PRACTICAL

MARCH 1982

75p

What does

it cost to run??

Much more than just kits quite simply the best way

 to make music . . .The smart contemporary styling of the 'black-boxes' contain the easy-to-build advanced electronics that produce everything from high grade amplifcation to complex lighting effects. These units are among the finest of their kind available and combine, as do all the Powertran kits, constructional ingenuity with high grade performance capability.

The finest materials and components are used throughout and the easy-tofollow fully illustrated and diagrammed manuals make building as pleasurable as operating.

Each unit can, of course, perform its independent function - but it is compatible with its fellows (same cabinet sizes and the same quality and professional finish) to enable you to assemble an impressive bank of wholly controllable power.
 performance at an exceptionally low price. Adaptable inputs mixer

COMPLETE KIT £49.90 (+ VAT)
CHROMATHEQUE 5000-5 channel lighting effect system. Sound channel handles up to 500W yet minimal wiring is needed with our

COMPLETE KIT £49.50 (+ VAT) amplifiers - for speech/external excitation - each with level control and tone control. The Vocoder is a superb machine capable of infinite comprehensive builders' manual - is challenging yet within the scope

COMPLETE KIT £175 + VAT)
SP2 200-2 channel 100W amplifier. Two of the ruyged, reliable and economic amplifiers from the MPA200 are fed by separate power supplies from a common toroidal transformer. Fully finished metalwork, fibreglass PCBs, controls, wire - everything you need to make this powerful

COMPLETE KIT $\mathbf{f 6 4 . 9 0}+\mathrm{VAT})$
DJ90 STEREOMIXER-a
versatile new mixer with 2 stereo inputs for magnetic cartridges, a stereo auxiliary input and mike input. Auto planning for fast or slow, slider controls, multi-mixing, ducking, interrupt, input modulation - everything . yet still under $£ 100$! (Our console below shows the mixer neatly teamed with a Chromatheque and SP2 200) COMPLETE KIT £97.50

PRICE STABILITY: Order with confidence. Irrespective of any price changes we will honour all prices in this advertisement until April 30th, 1982. if this month's advertisement is mentioned with your order. Errors and VAT' rate changes excluded.
EXPORT ORDERS: No VAT. Postage charged at actual cost plus $£ 1$ handling and documentation.
U.K. ORDERS: Subject to 15% surcharge for VAT. No charge is made for carriage, or at current rate if changed.
SECURICOR DELIVERY: For this optional service (U.K. mainland only) add $£ 2.50$ (VAT inclusive) per kit. FREE ON ORDERS OVER $£ 100$. SALES COUNTER: If you prefer to collect kit from the factory, call at Sales Counter. Open 9 a.m.-12 noon, 1-4.30 p.m. Monday-Thursday

POWERTRAN ELECTRONICS, PORTWAY INDUSTRIAL ESTATE, ANDOVER, HAMPSHIRE SP10 3WN. Telephone Andover (0264) 64455

CONSTRUCTIONAL PROJECTS

TELECTRIC ELECTRICITY COST MONITOR Part 1 by Stephen Day BSc Eng MIEE 22
Can provide instant and long-term cost monitoring of almost any electrical appliance
EMERGENCY LIGHT by Stephen lbbs 28
Rechargeable, with automatic cut-in
FREE TRANSISTOR PROJECTS 32
Six circuits specially designed around your free transistors
AUTO LIGHT, CAR BATTERY CONDITION INDICATOR, AF/RF GENERATOR, BENT WIRE GAME, DOUBLE SIREN, LIQUID ALARM
INFRA-RED REMOTE CONTROL Part 2 by Bart Trepak 40
Construction and applications
PE RANGER BASE STATION Part 3 by Michael Tooley BA and David Whitfield MA MSc 44
Testing and alignment
PE ROBOTS Part 5 by Richard Becker, Tim Orr and Richard Monkhouse. 56
Resume, completion of hardware, and software prologue TV CAMERA Part 3 by Philip Gaffney 62
Assembly and setting up
GENERALFEATURES
DIGITAL DESIGN TECHNIQUES Part 8 by Tom Gaskell BA 48
Memories and Microelectronics
MICROBUS by D.J.D. 60
Use of micros in amateur radio
SEMICONDUCTOR UPDATE by R. W. Coles 66Featuring LM1035 99000 Series 8X60
NEWS AND COMMENT
EDITORIAL 17
NEWS \& MARKET PLACE 18
Including Countdown
INDUSTRY NOTEBOOK by Nexus 21
Reflections on the past year
PATENTS REVIEW64
New ideas from around the world
SPACEWATCH by Frank W. Hyde 68
Extra-terrestrial activities chronicled

OUR APRIL ISSUE WILL BE ON SALE FRIDAY, 12th MARCH 1982

(for details of contents see page 39)

[^0]

COMPUTER CORNER

- VIC 20 MICROCOMPUTER. Connects directly to a colour TV. 5K RAM expandable to 32 K PET type graphics.
CASSETTE DECK for VIC20 including a free 6
EPSON MX SERIES PRINTERS: see top right hand side of this advertisement
- SEIKOSHA GP80A - Unihammer Printer, gives normal and double width characters as well as dot resolution graphics 8" Tractor feed. Paralle Interface standard.
- SOFTY-2. As reviewed in PE September 1981 The complete microprocessor development system for Engineers \& Beginners. New powerful instruction. Accepts any 24 pin 5 V single rail EPROM. Supplied fully buitt, tested \& enclosed in a black ABS case. Price incl. encapsulated plug in
power supply.
VIDEO MONITOR g^{n} futly cased. B\&W. Fully guaranteed. Excellent value for money at only £69
TEX EPROM ERASER. Erases up to 32 lCs in
TEX EPROM ERASER with integral 30 min
Electronic timer
$5 \mathrm{~V} / 5 \mathrm{~A}$ PSU Ready built and tested
- Attractive Beige/Brown ABS CASE for Superboard/UK101 or Home Brew
- Extra 4 K of RAM (8 off $2114 \mathrm{~L}-300 \mathrm{nS}$)

Space Invaders for Superboard E6

- Full ASC11 coded keyboard type '756' £39
- 4×4 matrix keypad (reed switch assembly) $£ 4$
-12 Cassettes in Library Cases
- $9 \frac{1}{2}$ " Fan fold paper (500 sheets) (no VAT) £6
- Teleprinter Roll (no VAT) £3.50
(P\&P on most of the above items is extra)
Call in at our shop for demonstration of any of the above items. Be satisfied before you buy.

DIGITAL VOLTMETER MODULE

Fully built \& tested Positive and negative volrages with an FSD of 999 mV which is easily extended. - Requires only single supply $7 \cdot 12 \mathrm{~V}$. - High overall accuracy $\pm 0.1 \%+1$ digit. - Large bright $0.43^{\prime \prime}$ (11 mm) LED displays. -Supplied with full data and applications information.

Using this fully buitr and calibrated module as a basis now means that you can easily build a wide range of accurate equlpment such as multimeters, thermometers, battery indicators, etc. etc. at a fraction of the cost of ready-made equipment. Full details are supplied with each module showing how to easily extend the vorage range and measure current, resistance and temperature. Fully guaranteed, the unit has been supplied to electricity authorities, Government departments, universities, the P.O. and many companies.

Temperature Measurement $£ 2.15_{\text {+vat }}$

An easily constructed kit using an I.C. probe providing a linear output of $10 \mathrm{mV} /^{\circ} \mathrm{C}$ over the temperature range from $-10^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. The unit is ideal for use in conjunction with the above DVM module providtng an accurate digital thermometer suitable for a wide range of applications.

Power Supply

$£ 4.95$ + Vat
This fully built mains power supply provides two stabilised isolated outputs of 9 V providing current levels of up to 250 mA each. The unit is ideally suited for powering the DVM and the Temperature Measurement module.

Siren Module

£2.57+VAT
Producing a very loud and penerating wailing sound. this module operates from $9-15$ volts, capable of driving one or two 8 ohm speakers. Suitable horn speakers available at £4.30 each plus VAT.

Hardware Kit $£ 3.95$ trar

A suitable ready drilled case together with the various mounting pillars, nuts and bolts, and including a mains switch and 2 mm sockets designed to house the ultrasonic alarm module, together with its associated power supply. Size $153 \mathrm{~mm} \times 120 \mathrm{~mm}$ $\times 45 \mathrm{~mm}$.

In addition to the above a wide range of competitively priced electronic components is stocked. Please telephone your specific requirements.

- V.A.T. must be added on all items. © Shop hours 9-5.30 (Weds. 9-1) - ex-stock delivery on all items. © Units on demonstration, callers welcome. - Post and packing charge 50p per order. © S.A.E. with all enquiries please.

RISCOMP LIMITED
Dept. PE5,
21 Duke Street,
Princes Risborough, Bucks.
Tel: Princes Risborough (084 44) 6326

MASHHFR HTFGHRONLCS NOW! The PRACHTCAL way!

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a selfemployed servicing engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.

You will do the following: - Build a modern oscilloscope

- Recognise and handle current electronic components
- Read.draw and understand circuit diagrams
- Carry out 40 experiments on basic electronic circuits used in modern equipment
- Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V. Hi Fi and microprocessor/computer equipment

NewJJb?NewCareer?NewHobby?Getinto Electronics Now!

Please send your brochure without any obligation to NAME I am interested in:

KITS, GOMPDONENTIS miciols \& paitis

DISCO LIGHTING KITS ol 1000 K
 This value-lor-money ki
 saures a bi-directiona sequence, speed of sequence and frequency of direction change, being variable by means of potentiometers and Incorporates a maste dimmino DLZZ1000k
 A lower cost version of the above, featuring undirectional channel sequence with speed switched only at malns zero crossing points to reduce rado interterence to a minimum.
 Optional opto input olat

DVM/ULTRA SENSITIVE THERMOMETER KIT This new desion is based on
the ICLI7126 (a lower power the ICL7126 (a lower power
version of ine ICL7106 chip) version of the ICLIT106 chip)
and a ata digit liquid crystal
dispat dispiay. This kit will form the
basis of a digital multimeter (only a few additional resistors and switches are required-delails supplited, or a sen sitive digital thermometer ($-50^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$) reading to $0.1^{\circ} \mathrm{C}$. The basic kit has a
sensitivity of 200 mv for a lull scale reading sensitivity of 200 mV for a full scale reading. automatic polarity indication and an ulira
low power requirement-giving a 2 year typlcal battery life from a standard gV PP3 when used 8 hours a day, 7 days a week. Price E15.50 YOUR DOORBELL RING?

DOOR
you a pleasing three-
notmonically CHIME
(not a microprocessor same oid ding dong) at a touch of a button. Thls kit, based on a new integrated circuit, is supplied complete with a printed circuih board,
loudspeaker and drilled box and requires only 9 V battery and push button common to most households It may also be switched by logic in such applications as car alarms, clocks, toys P.A. systems. etc. The unit produces a 150 mW output and draws less than one 1
from a PP3 battery when the tone ceases. Suppiled complete with circult and as sembly instructions. IDEAL PROJECT FOR BEGINNERS

ONLY $£ 5.00$

TRIACS

400 V Plastic Case (texas) 3A TIC206D

 \longrightarrow 16A TIG24606A with trigger O4006LT
8A Isolated tab TXAL228B Diac
Opto Isolated triac MOC 3020 .6A 1400 . $18 p$

IF YOU CAN'T (REMOTE) CONTROL YOURSELF

 Published remote control systems tend to be quitecomplex, requiring difficult-to-get components and a
well-equipped lab to get them to work. fi this has put you well-equipped lab 10 get them 10 work. If this has put you
ofl making your own system we have just the kits for you. off making your own system we have just the kits for you,
Using inlra-red, our KiTS range from simple onloli Using inra-red, our KiTS range from simple on/o off
controllers to coded transmitter/ lececivers with 16 on/ off controllers to coded transmitter receivers with 16 on/oil TV or Hi-Fl systems. The kits are easy to build and e.e. versatite, controlling anything from garage doors to room lig set up-and they are extremely versatile, controling anything from garage doors 10 room lighting fust by adding the required If you can design your own system, we stock a wide range of remote control components at very competitive prices
We have compiled a booklet on remote control, containing circuits, hints, data sheets and detalls of our remote controi kits and components. So don't control yourselfSEND US 30p and a stamped addressed envelope for your copy TODAYI

THE MULTI-PURPOSE TIMER HAS ARRIVED

Now you can run your central heating, lighting, hi-fi system and lots

 more with just one programmable itmer. Ai your selection it isdesigned to control four mains outputs independently swith designed to control four mains outputs independently. switching on
and oft at pre-set times over a 7 day cycle, e.e. to control your central heating (including different switching times for weekends), just connect it to your sys.
clock will do the rest.

features include
 * 0.5 " LED 12 hour display

\#Day of week, am/pm and output status indicators.

* 4 zero voltage switched mains outputs.
* 50160 H 2 mains operation

Battery backup saves
Battery not supplied)
Display blanking durin

* 18 programme time sets.
* Powerful "Everyday" function enabling output to switch every day but use only one time set.
- Useful "sleep" function-turns on output for one hour
\#Direct switch control enabling output to be furned on immedtately or after a specified time interval.
- 20 function keypad for program enin.

THEREMA verification at the touch of a button.
-
(including components, assembly and progis

Our Lamp Dimmer Kit with INFRA RED REMOTE CONTROL will enable you to switch the lights on or off, and sel the brightness, at a push of a button without leaving your armchair, time but it has also been estimated that the savings in shoe leather and carpet wear alone would pay for this unit in approximately 1.3697 years or morel

GARATHE ATYOUAGEDOOR Aftas,

 enable without setting foot from tiged garage output off at the touch garage and your car door to be output operating the of of a buttond drive to be and also it features valid code isor contron. A momen swliched switching iwo latched transmittedircuits (relay relay solid state swic. mains touts with indicated closes transmitter switches mains loads with common by LED, 4 function keys 9 V Ppy $(1 \mathrm{~kW}$ maxia remote opto-isolaf for range of appeniclose, On operation A hand-held a general puroximately 40 1, on 2 , constitutind switching lightemote control included giving a appliances. This, television in the ho aged or unit is ideal and other
ALL PRICES EXCLUDE VAT

EDUCATIONAL EXPANSION WITH SOFTY 2 Plug SOFTY 2 into the EPROM socket of your micco (Z80, 6800,8035 , etc.) prototype system
and SOFTY 2 wlit operate as the ROM in your system but enable you to write data into any system but enable you to write data into any
location, observe memory contents on any black $\&$ white TV and store the programme on a cassette recorder if required.
Various editing facilitles are also available, permilting bytes or blocks of code to be
changed, inserled, deleted etc, enabling the changed, inserted, deleted, etc., enabling the programme to be developed and run on the host computer.

Alter "debugging" SOFTY 2 may be used to programme an EPROM (2716 of 2732
You can also use it as an intelligent EPROM programmer to copy EPROM's from a master or Housed in a bl d.i.l. plug for connection to your prototype system and TV lead. FULLY BUILT AND TESTED-ONLY $£ 169.00$
For further details of SOFTY 2 and the new 280 Assembler/Micro Controller-Menta available at just $£ 115.00$ please send stamped addressed envelope.

THE PERFECT AID FOR "LAZYITIS"

FAST SERVICE•TOP QUALITY-LOW LOW PRICES No circuit is complete without a call to-
ELECTRONICS
11 Boston Road
London W7 3SJ wa
access
ama
andar
aclaycamo
netcome

This unit thas considerable practica uses, especially for the old, infirm
and disabled. It works like a conventional dimmer, enablling you to switch the lights on or off, or to dim them to whatever brightness you require, by touch or using the
hand-held infra red transmitter. When assembled, if fits into a plaster depth box 10 replace your
conventional switch or dimmer whit no rewlring.

TDR300K Dimmer Kit
$\varepsilon 14.30$ MK6 Transmitter KII . We also still sell our highly popular and the Touch Dimmer Kit at £7.00 Dtmmer kit at only $\varepsilon 3.50$ All kits contain ail necessan omponents and full instructions. You only need a soldering fron
on and olf at present times once per CT1000K with white box ($561131 \times 71 \mathrm{~mm}$) day, Kht contains: AY-5-1230 KC, (Ready Built). display drivers, Switches, LEDs,
triacs. PCBs and full instructions.

Ado 50p postage \& packing $+15 \%$
Overseas Customers: Add $£ 1.50$ (Europe), $£ 4.00$ (elsewhere) for $p \& p$ Send S.A.E. for further STOCK DETAILS. Goods by return subject to availability.
24 HOUR CLOCK/APPLIANCE TIMER KIT
(-) ${ }^{-10 \mathrm{am} \text { to } 4 \mathrm{pm} \text { (Sat) } \text { (So Frl) }}$
14.90
17.40
22.50

UXBRIDGE ROAD

01-579 9794/2842

CLEF
 electronic MUSIC

ELECTRONIC
PIANOS
SPECIALISTS SINCE 1972
Clef Pianos adont the most advanced form of Touch Sensitive action which
simulates piano Key inertia using a simulates piano Key inerria
patented electronic technique.

71 OCTAVE DOMESTIC MODEL COMPONENT KIT E244 COMPLETE KIT $£ 395.70$ manufactuato e675 Two Domessic Models are available including the 8 -note full-size version. be used to obtain a wide variation of Piano tone, including Harpsichord. Both Soft and Susiain Pedals are incorporated in the Design and internal Effects are provided in the form of
Tremolo. Honky-Chorus Tremolo, Honky-Chorus. and A power amplifier integrates into the
Piano top which may the removed from the Base for easy transportation.

SIX OCTAVE

DOMESTIC MODEL

COMPONENT KIT £217 MANUFACTUAED E595 Component Kits include Keyboard. Key-switch hardware. and all electronic four stages at no extra cost. Complete Kits further contain Cabinets. wiring harness. Pedals and in the case of
Domestic Models both Power Amplifier Domestic Mos
and Speaker
The Speaker. Octave Stage Piano has the same range of Voices and Effects and is designed for use with an External Amplifier and Speaker.

SIX OCTAVE STAGE MODEL COMPONENT KIT $£ 217$

MANUFACTURED E530

Since 1972 Clef Products have consistently produced leading designs in the fied of Electronic Musical Instruments. many of which have
been published in technical magazines. With musical quality of been published in technical magazines. With musical quality of
paramount imporiance. new techniques have been evolved and the paramount imporiance. new techniques have been evolved and the lates musically valid echnology has been incorporated into projects
which have been successfully completed by constructors over a wide range of technical capability. Back-up TELEPHONE advice to our customers is availabie from the Designer of all Kits advertised.

STRING

 ENSEMBLE (As Published in conjunction whh "Practical Electronics") A very popular Keyboard Synthesizer Kil. for Group or Home use. with a four octave compass and split Keyboard facility.The instrument is fully polyphonic and has two rich Multi-String Voices plus Woodwind and Brass Effects or individual or Mixed use. Variable Attach and Sustain Controls give a good Orchestral Mix with the added concert hall reverberation effect produced by sustain coupled with phase modulation in the Chorus Unit. The Component Kit includes Keyboard. Key-switch hardware. and all electronic components plus tone generator linking wire and Volume Pedal A copy of the P.E. project series can te supplied for $£ 3.00 \mathrm{inc}$ post.

COMPONENT KIT
[179.00

ROTOR-CHORUS

Comprehensive iwo speed
organ rotor simulator plus
hree phase chorus generator on a single $8^{\prime \prime} \times 5^{\prime \prime}$ pcb. The kit includes all components fo mains operation and a stere
headphone driver peb. Easily in legrated with existing organ/amplifer system. COMPONENT KIT £ $^{89} .00$ KEYBOARDS
Our Square Front Keyboards are chosen for their superior fee
to the discerning musician to the discerning musician
whilst giving adequate physical Whist giving adequate physical
strength for the high impact playing present in the Piano

88 NDTE
88 NDTE (A-C) 557.00
73 NOTE (F.F) E47.00
FIVE OCTAVE E 38.00 FOUR OCTAVE E28.75
EXPERIMENTERS A number of our Sub-Kits ar
of interest to Electronic Musi of interest to Electronic Music
and COMPUTER Experiand COMPUTER Experi-
menters. These include the 5502 bascd CONTROLLER and Music system kit used in the BAND BOX. plus a 49 note four pitch
diode Keyswitch system. Sec our lists for Sub-Kit prices.

PRICES INCLUDE VAT, UK CARRIAGE \& INSURANCE (CARRIAGE EXTRA ON MFD PIANOS). Please send S.A.E. for our complete lists, or use our telephone VSA/ACCESS Service.
Competitive quotations ean be given for EXPORT orders - in Competitive quotations can be given for
Australia please contact JAYCAR in Sydney,

CLEF PRODUCTS (ELECTRONICS)
LIMITED
(Dept. P.E.) 44A Bramhall Lans South, Bramhall,
Stochport, Cheshire SK7 1 AH $061-439-3297$
"THE ELectronic BAND-BOX"
COMPLCURRENTLYIN•PRACTICAL ELECTRONICS COMPLETE KIT £289

> £399

MANFD.

PRICES INCLUDE MASTEA RWYTHM A revolution in the field of Computer Music Generation
A MUSICIANS INSTRUMENT FOR
SOLOISTS - SINGERS - RECORDING - PRACTICE LIE COMPOSITION
The BAND-BOX provides an Electronic Backing Trio consisting of Drums, Bass, and a Chord instrument (one of 16
Waveform/Enevelope combinations), with the eapicity to store over 3.000 User Programmabie Chord Changes on more than 120 different Chords. Using adyanced Microprocessor technology, Playback of $50-100$ Scores can be executed in any Key and at chosen Tempo. Complete Music Pad is electronically Indexed and stored on secondary battery back-up. Facility exists for composition of Intro,
Repeat Chorus. and Coda sections including Multiple Score Se quences. Sockets are provided for Volume Pedal and Footswitch plus separate and mixed instrument Outputs. Total size $19^{\prime \prime} \times 11^{\prime \prime} \times 44^{\prime \prime}$
THE
DRUM MACHINE
(As Published in conjuncrion with 'Practical Electronics') EIGHT TRACK PROGRAMMING TWENTY-FOUR PATIERNS
WELVE INSTRUMENTS SEQUENCE OPERATION. COMPLETE KIT MANFO. 1119.00

The Clef Master Rhythm is capable of storing 24 selectable raythmic drum patterns. in vented. moditied, and entered by the Operator on to
Eight Instrumentation tracks. A three position Instrumentation conEight instrumentation tracks. A three position Instrumentation con-
trol expands the number of instruments available to twelve. grouped trol expands the number of instruments available to twelve. grouped
into sounds typical of playing with Drumsticks. Brushes, or Latin into sounds typical of playing
American Bongos and Claves.
Sequence operation allows two rhythm sections to be coupled with the second (B) section appearing at four. eight or sixteen Bar repeti ion. All drums can be adjusted for level and resonance on internal controls to suit individual laste, thus producing good musical sound
in a battery driven unit $8 \dagger^{\prime \prime} \times 5^{\prime \prime} \times 2 \dagger^{\prime \prime}$.

PE CAR COMPUTER

This unit was described by Practical Motorist as: "One of the neatest, most comprehensive and most useful of these car computers that we have yet come across

The PE Car Computer was designed to exceed the specification of all others, both for number of functions and accuracy. As well as the usual functions, it can perform eleven "remaining" type calculations, has a unique "start-stop" mode (used for acceleration timing and the like) and has a combination lock for driving an alarm or ignition cut-out.
The unit is housed in a custom designed box with high quality printed panels having an overall size of $165 \times 50 \times 80 \mathrm{~mm}$ deep. and can be fitted above or below the dashboard. The display is liquid crystal for clarity in all lighting conditions.
The kit includes all sensors, wiring, etc and is suitable for all cars except those fitted with diesel or fuel injection engines.

Kit price: $£ \mathbf{7 8 . 5 0}$ Assembled Price: $£ 88.50$

+ £ 1 p\&p includes VAT.
Send S.A.E. for list of separately available parts.
Please allow 14 days for delivery.

PIMAC SYSTEMS LTD
20 Bloomfield Road, Moseley, Birmingham B1'3 9BY.

Tel: 021-449 0384

"SEE SCAN" (PRINTOID LTD)

FREEPOST, 20/21 ALFRIC SQUARE, PETERBOROUGH PE2 OBR

The designers and manufacturers of the PE Camera Project offer technical club membership/certification to project enthusiasts.

Camera technical support and circuit testing/alignment service available. Various kits and projects always on hand (simple/intermediate/advanced).

Write for full parts list/club application forms (camera/electronics/security products) or ring:

Project '"C'] Engineer

on 0733239111 (4 lines)

Access/Barclaycard accepted.

MICROCOMPUTER COMPONENTS AND SYSTEMS LOWEST PRICES FASTEST DELIVERY

Beginners' luck 10 selected kits for first-time builders

 Shortwave Listener's

With Heathkit, you're all set for a great deal. And not just big savings.

Whichever kit you choose, you'll find it easy to build. Simple, but detailed instructions take you through every stage. Everything is included. Even the solder you need Digital Clock is there

Follow the steps and you'llend up with a handcrafted, well-designed piece of equipment. One you'll be proud of. Because you built it yourself.
There are 10 great kits to start you off. An interesting choice of a digital clock to a metal locator, including a short wave listener's receiver, windspeed and direction indicator, digital readout electronic

BHPAK

CB users. Home base

 POWER SUPPLY 3A Rugged Powerful British Made FEATURES * Sate 3 Amp operation * 13.8 V Fuly requiteded \& Electronic shon circur $\&$ overtoad prolected Latess technology I.C. design- Atractive compact case * Compeilively priced SPECIFICATIONS * mput volage - 240 Vace 50 Hz - Output volisge- 13.8 V d.c. $\pm 1 \%$ Maximum with mains inpur varation $\pm 10 \%$ ioad $0-2.5 A$. Outpul cultent 一 $0-3 \mathrm{Amp}$ * Ripple - less than 2 mv up lo full load Dimensions $-175 \mathrm{lo} \times$ toow $\times 75 \mathrm{~h}(\mathrm{~mm})$ OUR PRICE Only $£ 15.00$ oroea no. 3GA CB Riga and Accessories in stock. Send S. A.E.for full listings

8 Bit MICROPROCESSOR
National INSBOBOAN 40 Pin DIL N. Channel Silicon GATE MOS TECHNOLOGY As used in Nationals N8080 Micro Computer Family Instruction Cycle Time z uS Supplied with functional Block Diagram BRAND NEW -
NOT seconds or reclaims Hy Hy hify hy NOT seconds or reclaims f(y) 100% perfect ORDER NO. S×8080 DIIY Normal sell price $£ 4.50$ each
Our BI-PAK Special Price $£ 20$ SO HURRY - LIMITED STOCKS

40 Pin IC Socket to fit $\mathrm{S} \times 8080$ Otter price ORDER NO. 1609 30p

TECASBOTY

The Electronic Components and Semiconductor Bargain of the Year. A host of Electronic components including potentiometers - rotary and slider. presets - horizontal and vertical Resistors of mixed values $220 \mathrm{hms} 102 \mathrm{M} 2-1 / 8102$ Watt. A comprehensive range of capacitos including electrolytic and polyester yypes plus disc ceramics etcetera. Audio plugs and sockels of various yypes plus switches, fuses, heatsinks, wire, nuts/bolts. gromets, cable clips and tyes, knobs and P.C. Board. Then add to that 100 Semiconductors to include transistors, diodes. SCR's opto's. all of which are current everyday usable devices In all a Fantastic Parcel. No rubbish all identiliable and valued in current catalogues at wel over $£ 25.00$. Our Fight Against Inflation Price.

- Beat the Budget JUST £6.50.

OROEA NO SX 85

Fantastic Audio Bargains

15 watts per channel stéreo amplilier kit Consisting of - ORDER NO. STA15 $2 \times$ AL 60 amplifiers
$1 \times$ PA100 pre-amplifier
$1 \times$ SPM 80 Dower Supply
1×2034 ranstormer
$2 \times$ coupling capacitors for 80 hms 470 mid 50 v and necessary wiring diagrams.

Save over $£ 10$ on this kit $£ 26.00$

5 watt (RMS) Audlo Amp

High Quality audio amplifier Module. Ideal tor use record players, tape recorders. stereo amps and cassette players, etc. Full data and back-up diagrams with each module.
Specification

- Power Output 5 wats RMS © Load Impedance $8: 16$ ohms \bullet Frequency response 50 Hz to $25 \mathrm{KHz}-3 \mathrm{db} \bullet$ Sensitivity 70 mv for full output - Input Impedance 50k ohms Size $85 \times 54 \times 30 \mathrm{~mm} \bullet$ Total Harmenic distortion less than. 5%

BLPAK'S give away pric
12.25

You coutd not 8uild one for this price.

MONO PRE-AMPLIFIERS

MM100 sutable for disco mixer. MMI006 sutable for puitar preamp mixer.
The MMIOD and MMIOOG mono preamplifiers are compatite with the AL6O ALBO AL 120 and AL 250 pown amplifiers end ther associsted power supples. MM100 Supply voltage 40-85v inpurs. Tupe Mag P.U. Microphone Max oufput 500 mm f1205 MM100G Supply voltage 4065 inputs: 2 Gettass. Microphones Max outpur valtage
500 m

Silicon NPN‘L’ TypeTransitors T0-92 Plastic centre collector
Like BC 182 L - 183L - 184 L
VCBO 45 VCEO 30 IC200mA He 100-400
ALL perfect devices - uncoded ORDER AS SXI83 50 of 100 off 500 off 1000 oft $\begin{array}{llll}£ 1.50 & £ 2.50 & £ 10.00 \quad £ 17.00\end{array}$
PNP SILICON TRANSISTORS:
Similar TK $\times 500-$ TKX214 - E-Line
VCEO 40 VCBO 35 lc 300 mA the $50-400$
Brand New - Uncoded - Pefect Devices
50 of 100 oft 500 oft 1000 of
$\begin{array}{llll} \\ £ 2.00 & £ 3.50 & £ 15.00 & £ 25.00\end{array}$
Order as ITXPNP

COMPLETE

AUDIO CHASSIS
STEREO 30 Complete 1 watt per channel Stereo amp boand - inchudes amps, preamp. power supply, from panel, knobs and Transtormer
Almost $1 / 2$ PRICE
212.50

ORDEA NO. ST30

1 Amp SILICON RECTIFIERS Giass Type simiar IN4000 SERIES IN4001-IN4004 50 - 5000 - uncoder - you select tor VITS. All pertect devices - NO ouds Min 50 w 50 tor $\mathbf{\Sigma 1 . 0 0}$ - worth double OROE NO. SX76
Silicon General Purpose NPN Transiturs 10.18 Case 登 Lock fiit leads - coosed CV7644 Similar to BC147 - BC107- ITB9 ALL NEW VCE 7OV ICS00mA Het $75-250$ 50 of 100 off 500 off 1000 oft : PRICE. $£ 2.00$ £3.80 £17.50 £30.00
Silicon General Puypose PNP Transistors TO-5 Case Lock fir eads codea cv9507 simiat INCYOSA IO 50 ort 100 on 500 ofl 1000 ont PRICE: $£ 2.50 £ 4.00 £ 19.00 £ 35.00$

> Hexill Youbuild onour experience HEATHKTT

Ise rovil ciedt cord. Ring us on Ware 3182 NOW and pel pow order even laste. Goods normally sent 2 no Cless Mal.
aemember rou nust adod vilital 15% lo pown ader Pobl. Postrige add 50p pel foul order

EHFAK BARGANS

T21 SCRE WDRIVER SET
6 precision screwarivers in ninged plastic case. Sizes -0.8 .8 1.4. 2. 2. 2.4. 2.9and 3.8mm $\quad 1.75$

5T31 NUT DRIVER SET

5 prectision nut drivers in hinged plasicic case Wilt lưming rod
Sizes: - 3.3 5. 4. 4.5 ano 5 mm E 1.75

5T41 TOOL SET

5 precision instruments in hinged plastic case. Crosspoint (Pththps) screwdrivers:
H 0 and H 1 Hex key wrenches
1.52 and 25 mm \&1.75
5 S51 WRENCM SET
5 precision wrenches in hinged plastic case Sizes: - 4. 4 2. 5. 5.5 and 6 mm . 21.75 BUY ALL FOUR SETS: $5 T 2$. 5551 and get HEX KEY SET FREE HEX KEY SET ON RING Sizes. 1 5. 2. 2.5. 3. 4. 5. 5.5 and 6 mm Made of hardened steel HX/1. £1.25

BI-PAK PCBETCHANT

 AND DRILL KITComplete PC8 Kit comprises
I Expo Mini Drill 10.000RPM $12 v$ DC mcl collets $\& 1 \times 1 \mathrm{~mm}$ Twist bit 1 Sheet PCB Transters. $210 \mathrm{~mm} \times 150 \mathrm{~mm}$. 1 Etch Resist Pen $11 / 2$ ID pack FERRIC CHL ORIDE cryslals. 3 sheets copper clad board 2 sheels fibreglass copper clad board. Full instructions for making your own PCB boards.
Relail value over £ 15.00
OUR BI.PAK SPECIAL KIT PRICE $£ 9.75$ ORDER NO. SXBI

BI-PAK SOLDER DESOLDERKIT

Kit comprises ORDER NO SX80 1 High Quality 40 watt General Purpose Lighiweight Soldering Iron 240 v mains inc $\left.3 / 16^{*} 14.7 \mathrm{~mm}\right)$ bit
1 Ouainty Desoldening pumo High Suction w
automatic ejeclion. Knurled. anti-cor rosive casing and tellon nozzle.
1.5 metres of De-soldering braid on piastic dispenser
2 yds $(1.83 \mathrm{~m})$ Resin Cored Solder on Catd
1 Heal Shunl lool Iweezer Type
Total Relat Value over $£ 12.00$
OUR SPECIAL KIT PRICE E8.95

MINI VICE

This small casl tron qually made vice will clampon to any bench or table having a max
 Bi. Pak's Mini Vice at a Mini Price only

ORDER NO. SX8?

The Third and
 Fourth Hand...

But have never got "until now This heiplut unit with Rod mounled horizontally on Heavy Base. Crocodile clips attached to rod ends. Six ball 8 socket joints give infinite variation and positions ihrough 360° also available attached to Rod a $21 / 2$ diam magnitier giving $2.5 \times$ magnitication Helping hand unit available with or without magnitier. Our Price with magnitier as illustrated ORDER NO. T402 \& 5.50
Without magnitier ORDER NO. $1400 £ 4.75$

BRAND NEW LCD DISPLAY MULTITESTER.

RE 188 m
LCD 10 MEGOHM INPUT IMPEDANCE
$-31 / 2$ digit - 16 rangés pius MFE lesi lacilily for PNP and NPN Iransistors Auto zero auto polanty - Single-handed. pushoutton operation ${ }^{\circ}$ Over range indication $\cdot 125 \mathrm{~mm}$ ('s. Inch) large LCD readout "Urode check - Fust cricuir protection ${ }^{\text {T Test teads. }}$ batlery and instructions included
Maxindication 1999 or - 1999
Polanty indication Negative only Posilve readings appear Positive readings
wilhout + sign
Input impedance 10 Megotms Zeroadjusi Automalic Sampling time 250 milliseconos Temperature range $-5^{\circ} \mathrm{C} 1050^{\circ} \mathrm{C}$ Power Supply ixPP3 or equivatent 9v Consumption battery Size SIze
RANGES
DC voltage 0.209 mv
$0 \cdot 2 \cdot 20 \cdot 200 \cdot 1000 \mathrm{~V}$ Acc 08% AC Voltage $0-200-1000 \mathrm{~V}$ Acc 12% DC Current 0 - 200 uA $0-2 \cdot 20-200 \mathrm{~mA} 0 \cdot 10 \mathrm{~A}$. Acc : 2% Resistance $0 \cdot 2 \cdot 20 \cdot 200 \mathrm{~K}$ ohms 0.2 Megohms Acc: 1% BI-PAK VERY LOWEST POSS PRIC ¢35.00 eact

Plastic Boxes

Coloured Black, Close fitting.
Flanged Lid. Ilxung screws into brass busthes SIZE "L W I Order No. Price
$\begin{array}{lllll}4 & 2 & 1 & 141 & £ 1.00 \\ 4146 & 2^{1 / 2} & 11 / 2 & 143 & £ 1.30\end{array}$
$\begin{array}{lllll}41 / 4 & 21 / 2 & 11 / 2 & 143 & £ 1.30 \\ 6 & 31 / 4 & 2 & 144 & £ 1.50\end{array}$

Price $83 p$

83p
83p
83p
57p
ع 1.86
c. 1.12
$11 / 2 \quad 148 \quad<2.14$ Plastic as above but with aluminum top panei $\begin{array}{llll}43 / 4 & 146 \quad \text { £1.40 }\end{array}$ $51 / 24^{1 / 4}$

MW398 NI-CAD CHARGER

Univer sal Ni-Cad battery charger. All plastic case with lift up lid. Charge/Test swith. LED indicators at each of the live charging poinls

Charges - Power: PP3 (9V) $\quad 220-240 \mathrm{~V} \mathrm{AC}$

All measufements for boxes are shown in inches. $L=$ Length. $W=$ Width. $H=$ Height

AESISTAESISTAELE

Pan No on TOR AAROAE
 $\begin{array}{lll}\text { Sun mo } & \text { On: Descriation } \\ 5 \times 10 & 400\end{array}$

$\begin{array}{lll}5 \times 10 & 100 & \text { Mescription } \\ 5 \times 11 & 400 & \text { Mixelorint }\end{array}$

$\begin{array}{lll}5122 & 200 & \text { Resistors } \\ 5 \times 13 & 200 & 1 \\ 5 \times 14 & 200 & \text { walf Carbon }\end{array}$

 of assorted values from arange of Carbon fitm Resistis Dounds on these resistou 22 ohms to 22 maeg Savesto
Cover your projects
Quantilies approum

MOTOROLA PIEZO

 ELECTRIC TWEETER Maximum Ratings:25 volts fms which is equal to 200 watls across 4 ohms 100 watts across 8 ohms 50 waths across 16 ohms BI-PAK SPECIAL OFFER PRICE £4.03 ORDER NO. 1907

DOME TWEETER

Dome tweeter for systems up 1050 w .
Impedance 8 otms
Frequency Response: $2000-20.000 \mathrm{~Hz}$ Dims 98 mm diam. $\times 31 \mathrm{~mm}$ deen Dims 98 mm diam. $\times 1 \mathrm{mmmo}$
Out Price $\mathbf{2} .85$ OMT200
cCAPABLE
 ${ }^{5}+20$

AUDIO PLUGE, SOCKETS

 25 , inees of Autio PESSORS RIESSDeahers. Phomade Din 180 - 240° Sockefs ana Connections at well di well ower 13 normal Order No skano etc eic Vatue Der dah Guaranleed to saver you moner Our Price $\$ 150$
SX26 3 Pis of 6 pin 240 orn Pi
5×38

100 Silicon NPN Jiansistors-all Derlect
Coded mised lypes with data and perfect
sheet No rejects Real value and equt
100 Silicon PNP Tramsistors
Coded mized types wilh dars-all pertect
sheet No rejects fantaslict and equit

BI-PAK'S COMPLETELY NEW CATALOGUE

Comipletely re designed full ol the type of components you requie plus some vely interesting ones you will soon be using and of course. the largest tange of semiconductors tor the Amateut and Piolessional you coutd hope to find There are no wasted pages of useless information so often included in Calafogues published nowadays lusl solvd lacts ie pice. description and individual fealues of what we have avalable But iemember. Bi Pah's policy has alwars been to sell quatity components at compelifive prices and IHAr WE STILL DO.
BI.PAK'S COMPLLILLY MEW CATALOCUI Is now avallable to you You will be amared how much you can save when you shod lor Electronic Components wit a Bi-Pan Catalogue Have one by you all the tume-1t days to buy BI-Pak
To rece eve your copy send $\mathbf{7 5} \boldsymbol{p}$ plus 25 p D\& D

TRIACS - PLASTIC

4 AMP - 400 v - T0202- TAG 136C.			
10 FF	10 OFF	50 OFF	100 OFF
40p	¢ 3.75	¢17. 50	¢30.00
8 AMP 400\%	- 1022	G 425	

80 MP
60 l

Everyday Electronics

 KIt 2 \& 8.94 price $£ 23.001$

IC SOCKETS

The lowest price ever. The more you buy the cheaper they con Pin 10 ott 50 ofl 100 off $\begin{array}{llll}8 & 75 p & £ 3.00 & £ 5 \\ 14 & 80 p & £ 3.25 & £ 5.50\end{array}$ VOLTAGE REGULATORS T0220 \qquad $\begin{array}{ll}7812-50 p & 7912-55 p\end{array}$ $7815-500^{2}$
$7828-500$
$7924-550$ Tplease
state $7825-500-7924-550$ requred
Other types 1 M $380 \mathrm{O}-6$ volt -18 voit - 24 volt $\mathrm{TO3}$ - 40p. UA723-14 pin OIL - 40p

Use poul ciedh card. Ring us on Ware 3182 wow and
 Cles Mal.
RCLAYCARD ALSO ACCEPTED TEL (Og20) 31 B2 GIRO 388 IO TDD 15 ; VAT AND 50p PER ORDER POSTAGE AND PACKING.
 Total. Pouture ade SOp per Poutade

CAMBRIDGE LEARNING

SELF-INSTRUCTION COURSES

A PRACTICAL DIGITAL ELECTRONIC KIT FOR H LESS THAN $£ 20$ 令

SUPERKIT

㬗:
zumborma:
каи:
Digital Electronic Kit suitable for begimners

SUITABLE FOR BEGINNERS

Learn the wonders of digital electronics and see how quickly you. are designing your own circuits. The kit contains
seven LS TTL integrated circuits, breadboard, LEDs, and all the DIL switches, resistors, capacitors, and other components to build interesting digital circuits; plus a very clear and thoroughly tested instruction manual (also available sepahately) All this comes in a pocket size plastic wallep for ately). All comes in a pocket size only f19-90p inc VaT and p\&p. This course is for true beginners:

- needs no soldering iron.
asks plenty of questions, but never leaves you stuck and helpless.
teaches you about fault-finding, improvisation, and subsystem checking.
the only extra you need is a $4 \frac{1}{2} V$ battery (Ever Ready 1289, or similar), or a stabilised 5 V power supply. Using the same breadboard you may construct literally This course teaches boolean logic, gating, R-S and I-K flipflops, shift registers, ripple counters, and half-adders. flipflops, shift registers, ripple counters, and half-adders.
look out for our supplementary kits which will demonstrate Look out for our supplementary kits which will demonstrate
advanced arithmetic circuits, opto-electronics. 7-segment displays etc.
Other self-instruction courses from Cambridge Learning Lid include
COMPUTER PROGRAMMING IN BASIC

Please send for full details (see coupon below).
GUARANTEE No risk to you. If you are not completely satisfied. your money will be refunded upon return of the trem in good condition within 28 days of receipt.
CAMBRIDGE LEARNING LIMITED, UNIT 23, RIVERMILL SITE,
FREEPOST, ST IVES, CAMBS, PE174BR, ENGLAND
TELEPHONE: ST IVES (0480) 67446, VAT No. 313026022
All prices include worldwide postage fairmail is exir please ask for prepayment invoice). Giro A/c No 2789159 Please allow 28 days for delivery in UK Please send me
. SUPERKIT(S) £19.90
..Free details of your other self-instruction courses.
1 enclose a *cheque/PO payable to Cambridge Learning Ltd for £.......... (*delete where applicable)
Please charge my:
Access / American Express / Barclaycard / Diners Club Eurocard / Visa. / Mastercharge / Trustcard
Expiry Date............ Credit Card No
Signature... .
Telephone orders from card holders accepted on 048067446 Overseas customers (including Eire) should send a bank draft in sterling drawn on a London bank, or quote credit card number.
\qquad
\qquad

Cambridge Learning Limited, UNIT 23, Rivermill Site, FREEPOST, St Ives, Huntingdon, Cambs, PE17 4BR, England. (Registered in England No. 1328762)

COMPUTER USER AIDS

APPROVED VIDEO GENIE DEALERS

We now stock the Superb new GENIE I computer. With all the features that nake it one of the best value for money machines on the market.

