PRACTICAL
ELEGTIDNGS

MARCH MEES

Get moving with these new developments in UK Robotics

- advanced electrohydraulic designs for education, industry and now available to the home constructor.

C145.00
$\begin{array}{r}48.50 \\ \text { E. } 50 \\ \hline\end{array}$
£3.00 MICROGRASP, INTERFACE BOARD AND 2×81
printing, call to machine code routines, hexadecimal support and userfriendly textual error trapping messages

If computers interest you then the Cortex will expand your understanding infinitely more than off the shelf machines. Use it in business, education, research or just play with the incredible graphics capability. At Powertran we are using these machines in conventional roles in product control and R \& D. We shall coordinate the Cortex user group and distribute software for the TMS 9995 CPU. Complete 16 bit 64 K computer kit $£ 295.00+$ developments embodied in a complete system. 12 Mega Hertz 16 bit CPU: 64 K upwardly compatible DRAM: separate 16 K video DRAM and 24 K TI Power support real world applications. with NOS C/PM.

Basic with overwrite. Supports up to four Disc drives of mixed type with 16 serial $1 / O$ ports. Programmable Baud rate and comprehensive E Bus interface designed to

Very high resolution graphics gives 3D simulation in 16 colours on 36 prioritised planes of user definable characters Software FORTH coming includes this trendy language along

Hardware components available separately with details in Nov. Dec. and Jan issues of ETI. Software features include; Real time clock, full renumber command, buffered I/O to free machine whilst

Top of the range is the Genesis P102 which has dual speed
control. continuous servo operation and double acting cylinders for increased torque on the wrist and arm rotation joints. The microprocessor based control system has additional memory, position interrogation via the RS232C intertace increasing the versatility of computer control and inputs are provided for machine tool interfacing

Example prices and xample prices an
specifications

Gonesis 5101 Base: $19.5^{\prime \prime} \times 11^{1 \times} \times 7.5^{\prime \prime}$ Litting capaciry: 1500gm Arm lift: 6.6° Weight: 29kg 4 axis model in kit form 5425 5 axis model in kit form $\mathbf{£ 4 7 5}^{\mathbf{4}}$

Genesis P101
Base: $19.5^{\circ} \times 11^{\prime \prime} \times 7.5^{*}$
Lifting capacity: 2000gm
Arm lengths between axles: 14.0°
6 axis model in kit form $\mathbf{5 6 7 5}$
Complete Systerns as shown in Photograph on right
Genesis S 101
4 axis systern in kit form $£ 681.50$ 4 axis systern in kir form $£ 681.50$
5 axis system in kit form $£ 737.50$ 5 axis system Ready Built £1450
Gonesis P101
6 axis system in kit form $\mathbf{E 9 4 5} 500$ 6 axis systern Ready Built $£ 1650$ All prices exelusive of VAT

VAT Complete 16 bit 64 K computer ready bult $£ 395.00$ + VAT

With prices starling below $£ 1,000$ the Genesis range of general purpose robols provide a list rate infroduclion to robotics for both education and industry Each has a self-conlained hydraulic power source which enables loads o several pounds to be smoothly handled. The syslem operated from a single phase 240 or 120 V AC supply or a 12 V DC supply The machune can be supplied with up to 6 axes each of which is fully independent but capable of simultaneous operation Posilion contiol is achieved by means of a closed-loop leedback system based around a dedicaled microprocessor Movement sequences car be enteréd. slored and replayed by use of a hand held controller allernalively the systems can also be interlaced to an external computer via a standard RS 232 C

GENESIS S 101 AND GENESIS P101 WITH PROCESSOR BOXES AND HAND.HELD CONTROLLERS

WORLD LEADERS
IN
ELECTRONIC
KIT DESIGN AND SUPPLY
(CYBERNETIC DIVISION)
PORTWAY INDUSTRIAL ESTATE
ANDOVER HANTS SP10 3WN
Phone Enquiries (0264) 64455
CONSTRUCTIONAL PROJECTS
ICE WARNING AND LIGHTS REMINDER by P.J. McFarlane 22
Get out of tight corners alive
$4 \frac{1}{2}$ DIGIT FREQUENCY METER by Stephen lbbs 28
An audio range frequency meter for measuring $0-20 \mathrm{kHz}$
CASE ALARM by R. A. Penfold 36
Part of Circuit Layout Simplified
CAR ACCESSORY PSU by M. Todley BA and D. Whitfield MA MSc 46
Provides a negative earth supply of $4.5,6,7.5$ or 9 V
ULTIMUM PART 5 by William Edwards 58ROM Emulator for system development
GENERAL FEATURES
SEMICONDUCTOR UPDATE by R. W. Coles 32
Featuring the MAA 2000, 7114, BU2 15
NOT SUCH A RUMB DOBOT by L. N. Owen B.Sc 39
Looking at 2 nd generation robot technology
INTO THE REAL WORLD PART 2 by M. Tooley BA and D. Whitfield MA MSc 50
Digital to Analogue interfacing
INGENUITY UNLIMITED 61
Wine heater thermostat-Intruder alarm-Counter circuit—TTL logic probe-Windscreen wiper control-Touch switched speaker muting-Electronic cruise control MICROBUS by D.J.D. 66A bi-monthly focus on micro's for the home constructor
NEWS AND COMMENT
EDITORIAL 17
NEWS AND MARKET PLACE 18
Including Points Arising and Countdown
SPACEWATCH by Frank W. Hyde 21
Extra-terrestrial activities chronicled
PE MICROCONTROLLER: DATA SHEET 2 by M. Tooley BA and D. Whitfield NAA MSc 27
INDUSTRY NOTEBOOK by Nexus 35
News and views on the electronics industry
CIRCUIT LAYOUT SIMPLIFIED 36
Featuring a project designed using the GSC Scratch Pad PATENTS REVIEW 45Loudspeaker diaphragm-Pseudo stereo
BAZAAR48, 56
Free readers' advertisements
SPECIAL OFFER—CASSETTES 68
SPECIAL SUPPLEMENT

MICRO-FILE by R. W. Coles between pages 38 and 39 Filesheet 51802

OUR APRIL ISSUE WILL BE ON SALE FRIDAY, MARCH 11 th, 1983

(for details of contents see page $5 / 6$ of Micro-file)

[^0]33, CAADIFF ROAD, WATFORD, HERTS WDI 8ED, ENGLAND Tel. Watford (0923) 40588. Telex: 8956095 WAELEC
ALL DEVICES BRAND NEW. FULL SPEC. AND FULLY GUARANTEED. ORDERS DESPATCHED BY RETURN OF POST. TERMS OF BUSINESS: CASH/CHEQUE/P.O. OR BANKERS DRAFT WITH ORDER. GOVERNMENT AND EDUCATIONAL INSTITUTIONS OFFICIAL ORDERS

VAT

Export orders no VAT. U.K. cuntomers plesse edd 15\% VAT to totel cons incl. pe p. POLYESTER CAPACITORS: (Axial Lead) 400V: $1 \mathrm{nF}, 1 \mathrm{n} 5,2 \mathrm{n} 2,3 \mathrm{n} 3,4 \mathrm{n} 7,6 \mathrm{n} 811 \mathrm{p} ; 10 \mathrm{n}, 15 \mathrm{n}, 18 \mathrm{n}$,
$22 \mathrm{n} 12 \mathrm{p} ; 33 \mathrm{n}, 47 \mathrm{n}, 68 \mathrm{n} 16 \mathrm{p} ; 100 \mathrm{n}, 150 \mathrm{n} 20 \mathrm{p} ; 220 \mathrm{n} 30 \mathrm{p} ; 330 \mathrm{n} 42 \mathrm{p} ; 470 \mathrm{n} 52 \mathrm{p} ; 680 \mathrm{n}$ 60p; 14 F . 88 p , POLYESTER RADIAL LEAD CAPACITORS: 250 V ; $10 \mathrm{n}, 20 \mathrm{n}, 15 \mathrm{n}, 22 \mathrm{n}, 2$
$7 \mathrm{p} ; 150 \mathrm{n}, 220 \mathrm{n} 10 \mathrm{p} ; 330 \mathrm{n}, 470 \mathrm{n}$ 13p;6BOn 19p; $1 \mu 23 \mathrm{p} ; 1 \mu 540 \mathrm{p} ; 2 \mu 248 \mathrm{p}$
 99 p ; 50 V : 68 : 20 V ; 1

TANTALUM BEAD CAPACITORS
 18p; 15 36p; 22 30p; 33, 4 40p.
15.22 26p; 33,47 35p; $10055 p$.

SILVER MICA (pF)	
2, 3-3, 4-7, 6.8,8.2, 10, 1	
33, 39, 47, 50	250V: 1 nF
100, 120,	6 nB
180 15p ench	18n, 27
250, 270, 330, 360.	5
0, 470, 600, 8008	100V: 10
	11p; 220 n 13
00. 1200. 1800 30p mach	470 n 23 ${ }^{24}$, 680
00,4700 60p	$34 p ; 2$

\qquad
CERAMIC Capacitors: 50V
Range 1pF 106800 pF /p; 10
$15 n, 33 \mathrm{n}, 47 \mathrm{nF} 5 \mathrm{p} ; 100 \mathrm{nt} / 30 \mathrm{~V}$ Ep
$\frac{15 n, 33 n, 47 n F}{}$ 5p; $100 \mathrm{ni} / 30$
LINEARIC's

555 CMO 702

741 747 C 14 p

48 C 8 pin 538 pin

810 9400 C $\mathrm{AY}-1-1$

 RC4558
$\mathbf{S} 5868$
$\mathbf{S A B 3 2 0}$

 7aLs

COMPUTER CORNER

- SEIKOSHA GP100A - Unihammer Printer. normal \& double width characters, dot resolution graphics $10^{\prime \prime}$ Tractor feed, parallel interface
- SEIKOSHA GP 250X. Printer
- DRAGON Microcomputer.
- JUPITER ACE Microcomputer
- SOFTY-2. The complete Microprocessor development system. New powerful instructions Accepts any 24 pin 5 V single rail EPROM Supplied fully built \& tested.
${ }^{\sin }$
WEMON. Watford's 4K Ultimate Monitor
Superboard \& UK101
- VIDEO MONITORS. Fully cased. Smoked anti750 lines. $1 / \mathrm{P} 75 \Omega$ or high. $240 \mathrm{~V} / 50 \mathrm{~Hz}$.
$9^{\prime \prime}$ - B \& W £89; Green £95; Amber £98.
12.- Green £114; Amber £118.
- ZENITH 12" Hi-RES, Green Monitor 40/80 column select switch
- TEX EPROM ERASER. Erases up to 32 ICs in 15-30 min. £33
- TEX EPROM ERASER with the Solid-State 30 minute Electronic Timer. £43
- SOLID STATE 30 minute Electronic TIMER for
- Spare 'UV lamp bulbs
- POWER SUPPLY Regulated, Variable from 5 V to +15 V 4A. Fully Cased
- MULTIRAIL PSU KIT. Output: $+5 \mathrm{~V} / 5 \mathrm{~A}_{;}+12 \mathrm{~V}$: $25 \mathrm{~V} ;-5 \mathrm{~V}:-12 \mathrm{~V}$ •1A. $\mathbf{~} 40$
- $\mathbf{4 \times 4} \mathbf{4}$ matrix keypad (reed switch assembly) £4
- C12 COMPUTER Grade BASF Cassettes in Library Cases
STACK-PACK. Unique 10 section stackable STACK-PACK. Unique 10 section stackable Drawers rack including
- $8 \frac{1}{2}{ }^{\prime \prime} \& 9 \frac{1}{2}{ }^{\prime \prime}$ Fan fold paper (1000 sheets)
£7(150p) £3.50
(P\&P on some of the above items is extra)
Call in at our shop for demonstration of any of the above items. Be satisfied before you buy

ULTIMUM

WATFORD'S most versatile MICRO EXPANSION SYSTEM. Interfaces with APPLE ATOM DRAGON PET RESEARCH MACHINE SPECTRUM SUPERBOARD, VIDEO GENIE, ZX81. etc. As published in P.E. starting from Nov., 1982

IDC CONNECTORS (Speed block typel				
2 raws	PCB PLUG with latch		Female Meader Sockel	Female Card-Edge Connector
	Sith Pins	Angle Pins		
10 way	90p	99p	85p	120p
16 way	130p	150p	110p	195p
20 way	145p	166p	125p	240p
26 way	175p	200p	150p	320 p
34 way	205p	236p	169p	340 p
40 way	220p	250p	190p	420p
50 way	235p	270p	200p	470p

EURO
CONNE
$\begin{array}{lllll} & \text { Sint. } & \text { Angle } & \text { Sirt. } & \text { Angle } \\ \text { DIN } 4161731 \text { way } & 170 p & & 175 p \\ \text { DIN } 416122 \times 32 \text { way } & 275 p & 320 p & 220 p & 285 p \\ \text { DIN } 41612 & 2.3 \times 32 \text { wav } 295 p & 340 p & 240 p & 300 p \\ \text { OIN } 416123 \times 32 \text { way } & 360 p & 385 p & 260 p & 395 p\end{array}$

D' CONNECTORS :

EDGE CONNECTORS	
2×10 wey -	135p
2×15 wav -	140p
2×18 way 180p	145p
2×22 wav 199p	200p
2×23 wey 170p	190p
2×25 way 225p	20p
2×28 wav 185p	
2×30 way 245p	
2×36 way 295p	二
2×40 way 315p	
2×43 way 395p	
2×75 way 550p	

WE-ROM for Acorn ATOM

CAYSTALS CAYSTA
32768 KHz
100 KHz 32768 KH
100 KHz
200 KHz 200 KHz
455 KHz At highly sophisticeted Acorn Atom Aloating point Atoms Utritit socket.
GIves many unl que BASIC
Extensions: Hi-epeed tape Interface: kransions: key rollovor kevboard: fulif Machlue code breakpoints: EASIC REror trapping: REAO. OATA \& RESTOPE Full BASIC keybord
scanner (EBC like). Find ling 8
deleta: Auto lina numberlng: Piss delete: Auto lina numbering: Plus: Chain, Cursor movement, Loop aborting: Easily
INTRODUCTORY OFFER:
ONLY £9.95
\qquad - MX80FT/3 $10^{\prime \prime}$ Tractor and Friction Feed. 9×9 matrix Friction Feed. 9×9 matrix.
80 column, 80 CPS , Bidirectional, Centronix Interf., BR $110-9600 \mathrm{Hi}$-res, bit image graphics, subscript \& superscript, Italics, Underlining plus FREE 500 Sheets f324 (carr. £7)

- NEC PC-8023BE-C 100CPS bi-directional, logic seeking. 80 column, 7×9 Dot matrix, super/subscript, underlining. true decenders Tractor/Friction, Hi-Res, 2 K
Buffer, Proportional Spacing, at a Special Price. Plus FREE 500 sheets paper

ONLY £320 (carr. £7)

\qquad

\qquad
\qquad

ALS
100
235
268
370

300
368
368
AMPNE
24 way IEE
36 way Centronix

BBC MICRO UPGRADE KITS

- BBC Microcomputer Model B $\quad 16 \mathrm{KMEMORY}(8 \times 4816-100 \mathrm{~ns})$ BBC1
£399
£6.98
- Complete Printer Cable 36" $\mathbf{~} 12.00$
- Disc Interface Kit incl. DOS
£65.00
- Compatible Disc Drives see below
- Analogue I/O Kit BBC4
f 6.45
- Serial I/O Kit BBC5
$£ 6.70$
- Complete Upgrade Kit from Model A to B
£6.10
- COLOUR MONITOR - MICROVITEC 143
$14^{\prime \prime}$
8249

7. 688 MHz
MHz

08333 M

- Camplete range of Connectors. Cables, Quality Software, Accessories, Books, etc. for BBC available. Send SAE for detail list.

FLOPPY DISCDRIVES

- TEAC F[J-50A 51"" 40 track SSSD Uncased 100K (BBC compatible)
£125
- TEAC FD-50A 5느́" 40 track SSSD in cabinet with own PSU 100K (BBC compatible) £180 - TEAC FD-50A 5 $\frac{1}{4}$ " 40 track Two Drives SSSD in cabinet with PSU 200K (BBC compatible) £350
- TEAC FD-50E $5 \frac{1}{4} 80$ track S/S in cabinet with own PSU 200 K (BBC compatible) £250
- TEAC FD-50E Two 5: $\mathrm{S} / \mathrm{S} 80$ track Drives, cased with PSU. 400 K (BBC compatible) $£ 475$ - SIEMENS FDD100-5 Fully cased drive for APPLE (incl. Cable) $\mathbf{f} 235$ - APPLE II DOS Int. Card for above drive. Gold plated Edge connection $\mathbf{£ 4 2}$
- DRIVE Connecting Cable. Single £8; Dble £12.
- 10 Verbatim $5 \frac{1}{4}{ }^{\prime \prime}$ Diskettes S.D. £20;DD £30

GET 310
 powse

WTHALOT OF HELP mom 파․

 can hanole...
Unicase

Over the years ILP has been aware of the need for a complete packaging system for it's products, it has now developed a unique system which meets all the requirements for ease of assembly, adaprability, ruggedness, modern styling and above all price.
Each Unicase kit contains all the hardware required down to the last nut and bolt to build a complete unit without the need for any special tools.
Because of ILP's modular approach, "open plan" construction is used and final assembly of the unit parts forms a compact aesthetic unit. By this method construction can be achieved in under two hours with little experience of electronic wiring and mechanical assembly.

Hi Fi Separates

UC1 PRE AMP UNIT: Incorporates the HY78 to provide a "no frills", low distortion, $(<0.01 \%)$, stereo control unit, providing inputs for magnetic cartridge, tuner, and tape/ monitor facilities. This unit provides the heart of the hi fi system and can be used in conjunction with any of the UP Unicase series of power amps. For ultimate hum rejection the UC1 draws its power from the power amp unit.
POWER AMPS: The UP series feature a clean line front pane incorporating on/off switch and concealed indicator. They are designed to compliment the style of the UC1 pre-amp. Performance for each unit which includes the appropriate power supply, is as specified on the facing page.

Power Slaves

Our power slaves, which have numerous uses i.e. instrument, discotheque, sound reinforcement, feature in addition to the hi fi series, front panel input jack, level control, and a carrying handle. Providing the smallest, lowest cost, slave on the market in this format.

HIFI Separates					Price inc. VAT
UC1	Preamp				129.95
LPIX	$30+30 \mathrm{~W} / 4-8 \Omega$	Bipolar	Steres)	HiF,	C54.95
UP2X	$60 \mathrm{~W} / 4 \Omega$	Bipular	Mano	HiF_{1}	C54.95
UP3X	60W/8日	Bipalar	Monu	HiF,	C54.95
UP4X	$120 W / 4 \Omega$	Bipalar	Mono	HiFi	c74.95
UP5X	$120 \mathrm{~W} / 8 \Omega$	Bipolar	Mano	HiFI	[74.95
UPGX	60w/4-8	MOS	Mono	HiF,	C64.95
UP7X	$120 \mathrm{~W} / 4-8 \Omega$	MOS	Mono	HiF,	[84.95
Power Slaves					
USIX	$60 \mathrm{~W} / 4 \Omega$	Bipalae	Power	Siave	C59.95
US2 x	$120 \mathrm{~W} / 4 \Omega$	Broolar	Power	Slave	C 79.95
us3 3	$60 W / 4-8 \Omega$	MOS	Power	Slave	c69.96
USAX	120W/4-8	MOS	Powver	Slave	¢89.95

[^1] (U.K,) Alt units except UCI incorporate OUR Own iorodal transtormers.

TWO FABULOUS OFFERS FROM

全 L
 G (0)

TESTER 20

20k Ω / V a.c. 8 d.c. A SUPER PROTECTED UNIVERSAL MULTIMETER
Undestructible, with auto matic protection on al ranges but 10A.

ONLY £33.50

inc. VAT, P\&P, complete with carrying case, leads and instructions

This special offers is a wonderful opportunity to acquire an essential piece of test gear with a saving of nearly $£ 20.00$.
Accuracy: d.c. ranges and $\Omega 2 \%$ a.c. 3% (of f.s.d.)
39 ranges: d.c. $\mathrm{V} 100 \mathrm{mV}, 1.0 \mathrm{~V}, 3.0 \mathrm{~V}, 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$. d.c. $150 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 300 \mu \mathrm{~A}, 1.0 \mu \mathrm{~mA}, 3 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$, $100 \mathrm{~mA}, 1 \mathrm{~A}, 10 \mathrm{~A}$
a.c. $\mathrm{V} 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$
a.c. $13 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}, 100 \mathrm{~mA}, 1.0 \mathrm{~A}, 10 \mathrm{~A}$ $\Omega 0-5.0 \mathrm{k} \Omega, 0-50 \mathrm{k} \Omega, 0-500 \mathrm{k} \Omega, 5 \mathrm{M} \Omega, 50 \mathrm{M} \Omega$ $d B$ from -10 to +61 in 5 ranges.
Dimensions: $105 \times 130 \times 40 \mathrm{~mm}$.

TESTER 50 39 ranges $50 \mathrm{k} \Omega \mathrm{V}$ a.c. and d.c. With protective diodes and quick-acting 1.25A fuse.
THE
PROFESSIONAL SOLUTION TO GENERAL MEASUREMENT PROBLEMS ONLY £36.30
incl. VAT, P\&P, complete with carrying case, leads and instructions. Goods normally by return of post.
The best instrument for the workshop, school, toolbox, TV shop and anywhere accurate measurement is needed quickly and simply.
Accuracy: $50 \mathrm{k} \Omega / \mathrm{N}$, a.c. and d.c.
39 ranges: d.c. $\mathrm{V} 150 \mathrm{mV}, 1 \mathrm{~V}, 3 \mathrm{~V}, 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$: d.c. $120 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 300 \mu \mathrm{~A}, 1 \mathrm{~mA}, 3 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ $100 \mathrm{~mA}, 1 \mathrm{~A}, 3 \mathrm{~A}$
a.c. $\mathrm{V} 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$ a.c. $13 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}, 100 \mathrm{~mA}, 1 \mathrm{~A}, 3 \mathrm{~A}$ Ohms $5 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 500 \mathrm{k} \Omega, 5 \mathrm{M} \Omega, 50 \mathrm{M} \Omega$. dB from -10 to +61 in 5 ranges.
Dimensions: $105 \times 130 \times 40 \mathrm{~mm}$.

For details of these and the many other instruments in the Alcon range, including multimeters, components measuring, automotive and electronic instruments, please write or telephone:

A ICbON

Instruments L_td.

[^2]We have a big store to clear. 100 tons of stock must go. 10 kilo parcel of unused part
Minimum 1000 itams includes panel meters Minimum 1,000 items includes panet meters
timers, thermal trips, relays switches, motor drills, taps and dies. tools, thermostats, coils, condensers, resistors, etc. etc. Individually would cost you a fortune
YOURS FOR ONLY $£ 11.50$ plus $\mathbf{6 3 . 0 0}$ post IONISER KIT
Refresh your home, office, shop, work room atc. with a neğative ION generator. Makes you feel better and work hat der - complete mains

```
onerated
postage.
```

CAR STARTER/CHARGER KIT
This kit has no doube saved many motorlsts
This kit has no doubt saved many motorists
trom embarrasment in an emergency you cal start car off mains or bring your battery up to full charge in a couple of hours. The kit come prises: 250 wains transformer, two 10 amp tridge rectifiers, start/charge switch and full
Instructions You can assemble this in ant Instructions. You can assemble thisin an garage, whichever suits you best.
Price: ONLY $£ 12.50+£ 3.00$ post. Price: ONLY $£ 12.50+£ 3.00$ post 3 - 30V VARIABLE VOLTAGE POWER SUPPLY UNIT With t amp DC ourput, for use on the bench Automatic short circult and overioad protect ion. In case with a wolt meter on the front panel. Complete kit El3.80.
ZX81 OWNERS Make yourself a full size keyboardil Key
switches complete with plain caps. 6 for
E1.15. E1.15.
COMPUTER PRINTER FOR ONLY £4. 95
Japanese mode Epsen 310 - has a self starting brishtess drive moter. Complete with electron-
ics - uses plain papar. Brand new with dats. ONLY $£ 4.95$ plus $£ 1.25$ Post.

Cash, P.O. or cheque with order. Of ders
under $£ 10.00$, add 60 p. Access $\&$ B/card
orders orders by phone to Haywards Heath 104441

 (Dept PE), 34 - 36 AMERICA LANE, HAYWARDS HEATH, SUSSEX RH16 3OU. This is easily reversfble with our reversibte

REVERSIBLE MOTOR WITH
CONTROL GEAR
Made by the famous Framco Company this is a very robust motor, size approximately
$71 / "^{\prime \prime}$ long. $3 \mathrm{y}^{\prime \prime}$ dia. $3 / 8^{\prime \prime}$ shaft. Tremendousiv powertul motor, imast impossible to stop. Ideal for operating stage curtains, sliding doors, ventilators, etc., even garage doors if adequately counter balanced, We offer the follow

- 1 Framco motor with gear box. - 1 manual reversing and onfolf switeh. © 1 push to start switch. \& $1 \times 100 \mathrm{w}$ auto transformer. - 2
Itmit stop switches. connections. f 19.50 plus postage E 2.50 . SPIT MOTORS

owerful malns operated induction motors with gear box attached. The linal shatt rod with square hale, so you have is approx. 5 revs $/ \mathrm{min}$. PRICE $\mathbf{5 5 . 5 0}$. Similar motors with final speeds of $80,100,160$ \& 200 r.p.m. same price
8 POWERFUL BATTERY
MOTORS (all different)
Suitable for models, meccanos, drills.
semote control planes, boars, etc. $£ 2.95$, 12 VOLLT MOTOR BY SMITHS Made for use in cars, these are series wound and they bocome more power ful as load
increases. Size 3% "' long by $3^{\prime \prime}$ dia. These have a good length of $/^{\prime \prime}$ soindle - pric EXTRA POWERFUL 12 VOLT MOTOR
Made to work battery lammower, this probably develops up to $\%$ h.p... so it could be used to power a go.kart or 10 drove a
compressor, etc. etc. $£ 6.90 * \mathrm{f} 1.50$ pos Ompressor, etc. etc. $£ 6.90 \div £ 1.50$ poss.

Revolution in circuit board maker kits from
leading manufacturer board maker kits from
leading manufacturer

The Electrolube CM100 Circuit Maker provides everything necessary to produce positive photographic film masters from same-size published circuit layouts and to make either single or double-sided boards from these or other positive film masters.

Features

- Economic and simple to use.
- No expensive equipment required e.g. darkroom, cameras etc
- Photographic experience not needed.
- Simple etching process.
- Universal exposure and assembly frame custom-designed, professional quality.
- Ergonomically designed storage pack which includes free-standing shelf for chemicals.
- Step-by-step instruction manual, workbench and trouble-shooting charts provided
- Special clearing process ensures excellent clear positive film masters.
- Photoresist available in non-aerosol form to eliminate 'spotting' when applied to the board

Mercia Electronics, Coronet House, Upper Well St., Coventry CV1 4AF

Send for full illustrated brochure and price details, post to:

Name
Address

Signature

MASTHFR THFGHPIONICS Now! The PRAGHICAT WRy!

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous
k nowledge is required, no maths, and an absolute minimum of theory

You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a self emploved servicing engineer.
All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.
You will do the following
Build a modern oscilloscope

- Recognise and handle current electronic components
Read,draw and understand circuit diagrams - Carry out 40 experiments on basic electronic circuits used in modern cquipment
Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V. Hi-Fi and microprocessor/computer
 equipment.

NewJob? NewCareer?NewHobby?Getinto Flectronics Now!

Please send your brochure without any obligation to

NAME

ADDRESS
\qquad
\qquad OTHER SUBJECTS
BritishNational Radio\&e Electronics School Reading,Berks.RGl1BR.

Sinclair ZX Spectr

16K or 48K RAM... full-size movingkey keyboard... colour and sound... high-resolution graphics... From only £125!

First, there was the world-beating Sinclair ZX80. The first personal computer for under $£ 100$.

Then, the ZX81. With up to 16 K RAM available, and the ZX Printer. Giving more power and more flexibility. Together, they've sold over 500,000 so far, to make Sinclair world leaders in personal computing. And the ZX 81 remains the ideal low-cost introduction to computing.

Now there's the ZX Spectrum! With up to 48 K of RAM. A full-size moving-key keyboard. Vivid colour and sound. Highresolution graphics. And a low price that's unrivalled.

Professional powerpersonal computer price!

The ZX Spectrum incorporates all the proven features of the ZX81. But its new 16K BASIC ROM dramatically increases your computing power.

You have access to a range of 8 colours for foreground, background and border, together with a sound generator and high-resolution graphics.

You have the facility to support separate data files.

You have a choice of storage capacities (governed by the amount of RAM). 16 K of RAM (which you can uprate later to 48 K of RAM) or a massive 48 K of RAM

Yet the price of the Spectrum 16K is an amazing $£ 125$! Even the popular 48 K version costs only $£ 175$!

You may decide to begin with the 16 K version. If so, you can still return it later for an upgrade. The cost? Around $£ 60$.

Ready to use today, easy to expand tomorrow

Your ZX Spectrum comes with a mains adaptor and all the necessary leads to connect to most cassette recorders and TVs (colour or black and white).

Employing Sinclair BASIC (now used in over 500,000 computers worldwide) the ZX Spectrum comes complete with two manuals which together represent a detailed course in BASIC programming. Whether you're a beginner or a competent programmer, you'll find them both of immense help. Depending on your computer experience, you'll quickly be moving into the colourful world of ZX Spectrum professional-level computing.

There's no need to stop there. The ZX Printer - available now - is fully compatible with the $Z \times$ Spectrum. And later this year there will be Microdrives for massive amounts of extra on-line storage, plus an RS232 / network interface board.

Key features of the Sinclair ZX Spectrum

- Full colour-8 colours each for foreground, background and border, plus flashing and brightness-intensity control.
- Sound-BEEP command with variable pitch and duration.
- Massive RAM-16K or 48K
- Full-size moving-key keyboard - all keys at normal typewriter pitch, with repeat facility on each key.
- High-resolution-256 dots horizontally $\times 192$ vertically, each individually addressable for true highresolution graphics.
- ASCII character set - with upper- and lower-case characters.
- Teletext-compatible-user software can generate 40 characters per line or other settings.
- High speed LOAD \& SAVE-16K in 100 seconds via cassette, with VERIFY \& MERGE for programs and separate data files.
- Sinclair 16K extended BASICincorporating unique 'one-touch' keyword entry, syntax check, and report codes.

The Spectrum software library is growing every day. Subjects include games, education, and business/ household management. Flight Simulation...Chess...Planetoids. History ...Inventions ..VU-CALC ...VU-3D
.Club Record Controller...there is something foreveryone. And they all make full use of the Spectrum's colour, sound, and graphics capabilities. You'll receive a detailed catalogue with your Spectrum

ZX Expansion Module

This module incorporates the three functions of Microdrive controller, local area network, and RS232 interface Connect it to your Spectrum and you can control up to eight Microdrives, communicate with other computers, and drive a wide range of printers.

The potential is enormous, and the module will be available in the early part of 1983 for around $£ 30$.

Sinclair Research Ltd, Stanhope Road, Camberley, Surrey GU15 3PS.
Tel: Camberley (0276) 685311.

The ZX Printeravailable now

Designed exclusively for use with the Sinclair ZX range of computers, the printer offers ZX Spectrum owners the full ASCII character set-including lower-case characters and high-resolution graphics.

A special feature is COPY which prints out exactly what is on the whole TV screen without the need for further instructions. Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZXPrinter connects to the rear of your ZX Spectrum. A roll of paper (65 ft long and 4 in wide) is supplied, along with full instructions. Further supplies of paper are avallable in packs of five rolls.

The ZX Microdrive coming soon

The new Microdrives, designed especially for the ZX Spectrum, are set to change the face of personal computing by providing mass on-line storage.

Each Microdrive can hold up to 100 K bytes using a single interchangeable storage medium

The transfer rate is 16 K bytes per second, with an average access time of 3.5 seconds. And you'll be able to connect up to 8 Microdrives to your Spectrum|via the ZX Expansion Module.

A remarkable breakthrough at a remarkable price. The Microdrives will be available in the early part of 1983 for around £ 50

How to order your ZX Spectrum

BY PHONE-Access, Barclaycard or Trustcard holders can call 01-200 0200 for personal attention 24 hours a day, every day. BY FREEPOST-use the no-stamp needed coupon below. You can pay by cheque, postal order, Access,

Barclaycard or Trustcard.
EITHER WAY-please allow up to 28 days for delivery. And there's a 14-day money-back option, of course. We want you to be satisfied beyond doubt - and we have no doubt that you will be.

To: Sinclair Research, FREEPOST, Camberley, Surrey, GUI5 3BR.				Ord
Oty	Item	Code	Item Price £	Total £
	Sinclair ZX Spectrum-16K RAM version	100	125.00	
	Sinclair ZX Spectrum-48K RAM version	101	175.00	
	Sinclair ZX Printer	27	59.95	
	Printer paper (pack of 5 rolls)	16	11.95	
	Postage and packing: orders under £100	28	2.95	
	orders over $£ 100$	29	4.95	
			Total £	
Please tick if you require a VAT receipt \square *Ienclose a cheque/postal order payable to Sinclair Research Ltd for £ *Please charge to my Access/Barclaycard/Trustcard account no.				
as applicable				
Signature				
PLEASE PRINT				
Name: Mr/Mrs/M				
Address				
FREEPOST-no stamp needed. Prices apply to UK only. Export prices on applicat				

INTERNATIONAL DIGITAL I/C SELECTOR
by Towers T. D.
Price: $\mathbf{£ 1 1 . 0 0}$

BEGINNERS GUIDE TO MICROPROCESSORS
by Parr E. A. Price: $\mathbf{\text { £ } 4 . 5 0}$
A PRACTICAL INTRO TO ELECTRONIC
CIRCUTTS
Price: $£ 7.50$
ESSENTIAL ELECTRONIC AN A-Z GUIDE
by Loveday G. Price: $\mathbf{f B} .75$
ADVENTURES WITH DIGITAL ELECTRONICS
PRINCIPLES OF INTERACTIVE COMPUTER GRAPHICS
by Sproull R. Price: $\mathbf{£ 1 0 . 7 5}$
MICROCOMPUTER TECHNOLOGY AN INTRO
COMPLETE HANDBOOK OF MAGNETIC
RECOROING
by Jorgensen F.
COMPLETE HANDBOOK OF VIDEO
COMPLETE HANDBOOK OF VIDEO
by Owen D. Price:
H.F. ANTENNAS FOR ALL LOCATIONS
by Moxan L. Price: $\mathbf{\Sigma 7 . 5 0}$

* All PRices include postage *

THE MODERN BOOK CO.

of British and American Technical Books

19-21 PRAED STREET LONDON W2 1NP

OVERSEAS

 ORDERSOverseas readers are reminded that unless otherwise stated, postage and packing charges published in advertisements apply to the United Kingdom only.

