PRACTICAL

Plus.ns - 屋는넨

Fast, efficient, high quality film processing is now as close to you as your nearest post box. Hundreds of thousands of magazine readers are delighted with this reliable Colour Print Film Service-and the replacement film that comes free every time they use it! So why don't you give it a try?

Here's what you do. Send any make of colour print film inside the envelope enclosed in this issue. Or fill in the coupon below and send it with your colour film in a strong envelope to:
Practical Electronics Colour Print Service, FREEPOST, READING RG1 1BR. No stamp is required.

SEND NO MONEY

We are so confident in the reliability of the service and the quality of our prints, (each one is date stamped with the month and year of developing) that you don't pay until you have received them!

LUXURY COLOUR PRINTS

You will be amazed at the beautiful colours and hi-definition sheen finish of the prints we
In the event of any query. please write to: Customer Relations Dept.. Colour Print Express Lid., P.O. Box 180. READING RGI 3PF or phone Reading (0734) 597332.
supply . . . with elegant rounded corners and borderless to give you maximum picture area. And now with the new Giant Superprints you get 30% more picture area than the standard enprints at no extra cost.

UNBEATABLE VALUE

The new Giant Superprints cost you only 17 p each and a further charge of $£ 1.10$ is made towards developing, postage and packing. That's all you pay and, when we send your prints, a replacement film, of the size you use, is included absolutely free. That's a saving of up to $£ 2.39$.

The offer is limited to the U.K. For Eire, C.I. and B.F.P.O., a handling surcharge will be made.

FREE ALBUM SHEETS

One album voucher is sent with each film we process. Collect 3 vouchers and we send you a set of FREE album sheets to fit into our specially designed album to show off both superprints and standardprints.

MORE BENEFITS TO YOU

You benefit in two additional ways. Firstly, you enjoy a personal service with every care taken over each individual order. And secondly, you pay only for what you get - with no credit vouchers as with many other companies. An invoice comes with your prints, so it is a straight business transaction.

Your prints will normally be despatched within five working days of receipt, but please allow for postal times and possible delays.

Offer exc. Minolta \& Sub-miniature film: Roll film 20 p surcharge, 400 A SA 20p surcharge. Superprints can onty be produced from Kodacolour II, C41 and Agfa CNS cassette and cartridge film not half frame. Prices correct at time of going to press.

Use Ihis lalact if you have no envelope. or pass it to a fricend. It is used to send your prints and PREE: Film.

From: Practical Electronics Colour Print Service, FREEPOST, READING RGI 1BR. Please print my film Superprint/Standard Enprint size. (delete size which is not required).

[^0]PRACTICAL ELEC
VOLUME 18 No. 6
RONICS
CONSTRUCTIONAL PROJECTS
MICROSYNTH Part 1 by A. R. Bradford MSc 18
Combines versatility in performance with cost effectiveness
MPG METER by Lione! Taylor 26
Provides accurate indication of fuel use AUTO FLASH SLAVE by R. A. Penfold 32Triggers as light from main flashgun ceases
EXPERIMENTERS BREADBOARD WITH POWER AND PULSE GENERATOR by J. Slack 38
An invaluable aid to experimenters working with i.c.s
D.C. POWER CONTROLLER by Michael Tooley BA 46
Provides efficient control of power from d.c. supplies in the range 5 to 15 V
PROGRAMMABLE TIMER/CONTROLLER Part 2 by T. J. Johnson 52
Battery back up and programming
GENERAL FEATURES
SEMICONDUCTOR UPDATE by R. W. Coles 37
Featuring MK3824/3821 RC4191 27128
MICROPROMPT 42
Hardware and software ideas for PE computer projects
E/MONITOR REWORKED by Roger Derry 43
Make your UK 101's extended monitor easier to use 58
Mic operated sound-to-light—Temperature alarm—Alarm clock-Micro output controller-Static detector-Car battery discharge indicator-Trailer lamp monitor
NEWS AND COMMENT
EDITORIAL 13
NEWS \& MARKET PLACE 14
Including Countdown and Points Arising 25, 36, 56
Buy, sell and swap service for readers
35
INDUSTRY NOTEBOOK by Nexus
An improvement in morale
READOUT 36
Our readers air their views
SPECIAL OFFER-CASSETTES 49
Regular bargain offer on high quality cassettes
SPACEWATCH by Frank W. Hyde 51
Extra-terrestrial activities chronicled
PATENTS REVIEW 62
SPECIALSUPPLEMENT
SOUND SYNTHESIS by A. R. Bradford MSc

[^1]

With the Minimax II, Videotone revolutionised the market by establishing an opening for small, high quality speakers. Natural evolution has brought about the new Minimax 2, retaining all the qualities of clarity and sensitivity. This ideal combination of size and performance is a proven success, acclaimed by the press and public for seven years.
POPULAR HI-FI
"Switching to the Minimaxs" from any of the others produced an open and natural sound as though something had been taken away. It had, the colouration had gone." Comparative test OCTOBER 1975.
HI-FI ANSWERS
Their modest appearance and price disguise their startling abilities. Never have we heard such a small speaker sound so big!" JANUARY 1975.
PRACTICAL HI-FI \& Audio
"The depth, clarity and openness of sound produced is quite astonishing'. JUNE '75
WHAT HI-FI
' . . the ability of the Mini-
max to take a lot of power and still sound good could be decisive" - Comparative test, APRIL 1977.

PRACTICAL HI-FI The little Videotone scored highly for such a small inexpensive loudspeaker". JANUARY 1981.
Specification:
Recommended amplifier power: 10 to 40 watts rms into 8 ohms. Frequency Response: $80 \mathrm{~Hz}-20 \mathrm{KHz} \pm 5 \mathrm{~dB}$. Finish: natural teak, veneer with black frets.
Size: $107 / 8^{\prime \prime}$ high, $63 / 4^{\prime \prime}$ wide $71 / 2^{\prime \prime}$ deep.
Weight: 4.1 Kgs (9 lbs) each. ONLY E69.95 A PAIR

- We welcome callers to our South London Showroom for demonstrations.
- Enqiries and information.phone: 01-690 8511, Ex. 32
- All products are only available direct or from selected authorised dealers throughout the U.K.

VIEOTONF 98 CROFTON PARK ROAD LONDON SE4.

Send for our free brochure and details of outlets in the U.K.

[^2]NAME \qquad ADDRESS \qquad

From

 HAMEG...
HM307

The first portable scope with a component tester.

Oscilloscope Specifications:

Y Deflection

Bandwidth: DC - $10 \mathrm{MHz}(-3 \mathrm{~dB})$ Overshoot: Less than 1% Sensitivity: $5 \mathrm{mV} \cdot 20 \mathrm{~V} / \mathrm{cm}$ Input Imp: 1 M ohm // 25 pf

X Deflection

Timebase: $0.2 \mathrm{~s} \cdot 0.2 \mu \mathrm{~s} / \mathrm{cm}$ Triggering: $2 \mathrm{~Hz} \cdot 30 \mathrm{MHz}$ (3 mm) Auto + level control
Bandwidth: $2 \mathrm{~Hz} \cdot 1 \mathrm{MHz}$

General Information

Component Tester: For single components and in circuit
Cailbrator: $\quad 0.2 \mathrm{~V} \pm 1 \%$ for probe alignment
Power Supplies: Regulated including high voltage A.C. Input: $\quad 110,127,220,237$, V.A.C.. $50 \cdot 60 \mathrm{~Hz}$ Weight: $\quad 8-1 / 4$ Lbs. Stze: $\quad 4-1 / 2^{\circ} \mathrm{H} \times 8.318^{\circ} \mathrm{W} \times 10.7 / 16^{\circ} \mathrm{D}$

For further information on HAMEG's full range of top performance oscilloscopes, contact:
HAMEG LTD.
74.78 Collingdon Street, Luton, Beds. LU1 1RX Tel: (0582) 413174

NEW AND FREE FROM GSC.
NEW an exciting range of projects to build on the EXP300 breadboards.
NOW anybody can build electronic projects using "Electronics-by-numbers", its as "Easy as A, B, C with G.S.C!"
FREE project
MUSICAL DOORBELL OF THE 3RD KIND You've seen the film, now haunt your visitors with the tune!
Each time the doorbell is pushed the eerie tune plays out, then switches off to conserve battery power.
HOW DO YOU MAKE IT.
Our FREE project gives you clear "step-bystep" instructions. For example "take
Resistor No. 1 and plug it into hole numbers B45 and B47"
"Take IC No. 1 and plug it into hole numbers E35 to E42 and F35 to F42, (pin 1 on the IC goes into F35)'
"Take. . ."Well! why not "clip-the-coupon" and get your FREE step-by-step instruction sheet and your FREE 12 projects with each EXP300 bought and your FREE catalogue and.

EXPERIMENTOR BREADBOARDS

The largest range of breadboards from GSC.
Each hole is identified by aletter/number system
EaCH NICKEL SIL ver Cont act caraies a life time guahantee
All modular consficuction means that any Expertimentor breadboard can be 'snap-locked' together to build
breadboards ol any size.

EP325
The 'one-chip' breadboard
Takes B, 14, 16 and up to 22 pmic's Has 130 contact points including 2 bus

EXP350
The beginners.
breadboard
For limited
For limited period
you can have FREE
12 'Electronics by Numbers' PROJECTS

Exp300

The most 'widely-bought' breadboard Don't miss out on our NEW AND FREE' projects They can be built on the EXP300

Exp600

The Hobbyist microprocessor' board
EXP650
The 'one chip microprocessor' board EXP4B
'Snsps on' fout extra bus bars
PB6
The ultumate breadhoard kit
P8100
The most kit for the least money

NEW AND FREE FROM G.S.C.
24 HOUR SERVICE.
Tel (0799) 21682 with your Access, American Express, Barclaycard number and your order will be put in the post immediately.
TO ORDER JUST CLIP THE COUPON.

GLOBAL SPECIALTIE 5 CORPORATION
$\longrightarrow \longrightarrow$

GSC Unir 1 Shire Mill Ind Estate Saffron Walden. Essex. CB11 3 AO Telephone (0799) 21682

Telephone $01-891$ 1923/01-891 1513 Telex 295093 CROFTN G

PE CAR COMPUTER

This unit was described by Practical Motorist as: "One of the neatest, most comprehensive and most useful of these car computers that we have yet come across

The PE Car Computer was designed to exceed the specification of all others, both for number of functions and accuracy. As well as the usual functions, it can perform eleven "remaining" type calculations, has a unique "start-stop" mode (used for acceleration timing and the like) and has a combination lock for driving an alarm or ignition cut-out.
The unit is housed in a custom designed box with high quality printed panals having an overall size of $165 \times 50 \times 80 \mathrm{~mm}$ deep. and can be fitted above or below the dashboard. The dlsplay is liquid crystal for clarity in all lighting conditions.
The kit includes all sensors, wiring, etc and is suitable for all cars except those fitted with diesel or fuel injection engines.

Kit price: $£ 78.50$ Assembled Price: $\mathbf{£ 8 8 . 5 0}$ Ignition cut-out $£ 7.75$
$+£ 1$ p\&p includes VAT.
Send S.A.E. for list of separately available parts.
Goods by return of post.

PIMAC SYSTEMS LTD 20 Bloomfield Road, Moseley, Birmingham B13 9BY.

Tel: 021-449 0384

KITS, GOMPONENTS michus a paitis

 IT'S COMPONENTMAIL ORDER MADE EASY
OUR NEW MSUES OUR NEW SALES NO 567-8910

DISCO LIGHTING KITS

DL 1000

This value-for-money kit
features
sequence, speed of sequence and frequency of direction change, being variable by
means of potentiometars and means of potentiometers and
incorporates a master dimming control. Oniy $E 1460$ Dimpook
Diz100\%
A lower cost version of the above, featuring
undiractional channel sequance with sioed variable by means of e preseset pot. Outputs switched only at mains zero crossing points to reduce radio interference to a minimum. Optional opto input DLA1....... Only E8.00 Allowing audio ("beat")-light

DVM/ULTRA SENSITIVE

 THERMOMETER KITThis now design is based on
the ICLI126 fa lower power
version of the ICL7106 chip) and a $31 / 2$ digin liquid crystal display. This kit will form the [940 oasis of a digital multimeter
lonly a few additional resisto Ionly a few additional resistors and switches are requirad-details supplied), or a sensitive
digltal thermometer $\left(-50^{\circ} \mathrm{C}\right.$ to $\left.+150^{\circ} \mathrm{C}\right)$ reading to $0.1^{\circ} \mathrm{C}$. The basic kit has sensitivity of 200 mV for a full scale reading. automatic polarity indication and an ultra low power requirement-giving a 2 year typical battery life from a standard 9V PP3 when used 8 hours a day. 7 days a week. Pricaf 15.50

XK102 3-NOTE DOOR CHIME
grated circuit (SABO600). this kit comes complete. ELEC TROWIC DOOR δ,
with loudspeaker and with loudspeaker and
drilled box (size: $95 x$ CHIME drilled box (size: $95 x$
$71 \times 35 \mathrm{~mm}$) and requir $1 \times 35 \mathrm{~mm}$) and requir
only a PP3 niy a pp3 battery and
pushbutton to complate. The unit produces 0 -note harmonically related tore
sequence when the push. bution Is operated ond ma be used to replace any
doorbell or switched by doorbell or switched by
logic in such applications as aiarms, PA systems and draws loss than luA from the battery in in the standov mode and produces 150 mW output which may be readily amplified if a louder sound is sequired. The small

ALL PRICES EXCLUDE VAT
$\mathbf{£ 5 . 0 0}$
NEW 1982 FREE SHORT FORM CATALOGUE
SEND SAE TODAY ($6^{\prime \prime} \times 9^{\prime \prime}$) We also stock:
Vero products
Antex Soldering Irons Babani Books

THE KEY TO YOUR SECURITY IS IN OUR LOCK

If the thought of car thisves. house breakers of people tampering with your electrical and electronic equipment upsetz you, we have just the kit for you. Our ELECTRONIC LOCK KIT includesa 10 -way keyboard and a special IC which provides a Sorrect sequatice. This a solesenoid or relay (not supphied) when four keys are depressed in the may be easily changed by means of a small plug and socket. A "SAVE function is also available enabling the open code to be stored lespeciolly useful in a car when it is left in a garage for servicing as the open code need not be disclosed). Size: $7 \times 6 \times 3 \mathrm{cma}$. Power Consumption is 40UA s1 SV to 15 V d.c.
At only $£ 10.50$ + VAT, it will make a smaller hole in your pocket than a bunch of keys! Electrlc Lock Mechanism

THE MULTI-PURPOSE TIMER HAS ARRIVED Now you can run your central heating, lighting, hiffi aystem and lots
more with just one programmable timer, Ai your selection it designed to control four mains outputs independently, switching is designed to control four mains outputs independently, switching on
and off at preset times over a 7 day cycle, e.g. to contral your central heating (including different awitching times for weekends), iust connect it to your
clock will do the rest.

FEATURES INCLUDE
ONLY £45 WITH SO MANY EXTRA
0.5^{-1} LED 12 hour display FEATURES.
4 zero voltrge switched mains outputs.
4 zero voltrger switched
$50,6 \mathrm{~Hz}$ mains operation.
Battery backup saves st
(Battery not supplied.
Display blanking during
Powerful "Everyday" function enabling output to switch every dey but use only one time set Useful "sleep" function-turns on output for one hour.
Oirect switch control enabling output to be turned on immediately or ather a specified time interval. 20 function keypad for programme entry.
Programme verification at the touch of a button.
THERE HAS NEVEA BEEN A CLOCK CAPABLE OF SO MUCH AT SUCH A LOW PRICE-

HOME LIGHTING KITS

 (Kit includes all components. assembly and programme inatructions \& an antroctive case).

REMOTE CONTROL COMPONENTS | LD27119 Emiming Diode |
| :--- |
| SFH205 Photacion |

 SL 40033 Commond.
Encooornamsmbrear
Outputs
ML924 Progatmmabe AC Receiver
ML925

 Binary outpule dinary outputs.
ML928 16 channe binery outpuls
We have compion

 sddreas sed envelope for

24 HOUR CLOCK/APPLIANCE TIMER KIT

Switches any appliance up to 1 kW CT1000K Basic K

 on and off at present times once per(Rea
Ady Add 50 p postage \& packing $+15 \%$ VAT to total. Overseas Customers Add $£ 1.50$ (Europe), $£ 4.00$ (elsewhere) for $p \&$. Send S.A.E. for further STOCK DETAILS Goods by return subject to availability. 0 DE 9am to 5pm (Man to Fri)
0.5^{-}LED display, mains supoly. display drivers, switches, LEDs
triacs, PCBs and full instructions

FAST SERYICF-TIOP OUALITY• LOW LOW PRICES

New production capacity at Canterbury has increased our range decreased our prices, improved our special customer design service. Choose from toroidal transformers in a range of 98 types.

17ヶ\%	Stiris	Secompany	$\begin{array}{\|c\|} \hline \text { RuNS } \\ \hline \text { curnent } \end{array}$	$\left.\right\|_{\text {Paici }} ^{\text {ma vit }}$	$\begin{aligned} & \text { paicl } \\ & \text { en val } \end{aligned}$
		$\begin{aligned} & 6.8 \\ & 9.9 \\ & 9.9 \\ & 74.17 \\ & 30.15 \\ & 320.12 \\ & 22.22 \\ & 30.23 \\ & 30.30 \\ & \hline \end{aligned}$	$\begin{aligned} & i 50 \\ & i 66 \\ & 16 \\ & 160 \\ & 003 \\ & 068 \\ & 060 \\ & 040 \end{aligned}$	$\begin{aligned} & 1536 \\ & +08270 \\ & 0.0 \end{aligned}$	$\begin{gathered} \text { f4 } 48 \\ +08870 \\ 0 \end{gathered}$
$\begin{array}{c\|} 50 \mathrm{yin} \\ 00 \times 3 \mathrm{~mm} \\ 09 \mathrm{~kg} \\ \text { megulion } \\ 13 \% \end{array}$		$\begin{aligned} & 6 \cdot 6 \\ & 9+9 \\ & 1 ?+17 \\ & 13+13 \\ & 12+18 \\ & 27+27 \\ & 3+23 \\ & 30+30 \\ & 110 \\ & 220 \\ & 240 \end{aligned}$			
		$\begin{aligned} & 6 * 6 \\ & 9+9 \\ & 12 * 12 \\ & 118+15 \\ & 18+18 \\ & 22+72 \\ & 20.25 \\ & 30+30 \\ & 110 \\ & 270 \\ & 7 * 0 \end{aligned}$			$\begin{aligned} & 65.47 \\ & +61,43 \\ & 9,9 \end{aligned}$
		$\begin{gathered} 6 * 6 \\ 9: 9 \\ 12: 12 \\ 13.15 \\ 18: 18 \\ 27+22 \\ 23 * 23 \\ 30.30 \\ 38.35 \\ 120 \\ 220 \\ 240 \end{gathered}$	$\begin{aligned} & 1000 \\ & 560 \\ & 500 \\ & 300 \\ & 313 \\ & 272 \\ & 200 \\ & 200 \\ & 171 \\ & 009 \\ & 054 \\ & 050 \end{aligned}$	$\begin{aligned} & 5753 \\ & +[1 / 23 \\ & p ; p \end{aligned}$	$\left\lvert\, \begin{gathered} 1639 \\ +518] \\ p, 19 \end{gathered}\right.$
					$\begin{aligned} & c 8,44 \\ & +[8,4] \\ & p, 10 \end{aligned}$

Order using

 the FREEPOST coupon below.Trade enquiries are welcome.
Suppled with rigid mounling kit with ceatre boll. steel and neoprene washers. GUARANTEED 5 VEARS

		$\begin{gathered} \text { SECONOMRY } \\ \text { Vons } \end{gathered}$	$\begin{array}{ll} 1 \text { RUS } \\ \text { fluterd } \end{array}$	$\begin{array}{\|l\|} \text { Palck } \\ \text { me vat } \end{array}$	$\begin{aligned} & \text { PAICE } \\ & \text { en VAI } \end{aligned}$
					$\begin{aligned} & \Gamma 1006 \\ & +\Gamma 1 / 73 \\ & P / 17 \end{aligned}$
$\begin{gathered} 300 \mathrm{VA} \\ 110 \times 50 \mathrm{~mm} \\ 26 \mathrm{~kg} \\ \text { megantion } \\ 6 \% \% \end{gathered}$		$\begin{aligned} & 13+13 \\ & 12+18 \\ & 27+22 \\ & 3+* 26 \\ & 30+30 \\ & 33+35 \\ & 30+30 \\ & 15+45 \\ & 30+30 \\ & 120 \\ & 270 \\ & 240 \end{aligned}$	1000 833 682 600 300 30 478 373 333 300 272 172 138 78	$\begin{aligned} & {[1367} \\ & +[173 \\ & \hline 1 / 7 \end{aligned}$	
$\begin{gathered} 500 \mathrm{wa} \\ 140 \times 60 \mathrm{~mm} \\ \text { i kg } \\ \text { Regution } \\ 4 \% \end{gathered}$		$\begin{aligned} & 3+3 \\ & 30+30 \\ & 3+35 \\ & 40+40 \\ & 35+15 \\ & 50+50 \\ & 50+55 \\ & 110 \\ & 20 \\ & 200 \end{aligned}$	2000 8333 714 625 355 3 500 454 454 223 700		
$\begin{gathered} 625 \mathrm{vi} \\ 140 \times 7 \mathrm{mmm} \\ 5 \mathrm{Kg} \\ \text { Regulamen } \\ 4 \% \end{gathered}$		$\begin{aligned} & 30+30 \\ & 34+35 \\ & 30+30 \\ & 35+35 \\ & 30+30 \\ & 59+35 \\ & 110 \\ & 220 \\ & 240 \end{aligned}$	1041 899 781 694 689 368 368 784 260		

volage to obtain of load voltage
The benefits of ILP toroidal transformers
ILP toroidal transformers are only hall the weight and height of their laminated equivalents, and are avaiiable with 110 V . 220 V or 240 V primaries coded as follows:
For 110 V primary insen " 0 " in place of " x " in type number.
For 220 V primary (Europe) insert " 1 " in place of " X " in type number.
For 240 V primary (UK) insert " 2 " in place of " X " in type number.
How to order Freepost:
Use this coupon, or a separate sheet of paper, to order these products, or any products from other ILP Electronics advertisements. No stamp is needed if you address to Freepost. Cheques and postal orders must be crossed and payable to ILP Electronics Ltd: cash must be registered. C.O.D. - add f 1 to total order value. Access and Barclaycard welcome. All UK orders sent within 7 days of receipt of order for single and small quantity orders.
Also available at Electrovalve. Maphin, Marshalls. Technomatic and Wattord Electronics.
ILP Electronics Ltd. Graham Bell House, Roper Close. Canterbury, Kent. CT2 7EP
Please send me the following
ILP modules
Total purchase price
lenclose Cheque \square
Postalorders Int. Money Order \square
Please debit my Access/Barclaycard No.
Name
Address

Signature

Post to ItP Eiectronics Lto. Freepost 2. Graham Beil House. Rocer Close. Caniertury C12 7EP. Kent. England Telephone (0227) 54778 Iechincal (0227) 64723 - Teiex 965780

TRANSFDAMERS StAYAHEAD.STAY WITHUS

The expert and personel guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful, is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting miy course, my salary has trebled and I am expecting a further increase when my course is completed."

City and Guilds Certificates

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:

Telecommunications Technicians
Radio, T.V. Electronics Technicians
Radio Amateurs
Electrical Installation Work

Diploma Courses

Colour T.V. Servicing

CCTV Engineering
Electronic Engineering \& Maintenance
Computer Engineering and Programming
Radio, T.V. and Audio, Engineering \& Servicing
Electrical Engineering, Installations \& Contracting

Other Career Courses

A wide range of other technical and professional courses are available including GCE.

ENFIELD ELECTRONICS

A superb stereo headphone
Specifications:
1) sensitivity 1100 B as $1,000 \mathrm{~Hz}$ with 1 mw
2) Frequency response: $20-19,000 \mathrm{~Hz}$
5) Maximum input 0.5 watts per channel
6) Individual slide volume control (stereo) mono switeh)
price 55.95.
Order No. LE.76V5

IDEX

stereo headphone Sensitivity 98 dB as 1 kHz with 1 mw . Frequency response 20-25,000 Hz. Im. pedance 35 ohms. Maximum input 0.4 wates. 7ft cord with 3.5 stereo phone plug.

Price 67.50
Order No. MHD-3

Λ

Altai Multitester $\frac{1}{\text { a }}$ Transistor Tester DC volts $0-1 \mathrm{v}-5 \mathrm{v}-2 \cdot 5 \mathrm{v}-10 \mathrm{v}-50 \mathrm{v}-250 \mathrm{v}-1000 \mathrm{v} \pm 3 \%$ $A C$ volts $0-10 v-50 v-250 v-1000 v \pm 3 \%$ DC current $0-50 \mathrm{uA}-2.5 \mathrm{~mA}-25 \mathrm{~mA}-0 \cdot 25 \mathrm{~A} \pm 3 \%$ Resistance:
Minimum 0.2-2-200-200k ohms
Midscale 20-200-20k-200k ohms
Maximum $2 \mathrm{k}-20 \mathrm{k}-2 \mathrm{~m}-20 \mathrm{~m}$ ohms
$\pm 3 \%$
As a transistor tester
Leakage currens 0.150 uA at X 1 k range
0.15 mA at $\times 10$ range

Price 14.95 ge Order No YN 360TR

Universal NI-CAD, bateery charger. All plaseic case with lift up lid. Charge/Test plaseic case with life up lid. Charge/Test charging points.
Charges:- PP3 (9V). U12 (1.5V penlite), U11 (I.5V "C"), U2 (1.5V "D"), Power:-$220-240 \mathrm{~V}$ AC. Dims:- $210 \times 100 \times 50 \mathrm{~mm}$. Super Special Offer as only $\leq 7 \cdot 50$.

Order No. MW 398

This $3 \frac{1}{2}$ inch super horn (Flush Flange) piezo ceramic tweeter converts electrical energy into acoustic energy at an efficiency in excess of 50%, a level not possible with any ocher sype of loudspeaker. Economy is added to'high efficiency by the elimination of crossover networks, because the unis rejects low frequency power. It has a high impedance of over 1,000 ohms at 1 kHz and 20 ohms as 40 kHz and it presents no added load to the amplifier. A Super Special Offer of $\mathbf{4 . 6 5}$ Order No LO52

Please allow 21 days for dellvery.

Adaptors	Cable Cont.	Desolder brald	Frequency counter	LED dlsplays	Pre-amps	Sockets	Tinned copper wire
Adhesives Aerlals	wrapping stripper	Oesolder pump	Gas sensor Grommets	Mains adaptor	Photo electric relays	Sleeving	Transducers
Alarms	Capactors	Diodes	Group panels	Matrix board	Rectifiers	Soldering trons	Terminals
Aluminium boxes	alr spaced	Ilght emitting	Gronso	Meters	carbon film	Slrens	Tuning cells
A.B.S. boxes	trimmer	photo	Headphones	Microphones	metal film	Speakers	Tuning condensor
Amplifiers	suppression	rectifie	Heat sinks	Inserts	metal oxide	Switches	Ulitrasonic
Audio leads	lead through	stgnal	Inspection olasses	stande	wirewound	mercury IIII	transmitter
Audible warning devices	ceramic electrolytic	zener	I.C.s	Microprocessors	Ring cores	micro	Ultrasonic recelver
Batteries chargers connectors holders Bezels Books Boxes Bridge rectifiers Bulbs holders Busbars Buzzers	polyester	infra-red	infra-red source	Mulilisters	Relays	rocker	ero produc
	polystyrene	Displays	Infra-red sensor	Neon bulbs	Resistance chart	rotary	
	sliver mica	Earpleces	Indicators	NI-Cad batteries	Signal Injector	water	
	Cermot pre-setsChokes	Earphones	Jack connectors	NI-Cad char	Service alds sliver palnt swltch lubrlcant solder mop	slide	
		Enamelled copper wire	Jack connectors Jewellers screwdrivers	Opto electronic Oscilloscopes		push-	open from
	Collformers	Etch resist products				Testleads	
	Connectors	Filters	Keyboards	Panels	silicone grease	Thyrlstors	am-oprn
	Continulty	Ferric chioride Ferrite cores	Keynector Knobs	Pick-up colls Pllers	antl-static spray	Triacs	Monday
	Convertors	Ferrite rods	Lamps	Pre-sets	plastic seal	Transformers	
Cable	Crimp tools	Fixing feet	Lamp holders	Potentlometers	Aerokiene	audlo	
clips	Crocodile clios	Fuse holders	Liquid crystal	P.C.B. transfers	compound	I.F.	Saturday
tles	Crystals	Fiuorescent displays	displays	Probes	Aero duster	Transistors	
markers sieeving	Denco products Demagnetisers	Fleld strength motors	LED LED arrays	Plugs	Spacers SWR meters	Transistor tester Tag sirlos	

208 Baker Street, Enfield, Middlesex.
01-366 1873.

HYDRAULIC DRIVE ROBOTS $_{\text {froм }}$ POWERTRAN

 USING SELF. चng CONTAINED HYDRAULIC POWER PACK

FEEDBACK
CLOSED LOOP CONTROL SYSTEM

USING DEDICATED SYSTEM OR EXTERNAL COMPUTER VIA ON-BOARD RS232C INTERFACE UP TO SIX PROGRAMMABLE AXES READY-BUILT OR KITS FROM $£ 355$

AS PUBLISHED IN

PRACTICAL ELECTRONICS

For further details please contact: POWERTRAN CYBERNETICS PORTWAY INDUSTRIAL ESTATE ANDOVER, HANTS SP10 3WN Tel. Andover (0264) 64455

ALARMS - KITS £32, £50, £75, £85 INCLUDING FULL INSTRUCTIONS -- CONTROL PANELS £18, £23, £29, £37 - BELL BOXES £6.25, £7.50 -- PRESSURE PADS $£ 1.06, £ 1.45, £ 1.95 \bullet 4$ CORE CABLE $(100 \mathrm{~m}) £ 8.00 \bullet$ - SIRENS $£ 7.50$ - CONTACTS 72p, 74p, 76p • ULTRASONICS $£ 34.50 \bullet$ - DOOR PHONES $£ 49.42$ -
 BUY A KIT OR DESIGN YOUR OWN SYSTEM
 SEND S.AE OR PHONE NOW FOR FR EE FULY YILLUSTRATED CATALOGUE. \square TELLS YOU ALL YOU NEED TO KNOW! CARRIAGE INCLUDED. VAT EXTRA 15\% Please allow 14 days for delivery

PARNDON ELECTRONICS LTD.
Dept. No. 2144 Paddock Mead. Harlow, Essex. CM18 7RR. Tel: 027932700
RESISTORS: $1 / 4$ Watt Carbon Film E24 range $\pm 5 \%$ tolerance. High quality reststors made under strictly controlled conditions by automatic machines. Bandoliered and colour coded.
E1.00 per hundred mixed. (Min 10 per value) £8.50 per thousand mixed (Min 50 per value)
Special stock pack. 60 values. 10 off each $£ 5.50$
DIODES: IN4148 3p each. Min order quantity - 15 items
£1.60 per hundred

DIL SWITCHES: Gold plated conlact in fully sealed base - solve those
programming problems.
4 Way 86 p each. 6 Way $£ 1.00$ each. 8 Way $\mathbb{E} 1.20$ each.
DIL SOCKETS: High quality, low profile sockets.
8 pin- 10 p. 14 pin - 11 p. 16 pin - 12p. 18 pin-19p. 20 pin - 21 p. 22 pin-23p. 24 pin - 25p. 28 pin-27p. 40 pin - 42p.
ALL PRICES INCLUDE V.A.T. \& POST \& PACKING - NO EXTRAS MIN. ORDER - U.K. £ 1-00. OVERSEAS £5. CASH WITH ORDER PLEASE

MASHMG THFGHRONLCS NOW! The PRACHTCAL way!

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a selfemployed servicing engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.

You will do the following

- Build a modern oscilloscope
- Recognise and handle current electronic components
- Read,draw and understand circuit diagrams
- Carry out 40 experiments on basic electronic circuits used in modern equipment
- Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V. $\mathrm{Hi}-\mathrm{Fi}$ and microprocessor/computer

NewJob?NewCareer? NewHobby?Getinto Electronics Now!

COLOUR BROCHURE
COT

Please send your brochure without any obligation to NAME ADDRESS

BHPAK BARGAINS

STR SCREWDRIVER SET
6 precision screwdrivers in hinged plastic case sires -08.14 ? ?

5T31 MUT DRIVER SET
5 precision nut divers in hinged plastic case Will turning rod Slues -33544 and sim $\mathbf{E 1 . 7 5}$

STA TOOL SET

Sprecision instruments in finger plastic case Crossoont I Phitioss' screwdrivers
HO and H 1 Hex key wrenches
152 and 2 smm E1.75

Tb WRENCH SET

precision wrenches in hinged plastic case
Sizes -4.45.5.5 5 and 6 mm E1.75
BUY ALL FOUR SETS Sl21:Stst and get
hex key set free
hex key set on ring
Sizes $15.2 .25^{3}$
4.555 ana 6 mm
Made ot harcenee steel $4 \times / 1 £ 1.25$

BRAND NEW LCD

 DISPLAY MULTITESTEA. RE 188 mLCD 10 MEGOHM INPUT IMPEDANCE
${ }^{-34}$, digit ' 16 ranges plus hiE test facility for PNP and NPN transistors 'Auto zero. auto polarity - Single -handed pushbutton operation "Over' range medication - 125 mm (1/2-inch) large LCD readout - Drove check - Fuss circuit protection - Test leads. battery and instructions included
Max indication 1999 or - 1999
Polarity indication Negative only Positive readings appear without + sign
Input impedance
Zero adjust
Sampling lime
Temperature range $-5^{\circ} \mathrm{Cliseconds}$
Power Supply $1 \times$ PP 3 or equivalent 9 "
Consumption
SIze
RANGES
DC Voltage 0.20 Jmv
$0 \cdot 2 \cdot 20 \cdot 200 \cdot 1000 \mathrm{~V}$. Acc 08% AC voltage $0.200 \cdot 1000 \mathrm{~V}$
Acc 12% oC Current 0200 A $0.2 \cdot 20 \cdot 200 \mathrm{~mA} 0.10 \mathrm{~A} \mathrm{Acc} 12 \%$
Resistance $0.2 \cdot 20 \cdot 200 \mathrm{~K}$ ohms Resistance $0 \cdot 2 \cdot 20 \cdot 200 \mathrm{~K}$ ohms 0.2 Megohms Acc 1%

BI. PAX VERY LOWE! POSS PRICE
§ 35.00 eac
mini vice
This small cast iron qualify made vice will Clamp on to any bench or table having a max thickness of $1 \frac{\%^{\prime}}{}$ " The $2 \frac{1 / 2}{2}$ " aws open !o max of 1\%/ Approx size $80 \times 120 \times 66 \mathrm{~mm}$ 81. Pax's Mini vice at

BI-PAK SOLDER

DESOLDERKIT

ORDER NO SX80

1 High Quality 40 watt General Purpose Lightweight Soldering Iron 240 v mans in $3 / 16^{*} 147 \mathrm{mml}$ bit
1 Duality Desoldering pump High Suction automatic ejection Knur
casing and teflon nozzle
15 metres of De-soldering braid on plastic dispenser
vas il 83 ml Resin Cored Solder on Cara 1 Heat Shunt tool Iweezer Type Total Retain Value over $£ 12.00$ OUR SPECIAL KIT PRICE 88.95

If The Third and

Fourth Hand...

but have never got until now This helpful unit with Rod mounted horizontally on Heavy Base. Crocodile chips attached to roc ends Six ball \& socket joints give infinite variation and positions inrough 360° also available attached to Rod a $2^{2 / \%}$ diam magnifier giving $25 \times$ magmilication Helping hand until available with of without magnifier Our Price with magnifier as illustrated ORDER NO T402 5.50 Without magnifier ORDER NO T400 \& 4.75

-JARESISTAELE

 RESISTOR BARGAINS"

AUDIO PLUGS, SOCKETS

 AND ACCESSORIES25 pieces of Audio Plugs. Sockets and Connectors io include DIN $180^{\circ} .240^{\circ}$. Intine 3.6 Pin . Leathers. Phonon, Jack, Stereo and Mono, etc etc Valued per path Guaranteed to save you money

SN 263 Pis of 6 pan 240° OIN Plugs and Chassis
sum IA hight Angle Stereo lack Plus 63 mm plus matching metal chassis mounting socket. Sx21 4 Phone plugs and 2 dual phone connectors 5225 1: 25 mm Plug to 35 mm Socket a captor $51301 \times 35 \mathrm{~mm}$ Plug to $2 \mathrm{3mm}$ Socket adagio 5×31 Ia 3 mm Plug to Phonon Socket adaptor 중중장్ㅏㅇ 짱
"CAPABLE CAPACITOAPAKS"

BARGAINS

$\begin{array}{ll}\text { S191 } 20 \text { a large } 2^{\prime \prime} \text { REOLED } \\ 5142 & 20 \text { small } 125 \text { Red } 1 \text { ED: }\end{array}$
514220 small 125 Red leo s S145 A Assontial $250 \mathrm{mw} \cdot 2$ watt mixed voltages $250 \mathrm{mw} \cdot 2$ waft
all coded. New.
Sx47 Black Instrument
Knobs -winged with pointer the
Standard screw. Fit sue 29 : 20 mm
S145 20 Asserted Slider Knots 81 ac $/$ /Chrome. el
Suse $\quad 12$ Means and fitment Lamps Low rouge ind miso - various types and colours - some panel mounting

MONO PRE-AMPLIFIERS

Men 100 suitable for disco miner. MMIDOCS suiuble to guitar preamp river.
The MMIDO and MM 100G mono prem amplifiers are compartite with the AL 60 AL 80 AL 120 and M.250 power amplifiers and their associated power shoppes
Mellow Supply voltage 4065 inputs Tape Meg PU. Aerophone Ma: output 500 mm Heat men 1006 Supply voltage 40-65w inputs 2 Coitus. Microphones Mas output

MW398 NI-CAD CHARGER

Universal Ni-Cad battery charger All plastic
case with int up lid Charger Test switch LED indicators at each of the live charging points Charges

PP319V1

Power -
$220 \cdot 2$ suv AC
012115 V penile)
Oms
$U 11115 V C$
U2115V D
$210: 100$
$£ 6.95$

POWER SUPPLY OUR PRICE $₹ 3.25$

 Power supply fils directly into 13 amp socket Fused tor safety Polarity reversing socket Voltage switch Lead with multi drug

PR $2^{2} \quad 14 \times 4^{\prime \prime} 110$
SiLICON POWER TRANSISTORS -723
NPN like 2N3055 - but not full spec 100 watts 50 V min.
10 tor $\mathrm{E1} .50$ - Very Good value loos al uses - no duds Order No. 5×90

5 watt (RMS) Audio Amp

Hugh Quality audio amplifier Module Ideal la use record players. ape recorders. stereo amps and cassette players, etc Full data and bach-up diagrams with each module
Specification

- Power Oulpul 5 malts hms Load impedance 8.16 ohms o frequency response 50 Hz to $25 \mathrm{kHz}-3 \mathrm{db}$ Sensitivity 70 my los full output Input impedance 50honms Sure is: 64 a 30 mm Total Harmonic distortion less than, 5%

BI-PAK'S give away
82.25

Tax could not build one

TECASBOTY

The Electronic Components and Semiconductor Bargain of the Year. A host of Electronic components including potentiometers - rotary and slider. presets - horizontal and vertical Resistors al mixed values 'Z2 ohms to $2 \mathrm{M} \cdot 2$ - $1 / 810$ ' Wall A comprehensive range of capacitors including etectroytic and polyester noes plus disc ceramics etcetera. Audio plugs and sockets of various types plus switches, lues, nealsinks, wire, nuts bolts, gromets. cable clips and yes. knobs and PC. Board Then add to that 100 Semiconductors lo include transistors, diodes. SCR's onto 's. all of which are current everyday usable devices. In ah a Fantasise Parcel. No rubbish all identifiable and valued in Current catalogues al well over $\mathfrak{5} 25.00$ Our Fight Against Inflation Price

- Down with Depression
- Ccu min Depersson J JUST £6.50.

