PRACTICAL

pomprehensive HOME ALARM SYSTEM

* Infra-ied * iadar * Ultrasonio

ALSO INEIDE...
Comotro
AMPLIFIER

YOUR GUIDETOTHE WORLD OF MICROPROCESSORS MICRO-PROFESSOR

Alowcost tool for learning, teaching \& prototyping.

Mlero-Professor is a low-cost $Z 80$ based microcomputer which provides you with an interesting and inexpensive way to understand the world of microprocessors.

Micro-Professor is a complete hardware and software system whose extensive teaching manual gives you detailed schematics and examples of programme code. A superb learning tool for students, hobbyists and microprocessor enthusiasts, as well as an excellent teaching aid for instructors of electrical engineering and computer science courses.

The Mlcro-Professor is much more than a teaching device. With it you can do bread boarding and prototyping, designing your own custom hardware and software applications with Z80, 8080 and 8085 compatable code

The standard $2 K$ bytes of RAM is expandable to $4 K$, and the standard 2K bytes of ROM can be increased to 8 K .

All this plus built-in speaker, a cassette interface, and sockets to accept optional CTC/PIO. Bus is extendable.

As well as being an exciting learning tool, the Micro- Professor is a great low-cost board for OEM's.

Micro-Professor
E $50-\underbrace{5}_{+p \& p}$
SSB-MPF Speech Synthesizer Board $\mathbf{E 6 9 . 9 5}+\mathbf{p}$ \&
A vocabulary of up to 400 words based on the TM5 5200 chip
EPB-MPF EPROM Programming Board £84.95 + p\& p
For all +5 V IKB/2KB/4KB
EPROMS. Read/Copy/List/ Verify Capability
BASIC-MPF TIny
Baslc $\mathbf{£ 9 . 9 5 + \mathrm { p } \& \mathrm { p }}$

Micro-Professor is a trade mark of Multitech Industrial Corporation. 280 is a trade mark of Zilog Inc.

Flight Electronics Ltd.

Complete the coupon today! Please allow 28 days for delivery.
Please send me: Price Oty p\&p
Micro-Professor
£79.95 £2.95
£69.95 E2.95 Address
EPB-MPF board $£ 84.95 \quad £ 2.95$
BASIC-MPF E9.95 0.50p
Total
I enclose cheque/P.O. for $£$
Mail order only • Trade enquiries welcome • Bulk order discounts • Prices include VAT

FIlght House, Quayside Rd, Southampton, Hants SO2 4AD
Tel: (0703) 34003/27721. Telex: 477793

CONSTRUCTIONAL PROJECTS

COMPREHENSIVE HOME ALARM SYSTEM by Gilbert Davies 14
ULTRASONIC-8 metre range, operating at 32.7 kHzRADAR-30 metre range, operating at 10.687 GHzINFRA-RED-18 metre range, covering 12 zones
COMBO AMPLIFIER Part 1 by Fred Judd and E. A. Rule 26
The preamplifiers: their performance and construction
MICROSYNTH Part 3 by A. R. Bradford MSc 36
Setting up the synthesiser with test programs
AUTOMATIC PHOTOGRAPHER by M. J. A. Turner 42
If it moves-snap it!
AUDIO TEST SET Part 2 by Michael Tooley BA and David Whitfield MA MSc 48
Conclusion, including measurement examples
GENERAL FEATURES
MICRO-PROFESSOR REVIEW by Michael Tooley BA 32
An in-depth analysis of this Z80 based teaching computer
SEMICONDUCTOR UPDATE by R. W. Coles 47
Featuring CY360 TL068 SAB8256A
STRICTLY INSTRUMENTAL by K. Lenton-Smith 54
The wonder of Casio 56
Hardware and software ideas for PE computer projects
INGENUITY UNLIMITED 62
Courtesy light delay-CB "Roger Bleep"-Loudspeaker de-thump
NEWS AND COMMENT
EDITORIAL 11
NEWS \& MARKET PLACE 12
Including Countdown and Points Arising
INDUSTRY NOTEBOOK by Nexus 25
News and views on the ever changing electronics industry BAZAAR 41,52,55
Free readers' advertisements
SPECIAL OFFER-CASSETTES 45
Regular bargain offer on high quality cassettes
SPACEWATCH by Frank W. Hyde 61
Extra-terrestrial activities chronicled64PATENTS REVIEW
Ingenious ideas from around the world
OUR SEPTEMBER ISSUE WILL BE ON SALE FRIDAY, AUGUST 13th, 1982(for details of contents see page 40)

[^0]| | n. 68 n 16p; 100 n . I 50n 20p; 220 n 30p; 330n 42p; 470n 52p; 680n 60p; $1 \mu \mathrm{~F}$ 68p; 2μ |
| :---: | :---: |
| | |
| | |
| | |
| | |
| | |
| | |
| | |

POLYESTER RADIAL LEAD CAPACITORS: 250V; $10 \mathrm{n}, 15 \mathrm{n}, 2$
220n $10 \mathrm{p} ; 330 \mathrm{n}, 470 \mathrm{n} 13 \mathrm{p} ; 680 \mathrm{n}$ 19p; $1 \mu 23 \mathrm{p} ; 1 \mu 540 \mathrm{p} ; 2 \mu 246 \mathrm{p}$.

TAG-END TYPE: 64V: 4700 245p; 3300 198p; 2200 139p; 50V: 3300 ${ }^{154}$; 2200 110p; 40V: 4700 160p; 25V; 4700 98p; 10.000 320p; 15.000 345p.	

	SIEMENS multilayer miniature capacitors. $250 \mathrm{~V}: 1 \mathrm{nF}, 1 \mathrm{n} 5,2 \mathrm{n} 2.3 n 3,4 \mathrm{n} 7$ $6 n 8,8 n 2,10 n, 12 n, 15 n, 22 n$ $7 p ; 18 n, 27 n, 33 n, 47 n 8 p ; 39 n$ $7 p ; 18 n, 27 n$ $56 \mathrm{n}, 68 \mathrm{n} 9 \mathrm{p}$. 10V: 100n. 120n. 10p; 150 n $11 p ; 220 n 13 p ; 330 n 18 p$ $47 \mathrm{On} 23 \mathrm{p} ; 680 \mathrm{n} 30 \mathrm{p} ; 1 \mu \mathrm{~F} 34 \mathrm{p}$ $2 \mu 250$ p.

POTENTIOMETERS: Carbon Track. 0.25 W Log \& Linear Values.	
500Ω, $1 \mathrm{~K} \& 2 \mathrm{~K}$ (LINONLY) Single $5 \mathrm{~K} \cap-2 \mathrm{Mn}$ single gang $5 K \Omega-2 M \Omega$ single gang D / P switch $5 \mathrm{~K} \Omega-2 \mathrm{M} \Omega$ dual gang stereo 1WWire-wound 50n-20K	p
	88
	115p
SLIDER POTENTIOMETERS$025 W$ logand linear values 60 mm track	
$5 \mathrm{~K} \Omega-500 \mathrm{k} \Omega$ Single gang	
lok Ω-500K Ω Dualgang 11	110p
PRESETPOTENTIOMETERS 0 1W50』-2.2M Mini Vert. \& Horiz. 7p 0 25W 100 - 3 3M Ω Hariz. larger 10p 0 25W250 月-4 7Mnvert. 10p Precision Cermet IW 100 - 100K 90p	
RESISTORS-HI-ztab, Miniature, 5\%, Carbon. $100+$ price applies to Resistors of each type not mixed values.	

MASHMR THFCHRONICS NOW! The PRACHICAT WEY!

This new style course will enable any one to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a selfemployed servicing engineer
All the training can be carried out in the comfort of your own home and at your own pace. A tutor is avaitable to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.

You will do the following

- Build a modern oscilloscope

Recognise and handle current electronic components
Read,draw and understand circuit diagrams - Carry out 40 experiments on basic electronic circuits used in modern equipment

- Build and use digital electronic circuits and current solid state 'chips
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V $\mathrm{Hi}-\mathrm{Fi}$ and microprocessor/computer equipment.

NewJob?NewCareer?NewHobby?Getinto Electronics Now!

THE MULTI-PURPOSE TIMER HAS ARRIVED
Now rou con run your contral hasting, lighting, hiffigystem and lots more with lurt one programmabie timer. At your selection it is
designed to control four mains outputs independently, switching on and ott at pre-set times over at 7 day cycle, 0.8 . to control your central heating lincluding difforent switching times for weekends). jusi connect il 10 your
clock will do the test.
FEATURES INCLUDE
0.5^{-}LED 12 hour displey.
Dey of weak, smi pm and output stetus indicators 4 rero vohage switched mains outputo. sarbotra meina operation Barrery beckup zaves stored programmes and continues Umo keoping during power failuren. (Bettern not suppiled) 18 programme time sets.
Poworiul "Everrday" function anabling output to switch every dey but use only one time rat. Uneful "sioep" function-turns on output for one hour. Immedistoly or atter a socecified time interval. 20 function keyped for programme entry PLASTIC CASE.
PREADY DRMLED
(Kit includes all components, PCB, assembly and programming instructions).

HOME LIGHTING KITS

Theve tive contarn all neccasaniy componentis and full institctions cont ol up 10300 w . of lighting
TDR300K Remote Control $\mathbf{\Sigma 1 4 . 3 0}$ MK6 Transmitter for above $\mathbf{£} \mathbf{4 . 2 0}$ TO300k Touchdimmer $£ 7.00$ TOEK Extonsion kit for 2 -way $\mathbf{E} \mathbf{2 . 0 0}$
Lo3cok Rotery Controlled $£ 3.50$
Dimmer

MINI KITS

mol temperature CONTROLLEATHERMOSTAT
 nexar. Solth State Relay Io oos. for swicthing motors, lights.
heoter heoters. evc. trom logic. Opto
isoletod with zero volto isoleted with zero voltego switching
Supplitid withoul triac MK3 BAR/DOT DSPLAY Displevzs an onslogua voltage on lineser 10 alement LED display as
ber or wingle dol. dideal for ber or single dol. dideol for tharmo
measers, evevi indicators. ofc. May bo macres. ove indicators, elc. May bo displeys Requires 5 -20V wupply 4.50 MK A PAOPORTONAL TEMPERATURE CONTROUER Based on the SLAM1, euro voltage switch, this kin mey bo wired to form,
-burst
fire
power controlier, onsbling the tempearature of on enclosure to be maintained to within

 8ased on the ZN1034E Timer IC this
kit will switch s mains I Ios on for off)
 hrre. Longer or shorer poriosed mar
be toolised oy minor component

§ 3-NOTE DOOR CHIME Л δ Baved on the SABOBOO IC the kit is suppied with all
components.
induduing lounpoaker, printed circuit compornente mdill box $195 \times 71 \times 35 \mathrm{~mm}$) ond full instructions. Requires only a PP g gV battery and push-mwitch to compiere AIIDEA PROUECT FOR EEGINNER

For a detailed booklet on remote control - send us 30p \& SAE today

"OPEN-SESAME"

The XK 103 is a generol purpose infre-rad transmither rocoiver with one momentary (normally open) resiay con for controlling motorised garege doors end two auxillor Outputa for drivegarage lighte of a renge of up to 40 h The unit sizo has numerous applications in the home to
 Or disabled persons
The kir comprises os maint powered roceiver, of lou requiring a gV bemiery and one opto-isolatod solid state switch kif for interfecing the recciver to msins spoliencos. As with all our kis. Uninstructions are supptied.

Only £23.75

Extra Solid State Switch Kits (XK104) and transminere (X105) can be supplied.
XK104 £2.40 XK105 £10.50

mxe simple infra rev REMOTE CONTROL KITS

Pul sod infre red source complote with hand-hald plastic box. Requires a gv batter.
\qquad
ALL PRICES
EXCLUDE VAT

THE

CONTROME

 This Now Remotrol CENTREto 16 different appliances antenables you to control coded pulses of your armchair. The in the house from by receiver into the mains wirine transmitter injem supply and modules connecteding which are receivets Receivers used to switch on thed the same received keyboard are adollewsed by appliance addresse mains pushing, followed by an by means of addressed mitter buttons can becom or off command 16 -way programe includes becomo rather boring and. Sinc heating your fave computer interface so trans morning, electric blanket micro to switch you can OF TME POC. Without rew, make your switch lights components fisilities. The Kir ir house. JUST in the pro-drilled bor one transmiter includes all PT THINK

DISCO LIGHTING KITS DL 1000 k
This valures reatures a bi-directions
sequence, spead of sequerice and frequency of direction change, being variable by
means of potentiometers and mearorates an incorporates dimming control. Only $£ 14.60$ A lower cont version of the above, featuring undirectional channal sequence with speed variable by means of a preset pot. Outputs switched only at mains zero crossing point Optional opto input DLA1 Only £8.00 Allowing sudio ("beat")
\rightarrow light response.

DVM/ULTRA SENSITIVE

 THERMOMETER KITThis now design is based on
the ICL 7126 fa lower power version of the ICL7106 chipl and a $31 / 2$ digit liquid crysta
display. This kit will form the display. This kli will form the
bessie of a digital multimeter

1949

 only a tew additional resist dalls supplied), or a sensitive digital thermometer $\left(-50^{\circ} \mathrm{C}\right.$ to $\left.+150^{\circ} \mathrm{C}\right)$ reading to $0.1^{\circ} \mathrm{C}$. The basic kir has asensitivity of 200 mV for a full scale renting automatic polarity indication scale reading. low power requiremention and an ultra rypical battery life from a standard 9 V PP3 when used 8 hours a day. $£ 15.50$

THE KEY TO YOUR SECURITY IS IN OUR LOCK

If the thought of cor thievos. house broskers or people tor
electronic equipment upsets you, we have just ine kif for you
Our ELECTPONIC IOCK XIT inciw have just no kill for you. 750 mA aund corvect sequance. This gives over 5,000 possible combinations Ithe sequence is prewired and may be easily changed by mesns of a small plug and socket. A "SAVE" function is also avalable or for servicing as the op at 5 V to 15 V d.c.
At only $\mathbf{£ 1 0 . 5 0}+$ VAT, it will make a smaller hole in your pocke
than a bunch of revs
Electric Lock Mochonism Suitable tor use with existing $£ 12.50$ door locks and above electronic lock kin.

24 HOUR CLOCK/APPLIANCE TIMER KIT
 \section*{KIT}

Switches any appliance up to lkW on and off et present times ance per

CT1000K Basic Kit

ox $156 / 131$

 MER\qquad 614.90
$£ 17.40$ on and off ef present times once per
day. Kit contains: AY-5-1230 IC. day. Kit contains: AY-5-1230 IC.
0.5^{-}LED display, mains suoty, display drivers, switches, LEDs, triacs. PCBs and full instructions.
SHORT FORM CATALOGUE - send SAE $\left(6^{\prime \prime} \times 9^{\prime \prime}\right)$. We also stock Vero, Books, Resistors, Capacitors, Semi-Conductors etc.

Overseas Customers
Add $£ 8.50$ (Europe), $£ 4.00$ (elsewhere) for pep. Send S.A.E. for further STOCK DETAILS.
Goods by return subject to availability 9 E. 9 am to 5 pm (Mon to Fri) 9am to 5 pm (Mon to
10 am to 4 pm (Sat)

Technical Training in Radio, Television and Electronics

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the field of electronics-now it can be your turn. Whether you are a newcomer to the field or already working in the industry, ICS can provide you with the specialised training so essential to success.

Personal Tuition and Guaranteed Success

The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed'

CITY AND GUILDS CERTIFICATES

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Basic Electronic Engineering (C\&G/ICS)
Radio Amateurs

CERTIFICATE COURSES

TV \& Audio Servicing
TV, Radio and Audio Engineering
Radio \& Amplifier Construction
Electronic Engineering*
Computer Electronics*
Industrial Electronics*
Radio Frequency Electronics*
Introduction to Microprocessing*
Electrical Contracting \& Installation

- Qualify for IET Associate Membership

POST OR PHONE TODAY FOR FREE BOOKLET
Please send me your FREE School of Electronics Prospectus
Subject of Interest
Name
Address

01.6229911 (All Hours)

PRINTERS

SEIKOSHA GP100A dot matrix printer, fult graphics double width characters, up to
$10^{\prime \prime}$ wide paper, self testing paratlel interface $£ 189+$ Carriage $£ 6$.
EPSON MX80 Friction and Tractor 9×9 matrix 80 CPS bi-directional with logic seeking, variety of charac.
MX80 $\mathrm{F} / \mathrm{T} \mathbf{1} \mathbf{£ 3 3 5}+\mathbf{£} 6$ carr. MX80 $\mathbf{f} / \mathrm{T} \mathbf{2}$ with High Res Graphics $£ 340+£ 6$ carr. NEW MX80 F/T3
This upgraded version of MX80 F/T2 also includes new features like super \& sub scripts, auto underlining and improved graphics facilities as well as asthetics.

Price only $£ 360+£ 6$ cart

FLOPPY DISC DRIVES

Single TEAC FD-50A in cabinet with PSU
$\mathrm{f190}+\mathrm{f} 6$ Carr.
Two TEAC FD-50A in cabinet with PSU
Single Orive for Apple II
Siemens FOD 100-5 Drive housed in attractive case. Drive complete with track zero micro switch. motor control pcb, read, write \& control electronics + cable $£ 270$ $+\mathbf{f} 6$ carr.

MONITORS

BMC $12^{\prime \prime}$ Green Screen 18MHz Bandwidth
$\mathbf{5 1 0 0}+\mathbf{f 6}$ carr.
BMC 14" Colour Monitor (25×40 chars.)
£240 + £6 carr.

ACORN ATOM

BASIC BUILT $8 K+2 K £ 135$ EXPANDED $12 K+12 K £ 180$ $5 K$ RAM + 8K ROM + COLOUR CARD £175
(p\&p £3/unit)
ATOM PSU $£ 7.00$ ($£ 1.20 \mathrm{p} \mathrm{\&} \mathrm{p}$)
1 K RAM (2×21141)
A5V Regulated PSU £22 (p\&p £2)
F.P. ROM $£ 20$ NEW COLOUR CARD £32
ATOM DISC PACK: $5 \frac{1}{1 \prime}$ drive with controller card and $4 K$ DOS ROM. PSU to run drive and $12 \mathrm{~K}+12 \mathrm{~K}$ ATOM. Fult instruction and operating manual. $£ 299+£ 7$ carr. SEND FOR OUR ATOM LIST FOR DETAILS ON ATOM SOUND BOARD, ATOM VISIUN \&

SOFTWARE

SOFTY II EPROM PROGRAMMER

The complete microprocessor development system for both Engineers and Hobbyists. You can develop programs, debug, verity and commit them to EPROMs. Will accept most +5 E EPROMs. Can also be used as a ROMULATOR. Full review in September '81 P.E. Buit unit complete with PSU and TV lead f 169 .

MENTA

A sophisticated 280 development system and trainer. Direct interface 10 TV \& cassette recorder, Powerful keyhoard assembler \& program debugging facility - ideal for both engineers and students. Audible feedback on keyboard input. Menta + PSU + TV Lead £115.

PLEASE ADD 40p p\&p \& 15\% VAT
(Export no VAT p\&p at Cost)
Orders from Government Depts, \& Colleges etc. welcome. BARCLAYCARD \& ACCESS CARDS ACCEPTED

Detaifed Price List on request.
Stock items are normally by return of post.

TRANSFORMERS

30 V RANGE $(2 \times 15 \mathrm{~V}$ tapped secs) Sec Volt $3,4,5,6,8,9,10,12,15,18,20,24$
30 V or $12 \mathrm{~V}-0.12 \mathrm{~V}$ or $15 \mathrm{~V}-0.15 \mathrm{~V}$. 30 V or $12 \mathrm{~V}-0.12 \mathrm{~V}$ or $15 \mathrm{~V}-0.15 \mathrm{~V}$.
 a vailable $5,7,8,10,13,15,17,20,33,40$ or

UK Postages. Overseas extra. Voltages stated are on full load Continuous Ratings 60 VOLT RANGE $(2 \times 30 \mathrm{~V}$ upped 1.20 secs) Pri $120 / 240 \mathrm{~V}$. Voltages avaliable $6,8,10,12$. $516,18,20,24,30,36,40,48,60$ or $24 \mathrm{~V}-0-24 \mathrm{~V}$ or $30 \mathrm{~V}-0-30 \mathrm{~V}$.
\qquad Ref
122
126
127 avaliable $5,7,8,10,13,15$.
$20 \mathrm{~V}-0.20 \mathrm{~V}$ or $25-0-25 \mathrm{~V}$

	Amp		
Ref.	50 V	25 V	P\& ${ }^{\text {P }}$
102	0.51	1	44.13
103	1	2	65.03
104	2	4	68.69
105	3	6	C10.36
106	4	8	C14.10
107	6	12	C18.01
118	8	16	624.52
119	10	20	630.23
109	12	24	C36.18

MAINS ISOLATORS

Pri 0.120; $0.100-120 \mathrm{~V}(120,220,240 \mathrm{~V}) \mathrm{sec}$ $0-\mathrm{CT} .120 \mathrm{~V}$ twice.

AUTO TRANSFORMERS
Voles our: 105, 115, 190, $200,210,220$ 230. 240, for step up or step down.

Ref	VA (Wats)	Price	P\&P
113°	15	62.39	61.20
64	80	64.85	81.40
4	150	66.48	61.60
67	500	C13.30	62.24
84	1000	622.70	62.80
93	1500	C28.17	O.A
95	2000	642.14	O.A.
73	3000	671.64	O.A.
80	4000	693.01	O.A.
57	5000	C108.30	O.A.
-0, 1	20. 240.		

Barrie Electronics Ltd.
 3, THE MINORIES, LONDON EC3N IBI

 TELEPHONE: 01-488 3316/7/8NEAREST TUBESTATIONS: ALDGATE \& LIVERPOOL ST.

OPEN FRAME MONITORS AVAILABLE FOR OEM'S The 'PRINCE'of Monitors offers better Monitoring. 24 MHz Bandwidth-ensures a clear crisp display. Available with P4 White P31 Green AND L1 ORANGE

Scan: 625 Ilines $/ 50 \mathrm{~Hz}$. Deflectlon: 110°. Active raster: $240 \times 172 \mathrm{~mm}$ Bandwldth (3dB): $10 \mathrm{~Hz} \cdot 24 \mathrm{MHz}$ (at 3 dB poinisl. Character display: 80 characters $\times 24$ IInes. Horlzontal frequency: $15625 \mathrm{~Hz} \pm 0.5 \mathrm{KHz}$. Verical irequency: 50 Hz . Horizontal linearliy: $\pm 3 \%$. Vertical current): $13 \mathrm{kV} \pm 0.5 \mathrm{kV}$. Power drain: 30 Watt approx. Voltage supply: 110 V A.C. $50 \mathrm{~Hz} / 220 \mathrm{~V}$ A.C. $-50 \mathrm{~Hz} / 240 \mathrm{~V}$ A.C. $50 \mathrm{~Hz} /$ \pm spiv: upon request. VIdeo Input: $2 \times \operatorname{BNC}-$ or CiNCH - or PL 259, (composite video) negative svnc, input $0.5-4 \mathrm{~V}$ p.p. across 75 Ohms. X.Ray radiation: conforms to I.E.C. Spec. No. 65. Overall dimenslons: $320 \times 270 \times 265 \mathrm{~mm}$. Weight: 7 Kg . approx. Amblent tempersture: $0-45^{\circ} \mathrm{C}$
OTHER CROFTON PRODUCTS INCLUDE: Computer perlpheral equipment. Frame grabber. Floppy disk drlves. Floppy dlsks. Computer power supplles, C.C.T.V. monitors, Uncased monitors, Monltor P.C.B's., Cathode ray tubes, VHF/UHF modulators, Video switchers. Video distrlbution ampllfiers, Camera housings, Pan and rilt units, Camera lens, Camera tubes. Printed circult board service.

CROFTON ELECTRONICS LTD

35, Grosvenor Road, Twickenham, Middx, TW1 4AD.
Telephone: 01-891 1923/1513 Telex: 295093 CROFTN G

Bigger and Better for 1982

the colourful Wilmslow Audio brochure - the definitive loudspeaker catalogue!

Everything for the speaker constructor - kits, drive units, components for HiFi and PA.
50 DIY HiFi speaker designs including the exciting new d8 Total Concept speaker kits, the Kef Constructor range, Wharfedale Speakercraft, etc.
Flatpack cabinet kits for Kef, Wharfedale and many others.

> Lowest prices - Largest stocks

* Choose your DIY HiFi Speakers in the comfort of our * two listening lounges
(Customer operated demonstration facilities)
* Ample parking *

Send $E 1.50$ for catalogue
(cheque, M.O. or stamps-or phone with yourcredit card number)

- Access - Visa - American Express accepted * also HiFi Markets Budget Card.

0625529599

35/39 Church Street, Wilmslow, Cheshire SK9 1AS

Lightning service on telephoned credit card orders!

Siapid

Tel： 020636412
Hill Farm Industrial Estate Boxted
Colchester Essex CO4 5RD

LINEAR ICLT106 790 LM35

 cmos 1000
$4{ }^{4} 4001$
4002 4006
4007
4008
4009
4010
$\star 40$
$\star 401$
4012
$\$ 4$
$\$ 01$
401
$\$ 4$

\section*{| A |
| :--- |
| 0 |
| |}

路

TRANSISTORS

U4

－ 4
 44

－48
－
4
絽嫤
＊0

（

筑品品

switches

Submin toggle
SPST 55 ．SPDT 60p．
SDPDT 50p． Miniature toggle
SPDT 80 p ．SPDT centre off 90p． SPDT 90 p ．DPD centre of 100 p ＊Minlature DPDT sllde 12D．
Rotary type adiustable siop break 22p
Rotary ype adjusiab essiop
1912W 2P6W 3P4W 4P3W
DIL switches

The Rapid Guarantee

ELECTRONIC HOBBIES FAIR

As promised last month some more news on our exciting new exhibition for all interested in the various forms of our hobby. This new venture will take place at the recently built Alexandra Pavilion (in the grounds of the now burnt out Alexandra Palace) from the 18th to 21 st of November this year. The new pavilion has been hailed as one of the best exhibition venues in the country. It is London's third largest exhibition hall, has masses of parking space, is easily approached by road, British Rail, underground or bus and has a free shuttle bus service to ferry visitors from Alexandra Palace station. For wives/girlfriends there is the added attraction of the nearby Wood Green Shopping City, one of the largest centres in the U.K., although we are sure they will find plenty to interest them in the special exhibits at the Fair.

Although planning is still in the early stages we anticipate many special exhibits, showing all aspects of the application of electronics in hobbies, broadcasting, forces communications and weapons systems, entertainment, vehicle technology etc. etc. We also expect to attract trade stands dealing with Amateur Radio, Computing, Radio

Control and CB, in addition to the "regular" electronic hobby suppliers.

Next month we will be starting a monthly Electronic Hobbies Fair information section within News and Market Place to lead up to the event and to keep readers up to date on every aspect of the Fair. We already have the backing of some of the biggest names in the electronic hobby retail business.

COMPUTING

Probably the fastest growing electronic hobby area at the present time is that of computing and many companies have expanded into the computer business or have been launched into it. Like any booming market it attracts all types of new venture and small supplier, as well as the large, established names. There are the usual supply problems and the inevitable failures in the business. There are also the dubious areas where companies sail close to the law.

One area where we do not entirely approve of some practices is in the "user clubs" or "groups", set upoften by hobbyists-to assist each other in their hobby. This is to be commended and is in the spirit of "amateur
electronics" but when such user groups are run as businesses for the financial benefit of the founders, possibly without the members or subscribers being aware of such a situation, we wonder just how ethical it all becomes?

Comments from readers, members and proprietors of such organisations are welcome for our Readout sectionl

FRONT COVER

Just in case you are wondering about this month's front cover, which is a departure from our normal illustration of projects, it's not just a fancy design. The photograph shows the view looking into the faceted mirror used on the Infra-Red Burglar Alarm. One of the three projects in our Comprehensive Home Alarm System article. (The "T" piece holds the pyroelectric sensor).

PRICE

We must reluctantly announce an increase in cover price next month. We know only too well the effects of increasing prices, but believe PE will continue to represent good value.

EDITOR Mike Kenward

Gordon Godbold ASSISTANTEDITOR
Mike Abbott TECHNICALEDITOR
David Shortland PROJECTS EDITOR
Jasper Scott PRODUCTION EDITOR

Jack Pountney ART EDITOR
Keith Woodruff ASSISTANT ART EDITOR
John Pickering SEN. TECH. ILLUSTRATOR
Isabelle Greenaway TECH. ILLUSTRATOR
Jenny Tremaine SECRETARY

Technical and Editorial queries and letters
(see note below tol:
Practical Electronics,
Westover House,
West Quay Road, Poole.
Dorset BH15 1JG
Phone: Editoriaf Poole 671191
We regret that lengthy technical onquiries cannot be answered over the telaphone
ADVERTISEMENT MANAGER
SECRETARY Christine Pocknell $\}$ 01-261 6676 AD. SALES EXEC. Alfred Tonge 01-2616819
CLASSIFIED SUPERVISOR Barbara Blake 01-2615897
AD. MAKE-UP/COPY Ian Sweeney 01-2616601

Queries and letters concerning advertisements to: Practical Electronics Advertisements, King's Reach Tower,
King's Reach, Stamford Street, SE1 9LS Telex: 915748 MAGDIV-G

Letters and Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in PE. All letters requiring a reply should be accompanied by a stamped, self addressed envelope, or addressed envelope and international reply coupons, and each letter should relate to one published project only.

Components and p.c.b.s are usually available from advertisers; where we anticipate difficulties a source will be suggested.

Back Numbers

Copies of most of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, at $£ 1$ each including Inland/Overseas p\&p. Please state month and year of issue required.

Binders

Binders for PE are available from the same address as back numbers at $£ 4.60$ each
to UK or overseas addresses, including postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 13.00$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH. Cheques and postal orders should be made payable to IPC Magazines Limited.

BBC introduce packaged learning for TV engineers

The BBC's Engineering Training Department have recently produced a revolutionary method of training students in the fundamentals of television engineering.

Based on the "packaged-learning" concept, the students work at their own pace using purpose-designed demonstration equipment, supported by specially written learning texts. Packaged learning has been a feature of BBC Engineering Training for some time, but because of the high cost of broadcast television equipment, it has not been possible to teach television fundamentals in this way until now.

The overall package, which consists of two main racks of equipment, plus four supporting books, and a VHS tape, covers the fundamentals of television engineering. Scanning is covered first, together with synchronisation and interlace. Picture signal processing is covered next including clamping and gamma correction. The associated equipment enables demonstration of many aspects covered in the text.

A colorimetry section deals with the principles of colour vision and the simulation of spectral colours using additive mixing techniques. The separation of a scene into its red,
green and blue components is considered and the analysis required of a camera determined.

The third and final section of the package describes the coding and decoding of the colour television signal, with specific reference to PAL system 1. In addition to the text this section is supported by its own demonstration equipment.

The total package comes in three parts: i) the basic television principles equipment ii) the colour fundamentals demonstration equipment iii) the support literature and video cassette tape. Each part is easily identified, but is not necessarily self-supporting. For example, the literature requires the appropriate equipment for the student to work with.

It is possible that the package may be made available to colleges, institutions, industry and other broadcasting organisations in the near future. In comes complete except for monitors and oscilloscopes. At present there are no plans to produce SECAM or other television standard versions.

TIMETOLISTEN

It's gimmicks time again Not content with the abundance of Walkman-size cassette players and radios, an American company JS\&A has gone one step further and produced a digital watch that also incorporates an AM radio. The Advance Digital Watch Radio is sold complete with lightweight samarium cobalt headphones, and the radio is said to run for over 100 hours before a new battery is needed (don't worry, the watch department has a separate battery).

Doubtless it won't be long before a similar machine is available in this country, and if the price stays about the same $1 \$ 49$ in America), it could mean serious competition for the 'Walkman' market.

uW Cosi Loblc PRobe

Stotron Ltd inform us that they can now supply a new, low cost, high performance, 10 MHz Logic Probe from Sabtronics-the LP-10. Operation is high speed and pulses as narrow as 50 ns are stretched to be easily detected. 'Floating' input levels, caused by open lines, bad sockets and dirty connectors, etc, are easily detected by this logic probe. There is a high impedance input of $100 \mathrm{k} \Omega$ which avoids circult loading.

Two l.e.d.'s indicate the presence of a logic ' 0 ' or a logic ' 1 '. The relative brightness of these two l.e.d.'s, in a rapidly switching signal, indicates the amount of time spent at each logic state. Invalid logic outputs fail to light either of the l.e.d.'s. Logic transitions are detected and displayed on a third l.e.d.

Clip leads, supplied with the unit, allow the approximately 35 mA required to power the probe to be supplied from the circuit under test.

The LP-10 is priced at $\mathbf{£} \mathbf{2 4 . 9 5}$ plus VAT and p \& p, and is available from Stotron Ltd, 72 Blackheath Road, London SE10 8DA (01-691 2031).

