PRACTICAL

NOVEMEER 19E2

Man-made music

 T20 + 20 - Designed by Texas Engineers, this 20 watt amplifier gives Hi Fi performance at low cost. Many up-dated features and the ideal beginners kit. Complete kit $£ 29.50$ plus VAT (30 watt version - Complete kit ©34.50 plus VAT)

LINSLEY HOOD 75 DE LUXE - 75 watt amplifier with superb performance (less than . 01% distortion). Easy construction with virtually no wiring. Complete kit E 75.00 plus VAT.

For over $\mathbf{2 0 0 0}$ years man has entertained himself and his friends with music played upon instruments he has fashioned with his own hands. From the earliest pipes of hollow reed in the cradles of civilisation, the brazen trumpets of ancient Rome, to the subtle strings of renaissance Europe. Pleasure in the making - Pleasure in the playing and Pleasure in the listening.

Now - in the 1980's its the turn of the electronics age, the age of Powertran.

In our twelve years of research and development we have introduced probably the most comprehensive and sophisticated range of synthesisers and supporting equipment ever offered to the music making, home-constructor.

Each kit is a perfect example of how craftsman-made components, ingenious design technology, originality of concept - and rigid quality and price control - combine together in kits that are both fascinating and satisfying to construct. Our clear step by step instruction manuals ensure that the kits are well within the capability of the first time builder as well as the dedicated enthusiast.

Once you've made your Transcendent Synthesiser you will be able to make the music of all the ages - from the earliest sounds of the simple pipe, through the most complex harmonies, to the most modern tonalities of Stockhausen ... or Steel Eye Span!

TRANSCENDENT POLYSYNTH - A four octave polyphonic synthesiser with outstanding design characteristics and versatility and performance to match.

Complete kit $£ \mathbf{2 7 5 . 0 0}$ plus VAT (single voice) Extra voice (up to three more) $£ 42.00$ plus VAT
EXPANDER - A new matching 4 voice expander to team up with your polysynth for even a greater range and capability.

Complete kit $£ \mathbf{~} \mathbf{4 9 . 0 0}$ plus VAT
TRANSCENDENT DPX - Offers a five octave keyboard with power to match. Two audio outputs (can be used simultaneously) to give harpsichord and piano/honkytonk or reed with strings/brass and both are fully polyphonic. Other features include switchable touch sensitivity and a chorus ensemble unit with strong/mild effect switching. An advanced design made simple with our clearly laid out instruction manual.

Complete kit $£ 295.00$ plus VAT
TRANSCENDENT 2000 - Although only a 3 octave keyboard the ' 2000 ' features the same design ingenuity, careful engineering and quality components of its larger brethren. The kit is well within the scope of the first time builder - buy it, built it - play it! You will know you have made the right choice.

Complete kit $\mathbf{£ 1 6 5 . 0 0}$ plus VAT
1024 COMPOSER - Come right up to the minute with this new design. It will control your synthesiser with a sequence of up to 1024 notes - or an equal selection of shorter sequences. The Composer is mains powered with automatically charged battery to preserve your programme after switch-off. Complete kit 885.00 plus VAT
DEMONSTRATION TAPE - Demonstration tape now available of all three kits (30 minutes)

POWERTRAM WORLD LEADERS IN ELECTRONIC KITS

PORTWAY INDUSTRIAL ESTATE ANDOVER. HANTS. SP10 3WN. TELEPHONE (0264) 64455

- PRICE STABILITY: Order with confidence irrespective of any price changes we will honour all prices in this advertisement until the end of the month following the month of publication of this issue (Errors and VAT rate changes excluded)
- EXPORT ORDERS: No VAT. Postage charged at actual cost plus $£ 1$ handling and documentation.
- U.K. ORDERS: Subject to 15% surcharge for VAT, or at current rate if changed. No charge is made for carriage. Cheques, Access, Barclaycard accepted.
- SECURICOR DELNERY: For this optional service (U.K. mainland onty) add £2.50 (VAT inclusive) per kit FREE ON ORDERS OVER £100.
- SALES COUNTER: If you prefer to collect kit from the factory, call at Sales Counter. Open 9a.m. -
12 noon, 1-4.30p.m.
Monday - Friday.
CONSTRUCTIONAL PROJECTS
MICROCONTROLLER Part 1 by M. Tooley BA and D. Whitfield MA MSc 20
Introduction and circuit description
ULTIMUM Part 1 30
Computer Interface, Motherboard and p.s.u.DMM by Martin Kent42
A compact multimeter with digital readout
CB SYNTHESISER by Duncan Head BSc(Hons) 47
Forty channel CB add on
SEMI-PROFESSIONAL MIXING DESK Part 2 by Tim Orr 58
Constructional details
GENERAL FEATURES
USING YOUR FREE CABLE TIES 41
Information and applications
SEMICONDUCTOR UPDATE by R. W. Coles 57
Featuring the IMS26000, X2816A, X2804A, S3610, S3620
NEWS AND COMMENT
EDITORIAL 15
NEWS AND MARKET PLACE 16
Including Countdown and Points Arising
INDUSTRY NOTEBOOK by Nexus 29
News and views on the electronics industry
SPACEWATCH by Frank W. Hyde 40
Extra-terrestrial activities chronicled BAZAAR 46, 64, 65
Free readers' advertisements
SPECIAL OFFER-CASSETTES 56Bargain offer on high quality cassettes
SPECIAL SUPPLEMENT
MICRO-FILE by R. W. Coles between pages $\mathbf{4 0}$ and 41Introduction and 8080 and 8085A Filesheet 1

OUR DECEMBER ISSUE WILL BE ON SALE FRIDAY, NOVEMBER 12th, 1982
(for details of contents see page 39)

[^0]

Beginners' luck somm 10 selected kit for first-time builders

With Heathkit, you're all set for a great deal. And not just big savings.

Whichever kit you choose, you'll find it easy to build. Simple, but detailed instructions take you through every stage. Everything is included. Even the solder you need

Digital Clock is there.

Follow the steps and you'll end up with a handcrafted, well-designed piece of equipment. One you'll be proud
of. Because you built it yourself.
There are 10 great kits to start you off. An interesting choice of kits from a digital clock to a metal locator, including a short wave listener's receiver, windspeed and direction indicator, digital readout electronic scale and five more useful kits.

All at 30% off to first-timers. Send for your catalogue right now for a start.

Windspeed and Direction Indicator
(UK) Limited, Dept (PE11),
Bristol Road, Gloucester GL2 6EE

To start me off, please send me a copy of the new Heathkit catalogue. I enclose 28 p in stamps.

PE1I

Name

Address

Hearinil Youbuildonour experience HEATHKIT

TOROIDAIS

The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and, thanks to I.L.P., PRICE.

Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS together with a shor lead time on quantity orders which can be programmed to your requirements with no price penalty.

тY¢		$\begin{aligned} & \text { Secomonity } \\ & \text { Valls } \end{aligned}$	cuus	P91CE
${ }_{70}{ }_{70 \times 30 \mathrm{Vamm}}^{30}$	18010	${ }_{\text {¢ }}^{6 \times 9}$	2 $\begin{aligned} & 250 \\ & 165\end{aligned}$	$f 512$
045 Km	${ }_{18012}$	- 12×12	1.25	[5.12
${ }_{\text {Reguajion }}^{\text {Lib\% }}$	$\xrightarrow{18013} 1$	\|is	${ }^{1} 8$	
	${ }^{18015}$			-
			O. 60 0.50	
50 va	2 n 010	6.6	415	
30 33 smm	20011		2.77	
$09 \mathrm{~K}_{0}$	2x012	12+12	208	
Repluilion	22013		${ }_{1}^{1.38}$	± 5.70
	22015	- $212+22$	1.13	\%110
		coter$25+25$ $30+30$	${ }_{0}^{108}$	-vaticos
		年10	0.45	roua cos
		220 20	0.22 0.20	
va	${ }^{3} \mathbf{3}$	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	8.44	
(1) $\times 1.30 \mathrm{~mm}$	${ }^{3}$			
Repubion	${ }_{\substack{\text { che }}}^{\substack{33012}}$		${ }_{2} 2.66$	£6. 08
	33014		${ }_{\substack{2 \\ 1.21 \\ 1.22}}$	-p/ribr
	33015		${ }_{1}^{18} 8$.meter ${ }^{\text {d }}$
	3016	${ }^{30+30}$		Toten 61
	${ }^{3} \mathbf{3} \mathbf{3} \mathbf{1} 2989$	110	0.72	
	边3029 3×030	220 220	O.35 0.33 0.350	
120 va	4×10	$6+6$		
9060m	42011	$9+9$	500	
Reguliton		(12+12	500	
	${ }_{4}^{4}$		${ }_{3} 3.33$	0
	48015	$\substack{22+22 \\ 25+25}$	2.72	
	${ }_{4}^{4 \times 016}$		2.200	-matse
	48018	${ }_{35}^{35}$	2,71	
		${ }_{220}^{110}$	1.98 0.54	
	4x 4×30	220	0.50	
160 wa	55011	9.9.	${ }_{8}^{889}$	
			${ }_{\text {c }}^{6.53}$	
Regycition	52014	18.18	4.44	$\underline{17.91}$
	55015		${ }^{3.63}$	
	52016	$\underset{\substack{25+25 \\ 30+30}}{ }$	320 2.68	-morso.
		$\substack{35+35 \\ 40+40}$	2.26 200 208	'riactil 02
		(10	(120	
		${ }_{240}^{220}$	(1)	

TYPf	$\begin{gathered} \text { SEARES } \\ \mathrm{N}_{0} \end{gathered}$	seconoanar	$\begin{gathered} \text { RMS } \\ \text { Cuy } \end{gathered}$	Paice
225 va	63012	$12+12$	9.38	
$110 \times 45 \mathrm{~mm}$	62013	$15+15$	7.50	
22 kg	6n014	18+18	6.25	
Regulation	${ }_{6 \times 0} 6015$	22*22	5.11	
	6x016	$25+25$	4.50	, 20
	5×017	$30+30$	3.75	-1/Cl
	${ }_{6 \times 018}$	$35+35$	3.21	
	6×026 60025	$40+40$ $45 * 65$	$\begin{aligned} & 2.81 \\ & 2.50 \end{aligned}$	TOTA 612 S
	${ }_{62033}$	50+50	225	
	6.028	110	2.04	
	6x029	220	1.02	
	68030	240	0.93	
300 va	78013	$15+15$	10.00	
110 n 50 mm	78014	$18+18$	${ }^{8.33}$	
$2.6 \mathrm{K0}$	78015	$22+22$	6.82	
Regulation 6\%	7.016 7×017	$25 * 25$ $30+30$	6.00 5.00	17
	${ }_{7 \times 108}$	$35 \cdot 35$	4.78	-2009
	7×026	40.40	3.75	- Wat te 13
	7×025	45**5	3.33	Toractic
	7×033	50.50	3.00	
	7 7 028	110	2.72	
	7.029	220	1.36	
	7.030	240	1.25	
${ }_{1}^{5000} \mathrm{VA}$	8.016	$25 * 25$	10.00	
$140 \times 60 \mathrm{~mm}$	8 B 077	30.30	8. 33	13
Reguiation 4\%	${ }^{8 \times 018}$	$35+35$	7.14	
	8.026	$40+40$	6.25	-8, 813
	8×025	$45 * 45$ 50.50	5.55	-wat 52
	82033 8042	35+55	4.54	
	88028	110	4.54	
	8×279	220	2.27	
	8×030	240	208	
625 Va	9×017	$30 \cdot 30$	10.41	
$140 \times 75 \mathrm{~mm}$	9 x 016	$35 \cdot 35$	8.92	
Reguliton	91026	40.40	7.81	
	94025	45.45	694	
	93033	50.50	625	
	94042 9×028	55×55 110	3.68 568 6.	107meater
	9×029	220	2.84	
	9×030	240	2.60	

IMPDATANT: Aegulation - All voltagas quoted
secondary voltage to obtain oft load vottage.
The benefits of ILP toroidal transformers
ILP toroidal transformers are only half the weight and height of their laminated equivalents, and are available with $110 \mathrm{~V}, 220 \mathrm{~V}$ or 240 V primaries coded as follows:
For 110 V primary insent " 0 " in place of " X " in type number.
For 220 V primary (Europe) insert " 1 " in place of " X " in type number.
For 240 V primary (UK) insen " 2 " in place of " X " in type number.
How to order Freepost:
Use thls coupon, or a separate sheet of paper, to order these products, of any products from other ILP Electronics advertisements. No stamp is needed if you address to Freepost. Cheques and postal orders must be crossed and payabie to ILP Electronics Lid. Access and Barclaycard welcome. All UK orders sent within 7 days of receipt of order for single and smail quantity orders.
Also available at Electrovalue. Maplin and Technomatic
ILP Electronics, Graham Bell House, Roper Close, Canterbury, Kent, CT2 JEP

Please send
Total purchase price
I enclose Cheque \square
Postal Orders \square
Int. Money Order L
Deblt my Access/Barclaycard No.
Name
Address

Signature
Post to: ILP Electronics LId, Freepost, 2 Graham Bell House, Roper Close

The

Proto-Board

Now circuit designing is as easy as pushing a lead into a hole ... No soldering No de-soldering No heat-spoilt components
No manual labour No wasted time

For quick signal tracing and circuit modification For quick circuit analysis and diagramming With or without built-in regulated power supplies Use with virtually all parts - most plug in directly, in seconds. Ideal for design, prototype and hobby

NO		No of SOLDERLESS TIE-POINTS	${ }^{\text {IC }}$ (14-pm DiP's	${ }_{\text {URITE }}$ PRIC	PRICE ${ }_{15 \%}$ VAT	OTHER
1	PB6	630	6	9.75	12.36	Kit
2	PB100	760	10	12.50	15.52	Kit
3	PB101	940	10	17.90	22.31	
4	PB102	1240	12	24.95	30.41	
5	PB103	2250	24	39.00	46.57	
6	PB104	3060	32	49.00	58.07	
7	PB105	4560	48	71.00	83.95	
8	PB203	2250	24	61.00	72.95	5V@1A
9	PB203A	2250	24	89.00	104.65	$5 \mathrm{~V}=15 \mathrm{~V}$
10	PB203AK	2250	24	71.00	83.95	$\begin{aligned} & 5 \mathrm{~V} \pm 15 \mathrm{~V} \\ & \& \mathrm{KIt} \end{aligned}$

Tomorrow's tools for today's problems
global specialties corporation

G.S.C. (UK) Limited, Dept 5U

Unit 1, Shire Hill Industrial Estate,
Saffron Walden, Essex. CB11 3AQ.
Telephone: Saffron Walden (0799) 21682
Telex: 817477

LCनT

 PRe sizisi RECORDERKI－NOISE REDUCTION SYSTEM －auto stop tape counter SWITCHABLE E．O．
INDEPENDENT LEVEL CONTROLS －INDEPENDENT LE －WOW \＆FLUTTER 0.1 －RECORD PLAYBACK I．C．WITH －RECORD PLAYBACKI．C．
－fULLY VARIABLE RECORDING BIAS FOR ACCURATE MATCHING OF ALL TAPES

Kit includes tape transport mechanism，ready punched and back printed quality circuit board and all electronic parts． i．e．semiconductors，resistors，capacitors，hardware，top cover，printed scale and mains transformer You only supply solder and hook－up wire． Self assembly simulated wood cabinet－only $\mathbf{£ 4 . 5 0}+\mathbf{E 1 . 5 0} \mathbf{p + p}$ ．
Featured in April issue of P．E．Peprint 50p．Free with kit
ELECTRONICS ONLY！
ELECTRONICS undating your existing cass－
Ideal for upd．85
ette，Includes pcb diagram，all semi．
conductors，IC＇s，Capacitors，resistor

STEREO AMPLIFIER KIT

－F saturing latest SGS／ATES TDA 200610 watt output IC＇s with in－built thermal and short cirsuit protectio －Mullard stereo preamplifier module．＂Attractive black vinyl finish cabinet， $9 \times 8 \% \times 3 \times$（approx）． To complete you just supply connecting wire To complete you just supply connecting wir
and solder．Features include din input sock－ and solder．Features include din input sock－
eis for ceramic cartridge，microphone，tape ets for ceramic cartridge，microphone，tape
or tuner．Outputs－tape，spea kers and head－ or tuner．Outputs－tape，spea kers and head－
phones．By the press of a burton it transforms phones．By the press of a burron if transth
into a 20 watt mono disco amplifier with into a 20 watt mono disco amplifier with Mullard L．P1183 pre－amp module，plos pow Mullard LP1 183 pre－amp module，plos pow－ Also features slider controls，push button Also teatures slider conirols，push busting case．
switches，fascla，knobs and contrasting instructions 50p－supplied free with kit．

£16－50

SPECIFICATIONS：Suitable for 4 to 8 ohm

 speakers．Frequency response： $40 \mathrm{~Hz} \cdot 20 \mathrm{KHz}$ nput sensitivity：P．U． 150 mv ，Aux． 200 mV Mic． 1.5 mV ．Tone consrols：Bass $\pm 12 \mathrm{~dB}$＠ 60 Hz ，Treble $\pm 12 \mathrm{~dB}$＠ 10 KHz Distortion：0.1% typ．＠ 8 W ．Mains supply： $220-250 \mathrm{v} 50 \mathrm{H}$ 0.1% typ．＠ 8 W ．Mains supply： $220-250 \mathrm{v} 50 \mathrm{~Hz}$ 8＂SPEAKERKIT－Two 8＂${ }^{\prime \prime}$ win cone domes tic speakers． $\mathbf{4} 4.75$ a stereo pair plus $£ 1.70$ p\＆p．

125W HICH POWER AMP MODULE
SPECIFICATIONS．Max output power： 125 ww rms Operating voltage（DC）： $50-80$ max．Loads：4－16 ohms．Frequency response measured＠ 100 watts：
$25 \mathrm{~Hz}-20 \mathrm{KHz}$ ．Sensitivity for 100 watts： $400 \mathrm{mV} @$ 25 Hz － 20 KHz ，Sensitivity for 100 wat ts： 400 mV ．
47 K ．Tyoical T．H．D．＠ 50 watts： 4 ohms： 1% ． Dimensions： 205×90 and $190 \times 36 \mathrm{~mm}$ ．

\section*{P．E．STEREO TUNER KIT

This easy to build 3 band stereo
AM／FM junction with P．E．（July 81 issue） For ease of construction and align－ ment it incorporates three Mullard modules and an I．C．IF System． FEATURES：VHF，MW，LW bands interstation muting and AFC on VHF Tuning meter．Two back printed pcb Ready made chassis and scale．Aerial：AM －ferrite rod，FM－ 75 or 300 ohms．Stabillsed power supply with＇C＇core mains transformer All components supplied are to P．E．strict specification．Front scale size： $10 /{ }^{\prime \prime} \times 2 /{ }^{\prime \prime}{ }^{\prime \prime} \mathrm{app}$ Complete with diagram and instructions． Self assembly simulated wood cabinet sleeve
to suit tuner only．Finish size： $11 \%^{\prime \prime} \times 8 \% h^{\prime \prime}$ to suit tuner oniy．Finish size： 11%＂x 8% $\times 3 \mathrm{k}^{\prime \prime}$ ．$£ 3.50$ Plus $£ 1.50 \mathrm{p} \& \mathrm{~m}$ Reprint 50p－FREE with kir

All mall to： $\mathbf{2 1 8}$ HIGH STREET，ACTON，W3 6NG． Note：Goods despatched to U．K．postall addresses at 30／6／月2 and subiect to change withour notice． Please allow 7 working days from receipt of orde for despatch．RTVC Limited reserve the right to update thelr products without notice．Send S．A．E． for full list of products

－
 £17．95
 SPECIAL OFFERI TUNER KIT PLUS： amo kit．Mullard LP1 183 built preamp． suitable for ceramic pickup and aux．inputs． －Matching power supply kit with trans． former，－Matching set of 4 slider controls for bass，treble + vols，$£ 21.95+£ 3.80$ p\＆
 ALL CALLERS TO： 323 Edgware Rd，London W2． Tel： $01.7238432 .9 .30 \cdot 5.30$ ，closed all day Thurs．回四回
 KIT

 KIT}| PANEL MOUNTING model． | ELECTROALUE
 FOR SERVICE YOU CAN TRUS | |
| :---: | :---: | :---: |
| | | |
| | | |
| | | |
| | | |
| | | |
| Sill | ${ }^{\text {a }}$ | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |

MASTHTR THFGHRONICS NOW! The P1RACHTCAT WEy!

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.
You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a selfemployed servicing engineer.
All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.
You will do the following: Build a modern oscilloscope

- Recognise and handle current electronic components
Read, draw and understand circuit diagrams
- Carry out 40 experiments on basic electronic circuits used in modern cquipment
- Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V. $\mathrm{Hi}-\mathrm{Fi}$ and microprocessor/computer
 equipment.

NewJob?NewCareer?NewHobby?Getinto Blectronics Now!

Sinclair ZX Spect

16K or 48K RAM... full-size movingkey keyboard... colour and sound... high-resolution graphics... From only $\ddagger 125$!

First, there was the world-beating Sinclair ZX80. The first personal computer for under $£ 100$.

Then, the ZX81. With up to 16 K RAM available, and the ZXPrinter. Giving more power and more flexibility. Together, they've sold over 500,000 so far, to make Sinclair world leaders in personal computing. And the ZX81 remains the ideal low-cost introduction to computing.

Now there's the ZX Spectrum! With up to 48 K of RAM. A full-size moving-key keyboard. Vivid colour and sound. Highresolution graphics. And a low price that's unrivalled.

Professional powerpersonal computer price!

The ZX Spectrum incorporates all the proven features of the ZX81. But its new 16K BASIC ROM dramatically increases your computing power.

You have access to a range of 8 colours for foreground, background and border, together with a sound generator and high-resolution graphics.

You have the facility to support separate data files.

You have a choice of storage capacities (governed by the amount of RAM). 16 K of RAM (which you can uprate later to 48 K of RAM) or a massive 48 K of RAM.

Yet the price of the Spectrum 16K is an amazing $£ 125$! Even the popular 48 K version costs only $£ 175$!

You may decide to begin with the 16 K version. If so, you can still return it later for an upgrade. The cost? Around $£ 60$

Ready to use today, easy to expand tomorrow

Your ZX Spectrum comes with a mains adaptor and all the necessary leads to connect to most cassette recorders and TVs (colour or black and white).

Employing Sinclair BASIC (now used in over 500,000 computers worldwide) the ZX Spectrum comes complete with two manuals which together represent a detailed course in BASIC programming. Whether you're a beginner or a competent programmer, you'll find them both of immense help. Depending on your computer experience, you'll quickly be moving into the colourful world of ZX Spectrum professional-level computing.

There's no need to stop there. The ZX Printer - available now - is fully compatible with the ZX Spectrum. And later this year there will be Microdrives for massive amounts of extra on-line storage, plus an RS232 / network interface board.

Key features of the Sinclair ZX Spectrum

- Full colour - 8 colours each for foreground, background and border, plus flashing and brightness-intensity control.
- Sound-BEEP command with variable pitch and duration.
- Massive RAM-16K or 48K.
- Full-size moving-key keyboard - all keys at normal typewriter pitch, with repeat facility on each key.
- High-resolution-256 dots horizontally $\times 192$ vertically, each individually addressable for true highresolution graphics.
- ASCII character set - with upper- and lower-case characters.
- Teletext-compatible-user software can generate 40 characters per line or other settings.
- High speed LOAD \& SAVE-16K in 100 seconds via cassette, with VERIFY \& MERGE for programs and separate data files.
- Sinclair 16K extended BASICincorporating unique 'one-touch' keyword entry, syntax check, and report codes.

RS232/network interface board

This interface, available later this year, will enable you to connect your ZX Spectrum to a whole host of printers, terminals and other computers.

The potential is enormous. And the astonishingly low price of only $£ 20$ is possible only because the operating systems are already designed into the ROM.

ZX Spectrum

Available only by mail order and only from

Sinclair Research Ltd,

Stanhope Road, Camberley,
Surrey, GU15 3PS
Tel: Camberley (0276) 685311

The ZX Printeravailable now

Designed exclusively for use with the Sinclair ZX range of computers, the printer offers ZX Spectrum owners the full ASCli character set-including lower-case characters and high-resolution graphics.

A special feature is COPY which prints out exactly what is on the whole TV screen without the need for further instructions. Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZXPrinter connects to the rear of your ZX Spectrum. A roll of paper (65 ft long and 4 in wide) is supplied, along with full instructions. Further supplies of paper are available in packs of five rolls.

The ZX Microdrivecoming soon

The new Microdrives, designed especlaily for the ZX Spectrum, are set to change the face of personal computing

Each Microdrive is capable of holding up to 100 K bytes using a single interchangeable microfloppy.

The transfer rate is 16 K bytes per second, with average access time of 3.5 seconds. And you'll be able to connect up to 8 ZX Microdrives to your ZX Spectrum.

All the BASIC commands required for the Microdrives are included on the Spectrum.

A remarkable breakthrough at a remarkable price. The Microdrives are available later this year, for around $£ 50$.

How to order your ZX Spectrum

BY PHONE-Access, Barclaycard or Trustcard holders can call 01-200 0200 for personal attention 24 hours a day, every day. BY FREEPOST-use the no-stamp needed coupon below. You can pay by cheque, postal order, Access,

Barclaycard or Trustcard.
EITHER WAY-please allow up to 28 days for delivery. And there's a 14-day money-back option, of course. We want you to be satisfied beyond doubt - and we have no doubt that you will be.

To: Sinclair Research, FREEPOST, Camberley, Surrey, GUI5 3BR. Order				
	Item	Code	Item Price	
	Sinclai	100	125.00	
	Sinclai	101	175.00	
	Sinclai	27	59.95	
	Printer	16	11.95	
	Postag	28	2.95	
		29	4.95	
			Total £	
Please tick if you require a VAT receipt \square				
*i enclose a cheque/postal order payable to Sinclair Research Ltd for $£$ *Please charge to my Access/Barclaycard/Trustcard account no.				
*Please delete/complete as applicable \qquad				
\|Signature				
PLEASE PRINT				
Address				

FREEPOST-no stamp needed. Prices apply to UK only. Export prices on application.

From －～～MME ヨッッ

HM307

The first portable scope with a component tester．

Capacitor 33 uF

Transistor E．C

Transistor B．E B－E1uF +680 hms

Oscilloscope Specifications：

Y Deflection

Bandwidth：DC $-10 \mathrm{MHz}(-3 \mathrm{~dB})$
Overshoot：Less than 1% Sensitivity： $5 \mathrm{mV}-20 \mathrm{~V} / \mathrm{cm}$ input imp： 1 M ohm／／25pf

X Deflection

Timebase： $0.2 \mathrm{~s} \cdot 0.2 \mu \mathrm{~s} / \mathrm{cm}$ Triggering： $2 \mathrm{~Hz} \cdot 30 \mathrm{MHz}(3 \mathrm{~mm})$ Auto＋level control

General Information

Component Tester：
For single components and in circuit Power Supplies： A．C．Input：\quad Regulated including high voltage Weight：
Size： $8-1 / 4$ Lbs．
$4-1 / 2^{2} \mathrm{H} \times 8318^{\circ} \mathrm{W} \times 10.7116^{\circ} \mathrm{D}$

For further information on HAMEG＇s full range of top performance oscilloscopes，contact：
hAMEG LTD．
74.78 Collingdon Street，Luton，Bedsp，LU1 1RX Tel：（0582） 413174

An entire range of low－cost high－ performance instruments

sabtronics

Waking Performance Affordable
$5020 \mathrm{~A} 1 \mathrm{~Hz}-200 \mathrm{KHz}$ Function Generator 2033 31／2－Digit L．C．D．Hand DMM 365－S Proloboard
LP． 10 10MHz Logic Probe
8110A 100 MHz 8 －Digit Frequency Meter 8610 B 60 MHz 9 －Digit Frequency Meter

8000日 1 GHz 9 －Digit Frequency Meter PSC－65 600 MHz Prescale AT－001 $\times 1$ Passive Probe AT－ 010×10 Passive Probe AT－110 $\times 1 \times 10$ Passive Probe （Switchable）

Also Oscilloscopes $15-30 \mathrm{MHz}$ Single or Dual trace．
Test our low priced test equipment．It measures up to the best．Compare our specs and our prices－no－one can beat our price／performance ratio．

Black

star
Illustrated brochure and price list from： BLACK STAR LTD
9a Crown Street，St．Ives，Cambs．PE17 4EB
Tel：（0480）62440．Telex： 32339

SINCLAIR COMPUTERS

We are the leading world－wide Sinclair export specialist including Norway，Sweden．Finland and Denmark．Write for our surprizingly low prices．

PRINTERS

Buy any of the below and get a free incerface kit and word processor program for UKIOI o Mirroline B3A 446 OKI Mirroline 14 A 799 OKI Mieroline 80 6235．OKI Microline 82A E333．Epson MX70T ©259 Epson MX80T／3 619．Epson MX80F／T3 ©34．Epson

VIC 20 COMPUTER
Two special offers－H it is bought with the Vic20 we can supply the cassette recorder for 630．43．Alternatively，we will supply a free kit with each Vic20 to allow the use of an ordinan cassette recorder．Vic 20 CI 30 ．Ordinary cas－ der $\mathbf{6 3 6} 50$ ．High resolution cartidge recor der ©36．50．High resolution cartridge $\mathbf{2 7 . 9 5}$ C175．
Ram cartridges：－ $3 \mathrm{~K} \subset 24,8 \mathrm{~K} \subset 35$ ， $16 \mathrm{~K} \subset 57$ ． Game cartridges：－Sargon IIE 19 ，all others 213 each．Joystick C6．52．Intro to Basic Part I Cl3 New lost cost memory board，no need for mother－board，comes with 3K ram on board + socket for a rom＋sockets for another 24 K of low current Nmos ram（Just plug in chips to expand memory）©49．27K version 2109 Extra memory chips 66 per 2 K

UKIOI AND SUPERBOARD

32×48 display expansion kits UKIOI C9 Series I Superboard ©14．Guard band kit for uperboard only $\mathbf{1 0}$ ．The betow accessories suit both the UK101 and Superboard：－Extra ram 22.10 per $K 32 K$ memory expansion board 660．Cegmon 622．50．Wemon C14．95 Word processor program ClO ．Centronies interface kit C 10.610 expansion board C 179 Cased minifoppy disc drives with DOS singe 275，dual

GENIE COMPUTERS

New colour Genie 16K and accessories－ phone for prices．Genie I 16 K E279，48K 330．EG3d14 expander box 16 K C179，32K C189．Minitloppy disc drives single C199，dua 1369．Double density convertor $\mathbf{C T 2}$ ．Paralle printer interface $£ 36$ ．High resolution graphics
unis $£ 82.12^{\prime \prime}$ monitor $\& 40$ ．

BATTERY ELIMINATORS

3 －way type $6 / 7.5 / 9 \mathrm{~V} 300 \mathrm{ma} 63.50$ ．Stabilized model $3 / 6 / 7.5 / 9 \mathrm{~V} 400 \mathrm{ma} \quad \mathbf{6 7 . 9 5}$ ． 100 ma radio types with press studs $12 \mathrm{C4.95}$ ， $9+9 \mathrm{~V}$ $3 / 45 / 6 / 7.5 / 9 \mathrm{~V} 800 \mathrm{ma} 13.04$

BATTERY EUMINATOR KITS＊
100 ma radio types with press－studs 9 V LI．74， $9+9 \mathrm{~V}$ C2．50．Stabilized 8－way types 3／4．5／6／7．5／9／12／18V 100 ma \＆ 3.12 ，A ci． 50 ． Stabilized power kits $2-18 \mathrm{~V} 100 \mathrm{ma}$ ©3．12， I－30V IA C8．50，I－30V 2A \＆15．30．TTL and computer supplies 5 V stabilized I．SA $69,3 \mathrm{~A}$ C14，6A ©24．12V car convertors IA CI．62．

TV GAMES＊
AY－3－85S0＋kit c9．26．
BI－PAK AUDIO MODULES＊
PSI2 \＆I．75．T538 ©2．90．AL60 C5．62．BMT80 ©6．36．Stereo 30 ©15．AL80 ©8．56．

THE MULTI-PURPOSE TIMER HAS ARRIVED
Now you can run your central hosting, lighting. hi-f systern and lot
more with fuet one programmabio timer. Ai Your selection it designed to controt four malns outputs indapendently, switching on and otf at preser times over ${ }^{2} 7$ dey cycle, $0 . g$. to control your central
 connect it to your
clock will do the rest clock will do the rest FEATURES INCLUDE:-
-0.5^{-}LED 12 nour diapla
O.5" LED 12 hour diapiay.

Day of wook, ampmand output stavs indicentors 50,60Hz moins operation.
8artery beckup seves stored programmea and continues time koeping during power thiluress. (Bartecy not suopolied). - Dieplay blanking during p Powerful "Everyday" 'unction en abling output 10 whic "aloepp function-turns on output for Direct mitch control ansbling output to be furnecion Immedistaly or after a specified time interval. 20 tunction keyped for programme eniry.
(Kit includes all components, PCB, assembly and programming instructions).

HOME LIGHTING KITS
These kite contion all necresvy componenna snd tull

TDR300K Remote Control $£ 14.30$ mxe \quad Trammerniter for above $£ 4.20$ TO300K Touchdimmer dek

LD300K Rotary Controlled $£ 3.50$

MINI KITS

mot temperature

 CONTHOLERATHERMOSTAT
 Mex 2 Soltd Stura Rudisy ldeal for switching molors, lights
heoterse
atc from logic. heoters. wic. from logic. Opto
isolated with zero voltage owitcting Suppliod withour trice

Mx 3 RNDOT DSPA mina eandot dispar | Displays an analoqua vohage on : |
| :--- |
| linear 10 element LED display es | bar or single dot. ldeal for thermo meters. Ieval indicators. etc. May be stacked to obtain 20 to 100 elemen

displeys. Requir 5 -20V supply MK4 MAOPORTNONAL TEMFEMTURE CONTROLER Based on the SL441 zero voltage
switch, this kit may bo wired to form
s "burst fire a "burst fire power controller, onabling the temperature of an on
closure to be maintained to within closure 10 be mointained to with
$0.5^{\circ} \mathrm{C}$. Max. lom 3 KW MEES MAN MS TMER Bosed on the ZN1034E Timer IC this kit will switch a mains load on for olf) lor a prosel tima from $20 \mathrm{mins}$. to 35
hrs. Longer or shorter periods may hrs. Longer or shorter periods may
os realised by minor companant
changes. Max. load 1 KW. be realised by minor companant
changes. Max. load 1 KW . 4550
§ 3-NOTE DOOR CHIME よ δ Besed on the SAB0800 IC the kit is euopied with all components, including loudspoaker, printed circuit
boerd, a pre-drilied box $(95 \times 71 \times 35 \mathrm{~mm})$ and full inituc, board, a pre-drilisd box $(95 \times 71 \times 35 \mathrm{~mm})$ and full initruc-
tions. Requires only a PP3 9 V battery snd puah-switch to tions. Requires only a Prs ive bitery snd pueh-s.
complete ANIDEAL PROJET FOR BEGINNERS. Order as XK102.

