PRACTICAL

APRIL 193e

0 (4) Vision System

- 1 i : $x+-2$

Stereo
 Cassette Deck

ond gene supandin.
 Gitiplo mind its

PRECISION - by

 POWERTRAN

 POWERTRAN}

For more than eleven years Powertran have been designing and manufacturing the finest quality electronic kits. All of our now considerable range have featured in the electronics press and literally thousands have been bought and built by contractors in the UK and World-wide.

Our philosophy is always the same - we offer ingenuity and originality in the construction phase by using only top class designers. We offer machines with power, versatility and performance - capability fully equal to their factory built rivals. We offer only the highest quality materials and components throughout to ensure years of useful and reliable service, we offer clear comprehensive and easy to follow construction manuals to place our kits within the scope of the careful first time builder as well as the dedicated enthusiast.
Our hallmark of success lies in the number of our clients who have built our whole range - many assembling several units for others to use often on the professional music scene.
We believe in taking every care throughout - months spent checking and testing the design and development. Vigorous checking of every component, constant pre-despatch quality control, careful packaging . . . even door to door delivery by Securicor!
We are naturally very proud of our Transcendent range of synthesizers designed by Tim Orr and regularly featured in ETI. They represent the best in constructional interest and in musical performance.

TRANSCENDENT POLYSYNTH - A four octave polyphonic synthesiser with outstanding design characteristics and versatility and performance to match.

Complete kit $£ 275.00$ plus VAT (single voice)
Extra voice (up to three more) $£ 42.00$ plus VAT
EXPANDER - A new matching 4 voice expander to team up with your polysynth for even a greater range and capability

Complete kit $£ 249.00$ plus VAT
TRANSCENDENT DPX - Offers a five octave keyboard with power to match Two audio outputs (can be used simultaneously) to give harpsichord and piano/honkytonk or reed with strings/brass and both are fully polyphonic. Other features include switchable touch sensitivity and a chorus ensemble unit with strong/mild effect switching. An advanced design made simple with our clearly laid out instruction manual.

Complete kit $£ 295.00$ plus VAT.

TRANSCENDENT 2000 - Although only a 3 octave keyboard the '2000' features the same design ingenuity, careful engineering and quality components of its larger brethren. The kit is well within the scope of the first time builder - buy it, build it . . . play it! You will know you have made the right choice

Complete kit £165.00 plus VAT

1024 COMPOSER - Come right up to the minute with this new design. It will control your synthesiser with a sequence of up to 1024 notes - or an equal selection of shorter sequences. The Composer is mains powered with automatically charged battery to preserve your programme after switch-off. Complete kit f 85.00 plus VAT

DEMONSTRATION TAPE - 30 minute demonstration tape of all three synthesizers now avalable

STUDIO QUALITY

DIGITAL DELAY LINE

 Our latest kit!With its ability to give delay times from 0.3 to up to 1600 msecs, many powerful effects including phasing, flanging, ADT, chorus, echo and vibrato are obtained. The basic kit is extended in 400 ms steps up to 1.6 sec simply by adding more parts to the P.C.B Compare with units costing over $£ 1.000$!

Complete kit $£ 13.00$ plus VAT $(400 \mathrm{~ms}$ delay). Parts for extra 400 ms delay $£ 9.50$ plus VAT

PRICE STABILITY: Order with confidence irrespective of any price changes we will honour all prices in this advertisement until the end of the month we will honour all prices in this advertisement until the end of the month
following the month of publication of this issue. (Errors and VAT rate changes excluded
EXPORT ORDERS: No VAT. Postage charged at actual cost plus $£ 1$ handling and documentation.
U.K. ORDERS. Subject to 15\% surcharge for VAT. No charge is made for carriage, or at current rate if changed. Cheques, Access, Barclaycard accepted
SECURICOR DELIVERY: For this optional service (U K mainland only) add SECURICOR DELIVERY: For this optional service (U.K. mainland only) add SALES COUNTER . per kit FREE ON ORDERS OVER E 100.
STEREO CASSETTE DECK Part 1 18
The latest separate for the PE Quasar Stereo System
ULTRASONIC VISION SYSTEM Part 1 by Jeremy Bentham and Fred Bentham 24
A radar style outlook for your computer
ENLARGER TIMER by Tom Gaskell BA 32
Photographic aid for the darkroom
MEDIUM RESOLUTION GRAPHICS by N. A. Climpson 41
User definable 4-times resolution for UK 101
PE ROBOTS Part 6 by Richard Becker, Tim Orr and Richard Monkhouse 46
Conclusion-software, construction and wiring
TELECTRIC ELECTRICITY COST MONITOR Part 2 by Stephen Day BSc Eng MIEE 58
Microprocessor circuitry and software; constructional details
GENERAL FEATURES
SEMICONDUCTOR UPDATE by R. W. Coles 39
Featuring MC146818 TDS 9346600
STRICTLY INSTRUMENTAL by K. Lenton-Smith 52
History of an organ pioneer
MICROPROMPT 54
Including a 48×32 video conversion for UK 101
INGENUITY UNLIMITED 61Overload cutout for thyristor speed control-Button selector-Switch de-bounce-Quality micamplifier- 9 V power supply-Octave bank for VCOs-Sound-to-light converter
NEWS AND COMMENT
EDITORIAL 13
NEWS \& MARKET PLACE 14
Including Countdown and Points Arising
THE MACROCHIP 28
Hot news of a piece of innovative technology
INDUSTRY NOTEBOOK by Nexus 30
Going off the rails?
SPECIAL OFFER-LOUDSPEAKERS 31
Hi-fi speakers at a very low price
BAZAAR 45
Buy, sell and swap service for readers
SPECIAL OFFER-CASSETTES 51
Starting a regular bargain offer on high quality cassettes
READOUT 53
Readers' criticism . . . and praise
SPACEWATCH by Frank W. Hyde 66
PATENTS REVIEW 68
SPECIAL SUPPLEMENT
FREE TRANSISTOR PROJECTSbetween pages 40 \& 41Logic probe, Light Delay Unit, Car Lights Reminder, Battery Monitor, Soil Moisture Meter, Snap IndicatorOUR MAY ISSUE WILL BE ON SALE THURSDAY, 8th APRIL 1982
(for details of contents see page 23)

[^0]

SPEAKERS	
DIODES	ERIDGE
AA199 15	AECTIFIERS
BA100 15	(plastic case)
BY100 24	$1 \mathrm{~A} / 50 \mathrm{~V} 20$
BY126 12	1 A100V 22
BY127 12	1 A 400 V 29
C4033 250	1 A 600 V 34
OA9 40	$2 \mathrm{~A} / 50 \mathrm{~V} 35$
044712	2A/200V 40
OA70 12	2A/400V 46
OA79 15	2 A 600 V 65
OA85 15	6A/100V 83
0490	$6 \mathrm{~A} / 400 \mathrm{~V} 95$
0491	6A/600V 125
0495	10A/200V215
OA200	10A/600V350
OA202	25A/200V240
1N914	25A/600V395
1N916	BY164 56
$1 \mathrm{~N} 4001 / 2$	VM18 50
1 N 40036	
$\begin{array}{ll} \text { 1N } 4004 / 5 & 6 \\ 1 N 4006 / 7 & 7 \end{array}$	ZENERS
IN4148 4	Range: 2 V 7 to
1N5401 15	39 V 400 mW
1N5404 16	Ep mach
1 N5406 17	Range 3 V 3 to
1N5408 19	33 V .13 W
1544	15 peach
15921	
6 A 100 V 40	VARICAPS
6 6/400V 50	MVAM2 185
6A/800V 65	MVAM 115168
Noise Diode	
25J 195	$\begin{array}{ll} \text { BB1058 } & 40 \\ \text { BB106 } & 40 \end{array}$
SCR'	
Thyristors	TRIACS
$084-100 \mathrm{~V} 32$	
1 A 200 V 58	
1 A 400 V 70	3A800V 85
5 A 300 V 38	8 A100V 60
$5 \mathrm{~A} / 400 \mathrm{~V} 40$	8 CA 400 V 69
5 N 600 V 48	8 A 800 V 115
8 A 300 V 60	12 A 100 V 78
8 A/600V 95	$12 \mathrm{~A} / 400 \mathrm{~V} 82$
12A100V 78	12A800V135
12A/400V 95	16A/100V103
12 A B B O V 188	16A/400V105
ET106 150	16AB00V220
BT116 180	25A/400V185
C106D 38	25A800V295
TIC44 24	25 A/1000V
TIC45 29	480
TIC47 35	30A/400V525
2N5062 32	T2800D 120
2N5064 38	
2N4444 130	SOLDERCON
DIAC	
ST2 25	$500 \quad \mathbf{3 2 5 p}$

WATFORD'S
Ultimate Monitor IC. produce the best from your: Superboard Series 1 \& 11 , Enhanced Superboard \& Practical Electronics, June 1981
Price only $£ 15.95+50 p$ P\&P.

DIL PIUCS	RIbBon CABLE
(Headera)	10 way 33
14 pin 44	20 way 40
16 pin 49	24 way 50
	40 way 70
SPEAKING CLOCK Full Kit of parts now available Only: $£ 37.50$	
ZERO Insertion Force DHL Sockets	
$24 \text { way } 595$ $850 \mathrm{p} ; 40 \text { wa }$	$\begin{aligned} & \text { 5p; } 28 \text { way } \\ & \text { ay } 975 p \end{aligned}$

IDC	IDC	PCB	PC8
Headers	S Header	Plug	Plug
with	Socket	Strgt.	Rt.
Latcher		Pins	Pins
90p	-	60p	65p
$130 p$		70p	78p
145p	-	80p	92p
175p	-	95p	110p
205p		110p	135p
220p	-	125p	150p
235p	-	150p	175p
		200p	220p
NNECTORS			
			Rt. L
	Plugs	Socket	Plug
2, 31 way 1	180 p	195p	
2×32 way 2	270 p	320 P	370p
3×32 way 3	370p	410p	450p

COMPUTER CORNER

4. VIC 20 MICROCOMPUTER. Connects directly to a colour TV. 5K RAM expandable to $\mathbf{3 2 K}$
PET type graphics.
$\mathbf{~} 165$

- CASSETTE DECK for VIC20 including a free 6 programme Cassette
- EPSON MX SERIES PRINTERS: Full range available. Please phone for prices.
- SEIKOSHA GP80A - Unihammer Printer, gives normal and double width characters as well as do resolution graphics $8^{\prime \prime}$ Tractor feed. Paraltel Interface standard
- SOFTY-2. As reviewed in PE September 1981. The complete microprocessor development system for Engineers \& Beginners. New powerful instruction. Accepts any 24 pin 5 V single rail EPROM. Supplied fully built, tested 8 enclosed in a black ABS case. Price incl. encapsulated plug in power suppl
- VIDEO MONITOR $9^{\prime \prime}$ fully cased. B \& W. Fully guaranteed. Excellent value for money at only $\mathbf{f} 69$
- TEX EPROM ERASER. Erases up to 32 ICs in
- TEX EPROM ERASER with integral 30 min Electronic timer
- Spare UV lamp bulbs

5V/5A PSU Ready built and tested

- Attractive Beige/Brown ABS CASE Superboard/UK 101 or Home Brew
- Space Invaders for Superboard
- Full ASC11 coded keyboard type ' 756
4×4 matrix keypad (reed switch assembly) $\mathbf{~} 4$
- C12 Cassettes in Library Cases
- $8 \frac{1}{2}$ Fan fold paper (500 sheets) (no VAT)
- $9 \frac{1}{2}^{\prime \prime}$ Fan fold paper (500 sheets) (no VAT)
- Teleprinter Roll (no VAT)
(P\&P on most of the above items is extra)
Call in at our shop for demonstration of any of the above items. Be satisfied before you buy.

SWITCHES

SLIDE 250V TOGGLE 2A 250 V 1 ADPDT 14 SPST
1 DDPDT C/OFF 15
15 DPDT PUSH BUTTON PUSH BUTTO Spring loaded
Latching or Latching or 6 SPDT c/over MI
No
Pus Non Locking
Push to mak SUB-MIN r
 ROCKER: 5A. 250 V , SPS HOCKEA: With n 10A 250V DPST ROCKER: (White) 10 A 250 V DPDT $8 \mathbf{8 5 p}$ AOTARY: Make your own Multiway Switch. Shafting
dates up to 6 wafers Break before make Waters 1 pole $/ 12$ wak: 2 poie/ $/ 6$ way:
4 way: 4 pole/3 way: 6 pole $/ 2$ way 4 way: 4 pole/3 way: 6 pole
Mains DPST Switch to fit Screen \& Spacers
ROTARY: (Adjuatable Stop Typl) 1 pole/2 to 12 way, $2 \mathrm{p} / 2$ to
2 to 4 way, 4 pole $/ 2$ to 3 way ROTARY: Mains 250 V AC $4 \mathrm{Amp} \quad 56 \mathrm{p}$ DIL SWITCHES: (SPST) 4 way $70 \mathrm{p} ; 6$
way 85 ; 8 way $90 p$; 10 way 146 ;

CRYSTALS
32.768 KHz 32.768 KH
100 kHz 200 KHz
455 KHz MHz
28 MHz 1. 6 MHz
1.8 MHz
1 1.008 M
1.8432 M 1.8432 M
2.0 MHz
2.4576 M
3.2768 M 3.2768 M
F 7954 M
3.6864 M 3.6864 M
4.0 MHz
4.032 MHz 4.032 MH
4.80 MHz 4.194304 M
4.433619 M 4.433619
5 OMHz 5. 1 MHZ
5.185 MH 5.24288 M
6.0 MHz 6. 0 MHz
6. 144 MHz 6. 144 MMHZ
5. 5536 MHz .0 MHz
168 MH 7.68 MHz
80 MHz
8.08333 M
8.867237 M 8.867237 M
9.00 MHz
9.375 MHz
10.0 MHz 10.7 MHz
10.24 MHz 12.0 MHz
12.528 MH
14.31818 1431818
16.0 MHz 18.0 MHz
18.432 M
19.968 MHz 20.0 MHz
24.0 MHz 24.930 M
26.69 M 26.670 MHz
27.648 M 27125 MH
28.66667 M 38.66667 M
48.0 MHz
\qquad
ASTEC UHF
\qquad $6 \mathrm{MHz} \quad 280$ 8 MHz Wide-
8 MHz
band WAITORD ECT. rai EPROMS.

WATFORD'S UNIVERSAL MICRO EXPANSION SYSTEM

Designed by Watford Electronics, this extremely versatile and economical Expansion System as published in E.T.I., starting from Dec., 81 issue. offers a low cost flexible expansion facility for ZX81. UK101. SUPERBOARD. ACORN ATOM, PET, TANGERINE, TRS80, VIDEO GENIE, VIC 20,

The Motherboard (Interfaces with the Computer) has capacity to accept up to five daughter cards and can be paralleled for even more daughter cards. All PCBs are of Computer grade finish and are supplied in Kit form
Just look at the expansion possibilities:
MOTHERBOARD - Accepts up to five Daughter Full Kit: $£ \mathbf{3 6 . 5 0}$ SOUND CARD - Utilising up to three AY-38910 Sound chips. (one supplied with every Kit)

Full Kit: $£ \mathbf{2 4 . 9 5}$ PIO CARD - Using two 6520 PIA chips, this Board offers Centronics parallel printer driver digital to analogue converter and a host of other out-put facilities. Full Kit: £19.95 PROM PROGRAMMER - This simple but extremely useful card can blow 2716 or 2732 single

Full Kit: £25.95 PROM CARD - P.C.B. cards for housing four 2716 or two 2732 EPROMS.

Full Kit: $\mathbf{£ 1 1 . 9 5}$
Full Kit: $£ 11.75$
RAM CARD - 8 K RAM card. Accepts 16×2114 RAMs. The Board is supplied fully populated.

Full Kit: £28.50
(N.B. PCBs may be bought separately)

ELECTRONCS
Telex. 8956095

With the Minimax II, Videotone revolutionised the market by establishing an opening for small, high quality speakers. Natural evolution has brought about the new Minimax 2, retaining all the qualities of clarity and sensitivity. This ideal combination of size and performance is a proven success, acclaimed by the press and public for seven years.

POPULAR HI-FI
"Switching to the Minimaxs" from any of the others produced an open and natural sound as though something had been taken away. It had, the colour ation had gone." Comparative test OCTOBER 1975.

HI-FI ANSWERS
Their modest appearance and price disguise their startling abilities. Never have we heard such a small speaker sound so big!" JANUARY 1975.
PRACTICAL HI-FI \& Audio "The depth, clarity and openness of sound produced is quite astonishing'. JUNE '75 WHAT HI-FI
the ability of the Mini-
max to take a lot of power and still sound good could be decisive" - Comparative test, APRIL 1977.

PRACTICAL HI-FI
The little Videotone scored highly for such a small inexpensive loudspeaker" JANUARY 1981.

Specification:
Recommended amplifier power 10 to 40 watts rms into 8 ohms Frequency Response: $80 \mathrm{~Hz}-20 \mathrm{KHz} \pm 5 \mathrm{~dB}$.
Finish: natural teak, veneer with black frets.
Size: $107 / 8^{\prime \prime}$ high, $63 / 4^{\prime \prime}$ wide 71/2' deep. Weight: $4.1 \mathrm{Kgs}(9 \mathrm{lbs})$ each. ONLY £69.95 A PAIR

- We welcome callers to our South London Showroom

 for demonstrations.- Enqiries and information phone: 01-690 8511, Ex. 32
- All products are only available direct or from selected authorised dealers throughout the U.K.
VIOEOTONF 98 CROFTON PARK ROAD LONDON SE4. Send for our free brochure and details of outlets in the U.K.

Post to: Videotone, Crofton Park Road, London SE4 -
ADDRESS \qquad

The expert and personel guidance by fully qualified tufors, backed by the ICS guarantee of tuition until successful, is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed.

City and Guilds Cortificates

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:

Telecommunications Technicians
Radio, T.V. Electronics Technicians
Radio Amateurs
Electrical Installation Work

Diploma Courses

Colour T.V. Servicing
CCTV Engineering
Electronic Engineering \& Maintenance
Computer Engineering and Programming
Radio, T.V. and Audio, Engineering \& Servicing
Electrical Engineering, Installations \& Contracting

Other Career Courses

A wide range of other technical and professional courses are available including GCE.

Post this coupon or 'phone today for free Electronics careers guide.

Age \qquad
To ICS, Dept 273T, Intertext House. London SW8 4UJ
or telephone 01-622 9911 (all hours)

NTIS, COMPONENTS mciop \& PAitis

THE GARAGEDOOR YOURCOMOA AT YOUR COMOR DMAND opened without selting your motorised garage

DISCO LIGHTING KITS

DL1000K

This value-lor-money $k i t$
Ceatures a bi-directional sequence, speed of sequence
and frequency of direction and frequency of direction
change, being variable by
means of potentiometers and Incorporates a master
dimming control Onty $£ 14.60$ dimming
A lower cost version of the above, teaturing undirectional channel sequence with speed variable by means of a pre-set pot. Outputs switched only at mains zero crossing points
to reduce radio interference to a minimum. lo reduce racio interrerence Io Only EB.00 Optional opto input DLAT
Allowing audio ("Deat")-light response.

DVM/ULTRA SENSITIVE THERMOMETER KIT

This new design is based on
the ICLI7126 a

disolay This kit will form the display. This kit will form the
basis of a digital multimeter oasis of a digital multimetern
lonly a few additional resistor
are required-details supplied). or a sensitive
digital thermometer ($-50^{\circ} \mathrm{C}$. or a sensitive $+150^{\circ} \mathrm{C}$)
reading to $0.1^{\circ} \mathrm{C}$ The basic kit has a
sensitivity of 200mv lor a full scate read
automatic polarity incication scand read ang,
typical battery life trom a standard ${ }^{2} \mathrm{~V}$ YP3
when used 8 hours a day 7 days a week.
Price $£ 15.50$

THE KEY TO YOUR SECURITY IS IN OUR LOCK

If the thought of car thieves, house breakers of people ta
electronic equipment upsets you, have ,ust the kit tor you
electronic equipment upsets yo
750 mA output to orive a solenoid or eres a 10 . way keyboard and a special IC which provides a correct sequence This gives over 5,000 possible combinationsi The sequence is prewwired and mav be easily changed by means of a small plug and socket. A "SAVE" function is also availabls anabling the open code to be stored lespecially useful in a car when it is left in a garage servicing as the open code need not be disclosed). Size
40UA at $5 \vee 1015 V$ d.c.
At onty E1050 + VAT

THE MULTI-PURPOSE TIMER HAS ARRIVED
Now you can iun your central heating, lighting, ni-tı system and lots
more with just one programmabie timer. At your selection is

* Day of week, am/pm and output status indicators
- 50/60 Hz malns operation
- Battery backup saves s
(Battery not supplied).
* Display blanking during
- Powerful "Everyday" function enabling output
- Useful sleep funcron-turns on output for one hour
- 20 function keypad for programme entry
- Programme veritication at the touch of a button
THERE HAS NEVER BEEN A CLOCK CAPABLE OF SO MUCH AT SUCH A LOW PRICE HERE HAS NEVER BEEN A CLOCK CAPABLE O
ONLY $£ 45.00$ ONLY 845.00
including components, assembly and programm

Sinclair 2X81 Personal Comp the heart of a system that grows with you.

1980 saw a genuine breakthrough the Sinclair ZX80, world's first complete personal computer for under £100. Not surprisingly, over 50,000 were sold.

In March 1981, the Sinclair lead increased dramatically. For just $£ 69.95$ the Sinclair ZX81 offers even more advanced facilities at an even lower price. Initially, even we were surprised by the demand - over 50,000 in the first 3 months!

Today, the Sinclair ZX81 is the heart of a computer system. You can add 16 -times more memory with the ZX RAM pack. The ZX Printer offers an unbeatable combination of performance and price. And the ZX Software library is growing every day
Lower price: higher capability With the ZX81, it's still very simple to teach yourself computing, but the ZX81 packs even greater working capability than the ZX 80 .

It uses the same micro-processor, but incorporates a new, more powerful 8K BASIC ROM - the 'trained intelligence' of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays.

And the ZX81 incorporates other operation refinements - the facility to load and save named programs on cassette, for example, and to drive the new $Z X$ Printer

Every $Z \times 81$ comes with a comprehensive, specially-writte manual - a complete course in BASIC programming, from first principles to complex programs

Higher specification, lower price how's it done?
Quite simply, by design. The ZX80 reduced the chips in a working computer from 40 or so, to 21 . The ZX81 reduces the 21 to 4 !

The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from the ZX 80 !

New, improved specification

 - Z80A micro-processor - new faster version of the famous Z80 chip, widely recognised as the best ever made.- Unique 'one-touch' key word entry: the ZX81 eliminates a great deal of tiresome typing. Key words (RUN, LIST, PRINT, etc.) have their own single-key entry.
- Unique syntax-check and report codes identify programming errors immediately.
- Full range of mathematical and scientific functions accurate to eight decimal places.
- Graph-drawing and animateddisplay facilities.
- Multi-dimensional string and numerical arrays.
- Up to 26 FOR/NEXT loops. - Randomise function - useful for games as well as serious applications. - Cassette LOAD and SAVE with named programs.
- 1K-byte RAM expandable to 16K bytes with Sinclair RAM pack.
- Able to drive the new Sinclair printer.
- Advanced 4-chip design: microprocessor, ROM, RAM, plus master chip - unique, custom-built chip replacing 18 ZX80 chips.

Built: 560,95

Kit or built - it's up to you!

 You'll be surprised how easy the ZX81 kit is to build: just four chips to assemble (plus, of course the other discrete components) - a few hours' work with a fine-tipped soldering iron. And you may already have a suitable mains adaptor - 600 mA at 9 V DC nominal unregulated (supplied with built version).Kit and built versions come complete with all leads to connect to your TV (colour or black and white) and cassette recorder.

uter-
 Available nowthe IX Printer for only £49.!
 Designed exclusively for use with

16K-byte RAM pack for massive add-on memory.

Designed as a complete module to fit your Sinclair ZXBC or ZX81, the RAM pack simply plugs into the existing expansion port at the rear of the computer to multiply your data/program storage by 16 !

Use it for long and complex programs or as a personal database Yet it costs as little as half the price of competitive additional memory

With the RAM pack, you can also run some of the more sophisticated ZX Software - the Business \& Household management systems for example.

Eincleir ZX8

6 Kings Parade, Cambridge, Cambs., CB2 1SN. Tel: (0276) 66104 \& 21282.
the ZX81 (and ZX80 with 8K BASIC ROM), the printer offers full alphanumerics and highly sophisticated graphics.

A special feature is COPY, which prints out exactly what is on the whole TV screen without the need for further intructions.

At last you can have a hard copy of your program listings - particularly

How to order your ZX81

BY PHONE - Access, Barclaycard or Trustcard holders can call
01-200 0200 for personal attention 24 hours a day, every day. BY FREEPOST - use the no-stampneeded coupon below. You can pay
useful when writing or editing programs.

And of course you can print out your results for permanent records or sending to a friend.

Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZX Printer connects to the rear of your computer - using a stackable connector so you can plug in a RAM pack as well. A roll of paper (65 ft long $x 4$ in wide) is supplied, along with full instructions
by cheque, postal order, Access, Barclaycard or Trustcard. EITHER WAY - please allow up to 28 days for delivery. And there's a 14-day money-back option. We want you to be satisfied beyond doubt and we have no doubt that you will be.

DIGITAL VOLTMETER MODULE

Fully built \& tested

- Positive and negative voltages with an FSD of $999 \mathrm{~m} V$ which is easily extended. - Requires only single supply 7-12V. - High overall accuracy $\pm 0.1 \%+1$ digit - Large bright $0.43^{\prime \prime}$ (11 mm) LED displays -Supplied with full data and applications formation.

Using this fully built and calibrated module as a basis now means that you can easily build a wide range of accurate equipment such as multimeters, thermometers, battery indicators, etc. etc. at a fraction of the cost of ready-made equipment. Full details are supplied with each module showing how to easily extend the voltage range and measure current, resistance and temperature. Fully guaranteed, the unit has been supplied to electricity authorities, Government deparments, universities, the P.O and many companies.

Temperature Measurement
 $£ 2.15$ +val

An easily constructed k it using an I.C. probe providing a linear output of $10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ over the temperature range from $-10^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. The unit is ideal for use in conjunction with the above DVM module providing an accurate digital thermometer suitable for a wide range of applications.

Power Supply

£4.95 +vat
This fully built mains power supply provides two stabilised isolated outputs of 9 V providing current levels of up to 250 m A each. The unit is ideally suited for power ing the DVM and the Temperature Measurement module

ULTRASONIC ALARM MODULE
Fully built \& tested

Power Supply \&

 Relay Unit $£ 3.95+$ vatIncorporating a stabilised 12 V supply and a s.p.c.o. relay with 3 A contacts, this unit is designed to operate in conjunction with the above ultrasonic unit. Fully built and tested, its compact size makes it ideal for constructing the smallest of units.

Siren Module

£2.57+vat
Producing a very loud and penetrating wailing sound, this module operates from 9-15 volts, capable of driving one or two 8 ohm speakers. Suitable horn speakers available at $£ 4.30$ each plus VAT.

Hardware Kit $£ 3.95_{\text {+vat }}$
 A suitable ready drilled case together with

 the various mounting pillars, nuts and bolts, and including a mains switch and 2 mm sockets designed to house the ultrasonic alarm module, together with its associated power supply. Size $153 \mathrm{~mm} \times 120 \mathrm{~mm}$ $\times 45 \mathrm{~mm}$.In addition to the above a wide range of competitively priced electronic components is stocked. Please telephone your specific requirements.

- V.A.T. must be added on all items. © Shop hours 9-5.30 (Weds. 9-1) - ex-stock delivery on all items. OUnits on demonstration, callers welcome. \bigcirc Post and packing charge 50 p per order. © S.A.E. with all enquiries please.

RISCOMP LIMITED

Dept. PE6,
21 Duke Street
Princes Risborough, Bucks.
Tel: Princes Risborough (084 44) 6326

Just 50 p will bring you the latest Wilmslow Audio 80 page catalogue packed with pictures and specifications of HiFi and PA Speaker Drive Units, Speaker Kits, Cabinet Kits . . .

1000 items for the constructor.

CROSSOVER NETWORKS AND COMPONENTS. GRILLES, GRILL FABRICS AND FOAM. PA, GROUP DISCO CABINETS - PLUS MICROPHONES AMPLIFIERS - MIXERS - COMBOS - EFFECTS SPEAKER STANDS AND BRACKETS - IN-CAR SPEAKERS AND BOOSTERS ETC. ETC.

* Lowest prices - Largest stocks *
* Expert staff - Sound advice *
* Choose your DIY HiFi Speakers in the comfort * of our listening lounge
(Customer operated demonstration facilities)
* Ample parking *
* Access . Visa . American Express accepted *

35/39 Church Street, WilmIsow, Clieshire SK9 1AS

Lightning service on telephoned credit card orders! Please allow up to 7 days for delivery.

PARNDON ELECTRONICS LTD.

Dept No 2144 Paddock Mead. Hariow. Essex. CM18 7RR Tel: 027932700
RESISTORS: $1 / 4$ Watt Carbon Film E24 range $\pm 5 \%$ tolerance. High quality resistors
made under strictly controlled conditions by automatic machines. Bandoliere and colour coded
£1.00 per hundred mixed (Min 10 per value)
£8.50 per thousand mixed (Min 50 per value)
Special stock pack. 60 values. 10 ofl each $£ 5.50$
DIODES: IN4148 $3 p$ each Min order quantity - 15 items
$\mathbf{£ 1 . 6 0}$ per hundred
DIL SWITCHES: Gold plated contact in fully sealed base solve those fore programming problems
4 Way 86p each 6 Way $£ 1.00$ each. 8 Way $£ 1.20$ each
1^{1}

DIL SOCKETS: High quality low profile sockets
8 pin-10p. 14 pin-11p. 16 pin-12p. 18 pin-19p. 20 pin- 21 p 22 pin-23p. 24 pin-25p. 28 pin-27p. 40 pin-42p.

ALL PRICES INCLUDE V.A.T. \& POST \& PACKING - NO EXTRAS MIN ORDER - UK £ 1 OO OVERSEAS 55 CASH WITHORDER PLEASE Same Day Despatch

IONISER KIT
 (MAINS
 OPERATED)

This negative ion generator gives you the power to saturate your home or office with millions of refreshing ions. Without fans or moving parts it puts out a pleasant breeze. A pure flow of ions pours out like water from a fountain, filling your room. The result? Your air feels fresh, pure, crisp and wonderfully refreshing.
All parts, PCB and full instructions
A suitable case including front panel, neon switch, etc. $\mathbf{~ 6 6 . 5 0}$ HOURS:

Mon. to Fri. 9-5 pm
Sat. 9-4.30 pm.
Wide range of Japanese integrated circuits \& transistors stocked.

Price includes post \& VAT Barclay/Access Welcome

T. POWELL,

 Advance Works, P.E., 44 Wallace Road, London N1 1 PQ Tel. 01-226 1489.Please allow 14 days for delivery.

MASMMH THTFOHRONLOS NOW!

 The PRAGHICAT wry!

 The PRAGHICAT wry!}

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous k nowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a self. emploved servicing engineer

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.

You will do the following:
Build a modern oscilloscope
Recognise and handle current electronic components
Read, draw and understand circuit diagrams

- Carry out 40 experiments on basic electronic circuits used in modern equipment
- Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V.. Hi-Fi and microprocessor/computer equipment.

Newdob?NewCareer? NewHobby?GetintoElectronics Now!
FREE!
Please send your brochure without any obligation to 1 am interested in
NAME
\square COURSE IN ELECTRONICS
as described above
RADIO AMATEUR LICENCE OTHER SUBJECTS microprocessurs logic course
PE/4/821

BritishNational Radio\&eFlectronics School Reading, Berks.RG17"BR

5 HFTO
100 MHZ
TOMORROW'S TOOLS TODAY

GLOBAL SPECIALTIES CORPORATION

G.S.C.(UK) Limited Dept. 5D

Unit 1, Shire Hill Industrial Estate,
Saffron Waiden, Essex. CB11 3AQ
Telephone: Saffron Walden (0799) 21682
Telex: 817477

Instant frequency indication from 5 Hz to 100 MHz ; no range selection problems; a brilliant 8 -digit LED display; mains or battery operation; an accuracy of 4 parts per million ± 1 count; and totaliy automatic operation - all this for only $£ 85.00^{*}$ with GSC's new Max-100 freqency counter
Just take a look at our spec. Where else could you find anything similar at the price? *Frequency range $5 \mathrm{~Hz}-100 \mathrm{MHz}$ *Input impedance 1 M shunted by 10 pF *Sensitivity 30 mV from 1 KHz up to $50 \mathrm{MHz} ; 120 \mathrm{mV}$ r.m.s. over full frequency range *Timebase accuracy ± 4 parts in 106 (from 5 to $45^{\circ} \mathrm{C}$) *Maximum aging rate 10 parts in 106 per year "Over-frequency indication *Low-battery-power alarm *Operates from dry or rechargeable cells, an external 7.5 to 10 VDC supply, or a car battery (via an adaptor) *Dimensions: $45 \times 187 \times 143 \mathrm{~mm} *$ Options: 12 V adaptor; battery eliminator; r.f. antenna, low-loss r.f. tap, carrying case.

Despatched within 48 hrs .

- price excludes post, packing and VAT

MULTI-4

The Multi-4 is a comprehensive sound and chase module offering a wide range of forward, reverse or random effects
with additional sound modulation facilities. Modes of opera with additional sound modulation facilities. Modes of opera tion are set on control pots which act as electronic switches
The unit has a wide speed range and will accept virtually any sound level input. The Multi-4 aiso provides monitor circuits for LED driving. The triac outputs may be used to drive up to 4000 W of lighting or up to 30 metres of rope lights.

Controls: bass/mid/treble/master sensitivity

L \& B

ELECTRONIC MODULES
PROFESSIONALENGINEERING BY PROFESSIONALS

45 Wortley Road, West Croydon Surrey CRO 3EB. Tel. 01-689 4138 Goods by return of Post

3-WAY ACTIVE CROSSOVER
LBAC01
$£ 17.90$

PRICE REDUCED: $\mathbf{2 4 8 . 9 0}$

Attractive blue panels with white letters, com plete with LED monitors knobs and
ated switch.
$\mathrm{£}^{9.70}{ }_{\text {ExraA }}$

NEW! NEW! NEW!

4 CHANNEL SOUND LIGHT AUTO-CHASER

- Bass/mid/presence/treble
* Automaticlevel filter contro
* Automatic input gain control
\star LED monitor drivers
10 Hz to 30 KHz sesponse
Super sensitive
* Faro feference triggering

Plone or write for immediate details of the
NEW! NEW! NEW!
2/4/8 CHANNEL CHASER
LB81000LC

$£ 28.00$

An all logic chaser system for use with up to 8 channels at 1,000 watts each. Facilities incascading (16.24. 32 channei, etc.), chase speed and re-cycle delay

4 CHANNEL SEQUENCER

A channel sequence generator for banks of lamps up to 1.000 W per channel. Two speed between, cross ends to provide sertings

OVERSEAS OISTRIBUTORS Enquitries are invited from overseas

PE CAR COMPUTER

This unit was described by Practical Motorist as: "One of the neatest, most comprehensive and most useful of these car computers that we have yet come across

The PE Car Computer was designed to exceed the specification of all others, both for number of functions and accuracy. As well as the usual functions, it can perform eleven "remaining" type calculations, has a unique "start-stop" mode (used for acceleration timing and the like) and has a combination lock for driving an alarm or ignition cut-out
The unit is housed in a custom designed box with high quality printed panels having an overall size of $165 \times 50 \times 80 \mathrm{~mm}$ deep. and can be fitted above or below the dashboard. The display is liquid crystal for clarity in all lighting conditions.
The kit includes all sensors, wiring, etc and is suitable for all cars ex cept those fitted with diesel or fuel injection engines

Kit price: $£ 78.50$ Assembled Price: $\mathbf{£ 8 8 . 5 0}$
$+£ 1$ p\&p includes VAT.
Send S.A.E. for list of separately available parts.
Goods by return of post.

PIMAC SYSTEMS LTD 20 Bloomfield Road, Moseley, Birmingham B13 9BY Tel: 021-449 0384

HOW WOULD YOU LIKE YOUR $7 / 8$ TO LOOK LIKE THIS?

IT COULD WITH THE CROFTON ZX81 ADAPTAKIT.

ONLY $£ 35.00$ plus VAT - total $£ 40.25$ plus $£ 2.65$ P\&P. AND IT ALSO HAS A VIDEO OUTPUT TO DRIVE A STANDARD MONITOR.

SEND FOR DETAILS.
CROFTON ELECTRONICS LIMITED
35 Grosvenor Road, Twickenham, Middlesex TW1 4AD. Tel: 01.89; 1923/1513 Telex: 295093

BHPAK BARGAINS

ST21 SCREWDRIVER SET
6 precision screwdrivers in hinged plastic case. Sizes $-0.8 .1 .4 .2 .2 .4 \quad £ 1.75$

5 531 NUT DRIVER SET
5 precision nut drivers in ninged plastic case
with lurning rod.
Sizes: - 3. 3.5. 4.4 .5 and $5 \mathrm{~mm}=1.75$

5741 TOOL BET

5 precision instruments in hinged plastic cas
Crosspoint (Phillips) screwdrivers
HO and H 1 Hex key wrenches.
1.5 .2 and 2.5 mm ह 1.75

5 551 WRENCH BET
5 precision wrenches in hinged plastic case
Sizes: - 4. 4.5, 5. 5.5 and 6 mm E1.7E
BUY ALL FOUR SETS: 5T21.5T51 and get
HEX KEY SET PAEE HEX KEY SET ON AING Sizes: 1.5. 2. 2.5. 3. Made of hardened sleel $\mathrm{HX} / 1.41 .28$

BमPAK PCB ETCHANT

 AND DRILL KITComplete PCB Kit comprises
1 Expo Mini Orill 10.000RP
collets $\& 1 \times 1 \mathrm{~mm}$ Twiss bit 1 Sheet PCB Transters $210 \mathrm{~mm} \times 150 \mathrm{~mm}$ Elch Resist Pen
1/2lb pack FERRIC CHLORIOE crystals 3 sheets copper clad board
2 sheets Fibreglass copper clad board Full instructions for making your own PCB boards
Retaii Value over $£ 18.00$
OUR BI-PAK SPECIAL KIT PRIOE $\mathbf{2 9 . 7 5}$ OROER NO SX8

BI-PAK SOLDER DESOLDER KIT

Kit comprises OROER NO S×80 1 High Quality 40 watt General Purpose Lightweight Soldering
$3 / 16^{\prime \prime}(47 \mathrm{~mm})$ bit 3/16" (4.7mm) bit
1 Quality Desoldering pump. High Suction with automatic ejection. Knurled. anti-corrosive casing and tefion nozzie.
1.5 metres of De-soldering braid on plastic dispenser.
$*$

100
1 Heat Shunt tool tweezer Type
Total Retail Value over $£ 12.00$ OUR SPECIAL KIT PRICE £8.98

EXPERIMENTOR

BOXES - ALUMINIUM plastic
ALUMINIUM BOXES
Made with Bright Aluminuum foided construction with deep lid and screws COnstruction with deep Hid arder No.