Items mentioned are available through normal retail outlets unless otherwise specified. Prices correct at time of going to press.

Briefly...

Hobbyists in the Thornton Heath area will be pleased to hear of a new company which has recently been launched. CMC Electronics supply a range of components, hi-fi, televisions, telephone answering machines and technical books. As well as the retail side of their business, CMC also provide a repair service. Opening hours are 9 am to 6pm, Monday to Saturday.

CMC Electronics, 70 Brigstock Road, Thornton Heath, Surrey (01-684 2188).

Component suppliers Rapid Electronics have recently moved from their original premises in Eynsford to new tailored premises at Boxted, Colchester, Essex. Their new catalogue which is priced at 45 p (or free with orders over £5) is now available and contains over 2,500 lines. Among new lines in stock are Denco coils, l.c.d.s, cremet presets and an extended and very comprehensive CMOS and linear range.

Personal shoppers are welcome at the premises which are open from 9 am to 6 pm Monday to Friday, and from 9am to 5pm on Saturdays. Rapid Electronics, Hill Farm Industrial Estate, Boxted, Colchester, Essex CO4 5RD (0206 36412).

NEW FLUKE DMMs

Two new $4 \frac{1}{2}$ digit handheld DMMs are the latest models to emerge from the Fluke stable.

Fluke say that the 8060A is virtually a handheid testlab, providing direct frequency measurement, dB computation and relative/offset modes in addition to traditional multimeter functions. A simplified sister machine, the 8062A, provides the same high performance, but without the frequency and dB facilities.

The 8060A is the first general purpose handheld DMM to be able to measure modem and communications equipment performance, and as such should be of particular interest to engineers working in the field of computer communications.

Key features include a true RMS capability up to 100 kHz , voltage ranges from 10 mV to 1000 V , autoranging frequency measurements to 200 kHz , current to 2 amps, resistance to 300 Mohms, audible continuity detection, conductance and diode test facilities. Readings can be displayed in volts, relative dB or dBm referenced to $\mathbf{6 0 0}$ ohms. Using the relative function, any reading can be offset to zero and only the deviation is dis-
 played on the l.c.d.

To achieve all this performance in a handheld DMM, Fluke have used microcomputer techniques and have even deaigned and manufactured their own custom CMOS LSI circuit. The built-in microcomputer not only controls all the functions and computes the readings, but also allows sophisticated self-testing to be carried out automatically every time it is used.

The 8060A is priced at $£ 270$ and the 8062A at $£ 210$. Further information from Fluke (GB) Ltd., Colonial Way, Watford, Herts. WD2 4 TT (0923 40511).

Hountidunl...

Please check dates before setting out. as we cannot guarantee the accuracy of the information presented below.

BAEC Amateur Electronics Jul. 17-25. Penarth Esplanade, S. Glamorgan. B9
Harrogate International Festival of Sound \& Video Aug. 14-17. Exhibition Cntr. and hotels. X
BEX Manchester Sept. K
Personal Computer World Show Sept. 9-12. Barbican Cntr, London. M
Laboratory London Sept. 14-16. Grosvenor Ho. Park Lane. E
ElectroWEST Sept. 14-16 Bristol Exhibition Centre Q
Two Counties Fair Sep. 15-18. Plymouth Ex. Centre, Millbray, Plymouth, Devon. T
IBC Sept. 18-21. Metropole, Brighton. N
Microprocessors In Audiology Sept. 24 A7
Holographic Techniques Sept. 30-Nov. 28. Light Fantastic Gallery, Covent Gdn. A8
BEX Cardiff Oct. K
Viewdata Oct. 12-14. Wembley Conf. Centre. 0

Video Show Oct. 16-18. West Cnt. Hotel. Z 1
Computer Graphics Oct. 19-21. London. 0
Testmex Oct. 26-28. Wembley Conf. Centre, London. T
Compec Nov. 16-19. Olympia, London. Z1
Hobby Electronics Fair (taking exhibitions for the amateur a bold step forward!) Nov. 18-21 Alexandra Palace, London Z1
ElectroNORTH Dec. 7-9 Harrogate Supercentre Q
Continuous events at the National Microprocessor and Electronics Centre (Nr. Tower of London) L1
Christmas Holography (and sales items) Dec. 2-Mar. 83. Light Fantastic Gallery, London. A8

A7 Institute of Acoustics, \mathbb{Z} 031-225 2143
A8 Holographic Exhibitions $\mathbb{〔} 01-8366423$
B9 BAEC, Penarth ${ }^{8}$ 0222-707813
E Evan Steadman, Saffron Walden 079922612
K Douglas Temple, Bournemouth 020220533
L1 World Trade Cntr. $\&$ 01-488 2400
M Montbuild © 01-486 1951
N IEEE
O Online, Northwood, Middx. 808224671
Q Exhibitions For Industry, f 088334371
T Trident Tavistock $\varnothing 08224671$
X Exhibition \& Conference Services 8042362677
Z1 IPC Exhibitions, Sution \& 01-643 8040

The three alarms featured an sisis ancle are ath kased around one p.c.b. design which dan acoom o d e aly one of the systems.

The first is a Doppler shift ultrasonic alann with 32.7 kHz transducers driven from a crystal oscillator, resulting in no alignment or interaction problems with other such alarms: The alarm has a range adjustable up to 8 metres.

The second is a Doppler shift radar alarm based on the Mullard CL8960 module which operates on 10.687 GHz and has a range up to 30 metres. With suitable weatherproofing it can be used outdoors-some consideration must be given to the fact that rain is a moving object in the eyes of radar.
To operate this Radar module a Home Office licence is required which lasts for 5 years and costs a few pounds.

The third is the latest development in the alarm field-an infra-red heat sensor with a sensitivity peaking at human body heat. This device detects a change in heat and gives an electrical signal output. As the device only responds to a change in heat a multi-faceted mirror (US Patent 3703718) or a Fresnel lens is required to concentrate the detected area into zones, so that anyone entering these zones can be detected.

The above alarms all have their own merits for particular uses:-

	ULTRASONIC	RADAR	INFRA-RED
Range	8 metres	30 metres	15 metres
Field of coverage	full field	full field	zones
Indoor	yes	yes	yes
Outdoor	no	yes	yes
Detection	movement	movement	heat
Draughts	poor	good	good
Cost	low	high	med
Consumption at 12Vd.c.	15 mA	150 mA	10 mA
(typical in standby)			

CIRCUIT DESCRIPTION (ULTRASONIC)

The circuit diagram for the Ultrasonic Alarm is shown in Fig. 1. The mains supply feeds T1 via R. 1 and its secondary
fee 41. This unstabilised voltage is fed to IC1 and stabilised to 12 V d.c. and further decoupled by C2 and C16.

IC2 forms a crystal oscillator, R3 and R4, R5 and the crystal form the feedback components, whilst C3 terminates the crystal loading capacitance, C4 aids oscillator start up. The output of the oscillator at pin 3 is a 32.7 kHz square wave which is filtered by R6 and C5 to remove harmonics before driving the Ultrasonic transducer X1
The Ultrasonic sound is received by X 2 , then decoupled by C18 feeding IC3, the 32.7 kHz amplifier. R7, R8, R9 and C6 form the biasing for IC3. VR1, R10 and C7 form the feedback components to determine the gain and response of the stage-VR1 being the sensitivity control.

D6, R11, R12 and C8 form a diode detector to remove the 32.7 kHz and recover the Doppler frequency envelope which is fed to IC4, a high gain Doppler frequency amplifier. The gain is set by feedback components R14, R13 and C9 and selected for optimum performance for 32.7 kHz ultrasound.

The output of IC4 feeds a bootstrapped diode pump detector consisting of C10, D7, TR1, C11 and R15 which converts the Doppler frequency into a d.c. level then buffered by IC5.

Ultrasonic Alarm

Fig. 1. Complete circuit diagram of the Ultrasonic Alarm Unit. ${ }^{\bullet}$ Not required if the panic button is not used.

SPECIFICATIONS

CONTROL SECTION

1 second invalid movement delay
20 second delay on leaving
(IR 0.1 sec$)$

10 second delay on entry
2-3 minutes alarm-on time
10 second inhibit after alarm has ended
Timing activated at power switch on/external control
Panic button facility will instantly sound the alarm and latch until reset-this can be used for other applications, i.e. pressure mats, fire detector etc. The output is designed to easily accommodate common switching and alarm switching. A s.p.c.o. centre off keyswitch provides all switching:-
Position (1) Detection 'OFF' panic active
(2) Detection 'ON' panic active
(3) Panic reset only-MUST NOT be left in this position

ALARM UNITS
ULTRASONIC:
RADAR:
INFRA-RED
8 metres range - full field coverage 30 metres range-full field coverage 15 metres range- 12 zones covering 80 degrees

Both the ultrasonic and radar are most sensitive to objects moving in front of and towards the unit. The sensitivity will be reduced when the unit is approached from the side. The infra-red however is most sensitive to humans moving across the field and this must be considered when installing the alarm.

When setting up the alarm the red l.e.d. on the front of the unit should not flicker; if it does the unit is detecting a signal-either re-site the unit or reduce the sensitivity.

All units can drive a solid state sounder rated at 12 V d.c. at 25 mA directly which can therefore be driven from the alarm's own Ni-Cad power in the event of power failure. These high efficiency sounders can produce sound levels from 95 to 110 dB at 1 metre which should be enough to deter all but the most persistent intruder.

CIRCUIT DESCRIPTION (RADAR)

The circuit diagram for the radar system is shown in Fig. 2. The mains supply feeds T1 and its secondary feeds D1-D4, a full wave rectifier, before being smoothed by C1. This unstabilised voltage is fed to IC1 and stabilised to 12 V d.c., and further decoupled by C2 and C16.

As the radar module requires +7 V d.c. within 0.1 V d.c. at 150 mA, IC2, VR2 and R28 form an adjustable voltage regulator set by VR2. This voltage is adjusted BEFORE the CL8960 is connected to prevent damage to the module and then finely adjusted when connected, measuring the voltage at the module end to compensate for any volt drop in the supply leads. C22 is connected directly onto the module using short leads and provides local rail decoupling. R29 provides correct biasing for the mixer diode, again mounted on the module.
The Doppler output 'AF' is terminated by D15 and C20 to prevent surges being induced in the mixer diode, then decoupled by C18 to IC3, the Doppler frequency pre-amp. R7, R8, R9 and C6 form the biasing for IC3. VR1, R10 and C7 form the feedback components to determine the gain of this stage and select a suitable response for the 10.687 GMz radar module. VR1 is the sensitivity control. R11 and C8 form a low pass filter to remove frequencies not required

Radar Unit
before further amplification by IC4, the 2 nd Doppler frequency amplifier, the gain being set by feedback components R14, R13 and C9.

The output of this stage feeds a bootstrapped diode pump detector consisting of C10, D7, TR1, C11 and R15 (the ratios of C10 to C11 and the time constant C11 and R15

Fig. 3. Complete circuit diagram of the Infra-Red Alarm Unit. R16 is 10k
chosen for Doppler frequencies for the 10.687 GHz radar) which converts the Doppler frequency into a d.c. level then buffered by IC5.

PYROELECTRIC CERAMIC INFRA-RED DETECTOR

The development of infra-red detectors that are both rugged and sensitive such as pyroelectric detectors makes them ideal for use in intruder alarms. Each detector consists of two pyroelectric ceramic elements mounted in a TO5 transistor header complete with silicon filter window coated for maximum transmission at 10μ, blocking radiatlon and visible light below $6 \cdot 5 \mu$.

Incorporated within the package is an impedance matching JFET preamplifier.

THE PYROELECTRIC EFFECT

The pyroelectric effect, exhibited by all ferroelectric materials, has been utilised to develop a series of infra-red detectors. Pyroelectric material exhibits a strong temperature sensitive spontaneous electric polarisation. Any infra-red energy absorbed by the material will increase its temperature and produce an associated change in electric polarisation. Before the effect can be utilised, the normally random oriented electric dipoles which exist in the bulk of the material, must be 'poled'. The effect of this operation is

to line up the dipoles along one axis in the crystal.
In many single crystal materials, poling must occur along specific crystallographic axes. Ceramic materials can be poled along any axis, the dipoles themselves as near as possible along this axis in the randomly oriented crystallites.

Depending on the material type, poling is normally perfor-
med at an elevated temperature. The process involves applying an electric field to the material and allowing it to cool under the influence of the field. Heating the material reduces the coercive field and hence the voltage that must be applied for poling to occur. The electric field is applied by depositing electrodes on the opposite faces of the material and applying a potential across them. As a result of the poling process a permanent polarisation of the crystal exists, resulting in an excess of one particular charge at the surface of the material. This charge is captive within the structure of the material, but the equal and opposite charge on the electrodes are free to move. Thus the electrode which was positive during the poling process acquires a positive charge.

A pyroelectric element, which makes use of its selfpolarisation effect, produces a change in surface charge with temperature which is detected by the integral JFET to produce a varying current output.

APPLICATIONS OF PYROELECTRIC DETECTORS

A healthy human being dissipates approx 100 watts of detectable radiation. Thus, with suitable collecting optics, it is possible to detect a man well over 100 metres distance. In this project the mirror used has 6 facets and a range of 15 metres which is more in keeping with domestic requirements. The peak emission from a human being, resulting from the natural body temperature, occurs at around $10 \mu \mathrm{~m}$ in the infra-red range. Passive infra-red alarm systems respond to the combined movement and emission of the intruder which provides a varying radiation signal at the detector. Faceted mirrors or Fresnel lens are used to sub-divide the protected area into separate zones. Movement of the intruder between zones provides the required modulation of the infra-red signal. In practice, broadband thermal detectors are used in these systems and anti-reflection coated germanium windows are included to restrict the response to $8-14 \mu \mathrm{~m}$ spectral region. Exclusion of radiation below $7 \mu \mathrm{~m}$ avoids such potential sources of false alarms as sunlight and car headlamps, which can be transmitted through external windows. Pyroelectric detectors respond readily to varying infra-red signals but not to a steady radiation level.

Prototype Infra-Red Alarm

CIRCUIT DESCRIPTION (INFRA-RED)

The circuit diagram for the infra-red system is shown in Fig. 3. The mains supply feeds T1 via R1 and its secondary feeds D1-D4, a full wave rectifier, before being smoothed by C1. This unstabilised voltage is fed to IC1 and stabilised to 12 V d.c., and further decoupled by C2 and C16.

When a variation in IR heat is sensed ($9 \mu \mathrm{~m}$ to $14 \mu \mathrm{~m}$) the output current of the detector varies, producing a voltage change across load resistor R27 (C19 and C20 form interference suppression).

This small voltage change is then decoupled by C18 to IC3, a very low frequency amplifier. R7, R8, R9 and C6 form the bias for IC3 whilst VR1, R10 and C7 are the feedback components to determine the gain of this stage, VR1 being the sensitivity control.

R11 and C8 form a low pass filter to remove frequencies not required before further amplification by IC4, a second very low frequency amplifier, the gain being set by R14, R13 and C9.

The output from IC4 feeds a bootstrapped diode pump detector consisting of C10 (two back to back electrolytic capacitors), D7, TR1, C11 and R15, the ratios of C10 to C11 and time constant C11 to R15 chosen for the infra-red detector.

The invalid movement delay formed by R16 and C12 has been reduced to prevent filtering of 'peak' waveforms encountered with pyroelectric detectors.

CONTROL SECTION (COMMON TO ALL ALARMS)

The output of IC5 is normally low and the output of IC6 pin 11 is normally high, driving the l.e.d. D14 via R17 and D8. As movement is detected the output of IC5 rises, reducing the resultant drive to the l.e.d., reducing the brightness indicating movement. If movement and therefore the voltage at IC5 pin 6 is sufficient to reach the threshold of IC6 pin 13, the output of the gate at pin 11 will go low, turning off the I.e.d. D8 is included so that the I.e.d. will not be reversed biased for reliability.

Therefore the I.e.d. indicates:-
(1) That power is connected.
(2) Aids correct setting of sensitivity control-important to prevent false alarms. (Decreasing brightness with movement.)
(3) Indicates the trip threshold of the alarm.
(4) Functions as a walk test-with the alarm in the 'OFF' mode.
(5) The l.e.d. is off when alarm is tripped to be inconspicuous.

Gates a and b of IC6 form a bistable which is held in the reset mode via R26, D13 and R25 when control terminal 'C' is at 12 V d.c. When terminal ' C ' is open circuit C15 charges via D12 and R23 (the delay on leaving) until the lower threshold of gate a pin 9 is reached, allowing the bistable to be set by pin 13 going high.

When pin 13 goes high pin 10 goes high, charging C13 via R19 (the entry delay) when the threshold voltage of gate c is reached the bistable formed by IC6 gate c and d is set, causing the output at pin 3 to go high, driving TR3 via R20. TR3 turns on and drives the relay RLA via D10. D11 suppresses the back e.m.f. of the relay coil whilst D10 forms an 'OR' function when more than one unit is used, such as in multiple alarm systems.

As the output of IC6 pin 3 is now high C15 is discharged via R23 and R24 (the alarm on time) until the threshold of

IC6 pin 9 is reached, resetting the bistable, causing its output at pin 11 to go high feeding IC6 pin 1 and resetting the output of the bistable, turning off TR3 and RLA. Pin 10 goes low, discharging C13 via R19 when the threshold of IC6 pin 6 is reached IC6 pin 4 goes high, removing the inhibit formed by R18 and D9 (alarm inhibit) at pin 13 IC6.

The bistable formed by IC6c and d is normally in its reset state, pin 4 high and pin 3 low. TR2 is normally turned off. If terminal ' P ' is connected to terminal ' E ' by an external button TR2's base goes low causing it to turn on. Its collector drives the base of TR3, limited by R21, turning it on causing the relay to be activated and instantly sounding the alarm and will latch until reset. If the external button is released TR3 now holds on TR2. By connecting 'P' to '+' TR2 loses its base drive from TR3 and in turn cancels the alarm. C14 and C17 are included to prevent spurious spikes from tripping the panic.

The panic reset switch MUST NOT be left in this position as this will cause the output transistor to overheat and die as the alarm in this position is also in the Ultrasonic active mode and could be tripped via movement. When battery back up is used R2 trickle charges the $2 \times$ PP3 Ni-Cad cells when power is connected and in the event of power failure D5 supplies power for the battery to C1.

When battery back up is required with the radar system, because of the higher current requirements, the PP3's have insufficient capacity. In this case it is suggested that a more powerful external battery is connected, i.e. 12 V car battery. For such a system it is worth while trickle charging a car battery and powering the alarm system from the battery feeding the alarm unit's 12 V rail directly, therefore dispensing with the transformers etc.

SWITCHING

All alarm switching is done at 12 V d.c., an s.p.c.o. centre off keyswitch provides the control of the alarm whilst a normally open push button operates the panic. If an alarm test is required a normally open push button will sound the alarm but will not latch and will sound the alarm as long as the button is pressed.

Prototype Radar Alarm

Prototype Radar Alarm

PRECAUTIONS WHEN HANDLING CL8960

The microwave module requires some cautionary remarks because the mixer contains a diode of extremely small proportions to enable it to respond to the 10.687 GHz frequency. If the mixer or the lead between it and the amplifier is touched with a measuring lead or an object which has not been grounded to the module metalwork, the mixer may be destroyed by static discharge. The mixer is supplied with protection which should be left permanently in situ.

The following procedure should be adopted when connecting the module to the amplifier.
(1) Use screened lead to the main p.c.b. keeping the unscreened ends short (about 12 mm).
(2) Connect the OV rail (E) to the module metalwork OV tag.
(3) Clip a lead between the module metalwork and the soldering iron bit to equalise potentials.
(4) If the soldering iron is not earthed, clip a second lead between the module and earth.
(5) Touch the live input lead from the amplifier on the module metalwork just prior to connection.
(6) Make the connection to the mixer while maintaining one finger on the module metalwork. Use an iron hot enough to solder quickly to avoid prolonged heat resulting in damage.
(7) Do not measure the voltage at the mixer diode directly-a 10 k resistor must be fitted to the end of the lead and touched on the metalwork prior to the measurement.

CONSTRUCTION

Any one of the three alarm units can be constructed on the p.c.b. design shown in Fig. 4. The components layouts are shown in Figs. 5, 6 and 7. The prototype ultrasonic alarm unit was housed in a standard ABS box with the two transducers mounted inside 20 mm grommets. Before inserting any components into the case the p.c.b. mounting holes should be drilled along with the adjustment hole in the bottom of the case for VR1. Five 10 mm holes should be drilled in the rear of the case for the mains and output leads. These holes should be fitted with 10 mm grommets. The centre of the front panel should be drilled to accommodate the indicating l.e.d.

Fig. 4. P.c.b. design for all three alarm units

Fig. 5. Component layout for the Uitrasonic Alarm

COMPONENTS							
Resist				R28 R29	-	$\begin{aligned} & 100 \mathrm{k} \\ & 220 \mathrm{k} \end{aligned}$	-
	Ultrasonic	Radar	Infra-Red	All re	stors $\frac{1}{4}$ W 5\% car	bon	
R1	1k	Link	1k	Capacitors			
R2	2 k 2		2k2				
R3	10 M	Link	-				
R4	10 M	Link	-		Ultrasonic	Radar	Infra-Red
R5	220k	-	-	C1	$470 \mu 25 \mathrm{~V}$ elect	$470 \mu 25 \mathrm{~V}$ elect	$470 \mu 25 \mathrm{~V}$ elect
R6	100	Link	-	C2	$220 \mu 16 \mathrm{~V}$ elect	$220 \mu 16 \mathrm{~V}$ elect	$220 \mu 25 \mathrm{~V}$ elect
R7	10 k	220k	470k	C3	12p ceramic	-	-
R8	220k	220k	220k	C4	$22 \mu 16 \mathrm{~V}$ elect	-	-
89	220k	220k	220k	C5	10 nc ceramic	10 n ceramic	-
R10	470	470	10k	C6	$22 \mu 16 \mathrm{~V}$ elect	$22 \mu 16 \mathrm{~V}$ elect	$22 \mu 16 \mathrm{~V}$ elect
R11	4 k 7	220k	1 M	C7	10 n polyester	$47 \mu 16 \mathrm{~V}$ elect	$47 \mu 16 \mathrm{~V}$ elect
R12	100k	-		C8	100 n polvester	100n polyester	100 n polyester
R13	100	470	10k	C9	$22 \mu 16 \mathrm{~V}$ elect	$47 \mu 16 \mathrm{~V}$ elect	$47 \mu 16 \mathrm{~V}$ elect
R14	470k	470 k	1 M	C10	10 n polyester	$22 n$ polyester	$2 \times 22 \mu 16 \mathrm{~V}$
R15	4 M 7	10 M	470k				elect
R16	10M	10k	100k	C11	100 n polyester	100n polyester	$22 \mu 16 \mathrm{~V}$ elect
R17	1k	1k	1 k	C12	100 n polyester	100 n polyester	100 n polyester
R18	10k	10k	10k	C13	$22 \mu 16 \mathrm{~V}$ elect	$22 \mu 16 \mathrm{~V}$ elect	$22 \mu 16 \mathrm{~V}$ elect
R19	470k	470k	470k	C14	1 On ceramic	10 n ceramic	1 On ceramic
R20	2k2	2k2	2k2	C15	$22 \mu 16 \mathrm{~V}$ tant	$22 \mu 16 \mathrm{~V}$ tant	$22 \mu 16 \mathrm{~V}$ tant
R21	10k	10k	10k	C16	$22 \mu 16 \mathrm{~V}$ elect	$22 \mu 16 \mathrm{~V}$ elect	$22 \mu 16 \mathrm{~V}$ elect
R22	10k	10k	10k	C17	10 n ceramic	1 On ceramic	10 n ceramic
R23	1 M	1 M	1 M	C18	in ceramic	1 n ceramic	$22 \mu 16 \mathrm{~V}$ elect
R24	10 M	10 M	10 M	C19	-		1 On ceramic
R25	10k	10k	10k	C20	-	10n ceramic	1 On ceramic
R26	10k	10k	10k	C21	1 On ceramic	10 n ceramic	10 n ceramic
R27	-	22k	22k	C22	-	10 n ceramic	-

Fig. 6. Component layout for the Infra-Red Alarm

E6914]
Fig. 7. Component layout for the Radar Alarm

Semiconductors

	Ultrasonic	Radar	Infra-Red
D1-D4	1 A bridge rect.	1 A bridge rect.	1 A bridge rect
D5	1 N 4002	-	1 N4002
D6	1N4148	Link	Link
D7	1 N4148	1 N4148	1N4148
D8	1 N4148	1N4148	1N4148
D9	1 N4148	1 N4148	1N4148
D10	1 N 4002	1 N 4002	1N4002
D11	1N4148	1N4148	1N4148
D12	1N4148	1N4148	1N4148
D13	1 N4148	1 N4148	1N4148
D14	3 mm l.e.d.	3 mm l.e.d.	3 mm l.e.d.
TR1	BC549	BC549	BC549
TR2	BC559	BC559	BC559
TR3	BC549	BC549	BC549
IC1	78L12	78 L 12	78L12
IC2	LM555	78105	-
IC3	LF351N	LF351N	LF351N
IC4	741	741	741
IC5	741	741	741
IC6	4001	4001	4001

Potentiometers

	Ultrasonic	Radar	Infra-Red
VR1	100k	$100 k$	1 M
VR2	-	$1 k$	-

Miscellaneous

T1 15 V at $200 \mathrm{~mA} \quad 15 \mathrm{~V}$ at $200 \mathrm{~mA} \quad 15 \mathrm{~V}$ at 200 mA RLA LCNIN-E LCNIN-E LCNIN-E case, grommets, M3 hardware, p.c.b., mounting box, PP3 battery clips, p.c.b. mounting terminals. s.p.c.o. keyswitch.

Special components

Ultrasonic system

XL1	32.7 kHz sub-min
X1	T32-18
X2	R32-18
Radar system	
CL8960 radar module	

Infra-Red system
Pyroelectric dual element detector (PCID)
Faceted mirror
Fresnellens

Constructor's Note

Complete sets of kits are available from GJD Electronics, 105 Harper Fold Road, Radcliffe Road, Manchester.

After the components have been assembled onto the p.c.b. carefully check the tracks for any solder splashes and then check the orientation of the semiconductors and the electrolytic capacitors. The leads to the transducers should be kept as short as possible if unscreened cable is used. If screened cable is used then ensure the braid is connected to the OV terminal on both transducers.

The prototype radar alarm unit was mounted in a larger ABS box with both the p.c.b. and radar module mounted onto the case lid. The components and leads should be mounted onto the radar module as shown in Fig. 8. A thin layer of polythene should be placed between the module and base to prevent the ingress of dirt and moisture.

Mounting holes for the p.c.b., the two presets and the l.e.d. should be drilled before the components are mounted on the board.

The infra-red alarm was also fitted into a large $A B S$ box with both the board and the faceted mirror mounted on the lid. After the lid has been drilled for the p.c.b. mounting holes, l.e.d. and mirror the p.c.b. can be assembled.

The mirror should be placed in position using double sided adhesive tape. The pyroelectric detector is fitted into a plastic spider to position it correctly at the focal point of the mirror. With the mirror used an 80 degree horizontal angle is obtained over six zones. The dual element pyro doubles this coverage to twelve zones. The mirror can be protected using black polythene although some types may reduce the sen-

Fig. 8. Wiring diagram of the Radar Module. ${ }^{\text {PThese }}$ components are supplied ready fitted.
sitivity of the unit. Because the infra-red band used is relatively new to this application commercially made filters are not readily available.

INSTALLATION-ULTRASONIC

The alarm is prone to both vibration and air currents therefore the following points should be observed to avoid false triggering.

DO NOT place the alarm on a vibrating surface.
CLOSE all doors and windows.
DO NOT point the alarm at a radiator or convector heater.
Try to install the unit away from direct sunlight because of its heating effects.
Try to install the unit away from telephone bells as they can produce high frequency sound which could trigger the alarm.

Dogs, cats, insects and automatic washing machines should be taken into consideration along with warm air central heating.
In practice best results have been obtained with the unit at floor level as air currents are minimal and foot movement is detected. Objects in front of the unit will limit its range.

When setting up the unit with no movement the red l.e.d. should not flicker; if it does the sensitivity is set too high or air currents are being detected-always use the minimum sensitivity required as over sensitivity could give rise to a false alarm. When adjusting the sensitivity externally a clockwise rotation will increase the sensitivity-a very small screwdriver is required for this adjustment.

Fig. 9. Test waveforms (Ultrasonic)

Internal view of the Ultrasonic Alarm

66920
Fig. 10. Wiring diagram for multi-zone protection. A slave unit is powered from a master and does not require its own p.s.u.

TEST VOLTAGES (NOMINAL)

	ULTRASONIC	RADAR	INFRA-RED
Supply	15 V d.c.	15 V d.c.	15 V d.c.
IC2 pin 3	5 V	-	-
IC3 pin 7	12 V	12 V	12 V
IC3 pin 6	6 V	6 V	6 V
IC4 pin 6	5.5 V	6 V	5 V
IC5 pin 6	3 V	3 V	3 V
IC6 pin 11	12 V	12 V	12 V
IC6 pin 10	0 V	0 V	0 V
IC6 pin 3	0 V	0 V	0 V
IC6 pin 4	12 V	12 V	12 V

VR1 fully anticlockwise

'C' connected to the supply (no movement)

TERMINAL CONNECTIONS

'L' Mains live feed
' N' Mains neutral
'E' Earth—also the OV rail of the alarm
' P ' When connected to ' E ' instantly trips the alarm and latches until reset
'P' When connected to "+' instantly cancels the alarm
'C' When connected to ' + ' the Ultrasonic is inactive, but in the walk test mode-panic active
' C' When left open circuit activates the Ultrasonic after the 20sec leaving delay

* + Provides external power up to 12 V d.c. at 50 mA for solid state sounders
'S' When connected to ' E ' activates the alarm sounder for as long as the connection is made-also provides expansion facility.
'R' Normally open relay contacts for switching loads up to 3 A at 240 V a.c. resistive
The above switching is all done by a s.p.c.o. centre off keyswitch with separate panic and alarm test buttons.

INSTALLATION-RADAR

The sighting of the radar alarm must be done with care as walls and windows can be partially transparent to radar, therefore the following points should be observed:

Consider rain, snow, birds if the alarm is to be used outside with suitable weatherproofing.

Water in plastic drain pipes.
Effects of wind on objects.
Fluorescent lights produce ionised gas which radar reflects.

Fig. 11. Connections to a slave unit
Radar reflects off metal objects such as radiators, garage doors, etc. and this effect can be used to increase the area covered by the alarm and also for 'seeing' around corners.

INSTALLATION-INFRA-RED

As most of the heat from a human body comes from the head (when it is clothed) the best position for the unit is around eye level; individual tests will soon reveal the correct height. This still enables pet lovers to protect their home even with the family pet roaming around the house. Because draughts and open windows do not readily cause false triggering open fronted premises and warehouses can also be protected.

If an electronic fence is required a narrow twin beam using a Fresnel lens (suitable for transmission of $10 \mu \mathrm{~m}$) can be used to focus the heat onto the pyro. This lens eases weatherproofing problems as the enclosure can now accommodate the lens as a weatherproof window.

Although the pyro itself does not detect draughts it should be protected from direct draughts to reduce any imbalance between the two pyro elements contained within the TOS style can. The pyro is also microphonic and should not receive any mechanical shocks which could give rise to false triggering.
To prevent excessive heat, do not allow direct sunlight to fall onto the pyro or mirror.

Gerresis $\mathfrak{g l o l}$ POWERTRAM Gannesis 31101子゙セuibs

Hydraulic Powered Microprocessor Controlled Robots

With prices starting below $£ 1,000$ the Genesis range of general purpose robots provide a first rate introduction to robotics for both education and industry．Each has a self－contained hydraulic power source，which enables loads of several pounds to be smoothly handled．The system operates from a single phase 240 or 120 V AC supply or a 12 V DC supply．The machine can be supplied with up to 6 axes each of which is fully independent but capable of simultane－ ous operation．Position control is achieved by means of a closed－loop feedback system based around a dedicated microprocessor．Movement sequences can be entered，stored and replayed by use of a hand held controller， alternatively the systems can also be interfaced to an external computer via a standard RS 232C link．

Example prices and specifications

Genesis S101
Base： $19.5^{\prime \prime} \times 11^{\prime \prime} \times 7.5^{\prime \prime}$
Lifting capacity： 1500 gm
Arm lift：6．6＂
Weight： 29 Kg
4 axis model in kit form $\mathbf{£ 3 9 0}$
5 axis model in kit form $£ 445$
5 axis model READY BUILT $\mathbf{F} 790$

Genesis P101

Base： $19.5^{\prime \prime} \times 11^{\prime \prime} \times 7.5^{\prime \prime}$
Lifting capacity： 2000 gm
Arm lengths between axles： $14.0^{\prime \prime}$
Weight 34 Kg
4 axis model in kit form $£ 495$
6 axis model in kit form $\mathbf{£ 5 9 5}$
6 axis model READY BUILT E950

COMPLETE SYSTEMS AS SHOWN IN PHOTOGRAPH ABOVE

Genesis S101

4 axis system in kit form $\mathbf{£ 8 3 5 . 5 0}$
Genesis P101
4 axis system in kit form $£ 74200$
6 axis system in kit form $\mathbf{\$ 8 5 2 . 0 0}$
6 axis system READY BUILT £1525．00

As featured in this journal November＇81－April＇82 issues．

£12k Off!

