PRACTICAL

New developments in UK Robotics

ADVANCED DESIGNS FOR EDUCATION, INDUSTRY AND THE HOME CONSTRUCTOR

Robotic experience is becoming as essential a subject as computing MICROGRASP provides the lowest cost means of acquiring that experience but despite its ultra low price the robot has considerable versatility. There are 5 axes each using a servo motor and there is feedback from each of the arm movements. Control is by any computer with an expansion bus - the 2X81 being particularly suitable. Servoing is achieved with hardware on the interface board to keep programming simple and the robot is operated under BASIC commands with no computer-specific software required. The interface board is memory mapped using only 64 bytes at any of 1024 switch selectable locations.
MICROGRASP robot kit with power supply
Universal computer interface board kit
23 way edge connector
ZX81 peripheral/RAM Pack splitter board
£125.00

HEBOT 11 is a turtle-type robot which takes programming out of the two dimensional world of the VDU into the real three dimensional world. Given a DC supply of $9-15 \mathrm{~V}$ it can perform a bewildering number of moves under computer control - forwards, backwards, left and right - with each wheel independently controlled. It has blinking eyes, bleeps with a choice of two tones and has a solenoid operated pen to chart its progress. Touch sensors coupled to its shell return data, about its environment, to the computer for it to calculate evasive or exploratory action. Hebot II connects directly to an /O port or alternatively with the expansion bus of a 7×81 or the expansion bus of a ZX81 or other computer.
Hebot II kit
Universal computer interface board
23 way edge connector
ZX81 peripheral/RAM Pack splitter board

GENESIS P102 PROCESSOR BOX, HAND HELD CONTROLLER AND COATEX COMPUTER

Top of the range is the Genesis P102 which has dual speed control, continuous servo operation and double acting cylinders for increased torque on the wrist, and arm rotation oints. The microprocessor based control system has additional memory, position interrogation via the RS232C interface increasing the versatility of computer control and inputs are provided for machine tool interfacing
6 axis system READY BUILT
£1950.00
Powertran CORTEX 16 bit 64 K computer Kit $£ 295.00$; READY BUILT $\mathbf{£ 3 9 5 . 0 0}$ (Electronics Today International December issue on CORTEX)
POWERTRAN cybernetics

MICROGRASP, INTERFACE BOARD AND ZX81

‘HIGH-TECH' FROM HANTS . . .

GENESIS S101 AND GENESIS P101 WITH PROCESSOR BOXES AND HAND-HELD CONTROLLERS

With prices starting below $£ 1,000$ the Genesis range of general purpose robots provide a first rate introduction to robotics for both education and industry. Each has a self-contained hydraulic power source, which enables oads of several pounds to be smoothly handled. The system operates from a single phase 240 or 120 V AC supply or a 12 V DC supply. The machine can be supplied with up to 6 axes each of which is fully independent but capable of simultaneous operation. Position control is achieved by means of a closed-loop feedback system based around a dedicated microprocessor. Movement sequences can be entered, stored and replayed by use of a hand held controller, alternatively the systems can also be interfaced to an external computer via a standard RS 232C link.

Example prices and specifications

```
Genesis S101
Base: 19.5" \times 11" x 7.5"
Lihing capacity: 1500gm
Arm lif: 6.6"
Weight: 29Kg
4 axis model in kit form \(£ 990\)
5 axis model in kit fort \(\mathbf{£ 4 4 5}\) 5 axis model READY BUILT \(€ 790\)
```


Genesis P101

```
Base: \(19.5^{\prime \prime} \times 11^{\prime \prime} \times 7.5^{\prime \prime}\)
Lifting capacity: 2000 gm ( 10
Weight: 34 kg
4 axis model in kit form \(\mathbf{£ 4 9 5}\) 6 axis model in kit form E595
6 axis model READY BUILT \(£ 950\)
COMPLETE SYSTEMS AS SHOWN IN PHOTOGRAPH ABOVE
```

Genesis S101
4 axis system in kit form $\mathbf{£ 6 3 5 . 5 0}$
5 axis system in kit form $\mathbf{6} \mathbf{3 3 5 . 5 0}$
5 axis system READY BUILT f1355 00
As teatured in this journal Nove

Genesis P101

4 axis system in kit form $\mathbf{7 4 2 . 0 0}$
4 axis system in kit form $\mathbf{£ 7 4 2 . 0 0}$
6 axis system READY BUILT $\mathbf{£ 1 5 2 5 . 0 0}$ -April ' 82 issues.

```
ALL PRKCES EXCLUSNE OF VAT
PORTWAY INDUSTRIAL ESTATE, ANDOVER, HANTS SP10 3WN Telephone: ANDOVER (0264) 64455
```

PRACTICAL
ELVOLUME 19No. 2FEBRUARY 1983
CONSTRUCTIONAL PROJECTS
BATTERY TO MAINS INVERTER by M. Tooley BA and D. Whitfield MA, MSc 22
Standby mains supply for your house or garage
TWILIGHT WARNING 40
Provides audio/visual indication with reducing light level
RADIO BOOSTER by M. Tooley BA and D. Whitfield MA, MSc 46
Simple add-on that improves car radio reception
ULTIMUM Part 4 56EPROM programmer card
GENERAL FEATURES
INTO THE REAL WORLD Part 1 by M. Tooley BA and D. Whitfield MA, MSc 30
Introduction to interfacing microprocessors
SEMICONDUCTOR UPDATE by R. W. Coles 38
Featuring the Am 7910, LC502, Micro/J 11
PROGRAMMABLE UNIJUNCTION TRANSISTORS by P. Gatehouse 50
A few PUTs are a useful investment
INGENUITY UNLIMITED 54
Short-cut to 'short' detection-Cassette tape timer-Low cost multiple bargraph driver MICROPROMPT 64Hardware and software ideas for PE computer projects
NEWS AND COMMENT
EDITORIAL 17
NEWS AND MARKET PLACE 18
Including Points Arising and Countdown 27
Extra-terrestrial activities chronicled
28
28
ELECTRONIC HOBBIES FAIR REVIEW
ELECTRONIC HOBBIES FAIR REVIEW
Off to a good start
36, 48, 52
BAZAAR
Free readers' advertisement
INDUSTRY NOTEBOOK by Nexus 39
News and views on the electronics industry
PATENTS REVIEW 42
Noise removal and a headphone warning system
SPECIAL OFFER-MULTIMETERS 45
PE MICROCONTROLLER: DATA SHEET 1 by M. Tooley BA and D. Whitfield MA, MSc 49
SPECIAL OFFER-CASSETTES 60
STRICTLY INSTRUMENTAL by K. Lenton-Smith 63Konosuke Matsushita and the SX-U90P
SPECIAL SUPPLEMENT

[^0]

GET 310
 MEB

WE'RE INSTRUMENTAL IN MAKING A LOT OF POWER

In keeping with ILP's tradition of entirely self contained modules featuring, integral heatsinks, no external components and only 5 connections required, the range has been optimized for efficiency flexibility, reliability, easy usage, outstanding performance, value for money.
With over 10 years experience in audio amplifier technology ILP are recognised as world leaders.

WITHALOT OF MELP rnom ELECTRONICS LTD

PROFFSSIONAL IIIFIT THAT EVERY ENTHUSIAST

 CAN HANDIL...
Unicase

Over the years ILP has been aware of the need for a complete packaging system for it's products, it has now developed a unique system which meets all the requirements for ease of assembly, adaptability, ruggedness, modern styling and above all price.

Each Unicase kit contains all the hardware required down to the last nut and bolt to build a complete unit without the need for any special tools.
Because of ILP's modular approach, "open plan" construction is used and final assembly of the unit parts forms a compact aesthetic unit. By this method construction can be achieved in under two hours with little experience of electronic wiring and mechanical assembly.

Hi Fi Separates

UC 1 PRE AMP UNIT: Incorporates the HY78 to provide a "no frills", low distortion, $(<0.01 \%)$, stereo control unit, providing inputs for magnetic cartridge, tuner, and tape/ monitor facilities. This unit provides the heart of the hifi system and can be used in conjunction with any of the UP Unicase series of power amps. For ultimate hum rejection the UC1 draws its power from the power amp unit

POWER AMPS: The UP series feature a clean line front panel incorporating on/off switch and concealed indicator. They are designed to compliment the style of the UC1 pre-amp. Performance for each unit which includes the appropriate power supply, is as specified on the facing page.

PowerSlaves

Our power slaves, which have numerous uses i.e. instrument, discotheque, sound reinforcement, feature in addition to the hi fi series, front panel input jack, level control, and a carrying handle. Providing the smallest, lowest cost, slave on the market in this format.

UNICASES					
HIFI Separates					Price inc. VAT
UC1	Preamp				£29.95
LPIX	$30+30 \mathrm{~W} / 4-8 \Omega$	Bipolar	Stereo	HiFi	¢54.95
UP2X	$60 \mathrm{~W} / 4 \Omega$	Bipolar	Mono	HiF,	¢54.95
UP3X	$60 \mathrm{~W} / 8 \Omega$	Bipolar	Mons	Hif:	¢54.95
UP4X	$120 \mathrm{~W} / 4 \Omega$	Bipolar	Mono	Hifi	¢74.95
UP5 ${ }^{\text {U }}$	$120 \mathrm{~W} / 8 \Omega$	Bipola	Mono	MiFi	¢74.95
UP6X	$60 \mathrm{~W} / 4-8 \Omega$	MOS	Mono	Hif:	¢64.95
UP7X	120W/4-8	MOS	Mono	HiFi	¢84.95
Power Slaves					
USIX	60w/4 Ω	Bipolar	Power	Slave	¢59.95
US2x	120W/4 Ω	Brpolar	Power	Slave	¢ 79.95
US3 X	60W/4-8	MOS	Power	Slave	¢69.96
US4X	120W/4-8	MOS	Power	Slave	$¢ 89.95$

[^1]
You liked the VL-Tone You will love the PT-30!

f69

FREE
Mains Adaptor \& Songbook
worth fit, on request with order
This incredibly sophisticated portable musical instrument has a computer brain that can turn you into a talented musician overnight.
The AUTOMATIC HARMONIZATION feature analyses notes which have been programmed and supplies appropriate chords for acoompaniment. Three different choices are available to suit your taste and any chord. or chords can be manually changed if desired.
The 31 key monophonic keyboard has a comprehensive chord section with buill-in Bass partems. The 120 comes with 8 preset instrument voices and 12 rhythms plus 6 arpeggio pattems. There is also a transpose function and a liquid crystal display Sho 508 STEP MEMORY
The STEP MEMORY can be sub-divided to give up to 8 separate memories These separate memories can be repeatedly played and/or link ed to other memories in any order. Both notes and chords can be stored in this way. The contents of the memories can be stored onto cassette tape via the optional TA-1 interface, for re-
wading at a later date. There is also a OE KEY PLAY feature, similar to the VLTone products.

OTHER NEW CASIOTONES
MT-65 49 key, 8 note polyphonic portable keyboard with 20 preset voices. Simulated reverb/vibrato/delayed vibratohustain. Variable modulation (cross tone modulation) Twelve thythms with a choice of 4 bass, 4 chord, and 4 arpeggio pattems. Bass can be played manually if desired.

SEND FOR FULL DETAILS OF THESE AND OTHER NEW MODELS

MORE CASIO MAGIC

The most versatile watch ever created?

TE-2500
DICTIONARY WATCH
£39.95
bictionary modk
,.711 words in both English and Sparnish.
5-Langusge translation mode.
36 basic sentences for daily conversation in English, Japanese, Spanish, French and German.
Backward and forward search buttons, with rapid search facility.
World time mode
Displays all 24 time zones
Daily alarm, hourly chimes, calendar and professional $1 / 10$ second stopwatch. There are 6 programmable alarm messages and 2 alarm sound options
TR-6000 TRANSLATOR CALCULATOR 6,000 words and phrases $£ 29.95$
This English-Spanish Spanish-English translator is a must for next year's holiday and. naiurally, the alpha-numeric keyboard doubles as a calculator to help you work out your pesetas. Cambrider CB1 IIX.
Tet: 022.3 312 ist.

TERRIFIC VALUE!!!
We have a big store 10 clear. 100 tons of
stock must go. 10 kilo parcel of unused parts. Minimum 1,000 items includes panet meters. timers, thermal trios, relays, switehes, motors drills, taps and dies, tools, thermosists, coils
condensers, reslstors, eic, inc. Individually condensers, resistors, etc.

YOURS FOR ONLY

IONISER KIT
Refresh your home, office, shop, work room, etc. with a negative ION generator. Ma kes vou ree better and wark harder - complete mains
operated kit, case lincluded $£ 11.95$ plus $£ 2.00$ ostage
CAR STARTER/CHARGER KIT
This kit has no doubt saved many motortsts from embarrasment in an emergency you can start car off mains or bring your batiery up to prises: 250w mains transformet, Iwo 10 amp brldge rectifiers, start/charge switch and futt instructions. You can assemble this in on evening, box th up or leave it on a shelf in the grage, whichever suits you best.
$3-30 \mathrm{~V}$ VARIABLE VOLTAGE POWER SUPPLY UNIT
With 1 amp DC output, for use on the bench Audents, Inventors, service engineers, etc. ion, in case with a volt meter on the front panel. Complete kit £13.80.

ZX81 OWNERS

 Make vourself a fullsize kevboardl Kev switches complete

E1. 15 .

COMPUTER PRINTER FOR
ONLY £4.95
dapanese made Epson 310 - has a self starting. brishless drive motor. Complete with electron. ics - uses plain paper. Brand new w
data. ONLY E4.95 plus है 1.25 Port.

Cash, $P . O$. or cheque with order. Ordars
under $\$ 10.00$, add 60 . Access $8 \mathrm{~B} / \mathrm{caro}$ orders by phone to Haywards Heath (0444) 1 454563 . Dellvery by return.

REVERSIBLE MOTOR WITH CONTROL GEAR
Made by the famous Framco Company thls is a very robust motor, size approximately
$7 \%{ }^{\prime \prime}$ long. $3 \%^{\prime \prime}$ dia. $3 / 8^{\prime \prime}$ shaft. Tremendous powertul motor, almost impossible to stop. ldoal for operating stage curtains, sliding doors, ventilators, etc., even gara age doors i adecuately counter-balanced. We offer the motor complete with control gear as follow: - 1 Framco motor with gear box. I manual switch. $1 \times 100 \mathrm{w}$ auto transformer. - 2 tlmit stiop stitithes.- I eircuit diagram of connections. $£ 19.50$ plus postige $£ 2.50$. SPIT MOTORS

Powerful mains operated induction motors with gear bos attached. The linal shalt is a alternative coupling methoods - final speed approx. 5 revs/min. PRICE E5.50, Simila notors with final speets of $80,100,16$ 8 POWERFUL BATTERY MOTORS \{all different) suitable for models, maccanos, drills, 12 VOLT MOTOR BY SMITHS Made. Ior use in cars, these are series woun and they become more powerful as load have a good length of " $4^{\prime \prime}$ spindle - price £3.45. Oitto, but double ended $£ 4.25$. EXTRA POWERFUL 12 VOLT MOTOR
Made to work battery lawmower, this probably develops up to $1 / \mathrm{h} . \mathrm{p} ., 50$ is could be used to power a 90 kart or to drive a This is easily reversitie with our reversible switch - Price £1,15).

ELECTRONIC LOCK KIT XK101 This KIT contains a purpose designed lock IC, to construct a Digital Lock, requiring a 4 .key sequence to open and providing over 5000 different combinations. The open sequence may be easily changed by means of a prewired plug. Size: $7 \times 6 \times 3 \mathrm{cms}$. Supply; 5 V to Hundreds of uses for duput. J50mA max. anti-theft device, electronic equipment, etc. Will drive most relays direct. Full instructions supplied. ONLY $£ 10.50$ Electric lock mechanism for use with latch locks and above kit £13.50

MINI KITS
MK1 EMPERATURE CON HOLLER/THERMOSTAT Uses -M3911 IC to sense tempera
ture (sor men) and ulac to switct heare- 1 kW Whem MKCa soldd Surte Relay Ideal for switching motors, lights
heatez etc from logic heatez, etc. from logic. Opto
isoletird with zoro voltage swith
 MK3 LAR/DOT DISPLAY Oisplay an anslogue voltope on
linear 10 alement LEO diepor as linear sinsiement leo dieplay os
 sticked to obtsin 20 to 100 elomen
displam Requirs 5.20 V supph.
 MEM AREATURE CONTROLLER TEMERATURE CONTROLLER awitct, this kit may be wired to form

- be rst firs"
power controller - "Derst firt" power controller
onabing the remperature of on en closue to be meintanned to withir $0^{25} \mathrm{C}$ C. Max. load 3 KW

Baredion the 2N IO34E Timer IC thin
kit wilamiteh o maina load on lor Off for a Fenee time from 20 mine to 3 E hre Langer or shorter peciode mey be realized by minor compon
chanpas. Max, load 1 KW . 4.50
$\int J$ 3-NOTE DOOR CHIME סठ
Based on the SABO600 C the kit is supplied with al components, Including loudspeaker. printed circuit board, a pre drilled bo $195 \times 71 \times 35 \mathrm{~mm}$ and full instructions. Requires on y a PP3 9 V batrery and pushswitch to complete. AN IDEAL PROJECT FOR BEGINNERS. Order as X: 102

C5.00

XK113 MW RADIO KIT

Based on ZN414 IC, kit in yludes PCB, wound serial and rystal earpiece and all components to make a sensitive miniature radio. Size: $5.5 \times 2.7 \times 2 \mathrm{cms}$. Requires PP3 9 V battery IDEAL FOR BEGINNERS.
$£ 5.00$
COMPONENT PACKS

PACK 1650 Resisto

PACK $240 \times 16 \mathrm{~V}$ Electrolytic Capacino $£ 4.00$ PACK $1000 \mathrm{uF}-5$ per value E 3.25 PACK 360 Polvester Cabacitors 0.01 to $1 \mu \mathrm{~F} / 250 \mathrm{~V}$ PACK 45 per value $\mathbf{f 5} .55$
PACK 445 Sub-miniature Presets 100 ohm to 1 Mohm PACK 5 - 30 Low Profue Ea. 90
PACK 530 Low Profile $1=$ Sockets 8,14 and 16 - pin PACK 825 Red LEDs 15 mm dia, $1 \mathrm{c1} .25$

Have you got our FREE ORANGE CATALOGUE yet? NO?! Sens S.A.E. $6^{\prime \prime} \times 9^{\prime \prime}$ TODAY!!
It's packed with details of all our KITS plus large range of SEMICONDUCTORS including CMOS, LS TTL,
linear, microprocessors and memories, full range of LEDs, capacitors, resistors, hardware, relays, switches etc. We also stock VERO and Antex products as well as books from Texas Instruments, Batbani and Elektor. ALL AT VERY COMPETITIVE PRICES.
ORDERING IS EVEN EASIER - JUST RING THE NUMBER YOU CANT FORGET FOR PRICES YOU CAN'T RESIST.

and give us your Access or Barc aycard No. or write enclosing cheque or postal order. Official orders accepted from schools, etc.

DVM/ULTRA SENSITIVE THERMOMETER KIT This new design is based on
the tclil126 fa lower power The tCli726 fo lower power
version of the ICL7106 chipl and es $3^{1 / 2}$ dight lifulu cerstal
display. This sit will form the display. This sit will form the
baslo of a digital muttimanem basle of a dightal multimetem Conly a few additional resintors and swiches are requlfed-details supplied). or a sensitiv digital theymameter The basic sansitivily of 200 mV for a full scate peacing automatic polarity indicatlon and an ultro low power requirement-giving a ${ }^{2}$ yea
sypical battery ilfe from a tzandard 9 V PP

Price $£ 15.50$
DISCO LIGHTING KITS
 E 14.60
0L2100K
A lower cos undirectional channel sequence with speed
variahte by means of a per set pot Ouputs
switched only al mains ferc crossing pouns Optional opto input OLA? Only $\mathbf{£ 8 . 0 0}$ Allowing audio ("bearil) light 60p response
OL 3000 K

"OPEN-SESAME" The forio3 is genaral purpose infra-radrana open) relay contact and two latched umensiator output. Dosigned primarily for eontrolling puts for drive garage lights at a range of up to 40 t The unit also has numerous applications in the homs tor ewheching lights. N, closing
curtelne. otc. Idest for agod of disebied cursine.
persone.
her Kit comprises a mains powered receiver, a
tour button transinitter, complete with pion drilled box, requinniter, complete with pre-apto-solated solld state wwitch kit for interONLY £23.75

L:2D $31 / 2$ DIGIT MULTIMETER 16 rances including DC voltage $(230 \mathrm{mv}-1000 \mathrm{v})$ and AC vokage, DC current (200 mA . 10 A) and resist: ance ($\mathrm{D}-2 \mathrm{M}$) + NPN $\&$ PNP t'ansistor gain and diode =heck. Input Impedance 10M. Sire 155 x 88×3 3mm. Requires PP3 9 V batzery. $£ 29.00$

THE MULTI-PURPOSE TIMER HAS ARRIVED
 and oft at pre-sel times over a 7 day cycie, epe. to control yous central
heating fincluding dittlerent awitching times for heating fincluding ditterent switching fime for weekencle. fust
connect if to your system programme and sot if and forget itmethe clock will do the ress.
FEATURES INCLUDE:
0.5. LED 12 hour diaplay.

- $50 / 60 \mathrm{ramani}$ operation.

Bettery backup saves stored programmen and continues
timo keoping ouping power failures timokeoping during power foiluras. (8atrery not supplied). 18 programme time zeti.
Powerful "Everyday" function ensbling outpu
to wwitch every day but use onty one time set.
Direct switch control Ansbling output to ber one hourna immodletaly or sther aspecified time intervel.
20 function keypad for progremme entry.
(Kit Includes all components, PCB, assembly and programming instructions). ORDER AS $=T 5000$
For a detailed booklet on remote control - send us 30p and S.A.E. $\left(6^{\prime \prime} \times 9^{\prime \prime}\right)$ today.

ALL PRICES EXCLUDE VAT

MKE SIMP-E RNFRA RED TRANSMOTE CONTROL KITS
 MKE SIMP.E INFFA RED TANSMITEES PUI Sod inte re source complato win

Pulsod info red source com
MKTINFRA REO RECEIVER

MKE COOED INIRRA RED TRANSMOITER
Based on the SL490, the kit inclit (Specimi Price for MK6 and MK7 together Et2.50
 MK 1010 WA WKEYBOARO

For u ges with MKB kh with 16 Oni or triscs, will wwith up to 16 items of suulionent on or of remotely, Laichec or momentory out-
 MK18 Mair : Pow orad IR Transmmter
 For use with MK or Mk

 Ancillery Ktz: MKZ2 Solvd Stere Raiay
 MKSDUNA LTCHED SOLIO STATE RELAY

24 HOUR CLOCK/APPLIANCE TIMER KIT coods by return subjoct to availability. OPEN $\left.\begin{array}{c}9 a m \text { to } \\ 10 a \mathrm{~m} \text { to } \mathrm{pm}(\mathrm{Mon} \text { (} \mathrm{Sat})\end{array} \mathrm{Fri}\right)$

Cr1000k with white DOX $158131 \times 71 \mathrm{~mm}$
displey diveras. gwiches, LED.
 Add $=5$ p postage \& packing $+15 \%$ VAT to total.
Oversess Customers;
Add $\mathbf{L 2} .50$ (Europe), $£ 6.00$ (elsewhere) for p\&o. Add L2.50 (Europe), C .00 (elsewhere) for p\&o

C14.20 £f4.80
E17.40
ع23.80

 Lonsonwros

AUDIO ELECTRONISS an brsamhas ia EXCLUSIVE OFFERS! MULTIMETERS

 1206 20K/Volt. 19 ranges
 -DE with SCAD2 doubler
 FREE with SG402 below REE with CSI566A bDEE with CS1820

TRIO 20 MHZ DUAL TRACE SCOPES

140 mm Tube: OC to $20 \mathrm{MHZ} \mathbf{5} 5 \mathrm{mV}$ sensitivity: CH2 Invert
CS1 820 Delayed sweep: 0.2 usec to 0.5 sec Sweap: Modes Chi. Ch2. DUAL and Dur Price $\mathbf{£ 4 2 0}$ inc. VAT (UK $\mathrm{c} / \mathrm{p} £ 4$) CSI566A MOR. AUTO. VIOED: 0.5 यsec Sweep Modes CH1. CH2. ALT. CHOP and a00. List price £368.00 inc. VAT. Our Price £299 inc. VAT (UK $\mathrm{c} / \mathrm{p} £ 4$) PUUS FREE METER! See above
.

SPEAKERS \& TWEETERS

HIF20ESM 8 ohm
30/50 watt Bass/
Midrange 8- E5.95
(UKK $c / p \varepsilon 1.209$

HT25 $2 \% / 48$ ohm 15 watl lweeter
£1.95

HIF20ESM 40 hm Version E $\mathbb{E} \subset .95$ (UK c/p £1.20)

3 way 8 ohm 15 watt
crossover $£ 1.25$
14. Mini stereophones as above for purchases of $\$ 10.00$ or more from this advertisement.

hif87BSM 480 hm 30/50 watt midrange 54.95 [UK c / p 650]

SN 30040 wall
verslon £1.75

PH30 3" 8 ohm 15 watt Iweeter $£ 2.20$
 30 watt lweeter
£3.95

STEREOPHONES • MEGAPHONES • P.A. HORNS

ORDER BY POST OR PHONE OR CALL IN AND SEE FOR YOURSELF WELL WORTH A VISIT! ALL OFFERS LIMITED QUANTITIES E \& DE.
QUDO E \&
301 EDGWARE ROAD. LONOON W2 IBN. TEL: 01-724 3564 ALSO AT HENAYS AADIO. 404/40S EDGWARE ROAD. LONDON W2

MONITORS

HIGH RESOLUTION - AND LOW COST !

Either cased or open frames to OEM's. The specification is right, the price is even better.

Phone or write to our Sales Manager, Richard Cox, for immediate action.

CROFTON ELECTRONICS LTD

35, Grosvenor Road, Twickenham, Middx, TW1 4AD. Telephone: 01:891 1923/1513 Telex: 295093 CROFTN G

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory

You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a selfemployed servicing engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.
You will do the following
Build a modern oscilloscope

- Recognise and handle current electronic components
Read.draw and understand circuit diagram
- Carry out 40 experiments on basic electronic circuits used in modern cquipment
- Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V. Hi-Fi and microprocessor/computer
 Hi-Fi and mict.

Newdob?NewCareer?NewHobby?Getinto Flectronics Now!

TRIACS - PLASTIC
MINIATURE TOOLS FOR HOBBYISTS

 imulatec handies 4 fimen iengit Oiver mexey oriven
 Nimaturt long anese piters - in sulatroo

Ba mut daiver sel
Sel of 5 BA spannar shafts plus universal handle in roll-up wallet. Sizes OBA 24.688 A Order no: T192
2. 75 set

MEOM SChewornen

Cuarantee

a ins Deen BI PAK.s Guapanict bach has All these Sale lems are in stach in quant and All these Sale items are in stoch in quantity and weill despalch the same day as your order is recemed

IC SOCKETS

BI-PAK'S OPTO 83 SPECIAL
A selection of large \& Small site Leo's in fied Green, Yellow and Clear, plus shaped devites of difieseni types 7 Segment displavs. photo wansisiors, emilters and detectors Types like MEL11, FPT100 etc. Plus Cadmium Cell ORP12 and germ. photo transistor OCP71. TOTAL OF 25 pieces.

Mw398 NI-CAD CHARGER
Case with Nu. Cad Datiery chargee All plastic
case with int up lid Charge/ Test swich LEO sat each ol the five charging points Cnarges - Power
PP3 (9V) $\quad 220.240 \mathrm{VAC}$
U12 (1 5 V peniute) 0 ims

(1) 5V 0) $\quad \mathbf{8 . 9 5}$

POWER SUPPLY OUR PRICE E 3.25
Power supply firs allecily yino 13 amp socker Fused lor sately Polarily reversing socket Vollage swilen Lead with mulli, Dlug Inpul - 240 VaC 50 Mz Output -3456
759812 VDC Raling -300 ma Mw88

1 Amp SILICON RECTIFIERS 50 - 500 N - uncoo. 1 - you setact lor Mis Lt deriect jencas - No dues Min sav 50 tor $\$ 1.00$ - moth doubte OROERNO SN/6 sidcon General Pupose NPN Fimssions 10.18 Cose me 75-80 so on 100 on 500 on 1000 on PRICE 52.00 E 3.80 £11.50 $£ 30.00$ Silcon Geneal Putoses PMP finassions $10.9 \mathrm{C}_{2}$ 50 on 100 on she on 1000 on

Sllicon NPN'L'TypeTransitors T0. 92 Plastic cenire coliector Like BC $1822-183 \mathrm{~L}-184 \mathrm{~L}$
VC80 45 VCEO 30 ICTOOOMA He $100-400$ ALL Deflect devices - uncoded ORDER AS $\$ \times 183 \mathrm{~L}$ 50 off 100 off 500 off 1000 oh
PNP SILICON TRANSISTORS: Similar 2TK500-2TXP14-E. Line
VCEO 40 VCBO 35 ic 300 mA He 50.400 VCEO 40 VCBO 35 ic 300 mA He $50-400$ Brand New - Uncoded - Pelect Devices 50 oft 100 oHf 500 oH 1000 oH

3at voty meter modute 3×7 segment displays Basic Circuit $0-2 V \pm$ instructions provided 10 - Derating voltage $9 / 12 v$
Typ. Power Consumption 50 mA ONO:SX*9 Once only price

MULTITESTERS

8 Bit MICROPROCESSOR
 Neobo micio Compuet Famay Instruction Cycrie Time ? us Supothed winh Iunclional Block Dugram brano new NOT seconds or reclaims
 $100 \%_{0}$ perteal marms man Normal Sell price s 5×8080 Only Our Bur-pax Specia Price £2.00 so muray - limitiod siocks 40 Pin ic Sockel to fin Sx0080 ones OROER NO 1609 30p

SILICON BRIDGE RECTIFIERS
Comprising $4 \times 1 \frac{1}{2}$
amp rectifiers mounted on PCB VRM -150 vits IFM - 1.5 Amps Size: 1 inch square 10 off $£ 1.00$ 50 of E 4.50 100 of $\mathbf{E 7} .50$
Order No. As:4RI BRect.

REGULATED

'VARIABLE
Stabifised
POWER SUPPLY
Variable from 2.30 volts and 0.2 Amps Kit includes
1 - VPSS0 Module $1-25$ vall 2 amp translormer PS30 Module. $1-25$ volt 2 amp translormer. 470 ahm wirewound potemiometer, 1 - 4 K 7 ohm wirebound potentiometer, Wiring Diagram 520 included. Order No. VPS 30 KIT $\underline{Z 0}$
MINIATURE FM TRANSMITTER Freq: $95-106 \mathrm{MHz}$. Range: I mide Size: $45 \times 20 \mathrm{~mm}$. Add: 9 y batt. ONLY Not licenced in U.K Ideal for: 007 MIS FBI-CIA KGB

Use your crean card Reng us on Ware 3182 now and get your order even taster Goods normaly sent 2 nd Class Mat
Romember you musi add Val at lin to vour order
Jatal Postage add 50p per Total order

CAMBRIDGE LEARNING
SELF-INSTRUCTION COURSES

GSC SUPERKIT $£ 19.90$

Learn the wonders of digital electronics!

This practical kit for beginners comes complete with an instruction manual, components, and EXP300 breadboard to teach you all the basics of digital elec:ronics. The course needs no soldering iron; the cnly extra you need to buy is a $4 \frac{1}{2} \mathrm{~V}$ battery.
Using the same board you can construct literally millions of different circuits.
The course teaches boolean logic, gating, R-S and J-K flipflops, shift registers, ripple counters, and half-adders.
It is supported by our theory courses

DIGITAL COMPUTER LOGIC \& ELECTRONICS

which covers: basic computer logic; logical circuit elements; the design of circuits to carry out logical functions; flipflops and registers; and

DIGITAL COMPUTER DESIGN
 $£ 8.50$

Our latest, most up-to-date course on the design of digital computers, both from their individual logic elements and from integrated circuits. You are first shown the way in which simple logic circuits operate and then, through a series of exercises, arrive at a design for a working machine.
Please send for our free booklist for further information on these and our other courses.
GUARANTEE Mo risk to you. If you are not completely satisfied. your money will be refunded upon return of the item in good condition within 28 days of receipt.
CAMBRIDGE LEARNING LIMITED, UNIT 23 RIVERMILL SITE. FREEPOST, S^{-}IVES. CAMBS. PEI7 LBR. ENGLAND. TELEPHONE: ST IVES (0480) 67446. VAT No 313026022 All prices include worldwide postage (airmail is extra please ask for prepayment invoice). Giro A/c No 2789159 Please allow 28 days for delivery in UK.
.SUPERKIT(S) © 19.90
DIGITAL COMPUTER DESIGN(S) e 88.50
DIGITAL COMPUTER LOGIC AND ELECTRONICS e $£ 6.00$
I enclose a "cheque/PO payable to Cambridge Learning Lid for \&a....... (*delete where applicable)
Please chargr my:
-Access / Anerican Express \% Barclaycard / Diners Club Eurocard / Visa / Mastercharge / Trustcard
\qquad
\qquad
Telephone orders from card nolders accepted on 048067446 Overseas cus:omers (including Eire) should send a bank drafi in sterling jrawn on a London bank, or quote credit card number.

Name..

Address.

INTERNATIONAL DIGITAL

 I/C SELECTORby Towers T. D.

Price: $\mathbf{£ 1 1 . 0 0}$

GEGINNERS GUIDE TO MICROPROCESSOAS

 A PRACTICAL INTRO TO ELECTRONIC CIRCUTrS Price: $£ 7.50$ essential electronic an az guide by Loveday G. Price: £6.75 ADVENTURES WITH DIGTTAL ELECTRONICS PRINCIPLES OF INTERACTIVE COMPUTER GRAPHICSby Sproull .

Price: $\mathbf{1 0 . 7 5}$

MICROCOMPUTER TECHNOLOGY AN INTRO by Ullman J. Price: $£ 5.75$ COMPLETE HANDBOOK OF MAGNETIC RECORDING

COMPLETE HANDBOOK OF VIDEO by OWEN D.

Hrice: | H.F. ANTENNAS FOR ALL LOCATIONS |
| :--- |
| Price: $£ 7.50$ |

* All prices include postage * THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books
19-21 PRAED STREET LONDON W2 1NP

hone $01-4029176$ Closed Saturday 1 p.m.