SEMICONDUCTORS FROM AROUND THE WORLD
A Collection of Transistors. Diodes. Rectifiers. Bridges. SCR's Irracs. IC's both Logic and Linear plus Opio's all of which are current everyday usable devices which are current everyday usable devices
Guaranteed value over $£ 10$ at Normal Retail Price
100

BRAND NEW LCD
DISPLAY MULTITESTER. RE 188m
LCO 10 MEGOHM INPUT IMPEDANCE - $3 / 2$ digit * 16 ranges plus hFE test tacliity for PNP and NPN transistors *Auto zero, auto polarity *Single-handed, pushbution operation *Over range indication * 125 mm ($1 / 2$-inch) large LCO readout *Diode check -Fust crrcuit protection * Test leads, battery and instructions included.
Max indication 1999 of - 1999
Polarity indication Negative only Positive readings appear without + sign
input impedance 10 Megohms
Zeroadjust Automatic
Sampling time 250 milliseconds
Temperature range $-5^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
Power Supply $1 \times$ PP3 or equivalen! 9 V consumption 20 mW
Size $\quad 155 \times 88 \times 31 \mathrm{~mm}$
RANGES
DC voltage 0.200 mV
0-2-20.200-1000V Acc 0.8\%
AC Voltage $0-200-1000 \mathrm{~V}$
Acc. 12% oC Current 0-200uA Resistance 0 2 200 K ohms O-2 Megohms Acc. 1%
B- PAK VERY LOWEST POSS PRICE
BI-PAK VERY LOWEST POSS PRICE
E35.00 each

Plastic Boxes
 Coloured Black. Close fitting

Flanged Lid tixing screws into brass bushes SIZE"L W H Order No Price

- TheThird and

Fourth Hand...

but have nevet gol unit

Inis neiplul unil with Rod mounted
hofizontally on Heavy Rase Crocodile clips attached to rod ends Six ball \& sockel joints give intinite variation and postions through 360° also avallab le attached to Rod a $21 / 2$ diam magniller giving $25 \times$ magnitiration Helping hand unit avallable with or without magnitier Our Price with magnitier as illustrated OROER NO T402 5.50
Without magnitier ORDER NO T400 £4.75

REGIETOEISTABLE

 Pum me mon
 Prevormed 4 . 4 .h watl Carbo
Resistors $5 \mathrm{SH12} 200 \quad$ Resistors $\begin{array}{lll}5 \times 13 & 200 & \text { watt Carbon Resistors } \\ 5 \times 14 & 150 & 1 / 20 \text { watt Carbon Resistors }\end{array}$
 Paks 5×12.15 contain a 2 m 2 Wired of assorted values from a range of Carbon Film Resist pounds on these resistor 22 ohms to 2.2 meg. Simestor Cover your projects.
Quantities

MOTOR VLA PIEZO

ELECTRIC TWEETER

Maximum Ratings.
25 volts rms which is equal to:
200 watts across 40 hms
100 walts across 80 hms
50 watts across 16 ohms
BI-PAK SPECIAL OFFER PRICE 44.65 OROER NO 1907

DONE TWEETER

Dome tweeter for systems up to 50

Impedance 8 ohms
Frequency Response: $2000-20.000 \mathrm{~Hz}$
Dims 98 mm diam $\times 31 \mathrm{~mm}$ deep
Our Price E2.88 DMT200

CAPARLE

Silicon NPN*L'TypeTransitors 10-92 Plastic centre collecior
VCBO 45 VCEO 30 IC200mA HRe $100-400$ c
ALL pertect devices - uncaded OROER AS S×183L

PNP SILICON TRANSISTORS: Similar $2 T \times 500-2 T \times 214$ - E-LIne
VCEO 40 VCBO 35 Ic 300 mA He $50-400$

Brand New - uncoded - Pelect Devices
50 on 100 off 500 off 1000 of
$\Sigma 2.00 \quad \Sigma 3.50 \quad £ 15.00 \quad £ 25.00$
-
1 Amp SILICON RECTIFIERS Glass Type simtiar IN4000 SERIES IN4001-IN4004 50 - 500 N - uncoded - you select for vits All perlect devices - NO duds Min 504 50 tor £1.00 worth double ORDER NO SX76 Silicon General Purpose NPN Iransiliors T0-18 Case Lock til leads - coded CV7644 Similar to BC147 BC107 2189 ALL NEW VCE 70v IC500mA PRICE £2.00 £3.80 £17.50 £30.00

Stiricon General Putpose PNP Tiansisiors T0-5 Case

 Lock til leads coded CV9507 similar 2N2905A to BFX30 VC 60 IC 600mA Min He 50 ALL NEW PRICE 2.50 £4.00 £19.00 £35.00Use per credt card hing us on Whe 3182 NOW and ${ }^{5}$
at wiot order ean tate, Goods nermaly sent $2 n d$
cess maw
Cless man: nember must add wis at 15% to pour arder
Tous. Patye add SOp per Total orte.
l

STEREO AUPLIFIER KI

＊Featuring latest SGS／ATES TDA 200610 watt outp IC＇s with in built thermal and short circuit protection Mullard Stereo Preamplifier Module
Attractive black vinyl finish cabinet， $9^{\prime \prime} \times 81 / 4^{\prime \prime} \times 3 \frac{1}{4}$＂
（approx） lapprox
$10+10$ Stereo converts to a 20 watt Disco amplifier To complete you just supply connecting wire andsolde microphone，qape or tuner．Outputs－tape speakers and headphones．By the press of a button it transforms into a 20 watt mono disco amplifier with twin deck mixing The kit incorporates a Muslard LP1 183 pre－amp module plus power amp assembly kit and mains power supply Also features 4 slider level controls，rotary bass and
treble controls and 6 push button switches．Silver fini reble controls and 6 knobs and contrasting
cabinet．Instructions
available，price 50p． Supplied FREE with SPECIFICATIONS： Frequency response

nput sensitivit

Tone controls
Distortion
Mains supply
8＇${ }^{\prime \prime}$ SPEAKER KIT

£16－50

E2．90 p\＆
Suitable for 4 to 8 ohm speakers PU． 150 mV ．Aux． 200 mV
Bass $\pm 12 \mathrm{db}$＠ 60 Hz
Treble $\pm 12 \mathrm{db} @ 10 \mathrm{KHz}$
0．1\％typically＠ 8 watts
$220-250$ volts 50 Hz.
SPEAKER KIT Two 8 twin cone domestt speakers．$£ 4.75$ per stereo pair plus $£ 1.70$ p\＆p．When
purchased with amplifier．Avallable separately $£ 6.75$ \＆ purchased
£ $1.70 \mathrm{p}+\mathrm{p}$ ．
PRAGTICALELECTRONICS CAB
RADIO
RTseries il

2 WAVE BAND，MW－LW

＊Easy to build．＊ 5 push button tuning．＊Modern design．＊ 6 watt output．EReady etched and punched PCB．Ii，corporates suppression circuits．
All the electronic components to build the radio，you supply only the wire and the solder，featured in Practical Electronics．Features：pre－set funing with 5 push
button options，black illuminated tuning scale．The button options，black illumınated tuning scale．The
P．E．Traveller has a 6 watt output neg，ground and in corporates an integrated circuit output stage，a Mullard IF Module LP1181 ceramic filter type nre－aligned and ssembled，and a Bird pre－aligned push buton tuning Suitable stainless steel fully retraci．
able aerial（lockingl and speaker
$\left(6^{\prime \prime} \times 4^{\prime \prime}\right.$ app．）available as a com． （ $6^{\prime \prime} \times 4^{\prime \prime}$ app．）available as a com－
£2．00 p\＆p

BRDADDIO
 STEREOCAR
 RADIOBOOSTER

cassette to 15 W r．m．s．per chann
 £9．95
 $+£ 1.50 \mathrm{p} \& \mathrm{p}$.

125W HIGH POWER AMP MODULE

кіт：$£ 10-50$ виІтт：$£ 14-25$

The power amo kit is a module for high power appic 15 \＆
The power amp kit is a module for high power applicat
ions－disco units，guitar amplifiers，public address tons－disco units，guitar amplifiers，public address
systems and even high power domestic systems．The unit is protected against short circuiting of the load and is
safe in an open circuit condition．A large safety margin
safe in an open circuit condition．A large safety margin
exists by use of generously rated components，result a exists by use of generously rated components，result，a
high powered rugged unit．The PC board is back printed etched and ready to drill for ease of construction and the aluminum chassis is preformed and ready to use． Supplied with all parts，circuir diagrams and instruction ACCESSORIES：Suitable mains p
transformer：$£ 7.50$ plus $£ 3.15$ p\＆
transformer：$£ 7.50$ plus $£ 3.15$ p $\& p$ ．
Suitable LS coupling electrolvtic：$£ 1.00$ plus 25 p p \＆p．

H－FI SPEAKERS
 AIBARAAN PRICKS

GOODMANS TWEETERS

 80 hm soft dome radiator tweeer $13 / 4 . \mathrm{sq}$ ．）for use in up to 40 W $£ 3.50$ each（ $\mathrm{p} \& \mathrm{p} £ 1$ ）or $£ 5.95$ pair（ $\mathrm{p} \& \mathrm{p} £ 2$ ）．

P．ESTIEREO TUNER KII

This easy to build 3 band stereo AM／FM tuner kit is de

signed in conjunction with Practical Electronics（July 81 orates three Mullard modules and an I．C．IF．System． FEATURES：VHF，MW．LW Bands，interstation muting and AFC on VHF．Tuning meter．Two back prinied PCB＇s．Ready made chassis and scale．Aerial AM ferrite ith＇C＇core mains transformer．All components sup lied are to P．E．strict spec，fication．Front scale size： 10
$\times 21 / 2^{\prime \prime}$ approx．Complete with diagram and insilutin

£17．95

 Self assembly simulated wood cabinet sleeve to suit tuner only£ 3.50 Plus $£ 1.50 \mathrm{p} \& \mathrm{p}$ ．

35 WATTMICRO 2－WAY SPEAKER SYSTEM Unit comprises one 50w（4＂app．）Auda
soft dome tweeter HD100．And one Audax bass／midrange 35 w driver HIFIIJSM． element crossover Total impedance of svstem 4 ohms
£7．95
PER SET $+£ 2.70 p \& p$

SPECIAL OFFER！TUNER KiT PLUS
－Matching I．C． 10 watt per channel Power amp kit． Multard LP1 183 built pre－amp，suitable for ceramic pick up and aux inputs．＊Matching power supply kit with $\mathbf{£ 2 1 . 9 5}$ E3．80 P\＆P．

TVSOUND TUNERKI

£11．45

As featured in E．T．I．December＇ 81 issue．Kit of parts including PCB，UHF tuner and selector switch with all components excluding case
－Transformer $£ 1.50+£ 1.50 p \& p$（ $p \& p$ free on trans ormer if ordered with kit）．＊Ready built LP1 183 Mod ule for simulated stereo operation．£1．95＋75p p\＆p．

ALL MAIL TO
21 B HIGH STREET，ACTON，W3 6NG Note：Goods despatched to UK postal addresses only．For further information send for instruct－ ions 20 p plus stamped addressed envelope．All items subject to availablity．Prices correct at 31／1／82 and subject to change without notice Please allow 7 working days from receipt of order for despatch． ALL PRICES INCLUDE VAT AT 15\％

MIXER AWP

£39－95
 －$x+\pi$

50 WATT Six individually mixed inputs for two pick ups Cer or mag．）．two moving coil microphones and two －six for level and two for master bass and treble four extra treble controls for mic．and aux inputs Size： $13^{1 / 0}$ $61 / 2 \times 3 \%$＂app．Power output 50 watts R．M．S．（continuous） for use with 4 to 8 ohm speakers．Attractive black vinyl case with matching fascia and knobs．Ready to use．

ALL CALLERS TO： 323 Edgware Rd， London W2．Telephone：01－723 8432. Open $9.30-5.30 \mathrm{pm}$ ．Closed all day Thursday． RTVC Limited reserve the right to update their products without notice．
回和回

FAME AT LAST!

Sharp eyed readers will no doubt have noticed the Telectric being put through its paces on a certain national TV programme (minus its name of course) and listeners to local radio stations in various parts of the country may have heard the PE Bandbox (a recent project) and also an interview with Steven Day and Peter Hutt of Response-the company supplying kits and ready-made Telectrics. It's nice that our projects are attracting attention from the "National media".

Of course our projects can't all be new and innovative and many, like our PE Quasar Stereo Cassette Deck in this issue, have been around in similar commercial form for some time. However, this particular project is a first for PE and is one of the few cassette recorder designs available to the hobbyist in kit form-it is also another project that may become a commercial success story in readybuilt form at a later date. Hobbyists have the advantage of time and price, thanks to our project.

While talking about price it is interesting to note that when Telectric was first designed about three years ago the cost of building it would have
been around $£ 300$. We have come to expect microprocessors for $£ 5$ or less, though we still happily pay relatively high prices for everyday items.

PRICES

We are all well aware of prices these days and we hope that PE can be of assistance in this area. This month we start two new services to readers, the first is a special arrangement with Videotone who are making their high quality cassette tapes available to PE readers on a regular basis at exclusive prices-see page 51 -and the second is the appearance of the first readers' ads in PE Bazaar (page 45). You can't get an advertisement placed for less than our free readers' ad. service! Judging by the early replies we have received there should be some bargains in PE Bazaar and we hope it will lead to the development of a greater interchange of information, components and equipment between hobbyists-we anticipate many more ads. appearing next month when there has been more time for you to send them in.

CLUB

the aims of the British Amateur Electronics Club (BAEC) which has been run by dedicated volunteers for many years and offers its members a quarterly newsletter containing articles, letters, news and views on all aspects of our hobby, special concessions from many component retailers and meetings at various venues.

BAEC can give the informal contact between fellow hobbyists that we are unable to arrange via the magazine. It is, therefore, a valuable asset to all who have electronics as their hobby and, among other things, provides valuable help to beginners. They can give advice, loan practical aids and have an extensive library covering most magazines and many technical books. In case our overseas readers are wondering, the club is also open to them. A letter from Cyril Bogod-chairman of BAEC-appears on page 53, contact him for further information.

By the way, we have no formal connection with BAEC but, as a magazine dedicated to the electronics hobbyist, like to give them our encouragement.

Mike Kenward

Interchange of information and assistance to all hobbyists are part of

EDITOR Mike Kenward

Gordon Godbold ASSISTANTEDITOR
Mike Abbott TECHNICAL EDITOR
David Shortland PROJECTS EDITOR
Jasper Scott PRODUCTION EDITOR
Jack Pountney ART EDITOR
Keith Woodruff ASSISTANT ART EDITOR
John Pickering SEN. TECH. ILLUSTRATOR
Isabelle Greenaway TECH. ILLUSTRATOR
Colette McKenzie SECRETARY

Editorial Offices:

Practical Electronics,
Westover House,
West Quay Road, Poole,
Dorset BH15 1JG
Phone: Editorial Poole 71191
We regret that lengthy technical enquiries cannot be answered over the telephone (see below).

ADVERTISEMENT MANAGER

SECRETARY ad. SALES EXEC.

CLASSIFIED SUPERVISOR

AD. MAKE-UP/COPY
D. W. B. Tilleard $\}$ 01-261 6676

Christine Pocknell
Alfred Tonge 01-2616819
Barbara Blake 01-2615897
Ian Sweeney 01-261 6601

Advertising Offices:
Practical Electronics Advertisements, King's Reach Tower,
King's Reach, Stamford Street, SE1 9LS Telex: 915748 MAGDIV-G

Technical Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in $P E$. All letters requiring a reply should be accompanied by a stamped, self addressed envelope, or international reply coupons. and each letter should relate to one published project only.

Components and p.c.b.s are usually available from advertisers; where we anticipate difficulties a source will be suggested.

Back Numbers

Copies of most of our recent issues are available from: Post Sales Department (Practıcal Electronics), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, at 95 p each including Inland/Overseas p\&p.

Binders

Binders for PE are available from the same address as back numbers at $£ 4.60$ each to UK or overseas addresses, including
postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 13.00$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road. Haywards Heath, West Sussex RH 16 3DH. Cheques and postal orders should be made payable to IPC Magazines Limited.

Beckman Expansion means more jobs

Beckman Instruments is substantially expanding its resistor network manufacturing capacity at its plant in Glenrothes, Scotland. This expansion will provide a total of $\mathbf{1 0 0}$ new jobs.

The first phase of the expansion will im mediately provide 40 new jobs for technicians, engineers. supervisors and assembly workers, and the second phase will involve further equipment and provide 60 more jobs.

The investment. backed by Locate in Scotland (LIS). is a result of the decision by Beckman Instruments Inc to concentrate the manufacture of selected models of resistor networks at the most efficient Beckman plants to meet the total worldwide demand for the products.

Managing director Eoin O'Cuilleanain said:
"the expansion, which represents a 25% increase in the workforce, is a reflection of the company's confidence in the future and on the quality of work produced by all employees in Scotland. This increase in production capacity will enable us to offer an even more efficient service. with faster deliveries, to our customers worldwide. Without the co-operation of the LIS and the Glenrothes Development Corporation, it is unlikely that the expansion could have been successfully achieved in the current depressed economic environment," he added.

STEPFORWARD

Casio's latest addition to their range of keyboard instruments, the Casiotone 701, represents a major step forward in bringing music making within the reach of the uninitiated.

The biggest advance is in the use of a bar code reader to read and programme specially scored music, enabling playback in three ways:
-automatic playback of the entire piece; -manual melody playing, guided by lamps above each key (with auto accompaniment; - "One Key Play" which allows the melody to be played by touching one key. The 701 can also be programmed via the keyboard, and editing facilities are provided. Alternatively, the 701 can be played in the traditional manner, so its easy-play facilities do not limit it for use solely as a beginners instrument.

Features of the 701 include a five octave keyboard with eight-note polyphony, 20 pre-set voices, a chord system enabling one finger accompaniment, and 16 autorhythms. It is available at a price of $£ 495$ including VAT and $p \& p$ from Tempus, 38 Burleigh Street, Cambridge, CB 1 1DG. (0223312866)

At a time of increasing concern that a limited nuclear war in Europe could be around the corner, a Wales based company appears to be cashing in on present fears with a claim that they have discovered the means of producing a lightweight radiation-proof material.

Sivoh Electronics Ltd., of Faol-Ydnah. Gwent. say that they discovered the materials special properties while experimenting on alternatives to Mica Foil for capacitors. Sivoh claim that the material, known as PROLAFOIL, (for which Patents are at present being applied for) could probably be used to make totally radiation-proof suits. The only obvious drawback at present is cost production costs are estimated to be around $£ 500$ per square metre, though Sivoh say that they are looking into ways to cut that figure by about half.

Whether or not Sivoh succeed in producing a marketable product. the moral question remains - are we, by producing the means to survive a nuclear war (i.e. radiation-proof suits. fallout shelters. etc.) thereby increasing the likelihood of a nuclear disaster?

For further details, see page 51 .

TANOY BREAKS INTO 16-BITS

The Tandy Corporation (Branch UK) has announced the introduction of TRS-80 Model 16 to its range of microcomputers.

The Model 16 features sixteen bit technology, dual processor architecture and a multi-user operating system. It is capable of 512 K internal RAM memory storage, and $2 \frac{1}{2}$ megabytes of disk storage may also be added. This combination of large RAM and disk memory capacity will allow the Model 16 to use more sophisticated software with large file capacities.

The Model 16 desktop computer will be available late in 1982 in two versions, both with 128 K memory. A single drive version with $1 \frac{1}{4}$ megabytes of disk storage, and a two-drive version with a total $2 \frac{1}{2}$ megabyte storage capacity.

The new TRS-80 Model 16 uses two microprocessors' the Z-80A and the 16-bit MC68000.

For TRS-80 Model II owners, there is the Enhancement Option, which is an upgrade board to 16 -bits.

The upgrade board set for the TRS80 Model II microcomputer provides it with the 16-bit, dual-processor, multiuser power of the TRS-80 Model 16 computer, and will also be available by the end of 1982.

Pictured above is the PE Quasar Stereo Tuner (constructional details published in PE, July '81) now resplendent in a simulated wood cabinet. The cabinet will be available at the end of March for $£ 3.50$ (plus $£ 1.50 \mathrm{p} \& \mathrm{p}$) from RT-VC, who also supply kits for the Quasar Tuner itself. RTVC, 21b High Street, Acton, London W3.

Items mentioned are available through normal retail outlets unless otherwise specified. Prices correct at time of going to press.

Briefly...

Two of the United Kingdom's microcom puting pioneers and founder member of the Computer Retailers Association (CRA). Tim Moore and Jon Day, have formed a new com pany called Kuma Computers to supply work ing microsystems. proven software. educational books and. it is claimed. unreserved personal service.

Blanket invitation goes out to anyone with marketable software to contact Kuma Com puters. I] York Road. Maidenhead. Berks SL6 1SQ

Bruel \& Kjaer (U.K.) Ltd., have just issued their 1982 Short Form Caralogue which is free upon application.

It is a 60-page colour illustrated booklet describing the full range of instruments, transducers, microphones and other accessories arailable for the measurement, analysis and recording of sound (or noise), vibration, strain, acoustic emission, hydroacoustic signals, mechanical balance and illumination contrast.
$B \& K$ are located at: Cross Lances Road, Hounslow, Middlesex TW3 2AE.

Grenson Electronics have informed us that they have had to increase the prices of kits for the Bench PSU. featured in our February issue. The complete kit is now priced at $£ 35$ plus VAT and $£ 2.40 \mathrm{p} \& \mathrm{p}$. The price of the ready built unit has also been increased to $£ 59$ plus VAT and p\&p.

Home Radio have recently moved premises. Personal callers should now go to 169 London Road, Mitcham, Surrey. Their mail order address is still the same: P.O. Box 92,215 London Road, Mitcham, Surrey.

POINTS ARISING . . .

Microbus (Nov. '81)
There is an error in line 20 of the program for a $\mathrm{Z} \times 80$ Crosshatch Generator (page 68). It should read as follows

20 PRINT CHR $\$(X)$;

VERSATILE MULTIMETER

Now available from Centemp, the Model 3T (pictured right) is a battery operated $3 \frac{1}{2}$ digit hand held digital multimeter with a bold $0.5^{\prime \prime}$ liquid crystal display.

The meter provides six functions in 16 ranges permitting measurement of DC voltage, AC voltage, DC current, resistance, Diode/continuity check and an $h_{\text {fe }}$ measurement facility. Push button controls allow fast and easy operation whilst small size, robust construction and long battery life make the 3T truly portable. Supplied complete with battery, test leads and instruction manual.

Priced at $£ 49.95$ including VAT and p\&p, the 3T is available from Centemp 62 Curtis Road, Whitton, Hounslow, Middlesex TW4 5PT (01-894 2723).

ILLUMINATING

L \& B Electronics have recently introduced another unit to their range of lighting control modules. The LB 41000 SLC is an advanced 4 channel sound to light modulator with automatic chase, providing bass, middle, presence and treble separation. Using automatic level filters, coupled with a choice of automatic gain control in the input stage, the unit requires virtually no setting-up procedure whilst making excellent separation.

As with the $31000 S \angle C$, in the absence of a music signal the module automatically switches to a forward then reverse running chase.

All the usual advantages of $L \& B$ modules are incorporated with the addition of LED monitor drivers for each channel. The fused triac output stage will handle resistive loads of up to 750 watts/channel.

The price, £43.39 plus £6.57 VAT. A blue fascia panel complete with LED's, i/luminated switch and controls is also stocked at $£ 8.00$ plus $£ 1.20$ VAT.

For further information contact: $L \& B$ Electronics, 45 Wortley Road, West Croydon, Surrey (01-6894138).

Best of British...

Discom of Evesham have announced the launch of a new British microcomputer, a micro which they say "will take on the world and win"

The 'McCombo' computer has been designed and built by a U.K. development team after eight months research into the micro market. Research identified a need for a powerful, CP/M based single board computer, small enough to fit inside a terminal or disk drive case. Using McCombo, terminal manufacturers can produce a fully integrated CP/M based system using their own product with little or no development cost.

The board incorporates state of the art technology, including 64k memory chips. It is multi-user in operation, handling up to 4 users.

Discom say that initial trade reaction has been so good that sales of 3000 units are anticipated in 1982. Introductory prices start at under $£ \mathbf{4 0 0}$.

For further details, contact Discom, Old Manor Farm, Ashton-under-Hill, Evesham, Worcs. (0386 881962).

IS YOUR MICRO BAUD STIFF?

cept that it automatically builds up a directory of your named files or programs. At the end of a session the directory itself may be saved. The operator, therefore, types in which file he wants and the 220M automatically finds and loads it into its Cassette Buffer RAM. This Tardis-like 2K of

There is a versatile memory machine on the market which features read/write speeds and data integrity comparable to disc, but at a fraction of the cost! With up to 64 K bytes per side, it will replace disc where access time itself is not too critical.

What is this machine? The 220M Digital Tape Recorder! A low-cost, non-volatile data and program storage system, with rapid software controllable record/ replay/fast-wind functions. The machine, which automatically rewinds to verify everything it records, is designed around the well proven Philips Mini-Digital Cassette Recorder, and is available from Currah. Anyone running a 6502 based microcomputer system who cannot afford disc, yet desires a fairly snappy bulk storage medium, should consider the 220 M a viable proposition.

The memory unit jacks quickly into your PET or VIC etc., and will run immediately in command mode (no host software required), or can, of course, be manipulated under program control by your computer. Flags are generated by the unit to allow two-way communication. The interface is activated quite simply by SYSn, whereupon the screen will inform you that you are in conversation with the memory unit's operating firmware (CTOS). With no further ceremony there are twenty-one extra BASIC commands in addition to your existing interpreter's repertoire, such as: BS (Basic Save), BL (Basic Load), OF (Open File) or PD (Print Directory--to identify the tape).

With firmware to handle the technicalities, the 220 M may be thought of as a fast intelligent cassette recorder, ex-

RAM is memory mapped into the host computer. Individual variables may be read from a recovered file, and when storing program listings, chunks of software can be appended to each other, thus realising the possibility of a dynamic subroutine library.

Encountering the worst access time, when the sought after data is furthest from the directory, rewind might take 60 seconds, but normally would be only a few seconds. Reliability is boasted, and at the time of going to press a version for each of the following machines was anticipated, if not already available:

PET 3000 series, 4000 and 8000 , UK101, Superboard, AIM65, Tangerine, VIC20. Atari 400 \& 800 and Atom, etc.

The sluggish 300 Baud cassette loading of most rudimentary microcomputers makes them clumsy in response to multifarious needs. The 220 M , however, would allow the computer to stand-by with no particular software in RAM, ready to load up and run a selected program promptly. The 220 M costs $£ 195$, and is available from Currah Computer Components Ltd., Graythorpe Industrial Estate, Hartlepool, Cleveland TS 25 2DF. Tel: 0429-72996.

To complement their Ultrasonic Burglar Alarm module (featured in News \& Market Place, October '81) Riscomp Ltd have now introduced a siren module, known as the SL 157.

This siren module was developed to provide a high level warning signal for use with alarms in a wide range of applications. Its operating frequency has been chosen to provide the highest possible acoustible output when used with the horn type of speaker. It can, however, be used with a conventional type of loud speaker with slightly reduced output. A useful feature incorporated is the inhibit facility whereby the connecting of appropriate pins stops the alarm. This feature means that the module may be used as the basis of simple alarm systems or security loop.

The module operates from supply voltages in the range $9-15 \mathrm{~V}$, although with reduced output at 9 V . Such a supply may be provided from batteries or a suitable mains unit.

The SL 157 is priced at $\mathbf{E 1 2 . 5 9}$ including VAT, plus 50 p\&p. It is available direct from Riscomp Ltd., 21 Duke Street, Princes Risborough, Bucks, HP17 OAT (08444 6326)

Rountdonn!...
Please check dates before setting out, as we cannot guarantee the ac curacy of the information presented below.

Seminex Mar. 29-Apr. 2. Imperial College, London. HI
Laboratory Edinburgh Mar. 30-31. Ass. Rooms, Edinburgh. E
CAD Mar. 30-Apr. 1. Metropole. Brighton. Z1
Sensors \& Systems Mar. 30-Apr. 1. The Forum, Wythenshawe, Manchester. T
ETM Mar. 30-Apr. 1. The Forum, Wythenshawe. T Peripherals Mar. 31-Apr. 2. West Centre Hotel, London. Z 1 Laboratory Manchester Apr. 7-8. New Century Hall, Manchester. E All Electronics Show Apr. 20-22. Barbican Centre, London. E
Communications Apr. 20-23. NEC Birmingham I
BEX Brighton Apr. 28-29. K
Compec Europe May 4-6. Centre Int. Rogier, Brussels. Z1

Scotelex. Jun. 8-10. Roy. Highland Ex. Hall, Ingliston, Edinburgh. AI BEX Leeds Jun. 9-10. K
Transducer/Tempcon Jun. 29-Jul. 1. Wemb. Conf. Centre. T BEX Croydon Jun. 30-Jul. K
Leeds Electronics Show Jul. 6-8. University. E
Laboratory London Sep. 14-16. Grosvenor House. E
Two Counties Fair Sep. 15-18. Plymouth Ex. Centre, Millbray, Plymouth. Devon. T
Testmex, Oct. 26-28. Wemb. Conf. Centre, London. T
Compec Nov. 16-19. Olympia, London. Z1
A1 Institute of Electronics, Rochdale, Lancs.
E Evan Steadman, Saffron Walden 079922612
H1 Seminex Ltd.. Tunbridge Wells 089239664
I Industrial Trade Fairs, Solihull $\& 021-7056707$
K Douglas Temple, Bournemouth 020220533
L1 World Trade Centre 01-488 2400
T Trident Tavistock 08224671
V SDL Dublin 763871
Z1 IPC Exhibitions, Sutton 8 01-643 8040

Velleman U.K. present their list of electronic kits together with prices which include V.A.T. and postage and packing. They are listed in "difficulty grades", for beginners and experienced kit-builders, with the lower skill level at 1 , rising to 3 . All include high-quality components, full instructions and technical data and come to you packaged in clear plastic boxes, ideal for component storage.

K1682
Wooden housing extra

K2575

K2569

P.O. Box 30, St. Leonards-on-Sea, East Sussex TN37 7NL Tel: Hastings (0424) 753246

TRADE ENQUIRIES WELCOMED

Please send me your free catalogue of Velleman electronic kits:
Name.
Address

PE

another separate for the pe quasar stereo system

THE PE Stereo Cassette Deck is a versatile low cost system designed around a single p.c.b. The unit has the unusual facility of a variable bias control for optimum recording of all types of tape.

In addition to the basic circuitry a f.e.t. Gate Noise Reduction system has been designed which works on playback in two modes: Flat, all noise reduced in the absence of any signal, and High Frequency, only h.f. noise is reduced at low or no signal levels. This system has proved highly effective with all types of tape; its operation is more fully described later in the text.

The unit is also unusual because most of the switching is carried out electronically, thus reducing the need for complex, noisy and often unreliable switches on the deck mechanism. This design feature enables the p.c.b. to be used with almost any deck since it does not have to be closely coupled to the mechanism for switching purposes. The p.c.b. design is additionally simplified by the use of a LM1818 low noise i.c. in each channel. This i.c. carries the record/play logic switching, pre amps for record and play and VU meter drive. The i.c. also contains an auto record level circuit which is not employed on the p.c.b. shown but can be added as an addition if required-details are given later.

TAPE RECORDING SYSTEM

RECORD: The record/playback and erase heads are inductors with circular metal cores. The cores have narrow gaps at the point of contact with the tape, so that the tape coating

provides a low reluctance path to complete the magnetic circuit. The input signals are suitably amplified and are fed to the head, which converts them into a varying magnetic field. As the tape moves across the tape head gap the coating becomes magnetised.

Essentially there are two important factors required for recording:
BIAS CURRENT: As well as the audio signal a constant frequency above the audio spectrum (50 to 200 kHz) is passed through the head. Its amplitude determines the "operating point" of the magnetic recording process. Its function can be compared to the biasing of a transistor. Incorrect biasing in either case will result in distortion, signal deterioration etc. in respect of the tape head severe h.f. loss will also occur. FREQUENCY EQUALISATION: During recording the record head current is to be boosted at a rate of $6 \mathrm{~dB} /$ octave below a standard low frequency, and attenuated by $6 \mathrm{~dB} /$ octave above a standard high frequency. During playback the low frequencies are attenuated and the high frequencies are boosted so that the overall record/playback frequencies are flat. There are several standard sets of turnover frequencies-CCIR, NAB, EIA and DIN. The cassette equalisation standards defined by DIN are the most commonly used; for ferric oxide cassettes it specifies 3 dB frequencies of $50 \mathrm{~Hz}(3180 \mu \mathrm{~s})$ and $1326 \mathrm{~Hz}(120 \mu \mathrm{~s})$. The upper turnover frequency for CrO_{2} type tapes is $2274 \mathrm{~Hz}(70 \mu \mathrm{~s})$. On the Quasar a separate switch is provided for selecting the equalisation. With CrO_{2} type tapes a higher bias current is required for correct "operating point"
PLAYBACK: The recorded flux on the tape induces a proportional current in the playback head. Since the head is inductive it will have a voltage amplitude response that increases by $6 \mathrm{~dB} /$ octave of frequency. The playback amplifier provides the equalisation necessary to obtain a flat frequency response and sufficient gain to raise the head signal to a usable level.
OTHER CONSIDERATIONS: In an "ideal" magnetic recording system the use of the described complementary equalisation would result in a flat record/playback frequency response. There are several losses and errors associated with tape recording and these must be compensated for.
GAP LOSS (OCCURS ON PLAYBACK): The easiest way to compensate for gap loss is to make use of the head's inductance by tuning it with a capacitor to resonate at approximately 12 kHz . During record mode this capacitor must be made ineffective.

TAPE THICKNESS LOSS (OCCURS ON RECORD): Tape thickness loss occurs when the tape coating thickness becomes significant compared to the recorded wavelength, resulting in a 6 dB /octave high frequency roll-off. The DIN standard equalisation compensates for this.
BIAS ERASURE (OCCURS ON RECORD): If an excessive bias current setting is used for the record head it will cause high frequency erasure.
BIAS NOISE: This occurs due to the characteristics of the bias oscillator. Any d.c. current flowing through the record head will be modulated as would a signal. Although it is d.c. its noise spectrum will extend into the audio range. An a.c. bias signal can cause an effect similar to d.c. if the a.c. signal contains even harmonics of the fundamental frequency. Distortion, variations of frequency and amplitude of the recording bias will also result in undesirable modulations. To avoid these problems a well designed bias oscillator circuit is essential.
TAPE MODULATION NOISE: Ideally the coating on a piece of recording tape should be perfectly smooth. However in practice this is not the case. As the tape moves past the head variations in the coating thickness causes rapid changes in the tape speed. This modulation causes noise "sidebands" around the audio signal frequency. To minimise this problem always use good quality cassettes.
NOISE REDUCTION SYSTEM: In terms of signal-to-noise ratio the cassette deck is normally the poorest link in the home audio set-up. There are several types of noise reduction systems, each with their own particular drawbacks. Some are so expensive and complex they make the rest of the circuit appear like a "crystal set"-all just for a few extra dB 's of noise reduction. For evaluation purposes only, these systems were tried out with the Quasar. Likewise the D.N.R. (dynamic noise reduction) employing dual i.c. and several transistors (per channel) gives the magical few extra dB's at the expense of h.f. loss. Indeed the effectiveness of the D.N.R. was not unlike the function of an h.f. filter.

After careful consideration and objective listening it was decided that the noise was acceptable during quiet passages but was disconcerting during no-signal conditions. From this it was obvious some sort of "gating" that is synchronised to the output signal on playback would offer the best compromise between cost, availability of components, and effectiveness. Indeed under no-signal condition this form of noise reduction beat even the most sophisticated systems hands down.

SPECIFICATION

Mechanism with automatic stop and tape counter with reset button.
Tape Speed: $4.76 \mathrm{~cm} / \mathrm{sec}$. $\left(1 \frac{7}{8} \mathrm{in} / \mathrm{sec}\right.$.).
Wow \& Flutter: Typically 0. 1%.
Drive Motor: 12 V d.c. with electrical governor.
Play Torque: $40-75 \mathrm{~g} / \mathrm{cm}$ (DYNAMIC).
Rewind \& Fast Forward Torque: $60-140 \mathrm{~g} / \mathrm{cm}$ (STATIC).
Rewind \& Forward Time: Less than 100 sec. for C60 tapes.
Bias/Erase Oscillator: Externally variable, frequency
$90-100 \mathrm{kHz}$.
Output: (Adjustable) Up to 1 volt r.m.s.
Mic. Sensitivity: 1 mV @ 47 k .
DIN Sensitivity: 30 mV @ 47 k .
Frequency Response: $30 \mathrm{~Hz}-12.5 \mathrm{kHz}(-3 \mathrm{~dB})$.
Signal to Noise Ratio:
Noise reduction OFF -50 dB
Noise reduction H.F. -56 dB
Noise reduction FLAT -70 dB
Cross Talk: Typically -50 dB .

CIRCUIT DESCRIPTION

The complete circuit diagram of the Quasar is shown in Fig. 1. The LM1818 is a linear low noise i.c. (Fig. 2) containing all the active components for building a tape recorder (excluding bias oscillator).

Fig. 2. The LM 1818
The electronic functions on the chip include mic. and playback pre amps, record and playback amplifiers, Automatic Level Control (ALC) and meter driving circuits. Internal electronic switching automatically selects record or play mode. A zero voltage at pin 3 switches on the record mode and $a+v e(10 \mathrm{~V}$ min) switches on the play mode.

RECORD

A recording signal is fed to the switched mic. input socket and when the mic. is used the input is connected directly to the level control VR2. The attenuating network R49 and R50 are connected into the circuit when the mic. plug is removed, thus allowing higher signal levels to be recorded via the 5 pin DIN socket. The input signal to $\mid C 1$ is via pin 16 and the equalisation network for record and playback is shared. The value of $C 5(6 \mathrm{n} 2)$ and $R 6(12 k)$ give the required $70 \mu \mathrm{~s}$ DIN equalisation for CrO_{2} tape, the addition of R48 (6 k 8) extends it to $120 \mu \mathrm{~s}$ for Fe type tape.

The output of the record pre amp is connected via C12 to pin 4 of the meter/ALC drive and via C11 to pin 12 of the main record amplifier. The amplified output to the head is via C17, L1 and C18; R19 and C22; L1 and C18 form the "bias trapping" circuitry. The resistors R19 and R23 reduce the non-linear effect of the head, while C 22 increases the drive at high frequencies (resonance approximately 12 kHz). C15 and R15 form a 3000μ s equalisation-DIN I.f. end corner frequency. When S1 is in record mode pin 3 is at zero volts and the logic circuit connects pin 2 to earth and selects the record state inside the i.c. S1a also connects R47 to the -ve rail, thus enabling TR9 and TR10 to oscillate at a fixed frequency set by C43. The oscillator output is connected via bias preset PR3 (PR4) and C27 to the head. C27 is low value to prevent "cross-talk" recording between L and R channels.

The erase head voltage is taken from the tapped oscillator coil (L2) and earth with the time constant for meter-drive circuit set by C10 and R13 and the sensitivity via preset PR1. Note that meter is operational on both record and playback states.

PLAYBACK

In play mode S1a prevents oscillation by removing the earth from R47 and R12, and allowing the leakage voltage to switch the logic at pin 3 to "play" operation. Pin 2, which in record state was grounded, now "floats" and is connected to the play input at pin 17 via C4. The other side of the head

COMPDNENTS

Resistors
-R2, R28
-R3
*R4, R13

* R5
* R6
*R7
*R8, R11
-R9, R10, R50
*R12, R23
*R14, R15
* R16
*R17
*R18, R22, R27
-R19. R49
*R20, R24, R48
*R21, R25
* R26 R29 R35 R30, R37 R31 R32, R40, R42 R33. R47 R34 R36 R38, R41, R44 R39, R43 R45, R46
Potentiometers
VR1 $22 k$ log combined with pull to make switch
*VR2 100 k log slider (2 off)
- PR1 10k preset lin (2 off)
* PR2 47k preset (2 off) PR3, PR4 47k preset (2 off)

Constructor's Note

A complete kit of parts for the Quasar is available from R\&TVC Ltd, 21B
High Street, Acton W3 6NG, price $£ 32.95$ plus $£ 2.75$ p\&p. The cabinet is
£ 4.50 plus $£ 1.50$ p\&p.

Inductors

*L1 Bias trap coil (2 off) (22 mH adjustable)
Oscillator coil 114 TO 30035

Switches

S1 2 pole play/record
S2 2 way slide s/w
S3 3 way slide s/w
S4 See VR1
S5 \quad Fitted to cassette mech.
Miscellaneous
Cassette mech.
Dual VU meter (MEI)
Aluminium top cover
Printed fascia
Bracket for S 1
Perspex lid
5 off normal cassette piano knobs 1 off record cassette piano knob
TR1 Mains transformer (18 V sec) Fuse holder and 500 mA fuse Case
5 pin DIN socket (SK 1)
2 off switched jack sockets (JK 1) p.c.b.

* INCLUDES SECOND CHANNEL COMPONENTS

Capacitors	
${ }^{\text {C }} 12 . \mathrm{C} 2$	$220 \mu 16 \mathrm{~V}$ elect (4 off)
- C3, C10, C12, C13, C14,	
C17	1μ to $2 \mu 16 \mathrm{~V}$ elect (12 off)
* C4, C8, C9, C16, C20	$10 \mu 16 \mathrm{~V}$ elect (10 off)
* C5	6 n 2 (2 off)
* C6	220p polystyrene (2 off)
* C7. C22	1 n polystyrene (4 off)
- C11	330 n (2 off)
- C15	3 n (2 off)
- C18	130p polystyrene (2 off)
* C19, C21, C23. C26	100 n (8 off)
- C24	$47 \mu 16 \mathrm{~V}$ elect (2 off)
- C25	4 n 7 (2 off)
- C27	500p polyester (2 off)
- C47	10 n (2 off)
C28, C34, C37, C39	10 n (4 off) axial
C29 to C33, C40	$47 \mu 16 \mathrm{~V}$ elect (6 off)
C35	$470 \mu 25 \mathrm{~V}$ elect
C36	$100 \mu 16 \mathrm{~V}$ elect
C38	$10 \mu 16 \mathrm{~V}$ elect
C41	10 n vert.
C42, C44, C45	in polystyrene (3 off)
C43	2 n polystyrene
C46	100 n
C48	$2200 \mu 25 \mathrm{~V}$
Semiconductors	
* D1, D2	Germanium diodes (4 off)
D3	15 V Zener BZY88
D4, D5, D6, D7, D9	BY2 10 (5 off)
D8	4 V Zener BZY88
SCR 1	MCR 106
- TR1	MEF104 or MEF 101 (2 off)
* TR2	BC107 or equiv. (2 off)
- TR3	BC109 or equiv. (2 off)
TR4, TR6 to TR 10	BC107 or equiv. (6 off)
TR5	N51 (TIP 31A equiv)
- IC1	LM1818 (2 off)

is earthed by $\mathrm{S} 1 . \mathrm{C} 7$ is chosen to resonate at approximately 12 kHz -thus compensating for "gap loss" previously mentioned. All other functions are the same as in the record state except the corresponding circuitry is selected inside the i.c. The final output is taken from pin 9 via C16.