We are all suckers for the supposed 3 p or $5 p$ off a bar of soap or a packet of cornflakes in the local supermarket but when exhorted to save $£ 12,000$ even the most cynical shopper feels compelled to investigate.

This is the enticing offer made by Piher, the big name in small resistors. Certainly an eye-catching ploy but reading the smaller print we discover that the saving is per million resistors on assembled cost.
Productivity and cost-cutting is the name of the game on production lines so production managers are keenly examining Piher's offer and analysing the argument advanced for using resistor modules.

The modules consist of factoryassembled (by Piher) resistor arrays in 14 or $16-\mathrm{pin}$ dual-in-line packages containing. respectively, 7 or 8 carbon-film resistors to the customer's specified values. Piher's $\mathbf{£ 1 2 , 0 0 0}$ is the saving obtained through inserting 125,000 -resistor modules into PCBs compared with inserting a million individual resistors one at a time.

Certain assumptions are made in Piher's calculations which will probably surprise the electronic hobbyist unfamiliar with large-scale electronics assembly or production costings. First is the assumption that the assembly worker is paid $£ 2.25$ per hour wage but with factory overheads added the true cost to the company is $£ 9$ per hour. Second is that resistors cost $£ 4$ per thousand. Third is that on average throughout the day 360 resistors are manually inserted per hour. On these assumptions the total cost of buying a million resistors and manually inserting them in PCBs is $£ 29,000$ of which $£ 25,000$ is labour cost.

With the same resistors pre-assembled into 16 -pin packages the line assembler inserts only 140 units per hour but as each module contains eight resistors the insertion rate is much faster per resistor and labour cost per million resistors falls to $£ 8,000$, a saving of $£ 17,000$. But whereas the discrete million resistors cost $£ 4,000$
the cost of the same million pre-assembled into modules is more than double at $£ 8,750$. This, however, still represents a net gain of $£ 12,250$, handsomely meeting Piher's claim of $£ 12,000$ 'off'.

Of course there are a lot of variables in individual cases and Piher thoughtfully provide a set of graphs on which production managers can plot their own labour, overhead and other costs to determine the benefit, if any, he may expect to obtain.
I have described the philosophy of resistor modules in some detail because it so ably illustrates the facts of life in competitive industry. Clearly the equipment manufacturer stands to gain. Equally clearly the resistor manufacturer gains because he has doubled the cost of his product and so increased his turnover and profit. The end customer stands to gain if the equipment manufacturer passes some part of his saving on to the purchaser.

It looks as if everybody wins. But not quite. As labour costs have tumbled by two-thirds it suggests that only one assembler is now required rather than three. The resistor manufacturer has increased his workload, of course, but as the modules will be machine-assembled he needs only a marginally increased workforce, a tiny fraction of one of the two workers made redundant. The transfer of work between the two companies does not result in an equal transfer of employment.

Look-Alikes

Piher's low-cost resistor modules are available to anybody, the more the merrier as far as Piher is concerned. The cost benefits, whether more or less, depending on individual circumstances, are universal.

When it comes to an end-product a typical aim is exclusivity. The commonly used protection is to take out a patent but this is not always fully effective. There are many direct infringements bringing good business to lawyers and much ingenuity is often applied to getting round existing patents by would-be copiers.

Thus, Fluke's novel 8020 Series of handheld digital multimeters which appeared in 1978 were unique. Their 'brain', was a custom-built IC chip which gave them exclusivity. Or so Fluke thought at the time. But similar instruments soon appeared on the market and today some 25 manufacturers are making look-alikes using what is said to be an almost identical but commercially available chip.

Fluke's response has been to set up their own chip-making plant in the USA in the hope that a new digital multimeter due for launch about now will retain the marketing edge conferred by a Fluke-designed, Flukemanufactured IC. By bringing the whole operation in-house the possibility of leak of chip design to outsiders is minimised. No doubt the new design will attract copiers but this time a look-alike competitor model could take longer to achieve and probably not worth while in time or money.

Despite the rash of imitations a Fluke spokesman claims that the company holds over 30 percent of the market in hand-held digital multimeters and expects to win a much larger slice with the new model.

On the Beam

The laser, in its early days very much an invention in search of an application, has turned out to be more versatile than any of us ever imagined and has generated plenty of new business.
Who would have thought that the ladies, God bless 'em, would be queueing up for laser rejuvenation courses at beauty salons? Both pulsed and CW lasers are in use with rival claims for success in revitalising skin tissue. One treatment depends on the laser beam being directed at acupuncture points, so bringing space-age technology and an ancient Chinese therapy into newly fashionable conjunction.
Those most ardent perfectionists, banknote forgers, have latched on to the merits of the laser beam colour scanner in the printing industry. Highest quality counterfeit notes produced by this technique are appearing in several countries and, according to Interpol, are difficult to detect. In the UK the $£ 10$ and $£ 20$ denominations are most commonly forged. You have been warned!

Defence

The political and military confrontation over the Falkland Islands is bound to have a long term effect on the defence electronics industry. This was the first ever major naval engagement in which the whole range of modern defence electronics has been fully deployed in real, rather than simulated, battle. Moreover, deployment was in the most testing physical environment. What equipment worked well, badly or not at all will be the subject of months of study. How efficient was the man-machine interface when the man himself was weary after weeks at action stations and constant alarms? How reliable the communications and command network? How effective the electronic countermeasures?

The analysis will be rigorous, the lessons one hopes honestly faced and acted upon. But as well as performance analysis of the equipment in the South Atlantic environment there is certain to be a reappraisal of overall defence strategy which will probably result in greater emphasis on the conventional surface fleet and less on the subsurface nuclear deterrent.

Defence electronics is a key element in the industry as a whole and is likely to be stimulated rather than retarded by the Falklands experience.

Indicators

Meanwhile, despite the crisis, all the economic indicators showed continued improvement. Shares, balance of payments, strength of sterling remained on an upward trend. Investment continued with Honeywell putting up $£ 1.3$ million for a new keyboard plant in Scotland as just one example. Employment remains the domestic trouble spot. That $£ 1.3$ million, for instance, creates only 40 new jobs initially, with a potential of 100 jobs, but the probability is that they will be filled by internal transfers as productivity increases elsewhere in Honeywell.

ATOP performance "combo amplifier" costs a good deal of money these days. The design offered here can be constructed for about half the price of an amplifier with similar facilities and comparable performance, in fact the performance is better than comparable with others at present available since it is based on the Practical Wireless "Winton" high fidelity amplifier design by E. A. Rule.

The facilities available with the PE combo amplifier are as follows:

1) Completely self-contained.
2) Maximum power output: 50 watts-single 8 Ohm speaker/100 watts--two 8 Ohm speakers in parallel.
3) Twin preamplifier channels with mixing facilities.
4) Bass and treble controls both channels.
5) Auxiliary preamplifier for high level signals.
6) 6 dB bass lift $(2 \mathrm{OHz})$ for full frequency range-hi-fi range.
7) Inputs for microphone or guitar on each channel.
8) Output/input sockets for external accessories such as Wah and Fuzz units etc.
9) Speaker system tested and proved in an Anechoic chamber to hi-fi standards.
10) Output stages use latest and virtually indestructible power MOS-FET's.

PRE-AMP SPECIFICATION

Mic. inputs
Suitable 200 ohm or higher 2 mV for max output

Guitar input Impedance approx 100 Kohms 30 mV for max output

Aux. input
Impedance approx 100 Kohms 30 mV for max output

Accessories socket OUT

J5 or J7 low Z 200 mV

Accessories

socket IN
J6 or J8 low Z 150 mV
Signal to Guitar and mic inputs- 60 dB relative to
Noise

Signal to Auxiliary input -75 dB relative to maximum Noise Distortion factor Comparable with that of power amplifier

Tone

controls $\pm 10 \mathrm{~dB} 50 \mathrm{~Hz}-10,000 \mathrm{~Hz}$.

Frequency

response

Flat $20-20,000 \mathrm{~Hz}$ (with S 1 at +dB bass recovery). See responses in Fig. 2

THE CIRCUITRY

A block diagram of the system is shown in Fig. 1. The primary inputs on each of two channels are for microphone $(200$ Ohms or higher) and/or guitar. The arrangement therefore allows one microphone and one guitar to be used simultaneously at any set level, or, of course, two microphones or two guitars.

The Accessories Links (one for each channel) allow for the insertion of wah-wah, fuzz unit or reverb units etc. on either channel. The following stage (IC2) provides full bass and treble lift or cut (approx $\pm 10 \mathrm{~dB}$) after which the channel outputs are mixed into IC3 (one half). This stage, and the auxiliary amplifier (half of IC3) each have a facility for a +6 dB bass lift at 20 Hz to compensate for speaker roll-off. The combined outputs from IC3 then go to the main amplifier which is capable of driving one 80 hm bass $\mathrm{mid} /$ range speaker system at 50 watts or two similar speaker systems in parallel at 100 W atts.

PREAMPLIFIER PERFORMANCE SPECIFICATION

The full circuit for the preamplifier stages is given in Fig. 3 in which IC1 is the initial stage for the microphone and guitar inputs on each channel. The output (each channel) is taken to an accessory output socket (JK5 and JK7) for feeding wah, fuzz, phasing or reverb units etc. with outputs being returned to the input(s) of IC2, and which also has the tone control networks in feedback between output and input. The outputs from IC2 are taken via a mixing network VR3-VR4 and R15-R16 to the final stage (IC3B) which has provision

for a bass lift (S1) of 6 dB at 20 Hz to make the overall frequency response including speaker system virtually flat between 20 and $20,000 \mathrm{~Hz}$. The remaining half of IC3 is the auxiliary input amplifier with feedback adjusted gain to provide an input sensitivity of 300 mV suitable for line output from a tape recorder or similar source. This also has provision for the 6 dB bass lift at 20 Hz . The combined outputs of channel 1 and 2 (via IC3b) and the auxiliary amplifier (IC3a) are taken directly to the power amplifier unit which will be fully dealt with in Part 2.
NOTE: R21 and R41 in the preamplifier circuit have been deleted and the capacitors (68p) marked CX1, 2 and 3 have been added.

THE CIRCUIT BOARD

Layout and component positions for the preamplifier printed circuit board are given in Fig. 4. Note that R21 and R41 as in the circuit diagram Fig. 3 have been replaced by wire

> A three part project describing the following:

1) Pre-amplifiers performance and construction
2) Power amplifier and PSU construction
3) Cabinet construction

Fig. 3. Full circuit of the P.E. Combo Amp. pre-amplifier stages

Fig. 4. Printed circuit layout of preamp

Fig. 5. Component overlay of preamp

Fig. 6. Location of input/output sockets, panel controls and wiring. (Circuit board is moun-
ted on pillars) ted on pillars)

Fig. 7. Details for drilling of front panel

COMPONENTS

Capacitors

PREAMPLIFIERS

Resistors
R1, R3, R15, R16, R23, R25,
R37 100k (7 off)
R2, R24 12k (2 off)
R4, R14, R26, R36, R47 6k8 (5 off)
R5, R27 $\quad 470 \mathrm{k}$ (2 off)
R6, R8 1k (2 off)
R7, R12, R29, R34 10k (4 off)
R8, R13, R18, R30, R35; R38 47k (6 off)
R9, R31, R42, R45 4k7 (4 off)

R10, R32 3 kg (2 off)
R11, R33 $2 k 7$ (2 off)
R19.R39 68k (2 off)
R20, R40 220k (2 off)
R21 and R41
(deleted-see text)
R22
680 ohms

Potentiometers

VR1, VR2, VR5, VR6 | 100k midget linear |
| :---: |
| (RS161-818)(4 off) |

C1, C2, C3, C7, C8, C10,
C11, C12, C13, C17.
$\mathrm{C} 18, \mathrm{C} 20 \quad 2 \mu 250 \mathrm{~V}$ elect. (12 off)
C21, C22, C23, C24
C4, C5, C9, C14, C15.
C19
C16, C17
C25, C26
$47 n$ (6 off)

CX1,2,3 $3 \quad 68 p$ (silver mica)
Type immaterial unless stated
Semiconductors

D1	Red l.e.d.
TR1	BC546
TR2	BC556
IC $1,2,3$	National LF353N or Texas TLO72CP
	(3 off)

Miscellaneous

Printed circuit board
Front panel
JK1-JK9 Standard $\frac{1}{4}$ in. jack sockets with closed contacts (RS477-573) (9 off)
S 1
DPDT miniature toggle (RS316-989)
P.c.b. pillars

straps and CX1 and CX2 (68p) have been connected between pins 1 and 2 and 6 and 7 respectively on IC3. Note also that screened leads must be used for connections to the jack sockets JK1/2, JK3/4, JK5/6, JK7/8. The finished board is mounted on stand-off pillars on the front panel and details of this will be found in Fig. 6.

The front panel may be made from black or coloured

perspex backed with a thin aluminium panel (20 or 22 SWG) as in the prototype or the panel may be all aluminium of $16 S W G$ thickness. If perspex, or other non-conducting material, is used, the thin aluminium backing panel must be included. Details for drilling are given in Fig. 7. Distribution of the panel components is shown in Fig. 6.

The preamplifier could, of course, be completed before the main amplifier (details in part 2) and this could be checked out with a suitable voltage supply. Input signal levels and frequency responses etc., as quoted, can be related to approximately 150 mV output from the preamplifier with volume controls at maximum.

$\mu \mathrm{P}$
 IMICRO-PROFESSOR REVIEW MICHAEL TOOLEY b.a.

Michael Tooley is Principal Lecturer in Electronics at Brooklands Technical College, Weybridge.

I${ }^{\prime}$ HE Micro-Professor is a low-cost Z80 based microcomputer system intended for the hobbyist and enthusiast as well as the student and technician. The Micro-Professor aims to provide the user with an interesting and inexpensive introduction to the microprocessor world and, since it is primarily intended as a learning aid, the accompanying "User's and Experiment Manual" forms a significant part of the package. Other applications include process control, timing, sequential tone generation ("music") and as a low-cost microprocessor development aid.

The basic system incorporates an Z80 central processor unit (CPU), 2 K read-only memory (ROM) and 2 K random access memory (RAM) together with a keyboard and hexadecimal display consisting of six seven-segment l.e.d. indicators. A cassette tape interface is included; also a small loudspeaker. An on-board regulator provides power for the system in conjunction with an external a.c. mains adaptor. The system is fully expandable and a range of additional modules is available which includes additional RAM and ROM, programmable input/output (PIO) and counter/timer circuits (CTC). For those wishing to develop the system even further, speech synthesis and EPROM progammer boards may also be added.

FIRST IMPRESSIONS

The Micro-Professor comes securely packed in a corrugated cardboard box measuring $350 \times 210 \times 70 \mathrm{~mm}$ (approx.). Inside, the Micro-Professor itself is contained within a neat, but rather "plastic", book-style case measuring $255 \times 200 \times 48 \mathrm{~mm}$ (approx.). The case is secured by means of a press-stud fastener and opens out to reveal the microprocessor board in the right hand leaf and a deep recess in the left hand leaf. Just what this, apparently unused, space is intended for is not immediately obvious since neither the "User's Manual" nor the a.c. power unit will fit into the space! However, it appears that an earlier (and smaller) edition of the manual was intended to occupy this position and it can also be used to accommodate such items as the optional speech synthesiser or EPROM programmer boards.

The a.c. mains adaptor operates from a nominal 240 V 50 Hz supply and provides a nominal 9 V output at 600 mA . Early Micro-Professor power units were enclosed in a moulded case fitted with an integral 2 -pin round mains plug. This type of plug is very inappropriate for use in the U.K. unless, of course, you happen to have an abundance of shaver sockets in your home! Happily, the unit is now supplied with a conventional 13A mains plug.

The sizeable manual has a format just slightly smaller than standard A4 size and contains well over 300 pages. The manual is divided into three parts; a "User's Manual", monitor listing, and a section entitled "Microcomputer Experiments (Software/Hardware)". The first section (111 pages) is extremely comprehensive and includes basic operations, program de-bugging and monitor sub-routines as well as a description of the software and hardware (including full circuit diagrams and
i.c. pin-outs). The second section (51 pages) contains a full monitor listing (Copyright Multitech Industrial Corporation) which has 2659 statements. The final section (144 pages) provides an introduction to the design of microcomputer programs and gives details of 18 varied experiments based on the Micro-Professor system.

The system hardware is mounted on a neat and tidy p.c.b. measuring $220 \times 155 \mathrm{~mm}$ (approx.). This screen printed, double sided p.c.b. is a push-fit into the book-style case and includes a user breadboard area. The display and keyboard are both eminently visible and easy to use. These items alone render the Micro-Professor superior to many of its rivals.

HARDWARE

The hardware specification of the Micro-Professor is shown in Table 1. The system clock at 1.79 MHz is derived from a TTL oscillator and 3.58 MHz crystal. The fundamental frequency is divided by a 74LS74 bistable and then applied to the Z8-CPU. A second 74LS74 bistable provides system reset from the keyboard 'RS' button. A 2516 EPROM contains the monitor (address $0000-07 \mathrm{FF}$) whilst a 6116 static RAM provides 2 K bytes of user memory (address 1800-1FFF). To provide a further 2 K bytes of memory a second 6116 RAM may be fitted in a "memory expansion area". Alternatively a 2516 (or similar) EPROM may be fitted in order to facilitate demonstration or

The Micro-Professor in its case together with the EPROM and Speech Synthesis boards and respective manuals.

CPU: Zilog Z-80 CPU with 158 instructions and 2.5 MHz maximum clock rate. For MPF-I, system clock is 1.79 MHz .
ROM: Single +5 V EPROM $2516(2532) \times 1$, total $2 K(4 K)$ bytes. Monitor EPROM Address: 0000-07FF(OFFF).
RAM: Static RAM: 6116 , total 2 K bytes. Basic RAM Address: $1800-1$ FFF.
Memory Expanslon Area: Single +5 V EPROM 2516/2716/2532/2732 EPROM or 6116 static RAM on-8oard Expansion Address: 2000-2FFF.
I/O Port: Programmable I/O Port 8255×1, total 24 parallel I/O lines. I/O Address: 00-03.
Programmable PIO, a total of 16 parallel I/O lines. I/O Address: $80-83 \mathrm{H}$.
Programmable CTC, a total of 4 independent counter timers. I/O Address: 40-43H.
Display: 6 digit 0.5 inch $7-$ Segment red I.e.d. display.
Keyboard: 36 keys including 19 function keys, 16 hexadecimal keys and 1 user defined key.
Speaker and Speaker Driver Circuits: A 2.25 inch diameter speaker is provided for user's expansion.
User Area: Provides a 3.5 inch $\times 1.36$ inch wire wrapping area for user's expansion.
Audio Tape Interface: Can be connected to any cassette. Data rate is 165 bps.
System Clock Rate: 3.58 MHz crystal divided by 2 , cycle time is 0.56 micro-sec.
System Power Consumption: Single 5 V power supply, current consumption 500 mA .
Mains Power Input: Power adapter Input $240 \mathrm{~V} 9 \mathrm{~V} / 600 \mathrm{~mA}$.

Physical Characteristics:	Height:	1.60 mm (W/O case)
	Width:	15.75 cm (W/O case)
	Depth:	22.30 cm (W/O case)
	Weight:	1.41 b (with case)

user-defined programs in ROM. A somewhat primitive, but none the less effective, 2 K BASIC ROM is also available for those wishing to extend the system for programming in this everpopular high level language.

An 8255 programmable input/output port interfaces the keyboard and display with the rest of the system. In addition sockets are fitted for Z80-PIO (programmable input/output) and Z80-CTC (counter/timer) integrated circuits. The PIO/CTC bus is available on a 40 -way connector as is the Z80-CPU bus. The left-hand four digit of the seven segment display indicate the address while the two remaining digits indicate the data. The segments (anodes) are fed from the 8255 via two 75491 drivers whereas the cathodes are multiplexed from the 8255 and driven by a single 75492 .

The keyboard has 36 keys; 19 are function keys, 16 are hexadecimal keys and there is 1 user-defined key. The function keys occupy the left-hand side of the keyboard whilst the hex. keys are grouped together at the right-hand side. Despite the relatively small size of the individual keys, there is plenty of clearance around them and, furthermore, the action is quite "positive"; requiring a depression of approximately 2 mm before the contacts make. Altogether the keyboard is very satisfactory from the ergonomic as well as mechanical and electrical standpoints.

The user breadboard area measures $90 \times 35 \mathrm{~mm}$ (approx.) and has 175 separate pads on a 0.1 inch matrix for mounting dual-in-line integrated circuits at either 0.3 inch or 0.6 inch spacing. Supply rails are also provided and there is ample space for mounting either 1×40-pin, or 2×28-pin, or 8×14-pin DIL devices together with associated components.

The on-board 7805 regulator has barely adequate heatsinking which is provided by a small area of copper foil on the compoonent side of the p.c.b. At 500 mA load current the regulator is dissipating 2.5 W and runs at an alarmingly high temperature. The tape recorder sockets $\mathbf{~} 3.5 \mathrm{~mm}$ printed circuit mounting jacks) are adjacent to the regulator and consequently they also run warm. One wonders whether this was intentional or just a fortunate coincidence? Despite the very high temperature of the regulator, no adverse effects were noticed after soak testing the unit for several hours at an ambient temperature of 30 degrees \mathbf{C} and with the display reading " $8888-\mathrm{FF}$ ". (We understand that all units are now being supplied with a heat sink fitted to the regulator-Ed.)

SOFTWARE

The software specification of the Micro-Professor is shown in Table 2. The 2 K byte monitor program contained in a 2516 EPROM provides the necessary facilities to enable the user to develop and run his own programs. The most elementary function of the monitor is that of allowing the user to inspect and alter the data at each address in the user RAM. Various other functions, such as single-step, set break point etc, are available together with routines which allow reading and writing of data from an external cassette recorder. A full listing of the monitor program is included in the "User's Manual" and, although this may be of little use to the beginner, it will undoubtedly prove to be of considerable value to the more advanced student.

A few simple safeguards are provided in order to warn the user of error conditions. One of these alerts the user to "illegal" key entry by blanking out the display. The display returns when the "illegal" key is released. The monitor functions are, on the whole, straightforward and easy to use however, the "User's Manual" has some serious shortcomings, particularly when the user is unfamiliar with the terminology and may have no previous experience of programming in machine-code. Furthermore, the relatively complex Z 80 is a rather inappropriate choice of microprocessor for use in an elementary training aid which concentrates on machine level programming. Many other 8 -bit microprocessors would have been better suited to this application and one can only speculate as to why the Z 80 was chosen.

THE USER'S MANUAL

The "User's Manual" is extremely comprehensive but does not, unfortunately, adequately cater for the absolute beginner. This may be of little consequence when the user is following an established course of study but could present very severe problems for the individual starting from scratch. An early introduction to the general concepts and terminology of microprocessor systems would be highly desirable. The manual is also a little illogical in its structure. Early "examples" of the use of the keyboard are more readily understood if the "description" (which follows each section) is studied before attempting to key the examples into the microcomputer. Furthermore, some of the examples are explained in bewildering terms and there are numerous (and sometimes inexcusable) typographical errors. It

Table 2
SOFTWARE SPECIFICATION OF THE MICRO-PROFESSOR
$2 K$-byte monitor provides key functions and incorporates a memory checking routine. The key functions are as follows:-

as	: system reset.
2000	set memory address.
aE8	: set register name.
Data	: input data to memory or register.
\bullet	: recall program counter.
+	: check the next memory address or register.
-	: check the last memory address or register.
step	: execute user's program, a single step.
sen	: set break point of user's program.
coa	clear break point of user's program.
nom	: immediately break user's program.
00	go to user's program or execute some
ixs	insert 1 byte into memory.
OEt	: delete 1 byte from memory.
wove	: move data block from one area to another.
	: relative address calculation.
	: store memory data onto audio tape.
${ }^{1}{ }^{\text {afe }}$	retrieve data from audio tape.
IWTR	maskable interrupt, connected to CPU's INT pin.
SuER	: user defined key, connected to input port 00, bit 6
*	
	Eas

really is a great shame that, with so much useful information presented, it has not been offered in a form that can be readily assimilated.

The experiments themselves occupy the last part of the manual. They are adequately structured; each has a declared "purpose", the "time required" is stated (often this is 4-8 hours), and some "theoretical background" is given for each. The experiments have been chosen so as to familiarise the student with various facets of microcomputers. The topics are varied and well chosen and include such items as branch instructions, program loops, sub-routines, binary-to-BCD, and BCD-binary conversion, and keyboard and display multiplexing. Altogether this is a program which will be welcomed by both teachers and students of microprocessors.

EXPANSION

One of the most crucial aspects of any microcomputer system is the degree of expansion that is possible. Where a microcomputer is purchased primarily as a learning aid it is, of course, quite likely that the owner will wish to progress to a more powerful system when the time comes. For many, however, the cost of such an upgrade can be prohibitive and, whilst there seems to be an active second hand market for microcomputers, it would be nice to think that a "first" system would be sufficiently flexible to adapt and grow to meet its user's future needs. What, then, has the Micro-Professor to offer?

Firstly there are three vacant sockets on the MicroProfessor's p.c.b. One of these constitutes the "memory expan-
sion area" to use its rather grandiose title! This 24 -pin i.c. socket can accept either RAM or ROM devices and thus the usermemory may be extended to 4 K or, alternatively, a 2 K tinyBASIC ROM may be fitted. The remaining two unoccupied i.c. sockets accept the Z80-CTC and Z80-PIO devices. These i.c.'s may, of course, be obtained from a large number of U.K. suppliers. They are, however, very competitively priced when purchased as part of the Micro-Professor system.
Secondly two expansion boards are available. One of these is a complete speech synthesis unit whilst the other provides EPROM programming facilities. Both boards are built to the same high standard of construction as that of the MicroProfessor and occupy exactly half the area of the host-controller p.c.b. They thus fit together neatly in the left hand leaf of the Micro-Professor book-style case. Connection to the Z80-CPU bus is by means of 40 -way ribbon connectors - the only slight criticism being that the case will not close when the ribbon conectors are in place. All this makes for a very neat, tidy, and compact system.

BASIC

The 2 K tiny-BASIC ROM plugs into the "memory expansion area" and allows the user to program in BASIC. The available commands and statements include CALL, CONTINUE, FOR . . . NEXT, GOTO, GOSUB, IF . . . THEN, LET, LIST, LOAD, NEW, PRINT, RETURN, RUN, SAVE and STOP. Users may also call machine-code sub-routines resident in the Micro-Professor memory. A keyboard overlay is provided and the display is used to examine the program on a line-by-line basis. This, unfortunately, takes some getting used toparticularly when the display moves! Tiny-BASIC is, of course, very limited by comparison with its more powerful counterparts. It does, however, help to bridge the gap between machine-code and high level language and may be a worthwhile addition for those wishing to progress beyond Hex.

SPEECH SYNTHESIS

The speech synthesis board is designed around the TMS5200/5220 voice synthesis processor. This device employs linear predictive coding and data held in ROM determines the instantaneous signal frequency and amplitude. The ROM fitted is a 4 K TMS2532 which contains 32 words; sufficient for a simple time-clock program. Sockets are fitted which can accept two further ROMs in order that the vocabulary to over 150 words and there is a choice of eight ROMs, each containing approximately 30 words. The ROM supplied provides two speech programs a test/demonstration vocabulary and a small user storage area. The speech synthesiser uses the Micro-Professor as host controller and the keyboard, display and loudspeaker of the Micro-Professor act as input and output devices.

Voice pitch and volume are adjustable by means of multi-turn pre-set potentiometers. The manual contains operating instructions (which are somewhat brief by comparison with those supplied with the Micro-Professor), hardware details, and a program listing. There are no "experiments" as such, however, the system can be regarded as more a demonstration than an experiment package. There is, of course, considerable scope for the more intrepid programmer wishing to include speech output with programs devised for the Micro-Professor. For him, the speech synthesis board can be considered an exciting and challenging extension to the basic unit.

EPROM PROGRAMMER

Like the speech synthesis board, the EPROM programmer connects to the Z80-CPU bus via a 40 -way ribbon cable. It is, in fact, possible to have both the speech synthesis board and the EPROM programmer board linked to the Micro-Professor
simultaneously by virtue of duplicate 40 -way male connectors fitted to each p.c.b. The EPROM programmer caters for TMS2508, 2516, 2532 and I2758, 2716, and 2732 devices. It incorporates an 8255 PIO together with 4 K of static RAM in the form of two 6116 integrated circuits. The monitor is a 2516 and the 5 V and 25 V rails are regulated by 7805 and 723 devices respectively. A zero insertion force socket is fitted to accept the EPROMs for programming.

The manual explains the function of the monitor program and contains instructions in much the same form as that used in the Micro-Professor "User's Manual". The EPROM programmer has its own mains adaptor (as is the case with the speech synthesis board) and the system becomes a little cumbersome when all three a.c. adaptors are connected to it. The alternative would be to have one power supply for the whole system. This, of course, would have to be substantially up-rated by comparison with any one of the existing power units. If the whole system were to be powered from a single +5 V rail (from, say, an external 317 bolted to an adequate heatsink) the +25 V rail for the EPROM programmer could be derived from a simple on-board d.c.-d.c. converter. In the first instance this would, of course, make the system a little more expensive but it would effect a considerable saving later on and would make the fully expanded system a good deal tidier.

SUMMARY

In any equipment review, the question "Is it good value for money?" inevitably arises sooner or later. In the case of the Micro-Professor, it really depends upon what you want from the package. In terms of the hardware offered the Micro-Professor certainly does represent good value. The keyboard and display are of a particularly high standard and the quality of construction is excellent. In terms of software, and the "User's Manual" in particular, it is important to be aware of the shortcomings of the system. Prospective purchasers should be warned that the system (in its most basic form) is really only suitable for those requiring a rigorous, if a little tedious at times, introduction to machine-code programming. For those having aspirations to proceed to a higher level language the Micro-Professor, with its tiny-BASIC, is not particularly to be recommended.

As a thorough introduction to machine level programming it succeeds admirably and, as a teaching aid, it could prove invaluable. Users with no previous experience of microprocessors will, however, have to do a considerable amount of background reading in order to derive full benefit from the Micro-Professor.

The Micro-Professor is available from the U.K. distributors; Flight Electronics Ltd, at Flight House, Quayside Road, Bitterne Manor, Southampton, Hampshire SO2 4AD.

The price of the basic Micro-Professor (including mains adaptor and manual) is $£ 69.95$. The Z80 PIO and CTC devices each cost $£ 4.02$, the Speech Synthesiser Board $£ 64.95$ and the EPROM Programmer Board costs $£ 74.95$. The latter items both include power supplies, manuals, and interconnecting ribbon cables. The tiny-BASIC ROM costs $£ 15$ and is supplied with a manual and keyboard overlay. Note that prices do not include VAT. Postage and packing is $£ 2.95$ per system and 50 p for in--dividual ROM's and i.c.'s.

NOTE: The following information has been received from Flight Electronics since this review was written:

From the middle of June all Micro-Professor 1 systems will have the 2716 Monitor EPROM replaced with a 2532 EPROM that will contain both the monitor source program list and the BASIC Interpreter. Also included will be a BASIC Manual, Keyboard Overlay and a seven segment l.e.d. Interpreter Card. In addition, the User's Manual will be supplied as three separate parts to aid the user. However, the price of the system will remain the same.

With Heathkit, you're all set for a great deal. And not just big savings.

Whichever kit you choose, you'll find it easy to build. Simple, but detailed instructions take you through every stage. Everything is included. Even the solder you need Digital Clock
 is there.
Follow the steps and yoưll end up with a handcrafted, well-designed piece of equipment. One you'll be proud
of. Because you built it yourself.
There are 10 great kits to start you off. An interesting choice of a digital clock to a metal locator, including a short wave listener's receiver, windspeed and direction indicator, digital readout electronic scale and five more useful kits.

All at 30% off to first-timers. Send for your catalogue right now

To Heath Electronics
(UK) Limited, Dept (PE8), Bristol Road, Gloucester GL2 6 EE.

To start me off, please send me a copy of the Heathkit catalogue. I enclose 28p in stamps.

Metal Locator

Windspeed and Direction Indicator

Name
Address

Part Three A.R.Bradford m.sc.

