept, up to four octave compass, and in conjunction with Clef it was decided to adopt a 30 note format as the standard for the Kit. Apart from the musical advantage, this allowed the p.c.b. to be extended in length to include the power supply giving a single board construction. At the same time the front panel layout was then able to accommodate the overall level control and preset adjustments for Line and Headphone outputs. Finally a Keyswitch similar to the principle used in the Clef Electronic Piano range was included giving a further simplification of construction.

Full details on the above can be obtained from Clef Products (Electronics) Ltd., 44A Bramhall Lane South, Bramhall, Stockport, Cheshire SK7 1AH. 061-439 3297

LITESOLD Soldering Systems

Litesold have modified their LE40 24 volt in-handle electronically controlled iron, to incorporate proportional band temperature control. Power to the heating element is only fully on or off outside a narrow temperature band centred on the set value Within this proportional control band, power is supplied in regular pulses of equal interval, but of a length which varies according to the difference between the 'actual' and 'set' temperatures. At the set

temperature, 'on' and 'off' periods are equal. Below this temperature the 'on' periods become progressively longer, and above it, progressively shorter, until the limits of the proportional band are reached, when power is continuously on or off. This feature provides much improved control, without temperature swing or overshoot.

External access is provided to the temperature adjustment, which can be set to any value between approximately $280-420^{\circ} \mathrm{C}$. Temperature stability around the set point is typically within $\pm 2^{\circ} \mathrm{C}$

The iron is available complete with a power unit for $£ 58.50$ inc. VAT.

Litesold have also recently introduced a complete soldering/de-soldering kit for the electronics hobbyist. The kit is centred around a high efficiency 18 watt mains iron, constructed to latest electrical

CASSETTE FILING SYSTEM

For those of us who like things neat and tidy here's a drawer system for storage of cassettes. The Fischer C Box Drawer Unit is an easily accessible storage facility for data tapes containing long term information or games etc.

The cassette rests in a spring loaded box that opens at the touch of a button and incorporates splined hubs to prevent slackening of the tapes. There are ten individual boxes with easy change labels housed in each drawer unit, which can be stacked at the user's convenience.

Two designs are available: standard and deluxe (lockable) at $£ 17.50$ and £19.50 respectively inc VAT and p\&p. Artur Fischer (UK) Ltd, 25 Newtown Road, Marlow, Bucks, SL7 1JY 106284 72882).
standards, and fitted with a 3.2 mm copper bit. There are also two alternative bits included, of 1.6 and 2.4 mm . The kit also includes a 3 metre reel of 18 s.w.g. fluxcored solder, stainless steel tweezers, three double-ended soldering aids and a reel of desoldering braid. This provides all that is required for soldering and de-soldering on almost any electronics project, and is ideal for beginner or expert. The kit comes in a clear PVC wallet, and is available direct from Litesold at a very special mail order price of $£ 14.55$ inclusive of postage and VAT. Light Soldering Developments Limited, 97/99 Gloucester Road, Croydon, Surrey, CRO 2DN. (01-689 0574.)

scmmp

A flexible, automatic manufacturing facility which can machine batches of work in three days where conventional manufacture takes eight weeks, has been built using joint government and inctustiy finance. The facility is flexible in that it can be reprogrammed to carry out virtually any batch turning operation

The parts (along with their blanks) shown in the photograph, were machined by the FMS (Flexible Manufacturing System) called Scamp. This completely automated production line utilises computer controlled turning, grinding and milling machinery, serviced by 600 Fanuc robots which remove the job pieces from a conveyor belt. The factory is manned by three engineers.

The plant is not in Germany, nor Japan, but here in the UK, and it is claimed to be a first. Scamp was developed and installed by Scamp Systems of Colchester, Essex, the home of Colchester Lathes, whose machines form much of the production line. A complex perpetual conveyor system, based on rollers, incorporates gates for controlling the queueing of work pieces. These pieces are conveyed on, and identified by binary coded pallets. Automatic Vision Orientation fixtures optically observe and

orientate the metal blanks correctly for insertion into cutting machinery. The whole process is under the control of a pair of Systime Series 5000E computers.

Scamp has overcome the majority of machine queueing problems associated with automated production. Department of Industry sponsorship was necessary because of the extremely high capital cost of the installation, which would not amortise itself on purely commercial grounds. However, the cost of robotics and electronics continues to fall, whilst the cost of labour continues to rise. It is the Dol's intention that their support scheme will spawn expertise in readiness for the crossover point
fiOODREWRRD
Yes $£ 1000$ has been offered as a reward for the recovery of goods, and apprehension of thieves who stole sound equipment from Aura Sounds Ltd in February. The company based in Purley. Surrey. lost several expensive items, the most important of which was a computer controlled rhythm unit known in the trade as the Wersimatic CX 1. The company who are the sole importers of Wersi Organs in the UK say the thieves could not have stolen a more easily traceable item

The CX 1 pictured is the only one of its kind in the UK at the moment, and it is virtually a prototype, being one of only ten in the world.

MICRO-PROFESSOR COMPETITION

In our Micro-Professor Competition, readers were invited to place eight features of a microcomputer teaching aid in the order, they considered, warranted the greatest consideration.

Having considered all entries, the judges chose a number of identical attempts listing the following selection as being the best received. $1-C ; 2-E$; 3—K; 4-A; 5—B; 6-D; 7—L; 8—J.

All tying competitors took part in a postal eliminating contest from which the first prizewinner emerged as Mr. K. Lambert, of Halesowen. Mr. Lambert wins a full Micro-Professor system comprising microcomputer, EPROM programming board, and Speech Synthesiser board

There were also four second prizewinners who each receive a Micro-Professor MPF-1B microcomputer. These winners are: Mr. D. Brown, Bristol; Mr. E. Radiey, Liverpool; Mr. S. Rubie-Todd, Bristol; and Mr. D. Thursby, Sutton

Our thanks to all who took part, and to Flight Electronics for supplying the prizes.

Silicon News Corner

Bulletins announcing new semiconductor devices arrive at PE daily, so it is possible only to describe them briefly. Details of how to obtain further information are included, however.
Intersil The ICL 7137 is designed to inter face to a l.e.d. display, and consumes only $200 \mu \mathrm{~A}$ internally. It gives auto-zero to less than $10 \mu \mathrm{~V}$, zero drift less than $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, input bias of 10 pA max., and rollover error of less than one count. Ideal for economic load-cell. strain gauge and other bridge sensor measure ments. A panel meter may be built using only seven passive components and a display. No overrange hangover or hysteresis effects.

- The ICL 7115 is a fast CMOS monolithic 14-bit A/D converter which uses successive approximation. Interfacing to a $\mu \mathrm{P}$ is aided by the use of standard Write and Read cycle tim ing and control. Interface to 8.12 or 16 bit systems is possible through byte organised, three-state outputs. Resolution is 0.003%, there are no missing codes, conversion takes $40 \mu \mathrm{~s}$, linearity and gain tempco is $1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, $4 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, power consumption is 60 W , and no gain or oftset adjustment is necessary $(0.006 \%$ FS). Intersil Datel (UK) Ltd., Belgrave House, Basing View, Basingstoke, Hants
RCA A low consumption BiMOS op amp
featuring bandwidth/slew rate program mability, the CA3440 has two stages; a high gain $(100 \mathrm{~dB})$ front end and a low impedance f.c.t./bipolar output stage. Input circuit features gate-protected PMOS transistors. A phase compensation technique allows stable operation in unity gain follower configuration. - Ultra high speed. high current rectifier lamily. Reverse recovery time of the RUR 810 is less then 35 ns . Available in TO-220AB packages, they are rated at 8 A forward current, with PIV of 200 V . RCA Lid., Lincoln Way. Windmill Road, Sunbury-on-Thames, Middx
Burr Brown A new f.e.t. input TO99 op amp, the OPA 105 requires an input bias of less than 1 pA . Guaranteed initial offset of $250 \mu \mathrm{~V}$. with a drift of $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$.
* Two high linearity voltage-to-frequency converters called the VFC62 and VFC320. Out put pulse train repetition rate is proportional to Vin. They can also be used to convert a pulse train frequency back into a proportional voltage output! Linearity is $\pm 0.005 \%$. Full scale drift is 50 ppm of $\mathrm{FSR} /{ }^{\circ} \mathrm{C}$. Low noise. precision voltage reference, called the REF101, provides $+10 \mathrm{~V}+5 \mathrm{mV}$ at 10 mA , ad justable over $\pm 2 \%$. Noise is $100 \mu \mathrm{~V}$ pp. Burr Brown, Cassiobury House, Station Road. Watford WDI IEA

OMM TEMPERATUUR SEEISOR

Anyone who has access to a digital multimeter can now use it as a versatile wide range temperature measuring instrument using standard type K thermo-couples, by adding the DVM/TC Interface Unit

This new device has a temperature range of $-50^{\circ} \mathrm{C}$ to $+1100^{\circ} \mathrm{C}$ and incorporates automatic cold junction compensation. Thermocouples are attached through a miniature compensated socket. A basic thermocouple, mating plug and battery are supplied as standard with this instrument. The output of 1 mV per degree centigrade is via a 0.75 metre coiled lead fitted with 4 mm plugs. Long term stability is excellent and the low battery drain allows it to be used for continuous monitoring if necessary. Since the accuracy is not affected by the output loading (the DMM), it may be alternatively used to interface a low output impedance instrument such as a chart recorder. Priced at $£ 42$ including VAT

and $p \& p$, this interface unit is available from, Graham Bell Instrumentation, PO Box 230, 39 Derbyshire Lane, Sheffield S8 OTH (0742582370)

INFRA-REO CONTROIIER

A two channel infra-red (IR) remote controlled light dimmer is now available in kit form, with separate transmitter and receiver unils.

The receiver, designed to be controlled by its marching transmitter, gives independem remote on/off and variable control functions. Applications are extremely varied and include the automatic adjustment of both room tem perature and lighting. In use, either of the two channels may be assigned to any one receiver, or two identical kits may be assigned to different channels and controlled individually by only one transmitter.

The receiver kit, supplied complete with housing, has a $240 \mathrm{Va} . c ., 50 \mathrm{~Hz}$ power supply and current consumption is 25 mA maximum in the standby mode with a maximum control
output of 300 watts. Reaction times from zero to maximum and maximum to zero are 7 seconds, with noise immunity ensured.

The transmitter, designed to operate an $I R$ light dimmer, will control two receivers, with ON/OFF and dim commands. Specifications include bi-phase coded modulation, CMOS technology' and power l.e.d. outputs, giving 15 $m w / \mathrm{cm}^{2}$ maximum beamed power. Beam deflection is 30° with a reflector and 60° without.

The transmitter is priced at $£ 15$ plus VAT and the receiver at 533.60 plus VAT, both items require $£ 1$ p\&p and are available from, Electronic \& Computer Workshop Lid, 171 Broomfield Rd, Chelmsford, Essex. (0245 62/49).

The OpenSchool

Many' otherwise mature and competent people are nervous of trying a course in computing. The 'Open Computing School' at South Bank Polvtechnic near Waterloo and Elephan and Castle, have developed courses designed to take complete novices to a position where they can design their own useful computer programs. Nor do they have to take a week off or spend a fortune. The Poly believes it is a unique type of service, allowing people who can not commit themselves to a fixed timetable to work at their own pace, during the day or in the eventing. The price is kept low to attract those who are paying their own fees, but the emphasis is on use in administrative work.

A number of managers and employers join in order to get an appreciation of what a microcomputer might do for their organisation, and clerical workers join with the object of improving their career prospects. Other students inchude engineers, teachers, translators and social service workers. However quite a number of students have no vocational interest but come just because they feel that they ought to keep up with the technological revolution. Some think it will help with the children's homework.

The Open School runs continuously through the college bear. Special one-day appreciation courses can be prowided for organisations on request. The introductory course costs 145 . Write to Polvechnic of the South Bank at Borough Road, London SEI OAA or Tel. Jack Flatau or Iris Mason on (01-928 8989) ext 2410 .

Mobile Satellite

The advantages of having a portable satellite ground station for television are numerous, and the 'Beeb' are paving the way in seeking them out. Their 3 M diameter, trailer mounted disc has been on many UK locations since its introduction in 1981. Its first overseas adventure was coverage of the UK team matches in the world cup in Spain last year.

More recently however it was borrowed by the Italian State Television Service for use at the International Slalom Ski event at Bormio, Italy. The ground station was used, from this difficult outside broadcast site, because a terrestrial network would have required five microwave radio links. Pictures of excellent technical quality were transmitted via satellite to the fixed ground station at Milan for local and European distribution. The mobile satellite ground station was built by BBC research engineers at Kingswood Warren in Surrey.

Briefly...

Alone, all alone on the bridge of the Kinokawa Maru, a Japanese 177,000 tonne ore/coal carrier, stands the commander. The ship appears deserted, like the Marie Celeste. The commander talks to himself, seemingly; but the ship answers back with a metallic, synthesised human voice:
"Full Ahead!" resounds the instruction.
"Full Ahead!" echoes the vessel in confirmation.

The engine builds up to full power with no further human involvement

A handful of years ago this could have been the stuff of science fiction, but now it cannot. For fiction it is no longer. The tide of events in technology has lead Sumitomo Heavy Industries to build what they claim to be the first ship in the world which is capable of being manoeuvred at sea by one man

The Kinokawa Maru is no ordinary ship, for not only is its main engine speed controlled by electronics with voice recognition and synthesis, but it is designed to consume 45% less energy per cargo tonnage. The overall design significantly reduces its owner's fuel costs, whilst sparing its crew a number of chores

The control system's speech recogniser has a capacity of 40 words, which match the voice pattern of an authorised user. It will ignore all other voices. Its phoneme type synthesiser has a fixed vocabulary of 480 woids, and a programmable vocabulary of 1000 words.

With rising transport costs truncating shipping activities worldwide the Japanese look set to stay full ahead as a major ship building nation. Each time the Kinokawa Maru puts to sea it leaves in its wake a message for the next generation of ship. To survive the swell of competition, this will need a level of automation that includes remotely controlled auxiliary machinery too, reducing still further the crew's workload-and the crew!

The Isle of Wight is to be the recipient of Britain's first undersea optical-fibre link. Manufactured by STC at a cost to British Telecom of $£ 600,000$, the cable will linh Portsmouth with Ryde on the Wight. Due to go into service in 1985, the 23 km cable will comprise two 140 M bit "bothway" optical systems based on STC's monomode technique, which means that no repeaters will be necessary. The bit rate is equivalent to l,920 two-way telephone conversations, although the Island's link-up will have the capability to transfer raw data, text and graphics too.

In contrast to the more common 850 nm wavelength light source, the Wight connection will use 1300 nm lasers. The monomode fibres give rise to less loss and signal scattering than multimode, allowing combined landline and underwater repeaterless transmission.

It is expected that in 1988 an intercontinen tal optical-fibre link will go into service, a con tract for which is to be awarded in November this year.

The first Motorola 68000 microprocessor to be made in Europe was produced at East Kilbride, Scotland, in February. The device was produced on their pilot production line at their existing plant; production will be transferred to the new facility (module III) when its construction is complete.

As a 32:16 bit microprocessor it is gaining popularity and is apparently a favourite with software writers, making it the most written for device of its kind. The design team had only one prerequisite in common say Motorola and that was, none of them had been involved in the design of previous older processors.

Aimed at European and Japanese markets (yes Japanese) the 68000 will find its home in systems such as personal computers, business machines, robotics and telecommunications as well as energy and medical fields. Motorola has been producing silicon chips at East Kilbride since 1972.

Bundidnun

Please check dates before setting out, as we cannot guarantee the ac curacy of the information presented below. Note: some exhibitions may be trade only. If you are organising any electrical/electronics, radio or scientific event, big or small, we shall be glad to include it here. Address details to Mike Abbott.

Circuit Technology April 18-20. Kensington Ex. Cntr., London. J2 All Electronics Show April 19-21. Barbican Cntr., London. E
Numerical Control (Ex. \& Conf.) April 19-21. Wemb. Conf. Cntr., London D3
Fibre Optics April 19-21. Porter Tun Rooms, The Brewery (!) Chiswell St., London EC1. E
International Materials Handling April 19-26. Earls Court. I International Packaging Exhibition April 25-29. NEC B/ham. I
HEVAC (Heating, Ventilation \& Air Cond.) Apr. 26-28. Barbican. I Scottish Personal Computer World Show April 16-18. MacRobert Pavilion, Ingliston, Edinburgh. M
Midand Computer Fair April 28-30. Bingley Hall, B/ham. Z1 Biotech May 4-6. Wembley. O
Micro City May 10-12. Bristol Exhibition Complex. F3
The Business Computer Show May 10-12. Wembley. O
Cable (Cont. \& Ex.) May 10-12. Wembley Conf. Centr., London. O
Defence Components Expo May 10-12. Metropole, Brighton. I
Compec Scotland May 17-19. Kelvin Hall, Glasgow. Z1
Welsh Amateur Radio, TV \& Electronics Rally May 22. Barry
Memorial Hall, S. Glam. C
Computers In The City (conf. \& ex.) May 24-26. Barbican. O

Business Telecom May 24-26. Barbican. O
International Word Processing May 24-27. Wembley Conf. Cntr. \mathbf{Z} Motradex May 25-27. Sandown Exhibition Centre, Surrey. Z1
East Suffolk Wireless Revival May 29. Ipswich Civil Service
Sportsground. VI
Russian Holography June-Sept. Inc. Light Fantastic Gallery. A8
Semab June. Olympia. I
IBM Productivity (conf. \& ex.) June 14-16. Tara Hotel. London. O Tectronica June 14-17. Earls Court. I
The Computer Fair June 16-19. Earls Court. Z 1
Compec North June 21-23. Belle Vue, Manchester. Z1
Transducer/Tempcon June 28-30. Wembley Cont. Cntr. T
Leeds Electronics Show July 5-7. University. E
Electronic Hobbies Fair. The best event ever for the UK electronics hobbyists comes round for the second time from October 27th to 30th at Alexandra Pavilion. Make a date now and watch these pages for EHF news each month. ZI

[^2]
MODULES FOR SECURITY \& DETECTION

- Built-in electronic siren drives 2 buid speakers Provides exit and entrance delays logether w xed alarm time
- Battery back-up with trickle charging facility
- Operates with magnetic switches, w/sonic or
- Anti-tamper and panic facility

This exciting new module offers all the possible eatures likely to be required when building an nituder alarm system. Whether used with only 1 or 2 magnetic switches or in conjunction with several ultrasonic alarm modules or infra red units, a really effective system can be constructed at a fraction of the cost of comparable ready-made units. Supplied with a fully explanatory Data Sheet that makes installation straight forward, the module is fully ested and guaranteed.
eqvailable in kit form f16.95 plus VAT

- Stabilised output voltage
- 2 operating modes - full alarm/anti-tamper and
panic facility
- Screw connections for ease of installation
- Separate relay contacts for switching external bads
- Test loop facility

ULTRASONIC ALARM MODULE US 4012
Fully built \& tested

i

Adjustable range

from 5 ft . to 25 ft .

MASHMR THFGHIONICS NOW! The PaAcHICAT way:

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous k nowledge is required, no maths, and an absolute minimum of theory.
You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a self. employed servicing engineer.
All the training can be carried out in the comfort of your own home and at your own pace. A tutor is availabie to whom you can write persona!ly at any time, for advice or help during your work. A Certificate is given at the end of every course

You will do the following
© Build a modern oscilloscope
Recognise and handle current electronic
components
Read, draw and understand circuit diagram

- Carry out 40 experiments on basic electronic circuits used in modern equipment
- Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V Hi-Fi and microprocessor/computer equipmen

INFRA-RED SYSTEM IR 1470

Fully built \& tested

- Range up to 50
- 12V operation
- Supplied with full instruction
- Easily installed

Now available, a really effective infra-red system built to the high standards demanded by the security industry, and yet offered at this low price. The system consists of a transmitter and receiver which provide n invisible beam over distances from 1-50ft. or more. When the beam is in terrupted, a relay is energised in the receiver unit. The use of a modulated beam combined with the infrared filters, prevent interference from artificial or sunlight, whilst LED indicators ensure easy alignment of the beam. Both units are housed in attractive black moulded enclosures which are easily mounted. Supplied with full instructions. the unit is ideal for use in conjunction with the Control Unit CA 1250 or as an independant unit

Power Supply \& Relay
 Units PS 4012
 $E 4.25$ + VAT
 Hardware Kit HW 4012

Provides a stabilised 12 V output and relay with 3 A contacts. The unit is designed to operate one or two of the uterasonic units. Fully built and tested.

Siren Module
SL 157
Produces a loud and penetrating sliding tone operat ing from 9-15V. Capable of driving 2 off 8 ohm
speakers to SPL of 110 db at 2 M .
Contains an inhibit facility for use with shop liftng activate circuits

Add VAT 6 50p post and packing to all orders.
Shop hour's $9.00: 5.30$ p.m.
(Wed 9.00-1.00 p.m.)
Units on demonstration - callars welcorie. S.A.E. with all enquiries. VISA Telephone orders
$£ 4.25$ + VAT
A sutable ready-drilled case with the various mountars, mains swieh socket and nuts and bolt together with its power supoly
Size: $153 \mathrm{~mm} \times 120 \mathrm{~mm} \times 45 \mathrm{~mm}$.

\star ACCESSORIES \star

3 -position Key Switch for use wit

CA 1250 . supplied with 2 keys
5 Horn speaker for use with CA 1250
RISCOMP LIMITED
Dept. PE5
21 Duke Street.
Princes Aisborough, Bucks.
Princes Aisborough (084 44) 6326 Please allow 7 daya for delivery

NewJob?NewCareer?NewHobby?Getinto Tlectronics Now!

18 \qquad POST NOW TO

BR

AST month the voice synthesis board was described. The Lboard holds a vocabulary of 204 words each of which could be selected by means of a microcomputer or manually operated switches. When used with a computer the vocabulary could be built into sentences, thereby producing an interesting personality for the machine.

There are, however, many applications in which speech is a valuable asset but the expense and sophistication of a microcomputer is not warranted. Such applications are found in the car, home and factory and include speaking the digits on a panel meter or clock, delivering short messages such as INTRUDER AREA ONE, DANGER HIGH PRESSURE etc. or even providing a robust, lightweight alternative to a B.T. teleprinter or VDU.

Until recently, speech could only be reproduced by electro-mechanical systems using magnetic tape or plastic discs. But since the introduction of cheap, reliable largescale integrated circuits it has become possible to model the human voice using a Linear Predictive Coding algorithm. This algorithm is made up of a random signal generator which forms the basic fricative and plosive sounds, a variable frequency signal generator which is used to produce different pitch sounds and a digital filter which, when configured by a computer in any number of high and low pass, band pass and band stop configurations, moulds the words themselves. The use of the algorithm reduces the minimum amount of memory needed to produce one second of speech from 96,000 bits to 1,100 .

VOICE SYNTHESIS BOARD

The basic voice synthesis board consists of a 128 K , VM61001 Voice ROM connected to a TMS 5100 Voice Synthesis Processor which in turn drives an audio output stage. A 640 kHz clock is produced by RC network which is divided down to give a ROM clock of 160 kHz . The 6 control lines which program the board consist of 4 data lines (CTL1CTL4) and 2 clock lines. All the address data and instructions are loaded via these 6 lines.

Since 18 bits are needed to address one location in a 128 K memory, and there are only 4 data lines, then 5 nibbles of 4 bits are loaded sequentially to form each address. Before each nibble is accepted by the processor it must be preceded by a Load Address instruction, thereby commanding the processor to forward the address to the memory over the 4 bit internal bus. The control signal M1 is brought high by the processor during a Load Address instruction which gates the CTL lines directly to the internal bus.

The memory has its own internal register, and can be accessed either in a direct or indirect mode. If, after loading an address, a direct instruction is used, followed by a Test Talk and Speak instruction, then data held in this memory address will be passed to the processor in a serial form via the ADD 8 line of the internal bus. The internal address register will automatically increment, and the processor will request another bit of data by toggling its MO line. The sequence will repeat until the last series of data instructs the processor to stop.

If, however, a Read and Branch instruction is used, followed by a Speak instruction, then the address loaded via the CTL lines will be taken as the address of the Look-Up table in which is held the address of the start of the data string. The memory then loads the latter address into its register and repeats the above sequence.

The TMS 5100 receives the speech data from the memory and immediately decodes it. The on-board 10 bit A-to-D converter produces an analogue speech signal from this which is then filtered and amplified by the audio output stage.

INTERFACE CIRCUIT

Fig. 2.3 shows a circuit which will produce speech from the voice synthesis board without the use of a microcomputer. The circuit has been designed to be as flexible as possible. Hence it can be operated with or without an EPROM. When the EPROM is inserted into the circuit it will convert coded data, such as that from a 3 digit, 7 segment display (Fig. 2.1), ASC II terminal or even BCD output, to that needed by the voice board. It can be used to multiply the words in a phrase by sequentially switching the inputs of

No	a	b	c	d	e	f	g	Hex	VSB Code
0	1	1	1	1	1	1	0	7 E	02
1	0	1	1	0	0	0	0	30	04
2	1	1	0	1	1	0	1	6 D	06
3	1	1	1	1	0	0	1	79	08
4	0	1	1	0	0	1	1	33	$0 A$
5	1	0	1	1	0	1	1	$5 B$	$0 C$
6	1	0	1	1	1	1	1	$5 F$	0 E
7	1	1	1	0	0	1	0	72	10
8	1	1	1	1	1	1	1	$7 E$	12
9	1	1	1	1	0	1	1	$7 B$	14

Fig. 2.1. Seven-segment digit to VSB code conversion table for EPROM

Fig. 2.2. Jumper strip for 2716 EPROM

Fig. 2.4. Printed circuit board (actual size)

a single port to a maximum of 64 words. In addition, three word messages can be formed by linking the EPROM out and switching each input port to give the address data of the respective word. A circuit for the EPROM substitute is shown in Fig. 2.2

The interface circuit consists of 7 four bit high impedance buffers connected to a 4 bit CTL bus. Each one of the buffers can be latched in turn to the CTL bus by means of two decade dividers which are wired in series. A further 9 bit bus is formed on the input to the board. Data which is present on any one of the three, 9 input ports, can be selected sequentially to form either an address for the code conversion EPROM or, if a jumper strip is inserted in the EPROM socket, the address of the look-up table of the word required. Each one of the 9 bits in all three inputs must be terminated to 0 volts or +5 volts for the board to operate successfully.

The output from the EPROM is connected to two 4-bit CTL buffers. The remaining four 4-bit buffers on the CTL Bus are wired in such a way that, when they are enabled, they produce the four following instructions:

```
0000 RESET
0010 LOAD ADDRESS
1100 READ \& BRANCH
1010 SPEAK
```


CIRCUIT DESCRIPTION

When the speak input is brought high, both 555 timers start to run. Timer A runs at a frequency of 10 kHz . Timer B can be set to give the rate at which the words are spoken. The first three clock pulses from 555 timer A step the decade counter and enable the 0000 buffer. Hence, three reset instructions are given to the processor. The next clock pulse enables the 0010 buffer which instructs the processor that the following nibble will be an address. The lower nibble from the EPROM is then latched to the CTL bus via its respective buffer. Once it receives a further clock pulse the decade counter is stepped and the 0010 buffer enabled. This is followed in turn by the upper nibble of the EPROM output being loaded onto the CTL bus. The decade counter then enables the 0010 buffer once more followed by the third 2bit data buffer. The 0010 buffer is again enabled and followed on the next clock pulse by loading the 0000 buffer as data.

The decade counter then enables the 1100 buffer thereby instructing the processor to READ \& BRANCH. The next clock pulse latches the 1010 and the processor begins to speak the first word. During this time the l.e.d. is switched on.

The decade counter is then held until the second 555 timer B times out. This steps the input counter IC10 which in turn enables the second 9 -bit data port. In addition, the decade counter is reset and the above sequence repeated, thereby producing the second word.