* Extended Basic including Renumber
* Full upper and lower case
* Internal Sound unit
- Machine lang̀uage monitor
* 16 K Ram, 12 K Rom
* Fully TRS80 software Compatible

PRINTERS FROM $\mathbf{E 2 7 9}$
A range of the best and most popular printers all at greatly reduced prices Many include FREE paper and FREE delivery to mainland UK.

- Epsom MX80 FT and T
* Epson MX82 and MX100
* OKI Microline 80, 82a and 83a
* Range of interfaces for PET APPLE UK101 etc
* Paper just $£ 15.00$ per 2000 sheers inc VAT
 possible prices.

8 T28 Bufters $\mathbf{f 1 . 0 0}+$ VAT C12 tapes $\mathbf{5 3 . 5 0}+$ VAT UK101 Graphics Board $\mathbf{\$ 4 5 . 0 0}+$ VAT

MAIL ORDER or why not call into our shop in Romford. We are open Monday to Saturday 9-6 p.m.
14 CARLTON ROAD, ROMFORD, ESSEX 0708-64954

So you've fancied some

 WHARFEDALE E90 speakers -But the bank manager won't co-operate! Don't despair -
now there are
Wilmslow Audio
flat-pack kits for
E50 Wharfedale
E50, E70 and E9
A few hou
easy and
easy and
interesting wor
will complete your speakers at
a very
considerable
saving on buying 'assembled'
Esystems.

The kits contain all cabinet components - accurately machined for easy assembly - all drive units, crossover networks, acoustic wadding, reflex port trim, nuts, bolts, terminals, grille fabric, etc. The cabinets can be painted or stained or finished with iron-on veneer. Easy, foolproof assembly instructions are supplied - no electronic or woodworking knowledge necessary
Prices: E50 kit $\mathbf{£ 1 8 2}$ per pair including VAT, carriage and insurance $£ 8$ E70 kit £220 per pair including VAT, carriage and insurance \& 8 E90 kit $\mathbf{£ 3 3 0}$ per pair including VAT, carriage and insurance £10
Pro E90 kit £369 per pair including VAT, carriage and insurance £10 Credit terms available: Deposit 20%, balance over 12 months (charges currentry 31.2 APR)

35/39 Church Street, Wilmslow, Cheshire SK9 1AS

The

 Proto-BoardNow circuit designing is as easy as pushing a lead into a hole . . . No soldering No de-soldering No heat-spoilt components No manual labour No wasted time

For quick signal tracing and circuit modification For quick circuit analysis and diagramming
With or without built-in regulated power supplies
Use with virtually all parts - most
plug in directly, in seconds.
Ideal for design, prototype and hobby

No	modet	No of SOLDERLESS TiE POINTS	IC 114 an Dips	$\begin{aligned} & \text { UNIT } \\ & \text { PRICE } \end{aligned}$	PRICE inc pg 15^{*}. VAI	OTMEA featuats
1	PB6	630	6	9.20	11.73	Kit
2	P8 100	760	10	11.80	14.72	Kit
3	PB 101	940	10	17.20	21.21	
4	PB 102	1240	12	22.95	27.83	
5	P8 103	2250	24	35.95	43.06	
6	PB 104	3060	32	47.95	56.86	
7	PB 203	2250	24.	59.95	70.66	5V@1A
8	PB203A	2250	24	85.00	99.47	$5 \mathrm{~V} \pm 15 \mathrm{~V}$
9	PB 203AK	2250	24	69.00	81.07	$\begin{aligned} & 5 \mathrm{~V} \pm 15 \mathrm{~V} \\ & \& \mathrm{KIt} \end{aligned}$

Tomorrow's tools for today's problems $\begin{gathered}\text { Good desengiched } \\ \text { witinin } 4 \text { n houss. }\end{gathered}$
global specialties corporation

G.S.C. (UK) Limited, Dept. 5 U Unit 1, Shire Hill Industrial Estate,
Saffron Walden, Essex. CB11 3AQ.
Telephone: Saffron Walden (0799) 21682
Telex: 817477
G.S.C. (UK) Limited, Dept. 5U, Unit 1. Shire Hill Industrial Estate, Saffron Walden, Essex C811 3AQ.

FOR IMMEDIATE ACTION - The G.S.C. 24 hour 5 day a week service	For FREE
Telephone (0799) 21682 and give us your Barclaycard, Access,	catalogue

Sinclair 2X81 Personal Comp the heart of a system that grows with you.

1980 saw a genuine breakthrough the Sinclair ZX80, world's first complete personal computer for under $£ 100$. Not surprisingly, over 50,000 were sold.

In March 1981, the Sinclair lead increased dramatically. For just $£ 69.95$ the Sinclair ZX81 offers even more advanced facilities at an even lower price. Initially, even we were surprised by the demand - over 50,000 in the first 3 months!

Today, the Sinclair ZX81 is the heart of a computer system. You can add 16 -times more memory with the ZX RAM pack. The ZX Printer offers an unbeatable combination of performance and price. And the $Z X$ Software library is growing every day.
Lower price: higher capability With the ZX81, it's still very simple to teach yourself computing, but the ZX81 packs even greater working capability than the ZX80.

It uses the same micro-processor, but incorporates a new, more powerful 8K BASIC ROM - the 'trained intelligence' of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays.

And the ZX81 incorporates other operation refinements - the facility to load and save named programs on cassette, for example, and to drive the new ZXPrinter.

Every $\mathrm{ZX81}$ comes with a comprehensive, specially- written manual - a complete course in BASIC programming, from first principles to complex programs.

Higher specification, lower price -

 how's it done?Quite simply, by design. The ZX80 reduced the chips in a working computer from 40 or so, to 21 . The ZX81 reduces the 21 to 4 !

The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from the ZX80!
New, improved specification - Z80A micro-processor - new faster version of the famous $Z 80$ chip, widely recognised as the best ever made.

- Unique 'one-touch' key word entry: the ZX81 eliminates a great deal of tiresome typing. Key words (RUN, LIST, PRINT, etc.) have their own single-key entry.
- Unique syntax-check and report codes identify programming errors immediately.
- Full range of mathematical and scientific functions accurate to eight decimal places.
- Graph-drawing and animateddisplay facilities.
- Multi-dimensional string and numerical arrays.
- Up to 26 FOR/NEXT loops.
- Randomise function - useful for games as well as serious applications. - Cassette LOAD and SAVE with named programs.
- 1K-byte RAM expandable to 16 K bytes with Sinclair RAM pack.
- Able to drive the new Sinclair printer.
- Advanced 4-chip design: microprocessor, ROM, RAM, plus master chip - unique, custom-built chip replacing 18 ZX80 chips.

Built: £69.95

Kit or built -it's up to youl

 You'll be surprised how easy the ZX81 kit is to build: just four chips to assemble (plus, of course the other discrete components) - a few hours' work with a fine-tipped soldering iron. And you may already have a suitable mains adaptor -600 mA at 9 V DC nominal unregulated (supplied with built version).Kit and built versions come complete with all leads to connect to your TV (colour or black and white) and cassette recorder.

ter-

 Available now

 Available nowthe IX Printerthe IX Printer for only £49.. ${ }^{5}$

 for only £49.. ${ }^{5}$}Designed exclusively for use with the ZX81 (and ZX80 with 8K BASIC ROM), the printer offers full alphanumerics and highly sophisticated graphics.

A special feature is COPY, which prints out exactly what is on the whole TV screen without the need for further intructions.

At last you can have a hard copy of your program listings - particularly

How to order your ZX81

BY PHONE - Access, Barclaycard or Trustcard holders can call
01-200 0200 for personal attention 24 hours a day, every day.
BY FREEPOST - use the no-stampneeded coupon below. You can pay
useful when writing or editing programs.

And of course you can print out your results for permanent records or sending to a friend.

Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZXPrinter connects to the rear of your computer - using a stackable connector so you can plug in a RAM pack as well. A roll of paper (65 ft long $x 4$ in wide) is supplied, along with full instructions.
by cheque, postal order, Access, Barclaycard or Trustcard.
EITHER WAY - please allow up to 28 days for delivery. And there's a 14-day money-back option. We want you to be satisfied beyond doubt and we have no doubt that you will be.

Designed as a complete module to fit your Sinclair ZX80 or ZX81, the RAM pack simply plugs into the existing expansion port at the rear of the computer to multiply your data/program storage by 16 !

Use it for long and complex programs or as a personal database. Yet it costs as little as half the price of competitive additional memory.

With the RAM pack, you can also run some of the more sophisticated ZX Software - the Business \& Household management systems for example.

Oty	Item	Code	Item price ε	
	Sinclair 2×81 Personal Computer kit(s). Price includes ZX81 BASIC manual, excludes mains adaptor.	12	49.95	
	Ready-assembled Sinclair ZX81 Personal Computer(s). Price includes ZX81 BASIC manual and mains adaptor.	11	69.95	
	Mains Adaptor(s) (600 mA at 9 V DC nominal unregulated).	10	8.95	
	16K-BYTE RAM pack.	18	49.95	
	Sinclair ZX Printer.	27	49.95	
	8K BASIC ROM to fit $Z \times 80$.	17	19.95	
	Post and Packing.			2.95
\square Please tick if you require a VAT receipt			TOTAL £	
*I enclose a cheque/postal order payable to Sinclair Research Ltd, for $£$ *Please charge to my Access/Barclaycard/Trustcard account no.				
-Plea	delete/complete as applicable.			1

\qquad
Address:

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

.
5
201 NarthServire Raad, Brentwand, EsEEK

Metal cased 9°

CROFTON MONITOR

10 MHZ Bandwidth P4 Standard £59.50 + VAT ($£ 68.42$) plus carriage $\{3.00$ For P31 (green) high resolution tube add $£ 12.50+$ VAT ($£ 14.38$)

NEW

NEW.PRINCE MONITOR

High resolution 24 MHZ Bandwidth P31 (green)Standard for only $£ 78.00$ +VAT
($£ 89.70$) plus
carriage £3.00

CROFTON ELECTRONICS LTD
35 Grosvenor Road, Twickenham, Middx TW1 4AD 01-891 1923/1513

Now the time can tell you!

New - from Silicon Speech Systems la Powertran subsidiary) - the first ever easy-to-build kit that will give a whole new meaning to the 'speaking clock'! Electronics and quartz technology combine to enable you to construct a talking timepiece that is interesting to build - fun to have!

Full instructions make this a kit with equal appeal to the beginner or experienced constructor. IAM ONLY £24.50
(includes VAT and Post \& Pkg)

- Accurate to a minute a year
- Adjustable voice pitch
- Grained stainless-steel case
- Pocket size - approx. 5 in. \times
 $2 \frac{1}{2} \mathrm{in} . \times 1 \mathrm{in}$.
- Useful in the home or office
- As heard on BBC radio

Silicon Speech Systems

(A Powertran Subsidiary)
PORTWAY INDUSTRIAL ESTATE, ANDOVER, HANTS., SP10 3WN
TELEPHONE ORDERING FOR ACCESS/BARCLAY CARD CUSTOMERS IS NOW AVAILABLE
JUST PHONE YOUR ORDER AND GIVE YOUR CARD NO. RING ANDOVER (O264) 64455

ELECTRONIC IGNITION KIT

TOTAL ENERGY DISCHARGE electronic
ignition gives all the well known advantages of the best capacitive discharge systems.

PEAK PERFORMANCE \qquad higher output voltage under all conditions.
IMPROVED ECONOMY no loss of ignition performance between services.

FIRES FOULED SPARK PLUGS no other system can better the capacitive discharge system's ability to fire fouled plugs.

ACCURATE TIMING _ prevents contact wear and arcing by reducing load to a few volts and a fraction of an amp.
SMOOTH PERFORMANCE —— immune to contact bounce and similar effects which can cause loss of power and roughness.

PLUS

SUPER POWER SPARK — $31 / 2$ times the energy of ordina capacitive systems - $31 / 2$ times the power of inductive systems.
OPTIMUM SPARK DURATION 3 times the duration of ordinary capacitive systems - essential for use on modern cars with weak fuel mixtures.
BETTER STARTING —ull spark power even with low battery.
CORRECT SPARK POLARITY unlike most ordinary C.D. systems the correct output polarity is maintained to avoid increased stress on the H.T. system and operate all voltage triggered tachometers.
L.E.D. STATIC TIMING LIGHT for accurate setting of the engine's most important adjustment.
LOW RADIO INTERFERENCE fully suppressed supply and absence of inverter 'spikes' on the output reduces interference to a minimal level.
DESIGNED IN RELIABILITY an inherently more reliable circuit combined with top quality components - plus the 'ultimate inşurance' of a changeover switch to revert instantly back to standard ignition.

IN KIT FORM

it provides a top performance electronic ignition system at less than half the price of competing readybuilt systems. The kit includes everything needed, even a length of solder and a tiny tube of heatsink compound. Detailed easy-to-follow instructions, complete with circuit diagram, are provided - all you need is a small soldering iron and a few basic tools.
AS REVIEWED IN
ELECTRONICS TODAY INTERNATIONAL JUNE '81 ISSUE and EVERYDAY ELECTRONICS DECEMBER ' 81 ISSUE
FITS ALL NEGATIVE EARTH VEHICLES,
6 or 12 volt, with or without ballast
OPERATES ALL VOLTAGE IMPULSE TACHOMETERS Some older current impulse types (Smiths pre '74) require an adaptor PRICE £2.95

STANDARD CAR KIT £14.85 ASSEMBLED AND TESTED £24.95

TWIN OUTPUT KIT £ 22.94
For MOTOR CYCLES and CARS with twin ignition systems
ASSEMBLED AND TESTED £34.70
Prices include V.A.T.
ELECTRONIZE DESIGN Dept. B

Magnus Road, Wilnecote, barclatcard
Tamworth. B77 5BY
Phone 0827-281000

DIMENSIONS:

Length	12.5 cm
Width	8.9 cm
Height	4.3 cm
Lead length	100.0 cm

TECHNICAL DETAILS

The basic function of a spark ignition system is often lost among claims for longer 'burn times' and other marketing fantasies. It is only necessary to consider that, even in a small engine, the burning fuel releases over 5000 times the energy of the spark, to realise that the spark is only a trigger for the combustion. Once the fuel is ignited the spark is insignificant and has no effect on the rate of combustion. The essential function of the spark is to start that combustion as quickly as possible and that requires a high power spark.

The traditional capacitive discharge system has this high power spark but, due to it's very short spark duration and consequential low spark energy, is incompatible with the weak air/fuel mixtures used in modern cars. Because of this most manufacturers have abandoned capacitive discharge in favour of the cheaper inductive system with it's low power but very long duration spark which guarantees that sooner or later the fuel will ignite. However, a spark lasting $2000 \mu \mathrm{~S}$ at $2000 \mathrm{rev} / \mathrm{min}$. spans 24 degrees and 'later' could mean the actual fuel ignition point is retarded by this amount.

The solution is a very high power, medium duration, spark generated by the TOTAL ENERGY DISCHARGE system. This gives ignition of the weakest mixtures with the minimum of timing delay and variation for a smooth efficient engine.

SUPER POWER DISCHARGE CIRCUIT A brand new technique prevents energy being reflected back to the storage capacitor, giving $3^{1 / 2}$ times the spark energy and 3 times the spark duration of ordinary C.D. systems, generating a spark powerful enough to cause rapid ignition of even the weakest fuel mixtures without the ignition delay associated with lower power 'long burn' inductive systems.

HIGH EFFICIENCY INVERTER A high power, regulated inverter provides a 370 volt energy source - powerful enough to store twice the energy of other designs and regulated to provide sufficient output even with a battery down to 4 volts.
PRECISION SPARK TIMING CIRCUIT This circuit removes all unwanted signals caused by contact voli drop, contact shuffle, contact bounce, and external transients which, in many designs, can cause timing errors or damaging un-timed sparks. Only at the correct and precise contact opening is a spark produced. Contact wear is almost eliminated by reducing the contact breaker current to a low level - just sufficient to keep the contacts clean.

TYPICAL SPECIFICATION

TOTAL ORDINARY ENERGY CAPACITIVE DISCHARGE DISCHARGE

SPARK POWER (PEAK)	140 W	90 W
SPARK ENERGY (STORED ENERGY)	$\begin{aligned} & 36 \mathrm{~mJ} \\ & 135 \mathrm{~mJ} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~mJ} \\ & 65 \mathrm{~mJ} \end{aligned}$
SPARK DURATION	$500 \mu \mathrm{~S}$	$160 \mu \mathrm{~S}$
OUTPUT VOLTAGE (LOAD 50pF EQUIVALENT TO CLEAN PLUGS)	38 KV	26 KV
OUTPUT VOLTAGE (LOAD $50 \mathrm{pF}+500 \mathrm{~K} \Omega$ EQUIVALENT TO DIRTY PLUGS)	26 KV	17 KV
VOLTAGE RISE TIME TO 20 KV (Load 50pF)	$25 \mu \mathrm{~S}$	$30 \mu \mathrm{~S}$
TOTAL ENERGY 'DISCHARGE should not be inductive systems or hybrid so called reactive s Goods normally despatched with	confused stems. in 7 day	h low

 STEREO AMPLIFIER KIT

- Featuring latest SGS/ATES TDA 200610 watt output IC's with in-built thermal and short circuit protection. - Mullard Stereo Preamplifier Module.
- Attractive black vinyl finish cabinet, $9^{\prime \prime} \times 81 / 4^{\prime \prime} \times 33 / "^{\prime \prime}($ approx) - $10+10$ Stereo converts to a 20 watt Disco amplifier. To complete you just supply connecting wire and solder. Features include din input sockets for ceramic cartridge, mi Features include din input sockets for ceramic cartridge, mi rophone, tape or tuner. Outpuis - tape, speakers and headphones. By the press of a button it transforms into a 20 watt mono disco ampliffer with iwin deck mixing. The kit incorporates a Mullard LP1183 pre-amp module, plus power amp assembly kit and mains power supply. Also features 4 slide level controls, rotary bass and treble controls and 6 push button switches. Silver finish fascia with matching knobs and contrasting cabinet. Instruction available, price 50 p.
£14.95
Plus E2.90 p\&
SPECIFICATIONS: Suitable for 4 to 8 ohm speakers.
Frequency response $\quad 40 \mathrm{~Hz}-20 \mathrm{KHz}$.
Input sensitivity P.U. 150 mV . Aux. 200 mV
Tone controls Bass $\pm 12 \mathrm{db} @ 60 \mathrm{~Hz}$
Distortion Treble $\pm 12 \mathrm{db}$ @ 10 KHz
$\begin{array}{ll}\text { Mains supply } & 220.250 \text { volts } 50 \mathrm{~Hz} \text {. }\end{array}$
STEREO MAGNETIC PRE-AMP CONVERSION KIT Includes FREE Magnetic cartridge with diamond styli. All components including p.c.b. to convert your ceramic input on the $10+10$ to magnetic.
Oniy available with $10+10 \mathrm{amp}$. $£ 2.00$ includes p\&p.
8" SPEAKER KIT Two 8" iwin cone domestic speakers £4.75 per stereo pair plus $£ 1.70$ p\&p. when purchased with amplifier. Available separately $\mathbf{£ 6 . 7 5}$ plus $\mathbf{£ 1 . 7 0}$ p\&p.
PRACTICAL ELECTRONICS
CAR RADIO KIT
SERIES II
2 WAVE
BAND
BAND
- Easy to build
- 5 push button
tuning * Modern design
- 6 watt output • Ready etched
and punched PCB - incorporates suppression circuits. All the electronic components to build the radio, you supply only the wire and the solder, featured in Practical Electronics March issue. Features: pre set tuning with 5 push button options, black illuminated tuning scale. The P.E. Traveller has a 6 watt output neg. ground and incorporates an integrated circuit output stage, a Mullard IF Module LP 1181 ceramic filter type pre-aligned and assembled, and a Bird pre-
£10.50 aligned push button tuning unit. Plus E2.00 p\&p Suitable stainless steel fully retractable aerial (locking) and speaker ($6^{\prime \prime} \times 4^{\prime \prime} \mathrm{app}$.).
available as a kit complete. $\quad \mathbf{E 1 . 9 5 / p a c k .}$ Plus $\mathbf{£ 1 . 1 5 \text { p\&p. }}$

HIGH POWER AMPLIFIER MODULES
READY BUILT OR IN KIT FORM 125 WATT MODEL $£ 10.50$ ${ }_{\text {Plus }} \mathrm{E} 10.15$ p\&
£14.95
 200 WATT MODEL Plus $£ 1.15$ p\&p Plus $£ 1.15 \mathrm{p} \& \mathrm{p}$.
SPECIFICATIONS:
Max. output power (RMS) Max. output power (RM
Operating voltage (DC) Operating voltage (DC) 125 watts. Loads 4.16 ohms. Frequency response measured @ 100 watts - 16 ohm Sensitivity for 100 watts $25 \mathrm{~Hz}-20 \mathrm{KHz}$ Typlcal T.H.D.@
50 watts 4 ohms
50 watts, 4 ohms 0.1% 205 5×90 and 1 0.1%
190×36 Dimensions (both models) 205×90 The power amp kit is a module for high power applications - disco units, guitar amplifiers, public address systems
and even high power domestic systems. The unit is protected and even high power domestic systems. The unit is protected against short circuiting of the load and is sate in an open
circuit condition. A large safety margin exists by use of

$30+30$ WATT STEREO AMPLIFIER

Viscount IV unit in teak simulate cabinet, silver finished rotary controls and pushbuttons with matching fascia, mains indicator and stereo jack socket. Functions switch Rear panel features fuse holder. DIN speaker and input socket $30+30$ watts RMS, $60+60$ watts peak. For use with 4 to 8 ohm speakers.
Size $14 y^{\prime \prime} \times 10^{\prime \prime}$ approx
£32.90 BUILT AND TESTED.

Plus $£ 3.80$ p\&p
TV SOUND TUNER KIT
as featured in E.T.I. December ' 81 issue. Kit of parts including PCB, UHF tuner, I.C.'s, all components excluding case, and selector switch, $£ 11.45+£ 1.50 \mathrm{p} \& \mathrm{p}$.

- Transformer $£ 1.50+£ 1.50$ p\&p (p\&p free on trans. former if ordered with kit). *Ready built LP1183 Module for simulated stereo operation $£ 1.95+75 p$ p\&p.

generously rated components, result, a high powered rugged unit. The PC Board is back printed, etched and ready to drill for ease of construction and the aluminium chassis is preformed and raady to use. Supplied with all parts, circuit diagrams and instructions.
ACCESSORIES:
Suitable LS coupling electrolytic for 125 W model
Suitable LS coupling electrolytic for 200W model
Suitable mains power supply unit for 125 W mode!
Suitable Twin transformer power supply for 200W model

MONO MIXER AMPLIFIERS

50 WATT Six individually mixed Inpurs for two pick ups Cer. or Mag.l, two moving coil microphones and two auxiliary for tape, tuner, organs, etc. Eight slider controls - six for level and two for master bass and treble, four extra treble conerols for mic and aux inpurs. Size: $131 /{ }^{\prime \prime} \times 61_{2}^{\prime \prime} \times 3 y / /^{\prime \prime} \mathrm{app}$. Power output 50 watts R.M.S. (continuous) for use with 4 to 8 ohm speakers. Attractive
black vinyl case with matching
£39.95
ascia and knobs. Ready to use.
Plus $\mathbf{f 3 . 7 0 p \& p .}$

100 WATT
Brustied
Aluminium fascia and rotary controls.
Size: approx. $14^{\prime \prime} \times 4^{\prime \prime} \times 10 \%$
Five vertical sliter controls, master volume, tape level, mic level, deck level, PLUS INTERDECK FADER for perfect graduated change from record deck No. 1 to No. 2, or vice versa. Pre fade level controls (PFL) lets YOU hear the next disc before fading it in
VU meter monitors output.
£76.00
100w RMS output (200w peak).
Plus $\mathbf{E 4 . 6 0} \mathrm{p}$ \&p.

CALLERS ONLY
323 Edgware Rd, London W2. Tel: 01-723 8432. Open $9.30 \mathrm{am} \cdot 5.30 \mathrm{pm}$. Closed all day Thursday. Persons under 16 not served without parents authorisation.
ALL PRICES INCLUDE VAT AT 15%
MAIL ORDER ONLY
21B HIGH STREET, ACTON, W3 6NG.
Note: Goods despatched to UK postal addresses only. For further information send for instructions 20p plus stamped addressed envelope. All goods delivered within 14 days of receipt of order.

[^1]
FREE

While reading the local paper recently, the thought occurred that there must be hundreds of electronics hobbyists with odd bits of test gear, audio equipment, or components stacked away that they could sell in an "under a tenner" column of the type now found in many local papers. During discussions in the editorial office it was thought to be an excellent idea and that we could run advertisements with no price limit, provided the service was only available to private readers and not to the trade or anyone making money from buying and selling anything to do with electronics. After all, the trade can advertise in our pages or take a classified space, but with the cost of classifieds rising it is not a viable proposition for the reader who would like to sell a few components, a speaker or a meter.

We think a readers free ad. page will be of interest to most readers, will encourage an interface between hobbyists and could realise some cash to help with our hobby. We want to encourage you to buy, sell or swap anything to do with electronics from a bag of resistors to a printer, computer, organ, TV or oscilloscope but we have
decided that we cannot accept ads. for computer software. After all, if you're writing and selling software you are 'in business" and if you're selling someone else's you're probably infringing their copyright!

PE BAZAAR

We have decided to call the feature PE Bazaar as we feel this term describes perfectly just what it's all about. As we have said it is for PE readers only and we have thus instigated a coupon system for sending in ads. This means that you must have an up to date issue to send in your ad. and you must sign a declaration to say you are not running a business dealing with electronics in any way. We have reserved the right to refuse ads. if we are worried about the contents or the private reader/business situation.

In order to give everyone a chance we can only accept one ad. per coupon and we have limited the number of words in each ad. so that we can get a good variety on a page, or in any small space we may have-say at the end of an article. Full details of PE Bazaar and the first ad. coupon can be found on page 31. If we get some ads. back very soon after the publication of this issue,
we hope to be able to get them in next month-it's first come, first served.

RESPONSIBILTY

One final point, we must make it quite clear that PE cannot be held responsible for any errors in the free ads. or for any transactions that take place between readers as a result of a free ad. We will not enter into correspondence concerning free advertisements, their contents or transactions.

However, we must say that in our editorial dealings with our readers we have found you to be a wonderfully reliable, trustworthy and honest lot. We have often sent odd items to readers, requesting payment on receipt and almost without exception have received prompt payment. We would like to take this opportunity to thank you-it saves us all time, trouble and money when things work in this way. Let's hope PE Bazaar is popular, helps as many of you as possible and leads to some useful exchanges and friendships within our hobby. It's up to you now!

Like everything else, it seems to be such a good idea, we wonder why we didn't think of it months ago?

Mike Kenward

EDITOR Mike Kenward

Gordon Godbold ASSISTANT EDITOR Mike Abbott TECHNICALEDITOR
David Shortland PROJECTS EDITOR Jasper Scott PRODUCTION EDITOR

Jack Pountney ART EDITOR
Keith Woodruff ASSISTANT ART EDITOR
John Pickering SEN. TECH. ILLUSTRATOR
Isabelle Greenaway TECH. ILLUSTRATOR
Colette McKenzie SECRETARY

Editorial Offices:
Practical Electronics,
Westover House.
West Quay Road, Poole.
Dorset BH15 1JG
Phone: Editorial Poole 71191
We regret that lengthy technical enquiries cannot be answered over the telophone (see below).
Adverrising Offices.
Practical Electronics Advertisements. King's Reach Tower, King's Reach, Stamford Street, SE1 9LS Telex: 915748 MAGDIV-G

ADVERTISEMENT MANAGER SECRETARY
 AD. SALES EXEC.
 CLASSIFIED SUPERVISOR
 AD. MAKE-UP/COPY
 D. W. B. Tilleard Christine Pocknell $\}$ 01-261 6676
 Alfred Tonge 01-2616819
 Barbara Blake 01-2615897
 Ian Sweeney 01-2616601

Back Numbers

Copies of most of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, at 95p each including In land/Overseas p \& p .

Binders

Binders for PE are available from the same address as back numbers at $£ 4.60$ each to UK or overseas addresses, including
postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 13.00$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH. Cheques and postal orders should be made payable to IPC Magazines Limited.

DDDECCD Edited by Jasper Scott

Public consulitation on radio frequiencies

Wider public consultation on proposals which could affect frequency allocations for some aircraft and shipping radio services has been announced by the Home Office.

The Home Secretary was giving details of the United Kingdom's preparations for the 1983 World Administrative Conference for Mobile Telecommunications, to be held in Geneva, in answer to a Parliamentary Question from Mr. Peter Viggers MP. The decisions made at the Geneva Conference will govern frequency allocations for certain maritime and aeronautical mobile radio services.

The Home Secretary pointed out that nongovernment organisations had already been consulted about the UK's provisional proposals for the conference, but he had decided that views should be sought from a broader public so that no significant point was overlooked.

The UK proposals deal mainly with two major items:

Regulatory provisions for the introduction and development of the Inter-Governmental Maritime Consultative Organisation's Future Global Distress and Safety System; and the drawing-up of channelling plans for the maritime mobile service in the mediumfrequency (MF) and high-frequency (HF) bands. Other UK proposals seek improvements in the regulation of the aeronautical mobile service, and cover miscellaneous points on the agenda.

Copies of the proposals can be obtained from: Home Office Radio Regulatory Department, Room 804, Waterloo Bridge House, Waterloo Road, London SEI 8UA.

Grand Prize

British Telecom's Prestel world viewdata service is offering a $£ 1000$ prize to the designer of the best Prestel adaptor for the top-selling Sinclair ZX81 personal computer.

Sinclair Research, which is to provide one of the judges, strongly supports the competition and believes that a successful design will offer its established 150,000 UK users a valuable new application. Although a number of microcomputers can already receive Prestel, these numbers would mark a very significant service extension for British Telecom.

Telesoftware computer programs distributed via teletext or viewdata to computers in schools, homes and offices-is now a major Prestel growth area, and many program publishers are becoming active and establishing libraries that can hold up to 1,000 pages following the Department of Industry's initiative in funding the Educational Telesoftware Project.

The prize will be awarded to the adaptor which best combines 'low price, elegant design
and practical robustness", and the working design submitted must be capable of being modified to receive approval for attachment to the telephone network.

Closing date is March 14th, 1982, and further details, specification and entry forms are available from Tony Sweet, Prestel Headquarters, Telephone House. Temple Avenue, London EC4 0HL (01-5839811).

AM CB: AN APRIL FOOL

Following numerous rumours that the Government is considering legalising $\mathbf{C B}$ on 27 MHz AM , the Home Office has issued the following statement:
"Don't be misled by unfounded rumours claiming that the use of illicit 27 MHz AM sets will be legalised. The Government has no intention of making any changes to the new legal 27 MHz FM CB service."

Reports abound of AM sets carrying labels stating that the apparatus cannot be used "until April 1982". Any such stickers are quite simply hoaxes.

Can't quite make out that dry joint or broken p.c.b. track? What you may need is a pocket microscope, and Stotron Ltd. have recently introduced one which could be just what you need. With 20X magnification and a graticule showing linear and angular measurements, the unit is only $\mathbf{1 2 5 m m}$ long. Illumination is powered by standard 1.5 V penlight batteries, and a micro-stand with spring clips for sample slides is also available, so the microscope can be used like a conventional model.

Priced at $£ 16.99$ plus $£ 2.80$ for the stand, the 'scope is available from Stotron Ltd., Unit 1, Haywood Way, Ivyhouse Lane, Hastings, East Sussex (0424442160).

CARCMDJNA

Pimac Systems Ltd., who supply kits for the PE Car Computer, inform us that they have been able to reduce the price for the complete kit to $£ 78.50$ plus $£ 1$ p\&p. The unit is also available ready built, price $£ 88.50$ plus £1 p\&p. Both prices include VAT. Pimac Systems Ltd., 20 Bloomfield Road, Moseley, Birmingham B 13 9BY.

Items mentioned are available through normal retail outlets unless otherwise specified. Prices correct at time of going to press.

Briefly...

This year, the All-Electronics/ECIF show will be doubled in size and held at the Barbican Exhibition Centre in the City of London. It will run from Tuesday April 20th to Thursday April 22nd, and, say the organisers. will offer the largest and most comprehensive display of the electronics industry that the capital has seen for many years.

Tempus-often featured in these pages as suppliers of Casio products-have moved from their premises in East Road, Cambridge. Their new address is: 38 Burleigh Street, Cambridge CBI IDG.

Barrie Electronics Ltd. inform us that they have been appointed a franchised distributor for the "budget range" of toroidal transformers manufactured by Cotswold Electronics Ltd.

The fifty-eight toroidal transformers will complement the 150 stacked laminated types stocked by Barrie Electronics on an off-theshelf basis.

Barrie Electronics Ltd., 3 The Minories, London EC3N IBJ (01-488 3316).

PCB 日Rllu Dffft

Due to demand for this exceptionally priced tool which was on Special Offer in our January issue, the offer closing date has been extended to March 26th 1982. Please contact Watford Electronics to ensure supply. Price is $£ 8.60$ inclusive.

Recently unveiled by Aura Sounds in London, the Wersi Comet is the latest addition to the increasingly popular range of Wersi Organs. The Comet is a completely new model-not a modification or development of any other Wersi organ, and has been designed to give the best possible sound quality and features at a budget price.

As well as traditional drawbar and orchestral sounds, the Comet provides a wide range of other voices, including various guitars, synthesiser and percussion. Numerous effects are incorporated, including three way vibrato, slalom and the Wersivoice rotating speaker sound. A totally new feature is the Comet's facility to accept connection of up to four 'satellite' keyboards, so that up to five musicians can play the one organ together.

As with all other Wersi instruments, the Comet is available ready built or as a kit. If you choose to build a Comet yourself (which is a very straightforward operation estimated to take only 100 hours, due to the use of plug-in circuit boards and ribbon cable wiring) you can save almost half the cost of the ready built unit.

The Comet is available either as a home console model (W10S) or as a portable unit with detachable legs (W10T). Prices are as follows: W10S £3,620ready built: £1,899-complete kit. W10T £3,592-ready built: £1,971complete kit. Further information is available from Aura Sounds Ltd., 14-15 Royal Oak Centre, Brighton Road, Purley, Surrey (01-668 9733).

Anundidnunl...
Please check dates before setting out, as we cannot guarantee the accuracy of the information presented below.
BEX Bournemouth Feb. 17-18. K
Microsystems Feb. 24-26. West Centre Hotel, London. Z1
Seminex Mar. 29-Apr. 2. Imperial College, London. H1
Laboratory Edinburgh Mar. 30-31. Ass. Rooms, Edinburgh. E
CAD Mar. 30-Apr. 1. Metropole, Brighton. ZI
Sensors \& Systems Mar. 30-Apr. 1. The Forum, Wythenshawe, Manchester. T
ETM Mar. 30-Apr. 1. The Forum, Wythenshawe. T
Peripherals Mar. 31-Apr. 2. West Centre Hotel, London. $Z 1$
Laboratory Manchester Apr, 7-8. New Century Hall, Manchester. E
All Electronics Show Apr. 19-21. Barbican Centre, London. E

BEX Brighton Apr. 28-29. K
Compec Europe May 4-6. Centre Int. Rogier, Brussels. Z1
Scotelex. Jun. 8-10. Roy. Highland Ex. Hall, Ingliston, Edinburgh. A1 BEX Leeds Jun. 9-10. K
Transducer/Tempcon Jun. 29-Jul. I. Wemb. Conf. Centre. T
BEX Croydon Jun. 30-Jul. K
Leeds Electronics Show Jul. 6-8. University. E
Laboratory London Sep. 14-16. Grosvenor House. E
A1 Institute of Electronics, Rochdale, Lancs.
E Evan Steadman, Saffron Walden $\int 079922612$
H1 Seminex Ltd., Tunbridge Wells \& 089239664
K Douglas Temple, Bournemouth 020220533
L1 World Trade Centre / 01-488 2400
T Trident Tavistock 08224671
V SDL Dublin 763871
Z1 IPC Exhibitions, Sutton 01-6438040

CLOSE UP OF COMET KEYBOARD

Aura Sounds have pleasure announcing the Comet, the "flamil in One" orgam: is now ayailable through our branches. Once again the Comet achieves the optimum performance in its class.
It offers:-
REPEAT PERCUSSION
TREMOLO
BASS TUBA

- Numerous: realistic amd interesting tonal colours with guttar $\overline{\text { B voices, }}$ - FF synthesiser and other modern sounds together with the more arraditional $L L S$ drawbar and orchestral sounds
- Playing aids include chord methory, WRS, Keyboard Selector. Wersi matic rhythm and automatic accompanindent seetion plus muen, mulir more PA TTERNS - CONTRA CUSSION - SOUND COMPUTERS
 - Gomet can accepy up the four satellite keyboards (in addition to the 2 keyboards on the organ - a five man band can play on one instrument. DRAWPARS - OHE STOP SOUF
- Wersi have simplified/sell/ assembly Eveh $/$ ES more, with plug in circuits etc.