BJ-PAK' COMPLETELY NEW CATALOGUE
Completely re designed full of the type of components po u requite plus some very interesting ones you will soon be using and ot course the lag gest range of semiconductors tor the Amateur: and Professional you could hope to lind There are no wasted pages of useless intimation so often included in Catalogues published nowadays Just solid facts ie price description and individual features of what we have available But remember B1. Pah s policy has always been to sell quality components at competitive prices and IHAT WE STILL DO.
81-PAK S COMPLITELY MEW CATALOGUE is now available to you You will be amazed how much you can save when you shop for Electronic Components with B. par Catalogue have one by you all the time - 11 pays to buy 81. Yak

AMALGAMATION

As we move towards the 21 st century, it becomes noticeable that the various technologies are gradually amalgamating. No longer do we have individual mechanical, electrical or other pieces of equipment; eighty per cent of them also employ electronics. As the requirement for greater versatility, accuracy and reliability grows so does the electronic content.

It is difficult to think of many modern domestic appliances without electronic control systems and some--like the microwave oven-are simply straightforward applications of electronics with no "mechanical" counterpart. There are of course a few exceptions to the rule-the lawn mower being one that springs (no pun intended) to mind at this time. Though we doubt if it will be long before a programmable (robot!) version is readily available that can be shown how you like your lawn cut just once and will forever after mow to your satisfaction-unless of course you make a new flower bed without telling it! It could even go and
empty its own grass box as necessary; just think of the hours that could be saved for sunbathing or something equally rewarding. Anyway, enough day dreaming; now what was the point of all this?

DESIGN!

What these developments mean is that the design engineer must be more able to understand the interface to other technologies. Be able to sort out the elements that require monitoring, the transducers needed and the relationships of the various resulting outputs. Only then can the control electronics and, if necessary, software be designed. As electronics moves ahead, the ease with which new devices can be applied to given situations is greatly improved and the design of electronics for specific applications is becoming little more than the selection and wiring of the appropriate chips.

The sort of "shop floor" design engineer is in danger of being replaced
by a "systems engineer", with the true designer jobs increasingly back at the chip stage. The result of this progression will be a greater requirement for a jack-of-all-trades who can understand and interface electronics with a wide variety of appliances and equipments. Possibly even a jack-of-alltrades/programmer.

PROJECTS

It is noticeable that in particular areas our projects are also going this way; it is very often the ingenuity of applying a chip or the program that results in excellent new projects rather than the ingenious circuit design of yesteryear. This progression is enhanced by the falling prices of I.s.i. chips. Although a device may, in electronic design terms, be an overkill when applied to a particular requirement, if it is cheaper than a discrete alternative and has the added advantages of reliability and ease of use, it is an obvious winner.

Mike Kenward
EDITOR Mike Kenward
Gordon Godbold ASSISTANT EDITOR
Mike Abbott TECHNICAL EDITORDavid Shortland PROJECTS EDITORJasper Scott PRODUCTION EDITOR
ADVERTISEMENT MANAGERSECRETARYCLASSIFIED SUPERVISOR Barbara Blake 01-2615897$\left.\begin{array}{l}\text { D. W. B. Tilleard } \\ \text { Christine Pocknell }\end{array}\right\}$ 01-261 6676AD. SALES EXEC. Alfred Tonge 01-2616819

Jack Pountney ART EDITOR

Keith Woodruff ASSISTANT ART EDITOR
John Pickering SEN. TECH. ILLUSTRATOR
Isabelle Greenaway TECH. ILLUSTRATOR
Colette McKenzie SECRETARY

Editorial Offices:

Practical Electronics,
Westover House,
West Quay Road. Poole,
Dorset BH15 1JG
Phone: Editorial Poole 671191
We regret that lengthy technical enquiries cannot be answered over the telephone (see below).
Advertising Offices:
Practical Electronics Advertisements, King's Reach Tower,
King's Reach, Stamford Street, SE1 9LS
Telex: 915748 MAGDIV-G

Technical Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in PE. All letters requiring a reply should be accompanied by a stamped, self addressed envelope, or international reply coupons, and each letter should relate to one published project only.

Components and p.c.b.s are 'usually available from advertisers; where we anticipate difficulties a source will be suggested.

Back Numbers

Copies of most of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, at 95p each including Inland/Overseas $p \& p$.

Binders

Binders for PE are available from the same address as back numbers at $£ 4.60$ each to UK or overseas addresses, including
postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 13.00$, per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH. Cheques and postal orders should be made payable to IPC Magazines Limited.

The IBA and Satellites...

On 4th March the Home Secretary announced the Government's intention to allocate the first two television channels for direct broadcasting by a British satellite in 1986.

The IBA fully appreciates the urgency of early decision-making in a field full of promise for export sales and job opportunities at home: and the commercial consortium building the British satellite system will need to be certain that there are broadcasting organisations committed to the use of two channels at the outset.

The Government believes that for this reason the right course is to authorise an immediate go-ahead with BBC proposals for the first two channels: the BBC is unhampered by the need for passing new legislation through Parliament which would be required for IBA involvement. The Government points out that the total number of channels on the satellite can be up to five as permitted by international allocation so that there will be future opportunities for Independent Broadcasting.

The IBA's position is that it has advanced at least as far as the BBC-and in some ways further-in its work and thinking on the development of Direct Broadcasting by Satellite (DBS): and until the Home Secretary's statement in March there had been no proper public debate on the many and important implications. The IBA in its submissions to the Home Office following the publication of the Government's study document on DBS last year has argued for the use of satellites to improve picture quality and for the need to have uniform standards in Europe in view of the overlap of satellite "footprints". It has also advanced examples of services which the IBA, in discussion with the ITV companies. could be equipped to run.

Meanwhile, the Authority has made significant progress with experiments in both the technical and the programming fields.

Its engineers have pioneered a transmission system for satellite broadcasting, called MAC or Multiplexed Analogue Component, to overcome problems of incompatibility between the different colour systems in Europe, providing a single 625 -line system-with clearer pictures than anything at present available on television receivers and with multi-channel sound systems. It would lead to a single design of adaptor unit for the whole of Europe, with consequent advantages for production.

In May. the first experimental European*
television service via satellite is to be launched on closed circuit by the IBA and 13 other broadcasting organisations-the BBC decided not to participate-within the European Broadcasting Union. headed by an IBA coordinator. With full five-hour schedules daily, providing for up to four different language sound channels and the IBA's ,ORACLE teletext system for sub-titling, and continuing for five weeks, the experimental service will be transmitted using the IBA's own mobile dish transmitter via the European Space Agency's Orbital Test Satellite (OTS).

The first public pan-European television service is due to be launched in 1986: this will make use of another satellite in which British industry has a large share and into which the British Government has put many millions of pounds. The IBA submission to the Home Office suggested that the pan-European service could also be carried on the all-British satellite which is now being authorised to proceed. Another proposal was for a "best of British" service made up of programmes from all four existing services in the UK. And the Authority undertook further study by itself and the programme companies of the practicalities of organising a subscription service-for which, it has argued, the commercial experience of the Independent sector makes it a more suitable operator than the BBC who would ultimately pass the risk to the licence-payer.

A detailed plan for this IBA service could be submitted later this year, well before actual planning perparation for a 1986 service will need to begin in the second half of 1983 and without holding up the decision-making and contractual arrangements on the industrial side.

Clearly there is much still to be publicly debated in the months immediately ahead, espceially when, besides DBS, there are other exciting new possibilities in television broadcasting in the next decade: notably the expansion of cable services and the future use of reengineered VHF Bands I and III. It would be wrong to make piecemeal decisions.

The IBA believes that the public debate should focus on the best sources of new programmes: on a realistic basis for funding fresh services; and on assurances to viewers
that their services from the four terrestial channels continue to be as good as the the broadcasters can make them. Recognising the great opportunities which like in abundance of outlets for broadcasting, the aim must be to ensure that the quality which has been one of Britain's main claims to distinction during the past 50 years is maintained and indeed enhanced.
Reproduced by kind permission of Independent Broadcasting.

Pictured above is Vero's latest addition to their range of products for the hobbyist, the Verobloc Kit which consists of one Verobloc breadboard, one component mounting panel and a design sheet pad. It is available from retailers, or direct from Vero at a price of $£ 4.32$ plus VAT ($p \& p$ on direct orders is free). The Verobloc Kit, along with other products is detailed in Vero's new newspaper-style catalogue, the Hobby Herald, which again is available from retailers or direct from Vero, on request.

Vero Electronics Ltd., Retail Department; Industrial Estate, Chandler's Ford, Hants SO5 3ZR (04215 62829).

Briefly...

In News \& Market Place, April '82, we featured a siren module from Riscomp, complementing their ultrasonic alarm module. The price we gave for the siren module was incorrect-it in fact costs only $£ 2.57$ plus VAT and 50 p p\&p, rather than $£ 12.59$ as originally stated.

Riscomp Ltd., 21 Duke Street, Princes Risborough, Bucks HP170AT (08444 6326).

If you own a BBC Microcomputer, or are thinking of buying one, you may be interested to hear of 'Beebug'-which describes itself as the first Independent National User Group for the BBC Microcomputer.

Beebug produces a regular newsletterdevoted entirely to the BBC Micro-which contains new program listings, hardware and software hints, plus competitions and discount offers. Membership costs 88.50 per year, or $£ 4.50$ for 6 months.

For further details send a stamped selfaddressed envelope to Beebug, 35 St. Julians Road, St. Albans, Herts.

OK Machine \& Tool have recently published their new Electroware catalogue, which features a selection of tools, hardware and various other goodies in the Electroware range. which is available from component and computer retailers, or direct from OK.

To obtain your copy of the Electroware catalogue. write to Electroware, Dutton Lane, Eastleigh. Hants SO4 4AA, enclosing a cheque or postal order for 30 p to cover postage.

Clive launches New Micro'

A new microcomputer was launched by Clive Sinclair at the Earls Court Computer Fair on April 23rd. At the time of going to press we have few details, but understand that it features a significantly higher specification and price than the $\mathrm{ZX81}$, and marks a major extension to Sinclair's range. A new range of software for the ZX81 has also been introduced.

Any reader who wishes to learn about digital electronics will be pleased to hear that a practical and inexpensive means of gaining a basic knowledge of the subject is now available from Cambridge Learning Ltd.

For an inclusive price of $£ 19.90$, Cambridge Learning will send you a Superkit, which they describe as a Self-Instruction Dlgital Electronics Kit for beginners, and which consists of an instruction manual, breadboard and set of components, neatly contained in a plastic wallet.

The course covers boolean logic, gating, R-S and J-K flipflops, shift registers, ripple counters, half-adders; and teaches fault finding, improvisation and subsystem checking. The use of a breadboard means that no soldering is necessary, and all components can be used repeatedly.

Send your order or request for further information to Cambridge Learning Ltd., Unit 22, Rivermill Site, Freepost, St Ives, Cambs. PE17 4 EP (0480 67446).

MICRO-PROF:
A new 'teaching computer known as the Micro-Professor is now available from Flight Electronics Ltd of Southampton.

The Micro-Professor (model MPF-1) is a low cost Z80-based microcomputer which provides an interesting and economic method of understanding the world of microprocessors. It features 2 K of RAM (expandable to 4 K), 2 K of ROM (expan-
dable to 8 K), a 36 key keyboard and a sixdigit 13 mm l.e.d. display. To facilitate experimentation and expansion, the MPF-1 also incorporates a wire wrapping area measuring $89 \times 35 \mathrm{~mm}$.

Complete with power supply and 350 page manual, the MPF-1 is priced at $£ 69.95$ plus VAT and $£ 2.95$ p\&p. It is available from Flight Electronics Ltd., Flight House, Quayside Road, Bitterne Manor, Southampton SO2 4AD (0703 34003).

We intend to publish a detailed review of the MPF-1 in a future issue.

MADE FOR MICROS

A recent introduction from Monolith Electronics is their new cassette recorder, the ECR81, which has been designed for use with personal computer systems.
Monolith say that the ECR81 (Enhanced Certified Recorderl represents a major advance in cassette recorder technology. It has been designed specifically as a storage medium for personal computer systems and incorporates a number of features which are lacking in machines designed for the audio market which have hitherto been used with such systems. The ECR81 consists of a high quality, proven cassette mechanism with certified tape tension, torque, speed and head alignment.
The ECR81 is supplied complete with mains lead, DIN connector and certification tape, and is priced at $£ 47.50$ including VAT, plus $E 2.50 p \& p$. It is available from Monolith Electronics Co. Ltd., 5-7 Church Street, Crewkerne, Somerset. 10460 74321.

POINTS ARISING

FREQUENCY METER (May '82)

The l.e.d. of Fig. 6 should return to pin 12 of IC3, not OV. Similarly in Fig. 7, the diodes (from left to right) should return to pins 4, $6,7,12$ of IC3, again not OV. The second sentence in the caption of Fig. 11 should be ignored.
The recommended displays (FND 0238)
are now obsolete. A directly compatible alternative is the FND 357.

IC3 in the component list of page 26 (Frequency Counter) should be specified as 7216B. Capacitor C3 should be included (39pF).
If difficulty is experienced in trimming the crystal to 10 MHz , try changing C3 to 47 p or 68 p . Alternatively, increase the value of VC1.
Optional Prescaler: Re. 2nd paragraph. The 8660 is the more expensive device and will not work at such high frequencies, but does provide TTL compatible outputs.

NEW SHOP
A new electronic component shop serving hobbyists in the North London area has just opened.
Enfield Electronics is stocking a wide range of components, hardware and service aids, as well as a range of kits and books. The shop features a large self-service area for personal callers; a mail order catalogue will be available soon.
For further information contact Enfield Electronics, 208 Baker Street, Enfield, Middx. (01-366 1873). Personal callers will be pleased to note that opening hours are from 9 a.m. to 6 p.m., Monday to Saturday.

L \& B Electronic inform us that they now produce a range of fascia panels for their range of lighting modules, in addition to those already available for the Multi-4 and Program-8.
All the panels are anodised blue and finished with white lettering. They come complete with an illuminated rocker switch, black control knobs, and where appropriate, l.e.d.s for monitors.

Prices for the fascia panels are as follows: 41000SLC - £9.20; 31000SLC - £8.70; 31000SL - £7.70. All prices include VAT; p\&p is 30p extra. L \& B Electronic, 45 Wortley Road, West Croydon, Surrey. (01-689 4138).

Hountidnun...

Please check dates before setting out, as we cannot guarantee the accuracy of the information presented below.

HEVAC May 24-28. NEC Birmingham. I
International Word Processing May 25-28. Wembley Conference Centre, London. Z
CETEX (Consumer Electronics Trade) May 30-Jun. 2. Earl's Court, London
Electronic Hotel June 3-4. West Centre Hotel, London. Z1
Videotext June 4. Europa Hotel, London. ZI
Scotelex Jun. 8-10. Roy. Highland Ex. Hall, Ingliston, Edinburgh. AI
BEX Leeds Jun. 9-10. K
Compec North June 23-25. Belle Vue Hotel, Manchester. Z1
Transducer/Tempcon Jun. 29-Jul. 1. Wembley Conf. Centre. T
BEX Croydon Jun. 30-Jul. I. K
Leeds Electronics Show Jul. 6-8. University. E
Video Revolution (symposium) July 12-15. Reading University G1
Internoise July 13-15, 1983. Edinburgh University A7
BAEC Amateur Electronics Jul. 17-25. Penarth Esplanade S.
Glamorgan. B9
BEX Manchester Sept. K
Personal Computer World Show Sept. 9-12. Barbican Centre, London. M
Laboratory London Sept. 14-16. Grosvenor Ho. Park Lane. E

Two Counties Fair Sep. 15-18. Plymouth Ex. Centre, Millbray, Plymouth, Devon. T
Microprocessors In Audiology Sept. 24 A7
BEX Cardiff Oct. K
Viewdata Oct. 12-14. Wembley Conf. Centre. O
Video Show Oct. 16-18. West Cntr. Hotel. Z1
Computer Graphics Oct. 19-21. London. O
Testmex Oct. 26-28. Wembley Conf. Centre, London. T
Compec Nov. 16-19. Olympia, London. ZI
Brighton Electronics Exhibition March 1983. T
INSPEX March 21-25, 1983. NEC. Z1
HEVAC London Apr. 26-28 1983. Barbican. I
Semlab June 1983. Olympia, London. I

AI Institute of Electronics, Rochdale; Lancs.
A7 Institute of Acoustics. / 031-225 2143
B9 BAEC. 26 Forrest Road, Penarth
E Evan Steadman, Saffron Waiden ${ }^{8} 079922612$
GI SERT, 8 Charing Cross Rd., London.
H1 Seminex Ltd. Tunbridge Wells 『 089239664
I ITF. Solihull / 021-705 6707
K Douglas Temple, Bournemouth \& 020220533
LI World Trade Centre: 01-488 2400
M Montbuild \& 01-486 1951
O Online. Northwood, Middx. \& 08224671
T Trident Tavistock © 08224671
v SDL \int Dublin $/ 63871$
Z Beta Exhibitions \& 01-405 6233
Z1 IPC Exhibitions, Sutton \& 01-643 8040

THE TRANSCENDENT SYNTHESISER

RANGE FROM

This exciting range of keyboard instruments designed by synth expert Tim Orr and featured as constructional projects in Electronics Today International are aimed at the amateur and professional alike. These kits are all designed for ease of assembly and are all priced at a fraction of their commercial equivalents.

At the top of the stack sits our Transcendent Polysynth. This unit houses a 4 octave keyboard transposable over $7 \frac{1}{2}$ octaves. Up to 4 notes may be plaved simultaneously, each note being assigned 2 OSC's, 2ADSR's, a VCA and a VCF. There are separate tuning controls for each VCO of each voice, whilst all other controls are common to ensure consistency between notes. Versatile modulation features are included for extra richness.
Complete kit $\mathbf{£ 2 7 5 . 0 0}$ plus VAT (single voice) Extra Voice $\quad \mathbf{£ 2 0 0 0}$ plus VAT (up to 3 more) The Polysynth has an add-on Expander Unit for even greater flexibility. This unit contains 4 further voices allowing the playing of chords of up to 8 notes.

Complete kit $\mathbf{£ 2 4 9 . 0 0}$ plus VAT

TRANSCENDENT DPX - Offers a five octave keyboard with power to match. Two audio outputs (can be used simultaneously) to give
harpsichord and piano/honkytonk or reed with strings/brass and both are fully polyphonic. Other features include switchable touch sensitivity and a chorus ensemble unit with strong/mild effect switching. An advanced design made simple with our clearly laid out instruction manual. Complete kit

TRANSCENDENT 2000 - Although only a 3 octave keyboard the '2000' features the same design ingenuity, careful engineering and quality components of its larger brethren. The kit is well within the scope of the first time builder - buy it, build it . . . play itl You will know you have made the right choice.
Complete kit
£165.00 plus VAT

1024 COMPOSER - Come right up to the minute with this new design. It will control your synthesiser with a sequence of up to 1024 notes - or an equal selection of shorter sequences. The Composer is mains powered with automatically charged battery to preserve your programme after switch-off.
Complete kit
£85.00 plus VAT
. . Quite simply the best way to make music.

hicucossynthon

Part One A.R.Bradford m.sc.

ELLECTRONIC sound synthesisers have become very popular over the last few years, with a wide range of ready built and do-it-yourself designs currently available. The problem is that they are all very expensive, although prices have been coming down slowly. Some manufacturers now produce small units for people not wishing to fork out several hundred pounds, but these all have drawbacks in terms of "cost-performance".

While "anything to anything else" patching (by matrix pinpatch or flying leads) is prohibitively expensive in small synthesisers, not to mention inconvenient, there is a tendency for simpler models to be rather limited in what they can do owing to the number of switched interconnections available. The Microsynth overcomes this limitation.

On the amateur constructor front, in the author's experience, there seems to be no limit to the complexity of existing designs, as if the designers" maxim were "never use simple circuits where something more complicated will do." This has resulted in an extensive re-think of what is required from the various units in a synthesiser with the emphasis on using as few and as cheap components as possible, while at the same time ensuring effective and reliable operation. Slide switches have been employed for the various interconnections; these work out just as cheap as flying leads and are a lot neater

Ideally it should be possible to feed or modulate any part of the synthesiser from any other, but in practice many effects thus obtained are so dull or pointless as to be redundant. Consequently, much thought has gone into creating routing systems for audio signals and control voltages (the two may be the same) which is as versatile as possible, but which is greatly simplified by omitting the least useful connections, particularly where similar results may be obtained by more than one means. Having made sure of satisfying the experimenter, the author then consulted professional keyboard players in arriving at a panel layout which is both pleasing and ergonomic, that is, non-confusing and rapidly operated on stage.

Whilst the circuits employed in the Microsynth will obviously not compare with the most expensive instruments available, they will hold their own against many professional machines and are equally suited to domestic, stage and studio use. Most importantly, the Microsynth is completely insensitive to changes in temperature, that is, it will not go out of tune.

The result is a synthesiser which is tremendously versatile yet simple to operate, reliable, and above all cheap enough to bring the tremendous potential of electronic sound creation within the reach of most peoples' pockets!

PERFORMANCE

The Microsynth operates in two modes depending on the configuration of VCO2, as shown in the block diagrams (Figs. 1 and 2).

In the first mode both VCOs run at audio frequencies and manual modulation of pitch, etc, is available via the thumbwheel. In the second mode, VCO2 is configured as a
low frequency oscillator (LFO) and can be used to modulate the keyboard, filter, VCO1 mark/space, etc, trigger the envelope shaper, and so on. The thumbwheel can be used to introduce LFO modulation manually.

A notable feature of the Microsynth is that with VCO2 switched to "RM" or ring modulator mode, it still runs at audio frequencies and tracks VCO 1 very accurately, but its output is via the modulation routes only. Thus instead of being added, the waveforms from the two oscillators are multiplied together producing sum and difference tones. This, together with the sub-octaves, underlies the remarkably rich sounds that the Microsynth can produce.

Having VCO2 switchable in this way is not a drawback as it may at first seem. In a unit as compact as the Microsynth it was felt that it was impractical to have a second VCO and an LFO and do justice to both, and so the switchable VCO is felt to be a reasonable compromise. Even with only one VCO operating the sub-octaves can be used to give rich harmonic structures, while waveform modulation or other effects are created by the LFO. Pitch bending can be introduced manually with the thumbwheel. With both VCOs running at audio frequencies the lack of a separate LFO makes little difference - the thumbwheel allows expression of various sorts to be imparted manually, while vibrato may be created by setting the two VCOs slightly apart to give a slow beat.

One feature of the Microsynth which is sadly lacking from many commercial designs is that all modulation routes enable the device being modulated to be swept over its entire range, enabling extreme effects to be produced. Another feature which is unusual in smaller synthesisers but which is very powerful, is the inclusion of a separate sample and hold (or analogue memory). This samples the waveform from VCO2 each time the envelope shaper completes a cycle and can be used to create either staircase or random

Fig. 1. Effective 2-VCO configuration of the Microsynth
changes in pitch or timbre. This enables the Microsynth to generate sophisticated rhythms or sequencer type patterns using the oscillators and/or filtered noise, which again far belie the complexity of the instrument.

KEYBOARD CONTROLLER

The keyboard resistor chain is in the feedback loop of $I C 1 b$, which acts as a constant current source giving highest note priority. The keyboard itself is provided with three contacts (made from short lengths of gold wire) under each key. As a key is pressed a sequence of two events occurs: first the selected point in the keyboard resistor chain makes contact with the keyboard bus bar which transfers the appropriate voltage to the sample and hold circuit IC4a, C1 and IC5a. A moment later the trigger bus is connected to the keyboard bus and switches on comparator IC1a, debounced by R28 and C2. As IC1a output goes high the CMOS analogue
switch IC4a is turned on and the keyboard voltage is sampled. As the key is released the trigger bus is disconnected first, so IC1 a goes low, IC4a is switched off and the sampled voltage is stored on C1, buffered by high impedance op-amp IC5a. Finally the keyboard bus is disconnected.

IC1c and IC1d are wired as comparators of opposite polarity; each time the voltage from IC5a changes up or down, even by a semitone, this change in voltage is differentiated by C4 and R51 to give a spike, and this spike makes either IC1c or IC1d go high momentarily, depending on its direction. Thus a positive pulse appears on the far side of D2, D3, and this pulse enables the envelope shaper to be retriggered each time a new key is pressed, even if the preceding key has not been released. This circuif comes into its own when fast runs are being played with a percussive attack.

The voltage from IC5a is summed along with an offset

Fig. 2. Effective operation with VCO2 configured as an LFO
and various incoming modulation voltages by inverting amplifier IC2a. The voltage from the "Tune" preset VR1 is also fed in at this point. VR2, C5 and IC6 form a slew rate limiter providing glide rates from a few milliseconds to several seconds depending on the setting of VR2. Inserting the slew limiter at this point means that the transition to a new note will be completed even if the key is released prematurely.

The keyboard circuitry thus far generates a law of about 0.35 volt per octave. This is smaller than is commonly used in synthesisers for reasons which will become apparent.

EXPONENTIAL CONVERTER

This is the most important part of the synthesiser and will be discussed in some detail.

Positive going control voltages from the preceding circuitry are attenuated by VR3, R38, R39 and R40, so that
every 0.35 volt increment in input voltage results in an 18 mV increment at the base of TR2, which in turn doubles the current flowing in TR2. The emitter of TR2 is held at -0.6 volt so that any positive voltage at its base will cause it to conduct. This reference voltage is generated by a temperature compensating transistor TR1, buffered by IC2b. As temperature rises the current in TR1 increases, raising the reference voltage and so lowering the current in TR2, and vice versa. D1 prevents zenering of TR1 and consequent damage. TR1 and TR2 are glued together for intimate thermal contact and a piece of polystyrene packing pushed over the two transistors ensures that they remain at the same temperature. In practice it has been found unnecessary to use specially matched transistors unless violent changes of temperature are anticipated.

The current to $\mathrm{V}_{\text {be }}$ relationship of TR2 is also temperature dependent affecting the relative tuning of the keyboard, or

EA33:
"span", as it is otherwise known, and so R39 and R40 are a combination chosen for a temperature coefficient which cancels out this effect.

The prototype Microsynth has been used for over a year both on stage and in the studio and invariably one finds that it is other, conventional instruments such as guitars that drift and require tuning, rather than the synthesiser. The prototype has also held its own against two expensive commercial machines-a Moog and an ARP. The circuit used here has advantages over other designs as the temperature stabilisation requires no tedious setting-up, there is no warm-up time (as with transistor ovens, heated chips, or whatever), and the musical scale is simply adjusted by VR3.

The current in TR2 is converted back into a voltage by IC7. This arrangement has been chosen so that more than one VCO can be driven from the same exponential converter. Thus only one converter is needed, reducing cost, and the musical scale of the instrument is adjusted only once. Another important advantage is that because both VCOs are driven from the same exponential converter, they will track each other perfectly over the entire range of the keyboard providing triangle/square wave VCOs are used, which unlike relaxation oscillators do not suffer from reset time problems. (Here it is worth noting that a defect of triangle oscillators is put to good use in the Microsynth, namely, a tendency to lock on to each other's harmonics). Octave switching is simply achieved by switching the gain of IC7 to multiply the exponential up and down. Thus the most accurate part of the exponential is always used. The octaves are tuned using VR4 to VR7, while VR8 trims out the offset in. IC7, which must function linearly down to very low voltages.

DRIFT

One novel feature of the Microsynth is the "Drift" function. Moving S1 to the left or right means that once a key is released the held voltage (C1, IC5a) will drift up or down as C1 charges or discharges via R31 or R32 respectively. This offers a neat way of synthesising "seagulls", "frogs", "alarm" tones, etc, not to mention the sort of irritating noises heard on many disco records!

ENVELOPE

As previously described the envelope shaper is triggered each time a key is pressed, by IC1a. It can also be retriggered by pressing another, higher, key via IC1c and IC1d.

Moving S9 to the "LFO" position means that the envelope will be triggered by the square wave output from a slowrunning VCO, for rhythmic effects. However the gating of IC3a and IC3b ensures that this only happens as long as a key is depressed. As the envelope output goes low the centre of the Schmitt trigger built around IC3c and IC3d goes high, and selecting the centre "Repeat" position of S9 sends this positive voltage back to the trigger input of the envelope shaper. Thus the whole thing is turned into an oscillator, retriggering itself every time it completes an attack and release cycle.
With "Sustain" switch S8 in the "Manual" position, pressing a key turns on IC4b while inverter TR3 holds IC4c off, so C12 charges up to about +8 V via the attack pot VR9. Releasing the key reverses this arrangement: IC4b turns off and IC4c closes allowing C 12 to discharge to -8 V via the release pot VR10.

With S8 switched to "Auto", the set-reset flip-flop IC8c and IC8d is triggered as a key is pressed so that pin 10 of IC8 goes high, turning on IC4b and intitiating the attack cycle. VR11 is adjusted so that when the envelope output (IC10 pin 6) reaches about +7 V , the flip-flop is reset and C 12 discharges via the release pot. The complete envelope cycle time is thus the sum of the attack and release times and one cycle occurs each time a key is pressed. IC9 and IC10 provide negative and positive going envelopes respectively. The positive going envelope is fed directly to the VCA, while "Level" control VR12 cross fades between negative and positive envelopes and controls the degree of modulation fed to the VCF, VCO2, etc. Diodes D8 and D9 provide a dead band in the centre of VR12, corresponding to 0 volts or "no modulation".

Each time the envelope shaper is triggered, by whatever means, the flip-flop built around IC8a and IC8b is set, charging up C11, and then reset by the voltage on C11 a short

COMPONENTS

Resistors

R1		10k	R52	100k	R8		10k	R118			10k
R2		680	R53, R 54	100	R8		8 k 2	R119, R120			47k
R3 to	26 (2\%)	56	R55, R56	100k	R8		4 k 7	R121			1k
R27		1 k 2	R57	4 k 7	R8		10k	R122			33 k
R28		1 M	R58	33k	R8		1k	R123			3M9
R29		33k	R59	100k	R8		10k	R124			6 k 8
R30		1 k	R60, R61	10k	R9		15k	R125, R126			47k
R31.		10M	R62, R63	10M	R9		1k	R127			33k
R33,		15k	R64, R65	47k	R9		220	R128, R129			100
R35		180k	R66	470k		2, 894	1 M	R130			220k
R36		390k	R67	1 M	R9		1 k 8	R131			1 M
R37		1 M	R68	100k	R9		100	R132, R133			10k
R38		22k	R69	33k		7. $\mathrm{R98}$	47k	R134, R135			68 k
R39	wire wound	870	R70	10 k	R9		5 k 6	R136			150k
R40	metal oxide	130	R71	8k2		00	82k	R137.R138			1k
R41		39k	R72	4 k 7		01	47k	R139			100k
R42		22k	R73	10k		02	5 k 6	R140, R141			10k
R43		47k	R74	1k		03	33k	R142			39k
R44		100k	R75	10k		04	1k	R143			15k
R45		180k	R76	3k9		05	220k	R144			$2 \mathrm{R7}$
R46		390k	R77	470k		06 to R108	12k	R145, R146		0.5W	470
R47 t	850	10k	R78	1 M 2		09, R1 10	100	R147			4 k 7
R51		15k	R79	1 M		11	10k	R148			2 k 2
			R80, R81	470k		12. R113	100	R149			10 k
Potenti	meters		R82	10		14. R115	10k	R150			1 M
VR1	preset	100k	R83	1 M		16, R117	4 k 7	R151			6 k 8
VR2	pot log	2M						R152			56 k
VR3	cermet preset	22 k		Capa				Semiconduc			
VR4	cermet preset	10 k		C1		polycarbonate	1μ	TR1, TR2			182L
VR5	cermet preset	10k		C2		polyester	22 n	TR3			C548
VR6	cermet preset	47k		C3		p.c. elec 25 V	100μ	TR4, TR5			$212 \mathrm{~L}$
VR7	cermet preset	47k		C4		polyester	100n	TR6 to TR9			C548
VR8	preset	10k		C5		polycarbonate	470 n	TR10, TR 11			TIP41
VR9	pot log	1 M		C6		polyester	:On	D1 to D4			N914
VR10	pot log	2M		C7		polyester	100 n	D5			0 O81
VR11	preset	100k		C8		polyester	10 n	D6 to D11			N914
VR12	pot lin	100k		C9.		polyester	10 n	REC1, REC2			W005
VR13	preset	10k		C11		p.c. elec 25 V	1μ	IC1			4136
VR14	pot lin	100k		C12		p.c. elec 25 V	$4 \mu 7$	IC2			1458
VR15	preset	100k		C13		polyester	10 n	IC3			4011
VR16	pot lin	1k		C14		polyester	100 n	IC4			4016
VR17	preset	10k		C15		polyester	10 n	IC5			F347
VR18	pot lin	100k		C16		polyester	$15 n$	IC6			F351
VR19	preset	100k		C17		polyester	10 n	1 C 7			741
VR20	pot log	10k		C19		polyester	$15 n$	IC8			4001
VR2 1	pot lin	100k		C20		polyester	10 n	IC9 to IC13			741
VR22	preset	100k		C21		polyester	100 n				(50ff)
VR23	pot lin	1k		C22		polystyrene	680p	IC14			4016
VR24	pot log	10k		C24		polyester	220 n	IC15			F351
VR25	preset	100k		C25		polyester	$100 n$	IC16 to IC19			741
\checkmark R26	pot log	10 k		C26		polyester	$220 n$	10,			(4 off)
VR27	edge pot log	4k7		C29		p.c. elec 10 V	$4 \mu 7$	IC20		LM1	3600
VR28	pot lin	1k		C30		p.c. elec 35 V	$4 \mu 7$	IC2 1		CA	3080
VR29	preset	10k		C31		p.c. elec 10 V	$4 \mu 7$	IC22			4013
VR30	preset	10k		C32		p.c. elec 25 V	$4 \mu 7$	IC23			M380
Switches				C33		polyester	100 n	IC24, IC25		A78MG	GU1C
S1, S3, S4, S6, S8, S9, S12, S13 are p.c.b. mounting slide switches 2 -pole, 3 -position (8 off)				C34		p.c. elec 25 V	470μ	Parts available from Clef			
				C37		p.c. elec 25 V	200 μ				
S4, S5, S7, S10, S11, S16 to S20 are p.c.b. mounting				C39		p.c. elec 25 V	10ر	Products Ltd., 44a Bramhall			
slide switches 2 -pole, 2 -way (11 off)				C41		p.c. elec 25 V	1000μ	Cheshire, SK7 IAH.			

Miscellaneous

Transformer $0-12 \mathrm{~V}, 0-12 \mathrm{~V} 500 \mathrm{~mA}$, solder tag, Microsynth p.c.b. A (main board), Microsynth p.c.b. B (power supply and power amp), 25 note, flat fronted keyboard, Microsynth front panel, Microsynth socket panel, Microsynth cabinet, push-on knobs plus colour coded push in caps to taste, R.S. type (15 off), large edge wheel (at least 31 mm dia). Microsynth keyboard,
p.c.b. gold contact wire $(3 \mathrm{~m})$, mono jack socket open. stereo jack socket open, Din latch socket 5 -pin A, min mains cable to suit, mains cable grommet ($3_{8}^{\prime \prime}$ dia), mains plug with 1A fuse, 2 m of 4 -way ribbon cable, Min screened cable (approx 0.5 m), 6BA bolts $\frac{3}{4}$ in (10 off), 6BA nuts (10 off), 6BA threaded spacers $\frac{1}{2}$ in (6 off), 6BA threaded spacers $\frac{1}{4}$ in (4 off), domed-headed self-tap screws $\frac{1}{2}$ in (4 off), cabinet feet plus self-tapping screws to suit (4 off), strap handie.

SPECIFICATION

Keyboard

vCO1
VCO1 $\quad 10 \mathrm{~Hz}$ to 10 kHz nominal range, hardwired to keyboard. Triangle output to VCA, ramp and squarewave outputs to VCF. Duty cycle of squarewave variable from 50% to 10% either manually or by VCO2/LFO. May be switched off, allowing VCO2 or Noise to be used alone.
VCO2/LFO VCO mode: 10 Hz to 10 kHz nominal range. Frequency may be manually set to any multiple of VCO1 frequency. Accurate tracking over entire range of keyboard. Triangle output to VCA; rising ramp, falling ramp or squarewave to VCF. Squarewave duty cycle manually variable from - 10% through 50% to $+10 \%$. Level control on output.
Ring mod mode: Switch disconnects audio outputs but LFO modulation switches allow frequency modulation of keyboard, VCO1 shape, VCF, VCA.
In either mode, independent modulation allows pitch bending relative to VCO1 by any of sweep, envelope, sample and hold. LFO mode: 0.1 Hz to 30 Hz nominal range, manually variable. Manual level control, triangle, rising ramp, falling ramp and squarewave modulation via output switches to keyboard, VCO1 shape, VCF, VCA. Modulation of LFO frequency by sweep, envelope, sample and hold.
Sub Octaves Two divide-by-two circuits may be used to provide either an octave below VCO1 frequency and an octave below that, or an octave below each of VCO1 and VCO2. switchable. Outputs: squarewave to VCF. Noise White noise source with level control. Output to VCF
2 octave, may be stepped through 5 octave range from 16^{\prime} to 1^{\prime} using the "Range" switch. Debounced contacts. Max drift rate about ten minutes per semitone. "Drift" switch allows selected note to drift up or down once a key is released at about 1 octave per second. "Glide" variable 0 to 5 seconds. Front panel screwdriver adjustment "Tune" allows tuning of the synthesiser relative to other instruments over $\pm \frac{1}{2}$ octave. Modulation by any or all of Sweep, VCO2/LFO, Envelope, Sample and Hold. High note priority.

vCO2/LFO

Envelope

Attack and release times variable 0 to 10 seconds. ADSR switch adds additional percussive attack. Triggered either from keyboard, or LFO as long as a key is depressed. Repeat switch causes the envelope shaper to retrigger itself, with a repeat time equal to the sum of the attack and release times. Sustain operates in three modes: "Manual" means the envelope attacks and remains high as long as a key is depressed (like an organ); "Auto" puts it into single shot mode so that depressing a key produces one attack and release cycle. The envelope is then only retriggered by re-pressing the same key or depressing a higher key; "Hold" produces a continuously audible output about half maximum volume -pressing a key then adds the envelope shape to this constant level bringing the output of the VCA up to maximum. The positive-going envelope is hardwired to VCA; positive and negative envelopes are available via the level control for modulation of any or all of keyboard, VCO2/LFO, VCF.
VCF State variable filter with manual control of roll-off frequency. Outputs: switchable low pass or band pass to VCA. Manual "Q" control adjusts size of resonant peak at roll-off frequency. Min roll-off: 6 dB per octave; max roll-off: 50 dB per octave. Modulation of roll-off frequency by keyboard, envelope, sweep, VCO2/LFO. sample and hold.
VCA Controls output volume of synthesiser. Max attenuation: -60 dB min . Max output level 100 mV into $10 \mathrm{k} \Omega$. via master volume control on rear panel.
Sample and

Hold

Sweep amples instantaneous output voltage from VCO2/LFO each time envelope ends. Output to thumbwheel.
Manual control producing variable positive or negative d.c. control voltage with zero dead band at centre. Output to thumbwheel.
Thumbwheel Manual level control. Modulation depths may be preset using sweep and VCO2/LFO level controls, then introduced manuaily using the thumbwheel. Inputs: sweep. VCO2/LFO or sample and hold. Output to keyboard, VCO2/LFO or VCF.
Power Amp
Sequencer
Socket

Output 2 watt into 8 ohm nominal. Keyboard output voltage 0.35 volts per octave. Trigger output voltage 9 volts positive. Input requirements 0.35 volts per octave to keyboard, 9 volts positive trigger to envelope.
time later. In this way a pulse, shaped by R57, D6, R58, D7, is produced. Closing S7 adds this pulse into the VCA, giving an added percussive attack; and simulating a full ADSR envelope. While this is a bit of a cheat to keep costs down, one finds in practice that if one goes to the trouble of building an ADSR envelope shaper, most of the time it will be used to create precisely this sort of envelope, with only the sustain and release times being altered.

SAMPLE AND HOLD

The remaining f.e.t. op-amp from IC5 (pins 5, 6 and 7) is used to form a separate hold circuit. Each time the envelope shaper completes a cycle, the positive pulse from IC3c (pin 10) passes via D10, C13 and R68, and closes CMOS switch IC4d for a few milliseconds. In this way the selected
waveform from VCO2/LFO is sampled and held on C14, buffered by IC5b.

The output from the Sample and Hold can be fed into the keyboard via the thumbwheel in order to produce "random" or "staircase" changes in VCO pitch depending on the frequency of VCO2/LFO relative to the sampling frequency. That is, a slow waveform from the LFO, sampled fairly quickly, will give a staircase effect. If VCO2/LFO frequency is considerably faster than the sampling time, then the changes in pitch will be apparently random. Alternatively with VCO1 off, and VCO2 running as an LFO, noise being fed into the VCF and the VCF tracking the Keyboard, similar effects can be achieved with filtered noise.
NEXT MONTH: VCOs, VCF, VCA, power amplifier and power supply.

