PRACTICAL
 [551=
exciting

Spec hat

Plus Rif $=$ I SUPPLEMENT..

(0) 0 -

POWER PACKED - by POWERTRAN

Powertran's black boxes are packed with punch. Nat only are they superb kits to buy and build they really do the job! Imaginative and ingenious design goes hand in hand with top quality materials and outstanding performance capability. With their smart black styling the kits harmonise visually as well as musically.
You can build each unit independently ior its set task and then gradually increase your array until you have a complete bank of formidable controllable power.

Complete Kit - $\mathbf{£ 4 9 . 9 0 + V A T}$

Complete Kit - $\mathbf{£ 4 9 . 5 0 + V A T}$

Complete Kit - $\mathbf{£ 1 7 5 . 0 0}+$ VAT

MPA 200 - is a low price, high power 100 W amplifier. Its smart styling, protessional appear. ance and performance, make it one of our most popular designs. Adaptable inputs mixer accepts a variety of sources yet straightforward construction makes it ideal for the first-time builder.

Chromatheque 5000 - a 5 -charinel lighting system powerful enough for professional discos yet controllable for home-effects Sound to light, strobe to music level, random or sequential effects - each channel can handle up to 500 W yet minimal wiring is needed with our unique single board design

ETI Vocoder - 14 channels, each with independent level control, for maximum versatility and intelligibility. two input amplifiers - speech/ external - each with level and tone control. The Vocoder is a powerful yet flexible machine that is interesting to build and, thanks to our easy to follow construction manual, is within the capability of most enthusiasts

Complete Kit - $\mathbf{f 6 4 . 9 0}+$ VAT
SP2 2000 - twice the power with two of the reliable, durable and economic amps from the MPA 200; fed by separate power supplies from a common toroidal transformer Superb finish and quality components throughout - up to leven over!) the standard of high priced factory-built units.

STOP PRESS: NEW FROM POWERTRAN DIGITAL DELAY LINE

THROW AWAY ALL THOSE EFFECT PEDALS - THIS ONE'S GOT THE LOT
Ranging from phasing right through to distinct echoes with up to 16 s max delay, all at the push
of a button. Just select delay required for chosen effect.
FEATURES INCLUDE:-
EFFECTS - REVERB (all types) CHORUS - PHASING - FLANGING - ADT - ECHO \& MANY MORE Delay from 0.31 ms to 1.6 sec expandable in 400 ms stages.
Sweep modulation. Variable speed and depth. Repeat and freeze of delayed signal with no degradation in quality of recycled information. Great for building up unique backing accompaniments. Also allows pith to be varied up and down
High and low input sockets.
28.5 K and 1.5 K respectively

Level control with overioad LED
Mix control of dry and delayed signal
This unit is an absolute must for both the professional studio user and amateur electro-musician Just compare the specification with units costing upwards of $£ 1,000$. Unbelievable value!
Kits start at $£ 130+$ VAT with 400 ms delay 400 ms add on delays $£ 9.50+$ VAT. Up to a maximum of 1.6 sec .

PRICE STABILITY: Order with confidence, Irrespective of any price changes we will honour all prices in this advertisement until May 31, 1982. If this month's advertisement is mentioned with your order. Errors and VAT rate EXPORTORDERS
 UK. ORDERS: Sub riage, or at current rate if changed
SECURICOR DEL £2.50 (VAT inclusive) perkit. FREE ON ORDERS OVER f. 100 SALES COUNTER: If you prefer to collect kit from the factor Monday-Thursday. (0264) 64455.

PRACTICAL
ELECTRONICS
VOLUME 18
CONSTRUCTIONAL PROJECTS
FREQUENCY METER AND PRESCALER by Stephen lbbs 24
Digital readout to 200 MHz with 600 MHz option prescaler
PROGRAMMABLE TIMER/CONTROLLER Part 1 by T. J. Johnson 32
Digital clock/controller for mains operated appliances SIGNATURE ANALYSER by A. Trebar 42
An instrument for testing and debugging digital circuitry
FUNCTION GENERATOR by Andy Flind 50
Provides sine, square and triangular waves throughout the audio range 57
Construction and testing
ULTRASÓNIC. VISION SYSTEM Part 2 by Jeremy Bentham 66
Software, setting up and conclusion
GENERAL FEATURES
SEMICONDUCTOR UPDATE by R. W. Coles 49
Featuring LM363 TL783 74HC Series
MICROBUS by D.J.D. 62
ZX80 and ZX81 ideas 68
12W FET PA—Morse tone detector—Bandpass filter—Electronic multimeter
NEWS AND COMMENT
EDITORIAL 17
NEWS \& MARKET PLACE 18
Including two-page Test Gear Special
INDUSTRY NOTEBOOK by Nexus 23
What's happening inside industry $29,47,54$
BAZAAR
Buy, sell and swap service for readers
SPECIAL OFFER-SPEECHTIME CLOCK KIT 41
Extra-low price for this innovative design 46
Regular bargain offer on high quality cassettes
SPACEWATCH by Frank W. Hyde 55
Extra-terrestrial activities chronicled
SPECIAL OFFER-LOUDSPEAKERS 65
Hi-fi speakers at a very low price
PATENTS REVIEW 72

SPECIALSUPPLEMENT

AUTOMATIC TEST EQUIPMENT by D. Mandelzweig
between pages 40 \& 41
The IEEE bus and its applications

OUR JUNE ISSUE WILL'BE ON SALE FRIDAY, MAY 14th 1982
 (for details of contents see page 31)

[^0]

POTENTIOMETERS: Carbon Track, 0.25 W Log \& Linear Values.
$500 \mathrm{C}, 1 \mathrm{~K} \& 2 \mathrm{~K}$ (LIN ONLY) Single
5kn-2Ma single gang
$5 \mathrm{SK}-2 \mathrm{MQ}$ dual gang stereo
iW Wire-wound $50 \mathrm{~N}-20 \mathrm{~K}$ 115p
SLIDER POTENTIOMETERS 0.25 W log and linear values 60 mm track $5 K \Omega-500 \mathrm{~K} \Omega$ Single gang 70p Self-Stick graduated Alum. Bezels 40p

"

LINEARIC'S

RANSIST

$\begin{array}{r}23 \\ 23 \\ 32 \\ 35 \\ 120 \\ 80 \\ 40 \\ 20 \\ 34 \\ 25 \\ 170 \\ 240 \\ 190 \\ 200 \\ 200 \\ 250 \\ 250 \\ 90 \\ 54 \\ 100 \\ 100 \\ 95 \\ 99 \\ 70 \\ 40 \\ 30 \\ 30 \\ 40 \\ 25 \\ 25 \\ 32 \\ 30 \\ 30 \\ 30 \\ 58 \\ 55 \\ 55 \\ 65 \\ 60 \\ 60 \\ 170 \\ 120 \\ 75 \\ 120 \\ 40 \\ 40 \\ 50 \\ 50 \\ 40 \\ 50 \\ 36 \\ 52 \\ 48 \\ 58 \\ 45 \\ 55 \\ 48 \\ 65 \\ 65 \\ \hline\end{array}$
 T 745
745
7450
745
745

ゅ.

COMPUTER CORNER

- VIC 20 MICROCOMPUTER. Connects directly to a colour TV. 5K RAM expandable to $\mathbf{3 2 K}$
PET type graphics.
$\mathbf{£ 1 6 5}$
- CASSETTE DECK for VIC20 including a free 6 programme Cassette
EPSON MX SERIES PRINTERS: Full range available. Please phone for prices.
- SEIKOSHA GP100A - Unihammer Printer, gives normal and double width characters as well as dot resolution graphics $10^{\prime \prime}$ Tractor feed.
Parallel Interface standard. - SOFTY-2. As reviewed in PE September 1981. The complete microprocessor development system for Engineers \& Beginners. New powerful
instruction. Accepts any 24 pin 5 V single rail EPROM. Supplied fully built, tested \& enclosed in a black ABS case. Price incl. encapsulated plug in
power supply.
- VIDEO MONITOR $9^{\prime \prime}$ fully cased. B\&W. Fully guaranteed. Excellent value for money at only $£ 79$
TEX EPROM ERASER. Erases up to 32 ICs in 15-30 min.

TEX EPROM ERASER with integral 30 min .

 Electronic timer- Spare UV lamp bulbs

5V/5A PSU Ready built and tested
Attractive Beige/Brown ABS CASE Superboard/UK 101 or Home Brew

- Extra 4 K of RAM (8 off $2114 \mathrm{~L}-300 \mathrm{nS}$)
- Space Invaders for Superboard
4×4 matrix keypad (reed switch assembly) £4
$8 \frac{1}{2}$ Fan fold paper (500 sheets) (no VAT)
$9 \frac{1}{2}{ }^{\prime \prime}$ Fan fold paper (500 sheets) (no VAT)
- Teleprinter Roll (no VAT)
($\mathrm{P} \& \mathrm{P}$ on most of the above items is extra) Call in at our shop for demonstration of any of the above liems. Be satisfied before you buy.

VOLTAGE REGULATORS

SWITCHES			
SLIDE 250 V IA DPDT	TOGGLE SPST	2 A	250 V 33
IA DPDT C/OFF 15	DPDT		44

IA DPDT C/OFF 14 tA DP on/onvon 40

PUSH BUT
Spring load
Latching or
Momentary Momentary 9

CRYSTALS
32.768 KHz 32.768 KHz 200 KHz 200 KHz
455 KHz
1 MHz 1 MHz
1.28 MHz ATHNNTー UNVのgounun $\triangle \triangle \triangle \triangle \triangle \omega \omega$ WNN - 7. 68 MHz
8.0 MHz
8.08333 M
8.867237 M 8.867237 M
9.00 MHz
9. 9.375 MHz
10.0 MHz
10.7 MHz 10.24 MHz 12.0 MHz
12.528 M $12.528 \mathrm{MHz}^{2}$
14.31818 M 14.31818
16.0 MHz
18.03 M 16.0 MHz
18.0 MHz 18.432 M
19.968 MH
20.0 MH 19.968 Mz
20.0 MHz
24.0 MHz 24.0 MHz
24.930 MH 24.930 M
26.69 M 26.69 M
26.67 MHz
27.648 M 26.670 M
27.648 M
27.145 M 27.145 M
27.125 MH 27.125 MHz
38.66667 M 38.66667 M
48.0 MHz 100.0 MHz
116.0 MHz ASTEC UHF Modulators 6 MHz
8 MHz 8 MHz Wid
bandwidth 100
270 MICRO EXPANSION SYSTEM
Designed by Watford Electronics, this extremely versatile and economical Expansion System as published in E.T.I., starting from Dec., 81 issue,
offers a low cost flexible expansion facility for 2X81, UK101, SUPERBOARD, ACORN ATOM, PET, TANGERINE, VIDEO GENIE, VIC 20.
The Motherboard (Interfaces with the Computer) has capacity to accept up to five daughter cards and can be paralleled for even more daughter
cards. All PCBs are of Computer grade finish and are supplied in Kit form.

Just look at the expansion possibilities:

MOTHERBOARD - Accepts up to five Daughter SOUND CARD - Utilising up to three ÁY-3 8910 Sound chips. (one supplied with every Kit)
Full Kit: £24.95
PIO CARD - Using two 6520 PIA chips, this Board offers Centronics parallel printer driver, out-put to analogue
Full Kit: £19.95 PROM PROGRAMMER - This simple but ex tremely useful card can blow 2716 or 2732 single rail EPROMS
Full Kit: £25.95 EPROM CARD - This card houses 4×2716 or $2 \times 2532 / 2732$
Full Kit: $\mathbf{£ 1 1 . 8 0}$ RAM CARD - 8K RAM card. Accepts 16×2114 RAMs. The Board is supplied fully populated.
Full Kit: £28.50
Coming soon: Disc Interface Card, 32 K Dynamic RAM Card Speech Card \& High Resolution Colour Graphics Card.
(N.B. PCBs may be bought separately)

Tel. (0923) 40588
Telex. 8956095

We are proud to announce the opening of a much needed components shop for the north of London enthusiast.

Over 200,000 components as well as books, kits, service aids and hardware will be stocked.

We invite you to phone: 013661873

Personal callers welcome.
208 BAKER STREET, ENFIELD, MIDDX.

Listed below are some of the items stocked

Denco products Demagnetlsera	Keyboards Keynector
Desolder brald	Knobs
Desolder pump	
Dlacs	Lampe
Diodes	Lamp holders
liont emitting	Leads
photo	Liquid cryolal displaye
rectifer	LED
signal	LED arrays
zener	LED displays
germanlum	
infrn-red	Mains sdaplor
Displays	Matrix board
Drills	Memory I.C.z
Earpieces	Meters Mierophones
Earphones	Inserts
Enamelled copper wire	stands
Etch resist products	Microprocessors
Fiters	Multisters
Ferric chloride	Neon buits
Ferrite cores	N1-Cad balterles
Ferrite rods	Ni -Cad chargers
Fixing feet	Opto electronic
Fuse holders	Oscilloscopes
Fluorescent displays	Pancls
Field strength motors	Pick-up colls
Frequency counter	Pllers
Gas sunsor	Pre-sotemators
Gronimets	
Groun manots	P.C.B. Itansiore
Grunsu	Piobue
	Plugs
Headphone	Pressure mats
Hoat slaks	Pro-amps Pliole olociric rolay
Inspection glas sos	
l.C. 8	Rectifiors
I.C. sockots	Resistors
inirn-red souree	carbon fim
Intra-red sensor	motar fim
indicators	metal oxido
Insulating tape	wirowound R)ing cores
	Peoulators
Jach eonnectors	Relays
Jewellers screwdrivere	Resista

Signal Injector
Service aids
sllver palnt
switchlubricant
solder mop silicone grease antl-statte spray

- Treezit

Acroklene heal-slok compound Aero duster Spacers
Sochets
Sochets
Slcoving
Solder
Soldering Irons
Slrens
Speakers
Speakers
Swliches
Switches
niereury itt
nilcero
nilcto
reed
rocker
rolary
poogle
togole
waier
waler
slide
Dush butlon
Test leads
Thermistors
Thyrlstors
Trincs
Transiormers nilune Audio
Transisiors
Transistor tostor
Tay etrip: Timnud coppur wlie Tranaluever Torolds Ternilnnts Tuning condensor Utrasonic transmitter Utrasonic receiver Vero products
We are open from 9 a.m. to 6 p.m., Monday-Saturday

PE CAR COMPUTER

This unit was described by Practical Motorist as: "One of the neatest, most comprehensive and most useful of these car computers that we have yet come across

The PE Car Computer was designed to exceed the specification of all others, both for number of functions and accuracy. As well as the usual functions, it can perform eleven "remaining" iype calculations, has a unique "start-stop" mode (used for acceleration timing and the like) and has a combination lock for driving an alarm orignition cut-out.
The unit is housed in a custom designed box with high quality printed panels having an overall size of $165 \times 50 \times 80 \mathrm{~mm}$ deep. and can be fitted ebove or below the dashboard. The display is liquid crystal for clarity in all lighting conditions.
The kit includes all sensors, wiring, etc and is suitable for all cars except those fitted with diesel or fuel injection engines

Kit price: $\mathbf{£ 7 8 . 5 0}$ Assembled Price: $\mathbf{£ 8 8 . 5 0}$
$+£ 1 p \& p$ includes VAT.
Send S.A.E. for list of separately available parts.
Goods by return of post.

PIMAC SYSTEMS LTD
20 Bloomfield Road, Moseley,
Birmingham B13 9BY.
Tel: 021-449 0384

ACORN ATOM

BK rom - 2 KK ram built $\mathbf{~ C 1 5 0 . ~} 12 \mathrm{~K}$ rom * 4 K rom $£ 25$ Po 198 . Extra ram $£ 2.10$ per UK 101 AND SUP supply $£ 10.20$.
UK 101 with 1 K and tree power supply and modulator kit E120, buill 1149 . UK101 display expansion kit E14. The below
accessories suit both the UKio accessories: suft both the $10 \mathrm{Kio1}$ and
superboard:- Extra ram $£ 2.10$ per K. 16 K memory expansion complete kit 850 , built E58. 32 K memory expansion kit $\mathbf{E 7 4}$, buiit E82. Casserne recorder £19. Cegmon program $£ 10$. Centronics interrace kit $£ 10$. program $\mathrm{E10}$ expansion board $£ 179$. Cased minitloppy disc drive with DOS $\mathrm{E275}$. The below suit only superboard:- Colour adiaptor board built £45. Assembler/Editor tape $£ 25$. Guard band kit £10. Series 1 only 30 lines $\times 50$
characters display expansion kit characters display expa
NEW GENIE $1 £ 299$
EG3014 Expansion box with $16 \mathrm{~K} / 32 \mathrm{~K} \mathrm{ram}$
E199/£213. Olsk drive $\mathbf{E 2 2 0}$. Double denstiy converior $£ 72$. Ldos $£ 88$. New denE49. Aledit disk word-processor $£ 44$.
 OVMigpGA green $\mathrm{E99}$. Colour Genie poz: Genie 3 poa.

Buy any of the below and get a free interiace kit and word processor propram for uk 101
or Superboard:- Epsor MX 90 259. Epson or Superbard:- Epson MXXO E259. Epson
MX80T E359. Epson MX80FTT E395. Epson MX80F/T2 E430. OKI Microline 80
f295. OKI Microllne 82 A E399. Centronics 737 £ 335 . Centronics 739 £419. Seikosha GP80 EE 199 .

SWANLEY ELECTRONICS,

Dept. PE, 32 Goldsel Rd.
Tel. Swaniey 10322) 64851 ,
Please allow 14 Days For Delivery

SINCLAIR PRODUCTS*

2X81 buitit tmains adaptor $\mathbf{£ 6 9 . 9 5}$ ppost PDM35 £32.95. DM450 ع106.
BATTERY ELIMINATORS*
3 -way type $67.7 .5 / 8 \mathrm{~V} 300 \mathrm{ma}$ £3.50. 100 ma radio trpes with press studs $9 \vee \varepsilon 4.95 .9+9 \mathrm{~V}$ £6.25. Stabilized model $1 / 6 / 7 / 7 / 9 \mathrm{~V} 400 \mathrm{ma}$
 BATTERY ELIMINATOR KITS.
100 ma radio types with press-studs 9 v
 3/4.5/6/7.5/9/12/15/18V 100 ma E3.12.
 £15.30. TL and computer supplies 5 V stabilized 1.5 A E9, 3 A E14, 6 A E23. 12 V car converorss $6 / 7.51 / 9 \mathrm{~V}$ 1A E1.62.
AY-3.8600+kit $\mathbf{1 1 2 . 9 8}$. AY-3-8550+kit E1-PAK AUDIO MODULES.
AL30A E4.35. PA12 $\subset 9.31$. PS 12 £1.75. T538 82.90 . AL60 55.62 . SPM80 5.26 .
BMT80 6.36 . Stereo 30 E19. AL80 88.56. VIC 20 COMPUTER
VIC 20 with free kit to allow use of a normal cassette recorder ©165. Kit by itself E6. New low cost memory board. No need for a
motherboard. Comes with 3 K tion area + socket for a rom + sockets for 24 K of ultra low current Nmos ram (Just plug In chips to expand memoryl £49. Extra memory chips $\mathbf{E 9 . 7 5}$ per 2 K . vic primter E199. Joystick $\mathbf{E 6 . 5}$

COMPONENTS ${ }^{\circ}$ 1N4148 1.5p. 1N4002 3.7p. NE555 8 dil 22p. 7418 dil $16 p .2114$ low current 300ns
E 1.05 . BC182. BC184, BC212. BC214. BC547, BC549 6p. Resistors $5 \% 1 / 4$ wati E12 10 R to 10 M ip, 0.8 p for 50 . of one value. Polystyrene capacitors E12 63 V 10 to
1000 pt $4 \mathrm{p} ; \ln 2$ to 10 n 5 pp . Ceramic
 capacitors
Electrolvtic capacitors 50 V . $5,1,2 \mathrm{mf} 6 \mathrm{p}$;
$25 \mathrm{~V} 5,10 \mathrm{mf}$
$6 \mathrm{p} ; 16 \mathrm{~V} 22,33 \mathrm{mf}$
$6 \mathrm{p} ; 47 \mathrm{mf}$ ${ }^{4} \mathrm{p} ; 100 \mathrm{mf} 7 \mathrm{p} ; 330$. Zeners 400 mw E24 2 V 7 to 33 v 7 p . Preset pots subminiature
0.1 W Horiz or vert 100 to 2 M 2 Bp . IC 0.1W Horiz or vert 100 to 2 M 2 dp . IC
sockets 8 dil $8.7 \mathrm{p}, 14$ dil $10.1 \mathrm{p}, 16 \mathrm{dil} 12 \mathrm{p}$.

Postage 83.50 on computers, 14.50 on printers and $45 p$ on other orders. Lists $27 p$ p
post free. Please add VAT to all prices except posi free. Please add VAT to all prices excepr
thase sections marked with a which already include it. Oversess and official

You cant beat The System

The Experimentor System ${ }^{\text {™ }}$-a quicker transition from imagination

When you have a circuit idea that you want to make happen, we have a system to make it happen quicker and easier than ever before: The Experimentor System.

You already know how big a help our Experimentor solderless breadboards can be. Now we've taken our good idea two steps further.

We've added Experimentor Scratchboard workpads, with our breadboard hole-and-connection pattern printed in light blue ink. To let you sketch up a layout you already have working so you can reproduce it later.

With Experimentor Matchboard you can go from breadboard to the finished product nonstop! We've matched our breadboard pattern again, this time on a printed circuit board, finished and ready to build on. All for about $£ 1.20$
There's even a letter-and-number index for each hole, so you can move from breadboard (where they're moulded) to Scratchboardim (where they're printed) to Matchboardin (where they're silkscreened onto the component side) and always know where you are.
When you want to save time and energy, you can't beat The Experimentor System.

1. EXP-300PC, which includes one item.	
AMatchboard pre-drilled PCB	
$£ 1.20$	2.EXP-302, which includes three items. Three 50 -sheet Scratchboard workpads

| 3. EXP-303, which includes three items. |
| :--- | :--- |
| Two Matchboards and an EXP-300 |
| solderless breadboard |\quad| 4. EXP-304, which includes four items. |
| :--- |
| Two Matchboards, an EXP-300 |
| breadboard and a Scratchboard |
| workpad |$\quad \mathbf{£ 7 . 6 0}$| w.70.70 |
| :--- | :--- |

WE WILL BEAT BY 5% ANY LOWER PRICE ADVERTISED BY COMPETITORS

WATER RESISTANT WATCHES
With Alarm．Hourly Time Signal，Stopwatch and Calendar
100 METRE WATER RESISTANT

W－100
Resin case／strap
£19．95

W－150C S／S case． resin stap
£21．95

W－150 All
S／S
£24．95

Time and auto calendar．Alarm and hourly chimes Countdown alarm timer with repeat memory function． Professional $1 / 100$ second stopwatch．Time is always 5 year lithium battery life．Superior to the W－ 250 ． 50 METRE WATER RESISTANT

W－21 Resin S／S trim
£14．95

£ 19.95

CALCULATORS
£ 100 POCKET COMPUTER
Casio FX－702P．
CX－602P．Usual price 574.95 ．Price elsewhere 971.95 FP－10 Printer $£ 44.95$（elsewhere 841.95 ）． FA－2
OUR BEST SELLING SCIENTIFIC
FX－3600P
10 digits， 61 scientific functions including Insegrals and Regres－ sional analysis．Up to 38 program steps， 2 programs and 7 mem－ ories，all non－volatile．Wallet size． 1,300 hour battery．
Usual Price $\mathbf{5 2 2 - 9 5}$
Price elsewhere
＋$£ 21.95$
FX－180P．Hand held version without hyperbolics

FX－8100 Scientific with Clock， Alarms and Stopwatch 8 digits， 49 scientific functions． Clock，hourly chimes，alarm． 2 countdown alarm timers．Auto calendar． $1 / 100$ second pro stop－ watch．Complete with wallet． Usual Price $\AA 19.95$
Price elsewhere $£ 23.95 t$

FX－550

10 digits， 50 scientific functions including hyperbolics，standard deviations，etc．it 2% ， 5 ！ Walles．i， 300 hour lithium
battery life． battery life．
Usual Price $£ 19.95$
Price elsewhere $\quad \star \mathbf{£ 1 8 . 9 5}$
FX－5 88.95 ．FX－7 $£ 10.95$ ．FX－ 82 £ 12.95 FX－ 100 £ 16 ． 95.

$12 / 24$ hour time and auto calendar．Alarm and hourly chimes．Professional $1 / 100$ second stop watch to 12 hrs．Compact and slim cases，approx． 8 mm thick． Lithium．

OTHER MODELS

AX－ 210 ．The world＇s most versatile watch？ Analog Display
LC Display of hours and minutes Digital display
－Local time， 12 or 24 hour Full calendar display
＊Dual time， 12 or 24 hour ＊Alarm time display
＊Countdown alarm timer with memory function
－Professional $1 / 100$ second stop－ watch
Hourly time signal．Daily alarm electronic buzzer or 3 selectable melodies．Rapid forward／bach setting． $9.4 \quad 35.4 \quad 36 \mathrm{~mm}$ ． Usual Price 129.95
Lowest price elsewhere

t $£ 27.95$

Usually $£ 19.95$
Price elsewhere ㅅ $£ 18.95$

Chrome Usually $£ 29.95$ t $£ 27.95$

CA 85／901．Time and auto calendar．Calculator－ Alarm and hourly chimes，Stopwatch．Dual time． DIGITAL SPACE INVADER game．
J－100．Similar to the CA－85 but without dual time and with a JOGGING COMPUTER instead of the game function．
GM－10．Alarm chrono with SPACE INTERCEP－ TOR game

Calculating alarm clocks

FT－ 7 Fortune Teller and Matchmaker

Clock，alarm，hourly chimes，calendar．Predictions of individual fortunes（health，gambling／investment． business and love），or the compatibility between two persons on any given day．Usual Price $£ 16 \cdot 95$ ．
Price elsewhere $\star \mathbf{£ 1 5 . 9 5}$

RG－15．Boxing game，alarm clock，calculator．Usual Price 16 ．95．Price elsewhere $£ 15.95$
ML－75， 12 melody alarms，clock，calculator．$£ 14.95$ ML－120．Wallet version of above $\quad \mathbf{1 4 . 9 5}$ ML－2000 £22．95．UC－3000 227.95 ．UC－ $300 / 365$ f19．95．

BASIC CALCULATORS

MG－777 Compendium of
Games
A game of chance，a game to test your re－ actions and a game to tax your intelligence． Plus a very useful clock as well and，of course．a wallet sized calculator．
ONLY $£ 14.95$

SL－801 Solar $\mathbf{1 8} \mathbf{9 5}$ ．HQ－25 Time calculations $£ 9.95$ ．

CATALOGUE ON REQUEST． $15!\mathrm{D}$ STAMP APPRECIATED

SENSATION
of the Japanese Music Fair
CASIOTONF． 701 COMPUTE Jane ORGAN
Fully Programmable， 5 Octave，Polyphonic Keyboard ＂THE instrument of 1982 ．．probably the best in－ structive keyboard I have come across．But it is also a top line musical instrument capable of satisfying even the nost proficient musician＂Keyboards \＆ Music Player

CT－701（RRP£555）ONLY £495
Program the 345 melody steps and the 201 chord steps，（max．）with music specially scored in bar code and read by a light pen，or enter your own chords and melody via the keyboard，with full editing and repeat facilities
3－way replay：－Automatic：One Key Play；Melody Guide，（lights above the keyboard indicate the next note to play）．Split keyboard： 20 superb instrument voices； 16 rhythm accompaniments：fingered or auto chords with walking bass and arpeggio：fill－in and effect buttons．37： $13_{i m}^{7} 5^{\prime \prime}$ ．Weight： 12.5 kg （27．61bs）．
CT－601．As 701 but without programming functions £395

COMMON SPECIFICATIONS

All Casiotones（except VL－Tones）are 8 －note poly－ phonic．They all have built－in amplifiers and speakers， phonic．They all have buit－in ampifiers and speakers， with output jacks for headphones and external ampli－ only and have volume and sustain pedal jacks．

（T－40．

RRP 4325.00 ONLY $£ 275.00$
25 instruments over 4 octaves．Four voice memory function with push button selection．Vibrato and sustain switches． 16 rhythm accompaniments with fill－in variation Casio Auto Chord for one finger or auto playing of major，minor and 7th chords with bass．Ten functional controls 4 ？ 30% 112 Weight 17 ．6los

Son of success The two harpsichords strate the Casiotone＇s the two harpsichords demon－ strate the Casiotone s talent for sparkling，crystal clear tones．．．Even more impressive is the clav． （Melody Maker）
49 instruments over 4 octaves， 4 voice memory func－ tion with push button selection， 3 vibrato settings and
sustain $31.34!\quad 11!\cdots .16 \cdot 81 b s$ ．

CT－101．Similar to 202 but has 25 voices．
ONLY $£ 195$
MT $\mathbf{4 0}$

IIIIIいいい！

RRP $f 125$
ONLY 899
37 key， 3 uctave keyboard plus 15 key bass keyboard with automatic，synchronised bass function． 22 instru－ ment voices： 6 auto rhythms with dual fill－in Sustruin and Vibrato Buttery powered or optional mains adaptor AD－IE（ $£ 5$ ）${ }^{2}$ powered．or optional mains VL－TONE．Become an instant Musician with 916 ． amazing programmable Musical Instrument． 10 auto amazing programmable Musical instrument． 10 auto
rhythms，five voices．ADSR 2 extra books worth f5．90 FREE
£35．95
\＆Providing the advertiser has stocks and we do not sell at a loss．DELIVERY NORMALLY BY RETURN

MICROCOMPUTER COMPONENTS AND SYSTEMS LOWEST PRICES FASTEST DELIVERY

3½ DIGIT DVM EVALUATION KIT BASED ON FERRANTI ZN450

INTRODUCTION

The ZN450 is the first charge-balancing DVM I.C. to contain all the active circuitry on a single chip and requires only a handful of external passive components and a display to function.
No engineering design effort is required and the only obstacle to building a DVM is that of obtaining the components and wiring a breadboard. The ZN450 evaluation kit is intended to remove even this obstacle and to facilitate the evaluation of this unique I.C. The kit contains all the components necessary to construct a DVM with a basic sensitivity of 199.9 mV full-scale, powered from a 9V battery (not supplied).
In addition, provision is made on the printed circuit board for various options to increase the versatility of the DVM. Components required for these options are NOT provided but suitable values are indicated in the text. Additional applications data on the ZN450 is given in the data sheet.

Price: $£ 19.95$ each ex VAT and P\& P (Total £24.15)

CLEF electronic
 MUSIC

ELECTRONIC

 PIANOSSPECIALISTS SINCE 1972
Clef Pianos adopt the most advanced romulates piano Key inatia using patented electronic technlque.

71 OCTAVE

DOMESTIC MODEL COMPONENT KIT E244 COMPLETE KIT £399.90 MANUFACTUAED $\mathbf{6 7 7 5}$ Two Domestic Models are available including ine ixable Voice Controls may be used to obtain a wide variation of Piano tone. including Harpsichord. Both Soft and Susiain Pedals are incorporated in the Design and internal Effects are provided in the form of
Tremolo. Honky-Chorus. and Phase/Flanger A power amplifier integrates into the Piano top which may be removed from

SIX OCTAV DOMESTIC MODEL COMPONENT KIT £217 MANUFACTUREDE595 Component Kits include Keyboard, components and may be purchased in four stages at no extra cost. Complete Kits further contain Cabinets. wiring harness, Pedals and in the case of Domestic Models and Speaker. same range of v Stage Piano has the same range of Voices and Effects and is
designed for use with an External

SIX OCTAV STAGE MODEL COMPONENT KIT £217 MANUFACTURED f530

Since 1972 Clef Products have consistently produced leading designs in the ficld of Electronic Musical Instruments, many of which have been published in technical magazines. With musical quality of atest musically valid technology has been incorporated into projects which have been successfully completed by constructors over a wid range of technical capability. Back-up TELEPHONE advice to ou
customers is available from the Designer of all Kits advertised.

STRING ENSEMBLE

(As Published in conjunction with Practical Electronics? A very popular Keyboard Synthesizer Kit. for Group or Home use. with a four octave compass and split Keyboard facility.
The instrument is fully polyphonic and has two rich Multi-String Voices plus Woodwind and Brass Effects for individual or Mixed use Variable Attack and Sustain Controls give a good Orchestral Mix with the added concert hall reverberation effect produced by sustain coupled with phase modulation in the Chorus Unit. The Component Kit includes Keyboard. Key-switeh hardware. and all electronic components plus tone generator linking wire and Volume Pedal A copy of the P.E. project series can be supplied for $£ 3.00$ inc post.

COMPDNENT KIT 5179.00

ROTOR-CHORUS

Comprechensive two speed
organ rotor simulator plus an
tut organ rotor simulator plused a threc phases chorus gener ator on a single
includes all x al
components mains operation and a stereo readphone driver peb. Easily in regrated with existing organ/amplifier system COMPONENT KIT E89.00 KEYBOARDS Our Square Front Keyboards re chosen for their superior fee o the discerning musician whilst giving adequate physica strength for the high impac playing pres

88 NOTE (A-C) 557.00
73 NOTE (F-F) 547.00 FIVE OCTAVE $£ 38.00$ FOUR OCTAVE £20. 75 EXPERIMENTERS A number of our Sub-Kits are and COMPUTER Experi menters. These include the 550 based MICRO CONTROLLER and Musi system kit used in the BAND.
BOX. plus a 49 note four pitch diode Keyswitch system, ${ }^{\text {Bet }}$ dide Keyswitch system.
our lists for Sub-Kit prices.

PRICES INCLUDE VAT, UK CARRIAGE \& INSURANCE (CARRIAGE EXTRA ON MFD PIANOS). Plense send S.A.E. for our complete lists, or use our telephone VSA/ACCESS Service. Competitive quotations can be given for EXPORT orders - in Austrmis pleasc contact JAYCAR in Sydney

CLEF PRODUCTS (ELECTRONICS) LIMITED
(Dept. P.E.) 4AA Bramhail Lane South, Bramhall
"THE computer BAND-BOX" (As Published in conjunction with "Practical Electronics") COMPLETE

KIT

£289
£399
MANFD.

A revolution in the field of Computer Music Generation
A MUSICIANS INSTRUMENT FOR
SOLOISTS - SINGERS - RECORDING - PRACTIC LIVE PERFORMANCE-COMPOSITION
The BAND-BOX provides an Electronic Backing Trio consisting of Drums. Bass, and a Chord Instrument (one of 16 Waveform/Enevelope combinations), with the capicity to store over
3.000 User Programmable Chord' Changes on more than 120 3.000 User Programmable Chord Changes on more than 120 different Chords. Using advanced Microprocessor technology,
Playback of 50.100 Scores can be executed in any Key and at chosen Playback Complete Music Pad is electronically Indexed and stored on secondary battery back-up. Facility exists for composition of Intro Repeat Chorus, and Coda sections including Multiple Score Se quences. Sockets are provided for Volume Pedal and Footswitch plus separate and mixed instrument Out puts. Total size $19^{\prime \prime} \times 1 I^{\prime \prime} \times 4 \frac{1}{2}$
incorporating Master Rhythm.

THE

DRUM MACHINE
Programmable ished in conjunction with 'Practical Electronies") EIGHT TRACK PROGRAMMING TWENTYFOUR PATTERNS/ PWELVE INSTRUMENTS SEQUENCE
OPERATION OPERATION COMPLETE KIT
C79.00 C79.00 0 . 119.00

The Clef Master Rhythm is capable of storing 24 selectable rhythmic drum patterns, invented. modified. and entered by the Operator on to Eight Instrumentation tracks. A three position instrumentation coninto sounds typical of playing with Drumsticks. Brushes, or Latin American Bongos and Claves. Sequence operation allows two rhythm sections to be coupled with ine second (B) section appearing at four, eight or sixicen Bar repeti
tion. Alt drums can be adjusted for level and resonance on internal ion. All drums can be adjusted for level and resonance on internal
controls to suit individual taste, thus producing good musical sound ontrols to suit individual taste, thus producing good musical s
in a battery driven unit $8 t^{\prime \prime} \times 5^{\prime \prime} \times 2 t^{\prime \prime}$.

MASHFR MHFCHRONICS NOW! The PRACHTCAL way!

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory
You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a selfemployed servicing engineer
All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.

You will do the following: Build a modern oscilloscope Recognise and handle current electronic components

- Read, draw andunderstand circuit diagrams Carry out 40 experiments on basic electronic circuits used in modern equipment
Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V. $\mathrm{Hi}-\mathrm{Fi}$ and microprocessor/computer equipment.

FFREME

PE/5/821
BLOCK CAPS PLEASE

I am interested in
\square COURSE IN ELECTRONTCS as described above RADIO AMATEUR LICENCE MICROPROCESSORS logic COURSE

British National Radio\&:Flectronics School Reading, Berks.RGIrBR
I.L.P. are the worid's largest designers and manulacturers of hi-fi audio modules?
I.L.P. ploneered encapsulated power amps and pre-amps for enhanced thermal stability, mechanical protection and durability?

There are TWENTY power amplifiers from 15 to 240 watts RMS including the very latest super-qually Mosfets to choose from?

TWENTY pre-amp modules allow you to incorporate exciting professional applications to your equipment never before available to constructors and experimenters?
I.L.P. are suppliers to
the B.B.C., I.B.A., N.A.S.A.,
British Aerospace, Marconi,
Racal, Ferranti, G.E.C., Rolls
Royce etc?

Goods are despatched within 7 days of your order reaching us and covered by our 5 year no-quibble guarantee?