Readers wishing to import goods from the United Kingdom are advised to first obtain from the advertiser(s) concerned an exact quotation of the cost of supplying their requirements carriage paid home.

Technical Training in Radio, Television and Electronics

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the field of electronics-now it can be your turn. Whether you are a newcomer to the field or already working in the industry, ICS can provide you with the specialised training so essential to success.

Personal Tuition and Guaranteed Success
The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: " Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed"

CITY AND GUILDS CERTIFICATES

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Basic Electronic Engineering (C\&G/ICS)
Radio Amateurs
CERTIFICATE COURSES
TV \& Audio Servicing
TV, Radio and Audio Engineering
Radio \& Amplifier Construction
Electronic Engineering*
Computer Electronics*
Industrial Electronics*
Radio Frequency Electronics* Introduction to Microprocessing* Electrical Contracting \& Installation - Quality for IET Assoclate Membership

Approved by CACC

POST OR PHONE TODAY FOR FREE BOOKLET
Please send me your FREE School of Electronics Prospectus.
Subject of interest
Name

Post to: Dept E273
ICS School of Electronics
160 Stewarts Road
London SW8 4UJ

home control centre
This New Remote Control Kir enables you to contro up to 16 diferent appliances any-
where in the house from the comfort of your armchair. The ransmitter injects coded pulses into the mains wiring which are received by receiver modules connected to the same mains supply and used to switch on the appliance addressed. Recelvers are addressed by means of a 16 -way keyboard,
followed by an on or off command. Since pushing buttons can become rather boring, pushig transmitter also includes a computer interface so you can programme your favourite micro to switch lights, heating, electric blanket, make your coffee in the morning, etc.; without rewiring your house. JUST
THINK OF THE POSSIBLITIES. The KIT includes all PCBs and components for one transmitter and two receivers, plus a drilled box for the transmitter.
Order as XK112.
Additional Recievers XK111£10.00
ELECTRONIC LOCK KIT XK101
This KIT contains a purpose designed lock IC, 10 -way keyboard, PCBs and all components
to construct a Digital Lock, requiring a 4 -key sequence to open and providing over 5000 different combinations. The open sequence may be easily changed by means of a prewired plug. Size: $7 \times 6 \times 3 \mathrm{cms}$. Supply: 5 V to $15 \mathrm{~V} \mathrm{d.c}$.at 40 uA . Ouput: 750 mA max.
Hundreds of uses for doors and garages, car anti-theft device, electronic equipment, etc. Will drive most relays direct. Full instructions supplied.

ONLY $£ 10.50$
Electric lock mechanism for use with latch locks and above hit
£13.50

MINI KITS MKI TEMERATURE Usen LM3911 IC to sonso tompen ture 180 C max. I and triac to switer hester, -KW
nem 2 Sold Stre Actor ldesi te switching motors. lights heotors. Alc. trom 16 gic. ODto
isolatodimith zero voltage switching Supplied withoultivec MK3 8-2/DOT Dispar
 ber or engle dor Ideal lor therma moters. IVevel indichtors, otc. May be
stacked to obts in 20 to too elamen
 disolayz Roquires 5 -20V SuODIV.
MKA PROPORTNONAL
MKA MEA PELPTURE CONTROUER
 a "buer firs- powar controlle.
onsbling the tempersture of on er enabling the empersture of onerr
closure to
be mainteined to withi?

Besed en the ZN103AE Timer IC this kit will switch a mains load on hor oft)

$\sqrt{\int}$ 3-NOTE DOOR CHIME $\downarrow \overrightarrow{ }$
Based on the SAB06c0 IC the kit is supplied with all components, including loudspeaker. pinited ci-cuit board, a pro-drilled box $195 \times 71 \times 35 \mathrm{~mm}$) anc full instructions. Requires only a PP3 9V battery and aust. switch to comolete. AN IDEAL PROJECT FOR BEGINNERS. Order as XK 102

E5.00

XK113 MW RADIO KIT

Based on ZNA14 IC, kit includes PCB, wound aeria and crrstal earpiece and al components to make a sensitive 9 V battery. IDEAL FOR BEGINNERS. $\quad \mathbf{~} 5.00$

COMPONENT PACKS
PACK 1 650 Resistor
PACK $240 \times 16 \mathrm{~V}$ Electrolytic Capacitors
PACK $1000_{\text {u }}$ F -5 zer value C3. 25
PACK 360 Polyester Capacitors 0.01 to $1 \mu \mathrm{~F} / 25 \mathrm{CN}$
PACK 5 per value ef. 55

- 5 per value $£ 2.90$

PACK 5 Low Profie IC Sockets 8, 14 and 16 - pin
PACK 6 25 Red LEDs $(5 \mathrm{~mm}$ dia, IE1. 25
Have you got our FREE ORANGE CATALOGUE yet? NO?! Send S.A.E. $6^{\prime \prime} \times 9^{\prime \prime}$ TODAY!!
It's packed with details of all our KITS plus large range of SEMICONDUCTORS including CMOS, LS TTL.
lifear, microprocessors and memories, full ravge of
LEJs, capacitors, resistors, hardwere, relays, switches erc. We also stock VERO and Antex products as well as books from Tekas Instruments, 3abani and Elektcr. ALL AT VERY COMPETITIVE PRICES.

ORDERING IS EVEN EASIER - JUST RING

 THE NUMBER YOU CAN'T FORGET FOR PRICES YOU CAN'T RESIST.
5-6-7 8-9-10

 and give us your Access or Barclaycard No. Answering or wite enclosing cheque or postal order. service eungs Official orders accepted from schools, etc. \& weekendsDVM/ULTRA SENSITIVE THERMOMETER KIT This now design is based on
the ICLT126 is lower power version of the ICL7106 chip) and a $3^{1 / 2}$ digit liquid crsstal
display. This kit will form the
display. This kit will form the
basis of a digltal multimoter
Tonly a fow additional renistors and switches are required-dersits supplied), of a senslive
digital tharmometes $\left(-50^{\circ} \mathrm{C}\right.$ to $\left.+150^{\circ} \mathrm{C}\right)$ digital thermometer $1-50^{\circ} \mathrm{C}$ to $\left.+150^{\circ} \mathrm{C}\right)$ reading to $0.1^{\circ} \mathrm{C}$ The basic kit has.
senstiviey of 200 mv for tull scale reading. sensnivity of 200 mv for a full scale reading.
automatic polarity indication and an ulrod
 Price $£ 15.50$

DISCO LIGHTING KITS DL 1000 K
This value-t \qquad

$£ 14.60$

DLZIOOK
undioctionat channer sequence win soed Vatiable by means of a pre-sel pot. Uutputs
switceded only at mains zeio crossing points
 DL3000k
el sound to light kit teatures
 Only $£ 11.95$

OPEN-SESAME"
 open) reley contact and fwo latiched tranaistor outpur Designed primarily for controlling
motorised garage doors and two suxillsry out. outs for drivelgrige lights ata range of up to
sot The unit its has numerous in the home for switching lights spolications urrains. Aor switching lights, TV, closing persont
Tha Kit comprises a mains powered receivat, a lou butron trensmitier, complete with prea potoi-isolated requiring solid slate sw berrery and one lecing the receiver io mains appliances A

ONLY £23.75
_CD 3½ DIGIT MULTIMETER 16 ranges including DC voltage $(200 \mathrm{mv}-1000 \mathrm{v})$ and
AC valage $D C$ current $(2000 \mathrm{~A}-10 \mathrm{~A})$ and resiss ance $10-2 \mathrm{M})+$ NPN \& PNP eransistor gain and diode check. Input impedance 10 M . Size 155 $88 \times 31 \mathrm{~mm}$. Requires PP39V sattery. $\quad \mathbf{1 2 9 . 0 0}$

THE MULTI-PURPOSE TIMER HAS ARRIVED
Now vou can run your central heating, lighting, ni-fi systemt and lot
more with jusi one programmable timer. At your selecwon it is
designed to control four mains outputs independently, swithing on and off at pre-sel times over a 7 day cycle, a.g
heating (inclu 0 ding different swithing heating (including difterent switching times for weakerds), ius clock will do the rest.
features include
0.5" LED 12 hour display

Day of week, smpom end output status indicators 42 zro volt age switched m
$50,60 H 2$ mains operation.
Bortery backup saves stored programmes and continues Batrery bachup saves stored programmes and continues
time keeping during power failures. (Bettery not supplied). Díspiay blanking during p. 18 programme time sets
Powerful "Everyday" function enabling outpui 10 switch every day but use only one time sot. Useful "siaeop function-1urns on output for ong hour. Oifect switch control enabling output to be turned on 20 function key oud for programme entry. Pronction ko aif an program.
Programme verification at the touch of a butron.
(Kit includes all components, PCB, assembld and programming instructions). ORDER AS CT5000

For a detailed booklet on remote control - send us 30p and S.A.E. $\left(6^{\prime \prime} \times 9^{\prime \prime}\right)$ today. FRST SERYICE-TOP QUALITY-LOW LOW PRICES

REMOTE CONTROL KITS

MKB SIMPLE INFRA RED RANSMITIER
Pulsed infra red soure
Pulsed infra red soutca con
MKTINFRA RED RECEIVER
Sing e channel. renge app ox. 20t. Nains powered with a triac outpur to switch loads up to 500 W
 Based on the SL490, the kiti inciudes all components to make a coded transmitrer and oniy
requ res a 9 V (PP3) baner, and kevoerd. $8 \times 2 \times 1.3 \mathrm{cms}$ MK 1016 WAY KEYBOARS

 For use with MK8 kit with 16 onoth cutpuls, which with furher interface circuiry, such at reloys
Or tr acs, will switch up to 16 items of equin
 MK ${ }^{3}$ Modns Powered iR -ranamitre

 MK th HGGH POWER II TTANSMTTER
Sim lar io MK8 but with ringe of approx, 60t. E6.20
Ancalory Kra: MK2 Soltestatt R Midy
ODTG-isolated With zero veliage swithing No
Corr prises $2 x$ solid state eltys and latch for use with momentary
varsion of the MK12. 2 oatput triaes required (not supplied). E4.50
24 HOUR CLOCK/APPLIANCE TIMER KIT

 Add 55p postage \& packing $+15 \%$ VAT to total.
Overseas Customers: Add $£ 2.50$ (Europe). $£ 6.00$ (elsewhere) for p\&ip. Send S.A.E. for further STOCK DETAILS.

而 0 PEN $\begin{gathered}9 a \mathrm{~m} \text { to } 5 \mathrm{pm} \text { (Mon to } \mathrm{F} \\ 10 \mathrm{am} \text { to } 4 \mathrm{pm} \text { (Sat) }\end{gathered}$

EJF A T $: 4$ BCATIS

and

SCREWDRIVER SET

| case Sues -08.14224 |
| ---: | :--- |
| 29 and 38 mm |

Бті NUT DRIVER SET
5 precesion nut divers in hinged diaslic case

TOOL SET

5 prectision instrumenis a minged olasicic cas

Crosspoint Prillips' screwarive
HO ano H I Her key wrenches
2 and 25 mm ¢1.75
Sh WRENCH SET
5 precision wrenches in tinged plastic cas BUY ALL FOUR SEIS SI2t STSt ano gel HEX KEY SEI FREE Hex KEY SET ON RING

Sizes. 15.223 .3 45.5 ano 6 mm

"IARESISTABLE RESISTOR BARGAINS

Pa me phi Dencription

4 wall Carbon Ressitors
4 wall Carbon Ressisto wait Cubbon Resistors h watt Resisto
2 m 2 Mured
1 and 2 walt Resis

ol assonted ralues hom 22 ohms to 22 mes. Save pounds on these resistor palls and have ofull range to cover your propects

- Quantuties adoroximate counl by meight

GUARANTEED TO SAVE YOU MONEY
SX27A 60 Assorted Polystyrene Type 9500 Series PP0 sxz3a 50 Assorted Silver Mica Caps SX29A 50 Assorte
SX29A 50 Assorted Silver Mica Caps SX30A 50 High Voltage Disc Ceramics 750 up to GKV. Assorted useful values Assorted values 1 ohm. 12 K Resistors. Assorted values 1 ohm. 12 K
AUTO SCREWDRIVERIORILL Automatic spiral ratchet. Complete with Automatic spiral ratchet. Complete with 2
screwdriver blades, $5 \& 65 \mathrm{~mm}$. I screwedriver cross poht No. 18 is three drills -2.2 .8 and
$3.65 \mathrm{~mm}-A$ MUST FOR ALL HOBBY-BUILDERS \& CONSTRUCTORS. Order No. ASD/1 9.50 each

Made ol haroene

SIREN ALARM MODULE American Police type screamer powered | American Police rype streamer powered |
| :--- |
| trom any 12 volt supoly into 4 or 8 ohm | speaker. Ideal for car burglar alamm, trezer breakdown and oother security purposes. 5 watt, 12 v max.

DESOLDER KIT

BI-PAK SOLDER
Kil comprises ORDER NO SX80
1 High Ouality 40 watl General Put Dos Lughtweight Soldering ron 240 v mains

I Oualily Oesoldering pump High Suction automalic ejection Knurled anli-corrosive Casing and telion nozrie dispense 2 yos 1183 m) Resin Corea Solder on Card 1 Heal Snunt tool fweezer Type Total Relarl Value over $\mathbb{4} \mathbf{2 . 0 0}$
£3.85 BPder No.
BP12.

BARGAINS

20 a large 2^{2} REDLEO 20 smatl 125 Red LED's 524310 Recianguian Green LEW 30 Assorted Lener Diodes 250 mm .2 watt maxed voltazes. all coded New
si4) Alach instrument
Knobs- minged with pointer Standara sciew fil sire 29 20 mm
20 Assorted Slider Mnoos Brach/Chrome, e
sute 12 Neons and filument Lamps. Low voluge and mans - various types and colours - some panel mounting

E

5153

BI-PAK PCB ETCHANT AND DRILL KIT

Expo mum Urall 10000 RPM

 Coneis \& $1 \times 1 \mathrm{~mm}$ Twist bit I Ereh Resis! PenI Y/ib pack FERAIC CHLORID $?$ sneets Froreglass coppet clao ooard Fulf instructrons lor making your own PCB boards
Relan Value nver © 15.00
OUR BI.PAK SPECIAL ReIaI Value nver ci 5.00
OUR BI-PAK SPECIAL KIT PRICE $\mathbf{C} 9.75$
ORDER RO SX8I
5×55
5×5
ges the greatest passote heat ossing
a the smallest soace owing to is unique
slagiered lin aesign pre drilled
10.3 Sue 45 mm squares 23 mm hugh 40 p

PROGRAMMABLE UNIUUNCTION TRAMSISTOR
-PUT' Case TO 06 plas IIC MEUZ2 SImilar Io 2N6O27 /6028 PNPN Silicon
Price $1.910 .49 \quad 50.99 \quad 100$.

Normal Retail

Sx33A 6 small (min (SOST ISPOT Toggle small (min) Romp $\$ 1.00$ 240 v Samp
Sx32-2 '2 Assorted Jack \& Phong plugs. $\$ 1.00$
5m and adantors. 25 m .
lure, sout of spece on volts or
A mixed bundie of Copper clad $\$ 1.00$
Board Fibre glass and paper
Single and double sided A

BHAK

"CAPABLE CAPACITOR PAKS"

Description

 Capocitors Mared lypes Ceramic Capacilors MinialMised Mised
Mined
M Mired Ceramics Ipl. Stopl Mused Ceramicr 6 Aol- 0.5 mil hssoted Poly
Capactors Mited C28
meal toil meat toil Quality tlectrolvics

BRAND NEW LCD DISPLAY MULTITESTER.
LCO 10 MEGOHM INPUT IMPE OANCE
LI
-3/ digit ' 16 ranges plus hfe iest facilily fo PNP and NPN transistors "Aulo zero aulo Dolarity "Single-handed pushoutton
operalion "Ove" range lllocicalion - 125 mm Fust cricuil drotechon * Test leads battery

Maxinaication 1999 of - 1999
Polarty indication $\begin{aligned} & \text { Negalive only } \\ & \text { Positive readings agpear } \\ & \text { without }+ \text { sign }\end{aligned}$
noul impedance 10 Megonms
$\begin{array}{ll}\text { Cero adust } & \text { Automalic } \\ \text { Sampling lime } & 250 \text { milliseconds }\end{array}$
Temperalure range $-5^{\circ} \mathrm{C} 1050^{\circ} \mathrm{C}$
Power Supply $\quad 1 \approx P P 3$ ot equavalent 9 v

SINGLE SIDED FIBREGLASS BOARD

BOARD				
der Mo	Pieces	Sise	Sq. Ing.	Price
fBI		94.3**	100	1.50
F82	3	11.3 ${ }^{\prime \prime}$	100	$[1.5$
f83	4	1343"	156	[20

DOUBLE SIDED FIBREGLASS BOARD
F84 2 14.4" 110 12.00
SILICON POWER TRANSISTORS
$\begin{array}{ll}\text { SX38 } & \text { Poo Silicon NPN Transistors-all } \\ \text { periect Coded mixed lyes whin } \\ \text { data and equt sheel. No rejects. }\end{array}$ Real value. sheel. No rejects.
SX39 100 Silicon PNP Transistors-
all pertect. Coded mixec types with dala and equt sheet N

2 2305s The best hnown Power lianaistors in the World $=2$ N3055 NPN 1150
Out
\qquad $\begin{array}{lll}10 \text { oft } \\ 53.50 & 50 \text { ot } & 100\end{array}$

50312 COMPLIMENTARY PNP POWER
TRANSISTORS: TC 2M3055. ratent M12955-8 80312 - 103.

REGULATED

VARIABLE
Stabilised
POWER SUPPLY
Yatiable Irom 2.30 volis and $0-2$ Amps. Kit includes
vPS 50 Module. $1-25$. $0.50 \vee 2^{\wedge}$ Panel Meter. $1-0.2 \mathrm{amp} 2^{\prime \prime}$ Panel Me - 470 ohm wirewound potemtiomete!. $1-4 \mathrm{~K} 7 \mathrm{ohm}$ included Order No VPS3O KIT80

MINIATURE FM TRANSMITTER Free: 95.106 MHz Range: \& mile \quad ONLY
Sbe: $15 \times 20 \mathrm{~mm}$ Add: 9v bart Sote isences in $U .4 . \mathrm{K}$
£5.50
Not icenced in U.K.
fdeal for: 007 MI5 FBI-CIA KGB efc
5.50

MORE BARGAINS!

SXS1 60 metres PVC conered Hool up wire single and stranded. Mised
suss 25 Assoted TIL Gales 7400
Seties. 74017460
SK59 10 Assorted llap flops and MSI
\$460 20 Assorted Shider
3260 20 Assorted Sho
546240 Assorted Pie
5x74 $\frac{\text { elc }}{10 \text { Reed Switches - glass tyoe }}$
3 Micro Switches - with lever

Whe reve credf curd hing ws on waie 31 g how inc tet wow acer ewn taster Gocods nomalir sent 2nd Ciss mon
Toun Pasuge doo 75 p wer Youta

BHPAK EARGANS

TRIACS - PLASTIC

$5 \times 65 \times 22 \mathrm{k}$ Lin $\quad 5 \times 695 \times 100 \mathrm{Lin}$

MINIATURE TOOLS FOR HOBBYISTS

sa mut oriver sel
Set of 5 BA spannet shafts plus universa hande in toll-up wallet Sizes OBA 2468 BA Order no: I192
2.75 set
meom screworiver
Jin blate orger ne NSI co.e5p nect

Conaranaction ot your always been 8I.PAK s Guaranier ach shas All these Sale thems are in stoch in quantity and we will despatch the same day as your order is recerved

EXPERIMENTOR BOXES - ALUMINIUM PLASTIC
ALUMINIUM BOXES ade win Brighn miummium loreed consifuction with deep lid and screw SIZE ${ }^{\circ}$ L W H Order NO si2e

Plastic Boxes
flanged tid. fixing screws inlo brass dushes

IC SOCKETS
Thelowest price ever.
ine more you buy the cheapet they
Pin 10 otl 50 ofl 100 ofl

VOLTAGE REGULATORS T0220

BI-PAK'S OPTO 83 SPECIAL
A selection of targe \& S Small size tED's in hed Green, Yeliow and Clear, plus shaped devices of different types 7 Segment displays. photo rransisiors. emulters and detectors. Types like MELII, FPT100 etc. Plus Cadmium Cell ORP 12 and germ. photo transistor OCP71. TOTAL OF 25 pieces * vaves Norrai Retar 112
$\because \quad £ 5.00$

SEMICONDUCTORS FROM AROUND THE WORLD

100

A Collection of Iransistors. Drodes Rectifiers. Bridges. SCR's fracs IC's doin Logic and Linear plus Opto's all of which are current everyday usable devices

1 Amp SILICON RECTIFIERS
 So - 500 - uncoo.s - Jou seiect to wis

 PRICE $£ 2.00 \mathrm{ES.BO} £ 17.50 £ 30.00$ Sincon Ceneal Puroose Pxp Transistors Io.s Case
 BF $\times 30 \mathrm{VC}$ bo ic 600 ma Mm hie so Alt New 50 ath 100 of 500 an 1000 on Ract $£ 2.50 £ 4.00 \leq 19.00<35.00$ Ordee as crs507

MULTITESTERS

1.000 opy Incluting lest leads
a. volls $0.0 .15 \cdot 150-50000$

OC wohs - 0.15-150-500-1,000 C currenis : $0.1 \mathrm{ma} \cdot 150 \mathrm{ma}$ Resisiance -0.2 .5 k ohms 100 K ohms

No. 1322.0UR PRICE E6.50 onty

DOME TWEETER

Dome Tweeter for systems up to 50 w mpedence 8 ohms. Fiequency Respons $2000-20000 \mathrm{~Hz}$. Dims 98 mm dia $\times 31 \mathrm{~mm}$ deep.
OUR PRICE E2.95. O/No. DMT200

Silicon NPN'L' TypeTransitors

 VCBO 45 VCEO 30 IC. 200 mA A He 1 1CO.400 E all pertect devices - uncoded orotr as Sx 183 L PNP SILICON TRANSISTORS: Simila $2 T \times 500-2 T \times 214-E \cdot L n e$
VCFO 40 vCB0 35 ic 300 mA He $50-400$ Brand New - Uncoden - Petect Devices
50 oh 100 on 500 on 1000 on $\begin{array}{lllll} \\ \mathbf{5} 2.00 & £ 3.50 & £ 15.00 & £ 25.00\end{array}$

MW398 NI-CAD CHARGER

 niversal Ni.Cad dallety Charget All plasic ase wilh ift uplid Charge/ Test switcn Lfo Charges Charges

PP3 (9V)
U12
2

| U11(15V C) | $210 \times 100: 50 \mathrm{~mm}$ |
| :--- | :--- | :--- | c6.05

POWER SUPPLY OUR PRICE E3.25
Power suoply lits drectly into 13 amp socker
asen tior sateily poranly reve'sing socke
Uhage swilch Lead wilh mulh ilug
input - 240 V AC $50 \mathrm{H} l$ Output

SHPAM SHED your orders to Dept PX BLPAK PO BOX 6 WARE HERTS TEMMS: CASH WIIH ORODE SAME DAV. DESPATCH. ACCESS. ADD 15K KAT AND 75p PER ORDER POSTACE ANO PACKING

30,000 opy Inciuang lest leads and case OC wolls $=0-025-1-25-10 \cdot 25 \cdot-100 \cdot 250-1.00$
OC curreni- $0.50 \mathrm{ua} 0.5 \mathrm{ma}-50 \mathrm{ma}$ a 0.12 amps
Ressistance - 0 -bk ohms-70K ohms-6meg ohms.
60meg onms
Decibels - 2000 10 plus 5600
Shan lest - intermal buzzer
O/No. 1315. OUA PRICE only £24.75

SPECIAL OFFER OF STEREO AUDIO MODULES
A COMPIETE SET TO ©NE YOU 70 WATIS TOTAL 35 WATIS (mas) PER CHANNEL sto POWEA SuPPLY

Kit comprses:
$2 \times$ ALsOP Power Annplifiers
$1 \times$ SPM120/FIS Power Supply
$1 \times$ PAZNO Stereo Pre Amplifier
$1 \times$ Transtormer 5ow
$1 \times$ Front Panel - Black with White lettering
$4 \times$ Black Knotes with White Pointers $2 \times$ Coupting Capacitors \& 1 Reservoir Capacitor. Full hook-up chart

NORMAL RETAIL PRICE £52. COMPLETE SAVING £14
Our SPECIAL OFFER Price For 1 MONTH ONLY
Order by phone NOW with your Credit Card d - 38 (Order as: SX70 walt AUDIO KIT)

COMPLETE

PE-THE FUTURE

THE free Scratch Pad on the cover of this issue will be the last of a line, at least for the foreseeable future. Right from the first issue of PE (November 1964) it has been our policy to give readers a "free gift" roughly twice a year. For some time now we have been doubtful of the value of this idea. While we have always tried to ensure our free gifts are worthwhile-and from readers' response to some of them there can be no doubt of that-we have felt that improved value for money on a monthly basis might be a better policy, after all if you are a regular reader you buy the magazine for its content, not what you get free with it. So from now on we will be giving you more content every month instead of any free gifts. In short, the money we would normally spend each six months or so on gifts has been redirected to pay for about 8 extra editorial pages, per month from the May issue onwards. We hope you will like the idea.

We will be starting a new regular
feature in May-see next month's issue for details-and also expanding the range of our other articles. So instead of the free board, book, tool or component etc. every so often, which you may or may not want or use, you will get more info., more circuits and more reading each and every month.

PE COVERS

Next month you will also notice an immediate change when you buy your issue or when it drops on your doormat. We are changing the style of our covers. In line with our future contents we are also putting more on the front cover, so if you are just browsing at the bookstall it should give you a better idea of just what is inside to interest you. We believe the new style looks more modern, exciting and colourful; your impressions would be interesting.

FEEDBACK

As we have said before we are pleased to hear your criticisms, likes and dislikes as this feedback helps us to produce a magazine which is just
what you want. Feedback in the form of IUs and material for Microbus and Microprompt is always interesting and keeps the whole area of "hobby designs" alive.

In recent months the number of contributions to IU have tended to fall They are always welcome and we should have more room for them from May onwards. So keep the ideas coming; we do pay for each one published at the rate of $£ 40$ per magazine page-enough to buy some more components anyway!

In line with our policy we are continually striving to meet the needs of our readers and, with your help, will continue to produce what we believe is the best magazine of its type available anywhere.

EDITOR Mike Kenward

Gordon Godbold ASSISTANT EDITOR
David Shortland ASSISTANT
EDITOR/PRODUCTION
Mike Abbott
TECHNICAL EDITOR
Brian Butler TECHNICAL SUB EDITOR

Jack Pountney ART EDITOR
 Keith Woodruff ASSISTANT ART EDITOR
 John Pickering SEN. TECH. ILLUSTRATOR
 Isabelle Greenaway TECH. ILLUSTRATOR
 Jenny Tremaine SECRETARY

Technical and Editorial queries and letters
(see note below to):
Practical Electronics Editorial,
Westover House,
West Quay Road, Poole,
Dorset BH15 IJG
Phone: Editorial Poole 671191
We regret that lengthy technical
enquiries cannot be answered over the telephone

ADVERTISEMENT MANAGER
SECRETARY
AD. SALES EXEC.
CLASSIFIED SUPERVISOR
AD. MAKE-UP/COPY
D. W. B. Tilleard

Christine Pocknell
Alfred Tonge 01-2616819
Barbara Blake 01-261 5897
Ian Sweeney 01-2616601

Queries and letters concerning advertisements to: Practical Electronics Advertisements, King's Reach Tower.
King's Reach, Stamford Street, SE 1 9LS Telex: 915748 MAGDIV-G

Letters and Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in PE. All letters requiring a reply should be accompanied by a stamped, self addressed envelope, or addressed envelope and international reply coupons, and each letter should relate to one published project only.

Components and p.c.b.s are usually available from advertisers; where we anticipate difficulties a source will be suggested.

Back Numbers

Copies of most of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Lid., Lavington House, 25 Lavington Street, London SE1 OPF, at $£ 1$ each including inland/Overseas p\&p. Please siate month and year of issue required.

Binders

Binders for PE are available from the same address as back numbers at $£ 4.60$ each
to UK or overseas addresses, including postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Sulbscriptions

Copies of PE are ávailable by post, inland or overseas, for $£ 13.00$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH 16 3DH. Cheques and postal orders should be made payable to IPC Magazines Limited.

Items mentioned are available through normal retail outlets, unless otherwise specified. Prices correct at time of going to press.

Computer literacy Advances

It was on a wet Thursday back in January that the press responded to an invitation by the BBC to attend a preview and mini exhibition at the World Trade Centre, in London. The preview was of 1983's "The Computer Programme" Series Two, which by now is well under way. The mini exhibition featured the BBC microcomputer and its various peripheral and software options.

A number of exciting pipeline stage developments were in evidence. What was claimed to be the first public demonstration of telesoftware took place, during which a BBC micro was downloaded with a program from a CEEFAX page. The acquisition worked with simplicity and speed, a condensed format program being transferred. The BBC has committed itself to the transmission of reliable and worthwhile software, the broadcasting of which commences this spring. Acorn Computers are to manufacture the telesoftware adaptors for use with any teletext adapted TV set. At the preview, the idea of a telesoftware club was mooted.

Among the many impressive extensions to the Acorn computer which were demonstrated, was the BBC Buggy, manufactured by Economatics of Sheffield. The Buggy demonstrates the principles of intelligent machine control and robotics, and is delivered in kit form, requiring only a screwdriver to assemble it. This training tool is a small, skeletal unit capable of propelling itself around using two drive wheels, and which has on-the-spot turning capability. The Buggy's party tricks include following a black or white line, seeking out a light source in a maze, exploring miscellaneous objects whilst mapping them on the VDU, drawing its own lines, and a repertoire of bar code stunts, one of which involves composing music. The thirteen well thought out programs are completely modular, enabling the user to call upon them as if a subroutine library. Students following the National Extension College
computer course will also be able to use the BBC Buggy.

Econet, Acorn's LAN (Local Area Network) offers a cost effective link-up for the educational establishment, allowing communication by way of a four wire bus between, for example, the physics lab' computer and the school data base, and the mathematics class processor etc. Up to 254 stations may share expensive peripherals like printers and disc drives, thus creating every opportunity to save cash.

Among the BBC microcomputer interfaces are a digitizer pad, a teletext adaptor (CEEFAX and ORACLE), voice synthesiser (taken from the tones of newsreader Kenneth Kendal), disc storage system (up to 800 Kbytes), and a second processor unit. This last addition doubles the processing speed by circumventing the need to interrupt calculations whilst outputting data. Data is transferred across "the Tube*". A 6502 or $Z 80$ second processor may be chosen, the latter allowing CP/M operation. At the exhibition, a BBC micro with second processor busied itself designing ULA layouts!

Readers may like to know of the Information Referral service which is run in association with the BBC Computer Literacy Project. This is intended to put viewers in touch with local sources of advice, and provide information about the project. A large S.A.E. should be addressed to: BBC Computer Literacy Project. Broadcasting Support Services, PO Box 7, London W3 6XJ.

MATHEMATICS EXPRESSED?

In their first step into the educational field Mitsubishi Electric have developed the 'Sansu Meki-Meki', a basic maths teaching aid aimed at pre-schoolers and primary school children. The unit has an LCD display which shows the questions and the child's answers to them. The questions dealing with addition, subtraction, multiplication and division are shown in groups of ten. When the child

answers correctly a tiny steam locomotive toots and chugs down a track and a voice synthesiser telis the operator that the answer is correct. If the wrong answer is given the locomotive crashes and a wrong answer is announced. A test score is given at the end of each group of ten questions, a three minute speed drill can also be incorporated. The unit can also be programmed to concentrate on weak points, or similarly add more difficult problems. The company plan further similar products for teaching language, as well as for other subjects for upper grade students, the unit is supplied with batteries and a mains adapter, the price is expected to be under $£ 50$.

SYSTEMA CHESS COMPUTERS

Following the launch of the CGI chess computer Systema have now introduced two additional models into their range both with extra features. The CGl unit had a built in sensory board and eight levels of difficulty for a retail price of under $£ 30$.

First of the new chess computers is model CG2 which has a full-sized sensory chess board and pieces. The CG2 has all the features of model CGI plús a "save' switch to "freeze' the game at any stage and retain the chess position in its memory until the player is ready to resume the challenge. Other features include keys for under promotion, taking back moves and to set-up or verify positions.

Also introduced is the CG3 travel chess
computer. It combines the compact design of the original CGI with the extra features of the full-size model CG2. The lid snaps into position to keep out dust and a special compartment is provided for the chess pieces. A soft carrying case is available as an optional extra.

The retail price of full-sized model CG2 will be around $£ 50$ and the CG3 travel model will

be under $£ 40$.
Other features of all three models include changeable levels during play, changing sides during play, en passant capatures, castling and pawn promotion.

