PRACTICAL

JANUARY 1983

85p

AUDDIO BOOSTITR FROSI WARNING DIGITAL TACHOMETIER

New developments in UK Robotics

ADVANCED DESIGNS FOR EDUCATION, INDUSTRY AND THE HOME CONSTRUCTOR

Robotic experience is becoming as essential a subject as computing. MICROGRASP provides the lowest cost means of acquiring that experience but despite its ultra low price the robot has considerable versatility. There are 5 axes each using a servo motor and there is feedback from each of the arm movements. Control is by any computer with an expansion bus - the ZX81 being particularly suitable. Servoing is achieved with hardware on the interface board to keep programming simple and the robot is operated under BASIC commands with no computer-specific software required. The interface board is memory mapped using only 64 bytes at any of 1024 switch selectable locations.
MICROGRASP robot kit with power supply
£125.00
23 way edge connector
ZX81 peripheral/RAM Pack splitter board
£48.50

HEBOT II is a turtle-type robot which takes programming out of the two dimensional world of the VDU into the real three dimensional world. Given a DC supply of $9-15 \mathrm{~V}$ it can perform bewildering number of moves under computer control - forwards backwards, leh and right - with each wheel independently controlled. It has binking eyes, bleeps with a choice o two tones and has a solenoid operated pen to chart its progress. Touch sensors coupled to its shell return data, abou its environment, to the computer for it to calculate evasive or exploratory action. Hebot II connects directly to an universal interface board to the expansion bus of a 2×81 or other computer.

Hebot II kit
Universal computer interface board
23 way edge connecto
ZX81 peripheral/RAM Pack splitter board

GENESIS P102 PROCESSOR BOX, HAND HELD CONTROLLER AND CORTEX COMPUTER

Top of the range is the Genesis P102 which has dual speed control, continuous servo operation and double acting cylinders for increased torque on the wrist and arm rotation oints. The microprocessor based control system has additional memory, position nterrogation via the RS232C interface increasing the versatility of computer control and inputs are provided for machine tool interfacing.
6 axis system READY BUILT
£1950.00
Powertran CORTEX 16 bit 64 K computer Kit $£ 295.00$
READY BUILT E395.00 (Electronics Today International December issue on CORTEX)
POWERTRAN cybernetics

MICROGRASP, INTERFACE BOARD AND ZX81

'HIGH-TECH' FROM HANTS

GENESIS S101 AND GENESIS P101 WITH PROCESSOR BOXES AND HAND-HELD CONTROLLERS

With prices starting below $\mathbf{£ 1 , 0 0 0}$ the Genesis range of general purpose robots provide a first rate introduction to robotics for both education and industry. Each has a self-contained hydraulic power source, which enables loads of several pounds to be smoothly handled. The system operates from a single phase 240 or 120 V AC supply or a 12 V DC supply. The machine can be supplied with up to 6 axes each of which is fully independent but capable of simultaneous operation. Position control is achieved by means of a closed-loop feedback system based around a dedicated microprocessor. Movement sequences can be entered, stored and replayed by use of a hand held controller, alternatively the systems can also be interfaced to an external computer via a standard RS 232C link.

Example prices and specifications

Genesis S101
Base: $19.5^{\prime \prime} \times 11^{\prime \prime} \times 7.5^{\prime \prime}$
Lifting capacity: 1500 gm
Arm lift: 6.6

4 axis model in kit form E390
5 axis model in kit fort E 445
5 axis model READY BUILT E790

Genesis P101

Base: $19.5^{\prime \prime} \times 11^{\prime \prime} \times 7.5^{\circ}$
Liting capacity: 2000 gm
Arm lengths between axles: 14.0°
Weight: 34 Kg
4 axis model in kit form $£ 495$
6 axis model in kii form E 595
6 axis model READY BUILT E950

COMPLETE SYSTEMS AS SHOWN IN PHOTOGRAPH ABOVE
Genesis S101
Genesis P101

4 axis system in kit form $\mathbf{E 6 3 5 . 5 0}$
4 axis system in kit form $\mathbf{8 7 4 2 . 0 0}$
5 axis system in kit form e695. 0
5 axis system READY BUILT £ 1355.00
6 axis system in kit form 8852.00
6 axis system READY BUILT $£ 1525.00$
6 axis system READY BUILT $£ 1525.00$
As featured in this journal November " 81 -April " 82 issues

PRACTICAL ELECTRONICS

CONSTRUCTIONAL PROJECTS

MICROCONTROLLER Part 3 by M. Tooley BA and D. Whitfield MA, MSc 20
Programming the PIA's and sample programming
DIGITAL TACHOMETER 28
Car engine rev's to a resolution of ten FROST WARNING 36
Provides warning indication of abnormal engine temperatures
39
39
20W add on for your ICEMICROGRASP Part 2 by Richard Becker44
Final assembly with testing and calibration procedures
ULTIMUM Part 3 52The complete interface system described
GENERAL FEATURES
SEMICONDUCTOR UPDATE by R. W. Coles 57
Featuring the 8001, DG221 INGENUITY UNLIMITED 62Steam train "chuffer"-High gain, high frequency amplifiers-Telephone "bell"
NEWS AND COMMENT
EDITORIAL 15
NEWS AND MARKET PLACE 16
Including Countdown
BAZAAR 34, 38, 64Free readers' advertisements
INDUSTRY NOTEBOOK by Nexus 43
News and views on the electronics industry
SPACEWATCH by Frank W. Hyde 51
Extra-terrestrial activities chronicled 60
Bargain offer on high quality cassettes
SPECIAL OFFER-LOGIC PROBE 65

SPECIAL SUPPLEMENT

MICRO-FILE by R. W. Coles. .
between pages 38 and 39
Filesheet 3 Z80

FRONT COVER: We would like to thank ACM Ltd. of Poole and Mr R. C. Cradock for the use of the Bonito car shown on the front cover.

OUR FEBRUARY ISSUE WILL BE ON SALE FRIDAY, JANUARY 14th, 1983
(for details of contents see page $3 / 6$ of Micro-file)

[^0]

GET 30
 powse

Modular Amplifiers
 the third generation

Due to continous improvements in components and design ILP now launch the largest and most advanced generation of modules ever

WTHALOT OF MELP riom OPr ELECTRONICE LTD

PROFFSSIONAL HI-FI THAT EVE CAN HANDLE... Unicase

Over the years ILP has been aware of the need for a complete packaging system for it's products, it has now deve loped a unique system which meets all the requirements for ease of assembly, adaptability, ruggedness, modern styling and above all price.
Each Unicase kit contains all the hardware required down to the last nut and bolt to build a complete unit without the need for any special tools.
Becaúse of I LP's modular approach, "open plan" construction is used and final assembly of the unit parts forms a compact aesthetic unit. By this method construction can be achieved in under two hours with little experience of electronic wiring and mechanical assembly.

Hi Fi Separates

UC1 PRE AMP UNIT: Incorporates the HY78 to provide a "no frills", low distortion, ($<0.01 \%$), stereo control unit, providing inputs for magnetic cartridge, tuner, and tape/ monitor facilities. This unit provides the heart of the hi fi system and can be used in conjunction with any of the UP Unicase series of power amps. For ultimate hum rejection the UC1 draws its power from the power amp unit.
POWER AMPS: The UP series feature a clean line front panel incorporating on/off switch and concealed indicator. They are designed to compliment the style of the UC1 pre-amp. Performance for each unit which includes the appropriate power supply, is as specified on the facing page.

Power Slaves

Our power slaves, which have numerous uses i.e. instrument, discotheque, sound reinforcement, feature in addition to the hi fi series, front panel input jack, level control, and a carrying handle. Providing the smallest, lowest cost, slave on the market in this format.

UNICASES					
HIFI Separates					Prict Inc. VAT
UC1	Preamp				£29.95
LP1X	$30+30 \mathrm{~W} / 4-8 \Omega$	Bipolat	Stereo	Hif,	[54.95
UP2x	$60 \mathrm{~N} / 4 \Omega$	Bipolar	Mono	Hifi	$[54.95$
UP3X	$60 \mathrm{~W} / 8 \Omega$	Bipolar	Monu	Hif	¢54.95
UP4x	120w/4 Ω	Bipolar	Mono	Hifi	¢74.95
UP5x	$120 \mathrm{~W} / \mathrm{B} \Omega$	Bipolar	Mono	Hifi	[1495
UP6x	$60 \mathrm{~W} / 4-8 \Omega$	MOS	Mono	mif	[64.95
UP7X	120W/4-8	mos	Mono	HiFF_{i}	[84.95
Power Slaves					
USIX	$60 \mathrm{~N} / 4 \Omega$	Bipolar	Power	Save	159.95
US2x	120W/4 Ω	Bipolar	Power	Slave	¢ 79.95
US3x	$60 \mathrm{~W} / 4-8 \Omega$	MOS	Power	Slave	c69.96
US $4 \times$	120W/4-8	MOS	Power	Slave	[89.95

Piease note X in pa't aumber denotes mains voltage. Please insert O ' in place of X for 110 V . ' 1 ' in place of X for 220 V (Europel, and ' 2 in place of x for 240 V (U.K.) All units except UCI incorporate our own toroidal transformers.

AUDIO AMPLIFIER
Addo Amprifect SOW R.MS. wiln inegra hean sint and stral ciacil protection
 Dowe mpe. copete io dining miph quatiry peeter shitens an up to 5ow mith dstro foon keves beow 05x bieai lor cormaste use liscos PA, srsems. dectronc
apares eit the penereusty mad components ensse continuous opestion at magh artor leves. A1zo 50 wan Ausio Amp Madice So 200 supphy
£13.14.

MINLATURE FM TRANSMITTER
Freq: $95-105 \mathrm{MHz}$. Range: 1 mile ONLY Size: $45 \times 20 \mathrm{~mm}$. Add: 9v batt $\quad \mathbf{E 5 . 5 0}$
Not licenced in U.K. ldeal for: O07-MAF-FBL-CLA-KGB erc MAGNETIC CARTRIDGE PRE-AMPLIFIER
Enoy tre jusiny of a mapnefic curtiope mith rous
 premp. masoing meperic carriinges to be used where fach hes enist lar ceramic curviges onty. Witho ON nout sockel 6 Iull wasy to follow insturctons apase Stereo Mag Cruvoge Acemp. - inoun 15 mm andor 100 mm tant.

MONO PRE-AMPLIFIERS
 guitar gromp mizes.
The MMIOCO and Mulliag, mono premporfers we
 amplifies and the associmed power supphes

 worage a465 mpoter 2 Guiters. Mircophonts Max aravir

〔12.43.

Tramslommers we not inctuded wit
somer supples SPMizo Rerge
mo require esese voir and outpor cupacions

TRANSFORMERS

ACCESSORIES

139 Team Coioner Sur Stereo 30 20: 23 a Q1mm 7700140 Tean Cobine Sull STA15 485×200

 Pazaco 11.50 Gelloup fromp Panel toc ome
 Cabinet thasss. soctiets 6 thots enc no house Stats
 dodes la corrasuriong unstamised powet supply ta ause to 185 wart a.se

GE100 MKII ${ }^{\text {To }}$ To Crampin Monorymic
Equalise.

Ony 15 t mam 165 mm a 5 m . sider potenfometers and knobs which ere nounted on a bourd atove the ciccuitry. In the range of 310 Hz to 10Kiky you can an and boost ± 1288 wor the 10 sidues eoch with trequency swatied on the cractit boadd the E 100 uses inctive mixers. PA syient and dascos it wil diso miviove the saund efprofluction al pou exating addo rquipment Pawer supply for G:100 od SGII Togetter wid Tionsta mer no 2003
GETCD MEII 10 Channed monograhe Equalise with shonees of inodes

BJ-PAK's COMPLETELY NEW CATALOGUE

very interesting ones you will soon be using and of course the lagests ange of semiconductars tor the Aniatrour and Piolessional pou could hoye fo Innit Thete are no wassed page: ol Inseless inhurnation so of ten michictied in Calitooves published nomadars fuss whid lacis ie pice treccupfum dint
 has alwary been io sell qualily componenis al compliluwe eutics and thal we sill 00

BI-KITS nenang ment

tonstormer and necessery wing digrams gencos
 chamed Slewe Amadian Nit consisiting of 2×4.60

REGULATED

VARIABLE

STABILISED POWER SUPPLY

Vrabble flom 2.30 volts and 0.2 Amps. Kit indeludes $0.50 \mathrm{v}^{2}$ Panel Meler. $1-0.2$ amp 1 arstormet.
 witeobind polentlometec: Whing Ciagram mocluded VP530 kit $\mathbf{Z O}$
SIREN ALARM MODULE
Ameican Ponce npe screame powerd hom ony 12 woth supply into 4 or 8 otm meentec. loded for car bergibe damm treese bred down and other secuity
Dupaces EPITA 5 wan in man Suem Namm Madm $\mathbf{~} \mathbf{3}$.85.

 ans Mod.

BHPAK BARGANS

MINI VICE

－IARESISTABLE AESISTOR BARCAINE＂ Panthe
SAlo $\$ 110400$ Mired＂All Type＂Res stors Pretormed he．t watt Caibon Resistors Resisions ＊wall Carbon Resistors 4，waft Resistors 22 ctm 2m2 Mised 1 and 2 walt Ress ohm 2m2 Mined

T31 NUT DRIVERSET 5 precision nut drivers in hinged plastic cas

Si4 TOOL SET

precision instruments in hinged plastic case H 0 गno H I Hex key wrenches

ちゃ WRENCH SET precision wrenches in hingeo plasit case BUY ALL FOUR SE TS hex key Set on ring sures 1.5 .225 ．
4.5 .55 and 6 mm Made ol hardened stee！ HX／1 $£ 1.25$
－This helplus unir with hoo mounte horzontally on Heavy Base Crocodile clips atrached to pod ends Six Dall \＆sockel joints give intmite vartation and positions inrough 360° also dvalable atlached to Rood a $21 / \%$ did magnituer giving 25 x magniticalion Helping Our Price with magnitier as illus：rated OROER NO P402 ©5．50
Withoul magnitier OROER NO T $400 £ 4.75$

BI－PAK SOLDER

DESOLDERKIT

High Quality 40 wall General Purpose
ughiweighin Soldernng Iron 240 v mains
Lightweighl Solderen
1 Oualify Oesoldering pump High Suction win
automatic efection knurled anti－corrosive casing and iellon nozzle
i 5 metres ol De－soldering oralo on plastic Udispenser
2 yds （1 83m）Resin Cored Solder on Card
1 Meat Shunt lool tweezer Type
Foral Relan Value over $\mathbb{\Sigma 1 2 . 0 0}$
OUR SPECIAL KIT PRICE $\mathbb{8} 8.95$

BI．PAK PCBETCHANT AND DRILLKIT

1 Expo Mini Drall 10.000 RPM
I Sheet PCB Transters
EICh Resist Pen
I 1／tb pack FERRIC CHLORIOE crystals
？sheels Fioreglas coord
Full insiructions for making your own P
Doatos
Retall Value nver $\subset 15.00$ e－
OUR BI－PAK SPE
ORDER NO SX8？

TECASBOTY

The Electronic Comoonents and Semiconductor Baicain of the Year A host ol Electronic components including ootentiomelers－rolary and slider presels－hormonial and ventica Resistors of mixed values 220 hms to 2 M 2 － $1 / 8102$ Wam．A comprenensive range of capacitors including electrolyc and polyester types plus disc ceramics etcetera Audio plugs and sockets of various types plus swilches，luses，heatsinks．wire．nuis pots． gromets．cable clips and tyes，knobs and PC Board Then add to lizal 100 Semiconduitors 10 include tiansistors．diodes．SCR s oplo s，ali or which are currenif everyoay usable dev ces over E 25.00 Our Fight Agains：Inllation Price
minio Cexpession JUST E6．50

＂CAPABLE CAPACITORPAKS＂

Puna．	（t）${ }^{\circ}$	Description	Pria
5215	250	Capacilors Mised tyas	\square
5×17	200	Ceiamic Capaciors Manialure Mried	\square
5x17	100	Mised Ceramics lof a got	\square
Sils	100	Mined Ceramics 6efot 0.5 mf	\square
5820	100	Assorted Polvester／Paipstyrene Capacitors	0
5121.	50	mirec C280 mpe capacitors metal foil	0
5422	100	Electroigtics，all wort	\square
5123	50	Quality Electromitics $50.1000 \mathrm{mt}$	0
5224	20	Tantalum Beads．mised	0

BARGAINS

$5 \times 9120 \mathrm{k}$ Large $\mathrm{e}^{2 \prime} \mathrm{REOLED}$
514220 small 125 Red LCD＇s
540310 Rectangular Green LED 250 mw ． wan mired wollapes． all caded．New
Sial－Blaci fnstrumen
Anots－winged with pointer 4 Standard sciem fit sue 29 20 mm
sxis 20Assorted Sideer Mnobs Bush／Chrome，etc
Sino 12 Msons and filament lamps Lo raltere and maire－macous tyo and colours－some panel mosenting

BRAND MEW LCD
DISPLAY MULTITESTER．
月L
LCD 10 MEGOHM INPUT IMPEDANCE －3＇／digit＂ 16 ranges plus hfe tesl tacility fo PNP and NPN Iransistors＊Auto zero．aulo polarily ${ }^{\text {© Single－handed pushbultion }}$ operation＇Over range indicalion • 125 mm （1／2－1nch）large iCO reaoout－Orove check －Fust circuil protecion ‘Tesi leads．Dattery and instructions included
Maxindication 1999 or－ 1999
Polarily indication Negative onfy
Positive readings appear
wilhout＋sign
Input impedance I）Megofims
erodojusi Anlomatic
Sampling lime 250 milliseconds
Temperature range $-5^{\circ} \mathrm{C} 1050^{\circ} \mathrm{C}$
$\begin{array}{ll}\text { Power Supply } & 1 \times P P J \text { or equivalent } 9 \\ & \text { battery }\end{array}$

5152
68 iack Heatsink will $\dagger 110.3$ and
$10-220$ Reacy drilled Hall price $10-220$ Reacy drilled mall price
value
Sx53 1 Power finned Heatsinh Thisheatsink givei the siealest possible heal dissipatio in the smaliest space owing io ：ts unique stagzered int design．pre dullko 10.3 Sue 45 mm square： 20 mm high 40 p $5154-10.66$ sure $35 \mathrm{~mm} \times 30 \mathrm{~mm}=1 \mathrm{~m} \cdot \mathrm{~m} \quad 35 \mathrm{~F}$ suss Heat flliciency Ponet finned Heatsin $90 \mathrm{~mm}, 80 \mathrm{~mm}, 35 \mathrm{~mm}$ Heth nelled 10 tale up to 4 ： 0．3 devices 1.50 each

PROGRAMMABLI UMIJUMCTION TRAMSISTOR PUT case TD106 plaslic MEU22 Similar 10
2N6027／602 PNPN Silicon Price $1-9 \quad 10-49 \quad 50-99 \quad 100$ ．Normal Relai Each： $200180 \quad 150 \quad 130$ P－ice $£ 0.35$ each Sx33A 6 small（min $($ SOST／SPOT Toggle
Swithes 240 v 5 mp
S． SX35A Rocker Switches 1.00 $\times 3250 \mathrm{~V} 2 \mathrm{~A}$ £1．00 SX32A 12 Assorted Jack \＆rnono plugs
snckets and adaptors． 2.5 m£1．00 3．5．nm and standard slzes1.00 Sx71 50＂C108 rallouts Manuac lurte s out ol spec on volls or
gain You lest． SX72 Amuxed bundle of Copper clad Board Fibre glass and paper Single and double sided．A fanlastic bargain

\begin{tabular}{|c|c|}
\hline 5×38

5×39 \& | 100 Silicon NPN Transislors－all perfect Coded mixed types with data and equt sheet．No rejects． Real value． |
| :--- |
| 100 Silicon PNP Transistors－ all pertect．Coded mixeo types with data and equt．shert．No re ects Fantastic value． |

\hline \multirow[t]{2}{*}{203055} \& | The best tnown Power Transistors in the W． 10 － 2 M 3055 NPN 115 ． |
| :--- |
| Ont BI－PAK Soecial Ofter Price： |

\hline \& | 110.011 | 50 oth | 100 ot |
| :--- | :--- | :--- |
| 63.50 | 116.00 | 130.00 |

\hline
\end{tabular}

s0312 COMPLIMEMTARY PNP POWER
TRANSISTORS TO 2N3OSS．
Equivalent M12955－80312－703 SPECIM PeICE 50.70 exh

MORE BARGAINSI

Sx5 60 melies PVC covered Hoot uD cre snigle and stranded Mised 25 Assorted TI．Gates 7400 Series 7401.7460 $\$ 559$ 10 Assorted flup flops and WSI ITL
\＄460 20 Assorteo Slider 5162 Oientiometers

SL79 10 Reed Switches－glass type 3 Micro Switches－glass type

Uve roul creati crió Mini us on Were 3187 mow anc ifl row ader ewn lester Goces namalit want ind Cims Mat

Sinclair ZX Spectr

16K or 48K RAM.... full-size movingkey keyboard... colour and sound... high-resolution graphics...

 From only £125!First, there was the world-beating Sinclair ZX80. The first personal computer for under $£ 100$.

Then, the ZX81. With up to 16K RAM available, and the ZX Printer. Giving more power and more flexibility. Together, they've sold over 500,000 so far, to make Sinclair world leaders in personal computing. And the ZX 81 remains the ideal low-cost introduction to computing

Now there's the ZX Spectrum! With up to 48 K of RAM. A full-size moving-key keyboard. Vivid colour and sound. Highresolution graphics. And a low price that's unrivalled.

Professional powerpersonal computer price!

The ZX Spectrum incorporates all the proven features of the ZX81. But its new 16K BASIC ROM dramatically increases your computing power.

You have access to a range of 8 colours for foreground, background and border, together with a sound generator and high-resolution graphics.

You have the facility to support separate data files.

You have a choice of storage capacities (governed by the amount of RAM). 16 K of RAM (which you can uprate later to 48 K of RAM) or a massive 48 K of RAM

Yet the price of the Spectrum 16K is an amazing $£ 125$! Even the popular 48 K version costs only $£ 175$!

You may decide to begin with the 16 K version. If so, you can still return it later for an upgrade. The cost? Around $£ 60$.

Ready to use today, easy to expand tomorrow

Your ZX Spectrum comes with a mains adaptor and all the necessary leads to connect to most cassette recorders and TVs (colour or black and white).

Employing Sinclair BASIC (now used in over 500,000 computers worldwide) the ZX Spectrum comes complete with two manuals which together represent a detailed course in BASIC programming. Whether you're a beginner or a competent programmer, you'll find them both of immense help. Depending on your computer experience, you'll quickly be moving into the colourful world of ZX Spectrum professional-level computing.

There's no need to stop there. The ZX Printer - available now - is fully compatible with the ZX Spectrum. And later this year there will be Microdrives for massive amounts of extra on-line storage, plus an RS232 /network interface board.

Key features of the Sinclair ZX Spectrum

- Full colour-8 colours each for foreground, background and border, plus flashing and brightness-intensity control.
- Sound-BEEP command with variable pitch and duration.
- Massive RAM - 16 K or 48 K .
- Full-size moving-key keyboard - all keys at normal typewriter pitch, with repeat facility on each key
- High-resolution-256 dots horizontally $\times 192$ vertically, each individually addressable for true highresolution graphics.
- ASCil character set - with upper- and lower-case characters.
- Teletext-compatible-user software can generate 40 characters per line or other settings.
- High speed LOAD \& SAVE-16K in 100 seconds via cassette, with VERIFY \& MERGE for programs and separate data files.
- Sinclair 16K extended BASICincorporating unique 'one-touch' keyword entry, syntax check, and report codes.

The ZX Printeravailable now

Designed exclusively for use with the Sinclair ZX range of computers, the printer offers $Z X$ Spectrum owners the full ASCll character set-including lower-case characters and high-resolution graphics.

A special feature is COPY which prints out exactly what is on the whole TV screen without the need for further instructions. Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZX Printer connects to the rear of your ZX Spectrum. A roll of paper (65 ft long and 4 in wide) is supplied, along with full instructions. Further supplies of paper are available in packs of five rolls.

The ZX Microdrivecoming soon

Thenew Microdrives, designed especially for the $Z X$ Spectrum, are set to change the face of personal computing.

Each Microdrive is capable of holding up to 100 K bytes using a single interchangeable microfloppy.

The transfer rate is 16 K bytes per second ${ }_{\text {w }}$ with average access time of 3.5 seconds. And you'll be able to connect up to 8 ZX Microdrives to your ZX Spectrum.

All the BASIC commands required for the Microdrives are included on the Spectrum.

A remarkable breakthrough at a remarkable price. The Microdrives are available later this year, for around $£ 50$.

How to order your ZX Spectrum

ZX Spectrum software on cassettes-available now

The first 21 software cassettes are now avai!able directly from Sinclair. Produced by ICL and Psion, subjects include games, education, and business/ household management. Galactic Invasion...Flight Simulation... Chess History ...Inventions ...VU-CALC...VU-3D 47 programs in all. There's something for everyone, and they all make full use of the Spectrum's colour, sound and graphics capabilities. You'll receive a detailed catalogue with your Spectrum.

RS232/network interface board

This interface, available later this year, will enable you to connect your ZX Spectrum to a whole host of printers, terminals and other computers.

The potential is enormous. And the astonishingly low price of only $£ 20$ is possible only because the operating systems are already designed into the ROM.

Sinclair Research Ltd, Stanhope Road, Camberley, Surrey GU15 3PS. Tel: Camberley (0276) 685311.

BY PHONE-Access, Barclaycard or Trustcard holders can call 01-200 0200 for personal attention 24 hours a day, every day. BY FREEPOST-use the no-stamp needed coupon below. You can pay by cheque, postal order, Access,

Barclaycard or Trustcard.
EITHER WAY-please allow up to 28 days for delivery. And there's a 14-day money-back option, of course. We want you to be satisfied beyond doubt - and we have no doubt that you will be.

To: Sinclair Research, FREEPOST, Camberley, Surrey, GU15 3BR. Order

Qty	Codem	Item Price	Total
Sinclair ZX Spectrum-16K RAM version	100	125.00	
Sinclair ZX Spectrum -48K RAM version	101	175.00	
Sinclair ZX Printer	27	59.95	
Printer paper (pack of 5 rolls)	16	11.95	
Postage and packing: orders under £100	28	2.95	
orders over £100	29	4.95	

Please tick if you require a VAT receipt \square

* enclose a cheque/postal order payable to Sinclair Research Ltd for $£$
*Please charge to my Access/Barclaycard/Trustcard account no.
*Please delete/complete
as applicable
Signature
PLEASE PRINT
Name: Mr/Mrs/Miss $|\perp| \downarrow|\downarrow| \downarrow|\downarrow| \downarrow|\downarrow| \downarrow|\downarrow|$
|Address $|\perp \perp \perp \perp| \perp|\perp| \perp|\perp| \perp|\perp| \perp|\perp|$

FREEPOST-no stamp needed. Prices apply to UK only. Export prices on application.

INTERNATIONAL DIGITAL I/C SELECTOR
by Towers T. D.

