
'October 1982

Siebirity Alarim Bantrouler

> Mcap paprasena compzition

๕unesis siol Powerian

Hydraulic Powered Microprocessor Controlled Robots

With prices starting below $£ 1,000$ the Genesis range of general purpose robots provide a first rate introduction to robotics for both education and industry. Each has a self-contained hydraulic power source, which enables loads of several pounds to be smoothly handled. The system operates from a single phase 240 or 120 V AC supply or a 12V DC supply. The machine can be supplied with up to 6 axes each of which is fully independent but capable of simultaneous operation. Position control is achieved by means of a closed-loop feedback system based around a dedicated microprocessor. Movement sequences can be entered, stored and replayed by use of a hand held controller, alternatively the systems can also be interfaced to an external computer via a standard RS 232C link.

P101 Hand Held Controller.

Example prices and specifications

Genesis S101

Base: $19.5^{\prime \prime} \times 11^{\prime \prime} \times 7.5^{\prime \prime}$
Lifting capacity: 1500 gm
Arm lift: 6.6"
Weight: 29 Kg
4 axis model in kit form $\mathbf{£ 3 9 0}$
5 axis model in kit form $\mathbf{£ 4 4 5}$
5 axis model READY BUILT £790

Genesis P101

Base: $19.5^{\prime \prime} \times 11^{\prime \prime} \times 7.5^{\prime \prime}$
Lifting capacity: 2000 gm
Arm lengths between axles: $14.0^{\prime \prime}$
Weight 34 Kg
4 axis model in kit form $£ 495$
6 axis model in kit form $£ 595$
6 axis model READY BUILT £950

COMPLETE SYSTEMS AS SHOWN IN PHOTOGRAPH ABOVE

Genesis S101
4 axis system in kit form $\mathbf{£ 6 3 5 . 5 0}$ 5 axis system in kit form $\mathbf{£ 6 9 5 . 0 0}$
5 axis system READY BUHLT E1355.00

Genesis P101
4 axis system in kit form $\mathbf{£ 7 4 2 . 0 0}$
6 axis system in kit form $\mathbf{£ 8 5 2 . 0 0}$
6 axis system READY BUILT $\mathbf{£ 1 5 2 5 . 0 0}$

PRACTICAL
 ELECTRONICS

CONSTRUCTIONAL PROJECTS

DIGITAL STOPWATCH by T. J. Johnson 22
Four function high precision instrument
SEMI-PROFESSIONAL MIXER by Tim Orr 30
Circuit descriptions 40
For real time bandwidth analysis
SECURITY CONTROLLER by John G. Leith 52
Home protection system
MINI CHORUS UNIT by R. A. Penfold 60
Effects unit for the vocalist or instrumentalist
COMBO AMPLIFIER by Fred Judd and E. A. Rule 66
Cabinet construction
GENERAL FEATURES
SEMICONDUCTOR UPDATE by R. W. Coles 28
AD549, iAPX 186, TSC9403
ELECTROLUBE REVIEW 38
New p.c.b. process reviewed
INGENUITY UNLIMITED 56
Challenge'—CMOS touch switch—Percussion synth-Stereo width control-Instant diode tester MICROPROMPT 70
Hardware and software ideas for PE computer projects
NEWS AND COMMENT
EDITORIAL 17
NEWS AND MARKET PLACE 18
With Countdown and Points Arising INDUSTRY NOTEBOOK by Nexus 21
News and views from the electronics industry
USING THE I.C. INSERTION TOOL 27
Information
MICRO-PROFESSOR COMPETITION 39
Your chance to win a $Z 80$ based micro SPECIAL OFFER-CASSETTES 49
Bargain offer on high quality cassettes
PATENTS REVIEW 50
BAZAAR 51,55
Readers' free advertisements
SPECIAL OFFER—QUASAR CASSETTE 65
Low price cassette recorder kit
SPACEWATCH by F. W. Hyde 68Fourth Columbia Mission, Getaway Specials

OUR NOVEMBER ISSUE WILL BE ON SALE FRIDAY, OCTOBER Bth, 1982
(for details of contents see page 29)

[^0]
 POLVESTER RADIAL LEAD CAPACITORS: 250V; $10 \mathrm{n}, 15 \mathrm{n}, 22 \mathrm{n}$
$220 \mathrm{n} 10 \mathrm{p} ; 330 \mathrm{n} 470 \mathrm{n} 13 \mathrm{p} ; 680 \mathrm{n}$ 19p; $1 \mu 23 \mathrm{p} ; 1 \mu 540 \mathrm{p} ; 2 \mu 246 \mathrm{p}$.

35	BC327/8	15	BFY52	3
35	BC337/8	15	BFY56	32
35	8C441	34	8FY64	35
30	8C461	34	8 FYB 1	120
28	8C477/8	40	8FY90	80
32	8C516/7	40	8RY39	40
70	BC547/8	12	85×20	20
75	8C549C	14	8S×29	34
75	BC556/7	15	BSY95A	25
75	BC558/9	15	BU105	170
120	8 CY 70	16	84205	190
79	BCY71/2	20	BU206	200
42	BD121	95	BU208	200
95	BD124	115	E421	250
40	BD131/2	48	MD8001	250
55	8D133	60	MJ2955	70
10	BD135	45	MJE340	54
12	BD136/7	40	MJE370	100
10	BD138/9	40	MJE371	100
12	BD140	40	MJE520	95
12	8D144	198	MJE2955	99
10	8D205	110	M.JE3055	70
12	BD245	45	MPF102	40
12	BD378	70	MPF103/4	30
20	BD434	55	MPF 105	30
30	BD517	75	MPF106	40
30	BD695A	99	MPSA05	25
	BD696A	99	MPSA06	25
10	BDY56	180	MPSA12	32
10	BDY60	160	MPSA55	30
10	BF115	35	MPSA56	30
9	BF167	29	MPSA70	30
12	8 F 173	27	MPSU02	58
27	BF177	25	MPSU05	55
10	BF178	30	MPSU06	55
11	BF179	35	MPSU52	65
45	BF 180	38	MPSU55	60
10	8F194/5	12	MPSU56	60
10	BF196/7	12	OC23/26	170
10	BF198/9	18	OC28/36	220
15	BF200	30	OC4 1/42	75
11	8F224	25	OC44	75
11	8F244A	28	OC45/70	40
16	8F2448	29	OC71/72	40
20	BF256B	35	OC76	50
10	BF257/B	32	OCB1/82	50
10	BF259	35	OC83/84	40
10	BF274	42	OC170/1	50
10	BF336	40	OC200/2	50
10	8F451	35	TIP29A	32
26	BF594/5	30	TIP29C	38
10	BFR39/40	23	TIP30A	35
10	BFR4 1/79	23	TIP30C	37
10	BFR80/81	25	TIP31A	38
10	BFR98	105	TIP31C	37
10	BFX29/84	28	TIP32A	38
14	BFX85/86	28	TIP32C	42
14	8FX87/88	28	TIP33A	65
	BFY50/5 1		TIP33C	78

With Heathkit, you're all set for a great deal. And not just big savings.

Whichever kit you choose, you'll find it easy to build. Simple, but detailed instructions take you through every stage. Everything is included. Even the solder you need Digital Clock is there. Follow the steps and you'll end up with a handcrafted, well-designed piece of equipment. One you'll be proud of. Because you built it yourself. There are 10 great kits to start you off. An interesting choice of kits from a digital clock to a metal locator, including a short wave listener's receiver, windspeed and direction indicator, digital readout electronic scale and five more useful kits.

All at 30\% off to first-timers. Send for your catalogue right now for a start.

Hexill Youbuildonour experience HEATHKIT

Technical Training in Radio, Television and Electronics

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the field of electronics-now it can be your turn. Whether you are a newcomer to the field or already working in the industry, ICS can provide you with the specialised training so essential to success.

Personal Tuition and Guaranteed Success

The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed"

CITY AND GUILDS CERTIFICATES

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Basic Electronic Engineering (C\&G/ICS)
Radio Amateurs
CERTIFICATE COURSES
TV \& Audio Servicing
TV, Radio and Audio Engineering
Radio \& Amplifier Construction
Electronic Engineering*
Computer Electronics*
Industrial Electronics*
Radio Frequency Electronics*
Introduction to Microprocessing*
Electrical Contracting \& Installation
*Qualify for IET Associate Membership
Approved by CACC \quad Div. National Corporation
Education

Member of ABCC
POST OR PHONE TODAY FOR FREE BOOKLET
Please send me your FREE School of Electronics Prospectus.
Subject of Interest
Name
Address

Post to: Dept 2732 I Electronics
160 Stewarts Roct

umbit
THE MOST COMPREHENSIVE RANGE OF COMPONENTS, KITS AND MODULESIN THE WORLD \& THERE'S ONLY ROOM FOR A FRACTION MERE, GET THE CATALOGUEAND FIND THE REST CM

 Memory Micros Linears:

\section*{
 | 000 |
| :--- |
| 8040 |
| 60 |}

SL1611	1.60	K84433	1.52	U265	3.16
SL1612	1.60	K84413	1.95	U266	2.43
SL1613	2.06	K84436	2.53	LC7137	7.50
SL1620	2.17	KB4437	1.75	ICM7216B	19.50
SL1621	2.17	K84445	1.29	ICM7216C	19.95
SL1623	2.44	K84446	2.75	ICM7217A	9.50
SL1625	2.17	NE5044	2.26	SP8647	6.00
SLI630	1.62	MC5229	9.60	95 H 90	7.80
SLI640	1.89	SL6270	2.03	HD 10551	2.45
SL1641	1.89	SL6310	2.03	HA12009	6.00
TOA2002	1.25	SL6440	3.38	H044015	4.45
ULN2242	3.05	SL6600	3.75	H044752	8.00
ULN2283	1.00	SAS6610	1.48	MC145151P	6.00
CA3089	1.84	SL6640	2.75	z804	3.75
CA3130E	0.80	SL6690	3.20	Z80A P10	3.50
CA3130T	0.90	SL6700	2.35	280A CTC	4.00
CA3140E	0.46	SAS6710	1.48	z80A DMA	9.95
CA3189E	2.20	LS 7225	3.65	Z80A DART	7.50
CA3240E	1.27	ICM7555	0.94	Z80A S10/1	11.00
MC3357	2.85	ICL8038CC	4.50	Z80A \$10/2	11.00
ULN3859	2.95	TK10170	1.87	z80A \$10/9	9.95
LM3900	0.60	TK10321	2.75	28001	65.00
LM3909N	0.68	HA 11223	2.15	8255	2.58
LM3914N	2.80	HA11225	1.45	6800P	2.90
K84412	1.95	HA1 2002	1.22	6809	8.75
KB4417	1.80	HA12402	1.95	6802	3.50
KB44208	1.09	HA12411	1.20	68A00P	4.25
K84423	2.30	HA12412	1.55	68800P	4.85
K84424	1.65	LF13741	0.33	2114-L2	1.49
KB4430	2.30	MK50375	3.85	4116.2	1.59
KB4431	1.95	MM53200	3.90	2732	4.00
K ${ }^{\text {c }} 4432$	1.95	U264	2.27	2716	3.00

ミ
1149
$\cup 237 B$
U 2378
U 247 B
$\cup 2578$
U267B

LF347
LM348
LM348
LF351
LF353
LM380N
2N419CE
ZN427E/8
NE544
NE555N
SL560C
NE564
NF567
UA741CN
UA741CN
TBA820M
TBA820M
ZNA 1034
LM1035
TDA 1062
TDA 1083
TDA 1090
HA1197
HA1197
MC1350
HA 1370
HA1370
HA1388
AA1)
AED THERE'S PLENTY MORE IN THP CATALOGUE 7Op inc.
Coils, Filters: Toko, Murata, NTK, Cathodeon.

SFE6.OMA	0.80	CDA10.7MA	0.70	10M150	14.50
CFSE10.7	0.80	SFE27MA	0.94	LFB4	1.95
SFE10.7MA	0.45	SAF10.7MC-2	3.75	LFB6/CFU455H	1.95
CFSB10.7	0.50	MF45510AZ21218.75	LFB8	1.95	
SFE10.7MJ	0.50	MFL45501L	11.95	LFB10	1.95
SFA10.7MF	0.75	10M15A	1.99	LFB12/CFU455F	1.95
SFE10.7ML	0.70	21M15A	3.45	LFH6S/	
SFE10.7MX	0.95	$45 M 15 A$	5.95	CFW455HT	2.45
CFSH10.7M1	0.50	10M22D	17.20	LFH8S	2.45
CFSH10.7M2	0.50	10M80	15.50	LFH12SI	
CFSH10.7M3	0.50			CFW455FT	2.45

TOKO FIXED VALUE CHOKES (E12 Values)

$78 A-1$ to 1000 uH	16 p	$10 \mathrm{RB} \cdot 1$ to 120 mH	33 p
$8 R B-1$ to 33 mH	19 p	$10 \mathrm{RB} \cdot .15$ to 1.5 H	43 p

RETAIL SHOP OPENING HOURS

Monday to Thursday 8 . $30-6.30$
NOW IN STOCK
ide Swithed Capacitor Filer:
8.30-8.30 Saturday 9.00-5.30 Price $£ 5.05$

ALL PRICES SHOWN EXCLUDE VAT. P\&P 50p per order.

30 V RANGE $(2 \times 15 \mathrm{~V}$ tapped secs)
Sec Voir $3,4,5,6,8,9,10,12,15,18,20,2$ ec Voir $3,4,5,6,8,9,10,12,15,18,20$.
30 V or $12 \mathrm{~V}-0-12 \mathrm{~V}$ or $15 \mathrm{~V}-0-15 \mathrm{~V}$. Ref Amps

Voltages stated are on full load
Continuous Ratings Continuous Ratings
60V RANGE $(2 \times 25 \mathrm{~V}$ tapped secs) Pri $120 / 240 \mathrm{~V}$. Voltages available $6,8,10,12$
$16,18,20,24,30,36,40,48,60$ or $16,18,20,24,30,36$.
$24 \mathrm{~V}-0-24 \mathrm{~V}$ or $30 \mathrm{~V}-0-30 \mathrm{~V}$.
P\&
$C 1.50$
61.50
61.90
62.02
62.26
62.2
62.
$O A$
$O A$
$O A$
MAINS ISOLATORS

$$
\begin{array}{|c|}
\text { MAINS ISOLATORS } \\
\text { Pri 0-120: } 0-100-120 \mathrm{~V}(120,220,240 \mathrm{~V}) \mathrm{Sec}
\end{array}
$$

$$
\begin{aligned}
& \text { Pri 0-120: 0-100-120 } \\
& \text { O-CT-120V iwike. }
\end{aligned}
$$

\qquad

Constant Voltage Transformers
Clean mains to computers/peripherals
P\&\&

50 VA
00 VA
kVA \qquad $\angle 137.36 \quad 66.50$
$\{159.43<8.50$
6213.12611 .00 Tap-changing INVERTERS AT. For low mains fluctuations to 240 ase. outlet socket For emergency 15 V CT Range (7.5V-0-7.5V)

96/48/36V RANGE

6/48/36V RANGE
Pri O-120/240V
Sec 2 windings $0-36-48 \mathrm{~V}$ to give $36-0-36 \mathrm{~V}$ or $48-0-48 \mathrm{~V}$ or 96 V

$$
72 \mathrm{v} / \mathrm{Amp} \times 3 \mathrm{w} /
$$

Barrie Electronics Ltd.
3. THE MINORIES, LONDON EC3N IBJ
TELEPHONE: 01-488 $3316 / 7 / 8$
NEAREST TUEE STATIONS; ALDGATE \& LIVERPOOL ST.

THE MULTI-PURPOSE TIMER HAS ARRIVED
Now you can sun your central heating, lighting, hi.fisystem, and lots
more with just one programmable timer. Ai your selection is is designed to control four mains outputs independently, switching on
and ott at piesel times over a 7 day cycle, e.d. 10 control your central and oft al pre-sel times over a 7 day cycle. e.e. 10 control your central
heating (including different switching limes for weekenast. just heating lincluding differeni switching limes for weekendst. Ji connect it to your
clerb will din the rest. FEATURES INCLUDE
0.5" LED 12 hour display

Day of week, am pm and oulput status indicators. 4 zero vollage switched mains outputs. 5060 Hz mains operation.
Bartery backup saves stored programmes and continues time keeping during power tsilures. (Bartery nor supplied). Display blanking during p 18 programme time sata. Poweriul "Everyday" function enabling outpul Useful "sleep" function-luens on output for Direct switch control enabiling output to be furned on immediately or ather a specified time inlerval 20 function keypad to programme eniry.
(Kit includes all components, PCB, assembl and programming instructions).

HOME LIGHTING KITS
 swith and control up to 300 w ol ligheing

TOR300K Aemare Control $£ 14.30$

 MK6 Transmitter for above $\$ 4.20$TO300K Touchdimmer
K
TOE K Extension kit for 2. way $\mathbb{C} \mathbf{~} \mathbf{2 . 0 0}$
LD300K Rotary Controlled $£ \mathbf{3 . 5 0}$
δ 3-NOTE DOOR CHIME JJ δ Based on the SAB0600 IC the kit is suppied with all components, including toudspeaker, printed circuit comblete. ANIDEAL PPOS gV battery and push-switch to Oider as Xkio2.
$£ 5.00$
For a detailed booklet on remote control - send us 30p \& SAE today.

"OPEN-SESAME"	
The $X \times 103$ is a general purpose infra-red transmiter recerver with one momentery (normally open) relay con tact and two latched transistor output. Destgmed petmarity for controting motoriseo garage doors and two auxiltary outputs for drive garage lights at orange of up to 40 H . The unit also nas numerous applicstions in the home for switching lights. TV, closing curtars, Eic Ideal for aged switching lights, N. of disabled persons. The kit comprises mans powered receiver, four button transmitter. complete with predrilled box, requiring a 9 g battery and one opto-isolated solid state swich kn for interfacing the recoiver to mains appisances. As with all our hits, fult instructions are supplied Only £23.75	
Exirs Solid State Swi 1XK tost ean be suppli	(XK 104 and Iransm: tiers
XK 104 £2.40	XK105 £10.50

THE HOME CONTROL CENTRE

 coded pulses into your armchair. There in the house frop by receiver mo the inains wiring fransmitter iniom supply and used to switennected to the are received Receivers are to switch on the to the same received kevboard, followed adressed by mppliance addressed. pushing butlons dy an on or officen a 16 -way. mitter also includen become rather command. Since programme ciudes a computer intertaing, the trance heating. electriur favourite microferface so you can OF THE etc. without rewiringe vour switch lights compon POSSIBILITIES rewiring your house, coffee in the pre-drilled for one frans. The KIT includes all PT THINk

DISCO LIGHTING KITS | On poon |
| :---: |
| Thin |
| nese | $\underset{\text { MK1 TEMPIEANURE }}{\text { MITS }}$ MK1 TEMPERATURE

CONTROLLER/THERMOSTA Uses LM3911 IC to sense tempers.
ture ($80^{\circ} \mathrm{C}$ max.) and friac to switch heater. 1 KW
MK2 2 Solid State Aolay MK2 Solid State Aolay
Ideal for switching motors, ldeal for switching motors, lights,
heaters. erc. from logic. Opto heaters. eic. rom logic. Opto Supplied without triac
MK3 BAR/OOT OISPLAY MK3 BAR/OOT DISPLAY Displays an analoque voltage on
linear 10 stoment LED display as a bar or single dot. Ideal for thermometers, tevel indicators, etc. May be stacked to obrain 2010100 elemen
displays. Requires $5-20 \mathrm{~V}$ supply MK4 PROPORTONAL SUDPly. TEMPERATUAE CONTHOLLER Based on the SL441 zero voltage
switch, this hit may be wired to form ${ }^{3}$ "burst fire" power controller enabling the temperature of an en: $0^{0} 5^{\circ} \mathrm{C}$. Max. load 3 KW MKS MAINS TMER Based on the ZN1034E Timer IC this
kit wall switeh a mains load on (rrp off lor a preset time from 20 mins. to 35 hrs. Longer or shorter periods may
be realised by minor component This
fatures sequence, speed of sedirectional and frequency of direction change, being variable by rr master dimming conirol and incorporates DLZ100k A lower cost version of the above, featuring undirectional channel sequence with speed veriable by means of a pre set pot. Outputs
switched onty at malns zero crossing points to refuce radio intertarence to a minimum. Optional opto input OLAI Aliowing audio ("beat"I-light response. 60 p NEW dl $3000 k$ This 3 channel sound to light kit fearures zero
voltage switching, dutomatic level control \& voltage switching, automatic level control \& buitt in mic. No connections to speaker or amp to mains supply \& lamps O ly f 1195 (1Kw'Channel)

Cnly $£ 11.95$
DVM/ULTRA SENSITIVE THERMOMETER KIT This new design is based on
the ICL7126 la lower power version of the ICL7106 chipl and a $31 / 2$ digit liquid crystal display. This kit will form the

-1949

 basis of a digital multimeter lonly a few additional resistors and switches digital thermometer $\left(-50^{\circ} \mathrm{C}\right.$ to $\left.+150^{\circ} \mathrm{C}\right)$ reading to $0.1^{\circ} \mathrm{C}$. The basic kit has sensitivity ol 200 mv for a full scale reacing. automatic polarity indication and an ulira low power requirement-giving * 2 year typical bantery life from a srandard 9V PP3when used 8 hours a dav, 7 days a week. EPROM programmer in stock at $£ 169$

THE KEY TO YOUR SECURITY IS IN OUR LOCK

If the thought of car thieves, house breakers or people tampering with your electrical and
elactronic equipment upsets you, we have just the kif for you. Out ELECTRONIC LOCK KIT includes 10 way keyboard and a special iC which provides a 750 mA output to drive a solenoid or relay fnot supplied when four keys are depressed in the correct sequence. Thrs gives over 5,000 possible combinations! The sequence is prewired and
may be easily changed by means of a small plug and socket. A "SAVE- function is also may be easily changed by means of a small plug and socket. A "SAvE tunction is also
available enabling the open code to be stored lespecially useful in a car when it is teft tn a garage for servicing as the open code need not be disclosedl. Size: $7 \times 6 \times 3 \mathrm{cms}$. Powe Consuinption is 40 uA at 5 V to 15 V d. c .
At only $£ 10.50+$ VAT. it wlil make a smaller hole in your pocket
than bunch of keys!
Electric Lock Mechanisni Sultable for use with existing $£ 13.50$ door locks and above electronic lock ki.

24 HOUR CLOCK/APPLIANCE TIMER KIT

 day. Kit contains: AY-5-1230 IC.

SHORT FORM CATALOGUE - send SAE $\left(6^{\prime \prime} \times 9^{\prime \prime}\right)$. We also stock Vero, Books, Resistors, Capacitors, Semi-Conductors etc.
05° LEO display, mains supply.
display drivers. switehes display drivers. switehes. LEDS.
triacs, PCBs and full instructions.

Add 55p postage \& packing $+15 \%$
£ 1.75 (Europe), $£ 4.50$ (elsewhere) for p\&
end S.A.E. for further STOCK DETAlLS
Goods by return subject to availability
OPEN

PHONOSONICS SUPER SONIC DIY KITS

NEW MUSIC SUPER-KIT SERIES!

Units in the new SUPER-KIT SERES each provide a basic function, plus a lirtle brt of extra interest They are self contained units that can be used on their own, or added together to uthimately achieve a modular sound modification \& synthesis system. More units will be introduced in due course, and we ange arome ideas - if you want something others probably do too. Some genessor, Comparator Multiplexer, Revert etc). All units are mono, for stereo use two. All will run from any DC vokag from \%v to isv at very few milliamps. For basic kit make-up see general statement at bot of RH col SUPER-BEAT
Metronome with both visual and audible beat marker with extra emphasis on down-beat switchable for extra marking on every beat to every tenth. Includes Rate control.

SUPER-BOOST
SET-143 \&13.52
Boost those upper or lower octaves. Choice of two units, each with depth and ranke controls. Super-Boost Bass Treble SET-138-T C8.46 SUPER-CLEAN
Is Hiss a problem? This switchable unit could help to clean it up nicely. SET-145 P.O.A. SUPER-FREEK!
General-purpose multivave-form frequency gererator with the usual Sine, Sq. Tri, Ramp, Mark-space, plus variations. Good overlapping 470 KHz , with fine tuning. SET-128 C 18.44 SUPER-FRINGE
Similar to Phasing, but deeper, giving spiky shifting outpur from mid \& lower ranges. Incl
depth \& rate controls. SET-148 \$.O.A. SUPER-FUZZ
Spiky Fuzz with Fringing effect (Fringing is simiar to phasing but deeper) Three controls
Fringing. Balance. Output. SET-135 C12.99

SUPER-HUM-CUT:
Are you humming nicety? A very steep notch filter to cut, really cut, SOHz hum. Suitable for cutting Live or Recorded hum, setrable for
20 Hz to 100 Hz SUPER-MIC-UP
Microphone or guitar pre-amp with gain con
SET. 144 C8 on
(Also available Simple-Mic-Up, variable gain

SUPER-MIX
Two-channet mixer with variable input level controls and gain. No tone control (see (want it). Super-Mixes can be want

SUPER-PASS

Variable Band-Pass fiter allowing only selected freq range to pass unattenuated. Incl Gain \& Frequency controls. SET-142 99.69
SUPER-TONE
Tone control for Bass \& Treb Cut, B \& T Gain, plus extra B \& T Range controls.
SET-139 P.O.A.
SUPER-TREM
A powerful tremolo whith depth and rate
SET- $136 \mathbb{C o n}$. 10.71
SUPER-VIBE
Vibrato with extra Phasing \& Revert controls, the latter capable of producing Vocoder-like amazing unit! SET-137 $\mathbf{2 3 . 9 9}$ SUPER-WAM
Wah-Wah with Auto \& Manual controls.
SET-140 P.O.A.
P.O.A.: Price On Application - details in list. LOTS OF OTHER STILL POPULARKITS OF VARIOUS TYPES BIG : SMALL ARE IŃ

OUR CATALOGUE.
C.B.

These are suitable for CB or standard audio use depending on socker type chosen (you will need two sockets - see below).
C.B. COMPRESSOR

Really helps avoid blasting your mods and adja cent channels! Preset it for the maximum that your rig will like and your signal strength won't
top it.

FUNNY TALKER MK2

Modified ring modulator for fascinating metallic and modulared quality to your voice. Includes new hugh-gain pre-mm, voltage stabiliser, and outpur level controk: SET-99MK2-LS \&19.0 MK2 (box not required): SET-99ADN $\mathbb{\$ 3 . 3 9}$ MULTIPLEXER
Are you using several front-end add-ons? This unit splits the microphone signal in up ro direccions for feeding various extras, and also contains a six-input mixer for recombining the add-on signals onto one line. An extra two skts reqd for each to-from direction.

MUSICAL CALI SIGN

Programme your own individual 8 -note call sign. Push button operated for use when you
ROGER TWO-GONG
Two-tone gong-like sound automatically act vated at the end of transmission.

SIGNAL COMPARATOR
Uses special three-colour LEDs to give a visual indication of speech level. Also compares mikas Roger Bleeps, etc. Helps avoid overmoduliztion and cross channel break-through.

SIMPLE REVERB

Enhances the spacious quality of your transmission, and at full control can produce that Monster-from-the-Deep' effect. With contro rom baance, echo and duration. The respons SET-122-LS $\mathbf{2 0 . 3 9}$ SNGLE ROGER
Gives a single bleep of a preset duration and pitch when the microphone switch is released

SPEECH PROCESSOR
Dramatically improves the inteligibility of speech signals. We are making many sales on the air!
SET-110-LS \&1I.77

VOICE FILTER

For limiting the frequency band-width that reaches the rig from the microphone, helping to reduce background noise. Six selectable ranges plus by-pass. SET-131-LS C12.97

VOICE OPERATED SWITCH

Avoid che danger and inconvenience of handheld mobile transmission and let your voice do CB POWER SUPPLY
From the mid-range of 13.8 volts, can be set anywhere between abour 10 V and 16 V at approx. 300 mA . Ideal for driving all these vari-SET-130-LS Ci3.85

CONNECTORS AVAILABLE

4-pen chassis-socket SKT-SC4 46p plus PEP 4-pin line-socket SKT-LSA P.O.A. 4-pin chassis-plug PLG-SP4 46p plus P\&P 4-pin line-plug PLG-LP4 62 p plus P\&P
S-pin 180° DN chas-skt SKT-KS 16 p plus P\&P 5 -pin 180° DIN line-plug, Std mono plas chas-ske SKT-US 20p plus P\&P Std mono plas line-plug PLG-UP $18 p$ ptus P\&P If connectors ordered with kits in this ad, no PA: charge, else add 60 p to total cost.

KIT CONTENTS

Prices incl UK P\&P \& IS\% VAT. Sets incl PCBS, electronic parts, instructions. Most also incl knobs, stess sw's, wire, solder \& a box. This ad is too small for details, if you want more send a large (9×4 or bigger) stamped addres sed envelope for our comprehensive catalogue. press. E.\&O.E. Despatch usually 7 days on most press.

EXPORTS WELCOMEI

Sterling payment with order piease. Postage rates in our lists. Europe send 50 p for lises. other countries send $\mathbb{C l}$
Terms: Mail Order CW.O. or collection by appomument Access. Borcioy \& Am-Express orders accepted Tel. OI-302 6184. Mon-Fii

M Micro MAlL ORDER dMusical SPECIAL/STS
 - YAMAHA NEW CS01 Micro Monophonic Svnthesiser

 1/2 YAMAHA New HS500 Handy Sound.

INTRODUCTORY PREE OFFER THEAMAZING PRELUDE ELECTRONIC KEYBOARD CHORD COMPUTER Worth $£ 20$

Given on request with every YAMAHA PS model

|IIIIIIIIII IIII ||

PS 30

PS 20
IIIIIIIIIIIIIII

PS 3
диниимииии

PS 2

IIrimimill

PS 1
PS 10

adDaEss

Micro Musical Limited
37 WOOD LANE.SHILTONT.COVENTRY,CVIGB
3) Teleohone. 0203 - 616760

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a selfemployed servicing engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.
You will do the following

- Build a modern oscilloscope

Recognise and handle current electronic components
Read, draw and understand circuit diagrams

- Carry out 40 experiments on basic electronic circuits used in modern cquipment
- Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V. $\mathrm{Hi}-\mathrm{Fi}$ and microprocessor/computer
 equipment.

Newcob? NewCareer?NewHobby?Getinto Mlectromics Now!

KDEOTOME Quality plus value - always

"The legendary "MINIMAX"

- the small speaker producing "Large speaker" sounds. Peak handling 100 watts.
ONLY £69.95 A PAIR!!!

VIDEOTONE - For full range of loudspeakers, in-car, C.B., Video, audio \& video cassettes, etc. Write for full details.

the MC88E from ORAL

 Moving Coil Cartridge - The MC88E is a high output cartridge - so you do not need to use a head amp. EXCEPTIONAL VALUE AT ONLY £24.95Seoum Hi-Fi represents EXCELLENT QUALITY AT A REALISTIC PRICE! The range offers a choice of amplifiers, tuner/amplifier, tuner, and the excellent SC4200 stereo cassette recorder.
THE SCIENCE OF AUTIO

CLEF electronic MUSIC

ELECTRONIC PIANOS

SPECIALISTS SINCE 1972
Clef Pianos adopt the most advanced form of Touch Sensitive action which
simulates piano Key inertia using a simulates piano Key uneri
patented electronic technique

71

DOMESTIC MODEL

 COMPONENT KIT £266 COMPLETE KIT £442 manufacture degs Two Domesic Models are avaliable including the 88 -note full-size version.Four intermixable Voice Controls may be used to ohtain a wide variation of Piano tone. including Harpsichord. Both Soft and Sustain Pedals are in-
corporated in the Design and internal corporated in the Design and internal
Effects are provided in the form of Phase/Flanger A power amplifier integrates into the Piano top which may be removed from the Base for easy transportation

SIX OCTAVE

DOMESTIC MODEL

 COMPONENT KIT $\mathbf{2} 234$ MANUFACTUREO 6620 Component Kits include Keyboard. Key-switch hardware. and all electronic four stages at no extra cost.Complete Kits further contain Cabinets. Complete Kits further contain Cabinets.
wiring harness. Pedals and in the case of Domestic Models both Power Amplifier The Speaker. the six Octave Stage Piano has the designed for use with an External SIX OCTAVE STAGE MODEL COMPONENT KIT E234 MANUFACTURED $£ 580$ Please allow 7 days for normal despatch

MICROSYNTH

THE COMPACT MUSIC SYNTHESIZER

COMPLETE KIT $£ 129.00$

STRING

ensemble

(As Published in conjunction with 'Practical Electronics') A very popular Keyboard Synthesizer Kit. for Group or Home use. with a four octave facility.

COMPONEN f197.50

Since 1972 Clef Products have consistently produced leading design in the field of Electronic Musical Instruments, many of which have been published in technical magazines. With musical quality of paramount imponance. new techniques have been evolved and the atest musically valid technology has been incorporated into projects
which have been successfully completed by constructors over a wide range of technical capabilíty. Back up TELEPHONE advice is available to all our customers.
PRICES INCLUDE VAT, UK CARRIAGE \& INSURANCE (CARRIAGE EXTRA ON MFD PIANOS). Ple ase send S.A.E. for Competitive quotations can be given for EXPORT orders - in Australia please contact JAYCAR in Sydney.

CLEF PRODUCTS (ELECTRONICS)
LIMITED
(Dept. P.E.) 44A Bramhall Lane South, Bramhall,
"THE computer BAND-BOX"
(As Published in conjunction with "Practical Electronics") COMPLETE

KIT

£235

£320

MANFD

MASTER RHYTHM ALSO REQUIRED
A ravolution in the field of Computar Music Generation
A MUSICIANS INSTRUMENT FOR:
SOLOISTS - SINGERS - RECORDING - PRACTICE
The BAND-BOX provides an Electronic Backing Trio consisting of
Drums. Bass, and a Chord Instrument (one of 16 Waveform/Enevelope combinations), with the capicity to store over 3.000 User Programmable Chord Changes on more than 120 different Chords. Using advanced Microprocessor technology, Playback of $50-100$ Scores can be executed in any Key and at chosen
Tempo. Complete Music Pad is electronically Indexed and stored on tempo. Complete Music Pad is celectronictily indexed and stored on Repeat Chorus, and Coda sections including Multiple Score Sequences. Sockels are provided for Volume Pedal and Footswitch plus separate and mixed instrument Outputs. Toral size
THE Programmable

DRUM MACHINE

The Clef Master Rhythm is capable of storing 24 selectable rnythmic drum patterns, invented, modified, and entered by the Operator on to Eight instrumentation tracks. A three position Instrumentation con into sounds sypical of playing with Drumsticks, Brushes, or Latin American Bongos and Cláves.
Sequence operation allows two rhythm sections to the coupled with the second (B) section appearing at four, eight or sixteen Bar repeticon. All drums can be adjusted for level and resonance on interna controls to suit individual taste, thus producing good musical sounds
in a battery driven unit $8 \dagger^{\prime \prime} \times 5^{\prime \prime} \times 2 \ell^{\prime \prime}$.

POWER AMPS

PRE-AMP MODULES

SEND COUPON (NO STAMP NECESSARY)

 FOR YOUR FREE IL.P. CATALOCUE AND OPEN UP TOANEW WORLD OF QUALTY \& VALUE

It's something you have always wanted....something to build your equipment into that's smart, modern, strong, adaptable to requirement and not expensive. The 'UniCase' is yet another triumph of I.L.P. design policy. It presents totally professional appearance and finish, ensuring easier and better assembly to make it equal to the most expensive cased equipment. The all-metal 'UniCase' is enhanced by precision aluminium extruded panels engineered for speedy and perfect aligned assembly within a mere five minutes. Designed in the first case to accommodate I.L.P. power amps with P.S.U's, the range will shortly be extended to house any other modular projects.

WHAT WE DO FOR CONSTRUCTORS

Our product range is now so vast we cannot possibly hope to show it all in our advertisments without overcrowding or abridging information to the point of uselessness. So we have devised a solution which we invite you to take advantage of without delay. ALL YOU NEED DO IS FILL IN AND FORWARD THE COUPON BELOW TO RECEIVE OUR NEWEST COMPREHENSIVE I.L.P. CATALOGUE POST FREE BY RETURN. It gives full details of all current I.L.P. products for the constructor together with prices, full technical and assembly details. wiring and circuit diagrams etc. and it's yours, FREE. You don't even have to stamp the envelope if you address it the way we tell you.