Please allow 14 days for reply or delivery.

It's easy to complain about advertisements.

Every week, millions of advertisements appear in the press, on posters or in the cinema.

Most of them comply with the rules contained in the British Code of Advertising Practice and are legal, decent, honest and truthful.

But if you find one that, in your opinion, is wrong in some way, please write to us at the address below.

We'd like you to help us keep advertising up to standard.

The Advertising Standards Authority.

A. 21 Ranges - 30,000 Ohms/Volt. Features "beep" continuity function and easy access to battery and fuse compartment. DC Volts: 0 to 1000, 7 ranges. AC Volts. 0 to 1000, 5 ranges. DC Current: 0 to 1000, 5 ranges. OC Current: 0 to 10 amps, 5 ranges. Resistance: $0-1-10 \mathrm{k}-1-10$ megs. (Centre Scale 10) dB: -20 to +62 dB .5 ranges. Accuracy: $\pm 3 \%$ DC, $\pm 4 \%$ AC $6^{11 / 16 \times 57 / 16 \times 25 / 8}$. With instruction manual. Requires one 9 V , and one " C " battery. 22-210 \qquad £44.95

44^{95}

Micronta ${ }^{\text {TM }}$ Multitesters

- A Must For The Electronics Hobbyist!

Display Multitester Audible
continuity function sounds at less than 300 ohms
circuit resistance. Overload protected in all ranges.
DC Volts: $200 \mathrm{mV}-2-20-200-2000 \mathrm{~V}$ (max. 1000V). AC Volts:
$2-20-200-2000 \mathrm{~V}$ (max. 500 V). Accurate from 45 Hz to 10 kHz .200 mA ,
AC and DC. Resistance: 200 ohms-2k-20k-200k-2 megs-20 megs.
$63 / 8 \times 3^{1 / 2} \times 13 / 8^{\prime}$. Requires two "AA" batteries.
22-191

... and a Vast Range of Electronics Components

A. Portable Solar Panel. Will power radios, calculators and many other devices. Total output in sunlight: 80 milliamps at 6 V , 40 mA at $12 \mathrm{v} .53 / 4 \times 41 / \mathrm{B} \times 5 / 8 \mathrm{~B}$. 277-1250 119.95
B. High Power 6-9-12 Vot DC Auto Adapter. Delivers 6 v at up to $1 / 2$ an amp, $9 v$ at up to 900 mA , and 12 v at up to 3 amps . Four plug adapter Reversable polarity. 270-1562 £9.99

C. Auto Headlight

Reminder. Auto headlight reminder beeps for ten seconds! LED flashes until you turn off your lights! 270-110 £3.49

OVER 300 STORES AND DEALERSHIPS NATIONWIDE check your phone book for the Findy store or Dealer nearest vou
D. Engineers Notebook
II. Revised to give more
practical circuits and data. Large, schematic diagrams. Various tips for beginners too. 128 pages. 276-5002 1.99
E. Auto Electrical System Analyzer. LEDs show condition of battery, alternator and regulator. Plugs into lighter socket. $12 v D C$ neg. gnd. 22-1635 84.49
\qquad Known as Radio shack in the USA prices may vary at indlividual stores.

EFFICIENT RECESSION

WE have recently heard many comments about how the recession will make sure businesses are run in a highly efficient manner, will weed out the dead wood and eventually lead to a boom in the U K economy and a long period of prosperity. Although this is little consolation for those that have been made jobless over the past couple of years, it does appear to have some foundation and a promise of better things ahead.

Having worked in a Government department there is no doubt that some of them need to be more efficient and cost effective. Can you believe that the British Standard for Electronic Symbols (Section 20 Semiconductor Devices) has not been changed since 1968?

There have been many changes in the semiconductor area since 1968 and this was brought home recently when we looked in BS3939 for a programmable unijunction transistor symbol. Of course such a device is simply not covered.

NEW GROUND

A development that we feel may have more than a little to do with the recession is the recent introduction of
retail sales operations by a couple of industrial suppliers. EMOS, part of Grenson Electronics was formed to supply the hobbyist, and we on PE like to think we had something to do with it. Back in February ' 82 we published a design for a Bench PSU, which had been developed by Grenson and they supplied a kit for it. The kits sold so well it encouraged Grenson to start EMOS-something they had been considering anyway. Of course the recession and available stock may have had some bearing on their intention to break new ground and find extra outlets for their products.

The same may be true of JEE Distribution. This industrial distributor operates from premises with a shop front in South West London. They have recently decided that they may as well use the shop to sell to hobbyists, since it is there, and stocked with a range of 4000 different items. JEE are also "putting a finger in the wind" to test the mail order market.

We wish these companies well, perhaps the recession will result in an overall gain for our hobby.

THEIR DUTY

There is one area where the Government could help "at a stroke" the UK
and the working population. A duty change would encourage manufacture in the UK rather than in Taiwan or Hong Kong. The required change is to either lower import duty on electronic components or impose a similar duty on imported manufactured electronic ítems.

Take the humble Sinclair computer; some of the chips are made in the UK, but many are imported, duty paid, from abroad.

The cost of assembly on each computer is very low in comparison with its final selling price and there is therefore little to be gained by manufacturing in Taiwar, as far as this cost is concerned. However, add this small saving to the additional saving on import duty when a ready made unit is shipped in, and you can see one of the reasons why foreign manufacture is attractive. (We should also be aware that the more items made in each Taiwan factory the bigger their buying power and therefore the lower the component costs; this can lead to a snowball effect). So come on Maggie why not sort that one out soon so Uncle Clive stays with the UK?

EDITOR
 Mike Kenward

Gordon Godbold ASSISTANT EDITOR
David Shortland ASSISTANT EDITOR/PRODUCTION
Mike Abbott TECHNICAL EDITOR
Brian Butler TECHNICAL SUB EDITOR

Jack Pountney ART EDITOR
Kaith Woodruff ASSISTANT ART EDITOR
John Pickering SEN. TECH. ILLUSTRATOR
Isabelle Greenaway TECH. ILLUSTRATOR
Jenny Tremainie SECRETARY

ADVERTISEMENT MANAGER

SECRETARY
D. W. B. Tilleard

Christine Pocknell AD. SALES EXEC.
CLASSIFIED SUPERVISOR
Alfred Tonge 01-2616819
Barbara Blake
01-2615897
AD. MAKE-UP/COPY Ian Sweeney 01-2616601

Technical and Editorial queries and letters (see note below ro):
Practical Electronics Editorial.
Westover House,
West Quay Road, Poole.
Corset BH15 1JG
Fhone: Editorial Poole 671191
We regret that lengthy technical enquiries cannot be answered ower the telephone

Queries and letters concerning astuertisements to: Practical Electronics Advertisements, King's Reach Tower,
King's Reach, Stamford Street, SE 1 9LS Telex: 915748 MAGDIV-G

[^2]
Back Numbers

Copies of most of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd,, Lavington House, 25 Lavington Street, London SE1 OPF, at $£ 1$ each including Inland/Overseas p\&p. Please state month and year of issue required.

Binders

Binders for PE are available from the same address as back numbers at $£ 4.60$ each
to UK or overseas addresses, including postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 13.00$ per 92 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH. Cheques and postal orders should be made payable to IPC Magazines Limited.

MOTOROLA'S MOTORCAR

Motorola's Director of Strategic Marketing has forecast that the automotive semiconductor market will treble by 1987. Setting this against a somewhat gloomier outlook for other market segments has led to the setting up of the Milton Keynes Strategic Automotive Group.

Here, the focal point of an effort to evolve the microelectronics to revolutionise the motorcar is - the Motorcar! This is a stripped out hatchback from which half a kilometre of conventional wire has been removed, and replaced with a mere 65 metres of wire and 10 metres of fibre optic cable. The Motorcar has many electronic systems installed which, it is claimed, will become standard over the next decade. The purpose of Motorola's Milton Keynes facility is not to sell black box systems, but to act as a chip source and data base for companies who wish to take their technology to the market place.

For example, the Motorcar's ignition design has given birth to a specialised 6805 microcomputer called the MC6805S2, and this will interface to the engine by way of a two chip ignition system currently being developed in Geneva. Single wire control systems around the vehicle have necessitated the development of a TMOS power switch with integral CMOS decoder.

The Vehicle Condition Monitor gathers information on fluid levels and temperatures etc. All timings, including those of the windscreen wipers and indicators, are set up by the Central Timer Unit. Each piece of electrical apparatus around the car is addressed via the

bus. Being referred to as outstations, each load will report its status back to the processing unit.

Even repeatability of creature comfort is catered for by the fibre-optic multiplex Seat unit which controls and memorises the driver's seat position. The Driver Information system provides normal dashboard and trip computer readout, plus warning messages from the vehicle's condition monitors.

NEWSCOPE

The newly introduced V-203F and V-353F oscilloscopes from HitachiDenshi feature a fully variable sweep delay system which enables any section of a waveform to be greatly expanded thus allowing more detailed examination of complex signals.

The sweep delay time is variable between $1 \mu \mathrm{sec}$ and 100 msec via a five way switch and coarse and fine variable controls. Delay time jitter is better than 1 part in 5,000 so very high levels of expansion can be achieved.

The V-203F is a 20 MHz dual trace model featuring $1 \mathrm{mV} /$ div vertical sensitivity, add and subtract modes, active sync, separation for video signals, and a rectangular CRT with internal graticule and variable illumination. The V-353F has a 35 MHz bandwidth, a higher tube
E.H.T., a signal delay line, and a higher calibrated max sweep speed of 20 nsec/div. Costing £340 for the V-203F. and $£ 480$ for the V-353F lexcluding VAT). these competitively priced items are available from Reltech Instruments. Coach Mews, St Ives, Huntingdon. Cambs, PE17 4BN. (0480 63570).

48K LINX

A new microcomputer from a British manufacturer is now in the shops. The 48K Lynx from Camputers has a wide range of facilities and is ultimately expandable to 192 K . All the professional High Street buyers give it the thumbs up, and are favouring it against its more expensive counterparts. Features include high resolution colour graphics and add on memory to $96 \mathrm{~K}, 128 \mathrm{~K}$ or right up to 192 K . Although Camputers

are launching a full range of peripherals specially designed for the Lynx, this does not exclude connecting to other manufacturers' equipment, as there is an RS232 port and RGB + sync and composite video sockets. The standard Lynx comes with a fast and comprehensive Basic which was specially written to make the most of the Z80A microprocessor. Good for the beginner and the experienced operator alike this new computer offers great value at £225 inc. VAT.

DIMMING DESK

M.J.L. Systens Lid. have announced a range of dimming desks and power packs, urilising digital control. For both fixed and portable installations, the new systems combine versatility with lower costs. Bringing professional power dimming within the reach of those previously excluded by prohibitive costs, these desks should be a welcome change to lower budget buyers. Currently available are desks with between 6 and 18 channels (12 channel pictured). Ranging from $£ 55$ to $£ 260$ (exc. VAT) this equipment or free information is available from MJ.L. Systems Lid., 45 Worthley Road. W. Croydon, Surrey. (01.689 4138).

RS Move

Our good friends R.S. Components, the well known electromechanical distributors, are planning a big move for 1984. They will be moving the majority of their existing operations to one massive new $H Q$ complex at Weldon, near Corby in Northamptonshire. This mammoth task has been brought about by company expansion and a need for future growth. A large amount of the 1000 employees will also be making the move, nevertheless some will not, and of course this will be good news for the people of the Corby area who have had few job opportunities in recent years.

The new premises costing $£ 12.5$ million includes 335,000 square feet of high bay warehouse, factory and office space. Ground work began on the 28 acre site earlier last summer and completion is planned for early in 1984. The only remaining operations will be the Birmingham and Manchester distribution centres and a London trade counter. R.S. Components rely heavily on the Post Of fice for their efficient same day despatch service, and expect a comparable if not better service after their move. At present the London branch are handling up to 10,000 parcels per day.

IBA Guide

The annual publication and guide to independent broadcasting from the IBA is now on the stands. Entitled 'Television and Radio 1983', it gives lots of in depth information about all aspects of broadcasting, from breakfast television to independent local radio. Sport, art, religion, drama and science are among the main topics covered, and this handbook gives a good insight into the industry. Priced at $£ 3.50$ it is available from all leading booksellers.

CABLETIME

The blackness, oh the echoing blackness In the labyrinth beneath the street Where dank and dripping walls perspire By rats with pattering feet
A robot from a cavern will come lts servo's, Satan's choir
And it shall be armed with superglue And one hundred miles of wire

Nonsense rhyme, but true! If the viability study of the water industry and the UEI high technology group yields positive results, Britain may be spared the judder of the pneumatic drill when laying in those television cables. For beneath our feet, the decaying Vic-
torian sewers, a network of pipes reaching 99 per cent of Britain's homes, could provide the answer. A cheaper answer. A quieter answer to the problem of cabling the new television networks.

The ingenious cabling system has been devised by the water industry's Water Research Centre, in co-participation with UEI (United Engineering Industries). The three companies active within the UEI are: Link Electronics, Micro Consultants and Quantel.

Cabletime is the joint venture's company name, and its aim is to prove by trials that television conduits could be superglued to the ceilings of sewers by small robots.

Bearing in mind recent media glimpses of overseas cable television, let us hope that we have no cause to look upon this mode of delivery as appropriate to the programme material.

ANALOGUE SIGNALIANAIYSER

An Analogue Signal Display and Analysis System which effectively provides the facilities of a large screen storage oscilloscope through the use of microcomputer technology has been produced by GSL. The system has a two channel input and can accept frequencies up to the high audio range.

Seen as having application in a wide range of fields such as research and education where its realistic price and great versatility gives it immediate advantages over the alternatives, the display of the GSL system can be provided in either time or frequency domains, i.e. with either time or frequency along the X axis.

A fixed number of screens of data can be retained in memory and these can be recalled for subsequent comparison. A printer is available to allow a hard copy of any display produced. The printer prints from the left to allow continuous records to be formed from a number of screens of data. The resolution of the printer is matched to that of the computer.

The system uses a BBC/Acorn model B microcomputer with an analogue to digital

interface unit connected to the computer via its 1 MHz bus.

The computer features high resolution graphics, the display has a resolution of 1 in 250 on the Y axis and 1 in 500 across the X axis. In the time domain 100 sample values are taken per channel per plot, this is reduced to 50 when in the frequency domain which is analysed via a fourier transformation. This analysis can be performed on either channel. Up to five frequency domain plots can be held in memory for comparison with the current plot.

A colour version of the system is priced at $£ 1407 \cdot 60$, a black and white version at £1206.35 and the Analogue Signal Analyser at $£ 263.00$ lall prices include VATk GSL. 2 North Way. Andover, Hants (0264) 58744.

CAR COMPUTER

The PE Car Computer (published in December 81 , and January 82 issues) has a special mode of operation which can be used to measure the acceleration performance of the car. An article on using this feature to tune the car for best performance and economy, and to evaluate the effect of various fuel saving devices, is now available from the PE editorial office. Six graphs are included which show the effect of adjustments, and of a couple of 'bolt on goodies'; one of which produces improved acceleration time and mpg.

To receive the article, send a large selfaddressed envelope carrying a $22 p$ stamp to the PE editorial office (address on page 17) with a request for the 'PE Computer Dynamic Car Tuning' article.

Fidelity Cordless Telephones

British Telecom has awarded its first order for cordless telephones to Fidelity Radio. the London based manufacturer and supplier of consumer electronics equipment.

This initial order, which is worth over $£ 1$ million, covers the design, development and the supply of the cordless telephone system. Deliveries will start early this year and should be completed by the summer.

The Fidelity system will operate with a compact base unit linked to an independent handset via Home Office approved radio frequencies.

The handset will be lightweight and portable and have a range of up to 200 metres from the base unit. The system will incorporate full duplex facilities, push-button dialling, re-dial capability, patented security device and other features. It will comply with all the required technical specifications and thus be compatible with the existing British Telecom network.

DBS News

Suggestions recently submitted by the ad visory council set up by the Government to recommend technical standards for direct broadcasting by satellite (DBS) have been adopted by the government. The BBC's proposed systems, PAL and E-PAL, have been given the elbow. The panel much preferred the IBA system MAC, as a generally more compatible and technically superior option. The panel also favour the IBA's sound system Type C, as opposed to the BBC's Type A. Further suggestions urged the Government to adopt these proposals as soon as possible, to secure maximum international collaboration and hopefully influence European options for a future standard and have resulted in the Government's swift action. The two-channel service due in 1986 will permit both individual household reception and community reception for cable distribution. The system has better picture quality and stereophonic sound. The initial capital cost to the consumer is estimated to be around $£ 400$, falling to $£ 300$ or less when demand grows. The outdoor units with improved sound arrangements dominate the total cost, and are compatible with existing receivers. The BBC have been awarded the first two channels.

VHID Viden Dise Postponed

In a recent joint statement from Thorn EMI and JVC the "uncertain economic and market environment" was blamed for the indefinite suspension of the VHD video disc launch.

This news which will enable Philips and other licensees of the optical video disc technology the opportunity to establish the LaserVision system as the accepted format for disc plavers, will also hopefully mean that the conflicts experienced with the three incompatible video cassette formats will be avoided.

It would also appear that the future of the audio digital system (ADS) developed by JVC is to be reconsidered. The company
has signed a technology cross licensing agreement with Philips to manufacture their compact disc digital audio system which has rapidly become the accepted standard for audio digit al replay.

Despite the reasons given by JVC and Thorn EMI for postponing their launch, Philips are continuing to heavily promote Laservision with this year's advertising budget being in excess of $£ 3$ million and although the penetration into the UK market has been slow. Jimmy Dunklev. Philips UK Audio and LaserVision director, recently commented that the long term prospects for the system were encouraging and a progressive upturn in sales is expected.

SONY STEREO VIIIEO

The video boom continues to gather nomentum in the UK, with the introduction of yet another quality machine from Sony. Planned for the top end of the market the C9 is a stereo, Beta-format recorder.

A front loading slimline, and fully rackable system such as this will certainly stimulate both hardware and software manufacturers alike to further explore the stereo video market. Already the main distributors of prerecorded video cassettes are producing their titles in stereo wherever possible, suggesting 1983 will be another big year for video in the UK. The C9 will be compatible with the F1 system offering portability to those with a more creative outlook. Sony believe that once consumers have experienced stereo video they will be "dissatisfied" with anything less, "a bold statement', but if it turns out to be true then it will certainly put pressure on the broadcasting companies to provide stereo transmission sooner than their (mid eighties) predictions.

Tuning is automatic, and the C9's nineevent, two-week timer is set by a simple logiccontrolled sequence of button pushes.

Warning circuitry is incorporated which is activated in the event of, for example, someone endeavouring to set the time to record two over-lapping programmes. Also built-in is a battery which will protect timer programming in the event of short interruptions to the power supply.

The C9 is fitted with a real-time tape counter and tape-remaining indicator. These features, coupled with dramatically improved automatic programme search and a "go-tozero" facility make the tasks of planning and locating recordings particularly easy to perform.

A full-feature infra-red remote control is standard equipment with the C9, which is also fitted with a powered camera socket and the facility to playback or record PCM encoded tapes.

The C9 retails at around $£ 699$.

Briefly...

A solar powered aeroplane capable of carrying payloads of up to loolbs of cameras and equipment, has been developed by Lockheed Missiles and Space, under a NASA contract. Christened the 'Solar High Altitude Powered Platform' it is said to be capable of heights between 60,000 and 80,000 feet. Powered by its solar cells which drive a large propeller and refuel batteries for night flying, it will be able to maintain these altitudes for months at a time. The solar cells cover the whole of the top surface of the wing. They provide enough power to take the 2000 lb plane to 70,000 feet in less than four hours. Prospective applications include military surveillance and agricultural monitoring.

If ideas presently being discussed by the Government at the Industry Department come to fruition, then Mr. Kenneth Baker, the Information Technology Minister, could announce a $£ 12$ million spending spree on 50 new IT centres; some to be situated out of the main city areas. It is hoped they will bring training opportunities to more than 1000 young unemployed. Sites for the new centres (ITECS) have not yet been decided. Local organisations including banks, coun-
cils and private companies are cosponsoring the scheme with the Industry Department, in which the trainees will learn such skills as programming, operating and electronics. In the lower population areas, smaller centres (SUBITECS) may be used. whereas existing ITECS have been in the worst affected unemployment areas.

Good news for hobbyists in all areas. The already well established company JEE Distribution, have opened their doors to the public, and indeed are also entering into the mail order business. Offering a range of over 4000 component and hardware items at competitive prices, the range includes everything from discrete components to instrument cases. The shop will be open during office hours, and on Saturdays between 10 am and 4 pm . A short catalogue is available from, and callers welcome at 43 Strathville Road, London, SW 18 4QX. (01-870 0075).

POINTS ARISING...

STYLOCHORD (Dec. '82)

For those constructors who have been experiencing difficulty in obtaining the Top Octave Generator i.c. S50240 for this pro-
ject, the device is manufactured by and available from, AMI Microsystems Ltd., 108a Commercial Road, Swindon, Wiltshire SN1 5PL. Tel: 0793 37852. It is also available as MOSTEX device MK50240.

COMBO AMPLIFIER (Sept. '82)

In Fig. 2.7, the pin-outs of TR4 and TR5 (2SC1775e) were shown incorrectly. The illustration below shows the correct orientation, and how these transistors should be pre-formed to suit the Combo p.c.b.

These Hitachi devices are available from Hart Electronic Kits Lid., Penylan Mill, Oswestry, Shropshire. Tel: 06912894.
AS SUPPLIED

TO92
[5102]
Should be formed io phis stylc

PRE-FORMED TOS

Rountidnunl...

Please check dates before setting out, as we cannot guarantee the accuracy of the information presented below. Note: some exhibitions may be trade only. If you are organising any electrical/electronics, radio or scientific event, big or small, we shall be glad to include it here. Address details to Mike Abbott.

Christmas Holography (+ items for sale) Dec. 2-Mar. Light Fantastic Gallery, London. A8
Home Computer Fair Jan. 20-22. Central Library, Sutton. (601.661) 5050).

Peripherals Feb. 2-4. Cunard Int. Hotel, Hammersmith, London. Z 1
BEX Bournemouth Feb. 9-10. The Pavilion. K
Microsystems Feb 23-25. West Cntr. Hotel, Fulham, London. ZII CAD North Mar, 1-3. Belle Vue Ex. Cntr., Manchester Z1
Mailing Efficiency Mar. I-3. Bloomsbury Cntr. Hotel, London. Z Local Networks Mar. 8-10. Royai Lancaster Hotel, London. 0 Component Fair (Pontefract \& District Amateur Radio Society) Mar. 13. Carlton Grange Community Centre, Carlton, Pontefract. F2 Laboratory Edinburgh Mar. 16-17. Assembly Rooms, George St. E Brighton Electronics March. T
BEX Leeds Mar. 16-17. Dragonara Hotel. K
INSPEX Mar. 21-25. National Exhibition Cntr. Birmingham International. Z1
Sensors \& Systems Mar. 22-24. The Forum, Wythenshawe. T Compec Wales Mar. 22-24. Cardiff University. $Z 1$
ETM (Electronic Test/Measurement) Mar. 22-24. The Forum, Wythenshawe, Manchester. T

Laboratory Manchester Mar. 23-24. New Century Hall, Corporation St. E
American Holography Mar.-June inc. Light Fantastic Gallery, Covent Garden, London. A8
London Computer Fair April 14-16. Central Hall, Westminster. B5
All Electronics Show April 19-21. Barbican Cntr. London. E
Fibre Optics April 19-21. Porter Tun Rooms, The Brewery (!), Chiswell St., London EC 1. E
International Materials Handling April 19-26. Earls Court. I
International Packaging Exhibition April 25-29. NEC B/ham. I
HEVAC (Heating, Ventilation \& Air Cond.) Apr. 26-28. Barbican. I
Biotech May 4-6. Wembley. O
The Business Computer Show May 10-12. Wembiey. 0
Defence Components Expo May 10-12. Metropole, Brighton. II
Computers In The City (conf. \& ex.) May 24-26. Barbican. O
Business Telecom May 24-26. Barbican. O
International Wood Processing May 24-27. Wembley Conf. Cntr, Z

A7 Institute Of Acoustics 0312252143
A8 Holographic Exhibitions ${ }^{3}$ 2 01-836 6423
E Evan Steadman \& 079922612
F2 Pontefract \& District Am. Rad. Soc. \& 0977791071
I Industrial Trade Fairs \& 0217056707
K Douglas Temple Studios \$ 020220533
L1 World Trade Cntr., Europe Ho., London E 1
N Institute Electrical \& Electronic Engineers
O Online © 0927428211
Q Exhibitions For Industry 088334371
T Trident $\$ 08224671$
V1 Jack Tootill, Ipswich Radio Club
Z BETA Exhibitions 01 - $\mathbf{4 0 5} 6233$
ZI IPC Exhibitions © 01-6438040

BATTERY to MA/NS INVERTER

Michael Tooley B.A. David Whitfield M.A.M.Sc.

THE keen DIY motorist who has a garage which is separate from the house or, even worse, which is in a separate block altogether, will be only too familiar with the frustrations of working without mains electricity. What is often described as "conveniently nearby" in estate agents" particulars, all too often turns out to be alarmingly expensive in terms of the length of mains extension lead required. Sometimes, however, even a temporary extension lead is not a practical proposition because of an intervening road or footpath.

A popular solution to this problem is to use tools, lamps and accessories which have been specifically designed to operate from a standard 12 volt battery supply. This unfortunately greatly limits the choice available, and involves maintaining a range of equipment which may only be used for working on the car.

An alternative approach is to provide a substitute mains supply, usually from either a petrol driven generator or from a 12 volt-to-mains inverter. Generators require a signficant capital investment and, unless required for sustained use, are usually hired when required. Rotary electromechanical inverters are often used from 24/28 volt supplies, but are not usually cost effective for DIY applications. This article describes an electronic 12 volt-to-mains inverter for loads of up to 50 watts, using only standard stock components. The use of the inverter as an automatic standby mains supply le.g. for central heating pump power during power interruptions) is also described.

DESIGN CONSIDERATIONS

When contemplating the design of an electronic d.c.-tomains inverter, one of the first considerations is inevitably the nature of the load(s) to be supplied. Typical loads for the DIY motorist fall mainly into one of three categories; loads of below approximately 50 to 100 watts (inspection lamps, soldering irons, diagnostic test equipment, etc.), loads of around 250 to 500 watts (electric drills, power tools, etc.). and those of the full 3 kW type (electric fires, arc welders, etc.).

Assuming that an electrical efficiency of around 75 to 80% may be expected from an electronic inverter, the load categories above represent demand currents from a standard car battery (nominal voltage $=13.2$ volts) of approximately 5 to $10 \mathrm{amps}, 25$ to 50 amps , and 300 amps , respectively. By contrast, the storage capacity of a car battery is typically somewhere in the range 40 to 60 amperehours, depending on size and discharge rate.

The required battery load current immediately rules out the possibility of using an electronic inverter with a standard car battery for loads of around 3 kW . This is the type of application which really requires a petrol or diesel generator (unless, of course, money or batteries are no object!). The 250 to 500 watt class of load is practical, but really only in situations where the load is to be supplied for only a relatively short period of time; otherwise the battery will
become significantly depleted and the inverter performance will suffer. Detailed consideration of the cost and availability of suitable mains transformers and other components usually lead to the conclusion that this is a possible, but far from ideal application for an electronic inverter.

The 50 to 100 watt load range is where the concept of the electronic inverter really comes into its own. Suitable components are available ex-stock at reasonable cost, and the load imposed on a car battery is moderate enough to allow continuous operation for a number of hours. This type of inverter is also ideal for providing an automatic standby supply during periods when there is the possibility of the domestic mains supply being interrupted. A car battery may be kept permanently connected to a float charging circuit, and then be automatically switched over to the inverter supply connections when the mains is interrupted. Typically, the inverter could supply a lighting circuit and a central heating pump/controller, providing some basic amenities until power is restored; there is, after all, nothing more frustrating than having a gas central heating system rendered useless by lack of power for the pump. When the mains supply is restored, the battery charge is replenished by the float charging circuit, all without user intervention.

CIRCUIT DESCRIPTION

The circuit for the basic inverter unit is shown in full in Fig. 1. A low-power CMOS timebase i.c. is used to provide the fundamental 50 Hz timing signal. This arrangement ensures frequency stability, and the use of an integrated circuit helps to minimise the overall component count. IC1 incorporates an on-chip high frequency oscillator, permitting direct connection to an external crystal, XL1. The internal divider chain has a division ratio of 2^{18}, and when used in conjunction with a

3.2768 MHz crystal, produces complementary 50 Hz outputs. The outputs are CMOS and low power Schottky TL compatible. In applications where frequency accuracy is important, C1 may be replaced by a 5.5 to 65 pF trimmer capacitor

The outputs from the timebase i.c. are buffered by TR1 and TR2, which are arranged as emitter followers providing current gain, but almost unity voltage gain. Diodes D2 and D3 provide protection against induced high voltage spikes. The outputs from the buffers drive two high gain power Darlington devices, TR3 and TR4. These are very rugged devices which have a gain of approximately 750 at 6 amps , and can each dissipate up to 150 watts! They are internally protected against spikes, and can be used simply as very high gain transistors, with the proviso that their collectoremitter saturation voltage is higher than a single transistor (approximately 2 V at a collector current of 6 amps). TR3 and TR4 come in standard TO3 packages which are also con-

Fig. 2. P.c.b. design

veniently mounted on standard heatsinks, or simply on a diecast box.

The transformer, T1, is arranged back-to-front in that the mains winding is now effectively the secondary. The two 12 volt secondary windings are fed with complementary waveforms, with the supply centre-tapped. On the secondary side, C5 removes the high frequency output components. Reverse polarity supply protection is provided by FS 1/D4, and d.c. supply indication by D1.

CONSTRUCTIONAL DETAILS

A printed circuit board is used to mount most of the low current components in the inverter. A copper foil pattern for this board is shown in Fig. 2, with the corresponding component layout shown in Fig. 3 The actual layout, however, is not of critical importance, and a small piece of Veroboard approximately $60 \mathrm{~mm} \times 90 \mathrm{~mm}$ may be used instead of the p.c.b.

Fig. 3. Component layout

COMPONENTS

Resistors

R1, R5, R6	1 k (3 off)
R2	10 M
R3, R4	4 k 7 (2 off)
R7	220 k
All resistors $\frac{1}{4} \mathrm{w} 5 \%$ carbon	

All resistors $\frac{1}{4}$ w 5\% carbon

Capacitors

C1
68 p ceramics or polystyrene
C2 47 p ceramic or polystyrene
10 n polyester
$100 \mu 16 \mathrm{~V}$ elect
C4
470 n polyester 250 V a.c. minimum working voltage

Semiconductors

D1 red l.e.d.

D2, D3 $\quad 1 \mathrm{~N} 4148$ (2 off)
D4 IN4001
TR1, TR2 BC108 or similar (2 off)
TR3, TR4 2 N6059 or similar npn power
Darlington (2 off)
IC1

M706BI

Miscellaneous

T1 $2 \times 0-12 \mathrm{~V}$ at
2 amps

FS $1 \quad 6.3 \mathrm{amp}$ fuse and holder FS2 250 mA fuse and safety holder
XL. $1 \quad 3.2768 \mathrm{MHz}$ crystal

Terminal pins

2 off TO3
transistor covers
Optlonal: 2 off
TO3 heatsinks

SK2 4 mm screw terminal black
SK3 Switched 13A mains outlet

Printed circult board or Veroboard
Diecast box
$170 \mathrm{~mm} \times 120 \mathrm{mmx}$ 105 mm
4 off stick-on feet

2 off TO3 insulating kits

The following additional components are required for the automatic standby mains supply:-

D5, D6	1N5402 (2 off)
R8	1 $\Omega 10$ watt wirewound
RLA	3 pole changeover relay with contacts
	rated at 5 amps and a 240V a.c. coil
	e.g. RS type $349-563$

Constructor's Note

In case of difficulty, IC1, TR3, TR4 and XL. 1 may be obtained from Howard Associates, 59 Oatlands Avenue, Weyhridge, Surrey, KT13 9SU. SAE for details.

When mounting the components on the board, particular care should be taken to ensure the correct orientation of the polarised components, particularly the semiconductors. It is advisable to use a heatshunt, such as a pair of long-nosed pliers, when soldering the crystal in place to avoid overheating the quartz element. After soldering, the crystal should be fixed to the board to prevent damage by vibration; a piece of double-sided tape is ideal for this purpose. IC 1 may be mounted in a socket if preferred, and terminal pins are recommended for all interconnection wiring points.

The next step is to mount the remaining components in the diecast box. It is suggested that the cutout for the mains socket be made first, but the socket should not be mounted at this stage. The cutout dimensions will depend on the type of socket used; if hard use is to be expected, a socket with a metal faceplate is strongly recommended. The mains transformer should then be securely mounted adjacent to the cutout for the mains socket, and the necessary wire links fitted. The filter components, C5 and R7, should be mounted directly on the terminals of the mains winding.

The output transistors, TR3 and TR4, should be mounted with insulating kits on the long side of the case. The use of heatsinks for these devices is advantageous if sustained fullload operation is anticipated; they serve as much to dissipate the heat generated by the transformer as by the transistors themselves. The remaining components should be mounted on the end of the case adjacent to the mains outlet, taking care to leave adequate clearance around components at mains potential. The p.c.b. should be mounted opposite the output transistors, and spaced from the case with pillars.

The final step is to install the interconnection wiring and the mains socket. All wiring should be capable of carrying the appropriate currents; the +12 volt supply should be capable of carrying in excess of 5 amps . It is suggested that the wires from the transformer to the mains socket should
be terminated in 4 mm plugs; these can then be secured in the terminals of the socket with the screw fixings supplied. The socket may then be mounted on the top of the case. Details of the interconnection wiring as shown in Fig 4. All components should be securely mounted, and special care should be taken to ensure adequate insulation and clearance for all components carrying mains potentials.

Fig. 4. Wiring diagram

TESTING AND PERFORMANCE

Testing of the mains inverter requires a car battery, or a mains power supply rated at 13.2 volts and capable of supplying at least 5 amps . In addition, a meter able to measure up to 250 volts a.c. and up to 5 amps d.c. will be required. Before starting any tests, it is essential that the correct fuses are fitted in FS1 and FS2, and the meter should be inserted in the d.c. supply line.