BEGINNERS GUIDE TO MICROPROCESSORS
by Parr E. A Price: $\mathbf{£ 4 . 5 0}$
A PRACTICAL INTRO TO ELECTRONIC CIRCUITS

ESSENTIAL ELECTRONIC AN AZ GUIDE
by Loveday G. Price: $\mathbf{\text { C8. }} 7$

ADVENTURES WTTH DIGITAL ELECTRONICS
PRINCIPLES OF INTERACTIVE COMPUTER
GRAPHICS
MICROCOMPUTER TECHNOLOGY AN INTRO
COMPLEIE HANDBOOK OF MAGNETIC
AECORDING
COMPLETE HANDBOOK OF VIDEO
by OWen D.
M.F. ANTENNAS FOR ALL LOCATIONS
by Moxan L. Price: $\mathbf{£ 7 . 5 0}$

* All prices include postage *

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books

19-21 PRAED STREET

 LONDON W2 1NPPhone 01-402 9176 Closed Saturday 1 p:m

MAIL ORDER

 ADVERTISING
British Code of Advertising Practice

Advertisements in this publication are required to conform to the British Code of Advertising Pracmoney is pald in advance, the code requires advertisers to fulfil orders within 28 days, unless a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please retain pro

Mail Order Protection Scheme

If you order goods from Mail Order advertisements in this magazine and pay by post in advance of delivery. PRACTICAL ELECTRONICS will consider you for compensation if the Advertiser should become insolvent or bankrupt, provided:
(1) You have not recelved the goods or had your money returned; and
(2) You write to the Publisher of PRACTICAL ELECTRONICS summarising the situation not earlier than 28 days from the day you sent your order and not later than iwo months from that day
Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.
We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiser has been declared bankrupt or insolvent
This guarantee covers only advance payment sent In direct response to an advertisement in this magazine not. for example, payment made in response to catalogues etc, received as a result of tisements are excluded.

STOCKING PARTS OTHER STORES CANNOT REACH

EGE \qquad 			 					

[^1] Allow 28 days for defiven

Bigger and Better

the colourful Wilmslow Audio brochure - the definitive loudspeaker catalogue!

Everything for the speaker constructor - kits, drive units, components for HiFi and PA.
50 DIY HiFi speaker designs including the exciting new dB Total Concept speaker kits, the Kef Constructor range, Wharfedale Speakercraft, etc
Flatpack cabinet kits for Kef, Wharfedale and many others.

* Lowest prices - Largest stocks *
* Expert staff - Sound advice *
\star Choose your DIY HiFi Speakers in the comfort of our * two listening lounges
(Customer operated demonstration facilities)
- Ample parking *

Send 11.50 for catalogue
(cheque, M.O. or stamps - or phone with your credit card number)

* Access - Visa - American Express accepted *
also Hifi Markets Budget Card.

35/39 Church Street, Wilmslow, Cheshire SK9 1AS

Lightning service on telephoned credit card orders! Please allow 7 days for delivery

No more wilting houseplants with this soil moisture test. Just place the probes into the soil and it will light up to tell you whether the soil is "too wet" or "too dry". You don't even need green fingers
No. 11 DIGITAL ROULETTE
The suspense and excitement of the casino in your own home. Just press the bution, the circle of lights go round and there is the sound of the roulette wheel as well, both gradually slowing down to reveal the winning number.
No. 12 EGG TIMER
How do you like your eggs done, hard or soft, just set the timer and it will sound when the egg is done to your liking. Long battery life beczuse it switches itself off automatically. So get cracking now! Want to get started on building exciting projects, but don't know how? Now using EXPERIMENTOR BREADBOARDS and following the instructions in our FREE 'Electronics By Numbers' leaflets, ANYBODY can build electronic projects. For example, take one of our earlier projects, a L.E.D. Bar Graph.

You will need. One EXP 300 or EXP 350 breadboard 15 silicon diodes
6 resistors 6 Light Emitting Diodes
Just look at the diagram, Select R1, plug it into the lettered and numbered holes on the EXPERIMENTOR BREADBOARD, do the same with all the other components, connect to the battery, and your project's finished. All you have to do is follow the large, clear layouts on the 'Electronics by Numbers' leatlets, and ANYBODY can build a perfect working project. pertect working project.

For full detailed instructions and layouts of Projects 10. 11 and 12, simply take the coupon to your nearest GSC stock ist, or send direct to us; and you will receive the latest 'ELECTRONICS BY NUMBERS' leaflet.

If you have missed projects, 1, 2 and 3 , or 4,5 and 6 , or 7,8 and 9 , please tick the appropriate box in the coupon.

PROTO-BOARDS

The ultimate in breadboards for the minimum of cost Two easily assembled kits

P86 Kit, 530 contacts, four 5 -way binding posts accepts up to six 14-pin Dips
PROTO-BOARD 6 KIT $£ 11.00$

PB 100 Kil complete with 760 contacts accepts up to ten 14 -pin Dips, with two binding posts and sturdy base. Large capacity with Kit economy
PROTO-3OARD $100 \mathrm{KrT} \mathbf{£ 1 4 . 2 5}$

EXP 48 £ 2.50 Four
more bus bars in
snap-on" unit

- 尉

The above prices are exclusive of P\&P and 15% VAT

THE GSC 24 HOUR SERVICE TELEPHONE (0799) 21682

With your Access, American Express, Barclaycard number and your order will be in the post immediately GLOBAL SPECIALTIES CORPORATION

G.S.C. (UK) Ltd, Dept. 4TT

Unit 1, Shire Hill Industrıal Estate
Saffron Walden, Essex CB11 3AQ.
Tel: Saffron Walden (0799) 21682
Telex: 817477

TO RECEIVE YOUR FREE COPY OF PROJECTS 10, 11 and 12 Just clip the coupon

For immediate action
The GSC 24 hour 5 day a meen service
Telephons (0799) 21682 and give us your Access.
American Express or Barclaycard number and your American Express or Berclaycard num
order iwill be in the post immediately. capitals). Enckose cheque, postal order or credit card nombes) the breaty date, indicating in the appropriate

EXPERIMENIOR	CONTACT	IC CAPACITY	UNIT PRICE INC	OIV
NAME				

SLOW CARS

For many years PE has been critical of the slow approach to electronics of the motoring industry. Knowledgeable motorists have been adding various bits of circuitry to their "Ford Populars" for many years but it is only comparatively recently that the need for economy, and the challenge of the Japanese, has resulted in the car giants pushing back the barriers.

As far back as 1966 (yes 17 years ago) PE published a Solid State Ignition. It was a capacitive discharge system and, according to the memory of our Assistant Editor, gave readers many a problem with reliability. However, in the ensuing seventeen years technology has taken great strides and we now have semiconductors with a rather better specification than the OC20's used in the original PE circuit. It seems that it is the problem of reliability that has held back many electronic innovations in this field; the car engine compartment being one of the most hostile areas imagineable for electronics. Even so we feel much blame for this tardyness must lie with the conservative motor giants. It is only in recent years that electronic ignition has become the norm and only now that the trip computer is achieving such status. By the way, we have seen
nothing to match the PE Car Computer and that was published two years agol

The 1982 Motor Show proved yet again how slow things move in this field. Many readers will have seen demonstrations of speech recognition systems and synthesised speech warnings but we are still some years away from such devices being part of the popular motoring scene. Even the solid state dashboard is only just beginning to make an appearance.

PE CONTRIBUTION

In all these areas PE has made contributions over the years and many long standing regular readers will have enjoyed the benefits of added electronics for some time. A range of designs for solid state analogue instruments, first published in '78, proved so popular they were reprinted in PE Popular Projects (which is still available for £1.25 from our Post Sales Department). The highly acclaimed PE Scorpio Ignition, first published in 1970 and subsequently updated twice, has probably been fitted to more cars than any other published design. The latest Miniature Scorpio follows the original circuitry and once again proved the need for such a system with its popularity, following publication last year.

In this issue we continue to provide useful additions for the motorist. They are all relatively simple in terms of construction but each can bring added benefits or facilities to the popular saloon. Having said that, we should qualify it, because we have reservations on the usefulness of the Digital Tachameter. The design is excellent and will work beautifully, but we feel an analogue display is better for a tacho. However, we have had so many requests for a digital version that we decided we had better comply. A solid state analogue unit is described in PE Popular Projects!

If you can afford a 1983 vehicle no doubt you will not be requiring some of the projects in this and subsequent issues but we bet they won't all be fitted. Cver the next few months we will also be describing a Radio Booster, 12 V d.c. to 240 V a.c. Inverter, Twilight Warning, Wiper Delay, Accessory P.S.U and an Automobile Test Set, plus one or two others. None of them are particularly complex but all provide a useful extra function or enhance an existing one in the way only electronics can.

EDITOR Mike Kenward
Gordon Godbold ASSISTANT EDITOR
David Shortland ASSISTANT
EDITOR/PRODUCTION
Mike Abbott TECHNICALEDITOR
Brian Butler TECHNICAL SUB EDITOR

Jack Pountney ART EDITOR
Keith Woodruff ASSISTANT ART EDITOR
John Pickering SEN. TECH. ILLUSTRATOR
Isabelle Greenaway TECH. ILLUSTRATOR
Jenny Tremaine SECRETARY

ADVERTISEMENT MANAGER

D. W. B. Tilleard

SECRETARY
Christine Pooll $01-2616676$
Christine Pocknell
Alfred Tonge
01-2616819 CLASSIFIED SUPERVISOR

Barbars Blake
01-2615897
AD. MAKE-UP/COPY Ian Sweeney 01-2616601

Technical and Editorial queries and letters (see note below) to:
Practical Electronics,
Westover House,
West Quay Road, Poole, Dorset BH 15 1JG
Phone: Editorial Poole 671191
We regret that lengthy technical
anquirlas cannot be answered
over the telephone
Queries and lefters concerning advertisements to:
Practical Electronics Advertisements,
King's Reach Tower,
King's Reach, Stamford Street, SE1 9LS
Telex: 915748 MAGDIV-G

[^2]
Back Numbers

Copies of most of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd., Lavington House, 25 Lavington Street. London SE1 OPF, at $£ 1$ each including Inland/Overseas p\&p. Please state month and year of issue required.

Binders

Binders for PE are available from the same address as back numbers at $£ 4.60$ each
to UK or overseas addresses, including postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 13.00$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH. Cheques and postal orders should be made payable to IPC Magazines Limited.

Digital Dist System

This Spring will see the launch of the much heralded audio revolution with Philips releasing a digital audio system, called the Compact Disc. The Compact Disc player has been designed to connect into any existing hi-fi system in the same way as other sound sources such as tape decks, turntables etc.

The system uses 120 mm diameter single sided discs which have up to an hour's continous playing time. The disc has no grooves; the digitally coded recording lies under the surface of the disc, invulnerable to dirt, with the recording being read by a laser beam which causes no damage or wear to the disc.

Inside the disc player a precision electric motor spins the disc whilst a point focused laser beam reads the digitally recorded information splitting the audio information from the servo control information. A decoding system is used to convert the digital information into conventional audio waveforms for the left and right channels. The clocking signal from the servo information is compared with a quartz crystal controlled frequency oscillator and any discrepancy generates a correction signal for the disc motor speed control. Because the scan speed of the laser across the disc is constant the disc speed must be changed progressively from 500 to 200 r.p.m. as the beam tracks from the inside to the outside of the disc.

The disc is produced in the same way as a conventional record, by compression or injection moulding. It goes through the same stages of pre-mastering, mastering and replication but the production process is different in many respects because the technological level of the end product is much higher.

The Compact Disc system features ex tremely low distortion figures, both harmonic and intermodulation, it does not require a noise reduction system, there is no rumble or wow and flutter. The dynamic range, the signal to noise ratio and the channel separation are all $>90 \mathrm{~dB}$ whilst the T.H.D. (including noise) is $<0.005 \%$.

SDLAR POWER GAME

For a change here's a Casio electronic game without an attached calculator. The CG10 is a solar shuttle game which is appropriately solar powered. (No batteries to wear out.)

By controlling speed increase and decrease buttons, the object is to achieve shuttle lift off from earth, enter lunar orbit, and then to escape from orbit to dock with a space station.

Inadequate power means a failure to lift off. a failure to escape lunar orbit or perhaps a crash on the moon. Too high a speed at various points, on the other hand, means overshoot and disappearance into space.

Acceleration and deceleration consume power, and although close approach to the sun during orbit attracts added solar energy, it is still possible to fail from lack of fuel, or from running over a time limit. And just to complicate matters as you get more practised, higher game levels introduce the prospect of collision with UFO's.

As with all Casio games, the CG10
automatically keeps score, and awards bonus points as appropriate.

The CG10 is priced at $£ 12.95$ including $p \& p$ and is available from Tempus, 38 Burleigh Street, Cambridge CB 1 1DG

NOT TO BE FORGOTTEN

A new addition to the range of $\mathbf{Z X 8 1}$ options will enable constructors to double their present memory facility

This memory board is designed to fill the transparent 8 K block of memory (from 8K to 16K) in a ZX81 - 16K system. This area of memory is an ideal place to store, either permanently or temporarily, machine language routines or data which are to be used by the basic system. Indeed with this board it is no longer necessary to place your machine language routines in REM statements, in string variables, or beyond RAM TOP. You can build up a resident library of machine utilities for use by your basic system.

The use of HM 6116P 2K CMOS RAM memory i.c.'s with their own reserve power supply means that routines stored in the RAM are nonvolatile. The RAM retains its memory even when the $\mathbf{Z X 8 1}$ is switched off or reset.

The Lithium cell supplied with the board will maintain sufficient reserve power for about ten months for 2 K or about two months for a fully populated board. A connector is made available for an alternative external supply.

Complete step by step instructions in a 16 page manual makes assembly of the board easy with construction taking between 1 and 2 hours. It should be noted, however, that the kit is supplied with only one 2K CMOS 6116P - 3 RAM i.c. and the separate purchase of a further three would be required to facilitate the maximum 8K capability of this board.

The kit priced at $\mathbf{£ 1 9 . 9 5}$ plus $£ 1.95$ p\&p or just the p.c.b. with instruction manual is $£ 10$ post paid supplied by Hunter Electronics, P.O. BOX 5, Axminster, Devon EX13 5AS.

NEW HITACHI VIDEO

Hitachi are extending their range of video recorders with the launch of the VT11E With a retail price of around $£ 399$ it has been specifically designed to provide top quality performance at a realistic price.

The unit has a streamlined fascia with large control buttons for the principal functions which include a single multi-function button for play, record, fast forward, fast re-

wind and 4 x visual search in both directions, an electronic fluorescent digital tape counter and control buttons for setting the clock and microprocessor programme timer to enable a recording to be made over a 10 day period.
Although the VT11E sells at a low price it still has all the important features including a test signal generator for setting the video channel on the TV monitor, automatic tape stop at the end of the tape and automatic shut off. In addition there is an automatic output change without the need for a TVNTR switch, a heater for protection against moisture condensation damage, an auto or colour mode selector, tracking control, freeze frame, built in aerial booster and a full function remote control

DICICHECK

The Steinal multi-tester has $3 \frac{1}{2}$ digit display and is a development of their very successful range of hand held Voltage Testers.

Both the point of the probe and the display can be seen together and as the readout is stored it remains visible even when the probe is removed from the test point.

The 'Digi Check' is priced at $£ 92.66$ excluding VAT and p\&p from Toolrange Limited, Upton Road, Reading, Berkshire. (0734 22245)

With the introduction of cable TV there will be many applications for teletext in the UK and Mr. Geoffrey Hughes, Chief Executive of Oracle Teletext Ltd. has made the following statement; 'In general, we welcome the Hunt report and the prospect of cable TV in the UK. However, until firm rules are established, which will preserve existing broadcasting standards, I would prefer not to comment further!
'As far as teletext is concerned, we see real possiblities of development of our services and in fact we are already co-operating with Rediffusion in experimental tests of Cabletext, their advanced switched star cable system, which will demonstrate the potential of teletext on cable services.'

- $-9 \rightarrow 5$

The British Teletext standard is fast becoming the de facto world standard according to Junior Industry Minister John Butcher. He noted at the launch of the London Oracle system that over 95 per cent of teletext sets throughout the world are based on the British system and that working services operating to the British standard are now up and running in 13 different countries.

Last month the Australian Government announced its acceptance of the UK teletext as the approved broadcast standard after two years of trial operations involving all the available systems.

Also in the USA, UK technology has provided the only system to be effectively sold with the inauguration of the 'Keyfax' national magazine, the first large scale consumer operation for teletext in the USA.

LLCHTWELCHT CAMERA

Yet another gem of technological miniaturisation from the East. This much reduced video camera, due to be launched in the UK in the Spring, overturns conventional notions of the size and weight requirements for portable video cameras.

Manufactured by the Konishiroku company, under the Konica brand name and weighing in at just 690 grams (including cablel it will be compatible with all video deck systems. The camera which has a $10-30 \mathrm{~mm} 200 \mathrm{~m}$ lens and an optional electronic view finder, will be available with a black or silver body and measures $58 \mathrm{~mm} \times 199 \mathrm{~mm} \times 106.5 \mathrm{~mm}$.

An important element in the camera is its energy saving design; power consumption being 10-20 per cent less than conventional portable video cameras. This is a decisive factor in extending total recording time. The company in their 110 years of experience have been in the forefront of innovation in cameras and film, and now this latest introduction extends the policy into the audio-visual market.

This move follows the recent news that Konishiroku Japan in partnership with Ampex, have moved into the audiovisual area and will be introducing into the UK the Konica range of high quality audio and video cassettes.

PHILIPS CTV

Philips have reduced the components in their conventional colour TV to produce a new range of sets for the 1990's-the CTX family:

The CTX models will all share a common

chassis, a single, compact board with a third less components than previous sets which means increased reliability and cheaper running costs for the consumer.

This radical new chassis, developed at Philips's research and development headquarters in Eindhoven, Holland is only a little larger than this page. The component count is just 386 compared with the previous models
564. The CTX has been tailored to meet the growing requirement for a simple low cost TV.

The first CTX model available in the UK is the 14" CT2006, a compact set measuring ($310 \mathrm{~mm} \times 450 \mathrm{~mm} \times 360 \mathrm{~mm}$), and weighing $12 \mathrm{~kg}, 1 \frac{1}{2} \mathrm{~kg}$ less than its predecessor, normal power consumption is just 39 watts. The picture tube is the tried and tested $570 \times 90^{\circ}$ in line, quick start.

Up to twelve channels can be pre-set and selected via light action push buttons, there are rotary controls for volume, brightness and colour, and a headphones socket is provided. A $16^{\prime \prime}$ set will appear shortly with remote control versions and $20^{\prime \prime}$ models to follow soon. CTX production will initially be abroad, but UK manufacture starts in 1983.

Finished in a robust, contemporary styled silver cabinet the CT2006 (14") comes complete with its own loop aerial and a main aerial socket for use in weak signal areas. Price around $£ 170 \mathrm{inc}$. VAT.

Briefly...

For those of you who would like to hear the very latest in digitised synthetic speech just phone 0234223377 and listen. The number will connect you directly to the new range of speech synthesis chips from Texas Instruments.

According to Electronics Times the BBC, presently experimenting with stereo sound for BBC2, are keeping "mum" about the possibility of stereo broadcasting becoming a regular feature. Initial tests from the modified Crystal Palace transmitter to assess signal interference with existing transmissions are apparently first on the agenda. A modified German system is to be used.

Drawing upon the experience of an already well established Users Group, Proton Acceleration aims to provide full independent system support for a variety of 6502,6509 CPU based machines including the BBC, Apple, Acorn and Microtan systems.

Their priorities will be in the design, production and distribution of hardware products for members at favourable user group prices. Proton also aim to establish a comprehensive software library compiled from users' own contributions and professional packages commissioned by them for specific applications.

Membership of the group is for a period of 12 months and will include a copy of the monthly newsletter the 'Accelerator'.

Proton Acceleration, 16 Iddesleigh Road, Charminster, Bournemouth, Dorset. (0202 294393)

Tnundidnu!...

Please check dates before setting out, as we cannot guarantee the accuracy of the information presented below. Note: some exhibitions may be trade only. If you are organising any electrical/electronics, radio or scientific event, big or small, we shall be glad to include it here. Address details to Mike Abbott.

Christmas Holography (+ items for sale) Dec. 2-Mar. (1983) Light Fantastic Gallery, London. A8
ElectroNORTH Dec. 7-9. Harrogate Supercenter. Q
IT82 (Information Technology Year Conf.) Dec. 8-9. Barbican. 0
Continuous events at the National Microprocessor \& Electronics Cntr.
Peripherals Feb.2-4 1983. Cunard Int. Hotel, Hammersmith, London.
Z1
BEX Bournemouth Feb. 9-10 1983. The Pavillion. K
Microsystems Feb. 23-25 1983. West Cntr. Hotel, Fulham, London. 21
CAD North Mar. 1-3 1983. Belle Vue Ex. Cntr., Manchester. 21
Mailing Efficiency Mar. 1-3 1983. Bloomsbury Cntr. Hotel, London. Z
Local Networks Mar. 8-10 1983. Royal Lancaster Hotel, London 0
Laboratory Edinburgh Mar. 16-17 1983. Assembly Rooms, George
St. E
Brighton Electronics March 1983. T
BEX Leeds Mar. 16-17 1983. Dragonara Hotel. K
INSPEX Mar. 21-25 1983. National Exhibition Cntr. Birmingham International. Z1
Sensors \& Systems Mar. 22-24 1983. The Forum, Wythenshawe. T
Compee Wales Mar. 22-24 1983. Cardiff University. Z1

ETM (Electronic Test/Measurement) Mar. 22-24 1983. The Forum, Wythenshawe, Manchester. T
Laboratory Manchester Mar. 23-24 1983. New Century Hall, Corporation St. E
American Holography Mar.-June inc. Light Fantastic Gallery, Covent Garden, London. A8
All Electronics Show April 19-21 1983. Barbican Cntr. London. E
Fibre Optics April 19-21 1983. Porter Tun Rooms, The Brewery (!), Chiswell St., London EC I. E
International Materials Handling April 19-26 1983. Earls Court. I
International Packaging Exhibition April 25-29 1983. NEC B/ham. I
HEVAC (Heating, Ventilation \& Air Cond.) Apr. 26-28 1983. Barbican. I
Biotech May 4-6 1983. Wembley. O
The Business Computer Show May 10-12 1983. Wembley. O
Defence Components Expo May 10-12 1983. Metropole, Brighton. I
Computers In The City (conf. \& ex.) May 24-26 1983. Barbican. O
Business Telecom May 24-26 1983. Barbican. 0
International Wood Processing May 24-27 1983. Wembley Conf. Cntr. 2
Russian Holography June-Sept. inc. 1983. Light Fantastic Gallery. A8 Semlab June 1983. Olympia. I
IBM Productivity (conf. \& small ex.) June 14-16 1983. Tara Hotel, London. O
Compec North June 21-23 1983. Beile Vue, Manchester. Z1
A8 Holographic Exhibitons \mathbb{C} 01-836 6423
E Evan Steadman $\$ 079922612$
I Industrial Trade Fairs $\wp 0217056707$
K Douglas Temple Studios 020220533
O Online $\int 0927428211$
Q Exhibitions For Industry 8088334371
T Trident 08224671
Z BETA Exhibitions 01-405 6233
Z1 IPC Exhibitions \& 01-643 8040

FROM THE OPEN UNIVERSITY The State-of-the-Art Course on Microprocessors for Engineers

Whether you are already using microelectronics in product engineering or are only thinking about it, you will be well aware of the scarcity of engineers equipped with a sound, up-to-date knowledge of microprocessor technology.

Now, the Open University has brought out a new self-study course on Microprocessors, combining state-of-the-art knowledge with the OU's highly successful teaching methods.

Microprocessors and Product Design. A self-study course for engineers:

Provides a complete, thorough and convenient introduction to the incorporation of microprocessor technology in product design. Although the course is primarily designed for self-study, it can also be used as the basis of an in-house training scheme.

- The course covers systems design, hardware and software development, prototype evaluation and final production.
- It has been developed by the Open University with the backing of the Department of Industry as part of the Microprocessor Application Project.
- No previous knowledge of electronics or computing is assumed

What the Course includes:

- HEKTOR - a fully assembled microcomputer development system to give engineers "hands-on" experience while they learn.
- An experiment book containing practical work to develop skills. - Five specially-prepared manuals for self-paced learning.
- A file of specimen manufacturers' data sheets and brochures
- The course is completely selfcontained and not linked to any broadcasts, correspondence tuition or seminars.

How the Course helps
 Engineers:

Engineers completing this course will gain more than a theorectical knowledge of microprocessor-based design. They will be better able to put theory into practice, designing more advanced, highly functional and marketable products using the most up-to-date technology currently available.

- The course can be studied without losing time from work. Colleagues can share the course thereby saving
on the cost ($£ 395$ complete).
- Thousands of OU microprocessor courses are already being used by industry, by private individuals, and by colleges and polytechnics. Many have been incorporated into company training programmes.
- Grants may be available from the Engineering Industry Training Board (further details in our leaflet).
- If you are unemployed and want to develop new job skills, the course is available at a reduced rate. (Tick box B in coupon).

Find out more about the course by filling in the coupon and sending it to The Open University, FREEPOST, PO Box 188, Sherwood House, Milton Keynes MK3 6HH. No stamp required. Or phone 0908-79058 (24 hour answering service).

THIS is the final part of the series on the Microcontroller, and it concentrates on those aspects of the system which relate to its use in controlling practical external hardware. A detailed description of the workings of the 6821 PIA is given. Examples are included to demonstrate how peripheral circuitry may be driven from the keyboard (via DISBUG), and also under programmed control. Finally a set of notes and guidelines to assist with writing and debugging of control programs are included to help with the development of working programs for the Microcontroller.

THE 6821 PERIPHERAL INTERFACE ADAPTER

The 6821 Peripheral Interface Adapter (PIA) provides a flexible method of connecting peripherals to the CPU. The PIA is a programmable device designed to assist the CPU in controlling external hardware. Each PIA appears to the CPU as four memory locations, which may be manipulated with the full range of instructions. Internally, however, the PIA is a complex device and a full description of its capabilities is beyond the scope of a brief article. What follows, therefore, is a summary of those features of the PIA which are used most frequently in control applications.

A basic programming model for the 6821 PIA is shown in Fig. 1. As seen in previous issues, the PIA is essentially divided into 2 independent sections, A and B. Each section may be controlled separately by the CPU, and is provided with three registers for this purpose. Although the registers of sections A and B are addressed in an identical fashion, they differ electrically in certain respects. Both sides of the PIA have a drive capability of two TLL loads, but they behave differently on input. The output circuitry of the B side adopts a tri-state condition on input, whereas the A side inputs are taken high by internal pull-up resistors, and require a resistance to $O V$ of $1 \mathrm{k} \Omega$ or less to assume the 'low' state. The logic low/high levels are: $<1.4 \mathrm{~V}$ and $>1.6 \mathrm{~V}$ for A , and $<0.7 \mathrm{~V}$ and $>3.0 \mathrm{~V}$ for B . The A and B sides of the PIA are otherwise identical.

Each half of the PIA has three main elements: an Output Register, a Control Register, and a Data Direction Register.

MICRO cantroller

MICHAEL TOOLEY в.a. DAVID WHITFIELD m.a.m.sc. PART THREE

These registers appear to the CPU as if they are read/write memory locations, which may be written to or read from using standard instructions. Each group of three registers however, appear to the 6800 as if they are only two memory addresses. This is achieved by using part of the Control Register to determine whether the Output or Data Direction Register is selected by the second memory address. Table 1

IC Number	PIA	Base Address	ORA/ DDRA	$\begin{array}{\|l\|} \hline \text { ORB/ } \\ \text { DDRB } \\ \hline \end{array}$	CRA	CRB
14	User	1000	1000	1001	1002	1003
13	User	1400	1400	1401	1402	1403
12	Display	1800	1800	1801	1802	1803
11	Keyboard	1 CO	1 CDO	1 CO 1	1 C 02	1 CD 3

Table 1. Microcontroller PIA register addresses

Fig. 1. Programming model for the 6821 PIA

Fig. 2. Format of the PIA control word
shows the memory addresses which correspond to all of the PIA registers in the Microcontroller.

The Data Direction Register (DDR) is used to establish each of the eight peripheral lines associated with the half of
the PIA as either an input or an output. Each line may be programmed separately; an output is established by setting the appropriate bit in the DDR to a 'one', and an input by setting the bit to a 'zero'. The CPU sets up all eight lines at
once by writing an eight-bit value into the DDR. The Direction Register is selected whenever bit 2 of the associated Control Register is set to 'zero'. Whenever bit 2 is set to a 'one', the Output Register is selected instead.
The Output Register, when addressed, stores the data present on the CPU data bus during a write operation. This data will also appear on those peripheral line that have been programmed as outputs. Lines configured and used as inputs are unaffected by writing to the Output Register; unused inputs will float 'high'.

