

Infra•Red Remote Control

Much more than just kits quite simply the best way to make music ...

Powertran have' been designing and manufacturing high-quality electronic kits for more than a decade. Thousands have been purchased and assembled by constructors throughout the UK and world-wide. Many of our regular clients have built the entire range - several times! A Powertran kit makes an excellent gift for the electronics enthusiast; and is a gift that, when constructed, may be given again.
Our reputation rests on these unshakeable foundations - we use the most imaginative and ingenious designers; we use high grade components subjected to rigid quality control; our kits are complete, even screws and wire are included; we take care with packing and despatch; our instructions are clear and always fully comprehensive . . . and if that weren't enough we back it up with our money-back guarantee. Powertran care and your skill gives
 you that something special.

Among the most popular of our kits are the fabulous 'Transcendent' range of synthesisers. Designed by the expert in the field, Tim Orr, and featured in Electronics Today International - those kits represent the zenith in both constructional ingenuity and musical performance. Thanks to our fully illustrated, carefully diagrammed 30 pages plus of constructional notes the 'Transcendent' range is comfortably within the capability of most enthusiasts. A great many 'first time builders' have completed them without difficulty and are justifiably pleased with the results.

TRANSCENDENT POLYSYNTH - brilliant design work and high technology components give the home constructor a machine of such versatility and range, equalled only by factory-made units costing thousands of pounds. Despite the advanced electronics the kit is mechanically simple

TRANSCENDENT DPX - a versatile 5 octave keyboard. The two audio outputs can be used simultaneously to give harpsichord and piano/honky-tonk or reed and strings/brass both fully polyphonic. To add more excitement there is a chorus/ensemble unit with strong or mild effect switching. The DPX is an advanced design ... yet care, and our superb construction manual, make it a kit for every enthusiast.

COMPLETE KIT £295 (+ VAT)
TRANSCENDENT 2000 - a 3 octave keyboard yet with all the design ingenuity and thorough engineering that makes a superb and versatile machine. Quality teak cabinet and quality components throughout - complete down to the 13 amp plug. Buy it - build it - then plug-in and play it! A truly professional sound.

COMPLETE KIT $£ 159$ (+ VAT)
1024 COMPOSER - one of our latest designs. The Composer controls the synth. with a sequence of up to 1024 notes or equal selection of shorter sequences. Mains powered and with trickle-charged battery to preserve programme after switch-off.

COMPLETE KIT £85 (+ VAT)

.. . write or phone for NEW 40 page '81/82 catalogue - FREE

PRICE STABILITY: Order with confidence. Irrespective of any price changes we will honour all prices in this advertisement until March 31st, 1982. if this month's advertisement is mentioned with your order. Errors and VAT rate changes excluded.
rate changes excluded.
handling and documentation
U.K. ORDERS: Subject to 15% surcharge for VAT. No charge is made for carriage, or at current rate if changed.

SECURICOR DELIVERY: For this optional service (U.K. mainland only add $£ 2.50$ (VAT inclusive) per kit. FREE ON ORDERS OVER $£ 100$. add £2.5O NAT inclusive) per kit. FREE ON ORDERS OVER SALES COUNTER: If you prefer to collect kit from the factory, SALES COUNTER: If you prefer to collect kit from the
call at Sales Counter. Open 9 a.m. -12 noon, $1-4.30$ p.m. call at Sales Counter
Monday-Thursday.

CONSTRUCTIONAL PROJECTS

MINIATURE SCORPIO CAR IGNITION by Mike Rees 20
Updated and scaled-down version of a popular design
BENCH PSU 26
A protected and metered supply giving up to 30 V and 2 A
INFRA-RED REMOTE CONTROL Part 1 by Bart Trepak 32
Ideal for power operated garage doors 42
Video and Logic boards construction
PE RANGER BASE STATION Part 2 by Michael Tooley BA and David Whitfield MA. MSc 48
Construction 52
The processor board, infra-red receivers, solenoid controller and control base p.c.b.s PE BANDBOX Part 4 by Alan Boothman BSc 62
Conclusion of series
GENERAL FEATURES
SEMICONDUCTOR UPDATE by R. W. Coles 25
Featuring WD2 123 OP-27
DIGITAL DESIGN TECHNIQUES Part 7 by Tom Gaskell BA 36
When Analogue meets Digital 60
Hardware and software exchange point for PE computer projects
NEWS AND COMMENT
EDITORIAL 10
NEWS \& MARKET PLACE 16
Including Countdown
INDUSTRY NOTEBOOK by Nexus 19
What's happening inside industry 41
Progress of the shuttle 51
Space Evaders
PATENTS REVIEW 66

OUR MARCH ISSUE WILL BE ON SALE FRIDAY, 12th FEBRUARY 1982.
(for details of contents see page 31)

[^0]

COMPUTER CORNER

- EPSON MX SERIES PRINTERS: see top right hand side of this advertisement.
- SEIKOSHA GP80A - Unihammer Printer, gives normal and double width characters as well as dot resolution graphics $8^{\prime \prime}$ Tractor feed. Parallel
Interface standard.
$\mathbf{£ 1 9 5}$
- SOFTY-2. As reviewed in PE September 1981. The complete microprocessor development system for Engineers \& Beginners. New powe ful EPROM. Supplied fully built, tested \& enclosed in a black ABS case. Price incl. encapsulated plug in power supply.
- VIDEO MONITOR $9^{\prime \prime}$ fully cased. B\&W. Fully guaranteed. Excellent value for money at only $\mathbf{£ 6 9}$
- TEX EPROM ERASER. Erases up to 32 ICs in
- TEX EPRORT ERASER with integral 30 min . Electronic timer
- Spare 'UV lamp bulbs

SV/5A PSU Ready built and tested
Attractive Beige/Brown ABS CASE for
Superboard/UK101 or Home Brew

- Extra 4K of RAM (8 off $2114 \mathrm{~L}-300 \mathrm{nS}$) £7.95
space Invaders for Superboard
4×4 matrix koypad (reed switch assembly)
- C12 Cassettes in Library Cases
- $8 \frac{1}{2}$ Fan fold paper (500 sheets) (no VAT) E6
- $\mathbf{S}_{\frac{1}{2}}{ }^{1 \prime}$ Fan fold paper (500 sheets) (no VAT) E6
- Teleprinter Roll (no VAT)
(P\&P on most of the above items is extra)
Call in at our shop for demonstration of any of the above items. Be satisfied before you buy.

VOLTAGE REGULATORS			
1A T03	+ve		
5 V 7805	145p	7905	220p
12 V 7812	145p	7912	220p
15 V 7815	145p	7915	220p
18 V 7818	150p		
1 A TO220 Plastic Casing			
5 V 7805	50p	7905	55p
12 V 7812	50p	7912	55p
15 V 7815	50 p	7915	55p
18 V 7818	50p	7918	55p
24 V 7824	50p		
100 ma T092	Plastic	Casing	
$5 \mathrm{~V} 78 \mathrm{LO5}$	30 p	$79 \mathrm{LO5}$	60p
$6 \mathrm{~V} 78 \mathrm{L62}$	${ }^{30 p}$		
$8 \mathrm{~V} 78 \mathrm{L82}$	30p		
12 V 78 L 12	30p	$79 \mathrm{L12}$	60p
15 V 78 L 15	30p	79615	60p
		LM309	135
LM300H	170	LM309KP	99
LM304H	160	LM317H	280
LM305H	140	LM317K	350
$78 \mathrm{HO5} 5 \mathrm{~V} / 5 \mathrm{~A}$	550p	LM323K	500
$78 \mathrm{HG}+5$ to		LM326N	240
$+24 \mathrm{~V} 5 \mathrm{~A}$	599p	LM327N	270
$79 \mathrm{HG}-2.25 \mathrm{~V}$ to		LM723	35
-24V 5A	785p	TBA625B	75

\section*{| SWITCHES | | |
| :--- | :---: | :---: |
| SLIDE 250V 14 TOGGLE 2A 250 | | |
| 1A DPDT | | | 1A DPDT 14 SPST

1A DPDT CJFFF 15 DPDT}

PuSH BUTTO Latching or Momentary 6A SPDT clover DPDT clover

MINIATURE Non Locking Pun Push to make

R

 ROCKER: (white) IOA 250 V SPDROCKER: With neon llghts red when 10A 250V. DPST
ROCKER: (White) IOA 250 V DPDT 85
ROTARY: Make Your ROTARY: Make your own Multiway
Switch. Shatting Assembly accommo Switch. Shatting Assembly accommo
dates up to 6 wafers. Greak before make Wafers Silver contacts pole 12 way: 2 pole $/ 6$ way: 3 pole/
4 way: 4 pole $/ 3$ way: 6 pole $/ 2$ way
Mains DPST Switch to fit Mains DPST Switch to fit
Screen \& Spacits
ROTARY: (Adjuatable Stop Type) 1 pole/2 to 12 way, $2 \mathrm{p} / 2$ to 6
2 to 4 way. 4 pole $/ 2$ to 3 way ROTARY: Mäns 250 V AC, 4 Amp 56 p
DIL SWITCHES: ISPSTI 4 way 70p; 6
way 85p; 8 way $90 p$; 10 way 145p;
ISPDT) 4 way 190p.

DIL SOCKETS (TEXAS)			*13
	Low	Wire	Mon
8 pin	profile		

WATFORD'S Ultimate Monitor IC.

A 4K Monitor Chip specially designed to produce the best from your: Superboard Series 18 II, Enhanced Superboard $\&$ UK 101. As reviewed by Dr. A. A. Berk In Price only $£ 15.95+50$ p P\& P

EPSON MX Series PRINTERS competitive prices

- MX80T 10" Tractor Feed 9×9 matrix, 80 column Speed 80 CPS bidirectional. Centronics interface, Baud MX80FT Has Friction \& Tractor Feed plus all the MX80T's facilities £395 Nxaor 12 Has high resolution MX80FT's facilities £435 MX100 132 Column plus all the facilities of MX80FT2. Value for

Having trouble containing yourself?
Then why not BOX CLEVER with one of our STANDARD or CUSTOMISED BIMENCLOSURES

Instrument Cases Small ABS Desk Consoles Low Profile Keyboard Consoles Easy Access Hinged Lid Consoles Diecast and ABS Multi-Purpose Boxes All Metal or Genuine Wood Panelled Consoles

BIMCASES BIMBOXES BIMCONSOLES

 FOR PROFESSIONAL QUALITY AT REALISTIC PRICES

James Carter Road, Mildenhall, Suffolk. Mildenhall (0638) 716101

Telex: 818758
A MAJORNEW PRODUCT FROM VIDEOTONE
These C90 LH cassettes are manufactured specially for Videotone by a major European manufacturer.
98 Crofton Park Road, London SE4
Please tick the appropriate
box for the quantity required.
5 @ 64p ea. + P\&P 40p. $\mathbf{£ 3 . 6 0}$
$10 @ 59 p$ ea. + P\&P 50p. £6.40
25 @ 53p ea. + P\&P £1. £14.25
1 enclose Cheque/P.O. for Deduct amount from Access/B.card No
VIDEDTONE
Post to Videotone. Crofton Park Road. London SE4.
PE 2 Post Vid H.

Available at this price due to Videotone's direct selling operation. All cassettes are covered by a complete money back guarantee - if not completely satisfied return goods within 21 days for complete refund. All orders will be dealt with by return post.
LOOK OUT FOR NEWS OF THE NEW VIDEOTONE RANGE!

Post Coupon with confidence of prompt delivery by return. or Phone 01-690 8511 using your Access or Barclaycard. Ask for extension No. 32.
\qquad

MUSIC KITS
 ALL WITH PRINTED CIRCUIT BOARDS!

Kimber-Allon Keyboards		Soe Lists	Drum-synthesiser	SET119	50.11	
		Enlarger Timer	SET93	39.22		
128-Note Sequencer	SET76		120.45	Formant Synthesiser	See Lists	342.71
16-Note Sequencer	SET86	84.63	Frequency Doubler	SET98	11.75	
3-Channel Mixer	SET107	21.50	Funny Talker	SET99	16.55	
3-Microphone Mlxer	SET108	12.99	Guitar Effects	SET42	18.92	
6-Channel Mixer	SET90	96.67	Guitar Multiprocessor	SET85	79.15	
Analogue Revert	SET83	45.92	Gultar Overdrive	SET56	21.17	
Audio Effects	SET105	15.12	Guitar Sustain	SET75	11.77	
Chorosynth	SET100	125.04	Headphone Amplifier	SET104	21.15	
Compressor	SET120	28.05	Metronome	SET118	10.58	
Digital Reverb	SET78	75.50	Microphone Pre-amp	SET61	11.32	
Discostrobe	SET57	39.78	Noise Limiter	SET97	15.96	

NEW LIST NOW READY!

SEND S.A.E. FOR FREE COPY

P.E. Minisonic Synth	SET38	181.56	String Ensemble	SET77	214.47
Phaser	SET88	21.08	Switched Treble Boost	SETas	12.51
Phasing \& Vibrato	SET70	36.25	Synthesiser Interface	SET81	9.49
Practice Amplifier	SET106	22.15	Transient Generator	SET63	16.86
Pulse Generator	SET115	24.84	Tremolo	SET116	13.47
Rhythm Generators	SET103	See Lirts	Tuning Fork	SET46	37.04
Ring Modulator	SET87	13.62	Voice Operated Fader	SET30	9.85
Sewar	SET101	31.85	Voice-scrambler	SET117	21.81
Signal Tracer	SET109	17.50	Voltage Cont Filter	SETB5	18.58
Simple Phase Unit	SET25	10.54	Wah-wah	SET58	14.01
Smooth Fuzz	SET91	11.68	Waveform Generator	SET112	23.13
Speech Processor	SET110	12.18	Wind and Rain Unit	SET28	11.39
Split-phase Tremolo	SET 102	29.98			

Sets include PCBs, U.K. P.\&P., 15\% VAT, Res, Caps, S'C.s, Pots, Knobs, SW's. SKTs, Wire, Solder, Box, Photocopy of original tex. Fuller details and more great kits in our FREE catalogue.

Prices correct at press, E. \& O.E., subject to stock
Delivery frequently by return but please allow 14 days.

PHONOSONICS

Dept. PE22, 22 High Street, Sidcup, Kent, DA14 6EH. Telephone: 01-302 6184

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.
You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a selfemployed servicing engineer.
All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.
You will do the following:
Build a modern oscilloscope

- Recognise and handle current electronic components
Read,draw and understand circuit diagrams
- Carry out 40 experiments on basic electronic circuits used in modern cquipment
Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V. $\mathrm{Hi}-\mathrm{Fi}$ and microprocessor/computer equipment.

NewcJob?NewCareer?NewHobby?Getinto Hlectronics Now!

THE PE RANGER 27FM CB PORTABLE

THE RANGER CB rig has been designed to fit the new legal Home Office specification, and starts off as a hand held unit complete with aerial, mic., and rechargeable batteries

zLEGALISATION ${ }^{2}$ SPECIAL OFFER $849.95(\mathrm{KIT})$
 (INC. VAT + £2.95 P.P.)

£97/matched pair
(INC. VAT $+£ 5.90$ P.P.)
This offer price includes rechargeable batteries, mic., aerial, mains lead and 2 channels.
Extra channels $£ 2.25$ each +50 p P.P. + VAT Extra aerials $£ 3.95$ each $+80 p$ P.P. + VAT (Postage free with kit) Tuneable Whip aerial magnetic or permanent car amount (state which)
Permanent $£ 13.95-$ P.P. $£ 1.00+$ V.A.T.
Magnetic $£ 15.95$ - P.P. $£ 2.00$ + V.A.T.

The unit plugs into the mains, 12 V car outlet, or runs on built-in re-chargeable batteries (built-in charger). EXCELLENT range in town to keep in touch with family and friends.

SPEC.
R.F. Power Output $1 / 2-1$ Watt AF (internal speaker) $1 / 2$ Watt Modulation: FM : freq. $27.6 \mathrm{MHz}-28 \mathrm{MHz}$ (CB Band) (excellent speech quality) No. of channels (max): 6 Fully protected against bad aerial connection.

BASE STATION KIT

+ NOW AVA/LABLE $£ 19.50$

12 V (NOMINAL) MAINS ADAPTOR KIT E5.50 plus E 1.50 p \&p
(SAE FOR FURTHER DETAILS)

(RRP £49.95)
Compatible with the FX-501P, FX-502P, FX-601P, FX-602P and FX-702P. This 5×7 dot matrix electric discharge mini printer stores up to 30 characters and prints up to 20 per line, at the fast speed of 2 lines per second. Four AA size batteries will print from $6,000-$ 9,600 lines approximately, depending on type. The rechargeable pack, NP-4M (price $£ 6.90$) will print approximately 13,000 lines. The AC adaptor, $\mathrm{AD}-4150$ (price $£ 5.00$) will also recharge the NP-4M in situ. Dimensions: $43.5 \mathrm{H} \times 157.5 \mathrm{~W} \times 82.5 \mathrm{D}\left(1 \frac{1}{4}^{\prime \prime} \times 6 \frac{1}{\prime \prime}^{\prime \prime} \times 3 \frac{1}{\prime \prime}^{\prime \prime}\right)$ Weight 372 g (13.1 oz).

CASIO FX-702P

PROFESSIONAL COMPUTING SOLUTIONS

To the busy professional, time spent writing computer programs is time wasted. Ordinary programmable calculators are hard to program and suffer from limited memories. Desk-top computers are expensive, seldom feature accurate math functions, and are still hard to program.
Now there is a revolutionary solution, the product of more than 2,000 hours development by MICROL one of Britain's most progressive Computer Companies. Its name is PROCOS.
Used with Casio's advanced FX-702P computer/calculator, PROCOS will enable you to create powerful, reliable programs in just minutes - even if you have never programmed a computer before
PROCOS uses the FX-702P to create the electronic equivalent of pen and paper, giving you simple, one-touch commands to write information wherever you wish, and to move rom one electronic page to another.
Using PROCOS, computer programs that meet your exact needs can be created in as little as $10 \%-20 \%$ of the time taken by conventional programming, saving you many hours of valuable time.
And PROCOS is powerful. With full 10 -digit accuracy and 55 math and advanced statistics functions, your programs can use as many as 80 variables (data memories) upplied in two versions, PROCOS A is ideal for complex, multi variable calculations, while PROCOS B provides many of the features of 'Visicalc-type' modelingg systems, helping you answer "what if" questions-and analyse trends.
plied together on a ready-to-run cassette, with a comprehensive User Manual. Available exclusively from TEMPUS, price $\mathbf{2} 24.95$ (but see below for special system prices).

World's Most Powerful BASIC Pocket Computer
FX-702P
RRP $£ 134.95$
ONLY £119.95

 넌

Plus FREE MiCROL Professional Programming Pack* (RRP 89.95). Flattens the Sharp PC1211
Alpha/numeric dot matrix scrolling LCD. Variable input from 1680 steps, 26 memories, to 80 steps, 226 memories, all retained when switched off. Up to 10 programs. Subroutines; 10 levels, FOR:NEXT looping; 8 levels. Debugging and Editing. 55 built-in functions, including Regression and Correlation, all usable in programs. Program/Data storage on cassette via optional FA-2 adaptor ($£ 19.95$). Auto Power Off. $17 \times 165 \times 82 \mathrm{~mm}$. 176 g .

PACKAGE DEALS - SAVE UP TO £50 ON RRP

PACK A: FX-702P (RRP £134.95) + MiCROL Professional Programming Pack (£9.95) B. FX-702P + FA-2 rem/control cassette interface $(£ 24.95)+$ PPP PACK B:
PROCOS PACK C: FX-702P + FP-10 Mini Printer + FA-2 + PPP + PROCOS £194.50 CAS1O FX-602P 512 step Programmable with FREE MiCROL PPP* ($\mathbf{(9 . 9 5)} \mathbf{5 7 4 . 9 5}$

CASIO'S INCREDIBLE BOXING GAME BG-15 Calculating Alarm Clock ONLY £16.95

Fight up to 100 challengers of 10 different weights and increasing speed and technique. All the realism of the ring with eight 30 -second rounds per bout, with points scoring. You must win every bout on points or by KO to continue the game - scores are incremental. Raise or win every bout on points or by KO to continue the game - scores are incremental. R
lower your guard in defence and attack, sway back to avoid a blow, or forward for lower your guard in defence and attack, sway back to avoid a blow, or forward for
maximum power. Throw stamina sapping combination punches (with digital display of maximum power. Thing rating), high scoring counterpunches, knock-down and knock-out blows and lucky stamina rating), high scoring counterpunches, knock-down and knock-out blows and lucky
punches, You can even be saved by the bell! Digital display of hours, minutes and seconds. punches. You can even be saved by the bell! Digital display of hours, minutes and seconds oxide batteries last approximately 18 months. $7.3 \times 68.5 \times 113.7 \mathrm{~mm}\left(5 / 16 \times 2 \mathrm{f} \times 4 f^{\prime \prime}\right)$. oxide batteries last approx
$66 \mathrm{~g}(2.3 \mathrm{oz})$. With wallet.

NEW SPACE INTERCEPTOR WATCH GM-10 Alarm Chronograph
 (RRP £22.95) £19.95

LCD readout of hours, minutes and seconds, with continuous display of Space Interceptor graphics. Automatic day, date and month calendar function. Daily alarm mode, with hourly time signal option. $1 / 100$ second stopwatch measuring net, lap and 1st and 2nd place times to I hour.

Interceptor Game

The UFO beams, travelling from left to right, have to be Intercepted by changing the altitude of your defences and firing along the beam. \AA number will light up in the zone of the hit and when 4 zones are lit up a high bonus game starts. Shoot down 16 UFOs without losing 3 missiles and the next, speeded up, round starts. Sound effects are incorporated.
One lithium battery lasts approx 15 months. Black resin case/strap. Metal bezel. Mineral glass face.

World's Most Versatile Alarm Chronograph Watch

AX-210

10 alternative displays; over 60 functions. LCD ANALOG display of time, plus: DIGITAL dis play of: Time (12 or 24 hour); Calendar; Full month calendar (this month and next month); Dual time (12 or 24 hour); Alarm time;
Countdown alarm timer with memory function; Professional $1 / 100$ second stopwatch with laps, etc. Hourly time signal. Alarm - electronic buzzer or 3 selectable melodies. Rapid forward/backward setting. $9.4 \times 35.4 \times 36 \mathrm{~mm}$.

(RRP £34.95) ONLY £29.95

CASIO'S NEW JOGGING WATCH

J-100 PACE RUNNER

Sets the pace for 1982

Displays hours, minutes and seconds (12 or 24 hours system), day and date. Auto calendar; calculator; professional $1 / 100$ second stopwatch measuring net, laps and 1st and 2nd place times; Pacer mode. Can be used as a metronome to pace your running, or any other event.
input data: Length of stride. Pacer signals, from 394 pips per minute to 63 pips per minute. Output data: Elapsed time, up to 24 hours. Distance covered, number of strides, and speed.
(RRP £22.95)
ONLY £19.95

SHORT FORM CATALOGUE of latest calculators, key-

 boards and watches available on request. 14 p stamp appreciated.
DELIVERY NORMALLY BY RETURN OF POST.

PRICE includes VAT and P\&P. Send your company order, cheque, PO or phone your Access or Barclaycard.

TEMPUS

LEADING CASIO SPECIALISTS Dept. PE,
38 Burleigh Street, Cambridge CBI IDG
Telephone: 0223312866

Sinclair 2X81 Personal ComF the heart of a system that grows with you.

1980 saw a genuine breakthrough the Sinclair ZX80, world's first complete personal computer for under £100. Not surprisingly, over. 50,000 were sold.

In March 1981, the Sinclair lead increased dramatically. For just $£ 69.95$ the Sinclair ZX81 offers even more advanced facilities at an even lower price. Initially, even we were surprised by the demand - over 50,000 in the first 3 months!

Today, the Sinclair ZX81 is the heart of a computer system. You can add 16 -times more memory with the ZXRAM pack. The ZX Printer offers an unbeatable combination of performance and price. And the $Z X$ Software library is growing every day.

Lower price: higher capability

With the 2×81, it's still very simple to teach yourself computing, but the ZX81 packs even greater working capability than the ZX80.

It uses the same micro-processor, but incorporates a new, more powerful 8K BASIC ROM - the 'trained intelligence' of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays

And the ZX81 incorporates other o peration refinements - the facility to load and save named programs on cassette, for example, and to drive the new ZXPrinter.

Every $\mathrm{Z} \times 81$ comes with a comprehensive, specially-written manual - a complete course in BASIC programming, from first principles to complex programs.

Higher specification, lower price how's it done?
Quite simply, by design. The ZX80 reduced the chips in a working computer from 40 or so, to 21 . The ZX81 reduces the 21 to 4 !

The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from the ZX 80 !

New, improved specification

 - Z80A micro-processor - new faster version of the famous $Z 80$ chip, widely recognised as the best ever made.- Unique 'one-touch' key word entry: the ZX81 eliminates a great deal of tiresome typing. Key words (RUN, LIST, PRINT, etc.) have their own single-key entry.
- Unique syntax-check and report codes identify programming errors immediately.
- Full range of mathematical and scientific functions accurate to eight decimal places.
- Graph-drawing and animateddisplay facilities
- Multi-dimensional string and numerical arrays.
- Up to 26 FOR/NEXT loops
- Randomise function - useful for games as well as serious applications. - Cassette LOAD and SAVE with named programs.
- 1K-byte RAM expandable to 16K bytes with Sinclair RAM pack.
- Able to drive the new Sinclair printer.
- Advanced 4-chip design: microprocessor, ROM, RAM, plus master chip - unique, custom-built chip replacing 18 ZX80 chips.

Built: £69.95

Kit or built - it's up to you!

 You'll be surprised how easy the ZX81 kit is to build: just four chips to assemble (plus, of course the other discrete components) - a few hours' work with a fine-tipped soldering iron. And you may already have a suitable mains adaptor - 600 mA at 9 VDC nominal unregulated (supplied with built version).Kit and built versions come complete with all leads to connect to your TV (colour or black and white) and cassette recorder.

16K-byte RAM pack for massive add-on memory.

Designed as a complete module to fit your Sinclair ZX80 or ZX81, the RAM pack simply plugs into the existing expansion port at the rear of the computer to multiply your data/program storage by 16 !

Use it for long and complex programs or as a personal database. Yet it costs as little as half the price of competitive additional memory.

With the RAM pack, you can also run some of the more sophisticated ZX Software - the Business \& Household management systems for example.

6 Kings Parade, Cambridge, Cambs., CB2 1SN. Tel: (0276) 66104 \& 21282.

Available nowthe $\mathbf{Z X}$ Printer for only £49..

Designed exclusively for use with the ZX81 (and ZX80 with 8K BASIC ROM), the printer offers full alphanumerics and highly sophisticated graphics.

A special feature is COPY, which prints out exactly what is on the whole TV screen without the need for further intructions.

At last you can have a hard copy of your program listings-particularly
useful when writing or editing programs.

And of course you can print out your results for permanent records or sending to a friend.

Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZXPrinter connects to the rear of your computer - using a stackable connector so you can plug in a RAM pack as well. A roll of paper (65 ft long $x 4$ in wide) is supplied, along with full instructions.

How to order your ZX81

BY PHONE - Access, Barclaycard or Trustcard holders can call 01-200 0200 for personal attention 24 hours a day, every day. BY FREEPOST - use the no-stampneeded coupon below. You can pay
by cheque, postal order, Access, Barclaycard or Trustcard. EITHER WAY - please allow up to 28 days for delivery. And there's a 14-day money-back option. We want you to be satisfied beyond doubt and we have no doubt that you will be.

To: Sinclair Research Ltd, FREEPOST , Camberley, Surrey, GU15 38R.				Order
Oty	Item	Code	Item price \&	
	Sinclair ZX81 Personal Computer kit(s). Price includes ZX81 BASIC manual, excludes mains adaptor.	12	49.95	
	Ready-assembled Sinclair ZX81 Personal Computer(s) Price includes ZX81 BASIC manual and mains adaptor.	11	69.95	
	Mains Adaptor(s) (600 mA at 9 V DC nominal unregulated).	10	8.95	
	16K-BYTE RAM pack.	18	49.95	
	Sinclair 2X Printer.	27	49.95	
	8K BASIC ROM to fit ZX80.	17	19.95	
	Post and Packing.			2.95

\square Please tick if you require a VAT receipt
TOTAL £
*I enclose a cheque/postal order payable to Sinclair Research Ltd, for £.
*Please charge to my Access/Barclaycard/Trustcard account no.
*Please delete/cor.plete as applicable.
Name: Mr/Mrs/Miss

FREEPOST - no stamp needed. Offer applies to UK only. PRE 02

DIGISOUND 80 MODULAR SYNTHESISER

A synthesiser for the professional and amateur keyboard player, for education and for the beginner. The DIGISOUND 80 suits all levels of keyboard 'skill. If you want to know how, then read on.