Connect the d.c. supply and measure the current with no load connected to the mains outlet. With a supply potential of 13.2 volts, the current should be approximately 1 amp ; the mains transformer may also be heard to buzz quietly due to the square wave drive signal. If D1 is not illuminated, and no supply current is being drawn, it is likely that FS 1 has blown due to a short circuit or wiring error. Before replacing FS 1, the cause of the error should be determined. If no fault is evident after a careful check, it is possible that the timebase is not functioning correctly. This may be checked by disconnecting the 12 volt supply from the centre-tap of the transformer, replacing FS1 and seeing if D1 remains illuminated; if so, the fault is probably lack of 50 Hz drive to the output transistors. Another possible source of problem is with the wiring of the mains transformer. The labelling of the low-voltage windings should be very carefully checked against that shown in Fig 1; the windings are polarised, and this is significant in this application. When the supply conditions are correct, the mains output may then be measured. Using a standard moving coil multimeter, the no-load output will show approximately 240 volts a.c.; the actual r.m.s. value will be somewhat higher due to the non-sinusoidal waveform.

The final test is to connect a known load to the inverter; a 40 watt light bulb provides a very convenient load. When the lamp is turned on, the current should rise to between 3 and 4 amps, but the mains output voltage will be seen to fall to approximately 210 volts as indicated on the meter.

The performance of the inverter is shown in detail in Fig 5. The graphs indicate how the load voltage falls steadily as the load increases, whereas the overall efficiency shows a peak of around 83% at approximately 33 watts. The shapes of the curves are significantly affected by the no-load input current and the performance of the magnetic core of the transformer. Improvement in the no-load current (i.e. a reduction) would raise the low-power efficiency, while a higher satura-

Fig. 5. Performance results for the inverter
tion current for the transformer would improve the highpower performance.

AUTOMATIC STANDEY SUPPLY

There are many situations where even a brief interruption in the mains supply cannoi be tolerated. The mains inverter described here can be modified to provide automatic changeover between the public supply and an inverterderived supply in the event of a mains failure. The battery used to provide the inverter supply is kept on float charge when not in use, i.e. when the public supply is available.

The modified output stage for the inverter is shown in Fig 6. When the public supply is present, the relay drives the

Fig. 6. An automatic standby mains supply with float charger
transformer in the conventional fashion. The mains input from SK4 is routed straight out to SK3 and to the mains side of T1. The low voltage output from the transformer is fullwave rectified by D5 and D6, and R8 sets the float charge rate for the battery connected across SK1 and SK2. In the event of a public supply failure, the relay 'drops out', and assumes the state shown in Fig 6. This is then identical to the circuit shown in Fig 1, and the output is SK3 is inverterderived, while the rest of the mains circuit attached to SK4 is isolated by RLA.

CIRCUIT VARIATIONS

The efficiency of the inverter will be improved if a larger transformer (100VA or even 200VA) is used. This will require no circuit change as such, but may require the use of a larger diecast box. To take advantage of the larger transformer to obtain a higher maximum output power, it will be necessary to also change TR3, TR4, FS 1, FS2 for components rated at the appropriately increased current. For a 100 watt inverter, a 100 VA transformer will require FS 1 and FS2 to be changed to 10 or 15 amps , and 500 mA , respectively. The existing devices may be retained for TR3 and TR4 since they have an absolute maximum rating of 12 amps , but for a more rugged unit, substitution by MJ4035 devices is recommended. Heatsinks will be required!

Tv. Sound TUNER
 bUILT AND TESTED

In the cut-throat world of consumer electronics, one apparently ponder over is "Will anyone notice if we save money by chopp. ing this out?" In the domestic TV set, one of the first casualties seems to be the sound quality. Small sp and no tone controls are common

$£ 22.95+£ 2.00 \mathrm{p}$ \& TV companies do their best to transmit the highest quality sound. Given this background a compact and independent TV tuner that connects direct to your Hi-Fi is a must for quality eproduction
This TV SOUND TUNER offers full UHF coverage with 5 pre-selected tuning controls. It can also be used in conjunction with your video recorder. Dimensions! $113 /{ }^{\text {" }} \times 81 / 2^{\prime \prime} \times 3 /{ }^{2}$ E.T.I. kit version of above without chassis, case and hardware, $£ 12.95$ plus $\mathbb{E 1 . 5 0} \mathrm{p} \& \mathrm{p}$

PRACTICAL ELECTRONICS STEREO CASSETTE RECORDER KIT соדH

ONLY £31.00 plus $£ 2.75 \mathrm{p} \& \mathrm{p}$. - NOISE REDUCTION SYSTEM. . AUTO STOP. - TAPE COUNTER. SWITCHABL E.O. INDEPENDENT LEVEL CONTROLS . 1% RECORD PLAYBACKIC WITH EIECTRONIC SWITCHING FULLY VARIABLE RECORDING BIAS FOR ACCURATE MATCHING OF ALL TYPES
Kit includes tape transpore mechanlsm, ready punched and back
printed quality circuit board and all electronic parts. is, semiconductor

P.E. STEREO TUNER KIT

This easy to build 3 band stereo AMIFM funer kit Is designed in conjunction with Practical Electronic (July '81). For ease of construction and alignment it incorporates three Mullard modules and an I.C if System.
FEATURES: VHF, MW, LW Bands, interstation muting and AFC on VHF. Tuning meter. Two back AMinted PCB's. Ready made chassis and scale. Aerial supply with 'C' core mains transformer. All component
 supply with Core mains cransformer. All component
10% "x $2 \%^{\prime \prime}$ approx. Complete with
diagram and instructions.
Sell assembly simulated wood cabinet sleeve to suit tuner only. Finish size: $11 /^{\prime \prime} \times 8 / 2^{\prime \prime} \times 3 / 4$ £ $\mathbf{3} .50$ Plus $£ 1.50 \rho \&$

125W HIGH POWER AMP MODULES

The power amp kit is a module for high power applications - disco units, gultar amplif iers, public address systems and even high power domestic systems. The unit is protected against short elrcuiting of the load and is sate in an open circult condition. A large safery margin exists by use of generously rated com The PC board is back printed, eiched and ready to drill for ease of construction and the aluminium chassis is preformed and ready to use. Supplied with all parts, circuit diagrams and instructions.
ACCESSORIES: Sultable mains power supply kit with transformer: $£ 8.50+£ 2.00$ p 8 ep

SPECIFICATIONS
Max. output power (RMS): 125 W. Operating voltage (DC): $50-80$ max. Loads: 4. 16 ohm $5 \mathrm{~Hz}-20 \mathrm{KHz}$ onse measured @ 100 watts: @47K. Typical T.H.D.@ 50 watts, 4 ohms: 0.1%. Dimensions: 205×90 and $190 \times 36 \mathrm{~mm}$.

Sultable LS coupling electrolytic. $£ 1+25 p$ p\&p.

KIT	BUILT
$\mathbf{£ 1 0 . 5 0}$	$£ 14.25$
$+\mathbf{£} 1.15 p \% p$	$\& 1.15 p \& p$

BSR RECORD DECK

SPECIAL OFFERI Replacement Stareo cassette tape heads - $£ 1.80$ each. Mono: $£ 1.50$ each. Erase: $£ 0.70$ each. Add 50p p\&p to order

$21 B$ HIGH STREET, ACTON, W3 GNG

 Note: Goods despatched to U.K. postal addresses All Items subject to availability. Prices correct at Please allow 7 working days trom receipt of order for deapatich. RTVC Limited reserve the right to update thelr produets without notite. All enquifies send .E. Telephone or mail orders by ACCESS welco
SPEAKER BARGAINS

2 WAY 10 WATT SPEAKER KIT
$8^{\prime \prime}$ bass/mid range and $3 \%^{\prime \prime}$ wire, crossover components and cabinet. All wood precut - no cutting required. Finish chipboard covered wood simulate, size $14^{1 / 2^{\prime \prime} x}$ $8 y_{1}^{\prime "} \times 4^{\prime *}$. PAIR for ONLY £ 12.50 plus $£ 1.75$ p\&p.

ALL CALLERS TO: 323 EDGWARE ROAD. LONDON W2 TO. 323 EDGARE ROA LONDON W2. Telephone: 01.7238432 (5 minutes walk from Edgware Rosd Tube Station)
Now open 6 days a week $9-6$. Prices Include VAT.

FREE CAREER BOOKLET

Train for success in Electronics Engineering, T.V. Servicing, Electrical Engineering-or running your own business!

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the fields of electronics, T.V., electrical engineering-now it can be your turn. Whether you are a newcomer to the field or already working in these industries, ICS can provide you with the specialised training so essential to success

Personal Tuition and 80 Years of Success
The expert and personal guidance by fully qualified tutors, backed by the long ICS record of success, is the key to our outstanding performance in the technical field. You study at the time and pace that suits you best and in your own home.

You study the subjects you enjoy, receive a formal Diploma, and you're ready for that better job, better pay.

TICK THE FREE BOOKLET YOU
WANT AND POST TODAY

Space Watch

high frequency and ultra-high frequency. Transmission is in ultra-high frequency.

The payloads are designed to provide a world-wide super-high frequency military communications system for secure strategic and tactical voice and data transmissions. The relay facilities will be used for army command and control, defence communications and ground mobile communications. The system will also be available to the National Com mand Authority, The White House Communications Agency and the Diplomatic Telecommunications Service.

WAR AND SPACE

Once again it seems that SPACEWATCH cannot ignore the aggressive side of the opening up of more and more efficient use of space. Just as real advances in peaceful and useful applications of manufacturing advantages and health improvement offered by developing techniques have been proven, we have to accept that now large sums will be available for the principal benefit of armed forces. Most of us reluctantly accepted that when new frontiers stared us in the face the 'cut' of peaceful development would be small. At least there would be something for things that mattered. It is a great tribute that the shoestring projects managed to produce the inspiration that has more than satisfied the defence and offence projects. It must be understood that there is, however, no support from the writer for the sentiments or activities of the misguided groups who carry banners and generally make themselves a nuisance.

However escalation does in fact seem to increase in about equal levels and therefore the condition of "Mexican Stand-Off remains. The world may therefore go about its business, ingenuity playing its usual part.

The Russian situation has changed, but to what extent is not known. It is known that the former premier regarded the Shuttle as a military vehicle and Russia has already made an attempt to copy it. Other countries would no doubt hope to do the same. It is certain that it will be a commercial success and will still be in considerable demand for the next 20 years. Only benefit to the peoples of the Earth can result from the peaceful use of space.

The success of the Russian space stations is to be admired and it has always been the majority view that space stations, space platforms and shuttle-like systems represent the most economical use of men, materials and fuel. President Reagan, it seems, is set on a formal military recognition and the Air Force already has a Space Command. Perhaps a little closer examination of the situation might be worth while. The international situation of common understanding and operation in Antarctica has shown that co-operation works well. After all, this is Man in the collective adventure against the elements. That the Soviet Union's activities in space have always been regarded as being controlled by an armed state and that this is now part of the normal thinking, that everything in Russia is under military control. No real exception has been taken to this, rather perhaps it has been seen by those engaged in the space field as, 'Of course they can do things, they have all the resources available to them'. The space programmes in the West have undeniably
been largely orientated to the areas of greater fiscal magnitude. It was recognised that up till now private enterprise could not foot the bill when the actually monetary returns were low. The benefits have been, from the civilian view, in the spin-off advantages. If military push is to be the order of things in the USA then civilian spin-off and employment will be boosted.

SATELLITES AS SPIES IN SPACE

The Soviet Union and the United States are the acknowledged leaders in this area of Space. However, others are catching up. India, China and France have made quite substantial progress in this area already. Financial delays may make the late 1980's a final operational period. However, France does already have an operational military satellite system called SAMRO. This is based on the Earth-mapping SPOT. There was a postponement of further work on fiscal grounds. There is every possibility that this position might be eased soon.

The Soviet Union has a record for the release of photographic satellites, the rate being of the order of 35 launches a year. This is a somewhat deceiving statement since compared with a lifetime of two to three years for a US satellite the Soviet version seems to "burn up' in as short a period as 50 days. The Soviet satellites usually go singly into space, whereas the US may pack them as passengers on other major launch missions. Reconnaisance satellites could be called the ears of space because generally they are listening to activities which result from military activities. Information also comes from listening to transfer calls in telephone networks and the transfer of computer data from one system to another. Almost any radio or telephone link can be tapped. A great tightening exercise is at work and no doubt as the slots become more crowded there will have to be pruning. There has been for some time now intense research into the propagation in those channels thought to be useless. Now that all other avenues are becoming full, a solution must be found. Improwement to existing facilities is difficult because all possible juggling with agile frequeacies and other 'tricks' have been used up. There are still some channels in the higher GHz levels to be explored. Perhaps the whole of the radio frequency bands await a new lead. Perhaps if the solution of the silicon chip problem (it is already apparent that a new technique is needed, for at the moment it is limited by being 'too slow') could be found. Perbaps we could do a piggy back on the lower frequencies. At any rate, much time is being spent on the problem.
The satellites are at different levels. Reconnaisance satellites are usually at the low orbit leved 200 to 600 km . Early warning units are in elliptical orbits 700 to $40,000 \mathrm{~km}$. Communications satellites are in orbits of the order of $36,000 \mathrm{~km}$. This leaves the nuclear detection systems at altitudes of $110,000 \mathrm{~km}$, and the navigation craft at elliptical orbits of 1000 to $20,000 \mathrm{~km}$. Added to these, of course, are the infra-red systems of detection.

We let the Robot in for half pricehe claimed to be only a year old!

M
ORE than 60 exhibitors took part in the first Electronic Hobbies Fair filling over 90 stands in the splendid new venue of Alexandra Pavilion. The successful event, which attracted media attention from newspapers, radio and t.v. will be repeated from October 27 to 301983 so make a date now.

The photographs on these pages set the scene and are "worth 1000 words". Exhibitors are already rebooking stands for next year so the Fair will go from strength to strength. As we said before "the best event ever for the hobbyist

in this country'.

The exhibitors list read like a Who's Who in the electronic hobby business, from Absonglen, Allweld, Ambit and Armon through Babani, BICC Vero, Bi-Pak, Chromasonics, Clef, Electrovalue, EMOS, EE, GSC, JPR, Kansas City, Lightsold, Maplin, Marco, Midwich, PE, PW, Radio Sheck, Roadrunner, Service Trading, Shesto, Sparkrite and Velleman to Westlake and Wireless "Norld; to mention just a few.

Many special attractions were mounted by organisations like the Army, RSGB, Holographic Developments, EOCS, BAEC, BBC and BVS. The display of radio controlled models, courtesy of Model Land, and the robots by Advance Robotics proved highly entertaining and contintally drev/ large crowds. Numerous visitors watched the news according to Russia via the Luxor setellite ty system, just how many understood Russian is another matter!

The "bargain sales" area was always well attended and amateur radio operators talked mobite visitors in and chatted with operators around the world. Kids and creative computng abounded and one kind gentleman from Chordgate wrote a short program that turned our Micrograsp robot into a "padded cell and straight jacket" case.

We enjoyed it all, we hope you did, or will next year!

Waiting to get in. The Luxor satellite dish can be seen on the right.

sinto the REAL CONTROL CIRCUITS

THE early microprocessors often attracted comments along the lines of, "A solution in search of a problem". In the time since its introduction, however, the microprocessor has become an accepted and important design component, almost to the point of becoming the electronic equivalent of the all-curing medical aspirin. The micro has been hailed as a shining example of what the "White Heat of Technology" has to offer; the answer to our design problems for the forseeable future.

The reality of the situation, needless to say, lies somewhere between these two extremes. The microprocessor has a great deal to offer in terms of speed, performance, flexibility and cost-effectiveness when applied to the solution of a wide range of problems. However, it is this very versatility which raises one of the greatest problems for many potential users. The question is when and how to make use of the micro's vast potential. The aim of this short series, therefore, is to try and bridge the gap between the undoubted technological brilliance of the microprocessor, on the one hand, and the practical aspects of how to use it, on the other.

MICROS FOR REAL APPLICATIONS

The world of the micro is a well-ordered one; the signals which circulate are glitch-free, the loads are all properly matched, the connections short, and the levels are purely digital. The designers have gone to considerable lengths to ensure that everything behaves in a predictable fashion. The essence of the microprocessor is its predictability; it is basically a finite state machine. Once programmed, its behaviour in given situations can be predicted with some certainty, and its performance will be repeatable.

It is essential that the environment in which a micro is expected to work is carefully specified if the control program is to perform correctly under operational conditions. A popular approach to the problem, and one of the subjects of this series, is to condition all signals before they reach the micro. This ensures that unexpected or unwanted effects are
eliminated, or at least that their consequences are minimised. In this way, the requirement to be able to predict the total range of inputs (which is almost impossible in any real system) is eliminated, and instead the possible inputs are limited to a manageable range. From this starting point, it is then a much more straightforward problem to produce some robust control software.
The other aspect of microprocessors in real applications involves their control of peripheral hardware, particularly that which was not necessarily designed specifically for use with a micro. In some cases the interface can easily be implemented using one of the standard ranges of interface i.c.s, e.g. a serial link can be implemented with a standard UART device. The majority of real control loads, however, have not necessarily been designed with microprocessor control in mind. The requirement then is to provide the appropriate conversion between the control signals produced by the micro, and those required by the peripheral hardware. This may involve some simple signal manipulation, e.g. level shifting or power amplification. Alternatively, the conversion may involve matching the speed of the control system to the speed of the peripheral system, e.g. a micro can change the state of a lamp in a few microseconds, but the lamp takes milliseconds to respond, and the human operator must be allowed at least 20 milliseconds before any change begins to register.

This series will describe some of the more commonly used signal conditioning and peripheral control techniques. On the whole, the examples given will be directly applicable to the hardware used in the PE Microcontroller, but the techniques themselves will be applicable to a much wider range of micro-based applications. The choice of techniques to be used in a particular system will necessarily depend on the nature of the particular application. The intention here is to encourage the use of the microprocessor in ways which move away from technological abstraction, and out "Into the Real World".

The article this month will concentrate on systems which

WORLD powst t

Michael Tooley в.а. David Whitfield м.a.m.se.
involve purely digital control, i.e. where a line can take only one of two states. Next month the topic of analogue signals will be covered.

PERIPHERAL LINE DRIVING

The usual method of driving peripheral hardware under microprocessor control involves some sort of adaptor between the CPU and the peripheral. This adaptor acts as a filter for the peripheral, and it separates out those CPU instructions and commands which are relevant to its operation. An example of such a peripheral adaptor is the 6821 PIA, designed primarily for the 6800 microprocessor family. which provides two independent sets of eight peripheral I/O lines. The PIA also has a considerable amount of control logic which simplifies the CPU's task in controlling any peripheral hardware. Similar adaptors, with a wide range of different functions, are available for almost every family of microprocessor. Indeed, it is now common for the selection of a micro for a particular job to be influenced as much by the available range of interface adaptors as by the capabilities of the CPU itself.

The simplest type of interface is the situation where the peripheral hardware presents a buffered digital interface to the outside world. In such cases, it is simply a matter of connecting the peripheral directly to the adaptor, and then configuring the interface under software control to satisfy the peripheral's requirements. A simple example of such an arrangement is the connection of an 8-bit digital-toanalogue converter (DAC) to one of the ports of a 6821 PIA; this example will be described, with applications, next month.

There will be many cases, however, where the peripheral hardware presents a load which exceeds the drive capability of the peripheral adaptor. In such cases the modification to the interface is only a matter of increasing the logic drive capability of the adaptor. The easiest way of achieving an increase in the fanout (which in the case of the 6821 PIA is two standard LS TTL loads) is to introduce additional logic
gates, configured as buffers, between the adaptor and the peripheral. These buffers may be formed of any convenient gates, and will typically increase the fanout to around 10 to 20. For buffering groups of eight peripheral lines, a range of i.c.s is available which will each handle eight lines. Table 1 shows a random selection of LS TTL devices which are available, and there are other ranges of devices containing 4 . 6 , and 8 gates per package. It will be noted that the devices listed have tri-state (high, low and high-impedance) outputs; this allows the simple construction of bus-connected interfaces without the need for complex switching logic. For peripheral applications requiring bi-directional lines, bus transceivers are available; these are effectively a driver and a receiver in parallel, with direction switching logic. In general, driving logic circuitry is usually simply a matter of direct connection to the interface adaptor, or the inclusion of appropriate buffers in the interface.

The final category of digital load to be considered includes applications where the laad operates on levels in excess of the standard logic levels, and often requires significantly increased drive capability. Typical examples include $12 / 24 \mathrm{~V}$ relay coils, filament lamps, and gas discharge displays.

DEVICE NUMBER	FUNCTION	OUTPUTS
74LS240	Octal inverter buffer	3-S
74LS241	Octal buffer	3-S
74LS244	Octal buffer	3-S
74LS245	Octal transceiver	3-S
74LS363	Octal transparent latch	3-S
		MOS-compatible
74LS364	Octal D-type flip-flop	3-S
7415373		MOS-compatible
74LS374	Octal transparent latch Octal D-type flip-flop	$3-S$ $3-S$

Table 1. Selection of byte-wide peripheral output i.c.s

The simplest interface to a load is to include a switching transistor, or VMOS FET power transistor, between the peripheral adaptor and the load. Fig. 1 shows some examples of this technique for driving an l.e.d. indicator and a relay, respectively. This approach is ideally suited to simple interfaces, especiaily where the requirements of each peripheral $1 / 0$ line are different. For large numbers of lines, especially with similar drive requirements, however, the cost and component count begins to escalate, and integrated circuit drivers become appropriate.

Fig. 1a. Switching transistor interface to 10 mA I.e.d. load

Fig. 1b. VMOS power transistor interface to 12 V relay coil

The cheapest peripheral driver (under 20p per package of six drivers!) is to be found in the 7400 series of open collector buffers. These are suited to sinking currents of 16 to 48 mA , depending on collector voltage, and brief details of the characteristics of commonly available devices are shown in Table 2. An application circuit using a 7416 is shown in Fig. 2.

Table 2. Characteristics of some 74 Series OpenCollector Buffers

The selection of an integrated peripheral driver for a nonlogic type of load can be a daunting task when looking through the huge range of devices which is now available. A driver for a particular application, however, can usually be identified by considering the following factors in relation to the load to be driven:
(1) The type of input signals to be provided (TTL, CMOS, etc).

Fig. 2. Driving a 24 V relay using a TTL buffer
(2) Whether the output requires current source, sink, or both.
(3) The load supply voltage.
(4) The logic function of the driver (buffer, inverter/buffer, AND, etc).
(5) Whether transient protection (for inductive loads etc) is required.

If selection from this list of criteria still leaves a wide field of choice, details of packaging (e.g. number of drivers per device) and cost/availability will usually narrow down the choice to a suitable device.

The PE Microcontroller contains an example of an integrated peripheral driver. The user PIA outputs were originally intended to drive 12 volt solenoids connected between the output line and OV . The drivers selected were of type UDN2981A; these are high-voltage, high-current source drivers which are TTL, DTL, PMOS or CMOS compatible, with 500 mA output source capability which is protected against transients. Each output is switched on by an active high input level, and the output stages (shown in the circuit of Fig. 3) will each sustain a maximum off voltage of +50 V . The maximum output current for a single driver is 500 mA , or 120 mA continuously for all drivers in operation at once.

Fig. 3. Internal circuit for a single UDN 2981 A peripheral driver

CONTACT BOUNCE

Switches and similar electromechanical devices are used in many control applications for a wide variety of purposes. There are, however, many occasions when they do not behave quite as would be expected. Consider, for example, the use of a microswitch in a gate turnstile where a count of the number of admissions is required for comparison with the gate receipts (also calculated by the same microprocessor). This would seem to be an ideal situation for an interrupt-driven counter routine, with the turnstile causing an interrupt each time a customer enters, and the interrupt service routine incrementing the total count by one.

Fig. 4. Interrupt-driven switch circuit
Fig. 4 shows what would seem to be a reasonable way to achieve this function.

The problem in practice is that the switch is not perfect, and when the contacts are closed they tend to bounce mechanically. The number of bounces, and the interval between them, will vary between types of switch, and eveņbetween samples of the same type. The result of this difference between the theoretical switch and a real switch is that the total count value may, depending on the switch and the length of time to execute the interrupt service routine, be in error by any amount between 0 and 500%. Even worse, the performance will not be predictable.

There are a number of possible solutions to this problem. The first is to use a better switch; this will not necessarily solve the problem, and could involve a significant increase in cost. A better solution is to keep the switch, which was probably chosen for a combination of physical considerations, and acknowledge the fact that switch bounce will occur. A way of doing this is to make the interrupt service routine, which in the example is triggered by the high-to-low edge, ignore further interrupts for a period longer than the bounce period. This duration will typically be in the range 0.1 to 10 milliseconds. Achieving the 'ignore' period involves keeping the switch interrupt masked out (done automatically on entry to the service routine on most microprocessors, so really only a matter of not re-enabling interrupts), and including a software delay of appropriate length.

Such software delay routines typically choose a period of 20 milliseconds to be on the safe side. A suitable delay routine for the PE Microcontroller would be as follows (the time is calculated from the individual instruction timings and the number of times round the loop):

	Op Codes
KDLY: LDX \#08EO	CE 08 EO
DLY: DEX	09
BNE DLY	26 FD
(RTS)	39

This may be implemented as a subroutine, or as in-line code (in which case the RTS should be omitted). After the delay has finished, it is a good idea to look again at the switch line if possible (via a PIA I/O line is the easiest way) to check that the signal is still there; this will avoid responding to spurious spikes on the lines. If the total count is incremented only after the delay and re-check, the final system should be relatively immune from the problems of both switch bounce and noise spikes.

Software debounce is not always possible in a system due to the amount of CPU time required to implement the delay routine, especially if noise spikes are a frequent occurrence. The alternative to software debouncing, therefore, is to use hardware debounce circuitry. A circuit for providing a debounce delay of 1 ms is shown in Fig. 5. The use of a Schmitt type of gate is recommended to avoid switching oscillations on delays with long time constants. This circuit will have the same effect on short duration noise spikes, and will

Fig. 5. Modified circuit with debounce components
thus reduce the incidence of 'false alarm' interrupts. The value of R_{b} used in the circuit should take account of the sink current required (1.6 mA for standard TTL gates) for a logic low; with standard TTL the maximum value recognised as a 'low' is 0.8 V , making the upper limit on R_{b} around 470Ω.

In general it is recommended that some form of debouncing is used with all switches in control applications. This will usually also have the added benefit that the system will be more immune to the effects of transient spikes; a feature which is always enhanced by the use of active-low control signals. As a final point, it should be remembered that the debounce circuit shown in Fig. 5 must be charged up at power-up, and the initialisation sequence must allow time for this to be completed before recognising any interrupts.

KEYBOARDS

A keyboard is a common component in any microprocessor application which involves any sort of user interaction. Its normal function is to transfer commands from the user to the resident control program to initiate the required action. Typical keyboards range from simple collections of function keys, right up to a full typewriter-style layout with additional function keypads.

Keyboards represent particularly good examples of the hardware/software tradeoffs which must be considered when configuring a system. They range from simple arrays of switches on the one hand, to fully decoded keyboards with multiple-key rollover protection and a data available strobe signal on the other. The simple type of keyboard minimises the amount of additional hardware required, but represents a higher software overhead on the system, i.e. more CPU time must be spent in detecting and identifying keystrokes. Fully decoded keyboards represent the smallest system software overhead, but they are more expensive in terms of the additional hardware required; this penalty is, however, continuously being eroded by the increasing availability of custom keyboard i.c.s and low cost key arrays. In the majority of control applications, where a full QWERTY typewriter type of keyboard is rarely necessary, the trend is still to make use of relatively simple hardware; usually a simple array of switches, with possibly some additional logic to minimise the software overhead. A typical compromise between simplicity and full decoding is shown in the keyboard for the PE Microcontroller; here the keyboard is an array of switches, but the keyboard software is simplified by the addition of a line decoder, IC23.

In order to make use of a keyboard, of whatever type, there are a number of requirements which must be met by the control system (i.e. by the combination of the hardware and the software). First of all the system must detect that a key has in fact been depressed. The key must then be identified before the control program can proceed to take the appropriate action in response to the implied user command; a function often performed by a module called a command processor.

KEYBOARD CONFIGUFATIONS

A standard 16-key hexadecimal keypad is the keyboard used as an example in the discussion which follows. There
are essentially two ways in which the 16 keys may be arranged, and these are shown in Fig. 6. Most larger or smaller keyboard switch arrays are simple variations on these two schemes. The standard and matrix arrangements may each be made up from a collection of individual switches, or the keyboard layout may be available as a stock component.

Fig. 6a. Standard key layout for $\mathbf{1 6}$ keys

Fig. 6b. Matrix key layout for 16 keys
The matrix scheme has the advantages of fewer interconnections, less wiring, and only half the number of peripheral I/O lines. It does, however, require a more complex software driver for the keyboard. The standard array, on the other hand, has a very simple decoding scheme, and a non-matrix number of keys may easily be handled. It does, however, use more peripheral lines (and consequently more wiring), but these lines need only be configured as inputs. The scheme chosen will inevitably be a compromise influenced by the overall specification for the system, and the availability of appropriate switch arrays.

The actual detection of a key depression is usually performed in one of two ways. Both techniques may be used for either type of keyboard, and one example of each will be given by way of illustration. The first method involves software polling of the keyboard. A modified version of this method is used in conjunction with a matrix keyboard in the PE Microcontroller. Basically, the control software is required to look regularly (typically more than 20 times per second) at the keyboard to see if a key has been depressed. Fig. 7 shows how a standard keyboard could be connected to a 6821 PIA; all peripheral lines would be set up as inputs, and would float 'high' in the absence of a key depression. Polling the keyboard in this case, therefore, amounts to the following sequence: read the ORA and ORB registers, invert the values, and test for a non-zero value to detect a key depression. If no key is depressed, the control routine can either perform some other task which may require service, or start the polling sequence again; the sequence used in the PE Microcontroller is shown in the last issue. The subsequent action taken in the event of a key depression is discussed later.

Software polling of the keyboard is simple and requires the minimum of additional hardware. It does, however, require the control program to be continually looking at the keyboard to determine whether or not a key has been depressed. The interval between polls can be used to perform any necessary processing to respond to a keyboard

Fig. 7. Simple key array configured for software polling.
command, but the time taken to implement this can vary, thus producing varying intervals between polls; this should not be a problem unless a significant amount of processing (say, more than 200 msec) is performed. The technique does have the advantage that the keyboard is automatically 'locked-out' whenever a previous entry is being processed.

The alternative to software polling is to use an interruptdriven approach. This requires some additional hardware which will generate a logic signal whenever a key is depressed. This can then be used to drive the user interrupt request line on the processor. Thus an interrupt will be generated whenever a key is depressed, and the control program will be freed of the requirement to constantly scan the keyboard. Fig. 8 shows how a matrix keyboard could be arranged to generate an interrupt whenever a key is

depressed. In this circuit, it is assumed that the 6821 PIA is arranged with four I/O lines configured as inputs, and four as outputs. For the simple interrupt logic shown, the lines configured as outputs must be left in the 'low' state when not in the interrupt service routine, and the input lines will float 'high'. The interrupt logic simply looks for one of the inputs to be pulled 'low' by a key depression, and the AND gate will then generate a high-to-low interrupt request to the PIA.

The interrupt driven keyboard driver will require an interrupt service routine to handle the keyboard interrupt. Users of the PE Microcontroller should place the address of this routine in RAM locations O3DC (MS byte) and O3DD (LS byte), rather than the locations defined for the 6800 by the manufacturer, because DISBUG uses an indirect software vectoring technique. The service routine should then simply be written as a subroutine, since DISBUG hides many of the details of interrupt handling from the user. Further details will be found in the series of Microcontroller datasheets which start this month in PE.

So far we have seen how a key depression may be detected, and the next step is to determine which key (or was it keys?) was pressed. In general this process involves identifying the position of the key in the keyboard switch array, and then converting the position of the key into an internal code for use by the rest of the control program. This latter step is necessary in order to allow a compact representation of the key identity le.g. a simple 4-bit code may be used to represent 16 keys), and to optimise the performance of the rest of the control software le.g. using \emptyset to F to represent the keys \emptyset to F can save literally hundreds of lines of code). An added benefit of performing this code conversion is that, if the key layout is changed at a later stage, only the code conversion routine need be changed rather than all the control routines which process the key entries. First of all, however, the key pressed must be found in the switch array.

IDENTIFICATION OF KEY DEPRESSIONS

Identifying a key for the standard keyboard shown in Fig. 7 is quite a simple problem. First, the PIA ORA is read into, say, rA and then inverted; rA will then have a bit set to ' 1 ' for each key depressed. If rA is tested and found to be non-zero, then the key pressed is in the range ' 0 ' to ' 7 '. The key may then be identified by performing a logic shift right and testing the carry bit until it is set; the number of shift operations should be counted, and will give a result in the range 1 to 8 . If the inverted value read from ORA was zero, then the key depressed must be in the range ' 8 ' to ' F '. To identify this key, read ORB, invert it, test for a non-zero value (if the inverted values of ORA and ORB are both zero, then no key has been depressed), and the shift-and-test-carry should be repeated. In this case, however, the count of the number of shifts should start at 8 , rather than zero. The shift count when a bit is found will be in the range 9 to 10 (hex), and will correspond to the keys ' 8 ' to ' F ', respectively. The number of shift operations will indicate the identity of the first key found, or will be zero if no key is found, and will thus be a number in the range 00 to 10 (hex).

Converting from the key identity, in terms of number of shift operations, into an internal key code is a straightforward operation for a standard keyboard. The simplest way is to use a look-up table. The table is a list of key codes organised so that the first code corresponds to 'no key found', the second to ' 0 ', the third to ' 1 ', etc. The appropriate key code is then found by setting the index register to point to the start of the table, and using the shift count as an offset into this table. Thus, for example, a count of 7 indicates that the key pressed was the ' 6 ', and that its code
will be found at table start +7 . The conversion routine will then pick up the code and return it as the identity of the key to the command processing routine.

Identifying key depressions for the matrix keyboard shown in Fig. 8 must be done with user interrupts disabled (which happens automatically when an interrupt service routine is entered after a key depression), otherwise the identification process itself may generate further, unwanted, interrupts. The basic principle for indentifying the key depressed is to select each output line (PBO to PB3) in turn, and see if any key on this line (e.g. ' 0 ', '4', ' 8 ' or ' C ' on PBO) has been pressed. At the start of the routine, as mentioned earlier, all output lines will be set low. Reading the input lines from PB4 to PB7 should show that the top four bits of ORB are not all high if a key is depressed; this should be the first step in the key identification. Assuming that at least one of the input lines are low, the next step is to identify which key is down; no keys down means that the interrupt was either spurious, or for some other peripheral, and the keyboard routine should be exited.