It's something you have always wanted....something to build your equipment into that's smart, modern, strong, adaptable to requirement and not expensive. The 'UniCase' is yet another triumph of I.L.P. design policy. It presents totally professional appearance and finish, ensuring easier and better assembly to make it equal to the most expensive cased equipment. The all-metal 'UniCase' is enhanced by precision aluminium extruded panels engineered for speedy and perfect aligned assembly within a mere five minutes. Designed in the first case to accommodate I.L.P. power amps with P.S.U's, the range will shortly be extended to house any other modular projects.

WHAT WE DO FOR CONSTRUCTORS

Our product range is now so vast we cannot possibly hope to show it all in our advertisments without overcrowding or abridging information to the point of uselessness. So we have devised a solution which we invite you to take advantage of without delay. ALL YOU NEED DO IS FILL IN AND FORWARD THE COUPON BELOW TO RECEIVE OUR NEWEST COMPREHENSIVE I.L.P. CATALOGUE POST FREE BY RETURN. It gives full details of all current I.L.P. products for the constructor together with prices, full technical and assembly details, wiring and circuit diagrams etc. and it's yours, FREE. You don't even have to stamp the envelope if you address it the way we tell you.

FREEPOST 2

GRAHAM BELI HOUSE, ROPER CLOSE CANTERBURY CT2 TEP
Telephone Sales (0027) 54778 Tecmical Only (0027) 64723 Telex 965780 FREEPOST
Mark your envelope clearly FREEPOST 2 and post it WTTHOUT a stamp to I.LP. at address above. We pay postage when your letter reaches us.

Sinclair 2X81 Personal Comi the heart of a system that grows with you.

1980 saw a genuine breakthrough the Sinclair ZX80, world's first complete personal computer for under £100. Not surprisingly, over 50,000 were sold.

In March 1981, the Sinclair lead increased dramatically. For just £69.95 the Sinclair ZX81 offers even more advanced facilities at an even lower price. Initially, even we were surprised by the demand - over 50,000 in the first 3 months!

Today, the Sinclair ZX81 is the heart of a computer system. You can add 16 -times more memory with the ZX RAM pack. The ZX Printer offers an unbeatable combination of performance and price. And the ZX Software library is growing every day
Lower price: higher capability With the ZX81, it's still very simple to teach yourself computing, but the ZX81 packs even greater working capability than the ZX 80 .

It uses the same micro-processor, but incorporates a new, more powerful 8K BASIC ROM - the 'trained intelligence' of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays.

And the ZX81 incorporates other operation refinements - the facility to load and save named programs on cassette, for example, and to drive the new ZX Printer

Every ZX 81 comes with a comprehensive, specially- written manual - a complete course in BASIC programming. from first principles to complex programs.

170 $5 \sqrt{4} 20$

Higher specification, lower price -

 how's it done?Quite simply, by design. The ZX80 reduced the chips in a working computer from 40 or so, to 21. The ZX81 reduces the 21 to 4 !

The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from the ZX80!
New, improved specification - Z80A micro-processor - new faster version of the famous Z80 chip, widely recognised as the best ever made.

- Unique 'one-touch' key word entry: the ZX81 eliminates a great deal of tiresome typing. Key words (RUN, LIST, PRINT, etc.) have their own single-key entry.
- Unique syntax-check and report codes identify programming errors immediately
- Full range of mathematical and
scientific functions accurate to eight decimal places.
- Graph-drawing and animateddisplay facilities.
- Multi-dimensional string and numerical arrays.
- Up to 26 FOR/NEXT loops.
- Randomise function - useful for games as well as serious applications.
- Cassette LOAD and SAVE with named programs.
- 1K-byte RAM expandable to 16 K bytes with Sinclair RAM pack.
- Able to drive the new Sinclair printer.
- Advanced 4-chip design: microprocessor, ROM, RAM, plus master chip - unique, custom-built chip replacing 18 ZX80 chips.

$\therefore 10$ 560

Kit or built -it's up to youl

 You'll be surprised how easy the ZX81 kit is to build: just four chips to assemble (plus, of course the other discrete components) - a few hours' work with a fine-tipped soldering iron. And you may already have a suitable mains adaptor -600 mA at 9 VDC nominal unregulated (supplièd with built version).Kit and built versions come complete with all leads to connect to your TV (colour or black and white) and cassette recorder.

Designed as a complete module to fit your Sinclair ZX80 or ZX81, the RAM pack simply plugs into the existing expansion port at the rear of the computer to multiply your data/program storage by $16!$

Use it for long and complex programs or as a personal database. Yet it costs as little as half the price of competitive additional memory.

With the RAM pack, you can also run some of the more sophisticated ZX Software - the Business \& Household management systems for example.

Available nowthe IX Printer for only £49..

Designed exclusively for use with the ZX81 (and ZX80 with 8K BASIC ROM), the printer offers full alphanumerics and highly sophisticated graphics.

A special feature is COPY, which prints out exactly what is on the whole TV screen without the need for further intructions.

At last you can have a hard copy of your program listings - particularly
useful when writing or editing programs.

And of course you can print out your results for permanent records or sending to a friend.

Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZX Printer connects to the rear of your computer - using a stackable connector so you can plug in a RAM pack as well. A roll of paper (65 ft long $x 4$ in wide) is supplied, along with full instructions.

How to order your $\mathbf{Z X} 81$

BY PHONE - Access, Barclaycard or Trustcard holders can call 01-200 0200 for personal attention 24 hours a day, every day. BY FREEPOST - use the no-stampneeded coupon below. You can pay
by cheque, postal order, Access, Barclaycard or Trustcard.
EITHER WAY - please allow up to 28 days for delivery. And there's a 14-day money-back option. We want you to be satisfied beyond doubt and we have no doubt that you will be.

ELECTRONIC IGNITION

Makes a good car
bemer

TOTAL ENERGY DISCHARGE electronic ignition glves all the well known advantages of the best capacitive dischärge systems.
PEAK PERFORMANCE —— higher output voltage under all conditions.
IMPROVED ECONOMY
—_ no loss of ignition performance between services.
FIRES FOULED SPARK PLUGS no other system can better the capacitive discharge system's ability to fire fouled plugs.

ACCURATE TIMING ——prevents contact wear and arcing by reducing load to a few volts and a fraction of an amp.
SMOOTH PERFORMANCE - immune to contact bounce and similar effects which can cause loss of power and roughness.
PLUS
SUPER POWER SPARK $31 / 2$ times the energy of ordinary capacitive systems $-3 / 2$ times the power of inductive systems.

OPTIMUM SPARK DURATION 3 times the duration of ordinary capacitive systems - essential for use on modern cars with weak fuel. mixtures.
BETTER STARTING \qquad full spark power even with low battery.
CORRECT SPARK POLARITY unlike most ordinary C.D. systems the corract output polarity is maintained to avoid increased stress on the H.T. system and operate all voltage triggered tachometers.
L.E.D. STATIC TIMING LIGMT for accurate setring of the engine's most important adjustment.
LOW RADIO INTERFERENCE fully suppressed supply and absence of inverter 'spikes' on the output reduces interference to a minimal level.

DESIGNED IN RELIABILITY
an inherently more reliable circuit combined with top quality components - plus the 'ultimate insurance' of a changeover switch to revert instantly back to standard ignition.
IN KIT FORM it provides a top performance electronic ignition system at less than half the price of competing ready. built systems. The kit includes every thing needed, even a length of solder and a tiny tube of heatsink compound. Detailed easy-to-follow instructions, complete with circuit diagram, are provided - all you need is a small soldering iron and a few basic tools.
AS REVIEWED IN
ELECTRONICS TODAY INTERNATIONAL June ' 81 Issue and EVERYDAY ELECTRONICS December ' 81 Issue
fits all negative earth vehicles. 6 or 12 volt, with or without ballast
OPERATES ALL VOLTAGE IMPULSE TACHOMETERS Some order current impulse types (Smiths pre '74) require an adaptor PRICE $£ 2.95$
\(\left.\begin{array}{lll}STANDARD CAR KIT \& £ 14.85

Assembled and Tested \& £ 24.95

TWIN OUTPUT KIT \& £ 22.95

For MOTOR cYCLES and CARS with iwin ignition systems\end{array}\right\}\)| Plus |
| :--- |
| £1.00 |
| U.K. |
| P. \& P. |
| Prices |
| Include |

ELECTRONIZE DESIGN

Dept. B, Magnus Road, Wilnecote

ELEGTROVALIE

INVITE YOU TO

Read all about it!

A selection of much-demanded books trom the very large stocks we carry. (More in our Catalogue 82-70p post free, with 70p for use voucher on orders $£ 10$ and over).

TI SEMICONDUCTOR BOOKS
(All prices in T/ section are Nett) MOS Memory Bipolar Memories
Optoelectronics
Opto Theory and Practice Linear Control
Voltage Regulators Bipolar Microcomputer Components Interface Circults TTL Data Book
"Understanding Series" Solid State Electronics Digital Electronics Microprocessors Calculator Mathematics Communication Systems Computer Science

Pocket Guldes
Volume One - TTL
Volume Two - Linear and Interlace $\mathbf{£ 2 . 5 0}$
TOWERS INTERNATIONAL SERIES
Transistor Selector
$\begin{array}{lll}\text { Transistor Selector } & \text { £.50 } & \text { CPM Users Guide } \\ \text { FET Selector } & £ 3.50 & \text { Z.80 Programming Manual }\end{array}$
Z. 80 Programming Manual
$£ 6.95$
$£ 14.95$
$£ 5.45(N)$
£3.95 Microprocessor S
£1.00
£4.00 BABANI BOOKS
£4.00 - Selection
£4.00 BP42 50 LED Circuits
BP43 Walkie Talkies
£4.50 BP44. IC 555 Projects
£7.00 BP52 TV DX
$\mathbf{£ 8 . 5 0}$ BP57 Building a solid state oscilloscope BP55 Radio Stations Guide BP70 Radio Fault Finding BP75 Remote Control Projects £3.95 BP85 International Transistor
£3.95 Ep211 Equivalents
£3.95 BP211 Diode Data £3.95 BP224 Fity CMOS Projects £3.95

COMPUTER BOOKS
All prices in this section aro Nett
£3.50 Programming the 280 (Zaks) CPM Handbook
Basic Computer Games
More Basic Computer Games orders over $\mathrm{f50}-\mathrm{not}$ applicable on items marked N (nett) or where stated for sections above.
ELECTROVALUE LTD 28 c St. Jude's Rd., Engletield Green, Egham, Surrey TW20 OHB. Phone: Egham (STO 0784: London 87) 33603. Telex 264475. NORTHERN BRANCH, 680 Burnage Lane, Burnage. Manchester M19 INA. Phone 061-432 4945.

Br-paK Barcains

-IARESIBTABLE

RESISTONEAROAMS"

"CAPABLE CAPACITORPAKS"

P魚 10.	(0) ${ }^{\circ}$	Oncriviem P	Price
5816	5	Coaxcitors Mixed Trpes	¢1
S517	27	Ceramic Capacitors Miniature Mined	1
5×18	100	Mixed Ceramics 1pf. 56 pl	11
sils	16	Mired Ceramics 600f 0.5 mf	1
5×20	10	Assorted Pohyester/Porstyrene Capacitors	${ }_{4}$
5121	0	Mixed C200 rype capacitors metal foll	11
5122	. 100	Electiolytics, all sorts	1
5123	50	Quality Electrohyics $50-1000 \mathrm{mi}$	4
5124	20	Tantalum Beads, mixed	¢1

- Quantities approrimate, count by werght.

AUDIO PLUAS, SOCKETS

 ANO ACCESSONIE25 Dieces of Audio Pluys. Sockets and Connectas Soesters. Phono DIN $180^{\circ} .240^{\circ}$. Inline e-6 Pin. at well over $\{3$ normal Ordee No. Sx25. Dur Price $£ 1.50$ pe palk. Gustanteed to save you mones.

Sux 3 Prs of 6 pin 240° OIN Plups and Chassis Socket
s277 I I Rught Angle Stereo lach Plug 6.3 mm plus mulching metal chassus mounting societ suat 4 Phono plups and 2 dual phono connectors
 ser3 in 3.5 mm Plueg to 2 mm Sockel adapto. $\$ 31$ i $\$ 3.5 \mathrm{~mm}$ Plug to Phono Socket adaptor.

BARCAINS

514220 small 125 Red LED's c113 10 Rectaneular Green LEO's

 S145 30 Assorted Zener Diodes $250 \mathrm{mw}-2$ watt muxed voltages all coded. New.S14 4 Blach Instrument
Knobs-winged with pointer wh Sundard screm. Fit size 29 a 20 mm
Sust 20 Assorted Slider Knobs. Blach/Chrome, el
sue 12 Moons and Filament Lamps. Low woltien and mains - wious types and colours - some pond mounting

TRIACS - PLASTIC

1 AMP - 400 - TO202 - TAG 1366

OFP	10078	S 0 OF	
	[3.75	[17. ${ }^{\text {d }}$	[30.0
GAMP 400\%-T0220-TAG 425			
(t)	[5.75	[21.5)	c

2uness The best known Power Transistors in the World - 2N3055 NPN 115 w. Out BI-PAK Specisl OHE Price. 10 \#1 50 H1 100 w $[3.50$ £ 16 m £
TOM12 COMPLIMENTARY PMP POWER TRANSISTORS: 102×3055. Equialant M12955-80312-T03 SFECIM PIVCE 80.70 enel 10 ches

TECASBOTY

The Electronic Components and Semiconouctor Bargain of the Year. A host of Electronic components including potentiometers - rolary ano slider, presets - horizontal and vertical Hesistors of mixed values 220 hms to $2 \mathrm{M} 2-1 / 8102$ Watt. Acomprenensive range of capacitors including electrolytic and polyester yyoes plus disc ceramics etcetera. Audio piugs and sockels of various ypees plus swilches, luses, heatsinks, wire, nuls/bolls. gromets, cable clips and tyes. knoos and P.C. Board. Then ado to thal 100 Semiconductors to include transistors. diodes. SCR's opto's, all of which are current everyday usable devices In all a Fantastic Parcel. No rubbish all identifable and

$$
\begin{aligned}
& \text { - Beat the Budgen } \\
& \text { - Down with Depression }
\end{aligned} \text { S6.50. }
$$

- Down wis

1FREE ${ }{\text {PAK }}$

Gea a 11 FREE PACK Oiders iver $\{10$ excluding WT. Choose 'I I Pach free (or 2×50 p) ado il to your onder and sue even more money.
salislaction or your money back has alwars been BI.PAK's GUARANTEE and it still is All these Sate items are in stoclyin quantity and we will dexpatch the same day as yout order is recelved.

MORE BAROAINEI

SU51 60 metres PVC covered Hook up wire single and stianded. Mixed cotours
sise 25 Assorted TIL Gates 7400 Series 7401.7460.
5159 10 Assorted fiop Flops and MSI
sice 20
Po Assorted Sider
SIC1 25 Assorted Po
sus2 Rotary, Dual, etc. 40 Assorted PreSels Hor Wert
sxis 10 Rud Switenes - glass type 3 Micro Sintrles - int thpe

STLLL MOAE! BLIDEA POTENTIOMETERS
 Plastic 40 mm Travel Mono 58635×470 ohms Lin $8 \mathbf{8 1} 675 \times 47 \mathrm{~h}$ Lin SIGA5xillin SICA5x47hLor an at 50 men mech.
 S111 50 BC108 "Fallouts", Manufacturers out of
 5112 A mixed bundle of Copper clad Baard. Fibre glass and paper. Single and double sided A fantastic bareain.
 sut Genuim muluard OC71 Germantum Pwp
 Tramsistors. Bond Mow 10 for

1 Amp SILICON RECTIFIERS

Glass Iype simila IM4000 SERILS IN4001-N4004 50 - 500 u - uncoded - you select tor VI IS. ALL Derlec devices - NO duds Min 50\% 50 tol 51.00 - wom double ORDER NO $\mathrm{S} \times 76$
Silicon Genaral Purpose NPN Iransitors TO-18 Case 唇 Lock fit lesds - coded CV7644 Similar to BC 147 - BC107- 1889 ALL NEWI VCE 70% IC500mA He $75-25050$ on 100 . 애 500 ofl 1000 or PRICE: 2.00 £3.00 $£ 17.50 \quad £ 30.00$ 잉 suicon General Purdose PNP Transisiors T0-5 Case Lock fin haos coded CV9507 sumila 2N'905A to
 $8 F \times 30$ VC 60 IC 600 ma Min He 50 ALL NEW PRICE: $£ .50$ £4.00 $119.00 ~ £ 35.00$

Silicon NPN'L’ TypeTransitors T0-92 Plastic centre collector Like BC182L - 1831 - 1841 VCBO 45 VCEO 30 IC200mA He 100-400 ALL pertect devices - uncoded ORDER AS S×183L 50 ofl 100 off 500 ofl 1000 ofl $\begin{array}{llll}£ 1.50 & £ 2.50 & £ 10.00 & £ 17.00\end{array}$ PNP SILICON TRANSISTORS: Similar IX500 - IXX214 - E-LIne. VCEO 40 VCBO 35 kC 300 mA He $50-400$ Brand New - Uncoded - Pelect Devices 50 of 100 off 500 of 1000 of $\begin{array}{lllll}£ 2.00 & £ 3.50 & £ 15.00 \quad £ 25.00\end{array}$ Order as IXPNP

BI-PAK'S OPTO BARGAIN OF THE YEARI

 devices to nclude LED's Large uno Small in Red, Green, yelow and Clese 7 Segment Oisplas both Common Cathode and Common Anoce
 OCP71 Photo Detectors-like MEL11-12. This whote Dach of 25 devices will cost you just

AND we zualantee your money bach if you are nol completely salished. FULL data etc included. Order Mo. 8×57.

The Third and Fourth Hand...

MW398 NI-CAD CHARGER
Universal Ni-Cad battery charger All plastic Case with lift up lid Charge/ Test switch LED indicators at each of ine five charging points Charges
PP3 (9V)

Power
but have never got "unil now
his helptul unit with Rod mounted horrzontally on Meavy Base. Crocodite clips allached to rod ends. Six ball \& socket joints give intintite variation and positions inrough 360° also available attached to Rod a $21 / 2$ diam magnilier giving $2.5 \times$ magnification. Helping hand unll avallable with or without magniter. Our Price with magmitier as illustrated ORDER N0. 1402 E 5.50 Without magmitier ORDER NO. T4DO 4.75
 U12 (1 5V penlite) Dims U1t (15V "C") $210 \times 100 \times 50 \mathrm{~mm}$ U2 (15V $\left.{ }^{\circ} \mathrm{D}^{\prime}\right) \quad$ C6.05
POWER SUPPLY OUR PRICE E 3.25 Power supply fils directly into $\div 3 \mathrm{amp}$ socke Fused for salety Polarily reversing sockel Voltage switch Lead with multi plug input - 240V AC 50 HZ Output -3.456 75.9812 VDC Rating -300 ma MW88

5 watt (RAMS) Audlo Amp

High Quaility audio amplitier Modute. Ideal for use in record players. tape recaders. stereo amps and casselte players efte Full data and bach up diagrams with each mooule.
Speccilication

- Power Oulput 5 waits RMS Lasd Impedance 8.16 onms efrequency response $50 \mathrm{~Hz}_{2}$ to 25 KHz - 3 dbb Sensitivity 70 my for full output © Input Impedance
SOh ot ms - Sree $85 \times 64 \times 30 \mathrm{~mm}$ Soh ohms Size $85 \times 64 \times 30 \mathrm{~mm}$ Tolal Hem monic
distoction less than. 5%
BI.PAK'S give amay puce
82.25

You could nol Build one
for ins pice.

B-PAK'S COMPLETELY NEW CATALOOUE

completely re designed. Fultrof the type of components you require. plus some very interesting ones you will soon be using and of coulse. the laggest range of semiconductors for the Amateur and Protessional you could hope to find.
There are no wasted pages of uscless information so often included in
Catalogues published nowadars Just solid facts i.e. price, descripion and individual fealures of what we have aralable. But remember, B. Patis spoticy has always been to sell quality components at competiture picices and thail w Still 00 .
BI-PAK'S COMPLETEIY MEW CATMDCUE is now avalable to you. You will be amared how much you can save when you shop tor Electronic Components with a Bi. Pat Catalogue. Have one by you all the time-It pays to buy Bi-Pak

To receive your copy send 75ρ plus $25 \rho \rho \& p$

8 Bit MHCROPROCESSOR Naltonal INSBOBOAN 50 Pin DIL N Channel Stic GATE MOS TECHNOLOGY As used in Nationals N8080 Micro Compulet Family Instruction Cycle time 2 us Supplied with functional Block Diagram BRAND NEW
NOT seconds or reciarms
100% perlect ORDER NO Sx8080 Only Normal Sell price E 450 each
Our
8l-Pak Special Price
2 00 SO MURRY - LIMITED STOCKS

40 Pin ic Socker to lil SX8080 Oller price ORDER NO 1609 30p

A PRACTICAL DIGITAL ELECTRONIC KIT FOR z LESS THAN $£ 20$ 解

SUITABLE FOR BEGINNERS

NO SOLDERING!

Learn the wonders of digital Learn the wonders of digital electronies and see how quickly
you are designing your own you are designing your seven LS TTL integrated circuits, breadboard, LEDs, and all the DIL switches, resistors, capacitors, and other components to build interesting digital circuits; plus a very clear and thoroughly tested instruction manual (also available separately). All this comes in a pocket size plastic wallet for only $19-90$ p ine VAT and plp. This course is for true beginners:

- needs no soldering iron.
- asks plenty of questions, but never leaves you stuck and helpless
- teaches you about fault-finding, improvisation, and subsystem checking.
- the only extra you need is a 4 VV battery (Ever Ready

1289, or similar), or a stabilised 5 V power supply. Using the same breadboard you may construct literally millions of different circuits.
This course teaches boolean logic, gating, R-S and J-K flipflops, shift registers, ripple counters, and half-adders. Look out for our supplementary kits which will demonstrate advanced arithmetic circuits, opto-electronics, 7-segment displays etc.
It is supported by our theory course
DIGITAL COMPUTER LOGIC AND ELECTRONICS £\& 56 £6.00 for beginners, and our latest, more advanced text. DIGITAL DESIGN
£7.00
Please send for full details (see coupon below)
GUARANTEE No risk to you. If you are not completely satisfied, your money will be refunded upon return of the item in good condition within 28 days of receipt.
CAMBRIDGE LEARNING LIMITED, UNIT 25 RIVERMILL SITE, FREEPOST. ST IVES, CAMBS, PEI7 $\angle B R$, ENGLAND.
TELEPHONE: ST IVES (0480) 674L6. VAT No 313026022
All prices include worldwide postage (airmail is extra please ask for prepayment invoice). Giro A/c No 2789159. Please allow 28 days for delivery in UK

Please send me:

.....SUPERKIT(S) £19.90

......Free details of your other self-instruction courses

I enclose a *cheque/PO payable to Cambridge Learning Lid for £......... (*delete where applicable)
Piease charge my:
*Access / American Express / Barclaycard / Diners Club Eurocard / Visa / Mastercharge / Trustcard
Expiry Date............. Credit Card No
Signature...
Telephone orders from card holders accepted on 048067446 Overseas customers (Including Eire) should send a bank draft in sterling drawn on London bank, or quote credit card number.
\qquad
Address.

Cambridge Learning Limited, Unit 25 Rivermill Site, FREEPOST, St Ives, Huntingion Cambs PE17 LBR, England. (Registered In England No 1328762).

An entire range of low-cost high-

performance instruments

Sabtronics
 Waking Performance Affordable

-2010A 3y-Digit LE.D. Bench DMM -2015A 3\% -Digit LC.D. Bench DMM 2020 34-Digit LE.D. Bench DMM 2033 With Microcomputer Interface 2033 3\%-Digit LC.D. Hand DMM -2035A 3\%-Digit LC.D. Hand DMM -2037A 3\%-Digit LC.D. Hand DMM

Test our low priced test equipment. It measures up to the best. Compare our specs and our prices - no-one can beat our price/performance ratio.
Full colour illustrated
brochure and price list from:
BLACK STAR LTD.,
9a Crown Street,St. Ives,
Cambs. PE17 4EB
Tél: (0480) 62440. Telex 32339

> 5020 A 1 Hz -200KHz Function Generator - 8110 A 100 MHz 8. Digit Frequency Meter 8610 A 600MHz B-Digit Frequency Meter 86108600 MHz Q-Dight Frequency Meter 800081 GHz 9 -Digit Frequency Meter $8700 \quad 10 \mathrm{MHz}$ Universal Frequency Counter/Timer
> PSC- 85600 MHz Prescale
> coos 5 MHz Single Trace Oscilloscope Also avallable In kit form.

01 Ne? (MAINS

This negative ion generator gives you the power to saturate your home or office with millions of refreshing ions. Without fans or moving parts it puts out a pleasant breeze. A pure flow of ions pours out like water from a fountain, filling your room. The result? Your air feels fresh, pure, crisp and wonderfully refreshing.
All parts, PCB and full instructions
A suitable case including front panel, neon switch, etc.
$£ 6.50$ HOURS:
Mon. to Fri. 9-5 pm
Sat. 9-4.30 pm.
Price includes post \& VAT. Barclay/Access Welcome
T. POWELL,

Wide range of Japanese integrated circuits \& transistor stocked.

Please allow 14 days for delivery.

Advance Works, P.E.,
44 Wallace Road,
London N1 IPQ.
Tel. 01-226 1489.

BUY A KIT OR DESIGN YOUR OWN SYSTEM
SEND S.A.E. OR 'PHONE NOW FOR FREE FULLY ILLUSTRATED CATALOGUE. IT TELLS YOU ALL YOU NEED TO KNOW! CARRIAGE INCLUDED. VAT EXTRA 15% Please allow 14 days for delivery
A.D. EEECTRONICS. 217 WARBECK MOOFR. AIITREE. UVEPPOOL L9 OHU. 0515238440

KTITS, COMPONENTS michos a paitis

DISCO LIGHTING KITS DL1000K
 This value-for-monay kit teatures bi-drectional sequence, speed of sequence and trequency of oirrection change. being variable by means of potenitometers and means of potenitometers and dimming control. Oniy $E 14.80$
 DLZ1000K
 A lower cost version of the above. leaturing undiractional channel sequence with spoed variable by means of a pre-set pot. Outputs switched only at mains zero crossing points to reduce radio interference to a minimum.
 Optional opto input DLA1esop
 Allowing audio ("Deat")-light response.

DVM/ULTRA SENSITIVE

 THERMOMETER KITmis new desion la baseo on
ine ICL71z la lower power version of the ICL7108 chip) and a $31 / 2$ aigit llauid crysial
display. This kit will form the dasis of digital multimeter

only a few additional resistors and switches are required-details supplied), or a sensitive digital thermometer $\left(-50^{\circ} \mathrm{C}\right.$ to $+150^{\circ} \mathrm{C}$ reading $100.1^{\circ} \mathrm{C}$. The basic kit has sensitivity of 200 mV for a full scale reading. lownalic polarity indication and an ultra typical bettery life from a standard ov PP3 when usec 8 hours a day. 7 days a week. Price £ 55.50

DO YOU LONG TO HEAR YOUR DOORBELL RING?
Our latest kit gives
you apiesing three- ELECTRONIC DOOR related tone sequence CHIME (not a microprocessor, conme old ding dong) at a touch of a button integrated circuif, is integrated circuit, is
supplied compiete a printed circuit board loudspeaker and drilled box and requires only 9 V battery and push button common to most household It may also be switched by logic in such appllcations as car alarms, clocks, toys P.A. systems, etc. The unsi produces a
isomw output and draws less than one 1 uA isom a PPS battery when the tone ceases. Supplied complete with circult and assembly instructions. IOEAL PROJECT FOR BEGINNERS-

TRIACS

400 V Plastic Case (texas) 3 A Tic2060 $\longrightarrow \begin{aligned} & 16 A \text { TIC2460 } \\ & 25 A \\ & \text { TIC2630 }\end{aligned}$ 6 A with trigeer O 4006 LT . 8 A isolated tab TXAL228B Diac.

THE KEY TO YOUR SECURITY IS IN OUR LOCK

It the thour 1 car theres, electronic equipment upx is you OU ELECTRONIC LOCK KIT includes a 10 -way Keyboard and a special IC which provides a 750 mA output to drive \& solenoid or relay Inot supplied) when four kevs are depressed in the
corfect souence. This gives over 5.000 posstble combinationst The sequence is prewired and correct wavence. This gives over 5.00 possible combinationsi The sequence is prewired and onabing the open code to be stored lespecially usetul in a car when it is left in a garage to serucing ss the open coce need not be disclosed). Size: $7 \times 6 \times 3 \mathrm{cms}$. Power Consumption is $40 U A$ at 5 V to 15 V d.c.
At only E10.50 + VAT, it will make * smalier hole in your pocket than a bunch of keys! Electric Lock Mechanism

THE MULTI-PURPOSE TIMER HAS ARRIVED

 Now you can run your central heating, lighting, mi-fis system and lots more with just one porgrammable timer. At your selection it isdesigned to control four malns oulpuls independently, switching on and oft at pre-set times over a 7 day cycle. e.g. To control your central connect it to your distern programme and set it and torget ins clock will do the rest.

FEATURES INCLUDE -

* 0.5 " LEO 12 hour display
* Day of week, em/pm and output status indicator
* 4 zero voltage switched mains outputs.
* 50160 Hz mains operation
* Battery backup saves stored programmes and conthues time keeping during power fallure ©Battery not suppiled.
- Olisplay blanking during power tailure to conserve battery powe
* 18 programme time sets.
"Powertul "Everyday" function enabling oulput to switch every day but use only one lime set. - Uselut "sleep" function-turns on output for one hour - Oirect switch
- 20 function keypad for programme entry
- Programme verification at the touch of a button
on on y
(including components, assembly ONL OMEL

GAB THE AT YARAGEDOOR

 Atan enable the lights setting foot from yom garage door to be outpor off at the touch garage and your car, and to be only while a valig the door a button. A ive to be swit also It features vallid code is tranfrol con momentartiched switching 2 iwo lafched outranitied) is inds (relay closey solid state switc. mains loads with commeated by LED 4 function for $9 v$ pes 11 kW maxiremote on resef fo range of: Open/Close batiery operation A hand-heo As a general approximately on 1, on 2 constifuting for switchingose remote reet is includ, giving 40 , Offing appliances. This, lelevision trol in the home aged or disabideal for ther
ALL PRICES $£ 23.75$ EXCLUDE VAT

MEMORIES AND
PRICES SLASHED

2732.	A. 80	8035L.
6810.	. 1.25	M6802P(CPU)
6821 P	1.25	280ACPU
6850P	1.50	z80ACTC

.3 .150 . 3.30 2.90
290 CMOS

LS00 . 12	LS14	48	LS42 . 40	LS93	. 37	4000	14	4026	1.05	
LSO1. 12	LS15	. 15	LS47 . 42	LS95	. 48	4001	. 14	4027	. 10	4501
LS02 . 13	LS20	. 14	LS51. 15	LS107	. 24	4002	. 14	4028	. 50	45
LS03 13	LS21	. 15	LS54. 15	LS109	24	4007	. 14	4040	. 68	
LS04. 14	LS22	. 15	LS55. 15	LS112	24	4011	. 15	4049	. 30	
LSO5 . 15	LS26	. 18	LS53. 20	LS113	. 24	4012	. 17	4050	. 30	
LS08 . 15	LS27	. 15	LS74.18	LS114	24	4013	${ }^{35}$	4060	90	
LS09. 15	LS30	. 14	LS75. 27	LS123	. 51	4015	. 70	4069	18	
LS10 14	LS32	. 15	LS76. 21	LS126	. 29	4016 4017	. 30	4070	${ }^{24}$	
LSII 15	LS37	. 17	LS85.64	LS132	. 44	4019	${ }^{65}$	4071	${ }^{22}$	
LS12 . 15	LS38	. 16	${ }^{1} 5868.18$	LS160	40	4023	${ }^{38}$	4077 4081	24 .22	
13.21	LS40	. 14	LS90. 32	LS161	. 40	4025	${ }^{218}$. 22	

THE PERFECT AID FOR "LAZYITIS"

Our Lamp Dimmer Kit with INFRA RED REMOTE CONTROL will enable you to switch the lights on or oft, and set the brightness. at a push of a
button without leaving your armchair. water-bed, etc. Not only will you save time but it has also been estimated that the savings in shoe leather and carpet wear alone would pay for this
unnt in approxlmately 1.3697 years or morel

TOR300K Dimmer Kis £14.30 MK6 Transmitter Kit E4.20 We also still sell our highly popular and the LO300K rotary coniroliod Dimmer kit at...tary conirolied All kits contan all necessan components and full instructions. You oniy ne

24 HOUR CLOCK/APPLIANCE TIMER KIT

Switches any appliance up to kW CTroo0k Basic kit on and off at present times once per
day. Kit contains: AY. $5-1230 \mathrm{IC}$ day. Kit contains: AY-5-1230 IC,
O.5: LEO display. mains display drivers, switches. LEDs.
inacs, PCBs and lull instructions. inacs, PCEs and lull instructions.
terl
(Ready Bulli)
£14. 90
E11. 40
Add 50 p postage \& packing $+15 \%$ VAT to total Odd 50 Overseas Customers: add \&T.50 (Europe). \&4.00 (elsewhere) tor p\& o. Send S.A.E. for further STOCK DETAILS Goods by return subject to availability (- I 9 10am to 5 pm (Mon to Fri)

No circuit is complete without a call to -
ELECRONICS ${ }^{\text {Fi }}$

UXERIDCE ROAD

STEREO AWPLIFIER KIT

- Featuring latest SGS/ATES TDA 200610 watt outpu iC's with in-built thermal and short circuit protection. - Mullard Stereo Preamplifier Module.
- Attractive black vinyl finish cabinet, 9 " $\times 81 /{ }^{\prime \prime} \times 3 \%$ (approx).
- $10+10$ Stereo converts to a 20 watt Disco amplifier. To complete you just supply connecting wire and solde Features include din input sockets for ceramic cartridge, microphone, tape or tuner. Outputs - tape, speakers and headphones. By the press of a button it transforms into a 20 watt mono disco amplifier with twin deck mixing. The kit incorporates a Mullard LP1 183 pre-amp module plus power amp assembly kit and mains power supply. Also features 4 slider level controls, rotary bass and treble controls and 6 push button switches. Siver finish fascia with matching
knobs and contrasting
cabinet. Instructions
available, price 50 .

£16-50

Supplied FREE with
SPECIFICATIONS: Frequency response
Input sensitiviv
Tone controls
Distortion
Mains supply
$\begin{array}{ll} & 0.1 \% \text { typically @ } 8 \text { watts } \\ 220-250 \text { volts } 50 \mathrm{~Hz}\end{array}$ $8^{\prime \prime}$ SPEAKER KIT Two $8^{\prime \prime}$ twin cone domestic speakers. $£ 4.75$ per stereo pair plus $£ 1.70$ p\&p. When
purchased with amplifier. Available separately $£ 6.75$ \& £1.70 p+p.

PRACTIGAL ELECTRONIGS cAR

AADIO

KiTseries if
2 WAVE BAND, MW - LW

- Easy to buitd. * 5 push button tuning. - Modern
design. - 6 watt output. - Ready etched and punched PCB. - licoorporates suppression circuits.
All the electronic components to build the radio, you supply only the wire and the solder, featured in Practical Electronics. Features: pre-set tuning with 5 push button options, black illuminated tuning scale. The P.E. Traveller has a 6 watt output neg. ground and in corporates an integrated circuit output stage, a Mullard IF Module LP1181 ceramic filter type nre-aligned and assembled, and a Bird pre-aligned push button tuning unit. Suitable stainless steel fully retrac able aerial llockingl and speaker
£12.95 plete kit. $£ 2.50 / \mathrm{pack}+£ 1.50 \mathrm{p} \& \mathrm{p}$.
$+£ 2.00 \mathrm{p} \& \mathrm{p}$.

: MRDAUDIO
 STEREOCAR RADIO:OOSTER

To boost your car radio or radio
£9.95
£1.50 p\&p.

125W HICH POWER AMP MODULE

кІт: $£ 10-50$ вUILт: $£ 14-25$ $+£ 1.15 p \& p$

The power amp kit is a module for high power applicat. ions - disco units, guitar amplifiers, public address systems and even high power domestic systems. The unit is protected against short.circuiting of the load and is safe in an open circuit condition. A large safety margin exists by use of generously rated components, result, a high powered rugged unit. The PC board is back printed, etched and ready to drill for ease of construction and the aluminium chassis is preformed and ready to use. Supplied with all parts, circuit diagrams and instructions. ACCESSORIES: Suitable mains power supply kit with
transformer: $£ 7.50$ plus $£ 3.15$ p\&D.
Suitable LS coupling electrolytic: $£ 1.00$ plus 25 p p\&p.

Operating voltage (DC): 50-80 max.
Loads: 4-16 ohms.
Frequency response measured @ 100 watts: $25 \mathrm{~Hz}-20 \mathrm{KHz}$.
Sensitivity for 100 wats Sensitivity for 100 watts: $400 \mathrm{mV} @ 47 \mathrm{~K}$.
Typical T.H.D.@ 50 watts 4 ohms 0.1%
Typical T.H.D. @ 50 watts, 4 ohms: 0.1%.
Dimensions: 205×90 and $190 \times 36 \mathrm{~mm}$.

HI-FI SPEAKERS ATBARGAN PRICES

GOODMANS TWEETERS

8 ohm soft dome radiator tweet er $(3 \%$. "sq. $)$ for use in up to 40 W
$£ 3.50$ each ($\mathrm{p} \mathrm{\& p} £$) or $£ 5.95$ pair ($\mathrm{p} \mathrm{\& p} £ 2$)
35 WATT MICRO 2-WAY SPEAKER SYSTEM Unit comprises one 50 w (4"app.) Au
soft dome tweeter HD:00. And one 5" Audax bass/midrange 35w driver HIFIIJSM. Complete with 2 element crosscver Total impedance of system 4 ohms
£7.95
PER SET + £2. 70 p\&p.