BEGINNERS: A small synthesiser may be assembled at a price comparable with pre-set types. The DIGISOUND 80 has unique facilities and you can learn about electronic music synthesis with the aid of our User's Manual. When you are ready to go beyond the 'minisynth' stage then simply add more modules to suit your requirements and your purse.
EDUCATION: The modular concept is ideal for teaching both music and the physics of sounds. The microprocessor add-on converts it to a project of even wider application.
KEYBOARD PLAYERS: The use of the ALPHADAC 16 microprocessor controller allows up to 16 voices in the polyphonic mode as well as providing many other real time keyboard control routines. NEW recording/composing/sequencing programs provide you with the opportunity to create exciting music - imagine playing back a composition with each voice set to a different instrument!
KEYBOARD SKILL: The ALPHADAC programs have facilities for composing and recording in both real time and not real time. The latter allows entry of notes at any speed and subsequent playback at the required tempo. The not real time mode is essential to synthesists of limited skill and a boon to the experienced player.

THE DIGISOUND 80 - IN ANY CONFIGURATION - OFFERS YOU THE BEST PRICE/PERFORMANCE CHARACTERISTICS.

Kits supplied ex stock and ready built modules, or complete synthesisers, are available to order. NEW IC's from Curtis Electromusic Specialties; NEW modules; NEW users manual plus easy to follow construction notes.
Write or telephone for more information from the ELECTRONIC MUSIC SPECIALISTS:-

BHPAK

CB users. Home base POWER SUPPLY 3A Rugged Powertul British Made FEATURES Sate 3 Amp oderalion * 3.8 BV Fulty regulded Electronic shor circuit \& overload profecied \ddagger latest technology I.C. desion - Arractive compaci case * Compelitively priced SPECIFICATIONS Mou voltage - 240 Vac. 50 Hz - Output voliage - 13.8 V d.c. $\pm 1 \%$ Maximum with mains inout varation $\pm 10 \%$ load 0-2.5A \# Outpur mains tuill loac \star Dimensions $-17510 \times 100 \mathrm{w} \times 75 \mathrm{n}(\mathrm{mm})$ OUR PRICE ONly $£ 15.00$ OROER nO.3GA CB Rigs and Accessories in stock. Send S. A.E.for full listings.

8 Bit MICROPROCESSOR National INS8080AN 40 Pin DIL N. Channet Silicon GATE MOS TECHNOLOGY AS used in. Nationals N8080 Micro Computer Family instruction Cycie time 2 uS Supplied with functiona Block Diagram BRAND NEW
NOT seconds or reclaims
100% perfect ORDER NO SXB08 Normal Sell price $\mathrm{E}_{\mathrm{L}} .50$ each Our BI-pak Special Price E?. 00 SO HURRY - LIMITED STOCKS

40 Pin IC Socket to til SX8080 Otter price
ORDER NO. 1609 30p

TECASBOTY

The Electronic Components and Semiconductor Bargain of the Year. A host of Electronic components including potentiometers - rolary and slider, presets - horizontal and vertical. Resistors ol mixed values 2"0hms to $2 \mathrm{M} 2-1 / 8$ to 2 Wath. A comprehensive range of capacitors including electrolytic and, polyester types plus disc ceramics etcelera. Audio plugs and sockets of various' types plus switches, fuses, heatsinks, wire, nuts, Dolts, gromets, cable clips and tyes, knobs and P.C. Board. Then add to that 100 Semiconductors to include transistors, diodes. SCR's opto's, all of which are current everycay usatle devices. In all a Fantastic Parcel. No rubbish all identifiable and valued in current catalogues at well over £25.00. Our Fight Against Inflation Price -- Beal the Budget Down with Depressiof

JUST £6.50.

Fantastic Audio Bargains

15 watts per channel sereo amplifier kit Consisting of - ORDER NO. STA15 $2 \times$ AL60 amplliliers
$1 \times$ PA100 pre-amplifier
$1 \times$ SPMBO Dower supoly
1×2034 Iransiomer
$2 \times$ coupling capacitors for 8 ohms 470 mld 50 v and necessary wiring diagrams.

Save over $£ 10$ on this kit $£ 26.00$
5 waft (RMS) Audio Amp
High Quality audio amplitier Module. Ideal for use record players, tape recorders, stereo amps and cassette playe's. etc. Full data and back-up diagrams with each module.
Specilication:

- Power Oulput 5 watts RMS Load Impedance \&-16 ohms - Frequency response 50 Hz to $25 \mathrm{KHz}-3 \mathrm{dbb}$ Sensitivity 70 mv for full output © Input Impedance 50 k ohms - Size $85 \times 64 \times 30 \mathrm{~mm}$ - Iotal Har monic distortion less sthan-5\% Bl-pak'S give away price

You could not Build one for this price.

COMPLETE AUDIO CHASSIS
STEREO 30 Conpiefe 7 watl pea charnel Stereo amm boord - inctudes amps, preamp. power supply, from panel, knobs and Trunstorner
Almost $1 / 2$ PRICE

£12.50

ORDER NO. ST3O

MONO PRE-AMPLIFIERS MM100 suitable for disco mixes. MmIDOG sultade for guita preamp mixar.
The MMIOO and MMIOOG mono pre:mplifiers are compathle with the ALGO, A180 ALI20 and AL250 power amplifiers and thei associneed power supphes. MM1 100 Supply wortage $40-65 \mathrm{w}$ inputs. Tape Mag P.U. Microphone Max oufpur 500 mm guer mmiocc Suppl voltage 40-65v inpuns 2 Guitarss Mictrophones Max outpur 500 mv
 512.43 £10

1 Amp SILICON RECTIFIERS Glass Tyoe simlar IN4000 SERIES IN4001-N4004 50 - 500 v - uncoded - you select lor VITS ALL derlect devices - NO duds MII 50 , 50 tor $£ 1.00$ - worth double ORDER NO. SX76
Silicon General Purpose NPN Transilors T0-18 Case Lock fit leads - cooted CV7644 Similar lo BC147 - BC107- TT89 ALL NEWI VCE 70 I IC500mA He $75-25050$ off 100 off 500 off 1000 of PAICE: £2.00 £3.80 $17.50 £ 30.00$ silicon General Purpose PNP Transisiors T0-5 Case Lock fit leads coreed CV9507 similas 2N2905A to BF $\times 30$ VC 60 IC 600 mA Min He 50 ALL NEW

50 oh 100 oth 500 of 1000 ot
PAICE $£ 2.50 \quad £ 4.00 \quad £ 19.00 £ 35.00$

Silicon NPN‘L'TypeTransitors TO-92 Plastic centre collector Like 8C 182 L - 183 L - 184 L VCBO 45 VCEO 30 IC200mA Hie 100-400 ALL perfect devices - uncoded ORDER AS SX183 50 off 100 off 500 off 1000 off $\begin{array}{llll} \\ £ 1.50 & £ .50 \quad £ 10.00 \quad £ 17.00\end{array}$

PNP SILICON TRANSISTORS
Similar 2TX500- $\mathbf{~ T K 2 1 4 ~ - ~ E - L i n e ~}$
VCEO 40 VCBO 35 Ic 300 mA Hie $50-400$ Brand New - Uncoded - Petect Devices
500 off 100 of 500 oH 10000

	$£ 1.00$	$£ 3.50$	$£ 15.00$

Order as ITXPNP

Use rour credit card. Aing us on Ware 3182 now and gel your order even lastel. Goods nowally sent 2nd Cless Mall
Remember you must add Vat at 15% to your order Tolul. Postage add 50 p per Fotal arder

BFFAK BARGANS

'IIRAESISTABLE RESISTOR BARGAINS"

at Mo. Ots: Description

 SXIO 400 Mixed "All Type" Resistors Price Pieformed Preformed $\%$ - K watt Carbon Resistors4. watt Carbon Resistors 4. watt Carbon Resistors $1 / 2$ watt Resistors 22 ohm. 2m2 Mixed
1 and 2 watt Resistors 22 hm. 2 m 2 Mixed
Paks $\mathrm{S} \times 12 \cdot 15$ contain a range of Carbon Film Resist of assorted values from 22 ohms to 2.2 meg Save pounds on these resistor paks and have a full range to over your projects.
-Quantities approximate, count by weight
TRIACS - PLASTIC
 40p $£ 1.75$ [17.50 600 [5.75 [27.50

Everyday Electronics

Teach-in 81
Kit 1 E15.65 (Kits 182 combined

5440250 Silicon Diodes-Switching lite N4 148 DO. 35. All good-uncoded. Worth double our price. 45475 mA . $\quad 1.25$
SXa] 250 Silicon Diodes-Genetal Purpose, like 0a200/202. Bax13/16. Uncoded. 30-100 200 mA DO. 7
\qquad \longrightarrow 10 SA SCR's $7064.3 \times 50 \mathrm{r}, 3 \times 100 \mathrm{y}, 2 \mathrm{x}$ $200 \mathrm{r} 2 \times 400 \mathrm{~V}$. Suee ralue less than ny price. SX45 10 5A SCR's T066. 2×50 v. $2 \times 100 \mathrm{v}$. $4 \times$

BARGAINS
20 small. 125 Red LED's C! 5×42
5043
50
50 5×40 Assorted lener dined voltages. $250 \mathrm{mw}-2$ waim.
aill coded New.
SX4 4 Blach instured with pointer
Anobs-wiscew fit size 29 a Standaro

20 mm .

SN49 20 Assorted Slider
12 Meons and fitament Lamps. Low
sillo 12 neons and mains - various types roltare and mains - vanel mounting
and colours - some pand

AUDIO PLUGS, SOCKETS

 AND ACCESSOAIES25 pieces on Audro Mugs. Sockers and Connectors 2 to include DIN $180^{\circ} .240^{\circ}$. Inline 3.6 P in Speakers, Phono, Jack. Stereo and Mono, etc, etc. Valved at well over $\mathbf{E 3}$ normal. Order No. SX25. Our Price $£ 1.50$ per path Guaranteed to save you money.

SH26 3 Prs. of 6 pin 240° DIN Plugs and Chassis Sockets.
$51271 \times$ Right Angle Stereo lach Plug 6.3 mm plus matching metal chassis mounting socket Sx 284 Phono plugs and 2 dual phono connectors SX29 $1 \times 2.5 \mathrm{~mm}$ Plug to 3.5 mm Socket adaptor. $\$ 1301 \times 3.5 \mathrm{~mm}$ Plug to 2.5 mm Sockel adaptor $\$ \times 311 \times 3.5 \mathrm{~mm}$ Plug to Phono Socket adaptor.

SEMICONDUCTORS FROM AROUND THE WORLD

A Collection of Transistors. Diodes. Rectifiers. Bridges. SCR's.
Triacs. IC's both Logic and Linear plus Opto's all of which are current everyday usable devices.

Guaranteed Value over $£ 10$ at Noumal Retail Price
Guaranteed Value over E10 at Nor mal Retail Price
only
only

How
20

BI.PAK'S OPTO BARGAIN OF THE YEARI

Valued at over $£ 10$-Normal Retal-we offer you a pack of 25 Dpto devices to include LED's Large and Small in Red. Green. Yellow and
Clear. 7 Segment Displays both Common Cathode and Common Anood PLUS bubble type displars-litike DI. 33. Photo Tiansistors-similar to OCP71 Photo Detectors-like MEL11-12. This whole pack of 25

25

AND we guarantee your money back if you are not compietely satistied. Full data etc included.
Order No. 8×57.

MORE BARGAINSI
SK51 60 metres PVC covered Hooh up mire single and strandec. Mooh up
colours
5158
${ }^{25}$ Assorted ML Gates 7400 Series 7401.7460 Til

$5 \times 60 \quad 20$

5×61 Potentiometerider
5662 Rotary Dual Potentiometers.

srys etc. 10 Red Pre. Sets HorNert
${ }_{3} 10$ Reed Switches - plass type

STILL MORE!

 SLIDER POTENTIOMETERSPlastic 40 mm Viavel Mono S4635 $\times 470$ ohms Lin $5 \times 675 \times 47 \mathrm{LL} / \mathrm{n}$

 $5 \times 665 \times 222 \mathrm{klog}$ All at 50 pel pact. 171 50 BC 108 "Fallouts", Manulactuluers out of
 sil2 A muxed bundle of conpe and double sided. A glass and papel. Singie and double sided. rantastic bargain. sxif Genuine muLLARD oc71 Ger

5 watt (RMs) Audlo Amp

High Quality audio amplifier: Module. Ideal for use record players, tape feccorders, stereo amps and cassette playets, etc. Full data and bach-up diagrams wth each module.

Specilication:

- Power Outout 5 watis RMS Load Impedance 8-16 ohms Friequency iesponse 50 Hz to 25 KHz - 3 db Sensitivity 70 my for full output \bullet Inpul Impedance 50 ohms \bullet Size $85 \times 64 \times 30 \mathrm{~mm} \oplus$ Total Hal monic
distorton less than. 5%
22.25

You could not build one

C BI-PAK'S COMPLETELY NEW CATALOGUE

Completely re designed. Fuly of the type of components you require, olus some
very interesting ones you will soon be using and of course, the largest range of semiconductors for the Amateur and Prolessional you could hope to find.
There are no wasted pages of useless information so otten included in Catalogues published nowadays Just solid facts i.e. price, description and individual features of what we have avalable But remember, Bi. Pak's policy has always been to sell quality components al competitive prices and ThAT WE STIMDO.
BI-PAK S COMPLETELY MEW CATALOGUE is now avalable to you. You will be
amazed how much you can save when you shop for Electronic Components with
a Bi. Pall Catalogue. Have one by you all the time-it pars to buy BIPPAK.
To receive your copy send $75 \boldsymbol{P}$ plus $25 p p \& p$

a

5321 x Standard Jack Plug to Phono Sockel adapior.
sx33 I I Toggle Switch SPST Minature. 125y 10 A 5334 IxToggle Swith SPOT Miniature. $125 \times 10 \mathrm{~A}$ S $351 \times$ Rocher Swich SPDT Minature. 240 v 5 5×36 I x Right Angle Mono jack Plug
3720 pieces. 1.284 mm plugs and sockets (Вапапа). Matching coiours and sues
x50 10 Assorted Switches Ioggle. Slide. Rocker Push button.
25 mixed cable clips and ties raund grommets \& plastic fect. Awars sought by the project builder

$5 \int \square$ ® ت ت K

Get a $£$! FREE PACK: Orders over $£ 10$ exciuding Vat. Choose ' $£ 1$ Pack free (0 : $2 \times 50 \mathrm{p}$) add it to your order and save even more money
This otter only apples to this advertisement
alislaction or your money back has always been BI-PAK's GUARANIEE and it still is All these Sale tems are in stock in quanity and we will despatch the same day as your
order is received.

IC SOCKETS

The lowest price ever. Pin. 10 off 50 off 100 of

75D $£ 3.00 \quad$ §5
$30 \mathrm{D} \quad £ 3.25 \quad £ 5.50$
80D $\quad[3.25 \quad £ 5.50$
VOLTAGE REGULATORS
$0220 \begin{array}{lll} & 7805-50 p & 7905-55 p\end{array}$ $7812-50 p \quad 7912-55 p$ state $7815-50 p \quad 1915-55 p$ voltage 7824-500 7924-55p
Other types (M34OK -5 volt -18 volt -24 volt 103 - 40p. UA723 - 14 pin DIL - 40p

6 Black Hearsink will tit To. 3 and 10.220. Ready drilled. Halt puce value. Ready drilied. Haif price
5x53 I Power finned Heatsink, This heatsink gives the greatest possible heatidissipation in the smallest space owing to its unique staggered in design, pre drilled.
10.3 Size 45 mm squarex 20 mm high. 40 p
$5 \times 54 \quad 10.66 \mathrm{size} .35 \mathrm{~mm} \times 30 \mathrm{~mm} \times 12 \mathrm{~mm} . \quad 35 \mathrm{p}$
sx55 1 Heat Efticiency Power Finned Heatsink $90 \mathrm{~mm} \times 80 \mathrm{~mm} \times 35 \mathrm{~mm}$ High. Drilled 10 tahe up to x
10.3 devices E1.50 each

SX38. 100 Silicon NPN Transistors-all perlect Coded mixed tyoes with dala and equt. sheet No rejects. Real value. \quad © 2.50
5x39 100 Silicon PNP Transistors-all perfect. Coded muxed types with data and equt sheet. No rejects. Fantastic value. $\quad \mathbf{2} .50$

2M3055 The best known Power Transistors in the Worid - 2N3055 NPN 115w
Our 81-Pak special Ofier Price:
$\begin{array}{lll}10 \text { off } \\ 53.50 & 516.00 & \\ 53000000\end{array}$

80312 COMPLIMENTARY PNP POWE TRANSISTORS: TO 2N3055. Equivalent M12955 - BD312 - 103 SPECTA P AICE EO. 70 each

Use pour creatt eard. Aing us on Ware 3182 MOw an get your ader even faster Goods nor mally sent 2nd Clas Mad
Wemember you must add VaT al 15° o to your ordet
Tolal. Postage ada 50 p pel fotrlade

MICROCOMPUTER COMPONENTS AND SYSTEMS LOWEST PRICES

 FASTEST DELIVERY

 FASTEST DELIVERY}

NEC 12" MONITOR

- GREEN DISPLAY
- BUILT IN AMPLIFIER AND SPEAKER
$\star \mathbf{\Sigma 1 4 9 . 9 5}$ each excluding carnage ($(10.00$) and VAT. (15%)
- EX-STOCK

The NEC JB1201M is a 12^{n} Video Monitor optimised for use as a computer video display terminal (unlike most CCTV monitors available). The green phosphor CRT display greatly reduces eyestrain. The built in audio amplifier and speaker make it specially surtable for personal computers.

EPROM PROGRAMMERS AND ERASER

ep4000 Emulatng programmer

- COPY/PROGRAMME/EMULATE 2704/2708

2716/2508/2516/2532/2732 EPROMS - $4 K \times 8$ STATIC RAM

* VIDEO O/P AND 8 DIGIT LED DISPLAY \star POWERFUL EDITING FACILITIES
* COMPREHENSIVE I/O AS STD (RS232, TIL 20 mA PARALLEL DMA)
$\star \mathbf{\Sigma 5 4 5 . 0 0}$ excluding carriage ($\mathbf{\$ 1 0 . 0 0)}$) and V.AT. (15%)
- EX-STOCK*

P4000 PRODUCTION PROGRAMMER

* PROGRAMME UP TO 8 EPROMS

SIMULTANEOUSLY

- COVERS SAME EPROMS AS EP4000
- INDEPENDANT BLANK CHECKVERIFY PROGRAM MODES
- SIMPLE TO USE
- $£ 545.00$ excluding carriage ($£ 10.00$) and V.AT. (15\%)
- EX-STOCK*

UVI41 EPROM ERASER

- 14 EPROM CAPACITY
- SAFETY INTERLOCKED
- ELECTRONIC TIMER
\star £78.00 excluding Carriage ($£ 5.00$) and VAT. (15\%)
- EX-STOCK*

KEYBOARD AND ENCLOSURE

CASE Attractively styled personal computer enclosure constructed of structured foam top and steel base (similar to the top selling Apple). Finished in charcoal and black
$\mathbf{\$ 4 9 . 9 5}$ excluding carriage ($\mathbf{£ 1 0 . 0 0}$) and V.AT. (15%)

KEYBOARO High quality electromechanical ASCII Encoded keyboard which can be fitted in above case or used separately. Full upper and lower case provided
$\mathbf{\$ 4 9 . 9 5}$ excluding carriage ($£ 2.00$) and V.AT. (15\%).

TRANSFORMER Mains transformer suitable for +5 V at 2.5 A and $\pm 12 \mathrm{~V}$ at 1 A . Mounts on special lugs inside enclosure.
£10.95 excluding carriage ($£ 1.00$) \& VAT. (15%)
HEATSINK Heatsink for T03 Regulators which mounts inside rear of enclose.
£2.50 excluding V.AT. (15\%)
SPECIAL PRICE FOR CASE, KEYBOARL, TRANSFORMER \& HEATSINK IF PURCHASED
TOGETHER:
TOGETHER:
£ 99.95 excluding carriage ($\mathbf{(1 5 . 0 0)}$ \& V.AT. (15%)

5.00) \& V.AT. (15\%)

OFFICIAL ORDERS WELCOME

VISA

Dovice MEMORIES

 2114L-200ns 2114 L-300ns 1.55 $\begin{array}{lr}2708450 \mathrm{~ns} & 1+1.75 \\ 2716450 \mathrm{~ns} & 1+2.88 \\ 27\end{array}$
276450 ns

 2716350 ns2532450 ns 2732450 ns 2732350 ns
4116200 n 4116150 ns
 Price
0.49 0.49
0.49

0.49 | 0.49 |
| :--- |
| 0.49 |
| 0.46 |
| 0.39 |
| 0.38 |
| 0.59 |
| 0.85 |
| 0.54 |
| 0.89 |
| 0.89 |
| 0.79 |
| 0.79 |
| 0.65 |
| 0.89 |
| 0.83 |
| 0.63 |
| 0.63 |
| 0.40 |
| 0.39 |
| 0.44 |
| 0.38 |
| 0.79 |
| 1.95 |
| 0.23 |
| 0.75 |
| 0.39 |
| 0.44 |
| 0.54 |
| 0.45 |
| 0.34 |
| 0.36 |
| 0.34 |
| 0.49 |
| 0.74 |
| 0.74 |
| 0.47 |
| 0.89 |
| 0.68 |
| 0.64 |
| 0.28 |
| 0.54 |
| 0.59 |

ZN425E-8	3.45
ZN426E-8	3.00
ZN427E-8	5.99
ZN428E-8	4.75
ZN429E-8	2.10
ZN432C-10	28.09
ZN433 $-10-10$	2.59
ZN440	56.63
ZN4 32E-10	14.75
ZN447	9.14
ZN448	6.85
ZN449	3.20

 SUPPORT CHIPS SUPPORT CMIPS
AY-3-1015 AY-3-1270
AY-38910
AY-5-1013 AY-5-1013
AY-5-3600
AY-5.2376

MC3
MC3
MC3
M
MC3480
MC3487
MC4441 MC14411 MC14A12

RO-3-2513L RO-3-2513U | 3.25 |
| :--- |
| 7.95 |
| 6.95 |
| 3.45 |
| 7.95 |
| 6.95 |
| 4.50 |
| 0.59 |
| 0.59 |
| 2.95 |
| 4.25 |
| 7.95 |
| 2.05 |
| 8.94 |
| 7.99 |
| 7.25 |
| 5.98 |
| 0.8 |

OVM CHIPS

 ZN450eZN450E DVM KIT
25.61

MEW UNEARS LM301AN
LM308N LM308N LM31 N LM319N LM324N
LM348N

Dentes	Price
LM555CN	0.16
LM556CN	0.48
LM725CN	3.20
LM741CN	0.14
LM747CN	0.70
LM748CN	0.34
REGULATORS	
7805	0.39
7812	0.39
7815	0.39
78L05	0.29
78L12	0.28
78115	0.29
7905	0.55
7912	0.55
7915	0.55
79L05	0.59
79112	0.59
791.15	0.59
LM309K	1.30
LM317K	3.20
LM323K	4.95
LM338K	4.75
280 FAMILY	
280 CPU	3.40
280A CPJ	3.99
280 CTC	2.99
280A CTC	3.49
280 DART	10.00
Z80A DART	12.00
780 DMA	8.95
Z80A DMA	11.95
280 P10	3.48
z80A Pio	3.75
$280 \mathrm{S10} 0$	10.99
Z80A S10-0	11.99
280 S10-1	10.99
280A SIO-1	11.99
280 SIO-2	10.99

SERIES
4000
4001
4002
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4031
4033
4034
4035
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049 CMOS 4000

\qquad P

PRICES DOWN
 NOW MIDWICH'S PRICES ARE EVEN LOWER

Price
1+0.83
$25+0.89$
1.55
ATOM)
$1+1.75$
$25+1.88$
$1+2.49$
$25+2.25$
6.95
1+4.50
$25+4.25$
$1+3.98$.
$25+3.80$
7.50
$1+0.74$
$25+0.70$
$100+0.87$
$1+0.93$
$25+0.89$
$1+3.90$
$25+3.45$
8.00
12.50
7.95
9.50
9.95
OLIERS
9.50
5.94
62.90
82.50
ATA AND
NS 2.00
0.90
0.90
0.90
0.90
129
1.40
1.35
1.35
1.45
Eaters
3.45
3.00
5.99
4.75
2.10
28.09
2.59
56.63
14.75
9.14
8.85
3.20

FOR SERvICE

ALL EX-STDCK ORDERS RECENED UP
TO 4.00 PM OESPATCHED SAMEDAY TO 4.00 PM OESPATCHED SAME DAY FOR QUALTTY TOP QUALITY BRANDED PRODUCTS PLUS OUR 12 MONTH NO-OUIBBLE PLUS GUARANTEE
fOR PRICE

> LOWEST PUBLISHED PRICES IN THE INDUSTRY

OIL SOCKETS
LOW PROFILE LOW PROFILE TM 8 pmi 0.07
0.09
0.09
0.13
0.14
0.17
0.18
0.25
0.20

$$
\begin{array}{ll}
\\
\hline \text { Z80A S10-2 } & 11.99
\end{array}
$$

$$
\begin{array}{ll}
\text { Z80A S10-2 } & 11 . \\
\text { MK } 3886 & 11 . \\
\text { MK } 3886-4 & 14 .
\end{array}
$$

\square

LEASE SEND S.AE (2OP) FOR OUR NEW 1982 CATALOGUE. FREE REPLIED PAID ENVELOPE WITH EVERY ORDER. ALL PRICES EXCLUDEP \& P ON ORDERS UNDER $£ 10(50 p)$ AND V.AT. (15%). ALL ORDERS DESPATCHED ON DAY OF RECEIPT WITH FULL REFUND FOR OUT OF STOCK ITEMS IF REQUESTED.

KITS, GOMPONENTS MCBios a paitis

DISCO LIGHTING KITS DL1000K
 This value-for-money kit sequence, speed of sequence and frequency of direction change, being variable by Incorporates a master dimming control. Only £14.60 OLZ1000K
 A lower cost version of the above, featuring undirectional channel sequence with speed variable by means of a pre-set pot. Outputs switched only at mains zero crossing points to reduce radio interference to a minimum Optional opto input DLA1 Optional opto input DLA1 \ldots..............60p Allowing audio ("beat")-light response.

DVM/ULTRA SENSITIVE THERMOMETER KIT
Thws new design Is based on
the ICL7126 (a lower power version of the ICL7106 chip) and a $31 / 2$ digit liquid crystai -1949 display. This kit will form the basis of a digital multimeter (only a few addltional resistors and switches are required-details supplied), or a sensitive
digital thermometer $\left(-50^{\circ} \mathrm{C}\right.$ to $\left.+150^{\circ} \mathrm{C}\right)$ reading to $0.1^{\circ} \mathrm{C}$. The basic kit has sensitivity of 200 mV for a fult scale reading, automatic polarity Indication and an ultra low power requirement-giving a 2 year typical battery life from a standard 9V PP3
when used 8 hours a day; 7 days a week. Price £15.50

DO YOU LONG TO HEAR YOUR DOORBELL RING? Our latest kit gives
you a pleasing three
note harmonically ELECTRONIC DOOR related tone sequence - CHIME (not a microprocessor controllied buzz or the
same old ding dono) same old ding dong)
at a touch of a bution. This kit, based on a n Integrated circuilt, is supplied complete with a printed circuit board, louds peaker and drilled box and requires only 9 V battery and push button
common to most households.
It may also be switched by logic in such applications as car alarms clocks, toys,
P.A. systems, etc. The unit produces a 150 mW output and draws less than one 1 trom a PP3 battery when the tone ceases. Supplied complete with circuit and
assembly instructions assembly instructions.
IDEAL PROJECT FOR BEGINNERSONLY £5.00

TRIACS

400 V Plastic Case (texas) 3 A TIC206D 0 O
6 6 with trigger 04006LT..
BA
Dac.
Opto
....65p
$\cdots .{ }^{18 p}$
Opto isolated triac Moc $30200,6 \mathrm{~A} / 400 \mathrm{~V} 110 \mathrm{p}$
.${ }^{49} \mathrm{p}$

IF YOU CAN'T (REMOTE) CONTROL YOURSELF

Published remote control systems tend to be quite complex, requiring difficult-to-get components and a off making your own system we have just the kits for you. Usting infra-red, our KiTs range from simple on loft controllers to coded transmitter/feceivers with 16 on/olf
 ALL PRICES EXCLUDE VAT

THE GARAGEDOOR

 ath hasi ahto only while arating the of a button drive to be and also It features iwo code is transmirol corcuitsmentary reled switching 240 V latched outpuitled) is indis (relay closey transmitte switc. Mains loads with commed by LED 4 function for 9 V Pp 11 kW maximule remon resel for rangeys: Open battery s a gene of approximase, on peration cond-held for swal purnoximately 40 fe on 2, Off stituting apolianing lighis rete controlincluded. giving a aged or unit is ideal for other
and

EDUCATIONAL EXPANSION WITH SOFTY 2
Plug SOFTV 2 into the EPROM socket of your mic:o (z80, 6800,8035 , etc.) prototype system and SOFTY 2 will operate as the ROM in your system but enable you to write data into any location, observe memory contents on any cassette recorder it requireo.

cassette recorder it required.

Various ediling facilities are also available, permiting instes or blocks of code to be programme to be developed and run on the host computer.
prooramme an EPROM

You can also use it as an intelligent EPROM programmer to copy EPROM's from a master or tolfrom tape.
Housed in a black ABS case SOFTY 2 comes complete with a mains supply cable and 24 -pin d.I.I. plug for connection to your prototype system and TV lead

FULLY BUILT AND TESTED-ONLY E169.00
For further detalls of SOFTY 2 and the new Z80 Assembler/Micro Controller-Menta available at just $£ 115.00$ please send stamped addressed envelope.