Each of the output lines are selected in turn until one of the input lines goes low. Remembering that the circuit uses active low logic, this selection is done by output of FE, FD, FB and F7 to ORB in turn until the value read back from ORB has a value other than F in the top four bits. If the key depressed was ' A ', the value output to the bottom four bits to locate the key would have to be B, and the value in the top four bits read back from the PIA would be also B. The situation at this point is that we have an output value of $F E$, FD, FB or FD, at which a key depression was detected, and an input value corresponding to the key depression. Only the four least significant bits of the output value, and the four most significant bits of the input value are of interest. First of all, however, the input value must be checked to remove any multiple-key values, otherwise the code conversion routine will fail. The best way to do this is to perform a bit test on each of the top four bits of the input value in turn, stopping at the first bit set to zero, and forcing all of the rest high (with an OR instruction). When this has been done, a composite key code can be formed, with the 4 least significant bits of the output value in the least significant half of the composite, and the 4 most significant bits of the input value in the upper half of the composite.

The conversion of the composite key code to the internal key code used by the rest of the software is best performed using a look-up table again. A typical table, for the circuit in Fig. 8 and the same codes used for the standard keyboard, would contain the following values in consecutive locations:

EE, O0, ED, 01, EB, 02, E7, 03, DE, 04, DD, 05, DB, 06, D7, 07, BE, 08, BD, 09, BB, OA, B7, OB, 7E, OC, 7D, OD, 7B, OE, 77, OF

This table contains pairs of values; each pair is the composite key code, followed by the internal key code. The conversion is performed by first setting the index register to point to the start of the table. The composite code is then compared with the contents of the location indicated by the index register. If it is equal, the contents of the location pointed to by the index register plus one are loaded into the key code store, and the conversion routine exited. Otherwise, the index register is incremented by TWO, and the process repeated until either a match is obtained, or the end of the table (checked separately) is reached.

This table-based conversion technique is by no means the only way to convert from a key position related value to an internal representation. Other techniques may be used which will be more efficient with particular hardware configurations. The table-driven method is, however, applicable
to all conversion problems, and it represents the most flexible and easily modified technique.

KEY DEBOUNCING

The problem of switch bounce applies to keyboards as much as to individual switches. The techniques for handling the problem are broadly similar. Hardware debouncing, however, is usually applied to complete keyboards, rather than to individual keys, and is therefore only usually found on completely decoded keyboards. In control applications, therefore, where fully decoded keyboards are the exception rather than the rule, software debouncing is most commonly employed.

The method of applying software debounce to a keyboard is usually embodied in the keyboard driver routine. The principle is to perform the key identification process twice, separated by typically 20 milliseconds, and then compare
the results. Only if the result is the same on the two iterations is a valid code passed on to the command processor, otherwise the results of the two passes through the identification routine are ignored. The 20 millisecond delay is most easily implemented as a software delay loop; typically 2000 times round a short loop will give the required delay.

NEXT MONTH: The next part of the Into the Real World series will concentrate on the problems of handling analogue signals. Practical applications will be given for digital-toanalogue and analogue-to-digital conversion interfaces using low-cost conversion components.

Future issues will continue with the discussion of problems with using micros in the real world. Opto-isolators, glitch removal, pulse stretching and multiplexed display driving will be among the topics covered.

FREE! READERS'ADVERTISEMENTSERVICE

WANTED circuit diagram and construction details for PE Synthesiser '74, good price paid. Mr. S. Poskitt, 62 Carden Hill. Hollingbury, Brighton. Phone: 0273555759.
UK101 8K cased with leads and programs £125. Maplin organ parts including keyboards. Sittingbourne (0795) 22219. Ian Gilbert.
SHIRA STEREO amp 20×20. £9. Holdway, Flat 9, No. 10 Westwood Road, Portswood, Southampton, Hants.
ORGAN Grosvenor Spinet, kit built, iwo manuals, pedals, playable, needs slight attention £150 o.n.o. Buyer collects. 0784258878 (Middlesex).
ZX81 SINCLAIR built, 16K RAM. Complete with leads p.s.u. manual $£ 65$. Unmarked, months old. Tel: 020662597 . M. H. Moody.
BOUGHT in error. $30 \mathrm{npn}+$ pnp. Includes equivalents- 2 N 1132 , 2N2905A. BC207, $\mathrm{BC} 177 \mathrm{~B}, \mathrm{BC} 171, \mathrm{BC} 172 \mathrm{~B}, \mathrm{BC} 178$. £2.00. Mr. A. Cooper, Broomside, Logger Heads, Market Drayton, Salop TF9 4NZ (Tel: Ashley 2634).
TEXAN amp PE FM Tuner WW Dolby unit, MulJard amp units unused, offers. Tel: Blackpool 691976 . S. Rigby.
SINCLAIR 2×81 ROM disassembly Part ' A ' by Doctor Ian Logan (book) much sought after only E6. Laurence Cook, 7 Plum Tree Close, Prescot, Merseyside L35 7JT. Tel: 0514265138.
UK101, 8K, Invaders, assembler manual, leads, uncased, $£ 80.00$ or $£ 95.00$ with 32×48 screen format, $300 / 600$ Baud. K. P. Wood, 35 Milnthorpe Drive, Wakefield, W. Yorks WF2 7HU. Wakefield (0924) 256100.

RULES Maximum of 16 words plus address and/or phone no. Private advertisers only trade or business ads. can be placed in our classified columns). Items related to electronics only. No computer software. PE cannot accept responsibility for the accuracy of ads. or for any transaction arising between readers as a result of a free ad. We reserve the right to refuse advertisements. Each ad. must be accompanied by a cut-out valid "date corner". Ans. will not appear (or be returned) if these rules are broken.

Please publish the following small ad. FREE in the next available
issue. I am not a dealer in electronics or associated equipment. I issue. I am not a dealer in electronics or associated equipment. I have read the rules. I enclose a cut-out valid date corner.

Signature

 DatePlease read the RULES then write your advertisement hereone word to each box. Add your name, address and/or phone no. COUPON VALID FOR POSTING BEFORE 11 FEB. 1983. (One month later for overseas readers.)

SEND TO: PE BAZAAR, PRACTICAL ELECTRONICS, WESTOVER house, WEST QUAY ROAD, POOLE, DORSET BH 15 1JG.

'SCOPE Heathkit 10-12U single beam, a.c. to 5 MHz , sensitivity $10 \mathrm{mV} / \mathrm{cm}$. Mint condition, first offer over $£ 50$. Andrew Holme, 92 Stone Cross Lane, Lowton. Nr. Warrington, Cheshire. Tel: Ashton-in-Makerfield (0942) 728172.

STUDENT leaving. Many electronic articles for sale. good value, s.a.e. for list. K. Y. Chang, 70 1Up, Ashley St., Glasgow G3.
WANTED ZX81 with p.s.u. manual around £20£25 could swap with Hornby "00" railway items. Mr. K. J. Ireland, 97 Whinfell Way, Gravesend, Kent DA12 4RY. Telephone (0474) 24712.
WANTED 500V Megger. Tel: 085677 279. G. Grieve, Makerhouse, Dounby, Orkney.
TELEQUIPMENT/dual beam oscilloscope v.g.c. £ 100 o.n.o. Sumbro Maple neck strat copy £40. Rob McGrath, 471 Rosam Grove, Southgate, Runcorn, Cheshire. Tel: Runcorn 712081 Rob or Ken.
MICROSYNTH: unwanted 4 -octave model requires good home. One only. New condition. Fully tested. Unrepeatable bargain £200. A. R. Bradford, 76 Holly Lane, Birmingham B24 9JR. Tel: 0213730461.
DOUBLE beam scope by S.E., Labs., mains-batt. $30 \mathrm{MHz} .8 \mathrm{~cm} \times 10 \mathrm{~cm}$ c.r.t. £145. Tel: 01504 6957. Mr. A. Rabicano, 110 Kings Ave, Woodford Green, Essex IG8 OJN.
SAD1024A delay line i.c. two available still in sealed packs $£ 5$ each. Somerton 72663 (Even-

UK101 32K. Cegmon 32-line, New BASIC 1,2。 4, 5, tool kit. $1-2 \mathrm{MHz} 300-600$ Baud, sound, parallel ports, software. £240. R. G. C. Asher. 125 Hawthorne Ave, Long Eaton. Nottingham. Tel: 0607666593.
INCOTERM v.d.u. K26-02 keyboard D10-24 pcb's for sale. D. J. Herries, 3 Court Garden, Marlow, Bucks SL7 2AE. Tel: 062845978.
ACORN Atom 8 K ROM 12 K RAM p.s.u. leads £150. Salisbury 332491. M. Beard, 6 Aston Mead, Salisbury.
PRACTICAL Electronics magazines for sale Nov. $64-\mathrm{Dec} .68$ bound. Offers complete lot. Tel: Kings Langley 63766. Mr. K. Bale, 51 Gallows Hill, Kings Langley, Herts.
DATA Dynamics 390-RO printer £85, Heathkit SW717 receiver [75, West Hyde Jubilee v.d.u. cabinet with keyboard £40. Mr. R. W. Hearn, 10 Speedwell Close, Pakefield, Lowestoft, Suffolk NR3 37DU.
TRANSISTORS/TTL C/MOS etc., all new. Wanted any computer or hardware exchange or sale Vacum pump. Mr. B. P. Watson, 142 King Street, Great Yarmouth, Norfolk NR30 2PQ.
BOUND volumes Practical Electronics 1964 to 1982, offers. Unused Micronta $3 \frac{1}{2}$ Digit I.c.d. Multimeter $£ 25$. Tel: 023453558 . Mrs. V.Hambidge, 35 Spring Road, Kempston, Bedford MK42 8LS.
WHY PAY £550? Sharp MZ80A only $£ 400$. Perfect condition with $£ 12$ programs and guarantee asking £ 400 o.n.o. Paul C. O'Neil, 187 Main Street, Chapelhall, Airdrie, Strathclyde, Scotland ML6 83F. Tel: Airdrie (02364) 51476.

Volume purchase from Acorn brings massive savings for you!

Cashin on our misfortune! Over f 50 offan Atom Microcomputer

> We recently made a bulk purchase of over 800 Acorn Atoms for sale overseas. The deal fell through! We are now offering those Atoms to you at the price we paid for them.

The Atom normally retails at $£ 174.50$ inc. VAT we are offering it to you at a mail order price of only $£ 115$ inc. VAT - an incredible saving of $£ 59.50$ plus a free power supply and software worth over $£ 20$.

The Computer

The Atom has 2 K of RAM and 8 K of ROM but of course this can be boosted enormously.

The computer has a full sized keyboard laid out in a conventional way. To use it just connect the power supply and a cable into the aerial socket of a TV set.

As well as integral sound output and direct cassette and TV interface, a wide range of additional interface boards are available to fit inside the casing. Extra 64 K RAM, Colour. Printer, Laboratory, Cassette, $6522,80 \times 25$ VDU, Analogue, Econet etc etc allowing the user to build a very sophisticated application machine. Full details of all accessories, disc pack, software etc are supplied with each machine.

The language used by the ATOM is BASIC, the language used by most personal computers.

The Atom's version is very fast, making it ideal for real time applications.

Word Processing

Plotting + Graphics

Real time applications

It has all the normal functions you would expect plus many powerful extensions making it very easy for you to operate and write your own programs.

The Atom is fully guaranteed. There are 80 nationwide authorised service centres. Just clip the coupon below or ring 01-930 1612 with your credit card number. Computer Marketplace Lid,
20 Orange Street, London WC2H 7ED
London WC?II 7ED
Please scind me__(qty) Acorn Atoms at $\mathbb{C} 115$ including p\&p/ins. Total $£$ \qquad
Please debil my Access/Barclaycard
Block Letters Plase
NAME
ADDRESS
SIGNATURI

Please allow 21 days for delivery

SEMICONDUCTOR UPDATE R.W.Coles

FEATURING Am 7910, LC502, Micro/J-11

MODEM CHIP

Sending microcomputer data over short distances is easy, thanks to RS232 or current-loop standards and the easy availability of UARTs and PIAs which do all the hard work for you. But what if you want to exchange PAC-MAN programs with your granny in Edinburgh? Or access a bigger computer in Dallas, Texas? Short of laying your own cable (not recommended!) there is only one solution, and that is to use the telephone network.

Don't try connecting RS232 data to your telephone, though, because a) it won't work, and b) you will end up with a mushroom cloud over your UART! The trouble is, RS232 signals need d.c. links with logic states represented by positive and negative voltages. The phone system, however, is essentially an a.c. system with the only d.c. voltages being provided and controlled by your local exchange.

To send data on the telephone system it must appear to be similar to speech, and one way of achieving this is to code the ones and zeros as different audio tones within the audio bandwidth of the network. This technique is in wide use, but unfortunately it requires the use of a modem (modulator/demodulator) at each end of the link, and old age pensions being what they are, granny probably couldn't afford one.

Modems have, however, become cheaper lately, especially the acoustic coupled variety which uses the standard telephone microphone and earpiece to couple into the network, but the cost of the necessary oscillators filters and detectors with all those inductors, capacitors, and OP-AMPs is still preventing most of the home computer fraternity from indulging.

But never fear! Your fearless columnist, friend of all PAC-MAN playing grannies, has news of a new device which should bring the cost of modems tumbling! The Am 7910 single chip modem subsystem from Advanced Micro Devices sweeps away the need for all those old-fashioned inductors and capacitors and replaces them with nice modern digital circuits. Hook the RS232 signals from your micro to one set of pins, add a few discrete components, wire up to your acoustic-coupler and hey presto! The world is your oyster.

Inside the Am 7910's 28 pin package is an amazing selection of goodies. On the transmit side, it takes the RS232 digits and uses them to control a digital sine wave synthesiser which after filtering drives a digital to analogue converter (DAC) and a post analogue filter before being fed out to the telephone coupler as a Frequency Shift

Keyed (FSK) tone sequence. On the receive side, the tones from the coupler are analogue prefiltered, digitised in an ADC and then separated by means of a digital filter before demodulation and RS232 output.

In addition to those basic features, the Am 7910 also has amazing flexibility. The world is a real "tower of Babel" as far as modem frequencies and data rates are concerned, but the Am 7910 can be switched to handle nine different modem standards, which would not have been possible for the older analogue systems. For remote data collection, the Am 7910 even has an automatic-answer capability so you could dial up your home from a call box using an acoustic coupler and get back data on all those exciting household parameters like the gas meter reading or the oven temperature. Beats string and tin cans, doesn' it?

EASY AS A.G.C.

Many audio systems face the problem of wildly fluctuating input levels, and a Canadian firm called Linear Technology Incorporated has just come up with a neat little Automatic Gain Control (AGC) circuit to help solve it. Usable in hearing aids, telephone systems, CB transceivers, and portable tape recorders, their new LC502 device can live in an 8 pin mini d.i.p. or a tiny flat-pack and will operate on supplies of between 1 and 10 volts thanks to a built in 0.94 volt regulator.

Providing up to 70 dB of gain control range, the LC502 tries to keep its output signal level at a constant 20 millivolts r.m.s. regardless of variations in the input signal amplitude due to speaker position or loudness.

The user can set any nominal gain for the circuit of between -6 dB and +64 dB by means of an external resistor and the LC502 will adjust its gain automatically down to the -6 dB limit as the input signal level increases. Inside the chip there is an inverting operational amplifier with an electronically variable resistance in its feedback path, and a full wave detector with a smoothing circuit. As the input signal level increases, the d.c. output voltage from the detector also increases and this is used to control the variable feedback resistance which in turn reduces the gain of the circuit.

For obvious reasons, two important parameters of any AGC system are the attack and release times. The LC502 settles to within 2 dB of final value within one millisecond after a 25 dB input step, and
release time can be adjusted to between 25 and 500 milliseconds. The noise performance, whilst not of hi-fi standard, is perfectly adequate for the sort of applications in which the LC502 will be used.

An added bonus is that the input circuitry of the device is designed for direct connection to an f.e.t. buffered electret microphone.

MICRO MONSTER

A short while ago I covered the new DEC "PDP11-on-a-chip" T-11 microprocessor which is now becoming available. I was more than impressed by that device, but now DEC have done it again by announcing a new device coded the Micro/J-11 which can actually outperform the most powerful of all their existing PDP 11 s , the $11 / 70$. Now, the $11 / 70$ is a big expensive machine, and the prospect of someone putting the CPU of such a monster into a single 60 pin package has never really occurred to me. If I pass on a few of its salient features you will see what I mean!

The $J-11$ contains two sets of six 16 bit general purpose registers plus six 64 bit floating point arithmetic registers plus three stack pointers and several specials. It runs on a 20 MHz clock and can do a 16 bit register addition in 200 nanoseconds or a 16 bit multiply in 4.4 microseconds. An onchip memory management unit gives 22 bit addressing to cover 4 megabytes of memory at 128 K bytes per page, and the internal data bus is 32 bits wide for a really sizzling performance. This amazing device even runs its own diagnostic programs when power is applied, and reports its state of health to the system interface!

There's lots more, but we haven't got the space. As a parting shot I will just mention that despite all that raw power the J-11 consumes only 1 watt from a 5 volt supply which is less than many 8 bit devices 1

- To take advantage of such a monster, it will be necessary to add buckets of memory and plenty of disk storage, but no doubt before long we will all have one in our electric toaster and think nothing of it. Ah well. that's progress!

AVAILABILITY

Devices featured in Semiconductor Update should, under normal circumstances, be available from good component retailers, but bear in mind that retailers will often not receive stocks of a device until some time after it has been featured in Update.

THEMES

All public speakers have favourite themes they like to promote. Leading industrialists are no exception, and although they may open with words suitable to the occasion and use a few topical jokes you can bet they'll work in their pet thought, their main message, before they sit down.

When Dr F. E. Jones was managing director of Mullard, he seldom missed an opportunity to inform his audience of the facts of industrial life. All Mullard had was a handful of sand (silicon) and a few other basic raw materials. Everything after depended on human invention and human skills diligently applied to transform such unlikely stuff into valves, TV picture tubes and semiconductors. His message was 'added value', the difference between raw material cost, entering at one end of the factory, and the sales value of what left at the other end.

This added value, Jones would continue, was the only true measure of wealth generated and it was this wealth which was needed to support the big spenders in health, education and welfare services. Of course he was right but he did rather keep on about it. He needed to when addressing those to whom simple truths, honestly expressed, are anathema, such as progressives who find private enterprise distasteful, profit practically obscene and business success somewhat immoral. Unhappily he was talking to the deaf. They didn't want to know and since his days at Mullard, a new generation of progressives still cling to the same prejudices.

SIR E. HARRISON

More recently Sir Ernest Harrison had the opportunity to air his 'no magic formula' theory, to explain the success of the Racal Electronics Group. This came up yet again when he accepted the Business Enterprise Award 1982. His pet theme is people, his own
team of Racal people, all 12,500 of them who believe in Britain and in themselves the finest team in the world. He was saying this when Racal had a couple of thousand people and has been saying it ever since, and with absolute sincerity.

Harrison, like Jones, is also keenly aware of added value (i.e. high productivity) but employs an oblique approach. He points out, with justifiable pride, that exports per UK head of his employees has reached $£ 21,000$, more than three times the average for the whole of Britain's manufacturing industry.

I can add a figure or two of my own. In the last ten years Racal's world-wide turnover has multiplied by a factor of 30 , while the number of Racal people has grown only by a factor of six. This tells us something about Racal, something about technological advance and something about general unemployment.

PEOPLE

Sir Ernest's belief in people is well-founded, but 1 think he is being too modest. My own observation is that management style as well as competence is the key to success.

I remember as a keen one-time motorcyclist my reverence for the BMW machine and the consequent shock of learning that they were assembled not, as 1 had imagined, by skilled German craftsmen but by a largely ex-patriate Turkish workforce. The machines nevertheless ${ }_{4}$ remained immaculate.

And why, one wonders, has Japanese discipline and dedication to the work ethic been not only accepted but even welcomed in industrial South Wales by a workforce which hitherto has not been known for acquiescence in new patterns of work.

I commented on this phenomenon a couple of years ago but had over-looked further developments. Some 6,000 people are now employed by eight Japanese companies in South Wales and all appear to be prospering. The one common factor is that all have single union agreements which largely eliminate squabbles over who does what. Compare this with factories with a dozen unions, a multiplicity of shop stewards and constant friction over demarcation. In the one case unity of purpose, in the other potential chaos.

JAPANESE STYLE

True that at least some of the Japanese style managements prefer to recruit shop-floor operatives straight from school, uncontaminated by bad practices. The difficulty of finding a job probably helps in recruits accepting a high standard of discipline and total involvement, and reports suggest that this leads to contentment rather than the reverse. Staff turnover, always a problem in a largely female electronic assembly shop, has declined since the pioneer companies came into the area six years or so ago, setting standards for work practices which then appeared to be difficult to enforce. The Japanese invasion, one is tempted to say revolution, in South Wales is good for the area, good for the people and no doubt good for the Japanese.

Now what about Racal people? The Decca electronics interests bought by Racal were doing badly at the time. Today they are again
successful, and yet the workforce is composed of substantially, if not entirely, the same people as before.

Of course people and their individual qualities are important at all levels of employment but without leadership and direction their abilities and talents remain undeveloped, even willingness to work undermined.

In military circles there is a saying that there are no bad troops, only bad officers. Could it not be that General Sir Ernest Harrison is an inspired leader of his Racal Regiments in attacking world markets? That his shock troops down to the lowest ranks have the confidence in themselves only because of their own confidence and trust in a leadership that has never let them down?

OUTLOOK

1982 proved a dramatic year at home and overseas. Now in the first weeks of a new year it is even more difficult to project the future. We have yet to get the feel of a new regime in the Kremlin. With so many countries on the brink of bankruptcy it seems unlikely that the world recession will improve, if ever. Wars and rumours of war continue, both economic and military. Political warfare 100 , with a hard fought election at home in prospect.

The electronics industry is still good news. Even television broadcasting, with all its triviality, has brought benefits. Channel 4 resulted in millions of pounds of new equipment which still runs into this year with extensions to the transmitter network. Breakfast TV will also bring in revenue from hardware, mairtenance and re-equipment.

PROSPECTS

On the ground we have the start-up of the Mercury data network, the prospect of cable TV and or cellular mobile radio. In the air the US space shuttle has opened up new possibilities in deployment of communications, scientific and defence satellites.

The home computer market has taken off to the extent that I read somewhere that one clever young man in the business could be worth $£ 100$ million by the end of the year. Equally, he might lose it. And apparently Gatwick No 2 Terminal will generate a lot of extra telecommunications business.

Companies like Cable \& Wireless, GEC, Plessey, Racal, Ferranti and the aerospace companies will all have record turnovers, record profits and hopefully an increase in people employed. The news is not all bad, opportunities are there to be seized. One might say there are no bad times, only bad businesses.

If this is not true how does one account for the entrepreneurs who become millionaires last year in the hard grip of recession. Dick Skipworth of Memec, said now to be worth $£ 10$ million at the age of 44 , or Alan Sugar running Amstrad in 'consumer electronics', almost universally regarded by others as a disaster area. Or the founders of Micro Consultants up in the million bracket and the founders of Continental Microwave who have nearly reached the nuagic million. It's not only the big companies who make money. The little 'uns can do very nicely, too.

THE use of side lights or dipped headlights during twilight conditions is now considered mandatory and can be instrumental in reducing both the frequency and severity of road accidents. Unfortunately many drivers often do not recognise the onset of twilight conditions soon enough; their eyes become gradually accustomed to the progressive reduction in ambient light level. The point at which the lights are eventually switched on is then too late; being simply too dark for safe driving without lights.

The unit described provides the driver with both audible and visual warnings of inadequate ambient light level. The threshold is adjustable over a fairly wide range and the alarm action is quite positive. The unit automatically resets when the light level returns to a safe level. The device uses readily available low cost components and can be easily and quickly fitted to any vehicle.

CIRCUIT DESCRIPTION

The light sensitive transducer, IC1, produces an output of +5 V when illuminated and OV when in darkness. The switching threshold of the device is made adjustable by means of VR1 and its supply voltage is regulated with the aid of a simple shunt Zener diode, D1. The output of IC1 is inverted by means of TR1 and then applied to the reset input of a 555 timer, IC2, which is connected in an astable configuration.

The astable provides an output at approximately 1 Hz and this is applied to the l.e.d., D2, via an appropriate series resistor, R7. The low frequency square wave output is also connected to a second 555 astable, IC3. This stage operates at approximately 1.2 kHz and its output is taken via coupling capacitor, C5, to a miniature loudspeaker.

The unit is protected against inadvertent reverse connection of the supply by means of D3. C1 and C6 provide decoupling of the supply voltage rail.

COMPONENTS

Resistors		
R1	$10 k$	
R2	$10 k$	
R3	270	
R4	$2 k 2$	
R5	$10 k$	
R6	$47 k$	
R7	$1 k$	
R8	$10 k$	
R9	$1 k$	

All fixed resistors are $0.25 \mathrm{~W} 5 \%$ carbon

Capacitors

C1 $100 \mu 16 \mathrm{~V}$ p.c. electrolytic
C2 100n polyester
C3 $\quad 22 \mu 25 \mathrm{~V}$ axial etectrolytic
C4 100 n polyester
C5 220n polyester
C6 $\quad 100 \mu 16 \mathrm{~V}$ p.c. electrolytic

Semiconductors

TR1 BC548
D1 BZY88C4V7
D2 Red I.e.d.
D3 1N4002
IC1 5VLAS
IC2 555
IC3 555
Potentiometer
VR1 100k minimum horizontal skeleton pre-set
Miscellaneous
Miniature loudspeaker or earpiece (see text)
Case
8 -pin DIL i.c. sockets (2 required)
0.1 in matrix Veroboard (17 holes $\times 28$ tracks)

Terminal pins
Grommet
L.e.d. mounting clips (2 required)

Provides audible and visual warning of an inadequate light level

Fig. 1 Circuit of Twilight Warning Indicator

CONSTRUCTION

The components are assembled on a small piece of 0.1 in matrix Veroboard measuring approximately $70 \mathrm{~mm} \times 43 \mathrm{~mm}$. as shown in Fig. 2. Terminal pins should be employed for interconnection of the circuit board with the case mounted components.

When assembly is complete, the top side of the board should be examined for correct placement and orientation of components whilst the underside should be inspected for dry joints and solder bridges between tracks. Breaks in the tracks should be made using either a proprietary spot face cutter or with the aid of a small sharp drill.

The circuit board should be mounted in the base of the plastic case using two small stand-off pillars. Interconnections from the board to the case mounted components are made using short lengths of insulated wire.

The transducer used for the alarm output of the alarm can be a conventional loudspeaker, and earpiece, or even a standard telephone insert. The nominal impedance of such a unit can be anywhere in the range 8 ohm to 10 kilohm. Most small transistor radio loudspeakers will produce more than ample volume and the value of the coupling capacitor, C5, may be altered to increase or decrease the sound level accordingly.

The light activated switch i.c. is most conveniently mounted on a separate small piece of Veroboard which may be secured to the upper surface of the case by means of a single nut, bolt and stand-off pillar. The four interconnections to the i.c. are best made using a short length of fourway ribbon cable. To improve the external appearance of the finished unit, the light activated switch i.c. may be fitted with

Fig. 2 Veroboard assembly details

a standard l.e.d. clip and, furthermore, it is recommended that the device be recessed (by means of an appropriate length of stand-off pillar) so that its upper surface is flush with the surface of the l.e.d. bezel. Such an arrangement not only offers a measure of protection for the i.c. but also restricts the angle over which incident light is received.

INSTALLATION AND ADJUSTMENT

Adjustment of the twilight indicator is best carried out with the unit fitted to the vehicle. Suitable locations for the alarm module include the rear parcel shelf and the front dashboard. The unit should be positioned so that the light sensitive transducer is positioned upwards facing the windscreen or rear window. The acceptance angle of the transducer is fairly wide and can, if desired, be narrowed by means of a short extension tube bonded to the mounting clip. Such a tube should, of course, be sprayed matt black.

The threshold control, VR1, should be adjusted so that the alarm operates at the onset of twilight. The alarm may be cancelled, if desired, by interrupting the supply using a single pole single throw miniature toggle switch. Automatic cancellation of the alarm when the side lights are on can be achieved simply by wiring a 10 kilohm resistor from the side light circuit to the base of TR1.

Copies of Patents can be obtained from: the Patents Office Sales, St. Mary Cray, Orpington, Kent. Price $£ 1.60$ each.

NO NOISE

Sanyo, of Osaka city in Japan, has filed a European patent application 0056464 on a circuit for removing pulsive noise interference from a radio signal.

Fig. 1 shows the basic idea. FM detector 11 outputs a stereo composite signal to delay circuit 31 and gate control 33. The delayed composite signal is applied to one input of a subtracting circuit 37 via emitterfollower buffer circuit 41. Capacitor 43 bridges to the other input of circuit 35 via another buffer. The subtracted output goes to stereo demodulator 15 .

The delayed composite signal also goes to pilot tone extractor 45 which produces a reference signal for a conventional phase lock loop 47, which produces signals at 19 kHz and 38 kHz . A cancel signal is derived at 65 and fed back to the subtract circuit. Gate 67 is controlled by circuit 33 which has a high pass filter 69, noise detector 71 and shaper 73.

When there is no pulsive noise or interference in the composite signal, gate control circuit 33 produces no pulse and gate 67 conducts. So the cancel signal from circuit 65 goes via gate 67 to one input of subtractor 35, while the other input receives the delayed composite. When there is pulsive noise on the composite it is detected at 71 and gate 67 switched. So
missing parts of the waveform by extrapolation. No details were available, but it seems likely that the technique used is a spin-off from error concealment in digital audio reproduction, where too many bits are missing for error correction to be possible. The JVC circuit, which works on any audio signal (whether from radio, gramophone or tape recorder) points the way to the future. Circuits like that described in the Sanyo patent are suitable only for FM stereo radio use.

HEADPHONE WARNING

Michael Pears of Leamington Spa, Warwickshire has filed a British patent application 2093242 on a warning system which tells anyone wearing headphones when the telephone or doorbell is ringing. The headphones plug into the hi-fi via the warning device, and the microphones are put near the doorbell and telephone.

Fig. 1 shows how the microphones 5, 6 trip the circuit and switch relay Ra to control the headphones. When there is no signal from microphones 5 \& 6 transistor T2 is switched on, via resistors R1, R2. The collector voltage of T2 is too low to switch NOR gate G1.

When either or both of the microphones picks up a sound signal, T2 receives a signal via capacitor C2,. This switches it at a rate determined by the frequency of the audio input from the microphone. While T2 is momentarily non-conductive, its collector voltage rises to switch gate G1. Gate G2 now has signals at its inputs and switches T1 to operate relay R2. Gates G1, G2 latch on with feedback and the headphones are

the composite and pulsive noise is applied to both inputs of subtract circuit 37 . The pulsive noise is removed and the stereo pilot signal cancelled. The lengthy patent gives a detailed breakdown of a convoluted series of events which brings this about.

It's worth noting in passing that while in Japan recently, visiting JVC, I heard the demonstration of a very new prototype pulsive noise suppressor. This removes interference spikes from an audio waveform and disguises their removal by replacing

disconnected from the hi-fi, and switched to receive the sound from the microphones. So the listener suddenly stops hearing music and hears the door or telephone bell instead. Re-set button 10 puts the system back to normal for music listening.

There is also a modified time sensitive circuit in which the ringing current is rectified and stored in a capacitor until a threshold value has been built up. In this way brief false alarm sounds cannot trigger the system.

ANDERS have a very high reputation for their meters in the industry and we are very pleased to make these two examples available to readers at this price. The special PE price is in fact lower than Anders one-off industrial price and it includes postage.

These rugged general purpose meters feature colour coded scales, fuse and diode protection and a choice of 20 or $30 \mathrm{k} \Omega \mathrm{N}$ sensitivity. Supplied with test leads and a strong rigil carrying case.

BRIEF SPECIFICATION	AMM 201	AMM 301
Sensitivity (k Ω / N) d.c.	20	30
a.c.	10	15
Accuracy (\%) d.c.	3	3
a.c.	4	4
Ω	3	3
No. of ranges	16	21
Voltage ranges d.c.	250 mV -1000V	60 rV -300V
a.c.	10-1000V	6-1200V
Current ranges d.c.	$50 \mu \mathrm{~A}-250 \mathrm{~mA}$	$30 \mu \mathrm{~A} 600 \mathrm{~mA}$
Resistance ranges (full scale)	$500 \Omega-500 \mathrm{k} \Omega$	$20 \mathrm{C} \Omega-2 \mathrm{M} \Omega$
dB ranges	-20 to +36	-20 to +31

To: Anders Electronics Ltd. (PE Meter Offer), 48-56 Bayham Place, London NW1 OEU. Tel: 01-387 9092.

radio BOOSIFR

David Whitfield M.A. M.Sc.

Improves signal level and reduces r.f.i. in radio reception

MANY lower-cost car radio receivers fail to provide satisfactory reception of weaker signals. Whilst this may be of little concern to the motorist who wishes to listen mainly to the BBC Radio Four transmission on long wave and perhaps also one or two local stations, those who are a little more adventurous in their listening habits will derive considerable benefit from enhanced receiver performance.

Many of the problems associated with poor receiver sensitivity can be readily overcome by providing the receiver with a larger input signal. This will considerably improve reception; not only is the signal "louder and clearer" but the effects of ignition interference and miscellaneous noise generated by the engine can be greatly reduced.

The radio Booster described not only provides some 10 dB , or so, of additional signal gain, but also improves the efficiency of the aerial matching. The unit offers two separate inputs; one for low and mid-frequencies $(100 \mathrm{kHz}$ to 3 MHz) and one for high and very high-frequencies (3 MHz to 120 MHz). These inputs exhibit appropriate impedances for matching typical car aerials intended for MW/LW and VHF reception respectively. The result is a properly matched wideband preamplifier system which will be more than adequate for the reception of all but the weakest signals.

The unit is simple to construct, uses only one integrated circuit and one field effect transistor, and requires no alignment or internal modification to the existing receiver.