The third word is produced when 555 timer B times out for the second time. This again resets the decade counter and steps the input counter which in turn latches the data present on the third input port onto the input bus.

The input counter is stepped once more, thereby causing it to latch, which in turn inhibits 555 timer B and hence the sequence is halted.

CONCLUSIONS

The voice synthesis board can be used in most applications where speech is needed. It has the capacity to speak phrases of between 3 to 64 words; it can cope with coded input such as seven-segment or BCD, and it can be operated by a microcomputer or simply as a stand alone unit for application in the house, car or factory.

COMPONENTS

Resistors
R1, R2, R3, R5, R6, R11,
\$ R13, R15, R17, R19, R21.
R7, R8, R9, R10
R4, R12, R14, R16, R18
\qquad

Capacitors
$\mathrm{C1}, \mathrm{C} 7$
C 2
C 3
$\mathrm{C} 4, \mathrm{C} 5, \mathrm{C6}, \mathrm{C} 8, \mathrm{C} 9$
$\mathrm{C} 10, \mathrm{C} 11$
IC1-IC5, IC9, IC10, IC12.
IC15, IC18
IC11
IC6, IC14, IC16
1C7:
tcit
IC8, IC13
IC19
Transistors
TR1-TR5
Diodes
然 D1-D7
D8

74 LS367 (10 off)
556
$4017(3$ off $)$
2716
4001
4049 (2 off) -3
78M05 Regulator

- 4

Constructor's note
Full kits of parts are available from the Warwick Design Group, 12 St. Georges Rd., Leamington Spa. l0926 34311) at $£ 24$ each. Kits to build the Voice Synthesis Boards are offered at $£ 37$.

BARAAR
MICROTAN 65 Factory built. $£ 45$. S. R. Powell. Tel: (07818) 7238. 3 Churnet Road, Forsbrook, Stoke-on-Trent, Staffordshire ST119BP.
BOUND volume R.C. '71-72, plus 100's of P.W., E.E., R.C. offers. Mr. F. Edwards, 46 Longstaff Road, Southfields, London SW1 8.
2 METRES for £25. Multichannel Storno Viscount, working perfectly with toneburst and handbook. Buyer collects. Tel: Biggleswade 315075. Mr. M. J. Strange, 19 Wilsheres Road, Biggleswade, Beds.

100 UNUSED boxed valves, £50. Also 3,000 circuits, $£ 50$. R. MacDonald. Tel: Folkestone 75541.

8080 Components. CPU's, DMA's, USART's etc. Only a few of each. Send s.a.e. for details. Robert Malos, 204 Corporation Rd., Grangetown. Cardiff CF1 7AY.
WANTED for 19 Set MKIII I ATU, vibrator p.s.u., full circuit data. Copies o.k. Also any HRO circuit data. A. C. Baglin, 19 Fore Street, North Tawton, Devon EX20 2DT. Tel: North Tawton (083782) 354.

COMPUTER grade p.s.u.'s. Advance 5 V 20 A Advance 5V 40A. New. Sensible offers, please. Service manual, Tektronix 475 'scope. J. Dykes, 2 Aire Place, Winsford, Cheshire. Tel: Winsford 51303.

SANWA ST4-3BF radio control four channel, three servo, unwanted present. $£ 75$ o.n.o. Tel: Horndean 593502. L. J. Mundin, 111 Hazleton Way. Horndean, Hants PO8 9DN.
WOLSELEY 4/44 1954 l.h.d. Collector's item, no rust. Swop quality, little used, video recorder and tapes. M. Pennell, 13 Kilmiston Ave., Shepperton, Middx. Tel: Walton on Thames 25763.
MAJOR 588 80ch AM/FM/SSB, £70. Pair AX10M 10 speakers, 10 watt, 10 inch, $£ 10$. Tel: Gainsboro (O427) 5848. D. Trebble, 2 Pendeen Close, Gainsboro, Lincs DN 21 YE.
UNUSED TMK 500TU-B Multimeter with case and leads. £20. Tel: Yateley 870628 . Mr. F. Lucas, 6 West Fryerne, Yateley, Nr Camberley, Surrey GU17 7SU.

1N the early days of semiconductor design the variety of components available for general use were fairly limited. Transistors, diodes, and passive devices were predominantly used, and most circuits contained various combinations of these devices. The design emphasis was very much based on the methods and arrangements of interconnecting these devices, and on the passive component values used. Nowadays, the integrated circuit is the dominant type of component, with many circuit designs having no discrete transistors in them at all. Unlike diodes and transistors, however, the performance and operational parameters of an i.c. are often very difficult to specify. The electrical limits of performance must be detailed, of course, but the precise functioning and operation of the device must also be explained. For many i.c.s this explanation requires a number of tables, timing diagrams, and waveform diagrams. As a result, data sheets become very complex and contain a large amount of information which must be thoroughly assimilated before design can begin.

Many readers would like to use new semiconductor devices in their own projects but are daunted by the research necessary to enable them to do so. Initially, a suitable device has to be found, and then the relevant data has to be obtained; if it can't be found in a supplier's catalogue, then from whom? Many people don't have access to professional data services or distributors' information. Even if data has been satisfactorily obtained, it's often written in such a way that it proves difficult to put into practice. This is where we come to your help! This series of "application reports" features different semiconductor devices (mostly integrated circuits) with their pin connections and essential data clearly given. In many cases all the data that's available won't be given since much of it is of little value in the majority of design work and it would take up many pages every month! All the essential data will be given which as a result will be much easier to read and understand. Included will be a comprehensive description of how the device works, how it can be used, hints and suggestions for circuit arrangements, circuit diagrams, and finally a Veroboard layout for a typical circuit. This will give all the information needed to enable you to use the i.c. with confidence in designs of your own, often as a base for a larger project.

RANGE COVERED

The semiconductor devices looked at will cover the whole range of electronics with the exception of very specialised devices such as microprocessors (covered recently by "Microfile"), r.f., microwave, etc. These will range over op amps, audio amps, consumer i.c.s, display devices, encoders, decoders, power supply i.c.s; all these and many more will be covered. Some devices will be very new indeed, giving you access to the very latest technology. Others will be recently introduced or more familiar devices; the aim is to provide a comprehensive and wide ranging service.

Each month just one device or a small family of similar devices will be presented. However, to get the series off to a flying start, we feature two chips this month: an electronic combination lock, the LS 7225, and the SAB 0600 door chime.

COMBINATION LOCK (LS 7225)

The LS 7225 is a relatively new and very interesting 14 pin i.c. which takes a lot of the effort out of designing an electronic combination lock. It's a monolithic PMOS device, rated at up to 18 volts supply, and has a low quiescent supply current which allows it to run for a very long time on a small battery if required.

It has sequential logic to detect a valid sequence of four key depressions. There are three main outputs of the i.c.; one directly drives a l.e.d. to indicate when the device is in the locked state, a second latches to the on condition (logic 1) when the correct code has been entered, and the third provides a momentary on signal (again a logic 1) when the correct code has been entered. If any "unused" keys are pressed, or if any of the correct keys are pressed out of sequence, an "Incorrect sequence output" of the i.c. is pulsed to logic 1 (i.e. a high level), and no changes occur to the main outputs of the device.
V arious enable and delay facilities are also provided to ensure that a delay of several seconds or more is necessary between entering one code and being allowed to enter another one. This helps to prevent a light fingered person from typing in rall possible combinations in a very short time! All the inputs have built in pull down resistors to help minimise the external component count. Power on reset is provided to set the i.c. into the "locked" state when power is first applied. Following such an application of power, the first correct sequence entered turns the lock off, then the next correct sequence turns it on again. The two main "unlock" outputs can drive many relays directly, providing that coil resistances of 1 k or more are used.

Fig. 1. LS7225 pin out with the aux delay circuitry shown internally. The specification is shown below	Aux. delay input Enable sequence input -VE (OV) \square Aux. delay output \square Incorrect sequence output \square \square +ve "Lock on" le.d. output					Characteristic (Voltage limited to +1.7 V) Unlock outputs (Logic 1)	Notes		hin			Units		
				\{ Supply	12 V		6.5	cal 8.7	11.0	mA				
				$\left\{\begin{array}{l}\text { Supply } \\ \mathrm{O} / \mathrm{P}=3\end{array}\right.$			$2 \cdot 2$	$3 \cdot 0$	4.1	mA				
				Supply = $O / P=10$	12 V ,		9.0	11.6	14.4	mA				
				Incorrect sequence	$\left\{\begin{array}{l}\text { Supply } \\ \mathrm{O} / \mathrm{P}=3\end{array}\right.$		0.5	0.7	0.9	mA				
								output (Logic 1)	Supply $\mathrm{O} / \mathrm{P}=$	$12 \mathrm{~V}$	$2 \cdot 0$	$2 \cdot 6$	$3 \cdot 2$	mA
Characteristic	Notes	Min	Typical			- Max	Units		$\left\{\begin{array}{l} \text { Supply } \\ \mathrm{O} / \mathrm{P}= \end{array}\right.$		0.4	$0 \cdot 6$	0.8	mA
Supply voltage	No input should exceed supply voltage	4				18	V	Aux. delay outpu	$\left\{\begin{array}{l} \text { Supply }= \\ \mathrm{O} / \mathrm{P}=10 \end{array}\right.$	$12 V$	1.8	2.4	3.0	mA
Quiescent current (I/P's \& O/P's open	$\left\{\begin{array}{l}\text { Supply }=5 \mathrm{~V} \\ \text { Supply }=12 \mathrm{~V}\end{array}\right.$						$\begin{aligned} & \mu A \\ & \mu A \end{aligned}$	Load current, all inputs	Supply $=$ $1 / P=O V$			6		$\mu \mathrm{A}$
circuit)						Key sequence	$\{$ Logic 0$\}$		0		2.0	V		
Temperature range		-25		70	${ }^{\circ} \mathrm{C}$	Input 1	\{ Logic 1	Supply	3.5		5.0	V		
"Lock on" l.e.d. output current	\{ Supply $=5 \mathrm{~V}$	0.6	1.0	1.3	mA	All other inputs	$\left\{\begin{array}{l}\text { Logic } 0 \\ \text { Logic } 1\end{array}\right\}$	$=5 \mathrm{~V}$	0 4.0		2.0 5.0	V		

KEY SEQUENCE INPUTS

These inputs are taken to logic 1 (i.e. a high level) by the relevant switches of the switch bank or keypad. Input 1 should be held at logic 1 , while 2 is taken to logic 1 momentarily, followed by 3 , then by 4 . Only after Input 4 has been operated should Input 1 be allowed to go open circuit (or to logic 0); see the timing diagrams, Figs. 4 and 5, for clarification of this. Alternatively, by taking a capacitor from Input 1 to ground, the logic 1 level will be maintained for a short period after the first switch is released, giving a "time window" in which the other switches may be pressed. A 1μ tantalum capacitor will typically give a 4 second delay, which is quite long enough to allow the pressing of the other three switches. Note that this will also result in a delay before any further sequences can be entered; once the capacitor has been charged, it must be allowed to discharge before another sequence is started.

UNSELECTED KEY INPUT

All the unused switches or keys are connected in parallel and taken to this pin. Hence, if
any incorrect key is pressed, this pin is taken to logic 1 , the sequential logic is reset, and a pulse is fed to the "Incorrect sequence output" pin.

UNLOCK OUTPUTS

The momentary unlock output goes to logic 1 as soon as the correct sequence of switch or key inputs has occurred. It returns to logic 0 as soon as "Key sequence" Input 1 returns to logic 0 , either when the first key in the sequence is released, or (if one is fitted) when the capacitor discharges a few seconds later. The latched "Unlock output" also goes to logic 1 as soon as the correct sequence of key inputs has occurred. To reset this to logic 0 (the "system locked" condition), the whole correct sequence must be entered again.

'"LOCK ON' OUTPUT

This directly drives an l.e.d. with no need for any external resistor. This is lit when the lock is on, i.e. when the latched "Unlock output" is at logic 0 .

Pin 3 is normally at 0 V . Pin 6 is the $+v e$ supply, which can be anything from +4 V to

Fig. 2. Combination lock circuit. The dotted box gives optional 12 s delay between successive codes. If not required connect IC $1 / 2$ to 0 V . The links should be connected for the required key sequence with the unselected links in parallel

+18 V . As a rule of thumb, try not to go above +15 V generally, to guard against any supply voltage fluctuations or noise pushing the voltage above the maximum rating for the i.c. Some capacitors across the supply rails should also be provided for decoupling; in Fig. 2 these are C5 and C6, with R1 and C1 providing further supply decoupling.

INCORRECT SEQUENCE OUTPUT

This gives a positive going pulse out (to logic 1) when any form of incorrect code sequence is entered. This pulse is extremely short in duration, only 15μ s approximately, so be careful how you use it.

ENABLE SEQUENCE INPUT

This input, in common with all the others of the i.c., has a pull down resistor fitted internally, and is normally kept at logic 0 (or open circuit) to allow the system to operate. If it is taken to logic 1 , then the sequence detection circuitry is disabled. This can be used in conjunction with the "Aux. delay" facility and the "Incorrect sequence output", to provide a fixed delay (following an incorrect sequence entry) before another attempt at entering the correct sequence is allowed.

Fig. 3. Veroboard assembly

Fig. 4. Timing diagram, correct sequence

AUX DELAY INPUT/OUTPUT

The internal circuitry for this is shown in Fig. 1. When pin 1 is taken high (towards logic 1), the Schmitt trigger inverter's output goes to logic 0 , turning on the MOSFET output stage and feeding a logic 1 level to pin 4. An RC timing network can be used to delay any signal fed to pin 1 , which is "cleaned up" into a sharp edged logic change by the Schmitt trigger input of the inverter, and fed to pin 4 as just described. See Figs. 2 and 5 for further clarification of how this works in practice.

POINTS TO NOTE

Because of the internal pull down resistors, no external ones are needed except for the "Aux. delay input". However, beware of taking any input up to the positive supply with a resistor, since the internal and external resistors will combine to form a voltage divider, making the input voltage to the i.c. poorly defined. If you must use a pull up resistor, try to keep it down to just 1 or 2 kilohms if possible. The outputs at pins 4, 5, 7, 8 and 9 are all unloaded MOSFET driver stages; when "on" their output voltage is nearly at the positive supply rail, but when "off" their outputs do not go to 0 V of their own accord; they merely become open circuit. If these outputs are being used to drive into any other logic circuitry, add a suitable load resistor to 0 V ; the 100 k resistor R4 in Fig. 2 is being used for just this purpose.

The Veroboard layout for the circuit is shown in Fig. 3. As usual, take care with the handling of both i.c.s, and avoid touching the pins with your fingers. D5 protects the circuit against the supply being connected the wrong way round; since this may be a battery, it is a worthwhile precaution. Don't forget to add D2 and D3 to protect the i.c. against backe.m.f. spikes from any relays that you might connect to the circuit. The more switches that are provided, then the more difficult it is to crack the code; you could consider having, say, 26 cheap switches on a panel, with the correct four switches spelling out an appropriate word! For high security applications, the "Incorrect sequence output" could be used to trigger an alarm circuit, so that the user would only ever get one attempt at entering the correct code. Alternatively, consider cascading two i.c.s in series, so that you have to enter eight keys in sequence to operate the circuit. Use the first i.c., when sequenced correctly, to enable the second one.

Finally, remember that it isn't restricted to

only working with switches as inputs; the i.c. would make an excellent detector for logic sequences too. A set of four consecutive logic pulses, in the correct order only, would trigger the device.

Altogether, it's a very versatile and interesting device!

A similar i.c. to the LS 7225 is also available: The LS 7220 does not have any "Incorrect sequence" facility, but can instead be made to temporarily over-ride the sequence decoding logic, so that anyone can operate the lock, even if they do not know the correct sequence. (Naturally, the i.c. can then be switched back to operate in the "normal" mode.)

Both i.c.s can be obtained from TK Electronics.

Fig. 5. Timing diagram, incorrect sequence

THREE TONE CHIME (SAB 0600)

The all-electronic doorbell has been a popular concept for many years now, being originally based on simple analogue techniques, then later involving digital control, culminating in today's microprocessor based designs. Just about every tune that you could think of can be played whenever the milkman calls. The only thing that the majority of these doorbells seem unable to play is a good, simple, traditional, "ding-dong"!

The SAB 0600 is an 8 pin i.c. from Siemens which is designed specifically to provide such a chime. In fact, it's more a case of "ding-dang-dong", since three tones of descending order of frequency are provided, not just two. The tones are harmonically related so that the chime is always in tune, and sophisticated logic control provides for a realistic and pleasing decay of sound level. There is even a
power amplifier provided in the device, so that only half-a-dozen passive components plus a switch and loudspeaker need to be added to make a complete door chime.

The block diagram of the i.c. is shown in Fig. 7. When the device is triggered (by taking pin 1 to the positive supply) an internal regulator is turned on to supply regulated power to the rest of the internal circuitry. A high frequency master clock oscillator is provided, with its frequency determined by an external RC network connected to pins 6 and 7; varying either the R or the C will cause a change in the oscillator frequency. The output of the clock oscillator feeds into a digital tone generation circuit. The master clock is divided down to provide the three chime frequencies, ensuring that the musical relationship between the tones is kept constant, and hence the
chime will remain in tune. The master clock is then divided down still further, and this very low frequency square wave is used to control the timing of changes in relative amplitude of the three tones. The amplitudes are controlled independently, so that the first tone is decaying away when the second one starts, and both the first and second tones are decaying away when the third one starts. The result is a very natural and melodic sequence; in fact, if you listen very carefully to the chime you can actually hear the amplitude decreasing step by step at the end of the sequence as the final decay progresses.

The three separate outputs of the digital tone generator are mixed together at the summing input of the power amplifier. The latter is designed to drive a load of 8 ohms or more, which must be câpacitively coupled via a 100μ
capacitor. Under these circumstances the i.c. will deliver 100 mW without the need for any heatsinking.

Finally, an external capacitor between pin 8 and ground (0 volts) will act as a filter, rolling off some of the high frequency content of the square waves. The more filtering that is applied, then the subjectively quieter the chime seems to be, although of "smoother" tone, so the adjustment of this is a matter of personal preference. The chip's internal power supply shuts down when the tones have ceased. This reduces the current consumption to less than $1 \mu \mathrm{~A}$, which in combination with the supply voltage requirements of 6 to 11 volts makes the device ideal for powering by a small 9 volt battery.

BASIC CIRCUIT

The basic chime circuit is shown in Fig. 8. Varying R 2 or C 4 adjusts the frequency of the chime tones, and (because the timing of the digital tone generator is also derived from the master clock) the duration of the chime sequence; the higher the tones in frequency, then the shorter the sequence will last. The value of C5 can be adjusted to give the most suitable tone to the chime.

If the chime is too loud for your liking, add a resistor in series with C2; anything up to 20 ohms should do the trick. C1 and C6 must be in place and as close to the i.c. as possible, since they ensure the stability of the whole circuit. Normally the three tones come in the order of descending frequency. If instability is present, the tones may seem to increase in frequency, or even change frequency as they are decaying away. The cure for this is simply to add more capacitance; increase the value of C 1 , or add more 100 n disc ceramic capacitors across the supply rails close to the i.c. If the switch is very far away from the i.c. then add an 82 k resistor between it and pin 1 of the i.c. (close to the chip itself) to limit any spurious induced currents to an acceptable level.

ELABORATING IT

The basic circuit of Fig. 8 works very well, but for the adventurous there is a more sophisticated circuit shown in Fig. 9, with its Veroboard layout given in Fig. 11. Two switches are provided, "Doorbell 1 " and "Doorbell 2", so that both front and back doors of your house can be connected to the circuit. Doorbell 1 will give a short duration high frequency chime, and Doorbell 2 a longer, low frequency chime.

IC2c and IC2d form a simple flip-flop or latch circuit. If the Doorbell 1 switch is pressed, IC2d pin 11 goes to logic 0 and IC2c pin 10 goes to logic 1 . This situation remains constant (even after the switch has been

Fig. 8. Basic circuit

Fig. 6. SAB 0600 pin out with specifications set out below

Characteristic	Notes	Min	Typical	Max	Units
Supply voltage		+7	+9	+11	V
Quiescent current	l.c. in idling condition (Not chiming)			1.0	$\mu \mathrm{A}$
Temperature range		0		70	${ }^{\circ} \mathrm{C}$
Power dissipation	Driving 8 ohm load		100		mW
Max output voltage	Driving 8 ohm load	$2 \cdot 1$	$2 \cdot 5$	2.9	Vpk/pk
Min trigger voltage needed at pin 1		0.5		1.5	V
Input resistance at pin 1		5	$7 \cdot 5$	10	Kilohms
Max current into pin 1		-2		+2	mA
Load impedance			8		Ohms

(at output)

Fig. 7. Block diagram of SAB 0600
released) until Doorbell 2 is pressed, when IC2d pin 11 goes to logic 1 and IC2c pin 10 goes to logic 0 , etc. IC3 is a quad CMOS analogue switch. This acts in a similar way to a relay, but in solid state form; if pin 13 (a "control" pin) is taken to logic 1 , then pins 1 and 2 become "connected together" via a 300 ohm resistor internal to the i.c., and can pass analogue signals bidirectionally. Hence, if pin 13 goes to logic 1 and pin 12 is at logic $0, R 3$ is effectively connected between pins 6 and 7 of IC1, with R2 remaining unconnected. Similarly, if pin 12 is taken to logic 1 with pin 13 at logic $0, \mathrm{R} 2$ is connected between ICl pins 6 and 7, and R3 remains unconnected. By this means, the two doorbell switches will connect different resistors to IC 1 , which in turn will cause different frequencies of chime to be heard. IC2a and IC2b are merely connected to make an OR gate; if either one switch OR the other is pressed, then the chime i.c. is triggered.

CIRCUIT NOTES

R1 and C3 provide some simple filtering to help prevent the triggering of IC 1 by spurious pulses. R6 and R7, together with D1, D2, D3 and D 4 , protect the circuitry against short duration high voltage pulses induced into the lengthy wiring between the doorbell switches and the actual circuitry itself. R4 and R5 provide biasing for the flip-flop when the switches are released. Changing the value of R3 will vary the low frequency chime, and changing $R 2$ will similarly affect the high frequency chime. As with the simple circuit of Fig. 8, don't forget that R10 can be added to reduce the loudspeaker volume if required. Make R10 a wire link for full volume. C5 can be varied to alter the tonal quality of the chime. Again, be careful with decoupling capacitors C1, C6 and C7; add to these if instability is a problem. Finally, note that D5 is used to protect the circuit against incorrect connection of the battery - always a good

Fig. 9. Sophisticated chime circuit

Fig. 10. (Top right) circuit for varying pitch during chime. The gate is $\frac{1}{4}$ of a 4001 B and R8, R9 and C8 are 33k, 470 k and 100 n to $2 \mu 2$ respectively

Fig. 11. (Left) Veroboard assembly of three tone chime circuit

SONY CV2000 Video. 405 lines, reel to reel recorder, camera, monitor/T.V., microphone, tripod, cables, tapes, carry-case. $£ 180$ o.n.o. R Swale, Oak Cottage, 616 Reading Road, Winnersh, Wokingham, Berks. Tel: Wokingham 784035.

SiliCON Speech Systems "Speechtime". Pocket-sized speaking clock. Cased. Quartz Adjustable voice pitch. $£ 15$. Call Change 041332 7695.

PRACTICAL Electronics Nov. 64 to date. Some bound. Offers. N. Tawse, 96 Cold Overton Road, Oakham, Leicestershire. Tel: 057256355.
Wireless Worlds, Bound, 1950 to 1953. Offers? 1956 to 1958 not bound. Collect or pay postage. G. Dean. Tel: Oxford 0865779855.

idea! Battery life will be many months in normal use, because the SAB 0600 turns itself off when not in use, and the CMOS i.c.s draw negligible current.

If more loudspeaker power is needed than can be provided by the i.c.'s own amplifier, then replace C 2 by a 100 n capacitor, and the loudspeaker by a 100 k resistor (almost any values will do here), then feed the connection between this capacitor and resistor out to an external power amplifier. The signal level may need attenuating, though!

Why not experiment more with the circuit; running two SAB 0600 i.c.s together simultaneously could prove interesting, giving the effect of musical chords being played. Alternatively, try connecting the circuit of Fig. 10 to IC3 pins 12 and 13 in place of the circuitry shown in Fig. 9; this will cause a continual changing of frequency actually during the chime, which is a very strange sound indeed. Perhaps in the end, though, the most pleasant effect is the original one: a simple, melodious, three tone chime, which is a welcome change from so many modern electronic doorbells!

The SAB 0600 is available from TK Electronics, who also sell complete doorchime kits based on this i.c.

all in your

This is an instrument provided with variable sensitivity trigger pads that may be played with hands or drum sticks. It is capable of tailoring a vast range of sounds that include drums, cymbals, bells, explosions, triangles, gongs, rockets, marching feet, steam trains, wind and surf etc., as well as an equal range of abstract sounds.

PROCRAM COMDITIONER

A circuit that is useful as a signal conditioner to rescue poor recordings and enable them to be successfully loaded into a computer. If two recorders are available it permits programs to be copied directly without tying up a computer.

FUSION:TOWARTD RERLITY

Nuclear power without radio-active waste is the target of a group of European scientists who built the little known giant wf Oxferdshire-the JET Tokamak. This articie will reveal their amazing toroidal machine, and its significance..

PRACTICAL

JUNE ISSUE ON SALE FRIDAY, MAY 6, 1983

Sjpace Watch

THE IRAS SATELLITE

After three years of working and planning the International Infrared Astronomical Satellite (IRAS) was launched successfully in January. The allocation of responsibility for this international project was distributed between the United States, the Netherlands and the United Kingdom. The act of launching was celebrated by an all night watch of the pre-launch procedures at the Rutherford Appleton laboratory, to which not only active participants in the project were invited but also their families, the press and other visitors. The personnel on duty were fully occupied with their particular tasks and routines, but all this activity was made available to the guests by the monitor screens set up in the lecture theatre. Continuous monitoring was available and all the countdown procedures could be observed.

Between events the visitors were given tabloid information from various members of the staff. Since each stage of the proceedings from the launch site at the Vandenberg Air Force Base in California was via live voice relay, the frequent "Mission completed" indicated in a loud voice as each procedure was finished often broke in over the local speakers voices. This seemed to increase the level appreciation to those assembled. It was clearly a stroke of admirable planning to bring together those most concerned while problems were being solved, often involving long hours of waiting for the families at home. The very intense excitement of the last period, before the actual final count, was filled with thoughts of other launches, yet each time the anticipation is still felt as though it was the first time.

Visitors from America, the Netherlands and other countries together with the press were restless during the final seconds and none could resist audibly counting with the rest. At the moment of lift-off the tension was released and everyone turned to his and her neighbour applauding. The excitement continued through the stages to the time of the satellite being inserted into the correct orbit and the signals returned to say that the Satellite was fully operational. Finally for those more technically concerned a quick rush to the refreshments and into groups to discuss the programme and to get ready for the first pass of the satellite over the control station at the SERC Laboratory at Chilton.

The official programme began at $1.00 \mathrm{a} . \mathrm{m}$. on the 26th January with a welcome to the Rutherford Appleton Laboratory at Chilton
by Dr. G. Manning the director of the laboratory followed by a brief introduction to the purpose of the project by the United Kingdom project manager Dr. Eric Dunford. ${ }^{4}$ This was followed by a talk from Professor Richard Jennings of University College, London on the place of the infrared telescope in astronomy. He was interrupted by the announcement from the launch site that it was "GO". At $1.30 \mathrm{a} . \mathrm{m}$. The technical schedule of events, was given by Eric Dunford. The ,science analysis manager Dr. G. Thomas, then took over with a description of the operations involved at the control centre. Mr. Peter Doms of the Telescope Support Team gave information of the early operations and an explanation of the monitor screens placed in the lecture theatre so each step of the operations could be observed at all the centres. This part of the "show" was constantly interrupted as the launch preparations continued.