When the CPU reads an Output Register, the data present on the peripheral lines is transferred to the data bus. Lines which have been configured as inputs will assume their true corresponding bit states. However, lines designated as outputs will reflect the current state of the output rather than the current state stored in the Output Register. To avoid confusion when using a mixture of inputs and outputs in the same half of a PIA, it is suggested that a logical 'AND' be used to mask off the unwanted bits. For example, if the top four bits are used as inputs and the bottom four as outputs, any read operation should be followed by 'AND'ing the read value with $F \emptyset$.
The Control Register allows the CPU to select whether the second of the pair of addresses associated with the half of the PIA relates to the Output Register or to the Data Direction Register. Bit 2 of the Control Register is dedicated to this function; \emptyset selects the DDR, and 1 selects the Output Register.

The remainder of the PIA Control Register is used to establish and control the operating modes of the peripheral control lines, CA1 and CA2/CB1 and CB2, respectively. These lines are used to allow control information to be passed between the CPU and the peripherals. In particular. all four lines may be configured to cause user interrupt requests (IRQs) when the state of the selected line(s) change(s) in the selected direction.

The format of the control word written to the Control Register is shown in Fig. 2; it should be noted that there are slight differences between the operation of the CA2 and CB2 output lines. A full discussion of the ways in which the Control Register may be set up to realise the full potential of the PIA could, and does, occupy tens of pages. Readers are, therefore, referred to a standard text for full details; for more straightforward applications, however, an example is given below. The routine listed is taken from the DISBUG monitor itself, and shows how the real time clock is configured to cause one second interrupts. These interrupts are subsequently serviced by another routine in DISBUG to update a running 16 -bit count of seconds in locations $\emptyset 3 E 2$ and Ø3E3; this can be very useful in user applications!

Code	Mnemonics	Comments
7F1802	CLR DPIACRA	I Select the two DDR
7F 1803	CLR DPIACRB	I Display PIA Registers
86 FF	LDAA \#FF	(Configure all
B7 1800	STAA DPIADRA) lines as
B7 18ø1	STAA DPIADRB	Outputs
8634	LDAA \#34	\% Set CA2 as output
B71802	STAA DPIACRA	(\|and select ORA
8635	LDAA \#35	\{ Set CB2 as output, set
B71803	STAA DPIACRB	\{ CB1 interrupt, select ORB
$\emptyset \mathrm{E}$	CLI	Enable user interrupts

At the end of this routine, any data written to locations 1800 and 1891 (ORA and ORB, respectively) will be output on PAO to PA7 and PBO to PB7, respectively. The B side of the display PIA has been configured so that a HIGH-to-LOW
transition on the signal applied to the CB1 line will cause a user interrupt request (IRQ). This will be recognised by the CPU because the interrupt mask has been cleared by the CLI instruction; the real time clock signal from IC2 is a 1 Hz square wave connected to the CB1 line of IC12. When a HIGH-to-LOW transition occurs, the CPU will execute the user interrupt service routine; on the 6800 the start address of the user interrupt service routine is defined by the manufacturer to be held in locations FFF8 and FFF9. In DISBUG the IRQ service routine starts at FF90; readers are invited to use the memory editor to try and work out how this routine maintains the seconds count mentioned earlier! A disassembly table is included later to allow conversion of hex op codes back to understandable instruction mnemonics. The use of such a table is essential in debugging, and is vastly quicker than searching the assembly op code table each time an unrecognised code is encountered.

THE USER PIAs

The Microcontroller has four PIAs; one primarily for the keyboard, a second for the display, and two free for user applications. There are a number of peripheral I/O lines on the keyboard and display PIAs which are not used by DISBUG, and these are thus also available to the user. The discussion which follows will refer to the two user PIAs, but many of the comments will also be true for the keyboard and display PIAs.

The original configuration for the Microcontroller was such that the majority of the peripheral lines were configured as outputs. These output lines were provided with high current drivers suitable for sourcing current at a nominal +12 V . Readers should, however, note that this nominal supply may rise to approximately 17 V in the absence of a load. These drivers will be ideal for many applications, especially those involving relay driving and lamp control; the power supply will provide load currents of up to 2A. Applications which require a significant number of input lines may necessitate some changes to the board; the simplest change is to remove the appropriate number of driver i.c.s and replace them with wire links to complete the circuit between the PIA(s) and the user peripheral connector D. Alternatively, the driver i.c.s may be re-fitted in sockets to allow the user to cater for a range of applications.

The simplest way to learn to use the two free PIAs is to drive them directly from the keyboard with DISBUG. This can be done because the PIA registers behave as standard read/write memory locations, and therefore all of DISBUG's memory examination and change facilities may be used. A simple example will be used to show how to set up and use one of the spare PIAs using DISBUG; later on we will show how to drive the same circuit from a control program residing in user RAM.

Fig. 3 shows a simple test circuit which may be attached to the Microcontroller via connector D. The eight l.e.d.s are connected to the 'B' side of IC14. These I.e.d.s will be used to indicate the logic state of any of the peripheral lines. PBO to PB7, which are configured as outputs; in a real application the l.e.d.s could be replaced by relays, lamps, etc.

When the Microcontroller is first switched on, the clock generator i.c. outputs a reset signal to ensure that all of the PIAs are initialised to a known state. This state sets all of the PIA registers to zero, and hence the l.e.d.s will all be off. In a control situation, however, it is usual to make no such assumptions regarding the state of the PIAs, and the following example will show how to set up the selected PIA from an unknown state. The method described is therefore appropriate for use anywhere in a control program.

The first step in setting up the PIA is to set the contents of

E60008
Fig. 3. PIA demonstration circuit
ᄀ
the Control Register (CRB) to the value of " D ', This will have the effect of turning off the user interrupts, and of selecting the Data Direction Register (DDRB) instead of the Output Register. The memory editor is used to write ' \varnothing ' to location 1003 (i.e. CRB). The next step is to decide which of the I/O lines are to be inputs and which are to be outputs. In this example all of the I/O lines are to be used as outputs, and to accomplish this it is necessary to set each bit in DDRB to a ' 1 '; setting all eight bits to a ' 1 ' is equivalent to setting the contents of DDRB to 'FF'. If it had been desired to set up PBO to PB3 as inputs, and PB4 to PB7 as outputs, the DDRB value would have been ' $F \emptyset^{\prime}$ (equivalent to ' 1111 (10 ' in binary). Bit 2 of CRB is currently set to ' \varnothing ', so setting up DDRB is simply a matter of writing 'FF' to location $1 \varnothing \varnothing 1$ using the memory editor. The final step, before the PIA may actually be used to output data to the l.e.d.s, is to select ORB instead of DDRB. This is accomplished by setting bit 2 of CRB to ' 1 ' instead of ' \varnothing '; writing ' $\varnothing 4$ ' to location $1 \varnothing 3$ will effect this change.

The I.e.d.s will now reflect any value which is written to ORB at location 101. Thus a value of 'FF' written to location 1003 will turn on all eight l.e.d.s, whereas ' 80 ' will only turn on I.e.d. number 7 (' $8 \emptyset^{\prime}$ ' is equivalent to ' 100000 ' in binary); 'AA' and '55' will produce complementary alternating on/off patterns.

Readers may now like to try setting up the A side of user PIA IC14 in an all-inputs configuration. The two register addresses are 192 (CRA) and $10 \emptyset$ (DDRA and ORA). With nothing attached to connector D, the value read from ORA should be 'FF', due to the pull-up resistors R16 to R23. If pin 9 of connector D is now connected to $O V$ with a wire link, and the value of ORA is re-read from location 1 1 , the result should now be ' $E F$ '; this is because PA4 is now ' \varnothing '. while the other lines are still pulled up to ' 1 ' ('EF' is equivalent to ' 11 1ø1111' in binary).

PROGRAMMED CONTROL OF PIAS

Once the basic principles of using PIAs have been understood, the next step is to drive them from within control programs rather than from DISBUG. The following section will describe further examples based around the test circuit shown in Fig. 3. The role of DISBUG in these examples will now be to allow the control programs to be written into user RAM, and then to control their execution; all PIA operations will take place under programmed control.

The sample programi shown below should be entered in the user RAM using DISBUG's memory editor. The suggested start address is $\emptyset \emptyset \emptyset$, but in fact the code is position independent, and could start anywhere in the user region. The line numbers are included for ease of reference, although they would be produced anyway by most computer-based (rather than hand-based!) assemblers.

Line Address	Code	Mmemonics	Comments
000	01	NOP	To be replaced later
20001	7F 1003	CLR UPIACRB	(Set all user PIA
30004	86 FF	LDAA \#FF	- Bl / O lines to be
4006	B71001	STAA UPIADRB	outputs
50009	8604	LDAA \#®4	r Select the PIA
6000 B	B71003	STAA UPIACRB	1 vutput register
7 OOE	7F 1001	CLR UPIAORB	Set all outputs to ' 0 '
8011	01	NOP	To be replaced later
$9 \quad 12$	8655	LDAA \#55	(Output '55'
A 14	B71001	STAA UPIAORB	t to PB0 to PB7
B 0017	01	NOP	Too be replaced later
C 0018	86 AA	LDAA \#AA	Soutput 'AA'
D 1A	B71001	STAA UPIAORB	$\{$ to PBO to PB7
E 10	$3 F$	S:NI	Return to DISBUG

There are a number of points to be noted about this sample program. The first is that a simple way of returning from the program to DISBUG is shown in line E. Using a software interrupt instruction causes control to pass back to DISBUG, and since it will be indistinguishable from a breakpoint. DISBUG will dispay the address of the instruction (the display will be "E-001d-bP"). Unlike a real breakpoint, DISBUG will not remove the SWI op code and replace it with the original code because the breakpoint editor will not know of its existence; all 'real' breakpoints will be removed in the usual fashion.

The second point concerns the NOP instructions on lines 1,8 and B . These will not have any effect on the operation of the program, other than slowing it down by approximately 6 microseconds. The purpose of these instructions is to allow them to be replaced by other op codes in the next example without having to re-enter the whole program from scratch.

Lines 2 to 7 of the program set up the B side of IC 14 to be all outputs, with all lines initially set to ' \varnothing '. Lines 9 and A cause a pattern of ' $\varnothing 1 \varnothing 10101$ ' to be output, thereby turning on I.e.d.s $0,2,4$ and 6 . Lines C and D reverse this pattern to turn on l.e.d.s 1, 3, 5, and 7 instead. The software interrupt returns control to DISBUG. Running the whole program will cause l.e.d.s $1,3,5$ and 7 to start in the off state and then go on, while l.e.d.s $0,2,4$ and 6 will start in the on state and then go off.

The program is run using the GO function in DISBUG, and specifying a start address of $\varnothing \square \emptyset$, followed by ENTER. After a delay of up to 1 second caused by DISBUG, I.e.d.s $1,3,5$, and 7 will light up. After a further delay of a second, also caused by DISBUG, control will return to the monitor with a display of " $E-001 d-b P$ ", indicating that the SWI instruction at line E has been reached.

At this point readers are probably wondering why l.e.d.s O , 2. 4, and 6 were never illuminated. The answer is that they were, but only for the time taken to execute lines B to D of the program, i.e. for approximately ten microseconds. This is a good example of the difference between real time and machine time!

What is required now is a way of relating machine time to real time. The table of 6800 instructions given in the last issue allows the time taken to execute particular instructions to be calculated. The use of the real time clock, however, allows a much more elegant (and usually much more efficient!! way of keeping track of elapsed time. The real time
clock (RTC) 'ticks' every second, and DISBUG arranges for each 'tick' to cause a user interrupt (IRQ), which is then serviced as described earlier. The RTC can thus be used to keep track of real time, while the CPU runs the program. All that is needed now is a way of relating the two events, execution of the program, and 'ticking' of the clock.

The 'wait for interrupt' (WAl) instruction is primarily intended to allow the interrupt response time (i.e. time taken for the CPU to get from the end of the instruction during which the interrupt was acknowledged, to the start of the interrupt service routine) to be minimised. This is only usually important when speed is critical, since all it saves is the time taken to push all of the CPU registers onto the stack. In the sample program a WAI (op code $=$ ' $3 E^{\prime}$) instruction can be used to effectively force the CPU to wait until the next clock 'tick' before continuing. When the interrupt from the clock occurs, it will be serviced, and control will then return to the instruction following the WAI. This is almost all that we need to know in order to be able to synchronise the sample program to the real time clock. The additional information, required to provide repeatable performance, is that when DISBUG starts a program via GO or PROCEED, it waits until the next 'tick' of the real time clock before implementing the transfer of control. Similarly, when a software interrupt is encountered, DISBUG waits for the next 'tick' before it returns control to the keyboard. Users may therefore assume that, at the start of any program entered from DISBUG, the real time clock will have 'ticked' within the last few microseconds. It should therefore now be possible to synchronise the sample program to real time AND predict its run-time performance.

Replacing the NOP code in line B of the sample program with a WAI code, and re-running the program should now have the following results. After the ENTER following the start address, the display will go blank, there will be a delay of up to 1 second, and then l.e.d.s $0,2,4$, and 6 will be illuminated. After a further one second delay, these l.e.d.s will go out, and l.e.d.s $1,3,5$, and 7 will be illuminated instead, After a further one second delay, the display will show "E-001d-bP", as control returns to the keyboard.

The CPU registers may be examined using the register editor, and their contents compared with the values expected. The proceed function may be used to continue execution from a software interrupt with different register values. Alternatively, setting a breakpoint using DISBUG will allow the output pattern in the registers to be changed before being output to the PIA ORB, since breakpoints may be inserted at the start of any instruction in the program. As an exercise, readers may wish to try the effects of replacing some of the NOP codes with WAI ('3E') or SW1 ('3F') instructions, and comparing the results on the performance of the re-run program with their expectations.

CONTROL FUNCTIONS

To include even a brief discussion of all possible aspects of writing programs for control applications would more than fill an issue of PE. Rather than attempt the impossible, therefore, this necessarily short introduction to the subject will restrict itself to a few general guidelines which should prove useful in designing and writing control programs for the Microcontroller.

Not all of the suggestions which follow will be compatible with everyone's way of programming, or be suitable for every application, but they should provide some useful pointers to achieve the aim of a working program in the shortest time. In general, the principles described have been followed in the design and implementation of DISBUG itself, so if nothing else they will provide an insight into the monitor's internal workingsl (The disassembly table in the next section
provides the means for obtaining the full details I)

1. Decide WHAT is to be done first. Then decide HOW it is to be done. Finally write the code to implement the design. The temptation to write code as soon as possible is great, but a little thought can often save hundreds of lines of code.
2. Keep it simple. It is difficult to keep in mind more than 50-100 lines of code at any time. Complex functions can usually be divided into a series of simpler operations; an added bonus is that some of these often turn out to be required by more than one function.
3. Keep it modular. Designing in functional units makes it simple to add to and change the overall design when the program is tried in practice. For example, DISBUG uses separate routines (implemented as subroutines) to refresh the display. scan the keyboard, decode the key, and process commands. Each module is subsequently further subdivided; for example each editor mode has a separate command processor.
4. Define interfaces carefully. A precise statement of what is passed (e.g. in registers or memory) to a routine, and what is assumed (e.g. interrupts are enabled), will help to minimise compatability problems. It also means that 'borrowing' routines for different applications can be done quickly and safely.
5. Do not sacrifice readability unless it is essential. It is almost always possible to re-code a routine to run faster and/or occupy less memory, but only usually at the expense of readability of the code. Readable code is easier to understand, especially

Fig. 4. Infinite loop control program-DISBUG top level routine

Table 2. Disassembly table for $\mathbf{6 8 0 0}$ instructions
some time after it has been written, and is usually easier to modify. Optimise only when and where necessary.
6. Write it down. Documentation is often seen as a chore, until it comes to debugging or modification. Write down design notes to accompany the code, and at least you will know what the program was supposed to do when it doesn't!
The final suggestion is a way of organising a control program which is suitable for continuous situations, i.e. where something is to be monitored, and action taken depending on the result. Such a program will generally include an initialisation procedure; this will usually only be ex-
ecuted when the program starts and will, for example, configure the PIAs as appropriate. The program will then enter an infinite loop of the form shown in Fig. 4, and will continuously monitor the selected events, check against some conditions, and take appropriate action. The whole process then repeats. The example of Fig. 4 is actually the top level design of DISBUG; there are up to five levels of subroutine below the one shown. For enthusiastic disassemblers, this routine starts at address F80 in the DISBUG EPROM!

DEBUGGING

The point arrives sooner or later when a program has been designed and coded, and is now residing in user RAM, ready
to run. When the program is first run, however, the chances are that, no matter how carefully the coding has been done, not everything will go quite as expected. Be assured, this is not a new problem! On the contrary, the first-time success rate for real programs is low enough to be used as a good example of the difference between the theory and practice of programming. The problem now is to find the 'bugs' which are preventing the program from running properly, a process which has become known as debugging.

In general, debugging is concerned with the removal of four types of error from a program. These are:

1. Errors in the design of the program. Typically this type of error is the result of making an assumption which is not valid, e.g. waiting for an interrupt which the PIAs have not been set up to generate.
2. Errors in the coding of the design. Typically this will be using the wrong instruction to perform the function required, or using an instruction to perform a function which it does not, e.g. expecting an INC to increment a value AND expecting it to set the Carry flag.
3. Eprors in implementing the code. Typically, this will result from mis-remembering or mis-reading the op code from the table, e.g. 38 instead of $3 B$ for a RTI. This is probably the most frequent type of error!
4. Errors in locating the program. This will cause jumps and data storage to relate to the wrong addresses.
In many cases, what the program actually does, rather than what it should do, will provide some useful hints as to the source of the problem. The next step is to narrow down the area of search for the error using breakpoints. At each breakpoint the contents of the registers should be examined, along with any significant memory locations, and the contents compared with the values expected. If the values do not appear to agree with expectations, a search back in the code may well reveal the cause of the problem. Backtracking in the code requires a disassembly table to allow the opcodes to be converted back to instruction mnemonics in order to ensure that the correct code has been generated. A disassembly table for the 6800 instruction set is provided in Table 2.

Breakpoints in loops in the program should take note of the fact that, when a breakpoint is encountered, the proceed function will continue execution from the breakpoint, but with that breakpoint removed. This means that, when debugging loops of code, it is a good idea to put in two breakpoints, one at each end of the loop. This will ensure that if the program is in fact looping continuously, it will still hit a breakpoint!

In general it is a good idea to test all routines as thoroughly as possible since it will usually save a great deal of time when they are assembled together into a complete program. If the component parts have been tested, the fault can then usually (but not always!) be traced to the overall control loop or to the interfaces between the routines. The aim always is perfection, but reality is that it is impossible to test every combination of inputs and outputs in a program which is of any significant length. Thorough testing, however, is the soundest approach to building up complex programs which will be robust in use.

CONCLUSION

This part concludes the series of articles describing the Microcontroller system. The information which has been provided should be enough to allow the development of control systems for practical hardware applications, and in this sense the ball is now in the reader's court! The uses to which
the system can be put are a challenge to the imagination and ingenuity, with the possibility of tangible recognition in the competition organised by Display Electronics Ltd.

The descriptions of the 6800 CPU and 6821 PIA have necessarily concentrated on the basic and most frequently used facilities. Users are therefore referred to a standard 6800 reference manual for the fine details of some of the more involved operations.

Further information regarding some of the practical problems which are often encountered in relating microprocessors to the real world will be covered in a new short series starting soon in PE. This will discuss how to convert from the purely digital 'clean' world of the microprocessor, where everything is expressed as a TTL ' 1 ' or ' \varnothing ', to the real world of noise and continuously varying levels. This series will be especially relevant to the Microcontroller since many of the examples given will be based around the 6821

Competition

A competition is being run by Display Electronics to find the most practical application for the Microcontroller system. The winning entry which will be considered for publication in PE will receive $\mathbf{£ 3 0 0}$ in cash or goods from Display Electronics to the value of $£ 400$. Full detalls from Display Electronics.

Prices

The complete Microcontroller system (excluding the case) is priced at $£ 32.95$ plus VAT and $£ 2.00$ p\&p. The case is priced at $£ 19.00$ plus VAT and $£ 1.00$ p\&p. Display Electronics, 64-66 Melfort Road, Thornton Heath, Surrey (01-689 7702).

[METHIWHE]
 Quick, neat and easy!

It's so easy and tidy with the Easibind binder to file your copies away. Each binder is designed to hold 12 issues and is attractively bound and blocked with the PRACTICAL ELECTRONICS logo. Price UK £4.60 im cluding postage, packing and V.A.T. Overseas orders add 25 p
Please allow $3 / 4$ weeks for fulfilment of order. Why not place your order now? Send the completed coupon below with remittance payable to:-l.P.C. Magazines Ltd., Post Sales Dept., Lavington House, 25 Lavington Street, London SE 1 OPF

Order Form pacecract lectronowis

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no rraths, and an absolute minimum of theory You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a selfemployed servicing engineer.

All the training can be carried out in the comfort of your own heme and at your own pace. A tutor is available to whom you can write personally at any time. for advice or help during your work. A Certificate is given at the end of every course.
You will do the following:

- Build a modern oscilloscope
- Recognise and handle current electronic components
Read, draw and understand circuit diagrams
- Carry out 40 experiments on basic electronic circuits usec in modern

cquipment

- Build and use digital ebectronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Serv cing of radio, T.V. Hi -Fi and microprocessor/computer
 equipment.

NewJob? NewCareer?NewHobby?Getinto Electronics Now!

THE TORQUE produced by an engine tends to fall off at high, and low engine speeds, and thus an indication of the rate at which an engine turns over can be a very useful facility in everyday driving situations.

The average saloon car performs best at approximately 2000 to 3000 r.p.m. and consistent driving at this angular velocity will help ensure optimum performance in terms of both acceleration and fuel consumption for the particular gear selected. Furthermore, since the forces exerted on the engine unit vary with the square of the engine revs, it is important that the maximum r.p.m. for a particular engine is not exceeded, irrespective of the actual road speed.

The Digital Tachometer described provides a digital display of the engine r.p.m. The maximum resolution of the display is 10 r.p.m. and the unit may be calibrated for four, six or eight-cylinder engines. The calibration procedure is carried out before the tacho is installed in the vehicle, and only requires the use of an a.f. signal generator. The display uses conventional seven-segment l.e.d.s and the brilliance is fully adjustable so that the driver can compensate for the effect of changes in ambient light level. This is particularly important when driving in darkness since the glare of an overbright l.e.d. display can act as a considerable distraction. Alternative layouts are given for 0.5 in . and 1 in . l.e.d.s to suit the individual constructor's preference.

SYSTEM DESCRIPTION

The simplified block schematic of the Digital Tacho is shown in Fig. 1. Input pulses derived from the contact breaker terminal of the ignition coil are taken, via an input protection and shaping circuit, to a high gain amplifier. The output of the amplifier is a rectangular waveform at the same frequency as that of the contact breaker pulses. This signal is applied to a monostable circuit which generates a pulse of fixed duration whenever a falling edge input is encountered. Unlike the signal derived from the contact breaker, the rectangular pulses generated by the monostable are noise free, of constant amplitude, and have consistent pulse width.

The clean monostable pulse train output is then applied to a passive integrator circuit, the output voltage of which is a linear function of the input puise repetition frequency. To prevent the effects of integrator loading, which would otherwise cause non-linearity, a high-impedance unity gain buffer amplifier follows the integrator stage. The output of the buffer amplifier is an analogue representation of the input pulse repetition frequency. This voltage is then applied to a digital panel meter i.c. and associated seven-segment l.e.d. display.

The unit has a separate power supply for operation from a nominal 12 V d.c. input. This provides the various supply rails
and is not shown in Fig. 1.

RPM MEASUREMENT

The distributor shaft of a four-stroke engine rotates at exactly half the speed of the engine crankshaft and is responsible for opening and closing the contact breaker points. The contact breaker interrupts the current flowing in the primary of the ignition coil and the number of current pulses per minute, N, in the winding is given by:

$$
N=0.5 \times \text { (engine r.p.m.) } \times \text { (number of cylinders) }
$$

Thus, a four-cylinder engine operating at 3000 r.p.m. produces 6000 current pulses per minute. All that is required is a circuit to shape and count these pulses and display the result in digital form.
shown in Fig. 3 and the corresponding component layout is given in Fig. 4. Sockets should be used for all three integrated circuits and components should be fitted in the following order; terminal pins, i.c. holders, resistors, capacitors, pre-sets, diodes and transistors. Care should be taken to ensure that all polarised components, such as capacitors and diodes, are correctly orientated. When assembly of the p.c.b. is complete it should be carefully inspected for dry joints and solder bridges between tracks. A length of 22 -way ribbon cable is used to interconnect the

Fig. 1. Block diagram of Digital Tachometer
signal processing and display p.c.b. and this is terminated along one edge.

The copper foil layout for the power supply p.c.b. is shown in Fig. 5 together with the corresponding component layout in Fig. 6. The i.c.'s on this board do not require holders and, furthermore, a heat sink will not normaliy be required by IC1. Component assembly should follow the sequence; terminal pins, fuse clips, blade connectors, resistors, capacitors, diodes and i.c.'s. As with the signal processing board, care should be taken to ensure the correct orientation of all polarised components. When complete, the board should be similarly inspected for dry joints and solder bridges between tracks.

The copper foil layout for the 0.5 in . display p.c.b. is shown in Fig. 7 whilst that for 1 in . displays is shown in Fig. 8. The corresponding component layouts are provided in Fig. 9 and 10 respectively. Note that, in either case, the 22 -way ribbon cable from the signal processing board terminates along the top edge of the board. Little further comment is required, save that of repeating the need to carefully inspect the completed p.c.b.

The three completed p.c.b.s are connected according to the wiring diagram shown in Fig. 11. A short length of 22way ribbon cable interconnects the display and signal processing boards. Care must be taken to ensure the correct orientation of this cable. Note that letters are used to identify each individual wire on the component layout diagrams. The power supply p.c.b. is connected to the signal processing p.c.b. by four wires carrying $+12 \mathrm{~V},+5 \mathrm{~V},-5 \mathrm{~V}$ and OV . The signal input on the signal processing board is derived from the contact breaker terminal on the ignition coil. A separate OV (earth) connection may also be made if desired. The power input from the vehicle consists of two wires, +12 V and OV , which are terminated on the power supply p.c.b. A further three wires connect the display brightness control, VR5, to the signal processing p.c.b. To avoid confusion, the use of appropriately colour coded wire is highly recommended.

INITIAL TESTS AND CALIBRATION

Functional tests and calibration should be carried out before wiring into the vehicle. The power source should

Fig. 3. Printed circuit board layout (actual size) of the Tacho's main processing board

Fig. 4. Component layout of the main processing board

COMPONENTS ...