N this final part setting up of the synthesiser will be covered together with a series of test programs. Case construction is also covered.

vCOs

Selecting the square wave output from VCO1, take VCO1 down to its lowest frequency by pressing the lowest key, setting the Range switch to 16^{\prime}, and then using the Sweep pot routed via the thumbwheel into the Keyboard, so that VCO1 is just oscillating. Adjust VR13 for the fastest buzz. Reduce frequency again using the thumbwheel and readjust VR13 for the fastest ticking. This process has nulled the offset on VCO1 integrator IC11, enabling the oscillator to stay in tune for very low input currents. Switch off VCO1 using the switch on the "Shape" pot and turn the thumbwheel to zero (towards the front). Repeat the above process for VCO2, selecting the square wave output and using the VCO2 frequency control and adjusting VR17. Remember to turn VCO2 Level up.

The ramp waveforms from each VCO are now adjusted in turn. Turn VCO2 Level down and switch VCO1 on. Selecting the ramp waveform from VCO1 sweep the oscillator over its entire range using the Range switch and the Sweep/Thumbwheel combination, and adjust VR15 to en-. sure that the output does not disappear or become distorted at either end of the range. An oscilloscope is useful here but by no means essential. Repeat the process for VCO2 adjusting VR19.

Next, using VCO 1 at the low end of its range (16^{\prime}), play a scale; this should be in tune, so bend the frequency down very low using the thumbwheel and adjust VR8 for an accurate scale. This process nulls out the offset on the keyboard range amplifier, IC7.

OCTAVES

Now the octaves may be set up using the keyboard and the Range switch. Working either side of the 4' range, which requires no adjustment, set the ranges an octave apart by adjusting VR5 and VR6 (8' and 2^{\prime} respectively), followed by VR4 and VR7 (16' and 1' respectively).

Tuning of the whole instrument relative to another instrument is achieved by turning VR1.

VCF

Select a ramp waveform from VCO1 and switch the VCF "Kbd Mod" on. Set the VCF frequency control half way thus filtering the ramp waveform down to a smooth tone and sweep the keyboard using the range switch. VR22 should be adjusted so that there is no obvious change in harmonic content as the keyboard is swept. Switch both VCOs off and turn up the Noise Level control. With the Q control at maximum it should now be possible to play a crude scale of whistles from the filtered white noise.

Fig. 10. Wiring of rotary switches viewed from underside of main p.c.b.

ENVELOPE

Set the Attack and Release controls about one quarter turn, and switch the Envelope Shaper to "Auto" using S8. Upon pressing a key the output may latch up (not decay away once the Attack cycle has been completed). If this is the case turn VR11 anti-clockwise until the sound dies away again. If VR11 is too far anti-clockwise, the output volume in "Auto" mode may be appreciably quieter than in "Manual" mode. Therefore turn VR11 clockwise to equalise the output volume in the two modes of operation, but making sure that the envelope resets correctly without latching up. Check also that the 'Repeat' functions. If not turn VR 11 clockwise.
Finally, each time a key is pressed there will probably be a thymp at the output; this should be nulled out using VR25.

FAULT FINDING

Assuming there are no. faults up to now the Microsynth should be set up and ready for use. If the VCOs malfunction for no apparent reason, it may be that CMOS chip IC14 has been damaged by static during insertion. Replacing this chip usually cures such inexplicable faults. It now remains to test out all the various functions of the Microsynth. It is

Fig. 11. Showing copper side of keyboard p.c.b.
suggested that the test programs listed below are run through-if these all work it is unlikely that there is anything wrong with the circuitry.

Should any function fail to work, check the p.c.b. against the component schedule and circuit diagrams, inspecting the relevant area of the p.c.b. for incorrect components, dry joints, solder bridges, diodes or transistors in the wrong way round, etc. Where one part of the synthesiser is connected to another some distance away, follow the relevant tracks making sure that there are no breaks, shorts, pins missing, etc, in these links. 99 per cent of all faults can be isolated in this way and will generally be found to be due to some trivial mistake in construction.

TEST PROGRAMS

Set all function switches (except "Drift") to the left between programs.

Star Wars

Switching VCO2 to LFO mode disables the audio output and sets the operating range from about 0.1 Hz to 30 Hz . The LFO may be used to sweep the keyboard automatically; use the ramp waveform from VCO1 and try the effect of the various waveforms available from VCO2/LFO. Route the LFO output either directly into the Keyboard using S14, or via the thumbwheel, setting "Source" to "LFO" and "Destination" to "KBD". Use the square wave from the LFO in conjunction with the "Shape" control to vary the duty cycle.

Waa-waa

Switch the Envelope output into the VCF. Set the Q control about two thirds up and VCF Frequency fairly low; set Envelope Level about half way positive. Keep Attack and Release times fairly short and remember to only use VCO waveforms with a high harmonic content, that is, ramp or square waves. You should now have the typical Moog sound. A slightly longer Attack and shorter Release and you will start to get a trumpet-like voice. Try switching in some Sub Octaves at this point!

Wind

Disable both VCOs and turn up the Noise Level control. With the VCF O knob set fairly high and the low pass output selected, varying the VCF Frequency control will generate wind effects. Switch the VCF output to band pass and get rain too! Try the envelope on "Auto" and "Repeat" (or alternatively triggered from a slow-running LFO) for generating percussive, rhythmic effects-steam trains are quite easy using a repeat time of about 0.3 seconds and suitably short Attack and Release times. Don't have the Q control too high though. Alternatively, turn the Attack and Release times right round to maximum and switch the Sustain to "Hold". Use the "Repeat" facility rather than LFO triggering. Q low, VCF frequency mid-way, and a small positive Envelope Modulation in to the VCF and you will start to get a seascape. When you are happy with this, turn VCO1 on with

Fig. 12. Showing method of fitting key contacts (soldered to copper side)
a triangle output, switch the Range to 2^{\prime} and the "Drift" switch to "Down". The repeatedly hit keys at random for the complete treatment.

Bells

Using the triangle outputs from both VCOs, switch VCO2 to "Ring Mod" and switch VCO2/LFO modulation into the VCA. Pressing a key and bringing up the volume of VCO2 will gradually introduce sum and difference tones. Set VCO2 at some anharmonic ratio of VCO1's frequency. Switch the Envelope to "ADSR" and sustain to "Auto" with short Attack and fairly long Release times. Alternatively use VCO2 in LFO mode to modulate the keyboard with a slow, low amplitude triangle (vibrato!). Note that the LFO speed can be changed by the Envelope as it rises and falls (switch Envelope Modulation into VCO2) so that the speed of the vibrato is fast to start with and slows as the envelope dies away, or vice versa. Try the effect of the sub octaves with VCO 1

Organ

The use of triangle oscillators to provide relatively pure tones, while the VCF filters other waveforms (in this case the Sub Octaves, one each under VCO1 and VCO2), really comes into its own with this program. Switch the "ADSR" off, Sustain to "Manual", with Attack and Release times short. Tune VCO2 to, say, an octave and a third below the pitch of VCO1, and there you have it!

Random/Staircase

Have the envelope repeating at a fairly brisk rate (remember to have the Sustain on "Auto" for this effect to work; with Sustain on "Manual" and the "Repeat" on you will get a sort of echo every time you release a key!) and switch the thumbwheel Source to " S \& H " (Sample and Hold). Push the thumbwheel fully up. Route the thumbwheel output into the keyboard. With VCO 1 and VCO2 tuned to some interval
or other, the Sample and Hold will sample VCO2 waveform and the pitch of both VCOs will be modulated apparently at random. Alternatively switch VCO2 to LFO mode, running slowly with a ramp or triangle output. VCO1 will now be modulated by the staircase waveform coming from the Sample and Hold. Next set up the wind effect again and switch the thumbwheel output into the VCF to achieve trendy random or staircase filtering effects (the LFO must be running, with the level control fully up). This also works well with a ramp output from one or both VCOs-listen to a Jean Michel Jarre album sometime!

VC01 mark/space modulation

Use the triangle output from the LFO to modulate the VCO1 squarewave (remembering to select the square wave output from VCO1). Slow, large amplitude modulation will give a phasing effect while somewhat faster, small amplitude modulation will give a chorus or string ensemble effect. Try switching in the Sub Octaves.

Harpsichord

Try the chorus effect with a sharp Attack and longish Release, the "ADSR" switch on, and the VCF switched to band pass. Vary VCF Frequency control for the best result. Try the sub octaves. See what effect the VCF "Keyboard Mod" switch has.

Once the whole instrument has been tested you can really start experimenting! Try anything and everything-the most interesting effects tend to be discovered by accident. Keep a stock of program sheets and record the settings for any effect you wish to keep-there are so many possibilities it is pointless relying on memory.

CASE CONSTRUCTION

Ready built cases and panels will be available from Clef, but for those constructors wishing to make their own the dimensions are shown here. It is possible to use a longer keyboard if desired simply by extending the length of the case and the front panel. The end cheek shown in Fig. 14 is the same regardless of the length of keyboard used, while the front, back and keyboard support bars (all of equal length) should be $15 \frac{1}{2}$ in for the 25 note keyboard.

The case was assembled by drilling $\frac{1}{4}$ in holes in the end cheeks in the positions shown and screwing 2 in wood screws through these directly into the front and back pieces, but if preferred there is ample room for gluing batons into the corners and screwing into these. Either way the screw heads should be countersunk into the wood of the end cheeks. Having built the basic frame, the bottom panel is cut from $\frac{1}{4}$ in plywood or hardboard and glued and screwed in place, again countersinking. This bottom panel should be cut slightly larger than the framework and then planed off flush with the walls once in place.

Showing hinged keyboard assembly
Dummy keys are cut from $\frac{1}{4}$ in wood as shown in Fig. 13 and glued inside each end cheek, having first securely araldited the thumbwheel to the left hand end cheek. Remember to solder the wires to the edge pot first, as you won't be able to get at it afterwards. $\frac{3}{8}$ in square $\times 6$ in strips of wood are glued along inside the top edges of the end cheeks to form panel supports, being placed slightly below the tops of the end cheeks to allow for the thickness of the panel. Plane off also the top edge of the back wall at a slight angle to allow for panel thickness, so that when in place the panel will fit flush with the tops of the end cheeks.

A cut out should be made in the back wall of the cabinet and a small piece of 16 s.w.g. aluminium drilled to take the sockets and the mains cable. This should then be sprayed black and labelled and screwed in place behind the cut out, see Fig. 15. The dimensions will depend on the type and number of sockets used: the sequencer terminal should be a 5 pin 180° latching DIN socket; the outputs will normally be $\frac{1}{4}$ in jack sockets, although professional users may prefer cannons; while for purely domestic use through a hi-fi, phono sockets may be best.

Fill the screw holes with wood filler and sand down; the

Fig. 13. (Right) Showing dummy keys

Fig. 14. (Below) End cheek detail of instrument

MATERIAL:-
3" THICK TIMBER

Fig. 15. Rear panel connections
entire case is now covered with black plasticised cabinet cloth lobtainable from Maplin or most electronic/disco shops), using a "Thixofix" type adhesive. Both surfaces must be completely covered with a thin layer of adhesive and allowed to dry, in order to obtain the best finish and avoid peeling.

Screw some rubber feet to the corners and bolt a strap handle through the left hand end cheek if required.

PANEL

The panel is constructed from 16 s.w.g. aluminium as shown in Fig. 16. Having cut all the holes, thoroughly clean the drilled and filed aluminium with "Brillo", then thoroughly dry with tissues taking care not to get any grease back onto the metal, and spray with several thin coats of matt black car paint, allowing a few minutes to dry between each coat. The white lines are put on with $\frac{1}{8}$ in white car stripe (from most car spare shops and garages). The panel is labelled with white "Letraset" or similar, and the labelled panel is finished by spraying with a thin coat of clear matt fixative (from stationers).

FITTING THE KEYBOARD

If the keyboard chassis protrudes beyond the ends of the keys, the excess must be cut off with a hacksaw; then fix the hinge at the back of the keyboard to the rear support in the cabinet using self tapping screws. If the keyboard used does not have a hinge at the back, it is recommended that the rear support be made to pivot in the cabinet by drilling $\frac{1}{2}$ in deep holes in the end cheeks and in the ends of the support bar and inserting 1 in metal rods (such as 1 in 4 BA bolts with the
heads sawn off) into the holes. In any case, position the keyboard carefully so that it will pivot freely between the dummy keys at either side, and so that the keys do not foul the front of the cabinet. Check that the panel fits correctly with a slight gap between the sloping front and the tops of the keys.
The keyboard p.c.b. of Fig. 11 is glued underneath the keyboard chassis, having first mounted the resistors. The gold wire contacts should then be soldered in place so that the longest wire presses against the bottom of the key plungers. The other contacts are then added, and bent so that there is a small gap between each of the wires when the keys are not pressed. Ensure that all three wires under each key meet when that key is depressed, but avoid having too small gaps between them when the keys are not depressed, or else mechanical vibration may cause spurious triggering.

FINAL ASSEMBLY

Having made all the various connections between the three p.c.b.s, the thumbwheel edge pot and the back panel, and after setting up the circuitry, the main p.c.b. bolts beneath the front panel using 2 in threaded spacers. The power supply p.c.b. should be bolted to the floor of the cabinet behind the keyboard using $\frac{1}{4}$ in threaded spacers. Assembly is completed by fixing the front panel in place with four self tapping screws and then pushing the knobs over the pot spindles protruding through the panel,

Fig. 16. Front panel drilling detail

all in your

issue!

WAVEFORM DIGITISER

Able to store a waveform in memory and replay it for analysis or troubleshooting. It is particularly useful for capturing transient events such as musical instrument waveforms, powar supply glitches, etc. Another application is the recording of daily temperature variation, the result of which can be retraced on an oscilloscope at much higher frequency to provide a time compressed record.

C.B.SCANNER

This design provides push button up/down single step or channel scan with pause on channels in use. Simply key the mic to stay on any channel. The neat p.c.b. can be fitted inside most rigs and, with the option of all controls on the mic, provides and easy to use systemespecially when driving.

SEAT BELT REMINDER ...YOU KNOW IT MAKES SENSE!

PRACTICAL

SEPTEMBER ISSUE ON SALE FRIDAY, AUGUST 13th

FREE! READERS' ADVERTISEMENT SERVICE

RULES Maximum of 16 words plus address and/or phone no. Private advertisers only (trade or business ads. can be placed in our classified columns). Items related to electronics only. No computer software. PE cannot accept responsibility for the accuracy of ads. or for any transaction arising between readers as a result of a free ad. We reserve the right to refuse advertisements. Each ad. must be accompanied by a cut-out valid "date corner". Ads. will not appear (or be returned) if these rules are broken.

2×81 16K in homemade case with proper keyboard and built-in power supply f110. F. R. Barros, 35 Rectory Lane, Tooting, London SW17 9PZ.
RICHARD ALLEN CG8 8 inch twin cone speakers. Never used. £16 for the pair. D. Ward, 9 Little Lane, East Morton, Keighley, West Yorks. Tel: 0274567570
SINCLAIR 2×81 Personal computer, plus fifty programs, plus two books, plus p.s.u. all for $£ 55$ C.W.O. R. Wood, 35 Criffel Road, Bellevue, Carlisle, Cumbria CA2 7QP. Tel: 022828412
WANTED service manual or circuit diagram Tektronix Oscilloscope Type 502A to buy or loañ, small fee? A. Bouskill, 129 Lyminster Road, Blrley Carr, Sheffield, S. Yorks. Tel: 0742 311191.

TI 58, 58C, 59 owners, for sale, one PC-100C printer as new, £95 ono. Mr. G. Bearzot, 294 Hitchin Road, Lower Stondon, Beds. Tel: Hitchin 815417.

WOULD like to correspond with Atom owner. Raanan Herrmann, 6 Barkai Street, Ramat-Gan 52-376, Israel.
PYE 24 INCH monitors, four at $£ 30$ each or £100 the lot. Good working order. A. D. Woodcock, 12 Valescourt Road, West Derby, Liverpool L12 9EX. Tel: 0512285678.
SINCLAIR ZX81, p.s.u. manual leads, etc. plus two cassettes for sale $£ 40$. G. Potter, 7 Oxford Road, Birstall, West Yorkshire WF17 9JR. Tel: Batley 440389.
AVO CT446 transistor analyser, v.g.c. in carry case, battery power supply, 8 Nicads and PPG, f15. R. Garas, 147 Seaforth Avenue, New Malden, Surrey.
ELECTRIC typewriter, serial or parallel input with tape reader and punch inc. manual and tape f65. Tel: Melksham (0225) 707164 (after 7.0 p.m.)

WANTED Etel 3AZP31 tube for Hartley CT436 Oscilloscope. G. Cox, 18 Barnfield Road, Bollington, Cheshire. Tel: 062573003.
SINCLAIR built ZX-81, 16K RAM, software only 5 months old. Only $£ 95$ ono. Tel: Norwich 810662.

ZX81 (16K) Sinclair computer, in packing with adaptor, leads and manual, £100. S. Mathie, 185 Glasgow Road, Dumbarton G82 1DW. Tel: 0389 61308.

SPEAKERS, pair of Wharfedale Denton HIFi with metal stands. Tel: Basingstoke 781032.

2X81 computer and 16K RAM, p.s.u. and extras, £110 ono, owner moving abroad soon. T. G. Kua, 95 Cedar Walk, Hemel Hempstead, Hertfordshire HP3 9ED.
2×81 16K external keyboard, books and cassettes, $£ 100,4 \frac{1}{2}$ inch black and white video monitor, f35. Tel: Roger (evenings) 0702 67453.

WANTED, any books on the Z80. Programming, Interfacing, etc. Good price paid (Sargo Chess perhaps?). E. Ball, 49 Brandearth Hey, Cantril Farm, Liverpool L28 1SB. Tel: 051489 9708.

TRANSFORMERS, $330 / 0 / 330 \mathrm{~V}, 300 \mathrm{~mA}$, $4 \mathrm{~V} 2 \mathrm{~A}, 5 \mathrm{~V} 2 \mathrm{~A}, 6.3 \mathrm{~V} 7.5 \mathrm{~A}$, and $600 / 0 / 600 \mathrm{~V}$, 260 mA , 5V3A, encased, both 200/250Vin, £5 each. G. Jordan, 60 Thorndon Gardens, Stoneleigh, Epsom, Surrey. Tel: 01-393 9870.
HEATHKIT oscilloscope model 10-103 $10 \mathrm{MHZ}, 5$ inch single beam. Perfect condition, new mains transformer, $\mathbf{f 9 0}$. Offers considered. Mr. P. Metcalfe, 36 Quarry Bank Road, Market Drayton, Shropshire TF9 1DT. Tel: M/Drayton 3535.

AVO electronic test meter, ohms, dc/ac, volts, dc amps, capacitance, watts, very good order, offers. D. R. Halsall, 6 Lincoln Drive, Littleborough, Lancs OL15 ONE. Tel: 76590.
PRACTICAL Electronics magazines for sale. 1969 to 1980.125 copies. Any reasonable offer accepted. G. W. Pretty, Church Farm, Broughton, Nr. Stockbridge, Hampshire. Tel: Broughton (079430) 239

VIC-20, plus VIC tape deck. Books $£ 200$, swop Olympus, Tamron photo gear, UK 101, etc. w.h.y. write. M. A. Saunders, 7 Drumcliff Road, Thurnby Lodge, Leicester LE5 2LH.
2X81, plus $16 K$ RAM, plus large software library and machine code primers, was $£ 150+$ now £65. Hugh Reynolds, 10 Lingfield Avenue, Kingston-on-Thames. Tel: 01-546 1997.
TAPE-DECK, Garrard portable, 9V, new. Mains h.t. transformers, chokes, valves. CRTS VCR139A $2 \frac{1}{2}$ inch VCR $5221 \frac{1}{2}$ inch. Collect. Tel: Odiham 2224.
TRS80 Video monitor, 12 inch green screen, perfect working order, little used, cost $£ 100$, accept $£ 70$ ono. Paul C. O'Neil, 187 Main Street, Chapelhall, Airdrie, Strathclyde M26 DSF. Tel: Airdrie 51476.

NASCOM 1, 32K, NAS-SYS 3, DE-BUG, Disasssembler, toolkit, graphics in ROM, 8A p.s.u. sound, software, 300/600/1200/2400 Baud. $£ 345$ ono. S. Haque, 99 Durlston Road, Clapton, London E5 8RP. Tel: 01-806 5995
2×81 with custom built case and loads of periferals, including monitor, fantastic offer, f110 lworth $£ 210+1$. M. Read, The Old Punch Bowl and Grapes, Adstock, Buckingham, Bucks. Tel: Winslow 2757.
MULTIMETER for radio t.v. incl. case, £16. Tel: 01-554 2913 (evenings).
WANTED all types of unused radio/amplifier valves and bases. Urgent are: PM4, PX25, MPPEN, 41-MP. Mr. Covington, 41 Western Way. Letchworth, Herts SG6 4SE. Tel: Letchworth 79681.

ZX80 with manual and circuit, f30, MK14 with video board and extras, £35. Mr. J. W. Walsh, 29 Crompton Avenue, Bolton BL2 6PG. Tel: 382796.

SOLARSCOPE CD. 513 'Scope. Not working but repairable. No manual, hence price only $£ 10$. Break value. G. Hunt, 22 Usk Road, Tilehurst, Reading. Tel: Rdg 21119.
MAPLIN 5600 S Synth. ready to play in Maplin case reasonable offer accepted. Mr. R. Massey, 7 Ivy Road, Northampton. Tel: Northampton (0604) 27644.

ZX81 +16K complete, Sinclair built. Books: ZX81 Companion, Mastering m/c. Programs: Assembler, Games, Home, Business, £85. D. Farrance, 24 Prestbury Road, Cheltenham, Glos Tel: Cheltenham 36461.
ZX81 Sinclair built + Inverse Video, white characters on Black background + joystick, E 70 16 K Z $\times 81$ memory, $£ 35$. S. Thickett, "Edgeside". Church Road, Brown Edge, Stoke-on-Trent. Staffs ST6 8RA.
WANTED, circuit diagram for solid state automatic pulse generator to h.t. transformer. Gene Hetherington, Ballinamore, Co. Leitrim, Ireland.
QUANTITY small components new or used once only, all serviceable list, large s.a.e. G. A. Noble, 50 Croft Hill Road, Slough, Berks SL2 1 HF .
SHARP MZ80 K Computer 48 K RAM with Integral v.d.u. and cassette. Lots of progs and newsletters, f350. A. Deacon, 7 ingleside, Lenzie, Glasgow G66 4HN. Tel: 0417763250.

Please publish the following small ad. FREE in the next available issue. I am not a dealer in electronics or associated equipment. I have read the rules.

Signature
Date
Please read the RULES then write your advertisement hereone word to each box. Then add your name, address and/or phone no. Maximum of 16 words plus address.
COUPON VALID FOR POSTING BEFORE 13 AUGUST, 1982.
(One month later for overseas readers.)
SEND TO: PE BAZAAR, PRACTICAL ELECTRONICS, WESTOVER HOUSE, WEST QUAY ROAD, POOLE, DORSET BH 15 1JG.

BLOCK CAPITALS PLEASE

Name \& Address:			

For readers who don't want to damage the issue send a photostat or a copy of the coupon (filled in of course) with a cut-out valid "date corler

Aufomotic photographer M.J.A. Turner

THE PRODIGIOUS invasion of photography by electronics has resulted in the automation of almost every function of the modern camera, including focussing. Now, even the photographer can be replaced by this electronic robot!

MOVING IMAGE DETECTOR

As the name suggests, the Moving Image Detector is a device for detecting the presence of moving objects. It can be used in applications where a light gate would usually be required. But unlike a light gate, it does not require a beam. The M.I.D. is a versatile self-contained unit.

The M.I.D. unit described here is designed to operate the shutter of cameras which have an electrical release socket, such as most Contax/Yashica models. This type of release fires the shutter when shorted.

However, with the addition of a servo unit to fire the mechanical release, almost any camera could be used.

GENERAL DESCRIPTION

An image is focussed by lens 1 (see Fig. 1), on to two photosensitive elements 2 and 3 , which form a potential divider. These elements occupy only a small central area of the total scene.

Under normal circumstances, the two elements are of approximately equal resistance and so about half the supply voltage will exist at point A.

This condition is maintained indefinitely, despite ambient light fluctuations, clouds obscuring the sun for instance. The reason for this is that both photo-elements would be affected equally, which means that the potential divider ratio would remain the same and therefore, so would the voltage at point A.

If now, something moves across the scene being monitored and affects the amount of light falling on the elements consecutively, the ratio will be unbalanced and the voltage at point A will change.
This triggers the voltage change detector 4 , the output of which is used to fire the shutter of the camera.

PRACTICAL CIRCUITS

The most simple circuit that it is possible to build is shown in Fig. 2.

The two photo-transistors TR1 and TR2 are extremely small devices, measuring just a few millimetres across. They only have two leads, as the base connection is not made. The anode lead has a small tag on it.

Resistors R1 and R2 limit the current flowing through TR1 and TR2. Two are necessary to maintain balance under fluctuating light conditions.

C1 blocks the d.c. level at the junction of TR1 and TR2 and transmits any a.c. pulses to the thyristor SCR1. This is the Voltage Change Detector, although of course it will only fire on reception of a positive going pulse. This is perfectly adequate, as the moving object will produce a positive going pulse sooner or later, regardless of whether it be lighter or darker than the background.

Objects that contrast poorly with the background may escape detection, but this is a surprisingly rare event.

The 2N5062 is a very sensitive thyristor. Other types might not be suitable.

The circuit works well in fairly bright daylight. The following circuits, however, will operate in bright sunlight down to quite dim domestic lighting.

In Fig. 3, a comparator is used to detect changes in the voltage at point A. When this rises above a reference voltage at the inverting input of IC1, the output goes positive and fires SCR 1.

The fine control VR2 is initially set at its central position. Then the coarse control VR1 is adjusted so that D1 is just on. Finally VR2 is readjusted until D1 just goes out.

Capacitors C1, C2 and C4 provide transient suppression. The circuit will be prone to repetitive triggering if they are omitted.

The circuit in Fig. 4 uses the same i.c., but connected in the "follower with gain" mode, which amplifies the pulses before feeding them to the thyristor.

It does not require adjustments of any kind and also has the advantage of negative feedback at 50 Hz and above via C 2 . This prevents the circuit from being triggered by mains interference, especially from fluorescent lighting. Fig. 7 shows the pattern for a p.c. board suitable for the circuit of Fig. 4. Fig. 8 shows the component layout.

Fig. 1. Differential light detection system. Ambient changes common to the whole field are cancelled out

Fig. 5. Without 50 Hz rejection. (Natural light)

Detector attached to an SLR camera

Fig. 3. Adjustable comparator approach

Fig. 4. Full circuit, including I.f. rejection to exclude artificial light "flicker"

Diodes, for protecting the thyristor from excessive back e.m.f., are not required in the preceding circuits if they are used for operating automatic cameras directly, as these include such a diode internally.

CONSTRUCTION

It is recommended that the two photo-transistors are soldered to the board first. Avoid overheating the leads. The encapsulation should be polished with a soft cloth. A small piece of black card may be placed between the phototransistors to cut down reflections, but this is not absolutely vital.

The completed circuit board is housed in a small box. This is made of aluminium to provide screening and must be lightproof. Fig. 6 shows a M.I.D. unit (2) attached to an SLR camera (1).

The lens (4) need not be an expensive one. Any single element lens with a focal length of between one and three inches can be used.

For maximum picture brightness however, the lens should be a short focus type, and its diameter should be equal to the diagonal length of the camera viewfinder.

The prototype used a two inch lens, taken from an inexpensive 35 mm slide viewer. The lens should be focussed at infinity if it is intended to look through the viewfinder. The detachable eyeshade of the author's camera was used for the bracket (3). This unscrews into two parts, so is easily fixed to the M.I.D. unit.

The output from the unit is connected to a coaxial socket (5), which is coupled to the electrical release socket of the camera by a short length of coaxial cable bearing corresponding plugs.

The metal housing (6), is connected to the negative rail of the printed circuit board (8) by way of the fixing pillar and screw (9).

TESTING

The completed circuit may be tested by connecting a 6 V bulb and battery, wired in series, between the output and OV terminals of the board, the negative terminal of the battery going to OV . The 9 V separate supply needs to be connected also. Passing a shadow or light source across the phototransistors should light the bulb.

Now all that remains is to install the board inside its box and test it on your camera.

Initially, the unit does not have to look through the viewfinder. Just plug it in and walk in front of the lens. Don't stand too close, as the M.I.D. tends to ignore subjects that are out of focus!

Switching the M.I.D. on or off while connected to the camera may fire the shutter. So to avoid wasting film, always switch on before plugging in and unplug before switching off. Moving the camera will also fire the shutter.

Where $>50 \mathrm{~Hz}$ rejection is not required, then the buffer circuit of Fig. 5 is recommended.

Here, the 3140 is used to match the high output resistance (at low light levels), of the photo-transistors to the relatively low input resistance of the thyristor.

The circuit of Fig. 4 can be readily converted to the buffer circuit, using the same p.c.b. Referring to the component overlay, Fig. 8, the necessary changes are: Remove R4, R6, R7, C2 and C4. Replace R5 and C1 with links. Replace R3 with a 1 n capacitor.

COMPONENTS...

(for the circuit of Fig. 3)
 Resistors

R1, R2	$470(2$ off $)$
R3	4 k 7
R4	1 k
R5	1 M

Potentiometers

VR1	470k linear
VR2	10 k linear

Capacitors
 C1, C2
 C3
 1n (2 off)
 C4
 100 n
 $10 n$

Semiconductors

D1	l.e.d. red
SCR1	$2 N 5062$
TR1, TR2	BPX $81(2$ off $)$
IC1	CA3140E

Miscellaneous
P.C.B. or strip board JK1 jack socket (sub min) PP3 battery and stud

COMPONENTS...

(for the circuit of Fig. 4)

Resistors

R1, R2	470 (2 off)
R3	10 M
R4	1 k
R5	2 M 2
R6	4 k 7
R7	5 k 6
R8	1 M

Capacitors

C1, C4	10n (2 off)
C2	1 n elect.
C3	100 n

Semiconductors

SCR1	2N5062
TR1, TR2	BPX81 (2 off)
IC1	CA 3140 E

Miscellaneous

P.C.B. or stripboard

JK1 sub. min. jack socket
PP3 battery and stud

CONSTRUCTORS' NOTE

The BPX81 photo-transistors are available from:
Synchro Services,
High Street, Harrold, Bedford. f 0234-720575.
The 2N5062 thyristor is available from:
Macro Marketing Ltd.,
396 Bath Road, Slough, Bucks.

- 06286-4422

COMPONENTS...

(for the circuit of Fig. 5)
Resistors

R1, R2	470 (2 off)
R8	1 M

Capacitors

C1	$1 n$
C3	$100 n$

Semiconductors

SCR1	2N5062
TR1, TR2	BPX81 (2 off)
IC1	CA3140E

Miscellaneous

P.c.b. or stripboard

JK1 sub. min. jack socket
PP3 battery and stud

Fig. 7. Printed circuit board (actual size)

Fig. 8. Component layout

C90LH CASSETTES

56p each (minimum of 5); 53p each (minimum of 25).
Prices include VAT and postage
Made by a leading European manufacturer for Videotone, these tapes are of excellent quality and we are pleased to announce this new PE service.

Over the last couple of years PE offers arranged with Videotone have proved highly successful and we have now been able to arrange special prices (only available to PE readers) on these high quality tapes. The offer is a result of Videotone's direct selling policy; send in a current special PE coupon for prompt delivery of tapes.

We believe these tapes are the best value around and we are pleased to offer them to readers. They are covered by a money back guarantee (return within 21 days for refund). Not only are the tapes of high quality but the cassettes are of screw together construction and the case label has space for notes on the recordings.

Send valid coupon to: Videotone Ltd., 98 Crofton Park Road, Crofton Park, London SE4.

OVER 290 STORES AND DEAL FRSHIPS NATIONWIDE
Check your phone book for the Findy store or Dealer nearest you

SEMICONDUCTOR U-D A E E.W.Coles

 FEATURING CY 360 TL068 SAB8256A

 FEATURING CY 360 TL068 SAB8256A}

MICRO SYNTHESISER

Some time ago I reported on a device coded CY500 produced by a newcomer to the Semiconductor scene called Cybernetic Micro Systems of Los Altos, California. The CY500 is being sold as a CMS product, and it performs the task of an intelligent stepper motor controller which can be instructed by either a microprocessor or by a simple ASCII keyboard. The most interesting thing about the CY500 is that it is not a special chip design and it is not even made by Cybernetic Micro Systems!

The secret behind this apparent sleight-of-hand is, as if you hadn't guessed, a single chip microprocessor from a source not acknowledged by CMS but probably a member of the Intel 8048 family. This device was an exciting development because it demonstrated that it is possible for a second party to produce a brand new functional building block based on its own software which is frozen into someone else's microprocessor chip at manufacturing stage, for sale to third parties. The CY500 was such a success that it was soon joined by a more powerful version coded the CY50!