Systema (UK) Ltd., 74/76 South Street, Reading, RGI 4LG. (0734 586429).
Government approval of British Rail's plans 10 invest $£ 21$ million in new ticket issuing machines will soon bring $B R$'s ticket offices firmly into the microchip age. 117 million of the investment is for a new all purpose ticket issuing system, APTIS and the remainder, $£ 4$ million is for PORTIS a portable version of the main system for use by guards on pay trains. Subject to satisfactory evaluation of the prototypes the new machines should come into operation in mid-1984 and be fully established by the middle of 1986.

MAAPMGE PBACS

Disc Film! Square Eyes?

Kodak's innovative disc camera has been described by the Consumers' Association (Which? report Nov. '82) as foolproof but unimpressive in its photographic picture quality. It was summarized as being ideal for the average person wanting straightforward trouble-free snap shots. Eight million disc cameras, however, were estimated to have been sold at the close of 1982 . Eight million people who prefer to have no knobs to twiddle before taking a photograph!

Kodak's eye is still firmly on the future of popular photography. In Cologne, last October, the company demonstrated a possible future option in the shape of a video display unit which allows disc film images to be reproduced on a television screen. The demonstrator scanned a 15 image disc negative, enlarging them and cropping them, and showing the results on a 21 inch TV screen.

A remote control unit allows quick sequencing through 15 disc images under personal control, and facilitates zooming in on a section of image, or recomposing that image for a better view of one of its aspects. Scientists at Kodak say that this system would enable consumers to order prints of their own home-culled pictures.

The heart of the prototype system is an extremely high resolution charge-coupled image sensor which converts and enhances the optical data ready for television display. A colour array of more than 350,000 elements produces a very detailed TV picture from each whole, or portion of the disc exposure. With a luminance signal bandwidth of greater than 3.5 MHz , the potential for picture quality exceeds that of most television receivers.

The video display system is exploratory, with no commitment by Kodak as yet, to manufacture and sell the equipment.

kodak video display technology

The Kodak colour-corrected enhanced image system promises a kind of editing of photographs, in the home. Encoding of the film disc core would allow recomposed prints to be ordered by the consumer.

JOYSTICKS

A new range of joysticks has been introduced by Midwich, made of high-quality injection moulded materials, these erganomic designs fit comfortably into the hand. Each joystick or pair of joysticks is fitted with the appropriate connector for the machine in question, the range is aimed at the $B B C$ micro, Dragon 32 and the Spectrum/ZX81. Since the 2×81 and Spectrum do not have a built-in A to D converter, Midwich have also designed a high-speed, 4 channel controller board, which plugs into the expansion slot. An edge connector is provided for RAM pack, disc drives, etc. Prices as follows: Z×81, Spectrum and Dragon 32 £15.98 per pair, and for the BBC micro 13.00 per pair, the controllers being E22.95 each. All prices include VAT. All units available from Midwich Computers, Rickinghall House, Hinderclay Road. Rickinghall, Suffolk IP22 1HH 10379 898751).

HIS MASTER'S VOICE

The science of electronic speech synthesis is gaining ground rapidly, but speech recognition is hampered by a lack of precision in human articulation. We humans frequently experience difficulty in understanding one another, so how might an inflexible machine cope with the various dialects, or emotional undulations of an individual's yoice?

Marconi Space and Defence Systems have developed, with financial help from the DoI, a speech recogniser with a capacity of 240 words and/or phrases, costing $£ 10,000$. It is called the SR-128, and it uses dynamic programming to match voice input with pre-recorded voice commands, or templates as they are called.

The voice matching pattern for each user can be prepared in minutes by way of a learning routine in which the operator repeats his or her personal rendition of the control words, prompted by a 40 character plasma display. Data profiles of the user's oration are then stored on minicassette. When in use, the SR-128 recognises quite normal "connected" speech by dynamically pattern matching the content of its solid state memory. It is claimed that the number of active templates may be restricted by applying syntax rules. The system can recognise utterances of up to eight seconds duration, with a response time of 50 ms .

There are both military and civilian applications, many of which would be airborne. An SR-128 is installed at the Royal Aircraft Establishment, Bedford, for map display and waypoint identification. Such systems will not only free pilots from physical switch manipulation when using peripheral equipment, but may one day completely
outspan the flyer. The potential of machines like the SR-128 to ease the four-limbed juggling act of flying a helicopter is axiomatic.

Other applications include security, where response only to an authorised voice is necessary, be it for access to a restricted area, or ensuring that a vehicle is not illicitly commandeered.

A low-profile i.c. socket, which locks the chip into position and also provides an ejecting action when the chip has to be withdrawn, is now available from Aries Electronics. The EJECT-A-DIP socket can be in 14, 16 and 24 pin configurations.

The socket incorporates a pivoting arm at each end. In one position, these arms lock the device into the socket and the arms are available in three heights to cover the various standard thicknesses of i.c.s. When the arms are pushed outward to release the device they also provide a lever action which ejects the i.c. from the socket without damaging the legs.

The socket itself has gold or tin-plated, spring-tempered, phosphor-bronze bifurcated contacts, designed to take both round or flat pins.

Aries Electronics, Unit E, Metrostore House, Eastways Industrial Estate. Witham, Essex. (0376519318).

Briefly...

The president of National Semiconductor is often quoted as having said that if the progress of microelectronics over the past two decades was applied to the motor industry, a Rolls Royce would cost \$2.75, do three million miles per gallon and deliver enough power to drive the QE2. By the look of things. Mr. Sporck's Rolls Royce will soon have to fly to keep that parallel up to c'ate, for the bioelectronic device is herein the laboratory at least!

In the United States, a molecule that can exist in two states, and therefore represent a binary bit, has been successfully synthesised. Mississippi University would seem to be a mere heartbeat away from the birth of the molecular diode. A memory capacity of 1 K using this technology would theoretically fit into a line only one micran long, it is reported. This breakthrough brings closer the day of implanted electronics, and its interface to living tissue.

Coals to Newcastle, fridges to the Eskimos, fair enough, but British electronic equipment to Japan? Well its true, and we have the Thandar Electronics company to thank for this encouraging reversal in the waves of electronics from the East. The equipment in this initial order, worth $£ 100,000$, was a quantity of logic analysers and were purchased by a
"major" Japanese instrument manufacturer. The model ordered, the TA 2080, was favoured because of its ability to offer a combination of performance, reliability, quality and most importantly price which was, to quote Thandar Chairman Mr Taylor, "unbeatable even in Japan". The company based in St Ives, Huntingdon, export over 50% of their output.

As if by magic, forecast figures are regularly conjured up which naturally find their way into the electronics press. Appearing in Electronics Times ($2 / 9 \mathrm{Dec}$.), these figures are attributed to International Resources Development, whose study revealed the following: Sales of personal computers will rise from the current level of $\$ 1 \cdot 3 \mathrm{bn}$ a year to $\$ 3 \cdot 5 \mathrm{bn}$, and then plunge to $\$ 480 \mathrm{~m}$ by 1992 . Sales of the personal computer's rival, the "multifunction workstation" will rocket from zero to $\$ 650 \mathrm{~m}$ in 1984, to \$3.76bn in 1987, and on to \$14bn in 1992.

Evidently computers are not so prone to misting over as tall, dark strangers.

POINTS
 ARISING...

STYLOCHORD (Dec. '82)
The 5024 Top Octave Generator may be replaced directly with the M083 device available from Maplin Electronics (order code YY81C).

Houndidnun...

Please check dates before setting out, as we cannot guarantee the ac curacy of the information presented below. Note: some exhibitions may be trade only. If you are organising any electrical/electronics, radio or scientific event, big or small. we shall be glad to include it here. Address details to Mike Abbott.

Microsystems Feb 23-25. West Cntr. Hotel, Fulham, London. Z1 CAD North Mar. 1-3. Belle Vue Ex. Cntr., Manchester ZI Mailing Efficiency Mar. 1-3. Bloomsbury Cntr. Hotel, London. Z Local Networks Mar. 8-10. Royal Lancaster Hotel, London. O Component Fair (Pontefract \& District Amateur Radio Society) Mar. 13. Carlton Grange Comnunity Centre, Carlton, Pontefract. F2

Brighton Electronics March. T

BEX Leeds Mar. 16-17. Dragonara Hotel. K
INSPEX Mar. 21-25. National Exhibition Cntr. Birmingham International. $\mathbf{Z} 1$
Sensors \& Systems Mar. 22-24. The Forum, Wythenshawe. T
Compec Wales Mar. 22-24. Cardiff University. Z1
ETM (Electronic Test/Measurement) Mar. 22-24. The Forun1, Wythenshawe, Manchester. T
Laboratory Manchester Mar. 23-24. New Century Hall, Corporation St. E
American Holography Mar.-June inc. Light Fantastic Gallery, Covent Garden, London. A8
London Computer Fair April 14-16. Central Hall, Westminster. B5 All Electronics Show Aprif 19-21. Barbican Cntr., London. E

Fibre Optics April 19-21. Porter Tun Rooms, The Brewery (!), Chiswell St., London ECI. E
International Materlals Handling April 19-26. Earls Court. II
International Packaging Exhibition April 25-29. NEC B/ham. I
HEVAC (Heating, Ventilation \& Air Cond.) Apr, 26-28. Barbican. I
Biotech May 4-6. Wembley. 0
Micro City May 10-12, Bristol Exhibition Complex. F3
The Business Computer Show May 10-12. Wembley. 0
Defence Componeats Expo May 10-12. Metropole, Brighton. I
Weish Amateur Radio, TV \& Electronics Rally May 22. Barry
Memorial Hall, S. Glam. C
Computers In The City (conf. \& ex.) May 24-26. Barbican. 0
Business Telecom May 24-26. Barbican. O
International Wood Processing May 24-27. Wembley Conf. Cntr. Z
Laboratory Edinburgh July 18-20, Appleton Tower, Univ. E

[^3]
Space Watch...

MISSILE FROM MARS

Headlines were generated when a meteorite was discovered recently in Antarctica because it is the opinion of most of those who have examined it, that it is from Mars. At the Johnson Space Centre considerable excitement was demonstrated when the piece of rock weighing about 17.51 b was displayed. The characteristics are different from any previous bodies of meteoritic origin. Naturally it now raises the problem that there must be more of this material on the surface of the Earth. This sample was found by a team funded by the National Science Foundation, the Smithsonian Institution and the National Aeronautical and Space Administration.

At the moment the main problem being studied is the manner of this piece of another planet arriving and impacting the Earth. There are some dissenters that it is in fact from Mars but Laurence E. Nyquist, who has identified it, has shown thai such an event is possible. He is head of the Planetary and Sciences Division at the Johnson Space Centre where his latest work was undertaken. His conclusions are based on the study of the Viking orbiter photographs. A number of the craters on Mars have a configuration which would indicate that they were made by the impact of bodies arriving at an oblique angle. It has been calculated that bodies of the size to have caused the craters observed, would need to have a velocity of about $9.98 \mathrm{~km} / \mathrm{sec}$. This would make it likely that parts ejected could have a velocity of the order of $7.88 \mathrm{~km} / \mathrm{sec}$. This is greater than the escape velocity from Mars which is $4.89 \mathrm{~km} / \mathrm{sec}$. Debris from the impact would be scattered across the Martian orbit. The dynamics of the relative orbits of Mars and the Earth would certainly make it possible for material to fall as meteorites. The real question is how often would that final condition arise. This can only be stated as "It could happen'. However there is another way of looking at the probability. The age of the Martian material at the crater is reasonably well established and is about 1,300 million years old. It is also reasonably likely that Mars was volcanically active then. The age of the meteorite is given as 180 million years or thereabouts. Since all other finds so far have on average been assessed at 4,500 million years the argument is reasonable. This could be a talking point for renewed proposals to bring back again the original plan for a man ned landing on Mars. However the immediate
active plans are to re-examine earlier finds made by a Japanese expedition. They found that many objects were lying about on the sur face of the ice and easily detected. An American expedition in 1976 found large numbers of meteorites on the surface easily identified. On the latest expedition there were two other bodies which may be Martian. They are still undergoing tests. One of them may well be from the Moon and its origin similar to the Martian bodies in the mode of transmis sion to Earth. In this case there are a number of samples of Moon rock collected by astronauts from the Apollo landings. The suspect sample found in Antarctica weighs 32 grammes and was frons the same Elephant Morraine area where the Martian samples were found. A section of the sample appears to be identical with the original Moon samples. The Martian sample on examination would show some indication of how long it might have been in space. This is regarded as not longer than 2 million years. In that case it must have come from a large body nearby. The sample is large enough to support years of study. There are a number of areas of glass like appearance which may have been part of the original material. One crucial task will be to penetrate these areas for they may have trapped in them the atmosphere of the time. This will add much to our knowledge of the early conditions on the Planet.

SPACE MOTION SICKNESS

Much has been made of the small incidence of space sickness particularly on Shuttle Mission 5 . It seems that there is always someone to exaggerate small incidents for which they have little evidence. The practice of shock headlines is increasing for the purpose of creating adverse opinions and boosting sales in certain parts of the media. It labels the writers who follow this policy as the backward looking cranks akin to those 'experts' who earlier in the century were forever prattling about the inability of the humans to withstand speeds of 20 miles per hour. A little thought about the effects of statements that are entirely without attested foundation, have repercussions on the families and serve to spread needless alarm. As a first example the fact that the Russian cosmonauts have set a new record for time spent in space should make people hesitate about a journey of a few days involved in this so-called motion sickness.

A number of critical issues have been raised which have repercussions both in the personal lives of the astronauts and in the various legal aspects. There arise the questions of confidentiality between doctor and patient. There is the psychological effect on the individual astronaut who may feel that continued work in the field may be jeopardised, the legal difficulties due to various existing codes of practice and the Federal Privacy Act.

The entire situation has been built up into unnecessary proportions. There is a very important point at issue here for it so happens that there has been an increasing number of the same symptoms in the general populations who live in cities. There are a number of things which could assist the explanation of this trend. Indeed a great deal is going on in the areas of the changing eating habits of the communities. So much indeed that within a
very short time it will be found that many projects will be set up and grants applied for the proliferation of useless knowledge. Perhaps a little exposure of some of the so-called research in the area of man and his environment would sort the valid from the invalid. As the Year 2000 approaches perhaps it will be possible to get feet set on a useful path which deals with the true reality.

NEW MINERAL FINDINGS

Some of the findings using the instruments of the second shuttle mission have now been published. It was possible to detect other clay minerals where in the previous observations from space only Limonite was readily identified. Using the multispectral infrared radiometer in an area between Kharga and Aswan in Egypt, it was possible to identify exactly kaolinite a hydrous aluminium silicate clay mineral and another of the same group, montmorilionite. These are important finds because they are useful guides to the finding of ore deposits of iron. This new facility means that both topographical data and minerological data can be acquired simultaneously over wide areas. A first saving is then to halve the costs and time compared with previous geological surveys.

JOINT VENUS MISSION

Cooperation between Russia and France has been working very well and now the most ambitious project is being discussed regarding what might be called a massive assault on the problem planet Venus. The target date for this mission is 1989. A French statement indicates that there will be probes, landers and balloons used in this attempt. It is not deemed practical to land a moving vehicle at this time, mainly because more certain knowledge of the terrain is needed.

Leading up to the 1989 mission will be two others. The first will involve the Soviet Vega Venus/Halley Comet mission. Originally the French were to supply two large balloons with meteorological instruments which would be released into the Venusian atmosphere. Because of the modifications for the Halley Comet part of the mission the large balloons were later deleted. In place of them the Sovieis are preparing two small balloons and the French are designing suitable meteorological instruments for attachment to the balloons.

A new project has been agreed and this will involve the launching of polar and equatorial satellites for the study of the Earth's atmosphere and ionosphere. This mission will be called Interball.

Initial studies have begun on another project called Satellite d'Astonomie Gamma, (SAGA) to study gamma ray sources. This was a mission offered to France by Russia wher for financial reasons they had to abandon it earlier in the year. The instruments already developed can be incorporated in the new satellite. It would seem that the Soviets are anxious to push this project, perhaps to beat the American mission for a Gamma ray observatory. The final decision on this project will be made at the next space reunion between the French and the Russians this year.

+

 WARNING

 WARNING \&HCHIS REMNDER

 P.J.McFARLANE

 P.J.McFARLANE}

Abstract

The brow of a hill; the dip in a country lane-each can cause surprise local freezing. With no change in lustre, a road can turn from being just plain wet to iced over. Building this device is a worthwhile project, for it will discreetly' arm the driver with a piece of information which could save his life.

MANY motorists have tales of skidding on so called "black ice". most of these, fortunately, without unhappy endings. It is possible to drive perfectly safely on ice, providing of course, that you know you are doing so. Cocooned in a car with the heater going, a driver can often fail to realise just how cold it is outside, and get caught by surprise when he tries to go in one direction and the car goes off in another.

The PE Ice and Lights Alarm can be put together for a few pounds, and as well as providing a visual and audible warning that the temperature outside is freezing, it also provides an audible warning that the car lights have been left on. The device can save you from both a flat battery and a flat car!

OPERATION

The unit operates as follows: If the ignition is switched on whilst the temperature outside is freezing, or the car is driven into a region where the temperature is freezing, then the unit will emit a bleep for about a second. A l.e.d. illuminates all the time the ignition is on and the outside temperature is freezing.

Also, if the ignition is switched off and the car lights are still on, the unit will emit a pulsed bleep for about two seconds. This is long enough to remind that the lights are still on, but not so long as to be annoying if this is intentional.

CIRCUIT

The circuit diagram is shown in full in Fig. 1. The temperature sensor is the base-emitter junction of a BC182L transistor. A silicon p-n junction has a temperature coefficient of about 2.2 mV per degree centigrade.

A 78LO5 voltage regulator i.c. supplies a stable reference voltage to the base of the sensor transistor, TR1, via a potential divider chain. When the sensor temperature is higher than zero, the threshold voltage of the transistor is low enough for the voltage on its base to turn it on. This removes the current from the base of TR2, so this is off, and so is TR3.

Should the temperature of the sensor drop, the baseemitter threshold voltage will rise, and there will not be enough voltage at the base to turn the transistor on. When this transistor is off, TR2 is turned on via R1. This turns on TR3 via R6, and hence the l.e.d. Resistor R5, and D 1 provide a small amount of hysteresis, by reducing the base voltage of TR 1 .

When the car lights are off, the l.e.d. current passes through both R10, and R9 through the lights, and the I.e.d.
glows brightly. When the lights are on, the end of R9 is at +12 V . hence the l.e.d. is dimmed, to prevent dazzle at night. Diode D2 prevents the l.e.d. from being excessively reverse biased when the lights are on.

Resistor R13, C4, IC1a and IC2a form a positive edge-topulse converter. Pin 11 of IC2 has a positive going pulse of about one second duration following a 0 to 1 transition on pin 1 of IC1. This circuit is used in preference to the usual series capacitor one, as the latter puts a reverse voltage on the capacitor.

Fig. 2 shows the essence of the circuit, and Fig. 3 the associated waveforms. The input to the gate can be considered to be a logic ' 0 ' if the input is below the threshold voltage (approximately half the supply voltage). The output of a NOR gate is low if either of its inputs is high.

When this pulse output is high, this causes the output of IC2c to be low. This enables the oscillator IC2d and IC1d. IC1e and IC1f provide a bridge output drive to the ceramic sounder $\times 1$, giving 24 volts peak to peak signal here, producing a very adequate sound.

The remainder of the circuit is concerned with the lights left on alarm. D3 and D4 are included so that the circuit is powered from either the lighting, or the ignition circuit

The circuit has another edge-to-pulse converter, this time a falling edge is converted to a negative going pulse of about 2 seconds duration at the junction of R15 and D5. These two components give the equivalent of an OR function. The pulse occurs when the ignition input becomes low. If the lights are still on, then there is power to operate the rest of the circuit.

The pulse enables the oscillator IC2b and IC1c which operates at about 10 Hz , and this gates the output oscillator on and off via IC2c.

E61030

CONSTRUCTION

Fig. 4 shows the p.c. layout for the P.E. Ice Alarm, and Fig. 5 the component locations. Leave the l.e.d. wires long if it is to be mounted in the box.
The sensor transistor, TR1, is fitted at the end of about two metres of wire, as this obviously has to be outside the car. Cut the transistor legs to about 6 mm in length. Strip about 3 mm from the connecting wire insulation and slide about 10 mm of 1 mm bore rubber sleeving over the wires. Carefully solder the black wire to the emitter of the transistor and pull the sleeving over the join. Repeat with the green wire for the base and the brown wire for the collector. Fig. 6 shows the transistor base connections.

Fig. 3. Waveforms of Fig. 2

Fig. 2. Edge-to-pulse converter

Fig. 4. Printed circuit layout (actual size)

656057

Twist the three transistor wires together and thread them into 2 metres of 5 mm bore PVC sleeving. Glue the transistor into the sleeving with the end of the transistor level with the end of the sleeving, and make sure that the end is water tight.

Fig. 5. Component layout

COMPONENTS...

Integrated Circuits	
IC1	4069
IC2	4001
IC3	78 LO5

Transistors \& Diodes	
TR1, TR2	BC182L (2 off)
TR3	BC212L
D1-D5	1N914 (5 off)
D6	$3 m m$ Red l.e.d.

Capacitors
C1, C2, C6 C3
C4, C5
C7

100 n 25 V . Ceramic disc (3 off) $10 \mu 16 \mathrm{~V}$. Electrolytic
$2 \mu 263 \mathrm{~V}$. Electrolytic (2 off)
1n 50V. Ceramic disc

Resistors
R1
R2, R8, R9, R10 1 k (4 off)

R3	15 k
R4, R7	2k2 (2 off)
R5, R15, R19	$120 \mathrm{k}(3 \mathrm{off})$
R6, R12	$10 \mathrm{k}(2 \mathrm{off})$
R11	47
R13, R17, R1B	$470 \mathrm{k}(3 \mathrm{off})$
R14, R16	IM (2 off)
All resistors +W	5% carbon film

Potentiometers
 VR1 500 preset

Verobox type 21024
Wire
Sleeving
Cable ties
P.c.b.

Adhesive pads
X1 PB2720 Ceramic sounder
A complete kit of parts is available from: PIMAC Systems Lid., 20 Bloomfield. Road, Birmingham B13 9BY. Price £6.95 includes VAT and postage.

EG1053]
Fig. 6. BC182L connections

[E6 1036

Fig. 7. Box and lid drilling details

dashboard using more adhesive pad. Thread the wires under the dashboard, this can often be done through the windscreen demisting vents.

Connect up the power cables as follows:
Black Chassis
Orange Side lights or panel lights
Yellow Ignition power
Thread the sensor cable through into the engine compartment, then into a position under the car, where it will not be in the air stream from the radiator, for example. Fix it securely in place. Keep the cable away from hot parts of the engine and the ignition wiring. Use cable ties to hold the cable in place.

POSITIVE EARTH VEHICLES

The circuit is designed for use with vehicles having a negative earth system. The easiest way to adapt the circuit for positive earth is to reverse everything. Thus, fit all the diodes and electrolytic capacitors the other way about. Use a 79LO5 in place of the 78LO5 (but be aware, the pin-out is different), and use a 4011 i.c. in place of the 4001 for IC2. In addition, cut the p.c. tracks to pins 7 and 14 of the i.c.s, and reverse them. Use BC212L transistors for TR1 and TR2, and BC182L for TR3.

CAMBRIDGE LEARNING

 SELF-INSTRUCTION COURSES

GSC
 SUPERKIT £19.90

Learn the wonders of digital electronics!

This practical kit for beginners comes complete with an insiruction manual, components, and EXP300 breadboard to teach you all the basics of digital electronics. The course needs no soldering iron; the only extra you need to buy is a $4 \frac{1}{2} \mathrm{~V}$ battery.
Using the same board you can construct literally millions of different circuits
The course teaches boolean logic, gating, R-S and J-K flipflops, shift registers, ripple counters, and half-adders.

DIGITAL COMPUTER LOGIC \& ELECTRONICS
 £6.00

which covers: basic computer logic; logical circuit elements: the design of circuits to carry out logical functions: flipflops and registers; and

DIGITAL COMPUTER DESIGN £8.50

Our latest, most up-to-date course on the design of digital computers, both from their individual logic elements and from integrated circuits. You are first shown the way in which simple logic circuits operate and then, through a series of exercises, arrive at a design for a working machine.
Please send for our free booklist for further information on these and our other courses.
GUARANTEE No risk 10 you. If you are riot completely satisfied, your money will be refunded upon return of the item in good condition within 28 days of receipt.
CAMBRIDGE LEARNING LIMITED, UNIT 24 RIVERMILL SITE FREEPOST. ST IYES. CAMBS, PEI7 LBR. ENGLAND. TELEPHONE: ST IVES (0480) 67446 . VAT NO 313026022 All prices include worldwide postage (airmall is extra please ask for prepayment invoice). Giro A/c No 2789159.
Please allow 28 days for delivery in UK.

\qquad
-Access / American Express y Barclaycard / Diners ClubEurocard / Visa / Mastercharge / TrusteaSignatureTelephone orders from card holders accepted on 048067426Overseas custoners lincluding Eire) should send a bank draft
in sterling drawn on a London bank, or quote credit card
.
Address
Cambridge Learning Limited. Unit 24 Rivermill Site. FREEPOST.
Cambridge Learning Lmited. Unit 24 Rivermill Site, FREEPOST.
St Ives. Huntingdon. Cambs, PE17 GBR. England. (Registered
St Ives. Huntingdon.

NEW! T.V. SOUND TUNER

onsumer elecironics, one
of the questions designers apparently ponder over "Will anyone notice if we save money by chopping this out?" In the domestic TV set, one of the irst casualties seems to be the sound quality. Small speakers

$\mathbf{£ 2 2 . 9 5 + £ 2 . 0 0 p \& p . ~}$ and all this is really quite 5 sd, as the

TV companles do their best to transmit the highest quality sound. Given this background a compact and independent TV runer that connects direct to vour $\mathrm{Hi} \cdot \mathrm{Fi}$ is a must for quallity reproduction.
This TV SOUND TUNER offers full UHF coverage with 5 pre-selected puning controls. It can also be used in conjunction with your video recorder. Dimensions: $11 \frac{1}{4}{ }^{\prime \prime} \times 8 \%^{\prime \prime} \times 3 \%{ }^{\prime \prime}$

PRACTICAL ELECTRONICS SPECIAL OFFERI STEREO CASSETTE RECORDER KIT ©
 ONLY £31.00 plus $£ 2.75$ p\&p.
 - NOISE REDUCTION SYSTEM. • AUTO STOP. TAPE COUNTER. SWITCHABLE E.O. INDEPENDENT LEVEL CONTROLS WI V. METER. - WOW \& FLUTTEA ELECTRONIC SWILAYBACKI.C. WITH
 VARIABLE RECORDING BIAS FOR
 ACCURATE MATCHING OF ALL TYPES.
 Kit includes tape transport mech anism, ready punched and back
 printed quality circuit board and all electfonic parts. ie. semiconductors, resistors, capacitors, hardwase, top cover, printed scale and mains transformer
 You only supply solder \& hook-up wire. Featured in April P.E. reprint 50 o . Free with kit.

PERSONAL LS AMPLIFIER KIT

Amplifier for your personal stereo cassette player - is featured in January issue of Everyday Electronics. Turn your personal stereo into a mains powered home unit Parts:
Stereo power amp PC8 with all components, $£ 3.50+75 p \mathrm{p} \& \mathrm{p}$. Power supply unit $£ 1.95+£ 1.50$
 £1.50 the pair $+£ 1$ p\&p. Input £1.50 the pair $+£ 1$ p\&p. Input \& output sockets and plugs, $£ 1.50$. Recommended case lior the . $12.95+80$ p p\&p. P\&P inclusive price of $\mathbf{~} 9.75$ for any $\mathbf{~ w o}$ or more.

125W HIGH POWER AMP MODULES

The power amp kit is a module for high power applications - disco units, gultar amplifiers, public address systems and even high power domestic systems. The unlt is protected against short circuiting of the load and is safe in an open circuit condition. A large safety margin exists by use of generously rated comThe PC board is back printec, etched and ready to drill for ease of construction and the ready to drinlum chassis is preformed and ready to use. Supplied with all parts, circuit diagrams and instructions.

ACCESSORIES: Suitable mains power supply
 Sulizble LS couplling electrolytic. $£ 1+250$ p $\& 0$

BSR RECORD DECK SPEAKER BARGAINS

Manual single play record
deck with auto return and cueing lever. Fitted
with stereo ceramlc cart. ridge 2 speeds with 45 rpm spindle adaptor ideally

$\mathbf{£ 1 2 . 9 5 + £ 1 . 7 5 p \& p . ~}$ $13^{\prime \prime} \times 11^{\prime \prime}$ app.
SPECIAL OFFERI Replacemant Steren casssach. Erase: E0.70 each. Add 50p p\&p to orde

218 HIGH STREET, ACTON, W3 GNG. Note: Goods despatched to U.K. prstal addresses on $30 / 10 / B 2$ and subbect to change without notice Please allow 7 working davs from secefpt of ordee for despateh. RTVC Limfted reserve the right to wo. date thelr products without notice. All enquiries wend S.A.E. Telephone oi mall orders by ACCESS weicome

SPECIFICATIONS
Max. output power (RMS): 125 W. Operating voltage (DC): $50-80$ max. Loads: 4 - 16 ohm Frequency response measured 25 Hz .20 KHz Sensitivity for $100 \mathrm{~W}: 400 \mathrm{mV}$ 25 47K TYRical THD 50 Hats 4 hms. 0.1% Dimensions: 205×90 and $190 \times 36 \mathrm{~mm}$

KIT BUILT
f10.50

+ 1.15 p

2 WAY 10 WATT SPEAKER KIT
8° bass/mid range and $3 \%^{\prime \prime}$
tweeter. Complete with screw
wire, crossover components
and cabinet. All wood pre.
Finish. chipboard covered
wood simulate size 141 $83^{\circ} \times 4^{\prime \prime}$. PAIR for ONLY £ 12.50 plus $£ 1.75$ p\&p
ALL CALLERS TO: 323 EDGWARE ROAD,
LONDON W2. Telephone: 01.7238432.
(5 minutes walk from Edgware Road Tube Station)
Now open 6 days a week $9-6$. Prices include VAT

PE MICROCONTROLLER: DATA SHEET 2

PROGRAMMABLE FUNCTIONS

THE Microcontroller keyboard has two keys labelled "PF1" and "PF2" whose use has not so far been discussed. These keys can be configured to provide two user-definable function keys, instead of the dummy functions which are pre-defined by DISBUG at start-up. After power-up, or restart, pressing PF1 or PF2 causes a display with a prompt of "1" or "2". respectively, with the next key depression causing a return to the ". . . dIS . . ." prompt.

The map of the DISBUG RAM region shown in the first datasheet indicates that there are two two-byte stores labelled PF1SRA and PF2SRA which start at locations 03F2 and 03F0, respectively. These are used by DISBUG to hold the start addresses of two subroutines which will be called by the command processor to service the PF1 and PF2 keys. The initialisation values in these two stores are the same (F964), and point to a default service routine within the monitor. Each pointer may, however, be changed using the memory editor to point to an alternative routine (usually in RAM) to perform a special function. As a demonstration of this facility, changing the contents of PF1SRA from F964 to F98F will redefine PF1 to behave exactly the same as the RESTART key. It should be remembered, however, that PF1SRA and PF2SRA will both be restored to their initial values following a power interruption or a restart

DEFINING USER FUNCTIONS

Fig. 1 shows how a user function routine must be structured. When PF1 or PF2 is recognised by the command processor, the "1" or "2" prompt will be displayed, and the key code will be passed to the defined routine in register A. The routine may choose to over-write the prompt (see datasheet 3), depending

Fig. 1. Structure of a user-defined key function on the required function and/or available space for code. At the end of the user function, a reply code must be placed in rA before calling the final RTS. This code should be a zero if more keys are expected (e.g. at least four more keys will be required, plus ENTER, if an address is to be specified), or a one if the defined function is finished and a return to the ". . . dIS . .." prompt is required.

The main routines within DISBUG will only call the
defined function routine once for each keystroke, so the number of calls may usefully be counted to keep track of where the function has reached. DISBUG uses the CSW store to hold such a value, and calls an appropriate lower level processing routine (using a lookup table) to process each key entry in turn. Other functions which are performed by DISBUG, and hence are not required within the user routine, are keyboard scanning, decoding, code conversion, latching (looking for new key depressions) and display driving. The userdefined function routines will use the DISBUG stack by default, and may assume that there are eight bytes free on entry; real time clock interrupts and further subroutine levels may, however, extend stack usage into the user stack area. If necessary, therefore, the user stack should be redefined to start at 0390 (rather than 03AO) at the start of the user program by coding LDS\#0390 (8E 0390) as the first instruction.

REAL TIME CLOCK FUNCTION

The routine listed below is one which can be used to redefine PF1 to provide a display of the current value of the real time clock. DISBUG maintains a count of seconds since power-up or restart in RAM location called TICK; the count is two-byte, and can thus indicate up to approximately 18 hours. Pressing the PF1 key will cause the seconds count to be displayed as four hex digits, and the display will be updated with the new value every time the """ key is pressed. The CANCEL key will return to the ". . . dIS . . ." prompt. To use the function, enter the routine in RAM using the memory editor; the routine is relocatable and so may be placed in any convenient memory space. Then, use the memory editor again to set PF1SRA to point to the start of the routine. The new function is now ready for use.