Then followed the launch itself. At $2.21 \mathrm{a} . \mathrm{m}$. the command signal was sent from Chilton to the Goldston tracking station, at 2.25 a.m. the LOS (loss of signal) indicated that the pass over the Goldston sector had been successful and that the satellite was on its way over the Indian Ocean. At $3.11 \mathrm{a} . \mathrm{m}$. the AOS (acquisition of signal) and at 3.24 the LOS, followed by the Chilton pass at $3.29 \mathrm{a} . \mathrm{m}$. Throughout the Chilton acquisition of signal the movement of the controlled dish at Chilton, fully floodlit, was observed. In its turn the LOS for Chilton was signalled and at 3.44 first results of the passes were recorded. There was a final pass over Chilton at $5.19 \mathrm{a} . \mathrm{m}$. which was watched by the enthusiasts and the Press from the windows of the control room.

INFRARED ASTRONOMY

Recently a new dimension was brought into being using the UKIRT (United Kingdom Infrared Radio Telescope) high up on the mountain at Haiwai. This new dimension was the operation of the control centre at Edinburgh Observatory where sitting at a console the astronomer could operate the telescope and carry out normal duties. This was reported in detail in a recent issue of Spacewatch. It might therefore be thought that this new telescope operating in space is duplicating facilities. There is a very important reason for the new telescope which will in the course of the next 6 to 9 months complete the most comprehensive view of the infrared spectrum of the Universe. This reason lies in the fact that though a great deal of data has been collected there are gaps in the actual spectrum which cannot be "seen" from Earth. The reasons for this situation are concerned with the "forbidden" wavelengths which cannot be seen through the Earth's atmosphere for a number of reasons. It becomes necessary then to go outside the Earth where the whole spectrum can be observed.

There is another very important matter to be considered. This arises from the fact that the level of the radiation may be very low. To take this into account the sensitivity of the new telescope is such that it can detect levels down to one million, trillionth of a watt per square centimetre. Special design and cryogenic operation becomes necessary to accomplish this. Yet though the signal at the receiver may only be minute the actual source and origin may be extremely great and
energetic. This is the tremendous importance of the satellite telescope.

The heart of the satellite is the telescope. It is an $\mathrm{f} / 9.6$ Ritchey-Chretien type design with a 22.4 inch effective aperture of primary mirror. The mirror itself is of light weight Berryllium. The effective field of view is 30 arc minutes. It has a focal length of $5,500 \mathrm{~mm}$. There are 62 rectanglular detectors which vary in size from $7.2 \times 1.2 \mathrm{~mm}$ to $7.5 \times 5 \mathrm{~mm}$. These detectors form the focal plane array at the base of the telescope. The detectors observe in four wavebands

Band 1. 8.5-15 microns
Detectors 15 silicon-arsenide. Band 2. 19-30 microns
Detectors 16 silicon-antimonide. Band 3. 40-80 microns
Detectors 16 germanium-gallium.
Band 4. 83-119 microns
Detectors 15 germanium-gallium.
The detectors are so arranged that each source encounters two detectors in each of the four wave bands which produce a 'signature' for a point source. By this method each area of observation is covered four times giving a possible source detection coverage of eight. Some of the special observations will involve the examination of well known asteroids and new ones that may be encountered. Thus this satellite will deal with almost any type or source of infrared that may be scanned by the telescope.

THE DUTCH EXPERIMENTS

There is an additional Dutch experiment called DAX which consists of three instruments. These are also located near the focal plane. One instrument is a low resolution spectrometer which will produce sectra between the wavelengths of 7.4 and 23 microns. This will aid in the identification of sources of infrared. A second instrument will operate between 4.1 and 8 microns. The third instrument is a "chopped" photometric channel and has two detectors in two bands between 41 to 62 microns and between 84 and 114 microns. The shutters are operated so that every fifteen seconds a shutter opens and each closes in such a way that all energy is shut out. During the period of closure the instrument is automatically calibrated.

ATTITUDE CONTROL

The attitude control of the IRAS is a digital subsystem with an accuracy of 30 arc seconds ($1 / 20$ th of a degree). It is expected that the operation techniques will lead to a pointing ability of a few arc seconds over small areas but in any case the data accuracy of pointing will be better than 20 arc seconds. There are sun sensors around the satellite to ensure Sun acquisition during the initial operating period. It is important to keep the telescope aperture away from the Sun, the Moon, and the Earth. Part of this is assured by the use of a special cold mirror coated screen which reflects unwanted infrared away from the aperture of the telescope.

A primary computer and an identical backup is provided on board. Transfer of data from the satellite is stored on a recorder and, for the ordering of the daily programme each section of work programmed has various special memory facilities.

BBC COM
Model B
Model B
seC MICRO DISC DRIVES

BC CONmECTORS

M-

OIL JUM PERS $\begin{array}{lr}\text { Single Ended } 24 \\ 14 \text { PIN } & \mathbf{1 . 4 5} \\ 16 \text { PIN } & 1.65 \\ 24 \text { PIN } & 2.40 \\ 40 \text { PIN } & 3.80\end{array}$
Double Ended
14 PIN 1.851 .982 .4
16 PIN 2.052 .152 .6
24 PIN 3.003 .153 .96 40 PIN 4.654 .906 .18

25 WAY OTTYPE CONAECTORS

CONAECTOR
Male-Male
36 cabe
Male-Female
36° cable
Male single ende
Male single ended
18 cable 4.95
Female single ended
Fenale single ended
$18^{\prime \prime}$ cable $\quad 3.95$
IOC CONNECTORS
Shrouded Header
with efectors)
(Right Angle
PCB Migl
$\begin{array}{ll}10 \text { PIN } & \mathbf{0 . 8 6} \\ 14 \text { PIN } & \mathbf{1 . 2 2} \\ 16 \text { PIN } & \mathbf{1 . 3 4} \\ 20 \text { PIN } & \mathbf{1 . 4 6} \\ 26 \text { PIN } & \mathbf{1 . 7 6} \\ 34 \text { PIN } & \mathbf{2 . 0 6} \\ 40 \text { PIN } & \mathbf{2 . 3 2} \\ \text { 50 PIN } & \mathbf{2 . 3 5} \\ 60 \text { PIN } & \mathbf{3 . 2 0}\end{array}$
IDC SOCKETS
10 PIN 36 cable
0 ited

10 PIN	$\mathbf{1 . 4 0}$
4 PIN	$\mathbf{1 . 8 2}$
6 PIN	$\mathbf{2 . 1 0}$
20 PIN	$\mathbf{2 . 4 6}$
26 PIN	3.24
34 PIN	$\mathbf{3 . 8 0}$
40 PIN	$\mathbf{4 . 9 0}$
60 PIN	$\mathbf{5 . 4 8}$

DATA BOONS my
Texas Instrumants Circuits

Coltage Reguiators 4.50
.00

 TL 5 th Edition Bipolar Micro Linear Pocket Guide 2.50

CARRIAGE Orders up to $£ 199$ sent by ist class post and $£ 200+$ by
CHARGES $0-£ 100=£ 0.5 \mathrm{C}, £ 100-199=£ 1.25, \varepsilon 200+=£ 5.00$. PRICES All prices and carriage charges quoted are exclusive of VAT
(ele
Governm ORDERS are welcome from Educational Establishments

CREDIT ACCOUNTS Are avaitable subject to status. Payment strictly nett 30 days.
CREDIT CARDS Payment by credit cards is accepted on most products with no surcharge.
OUT OF STOCK Items out of stock will follow with E0.45 Carriage charge at our discretion, or a refund will be issued if requested.
DELIVERY All stockorders received up to 3.30pm are despatched the

MICHAEL TOOLEY в.a. \& DAVID WHITFIELD m.a.m.sc.

WJORKING on auto electrical systems must rank among the greats in the league table of love-hate activities. The fascination is all but irresistible; the wiring schedule and the components seem so simple and straightforward. In practice, the success or otherwise of any job concerned with auto electrics is based on a sound understanding of the principles involved, and having the appropriate test instruments. The Auto Test Set brings together a range of instruments usually to be found separately, and combines them into a compact and robust unit. By this approach it minimises the number of units which must be brought to bear, and perched precariously under the bonnet or dashboard, thereby minimising many of the frustrations which otherwise lie in wait for the unwary.

GENERAL DESCRIPTION

The Auto Test Set is essentially a group of closely related instruments which have been collected together in such a way that all of the functions remain available, but many of the necessary facilities are shared. An overall block diagram for the test set is shown in Fig. 1, and a summary of the specifications appears in the table. The schematic, and the full circuit diagram shown in Fig. 2, shows that the instruments fall into two main sections; those which use the meter for display, and those which do not.

The first group consists of the voltmeter, the tachometer, and the dwell meter circuits. These all share a common test probe known as the volts/coil probe, and the input signal is simultaneausly applied to all three circuits. The output from
each circuit can be selected for display on a large moving coil meter, ME1, by means of S1. This switch also effects range switching in the tachometer circuit. A conventional moving coil meter is used because it may easily be read to whatever accuracy required, and with such a display it is very much easier to detect trends; important during tuning and performance testing. A moving coil meter will also have the effect of averaging a signal which exhibits rapid fluctuation which might affect a digital type of display. In order to protect the meter movement from damage when not in use, a carrying position is provided on S1 to short the terminals when not in use. Further protection of the movement is provided by D9 and D10.

The second group of instruments include the circuit tracer and the lamp/fuse tester. Each of these has separate inputs with respect to ground, the V-input and the Z-input, respectively. The circuit tracer uses a voltage comparator and displays the result on a single I.e.d., with an optional audible warning. The lamp/fuse tester uses an impedance comparator and provides a GO or NOGO indication on two l.e.d.s, again with the option of using the (same) audible warning.

The overall instrument derives its power independently from the vehicle under test via SK3 and SK4; D11 provides visual indication of the presence of the necessary supply. The overall instrument is housed in a rugged diecast box, with the majority of the components mounted on a singlesided printed circuit board. The circuit and uses are described below for each constituent instrument in turn, before proceeding to the constructional details next month.

Fig. 1. Block diagram of Auto Test Set

VOLTAGE MEASUREMENT

The Auto Test Set provides two scales for measuring voltages; a simple 0 to 15 V range, and a 10 to 15 V offset zero range. The first range simply inserts the appropriate series resistance, R12, between the potential to be measured and the meter, ME1. This provides an extremely useful general purpose voltmeter.

In many situations, particularly when interested in the state of the battery, it is rather wasteful to have an instrument which is accurate over a wide range. The range of values to be measured in such situations will usually be at the end of the scale. The provision of an offset zero voltage scale, therefore, allows a much clearer indication of the performance of the battery under load to be obtained. The nominal open-circuit terminal voltage of a conventional sixcell lead/acid battery is 13.2 volts. This value falls under load, especially as the internal resistances of the cells rise due to physical deterioration; and the voltage rises during charging. With the exception of starting, the battery voltage will rarely fall below 11 volts, and the voltage regulator should ensure that the terminal voltage does not rise much above 15 volts. The behaviour of the battery when extra loads, such as headlamps, are applied can give a useful guide to the overall condition of the battery and/or regulator circuit.

The offset zero voltmeter range is provided by using D18 to 'remove' 10 volts from the input potential. The load for the Zener diode is provided by R32, which causes a Zener

Fig. 3. The LM2917 frequency-to-voltage converter
current of approximately 10 mA to flow at the expected operational mid-scale value. In practice, the calibration of the offset zero scale will not be perfectly linear, with the maximum errors at either ends of the scale, but this should not prove to be a great handicap since the greatest use of the scale is in the clear indication of variations.

TACHOMETER

During engine tuning, it is usually necessary to make certain measurements (e.g. ignition timing advance) at known engine speeds. The 'tickover speed' also needs to be carefully adjusted to the correct value; it should not be so high as to waste fuel at idle, but again it should not be so low that the car has difficulty in moving off smoothly when required.

The measurement of engine r.p.m. makes use, in the main, of the fact that the distributor shaft rotates at exactly half the speed of the crankshaft in a conventional engine. As a result, the ignition circuit produces a pulsed signal across the primary winding of the coil at a frequency of N pulses per minute, where N is given by the equation:

$$
\mathrm{N}=\frac{1}{2} \times \text { engine r.p.m. } \times \text { number of cylinders }
$$

There are many ways in which the pulsed signal from the ignition coil may be sampled and converted to a voltage proportional to engine r.p.m., but the use of the National Semiconductor LM2917 i.c. produces one of the simplest circuits. The LM2917 is a linear monolithic device which contains a frequency-to-voltage converter, together with a high gain op amp/comparator designed to drive a relay or other external load up to 50 mA . The tachometer section uses a charge pump technique and offers frequency doubling for low output ripple. Also provided in the i.c. is input protection, and an output which falls to ground level for a zero frequency input; in use the LM2917 has been designed to be easy to use.

The tachometer configuration of the LM2917 is shown in Fig. 3. A single RC network provides the frequency doubling, and the output voltage is simply related to the input frequency by the formula:

$$
V_{\text {out }}=f_{\text {in }} \times V_{\text {ref }} \times R_{a} \times C_{a}
$$

The integral voltage regulator sets the value of $V_{\text {ref }}$ and this ensures accurate and stable conversion performance. The input stage is a differential amplifier in a positive feedback configuration. The flip-flop circuit allows the user to define the input switching level, while retaining the necessary hysteresis for good noise rejection. The charge
pump then converts the input frequency, by now at a constant amplitude, to a d.c. voltage. The operation of the charge pump is determined by the timing capacitor, C_{a}, load resistor, R_{a}, and the filter capacitor. The filter capacitor determines the trade-off between output ripple voltage and the response time of the circuit.

The circuit diagram for the complete tachometer is included in Fig. 2. The input from the ignition circuit is taken by connecting the volts/coil probes as shown in Fig. 4. The input signal at SK1 is then processed by R1, D1, R2, C2 and R3 to remove spikes and noise which may otherwise affect the operation of the LM2917. The input switching level of the voltage comparator within IC1 is set by the combination of R4 and D8; the level at pin 1 must exceed approximately 600 mV before the comparator switches. The output at pin 5 of IC2 is determined by the signal frequency, the capacitor selected by S 1a, and the setting of VR1. The response time of the circuit is set by C6; increasing the value will increase the response time, and vice-versa. The series resistor for the internal Zener regulator, R5, is chosen to minimise the reference voltage variation over a supply range of 9 to 15 V . The calibration of the output for differing numbers of engine cylinders is achieved by S2, and the associated resistors, R26 to R31.

DWELL MEASUREMENT

The dwell angle of the contact breaker cam has a significant effect on the performance of an engine, particularly at higher speeds. Each vehicle has a specific dwell angle quoted for the distributor, and will have a value which depends on the design of the ignition circuit, and on the engine configuration. The distributor cam itself has a number of lobes, equal to the number of cylinders in the engine, symmetrically spaced on the shaft. The angular separation of these lobes will be $90^{\circ}, 72^{\circ}, 60^{\circ}$ or 45° for engines with $4,5,6$ or 8

SPECIFICATIONS

FUNCTION	RANGES	PROBE
Voltmeter	0 to 15 voits f.s.d. 10 to 15 volts offset zero	Volts/Points
Tachometer	0 to 1500 r.p.m. *0 to 5000 r.p.m. Both ranges may be used for 4,5,6 or 8 cylinder engines	Volts/Points
Dwell Meter	0 to $45^{\circ}, 60^{\circ}, 72^{\circ}$ or 90° Calibration depends on the number of cylinders fitted	Volts/Points
Points State	An l.e.d. illuminates when the points are open	Volts/Points **
Circuit Tracer	An l.e.d. illuminates when greater than 9.5 volts is present. Optional audible wârning also available	V-probe
Lamp/Fuse Tester	GO/NO GO green/red l.e.d. indication of lamp/fuse state. Green shows resistance less than approx. 150 ohms. Optional audible warning.	Z-probe
Carry	The meter movement is shorted during carrying for safety	${ }^{3}$

cylinders, respectively. The actual dwell angle is defined as the angle through which the cam rotates whilst the contact breaker points are closed. The correct dwell angle for a particular vehicle will be found in the workshop manual, but is typically around two-thirds of the angle between the cam lobes.

The correct adjustment of dwell angle is often a matter which is left somewhat to chance; the more approximate measure of points gap is frequently used instead. To ensure correct combustion, however, it is the dwell angle which is actually the important factor in maintaining good performance and fuel economy. The angle must be large enough to allow the core of the ignition coil to become magnetically saturated, but not so large that the coil starts to overheat, eventually leading to breakdown. Too small a dwell angle, however, will result in a poor spark, and may cause overloading of the capacitor and burning of the points at low engine speeds.

Dwell angle is most easily measured by observing the duty cycle of the voltage waveform across the points. If the duty cycle is 100% (i.e. points open all of the time), then the dwell angle is 0°; conversely, if the duty cycle is 0% (i.e. points closed all of the time), then the dwell angle is equal to the angle between the cam lobes.

In general, duty cycle and dwell angle are related by the following formula:

$$
\text { Dwell Angle }=\text { Cam Lobe Angle } \times \frac{100 \%-\text { Duty Cycle }}{100 \%}
$$

The dwell measurement circuit, which is included in Fig. 2 , makes use of two of the operational amplifiers in IC2. The contact breaker waveform is sampled by connecting the

COMPONENTS

Resistors

All resistors $5 \% \frac{1}{4} \mathrm{~W}$ carbon types except where stated
Capacitors

C1	$10 \mu 16 \mathrm{~V}$ elect	C 7	10 n ceramic
C 2	10 n polyester	C 8	10 n ceramic
C 3	68 n polycarbonate	C 9	100 n ceramic
C 4	22 n polycarbonate	C 10	$4 \mu 716 \mathrm{~V}$ elect
C 5	$100 \mu 16 \mathrm{~V}$ elect	C 11	$4 \mu 716 \mathrm{~V}$ elect
C 6	$1 \mu 35 \mathrm{~V}$ elect	C12	$22 \mu 16 \mathrm{~V}$ elect

Semiconductors

D1	BZY88C12V	D13	1N4148
D2	BZY88C9V1	D14	Redl.e.d.
D3	1N4148	D15	Greenl.e.d.
D4	Redl.e.d.	D16	Redl.e.d.
D5	1N4148	D17	BZY88C4V7
D6	BZY88C5V6	D18	BZY88C10V
D7	1N4148		
D8	1N4148	TR1	BC548
D9	1N4148	TR2	BC548
D10	1N4148		
D11	Redl.e.d.	IC1	LM2917
D12	1N4001	IC2	LM324

Miscellaneous
SK1 to SK7 Panel mounting terminals to constructor's choice
Printed circuit board
Terminal pins
ME1-50 $\mu \mathrm{A}$ large panel meter (Maplin RX54J)
Diecast box approx. $190 \times 110 \times 60 \mathrm{~mm}$
Ribbon cable
S1 2P6W rotary switch
S2 3P 4W rotary switch
S3 SP on/off/on toggle switch-centre off
WD1 Piezoelectric or similar d.c. buzzer (RS 249-794)
Knobs (2 off)
volts/coil probe as shown in Fig. 4. The waveform at SK1 is then filtered by R1/D1 to remove high voltage spikes, and by R2/C2 to remove high frequency noise. The filtered signal, which will have an amplitude of approximately two-thirds the input waveform, is then applied to the non-inverting input of IC1a. This amplifier is arranged as a voltage comparator, with the switching threshold set by R6 and D3. The overall effect is that the amplitude at SK 1 must exceed approximately 1 volt to cause the output of the comparator to go high. The resulting comparator output is a rectangular waveform whose levels are limited only by the output saturation levels of the op amp itself; approximately 0.6 V
(low) and $\mathrm{V}_{\text {supply }}-1.2 \mathrm{~V}$ (high). The dependence on supply voltage is eliminated by the clipper circuit made up of R8 and D6.

The average value of the processed waveform from IC1a is developed across C12, due to the integrating effect of R11/C12. A further op amp, IC1b, is arranged as a voltage follower to reduce the loading effects on the integrator circuit. The output low level saturation voltage from the buffer stage is removed by the action of D7, and the dwell circuit calibration is provided by VR2.

CONTACT POINTS STATE

The state of the contact breaker points is indicated by an l.e.d., D4, which is illuminated when the points are open. A switching transistor, TR1, is driven by the output of the voltage comparator stage in the dwell meter circuit.

CIRCUIT TRACER

Tracing wiring faults and broken connections in a vehicle wiring circuit must count as one of the more frustrating and

tiring of diagnostic tasks. It is not so much that the job is difficult; it can, after all, be described as simply a matter of finding the point at which the voltage disappears.

A multimeter is understandably a natural first choice of diagnostic aid for the motorist with an interest in electronics. A few hours of crawling around under the dashboard, however, soon shows that it is no mean feat of skill to hold the two probe leads in position with one hand, while trying to operate the offending control with the other, and read the voltage on the meter.

What is required is a test instrument which is more in tune with the requirements of the problem; simplicity is a prime consideration.

In circuit tracing applications the exact value of the voltage detected is of only secondary importance. The major point is to detect that the circuit is continuous up to the point being measured, since the usual cause of the problem is a dry joint, broken wire or faulty component. The significant effort in such fault diagnosis is to localise the fault as quickly as possible, and then more precise measurements may be made if required.

The circuit tracer in the Auto Test Set provides a simple indication of the presence of a voltage of greater than approximately $9 \frac{1}{2}$ volts. The indication is permanently provided by an l.e.d., but an additional buzzer indication may also be selected.

The circuit tracer basically consists of a voltage comparator circuit driving a load of an l.e.d. and an optional buzzer circuit.

The general principles of the circuit are shown in Fig. 5. The circuit tracing probe is the V-probe; the potential present at the V-probe tip is attenuated by 50% by the

resistive attenuator, and then applied to the non-inverting input of the differential amplifier. The input to the inverting input of the amplifier is from a voltage reference source. The output of the amplifier is a saturated high level when the input voltage exceeds twice the reference voltage, thus turning the l.e.d. on. The buzzer circuit is arranged so that the buzzer is also on (if selected) when the amplifier output is high.

The voltage comparator circuit is built around IC2c, as shown in Fig. 2. The input attenuator is formed by R17 and R19, and the voltage reference source is provided by R23 and D17. With the component values shown, the I.e.d. D16 will be illuminated whenever the potential at SK7 exceeds approximately $9 \frac{1}{2}$ volts; a buzzer will also sound if selected by S3.

LAMP/FUSE TESTER

Trouble-shooting in auto electrical circuits is a process which usually starts when some item of electrical equipment stops performing correctly. In many cases the symptoms are quite dramatic; one moment everything is running smoothly, and the next moment it has stopped. The most commonly encountered example of this abrupt change must sureiy be represented by the conventional filament lamp. The rectification of such a fault requires a realistic and methodical approach if an undue amount of time is not to be wasted; stories of changing the alternator to mend a fuse bear witness to the penalty which can be incurred by hasty diagnosis. The first step, and often the only one required, is to investigate the state of the non-functioning component, or at least the component which appears not to be working, before moving back to more remote ones.

The lamp/fuse tester is designed to provide a simple and easy-to-use "go/no go" indication of the state of simple electrical componerits. The tester can be used to examine the state of lamps, fuses, wiring, switches, relays, and indeed almost any passive electromechanical component. To assist in circuit tracing, particularly pin-pointing wiring breaks, a "go" result may also be used to activate the audible warning.
The lamp/fuse test circuit consists basically of an impedance comparator circuit which illuminates one of two l.e.d.s and an optional buzzer circuit. Which of the two l.e.d.s is illuminated is determined by whether the impedance

Fig. 6.
Schematic circuit for the impedance comparator

between the Z-probe and ground is greater or less than the preset threshold. The general principles of the comparator are illustrated in Fig. 6. From this circuit, it can be seen that when there is no test load, the output level will be low, thereby illuminating the "no go" l.e.d.; conversely, when the
test load is a short circuit, the output will be high and will cause a "go" indication. The switching point, i.e. the impedance for test load below which a "go" indication will be obtained, is determined by the two reference voltages and the value of R.

The lamp/fuse tester is built around IC2d, as shown in Fig. 2. The reference input to the non-inverting amplifier terminal is provided by an attenuator across the reference diode D17; this results in a reference of just under a volt. The other reference supply for the inverting input is provided by R7 and D2, and is at a level of 9.1 volts. The value of R22 sets the switching level of the comparator, in conjunction with the two reference levels as shown in Fig. 6, to approximately 150 ohms. This value has been chosen as it represents the on resistance of a 1 watt automotive bulb, and as such represents probably the highest correct resistance likely to be met in practice.

Next month: Constructional details, testing and calibration will be presented.

FREE!READERS' ADVERTISEMENT SERVICE

SYNTHESISER 13 modules, keyboard and case. Cost $£ 150+$. Need attention, hence $£ 80$. For details, send s.a.e. Clive Longhurst, 40 Vale Rd., Chesham, Bucks HP5 3HH.
MICROTAN 65, Tanex, ASC11 keyboard rack mounted, some RTTY and morse software, £150. DX302 receiver, new, £150. P. Harrison. Tel: Lichfield (05432) 52824.
UK101 Motherboard, E20. Decoding module, £20. Analogue board, $£ 30$. Three $4^{\prime \prime} \times 5^{\prime \prime}$ Holograms, £10 each. Nick Hardy, 32 Bentley Grove, Meanwood, Leeds 6 LS6 4AT, West Yorks. Tel: (0532) 781532.
UK101 8K RAM card, fits J1 also B5, toolkit, codekit, $£ 45$ the lot or will split. Geoff Lynes. Tel: 01-739 8422. Ext. 120 daytime.
CAR electronic ignition, £5 (p. \& p. £2). Boards Wimborne music centre, resistors, capacitors mounted, £10 (p. \& p. £2). L. T. Hill, 14 Rothesay Terr., Bedlington, Northumberland. WANTED Sugden P. 51 power amplifier. Tel: Brentwood (0277) 219639. E. R. Angus, White Heather, Brockley Grove, Hutton, Brentwood, Essex CM132JJ.
SINGER 80 v.d.u. manual, user or service. Needed to help boy I teach. Borrow, rent, buy? T. K. Boyd, Seaford College, Petworth, W. Sussex GU28 ONB.
SEVERAL items of vintage test equipment for sale, s.a.e. for details. J. Giover, 1 Bryony Cottages, Hambledon, Godalming, Surrey GU8 4HJ.

RULES Maximum of 16 words plus address and/or phone no. Private advertisers only (trade or business ads. can be placed in our classified columns). Items related to electronics only. No computer software. PE cannot accept responsibility fot the accuracy of ads. or for any transaction arising between readers as a result of a free ad. We reserve the right to refuse advertisements Each ad. must be accompanied by a cut-out valid "date corner". Ads. will not appear (or be returned) if these rules are broken.

WANTED for small rural church, mains transformer for "Bird" "Flamingo" series neon-tube divider organ. State price. Jim Robson, 47 Rosewood Crescent, Newcastle upon Tyne NE6 4PR.
SINCLAIR Spectrum 16 K , perfect with "Horisons" tape. Also ZX81 and System 2000 amplifier. Must sell. Offers. A. Brown, 92 Queen Alexandra Mansions, Hastings Street, London WC1H 9DP. Tel: 01-2784685.
WANTED OSI-610 board. Maximum $£ 100$ or best offer. Tel: Frank on 01-866 7010 (Harrow area) Evenings. F. J. Leonhardt, 2 Birchmead Avenue, Pinner, Middx. HA5 2BG.
TRANSCENDANT 2000 Synthesiser as new offers. P.E. Minisonic Synthesiser built, superb digital frequency meter very cheap. Hugh Bridge, 175 Crofton Road, Orpington, Kent BR6 8JB. Tel: 068957055.
UK101 8 K cased Mon UK01 monitor. Two available $£ 80$ each. Postage extra. J. K. Foulds, 42 Cotswold Avenue, Ipswich IP1 4LJ. Tel: 214004.