For a detailed booklet on remote control - send us 30p \& SAE today.

```
                    "OPEN-SESAME"
The XK103 is a general purpose infre-red irsmamiteri
tact and who onemomentary (normsily open) ralay con
sact and two latched tranalstor outpuL. Designad primarity
ior controlling motorised garges doors and two suxillery
The unit also has numerouespolicstions in the home for
switching lights, TV, clowing curtmens. stc. Ideal for agac
or disabled persons.
The kit comprises o mans powered recesver, a lou
button transmitter, complate with pre-drilled box
requirings, 9V Dar,ory ond one opto isolated solid state
Ale with all our kits, full inmtuctions are supplied
Only E23.75
Erfre Solid State Switch Kita (XK104) and transmitters
<K104 <2.40
XK105 £10.50
```


EXCLUDE VAT

REMOTE CONTROL KITS

MK6 SIMPLE INFRA RED TRANSMITTE MK 7 INFRA RED RECEIVER

 1240 Vac . 20.00 (RC500K - Special Price for MK6 and MK7 together E12.50)Based on the S1490, the kit indliter
 For use with MK8 and MKI receiver (MK12) kit.
it. +3 A
MK 1110 Channel + 3 Anslogue o/p 1 A Receiver
Based on ML922 decoder CC . Functions include onsatand by output, roggie, control of volume MK 1216 -CHANNEL UR RECEIVER
For use with MK8 kit with 16 orvolf outputs, which was further interface circuitry, such as relays or - plasise specity when ordering. Includes its own mains supply. MK13 11-WAY KEYBOARD For use with MKB, MK18 and MK11 kit MK 18 Moins Powered IR Tranamitter Mains powered for continuous operation - single channal. for applications such as burghar
e2ierms, automatic door openers. alc. Renge approx. $6 \AA$. MK 17 izV d.c. MA RECEIVER
For use with MK8 or MK16. Relay outpur with OP3 Amp change-ovar conlacts, may be used as atched momentary or "break beam
Similar to MK8 but with range of approx. 60t Ancthary Kles : MMZ2 Solld State Relay pto-isolated with zero voltage switching No. triac supplied Comprises $2 x$ eolid state relays and latch tor riecs requlred (not supplied).

We have the SOFTY 2 EPROM programmer in stock at $£ 169$

DISCO LIGHTING KITS D 1000 K
This valuefor-money kit teatures a bi-directional and frequency of direction change, being variable by

meana of potentiometers and incorporates master dimming control. Only E14.60 A lower cost version of the sbove. featuring undirectional channel sequence with speed switehed only at mains zero crossing points to reduce radio interteranco Only $\mathbf{E 8 . 0 0}$ | Optional opto input OLAI |
| :--- |
| Allowing audio ("beat | -light response.

DVM/ULTRA SENSITIVE

 THERMOMETER KIT the ICL7126 is lower oowe the ICL7126 (o lower Doweveraion of the ICL7106 chip) and a $31 / 2$ digit liquid crrsta display. Thls kit will form the 4949 basis of edigital multimeter Lonly a tow additionad resistors and switche are required-details supplied). or senzitive digital thermometer $\left(-50^{\circ} \mathrm{C}\right.$ to $+150^{\circ} \mathrm{C}$
rescing to $0.1^{\circ} \mathrm{C}$. The basic kit has rescing ${ }^{10} 0.1 \mathrm{C}$. automatic polarity indication and an utire low power requirement-giving a 2 year typical battery lite from a atandard 9 V on used 8 nours a dar.
7 days a week. $\quad £ 15.50$
\qquad

THE HOME This Now nempol CENTRE the comfort of appliances anywheles you to control coded pulses into the marmair. The in the house from supply and modules mains wiring which atter injects Receivers ured to switch on thed to the same received keyboard, followadressed by meppllance addressed pushing buttons can by an on or off corn a 16 -way programme includes a come rather boringand. Since heating, electric favourite inter interface so the transmorning. electric blanket, make to swith you can pre onts for innes. The KIT incluse. JUST TMINK 42.00

THE KEY TO YOUR SECURITY IS IN OUR LOCK

tectronic the of cer thieves, house breakers or people

 olectronic oquipment upsets you, we have just the kit for you. 750 mA output to drive a solenoid or relay (not supplied) when four keys are depressed in the correct sequence. This gives over 5,000 possible combinationsl The sequence is prowired and may be asily changed by means of a small plug and socket A -SAVE "function is slso availableenabling the open code to be stored fespecially useful in Car when is is laft in a garage enabling the open code to be stored (especially usatul in ocar when in is left in a garage 40 UA at 5 V to 15 V d.c.
At only $\mathbf{E 1 0 . 5 0}+$ VAT, it will makes Elactric Lock Mochanism
Suitabie for usa with axisting
$£ 13.50$ smaller hole in your po
door locks and sbove electronic lock kit

24 HOUR CLOCK/APPLIANCE TIMER KIT

Switches any appliance up to 1 kW
on and off at present times once per on and oth at present timet once per
day. Kit contains: AY-5-1230 IC, 0.5^{*} LED display, mains supply. display drivers, switches, LEDs,
triacs. PCBe and full instructions.

SHORT FORM CATALOGUE - send SAE ($6^{\prime \prime} \times 9^{\prime \prime}$). We also stock Vero, Books, Resistors, Capacitors, Semi-Conductors etc.

CT1000K Basic Kit
E14.90 CT1000K with Add 50 p postage \& packing $+15 \%$ VAT to total. Overseas Customers Add $£ 1.50$ (Europe), $£ 4.00$ (elsewhere) for $p \& 1 p$. Send S.A.E. for further STOCK DETAILS Goods by return subject to availability - DM. 9am to 5pm (Mon to Fri) OPEN

Fiapid

 Tel: 020636412 Hillfarm Industrial Estate Boxted Colchester Essex CO4 5RD

FIRST STEPS

The microprocessor has now been with us for many years although few have been used in projects for the hobbyist. Perhaps this is because their use has often been a more expensive solution than smaller chips in any given project, except perhaps the "hobby computer". Well, PE did its bit for computing with the publication of the Compukit UK101 design back in ' 78 and of course we have published various projects using dedicated micros. The PE Bandbox, Car Computer, Robots and Telectric being shining examples that are going strong on the retail market. However, the big breakthrough that microprocessors promised has been slow in coming to the hobbyist, until now!

This month we take the first of a series of steps to put that right. No, we are not going to expand our computer projects (even though the amazing Ultimum Interface system starts in this. issue). What we hope to achieve is the use of micros to expand the range and sophistication of our projects without necessarily making them more expensive or more difficult to build.

We have decided that it's high time
the micro is used as a "regular" component by the hobbyist and high time that hobbyists understand the devices more fully. With this in mind we are launching Micro-file in this issue. This file system will consist of a pull out section, in the centre of each issue, describing a wide range of microprocessors. The section can be extracted from the issue and filed for easy reference.

The first Micro-file consists of an introductory four page article, which will form the covers of the file, plus the first Datasheet and backup article on the 8080A/8085A. Each month we will present a Datasheet plus back up information on a different chip, so that over a period of about a year the sheets will form into a file packed with data on all the popular microprocessors. A file full of valuable information that will enable the hobbyist to choose and use microprocessor chips in dedicated applications.

CONTROL

In addition to Micro-file we are also proud to present the Microcontroller, which is not a project in the truest sense: the boards come ready built at
an unbelievable price! What we have done is commission Mike Tooley and David Whitfield to unravel the intricacies of the unit and write a monitor program for it, so that the hardware can be used as a "universal controller".

What we want you to do is to let us know how you have applied the unit (maybe to a robot, central heating or overall house electrical management system etc.) so that we can interest others in doing something similar. To encourage readers to do this, Display Electronics (the Microcontroller suppliers) are running a competition for Microcontroller uses and PE will publish any suitable winning entries and pay for them of course! So here's your chance to obtain and use a micro system in a control application at a very low price and maybe reap a reward for your ideas.

We believe the time of the dedicated micro has now come for the hobbyist in a big way. We intend to provide the necessary information and more, exciting projects as the months go by.

EDITOR Mike Kenward

Gordon Godbold ASSISTANTEDITOR
David Shortland ASSISTANT
EDITOR/PRODUCTION
Mike Abbott TECHNICALEDITOR

Jack Pountney ART EDITOR
Keith Woodruff ASSISTANT ART EDITOR John Pickering SEN. TECH. ILLUSTRATOR Isabelle Greenaway TECH, ILLUSTRATOR
Jenny Tremaine SECRETARY

ADVERTISEMENT MANAGER

SECRETARY Christine Pocknell $\}$ 01-261 6676 AD. SALES EXEC. Alfred Tonge 01-2616819
CLASSIFIED SUPERVISOR Barbara Blake 01-2615897
AD. MAKE-UP/COPY lan Sweeney 01-261 6601

Letters and Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in PE. All letters requiring a reply should be accompanied by a stamped, self addressed envelope, or addressed envelope and international reply coupons, and each letter should relate to one published project only.

Components and p.c.b.s are usually available from advertisers; where we anticipate difficulties a source will be suggested.

Back Numbers

Copies of most of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, at $£ 1$ each including Inland/Overseas p\&p. Please state month and year of issue required.

Binders

Binders for PE are available from the same address as back numbers at $£ 4.60$ each
to UK or overseas addresses, including postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 13.00$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH. Cheques and postal orders should be made payable to IPC Magazines Limited.

Items mentioned are available through normal retail outlets unless otherwise specified. Prices correct at time of going DDD

New Camputer Systems

The Dragon 32 micro computer is just one of five new systems which have been launched this month. The others include the Micro 8 from the Japanese mainframe giant Fujitsu, the latest Colour Genie from Lowe Electronics and from two new companies, ORIC I and Jupitor Ace.

Based around the 6809 E microprocessor the Dragon 32 has 32 K of RAM, extended microsoft basic, eight graphic pages from 512 text points to 49,152 points, nine colours and a five octave range for both music and speech synthesis. The unit is available from Dragon Data Ltd., Queensway, Swansea Industrial Estate, Swansea (0792 580651). Price £199.50 including VAT.

The Micro 8 from Fujitsu boasts no fewer than three microprocessors; two 6809's which handle $640 \times 200,8$ colour dot high resolution graphics, 8×8 matric block graphics and a Z80A for use with CP/M based software. Other features of the system include a real time clock, 32 K of Microsoft Basic, 128 K of total memory and provision for bubble memory. The Micro 8 is available from Minichip Limited, Enterprise House, Terrace Road, Walton, Surrey (09322 42777). Price £895 excluding VAT.

Lowe Electronics have added another Genie to their range of home computers the Colour Genie has 16 K RAM, 16 K ROM, 16 K basic ROM, a maximum of 16 colours,

ORIC I

The Dragon 32
160×96 high resolution graphic characters with 128 programmable graphic characters and 64 preset characters. The Colour Genie is priced at $£ 199$ including VAT, Lowe Electronics, Maltock, Derbyshire (0629 2430).

Oric I from Oric Products has been designed by Tangerine Computer Systems and is produced in two versions, both have 16 colours, one has 16 K of RAM and is priced at $£ 99$ including VAT whilst the other has 48 K of RAM and is priced at $£ 169$ including VAT. Oric I uses Microsoft basic, has a sound generator chip covering six octaves and a display resolution of 24 rows $\times 40$ characters.

The Jupiter Ace which has been designed by two ex-Sinclair men uses a specially adapted version of the compiled language FORTH. The unit has 8 K of ROM and 3 K of RAM a memory mapped 32×24 character display, a programmable sound generator and a fast cassette interface.

Priced at $£ 89.95$ including VAT and p\&p the Ace comes complete with a mains adapter, cassette and TV leads and a manual. Jupiter Cantab. 22 Foxhollow, Bar Hill, Cambridge.

The Colour Genie

Fujitsu Model 8

POINTS ARISING . . .

AUDIO ANALYSER

(August-October '81)

1. In Fig. 13; the orientation of the diode D1 is incorrect, and this component should be reversed. The circuit diagram is correct in this respect.
2. In Fig. 17, the component layout for the backplane, the orientation of C115 and C116 is incorrect. Both components should be reversed.
3. In Fig. 17, the component layout for the backplane, C114 is shown connected between rails 1 and 3 (the +7.5 V supply), rather than between rails 1 and 2 (the +5 V supply), as it should be connected.
4. In Fig. 29, the component layout for the microphone preamplifier, IC1 is shown incorrectly orientated, and should be rotated so that pin 1 is adjacent to C1. Also, the capacitor shown marked C7, and positioned near to IC1, should be marked C4.
5. In the parts list for the microphone preamplifier, C7 should be shown as $47 \mu 16 \mathrm{~V}$ tantalum, and C 8 as 4 n 7 disc ceramic.
MICROBUS (SEPT '82)
It is stated that the output of $0-255$ corresponds to an analogue input of $0-5 \mathrm{~V}$; in this particular case this is not correct.

It can be seen from the circuit diagram that pins 7 and 8 of the ZN427 have been joined; this in effect brings into use the internal reference voltage of the chip which is 2.55 V . The statement should therefore be "The output of $0-255$ corresponds to an analogue input of $0-2.55 \mathrm{~V}$ ".
COMBO AMPLIFIER (Aug.-Oct. '82) A complete set of semiconductors is available for this project from Hart Electronic Kits Ltd., Penylan Mill, Oswestry, Shropshire SY10 9AF. Tel: 06912894.

Jupiter Ace

BECKMAN DMM's

Beckman Instruments has introduced two handheld digital multimeters; the $3 \frac{1}{2}$ digit T100 and T110 models, both of which offer five d.c. voltage ranges from 200 mV to 1000 V , five a.c. voltage ranges from 200 mV to 750 V , six d.c. and a.c. current ranges from $200 \mu \mathrm{~A}$ to 10 A and six resistance ranges from 200 ohm to 20 Mohm.

Of special interest is the direct 10A current range which obviates the need for external shunts. The resistance ranges can be switched to either low power for measuring in electronic circuits without turning on diodes and transistor junctions, or to high power for measuring resistances in electrical circuits or out of circuit. Both instruments also feature a special range for testing diodes and transistors which provides an accurate measure of the forward voltage drop in the diode junctions.

Diodes and transistors can also be checked in or out of circuit. The T110 also incorporates a buzzer for continuity testing and circuit tracing.

A high 10 Mohm input impedance ensures that measurements are hardly affected by circuit loading, and effective RF shielding guards against external fields. Accuracies are guaranteed for one year, and eventual recalibration is very simple, as it only requires the adjustment of two potentiometers.

All functions and ranges are selected with a single rotary switch and the $3 \frac{1}{2}$ digit l.c.d. features automatic decimal point positioning, polarity, overrange and low battery indication. The instruments will operate continuously for 200 hours from one standard 9 V battery.

The two models T100 and T110 are priced at $£ 49.00$ and $£ 59.00$ respectively
excluding VAT and p \& p.
Beckman Instruments, Mylen House, 11 Wagon Lane, Shelden, Birmingham (021 74277611).

5utellite TU Receiver

When you arrive at Alexandra Pavilion for the Electronic Hobbies Fair, the first thing you will see is a Luxor satellite TV receiver dish like the one shown opposite. The system with its two metre dish will be set up to receive programmes from the Russian Ghorizant-3 satellite in geostationary position 53 degrees \mathbf{E}. The dish will be linked to a Luxor receiver system and TV inside the Pavilion so that visitors can see the results; this is just one of the special exhibits that is being arranged.

The other photo below was taken during the third International Road Racing Show. It gives a good impression of the inside of the hall. What is not apparent from this photo are the facilities available; these include three bars, two buffets, comprehensive toilet facilities--including a disabled toilet, first aid room and a baby changing room. Of course all these are purpose built and virtually brand new. In addition there will be extra cafeteria facilities with an additional area of tables and chairs, so no one should want for anything.

The largest supplier of components to the hobbyist-Maplin Electronic Supplies Ltd.-had this to say about the Fair: "The show coming in November is the one we are all excited about, here at Maplin. It's the Electronic Hobbies Fair, a brand new show, that is going to be very different from anything you've ever seen before. As well as the usual electronic stands, there will be computers, model control, amateur radio. CB and practical hi-fi.
'But the big plus about this show is that the organisers have really gone to town to provide you with dozens of extra exciting things to see and do."

Maplin will be devoting part of their stand to a bank of Atari computers, each running a different piece of software, so visitors will be able to play with them or just stand and watch.

Electronic Hobbies Fair, Alexandra Pavilion, November 18 th to 21 st. For more details and a 50 p off voucher, see page 75 . Keep watching PE for more details of the Fair; it will be the liveliest and most professionally organised event ever to be staged in this field.

Above: The Luxor satellite TV receiver dish
Below: Inside view of the new Alexandra Pavilion

ZON X-81 SOUND UNIT

A wide range of sound effects can be added to your $2 X-81$ with the ZON X-81 Sound Unit, now available form BI-PAK.

The unit is based on a three-channel-plus-noise sound chip and is so designed that the pitches and volumes of the three channels and the overall attack/decay

envelope can be controlled by simple BASIC statements. By this means, piano, organ, bells, helicopters, lasers, explosions etc., can be simulated and easily added to existing programmes.

ZON $X-81$ is housed in a neat black plastic case with loudspeaker and manual volume control (in addition to programmed volume) and simply plugs in between the rear of the $\mathrm{ZX}-81$ and its RAM pack and/or
printer (if fitted). No dismantling, wiring, soldering, batteries, power supplies or leads are required.

- An instruction booklet explains the operation of the unit and a number of example programs of useful sounds is also included.

The ZON X-81 is available from: BI-PAK Semiconductors, P.O. Box 6, Ware, Herts. 09023442 and is priced at $£ 25.95$ including postage and VAT.

Briefly...

Namal Electronics have developed a speech synthesizer which can be directly connected to the $Z \times 81$ or the Spectrum.

The synthesizer has a standard dictionary of about 600 words stored in an EPROM and the user can add to these by utilising the units $2 K$ static RAM. The unit is programmed via the host computer, needing only two instructions per word.

Based on a phonetic speech synthesizer made by Votrax of Detroit the unit which measures $150 \times 180 \times 35 \mathrm{~mm}$ comes complete with an integral loudspeaker, volume control and ribbon connector. There
is also provision for driving an external loudspeaker or amplifier.

The Super Talker is priced at $£ 49.95$ for the ZX81 and $£ 59.95$ for the Spectrum (prices excluding VAT).

Namal Electronics, 25 Gwydir Street, Cambridge (0223 355404).

Readers may be interested to know that Premier Publications are intending to do for the Dragon what they have done for the UK101. They are already supplying Dragons, writing software and generally getting inside the unit in preparation for servicing and the design of various add on kits. This back up will no doubt add to the Dragons attraction. Premier Publications, 208 Croydon Road, Anerley, London SE20 7 YX.

The assets of EDA-Sparkrite Limited, which went into voluntary receivership in July 1982, have been acquired by STADIUM LTD. Sparkrite manufacture electronic ignition, car security systems and in-car computers and is based in Walsall, West Midlands.
This change of ownership is a major turning point for Sparkrite after the difficult circumstances of the last few months.
Sparkrite (A Division of Stadium Ltd.), 82 Bath Street, Walsall WS 1 3DE. 0922 614791.

Boundidnur.

Please check dates before setting out, as we cannot guarantee the accuracy of the information presented below. Note: some exhibitions may be trade only. If you are organising any electrical/electronics, radio or scientific event, big or small, we shall be glad to include it here.

Science and Technology in 19th Century Germany Oct. 15-Dec. 14 (weekdays $12-8 \mathrm{pm}$ and Sats. $10-1 \mathrm{pm}$). Goethe Institut, 50 Princes Gate (Exhibition Road), London
Video Show Oct. 16-18. West Cntr. Hotel, London Z1
Computer Graphics Oct. 19-21. Royal Gdn. \& Bloomsbury Cntr. London 0
Testmex Oct. 26-28. Wembley Conf. Cntr. T
BEX Southampton Oct. 27-28. Polygon Hotel K
ISSEC (Safety, Security, Fire) Nov. 9-11. Royal Dublin Society Hall, Ireland V
BEX Plymouth Nov. 10-11. Holiday Inn K
Compec Nov. 16-19. Olympia Z1
Hobby Electronics Fair Nov. 18-21. Alexandra Pavilion, London Z1
INTRON Nov. 23-25. RDS Dublin, Ireland V
BEX Bristol Nov. 24-25. Holiday Inn K
Northern Computer Fair Nov. 25-27. Belle Vue, Manchester Z1
Christmas Holography (+ items for sale) Dec. 2-Mar. (1983) Light
Fantastic Gallery, London A8
ElectroNORTH Dec. 7-9. Harrogate Supercentre Q
IT82 (Information Technology Year Conf.) Dec. 8-9. Barbican O
Continuous events at the National Microprocessor \& Electronics Cntr. (nr. Tower of London) L1
Peripherals Feb. 2-4 1983. Cunard Int. Hotel, Hammersmith, London Z1

BEX Bournemouth Feb. 9-10 1983. The Pavilion K
Microsystems Feb. 23-25 1983. West Cntr. Hotel, Fulham, London 21
CAD North Mar. 1-3 1983. Belle Vue Ex. Cntr. Manchester Z1
Mailing Efficiency Mar. 1-3 1983. Bloomsbury Cntr. Hotel, London Z Local Networks Mar. 8-10 1983. Royal Lancaster Hotel, London 0 Laboratory Edinburgh Mar. 16-17 1983. Assembly Rooms, George St. E
Brighton Electronics March 1983 T
BEX Leeds Mar. 16-17. Dragonara Hotel K
INSPEX Mar. 21-25 1983. National Exhibition Cntr. Birmingham International $\mathbf{Z 1}$
Sensors \& Systems Mar. 22-24 1983. The Forum, Wythenshawe T
Compec Wales Mar. 22-24 1983. Cardiff University Z1
ETM (Electronic Test / Measurement) Mar. 22-24 1983. The Forum, Wythenshawe, Manchester T
Laboratory Manchester Mar. 23-24 1983. New Century Hall, Corportation St. E.
American Holography Mar.-June inc. Light Fantastic Gallery, Covent Garden, London 48
All Electronics Show April 19-21 1983. Barbican Cntr. London E

[^1]
Probably the fastest microcomputer

 in the universe the JUPITER ACE only $£ 89.95$.All inclusive Price

For $£ 89.95$ you receive your Jupiter Ace, a mains adaptor, all the leads needed to connect to most cassette recorders and T.V.s (colour or black and white), a software catalogue and a manual.

The manual is a complete introduction to the world of personal computing and a course in FORTH programming on the Ace.

Even if you are a complete newcomer to computers, the manual will guide you step by step from first principles to confident programming.
The price includes postage packing and V.A.T.

Key Features

- Revolutionary microcomputer language FORTH.
- Full-size moving-key keyboard.
- User-defined high-resolution graphics.
- Programmable sound generator.
- Floating point arithmetic.
- Fast cassette interface.
- Upper and lower case ascii character set.
- 24×32 character flicker-free display.

The Jupiter Ace uses FORTH

The Ace is set apart from all other personal computers on the market by its use of a revolutionary language called 'FORTH'. Some computer languages are easy for humans to understand, others are easy for computers; FORTH is most unusual in being both. Its underlying principles are so simple that it takes even a newcomer to computers only a few minutes to learn how to do calculations on the Ace, yet the very same principles are powerful enough to allow you to invent your own extensions to the language itself.

At the same time, the memory-saving coded form used to store your programs inside the Ace allows it to obey them very fast typically in less than a tenth of the time it would take to do the same thing using a different language. Amongst other things, this makes the Ace ideal for games.

FORTH's unique combination of speed, versatility and ease of programming has already made it a prime choice for professional applications as diverse as pub games and radio telescopes, and gained it an enthusiastic national user group. Now the Jupiter Ace can bring this addictive language into your own home.

Designed by Jupiter Cantab

Leading computer Designers Richard Altwasser and Steven Vickers have a reputation for pushing technology forwards. After playing the major role in creating the ZX Spectrum they formed Jupiter Cantab to develop their latest brainchild the Jupiter Ace. JUPITER CANTAB, 22 FOXHOLLOW, BAR HILL CAMBRIDGE CB3 8EP

Technical Specification

Hardware

Processor/Memory
Z80A running at 3.25 MHz .
8 K bytes ROM 3 K bytes RAM.

Input

40 moving-key keyboard with auto-repeat on every key.

Output

Memory-mapped 32×24 character display with high resolution user graphics. Output to drive normal UHF TV set on channel 36.

Sound

Provided by internal loudspeaker.

Cassette

Load Save \& Verify at 1500 baud, separate data storage.

Software, FORTH

Data Structures

Integer, Floating point and String data may be held as constants, variables or arrays with multiple dimensions and mixed data types.
Control Stuctures
IF-THEN-ELSE, DO-LOOP. BEGIN-WHILE-REPEAT, BEGINUNTIL, all may be mixed and nested to any depth.

Operators

Mathematical + , - , X, \div.
Logical AND, OR, NOT.

XOR.

Comparison <, >, $=$.

Program Editing

FORTH words may be listed, edited and redefined. Comments are preserved when words are compiled.

MICRD CONTROLLER

MICHAEL TOOLEY в.а. DAVID WHITFIELD m.a. м.sc.

PART ONE

THE PE Microcontroller is an assembled project which is based around the 6800 micro.
Long term success for any product is usually, assured if it is cost effective and if it can easily be adapted to meet any new requirements. The more adaptable the tool, the more successful and durable it is likely to be. Nature provides an example of a highly versatile tool in the human hand, which is capable of performing an extremely wide range of intricate tasks. It is, however, only with the advent of the microprocessor that the idea of the general purpose electronic controller has become a practical proposition. Such controllers still have a long way to go before they are able to rival the flexibility and ease of programming of the human hand. Programmable controllers are, nevertheless, now able to offer some significant advantages over the dedicated controllers of the last decade, and increasingly at prices which are acceptable to the home constructor.

This Microcontroller was originally designed to form the intelligent 'heart' of a mass produced commercial product. The basic design, however, followed conventional guidelines, and the final controller is a good example of a general purpose programmable controller. A wide range of control facilities are available within the basic controller, and users should have little difficulty in adapting it (often simply by writing a suitable control program) to a wide range of new applications. Practical applications will be discussed in later issues, together with details on how to program the 6800 microprocessor which is the CPU in the Microcontroller.

MICROCONTROLLERS

A microprocessor which is used to control a system (i.e. a microcontroller) must be capable of accepting input information, responding, and outputting appropriate signals to implement the required control action. A typical microcontroller arrangement is shown in the block diagram of Fig. 1.1. It can be seen from this figure that the input/output signals may require signal conditioning so that their forms and levels become compatible with the input/output interface elements. In many cases, however, no such conditioning is necessary, and indeed it is one of the aims of any general purpose microcontroller that the amount of conditioning circuitry is kept to a minimum. In the 6800 microprocessor family, interfacing is greatly simplified by the availability of a range of versatile and programmable interface adaptors, making the 6800 well suited to controller applications. The four parallel interface adaptors in the system can each provide up to 16 separately controllable input/output lines.

An important feature of any programmable controller is that its function may be changed by modifying its control program. Thus, in many situations, the age-old call of "Back to the drawing board", becomes "Back to the keyboard". This feature also allows the function of a controller to be modified during production without the need for any changes to be made to the hardware. This is one of the reasons that the use of erasable PROMS in early production units is

Fig. 1.1. Typical microcontroller arrangements.
so popular! Alternatively, the same hardware may be supplied to different customers, but with different control programs to enable them to perform significantly different tasks. An example of this is the way in which a manufacturer will market a range of pocket calculators all in the same case, using the same keyboard and internal hardware, but which are personalised for different applications (engineering, finance, surveying, etc.).

This system is rather more than a simple microcontroller. The keyboard and display which are provided may be used in two different ways. The first way uses them as part of the control application, with the keyboard for inputting commands, and the display for information output. The keyboard and/or display may alternatively be unplugged and different peripheral hardware substituted, in addition to that connected to the usual control ports. Such applications will have user-defined control programs to perform the necessary functions, e.g. central heating/lighting control, multiprogram time switches, PROM programming, etc.

The second way in which the keyboard and display may be used is in conjunction with the DISBUG monitor program, which is supplied in permanent memory. This allows the user to develop his own applications control programs, and provides facilities to control the program execution, and to debug the program. The user program itself may then re-assign the keyboard and display for applicationdependent functions. The DISBUG program cannot be overwritten by user programs, and the user can always return to DISBUG to continue debugging of an applications
program which has run out of control.
The applications for the Microcontroller are therefore limited only by the ingenuity and imagination of the user; the best application offered for the unit is the subject of a competition details of which are given at the end of this article.

SYSTEM HARDWARE DESCRIPTION

The Microcontroller is a 6800 microprocessor-based system which is ideally suited to programmed control in a wide variety of applications. A block schematic for the Microcontroller is shown in Fig. 1.2. This diagram shows the 6800 configured in a conventional fashion with an 8-bit data bus, 16 -bit address bus, and a control bus. The arrangement supports the full 64 Kbyte addressing range of the 6800 , while leaving scope for further expansion.

The 6800 is designed to use programmable memorymapped peripheral devices. The system has four programmable interface adaptors (PIAs), each of which has 16 individually programmable input/output lines. One of these PIAs is dedicated to the keyboard, the second drives the gas discharge display, and the remaining two are available for user applications. The capabilities of the PIA devices are discussed in greater detail in a subsequent section, and at length in a later issue.

The Microcontroller has 1024-bytes of RAM, which is provided with integral battery back-up to safeguard against program loss in the event of power failure. The board has facility for the inclusion of a 32-byte ROM, originally intended for "personalising" units. This ROM is unused in the basic system. Permanent memory is provided for storage of the monitor program (DISBUG) by a 2048-byte EPROM. The circuit configuration does, however, allow the use of up to 8196 bytes of permanent memory.

An address map for the system is shown in Fig. 1.3. The addresses shown are all given in hexadecimal notation; areas shown with dotted line boundaries are available for use, but are not utilised in the basic unit. Users should be aware that full address decoding is not always employed, and that some address images do occur.

Two crystal controlled clocks are incorporated in the Microcontroller. The first is the master system clock which provides the basic timing for the microprocessor and the buses. In addition, it incorporates facilities for synchronising the start-up and reset sequences. The second oscillator is a real time clock, operating at 1 Hz , which is connected to the display PIA. This clock may be configured under program

Fig. 1.2. Block schematic of the Microcontroller.

Fig. 1.3. Address map for the Microcontroller
control to provide regular interrupts, which are essential for any time dependent applications.

Separate from the main Microcontroller board are the gas discharge display, keyboard, power supply and mains transformer. Peripheral equipment to be controlled is connected to the main board by a multi-way ribbon cable.

ARCHITECTURE OF THE 6800 FAMILY

The 6800 is an 8-bit microprocessor whose internal architecture is shown in Fig. 1.4. The device is supplied in a

40-pin d.i.l. package, and requires only a single +5 volt supply. The main processor requires a 2 -phase non-overlapping clock to control its operation. The basic processor cycle time is one quarter of the oscillator's crystal frequency.

The CPU device includes an 8-bit bidirectional buffer for the data bus, and a 16-bit unidirectional address bus buffer. These buffers will each drive a single TTL load; each standard peripheral device imposes a significantly lower load.

The programming model, given in Fig. 1.5, shows the registers which are available to the user. Two general purpose 8-bit accumulator registers (rA and rB) are provided for arithmetic and logic operations. A 16 -bit index register (In) is available for indexed addressing modes of many instructions. The 16 -bit program counter (PC) is maintained automatically by the CPU, and holds the memory address of the next instruction to be executed. The 16 -bit stack pointer (SP)

Fig. 1.5. $\mathbf{6 8 0 0}$ programming model.

Fig. 1.4. Internal architecture of the 6800.
indicates the next free location on the push-down user stack. The stack pointer must be initialised by the user, but thereafter is maintained by the CPU. Finally, the condition code register (CCR) is used to indicate CPU and interrupt status. Only six bits of the CCR are used, the remaining two being permanently set HIGH.

Arithmetic and logic operations are performed by the arithmetic and logic unit (ALU). Operations may take one or two operands, depending on the instruction. Operands may be the contents of registers and/or memory locations. ALU operations set various bits within the CCR, depending on the instruction and the result of the operation.

The 6800 provides interrupt facilities for software interrupts, user interrupts, non-maskable interrupts and also for system reset. User interrupt requests may be masked under program control. The addresses of the interrupt service and reset service routines are defined as the top eight bytes of the 6800's memory. The instruction decode and control unit handles interrupt requests, provides bus control signals and executes instructions. Details of programming the 6800 will be given next month.

The 6821 peripheral interface adaptor (PIA) provides a universal means of parallel interfacing to peripheral equipment. The PIA interface uses two 8 -bit bidirectional buses and four control/interrupt lines. Fig. 1.6, shows the internal architecture of the 6821 PIA. The CPU sets up the PIA's functional configuration under program control. The peripheral data lines, PAO to PA7 and PBO to PB7, can each be configured either as an input or as an output. Consequently, any combination of inputs and outputs is possible, up to
the maximum of 16 lines. The four control/interrupt lines, CA1, CA2, CB1 and CB2, may also be configured to act in one of several modes for handshaking with peripheral equipment. All PIA peripheral data lines may drive up to two TTL loads, with CMOS drive capability on PAO to PA7.