INSTRUCTION			CODE	COMMENT
PFI:	CMP	A H°	81 1D	; Key= ${ }^{\text {? }}$
	BEQ	STAR	2710	; Yes
	CMP	A $1 / \mathrm{PF} 1$	8114	; Key=PF1?
	BNE	IGNORE	2618	; No-ignore it
	CLR	DATADIS	7F 03 F8	; Clear all
	CLR	DATADIS + 1	$7 \mathrm{~F} 03 \mathrm{F9}$; except the . .
	CLR	SEPDIS	7F 03 FA	: 4 address . . .
	CLR	STATOIS	7 F 03 FF	; digit display
STAR:	LDA	A TICR+1	B6 03 E3	: Seconds LS byte
	LDX	HADDDIS	CE 03 FB	; Output 2 LS .
	JSR	TWODIG	BD F8 F7	; display digits
	LDA	A TICK	B6 03 E2	; Seconds MS b
	JSR	TWODIG	BD F8 F7	; 0/P 2MS digits
IGNORE	CLR RTS	A	$\begin{aligned} & 4 F \\ & 39 \end{aligned}$; Set reply code

Real time clock display routine

Readers may wish to experiment further with this example by using PF2 to allow the seconds count to be reset to zero or, more difficult, allow the count to be set to pre-defined value. It should be remembered that power-up and restart will reset the values of TICK, PF1SRA and PF2SRA, but that any code written in RAM should be preserved and thus may be reactivated by re-writing the pointers in PF1SRA and PF2SRA.
M. Tooley BA and D. Whitfield MA, MSc

$41 / 2$ DIGIT
 FREDUENCY
 METER

THE frequency meter published in Practical Electronics in May ' 82 was designed to measure radio frequencies up to 600 MHz , and for the necessary resolution, 8 digits were needed. However, there are many occasions when much lower frequencies need to be measured, and only $4 \frac{1}{2}$ digits would be perfectly adequate, this project aims to cater for these needs. Intersil produce a series of $4 \frac{1}{2}$ digit counters: 7224, for I.c.d.; 7225, for I.e.d.; (and 7236 for vacuum flourescent), and details will be given as to how to use either of these. Complicated logic could be designed to provide the necessary store, reset and inhibit pulses, but a much neater and more convenient solution is to use another Intersil device, the 7207A, designed specifically for this function. The chip requires a crystal frequency of $5 \cdot 24288 \mathrm{MHz}$, and will give 0.1 , and 1 second gates, as well as the necessary pulses to control the main counter. Fig. 1 shows the block diagram of the meter.

HOW IT WORKS

The complete circuit diagram of the meter is shown in Fig. 2. The input frequency is fed via blocking capacitor C1 to the input of IC1, a CMOS op-amp connected as a comparator with hysteresis. The other input pin is d.c. biased with R2 and R3, whilst R5 and R6 provide a Schmitt trigger with approx. 0.1 V hysteresis, changing state at 2.45 V and 2.55 V (assuming a 5 V supply), to give some protection against noisy input signals. The output from the op-amp consists of square waves at the same frequency as the input, and these go via S2a (explained later) into the input (pin 32) of the counter IC2, that will drive the I.c.d. display direct. This has count inhibit, reset, and store pins on 31,33 and 34 respectively, and these all require a pulse to OV to operate, but in a specific sequence.

First the count inhibit must go high so that the counter is enabled. At the end of the gate time (0.1 or 1 sec) this must go low as the store pin goes low to update the output
latches, then the reset pin must go low to finish the sequence ready for the next count. The 7207A produces all the necessary pulses in the right order, with the exception of the count inhibit pulse which needs to be inverted. This is performed by one gate of IC5. The 7207A has its own builtin oscillator, requiring a crystal between pins 5 and 6, and two capacitors, which allows trimming to 5.24288 MHz . There is also a multiplex frequency output of 1.6 kHz but this is not used. The count inhibit pin is also used to control a pnp transistor that activates an l.e.d. to show when a count is in progress.

The outputs from the 7224 are connected direct to the display segments, with the backplane pin of the display connected to pin 5 of the 7224. Whilst the meter was intended primarily for the audio range, $0-20 \mathrm{kHz}$, it is very easy to insert a switch and a 4017 to divide the incoming square waves by 10 , enabling much higher frequencies to be measured, with a 10 Hz resolution. S 2 is a double pole switch, and the second pole is used to enable another gate of the 4070 to invert the backplane frequency and activate

Fig, 1. Block diagram

AN AUDIO RANGE FREQUENCY METER FOR MEASURING OTO 20 kHz

Fig. 2. Complete circuit diagram of the Frequency Meter
one of the 'flags' incorporated in the display to show that the prescaler is activated. Fig. 3 shows what pin is connected to each 'flag', and the author chose to use pins 2 and 39 to give a divide (\div) sign, but this is simply a matter of preference.

The power supply, if included, consists of a $0-6 \mathrm{~V} 250 \mathrm{~mA}$ p.c.b. transformer, smoothing capacitor and 5 V regulator, with C6 and C7 included to aid stability (Fig. 4). The current consumption of the unit is very low, using all CMOS devices, and battery power is a realistic possibility . . e.g. a PP3 9V battery connected to the input of the regulator. BE WARNED
the maximum supply voltage for the counter is 6 V . When a battery is used R12 and D4 can be ignored to conserve battery power. If readers would prefer an l.e.d. display (nonmultiplexed), the 7225 can be used with exactly the same circuit and p.c.b., except that pin 36 must be grounded (via the pads provided on the p.c.b. for a link), and pin 5 changes
from being the backplarie pin to a brightness pin $1+V$ for max, OV for mink. A variable brightness control can be provided if a 100 k pot is connected across the supply, with the wiper to pin 5 . Otherwise, display segment pins are the same. The second pole of S2 can then be used to switch on an l.e.d as an indication of which range is in use.
For those readers who would like to use a vacuum fluorescent display, the 7236 can be employed, with minor changes to the p.c.b., however, the power supply requirements are more complicated, and constructors are advised to consult the Intersil data before selecting this option.

CONSTRUCTION

Constructors are advised to use a p.c.b. for ease of construction, and a suggested design is given in Fig. 6 with the component layout shown in Fig. 7. Mount the components,

COMPONEN		$\begin{aligned} & \text { IC2 } \\ & \text { IC3 } \end{aligned}$	4017 ICM 7224 (7225 see text)
Resistors		IC4	ICM 7207A
R1, R10, R11	10k (3 off)	IC5	4070
R2, R3, R5	6 k 8 (3 off)	IC6	7805
R4	1 M	Miscellaneous	
R6	330k	N1	
R7. R12	220 (2 off)	X1	$4 \frac{1}{2}$ digit l.c.d. (RS 587-311)
R8	100k	XL1	Crystal 5.24288 MHz
R9	27k	Display bezel Case	RS587-282
		Transformer	6-0-6V at $\cdot 25 \mathrm{~A}$ (RS207-829)
Capacitors		REC1	1 A rectifier
C1	470n polvester	FS1	100 mA fuse
C2	$10 \mu 16 \mathrm{~V}$ elect	Fuse clips	
C3	22p	2 pole push-push latching	
C4	$1000 \mu 16 \mathrm{~V}$ elect	switches (3 off)	
C5	220 n polyester	- A ' type knobs red (3 off)	SUE series Ambit
C6	$22 \mu 16 \mathrm{~V}$ elect	3 way 15 mm bracket	
VC1	5-65p trimmer	-Phono socket	
		-4mm socket (2 off)	
Semiconductors		Strain relief bush	
D1, D2	1 N4 148 (2 off)	l.e.d. (red)	
TR1	2N3702	1.e.d. (green)	
IC1	CA 3140E	-See text	

\longrightarrow PIN4O

$$
\text { PIN2 } 2-\frac{\square}{\square-}-\operatorname{PIN} 39
$$

LCO FLAGS
[66000]
(6990)

661004
Fig. 3. Pin layout for the 7224 and 7225, rear view of the display, LCD flags and the pin orientation of the 7805

Fig. 4. Circuit diagram for the p.s.u.

$A B E=1.001 \mathrm{~A}$
B.C.D.G\& $1=4.0 \mathrm{DIA}$
$H=3.501 \mathrm{~A}$.
EG1048

Fig. 5. Front panel drilling details

Fig. 6. P.c.b. design
ensuring correct polarity where necessary, and then check the board before mounting it in the case using two bolts and spacers. The interconnections were made using ribbon cable and Veropins and if done carefully there should be no problems. A SUE series switch bank from Ambit was used and the front panel was drilled and cut according to Fig. 5
and the bezel, l.e.d.s etc were mounted. In the prototype, two types of input sockets were included: a phono, and two 4 mm sockets, but this is of course dependent on individual requirements. The rear panel was drilled to accept the mains lead strain-relief bush, and then all the necessary connections were made according to Fig. 8. After a final check the

Fig. 7. Component layout

[651015
Fig. 8. Display wiring

unit can be switched on, calibrated against a known frequency, and then the case can be bolted together.

CONCLUSION

With no incoming signal, the unit will probably read 50 (mains pick-up), but this will disappear as soon as a signal is applied. Please note that the 'low' input of IC1 is not at earth potential and so should be isolated if an earthed metal case is used. The unit will easily read up to 100 kHz , depending on amplitude, above which is is suggested that readers build the 8 digit meter. On the $0-20 \mathrm{kHz}$ range, if a frequency above 20 kHz is applied, the $\frac{1}{2}$ digit will remain lit, and misleading results will be displayed. To avoid confusion, it is suggested that readings always be made on the high range to start with, and then switched down if necessary.

SEMICONDUCTOR UPDATE R.W.Coles

FEATURING MAA 20007114 BU215

DIGITAL TV

If anyone out there is still convinced that the current craze for microprocessors and digital circuits is nothing but a passing fad, I may have some bad news for them, because yet another analogue circuit bastion is about to come under siege, and this time battle will be joined right under our noses in the living-room TV set.

Of course, we have already seen some peripheral skirmishing and some easy victories for the digital cavalry in the form of the first teletext and remote control irregulars, but the latest onslaught will strike right to the very heartland of analogue circuitry, where defences were once thought to be impregnable.

The strike force now being assembled by ITT comprises six divisions of battle hapdened VLSI digital chips armed to the teeth with gates, flip-flops, and registers, all determined to rid the living room of those simple but harmless residents of the analogue i.c.s, who themselves once ousted the valves and transistors of yesteryear.

Masterminding the attack will be the MAA2000 8-bit microprocessor which will strike terror into the defenders with infrared remote control, phase-locked-loop tuning, l.e.d. displays, and a serial bus to control the supporting forces. Next in the order of battle comes the MAA2 100 Codec battalion which has some awesome heavy equipment including analogue-to-digital and digital-to-analogue converters, an RGB matrix, a beam current limiter, black level white balance and brightness controls, plus inputs for the dreaded teletext.

In charge of psychological warfare is the MA2200 which handles real-time video signal processing including chroma taping, filtering, and contrast, colour, and hue control. Heavy artillery support will be provided by the MAA2500 deflection controller which can muster video clamping, horizontal and vertical sync, east-west correction and signal standard detection from its comprehensive armoury.

Two digital infantry divisions will also be in support. The MA2400 provides stereo audio processing and the MA2300 contains two 14-bit analogue to digital convertors for the sound channels.

The assault forces make an imposing sight in their 24 and 40 pin landing craft, and their promise of automatic compatibility with NTSC PAL and SECAM standards, dual channel stereo or bilingual sound, and the option of pictures within pictures so that two channels can be viewed at once, is expected to endear them

to the local populace.

The result of course, is a foregone conclusion, but isolated guerilla activity from local defence volunteers is expected to continue for some years in such hostile areas as the horizontal and vertical deflection amplifiers.

Personally, I am already dug in behind my favourite armchair, beam-tetrode at the ready, determined to take a few of the blighters with me at least!

BIG BUBBLE

Imagine your pet microcomputer shorn of that troublesome cassette recorder and running a full blown disc operating system with half a megabyte of available storage to hold your compiler, word processor, and space-invader software. Nice thought, but a double-density mini-floppy disc drive is likely to result in a second mortgage or a divorce, and then there are all those motors and heads and drive belts to go wrong, so maybe cassettes aren't so bad after all.

But wait! Now there is an alternative way to that $C P / M$ Utopia you have long dreamed of, in the form of a big new bubble chip from Intel. Hot off the press, their monster new bubble memory, the 7114 , offers 4 million bits of non-volatile storage capacity on a chip about half an inch square living in a small 20 pin package.

Bubble memories don't use capacitors or flip-flops to store data like other semiconductor read/write memories. Instead they store data bits as microscopic magnetic domains which can be propagated around loops formed on a magnetic substrate manufactured using a similar fabrication technology to that developed for more conventional devices. Although they operate in a mainly serial mode, more like a floppy disc than a RAM chip, the time to reach a random data item is much shorter than anything that can be achieved with an electromechanical device such as a disc drive, with the 7114 achieving an average access time of only 40 milliseconds.

Perhaps the two most important advantages of bubble memories are their high storage density and their ability to store data without power for long periods, and these features make devices like the 7114 an attractive proposition for disc replacement. The big disadvantage of bubbles is that each chip is expensive, so it is usually uneconomical to make them removable like discs. This could be overcome by loading data into the bubble initially from say, a cassette, a process which would only be necessary occasionally when system
software needs to be changed or expanded.
In the 7114 , data is stored in 8 octants, each of which has 80 minor loops of 8,192 bits for a total of 4,194,304 bits of storage capacity. Also on the chip are some spare storage loops and a "boot-loop" which is programmed by the manufacturer with information on any faulty loops which testing shows up. During system initialisation, the contents of that boot-loop are read by the 7224 bubble memory controller chip (also available from Intel) which subsequently patches in spare loops to make good any deficiencies.

It is too early to find a 7114 based bubble-disc system available for general use on home computers, but I think we can expect to see one before too long!

LOSS LEADER

Power transistors using MOS rather than bipolar technology have been around for several years now, and their high input impedance and fast switching capability has enabled them to replace bipolar devices like the famous 2 N3055 for many applications.

One problem that these MOS devices have always had however, is that when used as a switch, their "ON" resistance has been rather too high for comfort, and certainly a lot higher than that of comparable bipolar transistors. A high "ON" resistance can impose unacceptable losses in some applications, so MOS device manufacturers have been trying hard to improve matters.

A new device in the Siemens SIPMOS power family, the BUZ15, seems to have the measure of the problem since it sports ań RDS $_{\text {on }}$ of only 30 milliohms. This new capability will undoubtedly open up many new applications areas for MOS devices, especially where power has to be switched with the minimum of resistive loss. The BUZ 15 is a low voltage device for use in 50 volt systems, but in the SIPMOS range there are about 60 different devices, with some operating up to 1 kV . One application worth considering is the remote digital control of car lighting systems to reduce the wiring costs, but no doubt there are many others.

AVAILABILITY

Devices featured in Semiconductor Update should, under normal circumstances, be available from good component retailers, but bear in mind that retailers will often not receive stocks of a device until some time after it has been featured in Update.

MIDWICH COMPUTER COMPANY LIMITED

FAST EX-STOCK DELIVERY OF MICROCOMPUTER COMPONENTS AT UNBEATABLE PRICES

You cant beat The System.
 The Experimentor System ${ }^{\text {™ }}$ - a quicker transition from imagination

Experimentor Matchboard" pre-drilled PCBs

When you have a circuit idea that you want to make happen, we have a system to make it happen quicker and easier than ever before: The Experimentor System.

You already know how big a help our Experimentor solderless breadboards can be Now we've taken our good idea two steps further

We've added Experimentor Scratchboard workpads, with our breadboard hole-and connection pattern printed in light blue ink. To let you sketch up a layout you already have working so you can reproduce it later

With Experimentor Matchboard you can go from breadboard to the finished product nonstop' We've matched our breadboard pattern again, this time on a printed circuit board, finished and ready to build on. All for about $£ 1.50$

There's even a letter-and-number index for each hole, so you can move from breadboard (where they're moulded) to Scratchboardin (where they're printed) to Matchboardiv (where they're silkscreened onto the component side) and always know where you are.
When you want to save time and energy, you can't beat The Experimentor System.

Getting it Wrong

Sixty years ago when Henry Ford's massproduced, cheap, universal car (the Model T) was rolling off the production line he saw it as a tool of liberation for the common man. He went even further, forecasting that when the automobile became as numerous in Europe and Asia as in the United States there would be no more war. The automobile, he proclaimed, was the product of peace.

In the event the internal combustion engine became the prime mover in modern warfare and a prime cause of violent death in peacetime, some 8,000 killed on the roads in the UK last year.

Industrialists, of course, tend to be engrossed in the quality of their products, their marketing, and profit. Ford made a fortune through knowing his job. A clever man but not perhaps in the first rank of great thinkers.

Let's then switch to an acknowledged great thinker, an economist who had little interest in money except in its redistribution. Although Karl Marx was buried 100 years ago his name lives on, respected, reverenced or reviled according to political taste. He developed a political and economic theory from social conditions prevailing in Western Europe and more specifically from observation of industrial activities in England, in his day the great centre of the 19 th century industrial revolution.

Marx held the conviction that a communist revolution could come only from an industrial society, spearheaded by workers. In fact the revolution came in pre-industrial Russia, subsequently in peasant China and other non-industrial countries. Apart from inspiring a diluted form of socialism, communism has had little impact on industrial Western Europe and, in the UK, which Marx imagined to be fertile revolutionary ground, the impact has been least of all.

Henry Ford got it wrong because the great massacre in the trenches of the 1914-18 war was still fresh in the mind
and, in 1923, nobody anticipated the appearance of Adolf Hitler. Similarly, Karl Marx was a creature of his own time seeing only the then long hours and drudgery of factory life. He can be excused for not seeing that in an enlightened capitalist society a production line worker at Dagenham or Detroit would enjoy in years to come a far higher standard of living that he himself enjoyed or even dreamed about. And, moreover, a standard superior to that achieved by ordinary people in what Marx had conceived as a worker's paradise

Guessing

It is possible for us, in the late decades of this century, to be more percipient? We now have the benefit of instant world-wide communications plus advanced electronic data processing of statistics gathered yearly, weekly, daily. even hourly. Economists, social scientists, defence experts have constructed computer models to handle their respective data to predict the outcome of events. Yet with all this elaborate apparatus, as an end result we only have general trends, feeble guides easily distorted by disturbances that can and do happen almost anywhere.

Looking back to only three years ago I find I was not reporting unemployment. The great topic then was the oil crisis and how alternative energy was needed for salvation. Today the world is awash with oil. There is rationing at the wells in an effort to maintain prices instead of rationing of use at the filling station. Nobody with or without computing aid foresaw such a complete reversal. Equally, nobody predicted the Iranian revolution, the invasion of Afghanistan, the Iran/Iraq war, the Falklands war, the Israeli thrust into the Lebanon, Solidarity and martial law in Poland, or EastWest warmish detente degenerating to an approximation of cold war. All these affected international trade and continue to do so.

Who, three years ago, predicted 10 million unemployed in Western Europe, or 10 million jobless in the United States? Or that oil-rich Mexico would become virtually bankrupt, not to mention most of South America, large parts of Africa and the whole of Eastern Europe?

Such is the fragility of society that modern economic forecasting with all its electronic aids is little more than guessing, the computer today's equivalent of the crystal ball, an aid to concentration. A recent comparison of Treasury forecasts for 1983 with those of three respected independant teams, all using computers and economic modelling, revealed none of the leading economic indicators in agreement although thay had a common trend. None were sufficiently up-to-date to reflect an unforeseen fall of five percent in the value of sterling.

Productivity

In the ocean of uncertainty that has afflicted us in the past three years the only consistent current has been the good overall performance of the electronics industry, predicted throughout in these
columns without aid of computer but with little fear of being proved wrong. A pity that the NEB-backed electronic office company Nexos foundered with a write-off of $£ 34$ million of taxpayers' cash, but heartening to see ICL pulling back into profit. But, viewed as a whole, electronics has been and is the only major growth sector in manufacturing industry.

The snag is that all the expansion in turnover, profits and order books does not lead to a corresponding increase in employment in the industry itself. At shop floor level the old hand-wired products have disappeared and with increasing use of LSI and VLSI the labour content ever decreases.

Even worse from the national and political viewpoint, a substantial proportion of the output is skilfully designed to put people in other industries out of work in the interests of productivity gains.

It is interesting to note that even now, after massive shedding of labour in the older industries, Britain is only 13 th in the world league table for competitiveness, actually slipping back a place on the previous year. It is little comfort to learn that France slipped worse, from 8 th to 15 th, or that New Zealand slumped from 10th to 20th place

Leaders are Japan, Switzerland, USA, West. Germany, Canada and Australia in that order according to the European Management Forum which uses a complicated formula reported to consist of 245 criteria to arrive at their conclusions. When crowing about productivity gains we too often averlook the probability that all our competitors are making similar progress. We have to run to stand still in relative terms. We need to run even faster to gain on the leaders.

On the employment front the one heartening aspect is the apparently insatiable demand for graduate electronics engineers and applied physicists, particularly those with expertise in microprocessor hardware and software, and in telecommunications.

Offshore

Electronics has done well for North Sea oil and had done well out of it in exploration, monitoring, control and communications equipment. A typical oil platform can have as many as 20.000 information points to provide an operational overview and malfunction alarm system, with input data constantly scanned and analysed by computer. The experience gained in the hostile environment of the North Sea has snowballed into export orders from other parts of the world.

A general misconception is that Britain has now an oil-based economy. True we are self-sufficient, even a nett exporter. True we are listed in the top ten producers in the world. But offshore oil and gas together represent only some five percent of our Gross National Product, less than the construction industry and a mere fraction of that of manufacturing industry. In fact, despite present difficulties, we remain relatively a rich country with a welldiversified economic base.

IFF you have never built projects before and particularly if you have never tried a solderless breadboard this is for you. For qualification, a breadboard is a basic framework on which electronic components can be mounted and wired for preliminary circuit tests, so called because the foundation units were actually wooden breadboards. However, with the 'Experimentor' System from GSC featured here we have moved far from this rudimentary description.

The most fascinating aspect of solderless breadboarding is that designs can be conceived or copied and their applications explored with the promise of total component retrieval at the end. This means that the suitability of a published circuit for a particular role can be explored or rejigged before hard-wiring.

The key feature of the 'Experimentor' breadboard is the basic connector. This is slotted to form five independent pairs of sprung fingers which are placed behind a row of holes in an insulating carrier. The five contacts are electrically common, that is, any leads plugged into the same group are connected together.

Beside the groups of common contacts run the two supply lines made up of parallel strips of connector.

The hole spacing on the board makes up a 0.1 in . grid which is compatible with virtually all electronic component mounting arrangements. A 0.6 in . centre channel allows the mounting of integrated circuits and other devices with wide spaced leads.

THE SYSTEM

The Experimentor System (Model Exp-304) consists of the breadboard, two preetched pre-drilled p.c.b.s and a 50 sheet Scratchpad with each sheet printed with a full sized layout of the hole and connection pattern of the breadboard on which design layouts can be recorded. This means that the p.c.b.s can be loaded from the breadboard and soldered once a design has been finalised.

A simple circuit is now presented to demonstrate the system. To gain familiarity you should try to relay the design to the free Scratchpad with the intention of cutting back on link wires and board space used. It can then be built on a breadboard and tested.

This unit is designed for use in a brief-case, shopping bag, etc., and an audible alarm is activated if someone opens the case or bag in which it is placed. It could also be used in a cupboard or drawer in which valuables are stored. The alarm is triggered by a transition from darkness to relatively bright conditions, and modifications to the case (or whatever) in which the alarm is used are therefore unnecessary.

The circuit has both switch-on and switch-off delays so that there is time to place the unit in the case and close the case before the alarm becomes active, and there is a short delay before it sounds once the unit has been triggered. This gives the user time to switch it off before the alarm operates. The switch is a simple combination type so that there is no easy way for anyone who is unfamiliar with the combination to quickly switch the unit off.

(E6.007)
Fig. 1. Block diagram of Case Alarm

THECIRCUIT

Fig. 1 shows the block diagram of the Case Alarm.
A photocell is used to monitor the light level and it triggers a monostable multivibrator when a suitable increase is detected. However, a delay circuit is coupled to the monostable and prevents it from operating until a few seconds after switch-on so that the delay is obtained. The two-tone audible alarm is operated from the output of the monostable, but another delay circuit is connected between these two stages so that the switch-off delay is produced.

The alarm would normally be switched off soon after it has sounded, but it will anyway after about one minute since this is the length of the output pulse from the monostable.

The full circuit diagram is shown in Fig. 2.
IC1 is used as the basis of the monostable, and the 7555 is used in preference to the standard 555 because of its lower current requirement. This gives the circuit a current consumption of only about 90 microamps and enables the circuit to be powered economically from a small (PP3 size) 9 volt battery.

At switch-on C3 is uncharged and zero volts is supplied to pin 4 of IC 1 , thus preventing the monostable from functioning since an input potential of about 0.5 volts or more is needed at pin 4 of IC1 in order to permit normal operation of the monostable. C3 charges by way of R5 though, and after about ten seconds the potential fed to IC1 pin 4 from C3 (via the potential divider formed by R6 and R8) is sufficient to give normal operation of the monostable.

R1 and photocell PCC1 form a potential divider connected across the supply lines, and with the cell subjected to dark conditions there is virtually the full supply potential at their junction due to the consequent high resistance of the latter. If PCC1 is subjected to a transition from dark to light conditions a negative signal is produced due to the large fall in its

COMPONENTS

Resistors

R1	$22 k$
R2, 3,4	1 M 8 (3 off)
R5,8	1 M (2 off)
R6	8 M 2
R7	150 k
R9	$5 k 6$
R10	$4 k 7$
R11	$2 M 7$
R12	$15 k$
R13	$100 k$
All $1 / 3 W 5 \%$	

Capacitors

C1, 5
C2
C3
C4
C6
C7 $\quad 1 \mu 63 \mathrm{~V}$ axial elect.

Semiconductors

IC1	ICM7555
IC2	4001 BE
TR1	BC109C
TR2	BC179
D1,2	1N4148 (2 off)
D3	BZY88C6V2 Zener

Miscellaneous

LS1

$$
\begin{array}{ll}
\text { S1.2 } & \text { 6.way } 2 \text { pole rotary switches (2 off) } \\
\text { PPC1 } & \text { ORP12 cadmium sulphide photocell } \\
\text { B1 } & \text { 9VPP3 size }
\end{array}
$$

PB2720 ceramic resonator

Case type PB1 (Maplin)
Printed circuit board
Battery connector
Control knobs
resistance. This signal is coupled to the trigger input of IC1 by C1 and the monostable is activated. R2 and R4 bias IC1's trigger input above the trigger threshold voltage under stand-by conditions.

R2 and C2 set the nominal output pulse duration at a little

Fig. 2. Circuit of Case Alarm
over a minute, and the alarm signal is switched off at the end of this period. The circuit as a whole is not switched off though, and the unit will be retriggered if PCC1 is again taken from dark to light conditions. If preferred, the automatic switch-off feature can be eliminated by omitting R3 and replacing C3 with a shorting link.

ALARM SIGNAL

The two-tone alarm signal is generated by two CMOS astables which use the two input NOR gates of IC2 in a well known configuration. IC2c and IC2d are used to generate an audio frequency squarewave signal at a frequency of about 2 kHz or so, while IC2a and IC2b are used as a low frequency (about 2 Hz) astable which generates a squarewave modulation signal. The output of the modulation oscillator is coupled to the input of the tone generator via R13, and this provides frequency modulation with the tone generator being switched either side of its normal operating frequency.

The output of the tone generator is fed to a piezoelectric transducer which is very efficient at the frequencies involved here, and gives a reasonably loud alarm signal despite the limited output current available from IC2d.

Under stand-by conditions the output of IC1 is low, TR1 and TR2 are cut off, and the positive supply is not applied to the alarm generator circuit. When the unit is triggered and IC1's output goes high, TR1 is biased on and in turn biases TR2 hard into conduction so that the positive supply is fed to the tone generator circuit and the alarm sounds. However, there is a short delay while C4 charges via R7 to a high enough potential to bring TR1 into conduction, and this gives a delay of about two seconds between the circuit being triggered and the alarm being activated.

When the unit is switched off D2 largely discharges C4 into the supply lines and D1 similarly discharges C3. C2 discharges via internal circuitry of IC1. The circuit is therefore ready to operate properly as soon as it is switched on again.
The on/off switch is actually two six way rotary switches connected in parallel, and each switch only cuts the supply in one of its six positions. It is therefore necessary to have both switches in the correct position in order to turn off the alarm. Without knowing in advance which is the correct

The cased, final unit
position for each switch it is obviously impossible to quickly find these positions, and nothing more elaborate than this simple combination lock technique is needed in this application.

IC2 is a CMOS device and the appropriate handling precautions should be taken when dealing with this component, but as it is a very inexpensive device it is probably not worthwhile fitting it in an IC socket. IC1 is also a CMOS integrated circuit, but as it has a very effective internal protection circuit it does not require any special handling precautions.

When checking the completed unit bear in mind that it responds to a change from dark conditions to comparitively bright conditions after the switch-on delay has elapsed. Simply switching the unit on and leaving it in a normally lit room, or taking the unit from darkness to light immediately after switch-on will not result in the alarm being triggered.

Photograph of the built breadboard

FEW people realise that the increasingly popular industrial robot has been in working existence since 1962; the result of a patent filed in 1954 by George Devol and the business acumen of Joseph Engelberger. However, much of the literature we come across today is not so much concerned with these dumb, reprogrammable, open-loop machines, but with the 'sensible' or second generation robots-these are the impetus behind the recent upsurge of robotic interest. The initial stages of robot development have already passed, the next stage of growth is in robot intelligence and its associated 'intelligent' functions.

The first point, which must by fully appreciated, is that robots are machines and, providing our ethics are stable, always will be. As machines they are provided with a limited intelligence in order that they may make a number of valid decisions and thus reduce human intervention to a minimum. In other words robots are versatile machines which can work on their own. To achieve this the robot can be on one of two possible levels of development: The first generation robot, as mentioned above, is generally senseless (n.b. it has an open-loop control system). The operation of such machines depends upon the robot's repeatability-the action of repeating tasks over and over with little or no loss in accuracy. The open-loop system assumes good repeatability and thus assumes a specific and constant output will be achieved for a given input. Hence, first generation

Fig. 1. Anthromorphology of a robot arm
robots fall short of our requirements: Being open-loop they have no feedback concerning the actual output and, the robot has no knowledge or perception of either its surroundings or its workpiece.

The second generation is attempting to overcome this unawareness by equipping machines with senses and applying artificial intelligence techniques in order that the senses may be used in a human-like manner. In a nutshell, the most critical element in robotics is the interface with the environment, both in sensing (input) and manipulating (output). Until recently the current technology offered much on the output side but was lacking considerably on the input interface. Obviously the direction for research and development is in the application of sensors, the question therefore is how?

HUMAN MODELLING

The human being is the best all round example of a perceptive, receptive and reactive control system. Because of this engineers are continually looking towards the human 'modus operandi' for solutions to robot design. First generation robots based many of their characteristics on the human arm (Fig. 1). For example many robots can swivel and sweep about a shoulder joint, bend at the elbow, bend and swivel at the wrist, and have various hands fitted (end-effectors). Naturally, second generation robots are inspired by human senses and the operating mechanism of the brain.

Each of our senses is dependent upon a particular, dedicated sensor mechanism which converts informative stimuli from the environment into electrical signals for the nervous system, and thence processed in the brain. The extremely complex arrangement which constitutes the human sensory system can be summarised according to the type of physical input and hence the corresponding response mechanism evoked. They are:

VISION
HEARING

TASTE/SMELL TOUCH

The perception of electromagnetic radiation in the $400-760 \mathrm{~nm}$ wavelength.
The perception of oscillations of air pressure in the $20-20 \mathrm{kHz}$ frequency band.
Chemoreception of odorous molecules.
a) The perception of physical contact
b) The perception of electromagnetic radiation in the form of heat ($>760 \mathrm{~nm}$ wavelength).

All these sensory mechanisms are also capable of providing the associated direction of a particular stimulus, the reason being that more than one receptor acts at any one time and thus the brain is able to compare stimuli within both dynamic and directional frames of reference.

To generalise, the ability to detect a stimulus, find its range and to determine its relative direction are both necessary and sufficient for the intrinsic intelligence of the control system to respond to, and interact with. The greater the amount of useful data supplied to the controller, then the more complex an interaction is possible to increase the complexity of the workpieces and their orientation, handle a variety of components, and cope with non-uniform backgrounds (e.g. picking single components out of a bin of many types of workpieces all mixed together).

Experimental robotic hand and arm (Courtesy of Southampton University)

Fig. 2. Comparison between human and machine vision
The process which gives sight to robots is directly based on the human model. This consists of a lens, receptor and control unit (Fig. 2). Our control over such a system is unconscious, but to a computer there are two major problems: Firstly the scene has to be analysed into a number of discrete areas, each of which must be quantified according to the system's operating parameters. These are a series of rules which are valid for interpreting the nature of the image. By 'nature' we mean the length and position of boundaries between objects, light intensity, surface orientation to the camera, reflectance, etc. Secondly, all this data has to be analysed to make a tangible 'picture'. This is usually a vast amount of input information. For a single television picture, in colour, approximately 1 Mbit of data is required for digital transmission (e.g. 1 page of PRESTEL, TELETEXT, etc.). This amount of data handling contains the intrinsic problem of speed. If the computer is unable to process its data extremely quickly then the manipulator may be given instructions which are simply too late to be of any use. In practical systems this means that the robot's camera receives an image, processes the useful data, and then directs the manipulator in the appropriate direction. The whole operation must take place in the order of 0.1 seconds. This demands a great amount of computer power and even then is pushing it to the limits.

The basic difficulty involved is the way in which computers operate. Information is processed serially, that is, one caclulation after another. Attempts have been made to improve the data handling of microprocessors by using hardware solutions such as arithmetic units and other miscellaneous functions. Also, there have been recent developments in array processors which act as a series of independent CPUs but constrained to a function within a single architecture. This then provides a form of parallel processing which is ideally suited to pattern recognition systems. Present research is also concerned with the development of new languages incorporating a decision making structure which therefore lends itself to sensory analysis applications (e.g. LISP, PROLOGUE, etc.). The techniques employed are drawn from current artificial intelligence findings.

The remaining parameter controlling robot vision is cost. Even with the recent drastic reductions in hardware prices, the vast power required does not come cheap. Due to this fact there are a varicty of seeing robots on the market ranging from rudimentary, 'low cost' types, to the higher end of the market offering a very sophisticated machine. Typically the basic intelligence levels can detect a specific wavelength of light (in some cases this is infra red), assess its intensity and thus define crude borders for a fixed presentation of the work piece.