G.N.R. SYSTEM (GATE NOISE REDUCTION)

With S3 in the "flat" position R17 and TR1 form a simple potential divider. While there is no signal at the junction of C16 and R17 the f.e.t.s resistance is very low (approximately 100 $)$-thus virtually short-circuiting the output level preset PR2. As soon as the signal arrives, independent of the PR2, it is amplified by TR2. To ensure low voltage rectification D1 and D2 are germanium diodes. They rectify the signal and a doubled -ve voltage appears at TR1 gate, which goes high in resistance, thus allowing the signal from PR2 to TR3. The final output is taken via C20. C26 is the memory capacitor for the gating system.

Noter. Without signal and S3 in FLAT position, the G.N.R. will reduce all unwanted hum or noise to almost an inaudible level, whilst in h.f. position the higher frequencies will be reduced at low or zero signal only.

AUTO STOP

The rotate switch is an integral part of the deck and is located under the "take up" mechanism. While rotating it is intermittently supplying a d.c. positive voltage to C38. This appears at TR8 base as a square-wave, saturating the transistor and only a very low voltage (Vbel will occur at the
collector. As soon as the switch stops rotating (end of tape) TR8 ceases to conduct and the collector goes "high", and SCR1 is triggered by R41. Immediately the solenoid operates releasing the function keys (PLAY, F.F. or R.W.). The deck switches S5 and S6 also return to the OFF position. During the pause the pinch wheel on the mechanism is partly disengaged and S7 provides a + ve voltage via R38 to hold TR8 in saturated state.

POWER SUPPLY

The rectified output is decoupled by C48. C35 is a "storage" capacitor for the auto stop circuit. The value chosen enables enough energy to be stored (through R36) for one operation of the solenoid. TR4 regulates the voltage to the i.c.s and the G.N.R

The same voltage is current amplified by TR5 to provide the motor supply. Under normal use TR5 can be operated without a heatsink but a small heatsink may be attached if excessive rewind or fast forward operation is required. (Note: the tab of TR5 is internally connected and must not be shorted to earth nor any other component.)

Transistors TR6 and TR7 form the variable-regulated supply for the bias oscillator; with $\mathrm{D} 8(4 \mathrm{~V}$ Zener) it will vary the voltage from 4.5 to 15.5 V . When VR5 and VR6 are set correctly the bias oscillator voltage at the head will correspond to the calibration around VR1. R29 ensures correct record/replay logic switching should the bias oscillator supply be below 10 V .

NEXT MONTH: CONSTRUCTION

MICROCOMPUTER COMPONENTS AND SYSTEMS LOWEST PRICES
 FASTEST DELIVERY

NEC 12" MONITOR

* GREEN DISPLAY
* BUILT in amplifier and SPEAKER
\star £149.95 each excluding carriage ($(10.00$) and V.AT
(15\%)
- EX-STOCK

The NEC JB1201M is a 12 Video Monitor optimised for use as a computer video display terminal (unlike most CCTV monitors availabie). The green phosphor CRT display greatly reduces eyestrain The built in audio amplifier and speaker make it specially suitable for personal computers.

EPROM PROGRAMMERS AND ERASER

EP4000 EMULATING PROGRAMMER

* COPY/PROGRAMMEJEMULATE 2704/2708 2716/2508/2516/2532/2732 EPROMS
* $4 \mathrm{~K} \times 8$ STATIC RAM
* VIDEO O/P AND 8 DIGIT LED DISPLAY
* POWERFUL EDITING FACILITIES
\star COMPREHENSIVE I/OASSTD (RS232, TL.
20 mA PARALLEL DMA)
* $£ 545.00$ excluding carriage ($£ 10.00$) and VAT (15%)
* EX-STOCK.

P4OOO PRODUCTION PROGRAMMER

* PROGRAMME UP TO 8 EPROMS

SIMULTANEOUSLY

- COVERS SAME EPROMS AS EP4000
* $\operatorname{INDEPENDANT}$ BLANK CHECKVERIFY

PROGRAM MODES

* SIMPLE TO USE
* $£ 545.00$ excluding carriage ($£ 10.00$) and
V.AT (15%)
* EX-STOCK.

UV141 EPROM ERASER

* 14 EPROM CAPACITY
* SAFETY INTERLOCKED
\star ELECTRONIC TIMER
产 $£ 78.00$ excluding Carriage ($£ 5.00$) and
VAT (15\%)
\star EX-STOCK

KEYBOARD AND ENCLOSURE

CASE Attractively styled personal computer enclosure constructed of structured foam top and steel base (similar to the top selling Apple). Finished in charcoal and black
£49.95 excluding carriage ($£ 1000$) and V.AT. (15%)

KEYBOARD High quality electromechanical ASCll Encoded keyboard which can be fitted in above case or used separately. Fult upper and lower case provided
$\mathbf{£ 4 9 . 9 5}$ excluding carriage ($£ 2.00$) and V AT (15\%).

TRANSFORMER Mains transformer Suitable for +5 V at 2.5 A and $\pm 12 \mathrm{~V}$ at 1 A Mounts on special lugs inside enclosure.
£10.95 excluding carriage ($£ 1.00$) \& V.AT. (15%)
heatsink heatsink for T03 Regulators which mounts inside rear of enclose.
£2.50 excluding V.AT. (15\%)
SPECIAL PRICE FOR CASE, KEYBOARD, TRANSFORMER \& hEATSINK IF PURCHASED TOGETHER:
£99.95 exciuding carriage (£15.00) \& V.AT. (15\%)

 REFUND FOR OUT OF STOCK ITEMS IF REQUESTED.

nex

SPECIAL TEST GEAR ISSUE!

$$
\begin{aligned}
& \text { Fuisioil can alalo: } \\
& \text { FREOUACM MITIB }
\end{aligned}
$$

Plus... FREE SUPPLEMENT

PRACTICAL

[^1]
ULTRASONIC VISION SYSTEM Jeremy Bentham \& Fred Bentham

THE ROBOT AGE is drawing closer, but the general use of robots is held up because of one major problem: how can a machine "see" the world around it? Research laboratories the world over are working on the problem, yet the systems produced are either elaborate and expensive, or simple and ineffective. This project is an advanced ultrasonic vision system which is within the means of the amateur constructor, yet is sophisticated enough to enable experimentation with computer measurement, image recognition, object tracking, and robot vision.

The use of ultrasonics for imaging is by no means new. It has long been known that bats emit ultrasonic squeaks, and use the resulting echoes to determine the range and position of nearby objects. Man has widely imitated this process, and many designs have been published for simple ultrasonic echo-rangers. Yet these designs ignore two important features of a bat's vision system that make it so accurate.

Firstly, a bat does not transmit a burst of one single frequency, since this frequency may be cancelled out due to the shape of the target. Instead, a burst of many different frequencies is transmitted, so that complete cancellation is unlikely. Secondly, a bat can intelligently move so as to determine the bearing of an object of interest. This permits a map of the surroundings to be formed.

This project incorporates these two improvements so as to form an ultrasonic vision system. The system consists of a rotating transducer unit, and an interface circuit. The system

is designed to be coupled to a home computer, which processes and displays the incoming data. Depending on the complexity of the software written, the display can be anything between simple range and bearing information, or a complex radar-type plot. There is tremendous scope for experimentation with the way the incoming data is used: in view of the impending arrival of domestic robots, the unit might well find application as a robot vision system.

HARDWARE AND SOFTWARE

The vision unit consists of a circuit board, an ultrasonic transducer, and a stepper motor. The unit is designed to plug into the printer port of an Acorn Atom, but it can be driven by any computer with five output lines and one input line (5 volt logic). The unit can be powered from an external 5 volt supply, or from an unregulated supply using the optional onboard regulator. Simple driving software for the Atom is described in Part Two. A typical scan of a room using more complex software and the Atom hi-res graphics is shown in Fig. 4. It is hoped to make this software available on cassette.

DESIGN

In order to make the system as flexible as possible and to minimise the amount of hardware, it was decided to implement most of the required functions in software. This means that the computer generates the transmit pulse sequence, times the returning echoes, and generates the stepper motor signals. The hardware amplifies the transmit pulse sequence, processes the received echoes, and amplifies the motor drive signals.

Fig. 3 is a complete circuit diagram of the unit. The transmit pulses emerge from bit 6 of the Atom printer port as a normally low signal, pulsed high at the transmit frequency. This signal is fed to the base of TR1 via C1, which blocks any continuous d.c. signal. The high pulses turn on TR1 and drive T1 which is a transformer broadly tuned to $50-60 \mathrm{kHz}$. During transmission the inductive "kick-backs" from the primary are collected by D5 so as to charge up C5 to about 8 volts. This voltage is used as a supply for IC1,2, since they require more than 5 volts. Approximately 350 V peak-to-peak is produced by. the secondary of T1 to drive the transducer. As the transducer is of the capacitive type, it also

[G006]
Fig. 2. Echo pulses
EG605
Fig. 1. Block diagram of system

requires a d.c. polarising voltage, which is supplied by D2 and C2. When the transmission has finished, the oscillations die away quickly due to the damping resistor R5, and the transducer can start receiving.

Echoes picked up by the transducer generate a small signal, which may be as low as 100 microvolts for a distant object. For amplification, the conventional 741 op -amp cannot be used, since it has inadequate gain at 60 kHz . Instead, an LM301 is used, and it requires an external compensation capacitor C7. IC1 provides a voltage gain between 20:1 and $80: 1$ depending on the setting of gain control VR1. The output of IC1 feeds a 60 kHz series tuned circuit. As those of you who have studied a.c. circuit theory will know, the tuned circuit not only filters out signals outside the passband, but also acts as a voltage multiplier at the resonant frequency. Since R8, C8, L1, give a Q-factor of approximately 10, we obtain a further voltage gain of 10 around 60 kHz .

The amplified and filtered echo is fed to the non-inverting input of IC2, and a reference voltage is fed to the inverting

Fig. 4. A radar-type scan generated by the uttrasonic vision system. A " slice" view at about the height of the back of the chair is produced here

input. The op-amp acts as a comparator: if the negative peaks of the received echo are more negative than the reference level, the output pulses low. Thus a stream of low pulses at the output indicates that a valid echo is being received. These pulses are fed to TR2, TR3 which stretch the individual pulses so that one echo is seen as one long pulse. (See Fig. 2). These echo pulses are fed into bit 7 (the most significant bit) of the atom printer port. The input is normally high, and is held low for the duration of each received echo.

From the above description it can be seen the reference voltage at the inverting input of IC2 determines the overall sensitivity of the system; if the reference voltage is at 0 volts, the system is least sensitive, and if it is nearly 5 volts, the system has maximum sensitivity. Components D6, C6, C9, R9, R10, R11, R12, TR4, all control the reference voltage so as to give the following features:

1) Hysteresis. When an echo is received, the field-effect transistor TR4 is turned off via R12. This raises the reference voltage, so that the circuit locks on to the incoming pulse.
2) Gain profile. During transmission, the switching of TR1 causes C6 and C9 to charge via D6, holding the reference voltage low. During reception, the reference voltage slowly rises as C6 and C9 discharge through R9 and R11. This means that the system gain is low after each transmission, and then slowly rises; this compensates for the fact that nearby objects give bigger echoes than far ones.

Bits $0,1,2,3$ of the printer port are outputs for the stepper motor drive. These signals are normally low; when one or more are switched high, the corresponding stepper motor coils are energised. Diodes D8, 9, 10, 11 are to protect the circuit against the inductive kick-back of the coils when deenergising. The stepper motor is a 4 -phase unipolar type; although it is a 12 volt motor it is being under-run at 5 V to save power. The angle per full step is 7.5 deg ., but it can be half-stepped. The required drive signals are described next month.

86804
Fig. 5. Interfacing the steppermotor to the Atom Printer Port

Fig. 6. Mounting the sensor. A plastic spacer with a slot cut in one end, is used to accept the flat brass bar which passes through the transducer's rear lugs. This end of the spacer is joined using adhesive. The other end is a push fit over the motor spindle

COMPONENTS

Resistors

R1, R13	$22 k(2$ off)
R2	$\frac{1}{2} W 5 \%$
R3, R12	$560 k$ (2 off)
R4, R15, R16	$1 \mathrm{k}(3$ off)
R5	47 k
R6	$39 k$
R7	470
R8	150
R9, R17, R19, R21, R23	$10 k(5$ off)
R10	1 M
R11	$15 k$
R14, R18, R20, R22, R24	$3 k 3$ (5 off)

All resistors $\frac{1}{4} W 5 \%$ unless otherwise specified

Potentiometers

VR1 2 k 2 min . hor. preset

Capacitors

C1, C6, C11, C12
$100 \mathrm{n} / 250 \mathrm{~V} 10 \%$ (4 off)
C2, C10
C3. C5
C4 C7
$10 \mathrm{n} / 250 \mathrm{~V} 10 \%$ (2 off)
$470 / 63 \mathrm{~V}$ elect. (2 off)
680 p silver mica
3 p3 sub. min. plate ceramic

Transistors and Diodes

TR1, TR5-8	TIP120 (5 off)
TR2	BC212 (not L version)
TR3	BC107
TR4	BF244B
D1. D3, D4, D6, D7	1N4148 (5 off)
D2, D5.D8-11	IN4006 (6 off)

Inductors $\mathrm{L} 1 \quad 5 \mathrm{mH}$ choke (Repanco CH 2) T1 COMPVIS 1T

Integrated Circuits

IC1, IC2
 LM301 (2 off)

REG 1
7805 regulator (not supplied in kit)

Miscellaneous

Polaroid ultrasonic transducer
8 -pin d.i.l. socket (2 off)
Stepping motor. Impex 9904-112-31004 12 volt
Ribbon cable with 26 -way header
30 cm of coaxial cable for transducer
Adaptor to mount the transducer
P.c.b. Compvis 1

Constructor's Note

All parts (or complete kit) available from Technomatic Ltd.

Fig. 7. Printed circuit layout (actual size)

CONSTRUCTION

It is recommended that the p.c.b. be used, otherwise stability problems may occur. Assembly is straightforward, but pay special attention to the diode polarities, and the transistor orientation. The correct orientation for T1 is established by looking at the underside: the primary is wound with thicker wire than the secondary. The regulator IC3 is optional. If a 5 volt regulated supply is available, then IC3 should not be fitted, and its two outer holes on the p.c.b. should be linked together. During transmission, the unit requires 1 amp peak, so the external supply must be capable of this current without distress. For this reason, the supply from the Atom's internal regulators must not be used. The
screened cable must be soldered to lugs which push on to the transducer tabs. Do not solder direct to the transducer, as the heat will destroy it. The recommended length for the transducer cable is 30 cm ., greater lengths may cause problems. Before connecting the screened cable to the p.c.b. connect it to the transducer and fit the transducer to the motor. Measure the resistance between the centre core and the screen of the cable: it should be infinite, since the transducer does not present a resistive load. When connecting the ribbon cable, note the pin 1 identification on the p.c.b. This should correspond to the bottom left pin of the Atom printer port, viewed from the back.
NEXT MONTH Testing and software.

THE MACROCHIIP

In recent years the phrase 'solid state' when applied to electronics has been almost universally equated with integrated circuitry and microminiaturisation. An advance in large scale solid state engineering is about to take industry by storm. This advance however has come from the most unlikely source.

The specialist firm of Puchemm \& Long which produces conveyor belt systems for the confectionary trade is about to start production of its new solid state drive mechanism for conveyor belts. The principle is simple, but has required some sophisticated engineering to produce the hardware. The drive mechanism is a linear induction motor which instead of using magnetic induction uses an analogous system of electrostatic induction. A rubberized belt acts as an insulator with a high dielectric constant. A large scale solid state drive underneath the belt develops a rapidly changing pattern of electrostatic charge which induces the opposite charge on the belt above. As the driving charge changes the induced charge above it lags behind so that the two charges repel each other providing levitation and propulsion for the belt. A complex pattern of changing charges produced by the macrocircuit ensure a smooth controllable motion of the belt.

There are many advantages of this system over the conventional mechanical belt drive. Total solid state engineering means that there are no moving parts and hence greater reliability and less maintenance. The elimination of the noise and vibration of previous mechanisms improves the environment of the factory floor. The main advantage for the food industry however is the cleanliness of the system. The lack of moving parts means that 'dirty' lubricating oils can be eliminated from the track and little dust is stirred up by the mechanism.

It is not only on the factory floor that this system will find an application. Already P \& L have started work on a personnel transport system. A high power version of the sweet makers continuous belts under development as a moving pavement although there is still a considerable number of problems to be overcome. This farsighted project is only the beginning of what could be a revolutionary move away from the wheel. Plans for the future include an electrostatically elevated and propelled automobile. In this development the drive 'chip' is turned upside down and induces its shadow charge on the dielectric which is the road.

The wheel-less car seems a very adventurous project but the P.L. planning department claim that this is only a beginning. However when pressed for details they would say no more than "The sky is the limit". An expression which may have referred to the fact that air itself has a moderately high dielectric constant, or ... What is the dielectric constant of interstellar hydrogen?

See Page 51 for more details.

Our book PE Popular Projects containing a selection of popular projects is now available. The book costs $£ 1.25$ from retail outlets and is also available for $£ 1.50$, UK post paid, or $£ 1.80$ overseas surface post paid, from Post Sales Department (PE Popular Projects), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF.

NOW AVAILABLE IN KIT FORM

MAGIDICE
 Electronic Dice

- Not an auto item but great fun for the family
- Total random selection
- Triggered by waving of hand over dice
- Bleeps and flashes during a 4 second tumble sequence
- Throw displayed for 10 seconds
- Auto display of last throw 1 second in 5
- Muting and Off switch on base
- Hours of continuous use from PP7 battery
- Over 100 components to assemble
 Die cast waterproof case with clip-to-coil fitting Fits majority of 4 and 6 cylinder 12 v neg. earth vehicles

VOYAGER Car Drive Computer

- A most sophisticated accessory - Utilises a single chip mask programmed microprocessor incorporating a unique programme designed by EDA Sparkrite Ltd. Affords 12 functions centred on Fuel, Speed, Distance and Time. Visual and Audible alarms warning of Excess Speed, Frost/Ice, Lights-left-on. Facility to operate LOG and TRIP functions independently or synchronously - Large 10 mm high $400 \mathrm{ft}-\mathrm{L}$ fluorescent display with auto intensity. Unique speed and fuel transducers giving a programmed accuracy of + or -1% Large LOG \& TRIP memories. 2,000 miles. 180 gallons. 100 hours. Full Imperia and Metric calibrations. Over 300 components to assemble A real challenge for the electronics enthusiast

Electronic Ignition

- The ultimate system - Switchable contactless. Threeposition switch with Auxiliary back-up inductive circuit - Reactive Discharge Combined capacitive and inductive Extended coil energy storage cuit. Magnetic contactless distributor trigger head. Distributor triggerhead adaptors included - Can also be triggered by existing contact breakers - Over 150 components to assemble - Arms doors, boot. bonnet and has security loop to protect fog/spot lamps, radio/tape. CB equipment - Programmable personal code entiy system
- Armed and disarmed from outside vehicle using a special magnetic key fob against a windscreen sensor pad adhered to the inside of the screen - Fits all 12 V neg earth vehicles - Over 250 components to assemble

All EDA-SPARKRITE products and design are fully covered by one more world Patents
EDA SPARKRITE LIMITED 82 Bath Street, Walsall, West Midlands, WS 1 3DE England. Tel: (0922) 614791

ASLEF Man

Perhaps unfairly, British Rail's modernisation programme has become a joke. The Advanced Passenger Train (APT) caused much merriment recently when its inaugural passenger runs were plagued with technical problems resulting in withdrawa from service. What should have been a technical triumph, though some years late, turned into a farce.
$B R$ is typical of what remains wrong in British industry. On the one hand there is a dedicated team of scientists and engineers beavering away at Derby on developing and testing up-to-date systems with a view to improving efficiency and service. On the other hand, a trade union structure reluctant to admit any change in practices although paying lip-service to the need for progress

ASLEF Man is the archetype of out-ofdate attitudes. For the benefit of overseas readers. ASLEF is the acronym for the Associated Society of Locomotive Engineers and Firemen with a membership of little over 25,000, a sad decline since the great age of steam when, for example, in 1938 there were close on 20,000 steam locomotives running and only 43 diesel and 13 electric locomotives. By 1960 diesel traction was biting into steam and the switch from steam to diesel and electric traction was completed by 1968.

In some respects we can all sympathise with ASLLEF Man. Not only has he declined in numbers but his elite qualities in the railway hierarchy of yesteryear are no longer needed. With steam, the driver and fireman, working as a team, were systems managers. Every locomotive was a selfcontained energy converter from coal to heat to steam to tractive effort. There was constant balancing of water levels, firebox temperature, steam pressure, against the varying demands of speed, gradients, wind resistance and the clock. The team watched their gauges and, as part of the feedback loop, had to exercise technical judgement based on long experience throughout the
journey. Starting as a boy engine cleaner you could hope to be entrusted with an express passenger train by middle age. Apart from the exercise of technical skill, the job was physically demanding, uncomfortable, and dirty.

Modern ASLEF Man, in association with the guard, is responsible for train and passenger safety as before. The rest of his job, in air-conditioned comfort, is less demanding than driving a car. He can't forget he is no longer a locomotive engineer and as long as he can get away with it will insist on having a 'fireman' in his cab, for thus it was always so

While ASLEF Man dwells mentally in the past, the electronic boffins at BR laboratories are far into the future. Too far, I suspect, because they have an obsession that modern electronics is the solution to everything. This was apparent at a recent IEE conference on Railways in the Electronic Age. It came out that 'old-fashioned signalling using electro-mechanical relays has reliability and fail-safe characteristics, developed over decades of in-field experience, very hard to improve by electronic switching and control. If this is true, why bother to change? Our experience with automation and modernisation on British Rail has often been unhappy.

The railway boffins are so far ahead with dreams of microprocessor control for everything that they seem to have overlooked one application of electronics, cheaply and easily installed, that could have saved many accidents and deaths. A radio communications link with every moving train. Well, not quite overlooked, for the conference revealed as something quite remarkably novel that one single-track line in the north of Scotland is now so equipped since overhead lines were brought down by snow. What a breakthrough!

With one vital section of the workforce of the railways with heads mostly buried in the sand, and another with heads often in the clouds, it is no wonder the outfit costs the taxpayer $£ 2$ million a day to keep going - when it is going.

New Era

'We are well and truly launched into the competitive era' says Sir George Jefferson, chairman of British Telecom, commenting on the new circumstances under which BT has had its former monopoly powers curbed, if not yet extinguished. BT has accepted the challenge and the equipment suppliers will also need to be more competitive to hold their business with their largest single customer.

Nonetheless, wholly British or Britishbased companies should retain most of the business which will remain substantial for many years to come. Electronic telephone exchanges alone will account for $£ 600$ million over the next three years, spread between GEC, Plessey and STC. By then, BT will have spent $£ 750$ million on TXE4 and the improved TXE4/4A exchanges with STC alone.

Then there is BT's new digital network. which has already topped 100,000 miles installed, and this is only the start of a
massive digital programme extending through the rest of the decade.

There still remains a big question mark over the highly publicised System X . At home, where BT is full committed to System X, its full implementation according to some forecasts will not be before the turn of the century. This is not a reflection on BT who must, of course, get a full service life from exchanges such as TXE4/4As now being installed. Nor does it mean that subscribers on TXE4/4As will be denied the sort of extra services promised by System X. In fact, further enhancement of TXE4/4As will provide most, if not all, of the facilities of System X.

Where the disappointment arises is in export orders for System X. A business consortium of BT, GEC, Plessey and STC was formed some three years ago to promote exports but no sales have resulted - so far. The Department of Industry has been asked for a grant to adapt System X to better meet overseas requirements but DOI has commissioned an independent study by consultants before committing itself.

Joy in Boredom

When Racal Electronics Group yet again produced a record financial result, half-year pre-tax profits up 45 per cent, the City yawned. What an utter bore, why don't they improve 100 per cent, or even go broke?

The trouble with Racal is that for over a quarter of a century the company has enjoyed a continuous upward growth. None of the dramatic upheavals, the ups and downs so beloved by financial journalists looking for newsy headlines. Racal growth is so regular it has now become routine, if not downright monotonous. And Racal shares have become so blue-chip that they tend to be overpriced. The result is that when, by ordinary standards, Racal produces a cracking result it can even provoke a 'Racal disappoints' comment - Racal shares dropped 33 p the day after the results were declared.

The belief that Racal-style management would soon turn Decca round from loss to profit was confirmed in the figures. Most of the increased profit came from the turnround, although some of the former Decca operations are not yet out of the red.

An interesting sidelight is the theory of horses for courses. Racal is a firm believer in sticking to what it knows it can do best, i.e. capital goods. Thus, having acquired Decca, one of the first tasks was to dispose of the domestic television manufacturing unit at Bridgnorth. This was bought by Taiwan's biggest electronics company, Tatung, who know the consumer side of the business and according to latest reports are making a real go of it, turning loss into profit within six months of taking over, production of TV sets having increased almost five-fold and still accelerating with substantial exports to the European mainland envisaged.

Another thoroughly boring outfit is GEC. Their current export order book stands at over $£ 1,000$ million, let alone the healthy home order book plus $£ 800$ million cash in the bank. Again, this is expected and causes little excitement.

To: RTVC Ltd. (PE OFFER), 21b High St., Acton W3 6NG (all mail), callers to 323 Edgware Road.

This excellent offer has been arranged by PE as a result of a frustrated export order. The speakers employ Audax drive units and were produced in the UK for a leading European hi-fi company. They are "mirror image' speakers with h.f. drive units mounted to the outside of the sound area.
Specifically designed to meet the need for a high quality moderately sized enclosure these speakers have a high sensitivity, extended bass response and will handle up to 45 watts peak, although they can be used with amplifiers rated as low as 15 watts.
SPECIFICATION: Two way infinite baffle; HIF2OESM bass unit 20 cm diam. treated paper foam edged cone; HD100 high frequency unit 25 mm soft dome radiator; 8 ohm nominal impedance; 45 watts peak power (35 W r.m.s.); 86 dB 1 watt 1 meter sensitivity; frequency range $45 \mathrm{~Hz}-22 \mathrm{kHz}$; resonance 80 Hz ; harmonic distortion ref. 96 dB . SPL at 1 meter 3% max. second harmonic $140 \mathrm{~Hz}-22 \mathrm{kHz} ; 1 \%$ max. third harmonic $100 \mathrm{~Hz}-22 \mathrm{kHz}$; finished in rosewood p.v.c.; size $470 \times 264 \times 225 \mathrm{~mm}$; capacity 18 litres; weight 8 kilos; connections, DIN sockets and screw terminals.

THIS is a project designed primarily with the photographer in mind, but which could be readily adapted to many other uses. It can act as a straightforward stopwatch, counting with an accuracy of 0.1 seconds up to a total of 999.9 seconds duration; this is primarily for use when processing films or developing prints. It can also be made to count down from a preset number to zero, turning on an enlarger lamp during this counting period. To aid in the 'dodging' of prints (selective shading of part of the enlargement) a once-per-second 'bleeper' is provided; alternatively, the bleeper can be used as an alarm for when the count down period has ended. The count down facility can also be switched to repeat. In this mode, a short bleep is sounded when the counter reaches zero, then the unit re-sets itself to the starting value and counts down again. This arrangement simplifies the exposing of 'test strips'. A safelight socket is provided so that when the enlarger controi is in the 'focus' position (continuously on), the safelight is turned off. An enlarger meter can then be used to determine the relative brightness of the negative; normally, such meters are adversely affected by the illumination from a safelight. Finally, a brightness control is provided for the l.e.d. display to allow it to be dimmed sufficiently to prevent fogging of the printing paper. Turning this control fully off also turns off the safelight; ideal for use when colour printing.

CIRCUIT DESCRIPTION

The whole enlarger timer is based on one LSI device, a CMOS 4 decade counter/driver i.c. type 7217 . This is a 28 pin i.c. of considerable complexity; it isn't cheap, but it does replace dozens of simpler i.c.s.

The 7217 is, essentially, four up/down counters in one package. It has a built-in multiplexed l.e.d. driver circuit, which is fully buffered to remove the need for any external transistor or i.c. current driving stages. It has a tri-state input/output ('I/O') bus, pins 4,5,6 and 7, capable of feeding in an input into the device to preset it, or an output from the device (to supply count data to other external circuitry). We
shall only be using the 'input state' of the bus in this application. The preset information can be used to either preset the counter, or to preset a register which is then compared with the counter; when the two are equal, an output pin of the i.c. changes state. (We shall not be using this latter function, but you may be able to think of other applications for it!)

To provide an accurate source of clocking pulses for the 7217, a clock signal derived from the 50 Hz waveform of the mains is used. D28, D29, D30 and D31 form a conventional bridge rectifier to supply the unregulated d.c. to the circuitry. but we also take one a.c. side of the bridge to IC9b, via R21. D25 and D26 limit the voltage excursions to within the supply rails, give or take a diode voltage drop, and C11 helps to filter out noise on the 50 Hz waveform. IC9b is a Schmitt trigger NAND gate, which sharpens up the incoming waveform to the correct logic levels, with no noise spikes or other transient effects. IC2 is a pre-settable 'divide-by-n' counter, as discussed in the 'Digital Design Techniques' series. In this instance it is arranged to divide by 5 ; the $\overline{\bar{Q}_{2}}$ and $\overline{\mathrm{O}}_{3}$ outputs are fed back to the data input via IC7 a and IC7b. This 'data' signal is the 10 Hz waveform used to feed both the clock input to IC1, and to IC3. The latter is a decade counter used merely to divide by 10 ; the 'carry out' signal from IC3 is a 1 Hz square wave used to control the 'bleep' oscillator when in the 'bleep seconds' mode.

IC8c and IC8d are connected as a latch. Pressing the 'start' button causes IC8d pin 11 to go to logic 1, which then enables IC9b and allows IC's 1,2 and 3 to start counting. When the 'start' button is pressed, IC8c is forced to go to logic 0, causing a negative going pulse, derived by C3, D21 and R13, to feed into IC4c. This is pulse stretched by C5, R19 and D23, and is fed into IC5b. If S6 is in the 'up' position, the output of IC5a is at logic 0 , so IC5b is disabled. (Pins 9, 10 and 14 of 1 C 1 all have internal 75 k pull up resistors). If S 6 is in the 'down/time' position, IC5b inverts the stretched pulse, which is inverted again by IC5d and used to strobe pin 12 of IC1. This loads (i.e. presets) the counter with the values of the BCD inputs to the i.c. The preset inputs are provided by S9, S10, S11 and S12; all BCD thumbwheel ('push-push') switches. These are strobed by the digit strobe outputs of IC1 to ensure that each switch feeds data into IC1 in a multiplexed arrangement, in sequence with the multiplexing of the display. D1 to D16 prevent interaction between switches.

By this means, as soon as the start button is pressed (in the 'down/time' mode) the counter assumes the value determined by the thumbwheel switches, then counts down from that value towards zero. Pin 2 of IC1 goes to logic 0 when the value of the counter output is zero. (This happens briefly when the counter is loaded, so the load pulse on Pin 12 is also used to disable the 'zero' output briefly, via pulse stretcher D27, R16, C4 and IC6c. This has a pulse derived from it by C2, D22 and R15. The pulse is enabled by IC4d in order that no output pulse is generated when the device is being reset to zero deliberately; if this were not done, unwanted effects would occur, for example, 'time-up' warning

COMPONENTS

Resistors

R1	$5 k 6$
R2	$2 k 2$
R3	$15 k$
R4, R9, R10, R11, R12, R14, R17,	
R18, R23	$10 k$ (9 off)
R5, R7, R16, R19, R22, R24	1 MO (6 off)
R6	470
R8	39
R13, R15, R21, R25	100 k (4 off)
R20	$4 k 7$
All resistors $\frac{1}{3}$ or $\frac{1}{4}$ watt, 5% Carbon	

Potentiometers

VR1 47 k lin., fitted with double pole single throw switch

Capacitors

C1, C3, C4, C5, C11, C13
C2
C 6
$\mathrm{C} 7 . \mathrm{C}$
Cl
C8
C10
C12
10n polyester (6 off)
100 n polyester
$220 \mu 25 \mathrm{~V}$ electrolytic
100 n 30 V disc ceramic (2 off) $1 \mu 35 \mathrm{~V}$ tantalum bead
$1000 \mu 25 \mathrm{~V}$ electrolytic
470 n polycarbonate lor
9 miniature polyester)

Semiconductors

D1 to D18, D21
to D27 IN4148 (25 off)
D19, D20. D28.
D29, D30, D31
TR1, TR3
TR2

1 N4002 (6 off)
BC548 (2 off)
BC184L

IC1

IC2

IC3

IC4, IC5, IC7
IC6, IC8
IC9
IC10
DISPLAY XI 1 MO (6 off) 470

100 k (4 off) 4 k 7

ICM 7217 (4 decade counter/driver) 4018 CMOS divide-by-N
4017 CMOS decade counter
4011 CMOS quad NAND gate (3 off)
4001 CMOS quad NOR gate (2 off)
4093 CMOS quad Schmitt NAND gate
$7805+5 \mathrm{~V}$ voltage regulator (plastic package)
4 digit, multiplexed common anode l.e.d. display (or make up from individual common anode 7 -segment displays)

Miscellaneous

T1

1 off
S2.S4. 55
S3. S8
S6. S7
Relay RLA, Relay RLB

Mains transformer 9 V r.m.s. secondary
TOKO PB2720 Piezo sounder (available from Ambit)
SPDT pushbutton (momentary) (3 off)
DPDT, centre off, miniature toggle switch (2 off)
SPDT miniature toggle switch (2 off)
Miniature relay, 12 voit (nominal) coil. contacts capable of passing 240 V a.c. at 1.6 A or more
Knob for VR1
Global Specialties 'Design Mate' case, DMC1
Piece of red gelatine or perspex (see text)
Mains fuseholder, FS1, fitted with 1A fuse (slow blow)
'European' ('reversed') shuttered mains chassis mounting socket, with mating plug halves
$B C D$ thumbwheels, push-push type preferably, with mounting cheeks and a spacer (for the decimal point)

Threaded spacers, wire, screws, etc., to suit (see text).
bleeps, etc. When enabled, and with S7 in the 'one shot' position, the $\overline{z e r o}$ pulse finally feeds into the IC8c, IC8d latch, resetting it and hence preventing any further counting of IC1,2 or 3 . This halting of the count, of course, can also be performed by pressing the 'stop' button, S4.
When S7 is in the 'repeat' position, the pulse-derived zero output of IC 1 is fed to IC 4 c . This has the same effect as pressing the 'start' button did; IC1 is preset to the value on the thumbwheel switches, from which it then counts down. The continual cycle of counting down to zero then jumping to the preset value and counting again, is only stopped by pressing the 'stop' button. The output pin 4 of IC5b (the inverted 'load counter' pulse) is also used to reset IC2 and IC3 via IC5c, and to cause a short bleep to be given out of the sounder. This is done by inverting it via IC9a, pulse stretching it to give a fairly long ($\frac{1}{3}$ rd of a second) pulse with D24, R22 and C12, then using it to gate on and off the 'bleep' oscillator via IC6d and S8.

The bleep oscillator is a conventional two-gate circuit formed by IC8a and IC8b directly driving a piezo sounder. IC9c and IC9d form a latch which is set by the 'zero' pulse (in the one-shot mode only) and reset by the 'stop' switch. The output of this latch, IC9c pin 10, feeds into IC6d, and is used to gate on the oscillator to give the 'time-up' signal. When S8 is in the 'bleep seconds' position, the 1 Hz signal from IC3 is on via IC7d only when the counter output is NOT zero; this prevents the tone sounding continuously when the counter stops at zero. IC3 has its clock enabled by the 'stop-start'
latch of IC8c and IC8d, so that the seconds only bleep when the clock is running. The 'zero' switch S5 is contact debounced by the latch formed by IC6a and IC6b; it is a requirement of the 7217 i.c. that its reset input should be very clean, i.e. noise free. As well as resetting IC1 and gating off the pulse derived 'zero' output as already described, the debounced S5 signal also resets IC2 and IC3 via IC5c.

The safelight and enlarger light are both controlled by relays, rather than solid state triac or thyristor circuitry. This has been done because some enlargers (and a few safelights) have a complex and 'unusual' a.c. loading, and can respond badly to the slightly 'chopped' waveform of a solid state switched mains signal. Relay RLA is used to drive the safelight, primarily to obviate the necessity to pass mains voltages through S3a; a safety consideration. Note that S1b is used to switch the safelight off when the brightness control is turned off; S 1 b and S 1 a is the double pole switch fixed to the back of VR1.

Relay RLB is used to control the entarger, and is driven from TR2; chosen to be a BC184L, to ensure that a high enough gain is obtained. Because of the BC184L's high gain, 65 mA can be passed through Relay RLB with less than 0.3 mA drawn from IC8d. IC1 has an internal osciliator to drive its multiplexing circuitry, In order to provide control over the brightness, though, we must provide an external oscillator with variable mark/space ratio (since this ratio determines the illumination duration of each display digit) and feed this into the IC1 'scan' input. IC4a and IC4b form the

Fig. 2. P.c.b. design

Fig. 3. Component layout

Fig. 4. Wiring diagram
oscillator with VR1 varying the mark/space ratio. S1a fully disables the oscillator for the 'brightness off' position of VR 1.

TR3 is used to gate on the 'decimal point' l.e.d. in the display only when the '3rd digit' of the display (units of seconds) is being strobed; this is the only digit of the four which needs the decimal point. Finally, the +5 V regulated supply is provided by IC10, a regulator i.c. with C 8 and C 9 preventing unwanted parasitic oscillations and R20 providing a local guaranteed loading. C10 provides the smoothing for the unregulated d.c. supply, with C 6 and C 7 providing de-coupling for the +5 V supply.

CONSTRUCTION

The p.c.b. design for the Timer is shown in Fig. 2 with the component layout shown in Fig. 3.

The wire links should be added after all the other components with the exception of the +5 V supply link, see later. After the p.c.b. has been soldered and checked the case should then be drilled, cut and filed to suit the switches, connectors, display, etc., to be used; see the photographs for a suggested layout. The prototype used p.c.b. mounting switches for stop, start and zero, so these needed a piece of 'Matchboard' held to the front panel of the case by threaded spacers. The two relays, likewise, were mounted on an aluminium bracket held to the side of the case by threaded spacers.

The cut-out for the display should have a piece of red tinted 'perspex' or transparent plastic glued behind it. The display can then be supported behind this; the easiest way is

usually to very lightly glue the display to the 'perspex' or plastic sheet, around the edges ONLY, to make removal easy if necessary. (A complete multiplexed, display module is ideal for this. If individual 7 -segment displays are to be used they will have to be mounted on a spare piece of Matchboard, and wired together). The aluminium base plate of the case should be drilled to enable the p.c.b. to be screwed to it via yet more of those threaded spacers! The

piezo sounder can also be mounted on the base plate, adjacent to the p.c.b., with a hole in the side of the case to let the sound out.

All the component parts should be screwed into the case and baseplate, then the remaining interwiring can be added (Fig. 4). Be careful; there is a lot of this and it is easy to make mistakes. Be especially careful with the mains wiring; keep it well away from the low voltage wiring, and preferably shroud all mains carrying terminals. I suggest that European(IEC) type 'reversed mains' shuttered facility chassis sockets are used for the enlarger and safelight sockets. These are safe outlet sockets for mains distribution,

and are readily available along with their mating halves. Remember to earth all metal parts, e.g. the baseplate (via a washer from 0 volts as shown), the transformer case, etc.

The short wire link between the output pin of the voltage regulator and the +5 V supply track of the matchboard is left off initially, so that the operation of the +5 V supply can be checked without risk to the expensive IC1! Only when this supply is proved to be of the correct voltage should the link be added. Note that diodes D1 to D16 should be soldered to the switches S9 to S12 directly, with the cathodes joined as shown in Fig. 4. This arrangement is quite robust enough if thick tinned copper wire is used to join the cathodes together. D19 and D20 should be soldered across their respective relay coils directly.

There is no setting up required for the enlarger/timer; it requires only switching on and testing out to make sure that all the functions operate correctly. Although the circuit description may sound complex, the use of an LSI 'chip' the 7217, has vastly simplified the circuitry required to perform all the functions required of such a unit.
 lowing projects in PRACTICAL ELECTRONICS Use this order form for a year's supply to be posted to you.
ANNUAL SUBSCRIPTION RATES (including postage and packing) inland and overseas (surface mail) £ 13.00 .

PRACTICAL \quad SUBSCRIPTION 를ㅁ RaNlBe $\begin{aligned} & \text { SUBSCRIPTION } \\ & \text { ORDER FORM }\end{aligned}$
Please send me Practical Electronics each month for one year. I enclose a Sterling cheque/international money order for.... (amount).
PLEASE USE BLOCK LETTERS

[^2]
THE SENSATION OF THE JAPANESE MUSIC FAIR

Designed by a genius. Controlled by a computer. Programmed by a laser. Played by amateurs professionally and by professionals superbly.