(

FREEPOST 2

GRAHAM BEL HOUSE ROPER CLOSE, CANTERBURY CT2 7EP
Telephone Sales (0227) 54778 Technical Only (0227) 64723 Telex 965780

FREEPOST

Mark your envelope clearly FREEPOST 2 and post it WITHOUT a stamp to
I.LP. at address above. We pay postage when your letter reaches us.

TO: I.L.P. ELECTRONICS LTD.
PLEASE SEND ME I.L.P. CATALOGUE,
POST PAID BY RETURN

I HAVE/HAVE NOT PREVIOUSLY
BUILT WITH I.L.P: MODULES

I.L.P. are the world's largest designers and manufacturers of hi-fi audio modules?

I.L.P. pioneered encapsulated power amps and pre-amps for enhanced thermal stability, mechanical protection and durability?
There are TWENTY power amplifiers from 15 to 240 watts RMS including the very
Iatest super-quality Mostets to choose from?
TWENTY pre-amp modules allow you to incorporate exciting professional applications to your equipment never before available to constructors and experimenters?
I.L.P. are suppliers to the B.8.C., I.B.A., N.A.S.A., British Aerospace, Marconi, Racal, Ferranti, G.E.C., Rolls Royce etc?

Goods are despatched within 7 days ol your order reaching us and covered by our 5 year no-quibble guarantee?

Name:
Address:
Ad

Sinclair ZX Spect

16K or 48K RAM... full-size movingkey keyboard... colour and sound... high-resolution graphics...

 From only Ł125!

First, there was the world-beating Sinclair ZX80. The first personal computer for under $£ 100$.

Then, the ZX81. With up to 16K RAM available, and the ZX Printer. Giving more power and more flexibility. Together, they've sold over 500,000 so far, to make Sinclair world leaders in personal computing. And the $\mathrm{Z} \times 81$ remains the ideal low-cost introduction to computing.

Now there's the ZX Spectrum! With up to 48K of RAM. A full-size moving-key keyboard. Vivid colour and sound. Highresolution graphics. And a low price that's unrivalled.

Professional powerpersonal computer price!

The $Z \times$ Spectrum incorporates all the proven features of the ZX81. But its new 16K BASIC ROM dramatically increases your computing power.

You have access to a range of 8 colours for foreground, background and border, together with a sound generator and high-resolution graphics.

You have the facility to support separate data files.

You have a choice of storage capacities (governed by the amount of RAM) 16 K of RAM (which you can uprate later to 48 K of RAM) or a massive 48 K of RAM.

Yet the price of the Spectrum 16K is an amazing $£ 125$! Even the popular 48 K version costs only $£ 175$!

You may decide to begin with the 16 K version. If so, you can still return it later for an upgrade. The cost? Around £60.

Ready to use today, easy to expand tomorrow

Your ZX Spectrum comes with a mains adaptor and all the necessary leads to connect to most cassette recorders and TVs (colour or black and white).

Employing Sinclair BASIC (now used in over 500,000 computers worldwide) the ZX Spectrum comes complete with two manuals which together represent a detailed course in BASIC programming. Whether you're a beginner or a competent programmer, you'll find them both of immense help. Depending on your computer experience, you'll quickly be moving into the colourful world of ZX Spectrum professional-level computing.

There's no need to stop there. The ZX Printer-available now - is fully compatible with the ZX Spectrum. And later this year there will be Microdrives for massive amounts of extra on-line storage, plus an RS232 / network interface board.

Key features of the Sinclair ZX Spectrum

- Full colour-8 colours each for foreground, background and border, plus flashing and brightness-intensity control.
- Sound-BEEP command with variable pitch and duration.
- Massive RAM-16K or 48K.
- Full-size moving-key keyboard- all keys at normal typewriter pitch, with repeat facility on each key.
- High-resolution-256 dots horizontally x 192 vertically, each individually addressable for true highresolution graphics.
- ASCll character set - with upper- and lower-case characters
- Teletext-compatible-user software can generate 40 characters per line or other settings.
- High speed LOAD \& SAVE-16K in 100 seconds via cassette, with VERIFY \& MERGE for programs and separate data files.
- Sinclair 16K extended BASICincorporating unique 'one-touch' keyword entry, syntax check, and report codes.

The ZX Printeravailable now

Designed exclusively for use with the Sinclair ZX range of computers, the printer offers ZX Spectrum owners the full ASCll character set-including lower-case characters and high-resolution graphics

A special feature is COPY which prints out exactly what is on the whole TV screen without the need for further instructions. Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZXPrinter connects to the rear of your $Z \times$ Spectrum. A roll of paper (65 Ht long and 4 in wide) is supplled, along with full instructions. Further supplies of paper are available in packs of five rolls.

The ZX Microdrivecoming soon

The new Microdrives, designed especially for the ZX Spectrum, are set to change the face of personal computing.

Each Microdrive is capable of holding up to 100 K bytes using a single interchangeable microfloppy.

The transfer rate is 16 K bytes per second, with average access time of 3.5 seconds. And you'li be able to connect up to 8ZX Microdrives to your ZX Spectrum.

All the BASIC commands required for the Microdrives are included on the Spectrum.

A remarkable breakthrough at a remarkable price. The Microdrives are available later this year, for around $£ 50$.

How to order your ZX Spectrum

RS232/network interface board

This interface, available later this year, will enable you to connect your ZX Spectrum to a whole host of printers, terminals and other computers.

The potential is enormous. And the astonishingly low price of only $£ 20$ is possible only because the operating systems are already designed into the ROM.

ZX Spectrum

 Available only by mail order and only from

Sinclair Research Ltd,
Stanhope Road, Camberley. Surrey, GU153PS
Tel: Camberley (0276) 685311

BY PHONE-Access, Barclaycard or Trustcard holders can call 01-200 0200 for personal attention 24 hours a day, every day. BY FREEPOST-use the no-stamp needed coupon below. You can pay by cheque, postal order, Access,

Barclaycard or Trustcard
EITHER WAY-please allow up to 28 days for delivery. And there's a 14-day money-back option, of course. We want you to be satisfied beyond doubt - and we have no doubt that you will be.

OPEN FRAME MONITORS AVAILABLE FOR OEM＇S The＇PRINCE＇of Monitors

offers better Monitoring．

 24MHz Bandwidth－ensures a clear crisp display． Available with P4 White P31 Green AND L1 ORANGE

Scan： 625 IInes $/ 50 \mathrm{~Hz}$ ．Deflection： 110° ．Active raster： $240 \times 172 \mathrm{~mm}$ ． Bandwldth（3dB）： $10 \mathrm{~Hz} \cdot 24 \mathrm{MHz}$（at 3dB points）．Character display： 80 characters $\times 24$ Unes．Horizontal frequency： $15625 \mathrm{~Hz} \pm 0.5 \mathrm{KHz}$ ． Vertical frequency： 50 Hz ．Horlzontal llnearlty：$\pm 3 \%$ ，Vertical Ilnearity：$\pm 2 \%$ ．Geometric distortion：$\pm 1.5 \%$ ．EHT（at zero beam currentl： $13 \mathrm{kV} \pm 0.5 \mathrm{kV}$ ．Power drain： 30 Watt approx．Voltage supply： 110 V A．C． $50 \mathrm{~Hz} / 220 \mathrm{~V}$ A．C．$-.50 \mathrm{Hz/240V}$ A．C．， $50 \mathrm{~Hz} /$ $\pm 10 \%$ upon request．VIdeo input： 2 M BNC－or CINCH－or PL 259，（composite video）negative sync．input $0.5-4 V$ p．p．across
75 Ohms X ．Aay radiation：conforms to i．E．C．Soec．No． 65 ．Overall 75 Onms．X－Ray radition：conforms to I．E．C．Spec．No．65．Overall dimenslons： $320 \times 270 \times 265 \mathrm{~mm}$ ．Weight： 7 Kg ．approx．Amblent temperature： $0-45^{\circ} \mathrm{C}$ ．
OTHER CROFTON PRODUCTS INCLUDE：COmputer peripheral equlpment．Frame grabber．Floppy disk drives，Floppy disks， Compuzer power supplies，C．C．T．V．monitors，uncased monitors， Monitor P．C．B＇s．，Cathode ray tubes，VHF／UHF modulators，Video switchers，Video distribution amplifiers，Camera housings，Pan and
tilt units，Cameralens．Camera tubes，Printed circult board service，

CROFTON ELECTRONICS LTD

35，Grosvenor Road，Twickenham，Middx，TW1 4AD． Telephone：01－891 1923／1513 Telex： 295093 CROFTN G
＂One of the neatest，most comprehensive and most useful of these car computers that we have vet come across ．．．＂PRACTICAL MOTORIST The PE Car Computer was designed to exceed the specification of all others，both for number of functions and accuracy．
It provides three classes of information：
Driving information－ 7 functions including miles per gallon（or litres per 100 kilometres），speed，fuel used．
Journey information－ 11 functions such as how far to go，ETA，how far you can go on fuel left，how fast you need to drive to meet an arrival time．
Car performance information－measure acceleration（eg． 0 to 60）， standing quarter miles，braking tests and much more using the unique ＇programmed＇mode．Check which types of driving are particularly un－ economic，tune your car for optimum performance and economy．
The unit also incorporates an ignition cut－out as an optional extra．Set the lock and the engine will not restart until a three digit combination is entered．
The unit is housed in a custom designed box with high quality printed panels and can be fitted above or below the dashboard．The display is liquid crystal for clarity in all lighting conditions．
The kit includes all sensors，wiring，etc and is suitable for all cars except those fitted with diesel or fuel injection engines．

Kit price： $\mathbf{£ 7 8 . 5 0}$ Assembled Price： $\mathbf{£ 8 8 . 5 0}$
Ignition cut－out $£ 7.75$
$+£ 1$ p\＆p includes VAT
Goods by return of post．Send S．A．E．for list of separately available parts．

PIMAC SYSTEMS LTD

20 Bloomfield Road，Moseley，Birmingham B13 9BY． Tel： $021-4490384$

BHPAK BARGANS

\section*{6 precision widniven SET case Sizes $-0811^{4} .2 .24$.	29 and 38 mm
1.75	 5T3 NUT DRIVER SET 5 precision nut drivers in hinged plastic case With lurning fod Sizes - 3.3 3.4 .45 and 5 mm $\varepsilon 1.75$ ST41 TOOL SET 5 precision instruments in hinged plastic case Crosspoint (Phillips' screwdivers HO and HI Hex key wrencnes 5 551 WRENCH SET 5 piecision wrenches in hingeo plastic case Sizes -4.45 .5 .55 and $6 \mathrm{~mm} £ 1.75$ BUY ALL FOUR SETS : 121 -sT5l and gel HEX KEY SET FREE HEX KEY SET ON RING Sizes 15.2 .25 .3

4.5 .55 and 6 mm Made ol naroneneo steel
 $H X / 1 £ 1.25$}
"JRREBIBTABLE RESISTOR BAROAINS"

 Prie lor med $\mathrm{t} \cdot \mathrm{h} / \mathrm{h}$ wall Caibon Resslors - watr Carbon Resistors hwit Carbon Resistors 14 wall Resistors 220 hm 2 m 2 Mixed
$115100 \quad 1$ and 2 matt Resistors 27 ohm 2 m 2 Mined
Pats Su12-15 conlain a range of Carbon Film Resislors of assorted values from 22 ohms to 22 mees Save Dounds on these resstol pats and have a tutt range to cover yout projects
umale count by welight

25 pieces ot Audio Plugs, Sockets and C 36 Pin. Speakers. Fhono. Jack Stereo and Monoetc Valued al well over E3normalorder No. SX25.
Guaranteed to Our Price 1.50 per pak.
Guaranteed to save you money.
$\begin{array}{ll}3 \times 26 & 3 \text { Prs of } 6 \text { pin } 240^{\circ} \text { 0IN Plugs and } \\ \text { Chassis Sockets }\end{array}$
Chassis Sockets
SX27A 60 Assorled Polystyrene Bead
Capacitors Type 9500 Series PPD
SX28A 50 Assorted Silver Mica Caps. 50 Assorted S
SX29A 50 Assorted Silver Mica Caps.
$180 \mathrm{~F}-4700 \mathrm{pF}$ $180 \mathrm{pF}-4700 \mathrm{pF}$
SX30A 50 High Volitage Disc Ceramics 750 v min up to 8 KV Assorted useful values $£$ SX31A 50 Wirewound 9 wall (avg) Resistors
Assorted values $10 \mathrm{hm}-12 \mathrm{~K}$

BAROAINS

Sx91 $20 \times$ Large 2" RED LED

Sx42 20 small 125 Red LED's
Sx03 10 Rectangula Green LED
SIus 30 Assorted lener Diodes $250 \mathrm{mw}-2$ watl mixed voltages. all coded Nem
Sx47 1 Blach Instrumeni
${ }^{\text {Knobs }}$-winged with pointer w Standard sciew. filt sure 29 x 20 mm .
Su4s 20 Assorted Sluder Knobs Blach/Chrome. etc
Suso 12 Meons and filument Lomps Low voltage and mairs - rarious topes and colours - some panel mounting

5×52
6 Black Heatsink will fit $\mathrm{IO}-3$ and T0.220 Reacy dotlled Hall Drice value
Sx53 I Power finned Healsink This healsink
${ }^{〔 1}$ gives the greatest possibib heat dissipalion in the smallest space owing to :s s un slaggered fin design pre dilled T0.3 Size 45 mm squalen 20 mm high 40 p Sx54 $10-66$ sure $35 \mathrm{~mm} \times 30 \mathrm{~mm} \times 12 \mathrm{~mm} \quad 35 \mathrm{p}$ sx55 1 Heas Efficiency Power Finned Heatsink $90 \mathrm{~mm} \times 80 \mathrm{~mm} \times 35 \mathrm{~mm}$ High fulled 10 Iake up to 4 : 0.3 devices £1.50 each
programmable unisumction thansistor PUT" case TO106 plastic MEU22 Similar to
2N6027 $/ 6028$ PNPN Silicon
 $\begin{array}{lllll} & \text { Price: } & 1.9 & 10-49 & 50.99 \\ \text { Each } & 100+ & \text { Normal Retail }\end{array}$ SX33A 6 Small (min (SOST /SPOT Toggle SX35A 6 small (min) Rocker

${ }^{\text {gle }} 1.00$ | SX35A 6 small (min |
| :--- |
| 240 v 5 mmp |

SX32A 22 Assorted Jack \& Phono plugs. snckets and adaptors. 2.5 m , SX71 50 "C108"Fallouls" Manulacture, sout of spec on volts or gain You test spec on volis or SX72 A mixed bundie of Copper ciad Board Fibre glass and paper Single and double sided. A lantastic bargain

SX38 100 Silicon NPN Transistors-a perrect Coded mixed types with
data and eqvi sheet. No rejects. Real value.
The Electronic Components and Semiconductor Bargain of ine Year. A noss ol Electronic Resistors ol mured values 2 2 onms $102 \mathrm{M} 2-1 / 8$ to 2 Wan. A compretenens sue range of
 Audio plugs ano sockels ol various types plus swithes. fuses, nealsinks, wire, nuls'bolls, gromets. cabie clips and yyes, knobs and PC Board. Then add to that 100 Semiconduitors 10 include lians istors. diodes, SCR's opto 's. all of which are Curfent everyalay usable devices. In aH a Fanlastic Parcel No rubbish all identiliabte and valued in curfent calaloques at well over $£ 25.00$. Our Fight Agansi Inflation Price

- Beall he busgel JUST £6.50.

BHPAK
 Send your orders 10 Dept PETO BI PAK SHOP AT 3 BADOCK ST. WARE MERTS TERMS: CASH WTH ST

 $\xrightarrow[4]{2}$

BRAND NEW LCD

 DISPLAY MULTITESTER RE 188mLCO 10 MEGOHM INPUT IMPEDANCE $\cdot 3 / 2$ dign - 16 ranges plus hFE lest facility for PNP and NPN Iransistors 'Auto zero. auto polarity ${ }^{\text {C Single-handed, pushbution }}$ operation "Over range indication " 125 mm
 -Fusl circuil protection * Test leads. Dallery and inslifuclions incluced
Maxinctication 19990r-1999 Polarity indication Negative only

Postive readings appear withoul + sign

Input impedance in Megohms

 Zero adust Autlomalic Sampling time 250 milliseconds Temperature range $-5^{\circ} \mathrm{C} 1050^{\circ} \mathrm{C}$ Power Supply $1 \times$ PP3 or equivalent 9 " Size $\quad 155 \times 88 \times 31 \mathrm{~mm}$ RANGES
$155 \times 88 \times 31 \mathrm{~mm} \mathrm{~T}$ DC Vollage 0.20 JmV
$0 \cdot 2 \cdot 20-200 \cdot 1000 \mathrm{~V}$ Acc 08% AC voliage $0.200 \cdot 1000 \mathrm{~V}$ Acc 12\% OC Current 0.200uA $0.2 \cdot 20 \cdot 200 \mathrm{~mA} 0 \cdot 10 \mathrm{~A}$ Acc 1
Res sitance $0.2 \cdot 20 \cdot 200 \mathrm{~K}$ onms 0. 2 Megohms Ace 1% B1.PAK VERY LOWEST POSS PRICE

SINGLE SIDED FIBREGLASS
 DOUGLE SIDED FIBREGLASS BOARD
FB4 $2^{2} 14 \times 4^{\prime \prime} \quad 110 \quad \$ 2.00$ SILICON POWER TRANSISTORS - T03

NPN like 2N3055 - but not tull spec 100 watts 50 V min.
10 for 51.50 - Very Good Value
Ordes No. ST90

5 watt (R)A8) Audio Amp

High Quality autio ampilitier Module Ideal tox use recod piayers. tape recorders, stereo amps and cassette plarees, elc. Full data and bach.up Clagiams minneach mod

- Max Power Supoly 30 v • Power Output 5 watts RMS - Load impedance 8-16 ohms * Frequency response 50 Hz to $25 \mathrm{KHz}-3 \mathrm{dd}$ • Sens itivity 70 mv for full output • Imput Impedance 50 k ohms • Size $85 \times 64 \times 30 \mathrm{~mm}$ • Total Harmonic
I.PAKS Iess inan $.5 \%$
£2. 25
Yow couid nol build one

MORE BARGAINSI

SxI 60 metres PVC covered Hook-up wire single and stranded. Muxed colours.
25 Assorted TL Gates 7400
S459 10 Assorted thip Flops and MSI 10 Ass
20 Ass
Th
516020 Assolted Slide
1 Potentiometers
5×79 et.
Io rea Switches - glass rype
3 Mucro Switches - with lever

Ux povi crealic crid anet us on ware 318 now anc per pove aroee ema lasiet Gocods nomalis seat ind Clas Mal

Biapid
 Tel: 020636412
 Hill Farm Industrial Estate Boxted Colchester Essex CO4 5RD

CONMECTORS

UHF (CB) CO 13p
PL259 Plug 40p Reducer 14p
SO239 square chas sis skt 30p SD 239S round chassis sochel 40p
Plug chassis mounting
Socket free hanging
Socket with 2 m lead

SWITCHES

Submin toggle
SPST 550. SPDT 60 p. \star DPDT $65 p$. SPDT B 8 p . SPDT centre of 900 .
SPDT 90 DPD centre of 100 DPDT 99p. DPDT centre of 1000.
Standard togale SPS 35 D . DPDT * Miniature DPDT sllde 120. Rotary type adiustable stop
1 P 12 W 2 P 6 W 3 P 4 W 4 P 3 W al
OIL switches
isPST 10 p .6 SPST 80 p .8 SPST 100 p CAPACITORS
Polyester, Radial leads. 250 V . C280 type.
$0.01,0.015,0.022,0.033,6 \mathrm{l}$
 20p: $1 \mu 23 \mathrm{p}$.
Electrolytle.

 500.
 $2200 / 40 \mathrm{~V} 110 \mathrm{p}:$
$4700 / 63 \mathrm{~V} 230 \mathrm{p}$.
Polyester. Miniature Siemens PCB
 $330 \mathrm{p} .20 \mathrm{p}: 470 \mathrm{n}, 26 \mathrm{p}: 680 \mathrm{n}, 29 \mathrm{p}: 1 / 1,33 \mathrm{p}: 2 \mathrm{nt2}$.
50.

 1.8DF 10 100DF 6 p each.

Polystyrene. 5% tolerace.
$10 \mathrm{p}-1000 \mathrm{p}$. $1500-4700 \mathrm{p}$ 8p. $6800-0.012 \mu 10 \mathrm{p}$. Trimmers. Mullard 808 Series.
2-10DF 22D. $2-22 \mathrm{DF}$ 30D. $5.5-65 \mathrm{pF} 35 \mathrm{D}$.
POTENTIOMETERS
Rotary. Carbon trach Log or Lin 1 K-2M2. Single
320. Sterso 85 p . Single switched
20. Slide

 To 100 K , BR Pach.

Please add c. post charges.

Miniaturemains.

$606 \mathrm{~V}, 909 \mathrm{~V}$, 12012 V all @ 900 m A 107 p each.
PCB mounilng. Miniature PCB mounilig. Miniature.
$3 \mathrm{VA} 0-6,0-6$ @ $0.25 \mathrm{~A}: 0-9$.

High qually, Splif bobbin construction.
OVA
0.6
0.6
$0.5 A$.
0.9
0.9

 (plus 400 carrlage)
$0.6 .0-6 @ 1.5 A, 0.9,0.9 @ 1.2 A, 0.12, ~$
 1100 each (plus 75 p carriage)

PCBMATERIALS

 PCB MATERIALSAlfac ranster sheei
(e.g. DIL pads stc.) Oalo etch resist pen Fibre glass board $3.75^{\circ} \times 8^{*}$
Ferric Chioride 250 ml botie

CABLES
CABLES mack slngle core
20 metre
conneting cable len differ ent colours
Speaker cable
$\begin{array}{ll}\text { Standard screened } & 16 \mathrm{p} / \mathrm{m} \\ \text { Twin screened }\end{array}$
$\begin{array}{ll}\mathrm{T}_{2} \text { win screened } 3 \text { core mains } & 24 \mathrm{p} / \mathrm{m} \\ 23 \mathrm{p} / \mathrm{m}\end{array}$ 10 way ralnbow ribbon $65 \mathrm{p} / \mathrm{m}$ 0 way rainbow ribbo

NEW CATALOGUE
Our latest catalogue has just been released con
taining over 2000 stock lines all at extrmely comperitive
prices backed by Aapids return of post service. Stocks include prices backed by Rapids return of post service. Stocks include
Denco coils, tools,

Simply phone
 020636412 with your order

An APONENT KITS

enced constructor to obtain a wide range of compo-

nents at greatly reduced prices.
iW 5% Resistor hit. Coniains io of each value from
4.7Ω to $1 \mathrm{M}(650$ resistors) 480 p.
22 p to 0.01μ (135 caps.) 370 o .
Polyester Capacitorkit. Contains 5 of each value from
0.01 to 1 IF (65 caps.) 5750 each.
Preset Kit. Contains 5 of each value from 100 ohms 10
1 M (total 65 presets) 425 e each.

Nut and	
	O W
25 6BA \% " bolts 256 BA) ${ }^{\prime \prime}$ bolts	Pen + spool
506 BA nuts 506 BA nuts	Spare spool

SOLDERINGIRONS		TRIACS
Antex CS $17 W$ Soldering iron	450p	400 V 4 A 50
2.3 and 4.7 mm bits to sult	$65 p$	400 V 8 A 55
CS $17 W$ Element	210 p	400 V 16 A 95

CSI7W Element	210p	400 V 16 A 95	
Antex XS 25w Soldering iron	4800	BR100	25
3. 3 and $\mathbf{4} \cdot 7 \mathrm{~mm}$ blts to suit	$65 p$		
Solder pump Desoldering tool	480p		
Spare nozzle for above	70p	SCRS	
10 metres 22 swg solder	100p	TIC45	

OPTO
$\star 3 \mathrm{~mm}$ red
$\star 3 \mathrm{~mm}$ green $\quad * 5 \mathrm{~mm}$ red
$\begin{array}{ll}\star 3 \mathrm{~mm} \text { green } & 12 \\ \star 5 \mathrm{~mm} \\ \star 3 \mathrm{~mm} \text { yellow } \\ & 12\end{array} \star 5 \mathrm{~mm}$ geen Clips 10 suli $3 p$
\qquad

| $\begin{array}{l}\text { Rectangular } \\ t r e d \\ \text { TIL32 }\end{array}$ | 12 | TIL78 |
| :--- | :--- | :--- | :--- |

tred
green
green
yellow
TIL38
2N5777

12	TLL78
17	TLI11
17	ORP12
10	TIL100
45	Dual col

Com athode

$\begin{array}{lll}\text { Cl704 } 0.3^{\prime \prime} \\ \text { DFNO } & 9500 & \text { Com anode }\end{array}$

TIL322	$0.5^{\prime \prime}$	115	THL312	0	$3^{\prime \prime}$	105

VERO * Verobloc 350p * Slye 0.1 matrix	SOCKETS			CRYSTALS			
	Low Wireprofile wrap			100 KHz	290	6. 0 M	200
				200 KHz	370	$8{ }^{6} 44 \mathrm{M}$	180
2.5.1 22p	${ }^{1} 8 \mathrm{pin}$	7 p	25p	1 MHz	300	7.0 M	250
2.5.3.75 75p	* 140in	9 p	35p	1.003M	370	8.0 M	170
25.58	* 16 din	10p	$42 p$	18432	300	10.0 M	180
375.5195	18 pin	15p	520	2.0 M	270	12.0M	290
Voboard 160p	20 pin	18p	60p	2.4576 M	220	16.0 M	240
Veropins per 100	22 pin	20p	70p	3.276 M	240	18.0M	240
Single sided 50p	24 pin	22 p	700	3.579M	120	18.432	220
Double sided 60p	28 pin 40 pin		880	4.0M	150 150		320 220
Spot face cutter 105p	40 pin	32 p	$98 p$	4 4 4 43 M	150 125	48 OM	220

WATCH TV

Readers may have seen the various announcements recently concerning the development of a wrist watch style TV by Seiko. In case you missed them; basically Seiko intend to market this device for around £200 next spring. It consists of an I.c.d. display about 28 mm across fitted in the face of a watch, with back up electronics in a walkman style case.

Various claims have been made for resolution and a new technique has been devised to mount the l.c.d. and CMOS i.c.s in the compact space, the screen consists of 32,000 dots, but Seiko are being very cagey about details. However, in this issue of PE you will find a description of the technique used to make the display. No, it's not an exclusive from Seiko nor do we have an industrial spy. In fact our source is wide open to everyone who cares to look and, at the present time, a publicity campaign is being mounted to get people to do just that.

So what is this wondrous source of information on new techniques that companies otherwise protect? When we tell you the data on Seiko's technique can be found in Patents Review it becomes clear!

PIN

We recently received a sample copy of PIN Bulletin (Patents Information Network), a quarterly publication issued free by the Science Reference Library. The publication is "intended to help bring, to wider attention, the wealth of technical and commercial information contained in patent specifications". It is available through SRL and the 26 other libraries of the UK Patents Information Network.

The bulletin is in itself quite interesting, giving a taste of the information available from various patents. Such items as Prestel, fibre optics, Enigma (the wartime code machine) and a time domain multiple access satellite communications system are
outlined and their relevant patent numbers quoted. As you can see this source of free information is well worth exploiting.

The other patent we describe this month was taken out by an engineer who has been a PE contributor. We were not aware of his work in this area until Barry Fox, our Patents Review author, sent in the piece for publication. We can all learn from patents l

PAT OR PAY?

By the way Barry (an acknowleged expert in this field) informs us that the correct pronunciation of patent is "pat (as in cat)-ent", not "paytent". However, many people pronounce it the latter way and this point has caused much friendly argument in the PE officel Try talking it over at work, school or college, but don't rely on dictionaries for an answer - some give both pronunciations, others give one or other version!

EDITOR Mike Kenward
Gordon Godbold ASSISTANT EDITOR Mike Abbott TECHNICALEDITOR
David Shortland PROJECTS EDITOR

Jack Pountney ART EDITOR
Keith Woodruff ASSISTANT ART EDITOR
John Pickering SEN. TECH. ILLUSTRATOR
Isabelle Greenaway TECH. ILLUSTRATOR
Jenny Tremaine SECRETARY

ADVERTISEMENT MANAGER

SECRETARY Christine Pocknell
AD. SALES EXEC
CLASSIFIED SUPERVISOR

AD. MAKE-UP/COPY

Technical and Editorial queries and letters (see note below to): Practical Electronics, Westover House, West Quay Road, Poole, Dorset BH15 1JG
Phone: Editorial Poole 671191
We regret that lengthy technical enquiries cannot be answered over the telephone

Queries and letters concerning advertisements to:
Practical Electronics Advertisements, King's Reach Tower, King's Reach, Stamford Street, SE1 9LS
Telex: 915748 MAGDIV-G

Letters and Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in PE. All letters requiring a reply should be accompanied by a stamped, self addressed envelope, or addressed envelope and international reply coupons, and each letter should relate to one published project only.

Components and p.c.b.s are usually available from advertisers; where we anticipate difficulties a source will be suggested.

Back Numbers

Copies of most of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, at $£ 1$ each including Inland/Overseas p\&p. Please state month and year of issue required.

Binders

Binders for PE are available from the same address as back numbers at $£ 4.60$ each
to UK or overseas addresses, including postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 13.00$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH 16 3DH. Cheques and postal orders should be made payable to IPC Magazines Limited.

Items mentioned are available through normal retail outlets unless otherwise specified. Prices correct at time of going to press.

Electronic Hobbies Fair

The Electronic Hobbies Fair has been launched in response to demand from both trade and hobbyists (following dissatisfaction with last year's Breadboard Exhibition) for a major national show of the highest quality. A visit to the new Alexandra Palace Pavilion from November 18-21 will illustrate how the hobby market is being expanded by the application of electronics.

In addition to the three sponsoring magazines (P.E., P.W. and E.E.) the following IPC titles will also have a presence at the fair Wireless World, Practical Computing, Your Computer, Practical Hi-Fi and Television. Virtually all the big names in the retail hobby supply business will be exhibiting and a few industrial suppliers now getting involved in the hobby scene will also be there.

Dubbed the "Palace of Light," the new Pavilion is set in 200 acres of London's most attractive parkland. To assist visitors to attend, a concessionary fare that includes admission to the show has been arranged with British Rail, from every major British Rail station in the country, direct to Alexandra Palace station with a free bus service to the Pavilion.
Admission is $£ 2$ for adults and $£ 1$ for
children under 14 , but money off vouchers will be published in PE, and the other sponsoring magazines, to enable our readers to come in at a special rate. Reductions will also be made for organised groups. There is ample free car parking and easy access from Alexandra Palace tube station. Opening times are 10.00-18.00hrs for the first three days and $10.00-17.00 \mathrm{hrs}$ on the final day. We hope to see you there!

TOP
 BANANA

Of course, were you to ask a monkey to design an analogue multimeter, a bright yellow banana-shaped end product would be no more than you deserved. Pantec's Banana 1, however, has a bright yellow skin and it's no slip up. It is banana-shaped, yet there are no chimps on the staff.
"The Banana'" was designed for use by field service enginears working in difficult testing environments, and is a considerable departure from traditional designs. It is said to be shockproof, withstanding a two-metre drop to the floor. The range selector can be operated with one finger, and its probes are permanently connected for safety, as well as prevention against insertion errors.

Voltages up to 750 V a.c. can be measured in three ranges, with five d.c. ranges for readings up to 500 V . Currents up to 2.5 A d.c. in four ranges, and resistances up to 2 M in three ranges are measurable. The Banana incorporates a continuity tester with a buzzer for resistances under 30Ω, and a visual battery check system. A coloured scale indicates the condition of its internal 1.5 V battery.

A price was not available at the time of going to press, but details can be obtained from Solent Component Supplies, Warren Avenue, Milton, Portsmouth. Perhaps Bunch discounts will be considered.

The U4324 multimeter from Marco Trading is a robust instrument which is priced at just $£ 10.50$ plus $£ 2.00 \rho$ \& ρ. Rechargeable batteries are included or dry cells can be supplied if required (f1.50 plus VAT).

The meter has nine d.c. voltage ranges up to 1200 V , eight a.c. voltage ranges up to 900 V with six d.c. current ranges and five a.c. current ranges both measuring up to $3 A$. The five resistance ranges measure up to $5 \mathrm{M} \Omega$.

Test leads, probes and a range of clips are also included in the price. Marco Trading, The Maltings. High Street, Wem, Shropshire SY4 5EN (O939 32763).

ZX ADD ON

An independent add-on for the $\mathbf{Z X}$ spectrum is here, manufactured by Kempston (Micro) Electronics, and designed around an MOS chip to give a 24 -line I/O port which presents virtually no d.c. load to the data lines, and only a slight a.c. load to the address lines. A two-slot Mother Board by the same company is also shown in the photograph, and this allows duplication of the spectrum's edge connector.

The I/O port makes use of the computer's IN and OUT commands and is port mapped, being accessed by one simple BASIC command. There are three 8 -bit I/Os which may be configured in a variety of modes.

At $£ 16 \cdot 50$, the port is available fully built and tested, together with a set of detailed instructions and control applications. Use the Mother Board and you'll need another $£ 16.95$ (stackable connectors $£ 5.50$ each). All prices include VAT. Single item postage is 70 pence (100 pence for two or more items). Further details available from Kempston (Micro) Electronics, 60 Adamson Court, Hillgrounds Road, Kempston, Bedford MK 42 8QZ.

REMOTE CONTROLIER

The XK 112 remote control kit from TK Electronics has been developed to enable the user to control, via a hand held transmitter, any electrical appliance which is plugged into a domestic supply.
The 18 -key transmitter which has 16 control keys and 2 command keys (on/off) modulates the domestic supply with a 470 kHz signal. Each appliance is plugged into a receiver module which is coded using 4 wire links. Up to 16 receiver modules and therefore 16 appliances can be controlled via one transmitter unit.

A major advantage of this system is that the transmitter includes circuitry which allows it to be controlled by logic levels enabling automatic control of all appliances in the house from a central controller, such

as a digital clock, microprocessor or other logic system without the need to run separate wires to each appliance.
The XK112 kit includes a transmitter and two receiver units. The transmitter kit includes an 18-key keyboard, l.e.d. indicator, p.c.b., components and a cone. The receiver kit includes the p.c.b. and components but a housing is not included as the unit is small enough to be built into existing equipment, although a suitable case can be supplied if required.
The XK112 is priced a $£ 42.00$ plus VAT or the transmitter (XK110) kit is available separately priced at $£ 25.00$ plus VAT. Separate receivers are also available, price $£ 10.00$ plus VAT.
TK Electronics have also made Mail Order easier by installing a new telephone No. which even the most forgetful constructor will have difficulty in forgetting. The number is 5678910.

By dialling the above number and quoting your Access or Barclaycard number TK will despatch your order on the same day.

Also available from TK is a copy of their latest catalogue which can be obtained by writing and enclosing a s.a.e. ($6^{\prime \prime} \times 9^{\prime \prime}$) to the following address.

TK Electronics, 11 Boston Road, London W7 3SJ (01-579 9794).

CHIP QUACK

From the Softy people, Dataman Designs, now comes Microdoctor, an intelligent device which helps engineers to diagnose faults in computers and microprocessor controlled equipment. Whilst malfunctioning ROM, RAM, I/O and data line shorts are burdensome on labour time, the rather more conventional tools, such as scopes and logic analysers, are less than ideal in diagnostic work of this nature.

Microdoctor, which can be used by an unskilled operator, prints out the results of preprogrammed tests on all memory mapped chips, dynamic or static RAM.

Is this machine a doctor, or psychiatrist? Well, it cannot solve software problems, but it can, for example, memory map an unknown system for you, memory contents being printed out in Hex or ASCII.