CIRCUIT DESCRIPTION

The complete circuit diagram of the radio Booster is shown in Fig. 1. The LF/MF aerial is connected to the high impedance input at SK1. Silicon switching diodes, D1 and D2, provide input protection for TR1 which operates as a
source follower in order to buffer the relatively low input impedance of IC1. The HF/VHF aerial is connected to the low impedance input at SK2. Simple frequency compensation is provided by L1, C3 and R3. This network improves stability and assists with the duplexing of the LF/MF and HF/VHF inputs.

IC1 is a fixed gain broadband RF amplifier. This device provides a nominal voltage gain of 10 with an upper frequency 3 dB point of typically 140 MHz . Ferrite bead, L2. and capacitor, C5, provide efficient supply decoupling at VHF whilst C11 and C7 decouple the supply at other frequencies. A simple shunt Zener stabiliser, D3, regulates the supply at approximately 6 V . The π network provided by L3, C8 and C9 reduces supply-borne ignition and electrical noise to a minimum whilst C 10 reduces generator whine. Reverse supply protection is provided by D5 and the presence of the supply is indicated by l.e.d. D4

CONSTRUCTION

The radio Booster is built using a single-sided p.c.b., the copper foil layout of which is shown in Fig. 2. The layout is quite critical, particularly if good VHF performance is to be maintained, and thus no other form of construction should be attempted.

IC1 should preferably not be fitted with a holder and all other components should be fitted with the minimum lead length. Components are most conveniently fitted in the following order; terminal pins, resistors, capacitors, inductors, diodes, transistor, and integrated circuit. Care should be taken to ensure correct polarity of the electrolytic capacitors, diodes, transistor, and integrated circuit. The p.c.b. component layout is shown in Fig. 3.

Once complete, both sides of the p.c.b. should be carefully checked. The foil side should be examined for dry joints and solder bridges between tracks. The component side should be checked for correct placement and orientation of components. The p.c.b. should then be mounted into the diecast case using four short stand-off pillars. Note that, to minimise stray pick-up of electrical noise, the use of a screened metal case is absolutely essential.

Wiring from the p.c.b. to the case-mounted components should follow the layout shown in Fig. 4. Note that the OV connection is made at three separate points, each being a solder tag secured by one of the two retaining nuts of each input socket. Care should be taken to ensure that the polarity of the I.e.d. D4, is correctly observed. A standard 5-pin 180° DIN socket is used for power input; the positive connection being taken to pin 1 whilst the negative connection is taken to pin 3. Constructors may, of course, substitute a different power connector, or pin convention, to suit their own preference.

INITIAL TESTS AND INSTALLATION

Connect the output socket, SK3, to the aerial input of the car receiver using a length of either 75 ohm or 50 ohm coaxial cable terminated with suitable connectors. The length of this cable is not critical.

The radio Booster should, ideally, be located as close to the aerial as is practicable, however, this arrangement may be difficult to realise particularly if the aerial is roof mounted. In any event, the feeder run from the aerial to the Booster should not exceed about 2 metres in length and must be routed well away from any vehicle component which produces a significant amount of electrical noise (eg: wiper motors). The cable used for this run should be the feeder
which was originally supplied with the aerial, suitably cut short. It should not be 50 ohm or 75 ohm cable.

Connect a VHF rod aerial to SK2 using a short length of 50 ohm or 75 ohm cable. If only one aerial is to be used for the reception of both LW/MW and VHF, this should be connected to SK2 and not SK 1. If VHF reception is not required, the MW/LW aerial should be connected to SK1 and SK2 should be left disconnected. The use of an appropriate baseloaded antenna is recommended for short wave listening in the HF broadcast and amateur bands. Such an aerial should be connected to SK2 via an appropriate length of 50 ohm cable. If an aerial tuning unit is to be employed, this should be connected beween the HF aerial and SK2, taking care to observe adequate screening and earth connections.

Connect SK4 to the vehicle's 12 V power source using any convenient length of cable and connecting point. The cable should be routed well away from the aerials and vehicle ignition system. Check that D4 is illuminated. If this is not the case, check the polarity of the supply connections, D5, and the l.e.d. itelf. The voltage developed across D3 may also be checked and this should be approximately 6 V .

Tune the receiver acrass the desired band and note the improvement in signal strength. Note that, unless the receiver has a signal strength indicator, little effect will be noticed on signals which are already strong enough to actuate the receiver's automatic gain control system. Weaker signals, which may not have been audible before, should be greatly improved. A quick check can be made by reverting back to the original aerial system without the radio Booster connected in circuit. If ignition interference is a problem, the diecast case of the Booster should be earthed to the chassis of the vehicle. The earth connection at the aerial end of the input cable should also be checked.

Fig. 2 Copper foil layou:

[EG967]
Fig. 4 (above) Internal wiring diagram of the printed circuit board to the external sockets

Fig. 5 (right) Interconnecting diagram for MW/LW and HF/VHF aerials. If only one aerial is to be used for MW/LW and VHF this should be connected to SK2

56968

COMPONENTS

Resistors	
R1	$330 k$
R2	$2.2 k$
R3	270
R4	100
R5	220
R6	$1 k$

All resistors are $\frac{1}{4}$ W 5\% carbon

Semiconductors

D1	1N4148
D2	1N4148
D3	BZY88C6V2
D4	RedI.e.d.
TR1	2N3819
IC1	SL1610C

Capacitors	
C1	22p
C2	47n
C3	100p
C4	47n
C5	1 n ceramic
C6	$47 n$
C7	470 n polyes
C8	100 n polyes
C9	100n polyes
C10	$100 \mu 16 \mathrm{~V}$ p
C11	1n ceramic
Inductors	
L1	$10 \mu \mathrm{H}$
$L 2$	Ferrite bead
L3	1 mH

Miscellaneous

SK 1 Standard Belling Lee coaxial socket SK2 Standard Belling Lee coaxial socket SK3 Standard Belling Lee coaxial socket SK4 3- or 5-pin 180° DIN socket p.c.b.

Stand-off pillars (4 off)
Diecast case
Terminal pins

> Components and p.c.b. are available from Howard Associates, 59 Oatlands Avenue, Weybridge, Surrey,
> KT13 9SU.

PRINTER Creed 7B 240V with opto signal interface keyboard and cover. Working with diagrams £28.00 M. J. Wilsher, 144 Bedford Road, Hitchin. Tel: 042633209.
EPROMS two 64 K , both new and unused, $£ 9$. Ring 041332 3841. P. Thompson, 226 West Princes Street, Glasgow G4 9DL
CÁSIO FX502P £35 and FX501P £30 or near offers. Also FA 1 interface £10. Mr. D. Wright, 37 Tavistock Road. Chelmsford, Essex. Tel: (Chelm.) 50240.

DISCO, complete console with light show, mics, mixer box many extras $\mathbf{£} 300$ or offer, Farnborough 543641. Mr. R. M. Schoenewolf, 10 St. Christophers Road, Cove, Farnborough, Hants GU1 4 OAH.
HEATHKIT 5 inch scope plus manual and X_{1}, $X 10$, probe hardly used, working but needs slight attention £50. Buyer collects. R. Yates, 124 High Road, North Weald, Essex. Tel: 0378823303.
LOUDSPEAKERS, Baker 12 inch Wharfdale, 8 inch Tweeter 3 inch Goodmans Axion 10 inch including crossover. All 15Ω £ 12. Tel: 01368 3931. A. R. De Groot, 33 Albemarle Road, Barnet, Herts.
KEITHLEY 600B Electrometer, hardly used. Offers or swap CB rig, video. R. G. Rush, 4 The Bury, Shillington, Hitchin, Herts SG5 3PB.

WANTED circuit diagram with installation notes on Leak Varislope 2 stereo preamplifier. H. G. Wilkinson, Lyndene, Greengill, Aspatria, Carlisle, CAS 2RA
MULTIMETER for radio/t.v. v.g.c. £12. 01554 2913 evenings. Shanti, 536 East Ave, Ilford, Essex.
12K UK101, cased CEGMON 16/32 lines. New B4, B5. I/O, sound RAM/EPROM board software £220. Mr. N. Odell, 31 Humphrey Road, Greanhill, Sheffield S8 7 SE. Tel: (0742) 745027.

TRITON L. 7 BASIC and Trap sharing same EPROM board. Works without motherboard, +L .7 monitor £35. G. Baines, 20 Sugden Court, Princes Street. Dunstable, Beds. Tel: 0582 600913.

TELEQUIPMENT Serviscope 532A oscilloscope fully working, well looked after hence v.g.c. €50. Lancing 752594. C. C. Jordan, 23 Burnside Crescent, Sompting, Lancing, Sussex BN 15 9TJ.
SWAP/SELL: UK 101 (cased) etc, for A.T.U., receiver, beam, antenna, (10 mtr) w.h.y. or 2 mtr transceiver. V. G. Heron, 10 Roxburgh Tce, Whitley Bay, Tyne \& Wear, Tel: 0632514003.
WANTED AVO EM 272 or TMK multimeter. Tel: 01907 3629. Jack Anderson, 22 Landau House, Chatsworth Road, London NW2 4BW.
ACORN atom 12K ROM 12 K RAM. Two utility ROMS, ROM extension board, plus $£ 200$ of software, only £200. Tel: 0618814473

TRITON computer 36 K RAM 8 K BASIC cased motherboard professional cassette 1200 Baud, Teletype and v.d.u. £400, o.n.o. Y. Pirgali, 316 Reigate Road, Downham, Bromley, Kent BR1 5JN. 69B 5299 after 6 p.m.
WANTED electric typewriter golfball or daisy wheel usable as printer send description, photo. price 10: R. Arnold 19 Ave de Senarclens, CH 1293 Bellevue, Switzerland.
SINCLAIR SC1 10 scope $\times 1 \times 10$ probe, mains adaptor, Nicads, manual, case. Pristine, £ 100. Tel: 055386 618. Mr. S. V. Windebank, 36 Springvale, Gayton, Kings Lynn, Norfolk PE32 102.

WANTED manual or circuit diagrams for Terminet 300 printer made by general electric company. A. G. Seagrave, 175 Sorrel Bank, Linton Glade, Forestdale, Croydon CRO 9LZ.
UK101 cased 8K, 600 Baud, software, documents or interfacing £130 or swap comms. receiver or synth. Brian Cutts, 12 Cedar Close, Meopham, Kent, Tel: Meopham (0474) 812523. WANTED $\mathrm{ZX80}$ any condition. Tel: Cork 021 821766. Denis M. Mahony, 12 Meadowbrook, Riverstown, Co. Cork, Eire.
PRACTICAL Electronics Nov. 1964 Vol. 1 No. 1 to Oct. 1966 Vol 2 No. 10 , offers please. L. V Westmoreland, Endeavour Hayton Smeath, Retford, Notts DN22 9JT.
5V6A computer grade p.s.u. Four 1.5A modules. All conceivable features $£ 20$ o.n.o. Will split. Tel: 0553 86618. S. V. Windebank, 36 Springvale, Gayton, Kings Lynn, Norfolk PE32 1 QZ.

PE MICROCONTROLLER: DATA SHEET 1

THIS is the first single-page data sheet in a series for users of the PE Micıocontroller. The aim is to provide some more detailed information on the operation of the DISBUG monitor to assist the development of user control programs. Where appropriate, more detailed data on the hardware will also be included.

DISBUG RAM LOCATIONS

The memory locations at the top of the RAM region are reserved for use by DISBUG. Locations 03AO up to 03FF are used by the monitor program to record the current status of the monitor, to hold the addresses of various service routines, to record the results of various monitor routines, and for a variety of 'housekeeping' purposes. An understanding of the routines in DISBUG requires a knowledge of the structure of this RAM region, which is shown below. The mnemonic names are also shown to simplify reference to locations in future data sheets. It should be noted that some of the values are stored in two bytes of memory, e.g. PF1SRA.

OISPLAY	Statols ADODIS SEPOIS DATADIS	03FF 03FE 03FD 03FC 03FB 03FA $03 F 9$ $03 F 8$	Status code/prompt MS address digit Address digit Address digit LS address digit Separator character MS data digit LS data digit
KEYBDARD	KEYFLAG KEYADD KEYCD	$\begin{aligned} & \text { 03F7 } \\ & \text { 03F6 } \\ & \text { 03F5 } \end{aligned}$	Key found in 1st scan 1st scan key address Current key code
COMMAND PRDC	KEYACT PF1SRA PF2SRA CCM CSW CAS CDS IXTEMP	$\begin{aligned} & \text { 03F4 } \\ & \text { 03F2 } \\ & 03 \mathrm{FO} \\ & 03 \mathrm{EF} \\ & 03 \mathrm{EE} \\ & 03 \mathrm{O} \\ & 03 \mathrm{~EB} \\ & \text { 03E9 } \\ & \hline \end{aligned}$	Kay active flag PF1\} \{service routine Current command mode Command status word Current address store Current data store Index register store
PRESET EDITDR	$\begin{array}{\|l} \hline \text { PLAS } \\ \text { PUAS } \\ \text { PDS } \\ \hline \end{array}$	$\begin{aligned} & \hline 03 E 7 \\ & \text { O3E5 } \\ & \text { 03E4 } \end{aligned}$	Preset lower address Preset upper address Preset data store
RTC	TICK	03 E 2	Seconds count
INTERRUPTS	NMISRA SWISRA IROSRA	$\begin{aligned} & \text { O3ED } \\ & 030 \mathrm{E} \\ & \text { O30C } \end{aligned}$	NMI service routine Reserved IRO service routine
CPU STATIJS	RA RB IN SP PC CCR	$\begin{aligned} & \hline 0308 \\ & 030 \mathrm{~A} \\ & 0308 \\ & 0306 \\ & 0304 \\ & 0303 \end{aligned}$	Current iA value Current rB value Current In value Current SP value Current PC value Current CCr value
BREAKPOINTS	BPOA ${ }^{B P O I}$ BPIA BP1I BP2A BP21 BP3A BP3I CBPS	0301 0300 O3CE 03 CD 03CB 03CA 03C8 03 C 7 03 C 6 03 C 6	BPD address store BPD instruction BPI address store BPI instruction BP2 address store BP2 instruction BP3 address store BP3 instruction Current breakpoint
varidus	UMRSA CRS VARS DSTACK USTACK	$\begin{aligned} & \text { 03C4 } \\ & \text { 03C3 } \\ & \text { 03BF } \\ & \text { 03BE } \\ & \text { 03AA0 } \end{aligned}$	User monitor routine Current register Variable storage Top of DISBUG stack Top of user stack

KEYBOARD SCAN ROUTINE

The Microcontroller keyboard is scanned by a subroutine called KEYBOARD, which also includes a 20 millisecond debounce routine. The routine assumes that the keyboard PIA has been correctly set up by the DISBUG initialisation routine (which is executed automatically at power-up), and it uses a maximum of four bytes of stack space. The scan routine is called by 'JSR KEYBOARD', which is coded as BD F8 2C. There are no entry parameters, but the routine corrupts all registers except SP. On exit, rB will contain a reply code of: ' 01 '= valid key found; ' $\mathrm{OO}^{\prime}=$ no key found; 'FF'=uncertain result (differing results from the two key scans). The location (key address in the matrix in an internal code) of the first key found depressed in the first scan will be found in $r A$; this will only be valid for a reply code of '01'. The KEYADD store will be equal to the contents of rA, and KEYFLAG will be set to 'FF' if a key was found on the first scan, or to ' 00 ' if no key was found on the first scan.

KEYBOARD CODE CONVERTER

The address in the key matrix produced by the KEYBOARD routine is converted into the appropriate DISBUG key code by a subroutine called KEYCODE. This will normally only be called if the reply code from KEYBOARD was '01'; the routine will, however, correctly handle a reply code of ' 00 '. The conversion routine is called by 'JSR KEYCODE', which is coded as BD F8 77, and the maximum stack usage to be allowed for is 2 bytes. On entry to the routine, rA should contain the key address from the KEYBOARD routine, and rB should contain a 'OO' or ' 01 ' reply code from KEYBOARD. The KEYCODE routine corrupts all registers except SP, and on return the key code is contained in rA, and also in RAM location KEYCD. The table below shows the correspondence between keys, key addresses and key codes to be expected in DISBUG, and should allow readers to use these routines in their own control programs. (M.T. \& D.W.)

KEY	ADDRESS	CODE	KEY	ADDRESS	COOE
0	00	00	REGISTER	33	10
1	10	01	BREAKPDINT	23	11
2	11	02	PRESET	13	12
3	12	03	MEMDRY	03	13
4	20	04	PF1	35	14
5	21	05	RESTART	17	15
6	22	06	PRDCEED	27	16
7	30	07	GD	37	17
8	31	08	PF2	25	18
9	32	09	ENTER	01	19
A	42	$0 A$	NEXT	06	1 A
B	43	08	PRIDR	07	18
C	44	$0 C$	CANCEL	05	$1 C$
0	64	$0 D$		16	10
E	63	$0 E$	H	40	$1 E$
F	41	DF	(Shift)	54	$1 F$

Key Code of $\mathrm{FF}=$ No key pressed

PROERAMMABELE UNHUUNETION TRRHSISTORSS P. GATEHOUSE

IN this article I shall attempt to do justice to a device which has arrived quietly amongst all the magnificent i.c.s we keep devouring. Programmable Unijunction Transistor (PUT) circuits have proved reliable and sturdy solutions to situations in which I would have placed an i.c. and I hope to convince you that a few PUTs are a useful investment.

the device

The circuit symbol (Fig. I) for the PUT is that of the SCR, but with the gate at the other end. Essentially that's all a PUT is; a "complementary" SCR triggered not by a pulse positive with respect to the cathode, but by a pulse negative with respect to the anode. However, unlike SCRs, the holding (valley point) current is determined by conditions at the gate. Fig. I shows a transistor circuit equivalent to the PUT; when $V_{G}=V_{A}, T R 1$ is biased off and no current flows through the be junction of TR2 so that stays off. As V_{G} becomes negative with respect to V_{A}, a current (later I_{G}) flows through TR I's base allowing it to pass current to the base of TR2 which is negative with respect to V_{A}. Now that TR2 is biased on it proceeds to increase the eb current of TRI further, and the circuit conducts current from A to K until V_{A} is made negative with respect to V_{G} (this is oversimplified, as the next section will show).

PUT CIRCUT SYMBOL

561036

PUTs are not high-power devices. Anode currents are of the order of a hundred milliamps maximum, and the anode-cathode breakdown voltage is around $\pm 50 \mathrm{~V}$ for the devices mentioned in this article.

The only PUT widely available is the 2 N 6027 , a generalpurpose specimen, with the 2 N 6028 (for timer applications in particular) not unheard of. An alternative is the BRY39 silicon controlled switch which has leads connected to all four regions (Fig. 1) so you can't go wrong! Leave the cathode gate unconnected and you have a PUT.

ELECTRICAL CHARACTERISTICS

The anode voltage V_{A} of the PUT in Fig. 2 is plotted against the current flowing through the anode terminal, I_{A} in Fig. 3. This is not the usual characteristic, which is current against voltage, but for the PUT Fig. 3 is more useful.

In section NO of the curve, $\mathrm{V}_{\mathrm{A}}<\mathrm{V}_{\mathrm{G}}$ so only a leakage current flows out of the anode: $\mathrm{I}_{\mathrm{A}}=\mathrm{I}_{\mathrm{L}}$ (which is negative). This is of the order of 0.1 mA maximum at high temperatures, and decreases to about 10 nA at room temperature. Except in longdelay timer circuits it is negligible. At O , the anode and gate are equipotential so its not surprising that $\mathrm{I}_{\mathrm{A}}=0$, anode-cathode leakage being all but immeasurable.

When V_{A} exceeds V_{G} by the earlier explanation, the AK circuit is thrown into conduction. The characteristic shows that the PUT still refuses to conduct until P, at V_{A} about 0.5 V greater

TRANSISTOR EQUIVALENT
 STRUCTURE
[6]:033
than V_{G}, the anode current at $\mathrm{P}, \mathrm{I}_{\mathrm{P}}$, being a few $\mu \mathrm{A} . \mathrm{V}_{\mathrm{A}}$ at this peak on the graph is termed the peak point voltage, V_{p}, and the corresponding anode current, the peak point current I_{p}. The difference $V_{P}-V_{G}$ is known as the offset voltage V_{T} and is due almost entirely to the BE voltage required to pass a current through TR1. V_{T} is approximately 0.5 V and decreases slightly with increasing temperature. Now the programmability becomes apparent, for V_{P} depends on V_{G} which is set by the external circuitry; the voltage at which the PUT switches is under your control, or programmable.

The switching process is represented by PV on the curve, a "negative resistance" region in that V_{A} falls as I_{A} increases. No point on PV is a stable state for the negative gradient simply invites more current to flow. If this current is available, the anode current increases until the PUT is driven past V into saturation. However, if the anode current cannot remain above I_{v}, or, as a result of the current being $>I_{V}$, the anode voltage falls below V_{V}, the PUT returns to a non-conducting state.

In Fig. 3, this condition is indicated by the load line LL' which is the relation imposed upon V_{A} and I_{A} by the anode load resistance R_{A} when V, which is approximately equal to V_{P} when $\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{P}}$, is held constant as the PUT switches on: $\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{P}}$ $-\left(I_{A}-I_{P}\right) R_{A}$ simply represents the voltage drop across R_{A}. Where this line crosses the "on" characteristic are the values of I_{A} and V_{A} when the PUT has assumed its new state. As mentioned above, if the a node current is available, Q is on V_{S} i.e. R_{A} has a LOW value; the line LL' has a shallow gradient. If \mathbf{R}_{A} were so large as to prevent saturation, LL' would be steeper and Q would be on PV. When a PUT has become saturated and I_{A} is subsequently reduced below I_{V}, the load line MM^{\prime} indicates by the position of W the conditions after the PUT has reverted to the "off" state.

The valley point V is the "holding" current: the value of I_{V} is dependent upon the gate conditions and is thus programmable as is the peak point voltage. By altering the circuit conditions, the PUT can be used as a latch (driven into saturation and

holding the "on" state) or as an oscillator (failing to hold the "on" state). This increased versatility over the UJT is also less expensive for the properties of the UJT are fairly critical; the only apparent disadvantage of the PUT is that its maximum operating frequency is about one fifth that of the UJT--the 2 N 6027 will not get past approximately 100 kHz . The "standoff ratio" frequently encountered in UJT and PUT circuits is another word for the gate voltage $\mathrm{V}_{\mathrm{G}}: \mathrm{V}_{\mathrm{G}}=n . \mathrm{V}$ where n is the standoff ratio and V is the supply voltage. It cannot be altered in UJTs unless you make them, but as mentioned before, you are free to select V_{G} with PUTs.

BASIC APPLICATIONS-RELAXATION OSCILLATOR

This circuit is probably the most simple and reliable relaxation oscillator possible. Fig. 4 shows the general idea and the waveforms seen on a 'scope at the terminals. As C charges through R4 V_{A} rises. When V_{A} exceeds V_{G} the PUT conducts from A to K (depending on the supply voltage you can neglect V_{T}) and discharges C through R 3 which limits the peak discharge current during the pulse seen on V_{K}. When C is discharged it is vital that $R 4$ is so large that it cannot supply the valley point current I_{V} of around $50 \mu \mathrm{~A}$ depending on R 1 and R2. The PUT does not remain saturated if I_{A} falls below I_{V} and reverts to the "off" state, allowing C to charge up again. At the gate, V_{G} is set by the potential, divider R1 and R2 connected across the supply lines; this determines how far C is allowed to charge and thus the frequency of oscillation.

In the conducting state, the PUT draws current from V_{G} (the gate current I_{G}) through TR2 in Fig. 1 so do not reduce R1 to below a few hundred ohms. The gate resistors program not only V_{G} but also control the peak point current and valley point current.

TIMERS

Timer circuits are very similar to the oscillator except the time-constant RC will probably be longer and R4 is small enough to supply an adequate holding-current. The leakage current of approximately 10 nA must be taken into account

when dealing with large time-constants. Once V_{A} exceeds the PUT gate voltage by V_{I}, the PUT is saturated by the current through R4 and remains on (Fig. 5).

An alternative employing only the PUT which is probably the simplest timer circuit possible is shown in Fig. 6. This demonstrates a new approach; the gate voltage is gradually reduced as a result of a charging of capacitor C . Here the offset voltage previously neglected is vital to the circuit, for the PUT conducts when the voltage across C reaches V_{T} i.e. about 0.5 V . Low-voltage power supplies are needed for decent delay times with this circuit.

LATCH CIRCUITS

Latch circuits employ the PUT as an SCR triggered by an inverted pulse at the gate (Fig. 7). As soon as V_{G} falls below +V by more than about $0.5 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{T}}\right.$ again), the PUT "fires" and with an adequate anode current remains on. The circuit is reset either by breaking the anode current circuit at A or K , or by forcing the gate (which will now be less than $+V$ because of the gate current I_{G}) to $+\vee . \mathrm{R} 1$ and R 2 will be needed depending on the exact form the trigger takes; a capacitor could even be used to get the PUT to trigger on any falling edge. Touch switches are not impossible, the PUT is sensitive enough.

E61066

WORKING CIRCUITS-PUT OSCILLATOR

A basic oscillator is shown in Fig. 8. The cathode pulse is very useful as it has a clean, sharp leading-edge and is also fairly powerful as it is the charge of \mathbf{C} being dissipated in a much shor ter time than it took to build up, TR1 inverts the pulse to provide a yet more powerful pulse to 0 V which is very useful as a TTL clock pulse. Resistor R4 can be made variable but use a series resistor to prevent the PUT latching if R 4 becomes too small.

If TR1 is replaced by a l.e.d., R5 left out and the timeconstant adjusted for the largest possible capacitor, it is safe to exceed the power rating of a l.e.d. in bright flashes. The higher the value of $\frac{1}{2} \mathrm{CV}^{2}$, the more energy per pulse (max. $250 \mu \mathrm{~J}$-but with a pulse length of around $10-100 \mu \mathrm{~S}$ that's over 1 W power during a pulse).

PUT SIREN

As with UJTs, relaxation oscillators may be coupled together so that one controls the frequency of oscillation of the other forming a siren (Fig. 9). With C2 charging gradually and the voltage at A2 rising, the charging current supplied to Cl is increased by the larger contribution made through R_{X} and the time-constant of PUTI decreased. This cycle repeats, with the frequency of oscillation of PUT1 rising steadily, until PUT2 discharges C 2 when the a.f. output returns to the start of the climb.

OPTICALSENSORS

The PUT is most useful in optical sensor latch configurations for detecting "flashes" of light or darkness. Sensors such as the ORP12 I.d.r. are obvious for Fig. 7.

BATANR

COMPUTER keyboard suitable for $2 \times 81 £ 10$. swop Heathkit scope for Thandar. Also wanted Wyndsor Vanguard tape recorder. Dave Biddle, 2 Segal Close, Foresthill, London SE23 1PP. Tel: 6909697.

WERSI organ bass kit. Pedals circuit board, components manuals complete four instruments New unused £45, o.n.o. Alan J. Packham, 6 Cotterell Close, Priestwood, Bracknell, Berks RG 12 2 HL. Bracknell 51674
1/O PORT for UK101s. 24 lines. Fits J1 socket £7. Nick Hardy, 32 Bentley Grove, Meanwood, Leeds 6. Tel: Leeds 781532
INCOTERM K26-02 Keyboard for sale £12.00 Harries, 3 Court Garden, Marlow, Bucks. 06284 5978.

EX-COMPUTER p.c.b. 30 transistors 30 CMOS i.c.s one metre 40 -way cable plus connectors $£ 2.50$ inc. R. J. Smith, 41 Nightingale Road, Selsdon Vale, Croydon, Surrey
SCOPE probe, 4f. lead with BNC plug, $\times 1 / \times 10$ switch. As new E10. Oxford (0865) 779855. G.B. Dean, 66 Fern Hill Road, Oxford.

HEATHKIT GR78 with manual £40. W. Edwards, 2 Beach Road, Burton Bradstock, Bridport, Dorset DT6 4RF. Tel: 0308897625
ACORN Atom $12 \mathrm{~K}+12 \mathrm{~K}$ p.s.u. Software inc. Chess plus 12 inch b/w TV set. All for only $£ 215$. A. Wilson, 46 Gwydyr Mansions, Holland Road, Hove, Sussex.
WANTED 2×81 assm/kit + accessories in exchange of new components FND-500 531Y 1NY002-7 TTL FY1 etc. Dr. R. Avinery, PO Box 404, Hedera 38TO3, Israel
32K RAM board + DOC. for UK 101 (also for other $6502 / 680 \mathrm{X}$ systems). £50. Nick Hardy, 32 Bentley Grove, Meanwood, Leeds 6. Tel: Leeds 781532.

TANDBERG $3500 \times \frac{1}{4}$-track mint Igenuinely unused) offers or exch. scope, ZX81, RAM, Printer. keyboard, w.h.y.? Tel: (07605) 402.
HI FI amp quad 33 and 303 with $\mathrm{am} / \mathrm{fm}$ tuner £130. A. H. Baker, 34 Wenny Estate, Chatteris, Cambs.
WANTED circuit diagram workshop manual EMI L4A tape recorder buy or borrow. Mr. R. Turnbull, 25 Gatton Road, Reigate, Surrey.

PET 8K small keyboard BASIC 2 ROMS manuals, many programs as new could possibly deliver $£ 200$. Tel: Denbigh 3401. F. A. Stott, 'Tygwyn', School St. Henllan, Denbigh, Clwyd,
2X81 16K RAM S/O Port manual £55 o.n.o. Tel 01451 1879. Peter Rouse, 27 Christchurch Avenue, London NW6 7QP.
ZX81 Sound Board. Fits between computer and RAM if any. No soldering $£ 9.00$. Write to: Dean Parris, 10 Penllwyn, Llanelly Hill. Abergavenny, Gwent NP7 OPY.
P.E. years 1966 to 1973 £5. 3.5 kilogram power supply transformer 7 output tappings. Tel: (0727) 39171. Mr. M. J. Woodbridge, 10 Chiltern Road, St. Albans, Herts.
FOUR digit common cathode multiplex l.e.d. display, new $£ 2.25$ inc. p \& p. Other components list s.a.e. G. Noble, 50 Crofthill Road, Slough, Berks, SL2 1HF.
UK101 16K ABS case, motherboard, 6821 PIA Cegmon, assembler, Exmon £130. K. Oldham. Tel: 0614375621
WIRELESS World scientific computer complete with all data newsletters and expansion sockets. Paul 041332 3841. P. Thompson, 226 West Princes St., Glasgow G4 9DL.
FOUR 813 valves, never used £20. Buyer collect. Tel: 051 6777317. John Sartorius, 52 Caulfield Drive, Greasby. Wirral , Merseyside L49 ISW.
100 PLUS each PE, PW, ERC, WW 1969-79 £10 o.n.o. set. £33 o.n.o. the lot. Rossendale (0706) 213813 . J. A. Foll, 104 Burnley Road, Rawtenstall, Rossendale, Lancs BB4 8HH. MICROTAN 65 with new Tanbug plus Tanex, keypad, p.s.u. all cased with leads f 180 . Mr. S. Bennett, 2 St. Olaves Road, Ipswich, Suffolk. Tel: (0473) 625358

BINATONE 5 -star 40 -channel mobile 27 MHz CB transceiver. 4 watts Japan made. 2 months old. £60. Tel: 0413327695 after 7 p.m. K. Y Chang. 70 1-up, Ashley Street, Glasgow G3 6 HW, Scotland.
WANTED in tact alphanumeric display unit as advertised by Chiltern Electronics in Wireless World. Glasgow area preferred. Steven Lynch, 63 King Street, Clydebank, G81 1DS, Scotland. Tel; 0419520628 (after 6 p.m.).
WANTED back issues of PE, ETI. WW contact; Sri G. Trivikrama Rao. House No. 1187. 35 C, Cross, 28th Main, 4th T. Block, Jayanagar, Bangalore-560011. India.
INTER-STATE TV game 10 games c/bw joysticks £15 o.n.o. David Ferris, Bankhead Minathort, Kinross-shire, Scotland, KY13 7SB.

SUPERBOARD 24 K BASICS's $4,5, \times 20$ screen formats, £70 software + more £275 o.n.o. Mr. A. J. Clarke. Tel; St. Albans 34566 2X81 and 16K RAM Sinclair built (both), p.s.u. leads manual etc. £80. Tel: 01-778 4889. R. A. Norman, 101 Avenue Road, Beckenham, Kent BR3 4RX.
UK101 uncased, Wemon monitor 300/600 Baud + software, cassette recorder and 12 inch b/w TV £180 o.n.o. after 5 p.m. Tel: 051922 9565. M, Vicars, 4568 Stanley Road, Bootle, Merseyside L20 5AS.
5FT. HIGH (Langley) 19 inch cabinet rack on castors, detachable back, clipnuts, vent panels £80 buyer collects. G. Turner, 6 Ludgate, Tring, Herts GP23 4ES. Tel; Tring 3320.
PE \& HE for sale.Will swop for working computer gear HE from Aug 79 PE from April 79 to date. F. W. Webb, 17 Low Downs Road, Hetton-le-Hole, Tyne and Wear. Tel; Hetton 268883.
SPARKRITE Voyager car computer, boxed, unused £40. D. V. Potter. Tel: 0217474472.
AVO 8, cased, immaculate condition £70. 12 element hilgh gain v.h.f./f.m. antenna £40. Tel; 03446 2174. N. R. Jones, White Cairn', Wellington College, Crowthorne, Berkshire.
ORGAN parts for Maplin MS51/52. Two 49-key keyboards - several boards - reverb unit £70 o.n.o. Buyer collects. G. Roberts, 25 Holmes Road, Breaston, Derby DE7 3BT. Draycott 3919. FX-60ZP Alpha programmable calculator. 512 steps. Three months old. Lots of software. Any offers? Phone after 7 p.m. Jeffrey 014583025. UK101 cased 32K RAM, 22K EPROM, printer. EPROM programmer. Assembler / Disassembler /CEGMON / MON 2 EPROMS $32 \times 48.300 / 600$. Software £325 o.n.o. Mr. D. G. Hubble, Edith House, Stow Road, Outwell, Wisbech 773992.
SCOPE probe $\times 1 / \times 10$ switch. Test hook i.c. tip BNC adaptor etc. Up to 150 MHz E 10 . Unused. D. J. Staniforth, 43 Burley Lodge Road, Leeds 6. Tel: (0532) 458947.
ZX-81 original keyboard wanted. Desire borrow SWTP CY-64 manuals, circuits (doing repair). Postage etc. paid. T. K. Boyd, Seaford College, Petworth, W. Sussex GU28 ONB.
ETI VOCODER for sale. Assembled needs line up cash offers? Unused. Tel: 6502985 after 6 p.m. P. M. Gillett, Flat 2,51 Albermarle Road, Beckenham, Kent.
IBM PRINTER 280 software interface, Mechanical fault. $£ 100$ o.n.o. Tarbell S 100 blank card £15. Porthtowan 890688. J. de Rivaz, West Towan House, Porthtowan, Cornwall TR4 8AX.