HARPSICHORL - Ergonomic playing table eases operation.

The Comet is available in the elegant lines of the spinet (W10 S) and with chromed Stet leg6 BA VO (W10 T) for transportability

GLISSANDO The e^{-}Comet, the Organ to see $/ \beta$ theng the eighties, available wow

For more details of this syperb organ, ring us now on 014685 \$73 or write to Auraf JR Sounds Lid. at the Purley Branch. SS DATTERNS

AURA SOUNDS LTD.

are the first company to successfully market WERSI organs and kits in the U.K. We have modern showrooms where we pride ourselves you will receive a friendly welcome Why not pop in and see the WERSI range for yourself - we can always arrange a free demonstration. We R also offer a free technical telephone support service which is second to nope.

Alternatively,fill in the coupon below IUN for free detailsi For immediate action telephone 01-668 973324 hour answering service.

Please send me FREE, all the details of The Comet and Wersi Range

ADDRESS Road, Purley, Surrey.

Salaries

A new year always brings thoughts of what lies ahead and reflection on the past. A main preoccupation is the personal one of jobs and salaries. On the broader front there is the anxiety that political hot-heads will rock the industrial boat and put all our jobs at risk. But assuming, hopefully, that militants can be bought off or otherwise contained then 1982 could still be a good year for recovery.

Barring political upheaval, any competent person in electronics can expect to hold his job. The adventurous may well rapidly improve their position and prospects by changing jobs. There are plenty of openings available and industry personnel managers are still complaining that good people are hard to find and how much it costs in advertising and interview time to find them.

The lowest advertised salary I have spotted recently is for $R \& D$ engineers at £5,176 for a junior starting post. But this was in Government service carrving some advantage in security and rising to $£ 8,589$.

A BBC call for transmitter and planning engineers gave a range of $£ 9,000$ to £ 11.000 . An instrument engineer in South Wales is offered circa $£ 9,000$, another similar post in Essex up to $£ 12,000$. A development engineer in television was promised $£ 10,000$, his laboratory supervisor $£ 16,000$.

Overseas the salaries are higher and most enjoy tax advantages. A quick sample threw up a salesman (Middle East) f.18.000, telecomms engineer (Saudi Arabia) £20,000 tax free, electronics lecturers (Hong Kong) circa $£ 20,000$, branch manager (lraq) up to $£ 24,000$.

Everyone will hold his own views on the value of the salaries in relation to environmental factors, separation from family etc. I have known people move job to a lower salary in a different area to secure better education for their children. It seems that salaries in general are holding up well and that the ivariety of jobs and locations in
electronics gives far more choice and opportunity than most other industries.

Back ward Glance

Last year was pleasurable in the number of success stories I was able to record. And it finished up with the giants of the industry continuing to improve not only their sales (including exports) and profits but also their order books. GEC-Marconi, for example, managed another scoop with a $£ 500$ million contract for the Royal Navy's heavyweight torpedo. On the technological front there were also gains with many new equipments and systems on offer.

Personality of the year was unquestionably Sir Ernest Harrison, mastermind of the Racal Electronics Group, who was heaped with honours, principally a well-deserved Knighthood but also Honorary Doctorates from Cranfield Institute of Technology and the University of Surrey. He finished the year with a flourish, winning the Businessman of the Year Award.

The citation of the latter mentioned the acquisition and subsequent turn-round in fortune of Decca but I think the last part would have pleased Sir Ernest best. It added, "And for providing a rallying point for industry, a much-needed demonstration that where the will is present, British companies, their managements and their products can equal the best in the world, even in the toughest high-technology markets which are too often considered to be the preserve of Japan and the USA.

Another well-deserved honour, the Gold Medal of the Royal Aeronautical Society. went to J.E. (Jack) Pateman for 'building-up British technical and industry leadership in the avionics field'. Pateman is managing director of Marconi Avionics and in ten years he created 8,000 new jobs, tripling the size of the company to become Europe's largest producer and top exporter of aviation electronics.

In case you imagine these men are nothing but workaholics I should mention that Jack Pateman enjoys gardening and sailing and Sir Ernest shares Jack's enthusiasm for gardening but also lists wild-life, all sports, but particularly soccer (I recall he was an Arsenal fan at one time and maybe still) among his interests.

Up North

With the great bulk of the electronics industry concentrated in the South and South East, the Midiands and Northern regions get less attention than they deserve. I recently had the opportunity of visiting three companies in regions which are generally described as depressed. This is certainly true of the inner city areas I saw on the trip but there was nothing depressing in the companies.

Maybe I was lucky in my choice but all three had expanded during the recession, had new products and services in planning, and all believed in a great future. One of the companies, to my astonishment, had been running three shifts round the clock throughout the whole of the recession.

None of them had had an easy time but there were no complaints. Just enthusiasm to get on with the job.

Energy

It seems only yesterday that we were all talking of the energy famine. Today we have a glut of oil and coal. But yesterday's scare triggered a surge of activity in developing alternative sources of energy.

One result is IBA's experimental sun-and-wind powered TV relay station at Bossiney on the north Cornish coastline. All power for the transposers and receivers come from natural sources. The idea of a hybrid sun-and-wind system is that if the sun isn't shining there is more than a fair chance that the wind will be blowing, and often both will be generating at the same time. When nature is not generous the system is backed up by a reservoir of three dozen lead-acid batteries with a capacity of $1,000 \mathrm{Ah}$. The windmill produces 150 W at wind speeds of $15 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. and 864 solar cells produce up to 780 W in peak sunlight. The TV relay equipment consumes 150 W .

To get Channel Four available to a target of 99.9 percent of the population some extra hundreds of such low power relay stations will be needed. But energy conservation is only part of the reason for the selfcontained station. The other, often more compelling, reason is that these low-power relays, sometimes serving as few as 500 people or less, are on difficult and remote sites where the capital cost of running power lines to them is out of proportion.

Inmos

The Inmos factory at Newport, Gwent, some 85,000 sq.ft. of it, is now becoming a reality. Building has been in progress for a full year and the 30,000 sq.ft. clean area should be installed by March.

The Newport plant appears to be definitely scheduled for wafer fabrication and an eventual workforce of 1,000 is still envisaged. But assembly might still take place in the Far East.
A. number of questions still overshadow the Inmos project, not least the departure of Paul Schroedor who as Executive Director, corporate development, was clearly a key man. The product strategy and future funding remain unclear. Obviously there are elements of commercial security involved. Anyway, with so much now invested and a tentative foothold in the market we can do no more than wish Inmos the best of British luck.

Vigorous ATE

Automatic Test Equipment (ATE) is still a blossoming market under vigorous attack by all the leading manufacturers. Typical is Marconi Instruments System 80X, unveiled at the ATE Exhibition in Brighton last December. The 80X has been designed with the US market in mind and MI has opened an ATE facility at Sunnyvale in an attempt to gain a larger market share. Prices start at $£ 80,000$ and rise to £ 150,000 for a complex system with up to 2,000 test points.

THE cost of electrical energy consumption has become increasingly significant in recent years as the price of primary fuels has risen more quickly than the average increase in the cost of living. In order to control costs in the house, it is necessary to know which appliances cost the most to use and to what extent savings can be made by reduced usage, turning thermostats down, etc. The watthour meter provided by the electricity supply authority does give a means of calculating total consumption and hence the staggering quarterly bill. However, it gives no indication of the rate at which costs are being incurred or which appliances are consuming energy at the greatest rate and what the individual cost is.

All appliances are supplied with a label indicating their power rating but to calculate the cost of running a washing machine through a 45 minute cycle with intermittent motor running, thermostatically controlled heating, pumping and spinning would be almost impossible for the average person.

The device described in this article continuously measures the current being consumed by such an appliance and having previously had the latest cost per unit of electricity keyed into it, displays the charge as it is being incurred. It was designed about three years ago and is the subject of a UK Patent application. Only recently has the cost of the components used reduced to the level where a home construction kit has become an attractive proposition.

TELECTRIC BASICS

The basic operation of the Telectric can be explained with reference to the block diagram of Fig. 1. The current consumed by the appliance plugged into the 13A socket flows through the primary turns of the current transformer and the secondary voltage induced forms the input to IC3 in order to measure this current. The PSU provides a 5 volt supply and also a sync pulse which occurs at the zero crossing of the a.c. mains voltage. The microprocessor reads the control keys, provides the display drive and multiplexing and samples the output of IC3 at the peak of the mains voltage waveform on both negative and positive half cycles. From the stored value of the cost per unit the incremental cost per half cycle is calculated and added to the running total for display.

There is one control switch and four push button keys. When the switch is in the cost per unit position the display initially reads Ent. and a single push of any key increments the display digit directly above it in order to enter the cost per unit in pence to three decimal places. When the control
switch is in the electricity bill position the four push buttons assume their control functions. These are:
Start Resets the accumulated charge and elapsed time to zero and starts new sequence.
Pause Holds the current reading of charge and time. A second push of this key restarts from the previous readings.
Time/Cost Toggles the display between displaying time and charge.
Check Whilst held down, the current value of the cost per unit is displayed as a check on operation.

DISPLAY FORMAT

In the cost per unit position the decimal point is located between the two left hand digits and the display indicates the unit cost in pence.

With the control switch in the electricity bill position the display is auto ranging, the device having been designed to accumulate up to $£ 99.9$ in cost and 99.9 days in time. The ranges and examples of their display formats are as follows:

Cost

up to 9.99 p	e.g. $2.14 P$	pence and decimals of
10 p to 99.9 p	e.g. 47.1 P	pence
$£ 1.0$ to $£ 9.99$	e.g. L7.85	pounds and pence
$£ 10.0$ to $£ 99.9$ e.g. L90.6	pounds and decimals of 	pounds

Time

1 second to 1 hour
e.g. 27.59

1 hour to 1 day e.g. 14.27

1 day to 99 days
e.g. 9.9d
minutes and seconds
hours and minutes
days and decimals of days

CIRCUIT DESCRIPTION

All the circuitry in the device uses a 5 volt supply and the circuit diagram is divided into two parts; Fig. 2 showing the power supply and sync pulse generator and Fig. 3 showing the processor, etc. The 5 volts is generated using a $9 \mathrm{~V}(6 \mathrm{VA})$ transformer, bridge rectifier and a 7805 i.c. regulator. The sync pulse generation can be described with reference to Fig. 5 which shows the waveforms through IC8. The full wave rectified input to IC8a is inverted and produces a positive going pulse about 2 ms wide and symmetrical about the zero crossing of the a.c. mains waveform. This is delayed by R21. C6. The output of IC8b is a negative going 2 ms pulse with its leading edge corresponding approximately

SPECIFICATION

Display

4 digit 7 segments l.e.d.s $0.5^{\prime \prime}$ high with decimal points.

Controls

S1	Cost per Unit/Electricity Bill
Output socket power switch (No effect on	
metering function)	

S2-S5

Functions

A) Switch in 'Cost per Unit' position

S2 Most significant digit increments every time
S3.4.5 As S2 for digits 2, 3. 4 of pence per unit figure. This position of the switch serves only to enter the pence per unit figure. The decimal point second from left is illuminated. The electricity cost is not monitored. Cost and elapsed time functions are set to zero
B) Switch in 'Electricity Bill' position

S2 ('Check') While pressed pence per unit is displayed (operational check) Otherwise S5 controls display
S3 ('Start) Each depression of key zeroes electricity bill and time elapsed. Electricity bill begins to total from moment of depression Subsequent depression zeroes and restarts.
S4 ('Pause') Depression of key halts totalling of cost and elapsed time
Subsequent depression restarts from previous reading without zeroing
S5 ('Time/ Display shows electricity bill initially. First Cost') depression causes display to show elapsed time. Second depression electricity bill, etc.
Maximum cost per unit 9.999 pence
Maximum electricity bill total £99.9
Maximum elapsed time 99.9 days
Accuracy better than 1% for 13A load
with the zero crossing. IC8c speeds up these edges and C8 couples them to IC8d which is biased below its threshold by R22 and R23. Thus the output from IC8d is a negative pulse approximately 20μ s wide corresponding to the zero crossing and this forms a synchronising pulse.

The microprocessor controlling the Telectric is the 8035 which contains its own clock generator, reset, and interrupt input pins. It has 64 bytes of on chip RAM, an 8 bit data/address bus, two 8 bit I/O ports and external memory read and write timing signals. It also has an on chip timer which is used to time the ADC sampling at the peak of the a.c. voltage waveform.

50780
Fig. 1. Block diagram

Details of the microprocessor, bus timing and software will follow next month, however, it is worth mentioning that the displays are of the common anode l.e.d. type and their pin connections are shown in Fig. 4. Pnp transistors are used to drive the common anode of each display and the multiplex frequency is 200 Hz . The cathodes of the individual segments are driven via open collector gates and the microprocessor controls the display decoding in order to provide the special characters not normally available in a standard decoder.

CURRENT MEASUREMENT

In measuring mains current, the simplest way would be to use a series resistor but this has several drawbacks. The ADC requires a 5 volt peak-to-peak voltage waveform at its input for maximum current corresponding to a 40 amp peak to peak sinusoidal current or 14.14 amps r.m.s. The power developed in such a resistor would be 25 watts at peak load which is obviously not desirable. A smaller resistor could be used with an op-amp to multiply up the voltage generated but this technique still requires the circuitry to be connected to the mains and faults could be catastrophic. It was therefore decided to use a current transformer to provide full isolation.

Purpose designed current transformers are quite expensive and so a 3VA mains to low voltage transformer is used in the Telectric. This has its low voltage winding removed to enable one and a half turns of the mains neutral lead to be threaded onto the transformer before connection to the output socket.

Components

Resistors

R1, R10, R12, R14, R16, 10k (6 off)
R18

R2 to R9	220 (8 off)
R11, R13.R15, R17	$2.2 \mathrm{k}(4$ off)
R19	47 k
R20	470 k
R21	1 M
R22	100 k
R23	220 k
R24/R25	(see construction notes)

Capacitors

C1	$68 p$
C2, C3	$22 \mathrm{p}(2$ off)
C4	1μ tant bead
C5	0.1μ
C6	680 p
C7	$680 \mu 16 \mathrm{~V}$
C8	470 p
C9	47μ tant bead

3 off $0.1 \mu \mathrm{~F}$ disc ceramic and 2 off $0.01 \mu \mathrm{~F}$ disc ceramic decoupling capacitors as per layout diagram.

Semiconductors

Bridge rectifier (REC1)
D1, D2
TR1 to TR4
$50 \mathrm{~V}, 1 \mathrm{~A}$
1N914 or equivalent
BC2 13L or equivalent (4 off)

Integrated Circuits

IC1

IC2

IC3
IC4
IC5, IC6
IC7
IC8
IC9

Displays

DL507B (Litronix)
$27162 \mathrm{~K} \times 8$ UVEPROM 74LS373
ADC0804 (National Semiconductors)
8035 microprocessor
7401 (2 off)
74LS365
4069B
7805 (regulator +5 volts)

Common anode 7 segment l.e.d. displays (4 off)

Miscellaneous

4 push buttons; 1 rocker switch; 1 switched 13A mains socket; 1 grey moulded ABS box, $190 \times 110 \times 60 \mathrm{~mm}$; 1 mains transformer 9 volt, $6 \mathrm{VA}, 10 \%$ regulation; 1 mains transformer 3 VA to convert to current transformer: 1 crystal 3.579 MHz (NTSC subcarrier); 1 heatsink for 7805; 2 metres 13A mains cable; 3 metres connecting wire; 8 i.c. sockets $(3 \times 14$ pin, 1×16 pin, 2×20 pin, 1×24 pin, 1×40 pin); 1 p.c.b., double sided but designed for pin through as well as plated through holes: 1 display p.c.b.

A complete constructor's kit for the Telectric is available from Response Co., Stoner End, Froxfield, Petersfield, Hants (0730 3063). Price $£ 47.50+$ VAT ($£ 54.62$). A limited number of fully assembled Telectrics are also available at $£ 64+$ VAT. All parts are also available separately. Send SAE for details.

Fig. 4. The pin connections to a display digit

E6787

60780
Fig. 5. Showing the waveforms through IC8

CONSTRUCTION

All of the components except the display and switches are mounted on the main p.c.b. which is double sided. The foil layouts are shown in Figs. 6 and 7 and the component layout in Fig. 8. Although the p.c.b. is double sided it has been designed with no through connections on i.c. pins and the position of these is shown by large dots in Fig. 8. Also shown are some extra decoupling capacitors which do not appear as components in the circuit diagrams. The p.c.b. should preferably be assembled using i.c. sockets for all i.c.s so that faults can be easily rectified.

Fig. 6. Topside of p.c.b.

Fig. 7. Underside of p.c.b.

Fig. 8. Assembly details of board

The pads for the mains transformer have been made quite large to accommodate a variety of pin arrangements. The current transformer load resistors must be fitted before the ADC is plugged into the circuit. Without these resistors a high voltage may be generated which could damage or destroy the ADC. The values of R24 and R25 are found experimentally (they are supplied correct value with the kits) by using a one kilowatt load such as an electric fire. The exact current is measured with an Avo or similar and will be around 4 amps r.m.s. The voltage across the load resistors is
then given by the relationship $V($ r.m.s. $)=1 \times 0.125$ volts, where I is the exact current. R24 can now be selected to produce a slightly high voltage reading and R25 will be a higher value resistor to provide the final trim.
(R24 may be 390 and R25 10k giving a total equivalent load of 376).

NEXT MONTH Detailed discussion of the microprocessor circuitry and software and more construction details.

All eight Beckman digital multimeters have a very positive switch, giving no chance of pushing the wrong button. Plus guaranteed long-term high accuracy, five ac and dc current ranges and six resistance ranges, and a battery life ten times longer than most competi-
 tive instruments (2000 hr , hand held; 12000 hr , bench models).

Options vary from a simple buzzer on the continuity test to the sophistication of direct temperature measurement, true RMS and even complete submersibility without damage.

Analogue multimeters were good in their day.

But today's professional demands a digital LCD display with CMOS chip technology. And that's Beckman. Send for our multimeter family brochure and see if it's the time to make a positive switch yourself.

BECKMAN

Beckman Instruments Limited
Electronic Components UK Sales \& Marketing Organisation Mylen House, iI Wagon Lane, Sheldon, Birmingham B26 3DU.

Tel: 021-742 776r Telex: 336659.

Emerrency LILHIT STEPHEN IBBS

WHERE WERE YOU WHEN THE LIGHTS LAST WENT OUT?

For around $£ 20$ and a little d.i.y. you could be automatically cut into the limelight with our rechargeable Emergency Lamp! Alternative? The next power cut might be your darkest hour.

ΓT IS likely that most householders will experience at least one power failure. This can be very inconvenient, because it is then that the candles and matches can't be found, because of the dark! However, such a failure can be more serious, as the author found when carrying a tray of crockery on the stairs at the moment of failure. The shock alone was enough to send both flying, resulting in a painful fall. The idea for this project was thus conceived during convalescence. It obviously needed to be automatic, pleasing and cheap.

The project described here is intended to enable constructors to build a ni-cad powered emergency light, drawing no battery current in its quiescent state lless than 1 mA from the rectified supply), switching on automatically in the event of a mains failure. When mains is restored, the ni-cad can then be recharged, and a built-in timer lights an l.e.d. when the batteries should be charged (assuming they were fully exhausted to start with). Two switches are provided, one to act as an on/off control and as a reset switch, the other to activate the charging and timing circuits.

HOW IT WORKS

Mains voltage is reduced by the transformer, and then rectified by the diodes D4-5 (4-7). The resulting d.c. is then smoothed to a degree by C1 and flows via R1 to light l.e.d. 1. This d.c. also ensures that pins 1 and 2 of IC1a (used as an inverter) remain high, so that its output pin 3 is low, preventing the thyristor from turning on. When the mains does fail C1 rapidly discharges with R1, i.e.d. 1, R2 and R3, and pin 3 goes high, providing gate voltage to the thyristor which then fires, allowing current to flow via the three bulbs. C1 has to be relatively low in value, otherwise it would take a long time to discharge, causing a delay before the light came on. S1 now acts as a simple on/off switch. When mains is restored the lights will stay on, because once fired, gate voltage can be removed from a thyristor. However, briefly opening S1 disconnects the anode from the battery which does reset the thyristor ready for the next failure.

When S2 is closed current flows through R5, which acts as a current limiting resistor to protect the batteries. D1 prevents battery-voltage from reaching pins 1 and 2 , as does D2. The purpose of D2 and D3 is to provide voltage to the supply pins of the i.c.s. Because the rectified d.c. voltage is higher than the battery voltage, D3 is normally reversebiased, so no current flows out of the battery. However, in the event of a mains failure D3 is now forward biased, maintaining supply to the i.c.s.

The closing of S2 also gates the slow oscillator constructed around IC1c and d . The frequency is adjustable to a certain extent by VR1. The output clocks IC2, a ripple counter, and after 16384 pulses pin 3 goes high, lighting l.e.d.s.

CONSTRUCTION

Assembly of the p.c.b. is straightforward. The plastic case used is the widely available Pifco "Everywhere Wall Light". It is first necessary to modify this case in the following way: The large bulb holder must be removed by drilling out its mounting rivets. Next, drill out the cord operated on/off switch. Drill two holes to accommodate the miniature toggle switches (see Fig. 1). These holes should be one above the other in the side of the case, directly opposite the "cord hole". This cord hole will be used to admit the mains cable. Two holes should also be drilled into the lens cover to take the l.e.d.s and (preferably) their bezels. Similarly, two further holes will need to be drilled through the internal diffuser to pass the l.e.d. wires (these wires should be fairly lengthy for lid removal). Hole diameters are dependent on switch and l.e.d. sizes, the former being subminiature types.

Only three nickel-cadmium cells are to be used, the mains transformers taking up one of the former battery positions. Various small transformers of the type needed are frequently seen advertised for as little as $£ 1$, therefore this component has not been rigidly specified. For this reason the rectification system has been made versatile to accommodate differing types, but the space available and the dimensions of the transformer must be taken into account. A little more spatial

Fig. 1. Circuit diagram. The PSU section may incorporate either a centretapped or single-winding secondary

\star Components

Resistors

R1, R2, R7	$1 \mathrm{k}(3$ off)
R3	10 K
R4	4 k 7
R5	102 watts
R6	10 M
R8	100 k

All resistors $\frac{1}{4}$ watt 5% unless otherwise specified

Potentiometers VR1	$4 \mathrm{M7}$
Capacitors	
C1	$10 \mu 16 \mathrm{~V}$ electro.
C2	470 n polyester
C3	100 n polyester

Semiconductors

D1	1N4001
D2, D3	1N4148 (2 off)
D4-5(4-7)	1N4001 (2 off)
D6-7	l.e.d.s (2 off)
IC1	4011
IC2	4020
SC1	C106

Miscellaneous

3 bulb holders (cat. No. PLH2 Home Radio) 3 torch bulbs 3 V 5
$3 \times 4 A L$ V2 equiv. ni-cads
1 SPSTI $\}$
1 DPST) $\}$
miniature toggles
p.c.b.

Transformer $7-0-7$ Volts at 200 mA
Pifco Everywhere Wall Light, Model No. 1644

Constructors' note

The MES bulb holders are available from: Home Radio Components, 240 London Rd., Mitcham, Surrey, CR4 3HD. They may be second-sourced from: Electrovalue, 28 St. Judes Road; Englefield Green, Egham, Surrey, TW2O OHB. (Order skeleton lampholder type MSS36.)

The transformer's electrical requirements are less critical than its physical dimensions. For example, a $6-0-6 \mathrm{~V} 250 \mathrm{~mA}$ transformer will suffice so long as its measurements do not exceed 55 mm wide, by 40 mm high, by 35 mm (the latter dimension to include any tags etc.).

If a $0-6 \mathrm{~V}$ or $0-7 \mathrm{~V}$ single-winding secondary transformer only, can be found, then the bridge rectifier arrangement may be used (insert D8 and D9 on p.c.b.). The Pifco lamp is available in high street shops.

flexibility will be allowed if the two contact springs originally intended for the battery, are snipped out. Be careful how this is done. Do not remove the part which provides anchorage!

The three skeleton bulb-holders should be formed to the shape illustrated, and fixing holes drilled through the battery base-plate for mounting these. This shape has been conceived to aid the retention of the heavy nickel-cadmium cells. The round hole at the centre of the diffuser will not be large enough to clear the three MES bulbs in our new system, and therefore should be opened out using a knife or abra-file. It may be found necessary to bore some ventilation holes in the vicinity of the transformer to prevent gradual discoloration of the plastic.

When wired, the bulbs should light if S 1 is closed. Switch on the mains, and the light should stay on; however, briefly opening S1 will extinguish them. Ensure that S1 is left in the closed (on) position, turn off the mains and the light should come back on.

To check that the batteries receive charge when S 2 is closed, the most simple technique is to push a small piece of double sided p.c.b. in between the $+v e$ of the battery and the
battery holder. Attach pulses from a current meter (black to the + ve battery side because charge should be flowing from the more positive rectified d.c. side into the battery) and check that charging is taking place. Also check that when the mains is on S2 is open, that no current flows out of the battery (with the lights out of course!) To set the timer for 18 hours, monitor pin 7, which should change state every 63 seconds (63-27 secs-approx!)

CONCLUSION

One of these lights at the head of the stairs is a real safety feature at home. It makes an ideal present, perhaps particularly for elderly people who may.find a sudden blackout more difficult to cope with.

The only component possibly to cause problems when purchasing the parts is the case. It is manufactured by PIFCO and is called the "Everywhere Light" (model 1644) though other cases may, of course, be used. Because the batteries are not being trickle-charged, it is good practice to check the state of charge every so often.

FREE! READERS' ADVERTISEMENT SERVICE

Maximum of 16 words plus address and/or phone no. Private advertisers only (trade or business ads. can be placed in our classified columns). Items related to electronics only. No computer software. PE cannot accept responsibility for the accuracy of ads. or for any transaction arising between readers as a result of a free ad. We reserve the right to refuse advertisements. Each ad. must be accompanied by a valid "date corner".

FREE READERS' ADVERTISEMENT SERVICE

We on PE believe that many readers have spare components, test gear, unused projects, etc., that could be turned into cash. Now we give you the chance to buy, sell or swap anything to do with electronics in our free ad. service.

Advertise your spare parts, test gear, tools, computers, printers, instruments, synthesisers, organs, books, etc., FREE. Yes, we will accept adverts from readers, NOT TRADE, on a one-off basis to be published in the first available issue. Not only can you advertise parts for sale but your wanted or swap ad. will also be acceptable. The rules are straightforward but please read them and make sure you send in a valid "date corner" cut from the issue.

If you have a few components, a Compukit or a computer organ we can help sell them for you. We reserve the right not to publish anything unacceptable to us or any ad. we believe is from a trader or anyone running a business involved in electronics; it's a private readers only service. We cannot accept ads. for computer software.

Please publish the following small ad. FREE in the next available issue. I am not a dealer in electronics or associated equipment.

Signature
Date
Please read the RULES then write your advertisement hereone word to each box. Then add your name, address and/or phone no. Maximum of 16 words plus address.
COUPON VALID FOR POSTING BEFORE 12 MARCH, 1982. (One month later for overseas readers.)

SEND TO: PE BAZAAR, PRACTICAL ELECTRONICS, WESTOVER HOUSE, WEST QUAY ROAD, POOLE, DORSET BH15 1JG.

BLOCK CAPITALS PLEASE

Name \& Address:			

For readers who don't want to damage the issue send a photostat or copy of the coupon (filled in of course) with a cut-out valid "date corner".

FREE TRANSISTOR Nsis PROJECTS...

EMI AUTOLIGTT
 The 'in' thing for absent residents

HERE is a light that will deter a burglar in your absence as it automatically switches on at dusk and off at dawn. As such, it is ideally suited as a porch light, giving the impression that the premises are occupied.

Whilst the supply requirements are low, the period when the unit is in operation is long, so the use of the mains voltage was considered imperative and anyway. if the light was not powered from the mains it would probably give the game away.

CIRCUIT

In Fig. 1, a mains transformer T1 is used to step down the 240 V supply to the operating potential. The secondary winding supplies the rectifier pair D1/D2 to provide rough d.c. which is further smoothed by the electrolytic capacitor C1.

TR 1 is used as a switching transistor having the relay coil as its load. The diode strapping this is to suppress the transient high reverse voltage which would normally develop when the relay is switched off. Its action is to simply short circuit the high voltage spike, which could damage the transistor, reducing it to a value of about half a volt.

Bias is provided to the switching transistor by a resistive chain which includes a cadmium sulphide light dependent resistor, the resistance of which reduces as the light falling

56002
Fig. 1. Circuit of Autolight

Fig. 2. Veroboard layout
on the device increases. Typically, for an ORP12 this resistance ranges from 10 M in total darkness to less than 100 ohms in bright conditions, and around a few kilohms for a cloudy day.

COMPONENTS

LLQUID ALARM

A sensor that sounds for liquid or vapour

ONE of the simplest and most versatile of direct coupled circuits is the super-alpha or Darlington pair. Super alpha derives from the gain multiplication produced by connecting transistors this way, so that the composite pair shown in Fig. 1 have a very high current amplification which for the transistors being used approximates to 125^{2}.

56794

Fig. 1. Circuit of Alarm

VEROSWITCH

A piece of 0.1 in matrix Veroboard with the alternate track layers commoned (Fig. 1) makes an ideal sensor as liquid or vapour bridging these will form a base input to TR 1.

In the initial setting up, the sensitivity of the device is set by VR1. If steam is applied to the parallel copper strips of the sensor, VR1 is rotated until the alarm sounds. At this point the adjustment is for maximum sensitivity.

In its appointed role as a laundry protector, obviously the housewife will only be concerned with rain that has started falling so that she can make the quick rescue, so a high sensitivity adjustment should be made.

Fig. 2. A mains supply that can be used

LIQUID LEVEL

If a liquid level switch is intended, where two stiff conductive probes are substituted for the Veroboard, then the simple expedient is to use lengths of 16 s.w.g. tinned copper wire for the probes, these being terminated with the input connections to the device.

The retainer for these stiff wires could be a five-way terminal so that adjustment for probe separation, and therefore liquid level, would reduce to loosening the screws of the block and moving the wires relatively as required.

To complete the assembly, the two outer connectors of the block could retain a suspension hook of wire.

Obviously the probes could be manually adjusted for any liquid level rise or simply left with the tips adjacent to detect a level.

ALARM

The choice of supply was deliberately kept low for battery conservation, as the current consumption of the alarm rises almost linearly with the voltage applied. For the circuit shown and the alarm arranged for pulsed tone operation $(3.2 \mathrm{kHz}$ approximately pulsed at 5 Hz), the current is an intermittent 10 ma . Nevertheless, sound output is strident and will almost certainly be heard anywhere around the house. However, if you do need a bigger output then you can simply raise the supply voltage to 9 V . There are no circuit changes to be made, but remember, whilst the db output level rises so does the current consumption.

E6000|A [EA马我]
Fig. 3. Veroboard layout

OUTPUT ALTERNATIVES

With the alarm specified the output alternatives are continuous or pulsed tone depending on whether the yellow sense lead is connected. The instruction for this is to leave it unconnected for pulsed operation or to connect to battery negative for a continuous tone. The remaining two leads (red and black) are connected as shown in the circuit.

With its obvious long-term utility there is a need to substitute a simple mains supply for batteries and a suitable 9 V circuit is given in Fig. 2.

COMPONENTS

Resistors

R1
$10 \% \frac{1}{4}$ watt carbon

Potentiometer

Transistors
TR1-TR2
BC171A (2 off)

Warning Device

WD1 -Surface mounting audible alarm (RS 248-788)

Battery

B1-see text

DOUBLE SIREN

 Alarm options with one transistor

 Alarm options with one transistor}

THIS project makes use of only one of the free transistors but offers two siren options: an American police siren with the characteristic short rise and longer fall and alternatively the urgent rising bursts of sound reminiscent of the alarm status signals of the starship Enterprise. It should be noted that although the component count is small the sound output is large.

E6791
Fig: 1. Circuit of Siren

BLOCKING OSCILLATOR

Both these sounds are initiated by S1 and S2 respectively. but for the starship alarm S1 must be kept closed while pressing S2. Power consumption is relatively low-about 24 mA -but if batteries are heavy on the pocket then there is the simple expedient of knocking up the simple 9 V power supply given previously in this supplement.

This circuit has the rather formidable description of a blocking oscillator. Here, the transformer provides regenerative feedback by phase inversion from the collector to the base of TR1; so remember, if your unit does not work just reverse the connections to the primary or secondary of $T 1$.

When S1 is pressed the tone produced through components C1, T1, R1 and R2 is raised by the charging of C2 through R3. When S1 is released the charge in the electrolytic capacitor leaks away so that the tone gradually falls. By introducing the diode with the switch S2, C2 is very rapidly discharged so that with operation of this switch you only have a series of rising tones.

OUTPUT

In introducing this project it was stated that the sound output is large. This statement is true if a large speaker is used, anyway, you can have fun experimenting. I used a 4in type and found the output adequate.

Since sound expansion has been touched upon there

COMPONENTS

Resistors

R1	$10 k$
R2	$18 k$
R3	$3 \cdot 3 k$
All $\frac{1}{4} W 10 \%$ carbon	

Capacitors

C1
100n
C2
$500 \mu 25 \mathrm{~V}$ elect
Switches
S1-S2
Transformer
T1

Transistor
TR1
BC171A

Loudspeaker

LS 1
4 in 8Ω

Battery

B1-9V

could possibly be a requirement for changing the decay period or frequency. Although \mid have endeavoured to simulate the sounds set out in the introduction, I certainly am not gifted with perfect pitch so there might be some among you who require a little more accuracy in the reproduction, then the guidelines for sound tailoring are that increasing R1 will increase the siren's fall period and increasing C2 will lower the frequency and, of course, vice versa.

AF/RF GENERATOR

Broad band signal source

THIS little generator makes no pretentions towards a high specification, but with it you could quite easily troubleshoot a radio covering the medium and long wavebands, which includes the r.f. and a.f. components, or any audio entertainment equipment.

FREERUNNING

The circuit shown in Fig. 1 is a free running square wave generator which produces a basic tone of frequency $1 /(1.4 C R)$ cycles where C is the single coupling capacitance (farads) and R the base bias resistance (ohms), which works out to 1 kHz .

To reduce signal output the simple expedient of starving the circuit is used via VR1.

ACTION

When power is first applied to the circuit from the battery, since there is no means of maintaining a permanent voltage at the base of either transistor the circuit has no stable state. The unbalance between each half of the circuit induces one transistor towards current cut-off and the other towards full conduction. However, there is no d.c. stable state and the current alternates between the two quasi-stable states at the previously mentioned rate fixed by the $200 \mathrm{k} / 5 \mathrm{n}$ pairs. As the value of these are equal the output forms a symmetrical square wave.

E6790
Fig. 1. Circuit of Generator

HARMONICS

The harmonics produced to cover the r.f. bands mentioned are the normal components of a square wave. How far they extend upward being set by the characteristic of the wavefront. The shorter the time of the rise the higher the harmonics extend upwards.

OUTPUT

Since the transistors are switched hard on the output voltage is that of the supply. To vary this output it is convenient to vary the supply with the potentiometer VR1, since the current drawn from the battery is extremely low. In fact, the generator will work with nothing more than a meagre 0.5 V .

The output coupling capacitor C3 has a working voltage which has been chosen deliberately high for any valve circuit applications. Make sure the signal lead from this is coax suitably terminated with crocodile clips.

USING IT

Assuming you have no test equipment, when applying the

Fig. 2. Showing board assembly
generator to entertainment equipment fitted with its own loudspeaker the rule is always to work back from the output stage to the input. The evidence of stage and then component failure in proceeding in this logical manner is loss of signal.

With, say, a radio, this should be tuned off a station with the volume turned up. You should then work back through the a.f., i.f., and r.f. stages to locate the faulty component. A good set will produce a loud tone if the generator output is brought close to the ferrite aerial.

COMPONENTS

Resistors	
R1	$10 k$
R2	$200 k$
R3	$200 k$
R4	$10 k$
All $\frac{1}{4}$ W 10\% carbon	
Capacitors	
C1-C2	
C3	$5 n$

Transistors
TR1-TR2
BC171A (2 off)

HERE is a constructional variation of the old 'steady hand' game where a loop of wire has to be run along another piece of wire bent into an irregular pattern. The object of the game is to run the loop from one end of the shaped wire to the other without making contact between them. If this is done, then the loop is returned to the start and the next competitor makes his move.

Since any number of people can compete and presumably complete the course, the winner must be the one who does it in the shortest time.

MORE DIFFICULT

The difficulty of the game can be improved upon by any

[66993
Fig. 1. Circuit of Game
one of the following changes, which are a) making the curves of the wire length more irregular, b) lengthening the run, and c) decreasing the diameter of the loop. These are all variations which can be tailored to suit the age and skill of the competitors and which cost very little in time or money to arrange.

HOW IT WORKS

The circuit shown in Fig. 1 is that of a compound emitter follower which has a characteristically high input impedance seen from the base of TR1 and the cathode of D1

If, say, there was a short between the competitor's loop and the shaped wire the light emitting diode would switch on and in the absence of the electrolytic capacitor C1 this would switch off as soon as contact was broken.

You can imagine, then, the argument that would ensue if the offending party refused to own up to the instantaneous flicker, so C1 was introduced to remove any conflict.

In practice, the l.e.d. will remain lit for periods in excess of five minutes for the slightest touch so it does arbitrate conclusively. The switch S1 discharges C1 in preparation for a new game.

CONSUMPTION

The unit consumes no current in the stand-by condition and 40 mA when switched on. This is, in fact, the maximum forward current of the l.e.d. specified and if a battery is to be used some might like to conserve power with a reduction of light emission.

To do this, resistors from the one specified up to a value of 1 k can be used. The 1 k limit provides a visible lamp but considerably reduces the consumption to about 5 mA .

POWER SUPPLY

Once again we can solve the problem of battery cost by building the p.s.u. shown in the Liquid Alarm project.

E6T9,9
Fig. 2. Board assembly

COMPONENTS

Resistor
R1 120
All $\frac{1}{4}$ W 10% carbon
Capacitor
C1
$100 \mu 15 \mathrm{~V}$
Transistors
TR1-TR2
BC171A
Diode
D1
0.2 in green l.e.d. (RS 586-481)

Battery
B1-9V

CAR BATTERY condition lindicator NS/S/ Lights the way to happy motoring

MOST car manufacturers pay scant attention to dashboard indicators in the charging department. A red light that comes on and goes off when you start the journey leaves you electrically ignorant in its absence until something like a broken fan belt occurs.

Just over a generation ago the voltmeter and ammeter were standard equipment for the motorist so that he was constantly aware of what was happening to the battery, dynamo and regulator when the vehicle was started or running.

Today's economies reduces all electrical awareness of a satisfactory circuit to the standard ignition warning light, which, apart from a perfunctory introductory glow, tells you nothing about the battery state of charge.

FULLINDICATION

This three l.e.d. alternative will continuously monitor the general state of the battery from 'poor' (red l.e.d. lights), when suspicion should be cast on the battery voltage regulator or dynamo or combination of these. For this condition the battery voltage is below 11.6 V .

A battery terminal voltage above this would light D4, the yellow l.e.d. This condition warrants an investigation if it does not charge up after a few minutes and is marked 'fair' on the circuit.

Indication of a satisfactory circuit with a battery voltage of above 12.6 V is given by the green l.e.d. lighting. This is labelled 'good' in Fig. 1.

There are transitional states between these as when the yellow lamp reduces in brilliance and transfers to a brightening green lamp, as a battery is charging, and vice-versa as it is discharging.

EG791
Fig. 1. Circuit of Indicator

IN GENERAL

Broadly, the green light on indicates all is well; red, the battery is defunct and yellow the output voltage is low which will be confirmed by poor light from the lamps, low hydrometer reading and lack of power to the starter motor when the battery is switched in.

This condition may be due to the dynamo not charging or giving a low or intermittent output in which case D4 will flicker.

POSSIBLE REMEDY

To remedy this latter condition the charging and field circuit wiring should be examined. Tighten any loose connections, particularly those at the battery, also renew any damaged cables. Check the tension of the dynamo driving belt also the regulator setting and adjust if necessary.

MOUNTING

The small board can be mounted directly on the car dashboard using the black panel clips supplied with each l.e.d. These suit a $6.35 \mathrm{~mm}(0.25 \mathrm{in})$ panel and will retain the circuit board when fitted.