But Cybernetic Micro Systems are not resting on their laurels by any means, and we can expect from them a number of other useful building blocks based on single chip micros before long.

First on the list is the CY 360 which performs the useful function of waveform synthesis and function generation. Like the CY500 this device is controlled via a parallel ASCII interface from either a keyboard for simple systems, or a microprocessor for the bells-and-whistles applications. Also like the CY500, the CY360 has its own on-chip high level language interpreter for its set of generation and synthesis functions which come complete with Jumps and Loops so that a complete synthesis program or Macro can be coded with a very few steps and stored in the on-board RAM space.

At this point the similarities with the CY500 end, because, of course, the CY360 has a totally different purpose in life. Its instruction set is based on single alphabetic characters which may be mixed where necessary with numeric data describing waveform parameters such as amplitude, phase, frequency and delay. Readily available from the CY500 are sine, triangle, sawtooth and square waveforms with programmable frequency and number of cycles per burst. It is also possible to synthesise pseudo-random (i.e. noise) signals and to generate linear approximations of many arbitrary functions-for example exponential delay.

The CY360 is a digital processor of course so it does not output analogue voltages directly. Instead, it outputs
numeric data on two eight-bit ports which can be connected directly to Digital to Analogue converters to recover the analogue waveform. These ports can be used to provide two separate phasedifferent signals, or they can be used together for a single higher resolution signal if necessary.

Because of the digital synthesis used by the CY360, there are of course some disadvantages. If the generated waveform is examined closely enough it will be seen to be made up of a stair-step approximation to the desired function, a fact which may not be a problem in many applications and which can anyway be reduced by filtering. Also, because of the need for the processor to execute code between waveform steps, the device is limited to low frequency applications.

The CY360 draws 100 milliamps from a single 5 volt supply and is housed in a 40 pin plastic package.

VOLTAGE FOLLOWER

A voltage follower can be made with a single transistor with an input to the base and an output from the emitter. Its job is to provide impedance transformation so that the input voltage from a high impedance source can drive a low impedance load: a current amplifier if you prefer. In these days of integrated circuits people have tended to forget the simple approach and use instead an Operational Amplifier with unity gain feedback (equals a piece of wire!). In some cases this is the proper thing to do because the OP AMP solution does not suffer from the base-emitter offset voltage of the transistor which makes all output voltages from the emitter 700 millivolts or so less than the input voltage. In other applications, particularly small signal amplification, the transistor may be better as it contributes much less noise than the multi-transistor OP AMP.

In future it seems there will be a third choice in the shape of the TLO68 from Texas Instruments. This device is a sort of OP. AMP-in-transistor-clothing, because although it lives in an innocuous looking 3pin plastic transistor package, internally it contains an f.e.t. input amplifier with a ready made feedback connection to provide the voltage follower configuration. This device provides a number of improvements over the transistor scheme because it has an extremely high input impedance, an input bias current of less than 400 picoamps, and an offset voltage of less than 15 millivolts. In addition it has a 1 MHz bandwidth, can draw as little as 125 microamps from its supply, and will operate with input signals of 3 to 36 volts.

The three pins of the TLO68 are labelled INPUT, OUTPUT and VEE (ground), with the connection of this device into a practical circuit being as easy as you might
expect from such a simple package. The lack of a positive supply pin is overcome by obtaining bias from the driven load via a bias resistor.

The TL068 will be most useful as a buffer amplifier for remote transducers which have to drive long lines, but its extremely high impedance also makes it suitable as a charge amplifier for capacitive devices such as electret microphones.

The main advantages it has over the use of standard OP AMPs are its simplicity and low cost.

MUART

Most mcroprocessor systems need extra peripheral circuits to provide the essential system facilities which cannot easily be placed on the processor device because of the extra cost incurred or because of a lack of package pins. The usual "extras" required are a UART (Universal Asynchronous. Receiver Transmitter) to provide serial communication to a system console or a modem, a parallel port to drive a line printer or accept data input from panel switches, a few timer/counters to provide pulse generation and the ability to measure the time taken by external events, and an interrupt controlfer to ensure that all those other devices get a fast response from the processor when they need attention.

Until now you needed to buy as many as four additional and expensive chips to provide these functions, and these chips may have had many fancy features which the average system did not need, not to mention the extra system complexity caused by all the necessary interconnections. Now Siemens have decided to come to the rescue of the small systems builder by combining all the required features onto one relatively inexpensive chip. The new device is coded SAB8256A and is called a MUART by its designers, although how that M manages to convey the provision of a parallel interface, five timer/counters and an interrupt controller in addition to the UART I really don't know! I personally think that the MUART is the best development to appear in microprocessor peripherals for a long time, and it seems that I am not alone, because no less a manufacturer than Intel has decided to act as an alternative source for the chip.

The SAB8256A is basically 8080 system orientated and is therefore easy to hook up to 8085 and $Z 80$ systems, but this device is so attractive that it will almost certainly be in demand for 6800 or 6502 based systems too. Interface to these processors can be easily achieved with the addition of a few external gates.

The MUART comes in a 40 -pin plastic package and will operate from a single 5 volt supply.

AUDIO TEST SET

MICHAEL TOOLEY b.A. \& DAVID WHITFIELD m.A. m.sc.

THIS final part sets out initial tests, calibration and examples from the wide range of measurements possible.

INITIALTESTS

Before connecting to the supply the front and rear panel controls (shown in Figs. 8 and 9, respectively) should be set as follows:-

Rear Panel

The pre-set resistors on the p.c.b. should all be set to midposition. An 8 ohm loudspeaker should be connected to the headphone/loudspeaker socket. The a.c. supply should then be connected and the instrument should be switched 'on' using the output level control which should be advanced to about 30% of its full travel.

A d.c. voltmeter should be used to check the voltage at the positive connection of C38. This should be in the range 16 V to 18 V . If there is no voltage at this point check the a.c. supply connections, mains transformer and fuse. Now transfer the d.c. voltmeter to measure the voltage at the link (LKA). This should be in the range 11.5 V to 12.5 V . If this is not the case check IC2. Transfer the d.c. voltmeter to the emitter of TR8 and adjust VR7 to obtain a reading of approximately 6.5 V at this point. If this cannot be obtained check the wiring and connections to the p.c.b. in the vicinity of TR6, TR7 and TR8. Advance the monitor volume control to about 30% of its full range and adjust VR6 until a relatively pure tone (at about 1 kHz) is heard from the loudspeaker. If necessary adjust the monitor volume to obtain a comfortable listening level from the loudspeaker once oscillation has commenced. Observe the indication on the meter and note the effect of (a) changing the calibration to 'r.m.s.' and (b) switching from the ' 1 V ' to the ' 3 V ' range. Both should cause the deflection on the meter to fall to about one-third of its previous reading. If necessary adjust VR4 to provide a sensible indication on the meter before carrying out this test. Now switch to 'square' wave and change the function to 'Frequency Out'. The meter reading should increase as the frequency-fine control is turned anti-clockwise. (The tone

Fig. 8. Showing wiring of front panel

* = Comection to front panel (all other connections to P.C.8.)

Fig. 9. Showing wiring of rear panel
from the loudspeaker should also increase in frequency.)
The foregoing tests establish that, in the order given, the power supply, signal generator, monitor amplifier, a.c. voltmeter, and frequency meter sections are functional. If, at any stage, the required indications are not produced, reference should be made to the d.c. voltage table. The presence of unusually high or low voltages will rapidly pinpoint the area of a fault. Note that a difference of about 10% can be expected without indicating that a fault is definitely present. When a fault has been identified the p.c.b. and associated wiring should be checked in the appropriate area. Full calibration cannot be carried out without the aid of additional test equipment. This should consist of a digital frequency meter and an oscilloscope. An accurate r.m.s. reading a.c. voltmeter may also prove to be useful.

CALIBRATION

Connect an oscilloscope and digital frequency meter in parallel to the signal output socket. Adjust the signal generator to produce a sine wave output at 1 kHz (use the 1 kHz to 10 kHz frequency range). Adjust VR6 for a pure sine wave output as viewed on the oscilloscope. This may be close to the position at which oscillation just ceases and it may be necessary to confirm that oscillation continues over the full frequency range of the instrument. With the output attenuator controls set at maximum, adjust VR8 and VR10 respectively for 2 V pk-pk sine and square wave outputs as observed on the oscilloscope. Now set the frequency of the signal generator output accurately to 5 kHz (again using the 1 kHz to 10 kHz frequency range). Set the function switch to

'Frequency Out' and adjust VR5 for a reading of exactly '5' (on the ' $0-10$ ' meter scale). Vary the frequency over the full range and check that the meter indication agrees with the digital frequency meter reading. Repeat this check over the full range of the instrument and check that the accuracy is within 5% of full-scale on each range. Re-set the output frequency to 1 kHz and check that the output is still 2 V pk-pk. Set the function switch to 'Voltage Out' and select the ' 3 V ' range with 'pk-pk' calibration. Adjust VR4 for a meter indication of ' 2 ' (on the ' $0-3$ ' meter scale). Finally switch to 'square' wave output and adjust VR9 for a perfectly symmetrical square wave as displayed on the oscilloscope. This completes the calibration of the instrument and it is now ready for use.

USING IT

The Audio Tester is an instrument which allows the user to make a wide range of measurements on items of audio equipment and on whole systems. The capabilities of the constituent modules within the tester (signal generator, frequency meter, voltmeter, monitor amplifier, and load) do not, however, restrict their use solely to conventional audio applications. Individual modules, or combinations, may be used in a wide range of general applications which involve repetitive waveforms at frequencies up to 100 kHz .

An example of this alternative use is in generating test signals for digital circuits. This requires the use of the signal generator and the monitor amplifier, with the frequency meter used to set the output frequency. The signal generator is capable of producing a signal of maximum amplitude of 2 V pk-pk. The monitor amplifier can be used to boost the level to a maximum of approximately 9.5 V pk-pk; the output is then taken from SK12 rather than SK3/4. Similarly, the frequency meter may be used directly to measure the frequency of digital signals.

When used in fault finding in audio systems, the Audio Tester modules can be used to replace system components when trying to identify the faulty unit. The signal generator is used to substitute for programme sources, the amplifier may be replaced by the monitor amplifier, and the dummy loads may be used in place of the loudspeakers. Continuity of leads can be checked using the signal generator as a signal source, and the voltmeter.

The mainstream purpose of the Audio Tester, however, remains the testing of audio circuits. The following section gives some examples of typical audio measurements which may be made using the Audio Tester.

The output of an audio amplifier is normally quoted in terms of the maximum power which it is capable of delivering continuously into a stated load at a particular frequency before the onset of any significant distortion. The actual values given will vary from model to model, and the method of quoting the performance usually varies among manufacturers. Typically, however, the output power is quoted in terms of the number of watts r.m.s. which can be delivered into an 8 ohm load at 1 kHz at the onset of waveform clipping.

The loudspeaker, which forms the normal load in a hi-fi system, has an impedance which shows an often significant variation across the audio range (see Fig. 10). In addition, the impedance which is presented to the amplifier is rarely a purely resistive quantity, and this only serves to further complicate the measurement of output power when attempting to use a loudspeaker as a test load. The dummy loads in the audio tester, however, provide test loads which have substantially constant resistive impedances across the audio range. The impedances available (4 ohms, 8 ohms and 16 ohms) are suitable for the vast majority of contemporary audio equipment, and the various load connection arrangements are shown in detail in Fig. 12.

Where it is intended to carry out sustained high power testing, care should be taken to avoid the possibility of overheating of either the dummy loads (rated at a minimum of 30 watts r.m.s.) or the output stages of the amplifier under test. It may be advantageous, therefore, to increase the ventilation in the audio tester if sustained testing is envisaged since the load resistors will reach a temperature of $70^{\circ} \mathrm{C}$ at maximum dissipation. Driving both 8 ohm loads at full power simultaneously will require the dissipation of 60 watts of heat! It should also be borne in mind that the efficiency of the amplifier under test may fall significantly at frequencies above the audio spectrum (i.e. above approximately 20 kHz), and this can lead to the possibility of unexpected amplifier over-heating. For this reason, a check that correctly rated line and output fuses have been fitted is a very worthwhile precaution before any prolonged high power testing; prevention is always cheaper than cure.

Fig. 13 shows an arrangement which can be used to measure the output power characteristics of an audio amplifier. The Audio Tester's dummy loads are used here in place of the loudspeaker, the signal generator provides the input signal, and the oscilloscope (or distortion meter, etc.) is used to detect the onset of waveform clipping. Fig. 14 shows the type of oscilloscope trace which is obtained when waveform clipping occurs; users who wish to observe these waveforms before testing an amplifier may do so by connecting the generator output, set to maximum sine wave output, to the monitor amplifier, and turning up the volume control while observing the output. In the test set-up the signal generator output should be connected to an 'auxiliary' or 'radio' amplifier input since these inputs should have a nominally flat frequency response. The generator output level should be set in accordance with the amplifier specifications (to typically 250 mV or 500 mV r.m.s.), and the frequency to 1 kHz in sine wave mode. Starting at low amplifier volume control settings, the output power may be found by measuring the r.m.s. voltage across the load and then converting to power with the following equation:
Power in watts r.m.s. $=\frac{(\text { r.m.s. voltage across the load })^{2}}{\text { Load impedance in ohms }}$
[MPEDANCE (OHMS)

[EA35
FREOUENCY(Hz)
Fig. 10. Variation of impedance with frequency for a typical two speaker system

Alternatively, the conversion from voltage to power may be performed using either the graphs in Fig. 15 or the figures given in Table 3. These give conversions for the three different load impedances catered for by the audio tester. Conversions for other loads may be prepared using the equation given above.

An interesting measurement which is easily made is to determine how the output power varies according to the setting of the volume control on the amplifier. The result, which is usefully plotted on a graph, can also be compared for different load impedances. It is a good idea to adjust the level from the signal generator so that, at maximum volume setting, the amplifier's rated power is achieved or clipping commences, whichever is sooner. The results can then be

Fig. $12(\mathrm{a})$. Stereo load arrangement rated at $8 \mathrm{ohm} / 30 \mathrm{~W}$ per channel

Fig. 11. (Lower left) Layout of the front panel controls

Fig. 12(b). Mono load rated at $16 \mathrm{ohm} / 60 \mathrm{~W}$

Fig. 12(c). Mono load rated at 4 ohm/ 60 W

Fig. 13. Arrangement for measuring amplifier output power characteristics
presented in terms of the percentage of maximum power which is attained at various control settings. The amplifier under these conditions is much less likely to overheat at maximum level, but load impedances lower than the minimum specified for the amplifier should not be used.

The measurement of the input sensitivity of an amplifier involves finding the lowest signal level at which it is still possible to achieve the maximum rated power into the stated load. This is a relatively simple test to perform and uses the same arrangement as before. The signal generator output is initially set to minimum and the amplifier's volume control to maximum. The signal generator's output level is then slowly increased until the rated power is developed across the load, as determined by measuring the equivalent r.m.s. voltage. The signal generator output at this point is then equal to the amplifier input sensitivity. Measurements on more sensitive inputs may be simplified by the use of an additional attenuator, but care should be taken to avoid hum pick-up in the wiring.

FREQUENCY RESPONSE

An 'ideal' audio amplifier has a gain which is constant for all frequencies across the audio range. The DIN 45-500 standard specifies a range of 40 Hz to 16 kHz over which the gain should not vary by more than $\pm 1.5 \mathrm{~dB}$, although this standard is usually considered by hi-fi enthusiasts to be a

(a)

NO CLIPPING

(b)

ONSET OF CLIPPING PEAKS DISTORTED

(c)

SEVERE DISTORTION

Fig. 14(a). Output waveforms from the signal generator plus monitor amplifier as the gain is increased

Fig. 14(b). Response of amplifier as the output level is raised through the onset of waveform clipping

Table 3 Voltage developed across a load and power

Voltage across load (Volts r.m.s.)	Power (watts r.m.s.)		
	4Ω load	$\mathbf{8 \Omega \text { load }}$	$\mathbf{1 6 \Omega}$ load
2	0.250	0.125	0.063
3	1.00	0.500	0.250
4	2.25	1.13	0.563
5	4.00	2.00	1.00
6	6.25	3.13	1.56
7	9.00	4.50	2.25
8	12.3	6.13	3.06
9	16.0	8.00	4.00
10	20.3	10.1	5.06
11	25.0	12.5	6.25
12	30.3	15.1	7.56
13	36.0	18.0	9.00
14	42.3	21.1	10.6
15	49.0	24.5	12.3
16	56.3	28.1	14.1
17	$* 64.0$	$* 32.0$	16.0
18	72.3	$* 36.1$	18.1
19	$* 81.0$	$* 40.5$	20.3
20	$* 90.3$	$* 45.1$	22.6
	$* 100$	$* 50.0$	25.0

*Testing at this power level will require the use of alternative loads.
bare minimum requirement. The frequency response characteristic of a real amplifier shows how its gain actually varies across the audio spectrum. A typical response characteristic is shown in Fig. 16.

Measurement of the frequency response characteristic is usually carried out at full output power. The frequency range between the upper and lower -3 dB points / where the output power falls to 50% or the voltage across the load falls to 70.7% of the maximum) is known as the full power bandwidth of the amplifier. An equally useful measurement, and probably more appropriate to normal listening, is to measure the amplifier bandwidth at a level which is more representative of average listening levels. The high power level which is available from most systems is provided to allow programme peaks to be handled without distortion. The average level of even 'loud' music can be surprisingly low, and speech typically has a 'peak factor' (ratio of the peak to the r.m.s. value) over a period of time of 20 dB . For these reasons, therefore, it is often of interest to measure both the full power bandwidth and the low power (typically 1 watt r.m.s.) bandwidth in order to fully characterise an amplifier; anyone in any doubt about power levels is invited to

Fig. 16. Frequency response at full power loudspeaker system, and then imagine $40+40$ watts

The frequency response characteristic of an amplifier may be measured using the arrangement previously described in Fig. 13. The signal generator is set to a frequency of 1 kHz and the tone controls on the amplifier, and any filters, are set to the 'flat' positions. The input level is set in accordance with the amplifier's specifications, and the volume control is then adjusted to produce the required power dissipation in the selected test load. The generator frequency is then varied, keeping the other generator and amplifier controls constant, over the audio range and beyond. The output level will typically show some variation across the audio range,
RELATIVE RESPONSE (OB)
(b) Max bass boost, treble flat
(b) Max bass cut, treble flat
(c) Max treble boost, bass flat
(d) Max treble cut, bass flat

Fig. 17. Tone control characteristics
(a) Rumble filter fc $=\mathbf{4 5} \mathbf{H z}$
(b) Scratch filter fc $=7 \mathrm{kHz}$
(c) Scratch filter fc $=12 \mathrm{kHz}$
(d) Scratch filter fc $=16 \mathrm{kHz}$

Fig. 18. Response characteristics for an amplifier with a rumble and three scratch filters
with noticable roll-off at very high and very low frequencies and a substantially flat response between the two extremes.

Once the basic frequency response characteristic has been measured, the effects of the amplifier's tone controls can be investigated. Setting each of the tone controls to the extremes in turn, and then re-measuring the frequency response, will show the total range of bass and treble boost and cut which is available. Fig. 17 shows the type of response which can be expected in any amplifier, but the exact rates of boost and cut, and the associated frequencies will vary. The measurements on tone controls are best made at a level of around 1-2 watts in order to allow for the wide range of boost and cut provided on most amplifiers. Similar measurements may then be made on any fixed frequency filters which may be provided on the amplifier. Typical responses for an amplifier fitted with a 'rumble' filter at 45 Hz and three 'scratch' filters at $7 \mathrm{kHz}, 12 \mathrm{kHz}$, and 16 kHz are shown in Fig. 18.

It is quickly apparent from a brief look through the specifications for any item of hi-fi equipment that the range of possible tests is almost inexhaustible. The measurements described above are a few examples of the range of amplifier tests which are possible with the Audio Tester. These tests provide useful and meaningful results without the need for an abundance of additional and sophisticated equipment. As such, they serve to demonstrate the usefulness of the Audio Tester as an item of general purpose test equipment. The constructor will doubtless be able to find a wide range of situations where the Audio Tester alone will suffice in place of what would normally require a number of separate instruments.

GRUNDIG GMU3 four-channel audio mixer unit, valve, plus 4 dynamic mikes. $£ 25$ inc. postage. Oxford (0865) 779855.
TPA30 EAGLE P.A. Amp, £20. Heatkit OSC2 Scope with book, £10. Post extra or collect. Tel: 01-5914248.
SINCLAIR 2×81 with $16 K$ RAM, plus keyboard, graphics board, books and some software tapes, $£ 110$. M. Broom, 19 Nally Drive, Woodcross, Coseley. West Midlands. Tel: Segeley (83) 61323.
UK101 32×48 screen, cased, 24 K RAM with room for 16 K more, Cegmon, Wemon monitors, software, £170. Tel: Sedgley 74804.
AMPLIFIER or kit suitable deaf aid. Firm with address wanted. G. H. Reeson, 23 Lealands, Lesbury, Alnwick, Northumberland.
DIGITAL multi-meters. Philips PM 2522 mains, PM 2517E battery. Good condition. Offers. Tel: 074785397.
R.S.C. 5 watt practice amp for guitar as new, E20. A. Hallas, Tottlebank, Manor Way, Wrea Green, Preston, Lancs.
WANTED. Goldring Lenco GL69 record deck. Mr. A. Henderson. Tel: Great Harwood 0254 884658.

LOW COST printer. Data Dynamics 80 column, 10 CPS, current loop interface. Genuine sale, £ 90 ono. Chris Swift, Crowthorne 03446 77426.

TRANSENDENT 2000, £200 ono; also ZX80, £ 35 ono. L. Faragher, 17 Lyndene Close, Earl Shilton, Leics. Tel: 045546354.
2708 EPROM's, little used, erased, $£ 1.50$ each. Tel: llkeston (Derbyshire) 304339 (evenings and weekends).
2X81 16K RAM with full size keyboard plus software under guarantee. V.g.c. a bargain at £90. Dave Elliott, 13 Chiltern Road, Wendover, Bucks HP22 6DR. Tel: Wendover (0296) 622527.

ORANGE 120W graphic valve bass amp plus 200W "White" bass Bin with electrovoice speakers, $£ 280$ ono. Mr. J. Henderson. Tel: Gt. Harwood 0254885129.

ELKA 20 Organ, 15 months old, f800. New price $£ 1250$. Tel: 0473218392.
PRINTER IBM Selectric "Golfball" Wait/Output Typewriter, Tractor/Friction Feed, with manual and interfacing details-£90. Philip J. Tait. Tel: Hampreston (Dorset) 7463.
R.A.E. Correspondence Course, complete £25 o.n.o. McCallum, "The Limes", South Willingham Road, Hainton, Lincoln LN3 6LU.
KSR 35 Heavy-duty teletype (uncased) plus 110 V Transformer and driver circuit. 110 Baud. Works very well. $£ 100$. Brian Candler, 32A Grosvenor Avenue, Sawley, Long Eaton, Nottingham NG10 3FO.
8K MICROSOFT Basic Reference Manual £4.50. Nick Hardy, Tel: Leeds 781532.
WANTED urgently RS Components panel meter: 100uA-1.25K, dual scale; $0-10$ \& $0-3$. RS part No. MR31S. P. Faccenda, 5/5 Murrayburn Gardens, Edinburgh EH14 2PZ, Scotland.
2 MTR TRX 80 watts output complete 160 m 2 mtr TRX 10 watts complete GEC 2 mtr TRX Chassis QQV6/40 offers. L. S. Ellsmore G3RHT, 9 Barston Road, Oldbury, Warley, West Midlands.

ACTIVE COMPONENTS MAIL ORDER SPECIALISTS

Lowest Prices

V/SA
 N4\%

24 HOUR TELEPHONE SERVICE FOR. CREDIT CARD USERS

TELEX: 817670

With the Minimax II, Videotone revolutionised the market by establishing an opening for small, high quality speakers. Natural evolution has brought about the new Minimax 2, retaining all the qualities of clarity and sensitivity. This ideal combination of size and performance is a proven success, acclaimed by the press and public for seven years.

POPULAR HI-FI
"'Switching to the Minimaxs' from any of the others produc ed an open and natural sound as though something had been taken away. It had, the colouration had gone." Comparative test OCTOBER 1975

HI-FI ANSWERS
Their modest appearance and price disguise their startling abilities. Never have we heard such a small speaker sound so big!" JANUARY 1975.
PRACTICAL HI-FI \& Audio
"The depth, clarity and open-
ness of sound produced is
quite astonishing". JUNE '75
WHAT HI-FI
the ability of the Mini-
max to take a lot of power and still sound good could be decisive" - Comparative test, APRIL 1977.

PRACTICAL HI-FI
The little Videotone scored highly for such a small inexpensive loudspeaker JANUARY 1981

Specification:
Recommended amplifier power: 10 to 40 watts rms into 8 ohms. Frequency Response:
$80 \mathrm{~Hz}-20 \mathrm{KHz} \pm 5 \mathrm{~dB}$.
Finish: natural teak, veneer with black frets.
Size: $107 / 8^{\prime \prime}$ high, $63 / 4^{\prime \prime}$ wide $_{t}$. 7 1/2" deep.
Weight: 4.1 Kgs (9 lbs) each.
ONLY £69.95 A PAIR

- We welcome callers to our South London Showroom for demonstrations.
- Enqiries and information phone: 01-690 8511, Ex. 32
- All products are only available direct or from selected authorised dealers throughout the U.K.

Post to: Videotone, Crofton Park Road, London SE4
NAME

Sorcictly

by K. Lenton-Smith

CASIO, makers of those ingenious and reliable calculators, started to add musical bleeps to their machines a few years ago. Thus you could programme in a short, simple melody to annoy office colleagues! Perhaps we should have guessed what was coming next

The idea was extended to something more musical when the Casio VL-Tone was introduced and featured in 'Tomorrow's World' early last year.

VL-TONE

Everything in this two-octave instrument derives from a 64-pin LSI chip which provides 5 pre-programmed voices. It is also possible to choose waveform, envelope parameters, vibrato and tremolo and programme these variables. Auto-rhythm, 100 -note sequencing, stepping and a calculator are featured, the latter's display doubling for numerical readout of pitches entered from the keyboard.

The price of this keyboard, considering its many facilities, is very reasonable: the instrument is suitable for a young and enquiring mind getting used to music and its technicalities. Unfortunately, the keyboard is composed of press-buttons, its size is roughly one half of the standard and it on/y suits a small hand as a result.

My reaction at the time was that this instrument was an interesting toy (because of its keyboard) but that it might be the start of something big. It certainly seems that the VL-Tone was a test-bed and its popularity has been such that new and improved keyboards have followed.

It is fitted with a pitch control but, oddly enough, somewhat larger keyboards (M10, CT-201 and MT-30) lack this important feature and keyboards were still nonstandard. Even so, they were often extremely close to concert pitch as supplied.

I suppose that these problems are inevitable when a concern-even as experienced as Casio-breaks into a new field. More recent additions to the Casio keyboard range have seen improvements to the point that we now have really interesting and totally playable instruments.

COMPUTER

These keyboards are occasionally described as polyphonic synthesizers. One immediately thinks of voltage-controlled circuitry but the heart of these instruments is a CPU so 'computer keyboard' may well be a better term. The attraction of the current keyboards, especially to those who
have engaged in synthesizer construction in the past, is polyphony: eight notes may be keyed simultaneously.

It is probably unnecessary to add that it would be impossible to build similar keyboards-and at the price-because of the use of special purpose LSI chips !

Using computer principles is not new: the computer organ has been with us for some years and the RMI Computer Keyboard was described in this column six years ago. What is new is the value for money aspect and the neat but rugged design of these compact keyboards.

Let us look briefly at just three of the current keyboards:-

MODEL 202

This instrument and Model 403 are similar in price and the choice between them will depend on musical requirements.

The 202 has 49 preset sounds, their names being inscribed above the keys of the four-octave polyphonic manual. Four Tone-Memory keys allow recall and changes of registration, the capture system operating as follows: in 'Set' mode, a tonememory switch is pressed, followed by pressing the key representing the chosen tone-colour; after returning the mode switch to 'Play', the playing keys operate normally and the musician can make changes between the four memories as he wishes.

Sustain, Volume and degrees of Vibrato may be altered by means of controls on the left hand cheek. Alternatively, Sustain and Volume may be foot-controlled from jack sockets on the rear panel, which also include 'line out' for external amplification and a phone jack. A fine tuning control completes the back panel line-up.

An internal 4 " speaker delivers up to 10W and the instrument weighs about 16 lb . The preset sounds are varied and include various pianos and pipe organs and their electronic varieties. The usual orchestral instruments are featured and there are several harps and guitars. Certainly, it could be said that some of these sound similar to others, but there is still plenty of variety. With four octaves of polyphonic sound, the 202 could be used equally well by a choirmaster or pop musician.

OPERATION

Naturally, circuitry differs from model to model as do the LSI chips involved. Taking model 202 as being a typical and uncom-
plicated member of this keyboard family, a clock feeds one of the main LSI chips. This runs at a nominal 1.134 MHz and is effectively voltage controlled by means of varicap diodes altered by the pitch control. The output is squared before being fed to the CPU, which generates key common signals. These are matrixed by conductive rubber contacts under the playing keys onto key input lines and the signals are decoded by flip-flops before being fed back into the two main chips.

Digital signals emerging from the LSIs are passed through D/A Convertor blocks. The process of converting from digital to analogue can cause serious 'glitches' as the most significant bit changes: Casio engineers have gone to great lengths to remove these unmusical spikes and ensure that the analogue waveform is totally musical.

The two Convertor Blocks in Model 202 are known as the consonant and vowel blocks and each has its associated set of high and low pass filters, with electronic switching operated by the LSI.

Consonants have their own electronic volume control circuit before the various signals are combined in a Mixer. Because operation of the tone memory switches causes a transient, a special 'cut' circuit momentarily mutes as the memory switches are changed.

MODEL 403

In this case there are 25 preset sounds and capture, but still the 8-note polyphonic facility across the four octave keyboard and a simplified vibrato and sustain. As a tradeoff, there are sixteen built-in rhythms, automatic chords and bass synchronised to the rhythm unit. Chords that are fingered may simply be triggered by. the rhythm pattern.

The keyboard in this case is split, the lower $1 \frac{1}{2}$ octaves being reserved for chords. Automatic chords are normally major but may be changed to minor and dominant seventh by pressing additional keys. The rhythm and chords can be switched in with the start/stop control, when a red l.e.d. indicates beats. Alternatively. Synchro Start will produce a green l.e.d. indication of tempo in stand-by and the accompaniment will start in response to playing a note on the lower part of the keyboard.

One LSI is used for the Melody section of the keyboard, followed by the D/A Convertor Block and filters-a rather simplified version of the 202 circuitry. Another CPU handles the accompaniment and there are additional chips for its $1 / 0$ port and the chord generator. The rhythm unit, tempo oscillator and the eight instrument generators are mainly discrete circuitry.

MODEL 701

It seems to be Casio policy to offer models with similar basic features but one having extra facilities. Both Models 601 and 701 are five-octave 8 -note polyphonic instruments with 20 preset sounds, 16 rhythms and fill-in, chords, arpeggio. sustain and vibrato. The 701, however, has
very advanced programming features.
Introduced only a month or so ago, Model 701 has a programmable memory play function with storage capacity of 345 steps of notes and 201 steps of chords. It can be programmed by manual entry through the keyboard or by means of Casio bar-code music. Once the keyboard has been programmed, the performer can play along with the pre-programmed sound.

A light pen is used to read the bar-codes, which supply the memory with information on pitch, duration and chords. These codes look similar to those printed on grocery packets. A 3-digit display at the right hand end of the keyboard counts the program steps as the light pen is moved from left to
right along the bar-code score: chord information is read in a similar manner. Audible indications tell the user whether the information has been accepted, or an error has arisen. Editing allows for changes in taste or error correction.

The chosen chords can be fingered or used in Autochord mode when the memom is being recalled. For the beginner, 'Melody Guide' can be used. This function causes the stored music to light l.e.d.s fitted above each playing key, inviting the learner to press the key: when he has done so, the next l.e.d. in the sequence lights. The usual jack sockets are fitted to the 701's back panel, including connection for the light pen. Two books of music and a wire stand
are supplied with the keyboard: an optional pedalboard is available.

It is not possible to cover adequately all the features of these keyboards in this article. Take a look at them locally and I am sure you will agree that they are excellent value musically. And, unlike many VCOs, the tuning of the computer system is something easy to live with-in short accurate!

Casio has not entered the field of organ manufacture-which is already over-crowded-so far, but it is interesting to note the optional pedal board for Model CT701. Bearing in mind what has already been achieved in a short time, the Casio organ may not be that far distant.