SUPERBOARD 28 K cased Wemon Monitor 32×32 Screen 300/600 baud automatic tape control numeric keypad E110. Mr. A. Morten, "Rosswood". Nursery Lane, Burbage, Buxton, Derbyshire. Tel: 02984601
TRACENPENT D.P.X. String Synthesiser very little used. Must sell £290 o.n.o. J. Bedward, 21 Hartshill Road, Olton, Birmingham. Tel: 021706 9465.

200 EACH 100 M 75 M 50 M 680k New Welwyn C25 precision resistors 60p each offers the lot. Hill. Tel: 066577354
SUPERBOARD Cased (Challenger 1 P) 8 K RAM 24 WAY I/O, programmable sound generator games, software £120 o.n.o. S. F. Astbury, 26 Gregory Close, Harlaxton, Grantham, Lincs, NG32 1JG. Tel: 04763477
PRINTER DAM Dynamics 2033 with 6 rolls paper 110 baud good condition £70. C. D. Swift, 32 Cherry Tree Close, Camberley, Surrey. Tel 0344677426
SHARP PC1500 graphic printer 8K RAM module charger, two weeks old. £305. David Stokes, 15 Jacksons Lane, Billericay, Essex, CM11 AH. Tel: Billericay (02774) 3084 after 6

MAPLIN 3800 synthesiser case keyboard and panels and some p.c.b's with manual. For more details contact C. A. Hughes, 141 Haydn Road, Sherwood, Nottingham. Tel: (0602) 873334 (after 6 p.m.).
WANTED Sony Radio Model ICF 5450L for spares. J. H. L. Chapple, Weg Haus, Hurst Lane, Charing Heath, Kent. Tel: 0233712868
I.M.E. 86 S Digitron Display Control Unit E6.00 Holiday flat 9, No. 10 Westwood Road, Portswood, Southampton, Hants. Mr. A. C. Holdway, No. 10, Westwood Road, Portswood, Southampton, Hants.
ACORN atom fully expanded, acorn built, lots of s/ware including Invaders, Chess, Manual. All leads $£ 200$. David Pound, Crayford 528264 .
P.E. GEMINI Siereo Amp. March 1971 £25 P.P5 P.E. Music centre 1978 printed boards components £10. P.P.2. L. T. Hill, 14 Rothesay Terrace, Bedlington, Northumberland.
MPF-1 + BASIC, CTC, PSU + mains lead "Prof-1" custom startup $£ 75$. Sharp talking clock CT660 VGC £25. J. Davies, The Waverley. 79 Rhosmaen Si., Llandeilo, Dyied, SA196HD.
COMPUKIT UK 1018 K cased, 2 MHz , Wemon, 300/600 baud with sofiware, tape recorder and TV £140 o.n.o. Mr. S. Day, 6 May Cotrages, Chipstead, Surrey, CR3 3Sx. Tel: 0737832825.
PAIR JENNINGS 61 note C to C keyboards full range pedal board sundries $£ 120$. Will split. Mr. W. B. Mansell, 10 Wyndham Road, Shaw, Newbury. RG13 2NJ. Tel: Newbury (0635) 40464.

ELECTRONIC Electrolytic Capacitor Tester $\mathbb{E} 5$. 50V/2 AMP P.C. p.s.u. E7. Phone (0743) 59492 after 6.30 p.m. Mr. P. A. Hartwig, 3 Kingswood Road, Shrewsbury.
WANTED Service Sheet Circuit Diagram Elizabethan 4 track tape recorder Model FT 1 original or photostat small fee? Mr. M. K. Hayter 24A St. Albans Road, Moseley, Birmingham B 13 9AS. Sorry, no phone.
COLLECTOR of very old transistors seeks other collectors or anyone with old devices or data sheets. Andrew Wylie. 18 Rue de Lausanne, 1201 Geneva, Switzerland.
ATARI Games Console with ten carts including Chess, Space War, Adventure etc., 1150 -No offers, must collect. L. A. Privett, Essex area Tel: 015914248.
UK101 8K Cegmon BASIC 4 P.S.G. 300/600 baud $1 / 2 \mathrm{MHz}$ cased many programmes $£ 130$. M. Siokes, 11 Oak Tree Close, Atherton Manchester M29 OPW. Tel: Ath. 879100
CAStO FX-602P programmable calculator, FA2 Adaptor, manuals and programs, Just M230 99\% new condition. Write C. L. Loo, 1352 Road 35, Kepong Garden, Kuala Lumpar, Malaysia.

CREED Teleprinter and cover complete with 20 mA interface driving software for $8080 / 280$ E50. P. Coney, Mareham-Le-Fen, Boston, Lincs. Tel: (065886)267.
AY-5 1230 Clock Timer Chip new £2.50. Other components surplus to hequirements. Details S.A.E. G. A. Noble, 50 Crofthill Road, Slough, Berks SL2 1HF.
FOR sale test equipment valves PW, PE, TV, EE, wanted manual circuit for Cossor Oscillograph Oscilloscope. Mr. N. Vaswanev. 23 Tilson House Tilson Gardens, London SW2 4LY. Tel: 01674 2856.

KEYBOARD and gold contacts for D.I.Y. synth. or organ builder. 4 octaves £30. 0619626197. Mike Ganderton, 36 Victoria Drive, Sale, Cheshire. M33 3HZ.
SHARP Car Radio/Cassette ©45. Cost £68 unused. C.8. wanted. Finished projects cheap S.A.E. No callers. D. Martin, 29 Si. Johns Close, Leatherhead, Surrey.
STRONG Chess Computer Murphy Encore. Many features, one month old. © 110.00 . Tel: Northampton 715458. Mr. B. Pribanich, 72 Newnham Road, Northampion.
COMPUKIT UK 1018 K Cased and software, two month old. Will accept reasonable offer. Tel Northampton 715458. Mr. B. Pribanich, 72 Newnham Road, Northampton
COIL winder manual Automatic Coil Winder Co. The Douglas Excellent $£ 60$ W. Greig. 45 Mansefield Crescent, Clarkston, Glasgow G76 7EA. Tel: 0416386157.
BACK Numbers: Practical Electronics 1964 1978 and Practical Wireless 1964-1978 any offers. Mr. M. B. Hart, 9 Strand Road, Hoylake, Wirral L47 2DA. Tel: 0516322366.
WANTED SE3A Scope Tube. J. Glover, 1 Bryony Cottages, Hambledon, Godalming, Surrey GU8 4HJ. Tel: Wormley 4649.
VALVES, unused assortment, details from $O x-$ ford (0865) 779855. G. B. Dean, 66 Fern Hill Road, Oxford, 0X4 2JP.
TRITON L.7.2. 24K RAM 8 K BASIC sound gen. Eprom prog. Teletype, VDU, professional casette. 2400 baud programme graphics all at $£ 400$ o.n.o. Mr. V. Pirgali, 316 Reigate Road, Downham Bromley. Tel: 6985399 after 6 p.m.
5 OCTAVE Keyboard and contacts, E20. Joanna CCT boards and p.s.u. £15. Tel: (0427) 5848 (Lincs). D. C. Trebble, 2 Pendeen Close, Gainsboro, Lincs. DN21 1YE.
ROLAND SH-2 Synthesiser 2 V.C.Os full keyboard. Perfect working order with manual £225. o.n.o. Phone (0372) 376394. W. Bennett, 58 The Street, Fetcham, Leatherhead. Surrey KT22 9RF
UK101 8K metal case Cegmon 300/600 baud, 2 MHz plus MON 02 Eprom $£ 90$. Bob Potter. 3 Combeside Lyncombe Vale Road, Bath. Tel: Bath (0225) 333774.

SMALL quantity unused Omron delay timers 10.12 sec) type STS-12S. Very accurate, possible photographic use. £18 each. Tel: 027952129.
WANTED Intel SDK-85 microprocessor kit any condition, good price paid. Tel: 01-886 5614. T. K. Shah. 18 Winchmore Hill Road Southgate, London N146P.
PAIR 813 Valves offers of exchange reel/reel tape recorder. Tel: (0272) 842155. G. Whitlam, 16A Channel View Crescent Portishead, Bristol, BS20 9LY.

WANTED small quantity "C" cores loow to 350W for construction of audio transformers for P.A. amplifiers. H. E. Enfield, "Springtime" Withies Lane, Midsomer Norton, Avon BA3 2JE. Tel: 412058.
FREE Cegmon with MY Superboard computer 8K RAM, manuals, 9 User Newsletters 300/600 baud. software £115. Jonathan Saul: Tel: Ipswich 0473623582
TELEPRINTER in acoustic case with p.s.u. computer interface. Information available E35.00. Tel: Melksham (0225) 707164.
WANTED Telequipment D66 Circuit diagram original or photostat and technical books radio TV by G. N. Patchett. Urgent. Tel: 01-422 2802 Daytime
ELEKTOR high com. set of completed circuit boards inc. chips, modules, unused $£ 45$. Charles Bowden, 7 Parc Eglos, Helston, Cornwall TR13 8UP.
COLDUR TV panels wanted for G.E.C. C2 110 series line and field in particular. Patrick Doherty, 120 Monivea Park, Galway, Ireland.
BELLS 24 volt 6 inch $\mathbf{£ 6}$ each, ideal for burglar alarmos, fire alarms etc. Only 24 available. M. Harries, 152 Leicester Street. Whitmore Reans, Wolverhampton, West Midlands.
WANTED Instruction Handbook for Oliverti OS2 computer to buy or copy. Small fee? Paul Compton. Hadham Hall School, Little Hadham, Ware, Herts.
TANDBERG 3541×4 track tape deck. $7^{\prime \prime}$ mint (gerruinely unused). S-on-S £90 on.o. (or exchafige Jupiter Ace). Tel: 07605402 (Norfolk).
ET1 Master Mixer 10-2, unfinished, requires some components and wiring, well made woodwork and metal work £50. A. J. Kinch, 2 Hedge End, Woodstock, Oxford. OX7 1NP. Tel: Woadstock 811689.
LOWTHER corner horn wanted. Working/not working. Age, condition unimportant. 024369 4842. A. Coutts, 17 Andrew Avenue, Felpham, Bognor, W. Sussex.
P.E., E.E., P.W. from 70-79 for sale or disposal. Serod s.a.e. for list. Bjorn Stromberg. P1.5825 Kolmoror, S-590 80 SODRA VI. Sweden.
UK101 8K Cased Cegmon BASIC-5. Joy stick. sound in/out lots software. £165. Swap W.H.Y. etc Mr. M. A. Saunders, 7 Drumcliff Road, Thurnby Lodge, Leicester, LE5 2LH.
ONE mains splitter (inpul) 10D/CA1768 £16.50. 2 15A motor switches $£ 1.50$ each. Two Hivac GR7M/U Numicators $£ 1.50$ each. Mr. J. C. Miller, 4 St. Joseph's Road, Brentry, Bristol BS10 6QL. Tel: (0272) 503364.
MAGAZINES for sale PE, PW, PTV, ETI, E.T.C. some bound vols. For price + details phone eveninçs. 01-460 9139 Mark Walford.

Universal NHCAD, battery charger. All plastic case with lift up lid. Charge/Test switch. LED Indicators at each of the five charging points.

Charges:- PP3 (9V), Y12 (1.5V penlite), U11 $\left(1.5 \mathrm{~V}{ }^{\text {"C" }}\right.$ "). U2 $\left(1.5 \mathrm{~V}\right.$ " $\left.\mathrm{D}^{\prime \prime}\right)$, Power:- $220-240 \mathrm{~V}$ AC. Dirns:- $210 \times 100 \times 50 \mathrm{~mm}$. Knock down price only while stocks

Only $\mathbf{E 6 . 0 0}$ Order No. MW 398
Mutitester \& Transistor Tisster
Muhtester \&ransistor Tister
C voits 0-1v-5v-2.5v-10v-5.0v-250v-1000v $\pm 3 \%$
$A C$ volts $0-10 \mathrm{v}-50 \mathrm{v}-250 \mathrm{v}-1000 \mathrm{v} \pm 3 \%$
DC current $0-50 \mathrm{uA}-2.5 \mathrm{~mA}-25 \mathrm{~mA}-0.25 \mathrm{~A} \pm 3 \%$ Resistance:
Minimum 0-2-2-200-200k chms Midscale 20-200-20k-200k ohms Maximum 2 k -20k-2m-20m ohms
As a transistor tester
Leakage current 0-150uA \#1k range
$0-15 \mathrm{~mA}$ at $\times 10$ range
0.150 mA at X 1 range

PLEASE ADD 15% VAT \& E1 P\&P
ENFIELD
ELECTRONICS MIODX 208 BAKER ST. ENFIELD

Ingenuity Unlimited

A selection of readers' original circuit ideas.
Why not submit your idea? Any idea published will be awarded payment according to its merits.

Each idea submitted must be accompanied by a declaration to the effect that it has been tried and tested, is the original work of the undersigned, and that it has not been offered or accepted for publication elsewhere. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.

Articles submitted for publication should conform 10 the usual practices of this joumal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not in the text.

SHORT-CUT TO 'SHORT' DETECTION

MODERN printed circuit boards with plated-through holes are often soldered very quickly in a production-like situation using a wave soldering technique-i.e. from below.

The constructor working with the board the other way up has to take great care to avoid an excess of solder running into a plated hole, since if the component is a DIL socket, a solder bridge may form out of sight; under the socket, on the other side of the board. If the board is for an expansion memory or is the memory section on a single-board computer, it is possible that such a shor circuit could be under one of many sockets and if the fault is sought by systematic removal of these, Murphy's law will ensure that it is lurking beneath the last socket to be removed! Convinced of this fundamental truth and finding myself in the situation described above I devised the following method to locate the fault.

E61026

1. Determine which two adjacent lines are shorting with the aid of a multimeter, after have removed all the chips from the board.
2. Trace the two lines throughout the board.
3. Apply a low voltage to one of the two lines and a return path via a suitable load from the other line.
4. The voltage and load should be chosen so that the printed circuit tracks are not overloaded but carrying a current which is a significant proportion of their design maximum.
5. Use the microvolt measurement facility of a sensitive 'scope or similar device having a high input impedance to test for voltage drops along these two tracks e.g. in the circuit shown testing between A and B or G and H will show no voltage drop, but C to D , j to K, D to E, K to L, E to F and L to M will all show small detec table drops in voltage which indicates that the bridge is between sections CB and JH of the two tracks.

David J. Giles,
Edinburgh.

CASSETTE TAPE TIMER

WHEN recording material on audio cassette it is useful to have an indication of the approaching end of tape.

The circuit shown gives an audible warning some $1 \cdot 5,2,5$ and 10 minutes before the end of a C30, C60, C90 and C120 respectively.

The ZN 1034 timer triggers at switch orr and pin 3 goes high. After the chosen delay this pin goes low turning on the audible warning device.
P. Thompson,

Glasgow,
Scolland.

LOW COST MULTIPLE BARGRAPH DRIVER

THIS circuit was designed to combat the essentially high price for the construction of multiple bargraph displays as used in real time Spectrum Analysers etc. The diagram shows the essential parts for a single bar and may be easily extended to as many stages as required.

The heart of the circuit is IC3, a 4028 BCD to decimal decoder, fed by a binary decade counter, IC4. This counter is driven at 200 Hz by a simple CMOS clock, IC6. The diagram shows a ten l.e.d. bar, and if higher bars are to be driven, then a higher clock frequency is required to stop visible flickering. The outputs of the counter also drive a simple digital to analogue converter. The binary output is buffered by IC7, the power for which is derived from a simple regulator built around IC8, to provide a consistant display free from supply induced level shifts. IC 7 is a 4050 , and this was chosen because it can cope with inputs above its supply voltage.
This buffered signal is passed to a simple DAC, known as a $\mathrm{R} / 2 \mathrm{R}$ ladder formed by the 150 k and 75 k resistors. The resulting analogue voltage is connected to the inverting input of IC2, the non inverting input of which is connected to the input signal to be measured via a peak detecting circuit formed around IC1. The input level is variable via the 47 k preset in IC1's feedback loop. The output of the
comparator IC2 goes to enable the cathodes of all the l.e.d.s in that particular bar. Thus the circuit works as follows.

The counter IC4 starts at 0000 and so pin 3 of the decoder IC 3 is high thus enabling the l.e.d.(s) on that line. As all the counter's outputs are low the DAC's output will also be low, i.e. $0 \mathbf{V}$. If the input signal is above $0 V$ then the output of the comparator IC2 will be high and enable the l.e.d. column so that the bottom one will light. Then the counter advances to 0001.

The second l.e.d. is enabled by IC3 and a voltage about half a volt above OV appears at the comparator. Again if the input level exceeds this the l.e.d. column is enabled, and as only the second I.e.d. has a positive anode, it lights. The counter advances and the cycle repeats. Naturally, if the input level does not exceed the DAC output then the l.e.d. column is not enabled and nothing lights. As all this occurs at high speed, the effect is a steady bar of light, its height being proportional to the input level, the l.e.d.s having 0.5 V increments.

If more than one column of l.e.d.s is required, then you only need to duplicate IC 1, IC2, TR 1 and l.e.d.s, as the counter, decoder, TR 2 to TR11, and the DAC are common to all channels.

The simple circuit shown will however

Fig. 2
suffer from a varying of 1.e.d. brightness, depending on the number lit, if the basic circuit is extended beyond one or two bars.

This effect may be counteracted by using an AND gate for each l.e.d. as shown in the second diagram. Although more expensive, it does solve the problem of brightness variation and still works out cheaper than a driver using several LM3914 bargraph driver i.c.s.
G. Durant,
Selby.

Ulimum Compouter Interface

THIS month's ULTIMUM daughter board is a Universal PROM programmer designed to allow you to program the $2 \mathrm{~K}, 4 \mathrm{~K}$ and 8 K range of single-rail EPROMS. It complements the RAM/ROM card which will take the $2 K$ or $4 K$ EPROMS (2716, 2732/2532) as well as providing the capability to program the 28 pin 2764 . With this, and next months card (a ROM emulator), most of the facilities required to develop microprocessor systems become available.

FEATURES

Several facilities are incorporated to make the PROM programmer reliable and safe to use. A 24 pin header has been provided to allow you to change from one PROM type to another without having to alter messy links. A current limited 5 volt supply is available to prevent damage to your PROMS in the event that they are inserted upside down. All the necessary switching is provided on the programming lines to make verifying etc. straightforward. To keep the software to an absolute minimum, hardware is included to provide the 50 msec pulse needed for correct programming. with software monitoring capability. All the decoding is provided to make sure that the PROM programmer uses the minimum address space.

CIRCUIT DESCRIPTION

The heart of the PROM programmer is an 8255 parallel interface (I.C.1). This provides 24 lines of input/output in the form of three, eight bit ports. The 8255 is addressed by a decoding system which ensures that only 16 bits of address space are used. The 8255 may be mapped to any 16 byte boundary throughout the 'processors 64 K address space. This decoding is achieved with IC's 4,5,6 and 7. IC's 5, 6, and 7 are magnitude comparators (74LS85) which are 'ANDed' together to select the 8255 when the 'processor address corresponds to the value set up on switches 1 to 12 . By linking the link 1 to ASO (see Fig. 1) it is also possible to de-select the board altogether leaving more space for memory when the programmer is not in use. The $8255 \overline{\mathrm{CS}}$ line also feeds back to the enable line on the motherboard. This decoding arrangement allows you to put the PROM Programmer into any slot without changing links. IC3 (Fig. 1) is a monostable that provides a 50 msec pulse need to program the PROMs. Negative and positive going pulses are available to suit the appropriate PROM.

The 8255 is reset on power-up by a timing circuit comprising one half of the monostable (IC3) and a CR time constant. This reset will make all the lines of the 8255 inputs which are the 'safe' state for PROMS. The 25 volt switching is achieved using a level shifter of two transistors. Because
certain PROMs must have Vpp clamped to 5 volts and others to 0 volts, the $V p p$ output (collector of O_{3}) goes to the header (SK 1) so this may be wired for each PROM type.

A total of 24 lines is plenty for $2 K / 4 K$ PROMS, but the 2764 needs extra lines. These are provided by IC9, an eight bit latch, which can be set up by the 8255. Having provided this, we decided that it would simplify the necessary software enormously to dedicate it to address lines. This has the result of providing theoretical capability for half-megabit EPROMS (27512?)

Device IC8 is a 100 mA regulator which may be connected to the PROM Vcc. This will limit the current supply to the PROM in the event that it is inadvertently inserted the wrong way around. Sensing circuitry allows detection of this condition by software and also turns off the high address drivers. IC2 is the zero-insertion force socket which takes the PROM to be programmed. This may be a 24 or a 28 pin socket. If you are not programming 2764 PROMS, we suggest you use a 24 pin socket, as the extra pins will not be used, and a misplaced PROM could be damaged.

ASSEMBLY

Start with the i.c. sockets, then the discrete components. Take care to distinguish between the two transistors, and note their orientation. Refer to the component layout (Fig. 4.2). IC8 is a three pin package which doesn't appreciate being inserted backwards.

Insert all i.c.'s (IC2 and the header will be inserted later). IC1 is a static sensitive device and should be inserted last. This is not a very dense board, but one should always check for solder blobs and shorts before applying power.

SETTING UP

Table 1 shows how to set up the various links. Choose where the programmer will sit in memory and set switches 1 to 12 according to this table. Link 1 should be set to ASO if you wish to de-select the board from the 8255 on the motherboard. For initial testing, it is simplest to wire this to the 5 volt line.

TESTING

The 8255 should be tested for operation on each of its lines. A simple program (Table 4.2) in BASIC can be used to do this. Check that lines AO-A7, BO-B7, CO-C3 pulse from 1 to 0 with a high impedance voltmeter or the simple 'logic probe of Fig. 4.3. Do not insert a PROM into socket IC2 while doing this or it. will be damaged. The outputs of IC3 (pin 5 and 13) can be tested with the same program. A short 'blip' on your meter (or 'logic probe') will indicate satisfactory

Fig. 4.1. Circuit diagram of ULTIMUM's Universal PROM Programmer

HALF-MEGABIT EPROMs WELCOME!

operation. The latch (IC9) can be tested by latching data with the line C1 which should be pulsed high then held low, checking that the data on eight outputs (see Fig 4.1) are correct. This done, the setting up is complete.

WIRING FOR PROM TYPES

Table 4.3 gives the various header options for IC10. Table 3 (a) shows the lines connected to this header. Each PROM
type requires a different header. The connections in Table 4.3 make use of the current limited supply.

The correct sequence for programming any PROM is as follows:

With the power off

1) Choose and insert the appropriate header for IC10.
2) Power up the board, without the PROM inserted. This allows the 8255 and monostable to settle to their safe state.
3) Insert the PROM and program.
4) Remove the PROM.
5) Power down.

Follow this sequence, or you will run a slight risk of misprogramming one or more locations.

Compatibility range:
Acorn Atom
Apple II
Atari
BBC
Commodore PET
Dragon 32
Jupiter Ace

Jupiter Ace
Oric 1
RML 3802
Spectrum
Superboard

Superbr
S100 Bus machines
UK101
Video Genie ZX8 1

Daughter card range:
Ram card
Rom/Battery backup Ram card EPROM programmer card Romulator card
Floppy disc controller card Printer and general port car
Analogue I/O card
Sound card
Speech card
Terminal card
Processor card
Prototyping card
Fig. 4.3 (right). A simple logic probe circuit

COMPONENTS

Resistors	
R1	8 k 2
R2	1 k
R3	$300 \mathrm{k} 1 \%$
R4	56
R5	47 k
R6, R9	$10 \mathrm{k}(2$ off)
R7, R8	$2 \mathrm{k} 2(2$ off)
R10	22 k
R19	4 k 7
R12	3 k 3

All resistors $\frac{1}{4} \mathrm{~W} 5 \%$ unless otherwise specified

Capacitors	
C1	$15 n$
C2	$1 n$
C3	$470 \mathrm{n} 5 \%$
C4, C5, C7	$100 \mathrm{n}(3$ off)
C6	2 n 2
C8	$100 \mu / 16 \mathrm{~V}$
C9-C16	100 n disc ceramic (8 off)

Transistors and Diodes

D1, D2	OA91 (2 off)
TR1, TR3	BC214L (2 off)
TR2	BC184L

Integrated Circuits

IC1	8255
IC2	PROM to be programmed
IC3	74 LS 123
IC4	74 LS i3
IC5-IC7	74 LS85 (3 off)
IC8	78 LO5
IC9	74 LS363
IC1O, IC11	$8 \times 4 \mathrm{k} 7$ s.i.l. resistor pack (2 off)

Miscellaneous

SK1 24-pin socket for header 24/28 pin z.i.f. socket for PROM
D.i.l. switches $8 \times$ s.p.s.t. (2 off)

Printed circuit board WEO3 PRG
PL1 $2 \times 32^{\circ} A+C^{\prime}$ DIN Euro Plug (Right-angled pins)
24 pin d.i.l. personality header
14 pin d.i.I. socket
16 pin d.i.l. socket (4 off)
20 pin d. i.l. socket
40 pin d.i.1. socket

Constructors' Note

Kits for all parts of the ULTIMUM system are (or will be) available from Watford Electronics, 33 Cardiff Road, Watford, Herts WD1 8ED. Send SAE for price list of boards now availale.
$10 \quad \mathrm{P}=$ programming port address
POKEP + 3,136
POKEP, $85:$ POKEP $+1,85:$ POKEP $+2,85$
POKEP, $85170:$ POKEP + 1, $170:$ POKEP + 2, 170
GOTO30

Table 4.2. 8255 check program in BASIC

Table 4.4. Simple program for 2732 PROMs
$10 \mathrm{P}=$ programming port address
${ }_{26} \mathbf{Q}=$ RAM start
30 POKE $P+3$, 155 ; set all I/P, mode \emptyset
$40 \mathrm{~A}=$ PEEK $(\mathbf{P}+2)$; read port \mathbf{C}
50 IF ((A<128) AND $(A>63))$; bit 6 set, chip in backwards
OR ($\mathrm{A}>191$) THEN 40
6f POKEP, $\emptyset:$ POKEP + 1 ,
日: POKEP + 2, \emptyset
76 POKEP + 3, 136
$80 \mathrm{~L}=\boldsymbol{\mathrm { C }}, \mathrm{H}=\mathrm{N}=\emptyset$
90) $\mathrm{POKEP}+3,5$

109 POKEP + 3 , 3: POKEP $+3,2$
110 POKEP, PEEK $(\mathbf{Q}+\mathbf{N})$
120 POKEP + 1 , L
130 POKEP + 3, 1: POKEP + 3, \emptyset
146 IF PEEK $($ P +3$)>127$ THEN $14 \emptyset$
; set high $\mathbf{C} I / P$, reset O / P, mode \emptyset
; counters; addr high \& low, data locations
; programming power on
; initialise high address
; load data
; load low address
; trigger program pulse
; wait until end

150 $\mathbf{N}=\mathbf{N}+1$

160 IFN > 4995 THEN 309
$170 \mathrm{~L}=\mathrm{L}+1$
180 IF L < 256 THEN 110
$190 \mathrm{H}=\mathrm{H}+1: \mathrm{L}=0$
200 GOTO 110
300 POKEP + 3, 4
310 PRINT "DONE"
320 STOP
400 PRINT "EPROM INSERTED INCORRECTLY"

410 END

PROGRAMMING PROMS

The programs to program PROMs can be of many levels of sophistication. Table 4.4 is a simple program for 2732 PROMs (the most commonly used), which illustrates the general principle. You could design programs to cater for all PROMs (possibly menu driven) checking for correct insertion, and making sure they are blank before programming. The board is supplied with data on the 8255 , so that more sophisticated programs may be produced.

PE SPECIAL CASSETTES OFFER

NEW!CHROMIUM DIOXIDE AUDIO CASSETTES

CHROME C60 \& C90 AUDIO

CRO2 C60 CASSETTES
90p each (minimum of 5); 80p each (minimum of 25)
CRO2 C90 CASSETTES
115p each (minimum of 5); 105p each (minimum of 25)

FERRIC C90 AUDIO
 C90LH CASSETTES

56p each (minimum of 5); 53 p each (minimum of 25).

PRICES INCLUDE VAT AND postage.

Over the last couple of years PE offers arranged with Videotone have proved highly successful and we have now been able to arrange special prices (only available to PE readers) on these high quality tapes.

These European-made tapes are excellent value and we are pleased to offer them to readers. They are covered by a money back guarantee (return within 21 days for refund). Not only are the tapes of high quality but the cassettes are of screw together construction and the case labels have space for notes on the recordings.
Send valid coupon to:

Videotone Ltd., 98 Crofton Park Road, Crofton Park, London SE4.

```
†- Please send me ....... CRO2 C60 Audio cassettes at ........peach (90p for 5 to 24, 〕
| 80p for 25 or more; including VAT and postage).
```


Our Sister Publication

Everyday Electronics

features the following projects in the February issue.

BIKE ALARM

Make vour Bike "HOT" with this low-cost alarm for motorcycle or push-bike. For a small outlay you could save yourself pounds!

COMPUTING

EPROM PROGRAMMEREPROMS for ACORN ATOM.

ZX81 SPEED COMPUTING SYSTEM
Use vour 81 and Ulitrasonics for velocity measurement experiments under laboratory conditions-a SEDAC project.

Also

SPEECH PROCESSOR

Increase the "Talk Power" of your PA or communications system.

INTRODUCING

ELECTRONICS-5
Radio Receivers: Beginner's a.m. radio.

ON SALE JANUARY 21

"The legendary "MINIMAX" - the small speaker producing "'Large speaker" sounds. Peak handling 100 watts.
ONLY $£ 74.95$ A PAIR!!! NEW IMPROVED NEW
VIDEOTONE - For full range of loudspeakers, in-car, C.B., Video, audio \& video cassettes, etc. Write for full details.

VIDECTONF 98 CROFTONPARK ROAD. LONDON SE4. Tel: 01-690 8511. etx. 32. Send for our free brochure and details of outlets in the U.K.

Moving Coil Cartridge - The MC88E is a high output cartridge - so you do not need to use a head amp. EXCEPTIONAL VALUE AT ONLY £24.95

Seoum Hi-Fi represents EXCELLENT QUALITY AT A REALISTIC PRICE! The range offers a choice of amplifiers, tuner/amplifier, tuner, and the excellent SC4200 stereo cassette recorder.

The 2011 sweeps the board at only f110*

Gel all the waveforms you need -1 Hz to $\cdot 1 \mathrm{MHz}$ in five overlapping ranges: stable, low-distortion sine waves, fast rise/fall-time square waves, high linearity triangle waves - even a separate TTL square wave output. Plus high- and low-level main outputs.
An applied DC Voltage at the Sweep input can shift the 2001's frequency: or sweep up to 100: 1 with an AC signal. A pushbutton activates the DC Offset control, which shifts the output waveform up or down on command.
For value for money the 2001 sweeps the rest off the board. For immediate action - The G.S.C. 24 hour, 5 day a week service Tel: (0799) 21682 and give us your Access, American Express, Barclaycard number and your order will be in the post immediately or just clip out the coupon.

Goods despatched within 48 hours.
*price excluding P\&P and 15\% VAT
GLOBAL SPECIALTIES CORPORATION

G.S.C. (U.K.) Limited, Dept. 5HH Unit 1, Shire Hill Industrial Estate,
Saffron Walden, Essex CB11 3AO
Tel: Saffron Walden (0799) 21682 Telex: 817477

Global Specialities Corporation (UK) Limited Dept. 5HH $-\infty=-\infty=$ Unit 1. Shire Hall Industrial Estate, Saffron Walden, Essex C811 3AQ

MIDWICH COMPUTER COMPANY LIMITED

FAST EX-STOCK DELIVERY OF MICROCOMPUTER COMPONENTS AT UNBEATABLE PRICES

Surictel

by K. Lenton-Smith

KONOSUKE Matsushita was born in 1894 in a small village 35 miles south of Osaka, the commercial capital of Japan. The English translation of his name is "Lucky man under the pine tree" and indeed he spent his childhood under a matsu (Japanese pine).
He was apprenticed to a bicycle merchant in Osaka at the age of ten, bicycles being an exotic rarity in Japan at the time. After seeing a tramcar for the first time, he was convinced that the electric industry had a bright future and in 1910 joined the Osaka Electric Light Company

By 1918 he had become the youngest inspector on the payroll and decided to set up in business on his own. With his wife and brother in law, he manufactured a device he had patented: this was an Edison screw, adaptor designed to fit a light socket.
Matsushita built his first office and factory in 1922, extended his sales operations and had by now 50 employees. Bicycle lamps, heaters and radios were among the products made in the decade that followed.

Matsushita Electric Industrial Co. came into being in 1935 with a capital of 10 M Yen and nine subsidiary companies. The group's products were mainly domestic appliances, including experimental TV receivers made in 1938.

Seeing the conditions prevailing in postwar Japan, the company's founder set himself the task of re-vitalising his country: his slogan was "P.H.P."-Peace and Happiness through Prosperity. In 1951 Konosuke Matsushita visited the USA and Europe and on his return urged all employees to work together to build the company on international lines.

An exchange of technical expertise was arranged with Philips of the Netherlands in 1952, and Matsushita Electronics Corporation was established to produce a wide range of electronic components. These included semiconductors and electronic tubes.

PANASONIC

The concern continued to expand and in 1959 opened its first overseas venture, Matsushita Electric Corporation of America, which sold its products under the brand name of Panasonic. 1961 saw the first overseas manufacturing concern established-the National Thai Company.
Ten years later, Matsushita Electric stock was offered on Wall Street and was in-
stantly oversubscribed; six further leading markets were listing its stock two years later.

Konosuke Matsushita left the company's Chair in 1973. He had certainly lived up to his name as "The Lucky Man . . " but also proved himself as both a patriot and hardworking man of vision. Outside Japan he will best be remembered by the thousands of products with brand names of National, Panasonic, Quasar and Technics.

With an excellent reputation for sound reproduction equipment and as a component manufacturer-especially of complex integrated circuits-entry into the electronic music field was almost a natural progression.