THE NEW CASIOTONE 701

what is going to become THE instrument of 1982 . . probably the best instructive keyboard I have come across. But it is also a top line musical instrument capable of satisfying even the most proficient musician . . I suggest you place your orders now. (Kevhoard \& Music Plaver)
opens up home music making for all the family ... one of the most advanced music teaching aids so far developed .. this instrument is going to be one of the

Complete Programmable Polyphonic Keyboard
(RRP £555)
ONLY £495

* Input an entire piece of music, specially scored in bar code and read by a light pen altached to the instrument
* Alternatively, program your own melodies (max. 345 steps). chords (max. 201 steps) and tempo. via the keyboard, into the extensive memory, (up to 5 minutes playing or more) with full editing facilities
- 3-WAY PLAYBACK

Automatic playback of the entire piece: melody, chord. bass and rhythm with melody as it plays via lamps above each individual key Manual melody playing, guided by the keyboard lamps, with automatic bass and ONE KEY PLAY facility, allows the me lody line to be played, simply by stroking one key. Non-players can become Instant Musicians!
\star The 5 octave, 8 -note polyphonic keyboard can be split into 2 \& 3 octaves and a different voice can be selected for the accompaniment.

- 20 "breathtakingly clear and bright" pre-set instruments and voices
* 3 -way chord section:--Fingered. Memory and Casiochord auto accompaniment buttons. Start/Stop. Synchro. Tempo and Balance controls. Variable Vibrato and Sustain. I/p \& o/p jacks. Integral amplifier/speaker. Music book. AC only. Dims: $5 \times 374 \times 13-7 / 16^{*}$. Optional extras: Foot pedals. Hard case

FREE
CREDIT. 0 \% interest, $\frac{1}{3}$ deposit, 12 monthly repayments. (Not MT-31, MT-40, or VL-1), or reduced rates for longer period. INTEREST (0%) on ACCESS. B'CARD or VISA for first 6 months. for any keyboard purchase over $£ 90$.

NEW PORTABLE KEYBOARDS

 CASIOTONE MT-40
(RRP£125) AN INCREDIBLE $£ 99$

8-note polyphonic playing of this $37 \mathrm{key}, 3$ octave keyboard. 15 key bass keyboard with automatic synchronised bass function. 22 lively and realistic built-in instrument sounds and voices.
6 built-in auto rhythms, with dual "Fill-in" rhythmic interludes.
Sustain, Vibrato and Pitch controls. Line out and Headphone jacks.
Integral amplifier and speaker. Battery powered. or optional AC adaptor. Dims $61.6 \times 584 \times 178 \mathrm{~mm}\left(2-7 / 16 \times 23 \times 7^{\prime \prime}\right)$. Weight: $2.2 \mathrm{~kg}(4.9 \mathrm{lb})$.
CASIOTONE MT-31

HNWNNN

basically a revision of the MT- 30 (one of my all time favourite electronic keyboards)." Electronics \& Music Maker
Similar to the MT-40 but without the rhythm box, bass and auto functions. Dimensions: As MT-40. Weight: $2 \cdot 0 \mathrm{~kg}$ ($4 \cdot 41 \mathrm{lb}$) including batteries.
CT-101 £195. CT-202 £275, CT-403 £275. VL-TONE £35-95. Lists on request.

f100 COMPUTER

"Can do the job of a micro costing four times as much'"! Personal Computer World
CASIO FX-702P POCKET COMPUTER

ONLY $£ 99.95$
Plus FREE MiCROL Professional Programming Pack (RRP £9.95)
Or we will beat any lower advertised price by 5
Eat your hearts out, H-P, Sharp and Texas!
The Casio FX-702P features: The biggest program storage capacity (up to 1680 steps). the biggest data storage capacity (up to 226 memories), the widest range of math, science and statistics functions (S5in all, including Regression and Correlation), the most powerful English-ike BASIC program-writing language and the fastest 8 levels. Compretensive en $165 \times 82 \mathrm{~mm}$.
FA-2. Cassette adaptor for bulk storage of programs and data, with powerful file
name and remote control ontions. ONLY $\mathbf{f 1 9 . 9 5}$. name and remote control options. ONLY $£ 19.95$.
FP-10. Permanent hard copy printer; full 20 character line width, fast 40 character per second print speed. 2,600 lines per roll. (Low cost replacement rolls, $£ 2 \cdot 50$ for five). 6,000 to 9,600 lines battery life. Rechargeable battery pack, NP-4M. prints 13.000 lines ($£ 6 \cdot 90$). Mains adaptor. AD-4150, $£ 5$.

FP-10 Printer ONLY £44-95
Plus FREE Pack worth £5, or we will beat any lower price by 5%

SYSTEM PRICES-Save up to $\mathbf{5 5 0}$ on RRP			
PACK A: FX-702P + MiCROL Professional Programming Pack			
PACK B: FX-702P + FA-2 cassette interface + PPP + PROCOS	$\mathbf{£ 9 9 . 9 5}$		
PACK C: FX-702P + FP-10 Printer + FA-2 + PPP + PROCOS	$\mathbf{£ 1 7 9 . 9 5}$		

MiCROL PROCOS for the 702P. Exclusive to TEMPUS

Now you can create powerful, reliable programs in just minutes with this advanced, "Vtegrated operating system, even if you have never programmed a computer before! to-run cassette, with user manual.

CASIO FX-602P The World's Fastest Programmable?

Alpha/numeric scrolling display. From 32 program steps with 88 memories, to 512 steps with 22 memories, all non volatile. ONLY 874 -95 FA-2 f19.95. FP-10 £44.95. (Also compatible with FX-501/2P, and FX-601P). CASIO FX-3600P low cost programmable
38 program steps, 7 memories, INTEGRALS AND REGRESSION.
$\mathbf{5 2 2 . 9 5}$

50M WATER RESISTANT ANALOG/DIGITAL

Alarm chronograph with countdown alarm CASIO AA-92W
ONLY £25.95
analog. Independent hours \& minutes, with sync digital seconds. Dual time ability
Digital Hours. minutes, seconds, day \& date. / 100 second stopwatch to 12 hours. Net, lap \& $1 \mathrm{st} / 2$ nd place. Start $/$ stop $\& 10 \mathrm{~min}$. signals. Countdown Alarm. Normal and net cimes to 1 hr . with amazing "Star Burst" flashing display. Half hourly \& hourly chimes. Lithiurn batery. Stainless Steel W/R Case. Mineral blass face.

CATALOGUE ON REQUEST
appreciated

TEMPUS

ACCESS, VISA or B'CARD number to LEADING CASIO SPECIALISTS
Dept. PE,
38 Burleigh Street, Cambridge CBI IDG
Telephone: 0223312866

Semiconductor UPDANTEm fEATURING

MOTELCLOCK

Anyone who has a disc based home computer such as the TRS80, the Apple or the PET, is probably familiar with the sort of interrupt driven "Real Time Clock" facility which many disc operating systems provide. Personally I have never found this facility at all useful because it is necessary to set the clock to the correct time of day each time the system is powered up and this can become quite a chore. Also, in some software clocks of this type, time is lost during disc access because the interrupts are temporarily disabled by this activity. What is needed is a clock which is independent of the processor power supply and processor interrupts and which will maintain an accurate time and date accessible from any program at any time.

This need has not gone unrecognised and hardware solutions have recently appeared from several CMOS chip manufacturers including National, Mostek, and Motorola. Each company has its own particular clock chip recipe, but for my money, the design which offers most is undoubtedly the Motorola MC146818. Inside the 24 pin plastic package of the Motorola clock chip there is a veritable cornucopia of desirable clock features not matched by any of the other devices available. Hook one of these on to your microprocessor bus and you will gain access to the time of day in seconds, minutes and hours, using either the twelve or the twenty-four hour format, in either straight binary or binary coded decimal (BCD). You get day of the week, date, month and year from a 100 year calendar which automatically compensates for the number of days in a month and leap years, and you also get a programmable alarm scheme which will interrupt the processor once per day or periodically at seconds, minutes, or hourly intervals. Actually, three sources of processor interrupt are provided and can be turned on or off under software control. In addition to the alarm interrupt there is a periodic heartbeat interrupt which can be programmed over the range of 30.5 microseconds to 500 milliseconds, and an "End of Update" interrupt which can indicate that a new time or date is now available. Heart-beat interrupts are particularly useful in microprocessor systems for the generation of the timing signals needed for all sorts of real time activities such as communication and sampling. An added bonus is the availability of a square wave output at the heart-beat interrupt rate.

The MC146818 will run from any one of three crystal frequencies to suit the application, but for lowest power consumption a 32.768 KHZ crystal is best. At this fre-
quency the clock chip consumes only about 200 micro-watts of power and will survive for very long periods from a simple standby battery supply even when system power is turned off.

Interfacing the Motorola clock to a microprocessor bus is made easier by a built in "MOTEL" circuit designed to provide control signal compatibility with both Motorola and Intel micros, but since the MC146818 uses a multiplexed eight bit data and address, bus interfacing is easiest to processors such as the Intel 8085 and the Motorola 6805 which also have a multiplexed bus structure. Before long a nonmultiplexed version of the MC146818 will be available in a bigger package, but if you are eager to use the MC146818 now, it will only require a few extra gates to interface it to a processor such as the 6800 or the $\mathbf{Z 8 0}$.

The device is very simple to access from a microprocessor program since the clock registers appear within 64 bytes of RAM memory, of which 14 bytes are read or write clock registers containing time and control information. The other 50 bytes are available for whatever other use you can dream up. Another useful feature.

At about f 15 each these chips will certainly be very popular!

FREE SPEECH?

Probably the most fashionable electronic technique at the moment is speech synthesis, with major semiconductor manufacturers such as Texas, National and General Instruments all championing their own particular coding systems which allow human speed to be compressed into relatively few bytes of Read Only Memory (ROM).

Notice that all these manufacturers are from the USA which means that you get a trans-Atlantic "voice" and that specifying custom words or phrases can be expensive because most of the encoding work is done in the USA. For these reasons it is good to be able to welcome Triangle Digital Services as newcomers to the field, who are British and who have some unique advantages over the competition.

Triangle was set up by British engineer, Peter Rush, to develop a speech synthesis system which was as good as the competition's but more accessible to the smaller users who wished to specify their own vocabularies. The result is the unique TDS 934 chip set which consists of a synthesiser, a speech ROM, a memory decoder, two analogue filters and a regulator. When these chips are assembled as a system, a very versatile speech synthesiser results. The standard ROM supplied contains the words "Oh", one, two. three, four, five, six, seven, eight, nine,
point, grammes, kilo, ohms, volts, and amps, and further ROMs can be added to extend the vocabulary to almost any level. Between 5 and 32 words will fit into each ROM, depending on the required quality and complexity, and Triangle will encode the words of your choice at a rate of $£ 30$ each.

Users who prefer a complete system can buy the chip set assembled on a Eurocard p.c.b. with space for up to eight ROMs and with a variety of useful features such as a built-in RS232 UART so that words can be selected over a standard serial link for easy interfacing.

The TDS 934 set can also be hooked up to a parallel bus from a microprocessor, or for simple applications the words can be selected by an array of up to 16 switches.

For more information on this British innovation contact: Triangle Digital Services Limited, 23 Campus Road, London E17 8PG.

SUPER SONICS

Despite the tremendous advances in multi-channel proportional radio control systems which have been made since the days of valves, miniaturised remote control devices seemed unlikely until I saw data on a new chip from Commodore International called the 6600. This chip changed all that, because it is actually a remote control transmitter intended for use inside a digital wrist watch, alongside the watch chip itself.

The 6600 is not capable of controlling a complete army just yet, but no doubt the Mark III version is already on the drawing board at Commodore, and so it won't be long I am sure! Two versions of the 6600 are already available, one working in the audio region and the other using UItrasound to generate remote control signals and provide simple on-off-on switching for any two appliances equipped with suitable sound receivers.

The chips use ordinary piezo-electric watch alarm-transducers as transmitters and operate from 1.5 volt battery supplies. The audio version generates two tones, which can be individually selected by watch buttons, at 8 KHZ and 5.4 KHZ and these tones can be used to control appliances at ranges of up to 40 feet. The ultrasonic version uses a 32.768 KHZ watch-frequency carrier which can be modulated at either 128 HZ or 256 HZ to achieve the same effect.

At present the 6600 devices are available only as chips for the use of watch manufacturers, but no doubt they will eventually appear in 8 pin mini-DIPs for more general use.

BIMDICATORS

Just a few shining examples of

NEON, FILAMENT \& LED

Oven Lamps,

Mains Indicators

\& Instrument Lights

PCB, Push-on, Solder, Plug-in, Wire wrappable, Flying lead \& Screw Terminations

Now Sole UK Distributors for Philips Miniature Neons which are available individually or bonded and formed to customers specification

James Carter Road, Mildenhall, Suffolk IP28 7DE Tel: Mildenhall (0638) 716101 Telex: 818758

E1ECTRONIC IGNITION Makes a good car berter

TOTAL ENERGY DISCHARGE electronic ignition gives all the well known advantages of the best capacitive discharge systems.
PEAK PERFORMANCE \qquad higher output voltage under all conditions
IMPROVED ECONOMY \qquad no loss of ignition performance between services.

FIRES FOULED SPARK PLUGS no other system can better the capacitive discharge system's ability to fire fouled plugs
ACCURATE TIMING ——_ prevents contact wear and arcing by reducing load to a few volts and a fraction of an amp.
SMOOTH PERFORMANCE - immune to contact bounce and similar effects which can cause loss of power and roughness.

PLUS

SUPER POWER SPARK \qquad $31 / 2$ times the energy of ordinary capacitive systems $-31 / 2$ times the power of inductive systems.
OPTIMUM SPARK DURATION 3 times the duration of ordinary capacitive systems - essential for use on modern cars with weak fuel mixtures.

BETTER STARTING \qquad full spark power even with low battery.
CORRECT SPARK POLARITY unlike most ordinary C.D. systems the correct output polarity is maintained to avoid increased stress on the H.T. system and operate all voltage triggered tachometers.
L.E.D. STATIC TINING LIGHT for accurate setting of the engine's most important adjustment.
LOW RADIO INTERFERENCE fully suppressed supply and absence of inverter 'spikes' on the output reduces interference to a minimal level.

DESIGNED IN RELIABILITY an inherentiy more reliable circuit combined with top quality components - plus the "ultimate insurance. of a changeover switch to revert instantly back to standard ignition
IN KIT FORM
it provides a top performance electronic ignition system at less than half the price of competing ready. built systems. The kit includes everything needed, even a length of solder and a tiny tube of heatsink compound. Detailed easy-to-follow instructions, complete with circuit diagram, are provided - all you need is a small
soldering iron and a few basic tools.
AS REVIEWED IN
ELECTRONICS TODAY INTERNATIONAL June '81 Issue and EVERYDAY ELECTRONICS December' 81 Issue
FITS ALL NEGATIVE EARTH VEHICLES
6 or 12 volt, with or without ballast
OPERATES ALL VOLTAGE IMPULSE TACHOMETERS Some older current impulse types (Smiths pre '74) require an adaptor PRICE $£ 2.95$

STANDARD CAR KIT	£ 14.85	
Assembled and Tested	£ 24.95	¢1.00
		P. ${ }_{\text {L }}$
TWIN OUTPUT KIT	£ 22.95	P. 8
For MOTOR CYCLES and CARS with tw	ignition system	linclude
Assembled and Tested	£ 34.70	Vat

ELECTRONIZE DESIGN

Dept. B, Magnus Road. Wilnecote Tamworth, B77 5BY

FREE TRANSISTOR PROJECTS...

LOGIC PROBE

THIS logic probe is suitable for checking voltage levels in TTL circuits. The probe is powered from the circuit under test and will indicate either a high or low logic level.

CIRCUIT DESCRIPTION

The circuit diagram of the Logic Probe is shown in Fig. 1. When the input voltage to the probe tip is above 2.1 V (the 'high' logic state) transistor TR1 is turned on, the l.e.d. D1 is

Fig. 1. Circuit diagram
forward biased and illuminated, indicating a 'high' logic level. As TR1 turns on its collector voltage falls and because the input to the probe tip is also connected to one end of resistor R4 the base/emitter junction of the transistor TR2 and the I.e.d. D2 are reverse biased keeping TR2 and D2 turned off.

If the input voltage to the probe tip switches to zero volts (the 'low' logic level) then TR1 receives no bias current and is switched off. With TR1 turned off the I.e.d. D1 is also turned off and the collector voltage of TR1 rises, forward biasing TR2, switching it on and illuminating the l.e.d. D2 indicating a 'low' logic level.

CONSTRUCTION

The Veroboard layout for the probe is shown in Fig. 2. Solder the resistors and wire links first and then the

[EP811A
Fig. 2. Veroboard layout

COMPONENTS

Semiconductors

D1	0.2 in red l.e.d.
D2	0.2 in green l.e.d.
TR1, TR2	BC171A (2 off)

Miscellaneous
Veroboard
Crocodile clips with red and black sleeves.

transistors and I.e.d.s. Take care with the orientation of the semiconductors.

In the prototype a green l.e.d. was used to indicate a 'low' logic level and a red l.e.d. for the 'high' level.

The probe can be made from a piece of tinned copper wire or a wiring pin and the supply leads should be fitted with miniature crocodile clips using red and black insulated sleeves. After soldering the components carefully check the Veroboard tracks for any solder splashes and then cut the tracks as shown in Fig. 2.

If the probe fails to operate when connected to a circuit check the orientation of the l.e.d.s and also check that the breaks in the copper tracks are completely cut.

LGigt Delay unit

THIS simple delay unit enables a light or any other suitable load to be switched off automatically after a predetermined time period. Typical uses for the unit include the switching of staircase or pathway lighting, the delay of a car courtesy light and if correctly rated relay contacts are used, the control of car spotlights in a driveway.

CIRCUIT DESCRIPTION

The two transistors TR1 and TR2 (Fig. 1) are connected as a Darlington pair. This combination uses the current amplified by the first transistor (TR1) as the base current for the second transistor (TR2) where it is again amplified.

Fig. 1. Circuit diagram

Together the two devices act as a very high gain transistor with an overall gain determined by the product of their individual gains.

The switch S1 is a push button type and when it is pressed the capacitor C1 is charged to the potential of the supply voltage. The Darlington pair are turned on by the base current flowing through the resistor R1 and as the transistors saturate, their collector voltage falls, increasing the potential across the coil, energising the relay and closing its contacts RLA1.

When S1 is released the capacitor slowly discharges through the base bias resistor R1, maintaining the base current to TR1 and keeping the transistors and the relay turned on. The potential across the capacitor falls as it discharges and the base current to TR1 decreases until there is insufficient current flowing through R1 for TR1 to remain on. As the two transistors turn off, their collector voltage rises reducing the potential across the coil of RLA, de-energising

Fig. 2. Veroboard layout

COMPONENTS

the relay and opening its contacts, turning off the power to the load.

The switch S 1 must be placed so that the capacitor C1 and the resistor R1 are isolated from the relay coil, otherwise it will discharge through the coil and TR2 as well as into the base of TR 1 resulting in a very small time delay.

Although the voltage across the coil falls very slowly and there should be no transient voltages generated as the relay turns off, the diode D1 was included in case the capacitor was accidentally shorted during testing.

The relay specified has heavy duty contacts and is capable of handling currents up to 3 amps . If necessary the contacts can be connected in parallel to increase their current carrying capacity.

CAR SPOTLIGHTS

If the unit is to be used to delay car headlights then the specified relay should not be used. A suitable relay is the RS type 348-835 which can handle loads up to 10 amps .

DELAY TIMES

The delay time for the circuit is determined by the values of R1 and C1 and with the values given a delay of approximately 40 seconds can be obtained before the load is switched off. To increase this time the value of C1 can be increased, but do not increase the value of R1 to a much higher value or there might not be enough current to turn on the relay.

CONSTRUCTION

The Veroboard layout for the delay unit is shown in Fig. 2. After soldering, carefully check all the track breaks have been included and then connect the unit to a 12 volt supply. When S1 is pressed the relay contacts should close and after approximately 40 seconds you should hear the relay drop out.

INSTALLATION

The unit can either be powered from a 12 V d.c. mains p.s.u. or from a battery. To delay a house light the leads from the relay contacts should be connected directly across the light switch. This will enable the light to be switched on using the normal switch or delayed using the unit via S1.

When installing the unit in a car it should be powered directly from the battery and not through the ignition or the auxiliary switches otherwise the unit will not work unless the key is left in the ignition switch.

Before fitting the unit to a courtesy light check with the car manual for the suitable place to make the connections.

MOST car drivers have at some time returned to their car only to find it won't start because the lights have been left on. This system has been designed to overcome this problem by giving an audible warning as soon as the driver's door is opened, assuming the ignition has been switched off.

CIRCUIT DESCRIPTION

The circuit diagram of the Car Lights Reminder unit is shown in Fig. 1. The transistors TR1 and TR2 are connected as an astable multivibrator with the loudspeaker LS 1 used as the collector load of TR2. Capacitors C1, C2 and resistors R3, R4 are the timing components of the circuit and determine the frequency of the output tone.

The positive supply to the circuit is obtained from the light switch via diode D1. The resistor R1 and the Zener diode D3 ensure the supply voltage remains at 9.1 volts.

The earth is connected via the interior light switch on the driver's door and the circuit is earthed only when the driver's door is opened.

Fig. 1. Circuit diagram

Fig. 2. Veroboard layout

If we assume that the ignition is off and the lights are on, then as the driver's door is opened the circuit will oscillate. As soon, as the door is closed the earth is removed and the

alarm is switched off. This enables the car lights to be left or, for parking purposes without the alarm continuing to sound. The circuit is also disabled via D2 and R5 if the ignition switch is on.

CONSTRUCTION

The Veroboard layout of the unit is shown in Fig. 2. After the components have been soldered, cut the copper tracks as shown and then connect the speaker and the three switch supply leads.

TESTING

Before installing the unit, connect the door and light switch leads across the battery. This should produce an audible output from the loudspeaker, which should cease if the ignition switch lead is now touched to the positive terminal of the battery.

If the unit fails to operate, carefully recheck the resisto, values are correct, the orientation of all the semiconductors and ensure the breaks in the copper tracks are in the right places.

AUSEFUL addition to any piece of battery powered test equipment is an indicator to warn the user when the battery voltage is too low for reliable operation.

This circuit will monitor the supply voltage and illuminate an l.e.d. when the battery voltage falls below a preset level.

CIRCUIT DESCRIPTION

The circuit diagram of the voltage monitor is shown in Fig. 1. The unit is connected across the supply rails of the equip-

ment to be monitored and VR1 sets the voltage at which the l.e.d. will be illuminated. When the supply voltage is above this preset value TR1 is turned hard on by R1 and part of VR1 with the result that the collector voltage of TR1 falls, keeping TR2 and the l.e.d. turned off.

As the supply voltage falls the bias current to TR1 decreases until it starts to turn off and its collector voltage rises. When the collector voltage of TR1 reaches 0.5 to 0.6 V TR2 starts to turn on. As the base current to TR1 decreases its collector current decreases and TR2 takes more of the current flowing through R2. The collector voltage of TR1 rises until TR2 is turned fully on and TR1 is turned off. When TR2 turns on its collector voltage falls, the

Fig. 1. Circuit diagram

[PB00]
Fig. 2. Veroboard layout

l.e.d. is forward biased and is illuminated. Resistor R3 is a current limiting resistor for the l.e.d.

The capacitor C1 prevents any instability when TR1 and TR2 are switching. The unit is suitable for monitoring supply voltages between 6 and 12 V .

COMPONENTS . . .

Resistors	
R1	820 k
R2	39 k
R3	470
VR1	470 kmin . preset lin.
All resistors	$\frac{1}{3} \mathrm{~W}$

Capacitor

C1 100 n polyester

Semiconductors

D1	0.2 in red l.e.d.
TR1, TR2	BC171A 12 off

Miscellaneous

Veroboard

CONSTRUCTION

A suitable Veroboard layout for the Monitor is shown in Fig. 2. The l.e.d. D1 is shown mounted on the board but can be mounted on a front panel and connected to the unit via connecting leads.

SETTING UP

The unit can be set up by connecting it across a supply voltage of the same value at which it is required to give warning. A suitable voltage level can be obtained using either a variable power supply unit or by connecting a preset across the terminals of a battery and then adjusting it's wiper until the required voltage is obtained. The potentiometer VR1 should then be adjusted from the top end of its track until the l.e.d. just starts to glow. The monitor can then be installed into the equipment.

If it is not necessary to constantly monitor the supply voltage a push-to-test switch may be incorporated into the supply line.

THIS Soil Moisture Meter can be used to test the water content of pot plants and help ensure the moisture level is kept constant. The advantage of the unit is that the probes enable the soil beneath the surface to be checked instead of just relying on its surface condition.

SOIL
 MOISTURE METER

CIRCUIT DESCRIPTION

The circuit of the Meter (Fig. 1) has been designed around a differential amplifier which is sometimes referred to as a long tailed pair.

The amplifier has two inputs (via the bases of the transistors TR 1 and TR2) and an output (taken from between the two collectors). When both transistors are equally biased
 EGB10

Fig. 1. Circuit diagram
and conducting they equally share the current flowing through the emitter resistor R3. Hence the voltages at their collectors are also equal and as no potential difference exists across the l.e.d.s they are both switched off.

If, however, the bias voltage applied to the base of either transistor is increased then the current through that particular transistor and the emitter resistor increases. This causes a rise in the voltage at the emitters of both transistors with the transistor to which the increased bias was applied still being turned on. At the same time the rise in emitter voltage reduces the base/emitter junction of the other transistor, turning it off. As one transistor turns on, its collector voltage falls, and as the other transistor turns off, its collector voltage rises, causing a potential difference across the collectors.

The transistor TR1 has a potential divider across its base formed by the preset VR1, whilst the resistor R1 and the resistance across the probes formed a second potential divider at the base of TR2.

PROBE RESISTANCE

The resistance across the probes when they are inserted into the soil is dependent upon the amount of moisture present, i.e. the more moisture the lower the 'resistance' of the soil and vice versa.

WET SOIL

When the probes are inserted into very moist soil the resistance across them is very low and so consequently is the voltage. If we assume that VR1 is set to a mid-range , position when the switch S1 is pressed, TR1 will start to turn on. The current through R3 will increase causing the emitter voltages of TR1 and TR2 to rise, reducing the bias voltage across the base/emitter junction of TR2 (its base voltage being held by the potential divider R1 and the probe resistance) and TR2 will start to turn off.

Fig. 2. Veroboard layout

As TR2 turns off, its collector voltage rises whilst the collector voltage of TR1 (as it turns on) falls.
When the difference between the two collector voltages reaches approximately 1.6 V the l.e.d. D1 will start to turn on indicating the soil is 'wet' and l.e.d. D2 is reverse biased and remains off.

DRY SOIL

If the probes are now placed in very dry soil, the resistance across them increases and TR2 will start to conduct whilst TR1 will turn off. This will cause the collector voltage of TR2 to drop and the collector voltage of TR1 to rise, switching off D1 and switching on D2, indicating the soil is 'dry'.

The soil 'resistance' value at which the l.e.d.s are illuminated is controlled by the preset VR1 and can be adjusted to suit different plants.

COMPONENTS . . .

Resistors	
R1, R2, R4	4 k 7 (3 off)
R3	3 k 3

All resistors $\frac{1}{3} \mathrm{~W} 10 \%$ carbon
Semiconductors

D1	0.2 in red l.e.d.
D2	0.2 in green l.e.d.
TR1, TR2	BC171A 2 off)
Miscellaneous	
Veroboard	
S1	keyboard switch
B1	$9 V$ PP3 battery
Battery connectors	

CONSTRUCTION

The Veroboard design for the circuit is shown in Fig. 2. After the components have been soldered, cut the copper tracks as shown and carefully check the orientation of the l.e.d.s. The probes can be made of two suitable lengths of brass rod soldered to the tracks.

Connect the unit to a PP3 battery and set VR1 to its mid position. Check that when S1 is pressed D2 lights, then short out the probes and D2 should be extinguished and D1 should light.

SETTING UP

To adjust the unit, fill a plant pot with soil and add water until it is sufficiently moist. Insert the probes into the soil, press S1 and adjust VR1 until D1 is just off and D2 is illuminated.

DECIDING who was first when playing snap or quiz games often results in an argument. This circuit overcomes the problem by using an I.e.d. to indicate the winner. Each player has a push button and whoever presses first, lights their own I.e.d. whilst inhibiting the other players!

CIRCUIT DESCRIPTION

The circuit diagram of the Snap Indicator is shown in Fig. 1. With the battery connected the transistors (TR1 and TR2) are turned off because both switches (S1 and S2) are

Fig. 1. Circuit diagram
open and so no collector current flows through either transistor.
With both transistors turned off there is no potential difference across either of the l.e.d.s and they remain off.

If SI is closed first transistor TR1 is turned on by the bias current flowing through resistors R4 and R3. The current flowing through TR1 illuminates the l.e.d. D1 and the collector voltage of the transistor falls as the transistor saturates.

If S 2 is now closed there is insufficient voltage at the base of TR2 to turn it on and the l.e.d. D2 remains off. For TR2 to turn on TR1 must be off. Once either of the transistors is turned on then the other is automatically held off.

The current flowing through each transistor and their l.e.d.s is limited by the resistors R1 and R4. As soon as the push buttons are released the circuit returns to its standby state ready for the next go.

CONSTRUCTION

The Veroboard layout for the circuit is shown in Fig. 2. The switches are shown mounted on the board but they can be connected off the board using wires if necessary. If hand held switches are to be used then a more suitable type is the RS miniature push-button type (337-914).

Solder the components onto the Veroboard and then add the links using tinned copper wire. Carefully check the orientation of the l.e.d.s before soldering them into place. Remember there is a flat on the side of the l.e.d.s body nearest to the cathode and also the lead of the cathode is longer. After soldering cut the tracks of the Veroboard as shown and then solder the battery connector in position.

There is no need to include an on/off switch in the supply line as the current drawn by the Snap Indicator when both switches are off is negligible.

COMPONENTS

Resistors

Resistors	
R1, R4	$8 \mathrm{k} 2(2$ off $)$
R2, R3	$100 \mathrm{k}(2$ off $)$

Semiconductors
D1 D2 0.2 in red l.e.d. TR1, TR2 0.2 in green l.e.d.
BC171A (2 off).

Miscellaneous S1, S2 keyboard switch (2 off) PP3 battery Battery connectors Veroboard

[EP813]
Fig. 2. Veroboard layout

TESTING

After checking the components and track breaks connect the indicator to a PP3 battery. With both switches open the l.e.d.s should be off. Pressing either S1 or S2 should light its respective l.e.d. and once the l.e.d. is on pressing the other switch should have no effect on the second l.e.d. which should remain off.

SERVRE TRADINGCO
 \section*{FT3 NEON FLASH TUBE}

WHY PAY MORE?

METERS (New) - 90 mm DIAMETER

50 A 0

HEAVY OUTY SOLENOID.
 240V AC SOLENOID

12V D.C. SOLENOID

WESTOOL SERIES OB Model A3 24 V DC Price $\mathbf{C 1 . 5}$ SESTO ITozalincl VAT $\mathbf{C 2 . 3 0}$
Whtool SERIES D4 Model A. 24 V D C. Price E1.00. 30 gidr zev DC 70 ustable travel 10376 in

MINIATURE SOLENOID FLUID VALVE
teei bodr with variable thow adjuster i" B.S \mathbf{T}^{T} Ize 58.27 .25 mm Werght $130 \mathrm{~g} /$

230V A.C. SOLENOID OPERATED FLUID VALVE

CI VAT E7.48
240 V A.C. SOLONOID VALVE
Designed for Air/Gas at 0-7. Water 0-5 psi. Inlet/outlet $3 / 8^{\prime \prime}$. Forged brass body. Manu Dewraswitch Asco. Price: $£ 5.50$ plus P\&P
£7.10 inc VAT) n.m.s.

SOLID STATE EHT UNIT

20 sec

aEG CONTACTOR

SMITH BLOWER
 SAE TO derais NMS

MICRO SWITCHES

Sub Min Honerwell Lever ms rype 3115 m 906 H
10 for $\mathbf{E 3 . 5 0}$ post para (E 4.03 incl VAT) These V3
Sbution type IPyel 10 tor $\mathbf{6 3 . 0 0}$ (E3.45 inci Vat) E4.00 (E4.00 incl VA)

Aatior Trpe (8onnella) 10 for $£ 3.50$ (54.03 incl DP C/O lever m/swutch mig, by Cherry CO USA Pracious meral
A.C. Wkg. TUBULAR CAPACITORS

VARIGBLE VOLTAGE TBANSFORMERS

INPUT $\mathbf{2 3 0} / \mathbf{2 4 0 V}$ a.c. $50 / 60$ OUTPUT 0-260V 05 KVA $2 \& 2$ amp MAX KVA 10 amp MAX KVA 15 amp MAX
$5 \mathrm{KVA}(25 \mathrm{amp}$
MAX 0 KVA $(50$ amp MAX)

3-PHASE VARIABLE VOLTAGE

 TRANSFORMERS

LT TRANSFORMERS

SNIPS OF THE MONTH

shrouded. New Price: $£ 5.50$ E. P PRP $\{£ 7.48$ Aational R. Relay. 12 V . D.C. high speed. $1 \mathrm{c} / \mathrm{o}$

HY-LIGHT STROBE KIT MK IV Latest type Xenon white light Hash tube Solid state timing riggering circuis $230 / 240$ a.c. operation Designod strobes HY-Light Strobe Kit Mk NE E27.00 P \& P E 200 Suitable case for either type $\mathbf{£ 1 1 . 0 0}$ (f14.95 incl. VAT). Su receipt of foolscap sae.

XENON FLASHGUN TUBES

Range available from stock. S.A.E. for details.
ULTRA VIOLET BLACK LIGHT
FLUORESCENTTUBES

f5.50 P \& P 55 (($\mathbf{f} .96$ incl VA) Also available tor 12 VDC
${ }^{400}$ watt UV lamp and ballast complete $\mathbf{£ 3 8 . 0 0}$. Post $f 350$ 201818.40 incl VAT) 400 watt UVIamD only $£ 14.00$

BLACK LIGHT
O S fiting Prich incl or a

EPROM ERASURE

ERASURE 10 the traction of the EPROM
Unit. Complete Kit of parts less case to inciude 12
8 watt 2537 Angst Tube, Ballast Unit, palr of bi-pi
leads, Neon Indicator, Sa fety Microswitch, on/ott
Switch, and Circuit. LESS CASE. Price: $£ 13.60+75$ p
PARNVNG Tube used in this circult is highly dangerous

$\mathbf{2 3 0 / 2 4 0 V}$ A.C. ${ }^{3}$ c/o. 11 pin base Sealed 5 amp contacts
 postpaid If4. 32 incl
2av A C Sealed 3 C/O 10d 11 pin $\mathbb{E} 1.50$. 25p P \& P (C2.01
24VO.C. Sealec 3 c/o. 7a 11 pin £1.35 30p P \& P (E1.90 $\mathbf{2 4 V O . C} 2 \mathrm{c} / \mathrm{o} .7 \mathrm{ump}$ contacts Sealed uctal base f1.30 P Mercury Wert
Mercury Werted contact relay mig by Clare Type HGSM
10031824 VDC Ico $\mathbf{~ 2 . 0 0} \mathrm{P}$ \& P. 300 (E2.65 inc VAT) VERYSPECIAL OFFER O-12V OC 2 make contacts NEW 3 tor $£ 1.75$ - $25 \mathrm{p} P$ \& P ((£2.30 inc. VAT)

 30 p If1.50 incl VAT). Seated $12 \mathrm{~V} 3 \mathrm{c} / \mathrm{c} 7 \mathrm{amp} 11$-pin $£ 1.35 \mathrm{P}$
 o.c. Relay, seated $6 / 12 \mathrm{~V}$ UC. $2 \mathrm{c} / 0$ 10 amp contacts. Single VATV D C Sealed 10 a contacts 2 c/o f1 50. 250 P \& P

GEARED MOTORS

Brand new CASSETTE TYPE MOTORS

230 V a.c. FAN ASSEMBLY

 hlade 6 in or 44 blade 3 in aluminium tan. Price $\mathbf{E} 4.50$
24V. D.C. GEARED MOTOR

保 geared Molo

 raming 9.24V D. Solenoids microswitches friction clutch. pre cision gearing etc. etc Ex-aquigment London Transport TickSUB-MINIATURE PRECISION BUILT

24V D.C. REVERSIBLE MOTOR
$\begin{array}{llll}\text { Parvalux type SO } 12 \mathrm{~L} & 24 & \text { O.C. shunt wound Motor, enther } 133 \\ \text { cpm } 65 \text { ibs in Gearbox tatio } 30.1 \text { Curfent } 68 \text { amp Rating con }\end{array}$
 1001 in rating Price as above N.M loow Rhoost

REDUCTION DRIVE GEARBOX

Overall size approx $120 \quad 98^{2} 68 \mathrm{~mm}$ All melai consifuction

ROTARY CARBON VANE VACUUM \& COMPRESSOR

WATER PUMP
Mig by SP.A Astaisi of tialy $220 / 240 \mathrm{VAC} 50 \mathrm{mz} 2800$ R PM
approx $1 / 3 \mathrm{hd}$ Centrifugai pump with $1 /$ inle Voutlet Delivary appron 40 gals per min al 10los head, (Non sell primingl Price

Veeder-Root Pre-set Counter. Type MG 1636 . ${ }^{3}$ fig
countdown any rumber from 999 to 001 230V A.C 2 Whe setting Changeover Microswitch 10 o01. 230 V A.C 2 Whee

SANGAMO WESTON TIME SWITCH

TIME SWITCH VENNER TVPE

A.E.G.

80ap. 2 on/off Spring Reserve Timeswitch Price $£ 15.50$ P.\&P. £ 1.50 ($£ 19.55$ inc. VAT) Please allow 28 days for delivery

Medium Resolution Graphites n.a.climpson

THE STANDARD UK 101 has an interesting character set consisting of the alphanumerics and 154 graphics characters with each character based on an 8×8 dot matrix. When displayed each row of the matrix is in fact repeated so that every column of the character is represented by 16 dots, although this will not concern us here. Whilst a certain amount of manipulation of the 154 graphics characters can give dramatic effects on the screen it is impossible to achieve very high pixel resolution and it is difficult to work out which character will fill a particular slot to the beswef fect. For plotting purposes some $\frac{1}{4}$ square graphic cande used but the $\frac{3}{4}$ filled characters are missing so the ery possibility of plotting is not available. In addition theryat of the characters is such that squares are not quaze but elongated vertically.

One method of achieving higher resolution is to use of of the recently available programmable graphis generato ${ }^{6}$ by which the precise character required to a wot to be effect can be defined in memory. One ${ }^{\text {易disturatage is that }}$ these boards are expensive, and anothe the the software
 quite complicated.

FOUR TIMES RESOLUTION

This article describes an alternative approach, easily and cheaply implementing medium resolution pixel graphics on the UK 101 using a fixed selofi256 alternative characters, giving an improvement in resolution of four times over the standard character set.

If we imagine the standard character slot to be divided into two portions vertically and four horizontally we now have eight blocks to fill; the size of one of these blocks representing the utimate resolution of this system. (See Fig. 2). To fill these eight spaces with all possible combinations of characters will require 2^{8} or 256 characters, and since each row of a character is defined by one 8 bit byte in the character generator (see Fig. 1), we will requite 2048 bytes of storage for the new characters. B this means we can achieve a horizontal resbutiop 1×48 agave viticat resolution of 4×16; a total of 644 individual ${ }^{2}$ dedressable points on the screen, and furthermo each picturetement is now nearly square. The storage requirements for the 256 new characters are simply fulfilled by a 2716 EPR 1

The order in which the characters a stored i EPROM is important so that the appropriate characer cin easily be selected by software. The syste used were ts shown in Fig. 2 where the number of the characta is represented by a binary count starting in the top lefy coner. Thus for example character 0 would be all blank, 25 would be all white, 64 would have only the bottom left space mind $^{\text {mided }}$ and 65 would have the bottom left and top left occupied

Having programmed an EPROM with the correct pern of bits, the complete listing of which is shown in Table 1 , it would be possible to plug it into the existing charact generator socket with some minor wiring changes. Thy would mean however that the standard graphics set in cluding the alphanumerics would not be available. The solidtion proposed here is to mount the standard and alternative
character generators on a small sub-board which then plugs into the character generator socket on the main board. Selection of either one of the character sets is by software control, but it is unfortunately not possible to mix characters from the two sets on the screen at the same time.

HOW IT WORKS

The circuit design of the new board is shown in Fig. 3. You will notice that the address lines and data lines to the two chips are paralleled up and are fed from a d.i.l. plug. This d.i.I. olug is inserted in the character generator socket on the
 to the sub-board. The chip selects for the two devices are wired differently from each other and are not connected to the main bpard. With pins 20 and 21 wired as shown it requires a 18 to select the standard character generato and low on pin 18 to select the 2716 . The signal to these pidis is deriyed from the 0 output of a 7474 D-type edge triggedediplop. This is acting as a latch in that it holds an high or low logte level on its output until it receives a cloclepoutse which transfers the data on the data input to the Q outputand dinverted to the $\overline{\mathrm{O}}$ output. Since $\overline{\mathrm{O}}$ is back connetced to Me data minut the output at O is alternately high
 address occand hequathe main board. There are several of these available and colvenient cone ts pin 14 on U20. This is decoded to a 1 K block starting at p 800 Hex or 55296 decimal. Any address issurdiare this range with a dummy POKE or PEEK will calle, the 7474 , to change state and hence select the other character wset. The address 55555 decimal is in this range and is an easy one to remember.