The intermediate state-of-the-art offers 'grey-level' processing which in simple terms means that the analysis of a scene incorporates an undescribed state between the black and white pixels, and the associated software allows for this; thus light intensity thresholds are accounted for, which in turn allows for slight variations in the workpiece finish, background complexity, and non-uniform illumination.

The most sophisticated levels of intelligence offer a full analysis of the scene; the number of available pixels is generally
greater thus offering a finer definition, the speed of operation is close to real time, and other factors such as colour recognition, shape and orientation, limit setting and adaptive manipulator control are generally available at considerable cost.

TOUCH

For intelligent behaviour the use of vision as a sensory organ not only has excellent power and a peculiar fascination for researchers, but, as mentioned above, has severe practical limitations such as cost, speed and definition when applying our current technologies. On the other hand, a much more viable proposition on the grounds of finance, speed and ease of implementation is that of tactile sensing. In addition to these 'pros', is the argument that the final result of a vision system is for the manipulator's end effector to touch the workpiece and so, development of a strong tactile sensory perception minimises the emphasis of the less practical visual facet.

Fig. 3. Cross section of the human skin showing sensory receptors
Referring again to the human model we find that touch is a collection of several types of sensory receptors (Fig. 3). The sense embraces a position sensory (stretch receptors), two types of pressure detectors (one for impact, one for continuous loading), overload sensors (pain detectors such as structural damage or chemical attack interpretors), and heat detection mechanisms. In other words our skin is provided with a multiplicity of multifunctioning sensory organs. However, despite the vast amount of data input there is very little pattern recognition possible. In fact a simple experiment with two pins will show that many areas of the body are indiscriminant over a distance of less than 20 mm between points (e.g. shoulder blade region, chest, etc.). The reasons for this are many, the major one being that many sensors use the same nerve channels. This is exemplified by our peculiar response to certain stimuli (e.g. a tap on the back of the neck can often make the toes twitch) and forms the basis for acupuncture. This apparent lack of ability is probably due to our high visual competence in pattern recognition thus eliminating any need for a duplicate role in the tactile system.

What then is the value in developing tactile sensing? Firstly, touch has the distinct advantage over vision in that it is three dimensional in its geometric and its physical structure; hence the vast amount of interpolation which is necessary with a 2 D picture is redundant in the tactile domain. It is the geometric factor which makes touch such a valuable sense; this is exemplified in
the fact that we use our hands to feel things-the culmination of shape and skin give us direct spatial feedback.

In denigrating the direct pattern recognition abilities of skin the other sensory assets must not be overlooked. The pressure sensors, for example, are extremely sensitive in detecting movement of several microns: (e.g. hairs, grit and dust are perceived when merely falling onto the skin). The remaining major ability touch exhibits is the detection of surface texture. This is achieved by picking up vibrations set up when our fingers are passed over the surface of a material. Our finger ends are specially developed for this purpose in the form of ridges and whorls (fingerprints). Texture detection is largely dependent on relative movement of the skin surface against the sample surface.

Transferring our knowledge from the biological touch processes to the industrial robot gives quite a range for inventiveness; the reason being that there is very little known about the actual workings of biological touch sensors. This being the case, many ideas are currently being experimented with.

For impact detection simple on/off switches are sufficient. Several methods have been used, from sprung flexible circuit board to small piezo-electric elements.

The measurement of load requires some quantitative system, but there are no commercially available sensors which copy the biological model; the response being logarithmic with approximately 30 discrete levels. Strain gauges have been used to some extent but they are limited due to their physical size and their poor susceptibility to noise. Various other resistive devices are being tested. One example is the use of graphite loaded neoprene rubbers in the form of two cords crossed over one another (Purbrick, Univ. of Warwick). The system works logarithmically due to the compression of the two circular cross-sections against each other; however there are still some problems with fatigue life. Another system is to use a felt made form carbon fibres (Dr. M.H.E. Larcombe, Univ. of Warwick). The method of working is the same as with the rubber cords but multiplied many times. Arrays of piezo-electric elements have been used for load sensing, the method being that of measuring the developed potential difference across the device due to the exerted force. The problem arising with piezo-electric cells, however is that the developed voltage decays with time due to the finite input impedance of the measuring equipment. Thus due consideration must be given to time constants when using this method.

Piezo-electric cells are also used in surface texture and slippage detection. The reason being that they are basically microphonic and as such are suitable vibration transducers. Similarly very small acoustic microphones have successfully been used in many different configurations.

Early prototype robotic hand (Courtesy of Southampton University)

A more recent prosthesis shown during gripping exercises (Courtesy of Southampton University)

Various other techniques are still being developed to give a full sensory complement to a manipulator. Research is being undertaken for both industrial robots and in the realm of prosthetics (bionics). Due to the relative 'simplicity' of tactile sensing (to vision), the concept of producing a fully articulate human hand is very close to reality. Several establishments have undertaken such work, one of which, Southampton Univer sity/Hangar Ltd., is now preparing the production models. Producing a hand is far more viable, and probably useful, than aiming for artificial sight. This particular hand uses sensory feedback in several of the forms described above to aid control of a number of preprogrammed manoeuvres and hence acting closely to that of a human hand. Knowledge gained from this research is being re-routed into industry by applying the techniques to commercial robots. (hand in hand?)

hearing

Auditory sense is not widely used in robotics, however there are one or two cases. The subject of hearing can be divided into two sections: rangefinding and spoken instruction.

The rangefinding aspect provides an intermediary between vision and touch. Several systems have been developed using radar and sonar 'send and return' techniques. work has been undertaken at the University of Alabama, USA, in modelling an echolocation system directly parallel to that of the bat. It involves energising an array of transmitter elements and then comparing the phase differences of the reflected waves. The system is then able to determine the direction and the range of an object. within its environs. A similar technique is being used by the Wolverhampton Polytechnic/Chubb \& Son's Lock and Safe Co. Ltd. teaching company, where an echolocation system presents a viable measurement of distance between a welding rod and a steel joint. In such a hostile environment this proves to be a worthwhile method since touch sensing defeats the objective and vision is usually saturated due to the extreme brightness of the welding arc.

The purpose of using speech recognition is that human beings can tell robots what to do without being tied down to any programming language. This delves deep into complex artificial intelligence techniques. Unimation (UK) Ltd., displayed a speech receptive PUMA robot at the Automan exhibition in summer 1982, but it was confined to a very limited amount of short syllable words. To make robots understand human speech, we must in turn understand the way in which we construct our language. In its base terms, speech recognition is the receipt of aural stimuli and the subsequent interpretation into sounds, then words, then sentences. As humans we are able to focus on one person speaking and developing our own understanding of what he means. Obviously this is very difficult for a computer and because of this little development has taken place. The major problem is not one of signal analysis, despite the complexity of the human voice, but that of understanding. People do not enunciate words clearly and crisply, words merge into each other, word endings are not either clear or correct, words are omitted, etc., and so continuous speech recognition is well beyond our present grasp. Nevertheless much work is being undertaken in this field and there are signs that the barrier is not insuperable.

For the time being industry is only just accepting first generation robots, the operations of which are obviously limited. Very shortly there will be demands for more sophisticated, second generation robots, fully employing their senses of vision, touch and hearing. The more a robot can do for itself, the less it needs to be instructed, the safer and more efficient it becomes. In the twenty or so years of robot existence many people have spent a lot of time copying human characteristics in order to achieve greater machine intelligence and perceptiveness of the environment. From our basic understanding of ourselves it becomes very easy to accept that a human being is human and a robot is, and always will be, a complex and limited machine.

[istulimine Quick, neat and easy!

It's so easy and tidy with the Easibind binder to file your copies away. Each binder is designed to hold 12 issues and is attractively bound and blocked with the PRACTICAL ELECTRONICS logo. Price UK £4.60 including postage, packing and V.A.T. Overseas orders add 25 p.
Please allow $3 / 4$ weeks for fulfilment of order. Why not place your order now? Send the completed coupon below with remittance payable to:-I.P.C. Magazines Lid Post Sales Dept., Lavington House, 25 Lavington Sireet, London SE 1 OPF

Order Form practical electronics

MODULES FOR SECURITY \& MEASUREMENT

MDETONOK
 Quality plus value -always

"The legendary "MINIMAX' - the small speaker produc ing "'Large speaker" sounds. Peak handling 100 watts.
ONLY £74.95 A PAIR!!!

VIDEOTONE - For full range of loudspeakers, in-car, C.B., Video, audio \& video cassettes, etc. Write for full details.

Moving Coil Cartridge - The MC88E is a high output cartridge - so you do not need to use a head amp. EXCEPTIONAL VALUE AT ONLY £24.95

Seoum Hi-Fi represents EXCELLENT QUALITY AT A REALISTICPRICE! The range offers a cho ce of amplifiers, tuner/amplifier, :uner and the excellen: SC4200 stereo cas sette recorder
liliil 11% :

SUPER KITS!

SETS INCL. PCBS, ELECTRONIC PARTS, INSTRUCTIONS. MOST ALSO INCL. KNOBS, SKTS, WIRE, SOLDER, BOX. BATTERIES NOT INCL. BUT MOST WILL RUN FROM $9 V$ TO 15V DC SUPPLIES. ALSO SEE BELOW.

AUTOWAH: Gultar-triggered wahwah
of lower octaves
CALL SIGN: Programmable 8 -note musical call sign
like more
COMPARATOR: LEO level indicator for 2 channels
maximum signal strength

FREOUENCY-GENERATOR: Multiple waveform tesi osc, variable 5 Hz
FUNKY-WOBULO: Novelty voice modulator for funny effects
UZZ: Smooth distortion whilst keeping nafural attack \& deca
GUITAR EFFECTS: Multiple variation of level \& filter modulation
GUITAR OVERDRIVE: Fulz plus variable filter quality
GUITAR SUSTAIN: Extends effective note duration
HARMONOLA: 3-Octave organ with variable voicing attack,
sustain vibrato

HUM CUT: Tunable filter for reducing low frequency noise JABBERVOX: Voice disguiser with clever use of reverb \& tremolo MAD-ROJ Variable sirens, incl. police. garaxy machine-guns etc MICROPHONE PRE-AMP: with switchable bass \& treble response MINISONIC (PE) MK2: 3-octave very versatile music synthesisep MIXERS: Several - detals in catalogue (see below) NOISE LIMITER: reduces tape \& system hiss
PHASER: with automatic \& manual rate \& depth comrols POWER SUPPLIES $(300 \mathrm{~mA})$: iv

REVERB: Analogue unit with variable delay \& depth controls RHYTHM GENERATOR: 15 switchable ihythms controlling 10

RING MODULATOR: for intermodulating 2 separate sine frequencies ROGER 2-GDNG: 2 gongs sounded at end of transmision ROGER BLEEP: Single bleep sounded at end of transmission SEQUENCERS: 128-note keyboard contralled (keyboard incl.) 16-note (up to 64 -bit pattern) panel controlled SPEECH PROCESSOR: for clearer transmission \& better level control STORM EFFECTS: Automatic \& manual wind, rain \& surf generator TREMOLO: Deep tremolo with depth \& rate controls TREBLE BOOST: Increases volume of upper octaves TONE CONTROL: bass \& Ireble cut, gain \& range (6 controls) VIBRATO: variable rate \& depth plus additional phasing VODALEX: Robot type voice modulator with depth \& rate controls VOICE FILTER: Tunable for selected treq bandwidth \& gain VOICE-OP-FADER: for reduction of music level during talk-over VOICE-OP-SWITCH: with variable sensitivity \& delay, 1A 2PCO relay WAH-WAH: with auto-lrigger, manual \& oscillator control WHEEBY-JEEBY: 2 intercoupled oscillators produce variable sirens WIND \& RAIN: manual control of these two effects WOBBLE-WAH: Oscillator controlled wah wah for fascinating effects

3-0ct Es2.43, 4 -0ct E40.68, 5-6et £48.52 3-0ct £23.27, 4-0ct $£ 30.45$. 5-0ct £37.62

PHONOSONICS

PHONOSONICS MAIL OROER, OEPT PEB/B. 2 HIGH STREET, SIOCUP, KENT OAI4 GEH. 01-3026184

Ploase use tull address. Payment CWO, CHO. PO. ACCESS, BARCLAY, or prearranged colliection. Prices inch UK P\&P \& 15\% VAT. E\&OE Despatch usually 7 days on most tems. Details uf parts in above kits are stated in our comprehensive catalogue. Send SA.E. (9×4 or bigger) for Caralogue (if you live overseas please send f1.00 or equiv). MORE KITS ARE IN CATALOGUE.
ambit's new autumn/winter catalogue

ALL THE ‘USUAL’ BITS
(Rs, Cs, Tr's, ICs etc) + ALL THE TRICKY BITS

* TOKO COILS, INDUCTORS, LC FILTERS
* PCM FILTERS, VHF/UHF HELICAL FILTERS
* UNELCO CAPACITORS
* PCI INTELLIGENT LCD MODULES
* TOKO SWITCHES : F SERIES/R7000 SERIES
* ALPS POTENTIOMETERS AND KEYSWITCHES
* TOYO-TSUSHO COAX RELAYS FOR TX/RX
* CRYSTAL FILTERS, CERAMIC FILTERS
* WELLER SOLDERING IRONS
* COOPER TOOLS
* TEST EQUIPMENT
* BOOKS, MANUFACTURERS' HANDBOOKS
* HARDWARE, CASES, PANELWARE, ETC
* MODULES, R\&EW KITS
* RF POWER DEVICES

ORDERS SUBMITTED USING STOCKCODES DESPATCHEI
WITHIN 8 WORKING HOURS FOR EX-STOCK ITEMS

* PHONE ORDER SERVICE - (NO MACHINES!)
 please note our new phone system automatically starks calls

 in order of arrival so pleasf wait if not answered inmediately$$
\begin{gathered}
8 \text { AM - } 7 \text { PM MON - SAT } \\
0277230909
\end{gathered}
$$

* COMPUTER ORDER SERVICE - 'REWTEL' 6 PM - 9 AM 300 BAUD/RS232 (IT MAY BE 24 HRS BY THE TIME YOU READ THIS) 0277230959

Copies of Patents can be obtained from: the Patents Office Sales, St. Mary Cray, Orpington, Kent. Price £1.60 each.

LOUDSPEAKER DIAPHRAGM

Loudspeaker designers are continually searching for the perfect material from which to mould their cones and diaphragms. Paper produces good results, but is affected by atmospheric conditions. Plastic is immune from atmospheric effects, but is often insufficiently rigid or chemically unstable, especially when exposed to daylight with its ultraviolet content. Over recent years there have been numerous patents for "magic" additives to improve the stability and performance of plastic loudspeakep cones. The latest, and one of the most interesting, comes from Kuraray Company of Japan. European patent 0061270 suggests that the performance of a polymer sheet can be greatly improved by incorporating mica flakes in the mix. The patent claims are very broad, covering virtually any percentage by weight of mica additive. So if the patent is granted, and held valid, it would cover any loudspeakep diaphragm made from a mix of polymer and mica flakes

PSEUDO STEREO

RCA, in New York, has filed a string of European patent applications (numbered 0060 097) on further developments in the company's ongoing quest for a system to synthesise acceptable pseudo stereo from a mono TV signal. The company has previously patented (see Practical Electronics May 1981, page 53) a synthesis chip for incorporation in a TV set. Now RCA proposes a modified system that can be hooked up to a home hi fi system. The circuit diagram given may suggest ideas for the home experimenter who would like to build their own synthesis circuits.

The crux of the RCA idea is to split the incoming mono audio signal into two halves and put notches in the frequency response of each half. These notches are deliberately mis-matched so that a peak in one channel copresponds to a dip in the other channel. So overall energy dispersion is constant. As shown in Fig. 1 the incoming audio signal is fed to transformer 20 with a centre tap on the secondary to produce two similar outputs, which are oppositely phased. One of these outputs is fed through circuit 50 which modulates the signal in intensity and phase in the function of frequency. In practice this means that notches are introduced at 150 Hz and 4.6 kHz . Part of this notched signal is bled across to the other channel by resistor 74. As a result of the antiphase relationship the signal at 94 has peaks

Fig. 1

Fig. 2

Fig. 3
where the signal at 92 is notched and viceversa.

Fig. 2 shows the layout of the transfer circuit 50, with suitable component values. The first notch filter 30 includes capacitors 32,36 serially coupled between one end of the transformer secondary and the second notch filter 40 . This includes serial capacitors 42,46.

The phase response curves 196,198 in Fig. 3 show how the two channel signals are in a constant phase relationship of 90°
between the three notch frequencles. According to RCA this produces a distributed sound field that just extends between the loudspeakers. If the phase differential is less than 90° the distribution is too narrow and at phase angles above 90° it is too wide. The frequency distribution was chosen through analysis of the spectral characteristic of bass, tenor, alto and soprano voices, so that all voices appear to emanate from front centre while the sound of music is spread.

Michael TOOLEY b.A.
 David WHITFIELD m.a.m.Sc.

Provides switched negative earth supplies of $4.5 \mathrm{~V}, 6 \mathrm{~V}, 7.5 \mathrm{~V}$ and 9 V at 1 A

THERE are many situations in which it is convenient to use a normal domestic cassette player, radio or other item of battery powered equipment in the car. Unlike car radios, CB sets and specially designed car accessories, most domestic equipment is usually unsuitable for operation directly from a vehicle's 12 V supply. Typically, portable equipment is designed to use a number of 1.5 V cells, with an overall supply somewhere in the range 4.5 V to 9 V ; portable televisions are the usual exceptions, and most will operate from a 12 V supply.

The use of dry batteries can be satisfactory if only occasional and limited use is required. Frequent usage, however, quickly becomes expensive and inconvenient; battery changes are needed more often due to higher volume levels required. The accessory power supply to be described allows most items of battery powered equipment to operate from a standard car cigarette lighter socket. Any equipment which requires a negative earth supply of $4.5 \mathrm{~V}, 6 \mathrm{~V}, 7.5 \mathrm{~V}$ or 9 V may be used, and a regulated output of up to 1 A is available. Should no appropriate socket be available, the unit may be wired directly to the vehicle's accessory circuit.

The accessory supply is protected against overload, is simple to construct and install, and requires no setting up procedure. The unit is protected against incorrect connection, and is built in a rugged and compact case. The overall cost is less than $£ 10$; a sum which will rapidly be covered by the savings on replacement dry batteries.
The input voltage is likely to contain a substantial amount
of noise, and the decoupling capacitors are used to obviate this.

CIRCUIT DESCRIPTION

The circuit for the accessory power supply is shown in Fig. 1. The vehicle's 12 V supply is taken from the cigarette lighter socket via PL1,or from the vehicle's accessory circuit if no such socket is fitted. An in-line automotive fuse, FS 1 , is used to provide protection against possible failure conditions. Reverse polarity protection is provided by D1 as a wrongly polarised supply will forward bias it and cause FS 1 to blow.

The voltage regulator, IC1, features internal over-current and over-temperature protection. The device is intended for use in variable voltage power supply applications, and is supplied in a 4-pin plastic package with a metal heatsink tab (which is connected to the common supply rail). The output voltage is set by means of the resistor network R2 to R6, selected by means of S1b. The way in which the output varies with resistor setting is shown in Fig. 2. An indication of which output has been selected is provided by four miniature I.e.d.s, D2 to D5, via S1a. The series output diode, D6, serves two distinct functions. Primarily it allows an output voltage of less than 5 V to be produced (this is not otherwise possible, as shown by the equation in Fig. 2) by providing an almost constant voltage drop of approximately 600 mV . In addition, the diode provides protection against the unit being accidentally connected back-to-front.

[651059
Fig. 2. Setting the output voltage for IC1. Here $\mathbf{V}_{\text {out }}=5\left(\mathbf{R}_{\mathrm{a}}+\right.$ $\mathbf{R}_{b} / / \mathbf{R}_{b}$ and should typically be at least 2 V lower than $\mathrm{V}_{\text {in }}$

ASSEMBLY

A small printed circuit board is used to mount the majority of components inside the diecast box which is used to house the accessory power supply. The component layout for this board is shown in Fig. 4, with the corresponding copper foil pattern shown in Fig. 3. If preferred, constructors may use a similar sized piece of 0.1 in . pitch Veroboard in place of the p.c.b. The use of terminal pins is recommended in order to facilitate the connection of the wiring and of the regulator device. The regulator i.c. itself is fixed directly to the base of the diecast box, which it uses as a heatsink, and is positioned close to the p.c.b.
The diecast box should be drilled to allow mounting of the printed circuit board, regulator i.c., l.e.d.s, and the switches. Two additional holes at the rear, lined with rubber or plastic grommet material, are required in order to allow the passage of the input and output power leads; suitable measures should also be taken to anchor these leads. A wiring and layout drawing for the complete unit is shown in Fig. 5. It should be noted that the components in the resistive divider chain are mounted directly on the tags of the selector switch, S1, and two of these resistors, R3 and R6, are actually composites of two components wired in series to give the required value.

Fig. 5. Case wiring and layout

COMPONENTS

Capacitors	
C1	$100 \mu 16 \mathrm{~V}$ electrolytic
C2	100 n polyester
C3	100n polyester
C4	$100 \mu 16 \mathrm{~V}$ electrolytic
Semiconductors	
D1	1 N 4001
D2	0.1 in . green I.e.d. plus clip
D3	0.1 in . yellow 1.e.d. plus clip
D4	$0 \cdot 1 \mathrm{in}$. amber l.a.d. plus clip
D5	0.1 in . red I.e.d. plus clip
D6	1N4001
IC1	$\mu A 78 G U 1 C$

Resistors

Resistors	
R1	1 k
R2	100
R3a	1 k
R3b	100
R4	680
R5	470
R6a	1 k
R6b	1.5 k

All 1/4W 10\% carbon

MIscellaneous

S1 3P4W rotary switch
S2 SPST ultra miniature toggle switch
FS1 1.5A fuse and in-line holder
PL1 Accessory socket plug
PL2 Auxiliary supply connector for the portable equipment (e.g. the Maplin universal plug HH38R)
Diecast box $120 \mathrm{~mm} \times 65 \mathrm{~mm} \times 40 \mathrm{~mm}$
Printed circuit toard
Terminal pins
Knob

TESTING

When the p.c.b. assembly is complete, it should be carefully checked for dry joints and solder bridges between tracks. A careful visual inspection of the whole unit should include verifying that polarised components (l.e.d.s, diodes, etc,) are correctly orientated. The unit is now reest on either a 12 V d.c. supply or on a car battery, via the accessory socket if appropriate.

Connect PL1 to the 12 V supply, with S 1 set to the 4.5 volt position and S2 set to 'Off'. Connect a suitable voltmeter to PL2. When S2 is switched on, D2 should be illuminated and an output indication of 4.5 V should be obtained; any reading within $\pm 5 \%$ of the expected value is acceptable. Should no output be obtained and no l.e.d. illuminated, a check on the polarity of the supply, on FS 1 , and the polarity of D1 and D6 should be made prior to a more detailed examination of the circuit. An incorrect output voltage indicates a possible problem with the resistive divider chain, R2 to R6. A correctly illuminated I.e.d. but no output, could be due to an incorrectly polarised output diode D6.

When the initial test has been completed satisfactorily, the three other ranges should be checked to ensure that their diodes function correctly, and that the output voltage is correct.

In use, range changing should be done without any load connected since momentary transients are possible. When installing in a vehicle, it should be borne in mind that the diecast box is connected to the negative rail by virtue of the common tab on the voltage regulator i.c. As mentioned

Control layout of PSU
earlier, the accessory power supply may either be connected in to the vehicle's accessory circuit (when S2 and PL1 may be omitted), or supplied from the cigarette lighter socket. The unit may be simplified for dedicated use at a fixed output voltage by removing S1 and three l.e.d.s, and replacing the resistive chain R2 to R6 by two single resistors of appropriate value.
The accessory power supply may be used to supply continuous currents of up to 1 A at the selected output voltage. It should be remembered, however, that with a 13.2 V input and an output of 4.5 V at 1 A , the unit will be dissipating approximately 9 W and a certain amount of warmth is to be expected

UK101 breaking up, Cegmon BASIC-5 8K-2114, £10 each; case, sound + I/O £15 each. Ail parts available, Mr. M. A. Saunders, 7 Drumcliff Road, Thurnby Lodge, Leicester LE5 2LH.
SUPERBOARD 32K 610 Board iwo disk drives 64×32 board many extras. No reasonable offer refused. Must upgrade. Kenneth Shenderey, 8 Ring Road, Shadwell, Leeds LS 17 8NJ. Tel 0532656550.

CREED Teleprinter, cover, p.s.u., Redifon T.T.U. £55. Uniden C.B. £40. ALBA 2W C.B. Handhelds £40 each. W. J. Cowell, 44 South Drive, Fulwood, Preston, Lancashire. Tel: Broughton 862438 after 6.
WANTED Pre 1930 Wireless equipment, crystal sets, associated books, literature, amateur radio equipment, etc. J. L. Troe, 111 Skyline Drive, Morristown, N.J. 07960 U.S.A
WANTED Rockwell AIM 65 and associated interfaces. Neil Dewar, 24 Nelson Road, Gourour Renfrewshire. Tel: 047536704
SUPERBOARD II + screen enhancement (20 formats) BASICS: 1, 3, 4, 5, X. Plus loads of extras. Offers? J. Marshall, 8 St. Vincent Drive, St Albans, Herts AL1 5SJ. Tel: 072759397
WANTED VIC-20 or Spectrum/ZX81 computer, variable voltage transformer, mixer for 4 track studio and oscilloscope-mint. Roger Skoglund, P.O. Box 100, N-2353 Stavsio Norway. Phone: + 476552193
UK101 8K, $1 / 2$ Meg, 300/600 Baud, Decode Module, EPROM burner, built-in cassette, programs, data, E200 o.n.o. J. Rinaldi. Tel: 01 3900051 (Day) 01-947 2020 (Evenings).
COLT Excalibur base station boxed as new £180. Also communications receiver $560 \mathrm{kHz}-30 \mathrm{MHz}$ £30. Pam, 0766712975 after 5.30p.m.

TRANSCENDANT 2000 monophonic synthesiser. Perfect condition except keyboard requires slight attention. £110 o.n.o. must sell. S . M. Panter, 26 Somersby Way, Boston, Lincs PE21 9PO.
WANTED Elektor Nos. 4 and 13 to buy or swap for Elektor Nos. 1, 9, 17 or 19. Tel: 01-363 9166 . R. A. W. C. Clarke, 7 Old Park View, Enfield, Middx. EN2 7EG.
WANTED mint condition copies of Everyday Electronics November 1971 to May 1972 inclusive. Price to A. Reynolds, 22 Maybowns Road, Chestfield, Whitstable, Kent CT5 3LL.
HAMEG HM 312 scope nine months old, complete with some leads $£ 230$ inc. delivery. Charles Bowden, 7 Parc Eglos, Helston, Cornwall TR 13 8UP.
PRINTER Parallel/TRS-BUS/RS.232C 32 chs/line double width, ten months old, connectors paper, Atom interface included £120. David Grindrod. Phone: 0213781782 6p.m.-8p.m.
COMPUTER boards for sale transistors diodes relays, etc. 4 for $£ 1$ and 50 p post. J. L. Hurst, St. Peters College, College Road, Saltley, Birmingham 88 3TE.
BENDIX Radio compass receiver MN26P cipcuit diagram manual required, old timers can you help? J. Roper, Vicarage Street, North Walsham, Norfolk NR28 900.
GEC Pye EMO Hybrid CTV spares and panels also Thorn 3500 parts for sale. Mr. A. Bouskill. 129 Lyminster Road, Birley Carr, Sheffield South Yorks S6 1HY. Tel: 0742/311191 after 4 p.m
CASED 8K Superboard II with Wemon for Philips 7300 or 7150 tape recorder. Terms negotiable. Mr. Yuen, Tel: 01-300 8922 (Evenings)
VALVE amplifier circuit diagrams and constructional details wanted. Please send offers. Costs will be paid. H. J. Hoogeboom, Hendrikstraat 16A, 9724 NB Groningen, Holland.
UK101, 8K Cegmon, RS232, fitted cased, p.s.u. cased. Sockets fitted back plate. Manuals cables tapes £ 150 . Mr. H. Pye, 4 Exhall Close, Little Hulton, Worsley, Manchester M28 6HF. Tel: 061 7999912

PRACTICAL Electronics 1964-1975 in binders. 1976-1982 loose, complete sets. £40 the lot. Buyer collects. N. L. Davison, 188 Galsworthy Road, South Shields, Tyne and Wear NE34 8RE

TRS-80 Model 1 Level II 16 K complete with monitor manuals, etc. Tel: 01-595 6675. G Bowen, 107 Cartwright Road, Dagenham, Essex
ZX Spectrum working £75. L.C.D. Multimeter £29 other gear. Tank t.v. game wanted, s.a.e. no callers. D. Martin, 29 St . Johns Close Leatherhead, Surrey
UK 10116×48 Cegmon and handbook guaran leed working ok. Upgrading to $32 \times 48 \mathrm{£} 12$ Phone: Stoke on Trent 550684
MICROTAN 65 + Tanex extension, 4 K RAM XBug Assembler/Disassembler, MiniMotherboard uncased no keyboard, fully working + manuals £60 o.n.o. N. J. Counihan, 19 Robertson Road, Grantham, Lincs NG3 18 AO SYKES $8^{\prime \prime}$ Drive Commstor II 22K ROM 4 K RAM 3 Ports EIA R232 S 100 Bds. IBM 3740 ASCII Conv. available. Forms entry variable length £200. Tel: 0532 579387. 8 Kent Crescent (M. S. Smith), Pudsey, Nr. Leeds LS28 9EB. VDU case attractive steel construction fits $14-15^{\prime \prime}$ screen $£ 30$ matching keyboard case〔12. Norman Simons, 01-969 6150.
UK101 for (reluctant) sale. 8K MON 2, invaders atc. Must sell. Only $£ 125$. Tel: $(024282) 274$ (Evenings). Mr. J. P. Hawkes-Reed, Cotehax Farm, Brockhampton, Cheltenham, Glos GLS 5TH.
UK101 24K colour, sound, Ohio S/Disk drive tape. Printer Ports, disk, tapes, software $£ 350$ Steve Gifford, 20 Lime Street, Neison, Lancs. Te 692388
COMPUKIT 8 K , Wemon, $1 / 2 \mathrm{MHz}, 300 / 600$ Baud, Sound, improved p.s.u., cassette relay, manual and software £ 120 o.n.o. Mr. A. Burns, 3 St. Andrews Road, Spalding, Lincs. Tel: Spalding (0775) 3197.