THE PERFECT AID FOR "LAZYITIS"

Our Lamp Dimmer Kit with INFRA This unit has considerable practical RED REMOTE CONTROL will Enable you to switch the lights on or off, and set the brightness, at a push of a button without leaving your arme hair, water-bed. etc. Not only will you save time but it has also been estimated
that the savings in shoe leather and that the savings in shoe leather and
carpet wear alone would pay for this

THE MULTI-PURPOSE, TIMER HAS ARRIVED
Now you can run your ceniral heating, ighting, in-if system and lots
more with lust one programmable timer, At your selection it is designed to control four mains outputs ind ependently, switching on heating (including dillerent swithing times for wekends) connect it to your system programme and set it and forget itclock will do the rest.

FEATURES INCLUDE-
*0.5" LED 12 hour display

* Day of week, am /pm and output status indicators.
* $50 / 160 \mathrm{~Hz}$ mains operation.
* Battery backup saves sto
(Battery not supplied).
*Display blanking during power failure to conserve battery power.
* 18 programme time sets.
* Powerful "Everyday" function enabling output to switch every day but use only one time set. * Uselul "sleep" function - turns on output for one hour.
- Direct switch control enabling output to be turned on immediately or atter a specified - 20 function ke

20 function keypad for programme entry.
THERme verification at the touch of a button.
There has never been a clock capable of so much at such a low price(Including components, assembly ONLY $\mathrm{EA5.00}$
TV or HI-FI systems. The kits are easy to build and simple to set UD-and they are extremely versatile, controlifing anything from garage doors to room lighting just by adding the required output circuits, i.e. relays, triacs, etc
It you can design your own system, we stock a wide range of remote control components at We have complied a bo
details of our remote contral kits and components so don't control yoursell-
SEND US 30 p and stamed addressed enveliope tor your cony TODAYI
carpet wear alone would pay in approximately 1.3697 years
> or morel uses, especially for the old, Infirm conventional dimmer, enabling you to switch the lights on or off, or to dim them to whatever brighiness you require, by touch or using the hand-held infra red transmitter. When assembled, it ilts into a conventional switeh or dimmer with no rewiring.

TDR 300 K Dimmer Kit .
E14.30
ع 4.20 .84 .20 We also stlll sell our highty popular reank Touch Dimmer Kit at 27.00 Dimmer KIt at only $£ 3.50$ All kits contain ail necessary components and full instructions. You only need a soldering Iron
and cutters.

24 HOUR CLOCK/APPLIANCE TIMER KIT on and off at present times once per CT1000K with whi

CT1000K Basic Kit.
$\$ 14.90$
$\mathbf{1 7} .40$ (Ready Bullt)
. day. Kit contains: AY-5-1230 IC, display orivers, switches LED, triacs, PCBs and full instructions.

Add 50 p postage \& packing $+15 \%$
verseas
Add $£ 1.50$ (Europe), $£ 4.00$ (elsewhere) for p\&p. Send S.A.E. for further STOCK DETAILS
Goods by return subject to availability.

- - 9am 10 5pm (Mon to Fri)
(- $-\quad \begin{aligned} & 9 \mathrm{~m} \text { to } \mathrm{pmm} \text { (Mon } \\ & 10 \mathrm{am} \text { to } 4 \mathrm{pm} \text { (Sat) }\end{aligned}$

FAST SERVICF-TOP QUALITY• IOW IOW PRICFS

No circuit is complete without a call to-
EL =CTRONICS
11 Boston Road
London W7 3SJ

UXBRIDGE ROAD

HIGH POWER AMPLIFIER MODULES

STEREO AMPLIFIER KIT

- Featuring latest SGS/ATES TOA 200610 watt output IC's with in-built thermal and short circuit protection. - Mullard Stereo Preamplifier Module.
- Attractive black vinyl finish cabinet, $9^{\prime \prime} \times 8 \%^{\prime \prime} \times 3 \%^{\prime \prime}$ (spprox) - $10+10$ Stereo converts to a 20 watt Disco amplifier.

To complete you just supply connecting wire and solder.
Features include din input sockets for ceramic cartridge, mic rophone, tape or tuner. Outputs - tape, speakers and headphones. By the press of a button it transforms into a 20 watt mono disco amplifier with twin deck mixing. The kit incorporates a Mullard LP1183 pre-amp module, plus power amp assembly kit and mains power supply. Also features 4 slider level controls, rotary bass and treble controls and 6 push button switches. Silver finish fascia with matching knobs and contrasting cabinet. Instructions
available, price 50 p. Supplied
£14.95
FREE with the kit.
Plus $£ 2.90$ p\&p.

SPECIFICATIONS: Suitable for 4108 ohm speakers.

 Frequency response $40 \mathrm{~Hz} \cdot 20 \mathrm{KHz}$.Input.sensitivity P.U. 150 mV . Aux. 200 mV
Tone controls
Distortion Mic. 1.5 mV . Bass $\pm 12 \mathrm{db} @ 60 \mathrm{~Hz}$ Treble $\pm 12 \mathrm{db} @ 10 \mathrm{KHz}$ 0.1% typically@ 8 watts
220.250 volts 50 Hz .
STEREOMAGNETIC PRE-AMP CONVERSION KIT Includes FREE Magnetic cartridge with diamond styli. All components including p.c.b. to convert your ceramic in put on the $10+10$ to magnetic.
Only available with $10+10$ amp. $\mathbf{£ 2 . 0 0}$ ineludes $p \&$ ap.
8" SPEAKER KIT Two 8" win cone domestic speaker £4.75 per stereo pair plus $£ 1.70$ p\&p. when purchased with amplifier. Available separately $\mathbf{£ 6 . 7 5}$ plus $£ 1.70$ p\&ip

PRACTICAL ELECTRONICS
 CAR RADIO KIT
 SERIES II

2 WAVE
BAND
MW - LW

- Easy to buitd
- 5 push button
uning , Modern design
6 watt output - Ready etched
and punched PCB - Incorporates suppression circuits.
All the electronic components to build the radio, vou supply only the wire and the solder, fearured In Practical Electronics March issue. Features: pre-set tuning with 5 push button options, black illuminated tuning scale. The P.E. Traveller has a watt output neg. ground and incorporates an integrated circuit output stage, a Mullard IF Module LP1181 cerami ilter type pre-aligned and assembled, and a Bird pre-
aligned push burton tuning unit. £10.50 Plus $\mathbf{E 2 . 0 0}$ p\&ip. Suitable stainless steel fully retractable aerial (locking) and speaker ($6^{\prime \prime} \times 4$ "app.).
available as a kit complete. $£ 1.95 /$ pack. Plus $£ 1.15 \mathrm{p} \& \mathrm{p}$

READY BUILT OR IN KIT FORM 125 WATT MODEL

200 WATT MODEL
SPECIFICATIONS
Max. output power (RM Operating voltage (DC) Loads
Frequency response
measured @ 100 watts Sensitivity for 100 watits Typical T.H.D.@

50 watts, 4 ohms
50 watts, 4 ohms
Dimensions, (both mote 0.1% The power amp kit is a module for high power applications - disco units, guitar ampliflers, public address systems and even high power domestic systems. The unit is protected against short circuiting of the load and is safe in an open circuit condition. A large safety margin exists by use of

$30+30$ WATT STEREO AMPLIFIER

Viscount IV unit in teak simulate cabinet, silver finished rotary controls and pushbuttons with matching fascia, mains indicator and stereo jack socket. Functions switch Rear panel features fuse holder. DIN speaker and input socket $30+30$ watts RMS, $60+60$ watts peak. For use with 4 to 8 ohm speakers. Size $14 \% \times 10$ appro
£32.90 BUILT AND TESTED.

Plus $\mathbf{6 3 . 8 0}$ p\&p.

TV SOUND TUNER KIT

as featured in E.T.I. December ' 81 issue. 'Kit of part including PCB, UHF tuner, I.C.'s, all components excluding case, and selector switch. $£ 11.45+£ 1.50 \mathrm{p} \& p$.

- Transformer $£ 1.50+£ 1.50 \mathrm{p} \& \mathrm{p}$ (p\&p free on trans former if ordered with kit). Ready built LP1183 Module for simulated stereo operation $£ 1.95+75 p$ p\&p

generously rated components, result, a high powered rugged unit. The PC Board is back printed, etched and ready to drill for ease of construction and the aluminium chassis is preformed and ready to use. Supplied with all parts, circuit diagrams and instructions.
ACCESSORIES:
Suitable LS coupling electrolytic
for 125 W model
$£ 1.00$ plus 25 p p\&p.
Suitable LS coupling electrolytic for 200W model
£1.25 plus $25 p$ p\&p.
Suitable mains power supply unit for 125 W model
Suitable Twin transformer power $£ 7.50$ plus $£ 3.15$ p\&p. £ 13.95 plus $\mathbf{£ 4 . 0 0} \mathbf{p 8 i p}$.

MONO MIXER AMPLIFIERS

50 WATT six individually mixed inputs for two pick ups (Cer. or Mag.), two moving coil microphones and two auxiliary for tape, tuner, organs, etc. Eight slider controls - six for level and two for master bass and treble, four extra treble controls for mic and aux inputs. Size: $13 \%{ }^{\prime \prime} \times 6 \%{ }^{\prime \prime} \times 3 \%^{\prime \prime}$ "app. Power output 50 watts R.M.S. (continuous) for use with 4 to 8 ohm speakers. Attractlve
black vinyl case with matching
fascia and knobs. Ready to use.

100 WATT
Brushed
Aluminium
Iascia and rot
ary controls.
Five vertical sliter controls, master volume, tape texim level, deck level, PLUS INTERDECK FADER for leve, mic graduated chance from record dick NDER for perfect versa. Pre fade level controls (PFL) lets YOU No. 2, or vice disc before fading it in.
VU meter monitors output.
£76.00
100 w RMS output (200w peak).
Plus $£ 4.60$ p\&
MAIL ORDER ONLY
21B HIGH STREET, ACTON, W3 6NG.
Note: Goods despatched to UK postal addresses only.
For further information send for instructions 20p plus stamped addressed envelope. All goods delivered within 14 days of receipt of order.

SAVE IT

One of the areas where application of electronics by hobbyists can be particularly rewarding is that of energy conservation. At one time-not so long ago-the popular press took up the solar heating theme and many homes were fitted with panels, pumps and control electronics. This fad seems to have died to some extent pending improved efficiency in the systems and a shorter payback time.

The more recent theme tends to be towards making the most efficient use of energy. With this in mind, and also with the knowledge that constructing your own electronic'devices to assist efficient use is very rewarding and often financially advantageous, PE has developed and published many projects. Just recently our Car Computer is an exceptional illustration of how electronics can help save fuel and we believe our design is unique in so far as it can check the vehicle's performance as well as the fuel used. This month we publish an update of the renowned PE Scorpio ignition system which also
makes for more efficient use of fuel in a vehicle.

ELECTRICITY

Having covered the motoring area fairly well, next month we turn our attention to the use of electricity. With ever increasing prices it is worth knowing just how much each of your appliances costs to run. The Telectric unit will give a direct readout of the cost of intermittent or long term electricity supplied to individual appliances.

Telectric has a digital readout that shows cost per unit (programmable up to $9 \cdot 999$ p), elapsed time and cost of electricity used up to $£ 99.9$. It can thus show instantly the cost of heating water, tumble drying clothes, etc. This makes cost comparisons a simple matter e.g. is it cheaper to leave an immersion heater on all day or switch it on and off as required?, how much can be saved by boiling only the required amount of water in a kettle?, is a toaster more efficient than a grill for large quantities?, what is the cost of intermittent electric heating, of running a
freezer and what is the increased cost when the fridge or freezer frosts up? etc.

FIRST

Just seeing the pounds and pence tot up as you use an appliance can lead to more efficient use as one is made instantly aware of the cost. The Telectric is a new application for the microprocessor and we believe a first in the UK. Once again we are pleased to be able to bring you another new development of technology, regular readers will be getting used to this by now, newcomers might too if they keep reading PE, we don't intend to let up!

The only problem we have at the moment is getting everything in each issue, this has meant that Ingenuity Unlimited has had to be dropped from some issues to make room for other things, but don't worry we are planning bigger issues and there should be room for everything again soon. So if one of your ideas has been accepted for I.U. don't give up on it.

Mike Kenward

EDITOR

Mike Kenward

Gordon Godbold ASSISTANT EDITOR
Mike Abbott TECHNICAL EDITOR
David Shortland PROJECTS EDITOR
Jasper Scott PRODUCTION EDITOR

ADVERTISEMENT MANAGER
SECRETARY
AD. SALES EXEC.
CLASSIFIED SUPERVISOR

Jack Pountney ART EDITOR
Keith Woodruff ASSISTANT ART EDITOR
John Pickering SEN. TECH. ILLUSTRATOR
Isabelle Greenaway TECH. ILLUSTRATOR
Colette McKenzie SECRETARY

Editorial Offices:
Practical Electronics.
Westover House,
West Quay Road, Poole.
Dorset 8H15 1JG
Phone: Editorial Poole 71191
We regret that lengthy technical
enquiries cannot be answered over the telephone (see below).

Advertising Offices:
Practical Electronics Advertisements, King's Reach Tower,
King's Reach, Stamford Street, SE1 9LS Telex: 915748 MAGDIV-G
Make Up/Copy Dept.: 01-261 6601

Technical Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in PE. All letters requiring a reply should be accompanied by a stamped, self addressed envelope, or international reply coupons, and each letter should relate to one published project only.

Components and p.c.b.s are usually available from advertisers; where we anticipate difficulties a source will be suggested.

Back Numbers

Copies of most of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, at 95p each including Inland/Overseas p\&p.

Binders

Binders for PE are available from the same address as back numbers at $£ 4.60$ each to UK or overseas addresses, including
postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 13.00$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH 16 3DH. Cheques and postal orders should be made payable to IPC Magazines Limited.

DDD C Edited by David Shortland \& Jasper Scott

Japan-in the lead onite again...

Briefly...

Readers who own Ferrograph equipment will be pleased to hear that a spares and service company has been set up following the closure of NEAL Ferrograph. "Ferrograph Spares and Service" has been formed to manufacture and supply spare parts for all Ferrograph products including Series 6, Series 7. SP7, Logic 7 and Studio 8 tape recorders, Ferrograph Hifi equipment, Ferrograph Test Sets and Ferrograph Echo Sounders. In addition a fully staffed Service Department can service or refurbish all Ferrograph products.

For further information contact Tom Batey, Ferrograph Spares and Service, Unit 21. Royal Industrial Estate, Jarrow, Tyne \& Wear (0632 893092).

- -

D.S.N. Marketing Lid., a subsidiary com pany of Vitavox (Holdings) Ltd., was formed recently with the aim of promoting, selling and servicing all Vitavox products. It will also be offering other products, both of U.K. and foreign origin.

The first new product lines to be handled are the "Bullet" range of loudspeaker components, and D\&R mixing consoles and ancillary multitrack equipment. For further details contact D.S.N. Marketing Ltd, Westmorland Road, London NW9 9RJ. (01-204 7246).

TUNER MODUIE

Pictured above is the latest addition to Sparkrites well known range of electronic ignitions, the TX2002. The TX2002 is a contactless reactive discharge system which, according to Sparkrite, combines the advantages of both Inductive and Capacitive Discharge circuitry, resulting in the most thorough combustion of even weak mixtures.

Sparkrite's range of car accessories also includes a Drive Computer, and a Programmable Car Security System, the AT-80. As well as arming doors, boot and bonnet, the AT-80 protects against theft of in-car entertainment equipment and auxiliary lamps.

The TX2002 is available in kit form at $£ 29.95$ or ready built at $£ 62.95$. The AT-80 is priced at $£ 24.95$ in kit form, or $£ 49.75$ ready built. All prices include VAT, postage and packing. EDA Sparkrite Ltd., 82 Bath Street, Walsall, West Midlands WS 1 3DE (0922 614791)

A recent addition to the BI-PAK range of audio modules is the S. 453 FM stereo tuner. The unit features push button vari-cap tuning and a phase locked loop decoder for stereo or mono reception. It is fitted with a fourposition switch for the selection of four pre-tuned frequencies. The selected frequencies are tuned by multi turn potentiometers.

The specified operating supply voltage is $\mathbf{1 8 - 2 5 V}$. and the module has a tuning range from $88-108 \mathrm{MHz}$. Provision exists for the addition of an l.e.d. stereo indicator, a centre zero tuning meter and a mono/stereo switch.

The S .453 is priced at $£ 19.00+$ £2.85 VAT and 50p p\&p. It is available from BI-PAK Semiconductors, P.O. Box 6, Ware, Herts. SG12 9AG.

HOLDTILHT

Two new Circuit Board Holders have recent/y been introduced by Carlton Nichol. Both are constructed in aluminium and plated steel and allow easy rotation of printed circuit boards through 360 degrees with positive locking at any angle.

The CNC 6 will take boards up to $10^{\prime \prime} \times$ 7" and these are easily inserted in the spring loaded clips. The CNC 9 will take boards up to $8^{\prime \prime} \times 8^{\prime \prime}$ and they are held in position by sliding vee clamps. These clamps eliminate the risk of damage to the face surfaces of the board and allow a high degree of accessibility.

An anti-static foam pad is also available as an optional extra to allow the insertion of a number of components before rotating the p.c.b. for soldering. The pad, which is on a backing plate, clips onto the rotating arms of the p.c.b. holder.

The list prices, including VAT, of these products are CNC 6-£13.80; CNC 9£15.95; Anti-static Foam Pad-E9.20; and they are available direct from Carton Nichol \& Co. Ltd., Goldkey Industrial Estate, Kelvedon, Essex.

If you're fed up with hearing about the latest developments in hi-fi, and can't afford a $\mathbf{f 6 0 0}$ system anyway, read on. Perhaps the Record Runner (the latest in portable audio), is the thing for you.

As you can see from the photo, the Record Runner is a model VW van which drives round a record and plays it. It has a stylus mounted underneath, and a speaker mounted in the roof. While its sound reproduction is rumoured not to be the best in hi-fi, the Record Runner is certainly an ingenious idea, and stands a good chance of winning the prize for the biggest gimmick since CB radio. If you want to buy one, the paltry sum of $£ 14.50+£ 1 \mathrm{p} \& \mathrm{p}$ will secure your order. Please send a self addressed label with your order to The Video Palace, 62/64 Kensington High Street, London W8.

Details of the Uniden Uniace 100 FM mobile CB rig arrived in our offices too late to be included in our rig guide last month. The Uniace 100 features the basic channel, volume and squelch controls, plus PA/CB and $4 \mathrm{~W} / 0.4 \mathrm{~W}$ power switches. Being only 40 mm high, it is not as cumbersome as rigs with more features (including its big brother, the Uniace 200), which is worth bearing in mind if you own a small car.

Complete with mic., fixing brackets and connecting leads, the Uniace 100 is available at an inclusive price of $£ 88.95$ from RT-VC, 21 b High Street, Acton, London W3 6NG.

Houndidurn
Please check dates before setting out. as we cannot guarantee the accuracy of the information presented below.

IDEA (Domestic Appliances) Jan, 12-14. Birmingham. B6
OEM Assemblies Feb. 2-4. Roy. Hort. Halls, London. T
BEX Bristol Feb. 3-4. K
BEX Bournemouth Feb. 17-18. K
Microsystems Feb. 24-26. West Centre Hotel, London. $Z 1$
Seminex Mar. 29-Apr. 2. Imperial College, London. HI
Laboratory Edinburgh Mar. 30-31. Ass. Rooms, Edinburgh. E
CAD Mar. 30-Apr. 1. Metropole, Brighton, 21
Sensors \& Systems Mar. 30-Apr. 1. The Forum, Wythenshawe, Manchester. T
ETM Mar. 30-Apr. 1. The Forum, Wythenshawe. T
Peripherals Mar. 31-Apr. 2. West Centre Hotel, London. $Z 1$
Laboratory Manchester Apr. 7-8. New Century Hall, Manchester. E
B6 Andry Montgomery Ltd. 6 01-486 1951
E Evan Steadman, Saffron Walden 6079922612
H1 Seminex Ltd., Tunbridge Wells 0089239664
K Douglas Temple, Bournemouth 020220533
LI World Trade Centre $\int 01-4882400$
T Trident, Tavistock $\sigma 08224671$
Z1 IPC Exhibitions, Sutton $\$$ 01-643 8040

W

 Stop-by-step fully and fitting instructions are includod together Highest qualitycomponents are components are
used throughout.

Spormite
 BRANDLEADING ELECTRONICS

NOW AVAILABLE IN KIT FORM

SX1000

Electronic Ignition

- Inductive Discharge

Extended coil energy
storage circuit

- Contact breaker driven - Three position changeover switch - Over 65 components to assemble - Patented clip-to-coil fitting - Fits all $12 v$ neg. earth vehicles

MAGIDICE

Electronic Dice
Not an auto item but great fun for the family
Total random selection

- Triggered by waving of hand over dice
- Bleeps and flashes during a 4 second tumble sequence
- Throw displayed for 10 seconds
- Auto display of last throw 1 second in 5
- Muting and Off switch on base
- Hours of continuous use.from PP7 battery - Over 100 components to assemble
- Supplied in superb presentation gift box

SX2000

Electronic Ignition

- The brandleading system on the market today - Unique Reactive Discharge - Combined Inductive and Capacitive Discharge - Contact breaker driven - Threa position changeover switch - Over 130 components to assemble - Patented clip-to-coil fitting - Fits all 12 v neg. earth vehicles

Electronic Car Security System
Arms doors, boot, bonnet and has security loop to protect fog/spot lamps, radio/tape, CB equipment

- Programmable personal code entry system

Armed and disarmed from outside vehicle using a special magnetic key fob against a windscreen sensor pad adhered to the inside of the screen - Fits all 12 V neg earth vehicles - Over 250 components to assemble

AII EDA-SPARKRITE products and designs are fully covered by one or more World Patents.
EDA SPARKRITE LIMITED 82 Bath Street, Walsall, West Midlands, WS 1 3DE England. Tel: (0922) 614791

SELF ASSEMBLY KIT	READY BUIT UNITS		
SX 1000	$£ 12.75$	$£ 27.95$	
SX 2000	$£ 19.95$	$£ 43.75$	
TX 2002	$£ 29.95$	$£ 62.95$	
AT. 80	$£ 24.95$	$£ 49.75$	
VOYAGER	$£ 49.95$	$£ 84.75$	
MAGIDICE	$£ 12.95$	$£ 19.95$	

PRICES INC. VAT.POSTAGE \& PACKING
NAME

VOYAGER Car Drive Computer

- A most sophisticated accessory. Utilises a single chip mask programmed microprocessor incorporating a unique programme designed by EDA Sparkrite Ltd. Affords 12 functions centred on Fuel, Speed, Distance and Time. Visual and Audible alarms warning of Excess Speed, Frost/Ice, Lights-left-on. Facility to operate LOG and TRIP functions independently or synchronously. - Large 10 mm high 400 ft -L fluorescent display with auto intensity. Unique speed and fuel transducers giving a programmed accuracy of + or - 1%. Large LOG \& TRIP memories, 2,000 miles. 180 gallons. 100 hours. Full Imperial and Metric calibrations. Over 300 components to assemble A real challenge for the electronics enthusiast!

Cable Capture

Cable and Wireless captured the imagination of the investing public with their recent share flotation. As I have often pointed out in this column, C \& W is one nationalised company that has performed consistently well over many vears. The company anticipated that nothing but good would come from so-called 'privatisation' in which the government share would drop to 50 percent together with a promise not to intervene in commercial decisions. In other words C \& W Wow has the extra capital it needed and the freedom to exploit it in the best possible way.

The 50 p shares offered at $168 p$ were oversubscribed five times by eager buyers and when share dealings opened the price soon shot up to $197 p$. The employees had a preferential call on 13.5 million shares at the offer price and those who invested will have done well.

Inevitably there was some criticism that in view of the response the government 'gave away' their share of the company too cheaply. But think of the outcry if the price was too high and the issue had flopped in the market place. Apart from a lot of red faces the credibility of the company would have been damaged.

It is interesting to note that while most companies update their image periodically, often by a change of name, C \& W, despite a leading world position in the application of high technology in communications, still clings to 'wireless' rather than the modern term radio. This did not deter investors who apparently knew a good thing when they saw it. Anyway, Cable and Radio sounds less classy to me than Cable and Wireless.

Electronic Journals

The electronic journal is a prospect which worries conventional publishers, newsagents and paper manufacturers. But printed matter is still very much with us and is likely to remain so until the great bulk of homes and offices have video terminals. The half-way house is the data base and we
can see how much of a hold conventional journals still have by looking at the Inspec data base service run by the IEE. In providing a comprehensive scientific and technical information service, Inspec information scientists are constantly scanning 2.500 journal titles plus hundreds of conference proceedings to supply subscribers with what they need to know.

The snag here is that all publishing involves a lead time for editing, printing and distribution. With technical and other learned journals the lead time is weeks, sometimes months before the ultimate reader gets his information.

The newest Inspec data base is EMIS (Electronic Materials Information Service) dealing with semiconductor technology. EMIS will not only file all published information but will include data awaiting publication. So EMIS subscribers will have very fast access to 'hot' information. When the use of video terminals (plus printers when hard copy is required) is universal, there will be no need for printing and publishing as we know it today and true electronic publishing will have arrived.

Coups

Marconi Avionics has brought off something of a coup by winning a contract for the design and development of air data computers for re-equipping 27 variants of 10 types of aircraft flying operationally with the United States Air Force and Navy. A total of 6,000 aircraft is involved and the contract was won in the face of fierce competition from leading U.S. suppliers.

The Marconi design proposed has 80 percent commonality of sub-assemblies across all types and variants of aircraft from transports to fighters, thus simplifying servicing, cutting spares holdings and altogether saving on life-cycle costs.

Perhaps less of a coup because they have been there before is Rediffusion's contract worth $\mathrm{£7}$ million for a flight simulator ordered by All Nippon Airways. It will be used to train crews on the new Boeing 767 airliner. This latest order is the eighth secured from Japanese air carriers by Crawley-based Rediffusion Simulators who have a world-wide reputation in a stillgrowing field which has been hugely stimulated by successive hikes in fuel cost which make it completely uneconomical to train pilots flying in real aircraft, not to mention the cost of a real crash in comparison with a simulated one.

Newcomer to the Japanese market is Micro Focus, claimed to be the first British computer software house to break through in Japan. Their order book for that country is reported to have already topped $£ 1$ million. Too little of such go-getters reaches the national news media. There are plenty of success stories around which are overlooked.

IT 82

Information Technology Year got itself launched with plenty of jazz. We are promised that IT 82 will be hard to ignore. Even the Post Office will be issuing special postage stamps.

Kenneth Baker, Minister for IT, has emerged as one of the big spenders. The promotional campaign is said to be budgeted at $£ 600,000$ and current government spending on supporting IT projects will run to more than $£ 1$ million a week, not only in IT 82 alone but beyond.

One of the longer term projects announced in a one-third share in the European Space Agency's L-Sat large satellite which will have cost $£ 230$ million by the time it is launched in 1986. British prime contractor is British Aerospace with back-up from Marconi as a major sub-contractor. There will also be a spin-off for other British companies. Government commitment on L-Sat will be $£ 77$ million.

X-Stream

X-Stream is the new in-word in IT. British Telecom explains it with X being the international symbol in the telecommunications world for data transmission. Strēam is the stream of digits containing the information.

Within X-Stream are the sub-systems of Megastream, Kilostream, Switchstream and Satstream, the latter eventually linking in to the ground network ESA's L-Sat mentioned above. Marconi Communications has already won orders for Kilostream equipment from British Telecom worth $£ 5$ million and a further $£ 3$ million contract is under negotiation.

For its part British Telecom has achieved advance orders worth $£ 750.000$ for rental of lines from the first companies to use the system when the first phase comes into operation in 1982.

The beauty of X -Stream is its universal application. Transmission can be over wire or optical fibre cable, terrestrial microwave link or via space satellites. Depending on bandwidth of the links they will take speech, music, vision, facsimile and graphics as well as high speed data.

Classic

Newest in the long list of electronic system acronyms is CLASSIC (Covert Local Area Sensor System for Intruder Classification). The genius who thought this one up is a Racal person and the equipment it describes is a cunning innovation to detect enemy intrusion over a wide area and as far distant as 7 km from an observer who has a monitor unit with LED display.

The sensor units are fitted with a tiny radio which gives a short burst transmission on VHF when an intruder is detected by seismic, infra-red, pressure pad or tripwire methods. Up to eight sensors can be used with each monitor and the observer is able to deduce the nature and extent of the threat. Apart from battlefield use it-clearly has application against terrorist infiltration across borders (e.g. Ireland). The sensors can easily and quickly be redeployed as necessary.

Racal-SES Ltd funded the project as a private venture. The British Army has ordered it with an initial $£ 750,000$ contract and a number of negotiations are under way with overseas customers.

A^{N}N update of the original Scorpio appeared in March 1974 as a $P E$ blueprint feature, at a time when energy savings were beginning to take on increased importance.

The author having installed a Mk2 Scorpio on his own car, enthusiastic relatives requested units for theirs. All went well until one of them asked for a unit to fit a BLMC Mini; the rather cumbersome $7 \frac{1}{4}$ in $\times 4 \frac{1}{2}$ in $\times 2$ in diecast box could not be squeezed in under the bonnet.