P.E.STEREO TUNER KT

Tigned eay to build 3 band stereo AM/FM tuner kit is desssuel For orates three Mullard modules and an I.C. IF. System. FEATURES: VHF, MW. LW Bands, interstation muting and AFC on VHF. Tuning meter. Two back printed PCB's. Ready made chassis and scale. Aerial: AM - ferrite rod, FM -75 or 300 ohms. Stabalised power supply with ' C ' core mains transformer. All components supplied are to P.E. strict specification. Front scale size: $10 \frac{1}{2}$ $\times 21 / 2^{n}$ approx. Complete with diagram and instructions.

Self assembly simulated wood cabinet sleeve to suit tuner only.

TVSOUND
 TUNER KIT
 £11-45

As featured in E.T.I. December ' 81 issue. Kit of parts including PCB, UHF tuner and selector switch with all components excluding case.

- Transformer $\mathbf{£ 1 . 5 0} \mathbf{+} \mathbf{£ 1 . 5 0} \mathbf{p \& p}$ ($p \& p$ free on transformer if ordered with kit). Ready built LP1 183 Mod ule for simulated stereo operation. $£ 1.95+75 p$ p\&p.

ALL MAIL TO

$21 B$ HIGH STREET, ACTON, W3 6NG. Note: Goods despatched to UK postal addresses only. For further information send for instruct ions 20 p plus stamped addressed envelope. All items subject to availablity. Prices correct at 31/1/82 and subject to change without notice. Please allow 7 working days from receipt of order for despatch.
ALL PRICES INCLUDE VAT AT 15\%.

MONO

WIXER AWP
£39-95

50 WATT Six individually mixed inputs for two pick ups (Cer. or mag.), two moving coil microphones and two auxiliary for tape, tuner, organs, etc. Eight slider controls - six for level and two for master bass and treble, four extra treble controls for mic. and aux inputs. Size: $13{ }^{\prime}$ ' $^{\prime} x$ $61 /{ }^{\prime \prime} \times 3 \%$ "app. Power output 50 wat is R.M.S. (continuous) for use with 4 to 8 ohm speakers. Attractive black vinyl case with matching fascia and knobs. Ready to use.

ALL CALLERS TO: 323 Edgware Rd, London W2. Telephone: 01-723 8432. Open $9.30-5.30 \mathrm{pm}$. Closed all day Thursday. RTVC Limited reserve the right to update their products without notice

TEST TEST TEST

This issue is a result of the many requests we get to publish more test gear. It seems that although we have been publishing regular test gear projects of various types you still want more. Our series of eight projects to fit the free case given with the May issue last year-yes, it's a year ago-were very popular and many of the instruments are now available ready made. The Frequency Meter published in this issue uses the same case and we can supply readers with these cases for 50 p -details in the article.

Our most inventive test gear project is possibly the Signature Analyser. This item is quite a breakthrough in circuit design since it can perform the basic functions of instruments costing hundreds of pounds. For those familiar with signature, analysis we feel this item will be very interesting. One other point on this project-the author is Yugoslavian and the project was sent to PE "out of the blue" from Yugoslavia. Yes we are read world wide and maybe the state of the art is at a higher level in some countries than
we in the UK believe, or are led to believe. Incidentally, on the same theme, our eight page supplement comes from a South African author and contributors to Microbus come from Iceland. Portugal. Sweden and Hungary; a truly international edition

ON THE BUS

Of course much commercial test gear is now being made outside of Europe and the US. We have included a good selection of what's new in News and Market Place-it comes from all over the place.

The bus approach to automatic test gear is interesting and it is now possible for small businesses and hobbyists to construct a system using available chips, a few details are given in the supplement. If anyone is doing this or is interested in so doing please let us know. We could possibly arrange a series of projects on the subject given sufficient interest. It's your magazine so let us know how you feel about what we publish-or what we don't!

BAZAAR

If you are looking for test gear-or almost anything else in the hardware line-a scan through Bazaar might be worthwhile. This new feature in PE really finds its feet this month with about 90 ads. appearing-keep them coming, it's good for everyone.

Just a couple of points on Bazaar now it is in full swing. First, you must send in a cut out valid date corner-a copy of one will not do. Second, you must comply with the rules. Since the service is free to readers, in future we will not be writing to you if you do not comply with the above-your ad. will simply not appear. So make sure your ad. complies with the rules and make sure you send a cut out valid date corner-we don't need the whole page or even the whole coupon, if you want to keep your issue send us a copy of the coupon; but you must cut off the corner and send that in. It's not too much to ask and it is then fair to everyone.

EDITOR Mike Kenward

Gordon Godbold ASSISTANT EDITOR
Mike Abbott TECHNICALEDITOR
David Shortland PROJECTS EDITOR
Jasper Scott PRODUCTION EDITOR

Jack Pountney ART EDITOR

Keith Woodruff ASSISTANT ART EDITOR John Pickering SEN. TECH. ILLUSTRATOR Isabelle Greenaway TECH. ILLUSTRATOR Colette McKenzie SECRETARY

Editorial Offices:

Practical Electronics,
Westover House,
West Quay Road, Poole.
Dorser BH 15 1JG

Phone: Editorial Poole 71191

We regret that lengthy technical enquiries cannot be answered over the telephane (see below).

ADVERTISEMENT MANAGER

 SECRETARY AD. SALES EXEC. CLASSIFIED SUPERVISORAD. MAKE-UP/COPY
D. W. B. Tilleard Christine Pocknell

01-261 6676
Alfred Tonge 01-2616819
Barbara Blake 01-2615897
Ian Sweeney 01-261 6601

Advertising Offices:
Practical Electronics Advertisements,
King's Reach Tower.
King's Reach, Stamford Street, SE1 9LS
Telex: 915748 MAGDIV-G

Technical Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in PE . All letters requiring a reply should be accompanied by a stamped, self addressed envelope, or international reply coupons, and each letter should relate to one published project only.

Components and p.c.b.s are usually available from advertisers; where we anticipate difficulties a source will be suggested.

Back Numbers

Copies of most of our recent issues are available from: Post Sales Department (Practical. Electronics), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, at 95 p each including In land/Overseas p\&p.

Binders

Binders for PE are available from the same address as back numbers at $£ 4.60$ each to UK or overseas addresses, including
postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 13.00$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH. Cheques and postal orders should be made payable to IPC Magazines Limited.

Better than credilt

A new era in buying petrol, with a debit card authorising the payment from a motorist's bank account in four seconds flat, began recently, in Scotland.
The debit card relies on micro-chips to carry out direct bank account deductions. And. say BP Oil and Clydesdale Bank, who are launching the new scheme in Aberdeen, this kind of debiting is what most motorists want.

Mr Chris Ensor. BP Oil's Site Facilities Manager, says, "Eight out of 10 motorists like to pay for petrol with cash. They regard petrol as a household expense along with groceries, which are accounted for in weekly or monthly budgets. In money terms they like to know where they are."

The scheme is called 'Counterplus'. Designed for customers with AutoBank cards issued by Clydesdale. Midland and Northern banks, it is the first time in the UK that a point of sale terminal, as opposed to a cash dispenser, has been linked directly and instantaneously to a bank.
Customers using this new facility won't need to hand over cash, to write a cheque or to wait while a credit card voucher is made out. They will simply use their cards, in the same way that they draw cash, to pay for garage purchases.

Looking further into the future Mr Ensor predicts that within five years most of Britain's prime service stations will be using an electronic fund transfer system like this.

Owners of the popular 2×81 personal computer can now upgrade from its rather immobile membrane keypad, and flimsy case (albeit smart in appearance) to a conventional keyboard with steel surround. The Crofton ZX81 Adaptakit places the ZX 81 piggy-back on its own p.c.b. which houses the key-switches, and a video amplifier for direct monitor interface. A l.e.d. also gives indication of 'power on'.

The $\mathrm{Z} \times 80$ p.c.b. is positioned so that its input and output connectors pass through holes in the Crofton case. The 16 K RAM

ZX81 ADD-ONS

A robot interface unit has been developed by GMS Electronics for the ZX81 microcomputer. The mains powered unit's steel case measures just $100 \times 70 \times 180 \mathrm{~mm}$, and with 16 channels, of which the 8 inputs are rated at 1 A each the unit is a general purpose interface. It would, for example, conveniently drive a shop lighting display, or electromechanical machinery.

The $1 / 0$ channels run at $6-12 \mathrm{~V}$ nominal with a maximum rating of 48 V , with external supply. Inputs are protected, and the outputs incorporate anti-spike devices.

An applications book with interconnection circuit diagram, instructions and simple programming are included in the price of $£ 59.95$, plus $£ 2.50$ p\&p. Available from GMS Electronics, Unit 5, Cranbourne Close, Norbury, London SW16 4NG.

pack may also be plugged in through an aperture, and a support plate is provided to
remove strain from the p.c.b. edge connecaperture, and a support plate is provided to
remove strain from the p.c.b. edge connector.

The key caps are made of clear plastic so that the symbol for any function may be inserted, and will not wear away. A twocolour, self-adhesive sheet of key-top labels comes with the kit. This gives a direct repeat of the ZX 81 's original keyboard.

With berillium contacts, the switches should provide one million trouble free operations.

The kit's fully inclusive price is $£ 42.90$. However, for an additional $£ 8 \cdot 62$, plus a pristine cased ZX81 in part exchange, a pristine cased 2×81 in part exchange, a
ready converted system is available. Crofton Electronics Ltd., 35 Grosvenor Road, Twickenham, Middlesex TW1 4AD.

The Weller WEC series are fully proportional electronic temperature controlled soldering irons. These irons give excellent response to loading and provide precise temperature control. Although they are factory calibrated to $371^{\circ} \mathrm{C}\left(700^{\circ} \mathrm{F}\right)$, they are fully user adjustable over a range of at least $204^{\circ} \mathrm{C}$
($400^{\circ} \mathrm{F}$) to $427^{\circ} \mathrm{C}\left(800^{\circ} \mathrm{F}\right)$, and are available in three voltages ranges240,120 and 24 V . The temperature control and circuitry is contained within the handle.

The WEC series of irons is available from Toolrange Ltd., Upton Road, Reading, Berks (0734 22245).

Items mentioned are available through normal retail outlets unless otherwise specified. Prices correct at time of going to press.

Briefly. .

The Powertran advert on the inside front cover of last month's issue contained an error. In the advert, it was stated that the price for the complete kit of parts for the Digital Delay Line was $£ 13.00$ plus VAT. The correct price for the complete kit is $£ 130.00$ plus VAT.

A new company has recently been formed to provide hobbyists, experimenters and small companies with high quality technology products. Initially, the company aims to concentrate on three areas-production tools/ equipment, test gear and microelectronic products. Further details are available from Electronic Hobbies Lid., 17 Roxwell Road. Chelmsford, Essex (0245 62149).

POINTS ARISING

TV CAMERA (Jan-March '82)
The telephone number given for Security Electronics contained a printing error. The correct number is: 0733239111.

PCB DRAFTING AIDS

A new range of electronic layout templates for printed circuit design has recently been introduced by LINEX of Denmark, and is of particular interest to both amateur and professional users who are involved in the design or production of printed circuit boards.

The templates are available in the scales of $1: 1$ lone template), 2:1 (set of 2) and $4: 1$ (set of 4) and they contain the most commonly used figures for printed circuit layouts, circuit views and component views. Component outlines include potentiometers, diodes, resistors, capacitors, dual in line, transistors, edge connectors etc., etc.

All component dimensions and terminals are given in millimetres and in tenths of inches, and dimensions are provided with mm and $0.1^{\prime \prime}$ divisions in the respective scales. All the templates in the series are produced with ink bosses so that they can be used for tracing with technical pens.

A comprehensive leaflet illustrating the templates is available and this leaflet suggests methods and instructions on how best to use the templates. For a free leaflet, or any other information, contact the sole UK agents for LINEX, Pelltech Ltd., Station Lane, Witney, Oxon ITelephone: Witney (0993) 72014 or 72130).

Hountidoun. .

Please check dates before setting out, as we cannot guarantee the accuracy of the information presented below.

Local Networks \& Distributed Office Systems Apr. 14-16. The London Tara Hotel. 0
Int. Materials Handling Apr. 19-26. Earls Court, London. 1 All Electronics Show Apr. 20-22. Barbican Centre, London. E Communications Apr. 20-23. NEC. I
The Computer Fair Apr. 23-25. Earls Court, London. Z1
BEX Brighton Apr. 28-29. K
Compec Europe May 4-6. Centre Int. Rogier, Brussels. Z 1
Defence Components Expo May 10-12. Brighton Metropole. I
The Micro Show May 11-13. Wembley Conf. Centre. O HEVAC May 24-28. NEC Birmingham. I
Scotelex Jun. 8-10. Roy. Highland Ex. Hall, Ingliston, Edinburgh. AI BEX Leeds Jun. 9-10. K
Transducer/Tempcon Jun. 29-Jul. 1. Wembley Conf. Centre. T BEX Croydon Jun. 30-Jul. K
Leeds Electronics Show Jul. 6-8. University. E

BAEC Amateur Electronics Jul. 17-25. Penarth Esplanade, S. Glamorgan. B9
Personal Computer World Show Sept. 9-12. Barbican Centre, London. M
Laboratory London Sep. 14-16. Grosvenor House. E
Two Counties Fair Sep. 15-18. Plymouth Ex. Centre, Millbray, Plymouth. Devon. T
Viewdata Oct. 12-14. Wembley Conf. Centre. O
Computer Graphics Oct. 19-21. London. O
Testmex Oct. 26-28. Wembley Conf. Centre, London. T

A1 Institute of Electronics. Rochdale. Lancs.
B9 BAEC. 26 Forrest Road, Penarth
E Evan Steadman, Saffron Walden § 079922612
HI Seminex Ltd. Tunbridge Wells 『 089239664
1 ITF. Solihull \& 021-705 6707
K Douglas Temple. Bournemouth f 020220533
L1 World Trade Centre \& $01-4882400$
M Montbuild © 01-486 1951
O Online. Northwood, Middx. 60927428211
T Trident Tavistock 『 08224671
v SDL \& Dublin 763871
ZI IPC Exhibitions, Sutton \& 01-643 8040 .

BALLANTIME POPTABBLE

The new Ballantine 1024A mini oscilloscope, available from PPM Limited, has been designed to suit the needs of the field engineer, and light weight and small size have been achieved without reduction in instrument perforn.ance. The 1024A's specification is equal to laboratory bench scopes two or three times larger and heavier; it is shock and weather proof and will operate in harsh environments. The 1024 A weighs 2.1 kilos and measures 87 mm $\times 203 \mathrm{~mm} \times 220 \mathrm{~mm}$.

The Ballantine 1024A complements the existing 15 MHz model 1022A, also marketed in the UK by PPM, and gives extended performance with a 25 MHz bandwidth in each of its two vertical input channels. The wide 25 MHz frequency response extends 1024A use to fast signals, and the instrument has a passive delay line, so that the leading edge of fast rise pulses can be displayed when using internal triggering.

1024A applications include general purpose testing and maintenance in analogue and digital circuits, RF communications systems, computer peripherals, video equipment, industrial and process control systems, in telecommunications, medical instrumentation, and other fields.

PPM say that the scopes are reliable and run with less than a $9^{\circ} \mathrm{C}$ hot -spot rise in ambients from 0° to $50^{\circ} \mathrm{C}$. The containing cases are dust, splash, and EMI proof. The shock and vibration resistant CRT and solid internal construction of the 1024A make it dependable in demanding field conditions.

Further information is available from PPM Ltd., Hermitage Road, St. Johns, Woking, Surrey GU21 1TZ (04867 80111).

EVALUATION KIT FOR DVM

Ferranti Electronics Limited has produced an evaluation kit for its 2N450, $3 \frac{1}{2}$ digit, single-chip, digital voltmeter integrated circuit. The kit includes a 2 N450 and all the peripheral components and instructions necessary to produce a complete digital voltmeter. The kit enables designers and engineers to evaluate the performance of the ZN450 i.c. without the problems of designing and constructing a system from scratch.

The $2 N 450$ is a complete digital voltmeter fabricated on a monolithic chip and requires only ten external passive components in order to function. Operating over the range

PHILIPS SERVICE...

A range of test equipment is now available from Philips Service, Croydon. While much of the test gear they have to offer is very up-market-both in terms of price and performance, there are items in their range to suit the hobbyist pocket
Pictured above is the Philips SBC801 pocket autoranging DMM. Its features include an alarm for continuity test work, a diode check range and zero adjust function. The SBC801 is supplied complete with test leads, carrying case and batteries, and is priced at $£ 55.95$ plus VAT
A digital logic probe, a range of three analogue multitesters and a regulated $1.5-30 \mathrm{~V} 3 \mathrm{~A}$ power supply are among other items in the Philips range which may be of interest to readers.
For further details, contact Philips Service, 604 Purley Way, Waddon, Croydon, Surrey CR9 4DR (01-686 0505).
$\pm 199.9 \mathrm{mV}$, the ZN450 also features an on-chip clock and precision reference voltage and consumes less than 35 mW of power.
Apart from the more obvious uses as a DVM or multimeter, the ZN450 can equally well be applied to such de vices as digital thermometers, pressure gauges and weighing machines.

The DVM evaluation kit is priced at f19.95 including VAT, and is available through normal retail outlets.

-gst Mean stpeciako

CROTECH SCOPES

Crotech Instruments Lid., present/V offer two 15 MHz oscilloscopes-a simple trace model-the 3030 , and a dual trace model-the 3131.

The 3030 (pictured here) has $5 \mathrm{mV} / \mathrm{div}$ sensitivity, versatile time base with $200 \mathrm{~ns} /$ div to $20 \mathrm{~ms} /$ div sweep plus automatic and trigger level controls, triggering to at least 20 MHz . A rectangular 95 mm CRT gives around 40 per cent more viewing area than most competitive models.

The 3131 features $5 \mathrm{mV} / \mathrm{div}$ sensitivity with full X-Y operation plus the extra feature of algebraic addition and subtraction. The timebase is fully constructed from 200 ns to $0.2 \mathrm{~s} /$ div with a versatile trigger circuit which operates to at least 35 MHz and includes $T V$ Field and line frequency modes.

Both models feature a built-in component tester which allows both passive and semiconductor devices to be tested.

The 3030 is priced at E145 plus VAT, and the 3131 is priced at E 230 plus VAT. Further details are available from Crotech Instruments Lid., 5 Nimrod Way, Elgar Road, Reading, Berks (0734 866945).

FUNCTION, SWEEP \& PULSE GENERATOR

House of Instruments inform us that they now stock the WG 230 from Trio, which combines the capabilities of a Function, Sweep and Pulse Generator in one compact unit. The wide frequency bandwidth is covered by a \log and linear divided, high resolution main dial from 20 Hz to 200 kHz , with an auxiliary control covering the range 2 Hz to 2 GHz
Four main types of output are available. Sine, Square, Triangle and TTL level Pulse. Output impedance is 600 ohms with 7 V r.m.s. sine and 10 V pk to pk for square and triangle controlled by 60 dB 's of switched and 20 dB 's of variable attenuation. Flatness is better than $0.2 d B$ making the WG230 ideal in determining frequency characteristics. The TTL pulse output can be used to drive logic circuitry or act as a clock source substitute. FM modulation. another convenient feature when measuring frequency characteristics over a specific band, is available via an external signal. External d.c. can be used for VCO applications while a useful sweep ramp output is provided for use as a time access control for oscilloscopes or pen recorders.

Up to five frequency decades can be covered in a single sweep with automatic sweep times being internally selected from 0.1 to 100 seconds both continuous and single to match the application. The single sweep mode can also be controlled manually from the front panel or sweep speeds determined by extemal signals. Autornatic sweep speed compensating has been provided to maintain a constant sweep time period for any arbitrarily set width.
For further information, contact House of Instruments, Clifton Chambers, 62, High Street, Saffron Walden, Essex CB10 1EE 10799 24922).

NEM © $-1,1$

A new hand-held digital multimeter, designed for wide application in the computer and telecommunications testing and servicing markets, has been announced by SEI.

The input terminals are at the top, enabling the operator to "probe' the circuit under test, whilst holding the instrument in one hand. The $3 \frac{1}{2}$ digit I.c.d. display is a' the base, and is sloped for easier reading. The

SCOPEX

Scopex Instruments Ltd. of Letchworth, the independent British manufacturers, have announced an addition to their range of low cost, high performance oscilloscopes.

Designated the 14D15, this instrument is a 15 MHz dual trace oscilloscope incorporating push button $X-Y$, add and invert facility, probe compensation and an active TV sync separator all as standard features

This instrument was evolved from the 14D10 series of oscilloscopes. The 14D15 is priced at $£ 250.00$ plus VAT, which includes two probes and carriage (UK mainland). Further information is available from Scopex Instruments, Pixmore Avenue, Letchworth, Herts SG6 1JJ 104626 72771).
meter covers a resistance range of 0 to $20 \mathrm{M} \Omega$, with diode test facility, and a voltage range 0 to $1 \mathrm{kV}(\max)$ d.c. and 0 to 750 V r.m.s. (max) a.c
Further information is available from Salford Electrical Instruments Ltd., Barton Lane, Eccles, Manchester M30 OHL 1061 789 5081).

That Word!

Whoever coined the word privatisation deserves a kick up the backside or a medal, I hardly know which. It is clumsy, even ugly, and yet it is hard to find another single word to express the process of transferring public (i.e. nationalised) industry to private capital and management in the interests of economic efficiency and improved customer service.

As well as being an ugly word, it must be an ugly idea to many of those who have enjoyed sheltered as well as profitable occupation through the years: It comes hard when one is faced with the cold (or hot?) blast of competition.

The mere threat of privatisation has positive effects. The partial breach of the telecommunications monopoly, for example, has already gingered up British Telecom: Chairman Sir George Jefferson is reported to have sent senior management and the trade unions a sharp note on poor performance and high overheads. BT. pay went up 31 per cent last year for only a 4.6 per cent increase in business. And compared with their US counterparts BT field engineers made only half as many service calls a day.

BT in fact had a remarkable turnround in its last half-year results, turning in $£ 140$ million profit compared with a $£ 19$ million loss in the same six months a year earlier. But this was mainly due to jacking up the cost to subscribers and had little to do with performance.

Alongside the appeal for greater efficiency there is also promised a revision of accounting policies and asset valuations. It is hinted that a more rational accounting system would reveal that profits are lower than claimed in the past.

The fact is that 'cooking the books' is by no means unknown in Government and, one assumes, in the organisations it directly supports and controls. This has been made abundantly clear by Joel Barnett who was Financial Secretary to the Treasury under Chancellor Denis Healey in the years

1974-79. In his recently published book Inside the Treasury', Joel Barnett writes that his previous experience as an accountant in juggling figures was as nothing to what he found in the Treasury with their 'massaging' and 'fudging' in presenting huge public expenditure figures.

Of course there is nothing criminally dishonest in such practices. Any set of statistics can be presented in many different ways and it is only human to put the best construction on them from your own. viewpoint.

Nonetheless, if you are in business, which BT now is, rather than politics, then it should be beneficial to look hard facts in the face if the corporation is to be efficiently conducted.

The Micro

The message seems to be getting through that we are in the computer age. Advance publicity generated almost 100,000 enquiries for the BBC's Computer Programme. But what a pity there were technical difficulties (since resolved) that resulted in the series having to start with so few of the Acorn computers having been delivered to eager viewers. Production was speeded up to 2,000 a week to meet the demand. The BBC was just as embarrassed as the computer manufacturer but promises a repeat of the course for late starters.

Meantime Clive Sinctair is reestablishing his reputation as a whizz-kid with his ZX81 personal computer selling world-wide in its tens of thousands. And there are plenty of other makes to suit all pockets continually appearing.

But while a mass market for micros is now growing fast, the other bright massmarket hope of CB Radio has fallen short of expectations although not entirely a flop. Forbidden fruit is always sweeter and I note that now that CB is legal, in my area activity has fallen away rather than increased and nobody seems to have switched to legal f.m. from illegal a.m.

Research

The 1981 Annual Review, which has just arrived on my desk, from the Allen Clark Research Centre makes good reading. One hears so much of cuts in research spending, real or imaginary, from the universities that it is easy to start believing that working for the future has almost ceased. This is patently not so at the Plessey think tank and laboratories at Caswell, named after Plessey founder Allen Clark and established there since 1940.
J. C. Bass, managing director of the Allen Clark Research Centre, comments that: 'The competition to convert research and development into manufactured products increases in pace year by year and, correspondingly, electronic systems and devices become rapidly outdated and cease to be viable commercially. The race is an international event, there are some very strong competitors and we do not set the rules for it'.

I will give just one example of what he means. In a paper 'Monolithic Surface Acoustic Wave Convolver-Its Application
to Spread Spectrum Communications' J. J. Purcell of the Integrated Circuits Division records in his conclusion that this device is being actively developed in France, USA, Germany and Norway as well as in the UK. Although he doesn't say so possibly in the Soviet Union as well.

Flux

The electronics industry more so than most is in a constant state of flux. There are not only the great leaps in technology but also in the structure and goals of companies. Thus. Plessey has been streamlining and shedding peripheral activities to concentrate on mainline products. One of the early companies sold off was Garrard, a steady loss-maker at the time. Regrettably Garrard's new owners, based in Brazil, found they couldn't compete in the world hi-fi market by continuing production in the UK and it has now been transferred entirely to Brazil where production costs are lower.

Latest company to be shed is Plessey Resistors which will stay in the UK trading under the new name Citec. New owners are Ron Clark, formerly managing director of Plessey Components Division and two high-ranking Plessey colleagues including the MD of Plessey Resistors, David Stapleton, now MD of Citec. The purchase has bank support and the project is expected to obtain ample investment from the City. The workforce at Swindon is being retained and there is already talk of expansion.

There are now a number of examples where ex-employees have bought companies and the trend is likely to continue.

New Dimension

The Engineering Council, under the chairmanship of Sir Kenneth Corfield (chairman of STC), is now in existence after 18 months of wrangling over aims and objectives following publication of the Finniston Report which proposed enhancement of the 'engineering dimension' in British industry and education.

The Council's prime job will be to accredit academic courses and industrial training and to register engineers in their various categories. It's early days yet and until we have seen the Council in action, judgement must be reserved on whether there is any real improvement in the status of the engineer in society.

Embedded Optics

An ingenious combination of optical fibre and power line has been developed by BICC. The optical communications link is at the centre of an overhead power conductor, normally the earth line of an overhead power distribution system. The line will normally carry operational data, alarm signals and generating board messages. The first operational system should be installed in the UK over a 23 km link by May this year, followed by a 74 km system in Saudi Arabia under a $£ 750,000$ contract. A novel aspect of the system is that surplus capacity in the optical link can be leased to PTTs for public telephone use.

because Common cathode 8 -digits were available in the author's shack. The pin-outs are different for each version.

It has four gate times: .01, 1, 1, and 10 seconds, with full 8 -digit accuracy provided on the 10 second gate. The .01 gate is not used in this project because its usefulness is limited in frequency mode, and it enables the much more common, and cheaper, three way slide switch to be used. D1, D2, or D3 is connected via this switch to go to pin 14 to select the different gate times.

The 7216B will drive the displays direct, including the decimal points, but this is meaningless if a divide-by-100 prescaler is employed in front of the i.c. The Intersil data booklet provides details for external transistor drivers for the decimal point, but the limitation of space prevented these being included. If constructors require more information, they are referred to the booklet of lengthy code (408)996-5000TWX:910-338-0171.

FREQUENCY METER AND PRESCALER

THE project described here is a highly sensitive 200 MHz 8 -digit frequency meter, and, depending on the input waveform, will measure down to d.c. The prototype toggled at up to 220 MHz ! It uses the case given free by Practical Electronics last May. This measures approximately 102 mm by 77 mm by 25 mm , and it will house a 9 V battery, a $10-$ 200 MHz pre-amp and divide by 100 prescaler; switching logic, and the main $0-10 \mathrm{MHz}$ counter. Also packed in are two switches, two BNC sockets and an 8-digit display! All this shows that the constructor has to solder neatly, and take care with the mechanical side of the project. The meter is sensitive enough to require only a small piece of wire as an aerial pick-up; it has three gate times, and the logic provided to enable other inputs to be fed into the counter (using the second BNC socket) thus bypassing the preamplifier and prescaler, which is the unit described in P.E. in April 1980.

CIRCUIT DESCRIPTION

The main counter is the Intersil 7216B $(0-10 \mathrm{MHz})$ counter, which interfaces directly with an 8-digit display without the need for external driver i.c.s, using a 10 MHz quartz crystal timebase. There are four versions of this i.c.
$\mathbf{A}=$ Universal counter. Common anode display.
$\mathbf{B}=$ Universal counter. Common cathode display (used in this project)
C = Frequency meter only. Common anode display,
D = Frequency meter only. Common cathode display.
The B version is a $28-$ pin d.i.l., and will measure:
a) Frequencies, up to 10 MHz ,
b) The ratio between two frequencies, feeding the second signal into pin 2.
c) Periods
d) Unit counts (e.g. useful for conveyor belts)
e) Time intervals, again using the second input.

It is only slightly more expensive than the 7216D, and provides so many more facilities that the author believes it to be worthwhile. The B was used in preference to the A

The counter is a low power CMOS device, so handling precautions are needed and the total project will consume over 100 mA . So if a rechargeable battery is not being used, constructors should be frugal about how long they leave the meter on!

Because of space the extra functions are not used (but could be if a slightly larger box was used, of course), so pin 3 (function input) is permanently connected to the Do line (pin 4) to make the i.c. function as a frequency counter.

For those who are interested:
D1 (pin 6) is for frequency ratio
D3 (pin 7) is for unit counter
D4 ($\operatorname{pin} 9$) is for time interval
D7 (pin 12) is for period measurements.
These could be connected to pin 3 via a rotary switch.
The pre-amplifier and prescaler used in the project consists of an amplifier based on the BFY90 (with two diodes to limit the voltage on the base to 0.6 V), the base bias set by a preset and the output capacitively coupled to the input of the divide-by-100 prescaler SP8629. This is an i.c. of excellent value, toggling in excess of 200 MHz . It will tend to self oscillate in the absence of an incoming signal, but this can be prevented by placing a resistor between pin 6 (the negative edge triggered input) and earth. It provides TTL output and can be coupled direct to the ICM7216B. However there is space on the main p.c.b. for a 74LS132 to be inserted after the SP8629 to provide logic switching, enabling a second input, bypassing the preamp/prescaler, to be fed into the counter. The author found that the circuit worked most reliably when the resistor between 6 and earth is $27 k$, and the resistor between pin 7 and earth is omitted. Constructors may like to experiment to get the best performance.

It is because the author had already built this module that the project has two p.c.b.s; it saved the bother of designing a master p.c.b. The prototype has the prescaler board mounted in the battery compartment with the battery placed between the two boards. This enabled the switches and sockets to be mounted symmetrically above the prescaler board, being more shallow than the battery, but this necessitated

COMPONENTS
INTERNAL PREAMP PRESCALER

Resistors	
R1	51
R2	4 k 7
R3	330
R4	390
R5	See text
All resistors	$\frac{1}{6}$ W 5% carbon

Potentiometers

VR1 $2 k 2$ sub, min vertical preset

Capacitors

C1
C2, C3, C4
C5
Semiconductors

TR1	BFY 90
D1,D2	1 N914 (2 off)
IC1	8629

Miscellaneous

Ferrite anti-parasitic bead p.c.b.

In line circuit module (RS 456-201)
10μ tant.
$10 n$ ceramic (3 off) 100n ceramic

Fig. 3. Component layout

Fig. 4. Response curve of preamplifier/prescaler

EAgD

Fig. 2. Internal prescaler p.c.b. design

PITUDE (my RMS) -

The case type shown here is available from Practical Electronics (Poole). Send a postal order for 50 pence to include P\&P etc.

COMPONENTS...		Display $\times 1-\times 8 \quad$ FND 357 (8 off)
FREQUENCY COUNTER		Integrated Circuits
		IC1 7805
Resistors		IC2 74LS132
R1, R2	3 k 3 (2 off)	IC3 7216B
R3, 16	10k (2 off)	
R4	100k	Miscellaneous
R5	22M	S1, S2 Three position slide switch (2 off) X1 10 MHz crystal
Capacitors		SK1, SK2 50 R BNC socket (2 off)
		Case
C2	10μ	PP3 Battery plus stud connector
VC1	39p	Printed circuit board

Fig. 10. Display board p.c.b. layout

EP8826
Fig. 11. Component layout. Capacitors need only be soldered on track side
longer lengths of interconnecting wire. Constructors may well decide to place the two boards together, but care will then have to be taken with the switch and socket positions, because of the bulk of the battery.

The output of the SP8629 is connected to pin 12 of IC2, and reference to Fig. 5 will show how it works. Each gate is a two-input nand gate, and the output of this gate is held high when one or other of the inputs is low. So if pin 1 is earthed via S1a, pins 3 (and 10) are high, and because 13 is high (due to R 1 pulling it up to supply + ve) it allows frequencies on pin 12 to go through to pins 11 and 9, and then go through to pin 8. If, however, pin 13 is earthed, pins 11 and 9 become high, allowing signals on pin 2 (the spare input), to go through to pin 8, and thence to the 7216 B pin 28.

Using a two-pole, three-position slide switch enables this switching function to be linked with an on/off supply switch.

The prescaler drops in performance on, and below 5 V , and as the other i.c.s will happily accept a slightly higher voltage, the regulator incorporates a silicon diode 1 N 4001 in the common line. 0.6 volts are dropped across this diode, so the common pin is held at 0.6 volts above zero. The output is regulated at 5 V above the common pin, so the output regulated voltage becomes $5 \cdot 6 \mathrm{~V}$.

CONSTRUCTION

This obviously demands care and patience, but is well within the scope of most constructors. The most awkward part of the project is the interwiring of the displays (necessary because the digit outputs are multiplexed). FND357 is the code number of the displays used, and they are approximately 13 mm high, containing 10 pins, see Fig. 5 (top left).

The author used normal stripboard, but this involved much track cutting, including breaks between adjacent holes? If the p.c.b. is not used it may well be easier to use plain perforated board, and attach the displays with tiny blobs of glue. The digits would then be wired in parallel, A-A, B-B, etc., except the digit drivers (the common cathode pins), which are connected to the driver terminals DO to D7, (DO being the right-hand digit, looking at the display from the front). NB: D1 and D2 are not in order on the i.c. A piece of black plastic was cut to fit behind the aperture in the case, and after a hole was cut in this piece to accept the display (a tight push fit), it was glued behind the aperture. Very short lengths of wire were used to connect the display segments and the digit drivers to the p.c.b. (see wiring diagram Fig. 12). Slide switches (RS code 337-481) and two BNC sockets

Fig. 12. Point-to-point wiring diagram. Wiring connections to the display board should be made direct to the reverse (copper) side. Wiring at the slide switches will depend on the type used. The d.p. line (V) is not used
were inserted, the switches being attached with glue. Wires were then taken from the D1, D2, and D3 terminals $(5,6,7)$, and connected to one of the slide switches, with the wiper going to the resistor connected to pin 14. This provides the three gate times. The other switch is wired as already shown in Fig. 12 to provide an on/off and input changing.

One BNC is connected to pin 2 of IC2, and the other BNC is connected to the input of the prescaler, using miniature coaxial cable. Connections are taken from the prescaler board for the output, positive and zero to the main board. Make sure that the shields of the BNCs are also connected to zero volts. Depending on where the prescaler board is sited, take care that it does not short on any metal of the battery case, the switches, or the sockets.

ADJUSTMENTS

Measure the output voltage of the regulator to ensure that it is $5 \cdot 6 \mathrm{~V}$. Adjust the preset on the prescaler board to give half this voltage on the collector of TR1.

The oscillator needs to be adjusted by means of the trimmer to 10 MHz using a reference of some sort. The accuracy of the meter depends on this calibration, and the tolerance of the quartz crystal. VC1 may need to be 65 pF .

CONCLUSION

The prototype triggered from a portable rig (one watt) a few feet away, with only a short piece of wire pushed into the BNC socket, and has provided the author with a valuable piece of portable test equipment, registering frequencies up to 220 MHz . Some spare pads have been provided should constructors wish to add extras (as well as those mentioned earlier), if they can find the spacel Some suggestions are given below.

1) If pin 13 is temporarily connected, via a pushbutton, to earth, the counter will reset.
2) Pin 1 is the control input, and using IN914 diodes as per Fig 7 digit driver pins can be connected to provide the following amongst others:
a) DO . . . and external oscillator can be fed in
b) D1 a 1 MHz crystal can be used, using the same multiplex rate
c) D3 blanks the display, in conjunction with the hold button, see below
d) D7 will test the display, lighting all segments
3) If pin 27, normally held low by the resistor, is temporarily connected to + ve the display will hold. If done in conjunction with D3 to pin 1 , the display will blank.
4) If an l.e.d. is connected between pin 23 and ground. it acts as an overflow indicator (see Fig. 6).

THIS can be built either as illustrated, i.e an external module housed in a module case (RS 456-201) drawing its supply from two 1 mm sockets inserted in the side of the frequency meter case; or as a replacement board for the 200 MHz prescaler. Both prescalers will in fact work down to dc level, but below certain frequencies the i.c.s become dependent on the slew rate of the incoming waveforms. The divide-by-ten SP8630 will operate down to 40 MHz with a sinusoidal input. The prototype triggered quite happily from the 12 MHz oscillator stage of a transmitter using a "sniffer probe" (coaxial cable terminated with two or three turns of 20 SWG wire).

The SP8630 needs to be handled with care, because a negative earth plane is being used and consequently its emitter-follower outputs are liable to damage if shorted to ground, so check the p.c.b. and wiring before inserting the SP8630 and switching on. The output is fed into another divide-by-ten, the much cheaper SP8660 (but which will work at such high frequencies as the SP8630), which provides a TTL compatible output, which goes into the 74LS132 and thence into the counter.