WANTED supplier for electronic inverter using 12 V d.c. battery output 220 V. a.c. Eng. Magued G. Helmy, 159 El-Fosha St., Saint Stefano, Alex. Egypt.
$\begin{array}{ll}\text { BAKER } & £ 69 \\ 50 \text { WATT } & \text { Post } \\ \text { AMPLIFIER }\end{array}$
 Trebie and Gutim Controls, 50 wath RMS. Three loudepeaker
BAKER 150 Watt AMPLIFIER 4 Inputs $£ 99$ Mono Slave 150W 875. post $\varepsilon 2$ stereo Slave fles. post $£ 4$ DRILL SPEED CONTROLLER LIGHT DIMMER Easy to buid kit. Controls up to 180 wats AC
sTEREO PRE-AMP KIT. All parts to bulid this pre-smp. 3 fippute for higb, medilum or low gain per chanpel, with
volume control anid P.C. Board. Can be ganged to make mults-way stereo mixern. $82 \cdot$-85

SOUND TO LIGHT CONTROL KIT MK II

Complete kit of parte. pridted circuit. Malns transformer. channele. Up to 1,000 watte esch. Will operate from 200 MV and all Dioco Amplifiers. Cabinet exira \&f-50. Post 95D or Complete heady built in cabinet c27 200 Watt Rear Reflecting Whtte Light Bulbe. Ideal for Disce dghta. Ediboog Bcrew 75 p each or 6 for 41 or 12 for $87 \cdot 50$
TINTED PLASTIC EQUIPMENT COVERS
Sizes: $14 \frac{1}{x} 124 \times 3$ in 65 . $6,4 \times 15 \times 4$ in
$14 \times 13 \times 3 \ln 65.18 \times 124 \times 3 \mathrm{in} .65 .161 \times 13 \times \sin 65$.
R.C.S. LOW VOLTAGE STABILISED

POWER PACK KITS
C3.95. Post 65p All parts and instructions with Zener diode printed circuit, mains ransformer 240 V ac. Output 6 or 71 or 9 or 12 V d.c. up to 00 mA or less Please state voltage required.
PP BATTERY ELIMINATOR BRITISH $\mathbf{6 . 5 0}$ Mains stabilized power.pack 9 vot 400 mA D.C. with overhad ut out Size $5 \times 33 \times 2 \mathrm{kn}$. Post 50p. DELUX MODEL witched 3: 6: 7\%: 9 volt 400mA D.C. Stabilized. 67.50. Post ©1 240V MAINS TRANSFORMERS $250-0.25080 \mathrm{~mA} 6.3 \mathrm{~V} .3 .5 \mathrm{SA} .6 .3 \mathrm{~V}$
350.0 .350 V 250 mA 6.3 V.
6 mpp.
$220 \mathrm{~V} 45 \mathrm{~mA}, 6.3 \mathrm{~V} 2 \mathrm{~A}$ c3. 250 V 60 mA .6 .3 V 2 A 56.00
6.12 .00
62.00 GENERAL 6.3 V 2 A C3. 250 V 60 mA .6 .3 V GENERAL PURPOSE LOW VOLTAGE
 $2 A .6,8,10.12,16,18,20,24,30,36,40,48,60$
$3 A, 6,8.10 .12,16,18,20,24,30,36,40,48,50$ A. 6, 8, 10, 12,
V I amps $6-0.6 \mathrm{~V} .100 \mathrm{ma}$ 9 V 250 mA 9 V 3 amp $9-0.9 \mathrm{~V} 50 \mathrm{~mA}$ 12 V 3 amps
62.00 \&1 150.0 .15 V 28

61.50 \& 16 V 2 amps C1.50 CI 20V 1 amps 64.50 \&1 20.0.20V 1 | $C 1.50$ | $\& 1$ | $20-40-60 \mathrm{~V}$ I amp | $(4.50$ | $\ell 1.00$ |
| :--- | :--- | :--- | :--- | :--- |

66.50 post 65 P MINI-MULTITESTER Deluxe pocket size precision maving coil instrument. Impedance + Capacity - 4000 o.p. . Battery included. 11 ins-
tant rances measure: DC volts 5,25 . tant ranges measure: DC volts 5,25
250,500 . AC volts $10,50,500,1000$ DC amps $0-250 \mu \mathrm{a}: 0-250 \mathrm{ma}$. Con tinuly and resistance 0 to 500 K ohms. De-Luxe Range Doubler Model;
50,000 o.p.v. $£ 18.50$. $7 \times 5 \times 2 \mathrm{in}$. Post $£ 1$;

NEW PANEL METERS E4.50
$50 \mu a .100 \mu \mathrm{a}$
5 ma . 50 ma . 100 ma a. 25 ma wol VU Meter. 500 ma .

$$
\begin{aligned}
& 1 \text { amp } 2 \mathrm{amp} . \\
& \text { Facla } 2 \mathrm{~m} \times 1 \frac{\mathrm{in} \text {. Post } 65 \mathrm{p} .}{} .
\end{aligned}
$$

\square

BLANK 8L.20. 10×7 ALUMINIUM CHASSIS. $6 \times 4 \mathrm{n} .4 .75 ; 8 \times 6 \mathrm{in}$ 62.20; $10 \times 7 \mathrm{n} .67 .75 ; 12 \times 8 \mathrm{in} .43 .20 ; 14 \times 9 \mathrm{in} .63 .60$; 16×6 in. $62.50 ; 16 \times 10 \mathrm{in} .63 .80$. All 2 l in deep. 18 swg ALUMINIUM PANELS. 18 swg. $6 \times 4 \mathrm{in} 55 \mathrm{p} ; 8 \times 6 \mathrm{in} .90 \mathrm{p}$; $14 \times \operatorname{3in} 90 p_{i} 10 \times 7$ in $\mathbb{C} 1,15 ; 12 \times 8 i n \neq 11.30 ; 12 \times \sin .90 p_{i}$ E2 10 ANGLE ALI $6 \times 1 \times 18 \mathrm{swe} 25.80 ; 16 \times 1$ in E2.10. ANGLE ALI. $6 \times \frac{1}{2} \times \operatorname{din} 18$ swg 23p.
ALUMINIUM 8 OXES. $40.6 \times 2 \mathrm{in}$ $61.20 .3 \times 2 \times \operatorname{lin} 61.20 .6 \times 4 \times 2 \operatorname{in} 61.90 .7 \times 5 \times 3$ in 63.60. $12 \times 8 \times 3$ in $£ 4.30$. All 18 swg with lids

HIGH VOLTAGE ELECTROLYTICS $2 / 350 \mathrm{~V} \quad 45 \mathrm{p} \quad 8+8 / 450 \mathrm{~V} \quad \begin{array}{llll}75 \mathrm{p} & 180+40 / 500 \mathrm{~V}\end{array}$ $8 / 450 \mathrm{~V} \quad 45016+16 / 450 \mathrm{~V} \quad 85 \mathrm{p} \quad 100+100 / 275 \mathrm{~V}$ $\begin{array}{llll}32 / 350 \mathrm{~V} & 50 \% & 32+32 / 450 \mathrm{~V}\end{array} \quad \mathbf{1} .20 \quad 100+100 / 275 \mathrm{~V}$ $32 / 500 \mathrm{~V} \quad{ }_{9 p}^{5 p} 32+32 / 350 \mathrm{~V} \quad 75_{\mathrm{p}} \quad 320 / 450 \mathrm{~V}$ $50 / 450 \mathrm{~V} \quad 95 \mathrm{p} \quad 32+32 / 500 \mathrm{~V} \quad 11.80 \quad 32+32+32 / 325 \mathrm{~V} 90$ HEATING ELEMENTS, WAFER THIN Semi-flexible. II $\times 9 \times$ bin. Operating voltage 240 V . 250W approx. Suitable rion. tion, ete. Must be clamped berween two sheets of me
ONLIY 60 EACH (FOUR FOR E2) ALL POST PAID

THE "INSTANT" BULK TAPE ERASER suitable for cassertes and all sizes of tape reels. A.C. mains $200 / 240$ V. E9.50 deal all Computer. Tapes. Discs. Cassettes HEAD DEMAGNETISER PROBE $\mathbb{1 5} .00$

BAKER LOUDSPEAKERS

Model	Ohms	Inch	Watts	Type	Price	Post
Mapor	4.8,16	12		Hi.Fi		$\ell 2$
Superb	8. 16	12	30	Mi-Fi	426	62
Auditorium	8. 16	12	45	$\mathrm{Hi} . \mathrm{Fi}$	424	C2
Auditorium	8. 16	15	60	Woofer	637	6
Group 45	4.8.16	12	45	PA	C16	C2
Group 75	4.8.16	12	75	PA	620	6
Group 100	8.16	12	100	Guitar	626	62
Disco 1010	8. 16	12	100	Disco	± 26	6
Group 100	8. 16	15	100	Guitar	635	62
Disco IC5	8. 16	15	100	Disco	635	6

CROSSOVERS. 2.WAY $3000 \mathrm{e} / \mathrm{s} 30$ watt 8 or 15 ohm 63. 3 -way $950 \mathrm{cps} / 3000 \mathrm{cps} 40$ wate rating. 44. 3 -way 60 watts 86 . LOUDSPEAKER BARGAINS
$3 \mathrm{ohm}, 5 \mathrm{in}, 7 \times 4 \mathrm{in}, 62.50 ; 6 \mathrm{in}, 8 \times 5 \mathrm{in}, 63 ; 8 \mathrm{in} \mathbf{6 3 . 5 0}$. $10 \mathrm{in}, 65$.
 25 ohm 3 in 62.5×3 in $7 \times \sin 650.120$ 。

DISCO MIXER. 240V, 4 stereo channets, 2 magnetc, 2 ceramic/tape. I mono mic channel, twin v.u. meters, headphone monkor outlet, slider controls, panel or desk mounting. grained aluminum facla 〔46. Post Ω.
DELUXE STEREO DISCO MIXER/EQUALISER as above plus LE.D. V.U. displays 5 band graphic equaliser, lef/ right fader switchabte inputs for phono/line, mike/line.
695. pp C2 8OOKSHELF HI-FI ENCLOSURES TEAK 130 pair.
METAL PLINTH cut for Garrard or BSR
Size: $16 \times 14 \times 3$ in 44.00 . Silver and Black finsh. Post $C 2$. B.S.R. P204 SINGLE PLAYERS POST 62 each

SPECIAL OFFERS
Two speed $33 / 45 \mathrm{rpm}$
Hi Fi Decks with Stereo Cartridges cueing device and snake arm. Ceramic Carenige- 240 V AC $\mathbb{1} 5$ or $9 \mathrm{~V} D C \& 18$. Magnetic Cartridge - 240V AC 620 or 12 V DC 624
B.S.R. SINGLE PLAYER PI70 RM DRVE $\mathbf{~} 20.00$ 3 -speeds 11 in . turncable "Slim" arm, cueing device. sterto
ceramic cartridge. 240 V AC. Post K .
B.S.R. DE-LUXE AUTOCHANGER C18

Stereo curtridge, plays all records. 3-speed. 240 v AC Post 62.
DECCA B.S.R. TEAK PLINTH $181 \times 1+1 \times 4 \mathrm{in}$. Space for small amplifier. BSR Baard $C 5$ poss 62 .

RADIO COMPONENT SPECIALISTS

Dept. 3, 337, WHITEHORSE ROAD, CROYDON,
SURREY, U.K. TEL: 01-684 1665
Pos! 50 p Minimum. Callers Weicome. Closed Wed. Same day despalch. Access-Barclay-Visa. Lists 31p.

SINCLAIR COMPUTERS

UK prices are shown first. The bracketed prices are export prices which include insured air-mail postage to all the countries of Europe Including Norway, Sweden, Finland and Denmark. For overseas sustomers ourside Europe an extra 65 postage per item is charged 2×81 C43.43 (2S2). $Z X$ Prince 652.13 (C61) ZX Spectrum $16 \mathrm{~K} \quad 6152$ ($(160$) ZX Specirum 48K 1202 ($£ 210$). ZX Microdrive $n / a(n / a)$. $2 \times$ RS232 $n / a(n / a)$. S
printer rolls $\mathbf{~} 10.43$ (C16). Ram packs - 16 K © 26.04 ($\mathbf{C 2 8}$), 32K 639 ((41), 56 K C49 (C51).

DRAGON 32 [173.
COMMODORE COMPUTERS Commodore 64 6299, Vic 20 \$130. Kit to allow the use of an ordinary mono cassette recorder with the Vir 20 and the Commodore 64 (6. Commodore cassette recorder for these computers 636.50 . Super expander high resolution cartrioge ©27.95. We stock most accessories.

BBC MICROCOMPUTERS A Model $£ \mathbf{2 6 0}$. B Model $£ 347$.

GENIE COMPUTERS

New colour Gene $\{173.50,16 \mathrm{~K} \mathrm{ram} \mathrm{card}$ C44. Light pen $\mathbf{C 1 5}$. Accessories for Genie and Genie 2- EG3014 32K 4189 . Disc drive single $\mathbb{1} 199$, dual ©369. Double density convertor C72. High resolution graphics C82 Printer intertace 636

UKIOI AND SUPERBOARD
32×48 display expansion kits UKJOI © 9 . 32×48 display expansion kits UKIOI E9, sion board 66 . Cegmon 622.50 . Word pro sion board C60. Cegmon ©22.50. Word processor prog lli . Ced COS sing C275, C415. Stand alone flopoy disc ecntroller be 6415. Stand mione fiopey disc ecntroller PRINTERS

Buy any of the below and get a free interface $k i t$ and word processor program for UKIOI or Superboard. Epson MX80f13 6324. Epson $4 \times 100 / 3$ 4425. Seikosha GPICOA (139. OKI Mirroline 80 (199. OKI Microline 82A 6333. OKI Mikroline 83A (446. OKI Microline 84 6656. OKI Microline 92 (429. OKI Microline 36586

5Y POWER KITS
fully stablized $\$ \mathrm{~V}$ computer and TTL power kits. 1.5A $67.83,3$ A $12.17,6$ (20.87.

SHARP COMPUTERS

We can supply Epson MX80 and MX 100 printers to run direct from the MZ80K (i/o box not needed) for $\$ 39$ plus printer price. We also specialize in interfacing primers to the MZ80K. MZ80A and MZ80B both with and without the $1 / \mathrm{o}$ box.

SWANLEY ELECTRONICS

 Dept. PE, 32 Goldsel Rd. Tel. Swanley (0322) 6485 Please allow 7 days for delmen.Postage \& 1 on Sincloir products (UK), 6350 on ather computers. 44.50 on printers and 50 p on other orders. Pleose odd VaT to all prices. Official credit and overseas orders weiconie.

Bigger and Better

the colourful Wilmslow Audio brochure - the definitive loudspeaker catalogue!

Everything for the speaker constructor - kits, drive units, components for HiFi and PA.
50 DIY HiFi speaker designs including the exciting new dB Total Concept speaker kits, the Kef Constructor range, Wharfedale Speakercraft, etc.
Flatpack cabinet kits for Kef, Wharfedale and many others.

* Lowest prices - Largest stocks *
* Expert staff - Sound advice *
* Choose your DIY HiF Speakers in the comfort of our * two listening lounges
(Customer operated demonstration facilities) . Ample parking *

Send $£ 1.50$ for catalogue
(cheque, M.O. or stamps - or phone with your credit card number)

- Access - Visa - American Express accepted *
also HiFiMarkets Budget Card

0625529599

35/39 Church Street, Wilmslow, Cheshire SK9 1AS Lightning service on telephoned credit card orders!

Please allow 7 days for delivery

THE first part of this series was devoted to interfacing systems which involve purely digital control．This month we shall be concentrating on the interface between the digital world of the microprocessor and the analogue world associated with many external systems and devices．

Digital signals（i．e．those which exist in two states；logic 0 and logic 1）are essential to the operation of logic systems． Analogue devices，by definition，require a continuously variable control signal rather than one which is just simply ＇on＇or＇off＇．Hence there is a need for an interface which can convert digital input signals to analogue output signals，and vice versa．

This second article in the series therefore considers some of the techniques and devices used for digital to analogue conversion．Also included is a practical example of a com－ plete 8－bit digital to analogue converter．Full constructional and setting－up details are also given．This unit is eminently suitable for interfacing a wide range of analogue output devices and thus will be invaluable to anyone using an 8 －bit microcomputer（including the PE Microcontroller）in control applications．

DIGITAL VERSUS ANALOGUE SIGNALS

In digital systems two voltage levels are used to represent the binary digits， 0 and 1 ．Most signal waveforms encoun－ tered in the digital world are therefore composed of a series of pulses；the voltage level at any particular instant being in one state or the other．In analogue systems an infinite num－ ber of voltage levels are employed and waveforms are therefore continuous rather than discrete．Typical time related digital and analogue signal waveforms are shown for comparison in Fig 1．A digital representation of an analogue quantity may be produced by sampling the waveform at regular intervals．The smoothly changing curve of Fig 1b can， for example，be sampled repeatedly and a digital code generated which approximates to the actual voltage level at the instant of sampling．This process，which is illustrated in Fig 2，is known as analogue to digital conversion and we shall be looking at this in a little more detail next month．If，

$$
\begin{aligned}
& \text { ำ刃ito the } \\
& \text { REAL } \\
& \text { WORLD } \\
& \text { рр玉rt } 2 \\
& \text { CONTROL CIRCUITS }
\end{aligned}
$$

Fig．1a．A typical digital signal waveform

Fig．1b．A typical analogue signal waveform
Fig．1．Comparison of digital and analogue signals

Fig．2．Digital sampling of an analogue signal（4－bit code）

Fig．3．Synthesis of an analogue signal using digital in－ formation（4－bit code）
alternatively，a digital code is used to generate a particular voltage level，an analogue signal can be synthesised in dis－ crete steps，as shown in Fig 3．This technique is，of course， known as digital to analogue conversion．

DIGITAL TO ANALOGUE CONVERSION

One simple method of digital to analogue conversion involves the use of a binary weighted resistor network. A typical arrangement of such a device is shown in Fig 4. The switch symbols are used to represent the logic conditions present on each of the four input lines; logic ' O ' is represented by $O V$ whilst logic ' 1 ' is represented by $+V$. Since four input lines are provided the device caters for a 4-bit natural binary coded input, however extra lines can be added as appropriate. An eight bit digital to analogue converter would, for example, require a further four inputs such that one resistor was provided for each input line.

Fig. 4. Simplified form of 4-bit digital to analogue converter using " $1-2-4-8$ " resistor weighting

The binary weighted resistor network is followed by a high input impedance amplifier stage which effectively buffers the network and helps to minimise the adverse effect of loading on the circuit. The amplifier is usually a conventional operational type with the summing junction of the resistor network taken to the inverting "virtual earth" input of the integrated circuit.

The lowest value resistor, R , of the network corresponds to the highest binary weighted input or 'most significant bit' (MSB). The highest value resistor, 8R, corresponds to the lowest binary weighted input or 'least significant bit' (LSB). The current through each resistor is inversely proportional to its resistance and hence the most significant bit will produce a current which is twice that produced by the next most significant bit, and so on. The currents are summed at the input of the amplifier and a voltage is developed which is an analogue representation of the digital input applied to the

Fig. 5. Simplified form of 4-bit digital to analogue converter using an ''R - 2R'' resistor network
four lines. The principal disadvantage of this method of conversion is that it requires a number of different resistor values and, where a digital input of 8 -bits, or more, is to be catered for, the values of the resistors become somewhat impractical.

Another method of digital to analogue conversion employs a somewhat more complex resistor network which is known as an " $R-2 R$ " ladder network. Since only two values of resistor are required, this arrangement overcomes the most significant disadvantage of the binary weighted method. Fig 5 shows a simple 4-bit digital to analogue converter which uses an R-2R network. Each successively lower weighted input produces an output voltage which is exactly half that produced by the preceding input.

The analogue output of a simple 4-bit digital to analogue converter is shown is Fig. 6. Since there are 16 different in-

Binary Input Code
Fig. 6. Coding states of a 4-bit digital to analogue converter
put conditions, the output voltage can take any one of 16 different voltage levels. The output voltage resulting from a binary input code of 0000 is, of course, OV . The further 15 different input codes permit 15 additional voltage levels, incrementing by the same voltage interval on each successive binary step. The increment in voltage level will be equivalent to the voltage produced by a binary input code of 0001 which is known as the 'least significant bit voltage', VLse. The voltage level resulting from a binary input code of 1111 will be the full scale output voltage less $\mathrm{V}_{\text {LSB }}$ (remember that there are only 15 discrete voltage steps excluding the first step which is, of course, zero). The output voltage level produced by a binary code of 1000 (decimal 8) will be exactly half the full scale voltage, and so on. If desired, the output voltage of the converter can be scaled by means of subsequent amplification or attenuation.

Before examining a practical solution to the problem of digital to analgue conversion it is, perhaps, worthwhile introducing some of the terms and expressions which are often encountered with such arrangements. Of these, 'accuracy' and 'resolution' are by far the most important.

ACCURACY AND RESOLUTION

The accuracy of a digital to analogue converter is a comparison of the actual output with that which would be predicted from a particular input condition and is usually expressed as a percentage of the full-scale or maximum output voltage. The output of a binary ladder network will, unfortunately, only be as 'good' as its input and hence the applied voltage (often called the 'reference') must be highly accurate and extremely stable. Furthermore, the resistors used in the network must themselves be highly accurate. Conventional 'off the shelf' resistors are neither accurate nor stable enough for use in ladder networks. Close matching of resistors is, fortunately, not a problem when monolithic construction is employed.

The accuracy of a digital to analogue converter is generally equivalent to half the voltage change associated with the least significant bit. The typical accuracy of a 4-bit converter is plus or minus 3% whereas that of an 8 -bit converter is plus or minus 0.2%.

The resolution of a digital to analogue converter is the smallest increment of voltage that can be produced. It is thus essentially the voltage which is represented by the least significant bit (i.e. the smallest obtainable voltage increment). Resolution is thus a function of the number of input bits and the reference voltage. A 4-bit converter permits 16 different output states and thus its resolution is equivalent to 6.25%. With a reference input voltage of 1 V this is a resolution of approximately 63 mV . An 8 -bit converter would improve this resolution to approximately 3.9 mV .

Besides accuracy and resolution, three further terms are often encountered in conjunction with digital to analogue conversion. These are 'offset error', 'setting time' and "monotonicity". The offset error associated with a digital to analogue converter is the output voltage produced in response to a digital input consisting of all zeros. The settling time of a digital to analogue converter is the time taken for the output to settle within plus and minus 1 LSB of its final value after a change of input code. Finally, a digital to analogue converter is said to be monotonic if it does not miss a step (or take any reverse steps!) when a full digital input sequence is applied.

THE ZN428 D TO A CONVERTER

The ZN428 is a versatile monolithic digital to analogue converter which incorporates an input data latch facility for updating from a microprocessor data bus. It is thus ideal for interfacing to the system data bus of any 8-bit microcomputer or microcontroller. The internal architecture of the ZN428 is shown in Fig 7. The principal internal elements of the ZN428 are; a data latch, a switch array, an R-2R resistor network and an accurate voltage reference. The latching action is

Fig. 7. Internal architecture of the ZN428 digital to analogue converter
controlled by an ENABLE input. When this input is held low the data inputs drive the device directly. When the ENABLE input is held high the input data word is held in the data latch and the output remains unaffected by the state of the data bus. In this condition the digital to analogue converter appears transparent to the microcomputer.

The ZN428 requires a nominal +5 V supply at a typical current of 20 mA . The device offers true monotonic operation and the offset voltage is less than 5 mV . The settling time is typically less than $1 \mu \mathrm{~s}$ and linearity better than plus or minus 0.5 LSB . (This corresponds to plus or minus 10 mV in a 5 V full scale arrangement). The accuracy and resolution will, of course, depend upon the external components and particular circuit configuration employed. It is thus unrealistic to quote typical figures in this context other than to mention that the accuracy and resolution of the practical digital to analogue converter described later can be expected to be better than plus or minus 0.25%.

The equivalent circuit of the data latch inputs of the ZN428 are shown in Fig. 8. The input current consumed by the data inputs is typically less than $50 \mu \mathrm{~A}$ for a high (logic 1) condition and $-5 \mu \mathrm{~A}$ for a low (logic 0) condition. In common with nearly all logic devices, the input voltage must NEVER be allowed to exceed the positive supply voltage.

Fig. 8. Equivalent circuit of the data inputs of the ZN428

The equivalent circuit of the output of the ZN428 is shown in Fig. 9. This consists of a voltage source connected in series with an output resistance of approximately 4 kohm. In order to prevent loading of the output, the following stage

Fig. 9. Equivalent circuit of the output of the ZN428
should have an input resistance which is very much greater than 4 kohm. Hence, for most applications, a high input impedance buffer stage is required. The analogue output voltage is given by the relationship:

$$
V=(n / 256) \times V_{\text {REF }}
$$

where n is the decimal value of the binary input code and $V_{\text {REF }}$ is the reference voltage.

The ZN428 contains its own internal reference. This is provided by an active band-gap device, the simplified equivalent of which is shown in Fig. 10. The device is equivalent to a highly accurate 2.5 V Zener diode and exhibits an extremely low internal impedance. Two external

Fig. 10. Simplified equivalent circuit of the ZN428 internal reference
components are required in conjunction with the internal reference; a resistor to set the reference current and a capacitor to decouple the reference voltage. In order to achieve a high degree of voltage tracking where several converters are employed, a single voltage reference may be used to drive up to five ZN428's. If required, the internal reference may be dispensed with and an external voltage reference may be connected to the reference input, pin-6. Such external reference should exhibit a slope resistance of less than $2.5 \mathrm{ohm} / \mathrm{N}$, where N is the number of converters employed.

A PRACTICALD TO A CONVERTER

Having described the basic features and characteristics of the ZN428 i.c., we shall now consider the design of a prac-

SPECIFICATION

OUTPUT VOLTAGE RANGE: 0 to $\pm 12 \mathrm{~V}$ max. (unipolar operation-see note). 0 to $\pm 12 \mathrm{~V}$ max. (bipolar operationsea note)
OUTPUT CURRENT: 10 mA max. (without power amplifier module). 1A max (with power amplifier module)
OUTPUT IMPEDANCE: Normal output; 500ohm typical. Complementary output; 40 ohm typical. Power amplifier module; less than 0.1 hm
ACCURACY: Typically better than 0.2% (10 V output)
RESOLUTION: Typically better than 20 mV (10 V output) SETTLING TIME: Typically better than $10 \mu \mathrm{~s}$ (5 V step)
D.C. SUPPLY VOLTAGE: $7 V$ to 15 V
D.C. SUPPLY CURRENT: 75 mA typical at $\mathrm{V}_{\mathrm{S}}=12 \mathrm{~V}$

DATA INPUT CURFENT: High' (logic 1) input; $60 \mu \mathrm{~A}$ max. 'Low' (logic 0) input; $-5 \mu \mathrm{~A}$ max
ENABLE PULSE WIDTH: 100 ns min .
NOTE: Complementary outputs are available in both operating modes
tical digital to analogue converter which may be configured for either unipolar (single polarity output) or bipolar (dual polarity output) operation. The circuit diagram of the practical digital to analogue converter is shown in Fig. 11. Eight data inputs are provided with simple resistive voltage dividing networks comprising R1/R11 to R8/R18. A similar network, R9/R10, is provided for the ENABLE input. The

ENABLE \qquad Fig. 11. Complete circuit diagram of the practical digital to analogue converter
values have been chosen so as to permit direct connection to the PE Microcontroller integrated peripheral drivers (IC16, 17, 18 and 19 of Fig. 1.9 in November 1982, PE). The voltage level produced by these drivers is approximately 17 V in the high (logic 1) condition and OV in the low (logic $0)$ state. Where the digital to analogue converter is required to be interfaced with a conventional TTL compatible data bus, resistors R1 to R9 should be replaced by short circuit links and R10 to R18 should be omitted. To cater for other values of data bus logic levels it is, of course, only a relatively simple matter of selecting appropriate resistor values for R1 to R18 inclusive (e.g. for operation from a 12 V system, R 1 to R9 should be 1.5 k and R10 to R18 should be 1k). Note that, as mentioned earlier, it is important that the voltage level on the data bus should not be allowed to exceed the ZN428 supply voltage. In this particular circuit arrangement the ZN428 operates from a regulated +5 V supply and hence the voltage appearing at the data and ENABLE inputs of IC1 should not be greater than +5 V .

The analogue output of the ZN428 at pin 5 takes a value

DIGITAL INPUT CODE	ANALOGUE OUTPUT VOLTAGE
00000000	0
00000001	$V_{\text {LSB }}$
01000000	$\frac{1}{4} V_{F S}$
01111111	$\frac{1}{2} V_{F S}-V_{\text {LSB }}$
10000000	$\frac{2}{2} V_{F S}$
10000001	$\frac{1}{2} V_{F S}+V_{\text {LSB }}$
11000000	$\frac{3}{4} V_{F S}$
11111110	$V_{F S}-2 V_{\text {LSB }}$
11111111	$V_{F S}-V_{\text {LSB }}$

TABLE 1 Coding table for unipolar operation

between 0 V and 2.56 V (the value of the internal reference voltage). This results in an output voltage characteristic of $10 \mathrm{mV} /$ bit (i.e. $V_{\text {LSB }}=10 \mathrm{mV}$). For many applications, however, a greater full-scale output voltage is required and hence IC2 is included to provide both amplification and a degree of isolation for IC1. IC2, a conventional operational amplifier, is used in a normal non-inverting configuration. Internal offset adjustment (null) is provided by VR1, whilst

DIGITAL INPUT CODE	ANALOGUE OUTPUT VOLTAGE
00000000	$-\mathrm{V}_{\mathrm{FS}}$
00000001	$-\mathrm{V}_{\text {FS }}+\mathrm{V}_{\text {LSB }}$
01000000	$-\frac{1}{2} \mathrm{~V}_{\text {FS }}$
01111111	- $\mathrm{V}_{\text {Lse }}$
10000000	0
10000001	$+\mathrm{V}_{\text {LSB }}$
11000000	+ ${ }_{2} V_{\text {FS }}$
11111110 1111111	$+\mathrm{V}_{\text {fS }}-2 \mathrm{~V}_{\text {LS }}$
11111111	$+\mathrm{V}_{\mathrm{FS}}-\mathrm{V}_{\text {LSB }}$

TABLE 2 Coding table for bipolar operation
offset and gain adjustment are provided by means of VR2 and VR3 respectively. C2 improves HF stability and, in conjunction with the slew-rate limiting characteristic of the operational amplifier, increases the overall settling time. A second operational amplifier, IC3, operates as a unity gain inverting stage to provide a complementary output voltage. Low value series resistors, R24 and R28, provide a measure of protection in the event of an inadvertent short circuit at the output.

Selection of either unipolar or bipolar operation is provided by means of R21. When R21 is omitted the circuit provides unipolar operation with the logic coding shown in

Table 1. This shows that a data input of 00000000 produces an output of 0 V whereas a data input of 11111111 results in an output of $\left(+V_{F S}-V_{\text {LSB }}\right)$. For bipolar operation R21 must be added. In this case offset binary coding is employed such that a data input of 00000000 produces an output of $-V_{\text {FS }}$ whereas a data input of 11111111 again produces an output of $\left(+V_{F S}-V_{\text {LSB }}\right)$. An output of OV results from a data input of 10000000, as shown in Table 2.

The circuit requires several internal supply rails; a well regulated +5 V supply for the ZN428 and plus and minus 15 V rails for the operational amplifiers. In order to permit simple interconnection to almost any system, these rails are derived from a single nominal +12 V d.c. input. This voltage may, however, be anywhere in the range of +7 V to +17 V , thus permitting direct connection to the $+12 / 17 \mathrm{~V}$ unregulated supply rail of the PE Microcontroller. The input current will not normally exceed 100 mA . The +5 V regulator, IC4, is a conventional monolithic type. An encapsulated d.c. to d.c. converter module, IC5, is used to provide the plus and minus 15 V output rails. This device operates with an efficiency of approximately 75% and the output voltage is maintained within $\pm 4 \%$ of the nominal 15 V at load currents of up to 34 mA . Constructors should, however, note that, unlike IC4, this device is not short circuit protected.

COMPONENTS

Resistors

R1-R9
R10-R18
R19 470
R20 390
R21 10k (see text)
R22 22 k
R23 10k
R24 $27 \frac{1}{2} \mathrm{~W}$
R25, R26 10 k (2 off)
R27 4k7
R28 $27 \frac{1}{2} W$
VR1, VR2 22k miniature horizontal skeleton pre-set (2 off)
VR3 10 k miniature horizontal skeleton pre-set
All fixed resistors, except where otherwise stated, are IW 5\%

Capacitors

C1	$2 \mu 2$	35 V tantalum
C2	47 p	ceramic
C3, C4	10 n	polyester (2 off)
C5	220μ	10 V axial electrolytic
C6, C7	100μ	16 V p.c. electrolytic (2 off)

Semiconductors

D1	red LED
IC1	2N428E
IC2, IC3	741 (2 off)
IC4	7805
IC5	d.c.-d.c. converter module

Miscellaneous
PCB Terminal pins (5 required) 24-way edge connector
Low profile di.il. sockets $(2 \times 8$-pin and 1×16-pin $)$
Constructor's Note
Components and PCB are available from Howard Associates, 59 Oatlands Avenue, Weybridge, Surrey KT13 9SU (s.e.e. for details).

Fig. 12. P.c.b. foil pattern design for the D to A converter

Fig. 13. Component layout

CONSTRUCTION

The digital to analogue converter is assembled on a single-sided p.c.b. measuring approximately $77 \times 147 \mathrm{~mm}$. The p.c.b. is designed to mate with a 24 -way edge connector thus, allowing ease of connection to a system whilst retaining the ability to interchange boards where necessary. The p.c.b. foil layout is shown in Fig. 12 and the corresponding component overlay is given in Fig. 13. Low profile sockets should be used for each of the dual-in-line integrated circuit devices. Heat sinking will not normally be required for the series regulator, IC4.

Construction is extremely straightforward and the following sequence of component assembly is recommended; terminal pins, i.c. sockets, resistors, capacitors, l.e.d., pre-set
resistors, IC4 and IC5. When complete the p.c.b. should be carefully examined for correct placement and, in the case of polarised devices, oriertation of components. The remaining i.c. devices should then be carefully inserted into their sockets and the unit is then ready for testing and initial adjustment.

TESTING AND INITIAL ADJUSTMENT

Testing and initial adjustment is best carried out using the arrangement shown in Fig. 14. Nine miniature s.p.s.t. toggle switches are required; eight to simulate the data bus inputs and one to provide the ENABLE input. These toggle switches should be connected to the appropriate pins of a 24 -way edge connector, carefully following the pin numbering

Fig. 14. Arrangement used in the initial testing and alignment of the D to A converter
shown in the figure. To prevent confusion, it is recommended that the switches be labelled appropriately! A regulated 12 V d.c. supply should be connected to pins 1 and 2 , taking care to observe the correct polarity. The power supply
should preferably include a means of electronic over-current protection. However, if no such supply is available, a 500 mA fuse in the positive supply lead will at least offer a measure of protection. A d.c. voltmeter, or multi-range meter on the d.c. voltage range, should be connected with its negative input lead to $O V$ and its positive lead to a probe or miniature crocodile clip.

A d.c. milliammeter should, initially, be included in the positive supply lead. The supply should then be switched "on" and the supply current should be noted. This should be in the range 50 mA to 80 mA and under no circumstances should it exceed about 150 mA . If the fuse blows, or if the overcurrent trip operates, carefully check for inadvertent short circuits or incorrect wiring of the edge connector. Having established that the d.c. supply current is normal check that D1 is illuminated. This I.e.d. indicates the presence of the +5 V supply rail and indicates that the unit is "active". The voltage of the +12 V and +5 V rails can then be checked; the latter should be within plus or minus 200 mV of its nominal value and should remain within 1% of its actual value as the d.c. supply input is varied over the range 8 V to 15 V . The adjustment procedure for either unipolar or bipolar operation will be given next month.

NEXT MONTH: Power amp module.

FREE! READERS' ADVERTISEMENT SERVICE

VALVE stereo amplifier, to Shirley labs design, Chapman tuner, Wearite deck, Lenco turntable, column speakers E40. A. J. Wood. 22 Denham Way. Denham (S. Bucks), Uxbridge UB9 5AX. Tel: 0895832854.

UK101, 8K RAM, cased, 32×48 screen size, 300/600 baud cassette speed, software $£ 110$. D. Rose, 104 Longfellow Road, The Straits, Dudley, West Midlands DY3 3EH. Tel: Sedgley 74804.

PRACTICAL Electronics October 1974 to November 1981 inclusive. Complete set offers to David. Phone: Stevenage 53757.

WANTED Micro computer (2×81) in v. good condition with power supply approx. $£ 20 / £ 25$. Conor, 11 Westgate Road, Bishopstown, Cork, Ireland.
WANTED loan or buy service manual or circuit Telequipment Serviscope. Valved. Will pay postage. Mr. S. J. Hooper, 74 Gloucester Road, Littlehampton, West Sussex BN 17 7BS. Tel: Littlehampton 22936.

CB transceiver, Superstar 360FM VGC many extras inc. antennae $£ 110$ o.n.o. Phone: West Drayton 47355 (Middx.). Mr. R. A. Bishopp, 4 Park View. Yiewsley, West Drayton, Middx. UB7 7BG.

CANNON 'D' plugs and sockets: 37 Way90p/50 Way- 120 p each. (Ex equipment). Mr. J. Fleming, 279 Upton Lane, Forest Gate, London E7 9PR. Tel: 01-472 5929.