A layout with equally spaced light emitting diodes is shown in Fig. 2. The viewing angle for the specified l.e.d.s is 30° which might produce a relatively low light output in bright conditions, so I am proposing an alternative device, the 'stackable I.e.d.' from RS Components, which has a viewing angle of 100° and provides a clear colour contrast when viewed at even oblique angles.

Fig. 2. Veroboard layout

COMPONENTS

Resistors

R1	390
R2	1 k
R3	390
R4	1 k
R5	390
All $\frac{1}{2}$ W 10\% carbon	

Semiconductors

D1	Red 0.2 in I.e.d.
	(RS $586-475)$
D4	Yellow 0.2in. I.e.d.
	(RS $586-497)$
D7	Green 0.2 in I.e.d.
	(RS $586-481)$
D2. D5	IN4148 (2 off)
D3	$11 V 500 \mathrm{~mW}$ Zener
D6	$12 V 500 \mathrm{~mW}$ Zener
TR1. TR2	BC171A (2 off)

ANOTHER ADVANTAGE

An additional advantage of this indicator is that being "in circuit' continuously means that the battery condition can be tested as different loads are applied such as operation of car lights, starter motor, accessory items, etc. This way one can readily keep an eye on a deteriorating battery and know the time for replacement rather than be caught unawares.

CIRCUIT ACTION

In the circuit, at voltages below 11.6 V , the brightness of the l.e.d. D1 is set by R1. As 11.6 V is approached then D4 starts to light as TR1 conducts, the latter subtracting current from D1 causing it to extinguish.

This same procedure is repeated as the line voltage moves up to 12.6 V when D7 will be lit. So you can see that there is always a continuous visual indication of battery state, and in living with it you should become extremely adept at interpreting impending problems.

CHECKING IT

When checking over the completed unit a variable power supply is useful to make sure the unit is switching through its ranges.

If dry batteries are used for this purpose it should be borne in mind that for a 'good' indication the total current drawn is around 80 mA , which is largely made up of shunt current through D5.

The l.e.d.s chosen for this project are for panel mounting and could be attached to the car dashboard but first you should view these in daylight when the unit is powered up (take the 12 V line from the ignition switch) for optimum positioning as brightest viewing is directly over the lens.

The first portable scope with a component tester.

Oscilloscope Specifications:

Y Deflection
Bandwidth: OC $-10 \mathrm{MHz}(-3 \mathrm{~dB})$
Overshoot: Less than 1%
Sensitivity: $5 \mathrm{mV}-20 \mathrm{~V} / \mathrm{cm}$
Input imp: 1 M ohm // 25pf

X Deflection
Timebase: $0.2 \mathrm{~s} \cdot 0.2 \mu \mathrm{~s} / \mathrm{cm}$ Triggering: $2 \mathrm{~Hz}-30 \mathrm{MHz}(3 \mathrm{~mm})$ Auto + level control
Bandwidth: $2 \mathrm{~Hz} \cdot 1 \mathrm{MHz}$

General Information

Component Tester:	For single components and in circuit
Callbrator:	$0.2 \mathrm{~V} \pm 1 \%$ for probe allignment
Power Supplies:	Regulated including high voltage
A.C. Input:	$110,127,220,237$, V.A.C., $50-60 \mathrm{~Hz}$
Weight:	$8-1 / 4$ L.bs.
Size:	$4.12^{\circ} \mathrm{H} \times 8.38^{\circ} \mathrm{W} \times 10-7 / 16^{\circ} \mathrm{D}$

For further information on HAMEG's full range of top performance oscilloscopes, contact:
HAMEG LTD.
74.78 Collingdon Street, Luton, Beds. LU1 1RX Tel: (0582) 413174

NEXT MONTH
 ULTRASONIC VISION SYSTEM

This project is an advanced ultrasonic vision system which is within the means of the amateur constructor, yet is sophisticated enough to enable experimentation with computer measurement, image recognition, object tracking, and robot vision.

STEREO CASSETTE DECK

The PE Quasar stereo cassette deck is a versatile low cost system designed around a single p.c.b. which features a variable bias control for optimum recording of all tapes, a gate noise reduction system, twin VU meters and electronic switching.
PLUS...
6 More Projects to build with your FREE Transistors

PRACTICAL

ELECTRDNIGS

APRIL ISSUE ON.SALE゙FRIDAY, MARCH 12th

R REMOTE CONTROL Part 2 Bart Trepak

THE transmitter circuit is built on a small printed circuit board as shown in Figs. 1 and 2 which holds all the components except the l.e.d.s and the push switches. Care should be taken to ensure that transistors and electrolytic capacitors are mounted the correct way around. Although the i.c. is a bipolar device and, therefore, not prone to static damage, it is wise to mount this in a socket. If only one switch is to be used, a panel mounted push to make type may be fitted directly on to the box and connected to the appropriate pads on the transmitter board by wires. If more than one switch is required, these should be mounted on the switch board (Fig. 3), which is designed to fit "piggy back" style on the transmitter board using four stiff wires (pins). Care should be taken to ensure that the switches are positioned as shown in Fig. 4 and firmly seated on the p.c.b. before soldering.

The complete circuit may be housed in a small box together with the battery. The l.e.d.s should be mounted on the front of the box using l.e.d. clips or the reflectors if a greater range is required. If the box specified is used then these would be mounted on the aluminium front panel and soldered to the p.c.b. using flexible wires. The wires to the l.e.d.s should be kept as short as possible as relatively large

currents will flow in these leads and any inductance will have a detrimental effect on the range. Since there are no heavy components on the p.c.b., the transmitter circuit may be secured to the box with a double-sided adhesive pad. The distance between the main p.c.b. and the keyboard will have to be carefully chosen to ensure that the switches are free to move when the box is clipped together. If the assembly is made too high, one or more of the switches may be depressed permanently, which would, of course, result in the transmitter operating continuously. When the correct height has been ascertained, the connections between the two p.c.b.s may be made using tinned copper wire or discarded component leads. The two p.c.b.s have been designed so that the holes for the interconnections line up when the two assemblies are mated. Only the connections for which holes are provided should be made, the spare holes on the main p.c.b. (which are for use with other keyboards) should be ignored.

The battery clips should be assembled in the box battery compartment and connected to the p.c.b. pads marked + and - with wires. If there is any danger of incorrect battery connection, it is wise to place a diode (type 1 N 4001) in the positive lead to avoid damage. The circuit is powered by a 9 V PP3 battery and draws an average current of 20 mA when operating. Since the standby current consumption is only a few micro-amps, no on/off switch is required. A piece of polystyrene or similar material may be required to hold the battery in place within the battery compartment.

Switch assembly

Fig. 1. P.c.b. design for the transmitter

Fig. 2. Component layout

Fig. 5. P.c.b. design for the Receiver board

Fig. 3. Switch p.c.b.
Fig. 4. Switch layout

Fig. 6. Component layout

The receiver is built on one printed circuit board as shown in Figs. 5 and 6 with all the components, including the transformer, mounted on it. (Construction on Veroboard or other p.c. layouts is not recommended as the high gain amplifier IC1 may become unstable.) Only D1 and the opto isolator and triac are mounted remotely. D1 may be connected to the p.c.b. with wires although the length of these should be kept as short as possible to avoid noise pickup. A screend lead is best although the length should be kept to less than 6 inches as any capacitance across the photodiode will reduce the sensitivity of the circuit to the transmitted IR pulses. As the photodiode will need to be mounted externally, some form of protection from the weather will be needed.

The sensitive face of the diode is the curved one and this should be arranged to face in the direction from which the IR radiation is expected. Any transparent or translucent enclosure of the type supplied for panel mounted neons would be suitable provided the diode. is mounted against the front of the moulding to avoid making the unit too directional. If the unit is to be used in a room to control lamps or appliances, the photodiode mounting will not be so critical as multiple reflections occur from walls and ceilings making the controller largely non-directional.

The unit may be tested by connecting the mains to terminals J and K and transmitting the open/close code. VR1 should be adjusted until I.e.d. D2 lights and remains lit while the transmitter button is pressed. The other codes may be tested by connecting l.e.d.s directly to terminals E F and G H, with the l.e.d. cathodes connected to E and G. Transmitting ON 1 and ON 2 will switch each l.e.d. on while pressing OFF will cause both l.e.d.s to switch off.

Fig. 7. P.c.b. mains switch

Fig. 8. Component layout

The layout of the mains switch is shown in Figs. 7 and 8. The triac CSR 1 specified is an 8 Amp device which can control up to 2 kW at 240 V a.c., although a suitable heatsink will be required to keep the triac case temperature to below $70^{\circ} \mathrm{C}$. Without a heatsink, a load of up to $1.5 \mathrm{~A}(300 \mathrm{~W})$ may
be switched. If higher power loads are to be controlled a TIC236D (12A r.m.s.), TIC246D (16A r.m.s.) or TIC263D (25A r.m.s.) may be fitted without any circuit modifications. Note that the load must be connected in series with terminal Lo. Since the input is an l.e.d., the correct polarity must be observed with terminal M connected to the positive line, i.e. For H.

APPLICATIONS

The obvious application for the unit and indeed the purpose of the design is in the control of motorised garage doors. In this context the momentary output would be used to trigger the open or close sequence while the two latched outputs could control mains lamps (via the slave switches) to illuminate the drive and garage if required.

The circuit could of course be used for a multitude of other functions around the house. As mentioned, the ON/OFF outputs could be used to switch virtually any appliance on or off such as radios, tape recorders, lamps, etc. The momentary output controlled by the open/close button could be used to change the channel on a suitably modified TV receiver. An interesting application would be to control room lighting. Many modern touch controlled lamp dimmers incorporate an input for connecting to slave touch plates. These normally require a momentary low current connection to the live terminal to effect switching or dimming of the light.

For the elderly or disabled, the unit could be used to control heating or lighting. Since the connections to the power switch of Fig. 4, shown last month, need only to be low voltage/low current wires, it would be easy to arrange for the controller to be situated in one room and control an appliance in another location, enabling, for example, the central heating or an electric blanket to be switched on or off without the necessity of leaving the living room.

[ASIBLIDEBE] Quick, neat and easy!

It's so easy and tidy with the Easibind binder to file your copies away. Each binder is designed to hold 12 issues and is attractively bound and blocked with the PRACTICAL ELECTRONICS logo. Price U.K. $£ 4.60$ including postage, packing and V.A.T. Overseas orders add 25 p.
Please allow $3 / 4$ weeks for fulfilment of order. Why not place your order now? Send the completed coupon below with remittance payable to:-I.P.C. Magazines Ltd., Post Sales Dept., Lavington House, 25 Lavington Street, London SE 1 OPF.

Order Form PRACTICAL ELECTRONICS

0
 hi:reliabilityhisservice hi:performance hi: competitive hi: Low cost excellence

with a 2 YEAR guarantee

> SG 402
> 30 MHz A.M. SIG. GEN.
£59

SG402 A.M. Signal Generator - 100 KHz to 30 MHz in 6 bands 100 mV of OIP with variable attenuator - Int. and Ex. A.M. - Solid State - Lightweight and portable - Large clear easy to read frequency dial.

FG270, Function Generator - 0.1 Hz to 1 MHz in 6 ranges sine, square and triangle - $20 \mathrm{~V} p$-p open circuit output $-<1 \%$ distortion - D.C. offset - TTL OIP - Ext. VCO for sweep tests. FG271 as above plus 0.02 Hz to 2 MHz in 7 ranges - Int. sweep Pulse, Tone Burst and A.M.

AG202A 200 KHz R.C. Oscillator -20 Hz to 200 KHz in 4 ranges Sine and Squarewave - Flat OIP to 10 V r.m.s. from 600 ohms $<0.5 \%$ distortion - $>60 \mathrm{~dB}$ of variable O/P atten - Ext. Sync. Large easy to read single dial with smooth precise tuning control AG203 Low Distortion Oscillator $-<0.1 \%$ distortion - 10 Hz to 1 MHz in 5 ranges.

CO1303D, DC to 5 MHz Oscilloscope - $10 \mathrm{mV} /$ div sensitivity with variable atten. - Int. variable sweep frequency in 4 ranges from 10 Hz to 100 KHz - Int. and Ext. sync. - Direct deflection terminals can monitor R.F. up to 450 MHz . CO1303G as above, plus $1: 8$ to 54 MHz monitor freq. range from 1 to 500 W direct coupling - Two Tone gen. 1 KHz and 1.575 KHz -ideal for SSB, A.M. C.W. etc.

> DL 705
> $31 / 2$ DIGIT DMM fg2

DL 705 3 $1 / 2$ Digit LED DMM - 2V FS 1000V FS (DC and AC) - 20A FS to $200 \mathrm{~mA} \mathrm{FS}(\mathrm{DC})$ - 2 ohms FS to 20 M ohms FS - Accuracy 0.5% of reading - Compact, reliable and easy to use.
DL706 3½ Digit Auto Ranging and Zero- 0.1% of reading - $100 \mu \mathrm{~V}$ resolution - AC Amps
DL $72041 / 2$ Digit - 0.03% of reading
Plus many other Trio Products such as high sensitivity electronic voltmeters, Wow and Flutter meters, DIP meters and of course the main range of Trio scopes up to 100 MHz - JUST ASK FOR THE CATAL OGUE

House of Instruments Lid.

House of Instruments Ltd.

PE
 Rancer BASE STATION
 Michael Tooley в.A. David Whitfield m.A. m.sc. PART THREE

THE purpose of the S -meter module is to provide a d.c. output proportional to the amplitude of the 455 kHz IF signal. The module samples the level of the IF signal in the Ranger preceding the amplitude limiting stages within IC100. At this point (the output of FL100) the IF signal is only at a relatively low level and hence some amplification is essential before detection. To prevent instability the module must be housed within the Ranger transceiver and its output taken via the 7 -way ancillary connector to the Base and Mobile Adaptor. Where signal strength indication is not required, the S-meter module may, of course, be omitted. In this case there will simply be no meter indication on 'receive' but otherwise the performance and operation of the unit will remain unchanged.

Fig. 3.1. Circuit diagram of the \mathbf{S}-meter module
The circuit diagram of the S-meter module is shown in Fig. 3.1. Source follower, TR1, provides impedance matching and its high value of input impedance minimises loading of the IF amplifier at the point where the signal is derived. This is an important consideration as the filter needs to be accurately matched in order to obtain optimum performance. TR2 and TR3 form a voltage amplifier with gain adjustable by means of VR1, D2 and D3 rectify the amplified IF signal and the supply voltage is held constant by means of D1.

The S-meter module is assembled on a small single sided p.c.b. for which the foil layout is given in Fig. 3.2. The corresponding component layout is shown in Fig. 3.3. The
completed p.c.b. should be wrapped in a polythene sleeve and located at right angles to, and on the right hand side of, the main p.c.b. in the area adjacent to IC100 and IC101. Only four connections need to be made to the Ranger and these should again be kept as short and direct as possible.

Fig. 3.2. P.c.b. design for the S-meter module

Fig. 3.3. Component layout for the S-meter module
The input is taken from the junction of R111 and FL100. This connection may most conveniently be made by soldering to the left-hand end of R111 (the end nearest FL100) on the top side of the p.c.b. The positive supply is derived from test point G and the common rail is taken from pin-2 of SK203 (or any other convenient OV point). The output of the module is taken to pin-1 of SK203 and note that, regardless of whether the S-meter module is fitted or not, some minor modifications to the wiring of SK2O3 are necessary and these are covered in the next section.

TESTING AND ALIGNMENT

During the test and alignment procedure it is recommended that a current limited regulated d.c. power supply be
used. The supply should be set to give 12 V d.c. $(\pm 0.5 \mathrm{~V})$ and its current trip set to $1 \mathrm{~A}(\pm 100 \mathrm{~mA})$. The Base and Mobile Adaptor does have its own internal 1A fuse but this should not be relied upon in the initial stages. Protection is essential in order to minimise the risk of damage to both the external power supply and to the Base and Mobile Adaptor in the event of incorrect component connection or faulty assembly (e.g. solder bridges between p.c.b. tracks). Under no circumstances should the external supply be allowed to exceed 17 V as this may result in permanent damage to both the Ranger and the Adaptor.

Two interconnecting leads are required. Both need be no more than 160 mm long since it is envisaged that the two units will normally be operated 'piggy-back' rather than 'side-by-side'. Constructors should, however, make the connecting cables long enough to allow the two units to be operated 'side-by-side' during the setting-up process. The RF connecting lead (at the front of the set) should use good quality 50 ohm coaxial cable. (e.g. UR43 or UR76) terminated with PL259 plugs. The correct method for fitting these plugs is shown in Fig. 3.4. and 3.5. The control lead (at the rear of the set) has seven ways and should be terminated with 7-pin DIN plugs. Care must be taken to ensure that the pins are correctly linked and this is best done by checking pins 1 to 6 with an ohm-meter both for continuity and for the presence of short circuits between adjacent pins.

Make the following adjustments and connections in the order given before connecting the external d.c. supply:
(a) Ensure that the interconnecting leads are in place.
(b) The channel selector should be switched to channel 14.
(c) The 10 dB attenuator should be switched 'off'.
(d) The RF gain control should be set to maximum (fully clockwise).
(e) VR1 should be set to minimum resistance.
(f) The cores of L1/L2 and L3 should all be set two full turns from the furthermost position into the former.

COMPONENTS

S-Meter Module	
Resistors	
R1. R4	100 k (2 0ff)
R2, R5	2 k 2 (2 off)
R3	4 k 7
R6	1 k 5
R7	1 k

All resistors $\frac{1}{4}$ W 5% Carbon.

Capacitors

C1	$22 p$
C2	$1 n$
C3, C4	$4 n 7$ (2 off)
C5	$100 n$

All capacitors ceramic disc or plate
Semiconductors

D1	BZY 88 C5V6
D2, D3	OA91 (2 off)
TR1	2N 3819
TR2. TR3	BC 548 (2 off)

Miscellaneous
VR1
220 min preset skeleton (hor)
(g) The variable capacitors should be set as follows:

VC1 and VC2; plates 20\% meshed.
VC3 and VC4; plates 50% meshed.
(h) If the filter modules have been fitted they should be temporarily removed and replaced by shorting links.
(i) Connect an external loudspeaker (of between 4 and 16 ohms impedance) to the Adaptor via SK3.
(j) Switch the 'squelch' on the Ranger 'off'.
(k) Connect a matched 50 ohm aerial to the Adaptor.

The external d.c. supply should now be connected and the steps which follow should permit alignment of the Base and Mobile Adaptor:

Cut end of cable clean. Remove outer covering 19 mm from the end.

Slide coupling ring and reducer onto cable.

Bare 19 mm of centre conductor. Fan braid slightly and fold back over reducer.

Screw plug body onto reducer and tighten. Solder braid through holes and ensure that a good electrical contact is made. Solder centre conductor.

Final plug assembly with coupling ring free to mate with a socket.

Fig. 3.4. Method of fitting PL 259 connector and reducer to RG 58/U, UR76 or similar 0.2in diameter co ax cables.

Cut end of cable clean. Remove outer covering 28 mm from end.

Bare 16 mm of centre conductor. Trim braid to 12 mm . Slide coupling ring onto cable. Tin centre conductor.

STEP NUMBER	PROCEDURE	NOTES
1	Switch 'on' the external d.c. supply. Switch 'on' the Ranger and the Adaptor unit.	The 'receive l.e.d. indicator on the Adaptor should be illuminated and noise should be heard from the Adaptor's loudspeaker when the volume control on the Ranger is advanced
2	Adjust the core of L1/L2 for maximum indication on, the S-meter using the signal from a fairly strong local station. If a full-scale reading has been obtained reduce the setting of the RF gain control and continue to adjust L1/L2.	If the S-meter is not fitted adjust for minimum background noise (maximum quieting).
3	Select. a channel on which there is a weak but stable signal. Adjust the RF Gain control to provide a reading of about $\frac{1}{3}$ to $\frac{1}{2}$ scale. Re-peak L1/L2 for maximum.	Only a slight adjustment, if any at all, should be necessary.
4	Disconnect the RF (coaxial) cable linking the Ranger and Adaptor. Connect the aerial directly to the Ranger thus bypassing the Adaptor. Note the S-meter reading obtained when a weak-but stable signal is present.	
5	Re-connect the Adaptor and note the new S-meter reading with the RF gain control turned to maximum. (The same signal should be present as in step 4.)	If the RF stage has been correctly aligned and is working properly there should be an increase of approximately two S -units (around 12 dB). If no discernible change is obtained or if there is a reduction in signal strength check the RF stage and repeat steps 1 to 5 .
6	Replace the aerial with a 500 hm resistive dummy load capable of dissipating' 5 W . (Such devices are available from most CB accessory stockists.) Operate the Ranger on 'transmit' by either using the 'press-to-talk' facility on the microphone or by using a shorting link as described in the Ranger alignment procedure.	The 'transmit' indicator I.e.d.'s should be illuminated on both the Ranger and the Adaptor, and the noise from the loudspeaker should cease.
7	Adjust VC1, VC2, L3, VC1 and VC2 in the sequence given for maximum output power indication from the meter. Repeat several times and adjust the setting of VR1 to reduce the indication on the meter if necessary.	The adjustments are fairly critical and there is interaction between them.
8	Adjust VC3 and VC4 for maximum meter indication. Repeat several times for maximum output. Again adjust VR1 if necessary.	These adjustments are faily broad with some interaction between them.
9	If an RF power meter (or SWR bridge which incorporates power measuring facilities) is available, check the output power delivered to the load. This should be between 3 W and 6 W . (See Fig. 3.6.)	If this is not the case repeat steps 7 to 9 inclusive.
10	Insert the filter modules and carefully adjust the ferrite cores for maximum output. Some minor re-adjustment of VC3 and VC4 may be beneficial.	The output power will be somewhat less than that obtained previously and should be typically between 2 W and 5 W .
11	Adjust VR2 in the Ranger for an output power of 4W.	Slight adjustment to the output stage and/or filter in the Ranger may help improve the drive level if necessary.
12	Switch the 10 dB attenuator ${ }^{\circ}$ on and note the effect on the output power. This should fall to approximately 400 mW .	If the output power is greater than 500 mW the value of R9 should be increased to 100 ohm 2 W . If the output power is less than 300 mW the value of R9 should be decreased to 47 ohm 2 W .
This completes the setting-up procedure and the Adaptor is now ready for air-testing'.		

Testing and Alignment procedure

Screw plug onto the cable. Solder braid through holes and ensure that a good electrical connection is made. Solder centre conductor.

[50120]
Final plug assembly with coupling ring free to mate with a socket.
Fig. 3.5. Method of fitting PL259 connector to RG 8/U, UR67 or similar 0.4 in diameter co ax cables.

AERIAL MATCHING UNIT

There will doubtless be many occasions where, for one reason or another, it is not possible to achieve a good match between the transceiver and an aerial system. Usually this is because the radiating element is not cut to the correct length; either it is too long or too short. Aerials with adjustable radiating elements are obviously to be preferred but they can be tiresome and inconvenient to adjust, particularly when they are mounted at some considerable distance from the rig. A most useful accessory, therefore, is a device for accurately matching the transceiver to any aerial system. The effect of providing an accurate match between the transceiver, feeder and aerial is to guarantee a low value of SWR. This helps to improve the radiation efficiency by eliminating additional SWR losses in the feeder and maintains the performance specification of the transceiver itself. The matching unit consists simply of a pi-network of two variable capacitors and a fixed inductor. An added bonus is the reduction of harmonic radiation associated with the lowpass characteristic of the network.

The circuit diagram of the aerial matching unit is shown in Fig. 3.7 together with an internal layout and wiring diagram

Fig. 3.6. Arrangement used for output power measurement

Fig. 3.7. Circuit diagram of the aerial matching unit

Fig. 3.8. Internal layout of the aerial matching unit

Fig. 3.9. Use of an aerial matching unit to improve SWR (Note. The matching unit should be mounted as close to the aerial as possible in order to reduce feeder SWR losses)

COMPONENTS ...

Aerial Matching Unit

SK1. SK2	S0239 sockets (2 off)
VC1, VC2	Air spaced variable, max. capacity in
the range 365 to 500 pF, see text	

Metal case or diecast box
Pointer knobs (2 off) fitted with '0-10' scale, see text
in Fig. 3.8. A metal screening enclosure is essential to the correct operation of the matching unit and this can take the form of a diecast or aluminium box measuring approximately $150 \times 80 \times 50 \mathrm{~mm}$. The variable capacitors may be difficult to obtain but fortunately their exact maximum value is unimportant and can be anywhere between 365 pF and 500 pF . The prototype employed dual gang 176 and 208pF
capacitors with the two gangs connected in parallel to make a total maximum value of approximately 384 pF . Capacitors of this type were commonplace in AM (medium and long wave) transistor portable radios of some 10 to 20 years vintage. Whatever type of capacitor is used they MUST be air spaced types and should be fitted with a pointer knob and scale. This is important for providing accurate reference points for re-setting the matching unit when it is to be used with several aerial systems. The unit should preferably be fitted as close to the aerial as possible. This is particularly important when a high SWR (greater than 2:1) is present. In many situations, however, this may not be practicable and it will be necessary to place the unit in the vicinity of the transceiver and SWR bridge. This is a less efficient arrangement (due to the high SWR in the feeder) but it will at least provide a reasonable match for the transceiver. A typical arrangement is shown in Fig. 3.9 and the aerial matching unit is simply adjusted for minimum VSWR. In practice, and with careful adjustment (both controls need to be used) it is possible to obtain an SWR of 1.1:1 or better with even the most difficult aerial systems.

Digital Design Techniques...

Tom Gaskell ba.(HoNS) herec.enc.

Part 8 Memories \& Microelectronics

N the series so far we have looked at the design of logic systems, from simple combinational and sequential circuits up to multiplexing and bus-orientated networks. It's only a small step now into the world of microcomputing and microprocessors. We need only one more 'building block' of circuitry; the memory.

BASIC REQUIREMENTS OF MEMORY

Essentially, 'memory' is a collection of logic 1's and 0's which are stored in a system. There must be some way to 'write' these logic states into the memory, and some way to 'read' the logic states out of the memory and into other circuitry.

In some cases it might not be necessary to write information into the memory more than once. If a fixed set of binary numbers was to be stored, always the same and never requiring modification, then a 'Read Only Memory' or 'ROM' could be used; in its simplest form this would be a set of wire links or switches permanently set to give a logic 0 or logic 1 where required. In many cases, though, it is necessary to be able to frequently write information into the memory, as well as being able to read it. Such a memory is known as a 'RAM', which stands for 'Random Access Memory', meaning that all bits stored in the memory can be directly and independently written into, or read from. 'RAM' is actually a bad name for the device; all bits can be accessed randomly in a ROM, too. Unfortunately, this is a terminology that we'll have to live with!

In both ROMs and RAMs we want to be able to choose a specific point in the memory, known as the "address", and read (or write) the information present there into the rest of our system. The memory device, therefore, will have a number of binary inputs which together form the address, and a number of binary outputs (or inputs/outputs in the case of RAM) which together form the data output (or input). Each value of the binary number on the address inputs is known as an address 'word'. In the case of RAMs, there is a read/write control input, and in many devices an 'enable' input is provided, to allow all functions of the device to be turned on or off. The timing of the logic signals can be very important; in many memory systems there must be certain minimum time periods allowed between data changing and the logic state of the read/write control being changed. Failure to observe this can cause incorrect data storage and retrieval, and is an important consideration when designing with many different types of memory device.

STORAGE DURATIONS

Systems which lose their information when the power supply is turned off are known as 'volatile', while those that
retain their information are 'non-volatile'. In some cases it is possible to use battery back-up supplies with a volatile memory to provide short term storage with the power off. In other instances it is possible to specifically design nonvolatile memories, although this is usually done at the expense of performance or memory cost.

Frequently, the use of memories can be broken down into 'bulk storage', and temporary or general purpose storage, often known as 'scratchpad memory'. The former is usually a non-volatile technology, often with relatively slow access or operating speed but capable of holding a massive amount of information for permanent records, storage, filing, etc. The latter is used on a 'day-to-day' basis by the circuitry it serves, mostly for short term storage of information, rather in the manner of a jotter or scribble pad on a writing desk. (Hence the term 'scratchpad' memory). In order to avoid slowing down the surrounding circuitry, this memory has to be a fairly high speed type, although it does not usually need to store a very large amount of information.

MEMORY TECHNOLOGIES

Memories can be implemented by using various different technologies; electromechanical devices (relays, uniselectors, and the like) being one of the simplest, although these are far too slow, bulky, and cumbersome for the majority of applications. In early computers the non-volatile 'magnetic core' was used. This consisted of a large number of small ferrite rings with wires passing through their centres. By passing impulses of current through selected wires, the ferrite rings could be magnetically saturated and hence these cores were written into. By passing current pulses of the opposite polarity into the selected wires, and measuring the resulting e.m.f., the saturation of the cores could be determined and the memory could be read. Although a widely used technique several years ago, the magnetic core has now all but disappeared. More recent magnetic technologies are those of tape, disc, and bubble.

Magnetic tape is familiar to us in the form of audio cassettes, and indeed these are often used in small 'personal' computers as bulk storage, with differing frequencies of tone being recorded in bursts to indicate logic 0 's and logic 1's as appropriate. Larger computers use larger tape; many times the thickness, width and length of cassette tape, running at very high speed, and with many tracks used in parallel to increase the speed of reading and writing of the memory.

Magnetic tape can store fantastic amounts of information, but is inherently very slow; if the data that you want is at the opposite end of the tape it can take several minutes to get there! A natural progression, therefore, was to use a
magnetic disc. With this system, a circular disc coated with a thin ferromagnetic material (similar to that used on tape) is continuously rotated at high speed. In the large, solid, 'hard' disc units, the read and write heads float on an air cushion fractionally above the disc, whereas in the case of the smaller flexible 'floppy' discs, the head and disc actually touch, the disc being coated with a lubricating material to reduce friction.

Information recorded anywhere on the disc can be accessed in a fairly short time by moving the heads inwards or outwards along a radius from the centre of the disc, and then by waiting for the disc to rotate sufficiently to bring the required information directly underneath the heads. In this respect, the disc is analogous to an LP record; you don't have to play the whole LP to reach a track that you want to hear-the pickup can be placed on that track directly, manually, saving a great deal of time. This method of bulk storage is fairly fast, and can store large amounts of data; typically between 0.1 and 1 Megabytes (a 'byte' is a group of eight bits) for a floppy disc and over 10 Megabytes for a hard disc.

A fairly recent development in non-volatile bulk storage is the 'Bubble Memory'. This device consists of a very thin layer of garnet crystal, grown on a non-magnetic substrate, wrapped with flat wire coils, and enclosed within a pair of permanent magnets. A large number of geometric 'shapes' are deposited on the surface of the garnet, in a soft magnetic material. Tiny magnetic 'bubbles' can be generated in the garnet; these are small areas only a few micro-metres in diameter, in which the magnetic field is opposite to that in the rest of the crystal. Magnetic fields generated by the coils produce and control the magnetic polarisation of the deposited geometric 'shapes', which in turn manipulate the bubbles. The presence of a bubble represents a logic 1, and the absence of one a logic 0 .

Bubbles can be sensed by monitoring the resistance of extra 'detector' shapes. As the bubbles pass under these detectors, the resistance of the deposited shapes changes, and this can be amplified by a suitable detection circuit. The circuitry needed to control a bubble memory is complex and expensive, and the whole technology at the moment is a rather specialised one. In its favour, it is fairly compact, nonvolatile, low power, and has reasonable speed performance. Of all the memory technologies in current use, it has perhaps the greatest potential for improvement and developments.

The memories that we've looked at so far have had attractions for bulk storage, but even the fastest floppy discs or bubble memories are much slower in operation than most logic families. The problem is not so much the rate of transfer of data, but rather the 'access time', i.e. the time taken between deciding that you wish to read or write to a specific location in memory, and actually being able to read or write that data. Although discs may be able to transfer data at many hundreds of thousands of bytes per second, it can take many tens of milliseconds to begin that data transfer. This is an unacceptably long time if it is to be repeated often within a system. As a result of this, extensive use is made of a much faster accessing memory technology.

SEMICONDUCTOR MEMORIES

Looking first at the RAM, its implementation is very straightforward since all that is required is an array of flipflops or latches! Any flip-flop or latch can be used to store a 1 or a 0 , can be written into (by changing the logic state of the clock), and can be read from by simply looking at the logic state of the Q output. However, the design of typical CMOS flip-flops and latches is rather over-complex for a large memory system; too much space on the i.c. 'chip'

Fig. 8.1. The static memory cell
would be taken up with each device, and the total power consumption of the large numbers of devices involved would be prohibitive. As a result, a far simpler design of memory element or 'cell' is used, based on the 'bistable' circuit design. This is shown in Fig. 8.1, and is known as a 'static' RAM cell. ('Static' refers to the fact that data is stored in the cell for as long as power is applied; there is no decaying away of charge, or any other effect which may cause the cell to lose its data after a time.)

The memory is arranged in a matrix form; rows and columns of cells selected by control logic. To write a logic 1 into the static cell, the DATA column line for the column in question is taken to logic 1 , and the DATA column line to logic 0 . The word line, which determines the row in which the cell sits, is pulsed to logic 1 , then back to 0 again. This forces the bistable into the state where point A is at logic 1 and point B at 0 . (To write a logic 0 , $\overline{\text { DATA }}$ column line $=1$, DATA column line $=0$, and again the word line is pulsed from 0 to 1 and back again). To read from the memory cell, the word line is pulsed again, but this time the logic states on the relevant column lines are monitored. If the DATA column line pulses to logic 1 , then the bit stored was a logic 1. If the $\overline{\text { DATA }}$ column line pulses to logic 1 , then the bit stored was a logic 0 .

DYNAMIC MEMORY

The static memory cell contains four MOS transistors and two 'resistors' (also formed from MOS transistors), and hence is fairly bulky when used in quantity on an i.c. 'chip'. Supply current requirements are also relatively high, and this also restricts how closely packed the cells can be; too close together, and the resultant heat generated cannot be dissipated by the i.c. package, causing heat damage. Because of these restrictions, a lower power and more compact memory design is frequently used; the 'Dynamic' memory cell, as shown in Fig. 8.2.

66783
Fig. 8.2. The dynamic memory cell

To write a logic 1 into the cell, the DATA column line is held at logic 1, and the word line is pulsed from logic 0 to 1 then back to 0 again. This stores a charge on the capacitive element', which is actually another MOS transistor since capacitors are very difficult to fabricate effectively on an i.c. chip. To write a logic 0 , the process is repeated with the DATA column line at logic 0 . To read from the cell, the word line is again pulsed and the logic state of the DATA column line is monitored; if it pulses to logic 1, the stored bit was also a 1 , if it does not change at all then the stored bit was a 0 . (The logic 1 pulse is caused by the 'logic 1 charge' on the capacitive element discharging, via the MOS transistor, into the circuitry monitoring the DATA column line).

There are two inherent weaknesses of this design. The first is that, unlike the static cell, reading is 'destructive'; any charge stored on the capacitive element is discharged into the control circuitry upon readout, so the memory has been lost. The second weakness is that the charge on the capacitive element leaks away after a very short time (the actual capacitance value is very small), so the memory is lost after a short time anyway-well under a second! To overcome both these problems, 'refresh' circuitry is used to rewrite any memory which has just been read with its 'own' data again, and to continually re-write all the data out of the memory and back into it again. These days, many popular dynamic RAMs have all the refresh circuitry built in, so they appear to the user to be static; no external refreshing is necessary.

THE ROM

Although the ROM is supposedly little more than a large array of pre-set switches, in practice it has a complexity similar to that of the RAM. This is necessary, to ensure that it can be addressed in a similar way to the RAM, that it can have a very high speed (i.e. the data should be fed out of the i.c. as soon as possible after the address has been selected), and in many cases that it can be programmed; it becomes a programmable read only memory, or 'PROM'. Naturally all ROMS have to be programmed at some time or other, so the term ROM is used for 'Mask Programmed' devices, i.e. those which have fixed programs built in during manufacture, and which are unalterable. 'PROM' refers to a device which is purchased 'blank', and is then written into; by applying highvoltage pulses into the device at the relevant address, the memory locations can be 'blown', rather like fuse links, to create the required pattern of 0 's and 1 's. Because it is easy to make errors while programming in this way, most PROMS are made erasable; 'EPROMS'. Erasing such devices restores all the 'fuse links', enabling the programmer to start again from scratch, and is most usually done by exposing the i.c. chip, via a transparent window in the top of the i.c. package, to a specific wavelength of ultra violet light for typically between 10 minutes and an hour. This sets all the bits to a logic 1 state; when memory locations are subsequently 'blown', this sets the bits in question to logic 0 states. 'EEPROMS', or electrically erasable PROMs, have recently started becoming available, and use electrical erase signals; they become, in effect, a non-volatile semiconductor memory of fairly large size, although their erase and write times can be very long.

Non-volatile semiconductor stores are available in their own right, the Plessey 'NOVOL' range being a prime example. This is a range of counters, counters with 7 -segment decoders, and one latch circuit, which have non-volatile circuit elements built in to retain the last logic states of the device for up to one year in the absence of power. In these devices, of course, only small numbers of bits are involved, so they are only a very small-scale memory in terms of ROM, RAM and bulk storage techniques.

MEMORY ORGANISATION

Most semiconductor memories are organised in terms of 1 bit, 4 bits, or 8 bits per address word. Hence, a memory device which claimed to be 256 words $\times 8$ bits would have a total of 2048 cells within it, i.e. a total storage of 2048 bits. We refer to a unit of 1024 bits as ' 1 K ' bits (1024 being equal to 2^{10};) hence, 2048 is 2 K bits; 4096 is 4 K bits etc. When memory devices are grouped together in a microprocessor or microcomputer system, we arrange them to suit the number of bits that the microprocessor uses. For example, the majority of microprocessors today work on an 8 bit system. so our memory will be arranged to be 8 bits 'wide' also. (By putting two 4-bit memories side by side, with common address lines, or eight 1 -bit memories, etc.) Each set of eight bits is known as a 'BYTE', so a 4 K Byte memory consists of $4 \times 1024 \times 8$ bits i.e. 32,768 bits. Often, computer jargon shortens the term ' 4 K bytes' to just ' 4 K ', which could cause confusion with 4 K bits. It is usual to talk about individual memory i.c.s. in terms of bits, but assemblies of memory devices, memory systems, and microcomputers in terms of bytes. Typical 'personal' or 'home computers' are available with between 1 K and 48 K (bytes) of RAM, and up to 12 or 16 K (bytes) of ROM.

THE MICROPROCESSOR

The 'micro', as it is known, is a very complex and technically advanced electronic device, and there certainly isn't room in this article to go into detail about its design and-operation. However, we can take a look at the basics, to give an idea about the way that the technology is used, and the sort of facilities that can be provided. Two months ago, we looked at bus-orientated systems, and gave an example, of some data manipulation in an A.L.U. using such a system. Let's now take those principles further, and look at a greatly simplified 8 -bit microprocessor system. (Note that a microprocessor will often be referred to as a 'Central Processing Unit' or CPU.)

A block diagram of a simplified microprocessor is shown in Fig. 8.3. The internal 8-bit data bus, ALU, accumulator, and general purpose registers have all been met before in Part 6 of this series. The data and address bus controllers are basically bi-directional register and latch arrangements to permit the feeding of data and addresses to and from external switches, transducers, bulk memory, displays, etc. The address bus controller normally uses 16 bit words, which are made up from two separate 8 bit words obtained from the internal 8 bit data bus. Most of the general purpose registers are 8 bit, but there are some specific exceptions; the 'Program Counter' and 'Stack Pointer' registers are both 16 bit, for example.

The 'Instruction Register' is used, together with the Control Unit, to identify and verify specific binary numbers called 'Instruction Codes', which are fed into the microprocessor from the program written in the external ROM or RAM. These numbers provide specific instructions to the microprocessor; 'reset the accumulator' or 'increment' ladd 1 to) register B, etc. When identified and decoded by the control unit, each instruction causes a specific number of control and timing signals to be sent out to the relevant registers and areas of circuitry, in order to cause that instruction to be implemented. The number of different instructions that can be performed by a micro is a very good indication of the 'power' of that micro, along with the number of registers that it makes available to the user. The popular Intel 8080A, for example, has 78 instructions in its instruction set, whereas the Zilog $Z 80$ (acknowledged as one of the most powerful 8 bit microprocessors available) has 158 instructions, including all 78 of the 8080 . The $\mathrm{Z80}$ is also well sup-

Fig: 8.3. Simplified 8-Bit microprocessor block diagram
ported with registers; a total of 188 -bit and 416 -bit registers are provided.