FREE! READERS' ADVERTISEMENT SERVICE

RULES Maximum of 16 words plus address and/or phone no Private advertisers only (trade or business ads. can be placed in ou classified columns). Items related to electronics only. No computer software. PE cannot accept responsibility for the accuracy of ads. or for any transaction arising between readers as a result of a free ad. We reserve the right to refuse advertisements. Each ad. must be accompanied by a cut-out valid "date corner". Ads. will not appear (or be returned) if these rules are broken.

SCMP MICRO, ROM BASIC, $4 K$ RAM, PSU, busboard, video terminal, documentation, misc. Components $£ 150$. Tel: 041-649 0269.
SINCLAIR 2×81 1K RAM under guarantee Immediate delivery $£ 55$. G. T. Ashcroft, 44 Dunton Towers, Stockport SK5 8NR.
POWERTRAN trancendent 2000 synth fully working f150 o.n.o. M. F. Sharp, Spook Corner, Bentsbrook Park, N. Holmwood, Dorking, Surrey. ISOLATING transformer 500 VA input 0-240V output 0-240V RS stock no. 207-469 new only f20. D. Harries, 17 Eccleshall Ave., Oxley, Wolverhampton, Staffs. Tel: 0902780958.
WARTED new or secondhand high resolution graphics for sharp MZ-80K company or private sale. John Cresswell, Haven Pasture, Underton, Morville, Shropshire.
SOLDERING iron and transformer, Weller TCP1, temperature controlled. Unused present. £25 plus postage. Tel: Oxford 0865779855.
WIND generator power supply $12-24$ volts d.c. for remote test equipment, radio. CB, electronic control cheap batteries. I. Simmonds, Pant-YrEsgair, Cellan, Lampeter, Dyfed. Tel: 0570 423031.

FOR SALE fast neutron monitor-ex M.O.D. portable battery operated. Written enquiries only please. 7 Carlyle Road, West Bridsford, Nottingham.
ORIGINAL mains adaptors: 1 for ZX81 £6, 1 for ATOM £7. K. Y. Chang, 70 1-Up, Ashley Street, Glasgow, G3 6HW.
INTERSTATE colour TV game with cartridges £35 or swap for Fidelity 200040 channel CB rig. Brian Gould, 58 Lawson Ave., Stanground, Peterborough. Tel: P'Boro' 65728.
AC30 dual cassette interface, RS232, Remote motor control mains powered, perfect working order. Tel: Sudbury 76785.
STRING ENSEMBLE for sale built and working but not housed-offers please. K. Bhatt. 12 Easton Street, Longsight, Manchester. Tel: $061-$ 2361240 (Works).
LARGE quantity of radio books from computers to valves list. Large s.a.e. All new condition. G. A. Noble, 50 Croft Hill Road, Slough, Berks.
16 K UK101 cased, 9 amp supply, $1-2 \mathrm{MHz}$, 16/32 lines, 300/600 baud, all monitors, colour graphics, software £230. N. Adlam, 26 Kinnell Place, Hamilton, Lanarkshire. Tel: Hamilton 426973.

UK101 8K, Wemon, cased plus creed 50 baud teleprinter and interface plus Sony cassette player E195. K. Houghton, 19 Park Road, Coppull, Chorley, Lancs. Tel: Coppull 791930. PE PW ETI and Misc. over 300 journals. Offers or swap for small B\&W TV. S. Wade. Tel: Droxford 04897357.
PSU ideal for Nascom, etc. $+5 v$ @ $3 A,+12 V$ © 1A, -5V, -12V © 0.5A. £25. Mr. M. Parker, 22 Hutchcomb Road, Botley. Oxford. Tel: 0865 725495 evenings and weekends.
WANTED Sinclair Black watch with matching steel bracelets. Must be in good condition. Mr. G. Gaitens, 32 Evan Barron Road, Hilton, Inverness, Scotland.
WANTED standard 40 mm 23 position $15^{\circ} \mathrm{in}$ dexing rotary mec. with hollow spindle (make a switch type wafer for scope). G. McKenna, 1 Nursery Ave., Prestwick, Ayrshire, Scotland. WANTED printer to use wlth Commodore range and any other Commodore hardware. Mr. Paul Disney, 26 Shaftgate Ave., Shepton Mallet, Somerset, BA4 5YA.
GOLDRING Lenco GL69 record deck, fitted Shure M75ED type two cartridge teak base, smoked cover £20. Mr. G. King. Tel: Ongar 0277 363856.

FIVE octave keyboard complete with D.P. contacts. Master tone generator and divider circuits, suit organ builder $\mathbf{£ 6 0}$ o.n.o. Tel: Maidenhead 35343.

CREED Teletype with p.s.u. and paper. TTL interface and software for Acorn Atom $£ 40$. Tel: Ashford (Middx) 58992.
URGENTLY WANTED ITT 2020 Computer case as advertised Henry Radio. Delivery UK advise price. All letters answered. Anthony Green, Airwork Ltd., PO Box 3986, Ruwi, Sultanate of Oman.
COMPLETE works. Practical Electronics first seven volumes, bound. Offers. Tel: Hemel Hempstead 53628.
CASIO FX502P programmable calculator, FA 1 adaptor, £50. 21 Everyday Electronics mags. 1979, 1980, 1981 £6. Mr. P. Howard. Tel: 078 188423.

2X81 computer and 16 K RAM plus loads of software only 5 months old. £100. Tel: Huddersfield 603285.
HEATHKIT oscilloscope, hardly used. £80 or offers. Much extended Nascom one. Send s.a.e. for further information. Chris Blackmore, 31 Herne Rise, IIminster, Somerset, TA19 OHH.

AN 8085A or 8080A micro-computer teaching system required in complete kits or already built. Harootyun Sh. Habib, Goldsmith Garo, Mustansir Str., Baghdad, Iraq.
BACK numbers electronics television and radio magazines half price or sell the lot. H. Blackburn, 57 Friern Watch Ave., North Finchley, London N12 9NY.
EXIDY sorcerer 48 K BASIC 1.1 dev. pac. Many programs one year old £550. T. Reid, 78 Hazel Ave., Stillorgan, Dublin, Ireland.
AKAI portable 4 -speed 4 -track mono/stereo open reel recorder. Mains/Nicad battery. Offers. Tel: Wokingham 0734782107
UK101 8K-New monitor. Wooden case with perspex sloping front. Only £150 for quick sale. Cash only. R. Oettinger, Ashleigh, Bagshott Road, West End, Woking, Surrey. Tel: Chobham 7535.

ORGAN keyboards-iwo new 61 note E 25 each. Two older similar with springs $£ 10$ each. Wooden. Mr. N. Holmes, 14 Main Street, Long Eaton. Tel: Notts 0607663166.
PE JOANNA abandoned project. Kimber Allan kéyboard. Contacts, most parts. £50. Peter Sexton, 45 Richmond Road, Isleworth, Middx. Tel: 01-568 3423.
HARRIER CBX rig PSU SWR meter dipole $£ 80$ or exchange for $\mathbf{Z X 8 1}$ expanded. G. S. Phelan, 5 Nursery Road, Failsworth, Manchester.
UK101 24K cased E220. Seikosha Printer £175. Very good condition, many other items, sae for list. Dr. P. D. Coker, 23 Darwin Close, Farnborough, Orpington, Kent. Tel: 068958510. CREED type 54 teleprinter £30. Two disco speakers 100 Watt £30 pair. Callers only. Mr. P. Martin, Flat 2E, Adel Grange, Adelaide, Leeds 16.

DATA dynamic 390 ASR teletype, paper tape punch/reader, stand $\mathrm{E95}$. Tel: Slough 0753 42301. (A. Holmes)

ORGAN Console, keyboards, pedal board, switches, swell pedal $£ 100$. Complete organ similar with Leslie speaker £350..K. Sanders, 3 Mordeth St., Gloucester.
GEGMON 32×48 £ 18 , Gegmon $16 \times 48 £ 18$, 32×48 Screen enhancement part built $£ 12$ for UK101. Tel: Somerton 72663 evenings.
HP97 magnetic card programmable printing, calculator. Rechargeable. Civil engineering pack. Cost £ 400 , accept $£ 180$ o.n.o. J. R. Dougall, Levendale, Levenwick, Shetland. Tel: 0950 2287.

Please publish the following small ad. FREE in the next available issue. I am not a dealer in electronics or associated equipment.

Signature
Date..
Please read the RULES then write your advertisement hereone word to each box. Then add your name, address and/or phone no. Maximum of 16 words plus address.
COUPON VALID FOR POSTING BEFORE 11 JUNE, 1982. (One month later for overseas readers.)

SEND TO: PE BAZAAR, PRACTICAL ELECTRONICS, WESTOVER HOUSE, WEST QUAY ROAD, POOLE, DORSET BH15 1JG.

For readers who don't want to damage the issue send a photostat or a copy of the coupon (filled in of course) with a cut-out valid 'date corner

block capitals please

Name \& Address:			

THE PE MPG Meter is an accurate method of measuring the instantaneous fuel consumption of a car. The unit has been designed to employ either:

1) A rev counter as à dual puipose instrument reading MPG or RPM as selected.
2) A custom designed lie.d. bargraph instrument. Both systems can be easily constructed, installed and calibrated; they have been designed to be effective, inexpensive and accurate.

This system is suitable for virtually all vehicles except those with diesel or fuel injected engines which cannot be modified in order to fit a single flow meter.

The theory of an MPG meter is simple: a flow meter measures the fuel flow (GPH), a speed sensor measures the speed (MPH) a suitable circuit divides MPH by GPH-and the answer is miles per gallon; and that is what concerns most motorists who pay for their own petrol.

PRACTICAL DESIGN

The practical application of the theory is rather more complex.

The fuel system of a car can produce severe fluctuations in flow rate which do not bear any relationship to the true fuel consumption at that instant.

The carburettor valve for example, is affected by vibration and movement of the car and can easily shut off the flow completely, regardless of the demand of the engine. At that moment your MPG would be infinitely high. Conversely, the needle valve will frequently open too wide, permitting a higher flow rate than the engine is demanding.

Things are further complicated by the inevitable presence of petrol vapour and/or air in the fuel line. When a bubble of gas reaches the carburettor needle valve, it passes through the orifice much faster than petrol and increases the instantaneous flow rate by a factor of perhaps 20 or more.

Add to these effects, flow pulsations due to the fuel pump (particularly the mechanical type most commonly used), pressure fluctuations, flow reversals , wide temperature and viscosity variations, high ambient temperature, a hostile electrical environment and the extent of the problem becomes apparent:

The flow sensor provided for the PE MPG meter has been specifically developed to cope with such adverse conditions and produce an accurate measurement of the true flow rate.

It is not enough, however, to measure the flow rate accurately; it must be presented to the driver in a readily readable form, so for this purpose any sort of digital readout is useless. Even underr completely steady driving conditions
the reading will fluctuate, and flickering digits cannot really be read while driving a car. Obviously the time constant could be increased to 4,5 or more second's to give a slightly steadle display but this would introduce a totally unacceptable delay between driver action and instrument reaction.

ANALOGUE

The only practical answer is an analogue display. The analogue presentation of both instruments (bargraph or rev counter version) has been chosen specifically so that it will:

1. Enable fuel consumption to be observed at a glance.
2. Show the direction of any change in consumption.
3. Show the rate of change.

There are two basic versions of this design; one of which uses the car's standard rev counter as a switchable RPM/MPG meter, the other, uses a 20 l.e.d, bargraph display with a custom designed housing. This incidentally has a dual scale, reading in miles per litre as well.as MPG.

Two additional options have been incorporated in the design, allowing the constructor to take the speed input from the ignition pulses. This saves the cost of the speed sensor, as well as the time to fit it, but means that the MPG indicated is true only when in top gear. In practice this is not a serious drawback. A speed sensor can of course be fitted at a later date if desired.

CIRCUIT

The basic circuit (Fig. 1) is a quad op. amp. LM 3900. In which the speed input generates a ramp which is reset to zero by every flow pulse. This requires that the speed pulses occur at a higher rate than the flow pulses.

To do this, and make it possible to use ignition pulses as the speed input, or to make use of a readily available speed sensor, a multiplying clrcuit consisting of a 4046 and 4024 has been incorporated. This multiplies the speed pulses by 8 and ensures that a suitable ratio is maintained for accurate operation:

The capacitor C7 sets the height of the ramp and since any variation in its value will directly affect the output, it should be a good quatity polyestef or polystypene component.

The ramp output is fed to TR1 which acts as a peak detector. Capacitor C12 is charged through R19 and discharged through TR2 which is the final output to the bargraph. This arrangement is incorporated so that the final output is differentially controlled, ensuring that the reading drops at a faster rate than it rises. When a rev. counter is used as the

- LINK CONNECTIONS:

REV COUNTER Link A and B (see Table 1 for VR3 and R20 values)

BARGRAPH	Link C and D	VR3 10k lin.
	OMIT	R21 and TR3

"TR3 transistor type depends upon the f.s.d. current of the rev counter. See Table 1 for details.
***If the speed input is to be taken from the ignition coil and not the speed sensor then R15 should be replaced by D4. Note D4 is not required when the speed sensor is used but R15 is.

Fig. 1. Complete circuit diagram of the MPG Meter. Note: VR4 can be any suitable potentiometer mounted in the side of the case for dimming the display.
indicator, a third transistor (TR3) is incorporated to provide the necessary drive. (See Table 1.)

There are many occasions when, with the throttle closed, the car is doing 100 or even 200 MPG.

The instrument will naturally try to indicate this, and charge up the damping capacitors accordingly. When the throttle is then re-opened, there would be some delay while the capacitor discharges.
To minimise this delay, a preset, VR2 is incorporated which is set to limit the circuit output to a little over full scale deflection. This ensures that the meter rapidly adjusts to the correct reading, while at the same time giving the optimum damping of the needle or the bargraph display. Experience has shown that the response rate of this instrument is very much a matter of personal taste, therefore capacitor C12, which mainly decides the damping function, may be changed as desired.

CONSTRUCTION

This is straight forward, but normal care is needed in handling the two CMOS chips, 4024 and 4046.

The main p.c.b. contains all the options which are as follows.

1. Rev counter display (f.s.d. 1 mA to 80 mA). Speed input from ignition pulses.
2. Rev counter display. Speed input from speed sensor.
3. Bargraph display. Speed input from ignition pulses.
4. Bargraph display with speed sensor input.

It is suggested that the voltage regulator and a suitable heatsink are fitted first, followed by the wire links. Fit the two CMOS chips last, apart from the two display units.

These should be connected using 2 to $2 \frac{1}{2}$ inch lengths of thin flexible insulated wire so that the displays may be readily mounted on the stepped pegs moulded on the back of the front moulding. The red filter should be carefully cemented in place taking care not to smear the vital area. Check the displays for alignment with the slot, and secure with a suitable adhesive (instant glue is ideal), or carefully melt over the pegs with a soldering iron.

SETTING UP

1. Each flow sensor is allocated a number when it is calibrated, which is directly related to its K -factor (pulses per galion). It is expressed as a resistance and is the value of Rx which should be built into the circuit. By this means, the circuit is calibrated for the particular flowmeter supplied: As a rough guide, a 4 per cent error in Rx will produce a 1 per cent error in calibration.
2. Set the SPEED/MPG•link to "MPG". Connect a 12 V supply and with no inputs, adjust VR1 so that the rev counter needle or bargraph display moves off zero and floats between zero and approximately full scale.
3. Connect a frequency source (if available) to the speed input. A simple generator as shown in Fig. 4 is quite adequate. Adjust VR3 to give more than f.s.d. then adjust VR2 to bring the needle or bargraph to exactly full scale. Then

move it back so that it limits at about 10 per cent more than full scale. A voltmeter in parallel with the output would enable this to be done, with greater certainty.

CALIBRATION

The final calibration is done in the car WITH THE AID OF AN ASSISTANT.

Set the SPEED/MPG link to "SPEED", and drive the car at a steady 30 to 45 MPH . Your assistant should then adjust VR3 so that the rev-counter (switched of course to MPG) or bargraph display, reads the same speed as the car speedometer. Reset the SPEED/MPG link to "MPG" and the instrument is then calibrated. The circuit can then be finally fitted into its housing (in the case of the bargraph) or tucked away behind the dashboard in a thick polythene bag if the rev. counter is being used.

FITTING THE FLOW SENSOR

The flow sensor is fitted in the fuel pipeline between pump and carburettor and after the fuel filter, with the arrow pointing in the direction of flow. (See Fig. 5.) Ideally the flow

Fig. 4. Frequency generator
sensor should be mounted with the arrow pointing upwards, but if it has to be horizontal, it is preferably fitted with the fuel passage above the detector housing.

The fuel line, which may be metal, plastic or rubber must be cut or parted to insert the flow sensor. In the case of a flexible hose it is simply necessary to slacken the hose clamp and fit the flow sensor with the aid of the flexible pipe and clamps supplied. With a metal pipe it is probably better to remove it from the engine before cutting it in order to avoid any swarf entering the carburettor. If no filter is present, it is

Fig. 5. Flow sensor connections

(160\%
Fig. 6. Tee-piece connections
strongly recommended that a standard type of in-line paper element fuel filter be fitted, immediately ahead of the flow sensor.

If your car has a return flow to the tank from the carburettor this calls for a little modification using the special restricting T-piece supplied.

Fit the T-junction into the fuel line (Fig. 6) between the pump and flowmeter, making sure that the return to the tank is fitted to the leg of the tee, since this contains a restrictor to limit the return flow. Block off the original return outlet from the carburettor.

If a car already has a ' T ' or ' Y ' junction between pump and carburettor, the flow sensor must be fitted between that and the carburettor.

It is essential to check all fuel lines and joints for leaks immediately after the engine is first started and again after a few hours driving.

The possibility of fuel spillage will be lessened if the fuel tank is reasonably empty before the fuel line is disconnected or cut.

PLEASE NOTE: THE FLOW SENSOR CANNOT BE USED WITH FUEL INJECTION OR DIESEL SYSTEMS.

MODIFYING THE STANDARD REV COUNTER

Most rev. counters have movement sensitivity of between 6 mA and 10 mA . f.s.d. Some older instruments however, require about 80 mA and some modern meters may require only 1 to 2 mA .

To cope with such variations, the final adjustment preset, VR3, its series resistor R20, and the transistor TR3 should be selected as follows:

Meter f.s.d.	VR3	R20	TR3
1 mA	2 k 2	470	BC212
2 mA	1 k	220	BC212
10 mA	220	47	BC212
80 mA	100	10	BD132

TABLE 1

Ideally the rev. counter should be removed from the car (after first disconnecting the battery). It should be dismantled with care to gain access to the instrument movement. The two thin leads (usually red and black) connected directly to the meter movement, should be de-soldered from the rev. counter circuit noting their polarity for reconnection later. They should then be carefully joined to a pair of suitably fine flexible leads, the joints insulated, and firmly fixed to some part of the meter casing or movement, to avoid tearing away the delicate wires in subsequent handling.

At this point the meter f,s.d. should be checked. Connect the movement in series with a milliammeter, a $5 k$ or $25 k$

COMPONENTS

Resistors	
R1	4k7
R2, R8, R12, R16	220k (4 off)
R3, R11, R13, R14, R25	100 k (5 off)
R4, R27	2 k 2 (2 off)
R5, R6	1M (2 off)
R7	33k
R9, R15	10k (2 off)
R10	120k
R17, R21, R22	1 k (3 off)
R18, R19	47k (2 off)
R23	20k
R24	680
R26	180
R20	see text and Table 1
Rx	see flow sensor
All resistors $\frac{1}{4} \mathrm{~W}$ 10\% carb	
Capacitors	
C1	$220 \mu 50 \mathrm{~V}$ elect. p.c.b. type
C2	220 n ceramic
C3	470 n ceramic or nylon film
C4. C 8	In ceramic (2 off)
C5	4 n 7 polyester
C6	100n polyester
C7	In polyester
C9	$1.0 \mu 10 \mathrm{~V}$ elect. p.c.b. type
C10	10 n ceramic
C11	$33 \mu 10 \mathrm{~V}$ elect. p.c.b. type
C12	$100 \mu 10 \mathrm{~V}$ elect.
C13	$10 \mu 10 \mathrm{~V}$ elect. p.c.b. type
Potentiometers	
VR1	100k lin. min. preset
VR2	$5 k$ lin. min. preset
VR3	see text and Table 1
VR4	2k2
Transistors and Diodes	
D1 to D5	IN 4001 (5 off)
TR1	BC2 12
TR2	BC171A
*TR3	BC2 12 or B0132
Integrated circuits	
1 C 1	LM3900
1 C 2	4024
1 C 3	4046
1 C 4	78055 V reg.
Bargraph array $\times 1 . \times 2$	NSM 3914 (2 off)
* See Table 1	

Constructor's Note

The case, p.c.b., flow and speed transducers are available from Moray Engineering Ltd., Quayside Road, Bitterne, Southampton. Flow sensor, connecting kit and p.c.b. (f18.82). Speed sensor (£5.38). Housing for baragraph display (f3.75). (State scale req. $0-60$ MPG or 0.80 MPG - rec. for 1500 cc and under.) Total price $£ 26.45$ inc $p \& p$.

The other components are available from Watford Electronics, 33/35, Cardiff Road, Watford, Herts. (0923 40588).
Approx. price £15.00.
pot. and a power supply (a $1 \frac{1}{2}$ volt dry battery will do). Adjust the pot. to give full scale deflection on the rev. counter, and read off the current on the milliammeter. If a suitable potentiometer is not available, use a fixed resistor, say 10 k and calculate the f.s.d. accordingly. E.g. if the rev. counter indicates $\frac{2}{3}$ f.s.d. and the current is 5 mA , then the f.s.d. is 7.5 mA . Please note, this figure is not critical, but merely a guide to the selection of VR3, R20 and TR3.

Now return to the rev. counter circuit and connect two flexible leads to the two output points, noted when meter
movement was disconnected. These wires and the two from the meter movement should be about 12 to 18 inches long. The two from the meter movement are connected to the two centre contacts of a d.p.d.t. switch and the two from the rev. counter circuit to two of the outer contacts. The remaining two contacts are connected (observing correct polarity of course) to the two output points from the p.c.b. labelled ' P ' and ' N ' (positive and negative respectively).

In order to bring the four leads outside the rev. counter housing, it may be necessary to drill a small hole through which they can pass. Great care should be taken to prevent swarf contaminating the meter movement during this operation.

FITTING THE SPEED SENSOR

a) Disconnect the cable from the speedometer and withdraw the inner cable. Select a suitable position for the sensor, which may be just behind the dashboard, or just on the engine side of the bulkhead.
b) Cut through the outer sheath of the cable with a fine tooth hacksaw, at the selected position for the sensor.
c) Make a second cut exactly $\frac{1}{2}$ inch in from one of the ends and discard that piece. Carefully remove any burrs from each cut end of the outer sheath and try to prevent any swarf entering the outer cable.
d) Slide a clamp over the speedo and gearbox ends of the outer cable then fit the end of the speed sensor with the screwheads towards the speedo. If the outer cable is very small in diameter, it should be built up with a few layers of PVC or similar tape. Push the outer cable fully into the speed sensor and lightly tighten the clamp.
e) Feed the inner cable through the centre flexible grip of the speed sensol and when a few inches have passed through, start inserting the inner cable into the gearbox portion of the sheath. Then slide the sensor over the outer sheath and keep feeding the inner cable through until it reaches the gearbox. At this point the inner cable will have to be rotated slightly in either direction to enable it to enter the cable drive housing. This will be obvious when it is no longer free to rotate.
f) Push it fully home and fully tighten the clamp on the lower (gearbox) side of the speed sensor. Now slide the top edge of the sensor about $\frac{1^{\prime \prime}}{16}$ down laway from the speedometer). This should centralise the rotating disc in the centre of the speed sensor. Finally tighten the two clamps fully.

Flow sensor with filter and the speed sensor
g) Before refitting the cable to the speedometer, it is as well to drive, or move the car a short distance to check that the inner cable is rotating freely. Now connect the speed sensor cable to the p.c.b.

SPEED INPUT FROM IGNITION PULSES

Since 90 per cent of the distance travelled by the average motorist is in top gear, the use of ignition pulses as the speed input is not a serious disadvantage.

All that is required is to connect the point marked IGN. on the p.c. board to the contact breaker terminal on the coil. THIS IS SUITABLE FOR NEGATIVE EARTH SYSTEMS ONLY. Although the current carried is negligible, a physically tough grade of cable should be used, to withstand the temperature and possibility of damage against hot metal or sharp edges in the engine compartment.

ASTETIMETS Quick, neat and easy!

It's so easy and tidy with the Easibind binder to file your copies away. Each binder is designed to hold 12 issues and is attractively bound and blocked with the PRACTICAL ELECTRONICS logo. Price U.K. $£ 4.60$ including postage, packing and V.A.T. Overseas orders add $25 p$.
Please allow $3 / 4$ weeks for fulfilment of order. Why not place your order now? Send the completed coupon below with remittance payable to:-I.P.C. Magazines Ltd., Post Sales Dept., Lavington House, 25 Lavington Street, London SE1 OPF.

Order Form practical electronics

@ய|(1)|(T) TET StI

Frequency meter, peak and r.m.s. voltmeter, sine and square wave generator and a monitor amplifier all neatly housed in one unit. Designed specifically for testing and setting up a wide range of audio equipment this accurate, easily constructed instrument should meet many needs.

Two designs to assist with the automation of model railway layouts.
INSTRUMENT TUNER
Covering five octaves this device will produce any desired note for tuning comparison. It's simple to build and accurate.
Plus ... ACTIVE SPEAKER SYSTEM

PRACTICAL

JULY ISSUE ON SALE FRIDAY, JUNE 11 th

R.A.Penfold

A^{u}UTOMATIC flashguns are more convenient than-manual types for most types of photography, and this has made them deservedly popular. They have a built-in light sensor which measures the light coming back off the subject, and when the correct amount of light for the film speed/aperture combinations indicated on the exposure calculator has been received the flash is terminated.

One weakness of this system is that results can be a little unpredictable if more than one flashgun is used, which makes the use of automatic flash rather pointless. The problem is simply due to the fact that the sensors on the guns will respond to the light from both guns, rather than each sensor only responding to light from its own gun. In an extreme case with one flash mounted on each side of the camera and the two guns roughly aimed towards each other, it is possible that the sensor on one gun will directly receive light from the other gun. This results in the flashgun giving its minimum flash duration and consequently probably having no significant effect whatever.

As the use of a single flashgun is apt to produce rather harsh shadows and is considerably less than ideal for many types of photography it was decided to investigate the possibility of dual automatic flash using a system which would prevent any interaction between the exposure control systems of the two flashguns. The obvious way of achieving this is to have the flashguns triggered at different times so that there is no overlap of the two light pulses, and a simple way of doing this is to fire one flashgun from the camera and the other from a flash slave unit that triggers as the light from the main flashgun decays. A normal flash slave triggers at the beginning of the light pulse from the main flashgun, and the two flashes therefore largely overlap as a flash slave operates very rapidly.

In practice a flash slave which triggers as the light pulse from the main flashgun ceases seems to give perfect
reliability and no interaction whatever between the exposure control systems of the two guns. The simple flash slave unit described here can be used in this mode, or it can be used as a conventional slave unit. It has good sensitivity and is not easily saturated by high ambient light levels.

THE CIRCUIT

In Fig. 1 S 1 is the mode switch and it has three positions: "Off", "Auto", and "Normal". In the "Off" position of S1 power is removed from the circuit by S1d. In the "Auto" position S1 a to S1c effectively connect photo-transistor TR 1 in the common emitter mode with R1 as its collector load and C2 taking the output from TR1's collector. The base terminal of TR1 is left unconnected, and it is the change in collector to emitter impedance caused by changes in the light level received by TR1 that are of importance here. The higher the light level, the lower the collector to emitter impedance of TR1.

The output of TR1 goes negative at the beginning of the light pulse, producing a positive going output from TR2 which is used as a simple common emitter amplifier. TR3 is also used as a common emitter amplifier and this drives the gate of CSR1 via current limiting-resistor R8. TR3 is normally biased below the threshold of conduction by R6 and R7 so that CSR1 is not triggered, and the positive pulse from TR2 via C3 simply reduces the bias on TR3.

As the light pulse decays, TR1 produces a positive going output which undergoes a phase inversion through TR2 to give a negative signal to the base of TR3. This switches on TR3 which in turn triggers CSR1 and fires the flashgun.

With S1 switched to the "Normal" mode TR1 is effectively connected as an emitter follower with R2 as its emitter load. It therefore produces a positive output pulse on the rising edge of the light pulse, giving a negative pulse from TR2 so that TR3 is switched on and the flashgun is fired by CSR1.

The current consumption of the circuit is only a little in excess of 1 ma . and a PP3 size 9 volt battery is an adequate power source.

Fig. 1. Circuit of slave

CONSTRUCTION

A suitable case for this project is a plastic box having an aluminium front panel and outside dimensions of $85 \times 56 \times$ 35 mm . Here the printed circuit board slots into guide rails moulded into the case.

The component layout and copper track for the printed circuit board are shown in Fig. 2. The completed board is fitted vertically in the case using the second set of guide rails from the left. The component side of the board faces towards the left of the unit, and a hole is drilled in the side of
the case adjacent to TR1 so that light can pass through. This can be fitted with a grommet to give a neater finish.

Fig. 2(a). P.c.b. etching detail

Fig. 2(b) Assembly details
The leads to S1 cannot be taken from the component side of the board and over or under the board as there is insufficient space and it would not be possible to fit the front panel in place properly. The same is true of the negative battery lead and the flash lead. Pins should therefore be used at the appropriate points on the printed circuit board so that the off-board components can be easily connected to the underside of the board.

S1 is mounted at the centre of the front panel and Fig. 3 shows the wiring to this component. It is possible to obtain flash sockets from some photographic accessory stockists, but flash extension leads are more readily available and can easily be used to make the connection to the flashgun. Cut off the unwanted plug, thread the lead through a hole drilled in the top of the case, and connect the lead to the printed circuit board with the correct polarity. A multimeter to a high d.c. voltage range (250 volts f.s.d. or more) can be used to check the polarity of the lead, or the correct method of connection can be found empirically.

IN USE

The BPY62 transistor has a built-in lens which makes the unit quite directional. Normally when the unit is used indoors this will not be of any significance, and it should operate reliably when aimed in any direction. When used out-ofdoors there are no walls and ceiling to reflect light from the primary flashgun top TR1 and the aim of the unit becomes more critical. Reliable operation should be obtained with the unit aimed at either the main flashgun or the subject, and a range of about 10 metres or more should be possible even using light reflected from the subject. However, the exact range obtained obviously depends on the power of the primary flashgun and the reflectivity of the subject. If possible it is always advisable to do a test firing to ascertain that the flash is triggering properly.

A simple way of giving the "Auto" mode a quick check is to first set up the secondary flashgun so that almost the full flash duration is produced and the gun takes a few seconds to recycle if triggered manually. The same result should be obtained if the flashgun is triggered by way of the flash slave in the auto mode with the main flashgun aimed at the light

Fig. 3. Wiring details of S1, the panel mounted switch, to the board shown in Fig. 2
sensor of the secondary gun. Switching the flash slave to the "Manual" mode will almost certainly result in the secondary flashgun producing a very brief flash and recycling almost immediately if it is triggered in this way.

If the sensor of the flash slave receives very strong light from the gun it controls it is possible that multiple triggering of the flash will occur. This can only occur with flashguns which have thyristor power saving circuitry, and is unlikely to happen in a practical setup. The flashgun will only fire once while the camera's shutter is open, and so this is of no practical importance anyway.

When photographing a fast moving subject it is possible that the use of the unit in the "Auto" mode might give less stiarp results than using simultaneous triggering of the flashguns, although this could only make a marginal difference and it is not something that will not normally be of any consequence. When using powerful flashguns that have a long maximum flash duration it should be borne in mind that using the slave unit in the "auto" mode effectively doubles the flash duration, and may reduce the fastest shutter speed that can be used, but this is not something that applies to normal amateur flash and camera equipment. It only applies to professional flash equipment and cameras having leaf shutters.

COMPONENTS . . .

Resistors
R1-2
R3
R4
R5
R6
R7

Capacitors

$\mathrm{C1}$	100 n polyester
$\mathrm{C} 2-3$	220 n polyester

Semiconductors

TR1	BPY62/111 (Electrovalue)
TR2	BC109
TR3	BC161
CSR1	TAG1/600 (M.E.S.)

Miscellaneous

B1 PP3 9V; S1 3 way 4 pole rotary; SK 1 Flash socket or extension lead (see text); PP3 connector; Printed circuit board; Case $85 \times 56 \times 35 \mathrm{~mm}$ (Maplin-type M4003): Control knob; Wire, solder, pins, etc.

The MICRO PROFESSOR solvesthe'mystery' ofmicro-processors.

Micro-Professor is a low-cost Z80A based microcomputer which provides you with an interesting and inexpensive way to understand the world of microprocessors. Micro-Professor is a microprocessor learning tool for students, hobbyists and engineers. It is also an ideal educational tool for teaching in schools and universities.
The main object of Micro-Professor is for the user to understand the software and hardware of a microcomputer easily and conveniently. Besides the complete hardware/software system you have the users experimental manual. It includes self-learning text with 20 experiments which range from simple, software

MICRO-PROFESSOR is a trade mark of Multitech Industrial Corporation.
Z80 is a trade mark of Zilog Inc.

Use the unique

Micro-Computer to truly understand the inside workings of microprocessors. or simply use as a Z80A evaluation system.

Filght Electronics Ltd.
programming to designing a complex electronic cost development tool - Process controller game. Completed programes can be stored and - Electronic music box \bullet Timer \bullet Noise generator re-read via the cassette interface. 2 K bytes of - Home appliance control - Burglar alarm monitor source program with documentation is - System control simulation also provided in the manual.
Micro-Professor provides a wide range of other applications: Low cost prototyping tool \bullet Low

Tester
... and much more!

TECHNICAL SPECIFICATION

CPU Z80A CPU high performance microprocessor with 158 instructions.

SOFTWARE COMPATIBILITY Capable of executing Z80/8080/8085 machine language program.
RAM 2 K bytes expandable to 4 K bytes.
ROM 2K bytes of sophisticated monitor expandable to 8 K bytes. INPUT/OUTPUT 24 system I/O lines.
DISPLAY 6 digit $0.5^{\prime \prime}$ red LED display.
AUDIO CASSETTE INTERFACE 165 bit per second average rate for data transfer between memory and cassette tape.
EXTENSION CONNECTORS Provides all buses of CPU, channel signals of CTC and I/O port bus of PIO for user's expansion.
COUNTER TIMER CIRCUITS Socket is provided. Z80-CTC IC extra.
PARÁLLEL I/O CIRCUITS Socket is provided. Z80-P10 IC extra.
SPEAKER AND SPEAKER DRIVER CIRCUITS A $2.25^{\prime \prime}$ - diameter speaker is provided for user's applications.
USER'S AND EXPERIMENT MANUAL Complete self-learning text with expermments and applications.
OPTIONS (Prices on application) Z80-CTC. EPROM programmer board. Prototyping Board. 280-PIO. Speech synthesiser board. Audio Cassette. 2K Ram.
KEYBOARD 36 keys including 19 function keys, 16 hex-digit keys and 1 user defined key.

A $9 \mathrm{~V}, 0.5 \mathrm{~A}$ adaptor and 350 page manual is provided. Formal orders requiring

Acc \& 30 days credit.

Confidence

In the few weeks since the budget it has become clear that industrial morale has improved. Not that the event itself induced unduly high spirits. There was the ritual procession of supplicants before the budget, each holding his begging bowl. The CBI, the TUC, charities, various pressure groups, plus possible, but largely unrealistic, alternative economic strategies submitted for consideration by the opposition parties.

Predictably nobody got what they asked for but the bias, however modest, in favour of industry managed to inspire confidence that the worst was over provided there was no rocking of the industrial boat. Unhappily there is little that can be done to counter external storms, the unforseen upheavals such as OPEC quadrupling the price of oil which started the world recession, or the revolution in Iran which lost industry some very large contracts. More recently who would have imagined an oil glut so large as to force prices down, or that gold would be half the price it was only a year ago? Or that Poland and Romania would be bankrupt, threatening default on payment of interest due?

The Chancellor has remained prudently cautious. The 'dash for growth', an exercise once favoured as a vote winner near election time, is now discredited. Short-term gain, experience tells us, results in longterm loss. Slower but consistent growth is more sensible and as long as we can further improve our competitive position in world trade and minimise self-inflicted wounds at home there is every reason for hope, if not certainly, that the way forward is up.

DBS

The TV industry seems to need periodical shots-in-the-arm to maintain momentum. In the past the big boom events were the expansion of London and Birminghambased transmission into a nationwide network, the switch from 405 to 625 lines, the introduction of colour and, on the
programme side, ITV and increases in programme channels.

The next, and welcome, shot is DBS (Direct Broadcasting by Satellite) and the go-ahead for a British system is good news for both the consumer and capital goods sectors of the industry. The latter will benefit first because the space component will need to be in orbit before the consumer can receive anything.

As the Home Secretary was announcing his approval of DBS, industry also stated that a consortium was being planned for engineering and operating the system. Members are British Aerospace, GECMarconi and British Telecom.

Marconi's Satellite Division has been enjoying a flurry of activity. It is their communications package which is flying on the Marecs A satellite platform (built by British Aerospace) over the Atlantic Ocean providing ship-to-shore communications for the International Maritime Satellite Organisation (INMARSAT). A similar Marconi package has gone into Marecs B which, as we go to press, should be taking up an orbital station over the Pacific Ocean.

In addition Marconi has just won the contract for the business communications package on the European Space Agency's L-SAT programme and to give some idea of the magnitude of business in space technology this contract alone could ultimately be worth $£ 20$ million. And now Marconi is to be aboard DBS. As a result the company is urgently planning to double the staff in Satellite Division over the next two years.

At ground level the individual receivers will each need small dish aerials, frequency converters, decoders, all generating new business. An alternative is a group receiving station serving, for example, a housing estate with signal distribution by cable. Existing TV cable companies will naturally be in on the act with Rediffusion as one of the leaders likely to benefit. In fact the 'wired city' is one step nearer and the Government, by encouraging such new developments, is helping to keep Britain in the front rank of space-age electronics.

Mēantime earth-bound business continues. Companies like Crow of Reading Ltd are quietly toiling away supplying professional broadcast-equipment. They recently supplied the switching system for Kenextel, the Kenya earth station which is Africa's major gateway into the Intelsat network. This contract was worth £750,000 and Crow have just had a followon order from Kenya worth $£ 100,000$ for TV equipment to be used in the Kenya Education Media Service. Recent Marconi orders included E 2 million worth of TV transmitters to be installed in Ondo State, Southern Nigeria.

Anniversaries

Now that the electronics industry has reached maturity we can expect a spate of anniversary celebrations. Sixty years of regular broadcasting is one example. It was in 1922 thaț Captain P. P. Eckersley of Marconi started his weekly half-hour programmes from the company experimental station at Writtle, Essex. Eckersley
wrote, produced, presented and performed in the programmes and later became the first chief engineer of the BBC.

Fifty years ago a component company was set up in a disused chicken run. Its then young proprietor called it Advance Components. During the war the company started making instruments and after the war changed its name to Advance Electronics and became a publicly quoted company. In 1974 it was acquired by the US company Gould Inc and is now known as Gould Instruments Division. Many of the Advance old-timers are still with the company and you can bet they continue to think of it by that name. Old habits die hard.

Change, however, is endemic in the industry. Here from memory are some radio receiver brand names famous 30 or 40 years ago. Alba, Bush, Columbia, Cossor, Decca, Dynatron, Ekco, Ferguson, HMV, Marconiphone, Mullard, Murphy, Philco, Philips, Pilot, Pye, RGD, Roberts, Sobell, Zenith. Most are long since dead. Of the survivors only one or two are still with the original owners.

Robots

I read that at the Massachusetts Institute of Technology 1982 is the Year of the Robot and where a new concentration of top brains, both academic and industrial, is expected to provide the impetus for a quantum jump in the technology.

And from a Tokyo source I read that the Japanese are having second thoughts on steel-collar workers. Once welcomed for the relief they gave from dangerous, dirty or boring repetitive work, they have now become so sophisticated that they are a threat to skilled workers, now fearful for the safety of their jobs. Japan is said to employ 100,000 robots with a robot population explosion adding some 24,000 a year. No wonder the Japanese unions are getting edgy (robots don't pay union dues) and the government is apprehensive that for the first time they may have to face an unemployment problem.