The reset of the 7474 is comected to the reset line of the 6502 processor on the main board so that on RESET the standard character set is always selected.

Theppted circuit. design for the board is shown full size in Fig. 5 As yourcan wee board is tightly packed to keep the site to a minfmumun will require some care in construction An additioriat problem is that no suitable d.i.l. plug appearsto be commercially available and it will be necessary
 follows.

Obtain a 24 -pin di.i. header plug. These are rather like diil i.c. sockets except they have stronger pins and are designed toplug into i.c. sockets. Into each socket of the d.i.l header (except 18,20 and 21) is pushed a 1 cm . length of 24 s.w.g. hard brass wire. When complete the wires are put ${ }^{\text {th }}$ rough the holes for the d.i.l. plug in the circuit board so thathe d.i.l. header is on the plain side of the board. Solder the ${ }^{*}$ inins to the pads keeping the solder close to the board. Trim the pins on the circuit side of the board to an even 3.5 mm . length, remove the d.i.l. header and push onto the trimmed pins. Put a blob of solder on the pins on the plain side of the board as close as possible to the board to take any removal strains and then trim the excess length of pin off as short as possible. Remove the d.i.l. header.

CHIT PATTERN IN					HEXADECIMAL EQUIVALENT
			0000	0000	00
			0000	0000	00
			0000	1111	0 F
			0000	1111	OF
			0000	0000	00
			0000	0000	00
			1111	0000	FO
			1111	0000	Fo

Fig. 1. Character 72 in the new character set

Fig. 2. Arrangement of characters in new character set

1	2
4	8
16	32
64	128

Solder on the two 24 -pin and one 14 -pin sockets in the usual way followed by the two flying wires. The wire from pin 11 on the 7474 should be soldered carefully to the top of the leg of pin 14 on U20. The wire from pin 10 should be soldered to the printed circuit track going to pin 40 on the 6502 processor U8. Fig. 4 shows the place to solder it, but remember that if you leave the 6502 in place while doing this you should be using a good quality soldering iron which has a well earthed tip.
Remove the character generator U41 from the main board and fit to the sub-board in its appropriate place and correct orientation. Fit the 7474 and 2716 EPROM and plug the sub-board into the character generator socket on the main board with the d.i.l. header in place. This completes the construction.

SOFTWARE

Although we now have higher resolution we are still using the old character slots to put one of 256 characters onto the screen at any one time. The heart of the software is to decide which character best represents the desired point to plot and to select the required character bearing in mind the character already occupying the slot.

Two programs are listed which use the character selection algorithm, one in BASIC to plot functions and a hybrid program in BASIC and machine code to draw pictures on the screen.

Table 2 is a program for plotting any mathematical function on the screen and will be described in some detail since it contains the routine needed for any plotting in medium resolution graphics.

The subroutine starting at line 1000 is the character selection and plotting portion.
X and Y are the new medium resolution co-ordinates relative to screen origin. X can range from -48 to +48 and Y from -32 to +32 .

Line 1000 calculates the number of lines down the screen and the position across the screen of the standard character slot that X and Y fall in.

Line 1005 calculates the position of the individual $\frac{1}{8}$ character within the large character slot.

Line 1006 calculates the binary number of the character needed in this slot ignoring the character already there.

Line 1010 gets the present character in the slot.
Line 1012 decides the new character to put on the screen with reference to the one already there.

Line 1100 displays it.
Not strictly necessary in this program, but put in for completeness, are lines 1011, 1015 and 1017. These are used if the calculated $\frac{1}{8}$ graphics is to be deleted from the character that is already on the screen. The choice between subtracting and adding a character is controlled by flag D.

The function to be plotted is placed in a subroutine starting at line 2000, in this case an ellipse calculation, and the dimensions of the ellipse are controlled in lines 45-100.

POKE 55555, 1 in lines 40 and 220 switches to the new character set at the start and back to the standard set at the end.

000	00	00	00	0	O	00	00	00	F							
010	0 F	OF	00		W'0	00	00	00	FF					0 OF	10	
020	00	00	F0		00	00	00	00	F 0				00	00		
030	0 F	0 F	Fo	Fo	00	00	00	00	FF				00	00		
0.40	00	00	0 F	0 F	00	00	00	00	1		OF			00		0,
050	OF	0 F	0 F	OF	00	00	40	00		F	OF			00		
060	00	00	FF	FF	00		. 80	00			FF			00		
070	0 F	0 F	FF	FF	00	00	0.0				PF			00		
080	00	00	00	00	FO	F 0^{3}	'00	00	$F 0$	FO	00		F*			
090	0 F	0 F	00	00	Fo	F0	, 00	00	\%F	${ }_{F}{ }^{\text {F }}$	00					0
OAO	00	00	F0	F0	F 0	F0	00	00	P1	Fo	Fo			F0	00	00
OBO	0 F	OF	F0	F0	FO	Fo	100	00	FFP		Fo	FO	F0	FO	00	0
0 OO	00	00	0 F	0 F	FO	F0	0	00	F	F0	0 F	0 F	F0	FO	00	0
CDO	0 F	0 F	0 F	0 F	F0	F0	00		FF	FF	0 F	0 F	F0	Fo	00	0
OEO	00	00	FF	FF	FO	F0	00	00	F0	F0	FF	FF	F0	F0	00	0
OFO	0 F	OF	FF	FF	FO	Fo	00	00	FF	FF	FF	FF	F	Fo	00	0
100	00	00	00	00	0 F	OF	00	00	F0	FO	00	00	0 F	0 F	00	0
110	0 F	0 F	00	00	0 F	OF	00	00	FF	FF	00	00	0 F	0 F	0	0
120	00	00	Fo	Fo	0 F	OF	00	00	F 0	FO	Fo	Fo	0 F	0 F	00	0
0	0 F	0 F	Fo	Fo	OF	OF	00	00	FF	FF	F0	Fo	0 F	0 F	00	00
140	00	00	0 F	0 F	0 F	OF	00	00	F0	FO	0 F	0 F	0 F	0 F	00	0
150	0 F	0 F	OF	0 F	0 F	OF	00	00	FF	FF	0 F	0 F	0 F	0 F	00	00
160	00	00	FF	FF	0 F	0 F	00	00	F0	F0	FF	FF	0 F	0 F	00	00
170	0 F	0 F	FF	FF	0 F	0 F	00	00	FF	FF	FF	FF	0 F	0 F	00	0
0	00	00	00	00	FF	FF	00		F. 0	F0	00	00	FF	FF	00	00
190	0 F	0 F	00	00	FF	FF	00	00	FF	FF	00	00	FF	FF	00	0
IAO	00	00	Fo	F0	FF	FF	00	00	F 0	F0	Fo	F0	FF	FF	00	00
180	0 F	0 F	Fo	FO	FF	FF	00	00	FF	FF	Fo	Fo	F	F	00	00
1 CO	00	00	0 F	OF	FF	FF	00	00	F0	F0	0 F	0 F	FF	FF	00	0
1 DO	0 F	0 F	0 F	OF	FF	FF	00	00	FF	FF	0 F	0 F	FF	FF	00	00
1 E0	00	00	FF	FF	FF	FF	00	00	F0	F0	FF	FF	FF	FF	00	00
1 F 0	0 F	0 F	FF	FF	FF	FF	00	00	FF	FF	FF	FF	FF	FF	00	00
200	00	00	00	00	00	00	Fo	F0	F0	F0	00	00	00	00	F 0	F0
210	0 F	0 F	00	00	00	00	FO	F0	FF	FF	00	00	00	00	F0	F0
220	00	00	Fo	Fo	00	00	FO	F0	F0	F0	F0	F0	00	00	F0	FO
230	0 F	0 F	F0	F0	00	00	F0	F0	FF	FF	F0	F0	00	00	F0	F0
240	00	00	OF	0 F	00	00	F0	FO	F0	F0	OF	0 F	00	00	F0	F0
250	0 F	0 F	0 F	0 F	00	00	F0	F0	FF	FF	OF	0 F	00	00	F0	F0
0	00	00	FF	FF	00	00	F0	F0	F0	F0	FF	FF	00	00	F0	F0
270	0 F	0 F	FF	FF	00	00	F0	F0	FF	FF	FF	FF	00	00	F0	F0
280	00	00	00	00	FO	Fo	FO	F0	F0	F0	00	00	F0	F0	F0	F0
290	0 F	0 F	00	00	F0	F0	F0	F0	FF	FF	00	00	F0	FO	F0	F0
2 AO	00	00	F0	Fo	Fo	F0	F0	F0	Fo	F0	F0	F0	F 0	F0	F0	F0
0	0 F	0 F	F0	F0	F0	F0	FO	FO	FF	FF	F0	F0	F0	F0	F0	F0
2 CO	00	00	OF	0 F	FO	FO	F0	F0	Fo	FO	0 F	0 F	F0	F0	F0	F0
2 D 0	0 F	0 F	0 F	0 F	F0	F0	F0	F0	FF	FF	OF	0 F	F0	F0	F0	F0
2 E 0	00	00	FF	FF	Fo	F0	F0	F0	F0	F 0	FF	FF	F0	F0	F0	F0
2 FO	0 F	0 F	FF	FF	F0	F0	F0	F0	FF	FF	FF	FF	FO	F0	F0	Fo
300	00	00	00	00	0 F	0 F	F0	F0	F0	F 0	00	00	0 F	0 F	F0	F0
310	0 F	0 F	00	00	0 F	0 F	F0	F0	FF	FF	00	00	OF	0 F	F0	Fo
320	00	00	F0	FO	OF	0 F	F0	Fo	FO	Fo	F0	F0	0 F	0 F	F0	F0
330	0 F	0 F	F0	F0	0 F	OF	F0	F0	FF	FF	F0	F0	OF	0 F	F0	FO
340	00	00	0 F	OF	0 F	0 F	F0	F0	Fo	F0	0 F	0 F	OF	0 F	F0	F0
350	0 F	0 F	0 F	0 F	0 F	0 F	Fo	F0	FF	FF	OF	0 F	OF	0 F	F0	F
360	00	00	FF	FF	0 F	0 F	F0	F0	F0	F0	FF	FF	0 F	0 F	F0	F0
370	0 F	0 F	FF	FF	OF	OF	F0	Fo	FF	FF	FF	FF	0 F	0 F	F0	Fo
380	00	00	00	00	FF	FF	F 0	F0	F0	FO	00	00	FF	FF	F0	F
390	0 F	0 F	00	00	FF	FF	Fo	FO	FF	FF	F 00	00	FF	FF	F0	Fo
3 AO	00	00	Fo	F0	FF	FF	F0	F0	F 0	F0	F0	F0	FF	FF	F0	F0
3 B 0	0 F	0 F	F0	F0	FF	FF	FO	F0	FF	FF	FO	F0	FF	FF	FO	F0
3 CO	00	00	0 F	0 F	FF	FF	F0	F0	F0	F0	OF	0 F	FF	FF	F0	F
300	0 F	0 F	0 F	0 F	FF	FF	F0	FO	FF	FF	OF	0 F	FF	FF	F0	F
3E0	00	00	FF	FF	FF	FF	F0	F0	F0	FO	FF	FF	FF	FF		F0
3 FO	0 F	0 F			FF	FF	Fo	F0	FF	FF	FFF	FF	FF	FF	F0	F0

Lines $30-40$ are a machine code subroutine to fill the screen with the zero character, which is a blank in the new set.

This program runs very slowly since it is in BASIC and contains long calculations to plot each point but it will give an idea of the method used to manipulate the $\frac{1}{8}$ square graphics. Some experimentation with the functions and step sizes could prove most interesting.

In the second program the plotting algorithm is in machine code and only returns to BASIC for the option menu and instructions. Some examples of the sort of pictures that can be drawn are shown and have been photographed straight off the television screen.

Fig. 4. Connection of reset line

Table 1. EPROM program

Abstract

400 410 430 OF OF FO FO OO OO OF OF FF FF FO FO OO OO OF OF $4 A O \quad 00$ OO FO FO FO FO OF OF FO FO FO FO FO FO OF OF $0 \mathrm{~F} O \mathrm{~F}$ FO FO FO FO OF OF FF FF FO FO FO FO OF OF 0000 OF OF FO FO OF OF FO FO OF OF FO FO OF OF OF OF OF OF FO FO OFOF FF FF OF OF FO FO OF OF $0000 \quad \mathrm{FF} \quad \mathrm{FF} \quad \mathrm{FO}$ FO OF OF FO FO FF FF FO FO OF OF $0 F \quad O F \quad F F \quad F F \quad F O \quad F O \quad O F \quad O F \quad F O \quad F O \quad 0 F \quad 0 F$ 000000 OO OF OF OF OF FO FO OO OO OF OF OF OF $\begin{array}{llllllllllllllll}O F & O F & 00 & O D & O F & O F & O F & O F & F F & F F & O D & O D & O F & O F & O F & O F \\ O D & O O & F O & F O & O F & O F & O F & O F & F O & F O & F D & F O & O F & O F & O F & O F\end{array}$ $\begin{array}{llllllllllllllll}O O & O O & F O & F O & O F & O F & O F & O F & F O & F O & F O & F O & O F & O F & O F & O F \\ O F & O F & F O & F O & O F & O F & O F & O F & F F & F F & F O & F O & O F & O F & O F & O F\end{array}$ $\begin{array}{llllllllllllllll}O F & O F & F O & F O & O F & O F & O F & O F & F F & F F & F O & F O & O F & O F & O F & O F \\ O O & O O & O F & O F & O F & O F & O F & O F & F O & F O & O F & O F & O F & O F & O F & O F\end{array}$ $\begin{array}{llllllllllllllll}O O & O D & O F & O F & O F & O F & O F & O F & F O & F O & O F & O F & O F & O F & O F & O F \\ O F & O F & O F & O F & O F & O F & O F & O F & F F & F F & O F & O F & O F & O F & O F & O F\end{array}$ $O F O F O F O F O F O F O F O F \quad F F F F O F O F O F O F O F O F$ $0000 \quad \mathrm{FF} F \mathrm{FF} O F O F O F O F \quad F O \quad \mathrm{FO} \quad \mathrm{FF}$ FF OF OF OF OF $O F O F F F F F O F O F O F O F F F F F F F F F O F O F O F O F$ $00000000 \mathrm{FF} F \mathrm{FF} 0 \mathrm{~F}$ OF FO FO OO OO FF FF OF OF $O F O F O 0 \quad 00$ FF FF OF OF FF FF 00000 FF FF OF OF 0000 FO FO FF FF OF OF FO FO FO FO FF FF OF OF $O F O F F O F O F F F F O F O F F F F F F O F O F F F F O F O F$ 0000 OF OF FF FF OF OF FO FO OF OF FF FF OF OF $O F O F O F O F F F$ FF OF OF FF FF OF OF FF FF OF OF 000000000000 FF FF FO FO 000000000 FF FF $\begin{array}{llllllllllllllll}00 & 00 & 00 & 00 & 0 & 00 & F F & F F & F 0 & F 0 & 00 & 00 & 0 & 00 & F F & F F \\ 0 F & O F & 00 & 00 & 00 & 00 & F F & F F & F F & F F & 00 & 00 & 00 & 00 & F F & F F\end{array}$ $\begin{array}{llllllllllllllll}0 F & O F & 00 & 00 & 00 & 00 & F F & F F & F F & F F & 00 & 00 & 00 & 00 & F F & F F \\ 00 & 00 & F 0 & F 0 & 00 & 00 & F F & F F & F 0 & F 0 & F 0 & F 0 & 00 & 00 & F F & F F\end{array}$ $0 F O F F O$ FO 0000 FF FF FF FF FO FO 0000 FF FF $0000 \quad 0 \mathrm{~F} \quad 0 \mathrm{~F} 00 \quad 00 \mathrm{FF}$ FF FO FO OF OF 00000 FF FF 0000 FF FF 0000 FF FF FO FO FF FF 00000 FF FF $0 F O F F F F F O O D O F F F F F F F F F F O D O D F F F F$ $\begin{array}{llllllllllllllll}00 & 00 & 00 & 00 & F O & F O & F F & F F & F 0 & F 0 & 00 & 00 & F O & F 0 & F F & F F \\ 0 F & O F & 00 & 00 & F O & F O & F F & F F & F F & F F & 00 & 00 & F O & F 0 & F F & F F\end{array}$ $0 \mathrm{~F} O \mathrm{~F} \mathrm{FO} \mathrm{FO} \mathrm{FO} \mathrm{FO} \mathrm{FF} \mathrm{FF} \mathrm{FF} \mathrm{FF} \mathrm{FO} \mathrm{FO} \mathrm{FO} \mathrm{FO} \mathrm{FF} \mathrm{FF}$ 0000 OF OF FO FO FF FF FO FO OF OF FO FO FF FF OF OF OF OF FO FO FF FF FF FF OF OF FO FO FF FF 0000 FF FF FO FO FF FF FO FO FF FF FO FO FF FF 0 OF OF FF FF FO FO FF FF FF FF FF FF FO FO FF FF $00000000 \quad 0 \mathrm{~F} 0 \mathrm{~F} \quad \mathrm{FF}$ FF FO FO $00000 \mathrm{OF} 0 \mathrm{~F} \quad \mathrm{FF} \mathrm{FF}$ $O F O F O D 00 \quad 0 \mathrm{~F} O F \mathrm{FF} \mathrm{FF} \mathrm{FF} \mathrm{FF} 00000 \mathrm{OF} 0 \mathrm{OF} \mathrm{FF} \mathrm{FF}$ $\begin{array}{llllllllllllllll}00 & 00 & F O & F 0 & O F & O F & F F & F F & F 0 & F O & F 0 & F O & O F & O F & F F & F F \\ O F & O F & F O & F O & O F & O F & F F & F F & F F & F F & F O & F O & O F & O F & F F & F F\end{array}$ $0 F O F$ FO FO OF OF FF FF FF FF FO FO OF OF FF FF $0000 \quad 0 \mathrm{~F} O \mathrm{OF} O F O F \quad \mathrm{FF}$ FF FO FO OF OF OF OF FF FF $O F O F O F O F O F O F \quad F F F F F F \quad F F O F O F O F O F \quad F F F F$ 0000 FF FF OF OF FF FF FO FO FF FF OF OF FF FF $0 F O F$ FF FF OF OF FF FF FF FF FF FF OF OF FF FF 00000000 FF FF FF FF FO FO 0000 FF FF FF FF $\begin{array}{llllllllllllllll}00 & 0 & F O & F O & F F & F F & F F & F F & F 0 & F O & F 0 & F O & F F & F F & F F & F F \\ O F & O F & F O & F O & F F & F F & F F & F F & F F & F F & F O & F O & F \bar{F} & F F & F F & F F\end{array}$ $0 F O F F O F O F F F F F F F F F F F F O F O F F F F F F F F$ $00000 F O F F F F F F F F F F O O O F O F F F F F F F F F$ $0 F$ OF OF OF FF FF FF FF FF FF OF OF FF FF FF FF 0000 FF FF FF FF FF FF FO FO FF FF FF FF FF FF TFO OF OF FF FF

10 REM **** DRAWER If BASIC/MACHINE CODE *****
20 REM **** Have you protected nemory at 6500**
30 cosub 5000
40 PRIHT"
50 PRINT"
60 PRINT" * HEDIUM RESOLUTION *
70 PRINT" * GRAPHICS DRAWER *
30 PRINT"

* GRAPHICS DRAWER *

90 PRINT:PRINT:PRINT:PRINT:PRINT
100 PRLNT"
By Nigel Climpson
110 PRINT:PRINT" A 25 sec delay whilst poking machine code
199 REM POKE MaChine CODE
$200 \mathrm{M}=6528$
210 READ AS:IF AS="LAST" THEN 1095
220 FOR I $=1$ TO 16:3*ASC (MID $(A \$, 2 * I-1,1))-48$
230 IF S>9 THEN S=S-7

$250 \mathrm{~T}=\mathrm{T}+\mathrm{S}:$ POKE M, T:T=0:M=1 $\mathrm{H}+1:$ NEXT:GOTO 210
1095 PORE 21000,16
1100 gosus 5000
1110 PRINT:PRINT" OPTION MENU': PRINT
1120 PRINT" 1) Start a new picture.":PRINT
1130 PRINT" 2) Load a masterpiece from tape.":PRINT
1140 PRINT" 3) Save present picture to tape. ": PRINT
1150 PRINT" 4) Change speed of cursor.":PRINT
1160 PRINT" 5) Display instructions.":PRINT
1170 PRINT" 6) Exit from progranme. ":PRINT
1180 cosub 5010
1190 ON CH GOTO $2000,2250,2500,2750,3000,3250$
2000 POKE 11,128:POKE 12,25: $\mathrm{X}=\mathrm{USR}(\mathrm{X})$
2010 сото 1100
2249 REN LOAD FROM TAPE
2250 COSUB 5000
2260 TRLNT"TURN ON TAPE RECORDER IN LOAD MODE'
2270 FOKE 11,50: POKF. 12,27:X=USP. (X)
2280 gоto 1100
2499 REM SAVE TO TAPE
2500 GOSUB 5000
2510 PRINT"TURH ON TAPE RECORDER IN SAVE MODE"
2520 POKE 11,213: POKE 12,26: $\mathrm{X}=\mathrm{USR}$ (X)
2530 GOTO 1100
2749 REM CHANGE SPEED
2750 COSUB 5000
2760 PRINT"ENTER CURSOR SPEED (1-9)";
2770 GOSUB 5010
2780 PRINTCH
2790 POKE $7096, \mathrm{CH} * 5+1$
2800 PORE 11,131:POKF, 12,27:X=USR(X)
2810 COTO 1100
2810 COTO 1100
2999 REM DISPLAY INSTRUCTIONS
3000 COSUB 5000
3010 PRINT" The cursor is moved in the following manner":PRINT
3020 PRINT" 3030 PRINT TAB (24) CHRS(16) KEY $1^{\prime \prime}$
3030 PRINT TAB (24);CHR\$(16)
3040 PRINT TAB(8);"KEYS 163 "; CHRS(23); SPC(6);CHR\$(16);
3050 PRINT SPC(6);CHRS(17)" 3050 PRINT SPC(6);CHRS(17);" KEYS 184"
3060 PRINT TAB (19); CHR\$(23); $\operatorname{SPC}(4)$; $\mathrm{CHR} \$(16) ; \operatorname{SPC}(4)$; CHR\$(17) 3070 PRINTTAB(21);CHRS(23);SPC(2);CHRS(16);SPC(2);CHR\$(17) 3080 PRINT TAB (23);CHR $\$(23)$; CHR $\$(16)$; CHR $\$(17)$
3090 PRINT TAB(5); "KEY 3 ";CHR\$(22);" ";CHRS(22);" ";CHR\$(22);
3100 PRINT" ";CHR\$(22);" ";CHR\$(22);" ";CHR\$(22);" ";CHRS(22);

3110 PRINT CHR\$(187);CHR\$(18);" ";CHR\$(18);
3120 PRINT " ";CHRS(18);" ";CHRS(18);" ";CHRS(18);" ";
3130 PRINT CHR\$(18);" ";CAR\$(18);" KEY 4"
3170 PRINT TAB(23);CHR\$(21);CHR\$(20);CHR\$(19)
3180 PRINT TAB(21);CHR $\$(21) ; \operatorname{SPC}(2)$; $\operatorname{CHR} \$(20)$; SPC (2); CHR $\$(19)$
3185 PRINTTAB (19);CHR\$(21);SPMC(4);CHR\$(20);SPC(4);CHR\$(19)
3190 PRINT TAB (8);"KEYS 263 ";CHR\$(21); $\operatorname{SPC}(6) ; \operatorname{CHR} \(20);
3195 PRINT SPC(6);CHR\$(19);" KEYS 2\&4"
3200 PRINTTAB (24):CHR\$ (20)
3210 PRINTTAB(22);"XEY 2"
3215 GOSUB 5010:GOSUB 5000:PRINT
3220 PRINT" KEY 5 TO PLOT": PRINT:PRINT
3225 PRINT" KEY 6 TO UNPLOT ": PRINT:PRINT
3230 PRINT" KEY 7 TO RETURN TO MENU':PRINT:PRINT
3235 PRINs Press any key"
3247 GOSUB SO10:GOTO 1100
3249 REM GOOD-BYE
3260 PRINT" Thanks for playing.Bye for now Picasso."
4998 END
4999 REM CLEAR SCREEN
S000 FOR I=1 TO 16:PRINT:NEXT:RETURN
5009 REM GET CHARACTER FROM KEYBOARD
5010 POKE 11,186:PORE 12,255:X-USR(X):CH-PEEK(531)-48:RETURN
6000 DATA ADOOD8A900A89900009900D19900D299
6010 DATA 00D3C8D0F18DB41BA9808DB01B8DB11B
6020 DATA A97FBDOODFAD00DFC9FFF03948ADB41B
6030 DATA F00 34C321A68C97 FF047C9BFF055C9EF 6040 DATA F048C9DFF056C95FF034C96FF039C9AF 6050 DATA F03EC99FF043C9F7F048C9FBF04CC9FD 6060 DATA D0034CA81AA9008DB51 B203D LA20C91A 6070 DATA A9FF8DB51B203D1A20C91A4CA019CEB0 6080 DATA 1 BCEB11B4CE519CEB11BEEBO1B4CE519 6090 Data eebolbeebllb4CE519eEB11BCEBO1B4C 6100 DATA ES19A0FF8CB41B4CE519A0008CB4184C 6110 DATA E519A9008DB51B203D1A4CB519ADBO1B 6120 DATA 290180 B 21 BADB 11 B 29038 DB 31 BOA 186 D 6130 tata B21bAAA901CAEOFFF0030AD0F88DB61B 6140 DATA A91085F9A9C885FAADB01B4A1865F985 6150 DATA F99002E6FAADB1184A4AAAA9401865F9 6160 DATA 85F99002E6FACADCF2A000B1F9AER51B 6170 DATA D0060DB61B4CA51A48ADB61B49FP8DB6 6180 DATA 1B682DB61B91F960A000B900D099001C 6190 DATA B900D1990010B900D299001EB900D399 6200 DATA 001 FC8DOE5AD00D860AEB81BCEB71BDO 6210 DATA FBCADOF860A9FF8D0502201F1B201F1B 6220 DATA A00084F9A91C85FAA93A20EEFFB1F94A 6230 DATA 4A4A4A20001BB1F9290F2000184COE1B 6240 DATA $186930 C 93 A 300318690720$ EEFF60C8DO 6250 DATA DCE6FAA5FAC920D0D4A9008D050260A9 6260 DATA 108DB91BAOFFCADOFD88DOFACEB91BDO 6270 DATA F560A9FF8D0302A90085F9A91C85FAAO 6280 DATA 0020BAFFC93AD0F920EEFF20BAFF2067 6290 Data 1BOa0a0a0a8dBal b20BaFF206718186D 6300 DATA BA1B91F94CTBB20EEFC9419002E907 6320 DATA 2901 col 6330 DATA
630 DATA
340 DATA C800ESA9004C95190DF00520F9535441
6350 DATA LAST

Table 3. Drawer in M/C and BASIC

Note to CEGMON users:
In the Plotting Algorithm program line 200 will need to read:
200 POKE 11,70:POKE 12,251:X=USR(X)
In the Graphics Drawer program line 5010 will be: 5010 POKE 11,70:POKE 12,251:X=USR(X): CH=PEEK(533)-48:RETURN

In line 6280 change two occurrences of BAFF to 46FB

In line 6290 change BAFF to $46 F B$
If your character generator has been supplied as an EPROM, then cut the track joining pin 18 on IC1 and IC2, leaving IC2 connected to pin 9 of the 7474. Connect pin 18 of IC1 to pin 8 of the 7474.

Fig. 5. Printed circuit layout

Fig. 6. Component overlay

Fig. 7. Position of PL1

COMPONENTS ...

Integrated circuits

IC1 2716
IC2 Standard Char. Gen. ROM
IC3 7474

Miscellaneous
24-way dill socket (2 off) 24 -way di.i. plug
14 -way di.l. socket ${ }^{*}$
Printed circuit board

The program was originally intended for joy-stick control which explains the rather clumsy cursor movernent $k \in y s$, but on the standard keyboard I do not think that there are any better options.

The subroutine at line 5000 is to clear the screen and can be substituted by a more rapid routine if available.

To sum up then, this is a method of implementing $\frac{1}{8}$ th square graphics in a simple and non-destructive way. This system works equally well with the Superboard II but re-

quires a differently encoded EPROM since for reasons best known to the manufacturers, the wiring beiwes.n the chara ter generator and the data seriatiser is slightly ditherfol two machines. The Superboard requites each chatacter row to be encoded in reverse. The software illustrated here will also have to be adjusted.

Thanks are due to the author's colleagues Dr. J. Ogle and D. Hazelden for ideas on the hardware and software of this project.

FREE! READERS' ADVERTISEMENT SERVICE

RULES

Maximum of 16 worts pins address andor phone no P:ivater ad verticers only ftratle on twainesa adts can be placed in outr classufient
 PE cannot accept responsibilly for the accuracy of ats of for anv transaction arising between readers as a result of a tree ad We
 paned by a valid date comer

PRACTICAL Electronics one to December 81 offers. R\& T servicing Vol 1-6 £ 10 . Callers only. L. Marks, 14 Avenue Road, Kingston. Surrey. ACORN Atom 12K RAM 8K BASIC E155. Portable music synthesiser-piano. Harpsichord, Brass, Strings, etc., E200. Don Pearson, 41 Ormonde Avenue, Chichester, Sussex. Tel: 0243 789748 or 943632 after 7 pm .
PRINTER and keyboard data dynamics ASRS390, complete with stand and paper, E99. S. L. Ross, 44 Premier Avenue, Grays, Essex RM16 2 SD.
OSCILLOSCOPE single beam 5 inch screen Heathkit labscope model $10-12 \mathrm{U}$ suit young enthusiast. £ 18 only. A. R. Wieczorek, 11 Farsands, Oakley, Bedford. Tel: Oakley 3850.
I WISH to fit floppy disc drive to Superboard II. If anyone has done this contact: S. N. Hobson, 3 Church Close,. Lindal, Ulverston, Cumbria LA12 OLS.

Advertise your spare parts, test gear, tools, computers, printers, instruments, symbesisels organs, books, etc., FREE. Yes, we will accept adverts from readers, NOT TRADE, ou a one off basis to be published in the first available issue. Not only can you advertise parts for sate but your wanted or swap ad. will also be acceptable. The rules are straightforward tut please read them and make sure you send in a valid "date corner" cut from the issue.

If you have a few components, a Compukit or a computer organ we can help sell them for you. We reserve the right not to publish anything unacceptable to us or any ad we believe is from a trader or anyone running a business involved in electronics; it's a private readers only service. We cannot accept ads. for computer software.
PLEASE NOTE: Due to the postal problems associated with the rail strikes, we have onlv received a few ads, at time of going to press. We expect to publish a larger number next month.

SHARP MZ8OK, 48K extended BASIC, many games. one year old, as new condition $£ 330$. Mr P.J. Keen, "Cranfield", 37 Ivy Lane, Macclesfield. 0625-22649.

WANTED WW2 radios-38, 18. 19 sets, R1155 etc. Cash or swap Hitachi 19 inch colour TV. T.E.D. Levison, Bristol 681956.

Please publish the following smail ad. FREE in the next available issue. I am not a dealer in electronics or associated equipment.

Signature

Date

Please read the RULES then write your advertisement hereone word to each box. Then add your name, address and/or phone no. Maximum of 16 words plus address.
COUPON VALID FOR POSTING BEFORE 8 APRIL, 1982. (One month later for overseas readers)

SEND TO: PE BAZAAR, PRACTICAL ELECTRONICS, WESTOVER HOUSE, WEST QUAY ROAD, POOLE, DORSET BH15 1 JG.

BLOCK CAPITALS PLEASE

Name \& Address:			

THIS month, which represents the final part of the Robots series of articles, we look at the software and final assembly procedures.

SOFTWARE DESCRIPTION

Here are brief notes on some aspects of the control software for the robot.

Decoding the keyboard data via an interrupt routine

The clock pulses from the keyboard decoder are fed to one of the PIA's interrupt inputs. Each time an interrupt occurs, the new data bit from the keyboard decoder is read and shifted into a temporary data store by the software. When 56 bits have been received, the micro's internal button status bytes are updated. Synchronisation with the transmitted sequence is assured by resetting the bit count when a 'start' bit is decoded by the keyboard decoder. See Fig. 6.1a.

Jump node subroutine

To make button command controlled jumps from one part of the program to another easy to modify and expand, a special subroutine was written. This is entered with the X register pointing to the start of a particular jump table (Fig. $6.1 \mathrm{c})$. If any of the listed button states are found, then the matched jump is made, otherwise the subroutine returns control to the part of the software it was called from. See Figs. 6.1b and 6.1 c .

Servoing and deadband

On replay, the control of the robot to follow the stored data consists of a simple servo loop with a deadband, i.e. if the measured position is greater than the desired position plus the deadband, then the minus solenoid is activated.

i.e.	$M P>D P+D B$	$:-$	$-S O L$	$O N$
also	$M P<D P$	-	$+S O L \quad O N$	
and	$D P<M P<D P+D B$	$:-$	$B O T H O F F$	

As soon as an axis reaches the correct position, its appropriate solenoids are switched off. When all solenoids have reached their correct position, the software fetches the next position down from the sequence memory, and the process continues.

A full source listing (with comments!) of the control software is available from Powertran.

KITS

Constructor's Note

Complete kit of parts for this project can be obtained from Powertran Cybernetics, Portway Industrial Estate. Andover, Hants SP10 3WN. \& Andover (0264) 64455.

Prices are as follows . . .
Genesis M101 4 axis model (excluding wheel base) $£ 295.00$
Genesis M101 5 axis model (excluding wheel base) $£ 345.00$
Genesis M101 wheel base £79.00
Genesis P101 4 axis model $£ 450.00$
Genesis P101 6 axis model $\quad £ 545.00$
Genesis S101 4 axis model $£ 355.00$
Genesis S101 5 axis model $£ 405.00$
Position detector coil set for M101, S101 4 axis models $£ 15.00$
Position detector coil set for M101, S101 5 axis models $£ 19.00$
Position detector coil set for P101 4 axis model $\quad £ 15.00$
Position detector coil set for P101 6 axis model $£ 24.00$
Position detector board for M101, S101 4, 5 axis models $£ 6.50$
Position detector board for P101 4, 6 axis models $£ 7.50$
Motor drive board for M101 wheel base
(2 required per machine)
f11.50
Control electronics for M101 (microprocessor board, interface board, display board and mounting bracket)
£135.00
Processor box for S101, P101 (microprocessor board. interface board, display board, power supply, interface cables, conduit, cabinet)
£175.00
Parts for RS232C interface (fits on microprocessor board)
$£ 14.50$
Hand held controller box for M101 (includes infra red transmitter and rechargeable battery) $£ 47.00$
Hand held controller box for S101
£33.00
Hand held controller box for P101
£33.50

All prices subject to 15% VA.T.

Fig．6．1a．Interrupt Service Routines

＊GET KEY AND EXTERNAL DATA			
KBEX	JSR	BUSIN	
	LDA B	PIABD	（THIS ALSO CLEARS
			INTERRUPT）
	AND B	\＃\％01111111	
	STA B	PIABD	
	LDA A	PIAAD	GET DATA
	PSH A		
	ORA B	\＃\％1ゆø叩叩叩叩	
	STA B	PIABD	
	JSR	BUSOUT	
	PUL A		
	RTS		

＊TRANSFER／CHECK BUTTON DATA		
TRNFER	LDA B	\＃7
	LDX	\＃BTS \emptyset
	STX	FROMX
	LDX	\＃BUTNS
	STX	TOX
	JSR	MOVE
	RTS	

＊INTERRUPT SER VICE ROUTINE
$\begin{aligned} & \text { INTSER JSR }\end{aligned} \quad \begin{aligned} & \text { KBEX } \\ & \text { GET DATA AND CLEAR }\end{aligned}$
INTERRUPT

	STA A	KBEXD
	AND A	\＃\％øめの
	BNE	INT1
	LDA A	\＃56
	STA A	BITCNT
	CLR	BTRFLG
INT1	LDA A	KBEXD
	ROR A	
	ROL	BTS6
	ROL	BTS5
	ROL	BTS4
	ROL	BTS3
	ROL	BTS2
	ROL	BTS1
	ROL	BTSø
	DEC	BITCNT
	BEQ	ALLDON
	RTI	
ALLDON	LDA A	BTRFLG
	BNE	INT2
	INC A	
	STA A	BTRFLG
	JSR	TRNFER
INT2	RTI	
＊INTERRUPT VECTOR		
	ORG	\＃FFF8
	FDB	INTSER

＊RESTART VECTOR

ORG	\＄FFFE
FDB	START
END	START

Fig．6．1b．Jump Node Subroutine
＊SEARCH JUMP TABLE POINTED TO BY
＊X AND JUMP IF NECESSARY
NODE

LDA A	\emptyset, X	
CMP A	\＃\＄FF	END OF CURRENT TABLE？
BEQ	NODE2	
JSR	TSTBUT	
BEQ	NODE3	HAVE WE GOT A MATCH？
INX		NO
INX		
INX		

NODE3	INX		FIX STACK ALL SOLENOIDS OFF	
	BRA	NODE		
	LDX	2，X	MAKE MATCHED JUMP	
	LDS	\＃TOS		
	JSR	SOLOFF		
	JMP	Ø．X		
NODE2	RTS			
＊TEST PARTICULAR BUTTON BYTE FOR				
TSTBUT	STX	TEMP		
	LDX	\＃BUT		
	JSR	ADDA		
	LDA A	Ø． X		
	LDX	TEMP		
	CMP A	1． X		
	RTS			

＊ADD A TO X

ADDAX	STX	TEMPX 1
	CLR B	
	ADD A	TEMPX $1+1$
	STA A	TEMPX $1+1$
	ADC B	TEMPX 1
	STA B	TEMPX1
	LDX	TEMPX 1
	RTS	

Fig．6．1c．Jump Node Tables
＊JUMP TABLES
＊INITIAL COMMAND NODE

F81C0080	JT1	FDB	\＄0080．SQM
F820 0180		FDB	\＄0180，SQP
F824 0010		FDB	\＄0010，EDIT
F828 0208		FDB	\＄0208，CLRMEM
F82C 0020		FDB	\＄0020，RPTP
F830 0040		FDB	\＄0Ø40，PLAY
F834 0120		FDB	\＄0120，MCOM
F8380280		FDB	\＄0280，MOCTRL
F83C FF		FCB	SFF

＊PLAYBACK CONTROL NOD

F83D Ø0 10	JT2	FDB	\＄0010．EDIT
F8410120		FDB	\＄0120，MCOM
F8450140		FDB	\＄0140，PAUSE
F849 0040		FDB	\＄0040，PLAY
F84D 0020		FDB	\＄0020．RPTP
F851 FF		FCB	\＄FF
＊EDIT CONTROL NODE			
F8520104	JT3	FDB	\＄0104，STEPP
F856 $\emptyset 0 \emptyset 4$		FDB	\＄ØØ04，STEPM
F85A 0120		FDB	\＄0120．MCOM
F85E Ø0 Ø8		FDB	\＄0Ø08．WAIT
F862 0108		FDB	\＄0108，INSERT
F866 0110		FDB	\＄0110，DELETE
F86A 0020		FDB	\＄0020，RPTP
F86E $\emptyset \emptyset 4 \emptyset$		FDB	\＄0040．PLAY
F8720010		FDB	\＄0010，EDIT
F876 0240		FDB	\＄0240，SLOW

$\$ 0140$, PAUSE 2 \＄0め10，EDIT $\$ 0120, \mathrm{MCOM}$ $\$ 0040$. PLAY $\$ 002 \emptyset$, RPTP \＄FF
$\$ 0120, \mathrm{MCOM}$ SFF

CONSTRUCTION OF THE ROBOTS

Despite the very large number of components making up each of the Genesis range of robots, construction is very straightforward, requiring no tools other than the screwdrivers and spanners found in most constructors' tool boxes. For convenience, in both packing and assembly, each kit is divided into a number of packs, each containing the parts for one section only of the machine together with its fixing components, so there's no chance of fitting the parts incorrectly. All details of assembly are covered in the handbook supplied with the kit. The prospect of assembling an hydraulic system may seem daunting, but with the components designed for these machines, no blowlamps, wrenches or similar tools of the plumbing trade are required. The fixed pipework is 8 mm diameter flexible, clear polythene tube and the pipework on the arms is 5 mm and 6 mm flexible, clear nylon tube. The tube, which can be cut with scissors, is terminated with screw-on fittings (Figs. 6.2 and 6.3). The fittings which screw into the hydraulic cylinders are sealed with nylon washers whilst the larger fittings as used on the solenoid operated valves and non-return valve have tapered threads which are sealed by wrapping about 5 turns thin PTFE tape round them before screwing in.