HP33E programmable scientific calculator with recharger and instruction booklets. Only $£ 40$ o.n.o. (M.R.P. new-£65). C. W. Dudley, Kingswood Hall, Coopers Hill Lane, Englefield Green, Surrey TW20 0LG.
UK101 8 K cased with leads and programs, bargain $£ 89$. Maplin organ parts. Tel: Sittingbourne 079522219.

FIVE octave keyboard, £20 ZX80, £20, Pye 9 inch b/w monitor, £20. Tel: Gainsboro. 0427 5848 (Lincs).
CHIPS:-8202A £10, 8253/8259/8275 £3. 93459/Z80AS 10/0-£ $7.4116-16$ for £7. J. E. Walker, 7 Warwick Place, Peterlee, County Durham SR8 2EZ. Tel: 868255 after 7 pm .
MULTIMETER Miselco Mini 20 in strong plastic case, unwanted Xmas Gift. Tel: 01-451 3093. Jack Anderson, 22 Landau House, Chatsworth Road, London NW2 4BW.
SUPERBOARD 3, 8 K RAM, 12 K Basic, Cegmon 300/600 Baud. Sound, D/A \& RS232 I/F, cased. 5V5A, games and books £ 110 o.n.o. W. Kazmi, 98 Langland Cres, Stanmore, Middlesex. Tel: 01-204 4368.
PET 8K computer. Old ROMS, integral cassette, sound box. First offer over £200. Andrew Holme. 92 Stone Cross Lane, Lowton, Nr Warrington. Tel: Ashton-in-Makerfield 728172.
TWO Goodmans 12 -inch Audium 12p 50 watt speakers in enclosure $£ 30$ or will split. Tel: Wivenhoe 5671.
ZX SPECTRUM 16 K £80, l.c.d. digital compact multitester $£ 28$. Unwanted presents. Lots more, s.a.e. no callers. Martin, 6 Downland Gardens, Tattenham Corner, Epsom, Surrey.
TANGERINE Microtan 65 and Tanex both fully expanded, A-D and d-A converters, keyboard $£ 250$. p.s.u. available. J. D. McBride, 49 Green Road, Paisley. Tel: 0418875519.

Please publish the following small ad. FREE in the next available issue. I am not a dealer in electronics or associated equipment. I have read the rules. I enclose a cut-out valid date corner.

Signature
Please read the RULES then write your advertisement hereone word to each box. Add your name, address and/or phone no. COUPON VALID FOR POSTING BEFORE 6 MAY 1983. (One month later for overseas readers.)
SEND TO: PE BAZAAR, PRACTICAL ELECTRONICS, WESTOVER HOUSE, WEST QUAY ROAD, POOLE, DORSET BH15 1JG.

The Goonhilly Show

It seems incredible now that only a little over a decade ago few people had ever heard of Goonhilly. An unlikely, even comical, place invented perhaps by the Goons themselves or even earlier as a setting in a Wodehouse novel. Instead it turned out to be a very real piece of real-estate in Cornwall. In the summer of 1962 Goonhilly Downs emerged from obscurity to become world famous. But even then few of us glued to our tubes to watch the first ever live transatlantic TV transmission via communications satellite realised the speed at which the new technique would become established.

Goonhilly today is not the only satellite earth terminal site in the UK but it remains the largest and, commercially, the most important. The addition this year of Goonhilly 5 , the fifth big steerable dish in the complex, marks yet a further stage of expansion.

The new terminal is dedicated to maritime communications. The concept is not new as the first shipborne terminals were fitted in 1976. But take-up of the maritime satellite service has been painfully slow so that after some seven years there are only a little over 1,500 installations in service. This is mainly due to the ingrained attitude of many shipowners who regard the ship's radio room and its operator(s), mandatory by international law for safety reasons, as an imposed overhead expense. Why go beyond the minimum requirement? Add to this the unhappy plight of world shipping in a trade recession and there is even greater reluctance to spend money on what could be senseless extravagance rather than prudent investment.

Goonhilly 5 , like its predecessors, was built by Marconi and is owned and operated by British Telecom who, in their newly acquired competitive spirit, have put together a sales package which could break through the apathy of shipowners. What BT is offering is direct dialling ship-to-shore telephone links between most destinations in the world at a cost of up to 50 per cent less
than the already established service from the United States. Goonhilly 5's global coverage embraces about 80 per cent of the world's shipping and offers total communications reliability round-the-clock, vastly superior to ordinary ship's h.f. radio with its diurnal variations and ionospheric disturbances.

At present the rate of new shipborne installations is running at about 40 a month. It is estimated that by the end of this decade some 12,000 ships will have been fitted. This has to be good for business and good for shipowners, too. Of course the shipowners are still counting their pennies, with most of them anxiously monitoring their overdrafts, but shipping ecomomics today are more than ever dependent on productivity. A tide lost or a cargo missed is big money. Instant and reliable communication can tip the balance from loss to profit. So the sales pitch is not whether a shipowner can afford it but whether he can afford to do without it.

The Big Fight

As I write there is no firm date for the forthcoming big fight. Both the main contestants are, however, in training with broad strategies defined, tactics to be decided much nearer the day. The champions in the blue corner might be described as political realists, the challengers in the red corner as political dreamers. The realists are favourite in the polls but the odds could and often do shift unpredictably. How will the result affect industry?

On the industrial front the main issue of principle between the two major parties is nationalisation and private enterprise. If we take history as a guide there will be no clear cut victory. Whatever might be said on either side, even written into manifestos, there has always been a compromise. No Labour government has killed off private enterprise, no Conservative government butchered nationalised industry. The mixed economy is here to stay although the balance of mix may change. In the end all is compromise with Labour pouring money into private industry when in office and Conservatives pouring ever-growing amounts into failing State-run industries.

On the broad economic front Labour's biggest punch, a straight left, is unemployment, supplemented by body blows on defence and withdrawal from the European Common Market. Such a combined attack could floor the Conservatives if only because it has great emotional appeal. But if the knock-out takes place what will subsequently happen in practice is very unlikely to be that predicted in rhetoric. Labour cannot significantly reduce unemployment without distorting the economy. On defence, in particular on disarmament, semantic experts are working as I write on a form of words which will declare a unilateral stance on nuclear weapons within a multilateral context, which will commit nobody. On the Common Market the policy will be to withdraw in theory but remain in practice through a "re-negotiation"

The most effective punch from the defending champion is low inflation, the
pound in your pocket being worth very nearly as much next year as it is today. This will be backed by a less than normally vicious budget (already announced) and the undeniable fact that people still in work, the silent majority who are not dramatically newsworthy, have never had it so good.

Paradoxically the blue policy, so objectionable to the red corner, is the very one they were advocating in October 1964 when they set up the new Ministry of Technology "'to guide and stimulate a major national effort to bring advanced technology and new processes into British industry". Mintech was to be the vehicle for obtaining improved economic performance and improved competitive power. By 1969 Mintech had a staff of 36,000 dedicated to the ideal. In the event every innovation was bargained over, resisted as long as possible. A transition which could have been achieved smoothly over two decades has had to be compressed into the past four years at the worst possible time in world trade with consequent unnecessary pain.

No, I haven't forgotten the Liberal/SDP alliance. In the event of no decision the alliance will, in effect, become a biased referee favouring one side or the other. The alliance is itself a compromise but on withdrawal from the ECM and the nuclear question they are more blue than red.

So, unless the extremists of either persuasion come unexpectedly from behind. there won't be much change.

More Showbiz

It was perhaps inevitable after all the ballyhoo in 1982. Anyway, here it is folks, the first ever International Conference and Exhibition on Satellite and Cable TV in Europe. Or Cable '83 for short. It will be held at the Wembley Conference Centre with over 50 authoritative speakers from the UK, Europe and North America.

The organisers, Online Conferences Ltd already have a track record in other IT areas and have used every emotive word and phrase they can think of to promote the event. Thus we have a scene which is "explosive and complex" but nevertheless calls for "an adaptive sensitive approach" in what is clearly "a dynamic situation"

I was especially intrigued by some of the conference topics. Under the heading of Marketing the question is posed, "Broadband-moneyspinner or black hole?" Under Direction we are promised a discussion on "The franchising jungle". Under the heading of Issue Areas the no doubt vital issue is "Go-go or go-slow". Again under Marketing there are talks on "Entering and surviving" and another question. "What follows the movies?"

The organisers say with evident satisfaction that there are likely to be few restriction on Cable TV programme content, even fewer on imported material, and that cabling the UK alone will shift $£ 2.5$ billion into pockets of the participants. So roll up, roll up! How to win in this brand new game will all be explained from 10-12 May. A game? It must be. The advance billing says plainly '"The major players are already jockeying for position'. Ughh!

HERE AT LAST !

A Miero-Mobile

 you CAN afford!Colne Robotics brings you the ZEAKER MICRO-MOBILE (as featured in this month's construction project), a low-cost mobile robot for use with microcomputers. It's compact $\left(5 \times 5 \times 2^{\prime \prime}\right)$ and rugged, with two separately-driven DC motors powering its wheels. Eight touch sensors indicate collision with obstacles to the computer, which can then instruct ZEAKER to take evasive action. Touching an obstacle triggers a two-tone alarm horn which changes in pitch according to direction of travel. A retractable pen, controlled by the computer, is provided to enable ZEAKER to trace its path and, if provided with appropriate software, produce logo graphics. LEDs indicate direction of motion and pen status, and with its two metres of umbilical ribbon cable ZEAKER can roam over any flat surface. Drive ZEAKER with any microcomputer fitted with an 8-bit bidirectional port (ZX81/SPECTRUM users note - we can supply a special interface). Complete with power supply, operation manual and basic software, ZEAKER is available at the special introductory price of only $£ 59.95$ (kit) or $£ 79.95$ (assembled) including VAT.

INTRODUCING

 ZEAHER
A PE-COLNE ROBOTICS PROJECT

OTHER EXCITING LOW-COST RQBDTIC PRODUCTS

ROBOT VISION

COLVIS is a low-cost vision system which is able to see objects and remember their shapes! its powerful, Z80-based dedicated microcomputer extracts information from the image produced by a $1024(32 \times 32)$ pixel solid state camera which is light enough to be mountable on the end of a small robot arm. Features of the image, such as area or hole count, can be remembered and used to recognise subsequent objects viewed The system can aiso determine the position and orientation of an object and may be used either on its own or as an intelligent peripheral to any computer fitted with an 8-bit bidirectional port.
COLVIS costs only $£ 395$ (+ VAT and excluding T.V. monitor and cassette recorder).

the colvis camera fitted to the end OF AN ARMOROID ARM

THE ARMDROID MICROROBOTIC-ARM
 precision, stepping-motor driven arm which has become an industry standard in education and industrial training, is now available to the hobbyist for between $£ 300$ and $£ 600$ (depending on options chosen).

ZEAKER is a small, low cost computer controlled robot vehicle designed to have all the normal functions of a "turtle" i.e. steering, lights, pen, horn and bump sensors but it is also capable of being expanded using photosensors for eyes to seek out or avoid light or to follow white lines etc; with a complex sound generator for special noises à la R2D2, and with computer speech.

It will easily interface to most popular microcomputers and can be programmed in a high level language like BASIC, although a modular language like FORTH or PASCAL would be better.

Under program control Zeaker can go forward, backwards or rotate right or left on the spot; it has two navigation lamps: port and starboard (or eyes if you prefer) which can be turned on or off; a speaker which can emit a high or low tone or a combination of both; 6 tactile sensors which can detect a collision with an object in Zeaker's path and finally but not least a pen which can be lowered or raised to enable Zeaker to draw Turtle Graphics. The up or down state of the pen is indicated by a lamp on the top of Zeaker.

Zeaker was designed to run on a table top, but will also run on smooth floors and because of this and to keep down the cost, the controlling electronics and power supply are contained in a separate box linked to Zeaker by a 2 metre umbilical cord (16 way ribbon cable). This separate box ('Zeaker Control Station') is linked to the microcomputer by two short ribbon cables.

DESCRIPTION OF ZEAKER (VEHICLE)

Zeaker's chassis is a modified ABS plastic box inside which are two electric motors complete with gearber $\mathrm{s}_{\mathrm{a}}, 3 \cdot \mathrm{~g}$ driving each of the two wheets; a small speaker for the horn and a solenoid to lower the pen.

Mounted in the lid of the box are the navigation lamps, or eyes (red and green l.e.d.s), the socket (SK 1) to connect the umbilical cord and the pen status l.e.d. (yellow) whilst on the outside are the four Aluminium Fenders which when touched compress foam plastic blocks and make contact with screw heads in the side of the box, thus forming 16 simple switches which are paralleled into 6 groups (Fig. 11). Underneath at the front is a plastic "toe" to give Zeaker stability.

DESCRIPTION OF ZEAKER CONTROL STATION

The Control Station contains 4 Nicad C-cells to provide the power for Zeaker. This eliminates all the safety problems with mains powered equipment and thus it may be left without fear in the hands of the youngest child. Using Nicads also leads to a more compact power supply unit and a fully charged set will power Zeaker for at least 4 hours but including thinking time, human's and Zeaker's, this will easily stretch to 8 hours. To recharge the Nicads the computer's power supply can be used, in the version here, the $\mathrm{ZX}-81$ power supply simply plugs in the back and trickle charges the Nicads through a lamp which also acts as a reminder that the supply is on. The $\mathrm{ZX}-81$ power supply will recharge the Nicads overnight.

A printed circuit board holds the driver transistors which switch on the motors, lights and solenoid. A 556 dual oscillator is used to provide the tones for the horn whilst a 74LSOO Quad NAND i.c. wired as a set/reset latch prevents the motors being switched into reverse as well as forward. On the front panel is a switch which isolates the control electronics from the Nicads and acts as an "off" switch for Zeaker. No robot (leastways with present technology) should be without an "off" switch.

VEHICLE CONSTRUCTION

First, the box should be modified as shown in Fig. 1, then the metal Fenders should be made and bent to shape using the template drawings in Fig. 2. The solder tags should be attached as shown in Fig. 3 and the bends checked again. Make up the pen arm and bracket (Fig. 4), once again this drawing can be used as a template for bending the pen arm. A corner of one of the motor gearboxes (Fig. 5) should be removed. (This will be the starboard motor assembly.) The motors and gearboxes should be assembled using only 4 of the black plastic gears with the long end of the small motor shaft shortened so the shaft is 39 mm in length. Next press on the white gear wheel and put on the spacers. Assemble the gearbox and secure the end cap with polystyrene cement (for plastic kits) (Fig. 6).

ZEAKE』 MICRD-ROBOT PART 1

HOLE		SIZES
	NO. OFF	DIA (mm)
A	11	3
B	6	3 CSK
C	9	3.5
D	1	5
E	3	6.5

ALL DIMENSIONS IN MILLIMETRES

Fig. 1. Cutting and drilling details for Zeaker's chassis

Fig. 2. Fender cutting and bending details. Note this drawing is full size and can be used as a template for cutting and bending the fenders

Fig. 3. Method for attaching solder tags to fenders
the solder tag and the toe components fitted to hold the speaker (Fig. 8).

The left motor assembly can now be positioned checking that it doesn't bind. Now assemble the solenoid in its bracket, fit the plunger extension and spring (Fig. 4) and bolt the bracket to the bottom of the box fixing the pen arm underneath. The pen arm should be loose enough to move freely under solenoid control. Fit the pen and make sure that it is centred in the hole at the bottom of the box, adjusting the bracket position accordingly.

A fibre washer should be placed on each wheel shaft and then the wheels can be fitted (Fig. 6). Adjust the pen in its holder so that in the down position it projects about 1 to $1 \frac{1}{2} \mathrm{~mm}$ below the bottom of the wheels. The pen can then be shortened so that its top is level with or just below the top of the pen arm.

The Fenders should just drop in the slots of the box, after being eased over the foam pads. They should push in and make contact with the pillars very easily and the foam pads should spring them out again.

[EAC1]

Fig. 4. Solenoid mounting bracket and pen arm. Note the pen arm drawing is full size and can be used as a template for cutting and bending the arm

Fig. 5. Servo motor modification
The tactile sensor screws and pillars should be fitted next (Fig. 7 and Table 1) and then the foam pads can be mounted as shown in the photograph. The starboard motor assembly should be bolted into position and a solder tag fitted on top of the front mounting lug to hold the speaker in position. Check that the output shaft does not bind on the sides of the case hole. The speaker can now be fitted in position under

Fig. 6. Motor, gearbox and wheel assembly

VEHICLE PCB

The vehicle p.c.b. is shown in Fig. 9 with the component layout shown in Fig. 10. The components are mounted on the solder side of the board with the exception of SK 1 . Before fitting the components, solder should be run onto each square pad to form solder bumps. The diode, resistors and RF chokes should then be soldered, blobbing the ends of

Fig. 7. Tactile sensor contact assembly

Top and bottom contact points are identicul

LOCATION	SPACER LENGTH
Front	3 mm
Side front	$7 \mathrm{~mm}(6 \mathrm{~mm}$ spacer +2 washers $)$
Side rear	6 mm
Rear	3 mm

Table 1

Fig. 8. Toe assembly

Fig. 9. P.c.b. for vehicle

Photograph showing the position of the foam pads
the leads into the solder bumps (Fig. 10). The 16 -way Molex connector (SK1) should be fitted from the opposite of the board and soldered in place.

The p.c.b. should be bolted onto the lid of Zeaker using two fibre washers over the p.c.b. tracks. The l.e.d.s and link wires to the p.c.b. can be soldered next with the leads of the centre l.e.d. bent down and soldered to the two adjacent pads.

VEHICLE WIRING

All the top and bottom solder tags on the contact-points should be linked as should the side-rear and rear contact-

Fig. 10. Component layout

Fig. 11. Location of Zeaker's tactile sensors

EALT]

Fig. 12. Motor and Sensor harnesses

Fig. 13. Wiring diagram for the vehicle

COMPONENTS . . .

VEHICLE

Resistors

R1,R2,R3 100 (3 off)

Capacitors

C1, C2 100n (2 off)

Semiconductors

D1	0.2 in red l.e.d.
D2	0.2 in green l.e.d.
D3	0.2 in yellow l.e.d.
D4	IN4001

Inductors

L1, L2, L3 Lamp RF chokes (3 off)

Misceilaneous

ABS plastic box $(120 \times 100 \times 45 \mathrm{~mm})$
Cover cap for toe
Micro Mold 38×13 wheel (2 off)
Como motors and gearboxes, small (2 off)
Keyswitch Varley 5 V solenoid SMOO
$1 \frac{1}{2}$ in. dia. 8 ohm speaker
Pen holder--centre from 5A connector block
Clips for l.e.d.'s (3 off)
Molex connector 5332 series 16 pin
Aluminium for fenders, plunger extension and solenoid mounting bracket
Rod for pen arm
Fender foam pads (self-adhesive draught excluder)

Constructor's Note

The toe cover cap is available from most hardware stores and the wheels and motor gearboxes assemblies are obtainable from hobby shops.

A complete kit of parts for the vehicle (including machined, cut and ready bent items) and control station with a manual and software is available from Colne Robotics Ltd., Beauford Road, off Richmond Road, Twickenham TW1 2PH (01-892 8197/8241). Price E59.95 inc. VAT.

Colne Robotics are also able to supply the separate parts, please write or phone for details.

Internal view of the vahicle

Fig. 14. Molex connector pin allocations (viewed from copper side (below) of p.c.b.)
points (Fig. 11). The 6-way harness can then be fitted to the contact-points starting with the longest lead at the Front Port contact-point and then fit the speaker harness, finish the interwiring and fit the motor harness. Then slot the fenders into position and solder the fender links. Finally solder

The Zeaker Vehicle together with its Control Station and a 2X-81
the harnesses to the appropriate pads on the p.c.b. (Fig. 13). The solenoid leads should be cut to $5 \frac{1}{4}$ inches, twisted together and soldered into place on the p.c.b. Check that when the lid is shut none of the wires foul the fenders and that they can be pushed in to make contact as before.

VEHICLE CHECKOUT

Using a signal/pin allocation diagram (Fig. 14) check with a multimeter that each of the sensor lines is shorted to OV when the appropriate contact pillar meets the fender and that upon release there is an open circuit. Apply +5 V to the solenoid pin and check that the solenoid clicks in and lowers the pen, similarly check the lights with +5 V . Applying 2 V $\left(1 \frac{1}{2} \mathrm{~V}\right.$ will do) between motor common and the motor lines check that + ve voltage on the port motor line makes the motor go forward and -ve makes it go in reverse and check that a + ve voltage on the starboard motor line makes it go back and -ve makes it go forward i.e. to go forward port line is + ve and starboard line is -ve (to even out battery use).

NEXT MONTH: Control station construction.

Appearing every two months, Micro-Bus presents ideas, applications, and programs for the most popular microprocessors; ones that you are unlikely to find in the manufacturers' data. The most original ideas often come from readers working on their own systems; payment will be made for any contribution featured.

MANY microcomputers now offer programming languages such as FORTH, PASCAL, and LISP as alternatives to the ubiquitous BASIC which has become established as the universal programming language of micros. This month's Micro-Bus takes a detailed look at one of these (LISP) and the advantages it offers over BASIC for certain applications.

LISP

The most apparent difference between LISP and BASIC is the way programs are written. In BASIC the program is written as a number of statements which can be listed, edited etc; this is then RUN to perform the desired actions. In LISP the programming consists of defining 'functions' which have exactly the same status as the functions which constitute the language itself. For example, PLUS is a function provided in LISP for performing addition; the programmer can define a function ADD which behaves in exactly the same way as PLUS, or indeed can re-define PLUS to do something different (as shown later in this article).

ATOMS AND LISTS

The nuts and bolts of LISP are very simple when compared to BASIC. Whereas in BASIC there are variables, arrays, functions, subroutines, and language statements, in LISP there are just two fundamental types of object: atoms and lists. The atoms are indestructible units, such as numbers like 23 , or symbols like NAME, PROGI, etc. Lists are composed of atoms, and a simple list of three atoms might be:

(RED WHITE BLUE)

where the brackets are used to enclose the elements of the list. Lists may be composed of any number of atoms, or other lists; for example:
(16 (THIS))
is a list of two elements, the atom 16 and the list (THIS).

Symbols can have values, so they act like the variables of other languages. Normally anything typed at the keyboard of a LISP system is evaluated, and as a reminder of this LISP's prompt is:

Evaluate:

So if we type an atom, such as:
Evaluate: LINEWIDTH
we are given its value in return:
Value is: 40
The value could be a number, a symbol, or a list. Note that evaluating a number just gives the same number.

FUNCTIONS

A symbol can also be designated as the name of a function; we have already met PLUS, the LISP function for performing addition. How then do we call a function? The answer is that we first construct a list starting with the function name, and followed by the list of arguments that the function needs. Then we ask LISP to evaluate that list. Thus to add 2 and 3 we type:

Evaluate: (PLUS 23)
And the answer comes back:
Value is: 5
Arguments to functions are normally evaluated before being passed to the function, so we can write:
Evaluate: (PLUS (TIMES I 2) (TIMES 4 6))
to find the answer to $1^{*} 2+4^{*} 6$.
In addition to all the usual built-in functions, LISP contains functions for manipulating lists. The three most important ones are CAR and CDR (the names are historical) which break down lists, and CONS which constructs a list.

CAR returns the first element of a list, and CDR returns the list with the first element removed. Thus, suppose LIS had the value:

(ONE TWO THREE)

then (CAR LIS) would give ONE
(CDR LIS) would give (TWO THREE)
(CAR (CDR LIS)) would give TWO
(CDR (CDR LIS)) would give (THREE)
CONS takes two arguments, the second of which must be a list; it adds the first argument to the front of this list. Thus:
(CONS 4 LIS)
is (4 ONE TWO THREE).
Although arguments to functions are normally evaluated, one can prevent this by using the QUOTE function, which can be abbreviated . . . Thus:

(CAR '(ONE TWO THREE))

would give ONE as before. However:
(CAR (ONE TWO THREE))
would normally give an error because ONE is not a valid function.

So far we have not discussed how values are assigned to atoms. Again, this is by means of a function; the function, SETQ, takes two arguments, and the value of the second is assigned to the first. Thus:

(SETQ NO 4)

would give NO the value 4. (Note that this is one function that does not evaluate its first argument.)

We now need to look at the COND function which gives LISP conditional facilities. Consider the following example:

(COND

((EQ VAL 1)(PRINT 'ONE))
((EQ VAL 2) (PRINT 'TWO))
(T (PRINT 'NOT 'ONE 'OR 'TWO))
COND is followed by a series of lists. The first element of each list is a condition; if this condition evaluates to a non-NIL value it is taken as being true or (T), and the remaining elements of the list are evaluated. For example, (EQ VAL 1) will have the value T if VAL is 1 , and NIL otherwise. If none of the conditions are true COND returns NIL; normally, however, the last condition is T , as in the above example, so it will always be true.

DEFINING FUNCTIONS

Finally, the most important LISP function is DEF because it allows you to define new functions in LISP. As an example of defining a new function, let us see how a verbal description can be translated into a LISP function. The example used should be well known to everyone who has studied electronics: the calculation of the power dissipated in a resistor. This is given (in watts) by the equation: $\mathrm{P}=\mathrm{I} \uparrow 2^{*} \mathrm{R}$, where I is the current in Amps, and R is the resistance. The function will be given the name POWER; after the name comes a list of the parameters that will be supplied to the function (in this case, I and R), followed by the actual definition of the function:
(DEFUN POWER (I R)
(TIMES (TIMES I I) R))

Trying it out for a 3 ohm resistor carrying 2 amps:

Evaluate: (POWER 23)
Value is: 12

WHY LISP

What are the advantages of LISP over BASIC? Two advantages will be illustrated in this article. The first is that LISP's list structures provide a very convenient way of representing certain types of data. For example, the resistor network shown in Fig. 1 can be represented by the following list where (PAR X Y) denotes that X and Y are in parallel, and (SER X Y) denotes that X and Y are in series:
(PAR (SER (PAR 1 (SER 23)) 4) 5)
We can write LISP functions to operate on this list; for example, to find the total resistance of the network.

EG1112
Fig. 1. Resistor network used by the LISP program described in the text.

A second advantage of LISP over BASIC is its extensibility; the programmer can add new facilities to the language itself to increase its power. For example, it might be useful to be able to define new types of data, such as complex numbers, vectors, and physical quantities, to cope with some particular application. Most languages, BASIC included, would require the programmer to set up a sublanguage to handle the new datatypes. LISP, however, has the very attractive feature that the programmer can extend the definitions of the built-in functions to cope with new datatypes. This is illustrated for the following simple example which adds rational arithmetic to LISP.

RATIONAL-ARITHMETIC

PACKAGE

Most implementations of LISP, at least on microcomputers, only include integer arithmetic. The rational-arithmetic package provides a way of expressing numbers which are not exact integers by extending LISP's integer arithmetic to include a new datatype, a rational number or ratio of two integers. In LISP this is represented as a list of two integers: for example, (1223) represents the rational number: 12/23. The package can then be used to perform calculations on integers and rational numbers. Note that, unlike floating-point calculations, all calculations involving rationals using this package are exact.

To illustrate the package in use, we calculate $3+4 / 5$:

Evaluate: (PLUS 3 '(45))
Value is: (195)
Thus the answer is $19 / 5$.

The first step in writing the package is to provide a way of converting integers into rational form; thus the integer 6 should be converted into the rational number $6 / 1$. We therefore define a function RAT that takes either a rational or an integer and always returns a rational; see Fig. 2.

$$
\mathrm{a} / \mathrm{b}+\mathrm{c} / \mathrm{d}=(\mathrm{a} \cdot \mathrm{~d}+\mathrm{b} . \mathrm{c}) / \mathrm{b} \cdot \mathrm{~d}
$$

Each argument is first converted to a rational , number, and the final result is normalised before being returned.