SIGNAL PROCESSING AND DISPLAY BOARDS
Resistors

R1-3, R9, R15	10 k (5 off)
R4	100 k
R5	3 k 3
R6, R14	1 k 12 off)
R7, R11	1 M (2 off)
R8, R10	47 k 2 off)
R12	470 k
R13	22 k

All fixed resistors, except where otherwise stated, are $0.25 \mathrm{~W} 5 \%$ carbon

Potentiometers

VR1 $\quad 1 \mathrm{M} \mathrm{min}$. horizontal skeleton pre-set
VR2 10 kmin . horizontal skeleton pre-set
VR3 $\quad 100 \mathrm{kmin}$. horizontal skeleton pre-set
VR4 $\quad 22 \mathrm{k}$ min. horizontal skeleton pre-set
VR5 5 10k lin. wirewound potentiometer
Capacitors

C1, C2, C7, C9	100 n	polyester (4 off)
C3	1 n	polystyrene
C4	1μ	35 V tantalum
C5	$10 n$	polyester

[EPO26]

C6	$100 p$	silver mica
C8	$47 n$	polvester
C10, C11	10μ	35 V tantalum (2 off)
C12	$2 \mu 2$	35 V tantalum

Semiconductors

D1-3	1N4148 (3 off)
D4	BZY88 C6V8
TR1	BC548
TR2	TIP31A

Displays

X1-X3 $0.5^{\prime \prime}$ or $1^{\prime \prime}$ common anode seven-segment l.e.d. display (3 off)

Integrated circuits

IC1	LM324N
IC2	555

IC3 7107

Miscellaneous

8 -pin d.i.l. socket (1 off)
14-pin d.i.l. sacket (1 off)
40-pin d.i.l. socket (1 off)
Terminal pins (11 off)
Short length of ribbon cable (22 way)
P.c.b. 12 off

Display filter

Fig. 5. Printed circuit board layout (actual size) of the PSU

COMPONENTS

POWER SUPPLY BOARD
Resistors

R1	$100 k$
R2	$47 k$

Capacitors

C1	80μ
C2-3, C6	$100 n$
C4	220μ
C5	$1 n$
C7-9	22μ

25 V tubular electrolytic polyester (3 off) 10 V tubular electrolytic ceramic 25V tubular electrolytic (3 off)

Semiconductors

D1, D2	1N4148 (2 off)
IC1	7805
IC2	555
IC3	$79 L 05$

Miscellaneous

P.c.b.
P.c.b. fuse clips (2 off)

1 A 20 mm fuse
Terminal pins (4 off)
Blade connectors (2 off)

Fig. 6. Component layout of the PSU

Fig． 7 （left）．Printed circuit board layout （actual size）of the 0.5 in ．display board

Fig．8．（right）Component layout of the 0.5 in．display board

Fig． 9 Printed circuit board layout （actual size）of the $\mathbf{1} \mathbf{i n}$ ．display board

国国禺保

Fig．10．Component layout of the 1 in ． display board

Fig. 11. Wiring arrangement between the separate boards
ideally be a well regulated 12 V d.c. power supply which incorporates some form of electronic over-current protection. If a current trip is not fitted to the power source, the 1A fuse in the pósitive supply input should, at least, offer some measure of protection against catastrophic faults!

Adjust the controls as follows; VR 1 fully clockwise, VR2, VR3, VR4 and VR5 all set to mid-position. Temporarily insert a d.c. milliammeter on the 1 A d.c. range in the positive supply lead. The power supply should then be switched on and the supply current noted. This should be in the range 50 mA to 150 mA and the display should be illuminated, though it will not necessarily read zero. If the current is in excess of 200 mA , or much less than 50 mA , carefully check the p.c.b. interconnections, supply voltage rails, and then each board in turn. As a guide, typical test voltages are given in Table 1.

With the signal input left disconnected, adjust VR2 to obtain a display of " 000 ". With the aid of an electronic or digital voltmeter adjust VR4 for a reading of exactly 1 V at pin 36 of IC3 on the signal processing board. Re-adjust VR2. if necessary, to maintain a display of "000". Now connect an a.f. signal generator to the signal input leads. The signal generator should be set to provide a 12 V p-p square wave output at 200 Hz . Adjust VR 1 for a display reading of " 600 ". This corresponds to an indication of 6000 r.p.m. with a fourcylinder engine. For six and eight-cylinder engines, VR1 should be set to display "600" with input frequencies of 300 Hz and 400 Hz respectively.

The operation of the brightness control should now be checked. The display brilliance should vary reasonably smoothly, from almost completely dark to very bright, over the full range of adjustment. This completes the initial checks and calibration and the unit is now ready for installation in the vehicle.

IC100	TABLE 1. Test voltages		
	input	+12V	
	output	$+5 \mathrm{~V}$	
IC101	pin 4	$+12 V$	
	pin 8	$+12 \mathrm{~V}$	
IC102	input	-8.5V	
	output	-5V	
IC1	pin 4	$+5 \mathrm{~V}$	
	pin 7	OV	
	pin 8	OV	
	pin 11	$-5 \mathrm{~V}$	
1C2	pin 2	$+5 \mathrm{~V}$	
	pin 3	OV	
	pin 4	$+5 \mathrm{~V}$	
	pin 8	+5V	
1 C 3	pin 1	$+5 \mathrm{~V}$	
	pin 26	-5V	
	pin 36	+1V	
TR1	collector		+12V
	base		+6.8V
	emitter		+6.1V
TR2	collector		+12V
	base		+6.1V
	emitter		$+5.3 \mathrm{~V}$

All voltages are measured using a multimeter of 20 k ohm $/ \mathbb{N}$. Display brightness control is set to 'maximum', no input connected, and the display indication is " 000 ".

INSTALLATION

The three p.c.b.s may be located within the passenger compartment to suit the individual constructor's preference and the constraints of the vehicle. The display p.c.b., in particular, may be situated either behind the existing dashboard or in a separate surface mounting "pod". Similarly, the display brightness control can either be positioned so that it harmonises with the existing dashboard controls or it can be tucked away on a small bracket beneath the dash. The use of a polarised red display filter is highly recommended since this considerably improves the appearance and visibility of the display. The +12 V supply for the unit can be taken from any suitable point, including the rear of the ignition switch. The power should, of course, only be present when the ignition is switched on.

SEMI-ACOUSTIC guitar, Gibson copy, as new Best offer over $£ 150$ buyer collects. G. M Francis, 15 The Street, Capel St. Mary, Ipswich. Suffolk IP9 2EB. Tel: Gt. Wenham 310905.
SOFTY 11 EPROM programmer hardly used £150 o.n.o. Phone: Mr. C. J. McLennan, Mablethorpe 2236 or write, C. J. McLennan, 70 Victoria Road, Mablethorpe, Lincs LN 122 AF
FOR SALE $8154,8255,8251,8080 A, 8224$ 8228 info. sheets for above i.c."s $£ 12$ the lot. K. D. M. Royles, 153 Cefndy Road, Rhyl, Clwyd, North Wales LL18 2HG.
BI-KITS stereo Hi-Fi amp. 25W r.m.s. per channel, toroidal transformer, stabilised supply. aluminium chassis: £60 new, £45. Mr. O. S. Smith, 44 Cumberworth Lane, Upper Cumberworth, Huddersfield HD8 8PO. Tel: Huddersfield 606689.

PAPER TAPE reader and punch for sale with spare tapes $£ 50$ o.n.o. P. L. Braham, 68A Albion Road, London N 16. Tel: 01-249 7942.
COSSOR 1045 scope recently overhauled new valves etc. with circuit $£ 60$ o.n.o. Car. extra. J. Crew, 16 Welby Lane, Melton Mowbray, Leics. LE 13 OTB. Tel: Melton 68557
8K CHALLENGER IP (boxed superboard), 24 way I/O board, sound effects board, programmes on cassette. £125 o.n.o. Mr. Astbury, phone Grantham 3477
TANDY VOICE synthesiser for TRS80 Model I cost $£ 300$ new, accept $£ 150$ o.n.o. Mint condition unwanted gift. J. Shapero, 216 Damson Lane, Solihull, West Mids. B92 9JZ. 021705 7730.

AVO 8, cased, immaculate condition £70. 12 element high gain v.h.f./f.m. antenna £40. Tel: 034462174 . N. R. Jones.
PHILIPS 6456 f.m. stereo generator plus manual. Little used. Present dealers' price $£ 250+$ for sale $£ 200+$. Mr. E. O. Rice, 68 Vernon Drive, Stanmore, Middlesex HA7 2BT. 014273034.

RADIO CONTROL £16, computer £20, transmitter $£ 6.50$. Tapes-stereo cassettesC.B. amplifier. List s.a.e. no callers. Mr. Martin, 29 St. John's Close, Leatherhead, Surrey.
"ELITE" Episcope. Perfect. Will exchange for good portable TV or sell £50. L. Myers, 60 Primrose Road, London E18 1DE. Tel: 01-989 9643 (Evenings).
KEYBOARD, five octave with contacts, $£ 25$. Joanna p.c. boards and p.s.u. £15. Tel: 0427 5848 (Lincs). D. Trebble.
-SCOPE for sale Solartron dual beam £ 100 , s.a.e. for data sheet. J. S. Hind, 7 Carlyle Road, West Bridgford, Nottingham.
TELEQUIPMENT oscilloscope type D43 condition immaterial (front casting required). Tel: 0934 822372. V. Bowering, Highfield High Streat, Banwell, Avon.
MAPLIN 3800 Synth. Fully built and tested. Also manual and leads. £350 o.n.o. Mr. T. Parkinson. Tel: 042981264 (after 6p.m.)
WANTED personal earth station for worldwide satellite t.v. reception. Mustafa Mohammed, Yarmouk 612-6-25, Baghdad, Iraq.

"The legendary "MINIMAX"

- the small speaker producing ":Large speaker" sounds. Peak handling 100 watts. ONLY $£ 74.95$ A PAIR!!! NEW IMPROVED VIDEOTONE - For full range of loudspeakers, in-car, C.B., Video, audio \& video cassettes, etc. Write for full details.

Moving Coil Cartridge - The MC88E is a high output cartridge - so you do not need to use a head amp. EXCEPTIONAL

Seoum Hi-Fi represents EXCELLENT QUALITY AT A REALISTICPRICE! The range offers a choice of amplifiers. tuner/amplifier, tuner, and the excellent SC4200 stereo cassette recorder.
 THEE SCIFNCCE OH: AUתJは)

Fig. 1. Circuit of Frost Warning.

The transducer used for the audible output of the alarm may be a conventional loudspeaker, an earpiece, or even a standard telephone insert. The nominal impedance of such a unit can be anywhere in the range 8 ohm to 10 kilohm however the sound intensity produced is likely to vary widely according to the type of transducer employed. Most small iransistor radio loudspeakers will produce more than ample volume and the value of the coupling capacitor, C4, may be altered to increase or decrease the sound level accordingly.

COMPONENTS

Resistors

R1	$2 k 2$
R2	$2 k 2$
R3	$2 k 2$
R4	$2 k 2$
R5	$10 k$
R6	$2 k 2$
R7	$10 k$
R8	$47 k$
R9	$1 k$
R10	$10 k$
R11	$1 k$

All fixed resistors are $0.25 \mathrm{~W} 5 \%$ carbon

Capacitors

C1	$47 n$ polyester
C2	$22 \mu 25 \mathrm{~V}$ axial electrolytic
C3	100 n polyester
C4	220 n polyester
C5	$100 \mu 16 \mathrm{~V}$ p.c. electrolytic

Semiconductors
TR1 BC108
TR2 BC548
D1 BZY88C4V7
D2 Red l.e.d.
D3 1N4002
IC1 741
IC2 555
IC3 555
Potentiometer
VR1 470R min. horizontal skeleton preset

Miscellaneous

Miniature loudspeaker or earplece (see text)
Case
8-pin OIL i.c. sockets
0.1 in matrix Veroboard

Terminal pins
L.e.d. mounting clip

Grommet

Fig. 2. Veroboard assembly details.

ADJUSTMENT AND INSTALLATION

Calibration can most easily be carried out before fitting the unit to the vehicle. Where the device is to be used for the provision of over-temperature indication, a kettle of boiling water will be required together with a reliable thermometer which can be read to an accuracy of 1 or 2 degrees Celsius.

Boiling water from the kettle should be carefully poured into a heatproof measuring jug. The thermometer is placed in the jug together with the temperature transducer, TR1. Care should be taken to ensure that the transistor leads do not become immersed in the water. The links on the circuit board should be connected A to D and C to B. The threshold control, VR1, should be adjusted so that the alarm operates above 98 degrees Celsius and ceases to operate below this value.

The optimum working temperature for a car engine, regardless of road speed, is one which raises the coolant in the vicinity of the thermostat housing to a temperature of approximately 85 degrees Celsius. Note, however, that since the coolant operates under pressure, its boiling point is greater than 100 degrees Celsius. Typical values, depending upon the pressure cap setting and height above mean sea level, are in the range 110 to 114 degrees Celsius.

Under-temperature calibration, with the links connected A to B and C to D, should be carried out using a mixture of crushed ice and salt. The threshold control being adjusted so that the alarm operates below -2 degrees Celsius and ceases to operate above this value.

The finished alarm module can be installed at any convenient point within the passenger compartment. The loudspeaker should, if possible, be located so that its output is directed upwards towards the driver. Power for the unit can be derived from any convenient point after the ignition
switch. The unit should thus only receive its supply when the ignition is 'on'

The temperature transducer, TR1, should be mounted on the engine block well away from the exhaust manifold. Ideally, a small hole should be drilled into the block into which the transistor is tightly fitted. This arrrangement is, however, not recommended since not only may damage result to the block if the hole is improperly located but, as the metal case of the transistor is connected to its collector, a short circuit to the vehicle's 'earth' may result. A better method is to use a small metal clip insulated from the transistor's case and bonded to the engine block in the vicinity of the thermostat housing with a suitable heat and moisture resistant epoxy resin. The transistor leads should be sleeved using silicon rubber sleeving and a substantial flexible heat

The completed Frost Warning unit

resistant cable should be used to interconnect the transducer to the alarm module.

FREE! READERS' ADVERTISEMENT SERVICE

RANK AUDIO RX-150A stereo tuner amplifier good condition, £40. Tel: A. Browne, London 01 2992368.
P.E. OCT. 1981 Car ignition system, working, $£ 5$ p.\&p. $£ 1$. New boxed clock radio working $£ 5$, p\&p. E1.L. T. Hill, 14 Rothesay Terr., Bedlington, Northumberland.
KEYBOARD, 72 keys, ASCII coded, fully cased, circuit info. $£ 35$. Challis, 14 Lechlade Gardens, Fareham, Hants PO 15 6HF
WANTED Sinclair $2 \times$ Spectrum with 48K RAM Are Mikkelborg, Kleiva 2A, N-9400 Harstad. Tel. 082-74 490. Norway.
WANTED manual or circuit diagram for Cossor 1049 Mk II oscilloscope buy or borrow will pay well. M. K. Harvie, 59 Pembroke Road, Erith, Kent.
UK 101 sound colour OH10 mini S/Disc drive 13 discs printer tape ports $£ 350$ o.n.o. S. Gifford, 20 Lime St., Nelson, Lancs BB9 7BP. (0282) 692388.

GRUNDIG TR600 m.w.s.w. $\times 4$ GWO $£ 35$. Aiwa r/c m.w./f.m./s.w. $\times 2$ output 4 watts. Contact Ahmed, 78 Linden Road, Worcester WR4 9RX.
SWAP UK101 8K RAM or Crimson 100 W per channel stereo amp. boxed, for Microtan and Tanex system, any offers. Mr. M. G. Dixon, 4 Oxley Square, Mount Outlane, Huddersfield HD3 $3 \times \mathrm{L}$
ZX81 16K, Sinclair built. All leads etc. BBC BASIC course. Manuals, games, cassettes. As new £65. A. K. Dalby, 01-656 3564.
UK101 cased 8 K memory plus Teletype printer. Loads of software including space invaders $£ 190$ the lot. Neil White. 30 Homemead Road, Bromley, Kent.

RULES Maximum of 16 words plus address and/or phone no Private advertisers only ftrade or business ads. can be placed in our classified columns). Items related to electronics only. No computer software. PE cannot accept responsibility for the accuracy of ads. or for any transaction arising between readers as a result of a free ad We reserve the right to refuse advertisements. Each ad. must be accompanied by a cut-out valid "date corner". Ads will not appear (or be returned) if these rules are broken. issue. I am not a dealer in electronics or associated equipment. I have read the rules. I enclose a cut-out valid date corner.

Signature Date

Please read the RULES then write your advertisement hereone word to each box. Add your name, address and/or phone no. COUPON VALID FOR POSTING BEFORE 14 JAN. 1983.

(One month later for overseas readers.)

SEND TO: PE BAZAAR, PRACTICAL ELECTRONICS, WESTOVER HOUSE, WEST QUAY ROAD, POOLE, DORSET BH 15 1JG.

w				
辿				
a				
n		-		
-	Name 8 Address			
S				
y				
$\begin{aligned} & U \\ & \underset{\sim}{0} \end{aligned}$				

For readers who don't want to damage the issue send a photostat or a copy of the coupon (filled in of course) with a cut-out valid "date corner'

MANY drivers find "in-car entertainment" essential for relaxation on a long car journey. Units currently available include radio receivers, both $A M$ and $F M$, and cassette tape players. For the serious audiophile, however, such units are generally somewhat lacking in output power and this can, to some extent, mar the enjoyment of a system.

The unit described offers a solution to this problem by providing a simple means of effecting a four-fold increase in the audio power output of most car radios and cassette players. The unit is simple to construct, uses commonly available components, and requires no internal modification whatsoever to the user's existing in-car entertainment system.

OUTPUT POWER CONSIDERATIONS

The output power of most in-car entertainment units is limited to about 4 W per channel. The reason for this is that a conventional complementary symmetry output arrangement can only provide a maximum peak-peak output voltage swing equal to the d.c. supply voltage. A simplified arrangement is shown in Fig. 1 and the maximum theoretical r.m.s. output power can be calculated using the formula:

$$
P_{\text {out(max) }}=\frac{\left(V_{C C}-2 V_{C E(\text { sat })}\right)^{2}}{8 R_{L}}
$$

where $V_{C C}$ is the d.c. supply voltage, R_{L} the load impedance, and $V_{C E(s a t)}$ the collector-emitter saturation voltage. If the transistors are assumed to be perfect $\mathrm{V}_{\mathrm{CE}(\text { sat })}$ will be zero. Hence an approximate relationship for the maximum r.m.s. output power is:

$$
P_{\text {outtmax) }} \simeq \frac{V^{2} c C}{8 R_{L}}
$$

To put this into context let us assume that the car is stationary and the battery voltage is 12 V . If the equipment is used with a 40 hm loudspeaker system the maximum theoretical r.m.s. output power will be:

$$
P_{\text {out }(\max)} \simeq \frac{12^{2}}{8 \times 4}=\frac{144}{32}=4.5 \mathrm{~W}
$$

With the engine running and the battery under charge the supply voltage can be expected to increase from 12 V to around 13.5 V . In this condition:

$$
P_{\text {out }(\max)} \simeq \frac{13.5^{2}}{8 \times 4}=\frac{182}{32}=5.7 \mathrm{~W}
$$

85971
Fig. 1. Simplified complementary symmetrical output stage and corresponding maximum undistorted output voltage swing.

Whilst this power level will be considered by most to be more than adequate, hi-fi purists would disagree. An output of 10 W to 20 W is commonly accepted to be the minimum required for acceptable dynamic range reproduction in a domestic listening environment. The relatively high level of background noise in a car (10-20dB greater than most domestic situations) necessitates an increased average listening level in order to maintain an adequate signal-tonoise ratio during the quieter passages. Thus, even allowing for the restricted space inside a vehicle, there is a need for a power level comparable to that required for a domestic situation in order to ensure faithful reproduction. Furthermore, the type of loudspeaker system commonly used in vehicles is the totally enclosed infinite baffle. Enclosures of this type are relatively inefficient and this fact further reinforces the argument for a greater level of output power.

BRIDGE OUTPUT CONFIGURATIONS

A simplified form of bridge output stage is shown in Fig. 2. The two complementary stages are driven in anti-phase and the load connected between their outputs. Depending upon the polarity of the input signal, TR1 and TR4 turn 'on' whilst

50969
Fig. 2. Simplified bridge output configuration.
TR3 and TR4 turn 'off', and vice-versa. The peak-peak voltage swing across the load is thus approximately equal to twice the supply voltage and, since the power developed in the load is proportional to the square of the voltage, the maximum undistorted power output is increased by a factor of four. Thus powers of around 16 to 20 W can be achieved from a bridge output stage operating from a nominal 12 V d.c. supply.

CIRCUIT DESCRIPTION

The complete circuit diagram of the Audio Power Booster is shown in Fig. 3. The 'right' and 'left' channels are identical and each employs a single integrated circuit. This device, a TDA2004, can be configured for either 'stereo' or 'mono' (bridge) operation; the power rating being respectively 5 W and 20 W at 0.2% total harmonic distortion into a 4 ohm load. In this application the bridge configuration is, of course,
employed and the necessary phase shift is obtained by appropriate use of the inverting and non-inverting inputs of the two individual internal power amplifiers of each integrated circuit. The voltage gain of each amplifier is set by means of external resistors, R2/R6 for the non-inverting stage and R5 $(R 7+R 6)$ for the inverting stage. Since the input voltage will normally be in the region of 1 V to 5 V peak-peak, the voltage gain of each stage is set to a modest 4.5 approximately.

Zobel networks, C4/R3 and C5/R4, are connected from each side of the balanced load to the common rail, and links are provided so that the quiescent current of each channel can be monitored. The input signal is terminated by R1 while VR1 provides individual channel gain adjustment. Reverse supply protection is incorporated by means of D2 and FS 1. The I.e.d., D1, is included to warn the user that the amplifier is "active". C10 and C12 ensure unconditional stability of the amplifiers at high frequencies whilst C11 provides supply de-coupling at low frequencies and helps to reduce the effects of supply borne noise, including ignition pulses and alternator whine.

CONSTRUCTION

All components, with the exception of the connectors and l.e.d. are mounted on a single sided p.c.b. measuring approximately $128 \mathrm{~mm} \times 78 \mathrm{~mm}$. Printed circuit mounting electrolytic capacitors are used and the supply fuse is retained by means of two p.c. fuse-clips. The copper foil layout of the p.c.b. is shown in Fig. 4 and the corresponding component layout is shown in Fig. 5. Care should be taken to ensure the correct location and orientation of components, with particular emphasis on the polarity of the diodes and electrolytic capacitors. Components should be assembled on the p.c.b. in the following sequence; terminal pins, fuseholder, resistors, capacitors, diode, and integrated circuits. Note that the two supply links should not be fitted at this stage since an initial check of the supply current to each stage is essential.

Fig. 3. Complete circuit diagram of the Audio Booster.

Fig. 4. P.c.b. design.
The completed p.c.b. should be carefully checkec before fitting the heatsink, which consists of 16 s.w.g. brass or copper sheet measuring $40 \mathrm{~mm} \times 110 \mathrm{~mm}$ approximattly, and mounting the p.c.b. into its diecast box. The layout and internal wiring of the complete unit is shown in Fig. 6. The use of screened input leads is highly recommended and the outer braid connection should, of course, be taken to the common OV rail. The supply wiring, OV and +12 V , should be capable of carrying a current of at least 5A and, if desired an additional 5A in-line fuse may be fitted in the positive supply lead.

INITIAL TESTS

For initial checking the Audio Power Booster should be connected to a regulated 12 V d.c. supply capable of delivering at least 2A. Ideally, the supply should have some form of electronic overcurrent protection. However, the p.c.E. mounted fuse will offer a measure of protection against inadvertent short circuits and wiring faults. The two links, L1 and L101, if fitted, should be temporarily removed. An ammeter on 1 A d.c. range should be inserted in place of Link 1 , whilst Link 101 is left open circuit. A loudspeaker of between 4ohms and 160 hms impedance should be connected to SK 1 and the input plugs (PL1 and PL101) should be lef1 disconnected. VR1 and VR101 should be set to mid-position. The 12 V d.c. supply should then be switched 'on' and the supply indicator, D1, should become illuminated. The supplv current to the left hand channel should then be monitored. In normal 'quiescent' operation this should be between 50 mA and

Fig. 5. Component layout.

Fig. 6. Wiring diagram.

COMPONENTS

. . .

Resistors	
-R1	$27 \frac{1}{2}$ W 5\%
-R2	1k ${ }_{\text {d }}$ W 5\%
-R3. R 4	$1 \frac{1}{2} \mathrm{~W}$ 10\% (2 off)
-R5	2k ${ }^{\text {W }}$ W 5\%
-R6, R7	220 + W 5\% (2 off)
*R8	100k WW 5\%
R9	1k ${ }^{\frac{1}{2} \text { W } 5 \%}$
-VR1	22 k min skeleton pre-set
Capacitors	
${ }^{-} \mathrm{C} 1$	$2 \mu 247 \mathrm{~V}$
-C2, C7, C11	$220 \mu 16 \mathrm{~V}$ (3 off)
- C3, C6	$100 \mu 16 \mathrm{~V}$ (2 off)
${ }^{\text {che }}$ C5, C5, C10	100 n polyester (3 off)
- C 8	$2 \mu 263 V$
- C 9	$10 \mu 16 \mathrm{~V}$
${ }^{\text {C12 }}$	47 n polyester
All capacitors are p.c. mounting electrolytics unless otherwise stated.	
Semiconductors	
-IC1	TDA 2004
D1	Red I.e.d. with mounting set
D2	IN4002
Miscellaneous	
FS 1 P.C. fuseclips	$5 A 20 \mathrm{~mm}$ fuse (2 off)
P.C. fuseclips P.c.b.	
-SK1	DIN loudspeaker socket
-PL1	DIN loudspeaker plug
Diecast case	
*All components marked with an asterisk should be	
duplicated for stereo operation. All second channel components in the circuit diagrams and text are prefixed	
by ' 100 '.	
Constructor's Note	
Components and p.c.b. are available from	
Associates, 59 Oatlands Avenue, Weybridge, Surrey	

90 mA , and under no circumstances should it be greater than 200 mA . If the d.c. current is in excess of 2 A and either the fuse blows or the electronic protection operates this indicates the presence of a short circuit or wiring error. An inspection of the underside of the p.c.b. and wiring is then essential. If the d.c. current is in the range 100 mA to 500 mA this usually indicates the presence of high frequency oscillation, which can normally be cured either by increasing the value of C12 or by minimising stray feedback due to untidy wiring. Having established the correct 'quiescent' current in the left hand channel it is simply a matter of repeating the same checks for the right hand channel. Finally, replace the two links, L1 and L101, by short circuits.

When both channels appear to be operating normally under no-signal conditions the two input plugs can be connected to the cassette player, radio or combined radio/cassette unit. Signals should then be heard from both loudspeakers and these should be quite loud at even fairly low settings of the volume control of the cassette player/radio. Advancing the volume control should produce ample volume from the Audio Power Booster. However, if necessary, adjustment can be made by VR1 and VR101 in order to produce a satisfactory range of volume adjustment.
A careful check for distortion should be carried out using a 'known' programme source and, finally, the lid of the en-

66070
Fig. 7. Installation diagram.
closure should be retained using the six countersunk screws. If desired the temperature of the heatsink may be checked after about thirty minutes of operation. This will feel hot to the touch (particularly if the unit has been used at high volume levels) but its temperature should not be excessive. In the latter case, a cure should be attempted by reinforcing or enlarging the heatsink.

INSTALLATION

The Audio Power Booster may be installed in any convenient position within the passenger compartment. It should not, however, be placed close to a heater duct or in any position where the ambient temperature is excessive. This includes the rear parcel shelf where the unit may be exposed to sunlight for long periods of time. Fig. 7 shows the basic interconnecting arrangement. The output speaker leads should be substantial and rated at 5A or more. The length of the leads should be kept as short as possible and the total length of the cable run should be the same for each channel. The positive and negative supply leads should also be substantial and rated at 5A or more. Colour coding should be employed and power can be taken from any convenient source. In many cases this can be derived from the ignition switch or from a separate accessory block, where available. A good earth (OV) connection is essential and the total length of the supply leads should not exceed 1.5 metres.

Once the unit is in operation the volume level should be more than sufficient to satisfy any 'hi-fi' enthusiast in the noisiest of vehicles.

Freedom

When earlier this year Mr Eric Sharp, Chairman of Cable \& Wireless, presented his annual statement to staff it was bannerheadlined in the staff newspaper as "The Year we Gained our Freedom" and was full of good news, not least that staff who invested in preferential shares at the time of privatisation had already seen a 70 per cent gain in value.

Cable \& Wireless, even while a fully nationalised company, had a good and steady profit record. That the company was wholly government owned was not exactly a secret. On the other hand it was hardly ever mentioned because of the nature of the business, all of it overseas and largely in association with other governments although on a strictly commercial nonpolitical basis.