After filling with oil, operation of the robots can be checked by applying 12 V to the solenoids, either directly or via the Direct Solenoid Controller Board.

POWER-UP, TESTING AND
 CALIBRATION

There are several electronic units that comprise the robot system, and they are in some respects interdependent. That is, it will be difficult to test the boards in isolation, they have to be tested as a system. Wire up the interface board and the processor board (Tables 6.1-6.6). Do not insert any of the integrated circuits, other than the voltage regulators, which are soldered in anyway. Unplug index plugs PL2, 3, 5, 8, 9. Power-up the unit and test the supply rails. Check that you have two lots of +5 V , a +12 V rail (approximate) and a -9 V rail. Refer to the circuit diagram of the interface board for these voltages. There should be very little current drain and so none of the components should be getting hot! Turn off the power and insert all i.c.s up to number IC7 on the interface board. Recheck the power supply rails. Turn off, and insert the rest of the i.c.s except IC21. Turn on and recheck the power supply rails. If everything is okay then the interface board has been safely powered up. There are a few things that can now be tested. IC5 pin 8, should be a low distortion sinewave of about 4 Vpp amplitude, 100 Hz frequency. The same sinewave will appear at IC6 pin 4 which is the power driver i.c. Pin 7 of IC5 is a stable voltage reference of +2.4 V .

Now insert the i.c.s on the processor board. Power-up and test the supply rails. The heat sink on the interface board (+5 V rails) will now begin to warm up but it should never

Fig. 6.4. Processor Box PSU wiring

Table 6.1. Input wiring of Processor Box

Molex plug No.	DIN Skt pin	Signal
PL7-1	1	+12V
PL7-2	5	+5V
PL7-3	2	GND
PL7-4	4	-
PL7-5	3	DATA INPUT

Table 6.2. Infra-red data link (Mobile only)

Molex plug No.	Receiver PCB No.	Signal
PL7-1	1	$+12 V$
PL7-2	2	$+5 V$
PL7-3	3	GND
PLL-4	4	$-9 V$
PL7-5	5	DATA

Table 6.3. Display Board wiring

Molex plug No.	Display Board Pin No.	Signal
PL5-9	1	DA3
PL5-3	2	DAØ
PL5-10	3	GND
PL5-7	4	DA2
PL5-5	5	DA1
PL5-6	6	DA5
PL5-1	7	$+5 V$
PL5-8	8	DA4
PL5-2	9	DA7
PL5-4	10	DA6

Table 6.4. Baud rate wiring

Molex plug No.	Switch Contact	Signal
PL1 1-1	12	9600
PL1 1-2	11	4800
PL1 1-3	10	2400
PL1 1-4	9	1200
PL1 1-5	-	-
PL1 1-6	-	-
PL1 1-7	8	600
PL1 1-8	7	300
PL1 1-9	-	-
PL1 1-10	c	select

become too hot to touch. The CMOS battery back-up will eventually charge up from 3.6 V to 4.0 V , but this may take an hour or so. A few things can be tested. The microprocessor should be generating a clock. Test IC1 pin 37; a 1 MHz TTL level square wave should be generated. If the RS232 interface parts are fitted then the Baud rate generator can be tested. Test the wiper of the Baud rate selector switch. A TTL level squarewave at 16 times the Baud frequency will be seen. Next connect the position detector board into the system via molex connectors M8 and M9 on the interface board. There are 3 tags on the position detector coils. The braid of the screened cable goes to the common tag. As the coils are bifilar wound it does not matter which coil is the primary and which the secondary. Test the supply rails for a safe power-up and check for outputs which will be 100 Hz sinewaves. The sinewave level will alter as the extension of the respective hydraulic actuator is changed. Next plug in the display board (molex connector M5). Upon power-up the bleeper will bleep several times. This will indicate that the program is to some extent operative. Pressing the Reset button on the processor board will repeat this event. Again recheck the supply rails. The next section to be tested is the Remote Control Unit. This will enable you to manipulate the robot and also to calibrate the presets in the system. There are two types of control unit: one is an infra-red device and the other is connected via a wire link. The infra-red unit has two analogue channels and an infra-red driver circuit, and is only intended for use with the M101 robot. All the test waveforms are shown in the timing diagram. Adjust VR1 for a clock frequency of 2 KHz (IC10 pin 3). Presets VR2 to VR5 are only included on the M101 unit. Adjust VR2 so that the ramp waveform seen at IC8 pin 14 reaches a maximum of 2.4 V . In fact, check that the Vref voltage is +2.4 V . Put the steering pot (VR7) in its central position and adjust VR5 so that the potential on the wiper of VR7 is $+1 \cdot 2 \mathrm{~V}$. Repeat the procedure for VR3, IC8 pin 1, VR4 and VR6. These two circuits are both analogue to digital converters. VR6 and VR7 should produce full range changes in their output codes. This can be seen by monitoring the $\overline{\mathrm{Q}}$ outputs of IC9 pins 2 and 12 .

INFRA-RED RECEIVER

Next the infra-red receiver, which is only used on the M101 unit is to be tested. Plug in the unit (molex PL7) and test the power supply rails. Check that the voltage regulator on the infra-red board is working. Check that the potential between the +12 V rail and the emitter of T 1 is 15 V . Turn on the infra-red transmitter and point it at the receiver, using a separation of about three feet. You will be able to see the received data at IC1 pin 8 and IC2 pin 7. This data is then squared up by the comparator IC2 pins 1, 2, 3. Look at IC2 pin 1 and adjust VR1 so that nice clean waveforms are seen. Now move the transmitter away to a distance of 12 feet and readjust VR1 for the best output. The I.e.d. D5 will indicate that data is being received. You can use this as an indication of data being received. If you adjust VR1 so that it is too sensitive then the receiver will pick up noise and so generate erroneous commands. If you make it too insensitive, then the operating range will be limited. Optimum operation is at about twelve feet. Now that the manual control system is working the system can be tested. Connect the solenoids to the interface board via molex connectors PL2, PL3, plug in IC21 and power-up. For the M101 unit do not connect the motor control molex's PL13 as this may result in the robot dashing off and destroying itself! Upon power-up the robot arm may move which will indicate that there is life in the beast. Try out the manual control unit. Press SEO+ a few times. The display should count up. SEQ- should make it count down. If nothing happens then test that the data is being received correctly, Fig. 6.5. Once this is working press EDIT on the control unit. The record l.e.d. on the display board will turn on and a bleep will be heard. Now you can directly manipulate the robot arm. Try moving the arm in all its axes. If nothing happens ask the following questions:

Is there any hydraulic pressure?
Can you hear the solenoid valves clicking on and off?
Is the common rail connected to the solenoids?
Do any control voltages appear at the solenoid drivers inputs (IC15 to 18, of the interface board)?

Do these voltages appear at the drivers output?
Are the drivers red hot?

DETECTOR CALIBRATION

When the arm actions are working it is then time to calibrate the detector circuits. Measure the voltage on pin 9 of the ADC chip (IC20). It should be +1.25 V . The input range of the $A D C$ should be twice this; that is $O V$ to +2.5 V . Look at IC7A pin $\ddagger 4$ and fully extend and then retract axis 0 . The voltage at this point should move. Move the axis so that the voltage is at its most negative. Adjust VR2A so that the voltage is OV. Now move the axis to its other extreme and adjust VR1A so that the voltage is +2.5 V . Now return to the OV end and readjust VR2A for an output voltage of -10 mV . and then return to the +2.5 V end and readjust VR1A for an output voltage of +2.51 V . Now as the axis is moved, the position feedback voltage will change from -0.01 V to +2.51 V . Repeat this calibration process for all the other axes which have position feedback. The record mode can now be tested. Clear all memory locations. Enter EDIT mode. Move the robot arm to a position, Press INSERT. A bleep will be heard. Move the arm to another position, and press INSERT. This may be repeated until all 32 memory locations have been used up. When 24 have been used the memory full lamp will come on. When the sequence is complete, press the PLAY button. The robot will then step through the recording. The PLAY lamp will also come on. Press LOOP and the robot will repeat the sequence continuously. To use

Fig. 6.6. Mark-space modulation chart. One of four quadrants (repeated symmetrically) Signal A

Fig. 6.7. RS232 lead. Note: The robot recaives data on the $\overline{R X D}$ line, and transmits on the $\overline{T X D}$ line. It may be necessary to swap these two wires if your unit works the other way round
an external computer to control the robot, make up a lead as shown in Fig. 6.7. Plugging this in automatically puts the processor into RS232 mode.

When testing the motor control (M101 version only), jack the robot up in the air on blocks-you don't want the thing zooming off leaving a trail of destruction! Plug in the molex connectors (PL13) and turn on the power. Press MOTOR on the control unit. All three indicator l.e.d.s should turn on and the motors may start to rotate, this being determined by the speed and direction controls on the control unit. Centre the steering control and move the direction control. This should make the robot move forwards and backwards. There are three velocities which are obtained by using mark-space modulation. Steering is also obtained by using differential mark-space modulation, Fig. 6.6. Turn off the infra-red transmitter and the motors should stop. This is caused by the motor stop circuit IC2 pin 3 on the interface board which stops the robot when it travels out of control range.

THE MACROCHIP (page 28)

Did you fall for it? Puchemm \& Long! Just remember, it is our April issue so please don't ring us for more details like BBC Wales did the last time we published on April Fool.

Thanks to our reader Iain James for sending this in.

FOOLED AGAIN! (page 14)

You may have noticed that PROLAFOIL is an anagram of a particularly seasonal phrase-try reading the name and address of the company backwards.

C90LH CASSETTES

56p each (minimum of 5); 53p each (minimum of 25). Prices include VAT and postage
Made by a leading European manufacturer for Videotone, these tapes are of excellent quality and we are pleased to announce this new PE service.

Over the last couple of years PE offers arranged with Videotone have proved highly successful and we have now been able to arrange special prices (only available to PE readers) on these high quality tapes. The offer is a result of Videotone's direct selling policy; send in a current special PE coupon for prompt detivery of tapes.

We believe these tapes are the best value around and we are pleased to offer them to readers. They are covered by a money back guarantee (return within 21 days for refund). Not only are the tapes of high quality but the cassettes are of screw together construction and the case label has space for notes on the recordings.

Send valid coupon to: Videotone Ltd., 98 Crofton Park Road, Crofton Park, London SE4.

THE American Federal Trade Commission once asserted that a certain inventor's claim that his instrument was an "organ" and that it could produce an "infinite number" of tone combinations was questionable.

The inventor, a quiet person who normally kept out of the limelight, decided to contest the government. The Trade Commission decided on an impartial panel which would listen to both an expensive pipe organ and the electric organ in question to see whether they could detect any difference. Both players were hidden from view and the speaker cabinets were concealed among the organ pipes in the Rockefeller Chapel, University of Chicago.

The jurors heard a number of test pieces played on these instruments and their answers were wrong in 10 cases out of 30 . The organ's inventor was vindicated: it had been accepted as a true musical instrument. The Commission decided that the electro-mechanical device could be termed an organ but the company concerned should desist from claiming an infinite number of tones - as it could only produce 253,000,000!

THE ORGAN MAN

The year was 1937 and the inventor was Laurens Hammond. It was probably a turning point for electronic music (though Hammond called them electric organs) and was an enormous achievement in many ways, especially considering amplifier and speaker systems of the day.

Very few people have been responsible for creating an industry: George Eastman and Henry Ford are examples in other fields but undoubtedly Laurens Hammond laid the keel for the electronic music industry we have today. Born in 1895, he took an interest in engineering from an early age. He proposed a method of automatic transmission to the Renault Motor Co. when 14 years old and graduated from Cornell University with a degree in mechanical engineering in 1916. He served with the American Expeditionary Force in the First World War, acting as interpreter to the Commander, General Pershing.

Back in civilian life, Hammond became chief engineer to a marine engine concern but worked on his own ideas privately. Appropriately enough, his mother's maiden name was Idea Strong. His first success, a 'tickless clock', provided money enough to set himself up in business.

MOTOR

His mind turned to making a motor that would revolve in phase with the 60 Hz supply: having succeeded, he found that a patent had been filed elsewhere. Even so, he discovered an application for his small, efficient motor and applied for his first patent - a three-dimensional movie system. Public interest was intense but only for a short period, despite his simplifying the method by using red and green spectacles (anaglyph principle).

Another early idea was a 'power pack' for operating dry battery receivers from the a.c. supply. This project went well - until complaints started to flood in that the convertors were exploding and throwing acid over furniture and carpets! He was next to concentrate on perfecting a mains-driven electric clock and in 1928 formed the Hammond Clock Company. Profits soared over three years but the Depression saw not only his competitors going out of business but his own clocks being given away as a promotion for Wrigley's chewing gum

Determined to survive, he produced a device for shuffling playing cards into four heaps: built into a bridge table, it was priced at $\$ 25$ but even at this level was difficult to sell when money was scarce.

Because of his connections with the cinema, he noted the revival of interest in the pipe organ. Used for accompanying the films of the day, cinema organs grew in complexity as more and more effects were required for silent movies. The quest for larger instruments culminated in the mammoth organ in the Convention Hall, Atlantic City: installed in 1932, it had seven manuals, over 1200 stops and 32882 pipes.

FLUTE

Surely, the organ was a product that could benefit from his synchronous motor, he reasoned. As a child, Hammond had seen the Teleharmonium (the first complextone generator), knew its principles and was determined to build a smaller and highly reliable instrument. After lengthy experimentation, he managed to produce a flute tone by using his motor to drive a contoured steel wheel in front of a permanent magnet.

Like those before him, he had.produced an electrical waveform but he had also found out how it could be converted to a musical sound: the tiny current from a
winding on the magnet was fed into a radio amplifier (the valve by now being well established). The very next day, he and his team began to. explore the possibilities of conventional musical tones by electric synthesis.

Trial and error convinced him that 91 tone wheels were sufficient to produce all the musical sounds familiar to the ear accurate gearing had to be evolved for the twelfth-root of two ratios betw'een tonewheel shafts but this was not a particularly difficult task for a clock company. An old piano keyboard was wired so that partials could be keyed with fundamentals - a veritable cat's cradle! Hammond's concept of an invention was coloured by his experience as a manufacturer: the product had to be rugged. The eventual solution was to key nine pitches and allow the player to mix these as he wished.

TRAILBLAZER

The patent for Model A was filed in 1934 and the instrument first available early in 1935. Many famous musicians bought the Model A, priced at \$1250: though small compared with a pipe organ, the cost was three times that of a Plymouth car in 1935. The Model B was produced in 1936 (merely a change in cabinet styling) and it was the claims for this organ that led to the story heading this article. Because very few organs from other origins existed at the time, the Hammond Organ was by now a household word for a new and exciting experience in music.

Harmonic synthesis methods were used from the earliest Hammonds but the first purely electronic synthesiser was produced in 1939 - the Novachord. Another idea from the fertile mind of Laurens Hammond, this six-octave keyboard instrument was capable of producing woodwind, brass, plucked and bowed strings, piano and organ tones. Based on master oscillator and divider strings with a wide range of envelope control and harmonic content, the Novachord was extremely popular in the field of broadcasting at the time.

His next instrument appeared in 1940. This was the Hammond Solovox, with a three-octave keyboard (capable of six octaves) designed to supplement the piano. Small dance bands used these instruments, attached below the piano keyboard, to add extra solo voices (of which it had 12) to the ensemble.

During the war years, the company produced large numbers of organs for the allied services and was also designing and manufacturing flight control systems, gyroscopes, light and infra-red sensing equipment and aerial cameras.

The few commercial organs available at the time had not been designed for use in the home as a first priority. Wartime servicemen had developed a taste for the Hammond, so the company decided to introduce the very first home spinet model in 1949 - the first of the M Series. Ethel Smith was among the many famous instrumentalists who helped to popularise these small, self-contained models. Their
great success prompted other manufacturers to follow suit.

By 1953 organs had outstripped clock manufacture, so the name was changed to the Hammond Organ Company. Laurens Hammond was determined to maintain his lead in the field and expanded his engineering staff. New instruments continued to make their appearance, percussion being introduced on Models $B-3, C-3$ and the M Series spinets. A sèlf-contained console model, A-100, dispensed with the PR-40 tone cabinet required by earlier console organs. Model RT, a full concert instrument, was introduced and had an unique pedal solo system combining the synthesis methods used in the Novachord and Solovox.

The energetic founder retired in 1960, leaving others to continue the concern to which he had given so much impetus.

THE CHIP

Theatre organ sounds with an ultramodern pedestal console were introduced with the $X-66$ in 1965 . The $X-77$ was produced in recognition of the influence of jazz organists: essentially this was a new version of the popular B-3 but with extra tonal facilities and power output.

The beginning of the company's watershed was in 1967, when the J-Series all transistor organs first appeared: these were the first all-electronic tab-controlled Hammonds. The Piper Autochord made its debut in 1970 as the first automatic chording instrument: the circuitry provided the bass line so no pedals were fitted.

LSI circuitry was first incorporated in the Phoenix organ in 1972. This was a tabcontrolled organ but later that year the Concorde became the first LSI/drawbar in-
strument. Many Hammond enthusiasts averred that nothing would ever equal the sound from tonewheel generators although I was impressed when I heard this organ at its presentation concert.

The company had to march with the times - the call for greater portability and consideration of the steeply rising costs of precision engineering. In turning from tonewheels to LSI, the company had created its own challenge: it handled that situation with flair, as subsequent models have proved.

No doubt Laurens Hammond was also pleased that this radical changeover had been so successful as this happened a year before his death in 1973. He left behind him a massive international industry, part of which bears his name and has continued in his inventive vein with the success and prestige it has always merited.

Readout...
 short of material? To take one current exam-

Calling Members

Sir-Congratulations on your excellent stand at 'Breadboard 81', and I am only sorry that your fascinating Robot was not handing out B.A.E.C. forms, so obviously it was not programmed correctly!

I would appreciate it if you could mention in your very popular magazine the following B.A.E.C. members, as unfortunately their addresses have been mislaid, and I am holding for them a complete set of the B.A.E.C. 982 Newsletter.

O. Josephs	(BE 81544)
R. P. Horne	(BE 81546)
J. R. Woods	(BE 81548)
A. Brookman	(BE 81550)

If any of these members see this announcement. I would appreciate it if they would contact me at the address given below and send me their membership card, and address, of course, and I will then forward them their complete sets of 1981 Newsletters.

I appreciate your help, and would like to congratulate you on your excellent magazine for electronics enthusiasts.

Cyril Bogod. B.A.E.C.
"Dickens",
26 Forrest Road, Penarth, S. Glam.

Too Much Detail?

Sir-Since you have stated from time to time that you welcome feedback from readers, may I make a few comments which may be helpful.

General layout is good and regular features such as Market Place, Microbus, Spacewatch, etc. are obviously of greater or less interest to readers depending upon their outlook.

The weakest point so far comes in the constructional projects. It looks as if these are being presented in their full length merely in order to pad out the magazine. Are you really so
ple, how many readers are actually going to build an industrial robot? Very few I imagine. An article on the current state of the art, such as the first in the series, could have usefully been followed by an outline description with a block diagram of the available kits. It was hardly necessary to give such very detailed instructions unless it was to save the kit maker the cost of printing.

A similar criticism must also apply to other projects i.e. Ranger. etc. and Bandbox appears to be going the same way.

If you print p.c.b. layouts then how about a good article about making them from magazine articles. You seem to have ignored this, at least in the last three or four years. This could be linked with an offer from one of your advertisers.

The index to each volume is welcome but would be of much more use if it was a pull-out. Surely this is not too difficult to arrange?
$C B$? Yes, well it is in the news at the moment but don't go overboard, there are plenty of specialist mags dealing with it. In any case it will soon be the domain of a small band of enthusiasts. Remember the skateboard?

I hope these remarks have been of some use. I do not despair of the magazine entirely. If I did I would not have bothered to write to you. Best of luck for the future.
I. R. L. Morom, Redditch.

Thanks for your comments-we are always pleased to see constructive criticism of this kind.

When I first took over as Editor of PE some four years ago, I felt (as you do) that much of the constructional information could be dispensed with. I was quickly put right by many readers who pointed out that this was the strength of PE. You would perhaps be surprised how many readers want even more constructional information on all our projects! Don't forget that in many cases there would be no kits without the magazine articles to
launch them. We are not short of material, but we will not lower our standards just to cram more in. However, we have now managed to add to the number of editorial pages to give us a little more space for evervthing.

Point taken on p.c.b.s; what are other readers feelings on a pull-out index? Remember it would then take four pages rather than the two-and-a-half it took last year. Rest assured we won't go over the top on CB-Ed.

Unsatisfactory Update

Sir-When I first started reading Practical Electronics, it seemed to me that Semiconductor Update was one of the most useful features in the magazine. Until, that is, I tried to get some of the components described therein.

Take the November 1981 column for example. It describes an 8-channel, automaticsampling ADC chip, the AD7581, that "does not cost an arm and a leg". This device sounds so good that it probably makes all other ADCs of equal accuracy obsolete, but so far as the hobbyist is concerned, it doesn't cost anything because it isn't obtainable. I picked this one example because it happens to be a device I would use, but the same is true of nearly all devices featured in Semiconductor Update.

A possible solution would be for you to give retailers who advertise in PE some advance notice of which devices are to be featured in Semiconductor Update, and then to mention in the column the names of any retailers who expressed an interest in stocking those devices. This isn't a perfect answer, but it would probably be better than the present unsatisfactory situation.

Dr. N. J. D. Jacobs. Brentwood.

Essex.

The problem is that companies are not willing to stock items that may not sell-and who can blame them. If 'Update generates an interest then suppliers will take stock.

Of course many items mentioned are only just on the market-we like to be "up to date"-and it is often some time before they are available even from industrial distributors.-Ed.

The hardware and software exchanga point for PE computer projects

SOFT INVERSE VIDEO

Sir-By connecting the circuit shown in Fig. 1, to the video circuit of the Compukit, software control of inverse video is possible, which extends the flexibility of the

SECRET SCREENWRITING

Sir-I wonder if your readers would be interested in a simple extension of the "secret" key polling sub-routine by J. M. Leach of Deal, Kent, for the UK101 published last March.

This program based on the New Monitor allows you to write direct to the screen with full control of the cursor, viz:

RUB OUT: Moves Cursor LEFT: Retyping corrects any mistakes

CTRL RUB OUT: Moves Cursor UP
SPACE: Moves Cursor RIGHT
CTRL=/-: Moves Cursor DOWN
RETURN: Moves Cursor to LEFT margin and DOWN one line ie. carriage return.
10 GOSUB 100
15 REM HAS RETURN BEEN ENTERED?
20 IF A $=13$ THEN 60
25 REM HAS RUB OUT BEEN ENTERED?
30 IF A $=28$ THEN 62
35 REM HAS CTRL RUB OUT BEEN ENTERED?
40 IF A $=220$ THEN 64
45 REM HAS CTRL $=/-$ BEEN ENTERED?
50 IF A $=237$ THEN 66
55 ? CHR $\$(A)$; : GOTO 10
60 ? CHRS(10); : ? CHR\$(13); : GOTO 10
62 ? CHRS(8); : GOTO 10
64 ? CHR $\$(11) ;$ GOTO 10
66 ? CHR (10); : POKE 10
100 POKE 11,0:POKE 12, 253 : X = USR(X) : A = PEEK (531) : RETURN

CTRL L Clears the screen as normal and returns the cursor to the home position (top left hand corner). This program allows messages to be displayed on the VDU and changed as required.

The alteration of line 55 to 55? A: : ? CHR\$(A): : GOTO 10 allows the values of A to be printed out so that new IF $A={ }^{\prime \prime \prime}$ statements can be devised.

Revd. P. R. Miller, Milton Keynes.

AUTO-RUN

Sir-When loading a BASIC program it is tedious to have to wait until the program is loaded from cassette to avoid loading un-
already extensive graphics. Programs can then include routines for displaying selected areas of the screen inversely (black letters on white background).

This is achieved by inserting an exclusive OR gate in the video line between IC42 and IC70. Its inverting input is controlled by software, operating a latch (this may be the inherent latch in IC14 RTS as shown in Fig. 1, or from a latch provided by any of the published Compukit Extension Projects).

The display data line 7 (VD7) is used for selectivity. When the latch (RTS) is low, VD7 in = VD7 out and the display is normal. When (RTS) is high AND VD7 in is high, then VD7 out is low. Characters having a value above 127 are reduced in value by 128 and displayed inversely.

This is shown by the following program which displays "UK101" in black, onto a white rectangle, below which is displayed "UK101" in white.

5 FOR I = 1 TO16 :?:NEXT

$10 \mathrm{~A}=53400:$ POKE 61440,81
20 FOR I $=A+64$ TO A $+79:$ READ B

30 POKE I,B: POKE I + 320,B: NEXT:GOSUB 100
$40 \mathrm{~A}=\mathrm{A}+64$: GOSUB 100: $\mathrm{A}=\mathrm{A}+64$: GOSUB 100
50 GOTO 50
60 DATA $32,32,85,32,75,32,32,32,49,32$, 48
70 DATA32,49,32,32,32
100 FOR I $=\mathrm{A}$ TO A $+15: \mathrm{P}=$ PEEK(I)
110 P $=$ P + 128: POKE I, P: NEXT: RETURN

Line 10 operates (RTS) latch and line 110 puts VD7 high over selected rectangle.
Normal video can be restored by Warm Reset or in program by Poking 61440,17

wanted noise at the end.

Typing POKE515,0:RUN followed by Return in immediate mode after the program has been SAVED, records the latter on the tape. The recorder is then switched off, and on loading the program, the LOAD flag is turned off, and the program RUNS AUTOMATICALLY.

Roger Darbishire,
King's Lynn, Norfolk.

CEGMON COMPATIBLE TRACE ${ }^{r} s^{\prime}$
Here is'a trace program for UK101 which'. run's under CEGMON without destroying the printing format. It should also run on the Superboard and under other monitors, providing the CTRL C routine is at HEX FB94. It takes advantage of the fact that BASIC stores any number to be output at locations HEX 0100 to 0105 in decimal digits.

After you've cold started, try this:

FOR I=256 TO 261:? CHR\$
 (PEEK(I));: NEXT

The result will be the last number output, i.e. the number of free bytes. The program is adapted from the one in the CEGMON manual.

O294	A9	FF		LDA
0296	85	$5 F$		STA
0298	A9	80		LDA
O29A	85	64		STA
O29C	20	53	B9	JSR
029F	A2	05		LDX
O2A1	BD	00	01	LDA
02A4	$9 D$	36	D0	STA
02A7	CA			DEX
O2A8	DO	F7		BNE
O2AA	C6	64		DEC
O2AC	$4 C$	94	FB	JMP

If your screen is not 48 characters wide, then byte $02 A 5$ can be changed from HEX 36. HEX 20 should suit even a 25 column screen.

As the program is in page 2 of memory, it is unaffected by a COLD START. It can be moved elsewhere but for ease of use it should start at XX94, i.e. any memory location ending in 94. As listed, it is turned on by POKE 541,2 and turned off by POKE 541,251. When a BASIC program is running, the current line number will be displayed at the top right corner of the screen. and the extra routine does not slow program execution too much, even in a long FOR-NEXT delay loop.

A simple modification will permit singlestepping line by line through a program, waiting until a kev is pressed before going to the next line. Make the following changes:
02AC $20 \quad 00$ FD JSR FDOO wait for key to be pressed

02 AF 4 C 94 FB JMP FB94 do CTRL C check (exit)
As the program occupies only 27 bytes, it's hardly worth putting it on cassette. Enter the program by RESET M 0294 then enter each byte (HEX pair) followed by RETURN. You can then COLD or WARM start as required.

Here is a subroutine which can be called from BASIC, which will scroll the screen contents down instead of up. This has applications in games where it is desired to

390 SUGGESTIONS

UK 101 -to-Data Dynamics 390 problems? Try the following:

1) Make either 110 Baud rate mod of March/June 1980. Break connection between $1 C 62 / 12$ and $\mathrm{R} 72 / \mathrm{R} 63$. then reconnect

POKE 11 with 240 to let $X=U S R(X)$ know where to jump.

The following gives an effect of travelling through stars:
$10 \mathrm{~S}=53248$: $\mathrm{N}=5$
20 FOR I=0 TO N*RND(1) : POKE
S + 63*RND (2) , 46 : NEXT
30 CALL 716 : CALL 752 : POKE S,32 :

GOTO 20

This works nicely even if the direction of scrolling is altered during the execution of the program, by POKEing 727 with 63 or 65, depending on which SHIFT key is pressed.

David Henniker,
Edinburgh.

T
HE UK 101 displays 48 characters per line on 16 lines. This conversion allows the user to select an optional 48×32 format. The characters become much more legible, and the doubling of the vertical resolution on display is a useful improvement when plotting graphs or drawing diagrams. Program listings provide double the information per page.

The VDU RAM is increased from 1 K to 2 K bytes, and is controlled by a modified version of the new monitor PROM, so that the line edit facility is available.

In order to check that the display being used has enough resolution for 32 lines, take IC 60 pin 12 to +5 V momentarily: two identical 16 line pages are displayed.

This conversion includes a means of selecting the three different monitor PROMS, (old 16 line, new 16 line, and new 32 line). Whilst Reset is held, this switch may be operated without losing programs.

One p.c.b. would be required; 8 new i.c.'s and the new PROM are required. Power can be obtained from the existing PSU.

HARDWARE

The current machine has 1 K VDU RAM from D \emptyset D3FF. The hardware counting chain scans this onto the screen. C7 is not used, so each horizontal line is repeated (see p7, Fig. 2 in the manual).

The converted machine has 2 K VDU RAM, D 0 to D7FF. C7 is now used, and C14 is used to select between the two half pages, DD-D3FF and D40-D7FF. All the other counters are used as before.

A three way switch is provided to select between the three monitors. Six t.t.l. i.c.'s, two 2114's (for the extra RAM) and a new 2716 EPROM are required. If Reset is held while switching monitors, followed by warm start, programs are not lost. Thus program development can be carried out with 32 lines while setting up display graphics for 16 lines eg. for games.

IC 102 and IC 103 switch the counter outputs from IC60, 61 and 30 so that C7 is brought into use for 32 lines. They are activated by the three way switch. A change is needed to the $\overline{\mathrm{VA}}$ signal generated by IC56 (currently active low when DO-D3FF selected, to enable the CPU to access the VDU RAM). IC $56 / 2$ is taken to +5 V , instead of A10. VA becomes $\overline{V A}^{\prime}$ active for $\mathrm{D} \emptyset \emptyset-\mathrm{D} 7 \mathrm{FF}, \overline{V A}^{\prime}$ is used to activate IC105, which takes the place of the switch formed by pins $9,10,11$ of IC55. IC104 is used to decode A10 and $\overline{\boxed{ } 2}$ into the memory select signals M1S, M2S, for the two page "halves".

The $\overline{\mathrm{RVE}}$ and $\overline{\mathrm{WVE}}$ signals also have to be changed to $\overline{\mathrm{RVE}}$, WVE' to allow 2 K VDU RAM. IC 106 provides this decoding replacing part of IC20's function.

IC 101 provides six inverters required in various places in the circuit. IC107-110 are the 4 VDU RAM chips (two of which are already on the main p.c.b.: IC 39,40 .

Besides the connections for data and address lines to the VDU RAM and the ROM'S, some 25 connections have to be made to the main p.c.b. along with a number of track cuts. (The prototype board is "piggy-backed" on two pillars on the main p.c.b. and the connections made with ribbon cable). The track cuts are needed to disconnect the lines from IC60, 61, 30 to

Fig. 1. Hardware changes required

IC41, 54, 55, and to disconnect A10 from IC56, and WVE, WVE, RVE.

SOFTWARE

The program in the new monitor requires alteration to:
Screen print routine - to allow 32 lines
Clear screen routine - to allow 32 lines (and optionally remove the scroll when the top of the screen is blank)

More Display
Up one line routine - to allow 32 lines
Form Cursor Address routine - to allow 2 K VDU RAM
A total of 36 bytes require to be altered.
The firmware changes required are detailed below. The new program should be put into a 2716 (2K) EPROM, using the same address as the existing monitors (F 8 -FFFF).

The monitor program is completely unchanged except for the 36 bytes detailed.

Additionally, the byte at FB5B (currently FF) can be changed to if desired. This removes the rather irritating scroll up on the screen every time the top line becomes blank for any reason.

POWER SUPPLY

No problems have been found driving the new board from the existing PSU, although the regulator is already mounted on a large heat sink outside the case. A simple 5V, 1A PSU using a 78053 -terminal regulator could however be constructed if required. All the i.c.'s should be LS types.

POWER

```
+5V IC 101/14, IC 102/16, IC 103/16, IC 104/14
    IC 105/16. IC 106/16, IC 107-IC 1 10/18, IC 11-IC 113/24
OV IC 101/7, IC 102/8. IC 103/8, IC 104/7, IC 105/8
    IC 106/8, IC 107-IC 110/9, IC 111-IC 113/12
```


CONNECTIONS TO NEW BOARD

IC60/12 (C7)
IC60/11 (C8)
IC61/14 (C9)
IC61/13 (C10)
IC61/12 (C11)
IC61/11 (C12)
IC 30/14 (C13)
IC 30/13 (C14)
IC56/6 (VA
IC $18 / 5(\overline{\mathrm{~V}})$
IC8/22(A12)
IC8/20(A|1)
IC8/19 (A10)
IC8/39 (ø2)
IC8/34 (R/W)
IC4 1/8
IC41/7
IC41/6
IC54/10
IC54/13
IC55/3
IC55/6
RVE'-CONNECT IN PLACE
$\overline{\text { WVE' }}$-OF EXISTING $\overline{\text { RVE }}, \overline{\text { WVE }}$
Fig. 2. Firmware
changes required

CIRCUIT

The sockets for IC 39, 40 were used to obtain the VDU data and address lines. Similarly, the socket for IC13, to obtain connections for the monitor ROM and PROMS.

The pin connections for +5 V and 0 V to all the i.c.'s are also listed below.

Ribbon cable forms a suitable flexible means of interconnection between the boards.

GENERAL

The prototype is made up on a piece of veroboard, about 205 $\times 102 \mathrm{~mm}$, with the i.c.'s all on d.i.l. sockets. Quite a bit of wiring is involved, so careful checking of all connections is essential.

A few 100 n ceramic capacitors should be connected between +5 V and 0 V to aid decoupling.

SOFTWARE CHANGES (TO NEW MONITOR)

 ADDRESS ADDRESS CHANGE BYTE| (ABSOLUTE) | (PROM) | FROM | TO (HEX) | ROUTINE |
| :--- | :--- | :--- | :--- | :--- |
| FACA | 2CA | 10 | 2 | SCREEN PRINT |

NEW ROUTINE

Delete routine from FB8D (38D) to FBAB (3AB)
(This routine forms the cursor address and stores
it in $0 \mathrm{E} 3,0 \mathrm{E} 4$)
REPLACE WITH:

FB8D	38D	A9	1A	LDA	\#SIA
	38 F	85	E4	STA	\$E4
	391	AD	0802	LDA	\$0208
	394	$\emptyset \mathrm{A}$		ASL	A
	395	$\emptyset A$		ASL	A
	396	$\emptyset A$		ASL	A
	397	$\emptyset A$		ASL	A
	398	26	E4	ROL	\$E4
	39A	$\emptyset A$		ASL	A
	39B	26	E4	ROL	\$E4
	39D	\emptyset A		ASL	A
	39E	26	E4	ROL	\$E4
	3AØ	6D	0702	ADC	\$0207
	3A3	69	ดD	ADC	\#80D
	3 A 5	85	E3	STA	\$E3
TO	3 A 7	60		RTS	
	3A8	EA		NOP	
	3A9	EA		NOP	
	3AA	EA		NOP	
FBAB	3 AB	EA		NOP	

TRACK CUTS (ORIGINAL p.c.b.)
DISCONNECT CONNECTIONS BETWEEN:

$1 \mathrm{C} 60 / 11$ (C8)	AND	IC41/8
1C61/14 (C9)	*	IC41/7
IC61/13 (С10)	*	IC41/6
IC61/12 (C11)	"	IC54/10
IC61/11 (C12)	"	IC54/13
IC30/14 (C13)	"	IC55/3
IC $30 / 13$ (C14)	\cdots	IC55/6
IC56/2	\cdots	A10
IC20/12		RVE
IC20/7		WVE

(PLUS 5V, ZERO VOLTS)
VA0-VA9, VD0-VD7(FROM IC39, 40
SOCKETS)
-BUS CONNECTIONS
ALL CONNECTIONS FROM MONITOR (IC13)
SOCKET, EXCEPT PINS 18.20
IC 19/6 (MCS) FOR MONITOR SELECT SWITCH

DETAILS of the display p.c.b. are shown in Figs. 9, 10, and 11. All links through the board should be soldered first and those underneath the l.e.d. displays should be cropped short on the component side. The top end of each seven segment display is marked with a coloured spot. The pins for attaching the connecting wires to the main p.c.b. are inserted from the component side so that they protrude inwards from the front panel. The legs of the push buttons are left full length and are also used to solder the connecting wires onto.

FRONT PANEL CUT-OUTS

Dimensions for the cut-outs in the front panel are shown in Fig. 12. The shape of the cut-out for the 13A socket can be adjusted to suit any particular make. The best way to mark out the front panel is first to cover it with strips of masking tape. This can then be drawn on and it also protects the surface from scratching during cutting. The rocker switch S 1 is fitted through from the front of the panel before soldering the connecting wires to it . The display p.c.b. is held in place by making two plastic brackets from the spare plastic cut from the front panel holes as in Fig. 13. These are glued together with instant (cyanoacrylate) glue and then to the back of the front panel during final assembly after testing

Fig. 14 shows how $1 \frac{1}{2}$ turns of the neutral lead to the 13 A socket are wound onto the current transformer after removal of the low voltage winding with a knife or wire cutters. Correct loading of the current transformer was discussed in Part 1 of this article. The voltage developed across the load resistor should be measured with a high impedance meter $>10 k$ or else using an oscilloscope when the peak to peak voltage will be $2.83 \times$ r.m.s.

THE MICROPROCESSOR

The 8035 microprocessor is one of a range of single chip microcomputers first manufactured by intel. The internal architecture of the chip is shown in Fig. 15. The program counter contains the address of the next location to be read from the program memory. The contents of this memory location are decoded in the instruction decode register and then the instruction is executed, which might be to increment one of the data registers or to use the ALU to logical AND the accumulator with data contained in the next bytes of the program, etc. There are in fact nearly one hundred different instructions which the 8035 will execute making programming straightforward and efficient in program. memory usage.

Fig. 9. The display p.c.b

+ Fig. 10. P.c.b. topside

Fig. 11. P.c.b. underside

56
Fig. 12. Front panel cut-outs

Fig. 14. Winding current transformer primary

Fig. 15. Internal architecture
The on-chip data memory is 64 bytes and the division of this into two working register banks, stack and user RAM is shown in Fig. 16. The addressing modes for access to this memory area are also shown. The program is stored in EPROM and certain locations are reserved for special functions as shown in Fig. 17. When power is switched on the reset pin is held low by a capacitor until it has charged up and then the processor gets its first byte of program information from location zero. This will be a jump instruction to the start of the main program. As this is a two byte instruction, location 1 is also accessed.

The test inputs are provided which can be used to

Fig. 20 (right).
Software flowchart

Fig. 16. Chip data memory

$$
A=A D D R E S S
$$

$B=$ INSTRUCTION
$C=D A T A$

Fig. 18. Timing of external memory control signals
monitor external functions, the T1 input being used to test when the ADC conversion is complete. A low input to the interrupt pin causes the processor to terminate its current program sequence, store the next program address on the stack and then jump to location 3 where it gets the address of the interrupt service routine.

The relative timing of the external memory control signals is shown in Fig. 18. The falling edge of the address latch enable is used to strobe the address into the latch for both external data and program memory cycles. Program store enable occurs only during a program memory fetch and is used to enable the tri-state output buffers of the EPROM. The read and write signals are used to strobe data to or from external data memory.

In this particular implementation the two I/O ports are used to drive the display so that data from the ADC and the switches is read by considering them to be external data memory (memory mapped 1/O). Also, as there are only two devices to select, a single address line can be used for each (a technique known as linear selection). This makes decoding easy as it is necessary to have only address line zero low for the ADC (address $=11111110$) and address line one low for the switches (address $=11111101$).

THE A/D CONVERTER

The ADC 0804 is a CMOS, 8-bit, successive approximation $\mathrm{A} D$ converter with an accuracy of ± 1 bit and it will convert with an input voltage in the range of 0 to 5 V in about 100 microseconds. It has control signals and a bus drive capability which makes it directly compatible with the 8035 microprocessor. The timing diagram of Fig. 19 shows how it is controlled. When addressed with $\overline{\mathrm{CS}}$ low, a $\overline{W R}$ pulse starts the conversion and $\overline{N T R}$ goes low when the

E6B30
Fig. 19. A to \mathbf{D} conversion timing
conversion is complete. This is tested by the micro and the data is read from the outputs by addressing with $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ low.