Microdoctor is a Z80 based product, supplied with a free Z80 disassembler which may be used to print a disassembled listing of the ROM in any Z80 system. The machine is equally applicable to other $\mu \mathrm{P}$ systems as it stands, and disassemblers for other popular micro's will be available soon for low cost retrofit.

The Microdoctor has $\mathbf{4 K}$ of firmware and 1 K of CMOS RAM with battery back-up, allowing up to 15 test sequences (of up to 12 tests each) to be retained in memory for several months whilst switched off.

On examining an unknown system, for example, a memory map print-out would find ROM, RAM and I/O. A dump in Hex or ASCII would find the data tables, and once the location of peripheral drivers were known a SEARCH would find the software routines, which could then be disassembled. There are numerous other features.

Microdoctor costs $£ 295$ + VAT and carriage, from: Dataman Designs, Lombard House, Cornwall Rd., Dorchester, Dorset DT1 IRX.

Briefly...

Many readers may not be aware of a PO service called Transcash. This service has been in operation for some time but was previously called Inpayment Service; it allows an order with cash to be placed for a minimal charge with any company for individual) that has a Girobank account.

All you do is fill in a Transcash form, write your order or message in the space provided on the back and hand it in with the cash (no cheques) plus a 30p payment at any Post Office. The order and payment are then delivered to the Girobank account holder you nominate.

This service is now being advertised by Radio Component Specialists (see their ad. in this issue) and is obviously a simple, cheap (when compared to postal orders: plus stamps etc.) and safe way of placing orders.

The paperless office, according to a report in Computer Weekly, may not be imminent after all. There is growth in the paper industry research is revealing, which in the UK is stated as increasing at two per cent per year, with business gobbling it up at twice that speed. The trouble is that messages and data sent by electronic communications systems are invariably delivered ultimately on paper. Indications are that new technology will not have any effect on paper consumption at least until the 1990 s, and in many cases not before the end of the next century!

In Electronics Times it was reported recently that the US Defence Department believes that the Soviets are developing a computer-based airborne combat system which allows a pilot to manoeuvre, aim and fire his weapons simply by thinking! The Russians, we are told, have taken a version of their MIG-25, now known as the MIG29. and modified the on-board computer for control by thought.

Another report in Electronics Times tells of two British companies, which have joined forces, one being DJ'Al' of "Last One" fame (the self-programing computer program, you may remember), to produce the "Hyperspatial" RAM. No technical details, of course; but Micro Xeno, the other half of the arrangement, have worked on the problem of bulk storage from the hardware end, and DJ'Al' from the software end. The report described Micro Xeno as having been the subject of controversy in the computer industry since it claimed to be able to make a 9.9 gigabyte solid state memory using only 8 K bytes of normal memory!

Merchant of Menace

Caverns Of Doom, Deadly Triangle and Warp War are but a mere glimpse of the lethal range of software available from Premier Publications. Yet for the peaceloving Earth man, particularly he who flies UK . 101/OHIO systems? Yes, disk for the couple of examples: BASIC X. This adds 25 new BASIC words to your interpreter for around $£ 20$. Approximately 80 p a word is not bad! What about the disk system for UK $101 / \mathrm{OH} 10$ systems? Yes, disk for the 101 ! The card plugs into J1. Single or double drive units. Single or double density mode. ROMDOS or OS65-D, cables etc. 80k capacity (90 k under Premier Forth) at $125 k$ bits per second.

What will really interest the computerist is the TRS/GENIE/OHIO/UK 101 REPAIR SERVICE. You have to put $£ 35$ up front for repair and postage, and if extra money is required to complete the work, you are informed first (so we are informed). However, generally there is a rebate, if anything. Turn-around can be from two to eight weeks, and you are asked to put through a prior telephone call to make arrangements. Both computers and peripherals are taken into care.

If it's a case of ve vont information then there's the CUSTOMER SERVICE for "en-
quiries, moans or a chat" (ring 01-659 7131) between 7 and 9 p.m., Monday evenings, when incidentally the new shop is open in addition to normal hours. General technical enquiries are accepted between 4 and 6 p.m., except Wednesdays and weekends. Most UK 101 owners will pin their ears back to learn that just about all spares for their machine are available from Premier-except the p.c.b.

The Newsletter, which goes out to regular customers is highly informative and easy to follow.

The new, and much expanded site for Premier Publications is at 208 Croydon Rd., Anerley, London SE20 7YX. The "large white" building is opposite the junction at Croydon Rd. and Thornsett Rd., not far from Norwood Junction Station. There are two Croydon Roads, apparently, so watch out

POINTS
 ARISING . . . AUTOMATIC PHOTOGRAPHER

(August '82)

In Fig. 3, R3 should be 4k7. In the components list for the circuit of Fig. 4, C2 should be luF electrolytic.

PROGRAMMABLE TIMER CON-

 TROLLER (May, June '82)In Figs 3 and 4 an extra copper track appears which should be deleted. The unwanted track joins the track of D15 to A25 to the track of D27 to D20.

In Fig. 8 the capacitor. nearest C1 should be C2 not C4. Also R1 should be R39.

In Fig. 11 there are two C 15 connecting points. The one nearest T1 should be C14.

COMBO AMPLIFIER-I (Aug '82)

Refer to Fig. 3, circuit diagram: IC2b \& IC3a pins 4 should correct to -15 V (not OV).
VR3 should be VOLUME CH. 2 \& VR4 should be CH.1. C13 is shown with reversed polarity.
IC1a, IC2a, IC3a—all pins marked 7 should be 1.
Refer Fig. 4, p.c.b. \& 5, overlay: R35 should be connected to OV (not floating).
Terminal pin between pins 20 \& 22 should be 21 (not 12).
Terminal pin connecting to C11 should be pin 1 (not pin 7).
Terminal pin connecting to C 7 should be 23 (not R3).
Junction of R5 \& R6 should have track joining it to pin 1 of IC1.
Refer to components list: R8 listed twice First R8 should be R28.
C17 listed twice! Second C17 should be C6.

Tnoundidnurn...

Please check dates before setting out, as we cannot guarantee the accuracy of the information presented below. Note: some exhibitions may be trade only. If you are organising any electrical/electronics, radio or scientific event, big or small, we shall be glad to include it here.

Laboratory London Sept. 14-16. Grosvenor Ho. Park Lane, London E ElectroWEST Sept. 14-16. Bristol Exhibition Cntr Q
Two Countries Fair Sept. 15-18. Plymouth Exhibition Cntr. Millbay, Devon T
IBC (Int. Broadcasting Convention) Sept. 18-21. Metropole, Brighton N
Microprocessors In Audiology Sept. 24 A7
Holographic Techniques Sept. 30-Nov. 28. Light Fantastic Gallery, Covent Gdn. London A8
Video Show Oct. 16-18. West Cntr. Hotel, London Z1
Computer Graphics Oct. 19-21. Royal Gdn. \& Bloomsbury Cntr. London O
Testmex Oct. 26-28. Wembley Conf. Cntr. T
BEX Southampton Oct. 27-28. Polygon Hotel K
ISSEC (Safety, Security, Fire) Nov. 9-11. Royal Dublin Society Hall, Ireland V
BEX Plymouth Nov. Nov. 10-11. Holiday Inn K
Compec Nov. 16-19. Olympia Z1
Hobby Electronics Fair (-see last Countdown) Nov. 18-21. Alexandra Palace, London Z1
INTRON Nov. 23-25. RDS Dublin, Ireland V
BEX Bristol Nov. 24-25. Holiday Inn K

Northern Computer Fair Nov. 25-27. Belle Vue, Manchester Z1
Christmas Holography (+ items for sale) Dec. 2-Mar. (1983) Light
Fantastic Gallery, London A8
A7 Institute Of Acoustics 『031 2252143
E Evan Steadman 6079922612
I Industrial Trade Fairs 60217056707
K Douglas Temple Studios 8020220533
L1 World Trade Cntr., Europe Ho., London E1
N Institute Electrical \& Electronics Engineers
O Online 〔0927428211
Q Exhibitions For Industry 6088334371
T Trident $\int 08224671$
V SDL Exhibitions \& Dublin 763871
Z1 IPC Exhibitions \& 01 -643 8040

Courses

Apple For Beginners. Sept. 13-14, '82
Apple Getting More From. Sept. 15-17, '82
Pet For Beginners. Sept. 20-21, '82
Sept. 27-28, '82
Pet Getting More From. Sept. 22-23, '82
Sept. 29-30, '82
Pet In Control. Sept. 24, ' 82
Pet M/c Intro. Oct. 1, '82
All above: University Of Salford. $8061-7365843$
ZX81 Science On, $6 \times$ Fri. eve's (6.00 till 8.00) from Nov, 12, '82
ZX81 30 Hour BASIC. Home study + visits to tutor (C\&G option)
Fundamentals of Micro Engineering
$\mu \mathrm{P}$ Systems \& Fault Finding
μ P Interfacing \& Applications
Above: Mid-Kent College. Medway 407391. The last three are ten weeks of $\frac{1}{2}$ day tuition and labwork.

Defence

The defence sector continues buoyant and, if anything, reinforced by the aftermath of the Falklands crisis. Recently announced contracts would have been in negotiation for some months and not necessarily due to operations in the South Atlantic. In fact the £30 million contract for the full development of BATES (Battlefield Artillery Target Engagement System) is a culmination of five years of feasibility and project definition studies at Marconi Space and Defence Systems think tank at Frimley. The system design is based on assessm:nt of the European mainland scenario in which multiple engagement of highly mobile targets is envisaged. It is fully modular, entirely digital and operates at all levels of artillery command from Battery to Corps. Computerbased, it provides commanders with information on target priorities and artillery resources with which to engage them, as well as firing-data to enhance accuracy.

MSDS's earlier system FACE (Field Artillery Computer Equipment) was sold to 16 countries. More recently MSDS was jointly engaged in conjunction with Norden Systems on BCS (Battery Computer System) developed for the U.S. Artillery and now in full production.
Similarly the $£ 20$ million contract for advanced electronic warfare equipment to be fitted to Royal Navy submarines was probably in negotiation with Decca Radar before that company was acquired by Racal Electronics Group as it appears to be a natural advanced follow-on from Decca EW systems currently in service on all Royal Navy fleet nuclear and Polaris submarines.

On the export front Racal-SMS, another of the re-vamped Decca companies, has a $£ 250,000$ order from the Portuguese Navy for a ship navigational simulator to be installed at a training school on the River

Targus, Lisbon. One that Racal didn't get was the contract from the Swedish government for new-generation frequencyhopping tactical radios. Racal was bidding with Jaguar-V which had already built itself a fine reputation. Plessey were also in the bidding as was the Israeli company Tadiran. Winner, however, was Marconi Space and Defence Systems with Scimitar-V which was offered in collaboration with the Swedish company SRA. The contract could be worth more than $£ 20$ million to MSDS.

Another MSDS winner is the Clansman vehicle radio which has clocked up $£ 15$ million worth of exports this year. Latest buyer is an unspecified Asian country and part of the deal is local manufacture of Scimitar-V at a later date. The practice of overseas buyers to insist on an element of local assembly is now widespread. It automatically involves a transfer of technology and that is why it is so important that a country like Britain should retain a lead in technology. As other countries learn how to build equipment employing local, generally cheaper, labour it is the only way, long-term, that we can stay in business.

Marconi Avionics recentiy entertained the Secretary of State for industry, Mr Patrick Jenkins. This was a joyful day celebrating the hand-over of the 1,000 th head-up display (HUD) for the Central Dynamics F-16 combat aircraft. At the same time a senior executive of General Dynamics from Fort Worth, Texas, handed over a further order worth 23 million dollars which will keep the F-16 HUD system production line active until 1985.

Over 5,000 HUD's for 40 different aircraft types have been produced by Marconi Avionics since they produced their first for RAF Buccaneers 21 years ago which, incidentally, is still in service. The company claims that this total exceeds the rest of the world's combined production and in the broad field of avionics the company generates over half of all British output. Marconi Avionics now employs 12,000 people, an increase of 4,000 since 1977.

New orders directly attributable to the Falklands will be additional to those already in the pipeline. Replacements for lost Harriers plus an increase in Harrier establishments, replacement Sea Kings and other helicopters, new frigates will all require a full complement of electronics which will load the production lines of specialist manyfacturers, perhaps to bursting point.

Vitality

Once again while "old-fashioned" industry remains wallowing in recession the capital goods sector of electronics continues to romp ahead. By mid-year Ferranti, GEC, Plessey and Racal had all announced big gains in turnover and profit, well ahead of inflation and generally at the optimistic end of stockbrokers forecasts. Racal, for example, where City pundits were tipping £98 million pre-tax profits turned in a comfortable $£ 102.6$ million, an increase of 40.2 per cent on a sales increase of 20 per cent. Seventy per cent of Racal's business
was overseas. Ferranti, on a smaller scale had a 31 per cent profit growth to $£ 23.8$ million.

Talking point in the City was the prospect of a bid for Ferranti by one of the big three. What had once seemed a probability diminished to only a possibility in the light of Ferranti results. True, Racal would be delighted to slot in Ferranti's avionics business into complementary activities of its own but Ferranti is no longer cheaply acquired and Racal is but recently recovering from spending $£ 101$ million in acquiring Decca.

A new factor is that Ferranti's great recovery has generated a cash balance enabling it, in turn, to become a predator, albeit on a modest scale. Compared with GEC's cash mountain, Ferranti's is a molehill but sufficient to acquire new interests. And with an order book said to be worth $£ 400$ million before adding in Faiklands extras the company should further strenghten its relative position. GEC could comfortably afford to pay, say, $£ 300$ million in cash but could meet Monopolies opposition. Plessey might be too timid to bid. Racal would have to increase borrowing to win the prize but the City would provide the backing.

The consumer/entertainment sector is still in the doldrums except for a few exceptions like home computers. But I notice quite a few of these are appearing in the small ads for second-hand sale (just look at Bazaar-Ed). It is not yet clear whether users are upgrading their computers or are disillusioned or, just can't get the hang of the thing. Meantime production soars and people are finding the money to buy them.

Why Commute?

Fifty years ago a new technology, electrification of the railways fostered the idea of living out of town. The old London Metropolitan Railway promoted Metroland as the new Mecca. The old Southern Railway advertised the joy of living in places like Herne Bay. The bait was cheap. fast, comfortable and reliable travel and it was true.

Alas, no longer true. Among the most pitiful spectacles today is that of London commuters transported by rail in conditions which would be condemned if commuters were animals and, to add to the misery, the uncertainty of the service not to mention the cost of a season ticket in the $£ 500$ 1,000 a year bracket.

But is their journey really necessary? With transport costs rising and telecommunications costs relatively falling a good percentage could easily and comfortably do their work at home. All those now tied to a v.d.u. and a computer in a city office block could just as easily have the same equipment at home or in a local centre and the economics should make sense with fuel and transport costs plus office rent savings outweighing increased telecommunication costs. There could be a big net saving in cash, not to mention improved mental health and other benefits. It's worth thinking about. The technology is available today.

DLGTAT SHOPWATGH

THIS four function, high precision digital stopwatch has a standard seven segment, eight digit display and is capable of timing events from $1 / 100$ th of a second up to 24 hours. The oscillator used in the design has a typical stability of 1 ppm .

The circuit is very simple, consisting of an i.c., crystal, trimmer capacitor, switches and of course batteries and displays. The i.c. used is an improved version of the ICM7205.

BLOCK DIAGRAM

A block diagram for the Digital Stopwatch is shown in Fig. 1. The circuit takes the 6.5536 MHz oscillator frequency and by way of a series of dividers takes the frequency down to 100 Hz . Some of the divider outputs are used to generate multiplex waveforms, typically at 800 Hz .

The 100 Hz signal is then processed in the counters according to the type of control signal from the controller (e.g. standard, split modes etc.).

The processed signals are then passed to the latches where they are either stored as required, or allowed to pass to the multiplexer thus providing a 'moving' display. From the multiplexer and decoder the time interval is presented to the eight seven segment displays. The pin configuration for the i.c. is shown in Fig. 2.

CIRCUIT

The full circuit for the Digital Stopwatch is shown in Fig. 3. The power requirement for the circuit is nominally between 2.5 V and 4.5 V , and can conveniently be supplied by three 1.2 V ni-cads giving 3.6 V when fully charged. A jack socket is provided in series with the batteries, so that an external charger may be connected without removing the batteries from the case. The current requirement is dependent on whether the displays are on or off. In their off state, the current is typically 1 mA or less. With all the displays on, the current rises to a maximum of 150 mA .

Selection of each of the four modes, Standard, Sequential, Split and Rally, is accomplished by means of the four slide switches S4 to S7. They are connected so that only one input is connected to + ve at any one time. It is important to note this, as problems could occur if more than one input was connected to the supply.

The on/off switch and the reset switch are both s.p.s.t. miniature toggle switches. The display and start/stop switches are s.p.d.t. toggle switches, and are used to ensure the operation is free from any contact bounce which may occur if push switches are used. The switches used in the prototype were not biased in their normally closed position although these types could of course be tried.

Although the circuit is shown with a trimmer capacitor, it will probably be found that little if no adjustment is required to achieve a high precision. If a very high precision is required then a frequency meter can be used to trim the crystal
to precisely 6.5536 MHz .
Sufficient accuracy was obtained with the prototype when the trimmer capacitor was approximately half enmeshed.

CONSTRUCTION

Construction is quite straightforward, although some care is required when fitting the p.c.b. and switches into the case and when drilling the front panel.

The p.c.b. design is shown in Fig. 4 with the component layout shown in Fig. 5. Note the various wire links on the underside of the p.c.b., and also the flying leads. These connect direct to the i.c. pads and should be soldered with care to prevent short circuits etc.

The crystal is mounted on the underside and is fixed in place with a piece of double sided foam pad.

The four miniature toggle switches should be mounted as shown in the photographs, with any unused tags cut off, and the used tags bent upwards at approximately 45°. Bend the tags as carefully as possible and check after bending that the switches operate correctly because the tags can be pulled out of alignment within the casing of the switch.

It is important to obtain switches which will comfortably fit in the case. Switches advertised as sub-miniature toggles are generally acceptable. The same also applies to the slide switches, although the maximum size should not exceed $15 \times 12 \times 10 \mathrm{~mm}$.

Drilling details for the front panel are shown in Fig. 6. These dimensions will need to be varied according to the size of slide switches used. It is very important to ensure that the proposed drilling details will enable the front panel to fit

correctly. A check can be made using a dummy plastic or paxolin panel with the switches then being mounted and fitted in the case. Once the correct positions have been found they can then be transferred to the aluminium panel.
The final wiring shown in Fig. 7 can then be completed. When soldering the leads to the ni-cads, ensure that the batteries do not overheat in any way.

If the recommended case is being used then the four mounting pillars near the top of the case should be cut down to a height of about 4 mm . The height of the pillars may need slight variation according to the thickness of the Perspexs used for the filter. The p.c.b. should be gently placed into position as near to the top of the case as possible. Ensure that the connecting wires underneath the board do not get trapped between it and the pillars. The three batteries are placed into position and are held in place with a small piece

Fig. 3. Circuit diagram of the Digital Stopwatch
of foam affixed to the front panel. Finally the front panel may be fixed into place, ensuring that no wires become trapped, and that the front panel sits flat. The success of this operation depends on the accuracy achieved when trying out the dummy front panel as mentioned earlier.

MODES OF OPERATION

RESET

When the stopwatch is first switched on, the reset switch will normally be operated. This puts the stopwatch into a ready condition by:

1. Resetting all the circuitry.
2. Blanking the display except for the 100's and 10ths of a second.
3. Turning on the display if it was previously turned off.

Having reset the stopwatch it is ready for use. Before go-
ing on to describe the functions it is important to note the correct way to operate the reset/display on-off/startstop switches.

When operating the start/stop, reset, and display on/off switches the toggle must first be thrown to one position to achieve the desired operation and then returned to its normal rest position. If this simple procedure is not followed then subsequent operations of the switch toggle will not achieve the desired result.

SEQUENTIAL MODE

The sequential mode is used for timing events which consist of more than one leg. For example relays, multi-lap races etc.

After the initial reset (as mentioned above), the start/stop switch is operated at the beginning of the event. A second operation of the start/stop switch stops the timing and halts the display, allowing the time to be read, and at the same time resets the timer to zero allowing a further leg to be timed. This sequence can continue indefinitely.

If it is desired to see the display moving after a time has been recorded then the display unlock switch S2 should be operated, to release the dis-

COMPONENTS . . .

Semiconductor
IC1 ICM7045
Displays
X1-X8 DL704, MAN74 etc. $0.3^{\prime \prime} 7$-segment common cathode display (8 off)
Switches
S1 s.p.s.t. sub-miniature toggle
S2 s.p.d.t. sub-miniature toggle
S3 s.p.d.t. sub-miniature toggle
S4-S7 s.p.d.t. miniature slide (4 off)
S8 s.p.s.t. sub-miniature toggle
Miscellaneous
XL1 $\quad 6.5536 \mathrm{MHz}$ crystal
VC1 $2-20 \mathrm{pF}$ plastic foil trimmer
B1-B3 1.2V 450 mA ni-cads (3 off)
JK1 $\quad 2.5 \mathrm{~mm}$ jack socket
Printed circuit board, red Perspex, Vero flip-top box No. 213170.
play and allow it to catch up with the event being timed.
The reset switch may be operated at any time during event timing. The display cannot be switched off in this particular mode.

STANDARD MODE

This mode is perhaps the most useful of the four, as it is very similar to a normal non-electronic stopwatch.

In this mode, after the normal reset has taken place, the start/stop switch is operated. The timer and display follow each other allowing the time to be read at any instant.

A second operation of the start/stop switch halts the timer and allows the total elapsed time to be read. For timing the next event there are two options. The first is to operate the start/stop switch; this will momentarily reset the timer and the display so that the second event timing starts from zero.

Fig. 5. Component layout

A further operation of the start/stop switch halts the timer and display, allowing the time of the second event to read. The second option is to operate the reset switch after the first event is finished. This will then reset the timer ready for the second event to be timed.

It should be clear from the above, that operation of the reset allows a 'rest' interval between events, whereas before, when the start/stop switch was operated no such interval was accommodated - the timing of the second event began immediately.

The display may be turned off at any time in this mode which results in a considerable saving in battery power.

Fig. 6. Front panel drilling details

RALLY MODE

This mode is used for timing events which are.both long in duration and have long periods of interruption between successive legs. The most obvious example is in car rallies.

Fig. 7. Wiring diagram

Before the stopwatch is switched on, the rally mode switch should be placed in the off position. It is important that the stopwatch is switched on in another mode apart from the rally mode otherwise the timer and display will not be able to be reset. It is good practice to return all mode switches to their off positions when the stopwatch is not being used.

After the initial reset, the start/stop switch is operated at the beginning of the rally. At this point the reset is disabled to prevent accidental resets during long timing periods. After the first leg of the rally, the start/stop switch is operated. This then stops both the timer and the display, allowing the time to be read.

After a suitable rest period the second leg starts with operation of the start/stop switch. The timer restarts and the display shows the moving time. The timer and display immediately follow each other and show the cumulative time so far for the total event, i.e. each successive leg is added to the previous.

In this mode the reset switch has no effect. The display may be turned off at any time to conserve battery power.

SPLIT MODE

This mode is also for timing multi-leg events, but in contrast to the sequential mode its effect is cumulative.

From the usual reset at switch-on, the start/stop switch is operated, the timer and display follow each other allowing the time elapsed to be read at any instant. A second operation of the start/stop switch halts the display to allow the leg time to be read while the timer continues counting. A further half-operation of the start/stop unlocks the display and allows the display to follow the timer. The reset can be operated at any time and resets the stopwatch to zero.

The display cannot be turned off in this mode.

Now our name means more,than ever before.

If the name BICC-Vero sounds only half familiar, that's not the only difference you're going to notice.
Because not only have we added to our name we've also added to our technology. Building upon our well established industrial product range and incorporating the very latest ideas and
techniques to ensure that you too are working at a state-of-the-art standard.
But you will of course still recognise the old favourites. Products like Veroboard, which pioneered in so many ways, today's thriving pastime of electronics.

Bigger means better in other respects. Being part of the giant BICC-Vero Electronics Group ensures that we're a major force in electronics technology. Our R and D scope is enlarged, and our supply and distribution facilities improved.
And because we're professionals we appreciate the very real professionalism of the hobbyist market - and service it accordingly.

Yes, we're sure you'll notice the difference. As well as that pleasantly familiar personal touch.

BICC-VERO ELECTRONICS LTD.

Industrial Estate, Chandlers Ford,
Eastleigh, Hampshire SO5 3ZR.
Tel: Chandlers Ford (04215) 62829.

The mechanics of electronics

MICRO-PROFESSOR YOUR GUIDETO THE WORLD OF MICROPROCESSORS

Alow cost tool forleaming, teaching \& prototyping.

Micro-Professor is a low-cost $Z 80$ based microcomputer which provides you with an interesting and inexpensive way to understand the world of microprocessors and utilise their unlimited potential.
Micro-Professor is a complete hardware and software system whose extensive manual gives you detailed schematics and examples of programme code. A superb learning development tool for students, hobbyists and microprocessor engineers, as well as an excellent teaching aid for instructors of electrical engineering and computer science courses.

Technical specification

Z80 CPU, 2K RAM, 2K monitor, 24 1/0 lines, LED display, cassette interface, CTC/PIO fâcility, $2.25^{\prime \prime}$ speaker, three manuals, 36 keyboard. Options include; EPROM board, speech board and printer board.
Please send or telephone for full details.

Now
includes $2 K$
BASIC

FLIGHT ELECTRONICS LTD. FIlght House, Quayside Rd, Southampton, Hants SO2 4AD. Tel: (0703) 34003/27721. Telex: 477793.
Mail order only Trade enquiries welcome Bulk order discounts Prices include VAT

The I.C. INSERTION TOOL attached to the front cover of this issue has been specially designed and manufactured for P.E. and is exclusive to this magazine. The tool can be used to insert any standard size d.i.l. i.c.s with up to 16 pins, and enables insertion without the problems of pin misalignment or handling; the tool is made of anti-static plastic.
A limited quantity of extra tools are available for 50 p each including postage and VAT etc. Order by sending cheque or P.O., crossed and made payable to IPC Magazines Ltd., to the editorial offices.

The above photograph shows the tool dismantled. This enables the elastic band, which forms the plunger return spring, to be replaced should it ever perish. The two halves of the body can be parted by carefully inserting a blade in the joint. It is then a simple operation to replace the band and reassemble the tool.

The two halves are held by four fixed pegs which are a tight press fit, no adhesive is used on the joint. It is of course possible to use the tool without the return spring, though it will lose its smooth "feel".

SEMICONDUCTOR UPDATE R.w.Coles FEATURING AD594 iAPX 186 TSC9403

COLD COMFORT

One very popular type of temperature transducer, especially useful when fast response or operation at a high temperature is required, is the very simple thermocouple. These devices consist of nothing more than a junction between two dissimilar metals, and rely for their operation on the Seebeck or thermoelectric effect which recognises that across the junction there will be a difference in electric potential called the contact potential which varies with the junction temperature.

As with most simple phenomena, there is a catch. Before the contact potential can be measured, two extra junctions have to be created between the thermocouple wires and the copper wires of the measuring circuitry, and these new junctions are also subject to the thermoelectric effect. To use the thermocouple as a practical transducer, these new junctions must be at the same, constant, temperature so that their contributions are fixed and therefore act as a reference level against which the output of the transducer junction can be measured. The actual temperature at which the reference junctions are maintained is not important provided that it does not change, but a common technique has been to use 0 degrees C as defined by an ice/water mixture. This has resulted in the term "cold junction" being applied to this sort of reference.
Our once simple thermocouple sensor, now armed with a frequently replenished ice/water reference cell is beginning to look a bit cumbersome, but, thanks to electronics, it has been possible for some time now to dispense with the reference-on-therocks and use what is commonly called an "automatic cold junction" which is not actually cold at alll Using this technique the reference junction is allowed to follow the ambient temperature which is itself measured (not by a thermocouplel) and used to generate an appropriate compensating voltage which when added to the thermocouple output gives a direct indication of sensor temperature.
Well, so far so good, but the circuitry required to use our thermocouple is getting quite complex, at least a circuit-board-full of op-amps and stuff, so what we really need to make the thermocouple simple to use is a complete conditioning system in a single integrated circuit. I bet you guessed, but that's exactly what Analog Devices have just produced in the form of their AD594 thermocouple signal conditioner device.
Now to measure temperature, you just connect your thermocouple probe to two pins of the AD594 and get 10 millivolts per degree Celsius out the other end. The chip
is optimised for use with type J thermocouples which use the metals Iron and Constantan, but other types can be accommodated by the addition of external compensating components. To correct for ambient temperature changes the AD594 adds two temperature controlled suppression voltages $(+T$ and $-T$) to the input signal from the sensor. The $+T$ level creates a positive temperature coefficient term in the output signal while $-T$ generates a negative term and adds an offset which establishes the output voltage at 0 degrees C as O volts. The difference between +T and $-T$ results in a sensitivity of 52 microvolts per degree C , which just happens to be the 25 degrees C temperature sensitivity of the type J couple, so variations in ambient temperature are cancelled by the compensating signal to give the appearance that the reference junction is maintained at 0 degrees C . One interesting side effect is that the AD594 itself can be used as a temperature sensor over a limited range. If its inputs are connected to ground, a 10 mV per degree C output is generated

In addition to providing a direct temperature analogue output, the AD594 can be operated as a set point controller which switches on a load above or below a reference point, and to warn of open or short circuited thermocouples there is an alarm output pin which can be used to drive an l.e.d.

The AD594 comes in a 14 pin ceramic d.i.p. and in two accuracy grades.

SOUPED UP '86

Up to now you have probably been happy to jog along with your trusty 8 bit microprocessor, and you may have eyed those 16 bit monsters with some trepidation. Several megabytes of memory addressing range can seem a somewhat academic advantage, as you gaze wistfully at the price tag on the 16 K ZX81 RAMPACK while rattling the sadly depleted piggy bank. But don't be put off, the price of 64 K dynamic RAM chips is already plummeting, and Uncle Clive is probably even now considering a 16 bit successor to the ZX81 and the Spectrum. Far be it from me to interfere, but he could find it useful to cast his eyes over the data sheet on the new 16 bit offering from Intel, the so-called i APX 186.

Intel were the first with a powerful and practical 16 bit processor (I don't count the 9900 I) but since the introduction of their 8086, they have seen lots of competition from the bigger and sexier Zilog Z8000, Motorola 68000, and more recently the National 16000 and the Texas 99000 . To re-establish contact with those whose eyes have been distracted by these attractive
newcomers, Intel have joined in the leapfrog game with two new devices, namely the i APX 286 and the i APX 186, both of which are upwards compatible with their 8086. The 286 is certainly a mighty machine, but it is the 186 which interests me at the moment since not only does it provide a higher performance than the 8086, but, more important, it holds out the promise of more affordable systems by cramming a whole board full of 16 bit features on to just one chip.
The 186 is fabricated in Intel's new HMOS III technology and runs at about twice the speed of the 8086 with ten new instructions which add several powerful new features without making existing 8086 software obsolete. In addition to being a better, faster, processor than its predecessor, the new chip also includes many features which had to be provided externally in 8086 systems. Three on-chip 16 bit timers are provided to allow waveform generation, event timing and time delays to be programmed, and a multilevel vectored interrupt controller is available to handle internal or external service requests. Another important feature is an on-chip clock generator, and to speed up data transfer with fast peripherals such as disc controllers the 186 has two independent Direct Memory Access (D.M.A.) channels capable of moving up to 2 Megabytes per second.

POWER SHIFT

To drive high power loads such as relays, lamps, and numerical displays from a microprocessor system the usual ploy is to use a parallel port chip and a high current/high voltage driver chip. If you need 16 parallel outputs you will have to use a complex port chip such as the 8255 and a couple of octal drivers which together may have as many as eighty pins with all the attendant implications for the circuit board area and the bank balance.

A device from Teledyne could make the job a lot simpler for some applications since the new TSC 9403 power shift register lives in a compact 24 pin package and yet provides 16 parallel outputs each capable of sinking 60 milliamps at 20 volts. To save package pins the TSC 9403 is not loaded in parallel. Instead, the 16 data bits are shifted in serially at clock rates of up to 3 MHz under the control of the microprocessor. Compared with a parallel load scheme this method is rather slow, but this is not always a limitation especially if the output data changes only infrequently.

The outputs of the TSC 9403 are driven by common source open drain MOS transistors having a maximum saturation level of 0.5 volts at 60 milliamps and maximum OFF leakage of 100 microamps at 20 volts.

all in your

issue!

First of a series of pull-outs giving information and data on a wide range of microprocessor chips. MICRO-FILE will lay bare the essential characteristics of the most popular processors so that readers can choose and use the correct processor for their needs. Don't miss the start of this invaluable series, it details the 8080A/8085A.

Alsa...

 COMPUTER IITERFALE Part 1
PRACTICAL

NOVEMBER ISSUE ON SALE FRIDAY, OCTOBER 8

SEMI-PROFESSIONAL MIXING DESK PART ONE TIM ORR

THE mixer described in this article is constructed from a range of input and output modules all of which plug into a common bus. Even the mixer chassis is modular. It comes in 6 module sections which can be bolted together. The mixer can be assembled with up to 18 inputs (you could even have 24 inputs if you are that keen) and 4 output channels. For example, if you wanted a 6 into 2 mixer then all you would need is 6 input modules, 2 output modules, 1 auxiliary module (optional) and three blanking panels. The power supply for the system is contained in an external box.

INPUT MODULE

The circuit diagram of the input module is shown in Fig. 1. IC1 forms an unbalanced low noise preamplifier with switched and variable gain. The system is designed to run with a signal level of $0 \mathrm{dBm}(0.775 \mathrm{Vr} . \mathrm{m} . \mathrm{s}$. or 2.2 Vpp) and it is the job of input stage to amplify/attenuate the input signal to this level. For a OdBm signal level at IC1 pin 1, the microphone signal level can vary between -56 to -16 dBm and the line level signal from -24 to +11 dBm . Therefore the preamplifier can accept input levels from -56 dBm to +11 dBm for a 0 dBm output. Also the maximum level at IC1 pin 1 before clipping is +18 dBm and so there is 18 dB of headroom when operating at a signal level of 0 dBm .

The tone control has a conventional treble and bass circuit plus a parametric section. The parametric equaliser is constructed from a variable-frequency state-variable bandpass filter which can be used to provide feedforeward (lift) or feedback (cut) around an amplifier section (IC2b). Fig. 2 shows the tone control frequency responses. The equaliser can be bypassed by using the FLAT/EQ switch.

Fig. 1. Circuit diagram of the Input Module

Fig. 2. Tone control frequency responses

The input module can be used to send the amplified signal to an external effects unit via the SEND jack. This signal can then be re-inserted via the RETURN jack. The RETURN jack has a break contact, but the SEND jack has not. Therefore you can use the SEND output to drive foldback monitors without interrupting the signal path. PPM signal level monitoring per input channel is very expensive and so a simple peak level detector has been used. This device lights up a l.e.d. when the signal level exceeds +4 dBm . When this l.e.d. turns on it produces a very dirty current which can cause an annoying background noise. However by not dumping this current down the ground rail (the current travels from one supply rail to the other) this effect can be avoided. In fact throughout the mixer all currents that are dirty have not been dumped into the ground rail.

The output signal from the input module can be sent to up to 7 different ouputs. Before the channel fader it can be switched to the PFL (pre-fade-listen) bus. This route has a fixed unity gain and it enables the mixer operator to monitor the channel signal level on the PFL PPM (this is on the AUX channel) and also to listen to the signal on its own, on either headphones or monitor speakers. Also there are two aux-

Fig. 4. Circuit diagram of the Output Channel. Note D1 to D3, should be 1 N4002
iliary buses (AUX1 and AUX2) which can be used to produce mixes separate to the 4 main outputs. After the channel fader the signal is split up by a pan pot and can then be sent (via selector switches) to the 4 output channel buses. Outputs 1 and 3 are left hand channels and 2 and 4 are right hand channels. The block diagram of the input, output and auxiliary channels are shown in Figs. 6, 7 and. 8.