The government retained over half the shares, just, the remainder being sold on the open market and snapped up by those who knew a good thing when it came along. For Cable \& Wireless it meant freedom from bureaucratic restraint, Mr Sharp's phrase, not mine. For, as Sharp pointed out, the company could now operate completely commercially and freely in an industry in which opportunities for new enterprises proliferate and that "Now we have achieved our commercial freedom we can react to these opportunities with greater speed and resolution"

Fighting words indeed and not only words. Action too, including technical leadersnip in Mercury Communications Ltd, the C \& W, British Petroleum and Barclays Merchant Bank consortium operating in the UK and for the first time breaking the British Telecom monopoly. Another company. Cable \& Wireless UK Services Lid, will be offering a range of new services to UK business enterprises if licences can be obtained. The company is also expanding rapidly in the USA and Europe, two areas where it has not before been prominent.

But opportunities also bring problems. In the UK Mercury is facing opposition from the BT unions who feel theatened by this thrusting newcomer. And the company's huge investment in Hong Kong, from where it virtually runs the hub of the Far Eastern international communications network and beyond, is overshadowed by the threat of eventual Chinese sovreignty. But expertise is everything and it's a fair bet that C \& W will remain whatever the political outcome.

Go-getter

Alan Sugar's Amstrad has hit the jackpot again with doubled sales and profits up to £ 4.77 million. All in consumer electronics which surely shows that a tightly run company can still prosper in a difficult market. Amstrad shares coming to the market in April 1980 at 85 p have now reached 400 p. Sugar plans to make CTV and VTR. He may find this even tougher than hi-fi, but we wish him and Amstrad every success.

Semantics

The national economy and its management, its effect on employment, investment
and in economic growth or decline, affects us all. It is also an emotional topic which demands careful choice of words according to the audience addressed.

All the political parties, for example, know that economic survival depends on an incomes policy, on how big a slice of the national income is to be distributed in wages and salaries. The Liberals, for years without hope of office, could afford to be completely honest and talk of an incomes policy quite plainly. The Conservatives were quile happy to concede the principle of free collective bargaining, meaning unlimited pay demands, but only in private industry in practice because market forces automatically ensure a measure of control with people pricing themselves into or out of employment.

But where the government is paymaster the Conservatives set cash limits on what the nation can afford to spend. In this they followed the example of their Labour predecessors who imposed cash limits but called it a Social Contract. This phrase, now out of favour since the policy is alleged to have lost Labour the last election, has been replaced by a National Economic Assessment promised by Labour if they succeed at the ballot box next time. Does a NEA embrace an incomes policy? Well, yes and no is the answer we get, meaning yes if Labour wins as they, like any other government of any complexion, will have no option other than national bankruptcy.

It is not only words that are confusing or downright deceiving. Numbers are equally so and capable of many interpretations according to angle of view, especially in terms of remuneration and by this I include pay plus fringe benefits.

Lasi May I reported that British Telecom pay went up 31 per cent in the financial year against a mere 4.6 per cent increase in business. In consequence I received an unfriendly letter from a BT employee who contested the figure because his pay increase in two years only totalled 27.6 per cent. Perhaps I should have made it clear that the total pay bill for all BT employment was up 31 per cent, not individual basic pay, but I should have thought that my correspondent, who appeared to be a comprehending and reasonable man, would have accepted the figure in the context of comparison with business achievement.

Basic pay, gross pay and take-home pay are all different as is the pensioners' nine percent less than the nurses' eight percent. Good luck to miners for free coal and railway workers for free transport, to students for many concessions, all never mentioned in pay bargaining.

Overseas

Old timers may remember the Stromberg-Carlson radios of 50 years ago. This US company is now in digital telephone exchanges and has been bought by Plessey for $£ 33$ million and will expand Plessey's business in the USA and elsewhere overseas. The deal could result in some of Plessey's UK equipment being built in the USA for their domestic market.

INN this final part the order of assembly is detailed together with testing-and calibration procedures.

ASSEMBLY

Construction of the robot is very easy but the order of assembly is fairly important particularly when putting the arms together. Also if it is not to tear apart its wiring then the recommended wiring scheme should be followed.

To assist with this, holes are provided at strategic points for anchoring the wiring with cable ties.

A good starting point is the base plate on which are fitted the power supply and the rotation position sensing potentiometer (Fig. 8). Next take off the cover of one of the gearboxes, turn round the exit side of the drive shaft, fit on it the smaller gear together with its mounting bush and nut, fit the motor loosely on the top plate, screw the side panels onto the base and fit the top plate. Special screws which roll threads in the steel in which they engage are used on all the panels. The shoulder rotation shaft and the larger gear can now be fitted and the motor tightened in position keeping the gears firmly enmeshed.

The arms are constructed in a sandwich arrangement with the lower arm sides fitting round the upper arm and the shoulder support bracket. First assemble the gripper components i.e. the jaws, gripper mounting plate, motor etc. as shown in Fig. 4. On one of the upper arm side pieces fit the wrist motor and a shaft securing bush and on the other side piece fit the wrist position sensing potentiometer. The two sides can now be brought, together sandwiching the counterbalance weight and the gripper assembly. Next fit the shoulder support bracket, screw on it the other shaft securing bush and fit to the lower arm side pieces the motors, counterbalance weights and potentiometers.

The side pieces can now be brought together round the upper arm assembly and the shoulder support bracket, holding them together with a stud through them at what will be the rear end of the machine. The wrist motor is on the right hand side. Secure the gear box drive shafts but not the potentiometer shafts and move each axis to the centre of its travel-gripper, upper arm and lower arm all in line about 60° above the horizontal with the arm pointing forwards.

Set each potentiometer to its centre position i.e. equal resistance between the centre tag and each of the outer ones by use of a screwdriver in the adjustment slot and secure the shafts.

Fig. 8. Power supply component assembly and wiring on base plate
The robot can now be wired up to terminal blocks fitted to the rear end panel following the diagrams in Figs. 11, 12 and the wiring table below. The wires in the 6 mm sleeve pass through holes in the bottom of the shoulder support bracket before passing through grommets in the top plate. Sufficient slack must be allowed for 180° of movement of the arm.

Assembly of the interface board (Fig. 11) requires little comment except to say that it is plated-through i.e. both sides of the board carry tracks with connections between the two sides being made by the conductive coating in the holes

Fig. 10. Under side of printed circuit board

Fig. 11. Track and component layout for completed board

Component assembly and wiring of left and right sides respectively of Micrograsp

Underside of base with VR101A visible
so that no link-through pins are required. The board is wired in with 23 way (24 or 25 way reduced) ribbon cable to the terminal block leaving temporarily free connectors $2,4,6,8$, 10.

TESTING AND CALIBRATION

Power up the robot and interface board without the computer connected and with all the i.c.s unplugged and check the power rails for $\pm 9 \mathrm{~V}$ approximately and $\pm 5 \mathrm{~V}$ from the regulator. Assuming all is well, switch off and plug in the i.c.s. Check again and switch off.

Connect to the computer, switch on the robot followed by the computer and check the computer's operation is unaffected by the interface board. If it is, then there is probably a short across the address or data lines on the board.

Set all the switches to open, rotate each VR1 fully anticlockwise and enter POKE 65472,0. Each output of IC5a will now be low and IC7a pin 1 will be close to OV. Enter POKE 65472,255 and each output will change to high and pin 1 will change to close to +1 V . Enter POKE 65472,128 and pin 1 will change to 0.5 V . Similar results will be obtained on servo circuits B, C, D using addresses 65473, 65474,65475 respectively. Address the monostables with

Fig. 12. Numbered terminal blocks fitted to the rear end panel. The wiring table shows connections from the robot to the p.c.b. (Fig. 11)

TERMINAL	DESTINATION	WIRE COLOUR	$\begin{gathered} \text { PCQ } \\ \text { CDNNECTION POINT } \end{gathered}$
1	ROTATION MOTOR RED	GREY	1
2	ROTATION MOTOR BLACK	ORANGE	2
3	SHOULOER MOTOR BLACK	BLUE (LEFT)	3
4	SHOULOER MOTOR RED	BLACK (LEFT)	4
5	ELBOW NOTOR BLACK	ORANGE(RIGHT)	5
6	EL8OW MOTOR REO	GREY (RIGHT)	6
7	WRIST MOTOR BLACK	BROWN (RIGHT)	7
8	WRIST MOTOR RED	GREEN (RIGHT)	8
9	GRIPPER MOTOR BLACK	BLACK (RIGHT)	9
10	GRIPPER MOTOR RED	BLUE (RIGHT)	10
11	+VE OF POWER SUPPLY	RED	11.12
12	- VE OF POWER SUPPLY	BLUE	13,14
SOLDER TAG	SOLOER TAG ON base plate	BLACK	15
13	VR101 O TAG B	WHITE (LEFT)	16
14	VR101 C TAG B	YELLOW (LEFT)	17
15	VR 10\% B TAG E	VIOLET (RIGHT)	18
16	VR 101a tag e	GREEN / YELLOW	19
17	OV(onalog)VR101A TAG C $"$ \because VR101B $" A G A$ $"$ \because VR101C TAGA VR101D TAGA	PINK PINK(RIGHT) PINK(LEFT) PINK (LEFT)	20
18	Vp VR101A TAGA VD VR101B TAGC Vp VR101C TAGC Vp VR1010 TAGC	RED RED (RIGHT) REO (LEFT) REO (LEFT)	21

Showing the jaws of the gripper fully expanded

POKE 65477,0 and POKE 65478,0 and IC9 pins 13 and 5 respectively will go high for about 2 seconds and then return to low.

Connect the rotation motor (connector 2) whilst the robot is switched off, turn each preset to its midway position and switch on. The arm will move to some extent and come to rest peaceably i.e. without being held back by its cables. Turning VR1A will result in the arm changing its position, Return VR1A to its midway position, successively enter data of 0 and 255 i.e. minimum, and maximum codes and adjust VR1A, VR2A for 180° of movement symmetrical about the forward facing position.

Repeat this procedure one axis at a time for the other three servo controlled axes adjusting for the shoulder to move between almost touching the end stop and about 10° below horizontal and for the elbow and wrist joints to have 180° movement. Finally connect and check the gripper motor circuit and after fitting the end panels the robot is ready for use.

MIDWICH COMPUTER COMPANY LIMITED

FAST EX-STOCK DELIVERY OF MICROCOMPUTER COMPONENTS AT UNBEATABLE PRICES
 24 Hour Telephone order service for credit card holders. All prices exclude VAT and carriage (0.75 on orders
under $£ 10$ nett). Official orders from educational and governmental establishments, and pubtic companies accepted Credit accounts available to will follow on automatically at our discretion or a refund will be given if recuested

NO SURCHARGE FOR CREDIT CARD ORDERS

ETV. SOUND TUNER

in the cut-throat world of consumer alectronics, one
of the questions designers apparently ponder over is "Will anyone notice if we save mone" by chopp. ing this out?" In the domestre TV set, one of the first casuallios seems 10 be the sound quality. Small speakers

and all this is really quite sad, as the
$\mathbf{£ 2 2 . 9 5 + £ 2 . 0 0} \mathbf{p \& p}$
TV companies do their best to transmit the highest quallty sound. Given this background a compact and independent TV tuner that connects dhrect to vour Hi-Fi is a must for quality eproduction.
This TV SOUNO TUNER offers full UHF coverage with 5 pre-selected quning controls. It can Iso be

PRACTICAL ELECTRONICS STEREO CASSETTE RECORDER KIT ©
 ONLY £31.00 plus £2.75p\&p.
 - NOISE REDUCTION SYSTEM. - AUTO STOP. TAPE COUNTER. - SWITCHABLE E.O. INOEPENDENT LEVEL CONTROLS 0.1%. RECORD/PLAYBACK I.C. WITH ELECTRONIC SWITCHING. FULLY VARIABLE RECORDING BIAS FOR ACCURATE MATCHING OF ALL TYPES.
 Kit includes tape transport mechanism, ready punched and back
 printed quality clrcuit board and all electronic parts. ie. semiconductors,
 you only supply solder \& hook-up wire. Featured in April P.E. reprint 500. Free with kit

P.E. STEREO TUNER KIT

This easy to build 3 band stereo AM/FM tuner
is designed In conjunction with Practical Electronics
(July '81). For ease of construction and allignmen
IF System.
FEATURES: VHF, MW, LW Bands, interstation muting and AFC on VHF. Tuning meter. Two back printed PCB's. Ready made chassis and scale. Aerial AM - ferrite rod, FM - 75 or 300 ohms. Stabinsed power supplied are to P.E. strict specification. Front scale size
$10 \% " \times 21 /{ }^{2}$ approx. Complete with Self assembly simulated wood cabinet sleeve $\mathbf{£ 1 7 . 9 5}$ Plus $£ 2.50$ psip. to suit tuner only. Finish size: $111 /{ }^{\prime \prime} \times 81 / 2^{\prime \prime} \times 31 /{ }^{\prime \prime}$ £3.50 Plus $£ 1.50$ p\&p

125W HIGH POWER AMP MODULES

power applications - disco units, guitar ampil iers, public address systems and even high against short circuifing of the load and is safe in an open circult condition. A large safety margin exisis by use of generously rated components, result, a high powered rugged unit. The PC board is back printed, etched and ready to drill for ease of construction and the luminium chassis is preformed and ready to use. Supplied with all parts, circuit diagrams and instructions.

ACCESSORIES: Suitable mains power supply
kit with transformer: $\mathbf{£ 8 . 5 0}+\mathbf{£ 2 . 0 0} \mathrm{p} \& \mathrm{p}$

SPECIFICATIONS:
Max, output power (RMS): 125 W . Operating voltage (OC); 50-80 max. Loads: 4.16 ohm . Frequency response measured @ 100 watts: $25 \mathrm{~Hz}-20 \mathrm{KHz}$. Sensitivity for $100 \mathrm{w}: 400 \mathrm{mV}$ @ 47 K . Typical T.H.D. @ 50 watts, 4 ohms. 0.1%. Dimensions: 205×90 and $190 \times 36 \mathrm{~mm}$.

KIT
BUILT
suitable LS coupling electrolytic. $\mathbf{£ 1 + 2 5 p p \& p . ~}$

BSRRECORD DECK

Manual single play record deck with auto return with stereo ceramic cart idge 2 speeds with 45 rpm spindle adaptor ideally suited for home or disco. $\mathbf{£ 1 2 . 9 5}+£ 1.75 \rho \& p$.

SPECIAL OFFERI Replacement Stereo easstte tape heads $-\mathbf{£ 1 . 8 0}$ each. Mono: $£ 1.50$

218 HIGH STREET, ACTON, W3 6NG Note: Goods despatched to U.K. postal addresses only All izems subject to availability. Prices correct at
$30 / 10 / 82$ and subject to change withour notice.
10.50
£14.25

SPEAKER BARGAINS

2 WAY 10 WATT SPEAKER KIT $8^{\prime \prime}$ bass/mid range and 3% weeter. Complete with scre and cabinet. All wood precut - no cutting required. Finish - chipboard covered wood simulate, size 14/2 x $3 \% " \times 4^{\prime \prime}$. PAIR for ONLY
£12.50 plus £1.75 p\&p.

ALL CALLERS TO: 323 EDGWARE ROAD, LONDON W2. Telephone: 01-7238432. (5 minutes walk from Edgw are Road Tuba Station)
Now open 6 days a week $9-6$. Pricess include VAT.

Piease allow 7 working davs from receipt of order
for despatch. RTVC Limited reserve the right to update their producis without notice. All enquirises send
S.A.E. Telephone or mail orders by ACCESS welcome.

A GREAT DEAL... Crotech SCOPES from Iumprigroulas

 3131
 *Dual Trace *DC - 15MHz
 * $5 \mathrm{mV} / \mathrm{div}$
 *Add Mode
 * X - Y Mode
 *200ns - 0.2s/div
 *Component Tester Price £276 INC VAT

3030

* Single Trace * Auto/Normal trigger
* Rectangular CRT * 200ns - 0.2s/div.
* DC $-15 \mathrm{MHz} \quad$ * Component Tester
* $5 \mathrm{mV} / \mathrm{div}$.

Price $£ 172.50$ INC VAT
a GREAT DEAL MORE.
The CROTECH somponent tester, for visual testing of semiconductors, IC's and passive components is a standard feature on both 'scopes. Which gives you A Great Deal more than a normal 'scope.
WANT TO KNOW MORE? . . . Then drop into Audio Electronics where both the 3131 and 3030 are on continuous demonstration six days a week.
A copy of "GETTING THE BEST FROM YOUR 'SCOPE" free with every scope purchased!
AUDIO ELECTRONICS
301 Edgware Road, London W2 1BN Tel: 01-724 3564

Crotech Instruments Limited

5 Nimrod Way, Elgar Road, Reading, Berkshire, RG2 0EB Telephone: (0734) 866945

Cratech +

THE UNITED STATES AND HALLEY'S COMET

The mission to look at Halley's comet was aborted by lack of funds and the European Space Agency were forced to "go it alone". The details of this situation were outlined in a previous issue of Spacewatch together with an alternative suggestion from America to divert an existing spacecraft so that at least something would be contributed. The suggestion was that first the Giacobini-Zinner Comet should be the next target and then follow-on to an approach to Halley's Comet. This was hailed as an excellent idea and at least a try to carry out the original plan. However it was not really like this at all. Funding was allowed to provide for the existing spacecraft to be diverted but the reason for it was that America wished to be the FIRST to intercept a comet. The benefit to knowledge is without a doubt a great stride forward and the world of science will acquire vital information about comets which will help to provide data to make the best use of the Halley encounter. The cost will not be more than about five million dollars. This includes the funding already provided for this spacecraft to carry out its original programme which will be completed a few months after the Halley encounter, The procedure will follow these lines:

Early in October 1982 the Goddard controllers operated the Hydrazine propulsion system to send the spacecraft back toward the Earth. This was to effect the intersection of the Moon's orbit so that the Earth's gravity could send the spacecraft outward behind the Earth passing across the Earth's tail. This means that the spacecraft will be able to examine the particles and fields that are known to exist across the tail. This took place around the 19th and 25th October, when the spacecraft was 317,000 miles from the Earth. The vehicle then continued outward until it reached about a million miles from the Earth, then the Earth's gravity pulled it back down the tail toward the Earth. Again the spacecraft will move away till it reaches some 820,000 miles gathering further data which will be unique.

About February 6th 1983 the hydrazine system will be activated again to provide a
thrust of 100 to 115 feet per second to change the orbit of the spacecraft to a swing past the Moon by some 12,400 miles. After this there will be three options at or about the 30th March 1983. After which the further changes of orbit will be decided. There are some changes to be expected on 22 December 1983 the last Lunar swing-by will take place and the spacecraft will then be about 60 miles from the surface of the Moon. For precise directional control base stations will be needed.

As there is a limited amount of propellant avdilable the target acquisition must be precise. There will be little latitude for correction of the trajectory so the situation needs very careful calculation and execution. If all this is successful then the spacecraft will attain a closing velocity of some 13 miles per second. The spacecraft will pass behind the nucleus of the Giacobini-Zinner comet and through several thousand miles of the tail.

This spacecraft does not carry any imaging facilities but its instruments will be able to measure plasma densities, temperatures and flow speeds. It will also be possible to assess the character of the heavy ions. It is expected that the distance of the spacecraft from the nucleus of the comet will be 1,864 miles.

After the encounter with the comet the spacecraft will pass on to take part in the Halley observations. On or about October 30th 1985 the spacecraft will be on a line between the Sun and Halley's comet and will attempt to check the nature of the solar wind before it reaches the comet. At that time the spacecraft will be one astronomical unit from the comet, 94 million miles, and some 47 million miles from the Earth. Finally on March 28, 1986 the spacecraft will be 21 million miles from Halley's comet and 60 million miles from the Earth.

EUROSPACE PROGRAMME

The European Spacelab 1 mission is scheduled for September 1983, and the first flight of the Eureca recoverable carrier in April 1987. The mission slot for Spacelab 1 is assigned for the shuttle Columbia to take the Spacelab into orbit. The shuttle will be modified to enable the mission to be extended to 9 days. This mission is a cooperative one, with ESA responsible for the Spacelab itself and NASA for the operational programme. Two mission specialists from NASA will be on the Spacelab 1.

One complication arises out of this mission, this is that the recovery of the orbiter will be at Edwards AFB in California and not at the Kennedy Space centre in Florida. New planning will now be necessary to handle this situation. One of the reasons for the decision is that the return of the Orbiter from the mission will 'be without the "head-up" systems and will also be carrying one of its heaviest payloads. It is considered that in the light of previous missions the Edwards facility offers the maximum safety factor.

This mission will carry its specialists and the equipment in the long module unit which includes a pallet section. There will be 36 different instruments on this mission. These will include a metric camera, microwave remote sensing equipment and a fluid physics module. The disciplines to be covered on this flight are plasma physics, solar physics, astrophysics, Earth observations, material sciences and life
sciences. This mission will also involve the carrying of the total payload throughout the flight. However as part of the follow on programme for Spacelab, a small unit which will be unmanned is being developed by ESA. This will be released from the orbiter, left to carry out its tasks and then some six months later recovered by the Shuttle.

The carrier vehicle, EURECA, is scheduled for a first flight in April 1987. This will be aboard the Shuttle Orbiter Challenger. It will be recovered in the following September by the orbiter Aquarius. A number of configurations have been suggested and projects evaluated such as a mirror furnace solution growth (protein) and also automatic gradient heating. Several contracts are under consideration such as the British Aerospace design of half pallet size of unit derived from the original concept by BA for basic Spacelab missions. Another is from Messerschmitt-Boelko-Blohm. This is based on a modular payload structure that has also been used for Spacelab.

Solar arrays were under consideration which include designs from British and German groups. The solar arrays would be of average size, about 90 square metres and perhaps initially deliver 5.4 kW at a voltage of 28V. Provision for the charging of on-board batteries for use during the shadow periods which will result from the angle of the orbits, when at 28.5 degrees. Other contracts will be considered for stabilisation equipment for the free flight missions.

The European Space Agency has declared its intention to make programme decisions for the next ten to twenty years activities. Preliminary guide lines are centred round follow-on launch vehicles and Earth orbiting space stations. These deliberations are being cartied on at both industrial and political levels. The Agency is a multi-national body and there are therefore many points of view to be considered. In the main there are three categories of activity.

The Agency seeks at the moment agreement from the members to spend about $£ 6$ million to study the categories in depth. The broad area involved includes space launchers, where there is support for launchers capable of carrying manned vehicles into orbit. Another part of the area of study is participation with the NASA organisation in America for joint manned missions. The third area of consideration deals with the development of a European "in-orbit infrastructure" so that Europe may develop independant orbital facilities in case the cooperation project should fail to come into being.

JAPAN AND SPACE

Japan is studying small shuttle development as a priority. These studies are in the early decision stage. An initial evaluation deals with a vehicle capable of carrying three crew into orbit. The studies will include the use of airbreathing engines on the vehicles to provide powered flight on return to Earth.

Japan will continue to develop large launchers capable of raising vehicles to Earth orbits. More details of the parameters of the vehicles being processed will appear later.

Ultimum Computer
 Interface Pam 3

THE nature of ULTIMUM has stirred sufficient spontaneous interest, and queries, to bring about the decision to interpose at this point with a more detailed analysis of the memory mapping, and rather special address decoding techniques employed. Moreover, with a project which is likely to last many months, it is in deference to those with an anxious interest in the daughter cards towards the end of the list, that we now reveal more of the interfaces yet to be published.

THE 8255

The 8255 peripheral interface should first be understood. This device is a 24 line parallel interface. Each line may be set to an output or an input. Fig. 1 gives a schematic of the arrangement of this device, and as you can see it is made up of three ports (A, B, C) each of 8 bits. These lines go to the daughter cards, each card having three lines dedicated to it. We are using the 8255 for three functions

* Control
* Handshake
* Mapping

On some boards (the port boards being one example) we need to control particular devices with a line or two. In this case these lines are obtained from the 8255.

The handshake function is used on the two intelligent boards (the terminal board and the disk controller). These boards have to tell the system processor when an operation (like disk formatting or display scrolling) has been completed. In this case the port lines are used in their input mode and can be read by the system to determine the state of operations.

The most important function is the so called mapping. This is simply a way of fitting respectable amounts of memory into a limited space. Normally an 8 bit processor has 16 address lines at its disposal. These will allow addressing of 64 Kbytes. High level languages and word processing packages tend to make short work of this amount of memory, so some method of expanding the available RAM/ROM is needed.

In Fig. 2 we have shown how this can be done by selecting "banks" of memory. There are two banks in this example, but you can have as many (limited only by the drive capability/slots on the motherboard) as you like. The two banks are addressed with same address lines. The 8255 port is used to switch one bank on at a time. You cannot read both banks at once (unless you move one to a different place in memory) but data can be stored in both and accessed at
different times. The system is slower in some cases, which is why the larger 16 bit processors with their megabyte or so of direct addressing are becoming more popular.

Peripherals that aren't used very often can be switched out (sometimes called "paged out") so that they don't use up memory space when they are not needed.

To give some idea of the capacity of this type of system, four 64 Kbyte RAM cards can be used together to provide $\frac{1}{4}$ Megabyte of memory! (but see Notes).

Fig. 1. The 8255 Peripheral Interface

Fig. 2. Bank switching to increase usable memory

THE MEMORY CARDS

The dynamic RAM card and static RAM/ROM card (published already), may both use the 8255 to be paged in and out. The ability to program ROMs is covered by a programmer card (Fig. 3) which allows you to program 2716/2516/2732/2532/2764 ROMs. As Fig. 3 shows, we have provided a couple of nice features; current limiting to protect the i.c. being programmed, and hardware control of the programming pulse to make programming easy.

Fig. 3. The ROM Card

A departure from the standard cards for an expansion board is a Romulator card which is shown in Fig. 4. This card can emulate $2716 / 2516 / 2732 / 2532$ ROMs. The board looks just like 4 K of standard memory which can be used for programs or data. By switching a line of the 8255 on the motherboard, the memory can be made available on an external 24 pin header and plugged into another system. This makes your home computer into a powerful development system at a fraction of the cost of the stand alone emulators. With an assembler, your system can be used to develop control programs which may be burned into PROM using the programmer.

DISK CONTROLLER CARD

A very different approach in the design of this card was necessary to suit several systems. The single most important feature of this card is that it is intelligent, ie. it has its own processor which controls the disks and handshakes (see motherboard) with the main processor. The disk processor has its own disk operating system (WeeDOS) which provides formatting, directory control, and functions such as READNRITE and DELETE. Fig. 5 shows the block diagram for this board. It looks like a port to the main processor, and this makes the interface to the disk simple (rather like an intelligent cassette). The card was originally designed as a single density controller, but will be upgraded to a double density version, which means a capacity of about 4 megabytes using double density 5.25 in . floppies.

SPEAK

The speech card is based around a single chip phoneme generator, as opposed to the fixed vocabulary type. Limited vocabularies are never useful enough. The schematic for this card is given in Fig. 6 which also shows how it interfaces to the nine channel fully programmable sound generator. The sound generator can also be used on its own, but the two together provide a very powerful programmable sound source.

Fig. 4. The ROMulator

Fig. 5. Disk Controller Card

DISPLAYS

The more recent home computers have limited character displays, with graphics which are great for games; but just try using 32 character lines for text editing or high level languages where you need to indent the text to make it readable. Fig, 7 shows the solution to this problem. The card is another in the intelligent series of cards, having its own processor, and display memory. You can set the card up for a range of character widths (up to 80 characters $\times 24$ lines) because it uses a programmable display controller (the 6545). Several high level functions such as Line Insert, Clear Screen and Scroll are provided as single byte commands. Teletext format is easily selected and you may program your own PROM character set if desired. As Fig. 7 illustrates, the card looks like a port, so that it is easy to interface to the main system.

INTERFACES

There are two interface cards, these being an analogue card and a port card. The port card (Fig. 8) provides a realtime clock (with a battery to keep it ticking when you switch off) an RS-232 interface (for terminals etc.) a Centronics interface (for printers) and parallel lines (16) which can be used to control peripherals.