BATA죠

VIDEOGRAPH William Stuart eight changing background colours amazing visual effects on colour t.v. £45. (0772) 24463 (6.00 p.m.).
EXPANDED Atom with extra sound board. Plenty articles and software, £180. K. Miller, 19 Skye Place, Seafar, Cumbernauld, Glasgow. Tel: 0236723650.

24 GHz Rank Precision slotted line SWR meter including dial gauge, boxed instructions, f95. M. Mann. Tel: 0223860150.
2X81 Computer and 16K RAM. As new, £85. Stan Desnos, 37 Devonshire Road, Sherwood, Nottingham. Tel: 609548.
WANTED old oscilloscope with 5 inch tube, any condition considered. R. Rowland, 31 Ashby Close, Coventry CV3 2LN. Tel: Coventry 456096 UK101 16K, cased, $1-2 \mathrm{MHz}, 300 / 600$ Baud, inverse video, lots of software, $£ 120.20-2114$, $400 \mathrm{~ns}, \mathrm{f} 10$. Jamies Oriel, 138 Small Gains Avenue, Canvey Island, Essex SS8 8LW.
4600 Synthesiser, almost finished, needs wiring and setting up. All parts included, $£ 375$ ono. Mr. A. Pettitt, 2 Caburn View, Firle, Nr. Lewes, Sussex. Tel: Glynde 492.
TERMIPRINTER RS232 300 Baud upper/ lower case friction feed, plain roll paper, very quiet. Can be demonstrated. £ 85 ono. S. Higgins, 138 Lower Farnham Road, Aldershot, Hants. Tel: Aldershot 28796.
ALMOST TWO electronic organs stripped down two consoles, three keyboards, many p.c.b.s and units, £50. D. Green, 27 Elleray Court, Ash Vale, Nr. Aldershot, Hants. Tel: Aldershot 314713 .
UK101, cased, 8K RAM, new monitor separated power supply, inverse video programs, cables, etc., $£ 120$ ono. H. S. Cook, 11 Normandy Avenue, Burnham-on-Crouch, Essex. Tel: Maldon $0621,784065$.
TRAŃSCENDENT D.P.X., working, $£ 400$. ZX81 with Rampack and tapes, £90. Amstrad stereo tuner, $£ 15$. Post paid. Richard Rix, 76 Ber Street, Norwich, Norfolk NR 1 3ES.
SINCLAIR 2×81, plus 16 K RAM, manual, 4 books, 4 tapes, software. $£ 75$ or offer. David Brook, 113 Leigham Vale, London SW2.
ROTEL $1000 \mathrm{Hi}-\mathrm{Fi}$ system, cost f 900 , exchange for good quality computer with hardware, approx. value $£ 550$. Mr. Mike Cooper, 409 Holcombe Road, Helmshore, Rossendale, Lancs BB4 4NF.
SWAP Elektor H.B. from N1, P.W., P.E., E.T.I., E.E., W.W., 200 Philips 1501 for communic. radio. J. A. N. Ferreira, 13 Danehurst Street, London SW6. Tel: 01-731 1509.
PE RANGER CB 6 Chs., pair £80, National Panasonic stereo radio cassette RX5300F, £50. Tel:01-505 9137.

2X81 16K RAM built kit, working perfectly. No p.s.u., £70. N. Johnston, P.O. House, Longforgan DD2 5EW. Tel: Longforgan 200.
MOTHERCARE baby alarm, £4.00; Curzon player-recorder, f6.00. Mr. A. C. Holdway, Flat 9, 10 Westwood Road, Portswood, Southampton, Hants.
OK1 CP1 10 Upper case matrix printer RS232 + parallel interfaces, suitable for UK 101, video genie, etc. $£ 175$. Peter Vince, 19 Links Road, Ashtead, Surrey KT21 2HB. Tel: 0372272713. MIZUHO 5B2M two metre SSB transceiver, £50. Creed teleprinter with interface, $\mathbf{£ 5}$. WW2 38 sets, offers. L. Fletcher, 21 Shakespeare Avenue, Andover, Hants. Tel: Andover 65368.
ZX81 computer with 16 K RAM plus 4 books, cassettes and software. Only 6 months old, £95. Mark Chidlow, 22 Glen Rise, King's Heath, Birmingham. Tel: 0217775635.
WANTED C.R. tube for oscilloscope. 9-pin, $2 \frac{3}{3} \mathrm{in} .350 \mathrm{~V}, 6.3 \mathrm{~V}$ in good order. Reasonable cost. Mr. C. F. Toms, Springfield, Chapel Road, Scleddau, Fishguard, Dyfed SA65 9RD.
UK101 8K cased, R.T.C. TV, new monitor, tapes, books, £150 ono, cash only. Write or phone. Mr. R. Griffiths, 5 St. James Mansions, McAuley Close, London SE1. Tel: 01-928 5013.
TELETYPE model 32, ASR, 75 Baud, paper tape punch/reader, £35 ono. R. Munson, 16 Woodcote Way, Benfleet, Essex. Tel: South Ben. 2998.

FOR SALE. Pye record maker radiogram model P117 RM with magnetic disc, offers. D. Moore, 24 Beaufort Close, Guisborough, Cleveland TS 14 7PW. Guisborough 35349.
WANTED. Hameg scope dual trace preferred though single trace considered. J. G. Grieve, Makerhouse, Dounby, Orkney KW17 2JE. Tel: 085677279 .
ACORN Atom $12 \mathrm{~K}+12 \mathrm{~K}$ FIt. Pt. ROM, VIA, p.s.u. magic book, space invaders, asteroids, £199. M. Stainsbury, 18 The Oaks, Billericay, Essex. Tel: 57527.
FOR SALE new GSC LPK-1 assembled logic probe, $£ 11.50$. K. Y. Chang, 70 1-up, Ashley Street, Glasgow G3 6HW.
SMALL quantity uni-selector switches, 10 bank, 25 way, ex telephone equipment, $£ 5$ each. M. Greenslade, 11 Cherry Road, Chipping Sodbury, Bristol BS 176 HJ .
COLOUR graphics board for UK101/Nascom. Cost $£ 60$. Accept $£ 45$. M. McNinch, 16 Fifth Avenue, Bangor, Co. Down BT20 5JP, N.I.
WANTED circuit and details of PW push button multimeter. M. J. Kerridge, 73 Ampleforth Grove, Willerby Road, Hull.
ZX81, 16 K RAM, plus $£ 30$ of software including ZXChessll and OS-Asteroids, £85 ono. David Bell, 56 Cradlehall Park, Westhill, Inverness. Tel: 0463791349.

ZX81 WANTED in good condition, preferably with power supply and leads. R. S. Matheson, Aviemore, Gwydry Road, Crieff, Tayside PH7 4BS. Tel: 07643582 (after 4.00 p.m.).

ELEKTOR Junior computer, p.s.u., Harvard 410T 40-channel walkie talkie, SWR meter, boomerang, matcher, offers. Mr. K. Y. Leong, 104 Gretney Walk, Moss Side, Manchester M 15 5ND. Tel: 0612260791.
SUPERBOARD II 300/600 Baud, case, 10 issues OSIUK User Group Magazines, £180.5V 6 A PSU, £30. Both $£ 200$. Nicholas Brasier, 32 Henley Drive, Frimley Green, Camberley, Surrey. Tel: Deepcut 7487.
Z81 16K RAM software, $£ 100$, plus 17 inch TV b/w $£ 50$, used with above. F. B. Miles, 131 Dudley Road, Kenilworth, Wark's CV8 1GR. Tel: Kenilworth 54086.
POWERTRAN. Vocodor Calibrated by Circolec Electronics. Never used, $£ 270$ ono. P. McGeechan, 113 Old Mill Road, Uppingston, Glasgow G71 7JB. Tel: Uppingston B1 5565.
2 KILO multicore solder $£ 5$, plus carriage. Resistance wire, one ohm per inch $£ 1$ p/order per 20 yds. J. S. Hind, 7 Carlyle Road, West Bridgford, Nottingham.
WANTED. Cheap! SecondhandI Transcendent DPX. Write with details to: D. Wood, 16 Donnington Grove, Portswood, Southampton, Hants SO2 1RW.
SERVISCOPE Minor Oscilloscope, $£ 40$. Signal generators advance H1 A.F., £30. Heatkit RF-1U R.F., f25. D. Russell, 9 South Beach Road, Ardrossan, Ayrshire KA22 8AX. Tel: Ardrossan 64144.

PRINTER. Olivetti TE318 complete with RS232 interface seen working with PET, $£ 50$. Tel: High Wycombe 049433164.
AUDIO-GENERATOR. BECCO AG 761 Sine/Square wave, £35. Tel: 0517340987.
POWER supplies: $5 \mathrm{~V} / 35 \mathrm{~A}$ (switch mode), £20, $5 \mathrm{~V} / 20 \mathrm{~A}$ (transformer), £15, 24V/1A (transformer), $£ 10$ or w.h.y. computer bits? John Cartwright, 96 Cranberry Lane, Alsager, Cheshire. Tel: Alsager 6513.
6800 77-68 CPU card, 4 K RAM card, 16 K Eprom card, 32K Dynamic RAM card. Offers. 0516536918.

UK101 8K wood/aluminium case, integral cassette recorder. Room for internal expansion boards, £170. R. W. Hillman, 79 Pope Road, Underhill Estate, Wolverhampton WV10 8LU. Tel: Wolverhampton 734448.
PET 20018 K with manual, v.g.c also dust cover and various cassettes, $£ 300$. Tel: Hornchurch 72222.

2X81 computer and 16 K RAM plus full size keyboard, $£ 90$. Gordon Clarke, 37 Gladstone Grove, Heaton Moor, Stockport SK4 4BX. Tel: 0614322189.
$\mathbf{2 \times 8 1} 1 \mathrm{~K}$ built with everything. V. good condition, $£ 50$ of books, Sinclair tape, only $£ 90$. Buyer collects. Monsur Miah, 27 Highcroft Gardens, Golders Green, London NW11 OLY. Tel: 01-458 7567 (after 6 p.m.).
SINCLAIR 2×81 1K RAM + Games cassette. Offers Ring 0782625989.

The hardware and software exchange point for PE computer projects

INSTANT SOUND DEVELOPMENT

The use of the AY-3-8912 or AY-3-8910 sound chip with the UK 101 adds a new dimension particularly to games. Being such a versatile device employing 14 registers can sometimes mean that producing the exact sound you want is a lengthy process bogged down with bitpatterns and binary to decimal conversions to give the values to be POKEd into the registers. Ideally for sound development one would like to be able to call upon the resources of the device in a straightforward manner.

To this end a program has been written which uses the keyboard to control the sounds in much the same way as an audio mixer. Each of the three channels can be independently selected to contain tone, noise and envelope effects. Frequency sweeps can be carried out until the required sound has been produced. At this point another keypress gives a printout of register contents so that the same sound can be produced in any program. For, complex sweeps the start and finish sounds can be printed out separately. It will be clear from the printouts how to program the sweep with a FOR . . . NEXT Ioop.

Recapping on what the chip is capable of: Each of the three channels can independently produce tone and/or noise. The tone generators can give different frequencies on each channel but there is only one noise generator which all channels must share. The amplitude of each channel can be set unless control of that channel is given to the envelope generator. The shape and period of the envelope can be specified.
Fig. 1 shows a simplified diagram of the generator showing the effect of selecting the various options in the program (T), E1,

N1 etc.). It also indicates where the period and amplitude controls fit into the system.
At program startup, all of these options are deselected and all the periods and amplitudes are set to zero. A single keypress will select an option and a second press will deselect again. A printout on the VDU shows the status of the device after each selection.

Envelope shape selection is by means of an increment key which steps through the ten profiles returning eventually back to the first again.

The use of the keyboard is shown below right. Below, right, are some examples which demonstrate how quickly different sounds can be demonstrated:
1 REII *** SOUND DEVELOPMENT **
2 REM *** PETER BECKETT JAN 81 **
4 YI=256: Y2=61808:Y3-61809
5 FORI-OTOI 3:POREY2, I:POKEY3,0:NEXT
6 POKE530,1:DP=4:DIMX(13)
6 POKES
3 Y $4=0: Y 5: \mathrm{DP}=4: \mathrm{DIMX}$
$Y 4=0: Y 5=4095: Y 6=31$
$9 \quad 01=1.01: Y 7=15: Y 8=6534$ 9 Ql=1.01:Y7-15:Y8=65534
10 FORI=0TO9:READNV (I) ENEXT
10 FORI=0TO9:READNV (I) \&HEXT
11 DATAO, $4,8,9,10,11,12,13,14,15$
11 DATAO, 4, 8,9,10,11,12,13,14,15
12 FORI=0TO16:PRIMT:NEXT:PRINT"SOUND DEVELOPIENT-P. BECRETT"PPRINT
$20 \mathrm{~KB}=57088$
30 T1--1:T2-1:T3-1:N1=-1:N2=-1:N3--1:E1=-1:E2=-1:E3m-1
100 POKEKB, 127:A-PEEK (KB):IFA-25STHEN200
110 IFA=127THENTL=-T1:GOTO1000
120 IPA=191TEENT2=-T2:GOTO1000
130 IPA=223THENT3--T3: GOTOI 000
140 IPA=239THENN1-N1:GOTOL000
150 IFA $=247$ THENN 2-N 2 : GOTO1000
160 IFA=251THENN3--N3:GOTO1000
170 IFA=253THEHEI-EE1:GOTO1000
180 GOTOLOOO
200 POKEKB, $191: B=P E E K(K B)$ I $[P B=255$ THEN 300
210 IFB=127THENE2=-E2:GOTO1000
220 1FB=191THENE 3-E E3:GOTOLOOO
230 IFB=223THENES=ES+1: COT01000
240 IFR=239THENEP=1.1*EP+1:IFEP>Y8THENEP=Y8
241 IPB=239THEN5190
250 IFB=247THENEP-1/1.1*EP-1:IFEPくY4THENEP=Y
251 IFB=247THEHS190
260 IFB=251THEN3000
270 GOTO1000
300 POKEKB, 239 :C=PEEK(KB):IFC=25STHEN400
310 IFC=127ANDEI=-1 THEN 6000
320 IFC-191ANDE2--1THEN6100
330 IFC=223ANDE3--1THEN6200
340 IFC=239ANDEI=-1THEN6 300

350 IFC=247AMDE2--1THEN6400
360 IFC- 25 IANDE3-1THER6500
370 IFC= 253 THEN 6600
380 GOTOL 000
400 POKEKB, 247:D-PEEK (KB): IFD-255THEN100
410 IFD=127ANDEL--1THEN6002
420 IFD-191ANDE2=-1TARN6102
430 IFD-223ANDE3--1THEN6202
440 IPD=239ANDEI=-1THEN6302
450 IFD=247ANDE2--1THEN6402
460 IFD-251ANDE3-1THEN6502
470 IPD 25 3THER6602
480 GOTO1000
cont. opposite
Lines
4-30 Set up constants. Sound $=61680$, 61681
4-30 Set up constants.
100-220 Scan keys 1-9 and select/deselect options
230 Increment evelope shape if " Q " pressed.
240-251 Increase/decrease envelope period.
300-380 Scan keys W to I.
400-480 Scan keys S to K.
1000-1099 Status printout.
2000 Delay to prevent too rapid response to option select.
3000-3031 Register printout of array X.
$5000-5300$ Put current values in array X prior to output to PSG.
5400 Output to PSG.
6000-6610 Calculate periods and amplitudes. and output.

Fig. 1. Simplified diagram of the Sound Generator, and the key functions related to it.

$5160 \mathrm{X}(8)=\mathrm{Al}: \mathrm{IFE}=1 \mathrm{THENX}(8)=16$
$5170 \times(9)-$ A2：IFE2＝1THENX $(9)=16$
$5180 \times(10)=A 3:$ IFE $3=1$ THENX $(10)=16$
$5190 \mathrm{x}(12)=1 \mathrm{NT}(E P / Y 1)$
$5200 \mathrm{X}(11)=1 \mathrm{NT}(E P-X(12) * Y 1)$
$5300 \times(13)=\mathrm{NV}(E S)$
3400 PORI＝OTO13：POREY2，I：POREY3，X（I）：NEXT
5500 GOTOLOO
5999 REM AMPL AND PERS COHE HERE
6000 Al＝Al＋1；IFAl＞Y7THENAl＝Y7
6001 coto6010
6002 Al－A1－I＋IPALくY4THENAI＝T4
$6010 \mathrm{X}(8)$－A1：POYEY 2,8 ：POKEY 3，A1：GOTO 00
6100 A $2=A 2+1: 1 F A 2>Y 7 T B E N A 2=Y 7$
6101 GOTO6110
$6102 \mathrm{~A} 2=\mathrm{A} 2-1: \mathrm{IFA} 2$ く甲 4 THEMA $2=Y 4$
$6110 \mathrm{X}(9)=\mathrm{A} 2$ ：POKEY2，9，POKEY3，A2：GOTO100
6200 A3－A3 +1 ：IFA3＞ 77 THENA $3=\mathrm{Y} 7$
6201 GOTO6210
6202 A3－A $3-1:$ IFA3 $\langle\Psi 4$ THENA $3=Y 4$
$6210 \mathrm{X}(10)=\mathrm{A} 3:$ POKEY2， 10 ：POKEY3，A3：GOTOI 00
$6300 \mathrm{Pl}=\mathrm{INT}(\mathrm{P} \mid$＊Q $1+1): \mathrm{IFPI}$＞YSTHENPI $=\mathrm{Y} 5$
6301 GOTO6310
6302 P1＝INT（P1／01－1）：IPR1くY4THENPI－Y4
$6310 X(1)=I N T(P 1 / Y 1): X(0)=P 1-X(1) * Y 1$
6311 POKEY2，0；POKEY 3，X（0）：BOKEY2，1：POKEY3，X（1）：G0T0100
$6400 \mathrm{P} 2=\mathrm{INT}(\mathrm{P} 2 * \mathrm{Q} 1+1): \mathrm{IFP} 2$＞Y STRENP2 $2=\mathrm{Y} 5$
6401 GOTO6410
$6402 \mathrm{P} 2=\mathrm{INT}(\mathrm{P} 2 / \mathrm{Q}-\mathrm{I})=\mathrm{IFR} 2<\mathrm{Y} 4$ TRENP2－Y4
$6410 \mathrm{X}(3)=\mathrm{INT}(\mathrm{P} 2 / \mathrm{Y} 1): \mathrm{X}(2)=\mathrm{P} 2-\mathrm{X}(3) * \mathrm{Y} 1$
6411 POKEY2，2：POKEY3，X（2）：POKEY2，3：POREY3，X（3）：GOTO100
$6500 \mathrm{P} 3=\mathrm{INT}(\mathrm{P} 3 * \mathrm{Q} 1+\mathrm{I}): \mathrm{IFP} 3>\mathrm{Y} 5 \mathrm{THENP} 3 * \mathrm{Y} 5$
6501 GOTO6510
6502 P3＝INT（P3／Q1－1）： 1 FP3＜Y4THENP3－Y4
$6510 \mathrm{X}(5)=1 \mathrm{NT}(\mathrm{P} 3 / \mathrm{F} 1): X(4)=\mathrm{P} 3-\mathrm{X}(5)$＊ Y 1
6SI1 POREY2，4：POKEY3，X（4）：POKEY2，5：POREY3，X（5）：GOT0100
$6600 \mathrm{NP}=\mathrm{NP}+1: I F A P>Y$ THENHP $=76$
6601 G0T06610

$6610 \mathrm{X}(6)=4 \mathrm{~A}$ ：POR：EY2，6：POKEY3，NP：COTO100

KEYBOARD ANNUNCIATOR

Sir－When typing a program into the com－ puter，I found it convenient to have the solid state annunciator＂bleep＂to show that I had correctly entered a figure or let－ ter，this saved me having to continually view the monitor screen for missed charac－ ters．It also proved useful in some animated games to have the＂beep＂function sounding for added interest．

The annunciator may be switched off by two methods．Firstly，by a switch in the 5 volt rail to the unit．If this is done，then R1， D9 and TR1 are not needed．The second method is to make use of the RTS line at Pin 6 of J 2 on the rear of the computer board．For the RTS line to function，IC68 and associated components need to be fit－ ted on the computer board．

On first switching on the computer the ＂beep＂will not sound until the screen is cleared of the garbage with the Reset key， thereafter it will be actuated by any keystroke．To disable the＂beep＂，the RTS line is actuated by typing POKE 61440．81． To return to＂beep＂mode just type POKE 61440，17．

The circuit is very simple，TR2，T1，R2， and C1 form the oscillator circuit which drives the flat，disc－like，piezo－electric buz－ zer．Operating the keyboard puts a lower voltage on the cathode of one of the diodes D1 to D8，this switches TR3 on and puts about 4 volts on to the centre tap primary of a small audio output transformer，the secondary winding is not used．Capacitor C1 need not be fitted and is only fitted if the tonal quality does not suit the user＇s ear．A typical value of 100 n or less may be used．

TR1 is switched on by the command POKE 61440，81 and damps the oscillator circuit so that all that can be heard is a faint click from the piezo stripboard buzzer．The circuit was built on a small piece of strip－ board and stuck on to the computer board close to the＂ 0 ＂key with the piezo buzzer glued to a clear spot on the computer board．

Anthony Green A．S．M． Hong Kong．

PRINT WITH FN

Sir－here is a short routine which works on my UK101 with Wemon：
$10 \operatorname{DEF} \operatorname{FNA}(\mathrm{~A})=53194+\mathrm{X}+(\mathrm{Y} * 64)$
15 DEF $\operatorname{FNB}(\mathrm{A})=\operatorname{INT}(\mathrm{FNA}(\mathrm{A}) / 256)$
26 DEF $\operatorname{FNC}(A)=F N A(A)-F N B(A)$ ＊256

100 POKE 549，FNB（A）：POKE 5．12， FNC（A）

It demonstrates how you can PRINT on to any part of the screen using X / Y co－ ordinates．Lines $10-20$ need only be written once and the contents of line 100 need to be written just before each PRINT statement．Here is an example：

16 DEF $\operatorname{FNA}(A)=53194+X+\left(Y^{*} 64\right)$
15 DEF FNB $(A)=\operatorname{INT}(F N A(A) / 256)$
20 DEF $\operatorname{FNC}(A)=F N A(A)-F N B(A)$
＊256
30 PRINT CHRS（12）；
50 PRINT＂ICTRL Al ENTER X
AND Y＂；
66 INPUT X，Y
76 POKE 549，FNB（A）：POKE 512，
FNC（A）
80 PRINT＂UK 101 ＂
90 GOTO 50
X and Y should be integers between 1－ 48 and $1-16$ respectively．No test for range is made so characters can be PRINTed off the screen．

This routine is especially useful for PRINTing onto the top line which is nor－ mally protected from PRINTing by the Wemon．If X and Y are set to one it will PRINT on the top line．Whatever is PRIN－ Ted will not scroll with the rest of the screen and will remain there until Clear Screen is executed．If the routine is to be used exclusively for PRINTing on to the top line，line 10 can be changed to：－

16 DEF FNA $(A)=53259$

（CTRL A executes HOME CURSOR）

David A．Rogerson，

 Morpeth．It should be emphasised that material presented in Prompt has not necessarily been proven by us．Neither can com－ patibility with all generations of the com－ puter equipment to which it relates be guaranteed．

FREE SOUND

Sir-For those who may not have the skill or the money to build a programmable sound generator, I have found a cheap and easy alternative. A great many weird and wonderful sounds can be heard by placing a small Medium Wave radio beside, or carefully on the computer itself and tuning it for the best results.

I myself use a cheap radio which I have placed on top of the Basic and Monitor ROMs which give excellent results on fast games such as Space Invaders and Gremlins. The different cycles set up for different routines inside the ROMs appear as audio signals on the radio.
Y. Gilihan,

Sittingbourne,
Kent.

INITIAL SNAGS

Sir-1 think your readers might be interested in the following modifications to the UK 101, if recently bought from Compshop with 2716 substitute chips, for the BAS 2 and CHR GEN.

1) CHR GEN

Pins 18 and 20 should be connected to ground, if this is not done only half the characters are available. (None if the pins are still in the sockets.)
2) BAS 2
(a) Pin 18 should also be connected to ground; or invalid Syntax errors appear if even the simplest program is executed.
(b) A note supplied suggests linking a wire link between pin 6 of 1C17 and pin 8 of 1C16; this converts the BS2 pulse to a NOT BS 1 pulse necessary for the 2716, all good stuff, but it doesn't work! Errors still persisted.

The above can be solved by the following method, this either inserts a necessary buffer or presents a slight delay to the pulse, but it certainly works.
Connect pin 8 of $1 \mathrm{C16}$ to pin 9 of $1 \mathrm{C1} 8$
Connect pin 8 of 1 C18 to pin 20 of 1 C10 [BAS 2].
Cut the track on the top side of the, board leading to pin 20 of 1C10. Pins 8 and 9 on 1C18 are a spare NOT gate.

The chips were supplied with the pins bent outward but there were no notes saying why, so of course I bent them in again thinking they were bent because they were not packed properly, after all i.c. pins usually have to go somewherel

Although I feel the UK101 is an excellent introduction to Micro Computing, I find it slightly disconcerting that a brand new machine should need so much extra work through lack of Technical Proving.
A. Jones,

RAF North Luffenham.
It should be emphasised that material presented in Prompt has not necessarily been proven by us. Neither can compatibility with all generations of the computer equipment to which it relates be guaranteed.

Suftware and hardware designs submitted should be accompanied by a declaration to the effect that it is the original work of the undersigned. and that it has not been accepted for publication elsewhere.

E/MONITOR HELP

Sir-In reply to Mr. J. Walton's letter requesting information on relocation of the extended monitor.

To relocate the extended monitor:

1) Use the relocate command (R) to relocate the monitor.
2) Change look up table between $\$ 0960$ $+d$ and $\$ 0999$ where d is the displacement of the new monitor location from the original.

If for example the monitor is moved to the top of 8 K ie. $\$ 1800-\$ 2000$ the table will be between $\$ 1960$ and $\$ 1999$.

Some of the addresses in the table will have been changed by the relocate command. The first value to be changed is in $\$ 1961$ this is $\$ 0 B$ and must be changed to $\$ 1 B$ proceed through the table changing alternate values if they start with a zero i.e. \$0B, \$0C, etc.

These values are the high bytes of the addresses and if the monitor has been moved $\$ 1000$ bytes ie. moved to the top of $8 K$ then $\$ 10$ will have to be added to these values.

You can now save the relocated monitor using the checksum save. ie. \$1800, 2000. R. Webster,

Sutton Coldfield.

UK 101 KEYBOARD GRAPHICS

Sir-The program opposite enables the total range of characters to be accessed easily and directly from the keyboard, thereby greatly simplifying graphical display design and more importantly, saving valuable user RAM space.

eg. 10 PRINTCHR\$(216); CHR (218); CHR\$(216); $\begin{array}{ll}\text { CHR (218) } & =33 \text { bytes } \\ 10 \text { PRINT "HH" } & =12 \text { bytes }\end{array}$

The graphics program occupies 163 bytes and one zero page address at OOE7: and is located at 0235-0208. Unfortunately, the programming of the UK101's ROMs masks the MSB of all characters whilst loading, so a simple load routine must also be used, and occupies 24 bytes of RAM from 02D9-02FD. Both routines reside in an otherwise unused and protected area of RAM and are consequently unaffected by "Cold Starts".

The graphics routine is entered by changing the Input Vectors from FFBA to $\emptyset 235$. i.e. POKE536,53: POKE537,2 (Note: both POKEs must be executed together).

The keyboard will still function as before, but on pressing CONTROL G, a display block will appear in the top right-hand corner of the screen. Any graphic character may now be obtained by a two-stage operation:

1) Select a letter $(A-Z)$, which will be displaved within the display block. RUBOUT will delete this letter.
(The letters actually correspond with the vertical column of the UK101 character set published in the March 1980 edition of PE.)
2) Select a number (0-9). The corresponding graphic character will be
displayed. RUBOUT will delete the last entry.
Return will commit the BASIC line to memory and automatically exits the graphics routine. CONTROL C also exits the routine but enables the user to continue the program line using a "standard" kevboard. However, the input vectors remain unaffected and CONTROL G can be operated at any time.

Certain characters such as CR and LF can be used within program lines but they will produce error messages when loaded and should therefore be avoided unless a different form of load routine is used. Also, NULL is not displayed and causes subsequent characters to be deleted from that particular line.

As already stated, an additional LOAD routine must be used to retrieve recorded programs, due to the character mask of the UK101.

To place the routine in a $\angle O A D$ mode enter:

POKE536,217: POKE537,2

The data from the cassette will be loaded as normal, but at the end of the listing the Reset keys must be operated and Warm Start selected. (A Warm Start resets the Input Vectors to FFBA.)

It has already been mentioned that although CR/LF can be used within program lines, these lines will be rejected when loaded from cassette.

However, if we assume that CR/LF characters are always correctly enclosed by character string inverted commas, then loading is possible.

A suitable routine is provided and is located at $0235-026 B$ plus a zero page address at $\triangle \emptyset E \emptyset$. The program initially searches for at least 12 consecutive NULLS, placed at the beginning of a program listing on tape, in order that the character string flag may be correctly set.

From then on, after every other inverted comma, the routine accepts every character as a string rather than a control. Therefore, if the tape is halted within the program or a string exists without a terminating inverted comma, the LOAD routine mav then be out of step with the character strings and subsequent error messages will result.

The routine is entered by:
POKE536,53: POKE537,2
and RESET must be operated at the end of the LOAD cycle.

In order to SAVE a program containing control characters, one must ensure that all character strings have their associated terminating inverted comma and the following line is added to the program.
1 SAVE: FORI = 1 T02 0 :
PRINTCHRS(0); :NEXT:
LISTN-
(where N is the 1st
program line to be
SAVEd)
Then enter RUN, start the tape recorder and press RETURN to execuite the SAVE.
A. J. Jameson,

Ross Shire.

BAR-CODED PROGRAMMABLE MINI

PLUS $£ 10$ worth of accessories FREE
The VL-5 can read and store Casio's unique bar-coded music, or alternatively you can program the memory directly from the 3 -octave keyboard. Select one of the 10 instrument voices and choose one of the $\mathbf{8}$ auto rhythms, then play back your stored melody by means of the One Key Play button, or by the Auto Play button. The 4 note polyphonic mini keyboard can also be played manually.
With integral amplifier and speaker; Line Out and Headphone jacks; Sustain and Pitch control. Powered by 5 AA size batteries, or the optlonal mains adaptor, AD-1E ($£ 5$). Supplied with light pen, instruction manual and music book. Dims $33 \times 320 \times$ $86 \mathrm{~mm}(11 \times 12 \mathrm{i} \times 3 \mathrm{~m})$. Weight $510 \mathrm{~g}(180 \mathrm{z})$.

CASIOTONE SUMMER OFFERS
FREE accessories (value in brackets), until September 30 th .
$\begin{array}{lllllllll}\text { CT- } 701 & (£ 50) & £ 495 & \text { CT-601 } & (550) & £ 395 & \text { CT-403 } & (£ 35) & £ 275\end{array}$

1000 VOICE DIGITALIZED SYNTHESIZER

PLUS $£ 40$ worth of accessories FREE!
This revolutionary new synthesizer has 10 superb preset instrument voices, PLUS switchable FEET, ENVELOPE and MODULATION - the three elements of sound creativity - giving $10 \times 10 \times 10$ variations, numbered from 0 to 999
You may store up to 10 of your favourite sounds, in a battery protected memory, for instant selection.
instant selection.
The 5 -octave, 8 -note polyphonic keyboard can be split into two separate keyboards, with different preset voices.
In addition to a 16 -step preset arpeggia, there is a programmable arpeggio function with up to 127 steps, 9 note pitches, and rests, which can also be used as a real time sequencer.
Frequency is displayed digitally, and the wide range pitch control allows transposition between -1 octave and +0.5 octave
Complete with Sustain, and 3 Vibrato functions, etc; integral amplifier/speaker; Out-
put and Headphone jacks; protective moulded end plates.

ACCESSORY PRICE LIST INTEREST FREE CREDIT

Details on request

FREE SECURICOR 24 HOUR DELIVERY (CT models) Same day despatch by post for smaller models.

LCD ANALOG/DIGITAL AX-5 ONLY $£ 19.95$
Black resin cased version of the AX- 210 below
THE WORLD'S MOST VERSATILE WATCH?

Analog Display
Digital display
Hegtal display hours and minutes

* Local time, 12 or 24 hou
* Full calendar display
* Dual time, 12 or 24 hour
- Alarm time display
* Countdown alarm timer with memory
function
- Professional $1 / 100$ second stop-watch Hourly time signal. Daily alarm elecronic buzzer or 3 selectable melodies.
Rapid forward/back setting. 9.4×35.4
$\times 36 \mathrm{~mm}$,
Deletions.
Dele trons.
AX-210
£29.95

50 METRE WATER RESISTANT

W-20 Black resin case/strap. $12 / 24$ hour time and auto calendar. Alarm and hourly chims. Prfessional 1/100 second stopwatch. Compact case, approx 8 mm thick. 5 year battery life.
Wa3s Stainless steel version of W-20, with countdown
alarm timer.
AA-92W Analog/digital (dual 12 hour times) with graphic alarm displays. Otherwise similar to W-35.