Unlike a conventionally designed piece of circuitry, the microprocessor based system is incapable of functioning, even when mechanically complete and apparently finished. The mechanics-p.c.b., power supply, i.c.s resistors, etc., are collectively known as 'hardware'. What is needed is a 'program'; a set of binary numbers which instruct the microprocessor what to do, and how to do it. Such programs or lists are known collectively as 'software', they are, in effect, the paperwork involved in the system. Programs, of course, can be written into ROM, RAM, or bulk storage. In this case, these devices consist of both hardware and software, and so any memory device containing a program is known as 'Firmware'; half way between being hard and soft!

PROGRAMMING

A program contains a series of instructions, and often data too, although in many systems the data is provided externally by switches, transducers, etc. The microprocessor executes each instruction in sequence, one at a time, although there can be built-in jumps such that upon receipt of a specific instruction the microprocessor will 'move' to a different area of the program, before or after the point which it has just 'left' and continue executing the program from there. The sequence of instructions given at the end of Part 6 of this series, covering the addition of two numbers together and the putting of the result in register ' D ', is an example of part of a very simple program.

Programs can be shown diagramatically by a 'flow chart'; a set of symbols and text, which is the software equivalent of a block diagram used to represent the hardware. Let us take,
as an example, the requirement to flash an l.e.d. on and off for a certain number of times as determined by a thumbwheel switch. The simplified flow chart for this program is shown in Fig. 8.4. The 'loop' is gone round as many times as the l.e.d. is flashed on. The type of instruction causing the program to jump from the question "is the content of register B zero?", to the "turn on l.e.d." sequence is known simply as a 'jump' instruction. In fact, the probable instruction would be "jump if not zero", which is an example of a 'conditional' jump. These conditional jumps make programming very much easier, because they effectively test for a specified condition ("accumulator $=$ zero", or "a certain logic state $=1^{\prime \prime}$, etc.,) then either jump to a different part of the program, or continue to the next program step in the list, depending on the result.

The turning on of the l.e.d. would be accomplished by an external circuit driven from the microprocessor's 8 bit data bus, and the thumbwheel input would likewise be fed into the micro. The half second delay could be created by using an external monostable circuit, again, via the data bus, or by software methods; the computer takes a finite time to perform each program step, so by making it do a 'trivial' exercise a few tens of thousand of times, then time can be wasted, and a suitable delay created. In all programs, the most important thing to remember is that within the circuitry in question, both the instructions and the data are being represented as logic 0 's and 1 's; simple binary numbers.

THE USE OF MICROPROCESSORS

There are, essentially, two ways of using a 'micro' within a system. The first is 'dedicated' usage; the microprocessor has a single fixed program held in ROM, which it always per-

E6778
Fig. 8.4. Simplified flow chart of l.e.d. flasher
forms in the same way, while using small amounts of RAM for temporary storage if necessary. The user will have no means of re-programming this device. The microprocessor in this application is simply replacing large amounts of conventional logic circuitry. Test instruments, hand held electronic games, sewing machines, washing machines, cassette recorders; etc., whenever they use a microprocessor, they do so on a dedicated basis, and in each case the micro gives a fixed set of responses to a fixed set of stimuli, or inputs.
'Non-dedicated' use introduces us to the domain of the microcomputer, where the full performance, instructions and capabilities of the microprocessor are fully at our disposal.

THE MICROCOMPUTER

The term 'microcomputer' means more than just a small computer. It is a computer in which the CPU is manufactured as a single i.c.; a microprocessor. Unlike the dedicated micro-based systems, it requires definite operator interaction before it can be of very much use at all! It is a programmable device, so without the program written into it, it can do very little. The constituent parts diagram of a typical microcomputer is shown in Fig. 8.5.

The video output of the microcomputer is normally in the form of a 9 to 12 inch CRT; often a portable domestic television set. This video monitor is usually arranged to display a number of ASCII characters corresponding to the binary numbers held in a particular part of the memory. Imagine the

Fig. 8:5. Constituent parts diagram of a microcomputer system
screen being divided up into a matrix of squares, with each square having a specific and unique address. There are typically around one thousand (1 K) of these. Part of the RAM known as the 'Video RAM' is usually dedicated for this use, and the display is then known as 'memory mapped'. The keyboard enters ASCII codes into the computer, which are normally fed up onto the screen as the program is being written. The bulk storage, printer, and external outputs and inputs are all fairly self-explanatory.

The microprocessor has many extra circuits and devices surrounding it; encoders and multiplexers to feed the keyboard information in, character generators and modulators to enable the memory to be displayed on the screen, and (of course) ROM and RAM. The ROM in a microcomputer normally carries the 'monitor program' (not to be confused with the video monitor); this is the 'apparent intelligence' of the computer, and is the interface point between the microprocessor logic, and the human operator and keyboard. Depending on the size and complexity of this monitor program, the facilities offered to the user can be considerable. The monitor contains basic and fundamental information within the computer, to tell it to scan the keyboard for any keys pressed, then to feed the ASCII character corresponding to the key pressed into the section of video RAM corresponding to the relevant position on the screen. It also enables, editing of the video RAM; deletion of characters, moving the display up and down ('scrolling'), etc.

Although the microprocessor operates on binary numbers, known as 'machine code', the human operator can program the computer in the hexadecimal equivalent to those binary numbers, making it quicker to type in, and easier to understand. This hexadecimal listing is known as 'object code' Some systems help still further, by allowing the program to be written in 'mnemonics', which is a means of writing hex instructions in an abbreviated English language format. For example, 'JP' could be used to represent a jump instruction, the hex code for which might be C3, or 'INC B' might be used to represent the instruction 'increment the contents of register B^{\prime}, who's hex code might be 04 . By using mnemonics (pronounced 'nimonics'), the program (when written down or typed in) can be much easier to follow and understand; the instructions all mean something and are no longer a collection of fairly arbitrary looking letters and numbers!

To produce machine code from the mnemonic program, an 'assembler' program must be used, which acts as a 'converter' between mnemonic and binary. (To translate back from binary to mnemonic, a program called a disassembler' is brought into use.) Much of the programming for dedicated microprocessors is written on microcomputers in object code or mnemonics, because this level of computer operation is very fast; the computer operates very efficiently when using these codes. However, programming can still be a complex, slow, and difficult task, as the detailed internal operation of the microprocessor is still dominant; programs are written in terms of registers, clock signals, ALUs, flags, etc. To bring the program one step higher in level, to a nearer approximation to the English Language, we must use a 'high level language'.

HIGH LEVEL LANGUAGES

The high level language raises programming to a fairly easily understood level. Instruction such as 'GO TO', 'PRINT', and 'IF $X=Y \ldots$ are used, and enable people who are not immediately familiar with the computer or program in use to make sense of it all fairly quickly. There are many different languages; FORTRAN, COBOL, ALGOL, BASIC, PASCAL, FORTH, etc., the most commonly used of these lin the case of microcomputers) being BASIC, which stands for 'Beginners Allpurpose Symbolic Instruction Code'. Although there are several 'dialects' of BASIC they all share many common properties, and BASIC programs for one make of computer can usually be run on other computers with only a small amount of modification, if any at all. The opposite is true of object code and mnemonics, since these are specific to the microprocessor and monitor program in use, and can be quite difficult to translate for other systems. A special program must be used within the computer to convert programs, written by the user in BASIC, into machine code, and to convert machine code 'replies' from the computer back into the relevant BASIC statements and comments. This special program is normally held in a ROM, as firmware.

High level languages, because of the extra complexity involved, are relatively slow in use; each step of the program takes longer to execute than in the case of machine code based programs. Even so, the operation can be fast enough for all but the most demanding applications.

GETTING TO GRIPS WITH THE 'MICRO'

Unfortunately, the microprocessor is not something that you can just 'dabble' at; you can read all that you like about it, but until you get 'hands on' experience with a micro-based system you will still know very little about the practicalities of the subject. By far and away the best learning aid is a microcomputer itself, which will cost a significant amount of money, so it is important to shop wisely. There are microcomputers on the market that may seem attractive because of their very low cost, and some good publicity. Indeed, they demonstrate considerable engineering achievement in squeezing so much circuitry into remarkably small spaces, for a reasonable price. However, they can be very restricting in performance; the keen user will find that the capabilities of the machine, even with 'expansion' (more memory), can be very limiting. For what they are, they are excellent, but they are not fully fledged microcomputers in the same class as machines costing over $\mathbf{£ 2 0 0}$. It is strongly suggested that if you are serious about learning about microprocessing and computing, you spend more money to avoid disappointment in the very near future. As a compromise, some computers in kit form can enable you to start off with a simple and inexpensive system (working on the object code level), then build it up slowly, and add a high
level language, to finish up with a system which is worth several hundred pounds.

The machine to buy is very much a personal choice, to be made in combination with a study of magazine reviews, advice gleaned from other, more experienced microcomputer users, and a trip or two to your local dealer. Obviously, you get what you pay for, but to a certain extent you can pick and choose your approach. For those interested in the hardware side of the subject, the kit computers mentioned earlier can be a good starting point, but only if your standard of construction, especially soldering, is very good. Kit computers are NOT for beginners! Nascom 1, Nascom 2 and Tangerine products, amongst others, can certainly be recommended. Ready-built computers are for those less confident in the hardware side; Tangerine, Video Genie, Sharp and Tandy all have ready-built products, and the new 'BBC micro' is attracting a lot of attention at the moment, although at the time of writing it is not yet on the market. Paying out still more can provide small business computers such as the PET, APPLE or Tandy, but these represent a considerable investment and are not necessary unless you are likely to need their very advanced facilities later. A choice in the microprocessors used comes down to 6502 versus $Z 80$ in the case of most microcomputers mentioned. The $\mathbf{Z 8 0}$ is undoubtedly more powerful, but the 6502 is somewhat more widely used, so once again the choice is a personal one.

Another point to make is in the interest of domestic harmony! Computing can take up a surprising amount of time. 'De-bugging' programs has kept most people busy into the early hours on a number of occasions, and you should be aware that demands on your time can be considerable, especially at first. Computing is not something that you can do a little at a time; several hours at a stretch is needed to get to grips with the problems, and preferably in peace and quiet, too. Don't let this put you off, though-it's a useful and fascinating subject, and well worth spending time and effort on!

In conclusion, if microcomputing or microprocessors are of interest to you, then the only real way to learn is to buy a microcomputer, and spend some time with it. Before committing yourself, why not see if the local school or technical college has evening classes in computing or microprocessors, or even runs a suitable club? This would enable you to try out various machines before buying, learn more about the subject, and ask the advice of other enthusiasts.

IC TECHNOLOGY

As technology has advanced through the years, so the number of active devices on an i.c. chip has increased. We can define the 'scale' of integration as follows (remember that each gate is made up of a number of transistors or MOS devices):

Small Scale Integration (SSI); up to 12 gates per i.c. Most NAND, NOR, inverter, and similar combinational logic i.c.s. fall into this category.

Medium Scale Integration (MSI); from 12 to 100 gates per i.c. This covers the range of counters, registers, decoders, flip-flops, etc.

Large Scale Integration (LSI); from 100 to several hundred gates per i.c. Multiplexed counter/driver i.c.s. digital clock i.c.s, and similar complex devices all fall into this category.

Very large Scale Integration (VLSI); from several hundred to several thousand gates per i.c. This is the realm of the microprocessor and the large memory i.c.s. Some micros even have memory i.c.s. both ROM and RAM, built in! Many 'accessory' i.c.s to the microprocessor are needed, such as
programmable timers, peripheral management devices, memory controllers, input/output controllers, etc., and most of these are LSI or VLSI devices in their own right. In many cases, the microprocessor is only a very small part of the whole system; its support i.c.s can take up a lot more space and cost more than it does itself!

To help cut down on the number of 'accessory' i.c.s in any logic circuit or system, the 'Uncommitted Logic Array', or 'ULA' has been developed. This is a very large collection of logic gates which have no pre-determined interconnections. By designing a suitable pattern of interconnections of these gates, a custom-built i.c. can be created which will do the job of a large number of 'off the shelf' devices. Because the ULA is a standard device, with only the final interconnection layer being customised for each application, it is considerably cheaper than having an entire i.c. designed and built, and this approach, therefore, holds great promise for further miniaturising circuit designs in the years to come.

digital electronics in the future

The pace of technological advance is so fast at the moment that it is difficult, if not impossible, to predict developments in the medium or long term future. However, it is possible to extrapolate current trends and developments, and to fairly accurately assess the changes that we can expect to see in the next few years.

In terms of microprocessors, the trend is towards larger and larger numbers of bits being used in a device. The industry 'standard' is currently 8 bits. 16 bit micros are now readily available and are starting to be used in large quantities, yet already we have seen the first appearances of the 32 bit micro; an incredibly powerful i.c. which will enable us to out-perform the much larger 'mini-computers' with single board VLSI microcomputer systems. 64 bits is still long way off, but is far from being an unrealistic or impossible dream, To keep pace with the speed and power of these large devices, memory manufacturers will continue increasing the number of cells per chip, and increasing their operating speeds, probably with dynamic RAM, EEPROMS, and bubble memories showing the greatest improvements.

The 'in' subject at the moment is voice synthesis and speech recognition systems. Cheap, high quality synthesis i.c.s are readily available at low cost but have the severe restriction of a very limited vocabulary. Infinitely variable 'phonetic' synthesisers are more expensive, and most of them suffer from a very poor quality of speech. However, the i.c. manufacturers and designers seem determined to thrust the 'talking hot drink vending machine', and similar ideas, upon us, so this is sure to be an area of considerable future expansion! Speech recognition is a much more difficult task, due to the subtle nuances, inferences, dialects and idiosyncrasies that punctuate the speech of all of us. Again, systems are available with limited performance, and these will be improved upon considerably in the years to come.

Combining speech synthesis and recognition will allow direct communication between the computer and the 'man-in-the-street', which offers vast scope for technological advance and integration of the computer into our everyday life. From the other angle, the man-in-the-street is becoming more familiar with the subject of computing in its own right. All British schools are being equipped with at least one microcomputer, and already many schoolchildren are achieving stunning levels of proficiency and knowledge about computing. The 'electronic office' is with us; word processing, facsimilie machines, electronic filing, and data transfer systems are all available and are being used in many of the large companies. Expensive, yes, at the moment, but as with most electronic goods a continued demand will
result in dramatically lowered costs.
Returning to technological advances at the device level, the Uncommitted Logic Array, as mentioned earlier, will help in the miniaturisation of circuit assemblies, which in turn will increase the number of everyday products which have electronics incorporated into them. Speed limitation is a major problem in many microprocessors and computers, and advances are already being made towards providing the technological basis for the next generation of devices. Gallium Arsenide semiconductors, and those using the 'Josephson Junction', both of which need very low temperature cooling systems to operate, offer considerable decreases in gate propagation delays, with the resultant increase in computing speeds, and show great potential for the future. The one thing that seems certain about the times ahead is that they will be filled with change, challenge, and interest, just as the last few years have been. The profession, and hobby, of electronic engineering is guaranteed to have a colourful future for many years to come!

DIGITAL DESIGN TECHNIQUES

We now conclude this series on digital design techniques; there's no 'mini-project' this month because of the level of complexity that we have now reached, and the resultant limitations of space, so for the final project see next month's issue. In the past few months we have worked through from binary logic and combinational gates, all the way up to microprocessors. The pace has been swift, and to get full benefit from the series it is strongly suggested that you follow up the points made, and do further reading, experimenting, and designing of your own. There is much to be learnt and a great deal of fun and enjoyment to be had, so start putting together your own projects today!

ACKNOWLEDGEMENT

I would like to express my grateful thanks to my father, Peter Gaskell, and to my friend and colleague John Miller, for all their help, criticism, and suggestions in the preparation of this series.
T.A.G.

Our book PE Popular Projects containing a selection of popular projects is now available. The book costs E 1.25 from retail outlets and is also available for $£ 1.50$, UK post paid, or $£ 1.80$ overseas surface post paid, from Post Sales Department (PE Popular Projects), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE 1 OPF.

The book contains the following projects:

[^2]

SX1000

Electronic Ignition

- Inductive Discharge

Extended coil energy
storage circuit

- Contact breaker driven
- Three position changeover switch - Over 65 components to assemble - Patented clip-to-coil fitting - Fits all 12 v neg. earth vehicles.

Sx2000

Electronic Ignition

The brandleading system
on the market today

- Unique Reactive Discharge Combined Inductive and
Capacitive Discharge
- Contact breaker driven
- Three position changeover switch - Over T30 components to assemble - Patented clip-to-coil fitting - Fits all $12 v$ neg. earth vehicles

MAGIDICE Electronic Dice

- Not an auto item but great fun for the family
- Total random selection
- Triggered by waving of hand over dice
- Bleeps and flashes during a 4 second tumble sequence
- Throw displayed for 10 seconds
- Auto display of last throw 1 second in 5
- Muting and Off switch on base
- Hours of continuous use from PP7 battery
- Over 100 components to assemble

Electronic Ignition
The ultimate system - Switchable contactless. Three position switch with Auxiliary back-up inductive circuit. - Reactive Discharge. Combined capacitive and inductive. Extended coil energy storage circuit. Magnetic contactless distributor triggerhead. Distributor triggerhead adaptors included. Can also be triggered by existing contact breakers - Die cast waterproof case with clip-to-coil fitting - Fits majority of 4 and 6 cylinder 12 v neg. earth vehicles - Over 150 components to assemble

VOYAGER Car Drive Computer

- A most sophisticated accessory. Utilises a single chip mask programmed microprocessor incorporating a unique programme designed by EDA Sparkrite Ltd. Affords 12 functions centred on Fuel, Speed, Distance and Time. Visual and Audible alarms warning of Excess Speed, Frost/Ice, Lights-left-on. Facility to operate LOG and TRIP functions independently or synchronously. - Large 10 mm high $400 \mathrm{ft}-\mathrm{L}$ fluorescent display with auto tensity. Unique speed and fuel transducers giving a programmed accuracy of + or -1%. Large LOG \& TRIP memories. 2,000 miles. 180 allons. 100 hours. Full imperial and Metric calibrations. Over 300 components to assemble A real challenge for the electronics enthusiast!

Electronic Car Security System

Arms doors, boot, bonnet and has security loop to protec fog/spot lamps, radio/tape, CB equipment Programmable personal code entry system
Armed and disarmed from outside vehicle using a special magnetic key fob against a windscreen sensor pad adhered to the inside of the screen - Fits all 12 V neg earth vehicles Over 250 components to assemble

PRICES INC. VAT.POSTAGE \& PACKING
NAME ADDRESS
I ENCLOSE CHEQUE(S)/POSTAL ORDERS FOR
\qquad
CHEQUE NO.
24 hr . Answerphone
PHONEYOURORDERWITHACCESS/BARCLAYCARD
SEND ONLY SAE IF BROCHURE IS REQUIRED

Two photographs are shown here; one of the Genesis Mobile unit, M101, and the lower photograph which illustrates through multiple exposure photography, the level of robot technology with us today, by way of the Cincinnati Milacron machine. This latter machine (photo courtesy of Cincinnati) is in a somewhat prohibitive price range for the student. Education is quoted as an ideal application for the Genesis robots because they are inexpensive reprogrammable multi-tasking machines: and light industry because they are also engineered to a professional standard.

Constructor's Note

Complete kit of parts for this project can be obtained from Powertran Cybernetics, Portway Industrial Estate, Andover, Hants SP 10 3WN. Andover (0264) 64455.

Prices are as follons

Genesis MIOI 4 axis model (excluding wheel base) $£ 295.00$ Genesis M1015 uxis model (excluding wheel base) $£ 345.00$
Genesis M101 wheel base $f 79.00$
Genesis PIOI 4 axis model $£ 450.00$
Genesis PIOI 6 axis model
$£ 545.00$
$\{355.00$
Genesis S101 4 axis model
£405.00
Genesis S101 5 axis model
15.00

Position detector coil set for M101. S101 5 axis models $£ 19.00$
Position detector coil set for P101 4 axis model $£ 15.00$
Position detector coil set for P101 6 axis model $£ 24.00$
Position detector hoard for M101, S101 4,5 axis models $£ 6.50$
Position detector board for P101 4,6 axis models $\quad \$ 7.50$
Motor drive board for M101 wheel buse
(2 required per machine)
111.50

Control electronics for M101 (microprocessor board. interface board. display board and mounting brackel)
Processor box for S101, P101 (microprocessor board, interface board, display bourd, power supply. interface cables, conduit, cabinet)
1875.00

Parts for RS232C interface (fits on microprocessor board)
114.50

Hand held controller box for M1O1 (includes infra red transmitter and rechargeable battery)
647.00

Hund held controller box for S 101
£33.00
Hund held controller box for P10I
£33.50
All prices subject to 15% V.A.T.

Components . . .

```
CONTROL BOX (MOBILE)
Resistors
    R1,R4, R6 180k (3 off)
    R2 120k
    R3, R5, R23, R29 47k (4 off)
    R7 470
    R8 3k9
    R9,R12,R14,R15,R28 10k (5 off)
    R10,R11 1M (2 off)
    R13 2k2
    R16 33
    R17 1
    R18,R22, R24 100k (3 off)
    R21,R27 560k (2 off)
    R19.R20,R25,R26 12k (4 off)
All resistors }\frac{1}{4}W\mathrm{ W 5%
```


Potentiometers

VR1	100 k slider (linear)
VR2	47 k slider \& centre indent (linear)
VR3	470 k preset
VR4, VR5	1 M preset (2 off)
VR6, VR7	100 k preset (2 off)

Capacitors

C1 1n Siemens B32560
C2 10 n ceramic Piher
C3. C4 $\quad 39 \mathrm{p}$ ceramic Piher (2 off)
C5, C6 $\quad 100 \mu / 16 \mathrm{~V}$ elect. Axial lead (2 off)
C7, C8 10 Siemens B32560 (2 off)
Transistors and Diodes
TR1
TR2
TR3, TR4, TR5
D1-6, D9-14, D17,
D18, D21, D25-30,
D33-38, D43
D41, D42
D44, D45

BC184L
TIP31A
BC182L (3 off)
1N4148 (28 off)
D18, D21, D25-30,
D33-38, D43
D44. D45

> TIL 38 (2 off)
> 9491 BJ (1V2 Band Gap) or LM385 (2 off)

Integrated Circuits

IC1. IC2	4051 B (2 off)
IC3	4024 B
IC4, IC9	4013 B (2 off)
IC5	401068
IC6	$4023 B$
IC7	4011 B
IC8	LM324
IC10	ICM7555 IPA
IC11	10k s.i.p.

Miscellaneous

Printed circuit board (RTX)
M101 metal cabinet and fixing screws
PP3 stud connector
PP3 rechargeable battery
Slider knob
Pot knob
8 -pin d,i.l. socket
14-pin d.i.I. socket (7 off)
16 -pin d.i.l. socket (2 off)
Switches (27 off)
Slide switch
3.5 jack socket

Jack-to-jack lead (1 metre)

COMPONENTS . . .

CONTROL BOX (P101 \& S101)

Resistors

R1, R4, R6	$180 \mathrm{k}(3$ off)
R2	120 k
R3, R5	$47 \mathrm{k} \cdot(2$ off)
R7	470
R10, R11	1 M (2 off)
R12	10 k
R13	2 k 2
All resistors IW 5%	

Capacitors
C1
C2
C 2
$\mathrm{C} 3, \mathrm{C} 4$
1n Siemens B32560
C3, C4 39p ceramic Piher
C5 $100 \mu / 16 \mathrm{~V}$ axial lead
Transistors and Diodes

D1-6, D9-14, D18, D21,	1N4148 (27 off)
D25-30, D33-38, D43	
D46	$5 V 6$ Zener
TR3	BC182L

Integrated Circuits

IC1.IC2	4051 B
IC3	40248
IC4	40138
IC5	401068
IC6	40238
IC7	4011 B
IC10	ICM75551PA
IC.11	10 K SIP

Miscellaneous

Metal cabinet and fixing screws
Printed circuit board
DIN plug $5-$ pin 240°
5 -way cable (3 metres)
Slide switch
push-button switches
8 -pin di.i.l. socket
14-pin d.i.l. socket (5 off)
16 -pin d.i.I. socket (2 off)

Note: In part 2, Interface board components list, under Miscellaneous-SIP1 and SIP2 should be considered as IC22 and IC23. SIP3 is IC24.

Fig. 1. Robot controller *RS232 version only. "Not used at present

INTERFACE BOARD

The Robot requires many more than the 20 I/O lines available from one PIA. To obtain these without going to multiple PIA's, the interface board uses a secondary 8 bit bus connected to one side of the PIA whilst the other side generates latch clocks for output latches or output enables for system inputs. Although careful attention to detail was necessary in the software to avoid bus clashes, this method makes efficient use of board space and means that the software can be debugged easily from an external computer.

The outputs from the expanded I/O scheme comprise two sets of 8 bits for controlling the solenoids and the motors, 8 bits for the display and bleeper and 8 bits for extra devices. On the input side there are 2 bits for the keyboard decoder interface one bit to signify RS232 connection and 5 bits for extra inputs.

SYSTEM DESCRIPTION

On manual control which is available in the EDIT mode, the robot arms can be moved around using the appropriate control buttons on the control box. There is logic to prevent both solenoids for an axis being activated simultaneously. The robot is taught by being moved under manual control to the desired position. Pressing the INSERT button enters the position and the microprocessor stores it in the battery backed-up CMOS RAM.

When a position is to be remembered, a combination of an analogue multiplexer and an eight bit analogue-to-digital converter (interface board - IC25 and IC24) selects each of the 5 transducer voltages in turn, and digitises them.

On replay, the ADC/multiplexer combination is constantly
scanning the 5 inputs under software control, the measured positions of the five axes being compared by the microprocessor with the current target positions. These comparisons are used to activate the correct solenoids to achieve the target positions.

Manual control of the drive motors (on the mobile unit) is made variable by mark/space modulation of the motor drive switching transistors. These mark/space modulation timings are derived by the program from an internal look-up table that gives the mark/space ratios for the left and right motors from the position of the panel Speed slider and the Steering pot. These timings are themselves also generated by the microprocessor.

RS232 input

To control the robot from an external computer, an RS232 input is provided. If the RS232 lead is plugged in when the unit is powered up, the unit will ignore the keyboard and wait for a command from an external computer.

A move command is simply sent as a string of ASCII characters. The format consists of an " M " followed by six pairs of hexadecimal digits (each pair representing a number between \varnothing and 255 - the desired position for each axis). The last pair is the jaw command, and should be $\varnothing 0$ for "jaws open", and FF for "jaws closed", e.g. M8080808080FF will move all axes to a central position and close the jaws.

When the move has been completed the robot will send back a "*" down the RS232 line to inform this to the sending computer.

On five axis units, the format is the same, but the last-butone pair of digits is ignored.

P.E. ROBOTS

This concludes the hardware and control of the robots. NEXT MONTH we embark on the software description and routines, and final constructions.

MICRO-EUS

THE TWO topics in this month's MicroBus show how micros can be used in amateur radio. The first program receives fax transmissions, and displays them on a computer screen. The second program acts as a Morse-code tutor, for those trying to learn Morse code. Both programs were developed by Steve Platt, a radio amateur in Cambridge (G6AZI).

RECEIVING FACSIMILE PICTURES

Pictures can be transmitted over channels normally used for speech, such as the telephone, or over the air by radio, using a system known as "facsimile" or 'fax". This system is used by radio amateurs to send diagrams such as weather maps and charts on the HF and VHF bands, but one problem faced by amateurs wishing to try their hand at fax is displaying the received pictures without expensive equipment.
The program to be described solves the problem by using the high-resolution fourcolour graphics on an Acorn Atom computer to display fax transmissions on a TV screen straight off the air from a receiver. It was developed by Steve Platt of Cambridge (G6AZI), and what follows is based on his description.
"Radio amateurs generally use fax on the HF bands (short waves) where many commercial transmissions can be received. Fax is also used on the popular VHF 'two-metre' band where the calling frequency is 144.700 MHz . A sample fax picture, of a street scene, is shown in Fig. 6; it is composed of three brightness levels, and has a total resolution of 128×192. It was received on 144.675 MHz FM using the program of Fig. 7 with the receiver output connected directly to the Atom's cassette input!

Fig. 1. Facsimile picture decoded and displayed by the program of Fig. 2

Compiled by DJD

10 DIM LL (18), JJ (3), B(100) 20 DIM D(100)
30 FOR $\mathrm{N}=0 \mathrm{TO} 18$; $\mathrm{LLN}=$ TOP; NEXT
40 FOR $\mathrm{N}=0$ TO3; $\mathrm{JJN}=\mathrm{TOP}$; NEXT
105 PRINT $\$ 12$,"FAX"•
110 PRINT ENTER COUNT AND SYNC ${ }^{\dagger}$
115 PRINT " "TRY 77 \& 8 "'
120 INPUT C;'s
125 GOSUB 2000
130 FOR $N=0$ TO S; $B ? N=2$; NEXT
$140 \quad 8 ?(S+1)=0$
150 FOR $N=S+2$ TO 100; B ? $N=3$; NEXT
200 REM DO IT !
210 CLEAR A: COLOUR 1
220 DO
225 DO UNTIL? 1 BOO1 <> 1 FF
230 ? $184=0$; $\quad 7185=180$; LINKJJ 3
240 UNTIL 0
2000 REM - COUNT CYCLES
2004 PRINT $\$ 21$
2005 FOR $N=1$ TO 2
2007 DIM P (-1)
2910 !
2020: LLL LDA ©0
2030 STA 82 ; LDA eC; STA 80
2035 LDA $1 ;$ STA 81
2040 LDA 8120
2050 BIT B002
2060 BEQ LL 2
2070:LL4 DEC 80
2080 BEQ LL9
2090 NOP
2100 JMP LL 10
2110: LL10 JMP LLII
2120:LL9 DEC 8
2130 BEQ LL 3
2140 :LLI1 LDA 20
2150 BIT B002
2160 BEQ LL6
2170 JMP LLL5
2180: LL15 JMP LLS
2190:LLS JMP LL4
2200:LL6 INC 182
2210 JMP LL2
2220:LL2 DEC 80
2230 BEQ LL 12
2240 NOP
2250 JMP LL 13
2260: LL13 JMP LL14
270:LL12 DEC 181
2280 BEQ LL3
2290:LL14 LDA © 120
2300 8IT |B002
2310 BNE LL7
2320 JMP LL16
2330:LL16 JMP LL8
2340:LL8 JMP LL2
2350:LL7 INC 82
2360 JMP LL 4
2370: LL 3 LDA 82
2380 RTS
2400: LL 17 LDX 0
2410:LLI8 LDA AC;STA 80
2420 LDA 11 ; STA 81
2430 JSR LL1
2440 STA D,X; INX
2450 CPX 101
2460 BNE LLI8
2470 RTS
2500:JJ3 JSRLLL; CMPES: BCC JJ3
2505:JJ2 ESRLL1; CMPES: BCS JJ2
2510:JJO LDX B4
2520:JJ1 JSR LL1; TAY; LDA B,Y
2530 RORA; ROL 83 ; RORA; ROL 183
2540 DEX; BNEJJI
2550 LDA 83 ; STA $(184, X)$; INC 84
2560 LDA 184 ; ANDe31; BNEJJO
2570 LDA 84; BNE JJ3; INC 185
2580 LDA 85; CMP@198; BNE JJ3
2590 RTS
2960].
2970 NEXT N
2980 PRINT $\$ 6$
2990 RETURN
3000 END

Fig. 2. Program for the Atom displays facsimile pictures
"The picture was transmitted (by G8RYL) using a surplus fax machine fed into the transmitter microphone socket. The picture is wrapped around a rotating drum, and scanned with a photocell. The photocell moves slowly along the drum to give a vertical scan, while the drum's rotation provides the horizontal scan. The output from the photocell is then used to vary the frequency of an oscillator with the brightness of the picture. Drum speeds of $60,90,120$ and 240 rpm are most popular; the program to be described works with 120 rpm . The picture's "aspect ratio" is varied by setting the number of drum rotations for each inch that the photocell moves. Further details may be found in Radio Communication, August 1978, and Wireless World, December 1976 and March 1977

PROGRAM DESCRIPTION

"The main task of the program is to determine the audio frequency of the incoming fax signal. This is done by counting "zerocrossings" during fixed intervals of time. The number of zero crossings is then related to a scale of brightness levels, and a point of the corresponding brightness is put on to the Atom screen by poking directly into the graphics memory.
"First the vectors and labels are declared, and the labels are cleared (lines 10 to 40). Variables C and S are parameters which can be varied to tune the progam to the machine being received; the values given, $\mathrm{C}=77$ and S $=8$, seem to work best. The time interval over which zero crossings are counted is determined by \mathbf{C}, and \mathbf{S} determines the number of zero crossings that correspond to the fax syncpulse level; i.e. the lightest part of the picture. The call to subroutine 2000 in line 125 assembles the machine code; note that this code uses C and S as constants, so these must be set before assembly.
"Vector B is a look-up table of brightness values. If \mathbf{X} zero-crossings are counted, the colour of the point plotted will be B?X. Values of 2,0 and 3 correspond to white, grey and black respectively. The brightness levels are set up in lines 130 to 150 , based on the value of S selected.
"The main program loop, in lines 210 to 240, first waits for a key-press; locations \# 84 and \# 85 are then pointed to the start of the screen memory (line 230), and the machinecode routine JJ3 fills the screen.

ASSEMBLER ROUTINE

"Lines 2000 to 3000 constitute the assembler routines to receive a fax transmission, and display it in three brightness levels on an Atom screen. Routine LL1, from 2020 to 2380 , is the key subroutine and is actually
much simpler than it looks; it acts as a software frequency meter, counting the number of zero crossings on the cassette input in a fixed time interval.
"Each time the main loop is executed it reads the cassette input, and increments location \# 82 if the input has changed. The main loop takes 32 usec, and is balanced with NOPs so that each decision branch takes the same number of cycles. The number of times the loop is executed is determined by locations \# 80 and \# 81 ; these are set to C in lines 2030 and 2035, and although in the present application C was only 77, a two-byte counter was used to allow expansion to longer measurement times. With this value of \mathbf{C} the routine counts zero crossings for about 2.5 msec , before returning with number of zero crossings in location \# 82.
"As a debugging aid, lines 2400 to 2470 will dump 100 samples of the input frequency in the vector D. Typing:

LINK LL17

followed by printing the values $\mathrm{D} ? 0, \mathrm{D}$? 1
D? 100 will allow the input to be checked. If the values are not the range 7 to 12 the value of S may need to be changed.

DISPLAY ROUTINE

"The display routine, JJ3 in lines 2500 to 2590, is called from the main BASIC loop. It waits for the synchronising pulse which precedes each line of video information (lines 2500 and 2505), and then fills a line on the screen. To do this it calls the LL1 routine to sample the input frequency, then looks up the corresponding brightness value in vector \mathbf{B} (line 2520). This is a 2 -bit pixel value which is shifted into the screen memory via a work byte, \# 83, in line 2530 . When four pixels have been packed the byte is updated in the graphics area (line 2550). At the end of a line (when the address is a multiple of 32 -line 2560) the program goes back to wait for another sync pulse.
"The remaining part of the routine updates the upper byte of the screen address, and checks for reaching the bottom of the screen, address \# 9800 (line 2580).

POSSIBLE EXTENSIONS

"The facsimile system described above is similar to the slow-scan television (SSTV) system used by amateurs, employing modified TV cameras. and the same program has been used. with slight modification, to receive SSTV "conversations" on the HF bands. Since the sync levels are reversed. lines 2500 and 2505 should be exchanged, and the values of \mathbf{C} and S may need to be altered.
"Thought is also being given to an Atombased fax transmission system built around some sort of art/graphics sketchpad program. This would allow the user to sketch a pictorial reply to the received image on the Atom screen. using keyboard input.

MORSE-CODE TUTOR

Many radio amateurs are put off from using the short-wave bands because of the need to learn Morse code to obtain a licence, and the main problem is finding a source of slow Morse to learn from. The program for the Acorn Atom, shown in Fig. 3, acts as a Morse tutor by producing a continuous stream of letters in Morse code.

The Tutor program lets you learn a subset of the alphabet, starting with the letters which have the shorter codes. In addition, the speed and spacing of the Morse produced can be varied to cater for different abilities. The program presents letters in groups of five, separated by a single space. This is similar to the test format used in the amateur radio examination, and so the program can be used to test whether the required standard has been reached. The program can also be used to learn letters, by watching the words on the screen as the Morse is played.

Many people have their own theories as to the best way of learning Morse code. Generally it is thought to be better to hear the letters at full speed from the beginning. This way you identify the sound of each letter withous thinking of a written pattern of dols and dashes, which can be a distraction when trying to gain speed! It is therefore best to start with the speed set to your target speed, and have extra time between letters, over and above the normal spacing. The Post Office test for radio amateurs requires a speed of 12 words per minute, where words are defined as having five letters; other tests may need less.

CODE STORAGE

The code for each letter occupies two bytes, in vectors C and L. The byte in C holds a binary sequence which gives the code for that letter, with ' 0 ' for a dot (short bleep) and ' 1 ' for a dash (long bleep), starting with the lowest bit. The byte in L gives the total length of the code; i.e. how many bits to use from C . As an example, take the letter Z, which is letter 26 . The value of $L ? 26$ is 4 , so taking the bottom 4 bits of C?26 we have 0011. Thus the Morse code for \mathbf{Z} is:

Only the codes for the letters are stored. although the program could easily be extended to numerals and punctuation.

PROGRAM DESCRIPTION

Lines 10 to 25 allocate space for vectors. C, L, S, and A, for labeis VV0 to VV8, and for the machine code at P. The values of \mathbf{C} and L for the Morse codes of the letters A to Z are set up in lines 100 to 170 , and the assembly code is then assembled (line 180). The string S contains the alphabet in the order of shortest letters first; i.e. in rough order of difficulty. The program presents subsets of the alphabet starting with the first letter, S? I.
The main control loop of the program, from line 200 to line 295 , determines how the codes are presented, and this could be altered to suit individual requirements. For example, the program could present codes one letter at a time, with you typing in your guess. K determines how many different letters from string S are being taught; thus, with $K=3$, only letters E, T, and A are presented. G can be set to a value greater than 0 to give extra spaces between letters when learning (line 205). The program then presents a total of 24 'words', each of which is a 5-letter group (lines 210 and 220) picked at random from the first K letters in string S (lines 240 and 250). Each letter is 'bleeped' in Morse code by subroutine ' c ' (line 260), followed by any extra spaces wanted between letters (line 265). After each word
there is an extra space (line 275), and the word is printed to the screen (line 280).

BLEEP ROUTINE

The assembler code in lines 900 to 995 of Fig. 3 is a routine to bleep the Atom's speaker, and is similar to the one in the Atom operating system. Location \# 80 gives the pitch of the tone and location \#81 the length. The same routine is used for dots, dashes, and gaps, with location \# 82 set to 4 for a tone and to 0 for silence; this ensures that tones and gaps are all exactly the right length.
An additional assembler routine at VV3 (line 982) gets the ASCII value of the next key pressed in location \# 83.

Fig. 3. Morse-code tutor for the Atom

MORSE CODE OUTPUT

The final routine, ' c ', outputs the code for the letter in I, where $I=1$ gives A, up to $\mathrm{I}=26$ for Z ; any value outside this range is treated as a space (inter-letter gap). The routine uses vectors \mathbf{C} and L , set up as described above. Each dot is a bleep of length T (lines 1025-1040), and each dash a bleep of length $3^{*} \mathrm{~T}$ (lines 1050-1052). There is a gap. of length T between each dot or dash (lines 1065-1070), and a gap of length $3^{*} \mathrm{~T}$ at the end of the letter (lines 1065-1085).
This routine could form the basis of a program to generate automatic Morse code from messages typed in at the keyboard. However, writing the complementary program to receive and decode Morse is a much tougher problem, and this would provide an interesting challenge to any radio amateurs with micros.

TV CAMERA PHILLIP GAFFNEY

IN THIS, the final part of the camera, we first catch up on some Logic Board constructional notes. The f.e.t. TR20 (VN66AF) should have its heatsink doubled over, as shown in Fig. 3.1, to clear its headroom.

Scrape a small amount of track off the top-right hole where the coil is situated on the p.c.b. Link the coil to the casing as shown in Fig. 3.2. There are two links, and C50 $(15 \mu / 16 \mathrm{~V})$ to be mounted. The coil board is then mounted with C50 going to the lower part of the board (near IC3).

Fig. 3.1. Reshaping the heatsink of TR20

Fig. 3.2. Coil sub-assembly

FINAL ASSEMBLY INSTRUCTION

Having completed the construction of the individual boards of the camera, the final assembly consists of fitting the boards together and making the necessary interconnections. The vidicon tube and scan coil assembly is supplied complete with connecting wires to make assembly simpler.