The analogue interface provides a 12 bit D to A converter, a 12 bit A to D converter and a very fast 8 bit A to D converter (Fig. 9). Between them, they provide the resolution and speed for most applications (digital scopes and measurement being two popular ones).

THE LAST ONE

The final card in the series is a second processor card. Two designs are in the offing, an 8 bit (6809) and a 16 bit processor. The card will interface with all the other daughter cards and the main processor. It will be provided with a monitor program in ROM so that it can be set up and programmed from the system. Reset facilities will make the design of a stand alone system possible.

NOTES

The dynamic RAM card requires good quality signals from the main system. Timing is very tight. Some boards (eg. the Superboard and the UK101) are totally un-buffered and the signals coming off the expansion socket have to be seen to be believed. If your computer has adopted the dubious economy of omitting buffers, you may have problems with the dynamic RAM card. We suggest that you stick to static devices on these cheaper systems. Watford Electronics will be supplying special buffered connectors to overcome this problem.

That covers the range of cards. NEXT MONTH we continue with the PROM programmer.

Constructor's Note

Kits for all parts of the ULTIMUM system are (or will be) available from Watford Electronics, 33 Cardiff Road, Watford, Hertfordshire WD1 8ED.
Send SAE for price list of boards now available.

Fig. 7. Display Interface

Fig. 8. Port Card

Fig. 9. Analogue Interface

(10) BE AN AGENT

Sell our products to your friends and family and earn 10\% commission. Details on request.

The world's most versatile watch?
CASIO AX-250 224.95

100 Metre water resistant CASIO W-450 £22.95

OUR NEW 1982/3 CATALOGUE IS AVAILABLE ON REQUEST

If you see a better offer

 we will beat it.CASIO FX-801P Computer, Printer, Microcassette.

CG-10 Solar Shuttle Game. $£ 12.95$

The sensational new CASIOTONE MT-70 Portable, programmable mini keyboard.

2199

PB-100 Computer Learn as you go 869.95

CLEF \quad electronic MUSIC

AMDEK Kits

Distortion	${ }_{532}$
Compressar	¢36
Phaser	¢40
Tuning Amp	$\{36$
Metronome	136
Flanger	563
Chorus	CSS 4
St. Mixer	590
Graphic	572
Delay	$\{130$
Percussion	[S4
Rhyihm by ROLAND	¢90

including the 88 -note full. Size including the 88 -note ffll - size version.
Four internixable Voice Co Four intermixable Voice Controls may
be used to oblain a wide variation of
piano be used to oblain a wide variation or
Piano tonc. including Harpsichor.
Borh Sofl and Sustain Pedals are incorporated in the Design and internal
Efrects are provida Erfects are provided ${ }^{\text {In }}$ the form of
Tremolo. Honky Chorus. Phase/Flanger
A power amplifier integrates into the Piano top which may be removed from

SIX OCTAVE DOMESTIC MOOEL COMPONENT KIT £234 COMPLETE KIT $f 398$ MAN: 6620 Component Kirs include Keyboard. components and may be purchased in four stages al no extra cost. C. Complete Rist further contain Cabinets. wiring harness. Pedals and in the case of
Domestic Models both Power Amplifier and Speaker.
The Six Dciave Stage Piano has the same range of Voices and Effects and is
designed for Uses with an External
Amplifiter and Speaker.

SIX OCTAVE STAGE MODEL
COMPONENT KIT £234
manufactureo csao please alhow 7 daps for mormal despaich

THE COMPACT MUSIC SYNTHESIZER

COMPLETE * $2 \frac{1}{2}$ OCTAVES KIT * SWITCH ROUTING * 2 OSCILLATORS £ 129.00 * THUMBWHEEL * 2 SUB-OCTAVES

STRING

ENSEMBLE

(As Published in conjunction A very popular Keyboard Synthesizer Kit. for Group or Home use. with a four octave compass and split Keyboard facility.
component kit 19750 ROTOR-CHORUS Comprehensive two speed organ rotor simulator pluas a
itriee phase chorus zenerator COMPONENT KIT 998.00 KEYBOAROS
Our Square Front Keyboards 88 note (a. C) (62..7 73 NOTE (FF F) C51.75 five Octave fal.97

Since 1972 Clef Products have consistently produced leading desi gns in the field of Electronic Musical Insiruments, many of which hive
heen fublished in technical magazines. With musical gualiy of heen published in technical magazines. With musical quality of
paramount importance. new technlques have been evolved and the latest musically valid technology has been Incorporated into projects which have heen successfulliy completed by constructors over a wide
range of technical eapabily. Back up TELEPHONE advice is range of technical capability. Back up TELEP HONE advice is avalice 10 all our customers. All instruments are on show. PRICES INCLUDE VAT, UK CARRIAGE \& INSURANCE
ICARRIAGE EXTRA ON MFD PIANOS. PIEAR SECD S.A.E. Ter Our eomptele listo or use our telephone VISAACCESS iervic. Compecitive quotations can be given for EXPORT orders Australia please conusel JAYCAR in Sydney.

'THE computer BAND-BOX'
(As Published in conjunction with "Practical Electronics") COMPLETE

KIT
£235
£320
MANFD.

MASTER RHYTHM ALSO
A MUSICIANS INSTRUMENT FOR:
SOLOISTS = SINGERS - RECORDING-PRACTICE LIV EEAFOR WAN COMOSITION The BAND-BOX provides an Electronic Backing Trio consisting of Wrums. Bass, and a Chord Instrument (one of 16 Waveform/Envelope combinations, with the capacity to store over
3.000 User Programmabte Chord Changes on more than 120 different Chords. Using advanced Mieroprocessor technology, Playback of 30 i00 Scores can be executed in any Key and as chosen Tempo. Complete Music Pad is electronically Indexed and stored on secondary battery back-up. Facility exists for composition of Intro,
Repeat Chorus. and Coda sections including Multiple Score Se guences. Sockets are provided for Volume Peda and Footswitch plus
separate and mixed instrument Outputs. Total size $19^{\prime \prime} \times 11^{\prime \prime} \times 44^{\prime \prime}$ separate and mixed instrument
incorporating Master Rhythm
THE Programmabla D RUM MAGMINE (As Published in conjunction with 'Practical Electronics') EIGHT TAACK PROGRAMMING
TWENTVFOUR PACIERNS/ TWELYE INSTRUMENTS SEQUENCE
OPERATION. OPERATIOM
COMPLETE CTM OO
MANF O. E19.00

The Clef Master Rhythm is capable of storing 24 selectable Thythmic Eight Insirumentation tracks. A three porsition by Intrumentation on to trol expands the number of instruments avaliable to twelve, grouped into sounds typical of playing with Drumsticks, Brushes, or Latin American Bongos and Claves. Sequence operation allows two rhythm sections to be coupled with tion. All drums can be adjusted for level and resonance on internal. controls to suit individual taste, thus producing good musical sounds
in a battery driven unit $8 f^{\prime \prime} \times 5^{\prime \prime} \times 2 y^{\prime \prime}$.

SEMICONDUCTOR UPDATE
 R.W.Coles

FEATURING 8001 DG221

NET-WORKS

All the buzz in computer circles at the moment is the subject of Local Area Networks or "LANs" for short. In the data processing systems of the future it will not be necessary for the hopeful, humble, user to approach the inner sanctum of the "Main-frame". clutching his carefully prepared tapes or punched cards to seek an audience with the mighty machine. Instead, "Distributed processing" will be the name of the game, and systems will no longer live in their air-conditioned temples closely guarded by vestal virgins, but will appear on everyone's desk and in everyone's office, positively encouraging even the most casual user.

To some extent this is already happening with microcomputers of course, but a simple PET or word-processor doth not a mainframe make, because unfortunately the single autonomous keyboards and disc stores of such simple systems cannot offer either the huge memory capacity or the speed of their huge companions from IBM or ICL.

Local Area Networks are important because they will allow the friendly office micro to be hooked up to many others like itself, facilitating the exchange of programs, data; or correspondence. If the power of a mainframe is still required, it too can be hooked into the net and accessed by the microcomputers as necessary, avoiding the need for the previously necessary leg-work and temple offerings. (Pity about the vestal virgins thoughl)

LANs will consist of an all embracing ring using just a pair of wires or, more likely, a coaxial cable which can be "tapped" at any. point. Office designers of the future will consider the installation of a LAN ring-main to be just as important as the 240 V mains wiring, and even the older offices will be fitted out as the efficiency of such systems becomes attractive.

There are already several contenders for the coveted title of the LAN standard, and many readers will have already heard of our home-grown candidate called the "Cambridge Ring", but for my money, the LAN to look out for is the "Ethernet" standard which is supported by the powerful grouping of Intel, DEC and Xerox.

Ethernet operates over a coaxial cable ring which will transfer data at a very rapid 10 Megabits per second, but to implement this system, each terminal needs a sophisticated link controller which at the moment would cost almost as much as the microcomputer itself because it would have to be made using mainly random logic.

Needless to say, the race is on to build
cheap LSI Ethernet controller chips, and these are just starting to become available in sample quantities. One which caught my eye, because it is compatible with eight bit microprocessors and is not too sophisticated, is the 8001 from SEEQ Technology.

LINK CHIP

The 8001 consists of a CPU interface, a transmit processor, and a receive processor, made in NMOS technology and packaged in a 40 pin d.i.p. Communication with the microprocessor takes place over an 8 bit bidirectional data bus using the standard CPU control signals CS, RD, and WR which are connected within the 8001 to a transmit register, a receive segister and six "Station address" registers.

In operation, the 8001 continuously monitors all data transfers occurring on the network. When the chip recognises activity on its "Carrier-sense" line, it synchronises itself to the incoming data stream during the message preamble and then examines the address field of the received message frame. If the address matches its own programmed field, the chip passes the entire frame of information to the CPU over the bus a byte at a time, but if not, it ignores the message. Ethernet messages are protected by a very discriminating error detection code called CRC, which is much better than a simple parity check. Information about the validity of a message is passed to the CPU at the end of a received frame after CRC checking so that appropriate action may be taken to request a re-transmission of the corrupted data if necessary.

The 8001 also deals with some fundamental problems of serial networks by avoiding "collisions" and providing "contention" resolution. When an 8001 is ready to transmit it first checks that there is no other carrier present and then sends a preamble of bits just long enough to ensure that the first bit has had time to reach the furthest point on the network. After the preamble, the source and destination addresses, message frame, and CRC checksum are sent.

When two or more stations begin sending their preamble before they can detect the presence of each others carriers, a collision occurs which garbles the messages. When the transmitters realise that they are in conflict, they each transmit a jam signal and then wait for random time intervals before trying to re-transmit. The chances of a second collision are therefore reduced and the possibility of a "deadly
embrace" in which two stations both try to re-transmit at the same time so that they continuously garble each others messages, is avoided.

To complete an Ethernet station using the 8001 it is also necessary to add an external encoder/decoder chip to convert the serial bit stream from the chip into the return-to-zero (RZ) Manchester code required by the net, and vice-versa. Manchester coding eliminates the d.c. comporrent introduced by conventional non-return-to-zero (NRZ) links such as RS232.

I think that we shall all be hearing a lot more about LANs before long, so watch out for further news in these pages!

SWITCH CHIP

Fingers, as everyone now realises, are designed for deftly caressing QWERTY keyboards, not for flicking nasty ugly toggle switches, so in future let your computer do the work and avoid breaking your nails, by using some Siliconix DG221s in your new microprocessor controlled Disco Console.

The DG221 consists of four solid state analogue switches controlled by a microprocessor compatible latch which can be hooked up to four lines of a data bus and strobed by a $\overline{W R}$ signal. Each switch has a typical ON resistance of 60 ohms and an OFF isolation of about 70 dB and operates in the true "break-before-make" fashion that you have come to expect from those old museum-piece toggles. The switch functions are effectively isolated from the digital control latch, and can be used with separate plus and minus supplies up to a total of 44 volts with a signal voltage capability of up to 30 volts. To prevent variations of switch parameters in the face of power supply and temperature fluctuations, the chip has a built in compensating voltage regulator.

Connecting the DG221 to your microprocessor couldn't be easier since it can pretend to be either an I/O port (for 8080 or $Z 80$ systems) or a memory location (for 6800 and 6502 systems). Since only four data bus bits are allocated to each DG221 it is also possible to have two devices at each I/O or memory address. A single byte output to the DG221s can then provide any combination of "ONs" and "OFFs" for the eight switches to amaze and delight your friends. It is also possible to cannect the various switches together to perform multi-way and multi-pole switching if required, so it can replace those old rotaries too, provided you get your program logic right!

MICRO-EUS

Compiled by DJD

Appearing every two months, Micro-Bus presents ideas, applications, and programs for the most popular microprocessors; ones that you are unlikely to find in the manufacturers' data. The most original ideas often come from readers working on their own systems; payment will be made for any contribution featured.

THE MAIN topic in this month's MicroBus shows how a ZX8I can be used as the heart of an audio signal processor, to give unusual audio effects; three possible applications described here are an echo unit, a harmoniser, and a digital storage oscilloscope using the computer screen for the trace display. The circuits and programs were devised by Andrew A. Szalay of Hungary, and what follows is based on his description.

ANALOGUE INPUT/OUTPUT PORT

The main part of the ZX81 Audio Signal Processor is the analogue input/output port which interfaces with the ZX81's bus; see Fig. 1. It can handle signals with 8 -bit resolution using sample rates of up to 80 kHz , which exceeds the requirements for good audio reproduction.
The circuit is based on the low-cost Ferranti ZN426E D/A and ZN 427E A/D converters. It uses the Z80's I/O port 3 to avoid conflicts with the internal I/O operations. IC6 and IC7 decode I/O operations to this port, and produce input-request and output-request signals at the outputs of gates IC7b and IC6c respectively.
The output-request pulse latches the data from the $\mathrm{ZX81}$'s data bus into the 8 -bit latch, IC3, whose outputs are fed to the inputs of the D/A converter IC2.
The input-request pulse enables the data outputs of the A/D converter, ICI, allowing the data to be read by the ZX81. A version of this pulse delayed by IC5 is used to reset the A/D converter, and start a new conversion. Note that the data read from the A/D converter corresponds to the previous input operations. The A/D converter clock is generated by IC4.
For maximum precision the same voltage reference is used for both converters; the analogue input/output voltage range is 0 to +2.55 V , in accurate 10 mV steps.

ANALOGUE CIRCUITS

For most analogue applications some extra amplification is desirable, and two alternative circuits are presented here. For simple applications such as data logging and the digital oscilloscope a simple interface using a buffer amplifier for both input and output can be used; see Fig. 2. The LF356 op-amp is chosen because of its high slew rate. For audio applications such as the echo unit and the har-

Fig. 1. Analogue input/output port circuit interfaces with $\mathbf{2 \times 8 1}$
monizer additional amplification will be required as in the circuit of Fig. 3. ICla amplifies the audio input to the required level, and the gain should be adjusted to be as large as possible without overload to minimise quantisation noise. IC 16 feeds the resulting signal to the A / D stage. The output from the D / A is buffered by 1 Cl ; the feedback control is used for the echo unit, and for multiple transpositions with the harmoniser. Finally, IC1c mixes the original input with the processed sound.

Professional analogue-to-digital systems use high-order low-pass filers to avoid aliasing, a type of distortion caused by the sampling process. In practice the simple circuits presented here work quite well without such filtering; for audio sources like an electric guitar or music from a cassette recorder none of the distortions caused by mirror frequencies can be heard.

Fig. 2. Simple audio stages enable analogue I/O port to be used as a digital storage scope

Fig．3．Audio stage interfaces the analogue $1 / O$ port to an audio amplifier
－ 0 ．
20 CLS
30 FAST
40 LET $A=16514$
50 PRINT VDELAY RANGE ：．．．（MILLISEC）＂．＂（MAX 500）＂
60 INPUT F
70 IF P >500 THEN GOTO 60
Bo LET $P=128$－INT（P／日．61＋0．5）
90 POKE $A+4, P$
100 POKE $A+7, P$
110 POKE $A+29$ ，P
120 POKE $A+35$ P
130 CLS
140 PRINT＂DOWN：O UP： 1
150 INPUT P
160 IF P＝D THEN GOTO 200
170 IF $\mathrm{P}=1$ THEN GOTO 400
180 GOTO 130
200 POKE A＋21．
210 GOSUB 600
220 LET $K=1 N T(256 / P+0.5)$
230 GOTO 日OO
400 POKE $A+21.19$
410 GOSUR 500
420 LET $\quad=1$ NT $(256(P-1)+0.5)$
430 GOTO 800
600 FRINT＂TRANSPOSE：．．．（SEMITONES）＂
610 INPUT P

b30 RETUFSN
800 IF $x>255$ THEN LET $x=255$
日IO POKE $A+1$ ，X
B2O LET P＝USR A
830 GOro 0
Fig．5．Harmonising program for the ZX81 transposes the pitch of an input signal in real time

SIGNAL PROCESSING

PROGRAMS

The following programs use the audio signal processor circuit for three different signal processing applications；they are designed for use with a ZX8I with a 16 K RAM pack．The first stage for all three ap－ plications is to reserve space in memory for the machine code．Type the following：

10 SAVE＂SET＂
 20 POKE 16389， 70
 30 NEW

Start the cassette recorder in record mode， and RUN this program；it will save itself to cassette，and delete itself．Now if this program is loaded at any time apparently nothing will remain of it，but the BASIC area will be limited to 1.5 K with the area above this free for machine－code storage．Now type：

10 REM 00000000 ．．．．

and continue typing 0 ＇s until two lines have been filled．The zeros in the REM statement will be used to store the machine code．Next set up a loop for POKEing in the machine－ code routines：

The numbers to type in for each application are shown in Table 1，together with the corresponding assembly language mnemonics． Once the machine－code routine has been en－ tered，the corresponding BASIC program from Figs 4，5，or 6 should be entered；these calculate the required parameters，POKE them into the machine－code routine，and then call the machine code．The machine－code loops can be interrupted at any time by typing ＂N＂to return to the BASIC program．
10 REM ．．．string of poked characters．．．
20 CLS
30 FAST
40 LET $A=16514$
SO PRINT＂DELAY TIME：．．．（MILLISEC）＂＂＂（MAX S00） 60 INPUT P
70 IF P＞500 THEN GDTO 60
80 LET $P=128-$ INT（P／8．61＋0．5）
90 POKE $A+2,1$
100 POKE $A+21, P$
110 LET $P=$ USR A
120 GOTO O
Fig．4．Program converts the $\mathbf{Z} \times 81$ into an audio echo unit

ADORESS：	ECHO：		HARMONIZER：		STORAGE SCOPE：	
16514	10 H1，NN	33	1d c，N	14	$10 \mathrm{c}, \mathrm{N}$	14
16515		0		171＊		100＊
16516		72＊	10 de ，NN	17	$10 \mathrm{~b}, \mathrm{~N}$	6
16516	$10 \mathrm{~b}, \mathrm{~N}$	6		0		1
16517		3		120＊	dj nz	18
16518	1d a，（h1）	126	la hl，NN	33		－2
16519	out N ，a	211		0	in a，N	219
16520		3		120＊＊		3
16521	in a, N	219	in $a_{n} \mathrm{~N}$	219	add c	129
17522		3		3	jr ne	4 B
16523	1d（ hl, a ）	119	1d（hl），a	119		－9
16524	d）nz	16	inc hl	35	1d hl，NN	33
16526		－2	1da，（de）	26		0
16527	inc de	19	out N, a	211		70
16528	inc hl	35		3	iñ $a_{\text {，}} \mathrm{N}$	219
16529	dee h	37	1da，b	120		3
16530	lne h	36	add c	129	ld（hl），a	119
16531	jp p, NN	242	1 d b ，a	71	ine hi	35
15532		133	jr ne	48	1a aph	124
16533		64		1	cp N	254
16534	1d h ，N	38	line de	19		129
16535		724	inc de	19＊＊	jr nz	32
16536	in $a_{\text {，}} \mathrm{N}$	219	diec d	21		－9
16537		2	Ine d	20	ret	201
16538	ep N	254	jp p，NN	242	ld hl， NN	33
16539		119		159		0
16540	jp $n z, N N$	194		64		70＊
16541		133	1d d， N	22	lda，（hl）	126
16542		64		120	out N ，a	211
16543	ret	201	dec n	37		3
16544			ine h	36	ine hi	35
16545			jp P，NN	242	1d a，h	124
16546				138	ep N	254
16547				64		128\％
16548			Id n, N	38	ir nz	32
16549				120＊		－9
16550			$\ln a, N$	219	1d a, N	62
16551				2		0
16552			cp N	254	out Nata	211
16553				119		3
16554			jp $n=$	194	ret	201
16555				138		
16556				64		
16557			pet	201		

ECHO PROGRAM

The program to use the audio signal processor as an echo unit is shown in Fig． 4. To understand how the program works im－ agine the memory cells placed on the dial of a clock．The hand of the clock rotates with con－ stant speed；when the hand points to a cell the number in that cell is first transferred to the D / A converter；the reading from the A / D converter is then placed in that cell．Each sam－ ple is thus delayed by a time that depends on
the number of cells in the loop，and on the sampling rate．The sampling rate is fixed at 30 kHz ，but the number of cells in the loop can be varied to give different delays of up to 500 milliseconds．

HARMONIZER PROGRAM

The Harmonizer program of Fig． 5 per－ forms a real－time pitch transposition of the in－ put signal，and works in a similar way to the
pigital storage osctul osctope

Fig. 6. Program converts the ZX81 into a digital storage o scilloscope
echo program. Imagine a clock with two hands which rotate at different speeds; one hand writes numbers from each cell it passes to the D/A converter, and the other hand reads numbers from the A/D converter into cells. The ratio of the two speeds determines the pitch ratio of the input to the output.

1A\$=" (018!119155*:VDU697\&9A:PRINTM IDS(AS,RND (6)*2,2) $: 2=G E T: G O T O 1$

Fig, 7. Dice-throwing program uses teletext graphics for dice faces

10WIDTH 3: REPEATA $=$ RND (6) : FORB=-7T07: $\mathrm{C}=$ ABS日* 4 MOD $8+$ SQR2 ${ }^{\wedge}$ ABSB: IFA/C MOD (C*2) PRINT "O": :NEXTELSEPRINTSPC1;:NEXT:UNTILGET=FA LSE

Fig. 8. Dice-throwing program for the BBC Micro takes 70 bytes

```
10 MODE 2:VDU5
20 X1=RND (1278): X2=X14RND(1279-X1)
Y0 Y1=RND(1022):Y2=Y1+RND(1023-Y1)
Y0 Y1=RND (1022):Y2 =Y1+RND(1023-Y1)
SO VDU24 X1 Y1, X2.Y2.16.COTO20
```

Fig. 9. Program for the BBC Micro draws random squares in different flashing colours

STORAGE SCOPE PROGRAM

The last of the three applications is a digital storage scope, which allows you to read in a waveform, and then examine selected sections of it. The program, Fig. 6, allows you to select a trigger level and a "time window". When the input reaches the trigger level the sampling starts at a sampling rate of 69 kHz . The available 14.5 K of memory is filled up in

215 ms . After this the display mode starts and the time window can be moved to give a display of any desired portion of the sample. The oscilloscope is ideal for examining audio waveforms such as speech and music.

DICE PUZZLE

In July's Micro-Bus a problem was posed for owners of the BBC Micro: write the shortest possible program that will print up a random dice face, in true 3 by 3 format, every time a key is pressed. The length of the original program, measured by typing:
PRINT TOP-PAGE
was 96 bytes. The smallest solution, sent by John B. Murphy of Dublin, reduced this to 58 bytes; see Fig. 7. It uses teletext separatedgraphics characters to give the dice faces and so is not strictly a solution to the original problem, which used the letter "o" for the spots.

The best solution to the problem as originally posed was submitted by Richard Jozefowski of Cambridge, and the ingenious program is shown in Fig. 8.
Richard Jozefowski included in his letter a program for the BBC Micro which may be of interest to readers; see Fig. 9. It creates a colourful display of nashing squares of different sizes. If the flashing is found too disturbing, change the $\operatorname{RND}(16)$ in line 40 to RND(8)!

PE SPECIAL CASSETTES OFFER

V.H.S. VIDEO

V.H.S. E180 VIDEO (3 HOURS)
$£ 7.65$ each (minimum of 5); $£ 7.50$ each (min. 10); £7.44 each (min. 15); £7.40 each ($\mathbf{m i n} .20$) including VAT and postage.

C90 AUDIO

C90LH CASSETTES

56p each (minimum of 5); 53p each (minimum of 25).
Prices include VAT and postage.

Over the last couple of years PE offers arranged with Videotone have proved highly successful and we have now been able to arrange special prices (only available to PE readers) on these high quality tapes.

We believe these tapes are excellent value and we are pleased to offer them to readers. They are covered by a money back guarantee (return within 21 days for refund). Not only are the tapes of high quality but the cassettes are of screw together construction and the case labels have space for notes on the recordings.
Send valid coupon to:
Videotone Ltd., 98 Crofton Park Road, Crofton Park, London SE4.

a	Please send me V.H.S. 3-hour Video tapes at $£ . .$. each. ($£ 7.65$ for 5 to $9, £ 7.50$ for 10 to $14, £ 7.44$ for 15 to $19, £ 7.40$ for 20 or more; including VAT \& postage.)
	Please send me C90LH Audio tapes at p each. (56p for 5 to 24. 53 p for 25 or more; including VAT \& postage.)
	Name
	Address
	Coupon valid for posting before 14th January 1983
	(or one month later for overseas readers).

Enay to build molects for evaryone
areationcs

Our Sister Publication

Everyday Electronics

features the following projects in the January issue. On Sale 17 Dec:

Loudspeaker Amplifier System for Personal Stereo Cassette Players

Opto Repeater

Two SEDAC Prizewinring Projects:

A to D Converter

Coulomb Meter

HOME LIGHTING KITS

 TOR 300 K Remote Control $£ 14.30$

CHRISTMAS PRESENTS GALORE

DVM/ULTRA SENSITIVE THERMOMETER KIT are recuired-derails supplied), or a sensitive
 sensitivity of 200 mv for a full scale reading. sultomstic polarity indication and on ultras
low power requiferment-giving of year typical battery lift from a standard gl
when used 8 hours a day. 7 days a week

Price E15.50
DISCO LIGHTING KITS at 1000 k
 change. being variable change, being variable by incorporates master dimming control $£ 14.60$
dLZ100K
A lower cost version of the above. featuring undirectional channel sequence with speed
variable by means variable by means of a preset pot. Outputs
switched only at mains recto crossing points to reduce radio interference to a minimum. Optional onto input ola Only $£ 8.00$ Allowing audio ("Deal")-light response $60 p$
DI 3000 k This 3 channel sound to light kit features zero
voltage switching. automatic level control al voltage switching. automatic level control a
built In mic No connections to speaker ar amp built in mic. No connections to speaker of amp
required. No knobs to adjust - simply connect required. No knobs to difust - simply connect
to mains supply \& stomps Only $£ 11.95$

STOCKING FILLERS

PACK (1) 650 Resistors 47 ohm to 10 Mohm . 10 per value $£ 400$ PACK (2) $40 \times 16 \mathrm{~V}$ Electrolytic Capacitors 10 uF to 1000 UF . 5 per value $£ 3.25$ PACK (3) 60 Polyester Capacitors 0.01 to 1 uF/250V 5 per value $£ 5.50$ PACK (4) 45 Sub-miniature Presets 100 ohm to 1 Mohm - 5 par value E 2.90 PACK (5) 30 Low Profile IC Sockets 8, 14 and 16 - pin. 10 off alt $£ 2.40$ PACK (E) 25 Red LED (5 mm dis.) $£ 1.25$ PACK (7) 20 BC 182 NPN General Purpose Transistors $£ 1.20$ PACK (8) 20 BC212 PNP General Purpose Transistors $£ 1.20$
All full spec, branded devices
BUY ANY 5 PACKS AND WE WILL SEND YOU 10 RED LED

"OPEN.SESAME

The XK103 it a general purpose infra red trans: Mirterirteceiver with one momentary (normally
open) relay compact and two lathed transistor open) relay contact and two latched transistor
output. Designed primarily for controlling output Designed primary for controlling
motorised greg doors and wo auxllury outputs tor drive gorge laths at ar angie of up to
40 H The unit also has numerous applications 40 the unit also has numerous applications
in the home for switching lights. TV. closing int the home for switching lights. TV. Closing
curtains. etc. bubal for aged of disabled persons
The Kit comprises a mains powered receiver, a
four button transmitter, complete with profour button "ansmitter, complete with pre-
drilled box, requiring is battery and one opto-1solated solid siesta switch kit for interPacing the receiver to mains appliances As
with all our kits, full Instructions are supplied.
(red plug. Size: $7 \times 6 \times 3 \mathrm{cms}$. Supply: 5 V io
15 V dec. at 40 uA . Ouput: 750 mA max Hundreds of anti-thett device, electronic equipment, etc. Will drive most relays direct. Full instructions supplied.