MULTI ALARMS

4 ALARMS, 6 MELODIES

12/24 hour time \& calendar. Time is always on display. $12 / 24$ hour dual time. Professional $1 / 100$ stopwatch. Optional hourly signal. Daily alarm with pre-alarm. Daily alarm with post-alarm. Weekly alarm/extra daily alarm. Monthly alarm/extra daily alarm

MM $\mathbf{4 0 0} £ 29.95$

100 METRE WATER RESISTANT

TRUE

Classical analog with simultaneous digital display. Hour, minute, second, month, date, day. Daily alarm and hourly time signal. Date memory. auto calendar. $1 / 100$ second stopwatch.

AQ-101 £39.95

Time and auto calendar. Alarm and hourly chimes. Countdown alarm timer with repeat memory function. Professional $1 / 100$ second stopwatch. Time is always on display, regardless of display mode. Amazing 5 year lithium battery life. Superior to the W-250.

4 ALARMS,
2 MELODIES, CALCULATOR

12/24 hour time \& calendar 8 digit calculator. Professional $1 / 100$ second stopwatch to 24 hours. Optional hourly signal. Daily alarm. Daily alarm with pre-alarm. Daily alarm with post-alarm. Weekly alarm.

CA-95 Resin $£ 19.95$
CA-951 Metal $£ 29.95$

LEADING CASIO SPECIALISTS NORMALLY BY RETURN
Dept PE
38 Burleigh Street, Cambridge CB1 1DG
38 Bureigh Street, Camb
Telophone: 0223312866

SHUTTLE ORBITER

A new problem of natural science has shown itself on the last shuttle mission. Photographs show that the vehicle glows in the dark. It was an unexpected phenomenon and could give rise to adverse conditions when carrying out observation on the dark side of the vehicle. There are a number of planned optical payloads for observations on the dark side of each orbit. Also there are scheduled tasks involving infrared techniques, low level light sensors and astronomical tasks.

The glow appears on the edges of the manoeuvring systems, the vertical stabiliser and other edged parts. The theory is that this is a chemicoluminescent effect caused by atomic oxygen. It is thought that the atomic oxygen impacting the vehicle builds up into molecules of oxygen and when these are shed they may give off photons as they slow down when separating from the vehicle. It is believed that all parts of the spacecraft which are covered with tiles give off this glow when facing into the velocity vector.

INSAT 1A SATELLITE TESTED IN ORBIT

The first pictures from the Indian satellite, a multipurpose spacecraft, indicated weather patterns over India and the surrounding oceans and land mass. This satellite will enable India to make observations for detailed forecasts of flooding. The image is provided by a very high resolution radiometer operating in the range $0.55-0.75$ micrometres. There is also infrared imagery capability in the range 12.5 to 10.5 micrometres.

Most systems seem to be working according to the planned programme. It is however a disappointment that the solar sails were not able to be successfully deployed.

SOVIET ACTIVITIES

The Soviet Union have been active in orbits which can monitor happenings in the South Atlantic. It has been the custom by the Soviet Union to regularly use this region in order to replace spacecraft which become degraded. The task of surveillance is thus kept in continuing operation. A particular vehicle

Cosmes-1355 was launched at 0953 GMT from Tyruatom on the 29th April. It was put into a $402 \times 128-\mathrm{km}$ orbit at an inclination of $65 \cdot 1$ deg. After the initial orbit was satisfacforily achieved it was put into a higher orbit of $459 \times 438-\mathrm{km}$ but in the original inclination. This would take it over the Falkland Islands.

SHUTTLE CREWS

In accordance with the new policy to be adopted by NASA for the Shuttle Missions of the future, the next three crews have been named. For Mission 7 the commander will be Robert L. Crippen with Frederick H. Hauck as pilot. The Mission specialists will be John M. Fabian and the first woman astronaut Sally K. Ride. She has already gained much experience as a key communicator for shuttle crews from her post at the Johnson Spaceflight Centre. This shuttle will be named Challenger and is due for launch on a date in April 1983.

The payloads will be a pallet satellite from Germany, a Canadian communications satellite, Telesat-F, a second instrument package from the Office of Space and Terrestrial Applications and an Indonesian communications satellite, Palapa-81. The Mission will be for six days.

In July 1983 shuttle Mission 8 will be launched with Richard H. Truly as commander and Daniel C. Brandenstein as pilot. The Mission specialists will be Dale A. Gardner and Guion S. Bluford, Jr. This will be a three day mission. On this flight there will be an Indian communications satellite, Insat-B, and a satellite from NASA for tracking and data relay named TDRS-B. This is the second and final part of a system for advanced voice control and data control between the orbiting shuttles and the mission control centres.

Mission 9 will be the European Spacelab. The date is set at September 1983. This will be a seven day mission. The commander will be John W. Young and the pilot Brewster H. Shaw, Jr. The two specialists will be Owen K. Garriot and Robert A. Parker. The payload specialists for this mission have not yet been released.

SALYUT ACTIVITIES

Another cycle in the Soviet manned space station missions began with Salyut 7. This is probably intended for the Soviet-French joint cosmonaut team which has been expected in June or July 1982. The orbital parameters are apogee -278 km , perigee -219 km , with a revolution period of 89.2 min . The inclination of the orbit is 51.6 deg. A Soviet team may visit the station before the joint mission takes place.

Meanwhile, Salyut 6 remains docked with Cosmos 1,267 and will remain in orbit as a back-up for the joint mission. A progress supply vehicle is expected to visit the station between the inspection team and the final joint Soviet-French team.

Salyut-7 will continue to test systems and space station equipment. This mission is controlled from the Moscow control centre and tracked by the research ship Sergey Korolev somewhere in the Atlantic.

It is worth remembering that the Soviet approach was, from the early days of space research, geared to space station technology.

On the many occasions that invitations came from Kensington Gardens to attend film shows and discussion sessions there was always the same question put by the hosts 'which do you consider the best way to plan visits to the Moon and other planets'. Many of us were of the opinion that the two step method seemed the most economical. The concept is still the same but the method now is the Shuttle. Alas there are fewer invitations for such discussions now. The early dreams are somewhat later than was expected yet perhaps the improvements in the techniques have been worth it.

There is however another side to all this. At the moment the financial restraints are beginning to bite. The bite is indeed so great that there is a danger that a great deal of expertise and valuable data will be thrown away at a time when quite exceptional new knowledge is available for collection. Yet these so very successful units are to be axed. Axed for the want of funds so small when considered against the background of the whole of industry. Half a century of endeavour will be jettisoned at the very moment when the object of that endeavour is within reach.

Is it that the world has become so blase that a football match is of more importance than an achievement which can contribute to the eradication of problems? Is it perhaps too much to expect that every thinking person should have some regard for the future and be willing to learn that their peace of mind and well being can be assured by wise use of the resources of the solar system? The exploitation of these resources for the benefit of the people of the solar system is, surely, a worthwhile goal. The sum of money required to continue is the cost of the annual operations to collect and analyse data which cannot be repeated perhaps for as much as a hundred years, yet that cost is less than the cost of an airplane for weather research.

PIONEER 10 AND 11

The principal objects which technology has put into space and which have given returns so far which exceed by a great margin the design expectations, are the spacecraft Pioneer 10 and 11. The chronicle of what has been achieved and the impact made on even general knowledge is immense. Part of the next SPACEWATCH will be devoted to a survey of the accomplishments such as the accurate survey of the magnetic field of Jupiter; determination of the distribution of high energy particles in Jupiter's magnetosphere (including an explanation of the source of Jupiter's previously known decimetric radio emission); discovery of absorption effects of the Gallilean satellites; discovery of the planet's magnetodisc and many contributions to understanding the sources; and the physical dynamics of charged particles trapped in the planet's magnetic field.

At the present time both these craft are in the outer areas of the solar system and moving out in opposite directions. By 1990 Pioneer 10 will be in the interstellar medium and still healthy.

Frank W. Hyde

Ingenuity Unlimited

A selection of readers' original circuit ideas Why not submit your idea? Any idea published will be awarded payment according to its merits.

Each idea submitted must be accompanied by a declaration to the effect that it has been tried and tested, is the original work of the undersigned, and that it has not been offered or accepted for publication elsewhere. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.
Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not in the text.

WITH this circuit, when a door is opened and the ignition turned off, in either order, capacitor C 1 is discharged through switch S1 via diode D1 and transistor TR2 is turned off. When the door is closed, switch S1 opens and transistor TRI conducts the lamp current since its gate is held at +12 V via resistor R1. The potentiai drop across transistor TRI causes capacitor Cl to charge through resistor R2. As the potential across capacitor C1 increases transistor TR2 begins to conduct and the potential at the gate of transistor TR1 is reduced. This reduces the current through transistor TRI which increases the potential drop across it and therefore increases the charging rate of capacitor Cl , so that the lamp is turned off rapidly. Consequently the power dissipated in transistor TRI is very low and there is no real need for a heatsink.

Transistor TR2 can also be turned on by the ignition supply through resistors R3 and R4 and diode D2, hence starting the car will extinguish the light.

The time delay can be altered by varying capacitor C1 and resistor R2. Check that diode D2 does not have a significant reverse leakage current as this could prevent capacitor C 1 from charging sufficiently. The circuit should be tested using a lamp of the same rating as that in the vehicle to which it is to be fitted as this will affect the potential drop across transistor TR1 and hence the charging rate of capacitor $\mathbf{C 1}$. If too large a value is chosen for resistor R1 the unit may never turn the light off. The reason for this is that the
potential at the base of transistor TR2 is determined by resistor RI and the leakage resistances of capacitor C1 and diode D2 and this could be too low for transistor TR2 to conduct. A germanium diode is preferable for DI because capacitor C 1 will then discharge faster when switch S1 is closed. This ensures that the full time delay is obtained even if the door is only opened for a short time.
G. H. Wostenholm,

Manchester.

CB "ROGER BLEEP"

THIS circuit has been used in conjunction with my CB radios for some three months now. It produces a short burst of tone, on releasing the transmit switch, whilst also holding the radio in the transmit mode for the duration of the tone. I have found it very useful for communicating over a distance when the signals are weak and barely audible in that it gives a positive indication of when one party has ceased transmission.

A part from supply and ground, there are two connections to the radio. One is the 'press to talk' (ptt) line and the other is the microphone input to the radio. In order to transmit, the ptt line is grounded. On releasing the transmit switch the line moves to nearly V_{cc}. TRI and its CR input converts this voltage change into a pulse, inverts it and triggers the monostable ICI. The output of ICI goes high releasing the reset hold on the oscillator IC2. The tone output of this is fed, via C4 and R7, to the microphone input. TR2 inverts IC1 output

and uses it to hold down the ptt line. C5/VR1 ensure ptt goes high again, switching off the transmitter, just before IC I completes its monostable action, thus ensuring it does not retrigger itself.

R4/C2 will set the monostable time. R5/R6/C3 set the frequency of the tone. Finally, VRI is set to maximum then backed off, whilst keying the transmitter
on and off, until ICI stops retriggering itself. SI (on/off) holds down the reset on ICI disenabling the circuit. I rewired the channel $9 /$ off switch on my radios to accomplish this. V_{cc} may vary from radio to radio so some experimentation may be necessary with the CR times.
C. J. Lawrie, Norwich, Norfolk.

THE thumps, hisses and crackles that emerge from the speakers as most audio amplifiers are switched on and off are annoying and probably damaging. These noises arise from several sources, although the biggest offenders are capacitors which give rise to current surges as they charge and discharge.

It is desirable to prevent these from reaching the speakers and the easiest way to do this is to connect a relay in series with the amplifier outputs. This relay should close (connecting the speakers) about five seconds after switch on and open immediately after switch off. The circuit described here performs this function at a reasonably low cost. and is, above all. easy to connect to an existing amplifier. Apart from the relay only three connections are required, these being two a.c. lines and a centre tap.

An unrectified a.c. supply with a centre tap is required from the amplifier. The exact voltage is unimportant, but at least 15 volts must be available.

The a.c. supply is rectificd by DI and D2. The unsmoothed d.c. is passed via the current limiting resistor R1 to the power down detector. D3 allows C1 and R2 to develop a very rough d.c. voltage clamped by D4 at 10 volts. This d.c. voltage decays very rapidly (in less than 15 ms) when the power is removed. As a result pin 6 of the i.c. is high when power is applied and falls very quickly once the power is removed. It is worth noting that 10 volts is well above the threshold for a CMOS gate with a 15 volt supply but obviously decays more quickly than 15 volts would under the same circumstances.

The rectified d.c. is also passed via D5 to C2 which forms the circuit's power supply. D5 is necessary to prevent the smoothed d.c. from affecting the operation of the power down detector. The voltage available on C2 is then fed to a simple resistor/Zener network to generate a 15 volt supply for the i.c.

R4 and C3 form the switch on delay. Initially C3 will be discharged and pin 5 of the i.c. will be low. When power is applied C3 will charge up by means of R4, taking pin 5 above the gate threshold some 5 seconds after switch on. D7 removes the charge from C 2 immediately the power is removed by forming a discharge path through the power down detector's resistor, R2. This ensures that a delay will occur even if the power is removed for a very short period.

The i.c. contains four NAND gates. details of which are easily availablesuffice to say a NAND gate's output will be low if both inputs are high. otherwise the output will be high. So far then, the output of ICla will be high for five seconds after switch on and immediately after switch off. A Schmitt trigger follows because the inputs to the gate are slow edged and the output will be prone to jitter. The Schmitt trigger is composed of gates b and $\mathrm{c}, \mathrm{R} 5$ and R6. The values of resistor have been chosen to give hysteresis between $\frac{1}{3}$ and $\frac{2}{3}$ of the gate threshold.

The output from the trigger is inverted by gate d and drives the relay by means of the Darlington pair TR1 and TR2. Any back e.m.f. from the relay is caught by D8.

The relay used is a 2 -pole heavy duty
continental type. This relay will be suitable for all amplifiers with up to 27 volt a.c. supplies (indicating an amplifier of greater than 33 watts per channel output). A printed circuit board socket must be purchased with the relay.

For larger amplifiers a member of the Octal series is recommended, and the 48 volt version is generally suitable. This relay will not fit onto the circuit board and must be connected using flying leads from the relay drive points marked on the p.c.b. If R8 and R9 (see below) are not required either, the end of the p.c.b. is redundant and may be cut off.

If the d.c. voltage on $\mathbf{C} 2$ is likely to exceed 63 volts, a 100 volt version must be used for C2 and a 560 ohm 1 watt resistor connected in series with the relay coil. It is assumed that if this is the case the "Octal" style relay will be used as a matter of course.

If the amplifier is d.c. coupled (i.e. has no output capacitor) then R8 and R9 may be omitted. However, an a.c. coupled amplifier must be provided with a means to allow the output capacitors to charge up. In this case R8 and R9 must be installeda value of 8 ohms will do for all amplifiers. The resistors should be at least 3 watt wire wound types.

It is quite probable that the amplifier will have some resistors already present to attenuate the headphone signals. It is quite convenient to use these. Indeed, a small modification to the circuit allows the relay to be used as a headphone switch or a convenient mute system.
I. C. Lare, B.Sc., M.Sc.,

Hartford, Cheshire.

Copies of Patents can be obtained from:
the Patent Office Sales, St. Mary Cray, Orpington, Kent. Price $\mathbf{£ 1} \mathbf{- 6 0}$ each.

ICE WARNING

British patent application 2083244 , from Damien McDonnell of Malvern, Worcestershire, gives full technical details of a new development from the Royal Signals and Radar Establishment in Malvern. The idea is to replace existing road cat's eyes with a new type which use the temperature sensitivity of a liquid crystal material to give a tell-tale of road conditions. For instance above $0^{\circ} \mathrm{C}$ the cat's eye reflects blue light, but as the temperature drops to $0^{\circ} \mathrm{C}$ and below the colour changes through green and yellow to red. In this way a.car driver knows whether there is likely to be black ice on the road. The invention is particularly interesting because it ties in with other work on liquid crystals which is going on at Malvern.

Much of the pioneering work on liquid crystal displays was carried out at Malvern. Even now many Japanese companies buy their liquid crystal raw materials from British companies, such as BDH of Poole. (It is a tragedy that Britain, having developed liquid crystal technology, never took advantage of the lead and left the mass production of finished liquid crystal displays to Japan.) Several Japanese companies, for instance Hitachi and Toshiba, have already demonstrated prototype pocket tv sets which use a liquid crystal display for the screen. Until recently it had been supposed that I.c:d.s, which modify ambient light rather than generated light, could not be used to produce colour tv pic-

Fig. 1

Fig. 2

Fig. 3

Fig. 4
tures. But Professor Hilsum of RSRE recently demonstrated a liquid crystal display which changes colour in an electric field and hinted that the technology could be used to make colour tv screens of I.c.d. type. British patent application 2083244 gives a detailed insight into Malvern's work on I.c.d. materials that change colour with temperature. Hopefully patents on the colour tv technology will eventually be published.
Light which falls on the cat's eye shown in Figure 1 is focused by lens 1 onto reflector 6 . This can take the form shown in Figure 2. A transparent substrate 10, of Miylar plastics, has a front surface layer 11 of cholesteric liquid crystal material and is backed with layer 7b of light absorbing material, such as graphite. The wavelength, and thus the colour, of the light reflected back through lens 1 depends directly on the temperature of the cholesteric material.
In the alternative construction shown in Figure 3, layer 20 of cholesteric material is
sandwiched between two pieces of Mylar 21,22. Again the colour of the light reflected back through the lens 1 depends on the temperature of the cholesteric layer. The patent gives the formula for a material which changes from violet to red, through blue turquoise, green and yellow across the temperature range of $24^{\circ} \mathrm{C}$ down to -2 . C .

Figure 4 shows a clue to the future. In this case two separate liquid crystal layers 20 and 36 are sandwiched between Mylar sheets. Front layer 36 is clear above $0^{\circ} \mathrm{C}$, but turns red below freezing point. The rear layer 20 changes its colour at temperatures above $0^{\circ} \mathrm{C}$. So coloured light from the rear layer 20 is seen through layer 36 while it remains clear. Then the front layer takes over as the active element. In this way a much wider range of colour changes can be produced. This suggests one line of approach towards producing a full spectrum of colour from an I.c.d. tv screen.

FM NOISE ELIMINATION

The Clarion Company of Tokyo patents (BP 1573160 filed under the Old Laws and dating back to 1976) a circuit which is claimed to eliminate noise from an FM radio receiver. The Japanese inventors say they are seeking an alternative to the conventional system in which an impulsive noise switches a low pass filter for a few tens of microseconds. The problem is that in such circuits the 19 kHz pilot tone and 38 kHz sub-carrier are lost unless the circuit is peaked to let these frequencies through; in which case 19 kHz and 38 kHz noise is not eliminated.
Figure 5 shows the patented Clarion circuit. The output of low pass filter 1 is branched and one half of the split signal fed through phase inverter 2 to stereo blocking circuit 3, amplifier 4 and combining potentiometer 5. Circuit 3 includes 19 kHz

Fig. 5
parallel resonance circuit 7 and 38 kHz parallel resonance circuit 8 . Gate 10 can short circuit 3 to earth under the control of circuit 9 which detects impulsive noise. The second signal path branched from filter 1 goes direct to combiner 5 .
In the absence of noise the first signal
path is earthed by gate 10. Capacitor 6 charges with $L+R$, and current flows through resonance circuits 7 and 8 which store the pilot tone and carrier signal energy. Only the signal from the second path reached combiner 5 . When noise is detected at 9 , gate 10 changes state and the charge on capacitor 6 is cancelled by the phase-inverted signal from circuit 2 Simultaneously, resonance circuits 7, 8 release their stored energy to cancel the pilot tone and sub-carrier. Hence only the noise components are faithfully transmitted to input $5 a$ of the combiner 5 while the complete stereo signal is applied to terminal $5 b$. Because the noise is phase inverted it is cancelled out across resistor 5 and a noise-free output is derived. There is no circuit element connected to the second signal path so the noise reduction circuit should have no effect on phase and amplitude of the stereo signal.

It's the chance every constructor wants

POWER AMPS

PRE-AMP MODULES

> SEAND COUPON (NO STAMP NECESSARY) FOR YOUR FREE I.L.P. CATALOGUE AND OPEN UP TOA NEW WORLD OF QUALITY \& VALUE

It's something you have always wanted....something to build your equipment into that's smart, modern, strong, adaptable to requirement and not expensive. The 'UniCase' is yet another triumph of I.L.P. design policy. It presents totally professional appearance and finish, ensuring easier and better assembly to make it equal to the most expensive cased equipment. The all-metal 'UniCase' is enhanced by precision aluminium extruded panels engineered for speedy and perfect aligned assembly within a mere five minutes. Designed in the first case to accommodate I.L.P. power amps with P.S.U's, the range will shortly be extended to house any other modular projects.

WHAT WE DO FOR CONSTRUCTORS

Our product range is now so vast we cannot possibly hope to show it all in our advertisments without overcrowding or abridging information to the point of uselessness. So we have devised a solution which we invite you to take advantage of without delay. ALL YOU NEED DO IS FILL IN AND FORWARD THE COUPON BELOW TO RECEIVE OUR NEWEST COMPREHENSIVE I.L.P. CATALOGUE POST FREE BY RETURN. It gives full details of all current I.L.P. products for the constructor together with prices, full technical and assembly details, wiring and circuit diagrams etc. and it's yours, FREE. You don't even have to stamp the envelope if you address it the way we tell you.

?ELECTRO ELECTRONICE LTD.

FREEPOST 2

GRAHAM BELI HOUSE, ROPER CLOSE, CANTERBURY CT2 7EP
Telephone Sales (0227) 54778 Technical Only (0227) 64723 Telex 965780

FREEPOST

Mark your envelope clearty PREEPOST 2 and post in WTTHOUT a stamp to I.LP. at address above. We pay postage when your letter reaches us.

Did you know

I.L.P. are the world's largest designers and manufacturers of hi-li audio modules?
I.L.P. pioneered encapsulated power amps and pre-amps for enhanced thermal stability, mechanical protection and durability?
There are TWENTY power amplifiers from 15 to 240 watts RMS including the very
latest super-quality Mosiets to choose from?
TWENTY pre-amp modules allow you to Incorporate exching professional applications to your equipment never before available to constructors and experimenters?
I.L.P. are suppliers to the B.B.C., I.B.A., N.A.S.A., British Aerospace, Marconi, Racal, Ferranti, G.E.C., Rolls Royce etc?

Goods are despatched within 7 days of your order reaching us and covered by our 5 year no-quibble guarantee?

To: I.L.P. ELECTRONICS LTD. PLEASE SEND ME I.L.P. CATALOGUE, POST PAIO BY RETURN

I HAVE/HAVE NOT PREVIOUSLY BUILT.WITH I.L.P. MODULES

Send your onders to Dept PE:
BLPAK PO BOX 6 WARE MERTS
SHOP AT 3 BALDOCK ST. WARE HEITS

 cles Mal

Tow Pauch add 7 Fp per foul certat

PE CAR COMPUTER

"One of the neatest, most comprehensive and most useful of these car computers that we have yet come across . . ." PRACTICAL MOTORIST The PE Car Computer was designed to exceed the specification of all others, both for number of functions and accuracy.
It provides three classes of information:
Driving information -7 functions including miles per gallon (or litres per 100 kilometres), speed, fuel used
Journey information - 11 functions such as how far to go, ETA, how far you can go on fuel left, how fast you need to drive to meet an arrival time.
Car performance information - measure acceleration (eg. 0 to 60), standing quarter miles, braking tests and much more using the unique 'programmed' mode. Check which types of driving are particularly uneconomic, tune your car for optimum performance and economy.
The unit also incorporates an ignition cut-out as an optional extra. Set the lock and the engine will not restart until a three digit combination is entered.
The unit is housed in a custom designed box with high quality printed panels and can be fitted above or below the dashboard. The display is liquid crystal for clarity in all lighting conditions.
The kit includes all sensors, wiring, etc and is suitable for all cars except those fitted with diesel or fuel injection engines

Kit price: $\mathbf{f 7 8 . 5 0}$ Assembled Price: $\mathbf{f 8 8 . 5 0}$

Ignition cut-out $£ 7.75+£ 1$ p\&p includes VAT
Goods by return of post. Send S.A.E. for list of separately available parts.

PIMAC SYSTEMS LTD
20 Bloomfield Road, Moseley, Birmingham B13 9BY. Tel: 021-449 0384

SINCLAIR COMPUTERS

We are the leadmig world-wide Sinclair export specilist including Norway. Sweder, Finland and Denmark. Write for our surprizingly low Prices
Buy any of the below and get a free interiace Kit and word processor program for UK101 or Superboard. Seikosha GP100A C205. Centron ics 737 C355. Centronics 739 C419. OKI Mic
roline 80 6275. OKI Microline 82 A roline 80 2275. OK1 Microline 82 A (399
Epson MX70T 6259 . Epson MX80T3 6319 Epson MX70T
Epson MX80F/T3 6 (349. Epson MX100/3 E429.

VIC 20° COMPUTTER.
Two special offers:- 11 it is bought with the Vir20 we can supply the cassette recorder for C30.43. Alternatively, we will supply a free kir whit eaxh Vie 20 to a low the use of an ordinary casserte recorder. Vic 20 cios. Ordinary cas der $\mathbf{3} 36.50$. High resolution carrridge $\mathbf{C 2 7 , 9 5}$ Maxhire code monitor 627.95 . $\mathrm{Yic}_{\text {ic }}$ printer C189. Floppy disc drive C309. Ram cartridges: 3 K 624 , 8 K C 35 , 16K 657 . Game cartridges Super lander, Alien or Avenger $E 15$ each. joys. tick ©6.52. intro to Basic Part I 13 . New low cost memrory board, no need for a mother board, comes with 3 K ram on board + socke for a rom + sockets for another 24 K of low current Nmoss ram (Juss plug in chips to expand memory) (49. Extra memory chips 67.80 per 2 K .

SWANLEY ELECTRONICS
Dept PE, 32 Goldsel Rd. Swantey, Kent BRs sez, Please allow i4 days for delivery

UK 101 and SUPERBOARD
32×48 display expansion kits UKIOI 69 series 1 Superboard 614. Guard band kit for Superboard only 110 . The below accessories suit both the UKIOI and Superboard.- Extra ram 62.10 per K Cegmon $\mathbf{6 2 2} 50$. Wermon ©14.95. Word processor program C10. Centronies inter Cased minifloopy disc drives with single Cased mininloppy disc drives with DOS single L275, dual $\mathbf{C 4 1 5}$
NEW GENIE I 699
EG3014 Expansion box with $16 \mathrm{~K} / 32 \mathrm{~K} \mathrm{ram}$ C199/C213. We are Cumana disc drive specialists for the Genie. Single sided disc Double-sided disc drives:- 80 track (399, dual 80 rrack $\mathbf{£ 6 9 9}$. Double density convertor '672. Paralie! printer hnterface $\mathbf{6 3 6}$.

BATTERY ELMMINATORS*
3-way type $6 / 7.5 / 9 \mathrm{~V} 300 \mathrm{ma}$ ©3.50. Stabilized model $3 / 6 / 7.5 / 9 \mathrm{~V} 400 \mathrm{ma}$ [7.95. 100ma radio types with press studs 9 V C.95, $9 \mathrm{~V}+9 \mathrm{~V}$ $3 / 4.5 / 6 / 7.5 / 9 \mathrm{~V} 800 \mathrm{ma}$ C3.04.

BATTERY ELIMINATOR KITS
100 ma radio types with press-studs 9 V E1.79, $9+9 \mathrm{~V}$ 62.50. Stabilized 8 -way types $3 / 4.5 / 6 / 7.5 / 9 / 12 / 15 / 18 \mathrm{~V} 100 \mathrm{ma}$ i3.12 1 A 68.50. Stabilized power kits 2.18 V 100ma Q3.12, 1-30V IA E8.50, 1-30V 2A C15.30. TIL and compucer supplies SV stabilized I.5A El. 62.

TV GAMES
AY-3-8550 + kit 89.26 .
BI-PAK AUDIO MODULES*
AL30A 44.35 . PA12 69.31. PS 12 61.75. T538 E2.90. AL60 65.62 . SPM80 $£ 5.26$. BMT 80 66.36. Stereo 30 € 19. AL80 $\mathbf{E 8 . 5 6}$.
 arid Spp on other orders. Pleose odd VAT to all prices encept those sections marked with a
ONLY
£8.95
SPECIAL MONTHLY OFFER No. 1 Hand held Micro Cassette Tape Recorder. Compact and handy, this memory device records at two speeds providing up
to one hour of
recording. Comes complete with
minicassette, earphone and
carrying
pouch.

ENFIETD ELECHONTC

 pouch.

PHONOSONICS SUPERSONIC DIY KITS

MUSIC

KIMBERALLEN KEYBOARDS
Details in lists =
From $\mathbf{C 3 2 . 4 3}$
12L-NOTE SEQUENCER

IG-NOTE SEQUENCER
Analogue. panel contralled $\begin{aligned} & \text { Unit for most } \\ & \text { SET } \\ & \text { smbthesisers }= \\ & \text { SE }\end{aligned}$ (64.63
AUTOWAH UNIT
Auromatic Wah \& 5 well sounds from each
guitar note played $=$
SET. 58 C 14.01 gutar note played=

SET-58 C 14.01

CHOROSYNTH

30-Nore chorss symth with wide variety of
voices. K π incl $\mathrm{Kbd}=$
SET- 100 C 125.04 GUTTAR EFFECTS
8-mode fiter \& envelope shaper for most
instruments=
SETA2 15.92

GUTTAR FREQUENCY DOUBLER

Orig \& doubied signals can be mixed for
greater depth $=$
SET-98 C 11.75
GUITAR MULTIPROCESSOR
Extremely versatile sound processor.
Extremely versative sound processor.
Details in list.
From 84.90
gUITAR OVERORIVE
Sophisucated furz with fiker \& shape
Controls=
SET 56 [21.17
GUTTAR SUSTAIN
Retains natural attack whilst extending note
SET-75 duration $^{\text {II }}$.
PE. MINISONIC SYNTH*
Excellent 3-Oct muki-module portable symth
Kit incl Kbd=
from 4181.5

PHASER
 6. Stage automatic unit with variable control $=$

PHASING \& VIBRATO
Manual \& auto control producing superb full
sounds $=$
SMOOTH FUZZ
As the name implies! = SET.91 CII.68
SPUT-PHASE TREMOLO
Modulation, depth, rate \& level under full
control $=$ SWITCHED TREBLE BOOSTER
cone chanfes =
SET-89 C/2.51

SYNTHESISER INTERFACE

Enables quitars, mics euc to be synthesiser
processed
SET- 81
9.49

TRANSIENT GENERATOR
Facilities mandolin, banjo sounds etc. From a
symathesiser $=$
SET. 63 C
TREMOLO UNIT
For most instruments. Incl speed, depth \& WAVEFORM CONVERTER
Allows 5 difierent waveforms from symhesser
VCO $=$ SET 67621.90

EFFECTS

AUDIO EFFECTS UNIT SET $105 \mathbb{C} 15.12$ RHYTHM GENERATORS
Several in list $=\quad$ from ©61.71
WIND E RAIN EFFECTS
As the name says! = SET-28 CII.39

AUDIO

3-CHANNEL STEREO MIXER

With left. right \& master level controls \&
headphone monitor $=$ SET- 107 E 21.50 3-MICROPHONE STEREO MIXER Improves stereo reality= SET-108 C12.99 G-CHANNEL MIXER
High spec mixer with variable
impedances $=$
SET-90 from E96.67 COMPRESSOR
With level \& decay-rate controls, line \& mi DYNAMIC NOISE UMITER
Helps clean up noisy recordings=
GUITAR PRACTISE AMPUFIER
3.Watt practise or test-monitor amp. $=5$

HEADPHONE AMPUFIER
For most pick-ups, decks. tuners \& head.
phones. RIAA specs $=$
SET-104 $\mathbf{C 2 1 . 1 5}$ REVERBERATION UNITS
Several in lists = From C15.85 VOICE OPERATED FADER
Automatically reduces music volume during
disco valk-over $=$
SET. 30

TEST

METRONOME
Variable for $40-240$ beats per minure $=$
SET-118 C10.58
PULSE GENERATOR
Pulse width $100 \mathrm{NS}-2$ secs. freq 0.1 HZ .
$100 \mathrm{KHz}=$
SIGNAL TRACER \& GENERATOR
Aids circuit testing. With frequency \& level
controls=
SET-109 C 17.50
TUNING FORK
Eases tuning of acoustic \& electronic instruments =

SET-46 ©37.04
WAVEFORM GENERATOR
3 Waveforms, range $1 H Z$ to 100 KHZ , up to
LOV P.P $=$ 10V P.P=

C.B.