Fig. 13. External/optional prescaler circuit diagram

Fig. 15. Component side copper earth plane

Fig. 16. Component layout

Fig. 17. Connection to BNC connectors
Constructors will no doubt have noticed that there is no preamplifier in the design. This was for two reasons. A preamplifier was designed using a BF180, but to use it precluded the use of the module case, which is an extremely convenient size.

Experiments were then carried out using the prescalers alone, and it was found that using a small pick-up aerial (six inches of wire!) the meter triggered from a 432 MHz transmitter feeding 500 mW into a helical aerial four feet away. It was felt by the author that this was sensitive enough for most practical purposes. However, it needs to be stated that the input drive level requirements do vary, needing e.g. approximately 80 mV peak-to-peak sine wave at 432 MHz , but approximately 140 mV at 145 MHz . The prototype triggered from a 1 watt 145 MHz transmitter 6 feet away with ease. For more information constructors are advised to consult the Plessey data contained in their publication Digital Integrated Circuit Data Book, and if necessary build a preamplifier from the many designs available, knowing that a bigger case will have to be used.
The second reason is that the battery drain, already high, would have been unacceptable had a preamplifier been included in the circuit.

CONSTRUCTION

It has been stated from the outset that constructors have a clear choice whether to build this prescaler into the meter, or as an external module. The former method is simply a matter of filling the 200 MHz space with the 600 MHz board, using the same supply and input/output leads. The meter will then still have a spare input. To use the prescaler externally, the RS module box has first to be slightly modified. Cut back the centre contacts of the sockets inside the box as far as possible, and drill a small hole in the side of the box, through which the supply leads can be fed.

The project uses a double sided printed circuit board, the component side being used as an earth plane, and if constructors attempt their own, it is not difficult. Prepare the track side as normal, using an etch resist pen or transfers, and then cover the reverse side with either etch resist or, as the author does, with insulating tape, using a slightly oversized board, and folding the tape slightly over the edges to prevent seepage of the Ferric Chloride. After etching, cut and file the board down to size, and drill the holes out as normal. Then from the component side countersink all non-earth holes, hand-twisting a $\frac{1}{8}$ inch drill bit, or using a Veroboard cutter. The author also drilled three or four holes through the board where there was earth both sides to ensure the earth planes were connected together to counteract possible capacitance problems.

The components are then mounted close to the board (without shorting the earth-plane) and components going to earth are soldered both sides. It is always a wise policy to use double-sided board at these sorts of frequencies, but the author did make a single sided board, using exactly the same design minus the earth-plane, and it did work as an external module, but this may be a fluke of the particular i.c.s and may not be repeatable.

Two pieces of copper wire were inserted into the input and output positions on the board, and these were soldered direct to the centre contacts, thus suspending the board inside the case. This ensured that the board did not short out on the metal case. The case earth contacts were then bent over and soldered direct to the board, and the supply leads were fed through the drilled hole. Refer to Fig. 17 which should make the explanation clearer. After a careful check replace the removable side of the case and bolt the module together.

COMPONENTS . . .

Resistors
R1 2 k 2
Capacitors
C1-C8 In (8 off)
Integrated Circuits
IC1 SP8630B
\section*{Miscellaneous}
Printed circuit board
BNC plug and socket

Two 1 mm sockets need to be inserted into the side of the frequency meter case, one connected to earth, the other to the output of the voltage regulator (5 V 6). Two 1 mm plugs are connected to the supply leads of the prescaler module. The INT/EXT switch should be set to EXT, the module connected to the EXT BNC socket and a small pickup aerial attached. The author cannibalised a small transistor radio telescopic aerial (about 6 inch, long unextended), and soldered it to the centre of a BNC plug. Epoxy resin sealed the unit and prevented the aerial from shorting on the BNC plug case. The meter should then read frequencies up to 600 MHz .

If constructors are irritated by the display counting randomly, caused by the SP8630 and the SP8660 self oscillating, a cure can easily be effected using the following procedure: (however this will cause a slight loss of sensitivity). Solder a 15 k resistor between the input, pin 10 of the SP8630, and earth (on the track side if necessary), and a 39 k resistor between pin 8 of the SP8660 and earth.

CONCLUSION

It is hoped that this article will enable constructors to build what has proved to the author to be a very useful piece of portable test equipment, e.g. for testing portable rigs, radio control transmitters $(27 \mathrm{MHz}, 35 \mathrm{MHz}$, and UHF) at a price and performance to beat most commercial units.
$05: 50$

WANTED 1 L30 Plug-in unit to suite tektronix 585A oscilloscope to convert to spectrum analyser. David Baker, 7 Iona Close, Sinfin Moor, Derby. Tel: 769334.
DATA disc. inc. 7205C 35MB fixed head hard disc. rack mounting. Offers? Can deliver B'ham area. J. R. Ault, 23 Newton Street, West Bromwich, West Midlands. 021-588 2779.
INFORMATION wanted; please could anyone with an OSI Superboard 2 disc system contact me. S. N. Hobson, 3 Church Close, Lindal, Ülyerston, Cumbria. Tel: Dalton 022962595.
CAR alarm, new. Complete with keyswitch cable and instructions, £7.95. Also spare keyswitch and keys, E2-55. D. J. Head, 51 Baron Court, Stevenage, Herts
UK101 8K RAM WEMON monitor fitted plastic case manulas, original monitor £150 o.n.o. Tel: Bracknell 53461.

FOR sale eight 4118 's any offers, also wanted acoustic coupler, any condition. M. D. Waller, Pear Tree Cottage, 20 Howey Hill, Congleton, Cheshire. Tel: Congleton 2022.

C-SCOPE VLF-TR-950-D metal detector as new £70. Paul King. 16 The Pippins, Westbury Park, Clayton, Newcastle, Staffs.
C \& G Rad/TV course books, Wainwright Rad/TV servicing 1968-1974. McCourt Television repair manuals, apply for list. M. S. U. Khan. Tel: 0217074875.

RADIO and Television servicing Vol 1-2-3-4-561950 to 1960 Newnes offers to clear. P. M. Cockroft, 'Carew', Cranmer Lane, North Kilworth, Lutterworth, Leicester.
2X81 Computer Sinclair built boxed guaranteed, unwanted Xmas gift $£ 50$. C. J. Wren. Tel: 015303416.

PORTABLE electronic organ. Elgam 1037. Excellent condition £50 o.n.o. Mr. P. Dop, 161 Manor Drive, Upton, Wirral, Merseyside L49 4PQ.
SWOPS please. Quantity of valves various types condition unknown. Why? Mr. P. A. Liverton, Fareham 284955.
HELP! New-comer to electronics. Can someone please supply text books. Will ex cine/buy. Mr. F. J. Chappell, 129 Bourne Avenue, Hayes, Middx. UB3 1 QR.
TWO unused 400 VA mains isolating transformers not encased, for under bench mounting $£ 9$ each. Mr. J. Pearce, 29 Shalgrove Field, Fulwood, Preston, Lancs. Tel: 0772863595.

ZX81 16K, extra cassettes hardly used £95. T. C. Smith, Aberlorn, 3 Borrowfield, Cardross, Dunbartonshire, Scotland G82 5NL.
COMPLETE set: 12 TDA1008 £25, MO83 £3. Both brand new, unused, fill spec. Please enclose SAE. Martin Drew. St. Patrick's. Hall, Northcourt Avenue, Reading RG2 7HB.
NEW electronics components, semi-resistors, etc., unused kits and tools cutter etc., send SAE for details. K. Dawod, 35 Gomer Road, Townhill, Swansea SA1 $60 Z$.
APPLE II $\mathbf{4 8 K}$ europlus $£ 515$, only 12 months old includes software lunar lander, OXO chess and Docums. Mr. P. Cronshaw, 9 Rydal Avenue Freckleton, Preston. Tel: Preston 632768.
OHIO built Superboard II computer. 8K RAM, 10K ROM. Case, leads, manuals, excellent condition £120 o.n.o. Chris Reed, 61 Arden Road, Furnace Green, Crawley, Sussex. Tel: Crawley 31725.
E.T.I. Synth $£ 300$. String Ensemble $£ 150$. Sinclair D.F.M. £40. Sansui mixer $£ 100$. Scope $£ 30$. Offers. R. Bracey, 13 Mallard Court, Church Lane, Kingsbury, N.W.9. Tel: 01-205 3556.
14 PIN sockets 10 for $£ 1$, Red l.e.d. $10 £ 1.20$ Diodes IN4 14810 for 30p. Please enclose SAE. Mr. D. Martin, 6 Downland Gardens, Tattenham Corner, Epsom, Surrey.

Aura Sounds have pleasure announçing the Comets the thand in One" organto is now available through our branches Once again the Comet achieves the optimum performance in its class.
It offers:UET - REPEAT PERCUSSION TREMOLO
TUBA

G more PATTEFINS DONTRA CUSMIUIV SOUND COIPUT
synthesiser and uther modern soumds together with the more traditional drawhar ang orcheilral sounds

- Playing aids include chord memory, WRS, Keyboard Selector, Wersi matic rhythm and autómatic accompaniment section plus much, much

CLOSE UP OF COMET KEYBOARD

G \& more PATTEFINS UNTRA CUSMUN SOUND CCITPT
 keyboards (in addition to the 2 keylboards on the organ - a five man band can pllay on one $\sqrt{ } 10$ instrument. DRAWSARS - CNESTOP SOUND - Wersi have simplified self assembly eveh AES more Whwith 2 plug in circuits etc, - Ergonomic playing table eases operation. The Comet is avatiable in the elegant titnel of the spinet (W10 S) and with chromed steellegs (W10 T) for transportability.PES SH/SSANDO The Comet, the Organ to see us,through the RB eighties available now.
For more details of this superb organ, ring us now on $01668: 573$ of write to Ahara
TUR Sounds Ltd. af the Purley Branch.

THE COMET TRANSPORTABLE W10 T SURTAMT
CLARINET
S OBOE IURA SOUNDS LTD. tre the first company to uccessfully marker WERSI rgans and kits in the U.K. We have modern show. ooms where we pride ourselves ou will feceive a friendly welcome Why not pop in and see the WERSI ange for yourself - we can alwayy irrange a free démonstration. We also ofier a free technical telephome upport service whi his second to

Alternatively, filf in the coupon below or free details. For immediate action elephone 01-668 $/ 733$ 24-hour answering ervice.

IURA SOUNDS LTD.
14-15 Royal Oak Centre, Brighton Road, Purley, Surrey.「el: 01-66 9733
17 Upper Charter Arcade, Barnsley, Yorkshire. Tel: (0226) 5248
1729 Coventry Road, Sheldong Birmingham. SA NDO Tel: 021-707 8244
Micro Centre, Albany Road, Newquay, Cornwall. rel: Newquay 5953

5 Please send me FREE, all the details of The Comet and

Wersi Range

NAME ADDRESS

THE COMET SPINET W 10 S

Most low priced synthesisers available at present sacrifice performance and versatility for low cost, while many amateur designs to date are needlessly complex. With these two factors in mind, Microsynth has been designed to use as few and as cheap components as possible, yet at the same time giving versatility, high performance, and reliability. By consulting professional keyboard players, the author has also designed a panel layout that is logical, nonconfusing and rapidly operated on stage.

This accurate fuel consumption meter provides indication of fuel use and, being analogue, shows trends clearly.

An introduction to sound synthesis and synthesisers that provides the basics necessary to quickly understand and use synthesisers.

Also... EXPERIMENTERS BREADBOARD

PRACTICAL
 ELECTRONICS

PROGRAMMABLE TMERCONTROLIER

THIS article describes a progkammable timer/digital clock which has the ability to control mains operated appliances. Basically the unit consists of a conventional digital clock which displays the time of day in the 12 hour format, either AM or PM and also the day of the week.

The timer/controller section (actually part of the same i.c. used by the clock), is a specially mask-programmed four-bit single chip micro-computer which provides the dedicated function of a time of day and day of week controller. The system provides a total of 18 "timer sets" which can control any one of four mains operated switches independently. Programming the system is very simple using a 20 key keyboard.

THE TMS1121NLL I.C.

The basis of the system is the TMS1121NLL i.c. This is housed in a 28 pin package and details of the device are shown in Fig. 1. As mentioned above, this is a dedicated i.c. and has the following important features.

CLOCK OPERATION

Operation as a clock follows conventional lines displaying the time in the usual 12 hour format, with separate l.e.d.s. to
indicate whether it is AM or PM, and also the day of the week (Sunday to Saturday). The time and day are initially set via the keyboard, and once in operation depends on the accuracy of the mains 50 Hz frequency for its overall accuracy.

TIMER/CONTROLLER

Used as a programmable timer controller, the i.c. can retain in its memory up to 18 separate pre-programmed "timer sets", which are entered via the keyboard. Each timer set can control one of four switches, which in turn control an external appliance. Only two states are possible, either on or off.

The timer sets can be placed into three modes:

1. Fixed Time Programs, which will turn on or off a particular switch at a particular time.
2. Interval Programs, which will turn on or off a particular switch after a specific time interval has elapsed from the time the program was entered.
Ance executed, an interval program is erased from the memory, thus these types of programs can only be executed once. Fixed time programs however, are retalned in the memory and are executed repeatedly.
3. Sleep Programs. A special function on the keyboard is the SLP (sleep) key. If this key is used after an interval program, then that switch to which it applies is turned on immediately and then turned off exactly one hour later. Using this function a valuable timer set can be saved for some other application.

OTHER FUNCTIONS

The i.c. via the keyboard can provide direct operation of any of the switches without programming that function into the memory. Thus any switch can be turned on or off independently of any program relating to that switch-a particularly useful function.

The timer sets can be changed at any time by either selectively erasing the sets which relate to a particular switch or to a particular day, or by erasing all the sets and starting fresh with a clear memory.

Finally, any program in the memory can be recalled using the keyboard, the state of the program being displayed by l.e.d.s. The standard four digit clock display is used to show the time at which the switch is to be turned on or off, while various other l.e.d.s. indicate the day of the week, the switch number, either AM or PM and whether the switch will be on or off at that time.

CIRCUIT DESCRIPTION

The complete circuit for the Programmable Timer/Controller is shown in Fig. 2.

The circuit requires two voltages which are obtained from the mains power supply. The first supply is obtained by rectifying the a.c. output from the 9 V mains transformer to give about 12 V d.c. This is used for the display segments and also the l.e.d.s.

The second supply uses an 8 V regulator to provide a stable and fully regulated output of 9 V . The precise voltage may be varied by using the preset VR1. This supply is used to power the main i.c. and the interface i.c., IC3. As well as providing the two voltages the mains transformer also supplies a source of 50 Hz , which is used as the standard clock signal for the microprocessor IC2.

The i.c. operates at a frequency of approximately 300 kHz , this frequency being set by the values of C7 and R3. The 50 Hz clock signal from the mains transformer is applied via TR1, which roughly squares the sine wave, to the input at pin 8. Transistor, TR2 and associated components, use the 50 Hz signal to provide a short pulse which is used to reset the internal circuits and to clear all information in the memory when the timer is first switched on.

KEYBOARD

Information to be programmed into the i.c. is input via the keyboard of which a few of the keys have double functions, for example the E DAY/O key is the numeral " 0 ", and the events key to program what happens on each of the seven days of the week.

The switch numbers and their functions (and also the front panel labelling) are shown in Table 1.

SWITCHES

The circuit provides for turning four relays on or off, via TR12 to TR15 and their associated resistors. Obviously, other output devices may be used, s.c.r.s. for example could be driven by the transistors, but for simplicity and maintenance free operation, relays would appear to be the most appropriate choice. The outputs from the relays are connected to four mains sockets.

Switch number	Function 1	Labelling (for front panel)
1	Everyday or numeral 0	$\begin{gathered} \text { E DAY } \\ 0 \end{gathered}$
2	Sunday or numeral 1	SUN
3	Monday or numeral 2	$\underset{2}{\mathrm{MON}}$
4	Tuesday or numeral 3	$\begin{gathered} \text { TUE } \\ 3 \end{gathered}$
5	Wednesday or numeral 4	$\begin{gathered} \text { WED } \\ 4 \end{gathered}$
6	Thursday or numeral 5	$\begin{gathered} \text { THU } \\ 5 \end{gathered}$
7	Friday or numeral 6	$\begin{gathered} \text { FRI } \\ 6 \end{gathered}$
8	Saturday or numeral 7	SAT
9	Numeral 8	7 8
10	Numeral 9	9
11	AM setting	AM
12	PM setting.	PM
13	Set day of week or display day of week. (Press twice to display).	WK DISP
14	Set switch number or display switch	SW
	(Press twice to display).	DISP
15	Set switch ON	ON
16	Set switch OFF	OFF
17	Set SLEEP function	SLP
18	Clear last entry or correct error	CLR
19	Clear all programs from memory	CM
20	Start clock (only used when changing time setting on clock).	CLK

Table 1. Switch numbering and their functions

Fig. 1. The TM5 1121 NLL

COMPONENTS
 ...

Resistors
R1, R 2
R3
R4-R11
R12-R19
R20-R28
R29-R38
R39
VR1 220 hor. preset
All $\frac{1}{4}$ W 5% except where stated

Capacitors

C1
C2
C3, C5
C4
C6
C7
C8
Semiconductors
D1-D4
D5-D14
D15, D18
D16. D20-D26
D17. D19, D27-D30
D31. D32
$2200 \mu 25 \mathrm{~V}$ elect
$1 \mu 63 \mathrm{~V}$ elect.
100 n polyester (2 off)
$1 \mu 63 \mathrm{~V}$ elect.
470n polyester
47 pF polystyrene or ceramic plate
1On polyester

IN4002 (4 off)

IN9 14 (10 off)
0.2 in l.e.d. green (2 off)
0.2 in l.e.d. yellow (8 off)
0.2 in l.e.d. red (6 off)
0.125 in l.e.d. red (2 off)

D33-D36
TR1-TR15
IC1
IC2
IC3
X1-x4

IN4007 (4 off)
BFY 50 (15 off) MA 7808
TMS 1121 NLL
SN 75492
$0 \cdot 6^{\prime \prime} 7$ segment display red.
TIL322 or FND500 (4 off)

Switches

S1-S20 miniature keyboard switch with removable cap. (Ambit type ref. KHC10901-switch, two part cap type KT5 ref. 53-90901).

Relays

RLA-D OUD type. s.p.d.t. contact, 12 V 400 ohm coil. (Maplin type ref. YX97F). Other types with a similar coil may be used, but may not fit the p.c.b.

Miscellaneous

T1 9V 1 A mains transformer
SK1-4 "Euro" type 3 pin mains socket rated at 240 V 6 A. Heatsink for IC1
Small mounting brackets (4 off)
6BA hardware
I.c. sockets if required. FS1 13A fuse and fuseholder

Three p.c.b.s
Verobox type $21036 \mathrm{G} 205 \times 140 \times 110 \mathrm{~mm}$
Piece of red perspex
Plastic trim
Mains cable connecting wire etc

DISPLAY INTERFACE

The hours/minutes display uses four 7 -segment displays which are multiplexed, the segments being driven via TR3TR9 and associated resistors R12-R18 and R4-R10. Current limiting of the segments is provided by resistors R20-R26, and as they are multiplexed the average segment current is 10 mA .

The multiplexed drive for each of the four displays is provided by the interface i.c., IC3. This is a special MOS to l.e.d. digit driver, and is required to provide the necessary interface between the very low level MOS output from the i.c. to the high current drive requirements of the displays.

The remaining three outputs of the i.c. are used to drive the indicating l.e.d.s D15-D30. These l.e.d.s are also multiplexed and share the drive on the segment lines.

The clock normally operates at 50 Hz , however, if it is to be used where the mains frequency is 60 Hz , then the link indicated must be fitted.

CONSTRUCTION

Construction is quite straight forward, the vast majority of the components being mounted on three printed circuit boards. The type of housing used for the project was chosen because it was the most practical type to use, some constructors may like to house the project in a more aesthetically pleasing case, with just say, the four digit display on the front panel and perhaps the keyboard mounted on the top or side. It should be quite easy to split the display/keyboard p.c.b. in two and mount each in a suitable position.

Personal preference also applies to the choice of output connectors, obviously a universal method of connecting the appliances to the unit was required. The first choice was conventional 3 pin flat sockets, however this would have made the dimensions of the case rather large. The second choice was to connect the various appliances directly and
permanently to the unit. This would have meant that the unit could not be used with additional appliances without considerable work to change each one over. Of course this direct method can be used where it is envisaged that future changes are not required:

They system adopted was the use of "Euro" type sockets as shown. Each mating plug was connected to an appropriate length of three core mains cable, the opposite end being fitted with a rubber line socket, the type found on electric drill extension leads. The length of each lead will of course depend on the distance of the unit from each appliance, so a central position should be chosen and the length of each lead adjusted accordingly. All of the four leads need not be made up at the same time each one being wired up when they are required.

PRINTED CIRCUIT BOARDS

There are three p.c.b.s; the display/keyboard, main logic and driver board, and the power/relay board.

The p.c.b. design for the display keyboard is shown in Fig. 3 with the component layout shown in Fig. 4. The key switches can be mounted first, remember that only the types specified will fit onto the board. They may be orientated either way. The four 7 -segment displays and the two I.e.d.s. which fit between two of the displays can be mounted next. Do not mount the remaining I.e.d.s. at this stage, they will be fitted later.

The design and component layout for the logic/driver board are shown in Figs. 5 \& 6. A socket is advised when mounting the main i.c. and the interface i.c. For neatness the transistors were mounted on nylon mounting pads, although this is not essential. The 1 W resistors should be mounted just above the p.c.b. as they get slightly warm in operation.

If the system is to be used on 60 Hz mains operation then the link indicated should be wired in, it should be left unconnected when used on 50 Hz .

Fig. 3. P.c.b. design for the display keyboard

Fig. 4. Component layout

The power supply/relay board is the last to be completed and the design and component layout are shown in Figs. 7 \& 8.

DRILLING DETAILS

Cuttting details for the front panel are shown in Fig. 9. These dimensions are exact and should not need variation. The two large cutouts were finished off with lengths of special plastic edging, although a similar effect can be achieved with p.v.c. sleeving. A piece of red perspex was
glued in place as shown on the photographs.
Standard two piece plastic l.e.d. clips were pushed into each of the holes but the retaining rings were not fitted at this stage.

The cutting details for the rear panel are shown in Fig. 10. The sockets are a push fit so the cut-outs should be as accurate as possible and can even be a little undersize.

The key switches come with a two part cap, and lettering can either be applied to the bottom half directly, or on small squares of white paper.

Fig. 5. P.c.b. design for the logic driver board

Fig. 6. Component layout

FINAL WIRING

The display/keyboard p.c.b. should first be mounted on the front panel. Before doing so, connect all the flying leads to the board. Each wire can be about 6-8" in length, ribbon cable can be used here, but note that each connection on the display board is not in sequence with the same connection on the logic board.

Next mount all the l.e.d.s. into their panel clips and push the locking rings over each clip. Note we are using three different coloured I.e.d.s. so be sure to insert each into their correct place. Two methods can now be used to connect the
I.e.d.s to their respective connection on the p.c.b. Either use short lengths of connecting wire, say $2^{\prime \prime}$, and connect each lead of the l.e.d.s to the p.c.b., or, as in the prototype push the leads of the l.e.d.s. directly into the correct holes. If this method is used then the leads will need to be splayed out slightly. This operation is quite difficult and inexperienced constructors should use the first method.

Finally, using spacers and countersunk screws the p.c.b. can be permanently fitted into position.

The mains outlet sockets can now be mounted on the rear panel, if they seem a little loose then they may be fitted in

Fig. 7. P.c.b. design for the p.s.u.

EGO<0
Fig. 9. Cutting details for the front panel

Fig. 8. Component layout

E6B39
ALL DIMS IN mm
Fig. 10. Cutting details for the rear panel

Fig. 11. Wiring diagram

Front panel layout

Internal views

place with a strong adhesive if required. The remaining two p.c.b.s. can be mounted in positions as dictated by the dimensions of the transformer. Small right-angled brackets can be used to mount the boards.

Finally, the remaining wiring shown in Fig. 11. can be completed.

TESTING

Before connecting the unit to the mains, the p.c.b.s. should be checked for errors, solder splashes, bridged tracks etc. If all seems well, temporarily remove the leads going to the 12 V and 9 V connections on the power supply board. Connect the unit to the mains supply. BE VERY CAREFUL when working on the power supply/relay board, it carries mains voltage as soon as the mains supply is connected.

With a voltmeter check the 12 V supply, it should within reason, be 12.5 V , anything greater than this there is most likely a fault and should be rectified before continuing. Next measure the 9 V supply and adjust the preset to obtain precisely 9 V . Do this as accurately as possible, as the main i.c. is rather critical about the voltage applied to it.

If all is well, reconnect the two supply leads, switching off the mains supply first of course. Next reconnect the mains supply and observe that the display illuminates and shows 12:00, with the PM and Sunday l.e.d.s. lit only when the CLK key is pressed. If the unit is connected to 60 Hz mains frequency then the display will show real time and continue to change as each minute passes.

There are no further tests to be made, and the unit can be left connected to the mains to insure that no component overheats. The large 1 W resistors will of course get warm but should be of no concern.
NEXT MONTH: Battery back up and programming.

TWO FABULOUS OFFERS FROM

TESTER 20

20k Ω / V a．c．\＆d．c．

THE

PROFESSIONAL SOLUTION TO GENERAL MEASUREMENT PROBLEMS

ONLY £29．75

inc．VAT，P\＆P，complete with carrying case，leads and instructions．

The best instrument for the workshop，school，toolbox．TV shop and anywhere， accurate information is needed quickly and simply．
Accuracy：d．c ranges and $\Omega 2 \%$ ，a．c． 3%（of f．s．d．）
40 ranges：d．c． $\mathrm{V} 100 \mathrm{mV}, 1.0 \mathrm{~V}, 3.0 \mathrm{~V}, 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$
d．c． $150 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 300 \mu \mathrm{~A}, 1.0 \mathrm{~mA}, 3 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}, 100 \mathrm{~mA}$
$1 \mathrm{~A}, 10 \mathrm{~A}$ a．c． $\mathrm{V} 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$
a．c． $13 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}, 100 \mathrm{~mA}, 1.0 \mathrm{~A}, 10 \mathrm{~A}$ ．
$\Omega 0-5.0 \mathrm{k} \Omega, 0-50 \mathrm{k} \Omega, 0-500 \mathrm{k} \Omega .5 \mathrm{M} \Omega, 50 \mathrm{M} \Omega$
dB from -10 to +61 in 5 ranges．
Dimensions： $105 \times 130 \times 40 \mathrm{~mm}$ ．

and the INCREDIBLE

MINI 20

28 ranges

$20 k \Omega / V$ d．c． $84 k \Omega / V$ a．c． （With protective fuse）

THE IDEAL INSTRUMENT
 FOR THE CONSTRUCTOR

（complete with carrying case，leads and instructions） Goods normally by return of post．

This special offer is a wonderful opportunity to acquire an essential piece of test gear with a saving of nearly C 10.00 ．
The 28 ranges cover all likely requirements．Operation is straightforward，just turn the selection switch to the required range．
Accuracy：$\quad 2 \%$ d．c．and resistance， 3% a．c．
28 ranges：d．c．V $100 \mathrm{mV}, 3 \mathrm{~V}, 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 600 \mathrm{~V}$ ．d．c． $150 \mu \mathrm{~A}, 600$ $\mu \mathrm{A}, 6 \mathrm{~mA}, 60 \mathrm{~mA}, 600 \mathrm{~mA}$ a．c． $\mathrm{V} 15 \mathrm{~V}, 50 \mathrm{~V}, 150 \mathrm{~V}, 500 \mathrm{~V}, 1500 \mathrm{~V}$ ．c． $130 \mathrm{~mA}, 300 \mathrm{~mA}, 3.0 \mathrm{~A}$ ．Ohms $0-2 \mathrm{k} \Omega, 0-2 \mathrm{M} \Omega$
$d B$ from -10 to +62 in 6 ranges．
Dimensions： $105 \times 130 \times 40 \mathrm{~mm}$ ．

For details of these and the many other instruments in the Alcon range，including multimeters，components measuring，automotive and electronic instruments please write or telephone：

With Heathkit，you＇re all set for a great deal．And not just big savings．

Whichever kit you choose，you＇ll find it easy to build． Simple，but detailed instructions take you through every stage．Everything is included．Even the solder you need Digital Clock
is there．
Follow the steps and you＇ll end up with a hand－ crafted，well－designed piece of equip－ ment．One you＇ll be proud of．Because you built it yourself．
There are 10 great kits to start you off．An interesting choice of a digital clock to a metal locator，including a short wave listener＇s receiver，windspeed and direction indicator，digital readout electronic scale and five more useful kits．

All at 30% off to first－timers． Send for your catalogue right now for a start．

Metal Locator

To Heath Electronics
（UK）Limited，Dept（ PE5 ），
Bristol Road，Gloucester GL2 6EE． PE5

Tostart me off，please send me a copy of the Heathkit catalogue． I enclose 28p in stamps．

IINI SPPECIALSUPPPLLEMIENI SPI

IEEE-488/IEC-625 INTERFACE BUS \& $=1 \quad 1 \quad \because \quad 11$

Abstract

NTERESTED in microcomputers for business and at home? Would you like to expand your system, easily, with a truly standard bus? Do you take tedious measurements? Then maybe the IEEE-488 bus and its applications which is the subject of this supplement will interest you. Even if you do not own or use a mini- or microcomputer, but are interested in test instrumentation and Automatic Test Equipment (ATE) and its uses, read on.

MICROCOMPUTERS are already in widespread use insmall businesses. keeping full control of accounts, debtors, creditors, stock etc. However, few people are aware of the tremendous capabilities these computers have in the electronic workshop. especially in small companies where items are manufactured and have to be tested, or where repetitive test work is to be done.

For the amateur at home, the IEEE 488 bus allows easy interfacing of sophisticated (if required!) devices for the home computer. Not only sophisticated devices, but also printers, plotters, floppies and hard disks. Readily available LSI IC's are available with full application notes, allowing the experimenter to interface anything he desires with his own computer.

It is the intention of this supplement to give an insight into small and large scale automatic testing, a glimpse of what 488 bus devices are available, and an introduction to the mode of operation of the bus, according to the standard.

The IEEE-488 INSTRUMENTATION BUS (called the 488 bus or just the bus in the rest of this feature) was originally designed and developed by Hewlett Packard (HP), who still hold world wide patent rights on the bus. It was designed by them "to provide an effective communication link over which messages are carried in an unambiguous way among a group of interconnected devices" (Ref 1). The method uses a 3 -wire handshake to transmit bit-parallel, byte-serial data, which can be divided into two broad categories, viz:
(i) messages used to control the interface system itself, referred to as interface messages, and
(ii) messages used by the devices connected to the bus, referred to as dévice dependant messages.
In 1975 the IEEE adopted this HPIB (Hewlett Packard Interface Bus, or GPIB-General Purpose Interface Bus by which it is also well known) as a standard for bit-parallel, byteserial data transmission, mainly intended for use in instrumentation systems. In 1978 the standard was slightly improved, and was rewritten to make it more understandable. The standard has an international counterpart. the IEC-625, which differs mainly in the hardware connector implementation

moterals THE RAS UNED? ATHEs

Let us consider a small illustration in the use of the bus to introduce the ATE concept, and the bus application. Although one could argue that the example to be presented can easily be achieved manually, consider the full implications of the idea given in the example, the advantages gained, and remember, its only an example.

Consider the manufacturer of small d.c. motors, each motor having to be tested before leaving the factory. The parameters to be measured are winding resistance, run up time, and run current. The instrumentation required is a counter-timer (C / T) a digital multimeter (DMM), a tachometer and a d.c. power supply. The manual method of testing needs no explanation, except to say that a stop-watch would probably be used instead of the C/T. Let us assume that the equipment is connected as shown in Fig. 1, where the switching matrix (consider it as a "black box" for the meantime) connects the Unit Under Test (UUT) to the instrumentation as shown in Figs. 2a and $2 b$ depending on the test being conducted.

[區为]

The procedure is as follows. On switch on, the computer asks the operator to enter his name, the date, and UUT serial number. The computer prompts the operator to connect the UUT to the jig and, when ready, to hit the RETURN key. Via the bus, the computer will put the DMM into Ohms mode, select the range and configure the switching matrix in Fig. 2a. When the DMM has measured the coil resistance, it will transmit the value back to the computer. The computer then changes the DMM mode to A d.c., programs the power supply for the required drive voltage (this could be read and checked by the DMM as an intermediate step) and configures the switching matrix as in Fig. 2b. The C / T is set up in its time interval mode, which simply measures the time taken betweent two positive pulses appearing at its A channel and B channel respectively. When this has been done, the switches SI and S2 (Fig. 2b) are closed simultaneously, applying power to the motor, and starting the timing process.

The computer sits waiting for the C / T to finish its measurement and send it back to the computer. The pulse that stops the time measurement is derived from the tachometer, which has been specially designed (the only non-bus instrument) to produce a pulse when the required running speed has been reached. Since the motor is now at speed (the computer has received the run-up time) the computer uses an interface command to tell the DMM to take a current measurement, and return it. When this has been received, the computer opens all the switches in the switch matrix, and a few seconds later a printer churns out a result sheet, like the one shown in Fig. 3 (Produced by an Apple).

Fig. 3. Results sheet

[[FPए
Fig. 2b. Switching matrix ready to start timing-
What was achieved? The test was completely error proof. No misread readings, inaccurate timings, or when applicable, calculation errors. And most important, the actual time-to-test was very significantly reduced. Remember too that the computer sets up the instrument ranges automatically and that self check routines can be incorporated to provide reliable test equipment.

Consider the variety of devices available (a sample will be given below) and one can begin to realise the power automatic testing has, and the cost saving it can produce. The author has recently completed an ATE system that simultaneously tests four highly sophisticated electromechanical devices, using no less than twelve different instruments, all controlled by an Apple! A two hour manual test was reduced to a twenty minute for one, forty five minutes for four, completely automatic, reliable, consistent, test.

SOME DEFINITIONS

The host computer in the example above is for obvious reasons called the CONTROLLER. The switch matrix only receives instructions and is called a LISTENER. The DMM and C/T on the other hand listened to the controller (when their ranges were being set up) and talked back by sending the measurements taken. They are referred to as LISTENER/TALKERS. Most instruments can be switched to be a talker only, so that the instrument is controlled from the front panel, but readings are sent to a controller or another listener (such as a printer).

Fig. 1 indicates that all the instruments are connected to the same bus, so some means of differentiating between instruments

is required. This is achieved by allocating each instrument a specific ADDRESS between decimal 0 and 30 by selecting that address on a set of switches provided at the rear of each instrument. The controller thus addresses each instrument before sending data to, or receiving data from that particular instrument or device.

BUS DEVICES

The types of bus devices can be broadly divided into different groups. A discussion and explanation of the main groups follows, and examples of each type of device can be found in Table 1, with an indication of which vendors supply what equipment. Note that the list of devices and names of vendors is by no means complete and is only meant to be an illustration. Note also that HP, who developed the bus and thus have had most experience with it, have the largest variety of devices available. A glance through the HP instrumentation catalogue is most informative and enlightening.

Controllers

These have already been defined above, and almost always are one form or another of minior microcomputer. The HP9825 has for a long while been the industry standard, but today the HP9826 replaces it. Fluke market a sophisticated controller, the model 1720A. And in the less expensive range, although not necessarily less powerful, the Apple or the Pet. Nearly all other mini- or microcomputer manufacturers offer GPIB capability either as a standard, or as an add-on option.

Measurement Devices

A device exists, made by one or other manufacturer, for just about any conceivable measurement requirement. The complexity (and price!) of each variety of instrument in the group ranges from, for example, the simple voltmeter which just sends readings to the controller, to the sophisticated DMM, which can do statistical analysis of the readings taken, or test for readings between pre-programmable limits, or store the highest, or lowest reading taken in any interval of time. The same level of sophistication is also available for many of the other types of devices in this group shown in Table 1.

Stimuli Devices

As the name implies, this group of devices include those which provide analogue or digital stimuli to the UUT, or provide power to the UUT. Again sophistication is built into some of these instruments, so that previous setting up parameters can be stored and instantly recalled, without having to re-program the instrument.

Output Devices

The group includes printers, X-Y plotters, VDUs and the like.

Storage Devices

Floppy-and hard disk drives are available.

Switching Matrices

In essence, these devices allow the automatic routing of stimuli to and measurement signals from, the UUT via plug-in modules which consist of sets of relays connected either as in

MEASUREMENT DEVICES	H-P	FLUKE	WAVETEK	$\begin{aligned} & \text { RACAL } \\ & \text { DANA } \end{aligned}$	SYSTRON DONNER	GOULD ADVANCE	KEPCO	ROCKLAND DIGIPLAN	PHILIPS	TEKTRONIX
Digital Multimeters	3438A	8860 8520		$\mu 5000$	$7344 \mathrm{~A}$				$\begin{aligned} & \text { PM2526 } \\ & \text { PM2528 } \end{aligned}$	
Counter-Timers	MANY	1953A		9514	6042A				MANY	
RF Frequency Meters	MANY								MANY	
Spectrum Analysers	MANY							512-S		492P
Oscilliscopes	TWO	-							PM3310	MANY.
Logic Analysers	MANY					K100-D				
STIMULI DEVICES										
RF Generators	8660A	6070A	MANY							
Synthesizers	3325A		178		1702			MANY	PM5190	
Puise Generators	5359A		MANY		154-4					
Digital Pulse Gens.	8170A									
DC Power Supplies	59501A				DPSD-50		MANY		PE1367	
DC Power Supplies	6002A									
OUTPUT DEVICES										
Printers	MANY								PM8151	4662
X-Y Plotters	7225A									
STORAGE DEVICES										
Floppies	9895									
Digitizers	9874A									
SWITCHING MATRICES										
Switching				1200	3570A				PM4012	
DACUs	3497 A					:				
OTHER DEVICES										
Filters								MANY 1185-105		
Stepper-motor drives								,		
HP1B Extenders	37201A									
	59403A								-	

EPP6

[

Fig. 4 (far left). Eight relays connected as a multiplex module. Note only one relay may be closed at one time

Fig. 5. Eight relays connected as a relay module. Any number may be closed at any time

Fig. 4 or Fig. 5. They allow measurement and stimuli highways to be formed, an example given in Fig. 6. The number of switches or relays is expandable by simply adding more modules, and different types of modules are available viz. reed relay switching, power relay switching, FET switching and coaxial relay switching amongst others.