Internally, the 6821 contains two independent sections each comprising an output register, control register, and data direction register. Separate interrupt status control is provided, together with an interface buffer, for each group of eight peripheral lines. Data is transferred to the output registers during a CPU WRITE operation via the data bus buffers and input register. Where a particular peripheral line has been programmed as an output, data will be transfered to this line. Where a particular line has been programmed as an input, data will be transferred to the system data bus from this line during a CPU READ operation. Multiple chip select lines simplify the selection of a particular PIA where several have been used. Timing is provided by an ENABLE signal derived from the 6800. Part of the address bus is externally decoded to select the required PIA, and usually the two least significant address bits are used to select the appropriate register within the PIA.

DISBUG MONITOR FACILITIES

A program of instructions is required by the CPU in order to make any use of the hardware facilities offered by an intelligent controller. It is this feature which distinguishes between dedicated and programmable controllers. The function of a programmable controller may be changed simply by the installation of a different control program; this may be

[6969]
Fig. 1.6. Internal architecture of the 6821 PIA.
accomplished in a number of ways. In mass production applications, programs are written on development systems and then stored in the permanent memory of the controller. The function of the Microcontroller, however, is user-defined and therefore facilities must be provided to enable the user to develop his own control programs. These facilities are provided by the DISBUG monitor program which resides in permanent memory, and thus cannot be over-written. User programs are stored in the RAM area, allowing them to be developed in a modular fashion.

The facilities provided by a monitor program should include the following:-

1. An interface between the user and the system.
2. The means to input and modify programs.
3. The ability to control the execution of programs.
4. Debugging facilities.

The interface between the user and the system is provided by the keyboard and the display. The DISBUG monitor scans the keyboard for user commands, and uses the display to output results. The keyboard layout is shown in Fig. 1.7.

The keys are essentially divided into two major groups; numeric keys and command/control keys. The command/control keys are associated with five major groups of monitor functions:-

1. Memory examine and change.
2. Register examine and change.
3. Setting of breakpoints.
4. Memory presets.
5. User program control.

The facilities offered are outlined below and will be examined in detail in a later issue.

REGISTER EXAMINE AND CHANGE

The user may examine the contents of any of the 6800's registers after a breakpoint has been encountered. The REGISTER key is used to invoke the register editor, and changes may then be made before the program proceeds from the current breakpoint. Registers are displayed in a cyclic fashion, as shown in Fig. 1.8. The 16-bit registers are displayed in two stages, lower and upper bytes in turn. Other editing facilities are similar to those in the memory editor.

MEMORY PRESETTING

Areas of RAM may be present to user-defined values by using the preset editor. This facility is useful for initialising RAM to known values, e.g. all zeroes, filled with NOP instruction codes, etc. The preset editor is entered using the PRESET key, and pointers are then set up to indicate the bottom and top of the RAM area to be filled. The preset value is input, and this is then written to each location in the range specified, including the two extreme addresses.

SETTING BREAKPOINTS

Temporary halts or breakpoints are a useful aid to debugging user programs. They enable the programmer to split the program into convenient blocks so that each block may be tested separately. Breakpoints are set and reset using the breakpoint editor, which is entered by pressing the BREAKPOINT key. Up to four breakpoints may be set in the user program and, when a breakpoint is encountered, the user may examine the register contents using the register editor.

Fig. 1.7. DISBUG keyboard layout. Note this artwork can be cut out to label the user definable key tops.

MEMORY EXAMINE AND CHANGE

The contents of any memory location may be examined and (optionally) changed using the memory editor. This function is also used for entering programs into the user RAM area. The user may specify any address in the 6800 address space, i.e. 0000 to FFFF. Over-writing the DISBUG RAM area may have unforseen consequences, although writing to ROM addresses will have no effect.

The memory editor is invoked by pressing the MEMORY key, and the numeric keys 0 to F are then used to specify the four-digit memory address to be examined. The contents may then be changed, if required, and the editor then exited, or the next/previous memory location examined. The CANCEL key allows the user to abandon any uncompleted memory change.

USER PROGRAM CONTROL

GO: The user program is started using the GO function key. After pressing GO, the user enters the start address from which program execution should commence. The ENTER key is used to initiate execution, or CANCEL may be used to abandon the function.

PROCEED: The user program may be caused to continue from a breakpoint using the proceed function. After PROCEED is pressed, ENTER restarts program execution, or CANCEL abandons the command.

RESTART: The RESTART key is used to re-initialise the DISBUG monitor program. The DISBUG RAM area is reset to its initial values, and the welcome message appears. The user RAM is unaffected by this function. A restart has the same effect as entering DISBUG at power-up, but without

E6956

Fig. 1.8. Register display sequence.
the need to interrupt the mains supply. The CANCEL key may be used in place of the ENTER key to abandon a restart. This function is particularly useful for re-initialising the keyboard and display PIA's.

SOFTWARE FACILITIES

Various software aids are available within the DISBUG monitor program to assist the user in developing control programs. These aids are subroutines which may be called from RAM based code. The functions and interfaces for these routines will be described in a later issue.

CIRCUIT DESCRIPTION

The circuit diagram for the Microcontroller is shown in two parts. The CPU, clocks, memory and the CPU side of the PIAs appear in Fig. 1.9. The keyboard, display, output drivers and the peripheral side of the PIAs are shown in Fig. 1.10.

When interfacing in control applications, the primary concern is with the logic shown in the second of these drawings. Applications programs, and the monitor program used to enter and control these programs, reside in the memory and are executed by the hardware shown in the first figure.

A discrete Colpitts crystal oscillator, formed by TR1 and associated components, provides the master timing signal. The crystal operates in series resonant mode to produce a signal at 3.579 MHz . The oscillator output is taken from the collector of TR1 and applied to the clock generator, IC1. The -clock generator provides the necessary non-overlapping two-phase clock, producing a CPU cycle frequency of 894.75 kHz , i.e. at one quarter of the frequency of the master timing signal. Outputs are also provided for memory synchronisation, and for the system reset signal.

The 6800 CPU is arranged in a conventional small system configuration, with no additional bus buffers required. Memory address decoding is provided by IC6 and IC25a. The $\overline{\mathrm{HALT}}$ and $\overline{\mathrm{NMI}}$ interrupt request lines are unused, and are therefore held HIGH by R7 and R5, respectively. The $\overline{\mathrm{RO}}$ user interrupt request line is connected to the four PIAs, any one of which may assert this line, thereby causing a user interrupt request.

The four PIAs, IC11, IC12, IC13 and IC14, are all connected to the full width of the CPU data bus. Also connected to the PIAs are the system RESET signal from the clock generator, and the CPU R / \bar{W} signal. The address decoder, IC6, provides an active low chip select ($\overline{\mathrm{CS}}$) to a PIA when one of its register addresses is output by the CPU. Four of these chip select outputs from IC6 are connected to the appropriate CS2 pin on the four PIAs. The CSO and CS1 pins on all PIAs are unused, and are connected to +5 volts via R39. The two least significant lines of the address bus (AO and A1) are connected to the register select inputs (RS1 and RSO, respectively) on the PIAs. The correspondence between the address value and the PIA register selected is shown in Table 1. AO and A1 have no effect on the PIAs unless the $\overline{\mathrm{CS} 2}$ in the PIA in question is held LOW by the address decoder.

The 1 Hz real time clock is provided by IC2. This device is a 24 -stage frequency divider which incorporates a conven-

Fig. 1.10. Circuit diagram of the Microcontroller.
tional CMOS oscillator stage. A single inverting stage, biased into the linear region by R30, generates the fundamental clock at 4.194 MHz . R32 reduces the crystal drive and improves the stability and accuracy of the oscillator. The oscillator output is set to standard logic levels by R33 and

A1	A0	PIA Register Selected
(RSO)	(RS1)	
0	0	PlA output register A
0	1	PIA output register B
1	0	PIA control register A
1	1	PIA control register B

TABLE 1 Correspondence between address lines and PIA registers selected.

R34. The 1 Hz output is applied to the CB1 line on the display PIA, IC1 2.

The RAM storage in the Microcontroller is provided by two 1024×4-bit very low power memory devices, IC8 and IC9. These are arranged to provide 1024 bytes of storage. The two RAM devices are de-selected whenever the main +5 V supply is absent, thus preventing inadvertent memory corruption. The memory contents are retained by the onboard Ni-Cad battery supply, B1. This battery has a capacity of $90 \mathrm{~mA} / \mathrm{h}$, and during normal operation it is trickle charged at a nominal 4 mA rate by means of R10. Control logic devices IC7 and IC15 are also supplied from B1 during power failure.

The gas discharge display is connected to the display PIA, IC12, via three high voltage drivers, IC20, IC21 and IC22. The display unit is multiplexed in the conventional manner under software control.

The keyboard is connected as a matrix between the A and B halves of the keyboard PIA, IC1 1. The three-to-eight line decoder IC23. simplifies the software scanning of the keyboard.

The user PIAs, IC12 and IC14, are available at connector "D" via four 12 V high current drivers, IC16 to IC19. The function of these PIAs is, of course, user definable.

INTERCONNECTIONS

1) Check that the thin blue and white wires on the mains transformer primary are connected together via an insulated connector block.
2) Remove the spade and tag connectors from the yellow, red, and green/yellow thin primary wires, N.B. do not remove the 4-way connector socket from the secondary wires.
3) Connect a good quality 3 -core mains lead to the mains transformer, via a mains fuse (1 amp) and double pole on/off switch, as follows:

$$
\begin{aligned}
\text { red } & =\text { live } \\
\text { yellow } & =\text { neutral } \\
\text { green } / \text { yellow } & =\text { earth }
\end{aligned}
$$

The inclusion of a mains indicator neon, after the switch, is recommended.
4) Connect the mains transformer secondary lead to the power supply board by inserting the socket into the 4-pin connector labelled " C ". Note that this connector will only mate correctly when properly inserted.
5) The power supply and Microcontroller boards should be linked together by mating the 11 -way connectors marked " A " on the two boards.
6) Connect the 20-way ribbon cable from the display to plug " B " on the Microcontroller board, noting that the connectors are polarised.
7) Connect the 20-way ribbon cable from the keyboard to plug " C " on the Microcontroller board, again noting the polarisation of the connectors.
8) Connector " D " is utilised for interfacing the Microcontroller to the user's peripheral equipment.

HARDWARE MODIFICATIONS

To set up the Microcontroller the following steps should be carried out.

1) Obtain a good quality 24 -pin d.i.l. socket and bend pins 18 and 21 outwards at right angles. Remove any PROMs which may be supplied fitted in IC3 and, on some units only, in IC26 positions.
2) Insert the modified d.i.l. socket into the existing holder for IC3, taking care to observe correct orientation.
3) Using a short length of tinned copper wire, connect pin 18 of the new socket to the OV rail; this is the wide p.c.b. track which runs on the top of the board between IC3 and IC5 (the 6800 CPU).
4) Using a 0.25 W 1 kohm miniature carbon resistor, connect pin 21 of the new socket to the +5 V rail; this is the medium width p.c.b. track which runs on the top of the board between pin 24 of IC3 and one end of C4.
5) Insert the DISBUG monitor EPROM into the new socket in the IC3 position, taking care to observe correct orientation.
6) Turn the display board over. The display unit has pins which are numbered from 1 to 30 , with pin 14 missing. Pin 1 is identified on the p.c.b. Connect a short length of insulated connecting wire between pin 7 (previously unused) and pin 22.
7) Remove the key tops marked "-"" and " $\frac{1}{2}$ " and replace them in the positions shown in Fig. 1.8. The key top which they replace should be relocated to fill the two gaps. The keys should all be labelled as shown in the diagram.

SWITCHING ON

1) Connect the mains supply, switch on and observe the DISBUG monitor "welcome" message on the display.
2) Should no display occur, check the voltages on connector "A" using a multimeter of 20 kohms/volt or better. Typical voltages expected are as follows:
$\left.\begin{array}{lll}A 1+5 V & A 5+3.8 V & A 9+42 V \\ A 2+4.3 V & A 60 V & A 10\} 5 V \\ A 30 V & A 70 V & A 11\end{array}\right\} A C$

Any significant deviation from these values should be investigated. Also check that the DISBUG monitor EPROM has been correctly inserted, and that the voltage on pin 18 is OV , and that the voltage on pin 21 is greater than +2 V .

COMPETITION

The Microcontroller competition is being run by Display Electronics to find the most practical application for the system.

The winning entry, which will be considered for publication in PE, will receive $£ 300$ in cash or goods from Display Electronics to the value of $£ 400$.
Full details of the competition together with an entry form and a copy of the rules are available from Display Electronics.

PRICES

The complete Microcontroller system (excluding the case) is available for $£ 32.95$ plus VAT and $p \& p$ or separately at the following prices: main board $£ 10.95$, p.s.u. board $£ 7.75$, keyboard $£ 5.50$, display board $£ 4.75$, Disbug $£ 5.25$, 40 way I/O cable £ 1.45 and 20 way I/O cable £ $1 \cdot 25$. All prices exclude VAT and p\&p.

Display Electronics, 64-66 Melfort Road, Thornton Heath, Surrey 01-689 7702. The case is available from West Hyde Developments, Unit 9, Park Street Industrial Estate, Aylesbury, Bucks.

NEXT MONTH: P.S.U., DISBUG and 6800 programming.

A Year to Go

Nudges and winks of a general election within a year, perhaps sooner, added little to the theatre which passes nowadays for a political conference. The stars of their respective shows, Michael, Tony, Roy, Shirley, David, Maggie, Willie, loved, despised, hated according to party taste, all performed competently. But however clearly they argued their case it still needed a small army of media pundits to clarify and re-interpret every word. Discussion and comment seemed endless, the end result negligible.

The struggles between the parties were less interesting than the struggles within them, enlivened by new entrant, SDP, in an as yet still uneasy alliance with the Liberals. Internal squabbles can be papered over but not totally concealed. They are in every party but never more so than in Labour where all the conciliating skill of Michael Foot appears to be unavailing.

Looking back over several conference seasons and their subsequent influence on events, very few of the hopes expressed have been achieved, particularly in the economy because politicians, like the rest of us, willy-nilly are victims of fundamental shifts in other economies which, by nature of our world trade, necessarily interact with our own.

An often overlooked fact is that the supposed hard-line present government continues to pour billions of subsidy into coal, steel, shipbuilding, railways, airlines and motor manufacture in the best socialist tradition. The National Health Service cost £7.7 billion in 1978-79. Today the government is trying to contain costs within twice that figure. This is the measure of the problem that this government, or any other, has to face. Now in its fourth year it has gone some way to arrest the downhill slide, in a few areas to reverse it. Painfully slow progress but progress nevertheless with electronics shining, the rest of industry remaining dull.

Spy Scare

The Japanese are nothing if not singleminded. For centuries theirs was an isolated nation, having no truck with foreigners. In this century they became dedicated to military conquest. Frustrated in this attempt they turned to industrial and trade war, so far with conspicuous success. No other nation has so mobilised itself to the single purpose of industrial supremacy on a world scale when military conquest has failed. The nearest parallel is equally defeated West Germany whose own 'economic miracle' is now faltering.

Every company likes to know what its competitors are doing and planning. But it still came as something of a shock that allegations are made that Hitachi and Mitsubishi have both been conspiring to obtain the trade secrets of IBM. Both companies have been indicted in US courts. Hitachi is reported to have admitted paying large sums (some £250,000) for information but denied knowing it had been stolen. Mitsubishi is reported to have denied unlawful conduct and will offer a vigorous defence against all charges.

Apparently the FBI set a trap by setting up a computer dealing company in Silicon Valley which looked genuine but was in fact bogus. Approaches were made to Japanese executives that confidential IBM documents could be provided-at a price. First contact, face-to-face, with an FBI undercover agent was, appropriately, in vice-city Las Vegas. The story, doubtless to be revealed more fully in court hearings, includes penetration of a building for photographic sessions and undercover payment in 100-dollar bills.

Whatever the outcome of these charges there is no question that they have opened another can of worms in the industry. For example it has re-opened the whole question of US technology leaking to other countries. One way of getting hold of a technology is by poaching engineering staff. A newly employed engineer should not, in theory, betray the secrets of his former employer, but even if he doesn't it is inevitable that ideas and techniques he has developed in his old job will be applied in his new employment. On a larger scale, another method is to buy a company outright or a big enough share to guarantee a place on the board. Examples are Philips buying Signetics and, more recently, Schlumberger's purchase of Fairchild. Then there are numerous cross-licensing deals which give a technology exchange between companies and also across national boundaries.

What worries the Americans is that US advanced technology can reach the Soviet Union through channels over which they have little or no control. If, say, a.French company has acquired US know-how through acquisition of an American company, it can be regarded equally as' French know-how and would need to be very sensitive (e.g. military security) not to be sold openly in the French manner, or indirectly through a third country acceptable to the West but having close links with the East.

So far, foreign ownership of electronics companies in the United States is mainly European and Japanese. But now, according to one report, the People's Republic of China has a half interest in a new semiconductor factory now building. It is hardly likely that the Soviet Union would be allowed equal access. But an awful thought remains. What if they have already done so through nominees? If the FBI can dupe the Japanese, why not the Soviets the USA?

Fifth Generation

The immediate practical objective in the secrets probe at IBM was to come to the market with plug-for-plug compatible products to sell to IBM users. A longer term objective could well have been fifth generation computers which are planned to have a high order of artificial intelligence and in specialist applications are already being described as expert systems. They should be with us in the 1990s, if not earlier.

Such machines will need to be 'friendly' in the sense of being uncomplicated to use. Most of the hardware is available today but capable of further development. Voice entry, for example, rather than keyboard, and voice response with optional print-out. Assume a medical expert system. A GPi may address it, describing a patient's symptoms, and get an instant diagnosis and suggested course of treatment as if the GP is in conversation with a top consultant. Which, indeed, he or she would be because massive storage would house the accumulated experience and judgement of the best medical experts. The secret, as usual, will be in very advanced programming.

The snag lies in validation of the knowledge stored. In the medical example a mistake in programming could cost lives. And, of course, 'experts' are often proved wrong. The computer, with its phenomenal calculating power, programmed with the best economic models, has hardly been a success in management of our own and other nations' economies.

Nonetheless, expert systems are on the way and the Japanese are investing a reported $£ 200$ million of government funds in a ten-year development programme plus possibly $£ 500$ million or more from Japanese industry. It all sounds very ambitious until we are reminded, as happened at a recent conference on the topic, that IBM spends as much in a year on R\&D as the whole Japanese ten-year programme.

Anyway, it would be foolish to ignore progress and although it would be difficult to match the level of investment of the Japanese or the Americans, there is no doubt that British engineers and companies will be involved in expert systems. On the commercial front Racal have been first to announce an Expert Systems Division which will initially concentrate on oilfield exploration requirements and later expanded to such applications as medicine, finance, energy, industry and defence.

The new breed of super programmers generating artificial intelligence also have a new name to distinguish them from run-of-the-mill hacks. They are to be knowledge engineers.

WATFORD ELECTRONICS

THE alarming rate at which personal computers have been introduced over the last couple of years may demonstrate a healthy growth market, but it doesn't help those who already took the plunge and are now left with a less capable machine. It matters little when you bought your computer, it is almost bound to be superceded by the next model in the range, and you are left with little or no support, and just like hi-fi five years ago, the only way out is to cut your losses and upgrade to one of the newer machines.

THE ULTIMUM!

The ULTIMUM has been designed to allow almost any 8 bit computer to be expanded into a much more flexible system. It is modular, which makes custom systems possible, and it offers features which should whet the most megalomaniac appetite.

The ULTIMUM itself is a seven slot expansion board which connects to your computer via a 40 way ribbon cable. A purpose built case is available which will house a power supply, man enough to handle a fully expanded system.

Over the coming months, we shall be introducing several daughter cards. Below is a brief summary of the range:
\star A 16/64 KByte RAM card with paging.
\star A ROM/RAM/Battery back-up card allowing up to 20 Kbytes of RAM/ROM combinations.

* A EPROM programmer with emulation facilities.
\star An intelligent floppy disk controller card, with its own processor allowing full control of disks from BASIC or M/C.
\star A port card with RS-232c, parallel and Centronics interfaces.
\star An analogue card with $A>D$ and $D>A$ capability.
\star A sound board providing up to nine voices, all independently programmable.
\star A speech card.
- A terminal card which provides 80 column output and a keyboard interface.
\star A second processor card based on the 6809, for speed. This card can share the other cards on the ULTIMUM.
\star A prototype board, with pads and power tracks, for your own additions.

THE MOTHERBOARD

We begin with the motherboard. Fig. 1.1 gives the circuit diagram. IC1 to IC4 provide the full buffering of the data and address lines. Two basic bus standards are supported, the $65 x x / 68 x x$ series and the Z80. These differ in their timing requirements and IC11 and IC12 (along with a few links) enable you to select either.

ICs $5,6,7,9$ and 10 provide an on-board port, which makes paging and handshaking possible. This facility is not essential but makes the addition of large amounts of memory (256 Kbytes uses 4 slots) possible. The buffered signals are connected to each of the seven slots. IC8 is used to control the selection of the data buffer by collecting the select signals from the daughter cards. Cards can be moved around freely once set up, as all address decoding is done off the mother board.

There are three 40 ways d.i.l. sockets which enable you to connect to your computer from the side or from the back.

The board is well decoupled, with diodes to prevent rails from crossing over on switch on/off. The slots themselves make use of two-part connectors, which although a little more expensive, do ensure reliable, knock resistant connection to the daughter cards.

Interfaces are in preparation for the following machines: Acorn Atom, Apple II, Atari, Commodore PET, Research Machines RML 3802, Superboard, Spectrum, Superbrain, S100 Bus, UK101, Video Genie, 2×81.

 32 pins in each row, but the top-numbered ones are n.c. and therefore not shown

ASSEMBLY

You will need a fine tipped soldering iron. Referring to the component layout of Fig. 1.3 install the i.c. sockets first, then the discrete components and finally the connectors. The backplane connections are close together and you must be careful to avoid shorting the tracks. Put the i.c.s in last, checking orientation carefully.

The connection to your computer will, of course, vary from model to model. A manual is provided with the kit of parts (see constructors' note) which tells you how to interface with most machines. As a general guide, Table 1.1. gives the standard connection to $\mathrm{Z80}$ based systems and Table 1.2 is for the 6502/6800 microprocessor family. These tables also describe how to set up the various links for each type.

TESTING THE 8255

The best way of testing that the board is wired correctly is to address the 8255 port i.c. The 8255 can be mapped to any 256 byte boundary by setting d.i.l. switches 1 to 8 . Find an unused space and select it as shown in Table 1.3. The 8255 resets on power-on to its all input state. A set up routine (written in BASIC) is given in Table 1.4. which makes all the lines outputs, and then flips them from 1 to 0 approximately twice a second. You can observe this by looking on the port pins as laid out in Fig. 1.1. If nothing happens, check that you have set up the correct address and check your connections. If you use a multi-meter to check the outputs, make sure that it has an impedance of $5 \mathrm{Kohms} /$ volt or greater. Once the 8255 is working you can be fairly sure that any other faults are minor, and unlikely to damage the daughter cards.

COMPONENTS

ULTIMUM MOTHEREOARD

```
Resistors
        R1-R11 3k3(11 off)
        R11
        47k
        All resistors are }\frac{1}{4}\textrm{W}5
```

Capacitors
C1.C6 $\quad 47 \mu / 16 \mathrm{~V}$ axial elect. (12 off)
C2-C5 $\quad 4 \mu 7 / 63 \mathrm{~V}$ axial elect. (4 off)
C7-C24 $\quad 100$ dise ceramic (18 off)
Diodes
D1-D5 1N5402 (5 off)
Integrated Circuits

IC1, IC2, IC4	81LS95 (3 off)
IC3	74 LS245 (8T245)
IC5	8255
IC6, IC7	74 LS85 (2 off)
IC8, IC9	74 LS30 (2 off)
IC10	74 LS04
IC11	74 LS14
IC12, IC13	74 LS32 (2 off)

Miscellaneous 14 pin d.i.l. sockets (6 off) 16 ." ". " (4 off) 20 .. ". " (4 off) 40 "̈ "̈ (2 off) S1-S4, S5-S8 4 way d.p.s.t. d.i.l. switch (2 off) EC1, EC2 $2 \times 32 \cdot A+C^{\prime}$ DIN Euro Socket (straight pin) (2 off)
TB1, TB2 4 way p.c.b. terminal block (2 off)
Optional Extras
EC3-7 $2 \times 32^{\prime}$ A+C' DIN Euro Socket (straight pin) (5 off)
40 pin d.i.l. socket (2 off)

TABLE 1.1. 40 WAY CONNECTIONS TOZ8ø SYSTEMS

1	INT		MREQ
2	NMI	39	RESET
3	NC	38	HALT
4	Dø	37	NC
5	D1	36	D4
6	D2	35	D5
7	D3	34	D6
8	IORQ	33	D7
9	GND	32	NC
10	NC	31	CLOCK
11	NC	$3 \emptyset$	RD
12	A2	29	WR
13	A1	28	RFSH
14	$A \emptyset$	27	A15
15	A3	26	A14
16	A4	25	A13
17	A5	24	A12
18	A6	23	A11
19	A7	22	A1ø
$2 \emptyset$	A8	21	

TABLE 1.2. 4ø WAY CONNECTIONS TO 68/65xx SYSTEMS

1	IRO	$4 \emptyset$ NC	
2	NMI	39	RST
3	NC	38	NC
4	DO	37	RDY
5	D1	36	D4
6	D2	35	D5
7	D3	34	D6
8	NC	33	D7
9	GND	32	R/W
10	NC	31	Q2
11	NC	$3 \emptyset$	NC
12	A2	29	NC
13	A1	28	NC
14	$A \emptyset$	27	A15
15	A3	26	A14
16	A4	25	A13
17	A5	24	A12
18	A6	23	A11
19	A7	22	A1 \emptyset
20	A8	21	A9

[^2]SETTING THE 8255 ADDRESS SPACE

Link/switch	Mapped to . . . (hex)
87654321	
Øøøøøøのø	$0 \emptyset \emptyset \emptyset$
$\emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset 1$	0100
$\emptyset \emptyset \emptyset \emptyset \emptyset \emptyset 1 \emptyset$	¢20 0
$\emptyset \emptyset \emptyset \emptyset \emptyset \emptyset 11$	Ø300
in 100 hex increments	
Øøø 1 $\emptyset \emptyset \emptyset \emptyset$	$1 \varnothing \emptyset$
$\emptyset \emptyset \emptyset 1 \emptyset \emptyset \emptyset 1$	1100
$\emptyset \emptyset \emptyset 1 \emptyset \emptyset 1 \emptyset$	1200
in $1 \varnothing \emptyset$ hex increments	
$\emptyset \emptyset 1 \emptyset \emptyset \emptyset \emptyset \emptyset$ etc.	2000
$\emptyset \emptyset 11 \emptyset \emptyset \emptyset \emptyset$ etc.	3000
11111111.	FFøø
Link	Switch
1 means link to Vcc	1 means ON
\emptyset means link to GND	\emptyset means OFF

TABLE 1.4.
$\mathrm{P}=(8255$ Address in decimal) POKE P $+3,128$ (Set all ports to output) POKE P. \varnothing POKE P + $1 . \emptyset$
POKE P + $2, \emptyset$ GOSUB $12 \emptyset$ POKE P, 255
POKE P $+1,255$
POKE P + 2,255
GOSUB $12 \emptyset$
GOTO $3 \emptyset$
FOR $T=1$ TO $25 \emptyset$ (Approx $\frac{1}{2} s$ delay)
NEXTT
RETURN

ULTIMUM

The ultimate motherboard?

Although the kit of parts will include d.i.l. switches for the setting up of address lines A8 to A15, we feel it is worthwhile pointing out the existance of an earlier option which the p.c.b. will accommodate. This is the use of prewired di.i.l. header plugs instead of switches, which can be changed quickly for different addressing. The tamper-proof nature of this option may be preferred.

The remaining links (refer to Fig. 1.3) should be wired as follows:
LINK 9
Link A-B for $\mathbf{Z 8 0}$ systems (allows reset from host computer)
Link B-C for $\mathbf{6 5 / 6 8}$ systems (gives on-board reset)
LINK 10 ($\mathrm{R} / \overline{\mathrm{W}}, \overline{\mathrm{WR}}$ strapping link)
Link A-B for $65 / 68$ systems (gives R / \bar{W} to R / \sqrt{W})
Link A-C for $\mathbf{Z 8 0}$ systems (gives $\overline{W R}$ to R/W)
LINK 11
Link open for Z80 systems
Link closed for $65 / 68$ systems

Fig. 1.2. Ulirnum links, and methods of linking. (a) Using linked header plugs which can be swapped. (b) Using d.i.l. switches

THE POWER SUPPLY

A special power supply has been designed for the ULTIMUM, which provides power rails for additions such as the disk drive and the EPROM programmer. The power supply will fit inside the ULTIMUM case or may be mounted separately.

The design of the power supply is given in Fig. 1.4. This is a standard design using current limiting, thermally protected i.c. regulators. The component layout is given in Fig. 1.5 Please observe the usual precautions when wiring mains equipment. How to fit the assembled unit into its housing is covered in a comprehensive manual (see constructors' note), available with the kit of parts, but construction of the power supply p.c.b. assembly is very straightforward. Follow the overlay given (Fig. 1.5) and the instructions below, being careful to note the polarity of components where appropriate. The construction sequence is as follows:

1) Fit p.c.b. pins in points $A-G, M, I, J, L, K, N, O, P$.
2) Fit diodes D1-D4.
3) Fit REC1 and heatsink-bolt heatsink to bridge REC1 and then mount this assembly to p.c.b.
4) Fit bridge rectifier REC2.
5) Fit R1-leave 5 mm clearance between resistor and p.c.b. to allow heat flow around resistor.
6) Fit smoothing capacitors C1 and C2. Note that the dummy tag is used only to provide greater stability.
7) Fit smoothing capacitors C14,C7,C11,C8.
8) Fit ceramic capacitors C15,C6,C13,C10.
9) Fit capacitors C7,C12,C3.
10) Fit zener diode D5.
11) Fit IC5, IC2, IC4, IC3-note that the metal tabs stand towards the ceramic capacitors.

Physical details of D6

[EPP25

	1	2	3
IC27812	Input	Common	Output
IC3 7905	Common	Input	Output
IC47912	Common	Input	Output
IC57818	Input	Common	Output

Component pin-outs.

Fig. 1.4. PSU circuit diagram

Fig. 1.5. PSU component layout (copyright Watford Electronics)

COMPONENTS . . .

MULTIRAIL POWER SUPPLY

Resistors

R2

Capacitors
C1, C2
C3
C4
C5, C9, C12
C6, C10, C13, C15
C7, C11
C8
C14

10 or $12 \Omega 5 \mathrm{~W}$
$330 \Omega \frac{1}{2} \mathrm{~W}$
$4700 \mu / 25 \mathrm{~V}$ tag elect. (2 off)
$4 \mu 7 / 16 \mathrm{~V}$ axial elect.
220n polyester radial
$10 \mu / 16 \mathrm{~V}$ axial elect. (2 off)
100 n disc ceramic (4 off)
$2200 \mu / 25 \mathrm{~V}$ radial elect. (2 off)
$1000 \mu / 16 \mathrm{~V}$ radial elect.
$470 \mu / 50 \mathrm{~V}$ radial elect.

Discrete Semiconductors

D1-D4
D5
D6
REC1
REC2

1N5401 (4 off)
6V8 IW3 Zener
0.2 in. l.e.d. 6 A/100V bridge rect.

Integrated Circuits

IC1	$78 H 05+5 \mathrm{~V} / 5 \mathrm{~A}$ reg.
IC2	$7812+12 \mathrm{~V} / 1 \mathrm{~A}$ reg.
IC3	$7905-5 \mathrm{~V} / 1 \mathrm{~A}$ reg.
IC4	$7912-12 \mathrm{~V} / 1 \mathrm{reg}$.
IC5	$7818+18 \mathrm{~V} / 1 \mathrm{~A}$ reg.

Miscellaneous
P.c.b.

Multitap transformer (0-15, 0-15. 0-30, 0-30, 0-9, 0-9@5A)
2 pole 2 way sub min. toggle (mains)
20 mm 1A A/S fuse plus 20 mm panel fuse holder
Watford PSU board

6BA stand-offs, nuts \& screws
for mounting p.c.b. (4 off each)
Heatsink Type TV4
Insulating kit TO3
5A 3-core mains cable 2 metres
Grommet for above
4BA $\frac{1}{2} \mathrm{in}$. boits, and nuts (5 off each)
Solder tag (2 off)

CONSTRUCTORS' NOTE

Kits for the ULTIMUM are available from Watford Electronics (see advertisers' index). A limited number of readybuilt units will be available. Please send SAE for price list of boards now available.

Because the system has so many applications, we feel sure, that people will want to exchange ideas. If this is the case, a users group will be formed to provide support for existing and future machines.

This interface system is totally modular. It is therefore not only capable of rising to meet almost any specific requirement as it crops up, but may be expanded in stages as and when funds are available.

Next Month: Ultimum's potential will be expanded on. The $16 / 64 \mathrm{~K}$ RAM board, EPROM programmer and Romulator, and ROM/RAM battery back-up.

[599]

Sell our products to your friends and family and earn $\mathbf{1 0 \%}$ commission. Details on request.

All have a full display of time and auto calendar. Alarm and selectable half-hourly time signal. Countdown alarm timer with repeat memory function. Professional $1 / 100$ second stopwatch. Time is always on display, regardless of display mode. Amazing $5 / 7$ year lithium battery life. 12/24 hour display.
Ceses and straps/bracelets: W. $\mathbf{3 0 0}$ all black resin. W. 23 all resin with S/S trim. W 450 and DW-1000, all S/S with protective black bezel. W-450C and DW1000C (not shown, ©34.95) as W 450 and DW-IO00 but with black resin and rubberised W / R straps.

ANALOG/DIGITAL
The World's most versatile watches?

AX-5
(left)
Resin
$£ 19.95$
AX-250
(Right)
£24.95

Analog LCD hours/minutes. Digital display: Local time, 12 or 24 hour; 62 day calendar display; Dual time, 12 or 24 hour; Alarm time display; Countdown alarm timer with memory function; Professional stopwatch; Optional hourly time signal; Daily alarm-electronic buzzer, or 3 optional melodies.