THE SOFTWARE

The flowchart of Fig. 20 shows diagrammatically all the functions which must be implemented in the software. When power is turned on, the initialisation routine is first executed, which ensures that data memory is cleared and that the display buffer contains the letters E, n, t, for the initial display. The internal flags are set and interrupts enabled. The processor then waits for the first interrupt by a sync pulse. When this interrupt occurs, the on-chip timer is loaded with a count value which will give a delay of 5 milliseconds in order to locate the peak of the sinusoidal mains voltage waveform and the counter is started. The next function is to change the data at output port 1 for the next digit in the display and then to shift the active bit of port 2 along one place to turn on this digit. The elapsed time is updated by one hundredth of a second.

Finally, before entering another loop to wait for the timer, the switches are scanned. If it is found that the switch conditions have changed, no immediate action is taken. Instead, the new switch condition is confirmed on the next mains cycle, 10 ms later, to allow switch bounce to settle. The time to execute the above sequence is about 2 ms so that there is a wait of 3 ms for the timer to count out.

When the timer interrupt occurs, the ADC is started. The display is then updated as before and, as this is done every 5 ms , it gives a flicker free multiplex frequency of 200 Hz . The ADC is tested and when it is ready the digitised value of the current is read in via the bus. The sequence is completed by calculating the incremental charge for this half cycle and adding it to the running total for display. This calculation requires a four digit by four digit BCD multiplication and the * time to execute this part of the program is about 3.5 ms so there is a further wait of 1.5 ms before the next sync pulse interrupt and the whole process is repeated.

Kits of parts and complete Telectrics are available for purchase. See advert in this issue for details. Although construction is straight forward, a full service facility will be provided for anyone who has problems.

A selection of readers
original circuit ideas.
Why not submit your idea? Any idea published will be awarded payment according to its merits.

Each idea submitted must be accompanied by a declaration to the effect that it has been tried and tested, is the original work of the undersigned, and that it has not been offered or accepted for publication elsewhere. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.

Articles submitted for publication should conform to the usual practices of this journal. e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not inserted in the text.

OVERLOAD CUTOUT FOR THYRISTOR SPEED CONTROL

THIS circuit was designed to protect a thyristor-based model railway speed control. When the current drawn exceeds the value set by VR1, the supply is cut off completely, and remains off until reset by S1. The circuit is fast acting-it will close down for a short-circuit at very low speed settings-thus providing some protection against running an engine up to a set of ‘closed’ points.

TR1 is a conventional series regulator. but with deliberately poor regulation, so that the emitter voltage falls as the set maximum current is approached. TR2 compares the collector and emitter voltages of TRI. As the voltage on VR1
slider falls, TR2 switches on, switching on TR3, and shunting TR1 base current. The voltage on TR1 emitter falls further, and the process continues until TRI is completely cut off.

C1 and C2 require some care in selection, since they provide partial smoothing of the voltages across TR2. C2 $=10 \mu$ gives a rapid response: C 1 should be selected from nominal 100μ items to give minimal a.c. voltage across TR2 baseemitter at the chosen current limit.

Although VRI gives a fair range of adjustment, the value of R5 may need to be altered for wide variations. The value shown provides a range of about 0.5 A to

2 A , at the expense of high power dissipation in TRI near the current limit. For current limits above about 1 amp, the value of R5 should be decreased, in order to limit dissipation.

The transistors selected are as follows:
TR 1 -depends on current limit. A 6 W device will supply up to $1 \frac{1}{2} \mathbf{A}$; a 15 W type up to 2 A.

TR2-any of ACY 17 to 21 or BCY 30 to 34 will do.

TR3-any of BFY 50,51 or 52.
W.S. Lymath South Wirral Cheshire.

BUTTON

SELECTOR

0FTEN it is desirable to replace the function of a rotary multi-position switch with the equivalent in push buttons. The advantages are evident in the push button car radio, where it's better to jab than to twiddle.

The circuit presented here performs the same 1 of n selecting function as the multiposition switch, whilst similarly cancelling previous selections.

The circuit uses the 4017,1 of 10 selec tor, but one can easily make it into a 1 of less-than-ten, by just ignoring superfluous components.

Assume the last button to be pressed was the ' 0 ' button (or that the unit has been reset). A logic ' 1 ' will be standing on the No. 3 pin. the ' O ' l.e.d. will be alight. and all other outputs will be low.

If now the No. 4 button is pressed. Because the '10' pin and its associates are low. a low will be put on the otherwise high ENABLE-bar input. This will allow the unit to start clocking. When the logic ' 1 ' output steps up to the ten pin, it disenables the ' 13 ' pin, by placing a logic ' 1 ' on it. It remains so. whether or not the finger remains on the button.

Thus we have a 1 of n, self cancelling, remembering, data selector.

The unit has a self resetting function at switch-on. via the components R1. R2 and CI. By delivering a pulse to pin 15. it causes the stepper to stand with the ' 0 ' output line high, and all others low.

For eight or less outputs, the slightly cheaper 4022,1 of 8 counter may be substituted.

Ron Mellor
Peakhurst,
New South Wales.

SWITCH DE-BOUNCE

DURING the design and construction of a TV pattern generator. I decided to use electronic switching of the video output patterns. The device used was a CMOS 4013 decade counter. The clock input is a simple push button switch. In anticipation of nasty switch bounce problems, I devised this circuit shown. The aim is to set a latch when the switch is closed and not permit it to reset until after the switch has been released.

When the switch is closed the Q output of the 4013 will become latched up. An inverter and diode will prevent the reset input from going high. When the switch is released, the set input will bounce back to a low state and the inverter output will go high, permitting the Q output to charge up the capacitor on the reset input through the 100 k resistor. When this charge reaches the threshold level of the reset input, the Q output will be reset and the circuit will be ready to do some more debouncing. The graphs, show the input and output voltages. The choice of time constant $220 \mathrm{n} \times 100 \mathrm{k}$ is arbitrary and subject to variation, depending on how bad the switch is.

B.T. Black
Upper Stratton
Swindon

OCTA VE BANK FOR VCOs

THE use of multi-turn potentiometers for tuning the VCOs in synthesisers such as the Minisonic 2 is often not suitable for live performance situations. The octave bank described here gives quick, accurate and temperature stable octave switching.

The circuit consists of a Zener diode reference voltage. a resistor ladder and a buffer amplifier. The Zener value chosen is 5.6 V since at this voltage the diode has an almost zero value of temperature coefficient, making the reference very stable. This voltage is then applied to the resistor divider which provides eight voltages at equal intervals from zero to -7 V , the slider of VRI, the multi-turn cermet preset. being used as the -7 V reference. The amplifier then provides buffered outputs at one volt intervals, which can be fed into the control nodes of the VCOs to be controlled.

The circuit is designed for use with syn thesisers having a 1 volt/octave control law and thus for the Minisonic 2 the standard summing resistor of 47 k should be
used for R_{x}. For synthesisers having a different control law relationship, R_{x} can be replaced by a preset of a suitable value, this can also be used to make the 'octave' span variable.
The circuit requires a stablised supply of -9 V and will draw just under 15 mA from the rail.

All resistors should be 1% metal oxide or cermet film, if possible those in the ladder should be selected to be as close as possible. VRI should be a cermet multi turn preset potentiometer. The value of the summing resistor R_{\nwarrow} is especially critical as this determines the actual span of the octaves provided by this circuit to the controlled VCOs. Trimming can be effected by replacing R_{x} with a cermet multi-turn preset potentiometer, in the case of the Minisonic 2 the value would be 100 k .

In order to control more than one VCO, additional contacts should be added in parallel with SI, and a buffer amplifier/voltage follower as for ICl added per extra oscillator.

Martin Russ,
Manchester.

SOUND-TO-LIGHT CONVERTER

THIS circuit evolved from an idea in (PE) July 1976, for a simple sound to light converter in which the light was turned off in time to the music. This circuit is incorporated as one of the lamp drivers.

The potentiometer VRI acts as a master level control for the unit which is connected directly to a loud-speaker. The transformer is used to protect the 'speaker' in the event of any short circuits. Transistors TR1 and TR2 form a buffer amplificr, the output of which is fed to VR2. This preset adjusts the balance between the two lamp drivers.

The bias on the driver transistors TR3 and TR4 is set by VR3 and VR4 respectively. and C3 ensures that the thyristor is normally turned on

With the bias presets correctly set, careful adjustment of VR2 will yield a very pleasing light display when different coloured bulbs are used for each channel.

A. W. Cunningham,

Leven,
Fife

THIS amplifier has a frequency response of 20 Hz to 25 kHz , with a noise figure of -62 db . making it suitable for high fidelity applications. As will be seen. the output impedance is low. by virtue of the emitter follower. and may be connected via a (screened) lead to other equipment. If required the input transformer may be omitted, and microphones of $47 / 50 \mathrm{k}$ used in an unbalanced input arrangement. connected directly to the point marked ' X ' on the circuit diagram. Using high impedance microphones will mean that the input lead must not be much longer than about 1 metre, otherwise the high frequencies will tend to become attenuated. and the input will be more susceptible to hum problems. The amplifier should be powered from a well smoothed. low impedance supply.

The input transformer used in the prototype has a turns ratio of $6 \cdot 45: 1$. This represents a bonus because it gives a voltage gain in the order of 16 db . and since the transformer does not contribute noise the input to the amplifier is increased by 16 db before the possibility of any noise arises. The first transistor base feed resistor RI, as will be seen, is 1 M . In most cases this resistor on its own will be found to be too high a value. in order to obtain symmetrical clipping of the output. This should be experimentally paralleled with values of 2 M 2 or upwards. Using an oscilloscope, and before fitting the input transformer, check with a 1 kHz tone fed into the point ' X ' that a resistor is chosen that gives a symmetrically clipped output. Once this has been established, it may be permanently soldered in. If a tone generator and oscilloscope are not to hand the 1 M resistor may be used alone: however, the overload point will be reached more quickly.

The a.c. part of the feedback loop has a

five way switch in series to select different series resistors. The overall gain is thus selectable from 20 db to 60 db in 10 db steps. The resistors for the 30 db and 50 db positions will have to consist of two preferred values in series. as the actual values are unobtainable through normal retail outlets. and if more than one amplifier is to be built. it is suggested that they be 2% tolerance to match the gains. R.f.
interference is inhibited by means of the 470 p in parallel with the collector load of the second transistor. The fairly high values of base and collector resistance around the first two stages help to keep the noise down by reducing the d.c. current flow. The 1 M at the output ensures there is no d.c. voltage on the output of TR3.

Tony Sercombe, Surbiton, Surrey.

9V POWER SUPPLY

THIS unit was originally designed to run battery driven items requiring 9 V or less from a 12 V car supply. The voltage output is adjustable and stable over wide load fluctuations-up to the current limit of the 2 N 3055 provided the sinking on this is adequate.

The Zener provides a stable reference at pin 3 of ICI and VRI is adjusted to provide the output voltage.

Output from the i.c. is applied to TR1-TR2 turning on the latter sufficiently to maintain a constant voltage at the output irrespective of load. The output current flows through R4, which is made up of resistance wire. The design limit is fixed by the value of this resistor and when the load current reaches this the voltage developed switches on TR3 which in turn closes down TRI and TR2.
S. A. R. Guest,

Grampound,
Truro.

\section*{CAMBRIDGE LEARNING
 SELF－INSTRUCTION COURSES

\section*{A PRACTICAL DIGITAL

A PRACTICAL DIGITAL ELECTRONIC KIT FOR ELECTRONIC KIT FOR这 LESS THAN $£ 20$ 院这 LESS THAN $£ 20$ 院
 SUITABLE FOR BEGINNERS

\％	Digital Electronic Kit suitable for beginners

```
DIL switches, resistors,
```

thoroughly tested instruction manual (also avajlable and
rately). All this comes in a pocket size plastic wallet for
only \&19-90p inc VAT and p\&p. This course is for true
beginners
soldering i
asks plen
helpless
nelpless
eaches you about fault-finding, improvisation, and
subsystem checking.
289 extra you need is a $4 \frac{1}{2} \mathrm{~V}$ battery (Ever Ready
1289. or similar), or a stabilised 5 V power supply.
Using the same breadboard you may construct literally
millions of different circuits.
This course teaches boolean logic, gating. R-S and J-K
This course teaches boolean logic, gating. R-S and J-K
flipflops, shift registers, ripple counters, and half-adders.
Look out for our supplementary kits which will demonstrate
advanced arithmetic circuits, opto-electronics, 7-segment
Other self-instruction courses from Cambridge Learning Lid
COMPUTER PROGRAMMING IN BASIC
CIGITAL $£ 10.50$
DIGITAL COMPUTER LOGIC AND ELECTRONICS £ 8.50
DESIGN OF DIGITAL SYSTEMS
Please send for full details (see coupon below)
GUARANTEE No risk to you. If you are nol completely
salisfied. vour money will be refunded upon
CAMBRIDGE LEARNING LIMITED, UNIT 24. RIVERMILL SITE,
FREEPOST. ST IVES. CAMBS. PE 17 ABR, ENGLAND
TELEPHONE: ST IVES (0480) $67446 . \quad$ VAT No. 313026022
All prices include worldwide postage (airmall is ext
Piease allow 28 days for delivery in UK
SUPERKIT(S) @ £19.90
.......Free details of your other self-instruction courses.
1 enclose a *cheque/PO payable to Cambridge Learning Ltd
for 5. ... (*delete where applicable)
Please charge my:
*Access / American Express / Barclaycard / Diners Club
Eurocard / Visa/ Mastercharge / Trustcard
Expiry Date............ Credit Card No
Signature
Telephone orders from card holders accepted on 048067446
Overseas customers (including Eire) should send a bank draft
number.
Name.
Address.
Cambridge Learning Limited, UNIT 24, Rivermill Site. FREEPOST
St Ives, Huntingdon. Cambs, PEI7 4BR, England. (Registered in
St ives, Huntingdon.
England No. 1328762).

MOBILE SERVICE IN SPACE

From time to time mention has been made in SPACEWATCH of the plan to service satellites in orbit or retrieve them from their orbits and carry out service on board a space station or even aboard the Shuttle as well as return them to Earth. This is now a well advanced pilot programme. A vehicle module has already been operated in simulated conditions for this work at heights of 300 m .

The task is directed in the first instance to the servicing of the Solar Maximum Mission spacecraft which is already degraded. It is expected that the space shuttle astronauts will be the first to use the system. The date set is 1983. As with much of the space programme the whole scheme is dependent on the funding available.

The procedure adopted for the servicing activity will be as follows. The Shuttle will approach the spacecraft to be serviced and stand off at a distance of about 300 feet. The astronaut will be deployed from the orbiter and dock with the satellite. Manoeuvering jets will be used to stabilise the satellite and the astronaut will attach him/herself to the satellite. then call for the orbiter manipulator arm to dock with the special attachment placed by the astronaut. When the orbiter takes over, the astronaut will detach and fly by the side of the satellite to photograph the operation. When the satellite is safely secured to the support cradle on board the orbiter the astronaut. still in the manoeuvering unit. will carry out the necessary repairs. Having done this he will fly back into the payload bay and be released from the manoeuvering unit. The replacement of the various fuses, which caused the degradation of performance, will then be carried out and the necessary checks with ground station completed, after which the satellite will be replaced in its correct orbital configuration and the observatory in full operation.

The manoeuvring unit itself is rather like a special chair. The control and life support systems are carried in the cradle unit with the
astronaut in a suit designed for extra-vehicular activities. In the case of the Solar Maximum Satellite the docking mechanism is carried in front of the astronaut and attached to the chest. The necessary controls are all within suitable controlling dist ance.

The docking and stabilising of a spacecraft for repair involves a number of special actions. For example in the case of the Solar Maximum Satellite which has a controlled rotation speed of the order of 0.8 to $0.9 \mathrm{deg} / \mathrm{sec}$. it would not present a great problem. Attachment by the ast ronaut of special clamps to the outer edge of one of the solar panels would be sufficient and up to much higher rates of rotation also. Having nulled the rotation the astronaut is then able to reset his position and attach the grapple unit to the spacecraft. A number of alternative techniques are being developed because it is possible that conditions will change for individual spacecraft. Also there is the condition prevailing for the Solar Maximum Satellite for there is no special provision for dealing with the screws holding the units in place. In zero gravity with a moving vehicle a special technique will be required.

There is some speculation too about the difference in dealing with a spacecraft retrieved for return to earth and one to be returned to the Shuttle for repair. The clearance for example in the case of the Solar Maximum vehicle can be as little as 5 inches for the solar panels so that great care will be needed to avoid damage. It is being considered now whether it would be more prudent to bring the spacecraft back to earth in any case. This would call for a greater load facility of some $4,000 \mathrm{lb}$. It is clear that a number of options are available and it is necessary to be able to fly alongside and move round an orbiting vehicle without disturbing its flight parameters. There are hazards such as the orbiter's exhaust which could be heating up the vehicle and disturb control. So far many aspects have been studied and these will be dealt with in order of priority against time and financial options. What is important is that the thinking from the early days and dreams of fully manned units operating in space for maintenance is now in sight. This alone is a great fiscal advantage.

FRANCE AND SPACE

France is developing her Spot satellite system. It is an Earth observation programme and will be operated by SPOT IMAGE, a commercial marketing group privately financed. The technical details will remain with the French Government. They will retain, under the CNES (Centre Nationale d'Etudes Spaciales), 34% of the shareholding. CNES will be responsible for the areas of manufacture and development. A United States subsidiary will be established for the benefit of users in America. It is stated that this is not a move to compete with the United States LandSat system. The data available from Spot-Sat will be compatible with Land-Sat.

France has said that they have found a market for Spot-Sat data among users looking for a truly commercialised system which does not function with or is not associated with. government bureaux control. There have been approaches by some who are now in the Land-Sat market who are not happy with the possible influence that American Government
policies might have on existing contracts particularly with regard to delays under the present administration.

The first of the operational satellites will be in 1984 launched by an Ariane- 2 launcher. A second Spot vehicle has been approved by the French government to guarantee services throughout the 1980's. The design of the Spot vehicle will be a multimission platform. It will be fitted with two HRV (High Resolution Visible) range instruments. The optical instruments consist of a 20 metre resolution instrument in a multispectral mode and a 10 m . mode resolution instrument in black and white. The multispectral mode covers green, red and near infra-red bands.
These have been selected to satisfy several mission objectives.
-Consistent relationship between spectral reflectance and vegetational properties.
-Compatible interpretation of the spectral signatures obtained by the Spot satellite and the Land-Sat D8 mapper.
-Improved radiometric sensitivity and resolution for surface-water work.
-Good discrimination within areas of vegetation of different types.
-At least one band to enable deep water penetration.
The markets expected to want these services are those of oil and mining exploration, topographic and land use, coastal studies and not least those who need crop and environment monitoring.

It is possible to provide stereoscopic images by processing two different orbital passes. Using the two resolutions, multispectral images can produce the appearance of enhancement better than the multispectral image.

CONTROL STATIONS

The central control will be at the CNES space centre at Toulouse. This will receive the direct transmissions from the spacecraft's earth coverage when in sight of the station. Images recorded earlier on tape recorders will also be collected during other passes. A second ground station will be at Kiruna, Sweden, with identical facilities. Other ground stations operated by countries with their own stations will be able to receive data when the spacecraft is within the beam of their aerials.

A meeting of the american AERONAUTICAL SOCIETY

Speaking at a meeting Robert S. Cooper, director of Defence Advanced Research Projects Agency, said:
'We have built a fatal flaw into our satellite systems and it is time we recognised this fact!' He was emphasising his contention that not enough attention was being given to the development of robotics. He claimed that it was necessary now to set up programmes to ensure that spacecraft could operate entirely independent of human ground control. He characterised current spacecraft operation as retarded technology. It was necessary to have surviveable space systems. He claimed also that it was a tragedy that with all the current facilities available for launching in America, countries were turning to other centres for launching facilities. He cited a recent Presidential directive in support of the Space Shuttle and space transport system.

MUSIC KITS

ALL WITH PRINTED CIRCUIT BOARDS!

128-NOTE SEQUENCER
A digital. Kbd controlled unit for most Synths. Kbd

SET-76£120.45
16-NOTE SEQUENCER

3-CHANNEL STEREO MIXER
With leff., right \& master level controls
3-MICROPHONE STEREO MIXER
Improves stereo reality = SET-108 E12.99
6-CHANNEL MIXER
High spec mixer with variable impe-
dances
SET-90 from $\mathbf{E 9 6 . 6 7}$
AUDIO EFFECTS UNIT
Variable siren gen $=\quad$ SET-105 £15.12
AUTOWAH UNIT
Automatic Wah \& Swell sounds from each guitar note played
CHOROSYNTH
30-Note chorus synth with wide variety
of voices. Kit incl Kbd $=$ SET-100 $£ 125.04$

COMPRESSOR

With level \& decay-rate controls. line 8 mic inputs with mixer $=$ SET-120 £25.05

DISCOSTROBE

4-Chan 200W unit for sequential, random
or full strobe use $=$
SET- 57
$£ 39.78$
DRUM SYNTHESISER
Extremely versatile synthesiser for conventional \& extraordinary divm sounds.
DYNAMIC NOISE LIMITER
Helps clean up noisey recordings.
SET-97
£15.96
ENVELOPE SHAPER
ADSR unit with own VCA
SET-50 £14.96

KIMBER-ALLEN KEYBOARDS
P. E. MINISONIC SYSNTH*

Excellent 3-Oct multi-module portable
ynth. Kit incl Kbd
SET From $\mathbf{f 1 8 1 . 5 6}$
PHASER
6-Stage automatic unit with variable
SET-88 E21.08

PHASING \& VIBRATO

Manual \& auto control producing superb
full sounds $=$
SET-70 £38.25
PULSE GENERATOR
Pulse width $100 \mathrm{NS}-2$ secs. freq 0.1 HZ -
SET-115 £ 24.84
RHYTHM GENERATORS
Several in list = \quad From $£ 61.71$

AING MODULATOR

sable with most synths = SET-87 £13.62
SIGNAL TRACER \& GENERATOR Aids circuit testing. With frequency \&
level controls $=$
SET-109 $£ 17.50$

SMOOTH FUZZ
SET-91£11.68

SPEECH PROCESSOR

Improves inteligibility of C.B or P.A.
speech signals $=$
SET-110
£12.18

SPLIT-PHASE TREMOLO

Modulation, depth. rate \& level under
full control=
SET-102 £29.98
SWITCHED TREBLE BOOSTER
4 Sectable preset tone changes $=\mathbf{S E T - 8 9} \mathbf{£ 1 2 . 5 1}$
SYNTHESISERINTERFACE
Enables guitars, mics atc to be synthe-
SET-8
siser processed
S
$100 / 10 \%$ OFF U.K. C.W.O. ORDERS OVER E20 FROM THIS AD UNTIL END OF MONTH ON COVER. $0-(5 \%$ OFF FOR CREDIT CARDS). THIS COUPON $\bigcirc-$ - -2% OFF FOR CREDIT CARDS). THIS CO

EXPOSURE TIMER
Range UD to 10 mins in 0.5 sec steps.
with audio alarm $=$
SET- 93 s $£ 39.22$
FORMAT SYNTHESISER
Advanced ${ }^{\text {3-Oct }}$ synth with multiple mod
ules Kit ules. Kit incl Kbd SET-66 From £342.71

FUNNY TALKER
Fascinating sounds when used with
speech \& music
SET-99 $£ 16.55$ GUITAR EFFECTS
8-mode filter \& envelope shaper for most
instruments
SET-42 £15.92
GUITAR FREQUENCY DOUBLER Orig \& doubled signals can be mixed for
greater depth $=$ SET- $98 £ 11.75$ GUITAR MULTIPROCESSOR Extremely versatile sound process

GUITAR OVERDRIVE
Sophisticated fuzz with filter \& shape
Controls
GUITAR PRACTISE AMPLIFIER 3-Watt practise or test-monitor amp ${ }^{\text {SET-106 }} £ 22.1 \overline{5}$ GUITAR SUSTAIN Retains natural attack whilst extending
note duration =
SET- $75 £ 11.77$

HEADPHONE AMPLIFIER

For most pick-ups, decks, tuners \& head-
phones RIAA specs $=$ SET-104 $\mathbf{£ 2 1 . 1 5}$
METRONOME
Variable for $40-240$ beats per minute $=$
SEf- $118 £ 10.58$
EXPORTS WELCOME
Sterling payment with order please,
Postage rates in out lists. Europe send

TRANSIENTGENERATOR
Facilitates mandolin, banjo sounds etc.
From a synthesiser $=$
SET-63 f16.86
TREMOLO UNIT
For most instruments. Incl speed, depth
\& by-pass controls $=$ SET- $116 £ 13.47$

TUNING FORK

Eases tuning of acoustic \& 8 electronic
instruments $=$
SET- $46 \mathrm{E37.04}$
VOICE OPERATED FADER $\begin{array}{ll}\text { Automatically reduces } & \text { music volume } \\ \text { during disco talk-over }= & \text { SET- } 30 £ 9.85\end{array}$

VOICE SCRAMBLER for coding or decoding speech signals

WAVEFORM CONVERTER Allows 5 different waveforms from synth
esiser VCO $=\quad$ SET-67 E21.98

WAVEFORM GENERATOR

3 Waveforms, range 1 HZ to 100 KHZ . yp
to $10 V \mathrm{P}-\mathrm{P}=\begin{aligned} & \text { SET-112 } \mathbf{£ 2 3 . 1 3}\end{aligned}$
WIND \& RAIN EFFECTS
As the name says $1=\quad$ SET-28 £11.39

KIT CONTENTS

Sets include PCBs. U.K. P\&P, 15% VAT Res, Caps. S'c.s, Pts, Knobs, SW's, Skes case unless marked Most are battery opersted, but PSU units are also available. Most parts can be bought separately Fuller details \& more great kits
catalogue. Send S.A.E. for free copy. Prices correct at press, E.\&.O.E., subject to stock. Despatch usually 24 hrs on a ex-stock items.

Accosens. Barciay \& Am-Express
Credits Welcome.

\section*{YOUCTITBJIT IPBPOLCPROMEB Mriou pow: and paic:
 Get maximum power at minimum price. yet still with hi-ti specifications and a wide choice of outputs. ILP Bipolar power amps. now with or without heatsinks are unbeatable value for domestic hi- -i - but for disco. guitar amplifiers and PA choose the new range of heavy duty power amps. again with or without heatsinks with protection against permanent short circuit. added satety for the disco or group user. Connection in all cases is simple - via 5 pins
 Every item has a 5 year no quibbie guarantee and includes fuli connection data. So send your order FREEPOST today Load impedance, all modeis 40 hm - infinuty. Input impedance, all models 100 K ohm. Input sensitivity, all models. 500 mV Frequency response, all models $15 \mathrm{~Hz}-50 \mathrm{kHz}-3 \mathrm{db}$
 BIPOLAR Standard, with heatsinks
 | Model No | Ouiput power Watts ms | OISTORTION | | Supply voltage Typ/Max | Size mm | $\begin{gathered} \text { W } \\ \text { gms } \end{gathered}$ | Price me VAT | $\begin{aligned} & \text { Price } \\ & \text { ex VAT } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | $\begin{gathered} \text { TH.D } \\ \text { Typ } \\ \text { at } 1 \mathrm{kHz} \end{gathered}$ | $\begin{gathered} \text { 1M.D } \\ 50 \mathrm{~Hz} / 7 \mathrm{kHz} \\ 41 \end{gathered}$ | | | | | |
| HY 30 | 15w/4-852 | 0.015\% | <0.005\% | $\pm 18 \pm 20$ | $76 \times 68 \times 40$ | 240 | £8.28 | ¢7.29 |
| HY 60 | 30w/4.89 | 0015\% | <0.006\% | $\pm 25 \pm 30$ | $76 \times 68 \times 40$ | 240 | ¢958 | ¢8 33 |
| HY 120 | $50 \mathrm{w} / 4.882$ | 001\% | $<0006 \%$ | $\pm 35 \pm 40$ | $120 \times 78 \times 40$ | 410 | £20 10 | ¢1748 |
| HY 200 | i20w/4-882 | 001% | $<0006 \%$ | $\pm 45 \pm 50$ | $120 \times 78 \times 50$ | 515 | £2: 39 | £21 21 |
| HY 400 | $240 \mathrm{w} / 4 \Omega$ | 001\% | <0005\% | $\pm 45 \pm 50$ | $120 \times 78 \times 100$ | 1025 | §36 60 | £31.83 |

BIPOLAR Standard, without heatsinks

HY 120 P	$60 \mathrm{~W} / 4 \cdot 8 \Omega$	001%	$<0006 \%$	$\pm 35 \pm 40$	$120 \times 26 \times 40$	215	$£ 1783$	$£ 15.50$
HY 200P	$120 \mathrm{w} / 4-8 \Omega$	001%	$<0006 \%$	$\pm 45 \pm 50$	$120 \times 26 \times 40$	215	$£ 2123$	$£ 1846$
HY 400P	$240 \mathrm{w} / 4 \Omega$	0.01%	$<0005 \%$	$\pm 45 \pm 50$	$120 \times 26 \times 70$	375	$£ 32.58$	$£ 2833$

Drotection: Load line momentary shot circuit (typically 10 sec) Slew rate $15 \mathrm{~V} / \mu$ S Rise time $5 \mu \mathrm{~S}$ S $/ \mathrm{N}$ ratio 100 db . Frequency response $(-3 \mathrm{~dB}): 15 \mathrm{~Hz}-50 \mathrm{kHz}$ input sensitivity 500 mv rms. Input impedance $100 \mathrm{k} \Omega$. Damping tactor $(8 \Omega / 100 \mathrm{~Hz})>400$
ILP Electronics Lid., Freepost 2 Graham Bell House. Moper Close, Cantarbury CT2 7EP, Kent. HEAVY OUTY with heatsinks

Model No.	Oupput power Watts fms	$\begin{aligned} & \text { DIST } \\ & \text { THD } \\ & \text { Typ } \\ & \text { at } 3 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & \text { ORTION } \\ & \text { i M. } \\ & 50 \mathrm{~Hz} / 7 \mathrm{kHz} \\ & 41 \\ & 41 \end{aligned}$	Supply voliage Typ/Max	Size mm	$\begin{gathered} \mathrm{WH} \\ \mathrm{gms} \end{gathered}$	Price Inc VAT	Price ex VAT
HD 120	$60 \mathrm{w} / 4-802$	001\%	<0.006\%	$\pm 35 \pm 40$	120	515	£25 85	£22.48
H0 200	120w/4-8St	001%	$<0006 \%$	$\pm 45 \pm 50$	$120 \times 78 \times 60$	620	£3¢ 49	£27.38
H0 400	$240 \mathrm{~W} / 4 \Omega$	0.01\%	<0006\%	$\pm 45 \pm 50$	$120 \times 78 \times 100$	1025	£44 42	¢38 63

HEAVY DUTY without heatsinks

HD 120 P	$60 \mathrm{w} / 4.8 \Omega$	001%	$<0006 \%$	$\pm 35 \pm 40$	$120 \times 26 \times 50$	265	$£ 22.82$	$£ 1984$
HD 200P	$120 \mathrm{w} / 4.8 \Omega$	001%	$<0006 \%$	$\pm 45 \pm 50$	$120 \times 26 \times 50$	265	$£ 2717$	$£ 2363$
HO 400 P	$240 \mathrm{w} / 4 \Omega$	001%	$<0006 \%$	$\pm 45 \pm 50$	$120 \times 26 \times 70$	375	$£ 3942$	$£ 34.28$

Protection: Load line pERMANENT SHORT CIRCUTT Idea tor disco/group use should evidence of shor circuit not be immediately apparent) The Heavy Duty range can claim additional output power devices and complementary protection circuitry with performance specs as for standard types
How to order Freepost: Use this coupon. or a separate sheet of paper to order these products or any products tromother ILP Electronics advertisements. No stamp is needed it you adoress 10 Freepost. Cheques and postal orders must be crossed and payable to IL. Electronics Lid. cash must be registered C.0.0. - add $£ 1$ to total order value. Access and Barclaycard welcome. All UK orders sent posi free within 7 days of recelpt of order

PUSS-PROOF ALARM

British patent application 2074 314, from American District Telegraph Company of New York, offers some interesting information on burglar alarms. The patent is aimed at improving passive infra-red detection systems, and lists a string of US patents on known systems of this type. Essentially an infra-red sensor trips an alarm if the infrared reflection pattern in a room is disturbed by an intruder. But it has proved difficult to make the alarm sufficiently sensitive to detect an intruder on the other side of the room from the detector, but not so sensitive

Fig. 1

Fig. 2

Copies of Patents can be obtained from: the Patent Office Sales, St. Mary Cray, Orpington, Kent. Price £1.60 each.
that it goes off accidentally, for instance if the office cat prowls past.

The patented solution (Fig. 1) is a complex arrangement of spherical mirror segments. A large segment 12 , a smaller segment 14 and two still smaller segments 16 are all mounted round a common optical axis 18. The mirrors all focus on an infrared detector 20 which is supported on a Ushaped arm 44 (Fig. 2) mounted on tabs 46. The mirror segments are made of acrylic, with a coating of aluminium.

Fig. 3 explains the basic circuit. Detector 20 is a dual thermopile with its two elements connected in phase opposition. The detector output is amplified at 120 , fed to threshold circuit 122 , integrated at 126 and fed to second threshold 128. Logic 130 trips alarm 132 when the thresholds are exceeded. Background disturbance indicator 124 senses slow variations in radiation and
lights l.e.d. 134 if it exceeds a threshold level. Variations of sensitivity due to ambient temperature changes are compensated by the circuit of Fig. 4

The mirror complex produces a sensitivity field pattern in azimuth shown in Fig. 5. Long central pattern 100 is created by large mirror 12 and has a range of 150 ft . and beam width of 2.5°. Intermediate pattern 102 is provided by medium-sized mirror 14 and has a range of 80 ft . and beam width of 5°.

The two short patterns 104 are provided by small mirrors 16 and have a range of 20 ft . and 9° beam width.

The inventors claim that this arrangement provides the same sensitivity to an intruder at 100 ft . range as to an intruder at 25 ft . range, with the shorter, more divergent beams insensitive to small movements, for instance by animals.

Fig. 4

Fig. 5

From HRMEE...

HM307

The first portable scope with a component tester.

Capacitor 33 uF

Transistor E.C

Transistor B-E

B-E $1 u F+58$ ohms

Oscilloscope Specifications:

Y Deflection

Bandwidth: DC • $10 \mathrm{MHz}(-3 \mathrm{~dB})$ Overshoot: Less than 1% Sensitivity: $5 \mathrm{mV} \cdot 20 \mathrm{~V} / \mathrm{cm}$ Input Imp: 1 M ohm // 25pf
X Deflection
Timebase: $0.2 \mathrm{~s} \cdot 0.2 \mu \mathrm{~s} / \mathrm{cm}$ Triggering: $2 \mathrm{~Hz}-30 \mathrm{MHz}(3 \mathrm{~mm})$ Auto + level control Bandwidth: $2 \mathrm{~Hz}-1 \mathrm{MHz}$

General Information

Component Tester:	For single components and in circuit
Callbrator:	$0.2 \mathrm{~V} \pm 1 \%$ for probe alignment
Power Supplies:	Regulated including high voitage
A.C. Input:	$110,127,220,237$, V.A.C, $50-60 \mathrm{~Hz}$
Weight:	$8-1 / 2 \mathrm{Lbs}$.
Size:	$4.1 / 2^{2} \mathrm{H} \times 8.38^{\mathrm{W}} \mathrm{W} \times 10.7116^{\circ} \mathrm{O}$

For further information on HAMEG's full range of top performance oscilloscopes, contact:
HAMEG LTD.
74.78 Collingdon Street, Luton, Beds. LU1 1RX Tel: (0582) 413174

See \& Buy the very latest in

RIGS - ANTENNAS - SWR METERS MICROPHONES

and a whole lot more Plus
Amateur Radio Equipment In-Car Entertainment \& Communications

ENJOY COMPETITIONS, FOOD, BARS, ELECTRONIC GAMES \& MORE
> "A DAY OUT FOR ALL THE FAMILY" AT WEMBLEY CONFERENCE CENTRE APRIL 9th, 10th, 11th, 12th

> Open from 10.00 am every day SEE CB RADIO MAGAZINE FOR FURTHER DETAILS

This advert is only a fraction of our range, send 25 p for our latest catalogue. Please add 35p P/P Dept. PE2, MARCO TRADING,
The Old School, Edstaston, WEM, Shropshire SY4 5RJ. Special Offer Test Equipment Catalogue available upon request. Send S.A.E. or Telephone. All order despatched by return of mail.

Tel: (094872) 464

CROFTON MONITOR

10 MHZ Bandwidth P4 Standard. Also available with P31

PRICE ON
APPLICATION

NEW
 NEW.PRINCE MONITOR

High resolution 24 MHZ Bandwidth P31 (green) Standard and P 4 high resolution Standard.

PRICE ON
APPLICATION

Dealer and O.E.M. Enquiries Welcome CROFTON ELECTRONICS LTD
35 Grosvenor Road, Twickenham, Middx TW1 4AD 01-891 1923/1513
Telex: 295093

										CASED AUTOTRANSFORMERS 24OVIIAD NH 115 VPIA SOCKIT OUT			
TYPE	AM	PS	PRICE	\mathbf{P} / \mathbf{P}	TYPE	AM	PS	PRICE	P/P	TYPE	VA	Price	P/P
	15 v	30 v	£	¢		48 v	96 v						£
112	1	0.50	$2 \cdot 84$	1.20	430	1	05	$5 \quad 69$	1.57	56W.	20	6.60	0.94
79	2	1	3.29	1.20	431	2	1	784	1.57	64 W	80	d 43	1.57
3	4	2	6.18	1.57	432	4	2	12.94	2.25	4 W	150	10.86	1.90
20	6	3	7.19	1.90	433	6	3	14.62	2.40	69W	250	13.17	2.10
21	8	4	8.52	1.90	434	8	4	20.04	2.70	67W	500	20.46	2.40
51	10	5	10.57	$2 \cdot 10$	435	10	5	28.75	2.90	84 W	1000	$30 \cdot 24$	2.80
117	12	6	11.94	$2 \cdot 25$	436	12	6	3616	4.50	95 W	2000	54.83	5.50
88	16	8	16.14	$2 \cdot 40$	437	16	8	39.47	5.50	73W	3000	78.67	7.00
89	20	10	18.54	255									
90	24	12	20.57	2.80									
91	30	15	23.63	2.90									
92	40	20	33.21	5.00									
TYPE	${ }_{24 \mathrm{v}}^{\text {AN }}$	PS $50 \mathrm{v}$	$\underset{£}{\text { PRICE }}$	P/P	TYPE	VA		$\underset{£}{\text { PRICE }}$	$\underset{\AA}{P / P}$	TYPE	VA	$\underset{£}{\text { PRICE }}$	$\underset{\text { P/P }}{\text { f }}$
102		$0 \cdot 50$	3.29	1.43	149F	60		8. 40	1.90	415C	50	2.31	0.94
103	2		4.09	$1 \cdot 43$	150F	100		9.71	1.90	416 C	100	3.46	0.94
104	4	2	7.65	1.73	151 F	20		13.84	2.25	417 C	200	400	1.20
105	6	3	9.09	1.90	152F	250		16.69	2.40	418F	350	6.26	1.57
106	8	4	12.24	6. 90	1535	350		20.77	2.80	419 F	500	6.74	1.90
107	12		16.15	$2 \cdot 20$	154F	500		26.03	2.90	420 E	750	8.33	2.10
148	15	8	22.46	255	155F	756		36.75	5.50	421F	1000	11.64	2.25
119	20	10	27.05	2.55	156F	1000		47.42	6.50				
109	24	12	32.44	450									

Send Today $50 p$ (Refundable with First Orde') fof Catalogue DEPT. PE TITAN TRANSFORMERS AND COMPONENTS CENTRAL HALL CHAMBERS MAIL ORDER ONLY - PRICES INCLUDE 15\% VAT

It's true! Continuing our special offer (while stocks last) means there's still nearly $£ 5.00$ off the price of 'Speechtime' - the first ever easy-to-build speaking clock kit. 'Speechtime's' combination of electronics and quartz technology plus clear instruction manual make it fun to build and fun to own - equally suitable for beginner or expert.
Speechtime also makes a great gift to build for someone else. Look at these 'plus' features:

- Accurate to a minute a year Adjustable voice pitch
Pocket size - approx. 5 in. $\times 2 \frac{1}{2}$ in. $\times 1$ in.
- Grained stainless-steel case
- Useful in the home or office

Silicon Speech Systems

(A Powertran Subsidiary) PORTWAY INDUSTRIAL ESTATE, ANDOVER, HANTS., SP10 WN EASY ORDERING BY TELEPHONE 4 RING ANDOVER (0264)64455 AND GIVE YOUR ACCESS OR BARCLAYCARD NUMBER
Goods normally despatched 7 days.

COIN UP WIH: THMFSOTD

Litesold's new 'L' Series soldering iron - now at a bargain price. Outstanding performance. Lightweight. Easy to maintain Elements are enclosed in Stainless Steel shafts insulated with mica and ceramic. Non-seize interchangeable bits. choose from 'copper' or 'long life' A very special tool at a very special 'direct' price Just $\mathrm{m}_{5} 58$ for iron fitted with 3.2 mm copper bit. Just 52.40 for 3 spare copper bits (1.6: 2.4:4.7) A mere $\& 4.38$ for professional spring stand Or buy the ot for $\mathrm{El1.12!}$ and save 10%. All prices inc. Vat P.\&e?