Many manufacturers of ATE systems offer modular switching systems and supporting modules such as D/A convertors, A/D converters, peak detectors and the like. HP market various multiprogrammers for measurement and control applications (here called DACUs-for Data Acquisition and Control Units). These have a large variety of plug-in modules to suit. For those with a small business ATE application such as the example above in mind, this type of unit provides the easiest and relatively cheapest way to begin.

Table 2. IE EE-488 standard subsets

Subset Mnemonic	Function
SH1	Source Handshake
AH1	Acceptor Handshake
T5	Talker
TEO	Extended Talker
L4	Listener
LEO	Extended Listener
SR1	Service Request
RL1	Remote/Local
PPO	Parallel Poll
DC1	Device Clear
DT1	Device Trigger
CO	Controller

Other Devices

Analogue and digital programmable filters are available, as well as stepper-motor drives. The list is endless, it keeps growing daily.

MORE DEFINITIONS

It is necessary to say here that the standard divides the major functions of the bus into twelve SUBSETS. An instrument that is a TALKER and a LISTENER implements at least two of these subsets. The controller function is another, for example. Table 2 gives all the possible major subsets, although only a few will be discussed here. Now since an instrument need only implement at least two subsets to be able to communicate in one way or another on the bus, it need only understand the interface messages (or instructions, which they really are) that are com-

Fig. 6. Simple switching matrix implementation. Any number of instruments may be added in the same manner
mon to those subsets it implements. These interface messages then are instructions that are defined in the standard and must be understood by all instruments, meant to implement the subsets using these instructions. A few of these instructions are discussed in the example below.

Device-dependant messages, on the other hand, are messages that are transmitted by the bus. They usually take the form of either data (measurements) which are normally in a form that all instruments can decode or instructions for the control of the instrument itself (hence "device-dependant") that is normally peculiar only to the instrument being addressed.

It was previously mentioned that the instruments may be set up for any address between 0 and 30 decimal. Referring to Table 3 one can see that corresponding to each decimal address are two ASCII characters depending on whether bit D6 or bit D7 is a " 1 ". These two characters determine whether the instrument is to talk, or listen, when addressed. For example, an instrument set to address 01 would know it was being addressed to talk when it detected an " A " on the bus (MTA-My Talk Address in 488 jargon) and would respond as a listener when it detected a "l" (MLA-My Listen Address).

Now for an example: Assume the controller has address 21 (normal for the HP 9825) and that it is going to set up a Fiuke DMM to measure d.c. volts and return the measurement. Refer to Figs. 7 and 8. Fig. 8 shows the pinout of the 488 controller which will be discussed later, but will be found useful to refer to in the example. The instrument is set to address 04 . The following sequence of events occurs.
1 REN line (remote ENable) goes low. All instruments on the bus go into the remote state.
2 IFC (InterFace Clear) puises low. Stops activity on the bus.
3 ATN line (ATtentioN) goes low. Informs all instruments that the following data is an interface message.
4 NRFD (Not Ready For Data) line is high. This line is one of

Fig. 8. Bus connector pin-out

the three handshake lines and because it is high (remember, the bus works with inverse logic being true) all instruments are ready to accept data. Note that since all the handshake lines have open collector outputs, the line will stay low until the slowest instrument is ready. Thus for all the handshaking, the slowest instrument on the bus determines the speed of the bus.
5 The ASCII character ? for UNL (UNListen) is put on the data lines. This bus instruction deselects any instruments that may previously have been set up as listeners. The character stays on the bus for the whole of the following handshake cycle.
6 DAV line (DAta Valid) goes low. Controller says data is valid.
7 NRFD line goes low. Instruments say do not change data while we are reading it.
8 NDAC line (Not Data ACcepted) goes high when all instruments have accepted the data.

Table 3. Decimal and equivalent ASCII TALK and LISTEN addresses.

9. DAV goes high. Data no longer valid.

10 NDAC low. Instruments remove data accepted indication.
11 NRFD goes high. Instruments ready for next data byte.
12 Controller puts character U on the bus indicating that it is going to be the talker. Steps 6 to 11 are repeated, i.e. the handshake is completed.
13 The controller puts \$ on the bus. This is the Fluke's LISTEN address. Steps 6 to 11 are repeated, however, only the DMM is doing the handshaking, as only it recognises its listen address. Until stated to the contrary, steps 6 to 11 occur after each byte of data is transmitted, and are controlled by the DMM and the controller only.
14 ATN goes high. Interface message finished, device dependant message follows.
15 V on the bus. The DMM understands this to mean Volts d.c. This and the following few characters are totally device-dependant messages and are understood by the particular instrument only.
16 R range
17 ? Auto range
18 M Programs off
190
20 T Internal trigger
210
22 ? Terminator that forces the DMM to act on this string of data and take a reading, i.e. on V d.c. and auto range.
23 CR Carriage return. Indicates to the instrument end of data message.
24 LF Line Feed
25 ATN low-following message is an interface one.
26 ? on data bus-Unlisten again (all instruments respond).
27 D on data bus-Controller tells Fluke it must talk. Only the Fluke recognises this, so again, only it will respond.
285 on the bus-Controllers' own listener address.
29 ATN high. end of interface message. The DMM can now send its measurement.
$30+$
310
320
330
340
35
$36 \quad 0$
$37 \quad 3$
38 E
$\begin{array}{ll}39 & + \\ 40 & 0\end{array}$
412
It may seem a bit long-winded to go through all that to transfer data, but it takes just a fraction of a second to occur, and the handshake ensures correct data transmission. Another explanation of the handshake cycle is shown in the form of a flow chart in Fig. 9. In the above example, when the controller is talking, it is referred to as the SOURCE and it controls the DAV line, while the DMM, which is listening, is called an ACCEPTOR, and controls the NRFD and NDAC lines. The names and lines each device controls are of course reversed when their respective listen and talk roles are reversed.

The only other line so far not discussed is the SRQ (Service ReQuest) line. This line is used by instruments to indicate to the controller that they require service. The instruments can be programmed to ask for service when some special conditions occurs, such as a hardware or software or programming error,

NI SPECIALSUSPPLEMENI SPPCI

Tektronix 468 digital storage oscilloscope

Fluke 8522A computing/systems DMM

Hewlett Packard 8903A transceiver test set under the control of an HP85F
when a reading has been completed, or when some other, or combination of other, instrument-defined conditions occur. The controller then does either a Serial or Parallel Poll to discover which instrument sent the SRQ and acts on the SRQ as programmed. The actual Serial or Parallel Poll implementation is outside the scope of this article.

MORE INTERFACE DEFINEDINSTRUCTIONS

A few more interface defined instructions, which are used most often, follow. They can be broadly grouped as shown and are all sent with the ATN line low.

Unaddress Commands

These do what the name implies.
UNL-UNListen Clears the bus of all listeners (ASCII ?)
UNT—UNTalk Clears the bus of all talkers (ASCII \wedge)

Universal Commands

All instruments respond to these commands, whether they had previously been addressed or not.

LLO-Local LOckout Disables front panel controls (ASCII DC1)
DCL-Device CLear Returns all devices to a cleared state (ASCII DC4)

Fig. 9. Handshake flowchart

EMISNI SPIECLALSUIPPILIEMIENISP

Other commands in this category are commands that allow Serial or Parallel Polling as mentioned above. Refer to Ref. I for more details.

Addressed Commands

Commands which affect addressed instruments only.

GTL-Go To Local
SDC-Selective Device Clear

GET-Group Execute Trigger Start-all preset-up instruments simultaneously (i.e. to start taking a measurement - ensures simultaneous measurements with different devices).
TCT-Take Control
Pass control from the present controller to another. This facility is seldom found on controllers, mainly due to the complexity of providing the facility and because the facility is seldom required.
There are many others, but these examples suffice to show the bus capabilities.

hardware

The physical connector, as already mentioned, is shown in Fig. 8. The bus standard allows for a maximum of 15 instruments at one time (including the controller) and a total cable length of 20 metres. Buffer units are available to expand this, but are rarely required. Standard cables are available to do the inter-

Wavetek 172B programmable signal source

Table 4. IC's-types and manufacturers

Manufacturer	Part Number	Function	Supply (V)	Clock (MHz)	Transfer Rate (bytes/sec)
Fairchild	96LS488	Talker/	5	10	1 M
Intel	8291	Talker/	5	8	448k
		Listener/			
	8292	Controller	5	6	125k
Motorola	MC68488	Talker/	5	1-1.5	
		Listener			
Philips/	HEF4738V	Talker/	4.5-12.5	2	200k
Signetics		Listener			
Texas	TMS9914	Talker/	5	5	250k
Instruments		Listener/ Controller			

connecting and must usually be ordered separately from the device manufacturers.

BUS INTEGRATED CIRCUITS

The major chip manufacturers, Motorola, Intel, Fairchild, Philips and Texas Instruments all produce VLSI integrated circuits which can be used as building blocks for building a bus interface. The chips are designed to work with their respective microprocessor families, however they can be used with other micros as well. For amateur use, the Motorola MC68488 chip is probably the best to use, as it interfaces well with the 6502 microprocessor, which is the micro used in most home computers. Table 4 shows some of the versions available.

Although the task of designing one's own interface seems nearly impossible to the hobbiest at first glance, this is not really so. The integrated circuits are not expensive, application data is freely available and the chips themselves remove most of the complicated work. It is in this area that the hobbiest can really get going without too much expense.

CONCLUSION

It is hoped that some light has been thrown on ATEs in general and the IEEE-488 bus in particular. Perhaps (hopefully!) some minds have been set thinking and home computers (and others) may now be used in a new direction, as well as for the usual financial uses and of course, games!
(Ref. I-IEEE STANDARD DIGITAL INTERFACE FOR PROGRAMMABLE INSTRUMENTATION-published by the IEEE inc. New York.)

If you do use your computer in this way or are interested in so do-
ing, perhaps you could let us know (Ed.)

Philips PM 3310 digital storage oscilloscope

To: Silicon Speech Systems (PE OFFER), Portway Industrial Estate, Andover, Hants SP10 3WN.

"'TIME"

from Roget's Thesaurus

"Old Time, that greatest and longest established spinner of all" (Dickens), "that old bald cheater Time" (Jonson), "Old Time. the clock-setter, that bald sexton Time" (Shakespeare), "that old common arbitrator. Time" (ibid.), "the nurse and healer of all good" (ibid.). "the soul of the world" (Pythagoras), "the Life of the soul" (Longfellow), "the author of authors" (Bacon). "the greatest innovator" (ibid.), "the devourer of things" (Ovid). "the illimitable silent, never-resting thing called Time" (Carlyle), "a short parenthesis in a long period" (John Donne). "a sandpile we run our fingers in" (Sandburg), "the tooth of time" (Shakespeare), "Time's revolving wheels" (Petrarch).

Now the old father - the greatest innovator - is no longer silent, Silicon Speech Systems have given him a voice to pass over his tooth! No more revolving wheels, no more displays, the sandpile has been turned to silicon to provide a voice at your command.

We are pleased to be able to offer our readers this kit at a very special PE price. Designed by Powertran engineers, the kit builds into an accurate timepiece with adjustable voice pitch. It is neatly housed in a grained stainless steel case measuring approximately $120 \times 65 \times 20 \mathrm{~mm}$.

[^1],MPROVEMENTS in technology have brought about a lot of changes in digital circuitry design. Random logic designs have been replaced by software based designs such as microprocessors and algorithmic state machines. Hardware has been replaced by processor's firmware. Elements like ROMs and PROMs contain programs that represent software algorithms for control circuits. Methods for testing digital modules that are software oriented are quite different from those used to test random logic. Instruments like an oscilloscope and DVM are no longer sufficient. The problem car be solved partly by using a logic state analyser. The algorithm can be traced and when the erroneous state occurs, the faulty element can be sought.
A simple logic probe is a very economic and useful device but unfortunately it can display only a few states of digital circuitry. It cannot distinguish different data streams in different nodes of digital circuits. This article describes a digital logic probe that can display not only 'low', 'high' and 'pulse train', but also a stream of digital data at different nodes of circuit inside a predefined time window. The probe is in fact a miniature hand held Signature Analyser.
The circuit has been kept as simple as possible, so that it can be implemented with standard elements and yet can be placed in an enclosure no bigger than that of an ordinary logic probe. Testing digital boards with this handy tool is quite easy only if the boards are designed so that the circuit under test generates signals which can be used for generating a time window in which the periodic stream of digital data at different nodes can be observed.

DEFINING IT

A Signature Analyser is an instrument for testing and de-bugging digital circuitry. The most essential part of the device is a CRC encoder that serves as data compressor. CRC stands for 'cyclic redundancy check' which is an error checking technique commonly used in serial data transmission or data recording systems (discs, tapes, etc.). Digital data stream compression is obtained by polynomial division of data by the generator polynom. The remainder of this is the CRC value or signature of a particular data stream.

Division is implemented in a serial shift register, where feedback loops determine the generator polynom. The remainder is always in relation to all data bits in the digital stream that entered the feedback register. Fig. 1 illustrates the principle of operation.

By comparing the signature in a node of a circuit to an empirically determined correct signature, we can verify circuit operation. The element where all signatures on the inputs are correct and signatures on the output pins are incorrect is the faulty one and should be replaced.

DESIGN OF THE PROBE

The probe is intended to test digital circuits with TTL signal levels. It is designed to be as small as possible so as to be no bigger than an ordinary logic probe. It is also built with standard SSI and MSI integrated circuits. Since a relatively large number of elements is placed in a small enclosure, problems related to power dissipation might occur. The use of CMOS elements has solved this but CMOS elements are relatively slow devices when used with 5 V power supply and thus the maximum frequency of input signals is 50 kHz . Signatures can be observed on a 4-digit seven segment multiplexed display. The selected characters are presented in Table 1.

Fig. 1. The CRC encoder

SIGNALINPUTS

The following signals are inputted to the probe:
Clock Is the clock of the unit under test (UUT). Because of speed limitation the clock of the UUT should be slowed down to 50 kHz .
Start Time window in which the measuring takes place is started by a start pulse. This signal is also generated by UUT. The probe is designed so that the beginning of the time window can be selected on the falling or rising edge of the start pulse.
Stop Stop pulse terminates the time window. The termination of the time window can be selected on the rising or falling edge of the stop pulse.
All signals mentioned above are entering the probe through the microphone jack on the rear side of the probe.
Data is a digital data stream of the unit under test that enters the probe through the probe tip.
Power Probe is connected to a power supply of UUT by alligator clips.

CIRCUIT

Fig. 2 is the circuit diagram of the logic probe. The whole can be divided into three basic parts: a circuit for generating the time window, data compressing circuit and a circuit for latching signatures and multiplexing the display.

The circuit for data compression is implemented by IC1, IC2 and IC5. IC1 and IC2 are connected to form a 16-bit shift register with serial input and parallel outputs. Bits 7, 9, 12 and 16 are EXORed together with the data input stream in IC5. The result of this summation is made to enter a serial input shift register.

The data stream enters the linear feedback shift register during a preselected 'time window', which is determined by start and stop signals.

This is generated with circuits IC8 and IC9. IC9 is a quad NAND gate, and a half of it is connected to form an RS flipflop. A start pulse triggers the flip-flop by a negative going pulse at IC9/13. This initiates the time window. When a negative pulse is applied to IC9/8 the window period terminates. The other half of IC9 and four Schmitt triggers from IC8 are used to generate short negative going pulses for triggering the RS flip-flop. By setting the switch S1 we can select whether the triggering pulse will appear at the leading or trailing edge of the input pulse. Fig. 3 illustrates how trigger pulses are generated. Note that the trigger pulse width is determined by propagation delay of the Schmitt trigger. During the window time the serial data stream is entering the linear feedback shift register. After the appearance of the stop pulse information contained at the parallel output pins of the feedback register represents the signature of the stream.

The signature is loaded to IC3 and IC4 which are parallel input-serial output shift registers and are used for storing .the signature and for multiplexing the display. The signature is jammed into the register via the parallel input lines asynchronously of the clock at the positive pulse ($1 \mu \mathrm{~s}$) on IC8/8 and displayed on a 4-digit seven segment l.e.d. display (HP-5082-7405).

DISPLAY

The circuit for displaying the signature is implemented by IC3, IC4, IC6, IC7, IC8 and IC10. Shift registers IC3 and IC4 (CD 4021B) are parallel input-serial output devices, with three parallel outputs: Q6, Q7 and Q8. Two are used for multiplexing the display.

The serial outputs of IC3 and IC4 are connected to the serial inputs of the same units so that information in the shift registers is cycling with the frequency of a clock provided by UUT. Parallel outputs Q 7 and Q 8 from IC3 and IC4 are connected to the address pins of IC7 (6331) which is 32×8 PROM, used for binary to seven segment code conversion as is shown in Table 1. All segments of the I.e.d. display are directly driven from IC7 with the exception of segment f which is driven by IC10 a-b. The display is multiplexed by applying negative pulses to the common cathode outputs of IC11 at the time when correct data is waiting at the address input of IC7.

IC6 is BCD by 8 counter divider. When the signature is loaded to IC3 and IC4 the L/S pulse at IC8/8 clears IC6 and so synchronises it with the contents of IC3 and IC4. Since the information contained in IC3 and IC4 is cycling, the valid output at Q7 and Q8 will only be at each second clock pulse. That is why only each second output of IC6 is used for driving the common cathodes of the l.e.d. display. However CMOS circuits like the 4022 A cannot sink enough current to drive a l.e.d. display directly, so IC10 is used as a cathode driver.

CONSTRUCTION

The circuit is implemented on two single sided printed circuit boards which are mounted vertically in the enclosure. The boards are positioned so that the interconnection between chips is as simple as possible. Fig. 4 shows the component placement and foil pattern. Fig. 5 illustrates how the display is soldered to the p.c. board. Pins from 1 to 7 are stretched and are then soldered. The other pins are soldered to the jumpers so that when the board is mounted in the enclosure the display can be easily observed through the display bezel/filter on top of the probe. Control signals (Start,

Stop and Clock) enter the probe through phono jacks on the rear end of the probe. The cable to the probe should be short enough to avoid ringing problems. For a given frequency this won't occur if the cable is no longer than 1 m .

The data stream enters the probe through the tip. Two switches on top of the probe are provided for selecting the time window. These are miniature SPDT type.

Fig. 5. Showing how display is soldered to p.c. boards

USING THE PROBE

How useful the probe could be is evident from a relatively simple problem. Let's assume that we need to test the content correctness of a $2 K \times$ ROM circuit. We can see that the task is not an easy one if we have to read the contents of every address location and then compare it to the value in

Fig. 6. Contents of the display when the probe tip is successively applied to the output pins
the truth table. Testing such ROMs with the probe is fast and easy. It should be connected to a free running binary counter which scans all the addresses. Start and stop signals are taken from the most significant bit of the address counter and the switches are set so that the time window opens at the leading edge of the MSB address bit and terminates at the trailing edge. The oscillator input should be connected to a free running oscillator or binary counter. The probe tip should be successively applied to the ROMs outputs. The only thing we have to do now is to compare the signatures from the probe with the signatures empirically determined from the known good ROM. Now one half of ROM has been tested. To test the other half we must change the switches and repeat the operation. The example described above is illustrated in Fig. 6.

The best results can be obtained if circuit of unit under test is designed with the concept of signature analysis in mind. This means that it must be designed so that feedback bus loops can be opened. The problem is that unless the feedback loops are not broken, the failure in one member of the loop will propagate bad signatures all the way around the loop.

Our book PE Popular Projects containing a selection of popular projects is now available. The book costs $£ 1.25$ from retail outlets and is also available for £1.50. UK post paid, or £1.80 overseas surface post paid, from Post Sales Department (PE Popular Projects), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF.

The book contains the following projects:
Battery Voltage Indicator, Rov. Counter, Ammeter, Engine Temperature Meter, Dwell Meter, Headlight Warning, Automatic Car Aerial, Digital Temperature Controller, Ultrasonic Burglar Alarm, Home Freezer Alarm, PE Diamatic, Digital Exposure Timer, Smooth Fuzz, Phaser, Guitar Sound Multiprocessor, R.C. Failsafe, Waveform Generator and Pulse Generator.

C90LH CASSETTES

56p each (minimum of 5); 53p each (minimum of 25). Prices include VAT and postage
Made by a leading European manufacturer for Videotone, these tapes are of excellent quality and we are pleased to announce this new PE service.

Over the last couple of years PE offers arranged with Videotone have proved highly successfut and we have now been able to arrange special prices (only available to PE readers) on these high quality tapes. The offer is a result of Videotone's direct selling policy; send in a current special PE coupon for prompt delivery of tapes.
We believe these tapes are the best value around and we are pleased to offer them to readers. They are covered by a money back guarantee (return within 21 days for refund). Not only are the tapes of high quality but the cassettes are of screw together construction and the case label has space for notes on the recordings.

Send valid coupon to: Videotone Ltd., 98 Crofton Park Road, Crofton Park, London SE4.

FREE! READERS' ADVERTISEMENT SERVICE

BRITISH Amateur Electronics Club, for all interested in electronics. Membership fee $\mathbb{E} 4.50$ UK. Four newsletters a year. Further details, SAE to Hon. Secretary, J. G. Margetts, 3 Bishopstone Close, Golden Valley. Cheltenham Gloucestershire.
FLOPPY disc drive $5 \frac{1}{4}{ }^{\prime \prime}$ TEAC FD50A, unused unçased, complete with info. for only £80. D. J Edwards, 23 Barford Avenue, Bedford Bedfordshire.
2X81 Sinclair built, unwanted prize, in packing with PSU, leads and manual $£ 55$. Mr. M. B Lowe, 190 Roding Road, Loughton, Essex. Tel 01-508 8534 after 6 pm .
WANTED PYE AMIOD Cambridges, unconverted up to E15. For sale Starphone M5 UHF 3 channel mobile RB4 E50. S. A. Williams, 22 Grove Park, Burbage, Hinckley, Leics. LE10 2BS Tel: 0455611914.
DATA Dynamics 390 printer. Suits UK 101 £98 also Creed 78 printer f 20 . Tel: Wivenhoe 0206225671 evenings.
ONE box of excess components, hardware active, passive, boards filled with i.c.s. Call Chang 041-332 7695.
HEATH Sine Square Gen. Model AO-1U with manual E 20 . Carriage extra $\mathrm{f} 2 \cdot 50$. J. Manfield Greenleas, Churt, Nr. Farnham, Surrey. GU10 2 NH .
PRACTICAL Electronics Volumes one to eight inclusive. Good condition and in binders-offers Tel: Chester 0244675738
MINI-SYNTH stylophone eight voices plus vibrato waa-waa pedal facility, $£ 30$. Tel: Mr Hirons, Barnet 01-4415123
2X81 edge connectors. Used, Good condition Gold plated contacts. Surplus to requirements £ 1 each, 10 for £9. Mr. C. J. Walker, 174 Marsh House Lane, Darwen, Lancs.
MAGAZINES for sale. PE, PW, WW, ETI, etc. For details Tel: Stevenage 813732 evenings FOR SALE Heath $1 \mathrm{H}-1212$ Digital Multimeter £50. A. Ewing, Pyeston Farm Cottages, by Star Markinch, Glenrothes, Fife.
PAPER tape reader 8 -hole $120 \mathrm{~cm} / \mathrm{s}$ £50. ASR 33 Teletype £100 ASCII Keyboard £10. Tel: Sudbury 078776785.
OVER 100 Radio/TV valves all popular types offers please to: Mr. P. Jackson, 102 Woodland Crescent, Kelloe, Durham DH6 4LY.
INCIRCUIT transistor tester. Good/bad indication plus type. Very simple to use. Pocket slze. New £19-50. Mr, F. J. Hall, 24 Bluecoat Close, Nottingham, NG1 4DP. Tel: 0602413118.

5 INCH D.B. oscilloscope 13A Part rebuilt Y AMPS time base OK £25 o.n.o. Tel: Havant 477263.

PET 3016 computer 16 K . Excellent condition with toolkit cassette deck some software $£ 500$ Tel: Macclesfield 21703 evenings

TELETYPE with stand for sale $£ 50$ o.n.o. Has paper tape reader, punch also. Good working order. Tel: 0933624767 evenings.
PANEL with over 60 T.M.C. switches and 45 miniature indicators. Bargain $\mathbf{£ 1 0}$ plus cost of postage. David E. Smith, 62 Newsgate Road, Sale, Cheshire
FOR SALE MY kit system seven electronics kit As new E25. David Donaldson, 13 Rossole Road, Enniskillen, Co. Fermanagh, N. Ireland.
WANTED tremelo unit published PE May 1976. Must be working and sound like "Leslie" rotary system. John McGrory, 88 High Street, Old Aberdeen. Tel: 0224491016.

CASIO VL TONE for sale. Almost new, f25 Usual price £35.95. Adam Talbot, 153 Court Lane, West Dulwich, London SE2 1. Tel: 01-693 4238.

AUDIO Generator Belco AG761, Sine/Square wave, $19 \mathrm{~Hz}-220 \mathrm{kHz}$, Phone outputs, f35. Tel: 051-7340987.
WANTED National Semiconductors LM373 IF AMP with AGC any quantity. Tel: Terry, G6AAB, Farnborough 47436.
DIGITAL frequency counter no longer required as new £10, cost $£ 30$. Mr. J. P. Hudfield, 47 Leeward Road, West Worthing, Sussex.
UK101 cased 8K, extra RAM chips bare expansion board, new monitor, 00/600 baud, offers. P Bellis, 132 Knighton Road, Itchen, Southampton, Hants. Tel: Southampton 0703433608.
WANTED, back issues of electronics magazines, PE, before 1979, EE issues for September 1976, October 1977. S. G. Mitchell, 39 Munnings Close, Blackdam, Basingstoke, Hants.
FOR SALE i.c.s. 121 A-3 P 510164136 UDN 6118A ML 817 ERC 306450 P.EA AYS- 1230 76217831 Timer i.c.s. $£ 3$ each. Mr. A. Bouskill, 129 Lyminster Road, Sheffield, S. Yorks. Tel: 0742311191.

TRANSFORMER. 240 V to 110 V at IUVA auto wound. Standard US socket outlet. £15 Carriage extra. G. F. C. Selby-Lowndes, Moonrakers, Durfold Wood, Plaistow Billingshurst, West Sussex RH14 OPL

RULES Maximum of 16 words plus address and/or phone no Private advertisers only (trade or business ads. can be placed in our classified columns). Items related to electronics only. No computer software. PE cannot accept responsibility for the accuracy of ads. or for any transaction arising between readers as a result of a free ad We reserve the right to refuse advertisements. Each ad. must be accompanied by a cut-out valid "date corner". Ads. will not appear (or be returned) if these rules are broken.

Nowour name means more,than ever before.

If the name BICC-Vero sounds only half familiar, that's not the only difference you're going to notice.
Because not only have we added to our name we've also added to our technology. Building upon our well established industrial product range and incorporating the very latest ideas and techniques to ensure that you too are working at a state-of-the-art standard.
But you will of course still recog nise the old favourites. Products like Veroboard, which pioneered in so many ways, today's thriving pastime of electronics.

Bigger means better in other respects. Being part of the giant BICC-Vero Electronics Group ensures that we're a major force in electronics technology. Our R and D scope is enlarged, and our supply and distribution facilities improved.
And because we're professionals we appreciate the very real professionalism of the hobbyist market - and service it accordingly.

Yes, we're sure you'll notice the difference. As well as that pleasantly familiar personal touch.

BICC-VERO ELECTRONICS LTD.

Industrial Estate, Chandlers Ford,
Eastleigh, Hampshire SO5 3ZR.
Tel: Chandlers Ford (04215) 62829.

Semiconductor UPDATITE featuriling

MONOLITHIC
 INSTRUMENT AMP

A major problem encountered when connecting transducers to their attendant amplifiers is the dreaded "common-modenoise." Common-mode simply means that the noise voltage is induced in both connecting wires equally in sign and magnitude, and this is the normal situation where the connecting wires act rather like receiving aerials. If the amplifier has a so called "single-ended" input (i.e. single and earth) the induced noise voltage is amplified along with the signal, which is bad news of course. To overcome this problem you can use an OP-AMP along with four resistors in a differential input configuration so that advantage can be taken of the Common Mode Rejection Ratio (CMRR) of the amplifier. In this circuit the equal voltages induced in the two leads are cancelled out by the equal gains and opposite signs produced by the plus and minus OP AMP input terminals. The desired signal from the transducers, being a difference voltage, is not cancelled and is amplified as required by this circuit.

So with today's OP AMPs featuring CMRRs of 100,000 lusually expressed as 100 dBs) or so, the problem is solved-or is it? Well, no actually. That 100 dB figure is not easily attainable in a practical differential OP-AMP circuit because balancing the inputs correctly would call for exact values for the four resistors and that is not possible using ordinary 5\% types. Even if very expensive 0.1% resistors are used, you will still not achieve anywhere near 100 dBs , and there is another problem inherent in such a simple circuit, the low input impedance which is set by the resistor values, and which is unlikely to get. much above 10K ohms for 741 type OP AMPs.

If the lowly 741 and four resistors was not good enough, in the past you had to turn to a highly expensive "Instrumentation Amplifier," originally available in module form and more recently produced in the form of thick or thin film hybrids which while certainly being smaller, are still expensive. The Instrumentation Amplifier circuit traditionally uses three OP-AMPs, with two in the high impedance non-inverting configuration dedicated to each input and the third acting as the differential stage to give a ground referenced output. This configuration has a very high input impedance and excellent CMRR, but is difficult to make with, say, three 741 s because resistor tolerances are still a problem. That's why you may not have heard of Instrumentation Amps, until now you have had to do without their special advantages because of their cost! But not for long thanks to

National Semiconductor and their LM363 which is a true Instrumentation Amplifier on a Monolithic chip costing a fraction of earlier designs. The LM363 comes in a tiny 8 pin TO5 can and needs no external resistors for correct operation because you buy the gain you need built in-10, 100, or 500 versions are currently available but soon there will be a 16 pin DIP version with gains selected by strapping pins. The 363 offers a 120 dB CMRR and a super high input impedance requiring only 2 nano amps of input bias current.

DMOS REGULATOR

In the field of voltage regulation, there seemed to be hardly any frontiers left for regulators to conquer, but Texas instruments have decided to tackle one of the few remaining with a new device which is designed to work at a much higher input voltage than has ever been possible before Their new TL783 device is a positive output adjustable three terminal device which is able to operate with an input-output voltage differential of up to 125 volts! Until now, most adjustable regulators could manage only 40 volts, but by a clever combination of their bipolar and DMOS FET technologies Texas have shattered the high voltage barrier with a single low cost monolithic chip which will also deliver up to 700 milliamps provided that the voltage current product does not exceed 20 watts High voltage circuits are notorious for their short term transient conditions which could cause the Safe Operating Area (SOA) of a regulator to be exceeded leading to burnout due to local hot spots, or even so-called secondary breakdown in the power devices used. The designers of the TL783 have not ignored these problems and have built in two separate protection systems to make the device virtually indestructible. A thermal protection system will shut the TL783 down if the chip temperature climbs too high, and a current limiter ensures that the 20 W rating is not exceeded even under transient conditions

Voltage regulation is good, with input voltage changes causing output changes of less than 0.02% per volt and load current changes causing only a 0.5% change in output voltage. Due to the DMOS series pass device however, the minimum inputoutput voltage differential is higher than usual, 10 volts at 400 mA .

HIGH SPEED CMOS

When RCA first introduced its 4000 series CMOS logic in 1969 it became an instant success because for the first time it was practical to power a logic system from batteries. Despite the attractions of the

4000 series however. I could never quite understand why RCA had decided to use different pin-outs and logic functions to those in the then standard 74 series TTL family. Later, when National did the right thing and brought 74 C series CMOS with TL pinouts, I felt sure that RCA's 4000 series would soon be superseded, but I was wrong!

The 4000 series was soon established as the premier CMOS family and was second sourced by many other manufacturers, including National, while the family which I had backed languished in the wings waiting for its big moment to come. With the huge and growing family of 4000 series MSI parts it often seemed that the more humble 74C range would never make it, but now thanks (paradoxically) to microprocessors 74 C is back with a vengeance. The touble is, 4000 series and 74 C devices have never been very fast, and that has not gone very well in microprocessor circuits where LSTTL has of necessity been the standard logic family-until now. With increasing pressure for faster and lower power microprocessor circuits the time is now ripe for a new fast CMOS logic family to provide the nuts and bolts of microprocessor systems, and since these systems are currectly hooked on LSTTL the pinouts of that family are a must for a new CMOS series.

In a bold move, National and Motorola are both introducing a new family of fast CMOS parts with TTL pinouts-The 74 HC series. The part numbers in this series wil sound familiar to all TTL users, 74 HCOO quad nand gate, 74 HC 74 dual D type flipflop, 74 HC 245 octal bus transceiver, and so on, but ever mindful of the momentum in the 4000 series following, National and Motorola have hedged their bets by also including devices such as the 74 HC 4002 quad nor gate which has a 4000 series pinout!

This new initiative is bound to succeed, because these devices will be able to replace not only LSTTL but also 74C and 4000 series CMOS by having the twin virtues of high speed and very low power consumption. Take the 74 HCOO for example, it will switch in 10 nanoseconds, the same as 74LSOO, and very much better than the nearest equivalent 4000 series part the 4011, which needs about 100 nanoseconds at five volts. As for power, well the 74 HCOO takes about 12 microamps from a 5 volt supply at 10 kHz as against 8 microamps for the 4011 and 1.2 milliamps for the 74 LSOO . These specs mean that you can plug 74C devices directly into 74LS sockets to save power, or into 4000 sockets to speed things up.

Function Generator ANDY FLIND

N the electronics workshop an almost indispensable item of equipment for any type of work is a source of suitable test signals. For audio and low frequency work, the function generator is becoming increasingly common as the source of these signals since the choice of three output waveforms, sine, square or triangle, can be used to check the performance of almost any type of circuit encountered.

A major contribution to the popularity of this type of generator was the introduction a few years ago of the 8038 waveform generator chip. This device is now virtually an industry standard, and is used in many commercially produced generators costing eighty pounds or more. However, it's possible to construct an excellent instrument for about a third of this cost. Several designs have already appeared in the hobby press, but most of these so far have been based on the fairly simple circuit provided with application notes for this chip. This circuit works but it does leave a certain amount to be desired in terms of performance; for the instrument presented here the best possible performance from the 8038 was sought at the expense of a little extra circuit complexity.

CIRCUIT

From the designers ${ }^{\circ}$ point of view the 8038 is a versatile device, but it might be said that it's a little unfinished. For a start, the three outputs are at different voltage levels and are sourced from medium to high impedance. Most designs employ a single amplifier to buffer them, the gain being varied by the function selector switch, but due to the high impedance levels this leads to some deterioration of performance at higher frequencies, especially in the case of the

SPECIFICATION

Frequency Ranges:
$1-10 \mathrm{~Hz}$
$10-100 \mathrm{~Hz}$
$100 \mathrm{~Hz}-1 \mathrm{kHz}$
$1-10 \mathrm{kHz}$
$10-100 \mathrm{kHz}$

Ranges cover approx, $0.5 \times$ lowest value to $1.1 \times$ highest value of nominal range

Output Waveforms:

Sine, square and triangle.
Separate sync output of $16 \mathrm{~V} p-p$ square wave available to drive scope timebase, frequency meters, etc.

Main Output Ranges:

$0-0.1 \mathrm{mV}$
$0-1 \mathrm{mV}$
$0-10 \mathrm{mV}$
$0-100 \mathrm{mV}$
0-1V
Output source impedance is constant 50 ohms at all settings

Distortion:

Sine wave, better than 1\% THD
Triangle linearity, better than 1%
Square wave rise time, approximately 100 ns

Provides sine, square and triangular output waveforms

Fig. 1. Circuit of generator
square wave. To avoid this problem this design uses separate buffer amplifiers to bring the three outputs to the same voltage level and convert them to low impedance. Fig. 1 shows the complete circuit of the instrument. The triangle and sine are processed by amplifiers IC2a and b, their levels being adjusted by VR5 and VR6. The squarewave is taken from the open collector of a transistor in the chip, hence the need for the pull-up resistor R3, and is handled rather differently. A CMOS quad NAND gate chip, IC3, is employed here. The first gate " a " buffers the output and improves its switching time. Gate "b" provides a completely isolated sync output, useful for driving external monitoring equipment, such as synchronising a scope timebase via an external trigger input, or coupling to a frequency meter. Gates " c " and " d " are connected in parallel to drive level adjuster VR7, and the output is then buffered to low impedance by TR1 and TR2.

The initial levels of all the waveforms in this design are set to 10 V peak-peak. The component values given in some other circuits have been selected to give approximately equal r.m.s. amplitude outputs; however this results in wide differences in the peak-peak values of the three waveforms. As an instrument of this type is generally used in conjunction with an oscilloscope calibration for equal peak-peak values seems more suitable.

After buffering the required waveform is selected by switch S2 and passes via the "Fine" level control VR3 to the decade attenuator network and "Coarse" level selector switch S3.