The individual component boards may be sent for testing and setting up to Security Electronics and Engineering (Printoid Ltd.), 20/21 Alfric Square, Woodston, Peterborough. \& 0733 329111. All components are available separately. Technical and supply problems should be sent direct to: PE/Seescan Camera Project, Security Electronics and Engineering, 20/21 Alfric Square, etc

Connect the four boards together using the varelco con-nectors-these are polarised so that the connectors will only mate correctly in one position. Check that all connectors are making good contact.

Mount the inner rear panel to the rear of the camera chassis using four M3 6 mm screws. Mount the co-axial socket on the inner face of the rear panel using two countersunk M3 screws, one tag washer and two M3 nuts. The tag washer fits on the screw in the red hole.

Using heavy gauge tinned copper wire, connect the coaxial socket core and the tag washer to the points indicated on the diagram of Fig. 3.4.

Connect the three wire plug from the video board to the logic board so that the black wire is near pin 8 or IC9 on the logic board.

Mount the iube/coil assembly onto the front of the camera chassis using four M3 $2 \emptyset \mathrm{~mm}$ screws with M3 nuts, ensuring that the coil and tube are orientated as shown in Fig. 3.5.

Plug the scan coil connector onto the logic board so that the blue wire is nearest to the scan coils.

Fit the tube base connector to the tube ensuring that the short tube pin fits in the unnumbered hole of the connector.

Solder the earthing connections from the scan coil assembly to the earth rail on the video board, as shown in Fig. 3.6.

Solder the screened target connection to the video board as shown.

Screw the lens into the front of the camera. The camera chassis is now complete.

SETTING UP

The general description of the camera electronics, and of the methods of setting up have been left until last, as it was felt that it would be easier to visualise the camera as a whole once the individual sub-assemblies had been constructed. In making final adjustments to the camera, it is essential that a clear understanding of the function of each control has been achieved.

We hope to show how these units inter-connect and work together to form a high quality black and white television camera.

VIDICON TUBE

The inverter and high voltage power supply boards provide all the necessary dc voltages for the correct operation of the vidicon tube. When correctly adjusted, the vidicon will produce a voltage at its target ring which will be proportional to the intensity of light falling on the centre of the target window. In the absence of scanning wave-forms, the electron beam will produce a focussed spot near the centre of the target window. On no account should the tube ever be allowed to operate in this fashion as it will result in a spot being burnt onto the vidicon target.

If the video amplifier were connected to the target ring, it would amplify this smaller voltage, and an amplified signal would be fed to the UHF modulator. The purpose of the logic/scan board is twofold. First, it scans the electron beam across the target of the vidicon tube. Line scan moves the beam from left to right, field scan from top to bottom. These two scan waveforms are precisely locked together, and are carried out at the same speed as the electron beam moves across the monitor screen. Therefore, the voltage at the target ring of the vidicon will be continually changing-at any instant being proportional to the intensity of light at a particular spot over the surface of the vidicon target upon

Fig. 3.4. Connection to the VHF modulated video output socket

which the optical image of the scene is focussed. We now therefore have picture information available at the output of the video amplifier ready to send to the monitor. However, at the moment, the scanning of the vidicon tube is not linked to the scanning of the monitor cathode ray tube. We need to ensure that when the camera starts a scan at the top left hand corner of the picture the monitor is also scanning at the top left hand corner. To do this we send out a pulse (called a sync. palse) at the start of each line and field. The monitor is forced to keep in step by these pulses, ensuring that a stable fully locked picture is obtained. Our line and field sync. pulses are obtained from the logic board, and are mixed with the video signal in the video amplifier. The waveform handied by the last two stages of the video amplifier, and then fed to the modulator is a composite containing both the video signal and synchronisation pulses. As mentioned in part four, blanking signals are also added to prevent the electron beam retracing its steps across the picture when it rapidly flies back to start the next line or field. These signals
fed to the cathode of the vidicon tube cut off the electron beam between lines and at the end of fields preventing it reaching the rear of the target surface.

In testing the camera, it is important to ensure systematically that each of the sub-assemblies are correctly working.

PRESET CONTROLS	
Logic Board	Master clock oscillator Width Magnetic focus Height
Video Board	Automatic light control Pedestal Sync DC level
High Voltage Power Supply Board	Target Beam Electrostatic focus

SETTING UP

Before applying power, turn all presets to midway position, with the exceptions of beam current, target voltage and automatic light control. The beam control should be adjusted for maximum negative voltage on its wiper, the target control turned fully anticlockwise until zero volts is on the wiper. The automatic light control should be fully anticlockwise. With these settings, the vidicon tube is fully cut off, and it will not be possible to damage the face of the tube in the event that the scan waveforms are incorrect.

Switch camera on; line frequency whistle should be heard immediately from the inverter transformer; if not, switch off and recheck connections. Set the height and width controls to maximum, i.e. fully clockwise. At this stage, if the camera is connected to a TV set tuned to channel 36 a pattern of lines should be seen on the screen. Adjust the master oscillator control to stabilise the pattern as far as possible. If no pattern is visible, just a blank, noise free raster, try altering the position of the pedestal black level control. Place a finger on the target connection; a great deal of noise (random patterns) should be visible on the TV screen. Adjust the pedestal control for the strongest display. Use an oscilloscope to check that correct scan wave forms are present at coil plug. See Fig. 2.11.

Set beam current control to give 30 V at its wiper, and target control to $\frac{3}{4}$ maximum. By adjusting the beam control carefully, it should now be possible to detect some sensitivity to light when the camera lens is wide open. Now set the camera lens to about f .8 in normal illumination, then adjust the electrostatic focus control to give the crispest image. Aiming at an object 2 metres away, with a lens set at 2 metres, slacken off the tube retaining clamp and slide the tube carefully backwards and forwards to obtain the sharpest focus. Adjust the height and width controls until the edges of the picture just exclude the target windows; readjust the electrostatic focus, and beam controls, for the best picture. Trim the pedestal control for best picture with no crushing of dark greys into blacks. Adjust sync. control for best contrast and stability; or use oscilloscope and set up video output wave-form to CCIR standard. Adjust all the presets one at a time for optimum picture quality. Finally, advance the automatic light control preset until it just has an effect on the picture; back off this setting slightly. This is the correct setting for normal use.

JAPANESE IDEAS

The Nissan Motor Company of Japan has been toying with the idea of building a factory in Britain to make cars. Already the company is filing patents in Britain. The latest (British patent application 2074 313) suggests an interesting new application from Nissan for light links.

Currently any switches on the steering wheel of a motor car, for instance the horn button, produce electrical control signals. These are fed to the main car wiring harness via electro-mechanical slip rings between the moveable steering wheel and stationary steering wheel column. But slip rings suffer from wear. Also the contacts are bulky, and this limits the number of connection paths and thus the number of
switches which can be accommodated on the steering wheel. Nissan proposes replacing this electrical path with a light path.

Figure 1 shows the basic layout. A bank of switches 17 on the steering wheel 13 controls the engine or ancillary equipment. The electrical output of the switch bank is encoded at 21 to control the pulsing of a LED 22. The pulsed light is beamed at lighttransmitting ring 23, made for instance of acrylic or polycarbonate. Light pulses emerging from the ring are picked up by photo-diode 24 which is secured to the steering wheel column. The electrical output diode 24 is amplified at 25 , shaped at 26 , decoded at 27 and fed to drive circuit

28 for control of the appropriate car function. This could for instance be the waveband change and volume control of a radio.

Light fibre links can be used to improve optical coupling. The ring 23 is shaped to allow light from the diode to propagate inside the ring and escape only at the face adjacent the photo sensor.

The transmission code relies on pulses of 2.78 milli/sec width at a frequency of 180 Hz and a duty factor of 50%. This enables a full message to be transmitted in 15 millisec. Because the switch is likely to be depressed for at least 100 millisec, each coded message is transmitted at least twice for safety.

With the Minimax II, Videotone revolutionised the market by establishing an opening for small, high quality speakers. Natural evolution has brought about the new Minimax 2, retaining all the qualities of clarity and sensitivity. This ideal combination of size and performance is a proven success, acclaimed by the press and public for seven years.

POPULAR HI-FI
'Switching to the Minimaxs from any of the others produced an open and natural sound as though something had been taken away. It had, the colour ation had gone." Comparative test OCTOBER 1975.

Hf-FI ANSWERS
Their modest appearance and price disguise their startling abilities. Never have we heard such a small speaker sound so big!'" JANUARY 1975.
PRACTICAL HI-FI \& Audio "The depth, clarity and open ness of sound produced is quite astonishing". JUNE '75 WHAT HI-FI
. the ability of the Mini-
max to take a lot of power and still sound good could be decisive" - Comparative test, APRIL 1977.
PRACTICAL HI-FI
The little Videotone scored highly for such a small inexpensive loudspeaker" JANUARY 1981.
Specification:
Recommended amplifier power: 10 to 40 watts rms into 8 ohms. Frequency Response:
$80 \mathrm{~Hz}-20 \mathrm{KHz} \pm 5 \mathrm{~dB}$.
Finish: natural teak, veneer with black frets.
Size: $107 / 8^{\prime \prime}$ high, $63 / 4^{\prime \prime}$ wide, $71 / 2^{\prime \prime}$ deep.
Weight: 4.1 Kgs (9 Ibs) each.
ONLY £69.95 A PAIR

- We welcome callers to our South London Showroom
for demonstrations.
- Enqiries and information phone: 01-690 8511. Ex. 32
- All products are only available direct or from selected authorised dealers throughout the U.K.

Post to: Videotone, Crofton Park Road, London SE4

Semiconductor UPDATITEm FHATURIIIG $\mathbf{~ t M 1 0 3 5 ~}$
 99000 SERIES

REMOTE CONTROL

In days of yore, when I ran a sort of audio amplifier assembly facility in my back shed, I became well versed in the tricky business of connecting sensitive volume, bass, and treble pots into the rest of the circuitry using carefully screened and earthed leads. Of course, these amplifiers used transistors or even valves (Ah! Pentodes!) which always needed an element of black-magic to ensure success anyway, but in today's chip orientated circuitry, electronic sorcery at the soldering iron stage seems out of place somehow. My own special witches' brew for amplifier control connections has been rendered obsolete overnight by a new chip from National, the LM1035.

The trouble with the old method of connecting amplifier controls was the fact that the pots had to be on the front panel while the amplifier itself was several inches away, and the interconnections made marvellous transmitting or receiving aerials for crosstalk, noise, mains hum, and even Radio Luxembourg. What National have done is to provide electronic control circuits which are controlled directly by d.c. voltage levels, so that the sensitive audio signal path never has to leave the chip. Pots are still used of course, but now they are used to get, not a signal level, but a d.c. level which can be slugged with a big electrolytic capacitor to remove any stray signals which could interfere. Inside the chip are two signal channels (for stereo) which have individual electronic attenuators for gain and balance, and individual voltage controlled filters for treble and bass control with each feature being controlled by a single voltage level so that there is no longer a need for expensive ganged pots!

The LM 1035 has a distortion level of 0.02% at 1 kHz and gives a volume control range of 80 dB with 22 dB of balance range. Maximum bass and treble boost or cut is 15 dB , channel tracking is good to within 1 dB and channel separation is -60 dB at 1 kHz . An on-chip voltage regulator is provided to allow the device to operate on unstabilised supply rails of from 8 to 20 volts, and the whole thing lives in a tiny 20 pin package.

SUPERCHARGED 9900

When Texas instruments introduced the first true 16 bit microprocessor, the 9900 . they claimed that it spelled "The end of the two-bit eight-bit" and sat back to watch their tall-in-the-saddle processor steal sockets from Intel and Motorola who were then still clinging to their puny 8 bit devices. Unfortunately the market was not really ready for a 16 bit chip, and although the 9900 was reasonably successful, it cer-
tainly did not sweep the other 8 bit chips off the board, and even found itself a poor second when Intel. Zilog, and then Motorola introduced their own 1000 series 16 bitters several years later.

Well Texans don't take a licking easily, and so after a long cool analysis of the opposition, Texas have supercharged their 9900 design and brought out a new bit slinger family which appears to have the drop on those upstarts from the competition. Their new chip is still a sixteen bitter and is downwards compatible with the instruction set of the 9900 , but there the similarity ends because the 99000 series offers some real innovations which increase its speed and power far beyond that of its ancestor and even beyond the fast guns of the Motorola 68000 . First to hit the streets will be the 99105 which has 82 basic instructions including multiprecision arithmetic, stack operations, memory bit manipulations, and parallel I/O instructions to overcome the limitations of the weird serial-only scheme of the 9900 . Next will be the 99110 which has the great additional feature of an on-chip floating point arithmetic library which allows it to add, subtract, multiply, divide, move and convert real variables in the IBM format, a feat which has hitherto required substantial external software.

Fundamental to all members of the new processor family will be a clock speed of 24 MHz (almost v.h.f. I) which is twice as fast as the competition and means that with a memory cycle time of just 167 nS it will be necessary to choose the faster memory chips to take advantage of the power available. Inherent in the architecture of the family is a main memory address range of 256 K bytes, and a separate "Macro-Store" address range of 120 K bytes which can be used to augment the instruction set of the basic processor without the need to use main memory. The 99110 has its floating point arithmetic instructions implemented in Macro store space and actually uses a special on-chip 1 K ROM and 32 byte RAM for this purpose. In the future other family members will use this same on-chip store to provide other high level features such as a real-time operating system or special I/O control routines. Unlike the 9900 which used a monster 64 pin package, the first members of the 99000 family both use 40 pin packages and have multiplexed data and address buses to suit.

FIFO

If you have a pet micro with a printer you probably get frustrated waiting for it to output listings at a rather pedestrian rate, during which it studiously ignores its keyboard and refuses to do anything else. One way
round this problem is to create a spooler program which runs under interrupt control to give apparently simultaneous service to both the printer and the keyboard so that you can go on typing in more code while the listing is printed. This scheme relies on the fact that it takes a short time to send a character to the printer but it takes a much longer time for the printer to actually print it. Since the micro is only involved in the sending operation the spare time can be used to service other tasks.

Unfortunately, all the spooler programs I have seen implemented on micros have suffered from shortcomings such as missed keyboard characters while printing, and of course there is the complication of running under interrupt control which needs careful attention while writing programs. A much simpler solution is possible which is used already on many printers such as the Nascom Imp and involves the use of a character buffer store implemented in hardware and not under the control of the microcomputer itself. In this case the micro "sees" an apparently very fast printer and dumps whole pages of text in next to no time. If the listing will fit entirely within this print buffer then no waiting is involved, and with memory prices dropping all the time a big print buffer looks economically feasible.

The buffer can be fitted between a micro and a printer, and needs to be organised as a FIFO (First In First Out), which raises the problem of how to control the two memory address pointers required to control writing at one rate and reading at a different rate. The Nascom printer uses a microprocessor to control this feature, but this starts to look a bit complicated for a stand alone buffer unit which is why, to my knowledge, no designs have been published. Fortunately the concept has now become much more practical thanks to a new chip from Signetics called the 8×60 FIFO controller.

This 28 pin device contains all the arbitration and control logic and two 12 bit address pointer registers to handle a buffer RAM array of up to 4 K characters, quite adequate for the majority of day to day printouts. If you used a couple of 2 K by 8 static RAMs you could make the heart of a print buffer with just three chips, with additional devices probably required to handle interfacing to the micro and the printer. The exact form of any interface would depend upon whether serial or parallel drive is required. In the case of a serial in-serial out link two UARTs would be needed, but a Centronics parallel interface would be much simpler.

In addition to Read and Write strobe inputs and address outputs, the 8×60 also has outputs to say whether the buffer is full. half full, or empty.
are available including GCE.

Get maximum oower at minimum price, yet still with hi-fi specifications and a wide choice of outputs. ILP Bipolar power amps. now with or without heatsinks are unbeatable value for domestic hi-fi - but for disco. guitar amplifiers and PA choose the new range of heavy duty power amps. again with or without heatsinks. with protection against permanent short crrcuit. added salety for the disco or group user. Connection in all cases is simple - via 5 pins.

Every item has a 5 year no quibble guarantee and
includes full connection data. So Send your order FREEPOST IOday
Load impedance, all models, 40 hm - infinity. Input impedance, all models 100 K ohm. Input sensitivity, all modets. 500 mV . Frequency response, all models $15 \mathrm{~Hz}-50 \mathrm{kHz}-3 \mathrm{db}$.
BIPOLAR Standard, with heatsinks

Model No.	Output power Watls Ims	$\begin{aligned} & \text { DiST } \\ & \text { T.M. } \\ & \text { Ty. } \\ & \text { al } 1 \mathrm{kHz} \end{aligned}$	$\begin{gathered} \hline \text { ORTION } \\ 1 \mathrm{MD} \\ \mathrm{SOHZ} 7 \mathrm{kHz} \\ 4.1 \end{gathered}$	$\begin{gathered} \text { Suplyy } \\ \text { Suliage } \\ \text { Typ/Max } \end{gathered}$	Size mm	$\left\lvert\, \begin{gathered} W^{W} \\ g \mathrm{~ms} \end{gathered}\right.$	Prics	$\begin{aligned} & \text { Price } \\ & \text { ex. Vat } \end{aligned}$
HY 30	15w/4-88	0.015\%	<0.006\%	$\pm 18 \pm 20$	$76 \times 58 \times 40$	240	18.28	£7.29
HY 60	30w/4.88	0.015\%	<0.006\%	$\pm 25 \pm 30$	$76 \times 68 \times 40$	240	c9.58	[8.33
HY 120	60w/4.88	0.01\%	<0.006\%	$\pm 35 \pm 40$	$120 \times 78 \times 40$	410	£20.10	£17.48
HY 200	120w/4-882	0.01\%	<0.006\%	$\pm 45 \pm 50$	$120 \times 78 \times 50$	515	¢24.38	£21 21
HY 400	$240 \mathrm{w} / 42$	0.01\%	<0006\%	$\pm 15 \pm 50$	$120 \times 78 \times 100$	1025	£36.60	£31 83
BIPOLAR Standard, without heatsinks								
HY 1200	60w/4-88	001\%	<0.006\%	$\pm 35 \pm 40$	$120 \times 26 \times 40$	215	£17 83	£15.50
HY 200P	120w/4.88	00\%\%	<0006\%	$\pm 45 \pm 50$	$120 \times 26 \times 40$	215	£21 23	¢18.46
HY 400 P	$240 \mathrm{w} / 4 \Omega$	0.01\%	<0 006\%	$\pm 45 \pm 50$	$120 \times 26 \times 70$	375	£32 58	£28.33

Protection: Load line.momentary short circuit (yypically 10 sec). Slew rate $15 \mathrm{~V} / \mu \mathrm{S}$ Rise time: $5 \mu \mathrm{~s}$. S / N ratio 100 db . Frequency response (-3 dB): $15 \mathrm{~Hz} 2-50 \mathrm{kHz}$. Input sensitivity 500 mV rms. Input impedance $100 \mathrm{k} \Omega$. Damping factor $(8 \Omega / 100 \mathrm{~Hz})>400$
ILP Elactronies Ltd., Freepost 2 Graham Bell House. Roper Close. Canterbury CT2 7EP, Knnt. HEAVY OUTY with heatsinks

Radio, T.V. Electronics Technicians
Radio Amateurs
Electrical Installation Work

Diploms Courses

Colour T.V. Servicing
CCTV Engineering
Electronic Engineering \& Maintenance
Computer Engineering and Programming
Radio T.V. and Audio, Engineering \& Servicing
Electrical Engineering, Installations \& Contracting

Orther Carcer Courses

A wide range of other technical and professional courses

TIME FOR DATA PROCESSING

A major problem has been forcing its attention upon the groups who examine and analyse the data from satellites and probes. As usual the basic delay is funding. The amount of data has been so great that a very systematic priority clamp has had to be imposed upon some important sections of this work. It is of course readily understood that certain political requirements are involved and what might be considered by many of us as of humanitarian areas of priority are only of secondary consideration. With the present recession brought about indeed by the wrong priorities in many cases it could be deemed prudent to take an honest look at the terms of priorities. This requires a state of mental honesty extremely difficult to achieve when judged by action. A great many researchers all over the globe are seeking ways to improve the lot of mankind but work under conditions that demand for the continuance of their activities a constant campaign of begging donations from private resources for the funds to continue. So the inverse spiral of illogical thought publicly eulogises the endeavours of those engaged in these humanitarian works but denies them at the same time the means to forward them.

Now is the time to remember that the whole Earth and its environs is a system which is self generating or perhaps more correctly, regenerating and that every individual part is also the whole. Only now are some of the answers beginning to emerge. Much of the data could come from the environment of the atmosphere. Many false notions are still being bandied about such as that increasing carbon dioxide in the atmosphere will sooner or later make life impossible on Earth. Strange ideas about man's destruction of his environment AND EVEN HIMSELF is a tribute to vertical thinking and dealing in doom-mongering is an idiot course of action. Lateral thinking and a proper assessment with complete mental honesty in every phase of human activity is required to bring some impetus to those with vi-
sion and a certainty that the resources of the Earth are for the people of the Earth and should be brought into active use for their wellbeing. The mass of data requires funding and its ultimate benefit can be decided by the stroke of a pen in a political hand, which could deny the benefit of health to millions.

HIGH ALTITUDE

EXPLORER SATELLITE

Explorer DE-I has brought details of the aurora and the flow of solar energy and other matter from space. The interesting thing about the results provided by DE- 1 and its companion DE-2 in a lower orbit which were equipped with instruments to provide data about the electric currents, fields and plasma between the magnetosphere, the ionosphere and the atmosphere is that it repeats history in the sense of "it's been done before'. It is perhaps pertinent to point out that it is some fifty years since the basis of these phenomena were laid down and the archives contain records of papers on the subject of aurora.

In the latter part of the 1920's before the popularisation of the superheterodyne receiver multistage high frequency 'front ends' were used. Sometimes there were up to four stages. The coupling between stages was by HF transformers which looked like balls of string. Some of us searched in vain for the solution to what appeared to be instability. It appeared spasmodically and took the form of whistles sometimes rising in cadence and in other cases falling. Eventually there appeared headlines in the press to the effect that electrons shuttled backwards and forwards between the auroral points because they were trapped in the Earth's magnetic field. It was announced with some gusto that by timing some of these they followed lines of magnetic force more than 800 m from the earth. These whistlers became the happy hunting ground for many postgraduates. Some of these 'whistlers' were given names like 'nose, lips, profile etc.' based on the shape which the graphs took as a result of the changing frequency. It would be interesting to know how many readers remember those days.

Now all this has been brought up to date as a result of DE-I and DE-2 activity. The orbits of the satellites are:

DE-1 an eccentric orbit apogee 15,000 mi . perigee 354 mi .
DE-2 apogee 628 mi . perigee 192 mi .
The arrangement of these two spacecraft allows the bracketing of the region of the leaking of low energy plasma into the magnetic field cusp from space where it is transformed into the high energy stream which initiates the aurora. It is well known now that the aurora is formed at a level which varies from 3,000 to 12,000 miles several times in 24 hours. At these levels the electrons trapped in the magnetic field are reflected back along the field lines and may continue this oscillating activity until their energy falls below a certain level.

The imaging system of DE-1 consists of three spin-scan photometers which permit daytime viewing of the aurora. The images are built up from line scans of the earth at the rate of one line per rotation of the spin stabilised satellite. This system uses 'super-reflecting' mirrors to avoid the light scatter which pre-
vents the use of lenses for this work. Two cameras operate in the visual part of the spectrum and a third operates in the ultra-violet. This imaging system is being used for other lasks also which include ozone observations, a special search for marine bioluminescence from space and the observation from high polar altitudes of the Earth-glow which is now called the geo-corona

As the DE- 1 apogee moves towards the Earth's equatorial region it is hoped that the cameras will be able to observe the red-glow bands that circle the Earth to the north and south of the equator. The drifting of the apogee will later enable the south polar regions to be observed. DE-2 carries instrumentation for the observation of particle and wave field environments. The instruments are capable of providing details of electron velocity every 2 km .

A report by S. D. Shawhan on the radio waves generated in the auroral regions revealed that the more powerful emissions are associated with auroral storms. The frequencies are of the order $100-200 \mathrm{kHz}$ though sometimes as high as 800 kHz (this was the range of whistlers). They are directed away from Earth and have powers of the order of billions of watts and can be picked up more than 15,000 miles from the auroral zones. This is of the same order as the radiations from Jupiter. They are characterised by rising and falling tones, each burst lasting about a second and changing in frequency by 1 kHz . Detailed measurements of these waves have been made by DE-1. Its plasma instrument which monitors frequencies from a few Hertz to 400 MHz detects the most intense waves when the spacecraft crosses magnetic field lines that pass through the aurora. Waves were detected by both satellites in the audio range, that is below 20 k Hz . This suggests that these waves must be guided away from the power source by the Earth's magnetic field.

High winds and high temperatures have also been recorded by DE-2. Dat a reveals that there are winds in the auroral zone which are of the order of hundreds of miles per hour and at times over 1,000 miles an hour. Temperatures have reached the order of 1,500 to 2.000 K .

It is not possible to resist commenting that the Earth is far from approachable by alien spacecraft.

UNMANNED LAUNCH VEHICLE

The Boeing Aerospace Company has been selected to conduct a one year study for the National Aeronautics and Space Administration of an unmanned launch vehicle.

The vehicle which is designated SRB-X is being considered as a means of augmenting the space shuttle when payload and space is not immediately available in the shuttle orbiter. It will be capable of boosting a $65,000 \mathrm{lb}$ payload into low earth orbit or $12,000 \mathrm{lb}$ into a geosynchronous orbit. The SRB-X would be built from tried components with minimum modifications to boosters and launch facilities.

There are also three other studies-a liquid rocket booster and a side mounted shuttle derived cargo vehicle, studied by Martin Marietta; and another shuttle derived cargo vehicle-in line version, under study by Boeing.

An entire
range of low-cost high-
performance instruments

sabtronics
 Waking Performance Affordable'

```
2010A 31/r-Digit LE.O. Bench DMM
2015A 3%-Digit L.C.D. Bench DMM
2020 3%-Digit L.E.D. Bench DMM
with Microcomputer Interface
2033 3%-Oigit L.C.D. Hand DMM
2035A 3%-Digit L.C.D. Hand DMM
2037A 3%-Dight L.C.D. Hand DMM 34-Orgit L.
with Temp. Le-1 10 MHz Logic Probe
```

5020 A 1 Hz-200KMz Function Generator $8110 \mathrm{~A} \quad 100 \mathrm{MHz}$ 8. Digit Frequency Meter 8610 A 600 M Hz 8. Drgit Frequency Meter 8610 B 600 MHz 9 -Digit Frequency Mete $8000 \mathrm{~B} \quad 1 \mathrm{GHz} 9$ - Digit Frequency Meter 8700 10MHz Unlversal Frequency Counter/Timer Psc-65 600 MHz Prescaler 00055 MHz Single Trace Oscilloscope Also avaliable in kit form.

Test our low priced test equipment. It measures up to the best. Compare our specs and our prices - no-one can beat our price/performance ratio.
Full colour illustrated
brochure and price list from: BLACK STAR LTD.,
9a Crown Street,St.Ives,
Cambs. PE17 4EB
Tel: (0480) 62440. Telex 32339

HOW WOULD YOU LIKE YOUR 7×81 TO LOOK LIKE THIS?

IT COULD WITH

 THE CROFTON ZX81 ADAPTAKIT.ONLY $£ 35.00$ plus VAT - total $£ 40.25$ plus $£ 2.65$ P\&P. AND IT ALSO HAS A VIDEO OUTPUT TO DRIVE A STANDARD MONITOR.

SEND FOR DETAILS

CROFTON ELECTRONICS LIMITED
35 Grosvenor Road, Twickenharn, Middlesex TW1 4AO. Tel: 01.891 1923/1513 Telex: 295093.

WTYANIP 03:3 pow:RAMP?

Because ILP MOSFET power amps give you ullra-li pertormance without costing big money. Periormance you thought you couldn t afford at a price you know you can

All IL.P modules are compatible with each other - you ll find many more in other ILP ads in this magazine. Choose ILP MOSFET power amps when you need the tastes! possible slew rate. low distortion at high frequencies. better thermal stability. MOSFET power amps work with complex loads without difficulty and without crossover distortion. Connection is simple - via 5 pins. With other ILP modules you can create almost any audio system. whatever your age or experience.

LP MOSFET power amps are now available with
integral heatsink (no extra heatsink required). or ready for
mounting on to your own heatsink or chassis. Fult dissipation detail on data sheet. available on request. Each carries a 5 year no quibble guarantee and comes with full connection data.

Send your order FREEPOST today on the coupon at the foot of this ad

MOSFET Ulitra-Fi, with healsinks

Model No.	Output power Watts rms	DISTORTION TH.D 1 MD IyD $50 \mathrm{~Hz} / 7 \mathrm{kHz}$ al 1 kHz 41		Size mm	$\left.\begin{array}{\|c\|} \hline W I \\ g n i s \end{array} \right\rvert\,$	Price inc VAT	$\begin{aligned} & \text { Pice } \\ & \text { ex VAT } \end{aligned}$
MOS 120	60w/488?	<0005\% <0 006\%	:45*50	$120 \times 78 \times 40$	420	¢29.76	. 88
MOS 200	$120 \mathrm{w} / 4-852$	<0 005\% <0006\%	$\pm 55+60$	$120 \times 78 \times 80$	850	§38 48	¢33.46
M0S 400	240w/42	<0.005\% <0.006\%	$\pm 55 \pm 60$	$120 \times 78 \times 100$	1025	โ52 20	[45 39

MOSFET Ulita-Fi without heatsinks

MOS 120P	60w/4.82	<0.005\% < 0006%	$\pm 45 \pm 50$	$120 \times 26 \times 40$	215	£26.82	¢23 32
MOS 200P	$120 \mathrm{w} / 4.883$	<0005\% <0006\%	-55 $\div 60$	$120 \times 26 \times 30$	420	£ 3281	โ28 53
MOS 400P	$240 \mathrm{w} / 452$	<0005\% <0006\%	$\pm 55 \pm 60$	$120 \times 26 \times 100$	525	£4475	¢38 91

Protection:
Able to cope with complex loads. without the need tor very special protection circuitry (luses will sulfice)
Ulita-fis specitications
Slew rate $20 \mathrm{~V} \mu \mathrm{~s}$. Rise time3 3 s . S / N ratı 100 db . Frequency response (-3 dB $15 \mathrm{~Hz}-100 \mathrm{kHz}$. Input sensitivity 500 mvrms . Input impedance 100 k Damping lactor $(8 \Omega / 100 \mathrm{~Hz})>400$
How to order Freepost:
Use this coupon. or a separate sheet of paper. 10 order these products. or an products from other ILP Electronics advertisements. No stamp is needed it you address to Freepost. Cheques and postal orders must be crossed and payable to ILP Electronics Lid. cash must be registered. C.O.D. - add $\Sigma 110$ total order value. Access and Barclaycard weicome. All UK orders sent post tree within 7 days of receipt of orde.

ILP mocules
Total purchase price
tencloseCheque \square
PostalOrders
Int. Money Order
Please debit my Access/ BarclaycardNo
Name
Address

Signature
Post io. ILP Eectromics tio. Freeposi 2. Granam Bell House. Rope' Close Canierbury C12 7 EP Kent. England
telephone (0227) 54778 Technical (0227) 64723: Telex 965780

STAYAHEAD.STAY WITHUS

THE SENSATION OF THE JAPANESE MUSIC FAIR
 Designed by a genius, Controlled by a computer, Programmed by a laser. Played by amateurs professionally and by professionals superbly.

THE NEW CASIOTONE 701

what is going to become THE instrument of $1982 \ldots$ probably the best in st ructive keyboard I have come-across. But is is also a top line musical instrument capable of satisfying even the most proficient musician... I suggest you place your oders now." (Keyboard \& Music Player.)
opens up home music making for all the family . . . one of the most advanced music teaching aids so far developed ... this instrument is going to be one of the biggest sellers of 1982." (Electronics \& Music Maker.)

Complete Programmable Polyphonic Keyboard (RRP £555)

ONLY £495

* Input an entire piece of music, specially scored in bar code and read by a light pen attached to the instrument.
- Alternatively, program your own melodies, chords and tempo, from the keyboard, into the extensive memory, (up to 5 minutes playing or more) with fuil editing facilities.
- 3-WAY PLAYBACK

1. Automatic playback of the entire piece; melody, chord, bass and rhythm with arpeggio. Follow the melody as it plays via lamps above each individual key.
2. Manual melody playing, guided by the keyboard lamps, with automatic bass and
3. ONE KEY PLAY facility, allows the melody line to be played, simply by stroking one key. Non players can become Instant Musicians!

* The 5 octave, 8-note polyphonic keyboard can be split into 2 \& 3 octaves and a different voice can be selected for the accompaniment.
* 20 "breathtakingly clear and bright" pre-set instruments and voices.
* 3-way chord section:- Fingered, Memory and Casiochord auto accompaniment
* 16 rhythm accompaniments with "fill in" variation and two percussion effect buttons. Start/Stop, Synchro, Tempo and Balance controls.
- Variable Vibrato and Sustain. Output jack. Foot pedal input jacks. Music book. AC only. Optional extras: Foot pedals, Hard Case.

FREE

CREDIT. 0% interest, $\frac{1}{\ddagger}$ deposit, 12 monthly
repayments. (Not MT-31, MT-40, or VL-1), or reduced rates for longer period. INTEREST (0%) on ACCESS, B'CARD or VISA for first 6 months, for any keyboard purchase over $£ 90$.

NEW PORTABLE KEYBOARDS

CASIOTONE MT-40
(RRP £125)

AN INCREDIBLE $£ 99$

* 8-note polyphonic playing of this $37 \mathrm{key}, 3$ octave keyboard.
* 15 key bass keyboard with automatic synchronised bass function.
* 22 lively and realistic built-in instrument sounds and voices.
- Sustain, Vibrato and Pitch controls. Line out and Headphone jack
* Integral amplifier and speaker. Battery powered, or optional AC adaptor. Dims: $61.6 \times 584 \times 178 \mathrm{~mm}\left(2-7 / 16 \times 23 \times 7^{\prime \prime}\right)$. Weight: $2.2 \mathrm{~kg}(4.91 \mathrm{~b})$.

CASIOTONE MT-31

(RRP £79) ONLY $£ 69$
". . . basically a revision of the MT- 30 (one of my all time favourite electronic keyboards)." Electronics \& Music Maker.
Similar to the MT-40 but without the rhythm box, bass and auto functions. Dimensions: As MT-40. Weight: 2.0 kg (4.41b) including batteries.

OTHER CASIOTONES
CT-101 £195. CT-202 £275. CT-403 £275. VL-TONE £35.95. Lists on request.

WE WILL BEAT ANY LOWER ADVERTISED PRICE BY 5\%

 providing the advertiser has stocks.We regret that free offers are excluded when price beating.

World's Fastest Programmable?

FX-602P

\star LCD alpha/numeric (dot matrix) scrolling display - Variable input from 32 program steps with 88 memories, to 512 steps with 22 memories.

* Memory and program retention when switched off
* Up to 10 pairs unconditional jumps (GOTO).
* Conditional jumps and count jumps. Indirect addressing. Manual jump.
* Up to 9 subroutines, up to 9 levels.
* 50 scientific functions, all usable in programs.
- PAM (Algebraic) with 33 brackets at 11 levels.
- Program and data storage on cassette tape using optional FA-2 remote control adaptor, $£ 19.95$.
- Compatible with the FX-501P and FX-502P.
* $9.6 \times 71 \times 141.2 \mathrm{~mm} .100 \mathrm{~g}$.

ONLY $£ 74.95$ (RRP $£ 84.95$)
Plus FREE MiCROL Professional Programming pack* (RRP £9.95)

FX-3600P

38 program steps, 7 memories. INTEGRALS \& REGRESSION.
£22.95

World's Most Powerful BASIC Pocket Computer?

CASIO FX-702P
(RRP $£ 134.95$)
ONLY £1 19.95
ReRoy Eq1 Ex-292p itu $=$

Plus FREE MiCROL Professional
Programming Pack (RRP £9.95)
扎 4 반)

Alpha/numeric dot matrix scrolling LCD. Variable input from 1680 steps, 26 memories, to 80 steps, 226 memories, all retained when switched off. Up to 10 programs. Subroutines; 10 levels. FOR:NEXT looping; 8 levels. Debugging and grams. Subroutines; 10 levels. For:NEXT looping; 8 levels. Lebugging and programs. Program/Data storage on cassette via optional FA-2 adaptor ($£ 19.95$) Auto Power Off. $17 \times 165 \times 82 \mathrm{~mm}$. 176 g .

NEW CASIO FP-10 MINI PRINTER
(RRP £49.95) AN INCREDIBLE $£ 44.95$

Plus FREE pack worth $\mathbf{E 5}$

Compatible with the FX-501P, FX-502P, FX-601P, FX-602P and FX-702P Manual and program results printout. Memory and program listing. Electric discharge printer gives a remarkably legible 5×7 dot matrix printout of 20 characters per line. Stores up to 30 characters with printout over $1 \frac{1}{2}$ lines, with overload symbol. Fast 2 lines per second print speed. Aluminised paper rolls are approx 2,500 lines (30 feet) long and cost $£ 2.50$ per pack of 5 . FP- 10 connects approx 2,500 lines (30 feet) long and cost $£ 2.50$ per pack of 5. FP- 10 connects batteries will print approx $6,000-9,600$ lines. Rechargeable pack, NP-4M prints approx 13,000 lines, ($£ 6.90$). AC adaptor, AD-4150, recharges NP-4M in situ, (£5). Dims: $43.5 \mathrm{H} \times 157.5 \mathrm{~W} \times 82.5 \mathrm{D}$. $\left(1 \frac{1}{5} \times 6 \frac{1}{4} \times 3 \frac{1}{4}^{\prime \prime}\right)$. Weight: $372 \mathrm{~g}(13.10 \mathrm{z})$, incl batteries.

> MiCROL. PROCOS Professional Computing Solutions on cassette. Save up to 90% of programming time with this electronic equivalent of pen and paper. "Visicalc-type" system. Answer "what if" questions \& analyse trends. $£ 24.95$

Discounts on software when you purchase your hardware from us.

World's most versatile watch

CASIO AX-210

10 alternative displays; over 60 functions. LCD ANALOG display of time, plus: DIGITAL dis play of: Time (12 or 24 hour); Calendar; Full month calendar (this month and next month); Dual time (12 or 24 hour); Alarm time; Countdown alarm timer with memory function; Professional $1 / 100$ second stopwatch with laps, etc. Hourly time signal. Alarm - electronic buzzer or 3 selectable melodies. Rapid forward/backward setting. $9.4 \times 35.4 \times 36 \mathrm{~mm}$.
(RRP £34.95) ONLY £29.95

Price includes VAT and P\&P. Send cheques, PO, or phone your ACCESS, VISA or B'CARD number to:

> CATALOGUE ON REQUEST 14p stamp appreciated

MUSIC KITS ALL WITH PRINTED CIRCUIT BOARDS!

128-NOTE SEQUENCER

A digital, Kbd controlled unit for most Kit incl $\mathrm{Kbd}=\quad$ SET-76 E120.45

16-NOTE SEQUENCER
Analogue, panel controlled unit for most
Synthesisers $=$

3-CHANNEL STEREO MIXER

With left, right \& master level controls
3-MICROPHONE STEREO MIXER
Improves stereo reality = SET-108 £12.99

6-CHANNEL MIXER

High spec mixer with variable impe-
AUDIO EFFECTS UNIT
Variable siren gen $=$ SET-105 $£ 15.12$

AUTOWAH UNIT

Automatic Wah \& Swell sounds from each
guitar note played $=$ SET- 58 £ 14.01

CHOROSYNTH

30-Note chorus synth with wide variety

COMPRESSOR

With level \& decay-rate controls, line \& mic inputs with mixer $=$ SET-120 £25.05

DISCOSTROBE

4-Chan 200W unit for sequential, random
SET-5;
or full strobe use
S

DRUM SYNTHESISER

Extremely versatile synthesiser for conventional \& extraordinary drum sounds. $=$

DYNAMIC NOISE LIMITER
Helps clean up noisey recordings. $=$

ENVELOPE SHAPER

ADSR unit with own VCA
SET-50 14.96

KIMBER-ALLEN KEYBOARDS Details in lists $=\quad$ From E32.43
P.E. MINISONIC SYSNTH* Excellent 3-Oct multi-module portable synth. Kit incl Kbd = SET From E181.56

PHASER

6 -Stage automatic unit with variable
PHASING \& VIBRATO
Manual \& auto control producing supert
SEll sounds $=$
SETO
E36.25
PULSE GENERATOR
Pulse width $100 \mathrm{NS}-2$ secs, frea 0.1 HZ $100 \mathrm{KHZ}=$ SET-115 E24.84
RHYTHM GENERATORS
Several in list = From E61.71 RING MODULATOR
Usable with most synths = ${ }_{\text {SET-B7 }}$ E13.62
SIGNAL TRACER \& GENERATOR $\begin{array}{ll}\text { Aids circuit testing. With frequency } \\ \text { level controis }= & \text { SET-109 } \mathbf{E 1 7 . 5 0}\end{array}$

SMOOTH FUZZ

As the name implies $=$ SET-91 E11.68

SPEECH PROCESSOR

SPLIT-PHASE TREMOLO

Modulation, depth, rate \& level under
SETlil control = 102 E29.98

SWITCHED TREBLE BOOSTER

4 Sectable preset tone changes SET-89 $£ 12.51$

SYNTHESISER INTERFACE

Enables quitars, mics etc to be synthe-
siser processed $=$
SET-81

10\% 10\% OFF U.K. C.W.O. ORDERS OVER E20 FROM THIS AD UNTIL END OF MONTH ON COVER. 0 - 5 MUST ACCOMPANY ORDER. CODE PE23.