POWER SUPPLY

The p.s.u. circuit is shown in Fig. 3. The power supply can deliver up to $\pm 1 \mathrm{amp}$ at $\pm 12 \mathrm{~V}$. It is mounted externally to the mixer to avoid mains hum problems. An RC filter in the circuit (R2, R3 \& C3, C4) smoothes out the unregulated rail so that the regulators are presented with a very small ripple (about 100 mVpp at full load). An 18 into 4 mixer consumes about 500 mA from each rail. This current increases when the PPM displays, peak l.e.d.s and headphone amplifier are on. Make certain that both regulators are insulated from the metal work and that all mains wiring is covered with rubber sleeving.

OUTPUT CHANNEL

The output channel which consists of three virtual earth amplifiers and a PPM circuit is shown in Fig. 4. Both the
'Record' and the 'Studio' output stages have +10 dBs of gain. The 'Record' output uses a high performance op-amp which is capable of driving a +18 dBm 20 kHz sinewave into 600 ohms without anything nasty happening! This is the best output to use; the PPM circuit monitors the signal level at this output. The PPM (peak programme meter) consists of a precision full wave rectifier, a peak level detector and a National Semiconductor logarithmic bar graph driver, IC4.

EG967
Fig 3 P.s.u. circuit diagram

Fig. 5. Circuit diagram of the Auxiliary Channel

The display has been designed to consume very little current. IC4 is run in its dot mode, so that only one output is on at any time. However the current being sunk into any display output also lights up all the l.e.d.s below it. In this way the dot mode is transformed into a bar graph. The display current is only 10 mA and is constant even though 10 l.e.d.s may be on. Note that none of the l.e.d. current is dumped into the ground rail.

It is important that the l.e.d.s protrude through the panel to the same height, otherwise the PPM display looks rather nasty. A small metal or wooden jig should be constructed so that all the l.e.d.s can be bent to exactly the same length.

AUX CHANNEL

Both the auxiliary channels in Fig. 5 are simple virtual earth amplifiers. AUX2 is available as a direct signal and as a mix with the mixer talk back signal. When the talk switch is pressed the AUX2 level is attenuated and the talk back microphone signal is enabled.

The PFL amplifier has unity gain (fixed) so that the signal level in any input channel can be monitored on the PFL PPM unit. A small power amplifier (IC4) provides a headphone monitor for the PFL signal. Note that a synthetic ground rail (TR1) has been produced so that the large headphone current is not dumped down the real ground rail.

COMPONENTS . . .

INPUT CHANNEL

Resistors

R1	$8 k 2$
R2, R6, R7	$2 k 2$ (3 off)
R3	$5 k 1$
R4	$2 k 4$
R5	390
R8	$22 k$
R9, R17, R25, R34	$100 k$ (4 off)
R10,R11	$16 k$ (2 off)
R12	$12 k$
R13, R14	$5 k 6$ (2 off)
R15, R23	$39 k$ (2 off)
R16	$27 k$
R18,R20, R24, R30, R31, R32,R33,	

R18, R20, R24, R30, R31, R32, R33,
R40, R41, R42
R19, R21, R37
R22, R36
47 k (10 off)
10k (3 off)
R26, R27
15 k (2 off)
R28, R29
10 (2 off)
R35 $\quad 24 \mathrm{k}$
R38
24k
R39
$470 k$
All resistors $\frac{1}{4} \mathrm{~W}$ metal film
Potentiometers

VR1	$22 \mathrm{k} \operatorname{lin}$
VR2, VR5	$100 \mathrm{k} \operatorname{lin}$ (2 off)
VR3, VR6	$10 \mathrm{k} \operatorname{lin}(2$ off)
VR4	100 k reverse log dual pot
VR7, VR8	$47 \mathrm{k} \log$ pot with p.c. bracket (2 off)
VR9	$10 \mathrm{k} \log$ slider ALPS 191M1OkA

Capacitors

C1

C3. C4
C5, C6, C14
C7
C8
C9
C10
C11, C12
C13
C15
100 p ceramic (2 off)
$22 \mu 10 \mathrm{~V}$ tant (2 off)
$1 \mu 35 \mathrm{~V}$ elect (3 off)
220p ceramic
$1 \mu 832560$
22n B32560
1n5 B32560
3n3 B32560 (2 off)
470n B32560
470 n 35 V elect
C17, C18 $\quad 470 \mu 16 \mathrm{~V}$ elect (2 off)
Semiconductors

D1	1N4148
D2	0.2 in red I.e.d.
TR1	BC182L
TR2	BC212L
IC1-IC4	RC4558 (4 off)

Miscellaneous
$\frac{1}{4}$ in mono jack socket plus shorting tip pin (4 off)
S1-S7 Push switches p.c.b. mounting d.p.d.t. (7 off)
Knobs $\frac{1}{4} \mathrm{in}$ (8 off)
Caps with line, black (4 off)
Caps with line, black (4 off)
p.c.b.

10 way Molex 0.156 in p.c. socket
8 pin d.i.l. sockets (4 off)

OUTPUT CHANNEL

Resistors

R1, R2	$10(2$ off)
R3, R16	4 k 7 (2 off)
R4, R8	$47 \mathrm{k}(2$ off)
R5	33 k
R, R11, R13, R14	$100 \mathrm{k}(4$ off)
R7,R10	$100(2$ off)
R9	150 k
R12	200 k
R15	110 k
R17	1 k 5
R18	2 k 2

All resistors $\frac{1}{4}$ W metal film

Potentiometers

VR1, VR3, VR4
VR2

Capacitors

C1
C2, C3
C4
C5, C6
C7
C8
C9
C10, C1 1
C12
$47 \mathrm{k} \log$ pot with a p.c. bracket (3 off) 10k log slider 191 M1OkA
1μ B32560 $470 \mu 16 \mathrm{~V}$ elect (2 off)
15 p ceramic
47 n 35 V ceramic (2 off)
100n B32560
$1 \mu 16 \mathrm{~V}$ elect
$100 \mu 40 \mathrm{~V}$ elect
33 p ceramic (2 off)
22 p ceramic

Semiconductors

D1, D2, D3	1N4002 (3 off)
D4, D5, D6, D7	1N4148 (4 off)
D8-D17	O.2in I.e.d. (10 off)
IC1, IC3	RC4558 (2 off)
IC2	NE5534
IC4	LM3915

Miscellaneous

SK1-SK4 $\frac{1}{4}$ in mono jack socket with shorting tip pin (4 off)
tin knobs (3 off)
Caps with line, black (3 off)
Slider knob (CS9)
P.c.b.

10 way Molex p.c. socket
8 pin d.i.I. socket (3 off)
18 pin d.i.l. socket

GENERAL PARTS

Chassis units
Wooden end cheeks
Wooden front pieces
Bus p.c.b. (with 6×10 way Molex pins)
Rubber feet
Grommet
Ty-rap base
Ty-rap
3 core lead
3 pin 180° inline plug

AUX CHANNEL

Miscellaneous

SK1-SK4 $\frac{1}{4}$ in mono jack socket plus shorting tip pin (4 off)
SK5 tin stereo jack socket
VR1-VR4 47 k log pot plus p.c. bracket (4 off)
S1,S2 Push switch p.c. mounting d.p.d.t.
$\frac{1}{4}$ in knob (4 off)
Cap with line, black (4 off)
push switch $8125-\mathrm{J} 813 / 3$
10 way Molex p.c. socket
p.c.b.

8 pin d.i.l. socket (4 off)
14 pin d.i.l. socket
18 pin d.i.l. socket
600Ω microphone

POWER SUPPLY UNIT

Resistors

R1	$4 \mathrm{k} 7 \underset{\mathrm{t}}{\frac{1}{4} \mathrm{~W}}$
R2, R3	2 k 22.5 W

Capacitors
C1-C4 $4700 \mu 25 \mathrm{~V}$ elect (4 off)
C5, C6 47 n 35 V ceramic disc (2 off)
C7,C8 $1 \mu 16 \mathrm{~V}$ tant (2 off)
Semiconductors

D1-D4	1N4002 (4 off)
IC1	7812 with insulating kit
IC2	7912 with insulating kit

Miscellaneous

S1	Mains switch d.p.s.t.
T1	$15-0-15 \mathrm{~V}$ torroid at 30 VA
FS1	20 mm 1 A fuse
	20 mm fuseholder
	Rubber feet
	Heat sink bracket
	P.c.b.
	Mains grommet
	P.s.u. case
	4 way screw block
	3 pin 180° din socket

Constructor's Note

Complete kits of parts for this project can be obtained from Powertran Electronics, Portway Industrial Estate, Andover, Hants SP10 3WN (0264 64455)

Input channel (including p.c.b., panel and controls)
Output channel (including p.c.b., panel and controls) £18.50
Auxiliary channel (including p.c.b., panel and controls) £22.50
Blank panel
Base unit for up to 6 channels (including wooden front)
Pair of dark mahogany end cheeks
£3.00
£ 27.50
£12.50
Power supply (including transformer and cabinet)
f 19.50

All prices subject to 15% VAT. No charge is made for carriage

Fig. 7. Block diagram of the Auxiliary Channel

Fig. 8. Block diagram of the Output Channel

THE dB, THE dBm AND NOISE

The $d B$ (deci-Bell) is always used to describe gains and losses in audio networks. If a signal passes through an audio network with a multiplicative gain of X, then that gain in dBs is $20 \log _{10}(X)$. At first sight it may seem that the $d B$ is just a complicated way of describing gain and loss. It is not. If a signal passes through several stages of gain then the total gain is the product of all the multiplicative gains in the system. However if you use dB s to describe the gain then the overall gain is merely the sum of the gains. It is generally easier to add than to multiply. Table 1 illustrates the advantages of using the dB .

The dBm is a logarithmic method of measuring voltage. If a voltage of -10 dBm is passed through an amplifier with a

dB	Multiplier	Rule of thumb approximation
+80	$\times 10.000$	10.000
+70	$\times 3.162$	3.000
+60	$\times 1.000$	1.000
+50	$\times 316.2$	300
+40	$\times 100$	100
+30	$\times 31.62$	30
+20	$\times 10$	10
+18	$\times 7.94$	8
+12	$\times 3.98$	4
+10	$\times 3.16$	3
+6	$\times 1.99$	2
+3	$\times 1.41$	1.4
0	$\times 1.00$	1.0
-3	$\times 0.708$	0.7
-6	$\times 0.501$	0.5
-10	$\times 0.316$	0.3
-12	$\times 0.251$	0.25
-18	$\times 0.125$	0.125
-20	$\times 0.100$	0.100
-30	$\times 0.032$	0.03
-40	$\times 0.01$	0.01
-50	$\times 0.0032$	0.003
-60	$\times 0.001$	0.001
-70	$\times 0.00032$	0.0003
-80	$\times 0.0001$	0.0001

TABLE 1

Voltage gain $=1.41 \times 10 \times 0.5 \times 4 \times 0.032$ or in dBs
Voltage gain $=3+20.6+12-30 \mathrm{dBs}$ Typical system
is 0.775 Vr .m.s. or 2.2 Vpp . Studio level or line level is typically OdBm to +6 dBm . This level is large enough to avoid noise problems and small enough to allow 14 to 20 dBs of headroom in mixers and other equipment.

Noise is always a problem in mixers. The signal from a low impedance microphone is usually quite small (maybe 20 mV) and so a low noise amplifier is needed if a respectable signal to noise ratio is to be obtained. A mixer might be using 6 microphone channels which will result in 6 lots of noise being fed to the output channels. Noise is a random phenomena and so the 6 noise voltages will not add up linearly, but add up as the square root of the sum of their squares! If the 6 noise voltages are $A, B, C, D, E \& F$ then their combined voltage is

$$
=\sqrt{\left(A^{2}+B^{2}+C^{2}+D^{2}+E^{2}+F^{2}\right)}
$$

This means that the largest noise voltage predominates. The internally generated noise of a preamplifier is usually referred to as the equivalent input noise. This is the theoretical input noise seen at the input of the amplifier. This noise is multiplied by the gain of the amplifier in just the same way as the input signal is amplified. The equivalent input noise (Ein) can be specified in dBm (this is commonly used in mixer specifications) or in $\mu \mathrm{V}$ r.m.s. or in $n \mathrm{~V} / \sqrt{\mathrm{Hz}}$. The noise of an amplifier is measured by band limiting it to the audio bandwidth and then reading it with a true r.m.s. a.c. voltmeter. The Raytheon op-amp (RC4558) that was used in the mixer has a specified input noise of $10 \mathrm{nV} / \sqrt{\mathrm{Hz}}$. If we multiply this by the square root of the audio bandwidth we obtain the equivalent input noise in $\mu \mathrm{V}$ r.m.s. Therefore $\operatorname{Ein}=10 \mathrm{nV} \times \sqrt{20,000}=10 \mathrm{n} \vee \times 141=1.41 \mu \mathrm{Vr} . \mathrm{m} . \mathrm{s}$. The measured noise from the input stage (microphone mode, input shorted to ground) was $1.46 \mu \mathrm{~V}$, which is amazingly close to the theoretical value! $1.46 \mu \mathrm{Vr}$.m.s. is equivalent to a signal level of -114.5 dBm . Once we know the value of Ein it is easy to calculate the signal to noise ratio for a given input signal level. If we are using a microphone that delivers a signal level of -40 dBm and the input noise is -114.5 dBm , then the signal to noise ratio is

$114 \cdot 5-40=74.5 \mathrm{~dB}$. We could work this out the long way, just to show the power of the dB . The microphone signal level of -40 dBm is 7.75 mV r.m.s. The noise level (Ein) is $1.46 \mu \mathrm{Vr} . \mathrm{m}$.s. Therefore the signal to noise ratio is 20 log $\frac{(7.75 \mathrm{mV})}{1.46 \mu \mathrm{~V}}=20 \log (5308 \cdot 2)=74.49 \mathrm{~dB}$. Impossible to calculate without a calculator!
NEXT MONTH: Construction

CM100 CIRCUIT MAKER

GLANCING through a selection of hobby electronics magazines, it soon becomes apparent that the vast majority of projects published use printed circuit boards. Yet, until now, most constructors have not had the means of producing professional quality p.c.b.s, and have had to rely on kit or specialist manufacturers to supply their needs, or resort to such laborious tasks as re-drawing designs on copper-clad boards with etch-resistant pens. Which brings us to Electrolube.

Electrolube is a company that specialises in products such as electrical contact treatments and maintenance chemicals. Recently they entered the field of hobby electronics, introducing the CM 100 Circuit Maker, a unique new kit, which, say Electrolube, contains everything the home constructor needs to produce professional quality p.c.b.s from artwork printed in magazines. As the kit is boasted to be almost foolproof, we decided to put Electrolube's claim to the test.

FILM POSITIVE

The problem for constructors has until now been in transferring a p.c.b. design in "etch resist form" onto a copper-clad board. While boards pre-coated with a photo-sensitive etch-resist coating have been available, one still needs a film-positive of the p.c.b. to lay over the pre-sensitised board before exposing. Producing this-filmpositive has until now been impossible without expensive specialist photographic equipment.

This is where the CM 100 really scores. Supplied in the kit is Autopositive film (FPF). To produce a film-positive, simply lay a piece of FPF over the printed p.c.b. design; expose; and develop in the chemicals provided. It really is as simple as that. Incidentally, producing the film-positive turned out to be the simplest stage in the p.c.b. making process.

The next stage in the process is to coat the board in photo-resist. I mentioned earlier that pre-coated boards are available, but Electrolube have chosen to supply bare copper-clad boards and a jar of photo-resist. The board must be thoroughly cleaned before the photo-resist is applied, and once applied the 'resist must be left to dry properly. Electrolube say an hour is enough, but we found that it was necessary to allow a coated board several hours to drypreferably overnight-otherwise all the photo-resist would come off in the developer (Electrolube have now changed their instruc-

Contents of the CM100 p.c.b. kit

tions to recommend over night drying-Ed). This brings us to exposure and developing of the coated board; again a simple process. Place the film positive over the board, expose (for about 25 minutes in normal daylight), and develop. The board is then ready for etching.

ETCHING

Anybody who has ever etched a p.c.b. will know how messy a process it can be. Ferric chloride has an annoying habit of finding a way into the wrong places, and once there, is difficult to clean off. The etching kit supplied with the CM100 is a different story altogether. Everything takes place in a long, narrow and very thick plastic bag. With the aid of a couple of clips, the bag can be sectioned off into compartments so that the whole etching process can be carried out without any mess or fuss. When the etchant is finally finished with (it should last for several boards), a bag of neutralizing powder supplied with the kit turns the etching solution into a solid, harmless lump which can then be disposed of. All that remains is for the photo-resist to be cleaned of the p.c.b. tracks, holes drilled and flux lacquer applied.

The CM 100 does provide a simple and almost foolproof means of producing professional quality p.c.b.s from magazine designs. The kit is comprehensive, down to a length of sponge for applying the photo-resist, a scouring pad for cleaning the boards, and a very useful frame to hold the film during exposure (which can also be used as an assembly frame to hold the p.c.b. when inserting and soldering components). The instructions supplied with the kit are clear and comprehensive, and replacement supplies of film, chemicals and boards are available.

COATING

The main drawback lies in the process of coating the boards. This is by far the most messy, time consuming and unreliable stage in the whole process. As I have already mentioned, the photo-resist takes some time to set and it is dificult to keep the boards dust free, which they should be, both before and after application of the photo-resist. It would not add much to the cost of the kit to supply pre-coated boards, and would, as we found out, enable the whole process to be completed in an afternoon rather than spread over two days. However as Electrolube point out the system employed does have the advantage that any boards messed up at the exposing stage can be re-coated and used, whereas pre-coated boards would be unusable. Also, most of the p.c.b.s that we wanted to produce were single sided, but as all the boards supplied in the kit are double sided, the etching solution became exhausted much quicker than it need to have been.

To conclude, I would strongly recommend the CM100 to the serious constructor or school/college lab, despite the drawbacks mentioned (and of course there is nothing to stop you buying your own pre-coated boards), and the relatively high initial retail price of f65. Perhaps Electrolube might consider supplying just the film producing parts of the kit separately, as many constructors must already have p.c.b. etching equipment.

The CM100 Circuit Maker is available from a number of retail outlets, for details contact Electrolube Ltd., Blake Road, Wargrave, Berkshire RG 10 8AW (073 522 3014).

Jasper Scott.

Note: The p.c.b. used in our Seat Belt Reminder (last month) was made by this process, from a photostat of the original artwork, with excellent results.

In the August issue of PE our contributor, Michael Tooley, reviewed the Micro-Professor MPF-1 low cost learning, teaching and prototyping tool. We are now pleased to be able to arrange this competition with Flight Electronics Ltd., the sole U.K. agents for the system.

The prizes presented by Flight will be:
1st Prize: A full system comprising MPF-1B MicroProfessor (which includes MPF 2K BASIC Interpreter), an MPF-EPB EPROM programming board, an MPF-SSB Speech Synthesiser board

2nd, 3rd, 4th \& 5th Prizes: Micro-Professor MPF1 B microcomputers

HOW TO ENTER

For the purposes of this competition we'd like to assume that you are a student who has a basic understanding of electronics but wants to learn about microprocessors and machine code programming. Listed here are eight features of a microcomputer teaching aid, such as the MPF-1. In what order do you consider they warrant the greatest consideration when purchasing such a unit?

If, for example, you consider that "cassette interface" is the most important feature of them all, put " K " in the first space on your entry coupon. The letter of your next choice goes under 2 and so on for all eight. Complete the coupon with your full name and address and post in a sealed envelope to PE Micro-Professor Competition, 55 Ewer Street, London SE996YP, to arrive no later than Friday, 29th October, 1982, the closing date.

IMPORTANT

Before sealing, copy out on the outside back of the envelope the eight key letters in exactly the same order as they appear on your entry coupon. FAILURE TO DO SO MAY RESULT IN YOUR ENTRY BEING DISQUALIFIED. Do not enclose any correspondence or matter other than the entry coupon.

A - quality moving key keyboard
B - clear, easy to read display
C- comprehensive user manual
D - easy memory expansion
E - high quality construction
J - audio output
K - cassette interface
L-BASIC programming ability.

RULES

There is no entry fee but each attempt must be on a proper entry coupon cut from Practical Electronics and must bear the entrant's own name and address.

All accepted entries will be examined and the first prize awarded to the entrant who, in the judges' opinion, has shown the greatest skill and judgement in placing the eight features of a microcomputer teaching aid in order of importance to the described student. Remaining prizes will be awarded for the next best attempts in order of merit. No entrant may win more than one award.

In the event of a tie for any prize(s) those tying will take part in a postal eliminating contest to determine such winner(s) or winning order.

Entries arriving after the closing date will be disqualified as will any received Incomplete, illegible, mutilated or altered or not complying with the rules and instructions exactly. No responsibility can be accepted for entries lost or delayed in the post. Decisions of the judges and those of the Editor in all matters affecting this competition will be final and legally binding.

The competition Is open to all readers in Great Britain, Northern Ireland, Eire, the Channel Isłands and the Isle of Man, other than employees and their families of IPC Magazines Ltd., the printers of Practical Electronics or of Flight Electronics Ltd.

Winners will be notified and the result published later in Practical Electronics.

Audio Sweep Oscillator

EQUIPMENT for displaying the frequency responses of filter systems range from a simple sinewave generator and meter (also requiring graph paper and a great deal of patiencell, to real-time spectrum analysers costing thousands of pounds. Sweep Oscillators fall somewhere between these extremes, using an oscilloscope to display the response in near-real time. They are immensely useful in the audio design or repair workshop, though ready-built models are unaffordable luxuries to most amateurs. This project uses a special i.c. to overcome the major design problems at low cost, and is also simple to build and set up.

The P.E. Audio Sweep Oscillator provides a low-distortion sinewave whose frequency can be swept over the audio range by an internal rampwave generator. The sinewave is fed to the system under test while the output is viewed on an oscilloscope with the sweep voltage from the oscillator controlling the horizontal deflection. The response of the system is displayed as a graph of amplitude against frequency, with the frequency axis logarithmic since the signal frequency is an exponential function of the sweep voltage. For oscilloscopes without a horizontal input, a pulse that marks the start of each sweep is provided to trigger the internal timebase.

A squarewave output is also provided, allowing the unit to double as a general purpose test oscillator, along with option of using an external $\pm 15 \mathrm{~V}$ regulated supply.

SINEWAVE GENERATION

This design employs an unusual approach to sinewave generation, in that the triangle output of a voltage-controlled oscillator is fed to a tracking low-pass filter which removes the harmonics from the signal (see the block diagram in Fig. 1). The result is a sinewave which covers the whole audio range without switching and has less than 1% distortion. This would not be a practical alternative to designs based upon quadrature oscillators or diode shaping networks but for the availability of the SSM2040, manufactured by Solid State Micro Technology specifically for low-cost audio applications. This i.c., with one external op-amp, provides the VCO and matched 3-pole filter, plus the exponential control voltage converter required for a logarithmic frequency axis.

A piece of test equipment which allows your 'scope to become a real-time bandwidth analyser

CIRCUIT DESCRIPTION

The circuit diagram appears in Fig. 2. The oscillator is based around one of the four gain cell-buffer pairs of the SSM2040 (IC3 pins 15, 14, 13) and IC4, which form the integrator and schmitt trigger respectively of the familiar triangle/squarewave generator arrangement. The gain cell outputs a current proportional to the input voltage and the exponential converter current. This is used to charge and discharge C7 between fixed thresholds of + and -0.6 V , producing triangle and square waves with voltage-controlled frequency. R1 injects a small current into R2 to allow the effect of gain cell input offset and unequal maximum and minimum output voltages of IC4 to be trimmed out for best waveform symmetry.

The Voltage Controlled Filter consists of three identical low-pass stage in series. Looking at the first stage (using IC3 pins $12,11,10$), the arrangement is seen to be similar to the integrator, but with feedback provided by R8. At input frequencies below the filter breakpoint C 8 has little effect and the negative feedback produces a virtual earth at the gain cell input. Hence the stage acts as an inverting amplifier with gain equal to R8/R6, in this case unity. At higher frequencies the voltage on C 8 lags behind the input signal, the difference between the two appearing'at the input of the gain cell. This causes the voltage on C8 to approach each new value of the inverted input signal exponentially, and the result is a lowpass filtered signal at the buffer output. The exponential generator current controls the current delivered to C8 and therefore the break frequency of the filter.

The filter breakpoint is set to track slightly below the VCO frequency, so that even though the total passband gain of the filter is one, the fundamental sinewave is actually slightly attenuated. This ensures that maximum slope exists between the fundamental and the third harmonic (there being no second harmonic in a triangle wave) so that within component tolerances a higher or lower cut-off frequency will only affect the sinewave amplitude, with the purity remaining at maximum.

Fig. 3. Printed circuit layout (actual size)

Fig. 4. Component layout

```
COMPONENTS
    . . .
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Resistors} \\
\hline R1,R38 & 1 MO (2 off) \\
\hline R2,R7,R10,R13,R26 & 180R (5 off) \\
\hline R3 & 150k \\
\hline \multicolumn{2}{|l|}{R4,R6,R8,R9,R11,R12,} \\
\hline R14,R36 & 10k (8 off) \\
\hline R5,R31,R39 & 220k (3 off) \\
\hline R15,R27,R29,R30, & \\
\hline R32,R33,R34,R37,R43 & 100k (9 off) \\
\hline R16,R25 & 2k2 (2 off) \\
\hline R17,R20,R23,R41 & 47k (4 off) \\
\hline R18 & 18 k \\
\hline R19,R21,R24 & 4 k 7 (3 off) \\
\hline R22 & 3 kg \\
\hline R28 & 39k \\
\hline R35 & 22k \\
\hline R40 & 82k \\
\hline R42 & 1 kO \\
\hline
\end{tabular}
Potentiometers
    VR1 100k sub-min. preset
    VR2 10k log. pot.
    VR3 2M2 log. pot.
    VR4,6 100k lin. pot.
    VR5 470k sub-min preset
    VR7 47k sub-min preset
\begin{tabular}{|c|c|}
\hline Capacitors & \\
\hline C1, C2 & \(1000 \mu 25 \mathrm{~V}\) elect. (p.c.b. type) (2 off) \\
\hline C3,C4,C15,C16 & 100 n polyester (40ff) \\
\hline C5, 66 & \(10 \mu 25 \mathrm{~V}\) elect. (p.c.b. type) (2 off) \\
\hline C7 & in polystyrene \\
\hline C8-C10 & 470p polystyrene ( 3 off) \\
\hline C11 & \(2 \mu 263 \mathrm{~V}\) elect. (p.c.b. type) \\
\hline C12 & 1 n MKH polyester \\
\hline C13 & 100p polystyrene \\
\hline C14 & 33 n polyester \\
\hline C17 & 220p polystyrene \\
\hline
\end{tabular}
```


Integrated Circuits

IC1	78L15 100mA regulator
IC2	79L15 100mA regulator
IC3	SSM2040
IC4,5	TL081 (2 off)
IC6	TL082
IC7	1458

Transistors and Diodes

REC1	O.9A d.i.l.-type bridge rectifier
TR1	BC212L
TR2	2N2646
TR3	BC182L
TR4	2N5459
D1,D2	1N4148 (2 off)
D3	BZY88C5V6 Zener
D4	BZY88C6V8 Zener

Miscellaneous

T1	Transformer, 240
FS1	$0-15 \mathrm{sec}$. 3VA

S1 Toggle switch, DPST
S2,3
SK 1
SK2-5 4 mm socket, red (4 off)
Case, West Hyde TEKO,
Code TEK A23L
I.c. sockets, 1 mm Veropins, hookup wire, control knobs, fuseholder, mains cable, etc.

Device IC5 boosts the sinewave amplitude and VR7 allows it to be set to exactly 10 V p.p. C15 and R43 provide h.f. roll-off to compensate for the increase in amplitude of the triangle wave at high frequencies, due to the SSM2040's limited bandwidth when used in oscillator mode. The variation in the level of the resultant sinewave is within $\pm 1 \mathrm{~dB}$ over the full range. S2 selects the output waveform, VR2 controls the level, and R20 \& R21 attenuate the 10 V p.p. signal for the 1 V p.p. output.

The sweep generator is based around a unijunction transistor, TR2. TR1 forms a constant-current source that charges C12. When the voltage reaches +2.5 V , TR2 turns on and C12 is rapidly discharged to -11 V . through R26. Charging then continues and the cycle is repeated, generating a rising rampwave whose frequency is dependent on the values of the fixed thresholds and the charge current set by VR3. This gives a sweep time range of $12 \mathrm{sec} .-30 \mathrm{~ms}$. A log. pot. is used with maximum sweep time at the clockwise end, giving the best distribution of times over the range of the control.

Device IC6a buffers the voltage on C12 and shifts the rampwave to be symmetrical about OV . To avoid a visible flyback on the screen, the falling edge of the ramp must be speeded up-this is the function of the track-and-hold circuit around TR 14, C13 and IC6b. During the rising section of
the waveform TR4 is on, and both the voltage on C13 land the output of IC6b, the buffer) track the output of IC6a. While the ramp is resetting, TR3 holds TR4 off and the buffered voltage remains at the peak value. At the end of the reset pulse, TR4 turns on again and the output of IC6b falls very rapidly to the new ramp voltage. The reset pulse is also coupled to the trigger socket.

Device IC7a inverts the sweep voltage and S3 selects the non-inverted or inverted version for upwards or downwards sweep respectively. R35 and R36 attenuate it to suit the horizontal inputs of most oscilloscopes; if the trace is too wide or too narrow, the value of R36 should be adjusted accordingly. IC7b sums the voltages from the frequency pot VR6, the sweep width pot VR4, and the range preset VR5, using D3 and D4 to limit the output voltage swing to the required range. The exponential converter input (pin 7 of IC3) has a sensitivity of $18 \mathrm{mV} /$ octave, and R41 \& R42 divide the output of IC7b to suit this.

The power supply is conventional, using two 100 mA monolithic regulators for the $\pm 15 \mathrm{~V}$ rails. Current consumption is about 20 mA from each during normal operation.

CONSTRUCTION

Assemble the p.c.b. in the usual order, i.e. resistors first, then capacitors, followed by semiconductors, using the com-
ponent overlay in Fig. 4 as a guide. Solder in the i.c. sockets (strongly recommended) and Veropins. The p.c.b. has provision for accepting an external $\pm 15 \mathrm{~V}$ supply, and if this option is used, all the power supply components can be omitted. Check the underside of the board for solder bridges etc., paying particular attention to the area around the SSM2040. The inputs and outputs of this device are not protected, and a short to either supply is likely to destroy it. Fit the pots, switches and sockets to the front panel, and fix the board to the bottom of the case with the screws supplied. Connect up the front panel components and the board, making separate connections rather than grouping them together. To avoid the sinewave output picking up the squarewave edges at low output levels, use miniature screened cable between the level pot, the board and both output sockets. Earth the screens at the pot end, and also earth the front panel by connecting the earthed tag of the pot to its body, filing the metal first to ensure a good joint.

MAINS ALTERNATIVE

If the internal PSU option is being used, the mains should be brought to the unit via an IEC plug mounted on the back panel of the case. Also on this panel are the fuse and transformer, and these components should now be fitted and wired up, with the transformer located in the top righthand corner as viewed from the front of the case. All bare mains connections must be sleeved or protected with insulating tape before proceeding to the setting-up stage. Finally, check all the connections to the board from the front and back panel components.

ASSEMBLY DETAILS

[6962
Fig. 5. Wiring diagram. Dotted lines represent the braid of screened wire.

SETTING-UP

Power-up the unit and with the frequency and level controls at their mid-points, examine the 10 V and 1 V outputs with an oscilloscope. The wave switch should give the expected sine and square waves at both. Check that the sweep controls are functioning correctly, remembering that the sweep time control should produce the longest time at the clockwise end. Without the sweep in use and with the level initially at minimum, connect the 1 V output to an audio amplifier and speaker. Monitor the squarewave at a frequency of around 100 Hz and carefully adjust VR1 until the point is found where only odd harmonics are heard, with even harmonics being introduced to each side. Those constructors who do not feel confident about trimming a pulse wave to 50% mark/space ratio by ear can attempt this visually on the scope screen, but after a little experimentation with the preset, most should be able to obtain much better results by the aural method.

After VR1 has been properly set, the sinewave will have minimum distortion. The other two adjustments are straightforward. With the frequency control at maximum, set VR5 for a frequency of 20 kHz . Then turn the frequency control to its mid-point and adjust VR7 for a sinewave amplitude of precisely 10 V p.p at the 10 V output.

Before screwing the case together check the sweep and trigger outputs with the scope, and if any modification of the sweep width is needed, make it as previously described.

b

IN USE

Connect the input of the system under test to the appropriate output of the sweep oscillator, and its output to the Y -input of the oscilloscope. Select external input for the X amplifier and connect the sweep output of the oscillator. With the level control set to suit the input of the audio device and all other rotary controls at their central positions, adjust the scope controls for the best trace. The wave switch should be on sine, and the sweep switch on up or down sweep.

Best results will be obtained with a slow sweep, but since this makes the trace difficult to read, a compromise must be arrived at. A sweep time of around 0.5 s gives good results with most filters and medium persistence CRT's, but with high Q-factors or low frequencies, longer times are needed. Short sweep times should be reserved for examining responses at high frequencies, or over a narrow band.

The range of the oscillator is limited to the values corresponding to the ends of the frequency control, so for use at maximum sweep width this must be at its mid-point if the actual sweep is to cover the full range. Reducing the sweep width 'zooms in' on the centre of the displayed section of the response, and altering the frequency moves the 'window' up and down.

Fig. 6a and b are examples of displayed frequency responses, in this case of a 5-band graphic equaliser with the boost/cut controls at different positions. Fig. 7 is an example of use as a general test oscillator. The display shows severe ringing at the output of a system driven by the squarewave from the Sweep Oscillator.

To use the trigger facility, the trigger output should be routed to the external trigger socket of the oscilloscope and the trigger level adjusted for a stable trace. Experiment with the sweep rate to give a single full sweep of the oscillator frequency in each timebase period.

THE KIND OF OUTPUT DISPLAYS YOU CAN EXPECT

Fig. 6 (a) 8 (b). Graphic equaliser output examples

Fig. 7 (below). Squarewave test signal upon which the system under test has superimposed severe ringing

STOP WASTING TIME TESTING BOARDS

MD will pin-point microtroubles in seconds
Portable and simple to use by non-technical staff in the REPAIR SHOP or on the PRODUCTION LINE. MD tests ROM, RAM \& 1/O and prints diagnostic reports. MICRODOCTOR can be plugged into an unknown system to perform a general diagnostic and print a MEMORY-MAP. The ENGINEER may enter sequences
of CHECKSUMS and RAMTESTS.
READS and WRITES to specific MEMORY and I/O locations SHORTING tests on DATA and ADDRESS LINES. PRINT-OUTS of memory in ASCII or HEX. These sequences are retained in CONTINUOUS MEMORY, avalable always at the push of a key.