The output stage consists of a discrete complementary emitter follower circuit, offering low noise, good small-signal handling ability, excellent high frequency response and a constant output impedance of 50 ohms.

The power supply section of the circuit appears in Fig. 2. A battery supply was chosen for this project as it provides portability, complete safety, and avoids the problems of hum and noise, etc., which might occur at low output levels if a mains supply were to be employed.

CONSTRUCTION

With the exception of the timing capacitors, attenuator resistors and the "low battery" l.e.d., all the components used in this project are mounted on a single printed circuit board. The component layout appears in Fig. 4, and the copper foil pattern in Fig. 5. Construction of this board should prove straightforward provided reasonable care is taken to ensure correct orientation of diodes, trànsistors, i.c.s and electrolytics. IC1 is a bipolar device and thus needs no special handling care, but the usual precautions should be observed for the CMOS IC3. Sockets can be used for the i.c.s if preferred. Suitable lengths of wire should be soldered to the completed board ready for connections to the controls etc. The use of ribbon cable here will produce a tidier finished assembly. It's a good idea to test the board before continuing. One of the timing capacitors can be connected to the leads intended for S1, and the appropriate leads can be shorted together to connect each buffered signal in turn directly to R16-there's no need to have S2, VR8, S3 and the attenuator in circuit for this test. VR1 and the l.e.d. should also be temporarily connected, and all the presets should be set to mid-travel. If an 18 V supply is now applied to the battery connections the circuit should operate. The overall drain ought to be somewhere around 30 mA , and the

supply voltages from the regulator should be checked with a meter across C14 and C15. The output can be checked on a scope, or with headphones, providing the value of timing capacitor selected gives signals within the audio range.

The front panel layout can be seen from the photograph. Wiring to the panel should be kept short and neat; some of the connections between the controls can be carried out before the panel is installed. The switches S $1, \mathrm{~S} 2$ and S3 are 2-pole 6-way types with adjustable stops to allow them to be set to the number of ways required. Unwanted tags are cut off to prevent confusion during wiring. The resistors used in the attenuator are 1% thick film types; the cost of the extra precision amounts to only a few pence.

The nominal values of the timing capacitors are as follows: $\mathrm{C} 2-10 \mu, \mathrm{C} 3-1 \mu, \mathrm{C} 4-100 \mathrm{n}, \mathrm{C} 5-10 \mathrm{n}, \mathrm{C} 6-1 \mathrm{n}$. Most of these values are not easily obtained in close tolerance, so if the frequency control calibration is to be reasonably accurate they will have to be selected by trial and error using a frequency meter. With C6 stray capacitances become significant; on the prototype a bunch of small polystyrene capacitors totalling about 820 p gave the desired results. C3, 4 and 5 can be polyester or polycarbonate types, different specimens can be tried until adequate results are obtained. 10μ is not readily obtained as a non-electrolytic, so a tantalum bead was decided upon for C2. These are usually higher than their stated value; of a batch of five tried on the prototype all gave too low a frequency. A pair of $4 \mu 7$ tantalum beads in parallel instantly produced the correct range however, so this appears to be the best approach. With reasonable care over capacitor selection the output frequency can easily be within $\pm 5 \%$ of dial settings over the entire range of the instrument.

The overall internal layout can be seen from the photograph. The p.r.b. is screwed directly to the pillars provided in the Verobox and the two batteries are held firmly in place with a short length of "Dexion" angle; a bracket made from sheet metal could be used instead.

SETTING UP

Adjustment of the presets is obviously easier if a scope is available, although it can be carried out reasonably well with a good quality analogue (not digital) voltmeter. Begin with VR2, which adjusts the mark-space ratio. This must be as close as possible to $50-50$, at which point the average d.c. output will obviously be zero. Set VR8 and S3 for minimum (zero) output and check the output voltage with a meter; it may be zero, but if a small offset exists due to mismatches in the output transistors etc., note its value. Then select squarewave output at 500 Hz and full amplitude, and carefully adjust VR2 until the same output d.c. value is obtained.

Fig. 3. Filter used when adjusting VR3 and VR4 (sine purity) potentiometers

The sinewave linearity pots VR3 and VR4 should be set next. A scope is an absolute "must" for adjusting these, if access to one cannot be obtained omit these two pots. Connect IC1 pin 12 to the negative supply via an $82 k$ resistor and leave pin 1 open circuit. This will give quite acceptable results but an improvement can be obtained with correctly adjusted presets. Begin by monitoring the sinewave output at about 400 Hz and adjusting VR3 and VR4 until the output looks reasonably sine-shaped. Quite good results can be obtained visually, but for the absolute optimum the circuit of Fig. 3 should be temporarily constructed and used to assist the process. This consists of a Wien Bridge filter with a pair

COMPONENTS...

Resistors		
R1		56k
R2		680
R3		15k
R4, R5, R2		2 k 7
R6, R9		6 k 8
R7		1 k 8
R8, R24, R		10 k
R16		1 k
R26		220
All 5\% $\frac{1}{3} \mathrm{~W}$ carbon		
R10		10k
R11		1 k
R12		100
R13		10
R14, R15		$2 \cdot 2$
R17, R20, R21, R22		47
R18, R19		3k9
All 1\% thick film		
Potentiometers		
VR1 VR8 10k lin carbo	10k lin. carbon	arbon
VR2 1 k		
VR3, VR4 100k Sub		
VR5, VR7 4k7 Sub		Sub-min horizontal presets
VR6 2 k 2		
Capacitors		
C1, C8, C9, C10, C11, C12 100n ceramic disc		
C2, C3, C4, C5, C6 s		see text
C7 4		$47 \mu 25 \mathrm{~V}$ electrolytic
C13 1		10 n polyester
C14, C15, C17		$470 \mu 25 \mathrm{~V}$ electrolytic
C16 1		$10 \mu 25 \mathrm{~V}$ electrolytic
Diodes		
D1	BZY88C8V2 $8 \cdot 2 \mathrm{~V} 400 \mathrm{~mW}$ Zener	
D2		

Transistors
TR1,TR3, TR5, TR7, TR9 BC184L
TR2, TR 4, TR6, TR8, TR10 BC214L

Integrated Circuits

IC1	8038 waveform generator
IC2	CA3240E
IC3	4011 BE
IC4	1458 C

Miscellaneous

S1, S3, single pole, 5 -way: S2, single pole, 3-way; S4, single pole, single throw; Case, Vero type 20221036G, $205 \times 140 \times 110 \mathrm{~mm}$; Output sockets, BNC or coax, surface mounting; battery clips, p.c.b. materials, control knobs, ribbon cable.

E6817

Fig. 5. Printed circuit

of output buffers, and it will completely remove the fundamental sinewave at about 400 Hz , leaving only the distortion components. The 10 k pot should be used in conjunction with the generator's frequency control to obtain the deepest possible null; the residual signal still visible will then consist almost entirely of harmonics and VR3 and VR4 can be adjusted to reduce this as far as possible.

This leaves VR5, 6 and 7, respectively the triangle, sine and squarewave output level adjusters. If your scope will monitor the output voltage accurately they can be adjusted to give 10 V peak-peak maximum output for each waveform. This adjustment can be made with a meter however, if a 470μ capacitor is temporarily connected across one of the timing capacitors. This will slow the output frequency down so much that it can be accurately monitored with the meter: note that 10 V peak-peak means 5 V peak either side of zero!

Calibration of the "Fine" frequency control VR1 will require a frequency meter, but the calibration of VR8 can be carried out easily with a meter if the frequency is slowed as above and the squarewave output is used. Note that the action of VR8 is not linear owing to its slider being loaded by the attenuator chain, but the calibration of VR1 should be linear across its full range.

USING IT

This instrument has been designed to be as quirk-free as possible. In general its frequency and voltage output should be within 5% of that set on the controls; there are no

problems such as change of amplitude with frequency etc., and the waveforms, including the squarewave, remain excellent all the way up to 100 kHz . Perhaps the only failing is some breakthrough of the squarewave into the sine and triangle at the lowest output range ($0-1 \mathrm{mV}$). If really low levels are required it may be advisable to use a higher level and place an attenuator at the input of the circuit under test. The lowest output purity is quite adequate for most purposes though, hence its retention in the design.

The circuit is d.c. coupled throughout to avoid distortion at very low frequencies. Due to component tolerances, nonlinearities in the chip etc., there may be a small offset voltage on the output (a few millivolts); also the output will not take kindly to large d.c. voltages placed across it from the equipment under test, so remember to use an isolating capacitor where necessary. Both sync and main outputs will withstand short circuits without damage, although prolonged short circuiting of the main output is not recommended.

The generator is intended to work into impedances of 1 k or greater but in fact has enough power to produce sound from 8 ohm loudspeakers, at reduced voltage of course due to the 50 ohm output impedance. Note that working into low impedance reactive loads will distort the waveform.

SALE of Practical Electronics from very first issue. Will sell individually or the lot. Tel: 01-529 0612.

LAMBRA Compudialer 749 complete with mains adapter. £30. Also AP25 Linear Amp $£ 15$. Mr. P. Thompson, 46 The Stirrup, Stroud, Gloucestershire. Tel: 045-36 5918.
8K PET small key-pad model £300. Tel: Sheffield 386402.
WANTED: obsolete British transistors EW. GET, WKT. V, series, etc. Circuit cards welcome. Write for offer. Mr. A. Wylie, 18 Rue de Lausanne, 1201 Geneva, Switzerland.
SWAP b/new TR 7800 and AR240 complete for FT220 FT221R TS7005 P. Turner, 51 Weyland Road, Ipswich IP6 9ET.
AIRMEC signal Gen., $30 \mathrm{kHz}-30 \mathrm{MHz} £ 12$, pair PYE PF1's, stalled for RB14, modded for PP3's, £20. Michael Gathergood, G4KFK, 80 Moorfield Road, Denham Green. Uxbridge, Middx. UB9 5NF.
SINCLAIR multimeter (digital) DM1; working fine, but case slightly damaged near switches. Most interesting offer secures. Laurence Cook, 7 Plum Tree Close, Ecclestone Park, Prescot, Merseyside L35 7JT. Tel: 051-4265138.

ATARI computer game console, controllers, mains adaptor, £75. Chess £25. Invaders £20. Basketball £10. Tel: Rayleigh 747845.
OSCILLOSCOPE CT52 in original carrying case, great condition $£ 40$ or W.H.Y? buyer to collect. John Sartorius, 52 Caulfield Drive, Greasby, Wirral, Merseyside L49 1SW.
SALE Sharp portable radio air 108136 MHz MW 5201620 kHz, £ 11 , including post \& packing. Mr. K. Mealor, 38 Bishopgate Street. Liverpool L15 1EW.
500 American radio magazines perfect condition £20. Collectors items, Radiolympia catalogues, American radio catalogues, offers, collect. L. Marks, 14 Avenue Road, Kingston, Surrey KT1 2RB.
SUB-MIN relays 15 K \& 700R Ex-eqpt, cased with sockets \& clips $2 \mathrm{P} \mathrm{C/O}$ contacts, 75 p each + p.\&p. D. Woolcock, 33 Bank Place, Ashton, Preston, Lancs. PR2 1 DN.
INSTRUCTIONS wanted on loan to copyTelequipt D43 oscilloscope- 147 George Road, Erdington, Birmingham.
NASCOM 1 cased PSU16K board P.I.O. sound zeap and Naspen on tape manual, offers. Tel: Great Yarmouth 0493/55622.
CASED Superboard, expansion board, p.s.u., Cassette recorder, and software f95. Data Dynamics 390 RO printer £85. Mr. R. W. Hearn, 10 Speedwell Close, Pakefield, Lowestoft, Suffolk.

OHIO Superboard 8K 32×32 display. $1200 / 300$ Baud cassette 1.5 MHz . Smartly cased. Software inc. asteroids assembler $£ 165$. Tim Groves, Burnham-on-Sea. Tel: 0278 785845
BI-PAK 2240 teak amp cabinet chassis sockets facia knobs new $\frac{1}{2}$ list price $£ 10$ plus carriage. G. A. Noble, 50 Crofthill Road, Slough, Berks. SL2 1 HF .
WANTED: Hewlett Packard model 33 teletype spares. Anything considered. Send any information to: Nicholas Belson, 20a Furzedown Road, Highfield, Southampton.
40K UK101 10K Basic Cegmon interface boards, assembler editor $£ 425$ o.n.o. SAE details or phone evenings. Simon Riddle, 51 Marshalwick Lane, St. Albans, Herts. AL1 4UT. Tel: 072753946.
CLEF PE Master Rhythm as new 01-578 5448, €70.
SINCLAIR DM2 $3 \frac{1}{2}$ Digit bench type multimeter with mains adaptor £25. Phone evenings (Liskeard) 057943749.
SUPERBOARD 8K and 8 K plus case, p.s.u. and programs £150 o.n.o. Alan Biase, 041-637 8897 (Glasgow).
UK101 Speech synthesiser. Plugs into PE's Decoding Module. Infinite vocabulary, sample software, smart case. Only £55. Mr. P. Coates, 94 Haddington Road, Whitley Bay, Tyne \& Wear. Tel: 0632513887.

SIX MOONS FOR SATURN
Further examination of the Voyager data indicates from the imaging processes that there are definitely four more moons to add to the satellites of Saturn and the possibility of two more yet to be confirmed. A member of the research team S. P. Synott found an object 217 mi . from Saturn between the orbits of the satellites Tethys and Dione. He found another at a point about 60 deg . preceding the satellite Dione. Synott also found a third and fourth companion of Tethys in what he termed a horseshoe orbit but they were at the limit of resolution. Still another possible satellite was observed as a streak in a Voyager photo. The indication in this case was that the object was about 219000 ni. from Saturn and between the orbits of Dione and Rhea.

Together with R. Terrille, Synott also found a new satellite at about the same orbital distance from Saturn as its satellite Mimas. This object was identified previously from the data of the Voyager 2 charged particle detectors. It is estimated that this satellite is about 6 miles in diameter. The rest of the other new satellites would seem to have possible diameters which lie between 9 and 12 mi .

ARIEL VI SWITCHED OFF

At the end of February 1982 the UK/ARIEL scientific satellite was switched off according to programme and the ground station at the Rutherford and Appleton Laboratory shut down. The history of the achievements of itself and its predecessor Ariel V has been outstanding. Not only is the data extensive but also far greater than the original design programme. The team at the RAL, were almost a small family group, so integrated with each other that they were able to anticipate conditions and act so that the gas for attitude control lasted far beyond the expected period. Many subtle ways of handling the management have been the means of bringing forward data of great value.

The final scientific experiments were carried out between the 8 th and 19 th of February.

The satellite spin rate has now been reduced to such a low level as the result of aerodynamic drag that it is not possible any longer to make stable scientific experiments. Previously there had been two successful 'spin-up' manoeuvres thus prolonging the life of the satellite.

Ariel VI was the last in the series of the Science and Engineering Research Council experiments. Four Universities were involved together with the Royal Aircraft Establishment at Farnborough. The Universities were Bristol, Leicester. Birmingham and University College. The contributions of experiments were:
--Cosmic-ray Detector-Bristol University.
—Two X-ray Experiments (Astro-nomical)-Leicester and Birmingham jointly with the Mullard Space Science Laboratory of University College.
-Two Technology Experiments-RAE Farnborough.

Very substantial scientific results have been achieved. The Bristol University cosmic-ray equipment has provided, for the first time in a single exposure. observations of the ultraheavy cosmic-ray particles throughout the entire range of the elements from Iron to Uranium. A number of surprising features have been brought to light in consequence. To name. one, it was found that there is a striking OVERABUNDANCE of elements with charges between 58 and 72. This implies that there is an overabundance of ultra-heavy particles in the cosmic-ray source regions. When taken together with the abundances over the whole of the remaining charge range this will enable a greater understanding of the mechanism of cosmic-ray production and the acceleration.

The X-ray experiments have also been extremely successful. In the Leicester Experiment which was designed primarily to follow up the results of observations by Ariel $\vee 30$ X-ray sources have been studied in great detail. Special note here is due to the very effective spectral and variability data for several of the Black Hole candidates and a determination of the rotation periods of a number of accreting Neutron Stars. The examination of several quasars and Sefert galaxies has revealed the presence of strong Iron emission. This leads to the conclusion that there is an abundance of the heavy clements in the gas surrounding the nucleus. Also the emission spectra in the nuclear regions show very high temperatures. Simultancous optical and X-ray observations have been carried out.

The low-energy X-ray telescope provided by Birmingham University and University College London was designed to explore a relatively new region of the spectrum. Results here include a study of twenty sources in detail. One of these was Cygnus X2. This has been shown to contain a White Dwarf star: an unexpected result since Neutron Stars are usually involved in the production of X-ray stars in binary systems or in star pairs.

Line emission has been detected during a stellar flare in Ursa Major (the Great Bear). This will be an opportunity to permit examination of the gas heating process. In addition to all this, a major study of diffuse X-ray emission from the sky was made.

With the success however there were
problems. One example was spurious switching, which was thought to be from ground based sources, of the sub-systems such as high voltage supplies and the on-board recorders; large scale temperature excursions during periods of full sunlight; a slow degradation of the battery voltage with protracted recovery times and anomalies in the on-board sensing system producing significant errors in pointing. However, in spite of these difficulties Ariel VI was kept in operation by the concentrated effort of all those concerned. One of the major means of keeping up the flow of data was by means of a portable ground station set up by University College at a site near Canberra. Australia. and a ground station the Italian San Marco Station in Kenya. By these - means the satellite has twice been able to extend operations beyond the original 2 year design.

The satellite was launched on a NASA scout vehicle from the Wallops Island complex at Virginia. USA. The contract for the design and development of the satellite was carried out by Marconi Space and Defence Systems. Portsmouth and the manufacture of the satellite structure and mechanism subcontracted to British Aerospace at Bristol.

INTELSAT 6

Negotiations are going on between International Telecommunications Satellite Organisation and Hughes Space and Communications Space Group for the construction of a series of Intelsat communications satellites.

The design submitted would cost about 1 million dollars for each vehicle. The dimensions are 11.8 feet in diameter and 37 to 38 feet in height with a weight of the order of 7.700lbs.

LUNAR ORBITING LABORATORY

The European Space Agency has revived the studies for a Lunar Orbiting Observatory in place of the United States-European cooperation Moon project which had to be abandoned because of US fiscal problems. Europe had already seriously discussed the move to 'go it alone'. A number of concepts are being considered for an all European. Moon observation project.

One proposal for the mission calls for the Max Planck Institut and AMSAT the Aınateur Satellite Corporation, to develop a lunar relay satellite under German Government funding. The relay craft would provide tracking/relay functions when the mission's primary orbiter vehicle is over the far side of the Moon. The original Polo mission plan was envisioned as a spin stabilised satellite to be placed in high orbit. The large primary orbiter would be three axis stabilised and would operate from a lower lunar orbit. Decisions will have to be made by the end of the year if it is to be in the 1980° s programme.

DISCO MISSION

The European Space Agency's Disco mission would investigate the Sun's interior by measuring global oscillations in the visible spectrum and variations of the solar constant. The spacecraft would be launched by an Ariane launcher and flown to a place between the Earth and the Sun at the libration point. This is approximately 931.500 miles from the Earth on the Eartl//Sun line.

With the Minimax II, Videotone revolutionised the market by establishing an opening for small, high quality speakers. Natural evolution has brought about the new Minimax 2 , retaining all the qualities of clarity and sensitivity. This ideal combination of size and performance is a proven success, acclaimed by the press and public for seven years.
POPULAR HI-FI
"Switching to the Minimaxs' from any of the others produced an open and natural sound as though something had been taken away. It had, the colouration had gone." Comparative test OCTOBER 1975.
HI-FI ANSWERS
Their modest appearance and price disguise their startling abilities. Never have we heard such a small speaker sound so big!" JANUARY 1975.
PRACTICAL HI.FI \& Audio "The depth, clarity and openness of sound produced is quite astonishing'. JUNE '75 WHAT HI.FI
". . the ability of the Mini-
max to take a lot of power and still sound good could be decisive" - Comparative test, APRIL 1977.

PRACTICAL HI-FI
The little Videotone scored highly for such a small inexpensive loudspeaker". JANUARY 1981.
Specification:
Recommended amplifier power: 10 to 40 watts rms into 8 ohms. Frequency Response: $80 \mathrm{~Hz}-20 \mathrm{KHz} \pm 5 \mathrm{~dB}$. Finish: natural teak, veneer with black frets.
Size: $107 / 8^{\prime \prime}$ high, $63 / 4^{\prime \prime}$ wide $71 / 2^{\prime \prime}$ deep. Weight: $4.1 \mathrm{Kgs}(9 \mathrm{lbs})$ each. ONLY £69.95 A PAIR

- We welcome callers to our South London Showroom for demonstrations.
- Enqiries and information phone: 01-690 8511, Ex. 32 - All products are only available direct or from selected authorised dealers throughout the U.K.
VIDEOTONF 98 CROFTON PARK ROAD LONDON SE4.
Send for our free brochure and details of outlets in the U.K.

Post to: Videotone, Crofton Park Road, London SE4.
PE5
NAME
ADDRESS
56

From HPMEE...

 HM307

The first portable scope with a component fesfer.

Capacitor 33 uF

Transistor E.C

Transistor B-E B-E1uF +680 hms

Oscilloscope Specifications:

Y Deflection

Bandwidth: DC. $10 \mathrm{MHz}(-3 \mathrm{~dB})$ Overshoot: Less than 1% Sensitivity: $5 \mathrm{mV} \cdot 20 \mathrm{~V} / \mathrm{cm}$ Input Imp: i M ohm // 25pf

X Deflection

Timebase: $0.2 \mathrm{~s}-0.2 \mu \mathrm{~s} / \mathrm{cm}$ Triggering: $2 \mathrm{~Hz} \cdot 30 \mathrm{MHz}(3 \mathrm{~mm})$ Auto + level control
Bandwidth: $2 \mathrm{~Hz} \cdot 1 \mathrm{MHz}$

General Information

Component Tester:

Calibrator:
Power Supplies:
A.C. Input:

Weight:
Stzo:
For single components and in circuit
$0.2 \mathrm{~V} \pm 1 \%$ for probe alignment
Regulated including high voltage
$110,127,220,237$, V.A.C., $50-60 \mathrm{~Hz}$
$8-1 / 4 \mathrm{Lbs}$.
$4.1 / 2^{\prime \prime} \mathrm{H} \times 8318^{\circ} \mathrm{W} \times 10.7116^{\circ} \mathrm{D}$

For further information on HAMEG's full range of top performance oscilloscopes, contact:
HAMEG LTD.
74.78 Collingdon Street, Luton, Beds. LU1 1RX Tel: (0582) 413174

steree oassete deck port2

ANOTHER SEPARATE FOR THE PE QUASAR STEREO SYSTEM

THE p.c.b. design and the component layout for the Quasar are shown in Figs. 1\&2. Take care with the orientation of the semiconductors and the electrolytic capacitors. After soldering recheck all the components have been correctly placed and remove any solder splashes from the copper side of the board.

The holes for the two wooden battens should be drilled and countersunk as shown in Fig. 3, alternatively if the correct adhesive is used screws will not be required.

Before fitting any components to the front panel temporarily fit the fascia panel legend to the front panel and using the front panel as a template cut the mounting holes in the legend using a sharp knife. Carefully remove the legend and fit the slider potentiometers and the two slider switches. Note the earth tag on the GNR switch.

The VU meter should be glued into position taking care that it is correctly orientated. The legend can now be fitted to the fascia panel using either glue or double sided tape. Once the legend has been fitted mount the combined recording bias and on/off switch (S4).

CASSETTE DECK

There are four mounting brackets to be fitted to the cassette deck as shown in Fig. 3. Take special care that the screw shown arrowed in the photograph is shorter than the others or the pause key will not operate correctly. The record/play switch (S1) should be fitted to the cassette deck using the bracket shown in the photograph opposite. Note the switch pins should be trimmed and then mounted with the cut pins nearest to the mechanism.

The two aluminium brackets should now be fitted onto the cassette compartment and the control keys also fitted with the record key fitted on far left.

The case should be drilled and SK1 and the two jack sockets (JK1) fitted. Also fit the fuse holder, C48, the tag strip and T1. Please note that the mains transformer must be placed as shown otherwise 'hum induction' will occur. If a different layout is used and space is limited a toroidal transformer must be used (18V sec. @ 0.5A).

Two pieces of tin foil are used on the front and side panels for screening purposes and these should be glued into position after the holes have been drilled. The front panel can now be inserted into the case and the case glued.

WIRING

The top of the cassette deck should be wired before it is installed into the case and the wiring clipped as shown. The mechanism can then be screwed into position and the
cables from the heads marked and routed through to the p.c.b. The p.c.b. should be wired first and then the components fitted to the pots and switches. After the unit has been wired recheck all the connections against the wiring diagram. The VU meter can be illuminated by connecting a 24 V bulb across the secondary of the transformer and mounting it behind the meter.

When all the wiring has been checked the p.c.b. should be mounted under the cassette mechanism on the four pillars. The earthing method should not be changed from that shown in Fig. 3 otherwise 'hum loops' or 'hum pick up' will occur.

The backplate should also be fitted with tin foil and then connected to the earth tag on the transformer T1.

TESTING

Initially set the presets to the positions shown in Fig. 2 and then switch on the unit and measure the supply voltage on the p.c.b. The on/off switch is a push-pull type and the up position is on.

PLAY

With the GNR switch in the off position insert a prerecorded tape and switch on the power. When the play key is depressed the system should be functional, if not switch off immediately and recheck the wiring. Assuming everything is OK then check the fast forward, rewind, pause and auto stop. With all the keys in the off position observe the signal to noise level and then turn the GNR switch to the

Mounting details of the record/play switch S1

Fig. 3. Wiring diagram for the Quasar. Note the arrowed screw in the photograph should be shorter than the other bracket screws

Fig. 1. P.c.b. design for the Quasar
'flat' position. The background noise should drop to an almost non-existent level (depending upon your amplifier). With the switch in the HF position, only the noise with high frequency content will be affected.

The GNR system can be checked during the on/off signal condition by pressing the pause key whilst playing the prerecorded tape. It will be found that for sustained music the 'flat' position will be best. For tapes containing mostly quiet passages the 'HF' should be used; the presets PR2 can be adjusted for balance and to suit the sensitivity of each amplifier.

RECORD

To set the Quasar up on 'record', the p.c.b. should be hinged back so that L1 is accessible. When the fixing screws are removed a temporary earth should be connected between the p.c.b. and the deck chassis otherwise hum will result. Remember this earth must be removed when the unit is reassembled.

A blank tape should be inserted into the machine (with it's rear tabs intact) and the bias level and EQ switch set to suit the tape used. A scope should then be connected between the earth and the junction of C17 and L1. Press the record button only and adjust L1 to obtain the minimum bias frequency reading. If a scope is not available then one channel can be used to monitor the other i.e. the left channel bias rejection can be monitored with the right hand VU meter and vice versa. This can be carried out by connecting the junction
of C17 and L1 to the DIN input of the opposite channel. The corresponding level control should then be adjusted to obtain a reading on the meter and L1 adjusted for minimum deflection. This procedure should be carried out for the second channel and then the temporary earth removed and the p.c.b. refitted under the mechanism.

Photograph showing the top of the cassette mechanism. After the cassette mechanism has been mounted into the case and screwed into position the Perspex cover should be glued onto the two aluminium brackets mounted either side of the cassette compartment. Finally the offcut from the fascia panel legend should be trimmed and glued onto the cover.

[EPP
Fig. 2. Component layout

Fig. 4. Optional auto level control (ALC) switch circuit.
The ALC circuit is shown in Fig. 4. The level controls should be set to maximum, during ALC recording. Screened wires (connected at one end) should be used.

Fig. 5. Optional turn-on transient suppression for the imeter/ALC circuit.
If additional meter suppression is required then the circuit shown in Fig. 5 can be used. The copper track between C12 and pin 4 should be cut and replaced with a 4 k 7 and 8 k 2 resistor. The other components can be "hung" between the
pins. Note: Depending on the value of the resistors used the meter/ALC drive sensitivity will drop. PR1 will require resetting.

If a signal generator is not available then the settings for the preset shown in Fig. 2 should suffice. A more accurate alignment of PR1, PR3 and PR4 requires a scope and audio generator. The presets PR3 and PR4 should be set so that the pk-pk voltage across the head corresponds to the markings around VR1 la scope with low input capacitance, typically 20 pF , should be used to obtain the correct levell. The two meters are calibrated via the presets PR1 and with the tape set in the record mode feed a 30 mV sine wave signal @ 1 kH into the DIN input. With the level controls at maximum adjust the presets to OdB (the beginning of the red line on the meter).

The head wires and the record/play switch wires near the p.c.b. can be adjusted to cancel any 'hum' present.

If the DIN input/output socket is connected to an amplifier and the amplifier has no facility for switching off the 'tape output signal' positive feedback may result when the tape output signal level is high i.e. the signal from the tape recorder is amplified by the amplifier and feeds back into the input of the cassette. If this occurs set the level control to minimum during playback.

Should meter reading on record be encountered when there is no input signal check the screening is correct and the adjustment of L1. If the meter still shows a deflection fit a small screen over the top of the record/play switch.

MICRO-EUS

Compiled by DJD.

Appearing every two months, Micro-Bus presents ideas, applications, and programs for the most popular microprocessors; ones that you are unlikely to find in the manufacturers' data. The most original ideas often come from readers working on their own systems; payment will be made for any contribution featured.

THIS MONTH'S Micro-Bus is dedicated to all the overseas readers of the column, and includes contributions for the ZX80 and ZX8I microcomputers from Iceland, Portugal. Sweden, and Hungary.

KEYBOARD CLICK

An ingenious circuit devised by Peter Gudjonsson of Iceland for the ZX80 or 2X81 eliminates the need to look at the screen when entering programs. It gives positive feedback in the form of an audible click every time a key is pressed. The circuit, shown in Fig. ע, uses a 74LSI73 tri-state register to gate the keyboard strobe. line Dl', into the gate input of a 555 timer. The components will fit onto a small stripboard which can be connected to the ZX 81 via the backplane: see Fig. 11.

INVERSE VIDEO

The normal ZX81 display mode is black text against a white screen. However, Antonio Joao Gomes Nunes of Portugal has discovered a simple way of inverting the picture for people who prefer white characters on a black

Fig. 1. Circuit produces a keypress click on the $\mathbf{2 X 8 0}$ or $\mathbf{2 X 8 1}$

Fig. 4. Connection to the $\mathbf{Z \times 8 1}$ modulator should be cut to add the Inverse Video circuit
screen; see Fig. 2. In the circuit, shown in Fig. 3, the first inverter inverts the video signal, but since it also inverts the TV sync. signals it is necessary to reconstitute them using the other two inverters and RI.

The circuit is connected between the video output of the computer and the UHF modulator, and to do this it is necessary to cut the UHF video input terminal (the one nearest the jack sockets; see Fig. 4). The circuit power supply can be obtained from the 0 V and 5 V connections on the backplane: see Fig. 11.

Fig. 2. $\mathbf{2 X 8 1}$ display produced by $\| n-$ verse Video circuit of Fig. 3.

ZX81 RENUMBER

A renumber program for the ZX 80 was featured in last November's Micro-Bus. The following program, also submitted by Antonio Joao Gomes Nunes. performs the same function on the ZX81, though in a totally different manner. It finds the bytes containing the line number by PEEKing the bytes containing the length of the previous line, giving a faster and shorter program.
To use the program, first enter the program to be renumbered, and not all lines containing GOTO statements. Before entering the Renumber program perform the following direct command:
LET $Z=$ PEEK $16396+256$ *PEEK 16397 - 1

This sets Z to the address of the last byte in the program memory, for use in the renumber program. Now type in the program, shown in Fig. 5, and execute it by typing GOTO 9000 . When the listing reappears amend all the previously noted references to line numbers in GOTO statements. and delete the Renumber routine.

The program works as follows: In lines 9400 and 9600 the pointer N is pointed to the next byte containing a line number by adding its value plus 3 to the PEEKed length of the line; it is then incremented in line 9600. The new line number L is POKEd into bytes N and $N+1$ by lines 9200 and 9300 . As shown the program renumbers starting with line 10 and with increments of 10 , but this can be changed by altering lines 9000 and 9500 .
9000 LET L=10
9100 FOR $N=16509$ TO Z
9200 POKE N,INT(L/256)
9300 POKE N+1,L-INT(L/256)*256
9400 LET $\mathrm{N}=\mathrm{N}+3+$ PEEK $(\mathrm{N}+2)+256 *$ PEEK $(\mathrm{N}+3)$
9500 LET L=L+10
9600 NEXT N
9700 LIST
Fig. 5. Renumber routine for the 2X81

REACTION TIMER

The reaction-timer program of Fig. 6 was developed by Silvestre Carmeiro of Portugal to measure reflexes on his $\mathrm{ZX81}$. The reaction time is obtained over a number of attempts, specified on first running the progra a black bar appears in the centre of the screen the " P " key is pressed as quickly as possible, and the reaction time, in hundreths of seconds, is displayed on the screen. Pressing the "A" key then repeats the test. After all the tries are
completed the computer will print the average reaction time.

Lines 80 and 90 make the black bar appear after an unpredictable time (between about 0.1 and 15 seconds); the "*" characters in line 100 represent inverted spaces. Lines 110 to 140 form a clock to count the reaction time. If the " P " key is held down before the bar appears the program claims that cheating has occurred, and a reaction time of 4 seconds is added to the running total!

10	REM REFLEXES
20	RAND
30	PRINT "NUMBER OF TRIES?"
40	INPUT N
50	CLS
60	LET $\mathrm{Y}=0$
70	LET $Z=0$
80	LET $A=20$ * RND
90	IF INT A<>4 THEN GOTO 80
100	PRINT AT $10,14{ }^{\text {n* }}$ (${ }^{\text {a }}$
110	POKE 16436,255
120	LET AS=INKEY $\$$
130	IF AS<> "P" THEN GOTO 120
140	LET $\mathrm{X}=253$-PEEK 16436
150	CLS
160	IF $\mathrm{X}<=4$ THEN PRINT "YOU ARE CHEATING"
170	IF $\mathrm{X}<=4$ THEN LET $\mathrm{X}=200$
180	PRINT ${ }^{* *} 2$
190	LET $\mathrm{Y}=\mathrm{Y}+\mathrm{X}$
200	LET $\mathrm{z}=\mathrm{Z}+1$
210	IF $2=N$ THEN GOTO 280
220	PRINT
230	PRINT "READY?"
240	LET B\$=INKEY\$
250	IF B\$<> "A" THEN GOTO 240
260	CLS
270	GOTO 80
280	CLS
290	PRINT "MEAN REACTION TIME"
300	PRINT
310	PRINT INT(0.5+(Y/Z*2));" HUNDREDTHS"

Fig. 6. Reaction timer program for the 1K ZX81 measures reflexes over a number of attempts

ETCH-A-SKETCH

An Etch-a-Sketch program was featured in the January 1981 Micro-Bus. The version for the ZX81 shown in Fig. 7, devised by Anders Ljungfeldt of Sweden, not only allows diagonal movement, but also occupies less memory, thus allowing a larger drawingboard.

To start drawing press the " S " key, and the pixel at $(35,35)$ will appear on the screen. This is the top-right limit of the drawing board. The keys Q, W, E, A, D, Z, X, and C are used to draw up, down, right, left, or diagonally, according to the position of the key. The central key, " S ", is used to shift between drawing and erasing.

```
    10 LET A=35
    20 LET B=35
    30 LET U=1
    100 PAUSE 400
    110 POKE 16437,255
    120 LET X 
    200 IF X $="Z" OR X S="Q" OR X $="
A" THEN LET A=ABS (A-1)
    210 IF X$="E" OR X$="D" OR X$="
C" THEN LET A=A+1
    220 IF X $="Z" OR X $="X" OR X $="
C" THEN LET B=ABS (B-1)
    230 IF X$="Q" OR X$="W" OR X$="
C" THEN LET B=B+1
    240 IF X $="S" THEN LET U=U+1
    250 IF INT(U/2) <> U/2 THEN GOT
O 320
    260 IF A>35 THEN LET A=35
    270 IF B>35 THEN LET B=35
    300 PLOT A,B
    310 GOTO 100
    320 UNPLOT A,B
    330 GOTO 100
```

Fig. 7. Etch-a-Sketch for the 2X81 gives cursor drawing on the screen

ZX81COMPOSES MUSIC

A recent letter to Micro-Bus included a cassette of a very catchy tune, apparently played on an electronic organ. The accompanying letter revealed that the tune had been improvised by a program running on a $\mathrm{ZX81}$, which was linked to a synthesiser by a simple interface. The idea was developed by A. A. Szalay of Hungary, and the following description is based on his letter.

SYNTHESISER INTERFACE

The circuit shown in Fig. 8 will interface a ZX81 to a standard IV/octave analogue synthesiser. With the program to be described it can be used as a sequencer, and many more interesting ideas are possible.

The circuit uses output ports 3, 7, and 11 on the ZX81, to avoid any conflict with those used by the computer. The 4013 acts as a monostable. producing a trigger pulse long enough for the synthesiser. An R-2R resistor ladder is used as a simple D/A converter, and R should be chosen as at least 500 K ohms to match the output resistance of the CMOS latches. The resistors chosen for the ladder should be matched accurately, and the following easy method is recommended: Obtain a pack of about 40 resistors, measure them, and arrange them in order of magnitude (a simple program on the ZX81 could be used to do this); the result should be a Gaussian distribution of resistances. For the 5 single resistors of value R choose the 5 resistors from the middle
of the distribution. Then for the 7 resistors of value $2 R$. connect in series 7 pairs taken in order from either side of the distribution. By this method a ladder with an accuracy of 0.1% can be achieved using standard 5% resistors.