These are suitable for CB or standard audio use depending on socket type chosen.
FUNNY TALKER
Modified ring modulator for fascinating metallic uality to your voice.
et with 4-pin CB skes= KT CB-99 18.32 MUSICAL BLEEPER
Programme your own individual 8 -note call sign. Push burton operated for use when you
Set Set with 4-pin CB skes= $=$ KTT CB-121 $\subset 16.41$
Set with std jack skes $=$
SET-121 C 14.64 SIMPLE REVERB
Enhances the spacious quality of your transmited voice. With control over depth and dura

Set with 4 -pin CB skts= KTT CB-122 $\mathbf{C 1 5 . 8 5}$ Set with std jack skes= SET-122 614.08 SPEECH PROCESSOR
Dramatically improves the intelligibility of speech signais. This is the unit that so many $C B$ owners are talking about on the air!
 YOICE SCRAMBIER
For coding or decoding speech signals for greater transmission securly/
Set with 4 -pin CB skes $=\mathrm{KIT}$
SB-117
S23.58 Set with std jack skes= SET.117 E21.81 KIT CONTENTS
Sets include PCBS, U.K. PEP, 15% VAT, Res Caps SC.s, Pts, most also include Knooss, SW sks, Wire, Soider, Phocopy of orig text, a case uniess marked. Most are battery operparts an be bought separately, Fuller details \& more great kits in our catalogue. Send S.A.E. for free copy.
Prices correct at press. E.8.O.E, subject to stems.

EXPORTS WELCOME!
Sterling payment with order please. Postage other countries send fl .

DEPT PE28, 22 HIGH STREET,
SIDCUP, KENT, DA14 6EH.

Terms: Moil Order C.W.O. or collection by appointment Access, Barcioy \& Am-Expres orders accepted Tei. O1-302 6184. Mon-Fri

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

RECEIVERS AND CDMPONENTS

OUT NOWII The 1982/3 GREENWELD Component Catalogue. 60p Discount Vouchers. Reply paid Envelope, Free Bargain List, Only 75p. Greenweld Electronics Lid., 443c, Millbrook Road, Southampion, SOI OHX.

BOURNEMOUTHBOSCOMBE. Electronic components specialists for 33 years. Foresters (National Radio Supplies), Late Holdenhurst Road. Now at 36, Ashley Road, Boscombe. Tel. 302204, Closed Weds.

TE K ECTRIC

THE ELECTRICITY COST MONITOR
FEATURED IN PE MARCH \& APFIL ' 82
AS SEEN ON NATONAL TELEVISION
Telectric Assembly Kit
$\mathbf{£ 4 9 . 5 0}$ + VAT
Telectric Unit Built \& Tested
$£ 78.00+$ VAT
P\&P per kit or unit $£ 3.00+$ VAT
SAE for full details, Component List \& Order Form
Cheque or Purchase Order to:
Response Company
Froxfield, Petersfield, Hants GU32 1DX. ACCESS Tel: Petersfield (0730) 3063

T \& J ELECTRONIC COMPONENTS - Qualiry Components Competitive prices. Illustrated Catalogue 45p. 98 Burrow Road, Chigwell, Essex.

PE ALARM KITS

KIT 1:- ULTRASONIC (8 mtrs range) KIT 2:- PASSIVE I.R. (10 mtrs range) KIT 3:- PASSIVE I.R. (15 mtrs range)
KIT 4:- MICROWAVE (30 mtrs range)

Designer approved

G. Davies

SMALL ADS

The prepaid rate for classified advertisements is 32 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 10.70$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Banks Lid". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Practical Electronics, Room 2612, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-2615846).

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

300 SMALL COMPONENTS, transistors, diodes f1.70. 7bs assorted components $£ 4.25$. 101 bs $\mathbf{£ 5 . 7 5}$. Forty $\mathbf{7 4}$ series ICs on panel $£ 1.70 .500$ capacitors $£ 3.20$. List 20 p refundable. Post 60 p. Optional insurance 20p. JWB Radio, 2, Barnfield Crescent, Sale, Cheshire M33 1NL.

$$
\begin{aligned}
& \text { BRAND NEW COMPONENTS BYRETURN }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
150 \mathrm{~V}-10 \mathrm{ol} .470-11 \mathrm{p} .140 \mathrm{~V}-10 \mathrm{~V} \\
1000 / 25 \mathrm{~V}-25 \mathrm{p} .1000 / 40 \mathrm{~V}-35 \mathrm{p} .
\end{array} \\
& \text { Subminiature bead Tantalum olectrolytica. } \\
& 0.1,0.22 . \quad 0.47,1.0 .35 \mathrm{~V}, 4.7 \mathrm{~V} \text {. } 6.3 \mathrm{~V}-14 \mathrm{p} \text {. } \\
& 2.2 / 35 \mathrm{~V}, \quad 4.7 / 25 \mathrm{~V}-15 \mathrm{p} . \quad 10 / 25 \mathrm{~V}, \quad 15 / 16 \mathrm{~V}-20 \mathrm{p} \text {. } \\
& \begin{array}{lllllll}
22 / 16 \mathrm{~V}, & 33 / 10 \mathrm{~V}, & 47 / 6 \mathrm{~V} / 1068 / 3 \mathrm{~V} & 8 & 100 / 3 \mathrm{~V}-30 \mathrm{p} . \\
15 / 25 \mathrm{~V}, & 22 / 25 \mathrm{~V} . & 47 / 10 \mathrm{~V}-35 \mathrm{p} . & 4716 \mathrm{~V} & 80 \mathrm{p} .
\end{array} \\
& \text { Subminiature Ceramic Caps. E12 Series } 100 \mathrm{~V} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Miniature Polyonter } 250 \mathrm{~V} \text { Vort. Mtg. Eb Sorios. }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Mylar (polyester) Fiim } 100 \mathrm{~V} \text { Vertical Mounting. } \\
.001, .0022 .0047-3 \mathrm{p} .01, \cdot 022-4 \mathrm{p} .04,05,0.1-5 \mathrm{p} \text {. }
\end{array} \\
& \text { High Stability Miniature Film Resistors 5\% }
\end{aligned}
$$

$$
\begin{aligned}
& \text { iw E12 Series RO to iomo. - } \\
& \text { tW metal film E12 Series 1OR-1MO. } 5 \%-2 \mathrm{p} \text {. } 1 \% \text { - 3p. } \\
& \text { iN4148-2p. } 1 \mathrm{~N} 4002 \text { 4p. } 1 \mathrm{~N} 4000 \text { - } \mathrm{Pp} \text {. } 1 \mathrm{~N} 4007 \text { - } 7 \mathrm{p} \text {. } \\
& \text { BC107/8/9-12p. 8C147/8/9, BC157/8/9. BF195 \& 7-10p: }
\end{aligned}
$$

> Prices VAT Inclusive Post 15p. IFree over $£ 5.00$). THE C. R. SUPPLYCO.
> 127, Chesterfield Rd., Sheffield S8 ORN.

SCOOP PURCHASE - TELEPHONES
Black G.P.O. type for extension use. As new only
£4.75 өach. Carriage $£ 1.75 .2$ for $£ 12.00$ carriage paid.
HAVE YOU SEEN THE GREEN CATT
1000s of new components, radio, electronic, audio at unbelievably low prices. Send 40 p and receive list and FREE Record. Speed Indicator. Try a JUMBO pack, transistors, caps, resistors, pots, switches, radio, and electronic devices. Over $£ 50$ worth for $£ 11$
plus carriage 22.50 .
MYERS ELECTRONICS, Dept PE2.
Tel: 452045 . Callers Welcome.
TURN YOUR SURPLUS Capacitors, transistors, ecc., into cash. Contact COLES HARDING CO., 103 South Brink, Wisbech, Cambs. 0945 4188. Immediate settlement.

Kits inc F/G PCB All Comp (less Transducers) 12V DC Electronics only kit (PCB + Comps) 240V AC Mains Powered version of abov 3 A 240 V Relay output version of sbove
32.7 kHz Transducers + Mounting $+X$ Xta Dual Element Pyroelectric Detector
6 Segment Faceted Mirror + Mounting CL8960 Mullard Doppler Rader Module Drilled \& Punched Case + All Hardware Full Kit price - separate purchases PaCCIL Package and postage on full KITS Packing and postage on part orders Solid State Sounder 95db @ 1 mt SPCO Keyswith in ABS Box PB PP3 NI-CAD Batter (2 Boxiral $£ 5.95$ $\begin{array}{ll}\text { All above KITS Built } \text { and Tested } & +88.00\end{array}$

KIT 1	KIT 2	KIT 3	KIT 4
9.61	9.37	9.37	10.06
3.08	3.08	3.08	3.43
2.20	2.20	2.20	2.20
3.75			
+	9.75	9.75	
$+$	5.00	9.75	
+			33.31
1.91	2.80	4.26	2.80
20.55	32.20	38.41	51.80
19.50	30.50	36.50	49.20
1.00	1.00	1.50	1.20
0.50	0.50	0.50	0.50
CJD ELECTRONICS			
105 Harper Fold Road,Radclife, Manchester M26 0RQ.			
Please send SAE for further details.			

PLEASE

MENTION
PRACTICAL ELECTRONICS

WHEN REPLYING
TO
ADVERTISEMENTS

PAINTED CIRCUIT BOARDS MANUFACTURED. Prototypes of large quantities. Prices available on request. MAYLAND PCB CO., 4, The Drive, Maylandsea, Althorpe, Nr. Chelmsford, Essex. Phone 0621741560.

P.C. BOARD S.S. $12^{n} \times 12^{\prime \prime}-3$ for $£ 2.00$. Glass fibre P.C. Board S.S. or D.S. $12^{n} \times 12^{\prime \prime} £ 1.00$ each. Add 60 p p\& p any quantity. Cooper, 16 Lodge Road, Hockley, Birmingham B18 5PN.

BRYSTEP ELECTRONICS 10 Camphill Industrial Estate, West Byfleet, Surrey KTI4 6EW. Tel. Byileet (09323) 51676								
CMOS				D Connectors (Cannon Type)				
4001	60.10	4069	60.15					
400]	60.15	4070	60.15					
4000	10.47	4078	60.18	Plugs Skts 9 Wey $C 0.00 \quad 10.95$			tic)	
4011	60.11	4081	60.14				60.90 60.92	
4012	C0.16	${ }^{4093}$	C0.28	${ }^{\text {c }}$ 3 Way	11.10		10.921.28	
4013	60.24	4503	C0. 19	${ }^{25}$ W Way	62.20	12.00		
4015	60.50	4501	61.44	Rt. Angle P.C.B. Mtg.				
4016	60.19	4510	60.48					
4017	20.40	4511	co. 45	\% War 1.17 ¢1.80				
4018	10.45	4512	60.50	15 Way	61.53	12.32		
4071	60.48	4514	C1.19	${ }^{25}$ Way	22.20	63.20		
4072	60.48	4515	41.20	17 Way $82.97 \quad 64.20$				
4031	20.16	4516	60.59					
4024	40.32	4518	c0. 35	Vokt				
4075	60.16	4520	60.59	Regulators		Diodes		
4028	10.48	4581	c0.64	${ }_{705}^{7115}$		17400?	60.05	
4040	20.48	4529	60.70			C0.03		
4042	60.48	4531	60.65		11.30$\mathbf{6 4 . 8 8}$			$\begin{aligned} & 60.15 \\ & c 0.86 \end{aligned}$
\$047	60,58	4541	63.98	L1330\%				
	0.24	451	0.98	FREE With every order.				
	60.24 60.29		c0.90			With ewery order. (WPN Daringtura)	B0x42	
Many, SAE.	ny other tull stod ist of		in stock. 13s. Abo.	Please add 1030 o \& p and YAI. © 15%				
lus/Lis fully if any	dator stock antee your mais.		rices. We in full of new	SPECLAL OFFER FOR THIS ISSUE				
sectip mone		${ }_{m 1} h_{2}$	return	401180.08				

ELECTRONICS COMPONENTS SHOP in Maidstone, Kent. Thyronics Control Systems, 8, Sandling Road, Maidstone. Maidstone 675354.

BOOKS ANO PUBLICATIONS

ANY SINGLE SERVICE SHEET f1., S.A.E. Thousands different repair/service manuals/sheets in stock. Repair data your named TV $£ 6.50$ (with circuits $£ 8.50$). S.A.E. Free magazine, prices, quotations. AUSPE, 76 Church Street, Larkhall, Lanarkshire. (0698 883334).

AERIALS

AERIAL BOOSTERS trebles incoming signal，price $£ 7.00$ ．SAE leaflets．Velco Electronics，Ramsbottom，Lancashire BLO 9AG．

SERVICE Sheets

bell＇s television services for Service Sheets on Radio，TV， etc $£ 1.25$ plus S ．A．E．Colour TV Service manuals on request． S．A．E．with enquiries to B．T．S． 190 Kings Road，Harrogate， N．Yorkshire．Tel．（0423） 55885.

EDUCATIONAL

CAREERS IN MARINE ELECTRONICS．Courses commencing Sep－ tember and January．Further details，The Nautical College， Fleetwood FY7 8JZ．Tel． 0391779123.

miscellaneous

CLEARING LABORATORY：scopes，generators，P．S．U．＇s，bridges， analysers，meters，recorders，etc． 040376236.

TIME WRONG？

MSF CLOCK is ALWAYS CORRECT－never gains or loses，SELF SETTING at switch－on， 8 digits show Date，Hours，Minutes and Seconds，auto GMT／BST and leap year，also parallel BCD output，receives Rugby 60 KHz atomic time signals，built－in antenna 1000 Km range，TIME RIGHT，£69．60．
GOKMZ RUGBY RECEIVER，as in MSF Clock，data out－ put，decoding details and ZX81 listing for lacal， GMT and sidereal time，E22．20．
Each fun－to－build kit includes all parts，printed circuit， case，instructions，postage etc，money back assur－ ance so GET yours NOW．
CAMBRIDGE KITS
45 （FH）Old School Lane，Mitton，Cambridge．

LARGE OUANTTTY of reusable micros，phone cords，earpieces， cable etc．etc．，ideal equipment for security alarm installa－ tions．Trade enquiries only．Box No． 88

THE SCIENTIFIC WIRE COMPANY PO Box 30，London，E．4．01－531 1568. ENAMELLED COPPER WIRE				
SWG	11b	802	4 Oz	207
8 to 34	3.30	1.90	1.00	0.80
35 to 39	3.52	2.10	1.15	0.85
40 to 43	4.87	2.65	2.05	1.46
44 to 47	8.37	5.32	3.19	2.50
48 to 49 15．96 $\stackrel{9.58}{ } \quad 6.38$				
TINNED COPPER WIRE				
14 to 30	3.97	2.41	1.39	
10×10 Mtr reels 3 amp PVC cable mixed colours 25.00.				
Prices include P\＆P，VAT．Orders under f2 add 20p． SAE for list of copper and resistance Wire． Dealer enquiries welcome．				

PARAPHYSICAL JOURNAL（Russian Translations）：Psychotronic Generators，Kirlianography，Gravity Lasers，Telekinesis． Details SAE $4 \times 9^{\prime \prime}$ PARALAB，Downton，Wilts．

NEW ILUSTRATEB CATALOGUE available 85p with two 25 p vouchers．Griffiths Electronics（PE），15，Windmill Gardens， Whixall，Whitechurch，Shropshire．

MAKE YOUR OWN PRINTED CIRCUITS Etch Resist Transfers－Starter pack（ 5 sheets，lines， pads，I．C．pads）$£ 2.10$ ．Large range of síngle sheets in stock at 45 p per sheet．
Master Positive Transparencies from P．C．layouts in magazines by simple photographic process． 2 sheets negative paper， 2 sheets positive film（A4）£2．10． Photo－resist spray（ 200 ml ）£3．50（ $\mathrm{p}+\mathrm{p} 65 \mathrm{p}$ ）．Draft－ ing Film（A4） 25 p．Precision Grids（A4）65p． 22p stamp for lists and information．P\＆P 50p per order except where indicated．

Closed from 15 th July until 15 th August
P．K．G．ELECTRONICS
OAK LODGE，TANSLEY，DERBYSHIRE，

ELECTRONIC GAMES．Build your own microchip games from our detailed circuits．SAE for details．G．H．T．LTD．，P．O．Box DR95，Dover，Kent．CT16 1 UL

IN CIRCUIT TRANSISTOR TESTER £14．25．S．A．E．for details of this and other products．C．M．J．ELECTRONICS，52／54， Worcester Street，Wolverhampton WV2 4LL．

DIGITAL WATCH REPLACEMENT parts，batteries，displays，back－ lights etc．，also reports，publications，charts．SAE for full list． Profords，Copners Drive，Holmergreen，Bucks HP15 6SGG．

BURGLAR ALARM EOUIPMENT．Ring Bradford（0274） 308920 for our catalogue or call at our large showrooms opposite Odsal Stadium．

ULTRASONIC TRANSOUCERS，miniature， $40 \mathrm{KHz} . £ 2.85$ per pair +25 P＋P．DATAPLUS DEVELOPMENTS， 81 Cholmeley Road，Reading，Berks．

CLEF electronic MUSIC

ELECTRONIC PIANOS

SPECIALISTS SINCE 1972
Clef Pianos adogt the most advanced form of Touch Sensitive action which
simulates piano Key inenia using a simulates piano Key ineni

71 14

DOMESTIC MODEL
COMPONENT KIT £244
COMPLETE KIT $£ 399.90$
MAMUFACTUAE 0 © 875
Two Domestic Models are available including the 88 note full-size version.
Four iniermixatle Vovice Conirols mas e used in ohtain a wide varialion of Piano tunc. including Harpsichord. corporated in the Design and internal Encects are provided in the form of Tremolo, Honky-Chorus. and Phave/Flanger. A prower amplifier integrates into the Piannup which may te removed from

SIX OCTAVE

DOMESTIC MODEL

 COMPONENT KIT £217 MANUFACTURE $\mathbf{C} 595$ Component Kits include Keyboard. Key-switch hardware, and all electronic components and may be purchased in ur mages at no exira cose Complete Kits further contain Cabinets Domestic Models both Power Amplifier The Speaker. same range of Voices and Effects and is designed for use with an ExternaSIX OCTAVE
STAGE MODEL COMPONENT KIT £217

MANUFACTUAED 5530

MICROSYNTH

A NEW MUSIC PROJECT FROM PRACTICAL ELECTRONICS

We are pleased to announce that

STRING

ENSEMBLE
(As Puhlished in confurction with Pracilical Electronies' A very popular Keyboard Synthesizer Kit. for Group or Home use. with a four oclave compass and split Keyboard facility
companewt kit f179. 00
we have been appointed by \mathbf{A} R. Bradford M.Sc. as the kit supplier for this exceptional Instrument.

COMPLETE KIT $£ 118.50$

hotor-chorus

 Comprehensive two spoedorgan rotor simulator plus three phase chorus generator. COMPONENT KIT $\mathrm{f}_{2} 9.00$ KEYBOARDS Our Square Front Keyboards 88 MOTE (A-C) 557.00 13 NOTE (F-F) 447.00 FIVE OCTAVE f38.00 FOUR OCTAVE E28.75

Since 1972 Clef Products have consistently produced leading design in the ficld of Electronic Musical Instruments, many of which have theen published in technical magazines. With musical quality of paramount importance. new techniques have been evolved and the latest musieally valid technology has been incorporated into projects which have been successfuily compicted by TELEPHONE advice is range of technical capability
avalable to all our customers.

PRICES INCLUDE VAT, UK CARRIAGE \& INSURANCE (CARRIAGE EXTRA ON MFD PIANOS), Please send S.A.E. for competitive quotstions can be givens for EXPORT orders - in
Come Australia please contact JAYCAR in Sydney.

CLEF PRODUCTS (ELECTRONICS) LIMITED
(Dept. P.E.) 44A Bramhall Lane South, Bramhall,
Stockport, Cheshire SK7 1AH $061 ; 439-3297$

"THE computer BAND-BOX"

(As Published in conjunction wilh "Practical Electronics") COMPLETE KIT £289

$£ 399$

MANFD

a revolution in the field of Computer Music Gemparaion!
A MUSICIANS INSTRUMENT FOR:
SOLOISTS - SINGERS - RECORDING - PRACTICE
LIVE PERFORMANCE COMPOSITION LIVE PERFORMANCE -COMPOSITION The BAND-BOX provides an Electronic Backing Trio consisting of
Drums. Bass, and a Chord Instrument (one of 16 Drums. Bass, and a Chord Instrument (one of 16 Waveform/Enevelope combinations). with the capicity to store over
3.000 User Programmable Chord' Changes on more than 120 different Chords. Using advanced Mieroprocessor technology, Playback of $50-100$ Scores can be executed in any Key and at chosen Tempo. Complete Music Pad is electronically Indexed and stored on secondary battery back-up. Facility exists for composition of Intro, Repeat Chorus. and Coda sections including Multiple Score Se-
quences. Sockets are provided for Volume Pedal and Footswiteh plus
 separate and mixed instrument
incorporating Master Rhythm.

THE Programmable DRUM MACHINE

(As Published in conjunction with 'Practical Electronics') EIGRT TRACK PRGGAAMMING
TWENTY FOUR PATERMS/ TWELVE INSTRUMENTS SEQUENCE
OPERATION. OPERATION.
COMPLETE KIT f79.00
MAMFD MAMFD f11900

The Clef Master Rhythm is capable of storing 24 selectable ruythmic Eight Instrumentation racks and entered by the Operator on to trol expands the number of instruments available to twelve. grouped into sounds typical of playing with Drumsticks. Brushes, or Latin
American Bongos and Claves. American Bongos and Claves
Sequence operation allows two rhythm sections to be coupled with
the second (B) section appearing at four, the second (B) section appearing at four, eight or sixteen Bar repeti-
tion. All drums can be adjusted for level and resonance on internal controls to suit individual taste. thus producing good musical sound in a battery driven unit $84^{\prime \prime} \times 5^{\prime \prime} \times 24^{\prime \prime}$

+ USUAL DISCOUNTS + FREE POSTAGE

DISCOUNTS
5% on orders over 533 (ine VA.T.)
5\% on orders over E23 (ine V.A.T.)
10% on orders over E57. 50 (inc V.A.T.) on mos? catalogue items, but not on payments by credit cards.
POSTAGE
Not charged on U.K. C.W.O. orders over $£ 5.75$ inc V.A.T. If less, add 40 p handling charge.

- SEMLCONDUCTORS/ICs/OPTOS * COMPUTERS/SOFTWARE * CAPACTTORS/RESISTANCES - CONNECTORS/SWITCHES/KNOBS * POTS/FERRITES
- BOOKS/BOXES/TOOLS
and more and more and more

ELECTROVALUE LTD. 28c St. Jude's Rd, Englefield Green, Egham. Surrey TW20 OHB
Tolephone Egham (STD 0784; London 87) 33603: Telex 264475
Northern Branch (Personal shoppers only) 680 Eurnage Lane, Bumage, Manchester M19 INA Telephone 0614324945.

Marshall's
 OF LONDON

SPECIALIST ELECTRONIC COMPONENT DISTRIBUTORS
TEL: 01-723 4242

BARCLAYCARD. ACCESS . DINERS . A/EXPRESS

TOROIDALS

The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and, thanks to I.L.P., PRICE
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty.

	 	 	N0N0	
	콩몀 	 		
- ${ }_{\text {ON二 }}$	-		OO00-	

* 294 TYPLS PO CHOOSE TROM! \star ordirs despliched mithin 7 DITS Or RECLIPT FOA Sincl

 * 5 ycar mo puibble coarantee| TYPE | $\left\lvert\, \begin{gathered} \text { SEMIES } \\ \text { *o } \end{gathered}\right.$ | $\left\lvert\, \begin{gathered} \text { SECO } \\ \text { Volts } \end{gathered}\right.$ volts | $\begin{array}{c\|} \hline \text { AMS } \\ \text { Curront } \end{array}$ | PRICE |
| :---: | :---: | :---: | :---: | :---: |
| 225 va | 6×012 | 12+12 | 9.36 | |
| 110.45 mm | 6×013 | $15+15$ | 7.50 | |
| 22 kg | 6x014 | 18+18 | ${ }^{6.25}$ | |
| ${ }^{\text {7\% }}$ 7\% | 6x015 | $22+22$ | 5.11 | f9.20 |
| | 6n016 | $25+25$ $30+30$ | 450 3.75 | |
| | 6×17 6×018 | $30+30$ $35+35$ | 3.75 321 | -0,1250 |
| | 6×018 6×026 | $35+35$ $40+40$ | $\begin{aligned} & 321 \\ & 281 \end{aligned}$ | - vation |
| | 6×126 6×025 | $45+45$ | 2.50 2.50 | 10 Pe cit es |
| | ${ }_{6 \times 033}$ | 50+50 | 2.25 | |
| | $5 \mathrm{6r028}$ | 110 | 2.04 | |
| | 6x029 | 220 | 1.02 | |
| | 6x030 | 240 | 0.93 | |
| 300 Va | 7×013 | $15+15$ | 10.00 | |
| 110.50 mm | 7x014 | 18+18 | ${ }^{8} 33$ | |
| 2.6 kg | 7x015 | $22 \cdot 22$ | 682 | ¢017 |
| Regulaition | 7×016 | $25 \cdot 25$ | ${ }^{6.00}$ | 210.17 |
| | 7×017 | $30 \cdot 30$ 35 | 500 | |
| | 7×018 | $35+35$ | 128 | |
| | 78026
 7×025 | $40+40$ $45 * 45$ | 3.75 3.33 | |
| | 7,033 | 50+50 | 300 | |
| | 7n028 | 110 | 2.72 | |
| | 7×029 | 220 | 1.36 | |
| | 78030 | 240 | 1.25 | |
| 500 va | ${ }_{85016}$ | $25 \cdot 25$ | 1000 | |
| ${ }_{1}^{140 \times 60 \mathrm{~mm}}$ | ${ }_{8}^{8 \times 017}$ | 30430 $35+35$ | - 8.3318 | 13.53 |
| $\begin{aligned} & \text { Requlation } \\ & 4 \% \end{aligned}$ | ${ }_{8}^{818018} 8$ | $35+35$ $40+40$ | 6.14 | |
| | 88025 | 45+45 | 535 | -apata |
| | ${ }^{8} 8033$ | $50+50$ 50 | 5.00 | * |
| | ${ }^{80042}$ | $55 \cdot 55$ | . 34 | TOMAALIE \% |
| | ${ }^{8 \times 0288}$ | 110 | 4.34 | |
| | ${ }^{8 \times 029}$ | 220 | 2.27
 2.08 | |
| | 8x030 | 240 | 2.08 | |
| 625 VA | ${ }^{90017}$ | $30+30$ $35+35$ | 10.41 | |
| $140 \times 75 \mathrm{~mm}$ | 92018 9×026 | $35+35$ $10+40$ | 8.92 7.81 | 6. |
| Regulation | 9×025 | $45+45$ | 694 | |
| | 94033 | $50+50$ | 8.25 | \cdots |
| | 9x042 | 55+55 | 568 | |
| | 98028 | 110 220 | 568
 284
 88 | total $\mathrm{CL}^{2} 98$ |
| | 99029 9×030 | 220 240 | $\begin{aligned} & 284 \\ & 2.60 \end{aligned}$ | | secondary voltage to oblain off load voltage.

The benefits of ILP toroidal transtormers
ILP toroidal transformers are only half the weight and height of their laminated equivatents, and are available with $110 \mathrm{~V}, 220 \mathrm{~V}$ or 240 V primaries coded as tollows: For 110 V primary insert " 0 " in place of " X " in type number.
For 220V primary (Europe) insent " 1 " in place of " X " in type number
For 240 V primary (UK) insert " 2 " in place of " X " in type number.
How to order Freepost:
Use this coupon, or a separate sheet of paper, to order these products, or any products from other ILP Electronics advertisements. No stamp is needed if you address to Freepost. Cheques and postal orders must be crossed and payable to ILP Electronics LId. Access and Barclaycard weicome. All UK orders sent within 7 days of receipt of order for single and small quantity orders.
Aiso available al Electrovalue. Maptin and Technomatic.
ILP Electronics, Graham Bell House, Roper Close, Canterfury, Kent, CT2 7EP.

Please send
Total purchase price
I enclose Cheque \square Postal Orders \square Int. Money Order \square
Debit my Access/Barclaycard No
Name
Address

Signature
Post to: ILP Electronics Lid, Freepost, 2 Graham Bell House, Hoper Close Canterbury CT2 7EP, Kent. England
Teiephone Sales (0227) 54778: Technical (0227) 64723: Telex 965780.
(a division of ItP Electronics Lid) TRANSFORMERS

How dare THEY!

If you see an advertisement in the press, in print, on posters or a cinema commercial which makes you angry, write to us at the address below. (TV and radio commercials are dealt with by the I.B.A.)

The Advertising Standards Authority. If an advertisement is wrong, we're here to put it right.

ASA Ltd, Brook House.Torrington Place, London WCIE THN

PARNDON ELECTRONICS LTD.
 Dept. No. 2144 Paddock Mead, Harlow. Essex. CM18 7RR. Tel: 027932700

RESISTORS: $1 / 4$ Watt Carbon Film $E 24$ range $\pm 5 \%$ tolerance. High quality resistors made under strictly controlled conditions by automatic machines. Bandoliered
£1.00 per hundred mixed. (Min 10 per value)
$\mathbf{£ 8 . 5 0}$ per thousand mixed. (Min 50 per value)
Spectal stock pack 60 values. 10 off each $£ 5.50$.
DIODES: IN4148 3p each. Min order quantiry - 15 items.
£1.60 per hundred
DIL. SWITCHES: Gold plated contact in fully sealed hase - solve those
programming problems
4 Way 86 p each. 6 Way $£ 1.00$ each. 8 Way $£ 1.20$ each.

DIL SOCKETS: High quality. low profile sockets.

8 pin-10p. 14 pin-11p. 16 pin-12p. 18 pin-19p. 20 pin- 21 p 22 pin-23p. 24 pin - 25p. 28 pin-27p. 40 pin -42 p.
ALL. PRICES INCLUDE V.A.T. \& POST \& PACKING - NO EXTRAS MIN. ORDER - U.K. £1.00. OVERSEAS £5 CASH WITH ORDER PLEASE Same Day Despatch

For every one you send for processing by the Practical Electronics Colour Print Service.

Fast, efficient, high quality film processing is now as close to you as your nearest post box. Hundreds of thousands of magazine readers are delighted with this reliable Colour Print Film Service-and the replacement film that comes free every time they use it! So why don't you give it a try?

Here's what you do. Send any make of colour print film inside the envelope enclosed in this issue. Or fill in the coupon below and send it with your colour film in a strong envelope to:
Practical Electronics Colour Print Service, FREEPOST, READING RG1 1BR. No stamp is required.

SEND NO MONEY

We are so confident in thereliability of the service and the quality of our prints, (each one is date stamped with the month and year of developing) that you don't pay until you have received them!

LUXURY COLOUR PRINTS

You will be amazed at the beautiful colours and hi-definition sheen finish of the prints we
In the event of any query. please write to Customer Relations Dept.. Colour Print Express Lid.. P.O. Box 180. READING RG1 3PF or phone Reading (0734) 597332.

FREE ALBUM SHEETS

One album voucher is sent with
supply . . . with elegant rounded comers and borderless to give you maximum picture area. And now with the new Giant Superprints you get 30% more picture area than the standard enprints at no extra cost.

UNBEATABLE VALUE

The new Giant Superprints cost you only 17 p each and a further charge of $£ 1.10$ is made towards developing, postage and packing. That's all you pay and, when we send your prints, a replacement film, of the size you use, is included absolutely free. That's a saving of up to $£ 2.39$.

The offer is limited to the U.K. For Eire, C.I. and B.F.P.O., a handling surcharge will be made.
each film we process. Collect 3 vouchers and we send you a set of FREE album sheets to fit into our specially designed album to show off both superprints and standardprints.

MORE BENEFITS TO YOU

You benefit in two additional ways. Firstly, you enjoy a personal service with every care taken over each individual order. And secondly, you pay only for what you get - with no credit vouchers as with many other companies. An invoice comes with your prints, so it is a straight business transaction.

Your prints will normally be despatched within five working days of receipt, but please allow for postal times and possible delays.

[^1]Use this labet if you have no envelope. or pass it to a liriend. It is used to send your prints and FREE Film.

From: Practical Electronics Colour Print Service. FREEPOST. READING RG1 1BR. Please print my film Superprint/Standard Enprint size. (delete size which is not required).
$\mathrm{Mr} / \mathrm{Ms}$
Address-

Postcode

[^0]: C IPC Magazines Limited 1982. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: Offer exc. Minolta \& Sub-miniature film. Roll film 20 p surcharge. 400 ASA $20 p$ surcharge. Superprints can only be produced from Kodacolour II, C41 and Agfa CNS cassette and cartridge film not half frame. Prices correct at time of going to press.