The requirement for a more compact unit started a substantial redesign exercise, which began with the following objectives.

The unit had to be completely contained in a $4 \frac{1}{2}$ in $\times 2 \frac{1}{2}$ in \times $1 \frac{1}{4}$ in diecast box. Inflation had left its mark; the soaring cost of components had to be off-set with cheaper (though not necessarily inferior) alternatives.

It was anticipated that to achieve the size reduction, some loss of performance was inevitable. However, the end product had to be a very acceptable compromise and noticeably better than conventional ignition.

CONSTRUCTION

To. make final assembly as easy as possible, it was decided to build the entire unit into the lid of the box, with connecting wires leaving the bottom of the box via a tightfitting grommet. Use of plastic power devices gave both compactness and a neat appearance, with the secondary base-plate not only hiding the counter-sunk screws by which p.c.b. and all other components are mounted, but also providing a cheap and effective way of installing the unit in the vehicle. Choice of unit polarity is semi-permanent with this design, as the earth return is made via the case to simplify external wiring: (This will be dealt with in greater detail later in the article.) Mounting the unit to the vehicle with pan-head No. 10 self-tapping screws provides excellent security and electrical connection.

The two greatest areas of compromise lie in the choice of transformer and discharge capacitor, both of which are large and costly items. The first stage in development was to reduce the size of the pot core successively, and see how the output spark was affected. After much experimentation, it was found that very good results could be obtained with a 30 mm pot core.

Having selected the transformer, the discharge capacitor posed almost insuperable problems. All those with a 400 V a.c. rating were far too large, and very expensive. By reducing the secondary turns on the transformer to $330(12 \mathrm{~V})$, the rectified inverted output across R12 is reduced to about 350 V . A 400 V d.c. capacitor was thus felt to be adequate, and the Siemens B32231 1.0 4 400V was chosen as the most compact available. Having thus derated the original
design, a prototype was soak-tested for over a week without switching off, driven by a small square wave generator at a constant 10,000 r.p.m. At the end of this time it was rather warm, but still operating, and deemed sufficiently proven to fit to the Mini. A second unit was subsequently built for a colleague at work. This has functioned well, on his BLMC Princess, for over 100,000 miles.

Accessories mounted under the bonnet of a motor car encounter one of the most adverse environments possible, with extremes of temperature, humidity and vibration. This design is considered to be vastly superior to the Mk2 in all. three respects. Throughout this article there is much stress on guarding against the effects of vibration, and the constructor is urged to take careful note.

As can be seen from the circuit the only additional components to the March 1974 design are the in-line fuse FS1, R13 (added in series with C5 to protect against transients), and D7 (which gives reverse polarity protection to the complete unit). The remaining differences are either in value or choice of component type.

In searching PE's pages for prices, the original Ferranti and Siemens semiconductors were found to be expensive, and sometimes difficult to obtain. The use of Texas transistors and thyristor solved both these problems. The author built about twenty Mk2 units in all, for various friends and relatives. These were bought in kit form from suppliers advertising in the pages of PE. Whilst the components supplied were new and correct according to the design, trial produced some repetitive failures in TR1 and TR3, thus for the new design Texas "Silect" devices were chosen, with higher ratings than the ZTX500s.

Another valuable piece of experience gained from building and fitting more than just the odd one or two Mk2 redesigns was the observation of minimum operating voltage. Whilst the inverter would happily continue down to about 5 V , sparks stopped at about 7 V . For cars with new batteries, this presented no difficulty, but for those with less-than-perfect cells it meant that the car would only start after the ignition key was released from the position which activated the starter solenoid. To cure this problem - which may simply have been an unfortunate mix of production tolerances - three actions were taken. High gain transistors were selected, so that saturation could be guaranteed over a wider voltage range. The values of R1, R2, R3, R11 and C2 were adjusted, the latter two to help CSR1 fire at a lower voltage. C1 was correspondingly adjusted to maintain a similar time-constant as previously. These changes also facilitated use of the smaller glass diodes for D1 and D2, and allowed C3 to be reduced without adverse effect. Another size problem was

Fig. 1. Circuit of Scorpio
found in accommodating the specified 40 V capacitors C 4 and C7. Having noted that rarely in commercial car radios and cassette players do the supply smoothing electrolytics exceed 16 V in rating, the Mullard $016 / 15221$ was adopted. The final departure from the original Mk2 concerned the choke L1 used for interference suppression. To achieve compactness and more rigid mounting, a small pot core was chosen in place of the ferrite rod, with fewer turns now being required due to increased efficiency of the magnetic circuit.

PRINTED CIRCUIT

Fig. 2 shows the p.c.b. A word of caution first. Extreme care must be taken when mounting and soldering components, due to the small clearances involved in achieving the overall size. A miniature iron (25 W maximum) with small bit is essential for quick effective joints without an excess of solder. It is recommended that only the listed components are used, as their heights and general dimensions have been specifically chosen to maintain adequate clearance both on the board itself and within the confines of the small diecast box.' It should not be necessary to sleeve the leads of any components on the p.c.b. For ease of construction, mount the smallest items first, taking particular care with the diodes not to strain the leads.

Whilst the p.c.b. pins are a firm fit, it is essential that they are soldered on the copper side. When fitting C4 and C7, clearance has specifically been allowed on each positive lead; before soldering these leads, move the capacitors, as a
pair, to give optimum clearances with the 6BA mountinghole, choke pin, and fly lead from R13. The excellent Siemens B32560 100 V capacitors save considerable space with but 7.5 mm , between pins (C1, C2, C3). The board has been designed so that a 10 mm component may optionally be used for C 3 ; should a constructor wish to retain a 0.47μ value here, Siemens make one in both spacings, the 10 mm (being easier to manufacture) is a few pence cheaper. Note that the fly lead from R10 is used to connect the feedback winding centre-tap. To save space, R12 is mounted directly beneath C 5 , thus the resistor has to be fitted first.

Extreme care should be taken in fitting the inverter bridge diodes (D3, D4, D5, D6). Insert on the p.c.b. with alternating polarity, cathode uppermost for the one nearest the edge of the board. Gently twist the top leads of each pair, using long-nose pliers to prevent the body ends being strained. Trim the vertical tails flush with the top of C5; do not solder the twisted ends yet, but wait until the transformer secondary winding is wired later. These diodes seem particularly susceptible to damage by excess heat; with such short leads, joints should be made once only, and as quickly as possible.

Once C6 has been fitted to the board, a small amount of Evostik should be run between C5 and C6 to ensure rigidity.

TRANSFORMER

The general winding details do not differ from the original 1974 design, but to facilitate the use of a 30 mm pot core,

Fig. 2. Printed circuit and component assembly
smaller gauge wire is used. Copper losses rise, as does operating temperature, but the soak test and 100,000 mile field test indicate that adequate reliability remains. The highvoltage winding should be wound onto the bobbin first, followed by the collector and feedback windings in that order. As originally, the latter windings should each be made with two wires together, to give identical characteristics in each half of the tapped windings. Turns for each winding are:

High voltage 330T 34s.w.g.
Collectors $12 \mathrm{~T}+12 \mathrm{~T} 24$ s.w.g.
Feedback $3 T+3 T 30$ s.w.g.
Neatness in winding is essential to fit all windings onto the bobbin, each should be carefully insulated from the next. It is possible to obtain a very thin, high voltage rating, adhesive plastic tape specially designed for transformers. Care should be taken to ensure that the wire insulation (lacquer) is not damaged during winding or fitting of the ferrite cores. P.v.c. sleeving should be used on all transformer leads. Do not glue the core until ready for assembly onto the base-plate.

CHOKE

Use of a small pot-core makes winding and fitting of the choke much quicker and easier than on the 1974 design. It was found that the bobbin could be held firmly by pushing over the tapered handle of a small paint brush. Using about $\frac{1}{2}$-metre ($18-19$ inches) of $16 / 0.2 \mathrm{~mm}$ stranded p.v.c. single flex, wind just four turns on the bobbin, leaving the spare length as tails for wiring to the p.c.b.

ASSEMBLY SEQUENCE

Build up the p.c.b. first, and check the underside to ensure that there are no tracks shorted by excess solder, the mounting holes are free and chamfered on the copper side. The latter is to ensure that the mounting screw for the unearthed polarity does not short. Mount the p.c.b. onto the base-plate with two 6BA countersunk screws, taking care to place a 4BA nut (plated, not plain steel) over the chosen polarity for earth, the 4BA nylon nut insulating the other. (Looking at the soldered side of the p.c.b., each mountinghole is part of one of the polarity rails, and marked positive and negative accordingly.) The chamfered corners of the p.c.b. should align with the corners of the diecast box; fit a shake-proof washer and apply a small quantity of nut-lock to the threads, then tighten down a 6BA nut on each screw to clamp the p.c.b. making sure that it is square (in plan view) inside the box. The screw with the 4BA plated nut gives direct earth connection via the case of the unit. It must be very tight, just the right side of stripping the thread. As this connection is so important, fit a second 6BA nut as a locknut, taking care that full nuts are used, and not $\frac{1}{2}$-nuts, as the latter can easily strip.

Fig. 4. Interwiring details

Next, fit the plastic power devices to the base-plate, taking care that the mica washers and plastic mounting screw insulators are properly fitted; mount each device after bending and trimming the leads.

Solder the five device leads to their pins after final tightening. The assembly order is - screw, mica, device, plastic bush, plain washer, shakeproof washer, nut-lock to thread, then tighten 6BA nut.

POT CORE ASSEMBLY

The ferrite pot cores can now be glued, assembled and mounted onto the base-plate. These components can be very easily cracked by over-tightening of the 4BA mounting screws, so be warned. It is recommended that a thin piece of rubber is placed between the base-plate and pot cores, to dampen vibration and cushion the clamping down. The assembly order is glue pot core faces and bobbin faces, assemble core, fit screw and rubber to base-plate, mount core, plain washer, shakeproof washer, nut-lock, then gently tighten the 4BA nut just enough to firmly pull the core faces together and pinch the ferrite into the rubber padding. Whilst Araldite is an excellent adhesive, it is rather permanent, and unless the constructor has supreme confidence, the author recommends the use of Evostik, which can be removed after a long soaking in petrol.

GENERAL WIRING

Wire up the choke leads first, trim to length, bare about $5 \mathrm{~mm}\left(\frac{1}{4}{ }^{\prime \prime}\right)$, twist the strands together, and lightly solder. Now shape a hook, with small long-nose pliers, and push over each p.c.b. pin marked for the choke. Solder only the pin that is furthest from C7 for now. At this stage, it is essential to identify the "starts" and "finishes" of the tapped transformer windings. If these were marked, fine; if not, use continuity testing to sort out for each tapped winding a start/finish pair that do not form a single winding, i.e. the centre-taps. Wire the 24 s.w.g. collector winding next. Trim the centre-tap leads, taking them to the unsoldered tap/choke pin on the p.c.b. Tin the copper ends well, shape into hooks as before, and solder all three pin connections at the same time. Next wire the remaining two 24 s.w.g. leads, each to a TIP 3055 collector (any lead to any TIP 3055); bend a hook on device lead and copper wire, link and pinch together before soldering.

Wire the feedback centre-tap next. Trim to length, tin the ends well, twist together, and tuck neatly under the top wire of R10. If the constructor can identify which of the remaining 30s.w.g. leads is a start, and which a finish, wire the

Fig. 6. Drilling detail of mounting plate

COMPONENTS

Resistors	
R1	
R2, R3, R5	220
R4, R6, R7	470 (3 off)
R8	$1 \mathrm{k}(3$ off)
R9 (RS 155-447)	1 k 2
R10	1504 W
R11	151 W
R12	150
R13	330 k 1 W
R13	100

Capacitors

C1	$0.1 \mu 100 \mathrm{~V}$
C2	$0.22 \mu 100 \mathrm{~V}$
C3	$0.22 \mu 100 \mathrm{~V}$
C4, C7	$220 \mu 16 \mathrm{~V}(2$ off
C5	$0.01 \mu 600 \mathrm{~V}$ or 1000 V
C6	$1 \mu 400 \mathrm{~V}$

Ferrites
Choke (Siemens)
Bobbin (Siemens)
Choke (Mullard)
Bobbin (Mullard)
Transformer (Siemens)
Bobbin (Siemens)
Transformer (Mullard)
Bobbin (Mullard)

Semiconductors

TR1, TR2	2N4062 (2 off)
TR3	BFR81
TR4, TR5	TIP3055 (2 off)
D1, D2	1S44 (2 off)
D3, D4, D5, D6	1N4006 (4 off)
D7	1N5400
CSR1	TIC116m

Hardware

Fuseholder, auto in-line 5 -amp anti-surge fuse	
Diecast box	$\begin{aligned} & \text { RS } 509-939 \\ & \quad 4 \frac{1}{4} \mathrm{in} \times 2 \frac{1}{2} \mathrm{in} \times 1 \frac{1}{4} \mathrm{in} \end{aligned}$
Mounting plate	$5 \frac{1}{2}$ in $\times 2 \frac{1}{2}$ in $\times \frac{1}{8}$ in aluminium
3 metres auto cable	
3 auto connectors and sleeves to suit vehicle	
5 off.	6BA countersunk $\frac{1}{2}$ in screws
5 off	6BA shakeproof washers
2 off	4BA plain washers
2 off	$4 B A$ shakeproof washers
3 off	6BA plain washers
6 off	6BA full nuts
1 off	4BA nylon nut or $\frac{1}{8}$ in nylon p.c.b. 6BA stand-off pillar
2 off	4BA countersunk 1 in screws
3 off	4BA full nuts
4 off	4BA countersunk $\frac{5}{8}$ in screws (RS box) or M3 $\times 15 \mathrm{~mm}$ countersunk screws (BIM box)
2 off	No. 10 pan-head tin self-tapping screws
1 off	$\frac{1}{4}$ in rubber grommet

Miscellaneous

Sleeving, rubber mounting sheet for ferrites, nut lock compound, Evostik, Araldite.
A full kit of parts, including suitable p.c.b., fully-drilled diecast box and mounting-plate, auto cable, all nuts and screws etc, ferrites, bobbins, and all electronic components, but excluding copper wire, available from Microstate Limited, 5 Northfield Close, Fernhill Heath, Worcester WR3 7XB, for $£ 14.85$ including VAT and postage. (The first 50 orders received will be given at no extra cost, transformer bobbins with high voltage windings already on, and copper wire for other windings.)
This special offer applies to orders for full kits only. Please note that the kit does not include solder, nut lock, Evostik or Araldite adhesives.
bases of the TIP 3055s so that on each device is a collector start/base finish and vice-versa. If not, just tack the base leads on to either device temporaily. Leaving the high voltage winding as yet unconnected, and free of anything else, connect a 12 V supply, between case and D7 top end for a second or two and the inverter should oscillate. If not, reverse the base wires and try again. With the inverter working, connect a meter (400 V a.c. range) to the high-voltage winding, and connect the supply again a reading of 350370 V a.c. unloaded should be indicated. Switch off the supply, and wire up the $34 \mathrm{~s} . \mathrm{w.g}$. leads to the inverter bridge diode pairs (formed by twisting the vertical leads of adjacent diodes together) standing proud next to C 5 on the p.c.b. With the meter switched to 400 V d.c., and connected across C 5 , switch the supply on again; and a reading of $350-370 \mathrm{~V}$ d.c. should be given. Should. the inverter no longer oscillate, there is either a fault on the bridge wiring, the thyristor wiring, or perhaps in the transformer. Assuming all is well, the unit is virtually completed.

Wire about a metre of automobile cable to the three connection points for external wiring, these being the contact breaker for chosen earth polarity (blue), free end of C6 (to ignition coil), and top end of D7 (black for positive earth, red for negative earth). Take great care when wiring this thick cable to the p.c.b. pins, to keep absolutely clear of other components and connections. Trim and bare just enough length to hook around each pin, leaving no unsoldered strands or excess length. An ideal cable for this job is Delta $2491 x$ which comprises $32 / 0.25 \mathrm{~mm}$ conductors in a tough p.v.c. outer of 2.5 mm overall diameter.

FINAL ASSEMBLY

The three auto cables need to be passed through the grommet in the diecast box end. Prior to attempting this, a simple knot should be tied in each cable so that when completely threaded through, enough slack remains to prevent tension on leads from reaching the p.c.b. pins. The grommet hole is deliberately small, to give leads a tight fit and prevent the ingress of dirt. The four screws retain both the box lid (base-plate) and the secondary base-plate. Once fully proved, the box and lid should be sealed around the lip; Araidite is recommended for this. Having assembled the unit into its box, fit the in-line fuse holder (FS1) in series with the supply lead (red or black), and insert a 5A anti-surge fuse. Finally solder on the appropriate terminals for the car (most use $\frac{1}{4}$ in spade connectors), with p.v.c. sleeves where necessary.

INSTALLATION

Bearing in mind the very important points made in the 1974 article about ballast resistors and tachometers, installation and wiring on the vehicie is far easier than before. Choose a flat metal surface close to the ignition coil, but idealiy away from radiator or exhaust heat. Fit the unit to the car body with No. 10 pan-head self-tapping screws, giving secure fixing and direct earth return connection.

WIRING

For cars without bailast-resistor coils, and no tachometer, this is extremely quick and simple.

Negative Earth

Take the red lead to the side of the coil that is already wired to ignition-switched power. Remove the lead from the other side of the coil (contact breaker) and fit instead the white lead from the unit. Join the blue lead from the unit to the contact breaker lead previously removed from the coil.

Positive Earth

Remove the ignition switched power from the coil, and take it instead to the black lead from the unit. (For negative earth, the ignition switched power remained connected to both coil and unit). The bare coil connection should not be wired to earth. Remove the other (CB) lead from the coil, and join it to the blue unit lead. Connect the white unit lead to the coil CB side.

Ballast-resistor Coils

The author knows of none being used on positive earth systems so this is for negative earth cars. Remove the ignition switched power lead from the coil, and insulate securely with plastic tape. Find a source of power (e.g. ignition switched auxiliaries), and wire this to the coil in place of the ballasted supply, and connect also the red unit lead. Other wiring as above. Note that some cars have the ballast resistance built into the wiring loom as resistive cable; others have a high-wattage resistor under the bonnet or dashboard wiring.

Diecast box and mounting plate assembly

Tachometers

Most modern cars have more sensitive instruments than early ones; even current-driven types can usually be driven by the base-current for TR1. Voltage-operated types detect the change in potential across the contact breaker, thus usually little change to wiring is required. It is felt beyond the scope of this article to attempt to cover every type of tachometer, but the points made here may update those given in the original 1974 article to some extent. If a current-driven instrument is fitted, and the base current of TR1 is not sufficient, using the pulse from either the white or red leads should succeed. However, two points must be borne in mind. If the red lead is used, D7 may halve the pulse counting rate derived and may have to be removed. Also the direction of pulse flow through the instrument's current-sensing circuit is usually critical.

> Unfortunately we are unable to supply reprints of the original article-Ed.

Semiconductor UPDATITEm featuring

ACE DEUCE

The most commonly required interfacing function in any microprocessor system is the serial port. Communication with printers, Visual Display Units (VDUs), modems and a host of special peripheral devices is possible using one of the popular serial protocols such as RS232 or current loop, and this makes the provision of at least one such port mandatory on most systems.

You can implement a serial port in software if you are prepared to let the processor devote all its attention to the serialising and timing tasks, but except for simple systems it is generally better to use one of the special peripheral chips designed to remove this burden from the processor by controlling a complete serial transmit/receive scheme independently of software. Of course, the processor still has to load words into the interface device for transmission, and retrieve them after reception, but this can easily be arranged under interrupt control to cause the minimum of disturbance to the busy micro as it goes about its other, more important, business!

The serial peripheral chips come in all shapes and sizes, and have almost as many different names as there are microprocessor manufacturers, but most of these names resemble "UART", which stands for Universal Asynchronous Receiver Transmitter, a fair description of the chip's role I think. The Universal part means that there are loads of options concerning the length of the transmitted and received word, the format in which it is sent, and whether error detecting parity bits are to be used. The Asynchronous part means that each word is sent as a separate entity with its own start and stop bits added to form a frame, other words may or may not follow closely. You can also get Synchronous versions, but these are generally for more specialised applications where large bursts of data are to be transmitted). The Receiver and Transmitter parts mean just that. Unfortunately, a UART is not enough by itself, because there is the knotty problem of what speed you want the link to run at. The speed is described as the "baud rate" and there are many standard possibilities between 110 and 19.200 which need to be catered for by the microprocessor system if it is going to have any chance of being general purpose. The answer here is to use a Baud Rate Generator chip which is really a programmable divider circuit used to turn a crystal oscillator frequency into any one of the desired baud clock rates to feed the UART. The desired clock rate can be switch selected, usually by those microscopic switches designed probably by, and certainly for,

Lilliputians, or in more civilised systems, it is programmed under software control via the system keyboard. Serial ports are so important that it is nice to have more than one, like the expensive systems, but the cost of all those UART and Baud Rate Generator chips could put a body off where hobby projects are concerned, or at least it could until Western Digital played their new ace, the WD2 123.

The WD2 123 is a DEUCE or Dual Enhanced Universal Communications Element, and lurking within its natty 40 pin plastic package there are no less than two UARTs, each with its own baud rate generator, and a crystal oscillator. With one of these babies in your pet microcomputer you can grind out your listings at 300 baud on a printer whilst exchanging chess moves with your neighbour at 19.200 baud, assuming your software is up to these kinds of gymnastics of course! As far as I can see, there are no awkward compromises with this device, it seems capable of doing everything that ordinary, old fashioned UARTs and Baud rate Generators can do. It happily hooks onto a microprocessor bus which can address internal registers to program the two channels into any desired format and with any of 16 possible baud rates between 50 and 19,200. It has all the usual programmable features including stop bit length, word length and parity, and it provides a host of control outputs to let the microprocessor know what is happening. All you have to add is a single crystal, some RS232 buffers, and of course the micro itself.

ULTIMATE OP-AMP?

As a tone deaf electronics writer, I suffer from the terrible disadvantage of being totally unable to appreciate the finer points of a high fidelity sound production system, regardless of how much the equipment has cost its owner. (I suffer from a similar but inverted affliction of the taste buds which cause me to appreciate the finer points of all wines, even Dreadnought plonk at 50p a litre.) Imagine the difficulty I have, then, in commiserating with friends who lose sleep at nights over the few decibels of additional Total Harmonic Distortion which has apparently crept into their gleaming teak and chrome Hi-Fi shrines since the holidays!

Noise, on the other hand, I can understand:
a) Because I can see it on an oscilloscope,
b) Because the non-electronic variety generated by my offspring often drives me to despair.
On this topic I am therefore in complete sympathy with those who strive towards
acoustic perfection and can announce with interest and understanding a new operational amplifier which has come closer than any other to the fabled zero noise point.

The new amplifier has been introduced by Precision Monolithics Incorporated, a Company justly famed for their high precision "up-market" analogue circuits, and for their advertisements which feature Alice in Wonderland themes. Apparently P.M.I. are as nutty as the Hi Fi freaks, and no less a person than their Engineering Vice President has spent a whole year and innumerable dollars in search of the Holy Grail of the analogue fraternity, the ultimate Op-Amp design. The ultimate Op-Amp would have zero noise, an infinite gain, and an infinite bandwidth, and that is a combination unlikely to be realised even by P.M.I. in the near future, but the actual results of their crusade, the OP-27 and the OP-37 devices, have certainly pushed the frontiers of precision Op-Amp technology further out than ever before.

The new designs are ideal for use in the front-end circuitry of audio amplifiers, especially tape head and magnetic microphone pre-amplifiers where impedances and signal levels are low and noise is a critical factor, although they will also be sought after by instrumentation engineers who need the ultimate in performance for their transducer amplifiers. The specifications of the two devices underline the success of the P.M.I. design approach. Gain bandwidth product of the OP-27 is 8 MHz compared with 0.8 MHz for the 741 . common mode rejection ratio is 126 dB compared with .90 dB for the 741 , and voltage noise is an incredibly low 3 nanovolts per root Hz at 1 KHz . That noise figure can be compared with the standard rule of thumb for noise in a resistor which is generally taken to be 40 nanovolts per root Hz per 100 K ohms, which means that for the same bandwidth the OP-27 generates less noise than a 10 K resistor! (Remember though that amplifier noise specs are related to the input, and therefore the noise at the output of the circuit will be multiplied by the voltage gain.)

The OP-37 is an even faster version of the OP-27 with a gain-bandwidth product of 63 MHz but must be used in circuits with a voltage gain of more than five to ensure stability. The OP-27 is unconditionally stable. Both amplifiers are compatible with 741 sockets if the offset null circuitry of that device is not used, and can be obtained in 8 pin mini-dip or TO99 packages.

They won't replace the wind-up gramophone of course, but they may allow the Hi Fi brigade to sleep more soundly!

EVERYONE developing and building electronic circuits whether it be in industry or at home requires a power source. Ideally, this should be variable, highly stabilised, metered and well protected against accidental misuse.
The required voltage and current rating obviously depends on what is being developed but a $0-30 \mathrm{~V}, 0-2 \mathrm{~A}$ supply will cover 90 per cent of circuit developments.

Such power units are widely available in industry but the asking price is $£ 80$ upwards which generally puts such a unit outside the scope of home experimenters and they often have to make do with a temporary lash-up which suits one development but often not the rext.

The unit to be described attempts to fulfil the above requirements at the lowest possible price without too many compromises.

DESCRIPTION

Conventional linear techniques are employed in the unit, series power transistors regulating the output voltage. They are driven by a linear i.c. which compares a portion of the output voltage with a reference voltage.

The unregulated d.c. is derived via a 50 Hz power transformer, rectifier and capacitive reservoir. The range switch changes both the a.c. secondary voltage fed to the rectifier and the resistors in the voltage feedback circuit.

Series resistors in the power transistor emitters generate voltage drops which are used to operate the electronic overload circuitry and to drive the current metering.

The chosen i.c. is the well known 723 type which is a good compromise between cost and performance. It was not originally intended for use in laboratory power units where the output voltage is widely variable and usually down to zero.

OPERATION

The mains input, 230 or 240 V , is fed to the transformer primary via mains switch and 1 A anti-surge fuse. The range selection switch S2, connects either half or all the secondary voltage to a full wave bridge rectifier via a 5A secondary fuse. This rectifier is made up of four BY299 2 amp diodes and supplies unidirectional current to the reservoir capacitor, C1. A lower ripple auxilliary supply is produced by D7, C2.

The load current then passes through the series power transistors TR3, TR4 and the current equalising and measuring resistors in their emitters and thence through the load and back to the return.

SPECIFICATION	
Input	$230 \mathrm{~V}-240 \mathrm{~V}$ a.c.
Outpue	$2 \cdot 5-30 \mathrm{~V}$ d.c. stabilised in two overlapping ranges of $2.5-13 \mathrm{~V}$ and $12 \mathrm{~V}-30 \mathrm{~V}$
Maximum	
Stability	Output change for 10\% input change 0.5\%
	Output change for zero-full load 0.10\%
	Temperature coefficient $0.01 \%{ }^{\circ} \mathrm{C}$
	Ripple 0.05\% peak-peak
	Transient load 3\% excursion recovery in 1 ms for half full load
Protection	Re-entrant foldback overload protection, operating at 20% overload
	Output protected against forward or reverse voltages being injected into output terminals
Metering	Output voltage and current metered by switchable moving coil panel meter
Size	$4 \frac{3}{4} \mathrm{in} \times 10 \mathrm{in} \times 9 \frac{1}{2} \mathrm{in}(\mathrm{H} \times \mathrm{W} \times \mathrm{D})$ -
	Weight 5 kg

These transistors operate as emitter followers driven by the output current of the 723 i.c. which can be divided into five sections; a constant current device, feeding a Zener diode reference, an error amplifier, a power output transistor capable of passing 50 mA and a current limiting transistor.

The Zener reference is compensated for temperature changes having a typical coefficient of $0.003 \% /{ }^{\circ} \mathrm{C}$. Feeding this via a constant current supply largely removes reference of about 7 V . The error amplifier is a differential input amplifier whose output drives the base of the power output transistor.

A single transistor on the chip has its collector connected to the base of the output transistor, base and emitter being brought out to pins so that this current limit device can be used in several different ways.

In this power unit the 7 V reference on pin 6 is divided by R2/R3 to give approximately 2.5 V which is then fed back into the error amplifiers non-inverting input. A portion of the output voltage determined by VR1, VR3 and R4 (on the lower range) is fed to the inverting input (pin 4) and compared with the reference voltage. Until this portion reaches 2.5 V the amplifier feeds current to the output transistor which in turn feeds the two series power transistors increasing the output voltage. This increase is fed back to the amplifier until stability is achieved. Thus a closed loop d.c. system is formed, the stability of the output depending only on the reference voltage and d.c. gain within the system.

Usually a.c. stability considerations limit the maximum d.c. gain but this design problem is simplified by using an i.c. such as the 723 .

Overload protection is essential on stabilised p.s.u.s as their output resistance is, by design, only a milliohm or so. This is-achieved by using the voltage drop across the 2.2
ohm wirewound resistors in the emitters of the power transistors. This is used to drive the on-chip transistor which then bleeds drive current away from the amplifier output and down through the load. This transistor could be driven directly by the resistor volt drop but this would give a constant current overload characteristics with resultant high dissipation in the series transistors requiring a much larger heatsink. At short circuit on the upper range the power would be 96 W , when all the unstabilised input voltage would be across the power transistors and the current would be 20 per cent over full load current.