QUOTIENT, shown in Fig. 5, is simpler than PLUS since it must always perform the calculation in rationals, even if the arguments are both integers.

```
(DEFUN PLUS (A B)
    (COND
        ((AND (NUMBERP A)(NUMBERP B))
        (PLUS£A B))
        (T (SETQ A (RAT A))
            (SETQ B (RAT B) )
            (NORM
                (PLUS&
                (TIMESE (CAR A) (CADR B))
                (TIMES£ (CAR B)(CADR A) ))
                (TIMES£(CADR A)(CADR B) ))) ))
```

It uses the built-in function LIST which makes a list out of its arguments. Thus:
Evaluate: (RAT 6)

Value is: (6 1)
Next we redefine LISP's built-in arithmetic functions with new names, so that we can refer to them in the definitions of the functions that are to replace them:
(SETQ PLUS£ PLUS)
(SETQ MINUS£ MINUS)
(SETQ DIFFERENCE£ DIFFERENCE)
(SETQ TIMES£ TIMES)
(SETQ QUOTIENT£ QUOTIENT)

Fig. 4. New definition for PLUS works with rationals as well as integers.

Fig. 2. RAT converts an integer to a list representing a rational number.
(DEFUN NORM (A B (AA) (BB))
(SETQ AA A)
(SETQ BB B)
(LOOP
(UNTIL
Fig. 3. NORM returns a list representing A/B as a rational in lowest terms.
(EQ
0)
(COND
(DEFUN QUOTIENT (A B)
(SETQ A (RAT A))
(SETQ B (RAT B))
(NORM
(TIMES£ (CAR A) (CADR B))
(TIMES£ (CADRA) (CARB))))
Fig. 5. QUOTIENT works with rationals.

RESISTORS NETWORK

Finally, as an example of how the rational versions of PLUS and QUOTIENT can be used, consider the practical problem of
(SETQ A (REMAINDER B (SETQ B A)))
((EQ BB B) (QUOTIENT£ AA B))
(T (LIST
(QUOTIENT£ AA B)
(QUOTIENT\& BB B))))))

The two rational numbers $6 / 4$ and $3 / 2$ both represent the same number; to avoid this ambiguity we keep all rational numbers in lowest terms by cancelling out any common factor between numerator and denominator. The function NORM shown in Fig. 3 takes two integer parameters A and B , and returns a list (A B) representing the rational number A / B with any common factor between A and B cancelled out. It uses Euclid's method to find the Greatest Common Divisor between A and B , and returns an integer if possible; otherwise it returns a list of two integers.
Finally, we redefine the arithmetic functions to behave as normal on integers, and to deal correctly with rationals. Here only the definitions for PLUS and QUOTIENT are given; the other functions are left as an exercise!

For PLUS, shown in Fig. 4, we use the identity:
calculating the resistance of the resistor network shown in Fig. 1, represented by the list:

(PAR (SER (PAR 1 (SER 23)) 4) 5)

From the laws governing resistors in series and parallel, namely:
$\mathrm{s}=\mathrm{a}+\mathrm{b}$ for resistors a and b in series, and $1 / p=1 / a+1 / b$ for resistors a and b in parallel, we obtain:
(DEFUN SER (A B) PLUS A B))
(DEFUN PAR (A B)
(QUOTIENT 1 (PLUS (QUOTIENT 1A)
(QUOTIENT I B))))
Finally, to calculate the resistance of the above network:

Evaluate: (PAR (SER (PAR I (SER 2 3)) 4) 5)

Value is: (145 59)
Thus the resistance is $145 / 59 \mathrm{ohms},(2 \cdot 46 \Omega)$.

EVEN though most homes rely heavily on electrical power, a mains supply failure for a short period of time is generally little more than an inconvenience provided that it is noticed and any necessary action taken. During the night, however, it is unlikely that such a break will be observed with the result that all electro-mechanical clocks will stop for the duration of the break, and many digital clocks will simply reset. The result of oversleeping the following morning and eventually rising to find that the central heating has also stopped leaves little to the imagination.

More seriously, there are those who rely on mains electrical power for medical reasons and for whom the supply failure can be a worrying experience even though most medical equipment is fitted with battery back-up. It will always be a comfort to such people to have company during this time and it seems desirable to have a unit which will warn others of a mains failure.

The design presented here is for a small and cheap mains powered circuit which will light an l.e.d. and sound a tone if the mains fails. The circuit will detect quite short breaks $(60 \mathrm{~ms})$ and thus should be more sensitive to mains failures than other items. It is intended that the completed unit be left switched on at all times and be used as a 'wake up' alarm in event of supply failure.

THE CIRCUIT

It was decided from the outset that the complete unit should be small and cheap to make. It is obvious that some form of battery supply to power the circuit, once the mains has failed, is needed and it was decided that a small nickel cadmium re-chargeable battery would be ideal. The cell is trickle charged during the time the mains is on by means of a
small transformer mounted directly onto the circuit board.
The circuit is centred around a dual CMOS version of the well known 555 timer. One of the timers is used as a conventional astable oscillator to produce a 1 kHz tone, the other as an edge triggered latch to detect and remember the supply failing. It is worth examining the action of the 555 used as a latch because it often provides a simpler and more compact solution than conventional logic designs.

In normal astable operation (Fig. 1) the capacitor charges up until the 'threshold' voltage is reached. At this time the output changes state and the discharge output pulls low, discharging the capacitor. This state continues until the 'trigger' voltage is reached when the output changes state again, the discharge output starts to float and the capacitor recharges.

It is obvious from this that the trigger is operated from a falling voltage and the threshold from a rising voltage. Both these inputs have the advantage that they are specifically designed to cope with slow edges, which would undoubtably require a Schmitt trigger interface to conventional logic latches. To use the 555 as a latch is a simple matter of omitting the timing capacitor and associated resistors. Fig. 2 shows the schematic and truth table that results from this. It is important to note two main points about the trigger and threshold inputs. Firstly, they should not be connected directly to the active supply rail which can cause lock-up in some manufacturers' parts which are not fitted with an internal bias generator and so a series resistor of some 220 ohms should always be inserted in series with the inputs, or the input should be a.c. coupled with a capacitor. The second point to note is that these inputs are level sensitive and not edge triggered, and should only be pulsed

AN AUDIO/VISUAL MAINS FAILURE WARNING SYSTEM

Fig. 1. Astable operation
to activate them since unstable conditions occur if they are both active at once.

In this application it is required to detect a falling edge and so the threshold input is connected to 0 volts. This is acceptable since 0 volts is not the 'active' supply rail for the threshold input. Obviously once the 555 is triggered by a falling edge on the trigger input it will remain so until manually reset, in this case by the reset button connected to the 555 reset line.

EG1090

Fig. 2. Schematic and truth table for the latch including reset

A 3VA transformer was used to power the circuit (Fig. 3.). In view of the low standby power it would have been possible to derive the supply directly from the mains via dropping resistors but this was not done for reasons of safety. The transformer is connected to the mains via a 50 mA fuse which will blow if the circuit fails in any way. This must not be omitted since it is intended that the final unit be left plugged in for long periods of time without any checks being made on it.

The output of the transformer is rectified by D1 and D2. This rectified power is used to trickle charge the 9 volt ni-cad battery via R1 (to limit the current) and D3 (to prevent the battery from interfering with the operation of the actual fail detection circuit). It should be noted that the regulating effect of the battery avoids the need for a smoothing capacitor.

The 15 volt Zener diode, D4, plays no part in the normal operation of the circuit and serves to limit the supply voltage to the i.c. should the battery ever become disconnected.

The actual fail detection circuit uses half a CMOS 556 as a latch with the threshold input grounded as previously described. When the mains voltage is present C 2 will charge up to about 9 volts by virtue of R2 and clamp diode D5. This means that C3 is nearly discharged since R4 will hold pin 6 of the 7556 at about 9 volts as well. It is necessary to clamp the voltage on C2 to be about the same as the battery voltage or C2 would tend to discharge into the battery through R2 and the normal trickle charge path which would keep triggering the unit. When the mains input ceases C2 will discharge through R3 which in turn requires that C3 charges through R4, temporarily pulling the 7556 trigger input low as it does so.

The latch action of the timer is reset by S1, which simply grounds the reset input. Capacitor C4 is included to provide a battery power-up reset and prevent spurious noise causing erratic resets.

The output of the timer-latch is used to turn on an l.e.d. by means of a transistor buffer, required because the CMOS version of the timer cannot source sufficient current for this purpose. The output also enables a conventional astable oscillator, which, after suitable transistor buffering, is used to drive a small speaker. The volume level was limited in the prototype by a 47 ohm series resistor but this may be altered if required. The diode D8 acts as a clamp to prevent back e.m.f. from the speaker upsetting the operation of the astable circuit.

CONSTRUCTION

A small plastic box $(120 \times 40 \times 65 \mathrm{~mm})$ was used to house the prototype, and the printed circuit board is designed to fit into this size of box. There is not much room in the box and it is suggested that the parts are roughly fitted and then any necessary holes drilled so that they do not foul the circuit board or the speaker. As a guide the prototype circuit board was mounted upside down in the box, the switch, l.e.d. and speaker fitting alongside the transformer below D1 and D2. The mains cable was fed through a hole in one end of the box. A 20 mm hole was drilled in the bottom of the box 43 mm from one end and covered with speaker cloth on the inside. The speaker was then glued in place above this hole so as to leave room for the battery plate (Fig. 4). The p.c.b. design for the circuit is shown in Fig. 5 with the component layout shown in Fig. 6.

A certain amount of care should be used when assembling the p.c.b. since parts of it carry mains voltages. Also note that if the board is to be manufactured using an etch resist pen at least 3 mm should be left between those tracks carrying the mains supply and any others.

Fig. 3. Circuit diagram

COMPONENTS

Resistors

R1	$1 k 5$
R2	$1 k$
R3, R8	$1 M(2$ off)
R4	$10 M$
R5	$100 k$
R6, R10	$56 k(2$ off)
R7	$2 k 2$
R9	$2 M 2$
R11	47

Capacitors

C1
C2, C3, C4, C5 100n C280 type polyester (4 off)

C6

560p polystyrene

Semiconductors

D1, D2, D3, D8	1N4001 (4 off)
D4	15V Zener 400 mW
D5	$9 V 1$ Zener 400 mW
D6	$1 N 4148$
D7	Red $0.2^{\prime \prime}$ l.e.d.
TR1, TR2	BC184L (2 off)
TR3	BFY51
IC1	ICM7556

Miscellaneous

50 mA fuse and two p.c.b. fuse clips
35 ohm speaker (or 80 ohm) to fit box approx. 50 mm diameter
Printed circuit board
Terminal pins
Push button switch
PP3 nickel cadmium battery
PP3 battery clip
Aluminium sheet to make battery plate
Plastic box $120 \times 40 \times 65 \mathrm{~mm}$ with ribbed inner walls
Main 2 core cable and plug
Grommet and cable tie
Connecting wire

Fig. 5. P.c.b. design

Fig. 4. Battery holder details

The prototype board was held in place in the box by the lid. Two plastic combs usually used to clip boards in were glued to the sides of the box to be flush with the top of the slots in the box wall. The complete circuit boards balanced on these and was clamped into place by the lid

Fig. 6. Component layout

Internal view of the unit
A cable tie should be fixed around the mains cable on the inside of the box to prevent it being pulled out and a grommet must be used to stop the wire rubbing on a rough edge.

A plastic box should be used but if a metal box is required it is essential that it is earthed very well. In any case the circuit board itself should be earthed as indicated.

TESTING

Ensure that the nickel cadmium battery is disconnected before testing commences. All live parts of the circuit board must be well covered in insulating tape before the unit is plugged in. The usual precautions for handling mains powered systems must be observed

Connect a multimeter across the battery clips and switch on. The voltage should be slightly less than 15 volts. Switch off and repeat with the meter connected across D5 when a reading of 9 volts should be seen. If the tone sounds during this time and sounds very rough do not worry since with the battery missing the circuit supply is largely unsmoothed and 50 Hz hum will be superimposed on the tone. Connect in the battery and press the reset if the tone sounds.

Switch the unit on and off and the tone should now sound cleanly and the l.e.d. should light. It may happen that the tone will sound briefly and fade out; this is due to the battery being flat and so the unit should be left on for some 24 hours in order to charge the battery up

If problems are experienced and the l.e.d. does not come on when the power is removed unplug the unit and try connecting C2 to the +ve battery terminal and then removing it to simulate mains failure. It should be possible to see the voltage on pin 6 of the i.c. kick down but remember that the meter will alter the timing relationships.

There is little to say about the unit in use. The prototype was fitted behind a bedside table and simply left alone. Do remember to reset it if the power is turned off for any reason since it will run until the battery is dead

PE SPECIAL CASSETTES OFFER CHROMIUM DIOXIDE AUDIO CASSETTES

CHROME C60 \& C90

CRO2 C60 CASSETTES
90p each (minimum of 5); 80p each (minimum of 25)
CRO2 C90 CASSETTES
115p each (minimum of 5); 105p each (minimum of 25)

FERRIC C90 AUDIO

C90LH CASSETTES

56p each (minimum of 5); 53p each (minimum of 25).

PRICES INCLUDE VAT AND POSTAGE.

These European-made tapes are excellent value and we are pleased to offer them to readers. They are covered by a money back guarantee (return within 21 days for refund). Not only are the tapes of high quality but the cassettes are of screw together construction and the case labels have space for notes on the recordings.

Send valid coupon to

Videotone Ltd., 98 Crofton Park Road, Crofton Park, London SE4.

Easy to bulld protecte for everyone
 alecionics

Our Sister Publication

EVERYDAY ELECTRONICS
features the following projects in the May issue:
FREE!
TWO TRANSISTORS FOR USE IN EITHER OF THESE PROJECTS:
GUITAR HEADPHONE AMPLIFIER M.W. RADIO/TUNER

PLUS

t LABORATORY AMPLIFIER - Test Gear '83 * PULSED TRAIN CONTROLLER
COMPUTER PROJECT * REAL-TIME CLOCK \& CALENDAR For BBC MICRO and APPLE II
Special Report FX Computer Kit
ON SALE APRIL 15
PLACE AN ORDER WITH YOUR NEWSAGENT NOW!

NOW WITH IMPRONED SPECIFICATIONS

\checkmark Deflection

Bandwidth: DC-10 MHz \{-玉dE\} Overshoot: Less than 1\% Sensitivity: 2 mV - $20 \mathrm{~V} / \mathrm{cm}$ Input Imp: IM oh $\mathrm{T}^{\text {t/ }} / 25$ pf V'ariable Control

X Deflection

Timebase: $0.2 \mathrm{~s}-0.2 \mathrm{us}$ 'cm Triggering: $2 \mathrm{~Hz}-30 \mathrm{MHz}$ (3mm) Auto + level control Bandwidth: $2 \mathrm{~Hz}-1 \mathrm{MHz}$ Vañable Control

GENERAL INFORMATION

Component Tester For tingle csmpotents and ir circuit

Calibrator
Power Supplies
A.C. Input

Nieight
Size
CRT
Ascuracy
Fiter
Trace rotation $5.2 \mathrm{~V} \pm 1 \%$ fcr picbe alignment Zegule ted includi ig high volmege $110,125,220,24 \pm$, V.A.C., $80-60 \mathrm{~Hz}$ 9y/4 Lbs $41 / 2^{\prime \prime}(\mathrm{H}) \times 83 / 8^{\prime \prime}(\mathrm{W}) \times 107116^{\prime \prime}(\mathrm{D})$ Ractancular aterral graticulo 3% ir vertical amplifior -V. irisge Ifter Fizfron: parat.

For more information en FIAMEG's full range of top performance assilloscopes eontaet:

HAMEG LTD.

74-78 Collingdon Strect Euton Beds, LU1 1RX Tel: (0582) 413114

NEw:T.Y. SOUND

 TUNERIn the cut-throat world of consumer electronics, one of the questions designers apparently ponder over is will anyone notice if we save money by chopp ing this out? in the domestic TV set, one of the the sound quality Small speak

$£ 22.95+£ 2.00 \mathrm{p} \& \mathrm{p}$ and no tone controls are common
en this background a TV companies do their best to transmit the highest quality sound. Given this background a compact and
This TV SOUND TUNER offers full. UHF coverage with 5 pre-selected tuning controls. It can also be used in conjunction with your video recorder, Dimensions: $1136^{\prime \prime} \times 81_{2}{ }^{\prime \prime} \times 3 \%^{\prime \prime}$ E.T.I. kit version of above without chassis, case and hardware. $£ 12.95$ plus $£ 1.50 \mathrm{p} \& \mathrm{p}$.

PRACTICAL ELECTRONICS STEREO CASSETTE RECORDER KIT © ©

ONLY £31.00 plus $£ 2.75$ p\&p. - NOISE REDUCTION SYSTEM. AUTO STOP. - TAPE COUNTER. - SWITCHABLE E.Q. INDEPENDENT LEVEL CONTROLS - TWIN V.U. METER. : WOW \& FLUTTER 0.1% • RECORD/PLAYBACK I.C. WITH ELECTRONIC SWITCHING. FULLY VARIABLE RECORDING BIAS FOR
ACCURATE MATCHING OF ALL TYPES
Kit includes tape transport mechanism, ready punched and back
printed quality circult board and all electronic parts.ie. semiconductors,
resistors, capacitors, hardware, top cover, printed scale and mains transformer
You only supply solder \& hook-up wire. Featured in April P.E. reprint 50p. Free with kit

PERSONAL LS AMPLIFIER KIT

Amplifier for your personal stereo cassette player - as featured in January issue of Everyday Electronics. Turn your personal stereo into a mains powered home unit.
Parts:
Stereo power amp PCB with all components, $£ 3.50+75 \mathrm{p}$ p\&p. Power supply unit $£ 1.95+£ 1.50$

 ower supply and amp only), $£ 2.95+80 p$ p\& \mathbf{p}. P\&P inclusive price of $£ 1.75$ for any two or more

125W HIGH POWER AMP MODULES

The power amp kit is a module for high power applications - disco units, guitar amplifiers, public address systems and even high power domestic systems. The unit is protected against short circuiting of the load and is safe in an open circuit condition. A large safety margin exists by use of generously rated com ponents, result, a high powered rugged unit The PC board is back printed, erched and eady to drill for ease of construction and the lise Supplied with all parts, circuir diagrams and instructions.

ACCESSORIES: Suitable mains power supply Nit with transformer: $£ 8.50+£ 2.00 \mathrm{p} \& \mathrm{p}$

BSRRECORD DECK

Manual single play record eck with auto return with stereo ceramic cart ridge 2 speeds with 45 rpm pindle adaptor ideally spindle adaptor ideally $£ 12.95+£ 1.75 \mathrm{p} \& \mathrm{p}$

SPECIAL OFFERI Pleplacam. Stere otte tape heads - $£ 1.80$ each. Mono: $£ 1.50$ each. Erase: $£ 0.70$ each. Add 50p p\&p to order
$21 B$ HIGH STREET, ACTON, W3 6NG.
Note: Goods despatched to U,K. postal addresses only. All items subject to availability. Prices correct at Hease allow 7 working days from receipt of order for despatch. RTVC Limited reserve the right to up date their products without notice. All enquiries tand

SPECIFICATIONS
 Max. output power (RMS): 125 W. Operating voltage (OC): 50-80 max. Loads: 4-16 ohm Frequency response measured @ 100 watts: $25 \mathrm{~Hz}-20 \mathrm{KHz}$. Sensitivity for $100 \mathrm{w}: 400 \mathrm{mV}$ @ 47 K . Typical T.H.D. @ 50 watts, 4 ohms 0.1%. Dimensions: 205×90 and $190 \times 36 \mathrm{~mm}$

KIT	BUHLT
$£ 10.50$	$£ 14.25$
$+£ 1.15 p \& p$	$+£ 1.15 p \& p$

SPEAKER BARGAINS
2 WAY 10 WATT
SPEAKER KIT
$8^{\circ \prime}$ bass/mid range and $31 /{ }^{\prime \prime}$ tweeter. Complete with screws. wire, crossover component
and cabinet. All wood precut - no cutting required. Finish-chipboard covered wood simulate. size $141^{\prime \prime} x$ $83{ }^{3 \prime} \times 4^{\prime \prime}$. PAIR for ONLY
£12.50 plus $£ 1.75$ p\&p

ALL CALLERS TO: 323 EDGWARE ROAD LONDON W2. Telephone: $01-7238432$. 15 minutes watk from Edgware Road Tube Station
Now open 6 days week 9-6. Prices include VAT

Personal
 Stereo Amplifier

R.A.PENFOLD

PERSONAL stereo cassette and radio/cassette units provide a surprisingly high output quality despite their diminutive size and the fact that they are not fitted with Dolby B decoders (a fixed amount of treble cut normally being used when playing back cassettes). Perhaps an obvious add on for these units is a small amplifier plus a pair of compact loudspeakers. This would enable several people to listen to the unit simultaneously, would give better stereo imaging than using headphones, but would retain a degree of portability and the personal stereo unit could be used normally when maximum portability was required.

Amplifiers of this type do not appear to be available ready made, but a simple home constructor design for such an amplifier forms the subject of this article. The unit provides an output power of up to about 6 watts r.m.s. per channel with a total harmonic distortion level of only about 0.1\% (typical) at most power levels. This is sufficient to give good volume from a pair of small, inexpensive loudspeakers, and many loudspeakers of this type are not able to handle higher power levels. The signal to noise ratio is better than 70 dB and the noise level is negligible in comparison to that produced by the signal source. The amplifier has proper bass and treble tone controls which give the user far better control of the tone than the simple high/low tone switches.

While results are obviously not in the super-fi class, when used with a personal stereo unit and pair of compact loudspeakers of reasonable quality a very versatile portable hi-fi system having a worthwhile level of performance is produced.

THECIRCUIT

The circuit diagram of the tone, volume, and balance controls is shown in Fig. 1, and in Fig. 2 the power amplifier.

Taking the controls first, this is a straight forward passive circuit of conventional design. The bass control gives about 12 dB of boost and cut at 100 Hz and the treble control gives a similar degree of boost and cut at 10 kHz .

It is not strictly necessary for the unit to have a volume
control since all personal stereo units have a volume control which would still function with the amplifier in use. Most personal stereo units also have some means of permitting channel balancing (usually by simply having a separate volume control for each channel). Volume and balance controls were included in the unit merely because it was felt that this would be more convenient in use, and experience with the prototype supports this belief. However, the output of the tone controls can obviously be coupled straight through to the power amplifiers if preferred, with VR3, VR4-104, R5, R6, R105, and R106 all being omitted, if the volume and balance controls are considered to be superfluous.

There is a loss of about 20 dB or so through the tone and balance control circuits, but this is not important since an input level of about 1 volt r.m.s. or more will be provided by the personal stereo unit. This gives an output level of about 100 mV r.m.s. from the control circuits, which is sufficient to drive a small power amplifier.

The power amplifiers each use a TDA2006 integrated circuit which is a modern device capable of excellent performance. This device only had five leadout wires; the supply terminals, the output, plus inverting and non-inverting inputs. This device has no internal bias circuits, and it is used in very much the same way as an ordinary compensated operational amplifier such as the 741 C , but it has a Class B output stage which is capable of delivering a maximim output current of 3 amps and can produce an output power of several watts into a load impedance of a few ohms

In this circuit the TDA1006s are used in the inverting amplifier mode with R7 (R107) and R8 (R108) setting the input impedance and closed loop voltage gain of the amplifiers. R9 and R10 are used to bias the non-inverting inputs of both amplifiers to about half the supply voltage, and C8 prevents hum or other noise on the supply lines from being coupled into the amplifiers via the bias circuit. D1, D2, D101 and D102 are protection diodes, and C5 plus C105 are supply decoupling capacitors which are mounted physically close to IC1 and IC101 respectively to prevent instability.

[E610a2]
Fig. 1. Tone, volume and balance controls

MAINS POWER SUPPLY

Although battery operation of the amplifier would have the advantage of making the unit self contained, this is not really feasible since a supply potential of about 22 volts is required, and at high output powers the current consumption of the circuit exceeds 800 milliamps. The simple mains power supply circuit of Fig. 3 is therefore used to power the amplifier.

This is a straightforward non-regulated design using a bridge rectifier and smoothing capacitor $C 9$. There is a significant amount of ripple on the output of the supply, but the TDA2006 devices used in the power amplifiers have 50 dB of supply ripple rejection, and the filter used in the bias circuit of the power amplifiers also gives good immunity to hum on the supply lines. This results in no discernible mains hum from the loudspeakers despite the simplicity of the power supply circuit.

T1 is a toroidal transformer which has two 9 volt secondaries that are used in series in this circuit. This gives an unloaded supply voltage of just over 28 volts, but this falls slightly under quiescent loading, and reduces to about 22 volts with both channels fully driven.

Fuse FS1 should be an antisurge type rather than the more common quick-blow variety since the secondary windings of T 1 provide a series of pulses of current to C 9 . not a reasonably constant current flow. There is also a large current flow at switch-on as $C 9$ initially charges up, and there would be a danger of a quick-blow fuse "blowing" unnecessarily

CONSTRUCTION

A printed circuit board accommodates all the components apart form the mains transformer, on/off switch $\mathrm{S} \uparrow$, and the sockets. Details of the printed circuit board and wiring of the unit are shown in Fig. 4.

Construction of the printed circuit board is easiest if the small components are soldered in place first, followed by the four controls, C6, C106, and finally C9. It would of course be possible to use ordinary potentiometers in the unit, but they would have to be mounted off-board and hard-wired to the component panel. Construction is far simpler using the correct printed circuit mounting potentiometers, and their use is strongly recommended.

Use pins in the printed circuit board at the points where it will be connected to $T 1$ and the three sockets. Before soldering the integrated circuits into place carefully form the

Fig. 2. Powar amplifier
leadout wires of the devices and position them so that their mounting holes are aligned with the mounting holes in the board. It will be impossible to manoeuvre the integrated circuits into the correct position without risk of damage once they have been soldered into place. Make sure that the potentiometers are pushed right down into place before soldering them into position.

The recommended case is of aluminium and stee construction with approximate outside dimensions of 300 by 150 by 60 mm , but any case having similar or larger dimensions should, with a little ingenuity, be just as suitable. Assuming the specified case is used the front panel is drilled as shown in Fig. 5, and this layout should be accurately copied or it will probably be impossible to fit all the components into the case.
When the four potentiometers are mounted on the front panel they provide the front mounting for the printed circuit board. An 18 s.w.g. aluminium mounting bracket is used to support the rear of the board and also provides a certain amount of heatsinking for the two integrated circuits. Details of the mounting bracket are provided in Fig. 6. One part of the bracket is placed between the printed circuit board and the heat tabs of the two integrated circuits, and then 6BA or M3 screws about 6 mm long are used to bolt the bracket, board, and integrated circuits together. The lower part of the bracket is fixed to the base panel of the case, again using 6BA or M3 bolts about 6 mm long. It is essential for the mounting holes in the base panel of the case to be accurately positioned, and it is probably best to fit the front panel, board, and bracket assembly in place in the case, check that the front panel is in the correct vertical position, and then use the bracket as a template to help mark the positions of the mounting holes on the base panel. A lack of accuracy here could make it impossible to fit the lid.

[^3]Fig. 3. Mains power supply

Fig. 5. Transformer connections
Mains transformer T1 is mounted on the base panel of the case to the left of the component board, and the toroidal component specified in the components list is supplied complete with a mounting kit. A single 6 mm diameter mounting hole is required. A large solder tag fitted on T1's mounting bolt provides a chassis connection for the mains earth lead. The chassis mounting fuseholder for FS1 is mounted at any convenient place on the base of the case close to T1. An entrance hole for the mains lead is drilled in the rear panel near to T1 and this hole must be fitted with a grommet to protect the cable. The input and output sockets are mounted at the other end of the rear panel.

COMPONENTS . . .