* FREE 280 DISASSEMBLER with each MD
(other disassemblers soon to retrofit at low cost).
Get a DISASSEMBLER LISTING of ROM in any microsystem MICRODOCTOR - E295.00

Good tools need not be expensive. SOFTY 2 is the latest version of the engineer's favourite EPROM HANDLER for anybody who uses 2516,2716, 2532 and 2732 EPROMS. SOFTY will program any of these EPROMS or copy any type into another. SOFTY puts out a TV picture of memory contents. with many code-manipulating and editing facilities. There is also a fast cassette data storage system. SOFTY is also a ROMULATOR (a lead is supplied which may be inserted into a board under development to emulate the ROM using SOFTY's internal RAM. This procedure can also be used on the single-chipper piggy-back type MPU.) SOFTY is complete in itself as a PRODUCT DEVELOPMENT SYSTEM. Code may be entered in HEXADECIMAL via the keyboard also SERIAL and PARALLEL inputs and outputs allow downloading of object code from your computer or printing EPROM contents on your printer.
SOFTY 2 - £169.00

Z80 DEVELOPMENT SYSTEM

MENTA puts out a TV PICTURE of memory in hexadecimal.
The 40 key keyboard will accept inputs.
both in hexadecimal and 280 mnemonics;
there is a quick cassette data storage system,
a powerful editor which permits program debugging by showing contents of registers and stack. Also there are 24 bits of 1/O
for external control. A Z80 disassembler
is also available which outputs to any RS232 device such as a printer or terminal.
MENTA was designed as a low-budget device
for teaching microprocessing in schools: professional course-material is available to teachers
together with add-on boards for a variety
of control functions and robotic applications.
MENTA - £115.00 SERIAL DISASSEMBLER - E19.50
Manufactured by Dataman Designs, sold by dealers in UK. USA. France, etc, TRADE ENQUIRIES INVITED - TELEX 418442 DATAMAN

The brand-leader in Japan; gaining ground rapidly in America; this beautifully made, reliable system has all the features you could want at the right price. See it! Try it!
8001 Keyboard Unit
(24K BASIC, 32K RAM, colour graphics, function keys etc.)
8011 Expansion Unit
(32K RAM, RS232, IEEE-488, CLOCK, 34 pin I/O etc.)
8023 Dot Matrix Printer
(100 CPS, up to 136 columns, proportional spacing, greek and math) E399 8031 Dual Disk Drive E669 8043 Colour Monitor

All CPM software is available

THANDAR TA2080 - £1950

20MHZ LOGIC ANALYSER

A value-for-money instrument with both TIMING and STATE capture and display and excellent triggering from 23 bits.
We are designing RS2 32 and IEEE interfaces, 280 and 8048 disassemblers for our own use, which will be available when tried and approved by Thandar

PLEASE PHONE FOR PRICES

LOMBARD HOUSE, CORNWALL ROAD, DORCHESTER, DT1 1RX Telephone: Dorchester (0305) 68066
Prepaid or credit card orders normally shipped by return. Prices include first-class recorded post in UK
Securicor. Red Star, etc. at extra cost.

The Beckman $31 / 2$ digit T100 multimeter offers:

* numerous functions and ranges (200 mV to 1000 Vdc or 750 V ac; $200 \mu \mathrm{~A}$ to 10 A ac or dc; 200Ω to $20 \mathrm{M} \Omega$)
* good accuracy (0.5% on Vdc)
* numerous extras (like dedicated diode test range, high or low power ohms, numerous accessories)
* easy operation and excellent protection

Also avallable is the T 110 model, with 0.25% accuracy and buzzer for continuity testing, at $£ 68.50$ (inc. VAT, p\&p).

Beckman Instruments Ltd
Electronic Components UK Sales and Marketing Organisation Mylen House, 11 Wagon Lane, Sheldon, Birmingham B26 3DU Tel: 021-742 7921 Telex: 336659

Please send me:

()T100 meters at $£ 57$ (inc. VAT, p\&p)
() T110 meters at $£ 68.50$ (inc. VAT, p\&p)
I enclose a cheque or P.O.
(payable to Beckman instruments Ltd) for: \mathbf{E}

Name:
 \section*{Address:}

V.H.S. E180 VIDEO CASSETTES (3 HOURS)

$\mathbf{£ 7 . 6 5}$ each (minimum of 5); $\mathbf{£ 7 . 5 0}$ each (min. 10);
$\mathbf{£ 7 . 4 4}$ each (min. 15); $£ 7.40$ each (min. 20) including VAT and postage.
Made for Videotone, these V.H.S. 3 -hour tapes are of excellent quality and we are pleased to announce this new PE service.

Over the last couple of years PE offers arranged with Videotone have proved highly successful and we have now been able to arrange special prices (only available to PE readers) on these high quality tapes. The offer is a result of Videotone's direct selling policy; send in a current special PE coupon for prompt delivery of tapes.

We believe these tapes are excellent value and we are pleased to offer them to readers. They are covered by a money back guarantee (return within 21 days for refund). Not only are the tapes of high quality but the cassettes are of screw together construction and the case labels have space for notes on the recordings.

Send valid coupon to: Videotone Ltd., 98 Crofton Park Road, Crotton Park, London SE4.

C90LH CASSETTES

56p each (minimum of 5); 53p each (minimum of 25). Prices include VAT and postage.
Made by a leading European manufacturer for Videotone, these tapes are of excellent quality and we are pleased to continue this PE service.
Over the last couple of years PE offers arranged with Videotone have proved highly successful and we have now been able to arrange special prices (only available to PE readers) on these high quality tapes. The offer is a result of Videotone's direct selling policy; send in a current special PE coupon for prompt delivery of tapes.
We believe these tapes are the best value around and we are pleased to offer them to readers. They are covered by a money back guarantee (return within 21 days for refund). Not only are the tapes of high quality but the cassettes are of screw together construction and the case label has space for notes on the recordings.

Send valid coupon to: Videotone Ltd., 98 Crofton Park Road, Crofton Park, London SE4.

Copies of Patents can be obtained from: the Patents Office Sales, St. Mary Cray, Orpington, Kent. Price $£ 1.60$ each.

JUSTIN CASEY HOWELLS

British patent application 2082363 from Graham Jackson of Surrey describes in detail the electronic system for generating a noise similar to that heard by a baby in its mother's womb. According to the inventor this has-a comforting effect on babies, particularly when they are new born. The sound is described as a whooshing noise which occurs cylically with the sound of the heartbeat, over a general background noise. The whooshing increases in frequency and then decreases again before the end of the cycle. The aim is to provide a unit which will produce this nolse, but is cheap to make so that families can buy them for home use.

Figure 1 shows the general layout. Ramp generator 1 produces a waveform at heartbeat frequency (nominal 72 beats per minute), generator 2 modulates this waveform with white noise and voltage controlled, oscillator 3 uses the modulated waveform to produce an audio frequency of nominal 1.5 kHz . The audio signal from oscillator 3 is filtered at 4 and reproduced by loudspeaker LS1.

Figure 2 shows a pair of operational amplifiers IC1a and IC1b functioning as the ramp generator and another pair of operational amplifiers IC2a and IC2b functioning as the white noise generator. VCO3 also relies on a pair of operational amplifiers IC1c and IC1d and the filter uses a single op amp IC2 \mathbf{c}.

The heartbeat time constant for ramp generator 1 is set by the values of resistor R7, capacitor C3, feedback resistors R6, R8 and diode D1. This produces a linear positive rising voltage at the output of IC1b which rapidly falls back to its starting voltage in a cycle of 72 beats per minute.

Op amps IC2a and IC2b are connected so that they amplify their own random noise. The signal appearing at C1 is applied

to the negative input of IC2a and the output of IC2a is fed through resistor R3 to negative input of IC2b. The resultant random or white noise is combined with the saw tooth waveform from IC1a and IC1b which appears at resistor R9. This produces a fuzz signal which is applied to negative input of op amp IC1d to modulate its audio output of nominal 1.5 kHz value. So within each heartbeat period there is an increase in frequency followed by a decrease in fre-
quency. This swooping signal is shaped and filtered free of high harmonics by network R14, R15 and R16, C5 and C6. The shaped signal is then amplified at IC2e to drive speaker LS 1 .

The patent gives full circuit diagrams with component values. The inventor suggests that the output signal can be recorded on a record or tape to make it even cheaper for parents to produce the soothing noise in their own homes.

SEIKO FLAT TV

Flat screens for small portable monochrome television sets are likely to be the next big news in consumer electronics. Sinclair and Sony have gone for a flattened cathode ray tube. Other Japanese manufacturers, such as Hitachi and Toshiba, have gone for liquid crystal displays which modify ambient light. It's impractical to use a display which produces its own light, for instance a matrix of l.e.d.s, as power consumption is too high.

The Japanese firm Kabushiki Kaisha Suwa Seikosha, in British patent application 2081018 , claims broad protection on what could be an important step forward towards making liquid crystal display TV screeens more practical, and gives some insight into the technology employed in the Seiko "watch TV"

Figure 1 shows the circuit for a conven-
tional display. Address line X is connected to gate of transistor 2. When it conducts a signal from data line Y is stored on capacitor 3 to drive l.c.d. segment 4. A rectangular matrix of a large number of these segments produces a small TV picture. A disadvantage of the system is that the driving electrode is made of aluminium, and does not transmit light. So the screen only

Fig. 1.

works with light reflected from the electrode. Figure 2 shows the new type of display which is being patented. A layer of polycrystalline silicon is grown on a substrate 31 , which is of high melting point glass, such as quartz. p ions are then implanted to form an n-type polycrystalline silicon layer. A gate 26 and capacitor electrode 27 are formed by photo-etching a film 30 of silicon di-oxide. A second layer of
silicon is then formed and p ions implanted, except over channel 28 , to form source and drain electrodes, data line 25 and driving electrodes. The whole assembly is then illuminated with laser light to anneal it. The electrodes and substrate are transparent so that a TV screen made from a matrix of these elements has an increased viewing angle and gives better contrast, even when watched outdoors in sunlight.

FREE!READERS' ADVERTISEMENT SERVICE

RULES Maximum of 16 words plus address and/or phone no. Private advertisers only (trade or business ads. can be placed in our classified columns). Items related to electronics only. No computer software. PE cannot accept respónsibility for the accuracy of ads. or for any transaction arising between readers as a result of a free ad. We reserve the right to refuse advertisements. Each ad. must be accompanied by a cut-out valid "date corner". Ads. will not appear (or be returned) if these rules are broken.

TWO SEAS 10 inch 60 watt Hi-Fi bass units. £ 15 including p\&p. Alloa 214071 (Scotland). TRANSFORMERS, capacitors, rectifiers, 4 amp boards, 4 heatsinks for Maplin 150 W amplifiers. Also Maplin preamp board offers or £120. Andy Bradley, 22 Jackson Crescent, Innsworth, Gloucester GL3 1BY. Phone Gloucs. 730919.

WANTED $2 \times 81 \mathrm{in} \mathrm{v}$. supply (manual?) Approx. $£ 20 / 25$ send s.a.e. M. Harrison, 51 Wendover Road, Erdington, Birmingham 823 5JE.
P.E. JAN ' 78 Rhythm Generator board complete with all components except M253AA plus switches £10. p\&p. £1. Mr. L. T. Hill, 14 Rothesay Terrace, Bedlington, Northumberiand. ENTHUSIAST disposing stereo cassette and d.m.m. plus capacitance kits also d.m.m. and frequency meters. Phillips, 4 Riversley Road, Gloucester GL2 00T
ROTEL RX-202 Mark II'stereo tuner amplifier in working order needs two speakers, black finish £20 o.n.o. Alan Spicer, 71 Killearn Road, Catford, London SE6 1BN. Tel: 01-698 7281.
'SCOPE probe, X1/X10 switch, 4 ft . lead with BNC plug, as new. £ 10. Oxford (0865) 779855. MICROTAN 65 plus Tanex 10k BASIC 8k RAM full keyboard, new Tanbug Xbug cased $£ 250$ o.n.o. V. Marks, Carngrey, Trethurgy, St. Austell, Cornwall PL25 3TB. 0726850725 evenings.
EX GPO teleprinter and control unit $£ 35.50$ valves mostly c.v. types £7. Phone Sheffield (0742) 737763 evenings.

FLOW solder machine Electrovert STE-10-411118-24-436 recently serviced with new parts $£ 200$. 200lbs solder $£ 350$. R. W. H. Tarling, 7 Swallow Way, Colehill, Wimborne, Dorset.

R1155 WD receiver what offers. Lucking, 62 Ember Farm Way, East Molesey. 01-398 3603. TRS-80 16K level 2 complete with several books and tapes. Bargain at $£ 270$ o.n.o. J. Grieff, 68 Market St., Mottram, Hyde, Cheshire. Tel: 045762552.

MICROTAN mini rack system includes power supply, brand new, never used £35. Tel: After 5p.m. N. Irwin: 0614287312.
2X81 Sinclair built, with 16 K RAM. Complete with leads, p.s.u., manual $£ 80$ o.n.o. Tel: 05574 221.

PHILIPS PM2517E digital meter l.e.d. display new, boxed, unused cost $£ 140$ will accept $£ 85$. 0245467897.

FOR SALE collection of period radios, dicta phone valves, test equipment, magazines. Norman. Tel: 01-674 2856.
BEDCO 6ft-19 inch rack on mobile plinth. Hinged doors back/sides. Runners, panels, handles all unused $£ 150$. Bushey, Watford) (01-950 3773).
SINCLAIR PDM35 digital meter v.g.c. $£ 20$ also Signal R517 air band receiver v.g.c. $£ 39$ plus postage. Mr. D. A. Bishop. Tel: 0792298243.
PAPER capacitors $2 \mu \mathrm{~F}$ 200V. 'Visconol' metal cased, ideal crossovers, pulse usage etc. As new $30 p+p \& p$. Mr. G. Leivers, 103 Thoresby Road, Bramcote, Nottm. 283947
PARALLEL printer interface. Serial RS232 (UK 101) to Epsom etc. $£ 23$ connector included. Tel: Mottram 62711.
TRANSMATION 1040 digital callbrator measures, generates, simulates $m A, m V$, volts. $£ 851$ + VAT. New only $£ 500$. Write to: Mr. S. Akerman, Star Lodge, Oxford Road, Hartwell, Aylesbury, Bucks HP1 7 8ER.

WANTED AVO8 in good condition. Tel: 0856 77279 evenings.
MAPLIN 4600 synthesiser £495. Falcon Helicopter complete £195. 3 channel sound to light E9. Star chess £28-50. Mr. R. Bailey, 52 Princess St., Chase Terrace, Nr. Walsall, Staffs. Tel: Heath Hayes (0543) 77016.
RADIO and Television servicing manuals 1967 till 1974 plus electronics books mags and a whole hobbyist workshop. Sana Khan, 83 Richmond Road, Olton, Solihull, West Midlands 892 7RR. 0217074875
TRANSFORMERS/panels for sale for Siemens FC365 Pye GEC EMO/Eurosonic Hybrid. CTV's cheap to clear. Mr. A. Bouskill, 129 Lyminster Road, Sheffield, S. Yorks S6 1HY. Tel: 0742 311191 after 4p.m.
UK101 wooden case, tape, fan etc. £150 o.n.o. Data Dynamics RO390 printer £75 o.n.o. Mr. A. Pettitt, 2 Caburn View, Firle, Nr. Lewes, Sussex. Tel: Glynde 492.
2X81 and 16K RAM both Sinc. built and extras only £80. Phone 01-441 4541.
UK101 $16 \mathrm{~K} \quad 1-2 \mathrm{MHz} 300-600$ Baud $\mathrm{M} / \mathrm{board}$ tons of software, case, first $£ 230$. J. Rodda, 10 Leechwell St., Totnes S. Devon. Tel: (0803) 864457.

WANTED circuit diagram/manual Eddystone 770UM II, buy or borrow. Mr. G. E. Audas, 27 Pasture Road, Goole, Yorkshire DN 14 6BP.
OLIVETTI TE300 10 C.P.S. terminal with stand. RS232 interface £35 o.n.o. Wokingham 782461.

WANTED: unfinished organ/tone generators: used, slow but good printer for BBC micro (IBM ...). Write: Lombardi, Rue Du Rewe 10, 4000-Liege, Belgium.

Please publish the following small ad. FREE in the next available issue. I am not a dealer in electronics or associated equipment. I have read the rules. I enclose a cut-out valid date corner.

Signature

Date
Please read the RULES then write your advertisement hereone word to each box. Add your name, address and/or phone no.
COUPON VALID FOR POSTING BEFORE 7 OCT. 1982. (One month later for overseas readers.)
SEND TO: PE BAZAAR, PRACTICAL ELECTRONICS, WESTOVER HOUSE, WEST QUAY ROAD, POOLE, DORSET BH15 1JG.

BLOCK CAPITALS PLEASE

Name \& Address:			

For readers who don't want to damage the issue send a photostat or a copy of the coupon (filled in of course) with a cut-out valid "date corner'

WITH the current increase in the number of reported break-ins, together with the considerable publicity given to annual crime figures, the public awareness of the need to have some form of intruder deterrent in the house is growing to the point where a burglar alarm is no longer considered a requirement of only large houses or very wealthy occupants. To meet such a need, a large number of companies are currently engaged in producing a wide range of intruder alarms: The units offered vary from simple magnetic switches and bells to highly sophisticated microprocessor controlled systems.

It is an area, however, where the enthusiast can save a considerable amount of money by fitting their own system. One requirement which the majority have in common is the need for flexible control, and it is as a result of this need that this project was originated.

CIRCUIT

In Fig. 1 the power supply for the unstabilised requirement uses the conventional full wave circuit resulting in some 18 V off load falling to $14-15 \mathrm{~V}$ in the event of an alarm. It can be seen that it is this output which is switched by S. 2 to the relay and CSR which is triggered by breaking the anti-tamper loops (AT1 and AT2) or pressing the panic switch which is a push to break type. With the CSR switched the relay closes and the siren is operated continuously until reset. The siren circuitry is comprised of IC2 and 3 and the output pair TR5 and TR6. Here IC3 acts as a 1 kHz oscillator which is modulated by IC2 at approximately 1.5 Hz . The output of IC3 is then amplified by the complementary pair.

The siren frequency slides between 1 and 2 kHz with a high level output for driving a minimum load of 4 ohms. In practice this usually consists of two 8 ohm speakers in parallel with one speaker mounted in the house and the other external to draw the attention of neighbours etc.

When used with horn speakers sound pressure levels of 110 dB at 2 metres can be obtained which are extremely effective.

With S2 switched to 'Alarm' the diode D3 ensures that the supply reaches the relay, CSR and the stabiliser circuitry. A discrete voltage stabiliser was adopted rather than the more usual integrated type since a low voltage drop was the prime requirement. In the circuit used only $300-400 \mathrm{mV}$ is
dropped compared to $1.5 \mathrm{~V}-2 \mathrm{~V}$ for the integrated type. Heres, TR4 limits the stabilised output current.

The stabilised supply of 11 V is fed to the timing circuitry around IC1. Here IC1a and b constitute a modified monostable arrangement in that the circuit has one stable state in the true sense, but two alternative states. The duration of these are used to provide the alarm time and entrance delay with the actual value being set by R7 and C3 and R9 and C4 respectively. IC1d detects when the output from b and c is low (this occurs during the alarm time) thus switching TR1 and energising the relay. R11 and C6 comprise a filter to reduce unwanted transients.

IC1a provides the exit delay since pin 1 is held high until C2 becomes fully charged. This occurs after the time constant of C2 and R5 which is approximately 30 seconds.

R25 and D10, if fitted, provide for a delay following an alarm period. Such a null might be required in order to allow an alarm siren etc., to die down before resetting the system.

The 11 V supply will also supply external units such as ultrasonic or infra-red transducers. The maximum current which can be drawn from this line is 100 ma and it is short circuit protected. The choice of 11 V as against a more normal 12 V allows the stabilised output to be maintained even when used with batteries which are not fully charged, since the stabilisers used drops only some $300-400 \mathrm{mV}$. The battery' back-up facility provides a trickle charge of some 2 ma , chosen to be the maximum safe continuous current permitted for small nicad cells. For other types of battery it may be possible to increase the charge rate.

The unstabilised output supplies the relay and siren requirements.

MAIN SWITCH POSITIONS

In position 3 of S2, the alarm becomes active after a delay of approximately 30 seconds. This delay allows the individual to leave the premises, close the door etc. without setting off the alarm. A further delay of some 20 seconds following an entrance to the premises allows authorised individuals time to switch off the alarm before the siren sounds, preferably by some means of security switch. If this is not switched off it will sound for a period of approximately

Fig. 1. Circuit of Security Alarm Controller
1.5 minutes before resetting itself, providing the original cause of the triggering has been removed.

The two operating modes are indicated by l.e.d.s.
In position 2, the 'Off' position, neither the alarm or panic facility are operating, however, the test loop facility may be used in order to determine that it is safe to switch on the alarm without it being immediately activated (i.e. a door or window has not been left open). In position 1 the alarm is not activated by detection systems, in other words, doors may be opened or movements, made within the covered space. The unit will however, respond to wires being cut (AT1/AT2—the anti-tamper loops) and also to S1, this being a switch normally fitted close to the front door or the bedside used for summoning assistance. In this mode the alarm when sounded is continuous until the unit is reset by the switch set to position 2 for 5 seconds or more.

RELAY SWITCHING

As mentioned, the relay is switched by either CSR1 or TR1 enabling the siren circuit via RLA1.

The second set of contacts RLA2 are available for the switching of external loads up to 5 A such as room or spot lights etc.

CONSTRUCTION

With a unit of this nature reliability is of paramount importance so the p.c.b. assembly should be carefully constructed.

The assembly procedure should start by inserting the resistors, followed by diodes, taking care to observe correct polarity. The three i.c.s should next be fitted, then small signal transistors, capacitors, power transistors and CSR, the overall aim being to build up the unit commencing with the lowest profits components, ending with the largest and most bulky. This means that the relay and C8 should be among the last to be attached to the board.

Although it is possible to install the finished board by soldering flying leads it is recommended that the screw type printed circuit terminals are used as seen in the photograph.

Before the final part of the assembly, i.e. fitting of the transformer, the location of the components should be thoroughly checked, together with the quality of the soldered joints. The transformer should now be firmly pushed into the p.c.b. and held in place whilst the tags are soldered.

testing

Wire links should be fitted between terminals 10-11,

19-20 and 1-2. A suitable 8 ohm speaker with a 100 ohm series resistor (in order to attenuate the output) should then be connected to O/P1 and a mains lead attached to the appropriate 240 V terminals.

Finally, an l.e.d. should be fitted to the p.c.b. at locations 29-30 with the anode connected to 30 .

It must be emphasised that before applying mains voltage to the unit, it should be either placed on a non-conducting surface or mounted on pillars at the four mounting points.

With the supply connected the relay should not energise, nor the l.e.d. be illuminated. The link 19-20 across the panic switch terminals should be temporarily broken. When this happens the CSR should trigger energising the relay which in turn should switch on the siren. A sliding tone between $1-2 \mathrm{kHz}$ should be heard from the speaker.

If this is not the case it should first be ascertained that the relay has energised switching the supply to the siren circuitry. Assuming all is well, the link on the panic switch should be restored and the supply switched off in order to reset the unit. Before reconnecting the supply the link $1-2$
should be removed and the supply restored. After approximately 30 seconds (the exit delay) the l.e.d. should glow indicating that the alarm has been triggered. When a further 30 seconds have elapsed, the relay should energise and the alarm sound. This will continue for about 90 seconds if the link 1-2 has been restored. If not the siren will sound continuously.

If the results achieved deviate to any extent the component locations should be re-checked and the board examined for previously undiscovered solder slicks.

When all is working well the unit may be installed in a suitable enclosure and wired to the appropriate mode switch which should take the form of a three position security or key switch.

The outputs from the siren may also be taken direct to a single or pair of speakers dependent upon the installation.

Finally, do not forget to remove the small links on the copper side of the board when fitting the anti-tamper loops. The other facilities may be used or not dependant upon the requirements of the particular installation.

Fig. 2. Printed circuit

Fig. 3. Component assembly

Fig. 4. External board connections

Capacitors

C1	0.01μ	
C2	33μ	16 V elect tantalum
C3	33μ	16 V elect tantalum
C4	33μ	16 V elect tantalum
C5	1μ	25 V elect
C6	10μ	25 V elect
C 7	0.1μ	
C8	2200μ	25 V elect
C 9	10μ	25 V elect
C10	0.01	
C11	10μ	25 V elect
C12	220μ	25 V elect

Transistors

TR1	MPSA05
TR2	BD240A
TR3	BC172
TR4	BC307
TR5	BD239A
TR6	BD240A

Diodes

D1	1N4148
D2-D3	1N4001
D4	1N4148
D5-D7	1N4001
D8	1N4148
D9	B2Y88 11V Zener
CSR1	C106D
D10	(if fitted) 1N4148

Integrated Circuits

IC1	4001
IC2-IC3	555
Relay	
RLA1	2 pole changeover, $12 \mathrm{~V} 200 \Omega$

Transformer

T1 12-0-12V
12VA
A complete kit of parts is available from Riscomp Limited, 21 Duke Street, Princess Risborough, Bucks, HP17 OAT, price $£ 16.95+£ 2.54 \mathrm{VAT}+50$ p postage and packing.

Ready built $£ 23.45$ all inclusive.

TANGERINE Micron plus lots of extras worth £500. £250 or consider P/X, swap for good synthesiser. Mr. J. Spink - 0642565962.
ZX81 1K, Sinclair built, manual, p.s.u., leads Good condition. Bargain! f45. E. Pearson, 142 Kenilworth Road, Coventry. Tel: 0203418028. UK101 $8 \mathrm{~K} 300,600,1200$ Baud. $1 / 2 \mathrm{MHz}$ Mon 02, uncased games tapes includes Asteroids £90. Dave Rose, Combe, Collingwood Rise, Heathfield, Sussex. Tel: Heathfield 2505.
ACORN Atom 12 K RAM +12 K ROM all leads, literature and p.s.u. included £200. David Houghton, 2 Western Villas, Church Road, Kennington, Ashford, Kent. Tel: Ashford 23077.
DUMONT Oscilloscope 241, Vintage, £20. Wanted, medical type ultrasonic transducer. J. Glover, Wormley 4649, Surrey.
ZX81 (16K) manual, M/C book, keyboard, Technomatics I / O port, compatible t /recorder flexi-disc r/player, software library, tapes etc. £160 o.n.o. Mr. D. McRiner, 15 Henderson Drive, Kintore, Aberdeenshire AB5 OF8. Tel: Kintore 2768.

MULTIMETER for electrical work incl. case $£ 12$. No offers. 01-554 2913 evenings.
MEMORY board (UK 101/SB) 8K RAM + $8 \mathrm{~K} / 16 \mathrm{~K}$ EPROM, 40 pin header, no RAM, used for EPROM upgrade only, £ 40 o.n.o. R.C. Scales, Mill Farm, Hambrook, Chichester, Sussex PO 18 8UJ. Bosham 572666 (after 6 p.m.).
UK101 wanted, any condition, swap for World War Two German D.F. receiver, collectors item. K. Walkinshaw, 108 Shorncliffe Road, Folkestone, Kent.
UK101 8K, cased, Cegmon fitted, p.s.u. cased, AS 232 printer interface, £ 150 o.n.o. Tel: 061 7999912 after 6 p.m. for information.
TANDY TAS80 12 inch green screen monitor, perfect working order, v.g.c., with mains plug, £65 o.n.o. P. Hickinson, 45 Netheredge Road, Sheffield S7 1RW. Tel: 581917 (after 4p.m.).
2X81 (16K) keyboard bleeper tapes and books £60. Sinclair built. H. S. King, 7 Needingworth Road, St. Ives, Huntingdon PE17 4JN. 0480 63129.

MARCONI valve milli voltmeter T.F. 899 good condition $£ 10$. Stereo phones IC50 £2. Holdway, Flat 9, 10 Wesiwood Road, Portswood, Southampton.
LOUDSPEAKERS wanted. Pair of 8 inch 15 ohm high fidelity, high flux drive units, single cone preferred. T. A. Richmond, 78 Broadway North, Walsall WS 1 2QF.

BOUND volumes Wireless World 1946, 1947. 1948, 1950, 1951, 1952, 1953. 1954, 1955. Offers. Tel: Newmarket 741721.
BOX of $105 \frac{1}{4}$ inch flexible discs. D.S.D.D. brand new. £12. K. Y. Chang, 70, 1-up, Ashley Street, Glasgow G3 6HW.
3BP1 scope tube, Pristine with base, info., £10, 100 polyester capacitors £2, 400 c.f. resistors f2. Charles Bowden, 7 Parc Eglos, Helston, Cornwall TR 13 8UP.
MAPLIN 3800 Synth. needs final setting up, offers. B. Aulton, 34A Newcombe Park, Mill Hill, London NW7 3QL. Tel: 01-906 2355.
COMPONENTS, IC's, transistors, caps, resistors, misc. hardware. Tel: 024428095 or write for a list of types. J. P. Jones, 111 Hoole Road, Chester CH2 3NW.
WANTED PE 1974 March to July for Aurora project loan or purchase. P. Atkins, HMS Kingfisher, BFPO Ships, London.
WANTED - manual spares plug-ins components etc. for Dynamco D7100 Oscilloscope with 1 Y2 and 1×2 plug-ins. Joseph Lydiate, 16 Robinia Close, Peel Green, Eccles, Lancs. M30 7QE: Tel: 0617074591.
HELPI Beginner wishes someone to construct P.E. Microsynth p.c.b. - will pay well, write with offers. P. Green, 179 Church Rd., Kessingland, Suffolk NR33 7SG.

Ingenuity Unlimited

A selection of readers' original circuit ideas.
Why not submit your idea? Any idea published will be awarded payment according to its merits.

Each idea submitted must be accompanied by a declaration to the effect that it has been tried and tested, is the original work of the undersigned, and that it has not been offered or accepted for publication elsewhere. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.

Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not in the text.

'CHALLENGE'-A GAME

THIS game is similar to an old game using matchsticks. Here nine matches are placed in a line. Two opponents can take either one, two, or three starting from the left. The player who takes the last stick is the winner. 'Challenge' takes this one a stage further and allows a single player to pit his wits against the circuit.

You choose who is going first using S3. This is shown in the 'Your Turn' position. If you go first, your chosen number is fed to the circuit using the 'Númber Chosen' push button. ICI and IC3a make sure that you do not take more than three. Your chosen number is fed to IC2 where it is counted and displayed on a row of nine 1.e.d.s, which are analogous to the matches. After your turn, or if the circuit went first S3 is moved to its other position.

This disconnects the 'Number Chosen' push button and resets IC1'ready for your next turn. So that the circuit's chosen number is not displayed immediately a small delay of a couple of seconds is introduced by the charging of a 100μ capacitor feeding IC5a and b. After this delay, the number is displayed. The optimum number is programmed by a diode matrix on the outputs of IC2 and depends on your last turn. Imagine that you had had first turn and chose three. It is now the circuit's turn. IC7 is in its reset state and as the AND gates, IC4b, c, and d are connected to its ' 1 ', ' 2 ', and ' 3 ' outputs, their outputs will all be low and IC5d will have a high output. This enables IC6, a 1 Hz clock via IC3c after the delay caused by the 100μ capacitor. Thus a 1 Hz clock signal is fed
to both IC2 and IC7. Now if you had chosen three last time, the optimum number for the circuit to choose is two and this is implemented by the diode on pin 7 of IC2 (i.e. the pin which is high at the time) which will make one of the inputs of IC4c high. When two clock signais have occurred and IC7 has counted two, the output of IC4c goes high, and disables the clock viá IC5d and IC3c. Thus the display has moved on two places and it is now your turn again.

As stated before, the winner is the one who lights the last l.e.d. and this is determined by IC3d, IC4a and IC5c. The appropriate win l.e.d. is then illuminated.
G. Durant, Brayton, Selby.

CMOS ON/OFF TOUCH SWITCH

Fig. 1

THIS is yet another resistive touch switch but with some new features. The usual type is momentary action and requires a Schmitt trigger at the input for reliable operation. To get a latching on/off action a flip-flop is used, sometimes using one set of contacts for 'on' and another set for 'off'. This simple little circuit provides a latching on/off action using only one pair of contacts. It also gives complementary (Q and $\overline{\mathrm{Q}}$) outputs (Fig. 1).
The two inverters are linked into a positive feedback loop via R2. On their own they form a bistable latch; once set in either logic state the positive feedback keeps the circuit in this state. The usual purpose of $\mathbf{R} \mathbf{2}$ is to allow a new logic level to be fed into ICla, without short circuiting the output of IC1b. In this case it also prevents the rapid discharge of Cl .

Fig. 2
Before the contacts are touched, X is at $\overline{\mathrm{Q}}$ and Y is at Q . When the contacts are bridged by a low resistance, \mathbf{X} is forced to the new state Q (Fig. 2). This propagates very rapidly around the loop to reinforce itself. Working at a very much slower rate, the potential at \mathbf{X} heads for its new steady state value. It should not be allowed to get too close to this value, however, because \mathbf{X} will then enter the indeterminate region of the inverter input. (Fig. 3).

In the prototype unit the output changed from 0 to 1 then reverted to 0 if the contact was made for more than I second. To make sure that this does not happen the level on X must be kept within the guaranteed input levels shown in Fig. 3. This can be achieved by touching the contacts for less than 1 second, which is not at all difficult.

Fig. 3
When the power is switched on the bistable can adopt either state. The state which is actually adopted depends on the circuitry connected to the Q and $\overline{\mathrm{Q}}$ outputs. As a test, an l.e.d. in series with a resistor was connected from one of the outputs to ground. It was found that the bistable always came on in such a state that the l.e.d. was not lit.

The touch contacts used on the prototype were made from 14 s.w.g. silver plated copper wire. The exposed lengths were $\frac{1}{2}$ in long and these were placed $\frac{1}{16}$ in apart in a piece of wood. None of this is critical though. The most important point to consider, as with any resistive touch switch, is the danger of getting an electric shock due to faulty components or wiring.
L. O. Green,

New Costessey,
Norwich.

PERCUSSION

 SYNTHESISERMANY rhythm generator i.c.s are limited in the amount of control over the actual instrument voices that they offer the operator. Shown is a percussion synthesiser designed to add special effects to such an i.c. The circuit is based around the popular SN76477N sound generator chip. All that this chip requires to function correctly are a few discrete components. The chip can be triggered directly from the rhythm generator chip itself via a suitable capacitor to provide a falling edge. The output from the i.c. is available at pin 13, via a $2 \mu 2 / 6 \mathrm{~V}$ capacitor.

S1 selects the mode of the internal mixer, and hence the audio source (i.e. VCO and/or Noise). VRI sets the frequency of the internal noise clock and hence the overall tone colour of the signal.

VR2 sets the upper cut off frequency of the noise filter. VR3 and VR4 set the attack and decay times of the envelope shaper, $0-100 \mathrm{~ms}$ and $0-1000 \mathrm{~ms}$ respectively, and VR5 sets the pitch of the VCO. With experience a wide range of complicated and interesting effects can be created (several units all working in VCO mode, set to dif-
ferent pitches and controlled by different outputs of a RG chip could produce some unusual sequences).
The unit can be powered from a single 9 V battery.
R.A. Jagger, Hambleton, Yorkshire.

STEREO WIDTH CONTROL

THIS simple circuit was designed to allow the width of a stereo image to be adjusted, and as such is useful for headphones and systems with unduly large or small spacing between speakers.

A stereo channel signal is far more complex than is commonly appreciated and is not pure "left" and "right". The actual left channel signal has a percentage of the right channel added and vice versa at the recording stage. If we devote pure left and right by L and R, and the left channel by A, the right channel by B we can (with some simplification) write:

$$
\begin{aligned}
& \mathbf{A}=\mathbf{L}+n \mathbf{R} \\
& \mathrm{~B}=\mathrm{R}+\mathrm{nL}
\end{aligned}
$$

where n is the mixing proportion, determining the image width. If we produce the signals $(A+K B)$ and $(B+K A)$ where K is a variable gain whose sign (as well as gain) can be changed, the proportion of \mathbf{L} and \mathbf{R} in each channel can be increased or decreased. In this way the stereo width can also be increased or decreased.

This is achieved by the circuit shown where the necessary arithmetic is performed by three dual op. amps. A and B denote the two channels, which are buffered by IC1a and IC2a. IC 1 b and IC2b invert the signals to give -A and -B .

The ganged potentiometer VR1 is connected between $+A$ and $-A,+B$ and $-B$. In the centre position there will be no signal, but as the slider is moved towards either end, a signal of either polarity can be obtained. The sliders thus give KA and KB where the sign and value of K is determined by the potentiometer position.

The signals KB and KA are added to A and B respectively by the simple summing amplifiers IC3a and b to give the required adjusted output.

The circuit works on a dual supply in the range ± 5 volts to ± 15 volts, best
provided by an i.c. regulator. It could be made to work with a single split rail supply, but care would have to be taken to prevent crosstalk.

With VRI in the centre position the stereo signal is unaffected by the circuit. Moving VR1 to one side or the other will reduce or increase the stereo image. At the limits a monophonic signal results, or the stereo signal will fall apart into two separate sounds. The optimum setting will depend on the listener's preference.
E. A. Parr,

Carluke, Lanarkshire.

INSTANT

DIODE

TESTER

THIS is an add-on feature, for mains powered test equipment, which gives an instant indication of the condition of the diode under test and identifies its anode. It is so simple to make that it could easily be added to a workshop power supply, for instance.