In the circuit used, a portion of the output voltage (2.5 V) is applied to TR2 base, this transistor operating in a constant current mode at about 1 mA (set by VR4), which produces a volt drop in R9 of 1 volt which is compared by the on-chip overload transistor with the voltage across R10, R11, R13, R14 effectively in parallel.

As the load current rises to 2.4 A the voltage amplifier loses control and the overload transistor bleeds away drive current. This causes a fall in output voltage which reduces the 2.5 V on TR2 base. In turn a reduction in the 1 mA current and therefore, voltage across R9 occurs which reduces the overload current. Thus a 'foldback' characteristic is achieved so that increasing load produces less output current so that at short circuit the value is 0.5 A . This greatly reduces power dissipation and means that the heat sinking is only dictated by normal operating conditions.

The volt drop across the R10, R11, R13 and R14 also drives the current meter, VR5 setting the range whilst the output voltage may be metered by switching S3, the voltage range being set by VR6.

D6 protects the unit against the injection of reverse voltage to the output while D5 protects against a forward

Fig. 2 Printed circuit board
voltage being applied to the output with C1 discharged i.e. unit switched off.

Fig. 3 Component overlay for the p.c.b.

CONSTRUCTION

The p.c.b. may be assembled first; inserting solder pins then small components such as resistors and semiconductors before capacitors. Note that diode cathodes are marked + on the p.c.b. Take great care with the polarity of these and capacitors as the low impedance paths in the p.s.u. spell death to incorrectly connected components.
Wirewound resistors should be mounted with the body about $\frac{1}{8}$ in clear of the board to prevent heating of the SRBP material. This applies particularly to R20. Mount all front panel components except the meter which is fragile and better fitted last of all.
Wire, VR1, VR7, S2b and S3 forming a loom to pass horizontally behind the front'panel at mid-height. All these wires except the two meter leads are connected to the pins on the front edge of the p.c.b. VR 1 and VR7 must be wired as rheostats so that clockwise rotation gives increased resistance.

Mount the p.c.b. and terminate this loom adding in the double wires to the output terminals. Note the two wires to each terminal are power and sense and must be commonned at the terminal if maximum performance is to be maintained.

Make up the two heat sink assemblies ensuring that each power transistor (TR3 and TR4) is properly insulated using the mica and bushes supplied. A smear of silicone grease under transistor and mica helps heat transfer from the transistor case to the heat sink. Take the three leads from each power transistor through their respective rear panel grommetts to the p.c.b. pins, the collector to case connection being via a solder tag on the transistor mounting screw.

Fig. 4 Complete assembly detail

Use the large capacitor clip to mount C1 horizontally near the rear panel and fit the fuseholder and cable clamp on the rear panel. Wire C1 to the p.c.b. noting that the red tag is positive and must be connected to pin D, negative to pin A. The transformer should now be mounted using the $1 \frac{1}{2}$ in \times 4BA screws and tapped spacers, the mains tags numbered 1-6 nearest the front panel.

Wire the mains fuse, switch and neon and the transformer primary taking care to ensure that a good earth is established by cleaning paint off under the heat sink mounting screw and using a solder tag. The primary consists of two 115 V windings and one 10 V so that all three should be in series for 240 V . Connect the transformer secondary to the appropriate pins on the p.c.b. (B and C) via S2a.

Only the meter now needs mounting and wiring to S3a and S3b centre contacts, positive being to S3a.

SETTING UP

Before setting up the unit it must be working correctly and stabilising at some voltage.

On completion it is always worth spending a few minutes checking for correct polarity of components and wrong connections. In the case of a p.s.u. this is doubly important as many electrical paths are low impedance and wrong connections will destroy semiconductors at best and produce smoke and scorched p.c. boards and looms at worst. As a general rule do not work on p.s.u.s with the unit switched on - it may be tempting to save time but even a momentary short will usually destroy some semiconductor because of the low impedances.

If you have a Variac available use it for initial switch on and only feed in a few volts. Check that the polarity of the d.c. unstabilised voltage (across C1) is correct and increases when the unit is switched to upper range. Switch back to low and increase the Variac slowly checking that the output voltage rises about 3 volts behind the unstabilised. With the voltage pot (VR1) set midway the output should stabilise at $6-9$ volts. Assuming all is well increase mains input to 240 V and proceed with setting up in the order given; voltage low
range, voltage high range, current overload, voltage metering and current metering.

Instead of a Variac some people just use strong nerves. In this case double check power connections i.e. transformer primary; is the fuse in circuit and the phasing correct? Check secondary wiring around S2 and ensure the diodes are correctly polarised in the bridge (D1-D4). Also check C1 is correct polarity. Check C2 polarity also. It is wise to disconnect the meter if you have no Variac as incorrect wiring could damage it virtually instantly.

Set pot VR1 to mid-range and voltage range switch to lower range. If all is well 6-9 volts should appear at output, you can then proceed to set up the voltage ranging.

V/I RANGING

All d.c. voltages are quoted with respect to -ve output.

Low range voltage

With 240 V in check reference voltage on pin 5 of 723 is about 2.5 V . Turn VR1 and VR7 fully anticlockwise and check output is 2.5 V . Increase VR1 and VR7 to maximum and then adjust VR3 to give 13 V out.

High range voltage

Reduce VR1 and VR7 to minimum and switch to high range. Adjust VR2 to give 12.5 V output. Increase VR1 and VR7 to maximum and check output is about 31 V or at least 30V.

The unit is now set to have two overlapping ranges of $2 \cdot 5-13 \mathrm{~V}$ and $12 \cdot 5-31 \mathrm{~V}$.

Current

To set this a variable resistor of about $30 \Omega / 2 A$ is required although use may be made of the unit's variable output, which, with a little thought and ingenuity will enable anyone with only odd wirewound resistors to set up the current overload.

COMPONENTS . .

Semiconductors

TR1-TR2	BC107 12
TR3-TR4	2 N 3055
D1-D5	BY299 15
D7	BA158 or
IC1	LM723C
Potentiometers	
VR1	15 kw . wound
VR2-VR4	2 k 2 cermet
VR5	$470 R$ cermet
VR6	2 k 2 cermet
VR7	1 kw wound

Switches

S2 Voltage range switch ($250 \mathrm{~V} / 2 \mathrm{~A}$) d.p.d.t.
S3 Meter function switch (250V/2A) d.p.d.t.

Transformer
 Mains primary; 15-0-15 V at 4.6 A

Miscellaneous

FS 1-1A anti-surge, LP 1 -mains neons A complete kit of parts is available from Grenson Electronics Ltd., High March Rd., Long March Industrial Estate, Daventry, Northants NN11 4 HQ at $£ 28.50+£ 2.50$ p. \& p. $+£ 4.65$ VAT.

Assuming a variable load resistor is available connect it to the unit via an accurate meter (preferably 3A or 5A f.s.d.) and with minimum load, switch on with 12 V output. Turn VR4 fully clockwise and adjust load to give 2.4A load current. Turn VR4 anticlockwise until the current just starts to fall. Carefully increase load and the voltage and current should fall until at any output, below 3 V , the current is about 0.5 A . Check the current limit is the same at the bottom of the low range and at both ends of the upper range.

Should you only have fixed wirewound resistors choose one or more in series that will give a suitable value (say $4 \times$ $1 \Omega / 5 \mathrm{~W}$ in series) and connect across the output. The current can now be increased by increasing the output voltage until 2.4 A is reached (9.6V).

Turn VR4 anticlockwise until current just starts to fall. Short out the resistors successively and check that the current falls to about 0.5 A .

Voltage metering

Check with unit switched off that meter indicates zero if not reset mechanical zero with centre screw.

Set the output to 30 V using an accurate voltmeter and adjust VR6 with meter switched to voltage to give correct front panel meter reading.

Current metering

Connect a load in series with an accurate ammeter and adjust load (or output voltage) to give exactly 2A. With meter switch set to current adjust VR5 to give correct front panel meter reading.

TROUBLE SHOOTING

If the "unit does not stabilise when switched on faults can be divided into two categories, power circuit and control circuit faults

Power circuit faults usually blow fuses or give no output at all. Check that C1 has about 20 V d.c. across it on lower voltage range of correct polarity (mains at 240 V). If this is the case but the unit gives no output or high output measure the voltage across the power transistors collector to emitter. Almost 20 V here suggests the power devices are turned off whilst on 1-2 volts suggests they are turned on; in either case, probably a control fault.

If the output is high disconnect the power transistor base connection - the output will fall to zero if it is a control circuit fault. Reconnect the base drive and go logically through the circuit. Check reference voltage (IC 1 pin 6) is 7 V , check voltage on pin 5 is 2.5 V , check voltage on pin 4 which should be 2.5 V . If pin 4 voltage is higher than pin 5 voltage the output should be low and vice versa, provided the unit is basically correct. In this case the output voltage can be high because the resistive network dividing output voltage is wrong. A persistently low output when pin 4 and pin 5 voltages suggest it should be high is likely to be due to a fault in the overload circuitry - check R8, R9, TR2, R6, R7 and around pins 2 and 3.

When the unit is operating correctly a load change of zero to full load will not give a visible'meter deflection change on the voltage range. An apparent increase in voltage when a load is connected suggests that the unit is oscillating check C4, C6 and C7. An oscilloscope, if available, will confirm this by connecting it across the output terminals.

PRACTICAL

RR REMOTE CONTROL
 Part 1 Bart Trepak

WITH English weather being what it is, it is strange that the remote control of garage doors is only now becoming popular. Until recently, the only alternative to getting out of your car to push a button to open an electrically operated garage door was to use a radio transmitter. This, although it has a good range, tends to be expensive and requires a licence. The obvious solution nowadays is to use infra red which uses inexpensive robust transducers which may be readily weatherproofed and penetrate glass easily, enabling a compact hand held transmitter to be built and then operated from within a car.

Since infra red transmitters are now being used to control televisions and other domestic equipment, it is essential from a security point of view to encode the infra red transmission to prevent anyone gaining entry to the garage by using his television transmitter. This also gives the system a high degree of noise immunity and prevents operation by natural sources of infra red, such as the sun.

The system to be described incorporates all the above features, together with a few novel ideas. The receiver is mains powered and has three outputs; a momentary action relay and two independent latched outputs with a common reset. The transmitter is a small hand held unit with four pushbutton switches and is powered by a PP3 9 V battery.

The circuit is by no means limited to garage door control and may be used with slight modification to switch anything from televisions and radios to slide projectors. Further uses will be described later in the article.

THE TRANSMITTER

The circuit diagram of the transmitter is shown in Fig. 1. The transmitter circuit is based on the SL490 encoder i.c. which is capable of transmitting up to 32 different serial codes. Normally, the i.c. is used with a keypad matrix, the i.c. decoding the key that has been pressed and generating a 5 bit serial word corresponding to that particular key. This word consists of six pulses and it is the time interval between the pulses which is important (Fig. 2). A long period $\left(t_{s}\right)$ is decoded in the receiver as the start of the word while a
short period is a logic 1. A period between these is identified as a logic 0 . The three periods, t_{s}, t_{0} and t_{i} are maintained in the ratio 6:3:2 by the i.c. Thus, by setting the t_{0} time, t_{s} and t_{i} are automatically set. This is done by adjusting the frequency of an internal oscillator by means of R1 and $C 1$. The logic ' O ' period is given by $t_{0}=1.4 \mathrm{C} 1 \mathrm{R} 1 \mathrm{sec}$., where R1 and C1 are in ohms and farads respectively. A code word, say 00001, is obtained by connecting pins 5 and 15 on the i.c.

00751
Fig. 1. Transmitter circuit diagram

E6762
Fig. 2. Typical PPM waveform

When a key is pressed, say open/close, the i.c. detects this and generates the appropriate code, in this case 00001 . The code continues to be generated while the key is depressed and when the key is released, the code transmission is completed before the i.c. powers down. This avoids the need-for a separate on/off switch in the transmitter.

The negative going edges of the pulses appearing at pin 3 of the i.c. are amplified by the pnp transistor (TR1) and the npn driver (TR2) which pulses the two IR diodes. The pulse width is set at about 15μ s by the capacitor/resistor combination, allowing the diodes to be driven at high currents to enable a reasonable range to be obtained while keeping the battery drain low. By fitting plastic clip-on-reflectors to the l.e.d.s, the range of the prototype was in excess of 40 feet, which should be sufficient for most applications. Without the reflectors a range of approximately 20 feet was obtained.

Since the receiver will only respond to the correct code at the correct data rate, each receiver/transmitter may be "tuned" to one frequency. This is best done by selecting a suitable value for R1 and C1 in the transmitter and adjusting the oscillator frequency in the receiver to suit. In this way, all receivers, although programmed to respond to the same code will not respond to a transmission unless the frequency (data rate) is also correct. The receiver oscillators may be tuned between 15 Hz and 150 kHz and with the allowed frequency tolerance up to three different frequencies per decade are available.

The transmission of other codes requires only the addition of a pushbutton (one per code) and three further codes (00010,00100 and 01000) may be used without adding to the receiver complexity. These codes are used to control two independent on/off functions in addition to the open/close function.

THE RECEIVER

The receiver circuit shown in Fig. 3 uses a photodiode D1 to detect the IR radiation. This is basically a large area silicon diode specially fabricated to have a low junction
capacitance, enabling it to respond to fast light pulses. The diode is reversed biased by transistor TR1 and associated components. This circuit presents a high impedance to the fast pulses of infra red from the transmitter but has a low impedance to d.c. or slowly varying IR from extraneous sources such as tungsten lamps, the sun, etc. The diode specifed is, in fact, encapsulated in a material which is opaque to visible light so that the diode responds only to the IR part of the spectrum, peaking at around 950 nm , which is the wavelength transmitted by the diodes in the transmitter.

Any incident IR light increases the leakage current of the diode and the resulting voltage across the load is fed to IC1. which is a high gain 3 -stage differential amplifier. The frequency response and gain of each stage may be set by external resistors and capacitors. For maximum gain, the resistors are dispensed with except the one at pin 8, which controls the gain of the second stage and prevents instability. The output of the amplifier which consists of positive going pulses is coupled directly to the decoder IC2. This i.c. contains a counter which is reset whenever a pulse is received and allowed to count at half the oscillator frequency set by the capacitor and resistor connected to pin 2. If the oscillator has been set to 1.5 kHz , for example, resetting is blocked for the first 14 ms after a pulse has been received and windows from 22 ms to 40 ms determine whether a logic 0 or 1 is transmitted. Periods between pulses 40 and 80 ms are recognised as word intervals. After checking that 6 pulses of 5 bits have been received, and the word is valid one, it is stored. Two consecutive and identical words must be received, before the outputs of the decoder will respond to the incoming code.

This pulse position modulation (PPM) system ensures that neither the transmitter or receiver oscillator frequencies need to be particularly stable and a variation of up to 10 per cent can be tolerated by the system. High noise immunity is also obtained by this circuit, and noise of a sufficient amplitude and rate will only prevent the decoder from responding. The four outputs of IC2 respond to the transmit-

Fig. 3. Receiver circuit diagram
ter codes 00001, 00010, 00100 and 01000. Thus each output may be switched by transmitting the appropriate code, no further decoding being required. The outputs are normally logic 0 (if pull down resistors are used) going to a logic $1(+15 \mathrm{~V})$ for the duration of the transmission. Most motor driven garage door controllers require a single contact closure (i.e. pushbutton switch) to initiate the opening or closing action; various other interlocks being present in the controller to switch the motor off when the fully open or closed position is reached, together with the logic necessary for controlling the direction of the motor drive. This will not be described as this circuitry is normally supplied with the motor.

The pushbutton may thus be replaced by a reed relay driven via a transistor from one of the i.c. outputs, i.e. TR4, RLA/1 and associated components. The other three outputs

on the receiver may be used to control other functions or equipment if required, such as drive lights, etc. Two of the decoder outputs are used to control the set inputs of two RS bistables wired from the four NOR gates available in a CMOS 4001 package. By transmitting codes 00010 or 00100 the outputs of the respective bistables may be switched to logic 1. This will turn on TR3 or TR4.

The transistors TR3 and TR4 can be used to control mains loads such as lamps by using the circuit of Fig. 4. When the transistor switches on, the l.e.d. in the opto isolator switches on. The opto isolator specified differs from normal isolators in that it has a triac output instead of the more common transistor types. This triac is used to switch the main triac CSR1, which can be rated to carry the full load current. The advantage of this arrangement, apart from isolating the remote control receiver circuit from the mains, is that no separate supply is required to trigger the triac. Also, if the lamp or other device to be switched is a long way from the receiver, the circuit of Fig. 4 may be located conveniently close to the load and connections made using cable with a low voltage rating, e.g. bell wire, without the precautions necessary with wiring carrying mains voltages, thus making the system easier and cheaper to install.

NEXT MONTH: Construction and applications.

COMPONENTS ...

transmitter

Resistors

R1	33 k
R2	2 k 2
R3	10 k
R4	82

All resistors $\frac{1}{4}$ W 5\% carbon

Capacitors

C1	100 n
C2	$4 \mu 7100 \mathrm{~V}$ elect.
C3	10 n 50 V ceramic

C3 10n 50 V ceramic
C4 $100 \mu 10 \mathrm{~V}$ elect.

Semiconductors

D1, D2	LD271 (2 off)
TR1	BC212
TR2	BC337
IC1	SL490

Miscellaneous
Hand held control box Keyswitches (4 off) l.e.d. clips

RECEIVER

Resistors	
R1	
R2	$2 k 2$
R3	$220 k$
R4	$82 k$
R5	560
R6, R10, R12	$68 k$
	$47 k$ (3 off)

R7, R8, R9	100k (3off)
R11,R13	$1 \mathrm{k}(2$ off)
R14	$1 \mathrm{k5}$
R15	150

All resistors $\frac{1}{6}$ W 5% carbon

Potentiometers

VR1 47 k vertical preset

Capacitors

C1	$47 \mu 16 \mathrm{~V}$ elect.
C2. C8	100 n polyester 12 off)
C3	2200 p ceramic
C4, C6	1000 p ceramic
C5	100 p ceramic
C7	10 polyester
C9	$1000 \mu 25 \mathrm{~V}$ elect.

Semiconductors

D1	SFH 205
D2	CQY 40
D2	1N4148
D3	WOO5
D4-D7	BC212
TR1	BC182 (3 off)
TR2. TR3, TR4	SL480
IC1	ML926
IC2	4001
IC3	MOC3020 opto isolator
IC4	78L15
REG1	TIC 226D
CSR1	

Miscellaneous

T1 Mains transformer 18 V 100 mA Sec .
RLA Reed relay 1000Ω coil
72 -way p.c.b. terminal blocks
Suitable case

Constructors' Note
A complete kit of parts for the infra red remote control is available from TK Electronics, 11 Boston Road, London (01-579 9794)

$3 \frac{1}{2}$ DIGIT LCD

Other Handheld Instrument Kits Available

Fully inclusive Price

Handheld Thermometer
 $-50^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ includes probe

KIT
£46.51
ASSEMBLED
£57.99

pH Meter

Range 0-14 pH includes probe
KIT
£69.51
ASSEMBLED
£80.99

Capacitance Meter
 Measures 1 pF to $20 \mu \mathrm{~F}$

KIT
£40.76
ASSEMBILED
£46.51

'Minitune' Car Tester
Measures Volts, Ohms, RPM and Dwell
KIT
£34.98
ASSEMBLED
£40.76

For overseas orders $\mathbf{£ 2 . 0 0}$ (Europe) or $\mathbf{£ 5 . 0 0}$ (all other areas) must be added to cover Air Mail Delivery.

INCLUDING V.A.T. POSTAGE \& PACKING

The DP2010 is a development of the DP200 Multimeter (featured in PE May 1981) aimed at giving reasonable specification at remarkable value for money. The instrument is available ready-assembled and calibrated, or in kit form for home assembly. All parts (except PP3 battery and test leads) are supplied including clear assembly and calibration details. The DP2010 features 6 functions and 21 measurement ranges, with a high contrast 12.5 mm l.c.d. readout for extended battery life.

SPECIFICATION

FUNCTIONS: Volts (d.c.) $1 \mathrm{mV}-500 \mathrm{~V}, 4$ ranges; accuracy 1% ± 1 digit. Current (d.c.) $1 \mu \mathrm{~A}-1000 \mathrm{~mA}, 4$ ranges; accuracy 1% ± 1 digit- $5 \% \pm 1$ digit 100 mA . Volts (a.c. $1 \mathrm{mV}-500 \mathrm{~V}, 4$ ranges; accuracy $2 \% \pm 5$ digit. Current (a.c.) $1 \mu \mathrm{~A}-1000 \mathrm{~mA}, 4$ ranges; accuracy $2 \% \pm 5$ digit- $7 \% \pm 5$ digit 1000 mA . Resistance 1 R-2000k, 4 ranges; accuracy $1 \% \pm 1$ digit. Diode Test 2 V range; accuracy $1 \% \pm 1$ digit. DISPLAY: 12.5 I.c.d INPUT IMPEDANCE: 1OM Ω. BATTERY TYPE: PP3, 2 mA typical consumption, POLARITY INDICATION. Automatic. LOW BATTERY INDICATION: Automatic. OVERRANGE INDICATION " 1 " at most significant digit with other digits suppressed. INPUT TERMINALS: Standard 4 mm .

Tom Gaskell b.a.(HoNs) murec.enc.

Part 7 When Analogue meets Digital...

N the series so far we have concentrated on the design and operation of "all-digital" circuitry; the only interface with the analogue world has been the driving of l.e.d. displays and simple loads, and the control of logic inputs by sensors and switches. This month we carry these principles further, into the driving of more complex displays, and into the areas where analogue and digital circuitry meet and interact directly.

MULTIPLEXING

The term "multiplexing" is used to describe the process of scanning, sampling or feeding signals to various points in a circuit on a repetitive continuous basis. A single pole 12-way rotary switch can be used to feed a signal to one of 12 destinations, one at a time, or to collect a signal from each of those 12 destinations, one at a time; if this switch is rotated continuously it becomes a multiplexer. (Often, the term "multiplex" is reserved for the collection of data into one signal, and the term "de-multiplex" is used for the distribution of a signal to many destinations.) The technique of multiplexing is essentially used to cut down on the amount of circuitry or interconnections within a system: if the multiplexer is operated at a fast enough rate, a common wire or circuit can be used by many different signals which all "time share" the common circuit. The circuit design, of course, must allow for the fact that signals become non-continuous or "sampled". In most cases this is a very simple problem to overcome.

Our immediate interest in the technique of multiplexing is in the design of multi-digit displays. Such a display might consist of, for example, four 7 -segment I.e.d. displays mounted adjacently. Each of these four displays would require seven wires carrying the drive current to its segments, and one common connection. Hence, there would have to be a total of 28 l.e.d. driver stages to feed the whole 4 digit display, and 28 interconnections between that driver circuitry and the display (plus common connections, of course). This would prove to be very complex and costly, so we choose to multiplex the I.e.d. drive to each display. All the appropriate segments of each digit are illuminated for a small fraction of a second. The first digit has its segments illuminated, then the second, then the third, and finally the fourth. After the required segments of the fourth display have been illuminated, the first starts again, and so on.

The human eye has a "persistance", which means that any flashes of light which occur at a frequency of above 20 to 30 Hz "run together" to give the effect of a continuous glow. This is the same principle on which individual still picture frames on the television or on cine film can be made to
appear to give continuous motion. Hence, if we ensure that each display is illuminated more frequently than 20 or 30 times per second, there will be no obvious flickering due to the multiplex action, and the segments will appear to be continuously lit. This technique is normally limited to 8 digits or less; more than this can again cause flicker or extreme dimness, because the eye begins to detect the "off" periods. For more than 8 digits, several separate multiplex systems should be used.
The drive circuitry must be specially configured to ensure that the correct segments for any particular digit are illuminated at exactly the right point in time; see Fig. 7.1. The switches are shown diagrammatically as "mechanical" switches; in fact, these are all logic gates'(with current driving stages interfacing with the common anode display). gated on and off by the control logic.
Although the diagram may appear to be complex, the techniques used lend themselves very readily to building in i.c. form, usually with other circuitry to actually generate the signals which require to be displayed (counters, decoders, etc.). The whole circuit can be made complete by these means, and connections to the i.c. can be kept to a minimum. The most common example of this is in a counter i.c.; a four (or more) digit BCD counter with many different functions is incorporated with a complete multiplexed driving circuit, all in the same i.c. Hence, only eleven connections are needed between the i.c. and the entire display!

If all the displays are turned off for a fraction of a second prior to each change of the "digit selector" multiplex switch. then the display will appear dimmer than when no "all-off" states were used. By varying this off period, the display brightness can be continuously varied; this is usually done by varying the mark/space ratio of the clock, and using the clock waveform to disable the display driving logic. Because each l.e.d. segment is only illuminated for a short period of time, fairly high peak currents can be passed through the segments, resulting in high brightness illumination yet maintaining a safe average current flow. By this means, the whole circuit can draw less current than a non-multiplexed one li.e. "direct drive") yet can appear to be brighter!

OTHER DISPLAY TYPES

Phosphorescent displays are often seen in calculators and digital clocks, giving out a pleasant blue-green colour. Their operation is similar to that of a cathode ray tube, with a heater cathode, a grid, and an anode coated with a fluorescent phosphorous material. They can be driven by standard

50750
Fig. 7.1. Block diagram of a multiplexed display system

15 volt CMOS 7 -segment drivers, but external voltages must be applied to correctly bias the grid and to supply current to the heater filament. Multiplexing of these displays is quite straightforward.

Gas discharge displays produce a very bright orange glow which is sometimes filtered to appear orange/green in colour. A high drive voltage is needed, typically 180 V d.c., so special display driving i.c.s must be used. Multiplexing is more difficult than in the case of other displays, and normally requires the use of a number of different driver i.c.s for the whole display.

One of the newer display types is the liquid crystal, as seen in digital clocks, watches and calculators. Its main advantage over the other technologies is its low power consumption. Each display segment merely allows light to pass through it or blocks the light, it is not self illuminating, so virtually no power is consumed. To maintain contrast and give good life expectancy, there must be NO d.c. signal whatsoever across the display. A special form of a.c. drive is used, as shown in Fig. 7.2.

The divide-by-two circuit is added to ensure that the drive to the EX-OR gates and the backplane is exactly a square wave; if this were not so, there would be an overall d.c. component across the liquid crystal. When the segment input is at logic 1, the segment drive voltage and the backplane voltage are exactly 180° out of phase (i.e. the inverse of

E6752]
Fig. 7.2. Liquid crystal driving circuit
each other) so there is an overall a.c. voltage across the liquid crystal, resulting in the segment appearing dark. When the segment input is at logic 0 , the segment drive and the backplane are exactly in phase; there is no voltage across the liquid crystal and the segment remains transparent. This circuit arrangement is fairly straightforward, but again is ideally suited to incorporation within a larger i.c. For this reason, many complex i.c.s have their own built-in liquid crystal drive circuits. Multiplexing of liquid crystals is possible, but due to their very slow response time the frequency of operation of the mulitplex system must be kept low. As a result, the number of digits which can be multiplexed tends to be lower than with other display technologies.

There are yet more display types, for example the large displays seen in airports and stations, and the small incandescent 7 -segment displays often found in petrol pumps, but their use is more limited, and we won't go into it here. Formats other than 7 -segment are possible, of course; for example, the 16 -segment display, which permits the full alphabet to be displayed with good intelligibility. This is often seen in sophisticated test instruments, small computer terminals, supermarket checkouts, etc. This display is shown in Fig. 7.3. The 16 -segment format, and others giving various dot matrices, shapes, characters, etc., can all be controlled and multiplexed in similar ways to the 7 -segment. types. The use of them, however, is very specialised, so we won't be giving further consideration to it. We shall move on, instead, to the control of analogue signals by digital gates.

THE ANALOGUE TRANSMISSION GATE

The CMOS family is unique in having the ability to switch analogue signals on and off using digital controls. This is essentially due to the characteristics of the MOSFETS used to make up CMOS i.c.s which can be made to act as voltage controlled resistors over part of their operating range. When
an N-channel and a P-channel device are connected "back-to-back" in a circuit, any analogue voltage within the supply rails can be turned on and off; the gate can pass the analogue signal, or block it in the same way as a conventional mechanical switch. The diagrammatic representation of this gate is shown in Fig. 7.4. It's known as an "analogue switch", or "analogue transmission gate".

Note that the device is bi-directional; there is no statutory input or output terminal, and so signals can pass in both directions, again like a conventional switch. The "control" terminal is simply fed from a normal CMOS level, since it is an ordinary CMOS gate input.

DEGENERACY EFFECTS

To a circuit designer the analogue transmission gate can seem too good to be true! In reality it is a useful and versatile circuit element, so long as some basic facts and limitations of its use are observed. The voltage handling capability of the device is limited; analogue voltages must not exceed the supply rails. The current that may be passed through the device is limited to only a few milliamps. Ron, the effective series resistance of the switch, varies with the supply voltage and signal voltage. From an initial value of between 80 and 200 ohms, this variation of Ron with signal amplitude can cause distortion of the signal waveform; typically 0.4% at 1 kHz . The effective parallel capacitance, Cf, causes breakthrough of signals when the switch is in the "off" state; -50 dB at 1 MHz is typical.