The reisitor ladder drives a pair of op-amps, to produce a voltage output determined by the digital input. The CMOS i.c.s should be connected to the ZX81's 5 V supply rail, but the supplies for the op-amps can be derived from batteries.

SEQUENCER PROGRAM

The following simple example shows how the interface can be used to control a synthesiser. First type into the ZX8 :

10 REM 0000000

POKE 16514, 62 (LD A,N)
POKE 16516, 211 (OUT N,A)
POKE 16517, 3
POKE 16518, 201 (RET)
This stores machine code into the " 0 " characters in the REM statement. Now, suppose you have a series of notes whose pitches are $X(N)$ and whose lengths are $Y(N)$; these can be output in sequence by the operation:

100 POKE 165 I5, X(N)
 110 LET A=USR 16514
 120 PAUSE $Y(N)$

130 POKE 16437, 255
The time needed for the BASIC calculations is negligible, so there is no advantage in coding this section in machine code; however, the $\mathrm{ZX8}$ I should be run in fast mode.

Fig. 8. Circuit interfaces an analogue synthesiser to a 2×81

ROCK IMPROVISATION

As a complete demonstration of the use of the interface. the program of Fig. 9 improvises tunes in C minor, with $4 / 4$ time. The program chooses random notes of the scale, and random intervals of $T, T / 2$, or $2^{*} T / 4$. subject to the following constraints:

1. The relative probability of the timings can be specified.
2. The time sequence always finishes at $4 / 4$ periods.
3. In the case of $2^{*} T / 4$ (a rapid scale passage) the pitches are not chosen at random. but as neighbours of the preceding ones.

In this case the time needed for the BASIC calculations is not negligible. but the timings are corrected to allow for it. The timing probabilities \mathbf{P} and \mathbf{R} can be seen from the scheme in Fig. 10 ; the values $\mathbf{P}=\mathbf{0 . 2}$ and $\mathrm{R}=0.2$ are recommended.

Fig. 9. Scheme used for choosing the note durations in the rock improvisation


```
15 PRINT "T:T/2"
    20 INPUT P
    25 PRINT "2*T/4:T/2"
    30 INPUT R
    40 LET U=0
    SO LET E=INT(8*RND)
    60 POKE 16515,PEEK (165124E)
    7 0 ~ I F ~ U = 7 2 ~ T H E N ~ G O T O ~ 4 0
    80 LET A=USR 16514
    90 IF U=63 THEN GOTO 200
    100 LET T=9*INT(RND +P)
    110 LET U=U+T+9
    120 IF T=0 AND INT (RND+R)=1 TMt.
    N GOTO 400
    125 FOR N=0 TO T/4.5
    126 NEXT N
    130 PAUSE 6+T
    140 POKE 16437,255
    150 GOTO 50
    200 PAUSE 8
    210 POKE 16437,255
    220 GOTO 40
    400 PAUSE 2
    410 POKE 16437,255
    420 POKE 16515, PEEK(16520+INT(3
*RND) +E)
    430 LET A=USR 16514
    440 PAUSE 3
    450 POKE 16437,255
460 GOTO 50
```

Fig. 10. Program for the $\mathbf{Z X 8 1}$ controls a synthesiser to produce music improvisations

Before running the program the pitches of the allowed scale should be set up as follows: First add 9 more zeros to the REM statement in line 10 . and then type in:

POKE 16520, 14 (D)
POKE 16521, 12 (C1)
POKE 16522, 15 (E flat I)
POKE 16523, 17 (FI)
POKE 16524, 18 (G flat 1)
POKE 16525, 19 (GI)
POKE 16526, 22 (B flat I)
POKE 16527, 24 (C2)
POKE 16528, 27 (E flat 2)
POKE 16529, 26 (D2)
The program could be modified for use with other computers with sound output by replacing each "POKE 16515, N " statement by a statement which plays note N of the scale.

ZX81 BUS

Several readers have written in to ask for details of the ZX81 bus connections for use with circuits featured in Micro-Bus. since these are not supplied if the ZX 81 is purchased assembled. Full details of the connections are therefore given in Fig. 11.
sere conerter

Fig. 11. Details of the $\mathrm{ZX81}$ bus connections

[ASIBLLDEBT Quick, neat and easy!

It's so easy and tidy with the Easibind binder to file your copies away. Each binder is designed to hold 12 issues and is attractively bound and blocked with the PRACTICAL ELECTRONICS logo. Price UK $£ 4.60$ including postage, packing and V.A.T. Overseas orders add 25 p.
Please allow $3 / 4$ weeks for fulfilment of order. Why not place your order now? Send the completed coupon below with remittance payable to:-I.P.C. Magazines Ltd., Post Sales Dept., Lavington House, 25 Lavington Street, London SET OPF.

Order Form PRACTICAL ELECTRONICS

I enclose P.O./cheque value for binders. Years required
BLOCK LETTERS PLEASE
Name
Instrument Cases as shown above are available from PE offices at 50p each including post and packing.

Cheques and postal orders should be made payable to IPC Magazines Lid, and should be sent together with your order (please do not send cash) to:

PRACTICAL ELECTRONICS (INSTRUMENT CASE), WESTOVER HOUSE, WEST QUAY ROAD, POOLE, DORSET BH15 1JG.

SPECIAL PE LOUDSPEAKER OFFER. £43-50 PER PAIR IIICIUDING V.a.t plus ffit pastage

 § PACKINGThis excellent offer has been arranged by PE as a result of a frustrated export order. The speakers employ Audax drive units and were produced in the UK for a leading European hi-fi company. They are "mirror image" speakers with h.f. drive units mounted to the outside of the sound area.

Specifically designed to meet the need for a high quality moderately sized enclosure these speakers have a high sensitivity, extended bass response and will handle up to 45 watts peak, although they can be used with amplifiers rated as low as 15 watts.

SPECIFICATION: Two way infinite baffle; HIF20ESM bass unit 20 cm diam. treated paper foam edged cone; HD100 high frequency unit 25 mm soft dome radiator; 8 ohm nominal impedance; 45 watts peak power (35 W r.m.s.) ; 86dB 1 watt 1 meter sensitivity; frequency range $45 \mathrm{~Hz}-22 \mathrm{kHz}$; resonance 80 Hz ; harmonic distortion ref. 96 dB . SPL at 1 meter 3% max. second harmonic $140 \mathrm{~Hz}-22 \mathrm{kHz} ; 1 \%$ max. third harmonic $100 \mathrm{~Hz}-22 \mathrm{kHz}$; finished in rosewood p.v.c.; size $470 \times 264 \times 225 \mathrm{~mm}$; capacity 18 litres; weight 8 kilos; connections, DIN sockets and screw terminals.

To: RTVC Ltd. (PE OFFER), 21b High St., Acton W3 6NG (all mail), callers to 323 Edgware Road.
Please send me.pair(s) of speakers at f43.50

ULTRASONIC PART 2 Jepemy Bentham

0NCE the components have been assembled into the p.c.b. and checked, and the transducer has been connected as described last month, the motor can be connected. Five wires are needed to link the motor coils and the +ve common to their respective points on the p.c.b.: note that both + ve terminals on the motor must be connected to the common line.

TESTING

Do not connect the unit to the computer yet; first connect the p.c.b. to the supply, and monitor the supply current if possible. The unit should consume less than 30 mA in the quiescent state, and there should be no signs of component overheating. If this is not the case, then switch off and recheck component orientation, soldering etc., paying particular attention to TR1,5,6,7,8 and their associated circuitry. The voltage across C3 should be checked: this should be around $5 \mathrm{~V}, \pm 0.5 \mathrm{~V}$.

Assuming all is well, power up the Atom, press the Break key, and plug in the ribbon cable. Ensure that the plug is the correct way round by tracing the wire from pin 1 of the p.c.b. (see component layout) to the bottom left-hand pin of the Atom printer port, as viewed from the back of the Atom. The supply current should now have risen tc around 300 mA . The reason for this is the Atom port is not initialised, and all its outputs are floating to a "high" state, switching on all the motor drive transistors. If REG 1 is fitted, it will warm up: if you are feeding it with eight volts or over, then a heatsink may be necessary.

To perform a quick test of the motor drive, execute the following command on the Atom:

$\mathbf{7 4 7 0 7}=127$

This sets bits $0-6$ of the port as outputs, and bit 7 as an input. The supply current should have returned to the quiescent value, since all output bits are set low. It should now be possible to step the motor. Execute the command

? $47105=1$

This energises coil 1 of the motor, the rotor should lock onto one position. Execute in turn
$747105=2$
$747105=4$
$747105=8$
The transducer should have moved round in 7.5 degree steps, since you are energising each of the coils in turn. If you repeat the sequence, the motor should keep on stepping round. It is worthwhile checking that at each step the rotor is being firmly held: if not, check the circuitry associated with that coil. Now execute

```
747105=0
?47105=64
```

The first command resets all outputs, the second one sets the transmit drive output, and should cause a single faint click in the transducer. Repeat these two instructions to check that a click can be heard.

If the unit is not responding to any of these commands, then check that the printer drive i.c.s have been correctly fitted within the Atom (IC1 and IC50). Try measuring the voltage on the pins of the port connector. Looking at the back of the Atom, the even pin numbers are at the top, and odd numbers at the bottom. When the initialisation command is entered, pins $3,5,7,9,11,13,15$ should go low: when Break is pressed they should go high. All the even pin numbers should be at ground potential.

SOFTWARE

Once the unit is working, it is suggested that the program in Fig. 1 be keyed in and run. It requires 1 K of graphics memory and text memory up to 3000 Hex. The objects seen by the unit are displayed on a single horizontal line, the distance away from the transducer being indicated by the distance from the left-hand margin. The transducer can be fullstepped by holding down the SHIFT or REPT keys. To make the program readily understandable, BASIC has been used for the plot routine. This makes the program run very slowly compared with the author's normal machine-code plotting, but it serves its purpose as a demonstration. Experiment with the setting of the sensitivity control, VR1. To stop the program, use the BREAK key, since this also resets the port. When using this or any other program, keep the transducer away from your TV set or monitor; many of these generate copious interference which will lock up the receive circuitry.

\footnotetext{
>LIST

It is beyond the scope of this article to give details of the software used for the radar-type plots in the photographs. It is hoped to make this and other software available on cassette together with annotated listings. However, there follows a description of the test software, to assist those wishing to convert it to another machine or write their own. To those of you unfamiliar with the Atom, the software must appear very peculiar, since it contains a mix of BASIC and 6502 assembly language. In other machines it will be necessary to assemble the machine code separately, and then join it on to the Basic. Lines 20, 30, 60, 360 are used to manipulate the Atom assembler, and are not otherwise required. Lines 40,50 set two variables for use by the assembler, and line 70 sets the start address for the assembled code. The assembly language section is delimited by the square brackets in lines 80,350 . The mnemonics are standard 6502, except that immediate addressing is indicated by @, and a hash sign indicates a hex number. Multiple mnemonics per line are permitted if separated by a semicolon, and line labels are indicated by :LL followed by a number.

The program can be split into five sections: initialisation, transmission, reception, plotting and movement.

INITIALISATION

The Atom printer port uses a 6522 Versatile Interface Adaptor, addressed at locations B800 to B80F hex. The important addresses are:

B80C control of mode and handshaking B803 port A directional register
 8801 port A input and output

The vision system uses the following bits of port A :

Bits $0,1,2,3$	motor drive for coils 1, 2, 3, 4 ($O /$ Ps)	
Bit	6	transmit signal (O/P)
Bit	7	received signal (I/P)

When initialising the port for user $1 / O$, it is necessary first to isolate it from the normal print drive routines, using the statement in line 390. Non-Atom users will no doubt be mystified by the use of the exclamation mark: it is being used to both PEEK and POKE a four-byte location! Line 400 sets the port to normal I/O without handshaking, sets bit 7 as an input and the rest as outputs, then turns on the driver for motor coil 1. Here, the question mark is used as a POKE command. The CLEAR 1 command in line 410 sets graphics mode 1 and clears the screen.

TRANSMISSION

Line 440 causes the BASIC program to execute the machine code at line 110 , which is the transmit routine. This routine generates 10 cycles of each of the following frequencies: $66 \cdot 7,62 \cdot 5,58.8,55 \cdot 5,52 \cdot 6 \mathrm{kHz}$. Since the frequencies are so high, it is necessary to use carefully-timed machine-code instructions. The routine needs one zero-page location; I have used AE hex, but any free location will do. Line 110 sets the X and Y registers with the port data: X has the transmit bit set, and Y has it reset. Each of the following

FULL STEPPING						
STEP NO. 1						
CLOCKWISE MOVEMENT ANTICLOCKWISE MOVEMENT	$\begin{gathered} \hline \\ \hline 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ \text { etc } \end{gathered}$		*	*		*INDICATES THE COIL IS ENERGISED IN THE STEP
HALF STEPPING						
	STEP NO.	1	COI	$\begin{gathered} \mathrm{NO} . \\ 3 \end{gathered}$	4	
CLOCKWISE MOVEMENT ANTICLOCK WISE MOVEMENT	$\begin{gathered} 0 \\ \frac{1}{2} \\ 1 \\ 1 \frac{1}{2} \\ 2 \\ 2 \frac{1}{2} \\ 3 \\ 3 \frac{1}{2} \\ 4 \\ 4 \frac{1}{2} \\ \text { etc } \\ \hline \end{gathered}$	*	*	*		Fig. 2. Stepping motor control

pairs of lines generates one frequency, with a fixed 6 microsecond "on" pulse and the corresponding "off" time. Strictly speaking, the machine code should be located away from a page boundary, otherwise a page crossing will make one of the frequencies incorrect.

RECEPTION

This machine-code routine follows straight on from the transmission, since any delay would result in data being lost. The X register is used as a pointer into a storage area from 2F80 to 3000 hex. Periodically, all 8 bits of the port are stored, and the pointer is incremented. In fact, bits 0 to 6 are being stored unnecessarily, since bit 7 , the echo return, is the only one of interest. Line 260 serves to slow down the storage process, the amount of delay being set at the end of line 250. Changing the value from 30 will change the effective range that is stored and later plotted.

PLOTTING

Lines 450 to 480 take the data just stored and plot it as a horizontal line. The line is composed of 128 separate points, so it is hardly surprising that the BASIC routine is slow. The question mark in line 460 is being used as an equivalent to PEEK $(\mathrm{J}+\mathrm{U})$. This is used to set A to 13 (to plot) or 15 (to unplot). It must be remembered that the output from the p.c.b. is normally high, and is held low in the presence of an echo.

MOVEMENT

Lines 510 and 520 detect whether the SHIFT or REPT keys have been pressed. If so, then the machine code to step the motor clockwise or anticlockwise is called. The sequence of signals to step the motor can be best understood by reference to Fig. 2. It should be noted that the motor is being full-stepped (7.5 deg . per step). If the signals were fed to the motor in the sequence described in the lower table, then each step would be half that value. Due to the tolerances in motor manufacture, the positional accuracy is worse when half-stepping, but it should be more than adequate for our needs, and there is no cumulative error.

DEVELOPMENT

Finally, if the reader comes up with any novel modifications, developments or applications for the Ultrasonic Vision System, then do write to P.E. All such ideas will be considered for publication.

A selection of readers original circuit ideas.

Why not submit your idea? Any idea published will be awarded payment according to its merits.

Each idea submitted must be accompanied by a declaration to the effect that it has been tried and tested, is the original work of the undersigned, and that it has not been offered or accepted for publication elsewhere. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.

Articles submitted for publication should conform to the usual practices of this journal. e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not inserted in the text.

DOWER FETs of the BD 512/522 series are relatively inefficient because of their large gate threshold voltage of some 2.5 V and their high internal resistance. In a source follower mode the output voltage swing is only 65% of that on the gate for an 8 ohm load and typical transconductance. However. these problems can be overcome on low voltage power supplies if a bridge amplifier is used. The circuit shown is for such a high
quality 12 W r.m.s. amplifier using FET op-amps for ease of construction to drive the power FETs. The well-known CA 3140 is used because of its good slew rate and to obtain maximum output swing maximum volttes of plus and minus 16 V are used.

IC 1 is used as a non-inverting amplifier with a gain of 19 and IC2 is similarly used but in the inverting mode. Input impedance is determined by R1 and R8 in parallel. TR 1 (TR2 similarly) is a constant current sink of $1 \frac{1}{2} \mathrm{~mA}$ (the only concession to bipolars) and VR1 sets the bias of the power FET pair TR4 and TR3. VR2 sets the bias of TR 5 and TR6 which are driven in opposite phase to TR4 and TR3.

The amplifier is capable of working to hundreds of kHz so C 2 is used to reduce gain above 20 kHz . An input of 500 mV
r.m.s. will produce a 12 W output on an 8 ohm load. The bias is set at about 30 mA per pair of FETs using VRI and VR2 each in turn and the total quiescent current will be about 80 mA .

Good heat sinking is required for the four FETs. Note that the load is floating and is not earthed. The output is flat from 20 to 20000 Hz but is $-\frac{1}{2} \mathrm{~dB}$ at these extremes. Distortion is low and noise is about -80 dB .

By bypassing C1 and C3 the amplifier responds to a d.c. input but quiescent offsel voltage across the load caused by op-amp imbalance may have to be trimmed out.
R. Immelman, Somerset West.
South Africa.

ELECTRONIC

MULTIMETER

THIS multimeter design has an input impedance of $1 \mathrm{M} \Omega / \mathrm{V}$ or $333 \mathrm{k} \Omega / \mathrm{V}$ depending on whether one is reading in decade multiples of 1 or $3 \mathrm{~V} / \mathrm{mV} / \mathrm{A} / \mathrm{mA} / \mu \mathrm{A}$. The f.s.d. ranges are 10 mV to $300 \mathrm{~V}, 1 \mu \mathrm{~A}$ to 3 A a.c. or d.c. Protection is by D1, 2 and by R13.

An additional, optional ohmmeter circuit can be included although it was not built into the prototype to avoid circuit complication. However it has been very successfully used in conjunction with the prototype. Resistances from 10Ω (f.s.d.) to about $6 \mathrm{M} \Omega$ can be measured on a linear scale.
The input voltage or current is converted by resistor chain R1-12 to a voltage at pin 3 of ICl of up to 10 or 30 mV . This voltage is amplified tenfold to $100 / 300 \mathrm{mV}$. Resistors R17-20 convert this output to a meter current of up to $500 \mu \mathrm{~A}$. The meter rectifier section is arranged so as to make the germanium diodes' forward voltage drop immaterial and the 6 k 2 resistor limits
meter current to 1.2 mA , in case of overload. The d.c. range is connected so that wrong polarity inputs are not transmitted to the meter. The a.c. range has no capacitors and can be used as a null detector which always gives a positive meter deflection. Should d.c. level elimination be required, a capacitor can be put in the input test prods of value chosen to have low reactance.

Position 3 of $\mathbf{S} 2$ selects an independent battery check function. The meter reads full scale when the mean battery voltage is 9 V .

The optional resistance measuring circuitry is a constant current source which sends 1 mA or $1 \mu \mathrm{~A}$ through a test resistor Rx connected to sockets SK3, 4. IC3 is a buffer stage which allows the 10 mV to 10 V d.c. voltage ranges to measure the p.d. across $R x$ without altering its value.

Resistors R3-7 are made by adding preferred values such as 15 and 75 , or 43 and 47 in their decade multiples. They
must be 2% types. R8 is $10 \Omega 2 \%$ and 91Ω 5% in parallel. R14, 18-20, 23, 24 are also 2% R9-12 are made from constantan wire: 24 SWG is about $2.00 \Omega / \mathrm{m}$ and 30 SWG is $6 \cdot 29 \Omega / \mathrm{m}$. To standardise the wire accurately, a known current of about 10 mA is passed through a sample and the rest of the multimeter (R 8 connected to common line) used to measure the p.d./unit length. From this the resistance/unit length and hence required lengths are calculated.

R17 is a parallel combination of 470Ω 2% and $2 \mathrm{k} 75 \%$.
With the test prods from SK 2,3 shorted together, VRI is adjusted for zero meter deflection. In the ohmmeter, VR3 is adjusted to set the test currents to 1 mA and $1 \mu \mathrm{~A}$. With SK3, 4 shorted, VR4 is adjusted for zero output from IC3.
J. H. Greaves,

THE accompanying design has been used by the writer to detect the morse code tones found on the amateur bands. It takes its input from the audio output socket of a communications receiver or other radio, at line level. i.e. about 200 mV peak to peak. It produces a single bit TTL compatible output, which can be fed directly into a computer port.

The circuit is based on the NE 567 phase-locked-loop (PLL) integrated circuit tone detector. The natural frequency of the oscillator on the chip is set by the time constant of VR1 and CI. If there is a tone present on the input. whose frequency is within ± 10 per cent of the oscillator's natural frequency, then the output will go low. This capture range is set by the value
of capacitor C2. C3 performs 'antibounce' decoupling on the output.

The manufacturers claim that the device will find a tone buried under six times its amplitude of noise. This means that vir tually all humanly detectable morse tones are recoverable. The setting of VRI is most easily performed by someone with a musical ear, in conjunction with switch SI When switch S1 is pressed, Sla disconnects the receiver from the PLL, so that it runs at its natural frequency, and SIb connects the monitor audio amplifier to the PLL oscillator, so that a steady note, whose frequency depends on the setting of VRI, is heard. To tune into one particular tone, VRI is simply adjusted to give the same pitched note when $S 1$ is pressed, as is heard from the receiver when $\mathbf{S 1}$ is released.
The device has been found to work quite happily when two or more stations of equal loudness, but different tones, are transmitting simultaneously. The results have been beautifully punctuated weather reports and news items in many languages displayed on the computer VDU. Also, with a smaller value capacitor for C3, the device could possibly be used for receiving RTTY communications.
D. Greaves,

Crampmoor
Romsey

Fig. I we can see the principle of this bandpass filter. There are two rectangles which have been marked PLLL1 and PLL2 (PLL is a phase locked loop). The bandpass filter includes also NOT and AND ports. $\mathrm{V}_{\text {in }}$ is conducted to the PLLs and the AND port. This can be a squarewave or a sinewave. Its voltage must be sufficiently high that the AND port can go to a high state.

The circuit diagram of the complete bandpass filter is in Fig. 2. PLL1 is tuned with the preset pot VRI to the lower limit frequency (cut off frequency f_{L}) of the band which we want to select. PLL2 is tuned with the preset pot VR2 to the higher limit frequency (cut off frequency f_{H}) of the same band

I have selected from the circuit 4046 the part (the phase comparator) which doesn't lock to the harmonic frequencies of the base frequency but only to one base frequency.

The output of the PLL2 is inverted. Now we can get the high state outputs from both the PLLs over the band which we want to use.

The AND port works as a digital comparator. The squarewave signal comes out on the selected band but has the disadvantage that it has a fixed level about the supply voltage. The band can be selected on the wide range around 1 kHz with the component values marked in the circuit. The bandwidth can be narrowed or widened as required.

BANDPASS
FILTER

I have used this bandpass filter before a frequency shift keying demodulator. A signal comes from the receiver to this bandpass filter. The sinewave signal from the receiver is triggered before the bandpass filter. The space and mark frequencies are 1070 Hz and 1270 Hz which have been filtered out.

It is possible to get out a sinewave signal when used with a switch e.g. a CMOS4066. Vin must be conducted to the input of the switch instead of the input of the AND port and, of course, to the inputs of the PLLs. The output of the AND port drives the switch. From the output of the switch we can get the sinewave signal on the wanted band. A disadvantage is that 'the level of $\mathbf{V}_{\text {in }}$ must be inside the determined values.

Touko Valtamo,
Tampere,
Finland.

PRICES INC. VAT.POSTAGE \& PACKING

DRIVING MUSIC

There's an interesting story, and a patent, behind the Record Runner' reported in Practical Electronics February 1982 (page 17). The Record Runner is a model VW van which drives round a record and plays it. It's covered by US patent 4232202 which was granted to Sony of Japan. The inventors Yoshihisa Mori, Norio Mashimo and Takeo Eguchi are all designers in the department of Sony which deals with hi fi record players and pickup cartridges. Yoshihisa Mori is not only an engineer, he's also a hi fi enthusiast and VW car enthusiast. Back in 1977 Mori built a toy VW minibus which ran round a disc and played it. That early prototype, which was briefly shown at the Paris Festival du Son and in Sony's showroom in Regent Street, was a primitive affair. It ran at constant linear speed and so tracked a record at progresslvely incorrect rotational speed. This is because the linear distance of a groove full turn varies from disc edge to disc centre. Subsequently Mori built a clever modification into his gramocar which

enables it to change running speed automatically and continuously as it tracks in across the disc and so keep the playing speed constant at around $33 \frac{1}{3} \mathrm{rpm}$. This modification is described in US patent 4232202.

Sony decided against manufacturing and selling the gramocar under the Sony brand
name. "We are a hi fi company, not a toy company" they told me last year. But now the car is on sale in Japanese shops under a different brand name and this is how it has found its way into. Britain as an import.

The patent describes how the playing speed is kept constant. On board the car there is a small amplifier and loudspeaker and the pickup and stylus are mounted on an undercarriage. This is pivoted like a short gramophone tone arm, so as the car tracks in towards the centre of the disc the arm turns slightly around the pivot. This angular movement changes the value of the variable resistor which controls the motor speed to maintain a constant angular or rotational tracking velocity.

Figure 1 of the patent shows how the angle of the undercarriage and pickup changes as the car tracks in across the disc. Figure 2 shows the speed control circuit for a motor 25, which drives the car wheels. Angular movement of the undercarriage causes movement of the tap 35a of variable resistor 35 so that the base voltage applied to transistor 42 is decreased. This brings a corresponding decrease in the supply of current through transistor 41 to motor 25. So the motor drive speed, and thus the speed of the vehicle, progressively decreases as it moves towards the disc centre.

ENGRISH TLANSRATIONS

An assured growth area for the future is the automated translation of text and spoken language. Most of the major electronics firms, especially in Japan, already have research programmes underway. For the Japanese there is a special incentive to automate the translation of written text and spoken words. This is very clearly explained in recently granted British patent no 1596411 , from the Kyodo News Service of Tokyo, Japan. The, patent claims a computerised translation system intended primarily to speed up the transmission of telexes to and from Japan. The lengthy patent text, 37 pages of description and 34 pages of descriptive drawings, is too complex to discuss in detail. But essentially the Kyodo computer programme searches phonetically in a memory of phrases. In a first scan of the memory the computer hunts for a translation that exactly corresponds to a character train. If this scan fails, the last character of the train is dropped and the search made again. This
continues, with the last character of the train being dropped each time, until there is an exact phonetic match between an index word stored in the computer memory and a character in the input train.

The patent is of more general interest because of its introduction. This explains the daunting task facing anyone who sets out to automate translation between the Japanese and English languages.

Most Japanese sentences are made up from five different kind of characters. Kanji, are Chinese picture characters representing phonetic expressions. Hiragana and katakana (generically called kana) are syllables characters representing components of words. Then there are Roman alphabetical characters, used where no equivalent Japanese character exists, and Arabian figures. There are tens of thousands of kanjis, although only 1850 are permitted for use in official documents. But 2,500 appear in newspapers and 5,000 are likely to be encountered in everyday life. There are 75 hiragana and katakana making a total of 150 kana. A recent survey
showed that in Japanese expressions, 63\% of the characters are kanji and 36% kana. Because of the difficulties in converting kanji and kana into International telex code, and converting Roman code into kanji and kana, any organisation involved in international communication usually translates before tiansmission. Kyodo estimates that it spends 30 billion Japanese yen a year on communication translations! It is a fact that most Japanese firms with subsidiary companies in the West simply give up and communicate both ways by telex in English. This is the background to patents on computerised translation such as BP 1596411 . It is likely that over the next decade there will be many, many more.

In the February Patents Review; which dealt with a Texas Instruments patent, we mentioned that another Texas educational toy 'Speak and Maths' is available in America. Texas have informed us that 'Speak and Maths' is also available in this country.

MUSIC KITS

ALL WITH PRINTED CIRCUIT BOARDS!

128 -NOTE SEQUENCER
A digital, Kbd controlled unit for most $\begin{aligned} & \text { synths } \\ & \text { Kit incl } \\ & \text { Kbd }\end{aligned}=\quad$ SET-76 $\mathbf{f 1 2 0 . 4 5}$

16-NOTE SEQUENCER
Analogue, panel controlled unit for most
Synthesisers $=86$ f 84.63
3-CHANNEL STEREO MIXER
With left, right \& master level control

- headphione manitor $=$ SET-107 221.50
-MICROPHONE STEREO MIXER
Improves stereo reality $=$ SET-108 £12.99
6-CHANNEL MIXER
High spec mixer with variable impe-
SET-90 From $\mathbf{f 9 6 . 6 7}$
AUDIO EFFECTS UNIT
Variable siren gen $=$ SET-105 $£ 15.12$
AUTOWAH UNIT
Automatic Wah \& Swell sounds from each
CHOROSYNTH
30-Note chorus synth with wide variety
of yoices. Kit incl Kbd $=$ SET-100 $£ 125.04$

COMPRESSOR

With level \& decay-rare controls, line \& mic inputs with mixer $=$ SET-120 $\mathbf{E 2 5 . 0 5}$

DISCOSTROBE
4-Chan 200 W unit for sequential random
or full strobe use $=$
SET-57 $£ 39.78$
DRUM SYNTHESISER
Exuremely versatile synthesiser for con-SET-119 From £50.11

OYNAMIC NOISE LIMITER
Helps clean up noisey recordings.
SEl- 97
E1
ENVELOPE SHAPER
SET-50 E14.96

KIMBER-ALLEN KEYBOAROS Detalls in lists = From E32
P. E. MINISONIC SYSNTH*

Excellent 3-Oct mutri-module portable synth. Kit incl Kbd $=$ SET From $£ 181.56$

PHASER

PHASING \& VIBRATO
Manual 8 auto control producing suparb
feT-70 sounds $=$
PULSE GENERATOR
Pulse width $100 \mathrm{NS}-2 \mathrm{sacs}$, freq 0.1 HZ -
$100 \mathrm{KHZ}=\quad$ SET- 115 f 24.84
RHYTHM GENERATORS
Several in list =
From £61.71
RING MODULATOR
Usable with most synths $=$ SET-87 £13.62
SIGNAL TRACER \& GENERATOR
Aids circuit iesting. With frequency 81
level controls $=$
SET-109 f17.50
SMOOTH FUZZ
As the name implies $1=$ SET-91 $\mathbf{E 1 1 . 6 8}$
SPEECH PROCESSOR
Improves inteligibility of C.B. or P.A.
speech signals $=$
SET-110 E12.18
SPLIT-PHASE TREMOLO
Modulation, depth, rate \& level unde
full control $=$ SET- 102 £29.98
SWITCHED TREBLE BOOSTER
4 Sectable preset tone changes $\begin{array}{r}\text { SET-89 } \\ \text { E12.51 }\end{array}$
SYNTHESISER INTERFACE
Enables guitars, mics eic to be synthe-
siser processed $=$

10\% 10\% OFF U.K. C.W.O. ORDERS OVER E20 FROM
10% THIS AD UNTIL END OF MONTH ON COVER. $0-5$ (5% OFF FOR CREDIT CAROS). THIS COUPON 0 - 5 MUSTACCOMPANY ORDER. CODE PE25.

EXPOSURE TIMER

Range up to 10 mins in 0.5 sec steps.
with audio alarm $=$
SET- 93 E39.22
FORMAT SYNTHESISER•
Advanced 3 -oct synth with multiple mod ules. Kit incl Kbd = SET-66 From £342.71

FUNNY TALKER
Fascinating sounds when used with
speech \& music $=$
SET- 99 f16.55

GUITAR EFFECTS

8 -mode filter \& envelope shaper for most
Instruments -
SET-42 $£ 15.92$
GUITAR FREQUENCY DOUBLER
Orig \& doubled signals can be mixed for
SETeater deoth $=$ S
GUITAR MULTIPROCESSOR
Extremely versatile sound processo Details in list.

GUITAR OVERDRIVE

Sophisticated fuzz with filter: \& shape
controls -56 SET-5
GUITAR PRACTISE AMPLIFIER
3-Watt practise or test-monitor amp. $\begin{gathered}\text { SET-106 } \\ £ 22.15\end{gathered}$

GUITAR SUSTAIN

Retains natural attack whilst extending
noteduration $=$
SET- 75 E 11.77

HEADPHONE AMPLIFIER

For most pick-ups, decks, , uners 8 head
phones. 1 AA spes $=$ SET-104
METRONOME

EXPORTS WELCOMEI
Sierling payment with order please. Postage rates in our lists. Europe send

TRANSIENT GENERATOR

TREMOLO UNIT

For most instruments. Incl speed, depth
\& by-pass contrtols $=$ SET-116£13.47
TUNING FORK
Eases runing of acoustic \& electronic
instruments $=$
SET-48 £37.04

VOICE OPERATED FADER

Automatically reduces music volume
during disco talk-over $=$
SET- 30
$\mathbf{£ 9 . 8 5}$
VOICE SCRAMBLER
for coding or decoding speech signals or greater security. See list for details
SET-117 $=21.81$

WAVEFORM CONVERTER Allows 5 different waveforms from synth
esiser VCO $=$ SET-67 E21.98

WAVEFORM GENERATOR
3 Waverorms, range 1 HZ 10 100 KHZ , up
to $10 \mathrm{VP}-\mathrm{P}=$ SET- $112 \mathrm{£23.13}$
WIND \& RAIN EFFECTS
As the name says $1=\quad$ SET $-28 £ 11.39$

KIT CONTENTS

Sets include PCBs, U.K. P\& P, 15\% VAT, Res, Caps, S'c.s, Pis, Knobs, SW's, Skis, Wire, Solder, Photocopy of orig text, \& a case unless marked . Most are batten operated, but PSU units are also available
Most parts can be bought separately Most parts can be bought separately Fuller details \& more great kits in
catalogue, Send S.A.E. for free copy. Prices correct at press, E.8.O.E., subjoct to stock. Despatch usually 24 hrs on all ex-stock items.

Access, Barclay \& Am-Express
Credits Welcome.

INTERESTED IN

ELECTRONICS?
TRY A ZEDPACK! COMPONENTS AT A PRICE EVERYONE CAN AFFORD
21300 mlxed and $\frac{1}{2}$ watt resistors $£ 1 \cdot 95$
22150 mixed 1 and 2 watt resistors $£ 1 \cdot 50$
23300 mixed 1 and 2 watr resistorteit

$\begin{array}{ll}25 & 100 \text { mixed polystyrene } \\ 26 & 300 \\ \text { mired }\end{array}$
printed circult
$27{ }^{\text {compent }} 300$ mixed printed elrcuit resistors
29100 mixed miniature cerame ${ }^{1} 4$
plate caps

```
pots.
```

21025 assorted pots.
$Z 1125$ assorted presets, skeleton etc. 50
Z12 20 assorted vdr's and thermistors
21220 assorted vdr's and thermistors $\mathbf{E 1 \cdot 2 0}$
21311 b mixed hardware. Nuts. bolts self-tappers, sleeving, eic-
Z14, 100 mlxed, now and marked, full spec. transistors. Pack Includes:- BC148,
BF154, BF274, BC212L, BC238, BC184L, BF154, BF274, BC212L, BC238, BC184L,
PBC108 and, or lots of 51 milar types 15100 mixed diades including:- zener, power, bridge, signal, germanlum
silicon etc. All full spec.
$£ 4.95$ 21620 1N 148
$Z 1720$ 1 N4003/10D2
Z18 20 assorted zeners, 1 watt and 400 mw
Z19 12 125" TIL 209 RED. LED'S £ 1 button, slide, multipole, including push uHF Mopul Fantastie value, £1-20. UHF MODULATORS
Video In UHF out. Calibrated to channel 36 (625 ine UHF) housed in metal box $2 \frac{1 / \prime}{}{ }^{\prime \prime} \times$
 $200 \mu \mathrm{~A}$ Miniature level/batt. meters, as fitted to many casselte recorders. 90 p etching kits.
Includes 150 sg ins. of copperclad F/G board.
1 lb ferric chloride, (made for U.S. army to Il ferric chioride, (made for U.S. army to MIL, SPEC.), 1 dalo etch resist pen, abrasive cleaner, tweezers. etch resist dish and in-
OUR PRICE $£ 5.95$
structions. structions.
11 bb of $\mathrm{FeCl}, £ 2.25$.

00 Miniature reed switchas.
100 Subminiature Reed Switches. $\begin{gathered}\mathbf{£ 2 \cdot 3 0} \\ £ 4 \cdot 20\end{gathered}$
SMALL MAGNETS
Wh hole in P/B SWITCH BANKS ${ }^{6}$ These cost fortunel Were made fo arlaus music centres. Includes Indepen dent and Interdependent latching types muit pole c/o etc. Can be modified KNOBS for Swltch Banks 10 for E 1 Chrome or spun aluminium finish.
MINIATURE MAINS TRANSFORMERS
rop quality. Split bobbin constructio will give $4 \cdot 5 \mathrm{~V}-0-4.5 \mathrm{~V}$ at 250 MA . $1 Z^{\prime \prime} \times 1 \frac{1}{1 \prime}$ $\times 11^{\prime \prime}$, all sorts of uses. ONLY £1 PP3 Battery Connectore 10 for 50 o . Miniature Press to Make Swltches, Re knob. 3 for 50 p .
Subminiature S.P.C.O. Silde Switches 6 for 50 p .
re D.P.C.O. SHde Swltches Standard 2P, 3 Position Silde Swltch.
4 for 50p.
TBA810P 7 Watt Amp. I.C. with circuits MF data. circuits. 1 Woit I.C. with data and
 6 A YOOV Bridge Rectifier. Small. 80 p an. 2N3055H 3 for $\mathbf{2}$ Sestion. ACA. 3 for $£ 1.50$ Aerial. Plugs into any 3.5 mm socket. Aerial. Plugs into any 3.5 mm socket. Hi Power Intra Red Transmitter 5 mm LED. TIL 3860 e ea. 3 for $£ 1 \cdot 50$
Crystal Clear 3 mm LEDS very pretty Red, Green, Yellow. 10 of one colour $£ 1$. 10 of each E2.50.