TWO Radio Spares Toroidal transformers 50VA 15-0-15V E7 each. Compukit PIA (P.E.) board £18. Sound board f15. P. S. Robinson, 168 Firwood Ave., Urmston, Manchester. Tel: 865 3930.

UK101 cased, $8 \mathrm{~K} 300 / 600$ Baud $1 / 2 \mathrm{MHz}$ new mon, software £ 100 o.n.o. Tel: March 55871 after 5p.m. D. Downes, 100 Badgeney Road, March, Cambs.

WELLER 3102 desoldering iron with stand, transformer, vacuum pump f50, recovers ICs from plated hole p.c.b.s. Tel: 01-451 0520 (Willesden).

RULES Maximum of 16 words plus address and/or phone no. Private advertisers only (trade or business ads. can be placed in our classified columns). Items related to electronics only. No computer software. PE cannot accept responsibility for the accuracy of ads. or for any transaction arising between readers as a result of a free ad. We reserve the right to refuse advertisements. Each ad. must be accompanied by a cut-ollt valid "date corner". Ads. will not appear (or be returned) if these rules are broken. issue. I am not a dealer in electronics or associated equipment. I have read the rules. I enclose a cut-out valid date corner.

Signature

Date
Please read the RULES then write your advertisement here-one word to each box. Add your name, address and/or phone no. COUPON VALID FOR POSTING BEFORE 11 MARCH 1983.
(One month later for overseas readers.)
SEND TO: PE BAZAAR, PRACTICAL ELECTRONICS, WESTOVER HOUSE, WEST QUAY ROAD, POOLE, DORSET BH 15 IJG.

MCKENZIE 12 inch dual cone speaker 16 ohms 80 Watts unused $£ 20$ inc. postage. C. J. Gaudion, St. Christophers, Saumarez Lane, Catel, Guernsey C.I.

WANTED to buy or loan. Service manual for Bang and Oulfsen 2000 and 2500 tape recorder. I. Sabey, 53 Frampton Place, Boston, Lincs PE2 1 8ET.

5ft high (Langley) $19^{\prime \prime}$ cabinet rack on castors, detachable back, clipnuts, vent panels $£ 80$ buyer collects. G. Turner, 6 Ludgate, Tring. Herts HP23 4ES. Tel: Tring 3320.

HEATH audio generator £10, Tech. Signal generator $£ 10$. Complete CB rig with twig $£ 70$. Clacton 860903 . Mr. R. T. Moore, Milldene, Mill Lane, Thorpe-Le-Soken, Essex.

ZX81 RAM pack, printer I/O Port, leads, p.s.u., manual, several books and programs £ 100 o.n.o. M. A. Myatt, 7A Thurlow Street, Bedford MK40 1 LR.

Ultimum Computer Interface

WILLIAM EDWARDS WATFORD ELECTRONICS

THIS month's add-on card for the ULTIMUM is a ROM Emulator (Romulator). It complements the PROM programmer of last month making the development of control systems, based on commercially available single board controllers or home brew systems, possible. The Romulator described here can emulate most of the single rail $1 \mathrm{k}, 2 \mathrm{k}$ and 4 k PROMs as well as a large proportion of the three rail varieties.

EMULATION

Emulators come in two forms. The larger development system emulators plug into the microprocessor socket and will emulate memory (ROM and RAM) as well as the processor itself. These emulators are very useful when designing a development system from scratch. They usually provide some form of real time tracing which makes fault finding simpler. Such emulators usually cost several hundred pounds and, as such, are rather too expensive for the average enthusiast.

The second class of emulator emulates ROM only. The ROM being emulated is substituted with a header/cable assembly which is connected to memory filled from another system. For most applications this simpler (and much cheaper) form of emulation is quite adequate. The Romulator falls into this latter category.

The Romulator is a card which plugs into one of the sockets on the ULTIMUM motherboard. It can be used as standard static RAM by your computer, and may be filled with any code (or used as extra space for BASIC programs) and accessed as any other RAM in your system. When switched into emulation mode, it may be inserted into any other system to emulate PROM or ROM. Fig. 5.1 shows a typical example of such a set up.

The main advantages of this type of system are:

1) Programs can be developed on your host system which has many tools available (such as an assembler/disassembler and a screen to monitor RAM contents). The system being developed may only have an absolute minimum of tools and interfaces.
2) Any programs developed on the Romulator can be protected from overwriting by the system being developed as they can only be accessed as ROM. This is particularly useful when developing machine code programs which have a marked tendency to crash.
3) Once a program has been tested, it can be programmed onto ROM using the PROM programmer board. No intermediate paper or magnetic tape increases the chance of a successful transfer of data. Once programmed, the PROM can be inserted into the system being developed and the emulator removed for further use.
4) The alternative is to buy a separate emulator complete with its own processor. These usually cost as much as your main computer and it seems (to us at least) a waste of a computer to buy another system just for development.

THE CIRCUIT

The circuit is shown in Fig. 5.2. It does not need to be complicated as most of the extra circuitry for an emulator is provided by the motherboard and your own system.

There are three basic elements: the decoding (motherboard and off-board), the multiplexing circuits (selecting between emulator signals and mother board signals) and the memory itself.

The decoding allows the board to be mapped into your computer as 2 k or 4 k portions. If you do not require a full 4 k emulator, some memory can be omitted and the board can be mapped to occupy $2 k$ of memory. The main decoding is done by IC8 which provides 16 lines each corresponding to a 4 k boundary. Selection of a 2 k boundary is achieved by additional decoding provided by bringing A11 into IC8.

The multiplexers are made of three quad two-to-one line multiplexers which can be set to accept signals from the motherboard or the emulator header. The selection is handled by a line fed from the port on the motherboard. When the port is set up, the multiplexers are set to accept signals from the motherboard, so that the board looks like ordinary memory.

Toggling the port line (marked as External Select in Fig. 5.2) will cause the signals from the motherboard to be deselected and the read/write control signals are disconnected to prevent spurious accesses from conflicting with signals on the emulator header.

Fig. 5.3. Component layout

COMPONENTS

The memory itself is fast static RAM organised as two off $2 k \times 8$. Various speeds of RAM are available allowing development of the newer fast processors. Allowing for leads and buffers a 200μ s PROM can be emulated using 100 ns RAM. The static RAM is always powered from the motherboard. A buffer is provided on the data lines to drive the emulator cable assembly.

ASSEMBLING AND SETTING UP

Refer to the overlay (Fig. 5.3) for component placement. The usual order of assembly applies, ie. Sockets and discrete components first, followed by a thorough check of your soldering and then insertion of the i.c.s. The header is prefabricated, as this is an insulation displacement assembly requiring special equipment.

To test the board, set up the mapping options. A maximum of three links are needed. Leave the emulator cable and the d.i.p. header off for the moment. Insert the card into the motherboard and power up (not the other way round). Set up the port on the motherboard fas per ULTIMUM article) so that the external select 2 line is a logic ' 0 ' and the external select 1 line is a ' 1 '. You should then be able to read and write to the memory on the Romulator. Any memory test can be used to check for proper function.

To test the emulator, you can either use a second system or plug the emulator into a PROM socket somewhere in your own system, as the Romulator is quite capable of emulation on your own computer.

Once you have loaded a suitable program into the Romulator memory, you switch to emulator mode by making the External Select 2 a logic ' 1 ' and the external select 1 a '0'.

Two points to note. Firstly, do not insert the emulator socket in upside down, this may damage the Romulator memory or the system. Secondly, some systems make rather strange uses of the Read and Chip Select control signals to decode the ROM. Check a circuit diagram if in doubt.

NEXT MONTH: The phoneme speech card.

Ingenuity Unlimited

A selection of readers' original circuit ideas.
Why not submit your idea? Any idea published will be paid for ai $£ 40$ per magazine page.

Each idea submitted must be accompanied by a declaration to the effect that it has been tried and tested, is the original work of the undersigned, and that it has not been offered or accepted for publication elsewhere. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.

Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not in the text.

WINE HEATER

THERMOSTAT

ALTHOUGH this circuit was devised to control a 22 W heater plate under a 1 gallon wine demijohn to hold a nominal temperature of $22^{\circ} \mathrm{C}$, with the larger relay used it can be used to switch much higher powers, and with the components shown, it has an adjustment range of $9^{\circ} \mathrm{C}$ to $31^{\circ} \mathrm{C}$ with a dead range from $0.9^{\circ} \mathrm{C}$ to $1.4^{\circ} \mathrm{C}$. Other applications could be in darkrooms or greenhouses, etc.
TR1 and D2 are deliberately over dimensioned. D1 prevents negative V_{be} $>0.6 \mathrm{~V}$ on TRI. An alternative approach would be to use a single-ended supply, although this could cause problems with the increased values of R1, R3, VR1, if one tries to keep the signal and reference near the middle of the 741 's input range rather than relying on common-mode rejection; the ratio of R4×VR2 to the input

source impedance ($2 / \mathrm{R} 3+$ VR1) governs the dead range, and for about $1^{\circ} \mathrm{C}$ this ratio needs to be around 6000 , leading to impractical values for a source impedance
much greater than the present 1040 or so.
Andrew Fogg, Maidenhead,

Berks.

EVEN with constant weekend use during the summer months, most boats, or caravans, are left unattended for an extremely high proportion of the year and some form of alarm system is therefore highly desirable to frighten off intruders.

It will be evident from the circuit diagram that the unit is switched-off until the trigger connects it to the battery negative, whereupon TR2 immediately conducts, closing the relay and thereby latching on the supply, since initially the capacitor is uncharged and the base of TR1 is also positive. C1 now commences to charge slowly via the 100 kilohm resistor causing the base to become progressively more negative until the transistors cease conducting and the relay opens. With the values shown, the alarm cuts off after one to one and a half minutes, but different periods of operation can be obtained by trying other capacitors. After discharging the alarm resets itself, but to speed up this process to about a

INTRUDER ALARM

minute or so, a 1.5 to 2 Megohm resistor (R3) can be connected as shown dotted in the diagram. The diode across the relay coil protects TR2 by damping the back-e.m.f.

The alarm to be operated is largely a matter of choice and can be a 12 V d.c. siren or bell, a lamp, or even a car horn. In the latter case, particular care must be taken to check polarity and current consumption. Although the relay contacts used are rated at 5 amps , some car horns take a very large current.

The trigger contacts are constructed from spring-metal strips (e.g. draught excluder), or, more elegantly, with reed contacts and magnets. In this system the trigger contacts are required to be open, so ensure that they can be closed by the magnet (or are of the 'change-over' type) to suit your particular installation requirements.

The foregoing also applies if you decide on switch-pads for placing under carpets.

A possible method of contruction could consist of two sheets of tin separated by a thin layer of plastic foam, which would be penetrated when trodden on by the spikes of a few panel pins, or tacks, soldered to the lower piece of metal; the whole being fitted into a strong plastic bag.
R. P. Machrell,

Lytham St. Annes,
Lancashire.

THIS circuit counts digital pulses up to 9999 and then resets to 0000 , a socket is provided to carry out the 10,000 th pulse. Clock pulses enter IC2 via the "Clock In" socket. This counts the input pulses to ten and resets to zero carrying the tenth pulse to IC3 via pin 12.

Similarly IC3 counts tens carrying the hundredth pulse to IC4, and so on along the chain. The unit can have the chain shortened or extended if desired.

The pulses are counted visibly on four rows of ten l.e.d.s (TIL209) which the

4017 drives directly. The small circuit around IC1 is an anti-switch bounce circuit generating clean pulses when S1 is pressed which reset the display to zero When S1 is open circuit the voltage to the reset pins is 0 V , the condition necessary for automatic reset on the tenth count. After any count from 0000 to 9999 a facility is added to trigger an external circuit, e.g. an alarm, model railway points, the radio etc.

IC6a is wired as an inverter to save using extra space with inverter chips.

The circuit can be used to measure digital frequency, as a stop watch once the input frequency is known, as a photographic or kitchen timer and as if this is not enough it can be used as an intriguing display on the mantlepiece at parties.
Power is applied externally in the prototype but can be built into the unit very simply.

Michael J. Walker,
N. Ascot,

Berks.

TTL LOGIC PROBE

THIS probe uses a 7400 N consisting of quad dual input NAND gates, and detects high, low and open circuit with pulse stretching on high and low indications so that any combination of signal will be visually detected. The thresholds are 0.8 V and 2 V .

The assembly should easily fit into a plug case with flying leads for the supply and 0 V connections and a needle probe. Pulse stretching may be increased with larger capacitors.
G. Coleman, Rochester, Kent.

THIS circuit will vary the speed of a car's windscreen wipers from one sweep per second to around one sweep per minute. When switched on IC1 will start to oscillate at a rate set by VR1 which in turn switches RLA1. This in turn supplies the wiper motor power at the same time intervals. The conventional switch can now be disregarded. If the washer pump is wired to a pushbutton it can be removed altogether. D1 soaks up any back e.m.f. from the relay coil while C2 and C3 suppress the spike cause by ICl's output going high.
A.D. Billington,

Rotherham,
S. Yorkshire

TOUCH-SWITCHED

SPEAKER MUTING

THIS unit was designed for a friend who had a set of extension speakers conflicting with a telephone in his bedroom. He specifically requested touch switches since, although much more expensive than a 2 pole 3 way switch, they are more pleasant to use and are aesthetica!ly pleasing.
The touch switches are a resistive type as these are easier to implement than the capacitive variety. The three switches set up the JK flip-flop inputs when touched, and the oscillator formed by IC3b,c, C2, R11 clocks the outputs to the required state which will then be held by the flipflops. An ordinary 7473 is used to allow the l.e.d.s to be driven directly.

Note that points M and F should be connected to identical circuits as to the left of point X .

The relays are 2 pole to provide switching for a stereo pair of speakers. R1 at 1007 W is adequate for up to around 35 W input. For amplifiers which dislike high impedance loads, R1 could be shunted with a 1025 W resistor to ground (or the return line if the speaker connections are left floating as shown). R1 is calculated for about 20db of muting against 8 speakers. Clearly a single secondary transformer and a bridge rectifier could be substituted for T1, D4 and D5.

Andrew Fogg,
Maidenhead,
Berks.

IN

electronic Cruise control

COMMERCIALLY available cruise control units for petrol engined cars work on the principle of a speed sensor connected to an electronic unit which converts speed differences to an electrical output. This drives a solenoid valve on a vacuum operated servo (Fig. 1) which operates the throttle. When the speed is below the preset cruising speed the servo is activated and it opens the throttle to regain speed. When the speed is above the preset speed the throttle is released by the servo. Fig. 2 shows the valve arrangement in the servo.

Speed may be sensed by means of a device on the speedometer cable, on the drive shaft or by using the pulses on the ignition coil primary (or points).

The servo should be purchased from suppliers or servicers of cruise equipment and a suitable unit is manufactured by Associated Engineering. The solenoid valve in the servo has a coil resistance of about 45 ohms and operates as follows;

rising voltage: suction opens	6.3 V
vent closes	7.3 V
falling voltage: vent opens	6.6 V
suction closes	5.0 V

The engine (and therefore car) speed is sensed from the pulses at the points by TRI, IC1 and IC2 which form a D/A converter and the output of IC2 is linearly proportional to revs. TRI acts as an inverter to trigger the 1.5 ms monostable IC 1 . The voltage across C4 is proportional to revs. IC2 acts as a voltage follower with gain. VRI adjusts the gain to give an output on pin 6 of a maximum of 5.5 V at maximum revs (6000 r.p.m. for a 4 cylinder engine).

IC3, a dual counter, forms a digital memory for the analogue voltages. The two counters are cascaded and the outputs feed a ladder resistor network which is used as a 256 step memory from 0 to 5.5 V . The memory resolution is thus 0.02 IV per step or approximately 0.4 m.p.h. The memory is activated in the following manner. When $\$ 1$ is switched to

Fig. 1. Showing the carburettor servo

"Engage" the "a" section of electronic switch IC7 closes and produces a reset on IC3. When S1 is released to its centre off position the negative edge trigger formed by IC5a is activated which in turn sets the bistable formed by IC6c and d. The output on pin 11 goes low to produce an "enable" on IC3. Since IC5 "c" and "d" form a clock running at 1.5 kHz continuously, IC3 now commences to count upwards from zero and the voltage output of the ladder network rises in 0.021 V steps per 0.6 ms . As soon as the voltage equals or exceeds the D/A output the output of IC4 goes low and triggers the negative edge trigger of IC5b via IC7b which was switched on by the bistable IC6c and d. The trigger pulse switches the bistable into a reverse condition with pin 11 high and pin 10 low and IC3 is then disabled from counting further. At the same time the output of IC4 is isolated. The memory is therefore fixed at the D/A voltage the moment S 1 is released to off.

A second bistable IC6a and b was triggered on when SI was switched to "Engage" and this in turn switched on IC7 "c" and TR4. Current is thus able to flow through the solenoid of the servo. During "Engage" IC7d and TR3 were also switched on to energise the solenoid. The servo now produces an acceleration. On releasing S1 to off, IC7c and TR4 remain on while IC7d and TR 3 are switched off, removing the acceleration.

IC8 acts as a differential amplifier with a large offset voltage. If the voltage on pin 3 equals that on pin 2 (D/A output equal to memory) then the output on pin 6 equals the offset voltage set by VR3. TR2 acts as a voltage follower to drive the solenoid in the servo. Should the car slow down then the voltage on pin 2 is less than on pin 3 of IC8 and the difference is amplified in the ratio of VR2 to 10 k and added to the offset voltage. The servo is thus energised more and exerts more pull on the throttle to accelerate the car. The reverse happens if the speed is in excess of that se in the memory and the amplified difference is subtracted from the offset voltage. The servo is then de-energised and a deceleration occurs.

To release the cruise control the bistable IC6a and b is de-activated by pressing the "Stop" switch S2. This turns off IC7c and TR4, isolating the solenoid. However, the memory is not affected and if subsequently S 1 is switched to "Resume", the bistable is re-activated and TR 4 is switched on again without disturbing the memory as D2 isolates the positive pulse from the negative edge trigger and reset circuit.

A similar release action is obtained by pressing the brake pedal to activate the stop lights and therefore putting a positive pulse on the bistable to de-activate it. A similar switch to that of the stop lights can be fitted to the clutch pedal to de-activate when the clutch is depressed. This prevents the engine racing during gear changing.

MICRO-EUS
 Compiled by DJD.

Appearing every two months, Micro-Bus presents ideas, applications, and programs for the most popular microprocessors; ones that you are unlikely to find in the manufacturers' data. The most original ideas often come from readers working on their own systems; payment will be made for any contribution featured.

TWO of the most popular microcomputers currently on sale, the Acorn Atom and the Dragon, have many similarities because they both use the same video display chip, the Motorola 6847. This versatile chip not only contains 64 programmed characters for a 32 $\times 16$ text display, but will also give graphics displays up to a resolution of 256×192. However the 6847's internal character set does not include lower case, and so both the Atom and the Dragon display lower case as inverted upper-case characters.

NEW CHARACTERS FOR ATOM

The following circuit shows how to add an external character generator to the 6847 to provide 256 different characters in the alphanumeric display modes. The circuit can be added as a plug-in module, and no alterations are necessary to the Atom (or Dragon).

With careful choice of the new character set lower-case can be added, while retaining compatibility with the Atom's existing VDU software. The circuit was designed by W. A. Chadwick of Welwyn, and the following description is based on his letter.

CIRCUIT DESCRIPTION

The new character generator is stored in a $4 \mathrm{k} \times 8 \mathrm{EPROM}$. The top 8 address lines of this are connected to the 6847's Video Data Bus; see Fig. I. When the 6847 puts data onto these lines they will select one of 256 groups of 16 EPROM locations. Each displayed character is 8 dots wide and 12 scan lines deep, so that the first 12 EPROM locations of each group contain the precise bit patterns for each character.
The lowest 4 address lines of the EPROM are connected to a row counter (74LS 161).

This counter is clocked once per scan line by the HS signal from the 6847 and so will sequentially select character row information from the EPROM. The 6847 provides a clear control, RP, every 12 scan lines for the row counter. The beginning of each display frame contains a border of non-active display lines, but unfortunately the 6847 does not provide an RP pulse to clear the character counter for the first character row. Thus, to ensure that the top line of the display is displayed correctly the Frame Synch (FS) signal is used to preset the row counter to 9 at the beginning of each frame.

When using the graphics modes of the 6847 the video data must be passed on to the chip unchanged. The control line A / G is used to select between alphanumeric and graphics modes. Since only 12 out of every 16 ROM locations are used for each character dis-

Fig. 1. Circuit adds an external character generator to the 6847 Video chip in an Atom or Dragon micro.

played, the 4 unused locations in each case are programmed to contain logical mappings of the top eight address lines. The signal A/G is used to hold the row counter preset to row 12 or above when graphics are selected, thus causing the ROM to appear transparent. To illustrate how this works the coding of a single character is shown in Fig. 2.

ADDR
$\begin{array}{lll}0 & 7 & 0 \\ 0 & 7 & 1 \\ 0 & 7 & 2 \\ 0 & 7 & 3 \\ 0 & 7 & 6 \\ 0 & 7 & 5 \\ 0 & 7 & 6 \\ 0 & 7 & 7 \\ 0 & 7 & 8 \\ 0 & 7 & 9 \\ 0 & 7 & A \\ 0 & 7 & 8 \\ 0 & 7 & C \\ 0 & 7 & D \\ 0 & 7 & E \\ 0 & 7 & \mathrm{~F}\end{array}$

D ATA
in the socket of IC31. The board should easily fit inside the Atom's case, though be careful to avoid the case support pillar. The only precaution needed is to keep wires carrying video signals as short as possible.

Fig. 2. (left) ROM programming details for a sample character.

Fig. 4. (below) Circuit increases the speed of the Atom to $\mathbf{2 M H z}$.
generator EPROMS, one compatible with the existing Atom software, and the other giving 256 totally different display characters.

FASTER ATOM

Three other ways of improving the Atom's circuit have been submitted by Richard Brain of Devon. First, the Atom can be persuaded to run at 2 MHz rather than the usual 1 MHz by fitting a switch as shown in Fig. 4. Note that some of the other components, such as the memory or the 8255 , may not be capable of the extra speed, and faster versions may have to be fitted.

POSSIBLE EXTENSIONS

In the Atom the 6847's Colour Select Signal CSS is used to select between two possible sets of four colours. However, on monochrome displays this signal has little use, and so it can alternatively be used to add extra facilities to the character generator board. At power-up the CSS signal is set to logic 0 . By gating CSS with A / G it is possible to cause the counter to preset to either row 14 or row 15 depending on the state of CSS. If rows 13 and 15 are programmed with a true logic mapping, and rows 12 and 14 with an inverted mapping, as shown in Fig. 2, then the CSS signal (which is controlled by bit 3 of the port at address B 002) can be used to invert the entire graphics display. The circuit in Fig. I shows the links made for monochrome use to provide this facility; for colour use, both links should be changed so that CSS operates in the usual way. Good animated effects can be achieved with the colour graphics modes by drawing the background colour, then chang-

Two examples of possible charactrer sets following this design are given in Fig. 3. The only limitation of this set is that if the cursor is placed on an upper-case character it will appear as lower-case and vice-versa.

GAECDEFGHIJKLMHOFQRETUYHXVZ[:]

CIRCUIT CONSTRUCTION

The circuit can be constructed on a piece of perforated board using a 40 -pin header to fit
ing CSS to make the drawing instantly visible.
An alternative use for CSS would be to switch between one of two character-

The second modification, shown in Fig. 5, speeds up the rate at which characters are printed to the Atom's screen. Normally, character output is synchronised with the FS output of the 6847 to prevent screen noise. By feeding a high frequency to the 8255 this delay of $1 / 60$ th of a second is circumvented.

The third modification, shown in Fig. 6, elimitates screen noise on the Atom by giving the micro and the 6847 display generator the same clock source. Note that this means that the microprocessor speed will not be exactly 1 MHz , and programs recorded using the cassette interface will have to be re-saved at the new frequency.

2X81 ANAGRAMS

Over the past year several readers have sent in programs for the ZX81 to produce random anagrams of a given word. The shortest of these, taking 13 lines, is shown in Fig. 7 and it fits into an unexpanded ZX81. It was submitted by G. Wheaton of Bolton, and he writes:
"This program is of use to anyone trying the 'make-up' or 'break down' anagrams. Any

Fig. 5. Circuit increases the speed of displaying characters on the Atom screen.
word or combination of words is inputted; the program will then print possible combinations of the letters. To enter a new word press key ' 0 ', and then type the new word followed by NEWLINE. Of course the program doesn't guarantee a solution, but is of help in finding

Fig. 6. Circuit eliminates screen noise on the Atom display.

```
10 INPUT A\$
20 LET L=LEN A\$
30 FOR \(\mathrm{F}=1\) TO L
40 LET \(\mathrm{X}=\mathrm{INT}(\) RND \(\times \mathrm{L})+1\)
50 LET \(Y=1 N T(R N D * L)+1\)
60 LET \(Z \$=A \$(X)\)
70 LET \(A \$(X)=A \$(Y)\)
80 LET \(A \$(Y)=Z \$\)
90 NEXT F
100 PRINT AT 21,0; A\$
110 IF INKEY\$ 〈〉 \(\cdots \cdot 1\) THEN GOTO 10
120 SCROLL
130 GOTO 30
```

Fig. 7. Program generates random anagrams of a word on the $\mathbf{Z X 8 1}$.
the answer. The program helped me win the coveted prize of a Piccadilly T-shirt from the local commercial radio station."
"The program is fairly easy to understand; lines 70 to 130 shuffle the letters of the inputted word and lines 140 to 180 print out the resulting arrangements of letters; lines 30 to 60 set up the array B."

ZX81/SPECTRUM MORTGAGE REPAYMENTS

The following programs, shown in Fig. 8, will be of use to all those who are repaying a mortgage, or are contemplating taking one

Fig. 8. Programs calculate mortgage repayments on the (a) 2×81, and (b) Spectrum.
 \title{

PE SPECIAL CASSETTES OFFER
 \title{ \section*{PE SPECIAL CASSETTES OFFER NEW! CHROMIUM DIOXIDE NEW! CHROMIUM DIOXIDE AUDIO CASSETTES}

 AUDIO CASSETTES}}

CHROME C60 \& C90

CRO2 C60 CASSETTES
90p each (minimum of 5); 80p each (minimum of 25)
CRO2 C90 CASSETTES
$115 p$ each (minimum of 5); 105p each (minimum of 25)

FERRIC C90 AUDIO

C90LH CASSETTES
56p each (minimum of 5); 53p each (minimum of 25).

PRICES INCLUDE VAT AND POSTAGE.

These European-made tapes are excellent value and we are pleased to offer them to readers. They are covered by a money back guarantee (return within 21 days for refund). Not only are the tapes of high quality but the cassettes are of screw together construction and the case labels have space for notes on the recordings.
Send valid coupon to:
Videotone Ltd., 98 Crofton Park Road, Crofton Park, London SE4.

out; they were submitted by J.W. H. King of York. In use simply type RUN, and then answer the questions presented on the screen. When satisfied that all is correct, type CONT followed by ENTER (or NEWLINE), and the repayment amounts for each period, and annually, will be shown.
The toroidal transformer is now accepted as the standard in industry，overtaking the obsolete laminated type．Industry has been quick to recognise the advantages toroidals offer in size，weight，lower radiated field and． thanks to 1．L．P．．PRICE
Our large standard range is complemented by our SPECIAL DESIGN section which can olfer a prototype service within 7DAYS together with a short lead time on quantity orders which

PYPE	$\begin{array}{\|c\|} \hline \text { SERIRSS } \\ 400 \end{array}$	$\begin{array}{\|c\|} \hline 5 \text { Ecomoaby } \\ \text { Yoms } \\ \hline \end{array}$		MaICE	＋ 294 TTPLS P0 CE008E ITO淘！				
$\begin{aligned} & \mathbf{3 0 v a} \\ & 70 \mathrm{vamm} \\ & 0.30 \mathrm{~mm} \\ & 0 \end{aligned}$	$\left\lvert\, \begin{aligned} & 1 \times 010 \\ & 8 x 010 \\ & 80012 \\ & 800 \end{aligned}\right.$	$\begin{gathered} 6+6 \\ 9+9 \\ 12 \cdot 12 \end{gathered}$	$\begin{aligned} & 250 \\ & 166 \\ & 185 \\ & 7 \end{aligned}$	25.12	ODDCES DESPATCHED WITHIM？ dats of rectipt ron sincle on SHALL QOERTITY ORDERS				
${ }_{\substack{\text { Repzadion } \\ \text { is\％}}}$	P9013	130.5 18.18 18.15	（100	atmes					
	18015	27.22 23.25	${ }^{0} 860$	romel 0					
	14017	$30 \cdot 30$	050	¢5．70	NPr	SEAMS	$\begin{gathered} \text { secomoany } \\ \text { Whis } \end{gathered}$	$\begin{gathered} \text { hus } \\ \text { Curion } \end{gathered}$	Prict
$\begin{gathered} 50 \mathrm{va} \\ 30 \cdot 33 \mathrm{mmin} \\ 09 \mathrm{~kg} \\ \text { Regultion } \\ 33 \% \end{gathered}$	2 z 010	$5+6$	418						
	22012	12．12	208208160		225 vA$110=15 \mathrm{~mm}$22 kgRequltion7%	62017	$18+12$	938	
	${ }_{24}^{2013}$	15．15				（ $\begin{aligned} & 60013 \\ & 6 \times 014 \\ & 6014\end{aligned}$	$18+15$$18+18$$12+28$	$\begin{aligned} & 350 \\ & 6.25 \end{aligned}$	
	2×014	18.18	${ }^{138}$	25.10					
	2.015 24016	$22 \cdot 22$ $28 \cdot 25$	113 100	＋ 1		6．013	$22+22$ 25.25	$\begin{aligned} & 511 \\ & 4.50 \end{aligned}$	$£ 9.20$
	2×017	30.30	083	－014		6×017	30，30	315	£9．20
		110 220	045			6， 6×18	13．33	321	
	20029	220	022 020			${ }_{6}^{6 \times 2029}$	${ }^{15} 5.45$	\％ 75	
80 va$90=30 \mathrm{~mm}$149Requarionn12%	3x040	6.59.9	564			660336.028	$50 \cdot 50$110	238	
	3n011		1.44					206 102	
	31012	$12 \cdot 12$	333	£6．08		6030	220	102 093	
	3 H 013	15．13	266		300 va				$£ 10.17$ ＊禹がさし0 －valft 7074．544
	3 O 014	18． 18	2.82			PR013	$15 \cdot 15$	1000	
	3 3 015	228．22	181		100.50 mmm 26	\％014			
		$25 \cdot 25$ $30 \cdot 30$	1 1 1 33		arevimion	78015 74016	22×22 28.25	6.82 6.00.	
	38028	110	－ 72		6\％	？ n 017	30.30 30.30	5.00	
	3×030	260	033			7x028	40.40	3.75	
$\begin{aligned} & 120 \mathrm{va} \\ & 90=40 \mathrm{~mm} \\ & 12 \mathrm{mg} \\ & \text { Regutian } \\ & 11 \% \end{aligned}$		$\begin{gathered} 6 \cdot 6 \\ 9 \cdot 9 \\ 12 \cdot 82 \\ 15 \cdot 15 \\ 18 \cdot 18 \\ 22 \cdot 22 \\ 25 \cdot 25 \\ 30 \cdot 30 \\ 35 \cdot 35 \\ 110 \\ 220 \\ 240 \end{gathered}$	1000656500500332732782402001711709000	$£ 6.90$ W4T I 27 		${ }_{7}^{7025}$	15.45 50.50	333 300	
						7 7 029	270	136	
						7 7 030	240	125	
							$\begin{aligned} & 29.23 \\ & 30.30 \\ & 35.35 \\ & 40.80 \\ & 45.85 \\ & 50.50 \\ & 55.53 \\ & 110 \\ & 270 \\ & 240 \end{aligned}$	$\begin{array}{r} 1000 \\ 633 \\ 714 \\ 625 \\ 635 \\ 358 \\ 300 \\ 454 \\ 454 \\ 727 \\ 206 \\ \hline \end{array}$	513.53
160 Va									
110m 40 man	5×011 5×012	$\begin{gathered} 9.9 \\ 12.12 \end{gathered}$	885 858	$£ 7.91$ （ma）II 67 rolm ${ }^{31}$ 37					
$\begin{aligned} & \text { Regulation } \\ & \text { By\% } \end{aligned}$			$\begin{aligned} & 533 \\ & 444 \\ & 363 \\ & 320 \\ & 268 \\ & 2828 \\ & 200 \\ & 200 \\ & 145 \\ & 072 \\ & 068 \\ & \hline \end{aligned}$						
							$\begin{aligned} & 30 \cdot 30 \\ & 35 \cdot 35 \\ & 40.40 \\ & 45.45 \\ & 30.50 \\ & 4.59 \\ & 10 \\ & 220 \\ & 240 \end{aligned}$		⒗3

IMPORTANT：Regulation－All voltages quofed are FULL LOAD．Pisase add regulation figure io
secondary wothage to oblain off load vorage．
The benefits of ILP toroidal frans formers
IL．P toroidal iranslormers are only half the weight and height of their laminated equivalents．and are available with 110 V .220 V or 240 V primaries coded as follows For 110 V primary insen＂ 0 ＂in place of＂X＂in type number．
For 220 V primary（Europe）insert＂ 1 ＂in place of＂X＂In type number
For 240 V primary（UK）insen＂ 2 ＂in place of＂X＂in type number
How to order Freepost
Use this coupon，or a separate sheet of paper，to order these products，or any products from other ILP Electronics advertisements．No stamp is needed it you address to Freepost．Cheques and postal orders must be crossed and payable to ILP Electronics Lid． Access and Barclaycard welcome．All UK orders sent within 7 days of receipt of order for single and small quantily orders．
Also dvailable at Electrovalue．Maplin and Technomatle．
Elecironics，Graham Bell House．Roper Close，Canterbury，Kent，CT2 JEP．
Please send
Totat purchase price
I enclose Cheque $\square \quad$ Postal Orders $\square \quad$ int．Money Order \square
Debit my Access／Barclaycard No
Name
Address

Signature

Post to：ILP Electronics Lio．Freeposi， 2 Graham Bell House．Roper Ciose

（0ptional probe $\times 10$ £9．45）

TRIO 20 MHZ DUAL TRACE SCOPES

Out Price £299 inc．Vat juK c／o £a

2.5 mv sensilivity CH2 Inven

SPEAKERS \＆TWEETERS

HIF20ESM 4 chm Version 8 \＆$£ 4.95$ JUK $\mathrm{c} / \mathrm{p} £ 1.20$

CN38
3 way 日 onm 15 watt
way 8 ohm 15 watt
JUK c／p Pweeters \＆Cro

Fi4 $\begin{aligned} & \text { Mini stereophones as above } \\ & \text { tor purchases of } £ 10.00 \text { or } \\ & \text { more from this advertisement．}\end{aligned}$

MIFE7BSM 4＂ 80 mm 30／50 watl midrange \＆4．95 JUK c／p 65 pl

SM300 40 watt
$f 1.75$
E 1.75

PH303＂ B° ohm 15 watl tweter $\mathbf{5 2 . 2 0}$
 W0 wat tweeter

STEREOPHONES • MEGAPHONES • P．A．HORNS

	331 S 10 wall mega phone with siran Qtran 232.95 ｜UK $\mathrm{C} / \mathrm{D}\{1.05\}$ 331 without siren $£ 28.95$ ［UK c / p £ 1.05 ｜		CH66 $6=10$ wan 8 onm Ph Horns，sags $£ 6.95$ UK $1 / 105501$
	Car Speakers SP25／4 10ar 4 ohm £6． 50 CRB8O2002 1 lhm £7．50 IUK C／D £1．05	£3	$£ 12.95^{10 \kappa 10 / 20}$
			DON＇TFORGET TO CGAIMT FREEA （2）BONUS

ORDER BY POST OR PHONE OR CALL IN AND SEE FOR YOURSELF
WELL WORTH A VISIT！ALL OFFERS LIMITED QUANTITIES E \＆OE
AUDIO EECTTRONICS
301 EDCWARE BOAD．LONDON WZ 1BN．TEL：01－724 35．44
ALSO GT HENRYS AADIO．
404／40S EDGWARE RDAD．LONDON W2

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser
This will assist advertisers in processing and despatching orders with the minimum of delay.