EXPOSURETIMER
Range up to 10 mins in 0.5 sec steps,
FORMAT SYNTHESISER ${ }^{\circ}$
Advanced 3-oct synth with multiple modules. Kit lncl Kbd $=$ SET-66 From $\mathbf{E 3 4 2 . 7 1}$

FUNNYTALKER
Fascinating sounds when used with
speech \& music $=$
SET-99 16.5 .55

GUITAR EFFECTS

8 -mode filter \& envelope shaper for most
SET-42 £15.92
instruments $=$
GUITAR FREQUENCY DOUBLER
Orig \& doubled signals can be mixed for
greater depth $=$
GUITAR MULTIPROCESSOR
Extremely versatile sound processo Details in list

GUITAR OVERDRIVE

Sophisticated fuzz with filter \& shape
controls =
SET- $56 £ 21.17$
GUITAR PRACTISE AMPLIFIER
3-Watt practise or test-monitor amp.

GUITAR SUSTAIN

Retains natural attack whilst extending
note duration $=$
SET-75 £11.77
HEADPHONE AMPLIFIER
For most pick-ups, decks, tuners \& head-
phomes. RIAA specs $=$ SET-104 $\mathbf{~} 21.15$

METRONOME

Variable for $40-240$ beats per minute $=$

EXPORTS WELCOMEI

 Sterling payment with order please.Postage rates in our lists., Europe send
50 p for lists, other countries send f 1 .

TRANSIENT GENERATOR
Fromilitetes mandollin, banjo synthesiser $=$ SET-63ds etc.
TREMOLO UNIT
For most instruments. Inci speed, depth
$\&$ by-pass controls $=$ SET- 116 E 13.47
TUNING FORK
Eases tuning of acoustic er electronic
instruments
SET- $\mathbf{4 6 E 3 7 . 0 4}$

VOICE OPERATED FADER

Automatically reduces music volume

VOICE SCRAMBLER

for coding or decoding speech signals for greater security. See list for details
SET-117 E21.81

WAVEFORM CONVERTER
Allows 5 different waveforms from synth-
esiser VCO $=\quad$ SET 67 £21.98
WAVEFORM GENERATOR
3 Waveforms, range 1 HZ to 100 KHZ . up
SET- 112 E23. 10 V .
WIND 8 RAIN EFFECTS
As the name says $=$ SET-28 £11.39
KIT CONTENTS
Sets include PCBs, U.K. P\&P. 15\% VAT Res. Caps. S'c.s, Pis, Knobs, SW's, Skis, wire, Solder, Photocopy of orig text, \& a operated, but PSU units are also available. Most parts can be bought separately fuller details \& more great kits in our catalogue. Send S.A.E. for free copy. Prices correct at press, E. \& O. .E., subject to
stock. Despatch usually 24 hrs on all ex-stock items.

Accese. Berclay \& Am-Exprese
Credits Wolcome.

Telephone: 01-302 6184

COSOFNEWILP FHCAPSULAT: PR-AMPS

Suddenly. instead of two ILP encapsulated pre-amps, there are eight - everything from the simple mono pre-amp (HY6). through mixing mono pre- amps (HY12 and MY69). to a dual stereo preamp (HY71). Plus a new guitar pre-amp (HY73). Each gives the very best reproduction from your equipment that your money can buy. and ail a protected against shor circuit and wrong polarit

All ILP modules are compatible with each other - combine them to create almost any audm system. Every tem carries a 5 year no quibole guarantee and includes full conriection data

So send your order loday - the Freepost coupon needs no stamp
ILP Electronics Ltd. Fraepost 2 Graham Bell House. Roper Close. Canterbury CT2 7EP, Kem1 PRE-AMPS

Moder No.	Module	What it does	Current requred	Proe ne vat	Pice e) Vat
HY 6	Mono pre amp	Provides inpuls for mic/mag cartridge/tuner/ tape/auxillary, with volume/0ass/treble controls.	10 mA	E7.41	£6.44
HY 9	Siereo pre-amp	Two channels. mag. cartioge. mic + volurte control	10 mA	¢ 7.71	$£ 670$
HY 12	Mono dre-amp	Mixes two signals into one, with Dass/midrange/treble controls	10 ก3 ${ }^{\text {A }}$	§7 71	£6 70
HY 66	Stereo pre-amp	Two channeis. with inpuis lor mic/mag cantridge/tape/tuner/auxiliary. with volume/ bass/ifeble/balance	20 mA	¢14.02	¢12 19
HY 69	Mono pre amp	Two input channeis. mag cartridge mic. with muxing and volume/itebie/bass controts	20 mA	¢1202	£10.45
HY 71	Dual stereo pre-amp	Provides four channels for mag. cantride/mic with volume control.	20 mA	¢12.36	£10.75
HY 73	$\begin{aligned} & \text { Gurtar } \\ & \text { pre:amp } \end{aligned}$	Provides lor two gutaris (bass + lead) and mic whin separate volume/bass/sreble and maxing	20 mA	¢14 09	512.25
MY 75	Stereo pre-amp	Two channels, each mixing itwo signals into one with bass/mid-range/treble controls.	20 mA	¢12 36	¢10 75

For easy mounting we recommend. 86 mounting board for modules HY6.HY13 £0.90 inc VAT. 1078 en. VAT IB 66 1099 ex VAT. All modules are encapsulated and include chio on edoe conneciors All onerate from +15 V minmum to +30 V maximum, needing droppervesistors for mighe voliages. Modules HY6 10 HY13 measure $45 \times 20 \times 40 \mathrm{~mm}$

HY66 10 HY77 measure $90 \times 20 \times 40 \mathrm{~mm}$
How to order freepost Use this coupon. or a separate sheet of paper, to order hese products. or any products from other ILP Electronics advenisements. No stamp is needed it you address to eeposi. Cheques and postal urders musi be crossed an payabie to IL.P Electronics Ltd: cash must be registered. C.O.D. - add $£ 1$ to total order value Access and Barclaycard welcome. All UK orders sent post tree within

7 days of receipt of order

Please send me the following
ILP moduies
Total purchase price
IencloseCheque \square PostalOrders \square
Int. MoneyOrder \square
Pleasedebitmy Access/Barclaycard No
Name
Address

Signature
Pos! to ILP Electronics LId. Freeoust 2 Graham Bell House. Roper Close Canterbury CT2 2 7EP. Kent Englanc Telephone (02?7) 54778 Technical 10227) 64723 Ferex 965780

ELECTRONICS LTD STAYAHEAD.STAY WITHUS

THE PE RANGER 27 FM CB PORTABLE

> THE RANGER CB rig has been designed to fit the new legal Home Office specification, and starts off as a hand held unit complete with aerial, mic., and rechargeable batteries.
> \star FEB. SPECIAL OFFER $\boldsymbol{~}$
> Kit including all six channels including V.A.T.

£49.95

(P\&P£2.85)

£97/matched pair

(INC. VAT $+£ 5.90$ P.P.)
This offer price includes rechargeable batteries, mic., zerial, mains lead and 6 channels.

Extr̂a aerials $£ 3.95$ each +80 ค P.P. + VAT (Postage free with kit)
Tuneable Whip aerial magnetic or permanent car amount (state which)
Permanent $£ 13.95$ - P.P. $£ 1.00+$ V.A.T Magnetic $£ 15.95$ - P.P. $£ 2.00+$ V.AT.

The unit plugs into the mains, 12 V car outlet, or runs on built-in re-chargeable batteries (built-in charger). EXCELLENT range in town to keep in touch with family and friends.

SPEC.
R.F. Power Output $\frac{1}{2}$ Watt approx. AF (internal speaker) $1 / 2$ Watt Modulation: FM: freq. $27.6 \mathrm{MHz}-28 \mathrm{MHz}$ (CB Band) (excelient speech quality) No. of channels (max): 6 Fully protected against bad aeriál connection.

BASE STATION KIT

 * NOW AVAILABLE * £19.50plus $£ 2 p$ \& p linc. VAT) 12 V (NOMINAL) MAINS ADAPTOR KIT E5.50 plus $\mathbb{E 1 . 5 0}$ p\&p Despatch within 14 to 21 days (SAE FOR FURTHER DETAILS)

PHONE YOUR ACCESS/BARCLAYCARD ORDER FOR FAST SERVICE

| | | |
| :--- | ---: | ---: | ---: | | Unit |
| ---: |
| Price |,

PLESSEY RADAR LIMITED

Cowes, Isle of Wight P031 8PF Tele: (0983) 294141 Extn. 153

Packing \& Carriage Extra. Plus VAT 15\%.

ase add 15p per	
	Mrent
	Tner
Mas	
mwat sios	
Mne tow sit ceam	Mras. assit coiult
and	Mnis. $10.30 \mathrm{wb.min}$ SP. cio
	ma
	mpa
MN1. 3 Encansulated	

CHORDGATE

 LIMITED75 FARINGDON ROAD, SWINDON, WILTS. Tel. (0793) 33877. Retail shop at above address. Schools, Colleges, official orders welcome.

JONN UP WITH: THMFSOTD

Litesold's new ' L ' Series soldering tron - now at a bargain pmce. Outstanding performance. Lightweight. Easy to maintain. Eiements are enclosed in Stainless Steel shafts insulated with mica and ceramic. Non-seize interchangeable bits. choose from copper' or 'long life". A very special tool at a very spectal 'direct' price. Just 55.22 for iron fitted with 3.2 mm copper bit. Just 52.27 for 3 spare copper birs (1.6: 2.4:4.7). A mere E 4 for
professional spmng stand! Or buy the lot for $£ 10.34$ and save 10%.

Thy 9 20) 50 LIGHT SOLDERING DEVELOPMENTS LTD
Write today. Send Chequep.O. to Litesold. 97.99 Gloucester Road. Croydon CRO 2DN
or phone 01.6890574 for Barclaycard/Access sales.

ACORN ATOM

Kit C 120 . Buill E 150 . Power supply E 8.87 .
UK101 UK101 AND SUPERBOARD
UK 101 with 1 K and free power supply and
modulator builh f14. Th modulator builh f149. The below accessories
suit both the UK101 and sucerboard:- Extra suir both the
ram $£ 2.70$ per K. 16 K memory expansion complate kit $£ 50$, builh $£ 58$. 32 K memory expansion kit $\mathbf{\ell 7 4}$, buifl $\mathbf{£ 8 2}$. Case $\mathbf{E 2 7}$. Cassette racorder $\mathrm{E19}$. Cesmon $\mathrm{E22.50}$.
Wemon
19.95. Word Wemon £19.95. Word processor progrom
£10. Centronics interface kit $\mathbf{E 1 0}$. 610 expansion board $£ 179$. Cased minifloppy disc
drive with oOS $£ 275$. The below suif only superboard:- Colour adaptor board builh E45. Assembler/Editor rape $£ 25$. Guard band kit
f 10 Series 1 only 30 lines $\times 50$ characters display expansion kit $\mathbf{E 1 4}$. UK 101 display exPansion Kit f14.
VIDEO GENIE $\mathbf{E 2 9 9}$
EG3014 Expanslon box with $16 \mathrm{~K} / 32 \mathrm{~K}$ ram E199/E213. Disk drive £220.
Colourboard $\mathrm{E36}$. Parallei ${ }^{\text {printer interface }}$
©36. Montors:- EG10
white OVM9PGR green $\mathbf{E 9 9}$.

Printers

Buy any of the below and get a free interface kh and word processor program for UK101
or Superboard:- Epson Mx70 £259. Epson Or Superboard:- Epson MX70 £259. Epson
$\mathrm{M} \times 80 \mathrm{~T}$ E359. Epson MX80F/T1 E359. Epson MX80F/T2 §449. OK1 Microline 80 e2son. OKI Microline 82A £399. Centronics
737 £ 355 . Seikosha GPBOA £199.

SWANLEY ELECTRONICS,

Oopt. PE, 32 Gold sol Rd.
Swanley Kont 8888.7
Tol Swanioy (0322)64851.

SINCLAIR PRODUCTS*
2X81 built + mains adaptor $\mathbf{£ 6 9 . 9 5 ~}$ tpost

3 -way type $6 / 7.5 / 8 \mathrm{~V} 300 \mathrm{ma}$ € $\mathbf{6 . 5 0} .100 \mathrm{ma}$ radio types with press studs 9 V c4. 95 . $9+9 \mathrm{~V}$ f6.25. Car converter 12 V input, outpu BATMERY ELIMINATORKITS.
100 ma radio types with press-studs 9 V
 Amp E8.50. Stabllized power kits 2 -18V 100 ma £ $5.12,1.30 \mathrm{~V} 1 \mathrm{~A} £ 8.50,1-30 \mathrm{~V} 2 \mathrm{~A}$
E 5.30 . TL and computer suoplias 5 V
 car converors $6 / 7.5 / 9 \mathrm{~V}$ 1A E1.62.
TV GAMES
TV GAMES
AY-3-8600 + kit f 12.98 . AY-3-8550 + kht E9.26.
AL30A £4.35. PA12 £9.31. PS 12 £1.75.
 PA 100 £ 19.24 . SPM 80 E5.26. BMT80 E6.36. Stereo 30 $\mathbf{f 2 1 . 0 0 .}$ AL80 $\mathbf{£ 8 . 5 6}$. VIC 20 COMPUTER
VIC allow the use of
 E39.09. 16 K ram £65.17. Vic printer E199.

1N4148 1.5p. 1N4OO2 3.7p. NE565 8 dil 22p. 7418 dil 16 p .2114 low current $\begin{array}{ll}300 \mathrm{~ns} & \mathrm{E} 1.35 \text {. } 8 \mathrm{BC182}, \mathrm{BC184}, \mathrm{BC212} \text {, }\end{array}$
 $1 / 4$ watn E12 IOR to $10 \mathrm{M} \mathrm{P}, 0.8 \mathrm{p}$ for $50+$
of one value. Polystyrene capacitors E12 63 V 10 to $1000 \mathrm{pf} 4 \mathrm{p}: 1 \mathrm{n} 2$ to 10 n 8 p . Ceramic capacitors 50 V E6 22 pf to 47 n . .2 .5 p . Elictrolytic capacitors $50 \mathrm{~V} .5,1.2 \mathrm{mf}$
$6 \mathrm{p} ; 25 \mathrm{~V} 510 \mathrm{mf}$ 6p; $16 \mathrm{~V} 22 \mathrm{m3f} 6 \mathrm{p}$. $6 p ; 25 V$
47 mf
$4 \mathrm{p} ; 10 \mathrm{mf}$
6 mp
$7 \mathrm{p} ; 16 \mathrm{~V} 22.33 \mathrm{mf}$ 6p; 470 mf 9 p .
 Zeners 400 mw E24 $2 v 7$ to $33 v 7$. Preset
pots subminiature $0.1 W$ horiz or vert 100 to $2 \mathrm{M2} 8 \mathrm{p}$. IC sockets 8 dil $8.7 \mathrm{p}, 14$ dil 10.1 p , 6 dip.

Postage 53.50 on computers. E4.50 on
printers and 450 on other orders. Lists 270 printers and $45 p$ on other orders. Lists $27 p$ post iree. Please add VAT 10 all prices except
those secfions marked with a which already include it Overseas and afficia! credit orders welcome.

MARCO TRADING

TRANSFORMERS

 EUROPEAN
ADAPTORS

British made transformers at very attractive price

Primary	Secondary	Current	$1+$	$10+$	100+
240v:	4.5-0-4.5v	$400 \mathrm{~m} / \mathrm{a}$	50p	45p	35p
240v:	$6-0.6 \mathrm{v}$	$100 \mathrm{~m} / \mathrm{a}$	58p	52p	43p
240 v :	6-0-6v	$500 \mathrm{~m} / \mathrm{a}$	$65 p$	60p	48p
240v:	9-0-9v	200m/a	75p	70p	58p

Manufacturers note. Wo can supply FROM STOCK 1000
quantities of the above transformers and adaptors below.
These very high quality 8 ritish made two pin European adaptors are ideal for driving Radios, cassette recorders, TV games aculators etc. The adaptors fit the UK shaver socket.

REF.	D.C. Voltoge	Currant	$1+$	$10+$	$100+$
EO8	4.5 V	$200 \mathrm{~m} / \mathrm{a}$	50 p	45 p	32 p
EM3	6 V	$200 \mathrm{~m} / \mathrm{a}$	$\mathrm{E1.00}$	80 p	55 p
EO9	6 V	$400 \mathrm{~m} / \mathrm{a}$	$\mathrm{£1.50}$	$\mathrm{E1.25}$	85 p
ET4	9 V	$150 \mathrm{~m} / \mathrm{s}$	E 1.50	$\mathbf{5 1 . 2 5}$	85 p

Flease note that there is no extra P / P charge on the above

transformers and adaptors.
Export please ado Lea/Air mall at cost
Callers welcome Mon-Fri 9-5
This advert is only a traction of our range, send 25 p for our latest catalogue. Please add $35 \mathrm{p} \mathrm{P} / \mathrm{P}$ to all orders. (Free over f 5.00). Add 15% VAT to total. Send orders to

Dept. PE1, MARCO TRADING
The Old School, Edstaston, WEM, Shropshire SY4 5RJ.
Spacial Offer Test Equipment Catalogue available upon request. Send SA.E. or Telephone.
All order despatched by return of mail.
Tel: (094872) 464

MIXIRSFADESS VUW $\operatorname{tiERDRIVERS}$ ATDMOREALCEWFROMILP!

Just some of the 28 new amazingly compact modules from ILP Electronics, Britain's leader in electronics modules - you'll find more new products in the amps and pre amps advertisements. almost anyaudio system. Together they form the most excining and yersatile modular assemoly system for constructors of all ages and experience.

Every item from ILP carries a 5 year no quibole guarantee and includes full connection data. So send your order on the Freepost coupon below today! MIXERS

Mode\| No	Module	Whal it does	Current required	$\begin{gathered} \text { Price } \\ \text { Inc VAT } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Price } \\ \text { ex VAT } \end{gathered}\right.$
HY 7	Mono muxer	Muxes erght signals into one.	10 mA	£592	£5 15
HY 8	Stereo muxet	Two channels. each muxing live signals into one.	10 mA	¢7 19	£6 25
HY11	Mono mixer	Mixes ive stgnals into one - with base/treble controls	10 mA	£ 811	£750
HY 68	Stereo muxer	Fwo channels. each maxing ten signals into one	20 mA	$¢ 914$	[795
HY 74	Sterec maxer	Two channels, each muxing five signals inio one - with treble and bass controls.	20 ma	¢13.17	£11 45

AND OTHER EXCITING NEW MODULES

Model No.	Module	What il does	Curren: requred	$\begin{array}{c\|} \hline \text { Ptice } \\ \text { inc VAT } \end{array}$	$\begin{array}{\|l\|} \hline \text { Price } \\ \text { ex VAT } \end{array}$
HY 13	Mono VU meter	Programmable gan/LED overioad driver	10 mA	£6.84	£5 95
HY 67*	Stereo head. phone driver	Will dive stereo headphones in the 4 ohm. 2 K ohm range.	80 mA	£14.20	¢12.35
HY 72	vace operated stereo fader	Provides depth/delay ellects.	20 mA	¢15 07	£1310
HY 73	Gultar pre-amp	Handies two gutars (bass and lead) and mic with separate volume/bass/irethe and mix.	20 ma	¢14. 09	£12. 25
HY 76	Stereo swich matrix	Provides two channels. each switching one of tour signals into one	20 mA	To be ann	ounced
HY 77	Stereo VU meter drver	Programmable gan/LED overload divet.	20 mA	§10 64	¢9 25

For easy mounting we recommeno
86 mounting board for modules HY6 - HY1 $£ 0.90$ inc. VAT (0.78 ex. VAT. $)$
B 65 meunting board lor modules HY66.HY77 2.12 inc. VAT. 10.99 ex . VAT.)
-All modules are encapsulated and include clip-on edge conneciors. All operate from $\approx 5 \mathrm{~V}$ minimum $10 \pm 30 \mathrm{~V}$ maximum, needing dropper resisiors tor higner voliages. HY67 can be used only with the PSU 30 auwer supply unit. Modules HY6 to HY13 measure $45 \times 20 \times 40 \mathrm{~mm}$. HY66 10 HY 77 measure
FP 480 BRIDGING UNIT FOR DOUBLING POWER
Designed spectally by ILP for use with any two power amplifiers of the same type to doubie the power output obtained and will function with any IL. power supply. In totally sealed case, size $45 \times 50 \times 20 \mathrm{~mm}$ with edge connector. It thus becomes possible to oblain 480 watts ims (single channel) into 8Ω. Contributory distortion less than 0.005%. Price: $\mathbf{\Sigma 5 . 5 1 \mathrm { inc } \text { . VAT. }}$ (Ex. VAT $\$ 4.79$.

How to order Freepost

Use this coupon, or a separate sheet of paper. to order these products. or any products from other ILP Electronics advertisements. No stamp is needed il you address to Freepost. Cheques and postal orders must be crossed and payable to ILP Electronics Lid: cash must be registered. C.O.D. - add $£ 1$ to total order value. Access and Barclaycard welcome. All UK orders sent post free within 7 days of receipt al order.
IP Electronics Ltd, Freepost 2. Graham Bell House. Roper Close. Canterbury CT2 7EP. Kont
Please send me the following ILP modules

Total purchase price
Ienclose Cheque \square PostalOrders $\square \quad$ Int. MoneyOrder \square

Please debit my Access/Barclaycard No
Name
Address

Signature
Post to ILP Electionics Lid. Freeoosi 2 Graham Bell House. Roper Close. Canterbury CT2 7 EP. Kent England Teiephone (0227) 54778 Technical (0227)64723 Teiex 965780

ELECTRONICS LTD STAYAHIEAD.STAY WITHUS

PARNDON ELECTRONICS LTD.

Dept No. 2144 Paddock Mead. Harlow, Essex. CM18 7RR. Tel: 027932700

DIL SOCKETS: High quality, low profile sockets
8 pin-10p. 14 pin-11p. 16 pin-12p. 18 pin-19p. 20 pin-21p. 22 pin-23p. 24 pin-25p. 28 pin-27p. 40 pin-42p.

EPROM PROGRAMMER

STORAGE CABINETS

Metal Cabinets $12^{\prime \prime}$ wide $\times 5 \frac{3}{4}{ }^{\prime \prime}$ deep, finished blue with transparent plastic drawers.
Tvpe H No. of Drawers Price (ins) Sm MedLge

1118	11	15	2	1	$\mathbf{1 0 . 7 5}$

$\begin{array}{llllll}1633 & 16 & 30 & 2 & 1 & £ 13.95\end{array}$
$\begin{array}{llllll}1838 & 18 & 35 & 2 & 1 & £ 15.95\end{array}$ $\begin{array}{llllll}2236 & 22 & 30 & 4 & 2 & £ 18.55\end{array}$ 22602260 - $£ 18.55$

Access/Barclaycard welcome Prices include VAT and Post. Cheque/P.O. to Millhill Supplies (Tools). 35 Preston Crowmarsh, Benson, Oxon OX9 6SL
Tel: Wallingford (0491) 38653 Goods by return of post.

INTERESTED IN
 ELECTRONICS?

TRY A ZEDPACKI
COMPONENTS AT A PRICE EVERYONE CAN AFFORD
 23 300 mixed capacitors, most types
24100 mlxed electrolytics 53.95
82.20
$\varepsilon 2.20$ 25
26

300
mixed polystyrone eaps components ع2.20 27 ${ }^{\text {componenis }}$ E1.95 z9 100 mixed minatare ceramic 81.45 plate caps
21025 azsorted pots. 21125 assorted presets, skeleton etc. 51 21220 assorted vdr's and thermistors $£ 1 \cdot 20$ 213 11b mixed hardware. Nuts, bolts 2511 -tappers, sleeving, etc. El -20 214 100 mixed, new and marked, tull spec. BF154, BF274, BC212L. BC238, BC184L. PBCios and, or lote of similar types
Z15 100 mlxed diodes Including:-zener, power, bridge, signal, germanlum, 21620 1N4148
Z17 20 1N4003/1002
Z18 20 assorted zeners, 1 watt and $\begin{array}{r}400 \mathrm{mw} \\ £ 1.50\end{array}$
21912 -125" TIL 209 REO. LED'S
22010 Assorted switches, Including push
button, side, multipole, miniature etc.
UHF MODULATORS
VIdeo in UHF out. Callbrated to channel 36 (625 line UHF) housed in metal box $2 \frac{1}{\prime \prime}^{\prime \prime} X$ $2^{\prime \prime} \times 1^{\prime \prime \prime}$ with 9^{\prime} coaxial lead, TV plug and
connection data. $£ 2.50$ ea. 3 for E 6 .
\&20. $200 \mu A$ Minlature level/batt. meters, as $\mathbf{2 0 0} \mu$ M Minlature level/batt. meters, as
fitted to many cassette recorders. $90 p$ Deluxe FIBREGLASS printed circuit etching kite.
Includes 150 sq ins of copperclad F/G board. 1lb ferric chloride. (made for U.S. army to MIL, SPEC.), I dalo etch resist pen, abrasive cleaner, weezers, etch resist dish and instructions.
116 of $\mathrm{FeCl}, ~ £ 2.25$ OUR PRICE $£ 5.95$ 1 lb of FeC
TO: "GEMENI ELECTRONDC PONEd £2. MENTG" DEPT PE "THE WAREHOUSE" SPEEDWELL ST. LONDON S.E. 8.
Where shown. Send Cheque of Postal Order. Plus 80p P\&P. and 15\% VAT. ZED Please Quote ZED Code. ©Schoole etc. SEND OFFICIAL ORDER Please allow 7 days for dellvery.

DIY BURGLAR ALARMS WE: Re BACKI!

Following major reorganisation we offer DIY security equipment and kits with fully illustrated, step-by-step, instructions.
PLUS Better Prices ! Better Delivery ! Better Service

- Kits £32, £50, £75, £85 Control Panels £18, £23, £29, £37 - Bell Boxes £6.25, £7.50 - Pressure Pads £1.06, £1.45, £1.95 - Sirens $£ 7.50$ Contacts $72 \mathrm{p}, 74 \mathrm{p}, 76 \mathrm{p}-4$ Core Cable (100 m) $£ 8.00$ - Door Phones $£ 49.42$ Ultrasonics £34.50. AND MUCH, MUCH MORE!

Send SAE or 'Phone for FREE Illustrated Catalogue.
AD ELECTRONICS, 217 Warbreck Moor, Aintree, Liverpool, L9 0HU.
Tel. 0515238440 All prices include carriage VAT extra.
TRADE ENQUIRIES WELCOME

	AA\|HP7) 0.6 AHr	$\begin{aligned} & \text { SU8 'C' } \\ & \text { 1.2AHr } \end{aligned}$	$\begin{aligned} & C^{\prime}(H P 11) \\ & 1.66 A H r \end{aligned}$	$\begin{aligned} & \text { C' (HP11) } \\ & 2.0 A H r \end{aligned}$	$\begin{aligned} & \mathrm{O}^{\prime}(\mathrm{HP2}) \\ & 4.0 \mathrm{Hr} \end{aligned}$	$\begin{aligned} & \text { PP3 } \\ & \text { 0.1AHr } \end{aligned}$
1-24	¢0.85	£1.38	£1.69	f2. 25	¢2.97	E3.79
25-49	80.75	£1.28	£1.58	f2.10	¢2. 77	
50-99	¢0.65	£1.24	£1. 52	£2.02	c2.67	
100 up	¢0.59	f1.16	£1.41	f1.87	E2.47	

All cells are brand new full spec devices from reputable mnfrs. All Nickel Cadmium cells (except PP3) are supplied complete with solder tags and are 'VENTED' devices suitable for fast charge. CHARGERS - single or dual O/P to charge PP3, AA or SUB 'C' cells in 12-14 hrs (chargers will harge C and D cells but with longer charging time. Units supplied complete pified tor each re quired O / β when ordering.

SINGLE O/P CHARGER £5.04 DUAL O/P CHARGER £5.72
TRANSFORMERS - as used in chargers. 2×12 volt 0.25 amp secondarys 240 v primary, tag connections f 1.57 each
Data and charging circuits free with P\&P 10\% if order less than $£ 10.5 \%$ order over £10. Prices DO NOT INCLUDE VAT and this should be added to the toted order. All advertised goods are ox-stock and normally despatched within 7 days

Send large S.A.E. for fuller list.
100 Miniature reed switches. $£ 2 \cdot 30$ SMALL MAGNETS
With hole In These cost sWITCH A ANKS varlous music centres. Includes Independent and interdependent latehing types mult pole c/o etc. Can be modified, KNOES for Swltch Banks 10 for $£ 1$. Chrome or spun aluminlum finish.
MINIATURE MAINS TRANSFORMERS Top quality. Split bobbin construction will glve $4 \cdot 5 \mathrm{~V}-0-4 \cdot 5 \mathrm{~V}$ at $250 \mathrm{MA} \dot{4}^{1 t^{\prime \prime}} \times 1 \frac{1^{\prime \prime}}{}$ $\times 1 \frac{1}{1 \prime}$, all sorts of uses. ONLY \&1
PP3 Battery Connectors 10 for 50 £2.50. PP3 Battory Connectors 10 for 50 p . Miniature Press
knob. 3 for 50 p . Subminiature S.P.C.O. Silde Swlithes. 6 for 50p.
Minlature D.P.C.O. Sllde Switches.
Standard 2P. 3 Pozition SIlde Swlich
TBA810P 7 Wert Amp. I.C. with circuits and data.
MFC8010 1 Watt I.C. with data End circuits. 550 Timers 2 for $£ 1$ 651 Timers. 30 p oa., 4 for Ef 2N3055H. RCA. 9 Section, Chrome on Bras Telescople Aerial. Plugs into any 3.5 mm socket. Approx $25^{\prime \prime}$ extended $£ 1$ each, 3 for $£ 2.50$. LED. TIL 3860 p ea. 3 for $£ 1.50$. Crystal Clear 3 mm LEDS very Red, Green, Yellow. 10 of one colour $£ 1$. 10 of each Ez 2.50 .

ALTERNATOR RECTIFIERS Make lovely 60 amp bridges. Ideal for High Power Baftery Chargers. Tyoe 4AFI. Set of 4 (2 neg, case +
Special Purchase nablea us to offer Mullard C2to Polyeater Capa-
citors (Liquorice Allsorts) at the citore (liquorice Allsorts) at the U15 for 1000 . These consis 1 of factory clearance lots l.e. spillages, floor sweepings, cosmetic rejects etc. Also. Mullard Miniature Electrolytice. 200 tal Order. Plus bop P\&P. and 15% VA
Schoole otc. SEND OFFICIAL ORDER

SOLID STATE SECURITY. Dept. (PE), Bradshaw Lane, Parbold, Wigan, Lancs. Telephone 02576-3018.

Stlicient Space-saving. are designed to give you flexibility in planning audio assemblies. Nine of the eleven models have toroidal transformers manulaciured on new cost-efticient high technology machines in our own factory. So we keep the quality up. and the price down.

ILP power supplies are compatibie with all other ILP modules - combine them 10
produce almost any audio system. All carry the RLP 5
year no quibble guaramtee and include full connection data.
So send your order on the Freepost coupon below today!
POWER SUPPLY UNITS

Model No.	For use with	$\begin{array}{\|c\|} \hline \text { Price } \\ \text { nic. VAT } \end{array}$	$\begin{array}{\|c} \text { Price } \\ \text { ex VAT } \end{array}$
PSU 30	$\pm 15 \mathrm{~V}$ combinations of $\mathrm{HY} 6 / 66$ seres to maxirium of 100 mA or one HY67	c5. 18	§4.50
	The lollowing will also drve the HY6/66 series except HY67 which requires the PSU 30.		
PSU 36	1 or 2 HY 30.	59.32	¢8.10
PSU 50	1 or 2 HY 60.	¢12 58	¢ 10.94
PSU 60	1XHY 120/HY 120P/HD 120/HD 120 P .	¢1500	¢ $¢ 04$
PSU 65	1 \times MOS $120 / 1 \times$ MOS 120 P	\$15.32	¢13 32
PSU 70	1or 2 HY 120/ HY 120P/HO 120/ Moilizop	¢18.31	¢1592
PSU 75	10. 2 MOS 120/MOS 1208.	¢18 63	£16. 20
PSUS 90	IXHY 200/HY 200P/HO 200/HO Z00P.	¢18.63	51620
PSU95	$1 \times$ MOS $200 /$ MOS 2009 .	¢18 77	§16 32
PSU 180	$2 \times$ HY $200 /$ HY $200 \mathrm{P} / \mathrm{HO} 200 / \mathrm{HO} 260 \mathrm{P}$ or $1 \times$ HY $400 / 1 \times$ HY $400 \mathrm{P} / \mathrm{HO} 400 / \mathrm{HO} 400 \mathrm{P}$.	¢24.54	£21.34
PSU 185	$\begin{aligned} & \begin{array}{l} \text { or } 2 \text { MOS } 200 / \text { MOS } 200 \mathrm{P} / 1 \times \text { MOS } 400 \\ 1 \times \text { MOS } 400 \text { P. } \end{array} \end{aligned}$	§24 68	¢21.46
All models incorporate ILP toroidal transformers except PSU 30 and PSU 36 which include our own laminated transtormers.			
How to order Freepost: Use this coupon. or a separate sheet of paper. to order these modules. or any products from other ILP Electronics advertisements. No stamp is needed if you address to Freepost. Cheques and postal order 5 must be crossed and payable to ILP Electronics Lid : cash must be registered. C.O.D. - add f1 to total order value. Access and Barclaycard wetcome. All UK orders sent post free within 7 days of recenpt of order. ILP Electronics Ltd, Freepost 2 Graham Boll Houss, Roper Close, Canterbury CT2 7EP, Kent.			
Please send me the following ILP modules			
Total purchase price			
PostalOrders			
Please debitmy Access/Barclaycarc No.			
Name			
Adcress			
Signature			
	Post to ILPElectronics Lld. Freepost 2 Granam Be Canterbury CT2 7 EP . Kent. England Terephone (0227) 54778 Technical (0227)6A723 \square	House. Ro eleex 96578	

RECEIVERS ANO COMPONENTS

300 SMALL COMPONENTS. Transistors, diodes $£ 1.70 .7 \mathrm{lbs}$ assorted components $£ 4.25$. 10lbs $£ 5.75 .20$ wire ended neons $£ 1$. Forty 74 series ICs on panel 11.70 .500 capacitors $£ 3.20$. List 20 p refundable. Post 60 p, optional insurance 20p. JWB Radio, 2, Barnfield Crescent, Sale, Cheshire M33 1NL

TURN YOUR SURPLUS Capacitors. transistors, etc., into cash. Contact COLES-HARDING CO.. 103 South Brink, Wisbech. Cambs. 0945-4188. Immediate settlement.

SMALL ADS

The prepaid rate for classified advertisements is 32 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 10.70$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Electronics, Room 2612. IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

T \& J ELECTRONIC COMPONENTS - quality components, competitive prices. lllustrated catalogue 45 p. 98 Burrow Road, Chigwell, Essex.

1920 to 1955

Receivers. valves, components, service data, historical

 research books, magazines, repairs and restorations. A complate service for the collector and enthusiast of vintage radio.S.a.e.
e. with enquiries and for monthly newsheet THE, VINTAGE WIRELESS COMPANY, 64, Broad Street, Staple Hill, Bristol BS16 5NL. Tel. Brisiol
B.R.b. PRINTEO Circuits for "P.E." Projects. Roller Tinned, drilled, and postage paid. "Space Evaders" - set $\mathbf{\Sigma 7 . 0 0}$ Trade enquiries - Customers own masters - etc. welcome. B.R.B., 109 , Potter Street, Worksop, Notts. $\mathbf{S 8 0} \mathbf{2 H L}$.

BULK OFFERS All new full spec. devices. No rubbish. SAE list. Prices per 100. Minimum order $£ 10$. Post $£ 1$. No VAT.	
$40018 \quad$ c9	POLYESTER CAPS, 100 V
${ }_{4011 \mathrm{~B}}^{401 \mathrm{~A}}$ ¢9	
4017A	
4035 B	470R, presers, horiz. mnıg: $22 \mathrm{~K}, 47 \mathrm{~K}$,
4511 B	100K. All $53 / 100$.
	Tanis: $0.1 / 35.1 .5 / 35,2-2 / 16$, all $£ 4 ;$
70914 DIL ${ }^{\text {f6 }}$	
	PC ELECTRONICS. 2, Thornhill.
T8A120C $\begin{aligned} & \text { MC857 } \\ & \text { ¢ } \\ & \text { ¢ }\end{aligned}$	Romsey Road, Whiteparith.

BOURNEMOUTH/BOSCOMBE. Electronic components specialists for 33 years. Foresters (National Radio Supplies), Late Holdenhurst Road. Now at 36, Ashley Road, Boscombe. Tel. 302204. Closed Weds.

BOOKS ANO PUBLICATIONS

ANY SINGLE SERVICE SHEET £1/L.S.A.E. Thousands different repair/service manuals/sheets in stock. Repair data your named T.V. $£ 6.50$, (with circuits $£ 8.50$). S.A.E. Newsletter, pricelists, quotations. AUS (PE), 76 Churches. Larkhall, Lanarkshire. (0698 883334).

SOFTWARE

EPROMS PROGRAMMEO. $25 / 2716 £ 8.50,25 / 2732$ £16.00. Wilkinson, 3 Wedgwood Drive, Leeds LS8 IEF. Sae details, 667183.
2×81 TEMPERATURE SENSORS (plug-in compatible), in cluding UK P \& P £17.95. Leaflet, Cheshire Micro Design, 66 Close Lane, Alsager, Stoke-on-Trent.
FREE CATALOGUE. Everything for mictocomputer users. Phone Croydon Computer Centre, 29A Brigstock Road, Thornton Heath, Surrey. 01-689 1280.

> UK101 SOFTWARE ON TAPE
> from the guy who wrote "Le Passe-Temps

GALACTIC HITCHHIKER (8K). An adventure, all in machine code. A beautyl ($£ 7.00$) zap-ping moving Klingons in real time. Superb graphics. (E7.00)
STARTREK (8K). The old favourite, beautifully presented. (E6.00)
less than 3 ANDER. A real challenge. You won't get down in HANGM hours. ($£ 3.00$)
BASIC TUTO Excellent graphics. P.E. said sol (($\mathbf{3} 3.00$) keybroard. ($£ 12.00$) 84 K). The only way to leam - at the LE PASSE-TEMPS. You NEED this, if you haven't already MAD MONK (8K). It's ready at last A machine code adventure with some truly remarkable graphics, this programme is in a class by itself. ($\mathbf{9} 9.50$)
These ORIGINAL PROGRAMS are compatible all 2 K Monitors and are available for 16×48 and 32×48 displays (including enhanced Superboards).