ONLY $£ 10.50$

Electric lock mech
locks and above kit
f13.50

ONLY £ 23.75

ALL PRICES

 EXCLUDE VAT
FREE

REMOTE CONTROL KITS

MIG SIMPLE INFRA RED RANSMATTER
Pul ied Infra red source compete with hand
 simple channel, range approx. Tot. Maxing powered with attic output to switch loads up 10500 W MRI COOED NARA RED TRANSMIT ER

THE MULTI-PURPOSE TIMER HAS ARRIVED
Now you can sun your central heating. Ilohting. ni.fisystem, and lots
more with just one programmable timer. Ai your selection it is

 connect 11 to your
clock will do the rest.

features include

O.5. LED 12 hour display.
 5060 Hz mains operation males outputs
Battery Dictum operation.
time keeping during power pilurom 1 mas and continues Display blanking during power failure to conserve beanery 18 programme time sets
To switch Everyday" function enabling output
To which every day but use only one time set.
Direct switch control ensebing on output to to turned on Immediately or ster a specified time interval. Programme verification prog the to we on ty.

 Pu Ms - please specif when ordering Includes iss own mains supply.
MK16 Mains Powered li f Pransmite

MK 17122 I dee. IR RECENER
FO- use with MK 6 or MK.

 Ancillary Kite : Mik2 Solis State Relay
Ofro-isolated will zero -oblige switch

24 HOUR CLOCK/APPLIANCE TIMER KIT
(Kit includes all components, PCB, assembly
and programming instructions). ORDER AS CT50CO
254
 05 LED display, mons supple, Ready Built display drivers. switches. LED
tr aces. PCB
 Send S.A.E. for further STOCK DETAILS.
Goods by return subject to avallablliy.
OPEN. $\begin{gathered}9 \mathrm{am} \text { to } 5 \mathrm{pm} \text { (Mon to Fri) } \\ 10 \mathrm{~m} \text { to } 4 \mathrm{pm} \text { (Sat) }\end{gathered}$

No circuit is complete without a call to

Ingenuity Unlimited

A selection of readers' original circuit ideas. Why not submit your idea? Any idea published will be awarded payment according to its merits.

Each idea submitted must be accompanied by a declaration to the effect that it has been tried and tested, is the original work of the undersigned, and that it has not been offered or accepted for publication elsewhere. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.
Articles submitted for pubilication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not in the text

STEAM TRAIN "CHUFFER"

THIS circuit simulates the "chuff chuff" sound, with background steam of a train, synchronised to the speed of the model. The principle of operation is that the voltage on the track is used to control the period of an astable, which switches the gain of a noise generator.

The voltage from the rails is smoothed by C6 (Fig. 2) and limited from exceeding 12 V by D6. A minimum voltage is maintained across C6 by VR2, VRI and D7. VR2 is also used as a manual control. The voltage across C 6 is modified by IC2 (Fig. $5 b$) to enable the 555 astable to be controlled, by feeding the output of IC2 to pin 5 of the astable.

The timing chain on the 555 astable is fed from a 10 V supply, consisting of R24 and D8, so that when the output of IC2 is greater than 10 V (rail volts near zero), the 555 is gated off and no "chuffs" are heard (Fig. 3).

The audio circuit (Fig. 1) consists of TR 1, as a noise generator due to reverse breakdown, TR2 as an amplifier and IC1 as a switched amplifier controlled by the 555 astable. TR 5 switches the gain of IC1 according to the output of the 555 astable and gives a "chuff" rate which matches the speed well, as can be seen from Fig. 5 .

The power supply for this circuit is shown in Fig. 4 and it must be an independent 12 V transformer to enable matching to any type of train controller.

VR5 (Fig. 3) sets the maximum "chuff" rate, VRI (Fig. 2) sets the minimum voltage on C6 so that the 555 just gates off and VR3 and VR4 set the slope and level of IC2's output (i.e. Fig. 5b). The line of Fig. 5b is difficult to see correctly as VR3 and VR4 interact.

The speaker used was an 8 ohm 3 inch round type in series with 100R.
S. R. Woodall, Mangotofield,

Bristol.

Fig. 3

HIGH GAIN, HIGH FREQUENCYAMPLIFIERS

DURING experiments with a design for an induction balance metal detector, a need arose for an amplifier with a frequency response above 100 kHz , a completely stable gain in excess of 100, an input impedance around IOk, and a low output impedance. In addition a sharp roll-off was required below about 20 kHz , to ensure a complete lack of gain at 50 Hz and thus minimise hum pick-up.
The first circuit, Fig. 1, was based on a 748 i.c. This cannot provide a gain much over 20 at the frequency required on its own, so the gain was limited to just 10 with the local feedback resistors R6 and R7, and the BCl 09 was used to provide the rest of the gain required, including within an overall negative feedback loop to eliminate the effects of temperature, etc. R4 and R5 set the output d.c. working point (half supply voltage), R10 and R11 act as a potential divider to provide the correct bias voltage to TR1, R1 and R8 set the input impedance, and R9 sets the overall loop gain. With the values shown the circuit provided a voltage gain of approximately 220 and was completely stable, though care should be taken with layout.
This circuit may be of interest to some readers, as it has an extremly high gain and may be adaptable for other purposes, but after experiments with the much faster

NE531V op-amp the author has replaced it with a much simpler circuit (Fig. 2). This provides a frequency response above 150 kHz at a voltage gain of 100 , and the low frequency response is tailored by Cl and C2 to give a very sharp roll-off at about 30 kHz . At 50 Hz the gain is well below unity.
A. J. Flind,

Taunton,
Somerset

TELEPHONE BELL'

enclose a circuit which I hope will arouse some interest. It is a circuit for a telephone 'bell'. As it stands the tone generated by IC2a is switched on and off by IC2b. IC1 switches the whole circuit on and off. The resultant sound is the characteristic 'ring-ring . . ring-ring when adjusted properly. VRI controls the long pause. VR2 controls the mark-space ratio between the two close rings. The controls just have to be twiddled about until it sounds right. If either VR1 or VR2 is advanced too far, the "phone" will ring three times before the long pause! In fact, due to capacitors charging up, on the first series of rings it does ring four times then starts on the "ring-ring . . ." sequence. It should be noted, however, that the frequency given out to LS1 is not 25 Hz , but perhaps

E0570

2 kHz .
If 25 Hz is desired, the asterisked resistors should be raised in value or Cl should be raised in value. The components
asterisked change the short space between the rings.

Brian Craigie,
Edinburgh
bazman

WANTED Wireless World March 1979 Kenilworth 59491. S. C. Winsor.
UK101 8K cased together with cassettes player and p.s.u. Ready wired. Nearest £120. Tel: Wolverhampton 734448. Mr. R. Hillman.
ACORN ATOM 28K, word processor, via printer drive, buffers, sockets, utilities, software, only £220. Simon P. Moule, Spells Withinlee Road, Prestbury, Cheshire SK 10 4AU
1 HO new 2114 LP 200 ns chips. £ 125 o.n.o. Phone Pete between 6p.m. and 7p.m. on: (0509) 212138.

T158 programmable calculator with charger, manuals, master library module, plus unused applied statistics module. V.g.c. £40. Mr. A. J. Ward, 9 St. Andres Avenue, Crewe, Cheshire CW2 6JJ. Tel: (0270) 256165.
WANTED any circuit diagram and details of synthesiser, organs, vocoders, guitar effects, strings (simple or complex). Suha Ozay, Mithatpasa Cad. 1068/13, Guzelyali, Izmir/Turkey.
WANTED handbook or photostat instructions on use of AVO CT 155 calibrator unit. F. E. Holmes, 17 Rosemount, Oxton, Wirral. Tel: 051 6521162.

ZX81 WANTED with or without accessories. Good condition a must. All letters will be answered. Carl-Jonas Petersson, Storgatan 99. S-26200 Tingsryd, Sweden
SCOPEX 4D10A D/T Scope 10MHz bandwidth new boxed. £ 150 . SQ10 sin. sq. ose $10 \mathrm{~Hz}-1 \mathrm{MHz}$ new £50. Phone: 0418877117.
WATFORD Electronics expansion system. Mother board, cable f22. RAM board with 2 K £10. Sound board £15. Tel: Hemel Hemptstead 3040.

ADAR DR $12 / 20$ computer system memory tester with cassettes and few extras. Needs some attention. Maintenance manuals. Derek Poliey, 81 Beech Road, Horsham, Sussex. Tel: 040365548
VALVE voltmeter with diode probe f 50 or exchange for AVO model 8. Little used. A. Watson, 2 Masefield Ave., Padiham, Nr. Burnley, Lancs BB 12 8SY. Phone: Padiham 74114.
ACORN RAM/ROM board with 8K RAM. Edge connector and data sheet (fits ATOM) £50. Tel: 0277 822691. R. A. Austin.
CLEF 71 octave electronic piano fully built in white case. Needs amp, speaker £250. Buyer collects. Mr. B. Auty. Tel: Bath (0225) 833803 (Office). (O225) 834245 (Evenings).
TEXAN amp, P.E. F.M. Tuner, W.W. Dolby unit, Mullard amp units unused, Offers Rigby. Tel: Blackpool 691976.
ACORN Atom 12K RAM 12K ROM, colour, tool box ROM, with tape deck. Various tapes. Offers. Tel: 0252875696 . D. R. Horn
YAESU FRG 7000 shortwave receiver with v.h.f. converter and aerial. Little used $£ 200$ o.v.n.o. G. Ivey, Greenacre, Brittenden Lane, Waldron, Heathfield, East Sussex. Heathfield 4737.

SOLARTRON CT414 dual 7 MHz (new tube). signal and calibrated trigger delay, built-in crystal cal., manual, £40. Tel: 07605402.
ANTIQUE medical shocking coils and AVO valve tester for sale, working. Wanted, S32 scope circuit diagram. J. Glover, 1 Bryony Cotts, Hambledon, Godalming, Surrey GU8 4HJ. Tel: Wormley 4649.
2X81 16K Sinclalr built. Manual plus two books (inc. m/c.) p.s.u. 50 programs incl. QS Defender. £65. Stephen Renals, 58 Ivy Lane, Macclesfield, Cheshire SK11 8NU. Tel: Macclesfield (0625) 25618

COLLECTOR seeks very old British transistors Goód prices for rare specimens. Write for details. Mr. A. Wylie, 18 Rue de Lausanne, 1201 Geneva, Switzerland
UK101 8K cased with fan, sound generator, much software. Any offers? South Benfleet 54200. Guy Foster, 16 Moreland Close, South Benfleet, Essex SS7 4ER.
RADIO Electronics. Pliman two volumes $£ 7.50$ inc. p. \&p. Many other books from 25p large s.a.e details. G. A. Noble, 50 Crofthill Road, Slough, Berks SL2 1HF
UK101 8K cased separate p.s.u. 300-600 Baud 3 monitors. Cassettes manuals programs, must sell. Offers. David Baker, 1 Trinity Road, Scarborough, Yorkshire. Tel: 072378421 or 68786 work.
KEYBOARD 49 keys with contacis E20. Sinclair ZX80 perfect working order $£ 25$. Tel: 0416325408 (Glasgow). David Smith, 1076 Aikenhead Road, Kings Park, Glasgow.
MULTIMETER Russian incl, metal case, very accurate $£ 15$ incl. postage. 01-554 2913 evenings. Patel
TSR80 16 K lev. 2. Line printer. Acułab floppy tape unit. £120. Afternoon only, all three items only. Mr. R. Hall, 22 Stilwell House, Barncroft Close, Hillingdon, Middx UB8 3JN.
INVADERS/CAR and Galaxians pcb's 280 16K ROM colour sound with manuals ex. arcade games, offers. Norman Campbell 0517342425 , Merseyside.
MARCONI Sig/Gen a.m/f.m. TF99SA with manual working order. £100 o.n.o. Swap C/B equip, computer, freq. meter etc. Durham 712784. Mr. Kelly.

UK101 8K Cegmon BASIC-5 sound in-out. cased, joystick $£ 175$, sound in-out board $£ 15$ or swap w.h.y. Mr. M. A. Saunders, 7 Drumcliff Road, Leicester LE5 2LH

Introductory DPM Offer

A high quality digital panel meter complete with mounting bezel and application notes at a saving of $£ 4: 00$ each.

Ideal for many projects - multimeters, thermometers, etc - has low power LCD display and uses the advanced 7106 type A/D converter chip, als in an ultra-compact unit. Also features low battery warning.
Specification: Input 200 mV , Power supply 9 Vdc at 1 mA , Accuracy 0.15%, Bezel size $65 \times 35 \mathrm{~mm}$, Depth 16 mm .

AnDERS ELECTRONICS LIMITED
48-56 Bayham Place, London NW1 OEU.
Tel: 01-387 9092 Telex: 27364
Please send....OEM-2 DPM(s) at $£ 21.47$ each inclusive of bezel, VAT \& P\&P.
I enclose PO/Cheque No. \qquad for f
Name.
Address

Please allow 21 days for delivery. Offer closes 25th February 1983.

Send to: Flight Electronics Ltd., Flight House, Quayside Rd., Southampton, Hants SO2 4AD. Tel.: (0703) 34003/27721.

INCLUDING V.A.T. POSTAGE \& PACKING

THIS special offer is exclusive to PE readers and represents a substantial saving on the normal price. Just compare the specification and price.

It detects pulse widths down to 50nsec, repetition rates up to 10 MHz . Separate High and Low indicating l.e.d.s driven by dual threshold window comparators. Pulse stretcher lights I.e.d. on either edge. Memory mode latches l.e.d. for catching low rep-rate and oneshot events. Switch selects logic family threshold levels. Reverse and over-voltage protected.

SPECIFICATION

Pulse detect mode: High speed pulse train or single events (+ or transitions) activate $1 / 3 \mathrm{sec}$. pulse stretcher.
Memory mode: Latches pulse l.e.d. for catching low rep-events and one-shot events.
Input impedance: 100k
Logic thresholds (switch selectable) DTL TTL CMOS:
-Logic " 1 " thresholds (HI-LED): TTLDTL $2.25 \mathrm{~V} \pm 0.15 \mathrm{~V}$; CMOS 70% Vcc $\pm 10 \%$
-Logic " ${ }^{\text {" }}$ " thresholds (LO-LED): TTLDTL $0.80 \mathrm{~V} \pm 0.10 \mathrm{~V}$; CMOS 30% Vcc $\pm 10 \%$
Minimum detectable pulse width: 50 nsec.
Maximum input signal frequency: More than 10 MHz
Probe Power: 5 V Vcc, $30 \mathrm{~mA}, 15 \mathrm{~V}$ Vc 40 mA
Probe power protection: 36V max., with power leads reverse protection
Input overload protection: 100 V continuous, 117 V a.c. for 10 sec , 240 V a.c. for 5 sec .
Physical size ($L \times W \times D$) $180 \times 22 \times 22 \mathrm{~mm}(7 \times 0.87 \times 0.87$ " $)$
Weight 70g (2.47 oz)

Technical Training in Radio, Television and Electronics

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the field of electronics-now it can be your turn. Whether you are a newcomer to the field or already working in the industry, ICS can provide you with the specialised training so essential to success.

Personal Tuition and Guaranteed Success

The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed'

CITY AND GUILDS CERTIFICATES

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Basic Electronic Engineering (C\&G/ICS)
Radio Amateurs

CERTIFICATE COURSES

TV \& Audio Servicing TV, Radio and Audio Engineering
Radio \& Amplifier Construction
Electronic Engineering*
Computer Electronics*
Industrial Electronics*
Radio Frequency Electronics*
Introduction to Microprocessing*
Electrical Contracting \& Installation
-Qualify for IET Associate Membership

Member of ABCC

POST OR PHONE TODAY FOR FREE BOOKLET

[^3]
TERRIFIC VALUE!!!

We have a big store 10 clear. 100 tons of stock must 90 . 10 kilo parcel of unused parts, timers, thermal trips, relays, switches, motors, drills, taps and dies, tools, thermostats, coils condensers, resistors, sic. etc. Individually would cost you a fortuna

Y 11.50 plus $£ 3.00$ post IONISER KIT
Refresh your home, office, shop, work room, etc. with a negative ION generator. Makes you
feel better and work hard der - complete mains operated kIt, case Included £11.95 plus $£ 2.00$ postage
CAR STARTER/CHARGER KIT This kit has no doubt saved many motorists start cat oft mains or bring your battery up to full charge in a couple of hours. The kit com prises: 250 w mains transformer, two 10 amp bridge rectifiers, start/charge switch and
instructions. You can assemble this in an evening, box it up or leave it on a shelf In the garage, whichever suits you best.
Price: $\mathrm{ONLY} \mathrm{E} 12.50+\varepsilon 3.00$ pos $3-30 V$ VARIABLE VOLTAGE POWER SUPPLY UNIT
With 1 amp DC output, for use on the bench Automatic shore cireutt and overload protest ion. In case with abvolt meter on the front panel, Complete kit E13.80.
ZX81 OWNERS make yourself a full switches complete with plain caps. 6 f1.15
COMPUTER PRINTER FOR ONLY E4.95
Japanese made Epson 310 - has a self starting. bristles dive motor. Complete with electrondata. ONLY $£ 4.95$ plus $\mathbf{f 1 . 2 5}$ Post.

REVERSIBLE MOTOR WITH CONTROL GEAR
Made by the famous Frame Company this is a very robust motor, sleaze approximately 73" long, 3 $\mathrm{K}^{\prime \prime}$ dis, $3 / 8^{\prime \prime}$ shaft. Tremendous i powerful motor, almost impossible to stop ours ventlars it even garage doors adequately counter-bolanced. We offer the motor complete with control gear as follows:

- 1 Franco motor with gear box. - 1 manual reversing and on/off switch. - 1 push to stars limit ch. - stop stitches. - 1 circuit diagram of connections. £ 19.50 plus postage $£ 2.50$. SPIT MOTORS

Powerful mains operated induction motor with gear box attached. The final shaft is "h" rod with square hole, so you have s approx. $5 \mathrm{revs} / \mathrm{min}$. PRICE E5.50. Simile motors with final speeds of $80,100.160$ $200 \mathrm{rp.m}$. same price
8 POWERFUL BATTERY MOTORS (all different) Suitable for models, meccanos, drills,
remote con troll planes, boats, etc. $£ 2.95$ 12 VOLT MOTOR BY SMITHS Made for use in cars, these are series wound and they become more powerful as load increases. Size $3 Y^{\prime \prime}$ " long by $3^{\prime \prime}$ " die. These have a good length of $\overline{4}$ " spindle - price EXTRA POWERFUL 12 VOLT MOTOR
Made to work battery lawnmower, this probably develops up to $1 / \mathrm{h} . \mathrm{p}$., so it could
be used to power a $00 \cdot \mathrm{kart}$ or to drive a
 (This is easily reversible with our reversible
switch - Price E1.15).

TOROIDAL

The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidal offer in size, weight, lower radiated field and thanks to I.L.P., PRICE
Our large standard range is complemented by our SPECLAL DESIGN section which can offers prototype service within 7 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty.

$\star 294$ TYPES TO CHOOSE TR OM!
 * oRders despatched within 1 DITS OF RECEIPT FOR SINGLE OR SMALL QUANTITY ORDERS
 * 5 YLAR MO quibble guarantee

important: Regulation - All voltages quoted are FULL LDAD. Please add regulation ligure to secondary voltage to obtain off load voltage.
The benefits of ILP toroidal transformers
IL. P toroidal transformers are only halt the weight and height of their laminated equivalents, and are available with $110 \mathrm{~V}, 220 \mathrm{~V}$ or 240 V primaries coded as follows For 110 V primary inset " 0 " in place of " x " in type number
For 220 V primary (Europe) insen " 1 " in place of " x " in type number
For 240 V primary (UK) inset " 2 " in place of " X " in type number
How to order Freepost
Use this coupon, or a separate sheet of paper, to order these products, or any products from other it. Electronics advertisements. No stamp is needed it you address to Freepost. Cheques and postal orders must be crossed and payable to ILP Electronics Lid Access and Barclagcard welcome. All UZ orders sent within 7 days of receipt of order for single and small quantity orders.
Also availdste at Electrovalue, Maplin and Technomatic.
LLP Electronics. Graham Bell House, Roomer Close Canterbury Kent CT 2 7 CP.

Please send
Total purchase price
Postal Orders \square Int. Money Order
I enclose Cheque \square -
Debit my Access/Barclaycard
Name
Address

Signature
Post to: ILP Electronics Ld. Freeoost. 2 Graham Bell House, Roper Close Canterbury CT2 7EP, Kent. England
Peptone Sales (10227) 54778: Technical (0227) 64723 : Telex 965780
(a division of
ILP Electronics Ltd)

MODULES FOR SECURITY \& MEASUREMENT

PARNDON ELECTRONICS LTD.

Dept. No. 2144 Paddock Mead. Harlow. Essex. CM18 7RR. Tel: 027932700
RESISTORS: $\% / 4$ Wan Carbon Film E24 range $\pm 5 \%$ orlerance Hish qualliy restions made under strictly controlled conditions by automatic machines. Bandoliered £1.00 per hundred mixed. (Min 10 per value) £8.50 per thousand mixed. (Min 50 per value) Special stock pack. 60 values. 10 off each $\mathbf{\$ 5 . 5 0}$

0

DIODES: IN4148 3p each. Min order quantiry - 15 trems. \& 1.60 per hundred

DIL SWITCHES: Gold plated
programming problems
4 Way 86 p each 6 Way $£ 1.00$ each. 8 Way $£ 1.20$ each
DIL SOCKETS: Migh quality, low profile sockets
8 pin-10p. 14 pin-11p. 16 pin-12p. 18 pin-19p. 20 pin-21p 22 pin-23p. 24 pin-25p. 28 pin - 27p. 40 pin-42p

ALL PRICES INCLUDE V.A.T. \& POST \& PACKING - NO EXTRAS MIN. ORDER - U.K. E1 00 OVERSEAS ES CASH WITH ORDER PLEASE Same Day Despatch

If you find an ad unacceptable, don't turn the page: turn to us.

The Advertising Standards Authority. If an advertisement is wrong, we're here to put it right.
A.SA. Ltd., Brook House,Torrington Place, London WCIE 7HN

PHONOSONICS SUPER SONIC DIY KITS

MUSIC SUPER-KIT SERIES!

Basic functions plus a bit more! Self-contained but may be intercoupled. More are coming to altimately achieve a modular sound symthesss \& modification systems. See below for ordering.

SUPER-BOOST

Boost those outside depth \& range controls Super-Boost Treble
-SUPER-CHORUS
A superb chorus generator giving richer, fuller sounds to vocals and instrumentals making solos sound like a mutitude

SET-162 431.59

SUPER-CLEAN

Is hiss a problem! This could ctean it up nicely.
SET. 145 69.99
SUPER-FLANGE
An excellent Flan
Phasing as well.
SET-153 22.49
SUPER-FREEK!
Gen-purpose freq-generator with Sine, Sq. Tri, Ramp. Pulse \& variations. Switctable

SUPER FUZZ

Spiky fuzz with fringing effect. 3 controls. Fringing Balance, Ourput SET-135 © 12.99 SUPER-HUM-CUT
Humming badly? This steep notch fiker really surs tive or recorded hurm. Turable for
$25=100 \mathrm{~Hz}$
$\$ E T-141$ E11.43

SUPER-MICUP
Mic or guitar pre-amp with gain control \& Bass
\& Treb cut sw's.
SET. 14488.92 Ditto less tone sw's SET.147 E6.13 SUPER-MIX
Good generat purpose mixer with tone controks. PFL Echo-send. Monitor on exch channel. Specially designed so that as rrany inpur channels can be fed in to as many ourput channels as you need. with modular construction on each.

SET. 124 Details and price on application

SUPER-NOME

Variable metronome with audio-visual SUPER-PASS V ariable band-pass fiker with gain \& centre req contra,
SUPER-TONE
Tone controt for Bass \& Treb cua, gain. \& SUPER-TREM
SUPER-TREM A powerful tremoio with depth and rate
controls.
SET-136 $£ 10.71$ SUPER-VIBE
Vibrato with extra Phasing a Revert controis plus rate \& depth An amazing unit! SUPER-WAH
Wah-wah with auto \& manual controls.

VERY POPULAR - STILL AVAILABLE

GUITAR EFFECTS: 8 mode fiter a envelope shaper for most instruments GUITAR FREQUENCY DOUBLER: Orig \& doubled signals can be mixed GUITAR OVERDRIVE: Sophisticated Fuz with fiker \& shape controls PHASER: 6-stage automatic unit with variable speed control LOTS OF OTHER STILL POPULARKITS OF VARIO

SET-42 115.92
SET-98 611.75 SET-S6 $£ 21.17$ SET-75 611.77

COMPRESSOR
Restricts the speech level reaching the rig or amp from microphone. Helps avoid overloading and distortion.

SET-133-LS 612.37

ROGER TWO-GONG

wo-tone gong-like sound automatically actiated at the end of tansmission

SINGLE ROGER
Gives a single bleep of a preset duration and pitch when the microphone switch is released the end of transmission.SET- 127 -LS $\mathbb{1} 10.07$ SPEECH PROCESSOR
Dramatically improves the inteligibility of speech signals. We are making many sales on his directly because people have treard k on the air! SET.1 to-LS EII.77 VOICE FILTER
For limiting the frequency band-width that reaches the rig from the microptione, helping to reduce background noise. Six selectable ranges plus by-pass. SET-131-LS C12.97
VOICE OPERATED SWITCH
Release your hands for other things let your voice do the switching for you! SET 23 -LS E13.80
CB POWER SUPPLY
From the mid-range of 13.8 volks, can be set anywhere between about 10 V and 16 V at approx. 300 mA , 'deal for driving all these vari-SET-130-LS Ci3.85

CONNECTORS AVAILABLE
4-pin chassis-socket SKT-SC4 46p plus P\&P 5 -pin 180° DIN chas-ske SKT-KS 16 p plus P\&P Std mono plas chas-skt SKT-US 28p plus P\&P If connertors ordered with kits in this ad. no P\&P charge, eise add 60 p to total cost

Prices include UK P\&P \& 15\% VAT. Sets incl PCBs, electronic parts, Instructions. Most also incl knobs, skts, wire, solder, box. Batteries not Incl but most will run from 9V to ISV DC supplies. For more info send S.A.E. $(9 \times 4$ or bigger) for catawgue. Prices correct at press E\&OE
Despatch usually 7 days on most items. Payment CWO mail order or collection by appoimment. Tel. O1-3026184. Mon-Fri. Access. Barclay accepted Exports Sterling payment please. Export list CI.

WRONG TIME?