CADMAT

The Department of Industry has launched a $£ 9$ million support programme to promote the use of CADMAT (Computer Aided Design Manufacture And Test) in the electronics industry. This programme is additional to the CADCAM (Computer Aided Design-Computer Aided Manufacture) programme which is for mechanical design in engineering. Electronics CADMAT is to be promoted through the IEE and the Electronic Engineering Association (EEA) the latter dealing directly with industry.

Awareness programmes, seminars, courses and demonstrations are being organised to get the techniques and their advantages more widely known. The advanced technology companies are already using CADMAT. Smiths Industries, for example, who have just won the first production contract (worth $£ 800,000$) for the supply of head-up display units for the U.S. Marine Corps AV-8B Harrier jump-jets.

CADMAT is claimed to increase designer productivity by a factor of five and to reduce design time by up to 50 per cent.

Readout...

At long last, Bazaar

Sir-With reference to your new feature 'BAZAAR', this fills a long felt want, for me at least. At 74. with an interest in things electronic going back nearly 60 years, you can imagine I have accumulated a large quantity of components. books. etc., which I hesitate to put into the dustbin.
One of the fascinations of the hobby islike Meccano-being able to dismantle and rebuild with the same basic components in a different arrangement. When it came to disposing of old magazines. I spent several days sorting out the ones I may need for reference. You will be pleased to know. I'm sure. that the pile of 'Practical Electronics" in this category was so large in comparison to the throwaways that I decided to keep the lot.

Regarding the coupon provided for the Bazaar feature. I think you should try to print this on a page backed by non-technical material. We don't all have access to a photocopier: especially those of us who have now retired from our previous occupations. For example. I have no immediate interest in your series on Robots. but you never know, in the future I could have.

Anyway, thank you for a most interesting and useful magazine which has given much pleasure over the years. and not a little frustra-
tion when something didn't work first timeusually my own fault!
A. D. Jones, Ross-on-Wye.

Thanks for your letter, we don't need a photostat of the Bazaar coupon-just copy out the essential bits on a sheet of paper and send it in with a cut off corner. Perhaps a PE Robot could save your legs when you get older?-Ed.

Better than BR

Sir-In PE April 1982 in the Industry Notebook, it is stated that "one single-track line in the north of Scotland" is the only part of the system to have a radio link on moving trains in the UK

I was on the first train going north from Dublin after the January 1982 snowstorm had closed road and rail traffic down for two days. Not only did Northern Ireland Railways hold two trains for several hours so that passengers going north and west from Belfast could make their connections. but the conductors on these trains used their train-to-station radios to ensure that taxis were waiting at every station for those passengers who required them, even though it was between one and two a.m.

Perhaps we do enjoy the best combination
of technology and courtesy in our railway and this is in a much maligned part of the UK.

However, having enjoyed in the USA many years of itemised phone-bills and unlimited local calls for $\$ 7.80$ per month, I can find nothing to recommend BT or System X-if it ever arrives!
G. T. Best.

Portstewart, Co. Londonderry.

Keeping Stocks

Sir-In response to Dr. N. J. D. Jacobs' letter in which he expressed his frustration at not being able to obtain certain devices described in "Semiconductor Update", I would like to offer some help to him and other readers in the same situation.
The AD7581 8 channel A to D chip which he quoted as an example, along with many other relatively new I.C.s. is available from many hobby shops who buy from large distributors who themselves buy direct from the I.C. manufacturers.

Farnell Components, for example, have stocked the AD7581 since Autumn 1981 and they deal with many electronics hobby shops in addition to selling to industry.

It may of course be that Dr. Jacobs' local hobby shop was not aware of this source of supply. although the manufacturer should be able to assist the shop with this information, in which case a different or larger shop could have helped.

R. C. Muriel.

Analog Devices Ltd.

UK101 cased, programmable sound generator, 3D/A converters $£ 200$. Transcendent 2000 synthesizer, computer interface, excellent condition £180. D. Mortimore, Edgware. Tel: Middx 019584885.

I WANT any $\mathrm{ZX81}$ hardware (circuit diagrams) especially I/O port sound boards, etc. I may send payment if poss. Andres Howley, 16 Chesham Ave., Castleton, Rochdale, Lancs.
WANTED ultrasonic transducer 25 kHz or 40 kHz , digital frequency meter also books on ultrasonics. Mr. A. Bouskill, 129 Lyminster Road, Sheffield, S. Yorks. Tel: 0742311191 after 4 pm.
PRINTER and keyboard, Creed 7B, paper, new motor, partially completed interface and software for UK 101 £25 o.n.o. Chris Swift, Crowthorne. Tel: 0344677426.
ZX81 16K RAM (Sinclair built) manual power supply, etc, and five books, £105. Kevin Davies, 14 Twickenham Gdns, Greenford, Middx. Tel: 01-902 2166 after 4 pm.
OSCILLOSCOPE wanted, broken condition type telequipment dual trace. State bottom price (DS2). Mr. David Neely, 19 Clanbrassil Drive, Portadown, Co. Armagh, N. Ireland.
AKAI stereo receiver AA-8080 35W+ 35W r.m.s. price £35. Tel: 01-573 8921.

EROS electric guitar, immaculate, black with accessories including strap lead tutor book $£ 70$. Tel: 039545679.
3BP1 CRT (Unused) plus base and mu metal screen. Also assorted components $£ 15$ to clear. A. C. Fieldsend, 61 Troydale Lane, Pudsey, Leeds.

ELECTRIC organ, Baldwin single manual, mike, head.ph., 13 note rhythm 37 note solo vibrato drums full orchestra E250. Mr. C. Mason, 225 Pype Hayes Road, Erdington, Birmingham 824 OLP.
SELMER 60 note keyboard in heavy teak case with legs, No electronics. £12 plus carriage. Tel: Brighton 0273737076.
BARGAIN stirling sound the Mark II crosshatch generator. Used several times. Offers invited. Mr. L. Kozlowski, 38 Mareland Ave., Hereford. Tel: 04324553.

WANTED secondhand VHS video recorder, preferably Ferguson 3292. Should be in good working condition. Joseph Echefy, 52 Sandyvale Lawn, Headford Road, Salway. Rep. of Ireland.
UK101 $24 K$ RAM, 32×48 screen, cased, joystick, cegmon, Wemon monitors, software including invaders, startrek, etc. $£ 170$. David Rose, 104 Longfellow Road, Straits, Dudley. West Midlands. Tel: Sedgley 74804.
WANTED AVO type EM272. Tel: 01-451 3093.

PRACTICAL Electronics March 66 April 73. Practical Wireless November 65-April 73 and December 76 -September 78 £20. Buyer collects 190 issues. D. P. Quinn, 37 Sandford Green, Banbury, Oxon. Tel: 029553813.
PE microprocessor evaluation system as described in May $1979 £ 30$. With port I/O. Tel: Bolton 382796.
EXCHANGE my set of 20 encyclopedias for a functional suitable computer system. Mr. A. Jenkins, 55 Ash Grove, Craigshill, Livingston, W. Lothian.
ET-3200 Heathkit digital design experimentor; EE-3201 Ring Binders on Digital Techniques; suit electronics student £ 75 o.n.o. Mr. H. Pye, 3 Thornfield Crescent, Worsley, Manchester M28 6RF.
$0.2^{\prime \prime}$ I.e.d. green $11 p$ each. Mr. C. Lau, 10 Peebles Close, Lindley. Huddersfield.
SWAP Acorn Atom 12K RAM 8K BASIC books and software for good class 3 head cassette deck. Stephen Sparkes, 4 Fanshawe Ave., Barking, Essex.
FOR sale, MES 53 organ with MES 55 auto rhythm 49 note keyboards, any offers. J. M. Robbins, 73 Berwick Road, Rainham, Essex. Tel: Rainham 55259.
30, MULLARD ZM1171 nixie tubes, brand new. Very short pins (pluggable), $£ 7.50$ the lot Mr. R. M. King, Malgre' Tout, Ruette des Corneilles, Cobo, Guernsey, C.I.
18 W soldering iron £5. For Compukit-PE 1/O board £22. Sound Board £10. Tel: 0742 745027.

24GHz rank precision slotted line SWR meter including dial gauge, boxed instruction, £92 Wanted. Tel: Eddystone 880.
ITT 2020 48K, palsoft, colour paddes manuals $£ 350$. Two apple disk drives, with controller £180 each. G. Mason, 67 Feeches Road. Prittlewell, Southend-on-Sea, Essex.
TINS transistors, resistors, capacitors, plugs, sockets, portable aerials, bank switches, many grommets, $£ 35$. Will separate. J. Williams, .5 Fern Road, St. Leonards, E. Sussex.
VIDEO tapes Umatic type, VCA60 new. Three for £21. Tel: Fleet 0251428895.
UNWANTED stereo cassette module GM electronics new. Unused for $\mathbf{E 9} 32$ Common Approach, Benfleet, Essex
HAVE 23 obsolete radio valves 1930s. Used bu? workers. $£ 10$ the lot. H. Lawrence, Greenacre Somersham, Nr. Ipswich, Suffolk.
PHILIPS stereo generator PM6456. Separate L and R signals carrier frequency $100 \mathrm{MHz} \pm 1 \%$ RF $\mathrm{o} / \mathrm{p} 3 \mathrm{mV}$ pk-pk little used, bargain at $£ 200$. Mr. E. O. Rice, 68 Vernon Drive, Stanmore, Middx.

THIS is an introduction to sound synthesis and synthesisers for beginners and presents the basics necessary to quickly understand and use synthesisers.

THE CASE FOR AND AGAINST SYNTHESISERS

In the two creative areas of synthesis, namely music and sound effects, synthesisers are often used to provide imitations of things not readily to hand. For example if you require a tape of a "seascape", live in Birmingham, don't have the right BBC sound effects record and are in a hurry, then it is very easy to knock up quite convincing surf and seagull sounds on a synthesiser. Other examples that come to mind are aeroplanes, motorbikes, horns, sirens, bells, dawn choruses, crickets and various other animals, wind, rain, running water, explosions, etc. On the other hand, while it is quite possible to synthesise the sound of two dustbin lids being banged together, unless you are a synthesiser freak with lots of equipment, the time involved and complexity of the task may make it a rather pointless exercise especially when it is easier, cheaper and probably more fun to get two dustbin lids and simply bang them together!

On the musical front, synthesisers can frequently produce close copies of conventional instruments, and it is this latter facility that polarises peoples attitudes to them quite markedly. There are those, generally non-musicians, who think it marvellous to play a keyboard and have it sound like a clarinet rather than sweat for several years over a real clarinet. Then there are those, generally musicians, who feel that synthesisers shouldn't be allowed, because they can become a ticket for persons lacking any real ability to cheat their way into the domain of real musicians. Arguments rage interminably but I do not wish to dwell overmuch on this, except to say that as with any creative activity the question should not concern whether synthesisers are being used, but rather how they are used.

Even accomplished musicians are often grateful for the imitative capacity of synthesisers when they wish to add a particular instrument's sound to a piece of music, but have neither the instrument to hand or anyone to play it. For example, have you tried getting your hands on a fairground engine? In live work, many bands use synthsisers to provide a wide variety of voices where it would be impractical to actually use all the appropriate instruments.

This aside, the real potential of synthsisers lies not in their capacity to sound like conventional instruments, but in creating unique voices that cannot be achieved by conventional means, which can then be used to complement the more traditional instruments. Many fine examples of this have been produced in recent years.

MONOPHONIC KEYBOARDS

Before we get down to the nitty-gritty, one popular misconception about synthesisers must be cleared up. This is that just because they tend to have keyboards and look like pianos or organs, they should be expected to operate like pianos or organs in that more than one note may be played at a time. They do not. Most synthesisers costing up to several hundred pounds are monophonic, that is only one key may be pressed at a time. In this respect they are more akin to wind instruments, and the keyboard is there merely as a convenience to operating them. In general if more than one key is pressed then either the highest, or the most recent, note selected will sound.

FROM MECHANICS TO ELECTRONICS

All sounds are of course vibrations carried in the air, and all vibrations originate in an oscillator of some sort. In conventional instruments, the oscillators are vibrating strings, reeds or diaphragms which are variously excited by bowing, plucking, hitting or having air blown over them. The vibrations are amplified and transferred to the air by the body of the instrument, witness old fashioned needle and horn gramophones. In this respect the instrument body acts as a mechanical transformer, converting the small, high energy vibrations of the oscillator into large, low energy vibrations of the surrounding air. The size, shape and mechanical properties of the body of the instrument also has a dramatic effect on the character of the sound. Metal or wooden tubes or boxes act as mechanical filters, removing certain harmonics and emphasising others. The way in which the oscillator is excited (blowing, hitting, plucking, bowing, etc.) also determines the sound character. These processes are all entirely. mechanical.

In the middle ground we have the electric instruments, most notably the electric guitar. Here although the oscillators are still vibrating strings, very little mechanical sound is produced, the vibrations being detected by coils, amplified electronically and reproduced through loudspeakers. The analogy here is that of a modern record player, which electronically amplifies the vibrations of a stylus, but the sound originates in the record grooves and not in the electronics. Having said that, just as a record player has tone controls, the electronics used to amplify electric guitars generally permits the character of the sound to be changed. Often a whole array of electronics is employed to change the sound quality dramatically, the best known being the use of an overdrive or fuzz unit to generate new harmonics, followed by various electronic filters to modify the resulting harmonic spectrum, such as waa-waa
pedals, flangers, and the like. Here we are getting into the realms of sound synthesisers: since the body of the instrument is solid to avoid damping the vibrations of the strings (that is, to give good sustain) and so contributes virtually nothing to the sound character, most of what is heard is arguably due to the electronics. The strings remain as a means of selecting groups of notes, bending the pitch, introducing vibrato, and so on. Whether the strings are plucked or bowed (as in electric violins) still affects the sound character.

Purely electronic instruments go the whole way and replace the mechanical oscillators as well. The oscillators are now electronic circuits generating fluctuating (a.c.) voltages. The resulting waveforms may be similar, but unlike their mechanical counterparts they oscillate continuously as long as the power is switched on.

VOLTAGE CONTROLLED OSCILLATORS

The oscillators used in synthesisers generate five basic waveforms (Fig. 1 a-e) at a frequency (pitch) set by the d.c. voltage applied to their voltage control inputs. With mechanical oscillators, the waveform is a picture or graph of how the string or diaphragm moves with respect to time, while the waveform from electronic oscillators is a picture of how the output voltage changes with time, and the shape is inherent in the design of the circuit. These pictures are all very well, but what do they sound like? The first one, the sinusoid, is a pure tone, that is, only one frequency is present and no harmonics. It sounds very bland or flat, and is also rather irritating to listen to on its own. The other waveforms all sound different (and more interesting) but to understand why we must digress and examine what we mean by the harmonic structure of a sound.

HARMONIC SPECTRA

Imagine that we have the sine wave of Fig. 1a, and we add another, smaller sine wave to it at three times the frequency (Fig. 2a). Quite a different waveform is produced. Now let us add another sine wave, smaller still, to the resulting waveform at five times the frequency of the first sine wave

(b)

(c)

תחת

Fig. 1 Showing the five oscillator waveforms
(a) Sine
(b) Triangle
(c) Ramp
(d) Square
(e) Pulse
(Fig 2b). Already the resultant waveform is beginning to look more like the square wave of Fig. 1d. In fact this process need only be continued a little further to produce a very good square wave.

Fig. 2 Showing how the progressive compounding of the constituent sine waves go to make a square wave
(a) Sine wave with a reduced amplitude component at three times fundamental
(b) Sine wave with a reduced amplitude component at five times fundamental

(b)

Now then, if adding lots of pure tones together in this manner can create a square wave, then it follows that a square wave sounds like a mixture of pure tones. In fact it consists of a pure tone called the fundamental which is at the same frequency as the square wave, plus another one third as big at three times this frequency, another pure tone one fifth the size of the fundamental at five times the frequency and so on. This can be represented graphically as in Fig. 3, where each sine wave is represented by a vertical line. The hortizontal position of each line denotes its frequency while the heights denote the relative contributions to the overall sound. A diagram of this sort is called a frequency spectrum, and gives a visual representation of what a particular waveform sounds like. Now we can go back and look at our oscillator waveforms. Fig. 4a-e shows the waveforms and their spectra.

The sine wave as we have said, sounds pure (because it is) and bland. The square wave contains odd harmonics which are odd whole-number multiples of the fundamental frequency, and has a rich, fruity sound. The triangle also contains odd harmonics but a much smaller proportion so it sounds more like a pure sine wave, but warmer. The ramp, or sawtooth, contains both odd and even harmonics and so is an even richer sound than the square wave, but one that is harsh and rasping. The rectangular waveform has a greater proportion of higher frequency harmonics. It is also a rasping sort of sound but rather thinner than that of the sawtooth.

Now we can compare these with some typical spectra of conventional instruments, whose sound we are familiar with (Fig. 5a-c). Notice that the waveforms give little clue as to the character of the sound, but analysis of their frequency spectra reveals the harmonic structure which underlies these widely differing sounds. Bear in mind that these are spectra of continuous tones--the harmonic content also changes with volume and the way instruments are played generally.

Frequency analysis of time dependent waveforms is a fairly advanced branch of mathematics known as Fourier
analysis. Simple oscillator waveforms such as those of Fig. 4 are easy enough to analyse if you have studied mathematics to university degree level but sorting out more complex waveforms requires sophisticated computer programs. But don't worry, no one has to know the first thing about mathematics in order to use synthesisers! The reason is that your ears and brain perform Fourier analysis for you every time you listen to a given sound. Not mathematically, but by sensing the relative volumes in many different frequency ranges. It should be no surprise that this sort of spectrum analysis can also be carried out electronically.

Next we must look at how the spectra from our electronic oscillators can be modified so as to change the character of the sounds they create, but before we move on there is one other important source of sound used in synthesis, and this is called "white noise".

Just as white light can be split into all the colours of the rainbow using a prism, white noise consists of a mixture of equal sized sine waves of every conceivable frequency. It sounds like a high pressure jet of steam, or blast of wind, or tumultuous applause (minus the cheering). White noise is the one case where the time dependent waveform looks like the frequency spectrum and vice versa (Fig. 6).

VOLTAGE CONTROLLED FILTERS

A filter, as you might expect, lets some frequencies through but not others. There are four basic types (Fig. 7a-d) and all are characterised by a particular frequency called the roll-off (sometimes cut-off) frequency, beyond which remaining frequencies are increasingly attenuated. The low-pass filter (Fig. 7a) lets through frequencies lower than the cut-off frequency but removes higher frequencies, while the high-pass version (Fig. 7b) does exactly the opposite. Band-pass filters only allow frequencies through which are close to the centre frequency and notch-filters have the inverse response. The rate at which frequencies beyond the cut-off frequency are attenuated is referred to as the slope or roll-off.

Introducing some positive feedback into the filter increases the gain in the region of the cut-off frequency (or centre frequency) and produces a peak in the frequency spectrum as shown in Fig. 7a-c. It can be seen that making this peak bigger also has the effect of increasing the slope. The two other types of basic filter are shown in Fig. 7e-f. These are multiple notch and multiple band-pass respectively.

MOUTH ORGAN AT 220Hz IA BELOW MIDDLE CI

Fig. 5 Waveforms and spectra of (a) Violin note of 520 Hz (b) Mouth organ at $\mathbf{2 2 0 H z}$ (c) Trumpet at $\mathbf{2 6 0 H z}$

Fig. 4 Oscillator waveforms with spectra
In the case of VCFs (the sort used in synthesisers), the roll-off frequency is movable and where it is depends on the d.c. voltage applied to the VCF control voltage input. As with VCOs, the frequency can usually be varied manually or automatically by a voltage from another part of the synthesiser. Generally the degree of feedback, that is the size of the resonant peak is manually variable, though in more sophisticated synthesisers this function may also be voltage controlled. Either way, the function is variously referred to as "feedback", "resonance", "slope", or " Q^{\prime} ".

Fig. 6 Noise waveform and spectrum

ENVELOPES

We can, by using different waveforms, adding them together, and filtering, create virtually any sound spectrum we like, and change it around at will using voltage controlled devices. But so far we have been talking about continuous sounds. Some sounds of course, such as the sea, the hubbub of a city, politicians talking, etc are continuous, but joking aside, almost all sounds whether from instruments or the environment have one thing in common. They start and they stop. And in between they may fluctuate in volume (and also harmonic content). The graph of volume versus time is called the envelope of a sound, and some typical envelopes for various instruments are shown in Fig. 8a-d. Strings for example, when struck or plucked have a very sharp peak at the start of the note, after which the volume dies away much more slowly. A bowed string gives a more gradual increase in volume, but stops vibrating fairly abruptly when the bow stops moving. Removing the bow in a smooth continuous motion would of course leave the strings vibrating though

Fig. 7 A filter lets some frequencies through but not others. Introducing some positive feedback into the filter increases the gain in the region of the cut-off frequency and produces a peak as seen in Figs. 7 (a-c).
less fiercely and the reduced sound would then die away slowly like the plucked string. Wind instruments vary quite widely in their envelopes, but generally start more slowly than plucked strings, and die away rapidly. Organs, whether pipe or electronic both start and stop abruptly. Pipe organs often appear to die away slowly, but this is due to reverberation time of the room they are in. In other words although the direct sound from the pipes stops suddenly at the end of each note, the quieter residue of the sound already in the air reflects around the room for some time, gradually diminishing. Reverberation can also be created electronically using delay lines, either electro-mechanical or solid state, through which the sound signal is repeatedly passed.

VCAs AND ENVELOPES SHAPERS

Voltage controlled amplifiers vary the sound level coming out of the synthesiser from zero to maximum, depending once again on the d.c. voltage applied to their voltage control inputs.

Envelopes shapers generate, on demand, a changing voltage reproducing the shapes of Fig. 8, the actual shapes being set by the controls on the envelope shaper (manually, or in sophisticated machines, also by voltage control).

The simplest sort are known as "Attack-Sustain-Release" (or "A-R" for short) and operate as follows. When triggered, for example by pressing a key on the keyboard, the output voltage rises from zero at a rate set by the "Attack" control until it reaches maximum (or the key is released). The output remains at maximum for as long as the key is depressed and then when the key is released the output voltage falls back to zero at a rate set by the "Release" control. Varying the attack and release times as well as the key depression time enables a continuous variety of envelope shapes to be produced (Fig. 9). Comparing these with Fig. 8 shows that

Fig. 9 Simple electronic envelope shapes
many instruments may be approximated with an A-R shaper, but not the more percussive instruments (meaning guitars, harpsichords, etc., as well as more obvious forms of percussion). A more versatile envelope shaper in common use is known as an A-D-S-R, "Attack-Decay-Sustain-Release", which gives full control over the parameters shown in Fig. 10. Even more complex envelope shapers are found on the most expensive synthesisers, but simple envelopes can always be added together to produce elaborate shapes.

For added realism envelope shapers are usually provided with a "single-shot" mode of operation, where one complete cycle is produced each time a key is pressed. To get another one the key must be re-pressed, corresponding to pianos, guitars, etc.

Note that the voltage output shape from an envelope shaper is also referred to as a waveform, but should not be confused with "audio waveforms" from oscillators. Audio waveforms fluctuate at audible frequencies, namely from about 10 Hz to 10 kHz (that is tens, hundreds or thousands of times per second), while envelope voltages change far more slowly, sometimes taking as much as several seconds to complete one cycle.

DYNAMIC FILTERING

As was hinted earlier, another feature characterising a particular instrument's "voice" is that not only does the volume of the sound change with time, but the harmonic structure of the sound can also change within the duration of each note. The sound of a trumpet, for example, becomes richer in harmönics as it gets louder. A plucked string is characterised by a burst of harmonics at the start, but decays to a pure tone as the sound dies away.

Now here voltage control really comes into its own. Not only can the envelope voltage be used to control the volume of the sound, but it can also be fed into the filter to vary the harmonic structure with time. This can either be the same envelope which is controlling the VCA so that the harmonic structure is related to the volume of the sound, or a different envelope from another envelope shaper, so that the changes. in sound quality are unrelated to changes in volume.

The most obvious example of dynamic filtering is that of using the envelope to sweep the resonant peak of a filter through the harmonics of the sound, producing a waa-waa effect as notes are played. The next most obvious thing to do is to turn the envelope upside down for an inverted waawaa, and most synthesisers generate both positive and negative envelopes for this reason - the possibilities become endless.

So far we have seen the four basic elements used in sound synthesis, namely:
VCO Generates various audio waveforms at a pitch proportional to the applied control voltage (generally in the range 10 Hz to 10 kHz).
VCF Modifies the harmonic content of oscillator spectra or white noise spectrum, depending on the applied control voltage, the type of filter and the degree of resonance.
Envelope Generates a cycle of relatively slowly changing voltage on demand, for modulating the voltage controlled devices.
VCA Modifies the sound level according to the control voltage applied from the envelope shaper.
Now let's put a synthesiser together. The most basic set up is shown in Fig. 11. One thing that has not been mentioned until now is the keyboard. Clearly something has to provide the control voltages for the VCOs, and for a harmonic spectrum to remain constant regardless of the VCO pitch, this same voltage must also be used to control the cut-off frequency of the VCF. VCOs and VCFs are generally adjusted so that they all track each other, that is, the same
change in control voltage produces the same change of frequency in all the voltage controlled units. This control voltage is often derived from a chain of resistors in the keyboard, but it need not be. Guitar synthesisers convert the pitch of the notes played on a guitar into a control voltage in order to control the VCOs and VCFs, so that the synthesiser tracks (accompanies) the guitarist.

Drum synthesisers have neither, but use the envelope shaper or other oscillators to control VCO pitch, resulting in the strange noises commonly heard in disco and reggae music. The envelope shapers are triggered either by hitting a special pad, or by a microphone placed next to an existing drum, while in the case of the guitar synthesiser, the trigger signal is derived from the amplitude of the signal from the guitar.

Guitar synthesisers then, provide accompaniment for solo guitarists, while drum synthesisers are generally used to augment a conventional drum kit, and so both are, as it were, dedicated, unlike keyboards synths.

Back to keyboard synthesisers; in order to play a musical scale on an electronic keyboard, the keyboard voltage must cause the VCOs (and VCFs) to double in frequency as ascending octaves are played. In other words a linear change in voltage from the keyboard must be converted into an exponential for as people will insist on calling it, a "logarithmic") change in voltage in order to control the VCOs. This may either be done in the keyboard itself and multiplied up and down in the VCOs, or alternatively the conversion may be carried out independently in each VCO and VCF. The new generation of digitally controlled synthesisers generate the exponential numerically in digital circuits, but however the musical scale is produced, the basic idea is the same.

PORTAMENTO

A simple circuit determines the rate at which the keyboard voltage may change. Thus instead of jumping from one note to the next, a control is provided to enable the VCOs to glide smoothly between pitches.

LOW FREQUENCY OSCILLATORS

These produce similar waveforms to the VCOs, but are not intended to be heard, rather to produce control voltages for other devices. The output frequency is variable from about twenty cycles per second down to one cycle every ten seconds or so, and may be either manually or voltage controlled. The size of the output voltage is variable between zero and maximum.

LFOs have numerous applications. For example, feeding a small amplitude sine or triangle wave at a frequency of a few Hz into a VCO generates a vibrato, while feeding the same thing into a VCA gives tremolo. Feeding a slow, large amplitude triangle into a VCO will give a siren effect, while the same thing controlling a VCF filtering a white noise input can be used to create sea or wind effects, depending on the resonance setting of the VCF. A fast, descending ramp waveform fed into a VCO will give birdsong. A squarewave into a VCO will give a two-tone, police car effect.

A slow running LFO can also be used to repeatedly trigger an envelope shaper, for rhythmic effects. For example, fairly rapid envelope shaping of a VCO tone can be used to create mandolin type effects, while the same technique applied more slowly using white noise as the sound source can produce steam trains or marching feet and the like.

RING MODULATON

Thus far we have only considered adding waveforms together, which simply results in the harmonics of one

Fig. 11 Typical arrangement of a basic voltage controlled synthesiser
waveform being added to those of the other. Using the audio output of a VCO as a control voltage for a VCA which is determining the size of the signal from a second VCO, has the effect of multiplying the two waveforms together. This process generates entirely new harmonics. Taking the simplest case of two sine waves, frequencies A and B, basic trigonometry tells us that:

$$
\cos A \times \cos B=\frac{1}{2} \cdot \cos (A+B)+\frac{1}{2} \cos (A-B)
$$

so the resultant is two new sine waves, respectively the sum of and the difference between the two original frequencies. Multiplying other waveforms results in more complex spectra, and if the one frequency is not an integral multiple of the other, that is not in tune, then the harmonics generated are also no longer integral multiples of one another. This can be very useful, for example, close inspection of Fig. 5a reveals that the harmonics of a violin are not integral multiples of the fundamental. This arises from the "stick and slip" action of the bow on the strings, which creates a "non-Fourier" mixture of harmonics.

If the two VCOs are set at some musical interval apart, but very slightly off, bell-like tones are generated, while detuned VCOs give rise to metallic sounds, once suitably envelope-shaped. Using a VCF instead of a VCA as the multiplier facilitates the creation of tremendously rich sound structures.

SAMPLE AND HOLD

This is an analogue memory, that is, when triggered it instantaneously samples the output voltage from an oscillator or envelope shaper or noise source and then stores that
voltage until it is next triggered. The output voltage from the sample and hold therefore moves in a series of steps. The sampling is usually triggered by a pulse from an envelope shaper or a slow running LFO, or by pressing a new key on the keyboard. For example, repeatedly sampling a slow ramp waveform from an LFO results in an arpeggio scale when the sample and hold output controls a VCO. Alternatively sampling the voltage from a noise source or a fast running VCO means that the sample and hold output voltage will change apparently at random. This can be used for such varied effects as random filtering and syncopation.

SEQUENCERS

A sequencer is a digital memory note storage system, programmed either manually or directly from the synthesiser keyboard, a voltage corresponding to each note being entered sequentially into a separate memory location.

On playback the memory locations are stepped through in turn by an internal LFO, and the resulting sequence of output voltages is used to control the synthesiser VCOs. Thus any sequence of notes, from a simple repeating arpeggio pattern to an entire piece of music can be stored in the memory and replayed automatically at any time via the synthesiser. The memory also stores trigger pulses in order to trigger the envelope shapers at appropriate times in the sequence. An entertaining analogy is that of the old automatic pianos, which were played by a roll of punched paper drawn through a mechanical control mechanism by a clockwork motor.

The advantages of modern sequencers however, is that they are useful for composition since notes can be entered
and edited at any time, at the musician's leisure, and since the replay speed can be set to any desired tempo, sequences can be generated which are beyond the capacity of any normal musician to play in real time. Furthermore, the electronics can take over the drudgery of playing repetitive patterns while the musician concentrates on more inventive lead playing.

While we are on the subject of memories, the latest generation of synthesisers contain memory storage systems for a different reason. Make all the functions of a synthesiser voltage controllable, including envelope shaper time constants, VCF resonance, portamento, etc, and it follows that all the relevant voltages can be stored in a memory, in other words, all the information about VCO pitches, harmonic spectra, envelope shapes, as well as all the intermodulation between the various synthesiser units. In practice then, a complete voice can be set up using the front panel controls in the normal way, then push a button and the whole program is stored. Repeat this any number of times, and any of the stored voices can be recalled, also at the touch of a button.

POLYPHONICS

As stated at the beginning, most synthesisers are monophonic which means, complexity of voice aside, only one note may be played from the keyboard at a time. Pressing a new key before the envelope from the previous key has died away simply re-triggers the envelope shaper and changes the VCO pitch-conventional chording is out!

Electronic organs and pianos are fully polyphonic, that is, chords may be played, since there is effectively an oscillator and an envelope shaper for each key. However, variability of the envelope shapes is strictly limited, filters of switchable characteristics are tacked on the end, so the advantages of dynamic filtering, portamento and complex sound creation via ring modulation and the like are lost. Many instruments which retail for a few hundred pounds claim to be polyphonic synthesisers, but in reality are just glorified electronic organs, generally with one VCF responding to the latest envelope to be triggered.

It is apparent then, that a truly polyphonic synthesiser would consist of a complete synthesiser for every key on the keyboard. In practice this is unnecessary, as one can get away with four, eight, or at the most sixteen being assigned in rotation to particular keys as they are pressed, this task being performed by digital circuitry scanning the keyboard at a very high frequency looking for pressed keys. Even so polyphonic machines generally cost several thousands of pounds to buy.

EXPRESSION PATHS

A criticism often levelled at synthesisers is that their preprogrammed, nature renders them rather mechanistic, perhaps soulless, from the musician's point of view, which (even the antagonists usually concede) is a pity in view of their tremendous potential. Indeed, with the current headlong rush towards digital waveform synthesis and control, wherein sounds can be dreamed up and music composed all from the alphanumeric keyboard of a computer terminal, even the knob-twiddling element is removed, so what price emotion and spontaneity now? Is the beauty of an instrument expressing the subtleties of innermost moods and feelings to be replaced by the aesthetic elegance of mathematical equations and the efficiency of subroutines?

This is, of course, overreacting. Computerisation of music has its own appeal and its own place just as any other human endeavour, but nevertheless, the lack of direct involvement in the control of synthesised sound has led to
something of a counter-revolution in which designers go out of their way to give the musician back the ability to interact with his instrument, manually, as it is being played, which thus far has been lacking in synthesisers. It is ironic, by the by, that similar objections have never been raised during the several centuries that pipe organs have been around. These elaborate mechanical precursors of modern electronic synthesisers, while being able to chord and sound quite orchestral on their own owing to the number of spectra simultaneously available, lack any of the expression paths associated with other conventional instruments.

Such expression paths include breath control of pitch, volume and harmonic content in wind instruments, the way the guitarist can bend strings to control pitch and glide from one note to the next-as can the violinist and cellist, etc., but with bowed instruments the way in which the bow is applied to the strings also dramatically changes the sound. In keyboard instruments such as the piano and harpsichord the force with which the keys are pressed not only affects the volume and the resulting spectra but also, by virtue of the vibrations of each string being transmitted through the framework to the other strings, the keyboard controls the degrees of waveform multiplication. The pedals also give considerable control over the envelopes either by increasing sustain or damping out the oscillations and their resultant harmonics.

The point of all this is that no matter how sophisticated electronics becomes it will never out-class the human brain as a pattern-recognising feedback control system (for the implication would be one of replacing human beings altogether!) So to come back down to earth again, what can be done to provide the same degree of manual control over electronic synthesisers?

OPTIONS

Many options are available. Pedals are one obvious choice. Another is the provision of thumbwheels next to the keyboard; joysticks similarly. A more modern device in use consists of a sandwich of conductive foam between thin metal strips, which changes its resistance according to where it is pressed along its length. This is known as a ribbon controller.

Electronic pianos are usually touch sensitive in that the size of the envelopes increase the harder you press the keys, though it is generally key velocity that is measured rather than the force of impact. A more recent innovation is that of force sensitivity, a device unique to synthesisers. Here the keys are depressed in the normal way, but pressing harder on a key that is already depressed forces a spring-loaded metal bar downwards (alternatively the entire keyboard may move downwards!

Whatever methods are employed, the result is the generation of control voltages proportional to the physical movements. The big advantage over conventional instruments is that these control voltages may be used to control any chosen parameter of the synthesiser: pitches, filter responses, envelope shapes, LFO speeds and amplitudes, etc.

One modern invention called the "Variphon" has gone one step further. It is a synthesiser right enough, but it is a wind instrument in that it is blown! There is a mouthpiece and electronic sensors around the reed generate the control voltages, in other words, a synthesiser with complete breath control.

The "Kaleidophon" is a pseudo stringed instrument. Again it is a synthesiser, but the control voltages are generated in the strings, thus giving the synthesist back some of the advantages that a guitarist has.

MA Micro dMusical

Casiotone

 INTEREST FREE CREDIT SECURICOR "NEXT DAY" DELIVERY(Models CT-701, CT-601, CT-403, CT-202, CT-101 only subject to availability)
NEW MODEL STAR OF JAPANESE MUSIC FAIR CT-701
5 OCTAVE PROGRAMMABLE POLYPHONIC KEYBOARD

with Prelude
using light to scan unique Casio prepared music. Plays back using hight thords with bsss and drums. Esasy Diay Casio chord accompaniment. 16 rtythms, full editing facilities, sustrin, vibrato, A true computer aided kevboard built-in am
chones, volume sack fecilities. Mains only.

- Identical to 701 but without the program-
ming facilities and keyboard LED's
- CT-403 NEW MODEL. CHORDS-BASS.RHYTHM

* CT-202 49 POLYPHONIC VOICES "GIGGING MODEL"

OTHER CASIOTONE KEYBOARDS MT-31 £69, MT-40 £99, VL- 1 £35.95
ALL WITH FREE MAINS ADAPTOR, WORTH $£ 5$
All free offers must be requested when ordering

Micro Musical Code of Practice

- No quibble 18 month unconditional guarantee - Money back guarantee if not satisfied - Same day dispatch - subject to availability - VAT, packing and carriage included in price - 14 day free trial period

Send cheques, P.O.s, cash (Registered) by Freepost (No stamp required) or phone your Access Card Number.

Micro Musical Limited
British Musical Fair, May 14th-18th, NEC Birmingham
All models avallable from our Stand.

Semicondurtor UPDATIE
 featuring

PIN MISER

What do you do if you want to hook additional I/O or memory on to your single chip microprocessor design, and you don't have sufficient I/O pins available to transfer the data and address information? Well, mainly you have to whistle, because for most parallel I/O devices and memories you need 8 pins for data transfer and several more for the address information. Some designers who just had to have lots of $1 / 0$ from a limited number of pins have created their own special multiplexing systems using several external CMOS logic packages and a software driver, but the more usual course has been to make do or to use an all-singing all-dancing bus orientated microprocessor with an attendant increase in system cost.

Now Mostek have recognised this "pinfamine" problem and have come up with an ingenious scheme to solve it that will please not only single-chip users but also those who are feeling the pinch in bus orientated systems with a limited number of I/O lines. What Mostek have done is to build a family of I/O and memory devices which do not need parallel data and address busses because they have internal serial to parallel conversion logic and can work from a simple serial bus.

The serial bus is so simple that it hardly deserves a special name, but Mostek have given it one anyway and are calling it the "Microcomputer Data Link" (MDL)! All this link consists of is three wires, one to carry the serial data in or out, one to act as a clock, and one more to act as a chip select for the external MDL compatible devices. The clever bits are inside the peripheral chips themselves. Each device has a serial shift register which accepts 8 bits of data from the bus under the control of the microprocessor generated serial clock. The first byte to be transferred is always the Command/Address byte which consists of a start bit which is always zero, a Read/Write select bit, and then six address bits which can select up to 64 separate registers or memory locations within the peripheral device. All data transfers require 16 clock cycles, 8 to catch the Command/Address information, and 8 more to shift a data byte into or out of the processor depending on the Read/Write selection made.

The MDL compatible family of peripherals will all have at least one chip select input to allow for more than 64 locations if required, and those which have less than 64 internal locations will have hardwired address inputs so that their own particular group of locations can be mapped into the 64 available without conflicting
with any other similar device on the bus. The end result is a flexible system which requires only three CPU or I/O lines and requires much less board space than a conventional system because the peripheral circuits can be housed in small packages such as 8 pin mini-DIPs which also keeps the cost down. The only penalty (there has to be a catch!) is that the transfer of one byte takes at least 16 processor cycles instead of the 1 required by most parallel schemes. In many systems this is not a serious problem.

The first two devices available are the MK 382464 byte RAM array and the MK 3821 three channel Analogue to Digital converter, but Mostek promise parallel I/O ports, keyboard encoders, and display drivers will be along soon.

POWER MISER

Normal linear voltage regulators such as the ubiquitous 7805 are great for systems where the input voltage is only slightly above the required output voltage, or where their inefficiency is not a problem because power comes from the mains, but they do waste an awful lot of power when there is a large input-output voltage difference, and this can be a big problem for battery powered equipment. If you run your 5 volt logic from à 7805 supplied by a 12 volt battery then about 60% of the power used goes to keep the 7805 warm, a terrible waste. A better scheme is to chop the higher voltage up into a squarewave and then control the ON/OFF ratio so that exactly the right d.c. output voltage is developed across a reservoir capacitor on the output side. With a transistor or an f.e.t. as a switch, efficiency can be high and the chopping frequency can be several kHz so that only a small capacitor is needed to reduce the ripple to a respectable level.