RECEIVERS AND COMPONENTS

300 SMALL COMPONENTS including Transistors, Diodes, £2.20. 7lbs Assorted Components $\mathrm{f5}$. 10 lbs £6.50. 500 Capacitors £4. Forty 74 Series ICs on Panel £2.10. Post Paid List 25p Refundable. J.W.B. RADIO, 2 Barnfield Crescem. Sale, Cheshire M33 INL.
S.M. 3 MICRO TRANSMITTEA. Range 1000 yds. Picks up speech from 25 f . Case measures $2 \ell \times 19 \times 11$. Receive on ordinary VHF/FM Radio. Only $£ 15.00$ or SAE for full specification. P.D. ELECTRONICS. 11, Bluebeil Close. Orpington, Kent. BR6 8H/S.

TURN YOUR SURPLUS capacitors. fransistors, eIc. into cash Contact COLES HARDING \& CO, 103 SOUTH BRINK WISBECH, CAMBS. TEL: 0945584188 . Immediate settement.
I \& J ELECTRONIC COMPONENTS - Quality components. Competitive prices. Illustrated catalogue 45 p . 98 Burrow Ruad. Chigwell, Essex.

ELECTRONIC COMPONENTS, Merscyside. MYCA Electrunics. 2 Victoria Place, Seacombe Ferry, Wallasey, LA4 6NR. Mail order. send 50p for price list refundable off first order. 051 638-8647.

SMALL ADS

The prepaid rate for classified advertisements is 34 pence per word (minimum 12 words), box number 60 p extra. Semi-display setting $£ 11.20$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Banks Lid". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Practical Electronics, Room 2612. IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

6802 YOUR COMPUKIT

You will need: [1) A 6802
12) A processor adaptor - component cost f 1.50 . Takes half an hour to make.
(3) My 2716 Monitor

Monitor supports: screen scroll. keyboard memon examine and modity, chsum load, chsum save No basic of course Monitor costs $£ 20$.

> Cheque or postal order to: J. D. OWEN,
> New Meadows Farm. Laugharne, Dyted.

BOURNEMDUTH/BOSCOMBE. Electronic components specialists for 33 years. Forresters (National Radio Supplies), Late Holdenhurst Road. Now at 36. Ashley Road. Boscombe Tel. 302204. Chated Weds.

NEW SURPLUS RELEASE

Ex GOVT LEAD ACID ACCUMULATORS. Brand new 10 V sah tamous manufacture. Easily tapped in iv stages. Size only $7 \times 55^{\prime \prime} \times 2^{\prime \prime}$. Ideal for emergency lighting and power supplies Burglar alarms etc. Must have cost Govt over 20 each. Our price $£ 5.50$ each, carriage $£ 2.50 .2$ for $£ 10$ carriage $£ 3.50 .4$ to $£ 18$ carriage $\mathbb{E 6} 8$ for $£ 32$ carriage $£ 10$. All despatched unfilled Robust wooden tray with carving handles. Holds 8 accumula tors $\mathrm{E5}$.
CORDLESS INDUCTIVE LOOP HEADPHONES. Self powered input via loop of external min BNC socket. Contans transistor ised high gain amplifier. Operates from internal batteries. Noise excluding mutts. Swith on when placed on head Special offer while stocks last E6 p.p. $\mathcal{E} 2$ pairs for $\mathbf{E 1 2}$ pos free.
LIGMTWEIGHT MEADSETS (Govt release). Brand new 600 ohms impedance. A bargain at $£ 3.50$ p.p. $£ 1.2$ pairs for $£ 7$ posi free.
RIDICULOUS RESISTOR SALE. Brand new i watt carbon film resistors. 5% tol. High quality resistors made to exactin specifications by automatic machines. E12 Range IRO to 10M in lots of 1000125 per value). Only $\mathbf{5 8}$ per 1000 . Lots of 5000 to 25. 10 to lom. 1000 PCB type resistors $\mathbf{2 . 5 0}$. Bult purchase enables us to ofrer 1000 mixed pre formed carbon film resistors. 5% iol for PCB mounting. Huge range of GENUINE AFV TANK HEADSETS AND MIXE 350 Der pair GENUNE AFV TANK HEADSETS AND MIKE $E 3.50$ per pair p.p. £1. 2 pairs $£ 7$ post free. All headphones fitted with Ex ministry plug. Standard lack plugs avalable 25p each. 2 for 40 p
 lmpedance of

SCOOP PURCHASE

PYE POCKET PHONE RECEIVERS TYDE PFI normal ted 450 mHz . Supplied in used condition less batterv. $\mathbf{E 4 . 5 0}$ each Carriage £1. 2 pairs $£ 9.00$ post free 4 pairs $£ 16.00$ post tree.
 Gives detanled information and circuit diagrams for British and American Government Surplus Receivers. Transmitters and
Test Equipment etc. Also suggested modification details and improvements for surplus equipment. Incorporated is a Sur plus/Commercial cross referenced valve and transistors guide. The standard reference work in this field. Dnty $£ 7.50$ p.p. $£ 1.50$ No VAT on books.
New release of MODERN DYNAMIC MOVING COIL MICRO PHONES. 200 ohms impedance. Switch incorporared Most with lead and DIN plug. Used but nice condition. 3 designs of ase housing. Price one mike our choice $£ 2$ plus 50 p pp. Bargain ofter all 3 mikes $£ 4.50$ p.p. £ 1
GENUINE EX-GOVT COLLAPSIBLE AERIALS. A fully adjustable highiy efficient whip aerial in 5 sections. Length if metres. closed $300 \mathrm{~m} / \mathrm{m}$. Copper plated sections. As used on Ex Gov Manpacks. Brand new in makers boxes $\mathbf{D}_{\text {, }} 50$ each, p.p. 75p. 2 for E5 post tree
HAVE YOU SEEN THE GREEN CAT. $1000 \times$ of new compo nents, radio, electronic, audio at unbelievably low prices. Send $50 p$ and recerve catalogue and FREE RECORD SPEED INDICATOR.

MINI JUMBO PACK (E20 worth)
for $\mathbb{} 5$ p.p. $£ 1.50$
PLEASE ADD 15% VAT to all orders including carriage and p.p.

anvers Electronic Devices

Dept PE1, 12/14 Harper Street, Leeds LS2 7EA. Leeds 452045 ew retal premises at above address lopposis Coms New retall premises at above address lopposite Corals) appointment. GOVT. SURPLUS ITEMS ALWAYS IN STOCK

BIG BARGAIN BOX

Our Big Bargain Box contains over a thousand components - resistors, capacitors, pots, switches, diodes, transistors, panels, bits and pieces, odds and ends. All useful stuff - would cost many times the weight 4 lbs . ONLY $£ 5.00$ inc. post-you're bound to come back for anotherl!!

ESP. 174c FOUNDRY LANE
 SOUTHAMPTON, SO1 3LS

Lots of surplus bargains on our latest list - send an SAE for your copy now

VERO BOARD 0.I Pitch $95 \times 292 \mathrm{~mm}\{3.50$ each. $112 \times$ $177 \mathrm{~mm} £ 2.95$ each. Prices inclusive of V.A.T. P\&P 30p. Send cheque or PO with order to Coxon Electronics. 47 Steepturnpike. Matlock. Derbyshire. DE4 3DP

ROBOTICS

WHEELS, MOTORS, BATTERIES,
SOLENOIDS, GEARS, SPROCKETS AND MORE.
FOR LISTS SEND 60p TO
DRJ ELECTRONICS
PO BOX 394, LONDON SE6 1TR
Money returnable
MAIDSTONE HAS ITS OWN component shop. Thyronics Control Systems. 8 Sandling Road. Maidstone. 675354.

BUMPER BOX OF BITS

WOWI!! We've got so many components in stock. we can't possibly list them alll! - So buy a box, in it you'll find resistors, capacitors, displays, switches, panels with transistors, diodes, iCs etc, coils, pots. panels with transistors, diodes, ics etc, coils, pots. .
and so on. All modern pans - guaranteed at least 1000 items, minimum weight 10lbs. ONLY $£ 8.50$ inc.

ELECTRONICS WORLD

1c Dews Road, Salisbury, Wits. SP2 7SN
(Prop: Westbrough Lid.)

AERIALS

AERIAL BOOSTERS Trebles incoming signal, Price £7.00. SAE leaflets. ELECTRONIC MAIL. ORDER LTD., Rams. bottom. Lancashirc BL0 9AG

BOOKS AND PUBLICATIONS

ANY PUBUSHED, full-size service sheet by relurn $£ 2$ + L.s.a.e. CTV/Music Centres £3. Repair data with all circuits. layouts etc. Your named TV or video $£ 8.50$. Free 50 p mag. all orders. queries. TIS (PE). 76 Churches, Larkhall, Lanarkshire

WANTED

WANTED KLYSTRON K3077, 9410 mega-cycles. State quantity. Langton, 46 b Overstrand Mansions, Prince of Wales Drive, London SWII.

COURSES

CONQUER THE CHIP ... Master modern electronics the PRACTICAL way by SEEING and DOING in your own home. Write for your free colour brochure now to British National Radio Electronic School. Dept C2, Reading. Berks RG1 IBR

EDUCATIONAL

CAREERS IN MARINE ELECTRONICS. Courses commencing September and January. Further details, The Nautical College, Fleetwood FY7 8JZ. Tel: 0391779123

TELEVISION COMPUTER RADIOCOMMUNICATIONS \& RADAR SERVICING

2f YEAR full-time course, with a high practical content, approved by the Technician Education Council and leading to

TEC DIPLOMA in ELECTRONIC 8 COMMUNICATIONS

 ENGINEERING- PRINCIPLES OF ELECTRONICS
- television (mONo/COLOUR)
- video Cassette recorders
- Closed circuit television
- digital \& microelectronics
- COMPUTERS \& MICROPROCESSORS
- RADIOCOMMUNICATION \& RADAR

Short courses (from 13 weeks) are available in the above individual specialisms for applicants with CGLI, TEC, HNC, BSc etc which lead to TEC or College Diploma awards.

Next two courses commence
April 25th \& Sept. 19th.
Prospectus from:

LONDON ELECTRONICS COLLEGE

Dept: AA, 20 Penywern Road, London SW5 9SU. Tel: 01-3738721

FOR SALE

FULL SET P.E. Offers. 051-547 2036. Buyer collects.
PRACTICAL ELECTRONICS P.C.8.'s 1.5 mm fibreglass, drilled and solder resist coated SAVE MONEY - Boards PRINTED ONLY ready for own etching and drilling send S.A.E. for price list. LECTROPRINT, 17 Showell Road. Bushbury, Wolverhampton. West Midlands. Tel. 0902721805.

ALL YOUA CASSETTE NEEOS. Blank cassettes C15 with case 40p each. Cassette labels in blue, white or yeltew 20 for 36p. Inlay cards in red. blue or yellow 20 for 60 p. Library cases 9 p each. Postage on each complete order 45 p. Stomehom Lid., 59 Mayfield Way, Barwell. Leicester LE9 8BL.

AIRCRAFT MOUNTED $35 \mathrm{~m} / \mathrm{m}$ CAMERA contains precision mirror, lens. smal motor solenoid gears etc $£ 10.24 \mathrm{~V}$ Ni-cad battery contains $20-4 \mathrm{AH}$ cells $\mathrm{£8}$. Tel: Leeds 496048 after $7.00 \mathrm{p} . \mathrm{m}$

MAPLIN 3800 SYNTH. Buitr, tested and tuned. $£ 250$ o.n.o. C/W leads and manuals. Parkinson, 112 Oxford Road, Harlepool TS25 5RT.

GOVERNMENT SURPLUS Components \& Equipment. Send SAE for list. AFR ELECTRONICS. School Lane. Moulton. Northampion.

SERVICE SHEETS

BELI'S TELIVISION SERVICES for service sheets on Radio, TV, etc. £1 25 plus SAE. Colour TV Service Manuals on request. SAE with enquiries to B.T.S., 190 Kings Road. Harrogate. N. Yorkshire. Tel. (0423) 55885

MISCELLANEOUS

ULTRASONIC IRANSDUCEAS, miniature, 40 KHz . 2.85 per pair +25 P P\&P. Dataplus Developments, 81 Cholmeley Road, Reading. Berks

MAKE YOUR OWN PRINTED CIRCUITS Etch Resist T-ansers - Starter pack (5 sheets, lines, pads, I.C. pads) £2.20. Large range of single sheets in slock at $45 p$ per sheet.
Master Positlue Transparencies from PC. layouts in magazines by simple photographic process. 2 sheets inegative paper, 2 sheets positive film (A4) ≥ 25. IPhoto-resist spray (200 ml) $£ 3.90$ ($\mathrm{p}+\mathrm{p} 65 \mathrm{p}$). Oraft Ing Film (A4) $25 p$. Precision Grids (A4) $65 p$.
$22 p$ stamp for lists and information. P\&P 50 p per order plus extra where indicated.

OAK LODGE, TANSLEY, DERBYSHIRE,
IONZER. Feel alent, invigorated and healthier with the amazing ZEPHION negative ion generator. Kit:- $£ 21.50$. Built:£ 29.80 or SAE brings leaflets. Dataplus Developments, 81 Cholmeley Road. Reading. Berks RG1 3LY. 073467027.

PARAPHYSICAL JOURNAL (Russian Translations): Psychotronic Generators. Kirlianography. Gravity Lasers. Telekine sis. Details SAE 4×9^{0} Paratab. Downton, Wils.

THE SCIENTIFIC WIRE COMPANY PO Box 30, London, E.4. 01-531 1568. ENAMELLED COPPER WIRE				
SWG	11b	802	4oz	20z
8 to 34	3.30	1.90	1.00	0.80
35 to 39	3.52	2.10	1.15	0.85
40 to 43	4.87	2.65	2.05	1.46
44 to 47	8.37	5.32	3.19	2.50
48 to 49	15.96	9.58	6.38	3.69
	SILVER PLA	D COP	WIRE	
14 20 30	7.09	4.20	2.43	1.72
TINNED COPPER WIRE				
14 to 30	3.97	2.41	1.39	0.94
Fluxcor Solder	lder 5.75	3.16	1.73	0.96
Prices include P\&P, VAT. Orders under E2 add 20 p. SAE for list of copper and resistance Wire. Dealer enquiries welcome.				

CENTURION ALARMS

We manufacture, you save £££'s Send s.a.e. or phone for our Free list of professional D.I.Y. Burglar Alarm Equipment and accessories.
Discount up to 20% off list prices, e.g. Control Equipment from $£ 15.98$, Decoy Bell Boxes from $£ 5.95$ inc.

rade enauiries welcome
(0) 0484-21000 or 048435527 (24 hr. ans.) CENTURION ALARMS (PE) 265 Wakefield Road, Hudderstield

burglaz alarm eaulpment. Ring Bradford (0274) 308920 for our catalogue or call at our large showrooms opposite Odsal Siadium.

CLEARINE LABORATORY: scopes. generutors. P.S.U's. bridges, analysers. meters. recorders. etc. $\mathbf{1 4 0 3 - 7 6 2 3 6 .}$

GUITAR/PA/MUSIC AMPLIFIERS

 100 watt superb Treble Bass Overdrive, 12 months guarantee $£ 55,60$ watt $£ 49,200$ watt $£ 78,100$ watt Twin-Channel Sep., Treble Bass per channel $£ 67$, 200 watt £89. Slaves 100 watt £40, 200 watt £60, 250 watt £75, 500 watt $£ 140$. Speakers 100 watt 12in $25,112,100$ was unbeatable $\{112,100$ watt Bass Combo, 15 in Relax $C A B=125$.Send Cheque or P.O.
WILLIAMSON AMPLIFICATION
62 Thomcliffe Avenue, Dukinfield, Cheshire. Tel. 061 -308 2064

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS
Please insert the advertisement below in the next available issue of Practical Electronics for
insertions. I enclose Cheque/P.O. for \mathbb{C}.
(Cheques and Postal Orders should be crossed Lloyds Bank Lid. and made payable to Practical Electronics)

Send to: Classified Department,
PRACTICAL ELECTRONICS
Classified Advertisement Dept, Room 2612.
King's Reach Tower, Stamford Streat

ADDRESS
34p per word minimum 12 words. Box No. 80 p extra.
Company registered in England. Registered No. 53626. Registered Office: King's Reach Tower, Stamford Street, London SEi 9LS.

CLEF electronic MUSIC

AMOEK Kits
Distortion
Compressor
Compre
Phaser
Phaser
Tuning Amp
Meronome
Flanger
Chorus
Si. Mixer
St. Mixer
Graphic
Graphic
Delay
Pelay
by ROLANO

COMPLETE KIT f 3 B

ELECTRONIC PIANOS
SPECIALISTS SINCE 1972 Clef Pianos adop the most advaneed
form of Touch Sconsitive astion which simulates piano Key ine intian usiong

71 OCTAVE DOMESTIC MODEL COMPONENT KIT £266 COMPLETE KIT $£ 442$ manuFactured 6995 Two Domestic Models are avalabhe
including the 8 B-nore full size version. Four intermixabil Voice Controls may be used 10 oblain a wide variation of
 corpprated in the Desi ien and interna
Erects arc provides in the formm Tricels are provided it the for
Tremolo.
lionky. Chorus. Phaseiflanger Pianower amplifice intceprates inlo the the Base lor casy yraisparation

SIX OCTAVE

 DOMESTIC MODEL COMPONENT KIT £234 complete kit e398 man 6620 componennts and may be purchasced in

 wiring harness Pedals and in the cass or
Domenestic Moddses bouh Power Amplifier Dome Satick
and Sparcr.
Th. came raneo of voices and Enecris and is designed for uses wilh an Extern SIX OCTAVE STAGE MODEL COMPONENT KIT £234
manufactureo f580

MICROSYNTH
THE COMPACT MUSIC SYTTHESIZER

KIT * SWITCH ROUTING * 2 OSCILLATORS £129.00 * THUMBWHEEL * 2 SUB-OCTAVES STRING ensemble
(.)s Published in conviunction
with 'Practical Electroniss')

A Mith Pery Praciral Lopular Kectrontrs)
Synnhesizer Kith for Group or
Home use. with a four octawe
Home wse. with a four octave
compass and split Keyboard
conpass and spit Key
faciliyy
component kit $\$ 197.50$
"THE computer BAND-BOX (As Published in conjunction wilh "Practical Electronics") COMPLETE

KIT £235

£320

MANFD

 A revolution in the field af Computer Music Generationl A AUSICIANS INSTRUMENT FOR: SOLOISTS - SINGERS - RECORDING - PRACTICE LIVE PERFORMANCE - COMPOSITION
The BAND-BOX provides an Electronic Backing Trio consisting of Drums. Bass. and a Chord Instrument (one of 16 3.000 User Programmabie Chord. Changes on more than 120 different Chords. Using advanced Microprocessor technology. Playback of 50100 Scores can be executed in any Key and at chosen Tempo, Completc Music Pad is electronically Indexed and stored on
secondary battery back-up. Facility enists for composition of Intron Repear Chorus, and Codas sections including Multiple Score Se quences. Sockets are provided for Volume Peda and Footswitch plus
separate and mixed instrument Outputs. Total size $19^{\prime \prime} \times 11^{\prime \prime} \times 4 t^{\prime \prime}$

THE Programmable DRUM MACHINE

Since 1972 Clef Products have consistently produced Icading designs
in the fild of Electronic Musical Instruments, many of which have been published in technical magazines. With musical quality of paramount importance. new techniques have been evolved and the latest musically valid technology has theen incorporated into projects
which have heen suecessfully completed by constructors over a wide range of technical capability. Back up TELEPHONE advice i avanable to all our. customers. All instrumenis are on show.
PRICES INCLUDE VAT, UK CARRIAGE \& INSURAVCE ICARRRIAGE EXTRA ON MFD PIANOS, Please send SAL.E for our complete lists, or use our telephone VISAACCESS serviee.
Competitive quotatlons can be given for EXPORT orders - in Australia please contact JA YCAR in Sydney.
Australia please coniactit OUR SHOWROOM
VISIT
CLEF PRODUCTS (ELECTRONICS)

EIGHI TRACK
PROGRAMMING TWENTY FOUR PAITERNS
TWELVE INSTRUMENTS SEQUENCE OPERATIOM.
COMPLETE KI ${ }_{\text {EOMPLETE KI }}$
MANFD. fll 19.00
he Clef Master Rhyiom a batlery driven unit $8 t^{\prime \prime \prime} \times 5^{\prime \prime} \times 2 \frac{1}{2}$

STORAGE CABINETS

Access/Barclaycard 66 THE STREET, CROWMARSH, WALLIN welcome or cheque/PO cheque/PO to:-
 OXON. OX10 8ES. Tel. 049138653

MILLHILL SUPPLIES
Steel cabinets,
2 wide $\times 5 r^{\text {r }}$ deep $\times 22^{\prime}$ high inished blue with clear
plastic drawers.

Available units:-	
Type	Drawers
2260	. $60 \times \mathrm{A}$
2248	. $48 \times \mathrm{B}$
2224 $24 \times \mathrm{C}$	
Type	Drawers
2216	. $16 \times$ D
2236 $8 \times$	
$30 \times$ A, $4 \times$ D, $2 \times \mathrm{E}$	
NLY	each cabinet
£19.90	(inc. p\&p
219.90	and VAT)

Delivery within 7 days.

INDEX TO ADVERTISERS

Adam Hall Supplies 71
A.D. Electronics 72

Alcon 66
Audio Electronics 69
Bi-Pak 14
Blackstar Ltd 72
British National Radio \& 7
Bull, J. 6
Cambridge Learning 26
Centurion Alarms 71
Clef Products 72
Cricklewood Electronics .. 10, 11
Crofton 12
C.R. Supply Co. 70

DRJ Electronics 70
Electronics World 70
Electronic Surplus \& Parts ... 70
Electrovalue 25
Elinca Products 71
Enfield Electronics 74
Grenson (EMOS) 73
G.S.C. 34

ICS-Intertext 12
ILP Electronics 4, 5, 69
J.D. Owen 70

London Electronics College . . 71
Maplin Electronics Cover 4
Mercia 6
Midwich 33
Millhill Supplies 72
Modern Book Co. 10
Myers Electronics 70
Parndon Electronics 74
Phonosonics 44
Pimac Systems 74
PKG Electronics 71
Powertran Cover 2
Radio Component Specialists 49
Radio \& T.V. Components ... 26
Rapid Electronics 16
Riscomp Ltd. 43
Scientific Wire Co. 71
Sinclair Research8, 8, 9
Sparkrite 57
Swanley 49
Technomatic Ltd. ... Cover 3, 74
T.K. Electronics 13

Videotone 43
Watford Electronics 2, 3
Williamson Amplification 71
Wilmslow Audio
12, 49
$\star \star$ SATURDAYBARGAINS $\star \star$

Dept 1C, High March, Daventry, Northants NN1 1 4HQ
Tel: 032725523 Telex: 311245 GRENEL G.
Please add 50 p per order postage and packing (except where higher is indicated) plus 15% VAT on total. No VAT on overseas orders, postage at cost. Cheques and postal orders made payable to Emos Limited. Send Large S.A.E. for
 comprehensive catalogue.

£88.50
ع88.60 £7.75
Al prices include VAT. Allow £1 post \&i package. Goods by retum.
SA.
PIMAC SYSTEMS LTD Tol: Moseley, Blirmi
Tel $1-4490384$

Universal NH-CAD, battery charger. All plastic case with lift up Ild. Charge/Test switch. LED indicators Charges:- PP3 (9V), U12 (1.5V "C'), U2 (1.5 V " $\mathrm{D}^{\prime \prime}$), Power:- 220 , U11 AC, Dims:- $210 \times 100 \times$ s0mm. Knock 240 V price only while stocks last.

Only $£ 6.00$ Order No. MW 398

PLEASE MENTION

 PRACTICAL ELECTRONICS WHEN REPLYING TO ADVERTISEMENTS
PARNDON ELECTRONICS LTD
 Depl No. 2144 Paddock Mead. Harlow. Essex. CM18 7RR. Tel: 027932700

RESISTORS: $1 / 4$ Warl Carbon Film E24 range $\pm 5 \%$ tolerance. High quality resistors made under sticictly controlled conditions by automatic machines. Bandoliered and colour coded
£1.00 per hundred miked (Min 10 per value) £8.50 per thousand mixed. (Min 50 per value) Special stock pack 60 values. 10 off each $\mathbf{£ 5 . 5 0}$

DIODES: in4 148 3p each. Min order quantity - 15 items. f 1.60 per hundred

DIL SWITCHES: Gold plated contact in fully sealed base - solve those
programming problems
4 Way 86 p each. 6 Way $\mathbf{1} .00$ each 8 Way $\mathbb{E 1} .20$ each
DIL SOCKETS: High qualiry tow profile sockels.
8 pin-10p. 14 pin-11p. 16 pin-12p. 18 pin-19p. 20 pin-21p. 22 pin -23 p. 24 pin-25p. 28 pin-27p. 40 pin-42p.

ALL PRICES INCLUDE U.A.T. \& POST \& PACKING - NO EXTRAS
MIN ORDER - UK 11 00 OVERSEAS 55 CASH WITH ORDER PLEASE Same Day Despatch

 THE MAPLIN TALK-BACK
Now your computer can talk!

*Allophone (extended phoneme) system gives unlimited vocabulary.
*Can be used with unexpanded VIC20 or ZX81 does not require large areas of memory.
\star In VIC20 version, speech output is direct to TV speaker with no additional amplification needed. \star Allows speech to be easily included in programs.
Complete kit only £24.95.
Order As LK00A (VIC20 Talk-Back). LK01B (ZX81 Talk-Back).
Full construction details in Maplin Projects Book 6.
Price 70p. Order As XA06G (Maplin Mag Vol. 2 No. 6).

KEYBOARD WITH ELECTRONICS FOR ZX81

- Full size, full travel keyboard that 's simple to add to your ZX81 (no soldering in ZX81)
*Complete with electronics to make "Shift Lock "Function" and "Graphics 2" single key selections.
Powered (with adaptor supplied) from 2×81 s own standard power supply.
Full details in Project Book 3 (XA03D) Price 60p. Complete kit (excl. case) $£ 19.95$. Order As LW72P. Case $£ 4,95$. Order As XG17T
Ready built-in case $£ 29.95$. Order As XG22Y

OTHER KITS FOR ZX81

3-Channel Sounds Generator (Details in Book 5) Order As LW96E. Price £10.95
ZX81 Sound On Your TV Set (Details in Book 6) Order As LKO2C. Price $£ 19.95$
ZX81 I/O Port gives two bi-directional 8 -bit ports (Details in Book 4).
Order As LW76H. Price $£ 9.25$
ZX81 Extendiboard will accept 16K RAM and 3 other plug-in modules.

PCB: \quad Order As GB08J. Price £2.32
Edge Connectors (4 needed)
Order As RK350. Price $£ 2.39$

HOME SECURTTY SYSTEM

Six independent channels - 2 or 4 wire operation. External horn. High degree of protection and long term reliability. Full details in Projects Book 2 (XA02C) Price 60 p

MATINEE ORGAN
Easy-to-build, superb specification. Compar able with organs selling for up to $£ 1000$. Full construction details in our book (XH55K). Price $£ 2.50$ Complete kits available. Electronics (XY91Y) £299 Cabinet (XY938) £99.50 Demo cassette (XX43W) 1.99

25W STEREO MOSFET AMPLIFIER

- Over $26 \mathrm{~W} /$ channel into 8Ω at 1 kHz both channels driven - Frequency response 20 Hz to $40 \mathrm{kHz} \pm 1 \mathrm{~dB}$
- Low distortion, low noise and high reliability power MOSFET output stage
* Extremely easy to build. Almost everything fits on main pcb, cutting interwiring to just 7 wires (plus toroidal transformer and mains lead terminations)
* Complete kit contains everything you need including pre-drilled and printed chassis and wooden cabinet. Full details in Projects Book 3 . Price 60p (XA030). Complete kit only $£ 49.95$ incl. VAT and carriage (LW7IN)

BUY IT WITH MAPCARD
Send now for an application form - then buy it with MAPCARD MAPCARD gives you real spending power up to 24 times your monthly payments, instantly

MAPLIN'S FANTASTIC PROJECTS
Full details in our project books. Issues 1 to 5 : 60p each Issue 6: 70p
In Book 1 (XA01B) 120W rms MOSFET Combo Amplifier Universal Timer with 18 program times and 4 outputs - Temperature Gauge - Six Vero Projects. In Book 2 (XA02C) Home Security System Train Controller for 14 trains on one circuit Stopwatch with multiple modes Miles-per-Gallon Meter
In Book 3 (XA03D) ZX81 Keyboard with electronics Stereo 25W MOSFET Amplifier - Doppler Radar Intruder Detector - Remote Control for Train Controller
In Book 4 (XAO4E) Telephone Exchange for 16 extensions Frequency Counter 10 Hz to 600 MHz Ultrasonic Intruder Detector - I/O Pori for ZX81- Car Burglar Alarm - Remote Control for 25W Stereo Amp.
In Book 5 (XA05F) Modem to European standard 100W 240V AC Inverter Sounds Generator for ZX81 - Central Heating Controller - Panic Button for Home Security System Model Train Projects Timer for External Sounder
In Book 6 (XA06G)* Speech Synthesiser for ZX81 \& VIC20 - Module to Bridge two of our MOSFET Amps to make a 350W Amp ZX81 Sound on your TV EX81 Interface for Modem Scratch Filter Doorbell for Deaf - Simple FM Tuner* Damp Meter*

- Projects for Book 6 were in an advanced state at the time of writing. but contents may change prior to publication Idue 11 in February 1983).
MAPLIN'S NEW 1883 CATALOGUS.
Over 390 pages packed with data and pictures and atl completely revised and including over 1000 new items On sale in all branches of WHSMITH
Price $\boldsymbol{£ 1 . 2 5}$

Post this coupon now!
Please send me a copy of your 1983 catalogue. I enclose $£ 1.50$ (inc $\mathrm{p} \& \mathrm{p}$). If I am not completely satisfied I may return the catalogue to you and have my money refunded. If you live outside the U.K. send $£ 1.90$ or 10 International Reply Coupons. Despatched by return of post
Name
Address

MAPLIN ELECTRONIC SUPPLIES LTD,
P.O. Box 3, Rayleigh. Essex SS6 8LR.

Telephone: Sales (0702) 552911 General (0702) 554155,
Shops at:
Note: Shops closed Mondays
159 King St., Harmmersmith, London W6. Telephone: 01.7480926 284 London Rd., Westcliff-on-Sea, Essex. Telephone: (0702) 554000 Lynton Square, Perry Bari, Birmingham. Telephone: (021) 3567292

[^0]: (c) IPC Magazines Limited 1983. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: Piease nole X in parq aumber denoles mains voltagé, Please inser 10 in place of \times for 110 V . ' ' in place of \times for 220 V (Europe). and ' 2 ' in place of X ior 240 V

[^2]: 19 MULBERRY WALK LONDON SW3 6DZ TEL: 01-352 1897 TELEX: 918867

[^3]: A7 Institute Of Acoustics 0312252143
 A8 Holographic Exhibitions 01.8366423
 C Reg. Rowles \& Cardiff 565656
 E Evan Steadman \& 079922612
 F2 Pontefract \& District Am. Rad. Soc. 60977791071
 F3 Tomorrow's World Exhibitions, Bristol
 I Industrial Trade Fairs \& 021 7056707
 K Douglas Temple Studios \& 020220533
 LI World Trade Cntr., Europe Ho., London El
 N Institute Electrical \& Electronic Engineers
 O Online 60927428211
 T Trident 608224671
 V1 Jack Tootill, Ipswich Radio Club
 Z BETA Exhibitions 01-405 6233
 Z1 IPC Exhibitions 6 01-643 8040