TRUE ANALOG/DIGITAL

AQ-101
$\$ 39.95$

Classical analog with digital hours, minutes and seconds. Auto calendar; Alarm \& hourly time signal; Professional
stopwatch; Date memory.

JOIN THE KEYBOARD REVOLUTION
With the incredible new Casiotone MT-70 Programmable Keyboard Mini priced, Mini Keyboard version of the highly successful
CT-701, One of the most advanced teaching aids to far developed." (E\&MM). Program an entire piece of music, entered via the keyboard with full editing controls, or from Casio's unique bar-coded music scores. The MT-70 can then teach you how to play that piece. With 20 superb preset voices, Casio Auto Chords, $(61 b)$, measuring: $-68 \times 633 \times 188 \mathrm{~mm}\left(29 \times 25 \times 77^{\prime \prime}\right)$. Integras (6 lb), measuring:- $68 \times 633 \times 188 \mathrm{~mm}(24 \times 25 \times 7$). Integra amp/speaker, or optional FM transmitter allows remote playing thro Hi -Fi.

4-octave Programmable Keyboard
$£ 199$
ONE THOUSAND VOICES FOR ONLY £325
Casiotone CT-1000P Digital Synthesizer

Details on request. Interest free credit

.

MiCROL
Totally professional software for amateurs \& professionals Use And Learn Vol. 1 (25 programs/ 100 pages) THE DATABASE (over 900 screens on C90) $48 \mathrm{~K} \quad £ 9.95$ Both on cassette tape. Send for details

IF YOU SEE A BETTER OFFER WE WILL BEAT IT.

MULTI ALARM WATCHES

MM400

 6 melodies£29.95
CA-95
(right)
2 melodies
Calculat
Resin
£19.95

Both have 12 or 24 hour time and calendar display.
Both have 12 or 24 hour time and calendar display,
Professional stopwatch; Hourly time signal; Daily alarm Professional stopwatch; Hourly time signa,, Wail
with pre-alarm; Daily alarm with post-alarm; Weekly alarm with pre-alarm; Daily alarm
(or can be extra daily alarm). MM 400 . In addition has monthy alarm (or ex
alarm), Time is always on display; Dual time. CA-95 With calculato
$£ 29.95$

OTHER WATCHES

J-50 Jogging pacer/computer; alarm; s/watch GM-10 Invader game; alarm; s/watch Resin GM-30 Batlleships/submarines version GM 40 Pyramid building/invader version
A656A Alarm; dual time; stopwatch. Chrome WS-70 S/S; W/R; C/D \& alarm; D/T; S/W; slim SA -50 Non W/R chrome version £14,95. SA 50 E 22.95

Price includes VAT and P\&P. Send cheques, PO, or phone your ACCESS, VISA or B'CARD number to: LEADING CASIO SPECIALISTS

DELIVERY
NORMALLY Dept. PE,

BY RETURN

TEMPUS

38 Burleigh Street, Cambridge CBI IDG Telephone: 0223312866

CAMBRIDGE LEARNING

SELF-INSTRUCTION COURSES

\star NEW! \star

DIGITAL COMPUTER DESIGN $£ 8.50$

Our latest, up-to-date course on the design of digital computers, both from their individual logic elements and from integrated circuits.

Digital Computer Design is the best way for you to understand how simple computers are. You are first shown the way in which simple logic circuits operate and then, through a series of exercises, arrive at a design for a working machine.

GSC SUPERKIT £19.90

The original Cambridge Learning Superkit, a practical digital electronics kit for beginners, now re-written for the popular GSC EXP300 breadboard. The kit comes complete with an instruction manual, components, and breadboard to teach you all the basics of digital electronics.

DIGITAL COMPUTER LOGIC \& ELECTRONICS
 £6.00

The theory course to support the practical Superkit, this 4 -volume set covers basic computer logic; logical circuit elements; the design of circuits to carry out logical functions: flipflops and registers. No prior mathematical knowledge other than arithmetic is assumed.
GUARANTEE No risk to you. If you are not completely satisfied, your money will be refunded upon return of the item in good condition within 28 days of receipt.
cambridge learning limited, unit 20, rivermill site, FREEPOST, ST IVES, CAMBS, PE 17 LBR, ENGLAND. TELEPHONE: ST IVES (OL80) 67LL6. VAT No 313026022 All prices include worldwide postage (airmail is extra please ask for prepayment involce). Giro A/C No 2789159. Please allow 28 days for delivery in UK.
.......SUPERKIT(S) £19.90
DIGITAL COMPUTER LOGIC AND ELECTRONICS $£ 6.00$
1 enclose a *cheque/PO payable to Cambridge Learning Lid for f......... (*delete where applicable)
Please charge my:
*Access / American Express / Barclaycard / Diners Club Eurocard / Visa / Mastercharge / Trusicard
Expiry Date........... Credit Card No
Telephone orders from card holders accepted on 048067446 Overseas customers (Including Eire) should send a bank draft in sterling drawn on a London bank, or quote credit card in sterli
\qquad
\qquad

all in your

issue!

This is a stylus operated two octave keyboard with only one tuning preset and eight individual voices made up of four square and four triangular waves over a range of six octaves. It includes two stylii, each controlling four voices to enable the playing of two notes at a time and a switched option for one stylus, to play one or both waveforms.

With the advancement of robotics into industry, some experience with robots becomes of increasing importance. The Genesis range of robots we published last Winter have achieved considerable penetration into industry and education. However, we have not been resting on our laurels! Next month we start Micrograsp, an ultra low cost electric robot. Even with full servo control and a universal computer interface board the price is under $£ 200$.

 featuring $\mathbf{6 8 0 0} \mathbf{6 8 0 2}$

PRACTICAL

SALYUT 6 AND COSMOS 1,267

The Soviet Space control ended the 58 month mission of this composite unit on July the 29th, 1982. Cosmos 1,267 was docked automatically with Salyut 6 for a mission of scientific experiments and another of the Russian feasibility studies dealing with permanently manned units in orbit. Up till the time that the composite unit was commanded to destruct into the Pacific Ocean, it had logged some 676 days of manned operations. These were in short and long periods. The short duration involved 11 crews and the long durations 5 crews. The reason given for the termination of the missions was that the programme had been completed and the consumable items such as the fuel for the control systems was near the planned exhaustion level. The total number of launches of Soviet vehicles since Sputnik 1 on October the 4th, 1957, has now reached more than 1,500 .

The American authorities seem to have been somewhat worried as to whether some of these manned missions were in fact concerned with anti-satellite homing vehicles as a defensive activity against American satellites. It seems out of keeping with the manner of space research that so much worthwhile work in the cause of science for the benefit of mankind should be marred by wrong attitudes and suspicious undercurrents. Nothing but benefit can come from co-operation, now especially as so many independent countries are active in space technology.

LOOKING BELOW THE SURFACE OF THE LAND

The Shuttle imageing radar has shown that it is possible to provide adequate data of conditions and the character of sub-surface terrain. While it is, of course, possible for radar to 'see' below the surface, the imageing has always been regarded as useless. Now, after the data being analysed from the second Shuttle mission is considered, there are already plans for expeditions to the Sahara. Interest has extended to the re-examination of previous passes over arid areas. The JPL data is to be opened up for this purpose. Some of the Landsat data, like the multispectral scan over the Sahara, shows mostly sand but also a
hint of rough terrain below the sand. These, however, were over the 'hyperarid' areas where rainfall comes every $30-50$ years. Here, the very fine sand allowed the radar to penetrate Generally, however, there is no clear indication that there are reliable visual formations that could be reported. However, the radar pictures returned by the second shutve flight provides ample evidence that very considerable detail can be seen. The varied techniques growing in experience and skill show remarkable conditions. As an example, some of the evidence points to formations which must be at least 35 million years old. Under the sand are to be seen large, wide and dry river valleys extending for hundreds of tniles. Indeed, some of the valleys resemble very closely the present Nile valley. Other conclusions that have been drawn indicate that there are extensive fault lines and rugged terrain; also there can be seen alluvial valleys and terraces. The expeditions to make direct examination of these areas will be putting a new look on archaeological digs, for now they will be looking not at recent but at remote periods of time. It is not surprising that renewed interest in the planet Mars is taking place. The arid surface of Mars could yield a great deal of information if the new imageing techniques could be applied from an orbiter. It could be possible to examine the terrain of Mars beneath the polar caps. These new techniques are already regarded as a great scientific advance and new missions for the shuttle are already being planned. It should also be proper that the person who first suggested that this sub-surface imageing capability existed should be rewarded. The Geological Survey and the JPL view this a major discovery and award the credit to a guest investigator Carol S. Breed with the Astrogeologic Branch.
However, while past history is a clue to the future, there are intensive matters of interest for the present. The ebb and flow of terrestrial changes on the crust of the Earth indicates periods of wet conditions and savana growth and periods of arid conditions. Geological features now to be examined below the surface will enable assessments to be made as to the possibility of water and oil recovery. Knowledge of places where possible human habitation may have been in existence as long ago as 200,000 years, offers evidence of the conditions then. So the priorities are already being set for future shuttle missions. Two special radar missions for radar surveys will have the benefit of the new techniques from the Geological SIR-B.
SIR-B radar is an improved and upgraded version of the initial imageing system and will be flown on the shuttle in 1984. This mission will use the same aerial, that is the L-band, but with the capability of variable incidence angle ranging from 15 to 65 deg. This will facilitate the assessment of the effects on the imageing content. The shuttle 1987 to 1988 missions will use a radar system that will have the facility of variable incidence and also variable polarisation.
At the Jet Propulsion Laboratory a study is being made for a radar sounder mission to try to penetrate the polar icecaps. This will be possible because water ice is transparent to the radar energy. Studies of the surface effects
indicated that a great deal of surface information is to be obtained. Large wind patterns on the ocean surfaces were seen. In one section of the Aegean Sea it is thought that gravity waves have been detected, or at least the effect of such waves.

In enthusing about the imageing system it would be churlish not to deal with progress that is now being made with Landsat-D. The USA were intending to double the cost of the service of the distribution of data. These charges were $\$ 5$ to $\$ 10$ for a single coloured picture, and $\$ 200$ for a length of binary tape which the purchaser had to process. Some countries have set up their own land stations, paying the USA annual fees for the right to intercept the data. They were able to sell their own data as they wished. Now with the new techniques the scene becomes almost a rescue. Landsat-D, which was launched in last July, carries the new cameras with much improved data acquisition and an improvement of nearly five to one with the new Thematic mapping. This is a far more efficient system and takes pictures both in the visible spectrum and in the infra-red. Areas of 1,000 square metres can be analysed, which adds to the detail that can be 'seen'. There are particular advantages in this for small areas and plantation study. Two teams are co-operating with NASA in Britain. These are the National Environment Council in Swindon and at Reading University. They will be doing this before the Landsat-D comes into official service next year.

There is a second improvement also available for this vehicle. It will be the first to use a new communications satellite to be launched by NASA in January, 1983. It is called the Data Relay Satellite and will orbit $36,000 \mathrm{~km}$ above the Earth and will be in the Western Hemisphere. The signals will be received from the Landsat-D and bounced down to the Goddard Spaceflight Center. This means that it will not be necessary for them to operate a large number of base stations to receive data. This will reduce operation costs considerably.

BRITAIN SHARES THE SPACE TELESCOPE WORK

British Aerospace will be delivering solar paneis to NASA for the Space Telescope in September, 1983. The Bristol plant of British Aerospace are constructing what must be the largest solar panels so far destined for operation in space. The area of the panels are some 33 square metres. They are, in fact, so large that it is difficult to test the arrays in the Earth's gravity. Some 48,000 silicon cells will produce about 5.5 kilowatts of direct current.

The design of the panels is rather special. As the vehicle will have to be carried in the shuttle cargo bay, a compact package must be made. The solar panels will be wound around drums 20 centimetres in diameter. When the spacecraft is unloaded into orbit the two giant panels will unroll. The height at which the Telescope will orbit is comparatively low, only a few hundred kilometres.

These solar panels are likely to be the forerunners of still larger arrays. This will be necessary because power of 100 kW will be required by the 1990 's, and by the end of the century of the order of megawatts. The value of the contract to British Aerospace is worth some 11 million pounds.

WE HAVE all been touched by the far reaching effects of the microprocessor revolution in our day to day lives, and there will soon be few households which do not have a microprocessor tucked away somewhere, in a TV game, a home computer, a washing machine or even a door bell!

Of course, as electronics enthusiasts, we have a special interest in the potential of the microprocessor, but although most of us are itching for a "piece of the action" it has not been easy to decide quite what we are supposed to do with this marvellous innovation. At the moment, even for electronic hobbyists, the main way "in" is to buy a basic home computer such as the Sinclair $\mathbf{Z X 8 1}$. But I suspect that for some this has been a frustrating experience. The problem is that using a home computer and programming it in BASIC is not necessarily a suitable replacement for the smell of solder flux and the burned fingers which we all enjoyed so much! Almost ten years since the first microprocessor appeared, it now seems that microprocessors are for software hobbyists and are much too complicated for us to use in the replacement of the transistors, gates, and pink wire with which we have been traditionally associated.

This situation cannot be allowed to continue. Microprocessors are crying out for the attentions of our soldering irons, and it is our contention that the use of these useful devices is not as difficult as it may appear at first sight. The problem we face is in the nature of an information explosion. We are surrounded by a bewildering array of microprocessor chips, support chips, memory chips and software, all apparently very complicated. If we want to build a simple system such as a music generator or a central heating controller, which chip do we choose? Is it powerful enough? Has it got the right features? Can we program it? Will it be obsolete next month? All questions not easy to answer, and enough to put us off the idea and return to building "traditional" projects or even turn our hand to writing a program to find all the prime numbers between 1 and 1000.

But all is not lost! The editorial team of Practical Electronics is determined that the electronic aspects of using microprocessors should not be delegated for ever to the professionals, and we are therefore launching the MICRO-FILE series to help reduce the confusion surrounding these powerful components. The series is an attempt to lay bare the essential characteristics of the most popular processors so that the interested may keep up to date, and the dedicated project designers can choose the correct processor for their needs. Those who already have microprocessors in personal computers or other units will also find the series useful if they wish to delve into the innards of their machine to interface with it, repair it, or even just understand it.

the miare sceneon

There are currently about 40 different available microprocessor designs, although obviously not all of these can claim to be "winners". Even this daunting figure does not tell the whole story by any means. Many of the 40 basic chip designs come in several different versions which bumps the total up considerably, and nearly all the "popular" devices are produced by several manufacturers either by second sourcing under licence, or as functional copies which may not operate like the original in all respects. Add to this the fact that most micro based systems require additional family support chips to facilitate interfacing and the seeds of confusion have sprouted to form a forest!

Because of the kaleidoscopic nature of applications for the versatile microprocessor, it is not easy to create pigeon holes into which the various chips and their uses can be slotted, but some attempt has to be made to simplify things. Perhaps the best way to start is to split the spectrum of micro applications in two, with "data processors" on the one hand and "controllers" on the other. Data processors generally operate "off-line" under human supervision and require large programs usually written in a high level language such as BASIC. These systems require large arrays of read write memory and generally have at least one operator console. Personal computers are one example of a data processor application, word processors are another.

Controllers usually operate alone to control or monitor some process automatically and generally use smaller ROM based fixed programs which are usually written in assembly language machine code. For controller applications speed is often important, and transducers are required to sense the state of the process and to generate appropriate outputs. Burglar alarms, TV games and central heating systems are examples of applications where microprocessors are used as controllers.

CHOOSING A CHIP

Many microprocessor chips have special advantages which suit them either to data processor or to controller applications, but it is also true that many others are general purpose in nature.

Those best suited to data processing will have a word length of at least 8 bits and will have an address bus wide
enough to access at least 64 K words of memory. Their instruction sets should offer a rich variety of addressing modes and a family of interface devices should also be available. There is a very definite trend towards 16 bit processors with address ranges of 1 megabyte or more for most data processing tasks. These devices are at least as powerful as the minicomputers which they will soon replace, but the design of a hardware and software system to take advantage of their power is, unfortunately, a daunting prospect for the non-professional.

Microprocessors optimised for controller applications may have any word length from 4 bits upwards and should ideally be as self-contained as possible, even to the extent of being true "single chip" devices which pack RAM ROM and interface lines into a single package. Controller instruction sets should be compact and offer fast access to I/O and timing functions. Simple, on chip interrupt prioritisation is also an advantage, as is the availability of a multifunction peripheral chip family. Generally speaking, microprocessors which are optimised for control applications are simpler to design with in both hardware and software terms.

The author's view is that if your main interest lies in the data processing or personal computer field, then it is difficult to compete with the many ready-made offerings from Sinclair, Acorn, Commodore, Tandy, Apple, and a host of other suppliers. The main problem here is that the microprocessor is really only the tip of the iceberg in D.P. applications with software being the most important factor. It has been said, for example, that to make proper use of the new data processing orientated iAPX 432 microprocessor from Intel, the typical user will need to invest as much as ten man-years in software creation, even using a high level language!

If you wish to use a microprocessor to control things however, then hardware ingenuity is still very important and the required software can usually be created in weeks even when using machine code and without the benefit of expensive development systems. The message is clear. If your ambitions lie in designing a 16 bit personal computer with twin floppies, a megabyte of RAM and a Pascal compiler, then a stony road lies aheadl If, however, you wish to control your central heating or build a fuel consumption computer for your car, then pick a suitably simple control processor and have a go; you could have a lot of fun!

THE OBSOLESCENCE PROBLEM

One thorny problem for any budding designer is the very rapid progress in microprocessor technology which produces better, faster, and above all cheaper devices at a breakneck pace. There is therefore the ever present spectre of starting a project and then finding that before is is finished a new device has emerged which would do the job better and at a lower cost. This is especially true in the data processing field where development periods tend to be longer.

To avoid the worst of this problem, it is obviously necessary to choose a device which is not about to be superseded. Beware the bargain offer of a wheelbarrow full of National SC/MPs or Intel 8008s for a "Tenner!" At the same time it is necessary to choose a device which has been inplay for a sufficiently long period to establish its popularity and which can therefore be expected to have good support and a long life. You can expect the manufacturers to develop their success with popular chips by bringing out improved versions, and this can be an advantage because your "learning"' investment can be put to good use on future projects using the enhanced devices when they are available. It is also necessary to remember that, say, a central heating controller may be required to operate for 20 years or more while the lifetime of the majority of microprocessors can be expected to be less than ten years-so remember to buy a spare!

SUPPORT DEVICES

If there were any such thing as a typical microprocessor
system then in addition to the processor device itself we could expect to find RAM and ROM memory; a parallel I/O port, a serial l/O port, and at least one "special" device such as a disc controller, a maths chip, or an analogue to digital converter. Support devices are available to fill all these requirements and many more besides, and these have to be given serious consideration since they contribute almost as much as the processor itself to the success of any project.

Support devices can be part of a particular microprocessor "family" and these often have special features to simplify their use with that family. Also available are many general purpose devices which can be interfaced to most processors with the addition of a small amount of external logic. All have their part to play. The trend in support devices is towards complex and powerful chips which give a considerable boost to the basic performance of any processor by unloading from it a lot of the system "chores" which it would otherwise have to perform for itself. Prime examples here are the maths processor chips which give systems easy access to floating point arithmetic and high level math functions such as square roots and sines which would normally have to be provided by software routines. Many support devices rival the microprocessors which they serve in chip complexity, and so it is important not to underestimate the task of learning how to initialise and program these devices to perform the required function. Some support chips even have user manuals as thick as those of their attendant microprocessor!

MICRO-FILE FORMAT

Having set the scene, and perhaps frightened, but hopefully inspired many readers, we can now return to how the MICRO-FILE series has been designed to help!

To make any kind of objective assessment of a number of microprocessor devices it is normally necessary to purchase the relevant manuals, and these are not cheap. Having purchased the manuals, a period of intensive study is required to sort out the important characteristics and to come to any conclusion. Remember too, that the manuals are written by the manufacturer and are therefore unlikely to point out any shortcomings!

MICRO-FILE builds up month by month to provide a complete quick reference guide to the more popular microprocessors. Each MICRO-FILE entry consists of a quick reference fact sheet, designed for easy filing, and explanatory text which provides further information and application data. The sheets can be removed from the magazine and placed in a binder for filing.

This introductory article can form the binding "covers". At present there are plans to include about twelve of the most popular processors, but this may be extended later if necessary. So if you collect the whole series it will form a 48 page (or more) reference book on microprocessors plus this "cover" section.

The first FILESHEET considers the Intel 8080A and its successor the 8085A, two of the most popular processors so far, with the 8080 A often considered to be the processor which really started the microprocessor revolution.

The reference fact sheet is intended to provide all the essential information about a processor or a processor family, including general background details, register arrangement, instruction set and software, system schematics, performance data, pin connections and basic support chip information. Using these sheets it will be possible to compare processors and to choose the best one for a particular application. Readers not interested in go-it-alone projects can use the sheets to assess the potential power of readily built systems using a particular processor, to help with system trouble shooting and interfacing, or simply to improve their knowledge of the subject.

Alexandra Pavilion November 18-211982

Launched in response to demand for a major national show of the highest quality, PRACTICAL ELECTRONICS, EVERYDAY ELECTRONICS and PRACTICAL WIRELESS are presenting the biggest and best event ever to be staged for the electronic hobbies enthusiast.
If your company is involved in the manufacture of electronic components, equipment, ancillary systems for
electronic projects, home computers, amateur radio, citizens band, video games, musical instruments-you should be there!
For further information about exhibiting contact: The Exhibition Manager, Electronic Hobbies Fair, IPC Exhibitions Ltd., Surrey House, 1 Throwley Way, Sutton, Surrey SM1 4QQ. Tel: 01-643 8040. Extn. 4873.

Please send me details about exhibiting at

Name
Position in Company
Company \qquad
Address \qquad

Tel
Send to: The Exhibition Manager, Electronic Hobbies Fair, IPC Exhibitions Ltd., Surrey House, 1 Throwley Way, Sutton, Surrey SM1 400.

ロ

THE Intel 80808 bit NMOS microprocessor first appeared in 1973 as a successor to the more limited 8008 PMOS device. The 8080A was the first microprocessor to capture the imagination of designers and was a fundamental cog in the microprocessor revolution generating annual sales of over 2 million devices per year in its heyday. The success of this chip resulted in the spawning of two, more powerful successors, the $\mathbf{Z 8 0}$ from Zilog which had an enhanced instruction set but basically the same bus configuration, and the 8085A from Intel which had basically the same instruction set but a new multiplexed bus structure. Both of the newcomers appeared in 1977 and have now replaced the 8080A for all new applications with the $\mathbf{Z 8 0}$ being most popular for data processing and the 8085 being more successful as a controller.

In order to squeeze the maximum performance from the NMOS technology available in the early 1970s the 8080A was designed to use three supply rails of $+5,-5$ and +12 volts and had to have two additional support chips to provide clock generation and bus interface. The main competition to the 8080A in the early days was the Motorola 6800 which despite using only two chips and a single supply voltage was never as popular due to its lower overall performance.

The 8080A has a common instruction and data memory space of 64 kilobytes and a separate 1/O space of 256 ports which, together with a good general purpose instruction set, made it useful for a wide range of applications in control and data processing.

The 8085 was an attempt by Intel to maintain the sales momentum created by the 8080A, although it could be argued that the competing Z80 from Zilog did a better job. The 8085 needs no support chips except for memory and I/O, and will run faster than the 8080 A from a single 5 V supply. To free extra interface pins the 8085A has a multiplexed data and address bus with the new connections being used for extra interrupts and serial $1 / O$ in addition to the necessary control and clock lines. Introduced at the same time as the 8085A were two special peripheral devices also in 40 pin packages. The 8155 provides 256 bytes of RAM, 22 parallel I/O lines and a 14 bit timer while the 8355 provides 2 K bytes of ROM and 16 parallel $1 / O$ lines. Using the 8085A with these two peripherals it is possible to build a powerful processor system with RAM, ROM and comprehensive I/O using just three chips.

REGISTERS

The 8080A and the 8085A have an identical data register arrangement although the 8085A does have an additional register which is used in the control of its extra serial I/O and Interrupt lines. Both devices have eight addressable 8 bit registers which can be used as four 16 bit register pairs for many operations. Perhaps most important of these is the 8 bit Accumulator register which is the implied focus of many instructions including the memory reference, arithmetic, and $1 / O$ groups. For some operations this register is paired with the flag register which itself provides single bit status information about data in the accumulator after arithmetic and logical operations. Flag bits are provided to report on five possible status conditions as shown on the file sheet, with the remaining 3 bits being unused. The $B C, D E$ and $H L$ registers are essentially general purpose in nature and can be used as temporary storage for 8 and 16 bit data values, as 8 and 16 bit counters, or as 16 bit memory address pointers. The HL register is particularly important as a memory pointer since it is used by a number of memory reference instructions. It is also used as an "accumulator" for 16 bit arithmetic. A smaller number of instructions use the BC and DE pairs as pointers, and either of these register pairs can be added to the HL pair to give a limited 16 bit arithmetic capability.

In addition to the four register pairs already discussed there are two other 16 bit registers which have dedicated functions. The Program Counter register always points to the next instruction to be executed and therefore contains a 16 bit address. The Stack Pointer always points to the top of the last-in-first-out stack area maintained in read/write memory for the storage of subroutine return addresses and register values saved during interrupts or for other purposes. The Stack Pointer is decremented each time data is "pushed" on to the stack and is incremented each time data is "popped" off the stack
The generous register set of the 8080 was one of the reasons for its success over the Motorola 6800, but the specialised uses of the $B C, D E$ and $H L$ pairs also had the effect of producing a less regular and "messy" instruction set making it necessary for the programmer to remember just what particular pairs can and cannot be used for. The more modern 16 bit processors overcome this problem by making their registers completely general purpose and nonspecialised wherever possible. Lacking in the 8080/8085 is the useful feature of an index register such as that provided by the 6800, although this job can be performed by the register pairs at the cost of using extra instructions.

INSTRUCTION SET

As mentioned above, the 8080/8085 instruction set is rather "messy" due to the somewhat specialised nature of the large register array, but this does make these devices very powerful considering their small chip areas. The 78 basic instructions of the 8080 are used to move data between registers, between a register and memory, between a register and an $1 / O$ port, and to carry out arithmetic and logical operations. Instructions are also included to perform conditional and unconditional jumps and to control processor operation. Two additional 8085A instructions, RIM and SIM, are ingeniously used to provide access to, and control over, the extra serial I/O and interrupt features not present on the 8080.

A comprehensive array of arithmetic and logical operations are provided including 8 and 16 bit binary addition, 8 bit binary subtraction, binary coded decimal (BCD) arithmetic on packed BCD values, logical operations such as AND, OR, XOR and Compare, and a range of accumulator shifts and carry flag modifiers. One item missing from this group is the ability to set, test, and reset, individual accumulator bits which is a very useful feature for control applications. These operations can be performed by shifting the relevant bit into the carry flip-flop or by using logic instructions, however

Four addressing modes are used as follows:-Direct, in which a memory address is specified as part of the instruction; Register, in which a register or register pair is specified; Register Indirect, in which the instruction specifies a register pair which itself contains a memory address; and Immediate, in which the instruction contains not a reference to a data area but the actual data itself. One particularly useful feature of the instruction set is the provision of a group of eight Restart instructions which cause an immediate jump to fixed vectors in low memory. These instructions use only a single byte and are used for hardware interrupt service or as software interrupts. Access to the separate I/O address space of 256 input and 256 output ports is provided by means of the instructions IN and OUT which are fast because they are only 2 bytes long. The separate I/O address space is useful because it does not encroach on main memory, but it is still possible to use memory mapping for I/O ports if required for a simple system not needing the full 64 K memory address range.

8080A/8085A

REFERENCE FILE SHEET

GENERAL

The 8080.4 was thefirst of the mid-range NMOS 8 bit processors and is cortainhty the mast widely used. It has a good general purpose architecture and is very well supportea with both hardwore and sottware. The 90854 hos essentiolly the some instruction set os the 80804 but meeds onk a sy supply and has mony additionalteatures such as on-chip clock, serial 110 and four new interrupt lines. Extra pins for these functions have been made available by multiplexing the low order address bits with the doto bus. A complete 8085 A system with 2 K bytes of ROM, 256 byres of RAM, otimer and 38 Vl lines con be built with just threa 40 pin chips by utilising the 8355 (ROM I/O) and the $8 / 55$ (RAM //O TIMER) combination devices.

REGISTERS: The 8080/8085 has seven 8 bit genaral putpose registers. Six of these can be addressed as the three 16 bit pairs BC, DE, HL

Nores DPSW = Processor Status Word	ACCUM	FLAGS	$5 \int_{O C}^{P S W}$
	B	C	
2)HL is usedas momorypointer for register indidect addrassing. FLAGS:	0	E	8 DE
	H	\angle	8 HL
	STACK P	NTER	16
	PROGRAM COUNTER		16
$\left.0^{-\frac{7}{S G N}}\right]_{\text {IEPO }}^{006}$	$\left\|\begin{array}{l} 04 \\ 0404 \\ 04 \end{array}\right\|^{03}$	$\begin{array}{\|l\|} \hline \hline 2 \\ P A R r y \\ \left.\right\|^{D 1} \end{array}$	$\begin{aligned} & 00 \\ & \text { CARRY } \end{aligned}$

INETRUCTION SET ANO SOFTMIRE
 The 8080 has 78 bosio instructions and the 8085 has two more, RIM and SIM which support the additional interrupts and serial $1 / 0$. One, two and three byte instructions are used and Direct, Pegister, Register/mdirect and lmmediate oddressing modes are available. Full binary and BCD arithmatic is possible on 8 bit bytes, and some 16 bit arithmetic is possible using the HL pair as an occumulator. A separate address space is available for Ilo using the IN anal Out instructions. Very wal! supported with software induding tiny Basias and the CPM operating system.

BASIC SINGLE CHIP 8085 A EQUIVALENT

MANUFACTURERS

ORIGINATOR-INTEL
2nd Sources? SIEMENS, AMD, NEC.
80804 . NATIONAL, SIGNETICS, HITACHI
2nd. SOURCES
8085 AMO, SIEMENS, NEC

SUPPORT CHIPS

8080 A Needs 8224 and 8228 and has a large family of support devices including: 8251 (USART), 8255 (Porallel 1/0) 8253 (Timer) 8259 (interript Control) 8257 (2MA)
80854 has two spocial combinction $1 / 0$ memory chips 8355 and 8155 in addition to above devices

TABLE 8. INSTRUCTION SET SUMMARY

TABLE 8. INSTRUCTION SET SUMMARY (Continued)

NDTES: 1. ODD or SSS: B=D00. C 001. D 010. E O11. H 100. L 101. Memory 110. A 111
2. Two possible cycle times. ($6 / 12$) indicate instruction cycles dependent on condition flags.
*All mnemonics copyright Ontel Corporation 1977

SOFTWARE

The 8080/8085 family is probably better supported in software than any of the other microprocessors. There is so much software available that it would be quite impossible to list it all. The key to $8080 / 8085$ software is the CP/M disc operating system produced by Digital Research of Pacífic Grove, California. Since its introduction, CP/M has become the standard microprocessor operating system and has therefore encouraged large numbers of software writers to produce Interpreters, Compilers, Word processors, games, and utilities. $C P / M$ itself is quite basic but is written in 8080 code so that it is directly compatible with 8080,8085 and 280 based systems. So popular is it, that personal computers based on other processors, such as the Apple which uses a 6502, are often upgraded to CP / M compatibility by the addition of an extra 8080 or 280 processor card so that access to CP / M compatible software is possible.

Of course, not all systems can use discs, and in this case standalone software is desirable. Software distribution is more difficult in this case, but a number of 8080/8085 Tiny Basic Interpreters have been published and there are several books with software listings available. I can recommend the inexpensive Scelbi books which give listings for an 8080 Monitor, Editor, and Assembler.

INTERFACING

The 8080A and 8085A interface to both memory and I/O devices by means of READ and WRITE machine cycles which each have an associated control line output ($\overline{R D}$ and $\overline{W R}$ respectively). An additional control line $1 \mathrm{O} / \overline{\mathrm{M}}$ informs bus users whether the cycle applies to a memory or an I/O device. The main difference between the two processors is the multiplexed bus structure of the 8085A where the eight low order address bits (AO-A7) share the same pins as the data bus and are therefore labelled ADO-AD7. The special purpose 8085 A interface chips, the 8155 RAM/IO/TIMER and the 8355 ROM/IO, have internal demultiplexing circuitry so that they can work directly from the 8085 bus. Other devices including general purpose ROM and RAM chips, and interface chips such as the UART, need a non-multiplexed bus and this can be easily achieved by using an external 8 bit latch such as the 74LS373. The 8085A provides a special signal, ALE, to cause the low address data to be latched. With this latch in use, the bus structures of the 8080A and 8085A are virtually identical.

The most versatile interrupt line, INT on the 8080A and INTR on the 8085A can cause a vector to any location in memory with the use of external hardware to force a CALL (Jump to subroutine) instruction on to the bus. This three byte instruction is best generated by the 8259A interrupt controller which will provide separate interrupt vectors for up to eight interrupts. A much simpler scheme can also be used to generate single byte RESTART instructions instead, but of course these vector to fixed locations in low memory. In addition to this general purpose interrupt, the 8085A has four additional fixed vector interrupt lines which do not need any external hardware support. These inputs, RST 5.5, RST 6.5, RST 7.5 and TRAP, cause the processor to vector to locations in low memory positioned between the RESTART vectors which remain available. The TRAP interrupt puts right one criticism of the 8080A by providing a non-maskable interrupt which cannot be ignored. This is useful for important occurrences such as power failure.

One major strength of the 8080A/8085A family is the very wide range of directly compatible interface devices available. In addition to the 8259A Interrupt controller there is the 8251A Universa Synchronous/Asynchronous Receiver/Transmitter (USART), the 8255A Programmable Parallel Interface (PPI), the 8271 Floppy Disc Controller, the 8278 Programmable Keyboard Interface and many, many more, including devices made for this family by other manufacturers such as N.E.C. Both processors are compatible with a wide range of standard memory components including static and dynamic RAM, ROM, EPROM, and EEPROM.