The operation of the circuit is very simple. If the diode under test is working correctly then an l.e.d. will indicate the anode. Otherwise, neither or both l.e.d.s will light, showing which type of fault is present.

The l.e.d.s protect each other by limiting the reverse voltages to 2 V . Consequently, if one is wired in reverse or fails then the other could be destroyed. Although a diode could be put in series with each 1.e.d. for protection, this was not considered to be worthwhile.

It is quite safe to connect this unit directly across a transformer that is being used for other purposes, e.g. a stabilised power supply.

The calculation of R1 for various supply voltages and l.e.d. currents is an interesting use of integral calculus but a table of values has been given for convenience. Note that the power rating of R1 has been based on the worst case condition of a continuous short circuit across the test terminals. To calculate the worst power dissipation in R 1 , the rough approximation that
$\mathrm{V} \sqrt{2} \sin \mathrm{wt}-2=(\mathrm{V} \sqrt{2}-2) \sin \mathrm{wt}$ has been used. Thus the r.m.s. voltage across R 1 is $(\mathrm{V}-\sqrt{2})$ and the power dissipation is $\frac{(V-\sqrt{2})^{2}}{R!}$ watts.

Note that the l.e.d. currents are mean values because l.e.d.s are constant voltage devices and the instantaneous power dissipation is therefore proportional to the instantaneous current. Consequently, the

power dissipation in R1 cannot be found from $I^{2} R$, using the l.e.d. supply current for I.
L. Green,

New Costessey,
Norwich.

A.C. Supply Voltage (RMS)	R1 (Ohms) For various I.e.d. currents		
	10 mA	15 mA	20 mA
6	$120, \frac{1}{4} \mathrm{~W}$	$82, \frac{\mathrm{~W}}{4} \mathrm{~W}$	$56, \frac{1}{2} \mathrm{~W}$
9	$240, \frac{1}{4} \mathrm{~W}$	$160, \frac{1}{2} \mathrm{~W}$	$120, \frac{1}{2} \mathrm{~W}$
12	$390, \frac{1}{2} \mathrm{~W}$	$240, \frac{1}{2} \mathrm{~W}$	$180,1 \mathrm{~W}$
15	$510, \frac{1}{2} \mathrm{~W}$	$330,1 \mathrm{~W}$	$270,1 \mathrm{~W}$
20	$750, \frac{2}{2} \mathrm{~W}$	$470,1 \mathrm{~W}$	$360,1 \mathrm{~W}$
25	$910,1 \mathrm{~W}$	$620,1 \mathrm{~W}$	$470,2 \mathrm{~W}$
30	$1100,1 \mathrm{~W}$	$750,2 \mathrm{~W}$	$560,2 \mathrm{~W}$

WHO CAN

YOU CAN WHAT? You can build a magnificent WERSI organ.

 AURA shows you howThe new generation of Wersi provide a whole new concept to buildiag your own organ. Kits are avaliable from 59.00 to 57,500 with a range to suit everyone's needs and pockets. Many thousands have been built and we must stress no prior knowledge of electronics is required. All you need are basic wire strippers, a soldering iron, pliers and a screwdriver. The electronics are very revolutionary and easy to understand - any non-specialist who can read is able to build a WERSI. A WERSI kh, combined with your own initiative and involvement, provides you with a sophisticated elec. tronic organ AT LESSTHANHALF the cost of a factory built instrument.

The letter you read here is a genuine unsolicited letter from a happy WERSI maker to
AURA SOUNDS. It has been abbreviated by necessity but the original letter is on our files and photocopies can be provided on request. IfD.B. of Manchestercan do it - so can youl
Below are genuine extracts from other happy AURA Customers - WERSI KITS and AURA SOUNDS - the winning combination.
"Each Time I lift the lid and look inside the organ 1 am still excited and fod proud to think that i buift it wilhoul any real hnowledge of slectronics" - R.R. of Pevenscy, East Sussex.
"I know from experience already that you provide a first class service. I didn't really expert to get an andwer on the telephone this morning Sunday - I fust thought that someone may be mround and I was lucky - a seven day a weelk service!" - A.G. of Churchdown, Glos.
II wowld like to tahe this opportunity to thank you all for service and asgistance given particularly Colin, who hos been very patient and understonding. - M.P. of Kirkcaldy, Fife.

THE mini chorus effect is one that receives a great deal of use these days, and it is probably used most by vocalists although it is also perfectly suitable for use with electronic instruments. The effect is basically very simple, and is produced by mixing a delayed signal with an undelayed signal, and the length of the delay is usually varied at a low frequency. Apart from varying the degree to which the two signals are out of synchronisation, this varying of the delay also gives a degree of vibrato to the delayed signal. The resultant audio output gives the impression that there are two instruments or vocalists singing or playing in unison, and this normally gives a much richer and more interesting sound. This effect should not be confused with the more complex chorus effect which uses more than one delay circuit and gives the impression of many vocalists or instruments using a single source.

BLOCK DIAGRAM

The block diagram Fig. 1 shows the various stages of which the Mini Chorus unit is comprised. The delay line is of the usual charge coupled (bucket brigade) type, and this provides a delay that is governed by the frequency of a two phase clock oscillator. A delay of 10 ms or more is needed in order to give the desired double output effect, and in practice a delay which is varied from about 10 ms to 20 ms or so is perfectly satisfactory. A low frequency sweep oscillator is used to frequency modulate the clock oscillator and give the required variation in the delay time.
 addition to that produced by the main filter circuit.

The mixer stage is a conventional operational amplifier summing mode circuit which utilises IC2. C12 rolls off the high frequency response of the mixer stage slightly and gives a sinfall amount of additional output filtering. The effect can be switched out by opening S2 to cut the delayed signal to the mixer.

OSCILLATORS

Fig. 3 shows the circuit diagram of the sweep and clock oscillators, together with the supply and regulator circuitry.

The clock oscillator uses the four two input NOR gates of a 4001 CMOS device, and all four gates have their two inputs connected together so that they act as four inverters.

R.A.Penfold

Fig. 1. Block diagram of Mini Chorus Unit
IC4a and IC4b are used in a conventional CMOS astable circuit, and IC4c is used as a buffer stage at the output of the oscillator. IC4d is used as an inverter which gives an output signal which is complementary to that at the output of IC4c, and thus gives the required two phase clock signal.

The frequency of this type of astable can be varied by applying a control voltage to the input of the first inverter via a series resistor (R24). TR3 is used as a buffer stage between the sweep and clock oscillators and is needed in order to present a suitably high load impedance to the sweep oscillator.

The sweep oscillator uses operational amplifier IC3 in a well known configuration, and this oscillator operates by charging and discharging C14 through VR2, R22, and the output stage of IC3. C14 charges and discharges exponentially and a non-linear triangular waveform is therefore produced across C14, and this signal is used to sweep the clock oscillator up and down in frequency. VR2 gives an adjustable frequency range of approximately 0.1 Hz to nearly 10 Hz

The circuit requires a reasonably stable 15 volt supply, and this is derived from two 9 volt batteries in series using a simple series regulator circuit which consists of TR4, R26, D1, D2, and C17. This uses a well known configuration with the Zener stabiliser formed by R26, D1, and D2 being used to drive emitter follower transistor TR4. D2 is used to boost the input voltage to TR4 by about 0.65 volts to compensate for the voltage drop of approximately the same amount between the base and emitter of TR4.

The current consumption of the circuit is about 11 ma and this gives a reasonable battery life using PP3s or equivalents, but if the unit is likely to receive a great deal of use it would probably be more economic to use larger batteries or rechargeable nickel-cadmium types.

CONSTRUCTION

The printed circuit board design is shown in Fig. 4 and the wiring of the unit is illustrated in Fig. 5.

IC1 and IC4 are both MOS devices, and while the 4001 integrated circuit costs only a few pence, the SAD1024A is quite expensive and should be treated with respect. Use a socket for this component and do not fit it into place until the printed circuit board is in other respects complete. Leave it in its protective packaging until it is to be plugged into circuit, and try to avoid touching the pins.

All the components, including PP3 size batteries, can be fitted into a diecast aluminium box having approximate outside dimensions of 150 by 80 by 50 mm . A diecast aluminium box is ideal for this application as it is both very strong and has excellent screening properties. S2 is mounted centrally on the top panel of the case so that it can be
Fig. 2. The delay line and mixer circuit
Fig. 2. The delay line and mixer circuit

Fig. 3. The oscillator and regulator sections

Fig. 4. Printed circuit

Fig. 5. Board assembly
operated by foot. SK1, SK2, and VR2 are mounted along one of the 150 by 50 mm sides and must be offset slightly towards the top so that sufficient room is left for the printed circuit board. The latter is mounted on the removable base panel of the case. S2 is a pair of make contacts on the input socket SK 1, so that the unit is automatically switched on and off when the input is connected to and disconnected from SK1 (which is standard practice with effects units). A separate on/off switch can obviously be employed if preferred.

COMPONENTS

Miscellaneous

SK 1/S 1 Standard jack with DPDT contacts (Maplin) SK2 Standard jack
S2 Heavy duty push-to-make, push-to-break type B1, 2 PP3 size 9 volt (2 off)
Battery connectors
Control knob
Printed circuit board
One 16 pin DIL, one 14 pin DIL, and two 8 pin DIL i.c.
sockets
Veropins
6BA fixings
Diecast aluminium box about $150 \times 80 \times 50 \mathrm{~mm}$
Wire, solder, etc.

It is advisable to fix four cabinet feet to the base of the unit so that it does not tend to slip away when S2 is operated.

ADJUSTMENT

Only one preset needs to be adjusted before the unit is ready for use, and this is VR1. If an oscilloscope or a.c.

Fig. 6. External component connections to board

The completed unit
millivoltmeter is available, this can be used to monitor the signal at the wiper terminal of VR1 while this component is adjusted for minimum signal level. There should be no input signal present when making this adjustment. A simple alternative which does not require any test equipment is to add a capacitor of around 47 nF in parallel with C15 so that the clock oscillator operates at an audible frequency. VR1 is then adjusted for minimum output of the clock tone.

INPUT LEVEL

The output noise level of the unit is well below 1 mV r.m.s., and provided an input signal level of at least a few hundred millivolts r.m.s. is used a signal to noise ratio of about 60 dB or more will be obtained. An input level of up to about 1 volt r.m.s. can be handled by the circuit without serious distortion occurring.

From

HRMME HM307

The first portable scope with a component fester.

Oscilloscope Specifications:

Y Deflection

Bandwidth: DC - $10 \mathrm{MHz}(-3 \mathrm{~dB})$ Overshoot: Less than 1% Sensitivity: $5 \mathrm{mV}-20 \mathrm{~V} / \mathrm{cm}$ Input Imp: 1 M ohm $/ 125 \mathrm{pi}$

X Deflection

Timebase: $0.25-0.2 \mu \mathrm{~s} / \mathrm{cm}$ Triggering: $2 \mathrm{~Hz} \cdot 30 \mathrm{MHz}(3 \mathrm{~mm})$ Auto + level control Bandwidth: $2 \mathrm{~Hz} \cdot 1 \mathrm{MHz}$

General Information

Component Tester: For single components and In circuit Callbrator: $\quad 0.2 \mathrm{~V} \pm 1 \%$ for probe allgnment
Power Supplies: Regulated including high voltage
A.C. Input: $\quad 110,127,220,237$, V.A.C. $50-60 \mathrm{~Hz}$

Weight: 8-1/4.Lbs.
Size:
$4 . \% \%^{\prime H} \times 8318^{\circ} \mathrm{W} \times 10.7116^{\circ} \mathrm{D}$

For turther information on HAMEG's full range of top performance oscilloscopes, contact:

HAMEG LTD.

74.78 Collingdon Street, Luton, Beds. LU1 1RX Tel: (0582) 413174

(1) INTERNATIONAL

THE MOST COMPREHENSIVE RANGE OF COMPONENTS, KITS AND MODULES IN THE WORLD \& THERE'S ONLY ROOM FOR A PRACTION HERE, GFT THE CATALOGUE AND FIND THE REST.

Bano F5804

JFET IF proamp, with internally amplit fied PIN diodeAGC. Tuning voltage output, AGC input
$145 \times 70 \times 24 \mathrm{~mm}$ $\begin{array}{llll}\text { Srock No. } & 1.24 & 25+ \\ 40.05804 & \text { BIt } & 24.95 & 19.65\end{array}$

7255 The latest complete $F M$ tunerhesd from AF input to stages, HA11225 IF and coder. 7255 spectal olfer price: $£ 30.00$ plus VA

911225A The 911225A is the 7230 edited' and shrunk into a screendd metal case, $97 \times 56 \times 24 \mathrm{~mm}$. Th anthosised tuner systerns. | Stock No | | |
| :--- | :--- | :--- |
| 40.91225 | Built | 1.24 |
| 0.82 | | | 944378 . Hyperfic series decoder module PLL IC birdy filter and the K84438 muting stereo

 40 -04378 Built $19.95 \quad 18.05$ CFCM500 Wide range digital frequency
capacitance met er. Frequency fanges: $0.1 \mathrm{MHz}, 1.50 \mathrm{MHz}$ and 80.500 MHz .8 digit
 AUTOBRIOGE
An Automatic power tracking VSWA and self bourd mounted components, meters, Case (undriled), transformer etc.
Slock No: $\mathbf{4 0 - 4 0 4 0 0} \mathrm{E52.86}+\mathbf{f 1 . 5 0}$ P\&P

FET OIP OSCILLATOR
An estential plece of rest equipment for the RF 216 MHz in tive ranges. Audio and meter 1.6 indication. Kit includes; tibre giass PCB, all com ponents, alf hardware, punch, painted and scraen Stock No: $\begin{array}{llll}\text { Stock No: } & k i t & 17.24 & 165 \\ 40.16215 & k i t & 16.20\end{array}$
10.MHz SSE GENERATOR

PCB, All components, aight-pole ervstal Stock No. Price

R\& EW PRONECT AND DATABRIEF PCBs High qua ity gllass flore printed circuit boards \& Electronics World.
27 MHz Deviation Merer
TV Pattern Generator
MC145151
KB4417 (Unarillea)
O-30VPSU
2 mPAMk
2m PA Mk (II
UL N3859 (Undrilled)
SSB Exeltor
HA12017
Up Converter

2m PRE-AMP
Very compact low noise MOSFET 2 mpre -
 X 15 mm . From Aprll 'g2 RaEW.
Stock No.
$1-24$ $\begin{array}{llll}\mathbf{4 0 . 1 4 4 0 0} & \text { Kit } & 2.55 & 2.30\end{array}$

70 cm PRE-AMP
Compact low-noise preamp. Goin at 433 MHz
$13 \mathrm{~dB} .1 / \mathrm{P}$ and O / P impedance 50 ohms. Size 3d $8.1 / \mathrm{P}$ and O / P impedance 50 ohms. Size
$50 \times 10 \times 17 \mathrm{~mm}$. From March ' 82 R 8 EW $\begin{array}{lllr}\text { Stock No. } & \text { Kit } & 1.24 & 25+ \\ 40-07000 & 3.90 & 3.60\end{array}$ 2 m POWER AMP watt 144 MMz linaar power ampllfier. 10 dB gain, $2 W$ inpur - 20 W output, Automatic mode. Developed from orlginal class C version in Doc 81 A\&EW. High power output relay. $\begin{array}{ll}\text { Only. } & 1.24 \\ \text { Slock No } & 25+\end{array}$ $\begin{array}{lll}\text { Sto } & 28.50 & 25.65 \\ 40.14421 & \text { Lass Prammp } & 28.50 \\ 40.14422 \text { With Preamo } & 30.40 & 27.36\end{array}$

AND THERE'S PLFNTY MORJ IN THE CATALOGUE TOpinc

RETATM SHOP OPENING MOURS
Monday to Thursday 8.30-6.30
Friday 8.30-8.30 Saturday 9.00-5.30 (Access + Barclaycard orders accopted)
ALL PRICES SHOWN EXCLUDE VAT. P\&P 50p per order. AMBIT INTERNATIONAL

DEPT.PE
200 horth Fervire Rand, Brentwand, E-FEX
TELEPHONE ISTO 02711230909 TELEX 995194 AMBITG POSTCODE CM14 $4 S G$

SPECIAL

 Qun5: $\mathbf{f l}_{3}^{\text {ºck }}$In April 1982 PE, in conjunction with RT-VC, published the PE Quasar Stereo Cassette Deck design. The design provides some outstanding features, including variable recording bias and a gate noise reduction system. As a result of this successful design we are now pleased to be able to offer kits to PE readers at this exclusive price. The kits, including a wrap round simulated wood finish case, will be accompanied with a reprint of the PE articles which fully describe the unit and its construction.

The offer is for a limited period only and a coupon should be sent to the address shown (mail order only), callers (with a coupon) can collect kits from RT-VC at 323 Edgeware Road, London W.2. Tel: 01-723 8432. The specification of the made-up unit is given below:

SPECIFICATION

Mechanism with automatic stop and tape counter with reset button.
Tape Speed: $4.76 \mathrm{~cm} / \mathrm{sec}$. $\left(1 \frac{7}{8} \mathrm{in} / \mathrm{sec}\right.$.).
Wow \& Flutter: Typically 0.1%.
Drive Motor: 12 V d.c. with electrical governor.
Play Torque: $40-75 \mathrm{~g} / \mathrm{cm}$ (DYNAMIC).
Rewind \& Fast Forward Torque: $60-140 \mathrm{~g} / \mathrm{cm}$ (STATIC).
Rewind \& Forward Time: Less than 100 sec. for C60 tapes.
Bias/Erase Oscillator: Externally variable, frequency
$90-100 \mathrm{kHz}$.
Output: (Adjustable) Up to 1 volt r.m.s.
Mic. Sensitivity: $1 \mathrm{mV} @ 47 \mathrm{k}$.
DIN Sensitivity: 30 mV @ 47 k .
Frequency Response; $30 \mathrm{~Hz}-12.5 \mathrm{kHz}(-3 \mathrm{~dB})$.
Signal to Noisẹ Ratio.
Noise reduction OFF -50 dB
Noise reduction H.F. -56 dB
Noise reduction FLAT -70 dB
Cross Talk: Typically -50 dB .

OFFER!

To: RT-VC, 21 B High St., Acton, London W3 6NG (Mail order only)
Please send me

PART THREE Fred Judd E.A. Rule

THE remaining item to complete the Combo-Amplifier is, of course, a suitable cabinet which can either be purchased ready made, providing dimensions are suitable, or constructed on the lines described. Whichever is adopted the speaker enclosure capacity must be not less than, or not very much more than 2 cubic feet, otherwise the overall frequency response will be impaired. It is also essential, for the same reason, to use the speakers and crossover network specified.

THE CABINET

The diagrams of Fig. 1 are given as a guide to the construction of a suitable cabinet made from half-inch thick ordinary chipboard. All panels must be reinforced with battens of three quarter inch square or similar, preferably both glued and screwed. The rear speaker panel must be very close fitting to ensure no passage of air outward from the speaker enclosure. A soft non-setting sealing compound is recommended as well as screws every few inches all round. Use a speaker front panel covering of approved material such as Tygan or Type D5 material from Falcon Acoustics. The crossover unit may be fixed (securely) inside the speaker enclosure.

The power amplifier is housed in the lower compartment beneath the speaker enclosure and, apart from secure fixing, calls for no other special requirements, except possibly, that a punched hardboard panel (pegboard) could be used to enclose this section for protection. Some air circulation is necessary.

Finishing and covering the completed cabinet should be done before the units are fitted, and choice of covering is left to the constructor. There are plenty of strong glue-on or selfadhesive vynal and/or imitation leatherette coverings and trim material available from DIY retailers. Handles for carrying, one each side, are recommended if the Combo-amp is to be transported around. By the way, many DIY suppliers will cut chipboard panels to size, including cutting out the circular areas for the speakers. The chipboard, including cutting etc. should not cost more than $£ 12$ to $£ 15$.

SPEAKER CONNECTIONS

Speaker connections, and the connections to the Falcon Acoustic type crossover network, are shown in Fig. 3. As already mentioned it is essential to use the specified

Fig. 2. Graph of speaker performance using 8 \& K plotter

Your attention is drawn to Points Arising, on page 20 of this issue

[E6937]
Fig. 3. Connections to the specified crossover unit

Fig. 4. Typical arrangement of connections to and from external equipment

speakers and crossover network to obtain the overall frequency and impedance response as per the B \& K readout given in Fig. 2. This is the response taken from the prototype Combo-amplifier speaker system described in this article and as shown in the photographs. Use thick multi-strand cables for connections between the amplifier output and the crossover networks and speakers, otherwise power will be lost.

When the speakers and crossover network have been fitted and wired, the enclosure is filled with loosely packed acoustic wadding, the amount required being as per the components list.

Note: The power amplifier is capable of driving two of these speaker systems in parallel to a maximum audio power of 100 watts. Connection between the output of the preamplifier to the input of the power amplifier must of course be screened, i.e., a single screened cable must be used.

APPLICATIONS OF THE COMBO-AMPLIFIER

The input/output facilities on the preamplifier can be used in a number of ways, and some are shown in Fig. 4. Here, a microphone is used on one channel, together with an external reverb. unit coupled back into the amplifier via the accessory socket of that channel. The remaining channel takes in an electric guitar and an external wah or fuzz unit. Signals picked up from these channels can, as shown, be fed to a tape recorder. Tape replay can be made via the auxiliary amplifier socket (J9). Sockets J8 or J6 can also be used as individual inputs. For disc record replay a suitable RIAA response corrected preamplifier is necessary (assuming the usual magnetic pickup), the output from this being connected to the amplifier via J6, J8 or J9 depending on the output signal level from the pickup preamp.

COMPONENTS . .

Bass loudspeaker $12^{\prime \prime}$ (Faicon type TL8OP)
Tweeter unit (Falcon type KSN6001A)
Crossover network (Falcon type R40)
Acoustic wadding ($1 \frac{1}{2} \mathrm{yds} . \times 24 \mathrm{in}$. wide, 1 in . thick)
Speaker front material, woodscrews and glue etc.

Constructor's Note

Falcon Acoustics, Tabor House, Norwich Road, Mulbarton, Nr. Norwich.

There is no reason why the circuitry should not be adapted for disco work for example, by duplication for stereo and using two speaker systems on each amplifier thus giving a combined "stereo" output in the region of 200 watts.

FOURTH MISSION OF

COLUMBIA

One of the first tasks of Columbia's fourth mission was to test out the mechanical arm which was only partially deployed on the third mission. A very full day was spent on the 29th of June when the Canadian built robot arm with its shoulder, elbow and wrist jointed sections controlied by motors, lifted from the cargo bay the 363 kilogram Contamination Monitor. This unit, about the size of an executive desk, with the title of Induced Environment Contamination Monitor (IECM) was moved to various planned positions outside the Orbiter. The object was to discover whether the spacecraft emits dust or pollutants that might affect the equipment or the operational performance. During a first survey the sensors were used to sample areas in the cargo bay itself. Possible dangers are dust or pollutant sources from the materials within the spacecraft and well as gases from reaction jets used to change attitudes and speed.

During a second survey the thrusters were deliberately operated in order to discover whether the exhaust gases or plumes might affect satellites in future rendezvous in space. One minor difficulty arose in a circuit affecting the grappling device but the condition was overcome by a new control procedure.

The successful repeat tests were important for considerable future activities are planned, such as the lifting of spacecraft from their orbits and bringing them into the cargo bay for service. Some details of this procedure have already been described in an earlier Spacewatch. There must be a sense of relief for the designers because this particular piece of equipment cost more than 100 million dollars.

The Electrophoresis unit was started up. The salt water solution of human cells was subjected to the electric field and the results of weightessness allowed the free separation that the basic theory called for. Several runs were made and the process declared satisfactory. This means that the detailed processes, as given in August Spacewatch, will now be a feature of the next four missions.

The "Getaway Special" however was not so successful. The first attempts to activate the package failed. At first it was decided that there would not be any point in continuing efforts to start since it was possible that the algae, Duckweed and fruit flies were not likely to survive the space conditions. However the fault was found to be a broken connection from the switch panel of the spacecraft. This was by-passed and the package activated. The experiments in the Getaway Special were set up by the students from UTAH University. There/were nine experimenta and among them were the Algae and Duckweed growth project. This was designed to check the effect of wéightlessness on the growth of the plants and also the effects due to changing conditions right down to the touchdown period. The effects of space were also to be examined as to the genetic growth of the fruit fly. The same study was set up for the brine shrimp.

Other activities of the crew involved the use of the television camera to observe storms in action over South America and obtain data regarding lightning effects and other cloud data. The lightning survey is important for there is much need to know more of its effects. For one thing it will help to throw some light on the birth of storms and the evolution of the energy which makes them so freakish.
The television camera was also used to transmit to Earth pictures of the Gulf Coast and Florida. Pictures were also transmitted of the flight deck and mid-decks of the Shuttle itself. The crew were excited about their own view of the Earth. Thomas Mattingly said "You can look out on the horizon and see the Earth's rim and at the same time a lot of the light cloud patterns." As the Orbiter flew over Florida, most of the peninsular was clearly visible including Cape Canaveral. It was possible to see the Orbiter's 4,500 metre runway. "That is a familiar sight," said Mattingly. The camera was also turned to take pictures of the 2 metre high Electrophoresis Unit.
Some critical tests were made on the performance of the hull of Columbia. The underside was exposed to a temperature of 93 degrees C. The doors remained in the shade and their temperature fell to minus 93 degrees \mathbf{C}. One of the doors could not be latched due to these extremes of temperature and consequent distortion. The effects of these wide ranging differences of temperature, from the Sun side to the dark side, are reduced by "rolling". That is the spacecraft presents all its surface to the Sun in a planned sequence. In the case of this particular vehicle there was an important reason for the long period of exposure to the extreme heat.
While Columbia was on the launch pad a severe thunderstorm with torrential rain caused the protective heat shield tiles to absorb a great deal of water. If the water remained in the tiles it would freeze in the deep cold of space but on the re-entry mode would turn to steam causing tiles to crack and even fall off. While this is not necessarily a fatal hazard it could cause a measure of overheating of the spacecraft in exposed places. It is not a risk that should be taken. The "rolling" manouvre will be continued in order to keep a stable temperature over all surfaces. This mission, the fourth of the series,
brings the Shuttle plan to the point of going commercial. The first of the new generation of shuttle orbiters begins with the Challenger which will be launched in full mode in January 1983.

GETAWAY SPECIALS

Before leaving the first chapter of "Shuttles Progress' there are some points worth mentioning relating to the spirit of progress: Gilbert Moore is an executive of Utah Aerospace with the old pioneer spirit and the will to take a chance. He spent 10,000 dollars six years ago for a "Getaway Special" package. He donated it to Utah State University to be used in a programme of student developed experiments. So confident was he in the worth of this package that he has already pledged another 40,000 dollars for four more such packages. Already he has enthusiastically declared his faith in the value of the experiments but also the importance of developing equipment for future space experiments.

More than 350 similar payloads have been booked for the future and the applicants range from school children to the major corporations. One example is that of a city high school that is hoping to fly an ant colony in space. A Japanese newspaper is hoping to make a snow-making experiment under near-zero gravity conditions of space to investigate the formation of ice crystals.

The green algae experiment calls to mind the work done by the Russian experimental space centre some years ago and detailed in an earlier Spacewatch. The experiment was directed to the production of oxygen by subjecting the algae to ultra-violet light. The result on earth was a great success so much so that there was a bonus of oxygen. This was part of a study for the long time manned space exploration where special growth of certain plants and primitive cell growth was used in a two month stay in a capsule for a cosmonaut. It was later extended to much longer periods successfully enough to prove the possibility of new life support.

It is surely inevitable man will not be confined to instrumental exploration, sophisticated though it is. Simulation of reality is of great value in search of a preliminary understanding, but knowing in real time is real knowing.

It is perhaps fitting that this report should end with Gilbert Moore's own words,
"Another group of students have put up experiments to determine whether better metals, alloys and composite graphite materials can be made in space. One student is melting and solidifying smooth metallic surfaces for the possible future manufacture of telescopes in space. Another of the alloy experiments is to make alloy of two metals which cannot be combined on Earth. These are a powdered mixture of bismuth and tin . . . but the real significance of the "Getaway Special" is that it represents unfettered science, the opportunity for young individuals to try out new ideas."
Frank W. Hyde

100 METRE WATER RESISTANT
W-100 Resin
Case/strap
£16.95 W-450 Stainless steel £22.95

Time and auto calendar. Alarm and hourly chimes. Count-down alarm timer with repeat memory function. Professional $1 / 100$ second stopwatch. Time is always on
display, regardless of display mode. Amazing 5 year lithium display, regardless of display mode
battery life. 12 or 24 hour display:

W-35, W-450C and DW-1000 Divers watch. Identical functions to the W-450 above. They are all stainless steel (W-450C, resin strap) DW-1000C (resin strap) 534.95 .

50 METRE WATER RESISTANT

AA-92W
Analog/
digital. Stainless steel
$\mathbf{8 2 5 . 9 5}$

W-23
(Right) Resin
$£ 14.95$

AA-92W. LCD analog time, or digital time and calendar display (dual time). Coundown Alarm Timer and alarm have amazing moving graphics. Chimes and professional stopwatch but in a 50 metre W / R resin case.

Stainles
steel
ent
steel
$£ 22.95$

SA. 50
Chrome
Not W/R
£14.95

WS-70. Compact and ultra slim, only 5.7 mm thick. Countdown alarm, professional stopwatch, alarm, hourly time Countdown alarm, professional stopwatch, alarm, hourly time
signal, calendar, dual time (24 hour). SA-50. Non water signal, calendar, dual time (24 hour). SA-50. Non water

resistant version, 4.6 mm thick. SA-50G. Gold plated version | resistant version, 4.6 . |
| :--- |
| of the $\$ A-50 ~$ |
| 19.95 . |

ANALOG/DIGITAL
The World's most versatile watches?

Analog LCD hours/minutes. Digital display: Local time, 12 or 24 hour; 62 day calendar display; Dual time. 12 or 24 hour; Alarm time display; Coundown alarm timer with memory function; Professional stopwatch; Optional hourly time signal; Daily alarm-electronic buzzer, or 3 optional melodies.

AQ-11
True analog
Chrome
$\mathbf{E 3 9 . 9 5}$

Classical unalog with digital hours, minutes, seconds; Auto calendar; Alarm and hourly time signal; Professional stopwatch; Date memory.

IF YOU SEE A BETTER OFFER WE WILL BEAT IT.

MULTI ALARMS

Both have 12 or 24 hour time and calendar display; Professional stopwatch; Hourly time signal; Daily alarm with pre-alarm; Daily alarm with post-alarm; Weekly alarm/extra daily alarm
MM -400 . Time is always on display. Dual time, 12 or 24 hour Monthly alarm/extra daily alarm
CA-95 Calculator. CA-951 Metal version $£ 29.95$

OTHER WATCHES

J-100 Jogging pacer/computer; calculator; alarm; stopwatch
GM-10 Invader game; alarm; stopwatch
GM-30 Battleships/Submarines version
A656A. Alarm; Dual time; stopwatch, Chrome

£19.95
 $\begin{array}{r}£ 149.95 \\ \hline\end{array}$

. 819.95
. 19.95

CT-1000P DIGITALIZED SYNTHESIZER

ONLY £325 Interest free credit available

10 pre-set instruments, 1,000 switchable sounds, with protected memory for your ten favourites, 5 -octave, split keyboard, programmable arpeggio or real time sequencer, transposition between -1 and +0.5 octaves. Integral amppspaaker. Output and Headphones jacks. Details on request.

PORTABLE COMPUTER
SHARP PC-1500 Colour Computer

PC-1500 Computer (elsewhere $£ 158.95$) $£ 157.50$ CE-150 Printer/Interface ($£ 139.95$) $£ 137.50$ CE-151 4K RAM expansion module ($£ 47.95$)............. 46.95 CE-156 8K RAM expansion module ($£ 77.95$)............. $\mathbf{£ 7 6 . 5 0}$ CE-15A 14 application programs 3 R RAM (expandable) $7 \times$ 150 dot matrix display. With clock calendar alarm and 150 dot matrix display. With clock, calendar, alarm and around 30 scientific functions on board.
on request
MICROL 1500 SOFTWARE - DETAILS ON REQUEST

CASIO POCKET COMPUTER

EX-702P

BASIC, up to 1,680 program steps, up to 226 memorics 55 scientific functions $\mathbf{8 9 9 . 9 5}$

FREE SOFTWARE OFFER
MiCROL 702 Professional Programming Pack (value £9.95) FREE with every FX-702P purchased from us.
MiCROL 702 PROCOS 'Visicalc-type' software on tape (value 224.95) FREE when you purchase a FX-702P $($ (value $)$ FA- 2 Cassette interface ($\mathbf{(1 9 . 9 3)}$) and a FP-10 Printer ($\mathbf{2 4 4 . 9 5}$). Total cost $£ 164.85$.

PROGRAMMABLES

FX-602P
Up to 512 steps, up to 88
memories, 50 functions.
With MiCROL Professional
Programming Pack (£9.95)
ONI.Y 174.95
FX-601P
128 steps, 11 memories
ONLY E39.95
FA-2 Adaptor $£ 19.95$
FP-10 Printer $£ 44.95$

CALCULATORS

Scientifics
FX-950 50 functions, 10 digits, SOLAR POWER $\mathbf{2 2 . 9 5}$ PX-900 8 digit version with less functions..................... PX- $55050 \mathrm{f}, 10 \mathrm{~d}$, Lithium battery. Wallet size 119.95
 FX-82 £11.95, FX-100 £14.95, FX-7 £9.95, FX-5 £7.95 Cakculating alarm clocks
C.T. 7 Fornune Teller f16.95. BC- 15 Poxing FT. 7 Forlune Teller f16.95; BG-15 Boxing game E 16.95 ; Minis C 9.95 . UC 365 Wallet $£ 19.95$, UC 360 C B-1100 Biorhythm $£ 16.95$; UC- 365 Wallet $£ 19.95$; UC- 360 Card size E19.95.
Basic
SL-801 SOLAR $88.95 ;$ MG-777 3 games, clock $£ 14.95$; MG-880 £10.95; MG-885 £10,95; MG-898 3 games $£ 10.95$.

Price includes VAT and P\&P. Send cheques, PO, or phone your ACCESS, VISA or B'CARD number to: LEADING CASIO SPECIALISTS Dept. PE,
38 Burleigh Street, Cambridge CB1 IDG Telephone: 0223312866

The hardware and software exchange point for PE computer projects

TEXT STRING SEARCH

Sir－This editing program fits neatly into the＂free＂RAM between 0222 and O2FA and EO to E6，and operates as follows：The text string to be located in the program list is entered in the normal way as a BASIC statement with the line number \emptyset ．To avoid the interpreter being confused by a meaningless BASIC line，it is necessary to enter the line thus．

0 LIST string

Where string is a text string of any length．

If a Warm Start is now executed，all the program lines containing the desired text will be listed on the VDU．Should there be too many to fit on the screen at one time， holding down space bar will temporarily stop the listing．

At the end of the listing，the machine is
0222 LDA \＃\＄22
0224 STA S91
0226 LDA \＃3．22
8228 STA \＄82
022A LDA 5．0303
0220 BNE \＄0234
022 LDA Sø304
0232 BEQ S023A
Q234 JSR SA86C
0237 JMP SA274
g23A JSR \＄A36C
0230 LDY \＃\＄øø

6241 STA SE』
$\$ 243$ LDA \＃Sg3
0245 STA SE1
0247 LDA（SED），Y
0249 BEQ \＄x251
Ø24B JSR S円286
D24E JMP Sg247
O251 LDA（SED），Y
D253 BEQ SAZ28D
g255 LDA \＃\＄06
0257 STA SE2
6259 LDA \＃\＄63
2258 STA SE3
225D LDA SED
025 F STA SE4
D261 LDA SE1
8253 STA SE5
D265 LDA \｛ कE2\}, Y
2267 SNE SE26C
ø269 JMP Sø2C2
825C STA SE 6
©25E LDA（SE4），Y
0270 CMP SE 6
8272 BNE S82A5
0274 CLC
0275 LDA SE2
0277 ADC＊S 0
2279 STA SE？
027B BCC sø27F
027D INC SE3
627 F CLC
028.0 LDA SE 4

0282 ADC \＃S®1
0284 ST：SE4
0286 BCC \＄928A
Ø288 INC SE 5
Ø2BA JMP SE265
D28D JSR S92B6
0290 LDA（SED），Y
0292 BEQ S．g2EB
0294 JSR SSi？BE
0297 JSR s\＆2を5
g29A LDA（ SED），Y
029 C STA $\$ 11$
D29E JSR SE2B6
g2A1 LDA（SED），Y
again ready for normal BASIC operations or another \varnothing LIST command．If a line number © does not exist then the Warm Start operates in the normal way．

When entering BASIC words leg．IF， GOSUB，THEN etc．）into the zero line，they must be entered in full．For example \emptyset LISTGOTO 5 will work but \emptyset LISTGO will not．This is because BASIC words are stored in a single codeword．The program then compares these codewords looking for a match．For the same reason any BASIC words or symbols used in the program bet－ ween quotes must be specified within quotes in the 0 LIST line too．Non BASIC words and characters do not need to be specified in full however．

The machine code program is loaded into RAM by executing the BASIC program below．The USR function is used to jump to the initialisation point $\$ 222$.