The "Switching Regulator" technique is not new, but the circuitry is more complex than that required for a linear regulator and this has resulted in it being used only for relatively high power applications where its high efficiency has been essential. This is about to change, thanks to Raytheon who have just introduced a series of micropower switchers in low cost 8 pin packages which are designed to make the best use of battery supplies. Their new switcher family uses only 135 microamps quiescent current and can achieve up to 80% efficiency. Devices are coded RC 4191 to RC 4193 and all will work from a wide input range either 2.5 to 24 volts or 2.5 to 30 volts. The series transistor is capable of switching up to 150 milliamps and the control circuits provide excellent regulation against variations in the load current or the input
voltage. Also on the chip is a logic controlled remote shut-down which can be used to turn the output ON or OFF, and a low battery detector circuit which will provide a signal when the battery is nearing the end of its life.

Because the Raytheon devices are true switchers, you don't have to restrict them to step-down applications either; by adding diodes and an inductor you can step-up or invert the polarity of a supply. I think we will be seeing a lot more of these devices in the near future.

BIT STUFFER

Still using steam powered 2708 EPROMS? Or old fashioned 2716s? Think you are bang up to date with your 2732s? Well think again, because 2732 s with their measly 4 K bytes of storage will soon be outgunned not only by the one year old 2764 but also by the giant new Intel 27128 which stores no less than 16 K bytes (That's 131,072 bits folks!) in its 28 pin package. With that many bit cells, the chances are that some of them won't work properly, but intel have thought of that and added a further 128 bytes to act as spares which they can patch in when they test the chip after manufacture. In most other respects the 27128 is similar to its predecessors and can date its family tree back to the 2716 when single 5 volt supply operation was first introduced. Programming requires the application of a 21 volt supply and a 50 mS pulse for each byte, so you will have to wait quite a while for the whole array to be programmed!

The sheer size of this device makes it suitable for the distribution of software such as language compilers or interpreters, and no doubt the price will eventually drop to next to nothing from the present level of about 25 millipennies per bit!

AVAILABILITY

Devices featured in Semiconductor Update should, under normal circumstances, be available from good component retailers, but bear in mind that retailers will often not receive stocks of a device until some time after it has been featured in Update. However, when a high demand from hobbyists is not anticipated, you may need either to contact the manufacturer or a specialist distributor. The following three companies stock a wide range of devices, and all say that they will supply one-off orders: Rapid Recall Ltd., Rapid House, Denmark Street, High Wycombe, Bucks 10494 35634): Analog Devices, Central Avenue, East Molesey, Surrey (01-941 0466); Semiconductor Specialists (UK) Ltd., Premier House, Faiffield Road, West Drayton, Middx. UB7 8EX (08954 46415).

EXPERIMENTERS BREADBOARD WITH POWER and PULSE GENERATOR

ABREADBOARD of this type is an invaluable piece of equipment to experimenters and students who wish to work with i.c.'s. The breadboard itself is easily obtainable, using GSC Quick Test Solderless Breadboard Elements in its make-up. Prototypes can be built easily, and after their completion, the components re-used. Two separate but identical power supplies were built into this breadboard to cater for future development. The use of a $0-9 \mathrm{~V} 0-9 \mathrm{~V}$ transformer, giving a possibility of 18 V a.c. and simple voltage regulators makes a versatile power supply, which once built will have many and varied uses.

Pulse Generation is obtained by the use of two i.c.'s (see Fig. 1). The 50 Hz pulse is made up from a Schmitt Trigger ($\frac{1}{2}$ IC1), this being tapped from the 9 V a.c. supply via R1, D1 and D2 to the inputs. The output is a square wave at 50 Hz . The 1 Hz pulse is the other Schmitt Trigger in the same package ($\frac{1}{2}$ IC1). The charging resistor is R3, C7 the timing capacitor and TR1 the transistor switch. Together, these components give a pulse duration of approximately one second positive and one second negative for "slow motion work". Finally, the manual pulse is constructed by using a pair of NAND gates in IC2. This circuit alleviates contact bounce in S1 and is found to be of great value in the checking of i.c.'s stage by stage.

This pulse board, being constructed from three separate stages, can give either separate or multiple pulses at one time.

CONSTRUCTION PRIOR TO WIRING.

Take one piece of 0.1 inch stripboard and cut to size for the Pulse Generator Board (15 copper strips $\times 31$ holes). See Fig. 2. Drill mounting centres at $5-\mathrm{H}$ and $27-\mathrm{H}$, also the
mounting centres of the Power Board at $8-\mathrm{M}$ and $33-\mathrm{M}$, using a 4 mm bit. See Fig. 3. The Heatsinks should now be drilled along with the board to take IC3 and IC4 and also the transformer baseplate, 4BA clearance. On the base diagram, no dimensions are given; this is because it is felt far easier to position the two boards, transformer and air vent matrix to give clearance one from the other by eye. As space within the case is at a premium, every effort should be made to obtain the specified components.

When you are satisfied these are correct, mark and drill the base. 5 mm for fixing centres of boards.

The mains input grommet is directly in line with the lefthand transformer mounting. From the bottom of the base, countersink both transformer holes to take bolts and also board fixing centre holes to take type ' B ' standoffs. Make up the wire clamp from 2.5 mm perspex $19 \times 44.5 \mathrm{~mm}$ (outer).Two smaller pieces are glued to this to form a groove through which the screened cable passes to the power output terminal posts. A hole to take the ventilation grille should be cut in the rear; the dimensions for this are given. Drill out to take D3 mounting clip centred on horizontal part of this section. Prior to the insertion of D3, it should be made up as shown, with the anode sleeved from the cathode and a final sleeve to make it more durable. These can be glued in place along with the ventilation grille.

The GSC Breadboard can be assembled and mounted on the aluminium section of the Vero box. The two holes for the wire clamp are countersunk from the anodised side, all these holes are 6 BA clearance. Drill to take terminal posts and switch, all dimensions given. Graphics can be added by the use of letter transfers and the whole board covered with Transpaseal, cut corners as seen in diagram and fold under the board. This will give the lettering protection and the breadboard a professional look.

Fig. 1. Circuit diagram of the breadboard system, including power supply and pulse gerierator

6666

COMPONENTS

Resistors

R1	$1 \mathrm{k} \frac{1}{2} \mathrm{~W}$
R2	470
R3	4 k 7
R4, R5	3 k 9 (2 off)
R6	220
R7, R8	330 (2 off)
All $\frac{1}{3} W 5 \%$ unless otherwise stated.	

Capacitors

C1, C2
C5, C
C5, C6 C7
$2,200 \mu 40 \mathrm{~V}$ axial elect. (2 off)
$4 n 763 \mathrm{~V}$ p.c. elect. (2 off)
100 n disc (2 off)
$470 \mu 16 \mathrm{~V}$ p.c. elect.

Potentiometers
VR1. VR2 10 k hor. sub-min. preset (2 off)
Semiconductors
REC1, REC2
IC3, IC4
IC1
IC2, IC5
TR1
D1, D2
D3
D4, D5

WO1 p.c. Bridge Rect. 100 V 1A
(2 off)
$\mu A 78$ MGU1C (2 off)
7413
7400 (2 off)
BC108
1N4001 (2 off)
Standard red with Plastic Clip
Sub. Min. red (2 off)

Miscellaneous

S1 S.P. Changeover, Sub. Min. Toggle
T1 $0-9 \mathrm{~V} 500 \mathrm{~mA}$ 0-9V 500 mA Output

Wiring

On the component layout for power and pulse boards, only the wiring is shown.

Horizontal wiring is by copper strips, vertical by wire links. Half pins were used for all input and output terminals. Under board wiring is achieved by the use of full pins, these being trimmed off on the component side of the board. Work from small to large components, the link wires being inserted first. The four tags of each regulator were bent through 90° to insert into holes 24. These were fitted last because of their delicacy. Connect wires to input of power board and ribbon cable to output of pulse board before mounting in the base, this is because of the inaccessibility of these pins. Connect screened cable to output of power board (IC3 side) and to red and black terminal posts. The ribbon cable to appropriate yellow terminal posts and switch. The centre tag of S1 is connected to the black terminal post.

As the power and pulse boards have only two fixing centres, it was necessary to mount these on foam rubber strips to give stability. "Cling" plastic coated self adhesive foam draught excluder was found to be excellent for this use. Stick three strips to the base across the width of each board, taking care not to foul underboard wiring.

Mount the boards and complete wiring. The mains cable earth is connected to the transformer mounting by either crimped or soldered tag. The mains live and neutral lines are soldered, sleeved and the sleeving glued into position for safety when adjusting the voltage regulators at a future date. The circuit has a 3 amp fuse in the 13 amp plug.

Fig. 2. Stripboard layout of pulse generator section

TESTING

Turn both VR1 and VR2 fully clockwise and connect to mains supply. With a multimeter connected to the pulse board outputs, turn VR2 anti-clockwise until the voltage reaches 5 V . This sets the power for the pulse board and D3 should be lit. With the multimeter connected to the power board outputs, turn VR1 anti-clockwise to any voltage from $5-12 \mathrm{~V}$ (5 V suggested at this stage).

To test pulse board outputs, a probe is necessary and a circuit for one is given in Fig. 4. Make this up on your completed breadboard. Connect the input of this probe to the Man. terminal and operate S1. If the 1 's l.e.d. should glow when S1 is in the 0 position and vice versa, reverse the outer connections to S1. Next, connect the input to the 1 Hz terminal, the 1 's and 0 's l.e.d.'s should glow alternately (one second each approximately). Finally, connect the input to the 50 Hz terminal, both l.e.d.'s should glow but because of the pulse ratio, the 1's l.e.d. will be dimmer than the 0's l.e.d.

BOOKS

The author would like to recommend the following books: The 555 Timer Applications Sourcebook With Experiments by Howard M. Berlin.
Published by Howard W. Sams \& Co. Inc., 4300 West 62 nd Street, Indianapolis, Indiana 46268 , U.S.A.
50 Circuits Using 7400 Series IC's by R. N. Soar.
Published by Bernard Babani (Publishing) Ltd., The Grampians, Shepherds Bush Road, London W6 7NF.
From the latter was gained the initial inspiration of pulse circuits.

The author would also like to thank Mr. I. Roebuck and Mr. I. Wright for their help in the design and building of this project.

66050

Fig. 3. Stripboard layout of the PSV board

Fig. 4. Suggested circuit for a digital logic probe

[5640

GRAPHICS SHORT-CUT

Sir-The medium resolution graphics article in April's copy of Practical Electronics was very interesting and useful. However, the hex dump of the character generator was a bit wasteful considering that it can be generated by the following short program.

10 REM ***LOAD GRAPHICS CHARACTER SET***
20 DIMD (8): DIMB (4)
30 INPUT "ENTER START ADDRESS"; ST
I00 FOR N=I to 256
$110 \mathrm{C}=\mathrm{N}-1$
I20 FOR T=I TO 8
$130 \mathrm{D}(\mathrm{I})=\mathrm{c}-\mathrm{INT}(\mathrm{C} / 2)^{*}$ 2: $\mathrm{C}=\mathrm{INT}$
(C/2)
I50 NEXT I
170 FOR $\mathrm{J}=\mathrm{I}$ TO 8 STEP 2
I80 B (INT($(\mathrm{J}+2) / 2))=\mathrm{D}(\mathrm{J}) * 240+$ D(J+I)* 15
200 NEXT J
220 FOR J=1 TO 4: POKEST, B (J):
POKEST + I, B (J)
230 ST $=\mathbf{S T}+2$
240 NEXT J
390 NEXT N
400 END
S. Grycuk, Handforth,
Cheshire.

YOURS . . . DISGRUNTLED
Sir-Mr Dyvik of Norway (Sept 1981) is using a rather complicated adaptation of the "cassette save" routine given in the Compukit manual. Apart from relocation to $\$ 0228$, two simple substitutions will suffice for use with the new monitor: JMP \$FA57 (new screen print) wherever JMP SBF2D (old CRT simulator) is used, and JMP \$FEO5 to return to address mode in. the monitor for JMP \$FEO8 to avoid clearing the screenl. This information was helpfully supplied by Compshop when I queried the non-functioning of the relocated routine. I have since added instructions to print .OOFB/OO so that control returns to the keyboard.

Compshop have been rather less helpful in the matter of how "text scrolls down" as they advertised when the new monitor first became available; I suspect it cannot be done lbecause of the problems of storing scrolled-up text so that there is something to scroll down), but I would be grateful for readers' advice. I would also appreciate some help with problems relating to MicroPrompt suggestions.
(1) The reverse video modification in the May 1981 issue requires my TV to be set for maximum brightness and minimum contrast, unlike the white-on-black display which uses normal settings. No amount of adjustment of R58 (picture density) abviates this.
(2) D. J. Anderson's error message
corrector (Sept 1980) prevents the SAVE command from operating correctly. The flag is set, but nothing is slowed down and sent to tape-new monitor again?

One final grouse about the otherwise useful new monitor; the note about flash rate location is not at all useful, since the monitor constantly puts the value 80 there, so it effectively can't be changed. This means that the flash rate is much too fast in Edit mode when running at 2 MHz .

Alfred W. Pauson,
Glasgow.

MONITOR CHANGE POINTS

Sir-l refer to the article in Practical Electronics of November 1981 on "UK 101 Monitor Change"

Having built the circuit as given in the magazine / would like to draw your attention to two points. On powering up the circuit I found that I could not get it to operate using UKO2 monitor although all was well with WEMON. On checking over the circuit I discovered that in my UK 101 UK02 was enabled by UK02MCS and not UKO2MCS as the circuit was attempting to do. There is a spare gate in IC 104 and by disconnecting pin 6 from the MCS line, connecting it to pins 9 and 10 and taking the output to the MCS line from pin 8 all was well. The second point is rather more obscure and concerns the ACIA address. I carried out the modifications to change the address of the ACIA from FOOO to EOOO to accommodate WEMON and certainly all operates as it should. Now UKO2 expects to find the ACIA at FOOO and indeed mine does. I am therefore at a loss to understand how the ACIA can live at two addresses: Perhaps you could advise me how this can be.
J. H. Howarth

Bathgate
W. Lothian

The AClA is not fully decoded; that is to say the least significant address lines have been incompletely utilised. The ACIA, on the standard machine, may consequently be called up anywhere between F000 and F0FF (61440-61695 decimal)-a total of 256 bytes!

SOFT BAUD MOD

Sir-the Soft Baud Rate modification by E. Mawson (Sept. 81) does work very well. When completed however it makes the standard rate after Reset 600 . This requires software adjustment if all current tapes are 300. In my case I prefer to be 300 after Reset and then adjust to 600 when required.

To achieve this another inverter is necessary as IC 14 should not be used to drive both IC57 and the 1N4148 diode added in the changes. If the RS232 interface is not used when another inverter in IC62 can be utilised. It is only connected with the interface. To use it for our purpose the following changes are required;
and IC62(8) to IC62(1) where the numbers in brackets are the pin numbers. This addition will reverse the standard rate otherwise achieved with the modification.

All other connections and comments are as the previous text.
R. L. Curd, Farnborough.

WEMON/TELEPRINTER HANG-UP

Sir-As an owner of a UK101 on a fairly tight budget, I was pleased to see the Teleprinter Interface article in the September ' 80 issue of Practical Electronics.

Having obtained a printer and constructed the interface circuit, the set-up has been in use for some months now, giving trouble free operation.

However, I recently added to my UK101 Wemon's extended monitor. It was only a short time before I discovered that the interface software for the teleprinter would not run with Wemon.

I would, therefore, appreciate any suggestions you can supply leading to the solution of my problem. Perhaps other readers have encountered similar difficulties and are willing to submit their findings.

Kenneth J. Houghton,
Chorlev. Lancs.

RELOCATION HANG-UP

Mr. Keith Wood of Wakefield has written to tell us of a problem experienced after moving the extended monitor on the UK 101 by the method suggested in Micro-Prompt. July 1981. Has anyone else had this trouble?
"When I use the Return kev to drop out of the 'a' function on the monitor, the machine locks up, and will not then respond $t 0$ anything but 'reset'. Using any other odd kev to drop out of '@' does not have this effect. The machine uses the latest standard monitor in Eprom, and the cursor returns to the end of the line, stops flashing, but does not line-feed.

GARBAGE STILL BUGGED

Sir-I have just bought Comp Shop's new UK101 BASIC3 ROM with the Garbage Collector fix, and while testing it I discovered that there is still a bug which has not been corrected. The bug occurs when executing an assignment statement with the same string name on both sides of the assignment and where there is not enough memory to perform the assignment.

The following program demonstrates the bug:
$5 \mathrm{HS}="+"$
$10 \mathrm{HS}={ }^{\mathbf{\omega *} "}+\mathrm{HS}+{ }^{6 * *}$
$15 \mathrm{Hg}="+"+\mathrm{Hg}+"+"$
20 PRINT H8
25 GOTO 10
Before entering the program do a Cold Start, setting Memory Size to 1000 to reduce the available memory below the point where the bug operates.

The program should print a succession of strings consisting of alternate + and *. However, from the 14 th item onwards the string consists of "s with a single + at the right hand end.
E. W. Ball,

London.

This article suggests some ways of making the extended monitor supplied with the UK 101 easier to use.

Extensive use is made of LINE FEED as an operational control and this is obtained by Control/J. But it is very easy to miskey and drop out of the memory examine mode. This is likely to happen if you are examining a section of memory for ASCII characters, as incrementing to the next memory location is by CONTROL/J and the ASCII character is displayed by SHIFT/2 (")! I decided to replace LINE FEED with the SPACE bar: to avoid using SHIFT I have changed ${ }^{n}$ to . but once the relevant locations are known, virtually any character can be substituted.

NEW MONITOR ROM

When I was modifying the extended monitor I investigated ways of increasing the loading speed of programs in both BASIC and machine code. I had fitted a Cottis Blandford phase-lock-loop tape interface (from Newbear) which not only makes the Compukit dramatically more tolerant of cheap cassette recorders but allows 300, 600, 1200 and 2400 Baud recording and playback. 600 Baud seemed the highest speed Compukit would reliably load BASIC and I had accepted this limitation. I then fitted the new Monitor EPROM by Roger Cuthbert (sold by Comp Shop and now standard on UK101s). However, my Compukit would no longer load reliably at 600 Baud. Most of the time it would be all right but some long lines would fail to enter properly especially if a POKE instruction was split between screen lines.

The problem is solved with a combination of techniques. I can now load BASIC reliably at 2400 Baud with the Cottis Blandford interface. The first modification I tried was to run the CPU at 2 MHz . Done simply by disconnecting pin 37 of the 6502 and connecting it to pin 13 of IC 29. You may be unlucky and find that some of your memory or the 6502 will not take the faster speed (a 6502 A is rated at 2 MHz) but try it-the modification costs nothing. The doubled clock rate halves execution times of programs. It also makes 600 Baud reliable again.

EG.576 1. Simple switch for CPU clock. This can be mounted on a small circuit board near the CPU. The switch lead may be lengthy without ill effects

In fact, I discovered that 2400 is possible. The problem is caused by the new Monitor's two dimensional cursor. When it reaches the bottom of the screen it takes much longer to decide what to do when it neets a Return : not only does it Return to the left, it
will scroll the screen up until the top line is not blank which can be anything from 1 line to the full 16 . Bypassing the screen print routine would seem to be the answer. A benefit would be greater security in programs like Hangman. Embedded answers would be concealed. The answer is in the advertised but undocumented CONTROL/O facility. This also allows tapes to be recorded in such a way that would disable the screen automatically without extra operations by the user. I have never managed to get CONTROL/O to do anything useful from the keyboard. You are supposed to be able to type CONTROL/O RUN (Return) and have the program running without RUN being echoed onto the screen. What you get is a syntax error. It can be avoided by the sequence COLON CONTROL/O (Return) RUN (Return). The program will then run but will not print anything unless it POKEs the screen directly. All in all, pretty useless until it comes to SAVEing programs. Instead of the normal SAVE/LIST routine add these lines to the end of your program.

6000 SAVE:?:?:CHR\$(12):?:?:?
 60010 ?":NAME OF PROGRAM loading ":?:?":";CHR\$(15) 60020 LIST -59999

and SAVE your program by RUN 60000 . CHR\$(12) is the screen clear. CHR\$(15) is the code for CONTROL/O. Lines 60000 onwards will not be SAVEd. On playback the screen will blank and display "name of program loading" and nothing else until the OK at the end of the listing provokes a syntax error which will reactivate the screen. Using a 2 MHz clock 1200 Baud becomes totally reliable and 2400 Baud will SAVE most programs. Even the most recalcitrant program will LOAD if extra NULLs are put in at the time of SAVEing. NULL 4 covers most programs NULL 8 has yet to fail using a 2 MHz clock. Even with a 1 MHz clock 12 to 16 NULLs will allow 2400 Baud. The extra NULLs do slow the LISTing but there is still a speed advantage. As an example here are timings for a 7 K BASIC program.

1200 Baud	no NULLs	114 seconds
2400 Baud	no NULLs	57 seconds
2400 Baud	12 NULLs	74 seconds
2400 Baud	6 NULLs	65 seconds

This compares with 228 seconds for 600 Baud and 456 seconds for the original 300 Baud facility-a full 7 minutes and 36 seconds! Incidentally the NULL function can only cope with up to 8 NULLs but up to 255 can be put in using POKE 13, number of nulls. Apart from the screen clear this should work for the old monitor as well. A further elegance is to use the OK message printer to provide an auto run (see PE November 1980) by printing CR LF RUN : 15 CR LF-where 15 is the CONTROL/O character-instead of "OK".

A similar problem exists with machine code. The normal HEX format will LOAD quite happily at 2400 Baud but the Extended Monitor's checksum format will not; it is limited to 600 Baud at 1 MHz because of the carriage return problem. The answer here is to prevent the cursor ever reaching the bottom of the screen!

This is done by removing the Line Feed at the end of each line and shortening each line to fit within a screen line. This is done by changing $\$ \emptyset E E B$ to $\$ \emptyset E E F$ to NOPs ($\$ E A$) to remove the LF, and changing \$OECE to $\$ 12$. This reduces the number of bytes of data in each block to 18 (dec) and each block now overwrites the previous one, making 2400 Baud loading possible.

Table 1. Changing user controls

LOC	FROM	TO	DESCRIPTION
OB70	OA	20	Increments memory display, changes function from LINE
OB67	OD	20	FEED to SPACE bar control This causes the program to exit the memory display and need only be changed if you want Return to be used for something else. Key used to display ASCII character at present
OB78	22	2 OHIFT/2(") change to."	

This allows the ASSEMBLER/EDITOR to be loaded in 75 seconds instead of nine minutes with the original 300 Baud cassette.

PROCEDURE

Load the extended monitor from the cassette supplied with the machine; it will self-execute. The first task is to change the operational controls. Table I shows the relevant addresses. Enter the memory examine mode by keying (SHIFT/P or SHIFT/Zero for CEGMON) and then the four HEX digits of the address; thus to change \$OB70 type:
@OB70
the computer will display:
@OB70/OA
OA is the Hex value for $10_{\text {dec }}$ (ASCII LINE FEED)
Change this to SPACE by keying in 20. You will now find that pressing the SPACE bar causes the computer to print on the next line:

OB71/FO

It has incremented to the next location. Pressing Up arrow will decrement back to the previous location. If you prefer to use RETURN then OD should be entered; this will give increment and decrement keys next to each other. In addition, a different character will have to be put into $\$ 0 B 67$ which is part of the exit routine.

The Table shows other locations where LINE FEED can be changed to SPACE. The number of lines printed at a time by the disassembler can be increased from 13 to 14 without the screen overflowing (\$OD to \$OE). If at any time you are producing a listing on a printer, this same location (\$099D) can be changed to print, say, 55 lines to fit individual sheets of paper (or if you are using a roll to provide a space every 55 lines for subsequent cutting into sheets).

Table 2. Locations that need to be changed by hand to relocate monitor

LOC	FROM	TO		ROUTINE
1961.	OB	18	(a)	Memory examine and change
1963	OB	1B	A	Print contents of accumulator
1965	OC	1 C	B	Install breakpoint
1967	OC	1 C	C	Continue from last breakpoint
1969	OC	1 C	D	Dump to screen
196B	OC	1 C	E	Eliminate breakpoint
196D	OD	10	F	Fill memory
196F		18**	G	Execute from here
1971	OE	1E	H	Hex calculator
1973		$1 \mathrm{C}^{* *}$	1	Address last entered by breakpoint printed plus registers
1975	08	18	J	SPARE (Hex Dump)
1977	OB	18	K	Print Stack Pointer
1979	OF	1 F	L	LOAD in checksum format
197B	OD	1 D	M	Move Block
197D	OD	1D	N	Search for Hex string
197F	OE	$1 E$	0	Print Overflow from calculator
1981	OB	1B	P	Print Status
1983	OD	1 D	Q	Disassembler
1985		10**	R	Relocate
1987	OE	1E	S	SAVE in checksum format
1989		1C**	T	Print Table of breakpoint addresses
198B	08	18	U	SPARE ISave Loader in HEX format with Execute command)
1980	OF	1F	v	- View cassette without loading
198F	OD	10	W	Search for ASCII string
1991	OB	1 B	x	Print X register
1993	OB	1 B	Y	Print Y register
1995	OF	1 F	z	Block Dump
1997	OB	18		IRQ Vector
1999	08	18		Used at start-up

** You will probably find that these will have been changed already by the Relocator as accidentally they have formed part of a valid code.

If you are using the routines suggested for U and J then the following changes need to be made.

RELOCATED	UNRELOCATED
1974 to $\$ 70$	O974 to $\$ 70$
1975 to $\$ 16$	0975 to $\$ 06$
198 to $\$ 77$	$098 A$ to $\$ 77$
198 B to $\$ 16$	098 to $\$ 06$

SPARE ROUTINES

According to the instruction sheet J, U and Z are spare for use with additional routines. In fact \mathbf{Z} can be the basis of a useful sectional dump, ideal for verifying entries visually. To make it work, the JUMP instruction at the end of the program must be changed to an RTS (change \$OFFD from $\$ 4 \mathrm{C}$ to $\$ 60$). If you now press Z and then key an address, the screen will print out that address and on a new line the contents of that address, and the seven following ones on one line. LINE FEED causes the address of the beginning of the next block to be printed on the next line and the next block of eight contents below it. Change

LINE FEED to SPACE by changing \$OFFA. SOFDA controls the length of the block; changing it from $\$ 08$ to $\$ 10$ gives a single line of 16 . Larger blocks are possible; $\$ 40$ gives four lines of 16 -my own preferred format (these are screen lines, a printer would see the output as one line of 64 contents). With larger blocks the screen starts to look messy as the screen spacing between the start address and the data increases until overflow. This is cured by eliminating two JSRs: change \$OFCD-SOFD2 inclusive to \$EA (NOP = No operation). For very large blocks also change \$OFD4-\$OFD6 to \$EA. Z now gives a useful extra routine for no extra memory usage.
Routines U and J really are spare and I have used them to call HEX save routines. In the routine shown J is used to call a modified version of the HEX save routine in the manual. The zero page usage has been changed to make it compatible with the extended monitor allowing one of its subroutines to be used for entering the start and finish addresses. The format is Jxxxx,yyyy where xxxx is the Hex start address and yyyy is the end address the comma prompt is produced by the computer. (New monitor users should beware that the cursor must be below the "window" of the 6 digit ROM monitor display or errors will be introduced as the cursor crosses the "window".)
U is used to SAVE the extra routine and the checksum loader in HEX format. Its main use is to record the checksum loader, along with an execute command before a long routine is saved in checksum format. Thus to SAVE the monitor itself start the cassette and key U, when the loader has been recorded key S0800,1000 and the monitor will be SAVEd in checksum format. These routines do not work with, nor are they needed with CEGMON.

It is possible to record an execution instruction at the end. While machine code can be used I usually just use a short BASIC program.

100 SAVE:?:?:?" $\$ 0800^{n}: ?: P O K E$ 11,0:POKE 12,8:X = USR(X)

this is put in after a COLD START and MEMORY SIZE being answered with 1500 to protect the monitor.

RUN and you will be back in the Extended Monitor. The program can be saved as before, but when the checksum has been recorded press RESET W and RUN and the execute command for the monitor is on the tape without any interruption of the CUTS tone. The BASIC program will be destroyed if the Monitor's disassembler is used.

RELOCATION

The monitor can be relocated by using its own relocate facility and then changing the addresses in a look-up table shown in Table 2 for a change to the top of 8 K of memory. This is sufficient to make the relocated monitor work. But some parts of other look-up tables are changed where they randomly produce valid code and so some errors may be introduced. So far they have not shown up when I have used the monitor, but beware. To be on the safe side follow the relocate instruction with a move instruction M1861 $=0861$, 0960 to restore the main look-up tables.

LOADERS

The checksum loader used to load the Monitor is separate and different from the one within the Monitor. The one in the Monitor will only load and does NOT give an error message. The other ($\$ 0700-\$ 07 \mathrm{FO}$) gives an error message asking you to rewind tape past error and press G after starting the tape again. It also uses the $\$$ sign as an execute instruction. As we have already seen $\$ 0800$ will cause execution from 0800 hex.

10	0e00		; *************************
20	0000		; ** EXtra routine for **
30	nood		; ** THE COMPUKIT **
40	0000		; ** EXTENDED MOHITOR **
50	0000		; *************************
60	n000		;
70	0000		;
80	0000		; ROGER DERRY
90	0000		; 1980
100	0000		;
110	0670		**\$0670
120	0670		;
130	0670		CRT-SFAS7
140	0670		CASS-SFCB1
150	0670		;
160	0670		;These addresses are for new
170	0670		; monitor. The old one for
180	0670		; CRT was \$8F2D
190	0670		; CASS 13 unchanged
200	0670		
210	0670		; USE EXTENDED Monitor
220	0670		; to eiter start amd
230	0670		; finish for hex save.
240	0670		; IE MONITOR COMMard "J"
250	0670		
260	0670	201COB	JSR \$0bic
270	0673	209F06	JSR HExSAV
280	0676	60	RTS
290	0677		;
300	0677		; Entry point for
310	0677		; SElf save and put
320	0677		; Start command at end
330	0677		; IE monitor command "u"
340	0677		
350	0671	208F06	JSR SELSAV
360	067A	A92E.	LDSA 4 2E
370	067C	20F006	JSR CC
380	067F	A907	LDA 1 S07
390	0681	20DE06	JSR Aout
400	0684	A905	LDa
410	0686	20DE06	JSR AOUT
420	0689	1947	LDA ${ }^{\text {P }}$ 47
430	068B	205006	JSR cc
440	068E	60	RTS
450	068F		
460	068F		; USES hex save to save
470	068F		; \$0670 To \$07FE
480	068F		
490	068F		Selsav
500	068F	A970	LDA A\$70
510	0691	85bc	STA SDC
520	0693	A906	lda \$06
530	0695	85DD	STA SDD
540	0697	19FT	lda isfe
550	0699	85DE	STA \$DE
560	0698	1907	LDA \$07
570	069D	85DF	STA SDF
580	069F		
590	069F		; modifien hex damp
600	069F		; from compukit vanual
610	069F		
620	069P	A900	hexsav lna ${ }^{\text {a }}$ SOD
630	06al	2057fa	JSR CRT
640	06A4	207aff	JSR \$pf 7a ; 10 nulls
650	06a7	A92E	LOOP2 LDA 12 E ; "."
660	06A9	20F006	JSR CC
670	06ac	ASDD	LDA SDD
680	Obat	20DE06	JSR AOUT
690	06B1	ASDC	LDA SDC
700	0633	20DE06	JSR AOUT
710	0686	192F	LDA A\$2F
720	06B8	20F006	JSR CC
730	068 B		
740	O6BB	A200	LOOP1 LDX \$ $\$ 00$
750	068D	AldC	LDA (SDC, ${ }^{\text {a }}$)
7770	068 F	20 EO 6	JSR AOUT
780	06 CL 4		LDA JSO JSASS
790	0667	A920	LDA 1 \$20
800	$06 \mathrm{C9}$	2057 FA	JSP. CPT
810	06cc		
820	06cc	E6DC	INC \$DC
830	06CE	D002	उME Ma
840	06D0	EfdD	INC SDD
850	0602	38	AA SRC
860	06D3	asde	lda sme
870	06D5	esoc	SBC SDC
880	0687	A5D	LDA SDP
390	06D9	Esdd	SBC \$ ${ }^{\text {d }}$
900	06DS	101A	BPL ADD
910	O6D 6	60	RTS
920	D6Dr.		
930	060E	85FC	adov: sta sfc
940	06EO	20acpe	JSR sfeac
950	06 E 3	AD64D1	LDA \$n164
960	06 Eb	$20 F 006$	Jsin cc
970	06 E 9	AD6501	LDA \$0165
980	06 EC	20F006	JSR CC
990	06 EF 6	60	RTS
1000	06F0		c
1010	06F0		CC
1020	06 F 0	20 BIFC	jSr cass
1030	$06{ }^{63}$	2057FA	JSR CRT
1040	0676	60	RTS
1050	0687		,
1060	06 F 7		; Extra routine to send
1070	06F7		A ADDRESS LHEN ABL-00
1080	06P7	1900	ADD LIA * $\$ 00$
11090	06F9	E5DC	SBC SDC
11100	06 FB	nobe	bre loopl
11120	065D 4	4C.A 706	

D.C.POWER CONTROLLER Michael Tooley в.А.

ALTERNATING current power controllers using silicon controlled rectifiers and triacs are now commonplace in both home and workshop. Such devices provide power control by allowing current to flow through the load for only a part of each cycle of the mains current. These arrangements are highly efficient and very little power is dissipated in the controller itself. There are a number of occasions when a similar high efficiency power control facility is desirable for use with equipment operating from a low voltage d.c. supply (eg: 12 V car battery). One possible solution is the use of duty cycle control where current is allowed to flow through the load in a series of rectangular pulses. The duty cycle of these pulses (ie: the ratio of 'on' to 'off' time) can be made variable whilst the periodic time of the pulses (ie: 'on' plus 'off' time) remains constant. The average value of current flowing over one or more periods of the pulse waveform is directly dependant on the duty cycle and thus the load power can be controlled.

The circuit described provides for the efficient control of power from d.c. supplies in the range 5 V to 15 V . The output is rated at 5 A maximum (maximum load power 55 W from a nominal 12 V supply) and can be varied over any desired range from zero to full output. Typical applications include the speed control of d.c. motors and dimmers for emergency and vehicle lighting systems.

DUTY CYCLE POWER CONTROL

The block diagram of a duty cycle power controller is shown in Fig. 1. This consists of an astable oscillator which has an adjustable duty cycle. The output of the oscillator which consists of a series of rectangular pulses is fed to the control input of a switching device connected in series with d.c. supply. The supply is thus interrupted in accordance with the pulses produced by the astable. The series switching device must be capable of handling the full rated output current and of switching at a fast enough rate to faithfully follow the control pulses. Any power dissipated in the series switching device is wasted and must obviously be kept to an absolute minimum. Fortunately the saturated switching action (ie: fully 'off' or fully 'on') ensures that the efficiency is very high since, in the 'on' state the voltage dropped across the device is very low whilst the current is high whereas, in the 'off' state the current is negligible whilst the voltage is high. Neither of these conditions results in any appreciable power wastage. The actual efficiency obtained depends upon a number of factors including the rise and fall times of the control pulses and the 'on' and 'off' resistances of the switching device.

CMOS ASTABLE CIRCUIT

A basic CMOS astable circuit is shown in Fig. 3. This simple arrangement consists of two inverters together with a resistor and capacitor. Assuming that initially the output of gate B is 'high' and the input of gate A will also be 'high'.

Due to the inverting action of the gates, the output of gate A will then be 'low' and the capacitor will start to charge through the resistor. Eventually the input voltage to gate B will exceed its threshold value and its output voltage will then rapidly fall to zero as the gate changes state. This, in turn, causes the output of gate A to become 'high' and a positive going pulse is transferred through the capacitor to the input of gate B. This further re-inforces the change of state with the output of gate B in the 'low' condition. The capacitor now discharges through the resistor until it again reaches the threshold value at which point the circuit reverts to its original state. Since there is only one time constant in the circuit $(C \times R)$ the 'on' to 'off ratio is approximately $1: 1$ In order to alter the duty cycle it is necessary to provide different charging and discharging time constants and this may be readily accomplished with the aid of two silicon switching diodes as shown in Fig. 4. The charging time constant of this arrangement is ($C \times R 1$) whereas the discharging time constant is ($\mathbf{C} \times \mathrm{R} 2$). The diodes merely provide a current steering function, selecting the appropriate resistor depending upon the state of the circuit. In practice the duty cycle may be adjusted over a very wide range (typically 100:1 or more) and time related waveforms for a near-unity duty cycle are shown in Fig. 5.

THE 4502

The i.c. used in the d.c. power controller is a CMOS tristate hex inverter. Whilst all six of the gates may be used independantly, separate Inhibit and Enable inputs are provided which are common to all of the gates. In normal operation the Enable and Inhibit inputs (pins 4 and 12 respectively) are connected to OV. Alternatively, if the Enable input is taken to $+V$ all of the inverter outputs float and effectively become open circuit or, if the Inhibit input is taken to $+V$ all of the outputs become OV. This latter facility is used in the d.c. power controller to override normal gate operation and set the final output (after a transistor inverter) 'high'.

CIRCUIT DESCRIPTION

The complete circuit of the d.c. power controller is shown in Fig. 6. The astable formed by IC1 and associated components has a duty cycle which can be varied by means of VR1.

SPECIFICATIONS

Input voltage range:	5 V to 15 V
Output voltage range:	5 A maximum
Load power:	55 W maximum
Control range:	Zero to full-output or pre-set
Switching frequency:	1.8 kHz
Efficiency:	90% at 12 V input and 2.5 A load current

E6838
Fig. 2. The effect of various values of duty cycle on the average value of voltage present

Fig. 3. Basic CMOS astable circuit

Fig. 4. CMOS astable with unequal duty cycle

Two pre-set resistors, VR2 and VR3, are used to determine the minimum and maximum output duty cycle respectively and hence the range of adjustment which can be obtained by means of VR1 can be modified accordingly. To obtain the full range of control both pre-sets should be in the minimum resistance position and, in applications where the widest possible range of adjustment is desirable, they may be replaced by short circuit links. Alternatively where only a single reduced power setting is required VR1 may be replaced by short circuit links and the output is then pre-set by means of VR2 and VR3. The series switching device is a Darlington power transistor operated in common emitter mode with the load connected in its collector. A fuse is included for protection and an l.e.d. is incorporated in order to provide a rough indication of the state of the output.

E6081
Fig. 5. Waveforms for a CMOS astable oscillator

Fig. 6. Full circuit diagram

50062

CONSTRUCTION

The power controller is built on a small single sided p.c.b., the foil layout of which is shown in Fig. 7. The corresponding component layout (on the top side of the p.c.b.) is shown in Fig. 8. The use of a 16 -pin d.i.l. socket is recommended for IC1 as this readily facilitates removal of the device in the event of failure. The power Darlington, TR1, requires a heat sink at least $10.5^{\circ} \mathrm{C} / \mathrm{W}$ for output currents of up to 2.5 A . Above this value a heat sink of $4^{\circ} \mathrm{C} W$ is recommended. In the former case the heatsink may be secured to the p.c.b. using the same nut and bolt (M3) which retains TR1. Insulating washers and bushes are thus not required. In the latter case the heatsink may be external to the p.c.b. with the transistor connections consisting of three short flying leads. The metal tab of the TIP126 is connected to the collector and hence it may be necessary to insulate the tab from the heatsink in applications where the heatsink is to mounted directly upon a metal chassis. Good thermal contact between the transistor and heatsink is essential in either case. Care should be taken to ensure the correct connection of the polarised components and it is recommended that assembly be made in the following sequence; i.c. socket, fuseholder, resistors, diodes, capacitors, pre-sets, transistor and heatsink. Connections to the p.c.b. are made using terminal pins which are a push-fit and then soldered to the copper foil.

When the p.c.b. assembly is complete it should be carefully checked for dry joints and solder bridges between tracks. The p.c.b. is then mounted in the base of the case to which the controls and l.e.d. have been fitted. The wiring diagram for the p.c.b. and controls is shown in Fig. 9. When the wiring is complete the 5A fuse should be inserted in the fuseholder and the entire assembly should be carefully checked before connecting to the supply. Note that the supply input and output wiring should be capable of carrying the full load current of at least 5A.