Finally, there is the problem of "click breakthrough". Due to capacitive coupling between the control and the input/output terminals, a transient spike is fed into the analogue circuitry whenever the logic state of the control input is changed. This spike causes audible clicks in audio cir-

Fig. 7.3. The 16 -segment display format

Fig. 7.4. The Analogue transmission gate

Fig. 7.5. Audio input selector circuit
cuitry, and can give rise to errors and other problems in nonaudio systems.

Various design techniques can be used to get round these problems. For example, using the switch in series with fairly large values of résistance (10 k and 100 k) helps to prevent the value and the variation of Ron from affecting the signal amplitude significantly. Fig. 7.5 shows a typical audio input selector circuit, for controlling the inputs to an audio mixer or pre-amplifier. Note that the supplies to the entire logic system should be: $\mathrm{Vss}=-5 \mathrm{~V}, \mathrm{Vdd}=+5 \mathrm{~V}$. This ensures that symmetrical analogue signals about zero volts can be correctly handled by the circuitry.

Because the transmission gates are fed directly into the virtual earth input of the op-amp, which is a very low impedance point, the click breakthrough is minimised; for most audio systems it will be reduced to an unobtrusive level. If minimisation of signal breakthrough in the "off" condition is the most important parameter, then using two switches with their controls inverted is the norm, as shown in Fig. 7.6. This ensures very effective muting of signals in the off state, i.e. when the control is at logic 0 .

Fig. 7.6. Circuit to minimise signal breakthrough
The most widely used CMOS analogue switches are the 4016 and the 4066, the latter having better performance but at a slightly higher cost. These are both "Quad" switches i.e. they have four independent switches in the one package. The 4416 is another device, which has its four switches internally arranged to provide the format of a double pole, double throw switch. Other CMOS analogue switches are available, specifically designed to achieve extremely low Ron values and much improved overall performance. They are, however, very expensive; several pounds per i.c. as opposed to 40 to 60 pence per i.c. for the simpler CMOS devices, so they tend only to be used in more specialised and demanding applications. A variety of analogue multiplexers are also available working in a very similar way to the digital multiplex systems described earlier. The 4051, 4052 and 4053 are all popular, and have built in level shifters to allow the logic control levels to be different to the analogue supply voltages, for example, 0 to +5 volt logic could be used, while the analogue signal supplies could be +5 V and -5 V . The 4067 has a more conventional supply arrangement, but is a very large (24 pin) device, with a total of 16 analogue channeis; again, a fairly popular device for larger applications.

DIGITAL TO ANALOGUE CONVERSION

By using analogue switches and a combination of resistors a binary number can be used to control the amplitude of an analogue voltage. If the circuitry is arranged such that the analogue voltage is exactly proportional to the value of that binary number, then we have an accurate "Digital to Analogue" or "D to A " converter. This can be of considerable use to us, as it enables purely digital signals and codes to be converted into analogue levels which can then feed into other circuitry and systems. For example, digital circuitry could be used to generate a series of numbers which increase and decrease in size continuously in an accurate and controlled way. By using a D to A converter, this could be turned into a digitally controlled sine-wave,
which could then be fed into an audio system for test purposes.

There are many different types of D to A converter, each with its own particular advantages and disadvantages, but to illustrate the principles involved Fig. 7.7 shows one of the most common arrangements, the "Binary Ladder" (a 3-bit device is shown for simplicity). The reference voltage generator is a very stable, temperature compensated voltage source, producing a precise output voltage level; for the purposes of this example, let us say that it produces 8 volts. The voltages given out by the circuit are shown in Table 1. Only two resistor values are used, R and $2 R$; these are usually high stability close tolerance resistors, since their accuracy largely determines the accuracy of the whole conversion. The op-amp on the output prevents the other circuitry, which is fed by the converter, from having any loading effect on the ladder.

[E6757]
Fig. 7.7. The binary ladder \mathbf{D} to \mathbf{A} converter
TABLE 1

E070
Not all D to A converters use CMOS switches. To achieve fast operating speed and high accuracy, other switch circuitry is used, often PMOS, or even conventional bipolar transistor switching. Most D to A converters come as a complete i.c., with or without a precision voltage reference, so their design and operation is a very straightforward process in most applications.

ANALOGUE TO DIGITAL CONVERSION

This is a more complex business than D to A conversion, and is a more widely used technique. A to Ds are found in all digital multimeters and voltmeters, as well as in instrumentation; test equipment, computer interfaces, etc. Some techniques use voltage controlled square wave oscillators, with the analogue voltage controlling the oscillator frequency, and the digital circuitry measuring that frequency. This design, however, is fairly crude, and is usually slow and inaccurate.

The most basic system is the "comparison" A to D converter shown in Fig. 7.8. Initially, the counter is at zero and the output of the D to A converter is 0 volts. When a positive analogue input is applied, the comparator output goes high, i.e. logic 1. This enables the NAND gate, which then feeds clock pulses to the counter, causing it to count upwards. This count is fed to a D to A converter, which re-converts it back to an analogue voltage and feeds it to the other comparator input. When the D to A converter output becomes

E6750
Fig.7.8. The 'Comparison" A to D converter
marginally higher in voltage then the analogue input, the output of the comparator goes low, i.e. logic 0 , so the clock pulses are inhibited from feeding the counter. The counter output is now the final converted digital output; it can be latched into the following circuitry; the counter re-set, and the process can start again. Unfortunately, this is a very slow way to convert from Analogue to Digital. The number of clock pulses needed for a large signal levels is considerable, so it can take a relatively long time to perform the conversion. Surprisingly, one of the fastest generally used techniques for conversion is an adaptation of the same principle:

THE SUCCESSIVE APPROXIMATION CONVERTER

The counter in a "comparison" A to D converter is replaced by a complex set of circuitry which effectively makes a series of "guesses" as to the final value of the converted digital number. After each guess had been made, the output of the comparator is examined, and the logic state of the comparator output determines the next guess to be made. For example, to convert an input of 5 volts to the binary number 101:

1) Guess that the most significant bit (MSB) is 1 , so set input to the D to A to be 100 .
2) Output of comparator is still logic 1, so our final number must be higher than 100.
3) Guess that the next most significant bit (NMSB) is 1 , so set input to the D to A to be 110 .
4) Output of comparator goes to logic 0 , so our final number must be lower than this.
5) The final number must be larger than 100, yet smaller than 110 , so the answer is 101.
This may appear rather lengthy and complex, but for large numbers of bits it is a very effective and fast system.

SLOPE INTEGRATION

This is the final type of A to D conversion that we shall consider, and is the most widely used technique. See Fig. 7.9. A "start" signal causes a voltage ramp to be generated by the ramp generator circuitry, which starts at a negative voltage and passes through zero volts. As zero is passed through, comparator 2 feeds a pulse to the latch, causing the following NAND gate to be enabled, which then feeds the clock pulses to the up counter. When the analogue input level is reached by the ramp, comparator 1 passes a pulse to the other latch input, causing the NAND gate to be disabled and preventing any further counting from taking place. The digital output is now proportional to the time " t " taken for the ramp voltage to pass from 0 volts to the analogue input voltage. For a "straight line" voltage ramp slope, the digital output is proportional to the analogue input voltage.

The technique is not very fast, but can be made quite accurate by careful circuit design. A further refinement uses "dual slope integration"; a second ramp is generated after the first, travelling in the opposite direction back towards zero. The counting is done during this second ramp period, which helps to remove effects caused by noise and interference on the analogue input.

As in the case of D to A converters, the majority of A to D's are available in i.c. form, with only a small number of external components needed to complete the circuit. The use of all these different types of converter is rather complex, and further reading is essential prior to the design of any system in which such a circuit is to be used; there are many hidden requirements and conditions which must be met. For example, the input voltage must be held constant during the conversion from analogue to digital, necessitating the use of a "sample and hold" circuit. These details are beyond the scope of this series, however, since we are mainly concerned with the digital side of the process!

NEXT MONTH:

Next month, in the final article of the series, we look further into LS1, and into the realm of the microprocessor and microcomputer. We cover the forefront of digital circuit technology, and the changes that we can expect to see in the next few years.

Fig. 7.9. The singic slope integration A to D converter

SAD NEWS

President Ronald Reagan's budget has severely curtailed some of the most important activities of the American Space Programme. Now, in addition to withdrawing from the Halley Comet original programme, there comes the news that three of the Deep Space Tracking aerials, the 85 ft diameter dishes, will be shut down. Three of the 210 ft dishes will continue to monitor data from Voyagers 1 and 2, Helios 2, the Viking 1 lander on Mars and Pioneers 6 to 12. There will also be included the Venus orbiter, which is still returning data from above the atmopshere of the planet. This is at least something, but still there will be a 30% reduction in data acquisition capability.

That this preserved the Shuttle from being set back is to be regarded as good, for there is more need than ever now to move forward in space. Fortunately, the next Shuttle 099 is 80% complete. The experience gained from the two missions of the model 102 , now known as Columbia, has contributed much to bringing the 099 along. This vehicle was originally a test-bed facility and only recently, in order to reduce the time scale, the vehicle was judged fit to take to operational level. This means that the target dates for 1982 can be met.

Orbiter 099 will be the first of the vehicles to be fitted with a head-up display. These instruments developed by Kaiser Electronics will enable the flight crews to have information as to approach, that is the altitude, airspeed and heading displayed in front of the commander and pilot. Each will have his own independent equipment. These are mounted in the shuttle avionics bay. A small screen about 6 inches square gives the information. The first instruments will reach the Orbiter 099 assembly in January 1982. Each of the succeeding Orbiters, as well as Columbia, will also be equipped in the same way.

Orbiter 103 will have a new type of thermal protection. This results from the development of a new material FRCI-12. This is a mixture
of 75% silica fibre and 22% aluminium borosilicate with a density of 12 lb per cubic foot. The strength of these new tiles is said to equal those previously used with a great saving in weight. The new tiles will weigh just over half that of the present ones. The performance is judged to be as good. When considered overall, the weight benefit could be as great as 1200 lb

THE THIRD MISSION OF COLUMBIA

The next date for Columbia to go aloft is expected to be in early March 1982. This mission is planned for up to seven days. In addition to extending the length of the mission, Columbia will have a greatly increased workload. A number of new services are to be monitored in operation.
The launch will, as in the previous flights, be from the Kennedy Space Centre in Florida, and the return landing will again be at the Dryden Flight Research Facility, the dry lake bed in California. The major object of the third flight will be to check out the vehicle's capabilities and flight characteristics. In addition, this flight will carry more scientific and technical experiments than last flight.
On this flight there will be an innovation which will give a very wide range of use to independent business. It will rent space on the shuttle to small businesses, individual and small laboratories. These customers will have to enclose their packages in such a way that can withstand exposure to weightlessness and to the environment. The smallest space likely to be offered is about 0.135 cu . metre, and will cost about 3,000 dollars. Up to 80 kilograms could be accommodated in that volume. Already more than 250 applications have been received from various individuals and organisations. This includes some countries outside the United States. NASA has a name for this new venture and is calling it the GetAway Special.

One of these will, in fact, be a container which holds the required instrumentation to measure temperature, acceleration, vibration and noise. Its purpose is to discover what kind of conditions the Get-Away Specials may have to endure, orbital flight and re-entry into the atmosphere and subsequent landing, in order that the customers can prepare their packages suitably. This mission is the third phase of the planned life of the Shuttle, and af ter this third mission it will 'go operational' This first operational flight is expected to be scheduled for late 1982. From this time, frequent flights will be offered for the placing of satellites, for communications, weather observation, navigation and earth resources, into earth orbit.

The Mission Staff Engineer Horace E. Whitacre said that they were adopting a 'building block approach' which means that at each successive launch the demands made on the vehicle are increased. For example, the launch trajectories already used have indicated that higher payloads could be used. Of course, this will increase the dynamic pressures.

On the third flight the manipulator arm will be used to move a load with its grasping device. While the vehicle is in orbit at about 240 kilometres above the Earth the arm will
lift out an instrument called the Induced Environmental Contamination Monitor from the shuttle cargo bay and move it to various positions above, below and at different places on the body of the shuttle and then return it to the parking bay. This exercise, which will take about an hour and a half, will test the ability of the arm which weighs, or would weigh, on Earth 360 kilogrammes, to manipulate loads with precision. The exercise will enable the ICEM to detect pollution such as that from engine exhaust.

Among other experiments will be that which requires the nose of the shuttle to be turned to face the Sun. For 80 hours this will be continued, so that extremely high temperatures will be met. For 26 hours the cargo bay will be exposed to the Sun and then for 30 hours the tail also. Thus the extreme heat at the side facing the Sun will experience stresses throughout the frame for in each case the opposite side will become intensely cold.

It is necessary to know these things since the cargo doors must operate in spite of the uneven heat and must be able to be closed properly before coming back through the atmosphere to land. It might be necessary to do this in a hurry. The vehicle would not be expected to survive a re-entry with the doors open. These are but the preliminaries. A very extensive programme is scheduled for this 7 day trip. The experiments will include:

A plant lignification test. This will use seedlings of oats, peas, pine and cucumbers to discover how the woody components and plant tissues react to weightlessness.

Experiments to check the electrical and magnetic field effects and the radiation from solar flares.

Some biological experiments to determine whether it is feasible to separate biological substances in weightless conditions.

A special experiment of value to phar macy where latex spheres can be made to much closer tolerances than on Earth. When these are added to medicines they can greatly improve their efficacy. The spheres can be made larger and more accurately in weightless conditions.
Another point of interest about the launch is that it has been decided to change the colour of some of the paint instead of the usual white protection paint over the brown insulation of the external fuel tank. Eliminating most of the white paint will not harm the insulation but will save 270 kilogrammes of weight. The flight engineers on the project are anxious to have a cross wind and so the next flight after Columbia in March may be scheduled to land at the Kennedy Space Centre in Florida. If the conditions are favourable on the return of the next shuttle a cross wind landing might be at tempted in California.

The future is bright for this new era of space activities and already plans are so advanced in tentative form that these have been considered even as far forward as the 40 th mission. The fifth flight is expected to carry a double crew, two as pilots and two as mission Specialists. Some of those who have waited long in the queue, must be seeing their dreams coming closer to realisation. Perhaps America will have 'First Woman in Space'

TV
 CAMERA PHILLIP GAFFNEY

THE SOURCE of signal to be amplified by the video board is taken from a vidicon tube. This vacuum device produces an electrical signal, the amplitude of which is proportional to light focussed onto it by the camera lens. In order to explain the design parameters of the video board, it is first necessary to describe the vidicon tube in some detail as this component is the heart of the camera. See Fig. 2.1.

In essence, the vidicon comprises a light sensitive element and an electron gun housed in an evacuated glass tube. The camera lens is used to focus light from the scene being televised onto the light sensitive target of the vidicon tube. The vidicon's function is to convert this image into an electrical signal, suitable for processing by the rest of the camera.

The light sensitive element comprises a transparent conductive coating deposited on the inner surface of the tube faceplate. This layer is coated with a thin film of photoconductive material. A target ring is fitted to the outer edge of the faceplate and is connected to one side of the photoconductive layer via the transparent coating. The other side of the layer is scanned by a low velocity electron beam. The layer may be regarded as being composed of many dlscrete capacitors each one insulated from its neighbour, but each having one of its plates connected to the target ring via the transparent coating. The other side of each capacitor is left floating.

The target is biased to a positive potential and the electron beam is made to scan the floating side of all the capacitors. There is thus an electron flow which charges up all the individual capacitors. The individual discharge times of each capacitor will depend on the light falling. on it, due to
the photo-conductive nature of the target material. The greater the illumination, the lower the internal resistance, and the faster the discharge rate.

Therefore, each subsequent scanning will have to supply charge directly proportional in magnitude to the level of light falling on the faceplate between scans. This varying signal, as the electron beam scans all the capacitors, is sampled across a load and used as the video signal.

The electron beam is produced by an electron gun (comprising cathode, control grid and anode). The mesh anode is a fine wire mesh placed closely to, and parallel with the photo-sensitive layer to slow the electron beam down, reducing secondary emission and improving resolution.

The output of the vidicon may be considered as a current source (i.e. having infinite shunt resistance). Conversion of signal current to voltage is then achieved by passing $I_{\text {t }}$ (target current) through R_{i} (input resistance of the video amplifier). Ohm's law $V_{t}=1, \times R_{i}$, therefore, the magnitude of the voltage available to the video amplifier will be proportional to the value of R_{1}. However, there is also a shunt capacitance C_{1} which comprises the output capacitance of the vidicon and the input capacitance of the video amplifier. C_{9} will in conjunction with R_{1} set the maximum frequency response of the input network. See Fig. 2.2.

Essentially C_{i} is of fixed value, and therefore R has to be limited to a value giving $5-6 \mathrm{mHz}$ required for 625 line operation.

VIDEO AMPLIFIER CIRCUIT DESCRIPTION

The signal from the target of the vidicon is fed, via C2 which isolates the d.c. potential applied to the target from

the following stages, to the gate of a high frequency field effect transistor TR1. This transistor is used in the common source mode to provide a low impedance output to the next stage. The f.e.t. has a high input impedance, which prevents any undue loading of the vidicon's output, as with the high impedance associated with the vidicon, this would lead to degradation of the signal quality. See Fig. 2.4.

The drain to TR1 is a.c. coupled to the emitter of TR2 a common base stage by C4. This stage has a low input impedance together with a high output impedance giving a voltage gain of about 100 . The common base configuration, because of its low capacitance between collector and emitter is very stable at high frequencies relative to the common emitter. mode. The output of this stage is directly coupled to an emitter follower buffer stage-(high input impedance, low output impedance) to drive the next stage TR4 and the automatic light control circuitry, see Fig. 2.3. TR4 has a frequency peaking network as its emitter load, peaking its response for high frequencies. R11, C6 and R12 modify the phase response of the circuit. This stage provides an overall attenuation of the signal by a factor of four. TR5 and TR6 are d.c. coupled and are used to provide current gain and set the output impedance to a value suitable for the black-level clamp built around TR7. This field effect transistor ensures that at the end of a line the video signal is returned to blanking level. This N -channel f.e.t. can be likened to a switch which is normally on, but which may be biased off by applying a slightly negative voltage to the gate relative to the source. In our camera, the gate is supplied with line blanking pulses $12 \mu \mathrm{~s}$ wide. Therefore, TR7 is turned on for $12 \mu \mathrm{~s}$ at the end of each line. This forces the base of TR8 to the dc level preset by the pedestal control, hence at the end of each line, the video signal is held at blanking level to allow the later insertion of synchronisation pulses. The video signal buffered by TR8 is then mixed with line and field (mixed) sync. pulses. Diode D1 acts as a d.c. restorer and level shifter, resistors R, R26 and R28 are responsible for inserting the mixed sync. pulses from the logic board. These pulses are connected via the three way ribbon cable which runs between the video and logic printed circuit boards.

The d.c. coupled output pair TR9 and TR10 provide the necessary amplification and impedance matching to give either standard CCIR video at 750 hm impedance, or direct drive to the UHF modulator unit which generates a modulated UHF carrier at around channel 36.

Throughout the video board, each stage has been separately decoupled with resistor/capacitor networks to improve stability and reduce interference on the video output.

The video board also carries the low voltage regulator and smoothing capacitor and the automatic light control circuit.

The regulator is extremely simple as a monolithic integrated circuit is used, requiring only two small capacitors to form a highly efficient low voltage stabiliser. A 7815 IC is used, giving a 15 V supply rail which is used to run the video board and logic circuits. This regulator is bolted to one of the aluminium support bars, which conducts heat away from it.

CONSTRUCTION

Once the p.c.b. is assembled (see Figs. 2.5 and 2.6) and the two aluminium bars attached, remove the cover from the UHF modulator and mount the modulator as shown, inserting the two wires into the correct holes.

Turn the board over, and whilst holding the modulator in position solder the leads and the earth tags. Refit the modulator cover.

The following components are mounted on the reverse side of the p.c:b.:
R52 5 k preset
R23 5 k preset
R27 5k preset
R40 5 k preset
C16 1 μ 35V
Fig. 2.2. Equivalent input network

Fig. 2.3. Automatic light control circuit

Fig. 2.4. Video amplifier circuit R200 and C97 are wired in parallel in the line blanking lead, but not shown here

Fig. 2.5. Video Board p.c.b. (actual size)
Fig. 2.6. Video Board component layout

Two wire links must be soldered across points 1-1 and 22 in Fig. 2.6. The link 2-2 needs to be insulated wire, and link 1-1 must be raised clear of the p.c.b. tracks.

Strip, twist and solder the 10 -way ribbon cable to the insulated connectors. Screw the 7815 regulator to the aluminium bar using a 5 mm screw. Fit the copper screen over the components using a nut and washer on each of S1, S2, S3 and S4.

LOGIC BOARD

The logic board in the Seescan camera can be conveniently divided into separate functional areas. First, is the digital processing logic, this comprises the heart of the camera electronics, creating all the necessary timing and synchronisation pulses required by the rest of the camera. The remainder of the board carries the necessary electronics for scanning the beam from side to side and up and down, and a constant current regulator for driving the vidicon focus coil. In the following text, each part of the board will be dealt with separately, and it will be shown how the individual parts fit together and perform the task of controlling the vidicon tube to produce the video signal.

DIGITAL LOGIC

This camera uses nine C-MOS digital integrated circuits in its timing circuits, see Fig. 2.7. In the basic camera, the master oscillator used is a simple astable oscillator. Though the stability is not good when compared to a crystal oscillator, it is quite satisfactory for domestic purposes used with a TV receiver, and its very low cost dictated its use in this project. Anti-phase ($18 \emptyset$ degrees) square waves at twice line frequency ($2 \times 15,625 \mathrm{~Hz}$) are available from pins $1 \emptyset$ and 3 of IC1. The actual frequency may be adjusted using VR62; other television scanning standards may be accommodated
by adjusting this control and changing C29. One half of IC4 a dual type D flip-flop is wired as a divide by two counter, the output being taken from pins 9 and 12 . This $15,625 \mathrm{~Hz}$ square wave is fed to IC9 wired as a divide by two counter, which provides outputs 180 degrees out of phase at half line frequency from pins 1 and 2 which are used to drive the inverter. The line frequency square waves are also taken to IC6, a dual monostable where the line blanking interval of 12 micro-seconds is formed by the time constant set by $C 33 / R 68$. The other half of IC6 is triggered off the leading edge of this pulse and creates a two microsecond delay, programmed by C35/R69. The falling edge of this pulse from pin 7 IC6 is used to trigger a third monostable-half of IC7 to create the line sync. pulse of four microseconds duration. Thus, the overall wave forms produced are shown in Fig. 2.10; the line sync. pulse fitting correctly within the line blanking interval.

The twice-line frequency output from the master oscillator pin 3 is taken to the twelve stage counter, IC2 (4040). IC3, a four input nand gate, is wired to decode count 624. At the next positive going edge of the clock, IC4, a type D flip-flop transfers the high decoded at state 624 to its output at pin 2. Thus the combination of IC3 and IC4 decodes count 625 and creates a negative going reset pulse 32 microseconds long which is used to reset the counter IC2. Thus for ever 625 pulses applied to IC2, 3 and 4, one output pulse of 32 microseconds duration is created. As the input frequency from the master clock was $2 \times 15,625 \mathrm{~Hz}$ the output frequency is $5 \emptyset \mathrm{~Hz}$-i.e. frame repetition rate. This signal is applied to IC's 5 and 7, and in the same way as in the line sync. circuits, forms the field blanking and sync. signals. R65/C3 \varnothing set the duration of the blanking interval, R66/C31, the equalisation delay, and R67/R32, the field blanking period.

[5073]

Negative going line and field blanking signals from pin 9 IC6 and pin 9 IC5 respectively are mixed together in the second half of IC3. The output from this gate is positive going mixed blanking, and this is inverted by one quarter of IC8 (pins 8, 9 and 10) to provide negative going mixed blanking required by the cathode blanking circuits.

Positive going line and field sync. pulses are taken directly from the outputs of IC's 5 and 7. Three gates from IC8 are used to combine these sync. signals to form a mixed sync. output with negative going line sync. pulses superimposed on the field pulses to maintain line scanning during the field sync. pulse interval to prevent jitter. The CMOS logic circuitry is decoupled from the main supply and is run at 8 V 2 to minimise radiation and ensure long reliable service.

LINE SCAN CIRCUITS

The line scan stage is built around transistors TR19 and TR2 \emptyset, all the components being mounted on the logic printed circuit board. See Fig. 2.8. TR19 is the driver transistor which is switched into saturation or is cut off by the output of the CMOS logic. The line sync pulses have a duration of 4 microseconds, and drive the collector of TR19 between supply rails. R88 couples this to the gate of TR2 \emptyset, a VMOS output transistor. The collector load of TR2 \emptyset is made up of R91, R47, L4 and the scan coils L2. Adjustment of R47 allows control of line amplitude (width). C5 \emptyset provides a signal earth at line frequency to prevent excessive current being drawn through R47. During the flyback period (i.e. during a sync pulse), the e.m.f. in the dummy line load $L 4$ collapses creating a large voltage spike $>8 \emptyset \mathrm{~V}$. As this voltage swings below the zero line, D4 conducts, protecting TR2 \varnothing and finishing the line scan. C23 provides d.c. isolation from the scan coils which would cause a shift in picture position and couples the scan energy to the line coils, L2.

FIELD OUTPUT CIRCUIT

Switch TR21 is non-conducting in the absense of sync. pulses, and capacitor $C 19$, a $4 \mu 7$ tantalum is allowed to charge up via the constant current generator built around TR22, D3. See Fig. 2.9. The setting of R43 determines the rate at which C 19 is charged. As this capacitor is charging from a constant current source, the voltage across it will rise linearly with time until a sync. pulse arrives, when it will be very rapidly discharged by TR2 1 conducting to ground. F.e.t. TR23 is wired as a source follower, characterised by a very high input impedance and low output impedance. It therefore serves to buffer the saw-tooth ramp, high im-

Fig. 2.9. Field output

pedance signal on C19 into the low impedance base of the output transistor TR24. This transistor is mounted on one of the aluminium support bars to conduct away heat.

Fig. 2.10. Generation of line sync. pulse

Fig. 2.11. Field scan waveforms

MAGNETIC FOCUS CIRCUIT

Transistor TR18 is configured as a constant current source for the magnetic focus coil, the magnitude of the current being set by the position of R6 0 (magnetic focus preset). The 1 N418 diode wired in the base, is held in close thermal contact with the transistor and is used to offset thermal drift. A typical value of focus current through the scan coils would be 95 mA .

NEXT MONTH: Assembly, setting up.

Fig. 2.12. Magnetic focus circuit

Fig. 2.13. Logic Board p.c.b. (actual size)

Fig. 2.14. Logic Board component layout

COMPONENTS		$R 67$	330 k	
LOGIC BOARD		R68	150k	
Potentiometers		R70	18k	
VR43, VR62	5 k cermet preset (2 off)	R71-74, R95	3 k 3	
VR47, VR58	500 cermet preset (2 off)	R87	1 k 5	
Capacitors		R88	560	
C1	10 n ceramic	R91	150	
C2	2 n 2 ceramic	894	680	w.w.
C19	$4 \mu 7 / 35 \mathrm{~V}$ tant.	R96	1 k 5	
C20	$470 \mu / 25 \mathrm{~V}$ elect.	Transistors and Diodes		
C21	$22 \mu / 16 \mathrm{~V}$ tant.	D3		5V6 Zener
C23	$100 \mu / 10 \mathrm{~V}$ elect.	D4		BY206
C29	470p polystyrene	D5		8 V 2 Zener
C30. C31, C32	3300 p polystyrene	D6. D7		1 N4001
C33-35	100p	018		1N4148
C36	10 n polyester	TR13, TR19, T	1. TR25	BC182
C51 C 52	$100 \mu / 10 \mathrm{~V}$ tant.	TR18		BD132
C53	$1 \mu / 35 \mathrm{~V}$ tant.	TR20		VN66AF f.e.t.
Resistors		TR22		BC212 2N5245
R41	5 k 6	TR24		BD131
R42	8k2	Integrated C	nits	
R44	10k			
R45, R94A	100 (2 off)	IC1, IC8	4011B	
R46, R86	1 k (2 off)	IC2	40408	
R59	470	IC3	4012B	
R60	1 k 8	IC4, IC9	4013B	
R61	47	IC5-7	4528B	
R63	27k	Miscellaneou		
R64	100k	Printed Circuil		
R65	2 M 2	Molex conne		
R66	390k	Varclco conn		

THE Base and Mobile Adaptor is housed in a similar enclosure to that used for the basic portable Ranger transceiver. The majority of the components are mounted on a single sided p.c.b. with the controls, input and output sockets, I.e.d.s and meter mounted on an aluminium front panel. The p.c.b. layout is, in common with that used for the Ranger transceiver, quite critical and no attempt should be made to use any form of construction since this will almost certainly degrade the stability of the unit. Care should also be taken to ensure the correct placement and orientation of the components on the p.c.b. The p.c.b. layout viewed from the copper foil side is shown in Fig. 2.1 together with the corresponding component layout given in Fig. 2.2. It is recommended that components be fitted to the p.c.b. in the following order:

1. Inductors and transformers
2. Variable capacitors and resistor
3. Fixed resistors
4. Fixed capacitors
5. Transistors, diodes, and integrated circuit
6. Test points and links
7. Relay

Winding data for the inductors is given in the Table 1. L5 is a choke which may conveniently be wound on the body of 1 W carbon resistor and the exact diameter is not critical. TR2

INDUCTANCE DATA
L4 10uH RF choke (ITT SC 10/10)
$L 530$ turns 30 s.w.g. enamelled copper wire closewound on a 10k 1 W carbon resistor (i.d. approx 4 mm)
4616 turns 18 s.w.g. enamelled copper wire closewound, no former, i.d. 7 mm , winding length approx 18 mm .