Resistors

R1, 101	$33 \mathrm{k}(2$ off $)$
R2, 102	$2 \mathrm{k} 2(2$ off $)$
R3, 103	$5 \mathrm{k} 6(2$ off $)$
R4, 104	$1 \mathrm{k} 8(2$ off $)$
R5, 105	$3 \mathrm{k}(2$ off $)$
R6, 106	$3 \mathrm{k} 9(2$ off $)$
R7, 107	$2 \mathrm{M} 7(2$ off $)$
R8, 108	$15 \mathrm{k}(2$ off $)$
R9, 10	$120 \mathrm{k}(2$ off)
All $1 / 4$ watt 5% carbon	

Potentiometers

VR1-101, VR2-102
VR3
VR4-104

Capacitors

C1, 101
C2, 102
C3. 103
C4, 104
C5, 105
C6, 106
C7. 107
C8
C9

Semiconductors

IC1, 101
D1 to $6,101,102$
TDA2006 (2 off)
1 N4002 (8 off)

Switch

S1
Double pole rotary on/off mains type

Miscellaneous

 JK 1JK2, 102
T1

FS 1

Standard 6.35 mm stereo jack socket
Standard 6.35 mm mono jack socket (2 off)
30VA toroidal mains transformer with twin 9 volt secondary windings (ILP Transformers Lid) 1 A 20 mm antisurge fuse
Chassis mounting holder for FS 1
Printed circuit board
Five control knobs
Case type DX4 or similar
$(300 \times 150 \times 60 \mathrm{~mm})$
Cabinet feet
Connecting lead with standard stereo and 3.5 mm stereo jack plugs (Maplin)
Veropins
18 s.w.g. aluminium for heatsink Mains lead, mains plug. connecting wire, etc.
Pair of compact 8 ohm impedance loudspeaker enclosures (e.g. Maplin 5 W system)

561086
ALL DIMS IN mm MOUNTING HOLES 10 mm DIAMETER
Fig. 6. Drilling details of the front panel

Once all the components have been fitted in place the final wiring can be completed. Due to the fairly low sensitivity of the amplifier and the very weak magnetic field of the toroidal transformer used for T1 there is no need to use screened cable to connect the printed circuit board to JK1. If output sockets JK2 and JK102 are not insulated types be careful to connect these correctly or the output will be short circuited. The TDA2006 integrated circuit has thermal and output short circuit protection built-in incidentally, and accidental overloads on the output would probably not result in the destruction of the output devices. Of course, JK2 and JK 102 can be replaced with two way DIN sockets or some other type of connector if this would be more convenient in use.

IN USE

The output of the unit is coupled to the input socket of the amplifier using a three way lead fitted with a 3.5 mm stereo jack (which connects to the personal stereo unit) and a standard 6.35 mm stereo jack (which connects to the input of the amplifier). Due to the fairly low source impedance and high signal level it is not necessary to use a screened lead. Personal stereo units normally have the output socket wired so that the tip of the output jack carries the left hand channel, incidentally.

The volume controls on the personal stereo unit should be set at a position that would give a good high volume level if the unit was used with headphones, but should not be advanced so far that there is a danger of clipping occurring during periods of high volume. The tone switch should be set to

EGT007 ALL DIMS INmm MOUNTING HOLES ARE 3.3 mm DIAMETER
Fig. 7. Heatsink and board mounting bracket
the "high" position. Volume, balance, and tone are then adjusted using the controls on the amplifier.

Only 8 ohm impedance loudspeakers are recommended for use with the Personal Stereo Amplifier since higher impedance types would give a much lower maximum output power, and lower impedance speakers would almost certainly overload the power supply and cause FS1 to rupture. It is not difficult to build your own loudspeaker enclosures using modern materials, but there are a number of suitable commercially produced speakers which are suitable. In either case make sure that the speakers are rated at about 5 watts r.m.s. or more. Note that bookshelf monitor speakers are not suitable for use with this amplifier due to the low efficiency of speakers of this type, which consequently need quite a high input power in order to give high volume leveis.

ADM1 terminal, circuit diags/service manual wanted. Any info welcome. Will buy or pay for loan. Richard Williams, 13 Shorediche Close, Ickenham, Uxbridge UB10 8EB. Tel: Ruislip 31500.

WANTED Sinclair ZX81 or $\mathrm{ZX80}$, with leads. Will pay up to $£ 25$. Oiaf Mackenzie, 22 Broomieknowe Gardens, Bonnyrigg, Midlothian EH19 2JD. Tel: (031 663) 7079.
WANTED ZX81 or Spectrum and Casio FX 702P with or without cassette interface. Erik Bjerke, Ostre Totenvei 10, N-2800 Gjovik, Norway.
UK101 8K Cegmon Wemon new BASIC $1 / 3$ Expansion interface with sound, I/O, Printer Port, A/D, D/A f95. Steven Betteley, 32 Stoneygate Drive, Hinckley, Leicestershire. Tel: Hinckley (0455) 612592 (evenings).

MPF1-B BASIC p.s.u. manuals, in original packing. First offer over $£ 60$ secures. lan Buckingham, 7 Railway Cottages, Thorpe, Norwich. Tel: (0603) 663474.
AMPLIFIER for sale. 15 W stereo. Bi-Pak PA 100 Pre-amp. Sinclair amps. Teak case. Good condition. £25 o.n.o. Mr. J. D. Parkes. Tel: Wolverhampton (0902) 756806.

HEATHKIT four band receiver AR-2000 MK II, mint condition. Needs tuning on f.m. £90 o.n.o. Write: D. Johnston Esq., 42 Shore Street, Anstruther, Fife, Scotland KY 10 3AQ.
SYNTH. Korg MS20. Factory built, $2 x$ VCO, $2 x-$ VCA, $2 x V C F$ F-to-V. New, £470. £200/Disk Drive/Printer/w.h.y. Mr. E. Phipps, 77 Fitzpain Rd., West Parley. Wimborne, Dorset BH22 8SF. Tel: (0202) 576681.
WANTED Construction details for converting 12 V car battery charger to a CB power supply. Mr. J. Whitehurst, 2 Cumberland Rd., Congleton, Cheshire CW12 4PH.
ORGAN parts, including pedal boards, 5-octave keyboards, generator, chokes, stop tabs, many others, s.a.e. for large list. K. Wolsey, 'Puffins,' Seaview Lane, Seaview, IOW PO34 5DG.
MAPLIN organ pedals, no electronics, $£ 10$. Buyer collects. Foster. Tel: Hull (0482) 851366.
P.E. HI-FI tape link, abandoned project, all components, p.c.b.s. built, Bogen heads. 7" reel deck. £45. Mr. S. G. Waddington, 3 Merrick View, Stewarton, Kilmarnock, Ayrshire KA3 5EU. Tel: Stewarton (0560) 82770.
WANTED Case suitable for the UK101 computer board (must allow raked keyboard). Mr. M. B. Hart, 9 Strand Rd., Hoylake, Wirral LA7 2DA. Tel: (051) 6322366.
SWAP/SELL AVO 8. Wanted ZX8 1 or other computer. Tel: (040 926) 267. Robin Roy.

HANNIMEX cartridge colour t.v. games console with 2 joysticks, 4 cartridges. Motorbike control handle. $£ 50$. Tel: $(041332) 7695.7$ p.m. K. Y. Chang, 70 1-up Ashley St., Glasgow G3 6HW.
KEYBOARD, 5 octave, including mounted double pole gold-plated key switches. $£ 30$. Tel: 014220536 (Harrow). R. Terrett, 291 Somervell Road, South Harrow, Middx. HA2 8UB.
LEAK Varistope stereo, Trough line 3 tuner, 'Sandwich" speakers. Garard 301 and Decca arm/pick-up. Offers. Davies, 17 Highfield Close, Malvern, Worcs.
TELEQUIPMENT D43 scope 10 MHz bandwidth d.c. couple $100 \mu \mathrm{~V} / \mathrm{cm}$ on ch2. £ 125 . $0-30 \mathrm{~V} 2 \mathrm{~A}$ p.s.u. $\mathrm{f} 25.0+5 \mathrm{~V}$ p.s.u. $1.5 \mathrm{~A}, \mathrm{f} 10$. Buyer collects. Mr. S. P. Ford, Beech Cottage, Church Road, Wereham, Kings Lynn, PE33 9AP. Tel: (0366) 500095.
LSI 11 memory board $32 \mathrm{~K}, 18$ bits, m.o.s., module No. M8045, as new. Open to offers. S. T. Whitehead, 131 Manchester Rd., Haslingden, Rossendale, Lancs BB4 6NT. Tel: Ross (0706) 216283.

ATOM 17 K RAM. FP ROM. Toolbox ROM. PIA 3A p.s.u. games software books, manual. £195. Tel: (O246) 433565 (Chesterfield). C. H. Westlake, 112 Ravencar Rd., Eckington, Sheffield S31 9GN.

Copies of Patents can be obtained from:

 the Patents Office Sales, St. Mary Cray, Orpington, Kent. Price £1. 60 each.
TV WARNING

The unexciting title "Object Detecting Apparatus" for British patent application 2090411 from Tokyo Shibaura Denki of Japan, in fact covers a fascinating invention demonstrated by Toshiba at the London electronics trade shows in May 1981. Either by good planning or good fortune the patent claims priority dates of December 1980 and April 1981. It is of course a basic principle of British patent law (often overlooked by amateur inventors) that a patent application is invalid if it is filed after the invention has been shown off, other than under strict seal of confidence.

The Toshiba object detecting apparatus is a television set which senses the presence of a viewer and his or her distance from the screen. If a viewer comes too close and so risks getting eye strain, the set issues a warning in a synthesized voice. According to the patent the set says "You get too close to the TV set", and "stay away a little". In fact the Toshiba set, as demonstrated in Britain, spoke rather better English, "Watch from a distance for your eyes sake" it told anyone who got too close. The lengthy patent gives details of the clever circuits used to discriminate between furniture and viewers.

In Fig. 1 timing signal generator 26 is reset on the trailing edge of the output signals from oscillator 18. The output of monostable 20 controls oscillator 28 , which produces an ultrasonic signal of between 40 and 60 kHz . This is radiated into the room by speaker 30.

Microphone 32 receives the wave reflected from furniture and viewers in the room and the received signal is amplified at 34 , rectified at 36 and applied to sample and hold circuit 38 . The sampled signal is compared at 40 with a referencesignal from generator 42. Discrimination is achieved by storing the reflected signal during several periods of oscillator 18 and comparing the stored signal pattern with each subsequent received pattern. After counter 24 has clocked a given number of pulses e.g. 3, from oscillator 18 the flip-flop 52 is set. Data stored in memory 54 is then successively compared with reflected data in judging circuit 56. If the stored and received data match there is no change in the room. When they don't match the judging circuit 56 produces an output which triggers speech synthesizer 58.

The inventors claim that the invention is also usable as a security system for detecting burglars in the room. The output of judging circuit 56 then can be switched to sound an alarm.

AUTOMATIC CUT-OUT

PCT application 82/03520 covers a device which could be useful for anyone who has a habit of leaving their soldering iron switched on and unattended. The application, which is filed in Germany, France, Britain, Japan and Holland, by Robert Franklin of California, is for an automatic power shut off system. It can be incorporated in any appliance which uses a heater element and is thus a fire hazard and expensive waste of energy. Or it can be connected as an add-on extra.

Fig. 1 shows the basic idea. Appliance 49 , such as a soldering iron, receives a.c. power on line 46, 47. Triac 45 gates power to its heater element 53 via thermostat switch 52 .

Use Detector and Timer (UDT) 1 has a master oscillator 12 which drives clock counter 15. This is pre-set to establish a
period during which use of the appliance must be registered by a detector 2 to prevent a power shut down. Detector 2 can work by sensing motion of the appliance 49 , or a grip on its handle, and can be either a touch sensitive switch, a piezo electric motion detector, a strain gauge, or a light or magnetic sensor. When detector 2 senses use, it re-sets UDT to zero. If no use is detected before the pre-set time, of say 15 minutes, runs out, then audible alarm 55 sounds and warning light 54 glows. This tells the user that the power is soon going to be turned off if the appliance isn't used. If it is used, the detector 2 resets the UDT to zero and it then starts counting again. If it isn't used then, 15 seconds after the warning, optic coupler 43 is switched off. This removes the gate drive for triac 45 which shuts off the power to appliance 49. Power is restored by touching the use detector 2 or momentarily unplugging UDT 1.

"The legendary "MINIMAX" - the small speaker producing "'Large speaker" sounds. Peak handling 100 watts.
ONLY $£ 74.95$ A PAIR!!!

VIDEOTONE - For full range of loudspeakers, in-car, C.B., Video, audio \& video cassettes, etc. Write for full details.

Moving Coil Cartridge - The MC88E is a high output cartridge - so you do not need to use a head amp. EXCEPTIONAL VALUE AT ONLY £29.95

Seoum Hi-Fi represents EXCELLENT QUALITY AT A REALISTIC PRICE! The range offers a choice of amplifiers, tuner/amplifier, tuner, and the excellent SC4200 stereo cassette recorder.

5 SizTO
100 MHz

TOMORROW'S TOOLS TODAY

gLOBAL SPECIALTIES CORPORATION

[^4]Practical Electronics May 1983
Instant frequency indication from 5 Hz to 100 MHz ; no range selection problems; a brilliant 8-digit LED display; mains or battery operation; an accuracy of 4 parts per million ± 1 count; and totally automatic operation - all this for only $£ 105$ with GSC's new Max-100 frequency counter.
Just take a look at our spec. Where else could you find anything similar at the price? *Frequency range $5 \mathrm{~Hz}-100 \mathrm{MHz}$ *Input impedance 1 M shunted by 10 pF *Sensitivity 30 mV from 1 KHz up to $50 \mathrm{MHz} ; 120 \mathrm{mV}$ r.m.s. over full frequency range *Timebase accuracy ± 4 parts in 10^{6} (from 5 to $45^{\circ} \mathrm{C}$) ${ }^{*}$ Maximum aging rate 10 parts in 10^{6} per year. *Over-frequency indication *Low-battery-power alarm *Operates from dry or rechargeable cells, an external 7.5 to 10 VDC supply, or a car battery (via an adaptor) *Dimensions: $45 \times 187 \times 143 \mathrm{~mm}$ *Options: 12 V adaptor; battery eliminator; r.f. antenna, low-loss r.f. tap, carrying case.

MICROPROCESSORS in control situations are concerned with the real world where the majority of situations involve the control of equipment which has not necessarily been designed with microprocessors in mind. This is particularly true of most mains-powered equipment, and in this part of the series we begin by examining some useful methods of power control. The essential theme of these techniques is to bring the power of the micro to bear in a control sense, while keeping the power source in the application safely at arms length.

A desirable aspect of any control system is that it should be able to talk to the operator. The series so far has made little mention of the topic of display driving, and this omission is covered by concluding the series with a description of some of the more commonly encountered numerical display techniques.

POWER CONTROL DEVICES

The traditional method of interfacing an electronic control circuit to a load which is connected to an a.c. supply has involved the use of an electromechanical relay. Such devices offer a simple, low cost, solution to the problem of maintaining adequate isolation between the control circuit and the potentially lethal voltages associated with the supply mains. Relays do in fact, offer many of the characteristics of an 'ideal' switch including very low 'on' resistance, very high 'off' resistance and a coil to contact breakdown voltage which is usually in excess of several kV . There are, however, several very serious disadvantages of the humble electromagnetic relay. These are principally associated with the transitory condition which occurs between the true 'on' and 'off' states. When current is applied to energise the coil of an electromagnetic relay, the relay contacts are relatively slow to react and, after this initial delay in response, several milliseconds of contact bounce can occur. This rapid fluctuation in the 'on' and 'off' state can cause rapid changes in load current which in turn may result in severe erosion of the relay contacts coupled with electromagnetic radiation over a wide range of frequencies.

When the energising current is removed from the relay coil, there is again some delay in the operation of the contacts and, whereas there is less likelihood of bounce on opening than closing, the air-gap between the relay contacts tends to ionise as the contacts open. Since the ionised air acts as a relatively good conductor, the arc only becomes extinguished when the line voltage approaches that required to sustain the arc. In this condition an excessive level of power can be dissipated in the space between the contacts. There is thus a safe working limit for every relay beyond which the contacts may suffer permanent damage and eventually burn-out! Readers should also note that, whereas a relay may be rated for operation at 240 V a.c. its d.c. rating may be considerably less. This is by virtue of the fact that any arc produced between the contacts will become extinguished at the end of a half-cycle of the a.c. mains. With a d.c. supply of more than 50V, an arc may persist for some considerable time.

Modern semiconductor devices have fortunately provided the circuit designer with some elegant solutions to the problems of a.c. and d.c. power control. Silicon controlled rectifiers (also known as thyristors) and their derivatives have become commonplace in many power control applications, such as motor speed control and light dimming.

A silicon controlled rectifier (s.c.r.) is a four layer three terminal semiconductor device. Such a device will conduct a unidirectional load current whenever the rectifier has been triggered by the injection of a pulse of current into its gate. Provided that the latching value of current is exceeded, the device will remain in the 'on' conducting state until the anode current falls below a certain minimum value. This holding value is the minimum anode current that can flow through the s.c.r. and still maintain conduction. Such a condition can, of course, easily be achieved by momentarily interrupting the supply to the device. The symbol and internal arrangement of an s.c.r. is shown in Fig. 1.

EG1095
Fig. 1. Symbol and internal arrangement of a thyristor
An s.c.r. is, by virtue of its unidirectional property, ideally suited to d.c. power control applications. In a.c. circuits a single s.c.r. can only provide control over half-cycles of the supply. The triac is a development of the s.c.r. which can be used to pass or block current in either direction. The device essentially comprises two thyristor devices connected in anti-parallel but sharing a common gate electrode. The symbol and internal arrangement of such a device is shown in Fig. 2. The triac, like the s.c.r., has a minimum holding current below which conduction cannot be maintained. The device can, however, be triggered by both positive and negative gate current pulses. A complete discussion of the properties and characteristics of s.c.r. and triac devices is beyond the scope of this series and, where further information is required, readers are recommended to consult one of the currently available thyristor and s.c.r. manuals.

EG1096
Fig. 2. Symbol and internal arrangement of a triac

OPTO-ISOLATORS

Opto-isolators provide a means of coupling signals without the need for a direct electrical connection between devices. Signals are conveyed by means of a beam of infra-red radiation linking an emitting device to a detector housed in a common light-proof enclosure. The emitting device usually takes the form of a gallium arsenide diode whereas the detector may take one of several forms including phototransistor and photo-Darlington arrays. Photo-coupled s.c.r. and triac devices are also available. A variety of optocoupled devices are shown, together with their conventional pin-outs, in Fig. 3.

Fig. 3. A range of opto-coupled devices
The maximum voltage which can safely be applied between the input (emitter) and output (detector) terminals of an opto-isolator is usually in the range 1 to 7.5 kV . This is comparable with the coil to contact breakdown voltage of most electromechanical relays. The insulation resistance of an opto-coupled device is generally around 10^{11} and 10^{12} ohm. This should be more than adequate for most applications including coupling to the 240 V a.c. mains supply.

The efficiency of an opto-coupled diode, transistor or Darlington is usually expressed in terms of current transfer
ratio (c.t.r.). This is simply the ratio of detector (output) to emitter (input) current. A typical c.t.r. for an opto-coupled transistor is 0.5 whilst that for an opto-coupled Darlington can be as much as 800 . Since c.t.r. varies widely with emitter current, values must be specified for operation under particular conditions (i.e. emitter current, temperature etc).

The infra-red emitters of most opto-isolators have a maximum continuous current rating of between 20 and 60 mA . The forward voltage drop of such a device is usually around 1.2 V whilst the maximum reverse voltage maybe as low as 3 to 5 V . A fixed current limiting resistor is often connected in series with the emitter in order to limit the current when driven from a conventional TL logic gate. Values of between 180 and 270 ohm will limit the emitter current to between 17 and 10 mA , respectively. Whereas the emitter is common to a range of opto-coupled devices, detectors tend to vary quite considerably. Desirable characteristics include not only a high value of c.t.r., but also a fast response. Devices which may be perfectly adequate for control applications in conjunction with the supply mains may be quite unsuitable for high speed data transmission. A range of fast opto-isolators have recently become available. Typical of these is the HCPL2601, the simplified internal block diagram of which is shown in Fig. 4. The detector is coupled

Fig. 4. Simplified internal block diagram of a high speed TTL compatible opto-isolator

INPUT		
V_{F}	ENABLE V_{E}	OUTPUT $V_{\text {O }}$
H	H	L
L	H	H
H	L	H
L	L	H

Table 1. Truth table for the isolator shown in Fig. 4
to an integrated high gain amplifier which is followed by an AND gate. An enable input is provided to this gate and it, in turn, is followed by an open collector Schottky clamped transistor. An internal screen provides a common mode transient immunity of $1 \mathrm{kV} / \mu \mathrm{s}$. This is equivalent to rejecting a 1 MHz sine wave of no less than $300 \mathrm{~V} \mathrm{pk}-\mathrm{pk}$!

PRACTICAL POWER CONTROL CIRCUITS

A practical arrangement for interfacing a microcontroller or microcomputer to a load driven from the a.c. mains supply is shown in Fig. 5. This simple circuit uses a Darlington optoisolator coupled to a triac. When the input is held 'low', gate current flows and the triac conducts allowing current to flow through the load. Note that triggering only occurs on positive half-cycles of the supply and thus this circuit is limited to a maximum load of around 500W. Fig. 6 shows an arrangement which employs an opto-coupled thyristor in conjunction with a bridge rectifier and triac. The bridge rectifier allows triggering on both positive and negative half cycles of the supply. The series C-R network connected across the triac is known as a 'snubber' and is used to compensate for

Fig. 5. A simple a.c. power control circuit using a Darlington opto-isolator
the effects of an inductive load. This network may be omitted when the load is purely resistive (such as an electric fire or light). An arrangement using an opto-coupled triac is shown in Fig. 7. Additional components have been included to cater for severely reactive loads. Where the power factor of the load is unknown, components should be fitted for a power factor of 0.9 . This circuit is capable of controlling load powers in excess of 1 kW .

661100

Fig. 6. An a.c. power control circuit using an optocoupled thyristor

Fig. 7. Power control arrangement using an optocoupled triac

LOAO POWER FACTOR	R1	R2	C
1	220	NIL	N.C.
0.9	180	560	100 n
0.75	180	580	220 n
0.5	180	680	330 n

E6HO]

Table 2. Component values for use with reactive loads

DISPLAY DRIVING

The control of displays is one of those areas of microprocessor system design, rather like keyboard handling, where the designer has the opportunity of making a number of hardware and software tradeoffs. The actual details of the tradeoffs which may be made, or even considered, will usually be determined by the characteristics of the particular application. In general, however, the factors to be considered will include: the amount of hardware involved, the complexity of the software required, the time available to perform the task, the memory space required, the speed of response, and any other tasks which must be performed concurrently.

Particular applications will have their own additional design constraints over and above those described above. Displays in hand-held applications, for example, will have tight space and power consumption constraints. The first step in all cases, however, will be to determine the extent to which hardware and software tradeoffs are practical, or even available; there is, after all, little point in deciding to use regular timer interrupts in a system where all of the user interrupt facilities have already been utilised.

Having defined the problem, and detailed the working limits for any solution, the designer is left with the task of producing a working design. There are few truly general guidelines which may be given, but careful consideration of flexibility, adaptability, future expansion possibilities, simplicity/modularity, and cost will usually help to narrow down the range of available choices. The discussion below covers some of the ways in which a typical seven-segment display may be controlled, and illustrates many of the practical considerations.

One straightforward way of driving a single commonanode seven-segment display is shown in Fig. 8. The A side

Fig. 8. Driving a single 7-segment display through a PIA
of the PIA is arranged so that one peripheral line is connected to each segment via a buffer stage, which is required to provide the necessary drive capability. Setting any of the PAO to PA7 lines to a HIGH will cause the corresponding segment to be illuminated, as shown in Table 3 where all values are shown in hexadecimal format. Combinations of segments are selected by writing a value to the PIA register which is equal to the sum of the values for the individual segments. The values which must be written to the PIA to display the standard numerical digits are shown in Table 4.

There are two points which should be noted about this approach when considering its use in practice. The first is that, once a value has been written to the PIA, the display will remain constant until it is changed by the CPU writing a new value. No further CPU action, or by implication program in-

SEGMENT TO BE ILLUMINATED	VALUE WRITTEN TO PIA OUTPUT
REGISTER	
\mathbf{a}	01
b	02
c	04
d	08
e	10
f	20
g	40
d.p.	80

Table 3. PIA output values to illuminate individual segments

NUMBER TO BE DISPLAYED	VALUE WRITTEN TO PIA OUTPUT
REGISTER	
0	$3 F$
1	06
2	$5 B$
3	$4 F$
4	66
5	$6 D$
6	$7 D$
7	07
8	$7 F$
9	67
A	77
b	$7 c$
C	39
d	$5 E$
E	79
F	71

Table 4. PIA output values for numerical displays

EG1104
Fig. 10. Alternative scheme for driving a decimal display
added (this may require a loop and test approach in some processors) to the contents of the index register. The index register will now point to the value which must be output to the PIA to display the number required. The display value is then picked up using the index register, and output to the PIA register.
In contrast to the software look-up table, it is possible to use hardware to perform the output processing. Applications

$\begin{aligned} & \text { DECIMAL } \\ & \text { OR } \\ & \text { FUNCTION } \end{aligned}$	INPUTS						BI/RBO	OUTPUTS						
	LT	RBI	D	C	B	A		a	b	c	d	e	f	g
0	1	1	0	0	0	0	1	0	0	0	0	0	0	1
1	1	X	0	0	0	1	1	1	0	0	1	1	1	1
2	1	\mathbf{X}	0	0	1	0	1	0	0	1	0	0	1	0
3	1	X	0	0	1	1	1	0	0	0	0	1	1	0
4	1	X	0	1	0	0	1	1	0	0	1	1	0	0
5	1	X	0	1	0	1	1	0	1	0	0	1	0	0
6	1	X	0	1	1	0	1	1	1	0	0	0	0	0
7	1	X	0	1	1	1	1	0	0	0	1	1	1	1
8	1	X	1	0	0	0	1	0	0	0	0	0	0	0
9	1	X	1	0	0	1	1	0	0	0	1	1	0	0
10	1	\mathbf{X}	1	0	1	0	1	1	1	1	0	0	1	0
11	1	X	1	0	1	1	1	1	1	0	0	1	1	0
12	1	\mathbf{X}	1	1	0	0	1	1	0	1	1	1	0	0
13	1	X	1	1	0	1	1	0	1	1	0	1	0	0
14	1	X	1	1	1	0	1	1	1	1	0	0	0	0
15	1	X	1	1	1	1	1	1	1	1	1	1	1	1
BI	X	X	X	X	\mathbf{X}	X	0	1	1	1	1	1	1	1
RBI	1	0	0	0	0	0	0	1	1	1	1	1	1	1
LT	0	X	X	X	X	X	1	0	0	0	0	0	0	0

E61103]
Fig. 9. Pin configuration for the 7447 7-segment decoder/driver

Table 5. Function table for the 7447 decoder/driver
volvement, is required to sustain the display. The second point is that the program which drives the display will have to include, probably as a standard subroutine, a means of converting from a number in a register or memory, into the appropriate value to be output to the PIA. The most common approach to this problem is a look-up table, which is a way of including Table 4 in the control program. The look-up table approach must first ensure that the number to be displayed is within the allowed range; in this case it must be between O and F. The index register should then be set to point to the beginning of the table of values which correspond to digits 0 to F; these must be arranged in the order shown in Table 4, with 3F in the first memory location and 71 in the last. The number to be displayed should now be
which only require to display decimal values, for example, can use a 7447 decoder which will automatically convert decimal inputs into common-anode seven-segment code. Neither a table nor a conversion routine is necessary, and the 7447 will also offer additional features, as shown in Fig. 9 and Table 5. The LAMP TEST input allows all the segments to show if they are working, while the blanking input (BI) turns all the segments off. The ripple blanking input (RBI) and output (RBO) also allow leading ánd trailing zeroes to be suppressed if required. The simplest way to use the device, however, has the result that fewer PIA peripheral lines are required to drive the display, in addition to the reduction in software required. Fig. 10 shows how the original circuit is simplified for decimal displays; a more flexi-
ble display is obtained if the spare PIA lines are used to drive the control inputs for the 7447 .