In 1980 I attended the launching of a new series of organs, when the trade was introduced to the " U " organs, and told that Technics' engineers had been back to the drawing board and had completely redesigned the range of instruments. Among the new features at that time was the Program Chord Computer, a "first" for Technics, which allowed the SX-U60 to be programmed to remember 100 chords of eight basic types.

Technics have continued to update the series, the latest model being an improvement on the SX-U90, namely the SX-U90P

SX-U90P

This de luxe instrument has a space-age appearance, its console being finished in silver-grey and mounted on columns. It is priced at $£ 5999.99$ (in case you can't afford $£ 60001$ and, although described as portable, is supplied with a pair of silvergrey extension speaker cabinets and was probably designed for professional use.

For practicing, two 10W speakers are built in to each side of the console: these are indispensible in' judging expression when using remote cabinets. Two 4 -octave manuals and their control buttons and tabs are housed between the monitor's speakers under the metallic hooding of the console. Below are 13 pedals and the expression control.

The various buttons and tabs are colour coded and many of them illuminated. Although I do not favour consoles that look like a pin-ball machine, I must admit that the complexity of modern instruments is such that the performer needs all the help the manufacturer can offer in finding things quickly, especially when reading music at
the same time. The controls are fitted above the upper manual and on the cheeks, and laid out logically.

The Orchestra Conductor section has 12 illuminated buttons which allow the player to select various departments: these are Tab Voices, Orchestral Presets, Percussion, Solo Synth., Organ, String Ensemble and Vocal Ensemble which, apart from Orchestral Presets, are available on both manuals.

Tab Voices cover the organ tones. These include the complete range of Flutes (equivalent to those found on drawbar organs), Brass, Oboe and String on the Upper Manual, whilst the Lower Manual has Flutes 8', 4', 2' and 1^{\prime} with Diapason, Horn, Cello and String. Pedal Tabs include those for Bass Guitar and String Bass.

Two types of synthesizer are employed. Upper Orchestral presets allow polyphonic playing, where there are eight effects to choose between. Solo Synthesizer presets allow single note melodies on either manual, and there are some odd effects here, such as Cosmic Fuzz, or Whistle and Synthe Chopper!

FEATURES

One of the outstanding features of the SX-U90P is the Rhythm Unit. It has a stereo output and can also be programmed to suit the user. Its information is based on pulse coded modulation and it produces the recorded sounds of actual instruments and is thus considerably lifelike. In nonprogrammed mode there is a choice between 12 patterns, each with a variation, and it will produce intros. and fill-ins. It can be made to trigger an accompaniment of piano, banjo or guitar.

Percussion can be applied to the Upper Manual at 5-1/3', 4', 2-2/3' and 2' pitches and there are also Upper/Lower Percussive Presets-Piano, Harpsicord, Vibraphone etc. Harmonic Couplers can be used from either manual and there is also the intriguing Upper Click control: this applies the very same effect that many engineers have burned midnight oil trying to eliminate and was largely responsible for the original success of the Hammond with jazz organists!

Celeste may be applied selectively to sections of the organ and the Voice Setting Computer allows the player to store four favourite voice combinations in memory for six weeks if the instrument is unused

Although probably best suited to club or studio work, Technics have not forgotten the beginner's aids. Auto Play Chord (onefinger, fingered and memory) and Program Chord Computer still are featured, the latter remembering two 50-chord programs which can be edited if mistakes occur. Walking Bass can be applied to the pedals and Arpeggios played on Harp or Strings.

In all, the SX-U90P is an exciting and complex instrument which should be seen to be appreciated as it is impossible to cover all its many features here.

The silicon chip has been a boon to Matsushita and its contemporaries-and if we still had to rely on valves the organ would need a complete room to house what the SX-U90P encompasses!

The hardware and software exchange point for PE computer projects

UK 101 SINGLE KEY BASIC

The UKO2 Monitor ROM is a vast improvement over the original UKO1 ROM but it leaves the computer still lacking the ability to produce complete BASIC words by pressing just one or two keys. A short program to remedy this is given below and can be used with either monitor by changing the first line of the program to the appropriate input routine address (\$FFBA for UK01, \$FBAC for UKO2). Unfortunately when used with the UKO2 Monitor, the Editor is completely disabled when the program is running, but this may be overcome as follows-

1) Enter the program using the m / c monitor.
2) Reset, enter Cold Start and then type in the following BASIC lines;

1 POKE 536,64:POKE 537,2:END 2 POKE 536,172: POKE 537,251:END

To activate the Single Key Basic, type RUN. Before calling the Editor type RUN 2 and then edit in the normal way, after which RUN may be used to return to Single Key Basic. Reset W can be used instead of RUN 2 although this will of course clear the screen. The POKEs given in line 1 above are also used to activate the program when used with the UKO1 monitor.

BASIC words are called by using CTRL plus another key as listed below. It was considered unnecessary to include words of three letters or less as it is almost as fast to type these out in full. However these are presented for completeness along with some other infrequently used words together with the OFFSET and may be included if required by adding them to the table.

With regard to the Table, pressing CTRL and another key gives the ASCII value of that key plus \#\$CO. Thus the required value for the KEYBD column in the Table
can be easily calculated; e.g. CTRL 4 gives $34+C O=F 4$ (Hex.). The following keys cannot be used; M, SPACE, SHIFT, (also E and L for UKO2 Monitor). It is essential to end the Table with a 00 Byte.

Once the Machine Code has been entered, a BASIC loader may be produced using the m / c to BASIC converter given in P.E. July 1981.

PROGRAM LISTING

0240	20BAFF	JSR	\$FFBA
0243	84FE	STY	\$FE
0245	85FF	STA	\$FF
0247	A0FF	LDY	\#\$FF
0249	C8	INY	
024A	B97D02	LDA	\$027D, Y
024D	F029	BEQ	\$0278
024F	C8	INY	
0250	C5FF	CMP	SFF
0252	D0F5	BNE	\$0249
0254	B97D02	LDA	\$027D, Y
0257	A8	TAY	
0258	E046	CPX	\#\$46
025A	B018	BCS	\$0274
025C	B984A0	LDA	\$A084, Y
025 F	48	PHA	
0260	297F	AND	\#\$7F
0262	9513	STA	\$13, X
0264	E8	INX	
0265	20E5A8	JSR	\$A8E5
0268	C8	INY	
0269	68	PLA	
026A	10EC	BPL	\$0258
026C	C9A4	CMP	\#\$A4
026E	D004	BNE	\$0274
0270	A928	LDA	\#\$28
0272	D006	BNE	\$027A
0274	A900	LDA	\#\$20
0276	F002	BEQ	\$027A
0278	A5FF	LDA	\$FF
027A	A4FE	LDY	SFE
027C	60	RTS	

TABLE KEYBD OFF

		SE		
027D	03	CC	CTRLC	CHR\$
027F	04	0A	CTRL D	DATA
0281	OF	2D	CTRL O	GOSUB
0283	07	1D	CTRLG	GOTO
0285	09	OE	CTRLI	INPUT
0287	06	D0	CTRLF	LEFTS
0289	F1	61	CTRLI	LIST
028B	F2	DB	CTRL 2	MIDS(
028D	OE	06	CTRL N	NEXT
028F	10	BB	CTRL P	PEEK
029!	OB	54	CTRLK	POKE
0293	12	16	CTRLR	READ
0295	CD	32	CTRLCR	RETURN
0297	08	D5	CTRLH	RIGHTS(
0299	13	80	CTRL S	STEP
029B	F3	C2	CTRL 3	STRS(
029D	01	6D	CTRLA	TAB(
029F	14	79	CTRL T	THEN
02A1	00		END OF T	BLE

OTHER BASIC WORDS WITH OFFSET VALUE			
ABS	97	NEW	6 A
AND	89	NOT	$7 D$
ASC	C9	NULL	41
ATN	B8	POS	A0
CLEAR	65	REM	38
CONT	$5 D$	RESTORE	26
COS	AF	RND	A6
DEF	51	RUN	21
DIM	13	SAVE	$4 D$
END	00	SGN	91
EXP	AC	SIN	B2
FOR	03	SPC(75
FRE	$9 D$	SQR	A3
INT	94	STOP	$3 B$
LEN	BF	TAN	B5
LOAD	49	USR	$9 A$
LOG	A9	VAL	C6
		WAIT	45

NOTE: Many of the three letter words require brackets which the single key basic program will not supply, the exception being SPC.
L. J. Dolman,

Norwich.

WORKSPACE MOVE

Sir-You may be interested in the following for Microprompt.

In Compukit 101 or Superboard BASIC, the ability to reserve a block of RAM for machine-code routines by givng a number in response to MEMORY SIZE? or POKEing 133 and 134 is useful if the routines are written to reside at the top of RAM. It is, however, often desirable to use a machinecode program at the same time as BASIC. which resides in low memory. For example, an extended monitor (mine runs from $028 \emptyset$ to 0050). It is possible by means of a couple of POKEs to move BASIC's workspace from 0300 to XX00 - wherever you want it. To move it to nnOOhex, the command is:
POKE 122,nn:POKE nn* 256,0 :NEW
having put nn into decimal. The POKE 122 changes the main base pointer. The second

POKE is essential to prevent BASIC crashing. The "new" command changes all BASIC's vectors to the appropriate new positions. So to reserve memory up to DFFF hex, giving free space from 0222 to OFFF hex, use

POKE 122,16:POKE 16 ${ }^{\mathbf{2}} \mathbf{2 5 6 , 0}$, NEW

Once set, reset has no effect on the vectors, so the memory stays in the new configuration until BASIC is Cold-started again. Michael Punnett. Swanley. Kent.

UPDATE!

Sir - The program "Text String Search" published in PE Oct. ' 82 Microprompt was originally written by myself for the Synmon
monitor. Since then, Newmon has become the standard and because of different usage of zero page and low memory, the program as published will not function properly with this monitor. Points to note for conversion are:

1. The first free byte in Newmon is $\$ 0228$ and not $\$ 0222$ and the program needs relocating to this new start address.
2. References to $\$ E 0$ to $\$ E 5$ must be changed to other zero page locations. Some of the later bytes from the input buffer $1 \$ 13$ to $\$ 5$ A) can probably be used instead.
3. References to other zero page bytes and Basic routines $\$ A 000$ onwards still apply and do not need changing

PeterBeckett
Blackpool

PIXEL GRAPHICS

Sir-With a desire to improve the graphics capability of the UK 101 I set out to design a system that was cheap, simple, and gave higher resolution.
I decided not to use any more than the 1 K of video RAM already on the UK 101. This limited the resolution to $64 \times 96,32 \times$ $192,128 \times 48$ or some other such combination. The system I intended to use was one where each point is represented by a bit in the video memory.

However there are two methods of performing this. One is a true method, whilst the other only appears to perform the function.

The second method is to "switch off" the main character generator and "switch on" an alternative character generator. In this second character generator an alternative character set is held with the characters arranged in such a way so that it appears that each bit represents a point. Using this method a second character generator must be programmed as well as having the auxiliary chips (i.e. address decoding etc.) and despite the ever decreasing price of 2716 EPROM's, this is still a costly process.

The first method is both cheaper and information from the RAM is used directly, giving a resolution of 60 rows by 96 columns with one line of text at the bottom. This can be used for scores for games etc. Having this line of text is why the resolution is slightly lowered.

As shown in Fig. 2, what was a character position is now eight pixel positions with bit O representing the top left point etc. A one in this bit position will produce a white square in this location. By means of the machine code subroutines given, each point in the 60 by 96 arrav of points may be set, reset or examined.

The circuit itself is quite simple and can be divided into three separate parts. Firstly the address decoding 1 's and O 's are decoded using NAND and NOR gates with the result that the output of the 4 -input NAND gate is low only if address 61823 (F1 7F Hex) is present on the address bus. The four AND gates decode the top four address lines so that the character generator is switched back on if the bottom line of the VDURAM is accessed.

The second part of the circuit is simply a

lower input to 7402a is 0, then the data on DO is held in the latch and produced on the output. This is ORed with the data from the VDU address decoding and so turns the Character Generator on lrequires a one to turn it on) if either the latch has been latched to one or the bottom line of the VDU is being displayed. The pixel logic is automatically turned off when the Character Generator is on and vice versa.

The pixel logic itself is very simple. IC1 is
Watford Electronics* new 4 K monitor WEMON uses the top 4 K of memory (including address F17F). Those who have this ROM should use the alternative address coding shown in Fig. 1.

To turn the pixel graphics on: POKE 61823,0 (or POKE 58239,0 when 4 K monitor is present).

To turn the pixel graphics off: POKE 61823,1 (or POKE 58239.1 when 4K monitor is present).

Since the first address in the screen memory that can be seen on the TV varies with the version of UK 101. the routines work as follows:

Horizontal position of pixel point is POKEd into address 226.

Vertical position of pixel point is POKE'd into address 227.
$X=\operatorname{USR}(X)$ should then be performed.
To set a pixel point on the screen :POKE 11.150:POKE 12.31. The pixel point's position should be then put into addresses 226 and 227. Point 0.0 is the top left hand corner.

a dual 1 of 4 data selector. Depending on C9 and C10 (which normally are address inputs to the CHR GEN) either VDO and VD4 or VD1 and VD5 or VD2 and VD6 etc. are produced on the outputs. This in effect divides the normal character position into 8 blocks as required. IC2 is to isolate IC1 from the Shift Register inputs and prevents the Shift Register inputs being connected to each other as would otherwise happen.
C. M. Taggart, St. Albans
E.g. to set point 64.31 :

POKE 61823.0 to turn the pixels on.
POXE 11.150:POKE 12.31 to use set routine.

POKE 226.64: POKE 227.31: X=USR(X) The preel's position is specified and this point is set i.c. made white.

To reset a point, i.e. make it black. this routine should be used with POKE 11,158 in= stead of POKE 11.150.

To find out whether a point is black or white POKE 11.168 and after the routine has been used address 228 will be zero if the point is black and non-zero if it is white. When the routines have been loaded 8082 should be answered to MEMORY SIZE?

Alf these addresses are for an 8 K UK 101. For a 4 K machine the routines should be put into memory from OF96 to OFFF, The set, reset. and examine routines should be used as before except that POKE 12,15 must precede the $X=\operatorname{USR}(X)$ instead of POKE 12.31. Also addresses 0F98,0FA0,0FAA,0FE5,0FFE should be OF rather than IF. Finally 3986 should be answered to MEMORY SIZE? rather than 8082 .

Fig. 2. Each original

Fig. 1. Circuit diagram. The addresses in brackets may be substituted to change the pixel switch from F17F to E37F

A Hex dump of the machine code subroutines which may be called from either machine code or BASIC using $\mathrm{X}=\mathrm{USR}(\mathrm{X})$.
1F96 20 B0 IF 11 E2 91 E2 60
1F9E 20 B0 1F 49 FF 31 E2 91
character position is divided into its eight pixel points
10 Character
10 CHARACTER
GENERATOR

IFA6 E2 $60 \quad 20$ B0 IF 3। E2 85 IFAE E4 60 A5 E2 4A A8 OA 85 IFB6 E4 A5 E2 38 E5 E4 48 A5 1 FBE E3 4A 4A AA 0A 0A 85 E4 1FC6 A5 E3 38 E5 E4 48 A9 00 1 FCE 85 E2 A9 D0 85 E3 E8 CA $\begin{array}{llllllll}\text { IFD6 F0 } & \text { OE A9 } & 40 & 18 & 65 & \text { E2 } & 85\end{array}$ 1 FDE E2 9002 E6 E3 4C D5 1F 1FE6 $68 \quad 85$ E4 68 F0 07 A9 04 IFEE 1865 E4 85 E4 A9 01 E6 IFF6 E4 C6 E4 F0 04 OA 4C F7 IFFE IF 60

COMPRESS

Sir-Using a BASIC program to produce DATA statements for the storage of machine code, for example, will result in DATA statements containing a large number of spaces. Consequently there will be a wastage of precious memory and the time to load the program from tape is considerably increased. This COMPRESS program will remove these spaces (spaces between quotes are unaffected).

The program takes up 157 bytes and is stored in the free space above the BASIC storage area. The program contains no Monitor subroutine calls and is therefore compatible with all Compukit monitors
To use the program: load and run it, then NEW it. Load or write the program to be compressed, press Reset, M.0228G, CLEAR. CLEAR is necessary to reset all the program pointers.

You will be surprised at the amount of space wasted in what may look like a compact program!

Noel Caffrey,
Dublin.

ASSEMBLY LISTING

-SERVICE TRADING CO

WHY PAY MORE?
 0-100. Sensititity 2000 V .24 range. diamerer
133 by 93 by $48 m m$ includin test . 8 P. 1 ce 8.91
METERS (New) - 90 mm DIAMETER

A.C. Vot : O-300,

D.C. Amp. Type 65 C
D.C. Volt. 15 V 30 V.
Ail

Ail typers. $£ 3.60$. 30

heavy duty solenoid, lent operation Approx 20 it pult

 12 P D.C. SOLENOID. Price: $\mathbf{£ 1 . 8 5 + \text { P. } 8 \text { P. } 4 0 \text { p. (E2.36 incl. }}$ N.M.S. WAT). p. \& P. (Total Incl. VAT $\mathbf{~} 2.43$).

WESTOOL SERIES D4 Model A. 24 V . D.C. Price $11.10+30 \mathrm{~N}$ -G/GT 24V D.C. 20 Gich
AG/GT 24V. O.C. 70 ohm Coill Solenoid, Push of Pull. Adjustable

MINIATURE SOLENOID FLUID VALVE $12 V$ D.C. 15 ohm coil normally closed. Stainless
stee日 body with variable flow adjuster it' B.S.T.
inlet and outlet Inlet and outlet
Size: $58 \times 27 \times 25 \mathrm{~mm}$. Weight: 130 gr,
Price: E2.60 +35 p . $\&$ \& (Total incl. VAT ©3.39).
230V A.C. SOLENOID OPERATED FLUID
VALVE. Medis: Air, Gasi 7 psi. Water 5 psi. $3 / 8^{\circ}$ hlevoutlet.

SOLID STATE EHT UNIT

Input 230 V ac. Fully isolated output 10mm sprik. Approx
15 k . Built in 10 sec . Timer. Easily modified for $20 \mathrm{sec}, 30$ sec, to a continuous operation Desigigned for boiler ignition. Dozens of uses in the field of physics and electronics, eg. supplying neon or argon tubes
Size: Length 155 mm . width 85 mm , height 50 mm . Weight

A.E.G. CONTACTOR

Type LS6/L11. Coil 240 V 50 Rs Contacts - ${ }^{3}$ make: 600 V ;
20amp. 1 break: $600 \mathrm{~V}: 20 \mathrm{mmp}$. Price: $\mathbb{E 5} .75$ P. P P. 75 p . (E7.47

AMF CONTACTOR

ARROW-HART MAINS CONTACTOR
Cat. No. $130 A 30$. Coil 250 V or 500 V . AC Contacts 3 make 50
amp up to 600 V . AC 20 hp at $440 \mathrm{~V}, 3$ phase. 50 Hz . Price:
SMITH BLOWER
Type FFE. 1706. Small. quier, smooth running. 240V, A.C

MICRO SWITCHES
Sub. Min. Honerwell Lever m/s type 3115 m 906 ft .
Lo for $\mathbf{E 3 . 5 0}$ post pald ($\mathbf{E 4} .03$ Incl VAT) These ypes.
Burfion evpe 10 for $\mathbf{C 3} .00$ (£3.45 incl. VAT).
Shor
Shor Lover frpe 16 amp. rating (Crouzet) 10 for
Long Lever 10 amp C. O . 10 for $\mathbf{~} 4.50$ ($\mathbf{E} 5.18$ incl. VAT) Charry ES1 Rotary action tow torque microswitch 5 amp contact E3.50. (E4.03 incl. VAT). D.P. CIO lever m/switch mig, by Cherry Co USA. Precious melal Low reslstance contacts. 10 for $\mathbf{~} 3.00$ P. \& P. 50p. (E4.02 incl.
VAT). (min order 10). A.C. Wkg. TUBULAR CAPACITORS

Yet another outstanding offer.
IMFD 600V Dubilier

All Mail Orders Callers
Ample Parking Space
Showroom open Mon-Fri.

VARIABLE VOLTAGE TRANSFORMERS

INPUT 230/240V a.c. 50/60 OUTPUT 0-260V

3-PHASE VARIABLE VOLTAGE

TRANSFORMERS

LT TRANSFORMERS

SNIPS OF THE MONTH

National R. Relay 12V. D.C. high speed $1 \mathrm{c} / \mathrm{o} .1 \mathrm{amp}$ contacts. Magnetlcally shielded. 1 pitch. Price: $\mathbf{£ 1 . 2 5}$ post paid ($£ 1.44$ Omron Tvpe M. 24V. A.C. 4 cio. h.d. Price; 80p post paid 192p incl. VAT) 8ase $26 p$ post paid $123 p$ incl. VAT).
$\mathbf{2 2 0 / 2 4 0 V}$, Primary; secondary $24 \mathrm{~V}, 4 \mathrm{~A}$. L. T. Transformer, fully

INDUSTRIAL STROBE KIT

Surable for borth Industrial and Educational purposes. Kit
when assembled produces a variable speed 1 to asprox when assemblad produces a variable speed 1 to approx.
70 flash per second. Llight output approx. 0.5 joules.
 E33.36!
Super H
Super Hy-Light Strobe suitable disco, theatrical u5e otc. (approx. 16 joules). Price E40.
P. \& P. 22.00 (e48.31 incl. VAT).
Suitabie cases for aither type $£ 11.00$ P. \& P. $£ 2.00$ Sultable cases for either type $£ 11.00$ P. . P. E2.00
(E14.95 incl. VAT). Super Hy Light Strobe Kit, datails on

XENON FLASHGUN TUBES
Range available from stock. S.A.E. for details ULTRA VIOLET BLACK LIGHT
FLUORESCENT TUBES
4 fr .40 Watr E 8.70 incl. VAT $£ 10.00$ (callers only).
$2 \mathrm{ft} .20 \mathrm{Watt} £ 6.20 \mathrm{P} \& \mathrm{P} \mathrm{P} .25$ ($£ 8.57$ incl. VAT):

EPROM ERASURE

Superior Quality Precision Mad NEW POWER RHEOSTATS

 New ceramic construction, ombeddedwinding heavy duty brush assembly. continuously rated.
25 WATT $5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{kQ}$
 50 WATT 250 C5.50 P. P. 50 p (E6.90 incl. VAT).
100 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{kD} / 1.5 \mathrm{k} \Omega / 2.5 \mathrm{kN}$ 3.5 kD C7.25 P. \& P. 75 p ($\mathrm{F9.14} \mathrm{incl}$, VAT). Black. Silver, Skirted knob calibrated in Nos. $1-91$ itim. dia
RELAYS wamano coo sc wor RELAYS …nnow
$230 / 240 V$ A.C. 3 e/o. 11 pin base. Sealed 5 amp contacts E1.35 plus P. \& P. 30 p (f 1.90 incl. VAT).
KMKI Retav. 230 C . 10 amp contact, mi. by "Keyswitch" 80 p P. \& P. 25 p (C 1.21 Incl. VAT). 5 for $\mathbf{E 3} 3.75$
postpaid ($\mathbf{4} .32$ incl. VAT). $24 V$ A C. Sealed 3 ofo. 10a. 11 -pin. $£ 1.50+25 p$ P. \& P
24.50 If2.01 incl VAAT.
$\mathbf{2 4 V}$ D.C. Sealed $3 \mathrm{c} / \mathrm{o} .7 \mathrm{a} .11$-pin. $\mathbf{£ 1 . 3 5 - 3 0 \text { p P. \& P. (£ } 1 . 9 0}$

VEAY SPECIAL OFFER $0-12 V D C .2$
D.C Relen: Sabled 12V 1 amp octal base 1.00 P a

30 p (E 1.50 incl VAT). Sealed 12 V 3 coc 7 amp 11 -pin E 1.35 P .

GEARED MOTORS

71rpm Mafor approx. 30 lb in. 110 VAC
complete with Transformer for 240 VAC 510.20
$\mathbf{E} 13.45)$

71 rpm WYNSCALE motor approx. 101 b inch
A. C. supplind with auto transformer 240 V A.C. supplind with auto transformer 240 V .
A.C. operation, $£ 9.75$ P. \& P. E1.50 ($\mathbf{1 2} 2.94$ incl. VAT). N.M.S.

30 rpm. $230 / 240 \mathrm{~V}$. a.c. $501 \mathrm{bin.mf} .\mathrm{PAR} \mathrm{VALUX}$.
Price $£ 17.05$ P. \& P. £ 2.00 ($£ 19.05$ incl.VAT). N.M.S
42 A.P.M. 110 A.C. $50 \mathrm{hz}, 100 \mathrm{lb}$ incl. reversible will operate on 230 A.C. Speed remains at 42 R.P.M. but torque reduces by 50%
Price E18.15 \& \& P \& . 50 (C23.75 incl. VAT). TRANSFCAINE 24OVA.C. operations $£ 15$.
38.3 rpm GEARED MOTOR, torque

35 lb, in raversible. 115 V A.C.. inc. start
capacitor. Price: $\mathbf{~} 111.55$ \& $£ 2.00$ p id capacitor. Price: $\mathbf{\text { E1 }}$
(10tal incl. VAT $£ 15.38$)

$$
\begin{aligned}
& \text { Suitable ramsformer } 230 \mathrm{~V} \text { A.C. operation, } \\
& \text { rice: E7.15, } 60 \mathrm{p} \text { p } \mathrm{p} \text { (1otal incl. VAT E8. }
\end{aligned}
$$

N.E.C. GEARED MOTOR. 152 rpm $200 \mathrm{lb} . \operatorname{In} .230 \mathrm{~V}$ A.C.
50 Hz . Aatio 9.2 to 1 . Non reverse. Incl. capacitors. Fraction

of m.M.S.

200 rpm. ©51bs. in. 115 V .50 kH . Price: $\mathbf{£ 1 8 . 1 5 \text { P. \& P. } \mathbf { E 2 } . 0 0 \text { (} £ 2 3 . 1 8 \text { incl. VAT). N.M.S }}$

Suitable Tiansformer for $230 / 240 \mathrm{~V}$. a.c.
230/24JV A.C. SYNCHRONOUS GEARED MOTORS
\$rpm, 2 rpen, 6 rpm, 12 rpm. 6 revs per day. ${ }^{12}$ revs. per day
Any type. Price $\mathrm{E4.30}$, 40 p p. 8 p . (E 5.40 incl. VAT).
120 rpm GEARED MOTOR. $1 / 10 \mathrm{hD}$ approx. $15 \mathrm{lb} . \mathrm{in} .230 \mathrm{~V}$. A.indie 8 mm dia. 30 mm long, Complete with capacitor and
relay for $\mathrm{m} . \mathrm{x}$. load stanting. OMered at mere fraction of mifs. price elay for m.ux. load starting
E9.90 inc, total $\mathbf{£ 1 2 . 5 3}$.
Brand new CASSETTE TYPE MOTORS 3 types - oV. 7 ty
incl. VAT - $\mathbf{E 2 . 8 8}$.
$230 V$ E.C. FAN ASSEMBLY
owerful continuously rated a.c. motor complete with
blade 6 in. Price E4.50 P. \& P. 75 ($\mathbf{E} 6.04$ inct $V A T$

24V. D.C. GEARED MOTOR

24V. D.C. $200 \mathrm{pmm} 10 \mathrm{lbs} / \mathrm{ins}$. continuously pated geared Motor mig. by either Parvalux or Carter. Essily removed from chassis
containing $9 \times 24 \mathrm{~V}$. D.C. Solenoids. microswitches, friction

SUB-NINIATURE PRECISION BUILT GEARED MOTOR

THOMAS SINGLE DIAPMRAGM COMPRESSOR Max. 20 psi 11 C.F.M. approx. 100 volts A.C. Price $£ 16+\mathbb{E} 2$
p\&p. Toral f $\mathbf{E} 20.70$ inc. VAT or Total $£ 26.45$ to include BLOVER/VACUUM PUMP Motor. 220/250V or $380 / 440 \mathrm{~V}$. 1.425 rpm . th phase AC.
 E 29.90 .

VEEDER-ROOT PRE-SET COUNTER Type MGN 636.3 fig. countdown any number from 999 to 001
230 V A.C 2 Wheel setting. Changeover Microswitch to inform external clicultry on completion of countdown. Size: Width
85 mm . Hit 65 mm . Dpth. 70 mm . Price $£ 4.00+75 \mathrm{p}$. \& P.

SANGAMO WESTON TIME SWITCH Type $S 251200 / 250 \mathrm{~V}$. a.c. $2 \mathrm{on} / 2$ ot every 24 hours. 20 amps
contacts with override switch dia. 4×3 price $£ 9.50 \mathrm{P}$. 8 P . E 1.50 ($\mathbf{E 1 2 . 6 5}$ incl. VAT). Also available w Sype S288 1 on, or 1 simed c/o every 24

Type Stas. As above, plus 36 -hours spring
reserve, Less perspex cover. Price: f 13.00
fr .00 p . B . (16.10 incl VAT)

A.E.G. TIME SWITCH

80amp. 2-on off Spring Reserve Timeswitch, Price $£ 15.50$ P \& P © $£ .50$ (£ 19.55 inc. VAT)
N.M.S. New Manulacturers Surplus
R. \& T. Aeconditioned and Tested

9 Little Newport Street.
9 Little Newport Str
London WC2H 7JJ
Phone 01-437 0576

ambit's new autumn/winter catalogue

ALL THE ‘USUAL’ BITS (Rs, Cs, Tr's, ICs etc) + ALL THE TRICKY BITS

UK prices are shown first. The bracketed prices are export prices which include insured airmall postage to all the countries of Europe including Norway, Sweden Finland and Denmark. For overseas customers outside Europe an extra 45 postage per item is charged. ZX81 (43.43 (652). ZX Printer 652.13 (661). $2 X$ Spectrum 16K 6152 (160). ZX Spectrum 48K 6202 (2210). ZX Microdrive $n / a(n / a)$ 2X RS232 n/a (n/a). S printer rolls $(10.43$ ($(16$). Ram packs:- 16 K C26.04 (C28), 32K 639 (C41), 56K C49 (C51).

DRAGON 32 6I73

COMMODORE COMPUTERS
Commodore 64 C299. Vic 20 C130. Kir to allow the use of an ordinary cassette recorder 66. Vic 20 cassette recorder $\mathbf{6 3 6 . 5 0}$. High resolution graphics zartridge 627.95. We stock most accessories

GENIE COMPUTERS
New colour Genie $\mathbf{C 1 7 3 . 5 0}, 16 \mathrm{~K}$ ram cary 644. Light pen ©15. Accessories for Genve I and Genie 2:-EG3014 32K C189. Disc drives single (199, dual 6369. Double density convertor 672 . High resolution graphics 682. Printer interface $\mathbf{1 3 6}$.

BBC MICROCOMPUTERS A Model £260. B Model £347 newsagents or direct

* TOKO COILS, INDUCTORS, LC FILTERS
* PCM FILTERS, VHF/UHF HELICAL FILTERS
* UNELCO CAPACITORS
* PCI INTELLIGENT LCD MODULES
* TOKO SWITCHES : F SERIES/R7000 SERIES
* ALPS POTENTIOMETERS AND KEYSWITCHES
* TOYO-TSUSHO COAX RELAYS FOR TX/RX
* CRYSTAL FILTERS, CERAMIC FILTERS
* WELLER SOLDERING IRONS
* COOPER TOOLS
* TEST EQUIPMENT
* BOOKS, MANUFACTURERS' HANDBOOKS
* HARDWARE, CASES, PANELWARE, ETC.
* MODULES, R\&EW KITS
* RF POWER DEVICES

ORDERS SUBMITTED USING STOCKCODES

DESPATCHED WITHIN 8 WORKING HOURS

* PHONE ORDER SERVICE - (NO MACHINES!) PLEASE VOTE OUR NEW PHONE SYSTEM AUTONATICALLY STACKS CALLS

$$
\begin{gathered}
8 \mathrm{AM}-7 \mathrm{PM} \mathrm{MON}-\mathrm{SAT} \\
0277230909
\end{gathered}
$$

* COMPUTER ORDER SERVICE - 'REWTEL'

6 PM - 9 AM 300 BAUD/RS232
(IT MAY BE 24 HRS BY THE TIME YOU READ THIS) 0277230959

SUPER KITS!

SETS INCL. PCBS, ELECTRONIC PARTS, INSTRUCTIONS MOST ALSO INCL. KNOBS, SKTS, WIRE, SOLDER, BOX. BATTERIES NOT INCL. BUT MOST WILL RUN FROM 9V TO 15V DC SUPPLIES. ALSO SEE BELOW.