TABLE 1

CONSTRUCTIONAL DETAILS L5:
and IC1 must be mounted on a heatsink, the constructional details for which are given in Fig. 2.3. Note that TR2 requires an insulating kit which consists of a plastic bush and mica washer. This is needed in order to prevent contact between the collector tab and heatsink which should be earthed by soldering its two fixing nuts to the copper foil earth plane of the p.c.b. Once the p.c.b. assembly is complete, both sides of

ALL OIMENSIONS IN MM
MATERIAL 16 S.W.G. ALUMINIUM
ALL HOLES ARE 2.5MM DIAMETER
EA311
Fig. 2.3. Constructional details of the heatsink
the board should be carefully examined. The copper foil side should be checked for dry joints, broken or damaged tracks, and solder splashes. The component side should be checked for the correct orientation of components, paying particular attention to electrolytic capacitors, diodes and transistors. The p.c.b. should then be fixed to the base of the case by means of four self-tapping screws which locate with the moulded pillars. The controls, l.e.d.s, meter, input and output sockets should then be mounted on the front panel. Once complete, this is located in the recessed slot in the base of the case. The ancillary socket and the d.c. input connector are then respectively mounted in the rear and side walls of

[568)
Fig. 2.1 P.c.b. design for the Base Station

Fig. 2.2. Component layout

Fig. 2.4. Wiring diagram for the Base Station
the case. The front panel interconnections should then be wired to the p.c.b. taking care to keep all connecting wires as short and direct as possible. 50 ohm coaxial cable must be used for connections to the input and output sockets, SK4 and SK5, respectively. Note that it is essential to ensure a good earth connection to the front panel via the braid of the two coaxial cables. The ancillary and d.c. input sockets can then be wired to the p.c.b. front panel again taking care to keep the wiring as direct and short as possible. The complete wiring diagram for the Base and Mobile Adaptor is shown in Fig. 2.4.

MODIFICATIONS TO THE RANGER ANCILLARY SOCKET

Some early versions of the Ranger were supplied with a 5 -pin DIN socket for SK203. This is, or course, quite satisfactory for an external d.c. input but, where the Ranger is to be used in conjunction with the Base and Mobile Adaptor, it should now be replaced by a 7 -pin socket. The original connections for SK2O3 (using a 6 -pin DIN socket) were shown in the circuit diagram, Fig. 1.2, on pages 44 and 55 of September PE. the following changes are necessary:
(a) since the 'scan' facility is not required, pin 1 should no longer be connected to C124/R115. Instead it should be taken to the output of the S-meter module (see later section). If the S-meter facility is not required and the module is not fitted, pin- 1 should be left unconnected.
(b) To increase the level of audio to the base station and effectively reduce the level of audio from the Ranger's own internal loudspeaker without necessitating switching it out of circuit, pin-3 should be disconnected from the junction of R120 and R121 and taken instead to the 'live' side of the loudspeaker. Where an external speaker socket has been fit-
ted connection can be conveniently made to this point, alternatively it may be taken to the 'LS output' on the p.c.b. (pin nearest the centre of the p.c.b.). The internal loudspeaker should not be disconnected since this will render the unit inoperative in the portable mode. There are no changes to the other pins (2, 4,5, and 6) but, if these have not been previously wired they must now be connected to the appropriate points. In any event it would be beneficial to check the other connections to SK203 and, to recapitulate, these are listed below:-

Pin Number	Connection
1	Output of S-meter module (where fitted)
2	Common OV or 'GND') see Fig. 2.7
3	LS output (+ ve) \quad see Fig. 2.7
4	+12 V on 'receive' $\quad \begin{aligned} & \text { on page } 53 \\ & \text { of October }\end{aligned}$
5	+12 V on 'transmit' \quad PE
6	+12V input \quad PE
7	n.c.

MAINS POWER UNIT

Where an a.c. mains supply is available the Base and Mobile Adaptor can derive its d.c. input from the simple power unit shown in Fig. 2.5. The transformer should be

Fig. 2.5. Circuit diagram of the main power unit
rated at 12 V and the rectifier should be a plastic encapsulated 2A bridge. The transformer and rectifier can be conveniently mounted in a moulded ABS case measuring approximately $57 \times 92 \times 63 \mathrm{~mm}$ which incorporates pins so that it will plug directly into a 13A mains outlet. A kit of parts (including transformer, case, rectifier and connecting lead) is available from Autumn Products as an optional accessory for the Base Station unit.
NEXT MONTH: Testing and alignment

polnits ditisine

SPACE EVADERS (DECEMBER 1981)

The outline of TR4 was shown incorrectly in Fig. 4. The correct outline is shown in Fig. 1 opposite.

66777

In the circuit diagram (Fig. 2) pins 9 and 10 of IC15 should be reversed. Pin 10 should be connected to the 11.5 V rail and pin 9 should go to pin 11 of IC18.

In order to reverse pins 9 and 10 of IC15 the two links in Fig. 6 should be altered as shown in Fig. 2. The positive end of C18 should be connected to IC15 pin 16.

ON SALE NOW!

Our book PE Popular Projects containing a selection of 19 popular projects is now available. The book costs $£ 1.25$ from retail outlets and is also available for $£ 1.50$, UK post paid, or $£ 1.80$ overseas surface post paid, from Post Sales Department (PE Popular Projects), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF.
 as shown.

COMPUTER USER AIDS

APPROVED VIDEO GENIE

 DEALERS

We now stock the Superb new GENIE I computer. With all the features that make it one of the best value for money machines on the market.

* Extended Basic Including Renumber
* Full upper and lower case
- Internal Sound unit
- Machine language monitor
- 16K Ram, 12 K Rom
* Fully TRS80 software Compatible

PRINTERS FROM
A range of the best and most popular printers all at greatly reduced prices. Many include FREE paper and FREE delivery to mainland UK.

* Epsom MX80 FT and T
* Epson MX82 and MX100
* OKI Microline 80. 82 a and 83a
* Range of interfaces for PET APPLE, UK101 etc.
* Paper just $£ 15.00$ per 2000 sheets Inc VAT
* Contact us now for the lowest possible prices.

WE ALSO STOCK

$2114-£ 1.00+$ VAT	8T28 Buffers $£ 1.00+$ VAT
$4116-£ 1.00+$ VAT	C12 tapes $£ 3.50+$ VAT
$2716-£ 2.70+$ VAT	(87p P\&P) per 10
$2732-£ 5.10+$ VAT	UK101 Graphics Board
40 pin jumper $£ 5.20+$ VAT	$£ 45.00+$ VAT

MAIL ORDER or why not call into our shop in Romford. We are open Monday to Friday 9-6 p.m.
14 CARLTON ROAD, ROMFORD, ESSEX 0708-64954

WHEN recording and editing start by clearing the sequence and then enter the edit mode. Once a position has been reached that one wishes to remember, simply press INSERT. Suppose that you insert three or four different positions. Each time you now press STEP- the robot will automatically move back to the previous position until it is at the first position entered. Similarly, STEP + allows one to step forward through the sequence.

The DELETE button deletes the current event from the sequence, and the robot will move on to the next position in the sequence. If one has just deleted the last event in the sequence, the robot cannot move to a subsequent event, so in this special case it will move to the previous event.

DELETE and INSERT may be used to correct mistakes in a sequence. Insert always inserts AFTER the current position.

If one enters edit mode on a sequence that already has a recording in it, the robot will move initially to the first event in the sequence.

It is sometimes useful to be able to make the robot wait for a while at the end of a move: to achieve this the WAIT button should be pressed a number of times before pressing INSERT to insert the event. On replay, each pressing of WAIT will generate approximately half a second wait signified by a warbled bleep (up to 255 waits per event may be recorded).

MEMORY FULL WARNING

There are 32 steps available in each sequence store, when there are less than 8 steps left in the current sequence, the memory warning LED will light (bottom l.e.d.).

PLAY

To play the current sequence once, simply press PLAY. The green l.e.d. will light in play mode.

To repeatedly play a sequence over and over, press LOOP.

PAUSE

To make the robot stop in either play or repeat-play modes, press PAUSE: The "hands-up" symbol will be displayed, and the robot will stop; a second pressing will allow the robot to continue its sequence from where it left off.

If you do not want the robot to continue from where it left off, the RESET button can be used instead to escape from play mode

MOBILE CONTROL

To take manual control of the drive motors on the mobile version of the robot, press the MOTOR button. Mobile control will be signified by all three l.e.d.s being on. In this mode the slider acts as a seven position speed and forward/reverse control, whilst the rotary pot. acts like a steering wheel.

HOW THE KEYBOARD DATA IS SENT

The data coming from the keyboard is encoded into a serial stream of 56 bits with a gap of 8 bits transmitted serially about 10 times a second. All the data is encoded in the form of thin pulses. At the start of each bit time a 'marker' pulse is sent. If the bit to be transmitted is a ' 1 ', a second pulse is sent exactly Half way through the bit time, if the bit is a 0 , no such second pulse is sent. This method of encoding is used since it enables direct compatibility with a remote infra-red link where the transmission is in the form of thin pulses to enable the transmitter infra-red diodes to be pulsed with a high power without excessive average current drain from the battery.

Fig. 4.1. Direct solenoid controller, for simple manual operation of the robots

Constructor's Note

Complete kit of parts for this project can be obtained from Powertran Cybernetics, Portway Industrial Estate, Andover, Hants SP10 3WN. \& Andover (0264) 64455.

Some sample prices are as follows
Genesis M101 4 axis model (excluding wheel base) $£ 295.00$ Genesis M101 5 axis model (excluding whieel base) $\quad £ 345.00$ Genesis M101 wheel base $£ 79.00$ Genesis P101 4 axis model $£ 450.00$ Genesis P101 6 axis model 5545.00 Genesis S101 4 axis model $£ 355.00$ Genesis S101 5 axis model $£ 405.00$

[6074]
Fig. 4.2. Infra-red receiver circuit

NOTE: The photograph at the foot of page 69 in Part 3 (January) is incorrect, in that a P101 robot system is shown with a close-up view of an M101 controller front panel. Although substantially similar, the three types being based on the same p.c.b., the M101 control box has controls which are irrelevant to the P101 robot.

HOW THE KEYBOARD DATA IS RECEIVED

The keyboard decoder extracts three signals-clock, data, and start-bit-from the input pulse stream (see E1, 2, 3, 4 of the interface Board. The pulse stream is obtained either directly in the case of a cable link to the keyboard, or via the infra-red receiver in the case of the infra-red link. The principle of decoding is as follows:-

A 750 microsecond non-retriggerable monostable separates the clock edges from the pulse stream. At the start of each bit time, a flip-flop (consisting of two nand gates) is cleared; if a second pulse occurs on the data pulse stream within 750μ s (i.e. the data bit was a ' 1 '), this flip-flop is then

50769
Fig. 4.3. Keyboard decoder waveforms
set. At the end of the 750μ s period, the output of this flipflop is sampled by a D-type flip-flop, and represents the data presented to the microprocessor interface. A 2 ms monostable is used to detect the gap at the end of each keyboard scan, and is used indirectly to generate the start bit indication also presented to the interface. See Fig. 2.2.

Fig. 4.4. Infra-red receiver board p.c.b. (actual size)

Fig. 4.5. Infra-red receiver board component layout

Fig. 4.6. Direct solenoid controller p.c.b. (actual size)

\section*{Components
 INFRA-RED RECEIVER Resistors
 | R1 | $3 k 3$ |
| :--- | :--- |
| R2 | $56 k$ |
| R3 | $82 k$ |
| R4 | $39 k$ |
| R5, R6 | $470 k$ (2 off) |
| R7, R9 | $680 k$ (2 off) |
| R8 | $150 k$ |
| R10, R11. R13 | $10 k$ (3 off) |
| R12, R14 | 470 |
| R15 | 180 |}

All resistors $\frac{1}{4}$ W 5\%

Potentiometers

VR1 47k preset

Capacitors

C 1	$1 \mu / 35 \mathrm{~V}$ tant.
C 2	$10 \mu / 16 \mathrm{~V}$ tant

C3 47n Siemens B37560 2 n 2 Siemens B37560 100n Siemens B37560 $4 n 7$ Siemens B37560 (2 off) $15 n$ Siemens B37560
In Siemens B37560
$470 \mathrm{n} / 35 \mathrm{~V}$ tant.

Transistors and Diodes
D1
D2
D3, D4
D5
TR1, TR2, TR5
TR3, TR4

Integrated Circuits
IC1 SL480
IC2 TL082

Miscellaneous

Printed circuit board
8 -pin d.i.l. sockets (2 off)
Mounting pillars (4 off)
5-way Molex shell
Molex terminals (5 off)

Components . . .

ROBOT SOLENOID CONTROLLER

Resistors
R1-R12 3k9 (12 off)

Integrated Circuits

IC1-4 ULN2003 (4 off)

Miscellaneous

Printed Circuit Board
Case
Switches (12 off)
16 -pin d.i.l. sockets (4 off)
14 -way lead
5 -way Metway p.c. terminal block (3 off)

MICRO PROCESSOR BOARD CIRCUIT OPERATION

The microprocessor board is separate, and could be used for many other control applications. See Fig. 4.8. It contains the following:

6802 microprocessor (this is code compatible with a 6800, but contains an on-chip clock generator and 128 bytes of RAM).

Room for 4 K bytes of battery backed-up CMOS RAM, and up to 8 K bytes of EPROM (2716 or 2732 's).

An ACIA with switchable Baud rate with a fuil RS232 interface. Lastly a PIA (peripheral interface adapter), giving 20 programmable input/output and interrupt lines. In the case of the robot, this constitutes the interface with the interface board. Because all the data is moved via this PIA the microprocessor board could, if preferred, be replaced by an alternative microprocessor board or an entire computer making the connection to the interface board via the PIA on that .board or computer. NEXT MONTH: $\mu \mathrm{P}$ board construction.

Fig. 4.9. Control box p.c.b. Component layout for mobile unit M101

WE STARTED THE WORLD TALKING

TREAKIST7C
 CB from Tandy
 THE WORLD'S LARGEST CB RETAILER

The hardware and software exchange point for PE computer projects

KEYBOARD INTERFACE

Sir-The circuit shown in Fig. 1 enables a standard keyboard with parallel ASCll output to be connected to the UK101. It centres around the MC6821 PIA, which has two I/O ports. The B-side port drives eight l.e.d.'s via buffers as an output port, but may be used for input if required. The Aside is committed as an input-only port, for which purpose eight toggle switches are provided. However, if all the switches are set to "1" then overriding inputs mav be applied - this is where the kevboard is connected. Power-on and manual resetting is provided, as well as a PIA-enable switch. Decoding is accomplished by a 74LS27. and situates the PIA within 1 K of spare memory-area, at D400-D403H. Interfacing to the main board is accomplished by just twenty-one wires. It is advisable to obtain the MC6821 data-sheet before attempting to use the PIA.
For the computer to recognise the new keyboard, a certain amount of software is required. For the old monitor, the necessary program is shown in Fig. 2. The keyboard must be connected such that the seven-bit $A S C / /$ code forms'the inputs $K B \emptyset-K B 6$, and a negative-going strobe is KB7. For the new monitor, however, the program is considerably more complicated in order'to maintain full editing facilities and flashing cursor. This is shown in Fig. 3, and also incorporates a clock; the author would welcome a shorter solution. (CB1 should be connected to C15 of the counter chain to enable the clock to work.)

For the first program, set memory size to 8091 (for the 8 K machine), and type:

POKE536;194: POKE537,31
For the second program, set memory size to 7470 , and type.
POKE11,46: POKE12,29: X = USR(X)
Enter the time (on the new keyboard) in the format HH:MM:SS (hours/minutes/ seconds). The computer will then accept commands from the new keyboard in the normal manner.

Fig. 3. New monitor

81D2E	SEI		STX \$9223
	LDX \# 820		STX \$D403
	STX SED		DEX
	STX 8 E4		STX \$D402
	DEX	81D5C	INX
	STX 8021 B	\$1DSD	JSR \$1F3F
	LDX \#80A		CMP \#83B
	STX \$021A		BCS \$1D5D
	LDX \# \$30		CMP \#SOD
	STX SEE		BEQ \$1D73
	STX \$EF		CMP \#830
	LDX \#810		BCC \$1D5D
\$1D46	LDA \$1E03, X		STA SE5,X
	JSR SFFEE		JSR SFFEE
	DEX		BNESIDSC
	BNE \$1D46	S1D73	LDX \#807
	STX \$0222		STX 8D403

STX $\$ 0222$
SID73
STX \$D4

Fig. 2. Old monitor

\$1FB3 LDA \$0212
 BNE \$1FD7 LDA SD40 CMP \#\$03

BNE 81 FD7
JMP \$A636
BIT $\$ 0203$
BPLSIFDB
\$1FC7 LDA \$D400
CMP \#\$2 \varnothing
BEQ SIFD8 LDA SFO
LSR A
BCC $\$ 1 F C 7$
LDA SFØ01
\$1FD7 RTS
\$1FD8 INC \$0203
SIFDB LDA \#\$1F

STA \$021D
LDA \#8B3
STA $\$ 021 \mathrm{C}$
LDA \#\$0
STA 8D401
STA \$D40
LDA \# 804
STA \$D401
\$1FF2 LDA SD40
BPLSIFF2
\$1FF7 LDA 8D4
BMI \$1FF7
STA $\$ 0213$
RTS

66322

LDA \#884		LDA SEB $\text { CMP } \# \$ 36$
STA 90226		BCC S1DF1
LDA \#\$1D		STX SEB
STA 80227		INC \$E9
CLI		LDA \$E9
RTS		CMP \#83A
PHA		BCC \$1DF1
LDA \$D402		STX \$E9
LDA \$0222'		INC SE8
BNE \$1E02		LDA SE8
INC SEF		CMP \#836
INC \$ EF		BCC \$1DF1
LDA SEF		STX 8 E8
CMP \#83A		LDA \#83A
BNE\$1E@		STA SE3
TXA		INC ${ }^{\text {SE6 }}$
PHA		LDA SE5
LDX \#\$30		LSR A
STX SEF		LSR A
INC \$EE		BCC \$1DDF
LDA \$EE		LDA \#834
CMP \#\$3A		STA SE3
BCC \$1DF1	S1DDF	LDA SE6
STX SEE		CMP SE3
INC \$EC		BCC \$1DF1
LDA SEC		STX \$ ${ }^{\text {d } 6}$
CMP \#83A		LDA SE3
BCC \$1DF1		INC \$ES
STX SEC		CMP \#\$34
INC \$EB		BNE \$1DF1

STX $\$$ ES
81DF1 LDA 80223 BNE \$IEO LDX \#\$0A
\$1DF8 LDA \$E3,X
STA \$D632, X
DEX
BNE $\$ 1 D F 8$
\$IEO PLA
TAX
$\$ 1 E 02$ PLA
RTI
\$1E04 .BYTE 20,3F,53,53,3A,4D
.BYTE 4D,3A,48,48,2D,45
.BYTE 4D,49,54, 0 C
\$IE14 JSR \$IE2D
CPX \#80
BEQS1E2C
LDA \#\$16
STA \$021A
LDA \#\$85
STA $\$ 0218$
LDA \#\$IE
STA $\$ 0219$
LDA \#SOD
\$1E2C RTS
81E2D TXA
PHA
TSX
LDA $\$ 0105, \mathrm{X}$

	CMP \#\$A3		TAX		STA \$E3		LDY $\$ 0210$		PHA
	BEQ \$1E3C		LDA \$0213		JMP \$1E77	SIF7F	LDX \# $\$ 50$		LDA SE3
	PLA		RTS	SIFOA	PHA	\$1F81	LDA \$D40		PHA
	TAX	\$1EAI	CPX \$020B		LDA \#\$4E		AND \# 880		LDA \$E4
	PLA		BEQ\$1EA9		STA \$0218		BEQS1F8B		PHA
	PLA		JMP \$F95A		LDA \#\$1E		STA \$0211		LDA $\$ 0207$
	RTS	\$1EA9	TYA		STA \$0219	81F8B	LDA 89211		STA \$0209
\$1E3C	JMP \$FF62		PHA		PLA		BEQSIF9C		LDA $\$ 0208$
81E3F	LDA \$9212		LDA $\$ 0209$	\$1F16	AND \#\$7F		LDA SD40		STA \$920A
	BNE\$1E95		STA \$0207		JMP SFBD4		AND \#\$80		LDX \#808
	LDA SD40		LDA 9020 A	S1F1B	BIT 80203		BNE \$1F9C	S1FD1	LDA \$F892, X
	CMP \#\$03		STA \$0208		BPL\$1F35		STA \$0211		JSR \$FA57
	BNE \$1E95		DEC $\$ 0208$	\$1F20	LDA \$D400		BEQSIF56		DEX
	JMP \$A636		LDA \#\$20		CMP \#820	\$1F9C	DEX		BPL \$1FD1
S1E4E	TXA		STA \$0201		BEQ \$1F32		BNES1F81	SIFDA	JSR \$1F78
	PHA		LDA \#\$0		LDA SF		DEY		CMP \#\$0C
	TYA		STA \$021A		LSR A		BNE S1F7F		BEQ \$1FDA
	PHA		LDA \#\$1F		BCC \$1F20		LDA \$E3		CMP \#\$1C
	LDA 9 ¢20E		STA \$021B		LDA SF601		BNESIFB4		BNE \$1FEA
	BNE \$1E66		JMP \$F9A \emptyset		BCS S1F5B		JSR SFB8D		JSR SF924
	LDA 9020D	\$1ECC	CMP \#\$IC	S1F32	INC $\$ 0203$		LDA (\$E3), Y		BPL \$1FDA
	BEQS1E77		BEQ \$1ED9	\$1F35	LDA \#\$3F		STA \$0201	SIFEA	CMP \#SOD
	INC \$020E		CMP \#\$0C		STA \$021C		LDA \#880		BEQ \$1FFD
SIE5F	JSR SFE6D		BNE \$1E99		LDA \#81E		STA (\$E3), Y		BPLSIFF5
	CMP \#\$02		JSR \$FA57		STA \$021D		BNE \$1F78		JSR \$FA57
	BNE \$1E5F		BPLSIE77	\$1F3F	LDA \#800	\$1FB4	JSR \$FB 17		BPL \$1FDA
\$1E66	JSR \$FE6D	SIED9	PLA		STA \$D401		BEQSIF7A	\$1FFS	JSR SF903
	CMP \#\$03		TAY		STA SD400	\$1FB9	TXA		JSR \$FA57
	BNE \$1E96		PLA		LDA \#804		PHA		BPL \$1FDA
	LDA \#80D		TAX		STA \$D401		TYA	\$1FFD	JMP \$F85B
	DEC \$020E		DEX		LDA \$020F				
	DEC \$920D		BPL \$1EE2		BEQ \$1F5F				
	BEQ \$1E96		INX	\$1F51	LDA \$D40				
81 E77	JSRSIFIB		RTS		BPL \$1F51	Usefut	Locations:		
	CMP \# $\$ 05$	\$1EE2	DEC \$0E	\$1F56	LDA SD400				
	BNE SIECC		TXA		BMI \$1F56				
	PLA		PHA	\$1F5B	STA \$0213				
	TAY		TYA		RTS				
	PLA		PHA	SIF5F	LDA $\$ 0217$		\$020F	cursor f	
	TAX		LDA \$E3		STA \$0210		\$0217		
	JMP SIE14		PHA		TXA		\$0222 -	le clock	
\$1E85	JSR \$1FB9		LDA \$E4		PHA		$\$ 0223$	le disp	
	LDA \#8A1		PHA		TYA				
	STA \$0218		JSR 8FB8D		PHA		SIFAF	er used	
	LDA \#81E		LDA \#\$20		LDA \$E3		\$1FAF	ter used	
	STA \$0219	,	JSR SFBID		PHA				
	LDA \$0201		JSR \$FA@5		LDA \$E4		put a character	keyboar	d under
\$1E95	RTS		JSR \$FB8D		PHA		am control:		
S1E96	STA \$0213		LDA \#89A		JSR \$1F78		OKE11.235 : P	$55: X=$	SR(X)
\$1E99	PLA		JSR SFB1D		STA \$0200				
	TAY		PLA		JMP SF971				
	PLA		STA \$E4	S1F78	LDY \#\$01				
			PLA	S1F7A	STY \$E3				

SMART ANSWER

Sir-I also experienced the Smart 2 problem described by Roger Cannon (PESept. 81) in trving to expand my UK101 from $8 K$ to $24 K$ RAM. After a lot of searching I found the answer to be quite simple once the problem had been located. The following may be of general use to your readers:

With the Smart 2 board powered-up but not connected to the UK101, apply logic signals as listed in Table 1 to pins 1, 2 and 3 of IC V. Note the resultant logic states on pins 1 and 2 of $I C X$.

If, as I suspect, no change is found from a constant logic 1 on pins 1 and 2 of $I C X$, apply the logic signals as listed in Table 2. If the logic states at IC X are now changing then the Smart 2 board is wired up for expansion from $24 K-40 K$ and not $8 K-24 K$ as required.

To make the Smart 2 board compatible with your requirements the links adjacent to IC M have to be reset as shown in the diagram of Fig. 1.

My Smart 2 had arrived with the correct links set for $8 K-24 K$ expansion. However the kit instructions informed me that I had an unmodified board and the links should be changed. After having the same problem as Roger Cannon I tried to sort out the problem from the schematic diagrams supplied with the kit. After numerous hours of searching for a solution I returned my Smart 2 board to the suppliers (Chromasonics) for checking as I could not detect any soldering faults and there seemed to be no logical explanation for the lack of start-up. Chromasonics relieved me of $\mathrm{E15}$ and after 6 weeks and several phone calls the board was returned. Nothing had been changed but it was stated that the board had been checked tested and was serviceable. It was onlv after I found that the board was still apparently incompatible with the UK 101 that I delved into the manufacturer's data books and solved the problem.

Flight Lieutenant D. C. Tilford,
RAF 8 awtry, Doncaster.

Table 1

inputs-IC						IC X
Pins	1	2	3	1		
	0	1	0	1		
	1	0	0	0		
			0	1		

Table 2

\left.| inputs-IC V | | | |
| :---: | :---: | :---: | :---: |
| Pins | 1 | 2 | 3 |$\right)$

Fig. 1. Smart 2 link settings

THIS final part concerns operating and composition procedures.

MASTER RHYTHM SYNCHRONISATION

This control copes with the variable manner in which the Master Rhythm may be programmed on different rhythm selections. Each section is broken into equal time intervals commonly described as measures. Depending on the Rhythm Select position, the number of measures available in a section is $12,16,24$ or 32 , which also equals the number of pulses produced by the Master Rhythm during a single passage through the section. The operator has various options in deciding how many measures or pulses shall constitute a musical beat and will commonly choose $3,4,6$ or 8 measures per beat, the larger numbers giving the ability to increase the complexity of the drum and cymbal pattern, for example, the use of high speed drum rolls.

When chord sequences are programmed into the BandBox this rhythmic consideration is ignored and a single score can therefore be replayed on any of the Master Rhythm patterns producing a wide variety of feel from the same chord sequence, but it is necessary to define the number of measures per beat in use by the Master Rhythm during playback by positioning the synchronisation control to suit the rhythm selected. The Band-Box counts the pulses coming out of the Master Rhythm and converts them into beats according to the sync control position, and then translates the coded length of programmed chords in the score store into beats.

OPERATING PROCEDURES

Operation of the Band-Box is organised in such a way that the natural keying procedure results in playback of a selected score. This helps to prevent unauthorised people accidentally or intentionally entering the composition, or recording mode, destroying the scores you will programme and wish to save, and also reduces the amount of thought required at the time of playback selection thus increasing operating speed.

The two most important keys are Reset and Enter. The former may be used at any time to return the machine to the beginning of its operating sequence and may be used should the operator become confused, without affecting any scores which may have been composed. The Enter key is usually used to tell the machine that a number, for example a score page number, which has previously been keyed and reflected in the displays should be accepted by the machine.

SWITCH ON AND PLAY

When mains is applied to the unit, an automatic Reset operation occurs to produce a caption in the display indicating that correct operation of the Band-Box Microcontroller has commenced. If the caption does not appear correctly the Reset key should be pressed.

The last part of the caption is the two letter abbreviation "En." which is a request for the operator to press the Enter key. The display then changes to the request "En. Page No." A number between zero and 34 will be acceptable since, as stated earlier, the capacity of the machine is 35 pages (0 to 34). When the number is keyed it will appear in the righthand display pair and when correct (e.g. 03) the Enter key should be pressed. The display will now change to "En. LINE No." Each Page has 100 lines labelled 0 to 99 and the required line number (e.g. 15) should be keyed followed by Enter.