MULTI-DIGIT DISPLAYS

The single-digit display techniques described above may easily be extended to provide multi-digit displays; in the main it is simply a matter of increasing the number of PIAs used and providing the necessary additional driver hardware. Before very many digits have been added, however, it becomes noticeable that the number of peripheral components and connections required increases in direct proportion to the size of the display. This, in turn, decreases the overall reliability and increases the amount of board space required. A suggested policy is that simple techniques are applicable for displays which can be handled by a single PIA or similar peripheral interface. Beyond this limit, it is probably time to consider the use of intelligent or multiplexed display techniques. Intelligent displays are beyond the scope of this series, but multiplexed displays will usually offer realistic and cost-effective solutions to a wide range of controller display requirements.

Multiplexed displays rely on the fact that the display only needs to appear to be stable for it to be acceptable to the operator, and therefore it does not need to be driven with a 100% duty cycle. Rapid scanning of a display, coupled with the response characteristics of the display (i.e. the light output does not instantaneously fall to zero when the drive voltage is removed), and the afterglow in the operator's retina, means that it is possible to make the CPU scan AND perform other processing tasks apparently simultaneously.

A typical multiplexed seven-segment display configuration is shown in Fig. 11. The 8-digit display is connected between the A and the B sides of a single PIA: The A side determines which of the segments are selected, and the B side determines which of the digits (if any) are actually turned on. To illuminate a particular segment, it must be selected (PAO to PA7) AND turned on (PBO to PB7).

More than one segment may be selected at any one time, and more than one digit may be turned on. In normal practice, however, each digit is turned on in sequence, and the display scan routine selects the appropriate segments for that digit position. The single digit display can be thought of as a multiplexed display with one digit permanently turned on, i.e. omit the B side of the PIA and connect the common anode directly to the supply, as shown earlier in Fig. 8.

The display must be scanned often enough to avoid the display flickering, and this usually means that the scan rate is at least 50 to 100 times per second. This may be achieved by including the display scan routine in the main infinite control loop, or by arranging for a regular timer interrupt (every 10 to 20 msec) to initiate a display scan. In many applications the former method may be quite adequate, but the user must be aware that any operation in the main loop which uses a significant amount of time may result in display flicker whenever it is executed. The infinite loop approach does, however, mean that it is possible to trade display flicker against available processing time in applications where a task is not executed often, but when it is run it justifies degradation of display quality.

During each display scan it is normal practice for the scan routine to read from a display table to determine the output values for each digit position. In this way, the remainder of the control software only amends the contents of the display table once each time a change in display is required. This amendment is usually via a standard subroutine which converts the numerical value from the caller into the appropriate display code. The display routine is thus kept separate from the remainder of the control software, and they com-

Fig. 11. An 8-digit, 7-segment multiplexed display scheme
municate via a well-defined interface, i.e. the subroutine.
For the display shown in Fig. 11, the display scan routine (when invoked) would output the values 01, 02, 04, 08, 10, 20, 40, 80 (hex) to the PIA B output register to select digits 1 to 8 in turn. The interval between changes is set by the time required for the display to achieve usable brightness (typically $1-2 \mathrm{msec}$), and is usually set by a software delay, although a hardware timer may be used instead if the facilities exist. As each digit is turned on, the corresponding value is read from the display table and output to the PIA A output register. At the end of the cycle it is advisable to turn off all digits, otherwise the last digit (8 in this case) will appear unequally bright.

The multiplexed display combined with the software display table technique has many advantages for the system designer. As far as much of the software is concerned the display appears as a fully latched and decoded unit; the decoding is actually done by the interface subroutine. The hardware, on the other hand, has been kept to a minimum and there is a wide range of multiplexed display hardware available at competitive prices. In all, a good example of a hardware/software tradeoff.

CONCLUSION

This concludes the series on the interfacing and use of microprocessors in real control situations. Of necessity, the subjects covered represent only a small proportion of possible applications. The intention, however, has been to encourage the use of microprocessors in the real world, and to this end the subjects covered should provide a good basis for the development of micro-based projects.

LCD Multitester

Features "beep" continuity check and autoranging function! Measures up to 1000 VDC, 500 VAC, 200 mA (both AC and DC), 2 megs resistance. Accurate to within ± 1 digit. $63 / 8$ ". Requires two " $A A^{\prime}$ " batteries. 22-192

20K Ohms/V Multitester

Makes Go/No-Go tests on small signal and power types and permits matching of similar transistors. Indicates relative current gain, "opens", "shorts". Socket plus hook clip leads for in-circuit tests. Output jacks for external meter or scope. $23 / 4 \times 43 / 8 \times 13 / 16^{\prime \prime}$. Requires "AA
battery. 22-025
18 ranges, $3^{\prime \prime}$ meter, DC Volts 0-1000, AC Volts: 0-1000. Current: $0-50 \mu \mathrm{~A}, 0-250 \mathrm{~mA}, \mathrm{DC}$. Resistance: $R \times 1, R \times 10, R \times 1000$ (24 ohms, centre scale). dB: -20 to +62 in four ranges. Accuracy: $\pm 3 \mathrm{DC}, \pm 4 \mathrm{AC}$.
22-201
£16.95

Obtains power from circuit being tested. Indicates high, low or pulsed (to 10 MHz) logic states. Minimum detectable pulse width is 50 ns . Tests almost every logic family including TTL, LS, CMOS, DTL. $73 / 4 \times 11 / 8^{\prime \prime} .34^{\prime \prime}$ leads
22-301
£17.95

TOROTDAS

The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and, thanks to I.L.P., PRICE.
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty.
*Gold service available.
21 days manufacture for urgent deliveries.
*Orders despatched within 7 days of receipt for single or small quantity orders.
*5 year no quibble guarantee.

TYPE	$\begin{aligned} & \text { SERIES } \\ & \text { No } \end{aligned}$	SECONDARY Volts	RMS Current	PRICE
15 VA	0×010	6* 6	1.25	
$62 \times 34 \mathrm{~mm}$	0×011	9+9	0.83	
0.35 Kg	0×012	12+12	0.63	12
Regulation	0×013	$15+15$	0.50	. 12
19\%	0×014	$18+18$	0.42	8p¢078
	0×015	$22+22$	0.34	VAT ¢0 89
	0×016	$25+25$	0.30	TAL ¢6 79
	0×017	$30+30$	0.25	
(encased in ABS plastic)				

30 VA	1×010	6+6	2.50	
$70 \times 30 \mathrm{~mm}$	1×011	$9+9$	1.66	C5 40
0.45 Kg	1×012	$12+12$	1.25	25.49
$\begin{aligned} & \text { Regulation } \\ & 18 \% \% \end{aligned}$	1×013	$15+15$	100	+ W 8 p ¢1 10
	1×014	$18+18$	0.83	+ VATE0.99
	1×015	$22+22$	068	TOTAL £758
	1×016	$25+25$	0.60	
	1×017	$30+30$	050	
50 VA	2×010	6+6	4.16	
$80 \times 35 \mathrm{~mm}$	2×011	$9+9$	277	
0.9 Kg	2×012	$12+12$	2.08	
$\begin{aligned} & \text { Regulation } \\ & 13 \% \end{aligned}$	2×013	$15+15$	1.66	C6 13
	2×014	$18+18$	1.38	20. 13
	2×015	$22+22$	113	+p\&pE1.35
	2×016	$25+25$	1.00	+ VATE1 12
	2×017	$30+30$	0.83	TOTALE8.60
	2×028	110	0.45	
	2×029	220	022	
	2×030	240	0.20	
80 Va	3×010	6+6	6.64	
$90 \times 30 \mathrm{~mm}$	3×011	$9+9$	4.44	
1 Kg	3×012	$12+12$	3.33	C6.6
$\underset{12 \%}{\text { Regulation }}$	3×013	$15+15$	2.66	20.06
	3×014	$18+18$	2.22	+ p\&p£1.72
	3×015	$22+22$	1.81	+ VATE1.26
	3×016	$25+25$	1.60	TOTAL ¢9.64
	3×017	$30+30$	133	
	3×028	110	0.72	
	3×029	220	0.36	
	3×030	240	0.33	

160 VA	5×011	$9+9$	8
$110 \times 40 \mathrm{~mm}$	5×012	$12+12$	6
1.8 Kg	5×013	$15+15$	5.
Regulation	5×014	$18+18$	4
8%	5×015	$22+22$	3.
	5×016	$25+25$	3
	5×017	$30+30$	2
	5×018	$35+35$	2
	5×026	$40+40$	2
	5×028	110	1
	5×029	220	0
	5×030	240	0
225 VA	6×012	$12+12$	9
$110 \times 45 \mathrm{~mm}$	6×013	$15+15$	7
2.2 Kg	6×014	$18+18$	6
Regulaton	6×015	$22+22$	5
7%	6×016	$25+25$	4
	6×017	$30+30$	3
	6×018	$35+35$	3.
	6×026	$40+40$	2.
	6×025	$45+45$	2
	6×033	$50+50$	2
	6×28	110	2
	6×029	220	1
	6×030	240	0

The benelits of ILP toroidal transformers
Loroidal transtormers are only halt the weight and height of their laminated equivalents. and are avaiable with 110 V . 220 V or 240 V prmaries coded as foliows

IMPORTANT: Regulation - All voltages quoted are FULL LOAD. Please add regulation figure to secondary voltage to obtain off laad voltage
For 110 V primary insert 0 in place of x " in type number
For 220 V primary (Europe) insert " 1 " in place of " X "in lype number
For 240 V primary (UK) insert 2 in place of x in type number
Also available at Electrovalue, Maplin, Technomatic and Barrie Electronics.

For mail order please make your crossed cheques or postal orders payable to ILP Electronics Ltd. Barclaycard/Access welcome. Trade orders standard terms.

LOW COST PROFEGEIONAL TEGT INGTAUMENTE

Write or phone for illustrated test instrument catalogue and price list
Black Star Ltd.
9A, Crown Street
St. Ives, Huntingdon
Cambs. PE174EB
Tel: (0480) 62440 Telex 32339

PE MICROCONTROLLER: DATA SHEET 4

USER MONITOR ROUTINES

THERE will be many applications where peripheral hardware connected to the Microcontroller will require a regular opportunity to gain a share of the CPU processing time to perform some function, but without using interrupts. An example might be to maintain a continuous display of elapsed time on a 4-digit l.e.d. module connected to a user PIA, using the value of TICK which is held in DISBUG RAM. The majority of the processing required would be to refresh the l.e.d. digits in a similar fashion to that employed by DISBUG. Such a task could be performed by writing a user routine and using all of the available CPU time to perform it. This approach, although successful, would tie up the total CPU resources for what is essentially a 'background' task. The Microcontroller is capable of excuting more than 200,000 typical instructions every second, so it should be possible to perform some sort of background servicing at the same time as providing the normal DISBUG facilities.

The overall design of the infinite control loop in the top-level DISBUG routine was shown in Part 3 of the Microcontroller series. The code for this routine occupies twenty bytes, starting at the bottom of the EPROM at location F8ØØ, and is shown below. It can be seen that, just before jumping back to restart the loop, a user-defined monitor routine is called in the main loop. Once again this makes use of a software vector held in DISBUG RAM (UMRSA at location Ø3C4, 2 bytes long). At start-up the initialisation routine initialises this vector to point to a default service routine at F82B, which is simply an RTS instruction, and therefore the call has no effect other than a slight delay. Since the vector is held in RAM, however, this can easily be overwritten to define an alternative service routine; the technique is identical in concept to that used for the PF1 and PF2 keys, see Data Sheet 2.

User-defined monitor routines are written as subroutines, and must end with an RTS instruction. Once the start address in user RAM has been placed in $\emptyset 3 C 4 / 5$ (UMRSA), the routine will be called every time round the monitor loop. No call will be made, however, when the keyboard scan produces an uncertain result; this is to avoid misleading results. On entry to the user routine, the state of all registers except SP will be undefined. The stack pointer will set to just below the top of the DISBUG stack area, with at least 1A bytes of unused stack space available. Users should allow for a further 7 bytes to be set aside for RTC and other interrupts, leaving 13 (hex) bytes of stack space for the user routine. This will allow the use of multi-level subroutines, which may include calls to previously described DISBUG routines, and also allows local temporary storage of variables on the stack.

DISBUG:	BSR	DISPLAY	; Refresh the display
	BSR	KEYBOARD	;Scan the keyboard keys
	CMPB	\#FF	; Uncertain scan result?
	BEQ	DISBUG	Yes-ignore this scan
	BSR	KEYCODE	; No-convert to code
	JSR	COMPROC	; Call command processor
	LDX	UMRSA	; Call the user-defined
	JSR	Ø日,	; monitor routine
	BRA	DISBUG	;Re-start the loop

DISBUG top level control routine

The addition of a user-defined routine to the existing monitor, in the form of either a single routine or a nested suite of routines, allows the facilities of the basic monitor to be extended to suit particular applications. By suitable programming, the user PIAs may even be configured to allow the use of extra keyboards and/or displays.

INTERRUPT SERVICE ROUTINES

Whenever a user interrupt is recognised by the 6800 (i.e. IRO asserted and user interrupts not masked out), the CPU saves the registers on the stack, masks out further interrupts, and jumps to the address contained in locations FFF8 and FFF9. In DISBUG, these two locations point to a routine called IROINT at location FF90, and the code for this routine is shown below. IRQINT first of all checks to see if the interrupt was caused by an RTC 'tick', and if so it increments TICK in DISBUG RAM and resets the appropriate display PIA interrupt flag. The second action of IROINT is to jump, using the software vector from IRQSRA (Ø3DC and Ø3DE in DISBUG RAM), to the user interrupt service routine for any further interrupt processing required. The IROSRA vector is set up by the DISBUG initialisation routine to point to DEFISR (see below), which simply dismisses the interrupt and returns to the original program in the usual way.

Users may define their own additional interrupt processing by overwriting the vector in IRQSRA with the appropriate start address. The user-supplied routine should be written as a handler which terminates in an RTI instruction. On entry to such a user-defined routine, RTC interrupts will have been handled, but user interrupts will still be masked.

The following brief memory map highlights some of the more significant routines within DISBUG for the benefit of the experimenter and enthusiastic disassembler. All except those marked with an asterisk are written as subroutines.

F800 DISBUG	F98F RESTART
F814 DISPLAY	F9EE REGISTER
F82C KEYBOARD	FACD MEMORY
F85D SCANKB	FC91 PRESET
F86D IDKEY	-FD3F SWINT
F877 KEYCODE	FD9C PROCEED
F8BC DISDELAY	FDF8 NMINT
F8C6 KBDELAY	FEøØ GO
F8D@ DIGIT	FE76 BREAKPT
F8F7 TWODIG	- FFOGINIT FF77 WELCOME
F918 COMPROC	-FF90 IRQINT
F96B KEYLATCH	-FFF8 Interrupt
F984 PF1	Vectors
F989 PF2	

F98F RESTART
Fgen Register
FC91 PRESET
-FD3F SWINT
FD9C PROCEED
FDF8 NMINT
FEOGO
FE76 BREAKPT
FFgo INIT
FF77 WELCOME

- FF9@ IROINT
-FFF8 Interrupt Vectors

WILLIAM EDWARDS

TO COMPLETE the series of sound generating peripherals, we describe a nine channel sound card complete with amplification. The card makes use of the General Instrument "sound chip" (three to be precise) which can be programmed to generate a wide range of sounds. The chip has been around for some time, which makes it a cheap and reliable way to convert bytes into musical (or totally non-musical) audio signals.

THE AY-3-8910

The sound chip is programmed via a set of internal registers. The 40-pin package leaves a lot of spare lines which have been allocated to parallel ports, so as a bonus, the card offers five, 8 bit ports which can be set up as inputs or outputs. These lines are TTL compatible.

In each chip there are three tone generators, which use programmable counters to determine the period of the tone. As these counters are 12 bits long, a reasonably accurate representation of the "well tempered" musical scale can be generated. The three generators can be used quite independently, or rather like the organ, they can be mixed to provide a complicated tone made up of synthesised harmonics, which gives added colour to the sound produced.

Each tone generator is fed into an envelope generator made out of a 4 bit D-to-A. The amplitude of each channel can be set, or provide some shaping by varying the amplitude with time. Some useful envelopes are preprogrammed into the chip, keeping the amount of external programming to a minimum.

In addition to the tones, a noise generator is provided. It is possible to colour the noise by setting a 5 bit time period in one of the internal registers, so that sounds from a low roar to a hiss are possible, very useful for games.

Two 8-bit ports are accessed by other registers in the chip. Each port can be set to all inputs or outputs.

THECIRCUIT

Fig. 7.1 shows the circuit for the sound card. It is made up of an interface to the motherboard (decoding and a parallel port-the now familiar 8255), three AY-3-8910 sound chips and a low power amplifier to reproduce the sound through a small speaker. There is a pick-off for external amplification, but the highly "in-phase", square wave signals produced by most computer sound generators is not well suited to your best hi-fi as the signals impose a heavy load on the amplification and speakers. The port occupies four memory locations, the decoding allows one to map this area

COMPONENTS . . .

Resistors

R1	10 M
R2	300
R3	10 k
R4	470 k
R5, R6	4 k 7 (2 off)
R7	10

All resistors $\frac{1}{4} \mathrm{~W} 5 \%$

Potentiometers

VR1 1 k hor. 100 mW preset

Capacitors

C1	20 p ceramic
C2	$10 \mu 16 \mathrm{~V}$ tant.
C3, C7-19	100 n ceramic (14 off)
C4-6	$4 \mu 716 \mathrm{~V}$ tant. (3 off)

Integrated Circuits

IC 1-4	74 LS85 (4 off)
IC5	8255
IC6	74 LS 13
IC7-9	AY-3-8910
IC10	LM386
IC11	$4013 B$
IC12	$4011 B$
IC13,14	$8 \times 4 \mathrm{k} 7$ s.i.l. resistor

Miscellaneous

S1 P.c.b. mounting low profile keyboard switch \& cap
TB1 4-way p.c.b, mounting terminal block
2×32-way $A+C$ male right-angle DIN41612
WE07 SBD printed circuit board
8-pin d.i.l. socket
14-pin d.i.I. socket (3 off)
16-pin d.i.l. socket (4 off)
40-pin d.i.l. socket (4 off)
3.579545 MHz crystal


```
10 P=....
20 POKE P+3,128
30 POKE P+1,32
40 C=1
50 R=7
60 D=254
70 GOSUB 200
80 R=8
90 D=15
100 FOR L1=2 TO 0 STEP - 1
110 R=1
120. D=Ll
130 GOSUB200
140 R=0
    R=0 REM FINE TUNE
150 FOR D=255 TO 0 STEP -1
160 GOSUB 200
170 NEXT D
180 NEXT L1
1 9 0 ~ E N D
200 POKE P,R
210 POKE P+1,2'(C+1)+3
2 2 0 ~ P O K E ~ P ~ + ~ 1 , 0 ~
230 POKE P,D
240 POKE P+1,2'(C+1)+2
2 5 0 ~ P O K E ~ P + 1 , 0
260 RETURN
300 REM VALID RANGES FOR C, R AND D
310 REM D BETWEEN 0 AND 255
320 REM R BETWEEN 0 AND 15
\therefore30 REM C BETWEEN 1 AND 3
Table 7.1. BASIC test program
```

$10 \mathrm{P}=. .$.
20 POKE P $+3,128$
30 POKE $P+1,32$
40 INPUT "CHIP"; C
50 INPUT "REGISTER"; R
60 INPUT "DATA"; D
70 POKE P,R
80 POKE P $+1,2^{2 \prime}(\mathrm{C}+1)+3$
90 POKE P,O
100 POKE P,D
110 POKE $\mathrm{P}+1,2^{\wedge}(\mathrm{C}+1)+2$
120 POKE $P+1,0$
130 GOTO40

```
REM ADDRESS OF 8255
REM ALL PORTS AS OUTPUT
REM RESET SOUND CHIPS REM COLLECT
R REM RELEVANT
REM INFORMATION
REM STORE REGISTER
REM STROBE ADDRESS REM CLEAR STROBE
REM STORE DATA
REM STROBE DATA REM CLEAR STROBE
```

Table 7.2. Register access program
to anywhere.in memory by setting switches (1-14). For ease of description we have continued to use the 8255 (there is one on most of the cards in this series, including the motherboard). Setting up the card is a matter of setting up this port and then writing to the AY-3-8910 registers via the control lines PAO-PA7 and PBO-PB4. A push button on the board allows you to reset the board. On power up, reset is automatic, but you can use PB5 to make reset possible from the host system, by setting link 1 .

> (a) $f_{T}=\frac{f_{C L O C K}}{16 T P_{10}}$
> (b) $\mathrm{TP}_{10}=256 \mathrm{C}_{10}+\mathrm{FT}_{10}$
> Where: $\quad \mathrm{f}_{\mathrm{T}}=$ desired tone frequency
> $f_{\text {Clock }}=$ input clock frequency
> $T P_{10}=$ decimal equivalent of the Tone Period bits TP11-TPO
> $C T_{10}=$ decimal equivalent of the Coarse Tune register bits B3-B0 (TP11-TP8)
> $\mathrm{FT}_{10}=$ decimal equivalent of the Fine Tune register bits B7-B0 (TP7-TPO)

From the above equations it can be seen that the tone frequency can range from a low of $\frac{f_{C L O C K}}{65,520}$ (wherein: $T P_{10}=$ $4,095_{10}$) to a high of $\frac{\mathrm{f}_{\mathrm{CLOCK}}}{16}$ (wherein: $T P_{10}=1$). Using a 1.7 MHz input clock, for example, would produce a range of tone frequencies from 27 Hz to 111 kHz .

To calculate the values for the contents of the Tone Period Coarse and Fine Tune registers, given the input clock and the desired output tone frequencies, we simply rearrange the above equations, yielding:
(a) $\mathrm{TP}_{10}=\frac{\mathrm{f}_{\mathrm{CLOCK}}}{16 \mathrm{f}_{\mathrm{T}}}$
(b) $\mathrm{CT}_{10}+\frac{\mathrm{FT}_{10}}{256}=\frac{\mathrm{T} P_{10}}{256}$

Table 7.3. Tone frequency formulae

Link 1	osition	
	open made	power-up and manual reset software reset vice 8255-omit
		PB1, R3, C2
Link 2	default	board always in address space
		board may be mapped in and out by motherboard 8255
Link 3	default	board is memory mapped
	alternative	board is I/O mapped
Link 4 (pair)	open	memory mapped
	made	I/O mapped-omit IC 1,2,13 and
		S1-8

Table 7.4. Link functions

CONSTRUCTION

Refer to the overlay (Fig. 7.2). This is a simple board to assemble. Use sockets for the i.c.s. These make repair etc. much easier. The crystal should not have its leads bent at the base as this might damage the housing.
Set the switches $1-14$ by determining the area in memory to which the board is to be mapped (say 4120 H), then translate this into binary (0100000100100000) discard the least significant two bits (01000001001000). For each zero in the pattern, turn on the corresponding switch (SO, in this case). Switches $14,12,11,10,9,8,6,5,3,2,1$ are on.

If you want to reset the board via the 8255 , short link 1 . but leave out C2.

TESTING

The AY-3-8910 is a little more tricky to set up, because of its large number of registers. Obtain the data sheet for the internal register layout of this chip. The BASIC program of Table 7.1 is a commented test program which shows how the tone registers are set up. Table 7.2 gives details of how each individual register is accessed on each sound chip. Table 7.3 shows the simple formulae needed to calculate a particular tone, given the colour burst crystal supplied with the sound board. For more complicated applications, a full manufacturer's data sheet, complete with examples, is available with the kit, see Components List.

NEXT MONTH

A serial and parallel port card with a real-time calendar clock which has battery back-up, so the correct time is always on tap.

ELECTRONIC PIANOS
SPECIALISTS SINCE 1972 Clef Planos adogt the most advanced
form of Touch Sersitive acion w hich simulates
palenededectronic technoinue

71 $\frac{1}{4}$ OCTAVE

OOMESTIC MDOEL
COMPONENT KIT £266 COMPLETE KIT $£ 442$ MARUFACTUREO f695

Two Domestic Models are available Four intermixable Yoice Controls he used to oblain a wide variation of Piano tone. including Harpsichord.
Both Soft and Sustain Pedals are corporated in the Design and internal
Effects are provided in the form of Tremolo. Honky Chorus. and A power amplifier integrates into the Piano top which may be removed from

SIX OCTAVE OOMESTIC MODEL COMPONENT KIT £234 complete kit figs Man 6620 Component Kits include K cyboard
Key suitch hardware. and all electronic components and may be purchased in four stages at no extra cosi
Complete kits further contain Cabinets. wiring harthess. Pedals and in the case of Domestic Models both Power Amplitie
and Speaker. The six Octave Stage ano has the designed for use with an External

SIX OCTAVE

 STAGE MODELCOMPONENT KIT £234
MANUFACTUREO 5580
Please allow 3-14 days for normal despatch

KIT f129 * SWITCH ROUTING * 2 OSCILLATORS MANF 215 * THUMBWHEEL * 2 SUB-OCTAVES

STRING
ENSEMBLE
(.As Published in conjunction
with 'Pracfical Electronics')
A very popular Keyboard
Synthesizer Kit. for Group or
tiome use. with a four octave
compass and split Keyboard
facility.
COMPONENT Kit
©197.50

ROTOR-CHORUS

 Comprehensive iwo spee organ rotor simulator plusihree phase chorus generator: COMPONENT KIT $£ 98.00$ KEYBDARDS
Our Square Front Keyboards
8 NOTE (A-C) f60 73 NOTE (f-F) 550 73 NOTE ($F-F$) f 50 OUR OCTAVE ET9

Since 1972 Clef Products have consistently produced leading designs
in the tield of Electronic Musical Instruments. many of uhich hav in the field of Electronic Mlusical Instruments. Tany of whech have been published in technical magazines. With musical quality of paramount importance. new techniques have been evolved and the
latest musically valid technology has heen incorporated into projec ate mave heen successfully completed by constructors over a wide ranke of technical capability, Back up TELEPHONE
a alable to all our customers. All instruments are on show.
PRICES INCLUDE VAT, UK CARRIAGE \& INSURANCE (CARRIAGE EXTRA ON MFD PIANOS) Please send S.A.E. For our complete lists. or use our telephone VISA/ACCESS zervice.
Competitive quotations can be given for EXPORT orders - in Competitive quotations can be given for
Please allow 7 days for normal despatch. Visit our Showroom
GLEF PRODUCTS (ELECTRONICS) LIMITED
(Dept. P.E. 44A Bramhall Lane South, Bramhall
Seockport, Cheshire SK7 1AH $061-439-3297$
"THE computer BAND-BOX" (As Published in coniunction with "Practical Electronics") COMPLETE

KIT £235
£327

MANFD.
MASTER AMVTHMALSO REQUIRED PROGRAMMABLE BACKING BAND FOR THE SOLOIST $1 \cap$ INCLUDES PROGRAMMABLE BASS - EXTENDABLE TO 9,500 LINES

The BAND-BOX provides an Electronic Backing Trio consisting of Drums. Bass. and a Chord Instrument (one of 16 Waveform/Envelope combinations), with the capacity to store over different Chords. Using advanced Microprocessor technology Playback of 50100 Scores can be executed in any Key and at chosen secondary battery back-up. Facility exists for composition of Intro. Repeat Chorus. and Coda sections including Multiple Score Sequences. Sochets are provided for Volume Pedal and Footswitch plus separate and mixed instrument 0

THE Progiammale
 DRUM MACHINE

The Clef Master Rhythm is capable of storing 24 selectable rhythm drum patterns. invented, moditted, and entered by the Operator on to trol expands the number of instruments a a ailable to twelve. grouped into sounds typical of playing with Drunisticks. Brushes. or Latin American Bongos and Claves. Sequence operation allows two rhythm sections to be coupled with ane second (B) section appearing at four. eight or sixteen Bar repet.
tion. All drums can be adjusted for level and resonance on internal. controis to suit individual taste, thus producing good musical sounds
in a battery driven unit $8 \frac{t^{\prime \prime}}{} \times 5^{\prime \prime} \times 2 \frac{1^{\prime \prime}}{n^{\prime}}$.