Fig. 7. Printed circuit layout (actual size)

Fig. 8. Component layout

TESTING

Connect a 12 V d.c. supply to the input of the power controller. The supply should preferably be current limited at around 1 A but, if this facility is not available, a 1 A fuse can temporarily be fitted in the positive supply lead during the initial testing. With S1 in the 'full' position the output l.e.d. indicator should be brightly illuminated and the brightness should not vary with the setting of the output control, VR1. Set VR2 fully anti-clockwise and VR3 fully clockwise then select the DIM position of S1. The I.e.d. brightness should now vary from zero to full over the entire range of adjustment of VR1. Now set VR2 fully clockwise and VR3 fully anti-clockwise. The l.e.d. brightness should now be somewhat reduced and should vary over only a small range as VR1 is adjusted:

Connect a 12 V lamp of 6 W rating to the output of the controller. The previous checks should be repeated and the brightness of the lamp load should be seen to vary accor'dingly. Note that switching from the 'dim' to the 'full' position of S 1 should always restore full brightness regardless of the setting of VR2, VR3 or VR1. This completes the testing and the power controller is now ready for use.

APPLICATIONS

One obvious application for the d.c. power controller is that of dimming the lights fitted to a vehicle. These should be rated at no more than 55 W but, where several lamps are to be controlled simultaneously, the Darlington output stage can be duplicated in order to permit a maximum power of 55 W in each load as shown in Fig. 10. The dimmer may be

COMPONENTS ...

Resistors

R1	470 ahm $\frac{1}{4} \mathrm{~W}$
R2	$1 \mathrm{k} \frac{1}{2} \mathrm{~W}$
VR1	100 k lin. carbon pot.
VR2	100 k hor. min. skel. preset
VR3	100 k hor. min. skel. preset
Capacitors	$100 \mu 16 \mathrm{~V}$ p.c. mounting
C1	4 n 7 ceramic plate or disc
C2	

Semiconductors

D1, D2	1N4148 (2 off)
D3	Red l.e.d.
TR1	TIP126
IC1	4502 B

Miscellaneous

S1 SPDT toggle or slide switch
P.c.b.
P.c.b. fuseholder or fuse clips

5 A 20 mm fuse
Heatsink (see text)
ABS case
16 pin d.i.l socket

Constructors Note

Components and p.c.b. available from Howard Associates, 59 Oatlands Avenue, Weybridge, Surrey, KT13 9SU

66068

Fig. 9. Wiring diagram for the power controller
fitted to interior lights, spot-lamps or fog-lamps and also to dipped (or 'half-beam') headlamps in order that they may be operated in a reduced brightness condition during conditions of marginally impaired visibility (eg: light mist, twilight, or drizzle). Such a facility ensures that the vehicle is readily visible whilst eliminating the unpleasant dazzling of oncoming drivers which may otherwise occur. Many motorists will agree that, under certain conditions, dipped headlights are too bright whilst sidelights can be inadequate. The power controller helps bridge the gap between the two and furthermore the change to full brilliance can be made at the flick of

Fig. 10. Method of driving two (or more) loads
a switch without reverting to the variable control. If a single dimmed position is all that is required the three connections to the variable control, VR1, are simply linked together and the desired brightness adjusted by means of VR2 and VR3. Another use for the controller is when a high intensity light is to be used for background illumination or as an inspection lamp. In this case the power controller not only reduces the lighting to a suitable level but also helps reduce the load on the battery. Small d.c. power tools (including 12 V p.c.b. drills) can be controlled provided they require no more than 5 A from a nominal 12 V supply. Similarly 12 V soldering irons can be kept running at low heat and will quickly return to full temperature when the power controller is switched to full. The model maker can use the unit to provide variable motor speed control with the added bonus of prolonging battery life when an a.c. power supply is not available.

C90LH CASSETTES

56p each (minimum of 5); 53p each (minimum of 25).

 Prices include VAT and postageMade by a leading European manufacturer for Videotone, these tapes are of excellent quality and we are pleased to announce this new PE service.
Over the last couple of years PE offers arranged with Videotone have proved highly successful and we have now been able to arrange special prices (only available to PE readers) on these high quality tapes. The offer is a result of Videotone's direct selling policy; send in a current special PE coupon for prompt delivery of tapes.

We believe these tapes are the best value around and we are pleased to offer them to readers. They are covered by a money back guarantee (return within 21 days for refund). Not only are the tapes of high quality but the cassettes are of screw together construction and the case label has space for notes on the recordings.

Send valid coupon to: Videotone Ltd., 98 Crofton Park Road, Crofton Park, London SE4.

CLEF eiectronic MUSIC

ELECTRONIC PIANOS

SPECIALISTS SINCE 1972 Clef Pianos adop the most advanced form of Touch Sccsitive astion which
fimulates piano Kive incria using a simulates piano Key inerial
palented elcaronic cechnique.

71 OCTAVE

DOMESTIC MODEL
COMPONENT KIT £244
COMPLETE KIT $£ 399.90$ manufactured fb75 Two Domestic Moderis are available Four intermixabice Voice Contros miay be used tio obitin a wide variation or
Piano tone includina Piano ione. including Harpsichurd.
Both Soft and Susiain pecals are Both Soft and Sussain pedals are in corporateca in the Design and internal
ETrects are $\begin{aligned} & \text { provided in } \\ & \text { in }\end{aligned}$ the form of Tremolo. Honky-Chorus. and Phase/Flanger.
${ }_{\text {P }}^{\text {A }}$ A power amplifice incegrates into the Plano top which may be removed from
the Base for casy y ransporataion.

SIX OCTAVE

DOMESTIC MODEL COMPONENT KIT £217 manufactured fess Component Kiis include Keyboard Key switch hardware, and all electronic components and may be purchased in four stages at no extra cost omplete Kits further contain Cabinets. Domestic Models both Power Amplifier and Speaker. The Six Octave Stage Piano has the designed for use with an Exernal SIX OCTAVE
STAGE MODEL
COMPONENT KIT £217

MANUFACTURED E530

MICROSYNTH

A NEW MUSIC PROJECT FROM PRACTICAL ELECTRONICS

We are pleased to announce that

STRING

ENSEMBLE
(As Published in conjumiction
with 'Practical Electronics? A very popular Keyboard Synthesizer Kit, for Group or Home use. with a four oclave compass and split Keyboard facility

COMPONENT Kit \$179.00
we have been appointed by A. R. Bradford M.Sc. as the kit supplier for this exceptional Instrument. Please write or telephone now for details.

ROTOR-CHORUS

Comprchensive two speed organ rotor simulator plus
three phase chorus generator. COMPONENT KIT $\mathbf{8} 89.00$ KEYBOAROS
Our Square Front Keyboards
88 NOTE (A-C) 557.00
73 NOTE (F F) 447.00
FIVE OCYAVE 388.00 FOUR OCTAVE $£ 28.75$

Since 1972 Clef Products have consistently produced leading designs in the ficld of Electronic Musical Instruments. many of which have been published in technical magazines. With musical quality of
paramount importance. new techniques have been evolved and the fatest musically valid lechnology has been incorporated into projects which have been suecessfully completed by constructors over a wide range of technical capability. Back up TELEPHONE advice is
available to all our customers. PRICES INCLUDE VAT, UK CARRIAGE \& INSURANCE
(CARRIAGE EXTRA ON MFD PIANOS). Please send S.AE. for our complete lists, or use our telephone VSA/ACCESS Servies. Competitive quotations can bc given for EXPORT orders - in Australia please conmet JAYCAR in Sydney.

CLEF PRODUCTS (ELECTRONICS) LIMITED

"THE computer BAND-BOX"
(As Publistred in conjunction with "Practical Electronics") COMPLETE KIT
£289

£399

MANFD.

PRICES INCLLDE MASTER RHYTHM heid of Computer Music Generation
A MUSICIANS INSTR UMENT FOR:
SOLOISTS - SINGERS - RECORDING-PRACTICE LIVE PERFORMANCE-COMPOSITION
The BAND BOX provides an Electronic Backing Trio consisting of Drums. Bass. and a Chord Instrument (one of 16
Waveform/Enevelope combinations). with the capicity to store over Waveform/Enevelope combinations). With the capicity to store over
3.000 User Programmable Chord Changes on more than 120 different Chords. Using advanced Microprocessor technology. Playback of 50 . 100 Scores can be executed in any Kev and at chosen Tempo. Complete Music Pad is electronically Indexed and stored on
secondary battery back-up. Facility exists for composition of Intro, secondary battery back up. Facility exists for composition of Intro,
Repeal Chorus. and Coda sections including Muliple Score Scquences. Sockets are provided for Volume Pedal and Footswitch plus
separate and mixed instrument Outputs. Total size $19^{\prime \prime} \times 11^{\prime \prime} \times 44^{\prime \prime}$ separate and mixed instrument
incorporating Master Rhythm.
THE Programmable DRUM MACHINE (As Published in conjuncrion nith 'Practical Electronics') EIGHT TRACK PROGRAMMING
TTWENTY-FDUR PATERNS/ TWELVE INSTRUMENTS
SEOUENCE SEQUENCE
OPERATION. OPERATION.
COMPLETE 779.00
MANFO

MANFO. 6119.00

The Clef Master Rhythm is capable of storing 24 selectable thythmic Eight Instrumentation tracks. A three position Instrumentation on to trol expands the number of instruments available to twelve, grouped into sounds typical of playing with Drumsticks. Brushes, or Latin American Bongos and Claves. Sequence operation allows two rhythm sections to be coupled with the second (B) section appearing at four. eight or sixteen Bar repeticontrols to suit individual tasted thus producing good musical sound

Now our name means more,than ever before.

If the name BICC-Vero sounds only half familiar, that's not the only difference you're going to notice.
Because not only have we added to our name we've also added to our technology. Building upon our well established industrial product range and incorporating the very latest ideas and techniques to ensure that you too are working at a state-of-the-art standard.
But you will of course still recog nise the old favourites. Products like Veroboard, which pioneered in so many ways, today's thriving pastime of electronics.

Bigger means better in other respects. Being part of the giant BICC-Vero Electronics Group ensures that we're a major force in electronics technology. Our R and D scope is enlarged, and our supply and distribution facilities improved.

And because we're professionals we appreciate the very real professionalism of the hobbyist market - and service it
accordingly.
Yes, we're sure you'll notice the difference. As well as that pleasantly familiar personal touch.

Industrial Estate, Chandlers Ford,
Eastleigh, Hampshire SO5 37R.
Tel: Chandlers Ford (04215) 62829.

The mechanics of electronics

FRANK W. HYDE

THE SHUTTLE

Readers will have had a continuous briefing on the recent Shuttle mission named Pathfinder which had the task of evaluating the extent of the Shuttle's capability to deal with fundamental Scientific tasks. All the nine experiments of the special package were United States derived with the exception of one. This was the one designed and built by the University of Kent at Canterbury, it is known as the Microabrasion Foil Experiment (MFE). It will test a new method of analysing micrometeorites and cosmic dust, including material from comets, with the aim of improving understanding of the solar system. The experiment was funded by the Science and Engineering Research Council.

THE IMPORTANCE OF A COMET

A new move in an attempt to cover adequately the return of the Halley comet has now come from America. A group of officials from The National Aeronautics and Space Administration have met to discuss the possibility of diverting a satellite already in orbit to intercept a short period comet, Giaconbini-Zinner, in order to gather data that could be of use when the Halley encounter is made. This mission could provide data at least six months earlier before the Halley encounter.

It is proposed that the International SunEarth Explorer craft should undergo a trajectory change that will enable a Lunar swing by to put the ISEE within 186 miles of the comet nucleus on September the 11 th or thereabouts, in 1985. The spacecraft could gather data about particles and the field conditions of the comet and also measure the extent of the solar wind which could possibly be disturbed by Halley.

It would seem that there has been a wealth of data, which has passed un-noticed, thrown up from the imaging of Giaconbini-Zinner by Elizabeth Roemer of the University of Arizona. She noted that this comet 'was un-
usually dusty for a short period comet and would appear to be more active than others'. The comet has a period of 6.5 years. Another point about it is that it is associated with the Draconid meteor shower. Roemer's findings wholly justify a visit in its own right. These circumstances have combined to make it possible for a proposal to be made for which the cost will be considerably below the amount that NASA were originally expecting with the full scale Halley Mission.

The reason for the capability of the ISEE 3 to perform this special change of activity is the manoeuvring propellant from Earth and circling above and below the ecliptic plane at something of the order of 93,000 miles every six months. This vehicle is the first that has ever been parked in the 'Halo Orbit' at a libration point where the gravitational equilibrium exists between the Sun, the Earth and the Moon. Data about the solar wind has been returned and this is being combined with other data from satellites nearer to Earth to provide a warning of changes that might affect other Air Force activities.

The amount of cometry data that can be usefully gained is of course limited since it has no imaging capability. About half the payload of instruments could be useful. The others can be shut down thus conserving some energy. However studies of the plasma densities and speeds of flow could be recorded. Indentification of some of the heavy ions could be made and the magnetic field level direction in vicinity could be recorded. Useful data is to be gathered about the Earth's Tail which may contain unusual particles and field orientation. This is expected to be in the region of $80-250$ radii. The early swing by for the Lunar manoeuvrer in March 1983 would improve the data acquisition from the Earth's tail and then the next lunar swing by on January Ist 1984 would fling the vehicle away from Earth toward the intercept point. During these activities the spacecraft would pass within 12,500 miles of the Moon's surface. The actual intercept date is likely to be September 11th 1985.

The greatest cost of the modification is likely to be in the tracking facilities. The deep space tracking station in Australia would lose contact with the spacecraft since the tilt of the Earth would be wrong at that time of the year. However, the Arecibo 1,000 feet diameter telescope at Arecibo which is expected to be doing radar scans of the comet anyway would be ideally placed. Following this point of intercept the spacecraft would then come back in a trajectory within one degree of the Sun line to Halley's comet. There is little that the spacecraft could do in regard to Halley's comet yet no doubt the mission would be worthwhile.

THE SECOND LANDING ON VENUS

On March 5th the USSR Venera 14 landed on Venus. The type of terrain was quite different from that of the area where the other Venera spacecraft landed. Venera 13 showed no signs of the harsh and jagged rocks on its area of landing. It was clear that this lander which arrived four days earlier than Venera 14 was in an area which suggested weathered foothill surface. Some small craters could be
seen. These were no larger than potholes covered with hillside debris.

The pictures from the Venera 14 site showed large thick boulders of dark grey rock and apparently of cellular texture suggesting chemical erosion.

The areas between the rocks appear to be of a brownish black fine grained material. Data received from the landers seems to indicate that the sky is orange brown or reddish and the result of a reflection of the colour of the Venusian surface. The process that may be taking place is similar to that on Mars. There is some photochemical disassociation of water and carbon dioxide with the oxygen getting bound up in the rocks. Analysis of the rock shows that 60 to 70% of the planet's surface is covered with an ancient basalt melt. There is evidence of highly alkaline potassium basalts that are the prevalent components of Venus. These do not appear on the Earth's surface according to Soviet belief. There seems to be a measure of disagreement here. However the full revelation of the data will not be made till later. There are claims that the Soviet statement is not quite true and that although rare these basalts have been found on the Earth's surface. Generally the hopes for these two landers were not as special as was expected. Venera 14 did transmit data for 57 mins after landing and this included chemical data derived from drilling surface material and depositing it in the X-ray fluorescence analysis chamber

There is now a revival of interest for the original radar imaging plan for Venus. This was removed from the 1983 budget. It is now suggested that a modified mission might be attempted. Called the Venus Mapper Spacecraft it would be placed in a $3 \cdot 3 \mathrm{hr}$. elliptical orbit round the planet. At its lowest altitude the height would be of the order of 250 km . At its highest it would be about $8,000 \mathrm{~km}$. It would have a pole to pole sweep about 26 km wide. This would give a varying height of pass between 250 km and $2,000 \mathrm{~km}$. The change in height would not affect the resolution, so it is said. To arrive at the essential requirements such items as 75 metre resolution requirements would be dropped and in a number of cases ordinary airflight instruments might be used.

NASA DROPS BACKUP CREW SYSTEM

Nasa has now put into operation a new system for crews. It now intends to nominate prime crews well in advance of the missions to be undertaken. This change of attitude has grown out of the fact that so many astronauts have flown the shuttle or are so highly trained that they could take over immediately in the event of a prime crew member not being fit.

Another reason for this move is that the shuttle flights have to become much more frequent as the turn round time is reduced to accommodate the time already sold.

It has become increasingly clear that the shuttle must reduce to the original concept and that is that it will have to follow the pattern of normal flight processes, albeit at a higher technological level. It is also a requirement if the fiscal success is to be achieved and the way made free for the vast commercial expansion of the use of space for the benefit of all mankind.

PROGRAMMABLE TIMER/CONTROLLER T.J.JOHNSON PART TWO

A^{s}S mentioned in the introduction last month, the system has a capacity of 18 "timer sets". A timer set is simply a string of instructions which tells the micro-computer the number of the switch, which day of the week and at what time the switch should be turned on or off.

All 18 timer sets can apply to just one switch on one day in a 7 -day cycle or to four switches on just one day or two switches on three days etc etc. The number of variations is very large and it can be seen that the applications for such a system are endless.

However the first function to be programmed is actually setting the clock.

CLOCK SETTING

A typical keyboard sequence for setting the clock would be:

$$
\text { WED WEEK* AM } 3 \text { O } 0 \text { CLK }
$$ which would start the clock at 3:00 AM on a Wednesday. For other times and day of the week the key sequence is always the same. The day of the week is registered by operating the WEEK key. Either the AM or PM key is pressed for the time of the day, and then the actual time is entered. The clock will not actually start until the CLK key is pressed, this makes it very easy to synchronise the display with another clock or time signal.

Note that all times must be entered in the 12 hour system to avoid errors. The timer will convert times in the 24 hour system but the AM/PM selection will not operate. For example if a time of 18:45 is entered, the timer will convert this to $6: 45$ but it will not change the AM or PM indication to match.

* The "WK DISP" key should of course be used here, and in subsequent programs.

FIXED TIME PROGRAMS

A fixed time program will change the state of a switch when the clock reaches the time programmed. For example: 1 SW TUE WEEK AM 715 ON would turn switch 1 on at 7:15 AM on Tuesday and every subsequent Tuesday.

Keys 1234 select the required switch number and are entered by the SW key. The day and time are in the same order as for setting the clock. The last key pressed assigns a particular function to that switch. Either: ON, OFF or SLP (Sleep).

OVERLAPPING PROGRAMS

Several programs may be overlapped in time. However, if a number of different functions are programmed to occur at the same time, all except the last program entered is ignored. For example:

2	SW	WED	WEEK	PM	2	0	0	ON
2	SW	WED	WEEK	PM	2	0	0	OFF
2	SW	WED	WEEK	PM	2	0	0	ON

A variation on the above would be where the programmed time is the same, but the day of the week is different. For example:

3	SW	EDAY	WEEK	AM 5	0	0	ON
3	SW	SAT	WEEK	AM 5	0	0	OFF

would turn switch three on at 5:00 AM on every day of the week except Saturday, when the switch would be turned off.

Programs may also be entered where the day of the week is the same but the time is different. For example:

4	SW MON	WEEK	PM	5	0	0	SLP
4	SW	MON	WEEK	PM	4	4	5
OFF							

this set of programs would turn switch four off at $4: 45 \mathrm{PM}$ on Monday instead of 5:00 PM.

DIRECT SWITCH CONTROL

Any of the four switches may be operated directly via the keyboard. The standard key sequence would be:

3 SW ON
which would turn switch three on as soon as the ON key was pressed. The switch would therefore remain on until it was turned off by the sequence:

$$
3 \text { SW OFF }
$$

The SLP key may also be used in direct switch control programs, in these cases the switch would be turned on and then turned off one hour later. None off these direct programs are stored in the memory, and all are independent off any pre-programmed sequence assigned to that switch.

As they key sequence is entered, the display and l.e.d. indicators display the program setting. All indications can remain on display without halting the operation of the timer or clock. Any switch already programmed will switch on or off as required without altering the display status.

To return to real time, the CLK key is pressed and the current time and day is displayed.

If the next program is completely different, for example a different switch is to be used, then a similar set of key operations as before is required to enter that program in the memory. If however, the switch and day of the week are the same, then a shortened key sequence can be used. For example:

1 SW TUE WEEK AM 730 ON-Normal key sequence AM 800 OFF-Shortened key sequence would turn switch one on at 7:30 AM and then off at 8:00 AM on each Tuesday. A number of these shortened key sequences can be used to program several functions of the same switch on the same day.

It is important to note that each sequence counts as one timer set. To program the same action of switch one to occur on each day of the week the E DAY key is used in place of the day of the week key in the above examples. Example:

1 SW EDAY WEEK AM 7.15 ON would turn switch one on every day at 7:15 AM.

From the above it can be seen that the ON and OFF keys switch the programmed switch on or off at the preprogrammed time, a third function key is available and is designated SLP (Sleep). This key differs from the other two in that it will switch on a switch at a certain time and then turn that switch off exactly one hour later. For example:

2 SW WED WEEK AM 7 0 0 SLP
would turn switch two on for one hour beginning at 7:00 AM on Wednesday.

INTERVAL PROGRAMS

In an interval program, only the switch number and the time interval is entered. The function, either ON, OFF, or SLP is performed after the time interval has passed. For example:

$$
4 \text { SW } 3 \quad 4 \quad 0 \quad \text { ON }
$$

would turn switch four on, after three hours and forty minutes has elapsed. As with fixed time programs, a shortened key sequence may be used.

PROGRAM DISPLAY

Programs which are stored in the memory can be recalled and displayed using the SW/DISP or WK/DISP keys. For example the key sequence:

2 SW/DISP SW/DISP

displays the programs for switch number two. Note that the SW/DISP key must be pressed twice before the program is displayed. Successive programs for the same switch are displayed every time the SW/DISP key is pressed twice. A similar key sequence is used to display the programs for the remaining three switches. Programs for a specific day of the week are displayed in a similar manner except this time the WK/DISP key is used. For example a typical key sequence would be:

WED WK/DISP WK/DISP
the display would then show, with every second successive depressing of the WK/DISP key, all the programs entered for that day. The display would thus indicate the switch number, and whether the switch would be on or off at the time shown. The day of the week l.e.d. would of course be already illuminated. Programs which have been entered to occur each day are re-called in a similar manner but using the E DAY key. For example:

> EDAY WK/DISP WK/DISP
would show all the programs which were entered with the E DAY key. Once again two depressions of the WK/DISP key are required to show each program.

When programs which use the SLP function are displayed, the display changes with the progress of the program. For example the program;

2 SW FRI WEEK AM 600 SLP
would turn switch two on for one hour beginning at 6:00 AMion Friday.

Before the program is executed, the indication would show it as a SLP program. The l.e.d.s would indicate switch two, Friday. SLP, AM, and the display 6:00. However between 6:00 and 7:00 AM when the switch is on, the display
would indicate switch two, Friday, AM, OFF and 7:00. After this time the display would return to the original SLP settings.

Thus each time the switch state of a SLP program changes the display is updated to show the next change in state of the switch.

PROGRAM ERASING

Programs entered in the memory can be cleared entirely or selectively by using the CM key. When this key is pressed twice, all programs stored in the memory are erased. Programs for individual switches or days of the week can be cleared without affecting any other programs in the memory. For example the key sequence:

$$
2 \mathrm{SW} C M
$$

will erase all programs relating to switch number two. The following key sequence would clear all programs entered for Wednesday:

WED WEEK CM

Programs which have been stored using the E DAY key are erased using that key in place of the day of the week.

PROGRAMMING ERRORS

The four digit display will show the error indication of 99:99. This error indication occurs if the key sequence is incorrect, or if a program is entered with an invalid time. The clock and timer operate both in the 12 hour system, so it is therefore important to convert any time settings from the 24 hour system to the 12 hour system.

The timer will accept times entered in the 24 hour system, and will convert the time to the 12 hour system. Note however, the AM/PM display will not be affected, thus resulting in programs which seem to be correct but are of course invalid. The indication of 88:88 on the display occurs if an attempt is made to store more than 18 programs (timer sets).

During programming, errors may be corrected by several methods. Depressing the CLK key will display the current real time and at the same time will erase any attempted program which have not yet been completed or stored in the memory. The CLR key is used during the course of programming, and is pressed when a known error has just been made. An example here, is when the time 6:46 has just been entered when it should have been 6:45. The CLR key is pressed and erases all which preceded it.

APPLICATION AND EXAMPLES

Before giving one or two examples it is important to realise the maximum power which is available. When the unit is connected to a standard 13A mains socket, the maximum power available is 3120 W (13A). As we are using four outlet sockets this means that the maximum power available at each socket is $780 \mathrm{~W}(3.25 \mathrm{~A})$. Obviously, not all the sockets are going to be in operation at the same time, thus it is feasible to connect appliances which require more than the 780 W available at each socket, providing the maximum power is not exceeded. Note also for safety reasons the maximum power which can be taken from each socket is 1440W (6A - the rating of the sockets/plugs). The relays used in the design can handle this sort of power quite easily. as their maximum rating is 10 A .

EXAMPLES

A simple example to start with. It is required that a radio be switched on at 7:00 PM and switched off half an hour later. At the same time a tape recorder is required to switch on and record the half hour program. The recording needs only be done on Saturdays. A program for the above would be:

$1 \quad$ SW SAT	WEEK	PM	7	0	0	ON
(Recorder)		PM	7	3	0	OFF
$2 \quad$ SW	SAT	WEEK	PM	6	5	9
ON*						
(Radio)			PM	7	3	0
OFF						

*(To allow the radio to warm up!)

Thus, on every Saturday the Radio would switch on one minute early to warm up, then at 7:00 PM for half an hour the recorder would record the program and then at 7:30 PM both would turn off. Simple isn't it!

One of the most useful applications of a programmable timer is in home security. A typical example for controlling say two appliances, thus enabling a wide rangé of on/off times to be achieved so the pattern cannot be recognised could be as follows: (One switch for a downstairs light, and one for the TV or hi fi).

1	SW	MON	WEEK	PM		6	1	7
(Lights)			ON					
1	SW		1	1	0	8	OFF	
1		TUE	WEEK	PM		6	5	6

A total, and in fact the maximum number available, of 18 timer sets. Note, that for a home security system, we must give preference and the widest variation to the lights. After all it is the house that is well lit that is usually avoided by potential burglars. Sound of course plays a great part and the remaining timer sets available give a reasonable appearance that the house is in fact occupied. Of course, if you had two Programmable Timer/Controllers, the number of appliances (lights for example) can be increased as well as the variation between them. For example, one timer controller can be used to control the lights for say Monday to Thursday, while the other can control the lights from Friday to Sunday.

Finally, some constructors might be interested in a more practical example. As with all program listings we must first write down exactly what we require.

First is the central heating, this must be turned on say, an hour before you come home on most days except Saturday and Sunday when we can turn the heating on earlier. Next is the radio/tape recorder which is a half hour program beginning at 2:00 PM Monday to Friday. The television is required to turn on at home-coming time, 5:30 PM and then turn off at, say 11:50 PM, except on Sunday. The kettle must of course be boiling by the time you arrive home, so say we turn it on at 5:27 and allow it to boil for 3 minutes. The program listing is:

Switch allocation: Switch 1-Central heating
2-Radio/tape recorder
3-Television
4-Kettle

1.	SW	EDAY	WEEK	PM		4	3	0	ON
				PM	1	1	0	0	OFF
1	SW	SAT	WEEK	AM		8	0	0	ON
1	SW	SUN	WEEK	AM		8	0	0	ON
2	SW	EDAY	WEEK	PM		2	0	0	ON
				PM	2	3	0	OFF	
2	SW	SAT	WEEK	PM	2	0	0	OFF	
2	SW	SUN	WEEK	PM		2	0	0	OFF
3	SW	E DAY	WEEK	PM		5	3	0	ON
				PM	1	1	5	0	OFF
3	SW	SUN	WEEK	PM	5	3	0	OFF	
4					PW		7	0	0
ON	ODAY	WEEK	PM	5	2	7	ON		
4				PM	5	3	0	OFF	
4	SW	SAT	WUN	WEEK	PM	5	2	7	OFF

In all, a total of 16 timer sets are used. Note in one or two of the switch programs, we must cancel the ON times when the switch is not required to switch on (say Saturday and Sunday). The clearest example is in the case of the kettle. Obviously it is not required to turn on at 5:27 PM on both Saturday and Sunday. Thus we cancel that instruction by providing the micro-computer with two instructions to be performed at the same time.

BATTERY BACK-UP UNIT

Some constructors may feel that a battery back-up system would be useful in the event of a mains supply failure. The following circuit can be conveniently built as an add-on unit with very little modification to the original Programmable Timer/Controller.

CIRCUIT DESCRIPTION

The complete circuit diagram for the back-up unit is shown in Fig. 1.

IC1 acts as a comparator, which compares the relatively stable reference voltage of the Zener diode with that of the input voltage, V_{in}. This voltage can be between 12 and 16 V depending on the components used in the power supply.

In its stable state, where $V_{\text {in }}$ is present and is higher than the voltage of the Zener diode, the output of IC1 is normally high. Thus TR1 is turned on and the relay is energised. This allows the input voltage $V_{\text {in }}$ to be passed to the remainder of the power supply. Reference to Fig. 4 will make this clear and show the connections required.

If for any reason the mains supply should fail, $V_{\text {in }}$ will no longer be present, thus the voltage at pin 3 falls, the output of the i.c. goes low. TR 1 turns off and the relay de-energises (contacts as shown in Fig. 1). In this position, the relay contacts connect the ni-cads into circuit and a d.c. voltage to the power supply is maintained.

Reference to Fig. 4 will illustrate an important function of the back-up circuit which is to effectively "blank" the display and l.e.d.s. As can be seen from the diagram, when the backup is connected into circuit only the 9 V regulator receives the battery voltage. No voltage appears on the 12 V line, thus the displays are effectively turned off.

This arrangement is not perfect however, in practice the display and l.e.d.s are illuminated but only faintly. However. as we shall see later the displays and l.e.d.s can be turned off completely thus saving battery power.

The remainder of the circuit is the battery charger, this is a fairly simple arrangement which keeps the batteries "topped up" rather than charging them at their full rate.

TR1 and associated components form the charging circuit, together they provide a constant current of between 1 and 3 mA to keep the ni-cads trickle charged during normal mains operation.

6605
Fig. 1. Circuit diagram for the back-up unit

CONSTRUCTION

Construction is quite straight-forward, the entire circuit being constructed on a small p.c.b., the track layout is shown in Fig. 2 and the component layout is shown in Fig. 3.

The p.c.b. has been designed such, the ni-cads can be mounted on the board thus making the back-up unit completely self-contained. All components are standard and should present no problems when buying. Once construction is completed and before continuing, adjust the wipers of $V R 1$ and VR2 to about $\frac{3}{4}$ rotation clockwise.

CONNECTION TO THE TIMER

Connect the $\mathrm{V}_{\text {in }}$ and OV wires from the back-up unit to convenient points on the power supply board, say across C1 (see Fig. 4). Next, unsolder the input lead of the regulator and position the lead well away from the heatsink. Connect the $V_{\text {out }}$ lead from the back-up to this lead, preferably sleeving the connection. No other connections are required and the unit can be tested.

TESTING AND ADJUSTMENT

At this stage the ni-cads should not be connected. Connect the Timer/Controller to the mains and switch on, the

COMPONENTS

Resistors

R1, R3	1 k 2 (2 off)
R2	2 M 2
All	
R 5% carbon	

All $\frac{1}{4}$ W 5% carbon
VR1. VR2 10k hor (2 off)

Capacitors

$\mathrm{C} 1, \mathrm{C} 2 \quad 47 \mu 25 \mathrm{~V}$ electrolytic (2 off)

Semiconductors

D1	BZY88C6V8 6.8V Zener
D2	1N4007
D3	BZY88C12 12V Zener
D4	1 N4002
TR1	BFY50
TR2	2 N2905
IC1	741

Miscellaneous

RLA 12 V 320 ohm coil 1 pole change over (Electrovalue SMR12)
B1,B2 PP3 size ni-cads.
Battery connectors, printed circuit board.

Fig. 2. P.c.b. design

Fig. 3. Component layout
relay should not operate. Assuming it does not, rotate VR1 wiper anti-clockwise until the relay does operate. It may be found that the relay "chatters", if this is the case continue rotating the wiper until the relay operates cleanly.

Check that the relay operates cleanly by repeatedly turning off and on the mains supply. If the relay still chatters, then rotate the wiper slightly further anti-clockwise. It is important to get this adjustment correct to ensure trouble free operation later on.

If an ammeter is available connect the leads between B1 positive and $B 2$ negative. Adjust VR2 to give a reading of between 1 and 3 mA . If no meter is available then leave the

Fig. 4. Connection diagram
wiper about $\frac{3}{4}$ clockwise, this should give approximately the correct charging current.

Finally connect the ni-cads using the two PP3 connectors. It is important that the batteries are connected whilst the mains supply is on, otherwise it will be found that the Timer/Clock cannot be reset when the mains supply is eventually connected. If this situation does occur, and this can be recognised by the switch l.e.d.s not pulsing, then disconnect the batteries, turn on the mains supply, insuring that the circuit has been reset, and reconnect the batteries.

FINAL CHECK

As a last final check, enter the correct clock time and a simple program. For example:

$$
1 \text { SW SAT WK PM } 20 \text { ON }
$$

Press the CLK key followed by 1 SW SW to display the program. Allow the Timer/Controller to run for a few minutes then switch off the mains supply. The display and l.e.d.s should dim considerably but should still show the program as entered. Do this check several times allowing a few minutes between each switch on and switch off. If all is well the Timer/Controller is then ready for use.

Remember that, if the location of the unit is changed for any reason thus disconnecting the mains supply, the batteries should also be disconnected before re-applying the mains. This will then allow the unit to be reset correctly. Some constructors may like to mount an on/off switch connected in series with the batteries to provide an easier method of disconnection rather than opening the case each time.

LIMITATIONS

The main limitation imposed upon the circuit is that of battery current capacity. The types used can provide up to 75 mA , and in the present circuit this means that the unit can continue on battery power for up to 10 hours, or slightly more. Obviously larger capacity batteries can be used, for example 10 ' AA ' size batteries can be used giving about 12 V which gives a reasonable margin before the voltage drops below the necessary $9-10 \mathrm{~V}$ required. Using batteries such as these will extend the operation of the unit by a factor of about 7. It is perfectly feasible to use batteries of the type just mentioned, providing space can be found inside the case.

As mentioned earlier, blanking of the display and I.e.d.s is not complete. This is due to various leakage paths within the circuit, applying the 9 V supply to the displays. However, there is a method which can be used to turn off the display and I.e.d.s completely.

Assuming that real time is being displayed and a power cut occurs. The battery back-up circuit will come into operation, preserving the programs but NOT the time. With the mains removed there is no source of 50 Hz to operate the clock. The display should show the time at which the power cut occured but at a very much reduced brilliance.

To turn off the display, thus reducing the current drain the following key sequence should be entered:

1 SW SW

This key sequence should in fact display the first program entered for switch number 1 . With further presses of the SW key, subsequent programs should be displayed. There should however, be a point reached such that no further programs will be displayed, i.e. neither the display or any of the I.e.d.s should be illuminated. It is at this point where no further keys should be pressed, in this situation the absolute minimum current drain is achieved. In the prototype, this was about 3.5 mA .

CUSTOM cased UK 101 with 32 K RAM, 600 baud cass, SW space invaders, asteroids etc. £275. C. Dunne, 87 Ram Gorse, Harlow, Essex. Tel: 0279415335.
UK101 cased 24 K 300/600 Eprom board with toolkit and exmon, cegmon, hi-speed cass. board. Tel: 01-950 6436.
SEVENTY Wireless World 1972-81 £7. Sixtyfive $\mathrm{Hi}-\mathrm{Fi}$ News 1969-80 £5. Tel: Ross on Wye 63626 (Jones).
COMPTON CL72 organ electrostatic generators, motor, leslie unit, £75 lot. Also other parts working order, cheap. Tel: Lapford, Devon
442.
SCOPE Mullard $720 / P r a c t i c a l ~ W i r e l e s s ~$ 1940/50 test equipment WW11 TX/RXS/meters etc. Tel: Tony 01-9950716.
WANTED: any software, hardware, or equipment for a Hewlett Packard 2116 B comnputer. Send any information to: N. Belson, 20a Furzedown Road, Highfield; Southampton.

SINCLAIR digital multimeter model DM2 5function 20 ranges bench type, hardly used, £45 o.n.o. Mr. K. Dawod, 35 Gomer Road, Townhill, Swansea.
MICROTAN 65, graphics, keypad manual plus T.U.G. newsletters $£ 50$. G. A. Stevens, 38 Buckstone Lea, Edinburgh. Tel: 031-445 5217.
TANDY quick printer with UK 101 interface 32 columns as new, original packing, manual $£ 100$. Tel: Ellefsen, Worthing 090336424.
ACORN atom 12 k RAM 16 K ROM, utilities, floating point, via plus software, data $£ 210$ o.n.o. D. A. Seddon, 14 Video Court, Mount View Road, Crouch End, London N4. Tel: 01-340 0013.

DX160 communications receiver $0.15-30 \mathrm{MHz}$ plus matching speaker. v.g.c. £80. Digital readout unit $£ 30$ extra. Mr. P. Hicks, 48 Fairway Crescent, Allestree, Derby. Tel: 0332556218 after 6 pm .
36 HE's 30 EE's plus various other mags. PE's PW's, total $90+$ £ 20 . Swap? MK 14μ Comp. Mr. J. Kearns, 101B Park Brow Drive, Kirkby, Liverpool.
RECORD deck with motor, trans, arm, needle, speed control. No case or electronics, £10. Tel: 075922619.

FIVE elliptical speakers, one U/S transistor radio £1. Holdway, Flat 9, No. 10 Westwood Road, Southampton.
VIC20 + software + vouchers, complete boxed as new worth $\mathrm{E} 200+$. Any offers over $\mathrm{f} 170+$. Buyer collects, genuine reasons. Adam Bernstein, 4a Wieland Road, Northwood, Middx. Tel: N/wood 27733.
8K SUPERBOARD II with PE decoding module, analogue board, enhanced screen, Cegmon cassette, all cased $£ 300$ o.n.o. Mr. G. Page, 50 Bradshaws, Hatfield, Herts. Tel: Hatfield 65946.
HI-FI tubes TVA-10 stereo valve power amp. Unused gift. Cost $£ 398$ a bargain at $£ 290$ o.n.o. Tel: Chandlers Ford 61404.
TRANSCENDENT 2000 built fully operational f200. Can deliver. Write Jon, 10 Lymington Avenue, London N22.
I HAVE programming the 6502 third edition by Rodney Zaks price $£ 10.77$. Mr. R. Grayson, 34 Victoria Road, Haywards Heath, West Sussex RH 16 3LY.
SUPERBOARD II with 610 Board, PE Decoding Module, analog board and printer interface in case. £500. S. Hobson, 3 Church Close, Lindal, Ulverston, Cumbria.

A selection of readers original circuit ideas.

Why not submit your idea? Any idea published will be awarded payment according to its merits.

Each idea submitted must be accompanied by a declaration to the effect that it has been tried and tested, is the original work of the undersigned, and that it has not been offered or accepted for publication elsewhere. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.

Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not inserted in the text.

MIC OPERATED SOUND-TO-LIGHT

THIS was designed for use with a local pop-group which uses at least two amplifiers. The problems of connecting the same lightshow to two or more amplifiers simultaneously and also the reluctance of the musicians to let me connect anything to them (the amplifiers. that is!) made it necessary to use a microphone.
The crystal earphone used was the usual high-impedance type. and the earplug had been removed for this application. The minute signal given out by this device is greatly amplified by the 741 operational amplifier. the gain of which can be increased or decreased by altering the 470 k feedback resistor. It is important that the input lead is screened. and the screen must be connected to 0 V .

The output of the 741 is a.c. coupled by a capacitor to a transistor amplifier and inverter. The variable resistor used was dug
out of an old valve chassis. and it was logarithmic. The output transistor amplifies the signal and passes it to a pulse transformer. When this transistor is turned on by an input signal, the capacitor connected to its emitter discharges through the pulse transformer. It had a noticable effect on the brightness of the lights when this capacitor was added. The signal when it reaches the pulse transformer must still be of a reasonable quality, for the pulse transformer will only transmit a change of potential difference across its primary. If the signal is excessively distorted. the result is not impressive.

There is nothing special about the
power supply. and the l.e.d. can be omitted if an indicator is not required. FS2 in the output lead should be selected according to the power of the lighting to be connected. If you want to be able to switch all the lights on manually, connect a metal plate to the input. Touching this should result in alt the lights coming on when the two variable resistors are correctly adjusted. The isolating transformer makes this safe. but it would be suicide to use touch control on any unit without isolation!
P. Gatehouse.