LIGHT SOLDERING DEVELOPMENTS LTD Please allow 14 days delivery
Write today. Send Cheque/P 0. to Litesold, 97. 99 Gloucester Road. Croydon CRO 2DN or phone 01.6890574 for Barclaycard/Access sales.

Get a great deal from Marshall's
 "PRACTICAL ELECTRONICS" TV CAMERA PROJECT

We shall be pleased to receive enquiries for this fantastic Camera Kit, including Metal case, P.C. Board, Vidicon Tube Mounting and Screens, but excluding Lens and Power Supply, at $£ 166.50$ inc. Postage and Packing, plus VAT.

SPECIAL OFFERS THIS MONTH:-

Integrated Circuits:-

Numbers: 7404, 7410, 7412, 7420, 7440, 7446, 7447. 7448,7453 and 7472
at $£ 1.50$ for 10 of any number, plus 60 pence Postage and Packing, and VAT.

Transistors:-

Numbers: BC347, BC350 and BC171
at $£ 1$ for 10 of any one Number, plus 60 pence Postage and Packing, and VAT.

SEND FOR OUR PRICE LIST, 50p Post Free.

A. MARSHALL (LONDON) LTD.,

Kingsgate House, Kingsgate Place, London, N.W.6. Tel: 01-624 8582 and 01-624 0805.

TRY A ZEDPACK
TRY A ZEDPACK!
COMPONENTS AT A PRICE
EVERYONE CAN AFFORD
21300 mixed $\frac{1}{4}$ and $\frac{1}{5}$ watt resistors $£ 1 \cdot 95$ $\begin{array}{ll}\mathrm{Z} 2 & 150 \text { mixed } 1 \text { and } 2 \text { watt retistors } £ 1 \cdot 50 \\ \mathbf{Z} 3 & 300 \text { mixed capacitors, most types }\end{array}$ 74100 mixed electrolytics Z4 100 mixed electrolytics Z5 100 mixed polystyrene caps
components £2.20
\qquad
100 mixed miniature ceramic $£ 1$
29100 mixed
miniat
21025 assorted pots.
21125 assorted presets, skeleton etc. 12.

Z13 11b mixed hardware. Nuts. bolts self-tappers, \mathbf{s}^{\prime} aeving, etc. ${ }_{\text {fit }} \mathbf{i} \cdot \mathbf{2 0}$ 214100 mixed, new and marked, full spec. Trantistors. Pack includes:- BC148,
BF154 BF274, BC212L, BC238, PBC108 and, or lots of similar BC184L, 215100 mixed diodes including:-rener power, bridge, signal, germanium. sifer. Al ful spec.
Z16 201 N4148
$Z 1720$ 1N4003/10D2
Z1820 assorted zeners, 1 watt and $\begin{gathered}\mathbf{4 0 0 m w} \\ £ 1-50 \\ \text { E1 }\end{gathered}$ $Z 1912$-125" TIL 209 RED. LED'S 400 mw
$£ 1-50$
$£ 1$ z20 10 Assorted switches, including pus bution, slide, multipole, miniature etc. UHF MODULATORS
Video in UHF out. Cali brated to channel 36 (625 line UHF) housed in metal box $21^{\prime \prime} \times$ $2^{\prime \prime} \times 1^{\prime \prime}$ with 9^{\prime} coaxial lead, TV plug and seona Miniature level/batt metera, 200 $\mu \mathrm{A}$ Miniature level/batt. metors, as to many cassette recorders. 90 p
fiter Doluxe FIBREGLASS printed circuit etehing kits.
Includes 150 sq ins. of copperclad F / G board. 1lb ferric chloride, (made for U.S. army to MIL. SPEC.). I dalo etch resist pen, abrasive cleaner, tweezers, etch resist dish and in-
structions.

100 Miniature reed switches. 1005 ubminiature Reed Switc $52 \cdot 30$
$£ 4-20$ SMALL MAGNETS P/B SWITCH BANKs 6 for $£$ P/B SWITCH BANKS various music centres. Includes indeper dent and Interdependent latehing types multi pole c/o etc. Can be modifled KNOBS for Switch Banks 10 for E 9 Chrome or spun aluminium finlsh. MINIATURE MAINS TRANSFORMERS Top quality. Split bobbin construction will give $4 \cdot 5 \mathrm{~V}-0.4 .5 \mathrm{~V}$ at $250 \mathrm{MA} .1 \frac{1}{4}{ }^{\prime \prime} \times 1 \frac{1}{2}$ $\times 1 \frac{1}{1}$, all sorts of uses. ONLY $£_{3} 1$ PP3 Battery Connectors 10 for 50 . 2 Miniature Press to Make Switches, R knob, 3 for 50 p
Subminiature. S.P.C.O. Slide Switches
Miniature D.P.C.O. Slide Switches,
Standard 2P. 3 Position Slide Switch 4 for 50p.

TBAB10P 7 Watt Amp. I.C. with circuit Mand data. 1 Watt I.C. with only E data	circuits.
555	
60 p, 2 for $£ 1$	555 Timers. 30 pean en for $\mathrm{f1}$ Bridge Rectifier. Small.80p oa. 2 N 3055 H . RCA. $60 \mathrm{p}, 3$ for E f $\mathbf{5 0}$ 9 Section, Chrome on Brass Telescople Aerial. Plugs into any 35 mm socket. Approx $25^{\prime \prime}$ extended $£ 1$ each. 3 for $£ 2 \cdot 50$. Hi Power Inira Red Transmitter 5 mm LED. TIL 3860 pea 3 for $£ 1.50$. Red, Green, Yellow. 10 of one colour E . 10 of each £2 20 .

ALTERNATOR RECTIFIERS Mak lovely 60 amp bridges. Ideal for High Power Battery Chargers. Type 4AFI. Set of 4 (2 neg. case +
2 pos. case) £2.
Special Purchase enables us to offer Mullard case Polyester Capaunbeatable price of $£ 2$ for 100 mixed. E 15 1or 1000. These consist of factory clearance lots i.e. spillages, floor sweepings. cosmetic rejects etc. Also,
Mullard Miniature Electrolytics. 200 Mullard
TO: "GEMINI ELECTRONIC COMPONENTS" DEPTPE
"THE WAREHOUSE" SPEEDWELL ST. LONDON S.E.8. Where shown. Send Cheque ${ }^{\circ}$ or Postal Order. Plus Sop P\&P, and 15% VAT
Please Quote ZED Code. ZED PACKS now available for Callers at 50 Deptiord Broadway, London, S.E.8. Please allow 7 days for delivery. Send large S A.E. for fuller list.

MTYERSADERS VUW 7 IERDRIVES MDMORE ALN:WFROMILP

Just some of the 28 new amazingly compact modules from ILP Electronics. Britan's leader in electronics moduies - you'll find more new products in the amps and pre-amps advertisements

All ILP modules are compatible with each other - you can combine them to create almost any audiosystem. Together they form the most exciting and ver satile modular assembly system tor constructors of ali ages and experience

Every item from ILP carries a 5 year no qubble guarantee and includes full connection data So send your order on the Freepost coupon below today MIXERS

Mode No	Module	What it does	Current required	$\begin{gathered} \text { Price } \\ \text { wic VAT } \end{gathered}$	$\begin{gathered} \text { Price } \\ \text { ex VAT } \end{gathered}$
HY?	Mono mixer	Mixes eight signals into one	10 mA	£5 92	1515
HY8	Slereomuxer	Two channels each muxing live signals into one	10 mA	§7 19	¢5 25
HY 11	Mono mixer	Mixes tive signals into one - with base/treble controls	10 mA	¢8 11	£ 750
HY 68	Stereomixer	Two channels each muxing ten signals mio one	20 mA	$¢ 914$	¢795
HY 74	Sterec max	Iwo channels each mixing tive signals into orie - with treble and bass controls	20 mA	[1317	£11 45

AND OTHER EXCITING NEW MODULES

$\begin{aligned} & \text { Model } \\ & \text { No } \end{aligned}$	Module	What it does	Cutrens requred	Price inc VAT	$\begin{aligned} & \text { Palce } \\ & \text { ex VAT } \end{aligned}$
HY 13	Monovu meter	Programmable gain/LED overloan driver	10 mA	¢5 84	5595
HY 67*	Stereo headphone driver	Will orive stereo heactonones in the 4 onm 2 K anm range	815 mA	¢14 20	£12 35
HY 72	Vorce operated stereo fadef	Provides depth/delay elfects	20 mA	£ 1507	$£ 1310$
HY 73	Gutar pre-amp	Handles two quitars (Gass and lead) and mic with sepratate volume/bass/treble and mux	20 mA	§1409	¢12 25
HY 76	Stereo swuch matix	Provides two channels each switching one of our signals into one	20 mA	To be announced	
HY 77	Stereo VU merer drvef	Plogrammable garn/LED overload driver	20 mA	£10 64	5925

or easy mounting we recominend

B 6 mounting board tor modules HY6. HY 13 £0 90 Inc VAT 1078 ex VAT
66 mountina board lor noodule. HYbo-HY7
All modules are encapsulated and include chip on edge connectors All aperate hom +15 V PSU 30 power supply unit neding dropDer resistors tor higher voltages HY67 can be used only with ith SU $30 \times 40 \mathrm{~mm}$ FP 480 BRIDGING UNIT FOR DOUBLING POWER

Designed speciatiy by ILP for use with any two power anmblifers of the same type to double the power output obtained and will function with any ILP power supply in totally sealed case. size $45 \times 50 \times 20 \mathrm{~mm}$ with edge connector it thus becomes possible to obtain 480 watis rms (singlechannel) into 8Ω Conirbutory distortion less than 0005% Price $£ 551$ inc VAT Ex VAT 5479
How to order Freepost
Use this coupon. or a separate sheet of paper to order these products or any products trom other ILP Electronics advertisements No stamp is needed it you address to Freepost Cheques and postal orders must be crossed and payable to ILP Electronics Lid cas must be registered C. OD - add £1 to total order vaiue Acress and Barclaycard weicome All UK orders sent post free within 7 days of receipt of order
ILP Electronics Ltd., Freepost 2. Graham Bell House, Hoper Close, Canterbury CT2 7EP, Kent.
Please send me the following ilp modules

Total purchase price
Ienclose Cheque $\square \quad$ Postal0rders $\square \quad$ Int Money Order \square
Please debit my Access / Barclavcard No
Name
Address

Signature
Past 10 ILP Electronics Lio Freecost ? Gianam Bell House Roper Close Conterbury CI Z 7 EP Ken! England
Teleanone (0227) 54775 Teuntidul di22716.723 Telex 9E5780
EECTEONCS LTD
STAYAHEAD.STAY WITH US

CLEF $\operatorname{\text {ELectronic}}$ MUSIC

ELECTRONIC PIANOS
SPECIALISTS SINCE 1972
Clef Pianos adop the most advance
form of Touch Sensiti, eaction whic
simulates piano key incria using
 DOMESTIC MDDEL COMPONENT KIT £244 COMPLETE KIT £399.90 manufactured f675

and Sycaher.
The Siave Stape Piann, has the
same range of Voices and Ellects and is
SIX OCTAVE STAGE MODEL COMPONENT KIT f217

"THE computer BAND-BOX
 COMPLETE KIT £289 £399

MANFD
arolution in the field of Computer Music Generation!
HUSICIA VS INSTRUUENT FOR:
SIOISIS SIVGERS RECORDING-PRACTICE
\qquad Waveform Enevelope combinations), with the capicity to store over
3,000 User Programmable Chord Changes on miore than 120 different Chords Using advanced Microprocessor technology. Tempo. Complete Music Pad is electronically Indexed and stored on secondar: batter! bach up. Facility exists for composition of Intro, Repeat Chorus, and Coda sections including Multiple Score Se-
quences. Sockets are provided for volume Peda and Footswitch plus

THE Programmable DRUM MACHINE

The Clef Master Rhythm is capable of storing 24 selectable rhythm
drump patterns. invented. modified, and entered by the Operator on
Eight Instrumentation tracks. A threc position Instrumentation co祭作 expands the number of instruments available to twelve. grouped into sounds typical of playing
American Bongos and Claves. Sequence operation allows two rhythm sections to be coupled with
the second (B) section appearing at four. eight or sixteen Bar repetithe second (B) section appearing at four. etght or sixicen Bar te
ion. All drums can be adjsted for level and resonance on inte
controfs to suit individual iaste. thus producing good musical so
CMOS CMOS

LANCASTER HALL BELLE VUE MANCHESTER

The North's Premier Amateur Radio and Electronics Event. Features inter-Club Quiz Grand Raflle, Construction Contest. Amateur Computer Stands, r.S.g.B Bookstall, Radio Society's Stands and Trophy. Home Office and Raynet Stands.

The following traders have booked space:

Eurova Lid	Amateur Radio Exchange	Stephens-James Ltd
J. Birkett	The Amateur Radio Shop	Isherwood Electronics
Radiotronics	Microwave Modules	Bredbury Electronics
Lowe Electronics	John's Radio	Display Electronics
P.M. Electronic Services	New Cross Radıo	SGS Electronics
P.K.G. Electronics	W.H. Westlake	The Computer Junk Shop
DS Electronics	Telecom	Arrow Electronics Ltd
Thanet Electronics	Leeds Amateur Radio	Royd Electionics
Electrovalue Lid	Newton Engraving	Ace Mailtronix Ltd
Elphan Electronics	Packer Communications	Gemini Electronic Components
J. Peterson	Micro Print Lid	Tony's Radios
Elkan Electronics	Chris Moulding	J.M.G. Electronics
Sutton Electronics	Gemini Communications	Sota Comm. Syst Lid
S M.C. (Jack Tweedy) Lid	R.S.G.8 Books	M K Electionics
Wilson Valves	Scorpio Amateur Aerials	

ADMISSION 60p BY RAFFLE TICKET AND EXHIBITION PLAN ENTER AT REAR OF BELLE VUE OPPOSITE MAIN CAR PARK OFF HYDE ROAD A57

"SEE SCAN" (PRINTOID LTD)

FREEPOST, 20/21 ALFRIC SQUARE, PETERBOROUGH PE2 OBR

The designers and manufacturers of the PE Camera Project offer technical club membership/certification to project enthusiasts.

Camera technical support and circuit testing/alignment service available. Various kits and projects always on hand (simple/intermediate/advanced).

Write for full parts list/club application forms (camera/electronics/security products) or ring:

Project "‘C" Engineer

 on 0733253447 (4 lines)Access/Barclaycard accepted.

SELLING OR BUYING

A classified advertisement could solve your problem at very little cost.

RING LINDA 01-2615846

RECEIVERS AND COMPONENTS

300 SMALL COMPONENTS, Transistors. diodes $£ 1.70 .7 \mathrm{lbs}$ assorted components $£ 4.25$. $10 \mathrm{lbs} £ 5.75$. 20 wire ended neons £1. Forty 74 series iCs on panel $£ 1.70 .500$ capacitors $£ 3.20$. List 20 p refundable. Post 60 p. optional insurance 20p. JWB Radio. 2, Barnfield Crescent, Sale, Cheshire M33 INL

TURN YOUR SURPLUS Capacitors. transistors. etc., into cash. Cunt COLFSHARDING CO. 103 South Brink. Wisbech. Cambs. 09-45-4188. Immediate settlement.

BOURNEMOUTH/BOSCOMBE. Electronic components specialists for 33 vears. Foresters (National Radio Supplies) Late Holdenhurst Road. Now at 36. Ashley Road. Boscombe. Tel. 302204. Closed Weds.

50 COMPONENTS, assorted, transistors. resistors etc. $£ 0.60$ post paid. J \& G Repairs. 100 Norman Rise, Livingstone. EH54 6LZ.

SMALL ADS

The prepaid rate for classified advertisements is 32 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 10.70$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Lid". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Electronics, Room 2612, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

T \& J ELECTRONIC COMPONENTS. quality components. com petitive prices. Illustrated catalogue 45 p. 98 Burrow Road Chigwell. Essex.

1000 ASSTD 5\% RESISTORS, pre-formed for PCB mounting $\mathbf{£ 2 . 5 0 . 5 0}$ assid full-spec LED's. $3 \& 5 \mathrm{~mm}$. all colours $\mathbf{£ 3 . 2 0}$ 50 asstd full-spec transistors. BC 182/212/237/308 e+c. £3.00. 100 asstd PC mintg electrolytics $£ 3.00$. One of each pack £11. All post free. SAE Wholesale list. PC Electronics. 2 Thornhill. Romsey Road, Whiteparish. Salisbury, Wilts.

TE \& ECTRIC

As featured in PE March \& April 82
Self Assembly Kit $\quad \mathbf{£ 4 7 . 5 0}+$ VAT Built and Tested $\quad \mathbf{6 6 4 . 0 0}+$ VAT

Components available separately. SAE for details. P\&PE1, CWO
Response Company,
Froxfield, Patersfield, Hants. GU32 1DX.

WHEN REPLYING TO
 ADVERTISEMENTS PLEASE MENTION PRACTICAL ELECTRONICS

THE OUTSTANDING PRACTICAL ELECTRONICS MINIATURE SCORPIO
 CAR IGNITION

* NEAT \& COMPACT
* EASYTO INSTALL
* AMAZING LOW PRICE
* ROBUST DIE-CAST CASE
* FUlL CIRCUIT PROTECTION
\star COMPLETELY WEATHERPROOF
All parts as specified in PE for only
$£ 14.85$ inc. VAT, $\rho \& p$. PCB only: $£ 1.75$ inc. VAT, p\&p.

Re-prints of 1975 \& 1982 articles available; send S.A.E. for full price list of parts.

DEPT. PE,
MICROSTATE LIMITED, 5 NORTHFIELD CLOSE, FERNHILL HEATH, WORCESTER, WR3 7XB.

BOOKS AND PUBLICATIONS

ANy SINGLE SERVICE SHEET £1/L.S.A.E. Thousands different repair/service manuals/sheets in stock. Repair data your named T.V. £6.50, (with circuits $\mathbf{5 8 . 5 0}$). S.A.E. Newsletter. pricelists. quotations. AUS (PE), 76 Churches, Larkhatl. Lanarkshire. (0698 883334).

SOFTWARE

2x 81 (16K) SOFTWARE. Champions Quiz - it's fun for all ages. Four quiz programs on one cassette. All questions use RND functions $£ 4.50$. ROSE CASSETTES. 148 Widney Lane. Solihull. West Midlands.

2X81 3K RAMKIT expandable to 7 K . see Microbus Nov. 81. Send $\mathbf{£ 1 3 . 2 5}$. EDWARDS ELECTRONICS. 23 Princes Street. Perth.

Z $\times 81$ TEMPERATURE SENSORS (plug-in compatible), in cluding UK P \& P $£ 17.95$. Leaflet. Cheshire Micro Design, 66 Close Lane, Alsager. Stoke-on-Trent.

FREE CATALOGUE. Everything for microcomputer users. Phone Croydon Computer Centre, 29A Brigstock Road, Thornton Heath, Surrey. 01-689 1280.

FOR SALE

UK101 CASED, 1-2 Mcg, 1-2K, VDU, Cegmon, Sound, 300 1200 Cassette Interface. Joustick. \&200. Brighton 551306

121 P.E.'s FROM 1964, 81 P.W.'s from 1969. Offers. No singles. Wolverhampton (0704) 332017.
P.E. RANGER: Save $£ 8$ on ex-factory prices. 6 CH kits $£ 52$, buil $£ 58$ - $£ 2.00$ p.p. (0359) 30867.

CHEAP HARD COPY Teletype 32 ASR 75 baud, as new, 555. Basildon 22254, around 6pm best.

NEW PAPST REWIND MOTORS $125 \mathrm{v} / 220 \mathrm{v}$, A.C. 1200 rpm , 14 watts. $£ 5.90$ ($£ 16.80$ elsewhere), P\&P $£ 1.60$ GREYMOOR ROBOTICS, 247 Fieldgate Mansions, Romford Street. London El.

NEW BACK ISSUES OF 'PRACTICAL ELECTRONICS' available 40 p each Post Free. Cheque or uncrossed P / O returned if tot in stoch - BELL'S TELEVISION SERVICES, 190 Kings Road. Harrogate, N. Yorks. Tel: (0423) 55885.

OPEN UNIVERSITY GENERATORSCOPE, full TS 282 course material, numerous components $£ 60$ the lot. Chester 678770.

PERSONAL

CHRISTIAN SINGLES. Friendship. contacts. 1982 holidays Weekend houseparties. - C.F.F., Dept N46. Edenthorpe, Doncaster.

SERVICE SHEETS

SERVICE SHEETS $£ 1$ each plus SAE. Individual T.V. repair data $£ 6.50$ (with circuits $£ 8.50$). Free electronics newsletter, pricelists unique publications. Auspe, 76 Churches. Larkhall. Lanarkshire ML9 IHE.

Bell's television services for Service Sheets on Radio, Tv, etc $£ 1.25$ plus S.A.E. Colour TV Service manuals on request. S.A.E. with enquiries to B.T.S. 190 Kings Road, Harrogate, N. Yorkshire, Tel:(0423) 55885.

EDUCATIONAL

careers in marine electronics. Courses commencing September and January. Further details. The Nautical College. Fleetwood FY7 8JZ. Tel. 0391779123.

MISCELLANEOUS

SECURITY ALARMS KITS fROM ¢37. Full range of accessories. MFP Ltd., Harrison Road, Erdington, Birmingham B24 9AB. 021-373 0450.
clearing laboratory: scopes, generators, P.S.U's. bridges. analy sers. meters, recorders, etc. 0403-76236.

ULTRASONIC TRANSOUCERS. miniature, 40 KHz , £2.85p/pair +25 p p\&p. Dataplus Developments. 81 . Cholmeley Road, Reading, Berks.

MAKE YOUR OWN PRINTED CIRCUITS

Etch Rosise Transfors - Starter pack (15 sheets, lines. pads.
1.C. pads) $£ 2.00$. Large range of single sheels in stock at
i. ${ }^{1 . C} 43$ per sheat. 4 . 4 . Maters Positive Tramaparencias from P.C. Iayouts in maga-
zines by simple photographic process. 2 shoers nogative zines by simple photographic
paper, 2 phocess.
sheets
positive
film (A4) $\mathbf{E 2 . 1 0}$. Photo-sesist

 where indicared.

OAK.G. ELECTRONICS

CORDLESS TELEPHONES. Build your own simple and inexpensive units, send $£ 3.00$ for plans to J F Ashley, Birley Grange Cottage Farm. Baslow Road. Cuthorpe, Derbyshire.
double sided copper clad fibreglass $12^{\prime \prime} \times 8^{\prime \prime}, 5$ sheets $£ 4$; 10 sheets $\mathbf{£ 6 ;} 20$ sheets $£ 10$ inc. P\&P. - Davron Trading, 1 Bankside. New Street, Chelmsford, Essex.
paraphysical journal (Russian Translations): Psychotronic Generators. Kirlianography. Gravity Lazers, Telekinesis. Details SAE $4^{\prime \prime} \times 9^{\prime \prime}$, Paralab. Downton. Wilts.

Cabinet and Flightcase Fittings Fretcloths. Coverings. Handles. Castors etc., Jacks and Sockets, Crivers P\& Stands, Cever fibre Horns
Send 30p Postal Order for illustrated catalogues to:
ADAM HALL (P.E. SUPPLIES) Unit G, Carton Court, Grainger Road,

SECURITY SYSTEMS KITS ... All components and full instructions. Send large SAE for latest catalogue of advanced projects for car. caravan and home. CompuTech Systems. Ind. Est. N. Walsham NR28 0AN. Tel: (0692) 5600.

CENTURION BURGLAR ALARM EQUIPMENT. Send SAE for free list or a cheque/PO for $£ 11.50$ for our special offer of a Ifull sized signwritten bell cover, to Centurion Dept PE, 265 Wakefield Road, Huddersfield, W. Yorkshire, Access \& Barclaycard telephone orders on 0484-35527.

Once again, Stuart Systerns have astounded the world with a totally new concept. The video vibroscope produces a fantastic multi-coloured display on any TV. The picture is
controiled by rrusic, using microphone or other direct inpu and forms an exciting. pulsating and rhythnic experience. which cannot fall to turn them on! A must for panties, discos, etc.
NOWAVAILABLEFORONLY
9v POWER UNIT £4.95. PLEASE ADD VAT AT 15% (POST \& PACKING INCLUDED)
Barclay $A C c e s s$ urders accepted on lelephone
WILLAMM $\begin{gathered}\text { Oower Mouse. Billericay Road } \\ \text { Herongate. Brentwood } \\ \text { Essex CMi3 } 350\end{gathered}$ SYSTEMSLI Essex CM 133 3S

WOULD ADVERTISERS PLEASE NOTE THAT OUR BOX NO SERVICE IS NOT AVAILABLE FOR MAIL ORDER ADVERTISERS

ORDER FORM please Write in block capitals

Please insert the advertisement below in the next available issue of Practical Electronics for.
insertions. I enclose Cheque/P.O. for £ ..
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Electronics)

[^3]ENAMELLED COPPER WIRE. 10 swg to 45 swg . S.A.E. for quotation by return, cheapest prices. 102 Parrswood Road. Manchester 20.

BURGLAR ALARM EUUIPMENT. Ring Bradford (0274) 308920 for our catalogue or call at our large showrooms opposite Odsal Stadium.

MICRO TRANSMITTER, VHF/FM, matchbox size, variable 70.150 MHZ , complete kit. $£ 4.50$. Microtronic, 9 , Tennant, Simonside، South Shields.

PRACTICALELECTAONICS P.C.B's
Drilled, 1.5 mm Glass fibre Fry's Roller Tinned NOV 81 UK 10 ! Monitor change EP640 £1.87 DEC 81 Space Invaders EA303 EA305 26.91 a pair MAR 82 Emergency Light EP793
£1.56 For full list and current pct's send SAE Pcb's also produced to cuslomers own mastirs. fase enquiries weitcomed. Whte tor quote. CW

14 Bowntato mesign

Billericay, Essex CM11 1PU. Telophona 0268 -710722

TIME WRONG?

MSF CLOCK is ALWAYS CORRECT - never gains or loses SELF SETTING at switch-on. 8 digits show Date,
Hours, Minutes and Seconds, auto GMT/BST and leap year, also parallel BCD output for computer etc receives Rugby 60 KHz atomic time signals, built-in antenna,
$\mathbf{£ 6 2 . 8 0 .}$
SIG. GEN., $10 \mathrm{~Hz}-200 \mathrm{KHz}$, logic and $\mathrm{O}-1 \mathrm{~V}$ sine and square wave outpuls, £16.80 Each fun-to-build kit includes all parts, printed circuit, case,
instructions, postage etc money back assurance so $G E T$

CAMBRIDGEKITS

45 (FD) Old School Lane Milton, Cambridge

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.

This will assist advertisers in processing and despatching orders with the minimum of delay.

INDEX TO ADVERTISERS

Ace Mailtronix 80			
Adam Hall Supplies			
A.D. Electronics 80			
Ambit			74
Barrie 78			
Bi-Pak			
Boss Industrial Mouldings 40			
School			9
Cambridge Kits 78			
Cambridge Learning 65			
C.B. Radio Show			70
Clef Products 74			
Crofton Electronics 10.71			
C.R. Supply Co.	76
Dataman Design 80			
E.D.A. Electronize Design Electrovalue			29
		.	40
	\ldots	72
Gemini 73			
Global Specialties Corporation			
Hameg Limited Home Radio			69
	\cdots	\ldots	72
ICS Intertext 4			
ILP Electronics 65,67,69,71,73,75			
L \& B Electronics 10			
Litesold 72			
Maplin Electronics Cover 4			
Marco Trading			70
Marshall A....			73
Microstate Ltd.	\ldots...	\ldots	76

Ace Mailtronix

Boss Industrial Mouldings

Clef Products

Dataman Design
$\begin{array}{lllll}\text { Electrovalue } & \ldots & \ldots & \ldots & 72\end{array}$
$\begin{array}{lllr}\text { Gemini } \ldots & & & \\ \text { Global } & \text { Specialties Corporation } & \ldots & 73 \\ \end{array}$

CS Intertext $\quad \cdots \quad 6, \ldots 769, \quad \ldots \quad 4$

WORLD RADIO T.V. HANDBOOK
 1982 ed.

Price: $\mathbf{£ 1 1 . 0 0}$
AMATEUR RADIO HANDBOOK 1982 by A.R.R.L.

Price: $£ 8.00$
UNDERSTANDING MICROPROCESSORS
by D. L. Cannon Price: $\mathbf{£ 4 . 5 0}$
PRACTICAL ELECTRONICS H/B
by l. Sinclair
Price: $£ \mathbf{4 . 3 5}$
THE CATHODE-RAY OSCILLOSCOPE \& ITS USE
by G. N. Patchett
Price: $\mathbf{£ 4 . 0 0}$
INTRODUCING AMATEUR ELECTRONICS 2nd ed. by I. R. Sinclair

Price: $\mathbf{£ 4 . 0 0}$
INTRODUCING MICROPROCESSORS
by I. R. Sinclair
Price: $\mathbf{£ 5} \mathbf{5 0}$

h/B OF BASIC ELECTRONIC

TROUBLESHOOTING
by J. D. Lenk
Price: $\mathbf{£ 4 . 6 5}$
67 READY TO RUN PROGRAMS IN BASIC: GRAPHICS, HOME \& BUSINESS,
EDUCATION, GAMES
by Wm. S. Watson
Price: $\mathbf{£ 4 . 6 0}$
COMPUTER PROGRAMMING IN BASIC by P. Bishop

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books

19-21 PRAED STREET

 LONDON W2 1 NPPhone 01-402 9176 Closed Saturday 1 p.m. Please allow 14 days for reply or delivery.

Midwich Computer ...		\ldots	\ldots	22
Millhill				80
Modern Book Co.				79
Musicraft				70
Northern Amateur	Rad	Exhi	on.	75
Parndon				8
Phonosonics				67
Pimac				10
P.K.G. Electronics				77
Powell T.				8
Powertran ...			Cover	2. 72
Printoid Ltd.				75
Proto Design				78
Radio Component Specialists				79
Radio and T.V. Components				12
Response Company				76
Riscomp Ltd.				8
Service Trading Sinclair Research	\ldots	\ldots	VIII (Supp.)	
	\ldots			6, 7
Swanley				70
Technomatic			80, Cover 3	
Tempus				38
Titan			...	71
T.K. Electronics	\ldots	\ldots		5
Velleman U.K.				17
Videotone				4
Watford Electronics				2,3
William Stuart Systems $\quad 78$				
William Stuart Systems				
Wilmslow Audio				8

\section*{BAKER LOUDSPEAKERS "SPECIAL PRICES" POST £2
 | Model | Ohms | Inch | Watte | Type | Price |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Major | 4, 8, 16 | 12 | 30 | $\mathrm{Hi}-\mathrm{Fi}$ | E14 |
| Deluxe Mk II | 8 | 12 | 15 | $\mathrm{Hi}-\mathrm{Fi}$ | £14 |
| Superb | 8, 16 | 12 | 30 | Hi-Fi | £24 |
| Auditorium | 8. 16 | 12 | 45 | Hi-FI | £22 |
| Auditorium | 8.16 | 15 | 60 | $\mathrm{Hi}-\mathrm{Fl}$ | ¢ 34 |
| Group 45 | 4, 8, 16 | 12 | 45 | PA | ¢14 |
| Group 75 | 4, 8, 16 | 12 | 75 | PA | £22 |
| Group 100 | 8, 16 | 12 | 100 | PA | £24 |
| Group 100 | 8, 16 | 15 | 100 | PA | ¢32 |
| Disco 100 | 8, 16 | 12 | 100 | Disco | ¢24 |
| Disco 100 | 8, 16 | 15 | 100 | Disco | £32 |

DE-LUXE DISCO MIXER. $240 \mathrm{~V}, 4$ stereo channels, 2
magnetic, 2 ceramic/tape, 1 mono mic channel, twin v.u. magnetic, 2 ceramic/tape, 1 mono mic channel, twin v.u.
meters, headphone monitor outlet, slider control's, suitable meters, headphone monitor outiet, slider controls, suitable
for panel or desk mounting, attractive grained aluminium facia, silver knobs. ©40. Post $£ 2$
2 CHANNEL STEREO MIXER. 9 volt operated $\mathbf{C 9 . 5 0} \mathrm{p} \& \mathrm{p} \mathrm{f} 1$.
MINI MODULELOUDSPEAKERKIT
$15 \times 8+i n .3$-way Baffle. 5 in . EMI. Bass. Sin. EMI. Middle. 3in.
EMI. Tweeter: 3-way Crossover Full assembly instructions EMI. Tweeter; 3-way Crossover Full assembly instructions supglied. Response 60 to 20,000 c.p.s. 12 watt RMS 8 ohms
$\mathbf{£ 1 0}$ per kit. Two kits $£ 18.50$. Suitable Bookshelf Cabinet £ 10.50 each. Post $£ 3$.
GARRARD 6-200 SINGLE PLAYER DECK Brushed Aluminium Arm with stereo ceramic cartridge and Diamond Stylus, 3-speeds. Manual and Auto Stop Start. Large Metal Turntable.
Cueing Device and Pause Control. $\mathbf{E 2 2}$. Posi $£ 2$
METAL PLINTH CUT FOR GARRARD Size: 16×14. 3 in. $\mathbf{\text { E3.00. Silver or Black finish. Post } £ 2 \text { . }}$

B.S.R. SINGLE PLAYER

Battery operated deck. 9 volt DC. motor Ceramic stereo cartridge. 'S'shaped arm, cueing device. $\mathbf{f} \mathbf{2 0}$. Post $£ 2$.
B.S.R. SINGLE PLAYER P170/2 E20.00 3-speeds $11 i n$. aluminium turntable, "slim" arm, cueing
device, stereo ceramic cartridge, silver trim, bias compendevice, stereo ceramic cartridge, silver trim, bias compen-
sator, adjustable stylus pressure, plays all records, spring sator, adjustable stylus pressur
suspension, 240 V AC. Post $£ 2$.
B.S.R. DE-LUXE AUTOCHANGER
$\overline{£ 20}$ with stereo cartridge, plays all size records. Post $£ 2$ DECCA B.S.R. TEAK PLINTH $18 \frac{3}{4} \times 14 \frac{1}{5} \times 4$ in Space for small amplifier. Special price $\mathbf{f} 5.95$ post pard
post paid
TINTED PLASTIC COVERS POST E2 $^{-}$
 R.C.S. LOW VOLTAGE STABILISED POWER PACK KITS
£3.95. Post 65p.
All parts and instructions with Zener diode printed circuit,
 up to 100 mA or less. Please state voltage required.
PP BATTERY ELIMINATOR BRITISH
 overload cut out. Size 5: $3 \frac{1}{4} \cdot 2 \frac{1}{2}+1$ n. £4 50 . Post 50 D .
Switched 3 6: $6 \frac{1}{2}: 9$ volt 400 ma Stabilized $£ 7.50$. Post $£$

MAIL ORDER ADVERTISING

British Code of Advertising Practice

Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisments where money is paid in advance, the code requires advertisers to fulfil orders within 28 days, unless a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please retain proof of postage/despatch, as this may be needed.

Mail Order Protection Scheme

If you order goods from Mail Order advertisements in this magazine and pay by post in advance of delivery. PRACTICAL ELECTRONICS will consider you for compensation if the Advertiser should become insolvent or bankrupt. provided:
(1) You have not received the goods or had your money returned; and
(2) You write to the Publisher of PRACTICAL ELECTRONICS summarising the situation not earlier than 28 days from the day you sent your order and not later than iwo months from that day.
Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.
We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiser has been declared bankrupt or insolvent.
This guarantee covers only advance payment sent in direct response to an advertisement in this magazine not, for example. payment made in response to catalogues etc, received as a result of answering such advertisements. Classified adverisements are excluded.

EPROM PROGRAMMER

2716 HEXKEYPAD
 POWERFUL EDITOR
 2732 TV (MONITOR) DISPLAY
 2532 CASSETTE BACK-UP
 - ROMULATOR SOFTY STANDS ALONE

E769+ VAT, EX-STOCK, BY RETURN
DATAMAN DESIGNS LOMBARD HOUSE, DORCHESTER, DORSET, DII RX, (0305)68066

ace malltronix lit Batrey. WYarks. WF 175 H

COMPONENTS - Over 1,000 types in stock. SERVICE - Same day despatch. QUALITY - All guaranteed products.
"Let us quote for your hard to get components for PE projects" enclose 30p please send catalogu
\square

TECHNOMATIC TECHNOMATIC TECHNO

BOOKS (NO VAT) (P\&P E1.00 per book)

Port module plugs directly into $2 \times 80 / 81$ to provide 8 input and 8 output lines. allow input of data from switches. photocells, sensors, joysticks etc and contol if 8 relays. Also 7 segment displays and LED may be used - "VARIABLE TONE ALDIO OUTPUT CAN PRODUCE YOUR OWN SOUND EFFECTS." Port access is by simple beEk
\& POKE COMMANDS. Kit $\mathbf{~} 11.50$. \& POKE COMMANDS. Kit f11.50.
READY BUILT AND TESTED UNIT £14.95 * 70p P\&P

EXPERIMENT WHTH COMPOTER VISION

* ATOM ULTAASONICVISION *

Madule connects to the ATOM printer port to give an ultrasonic radar picture of the surraundings, eg. roam, furnishings, peaple Experiment with computer measurement. image recognition, movement tracking, robot vision. See this month's PRACTICAL ELECTRONICS

* UK101: INTERFACING SYSTEM *

Iwo board interface system plugs directly into computer expansion socket 10 provide wide facilities

 accessible from BASIC or MACHINE CODE.1) DECODING MOOULE: Providing a dual $5 v$ supply, 16 bit programmable $/ 10$ port, plus extensive address decoding for a wide variety of interfaces, including full decoding for a programmable sound generator, and also a 40 pin skt for further expansion.
2) ANALOGUE BOARD: Plugs into the decoding module 10 provide D/A converter, 8 channel multiplexed AD converter with 20 nS conversion time AY3-8910 SOUNO GENERATOR plus 6522 VIA provide complex timing \& counting functions and additional 16 bit po DECODING MOOULE KIT £27.50 ANALOGUE BOARD £ 39.95

ACORN ATOM

A personal computer with full size QWERTY board and a built in UHF modulator to allow direct connection to domestic TV. A simple to build. simple to operate computer with all the teatures found in machines twice the price but with the advantage of expandability Basic ATOM has 2 K Basic built f 135 Bult \& Fully Expanded f185. P\&P f3 4K Floating
Basic buit fins, Bult a fill atom connectors

UVEPROM ERASERS		SOFTY
UVIB (upto 6 eproms)	¢4206	Prom programmer \& romulator
UVI40 iupto 14 EPFOMS)	f61.50	Sohware development tool.
UV141 as UV140 bu! with timee)	E78.00	MKII (for 2516/2716/2532/2732). Built complete
Alt erasers with built in safory devices.		with psu $\quad \mathbf{f 1 6 9 . 0 0}+\mathbf{£ 2}$ p\&p

TECHNOMATIC TECHNOMATIC TECHNO

EXPRESS from mankpulin

STOP-WATCH

Multi-mode 8-digit stopwatch accurate to hundredths of a seciond. Easy to build-complete kits available. Full details in our projects book Price 60p.
Order As XAO2C

MILES PER GALLON METER

Digital display shows you how economical your driving is as you go along.
Complete kits available.
Full details in our projects book Price 60p.
Order As XA02C

 All mail to:

P.O. Box 3, Rayleigh, Essex SS6 8LR

Tel: Sales (0702) 552911 General (0702) 554155

Shoosat

159 King St, Hammersmith, London W6. Tel: 01-748 0926 284 London Rd., Westcliff-on-Sea, Essex. Tel: (0702) 554000 Note: Shops closed Mondays

DIGITAL MULTI-TRAIN CONTROLLER
Control up to 14 trains individually on the same track with any four simultaneously! Low cost kits available.
Full details in our projects book. Price 60p
Order As XA02C.

Photo by W. A. Sharmén

MATINÉE ORGAN
Easy-to-build, superb specification Comparable with organs selling for up to $\mathrm{f} 1,000$. Full construction detals in our book. Price $£ 2.50$.
Order As XH55K.
Complete kits avaliable:
Electronics-£299.95,
Cabinet- $£ 99.50$ (carriage extra).

* Don't miss out-get a copy of our catalogue now Dver 140,000 copies sold already!
* On sale now in all branches of WHSVIITHimp price f 1 .
* 320 big pages packed with data and pictures of over 5,500 items

[^0]: C IPC Magazines Limited 1982, Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: MAY ISSUE ON SALE THURSDAY APRIL 8th

[^2]: Make your crossed cheque/MO payable to: IPC Magazinas Ltd.. and post to: Practical Electronics. Subscription Department. Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH 1630 H .
 Practical Electronics is published in England by IPC Magazines Ltd. Regd. No. 53626. Regd. Office: King's Reach Tower, Stamford Street, London, SE1 9LS. A subsidiary of Reed International Ltd.

[^3]: Company registered in England. Registered No. 53626. Registered Office: King's Reach Tower, Stamford Street. London SEI 9LS