P．Becket，
 Blackpool．

5 REM ZEROLIST＊＊P，BECKETT＊＊	

$\emptyset 2 A B-\emptyset 2 B 9$
Ø2B6－ø2C1
$\emptyset 2 \mathrm{C} 2-\emptyset 2 \mathrm{Ca}$

Ø2CD－ø2D8
Ø2D9－Ø2E5
Change warm start vector to 022
If line \emptyset exists go to $\emptyset 23 A$
No line zero－normal warmstart
Ø23F－ø245
Ø247－Ø253
Ø255－Ø25B
Ø25D－ø263
$\emptyset 265$
$\emptyset 267$
0269
0260
Ø26E
$\emptyset 27 \varnothing$
0272
Ø274－Ø27D
$\emptyset 27 F-\emptyset 285$

Ø28D－$\emptyset 2 \mathrm{~A} 3$

GARBAGE COLLECTION

Sir－one of the more picturesque phrases in computer jargon is＇Garbage Collection＂， a term which crops up occasionally in reference to a routine which had caused problems in several machines including the UK 101．In the earlier machines，this was responsible for causing hang ups when run－ ning programs involving extensive string handling．It was also responsible for the fact that the $\operatorname{FRE}(X)$ function didn＇t work properly．

Current machines have a Garbage Collector（written by myself），which works correctly but the process seems to remain a mystery to many people．Whilst it is true that the detailed operation of BASIC is ex－ tremely complex，many of the routines are quite simple in principle and these notes are intended as a non－technical guide to ＇Garbage Collection＇，all that will be assumed is an elementary knowledge of BASIC programming．

The value of numeric variables，no matter how large or small，is contained in just four bytes．The name of the variable uses two bytes so that each numeric variable may be stored in just six memory cells．This does
not represent much of the available memory so it is perfectly efficient to set aside this space for each numeric variable mentioned in the program and this is what is done.
String variables, however, can be anything between 1 and 255 characters long and it would be extremely inefficient to set aside 255 memory locations for each String variable just in case it happened to be needed. Instead, BASIC keeps an 'index of all the strings referred to in the program. This index records the name of the String followed by its length and the address of the memory cell containing the first character. The string itself can be practically anywhere in memory, it doesn't matter as long as BASIC knows where it is.

If, for example, a program line contains the statement: $A \$=$ "TITLE", then BASIC simply notes in its index the address of the initial ' T ' of that word where it stands in the program line. Note how efficient this is, no extra memory is used until it becomes necessary.
Many strings, however, don't appear in the program line at all, those called for by 'INPUT' statements are an obvious example but complex strings created during the program run also fall into this category. Such strings are stored at the very top of the available memory using space downward's as they are created. By 'top of memory' we mean high numbered addresses. The program itself is stored near the bottom of memory llow numbered addresses) working upwards. A block of data following the last program line contains the values of numeric variables and our 'index' of String variables. If a new line is entered in the program this block of variables data is pushed further up the memory.

As each string is recorded in memory the gap beiween the end of the program/variables block and the start of the strings gets smaller and smaller. Eventually a collision is imminent and this is when the problems begin. If every string is still current at this point then nothing can be done and an 'Out of Memory' error will result.

More often than not, however, some of the strings still in memory will have been updated during the program run and the previous versions are no longer required. It is easy for BASIC to decide which strings are still current, it merely has to check down its 'index' - any string not listed there may as well not exist because BASIC no longer knows where it is. In other words it represents Garbage.

What is required is a routine to sort out which strings are still needed and pack those to the top of memory, overwriting any obselete strings in the process - a routine known as a 'Garbage Collection'. The task sounds incredibly difficult, the current strings may be of any length and stored in any order. Actually, it's quite straightforward as we shall see.

The whole index is scanned to find the string whose start is at the highest numbered address, this string is then moved to the top of memory. Any strings which get overwritten in the process must be redundant otherwise they would have been in the index and their address would have been found instead. As each string is moved it is
'ticked off' and the record kept of the 'top of available memory' is amended to take account of the space which has been used up. The index is also updated to keep track of the new position of the string.

This process is repeated until all the strings have been moved. Thus all current strings are neatly packed to the top of memory regardless of length, and no gaps are left. The space created in memory is then available for further use.

Many people seem curious to know what was wrong with the original routine. The answer, strangely enough, is nothing! It was, however, set up to handle a string index of a different structure to the one which actually exists.

The guess is that this BASIC was modified at some stage to automate the allocation of string space. Many BASICs require the user to set memory aside for strings using the CLEAR instruction and it is feasible to assume that under these conditions the structure of the string index would be simpler.

Having created a more complex arrangement, the problem arose of how to expand the Garbage Collector using no extra space. Anyone who has dug into this BASIC will be aware of the brilliant efficiency of the coding. The chances of being able to expand a routine are virtually nil.

By extraordinary good fortune, however, the Garbage Collector happened to be the exception. A calculation was performed twice within the routine using very different methods and it was possible to exploit this redundancy to gain just enough space to incorporate the necessary expansion.

The revised routine resides in the BASIC 3 ROM labelled BASUK03-2. This is now supplied as standard, re-affirming the lead of the UK 101 in terms of quality, speed and value for money. Owners of the earlier machines still fitted with the original ROM may now, of course, obtain a direct plug-in replacement from any UK 101 dealer.

Dick Stibbons,
Hayes,
Middx.

WEMONISING YOUR EXTENDED MONITOR

Sir-Owners of the UK101 interested in machine-code programming who have fitted the WEMON monitor may be a little disappointed to find that the excellent Extended Monitor supplied with the UK101 will not run.

Although. the WEMON has many machine-code handling features which did not exist in the original monitor, serious programmers will find the disassembler and relocator in the Extended Monitor virtually essential.

Here are the modifications which must be made to the Extended Monitor to enable it to run under WEMON:

The original program is saved in checksum format with a 256-byte checksum loader added ahead of it. The latter is saved as a hex dump and is not compatible with the WEMON named hex file format. However, WEMON does embrace
the old UK101 memory-select, modify and execute feature and uses the same kev functions. Thus, it is possible to load the checksum loader-then the Extended Monitor-by adopting the following procedure:

1) Execute a Cold Start then reset and return to machine-code monitor.
2) Press ' M ' (Return) to enter the register-select mode.
3) Key in address OOEO, press I' and change the contents of this location by pressing ' F ' (this sets the monitor to receive input from cassette).
4) Start tape recorder.

The checksum loader will be seen loading from the top of the screen and, when this has finished, the main program loads from the bottom as it did with the old monitor. When the load is complete, reset and return to machine-code monitor, then save the Extended Monitor in WEMON format, without the checksum loader, from

0800 to OFFF. This is a worthwhile precaution because if the program is accidentally lost during modification, reloading in WEMON format is easier and very much faster than the original checksum load.

Program modifications are:

1) The sub-routine call at 0855 must be changed to call the WEMON keyboard routine (KBRD) at F369.
Change content of 0856 to 69
Change content of 0857 to F3
2) The original Extended Monitor used 48 Page Zero locations from OODO to OOFF. The program must be modified to use a different area of Page Zero (OOAO to OOCF) in order to avoid locations used by WEMON. Fig. 1 lists a total of 222 addresses. The contents of each location must be changed to the new value shown in the table.
3) On the original Extended Monitor, the key '@' was used to access the 'Open

Location NNNN' feature. The '@' character is not available from the keyboard under WEMON, therefore another key must be used. There are two choices, one is to utilise one of the spare letters-J. U. or Z. However, the author preferred to retain these as user-defined kevs and chose a second option. This involves adding a short machine-code routine ahead of the Extended Monitor which interrupts the keyboard routine. The new routine looks for CTRL-A and if found prints '@' and returns with 40 (ASCll value of '@') in the accumulator. This causes the Extended Monitor to select the 'Open Location NNNN ${ }^{*}$ mode and starts the first line with '@' as originally. Fig. 2 shows a disassembled listing of the new routine which is located between 07F2 and 07FF. The sub-routine call at 082F must be changed to call the new routine.

Change content of 0830 to F2

Change content of 0831 to 07
4) After carrving out (3) above, it was found that CTRL \downarrow and ' \uparrow ' both caused the open location to increment. The author had never liked the use of these keys and, by changing a single byte, ' \uparrow ' is used to increment and shift ' \uparrow ' to decrement.
Change content of OB74 to 1A
5) The checksum saver routine (OEC3) starts with a call to sub-routine FFF7 which, in the old monitor, was used to set the SAVE flag. The author could find no WEMON routine which only sets the SAVE flag and therefore added a short routine to do this. Fig. 3 shows a disassembled listing of the new routine which is located between OTEC and OTF1. The sub-routine call at OEC3 must be changed to call the new routine.
Change content of OEC4 to EC
Change content of OEC5 to 07
In conclusion the Extended Monitor will now run and should be saved in WEMON format from O7EC to OFFF. So far as the author can tell, all of the functions of the Extended Monitor are preserved, but note the following changes in key function:-

CTRL-A Opens Location NNNN

- \uparrow - Increments to next location

Shift ' \uparrow ' Decrements to previous location

It should be emphasised that material presented in Prompt has not necessarily been proven by us. Neither can compatibility with all generations of the computer equipment to which it relates be guaranteed.

Software and hardware designs submitted should be accompanied by a declaration to the effect that it is the original work of the undersigned, and that it has not been accepted for publication elsewhere.

B0	0B40 AE	0 C 81 Cl	0D95 AC	OE2F A8	OECC AB
081D B4	0B42 AD	0 C 86 C 0	0D97 AA	0E39 A8	OEDI AE
9F A7	OB44 AF	0 C 93 A 9	0D9C AA	0E66 AC	OED3 AC
09A7 A5	0B5C AA	0C98 A8	0DA0 AB	0E68 AD	OED
09A9 A6	0B7C AA	0CA9 A8	ODAF B	0E6D	0ED
09 AB A7	0B87 AA	OCAB C0	0DB1 AC	0E6F A9	0ED9 AD
09 B 4 A5	0B8C AA	OCAE AB	0DBB AC	0E72 A8	0EDD B7
DC AI	0B90 AB	0СB0 C0	0DBD A5	0E74 AE	OEEI
E0 A2	0B96 AA	0CB3 C0	ODBF AD	0E77 A9	OEE5
09 E 2 A8	0B9A AA	0СB7 C 0	ODC1 A6	0E79 AF	OEF
A01 A5	OB9E AB	0 CB 9 A 9	0 DC 3 AA	0E7D A9	OEF
0A06 A2	0BA3 AB	OCBD B8	0DC5 B7	0E80 A8	0F0
0 AlC A 3	0BA8 AA	0 CC 0 B4	0DC7 AB	0E84 AD	OFOC AC
0A21 A4	0BB9 AA	0 CC 3 BI	0DC9 A9	0E86 AC	0F10 AD
0A27 A4	OBBE AB	OCC5 B2	ODCC A5	0 E 89 AF	OF15 AB
29 A3	0BC5 AA	OCC7 B6	DCE AE	0E8B AE	0F1A
A2	0BC8 B0	B5	0DD0 A6	0E90 AC	OF21
A3	0BD0 B0	B3	0DD2 AF	0E92 A8	0F51
0 A 4 C A1	0BD5 B1	0CD0 B0	0DD9 A8	0E94 A8	0F53
0 A 50 A5	0BD7 B2	OCE1 AC	0DDE A2	0E96 AD	0F58 A9
A5A Al	0BDA B3	OCF6 AD	ODEB AE	0E98 A9	0F5D AD
0A83 A6	OBE1 B5	0 CFB AC	ODED A5	0E9A A9	0F62 AC
85 A5	0BE6 B6	0D08 AC	0DF0 AF	0E9C A9	0F64
95 A2	0BE9 B4	0 D 18 A5	0DF2 A5	0E9E A8	OF69
0A98 A6	OBEF B5	0D1A AB	0DF7 A5	OEAO AB	0F6B
0 A 9 E A5	OBF1 C0	0D1C A6	0DF9 AC	OEA2 AA	0F6E A9
0ACA B7	0C00 B6	0D21 A8	ODFD A5	0EA7 AB	0F75 AB
0ACF B7	0 C 02 C 0	0D3E A0	ODFF AD	0EA9 AA	0F7C AA
0B15 AB	0C18 B6	0D56 A8	0E07 B7	OEAD AC	0F9D AA
0B1A AA	0C1D B5	0D5F AC	0E0D A9	OEAF AE	0F9F AA
0B20 AD	OC45 B0	0D61 A0	0E19 A5	OEB2 AD	0FA3 AB
0B25 AC	0C5E A9	0D6A A8	OEIB AA	OEB4 AF	0FA5
0B2F AF	0C61 B8	0D72 AC	0EID A5	0EB9 AC	OFBE AB
0B34 AE	$0 \mathrm{C} 63 \mathrm{A8}$	0D74 AA	0E21 A6	OEBB AE	OFC3 AA
0 B 37 AC	0 C 65 C 0	0D76 AD	0E23 AA	OEBE AD	OFE3 AA
0B3B AD	0C69 C0	0D78 AB	0E27 AB	OEC0 AF	OFEB AA
0B3E AC	0C6C C0	0D8E A0	0E2A A9	OECA AA	OFEF AB

Fig. 1. Table of Extended Monitor addresses showing new contents necessary to avoid Page Zero locations which are used by WEMON

This feature is not mentioned in the sheet which accompanies the Extended Monitor

Regrettably, the Extended Monitor now occupies more than $2 K$ but this is of little consequence if the program is loaded from cassette.

However, for those who want to store the modified program in EPROM, there is a way to fit it into $2 K$. Key ' Z ' on the Extended Monitor, followed by a 2-byte address, causes a line of eight bytes to be printed.
and is of doubtful value anyway as WEMON 'Verify' also prints lines of eight bytes. The code for this is from OFB7 to OFFF and this area could be used to contain the two new sub-routines. The sub-routines are fully relocatable but the call addresses at O82F and OEC3 would have to be changed to call the routines at their new locations.

MIDWICH HAS MOVED！ OUR PRICES HAVE TOO－DOWN！

In order to maintain our standard of service and house our ever growing range of stock，we＇ve moved to larger premises．You can still use our old telephone number for a limited period，but please make a note of our new one and our address．
To celebrate the move we have reduced our prices still further．We know this will displease our competitors，but we＇d rather please our customers．
NB－NO SURCHARGE ON CREDIT CARD ORDERS．
Be happy－move with Midwich．And remember，we always try to give you the make amends．

MEMORIES＊＊NEW LOWER PRICES＊＊

－2114 Low Power 200ns	0.80	－ 2732350 ns	4.40	－4164 200ns（T）
－ 2716 450ns（5V）	2.10	－2532 450ns	3.60	－4816／4516 100 ns
－2716 350ns 15	3.59	－4116 200 ms	0.70	－ 5516200 ns
－2716 450ns（ 3 ram）	5.95	－4116 150ns	1.10	－6116P3 150ns
－2732 450ns	3.90	－4118 150ns	3.38	－6116LP3 150ns

BBC MICRO UPGRADE KITS＊＊NEW LOWER PRICES＊＊

B8C1	$4516 / 4816 \times 8100 \mathrm{~ns}$	25.50
B8C2	Printe／／User U0 kll（IC69．70＋P19，10）	8.00
BBCA	Analogue input ktı（iC73． $77+$ SK6）	6.70
BBC5	Senal V0 and RGB kit（IC74，75＋SK3．4	¢11．45
88C6	Expansion bus and tube	6.25
	ktt（IC71，72， 76 ＋PL11，12）	

> | BBC21 | Prnter cable compdete |
| :--- | :--- |
| BBC22 | Comector for user port w |
| BBCA4 | $36^{\prime \prime}$ cable | 88C44

B8C55
Analopue input plug with co B8C56 Senal 50 and 6 pin ploges for B8C66 Senal VO and RGB imput mpor 465
3.25 65
3.25
38
30
 － 2716 350ns 15 V －2732 450ns 88C56 Senaector for bus port with cable
13.00
2.00

＊＊＊We＇ve done it again！Massive price reductlons on LPS and CMOS＊＊＊＊

Data sheets available on asterisked items please telephone for prices and details．

MTSA

24 Hour Telephone order service for credit card holders
All prices exclude VAT and carriage（ 075 on orders under $£ 10$ nett）
Atficial orders from educational and government establishments，and
All orders despatched on day of receipt Out of stock ilems will follow on automaticalty at discretion or a refurd will be glven if requested
NO SUARCHARGE FOR CREDIT CARD ORDERS

MIDWICH COMPUTER CO LTD

Dept PE．Rickinghall House．Rickinghall．Suffolk IP22 1 HH Telephone（0379）DISS 898751
Please make a note of our new address
$\&$ relephone number

TORODALS

The toroidal transformer is now accepted as the standard in industry，overtaking the obsolete laminated type．Industry has been quick to recognise the advantages toroidals quick to recognise the advantages foroidals offer in size，weight，
thanks to I．L．P．，PRICE．
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty．

TYFE	$\begin{array}{\|c\|c\|} \hline \text { SERES } \\ \text { No } \\ \hline \end{array}$	seconoary volts	$\begin{aligned} & \text { ams } \\ & \text { Current } \end{aligned}$	PRICE	＊ 294 TYPES T0 CHOOSE PR0F！				
30 VA	18010	6．6	2.50	$£ 5.12$ ＊ergit 04 －vat 0092 10TA fl ？	ORDERS DESPIFCHED WITHIN 1 DAYS OT RECEIPT FOR SINCLE OE SHAL QUANTITI ORDERS				
$70=30 \mathrm{~mm}$	18011	$9 * 9$	1.56						
${ }^{0} 85 \mathrm{~kg}$	12012	$12 \cdot 12$ $15 \cdot 15$	1.25						
${ }_{\text {Requen }}^{\text {Requit }}$	${ }_{1 \times 014}$	18．18	083		人 5 TER MO QUIBBLE CUERENTE				
	1×015	$22+22$ $25 \cdot 25$	068 0660						
	18018 1×017	$25+25$ $30 \cdot 30$	$\bigcirc 50$						
$\begin{gathered} 50 \mathrm{Va} \\ 80 \times 35 \mathrm{~mm} \\ 09 \mathrm{~kg} \\ \text { Reguaririn } \\ 13 \% \end{gathered}$	2×010	$6 \cdot 6$	416		TVP	SERIES	SECONOARY	$\begin{aligned} & \text { Rus } \\ & \text { Current } \end{aligned}$	PRICE
	28011	9＊9	2.7						
	2x012	12＊ 12	208		225 ua	6×012	12－12	938	
	27013	$15+15$	1，66	5.70	$110=45 \mathrm{~mm}$	6×013	$15 \cdot 15$	750	
	2×014	18－18	138	0.70	22 kg	61014	18＋18	6.25	
	2×015	22＊ 22	1，13	－2045 50	Regurition	6×015 6×015	$22+22$ $25+25$	5.11	89.20
	22016	$25 * 25$ $30 * 30$	1.00 0.83	－Watistos	7\％	6x015 6×017	$25+25$ $30+30$	4.50 3.5	， 20
	2×028	110	0.45	rotacis os		${ }_{8 \times 018}$	35＋35	3.21	
	20209	220	0.22			6×026	$40+40$	2.81	
	20030	240	0.20			6×025	$45+45$	2.50	Tothe 123
$\left\|\begin{array}{c} 80 \mathrm{Va} \\ 90 \mathrm{za} 30 \mathrm{~mm} \\ 1 \mathrm{~kg} \\ \text { Roguidion } \\ 12 \% \end{array}\right\|$	3x010	6.8	6.64			${ }^{5 \times 033}$	$50+50$ 110	225	
	32011	$9 \cdot 9$	444			6x028 68029	220．	200	
	3x012	$12 \cdot 12$	3.33	608		6x030	240	093	
	3 3 013	$15+15$	266	0.08					
	3，014	$18+18$	2.22	－0006tis	300 VA 110 m 10 mm	7×013	$15+15$	10.00	
	3×15 3×015	$22+22$ $25+25$	1.81 1.60	－vatic 15	110．50mm	7×014 7×095	$18+18$ $22+22$	8.33 6.82	
	33017	$30+30$	1.33	Totac 619	Requation	7×016	$25+25$	800	10.1
	3m028	110	872		6＊	7×17	30＋30	5.00	
	3x029	220	036			7×018	35＊35	4.28	－0，06500
	3x030	240	033			7x025	$40+40$	3.75	－matices
$\left\lvert\, \begin{gathered} 120 \mathrm{VA} \\ 90=40 \mathrm{~mm} \\ 12 \mathrm{Kg} \\ \text { Regulatan } \\ 11 \% \end{gathered}\right.$	4x010	6，6	1000			7×025	45．45	3.33	
	4×011	9＊9	666			7×03 7×028	50＊50	3.00 2.72	
	42012	$12+12$	500			7×028 7×029	110 220	2.72 136	
	4x016	$25 * 25$	2.40	－wation	$140 \times 60 \mathrm{~mm}$	8x017	30 +30	833	
	4×017	30＊30	2.00	total 99	4 kg	8×018	35－35	714	$E 13$.
	退4028	110 220	1.09 0.54		4\％	8×025 8×033	$45+15$ $50+50$	5.55 500	－wara
	4x030	240	050			${ }_{81042}$	55＋55	454	\％
160 va$110=40 \mathrm{~mm}$188 KmRegulationa\％	5017	9.9	8 99	$£ 7.91$ 40 क）6？ 4 W解［3 4 		8×228	110	454	
	5×012	12－12	666			${ }^{8 \times 029}$	220	2.27	
	52013	$15 \cdot 15$	333			8×030	240	208	
	$5 \mathrm{SO14}$	18.18	4.44			9x017	30＋30	1041	
	5×015	22：22	363			${ }_{9 \times 018}$	35＋35	8.92	
	50016 5×017	$25+25$ $30+30$	320 268			${ }^{9 \times 026}$	－0＊＊ 40	781	10.13
		$30+30$ $35+35$	268 288 28			9×025 9×033		694 625	－aters 0
	50026	40 40	200			${ }_{97042}^{97033}$	$55 \cdot 55$ 55	¢ 568	－wate $/ 9$
	5×028	110	145			97028	110	568	
	5×029	220	072			98029	220	284	
	5 5030	240	066			98030	240	260	

IMPORTANT：Regulation－All voltages quoted are FULL LOAD．Please add regulation figure 10^{-} socondary voltage to obtain ofl load vohage．
The benefits of ILP toroidal eransformers
ILP toroidal transformers are only half the weight and height of their laminated equlvalents，and are avaliable with $110 \mathrm{~V}, 220 \mathrm{~V}$ or 240 V primaries coded as follows： For 110 V primary insert＂ 0 ＂in place of＂X＂in type number．
For 220 V primary（Europe）insert＂ 1 ＂in place of＂X＂in type number．
For 240 V primary（UK）insert＂2＂in place of＇X＂in type number
How to order Freepost：
Use this coupon，or a separate sheet of paper，to order these products，or any products from other IL．Electronics advertisements．No stamp is needed it you address to Freepost．Cheques and postal orders must be crossed and payable to ILP Electronics Ltd． Access and Barclaycard welcome．All UK orders sent within 7 days of receipt of order for single and small quantity orders．
Also available at Electrovalue，Maplin and Technomatic．
ILP Electronics，Grahàm Bell House，Roper Close，Canterbury，Kent，CT2 7EP．

Please send
Total purchase price
1 enclose Cheque
 Postal Orders \square Int．Money Order

Debit my Access／Barclaycard No．
Name
Address

Signature

Post to：ILP Electronics LId，Freepost． 2 Graham Betl House，Roper Close． Canterbury CT2 7EP．Kent．Englano．
Telepmone Sales（0227）54778：Technical（0227）64723：Telex 965780．
（a division of
ILP Electronics LId）

TRANSFORMERS

MODULES FOR SECURITY \& MEASUREMENT

 - Buitt-in electronic siren drives 2 loud speaker
 Provides exit and entr with fixed alarm time
 Battery back-up with trickle charging facility
 - Operates with magnetic switches. $u /$ sonic or I.R. units
 This exciting new module offers all the possible leatures likely to be required when building an intruder alarm sysrem. Whether used with only 1 or ultrasonic alarm modules or infrared units, a really effective system can be constructed at a fraction of the cost of comparable ready-made units. Supplied with a fully explanatory Data Sheet that makes ested and guaranteed. *available in kit form £ 16.95 plus VAT
 - Stabilised output voltage
 - 2 operating modes - full alarm/ant-tamper an panic facility
 - Screw connections for ease of installation loads
 Ant-tamper and panic facility

DIGITAL VOLTMETER MODULE DVM 314

Fully built $\&$ tested
Positive \& negative voltage with an FSD of 999 mV which is easily extended Requires only single supply 7.12 V - High overall accuracy $-0.1 \%+1$ digit - Large bright 0.43" LED displays Supplied with full applicanons data
With this fully built and catibrated module a.wide range of accurate equipment such as multimeters. thermometers, battery indicators etc. can be constructed at a fraction of the cost of ready-made units. Full details are supplied for extending the voltage range, measuring current, resistance and temperature Fully guaranteed, the unit has been supplied to electricity authorities, Government depanments, etc.

Temperature Measurement Kit DT. 10
$£ 2.25$ + VAT
Using the I.C. probe supplied. this kit provides a linear output of $10 \mathrm{mV}{ }^{\circ} \mathrm{C}$ over the temperature range from $-10^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. The unit is ideal for use in conjunction with the DVM module providing an

Power Supply PS. 209

$£ 4.95$ + VAT
is ideally sulted tor operating the DVM and Temperature Measurement module.

US 4012
Adjustable range from 5 ft . to 25 ft .

Power Supply \& Relay Units PS 4012
 $£ 4.25+$ va
 Hardware Kit HW 4012

Provides a stabilised 12 V nutput and relay with $3 A^{\circ}$ contacts. The unit is designed to operate one or two
of the above ultrasonic units. Fully built and tested.

Siren Module

 SL 157Produces a loud and penet rating sliding tone operating from 9.15 V . Capable of driving 2 off 8 ohm speakers to SPL of 110 db at 2 M .
Contains an inhibit facility for use with shop lifting loops or other break to activate circuits.

Add VAT \& 50p post and packing to all orders.
Shop hours $9.00-5.30$ p.m.
(Wed. 9.00 - 1.00 p.m.) Units on demonstration - callers welcome. S.A.E, with all enquiries. An
$£ 4.25$ + VAT
A suitable ready-drilled case with the various mount-
ing pillars. mains switch socket and nuts and bolt
Designed to house the ultrasonic alarm module Designed to house the ultrasonic alarm module Size: $153 \mathrm{~mm} \times 120 \mathrm{~mm} \times 45 \mathrm{~mm}$

ACCESSORIES

3-position Key Swith for use with
CA 1250, supplied with 2 keys
$£ 3.43$
Maynetic switch (with magnet)
£1.17

RISCOMP LIMITED

Dept: PE 10
21 Duke Street,
Princes Risborough, Buck s.
Princes Risborough (084 44) 6326

TERRIFIC VALUE!!!

We have a big store to clear. 100 tons of
stock must go. 10 kilo parcel of unused part Minimum 1,000 items includes panel meters, timers, thermal trips, relays, switches, motors, drills, taps and dies, tools, thermostats, coils, variable condensers, varlable resistors, etc. etc Individually would cost you a fortunel
YOURS FOR ONLY $£ 1150$ plus $£ 3.00$ YOURS FOR ONLY $£ 11.50$ plus $£ 3.00$ post IONISER KIT
Refresh your home, office, shop, work room, etc. with a negative ION generator. Makes you feel better and work harder - complete mains operated kit, case included $\mathbf{£ 1 1 . 9 5}$ plus $\mathbf{£} 2.00$ postage.
CAR STARTER/CHARGER KIT
from embarrasment in an emergency you can start car off mains or bring vour battery up to fult charge in a couple of hours. The kit com
prises: 250 w mains transformer, two 10 amp bridge rectifiers, start/charge switch and full instructions. You can assemble this in an garage, whichever suits you best.
Price: ONLY $£ 12.50+£ 3.00$ post.
3-30V VARIABLE VOLTAGE
POWER SUPPLY UNIT
With 1 amp DC output, for use on the bench students, Inventors, service engineers, etc. Automatic short circuit and overload protect lon. In case with a volt meter
panel. Complete kit $£ 13.80$.
ZX81 OWNERS
Make yourself a full Make yourself a full
size keybard! Key size keyboardi Key
switches complete with plain
f1.15.

COMPUTER PRINTER FOR

 ONLY £4.95Japanese made Epson 310 - has a self starting ics - uses plain paper. Brand new with full data. ONLY £4.95 plus £1.25 Post.

[^1]REVERSIBLE MOTOR WITH CONTROL GEAR
Made by the famous Framco Company this is a very robust motor, size approximately $7 / /^{\prime \prime}$ long, $31 /{ }^{\prime \prime}$ dia. $3 / 8^{\prime \prime}$ shaft. Tremendou powerful motor, almost impossible to stop Ideal for operating stage curttins, sliding doors, ventilators, etc., even garage doors I motor complete with control gear as follows:

- 1 Framco motor with gear box. - 1 manua reversing and on folf swlich. 1 push to star switch. $1 \times 100 \mathrm{w}$ auto transformer. - 2 limit stop switches. - 1 circuit diagram of connections. $£ 19.50$ plus postage $£ 2.50$ SPIT MOTORS

Powerful mains operated induction motors with gear box attached. The final shaft is a $1 / 2{ }^{\prime \prime}$ rod with square hole, so you have alternative coupling methods - final speed is approx. $5 \mathrm{revs} / \mathrm{min}$. PRICE $£ 5.50$. Similar motors with final speeds of 80,100, 160 \& $200 \mathrm{r} . \mathrm{p} . \mathrm{m}$. same price
8.POWERFUL BATTERY

MOTORS

Suitable for models, meccanos, drills, 12 VOLT MOTOR BY SMITHS Made for use in cars, these are series woun and they become more powerful as load Increases. Size $3 夕^{\prime \prime}$ long by $3^{\prime \prime}$ dia. These have a good length of $1 /$ spindle - price EXTRA POWERFUL 12 VOLT MOTOR
Made to work battery lawnmower, this probably develops up to $1 / 4$ h.p., so it could be used to power a go-kart or to drive a (This is easily reverstble with our reversible switch - Price $£ 1.15$).

SINCLAIR COMPUTERS

We are the leading world-wide Sinclar export specialist Including Norway, Sweden, Finland and Denmark. Write for our surprizingly low prices.
PRINTERS
Buy any of the below and get a free interface kit and word processor program for UKIOI or Superboard. Seikosha GP100A 1210 . OK Microline 83A \&46. OKI Microline $84 A \in 799$
OKI Microline 80 ©215. OKI Microline 82 A OKI Microline 80 2235. OKI Microline 82A C319. Epson MX80F/T3 E349. Epson M $\times 100 / 3$ E429.

VIC 20 COMPUTER
Two special offers- If it is bought with the $\mathbf{6 3 0 - 4 3}$. Alternatively, we will supoly a free kit with each Vic20 to allow the use of an ordinary cassette recorder. Vic20 \&165. Ordinary cas sette conversion kit $\mathbf{1 6}$. Vic20 cassette recor der ©36.50. High resolution cartridge $€ 27.95$. Machine code monitor 627.95 . Vk printe 189. Floppy disc drive $\mathbf{6 3 0 9}$. Ram cartridges: 3K 624, 8K 635 , 16 K 657. Game cartridges:C6.52. Intro to Basic Part I CIJ. New Jow cost 66.52. Intro to Basic Part I CI 3. New low cost comes with 3 K ram on board + socket for rom + sockets for another 24K of low currem Nmos ram (lust plug in chips to expand memNry) 449 . 27 K version El 109 . Extrand memory-

SWANLEY ELECTRONICS, Dept PE, 32 Goldsel Rd. Swantey, Kent BRB 8EZ, Tel. Swanley (0322) 64851 .
lease ollow 14 days for dellven

UKIOI and SUPERBOARD
32×48 display expansion kits UKIO1 69, Senes 11 Superboard 214 . Guard band kit for Superboard only EIO . The below accessories suit both the UK1O1 and Superboard:- Extra ram 62.10 per K. Cegmon 622.50. Wemon 614.95. Word processor program C10. Centronics interface kit $¢ 10.610$ expansion board
E179. Cased minifloppy disc drives with DOS E179. Cased minifloppy disc drives with DOS single $\mathbf{E 2 7 5}$, dual $\mathbf{E A 1 5}$. Stand alone floppy disc
controller © $\mathbf{6} 5$.

GENIE COMPUTERS
Genie I 16 K C299, 48K 6330 . EG3014 exparder box 16K E179, 32K E189. Miniflopoy disc drives single $\mathbf{£ 1 9 9}$, dual $\mathbf{6 3 6 9}$. Double density convertor $\mathbf{C 7 2}$. Paraliel printer interfice $\mathbf{6 3 6}$. High resolution graphics unit c82.

BATTERY ELIMINATORS
3 -way type $6 / 7.5 / 9 \mathrm{~V} 300 \mathrm{ma}$ C3.50. Stabilized model $3 / 67.5 / 9 \mathrm{~V} 400 \mathrm{ma}$ 67.95. 100 ma radio types with press studs 9 V C4.95, $9 \mathrm{~V}+9 \mathrm{~V}$ $3 / 4.5 / 6 / 7.5 / 9 \mathrm{~V} 800 \mathrm{ma}$ C3.04.
BATTERY ELIMINATOR KITS
100 ma radio types with press-studs 9 V E1.79,
 Stabilized power kits 2.18 V 100 ma 63.12, $1-30 \mathrm{~V}$ A $68.50,1-30 \mathrm{~V} 2 \mathrm{~A} \subset 15.30$. TTL and

tV Games*
AY-3-8550 + kit 19.26
BI-PAK AUDIO MODULES*
PS12 £1.75. T538 ¢2.90. AL60 E5.62. BMT80 6.36. Stereo 30 \& 15 . AL80 ©8.56.

[^2]
Alexandra Pavilion November 18-211982

Launched in response to demand for a major national show of the highest quality, PRACTICAL ELECTRONICS, EVERYDAY ELECTRONICS and PRACTICAL WIRELESS are presenting the biggest and best event ever to be staged for the electronic hobbies enthusiast.
If your company is involved in the manufacture of electronic components, equipment, ancillary systems for
electronic projects, home computers, amateur radio, citizens band, video games, musical instruments - vou should bethere!
For further information about exhibiting contact: The Exhibition Manager,
Electronic Hobbies Fair, IPC Exhibitions
Ltd., Surrey House, 1 Throwley Way, Suttion, Surrey SM1 4QQ. Tel: 01-643 8040. Extn. 4873.

Please send me details about exhibiting at the

Name
Position in Company
Company \qquad Address

RECEIVERS AND COMPONENTS

BOURNEMOUTT/BOSCOMBE. Electronic components specialists for 33 years. Foresters (National Radio Supplies), Late Holdenhurst Road. Now at 36, Ashley Road, Boscombe. Tel. 302204. Closed Weds.

ELECTRONICS COMPONENTS SHOP in Maidstone, Kent. Thyronics Control Systems, 8, Sandling Road, Maidstone. Maidstone 675354.