Stowe.
Bucks.
n greenhouses it is often preferred to use oil rather than electric heating, in which case accurate temperature control is difficult to achieve. However, expensive plants can easily be ruined if the ambient temperature falls below a critical value. This, for example, could happen in cases where the heater extinguishes because of lack of oil or wick.
The circuit shown was constructed to signal the failure of such a heating system. Once the temperature falls below a preset valve, an alarm gives an audible indication of the condition.

The sensor is an LM391IN temperature transducer which has a sensitivity of $10 \mathrm{mV} /{ }^{\circ} \mathrm{K}$. It has also a voltage reference and operational amplifier fabricated on the same chip. In the circuit the op-amp is connected as a comparator, the output being made to switch as the temperature traverses a set trip point determined by

VRI. The trip voltage V_{T} is derived from the internal voltage reference which comprises the power leads of the LM391IN and, with the values shown, gives a typical variation equivalent to $0-30^{\circ} \mathrm{C}$. (Note: trip temperature in ${ }^{\circ} \mathrm{C}=100 \mathrm{~V}_{\mathrm{T}}-273.2$). If necessary, the lower and upper limits can be extended by altering R1 and R2 respectively. However, one should bear in mind that the maximum operating range of the temperature transducer is 0 to $70^{\circ} \mathrm{C}$. For good stability, R1 and R2 should be metal oxide or thick film.

The output from the sensor is applied to the Darlington power transistor which is made to operate a 12 V audio alarm. A small amount of positive feedback is applied via R3 to give a little hysteresis at the point of switching.
The circuit requires a $12 \mathrm{~V}(9 \mathrm{~V} \mathrm{~min})$ power supply and the standing current is 3 mA . The sensor can be made into the

form of a probe by insulating with sleeving and encapsulating with silicon rubber compound or epoxy resin, making connections with 4 core cable. Encapsulation is essential, otherwise surface moisture would affect the performance.
D. Wedlake,

Newport Road,
Cardiff.

ALARM CLOCK

[5559]

THIS alarm was designed to wake a heavy sleeper by quality of the noise produced rather than by mere volume. and so far seems to be fairly successful. Clock functions are performed by a CM161 l.c.d. module from Ambit, which is connected to a $1 \frac{1}{2} \mathrm{~V}$ cell and setting switches $\mathrm{SI}-3$ as described in the supplied data sheet.
The ALI output from their module is normally high, giving a pulsed output when the alarm time is reached. This resets itself after fifteen seconds. Here it is used to set the latch formed by ICla.b:

TR 1/TR2 translate the level of the alarm output to the 9 V supply of the circuit.

When the latch is set. IC la output goes high. IClb low, thus the reset is removed from counters IC2/IC3 and the astable around ICIc. d is enabled and oscillates at several Hz . The oscillator output now clocks the counters and drives TR 4 to provide an interrupted supply for the 555 AF oscillator (which is effectively disconnected when the alarm is off).

Outputs from IC3. via R8.R9, change the pitcl of the bleeps from IC4 using the

FM input pin 5. The Q1 output of IC2 is taken to the reset input of the 555 , thus the alarm sounds a sequence of notes then a series of quiet clicks at the supply is switched, a cycle which repeats until the Q7 output of IC2 goes high (after about four minutes), resetting the latch via TR3. or the manual reset, $\mathbf{S} 4$, is pressed - this has no effect in the first fifteen seconds as the pulses from the ALI output continually set the latch again.
K. Penton,

Caversham,
Reading

[EA275]

T
HIS circuit lights a l.e.d. when the car battery supplies a current of more than about I amp.

The positive supply to the circuit is taken direct from the battery pole and the input to the 741 is taken from the alternator (or dynamo) output. The 741 thus
compares the voitages between the ends of the thick cable which connects the alternator to the battery. A 1 amp discharge produces a voltage drop along this cable of the order of a few millivolts, causing a rising voltage at the output, and switching on TR1. VR1 allows the current threshold to

CAR BATTERY DISCHARGE INDICATOR

be varied. Apart from providing the reference voltage for the voltage regulator formed by TR2, TR3, R8, R9 and R10, the Zener diode D1 clamps TR1 emitter. The current through R7 is therefore practically constant, current to drive the l.e.d. being diverted from the Zener, which helps to improve voltage regulation.

Transistor types have not been specified. since low gain, low power types work successfully in the circuit.

Although the circuit should be protected from extremes of humidity and temperature, the prototpye has worked reliably for three years mounted in a ventilated box in the engine compartment.
A. Ljungfeldt. Götoborg.

Sweden.

TRAILER LAMP MONITOR

THE circuit shown gives automatic indication of correct trailer direction indicator lamp operation by sensing the current drawn by the trailer lamps.

The circuit work's as follows: when the trailer or caravan lighting plug is connected. and the car direction indicators are operated (for example to "left") TR2 operates as an emitter follower with the trailer left-turn lamp as its emitter load.

The current drawn by the trailer lamp produces a voltage across R2 sufficient to turn on TRI via R3 and therefore the l.e.d D1 left-turn warning indicator flashes. its cathode being grounded by the nonflashing car right-turn warning lamps.

The l.e.d. D2 right-turn warning indicator does not flash because its cathode is connected to the flashing car left-turn warning lamps, and therefore has both its anode and cathode at 12 volts at the same time.

D3 and D4 prevent reverse polarity breakdown of the l.e.d.s when the trailer is not connected.

One big advantage of the use of this circuit is that the car flasher unit has virtually no extra load when towing (base current of TR 2 or TR 3 only) and therefore operates at the same flash rate as normal.

Note that R2 should be reduced to 0.25 ohm if there are two flasher lamps for each turning direction on the trailer or caravan.

The circuit as shown is for negative earth cars, but by using p.n.p. transistors for TR2 and.TR3, and n.p.n. for TR1, and turning the diodes and l.e.d.s around, it should work for positive earth cars.

Connection of the circuit to the existing car wiring is at points A. B, C. D and E.
R. O'Rourke.

Eastleigh.
Hants.

WHEN an external device is required to be controlled by a microcomputer the usual method is to employ a Peripheral Interface Adapter or PlA. However. in a dedicated system where the input function is not required the following circuit may be used.

The circuit can be placed anywhere in the computer's memory by selecting the required address on the control inputs of the exclusive OR gates IC1. IC2. IC3 and IC4.

For example, if the address
$\begin{array}{cc}1111000011110000 & \text { BINARY } \\ 61680 & \text { DECIMAL } \\ \text { F0F0 } & \text { HEX }\end{array}$
is placed on the control lines then, when the same address appears on the MPU address bus, the wired OR output, point A. goes high and the information which was present on the data bus is strobed through to the Q outputs. When the address bus alters due to the next programme instruction. point A goes low and latches this in formation. The data bus can now change without altering the Q outputs.

If used in conjunction with the UK 101. the data could be poked to the above address example using the instruction.

POKE 6I680, 38
This would set the Q outputs to.

00100110

and switeh on lines six, three, and two. A later instruction.

POKE 61680. 1

would switch off lines six, three and two and switch on line 1. The circuit can be used in this manner to switch eight devices. However, by further decoding of the eight Q output lines a maximun of 256 devices could be controlled.

As a debugging aid, the contents of any preselected memory location could be examined. If the particular memory location is addressed during a program run then the memory contents will appear on the Q outputs until the location is re-addressed and the new contents will then be displayed.
R. Macfarlane.

Aberdeen.
Scotland.

MEN dealing with MOS integrated circuits. it is often necessary to be able to detect static charges. The device to be described will do this.

When something with a static charge is brought into the vicinity of the circuit a voltage is induced between points A and B, this forces the f.e.t. (TRI) to conduct causing the voltage at point C to rise from 0 to 9 volts. This will enable the oscillator, and bleeping will come from the crystal earpiece (WD1).

[^3]
SPEAK AND MATHS

The flurry of patenting activity by Texas Instruments of Texas, USA, continues. European patent applications 0042488 covers the Speak and Maths toy which is now in the shops. Speak and Maths is a modification of Speak and Spell, which is covered by patents previously reported. For Speak and Maths a non volatile memory stores digital data representative of random arithmetical problems. The same memory also stores digital data representative of the correct solutions and data to control a speech synthesis IC when triggered into action the toy throws up stored problems at random, announces them in a synthesised voice, checks answers keyed in by the user against the store of correct solutions and responds accordingly with synthesised speech.

Adjacent European application 0042 487, also from Texas, covers a toy which is not yet on the market. The aim is to improves a student's hand writing but it could be of value in teaching dyslexic children who confuse b with d and so on Figure 2 shows the basic unit and figure 1 shows the block circuit. Drawing surface 10 is a "magic slate" of the well-known type where a translucent plastic sheet overlays a dark waxy backing. Pressure on the top sheet, with a blunt scribe, causes local adhesion and a visible mark. This can be erased by separating the sheet from the backing. Imager II is either a tv camera or, more simply an array of 32×32 light sensitive elements arranged in a matrix. RAM 12 stores a digital representation of the image on the slate 10 as viewed by imager II. Microprocessor 13 examines the contents of RAM 12 and compares it with stored digital data which is representative of letters of the alphabet and numbers.
The student turns on the system through keyboard 21 . Speech synthesis circuits 14 , $16,17,18$ and for digital display 23 they
create an audible and/or visual instruction to draw a letter or number on the slate 10. This is viewed by imager II and analysed by microprocessor 13 to produce a verbal or digital display comment. If for instance the user is asked to draw the letter " N ", the response may be "you have printed to N backwards. Try again" or "Correct, That is a well drawn N^{\prime}

Figures 3 and 4 show a more compact design, with the imager housed inside the unit and arranged to view the underside of the slate via lens 35 and mirror 36 .

SPEECH SYNTHESIS

Text books can't carry up to date information on speech synthesis, because the technology is moving so fast. So patents remain the best and most current source reference. They are also a very cheap source of information, even at the recently increased cost of $£ 1.60$ per published British patent or patent application, post free and regardless of length. We have already reported on the publication of British patent application 2058522 from Texas Instruments of Dallas which describes speech synthesis circuitry used by Texas for the "Speak and Spell" toy now in the shops. Now two more Texas patent applications have been published and these are also concerned with Speak and Spell. British patent numbers 2076205 and 2077 018, are lengthy and detailed documents, and thus good value for money. No. 2076205 for instance runs to 32 pages of text and 50 sheets of drawings and circuit diagrams, all for $£ 1 \cdot 60$. Again it contains useful source references to background information, including published IEEE lectures and prior patents on synthesis chips and digital filters. Some of the ground covered in previously reported application 2058522 is repeated le.g. the compression of a 6000 Hz bit rate to 1000 bits per second), but the logic used for Speak and Spell is detailed.

Fig. 4

SERVICE TRADING CO

WHY PAY MORE?
MULTI RANGE METER. TYpe MF15A a.c. d.c. -100. Sensitivity 2000 V. 24 range. diameter METERS (New) - 90 mm DIAMETER A.C. Amp. 0 - 1 A. A.c. Volt. $0-300 \mathrm{~V}$.
D.C. Amp $, ~ 10-2 A, 5 A . ~ 0-10 A ~$ $0-50 \mathrm{~A}, 100 \mathrm{~A}$
D.C. Volt. 15 V .30 V . D.C. Vott. $15 \mathrm{~V}, 30 \mathrm{~V}$.

MEAVY DUTY SOLENOID,

 nermitent operation. Approx. 20 ib. £5.95 P. \& P. E 1.50 . ($\mathbf{E 8} .57$ Incl. VAT)
R. 4 T .

240 V AC SOLENOID. Approx: 10 Hb pull. 10% rafing. Size
$80 \times 33 \times 26 \mathrm{~mm}$. Price $\mathrm{fi} .75+$ P. $\&$ P. 54 p (F 2.63 incl. VAT $\&$ 8.)

VAT) D.C. SOLENOID. Price: $£ 1.50+$ P. \& P. 40 p. (E2. 18 incl.
N.M. S. WESTOOL SERIES D6 Model A3 24V. D.C. Price E1.50 + WESTOOL SERIES D4 Modei A. 24V. D.C. Price $\mathbf{f 1 . 0 0 + 3 0}$ p. \& p. (Total incl. Va

AG/GT 24 V . D.C. 70 ohm Coil Solenoid. Push or Pull.
Adjustable travel to $3 / 16$ in. Fitted with mounting brackets and
 50p. (min 3 off.) (£3.85 incl.

MINIATURE SOLENOID FLUID VALVE

 $12 \mathrm{~V} \mathrm{D.C}$.15 ohm coil normally closed. Stainlesssteel body with variable flow adjuster ti" B.S.T. sieel bocy outlite.
linlite: $58 \times 27 \times 25$
Size: 52. Size: $58 \times 27 \times 25 \mathrm{~mm}$. Weight: 130 gr
Price: $£ 2.60+35 \mathrm{p}$. P. \& P. P. (Total incl. VAT £3.39).
230V A.C. SOLENOID OPERATED FLUID VALVE. Media: Air, Gas. 7 psi. Water 5 psi. $3 / 8^{\prime \prime}$ inleVoutlet. Forged brass body. Nórmaliy closed. Manut. by Dura
Price: $\mathbf{5 5 . 5 0 + £ 1 . 0 0 \text { p. \& p. (Total incl. VAT- } \mathbf { E 7 } . 4 8 \text { . }}$

SOLID STATE EHT UNIT

Input 230 V ac. Fully isolated output 10 mm spark. Approx.
15 Kv . Built in 10 sec . Timer. Easily modified for 20 sec 30 soc, to a continuous operation. Designed for boiler ignition. Dozens of uses in the field of
elc.
Size: Length 155 mm . width 85 mm , height 50 mm . Weight
Size: Length 155 mm . Width 85 mm , height 50 mm . Welight
530 grammes. Price e5.00 +75 pence post \& packing.
Total inc. VAT E6. 61 . $\mathbf{N . S .}$

A.E.G. CONTACTOR

 20amp 1 break: 600 V : 20 amp. Price: E5.75 P. \& P. 75 p . (E7.47 AMF CONTACTOR
230 V AC coil $2 / 025 \mathrm{mp}$ contacts $\mathbf{~} 5.50 \mathrm{P} . \& \mathrm{P} .75 \mathrm{p}$ total
SMITH BLOWER
Type FFB. 1706. Small, quiet, smooth running. 240V, A.C.

MICRO SWITCHES

Sub. Min. Honerwell Lever m/s type 3115 m 906 h .
10 or $£ 3.50$ post paid ($£ 4.03$ incl. VAT). These V3
10 for $£ 3.50$ post paid ($£ 4.03$ incl. VAT). These V3
types.
Button type (Pye) 10 for $\mathbf{£ 3 . 0 0}$ ($\mathbf{\Sigma 3 . 4 5}$ incl. VAT).
Button type (Pye) 10 for $\mathbf{£ 3 . 0 0}$ (E3. $\mathbf{5 5}$ incl. VAT).
Short Lever type 16 amp. rating (Crouzet) 10 for
E4.00 (E4.60 incl VAT).

Roller Type (Bonnella) 10 tor $\mathbf{E 3 . 5 0 .}$. (54.03 incl. VATI). N.M.S. D.P. C/O lever m/switch mig. by Cherry Co. USA. Precious metal
low resistance contacts. 10 for $\mathrm{E3.00} \mathrm{P}$. P. POP. (4.02 incl. A.C. Wkg. TUBULAR CAPACITORS.
 P. \& P. up to 2.5 mfd .25 p. 3 mfd . to 20 mfd . 50 p . All plus VAT.
SPECIAL OISCOUNT FOR BULK ORDERS
N. S.

24 volt. D.C. BLOWER UNIT

Praclston 24 volt. D.C. $0-8$ amp Blower that works well on 12 V
0.4 amp D.C. Producing 30 cu . ft. min at hormal air pressure.

INSULATION TESTERS NEWI
Test to l.E.E. Spec. Rugged metal construction
suitable for bench or field work constant speed
 cluth 1000 M , 555 P \&
incl. VAT). S. A. . for leaflet.
Vet another outstanding offer.

IMFD 600V Dubilier
E1.50 P. \& P. 50p. (E2.30 incl. VAT). (Min. 10)

VARIABLE VOLTAGE TRANSFORMERS

INPUT 230/240V a.c. 50/60 OUTPUT 0-260V 200 watt (1 amp inc. a.c. voltmenter $\mathbf{£ 1 5 . 0 0}$
$0.5 \mathrm{KVA}\left(2 \frac{1}{2} \mathrm{amp}\right.$ MAX)
$\mathbf{£} 19.00$ $.1 \mathrm{KVA}(5 \mathrm{amp} \mathrm{MAX})$
$.2 \mathrm{KVA}(10 \mathrm{amp} \mathrm{MAX})$ $.2 \mathrm{KVA}(10 \mathrm{amp}$ MAX) 5 KVA (25 amp MAX) $10 \mathrm{KVA}(5 \mathrm{amp}$ MAX)
$15 \mathrm{KVA}(75 \mathrm{amp}$ MAX)

3-PHASE VARIABLE VOLTAGE

 TRANSFORMERSDual Input $200-240 \mathrm{~V}$, or $380-415 \mathrm{~V}$. Star connected.
3 KVA 5 mp per phase max. 108.00 $\begin{array}{lll}\text { SKVA } & 5 \mathrm{amp} \text { per phase max. } & \mathrm{E108} .00 \\ \text { 6KVA } & \text { Carriage, packing }\end{array}$ $\begin{array}{llll}\text { IOKVA } 16 \text { amp per phase max. } & \mathbf{~} 329.00 & \text { \& VAT extra. }\end{array}$

LTTRANSFORMERS

SNIPS OF THE MONTH

Omron Type M. 24 V. A.C. 4 c/o. h.d. Price: $80 p$ post paid 192p
incl. VAT). Base 200 post paid (23p incl. VAT).

HY-LIGHT STROBE KIT MK IV

 Latest type Xenon white light flash tube. Solid statetiming triggering circuit $230 / 240$ a.c. operation. Designed timing triggering circuit $230 / 240$ a.c. operation. Designed for larger rooms, halls, etc. Spsed adjustable $1-20$ t.p.
Light output greater than many (so called 4 Joule) Light output greater
strobes. Hy-Light Strobe Kit Mk N. f27.00 P. \& P. £2.00
(£33.35 incl. VAT). Super Hy-Light Strobe (approx, 16 strobes. Hy-LighT). Super Hy-Light Strobe (approx. 16
(£33.35 incl. VAO
joules). Price $\mathbf{~} 40$ P. \& P. £ 2.00 ($\mathbf{(4 8 . 3 1 \text { incl. VAT). }}$ joulest. Price £40 P. \& P. £2.00 (£48.31 incl. VA). 82.00 ($\mathbf{I} 14.95$ incl. VAT). Super Hy Light Strobe Kit. details on

XENON FLASHGUN TUBES

Range available from stock. S.A.E. for details. ULTRA VIOLET BLACK LIGHT

FLUORESCENTTUBES

(For use in stan bi- pin fittinas).
12 in .8 W Wrtr E 3.00 ($P 3.97$ incl. VAT).

Complete ballast unit for either 6^{n}, 9^{n} or 12^{n} tube 230 VAC op
 op f5.50 P. \& P. 55 (f6.96 incl. VAT).
400 watt UV lamp and bsallast complete £38.00. Post ©3.50
($\mathbf{4 7} .73$ incl. VAT + P). 400 watt UV
E2.07 (ti8. 40 incl. VAT.

BLACK LIGHT

Self-ballasted Mercury U.V. 175 W Bulbs. Avallable for either
8.C. or E.S. fitting. Price incl. p\& 8 VAT $£ 11.50$.
Black Light U.V. Fubes from 6 in to 4 Hf from stock.
details. U.V. fubes from bin to 4 from stock. Foolscap s.a.e.

EPROM ERASURE!

$+$
for the fraction of the price of a made-up Unit 2537 Ante Kit of parts less case to include $12^{\prime \prime} 8$ wati 2537 Angst Tube, Ballast Unit, pair of bi-pin leads, Circuit. LESS CASE. PrIce: $\mathbf{£ 1 3 . 6 0 + 7 5 p}$ P \& P (Total inc. VAT £16.501.
WARNING: WARNING: Tube used in this circult is highly

- dangerous to the eyes. Uni? MUST be fitted in suitable

50 WATI 250Ω £5.50 P. P. 50p (f6.90 ind. VAT).
100 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 4 \mathrm{k} \Omega / 1.5 \mathrm{k} \Omega / 2.5 \mathrm{k} \Omega /$ Black, Silver, Skirted knob callibrated in Nos. 1 -9 $1 \frac{1}{2} \mathrm{in}$. dia.
 CL -L write in your enquiries.
$230 / 240 \mathrm{~V}$ A.C. ${ }^{3}$ e/o. 11 pin base. S.
f1.35 plus P. \& P. 30 p (1.90 incl. VAT).
KMKI Relay. 230 V . A.C. 1 c/o open type 10 amp contact, mf.
by "Keyswitch" 80 P P. \&i P. 25 (21.21 incl. VAI). 5 for $£ 3.75$ by "Keyswitch" 80 p P. 8 . P. 25 p ($£ 1.21$ incl. VAT). 5 for $£ 3.75$ $24 V A . C$ Sealed 3 c/o. 10 a. 11 -pin. $\mathbf{E 1 . 5 0}+25 p$ P. P
 $24 V$ D.C. $2 \mathrm{c} / \mathrm{o} .7$ amp contacis. Sealed, octal base. £1.30 P. \& Mercury Wetted contact relay mfg, by Clare. Type HGSM $1003.18 / 24 \mathrm{~V}$ D.C. 1 do. E2.00 P. \& P. 30 p (E2.65 inc. VAT).
VERY SPECIAL OFFER 0.12 V DC. 2 make contacts. NEW. 3 VERY SPECIAL OFFER O-12VDC. 2 make contacts. NEW. 3
 coil. 5 for £2.50 plus P. \& P. $50 p$. Total incl. VAT D.C. Relays: Sealed 12 V i co 7 amp octal base f1.00 P. \& P .
30 p (1.50 incl. VAT). Seaied 12 V 3 col 7 amp 11 -pin E1.35 P \& P. 30 p ((1.90 incl. VAT). 24 V . Sealed 3 co 7 amp 11 -pln f1.35 P. \& P. 30p ($\mathbf{E 1 . 9 0}$ incl. VAT).
D.C. Relay, sealed 6/12V. D.C. $2 \mathrm{c} / \mathrm{o} .10 \mathrm{amp}$ centacts. Single
hole fixing. Push on contact5. f1.30 P. \& P. 30 p (El .84 incl hole fixing. Push on contacts. f1.30 P. \& P. 30p ($\mathbf{E 1 . 8 4}$ incl.

GEARED MOTORS

5 rpm 240 V A.C. Mf. by Carter. 55.50
f1.00 P. \& P. (E7.48 incl. VAT).
71 pom KLAXON motors approx. 251 b inch. 71 rpm WYNSCALE motor approx. 10 lb inch Above two motors are designed for 110 V .
A.C. supplied with auto transformer 240 V .
A.C. operation, f9.75 P. \& P. £ 1.50 (f12.94 incl. VAT). N.M.S. 30 rpm. $230 / 240 \mathrm{~V}$. a.e. 501 b in. mf. PAAVALUX.
Prlce $\mathbf{1 5} 150$ P. 8 P. f 2.00 (E 20.13 incl VAT)
Prlce $£ 15.50$ P. \& P. $£ 2.00$ ($\mathbf{2} 20.13$ incl. VAT). N.M.S.
240 V AC. 5 P
240 V. A.C. 5 rpm Motor (Mif. Carter) non-reversible. Price: $\mathbf{f 5} 50$ 42 RPM 110 AC 50hz 1001 b
230 A.C. Sped remains at 230. A.C. Speed remains at 42 A.P.M. but torque reduces by
50%. Price $£ 16.50$ P. \& P. $£ 2.50$ ($\mathbf{2} 21.28$ incl. VAT) N.M.S.

100 rpm .110 V . a.c. $115 \mathrm{lb} . \mathrm{ln} ., 50 \mathrm{~Hz} .2 .8$ amp. single phase sphit, capacitor.
Length 250 mm . Dia. 135 mm . Spinde dia.

VAT). R. \& T. Suitable Transformer for 230/240V operation. Price $£ 8.00$ P. 8 P. $£ 1.50$ ($£ 10.93$ incl. VAT
200 rpm .35 lbs in. 115 V . 50 kH.
Price: $£ 16.50$ P. \& P. $£ 2.00$ ($£ 21.28$ incl. VAT). N.M.S. Suitable Transformer for $230 / 240 \mathrm{~V}$. a.c.
230/240V A.C. SYNCHRONOUS GEARED MOTORS
$1 \mathrm{rpm}, 2 \mathrm{rpm}, 6 \mathrm{rpm}, 12 \mathrm{rpm}, 6$ revs. per day. 12 revs. per day.
Any rype. Price: $\mathbf{£ 3 . 9 0}+40 \mathrm{p}$. $\& \mathrm{p}$. (f 4.94 incl. VAT)
Geared Motor. $120 \mathrm{rpm} 1 / 10 \mathrm{hp}$ approx. $15 \mathrm{lb} . \mathrm{in} .230 \mathrm{~V}$. A.C. splndle 8 mm dia +30 mm long. Complete with capacitor and elay for max. load starting. Offered at mere fraction of mifs. price

Brand new CASSETTE TYPE MOTORS

230V a.c. FAN ASSEMBLY
5 blade 6 int. or 4 blade 3 bic. alumin
E4.50 P. \& P. 75 p (E6.04 incl. VAT).

24V. D.C. GEARED MOTOR

24V. D.C. 200 rpm
mfg containing $9 \times 24 \mathrm{~V}$. D.C. Solenoids. microswitches, friction clutch. precision gearing etc. etc. Ex-equipment London
Transport Ticket Printer. Price: £8.00 P. \& P. £2.00 (E11.50 incl.

SUB-MINIATURE PRECISION BUILT GEARED MOTOR

24V D.C. REVERSIBLE MOTOR

Parvalux type SD 12 L. 24 D.C. shunt wound Motor, either 133
rpm 651 ins in Gearbox ratio $30: 1$. Current 6.8 amp. Rating continuous. Will operate on reduced power and speed at 9V D.C. or less. Size Dia. 16 mm , Width 150 mm , Shah dia. 16 mm . Price
f 16.50 P. $\&$ P. $£ 2.00$ (21.28 incl . VAT). 100W Rheostat 1 ohm speed control available $£ 7.25$ ~ P. \&. P.

ROTARY CARBON VANE VACUUM 8 COMPRESSOR.
COMIPRESSR. Direct coupled to $1 / 3 \mathrm{h.p}$. $110 / 115 \mathrm{~V}$. A.C. Motor 4.2 amp .1380 rpm . Motor manuf. by
A.E.I. or G.E.C. Pump by Williams. Max. Vac. 25° H.G. Max. pressure cont. 10 p.s.i. Int. 15 p.s.i. Max. air-flow 3 e.f.m. at " " 0
H.G. Price: $£ 30.00$ P. \& P. $£ 4.00$ ($£ 39.10$ Incl. VAT). N.M.S. Suitable transformer for 240 V . op. f10.00 P. \& P. $\mathbf{f} 2.00$

WATER PUMP
Mfg. by S.P.A. Astaisi of lialy. 220/240v A.C. 50 hz .2800 R.P.M

VEEDER-ROOT PRE-SETCOUNTER Type MG1636. 3 fig. countdown any number from 999 to 001.
230 V A.C. 2 Wheel 5 stting. Changeover Microswitch to inform external circuitry on completion of countdown. Size: Width
85 mm . H . 65 mm . Dpth. 70 mm . Price $\mathrm{f} 4.00+75 \mathrm{p}$. \& P . (Totat incl. VAT f5.46).

SANGAMO WESTON TIME SWITCH

contacts with override switch dia. 4×3 price $\mathbf{£ 9 . 5 0} \mathbf{P}$. \& 8 P E 1.50 (E12.08 incl. VAT). Also avaliable with Solar dial. R. \& T. Type S288 1 on, or 1 timed c/o every 24 houre, day omitting
devlce. Price: $£ 1.00+£ 1.00$ p. \& p. (13.80 incl. VAT). Type S388. As above. plus 36 -hours spring reserve. Less perspex
cover. Price: $£ 13.00+£ 1.00$ p. 8 p. (£16.10 incl. VAT).

TIME SWITCH VENNER TYPE
ERD Time 5 witch $200 / 250 \mathrm{~V}$ a.c. 30 amp contac
2 on $/ 2$ off every 24 hrs . at any manually pre-se lime. 36 hour Spring Reserve and day omitting

device. Bult to highest Electrictiy Board | device. Bult to highest Electrictiy Board |
| :--- |
| specification. Price fi11.50 P. \& P. $£ 1.50$ |
| 1 R |

A.E.G. TIME SWITCH

80amp. 2-on/off Spring Reserve Timeswitch, Price $£ 15.50$ P. \& P. $£ 1.50$ ($£ 19.55$ inc. VAT)

NICADS:UK'S LOWEST PRICES

WATER RESISTANT WATCHES
With Alarm. Hourly Time Signal, Stopwatch and
Calendar
100 METRE WATER RESISTANT

W.100	W.150C	W.150
Resin	S/S case,	All
case/strap	resin strap	S/S
$£ 19.95$	$£ 21.95$	$£ 24.95$

Time and auto calendar. Alarm and hourly chimes. Countdown alarm timer with repeat memory function. Professional $1 / 100$ second stopwatch. Time is always on display, regardless of display mode. Amazing 5 year lithium battery life. Superior to the W-250

50 METRE WATER RESISTANT

W-20
Resin
case/strap
f12.95

W-21
Resin
S14.95

12/24 hour time and auto calendar. Alarm and hourly chimes. Professional $1 / 100$ second stopwatch to 12 hrs. Compact and slim cases, approx. 8 mm thick. Lithium

OTHER MODELS

AX-210. The world's most versatile watch?
Analog Display

LC Display of hours and minutes
Digital display

* Local time, 12 or 24 hour * Full calendar display
* Dual time, 12 or 24 hour * Alarm time display
* Countdown alarm timer with emory function
* Professional $1 / 100$ second stopwatch
Hourly time signal. Daily alarm melodies. Papid forward/back melodies. Rapid forward/back Usual Price $£ 29.95$
Lowest price elsewhere

$$
+\quad £ 27.95
$$

Usually f 19.95
Price elsewhere
t $£ 18.95$

CA 85/901. Time and auto calendar. Calculator Alarm and hourly chimes. Stopwatch. Dual time DIGITAL SPACE INVADER game
J-100. Similar to the CA-85 but without dual time and with a JOGGING COMPUTER instead of the game function
GM-10. Alarm chrono with SPACE INTERCEP. TOR game

FX-3600P 38 step programmable

pwatch

 FX-7 £ $10 \cdot 95$, FX-5 $£ 8 \cdot 95$.

LOOK, NO BATTERIES

THE SENSATIONAL NEW SHARP PORTABLE COLOUR COMPUTER

CE-150 PRINTER

POCKET COMPUTER $£ 169.95$

A complete system that can fit in a triefcase. For Business, Management, Engineering and Hobby applications. BASIC computer with QWERTY expansion module ($£ 49.95$). 8 K module available soon. 4-colour high resolution printer with two sassette interface and system expansion adaptor RS-232C interface soon Mains/rechargeable/battery powered Full colour information pack on requestserious enquiries only please - 154 p stamp apprecia

£100 SCIENTIFIC COMPUTER

CASIO FX-702P Up to 1680 program steps, up to 226 memories, 55 scientific functions. BASIC. 99.95

CASIO FX-602P Programmable Scientific. Up to 512 program steps, up to 88 memories. $£ 74.95$

SENSATION

of the Japanese Music Fair

ORGAN

CASIOTONE 701 COMPUTERISED

Fully Programmable, 5 Octave, Polyphonic Keyboard "THE instrument of 1982 .. probably the best instructive keyboard I have come across. But it is also a top line musical instrument capable of satisfying even the most proficient musician" Keyboards \& Music Player

$\ddot{\square}+1 \cdots=11111 \leq!+1!\square$

CT-701 (RRPE555) ONLY £495 Program the 345 melody steps and the 201 chord steps, (max.) with music specially scored in bar code and read by a light pen, or enter your own chords and melody via the keyboard, with full editing and repeat facilities.
3-way replay:-Automatic; One Key Play; Melody Guide, (lights above the keyboard indicate the next note to play). Split keyboard; 20 superb instrument voices; 16 rhythm accompaniments; fingered or auto chords with walking bass and arpeggio; fill-in and effect buttons. $373^{3} \times 13$ 复 $\times 5^{\prime \prime}$. Weight: 12.5 kg
$(27.6 \mathrm{lbs})$ (27.6lbs)

CT-601. As 701 but without programming functions $£ 395$

COMMON SPECIFICATIONS

All Casiotones (except VL-Tones) are 8 -note polyphonic. They all have built-in amplifiers and speakers. with output jacks for headphones and external amplification and a pitch control. CT models are mains only and have volume and sustain pedal jacks

CT-401

25 instruments over 4 octaves. Four voice memory function with push button selection. Vibrato and sustain switches. 16 rhythm accompaniments with fill-in variation Casio Auto Chord for one finger or auto playing of major minor and 7th chords with bass. Ten functional controls 43×30 \& 114 Weight $17 \cdot 6 \mathrm{lbs}$

CT- 202

RRP $\mathbf{1 3 2 5}$

 ONLY $£ 275$Son of success . . . The two harpsichords demontrate the Casiotone's talent for sparkling, crystal clear tones.. Even more impressive is the clay (Melody Maker).
49 instruments over 4 octaves, 4 voice memory function with push button selection, 3 vibrato settings and sustain $3 \frac{1}{3} \times 34 \frac{1}{2} \times 11 \frac{1}{\prime}$. $16 \cdot 8 \mathrm{Ibs}$.

CT-101. Similar to 202 but has 25 voices
ONLY $£ 195$
MT-40

RRP £125
ONLY 199
37 key, 3 octave keyboard plus 15 key bass keyboard with automatic, synchronised bass function. 22 instrument voices; 6 auto rhythms with dual fill-in. Sustain and Vibrato, Battery powered, or optional mains adaptor AD-IE ($£ 5$). $23 \times 7 \times 2$ It $^{\prime \prime}$. Weight 4 .91b. adaptor AD-IE (15$)$. $23 \times 7 \times 2$ 16. Weight 4.916
MT-31. As MT-40 but without bass/rhythms. VL-1 Programmable musical instrument

269
$£ 35.95$
INTEREST FREE CREDIT ON PURCHASES OVER \&190 Details on request.

* Providing the advertiser has stocks and we do not sell at a loss. DELIVERY NORMALLY BY RETURN

Price includes VAT and P\&P. Send cheques, PO, or phone your ACCESS, VISA or B'CARD number to: LEADING CASIO SPECIALISTS
Dept. PE,
38 Burleigh Street, Cambridge CBI IDG Telephone: 0223312866

CATALOGUE ON REQUEST

15ㄴp stamp
appreciated

MUSIC KITS

ALL WITH PRINTED CIRCUIT BOARDS!

128-NOTE SEQUENCER
A dighal, Kbd controlled unit for most Synths.
Kit inci Kbd -
SET-76
$\mathbf{1 2 0 . 4 5}$
16-NOTE SEQUENCER
Analogue, panel controlled unit for most
synthesisers -
3-CMANNEL STEREO MIXER With lefh. right \& master level controls 3-MICROPHONE STEREO MIXER improves stereo reality = SET-108 £12.99
6-CHANNEL MIXER
High spec mixer with variable impe-
dances $=$
SET-90 From $\mathbf{E 9 6 . 6 7}$
AUDIO EFFECTS UNIT
anable siren gen $=$ SET-105 £15.12
AUTOWAM UNIT
Automatic Wah \& Swell sounds from aach
CHOROSYNTH
30 -Note chorus synth with wide variety
of voices. Kit inel $\mathrm{Kbd}=\mathrm{SET}-100 £ 125.04$

COMPRESSOR

With level \& decay-rate controls, line 8

DISCOSTROBE

4-Chan 200W unit for sequentlal, random
or full strobe use $=$ SET-57 £39.78
DRUM SYNTHESISEA
Extremely versatile synthesiser for conrdinary drum sounds.

DYNAMIC NOISE LIMITER
$\begin{aligned} & \text { Helps clean up noisey recordings. } \\ & \text { SET-97 }=18.96\end{aligned}$
ENVELOPE SHAPER
ENVELOPE SHAPER
AOSA unt with own VCA
SET-50 £14.96

KIMBER-ALLEN KEYBOARDS
P. E. MINISONIC SYSNTH* Excellent 3 -Oct multi-module portable ynth. Kit incl Kbd $=$ SET From $\mathrm{f181.56}$

PMASER

6-Stage automatic \cdot unit with variable
Control $=$ SET-88 £21.08
PHASING \& VIBRATO
Manual 8 auto control producing superb
full sounds $=$
SET-70 $£ 36.25$
PULSE GENERATOR
Pulse width 100NS-2 secs, freq 0.1 HZ
$100 \mathrm{KHZ}=\begin{aligned} & \text { SET- } 115 \\ & \text { E. } 24.84\end{aligned}$
RHYTHM GENERATORS
Several in list $=\quad$ From $\mathbf{E 6 1 . 7 1}$
RING MODULATOR
Usable with most synths =
SET-87 £13.62
SIGNAL TRACER \& GENERATOR
Aids circuit testing.
$\begin{aligned} & \text { With frequency } \\ & \text { level controls }=\end{aligned}$
SET-109 £17.50
SMOOTH FUZZ
As the name implies $\mathrm{I}=$ SET-91 £11.68
SPEECH PROCESSOR
improves inteligibility of C.B. or P.A.
speech.signals $=$
SET-110 12.18
SPLIT-PHASE TREMOLO
Modulation. depth, rate \& level under
SET1 control $=$
SET-102 £29.98
SWITCHED TREBLE BOOSTER
4 Sectable preset tone changes $=$
SET-89 $£ 12.51$
SYNTHESISER INTERFACE Enables guitars, mics etc to be synthe-
SET- 81 E9.49

ALSO

Over 40 new General Interest Kits in Catalogue Lots under £5, most under £10. Ideal for Beginners

EXPOSURE TIMER

Range up to 10 mins in 0.5 sec steps.
with audio alarm $=$
$5 E T-93 \mathrm{f} 39.22$
FORMAT SYNTHESISER*
Advanced 3 -oct synth with multiple modules. Kit incl Kbd $=$ SET-66 from ©342.71

FUNNYTALKER

Fascinating sounds when used with
speech \& music $=$
SET-99 16.55
GUITAR EFFECTS
8 -mode filter \& envelope shaper for most
GUITAR FREQUENCY DOUBLER Orig \& doubled signals can be mixed for
greater depth $=$

GUITAR MULTIPROCESSOR
Extremely versatile sound processor, Details in list.
GUITAR OVERDRIVE
Sophisticated fuzz with filter \& shape
controls :
SET-56 E21.17
GUITAR PRACTISE AMPLIFIER 3-Watt practise or test-monitor amp. $\begin{gathered}\text { SET-106 E22.15 }\end{gathered}$

GUITAR SUSTAIN

Retains natural attack whilst extending
note duration
SET- 75 f11.77
HEADPHONE AMPLIFIER
For most pick-ups, decks, tuners \& head-
phones. RIAA specs $=$ SET-104 $\mathbf{2 1 1 . 1 5}$
METRONOME
Variable for $40-240$ bears per minute $=$
EXPORTS WELCOME!
Sterling payment with order please.
Postage rates in our lists. Europe send 50 p for lists, other countries send f 1 .

TRANSIENTGENERATOR Facilitates mandolin, banjo sounds eic
From a synthesiser $=$

TREMOLO UNIT

For most Instruments. Incl speed, depth
\& by-pass controls $=\quad$ SET-116 E13.47
TUNING FOAK
Eases tuning of acoustic \& 8 electronic
instruments $=$
SET $46 E 37.04$

VOICE OPERATED FADER

Automatically reduces music volume

VOICE SCRAMBLER

or coding or decoding speech slgnals

WAVEFORM CONVERTER

Allows 5 different wavaforms from synth-
SET- 67 E 21.98
WAVEFOAM GENERATOR
3 Waveforms, range 1 HZ to 100 KHZ , Up
SET- $112 £ 23.13$
WIND \& RAIN EFFECTS
As the name says $=\quad$ SET- $28 £ 11.39$

KIT CONTENTS

Sets include PCBs, U.K. P\&P. 15\% VAT, Res, Caps, S'C.s. Pis, most also include Photocopy of orig text, \& a case unless marked . Most are battery operated, but PSU units are also available. Most parts can bought separately. Fuller details \& more great kits in our catalogue. Send S.A.E. for Prices correct at press, E. \&O.E., subject
stock. Despatch usualiy 24 hrs on all exstock. Despatch usuall 24irs on all tock items.