AUTOWAH: Guitar-triggered wah weh
BASS BOOST: Increases volume of lower octaves
CALL SIGN: Programmable B-note musical call sign
CHORUS GENERATOR: Makes a solo voice or instrument sound
like more
COMPARATOR: LED level indicator for 2 channels
COMPRESSOR: Linits \& levels maximum signal strength
FREQUENCY DOUBLER: Raises guitar frequency by 1 octave
frequency-generator: Mutiple waveform test osc, vatiable .5 Hz
to 470 KHz
FUNKY-WOBULO: Novelty voice modulator for funny affects FLANGER: Fascinating delayed-feed-back effiects plus phasing FUZZ: Smooth distortion whilst keeping natural attack \& decay GUITAR EFFECTS: Mutiple variation of level \& fither modulation GUITAR OVERDRIVE: Fuzz plus variable fiter quality GUTTAR SUSTAIN: Extends effective note duration
HARMONOLA: 3-Octave organ with veriable voicing attack,
to vibrato
4-0ctave version
HUM CUT: Tunabie filter for reducing low frequency nuise JABBERVOX: Voice disguiser with clever use of reverb \& tremolo MAD-ROJ Variable sirens, inct pohce, gataxy machine-guns etc METRONOME: With audible \& visual beat \& down-beat marking MICROPHONE PRE-AMP: with swithable bass \& treble response MINISONIC (PE) MK2: 3-cctave very versatile music synthesiser MIXERS: Several - details in catalogue (see below) NOISE LIMITER: reduces tape \& system hiss PHASER: with automatic \& manual rate \& depth controls POWER SUPPLIES $(300 \mathrm{~mA})$: 9
or preset 12 to 15 v
REVERB: Analogue unit with varibble delay \& depth controls RHYTHM GENERATOR: 15 swichable rhythms controlling 10

RING MODULATOR: for intermodulating 2 separate sine frequencies ROGER 2-GONG: 2 gongs sounded at end of transmision ROGER BLEEP: Single bleep sounded at end of transmission SCRAMBLER: Codes \& decodes transmissions authorised channels SEQUENCERS: 128-note keyboard controlled (keyboard Incl.)
16 -note (up to 64 -bit pattern) panel controlled
SPEECH PRDCESSOR: for clearer transmission \& better level comtrol STDRM EFFECTS: Automatic \& manual wind, rain \& surf generator SYNTHESISER INTERFACE: allows instrument to trigger symth function TREMOLO: Deep tremolo with depth \& rate controls TREBLE BOOST: Increases volume of upper octaves TONE CONTROL: bass \& treble cul. gain \& range (6 controis) VIBRATO: varible rate \& depth plus adofitional phasing VOOALEK: Robot trpe voice modulator with depth \& rate controls VOICE FILTER: Tunable for selected treq bandwith \& gain voICE-OP-FAOER: for reduction of music level during talk-over VOICE-OP-SWITCH: with variable sensitnity \& delay, IA 2PCO relay WAH-WAH: with auto-trigger, manual \& oscillator control WHEEBY-JEEBY: 2 intercoupled oscillators produce variable sirens WIND \& RAIN: manual control of these two effects WOBBLE.WAH: Oscillator controlled wah-wah for fascinating eflects

SET 58 SET 138-B \quad E8.87 SET 1214s $£ 1423$ SET162 E31.59 SET 129-S $\quad £ 16.70$ SET 133-LS £1237 SET $98 \quad$ £11.75

SET 145

SET 164

SET 130-N SET 130-T
SET 122 4 S

SET $103 F$

SET 87 SET 126 LS
SET 127-4S SET 117/S SET 76 SET 86 SET 110LS SET 154 SET 81 SET 136 SET 138-T SET 139 SET 137 SET-155-LS SET 142 SET 30 SET 123-S SET 140 SET 151 SET 28
SET 161

TOROIDALS

The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industiy has been quick to recognise the advantages toroidals qufer in size, weight, lower radiated field and, offer in size. Weight.
thanks to IL. P., PRICE.
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS logether with a shor lead time on quantity orders which can be programmed to your requirements with no price penalty.

TYPE	$\begin{gathered} \text { Semiss } \\ \text { No } \end{gathered}$	$\underset{\substack{\text { stcomonav } \\ \text { vors } \\ \hline}}{ }$	$\begin{aligned} & \text { aus } \\ & \text { current } \end{aligned}$	palce	- 294 TYPES TO CROOSE FROIE!								
30 VA	1,010	0.6				ORDEES DESPATCHCD WITHIM 1 DATS OI RECEIPT TOR SIMCLE OR SMALL QUANTTTT ORDERS							
70.30 mm	1:0\%1	$9+9$	${ }_{1} 16$	P512									
0.4540	140?	12.12	125	J. 12									
$\operatorname{cog}_{i d \%}$	18073 12016 1006	13.15 18.18	- 100	- Wotion	+ 5 TERP MOQUIBBLE COERANTCE								
	1n075	22.22	068	10\% 110									
	1×016	$25 \cdot 25$	060										
	2 2010	6.6	${ }^{4} 16$		тч¢	Semes	Secomomay	ams	PRICE				
	2.011	9.9	27										
	21042	$12 \cdot 12$	208		225 va	${ }_{62012}^{60}$	12.12	938					
	2×093	15-15	166	6570	110 Nasmm	${ }^{6}, 013$	$15 \cdot 15$	750					
	2.074	14.18	138		${ }^{2} 2 \times 0$	${ }^{5} 5014$	23.2	, 11					
	${ }_{2}^{21018}$	$28 \cdot 25$ $30 \cdot 30$	(100	- marrios		${ }_{68017}$	310.30 0.30	375					
	24028	110	0.45	1017atsom		6.018	35.35	321					
	2×129	270	032			6*026	$40 \cdot 40$	281					
	2.030	240	020			58025	45.45	2.50	Torme 5178				
$\begin{gathered} 80 \mathrm{va} \\ 90=30 \mathrm{~mm} \\ 11 \mathrm{~kg} \\ \text { Qequatron } \\ 12 \% \end{gathered}$	3×070	6.6	654			61033 6.028	50.50	225 204					
	3ndu	9.9	4.45			${ }_{\text {6*028 }}{ }^{\text {62028 }}$	220	102					
	32 Cl 2	12.12 $15 \cdot 15$	333 266 268	86.08		68030	240	093					
	$3 \mathrm{SC13}$	15.15	268										
	350194	18.16 22.28	${ }_{1}^{2.28}$	-piotiot	110 n 50 mm	7,013 $7 x 014$	$13+15$						
	3,075 $3 x+16$	22.22 25.25	160	- vatris	26 KO	7,015	$22 \cdot 22$	6.82					
	$3 \mathrm{3x} 017$	$30 \cdot 30$	- 33	10244 51	Requation	78015	25.25	600	$\mathbf{1 0 . 1}$				
	$\begin{aligned} & 3 \times 288 \\ & 3 \times 029 \end{aligned}$	110 220	$\begin{aligned} & 077 \\ & 036 \end{aligned}$		6\%	7.017 7.018	30.30 35	5.00 4.80	10.				
	$\begin{aligned} & 3 \times 029 \\ & 3 \times 030 \end{aligned}$	240	$\begin{array}{ll} 0 & 36 \\ 0 & 35 \end{array}$			7018 7,076 7 7	$35 \cdot 35$ 10.60	478	- wetios				
$\begin{aligned} & 120 \mathrm{VA} \\ & 90 \times 40 \text { anc } \\ & \text { \& } 2 \mathrm{Km} \\ & \text { Regution } \\ & 114 \% \end{aligned}$		6.6				7,02s	45. 85	333	toractin 20				
	$4{ }_{8} \mathrm{CH} 11$	9.9	${ }_{6} 66$			7×033 7×028 7	${ }^{30.50}$	3.00					
	$4{ }^{2} \mathrm{Cl} 2$	$12 \cdot 12$	500			${ }_{7 \times 299}$	220						
	${ }^{2} \times 613$	$15 \cdot 15$	${ }_{4} 100$	$\varepsilon 6.90$		${ }_{7}^{7} \mathbf{7} 0230$	240	1.25					
		$22 \cdot 22$ $35 \cdot 25$	272 200	-018tiot	${ }_{140} 500 \mathrm{Vam}$	g016	$25+25$ $30+10$	1000					
	$4 \mathrm{x}+17$	30.30	200		0_{09}	8x013	35.35 40.40		213.53				
		35.35 110	171 109 109		Regulation	88026 81025	40.49 45.15	625 595	-90102]				
	$4 \mathrm{4}=129$	220	\% 05			802023 An 033	15.15 30.50	500	-matas				
	4n430	240	050			${ }^{\text {An }} 0.028$	35.35	${ }^{4} 58$	10thersm				
$160 \mathrm{va}$ $\begin{aligned} & 10 \mathrm{n} .8 \mathrm{mman} \\ & 1 \mathrm{~B} \mathrm{~kg} \end{aligned}$ Aegulation	51371	9.9					110 220	154 2 29					
	5092	12.12 15.15	566 533			${ }_{8}^{81029} 8$	${ }_{2} 20$	${ }_{2}^{208}$					
	5x.113,	13.15 18.18	\$33	f7.91	625 va								
	5.013	$22 \cdot 22$	363	1.	40.75 mm	99×018	$35 \cdot 35$	892					
	5×15	$25 \cdot 25$	3.20	${ }^{10} 1$	5 kg	96020	90.40	781	£16.13				
	52319	$30 \cdot 30$	266	- watcoom	Regulation	9 9 023	45.45	694	- port				
	31218	$33 \cdot 35$ $40 \cdot+0$	2 208 200	7074 518	4\%	94033	$50 \cdot 50$ $55+55$	623 560	- vats				
	5×028 5×029	110	114 0 0			90028	110 220	568 588 88	tolarer 48				
	54029 50300	220 240	0.72 0.65			9.020 9×030 9.0	220 240	2884 280					

IMPORTANT: Aagulation - All volitagas quoted ara FULL LOAD. Please add regulation ligura to secondary vollage to cbialn olf load voltage.
The benefiss of ILP toroidal translormers
LLP toroidal transformers are only half the weight and height of their laminated equivatents. and are avallable with 110 V . 220 V or 240 V primaries coded as follows: For 110 V primary insert " 0 " in place of " X " in type number.
For 220 V primary (Europe) insert " 1 " in place of " X " in type number
For 240 V primary (UK) insert " 2 " in place of " X " in type number.
How to order Freepost:
Use this coupon, or a separate sheet of paper, 10 order these products, or any products from other ILP Elecironics advertisements. No stamp is needed if you address to Freepost. Cheques and postal orders must be crossed and payable to ILP Electronics Lid. Access and Barclaycard welcome. All UK orders sent within 7 days of receipt of order for single ance small quantity orders.
Also avaliasle al Electrovalue, Maplin ano Ter.hnomalic.
ILP Electronics. Graham Bell House, Roper Close, Canterbury, Kent. CT2 7EP.

Please send
Total purchase price
I enclose Cheque $\square \quad$ Postal Orders $\square \quad$ Int. Money Order \square
Debit my Access/Barclaycard No
Name
Address

Signature

Please use full address. Payment CWO, CHO . PO, ACCESS, BARCLAY, or pre-arranged collection. Prices incl. UK P\&P \& 15\% VAT. E\&OE. Despatch usually 7 days on most titems. Details of parts in above kits are stated in our comprehensive catalogue. Send SA.E. (9×4 or bigger) for Caralogue (if you live overseas please send $£ 1.00$ or equiv). MORE KITS ARE IN CATALOGUE.

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

AERIALS

AERIAL BOOSTERS Trebles incoming signal. Price $£ 7.00$. SAE leaflets. ELECTRONIC MAIL ORDER LTD., Ramsbottom, Lancashire BL0 9AG.

RECEIVERS AND COMPONENTS

PRINTED CIRCUIT BOARDS for December \& January Practical Electronics projects. Send for details to: Woods P.C.B's. 96 , Woodend, Handsworth Wood, Birmingham 20.
300 SMALL COMPONENTS including Transistors, Diodes, £2.20. 7lbs Assorted Components £5. 101bs $£ 6.50 .500$ Capacitors E4. Forty 74 Series ICs on Panel $£ 2.10$. Post Paid. List 25p Refundable. J.W.B. RADIO, 2 Bamfield Crescent, . Sale. Cheshire M33 INL.
S.M. 3 MICRO TRANSMITTER. Range 1000 yds. Picks up speech from 25 ff . Case measures $2 \underline{2} \times 1 \mid \times 14$. Receive on ordinary VHF/FM Radio. Only $£ 15.00$ or SAE for full specification. P.D. ELECTRONICS, 11, Bluebell Close, Orpingion, Kent. BR6 8HS
BOURNEMOUTNBOSCOMBE Electronic components specialists for 33 years. Foresters (National Radio Supplies). Late Holdenhurst Road. Now at 36. Ashley Road, Boscombe. Tel. 302204. Closed Weds.

SMALL ADS

The prepaid rate for classified advertisements is 34 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 11.20$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders eitc. to be made payable to Practical Electronics and crossed "Lloyds Banks Lid". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Practical Electronics, Room 2612, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

6802 YOUR COMPUKIT
 You will need: III A 6802
 (2) A processor adaptor - component cost 51.50 . Takes half an hour to make.
 (3) My 2716 Monitor.
 Monitor supports: screen scroll, keyboard. memory examine and modity, chsum load, chsum save. No basic of course. Monitor costs E 20 .
 > Cheque or postal order to: J. D. OWEN, New Meadows Ferm. Leugharne. Dyried.

 Cheque or postal order to

 Cheque or postal order to

 New Meadows Farm. Leugharne. Dyied

 New Meadows Farm. Leugharne. Dyied}MAIDSTONE HAS ITS OWN component shop. Thytonics Control Systems, 8 Sandling Road, Maidstone. 675354

I \& J ELECTRONIC COMPONENTS. - Quality components. comperitive prices. Illustrated catalogue 45p. 98 Burrow Road. Chigwell, Essex.
ELECTRONIC COMPONENTS, MERSEYSIDE. MYCA ELECTRONICS, 2 Victoria Place, Seacombe Ferty, Wallasey, L44 6NR. Mail order send 50 p for price list refundable off first order. 051-638 8647.

BUMPER BOX OF BITS

WOWII! We've got so many components in stock. we can't possibly list them allll - So buy a box, in it you'll find resistors, capacitors, displays, switches, youll ind tesistors, capacitors, displays, switch
panels with transistors, diodes, ICs etc, coils, pots. panels with transistors, diodes, ICs etc, coils, pots.
and so on. All modern parts - guaranteed at least and so on. All modern parts - guaranteed at least
to00 items, minimum weight 101 bs ONLY $\mathrm{f8} .50$ inc.

ELECTRONICS WORLD

1a Dews Road, Salishury, Wilts. SP2 7SN (Prop: Westbrough Lid.)

VERO BOARD 0.1 PTTCH $95 \times 292 \mathrm{~mm} £ 3.50$ each, $112 \times 177 \mathrm{~mm}$ $\$ 2.95$ each. Prices inclusive of VAT. P\&P 30p. Send cheque or PO with order to Coxon Electronics, 47 Steeprurnpike. Matlock, Derbyshire DE4 3DP.
TURN YOUR SURPLUS capacitors, transistors, etc. into cash. Contact COLES HARDING \& CO. 103 SOUTH BRINK, WISBECH, CAMBS. TEL: 0945 584188. Immediate settlement.

BIG BARGAIN BOX

Our Big Bargain Box contains over a thousand components - resistors, capacitors, pots, switches diodes, transistors, panels, bits and pieces, odds and ends. All usetul stutt - Would cost many times th price we are asking if bought separately. Approx weight dibs. ONLY E5.00 inc. post-you're bound to come back for anotherll!

ESP, 174c FOUNDRY LANE,
SOUTHAMPTON, SO1 3LS
Lots of surplus bargains on our latest list - send an SAE
for your copy now.

AUTO ELECTRONICS,
103 Coventry Street, Kidderminster. Phone: (0562) 2179
Brand new components by return post or ring with Access/Barclaycard number for same day despatch All manufacturers guaranteed new stock. All at mosi competitive prices. Cotalogue available only 50 p . All prices inclusive of VAT.
TRADE ONLY. Surplus/liquidators components etc. SUly prices. Lists: Bardwell Lid., 288 Abbeydale Road, Sheffield S7 1 FL .

BOOKS AND PUBLICATIONS

ANY PUBLISHEO, full-size service sheet by return $£ 2+$ L.s.a.e. CTV/Music Centres $£ 3$. Repair data with all circuits, layouts elc. Your named TV or video 88.50 . Free 50 p mag. all orders queries. TIS (PE), 76 Churches, Larkhall, Lanarkshire.

FOR SALE

AIRCRAFT MOUNTED $35 \mathrm{~m} / \mathrm{m}$ CAMERA contains precision mirror, lens, small motor solenoid gears etc $£ 10.24 \mathrm{~V} \mathrm{Nicad}$ battery contains $\mathbf{2 0 . 4 A H}$ cells 88 . Tel: Leeds 496048 afier $7.00 \mathrm{p} . \mathrm{m}$.
PRACTICAL ELECTRONICS P.C.B:'s 1.5 mm fibreglass, drilled and solder resist coated. SAVE MONEY - Boards PRINTED ONLY ready for own etching and driling send S.A.E. for price list. LECTROPRINT, 17 Showel! Road, Bushbury, Wotverhampton, West Midlands. Tel. 0902721805.
ALL YOUR CASSETTE NEEDS. Blank cassettes C15 with case 40p each. Cassette labels in blue, white or yellow 20 for 36 p. Inlay cards in red. blue or yellow 20 for 60 p. Library cases 9 p each. Postage on each complete order 45p. Stonehom Lid., 59 Mayfield Way, Barwell, Leicester LE9 8BL.
government surplus Components \& Equipment. Send SAE for list. AFR ELECTRONICS, Schood Lane, Moukon, Northampton.

COURSES

CONOUER THE CHIP ... Master modern electronics the PRACTICAL way by SEEING and DOING in your own home. Write for your free colour brochure now to British National Radio \& Electronic School, Dept C2, Reading. Berks RG1 IBR.

SERVICE SHEETS

beu's television services for service sheets on Radio, TV, etc. 51.25 plus SAE. Colour TV Service Manuals on request. SAE with enquiries to B.T.S., 190 Kings Road, Harrogate, N. Yorkshire. Tel. (0423) 55885

EDUCATIONAL

CAREERS IN MARINE ELECTRONICS. Courses commencing September and January. Further details, The Nautical College, Fleetwood FY7 8JZ. Tel: 0391779123.

MISCELLANEOUS

THE SCIENTIAC WIRE COMPANY PO Box 30, London, EA. 01-531 1568.				
ENAMELLED COPPER WIRE				
SWG	11 b	802	402	202
8 to 34	3.30	1.90	1.00	0.80
35 to 39	3.52	2.10	1.15	0.85
40 to 43	4.87	2.65	2.05	1.46
44 to 47	8.37	5.32	3.19	2.50
$\begin{array}{llll} 48 \text { to } 49 & 15.96 & 9.58 & 6.38 \\ \text { SLVER PLATED COPPER WIRE } \end{array}$				
TINNED COPPER WIRE				
14 to 30	3.97	2.41		
SAE for list of copper and resistance Wire Dealer enquiries welcome.				

Selling or Buying

A Classified Advertisement could solve your problem at very little cost.

Ring Linda on
01-261 5846

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS
Please insert the advertisement below in the next available issue of Practical Electronics fo
insertions. I enclose Cheque/P.O. for $\mathbb{£}$
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Electronics)

Send ro: Classified Department.
PRACTICAL ELECTRONICS
Classified Advertisement Dept, Room 2612
NAME
King's Reach Tower, Stamford Street,
London SE1 9LS. Telephone 01-2615846
Rate:
34p per word, minimum 12 words. Box No. 60p extra.
Company registered in England. Registered No. 53626. Registered Office: King's Reach Tower, Stamford Street, London SE1 9LS

MISCELLANEOUS

PARAPHYSICAL JOURNAL (Russian Translations): Psychotronic Generators, Kirlianography, Gravity Lasers, Telekinesis, Details SAE $4 \times 9^{\circ}$ PARALAB, Downton. Wilts.

GUITAR/PA/MUSIC AMPLIFIERS

100 watt superb Treble Bass Overdrive. 12 months guarantee $£ 55,60$ watt $£ 49,200$ watt $£ 76,100$ watt Twin-Channel Sep., Treble Bass Per channel C67, 200 watt £89. Slaves 100 watt £ 40,200 watt $£ 60,250$ watt E75, 500 watt $£ 140$. Speakers 100 watt 12 in $£ 25$, 15 in $£ 36,100$ watt Lead Combos castors unbeatable £112.100 watt Bass Combo, 15 -in Relex CAB £125 Send Cheque or P.O.

Williamson Amplification
62 Thorncliffe Avenue Dukinfield, Cheshire Tel: 0613082064

ALARM CONSTRUCTORS professional steel bellbox with 6 inch 12v bell plus anti-tamper switch, absolute bargain $\mathbf{£ 1 6 . 7 5}$ plus £2.25 P\&P. Griffiths Alarms. I5 Windmill Gardens. Whixall. Whitchurch, Salop.

BURGLAR ALARM EQUIPMENT. Ring Bradford (0274) 308920 for our catalogue or.call at our large showrooms opposite Odsa! Stadium.

cantualow ALARNS

We manufacture, you save £££'s Send s.a.e. or phone for our Free list of professional D.I.Y. Burglar Alarm Equipment and accessories.
Discount up to 20% off list prices, e.g. Control Equipndent from E15.98. Decor Bell Boxes from $£ 5.95$ inc.

> TRADE ENOUIRIES WELCOME

O 0484-21000
or 048435527 (24 hr. ans.)
CENTURION ALARMS (PE) 265 Wakefield Road, Huddersfield

9BE. W. Yorkshire
Access $\&$ Visa
Access \& Visa

MAKE YÓUR OWN PRINTED CIRCUITS Etch Resist Transfers - Starter pack (5 sheets, lines, pads, I.C. pads) £2-20. Large range of single sheets in stock at 45 p per sheet.
Master Positive Transparencies from P.C. layouts in magazines by simple photographic process. 2 sheets inegative paper, 2 sheets positive film (AA) $£ 2.25$ (Photo-reaist spray $(200 \mathrm{ml}) £ 3.90$ ($\mathrm{p}+\mathrm{p} 65 \mathrm{p}$). Dratt ing Film (A4) 25p. Precision Grids (A4) 65p. 22 p stemp for lists and information. P\&P 50p per order except where indicated.
P.K.G. ELECTRONICS
OAK LODGE, TANSLEY, DERBYSMIRE

CLEARING LABORATORY: scopes, generators, P.S.U's, bridges analysers, meters, recorders, eic. 0403-7623e

PRACTCAL ELECTRONICS P.C.E's		
$\text { SEP } 12$	Coribo amp EP931	83.07
	Waveform digitiser EP935	¢7.89
OCT 82 JAN 8	Miri Chorus EP950	\&2.97
	Audio Booster EPY93	E2.97
	Dig tal Tacho EP1021-23-25 Set of 3	£5,90
	Dig tal Tacho PSU EP1027	£2.86
For tull fist and current pcb's send SAE. CWO P ease Postage add 35 p post3ge and packing to completeorder. Europe 70 p .		
14 Downham Road, Ramsden Heath, Billericay, Essex CM11 PUU, Telephone 0268.710722		

SITUATIONS VACANT

LEEDS CITY COUNCIL
 DEPARTMENT OF EDUCATION

Leeds Polytechnic - School of Mechanical \& Production Engineering
SENIOR ELECTRONICS TECHNICIAN REFL113/061/9
T3/4 £5,973-£7.545 (plus technicians' qualification allowance)
An experienced electronics technician is required to service a wide range of experimental equipment and to assist with the development of special purpose instrumentation and control systems. Leeds is an equal opportunity employer

Application forms, quoting referencョ number, from the Administrative Services Officer, Leeds Polytechnic, Calverley Street. Leeds LS 1 3HE. Please enclose s.a.e.
Closing date: 14 days after appearance of advert.

CLEF electronic MUSIC

ELECTRONIC PIANOS

SPECIALISTS SINCE 1972
 simulates piano Key patented elcectronic tecchniaue.
$7 \frac{1}{4}$ OCTAVE DOMESTIC MODEL COMPONENT KIT £266 COMPLETE KIT $\mathrm{E}_{\mathbf{4}} 42$

 Four inermixatel voice conrois may
bu ued to oblat
aide
 Both Sof and Sustain Pedals are incorporated in the Design and internal Effects are provided in the form of Phase/Flange Honky
ner.
amplifier
A power amplifier integrates into the Piano top which may be removed from
the Basc for erasy transocration

SIX OCTAVE

DOMESTIC MODEL COMPONENT KIT £234 COMPLETE KHT E398 MAN. $£ 620$ Component Kits include Keyboard. Key-switch hardware, and atl electronic components and may be purchased in Complete Kits further contain Cabinets. wiring harness. Pedals and in the case of Domestic Models both Power Ampiner and Speaker. The Six Octave Stage Piano has the same range of Voices and Effects and is designed for use with an External

SIX OCTAVE
STAGE MODEL
COMPONENT KIT $£ 234$
MANUFACTUAED 5580

THE COMPACT MUSIC SYNTHESIZER

COMPLETE

KIT * SWITCH ROUTING £129.00 * THUMBWHEEL * 2 SUB-OCTAVES

STRING

 ensemble(As Piablished in conjunction with "Practical Elecrronics') A very popular Keyboard Synthesizer Kit. for Group or Home use. with a four octave compass and split Keyboard facility.
\qquad 6197.50 Since 1972 Clef Products have consistenty produced leading designs
in the field of Electronic Musical Instruments. many of which have been published in technical magazines. With musical quality of paramount importance, new techniques have been evolved and the alest musically vaid lechnology has secn incorporated into projects
which have been successfully completed by constructors over ai wide range of technical capability, Back up TELEPHONE advice is available to all our customers. All instruments are on show. PRICES INCLUDE VAT, UK CARRIAGE INSURANCE (CARRIAGE EXTRA ON MFD PIANOS). Please send S.A.E. for
our eomplete liste, or use our teicphone VISA/ACCESS service. our eomplete lists, or use our rejephone VISA/ACCESS service.
Competitive quotations can be given for EXPORT orders $=$ in Austratia please contect JAYCAR in Sydney.
VISIT OUR SHOWROOM

CLEF PRODUCTS (ELECTRONICS) LIMITED
Pept. P.E.) 44A Bramhall Lane South, Bramhall,
Srockpor, Cheshire SK7 1AH 061-439-3297
"THE computer BAND-BOX'
(As Published in conjunction with "Practical Electronies") COMPLETE

KIT

 £235£320
MANFD.
 A A MUSICIANS INSTR UMENT FOR: SOLOISTS - SINGERS - RECORDING - PRACTICE
LIVE PERFORMANCE -COWPOSITION -COWOSHON The BAND-BOX provides an Electronic Backing Trio consisting of Drums. Bass- and a Chord Instrument fone of 16 3,000 User Hrogrammatic chord changes on more than 120 different Chords. Using advanced Microprocessor lechnology, Playback of 50 - 100 Scores can be exccuted in any Key and at chosen Tempo, Complete Music Pad is electronically Indexed and stored on
secondary battery back-up. Facility exists for composition of 1 Inro. Repea1 Chorus, and Coda sections including Multiple Score Se. quences. Sockets are provided for Volume Pedal and Footswich plus separate and mixed instrument Outputs. Total size $19^{\prime \prime} \times 11^{\prime \prime} \times 4 t^{\prime \prime}$

THE programmable DRUM MACHINE

 EIGHI TRACK PROGRAMMING PATERNS/ PAELVE INSTRUMENTS SEOUENCE OPERATION.COMPLETE KTT C 79.00 MANFO f11900

The Clef Master Rhythm is capable of storing 24 selectable rhythmic drum patterns, invented, moditied, and entered by the Operator on to trol expands the number of instruments availabie to twelve. grouped into sounds typical of playing with Drumsticks, Brushes. or Latin American Bongos and Claves. Sequence oferation allows two rhythm sections to be coupled with ion. All drums can be adjusied for level and resonance on internal. controls to suit individuat taste. thus producing good musical sounds

OUR GREAT NEW ILLUSTRATED CATALOGUE IS PACKED WITH INFORMATION ON SUPERB QUALITY, PROFESSIONAL BURGLAR ALARM EQUIPMENT
E- AT UNBEATABLE PRICES!

SEND SAE OR PHONE NOW FOR YOUR COPY
A.D. ELEC DEPT. PE 217 WARBECK 200 R AINTREE LIVEAPOOL
L9 OHU/051 5238440

STORAGE CABINETS

Steel cabinets,
$12^{\prime \prime}$ wide $\times 5 t^{\prime \prime}$ deep $\times 22^{\prime \prime}$ high finished blue with clear plastic drawers.

Available units:-	
Type	Drawers
2260	. $60 \times \mathrm{A}$
2248	. $48 \times \mathrm{B}$
2224 $24 \times \mathrm{C}$	
Type	Drawers
2216	. 16×0
2208.	-... $8 \times \mathrm{E}$
2236	
$30 \times \mathrm{A} .4 \times \mathrm{D}, 2 \times \mathrm{E}$	
ONLY	each cabinet
¢19.90	(inc. p\&p
$\underline{19.90}$	and VAT)

MILLHILL SUPPLIES

[^3]

PE CAR COMPUTER

"One of the neatest, most comprehensive and most useful of these car computers that we have yet come across

Practical Motorist

* Economy - save petrol by improving your driving technique and Improving the tuning of your car.
* Performance - dynamic checks on timing to improve performance and economy.
* Security - protect your car by disabling the ignition. Enter a personalised combination to restart
* Attractive, easy to fit, easy to operate - comes complete with all parts needed. Full instructions provided.
* Imperial or metric read outs

The PE car computer has been specifically designed as an integral part of your car dashboard. Using highly accurate speed and petrol fow sensors it allows you to improve the fuel efficiency of your car by providing information on fuel consumption and tuning.
In all over 30 functions including instant and average miles per gallon (or litres per 100 kilometres), estimated time to arrival, fuel needed to complete a journey, speed needed to meet an arrival time, acceleration tests, standing quarter miles and many more.
PE car computer:
588.50

Complete kit of parts
$£ 78.50$
$£ 7.75$
All prices include VAT. Allow $£ 1$ post \& package. Goods by return. Send S.A.E. for list of separately available parts.

PIMAC SYSTEMS LTD
20 Bloomfield Road, Moseley, Birmingham B13 9BY. Tel: 021-449 0384

BEAT THE BURGLAR WITH RISCOMP MODULES!

Build a Comprehensive Alarm System very easily \& very cheaply
INTRUDER ALARM CONTROL UNIT CA 1250
As featured in PQACI/CAL ELECTRONICS Oct. 1982
This module used with magnetic switches, ultrasonic alarm This module used with magnetic switches, ultrasonic alarm
modules, or infra-red units provides effective protection at a modules, or intra-red units provis
fraction of the normal cost! Easy
installation using comprehensive dats sheet.
EXTRAS 3 position keyswitch with 2 keys $\ddagger 3.43$. Magnetic switch (with magnet) [1.17. Weatherpro hom speaker f 4.95

- Built-in electronic siren drives 2 loud speakers entrance delays together with fixed alarm time - 2 operating modes - full alam/anti-tamper
 - Battery back-up with trickle charging facility Screw conn for ease of installation Operates with magnetic switches, u/ sonic or I.R, units - Separate relay contacts
for switching external loads Test loop facility

official Bor dealer

BBC Model B $£ 399$ including VAT. (Carr. £8)
Model A to B upgrade kit $\mathbf{£ 4 9 . 5 0}$ Installation charge $£ 15$. Individual upgrades and all mating connectors available

BBC DISC DRIVES

Disc Interface Kit $£ 70$. Installation $£ 20$. BBC Single Drive 100K £235 BBC Dual Drive $\mathbf{f 7 9 9}$.

BBC COMPATIBLE DRIVES

Single 100K $£ 190 \quad$ 200K $\quad \mathbf{K} 255$ 400K $£ 345$ Dual $200 \mathrm{~K} \quad \mathbf{£} 360$ 400K $£ 480$ 800K $£ 610$ Cable for Single Drive £8. Dual Drive $£ 12$. (Carr. Single Drive f6, Dual Drive £8.)

Diskettes: 40 track SS £15, 80 track SS £24.
80 rack DS $£ 32$.
Price for 10 carr
VIEW 16K WORD PROCESSOR ROM 552 Teletext Receiver $£ 195.65+£ 2 \mathrm{p} \& \mathrm{p}$ Prestel Receiver $£ 90.00+£ 2 \mathrm{p} \& \mathrm{p}$ 2nd Processor + 64K RAM $\mathbf{£ 1 9 5}+\mathbf{£} \mathbf{p} \& p$

Phone to confirm delivery details.

PRINTERS

NECPC 8023 BE

80 col 100 cps dot matrix printer. Bi-directional. Logic seeking, 2 K buffer,
Forward and Reverse line feed. Hi Res \& Block Graphics, Proportional Spacing, International and Greek character sets, Auto underline, Friction/tractor selectable.

$£ 300+£ 8$ carr.

EPSON MX80 F/TB and EPSON MX 100 F/TB

Dot matrix printers. Bi-directional, Logic Seeking, Auto Underline, Bit Image Printing, Super \& Sub-scripts, 80 col. $8 \mathrm{cps} £ 325+£ 8$ carr. 136 col. 100 cps $\mathrm{£} 430+£ 10$ carr

SEIKOSHA GP100A

80 col. 30 cps dot matrix printer. High Res Graphics - Sid \& double with characters. $£ 185+£ 6$ carr.
OLIVETTI SPARK-JET PRINTER
50 Lines/min or 83 cps , 1 K buffer, full graphics, 96ASCII Characters, 7×7 dot matrix.
$£ 365+£ 8$ cart
As recommended by ACORN
ACORN ATOMS ALSO AVAILABLE IN STOCK. SEND FOR OUR BBC/ATOM LIST

[^4]

Nearly 400 pages of all the most useful components and a whole big new section devoted to home computers and personal software. As always the catalogue keeps you up-to-date with the latest technology - even our ordinary miniature resistors are now superb quality 1% tolerance metal film, yet they're still only $2 p$ each. As well as our usual quality products at low prices, now we're offering quantity discounts too. So pick up a copy of our catalogue now - it's the biggest and the best!
 catalogue, price $£ 1.25+25 p$ p\&p. If you live outside the UK send $£ 1: 90$ or 10 International Reply Coupons. I enclose $£ 1.50$.

Name
Address

[^0]: (C) IPC Magazines Limited 1983. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: Pease note X in part number denotes mains voltace. Please insert ' O ' in place o x for $110 \mathrm{~V}, '$ ' in piace of x for 220 V (Europel). and 2 ' in place of x for 240 V IU.K.I All units except UC1 incorporate our own toroidal transforme"s.

[^2]: Letters and Queries
 We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in PE. All letters requiring a reply should be accompanied by a stamped, self addressed envelope, or addressed envelope and international reply coupons, and each letter should relate to one published project only.

 Components and p.c.b.s are usually available from advertisers; where we anticipate difficulties a source will be suggested.

[^3]: Access/Barclaycard welcome or

 66 TH
 OXON. OX10 8ES. Tel 049138653
 Delivery within 7 days.

[^4]: Published approximately on the 15th of each month by IPC Magazines L.td., Westover House, W
 Australia and New Zealand - Gordon Gotch (A/sia) Lid.; South Africa - Central News Agency Lid.
 Australia and New Zealand - Gordon \& Gotch (A/sia) Lid.; South Africa - Central News Agency Lid.
 Subscriptionts, INLAND and OVERSEAS $£ 13.00$ payable to IPC Services. Oakheld House, Perrymount Road. Haywards Heath. Sussex,
 Practical Electronics is sold subject to the following conditions, namely, that it shall not, without the writren consent of the Publishers first given, be lent, resold, hired out or otherwise disposed of by way of Trade at more than the recommended selling price shown on the cover, and that it shall not be lent, resold or hired out or otherwise disposed of in a mutiated condition or in any unauthorised cover by way of Trade, or affxed to or as part of any publication or advertising. literary or pictorial matter whatsoever.