APPLICATIONS

Unless you are an existing 8080A fan, there would seem to be little point in using this processor for new applications since both the Z80 and the 8085A are actually cheaper and, of course, more powerful. The 8085A still has a part to play in controller applications which can make good use of its extra Interrupts, Serial I/O lines, and the useful 8155A peripheral device, but it is really best suited to applications which are too "big" for one of the single chip processors like the 8748 , but not so big that they need one of the newer 16 bit devices. For data processing applications the Zilog Z80 is probably a better choice. Perhaps the main obstacle to using the 8085 A in home projects is the inability to use the 8355A masked ROM and I/O device and the consequent need to use a standard EPROM such as the 2716 which therefore makes the use of a bus demultiplexer latch necessary.

BY NOW you will no doubt have found the 6 Ty-It cable ties attached to the front of this issue. Just in case you don't know what to do with them (!) here are a few suggestions, some buying information and details of other related products. Even if you don't build any of our projects the ties will be useful in a number of other applications.

Many of the devices in current use which have been designed for the specific purpose of securing electrical cables employ plastics, either wholly, or as a covering for stronger materials such as stainless steel or aluminium. Our free Ty-It ties are made of nylon and are from the Hellermann Insuloid range.

Broadly, the range can be divided into harnessing ties, with the cables only tied to one another, and fixing ties which hold single cables or bundles of wires to chassis, cabinet, machine or cable tray. A third class provides a solid anchorage for a flexible lead-say into a domestic appliancesometimes with the added feature of a block terminal.

Ties and fastenings which were once pieces of string and insulated staples, are now almost exclusively produced as plastic mouldings. Some flat metal types are made in stainless steel or aluminium, but these are normally plastic covered. Nylon 66 is a commonly used standard material with a high tensile strength. For outside use where weather resistance is needed there is a special 2 per cent carbon black grade and there is also a heat stabilised grade which extends the life at 150 degrees C.

STANDARD TIES

The Ty-It ties are made in tough, flexible nylon 66. They are offered in various lengths and with alternative types of fixing heads. The size range covers 2.5 mm to

7.6 mm strap width with lengths from 120 to 540 mm . Note that the length can be extended in an emergency by joining ties.

It is in the field of flexible ties that the greatest variety of designs is found, simply because of the infinite variety of applications such as TV receivers, business machines, motor cars, commercial vehicles, machine tools, switchgear and telecommunications, each of which can present different problems of accessibility, the concealment of fastenings and the panel material or chassis wall.

There is a variety of mounting bases or cradles designed for fixing to panels and walls before anchoring down the loom, these being arranged to accept standard nylon ties. Rivet fixing is possible for releasable and permanent ties where corrosion-proof anchorage and a sealed hole are sought. A bolted-on version is available for restricted spaces and there is a further version which lifts the loom clear of the panel surface and is recommended for tropical and high humidity conditions.

Quickly installed and often very convenient is an adhesive base cradle, which also takes a standard tie. The adhesive should be checked in the case of high temperature installations.

CLIPS

Successor to the insulated staple perhaps and useful for domestic appliances, radio and automotive work are moulded PVC clips. Screwed down or self-adhesive (Stiki-Clips) versions are made for single
core cables, pairs or flat twin cables. These clips save time in securing cables and harnesses particularly where fixing holes are impractical.

APPLICATIONS

For every cable and every situation there is a potential tying and fixing problem, but one that has probably been solved before and its solution entered into the standard repertoire of the tie maker. Sometimes cable routing has to be chosen to suit available fixing methods-for instance to avoid having to drill holes that will appear on external surfaces-but even this problem is now disappearing with the adoptlon of self-adhesive devices.

Cable ties have many other uses outside the original field of electrical wiring. The securing of large or heavy components to a p.c.b. and the fixing of light pneumatic or fluidic tubing are obvious ones, but in virtually any application where a piece of tape or string can be used a cable tie will probably do it better. With this wide range of fasteners the only limitation is the ingenuity of the designer in choosing and applying the right one.

Ty-It ties and Stiki-Clips are available from stores throughout the country. For further details contact Hellermann Insuloid, Sharston Works, Leestone Road, Wythenshawe, Manchester M22 4RH. Tel 061-998 5415-8. Ty-It Releasable Ties, available in 140 mm and 250 mm sizes; Ty-It Non-Releasable Ties, available in $100 \mathrm{~mm}, 150 \mathrm{~mm}$ and 200 mm sizes; Stiki-Clips for $\mathbf{6 m m}, 13 \mathrm{~mm}$ and 18 mm maximum overall diameter

THIS compact multimeter features twenty-one ranges with six functions. L.c.d. read-out gives excellent readability with extended battery life. The complete instrument calibration is by one multi-turn trimming potentiometer.

BOARD DESCRIPTIONS

The instrument comprises of two printed circuit boards. The display unit is a self-contained panel meter with I.c.d. readout, which measures voltages within the range $0-200 \mathrm{mV}$. It displays the magnitude and polarity of the applied voltage. The other board contains the conditioning circuitry to change all inputs into a voltage output in range $0-200 \mathrm{mV}$.

PANEL METER MODULE

The heart of the meter is the 7126 i.c. which is a complete dual-slope integration analogue to digital convertor. It consumes typically only $50 \mu \mathrm{~A}$ and drives the l.c.d. directly. Components R25 and C6 determine the integrator time constant, and C7 reduces the susceptibility to noise of the auto-zero circuit. The I.c.d. has an auto-zero feature which gives a zero reading when the analogue input is zero volts.
An input filter is formed by R27 and C8 and assists with overioad protection. The frequency of the internal oscillator is determined by C10 and R28 and provides typically three samples per second. The module has a full scale reading of 199.9 mV . IC3 is a high stability reference and a potential divider is formed across this so that VR1 can be adjusted to produce a $V_{\text {ref }}$ of 100 mV . A low-battery detection clrcuit is included to provide advance warning of battery failure directly on the display.

A potential divider is formed across the supply by R31 and R33 and when the supply voltage falls below a threshold level, the collector of TR 1 goes high. EX-OR gate IC4a then acts as an invertor to provide the required drive signal for the LO BAT warning. EX-OR gate IC4b output may be used to drive the decimal points.

CONDITIONING BOARD

The circuit diagram of the multimeter is shown in Fig. 1. Switch S3 selects d.c. or a.c. functions whilst connecting the battery to the appropriate circultry via S3c and S3d. When the switch is in the centre 'off' position, S3a and S3b isolate the input to the module to prevent damage. Switch sections

S1a and S1b route the input to voltage, current, resistance or diode check stages.

For the measurement of the d.c. voltage an input attenuator is formed by resistors R1 to R5 which are high stability metal film types. The attenuator settings ensure that each input range is reduced to 200 mV full scale for input to the module. The input impedance of the multimeter is the standard value of 10 megohms and ensures that negligible current is drawn from the voltage source.

When a current range is selected, S2b selects one of four shunt resistors R6 to R9, each of which should develop 200 mV with full scale current input. The value of R9 is chosen to allow for the effect of switch resistance. A series chain configuration could have been used for current sensing but the low value resistors required could be difficult to obtain.

A fuse protects against excessive input currents and diodes D1 and D2 protect the instrument from the application of high input voltages.

SPEGFICATM				
Function Volts (d.c.)	F.s.d.	Resolution	Accuracy	Protection
	2 V	1 mV	$1 \% \pm 1$ digit	500 V for one
	20 V	10 mV	$1 \% \pm 1$ digit	minute
	200 V	100 mV	$1 \% \pm 1$ digit	
	500 V	1 V	$1 \% \pm 1$ digit	
Current (d.c.)	2 mA	$1 \mu \mathrm{~A}$	$1 \% \pm 1$ digit	1 A 250 V
	20 mA	$10 \mu \mathrm{~A}$	$1 \% \pm 1$ digit	
	200 mA	$100 \mu \mathrm{~A}$	$3 \% \pm 1$ digit	
	2 A	1 mA	$5 \% \pm 1$ digit	
Volts (d.c.)	2 V	1 mV	$2 \% \pm 5$ digit	500 V for one
	20 V	10 mV	$2 \% \pm 5$ digit	minute
	200V	100 mV	$2 \% \pm 5$ digit	
	500 V	1 V	2\% ± 5 digit	
Current (d.c.)	2 mA	$1 \mu \mathrm{~A}$	2\% ± 5 digit	1 A 250 V
	20 mA	$10 \mu \mathrm{~A}$	2\% ± 5 digit	
	200 mA	$100 \mu \mathrm{~A}$	$4 \% \pm 5$ digit	
	2A	1 mA	$7 \% \pm 5$ digit	
Resistance	2k	1	$1 \% \pm 1$ digit	260 V r.m.s.
	20k	10	$1 \% \pm 1$ digit	
	200k	100	$1 \% \pm 1$ digit	
	2 M	1 k	$1 \% \pm 1$ digit	
Diode Test	2V	1 mV	$1 \% \pm 1$ digit	260V r.m.s.

Fig. 3. Double sided p.c.b. design for the Multimeter

Fig. 4. Component layout for the p.c.b.

A.C. VOLTAGE AND CURRENT RANGES

When S3a selects a.c. functions, the output from either the voltage attenuator or current shunts is fed through C1 to remove any d.c. component.

The operational amplifier IC1 is a TLO61 connected as a precision rectifier. The j.f.e.t. input results in high input impedance and the supply consumption is only $250 \mu \mathrm{~A}$. Diodes D3 and D4 rectify the alternating input and the positive component is sampled by R13 and filtered by R15 and C5.

The circuit is mean sensing and calibrated to indicate the r.m.s. value of sine wave inputs by establishing the correct gain of the amplifier stage. The gain is set by R14 and R10 and use of the values indicated will eliminate the need for calibration. Alternatively, a 10 k potentiometer could be substituted for R10.

RESISTANCE RANGES

In order to minimise the components required for resistance measurement and eliminate the need for calibration adjustment, a ratiometric method is employed.

For all other multimeter functions, the voltage reference within the module is employed and the 100 mV output is connected to the module reference inputs via S 1c and S1d. All inputs to the module are thus compared against the reference voltage. For resistance measurement the supply voltage is applied across the reference resistor Rr and the unknown resistor Rx. The voltage developed across each resistor is dependent upon the ratio of the two resistors and the value of the unknown resistor may be read directly using the equation Reading $=1000 \mathrm{Rx} / \mathrm{Rr}$.

Metal film resistors R20 to R23 are used as references. It would have been possible to use the resistors from the voltage attenuator but the resistors required are in reverse order to those for the voltage ranges, resulting in the decimal
points on the display being incorrectly positioned. Additional switch sections would be required to provide correct decimal point location and to isolate R5 from circuit common.

Resistance measurements should not be made on live circuits but protection against the application of high input voltage is provided. Thermistor TH1 has a nominal value of 1 k at room temperature and diode D7 will turn on at approximately 6.8 V to shunt the applied voltage. When D7 draws current through TH1 the thermistor temperature rises and due to the positive temperature coefficient the resistance increases so limiting the input current.

DIODE TEST

When a silicon diode is forward-biased into conduction the voltage drop across the device is approximately 0.6 V . The 200 mV full scale of the module is however too low to measure this voltage drop. When S1 selects the 'Diode Test' function, biasing from the battery is available via D5 and R18. When the applied diode is forward-biased the voltage drop will be attenuated by a factor of 10 by R24 and R19 to bring it within the measurement range of the module. If the 2 V range is selected the decimal point will be correctly positioned on the display for direct readout of the diode voltage.

If the applied diode is open-circuit or reverse-biased it will not conduct and the display will be over-range. If the diode is short-circuit the display will read zero. Because of the accuracy of measurement available close matching of transistor $\mathrm{V}_{\text {be }}$ can be carried out.

The diode test should not be made on live circuits but diode $D 6$ will protect the instrument from the application of high negative input voltages which would otherwise be shunted onto the supply by D5. Positive input voltages are held off by D5 and safely attenuated by R24 and R19.

CONDITIONING MODULE

Components should be checked against the component list and assembly commenced by soldering the through-board pins in place. As assembly proceeds, the solder pads on the top surface of the p.c.b. should be soldered to ensure circuit continuity.

Solder the resistors and capacitors in place, followed by the diodes and integrated circuit, carefully noting the orientation. The three slider switches should now be fitted to the p.c.b. and prior to soldering check that each switch is perpendicular to the board and pushed down as far as possible. The fuse clips and fuse may now be fitted followed by the p.c. mounting terminals, battery connector leads, and ribbon cable. The other end of the ribbon cable may now be soldered to the panel meter module.

CONSTRUCTION

A plated-through-hole p.c.b. is used for the digital precision

Fig. 5. Module connections for measuring a floating voltage source with 200 mV full scale and autopolarity indication implemented
multimeter to simplify assembly. Soldering of components is required only on the underside of the printed circuit board.

Link LA should be inserted first. Resistors and capacitors should be positioned followed by VR1, TR 1 and the i.c.s. As the I.c.d. is required to sit over IC1 and capacitors, these components should be arranged tight to the p.c.b.

The display should be carefully positioned and all components soldered in place.

TESTING

The DPM is a self-contained instrument and may be tested and calibrated before connection to conditioning modules if required.

Fig. 6. Double sided p.c.b. and component layout for the display board

COMPONENTS

Resistors
R1
R2, R20, R24

R3. R21
R4, R22
R5, R23 R6
R7
R8
R9.
R10
R11
R12.R13
R19, R16
AF
R18
R19
THI
R26 680 carbon film 5\%
R27 10 M carbon film 5%

R31. R32 miniature 1 M (2 off) carbon film 5%
R33 miniature 180k

TH1 thermistor PTC 1 k 260 V a.c.
R25 miniature 180 k carbon film 5%

R28 miniature 180 k carbon film 5%
R29 miniature 22 k carbon film 5\%
R30 miniature 220 k carbon film 5%
9M metal film
900 k (3 off) metal film
90 k (2 off) metal film
9 k (2 off) metal film
1 k (2 off) metal film
100 metal film
10 metal film
1 metal glaze
0.05 wirewound $4 k 72$ metal film 1 M carbon film 5\% 10M (2,off) carbon film 5% 10k trietal fim 220. (2 off) carbon fitm 5\% lute carbon fler 5%
2 k 7 çarbon tilm 5% 100k metal film miniature 22 k carbon film 5\%
miniature 220 k carbon film 5%

Capacitors

 C1 C2, C3 C4 C5 C6 C7 C8 C9 C10 C11 10 u elect. 16 VSwitches
S1, S2 $\quad 4$ pole 4 way slide 12 off)
S3
Miscellaneous
Case
2 p.c.b.s
20 mm p.c.b. fuse clips
20 mm fuse 1 A
PP3 battery connector
4 mm terminals (2 off)
Through board pins (6 off)
Ribbon cables (10 way +4 way)
A kit of parts is available from Lascar Electronics Lid., Oakland House, Reeves Way, South Woodham Ferrers, Chelmsford, Essex CM3 5XO at £19.95 including p / p and VAT

Fig. 5 demonstrates how the instrument may be connected to measure a floating voltage source in the $0-200 \mathrm{mV}$ range with the DPM powered from a 9 V battery. The voltage between COM and $\mathrm{V}+$ should be approximately 2.8 V and battery consumption about $200 \mu \mathrm{~A}$. When the IN HI and IN LO connections are sorted together, the display should be 000 . With a 100 mV source connected between IN HI and IN LO the display should read 1000 when VR1 is adjusted. Calibration may also be carried out by comparison with a meter of known accuracy.

The testing of the instrument should be carried out before the case is fitted and after checking all the soldering the battery should be connected. With the input switch to 20 V d.c. the display should be 0.00 and the voltage between Input

LO and battery positive should be approximately 2.8 V . The voltage between pins 5 and 6 of the module should be 100 mV . Apply a 10 V input and adjust VR1 until the display reads 10.00 . Switch to 20 mA d.c. and check the reading with a 10 mA source connected. Switch to 20 k range and check that with the input open circuit the display shows a 1 in the most significant digit with the other three digits suppressed, which is the over-range indication. Connect a standard 10 k resistor and check the reading.

With the instrument switched to 20 V a.c. apply a 10 V a.c. source and check the display.

The diode test function should be checked with a known diode and the reading should be approximately 600 mV with a silicon diode or 300 mV with a germanium diode.

WANTED ultrasonic cleaner, small slze suitable small components, must be good condition. Reasonable price. G. A. Chappel, 'Auchenreoch', Arrochar, Dunbartonshire.
TOKUDEN eight inch twin cone speakers, Eight ohms, seven watts max. unused $£ 7$ the pair. N. Wakeling, 8 Milton Park, Aviemore, Invernessshire, Scotland. Tel: (0479) 810818.
PRE-AMP kit. Already made with ILP transformer. No time to test. E40. Tel: Gravesend 23119. Steven Kwan, 28 Ferguson Avenue, Gravesend, Kent.
16K NASCOM 2 with Gemini RAM card, p.s.u. graphics ROM. Fully operational mounted in 19 inch rack. £395. A. Gifford, Little Pundells, Bartley, Southampton SO4 2LN. Tel: 042127 2392 (Evenings).

PRACTICAL Electronics Sep. 77 to date. E.T.I. April '78 to June '81. Everyday Electronics Feb. ' 75 to Aug. 77 offers. Mr. A. Pettitt, 2 Caburn View, Firle, Nr. Lewes, Sussex. Tel: Glynde 492. WANTED push pull output transformer to match N78 valves for HMV car radio model 4200. Mr. G. W. Nickolds, 15 Cambridge Rd., Lee-on-Solent, Hants. Tel: 550963.
AVO Model 8 ' MKIII small crack on case but fully working £60. Phone: Tamworth 896522.
2X81 16K full size keybord leads p.s.u. User Manual, excellent value $£ 90$ o.n.o. D. Richardson, 26 Kelvin Road, Bellshill. Lanarkshire ML4 1 LN .
UK101 8K CEGMON, numeric keypad, P.S.G., 300/600 Baud, R.T.S. output, cased, fan. Lots software £165 o.n.o. Brian Andrews, 77 Valiant Hse., Valley Grove, Charlton S.E.7. Phone after 6p.m. 8534171.
WANTED coil winder, hand or motor driven for transformer winding. H. E. Enfield. Phone 412058 . "Springtime", Withies Lane, Midsomer Norton, Avon, BA3 2JE.
P.E. STRING ENSEMBLE, only needs wiring up. Complete f 90 ono. Pair of 38 radio sets-offers. L. Fletcher, 21 Shakespeare Avenue, Andover, Hants SP10 3DR. Tel: Andover 65368. WILL PERSON from Aylesbury, who sent cash for book, my recent advert send name and address. G. A. Noble, 50 Crofthill Road, Slough, Berks SL2 1 HF.
UK101, 8K, cased, 300/600 Baud, lots s/ware, computer mags. £120 o.n.o. Tel: (0384) 75168 (after 4.00 p.m.). Ian Lavender, 288 Stourbridge Road, Holly Hall, Dudley. West Midlands. WANTED 2×80 with manual and circuit diagram. 94 The Straits, Dudley, West Midlands DY3 3BH.
UK101 8 K 2 MHz . Four premier cassettes, Malik invaders and fruit machine. Many programs from magazines £110. T. C. Smith, c/o T. M. Craig. 129 High St., Dumbarton, Strathclyde (Mornings). WANTED service manual or circuit diagram for Tektronix type 561A Oscilloscope. Mr. J. Bowen, 41 Lower Gardiner Street, Dublin 1, Ireland. Tel: 01-745200.

A^{\top}LAST after a five month long wait the Sanyo LC7137 PLL synthesiser has become generally available in the UK. (No explanation by Sanyo or their distributors for this delay, although one may hazard a guess.)

This device has been utilised in the following circuitry and is capable of producing the required frequencies for receiving and transmitting 27 MHz FM CB signals. The circuitry is very versatile indeed and has a multiplicity of inputs/outputs that may be combined with crystal controlled portables (such as the PE Ranger), FM communications receivers and FM transceivers operating in the 26 MHz to 28 MHz band.

The solution is a great deal more straightforward than employing the synthesiser techniques adopted by some companies which may use up to three separate i.c.s plus two or three different crystals.

The LC7137 is a 20 -pin CMOS i.c. that forms a single crystal PLL system. It may be programmed via a 6-bit BCD input using an encoded switch or BCD logic. The receive local oscillator is generated directly with a 10.695 MHz (low) IF offset; however, this may be mixed with the 10.24 MHz crystal frequency to produce the local oscillator output with a 455 kHz (low) IF offset. The transmit frequency is generated at half the output frequency. This is because the maximum input frequency of the programmable divider is 20 MHz and at this lower frequency the modulation characteristics are more linear.

HAVE YOU HAD YOUR PLL?

Phase-Lock-Loop frequency synthesisers have become standard in all 40 channel CBs and communications receivers. These techniques have eliminated the use of separate crystals for every channel. The actual concept stems from as early as the 1930s but until it became available in an i.c. its use was not generally cost effective. Many of the earlier PLL devices were of the analog type, but the advanced types such as the LC7137 and its hierarchy are digital in operation. We must thank the American CB market for the development of the PLL over the last ten years. The first generation synthesisers employed as many as nine i.c.s; however, the availability of LSI (Large Scale Integration) devices over the last few years has reduced the number to not more than two.

IT'S ALL DONE WITH FREQUENCY

Fig. 1 shows the equivalent block diagram and external components. The important features are an on-board crystal oscillator, reference divider, programmable divider with associated ROM decoding logic and phase detector.

The reference frequency of $5 \mathrm{kHz}(5.000226 \mathrm{kHz})$ is derived from the 10.2405 MHz crystal frequency by dividing down by 2048. In practice a standard 10.24 MHz crystal may be trimmed to this frequency. The reference frequency
is not exactly 5 kHz since the programmable divider uses only 4 decades to achieve the UK 27 MHz CB specifications with the 1.25 kHz "offset" >however, the final frequencies are well within the tolerances and this error will not affect the transceiver performance.

A BCD signal is applied via the channel data inputs, D1-D6, to the internal ROM. Table 1 shows the program data against the channel number and internal divisor ratio. Data lines D1-D4 form the "units" digit of the channel code (D1 = LSB) and D5 and D6 form the "tens" digit of the code (D6 = MSB), the next two bits of the "tens" code being unnecessary.

The internal memory decodes this data and changes the divisor ratio depending on the channel and if RX or TX is required. The ratio of the RX to TX divisor values is due to the RX freqencies being generated with the 10.695 MHz IF offset and the TX frequencies being generated at half the output frequency.

For example, channel 20, RX frequency $=27.79125 \mathrm{MHz}-$ 10.695 MHz

TX frequency $=27.79125 \mathrm{MHz} / 2$ thus $\mathrm{RX} / \mathrm{TX}=1.23033$

$$
\text { Ratio of actual divisor ratio }=3419 / 2779
$$

$$
=1 \cdot 23029
$$

These ratios are not exactly correct as described earlier; however, this error is very small indeed and does not significantly change the receive frequency.

The programmable divider thus divides down the input frequency to approximately 5 kHz . This is then compared with the 5 kHz reference signal in the phase detector. This, as with most of the other internal circuitry, is achieved digitally. In this application the phase detector has three possible conditions of its output circuit, i.e. it provides three states to the following circuit, the loop filter. These are, an off state, a negative going state and a positive going state. When the loop is locked, i.e. the VCO is running at the correct frequency and the divided down input frequency and reference frequency are exactly in phase, the detector is in the off state and no error signals are generated. When the divided down input frequency lags behind the reference frequency the detector's output pulses are negative going, and when it leads the reference frequency the output pulses are positive going. These output pulses are inverted and amplified in an active integrator stage between the detector and VCO to provide the proper direction of bias change on the varicap diode controlling the VCO.

	Channel	Program Code						$R X(T / R=1)$		$T X(T / R=0)$	
CH	Frequency	D 1		D_{3}	D_{4}		D_{6}	Divisor	VCO Freq.	Divisor	VCO Freq.
1	27.60125	1	0	0	0	0	0	3381	16.9057	2760	13.8006
2	27.61125	0	1	0	0	0	0	3383	16.9157	2761	13.8056
3	27.62125	1	1	0	0	0	0	3385	16.9257	2762	13.8106
4	27.63125	0	0	1	0	0	0	3387	16.9357	2763	13.8156
5	27.64125	1	0	1	0	0	0	3389	16.9457	2764	13.8206
6	27.65125	0	1	1	0	.	0	3391	16.9557	2565	13.8256
7	27.66125	1	1	1	0	0	0	3393	16.9657	2766	13.8306
8	27.67125	0	0	0	1	0	0	3395	16.9757	2767	13.8356
9	27.68125	1	0	0	1	0	0	3397	16.9857	2768	13.8406
10	27.69125	0	0	0	0	1	0	3399	16.9957	2769	13.8456
11	27.70125	1	0	0	0	0	1	3401	17.0057	2770	13.8506
12	27.71125	0	1	0	0	1	0	3403	17.0157	2771	13.8556
13	27.72125	1	1	0	0	1	0	3405	17.0257	2772	13.8606
14	27.73125	0	0	1	0	1	0	3407	17.0357	2773	13.8656
15	27.74125	1	0	1	0	1	0	3409	17.0457	2774	13.8706
16	27.75125	0	1	1	0	1	0	3411	17.0557	2775	13.8756
17	27.76125	1	1	1	0	1	0	3413	17.0657	2776	13.8806
18	27.77125	0	0	0	1	1	0	3415	17.0757	2777	13.8856
19	27.78125	1	0	0	1	1	0	3417	17.0857	2778	13.8906
20	27.79125	0	0	0	0	0	1	3419	17.0957	2779	13.8956
21	27.80125	1	0	0	0	0	1	3421	17.1057	2780	13.9006
22	27.81125	0	1	0	0	0	1	3423	17.1157	2781	13.9056
23	27.82125	1	1	0	0	0	1	3425	17.1257	2782	13.9106
24	27.83125	0	0	1	0	0	1	3427	17.1357	2783	13.9156
25	27.84125	1	0	1	. 0	0	1	3429	17.1457	2784	13.9206
26	27.85125	0	1	1	0	0	1	3431	17.1557	2785	13.9256
27	27.86125	1	1	1	0	0	1	3433	17.1657	2786	13.9306
28	27.87125	0	0	0	1	0	1	3435	17.1757	2787	13.9356
29	27.88125	1	0	0	1	0	1	3437	17.1857	2788	13.9406
30	27.89125	0	0	0	0	1	1	3439	17.1957	2789	13.9456
31	27.90125	1	0	0	0	1	1	3441	17.2057	2790	13.9506
32	27.91125	0	1	0	0	1	1	3443	17.2157	2791	13.9556
33	27.92125	1	1	0	0	1	1	3445	17.2257	2792	13.9606
34	27.93125	0	0	1	0	1	1	3447	17.2357	2793	13.9656
35	27.94125	1	0	1	0	1	1	3449	17.2457	2794	13.9706
36	27.95125	0	1	1	0	1	1	3451	17.2557	2795	13.9756
37	27.96125	1	1	1	0	1	1	3453	17.2657	2796	13.9806
38	27.97125	0	0	0	1	1	1	3455	17.2757	2797	13.9856
39	27.98125	1	0	0	1	1	1	3457	17.2857	2798	13.9906
40	. 27.99125	0	0	0		. 0	0	3459	17.2957	2799	13.9956

Table 1. Program data versus divisor ratio and frequency

Fig. 2a. 40 Channel CB Synthesiser circuit diagram. Diode D6 should be shown directly in the output from pin 20 of IC1 (anode towards pin 20, cathode towards R35/TR9). C20 may need to be 47pF

Fig. 2b. Tx $\times 2$ multiplier (TR4) and r.f. amplifier (TR5)

Fig. 2c. Mixer (TR6) and i.f. amplifier (TR7)

Fig. 2d. Display and BCD generator section. Pins 6 of IC3 and IC6 are connected to OV

A loop filter follows this stage in order to smooth the phase detector output so that a d.c. voltage can be fed to the varicap diode. Thus, as the VCO frequency drifts slightly, the phase detector will sense this and will counteract this change by subsequently changing the bias on the varicap diode.

OPERATION

The VCO comprises TR1 (see Fig. 2) which is biased in such a way as to oscillate at a frequency determined by the equivalent series load inductance and capacitance present between the base and emitter connections. This comprises C1, L1 and the series loading of C3 and C2 with D1 and D2. The frequency is changed by altering the bias on D2, the varicap diode. This semiconductor device exhibits the property of changing capacitance when the reverse bias voltage is altered. The varicap diode is chosen to have a high Q, low reverse leakage and linear characteristics. The series capacitors C2 and C3 alter the relative effects of the varicap on the oscillator frequency. The output of the VCO is fed from L1 via C6 to a buffer amplifier TR3, and then into the PLL i.c. The loop output of the i.c. is amplified and then fed via R1 to a final filter comprising R2 and C7. The d.c. bias is then fed to D2.

On TX the VCO changes from approximately 17 MHz to 13.5 MHz , half the final TX output frequency. To achieve optimum linearity and keep the VCO and PLL locked the VCO frequency is pulled down to this range by switching in VC1 and C8 by turning on TR2.

The modulation input, which only requires to deviate the VCO frequency by a few kHz , is fed via C10 and R9 to D1. Note the different value of series capacitance, C2 compared to that of C3, required to tune the VCO over the complete band. The buffered output of the VCO is fed via C13 or C21 to the RX mixer section and TX RF driver section. To prevent
any interference the TX circuitry is only powered up during transmit. TR8 and TR9 are used to switch the supply to the TX circuitry and change the logic on pin 20 of IC1, the $R X / T X$ select. This input is TTL and CMOS compatible.

Transistor TR4 forms a frequency doubler circuit where the collector is tuned to 27 MHz by L 2 and C 22 . The output, rich in harmonics, is fed to a further amplifier stage consisting of TR5. The output of this stage is also tuned to 27 MHz by L 3 and C 30 .

TR6, a dual gate f.e.t., is employed in the receive circuitry to mix the VCO output with the 10.24 MHz reference signal to produce the local oscillator output with a 455 kHz IF offset. This section of the circuit may be omitted if an IF frequency of 10.695 MHz is to be used. Again, as with the previous circuitry, the loads are tuned to remove as many harmonics and unwanted mixer products as possible. TR7 forms a buffer amplifier producing roughly 0.5 V to 0.8 V of RF signal.

The BCD channel coding is formed by two up-down counters, IC3, a BCD type and IC4 a binary type. The reason that IC4 is binary and not BCD coded is that as only the two LSBs of the counter are utilised no special reset lines are necessary to reset the counters from 39 to 00 on the up count and vice-versa on the down count. IC7 converts the $B C D$ signal, 00000000 to 01000000 so that channel 40 is displayed corresponding to the BCD code 00000000 . Refer to Table 1 for coding. The up-down select and clock pulses are produced by IC2, a quad two input NAND gate. Two gates form a pulse generator with a duty cycle determined by R42, R43 and D5. The other two gates form an enabling circuit which allows the pulses to clock the counters and select up or down. On power-up the counters are preset with the BCD number corresponding to channel 14. IC5 and IC6 decode the BCD signals and drive the 7 -segment displays.

COMPONENTS . . .
Integrated Circuits

IC1	LC7137
IC2	4011
IC3	4510
IC4	4516
IC5,IC6	4511 (2 off)
IC7	4078

Crystal
XL1 $\quad 10.24 \mathrm{MHz}$

Variable Capacitors	
VC1	$2-20 p$
VC2	$3-30 p$

Potentiometers

VR1
Inductors

L1	KXNSK4612
L2-L5	KXNSK3335 (4 off)

Transistors \& Diodes
D1,D2 BB109 (2 off)
D3 6 V 2400 mW
REC1
D4-D6
TR1,TR3,TR4
TR2
TR5
TR6
TR7
TR8
TR9
Resistors

R1,R4,R34,R35	4.7k (4 off)
R2,R43	22 k (2 off)
R3,R9,R13	10k (3 off)
R5	2.7k
R6,R18,R22.R24,R30,R33	3470 (6 off)
R7	220k
R26,R28,R29,R31,R37	
R38,R41,R44	100 k (13 off)
R11,R14,R39,R40,R42	2. 2 k (5 off)
R12	47k
R15	150k
R16,R36	1 k (2 off)
R17	68
R19	220
R23.R27.R32	330 (3 off)
R45-R58	470 (14 off)

Capacitors

C1, C8

C2 $\mathrm{C}, \mathrm{C} 47$
C4
C5,C37
22p (2 off)
5.6p

56p (2 off)
220p
150p (2 off)
C6,C12,C13,C20,C21,C22.
C32,C33,C39 33p (9 off)

C7.C14 15 n (2 off)
C9,C15-C18.C23-25.
C27-29,C34-36,C38, C40,C41
C10
C11.C26,C31
C19
C30
C42
C43 C44 - 100 p
C45,C46 $\quad 10 \mu \mathrm{f}$ (2 off)

Miscellaneous

T1 12V3VA p.c.b. mounting transformer
Toggle switch spst
Push button switch Push button switch

X1, X2

LED display FND 500 (2 off)
P.c.b.

Case
Mains socket
Mains lead
Fuse 20 mm 1 A
Fuse holders
50 ohm coax
BNC sockets (2 off)

Constructor's Note

LC7 137 may be purchased from Anglia Components Ltd, Burdett Road, Wisbech, Cambs PE 13 2PS ITel 0945 63281) for the sum of $\$ 8.74 \mathrm{inc}$ VAT and p / p.

T1. the case and the mains connector/lead may be purchased from Modus Systems Lid, Park Drive, Baldock, Herts SG7 6EW (Tel 0462894848) for the sum of £0.79, £ 1.99 and $£ 1.35$ respectively. VAT and $35 p \mathrm{p} / \mathrm{p}$ should be added to each order.

ADAPTION

The circuitry shown may be used in conjunction with several different types of equipment as discussed in the introduction. IF frequencies should be injected into the appropriate mixer section of the receiver. The higher 10.695 MHz IF frequency should always be used if possible to give the highest value of image rejection. Note that any existing inputs to the receiver's mixer should be inhibited or spurious outputs will cause serious interference.

On TX the input waveform should preferably be from a speech processor, i.e. amplitude and band limited to prevent over modulation and non-linearity distortion. The TX output should be connected to the pre-amplifier stage of the transmitter, which should be tunable to 27 MHz .