Equipment Wire

MULTI-COLOUR WIRE-PACKS

28 Different Colours/Bl-colours

 OEF 61-12 (Dart 6) Tyde 2Brack - Blu - Brown Green Grey - Orange
Pink Red Violet - White Yellow - Green/Red
Greon/vellow Grey/Bive Grey/Black
Orange/Red - Orange/Black P Pinvelack
Purple/Red - Red/Black - Red/Blue - Red/Brown
Reofgreen - While/Black. While/Red
Yellow/Green - Yellow/Red - Yellow/Black

T \& J ELECTRONIC COMPONENTS. - Quality Components, competitive prices. Illustrated Catalogue 45p. 98, Burrow Road, Chigwell, Essex.

300 SMALL COMPONENTS, transistors, diodes $£ 1.70$. 7lbs assorted components $£ 4.25$. 10 Ibs $£ 5.75$. Forty 74 series ICs on panel $£ 1.70$. 500 capacitors $£ 3.20$. List 20 p refundable Post 60p. Optional insurance 20p. JWB Radio, 2, Barnfield Crescent, Sale, Cheshire M33 1NL

SMALL ADS

The prepaid rate for classified advertisements is 32 pence per word (minimum 12 words), box number 60 p extra. Semi-display setting $£ 10.70$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed 'Lloyds Banks Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Practical Electronics, Room 2612, IPC Magazines Limited, King's Reach Tower, Stamford St. London, SE1 9LS. (Telephone 01-261 5846).

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

TE \AA ECTRIC

THE ELECTRICITY COST MONITO FEATURED IN PE MARCH \& APRIL ' 82 as SEEN ON NATIONAL TELEVISION Telectric Assembly Kit
£59.50 + VAT Telectric Unit Buil \& Tested P\&P per kit or unit $\mathbf{£ 3 . 0 0}+$ VAT SAE for full details, Component List \& Order Form Cheque or Purchase Order to:
Response Company
Froxfield, Petersfield, Hanta GU32 1DX
ACCESS
Tel: Petersfield (0730) 3063
P.C. BOARD S.S. $12^{\prime \prime} \times 12^{\prime \prime}-3$ for $£ 2.00$. Glass fibre P.C. Board S.S. or D.S. $12^{\prime \prime} \times 12^{\prime \prime} £ 1.00$ each. Add 60 p p\&p any quantity. Cooper, 16 Lodge Road, Hockley, Birmingham B18 5PN.

TURN YOUR SURPLUS Capacitors, transistors, etc., into cash. Contact COLES HARDING CO., 103 South Brink, Wisbech, Cambs. 09454188 . Immediate settlement.

MISCELLANEOUS

TIME WRONG?

MSF CLOCK is ALWAYS CORRECT - never gains or loses, SELF SETTING at switch-on, 8 digits show Date, Hours, Minutes and Seconds, auto GMT/BST and leap year, also parallel BCD output, receives Rugby 60 KHz Atomic Time Signals, Built-in Antenna, 1000 Km range, GET the TIME RIGHT, f89.60.
GOKMP RUGBY RECETVER, 2220.
V.LF.? EXPLORE $10-150 \mathrm{KHz}$, Receiver £19.40.

Signal Generator, $10 \mathrm{~Hz}-200 \mathrm{KHz}, \mathbf{~} 19.70$.
Each fun-to-build kt includes all parts, printed circuit case, instructions, postage etc, money back assurance so GET yours NOW.

CAMBRIDGE KITS

45 (FK) Old School Lane, Milton, Cambridge

DIGITAL WATCH REPLACEMENT parts, batteries, displays, backlights etc., also reports publications charts. SAE for full list. Profords, Copners Drive, Holmergreen, Bucks HP15 6SGG.

BURGLAR ALARM EQUIPMENT. Ring Bradford (0274) 308920 for our catalogue or call at our large showrooms opposite Odsal Stadium.

MAKE YOUR OWN PRINTED CIRCUITS Etch Resist Transfers - Starter pack (5 sheets, lines, pads, I.C. pads) $£ 210$. Large range of single sheets in stock at $45 p$ per sheet.
Master Positive Transparencies from P.C. layouts in magazines by simple photographic process: 2 sheets negative paper, 2 sheets positive film (A4) £2.10. Photo-resist spray (200 ml) $£ 3.50$ ($\mathrm{p}+\mathrm{p} 65 \mathrm{p}$). Drafting Film (A4) 25p. Precision Grids (A4) 85p. $22 p$ stamp for lists and information. P\&P 50p per order except where indicated. OAK LOOGE, TANESLEY, DERBYSHIRE.

PARAPHYSICAL JOURNAL (Russian Translations): Psychotronic Generators, Kirlianography, Gravity Lasers, Telekinesis, Details SAE $4 \times 9^{\boldsymbol{r}}$ PARALAB, Downton, Wilts.

CLEARING LABORATORY: sCopes, generators, P.S.U.'s, bridges, analysers, meters, recorders, etc. 040376236.

CENTURION ALARMS

We manufacture, you save £ff's Send s.a.e. or phone for our Free list of professional D.I.Y. Burglar Alarm Equipment and accessories. Discount up to 20% off list prices, e.g. Control Equipment from $£ 15.98$, Decoy Bell Boxes from $£ 5.95$ inc.

ADE ENQUIRIES WELCOME
O 0484-21000
or 048435527 (24 hr . ans.)
CENTURION ALARMS (PE)
265 Wakefield Road, Huddersfield
9BE, W. Yorkshire
Access G Visa
Orders Welcomed

BOOKS AND PÜBLICATIONS

FULL SRE SERVICE SHEETS by return $£ 2.00$ each plus L.S.A.E. Except C.T.V./Music Centres from $£ 3.00$. Repair data with circuits named T.V.s or early VHS/Philips Video Recorders £8.50. L.S.A.E. for free 50 p magazine/quotations etc., T.I.S. (PE), 76 Churches, Larkhall. 0698-883334; Lanarks ML9 IHE

SOFTWARE

UK101 CASSETTES. Hi Speed Graphics. 13 new Basic commands. Selective fill, scroll in 4 directions etc. No Pokes. 6502 Emulator. Registers, memory, stack continuously displayed while assembler program runs in slow motion. $£ 4.90$
 Drive, Stalmine, Blackpool.

FOR SALE

MIXED METAL FILM RESISTORS $100: 80 \mathrm{p}$, $1000: 55$. Cermet potentiometers 10 mixed $£ 1$. Low profile sockets 24 pin 15p. P\&P 40p. S.A.E. for lists T. Milner, 203 Goodman Park, Spugh, Berkshire.
P.E. JOANNA ELECTRONIC PIANO finished completely with built-in rhytḥm generator. Offers. 01-542 1884.

TELETEXT (ORACLE/CEEFAX) add-on adaptors for your existing television. Only $£ 149.95$ inclusive. Also viewdata (Prestel) adaptors and fantastic colour graphics microcomputer interface. Avon Office Services (PE), FREEPOST, Bristol BS10 6BR. (0272) 502008 anytime.

WANTED

WANTED. Change-over switch devices for operating small solenoid valves at idling r.p.m.s of cars. Potential market for good design and manufacture at right price. Box No. 90.

TRAINEE ASSISTANT FILM RECORDISTS

Would you like to specialise in Sound with the BBC TV's Film Department?
Trainee Assistant Film Recordists work initially in Sound Transfer and Dubbing areas operating sound recording equipment with the prospect of moving on to location Film Recording work in due course.
EXCELLENT TRAINING is given if you have ambitions to do this type of work but lack experience. You will need ' O ' level standard of education or equivalent, preferably including Physics and/or Maths and a basic knowledge of electronics. Applicants should be able to demonstrate a practical interest in Sound and Recording. Normal hearing is essential.
Successful candidates will start their three year training period in January 1983 at a salary of $£ 5451$. An additional allowance is paid for shift work (not nights). Based West London. Relocation expenses considered.
Contact us immediately for application form (quote ref. 1630/PE and enclose s.a.e.): BBC Appointments, London WIA IAA.
Tel. 01-580 4468 Ext. 4619.
We are an Equal Opportunities employer
BBCTv

EDUCATIONAL

CAREERS IN MARINE ELECTRONICS. Courses commencing September and January. Further details, The Nautical College, Fleetwood FY7 8JZ. Tel. 0391779123.

SERVICE SHEETS

BELL'S TELEVISION SERVICES for Service Sheets on Radio, TV, etc $£ 1.25$ plus S.A.E. Colour TV Service manuals on request. S.A.E. with enquiries to B.T.S. 190 Kings Road, Harrogate, N. Yorkshire. Tel. (0423) 55885.

COURSES

CONOUER THE CHIP... Master modern electronics the PRACTICAL way by SEEING and DOING in your own home. Write for your free colour brochure now to British National Radio \& Electronics School, Dept. C2, Reading,
Berks. RG1 Berks. RG1 1BR

AERIALS

AERIAL BOOSTERS trebles incoming signal, price $£ 7.00$. SAE leaflets. Velco Electronics, Ramsbottom, Lancashire BL0 9 AG .

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Practical Electronics for insertions. I enclose Cheque/P.O. for $£$
(Cheques and Postal Orders should be crossed Lloyds Bank Lid. and made payable to Practical Electronics)

NAME

PRACTICAL ELECTRONICS

ADDRESS

Classified Advertisement Dept., Room 2612, King's Reach Tower, Stamford Street, London SE19LS. Telephone 01-2615846 Rate:
32p per word, minimum 12 words. Box No. 60p extra.
Company registered in England. Registered No. 53626. Registered Office: King's Reach Tower, Stamford Street. London SE 1 9LS.

	7	-al menchanois bano news
SDLDERING IRONS 		
	Electroltics $10001020240: 1000016232$ TANTALUM 0.1/35, 0.22/35, 0.47/35, 1/35. 2.2/18. क, 127; 2.2/35. 4.7/16. 10/6 3 18p: $4.7 / 35,10 / 16,22 / 6,3,10 / 2518 p ; 22 / 16.22 / 25,13 / 10,47 / 6.3,100 / 3309$. LOW LEAKAGE Ali, single ended $0.1 / 50,0.22 / 50,0.4 / 50,4.7 / 35,10 p ; 1 / 50,22 / 50,47 / 50$, an $12 \% ; 10 / 16,22 / 6$. $10 \mu ; 10 / 35,22 / 10.22 / 16.22 / 35,4 / 6,47 / 1012 / 47 / 16,100 / 612 \mathrm{p}$.	
		E and packing on UK. 5 add 4 p (inc. VAT).\qquad W.O. arders value E 575 (imc. VAT) and OISCO OISCOUNTS \qquad on orders over $557.50-10 \%$

TELEVISION . . . the only magazine in Britain that gives the amateur enthusiast and professional engineer alike a comprehensive up-to-date coverage of TV technology. Coverage includes the latest developments in circuitry, video and long-distance Television . . . with a special emphasis

PARNDON ELECTRONICS LTD

Dept No. 2144 Paddock Mead, Harlow, Essex. CM18 7RR. Tel: 027932700
RESISTORS: $1 / 4$ Watt Carbon Film E24 range $\pm 5 \%$ tolerance. High quality resistors made under strictly controlled conditions by automatic machines. Bandoliered and colour coded.
£1.00 per hundred mixed. (Min 10 per value) $\mathbf{E 8 . 5 0}$ per thousand mixed (Min 50 per value) Special stock pack. 60 values. 10 of each $£ 5-59$

DIODES: IN4148 3p each. Min order quantiy - 15 items £1.60 per hundred

DIL. SWITCHES: Gold plated contact in fully sealed base - solve those programming problems 4 Way 86 p each. 6 Way $£ 1.00$ each. 8 Way E1-20 each.
DIL SOCKETS: High qualty, low profile sockers
8 pin-10p. 14 pin- 11 p. 16 pin-12p. 18 pin-19p. 20 pin-21p. 22 pin-23p. 24 pin-25p. 28 pin - 27p. 40 pin-42p.
ALL PRICES INCLUDE V.A.T. \& POST \& PACKING - NO EXTRAS MIN. ORDER - U.K. EI -00 OVERSEAS ES. CASH WITH ORDER PLEASE Same Day Despatch

Bigger and Better for 1982

the colourful Wilmslow Audio brochure - the definitive loudspeaker catalogue!

Everything for the speaker constructor - kits, drive units, components for HiFi and PA.
50 DIY HiFi speaker designs including the exciting new dB Total Concept speaker kits, the Kef Constructor range, Wharfedale Speakercraft, etc.
Flatpack cabinet kits for Kef, Wharfedale and many others.

> \& Lowest prices - Largest stocks \star
> \star Expert staff - Sound advice \star
> \& Choose your DIY HiFi Speakers in the comfort of our \star two listening lounges
> (Customer operated demonstration facilities) (Ample parking

Send $£ 1.50$ for catalogue
(cheque, M.O. or stamps-orphone with yourcredit card number)

- Access - Visa - American Express accepted * also HiFi Markets Budget Card.

2
0625529599

35/39 Church Street, Wilmslow, Cheshire
SK9 1AS

Lightning service on telephoned credit card orders!

NDES TO ADMERTSERS		
A.D. Electrics		80
Ambit Intemational	.	6,64
Aura Sounds Ltd.	.. .	59
B.B.C. Appointments		77
BiCC-Vero		26
Barrie Electronics		6
Beckman Instruments Ltd.	.	48
Bi-Pak		15
Boss Industrial		48
British National Radio \& Ele	Electronics	
School		9
Brystep Elec.		76
Bull, J.		74
C.R. Supply, The	76
Cambridge Kits .		76
Clef Products	. ..	10
Crofton Electronics	..	14
Centurion Alarms	. . .	76
Dataman Designs	.. .	47
Electrovalue	..	78
Enfield Electronics	78
Eureka Electronics		80
Flight Electronics	.- --	26
G.S.C.		5
Hall, Adam	..	76
Hameg Ltd.	..	64
Heathkit	4
ICS-Intertext	- \cdot	
I.L.P. Electronics	.	11, 73
Maplin Electronics	.. -	Cover IV
Marco Trading	.. .	80
Micro Musical	8
Midwich Computors		73
Modern Book Co.		79
PKG Electronics		76
Parndon Electronics	.. \cdot	78
Phonosonics		8
Pimac Systems		14
Powertran Cybernetics	.. .	Cover II
Proto Design $\quad \therefore$. \quad.	76
Radio Component Specialists		79
Radio \& T.V. Components		14
Rapid Electronics ..		16
Response Co.	.. -	76
Riscomp Ltd. .		74
Scientific Wire Co.		77
Sinclair Research		12-13
Stort Technology	. ${ }^{\text {. }}$	76
Swanley Electronics		74
Technomatic		80, Cover III
Tempus		69
T.K. Electronics .		7
Videotone		10
Watford Electronics		2-3
Wilmslow Audio ..		79

VIDEO TECHNIQUES

by Gordon White
Price: $\mathbf{£ 1 1 . 9 5}$

USING VIDEOTAPE

by J.F. Roblnson
Price: $\mathbf{£ 6 . 5 0}$

TELEVISIONPRINCIPLES \& PRACTICE

COLOUR \& MONOCHROME
Price: $\mathbf{E} 6.50$

ELECTRONIC EOUIPMENT RELIABILITY

by J.C. Cluley
Price: $\mathbf{£} 7.00$

DIGITALICS - HOW THEY WORK \&

HOWTO USE THEM
Price: $£ 6.50$

UNDERSTANDING AUTOMOTIVE ELECTRON-

 ICSby W. B. Ribbens Price: £4.50

THE ART OF ELECTRONICS
by Horowitz/Hill
Price: $\mathbf{£ 1 4 . 9 5}$
BASIC PROGRAMMING ON THE
BBCMICROCOMPUTER
by N. Cryer
Price: 86.50
INTRODUCTION TO WORD PROCESSING
by H. Glatzer
Price: $\mathbf{1} 12.25$
BUILD YOUR OWN 280 COMPUTER
DESIGN GUIDELINES \& APPL NOTES
by S. Ciarcia
Price: $\mathbf{1 3} \mathbf{1 3 0}$

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST of British and American Technlcal Books

19-21 PRAED STREET LONDON W2 1 NP
Phone 01 -402 9176 Closed Saturday 1 p.m Please allow 14 days for reply or delivery.

BAKER LOUDSPEAKERS

Model	Ohms	Inch	Watts	Type	Price	st
Mayor	4.8. 16	12		Hi-Fi	614	62
Superb	8. 16	12	30	$\mathrm{Hi}-\mathrm{Fi}$	624	62
Auditorium	8. 16	12	45	Hi-Fi	62	12
Auditorium	8. 16	15	60	Woofer	63	2
Group 45	4,8,16	12	45	PA	114	2
Group 75	4.8.16	12	75	PA	18	62
Group 100	8 8, 16	12	100	Guitar	62	2
Disco 100	8, 16	12	100	Disco	024	62
Group 100	8. 16	15	100	Guitar	632	6
Disco 100	8. 16	15	100	Disco	632	8

DISCO MIXER. 240V, 4 stereo channels. 2 magnetic, 2 ceramic/tape, I mono mic channel, twin v.u, meters, headphone monitor outlet, slider controls,
aluminium facia. 640 . Post $\mathbb{2}$.
DELUXE STEREO DISCO MIXEREQUAUSER as above plus LE.D. V.U. displays 5 band graphic equaliser, left/ right fader, switchable inputs for phono/line, mike/line.

〔95. PP 62
BOOKSHELF HI-FI ENCLOSURES TEAK 630 pair.
$18 \times 11 \times 6 \mathrm{in}, 10$ wates 8 or 40 mm 2 way system. Post 2.
GARRARD SP25 Mk4 SINGLE PLAYER DECK
Brushed Aluminium Balanced Arm with stereo deramk cartridge and Diamond Stylus, 3 -speeds, Marual and Auto Stop/Start Large Metal Turntable. Bias Compensator.
622. Post 12

METAL PUNTH cut for Garrard or BSR
Size: $16 \times 14 \times 3$ in $\mathbf{6 4 . 0 0}$. Silver or Black finish. Post $\mathbb{C 2}$
B.S.R. P2O4 SINGUE PLAYERS POST 62 each SPECIAL OFFERS
Two speed $33 / 45 \mathrm{rpm} H \mathrm{Hi}$-Fi Decks with Stereo Cartridges, cue Ing device and snake arm.
Ceramic Cartrige - 240 V AC 15 or 12 V DC 418
B.5.R SINGLE PLAYER PI70 RIM DRIVE $\mathbf{2 0 . 0 0}$ 3 -speeds 11 in. turntable "Slim" arm. cueing device. stereo Beramic tartridge. 240 V AC. Po
Sterto cartridge, plays all size reconds. 3 -speed Post $\mathbf{C 2}$. $\mathbf{~} 20$
DECCA B.S.R. TEAK PLINTH $18 \frac{1}{2} \times 14 \frac{14}{} \times 4 \mathrm{in}$
Space for small amplifier. BSR Board ©S post ©I.S0.
With Garrard Board 13 post 81.50 . PVC covers 65 extr
TINTED PLASTIC EQUIPMENT COVERS
Sizes: $14 \frac{1}{2} \times 12 \frac{1}{6} \times 3$ in. 65 . $151 \times 13 \frac{1}{2} \times 4$ in. 65 .
$14 \times 13 \times 3 \operatorname{tin} .65 .18 \times 121 \times 3 \mathrm{in} .65 .161 \times 13 \times 4 \mathrm{in} .65$.
$171 \times 133 \times 4 \operatorname{tin} .65 .21 \frac{1}{2} \times 141 \times 2 \mathrm{~m} .65$. POST 61.50
R.C.S. LOW VOLTAGE STABILISED POWER PACK KITS
13.95. Post 65p

All parts and instructions with Zener diode printed circuit, mains transformer 240 V a.c. Ourput 6 or 73 or 9 or $12 \mathrm{~V} \mathrm{d.c}$.up to
100 mA or less. Please state voltage required. PPA or less. Please state voltage required.
MP BATTERY ELIMINATOR BRITISH 44.50 cur our. Size $5 \times 31 \times 2$ in. Post 50 p . DELUX MODEL Switched 3: 6; 71; 9 volt 400mA D.C. Stabilized. C7.50. Post $\& 1$

240V MAINS TRANSFORMERS

$250-0-250 \mathrm{~V} 70 \mathrm{~mA} 6.3 \mathrm{~V}, 2 \mathrm{~A}$
$250-0-25080 \mathrm{~mA} 6.3 \mathrm{~V}, 3.5 \mathrm{~A}, 6.3 \mathrm{~V}$ IA
$350-0-350 \mathrm{~V} 250 \mathrm{~mA} 6.3 \mathrm{~V} 6 \mathrm{mp}$.
$350-0.350 \mathrm{~V} 250 \mathrm{~mA} .6 .3 \mathrm{~V} 6 \mathrm{amp}$
220 V 25 mA .3 V . $45 \mathrm{~mA}, 6.3 \mathrm{~V}$ 2A c3. $250 \mathrm{~V} 60 \mathrm{~mA}, 6.3 \mathrm{~V} 2 \mathrm{~A}$
GENERAL PURPOSE LOW VOLTAGE

$6-12 V-4 A \quad 66.50 \quad 62 \quad 6-12 V-2 A$

6-12V-6A C8.50 E2 6-12V-4A
TOROIDAL 30-0-30V $4 \mathrm{~A}+20-0-20 \mathrm{~V}$
BLANK ALUMINIUM CHASSIS. 6×4 in $11.45 ; 8 \times 6 \mathrm{in}$ $C 1.80 ; 10 \times 7$ in. $62.30 ; 12 \times \sin .62 .60 ; 14 \times 9$ in. $\mathbf{C 3 . 0 0}$;
16×6 in $\mathbf{C 2 . 9 0 ; 1 6 \times 1 0 i n . ~} \mathbf{C 3 . 2 0}$. All 2 tin. deep. 18 swg.
 $\times 6 \mathrm{in}$. C1.1. $; 14 \times$ in. $1.4 S_{i} 12 \times 12 \mathrm{in}$. $1.50 ; 16 \times 10 \mathrm{in}$ ©1.75. ANGLE AU. $6 \times 1 \times$ lin. 18 swg. 25 p.
ALUMINIUM BOXES. $4 \times 4 \times 1 \operatorname{in}, 61.4 \times 2 \xi \times 2 \mathrm{in} .61$.
$3 \times 2 \times$ lin. $61.6 \times 4 \times 2 \mathrm{in} .61 .60 .7 \times 5 \times 3 \mathrm{in} .62 .40$. $8 \times 6 \times 3 \mathrm{in} .62 .50 .10 \times 7 \times 3 \mathrm{in} \mathbf{6 3} .12 \times 5 \times 3 \mathrm{in} .62 .75$. $12 \times 8 \times 3$ in. 63.60 . All 18 swg with lids.

HIGH VOLTAGE ELECTROLYTICS 8/450V 45p 8+8/450V $\quad 75 \mathrm{p} \quad 50+50 / 300 \mathrm{~V}$ $\begin{array}{lllll}32 / 350 \mathrm{~V} & 45 \mathrm{p} & 8+16 / 450 \mathrm{~V} \quad 75 \mathrm{p} & 100+100 / 275 \mathrm{~V} \\ 32 / 500 \mathrm{~V} & 75 \mathrm{p} & 32+32 / 450 \mathrm{~V} & 120 & 150+200 / 275 \mathrm{~V}\end{array}$ $\begin{array}{lllll}32 / 500 \mathrm{~V} & 75 \mathrm{p} & 32+32 / 450 \mathrm{~V} & \mathbf{1} 20 & 150+200 / 275 \mathrm{~V} \\ 50 / 450 \mathrm{~V} & 95 \mathrm{p} & 32+32 / 350 \mathrm{~V} & 75 \mathrm{p} & 220 / 450 \mathrm{~V}\end{array}$ $\begin{array}{llllll}50 / 450 \mathrm{~V} & 95 p & 32+32 / 350 \mathrm{~V} & 75 \mathrm{p} & 220 / 450 \mathrm{~V} & 95 \mathrm{p} \\ 32 / 350 \mathrm{~V} & 50 \mathrm{p} & 32+32 / 500 \mathrm{~V} & \mathrm{cl} .80 & 32+32+32 / 325 \mathrm{~V} & 90 \mathrm{p}\end{array}$

HEATING ELEMENTS, WAFER THIN Semi-flexible. $11 \times 9 \times$ in. Operating voltage 240V, 250W approx. Suitable
for Heating Pads, Food Warmers, Convector Heaters. Propagation, etc. Must be clamped between two sheets of metal. etc.
ONLY 60p EACH (FOUR FOR E2) ALL POST PAID.

RADIO COMPPONENT SPECIALSTS

337, WHITEHORSE ROAD, CROYDON, SURREY, U.K. TEL: 01-684 1665 Post 50p Minimum. Callers Welcome. Closed Wed. Same day despatch. Access-Barclay-Visa. Lists 31p.

MARCO TRADING

We have now moved to our new much larger premises．（Over 6000 sq ft ）．We purchased these new premises in November and after we have settled the stock and staff in we are going to open a retail shop for callers．Whilst the shop is not yet ready we will of course make callers very welcome and feel confident they will find many bargains．We will soon open on Saturdays，please telephone for further details． TRANSFORMERS British made transformers at once only prices．

ADAPTORS

名h quality British made European Adaptors are ideal for driving radio＇s，cassette recorders，TV games， calculators etc etc．

These adaptors fit the UK shaver socket．

			1＋	$10+$	$100+$
E08	4.5 V DC	$200 \mathrm{~m} / \mathrm{a}$	50p	45p	32p
EM3	6 V DC	200m／a	£1．00	80 p	55p
E09	6 V DC	$400 \mathrm{~m} / \mathrm{a}$	£1．50	E1．25	85p

RESISTOR PACKS

Marco has long been known for its resistor development packs and for the new comer we give full details．
0.25 W 10 of every value from 10 ohm to 820 K i．e． $10 \mathrm{R}, 12 \mathrm{R}, 15 \mathrm{R}, 18 \mathrm{R}, 22 \mathrm{R}, 27 \mathrm{R}, 33 \mathrm{R}$ ， $39 \mathrm{R}, 47 \mathrm{R}, 56 \mathrm{R}, 68 \mathrm{R}, 82 \mathrm{R}, 100 \mathrm{R}$ etc etc up to 820 K
Total： 600 resistors Price： $\mathbf{5} .00$
0.5 W 10 of every value from $2 R 2$ to 2 M 2 l．e． $2 R 2,2 R 7,3 R 3,3 R 9,4 R 7,5 R 6,6 R 8,8 R 2$ ． 10R etc etc up to 2 M 2 ．
Total： 730 resistors Price：$£ 5.50$
OUR LATEST CATALOGUE NOW AVAILABLE FOR ONLY 25 p INCLUDES COMPO－ NENTS，CHART RECORDERS，MULTIMETERS，SPECIAL OFFERS AND PRE－PAID ENVELOPES．

Please add 35 p postage and packing and 15% VAT to all orders
Send orders to

MARCO TRADING（Dept PE9）
 Wem，Shrgs，High SY
 Wern，Sh：WEM 093 5EN
 Telephone：WEM（0939） 32763

Every order receives our latest special offer lists．Or send SAE． All orders despatched by return of mail．

ALARMS

－KITS £32，£50，£75，£85 INCLUDING FULL INSTRUCTIONS－ －CONTROL PANELS £18，£23，£29，£37－BELL BOXES £6．25，$£ 7.50$－ －PRESSURE PADS $£ 1.06$ ．$£ 1.45, £ 1.95$－ 4 CORE CABLE $(100 \mathrm{~m}) £ 8.00$－ －SIRENS $£ 7.50$－CONTACTS 72p，74p，76p • ULTRASONICS $£ 34.50 \bullet$ －DOOR PHONES $£ 49.42$－
BUY A KIT OR DESIGN YOUR OWN SYSTEM send s．a．e．or＇Phone now for Free fully illustrated catalogue． IT TELLS YOU ALL YOU NEED TO KNOW！ CARRIAGEINCLUDED．VAT EXTRA 15\％ Please allow 14 days for delivery．
A．O．ELECTROMLS． 217 WABBECK MOOR．ANTREE．LIVERPOOL L9 OHU． 0515238440

Oscilloscopes

Limited quantities at Unrepeatable Prices！

 10－1 PROBE INCLUDED FREE PRICES TO RISE 20% WHEN CURRENT SUPPLIES EXHAUSTED．

$10 \mathrm{~m} \Omega \mathrm{DC}$

 DIGITAL MULTIMETER f35．95 inc．VAT Rugged，essity aperated Rugged，essity opetareand cleary teadabole
tampes inclucte－ Chesily iesabole
\qquad 1000 V
19500 M
1999 n ？

Featuring fully callbrated time base circuits，automatic blanking and stabilized power supply．They are rugged and portable．Model 5810 has input attenuation calibrated $+5 \%$ to provide twolve steps from 10 mV to 50 V pe division
5）Cheques，Access．Bacclaychid wekorne 10 cay moneybuch armites．Plesse zod 53.50 for post and Eureka Electronics Lid．
Caste House，27 Castle Street，Brighton

CONNECTOR SYSTEMS

OFFICIAL
$\because: 6$

DEALER

BBC Model＇A＇£299（inc．VAT）Model＇B＇£ 399 （inc．VAT） （Carr．felunit）

MEMORY PACK
－x 4816 AP． 3 100nS $£ 21.60$
ANALDGUE PORT IC 12 P16 67.30

F．D．PORT
IC 77.88 Pl8 $£ 70$
ALL MATING CONNECTORS \＆CABLES AVAILABLE SEND FOR OUR BBC LIST

PRINTERS
 NEC PC 8023 BE

80 col． 100 cps dot matrix printer．Bi－directional，Logic Seeking，Forward $\&$ Reverse Line Feed．Hi Res \＆Block Graphics，Proportional Spacing，International and G reek character sets，Auto underline，Friction／tractor selectable．$£ 340+f 8$ car

EPSON MX80 F／T 3 and EPSON MX100 F／T 3
Dot matrix printers．Bi directional，Logic Seeking．Auto Underline，Bit Image
Printing，Super 6 Sub－scripts． 80 col． 8 cps E $330+$ £8 carr． 136 col． 100 cps E430＋ $\mathbf{1} 10$ carr．
SEIKOSHA GP100A
80 col .30 cps dot matrix printer．High Res Graphics－Std $\&$ double width characters．$£ 175+$ £ 6 carr．
ACORN ATOM
BASIC BLILT
$8 \mathrm{~K}+2 \mathrm{~K}\{135$
EXPANDED
$12 \mathrm{~K}+12 \mathrm{~K}\{175$
8K＋5K＋COLOUR 5169
（Care． 13 unn）

MONITORS
BMC 12 ＂GREEN SCREEN
18 MHz BANDWIDTH
BMC $144^{〔 99+26 \text { COLOUR．}}$
（ 25×40 chars．）RGB input
$£ 240+\mathbf{E} 6$ carr

PRINTER \＆USER PORTS ICS 69，70，71，PL 9， 10 f9．50 PRINTER LEAD COMPLETE E13．50
RS423 \＆VDU PORTS
IC 74,75 SK $3 \& 4$ £ 10.80

SOFTY II EPROM PROGRAMMER

The complete microprocessor development system for both Engineers and Hobbyists．You can develop programs，debug，verity and commit them to EPROMs．Will atcept most +5 V EPROMs． Can also be used as a ROMULATOA．Fult review in September 81 PE ．Built unin complete with PSU and TV lead $£ 169$.

MENTA

A sophisticated 280 devalopment system and 7 rainer．Direct interfece to TV 6 cassatte recorder． Powarful heyboard asssombler $\begin{aligned} & \text { a program debugging facility－ideal for both enggineers and students．}\end{aligned}$ Audible feedback on keybeard input．Menta＋PSU \＆TV Lead E115．

RUGBY ATOMIC CLOCK

This $\mathbf{2}$ ． 80 micto controlled clock／calendar receives coded time data from NPL Augby．The clock never needs to be reset．The facilities include B independent alarms and for each alarm there is a choice of melody or alternatively these can be used for electrical switching．A separate timer allows recording of up to 240 lap times without interrupting the count．Expansion facilities provided．
See July／August ETI for details．Complete kit $£ 120+£ 2 \mathrm{p} . 母 \mathrm{p}$ ．

5V PSU

3A 5V Regulated Power Supply Fully Cased Complete with mains fuse．$£ 26+£ 2$ p． 6 p．

PLEASE ADD 40p p\＆p \＆15\％VAT

（Export no VAT p\＆p at Cost）
Orders from Government Depts，\＆Colleges etc．welcome BARCLAYCARD \＆ACCESS CARDS ACCEPTED

Detailed Price List on request．
Stock items are normally by return of post．

KEYBOARD KIT WITH ELECTRONICS FOR ZX81

* A full size, full travel 43 -key keyboard that's simple to add to your $\mathbf{Z X 8 1}$ (no soldering in 2×81).
* Complete with the electronics to make "Shift Lock", "Function" and "Graphics 2 " single key selections making entry far easier.
* Powered from ZX81's own standard power supply - with special adaptor supplied.
* Two colour print for key caps.
* Amazing low price.

Full details in our projects book. Price 60p. Order As XA030.
Complete kit for only $£ 19.95$ incl. VAT and carriage. Order As LW72P.

25W STEREO MOSFET AMPLIFIER
A superb new amplifier at a remarkably low price.

* Over 26 W per channel into 8Ω at 1 kHz both channels driven.
* Frequency response 20 Hz to $40 \mathrm{kHz} \pm 1 \mathrm{~dB}$.
* Low distortion, low noise and high reliability power MOSFET output stage.
* Extremely easy to build. Almost everything fits on main pcb. cutting interwiting to just 7 wires (plus toroidal transformer and mains lead terminations).
* Complete kit contains everything you need including pre drilled and printed chassis and wooden cabinet details in our projects book. Price 60p. Order As XA03D Complete kit for only $£ 49.95$ incl. VAT and carriage. Order As LW7IN

MAPLIN'S FANTASTIC PROJECTS

Full details in our project books only $60 p$ each.
In Book 1 (XAO1B) 120W rms MOSFET Combo-Amplifier • Universal Timer with 18 program times and 4 outputs. Temperature Gauge - Six Vero Projects
In Book 2 (XAO2C) Home Security System - Train Controller for 14 trains on one circuit Stopwatch with multiple modes - Miles-per-Gallon Meter
In Book 3 (XA030) ZX81 Keyboard with electronics • Stereo 25W MOSFET Amplifier Doppler Radar Intruder Detector - Remote Control for Train Controller
In Book 4 (XAOAE)* Telephone Exchange expandable up to 32 extensions. Ultrasonic Intruder Detector - Frequency Counter 100 Hz to 500 MHz - Remote Control for 25 W Stereo Amplifier

MORE GREAT KITS FROM MAPLIN

Matinée Organ (see box above)
Spectrum Synthesiser. Full details in book XH56L. Price $£ 1.00$ 3800 Synthesiser $\}$ Full details in book XF11M. Price $£ 2.00$ 5600 S Synthesiser $\}$
150W Power Amp Kit LW32K. Price £17.95*
75W MOSFET Power Amp Kit LW5 1F. Price £11.49*
50W Power Amp Kit LW350. Price f14.95*
15W Power Amp Kit Y 043 W . Price $\mathrm{f6.45*}$
8W Power Amp Kit LW36P. Price $£ 4.45^{*}$
-Construction details with kit. [Power supply not included - details with kitt.

All mail to:
P.O. Box 3. Rayleigh, Essex SS6 8LR

Tel: Sales (0702) 552911 General (0702) 554155
Shopsat:
159 King St . . Hammersmith, London W6. Tel: 01-748092E
284 London Rd., Westcliff-on-Sea, Essex. Tel: 107021554000
Lynton Square, Perry Barr, Birmingham. Tel: (021) 3567292
Note Shops closed Mondays

ELECTRONIC SUPPLIES LTD

[^0]: C IPC Magazines Limited 1982. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: Cash, P.O. or cheque with order. Orders
 under F 10.00 add 60 n Access $\&$ B/card orders by phone to Haywards Heath (0444) 454563. Delivery by return.

[^2]: Postage 63.50 on computers, 44.50 on printers ond 50 p on other orders. Please odd VAT to all prices except those sections morked with a
 Overseas ond officlal credit orders wekome.