Barclay \& Am-Express
Credita Welcome.

UK 101 with $1 K$ and free power supply and play expansion kit $£ 14$. The below accessorias sult both the UKiO1 and superboard:- Extra ram £2.10 per K. 16K $\mathbf{E 5 8}$. 32 K memory expansion kit $\mathbf{£ 7 4}$, built £82. Casselte recorder $\mathrm{E19}$. Cegmon £22.50. Wemon £14.95. Word processo 610 expansion board $\mathbf{~ 1 7 9 . ~ C a s e d ~ m i n i f l o p ~}$ py disc drive with DOS $\mathbf{£ 2 7 5}$. The below sui only superboard:- Colour adaptor board buil £45. Assembler/Editor tape $£ 25$. Guard band kit $£ 10$. Series 1 only 30 lines $\times 50$ NEW GENIE 1 £299
EC3014 Expansion box with $16 \mathrm{~K} / 32 \mathrm{~K}$ ram £199/£213. We are disc specialists for the Genie. Single sided disc drives:- 40 track £220, dual 40 track $£ 376,80$ track $£ 269$ dual 80 track $£ 469$. Double sided drives:- 80 sity convertor $£ 72$. Ldos £88. Newdos + £49 Ajedit disc word-processor $\mathbf{£ 4 4}$. Colourboard C36. Parallel printer Interface E36. Monitors:-
EG 100 white $\mathbf{£ 5 9}$ OVM9PGR green $\mathbf{£ 9 9}$. EG 100 white E69, OVM9P

Buy any of the below and get a free interface kit and word processor program for UK 101 or Superboard:- Epson Mx70 E259. Epson Epson MX80F/T2 \&419. Epson MX100 £495. OK1 Microline $80 £ 275$. OKI Microline 82 A £399. Centronics 737 E335. Centronic 739 £419. Seikosha GP8OA £199. Seikosh GP100AE215.
SINCLAIR PRODUCTS*
 PDM35 £32.95. DM450£106.

SWANLEY ELECTRONICS
Dept. PE, 32 Goldsel Rd.,
Swanley, Kont 8A8 8EZ.
Please allow 14 Days For Deliven

BATTERY ELIMINATORS
3-way type $6 / 7.5 / 9 \mathrm{~V} 300 \mathrm{ma}$ E3.50. Stabiliz3 -way type $6 / 7.5 / 9 \mathrm{~V} 300 \mathrm{ma}$ £ 3.50 .100 me
ed model $3 / 6 / 7.5 / 9 \mathrm{~V} 400 \mathrm{ma}$ £7.95. 100 me radio types with press studs 9 V £4.95.9+9V $3 / 4.5 / 6 / 7.5 / 9 \vee 800$ ma 13.04 .
BATTERYELIMINATOR KITS
100 ma radio types with press-studs 9 V $\mathrm{E} 1.79,9+9 \mathrm{~V} \mathrm{E} 2.50$. Srabilized 8 -way types
$3 / 4.5 / 6 / 7.5 / 9 / 12 / 15 / 18 \mathrm{~V} 100 \mathrm{ma}$ £3.12 3/4.5/6/7.5/9/12/15/18V 100 ma E3.12. 1
Amp 88.50 . Stabilized power kits $2-18 \mathrm{~V}$ Amp E8.50. Slabilized power kits $2-18 \mathrm{~V}$
100 ma f3.12, $1-30 \mathrm{~V} 1 \mathrm{~A} \mathbf{E 8 . 5 0}$. $1-30 \mathrm{~V} 2 \mathrm{~A}$ £16.30. TL and computer supplies 5 V stabilized 1.5 A £9, 3A £14, 6A E23. 12V car convertors $6 / 7.5 / 9 \mathrm{~V}$ 1A £1.62
TV GAMES
AY-3-8600 + kit E12.98. AY-3-8550 kit £9.26.

BI-PAK AUDIO MODULES

AL30A £4.35. PA12 £9.31. PS $12 £ 1.75$ T538 £2.90. AL60 £5.62. SPM80 $£ 5.26$ BMT80 £6.36. Stereo $30 £ 19$. AL80 $£ 8.56$
VIC 20 COMPUTER
VIC 20 with fut kit
cassette recorder $£ 165$. Kit by itself $£ 6$. Vic cassette recorder $£ 36.50$. Floppy disc drive £309. New low cost memory board, no need for a mother-board, comes with 3 K ram
socket for a rom + sockets for 24 K of ultra low current Nmos ram (Just plug in chips to expand memory £49. Extra memory chips £7.80 per 2 K . Vic printer £189. Joystick £6.52. Vic tool-kht rom £15. "Vic Revealed"
book £10 (no VAT).

COMPONENTS ${ }^{\circ}$

 22p. 7418 dil $16 p$ NOOO2 3.7p. NE555 8 dil 22p. 7418 dil 16p. 2114 low current 300 ns $\begin{array}{ll}\text { E12 } 10 \mathrm{R} \text { to } 10 \mathrm{Mp} \text { ip, Resistors } 5 \% \\ \text { value. Polystyrene } & 1 / 4 \text { watt } \\ \text { vot of one }\end{array}$ value. Polystyrene capacitors E12 63 V 10 to

1000pf 4 p i in2 to 10 n 5 p . Ceramic capactors $50 \mathrm{~V}^{1 \mathrm{~nL}} \mathrm{EG}{ }^{\text {to }} 22 \mathrm{pf}^{10 \mathrm{n}} 5 \mathrm{p}$. Ceramic | Electrolytic capacitors 50 V |
| :--- |
| $25 \mathrm{~V} 5,1.2 \mathrm{mf}$ |
| 2 mp |
| 10 m | $25 \mathrm{~V} 5.10 \mathrm{mf} 6 \mathrm{p} ; 16 \mathrm{~V} 22,33 \mathrm{mf} 6 \mathrm{~m} ; 47 \mathrm{mf}$

$4 \mathrm{p} ; 100 \mathrm{mf} 7 \mathrm{p} ; 330$. Zeners $4 \mathrm{p} ; 100 \mathrm{mf} 7 \mathrm{p} ; \mathbf{3 3 0}$. Zeners 400 mw ; E24
2 7 7 to 33 v 7p. Preset pots subminiature o.1W Horiz or vert 100 to 2 M 28 p . IC
sockets 8 dil 8.7 p , 14 dill 10.1 p, 16 dil 12 p.

Postage $\varepsilon 3.50$ on computers, $\varepsilon 4.50$ on printers and 50 on other orders. Lists 270 post free. Plesse add VAT to all prices except already include it. Overseas and official
credit orders welcome.

MARCO TRADING

British made transformers at very attractive prices.					
Primary	Secondary	Current	$1+$	$10+$	$100+$
$240 v:$	$4.5-0-4.5 v$	$400 \mathrm{~m} / \mathrm{a}$	50 p	45 p	$35 p$
240 v	$6-0.6 \mathrm{v}$	$100 \mathrm{~m} / \mathrm{a}$	$58 p$	52 p	$43 p$
$240 \mathrm{v}:$	$6-0-6 \mathrm{v}$	$500 \mathrm{~m} / \mathrm{a}$	65 p	$60 p$	$48 p$
$240 \mathrm{v}:$	$9-0-9 \mathrm{v}$	$200 \mathrm{~m} / \mathrm{a}$	75 p	70 p	58 p

Manuacturers note: We can supply FROM STOCK 1000 quantities of the above transformers and adaptors below.
These very high quality British made iwo pin European adaptor are ideal for driving Radios, cassette recorders, T
calculators etc. The adaptors fit the UK shaver socket.

REF.	D.C. Voltage	Current	$1+$	$10+$	$100+$
EOB	4.5 V	$200 \mathrm{~m} / \mathrm{a}$	50 p	45 p	32 p
EM3	6 V	$200 \mathrm{~m} / \mathrm{a}$	E 1.00	80 p	55 p
EO9	6 V	$400 \mathrm{~m} / \mathrm{l}$	f 1.50	$\mathrm{C1} 125$	85 p
ET4	9 V	$150 \mathrm{~m} / \mathrm{a}$	f 1.50	C 1.25	85 p

Please note that there is no extra P/P charge on the abov
transformers and adaptors.
Export please add Sea/Air mall at cost
Callers
This advert is only a traction of our range, send 25 p for our latest catalogue. Please add 35p P/P Dept. PE6, MARCOTRADING,
The Old School, Edstaston, WEM, Shropshire SY4 5RJ. pll order

Tel: (094872) 464

EPROM PROGRAMMER
 2716 HEXKEYPAD - POWERFUL EDITOR 2732 TV (MONITOR) DISPLAY 2532 CASSETTE BACK-UP - ROMULATOR SOFTY STANDS ALONE E169 + VAT, EX-STOCK, BY RETURN DATAMAN DESIGNS, LOMBARD HOUSE, DORCHESTER, DORSET, DTI IRX. (0305) 68066

NEW! NEW: NEW! 4 CHANNEL SOUND/LIGHT AUTO CHASER

The multi-4 is a comprehensive sound and chase module. offe ing a wide range of forward, reverse or random effects, with additional sound modulation facilities. Modes of operation are
set on control pots which act as electronic switches. The unit set on control pots which act as electronic switches. The unit
has a wide speed range and will accept virtually any sound level has a wide speed range and will accept virtually any sound level
input. The Multi-4 also provides monntor circults for LED driving. The iriac outpurs may be used to drive up to 4000 W IIgituing or up to 30 metres of rope lights.

ELECTRONIC MODULES

PROFESSIONAL ENGINEERING BY PROFESSIONALS

45 Wortley Road, West Croydon Surrey CRO 3EB. Tel. 01-689 4138

Goods by return (rocks allowing) We are open Mon to fri' 9 to S. MULTI-4
E48.90

3 CHANNEL SOUND/LIGHT

Type |Knobs|Leds|Swch| Price \begin{tabular}{l|l|l|l|l}
\& Multi \& 5 \& 4 \& 1

\hline

\hline 41000

SLC

\hline

 2

5

\hline
\end{tabular}

4	1	$\boldsymbol{E 9 . 2 0}$				
-	1	ce.70			1	$£ 9.20$
---:	---:	---:				
$-\quad 1$	$£ 8.70$				87.70	
:---	:---	\mid				

$£ 28.00$

An all logic chaser system for use with up to 8 channels at 1,000 watts each. Facilities include
footswitch crigger and module cascading (16, 24, 32 channel, etc.), chase speed and re-cycle delay.
4 CHANNEL SEQUENCER

£19.20

A 4 channel sequence generator for banks of lamps up to $1,000 \mathrm{~W}$ per channel. Two speed controts, cross effect to provide
tween seconds and rapid burst

OVERSEAS DISTRIBUTORS Enquiries are Invited from overseas companies interested in distributing our high quality products.

Just 50 p will bring you the latest Wilmslow Audio 80 page catalogue packed with pictures and specifications of HiFi and PA Speaker Drive Units, Speaker Kits, Cabinet Kits

1000 items for the Constructor.

CROSSOVER NETWORKS AND COMPONENTS. GRILLES, GRILL FABRICS AND FOAM. PA, GROUP DISCO CABINETS - PLUS MICROPHONES AMPLIFIERS - MIXERS - COMBOS - EFFECTS SPEAKER STANDS AND BRACKETS - IN-CAR SPEAKERS AND BOOSTERS ETC. ETC.

* Lowest prices - Largest stocks *
* Expert staff - Sound advice *
* Choose your DIY HiFi Speakers in the comfort * of our listening lounge.
(Customer operated demonstration facilities)
* Ample parking *
* Access Visa American Express accepted *

8
0625529599
35/39 Church Street, Wilmisow, Cheshire SK9 1AS
Lightning service on telephoned credit card orders! Please allow up to 7 days for delivery.

It's easy to complain about advertisements.

The Advertising Standards Authority.

If an advertisement is wrong, we're here to put it right.

AS.A Ltd. Brock House. Tornngton Place. London WCIE THN

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

RECEIVERS AND COMPONENTS

SMALL ADS

The prepaid rate for classified advertisements is 32 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 10.70$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Banks Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Practical Electronics, Room 2612, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

OUT NOWII The 1982/3 GREENWELD Component Catalogue. 60p Discount Vouchers, Reply paid Envelope, Free Bargain List, Only 75p. Greenweld Electronics Lid., 443c, Millbrook Road. Southampton, SO1 OHX.

BRAND NEW TIMER I.C.'s

Ferranti ZN 1034 E E1.40 each
10 for $£ 12.00$; 100 for $£ 110.00$
Price includes VAT \& Postage
M W A ELECTRONICS
Lion Barn Industrial Estate,
Needham Market.
lpswich,
Sulfolk IP6 8NT.

BOURNEMOUTH/BOSCOMBE. Electronic components specialists for 33 years. Foresters (National Radio Supplies), Late Holdenhurst Road. Now at 36, Ashley Road, Boscombe. Tel. 302204. Closed Weds.

300 SMALL COMPONENTS. Transistors, diodes $£ 1.70$. 7 lbs assorted components $£ 4.25$. 10 lbs $£ 5.75 .20$ wire ended neons £1. Forty 74 series ICs on panel $£ 1.70 .500$ capacitors $£ 3.20$. List $20 p$ refundable. Post $60 p$, optional insurance 20 p. JWB Radio, 2, Bamfield Crescent, Sale, Cheshire M33 INL.

TE \& ECTRIC

THE ELECTRICITY COST MONITOR FEATURED IN PE MARCH \& APRIL ' 82 AS SEEN ON NATIONAL TELEVISION
$£ 48.50+$ VAT
Telectric Built \& Tested
£85.00 + VAT
SAE for full details, Component List \& Order Form Cheque or Purchase Order to:
Response Company
Froxfield, Petersfield, Mants GU32 1DX
ACCESS
Tel: Petersfield (0730) 3063

T \& J ELECTRONIC COMPONENTS - Quality Components Competitive prices. Illustrated Catalogue 45p. 98 Burrow Road. Chigwell. Essex.

TURN YOUR SURPLUS Capacitors, transistors, etc., into cash. Contact COLES HARDING CO.. 103 South Brink, Wisbech, Cambs. 09454188 . Immediate settlement.

BOOKS AND PUBLICATIONS

ANY SINGLE SERVICE SHEET £I/L.S.A.E. Thousands different repair/service manuals/sheets in stock. Repair data your named T.V. £6.50, (with circuits $£ 8.50$). S.A.E. Newsletter, pricelists, quotations. AUS (PE), 76 Churches, Larkhall, Lanarkshire. (0698 883334).

SOFTWARE

UK101 ASSEMBLER - Powerful package allows simulianeous development of BASIC and assembly routines. Usual directives, includes a user definable compiler. Tape and full documentation 55.00 Cheques/POs B. 1. Hill, 722 Bristol Road, Selly Oak, Birmingham.

SERVICE SHEETS

Beu'S television services for Service Sheets on Radio. TV. etc $£ 1.25$ plus S.A.E. Colour TV Service manuals on request. S.A.E. with enquiries to B.T.S. 190 Kings Road. Harrogate. N. Yorkshire. Tel. (0423) 55885.

EDUCATIONAL

© PLYMOUTH POLYTECHNIC HONOURS DEGREE IN COMMUNICATION ENGINEERING

 SATELLITE TV - ELECTRONIC MAIL - OPTICAL FIBRES DATA NETWORKS - COMPUTER CONTROLEnsure that YOU have a career in the new Information Society by studying for a degree in the interesting and rewarding field of Communication Engineering. FOR FURTHER INFORMATION WRITE TO:
Department of Communication Engineering. Plymouth Polytechnic, Drake Circus, Plymouth, Devon, PL4 8AA. (Ref.TEC.1)

Or Phone: (0752) 264646

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Practical Electronics for
insertions. I enclose Cheque/P.O. for $£ . .$.
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Electronics)

NAME..
PRACTICAL ELECTRONICS
Classified Advertisement Dept, Room 2612. King's Reach Tower, Stamford Street, London SE1 9LS. Telephone 01-2615846 Rate:
32p per word, minimum 12 words. Box No. 60p extra.
Company registered in England. Registered No. 53626. Registered Office: King's Reach Tower, Stamford Street, London SE1 9LS.

EDUCATION (CONTINUED)

CAREERS IN MARINE ELECTRONICS. COurses commencing Seprember and January. Further details, The Nautical College, Fleetwood FY7 8JZ. Tel. 0391779123.

WANTED

WANIED: Mains Transformer for Harley CT 436 Oscillo scope. Reg Rookes, Inshegra, Rhiconich, Laire, Sutherland IV27 4RH.

FOR SALE

KEYBOARDS/CONSOLES/POWER SUPPLIES. New fully encoded ASCII keyboards made by World's largest keyboard manufacturer. Slimline stabilised power supply $240 \mathrm{~V} / 120 \mathrm{~V}$ input 5 volt 1 amp output, $350-400 \mathrm{~m}$.A. Keyboards from $£ 47$ to $£ 55$. Consoles £19. Power Supplies $£ 12.50$. GIVE AWAY PRICES FOR EXISTING STOCKS. Keytronic Intemational Ltd. - 01-428 0111

MISCELLANEOUS

MAKE YOUR OWN PRINTED CIRCUITS

Etch Resist Transfers - Starter pack (5 sheets, lines, pads, I.C. pads) £2.10. Large range of single sheets in stock at $45 p$ per sheet.
Master Positive Trans parencies from P.C. layouts in magazines by simple photographic process. 2 sheets negative paper, 2 sheets positive film (A4) £2.10. Photo-resist spray (200 ml) E3.50 ($\mathrm{p}+\mathrm{p}$ 65p). Draft ing Film (A4) 25p. Precision Grids (A4) 65p. 22p stamp for lists and information. P\&P 50p per order except where indicated

OAK LOOGKE, TANECTRONICS

BURGLAR ALARM EQUIPMENT. Ring Bradford (0274) 308920 for our catalogue or call at our large showrooms opposite Odsal Stadjum

THE SCIENTIFIC WIRE COMPANY PO Box 30, London, E.4. 01-531 1568.				
ENAMELLED COPPER WI				
SWG	1 lb	8 zz	$40 z$	
8 to 34	3.30	1.90	1.00	0.80
35 to 39	3.52	2.10	1.15	0.8
40 to 43	4.87	2.65	2.05	1.4
44 to 47	8.37	5.32	3.19	2.50
48 to 49	15.96	9.58	6.38	
SILVER PLATED COPPER W				
14 to 30	6.63	3.86	2.28	1.5
TINNED COPPER WIRE				
14 to 30	3.97	2.41	1.39	
$10 \times 10 \mathrm{Mtr}$ reels 3 amp PVC cable mixed				
ices include P\&P, VAT. Orders under £2				
add 20p.				
E for list of copper and resistance Wire.				

UK101/CLOCK/TIMER. Survives cold start. Includes BASIC demonstration program on tape. State monitor, £3. 1. Walker, 5, Ormesby Road, Coltishall, Norwich. Tel. Norwich 738405

PARAPHYSICS JOURNAL (Russian Translations): Psychotronic Generators, Kirlianography, Gravity Lasers, Telekinesis. Details SAE $4 \times 9^{\prime \prime}$, PARALAB, Downton, Wilts.

ULTRASONIC TRANSDUCERS, miniature, 40 KHz . $£ 2.85$ per pair +25 p P\&P, Dataplus Developments, 81 Cholmeley Road, Reading. Berks.

CENTURION BURGLAR ALARM EQUIPMENT. Send SAE for free list or a cheque/PO for $\$ 11.50$ for our special offer of a full sized signwritten bell cover, to Centurion Dept PE, 265 Wakefield Road, Huddersfield, W. Yorkshire, Access \& Barclaycard telephone orders on 0484-35527.

TIME WRONG?

MSF CLOCK is ALWAYS CORRECT - never gains or loses, SELF SETTING at switch-on, 8 digits show Date, Hours, Minutes and Seconds, auto GMT/BST and leap year, also parallel BCD output for compu ter etc, receives Rugby 60 KHz atomic time signals built-in antenna, 1000 Km range, GET the TIME RIGHT, 562.80.
GOKHZ RUGBY RECEIVER, as in MSF Clock, data output, decoding details, f17.90.
Each fun-to-build kit includes all parts, printed circuit, case, instructions, postage efc, money back assur ance so GET yours NOW.

CAMBRIDGE KITS

45 (FF) Old School Lane, Milton, Cambridge.
CLEARING LABORATORY: scopes, generators, P.S.U.'s, bridges, analysers, meters, recorders, etc. 040376236.

RECHARGEABLE BATTERIES

Private 8 Trade Enquiries Welcome FULL RANGE AVAILABLE. SAE FOR LISTS. E1.45 for Booklat. Nickel Cadmium Power plus Catalogue. Write or call:
Sandwell Plant Lid, 2 Union Drive, BOLDMERE, SUTTON COLDFIELD, WEST MIDLANDS. 021354 9764. Aher hours 097784093.

ENAMELLED COPPER WIRE. 10 swg to 45 swg . S. A.E. for quota tion by retum, cheapest prices. 102 Parrswood Road, Man chester 20.

PRACTICALELECTRONICS P.C.B's JK101 EP710 Enlarger Timer EA 236
 MAY 82 Function Generator EG816
 Frequency Meter set of 3 EP823, EP82 $£ 2.45$ EA96 6 (
 For full list and current pcb's send SAE. CW0 Please. Postage
 14 Oownham Foad, ARmsden Heath, Billericay, Essex GM11 1PU. Telephone 0268-710722

ELECTRONIC GAMES. Build your own from our detailed circuits. SAE for details: G.H.T. Ltd., P.O. Box DR95, Dover, Kent CT16 1UL

AUTO TRANSFORMERS
Votrages available:
105, $115,190,2$ Voltages avalable: 105 , 115. 190, 200 .
$210,220,230,240$, for step up and step

OTHER PRODUCTS

AVO TEST METERS AVO 8 MK5. Latest Model $\mathbf{\&} \mathbf{2 2 . 1 0}$	400/440 to 240V ISOLATORS
AVO 71 Electronics \& .e............................ 49.30	VA Price P\&P
AVO 73 TV Service68.90	$60 \quad 68.11 \quad 61.50$
AVO MM5 Miner........................an.........643.60	250 ¢16.07 O.A.
AVO EM272 316K Ω /Volt input Z............¢72.30	350 ¢19.88 O.A.
AVO DAII6 L.C.D. Digital................. 131.50	500 C24.77 O.A.
AVO DA 211 LC.D. Digital (Hand ≤ 58.50	1000 ¢50.53 O.A.
AVO DA212 LC.D. Digital Held)c81.90	2000 ¢74.79 O.A.
Battery MEGGER BM7/500V....................671.60	3000 Cl04.86 O.A.
Wee MEGGER hand crank 101.50 Plus P\&P Cl. 50 + VAT 15%	6000 ¢207.92 O.A.
All Avos. Meggers \& accessories available.	SPECIAL OFFER
VENTILATOR TRANSFORMER CASES OFF THE SHELF	25W Soldering Iron to BS Spec. 61.75 P\&P 30p + VAT 15\%.

ANTEX $\quad 15 \mathrm{~W}$ CN240/CCN $240 \mathrm{C4.58}+\mathrm{P} \& \mathrm{P}$ + VAT
P.W. Purbeck oscilloscope transformer $250-0-250 ; 6.3 \mathrm{~V} \quad 12.9 \mathrm{~V}$ (auth Precision De-Solder Pumps - Quick action button release for one hand work. . 5 mall $65 p+$ VAT Large $86 p+$ VAT

METAL OXIDE RESISTORS \&I per 100 (Electrosil) TR4 5\%
7n/750/180n/360n/390n/4300/470n/510n/560@/820n//JK/
KI/IK2/IK3/IK $6 / 1 K 8 / 2 K / 2 K 4 / 3 K / 16 K / 20 K / 22 K / 24 K / 47 K / 82 K$
100K/IIOK/120K/130K/180K/220K/270K/300K. P\&P SOp+VAT.
100w Soldering Gun includes bulb for
spot-on points $\mathbf{6 . 3 9}+$ VAT

43 mm	PANEL METERS		
$0.50 \mu \mathrm{~A}$	66.20	$0.50 \mu \mathrm{~A}$	47.3
$0.500 \mu \mathrm{~A}$	C6.20	0.500μ	67.3
0.1 mA	C6. 20	0.1 mA	67.37
30V	C6.20	0.30 V	67

Educational Meters. $2 \mathrm{amp}, 10 \mathrm{amp}$ \& 30V at 44.50 . P\&P 66p + VAT. Size $75 \times 78 \mathrm{~mm}$ Scaler

Barrie Electronics Ltd.
3, THE MINORIES, LONDON EC3N IBJ
TELEPHONE: 01-488 3316/7/8
nearest tube stations: aldgate \& liverpool st,

INDEX TO ADVERTISERS

MAIL ORDER ADVERTISING

British Code of Advertising Practice

Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisments where money is paid In advance, the code requires advertisers to fulfil orders within 28 days, unless a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please retain proof of postage/despatch, as this may be needed.

Mail Order Protection Scheme

If you order goods from Mail Order advertisements in this magazine and pay by post in advance of delivery. PRACTICAL ELECTRONICS will consider you for compensation if the Advertiser should become insolvent or bankrupt. provided:
(1) You have not received the goods or had your money returned; and
(2) You write to the Publisher of PRACTICAL ELECTRONICS summarising the siruation not earlier than 28 days from the day you sent your order and not later than two months from that day.
Please do not wait until the last moment to inform us. When you Write, we will tell you how to make your claim and what evidence of payment is required.
We guarantee to meet claims from readers made In accordance with the above procedure as soon as possible after the Advertiser has been declared bankrupt or insolvent
This guarantee covers only advance payment sent in direct response to an advertisement in this magazine not, for example, payment made in response to catalogues etc, received as a result of answering such advertisements. Classified advertisements are excluded.

WORLD RADIO T.V. HANDBOOK

 1982 ed.

 1982 ed.}Price: $£ 11.00$
AMATEUR RADIO HANDBOOK 1982 by A.R.R.L

Price: $\mathbf{£ 8 . 0 0}$
UNDERSTANDING MICROPROCESSORS by D. L. Cannon

Price: $\mathbf{£ 4 . 5 0}$
practical electronics h/b by I. Sinclair

Price: $\mathbf{£ 4 . 3 5}$

THE CATHODE-RAY OSCILLOSCOPE

8. ITS USE

by G. N. Patchett
Price: $£ 4.00$

INTRODUCING AMATEUR ELECTRONICS
2nded. by I. R. Sinclair
Price: $£ 4.00$
INTRODUCING MICROPROCESSORS
by I. R. Sinclair
Price: $\mathbf{£ 5 . 0 0}$

H/B OF BASIC ELECTRONIC

TROUBLESHOOTING
by J. D. Lenk
Price: £4.65
67 READY TO RUN PROGRAMS IN BASIC:
GRAPHICS, HOME \& BUSINESS,
EDUCATION, GAMES
by Wm. S. Watson
Price: $\mathbf{£ 4 . 6 0}$
COMPUTER PROGRAMMINGIN BASIC
by P. Bishop
Price: $\mathbf{£ 3 . 5 0}$

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books

19-21 PRAED STREET

 LONDON W2 1 NPPhone 01-4029176 Closed Saturday 1 p.m. Please allow 14 days for reply or delivery.

BAKER LOUDSPEAKERS
eramic/MIXER. 240V, 4 stereo channels, 2 magnetic. 2 onitor optet sliter controls, panel or desk mounting praine aluminium facia. ©40. Post 62 .
DELUXE STEREO DISCO MIXER/EQUALISER as above plus
switchable inputs for phono/line, mike/line.

BOOKSHELF HI-FI ENCLOSURES TEAK 132 pair

GARRARD 6-200 SINGLE PLAYER DECK

Brushed Aluminium Arm with stereo ceramic cartridge and Metal Turntable.
Cueing Device and Pause Control.
222. Post 12

METAL PLINTH cut for Garrard or BSA
Size: $16 \times 14 \times 3$ in $\mathbf{4} 4,00$. Silver or Black finish. Post $\mathbb{C} 2$

SPBECIAL OFFERS

wo speed 33 H5 rpm Hi-fi Decks with Stereo Cartidges Cueng device and snake arm.
Magnetic - 240 V AC 120 or 12 V DC $\mathbf{C 2 4}$

B.S.R. SINGLE PLA YER P232

620.00 PP 12. 2-speeds Il in, turntable. "Snake" arm, cueing device, stere B.S.R. DE-LUXE AUTOCHANGER

Stereo cartridge. plays all size records. 3 -speed. Post 12
DECCA B.S.R. TEAK PLINTH $182 \times 142 \times 4 \mathrm{in}$.
Soace for small amplifier. Special price f 5.95 post paid.
With Garrard Board 64.95 post paid. PVC covers 67.50 extra
TINTED PLASTIC EQUIPMENT COVERS
Sizes: $141 \times 121 \times 3$ in. $65.151 \times 131 \times 4$ in. $63.14 \times 13 \times$
3 inn. $65.18 \times 121 \times 3$ in. $66.161 \times 13 \times 4$ in. $66.171 \times 132 \times$ 3 in. $65.18 \times 124 \times 3 \sin 66.16$
4 in. $66.212 \times 142 \times 22 \mathrm{n} .66$.

RCS. LOW VOLTAGE STABILISED
POWER PACK KIT
ransformer 240 V ac. Output 6 or 71 or 9 or 12 V de min or less. Please state voltage required.
PP BATTERY ELIMINATOR BRITISH
cut out Size $5 \times 31 \times 2 \mathrm{lin}$ C4.50. Post 50 p. 750 . Post 61

BLANK ALUMINIUM CHASSIS. $6 \times 4 \mathrm{in} .4 .45 ; 8 \times 6 \mathrm{in}$ C1.80; 10×7 in. C2.30; $12 \times \sin$ 62.60. 14×9 in $63.00 ; 16 \times$ 6in. $22.90 ; 16 \times 10 \mathrm{in}$. C3.20. All 2 hin . deep. 18 swg
ALUMINIUM PANELS. 18 swg. $6 \times \sin .45 \mathrm{p} ; 8 \times 6 \mathrm{in} .75 \mathrm{p}$ $\times 6 \mathrm{in}$. $11.10 ; 14 \times 9$ in. $\mathbb{K} .45 ; 12 \times 12 \mathrm{in}$. $\ell 1.50 ; 16 \times 10 \mathrm{in}$. I.is. ANGLE AL. $6 \times 1 \times$ in. 18 swg. 250
$\times 2 \times \operatorname{lin} f 1.6 \times 4 \times 2$ in $6160.7 \times 5 \times 3 \times 22 \times 2$ in. CI. 3 3 in C2.50. $10 \times 7 \times 3 \mathrm{in} \mathbf{C 3} .12 \times 5 \times 3 \mathrm{in}$. $\mathbf{6 2 . 7 5}$. $12 \times 8 \times 3 \mathrm{in}$.

HIGH VOLTAGE ELECTROLYTICS | $8 / 450 \mathrm{~V}$ | 45 p | $8+8 / 450 \mathrm{~V}$ | 75 p | $50+50 / 300 \mathrm{~V}$ | 50 p |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $16 / 350 \mathrm{~V}$ | 45 p | $8+16 / 450 \mathrm{~V}$ | 75 p | $32+32 / 500 \mathrm{~V}$ | c |
| 1.80 | | | | | | $\begin{array}{lllll}32 / 500 \mathrm{~V} & 75 \mathrm{p} & 32+32 / 450 \mathrm{~V} \text { cl. } 20 \quad 100+100 / 275 \mathrm{~V} & 65 \mathrm{p} \\ 50 / 450 \mathrm{~V} & 95 \mathrm{p} & 32+32 / 350 \mathrm{~V} & 75 \mathrm{p} & 150+200 / 275 \mathrm{~V}\end{array}$ $8 / 800 \mathrm{~V}$ C1.20 $32+32+32 / 325 \vee 90 \mathrm{p} \quad 220 / 450 \mathrm{~V} 95 \mathrm{p}$

HEATING ELEMENTS, WAFER THIN Semi-flexible. II $\times 9 \times$ lin. Operating voltage 240V. 250W approx. Sulcable tion, etc. Must be clamped between two sheets of metai, etc.

Radio Component Specialists

 337, WHITEHORSE ROADPost 65p Minimum. Callers Welcome. Ciosed Wed. Same day despatch. Access-Barciay-Visa. Lists $31 p$.

INTERESTED IN ELECTRONICS?

Have you ever thought of working in Independent Local Radio?
THE NATIONAL BROADCASTING SCHOOL offers a 3 -month modular training course covering all aspects of maintenance and operational work on an ILR station.
If you've studied a science subject to ' A ' Level standard or have a recognised engineering qualification, this modular course can provide you with the necessary experience for a full grounding in the radio broadcasting industry.
Courses start in September, January and May and the fee is £825.00.

For further details write to:

THE NATIONAL BROADCASTING SCHOOL 14 GREEK STREET, LONDON W1 or ring 01-434 2411

The School is an independent training organisation set up in close association with the independent radio contractors and the IBA.

NOMSER MT OPERATED)

This negative ion generator gives you the power to saturate your home or office with millions of refreshing ions. Without fans or moving parts it puts out a pleasant breeze. A pure flow of ions pours out like water from a fountain, filling your room. The result? Your air feels fresh, pure, crisp and wonderfully refreshing.
All parts, PCB and full instructions
£ 12.50
A suitable case including front panel, neon switch, etc.
$£ 6.50$ HOURS:
Mon. to Fri. 9-5 pm.
Sat. 9-3.30 pm.
Wide range of Japanese integrated circuits \& transistors stocked.

Price includes post \& VAT Barclay/Access Welcome Lists Available Large envelope $+\mathbf{2 2 p}$ stamp.
Please allow 14 days for delivery.

BOOKS (NO VAT) (p \& p 50p/book)

Proo the 6502	¢10.75	Gateway Guide Cx80/B1	15.95	Sintair $P^{\text {Prog/feal }}$ App.	96
6502 Appications	¢10.25	Gertiog Acquasined $\mathrm{Z} \times 81$	44.95	50 Rip Roaring Games	44.95
Piog, 81 Intertacing 8502	¢10.50	Hints \& Tivs 2x81	44.25	2X81 Pockel Book	65.95
6502 Asss. Lang. Prog.	¢12.10	Masiering M/C Code EX81	65.95	Atom Business	47.95
Prog the 280	\$11.96	WCL Lang Made Simple 2×81	f8.95	Atom Magic Book	c6.95
280 Master Data Book	c6.50	2XB1 Companion	47.95	Gerting Acquainted ATOM	87.95

ATOM ULTRASONIC VISION

Project described in April, May PE

Kit Complete with PCBs
Connector etc. $\mathbf{~ 4 6 . 0 0}$.
Software Cassette with fully documented Assambler Listing $£ 4.50$.

ACORN ATOM

BASIC $8 K+2 K$ Kit $£ 120$. Built f 135 .
EXPANDED 12K + 12K f185
(p\&p $£ 2.50$ per unit)
F.P. ROM $£ 20$. IK RAM $(2 \times 2114 L) £ 2$. TOOL BOX ROM $£ 25$ NEW COLOUR CARO $£ 32$
Full range of connectors \& software in stock
Send for our ATOM list.
Sound Generator Board with User Ports to be available soon. SPECIAL OFFER ON INTRODUCTORY PACKAGE fID.
(includes Interactive, Teaching. Financial, Planning. Household \& Games)

CONNECTDRS

Ext/int bus
Plug E 3.10 Sift c .00
PRINTER
Plug fz
SKT Ez
Plug t 0.90 SK SKT E 0.90
37 way Centionix Fype 26.50

\star UK101: INTERFACING SYSTEM *

Two board interface system plugs directly

accessible fiom Basic or Machine coot.
ening tensive address decoding for a wide variety of interfaces. inclucting full decoding tor a programmable sound generator, and also a 40 pin skt for further expansion.
2) ANALOGUE BOARD: Plugs into the decoding module to provide D / A converter, 8 channel multipfexed A/D converter with 20 n S conversion time. AY 3-8910 SOUND GENERATOR plus 6522 VIA provide complex timing \& counting functions and additional 16 bit port.

SOFTY II

The complete micropressor development system for both Engineers and Hobbyists. You can develop programs. debug. verify and commit them to EPROMs. Will accept most +5 V EPROMs. Can also be used as a ROMULATOR. Full review in September ' 81 P.E. Built unit complete with PSU and TV lead $£ 169$.

UV ERASERS
UVIB (up to 6 EPROMs)
$\mathbf{£ 4 7 . 0 0}+\mathbf{£ 0 . 8 0} \mathrm{p} 8 \mathrm{p}$
UVI 40 (up to 14 EPROMs)
$\mathrm{f} 61.50+£ 1.20 \mathrm{p} 8 \mathrm{p}$
UV141 (as UV140 but with timel)
$\mathrm{f} 78.00+\mathrm{f} 1.20 \mathrm{p} \& \mathrm{p}$
The above erasers are filted with satety switches to ensure no acidental exposure to UV light. Spare tubes for above $\mathbf{f} 10.50$ aach $\boldsymbol{+} \mathbf{£ 1 . 0 0} \mathrm{p}$ p.

UNIVERSAL INTERFACE FOR PET

Self contained all purpose interface unit for old or new PETs providing a range of parallel INPUT/OUTPUT ports, 16 bit TIMERS. Ultrafast multichannel ANALOGUE TO OIGITAL CONVERTERS. OIGITAL TO ANALOGUE CONVERTERS and PROGRAMMABLE SOUND GENERATORS. Internal motherboard system allows easy upgrading. The unit complete with a dual voltage power supply is housed in an attractive case.
$\mathrm{f} 149+\mathrm{f} 2.50$ p\&p
For further details send for TUI/1
TECHNOMATIC TECHNOMATIC TECHNI

[^4]

25W STEREO MOSFET AMPLIFIER

A superb new amplifier at a remarkably low price.

* Over 26 W per channel into 8Ω at 1 kHz both channels driven.
* Frequency response 20 Hz to $40 \mathrm{kHz} \pm 1 \mathrm{~dB}$.
* Low distortion, low noise and high reliability power MOSFET output stage.
* Extremely easy to build. Almost everything fits on main pcb, cutting interwiring to just 7 wires (plus toroidal transformer and mains lead terminations).
* Complete kit contains everything you need including pre drilled and printed chassis and wooden cabinet.

Full details in our projects book. Price 60p.
Order As XAO3D
Complete kit for only $£ 49.95$ incl. VAT and carriage. Order As LW71N

MATINEE ORGAN

Easy-to-build, superb specification. Comparable with organs selling for up to $£ 1,000$. Full construction details in our book. Price $\mathbf{£ 2 . 5 0}$.
Order As XH55K.
Complete kits available:
Electronics-f299.95,
Cabinet- 999.50 (carriage extra).
Demo cassette price f1.99. Order As XX43W.

MILES PER GALLON METER
Digital display shows you how economical your driving is as you go

along.

Complete kits available.
Full details in our projects book.
Price 60p.
Order As XAO2C.

* A full size, full travel 43 -key keyboard that's simple to add to your 2×81 (no soldering in 2×81).
* Complete with the electronics to make "Shift Lock", "Function" and "Graphics 2" single key selections making entry far easier.
* Powered from 2X81's own standard power supply - with special adaptor supplied.
* Two colour print for key caps.
* Amazing low price.

Full details in our projects book. Price 60p. Order As XAO3D
Complete kit for only £19.95 incl. VAT and carriage.
Order As LW72P

[^0]: $\mathrm{Mr} / \mathrm{Ms}$
 Address

[^1]: C IPC Magazines Limited 1982. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressiy forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^2]: Post to: Videotone, Crofton Park Road, London SE4.

[^3]: B. Harvey. Oxford.

[^4]: Published approximately on the 15th of each month by IPC Magazines Ltd.. Westover House. West Quay Road. Poole. Dorser BHIS IJG. Prineed in England by Chapel River Press. Andover. Hants. Sole Agents for Australia and New Zealand - Gordon \& Gortch (A/sia) Lid.: South Africa - Central News Agency Lid.
 Subscriplions INLAND and OVERSEAS E13-00 payable to IPC Services. Oakific House. Perrymount Road. Ilaywards Heath. Sussex.
 Practical Electronics is sold subject to the following conditions, namely, that it shall not. without the written consent of the Publishers first given. be lent, resold, hired out or otherwise disposed of by way of Trade at more than the recommended selling price shown on the cover, and that it shall not be ient, resold or hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade. or aflaxed to or as part of any publication or advertising. literary or pictorial matter whatsoever.