The circuitry may also be connected to the PE Ranger. The modulating input should be connected to test point j , the output of the speech processor. To facilitate 40 channels,
one of the 6 channel selections in the Ranger must be inhibited, i.e. the TX and RX crystals shorted or switched out of circuit to prevent interference. The two RF connections to the synthesiser board from TR3 (base) and IC101 (pin 1) should be via 50 ohm screened coax. terminated with BNC or other suitable miniature RF connectors at the cases. The TX/RX sense is connected to test point h.

TESTING AND ALIGNMENT

The unit is fairly simple to align. After it has been constructed and fully checked it should be powered up with a 9 V to 12 V supply. The channel display should indicate channel 14. If not, the load inputs to IC3 and IC4 (pins 3, 4, 12, 13) and the preset enable lines (pins 1) should be checked. On depressing the up or down switch the display should toggle at a reasonable rate. If not check IC2 and associated components. Assuming this is all correct check with the aid of an oscilloscope that the VCO and reference oscillators are working (TR3 collector and IC1 pin 12). With S1 in the off position, i.e. RX selected, measure the d.c. voltage at TP1 and adjust the core of L1 to produce a range of approximately 2 V to 3 V from channel 1 to 40 . If the voltage at TP1 is either high or low continuously then check the BCD code input to IC1 and the associated components of IC1 and the VCO. Switch S 1 on, i.e. TX selected, and adjust VC1 to produce the same voltage range at TP1 from channel 1 to 40. Repeat the alignment again and re-adjust L1 if necessary. With S 1 off tune L4 and L5 for maximum local oscillator output. Re-tune when connected to a receiver for maximum receiver sensitivity. With S1 selected and a 50 ohm dummy load on the output socket

Fig. 5. Connection to a communications receiver/transceiver

Fig. 6. Connection to a PE Ranger
tune L2 and L3 for maximum RF output, with least visible harmonic content. With a frequency counter connected to the Tx RF output, and with Tx selected, adjust VC2 to give the correct channel frequency (as shown in Table 1) to five places over the whole range. VR1 should now be adjusted to give adequate audio modulation. This is best checked with the use of a FM CB monitor or CB rig. Remember that over modulation $(< \pm 2.5 \mathrm{kHz})$ will not only cause distortion on some FM receivers and/or cross channel interference, but is a contravention of the Home Office regulations.

Due to the nature of this circuitry, the author cannot accept any responsibility whatsoever for the specifications of any system that may be used in conjunction with the described article.

MODULES FOR SECURITY \& MEASUREMENT

- Buit-in electronic siren drives 2 loud speake with fixed alarm time
- Battery back-up with trickle charging facility
- Operates with magnetic swiches, w/sonic or
I.R. units

Anti-tamper and panic facility

CA 1250

This exciting new module offers all the possible eatures likely to be required when buliding an intruder alarm system. Whether used with only 1 or 2 magnetic switches or in confunction with several ultrasonic alarm modules or infra-red units, a really effective system can be constructed at a fraction of the cost of comparable ready-made units. Supplied with a fully explanatory Data Sheet that makes installation straight forward. the module is fuliy tested and guaranteed. -available in kit form $£ 16.95$ plus VAT

- Stabilised outpur voltage
- 2 operating modes - full alarm/anti-tamper and panic facility
- Screw connections for ease of installation
- Separate relay contacis for switching externat loads
-Test looo facility

DIGITAL VOLTMETER MODULE DVM 314

Fully built \& tested

- Positive \& negative voltage with an FSO of 999 mV which is easily extended - Requires only single supply $7-12 \mathrm{~V}$ - High overall accuracy- $0.1 \%+1$ digit - Large brigm 0.43" LED displays - Supplied with full applications data

With this fully built and calibrated module a wide range of accurate equipment such as multimeters. thermometers. bartery indicators etc. can be constructed at a fraction of the cost of ready y-made units. Full details are supplied for extending the voltage range, measuring current, resistance and temperature.

Temperature Measurement Kit DT. 10
$£ 2.25$ + Vat
Using the I.C. probe supplied. this kit provides a linear output of $10 \mathrm{mV}{ }^{\circ} \mathrm{C}$ over the temperature range from $10^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. The unit is ideal for use in conjunction with the OVM module providing an accurate digitza thermometer

Power Supply PS. 209

$£ 4.95$ + VAT
This fully built mains power supply provides two stabilised isolated outputs of 9 V .2

ULTRASONIC ALARM MODULE

\& tested antics	ultrasonic transmitter and oceiver and circuitry for providing alse alarm suppression. This module, gether with a suitable 12 V power supply nd relay unit as shown. torms an effective sive Data Sheet, it is easily mounted in a
Units PS 4012	
Provides a stabilised 12 V nutput and relay with 3A contacts. The unit is designed to operate one or two of the above ultrasonic units. Fully built and tested.	A suitable ready-drlled case with the various mounting pillars. mans swich socket and nuts and bolts. Designed to house the ultrasonic alarm module together with ins power supply
$\begin{array}{\|ll\|} \hline \text { Siren Module } & £ 2.95+\text { vat } \\ \text { SL } 157 \end{array}$	Size: $153 \mathrm{~mm} \times 120 \mathrm{~mm} \times 45 \mathrm{~mm}$.
	ACCESSORIES
Produces a loud and penetrating sliding tone opera ing from 9.15 V . Capable of driving 2 off 8 ohm speakers to SPL of 110 db at 2 M Contains an inhibit facility for use with shop liftingloops or other break to activate circuits.	
	Magnetic swith (with ma
	5* Horn speeker for use with SL 157 £4.95
Add VAT \& 50p post and packing to all orders. Shop hours 9.00-5.30 p.m. (Wed. $9.00 \cdot 1.00$ p.m.) Units on demonstration - callers welcome. S.A.E. with all enquiries.	RISCOMP LIMTED
	Dept: PE

PE SPECIAL CASSETTES OFFER

V.H.S. VIDEO

V.H.S. E180 VIDEO (3 HOURS)
$\mathbf{£ 7 . 6 5}$ each (minimum of 5); $\mathbf{£ 7 . 5 0}$ each (min. 10); $£ 7.44$ each (min. 15); $\mathbf{~} 7.40$ each (min. 20) including VAT and postage.

C90 AUDIO

C90LH CASSETTES

56p each (minimum of 5); 53p each (minimum of 25).
Prices include VAT and postage.

Over the last couple of years PE offers arranged with Videotone have proved highly successful and we have now been able to arrange special prices (only available to PE readers) on these high quality tapes.

We believe these tapes are excellent value and we are pleased to offer them to readers. They are covered by a money back guarantee (return within 21 days for refund). Not only are the tapes of high quality but the cassettes are of screw together construction and the case labels have space for notes on the recordings.
Send valid coupon to:
Videotone Ltd., 98 Crofton Park Road, Crofton Park, London SE4.
V.H.S. 3-hour Video tapes at f
each. (£7.65 for
5 to $9, £ 7.50$ for 10 to $14, £ 7.44$ for 15 to $19, £ 7.40$ for 20 or more; including VAT \& postage.)
Please send me C90LH Audio tapes at p each. (56p for 5 to 24
$53 p$ for 25 or more; including VAT \& postage.)
I enclose cheque/PO for $£$
No.
o.

Name
Address

Coupon valid for posting before 12 th November ' 82
(or one month later for overseas readers).

BEGINNERS GUIDE TO MICROPROCESSORS

by Parr E. A.
Price: $£ 4.50$

ELECTRONIC DEVICES \& COMPANIES
by Seymour J. Price: $\mathbf{£ 1 0 . 5 0}$ A PRACTICAL INTRO TO ELECTRONIC CIRCUITS
by Jones M. Price: $\mathbf{E 7 . 5 0}$
ESSENTIAL ELECTRONIC AN AZ GUIDE by Loveday G.
ADVENTURES WITH DIGTTAL ELECTRONICS
by Duncan T.
Price: £3. 25
PRINCIPLES OF INTERACTIVE COMPUTER GRAPHICS
by Sproull R .
Price: $£ 10.75$
MICROCOMPUTER TECHNOLOGY AN INTRO
by Ullman J. Price: $\mathbb{E 5 . 7 5}$
COMPLETE HANDBOOK OF MAGNETIC
RECORDING
by Jorgensen F. Price: E8.50
COMPLEIE HANDBOOK OF VIDEO
by Owen D. \quad Price: $\mathbf{£ 1 0 . 0 0}$
h.F. ANTENNAS FOR ALL LOCATIONS
by Moxan L. Price: $\mathbf{£ 7 . 5 0}$

* ALL PRICES INCLUDE POSTAGE \star

THE MODERN воок со.

BRTTAIN'S LARGEST STOCKIST of British and American Technical Books

19-21 PRAED STREET LONDON W2 1NP

Phone 01-402 9176 L'losed Saturday 1 p.m. Please allow 14 days for reply or delivery.

FEATURING IMS26000 X2816A X2804A S3610 S3620

INMOS WINNER

Inmos, the world-class semiconductor memory manufacturer set up and largely funded by the British Government, is continuing to expand its share of the memory market by introducing new devices which are, quite simply, better than those produced by either the American or the Japanese competition. This is a deliberate policy designed to allow Inmos to join the memory race as a market leader without the need to make vast quantities of the common-or-garden memory components already supplied by all the longer established manufacturers such as Texas, Motorola, Intel, N.E.C. and others. One day Inmost expect to compete directly in those markets too, and already they have a new production facility in South Wales to add to their design centre in Bristol and their first production unit in Colorado, but for the moment Inmos are concentrating on the premium memory market where profits are higher and quantities lower. After success with their high speed 16 K static parts, Inmos have now released their long awaited 64 K dynamic, and it does seem to have been worth the wait! Their brand new IMS26000, organised as $64 \mathrm{~K} \times 1$-bit, is the fastest dynamic RAM available anywhere, and it offers features which show it to be a second generation approach to the 64 K DRAM design problem.

Most important in the long run may be the CAS before RAS refresh feature which has the effect of releasing a package pin so that upwards compatibility with the next generation 256 K devices is possible. To get a 64 K memory into a 16 pin package the 16-bit address is multiplexed as two 8-bit bytes strobed by the Row Address Strobe RAS, and the Column Address Strobe CAS. Normally CAS follows RAS and these signals are produced by an external dynamic RAM controller chip which also has the job of issuing a sequence of refresh cycles which interleave with normal memory cycles to prevent the capacitor storage cells from "forgetting." The refresh addresses are generated by an on-chip counter activated via pin 1 which unfortunately will be needed for A8 in the 256 K chip when it appears. To keep pin 1 spare, Inmos detect the use of CAS before RAS to signify a refresh cycle, since this sequence is not used during a normal read or write access. The result is that circuit boards can be laid out now for 64 K chips with a dropin upgrade to 256 K possible later.

Another IMS26000 innovation is "nibble mode" which allows the already fast 100 nanosecond access time of the chip to be reduced to only 55 nanoseconds for sequential four bit "nibbles". This feature is made possible by the internal memory
organisation which actually gains access to four bits at a time even though only one of the four available is selected for output. With the IMS26000 a sequence of four CAS pulses will allow all four bits to be shifted out at high speed if required.

ROM THAT THINKS IT'S A RAM

After the EPROM, which had to be erased with U.V. light, came the EEPROM which can be erased and reprogrammed electrically by the application of high voltage pulses. EPROMs are still cheaper than EEPROMS; also, having to have high voltages and programming components on the circuit board can be a nuisance, and so the apparently more convenient EEPROM devices are nowhere near as popular as their EPROM predecessors. If, as is likely, the cost advantage of the EPROM is maintained in the future, the EEPROM will never replace it for normal program memory use and will be restricted only to those applications where the rewriting of non-volatile memory data is an especially desirable feature in itself.

Even if the price advantage of EPROMs cannot be removed, it is at least possible to overcome the technical disadvantages of the EEPROM technology as Xicor have demonstrated with a pair of new devices coded X2816A and X2804A. The great advantage of these two devices is that they do not require either the high voltages or the special programming circuitry needed by previous EEPROMs, and this makes them especially easy to use. In fact, these new chips appear to the rest of the system like RAM chips, and are actually pin compatible with byte-wide RAMs such as the Mostek 4802, with the main difference being that you can remove the power supply from the EEPROM without disturbing the stored data!

The X2816A and the X2804A can be read just like RAM chips, in 300 nanoseconds. Writing new data takes much longer at 10 milliseconds, but the "spanner" which this might otherwise throw into the works of RAM compatibility is avoided by having address and data latches within the package. The system carries out a normal (fast) write cycle, but this is stretched internally by the EEPROMs to provide the required 10 milliseconds. The only restriction placed on the system is that the software should not try to program another location until at least 10 milliseconds has elapsed, although during the pause other system activities can take place if required.

Now if you lay out your microprocessor board to take 24 or 28 pin memory sockets
it is possible to decide later whether you plug in a static RAM (for short term data storage), an EPROM (to contain the program) or an EEPROM (to store long term but alterable data). All three options will work from a single 5 volt supply and will not require special programming or refresh circuitry.

The Xicor X 2816 A has a $2 \mathrm{Kx8}$ format and the X 2804 A provides 512×8.

NATURAL VOICE

According to information theory, you need to take at least two samples during the period of the highest frequency when attempting to encode analogue signals digitally. For speech, this means a sampling rate of about 8 kHz , so if we assume 8 bits per sample to give a reasonable quality we can predict the need for a 64 K bit ROM to store just one second of speech.

ROM devices are getting cheaper all the time of course, but they will have to get a good deal cheaper and bigger to make simple sampling a viable method of digital speech encoding. Fortunately, ways have been found to encode speech with fewer bits by the elimination of the redundant information which speech signals contain. By this means, the size of the store required can be reduced by a factor of about one hundred. Linear Predictive Coding (LPC) is one such encoding technique which was championed by Texas Instruments and used, for example, in their "Speak and Spell" learning aid. If you have used the "Speak and Spell" you will be rightly impressed by the great benefits that digitised speech can bring, but you may also be less than happy about the clarity of the speech.

A new device from AMI Microsystems which uses a modified LPC technique, is claimed to provide a higher quality speech signal than has hitherto been possible with ordinary LPC. The manufacturers call their new speech technique "Natural Voice" and are currently making it available on two chips, the S3610 which has an internal 20 K ROM for 17 seconds of speech, and the S3620 which can use an external 128 K ROM (the S3630) to give up to 110 seconds. Apart from the promised advantages of the "Natural Voice" technique which I haven't been able to sample yet, the thing which appeals to me is AMI's "one-chip" approach to speech synthesis. The S3610 for example has an internal 30 milliwatt audio amplifier and needs only two capacitors and a cheap crystal to add speech to any instrument or toy. No doubt these chips will soon be available with a standard vocabulary so that we can all have a go. The chips are made in CMOS, run from a single 5 to 8 volt supply, and have a great deal to say for themselves!

be varied from 0.3 Vpp to 18 Vpp (with FLAT selected) by rotating the GAIN control pot. Now select the MIC mode and inject a 10 mV pp signal into the MIC jack. The signal seen on the send jack should be variable over a range of 63 mV to 6.3 Vpp . In all cases the output signal should be free from distortion and clipping. Note that the LEVEL DETECTOR l.e.d. should come on and stay on when the SEND level exceeds +4 dBm (3.5 Vpp). The noise performance of the input amplifier can be measured, but only if you have the use of the equipment shown in Fig. 10. The procedure is as follows. Remove all inputs and select MIC operation and maximum gain. Also select FLAT operation and measure the noise voltage at the SEND jack. The theoretical input noise is $1.46 \mu \mathrm{Vr}$.m.s. which when multiplied by the MIC gain of 56 dB results in an output noise voltage of 0.9 mV r.m.s. If the input noise is significantly bigger than this then check that the gain is actually 56 dB . Wrong resistor values may give you a high preamplifier gain, and hence more apparent noise. Also IC 1 may be more noisy than other devices. It is not uncommon to select the input op amp for low noise operation. If noise is a problem then check for dry joints or other microphonic faults. When using the MIC input at full gain you will hear the preamplifier noise, this is not a fault. The important parameter in all audio equipment is the signal to noise ratio and not the absolute noise level. If the microphone input signal level is 1.46 mV r.m.s. then the signal to noise ratio will be 60 dB , which is not very much worse than most semi-professional tape recorders. A microphone signal level of 1.46 mV r.m.s. is quite a small signal level. In cases like this the best advice is to move the microphone nearer to the object being recorded!

TONE CONTROLS
The tone controls can be tested either with test equipment or by listening to pre-recorded music through them. Inject a sinewave source into the LINE input, set S2 to EQ and monitor the signal at the SEND jack. The frequency response can be plotted out by varying the sinewave frequency and recording the gain changes. These responses should conform to those shown in Fig. 2 last month. However, no one would want laboriously to plot the frequency responses of 18 tone control units using this method! The best method for determining a circuit's frequency response is to inject a swept sinewave and to monitor the output waveform on an. oscilloscope. However, if you do not have access to this equipment, then a listening test is quite adequate. Note that the TONE CONTROL section actually provides gain and so it is possible to amplify the system noise. If any of the controls

Fig. 1. Printed circuit board design for the Input
Channel of the Mixer. The board is shown in two sections and should be joined along the X - X axis

Fig. 2. Printed circuit board design for the Output Channel. The board is shown in two sections and should be joined along the $\mathrm{X}-\mathrm{X}$ axis
 iliary Channel. The board is shown in two sections and should be joined along the $X-X$ axis.

Fig. 4. Component layout for the Input Channel

Fig. 8. Mounting details for the bus blocks

Fig. 9. Wiring and layout for the Bus boards

Bus board link wiring

Fig. 10. Arrangement for measuring the equivalent input noise
operate at the wrong frequency or produce a wrong gain change then check the circuit for correct component values. All the pots and switches in the input channel should be almost noiseless and clickless when operated. If this is not the case then check the circuit for correct components or mechanically faulty pots.

The input channels consume about 15 mA from each rail rising to nearly 30 mA when the LEVEL I.e.d. comes on. All the op amps should have very little d.c. offset on their outputs. Typically the offset will be $\pm 10 \mathrm{mV}$. Larger offsets may well cause crackle when control pots are rotated. The two integrators in the MIDDLE tone control may have larger offsets but this will not degrade the performance.

FREE! READERS' ADVERTISEMENT SERVICE

RULES Maximum of 16 words plus address and/or phone no. Private advertisers only (trade or business ads. can be placed in our classified columns). Items related to electronics only. No computer software. PE cannot accept responsibility for the accuracy of ads. or for any transaction arising between readers as a result of a free ad. We reserve the right to refuse advertisements. Each ad. must be accompanied by a cut-out valid "date corner". Ads. will not appear (or be returned) if these rules are broken.

RADIO CONTROL 3.5MHz 4 channel Tx-Rx, 4 servos, charger, boxed. Plus glider, unflown, all unused £110. K. R. Joyce, 1 Mercury Place. Crookhorn, Portsmouth, Hants PQ7 8BA. Tel: Waterlooville 57826.
HI-FI AMP built from E.T.I. magazine. Power amp 60 W p/channel system 'A' pre-amp £50. R. J. Carter, 74 Charnwood Road, South Norwood, London SE2 6NU. Tel: 01-7710928.
BURGLAR alarm. Box, buzzer included $£ 19$. Sound light unit in plastic box 750 W output £14.50. S. Dolbear, 38 Avondale Crescent, Grangetown, Cardiff.
INPUT/OUTPUT board for UK 101. Built. Uses 6821 PIA. Can control relays, printers l.e.d.'s etc. £12. N. Odell, 31 Humphrey Road, Greenhill, Sheffield S8 7SE. Tel: Sheffield (0742) 745027. DISCO, complete. Console with light show. Extra Ilghts, amplifier, speakers hundreds of records. $£ 720$ or offer. T. A. Gaskell, 12 Abbots Road, Haverhill,Suffolk. Tel: 044061768.
2X81 £22. Micro transmitter 6 mile range £6.50. Many finlshed projects cheap, please include s.a.e. No callers. D. Martin, 6 Downiand Gardens, Tattenham Corner, Epsom, Surrey. SWAP, sell, VIC-20 + deck. Sony TC3 77 stereo recorder (reel). S.O.S. Echol Want UK 101 and/or add ons. Mr. M. A. Saunders, 7 Drumcliff Road.,

Thurnby Lodge, Leicester LE5 2LH.
B \& 01700 matched pair. 20 watt stereo amp. F.M. stereo Ambio tuner $£ 65$ pair. Mr. K. Hughes, 4 Rokeby Road, Great Barr, Birmingham B43 6EU.
WANTED - service manual for Telequipment D53S Scope - sale - loan or copy at cost. Tel: 078774346.

DIGISOUND modular synth., cost over £400 must sell any offers. Very cheap. Ring evenings only. M. Lloyd, 2 Park Crescent, Manchester. Tel: 0612251177.

WANTED Truvox R92 tape recorder. Capstan motor type KLZ 14-50 - 4675D. B. T. Hughes, 25 The Drive, Arden Park, Bredbury. Cheshire. Tel: 0614305068.
PRACTICAL Electronics magazines for sale. From first issue (1964). Will sell individually or as one lot. T. C. Sheridan, 46 Seymour Court, Whitehall Road, Chingford, London E4. Tel: 015290612 (Eve).
WANTED service sheet manual or photostat copy Harman Kardon HK 340 stereo receiver cost to: G. H. Chamberlain, 49 Wormgate, Boston, Lincs.
CASIO FX 602P Comp. Manual, prog. lib. Never been used £42. N. Khan, 36 Kay Brow, Ramsbottom, Lancs. 0706826224.

ACORN Atom 8K ROM 9K RAM p.s.u., leads, manuals, 1 software Tape Acorn assembled excellent condition. As new $£ 155$. Mr. C. Dineen, Grove House, Fermoy, Co. Cork, Ireland.
TELEQUIPMENT solid state S5AA oscilloscope. Low emission C.R.T. otherwise excellent £55. Marconi TF995A v.h.f. generator £250. Tel: Swindon $411^{11} 10$ or 34633.
SIX BIG capacitors point one four farad each 15 volt five pounds each inc. p \& p. J. S. Hind, 7 Carlyle Road, West Bridgford, Nottingham.
ZX81 with 16 K RAM, software. 5 months old with p.s.u., leads etc. Only $£ 75$ o.n.o. Tel: Welton 60798.

WANTED complete tuning condenser for Grundig radio RF431GB. Mr. Ellen, 72 Gloucester Road, Littlehampton, Sussex.
FOR SALE Texas instruments TI53 programmable calculator with instructions $£ 20$. John Patterson, 39 Scotter Walk, Corby, Northants.
ELECTRONICS Ham, capability unlimited, with little opportunity wants to establish contacts worldwide. Samudra Ejazul Haque, 568/A, Road16(Old), Dhanmondi R.A., Dacca-5, Bangladesh. SICK Telequipment D53A main frame and type J D \& B Y amps requires manuals. Purchase or loan for copying. M. E. Jordan, 'Edgefield', Lyng Easthaugh, Norfolk. Tel: Gt. Witchingham 853.

YOUR GUIDETO THE WORLD OF MICROPROCESSORS

Alow cost tool forleaming, teaching \& prototyping.

Abstract

Micro-Professor is a low-cost 280 based microcomputer which provides you with an interesting and inexpensive way to understand the world of microprocessors and utilise their unlimited potential. Micro-Professor is a complete harcware and software system whose extensive manual gives you detailed schematics and examples of programme code. A superb learning development tool for students, hobbyists and microprocessor engineers, as well as an excellent teaching aid for instructors of electrical engineering and computer science courses.

\section*{Technical specification}

Z80 CPU, 2K RAM, 2 K monitor, 24 I/O lines, LED display, cassette interface, CTC/PIO facility, $2.25^{\prime \prime}$ speaker, three manuals, 36 keyboard. Options include; EPROM board, speech board and printer board. The Micro Professor is not a correspondence course on microprocessors. If you wish to study a fulty structured self-teach course please contact the British National Radio School, Realing, Berts. Tel (0734) 51515 .

Please send or telephone for full details. £79.95 ow

FLIGHT ELECTRONICS LTD. Filght House, Quayside Rd, Southampton, Hants SO2 4AD. Tel: (0703) 34003/27721. Telex: 477793.

Mail order only Trade enquiries welcome Bulk order discounts Prices include VAT

Name
Address
\qquad
\qquad
\qquad

COMPUKIT UK101 8K cased, leads plus software $£ 135$ o.n.o. Two 49 note keyboards, contacts available $\mathbf{£ 5 0}$. Sittingbourne (0795) 22219. Ian Gilbert, 26 Ruins Barn Road, Sittingbourne, Kent ME10 4HS.
PE RANGER 6 chs £35. (0526) 42869. B. J. Duncan, Kirkby Lane, Tattershall, Lincoln LN4 4PD.
WANTED manual or circuit diagram for Telequipment S32 oscilloscope and Decca Gypsy 1210 TV for spares. J. Glover, 1 Bryony Cotts Hambledon, Godalming, Surrey GU8 4HJ. Tel: Wormley 4649.
5 Hz FREQUENCY shifter $£ 20.00$ complete circuit board assembled/tested not used, requires ± 15 V. D. W. Tripp, 3 Spurgeons Avenue, Waterbeach, Cambridge CB5 9NU. Tel: (0223) 861804.

ELECTRONIC electrolytic capacitor leakage current tester/reformer, £10. Phone: (0743) 59492 after $6.30 \mathrm{p} . \mathrm{m}$. Mr. P. A. Hartwig, 3 Kingswood Road, Copthorne, Shrewsbury.

COLLECTORS 1930-70 unboxed valves 1600 Unboxed tubes 10. Mullard GM41 40/1 R/C bridge. Leak Varislope amp. Offers. W. R. Mew, 11 Eversley Crescent, Ruislip, Middlesex HA4 6BD. Phone: 36619.
SUPERBOARD 11 cased, Cegmon, Wemon, tool kit BASIC 5. New BASIC 1, 3, 4, RS 232 software £125. G. J. Mathews, 144 Honey Hill, Harlow. Tel: Harlow 39406 or Ware 67101.
TEKTRONIX 545A and 585 scopes. Good working order, buyer collects. M. Applebaum, 36 Houndsden Road, Winchmore Hill, London N21. Tel: 01-360 4499.
WANTED, instruction book for AVO Calibration Test Unit CT 155. Good price paid. F. E. Holmes, 17 Rosemount, Oxton, Wirral, Merseyside. Tel: 0516521162.

COLOUR TV panels for spares Pye EMO Hybrids Thorn 3500 Siemens FC 365. Cheap to make space. Mr. A. Bouskill, 129 Lyminster Road, Birley Carr, Sheffield, S. Yorks S6 1HY. Tel: 0742311191 . After 4 p.m.

WANTED manual for XTAL BASIC V2.2 to suit Nascom. To buy or loan, small fee? Tel: 0946 812523.

POWERTRAN Transendent DPX, strings, brass, piano, honkytonk. Home use only $£ 250$ o.n.o. N. Roe, 32 Park St., Tamworth, Staffs B79 7AP. Tel: 082757333.
FOR SALE Yaesu YC-601 £40.00, radio television servicing $1973 / 74$ new, unused, $£ 15 \cdot 00$. Mr. C. R. Cooper. Tel: $(0705) 386254$.
REWARD 55 who tells me where to buy electronic silencer or circuit diagram. H. Ysebaert, J. De Geyterstraat 25, B-2020 Antwerp, Belgium. TELEQUIPMENT D43. Oscilloscope. Three plugable amplifiers. Circuit diagram. Working but needs attention. $£ 20$ buyer collects. A. M. Alexander; 105 Hollybush Lane, Hampton, Middx TW12 2QY. Tel: 01-941 0005.
SEIKOSHA GP8O graphic printer excellent condition with Centronics plug accept $£ 150.00$ carriage extra. Mr. P. Fischer, 18 Warwick Gardens, Harringay, London N4 1JF.

Please publish the following small ad. FREE in the next available issue. I am not a dealer in electronics or associated equipment. I have read the rules. I enclose a cut-out valid date corner.

Signature
Date.
Please read the RULES then write your advertisement hereone word to each box. Add your name, address and/or phone no. COUPON VALID FOR POSTING BEFORE 12 NOV. 1982. IOne month later for overseas readers.)
SEND TO: PE BAZAAR, PRACTICAL ELECTRONICS, WESTOVER HOUSE, WEST QUAY ROAD, POOLE, DORSET BH15 1JG.

BLOCK CAPITALS PLEASE

Name \& Address:			

For readers who don't want to damage the issue send a photostat or a copy of the coupon (filled in of course) with a cut-out valid "date corner'

UK101 OHIO SUPPORT

Premier Publications provides a wide range of add-ons for UK101 and OHIO owners, from manuals to full disc systems. Below is a small part of our range. A full catalogue is available on receipts of an A5 SAE.Price inc VAT
SCREEN ENHANCEMENT KIT -32×64, +19 other screen sizes, all software selectable! f55.95
BASIC 4 EPROM - cassette filenames, verify, crash recovery etc £13.95
BASIC 5 EPROM - 17 new BASIC words inc. PRINTUSING, PRINTAT, GETKEY, HLIN, VLIN f19.95
BASIC X EPROM - tape data handling, sound, printer, IF . THEN . .ELSE, REPEAT . UNTIL. £19.95
CODEKIT EPROM - Assembler/disassembler. Address transparent 19.95
TOOLKIT II EPROM - renumber, find, delete, view, controlled list, replace, etc f19.95
WORD WIZARD EPROM, disc or tape - multi-featured Word Processor POA
CEGMON - our standard upgrade monitor £17.25
MINI EPROM BOARD - used to fit any of our EPROMS (kit) £15.95
FLOPPY DISC CARD - takes up to four 5.25in drives, OSI compatible (kit) £49.95
JI Buffer Board - provides essential buffering for expansion (kit) 19.95
32K DYNAMIC RAM CARD - superb value (built only) f69.00
Motherboard - gives 8 slot expansion capability, 5a PSU, (kit) £29.95
TEAC Disc Drive - cased with PSU £229.95
Dual TEAC Drives - enclosed in single case with PSU £379.95
ROM DOS - DOS using BASIC-IN-ROM for fast, economical results (2 disc set) £19.95
LINK 65 - vital routines for 65D users, DUMP, CREATE, etc £19.95
SOUND/VIA Board - includes sound chip and 2 VIA chips! f53.95
Daisywheel printers - RS232, superb print quality £885.00
SOFTWARE - many programs available POA
FORTH - disc an extremely versatile language £49.95
NEW ADDITIONS
High Resolution Graphics Board -512×256 resolution, takes no USER RAM POA
Colour Board - 16 colours, stable display £59.95
Programmable Character Generator - 256 characters, 3 Software selectable EPROM slots POA
ENCODER EPROM - Advanced Assembler/Disassembler £24.95
DISKS - 10 tap quality diskettes in box f17.95
VORTEX - advanced full feature DOF £49.95

$D B \sqrt{ } \mathrm{~A} O \sqrt{2}$ MAIN AGENT AND SERVICE AGENT

The superb new DRAGON 32 features
\star 32K RAM, with 26 K still available with HRG. Expandable to 64 K .
$\star 256 \times 192$ High Resolution Graphics, three other graphics modes.
\star 6809E - a thoroughly modern processor.
\star Nine colour display - monitor or T.V. output.
\star Advanced 16K Microsoft Colour BASIC.
\star Games cartridge slot from £18.95.
\star Facilities for Joysticks.
\star Disks coming soon.
POSTAGE \& PACKING:
SOFTWARE 75p. EPROMS/DISCS 95p.
HARDWARE $£ 1.75$ per item, max. $£ 5.00$.
ALL PRICES INCLUDE VAT
£199.50 including free cassette lead.
Prepaid or credit card orders normally despatched by return.

PREMIER PUBLICATIONS

$30 \vee$ RANGE ($2 \times 15 \mathrm{~V}$ tapped secs) Sec Volt 3, 4, 5, 6.8, 9, 10, $12,15,18,20.24$ 30 V or $12 \mathrm{~V}-0.12 \mathrm{~V}$ or $15 \mathrm{~V}-0.15 \mathrm{~V}$ | Ref |
| :---: |
| 112 |
| 79 |
| 3 |
| 20 |
| 21 |
| 51 |
| 117 |
| 88 |
| 89 |
| 90 |
| 9 |
| 97 |
| 10 |
| 10 |

 $120 / 240 \mathrm{~V}(2 \times 25 \mathrm{~V}$ tapped secs) Votrages available 5, 7, 8, 10. 13, 15, 17, 20. 33, 40 or
20V-a $20 \mathrm{~V}-0.20 \mathrm{~V}$ or $25-0.25 \mathrm{~V}$

Smps			
	sov	${ }^{3} 5$	
102			44.13
103	,	2	65.03
104	2	4	68.69
105		6	C10.36
106	4	8	C14.10
107	6	12	c18.01
118	8	16	C24.52
119	10	20	630.23

Prio 0-120; 0-100-120V (120. 220.240V) Sec Pri $0-120 ; 0.100-12$ $0-\mathrm{CT}-120 \mathrm{~V}$ twice.