MAIL ORDER
 ADVERTISING

British Code of Advertising Practice

Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requires advertisers to fulfil orders within 28 days unless a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please retain proof of postage/despatch, as this may be needed

Mail Order Protection Scheme

If you order goods from Mail Order advertisements in this magazine and pay by post in advance of delivery, PRACTICAL ELECTRONICS will consider you for compensation if the Advertiser should become insolvent or bankrupt, provided:
(1) You have not received the goods or had your money returned; and
(2) You write to the Publisher of PRACTICAL ELECTRONICS summarising the situation not earlier than 28 days from the day you sent your order and not later than two months from that day
Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required
We guarantee to meet clais from readers made in accordance with the above procedure a soon as possible after the Advertiser has been declared bankrupt or insolvent
This guarantee covers only advance payment sent in direct response to an advertisement in this magazine not, for example payment made in response to catalogues etc, received as a result of answering such advertisements. Classified advertisements are excluded.

OUR GREAT NEW ILLUSTRATED CATALOGUE IS PACKED WITH INFORMATION ON SUPERB OUALITY, PROFESSIONAL BURGLAR ALARM EQUIPMENT
\therefore AT UNBEATABLE PRICES!

SEND SAE OR PHONE NOW FOR YOUR COPY
A.D. ELECTRONICS DEPT PE 217 WARBECK MOOR AINTREE LIVERPOOL L. $9 \mathrm{HU} / 0515238440$

OVERSEAS ORDERS

Overseas readers are reminded that unless otherwise stated, postage and packing charges published in advertisements apply to the United Kingdom only.
Readers wishing to import goods from the United Kingdom are advised to first obtain from the advertiser(s) concerned an exact quotation of the cost of supplying their requirements carriage paid home.

The
 Big
 Euent for83

Sponsored by Practical Electronics, Practical Wireless and Everyday Electronics

The first Electronic Hobbies Fair in 1982 immediately established itself as the foremost consumer electronics exhibition-the biggest attendance and the largest number of exhibitors.

The 1983 Fair will build on the success and the experience of the first year. It will be 1983's largest and most influential
shop window for the whole range of electronic equipment and components for the electronics hobby enthusiast-constructional projects, home computers, amateur radio, video games, musical instruments and peripheral equipment-whether for the beginner, the specialist or the all-round enthusiast

Make a date for 1983 October 27-30, Alexandra Palace, London For more details contact: The Exhibition Manager, Electronic Hobbies Fair, Reed Exhibitions, Surrey House, Throwley Way, Sutton, Surrey SM1 4QQ

Name
\qquad
\qquad
\qquad

Telephone Number

The Exhibition Manager Electronics Hobbies Fair Reed Exhibitions
Surrey House, Throwley Way Sutton, Surrey SM1 4QQ

When replying to Classified Advertisements please ensure:
(A) That your have clearly stated your requirements.
(B) That you have enclosed the right remittance
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

RECEIVERS AND COMPONENTS

[^5]
SMALL ADS

The prepaid rate for classified advertisements is 34 pence per word (minimum 12 words), box number 60p extra. Semi-display setting f 11.20 per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Banks Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Practical Electronics, Room 2612, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

BOURNEMOUTH/BOSCOMBE. Electronic components specialists for 33 years. Forresters (National Radio Supplies). Late Holdenhurst Road. Now at 36. Ashley Road. Boscombe. Tel. 302204. Closed Weds.

TURN YOUR SURPLUS capacitors, transistors, etc. into cash. Contact COLES HARDING \& CO. 103 SOUTH BRINK, WISBECH. CAMBS. TEL.: 0945 584188. Immediate settlement.

ELECTRONIC COMPONENTS, MERSEYSIDE. Mica Electronics, I Victorla Place. Seacombe Ferry. Wallasey, L. 44 GNR. Mai Order, send 50 p . For price list, refundable off first order. Tet $051-638.8647$.

FANTASTIC ELECTRONIC BARGAINS
VERSATILE BENCH POWER SUPPLY UNTTS Contains high quality transformer made to exacting specifications giving one $20 v$ output and one $20-0-20 v$. output. All tion Contained on metal chassis with robust compact case size $7^{\prime \prime} \times 5 t^{\prime \prime} \times 44^{\prime \prime \prime}$, easily modified to give 40 V or 60 V out put . Makes an ideal variable power supply. Normally cost around E60.00. OUR PRICE AS NEW with circuits $£ 8.50$. Carr. £3. 2 units for EzO carr. tree
AMPLIVOX ULTRA LIGHTWEIGHT IRANSOUCER EARPHONES. Impedance 300 ohms. Made to hit inside protective and crash hetmets, of can be used as pillow earphines. As new $£ 4$ per pair. \mathbf{P} \& $\mathrm{P} \mathbf{£ 1 . 0 0} \mathbf{2} 2$ pars f 8 post free. 4 pairs $£ 15$ post free.
New release of MODERN DYNAMIC MOVING COIL MICROPHONES. 200 ohms impedance. Switch incorporated. Most with lead and DIN plug. Used but nice condition. 3 designs of Bargain offer all 3 mikes $\$ 450$ p.p. f1
FOOT SWITH. (Mains operation). Contans two micro switches and lead. Metal case. Good condition. $\mathbf{5 3 . 5 0}$ each. Postage 50p. 2 for $£ 7.50$ post free
HAVE YOU SEEN THE GREEN CAT. $1000 \times$ of new components. radio, electronic, audio at unbelievably low prices. Send 50 p for catalogue (refundable on purchase)
Try a JMB 0 PACK. Contains transistors, resistors, caps, pots, switches, radio and electronic devices. OVER f 50 worth MINI UIMBO PACK (f20 worth) for EK
Please add 15% VAT to all orders including carriage and P.P.

Navers Electionis Devices

Dept PEZ, 12/14 Harper Street, Leeds LS2 7EA. Leeds 452015 New retail premises at above address (opposite Corals). Callers welcome 9 to 5 Mon. to Sat. Sunday to to 1 by

TRIACS TIC 2260 88P EACH. Triacs TIC $246 \mathrm{D} £ 1.20$ each all inclusive prices. Thyronics Control Systems, 8 Sandling Road. Maidstone. Kent. Maidstone 675354.

BUMPER BOX OF BITS

WOW!!! We've got so many components in stock, we can't possibly list them all!! - So buy a box, in it you'll find resistors, capacitors, displays, switches, panels with transistors, diodes, ICs etc, coils, pots... and so on. All modern parts - guaranteed at least 1000 items, minimum weight 101 bs . ONLY $£ 8.50$ inc.

Just out 40 page CAT. Only $50 p$
ELECTRONICS WORLD
1c Dews Road, Salishury, Wits. SP2 7SN (Prop: Westbrough Lid.)

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Practical Electronics for..............................

(Cheques and Postal Orders should be crossed Lloyds Bank PLC, and made payable to Practical Electronics)

	Send to: Classified Advertisement Department
NAME	PRACTICALELECTRONICS
ADDRESS.	Classified Advertisement Dept., Room 2612, King's Reach Tower, Stamford Street, London SE1 gLS. Telephone 01-2615846 Rate:
	34p per word, minimum 12 words. Box No. 60p extra.

Company registered in England Registered No. 53626. Registered Otfice: King's Reach Tower. Stamtord Street. London SE 1 9LS.

SERVICE SHEETS

BELL'S TELEVISION SERVICES for service sheets on Radio, TV, etc. f 1.25 plus SAE. Colour TV Service Manuals on request. SAE with enquiries to B.T.S., 190 Kings Road, Harrogate, N. Yorkshire. Tel. (0423) 55885

SERVICES

designer mil Program Char-Gen March Microbus. Blath 2532. S.A.E. \& $£ 2.50$ cheque to: W. A. Chadwich, 26, Schoo Lane, Welwyn, Herts. Specty control code or graphics.

EDUCATIONAL

CAREERS IN MARINE ELECTRONICS. Courses commencing September and January. Further details, The Nautical College Fleetwood FY7 8JZ. Tel: 0391779123

TELEVISION COMPUTER RADIOCOMMUNICATIONS \& RADAR SERVICING

$2 \frac{1}{3}$ YEAR full-time course, with a high practical content, approved by the Technician Education Council and leading to

TEC DIPLOMA in ELECTRONIC \& COMMUNICATIONS ENGINEERING

- PRINCIPLES OF ELECTRONICS
- television (mono/colour)
- VIDEO CASSETTE RECORDERS
- CLOSED CIRCUIT TELEVISION
- digital \& microelectronics
- COMPUTERS \& MICROPROCESSORS
- radiocommunication \& radar

Short courses (from 13 weeks) are available in the above individual specialisms for applicants with CGLI, TEC, HNC, BSc etc which lead to TEC or College Diploma awards.

Next two courses commence April 25th \& Sept. 19th.
Prospectus from:

LONDON ELECTRONICS COLLEGE

Dept: AA, 20 Penywern Road. London SW5 9SU. Tel: 01-373 8721

COURSES

CONQUER THE CHIP ... Master modern electronics the PRACTICAL way by SEEING and DOING in your own home. Write for your free colour brochure now to British National Radio \& Electronic School, Dept C2, Reading, Berks RGI 1BR
digital logic course, Unique Home Study. Pay by lesson. S.A.E. for details. Freeman Enterprises, 19 Graysmeade, Sible Hedingham, Essex CO9 3PA.

AERIALS

AERIAL BOOSTERS 1 rebles incoming signal. Price $£ 7.00$. SAE leaflets. ELECTRONIC MAII. ORDER LTD.. Ramshottom. I ancashire B1.0 9AG.

FOR SALE

RESISTORS IRO-10MO (less 7M5) E24 range. 168 valves $0.25 \mathrm{~W} 5 \% \mathrm{TOI}$. Boxed sets 10 per value $£ 20.2 .5$ per value £40 inc. P\&P. CWO. G. Hallett, 20 Bull Lane, Maiden Newton, Durchester, Dorset DT2 OBQ
PRACTICAL ELECTRONICS P.C.B.'s 1.5 mm fibreglass, drilled and solder resist coated. SAVE MONEY - Boards PRINTED ONL.Y ready for own etching and drilling send S.A.E. for price list. I.ECTROPRINT, 17 Showell Road. Bushbury Wolverhampton. West Midlands. Tel. 0902721805.

BOOKS AND PUBLICATIONS

ANY PUBLISHED, full-size service theet by return $£ 2+1$...a.e. CTV/Music Centres $£ 3$. Reparr data with all corcuits. layouts etc. Your named TV or video $£ 8.50$. Free $50 p$ mag. all orders queries. TIS (PE), 76 Churches. I arkhall, L_anarkshore.

MISCELLANEOUS

CLEARING LABORATDRY: scopes, generators, P.S.U's, bridges, analysers, meters, recorders. etc. 0403.76236.

THE SCIENTIFIC WIRE COMPANY PO Box 30, London, E.4. 01-531 1568.				
SWG	1 lb	\%oz	4 oz	202
8 to 34	3.30	1.90	1.00	0.80
35 to 39	3.52	2.10	1.15	0.85
40 to 43	4.87	2.65	2.05	1.46
44 to 47	8.37	5.32	3.19	2.50
48 to 49	15.96	9.58	6.38	3.69
14 to 30 SILV	SILVER PLA	D COPA	WIRE 243	1.72
TINNED COPPER WIRE				
14 to 30	3.97	2.41	1.39	0.94
Fluxcor Solder	older 5.75	3.16	1.73	0.96
Prices include P\&P, VAT. Orders under £2 add 20p. SAE for list of copper and resistance Wire. Dealer enquiries welcome				

CONVERT TV into large screen oscilloscope. Fasy built unit plugs into TV aerial socket (all external). Circuit \& plans £3.20. J. Bobker. 29 Chadderton Drive, Insworth. Bury. lancs.

IONIZER. Feel alert, invigorated and healthier with the amazing ZEPHION negative ion generator. Kit:- $£ 21.50$. Built:$£ 29.80$ or SAE brings leaflets. Dataplus Developments. 81 Cholmeley Road, Reading, Berks RGi 3LY. 073467027.

PARAPHYSICAL JOURNAL (RUSSIAN TRANSLATIONS): Psychotronic Generators. Kirlianography. Gravity lasers. Telekinesis. Details: SAE $4 \times 9^{\prime}$ PARALAB. Downton. Wilts.

BURGLAR ALARM EQUIPMENT. Ring Bradford (0274) 308920 for our catalogue or call at our large showrooms opposite Odial Stadium.

MAKE YOUR OWN PRINTED CIRCUITS Etch Resist Transfers - Starter pack (5 sheets, lines pads. IC. pads) $£ \mathbf{2 . 5 0}$. Large range of single sheets in stock at 50 p per sheet.
Master Positive Transparencies from P.C. layouts in magazines by simple photographic process. 2 sheets inegative paper, 2 sheets positive film (A4) $£ 2.25$ IPhoto-renist spray (200 mi) 2.90 ($p+p$ 65p). Draf ing Film (A4) 25p. Precision Grids (A4) $\mathbf{6 5 p}$. 22p stamp for lists and information. P\&P 50p per order plus extra where indicated. P.K.G. ELECTRONICS
OAK LODGE, TANSLEY, DERBYSHIRE.

PLEASE MENTION PRACTICAL ELECTRONICS WHEN REPLYING TO ADVERTISEMENTS

A REAL TIMESAVER IN THE WORKSHOP NEW STICKY TEMPLATES PPal Ponding;

 ?

INEXPENSIVE self-adhesive clear acetate TEMPLATES - especially designed to ELIMINATE TEDIOUS MARKING OUT of panels and instrument cases when ELIMINATE TEDIOUS MARKING OUT of panels and instrument cases when mounting POPULAR CONNECTOR TYPES. Simply peel off protective backing and centres shown. SAVES HOURS of work - PLUS - makes LINING UP MULTICONNECTOR ARRAYS so EASY, as vertical and horizontal centres are printed on Stickies. Will not harm existing finishes, in fact PROTECTS AREA a round cut-out and PREVENTS punches and drills skidding. INVALUABLE on LAYOUT SKETCHES and drawings too.
Send 55.40 incl. VAT P\&P for selection pack (90 templates) or ask for leaflet, sample and order form to

FUTRONICS TECHNOLOGY (UK) Ltd.
15 North Avenue, London W13 8AP
Trade Enquiries Invited
Please allow 10 days for delivery

WORLD RADIO
 \& T.V. HANDBOOK

1983
Price: $\mathbf{£ 1 2 . 0 0}$

PRINCIPLES OF TRANSISTOR CIRCUITS
by S. W. Amos
Price: $£ 7.50$
THE CATHODE-RAY OSCILLOSCOPE \& ITS USE by G. N. Patchert SERVICING HOME VIDEO CASSETTE RECORDERS by M. Hobbs Price: $£ 12.00$ ELECTRONIC PROJECTS IN PHOTOGRAPHY by R. A. Penfold Price: $\mathbf{E 3 . 5 0}$ DESIGN OF ACTIVE FILTERS WITH EXPERIMENTS by H. M. Berlin

Price: $\mathbf{£ 9 . 0 0}$
GET MORE FROM YOUR PERSONAL COMPUTER by I. Hickman Price: $\mathbf{£ 6 . 5 0}$ LEARNING TO USE THE VIC-20 COMPUTER by R. Geere Price: $\mathbf{£ 4 . 3 5}$ THE ZX SPECTRUM \& HOW TO GET THE MOST FROM IT
by I. Sinclair
Price: $\mathbf{£ 6 . 5 0}$
BASIC PROGRAMMING
by B. J. Holmes
Price: $\mathbf{£ 4 . 5 0}$

* All Prices include postage *

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books

19-21 PRAED STREET LONDON W2 1NP

Phone $01-4029176$ Closed Saturday 1 p.m. Please allow 14 days for reply or delivery.

If you see an advertisement in the press, in print, on posters or a cinema commercial which makes you angry, write to us at the address below. (TV and radio commercials are dealt with by the I.B.A.)

The Advertising Standards Authority.

ASA Ltd., Brook House, Torrington Place, London WCIE 7HN.

MONITORS

HIGH RESOLUTION ~ AND LOW COST !

Either cased or open frames to OEM's. The specification is right, the price is even better.

Phone or write to our Sales Manager, Richard Cox, for immediate action.

CROFTON ELECTRONICS LTD

35, Grosvenor Road, Twickenham, Middx, TW1 4AD Telephone: 01-891 1923/1513 Telex: 295093 CROFTN G

STORAGE CABINETS

$12^{\prime \prime}$ wide $\times 55^{\prime \prime}$ deep $\times 22^{\prime \prime}$ high finished blue with clear plastic drawers
Available units:-

Available units:-	
Type	Drawers
2260	$60 \times$ A
2248	$48 \times$ B
2224 $24 \times$ C	
Type	Drawers
2216	$16 \times$
2208	
2236	
$30 \times \mathrm{A}, 4 \times \mathrm{D}, 2 \times \mathrm{F}$	
ONLY	each cabinet
$f 19$	(inc. p\&p
I19	and VAT)

MILLHILL SUPPLIES

[^6]
Technical Training in Radio, Television and Electronics

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the field of electronics-now it can be your turn. Whether you are a newcomer to the field or already working in the industry, ICS can provide you with the specialised training so essential to success

Personal Tuition and Guaranteed Success
The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: " Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed

CITY AND GUILDS CERTIFICATES

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Basic Electronic Engineering (C\&G/ICS)
Radio Amateurs
CERTIFICATE COURSES
TV \& Audio Servicing
TV, Radio and Audio Engineering Radio \& Amplifier Construction Electronic Engineering* Computer Electronics* Industrial Electronics*
Radio Frequency Electronics* Introduction to Microprocessing* Electrical Contracting \& Installation -Qualify for IET Associate Membership

POST OR PHONE TODAY FOR FREE BOOKLET

INDEX TO ADVERTISERS

A.D. Electronics 74
Ambit 4
Audio Electronics 8
Bicc Vero 12
Bi-Pak 14
Blackstar Limited 68
British National Radio \& Electronics
School 4, 20
Cambridge Learning 8
Centurion Alarms 77
Clef Products 74
Colne Robotics 41
Cricklewood Electronics 9
Crofton 79
The C.R. Supply Co 76
Electronics World 76
Electrovalue 13
Enfield Electronics 79
Futronics 77
Grenson (EMOS) 78
G.S.C 61
Adam Hall Supplies Ltd 77
Hameg 54
ICS Intertext 79
I.L.P. Electronics 6, 7, 68
London College 77
Maplin Electronics Cover 4
Mercia 4
Midwich 33
Millhill Supplies 79
Modern Book Co 78
Myers Electronics 76
Parndon Electronics 4
Phonosonics 12
Pimac 77
P.K.G. Electronics 77
Powertran Cover 2
Radio Component Specialists 78
Radio \& T.V. Components 54
Riscomp Ltd 20
Scientific Wire Co 77
Sifam 10
Sparkrite 5
Swanley 10
Tandy 67
Technomatic Ltd. 80, Cover 3
T.K. Electronics 11
Vachettes Micros 76
Videotone 61
Watford Electronics 2, 3
Wilmslow Audio 10
Tecinomatic Ltid 01-452 1500 01-450 6597 CONNECTOR SYSTEMS

official BBG dealer
BBC Model B $£ 399$ including VAT. (Carr. $£ 8$)
Model A to B upgrade kit $£ 49.50$ Installation charge £15
Individual ungrades and all mating connectors available BBC DISC DRIVES
Disc Interface Kit £95
Installation £20
BBC Single Drive 100K £235. BBC Dual Drive $£ 799$

BBC COMPATIBLE DRIVES

Single 100 K £190 200K £255 400K £345
Dual 200K £360 400K £480 800K £610
Cable for Single Drive £8. Dual Drive $£ 12$.
(Carr. Single Drive £6, Dual Drive £8)
Diskettes: 40 track SS $£ 15,80$ track SS $£ 24.80$ track DS $£ 32$. (Price for 10 carr. £2. VIEW 16K WORD PROCESSOR ROM £52 TELETEXT RECEIVER $£ 195.65+\mathrm{f} 2 \mathrm{p} \& \mathrm{p}$ PRESTEL RECEIVER $£ 90.00+£ 2 \mathrm{p} \& \mathrm{p}$ 2ND PROCESSOR + 64K RAM £195 p\&p
Please phone to confirm delivery details

PRINTERS

NEC PCI6023IBE

80 col 100 cps dot matrix printer. Bi-directional. Logic seeking. 2 K buffer Forward and Reverse line feed. Hi Res \& Block Graphics, Proportional Spacing, International and Greek character sets, Auto underline, Friction/tractor selectable.
$£ 320+£ 8$ cart

FRON MX80 F/T3 and EPEONEWX100.F/TE

MX80 80 cps 80 cols. MX100 100 cps 136 cols. Logic seeking, Bi-directional, bit image printing, 9×9 matrix, Auto Underline. MX80 F/T3 $£ 320$. MX100 F/T3 $£ 430$ £8 carr./printer).

GElKOSHA GPTOOA

80 col .30 cps dot matrix printer. High Res Graphics - Std \& double with characters. $\mathbf{5 1 9 0}+\mathbf{f 6}$ carr

 THE MAPLN TALK-BACX
Now your computer can talk!

\star Allophone (extended phoneme) system gives unlimited vocabulary.

* Can be used with unexpanded VIC20 or ZX81does not require large areas of memory.
\star In VIC20 version, speech output is direct to TV speaker with no additional amplification needed. \star Allows speech to be easily included in programs.
Complete kit only £24.95.
Order As LKooA (VIC20 Talk-Back). LK01B (ZX81 Talk-Back).
Full construction details in Maplin Projects Book 6.
Price 70p. Order As XA06G (Maplin Mag Vol. 2 No. 6).

KEYBOARD WITH ELECTRONICS POR ZX81

- Full size, full travel keyboard that's simple to add to your ZX81 (no soldering in ZX81).
* Complete with electronics to make "Shift Lock "Functıon" and "Graphics 2" single key selections
- Powered (with adaptor supplied) from ZX81's own standard power supply
Full details in Project Book 3 (XA03D) Price 60p. Complete kit (excl case) $£ 19.95$ Order As LW72P. Case 44.95 . Order As XG17T.
Ready built-in case $£ 29.95$ Order As XG22Y

OTHSR KITS FOR ZX81

3-Channel Sounds Generator (Details in Book 5). Order As LW96E. Price $£ 10.95$
ZX81 Sound On Your TV Set (Details in Book 6) Order As LKO2C. Price $£ 19.95$

ZX81 $/$ O Port gives two bi-directional 8 -bit ports Details in Book 4)
Order As LW76H. Price $£ 9.25$
ZX81 Extendiboard will accept 16K RAM and 3 other plug-in modules

Edge Connectors (4 needed): Order As RK35Q Price $\mathbb{1 2} 39$

HOME SECURITY SYSTIZM
Six independent channels - 2 or 4 wire operation. External horn High degree of protec tion and long term reliability Full details in Projects Book 2 (XAO2C) Price 60p

MATINEE ORGAN
Easy-to-build, superb specification. Comparable with organs selling for up to $£ 1000$. Full construction details in our book (XH55K). Price $£ 2.50$. Complete kits available Electronics (XY91Y) £299 Cabinet (XY93B) $£ 99.50^{*}$ Demo cassette (XX43W) 1.99

25W STEREO MOSFET AMPHITER

- Over $26 \mathrm{~W} /$ channel into 8Ω at 1 kHz both channels driven
- Frequency response 20 Hz to $40 \mathrm{kHz} \pm 1 \mathrm{~dB}$
* Low distortion, low noise and high reliability power MOSFET output stage
\star Extremely easy to build. Almost everything fits on main pcb, cutting interwiring to just 7 wires \{plus toroidal transformer and mains lead terminations).
* Complete kit contains everything you need including pre-drilled and printed chassis and wooden cabinet. Full details in Projects Book 3 Price 60p (XAO3D) Complete kit only $£ 49.95$ incl VAT and carriage (LW71N)

BUY IT WITH MAPCARD

Send now for an application form - then buy it with MAPCARD MAPCARD gives you real spending power up to 24 times your monthly payments, instantly.

All prices include VAT \& carrage. Please add 50 p handling charge to orders under 55 total value

Please send me a copy of your 1983 catalogue. I enclose $f 1.50$ (inc p\&p). If I am not completely satisfied I may return the catalogue to you and have my money refunded If you live outside the U.K send $£ 1.90$ or 10 International Reply Coupons. Despatched by return of post.

Name
Address

MAPLIN ELECTRONIC SUPPLIĖS LTO
P.O. Box 3, Rayleigh, Essex SS6 8LR

Telephone: Sales (0702) 552911 General (0702) 554155
Shops at:
Note: Shops closed Mondays
159 King St. Hammersmith. London W6. Telephone: 01-748 0926 284 London Rd., Westcliff-on-Sea, Essex. Telephone: (0702) 554000 Lynton Square., Perry Barr, Birmingham. Telephone: (021) 3567292

[^0]: (C) IPC Magazines Limited 1983. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: Pease note X in part aumber denotes mains voltage. Please inser! ' O ' in place of X for $110 \mathrm{~V} \cdot 1$ ' in place of X for 220 V (Europe), and ' 2 ' in place of X for 240 V U.K.I All unis except UC1 incorporate our own torordal transtormers.

[^2]: A8 Holographic Exhibitions 601-826 6423
 C Reg. Rowles \int Cardiff 565656
 D3 British Numerical Control Soc., London
 E Evan Steadman 6079922612
 E2 BARTG 89 Linden Gdns., Enfield, Middx
 F Tomorrow's World Exhibitions, Bristol
 I Industrial Trade Fairs \& 0217056707
 M Montbuild Exhibitions 01-486 1951
 O Online © 09274282 I
 T Trident 608224671
 Z BETA Exhibitions © 01-405 6233
 Z1 IPC Exhibitions © 01-6438040

[^3]: E69064

[^4]: G.S.C. (UK) Limited Dept 5D

 Unit 1, Shire Hill Industrial Estate
 Saffron Walden, Essex CB11 3AO
 Telephone: Saffron Walden (0799) 21682
 Telex: 817477

[^5]: Extended Basic for:
 UK101/OH1O
 Extended Basic provides an upgraded Basic for most UK101/ OHIO machines. ExBasic is powerful, fast, and very expandable. It adds 39 extra commands as standard, plus mary features not found on more expensive systems. ExBasic uses a totally different concept to other add-on command chips, and as a result the user may add his/her own commands, and unike many inferior ways of extending Basic, ExBasic s
 commands do not need prefixes like ' 8 ' or $\%$ ' in front of them. The commands may be used in programs as well as in immedate mode unlike some add-on command chips where the commands can be used only in immediate mode, or only in programs. ExBasic was designed not just for games, or as a toolkit, or just to allow structured programming or just to help in machine code programs but for all of these applications. grving even the most standard OHIO/UK101 one of the most powertul Basics around.
 Two chips add 39 extra commands: VDU. DRAW, UNDRAW BLK, STORE, TEST, HLIN, VLIN, FILLS, FILLW, BLG. GO, GS REPEAT, UNTIL CALL, DOKE, DEEK MC, PUSR, EGOTO ELINE, ETYPE, INKEY PUTAI CLS, CLW. ROME. GEI. MAN
 WIN, NORM, FIND, OLD. PAUSE, TRACE VIEW, ELSE, MON Plus extra features such as LABELS.
 For BASIC in HOM systems with CEGMON monitor only. Not suitable for systems with an atterable screen width More comprehensive delails plus price on recelpt of SAE VACHETTES (MICROS
 Marshhorough. Sandwich, Kent CT13 OPG. Tel. (0304) 812276

[^6]: Access/Barclaycard 66 THE STREET, CROWMARSH, WALLINGFORD
 welcome or OXON. OX 10 8ES. Tel. 049138653