MSF CLOCK is ALWAYS CORRECT - never gains or loses, SELF SETTING at switch-on, 8 digits show Date, Hours, Minutes and Seconds, auto GMT/BST and leap year, also parallel BCD output, receives Rugby 60 KHz atomic time signals, built-in antenna, 1000 Km range, RIGHT TIME, £69.60.
GOKHZ RUGBY RECEIVER, as in MSF Clock, serial data output for computer etc, decoding details and $\mathrm{ZX81}$ listings for LOCAL, GMT and SIDEREAL time, £22.20.
V.LF? EXPLORE $10-150 \mathrm{KHz}$, Receiver $\mathbf{~ 1} 19.40$.

200KHZ CONVERTER, for any Medium Wave receiver, £19.80.
Each fun-to-build kit includes all parts, printed circuit, case, postage etc, instructions, money back assurance so GET yours NOW.

CAMBRIDGE KITS

45 (FN) Old School Lane, Milton, Cambridge.

MONITORS

HIGH RESOLUTION ~ AND LOW COST!

Either cased or open frames to OEM's. The specification is right, the price is even better.

Phone or write to our Sales Manager, Richard Cox, for immediate action.

CROFTON ELECTRONICS LTD
35, Grosvenor Road, Twickenham, Middx, TW1 4AD
Telephone: 01.891 1923/1513 Telex: 295093 CROFTN G

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay

AERIALS

aERIAL BOOSTERS Trebles incoming signal, Price $£ 7.00$. SAE eaflets. VELCO ELECTRONICS, Ramsbottom, Lancashire BLO 9AG

RECEIVERS AND COMPONENTS

BOURNEMOUTH/BOSCOMBE Electronic components specialists for 33 years. Foresters (National Radio Supplies), Late Holdenhurst Road. Now at 36, Ashley Road, Boscombe. Tel. 302204 . Ciosed Weds.

I \& J ELECTRONIC COMPONENTS - Quality components, competitive prices. Illustrated Catalogue 45p. 98 Burrow Road, Chigwell. Essex.

TRÁDE ONLY. Surplus/iquidators components eic. Silly prices. Lisis: Bardwell Lid. 288 Abbeydale Road. Sheffield S7 JFL
MUEO METAL FILM RESISTORS 100: 80p, 1000: $£ 5$. Cermet potentiometers 10 mixed f 1 . Low profile sockets 24 pin 15 p . P\&P 40p. S.A.E. for lists. T. Milner, 203 Goodman Park, Slough, Berkshire.

SMALL ADS

The prepaid rate for classified advertisements is 34 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 11.20$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Banks Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Practical Electronics, Room 2612, IPC Magazines Limlted, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing
for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

SILLY SEMICONDUCTOR SALE

ITT BC183 transistors. 4p each. 10 for 30p ITT IN4002 diodes. 3p each. 10 for 25p OPTRON Type OP160 infra red diode. High peer out put. Spectrally and mechanically matched to the OP500 and OP500SL series photo transistors. Price 40 p each. 3 for $\mathrm{£1}$.
Data sheet if required 10p extra.
AIRLITE HEADSETS with Boom Mike. Must have cost a fortune. Our price $£ 4.50$ per pair. p.p. $£ 1.2$ pairs for $\mathbf{f} 9$ post free. Less Boom Mike $\mathbf{£ 4}$ per pair. Pp. E 1 pairs c_{3} pcst free. AMPLIVOX HEADSETS with Boom Mike £4.50 per pair. Postage £1. 2 pairs $\mathbf{C 9}$ post free. Less Boom Mike £4 per pair. 2 pairs $\mathbf{\Sigma 8}$ post free. All headphones fitted with ex-Ministry plug. Standard jack plugs available 25p each. 2 to $40 p$. Headphone extension sockets available at 25p each. 2 for $40 p$ Impedance of first 2 Headphone 600 ohms. All headphones in good condition GENUINE AFV TANK HEADSETS and MIKE $\mathbb{E 3 . 5 0}$ each. p.p. £1. 2 pairs for $£ 8$ post free.

RIDICULOUS RESISTOR SALE

I watt carbon film resistors. 5\% tol. High quality resis tors made under exacting conditions by automatic machines. E12 range 1RO to 10MO. Lot A, 1000125 per value) £8. Lot B, 500 (25 per value) $\mathbb{E 4 . 2 5}$. Lot C, 100 (25 per value) ' 90 p . Orders over $\mathrm{E5}$ post free. Otherwise postage 15 p in E 1 .
BRIDGE RECTIFIERS. (Philips) 400 PIV. at 4 amp Well made. Should be over $£ 2$ each. Our price 90p p.p. 20p.

HAVE YOU SEEN THE GREEN CAT? 1000 s of new components, electronic, radio, audio, at unbelievabh ow prices. Send 500 and receive catalogue and FRE RECORD SPEED INDICATOR. Try a JUMBO PACK Contains transistors, resistors, caps, petal switches 5io and electronic devices. Over ($£ 50$ worth) fo E11. Carr. and packing E2.50. MINI JUMBO PACK Worth) for $£ 5$ p.p. $£ 1.50$
PLEASE ADD 15% VAT to all orders including car riage and p.p.

MYERS ELECTRONICS
Dept P.E., 12-1el Leeds 452045
New retail premises at above address (opposite Corals). Callers welcome 9 to 5 Mon. to Sat. Sunday 10 till 3 pm

MAIOSTONE HAS ITS OWN component shop. Thyronics Con trol Systems, 8 Sandling Road, Maidstone. 675354

electronic components. merseysioe myca elec TRONICS, 2 Victoria Place, Seacombe Ferry, Wallasey, L44 6 NR . Mail order send 50 p for price list refundable off first order. 051-638 8647.

BIG BARGAIN BOX

Our Big Bargain Box contains over a thousand com ponents - resistors, capacitors, pots. switches diodes. transistors, panels, bits and pieces, odds and ends. All useful stuff - would cost many times the price we are asking if bought separately. Approx weight 4 lbs . ONLY $\mathbf{e 5 . 0 0} \mathrm{inc}$. post - you're bound to come back for anotherll

ESP, 174c FOUNDRY LANE
 SOUTHAMPTON, SO1 3LS

Lots of surplus bargains on our latest list - send an SAE for your copy now

300 SMALL COMPONENTS, Transistors, Diodes $£ 1.70$. 71 bs assorted components $£ 4.25$. 101bs $£ 5.75$. Forty 74 series ICs on panel $£ 1.70 .500$ capacitors $£ 3.20$. List 20 p refundable Post 60p, optional insurance 20p. JWB RADIO, 2. Barnfield Crescent, Sale, Cheshire M33 INL.

TURN YOUR SURPLUS capacitors, transistors, etc. into cash Contact COLES HARDING \& CO. 103 SOUTH BRINK, WISBECH, CAMBS. TEL: 0945 ' 584188 . Immediate senlement.

THE AMAZING PRACTICAL ELECTRONICS
 MINIATURE SCORPIO

CAR IGNITION
AS PUBLISHED IN FEBRUARY 1982
PE

PRICES INC VAT, P\&P

ALL PARTS AVAILABLE SEPARATELY, S.A.E. FOR LIST Fibreglass PCB Easy to Install Neat and Compact Robust Die-Cast Case Capacitive Discharge Full Circuit Protection High-Power Inverter Full Bounce Suppression Positive or Negative $\stackrel{+}{\top}$

Simply THE BEST of BRITISH from:

Microstate Limited, 5 Northfield Close, Fernhill Heath, Worcester, WR3 7XB.
Full kit of parts, including drilled case and wound transtormer, only $£ 16.75$
Assembled kit, fully tested, $\mathbf{£ 2 4 . 5 0}$

EDUCATIONAL

CAREERS IN MARINE electronics. Courses commencing
September and January. Further details. The Nautical College, Fleetwood FY7 8UZ. Tel 0391779123.

TELEVISION COMPUTER RADIOCOMMUNICATIONS \& RADAR SERVICING

$2 \frac{1}{3}$ YEAR full-time Modular Diploma course to include a high percentage of practical work.

- ELECTRONIC PRINCIPLES (1st)
- ELECTRONIC PRINCIPLES (2nd)
- monochrome TV
- COLOUR TV, CCTV \& VCR
- MICROELECTRONICS \& DIGITAL TECHNIQUES
- MICROPROCESSORS \& COMPUTERS
- RADIOCOMMUNICATIONS \& RADAR

Each of the above Modules are 13 weeks in duration. Individual Modules can be arranged for applicants with suitable electronics bāckground.
Subject to approval, students will be awarded a TEC Diploma in Electronics 8. Communication Engineering on completion of the full course.

Next session starts January 10th.
Prospectus from

LONDON ELECTRONICS COLLEGE

Dept: AA, 20 Penywern Road, London SW5 9SU. Tel: 01-3738721

COURSES

CONQUER THE CHIP
Master modern electronics the PRACTICAL way by SEEING and DOING in your own home. Write for your free colour brochure now to British National Radio \& Electronic School. Dept C2, Reading. Berks RGI IBR.

SERVICES

DISASSEMBLED PRINTOUT from single/3 rail Eproms; 8080/85, 6502, 280 codes. $£ 1 / \mathrm{K}$. Programming your Eprom from listing $£ 2.50 / \mathrm{K}$. Small mods. $10 \mathrm{p}+1 \mathrm{p}$ /byte. Copy Eproms $50 \mathrm{p} / \mathrm{K}$. My Eprom Add $£ 2.50$, UK 101 BASIC modified, (proper error reports): BASIC 3 modified. (handles dimensioned string arrays): £6 each. Erasing free with programming, otherwise 10 p/chip. P\&P 30p, free for orders $£ 6$ \& over. Test/repais/modify Triton, UK 101. Nascom kits. Other services considered. Dunstable (0582) 600913

FOR SALE

WHARFDALE 12" DIA. 14000 lines $10-15$ ohms. $£ 30$ on. o Colchester 862677.

PSU'S 5V3A £1.9.99, 5V5A £26.99, 1.30V 1.5A £26.99, 5A £32.99 inc. pkp. Sae lists. Edwards Electronics (JC), Unit 3, Mill Lane, Bridgwater, Somerset.
PEs MARCH 1970 TO OCTOBER 1979.3 missing, mint condition Offers Longfield (Kent) 3197. Buyer collects

PC LAMINATE, S.S. 50 p sq. foot, D.S. 75 p sq foot, 30 p p\& p per sheet. Offcuts mixed $£ 1.50$ kilo plus $£ 1.50$ p\&p CWO. G COOPER, 32 Garthfield Crescent, Westerhope, Newcastle upon Tyne NES 2LY

STORE 1OM BYTES on surplus magnetic tape units and search your database using a micro. Circuits, program and demonstration arranged. Tel: 0246811243.

PACK OF TWO BNC 750 HM plugs $£ 1.20,27$ vdc 4 pole (main 'Continental' type). Change over relay $£ 1.20$. Coax change over relay 9 vde $£ 4$. All prices include V.A.T. \& postage. Send SAE for list. AFR Electronics, School Lane. Moulton. North ampton.

PRACTICAL ELECTRONICS P.C.B.'s 1.5 mm fibreglass, drilled and solder resist coated. SAVE MONEY - Boards PRINTED ONLY ready for own etching and drilling send S.A.E. for price list. LECTROPRINT, 17 Showell Road, Bushbury, Wolverhampton, West Midlands. Tel. 0902721805.

MISCELLANEOUS

CLEARING LABDRATORY: scopes, generators, P.S.U's, bridges analysers, meters, recorders, etc. 0403-76236.

ULTRASONIC TRANSOUCEAS, MINIATURE. $40 \mathrm{KHz} \mathbf{£ 2 . 8 5}$ per pair +25p P \& P. Dataplus Developments. 81 Cholmeley Road. Reading, Berks

PARAPHYSICAL JOURNAL (Russian Translations): Psycholronic Generators, Kirlianography, Gravity Lasers, Telekinesis. Details SAE $4 \times 9^{\prime \prime}$ PARALAB. Downton. Wilts.

BURGLAR ALARM EQUIPMENT. Ring Bradford (0274) 308920 for our Catalogue or call at our large showrooms opposite Odsal Stadium.

Centurlow ALABMS

We manufacture, you save £££'s Send s.a.e. or phone for our free list of professional D.I.Y. Burglar Alarm Equipment and accessories
Discount up to 20% off list prices, e.g. Control Equipment from £15.98, Decoy Bell Boxes from $£ 5.95$ inc

2 0484-21000 or 048435527 (24 hr .ans.) CENTURION ALARMS (PE) 265 Wakefield Road, Huddersfield Access 5 Visa

MAKE YOUR OWN PRINTED CIRCUITS Etch Resist Transfers - Starter pack (5 sheets, line Etch Resist Transfers - Starter pack (5 sheets, lines,
pads, I.C. pads) $\mathbf{2} 20$. Large range of single sheets in pads, I.C. pads) E2.20. stock at $45 p$ per sheet.
Master Positive Transparencies from P.C. layouts in magazines by simple photographic process. 2 sheets negative paper, 2 sheets positive film (A4) £2.25 Phero-resist spray (200 mi) 2.90 ($p+p$ 65p). Draf ing FIlm (A4) 25p. Precision Grids (A4) 65p. 22 p stamp for lists and information. P\&P 50p per order except where indicated.

OAK LOOGE, TANSLEY, DERBYSHIME,

ANY PUBLISHEO. FULL SRE SERVICE SHEET by return $£ 2+$ L.S.A.E. CTV/Music Centres $£ 3$. Repair data with all circuits. layours etc, Your named Tv or Video 88.50 . Free 50 p mag. All orders, queries - T1S (PE), 76 Churches, Larkhall, Lanarkshire

PERSONAL

WE RRE LOOKING for a clever character to sheck over and recalibrate about 10 or 12 AVO MODEL 8 Test Meters. These are brand new. ex WD, but for some reason have failed their entrance examination. Will provide workshop manual. Anyone interested? London area preferred. Burgess Lane \& Co. Lid. Telephone 01.9945752.

SERVICE SHEETS

BELLS TELEVISION SERVICES for Service Sheets on Radio. TV. elc $£ 1.25$ plus S.A.E. Colour TV Service manuals on request. S.A.E. with enquiries to B.T.S. 190 Kings Road. Harrogate. N. Yorkshire. Tel. (0423) 55885

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS
Please insert the advertisement below in the next available issue of Practical Electronics for
insertions. I enclose Cheque/P.O. for $£$.
(Cheques and Postal Orders should be crossed Lloyds Eank Lid. and made payable to Practical Electronics)

Send to: Classified Department.

PRACTICAL ELECTRONICS

Classified Advertisement Dept, Room 2612
King's Reach Tower, Stamford Streat
London SE1 9LS. Telephone 01-261 5846
Rate:
34p per word, minimum 12 words. Box No. 60p extra.
Company registered in England. Registered No. 53626. Registered Office: King's Reach Tower, Stamford Street, London SE1 9LS.

UK prices are shown first. The bracketed prices are export prices which include thsured air-mal postage to alt the countres of Europe including Norway. Sweden Finland and Europe an extra 45 postage per itent is Europe an extra $\mathbf{C S}$ postage per itent is
charged. $\mathbf{Z X 8 t} \mathbf{C 4 3 . 4 3}$ (C5i). $\mathbf{Z X}$ Princer 652.13 (661). ZX spectrum 16K ©152 (C160). ZX Spectrum 48K 6202 ($\mathrm{C210}$) ZX Mikrodrive $n / a(n / a)$. ZX RS232 $n / a(n / a)$. 5 printer rolls 610.43 (C16). Ram packs- 16K ©26.04 (128), 32 K ©39 (C41), 56 K C49 (C51).

DRAGON 32 CITS.

COMMODORE COMPUTERS Commodore 64 C299. Vic 20 \&130. Kit to allow the use of an ordinary cassette recorder 66. Vic 20 cassette recorder 436.50. High resolution graphics cartridge ©27.95. We stock most accessories

GENIE COMPUTERS
New colour Genie C173.50, 16K ram card C44. Light pen C15. Accessories for Genie and Genve 2-EG3014 32K C189. Disc drives single C199, dual 6369. Double density con vertor $\mathbf{6 7 2}$. High resolution graphiks $\mathbf{6 8 2}$ Printer interface 136

UKIOI AND SUPERBOARD
32×48 display expansion kits UKIOI 69 Series I Supertoard 14.32 K memory expan sion board 660 . Cegmon 622.50 . Word processor prog 610 . Centronics interface kit $\& 10$. Cessor prog Elive Centronks interface kit ClO ble cals. Stand alone foppy disc controller c85.

PRINTERS

Buy any of the below and get a free interface kt and word processor program for UKIOI or Superboard. Epson MX80FT3 ©330. Epson MX80T3 6310. Epson MXI00/3 6429. Seikosha GPIOOA E189. OKI Microline 80 ©235. OKI Microline 82A 6333. OKI Microline 33A 6446. OKI Mkroline 846742.

SV POWER KITS
Fully stabilized 5 V computer and TTL power kits. 1.5 A [7.83, 3A $\{12.17$, 6A 620.87

SHARP COMPUTERS
We can supply Epson M×80 and M×100 printers to run direct from the MZ8OK (i/o box not needed) for 439 plus printer price. We also specialize in interfaing printers to the MZ80K. MZ80A and MZ80B both with and without the i/o box.

SWANLEY ELECTRONICS

Dept. PE, 32 Goldsel Rd.
Swanley, Kent BRB BEZ
Tel. Swanley (0322) 6485
Pleose ollow 7 doys for deliven

Postage $\mathbb{C l}$ an Sinclair produces (UK), $\mathbf{6 3 . 5 0}$ on other computers, 64.50 on printers ond 50 p on other computers. E4.50 on primers ond Sop on credit and overseas orders welcome

"One of the neatest, most comprehensive and most useful of these car computers that we have yet come across

Practical Motorist

* Economy - save petrol by improving your driving technique and Improving the tuning of your car.
* Performance - dynamic checks on timing to Improve performance and economy.
* Security - pretect your car by disabling the ignition. Enter a per sonalised combination to restart.
* Attractive, easy to fit, easy to operate - comes complete with all parts needed. Full instructions provided.
\# Imperial or metric read outs.
The PE car computer has been specifically designed as an integral part of your car dashboard. Using highly accurate speed and petrol flow sensors it allows you to improve the fuel efficiency of your car by providing information on fuel consumption and tuning.
In all over 30 functions including instant and average miles per gallon (or litres per 100 kilometres), estimated time to arrival, fuel needed to complete a journey, speed needed to meet an arrival time, acceleration tests, standing quarter miles and many more.
PE car computer:
Complete kit of parts: $\mathbf{~} \mathbf{7 8 . 5 0}$
All prices include VAT. Allow $£ 1$ post \& package. Goods by return. Send S.A.E. for list of separately available parts.

PIMAC SYSTEMS LTD
20 Bloomfield Road, Moseley, Birmingham B13 9BY. Tel: 021-449 0384

STORAGE CABINETS

Steel cabinets
$12^{\prime \prime}$ wide $\times 5^{23}$ " $\mathrm{deep} \times 22^{\prime}$ high finished blue with clear plastic drawers.

Available units:-
Type
2260 Drawers
2248 $48 \times$ B
2224 $24 \times$ C

Type
2216
2216.
2208. 2236
$30 \times \mathrm{A} 4 \times \mathrm{D}, 2 \times \mathrm{E}$

ONLY	each cabinet
(inc. p\&p	
and VAT)	

MILLHILL SUPPLIES
Access/8arclaycard cheque/PO to:-

INDEX TO ADVERTISERS

Maplin Electronics	\cdots	Cover 4
Microstate Ltd.	.	.. 70
Midwich	\cdots	-. 49
Millhill Supplies	.	.. 72
Modern Book Co.	.	- 10
Myers Electronics	.	.. 70
Open University	.	.. 19
Parndon Electronics		8
Phonosonics	,	. 69
Pimac Systems	.	- 72
PKG Electronics	.	71
Powertran	.	Cover 2
Radio Component S	alists	73
Radio \& T.V. Compo		.. 50
Rapid Electronics	.	. 14
Riscomp Ltd.	.	.. 68
Scientific Wire Co.	.	70
Sinclair Research	.	8,9
Sparkrite	.	55
Swanley	\cdots	72
Technomatic Ltd.		Cover 3
Tempus	.	56
T.K. Electronics	\cdots	61
Videotone	.	35
Watford Electronics	..	2,3
Wilmslow Audio	\cdots	12,68

ambit's new autumn/winter catalogue

ALL THE ‘USUAL’ BITS (Rs, Cs, Tr's, ICs etc) + ALL THE
TRICKY BITS

at all good newsagents or direct

* TOKO COILS, INDUCTORS, LC FILTERS
* PCM FILTERS, VHF/UHF HELICAL FILTERS
* UNELCO CAPACITORS
* PCI INTELLIGENT LCD MODULES
* TOKO SWITCHES : F SERIES/R7000 SERIES
* ALPS POTENTIOMETERS AND

KEYSWITCHES

* TOYO-TSUSHO COAX RELAYS FOR TX/RX
* CRYSTAL FILTERS, CERAMIC FILTERS
* WELLER SOLDERING IRONS
* COOPER TOOLS
* TEST EQUIPMENT
* BOOKS, MANUFACTURERS' HANDBOOKS
* HARDWARE, CASES, PANELWARE, ETC.
* MODULES, R\&EW KITS
* RF POWER DEVICES

ORDERS SUBMITTED USING STOCKCODES

DESPATCHED WITHIN 8 WORKING HOURS

* PHONE ORDER SERVICE - (NO MACHINES!)

PLEASE NOTE OUR NEW PHONE SYSTEM AUTOMATI'ALLY STACKS CALLS
IN ORDER OF ARRIVAL SOPLEASE WAITII MIT ANSWI RI DIMNIIIATFLY

$$
\begin{gathered}
8 \mathrm{AM}-7 \mathrm{PM} \text { MON - SAT } \\
0277230909
\end{gathered}
$$

* COMPUTER ORDER SERVICE - 'REWTEL' 6 PM - 9 AM 300 BAUD/RS232 (IT MAY BE 24 HRS BY THE TIME YOU READ THIS) 0277230959

Technomatic Lid 01-452 1500 01-450 6597 CONNECTOR SYSTEMS

	h	SPECIAL OFFER	h		
	$1-24$	$25-99$		$1-24$	$25-99$
$2114 L-450$	$80 p$	$75 p$	2732	$375 p$	$360 p$
$4164-2$	$450 p$	$430 p$	$4116-200$	$80 p$	$75 p$
$2716(+5 V)$	$250 p$	$225 p$	$6116-150$	$410 p$	$375 p$
2532	$350 p$	$335 p$	6522	$310 p$	$300 p$

OFFICIAL
MODEL '8' $£ 399$ (ins. VAT) (Carr. EB/unit)

	ACORN DISC DRIVES	DISC INTERFACE f 70
8, 4816 AP-3 100ns C.71-50	SINGLE DRIVEIIOOK)	PRINTER \& USER PORTS
	[235 + En cosir	1669.70. 71 , Pl9, 10¢9.50
	OUal DRive (80k)	printen leaocomplete 1350
ANALOGUE PORT	¢799+ 66 cm	RS423 \& VDU PORTS
1C72.P16 ¢7.30		IC 74,75.5K38.4 40.80

ALL MATING CONNECTORS \& CABLES AVAILABLE SEND FDR OUR 8BC LIST

PRINTERS

NEC PC 8023 BE

80 col. 100 cps dot matrix printer, Bi-directional. Logic Seeking, Forward \& Reverse Line Feed. Hi Res \& Bloch Graphics. Proportional Spacing. International and Greek character sets. Auto underline. Friction/tractor selectable. $£ 325+£ 8$ car.

EPSON MX80 FTT 3 and EPSON MX100 FTT 3

Dot matrix printers. Bi-directional, Logic Seeking. Auto Underline. Bit Image Printing. Super \& Sub- scripts. 80 col. 8 cps $£ 325+£ 8$ carr. 136 col 100 cps
$\mathrm{f} 430+\mathrm{ElO}_{10}$ car SEIKOSHA GPIOOA
80 col. 30 cps dot matrix printer. High Res Graphics - Std \& double width chatacters $\mathrm{f} 185+66$ cart

MONITORS

BMC BM 140114^{n} Colour Monito
RGB Input 18 MHz bend width $\mathbf{E} \mathbf{2 4 0}+\mathrm{CB}$ car
SANYO $12^{\prime \prime}$ Green Monitor Anti-glare Screen $\mathbf{£ 9 9}+\mathbf{f 6}$ cart MICROVITEC 1431 M/S $14^{\prime \prime}$ Colour Monitor RGB input
$\mathbf{~} 269+\mathbf{f} 8$ carr.
RGB Lead Iol BMC © 8 . Composite Video Lead $£ 350$.

SOFTY II EPROM PROGRAMMER

The complete microprocessor development system for both Engineers and Hobbyists. You can develop programs, debug. verify and commit them to EPROMs. Will accept most +5 V EPROMs. Can also be used as a ROMULATOR. Full review in September 81 PE Built unit complete with PSU and TV lead f 169.

MICROTIMER

6502
BASED PROGRAMMER
CLOCK TIMEA
PRICE FOR KIT $£ 57.00$

* 224 switching times/week cycle $\star 24$ hour 7 day timer $\geqslant 4$ in dependent switch outputs directly interlacing to thy ristor/tiacs * 6 digit $\mathbf{7}$ seg. display to indicate real time, ON/OFFF and Reset times - Output to drive day of week switch and status LEDS. Full details on request

RUGBY ATOMIC CLOCK

This 2-80 micro controlied clock/calendar receives coded time data from NPL Rugby. The clock never needs to be reset. The facilities include B independent alaums and for each alarm there is a choice of melody or athermatively these can be used for electrical swithing. A separate timer allows recording of up fo 240 lap times without interruptiang the count. Expansion facilities provided. See July/August ETI tot detalls. Complete hit $\mathrm{f} 120+£ 2 p .8 p$.

Post this coupon now for your copy of our 1983 catalogue, price $f 1.25+25$ p p\&p. If you live outside the UK send $£ 1.90$ or 10 International Reply Coupons. I enclose $£ 1.50$.

Name
Address

P.O. Box 3 , Rayleigh, Essex SS6 8LR

Telephone: Scuuthend (0702) 552911./554155
Shops at.
159-161 King Str 3et, Hammersmith, London W6 Tel: (01) 7485926 Lynton Square, Perry Barr, Birmingham. Telephone: (021) 356 ;292 284 London Road Westcliff-on-Sea, Essex. Tel: (0702) 554000 All shops c/ased Mondays

[^0]: (c) IPC Magazines Limited 1983. Copyright in all drawings, phatographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: LIIESTIMPEDFEESTNGA COMPAESOIIERNGKII - 5 TURNIMNM Contains
 all you need
 to solder/de-solder
 any electronics project:
 LITESOLD LC18P 240v high performance iron, made to professional standards in our own works, fitted with 3.2 mm bit. 2 alternative bits, 1.6 and 2.4 mm . Reel of 3 metres 18 swg flux-cored solder. Stainless steel tweezer. 3 soldering aids. Reel of 1.5 metres de-soldering braid. Packed in clear PVC presentation/storage wallet. Superb present - ideal for beginner or expert
 SPECIAL PRICE - $£ 13.95$ inc. VAT \& P.P
 (normal resale value £17.49 inc.) IRON only-£5.66 inc. (normally £6.92).
 Spares, accessories and after-sales service available from us
 16 -page colour catalogue - 60p. Send cheque/P.O. to LITESOLD or ring for Access/
 Barclaycard

 Spencer Place, $97 / 99$ Gloucester Road, Croydon CRO 20N, Surrey. Tel: 01.6890574

[^2]: Letters and Queries
 We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in PE. All letters requiring a reply should be accompanied by a stamped, self addressed envelope, or addressed envelope and international reply coupons, and each letter should relate to one published project only.

 Components and p.c.b.s are usually available from advertisers; where we anticipate difficulties a source will be suggested.

[^3]: Please send me your FREE School of Electronics Prospectus
 Subject of Interest
 Name
 Address

 Post to:
 Dept C273
 ICS School of Electronics
 160 Stewarts Road
 London SW8 4
 London SW8 4UJ