UK Postages. Overseas extra.
Voltages stated are on full load
Continuous Ratings

Clean mains to computers/peripheral
VA VA $\$ 137.36+C 6.50$ VAT: 500

VA 159.43 | VA |
| :---: |
| V |
| 1 |

250 VA soova Ik...........................12 EA1.00 eypes cased 400 VA for mains fluctuàtions

INVERTERS

100 VA cased (150VA tool rating) 12 V
DC to 240 V AC outlet socket For emergency lights central heacing boiler pumps etc. C45. P\&P + VAT 15%. 15 V CT Range ($7.5 \mathrm{~V}-0.7 .5 \mathrm{~V}$)

$15 V$			
CT Range	(7.5V-0.7.5V)		
Ref	Price	P8P	
171	500 mA	62.53	60.90
172	$1 A$	63.59	61.20
173	$2 A$	64.35	61.20
174	$3 A$	64.54	61.20
175	$4 A^{\circ}$	66.93	1.40

ROIDAL'S now
stocked 30 to 530 VA

\qquad | $13 \mathrm{~mm} \times 43 \mathrm{~mm}$ | $82 \mathrm{~mm} \times 78 \mathrm{~mm}$ |
| :--- | :--- |

$0.500 \mu \mathrm{~A}$	66.70	$0.50 \mu \mathrm{~A}$
.	6.70	

0.30 V C 6.70
C .70 $6.70 \quad 0.30 \mathrm{~V}$ $\begin{array}{r}67.37 \\ 67.37 \\ 67.37 \\ 67.37 \\ \hline\end{array}$ Educational Meters. 2 Amp. or 10 amp
or 0.30 V at. $\mathrm{C4} .50$. P\&P $66 \mathrm{p}+$ VAT. Size or 0.30 Vat . 4.50 . P\&P $66 \mathrm{p}+$ VAT. Size
$75 \times 78 \mathrm{~mm}$ Scaler. Finger screw terminals

AVO METERS + VAT 15\%

 AVO METERS + VAT 15%AVO 8 MK 5. Latest Model ... 5122.10 AVO 71 LCD HAND 649.30 AVO 73 LCDARTABLES 166.90 AVO MMS Minor.......... $\quad<43.60$ DAV17 Auro Range LCO. ... 157.00
AVO DA116 LC9D. Digita $\$ 131.50$ AVO DA211 LCD. Digital $\{131.50$ AVO DA211 LC.D. Digita..... 158.50 Battery MEGGER BM7/500Y 171.90 Battery MEGGER BM7/500V. ≤ 71.60
Wee MEGGER hand crank $£ 101.50$

400/440 to 240 V ISOLATORS + P\&P + VAT		BRIDGES	
		100V 25A	C1. 80
\checkmark A	Price	100V 35A	C2.00
60	68.11	loov 2a	40.52
250	C16.07	200 V 4A	C0.75
350	C19.88	400 V IA	40.25
500	624.77	400 V 4A	¢0.96
1000	C50.53	400 V 6A	C1.4
2000	674.79	400 Va	
3000	c104.86	$+ \text { VAT }$	
6000	6207.92		

METAL OXIDE RESISTORS \& Iper 100 (Electrosi) TR4 5% + VAT
$47 \Omega / 75 \Omega / 180 \Omega / 360 \Omega / 390 \Omega / 430 \Omega 470 \Omega / 510 \Omega / 560 \Omega 820 \Omega / 1 K$
$1 \mathrm{KI} / / \mathrm{K} 2 / 1 \mathrm{~K} 3 / \mathrm{KK} / / \mathrm{K} 8 / 2 \mathrm{~K} / 2 \mathrm{~K} 4 / 3 \mathrm{~K} / 16 \mathrm{~K} / 20 \mathrm{~K} / 22 \mathrm{~K} / 24 \mathrm{~K} / 47 \mathrm{~K} / 82 \mathrm{~K}$ $100 \mathrm{~K} / 110 \mathrm{~K} / 120 \mathrm{~K} / 130 \mathrm{~K} / 180 \mathrm{~K} / 220 \mathrm{~K} / 270 \mathrm{~K} / 300 \mathrm{~K}$.

P\&P 50p + VAT.

Barrie Electronics Ltd.
3, THE MINORIES, LONDON EC3N IBJ TELEPHONE: $01-4883316 / 7 / 8$
NEAREST TUBE STATIONS: ALDGATE \& LIVERPOOL ST.

ConstructorSeries Speakers IT'S

SO

 EASYHave fun, save money, building a Kef design
with a
Wilmslow Audio CS Total kit. No electronic or woodworking knowledge necessary and the end result is a proven top. quality design that you'll be proud of. Each kit contains all cabinet components, accurately machined for easy assembly, speaker drive units. crossovers, wadding. grille fabric, terminals, nuts, bolts, etc.
The cabinets can be painted or stained or finished with iron-on veneer or self adhesive woodgrain vynil.
Easy foolproof assembly instructions supplied. Set of constructor leaflets sent free on receipt of large S.A.E

Prices: CS1 (As 101) £110 pr. inc. VAT, plus carr./ins. f 5.50 CS1A (simplified LS3/5A) $\mathbf{£ 1 0 3}$ pr. inc. VAT, plus carr./ins. $£ 5.50$ CS3 (as 103.2) CS5 (as Cariton II) CS7 (as Cantata)

$\mathbf{£ 1 2 9} \mathbf{p r}$. inc. VAT, plus carr./ins. $£ 10.00$ £192 pr. inc. VAT, plus carr./ins. $£ 15.00$ $£ 250$ pr. inc. VAT. plus carr./ins. $£ 18.00$

8
0625529599

35/39 Church Street, Wilmslow, Cheshire SK9 1AS
1982 Catalogue - E1.50 post free
Lightning service on telephoned credit card orders! please allow 7 days for delivery.

TERRIFIC VALUE!!!

We have a big store to clear. 100 tons of stock must go. 10 kilo parcel of unused parts. Minimum 1,000 items includes panel meters, drills, taps and dies, tools, thermostats, coils, variable condensers, variable resistors etc, erc. Individually would cost you a fortunel YOURS FOR ONLY $£ 11.50$ plus $£ 3.00$ post. IONISER KIT
Retresh your home, office, shop, work room, etc. with a negative ION generator. Makes you perated kit, case included $£ 11.95$ plus $£ 2.00$ postage.
CAR STARTER/CHARGER KIT
This kit has no doubt saved many motorists trom embarrasment is an mony mou can full charge in a couple of hours. The kit com prises: 250 w mains transformer, iwo 10 amp bridge rectifiers, start/charge switch and full instructions. You can assemble this in an evenlng, box it up or leave it on a shelf in the garage, whichever suits you best.
$3-30 V$ VARIABLE VOLTAGE POWER SUPPLY UNIT
With 1 amp DC output, for use on the benct students, inventors, service engineers, etc. Automatic short circuit and overload protec ion. In case with a volt meter on the fron panel. Complete kit $£ 13.80$.
2X81 OWNERS
Make yourself a full
size keyboard! Key
witches complete
with pl
$\mathrm{f1.15}$.
COMPUTER PRINTER FOR
ONLY £4.95
Japanese made Epson 310 - has a self starting brishless drive motor. Complete with electrondata. ONLY $£ 4.95$ plus $£ 1.25$ Post.

Cash, P.O. or cheque with order. Orders under $£ 10.00$, add 60p. Access \& B/card 454563 . Delivery by return.

REVERSIBLE MOTOR WITH CONTROL GEAR
Made by the famous Framco Company this is a very robust motor, size approximately 7\%" long, 3\%" dia. 3/8" shaft. Tremendously powerful motor, almost impossible to stop. Ideal for operating stage curtains, sliding doors, ventilators, etc., even garage doors it adequately counter-balanced. We offer the mollows:

- 1 Framco motor with gear box. - 1 manual reversing and on/off switch. - 1 push to thart
 Ilmit stop switches. - 1 circuit diagram of SPIT MOTORS

Powertul mains operated induction motors with gear box atcached. The final shaft is a
ys" rod with square hole so you have alternative coupling methods - final spe is approx. $5 \mathrm{revs} / \mathrm{min}$. PRICE $£ 5.50$. Similar motors with final speeds of $80,100,160$ \& 200 r.p.m. same price.
8 POWERFUL BATTERY MOTORS
Suitable for modets, meccanos, drills, remote control planes, boats, etc. E2.95. 12 VOLT MOTOR BY SMITHS Made for use in cars, these are series wound and they become more powerful as load Increases. Size $3 \%^{\prime \prime}$ long by $3^{\prime \prime}$ dia. These have a good length of $1^{\prime \prime}$ spindle - pric E3.45. Ditto, but double ended $£ 4.25$. EXTRA POWERFUL 12 VOLT MOTOR
Made to work battery lawnmower, this probably develops up to $1 / \mathrm{h} . \mathrm{p}$., so it cculd be used to power a go-kart or to drive a
compressor, etc. ete. $£ 6.90+£ 1.50$ post (This is easily reversible with our reversible switeh - Price £1.15).

You should see Ambit's new Autumn Catalogue...

Another milestone in component supply...
If you've been wondering just what's been going on at Ambit lately, we are now taking the wraps off the most advanced and imaginative concept in component, tool, and information distribution since we launched WREE last year.

We have included new items and information to plug a few gaps, and we are just starting to implement a new interactive computerised system of service and information that simply cannot be overlooked by anyone interested in the communications, electronics, video and computing business.
\star Price on the page $\star 24$ Hour response -Guaranteed
*Low prices
\star High quallty \star Export a speciallty

128 Pages of the broadest component range in the business

24 HOURS A DAY, 7 DAYS A WEEK AUTUMN ' 82 WIR\&

AT YOUR NEWSAGENT - OR DIRECT FROM AMTBRT INTERNATIONAL BRENTWOOD ESSEX CM14 4SG

Telephone (0277)230909, telex 995194 AMBITG, data RS232/300 haud (0277)230959*
*Dial (0277)230959, hook in your low cost modem and terminal (most personal computers can be configured to access REWTEL, details are being published in R\&EW over the next few months) and REWTEL will give you access to up to 5000 pages of background to the WR\&E catalogue, equivalents, news, updates, hot off-the-press product news, information, jobs being advertised in the industry. It's computing at its most versatile and worthwhile: why be satisfied with a 64 K MCU, when you can gain free access to the 70MByte + of the REWTEL computer ??

SERVICE TRADING CO

WHY PAY MORE?
MULTI RANGE METER. TYP MF15A B.c. d.e o- 100 . Sensitivity 2000 V . 24 range, diamete 133 by 93 by 46 mm including test i itads. P
C7.00 plus 75 P P. \& P. (C. 97 inc. VAT $\&$ P). METERS (New) - 90 mm DIAMETER A.C. Amp. $0-14,0-5 A, 10 A$
D.C. Amp. Type 65C5. 5A. 0-10A
O.50A, O- 100 A.
D.C. Vorr. 15 V .30 V
 HEAVY DUTY SOLENOID, mi. b Magnetic Devices. 240V. A.C
Intermittent operation. Approx, 20 ib pull at 1.25 in. Ex-een Ap. Testod. Price
E 5.95 P. \& P. $£ 1.50$ (88.57 incl. VAT)

 WESTOOL SERIES D6 Model A3 24V. D.C. Price $\mathrm{El} 1.50+$ $50 \mathrm{P} P$ \& \AA M (Total inci. VAT E2.30).
WE STOOL SERIES DA Model A. 24V. D.C. Price E $1.00+30 \mathrm{p}$
p. \& p. (Total incl. VAT E1.501. p. A. p. (Total incl. VAT E1.50).

AG/GT 24V. O.C. 70 ohm Coil Solenoid. Push or Pull Adjurtable traver to $3 / 6$ in
spark suppressor. Size: $100 \times 65 \times 26 \mathrm{~mm}$. Price: 3 for $£ 2.6$. P . s. P. 50 p. (min 3 off.) ($(23.85$ incl. VAT), N.M.S.

MINIATURE SOLENOID FLUID VALVE 12 V O.C. 15 ohm coil normally closed, Stainles
steel body with variable flow adjuster it it B. T. stoel body with
inlet and outlet.

230 V A.C. SOLENOID OPERATED FLUID VALVE. Media: Air, Gas, 7 psi. Water 5 psi. $3 / 8^{8}$ inleVoutle Forged bress body. Normaily closed. Manui. by Durance Asco.
Price: $£ 5.50+£ 1.00$

SOLID STATE EHT UNIT

input 230 V ac. Fully isolated output 10 mm sperk, Approx.
15 K . Built in 10 sec. Timer. Easity modififed for 20 sec. 30 sec, to a continuous operation Designed for boiler ignition. Dozens of uses in the field of physics and electronics, eg. supplying neon or argon tubes
etc.
Size: Length 155 mm , with 85 mm , height 50 mm . Weight 530 grammes., Price. $\mathbf{6 5 . 0 0}+75$ pence post \& packing:
N.M.S.
Total inc. VAT f6.67.

A.E.G. CONTACTOR

 20amp. 1 break: 600 V : 20 amp . Price: 55.75 P . \& P. 75 fa (E7.47
incl. VAD.
N.M.

AMF CONTACTOR

$230 \vee \mathrm{AC}$ coil 2 do 25 amp contracts $\mathbf{f 5} 50 \mathrm{P}$. \& P. 75 p total
ARROW-HART MAINS CONTACTOR Cat. No. 130A30. Coil 250 V or 500 V . AC Contacts 3 make 50

SMITH BLOWER
Type FFB. 1706 . Small. quiet. smooth running. 240 V . A.C.
operation.
Output apertur
$45 \times 40 \mathrm{~mm}$ O
 MICRO SWITCHES
Sub. Min. Honeywell Lever m/s rype 3115 m 906 ft
10 for $\mathbf{E 3} .50$ post paid ($\mathbf{E} 4.03$ incl. VAT). These V3 typos.

Shor (ever type 16amp. rating
Long Lever $10 \mathrm{amp} \mathrm{C.O} .10$ for $\mathbf{~} 4.50$ (f 5.18 incl . VAT).
Cherry E51 Rotary action low torque microswitch 5 mmp Contact
E.M.S. (3.03 incl. VAT).
 VAT. (min. order 10).
A.C. Wkg. TUBULAR CAPACITORS.

Yet another outstanding offer

IMFD 600V Dubilier
£1.50
N.M.S.
All Mail Orders Callers
Ample Parking Space
Showroom open Mon-Fri
allers SERVICE TRADING CO
57 BRIDGMAN ROAD, CHISWICK, LONDON W4 5BB 01-995 1560
ACCOUNT CUSTOMERS MIN. ORDER $£ 10.00$

GEARED MOTORS
5 5pm 240 V A.C. M. by Carter
EP .00 P. \& P. (7.48 incl. VAT)
$7+$ rom Motor approx. 30 lb . in. 110 V A.C
complete with Transtormer for 240 V A.C C9.25 $+£ 1.50$ P. \& P. Itotal incl. VAT

71 rpm WYNSCALE motor approx. 1010 inch

A.C. supplied with suto transformer 240 V .
$30 \mathrm{rom} .230 / 240 \mathrm{~V}$. a.c. 50 lb in . Mf. PARVALUX
Price E15.50 P. \& P. £2.00 ($\mathbf{2 0 . 1 3}$ incl. VAT). N.M.S
42 R.P.M. 110 A.C. 50 hz .100 tb incl. reversible will operbte on
230 A.C. Speed remains at 42 R.P.M. but torque reduces by
$\mathbf{5 0 \%}$. Price $£ 16.50$ P. \& P. $£ 2.50$ ($£ 21.28$ incl. VAT). N.M.S.
38.3 rpm GEARED MOTOA, torque

(10tal incl. VAT f 14.38).

> N.E.C. GEARED MOTOR. 152 rom 200 ib . in. 230 V AC. 50 Hz. Ratio 9.2 to 1 . Non reverse. Incl. capacitors. Frection of maker's price: $\mathbf{E 3 7 . 5 0 + \text { Carr. \& VAT. }}$ N.M.S.

200 rpm .35 lbs in 115 V 50 kH
Price: £16.50 P. \& P. £2.00 (£21.28 incl. VAT). N.M.S
Suizable Transformar for $230 / 240 \mathrm{~V}$. a.C.
Price: $\mathbf{f} 6.00$ P. \&i P. E 1.50 ($\mathbf{E 8 . 6 2}$ incl. VAT). N.M.S.
230/240V A.C. SYNCHRONOUS GEARED MOTORS
$1 \mathrm{rpm}, 2 \mathrm{rpm}, 6 \mathrm{rpm}, 12 \mathrm{rpm} .6$ revs. per day. 12 revs. per day.
Any type. Price: $\mathbf{E 3 . 9 0}+40 \mathrm{p}$ p. 8 p . (4.94 incl. VAT). GEARED MOTOR. $120 \mathrm{rpm} 1 / 10 \mathrm{hp}$ approx. $15 \mathrm{lb} . \mathrm{in} .230 \mathrm{~V}$. A.C. Cont. Rating. Non-reversible. Size $150 \mathrm{~mm}+90 \mathrm{~mm}+85 \mathrm{~mm}$
spindle 8 mm dia +30 mm long. Complete whth capacitor and spindle 8 mm dia + 30 mm long. Complete whth capacitor and
relay for max . ioad stanting. Offered at mere fraction of mirs. prics

Brand new CASSETTE TYPE MOTORS;

 3 types-6V.71V.incl. VAT- $\mathbf{c} 2.8 \mathrm{~h}$).

230 \&.c. FAN ASSEMBLY Powerful continuously rated a.c. motor complete with blade $6 \frac{1}{2}$ in. Price $\mathbf{~} 4.50$ P. $\&$ P. 75 p ($\mathbf{8} 8.04$ incl VAT)

24V. D.C. GEARED MOTOR

24V. D.C. $200 \mathrm{pm} 101 \mathrm{bs} / \mathrm{ins}$. continuously rated geared Motor 24. by either Parvatux or Carter. Easily removed from chassis
mfg.
containing $9 \times 24 \mathrm{~V}$. D.C. Solenaids microswitches friction
 clutch, precision.gearing etc. etc. Ex-equipment London
Transport Ticket Printer. Price: $£ 8.00$ P. \& P. © 2.00 ($\mathbf{E 1 1 . 5 0}$ incl.
SUB-MINIATURE PRECISION BUILT GEARED MOTOR

THOMAS SINGLE DIAPHRAGM: COMPRESSOR
Max. 20 psi $1 \frac{1}{c}$ C.F.M. approx. 100 volts A.C. Price $£ 16+£ 2$
p\&p. Total $£ 20.70$ inc. VAT or Total $£ 28.45$ to includs transformer for $230 / 240$ volt A.C. operation. $£ 20.00+£ 2.50$
p $\&$ p (total inct VAT $£ 25.88$).

BLOWERNACUUM PUMP

Motor. 220/250V or $380 / 440 \mathrm{~V}$. 1.425 rpm . it h.p. cont. Dírect

VEEDER-ROOT PRE-SET COUNTER
Type MG1636. 3 fig, countdown any number from 999 to 001
$230 V$ A.C. -2 Wheet setting. Changeover Microswitch to inform external circuitry on completion of coundown. Size: Width
85 mm . Ht. 65 mm . Dpth. 70 mm . Price $£ 4.00+75 \mathrm{P}$. \& P 85 mm . Ht. 65 mm . Op
(Total incl. VAT $\mathbf{~ E 5 . 4 6) . ~}$

SANGAMO WESTON TIME SWITCH

 Type S251 $200 / 250 \mathrm{~V}$. a.c. 2 on 2 off every 24 hours. 20 ampscontacts with override switch dia. 4×3 price $\mathrm{f9.50} \mathrm{P}, \mathrm{\&}_{\mathrm{i}} \mathrm{p}$ £1.50 ($£ 12.08$ incl. VAT). Also available with Solar dial. R. \& IT. Type S288 1 on, or 1 timed c/o every 24 hours, day omitting
device. Price: $\mathrm{E} 11.00+£ 1.00$ p. \& p. ($\mathbf{1} 13.80$ incl. VAT). Type S388. As above, plus 36 -hours spring reserve. Less perspex
cover. Price: $£ 13.00+\Sigma 1.00$ p. $\& \mathrm{p}$. (18.10 incl. VA7).

VENNER TIME SWITCH
 ERD Time switch $200 / 250 \mathrm{~V}$ a.c. 30 amp contact time 36 hour Spring Reserve and day omitting device. Built to highest Electrictiy Board specification. Price Ci1.50 P. \& P. E1.50 (E14.95 incl. VAT).

A.E.G. TIME SWITCH

80amp. 2-or/off Spring Reserve Timeswitch, Price £15.50 P. \& P. £1.50 ($£ 19.55$ inc. VAT)
N.M.S. New Manufacturers Surplus
R. \& T. Reconditioned and Tested.

9 Little Newport Street,
London WC2H 7JJ
Phone 01-437 0576
 \title{
It's the chance
 \title{
It's the chance every constructor wants
}

POWER AMPS

PRE-AMP modules

> SEND COUPON
> (NO STAMP NECESSARY) FOR YOUR FREE I.L.P. CATALOGUE AND OPEN UP TOA NEW WORLD OF QUALITY\&VALUE

It's'something you have always wanted....something to build your equipment into that's smart, modern, strong, adaptable to requirement and not expensive. The 'UniCase' is yet another triumph of I.L.P. design policy. It presents totally professional appearance and finish, ensuring easier and better assembly to make it equal to the most expensive cased equipment. The all-metal 'UniCase' is enhanced by precision aluminium extruded panels engineered for speedy and perfect aligned assembly within a mere five minutes. Designed in the first case to accommodate I.L.P. power amps with P.S.U's, the range will shortly be extended to house any other modular projects.

WHAT WE DO FOR CONSTRUCTORS

Our product range is now so vast we cannot possibly hope to show it all in our advertisments without overcrowding or abridging information to the point of uselessness. So we have devised a solution which we invite you to take advantage of without delay. ALL YOU NEED DO IS FIL I IN AND FORWARD.THE COUPON BELOW TO RECEIVE OUR NEWEST COMPREHENSIVE I.L.P. CATALOGUE POST FREE BY RETURN. It gives full details of all current I.L.P. products for the constructor together with prices, full technical and assembly details. wiring and circuit diagrams etc. and it's yours. FREE. You don't even have to stamp the envelope if you address it the way we tell you.

FREEPOST 2

GRAHAM BELL HOUSE, ROPER CLOSE, CANTERBURY CT2 7EP
Telephone Sales (0227) 54778 Technical Only (0227) 64723 Telex 965780

FREEPOST

Mark your envelope clearly FREEPOST 2 and post it WITHOUT a stamp to I.LP. at address above. We pay postage when your letter reaches us.

Did you know

I.L.P. are the world's largest designers and manufacturers of hi-fi audio modules?

I.L.P. pioneered encapsulated power amps and pre-amps for enhanced thermal stability, mechanical protection and durability?
There are TWENTY power amplifiers from 15 to 240 watts RMS including the very latest super-quality Mostets to choose from?
TWENTY pre-amp modules allow you to incorporate exciting professional applications to your equipment never before available to constructors and experimenters?
I.L.P. are suppliers to the B.B.C., I.B.A., N.A.S.A., British Aerospace, Marconi, Racal, Ferranti, G.E.C., Rolls Royce etc?

Goods are despatched within 7 days of your order reaching us and covered by our 5 year no-quibble guarantee?

To: I.L.P. ELECTRONICS LTD. please send me il. p. catalogue,

Name:

POST PAID BY RETURN

I HAVE/HAVE NOT PREVIOUSLY BUILT.WITH I.L.P. MODULES

PHONOSONICS SUPER SONIC DIY KITS

NEW MUSIC SUPER-KIT SERIES!

Basic functions plus a bit more! Self-contained but may be intercoupled. More are coming to utimately 9 achieve a isv DC sur sound symthesis a modification systerns. All are mono, for stereo use 2 . Will run from parts instructions. Most also incl. knobs, skes, sw's wire, solder, hox For more hfo send 5 A E 9×4 o parts, instructions. Most also incl. knobs, skes, sw' \& Wire, solder, box. For more hio send S.A.E. ($9 \times$ or CWO mail order or collection by appointment. TEL O1-302 6184 Mon-Fri. Access, Barclay, Am Expres accepted. Exports Sterling payment please. Export catalogue CI .

SUPER-BOOST
Boost those outside oc
depth \& range controls.
depth \& range cont
Super-Boost Bass
Super-Boost Treble
Super-Boost Treble
SUPER-CLEAN
is hiss a problem? This could clean it up nicely

SUPER-FREEK!

Gen-purpose freq-generator with Sine. Sq. Tri, Ramp, Pulse \& variations. Switchable $0.4 \mathrm{~Hz}-47 \mathrm{OKHz}$ plus fine tune. SET-128 E18.44

SUPER FURZ

Spiky fuzz with fringing effecs. 3 controks. Fringing Balance, Output. SET. 135 \& 12.99 Also, auto-oontrol for deeper fringing from
above.
SET-1488.O.A.
SUPER-HUM-CUT
Humming badly? This steep notch firter really cuts live or recorded hum. Tunable for SUPER-MIC-UP
Mic or guitar pre-amp with gain control \& Bass \& Treb cur sw's. SET-144 68.92

VERY POPULAR - STILL AVAILABLE

GUITAR EFFECTS: 8 mode filter \& envelope shaper for most instruments GUITAR FREQUENCY DOUBLER: Orlg \& doubled signals can be mixed GUITAR OVERDRVE: Sophisticated Fuzz with fiter \& shape controls GUITAR SUSTAIN: Retalns natural attack whilst extending note duration

SUPER-MIX

2-chan mixer with variable input level \& gain. No tone controls. Use Super. Tone II rqd. For more chans add several units

SUPER-NOME

Variable metronome with audio-visual accented beat marker. SET. 143 £ 13.52 SUPER-PASS
Variable band-pass fiker with gain \& centre
freq control. SUPER-TONE
Tone control for Bass \& Treb cut, gain, \& range. SE'T-139 C13.62

SUPER-TREM

A powerful tremolo with depth and rate
CETtrols.
SUPER-VIBE
Vibrato with extra Phasing \& Reverb controls, plus rate \& depth. An amazing unit! SET-I $^{2} 7$ © 23.99
SUPER-WAH
Wah-wah with auto \& manual controls.
P.O.A: Price on Application - details in list.

C.B.

These are surtable for $C B$ or standard audio use depending on socket type chosen (2 reqd for details see top left cols.

C.B. COMPRESSOR

Really helps avoid blasting your mods and adja cent channels! Preset it for the maximum that your rig will like and your signal strength won't
top it.
SET-133-LS $E 12.37$

FUNKY-WOBULOI
Add a wobble to your warble! A voice tremulant with depth \& filtering modulation. I skt
reqd.
SET- 149 EII . 49

FUNNY TALKER MKZ

Modified ring modulator for fascinating metalic and modulated quality to your voice. Includes new high-gain pre-amp, voltage stabiliser, and Add-on kit for MKI users to conver to the MK2 (box not required): SET-99ADN 3339
MAD-ROI!
Space invaders, machine gunf, police cars ounds like these \& more from SET 46 contro nit. I skt reqd SET-146 $£ 9.99$

MULTIPLEXER

Are you using several front-end add-ons? This unit splits the microphone signal in up to 6 directions for feeding various extras, and also add-on signals onto one line. An exera two skes read for each to-from direction.

MUSICAL CALL SIGN
Programme your own individual 8 -note cal sign. Push button operated for use when you
want.
SET-121-LS E14.23
ROGER TWO-GONG
Two-tone gong-like sound automatically actlvated at the end of transmission

SIGNAL COMPARATOR
Uses special three-colcur LEDs to give a visual indication of speech level. Also compares microphone level with levels from other units such as Roger Bleeps, etc. Helps avoid overmodula cion and cross channel break-through.

SET-129-LS © 16.70

OPEN FRAME MONITORS AVAILABLE FOR OEM'S

The 'PRINCE' of Monitors

offers better Monitoring.
24 MHz Bandwidth-ensures a clear crisp display. Available with P4 White P31 Green AND L1 ORANGE

Scan: 625 lines $/ 50 \mathrm{~Hz}$. Deflection: 110°. Active raster: $240 \times 172 \mathrm{~mm}$ Bandwidth (3dB): $10 \mathrm{~Hz} \cdot 24 \mathrm{MHz}$ (at 3 de points). Character display: Vertical frequency: 50 Hz . Horizontal linearley: $\pm 3 \%$ Vertical Ilinearity: $\pm 2 \%$. Geometric distortion: $\pm 9.5 \%$. EHT (at zero beam curfent): $13 \mathrm{kV} \pm 0.5 \mathrm{kV}$ Power drain: 30 Watt approx, Voltage supply: 110 V A.C. $50 \mathrm{~Hz} / 220 \mathrm{~V}$ A.C. $-50 \mathrm{~Hz} / 240 \mathrm{~V}$ A.C., $50 \mathrm{~Hz} /$ $\pm 10 \%$ upon request. Video input: $2 \times$ BNC - or CINCH - or PL 259. (composite video) negative sync, input $0.5-4 \mathrm{~V}$ p.p. across 75 Ohms. X.Ray radiation: conforms to I.E.C. Spec. No. 65. Ovarall dimensions: $320 \times 270 \times 265 \mathrm{~mm}$. Weight: 7 Kg . approx. Ambient temperature: $0-45^{\circ} \mathrm{C}$.
OTHER CROFTON PRODUCTS INCLUDE: COmputer peripheral equipment, Frame grabber. Floppy disk drlves, Fioppy disks. Computer power supplies, C.C.T.V. monitors Uncased monltors Monitor P.C.B's., Cathode ray tubes, VMF/UHF modulators, Video switchers, Video distrlbution ampllfiers, Camera housings. Pan and tilt units, Camera lens, Camera tubes. Printed circult board service.

CROFTON ELECTRONICS LTD
35, Grosvenor Road, Twickenham, Middx, TW1 4AD.
Telephone: 01-891 1923/1513 Telex: 295093 CROFTN G

EPROM PROGRAMMER 2716
 2732 © TV(MONTTOR) DISPLAY - SERIAL PARALLEL I/O - CASSETTE BACK-UP - ROMULATOR SOFTY STANDS ALONE
 E769+VAT, EX-STOCK, BY RETURN
 DATAMAN DESIGNS, LOMBARD HOUSE, DORCHESTER, DORSET, DTI IRX. (0305)68066

Extend your ZX81 System:
 Add Memory that won't Forget!

*ADD YOUR OWN SYSTEM UTilities
b BUILD UP A LIBRARY OF MACHINE LaNGUAGE SUBROUTINES - UP TO 8K NONVOLATILE RAM t COMPATIBLE WITH 16K RAM PACKS

COMPLETE KIT AS SHOWN WITH 14 page manual, for F19:95 plus C1:95p\& p.
PC Board with manual for fto post paid
SASE for further detalls
HUNTER ELECTRONICS
KENWAY, RAYMONDS HILL, AXMINSTER, DEVONEX135SZ IP

The CM100 Circuit Maker provides everything necessary to produce positive photographic film masters from same-size published circuit layouts and to make either single or double-sided boards from these or other positive film masters.

Features

- Economic and simple to use.
- No expensive equipment required e.g. darkroom, UV box, cameras etc.
- Photographic experience not needed.
- Simple etching process.
- Universal exposure and assembly frame custom-designed, professional quality.
- Ergonomically designed storage pack which includes free-standing shelf for chemicals.
- Step-by-step instruction manual, workbench and trouble-shooting charts provided.
- Special clearing process ensures excellent clear positive film masters.
- Photoresist available in non-aerosol form to eliminate 'spotting' when applied to the board.

Mercia Electronics, Coronet House, Upper Well St., Coventry CV1 4DF.

Send for full illustrated brochure and price details, post to:

Name.
Address ..

Signature.

Coronet House, Upper Well Street Coventry CV1 4AF Tel: (0203) 58541

"One of the neatest, most comprehensive and most useful of these car computers that we have yet come across . . ."

Practical Motorist

* Economy - save petrol by improving your driving technique and improving the tuning of your car.
* Performance - dynamic checks on timing to improve performance and economy.
* Security - protect your car by disabling the ignition. Enter a personalised combination to restart.
- Attractive, easy to fit, easy to operate - comes complete with all parts needed. Full instructions provided.
* Imperial or metric read outs.

The PE car computer has been specifically designed as an integral part of your car dashboard. Using highly accurate speed and petrol flow sensors it allows you to improve the fuel efficiency of your car by providing information on fuel consumption and tuning.
in all over 30 functions including instant and average miles per gallon (or litres per 100 kilometres), estimated time to arrival, fuel needed to complete a journey, speed needed to meet an arrival time, acceleration tests, standing quarter miles and many more.
PE car computer:
688.50

Complete kit of parts:
678.50

Ignition cut-out
All prices include VAT. Allow $£ 1$ post \& package. Goods by return. Send S.A.E. for list of separately available parts.

PIMAC SYSTEMS LTD
20 Bloomfield Road, Moseley, Birmingham B13 9BY. Tel: 021-449 0384

Technical Training in Radio, Television and Electronics

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the field of electronics-now it can be your turn. Whether you are a newcomer to the field or already working in the industry, ICS can provide you with the specialised training so essential to success

Personal Tuition and Guaranteed Success

The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed".

CITY AND GUILDS CERTIFICATES

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Basic Electronic Engineering (C\&G/ICS)
Radio Amateurs

CERTIFICATE COURSES

TV \& Audio Servicing
TV, Radio and Audio Engineering
Radio \& Amplifier Construction
Electronic Engineering*
Computer Electronics*
Industrial Electronics*
Radio Frequency Electronics*
Introduction to Microprocessing*
Electrical Contracting \& Installation

- Qualify for IET Associate Membership

Approved by CACC

Member of $A B C C$
POST OR PHONE TODAY FORFREE BOOKLET
Subject of interest
Name
Address
Post to: Dept A273
ICS School of Electronics
160 Stewarts Road

CLEF electronic MUSIC

ELECTRONIC PIANOS

SPECIALISTS SINCE 1972 Clef Pianos adopt the most advanced
form of Touch ${ }^{\text {Sensitive }}$ saction which rorm of Touch Sensitive action which
simulates piano Kcy incria using a simuates piano Kcy ineria using a
palented elecronic recehnique.

$7 \frac{1}{4}$ OCTAVE

DOMESTIC MODEL COMPONENT KIT £266 COMPLETE KIT £442 mantractured f695 Two Domestic Modelst are avaiable including the 88 -note full size version. Four intermixable Voice Controls may sc used to obtain a wide variation
Piano tone. including Harspichord. Plano tone. including Harpsichorr Corporated in the Design and internal Effects are provided in the form of Premolo. Honky-Chorus. and A power amp A power amplifice integrates into the the Basc which may be removed from

SIX OCTAVE

DOMESTIC MODEL

COMPONENT KIT f234 MANUFACTUREO 8820 Component Kits include Keyboard. Key switch hardware, and all electronic componens and may be purchased in Complete Kits further contai wiring harness. Pedals and in the case of Domestic Models both Power Amplifier The Six Ocia The Six Oclave Stage Piano has the designed for use with an External Amplifier and Speaker.