These kits are complete in every way: - Fully socketted high quality PCB, all components, switches etc. plus preformed cable assembly for easy interconnection to $J 1$. or our...
MOTHERBOARD SYSTEM. those extras easily. Provides eight, yes EIGHT. fully buffered $j 1$ type sockets. (E19.50)
8K STATIC RAM BOARD. ($£ 39.50$) 8K \$TATIC RAM BOARD. (E39.50) HI-SPEED CASSETTE INTERFACE. At last a system
that works. COMPLETELY RELIABLE 4000 baud that works. COMPLETELY RELIABLE 4000 baud (8000 with A delight to use, (E19,50). For software in EPROM, add £6.00
VIDEO ENHANCEMENT. Switch selectable 16×48 or 32×48 displays without buichering your computer. Monitor
BK EPROM BOARD ($\mathbf{E 1 9 . 5 0 \text {). A } 2 \mathrm { K } \text { Extended Monitor is }}$ available in EPROM for $£ 12.00$ plus, coming soon. TOOLKIT in EPROM and BASIC V. MONITOR BOARD. Plug into Monitor socket to provide switch selection of up to 4 EPROMS. ($\mathbf{~ 9 . 5 0}$) EPROM Programmer. PIN on the graphics side

All inctusive prices - absolutely no hidden extras
Please write or phone for further details:
A. KNIG HT (Dept. PE),
28 Simonside Walk,
Opmeshy

Ormesby.
Tel. (0642) 321266.

PE MINIATURE SCORPIO

Capacitive Discharge Electronic Ignition Unit
Full kit of parts, including ready drilled pcb \& metalwork, as specified in PE for only $£ 14.85$ including VAT \& Postage, Wound transformer $£ 2.00$ extra. PCB only, $£ 1.75$ inclusive.
SAE for full price list.
Dept. PE,
Microstate Limited, 5 Northfield Close, Fernhill Heath, Worcester WR3 7XB.

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.

This will assist advertisers in processing and despatching orders with the minimum of delay.

COURSES

SOUND ENGINEERS

If you're following a career in Sound Engineering or interested in learning all aspects of recording studios you should attend one of our weekend studio courses.
Topics covered include:
A. The basics of studio construction, wiring and materials used.
8. Types of microphones uses, techniques, and limitations.
C. Use of 2" 16 track machine, lining up, remotes etc.
D. Use of 24 Channel Desk and all controls.
E. Effect equipment, ADT, reverb, Echo, etc
F. Ancilliary equipment.
G. Mixing and Editing.

There are a maximum number of 8 students on each course and every one is tutored to their own level of knowledge with regard to their needs and interest. The cost is $£ 98$ for the weekend including hotel accommodation overnight. Details please phone 01-580 4720 or 01-636 5308 during office hours.

EDUCATIONAL

CAREERS IN MARINE ELECTRONICS. Courses commencing September and January. Further details, The Nautical College. Fleetwood FY7 8JZ. Tel. 0391779123.

TELEVISION COMPUTER
 RADIOCOMMUNICATIONS \& RADAR SERVICING

2 $\frac{1}{3}$ YEAR full-time Modular Diploma course to include a high percentage of practical work.

- ELECTRONIC PRINCIPLES
- MONOTV \& CCTV
- COLOUR TV \& VCR
- microelectronics \& DIGITAL TECHNIQUES
- MICROPROCESSORS \& COMPUTERS
- RADIOCOMMUNICATIONS \& RADAR

Each of the above Modules are 13 weeks in duration. Individual Modules can be arranged for applicants with suitable electronics background.
Subject to approval, students will be awarded a TEC Diploma in Electronics \& Communication Engineering on Completion of the full course.
Next session starts April 19th
Prospectus from:

LONDON ELECTRONICS COLLEGE

Dept: AA, 20 Penywern Road,
London SW5 9SU. Tel: 01-373 8721

FOR SALE

NEW BACK ISSUES OF 'PRACTICAL ELECTRONICS' available 90 peach Post Free. Cheque or uncrossed P / O returned if not in stock - BELL'S TELEVISION SERVICES, 190 Kings Road, Harrogate, N. Yorks. Tel: (0423) 55885.

8K UK101 - $£ 125$. Transcendent 2000 synthesiser - $£ 195.6$ St. Lawrence Avenue, Ramsgate, Kent. (0843) 583581.

UK101 8K CASEO. Super Space Invaders, Disassembler. £ 150 o.n.o. Tel. Wickford 5787 .

UK101, $32 \times 48,24 \mathrm{~K}$, cased, CEGMON, WEMON joystick, software, $£ 220$. Telephone Sedgley 74804.

FRG-7. Mint condition, complete with C.L. 22 coupler $£ 145$. Guisborough (0287) 22213.
.5 mw LASER. Suit Disco etc., + some components, must be £120. Call Weybridge 51790 day

SERVICE SHEETS

SERVICE SHEETS fl each plus SAE. Individual T.V. repair data $£ 6.50$ (with circuits $£ 8.50$). Free electronics newsletter, pricelists unique publications. Auspe, 76 Churches, Larkhall. Lanarkshire ML9 1HE.
bell's television services for Service Sheets on Radio, Tv, etc $\mathbf{f 1 . 2 5}$ plus S.A.E. Colour TV Service manuals on request. S.A.E. with enquiries to B.T.S. 190 Kings Road, Harrogate, N. Yorkshire, Tel:(0423)55885.

PERSONAL

CHRISTIAN SINGLES. Friendship, contacts. 1982 holidays. Weekend houseparties. - C.F.F., Dept N46, Edenthorpe, Doncaster.

MISCELLANEOUS

printed circuit boards. Glass Fibre tinned and Drilled Prototypes to batch runs. Quick turn-round, competitive prices. Send s.a.e. for quotations: R. D. Electronics, 12 Whiteoaks Road, Oadby, Leicester. 0533716273.

PARAPHYSICALS JOURNAL (Russian translations): Psychotronic Generators, Kirlianography, Gravity Lazers, Telekinesis. Details: SAE $4 \times 9^{\prime \prime}$, Paralab, Downton, Wilts.

SECURITY ALARMS KITS FROM E37. Full range of accessories. MFP Ltd., Harrison Road, Erdington, Birmingham B24 9AB. 021-373 0450.

RECHARGEABLE BATTERIES

Private \& Trade Enquiries Welcome FULL RANGE AVAILABLE. SAE FOR LISTS. 11.45 for Booklet. Nickel Cadmium Power plus Catalogue. Write or call: Sandwell Plant Lot. 2 Union Drive, BOLOMERE. SUTTON COLDFIELD. WEST MIDLANDS. O2i 3549764 . After hours 097784093.
oigital watch batteries. Any type $£ 1.20$ each. Send S.A.E. or $15 p$ with number or old battery to: DISCLEC Y, 511, Fulbridge Road, Werrington, Peterborough.

CLEARING LABORATORY: scopes. generators, P.S.U's, bridges, analysers. meters, recorders, etc. 0403-76236.

> Cabinet and Flightcase Fittings Fretcloths, Coverings, Handles. Castors etc., Jack's and Sockels. Cannons. Bugins. Aavio Krovs, Eniar Compres. sion Drivers, P\& N Stands. Celestion Speakers. ASS. |Glass$\begin{aligned} & \text { fibre Morns. } \\ & \text { Send } 30 \mathrm{p} \text { Po }\end{aligned}$
> Send 30p Postal Order for illustrated catalogues to
> ADAM HALL (P. E. SUPPLIES)
> Unir G, Carlton Court, Gpainger Road.
> Southend-an-Sea, Essex S\$2 582.

ULTRASDNIC TRANSDUCERS. miniature, 40 KHz , £2,85p/pair + 25p p\&p. Dataplus Developments, 81, Cholmeley Road, Reading, Berks.

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Practical Electronics for
insertions. I enclose Cheque/P.O. for $£$
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Electronics).

NAME	Send to: Classified Advertisement Manager PRACTICAL ELECTRONICS
ADDRESS	Classified Advertisements Dept., Room 2612 King': Reach Tower, Stemford Street, London SE1 gLS. Telephone 01-261 5846 Rate:
	32p per word, minimum 12 words. Box No. 60p extra.

MISCELLANEOUS

- CONTD.

SECURITY SYSTEMS KITS ... All components and full instructions. Send large SAE for latest catalogue of advanced projects for car, caravan and home. CompuTech Systems, Ind. Est., N. Walsham NR28 0AN. Tel: (0692) 5600.

THE SCIENTIFIC WIRE COMPANY PO Box 30, London E.4. 01-531 1568.				
ENAMELLED COPPER WIRE				
SWG	1 lb	802	402	202
8 to 29	2.76	1.50	0.80	0.60
30 to 34	3.20	1.80	0.90	0.70
35 to 39	3.40	2.00	1.10	0.80
40 to 43	4.75	2.60	2.00	1.42
44 to 47	5.90	3.40	2.39	2.00
48 to 49	15.96	9.58	6.38	3.69
$\begin{array}{lrrr}\text { SILVER PLATED COPPER WIRE } \\ 14 \text { to } 30 & 6.50 & 3.75 & 2.20\end{array}$				
TINNED 14 to 30	OPPER 3.85 Prices	$\begin{gathered} \text { VIRE } \\ 2.36 \\ \text { cl P\&P } \end{gathered}$	$\begin{aligned} & 1.34 \\ & \text { AT. } \end{aligned}$	0.9
SAE for	s under of Copp enquir Office. 2	2 pleas Resis welc Conings	dd 20 ce Wi Gardens	aler

centurion burglar alarm equipment. Send Sae for free list or a cheque/PO for $\mathbf{£ 1 1 . 5 0}$ for our special offer of a full sized signwritten bell cover, to Centurion Dept PE, 265 Wakefield Road. Huddersfield, W. Yorkshire, Access \& Barclaycard telephone orders on 0484-35527.

REVERBERATION

The Ryder solid-state unit, specially designed for organ use, gives smooth, natural sound. Demo cassette, on loan, deposit £1.50, refund £1.00. (Prices UK only).

HIYKON LTD. (P)
Woodside Croft, Ladybridge Lane, Bolton BL1 5ED.

WRONG TIME?

MSF CLOCK is ALWAYS CORRECT - never gains or loses, SELF SETTING at switch-on, 8 digits show Date, 'Hours, Minutes and Seconds, auto GMT/BST and leap year, also parallel BCD output for computer or alarm etc, second-in-amonth. STOPCLOCK, receives Rugby 60 KHz atomic time signals, built-in antenna, 1000 Km range, GET the RIGHT TIME, £62.80
V.L.F.? EXPLORE $10-150 \mathrm{KHz}$, Receiver $£ 16.50$. Each fun-to-build kit includes all parts, printed circuit, case, instructions, postage etc, money back assurance so GET yours NOW.

CAMBRIDGE KITS

45 (FC) Old School Lane, Milton, Cambridge.

MICRO TRANSMITTER. VHF/FM, matchbox size, variable $70-150 \mathrm{MHZ}$, complete kit, £4.50. Microtronic, 9, Tennant, Simonside, South Shields

MAKE YOUR OWN PRINTED CIRCUITS

Etch Rosiat Tranafera - Starter pack 15 sheers. lines. pads. I.C. padst E2.00. Large range of single sheets in stock a 43 p per sheet.
Mines by simpe Transparencies from P.C. layouts in maga zines by simple photographic process 2 sheets negative
paper, 2 sheets positive film (A4) £2.10. Photo-resiat spray (200 ml) f 3.25 ($p+\mathrm{p} 55 \mathrm{p}$). Drafting Film (A4) 25 p . Precision Grids (A4) 65 p . $20 p$ stamp for lists and information. P\&P 35p per order except where indicated.

OAK LOOGE, TANSLEY, DERBYSHIRE

ENAMELLED COPPER WIRE, 10 swg to 45 swg. S.A.E. for quotation by return, cheapest prices. 102 Parrswood Road, Manchester 20.

P.E. AND PROTOTYPE PCBS PLUS P.E. PHOTOCOPIES

LOW COST SERVICE FOR HOME ENTHUSIASTS

Send S.A.E. for lists
PRINTRONIX, 8 Back Road
Sidcup, Kent, DA14 6HA

DIGITAL WATCH BACTERIES one type equivalent to RW47, Renata 2, Uear 392, 75p each. Two 11.30 payable S. Bath, Send, Carlton, The Square, Sitihians, Truro.

ANNOUNCING • THE SENSATIONAL VIBROSCOPE品

Once again, Stuart Systems have astounded the wortd with

 a totally new concept. The Video Vibroscope produces a tantasic multi-coloured display on any TV. The picture is conirolled by music, using microphone or other direct input, and forms an exciting, pulsating and rhythmic experie discos, etc.NOWAVAILABLE FORONLY
9v POWER UNIT E4.95. PLEASE ADD VAT
(POST \& PACKING INCLUDED)
BarclayIAccess orders accepled on letephone
WILLIAM Dower House, Billericar Road, wis
STUJART $\begin{gathered}\text { Herongate. Brent } \\ \text { Essex CM13 } 3 S 0\end{gathered}$
SYSTEMS LEd Telephone: Bentwood 102771810244
burglar alarm eauipment. Ring Bradford (0274) 308920 for our catalogue or call at our large showrooms opposite Odsal Stadium.

MAINS ISOLATOAS ISCREENEDI Pri O.120: 0.100-120V 1120. 220

Ref	VA	Price	
-07	20	4.84	
149	60	7.37	
150	100	8.38	
151	200	12.28	
152	250	14.61	
154	500	22.52	
155	750	32.03	
156	1000	40.92	
157	1500	56.52	
158	2000	67.99	
59,	3000	95.33	

CASED AUTO TRANSFORMERS
240 V cable in 115 V USA flat pin outlets

	Price	P\& P	Ref
VA			
20	6.55	0.95	$56 W$
75	8.50	1.20	$64 W$
150	11.00	1.44	$4 W$
250	13.39	1.44	$69 W$
500	20.13	2.04	$67 W$
100	30.67	2.20	$84 W$
2000	54.67	2.20	$95 W$

UK Postages. Overseas extra Voltages stated are on full load Continuous Ratings
60 VOLT RANGE (Split Sec) Pri $120 / 240 \mathrm{~V}$. Voltages evaliable
$6.8,10,12.16,18,20,24,24$
$30,36,40.48,60$ or $24 \mathrm{~V}-0.24 \mathrm{~V}$ $30,36.40 .48$
or $30 \mathrm{~V}-0.30 \mathrm{~V}$.

Voltages available: 105 . 115 . 190
$200.210 .220 .230,240$,
200. 210.220
and step down

extra.	Ret. VA (Wats)
ll load	113° Rer $150.73{ }^{\text {R }}$
	$\begin{array}{llll}64 & 80 & 4.41 & 1.20\end{array}$
	$\begin{array}{llll}4 & 150 & 5.89 & 1.20\end{array}$
	$\begin{array}{llll}67 & 500 & 12.09 & 1.84\end{array}$
	$84 \begin{array}{llll}84 & 1000 & 20.64 & 2.20\end{array}$
20. 24.	$\begin{array}{llll}93 & 1500 & 25.61 & 0 . \mathrm{A}\end{array}$
V-0-24vi	$\begin{array}{lllll} & \\ 73 & 2000 & 38.31 & \text { O.A. }\end{array}$
	73303000
	$80 \quad 4000$ 84.55 $\quad 8$.
	$57 \quad 5000 \quad 98.45$
P8, ${ }^{\text {P }}$	-0.115.220.240.
1.60	Constant Voltage Transformers (1\%) Clean mains to computers/peripherals 250 VA 500 VA \qquad f103.00 1000 VA \qquad \qquad €162.20 w mat Also I.C. "sensing types" for low malns voltage fluctuations. voltage fluctuations.
1.72	
96	
84	
2.04	
$0, \mathbf{A}$	
-12V	15V CT Range ($7.5 \mathrm{~V}-0.7 .5 \mathrm{~V}$)
	$171500 \mathrm{~mA} \quad 2.30 \quad 0.60$
ce, P8P	$172 \quad 140$
0.95	$\begin{array}{llll}173 & 24 & 3.95 & 1.00\end{array}$
1.00	$174{ }^{175} 4$.
1.00	175 44** 6.30
. 16 18 1.20	$\begin{aligned} & \text { 96/48/36V RANGE } \\ & \text { Prio 120/240V } \end{aligned}$
.16 .99 1.20	
$8.16 \quad 1.44$	Sec 2 windings $0-36-48 \mathrm{~V}$ to give $36-0-36 \mathrm{~V}$ or $48-\mathrm{O}-48 \mathrm{~V}$ or 72 V or 96 V
.93 1.60	
	Amps
. 791.72	
1.84	$72 \mathrm{v} / 96 \mathrm{v}$ 36v/48v Ref.
2.04	
	$\begin{array}{lrr}431 & 8.12 \\ 432 & 13.35\end{array}$
ERES PGP	3.
	20.6
	6
3.141 .00	
	8 16 437 40.03 O.A.
2.19 2.60 - ${ }^{2}$	
3.050 .95	Split Bobbin Type. Sec Volt
3.880 .602.19	
	or $15.0 .15 \mathrm{LV}, 1 \mathrm{amp}$ (09) E 2.06
3.751 .00 5.091 .20	
$\begin{aligned} & 6.841 .20 \\ & 2.88 \\ & 2.990 .90 \\ & 2.990 .44 \end{aligned}$	BBC ACORN
	COMPUTER NOW
gue. Prices	avallable

OTHER PRODUCTS

It's easy
 to complain about advertisements.

Every week, millions of advertisements appear in the press, on posters or in the cinema.

Most of them comply with the rules contained in the British Code of Advertising Practice and are legal, decent, honest and truthful.

But if you find one that, in your opinion, is wrong in some way, please write to us at the address below.

We'd like you to help us keep advertising up to standard.

The Advertising Standards Authority.
A.S.A.Ltd., Brook House. Torrington Pláce. London WCIE 7HN

WORLD RADIO T.V.
 HANDBOOK
 1982 ed.

Price: $£ 11.00$

AMATEUR RADIO HANDBOOK 1982

by A.R.R.L.
Price: $\mathbf{£ 8 . 0 0}$
UNDERSTANDING MICROPROCESSORS
by D. L. Cannon
Price: $\mathbf{£ 4 . 5 0}$

PRACTICAL ELECTRONICS H/B

by I. Sinclair
Price: $\mathbf{£ 4 . 3 5}$
THE CATHODE-RAY OSCILLOSCOPE
8 ITS USE
by G. N. Patchett
Price: $£ 4.00$
INTRODUCING AMATEUR ELECTRONICS
2nd ed. by I. R. Sinclair
Price: $£ 4.00$
INTRODUCING MICROPROCESSORS
by I. R. Sinclair
Price: $£ 5.00$

H/B OF BASIC ELECTRONIC

TROUBLESHOOTING
by J. D. Lenk
Price: $£ 4.65$
67 READY TO RUN PROGRAMS IN BASIC:
GRAPHICS, HOME \& BUSINESS,
EDUCATION, GAMES
by Wm. S. Watson
Price: $£ 4.60$
COMPUTER PROGRAMMING IN BASIC by P. Bishop

Price: $\mathbf{£ 3 . 5 0}$

* ALLPRICES INCLUOE POSTAGE *

THE MODERN BOOK CO.
BRITAIN'S LARGEST STOCKIST
of British and American Technical Books
19-21 PRAED STREET LONDON W2 1 NP
Phone 01-402 9176 Closed Saturday 1 p.m. Please allow 14 days for reply or delivery.

INDEX TO ADVERTISERS

Ace Mailtronix Adam Hall Supplies
A.D. Electronics

Ambit
Aura
Autumn Products
Barrie
Beckman Instruments
Bi-Pak
Blackstar
British National Radio \& Electronics School

Cambridge Kits
Cambridge Learning
Chordgate
Clef Products
C.R. Supply Co.

Crofton Electronics
C.U.A.

Dataman Design
E.D.A.

Electronize Design
Electrovalue
Gemini
Global Specialities Corporation
Hameg Limited
Heathkit
Hiykon Lid.
House of Instruments
ICS Intertext
ILP Electronics
$65,67,69,71,73,7$
JSO Studios
Knight A.

74 Litesold 77
14 20
72
78
27 69

Videotone
77
Watford Electronics
William Stuart Systems (Big Ears)
77 William Stuart Systems (Vibroscope
76
P.C. Electronics

Phonosonics
Pimac
P.K.G. Electronics

Plessey Radar
Powell T.
Powertran
14, 69 Printoid Lid.
Printronix
Proto Design
Radio Components Specialists
Radio \& T.V. Components
Riscomp Lid.
Scientific Wire Co
75 Sinclair Research
11 Solid State
Swanley
39 Technomatic 8 Tempus
T.K. Electronics

London Electronics College
Maplin Electronics
77
Cover IV
73
76
7
Microstate Ltd.
Midwich Computer
Mlilhill
Modern Book Co

74
79
80

80
74
76
1
6
78
72

Cover II, 1
6
78
7 78
78
$\begin{array}{r}75 \\ 73 \\ \hline\end{array}$
80, Cover III

Swich on io Tralisisin

If you're an electronics man interested in the coverage of TV technology, TELEVISION is just the magazine for you. Coverage includes the latest developments in circuitry, video and long distance Television...including in the March issue a look at Video cameras and their compatibility with VCR's and a TV sound adaptor. As a companion read with Practical Electronics it would be invaluable

TETETETOI

Well worth a closer look!

IONISER KIT ImAINs
 IONISER KIT operated

This negative ion generator gives you the power to saturate your home or office with millions of refreshing ions. Without fans or moving parts it puts out a pleasant breeze. A pure flow of ions pours out like water from a fountain, filling your room. The result? Your air feels fresh, pure, crisp and wonderfully refreshing.
All parts, PCB and full instructions £ 12.50 A suitable case including front panel, neon switch, etc. £6.50 HOURS:

Mon. to Fri. 9-5 pm.
Sat. 9-4.30 pm.

Price includes post \& VAT. Barclay/Access Weicome
T. POWELL,

Advance Works, P.E., 44 Wallace Road, London N 1 IPQ.
Tel. 01-226 1489.
Please allow 28 days for delivery.

CELESTION

CB Antenna \& Accessories in stock nowl!

Stockists of leading makes of Disco Units \& Lighting Equipment.

CITRONIC. FAL, TK, ICE OPTIKINETICS, PLUTO
Give your cabinets the professional finish.
Send $2 \times 14 \mathrm{p}$ stamps for - illustrated catalogue.

RICHARD ALLAN

CROSSOVERS

CROSSONERS		
100 W	8 ohm	2 way
100 W	8 ohm	3 way
80 W	8 ohm	4 way
60 W	8 ohm	2 way

TECHNOMATIC TECHNOMATIC TECHNO SPECIAL OFFER

$1-24$	$25-99$	$100+$
0.95	0.90	0.85
1.00	0.95	0.90
0.75	0.70	0.65
2.20	2.00	1.90
4.50	4.00	3.75
6.00	5.75	7.00

CONNECTOR SYSTEM

COMNECTOR SYSTEM															
I.D. CONNECTORS						25 WAY MINI D-CONNECTORS			DIL HEADER PLUGS						
	PLuG	Tatie				Solder	Salder	Solder		Soider		O			
10 Way	$220 p$			-	5p	Bucken	Pin	Pin		type		pe			
28 Way	350p	265p		390p	160p			(angled)	14 pin	50p		10 p			
34 Way	450p	$325 p$		450p	240p	200p	215p	265p	16 pin	60p		$4 \mathrm{p}_{\mathrm{p}}$			
to Way	625p	370p		-	280p	${ }^{245 p}$	255p	$310 p$	24 pin	100 p		0p			
50 Way	515p	450p		-	330p	100 p . Locking Lever 100 p .			40 pin	215p		50			
	JUMPER LEADS 24" Ribhon Cable with hazders					EDGE CONNECTOR,			EURO CONNECTORS						
						OIN STD									
	$\begin{aligned} & 14 \text { pun } \\ & 145 p \end{aligned}$		16 pin	i 24 pin	40 pm				2×18 Way	310	150p	4161731	Noy		200p
1 end			165p	240p	380p	2×22 Way	310p	70p	$416122 \times$	32 Way	$300 p$	$350 p$			
2 ends	$210 \mathrm{p}$		230p	p 345p	540p	2×23 Way			2×32 War	(angled)	350 p	400p			
	Cable with Sockets					2×25 Way		200p	$416123 \times$	32 Way		${ }^{120}$			
	20 pin$160 p$		26 pin210 p	$34 \mathrm{p}+\mathrm{n}$	40 pin	2×43 Way	${ }^{260 p}{ }^{\text {4 }}$.	-	3×32 Woy	(angled)		450p			
1 end			270p490 p	300p	2×50 Way			1tor 2×32	way please	e spect	ty $0+1$				
2 ends	290p			385p	540p	1×17 Way									

BOOKS (NO VAT) (P\&P E1.00 per book)

		IT. Cookboak	67.15
The Pascal Handbook	¢10.05	CMOS Cooktook	67.95
CRT Controller Handbook	¢5.95	TI TIL Data Book	¢7.50
Understanding Micropracessors	¢3.50	Video Coakbook	¢5.95
Mictos - Intertacing Techniques	[12.10	2-80 Intertacing (1)	87.95
Introduction to Micro Computers	110.95	2-80 interlacing 121	c9.75
6502 Assy. Lang. Prog.	¢12.10	Prog the 280	¢11 50
8080A/8085 Assy. Lang. Prog.	¢1160	Prog the 6502.	¢10.25
		6502 Applications	£10.25

ADD SOUND - $\star 2 \times 80 / 81$ USER PORT \star

Port module plugs directly into ZX80/81 to provide 8 input and 8 output lines. These allow input of data from switches, photocells, sensors. joysticks etc and control of 8 relays. Also 7 segment displays and LED may be used - "VARIABLE TONE AUDIO OUTPUT CAN PRODUCE YOUR OWN SOUND EFFECTS." Port access is by simple PEEK \& POKE COMMANDS. Kit $£ 11.50$.
READY BUILT AND TESTED UNIT E14.95 + 70p P\&P
for 2×81 users: Extender cord provided foce to enable to be plugged directly

EXPERIMENT WITH COMPUTER VISION * ATON ULTRASONIC VISION

Module connects to the ATOM printer port to give an ultrasonic radar picture of the surroundings, eg. room, furnishings, people. Experiment with computer measurement, image recognition, movement tracking, robot vision. Project to be described in PRACTICAL ELECTRONICS Aprit/May 81

* UK101: INTERFACING SYSTEM \star

Two board interface system plugs directly into computer expansion socket to provide wide facilities accessible from BASIC or MACHINE COOE

1) DECODING MODULE: Providing a dual 5 v supply, 16 bit programmable V o port, plus ex tensive address decoding for a wide variety of interiaces, inctuding full decoding for a programmable sound generator, and also a 40 pin skt for further expansion.
2) ANALOGUE BOARD: Plugs into the decoding module 'to provide O/A converter, 8 channel mul tiplexed AD converter with 20 nS conversion time. AY3-8910 SOUND GENERATOR plus 6522 VIA provide complex timing \& counting functions and additional 16 bit port. DECDOING MDOULE KIT $£ 27.50$ ANALOGUE BOARD $£ 39.95$

ACORN ATOM

A-personal computer with full size QWERTY board and a built in UHF modulator to altow direc connection to domestic TV. A simple to build, simple to operate computer with all the features found in machines swice the price but with the advantage of expandability. Basic ATOM has 2 K RAM and 8 K ROM and on board expansion capability up to $12 \mathrm{~K}+12 \mathrm{~K}$.
Basic built £135, Built \& Fully Expanded £185. P\&P £3. 4K Floating Point ROM £20, IK RAM $(2$ $\times 21141$ [2. NEW 3A 5v Regulated Power Supply $£ 22+£ 1.50$ P\&P. ATOW COMNECTORS

UV EPROM ERASERS
$\begin{array}{lr}\text { IVIB fupto } 6 \text { EPROMS) } & \mathbf{\$ 4 2 0 0} \\ \text { UV140 (upte } 14 \text { EPROMS) } & \mathbf{6 5 1 . 5 0} \\ \text { UVI41 las UV140 but with timer) } & \mathbf{f 7 8 . 0 0}\end{array}$ ALL ERASERS with built in salety devics.

SOFTY

PROM PROGRAMMEA R ROMULATOR
Sotiwate development tool mall (for 2516/2716/2532/27321. Builh complate with psu

TECHNOMATIC TECHNOMATIC TECHNE

[^3] Australia and New Zealand - Gordon \& Gotch (Asia) Lid.; South Africa - Central News Agency Lid.
Subscriptions INLAND and OVERSEAS $113-00$ payable to IPC Services, Oakfleld House. Pertymount Road, Haywards Heath, Susser.

3 Consoles available:

Atari 400 with 16K RAM(AF36P) £345 Atari 400 with 32K RAM(AF37S) $£ 395$ Atari 800 with 16K RAM (AF02C) £645

Lots of other hardware: Cassette Recorder (AF28F) $£ 50.00$ Disk Drive (AF06G) £345.00 Thermal Printer (AF04E) $£ 265.00$
Printer Interface for 400 Printer intertace for 800 Interface Module Versawriter (AF42V) £49.95 (AF29G) $£ 135.00$ (AF43W) $£ 169.00$

16K RAM Module 32 K RAM Module 32K Upgrade for 400 Floppy Disk Le Stick Joystick Controilers For full details ask for o (AF44X) $£ 125.35$ (AF45Y) $\quad £ 75.00$ (V×87U) £2.75 (AC45Y) £24.95 AC37S) £13.95

NOW YOU CAN JOIN THE U.K. ATARI COMPUTER OWNER's CLUB. An independent user's group
Four issues of the club magazine for only £1.60! Address your subscription to Graham.
THE CHOICEST GEMS OF ATARI SOFTWARE FROM MAPLIN

adventure		
Slar Warrior	- C. 32 K - (B024B)	£28.95
Rescue At Rigel	- C- 32K-(8021X)	£22.45
InvasionOrion	- C. 32K-(B023A)	£18.95
Datestones of Ryn	- C. $32 \mathrm{~K} \cdot(\mathrm{BO22Y}$)	\$14.95
Galactic Empire	-C. 24 K -(80140)	£14.95
Hi-Res Adventure ${ }^{\text {H }}$ 2	- D. 48 K -(8025C)	£24.95
Analog Adventure	- $\mathrm{D} \cdot 32 \mathrm{~K}$ - (B033L)	£24.95
Adventure Land	- C-24K-(B000A)	§14.95
Prates Adventure	-C.24K (B0018 $^{\text {) }}$	£14.95
Mission Impossible	- C-24K-(B002C)	\$14.95
Voodoo Castle	- - 24K-(80030)	£14.95
The Count	- C-24K-(B004E)	£ 14.95
Strange Odyssey	- C 24K-(B005F)	£14.95
Mystery FunHouse	- C- 24 K - (B006G)	§14.95
Pramid of 000 m	- C- $24 \mathrm{~K} \cdot(\mathrm{BOO} \mathrm{H}$)	£14.95
Ghost Town	- C-24K (BOO O)	§14.95
Savage Island	- C. 24 K - (B009K)	£14.95
Savage Istand II	-C.24K-(8010L)	£14.95
Golden Voyage	-C. 24 K -(B011M)	§14.95
Energy Czar	- C. $16 \mathrm{~K} \cdot(\mathrm{YG53H}$)	£8.95
Kingoom	- 1	¢8. 95

Teach-Yourself Programs
Conversational French $\quad-5 \mathrm{C}-16 \mathrm{~K} \cdot(\mathrm{YG44X}) £ 32.50$

Conversational German $\quad-5 \mathrm{C}$-16K-(YG45Y) $£ 32.50$ Conversational Spanish Conversationailtalian Touch Typing States \& Capilals European Counflies 8 Capitals | $5 C-16 K-(Y G 45 Y)$ | $£ 3250$ |
| :--- | :--- |
| $5 C-16 K$ | |
| YG $46 A)$ | |
| $£ 32$ | 50 | $5 \mathrm{C} \cdot 16 \mathrm{~K} \cdot(\mathrm{YG46A})$

$5 \mathrm{C} \cdot 16 \mathrm{~K} \cdot(\mathrm{YG47B})$
$£ 32.50$ 2C-16K-(YG490) §14.95 -C. 24 K -(YG56L) $\quad \$ 8.95$
C. $116 \mathrm{~K} \cdot(\mathrm{YG57M}) \quad £ 8.95$

Learn Programming Invitation to Programming Basics of Animation Player Missile Graphic Prayer MissileGraphics Display Lists Display List Horiz/Vertical Scroll Horiz/Vertical Scroll

C-8K.(YG43W) $£ 11.95$ C. 32K-(B057M) $£ 9.95$ D. 32 K -(B 058 N$) £ 10.95$ C-16K-(B059P) $£ 18.95$ O-24K-(BO600) £19.95 C. 16K-(B051F) $£ 9.95$ 0. $24 \mathrm{~K} \cdot(\mathrm{~B} 052 \mathrm{G}) \mathrm{£} 10.95$ $\begin{array}{ll}\text { C. } 16 \mathrm{~K}-(8053 \mathrm{H}) & £ 9.95 \\ \text { D. } 24 \mathrm{~K} & (8054) \\ 510.95\end{array}$
$\begin{array}{lll}\text { Page Flipping } & -C-16 \mathrm{~K} \cdot(\mathrm{BO55K}) \quad £ 9.95\end{array}$

Business Programs

Visicalc
Word Processor -D. $32 \mathrm{~K} \cdot(\mathrm{YL}$ (39N) 119.95 Calculator $\quad-\mathrm{D}-24 \mathrm{~K}$. (YG50E) $£ 16.95$ Graphi-lt Slatistics

Arcade Games

Asteroids
Asteroids
Missile Comman
Super Breakout
Super Breakou
Tari Trek
Star Trek 3.5
Star Trek 3.5
Race InSpace
Shooting Gallery
Mountain \$hoot
Jawbreaker
Jasketball
Tank Trap
Tank Trap
D-24K.(YG50E) £16.95
C-16K•(YG51F) £11.95
-E-8K-(YG66W) $£ 29.95$ - E-8K•(YG600) $£ 29.95$

 -E-8K.(YG64U) E 29.95 \begin{tabular}{ll}
-E-8K-(YG67X)

C- $24 \mathrm{~K}-(\mathrm{YL} 36 \mathrm{P})$ \& $£ 89.95$

\hline

C. $24 \mathrm{~K}-(\mathrm{YL} 36 \mathrm{P})$

$\mathrm{D} .32 \mathrm{~K}-(\mathrm{YL} 37 \mathrm{~S})$ \& $£ 1195$

\hline

C- $32 \mathrm{~K}-(\mathrm{YL37S})$

C- $32 \mathrm{~K}-(\mathrm{BO} 15 \mathrm{R})$ \& $£ 11.95$

\hline

 $\begin{array}{ll}\text { C- } 32 \mathrm{~K} \cdot(\mathrm{BO} 15 \mathrm{R}) & £ 14.95 \\ \text { C. } 16 \mathrm{~K} \cdot(\mathrm{BO} 350) \\ \text { (} 14.95\end{array}$

$C \cdot 16 K-(B O 350)$ \& $£ 14.95$

C- $16 \mathrm{~K}-(\mathrm{BO} 6 \mathrm{P})$ \& $£ 14.95$

\hline
\end{tabular} C-16K-(BO12N)

§ 10.95 - 0 - 48 K -(BO26D) $£ 22.95$ -E-8K-(YG61R) $£ 29.95$ $\begin{array}{lr}\text {-E. } 8 \mathrm{~K}-(\mathrm{YG6} \\ \text { C. } 16 \mathrm{~K} \text {-(YL34M) }) & £ 8.95\end{array}$ - O -32K-(YL350) $£ 11.95$

Heme Game Programs

Cypher Bowl

Thunder Island Rotating Tilt Lunar Lander
Jumbo Jet Lander Submarine Commander Sunday Golf
Darts
Tournament Pool Snooker \& Bitliards Chess
Microchess
Checkerking Cribbage \& Dominoes

16/24K-(YG58N) £12.95 C-32K-(BO20W) §22.45 C-16K-(B037S) $£ 10.95$ C-16K-(8048C) $\{1495$ C- 16 K -(B016S) $\{10.95$ \begin{tabular}{ll}
C- $16 \mathrm{~K} \cdot(\mathrm{BO} 046 \mathrm{~A})$ \& $£ 29.95$

\hline

 $\begin{array}{ll}\text { C. } 16 \mathrm{~K} \cdot(\mathrm{BO46A}) & £ 29.95 \\ \text { C- } 16 \mathrm{~K} \cdot(\mathrm{BO} 47 \mathrm{~B}) & £ 24.50\end{array}$ $\begin{array}{cc}\text { C- } 6 \mathrm{~K} \cdot(8047 B) & £ 24.50 \\ \text { C. } 16 \mathrm{~K}-(\mathrm{BO13P}) & £ 10.95\end{array}$ $\begin{array}{ll}\text {-C. } 16 \mathrm{~K} \cdot(\mathrm{BO13P}) & £ 10.95 \\ \text {-C. } 16 \mathrm{~K} \cdot(\mathrm{BO} 42 \mathrm{~V}) & £ 19.95\end{array}$ $\begin{array}{ll}\text { C- } 16 \mathrm{~K}-(\mathrm{BO} 4 \mathrm{~V}) & £ 19.95 \\ \text { C. } 16 \mathrm{~K}-\text { (BO45Y) } & £ 19.95\end{array}$ $\begin{array}{ll}\text { C. } 16 \mathrm{~K}-(B 045 \mathrm{Y}) & £ 19.95 \\ \text { C. } 16 \mathrm{~K} \cdot(\mathrm{BO} 44 \mathrm{X}) & £ 19.95\end{array}$ - E.8K-(YG63T) $\begin{aligned} & \text { §29.95 }\end{aligned}$

- E- 8 K -(YG63 $)$

C-16K-(YL40T) $£ 15.95$

\hline
\end{tabular}

 C. 16 K -(BO43W) $£ 14.95$

Poker Soltare

Blackjack
Blackjack
FastGammon

Reversi(Othel.0-type) \quad C-16K.(YO1gL) $£ 9.95$
Gomoko
C. $16 \mathrm{~K} \cdot$ (BO19V) $£ 14.95$

Humpty Oumpty \& Jack \& Jill - C - 16K - (BO38R) $£ 19.95$ Hickory Dickory Dock -C-16K-(BO39N $\} 19.95$
British Heritage
Jig-Saw Puzzles
uropean Scene
Jig-Saw Puzzles
C-16K-(BO40T) $£ 19.95$
-C C $16 \mathrm{~K} \cdot(8041 \mathrm{U}) ~ £ 19.95$ Alarich (2JPograms) - C-16K-(B0490) $£ 18.95$ (25Programs) - D. 16K•(B050E) £24.95 Mino Bogglers (3Programs) -C•16K-(YL38R) $£ 895$
Musle Program
Music Composer
Movie Themes (use with
Music Composer)
-E•RK•(YG48C) £32.50

Computer Languagea
Basic A + Ler (8031 (552.50 OperatingSystem A+ $\quad-0.48 \mathrm{~K}$ (BO BOH) $£ 52.50$

OperatingSystemA+ - D-48K-(B032K) 99950 OSForth -D.24K-(Y) 29G) 54490 -E82C.8K-(YG69A) £49.50

Utillties

30-Super Graphics -C-48K-(B029G) £29.95 Alari World (Graphics) - D-48K.(B027E) $£ 43.95$ Assembler Éditor
6502 Disassembler
6502 Disas sembler
Character Generato
 -D.16K.(YL28F) $£ 12.50$

Key: $C=$ Cassette, $0=$ Oisk, $E=$ Cartrioge $2 C=2$ Casseltes etc. $8 \mathrm{~K}: 16 \mathrm{~K}$ ete. shows minimum memory requirement.

Send sae now for our new software leaflet with details of all the above programs. Order As XH52G - Issue 2 . Lots of exciting new soltware titles available soon. Keep in touch with Maplin!
Subscribe now to America's leading Atari-only magazine - Analog - 6 issues per year for just 99.00 . Order as GG24B.

Note: Order codes shown in brackets. Prices firm until 15th May, 1982 and include VAT and Poslage and Packing (Errors excluded)

Maplin Electronic Supplies Ltd P.O. Box 3, Rayleigh, Essex. Tel: Southend (0702) 552911/554155.

Demonsira NOW
See the amazing Atari's in action at
See the amaz St., Hammersmith W6
159.161 King
159.161 King Tel: 01.7480926
r al 284 London Road,
Westcliff-on-Sea, Esse

[^0]: (C) IPC Magazines Limited 1982. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: All items subject to availability. Prices correct at $1 / 12 / 81$ and subject to change without notice. RTVC Limited reserve the right to update their products without notice.

[^2]: Battery Voltage Indicator, Rev. Counter, Ammeter, Engine Temperature Meter, Dwell Meter, Headlight Warning, Automatic Car Aerial, Digital Temperature Controller. Ultrasonic Burglar Alarm, Home Freezer Alarm, PE Diamatic, Digital Exposure Timer, Smooth Fuzz, Phaser, Guitar Sound Multiprocessor, R.C. Failsafe, Waveform Generator and Pulse Generator.

[^3]: Published approximately on the ISth of each month by IPC Magazines Lid., westover House, Wes