ALTERNATOR RECTIFIERS Make lovely 60 amp bridges. Ideal for High Power Battery Chargers. Type AFI. Set
2 pos. case) £.2.
Speclal Purchase enables us to offer Mullard C2so Polyestor Capnunbeatable price of $\mathbf{E} 2$ for 100 mixed. E 15 for 1000 . These consist of factory clearance lots l.e. splliages, floor sweepings, cosmetic rejects etc. Also,
Mulland Miniature Electrolytics. 200

To: "GEMINI ELECTRONIC COMPONENTS" DEPT PE
"THE WAREHOUSE" SPEEDWELL ST. LONDON S.E.8.
Where shown. Send Cheque or Postal Order. Plus 60p P\&P. and 15% VAT ZED PACKS now avallable for Callers at 50 Deptford Broadway, London, S.E.B, Please allow 7 days for delivery. Send large S A.E. for fuller list.

MEMORY EXPANSION PACKS

at unbeatable prices!
FOR
SINCLAIR ZX81 16K
VIC 20
3K
8 K (expandable to 16 K)
£35.00

Please add $£ 1.00$ for $p \& p$, plus VAT

NAMAL Electronics

No. 1, Claygate Road, Cambridge CB1 4JZ.
Tel: 0223248257
Telex 817445

STORAGE CABINETS

Metal Cabinets $12^{\prime \prime}$ wide $\times 5 \frac{3^{\prime \prime}}{4}$ deep. finished blue with transparent plastic drawers.
Tvpe H No. of Drawers Price (ins) Sm MedLge
$\begin{array}{llllll}1118 & 11 & 15 & 2 & 1 & £ 10.75\end{array}$
$\begin{array}{llllll}1633 & 16 & 30 & 2 & 1 & £ 13.95\end{array}$
$\begin{array}{llllll}1838 & 18 & 35 & 2 & 1 & £ 15.95\end{array}$
$\begin{array}{llllll}2236 & 22 & 30 & 4 & 2 & £ 18.55\end{array}$
22602260 - $£ 18.55$
Access/Barclaycard welcome
Prices include VAT and Post. Cheque/P.0. to:
Millhill Supplies (Tools).
35 Preston Crowmarsh, Benson,
Oxon OX9 6SL.
Tel: Wallingford (0491) 38653 Goods by return of post.

NICADS:UK'S LOWEST PRICES

AMBIT'S NEW CONCISE COMPONENT CATALOGUE IS OUT NOW -

Price on the page

Ambit's new style catalogue continues to lead the marke with low prices, new items, info, $3 \times E 1$ discount vouchers. Here's a few examples of some super low prices:

$78 \times 1 \mathrm{~A}$

BC237/8/9 3SK51 $10 \mathrm{MHz} \times T A L S$ 8 Pole 10.7 MHz XTAL filters $£ 14.50$ 2 GHz coax relay $150 \mathrm{~W} \quad £ 10.95$

+ all the usual stuff at rock bottom prices + Toko coils, crystal and ceramic filters, micrometals toroids, Fairite ferrites, Alps switches, OKI LSI, Piezo sounders, RF, IF Modules + Kits etc.

Available at your newsagent or | direct, for 70p inc.

AMB:IT international 200 Iorth Service Road, Erentwand, Essen

BUILD A PAIR OF MICRO MONITORS!

Just a few hours easy and
interesting work and you'll have
a superb pair of compact
loudspeakers for about half the price of equivalent 'assembled' models.
The Wilmslow Audio Micro
Monitor will stand comparison with any speaker of similar size (at any price). Don't take our word for it - call for a
demonstration!
Prices shown EXCLUDE VAT. Access/Barclaycard may be used with written or telephone orders, official MA details on application. E \& EO.
POSTAGE and PACKING 50 p per order

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

RECEIVERS AND COMPONENTS

300 SMALL COMPONENTS. Transistors, diodes $£ 1.70$. 71bs assorted components $£ 4.25$. $101 \mathrm{lbs} £ 5.75 .20$ wire ended neons 51 . Forty 74 series ICs on panel $£ 1.70 .500$ capacitors 53.20 . List 20 p refundable. Post 60 p , optional insurance 20p. JWB Radio, 2, Barnfield Crescent, Sale, Cheshire M33 INL.

TURN YOUR SURPLUS Capacitors, transistors. etc., into cash. Contact COLES-HARDING CO. 103 South Brink, Wisbech. Cambs. 0945-4188. Immediate setlement.

bOURNEMOUTh/boscombe. Electronic components specialists for 33 years. Foresters (National Radio Supplies), Late Holdenhurst Road. Now at 36, Ashley Road, Boscombe. Tel. 302204. Closed Weds.

50 COMPONENTS, assorted, transistors, resistors etc. $\mathbf{£ 0 . 6 0}$ post paid. J \& G Repairs. 100 Norman Rise. Livingstone. EH54 6LZ.

SMALL ADS

The prepaid rate for classified advertisements is 32 pence per word (minimum 12 words), box number 60 p extra. Semi-display setting $£ 10.70$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Department. Practical Electronics, Room 2612, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

TE \& ECTRIC

As featured in PE March \& April 82

Self Assembly Kit
£47.50 + VAT
Built and Tested £64.00 + VAT
Components available separately. SAE for details P\&PE1, CWO
Response Company,
Froxfiold, Peterzfield, Hanta GU32 1DX, ACCESS
r \& J ELECTRONIC COMPONENTS. Quality Components Competitive prices. Illustrated Catalogue 45p. 98 Burrow. Road, Chigwell, Essex.

THE OUTSTANDING PRACTICAL ELECTRONICS

MINIATURE SCORPIO CAR IGNITION

* EASY TO INSTALL
- NEAT \& COMPACT
* AMAZING LOW PRICE
- ROBUST DIE-CAST CASE
* CAPACITIVE DISCHARGE
* FUlL CIRCUIT PROTECTION
\star COMPLETELY WEATHERPROOF

All parts as specified in PE for only £14.85 inc. VAT, p\&p. PCB only: $\mathbb{E} 1.75$ inc. VAT, p\&p.

Re-prints of 1974 \& 1982 articles available; send S.A.E. for full price list of parts.
*Prices held despite 12% inflation
MICROSTATE LIMITED, 5 NORTHFIELD CLOSE, FERNHILL HEATH, WORCESTER, WR3 7XB.

SOFTWARE

ZXB1 3K RAMKIT expandable to 7 K , see Microbus Nov. 81. Send £13.25. EDWARDS ELECTRONICS, 23 Princes Street. Perth.
$z \times 81$ TEMPERATURE SENSORS (plug-in compatible), including UK P \& P £17.95. Leaflet, Cheshire Micro Design, 66 Close Lane, Alsager, Stoke-on-Trent.

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

DEMON PLUS

STATE OF THE ART OPERATING
 SYSTEM FOR UK101

Now also available for Superboard EXTENDED BASIC 26 extra commands inc. USING. DEEK, DOKE, DUMP, VDU etc. No loss of variables when programs are altered. Fully selectable BASIC workspace. Non destructive memory test. Full Screen Editing. Selectable window display with soft scroll width will drive any screen format Enhanced scrolling display M.C. Monitor with IRQ \& NMI outside Stack. Supplied in two 2716 Eproms which decode at $\$ F 800$ \& $\$ 9800$ only £20.00.
TEXT DEMON Adds a full function Word Processor to above plus a BASIC Screen Copy command. 2716 decodes at $\$ 9000$. Price £15.00.
DEMON 4 Adds more functions including CSAVE/CLOAD. Parity check cassette system will save \& load/run a named BASIC program complete with vaniables or a M.C. program at three times normal speed. FIND locates any Item in a BASIC listing with option of Edit or auto-replace. 2716 decodes $\$ 8800$. Price £10.00. See Feb. Ad. or S.A.E for details:

N.V.Davies,

11 Holloway, Haverfordwest. Dyfed.

UK101 SOFTWARE ON TAPE from the guy who wrote "-Le Passe-Temps

GALACTIC HITCHHIKER (8K). An adventure, all in machine code. A beauty ((£7.00)
SUPERTREK (BK). Sail boldly through the universe zap-ping moving Klingons in real time. Superb graphics.
($£ 7.00$) STARTREK (8K). The old favourite, beautifully presented. STARTREK (8K). The old favourite, beautifully presented.
(E6.00)
IUNAR LANDER. A real challenge. You won't get down in (EG.OAR LANDER. A real
Less than 3 hours. ($£ 3.00$)
loss than 3 hours. ($£ 3.00$)
HANGMAN. Excelient graphics. P.E. said sol ($\mathbf{3} 3.00$) BASIC TUTOR ($8 \times 4 \mathrm{~K}$). The only way to leam - at the keyboard. (12.00)
LEPASSE-TEMPS
LE PAS $\mathbf{3}$ OO) MAD MONK (8K). It's ready at lasti A machine code adventure with some truly remarkable graphics, this programme is in a class by itself. (E9.50)
These ORIGINAL PROGRAMS are These ORIGINAL RROGRAMS are compatible all 2 K (fincluding enhanced Superboards).

These kits are complete in every way:
quality PC8, all complete in every way:- Fully socketted high quality PC8, all components, switches etc, plus preformed
cable assembly for easy interconnection to $j 1$, or our... cabie assembly for easy interconnection to 1 , or our ...
MOTHERBOARD SYSTEM. Now you can add on all MOTHERBOARD SYSTEM. Now you-can add on all 11 type sockets. (E19.50)
$8 K$ STATIC RAM BOAR
8K STATIC RAM BOARD (F 39.50)
HI-SPEED CASSETTE INTERFACE. At last a system
that works. COMPLETELY RELIABLE 4000 baud that works. COMPLETELY RELIABLE 4000 baud (8000 with
reasonable casserte) plus software for named file handling. A delight to use. ($\mathbf{1} 19.50$). For software in EPROM, add f6.00
VIDEO
VIDEO ENHANCEMENT. Switch selectable 16×48 or 32×48 displays without butchering your computer. Monitor EPROMS re-blown to suit for just $\mathbf{£ 2 . 5 0}$
8K EPROM BO
8K EPROM BOARD ($£ 19.60$). A 2 K Extended Monitor is available in EPROM for $\varepsilon 12.00$ plus, coming soon. TOOLKIT in EPROM and BASIC
switch selection of up to 4 EPROMS. ($£ 9.50$) AVAILABLE SMORTLY: EPROM Programmer, PIA Sound Board. Analogue Board and something rather nice on the graphics side

All inclusive prices -absolutely no hidden extras.
Please write or phone for further detaits.
Please write or phone for further depails:
A. KNIGHT (Dept. PE),
28 Simonside Walk,
Ormesby,
Cleveland.
Tol. (0642) 321266.

PERSONAL

CHRISTIAN SINGLES. Friendship, contacts. 1982 holidays. Weekend houseparties. - C.F.F., Dept N46, Edenthorpe, Doncaster.

BOOKS AND PUBLICATIONS

[^2]bell's television se rvices for Service Sheets on Radio, Tv. etc $£ 1.25$ plus S.A.E. Colour TV Service manuals on request. S.A.E. with enquiries to B.T.S. 190 Kings Road, Harrogate, N. Yorkshire, Tel:(0423) 55885

FOR SALE

P.E. RANGER: Save 58 on ex-factory prices. $6 \mathbf{C H}$ kits ES 2 buill $£ 58$ - $\mathbf{~} 2.00$ p.p. ($\mathbf{0 3 5 9)} 30867$.

MIZUHO SB. 2M Transceiver 144 mhz SSB.CW boxed with handbook as new. Stroud, 53 Swallow Hill, Thurlby Bourne, Lincs. Offers $£ 80$. Telephone 077822554

MINISONIC TwO. Sequencer and Maplin 300W Amp Unfinished projects 90% complete £165. 22B Addingtor Road, Reading.

UK 101. $\mathbf{- 8 K}$, Monz + Cegmon. Case, Manuals, Software $\AA 175$ ono. Phone Rotherham (0709) 816029. After 6.

EDUCATIONAL

CAREERS IN MARINE ELECTRONICS. Courses commencing September and January. Further details, The Nautical College. Fleetwood FY7 83Z. Tel. 0391779123.

COMPUTER PROGRAMMING

basic for beginners

Choose your time - day or evening learn at your own pace.
MICROCOMPUTER ADVISORY CENTRE
Polytechnic of the South Bank
Borough Road, London SE1 OAA. 01-928 8989 Ext. 2468

TELEVISION COMPUTER RADIOCOMMUNICATIONS \& RADAR SERVICING

2 $\frac{1}{3}$ YEAR full-time Modular Diploma course to include a high percentage of practical work.
 - ELECTRONIC PRINCIPLES
 - MONOTV \& CCTV
 - COLOUR TV \& VCR
 - MICROELECTRONICS \& DIGITAL TECHNIQUES
 - MICROPROCESSORS \& COMPUTERS
 - RADIOCOMMUNICATIONS \& RADAR

Each of the above Modules are 13 weeks in duration. Individual Modules can be arranged for applicants with suitable electronics background.
Subject to approval, students will be awarded a TEC Diploma in Electronics \& Communication Engineering on Completion of the full course.

Next session starts April 19th
Prospectus from:

LONDON ELECTRONICS COLLEGE

Dept: AA, 20 Penywern Road, London SW5 9SU. Tel: 01-373 8721.

NORTH LINCOLNSHIRE HEALTH AUTHORITY

X-RAY ENGINEER/ TECHNICIAN

A new post has been created in order to improve the in-house support of diagnostic X-Ray equipment in the North Lincolnshire Health Authority. The successful applicant would join the team of staff associated with electro-medical equipment servicing in the Medical Physics Department which has excellent electronic and mechanical workshop facilities. Experience in the X-Ray field is desirable but not essential.

The post is graded as MPT Grade III with salary on the scale $£ 6,668-£ 8,316$ per annum, depending upon qualifications and experience.

Applicants are encouraged to visit Lincoln and discuss the post further.

For further information please contact Dr. P. A. Griffiths, Area Physicist, Medical Physics Dopartment, St. George's Hospital, Long Leys Road, Lincoln, LN1 1EF. Tel. (0522) 29921 Ext. 7122.

Application form and job description are available from the District Personnel Officer, North Lincolnshire Health Authority, 1, St. Anne's Road, Lincoln, LN2 5RA. Tel. (0522) 30664 Ext. 39.

Closing date: 26th April, 1982

ORDER FORM please write in block capitals

Please insert the advertisement below in the next available issue of Practical Electronics for.
insertions. I enclose Cheque/P.O. for $£$
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Electronics)

\qquad

[^3]
miscelianeous

EPROMS PROGRAMMED (UK101 Users only!) 25/2716 £3.00, 25/2732 £6.00, $25 / 2764$ £ 12.00 . SAE details: Hunter, 29 Queen Mary Avenue, Glasgow G42 8DS.
Cabinet and Flightcase Fittings
Fretcloths Coverings. Handles. Castors etc., Jacks ane
Sockers, Cannons, Bulgins, Aeverb Trays, Emilar Compres-
sion Orvers. P\&N Stands. Celestion Speakers, ASS. Glass-
sion Orvers. P\&N Stands. Celestion Speakers, ASS. Giass-
fibre Horns
ena 30p Postal Order for illustrateo gatatoguesio:-
ADAM HALL (P.E. SUPPLIES) Unit G, Carton Court, Grainger Road
Southend-on-Ses, Essex SS2 5BZ.

CLEARING laboratory: scopes, generators, P.S.U*s, bridges. analysers. meters. recorders, etc. 0403-76236. centurion burglar alarm equipment. Send SaE for free list or a cheque/PO for $£ 11.50$ for our special offer of a 1 full sized signwritten bell cover, to Centurion Dept PE, 265 Wakefield Road. Huddersfield, W. Yorkshire, Access \& Barclaycard telephone orders on 0484-35527.
PARAPHYSICS JOURNAL (Russian Translations): Psychotronic Generators, Kirlianography, Gravity Lasers, Telekinesis. Details SAE $4^{\prime \prime} \times 9^{\prime \prime \prime}$ Paralab, Downton, Wilts.

THE SCIENTIFIC WIRE COMPANY PO Box 30, London, E.4. 01-531 1568.				
ENAMELLED COPPER WIRE				
SWG	11 b	802	402	
8 to 34	3.30	1.90	1.00	0.80
35 to 39	3.52	2.10	1.15	0.85
40 to 43	4.87	2.65	2.05	1.46
44 to 47	8.37	5.32	3.19	2.50
48 to 49	15.96	9.5	6.38	3.69
SILVER PLATED COPPER WIRE				
14 to 30	6.63	3.86	2.28	1.50
TINNED COPPER WIRE				
14 to 30	3.97	2.41	1.39	0.94
$10 \times 10 \mathrm{Mtr}$ reels 3 amp PVC cab				
add 20 p .				
AE for list of copper and resistance Wire.				

ENAMELLED COPPER WIRE. 10 swg to 45 swg. S.A.E. for quotation by return, cheapest prices. 102 Parrswood Road, Manchester 20.

BURGLAR ALARM EQUIPMENT. Ring Bradford (0274) 308920 for our catalogue or call at our large showrooms opposite Odsal Stadium.

MAKE YOUR OWN PRINTED CIRCUITS

Etch Resist Transfers - Starter pack (5 sheets, lines, pads,
I.C. pads) $£ 2.00$. Large range of single sheets in stock at 43p per sheet.
Master Positive Transparencies from P.C. layouts in magazines by simple photographic process. 2 sheets negative paper, 2 sheets positive film (A4) £2.10. Photo-resist
spray $(200 \mathrm{ml})$ [3.25 (0) 65 p) Drafting spray (200 mid E3.25 (p+p 65p). Drafting Film (A4) 25 p. 22 p stamp for tists and info where indicated.
P.K.G. ELECTRONICS

ULTRASONIC TRANSDUCERS, miniature, $\mathbf{4 0 K} \mathbf{H z}$. $\mathbf{£ 2 . 8 5}$ per pair + 25p P\&P. Dataplus Developments, 81 Cholmeley Road, Reading, Berks.

IN CIRCUIT TRANSISTOR TESTER. $£ 14.25$. S.A.E. for details of this and other products. C. M. J. Electronics, 52/54 Worcester Street, Wolverhampton. WV2 4LL.

MICRO-PRINT LTD
59 Church Street, Stoke-on-Trent, Staffs ST4 1DO. DATA BOOKS

TL - FAIRCHILD
 CMOS - FAIRCHILD

85.50

LINEAR - NATIONAL
LINEAR APPIICATION - NATIONAL E6.00
MEMORY - NATIONAL
DISCREET - NATIONAL
INTERFACE - NATIONAL
VOLTAGE REGULATOR H/BK - NATIONAL $\mathbf{£ 3 . 5 0}$ MICROPROCESSOR:
"YOUR QUESTIONS ANSWERED" Alec Wood $£ 4.95$ Please Add 85p Postage Per Book
Members of The Booksellers Association Fast Service. Barclaycard \& Access Welcome.

WRONG TIME?

MSF CLOCK is ALWAYS CORRECT - never gains or loses SELF SETTING at switch-on 8 digits show Date, Hours, Minutes and Seconds, larger digit Hours and Minutes for easy QUICK-GLANCE time, auto GMT BST and leap year, also parallel BCD output for computer or alarm and audio to record and show time on playback, receives Rugby 60 KHz atomic time signals, built-in antenna, 1000 Km range, fun-to-build kit includes all parts, printed circuits case, instructions, postage etc., money back assurance, GET the RIGHT TIME. £62.80.

CAMBRIDGE KITS
45 (FE) Oid School Lane, Milton, Cambridge.

INDEX TO ADVERTISERS

Ace Mailtronix

Cambridge Kits $\quad: \quad 78$
Cambridge Learning : $\quad 14$
Clef Products
Crofton Electronics : \quad.
8
Cin
C.R. Supply Co. : : 78

Davies N.V. $\quad: \quad . \quad 76$
Dorman Smith : $\quad 22$
E.D.A. . . 71

Electronize Design . . . 12
Electrovalue $\quad . \quad . \quad 12$
Enfield Electronics $\quad . \quad 4$

Gemini		74	
Global Specialties Corporation		5	
Hameg	.	.	.
Heathkit	.	56	
ICS Intertext	.	.	40
ILP Electronics	.	.	.

Knight A. . . . 76
L \& B Electronics . 48
Lincolnshire Area Health
Authority 77
London Electronics College . 77
Maplin Electronics
Micro-print Limited
Microstate Limited
Midwich Computers
Millhill
Modern Book Co.
Modus Systems
Cover 4

Namal .
Parndon
Phonosonics
Pimac
PKG Electronics
Polytechnic of the South
Bank
Powell T.
14
Powertran . . Cover 2
Radio Component Specialists . 79
Radio \& T.V. Components : $\quad 16$
Response Company . $\quad 76$
Scientific Wire Co
Sinclair Research
Solid State
Swanley
Technomatic : $\quad 80$, Cover 3
Tempus $\quad . \quad$
T.K. Electronics

Videotone 56
$\begin{array}{lr}\text { Watford Electronics . } & \text { 2, } 3 \\ \text { William Stuart Systems } \\ \text { (Big Ears) } & 78 \\ \text { Will }\end{array}$
Wilmslow Audio . . . 75

OVERSEAS ORDERS

Overseas readers are reminded that unless otherwise stated, postage and packing charges published in advertisements apply to the United Kingdom only.

Readers wishing to import goods from the United Kingdom are advised to first obtain from the advertiser(s) concerned an exact quotation of the cost of supplying their requirements carriage paid home.

WORLD RADIO T.V. HANDBOOK

1982 ed. Price: $£ 11.00$
AMATEUR RADIO HANDBOOK 1982
by A.R.R.L.
Price: $\mathbf{8} 8.00$
UNDERSTANDING MICROPROCESSORS
by D.L. Cannon Price: $£ 4.50$
PRACTICAL ELECTRONICS H/B
by I. Sinclair
Price: $\mathbf{£ 4 . 3 5}$
THE CATHODE-RAY OSCILLOSCOPE
\& ITS USE
by G. N. Patchett
Price: $\mathbf{8 4 . 0 0}$
INTRODUCING AMATEUR ELECTRONICS
2nd ed. by I. R. Sinclair Price: £4.00
INTRODUCING MICROPROCESSORS
by I.R. Sinclair Price: $£ 5.00$
H/B OF BASIC ELECTRONIC
TROUBLESHOOTING
by J. D. Lenk Price: £4.65
67 READY TO RUN PROGRAMS IN BASIC:
GRAPHICS, HOME \& BUSINESS,
EDUCATION, GAMES
by Wm. S. Watson
Price: $£ 4.60$
COMPUTER PROGRAMMING IN BASIC
by P. Bishop
Price: $£ 3.50$

THE MODERN BOOK CO.
BRITAIN'S LARGEST STOCKIST
of British and American Technical Books

19-21 PRAED STREET

 LONDON W2 1NPPhone 01-4029176 Closed Saturday 1 p.m Please allow 14 days for reply or delivery.

BAKER LOUDSPEAKERS "SPECIAL PRICES" POSTE2					
Model	Ohms	Inch	Watts	Type	Price
Malor	4, 8, 16	12	30	Mi-Fi	f14
Deluxe Mk II	8	12	15	Hi-Fi	£14
Superb	8.16	12	30	Mi-Fi	¢24
Auditorium	8, 16	12	45	Hi-FI	£22
Auditorium	8, 16	15	60	MI-FI	834
Group 45	4.8, 16	12	45	PA	¢14
Group 75	4, 8, 16	12	75	PA	$\mathbf{C 2 2}$

DISCD MIXER. 240 V , 4 stereo channels, 2 magnetic, 2 ceramic/tape, 1 mono mlc channel, twin v.u. meters, headphone monitor outlet, slider controls, suttable for panel or desk mounting, attractive grained aluminium facia, black
knobs, white wording. £40. Post $£ 2$.
DELUXE STEREO DISCO MIXER/EQUALISER as above plus LE.D. V.U. displays 5 band graphic equallser, leftright
fader switchable inputs for phono/line. mike/line. £95. Post fader, switchable inputs for phono/line. mike/line. £95. Pos
£2. Size: $15 \frac{1}{4} \times 11 \times 3 \frac{1}{\text { fin. }}$

BDOKSHELF MIFI ENCLOSURES TEAK VENEERS. $18 \times 11 \times 6 \mathrm{in}$. 10 watts. 8 or 4 ohm. 2 way system. 8 argain
f 32 pair. Post f 2 .

GARRARD 6-200 SINGLE PLAYER DECK Brushed Aluminium Armi with slereo ceramic cartridge
and Diamond Siylus, 3 -speeds. Manual and Auto Stop/ Start, Large Metal Turntable.

METAL PLINTH CUT FOR GARRARD

B.S.R.SINGLE PLAYER 2-speed $45 / 33 \mathrm{rmm}$. Battery operated deck. 9 volt D.C. motor. Ceramic stereo cartridge. 'S' shaped arm. cueing device. £20. Post $£ 2$.
B.S.R. SINGLE PLAYER P232 E20.00 2.speeds 11 in , Iurntable. "'Snake" arm, cueing device, stereo
ceramic cartridge, silver $\begin{aligned} & \text { trim, bias compensator, adjustable }\end{aligned}$

stylus pressure, spring suspension, 240 V AC. Post $£ 2$
B.S.R. DE-LUXE AUTOCHANGER £20

Stereo cartridge, plays all size records. 3-speed. Post C 2 .
DECCA B.S.R. TEAK PLINTH $18 \frac{1}{3} \times 14 \frac{1}{2} \times 4 \mathrm{in}$.
Space for small amplifier. Special price $£ 5.95$ post paid.
With Garrard Board $\mathbf{£ 4 . 9 5}$ post paid. PVC covers $\mathbf{£ 8}$.
TINTED PLASTIC EQUIPMENT COVERS
Sizes: $14 \frac{1}{2} \times 12 \frac{1}{2} \times 3 \operatorname{in}$. $£ 5.17 \frac{1}{4} \times 9 \frac{1}{2} \times 3 \frac{1}{2} \mathrm{in}$. $£ 3.14 \times 13$

R.C.S. LOW VOLTAGE STABILISED

POWER PACK KITS
f3.95. Post 65p
All parts and inslructions with Zener diode printed circuit,
malns transformer 240 V a.c. Output 8 or 77 or 9 or 12 V d c . malns transformer 240 V a.c. Output 8 or 71 or 9 or $12 \mathrm{~V} \mathrm{d.c}$. up to 100 mA or less. Please state voltage required.
PP BATTERY ELIMINATOR BRITISH
Mains stabilized power-pack 9 volt 400 mA D.C. with
overload cut out. Size5 $\times 3 \frac{1}{2}, 2 \frac{1}{\mathrm{in}}$. 4.50 . Post 50 o .
Switched $3 ; 6 ; 7 \frac{1}{8} ; 9$ volt 400 ma D.C. Stabilized. $£ 7.50$. Post $\mathbb{C} 1$

PARNDON ELECTRONICS LTD.

Dept. No. 2144 Paddock Mead. Harlow. Essex. CM18 7RR. Tel: 027932700

RESISTORS: $1 / 4$ Watt Carbon Film E2 4 range $\pm 5 \%$ tolerance High quaility resistors made under strictly controlled condittons by autornatic machines. Bandoliered and colour coded.
 £1.00 per hundred mixed. (Min 10 per value)
 £8.50 per thousand mixed. (Min 50 per value)
 Special stock pack. 60 values. 10 off each $£ 5.50$

DIODES: IN4148 3p each. Min order quanniry - 15 fitems.
E1.60 per hundred
DIL SWITCHES: Gold plated contact in fully sealed base - solve those
programming problems.
4 Way 86 p each 6 Way $£ 1.00$ each. 8 Way $£ 1.20$ each
DIL SOCKETS: High quality, low profile sockets.
8 pin-10p. 14 pin-11p. 16 pin-12p. 18 pin-19p. 20 pin- 21 p. 22 pin-23p. 24 pin-25p. 28 pin-27p. 40 pin-42p.
ALL PRICES INCLUDE V.A.T. \& POST \& PACKING - NO EXTRAS
MIN ORDER - U.K. £1-00. OVERSEAS E5 CASH WITH ORDER PLEASE Same Day Despatct

NICKEL CADMIUM BATTERIES

	$\begin{aligned} & \text { AA (HP7) } \\ & \text { O.5AHr } \end{aligned}$	$\begin{aligned} & \text { SUB 'C' } \\ & \text { 1.2AHr } \end{aligned}$	-C' (HP11) 1.65AHr	$\begin{aligned} & \mathrm{C}^{\prime}(\text { HP } 11) \\ & \text { 2.OAHr } \end{aligned}$	$\begin{aligned} & \text { D' (HP2) } \\ & \text { 4.OAHr } \end{aligned}$	$\begin{aligned} & \text { PP3 } \\ & 0.1 \mathrm{AHr} \end{aligned}$
1-24	C0. 85	¢1.38	¢1.69	C2.25	¢2.97	c3.79
25-49	C0.75	E1. 28	E1.58	E2.10	C2. 77	
50-99	c0.65	E1. 24	E1. 52	£2.02	¢2.67	
100 up	C0.59	E1.15	E1.41	E1.67	E2.47	

All cells are brand new full spec devices from reputable mifs. All Nickel Cadmlum cells (except P3) are supplied complete with solder tags and are 'VENTED' devices suitable for fast charge.
CHARGERS - single or dual O/P to charge PP3, AA or SUB 'C cells In 12-14 hrs (chargers will charge 'C' and ' D ' cells but with tonger charging time). Units supplied complete in plug top case
with flying leas. Number of cells 10 max) in series and type mult be specified for each required O / P when ordering

> SINGLE O/P CHARGER £5.04
> DUAL O/P CHARGER $£ 5.72$

TRANSFORMERS - as used in chargers, 2×12 volt 0.25 amp secondarys 240 v primary, tag connections $£ 1.57$ each.
Data and charging circuits free with orders over C 10 otherwise 30 p post. P\&P 10\% if order less than E10. 5\% if order over $£ 10$. Prices DO NOT to the total order. All advertised goods are ex-siock and normally despetched within 7 days.

SOLID STATE SECURITY, Dept. (PE), Bradshaw Lane Parbold, Wigan, Lancs. Telephone 02576-3018.

If you find an ad unacceptable, don't turn the page: turn to us.

The Advertising Standards Authority. If an advertisement is wrong, we're here to put it right.

AS.A. Ltd.. Brook House, Torrington Place, London WCIE 7HN.

ACE MAIITRONX LTO Dept. PE, 3A Commercial St.
Bathey, W.Yorks. WF 17 5HJ

THS MONTIISSIIP!

NEW 1982 CATALOGUE
for your carefree component purchasing
COMPONENTS - Over 1,000 types in stock SERVICE - Same day despatch.
QUALITY - Al guaranteed products
"Let us quote for your hard to get components for PE projects"

I enclose 30p; please send catalogue
\qquad

TECHNOMATIC TECHNOMATIC TECHNO SPECIAL OFFER

ATOM ULTRASONIC VISION
Project described in April PE Kit now available. Phone for price details Sottware described in this issue. Software Cassette with fully documented Assembler Listing $\mathbf{£ 4 . 5 0}$.

ACORN ATOM

 BASIC $8 K+2 K$ Kit $£ 120$. Built $£ 135$. EXPANDED $12 \mathrm{~K}+12 \mathrm{~K} \mathbf{f} 185$(p\&p $£ 2.50$ per unit)
FP. ROM £20. IK RAM $(2 \times 2114 \mathrm{~L}) \mathbf{f 2}$. TOOL BOX ROM $\mathbf{f} 25$ NEW COLOUR CARD $\mathbf{f} 32$
Full range of connectors \& sotware in stock Send for our ATOM list
Sound Generator Board with User Ports to be available soon. SPECIAL OFFER ON INTRODUCTORY PACKAGE 10. (includes Interactive, Teaching. Financial, Planning, Household \& Games) CONNECTORS

Ext/Int bus

panntea
vou
Plug E 3.10 SKT E 4.00
37 Plug fz SKT Ez

\star UK101: INTERFACING SYSTEM \star

Two board interface system plugs directly into computer expansion socket to provide wide facilities

 accessible from BASIC or MACHINE CODE1) DECOOING MODULE: Providing a dual 5 v supply, 16 bit programmable $/ 0$ port, plus ex tensive address decoding for a wide variety of interfaces, including full decoding for a pro grammable sound generator, and also a 40 pin skt for further expansion.
2) ANALOGUE BOARD: Plugs into the decading module to provide D/A converter, 8 channel mut tiplexed A/D converter with 20 nS conversion time. AY3-8910 SOUND GENERATOR plus 6522 VIA provide complex timing \& counting functions and additional 16 bit port. DECODING MOLULEKIT £27.50 ANALOGUE BOARD £39.95

P\&P $0.75 \mathrm{p} / \mathrm{Kit}$

SOFTY II

The complete micropressor development system for both Engineers and Hobbyists. You can develop programs, debug, verity and commit them to EPROMs. Will accept most +5 V EPROMs. Can also be used as a ROMULATOR. Full review in September " 81 P.E. Built unit complete with PSU and TV lead $\mathbf{E 1 6 9}$.

UV ERASERS

UV18 (up to 6 EPROMs)
UV ERASERS
UV1 40 (up to 14 EPROMs)
$£ 42.00+£ 0.80 \mathrm{p} \& \mathrm{p}$ OVI 40 tup to 44 EPROMS) $\mathrm{f} 61.50+£ 1.20$ p\&
UV1 41 (as UV140 bui with timer) $\mathrm{f} 78.00+\mathrm{f} 1.20$ p 8
The above erasers are fitted with safely switches to ensure no acidental exposure to UV light Spare tubes for above $\mathbf{f} \mathbf{1 0 . 5 0}$ each $+\mathbf{f 1 . 0 0}$ p\&p.

UNIVERSAL INTERFACE FOR PET

Self contained all. purpose interface unit for old or new PETs providing a range of
parallel INPUT/OUTPUT ports, 16 bit TIMERS, Ultrafast multichannel ANALOGUE TO OIGITAL CONVERTERS, DIGITAL TO ANALOGUE CONVERTERS and PROGRAMMABLE SOUND GENERATORS. Internal motherboard system allows easy upgrading. The unit complete with a dual voltage power supply is housed in an attractive case.
$f 149+f 2.50 p \& p$ For further details send for TUI/1
TECHNOMATIC TECHNOMATIC TECHN

[^4]Australia and New Zealand - Gordon \& Gorch (A/sia) Lud.; South Africa - Central News Agency Lud.
Subscriptions INLAND and OVERSEAS 113 -00 payable to IPC Services. Oakfeld House, Perrymount Road, Haywards Heath, Susser.
Practical Electronics is soid subject to the following conditions, namely, that it shall not. without the written consent of the Publishers frst given, be lent. resold, hired out or otherwise disposed of by way of Trade at more than the recommended selling price shown on the cover, and that it shall not be lent, resold or hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade, or affixed to or as part of any publication or advertising. literaty or pitctoriai matter whatsoever.

DIGITAL MULTI-TRAIN CONTROLLER
 Control up to 14 trains individually on the same track with any four

 simultaneousty! Low cost kits available.Full details in our projects book. Price 60p.
Order As XAO2C

COMBO-AMPLIFIER
Easy to build portable 120W MOSFET amp for all stage musicians. Built.in flanger, five step equaliser, two inputs for guitars, keyboards of microphones, low-noise pre-amp
Full details in our book. Price 60p.
Order As XA01B.

STOP-WATCH

Multi-mode 8 -digit stopwatch accurate to hundredths of a second. Easy to buld - complete kits avalabte. Full details in our projects book.

Price 60p.
Order As XAO2C

MATINEE ORGAN
Easy-to build, superb specitication. Comparable with organs selling for up to $£ 1,000$. Full construction details in our book. Price $£ 2.50$.
Order As XH55K.
Complete kits available:
Electronics-f299.95,
Cabinet- $\mathbf{f 9 9 . 5 0}$ (carriage extra) Demo cassette price $\mathbf{£ 1 . 9 9}$. Order As XX43W.

* Don't miss out-get a copy of our catalogue now Over 140,000 copies sold already!
* On sale now in all branches of WHSMITH解 price $£ 1$.
* 320 big pages packed with data and pictures of over 5,500 items.

Shops at:
159 King St. . Hammersmith, London W6. Tel: 01-748 0926 284 London Rd., Wesicliff-on-Sea, Essex. Tel: (0702) 554000 Nore: Shops closed Mondays

miapulin SUPPLIES LTD

MILES PER GALLON METER
Digital display shows you how economical your driving is as you go along.
Complete kits available
Full details in our projects book
Price 60p.
Order As XAO2C.

Post this coupon now!
Please send me a copy of your 329 page catalogue. I enclose f 1.25 (inc. 25 p p $£ \mathrm{pl}$). If
I am not completely satisfied I may return the catalogue to you and have my money
refunded.
li you live outside the U.K. send f 1.68 or 12 International Reply Coupons.
Name.
Address

[^0]: C) IPC Magazines Limited 1982. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautlons are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: "Time rolls his ceaseless course" (Scott).

[^2]: ANY SINGLE SERVICE SHEET EI/L.S.A.E. Thousands different repair/service manuals/sheets in stock. Repalr data your named T.V. £6.50, (with circuits $\mathbf{£ 8 . 5 0}$). S.A.E. Newsletter, pricelists, quotations. AUS (PE), 76 Churches, Larkhall, Lanarkshire. (0698 883334).

[^3]: Company registered in England. Registered No. 53626. Registered Office: King's Reach Tower, Stamford Street. London SE 1 9LS

[^4]: Published approximately on the ISth of each month by IPC Magazines Lid... Westover House. West