SIX OCTAVE STAGE MODEL COMPONENT KIT $£ 234$

MANUFACTUREO E5BO

MICROSYNTH

THE COMPACT MUSIC SYNTHESIZER

COMPLETE * $2 \frac{1}{2}$ OCTAVES
KIT *SWITCH ROUTING* 2 OSCILLATORS £129.00 * THUMBWHEEL * 2 SUB-DCTAVES STRING ensemble
(As Published in conjunction with 'Practical Electronics') A very popular Kcyboard Synthesizer Kit. for Group or Home use. with a four octave compass and split Keyboard acility.

COMPONENT KIT
f197.50

rotor-chorus

Comprehensive two speed organ rotor simulator plus
three phase chorus generator. CDMPGNENT KIT 598.00 KEYBOAROS Our Square Front Keyboards 88 NOTE (A-C) $\mathbf{5 6 2 . 6 7}$ 73 NOTE (F-F) $\mathbf{5 1 . 7 5}$ five octave $\mathbf{4 1 . 9 7}$ FOUR OCTAVE e31. 62
Since 1972 Clef Products have consistently produced leading designs Since 1972 Clef Products have consistently produced leading designs
in the field of Electronic Musical Instruments. many of which have been published in technical magazines. With musical quaity of paramount importance. new lechniques have been evolved and the patest musicalty valid technology has been incorporated into projects which have been successfully completed by constructors over a wide range of technical capability. Back up TELEPHONE advice is ailable to all our customers.

PRICES INCLUDE VAT, UK CARRIAGE \& INSURANCE (CARRIAGE EXTRA ON MFD PIANOS). Please send S.A.E. for our complete listh, or use our telephone VISA ACCESS Service. Compethive quolations can be given for EXPORT orders - in Australia please contact JAYCAR in Sydney.

CLEF PRODUCTS (ELECTRONICS)
LIMITED
(Dept. P.E.) 44A Bramhall Lane South, Bramhall
(Dept. P.E.) 44A Bramhal Lane South, Bramhall
Stockpon, Cheshire SK7 1 AH $061439-3297$
"THE computea BAND-BOX"
(As Published in conjunction with "Practical Electronics")
COMPLETE
KIT
£235
$£ 320$

MANFD.

A revolution in the field of Computer Music Generationt
A MUSICIANS INSTRUMENT FOR:
SOLOISTS - SINGERS - RECORDING - PRACTICE LIVE PERFORMANCE-COMPOSITION
The BAND-BOX provides an Electronic Backing Trio consisting of Drums. Bass, and a Chord Instrument (one of 16 Waveform/Envelope combinations), with the capacity to store over different Chords. Using advanced Microprocessor technology Playback of 50100 Scores can be executed in ariy Key and at chosen Tempo. Complete Music Pad is electronically Indexed and stored on secondary baliery back-up. Facility exists for composition of Intro, Repeat Chorus. and Coda sections including Multiple Score Sequenceste and mixed instrument Outputs. Tolal size $19^{\prime \prime} \times 1!^{\prime \prime} \times 4!^{\prime \prime}$ incorporating Master Rhythm.
THE programmable DRUM MACHINE
(As Published in conjunction with 'Practical Electronics') EIGHT TRACK TWENTY-FOUR PATERNS/
TWEIVE TWELVE
INSTRUMENT INSTRUMENTS
SEOUENCE SEPERATION. COMPLETE KIT MANFO.
f11900
The Cief Master Rhythm is capable of storing 24 selectable riythmic Eight Instrumentation tracks. A three position Insirumentation conrol expands the number of instruments available to twelve, grouped Amto sounds typical of playing with Drumsticks. Brushes. or Latin American Bongos and Claves. Sequence operation allows two thythm sectlons to be coupled with ion. All drums can be adjusted for level and resonance on internal controls to suit individual taste. thus producing good musical sounds in a battery driven unit $8 \frac{1}{\prime}^{\prime \prime} \times 5^{\prime \prime} \times 2 f^{\prime \prime}$

MIDEOTONIE Quality plus value - always

 Moving Coil Cartridge - The MC88E is a high output cartridge

"The legendary "MINIMAX' - the small speaker producing "Large speaker" sounds. Peak handling 100 watts.

ONLY £69.95 A PAIR!!! NEW IMPROVED

VIDEOTONE - For full range of loudspeakers, in-car, C.B. Video, audio \& video cassettes, etc. Write for full details.

- so you do not need to use a head amp. EXCEPTIONAL VALUE AT ONLY £24.95

Seoum Hi-Fi represents EXCELLENT QUALITY AT A REALISTIC PRICE! The range offers a choice of amplifiers, tuner/amplifier, tuner, and the excellent SC4200 stereo cassétte recorder.

Alexandra Pavilion London November 18-211982

The biggest and best event ever to be staged for the

 electronic hobbies enthusiast!Walk into a whole world of electronic equipment. - Everything from resistors, IC's to home computers, transmitting and receiving
units, citizens band radio and peripheral equipment, video games, musical instruments, radio control models. . . . In fact whatever your particular electronic hobby you'll find this show will be the most interesting and informative way to discover all the latest developments in your particular field.
Other attractions will include radio and TV transmission, electric vehicles, radio controlled models, and demonstrations by local and national organisations.
This is the age of the train - British Rail are offering a cheap rate rail fare from all major

stations in the country direct to Alexandra

 Palace- a bus will be waiting on your arrival to take you to the show. Ticket price also includes admission to the exhibition - so let the train take the strain to the Electronic Hobbies Fair.Ticket prices at the door are $£ 2$ for adutis, $\mathbb{I T}$ for children but party rates are available for 20 people or more. To find out more, contact the Exhibition Manager, Electronic Hobbies Fair,
IPC Exhibitions, Surrey House, 1 Throwley Way, Sutton, Surrey SM1 400. Tel: 01-643 8:040.

Electronic Hobbies Fair is sponsored by Practical Electronics, Everday Electronics and Practical Wireless and is organised by IPC Exhibitions Ltd.

OPENING TIMES
Thursday 18 Nov. - 10.00-18.00
Friday 19 Nov. - 10.00-18.00
Saturday 20 Nov. - 10.00-18.00
Sunday 21 Nov. $-10.00-17.00$

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

RECEIVERS AND COMPONENTS

300 SMAUL COMPONENTS, transistors, diodes $\mathbf{1 1 . 7 0 . 7 1 b s}$ assorted components $£ 4.25$. $101 \mathrm{bs} £ 5.75$. Forty $\mathbf{7 4}$ series ICs on panel $£ 1.70 .500$ capacitors $£ 3.20$. List 20 p refundable. Post 60p. Optional insurance 20p. JWB Radio, 2, Barnfield Crescent, Sale, Cheshire M33 1NL.
MIXED METAL FILM RESISTORS $100: 80 \mathrm{p}, 10 \overline{0} 0: \leq 5$. Cermet potentiometers 10 mixed $£ 1$. Low profile sockets 24 pin 15 p. P\&P 40p. S.A.E. for lists T. Milner, 203 Goodman Park, Slough. Berkshire.
electronics components shop in Maidstone, Kent. Thyronics Control Systems, 8, Sandling Road, Maidstone. Maidstone 675354.
BOURNEMOUTWBOSCOMBE. Electronic components specialists for 33 years. Foresters (National Radio Supplies), Late Holdenhurst Road. Now at 36, Ashley Road, Boscombe. Tel. 302204. Closed Weds.
T \& J ELECTRONIC COMPONENTS - Quality components, competitive prices. Illustrated catalogue 45 p. 98 Burrow Road, Chigwell, Essex.

```
            BRYSTEP ELECTRONICS
        10 Camphill Industrial Estate,
        West Byfleet, Surrey KT14 6EW.
            Tel. Byfleet (09323)41547
```


CMOS

CMOS				Part of our ex surplus/ liquidator stock:	
4001	60.10	469	60.15		
4007	60.15	4070 4078	60.15 60.18	4008	c0.21.
4018	C0.11	4081	60.14	4015	10.28
4012	60.16	4093	60.28		
4013	60.22	4503	$\underline{80.39}$	4016	20.12
4015	K0.50	500	21.44	4022	0.25
0046	60.19	asio	C0.48	4023	c0.10
${ }_{4018}^{4017}$	20.38 60.45	csi1	60.45 60.50	4175	<0.50
4021	20.40	SSI	61.19	4419	61.50
4027	10.48	Lsis	61.20	4419	L1.50
4023	80.16	S516	60.59	4507	C0.18
4024	60.32	4518	20.35	4514	10.60
4025 4028	60.16	4520	60.59	4516	C0.38
4040	C0.48	1529	60.70	4519	C0.15
4042	10.48	453	60.65		
4041	60.58	154	63.98	4556	<0.24
4049	60.22	414	\%0.98	8251	62.00
4056	60.22 60.29	488	60.9	2708	61.25
				2716 (3 Rail)	62.15
Many, many oither items heist in slack.				LM323K	62.00
	SAI hor full stod and price lise Aso.			SE9300	40.25
seperate hst of items which ate er. Surpe lus/Liqudhtos sleck, at bargzin prices. We				5x7 Dot Matrix	
fuly plaraney four money baxk in Full				Displays $0.35^{\prime \prime}$	62.00
receipe we hane meers had to retum money yer				Please add 10.30 pla 15\%.	Ar @

SMALL ADS

The prepaid rate for classified advertisements is 32 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $\mathbf{£ 1 0 . 7 0}$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Banks Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Practical Electronics, Room 2612, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements art correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

EDUCATIONAL

CAREERS IN MARINE ELECTRONICS. Courses commencing September and January. Further details, The Nautical College, Fleetwood FY7 8JZ. Tel. 0391779123.

TELEVISION COMPUTER RADIOCOMMUNICATIONS
 \& RADAR SERVICING

2 $\frac{1}{3}$ YEAR full-time Modular Diploma course to include a high percentage of practical work.
 - ELECTRONIC PRINCIPLES (1st)
 - ELECTRONIC PRINCIPLES (2nd)
 - MONOCHROME TV
 - COLOUR TV, CCTV \& VCR
 - MICROELECTRONICS \& DIGITAL TECHNIQUES
 - MICROPROCESSORS \& COMPUTERS
 - RADIOCOMMUNICATIONS \& RADAR

Each of the above Modules are 13 weeks in duration. Individual Modules can be arranged for applicants with suitable electronics background.
Subject to approval, students will be awarded a TEC Diploma in Electronics 8 Communication Engineering on completion of the full course.
Next session starts Sept 13th.
Prospectus from:
LONDON ELECTRONICS COLLEGE

Dept: AA, 20 Penywern Road, London SW5 9SU. Tel: 01-373 8721

SERVICE SHEETS

BELIS TELIVISION SERVICES for Service Sheets on Radio, TV, etc $£ 1.25$ plus S.A.E. Colour TV Service manuals on request. S.A.E. with enquiries to B.T.S. 190 Kings Road, Harrogate, N. Yorkshire. Tel. (0423) 55885.

COURSES

CONOUER THE CHIP... Master modern electronics the PRACTICAL way by SEEING and DOING in your own home. Write for your free colour brochure now to British National Radio \& Electronics School, Dept. C2, Reading, Berks. RG1 1BR.

AERIALS

FUUL SLZE SERVICE SHEETS by return $£ 2.00$ each plus L.S.A.E Except C.T.V./Music Centres from $£ 3.00$. Repair data with circuits named T.V.s or early VHS/Philips Video Recorders £8.50. L.S.A.E. for free 50 p magazine/quotations etc., T.I.S. (PE), 76 Churches, Larkhall. 0698-883334, Lanarks ML9 1 HE .

SOFTWARE

UK101 SOFTWARE DN TAPE
from the guy who wrote "Le Passe-Temps
GALACTIC HITCHHIKER (8K). An adventure, all in
machine code. A beauty! ($£ 7.00$)
SUPERTREK
$(8 K)$. Sail boldy through the universe zap-ping moving Klingons in real time. Superb graphics (£TART
E6.00)
UUNAR LANDER. A real chalienge. You won't get down in
less than 3 hours. (ė3.00)
HANGMAN. Excellent graphics. P.E. said sol (e3.00) BASIC TUTOR $(8 \times 4 K)$. The only way to leam - at the Keyboard. (E12.00)
Mot it. ($\mathbf{M 3} .00$) (8 K). It's ready at lastI A machine code adventure with some truly remarkable graphics, this programme is in a class by itself. ((E9.50)
These ORIGINAL PROGRAMS Are
Monitors and are available for 16×48 and 32×48 displays (including enhanced Superboards).

HARDWARE

These kits are complete In every way: - Fully socketred high quality PCB, all components, switches etc, plus prefor
cable assembly for easy interconnection to j 1 , or our ... MOTHERBOARD SYSTEM. Now you can add on al those extras easily. Provides elght, yes EIGHT, fully buffered JK STATIC RAM BOARD. (£39.50)
HI-SPEED CASSETTE INTERFACE. At last, a system that works. COMPLETELY RELIABLE 4000 baud with reasonable cassette) plus software for named file handling. A delight to use. (E19.50)
VIDEO ENHANCEMENT. Switch selectable 16×48 or 32×48 displays without butchering your computer (19.50). Monitor 8K EPROM BOARO. (E19,50). A 2K Extended Montor is avainable
ع12.50,
MONITOR BOARO. Plug into Monitor socker to provide switch selection of up to 4 EPROMS. ($\mathbf{E 9 . 5 0 \text {) }}$ BASIC 4 Replacement provides a knock-out Cassette Handing System, Old, Dynamic Halt. Single Step and Trace. (E9.50)
II for $£ 399.00$ incl. Securicor Delivery.
Prices include post \& packing but exclude VA.T. Please write or phone for further details. MERLIN (MICRO SYSTEMS) LTD.

93, High Street,
Eston,
Tel. (0642) 454883

FOR SALE

ACORN ATOM Floating Point Eprom $£ 15.00$. Utitity Eprom £18.00. Bargain price $£ 30.00$ pair. Davidson, 109 Highgate Lane, Farnborough, Hants.

TEETEXT (ORACLE/CEEFAX) add-on adaptors for your existing television. Only $£ 149.95$ inclusive. Also viewdata (Prestel) Trade enquiries welcome. Access/Visa. Avon Office Services (PE), FREEPOST, Bristol BS10 6BR. (0272) 502008 anytime.

LOADED PCB's for sale. Various components: resistors, transistors, capacitors, diodes, 1 C sockets, variables, etc. $£ 1.80$ plus $£ 1.20$ p\&p cwo. Also double and single sided copper laminate off-cuts $£ 1.50$ kilo plus $£ 1.50$ p\&p cwo. Mr G Davies, 3 Garden Cortage, Peplow, Market Drayton Shropshire.

WANTED

WANTED. Change-over switch devices for operating small solenoid valves at idling r.p.m.s of cars. Potential market for good design and manufacture at right price. Box No. 90.

MISCELLANEOUS

CLEARING LABORATORY: scopes, generators, P.S.U.'s, bridges, analysers, meters, recorders, etc. 040376236.

BURGLAR ALAFM EQUIPMENT. Ring Bradford (0274) 308920 for our catalogue or call at our large showrooms opposite Odsal Stadium.

TME SCIENTIFIC WIRE COMPANY PO Box 30, London, E.4. 01-531 1568. ENAMELLED COPPER WIRE				
SWG	11 b	802	402	20
8 to 34	3.30	1.90	1.00	0.80
35 to 39	3.52	2.10	1.15	0.85
40 to 43	4.87	2.65	2.05	1.46
44 to 47	8.37	5.32	3.19	2.50
48 to 49	15.96	9.58	6.38	3.69
SILVER PLATED COPPER WIRE				
14 to 30	6.63	3.86	2.28	1.50
TINNED COPPER WIRE				
14 to 30	3.97	2.41	1.39	0.9
$10 \times 10 \mathrm{Mtr}$ reels 3 amp PVC cable mixed colours £5.00.				
Prices include P\&P, VAT. Orders under £2 add 20p. SAE for list of copper and resistance Wire. Dealer enquiries welcome.				

WRONG TIME?
 MSF CLOCK is ALWAYS CORRECT - never gains or

 loses, SELF SETTING at switch-on, 8 digits show Date, Hours, Minutes and Seconds, auto GMT/BST and leap year, also parallel BCD (inc Weekday) output, receives Rugby 60 KHz atomic time signals, built in antenna, 1000 Km range, $\mathbf{6 6 9 . 6 0}$.60 KHZ RUGBY RECENER, as in MSF Clock, data output. decoding details and $Z \times 81$ listings for LOCAL, GMT and SIDEREAL TIME, ∓ 22.20.
Each fun-to-build kit includes all parts, printed circuit, case, instructions, postage etc, discount offer, money back assurance so GET yours NOW

CAMBRIDGE KITS

45 (FL) Old School Lane, Miton, Cambridge
MAKE YÓUR OWN PRINTED CIRCUITS Etch Resist Transfers - Starter pack (5 sheets, lines, pads, I.C. pads) $£ 2$ 10. Large range of single sheets in stock at 45 p per sheet
Master Positive Transparencies from P.C. layouts in magazines by simple photographic process. 2 sheets negative paper, 2 sheets positive film (A4) £2.10. Photo-resist 3 pray (200 ml) $\mathbf{3 . 5 0}(\mathrm{p}+\mathrm{p} 65 \mathrm{p}$). Drafting Film (A4) 25p. Precision Grids (A4) 65p. $22 p$ stamp for lists and information. P\&P 50p per order except where indicated.

OAK LODGE, TANSCTRONICS OERBYSHIRE.

Please mention PRACTICAL ELECTRONICS when replying to advertisements.

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS
Please insert the advertisement below in the next available issue of Practical Electronics for. insertions. I enclose Cheque/P.O. for $£$..
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practlcal Electronics)

Send to: Classified Department.

PRACTICAL ELECTRONICS
Classified Advertisement Dept, Room 2612,
King's Reach Tower, Stamford Street,
London SE1 9LS. Telephone 01-2615846
Rate:
32p per word, minimum 12 words. Box No. 60p extra.
Company registered in":g!and. Registered No. 53626. Registered Office: King's Reach Tower, Stamford Street, London SE1 9LS.

NEW - NEW - NEW CT 1000P THE 1000 VOICE DIGITALISED POLYPHONIC SYNTH from Casiotone

 with 48 FREE accessories\author{

- 1,000 Voices
 - Polyphonic
 - Pre-set and programmable arpeggios
}
- 5 octave split Keyboard
- Resl time Sequencer
- Pitch Transposer

This advanced technology synthesiser from Casiotone is without doubt the keyboard bargain of the year and has been eagerly awaited by everyone. It has ten superb nasic voices plus selectable envelope, footage and modulation giving $10 \times 10 \times 10$ sound variations numbered $0-999$.
Up to ten sounds tem ibe stored in a non-volatile mamory ready for instant selection while playing. The five octave eight note polyofonic keyboard can be split into ewo separate sections each with a different voice: A sixteen step pre set arpeggio is available in addition to programmable arpeggios with a 127 steps which can also function as a real time sequencer.
Pitch is displayed digitally and a wide range pirch control, allows transposition over 1% octaves. There is sustain and vibrato fadities plus an integral amplifier/speaker and line output and phone sockets.
Dimensions $117 \times 916 \times 363 \mathrm{~mm}(4 \% \times 36 \times 14 \%$ inches) Weight 10 kgs (22ibs).

M Micro MAIL ORDER CMusical SPECIALISTS

MARSHALLS ELECTRONICS A. MARSHALL (LONDON) LIMITED and BRADLEY MARSHALL LIMITED

wish it to be known that there is no connectionbetween them.
Each of the above-named Companies trade as separate entities and have no connection whatsoever.
A. MARSHALL (LONDON) LIMITED who also trade as MARSHALLS ELECTRONICS and CONCORDE INSTRUMENT COMPANY LIMITED will continue to advertise with their well-known logo and format and conduct their retail and industrial sales from their Glasgow Branch at 85 West Regent Street, Glasgow, G2 2QD. A. MARSHALL (LONDON) LIMITED and CONCORDE INSTRUMENT COMPANY LIMITED have their Registered Offices situated at 27a Old Gloucester Street, London W1 and they also have an office in Monmouth.
BRADLEY MARSHALL LIMITED conduct their business from 325 Edgware Road, London, W2 1BN having purchased that business from A. MARSHALL (LONDON) LIMITED.

A. MARSHALL (LONDON) LIMITED MARSHALLS ELECTRONICS BRADLEY MARSHALL LIMITED

PARNDON ELECTRONICS LTD.

Dept. No. 2144 Paddock Mead. Harlow. Essex. CM18 7RR. Tel: 027932700
RESISTORS: $1 / 4$ Watt Carbon Film E 24 range $\pm 5 \%$ tolerance. High quality resistors. made under striculy controlled conditions by autornatic machines. Bandoliered and colour coded.
f1.00 per hundred mixed. (Min 10 per value) £8.50 per thousand mixed. (Min 50 per value)
Special stock pack 60 values. 10 off each $\mathbf{£ 5 - 5 0}$

DIODES: IN4148 3p each. Min order quantity - 15 tiems E1. 60 per hundred

DIL SWITCHES: Gold plated contact in fully sealed base - solve those 4 Way 86 p each. 6 Way $£ 1.00$ each. 8 Way $£ 1.20$ each.

DLL SOCKETS: High quality. low profile sockets.
8 pin-10p. 14 pin- 11 p. 16 pin-12p. 18 pin-19p. 20 pin- 21 p. 22 pin - 23 p. 24 pin -25 p. 28 pin-27p. 40 pin-42p.
all prices include v.a.t. \& POST \& PACKING - NO extras
MIN. ORDER - U.K. £1 OO. OVERSEAS ©5 CASH WITH ORDER PLEASE

MARCO TRADING

We have now moved to our new much larger premises. (Over 6000 sq ft). We purchased these new premises in November and after we have settled the stock and staff in we are going to open a retail shop for callers. Whilst the shop is not yet ready we will of course make callers very welcome and feel confident they will find many bargains. We will soon open on Saturdays, please telephone for further details TRANSFORMERS British made transformers at once only prices.

Primary	Secondary	Current	$1+$	$10+$	$100+$
240 V	$4.5-0-4.5 \mathrm{~V}$	$400 \mathrm{~m} / \mathrm{a}$	50 p	$45 p$	$35 p$
240 V	$6-0-6$	$100 \mathrm{~m} / \mathrm{s}$	$58 p$	$52 p$	$43 p$
240 V	$6-0-5$	$500 \mathrm{~m} / \mathrm{s}$	65 p	60 p	48 p

Manufacturers note: We can supply OFF THE SHELF $1000+$ quantities of the above transformers

ADAPTORS

These high quality British made European Adaptors are ideal for driving radio's, cassette recorders, TV games, calculators etc etc.

These adaptors fit the UK shaver socket

			$1+$	$10+$	$100+$
E08	4.5 VDC	$200 \mathrm{~m} / \mathrm{a}$	$\mathbf{5 0 p}$	$\mathbf{4 5 p}$	$32 p$
EM3	6 VDC	$200 \mathrm{~m} / \mathrm{a}$	$\mathbf{5 1 . 0 0}$	80 p	$\mathbf{5 5 p}$
EO9	6 V DC	$400 \mathrm{~m} / \mathrm{a}$	$\mathbf{8 1 . 5 0}$	$\mathbf{£ 1 . 2 5}$	$85 p$

RESISTOR PACKS
Marco has long been known for its resistor development packs and for the new comer we give full details.
0.25 W 10 of every value from 10 ohm to 820K i.e. 10R, 12R, 15R, 18R, 22R, 27R, 33R 39R, 47R, 56R, 68R, 82R, 100 R etc etc up to 820K
Total: 600 resistors Price: $£ 5.00$
O.5W 10 of every value from 2 R2 to 2 M 2 i.e. 2R2, 2R7, 3R3, 3R9, 4R7, 5R6, 6R8, 8R2 10 R etc etc up to 2 M 2 .
Total: 730 resistors Price: $\mathbf{8} .60$
OUR LATEST CATALOGUE NOW AVAILABLE FOR ONLY 25p INCLUDES COMPONENTS, CHART RECORDERS, MULTMETERS, SPECIAL OFFERS AND PRE-PAID ENVELOPES.

Please add 35 p postage and packing and 15% VAT to all orders.
Send orders to:
MARCO TRADING (Dept PE9)
The Maktings, High Street
Wem, Shropshire SY4 5EN
Telephone: WEM (0939) 32763
Every order receives our latest special offer lists. Or send SAE. All orders despatched by return of mail
 The firm for Speakers

Bigger and Better for 1982
the colourful Wilmslow Audio brochure -the definitive loudspeaker catalogue!

Everything for the speaker constructor - kits, drive units, components for HiFi and PA.
50 DIY HiFi speaker designs including the exciting new dB Total Concept speaker kits; the Kef Constructor range, Wharfedale Speakercraft, etc.
Flatpack cabinet kits for Kef, Wharfedale and many others.

* Lowest prices - Largest stocks *
\star Expert staff - Sound advice *
Choose your DIY HiFi Speakers in the comfort of our * two listening lounges
(Customer operated demonstration facilitles) * Ample parking ${ }^{\star}$

Send $£ 1.50$ for catalogue
(cheque, M.O. or stamps-or phone with your credit card number)

* Access - Visa - American Express accepted *
also Hifi Markets Budget Card.

R
 0625529599

35/39 Church Street, Wilmslow, Cheshire SK9 1AS
Lightning service on telephoned credit card orders

MIDWICH HAS MOVED! OUR PRICES HAVE TOO - DOWN!

In order to maintain our standard of service and house our ever growing range of stock, we've moved to larger premises. You can stlll use our old telephone number for a imited period, but please make a note of our new one and our address
mo mave reduced our prices still further. We know this will displease our competitors, but we'd rather please our customers.

NB - NO SURCHARGE ON CREDIT CARD ORDERS.
Be happy - move with Midwich. And remember, we always try to give you the best deal and the best service. If we fail just let us know - we will always try to make amends.
BBC MICRO UPGRADE KITS ** NEW LOWER PRICES **

BBC1 $4516 / 4816 \times 8100 \mathrm{~ns}$
 BBC5 Senal VO and RGB kit (IC74.75 + 5 K 3.4) 111.45 B8C6 Expansion bus and tude kit (IC7!, 72. $76+P(11,12$)
MOST KITS ARE NOW EX-STOCKI
**** We've done it again! Massive price reductions on IPS and CMOS

INDEX TO ADVERTISERS

CONNECTOR SYSTEMS

OFFICIAL

BBG

dealer

BBC Model ' A ' $£ 299$ (inc. VAT) Model ' B ' $£ 399$ (inc. VAT) (Carr. EBlunitu)

MEMORY PACK
8×4816 AP. 3 100nS $£ 21.60$
PRINTER \& USER PORTS
ICS 69, 70, 71, PL 9, $10 £ 9.50$ PRINTER LEAD COMPLETE E13.50

ANALOGUE PORT

F.D. PORT

IC72, PL6 $£ 7.30$ F. 77.8B PLB £70

RS423 \& VDU PORTS Fuli Range of Acornsott in stock. IC 74,75 SK 3 \& 4 E10.BO ALI MATING CONNECTORS \& CABLES AVAILABLE SEND FOR OUR BBC LIST

PRINTERS
 \section*{NEC PC 8023 BE}

80 col. 100 cps dot matrix printer. Bi-directional, Logic Seeking, Forward is Reversa Lina Feed. Hi Res \& Block Graphics, Proportional Spacing, International and Greek character sots, Auso underline Frictiontitractor solectahle $£ 340+£ 8$ carr.

EPSON MX80 FIT 3 and EPSON MX100 F/T 3
Dot matrix printers. Bi directional, Logic Seeking, Auto Underline, Bit Image
Printing, Super \& Sub-scripts. B0 col. $8 \mathrm{cps} £ 330+£ 8$ carr. 136 col. 100 cps
$\mathrm{f} 430+\mathrm{f} 10$ carr.

SEIKOSHA GP100A

80 col. 30 cps dot matrix printer. High Res Graphics - Std © double width
characters. $£ 185+£ 6$ carr.
ACORN ATOM
BASIC BUIITT
$8 \mathrm{~K}+2 \mathrm{KE135}$
EXPANDE:D
$8 \mathrm{~K}+\mathbf{5 K}+$ COI.OUK 169

MONITORS

BMC 12" GREEN SCREEN
18 MHz BANDWIDTH
£99 + £6 carr.
BMC 14" COLOUR MONITOR
(25×40 chars.) RGB input
£ $240+$ E6 carr.

SOFTY II EPROM PROGRAMMER

The complete microprocessor development system for both Engineers and Hobbyists, You can develop programs, dabug, verify and commit them to EPROMs. Will accept most + 5V EPROMs. Can also be used as ROMULATOR. Full review in Septamber 81 PE. Built unit complete with PSU and TV lead figs.

MICROTIMER

0502 based Programmable clack timer with

- 224 switching fimes/week grele
- 24 hour 7 day timar
- 4 independent switch outputs directhy interfacing to ithyristor/trices
* 4 digit 7 sep. display to indicate roul time. ON/OFF and Resel times
* Output to drive day of weok switch and stotus LEDS.

Full detoits on requesi Prica for kit $\mathbf{5} 57.00$

RUGBY ATOMIC CLOCK

This $\mathbf{2 - 8 0}$ micra contraliad elockitalandar receives coded tima data from NPL Augby. The clock newer neds to to rowes. The fucilities include 8 indapandent alarms and for each alarm there is a choica of molody or al arnatively these can be tsod for electrical switching. A separate timar allown locording of up to 240 lap times without intarrupting the count. Expien sien facilities provided

5V PSU

3A 5V Regulated Power Supply Fully Cased Complete with mains fuse. $£ 26+£ 2 p$. દ́p.
PLEASE ADD 40p p\&p \& 15\% VAT
(Export no VAT p\&p at Cost)
Orders from Government Depts, \& Colleges etc. weicome.
BARCLAYCARD \& ACCESS CARDS ACCEPTED
Detailed Price List on request.
Stock items are normally by return of post.

Published approximately on the 15th of each month by IPC Magazines Lid., Westover House, Wes
Australia and New Zealand - Gordon \& Gotch (A/sia) Led.; South Africa - Central News Agency Led.
Subscriptions INLAND and OVERSEAS $£ 13.00$ payable to IPC Services, Oakfield House. Perrymount Road, Haywards Heath. Sussex.
 part of any publication or advertising, literary or pictorial matter whatsoever.

＊A full size，full travel 43 －key keyboard that＇s simple to add to your $\mathbf{Z X 8 1}$（no soldering in $\mathbf{Z X 8 1}$ ）．
＊Complete with the electronics to make＂Shift Lock＂，＂Function＂and＂Graphics 2＂single key selections making entry far easier．
＊Powered from ZX81＇s own standard power supply－with special adaptor supplied．
＊Two colour print for key caps．
＊Amazing low price．
Full details in our projects book，Price 60p．Order As XAO3D．
Complete kit（does not include case）for only $£ 19.95$ incl．VAT and carriage．Order As LW72P．
（Case－order as XG17T Price £4．95）（Ready－built in case－order as XG22Y Price £29．95）

25W STEREO MOSFET AMPLIFIER
A superb new amplifier at a remarkably low price．

（
＊Over 26 W per channel into 8Ω at 1 kHz both channels driven．
＊Frequency response 20 Hz to $40 \mathrm{kHz} \pm 1 \mathrm{~dB}$ ．
＊Low distortion，low noise and high reliability power MOSFET output stage．
＊Extremely easy to build．Almost everything fits on main pcb， cutting interwiring to just 7 wires iplus toroidal transformer and mains lead terminations）．
＊Complete kit contains everything you need incluting pre
drilled and printed chassis and wooden cabinet．

Order As XAOBO
Full details in our projects book．Price 60p．
Order As LW71N
Complete kit for only $£ 49.95$ incl．VAT and carriage．

MAPLIN＇S FANTASTIC PROJECTS
Full details in our project books only 60 p each．
In Book 1 （XAO1B）120W rms MOSFET Combo－Amplifier • Universal Timer with 18 program times and 4 outputs．Temperature Gauge－Six Vero Projects
In 8ook 2 （XAO2C）Home Security System－Train Controller for 14 trains on one circuit Stopwatch with multiple modes－Miles per Gallon Meter
In Book 3 （XA03D）ZX81 Keyboard with electronics．Stereo 25W MDSFET Amplifier Doppler Radar Intruder Detector－Remote Control for Train Controller
In Book 4 （XA04E）＂Telephone Exchange expandable up to 32 extensions • Ulitrasanic Intruder Detector－Frequency Counter 100Hz to 500 MHz －Remote Control for 25 W Stereo Amplifier
－Projects for book 4 were in an advanced state at the time of writing，but contents may change prior to publication ldue 14th Aug 1982）．

$$
\begin{aligned}
& \text { *. MAPLIN'S NEW } 1983 \text { CATALOGUE } \text { On } 350 \text { oages } \\
& \text { 米 and including over } 1000 \text { new items. } \\
& \text { 埌 On sate in all branches of WHSNITH from November 19th the }
\end{aligned}
$$

Maplin launches MAPCARD

Now Maplin have their own credit card．
You could have one too！

APPLY NOW：

Wirit to our Ber

NEW SHOP IN BIRMINGHAM

Visit our brand new shop in Birmingham for our complete range of electronic components and computers．
Come and see us at Lynton Square，Perry Barr，Birmingham just off the junction of the Duter Ring Road A4040 and Birchfield Road A34）．Tel：021－356－7292．Excellent free parking．

See us at the
Electronics Hobbies Fair，
Alexandra Pavilion－Londón Noyember 18－21， 1982

Post this coupon now！

Please send me a copy of your 1983 catalogue as soon as it is available fat the end of November）．I enclose $£ 1.50$（inc pepp）．If I am not completely satisfied I may return the catalogue to you and have my money refunded If you live outside the U．K．send $£ 1.90$ or 10 Internationat Reply Coupons．

Name

Address

[^0]: (C) IPC Magazines Limited 1982. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: A8 Holographic Exhibitions $\int 01-8366423$
 E Evan Steadman 8079922612
 K Douglas Temple Studios 60202 20533
 L1 World Trade Cntr., Europe Ho., London E1
 O Online 〔0927428211
 Q Exhibitions For Industry $\int 088334371$
 T Trident $\int 08224671$
 V SDL Exhibitions \& Dublin 763871
 Z BETA Exhibitions 『01-405 6233
 Z1 IPC Exhibitions 6 01-643 8040

[^2]: NC Means No Connection
 Dn is Data bus
 An is Address bus