The selected score is now ready to play and the display will read 03-GO-15, which means that playback will commence with the contents of the score at Page 3 Line 15 as will have been noted in the Index. Play is initiated by depression of the Play key on the Master Rhythm and stopped by depression of the Rest key or by the coda procedure described later.

During playback the display is blank and the Band-Box will play the chord sequence which has previously been entered starting at Page 3 Line 15 of the score store until that score reaches its natural end or playback is stopped by the operator. When play stops the display will reappear and the tune can be repeated if required. To select a new score the Reset button is pressed and the new page and starting lines are entered.

THE SCORE STORE

It is now necessary to understand the score store in greater detail to further appreciate the operating procedures. The score store is a memory into which all the information regarding a composition is put by the operator who at this stage is acting as a composer. The simplest way to provide the required information for the store is to take a piece of music which contains chord symbols and translate it into a set of instructions acceptable to the store.

SCORE INSTRUCTIONS

The table in Fig. 15 lists all the instructions which can be understood by the store. The store has 3,500 cells, each of which can contain one instruction, and it will be seen from
the next section that a complete score might use as little as 15 cells or considerably more if it is complex.

The first type of instruction combines both the chord type and its duration in beats and will be the most frequent instruction used.

In order to give a large chord type capacity the second instruction allows selection of any one of 12 chord groups, moving up in semitones to give choice from approximately. 120 chords. An attempt has been made to arrange the table such that likely related chords appear within the same group to reduce the need to hop between groups, but this is so dependent on the style of music involved that a wide variation in efficiency of memory utilisation will be experienced, hence one reason for the wide range of 40-120 tunes suggested as the capacity of the basic machine.

The third instruction (Segno) sets the point from which a tune will be repeated when a Dal Segno, which is the fourth instruction, is encountered. If the Segno instruction, abbreviated to S , is omitted then the start of the tune will be taken as the point from which to repeat. The main value of Segno is to identify the end of an introductory chord sequence before the main theme, and Dal Segno, abbreviated to d., will cause the main theme to be repeated an unlimited number of times from Segno until the coda key is pressed. This requires momentary action for two beats during playback and will cause the Band-Box to ignore the following Dal Segno instruction, moving to the next part of the score. A genuine coda may follow the main theme in which case instruction five Fin will terminate play at the end of the coda. Alternatively, Fin may immediately follow Dal Segno without a coda and stop playback when Dal Segno is jumped, or as a third option Dal Segno may be followed by an optional coda, a new introduction to a second tune, perhaps an inspired key modulation, a further Segno and the main theme of a second tune. The process can continue for a sequence of any number of tunes provided that the total capacity of the machine is not exceeded.

THE INDEX

The Index is a convenient way of logging, particularly the start and finish points of all scores put into the unit by the "composer". It is recommended that a log book is kept which covers all the tunes that have been composed. Two formats are possible, one of which lists the contents of every line recorded, and the other simply notes the tune titles together with page and line numbers for start and finish. For maximum use of the score memory space, a new tune can follow on the next line after completion of the previous tune so that complete flexibility is possible in score length and no memory need be wasted.

COMPOSITION PROCEDURE

Composition combines the functions of inspecting the score store to see what, if anything, has been entered on a previous occasion, making small alterations, and entering a complete new score.

The sequence of events is shown in Fig. 16, commencing with depression of the Reset key. When the usual caption appears the Enter key is normally pressed to go through the playback procedure; however, the compose procedure is initiated by pressing the key marked with the forward pointing arrow. The display will ask for both page and line numbers corresponding to the point at which inspection of the score store is required, but after entry of the line number, instead of the usual "go" message, the display will command the operator to Reset.

This is designed as an electronic lock to deter and confuse the unauthorised operator who will, of course, find himself back at the beginning of the machine sequence if he carries out the Reset command. To continue with the composition procedure the " 9 " key and " 0 " key should be pressed in that order; any other combination will cause the same effect as Reset.

After successfully unlocking the system, the display will read "En. Chrd. Gp." This is an abbreviation of the request to enter the number of the chord group, within the table, which is required first. The group should contain the first chord of the composition plus the maximum number of following chords before a change of chord group becomes unavoidable. The group chosen will be heavily influenced by the musical key of the tune. For example, the operator may have access to the sheet music of a favourite tune which has chord symbols on the sheet and is written in the key of F major. The chord sequence might commence $\mathrm{FM}(2), \operatorname{Dm}(2)$, $\mathrm{Gm} 7(2), \mathrm{C} 7(2)$, where the figures in brackets are numbers of beats for each chord, and since they are all in chord group 5 of the chord table the chord changes can all be programmed without the need to change between chord groups if the choice for the first chord group is 5 .

Important feature-Although the operator is entering the score in the key of F major, it will later be possible to play back the tune in any key fixed by the position of the playback key control. Playback key is independent of the key chosen during composition. The Band-Box completely understands transposition!

INSPECTING THE SCORE STORE

The selection of the required opening chord group is followed by depression of the Enter key which immediately causes display of the contents of the store at the page and line selected. The format of this is to show the line number in the first two displays, the current chord group in the third display, the chord identity in the sixth and its length in beats in the eighth display. When the instruction is other than a chord, display six contains the number 0 and display eight contains $0-11$ for an instruction to change to a new chord group ($0-11$), or the symbols S., d., J. or F. corresponding to Fig. 15.

It is now possible to inspect the next line by pressing $>$ or the previous line by pressing $<$. The change in line number will be shown in the first two displays and the whole score store could be inspected by repeatedly pressing the direction keys. After line 99 the display will change to 00 for the first line on the next page and in reverse 00 will become line 99 for the previous page. Inspecting the score store in this manner will not alter the contents of the store. It will be noted that the chord group number in display 3 will respond to a "Change chord group" instruction during this inspection procedure and ensures that the operator is always aware of the chord group currently in use.

TO CHANGEA LINE

An individual line in the store may be altered at any time during the inspection procedure. A pointer next to display 6 indicates that depression of a key in the composition key row will put it into display 6 and replace the previous value in the score store after depression of the Enter key. The pointer then moves to display 8 next indicating that this value may be changed if required using one of the composition keys. To register the full change in the score store the $>$ key should be pressed which will also bring the next line into the display. Changes to a line in the store should always be followed by the forward key.

A COMPLETE COMPOSITION

An example composition of no musical significance is shown in Fig. 17 commencing at page 0, line 0. For simplicity, the key of C is used but as stated earlier any key could be used without affecting playback which is purely determined by the position of the twelve position Key Control.

In order to demonstrate the Segno (S.), Dal Segno (d.) and Fin (F.) instructions a four bar intro, and a coda, have been incorporated in the example.

DETAILING THE CONTENT

Following the procedure outlined above, page 0 and line 0 are selected in the composition mode. Chord group zero is chosen to start and the display will read $000^{\prime} \times X$ after the chord group has been entered. The crosses denote information which has randomly been programmed into the store previously and is no longer wanted. The first action working from the chord table is to key " 1 " for the CM chord in group 0 , and press Enter. This moves the arrow next to the beat display indicating it may be changed. The number 4 is keyed into this position and the >key pressed to move onto line 01 having recorded the correct instruction into line 00 . Steadily working through the score in this manner, chord group changes are inserted when required and in moving to the next line the chord group display will be seen to have followed. The Segno instruction is inserted in line 04, the D.S. instruction in line 15, and the Fin instruction in line 20 which is the end of the score.

PLAYBACK

On playback from page 00, line 00, bar 1 to 4 will play once after which bars 5 to 8 will repeat ad infinitum until the coda key is pressed (or Rest on the Master Rhythm which stops playback instantly). The coda request will be remembered and the next time D.S. is encountered after bar 8 the Band-Box will ignore it and jump to bar 9 playing through to bar 12 which is followed by the Fin instruction and causes play to cease. One point to notice is that the beginning and end of a repeat section should have the same chord group to prevent key changes on each repeat, even if it means including an extra chord group change instruction just before D.S. This sequence has used seven different chords, sixteen chord changes, and twenty lines in the score store.

Showing the power supply transformer

INTERNAL TUNE FACILITIES

The Band-Box has a pre-record ed blues which is accessed by pressing the Enter key three times, once after the opening caption has been displayed by the operation of the Reset key, once as an answer to En. Page No., and once as an answer to En. Line No. The display will read 00 - GO - 00 which is not the same as Page 00, Line 00. A second internal facility is a continuous major chord used for tuning purposes. The chord can be in any key determined by the rotary key control and the tuning of the Band-Box is carried out by turning the single screw accessed through a hole in the bottom of the unit with a small screwdriver. To obtain the tuning chord press Enter after the opening caption, I.P. (Internal Page) after the page number request, and enter 20 after the line number request. The display will read $00-\mathrm{GO}-20$ which is not the same as Page 0, Line 20. Initial tuning can be carried out by selecting key " A " and using a tuning fork at A-440 and the setting can be altered at any time to tune into, for example, a flat piano. A single semitone range is all that is necessary since the Band-Box can be set to play in a different key to match other instruments which might be grossly out of tune from concert pitch.

OPERATIONAL EXPERIENCE

Operation of the Band-Box to date has shown that the playback procedure gives quick accessibility to the required score and that drum style synchronisation to the Master Rhythm is soon understood. Composition procedures have naturally been found more complex and three points are worth mentioning.

INTRODUCTIONS

All compositions benefit by introductions, even if they consist of tacet chords with just the drums sounding. This is particularly useful when a tune has a lead chord of say two or three beats duration, and allows the composer to extend this to a four bar introduction to synchronise sequence operation of the Master Rhythm in a logical fashion. It is often useful to place the Segno before the lead-in bar which is likely to be the same as the bar seen before the usual repeat at the end of the chorus, and is usually modified on the last time of playing.

DUMMY INSTRUCTIONS

Mistakes can be made in composition, and sometimes experimentation may be required in the middle of a tune. This makes it desirable to insert dummy instructions say every ten lines which may later provide the required extra space for an adjustment using extra lines. The best form of "dummy" is to make a chord group change to the same chord group already in operation giving a nil change.

ENDINGS

Crisp endings can be a challenge, and are often a problem with a live trio. In the early stage of experience some experimentation will be necessary, by the operator, and to assist in this an extra instruction has been incorporated into the monitor which gives a half beat duration. To obtain the half beat a chord length is entered as zero, and will produce the letter H in the display.

The enormous interest which has already been shown in the Band-Box concept promises to establish the unit as a musician's tool to give both valuable aid to study and performance and to increase the facility for creative musical enjoyment.

If you've never built a kit before, Heathkit have some very pleasant surprises for you. Their kits are easy to build. Simple, but detailed Rechargeable Light instructions take you through every
stage. Everything is included. Even the solder you stage. Everything is included. Even the solder you need is there.

Follow the steps and you'll end up with a hand-crafted, well designed piece of equipment. Much better than shop bought, massproduced. Because you built it yourself.

Digital Clock

There's a great range of kits to start you off. From a

Youbuild onourexperience HEATHK ${ }^{2}$

TPTORODALS DUBEAMBI: yameror modeyb

New production capacity at Canterbury has increased our range, decreased our prices, improved our special customer design service. Choose from toroidal transformers in a range of 98 types.

TYP6	$\begin{gathered} 5 \text { Sequits } \\ \text { No } \end{gathered}$	$5 \text { COMCARY }$ Worls	$\begin{array}{\|c\|c\|} \hline \text { RUS } \\ \text { fureerl } \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { PRICI } \\ \mathrm{mx} \mathrm{vaI} \end{array}$	$\begin{array}{\|l\|} \hline \text { PARCE } \\ \text { en VVI } \\ \hline \end{array}$
30 kA $70 \times 30 \mathrm{~mm}$ 045 kg mepulan 16%		$\begin{aligned} & 6+6 \\ & 9+9 \\ & 12+17 \\ & 15+15 \\ & 18+18 \\ & 22+22 \\ & 34+23 \\ & 30+30 \end{aligned}$	250 166 188 100 083 068 0600 050	$\begin{aligned} & 5528 \\ & +08 \% 0 \\ & 0.080 \end{aligned}$	$\left.\begin{array}{lll} 54 & 48 \\ +0 & 88 \\ 0, p \end{array}\right]$
$\begin{array}{\|c\|} \hline 50 \mathrm{Va} \\ 80 \times 3 \mathrm{mmm} \\ 09 \mathrm{mg} \\ \text { Requition } \\ 13 \% \% \end{array}$	2×010 2011 2×012 2×12 2×13 2×14 2×14 2013 2016 2×16 2×028 2×20 2×29 2×030	$\begin{gathered} 6 * 6 \\ 9+9 \\ 12+12 \\ 1+15 \\ 18+18 \\ 28+28 \\ 2+25 \\ 30+30 \\ 110 \\ 200 \\ 20 \end{gathered}$		$\left[\begin{array}{l} 5583 \\ +710 \\ +100 \end{array}\right.$	$\begin{aligned} & 8493 \\ & +8110 \\ & +1,10 \end{aligned}$
$\begin{gathered} 60 \mathrm{va} \\ 90 \times 10 \mathrm{~mm} \\ 159 \\ \text { Regoulion } \\ 12 \% \end{gathered}$		$\begin{aligned} & 6 * 6 \\ & 9+9 \\ & 12+12 \\ & 15+15 \\ & 18+18 \\ & 22+22 \\ & 25+23 \\ & 30+30 \\ & 110 \\ & 270 \\ & 240 \end{aligned}$		$\begin{aligned} & 5651 \\ & +\pi, 14 \\ & +P / P \end{aligned}$	$\begin{aligned} & 5547 \\ & +5143 \\ & +P / P 6 \end{aligned}$
$\begin{array}{\|c\|} 120 \mathrm{va} \\ 90 \times 40 \mathrm{~mm} \\ 12 \mathrm{Kg} \\ \text { Requation } \\ 11 \% \end{array}$		$\begin{gathered} 6+6 \\ 9+9 \\ 12+12 \\ 13+15 \\ 18+18 \\ 22+22 \\ 2+23 \\ 30+30 \\ 3+35 \\ 10 \\ 220 \\ 240 \end{gathered}$	1000 656 500 400 333 772 720 240 280 111 109 109 054 050	$\begin{aligned} & 1735 \\ & +1843 \\ & +1010 \end{aligned}$	
	5×011 5×012 ${ }_{5} \times 013$ 5×015 5×016 5×012 5×018 5×026 5×028 5×020 5×5 5×030	$9+9$ $12+12$ $15+15$ 18×18 $27+22$ $3+78$ $3+30$ $35+35$ $4+40$ 10 220 240			

Order using the FREEPOST coupon below.
Trade enquiries are welcome.
Supplear with ngid mounling kil with centre boll. steel and neoprene washers GUARANTEED 5 YEARS

IVA	Sepits	$\begin{gathered} \text { St CONDAAY } \\ \text { Wons } \end{gathered}$	$\begin{aligned} & \text { RMWS } \\ & \text { It wrient } \end{aligned}$		$\begin{array}{\|l\|l\|} \hline \text { Parck } \\ \text { en val } \\ \hline \end{array}$
	6×012 6013 6×13 6×14 6×13 6×16 6×17 6×017 6×18 6×26 6×23 6×23 6×33 6×28 6×29 6×230	$\begin{aligned} & 17+12 \\ & 15+15 \\ & 18+18 \\ & 22+27 \\ & 3+25 \\ & 30+30 \\ & 3+35 \\ & 4+30 \\ & 14+45 \\ & 5+40 \\ & 110 \\ & 220 \\ & 240 \end{aligned}$		$\left\|\begin{array}{ccc} 511 & 83 \\ +6 i & 73 \\ \hline / 9 \end{array}\right\|$	
$\begin{aligned} & 300 \mathrm{va} \\ & 110 \times 50 \mathrm{~mm} \\ & 26 \mathrm{~kg} \\ & \text { Regultion } \\ & 6 \% \end{aligned}$	7×013 7×014 7×15 7×15 7×017 7×018 7×018 7×26 7×25 7×233 7×28 7×28 7×030 7	$\begin{aligned} & 13+115 \\ & 10+18 \\ & 2+28 \\ & 2+25 \\ & 30+30 \\ & 3+35 \\ & 4+40 \\ & 4+45 \\ & 30+50 \\ & 10 \\ & 120 \\ & 200 \\ & 200 \end{aligned}$	1000 833 682 600 500 108 128 375 333 300 272 136 1325 125	$\begin{aligned} & {[1367} \\ & -\mathbb{C 1 7} \\ & P / p \end{aligned}$	$\left\lvert\, \begin{aligned} & \pi \pi 166 \\ & +\pi 173 \\ & \phi, 10 \end{aligned}\right.$
$\begin{array}{\|c\|} \hline 500 \mathrm{VA} \\ 140 \times 6 \mathrm{cmm} \\ 6 \mathrm{~kg} \\ \text { egution } \\ 4 \% \end{array}$		$\begin{aligned} & 25 * 23 \\ & 3+30 \\ & 3+35 \\ & 40+40 \\ & 1+45 \\ & 50+50 \\ & 55+53 \\ & 110 \\ & 220 \\ & 20 \end{aligned}$	$\begin{aligned} & 1000 \\ & 833 \\ & 714 \\ & 675 \\ & 553 \\ & 500 \\ & 454 \\ & 454 \\ & 427 \\ & 208 \\ & \hline \end{aligned}$		
$\begin{gathered} 623 \mathrm{va} \\ 140 \times 7 \mathrm{ym} \\ 5 \mathrm{~kg} \\ \text { requation } \\ 4 \% \end{gathered}$	9×017 90018 90026 90203 90033 90002 90028 9020 9029 90030	$\begin{aligned} & 30+30 \\ & 35+35 \\ & 40+40 \\ & 15+15 \\ & 50+30 \\ & 55+55 \\ & 110 \\ & 220 \\ & 240 \end{aligned}$	1041 892 781 694 648 568 568 784 260		$\begin{gathered} \sum 2154 \\ \left.+\quad \begin{array}{c} 52 \\ p / P \end{array}\right\} \end{gathered}$

IMPORTANT: Regulation - All vollages quoted are FULL LOAD. Please add regulation figure to secondary voltage to obtain oft load voltage.
The benefits of ILP toroidal transiormers
ILP toroidal transtormers are only half the weight and height of their laminated equivalents, and are available with 110 V . 220 V or 240 V primaries coded as follows: For 110 V primary inser " 0 " in place of " X " in rype number
For 220 V primary (Europe) insen " 1 " in place of " X " in type number.
For 240 V primary (UK) insert " 2 " in place of " x " in type number. How to order Freepost:

Use this coupon, or a separate sheet of paper, to order these products, or any products from other ILP Electronics advertisements. No stamp is needed it you address to Freepost. Cheques and postal orders must be crossed and payable to ILP Electronics Lid: Cash must be registered. C.O.D - add $£ 1$ to total order value. Access and Barclaycard welcome. All UK orders sent posit free within 7 days of receipt of order for single and small quantity orders Also available at Electrovaive Maolin Marshalls. Techornac and Watord Electronics.

Please send me the following ILP modules

- Total purchase price

Ienclose Cheque \square PostalOrders \square Int. MoneyOrder \square
Please debit my Access/Barclaycard No
Name
Address

Signature
Posi io: ILP Electronics Ltd. Freeposi 2. Graham Bell House. Roper Close Canterbury C12 7 EP. Kent. England
telephone (0227) 54778 Technical (0227) 64723: Telex 965780
la division of
ILP Electronics Lid
Tran StAYAHEAD.STAY WITHUS

Copies of Patents can be obtained from: the Patent Office Sales, St. Mary Cray, Orpington, Kent. Price £1.45 each.

NEVER BEFORE?

British patent application 2064266 was filed by Dual of Germany, and dates back to March 1979. The patent, which claims a loudspeaker cross-over network, seems to be based on a very simple idea. But the British Patent Office Examiner has been unable to find ANY prior documents to cite against the Dual application as a possible anticipation. Does this mean that the Dual idea is as new as claimed, or that the British Patent Office filing system is inadequate?

The aim is to smooth out the considerable variations in impedance which occur in the transition regions of a multi-driver
loudspeaker system. It is, of course, advantageous to smooth out impedance variations, because they produce corresponding load variations on the amplifier. Dual also aim for a single inventory loudspeaker system, capable of connection to either an 80 hm or a 4 ohm amplifier output, without risk of overload damage.

Figure 1 shows the basic system. LF driver 2, and MF/HF driver 1 , are connected by conventional frequency divider networks 3,4 to common input 5, 6. Resonant circuit of inductor 7 and capacitor 8 is connected across the input. The resonant frequency of this L/C circuit, is tuned to the transitional frequency between drivers 1, 2. Resistor 9 attenuates so that what the inventor calls "the resulting impedance course" is the mirror image of the impedance curve for dividers 3, 4 at the region of transition between drivers 1, 2 .

Figure 2 shows the single inventory speaker system design. A third input terminal 10 connects with input 5 via series resistor 11 . Resistor 12 is temperature variable, with a positive temperature coefficient, and bridges fixed resistor 11. An amplifier designed for a 40 hm system is connected to inputs 5, 6 and an 8ohm amplifier is connected between inputs $10,6$. At normal room temperatures resistor 12 has a low value (0.6Ω) which effectively short circuits the resistor 11 . But any overload increases the value of resistor 12 and so puts resistor 11 in series with the amplifier output. Dual claim that the provision of resistor 11 "does not have any disadvantageous effect on the frequency response curve", but audio purists may wonder about the effect on damping factor of putting a resistor in series with the amplifier output.

Fig. 1.

Fig. 2.

SPEAK AND SPELL

Recently published British patent application 2058522 comes from Texas Instruments of Dallas. The patent, which has 50 sheets of diagrams and 30 pages of text (all for the basic price of $£ 1.45$) describes the logic and speech synthesis circuitry used by Texas for the "Speak and Spell" toy. (Incidentally "Speak and Spell" has now been followed in America by new Texas toys such as "Speak and Math" and "Speak and Read".) The Texas patent offers a valuable bibliography of previous work on speech synthesis, for instance the technique of linear prediction and digital lattice filters. The patent also explains the logic circuits usèd in ŚSeak and Spell and details the compression technique used to store
sufficient data for a large vocabulary in a small memory. New parameters are inputted into the speech synthesiser at a rate of 50 Hz . There are 12 parameters in ten bit digital words. So if each parameter were updated with a full word fifty times a second this would require a bit rate of 6000 bits per second. This is impractical from a memory of reasonable capacity so Texas compress the data rate to around 1000 bits per second.

Essentially, data frames of different lengths are used, depending on the amount of information which is essential. For instance repeat frames are used when there has been no significant change during a 20 millisecond period. Where there is a change to be reproduced, a coded parameter is inputted and converted to a 10 bit parameter.

In this way the bit stream is kept down to the most economical level possible.

It is interesting to note that the Texas patent claims, which define the scope of legal monopoly sought by Texas, are very broad. If the Patent Office accepts the claims made by Texas in this patent application, the company will have a monopoly on any system for generating synthetic speech which includes a memory, digital filter, excitation generator, multiplier, digital-toanalog converter and audio reproducer. Whether such a broad legal claim is justified in the light of previous work in this field remains to be seen, but whatever the legal outcome, British patent 2058522 will make good reference material for anyone interested in the Texas approach to speech synthesis.

CAMBRIDGE LEARNING

 SELF:INSTRUCTION COURSES
A PRACTICAL DIGITAL ELECTRONIC KIT FOR is LESS THAN $£ 20$ 访

SUITABLE FOR BEGINNERS

Learn the wonders of digital electronics and see how quickly you are deslgning your own circuits. The kit contalns:
seven LS TTL integrated circuits, breadboard, LEDs, and all the DIL switches, resistors, capacitors, and other components to build interesting digital circuits; plus a very clear and thoroughly tested instruction manual (also avallable separately). All this comes in a pocket size plastic wallet for only f19-90p inc VAT and p\&p. This coursé is for true beginners:
needs no soldering iron.
asks plenty of questions, but never leaves you stuck and helpless.
teaches you about fault-finding, improvisation, and subsystem checking.
the only extra you need is a $4 \frac{1}{V} V$ battery (Ever Ready
1289, or similar), or a stabilised 5 V power supply. Using the same breadboard you may construct literally millions of different circuits.
This course teaches boolean logic, gating, R-S and J-K flipflops, shift registers, ripple counters, and half-adders. Look out for our supplementary kits which will demonstrate advanced arithmetic circuits, opto-electronics, 7-segment displays etc.
Other self-instruction courses from Cambridge Learning Ltd include:
COMPUTER PROGRAMMING IN BASIC £10.50
DIGITAL COMPUTER LOGIC AND ELECTRONICS £ 8.50
DESIGN OF DIGITAL SYSTEMS £14.00
Please send for full detalls (see coupon below).
GUARANTEE No risk to you. If you are not completely satisfied, your money will be refunded upon return of the item in good condition within 28 days of receipt.
CAMBRIDGE LEARNING LIMITED, UNIT 22 RIVERMILL SITE. FREEPOST. ST IVES, CAMBS, PE17 $4 B R$, ENGLAND. TELEPHONE: ST IVES (0480) 67446. VAT No 313026022 All prices include worldwide postage (airmall is extra please ask for prepayment invoice). Giro A/C No 2789159. Please allow 28 days for delivery in UK

\qquad

SUPERKIT(S) @ 19.90
. Free details of your other self-instruction couzses.
I enclose a *cheque/PO payable to Cambridge Learning Ltd for $£$..
Please charge my:
*Access / American Express / Barclaycard / Diners Club Eurocard / Visa / Mastercharge / Trustcard

Expiry .Date............ Credit Card No
Signature. .
Telephone orders from card holders accepted on 048067446 Overseas customers (including Eire) should send a bank draft in sterling drawn on a London bank, or quote credit card number.

Name. .

Address

Cambridge Learning Limited, UNIT 22 Rivermill Site, FREEPOST, St Ives, Huntingdon, Cambs, PE17 4BR, England, (Registered

St Ives, Huntingdon, in England No 13287621

YOU CATT BEAT ILPBPOLAR POWER ane
 POW:RAND PRICE

Get maximum power at minimum price, yet still with hi-fi specifications and a wide choice of outputs. ILP Bipolar power mps now with or without heatsinks are unbeatable value to domestic hi.fi - but for disco. guitar amplifiers and PA choose onesic hi-f buifor disco. guitar amps and PA choose the new range of heavy duty power amps. again with or without heatsinks, with protection against permanent short circuit. added safety for the disco or group user. Connection in all cases is simple - via 5 pins.

Every item has a 5 year no quibble guarantee and includes full connection data. So send your order FREEPOST today?
Load impedance, all models. 4 ohm - infinity. Input impedance, all models 100 K ohm. Input sensitivity, all models, 500 mV . Frequency response, all modets $15 \mathrm{~Hz}-50 \mathrm{kHz}-3 \mathrm{db}$.
BIPOLAR Standard, with heatsinks

Mode No.	Output power Watts rms	$\begin{aligned} & \text { DIST } \\ & \text { T.H.D. } \\ & \text { TyD } \\ & \text { at } 1 \mathrm{kHz} \end{aligned}$	$\begin{gathered} \text { ORTION } \\ \text { I.M.O. } \\ 50 \mathrm{~Hz} / 7 \mathrm{kHz} \\ 4.1 \end{gathered}$	Supply Typ/Max	Suze mm	$\begin{aligned} & \mathrm{WI} \\ & \mathrm{gms} \end{aligned}$	$\begin{aligned} & \text { Price } \\ & \text { me VAT } \end{aligned}$	$\begin{aligned} & \text { Price } \\ & \text { ex VAT } \end{aligned}$
HY 30	15w/4.88	0.015\%	<0.006\%	$\pm 18 \pm 20$	$76 \times 68 \times 40$	240	58.28	£7.29
HY 60	30w/4.8!	0.015\%	<0.006\%	$\pm 25 \pm 30$	$76 \times 68 \times 40$	240	¢9.58	88.33
HY 120	60w/4.88	0.01\%	<0.006\%	$\pm 35 \pm 40$	$120 \times 78 \times 40$	410	E20 10	¢17 48
HY 200	120w/4.88	0.01\%	<0.006\%	$\pm 45 \pm 50$	$120 \times 78 \times 50$	515	£24.39	\$21.21
HY 400	240w/48	0.01\%	<0.006\%	$\pm 45 \pm 50$	$120 \times 78 \times 100$	1025	£36 60	[31.83

BIPOLAR Standard, without heatsinks

HY 120P	$60 \mathrm{~W} / 4.882$	0.01%	$<0.006 \%$	$\pm 35 \pm 40$	$120 \times 26 \times 40$	215	$£ 17.83$	$£ 15.50$

| HY 200 P | $120 \mathrm{w} / 4.8 \Omega$ | 0.01% | $<0.006 \%$ | $\pm 45 \pm 50$ | $120 \times 26 \times 40$ | 215 | $£ 2123$ | $£ 18.46$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | HY 400 P | $240 \mathrm{~W} / 4 \Omega$ | 001% | $<0006 \%$ | $\pm 45 \pm 50$ | $120 \times 26 \times 70$ | 375 | $£ 32.58$ | $£ 28.33$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Protection: Load line.momentary shon circuit (typically 10 sec). Slew rate $15 \mathrm{~V} / \mu \mathrm{s}$ Rise time $5 \mu \mathrm{~s}$. S/N ratı 100 db . Frequency response (-3 dB): $15 \mathrm{~Hz}-50 \mathrm{kHz}$. Input sensitivity 500 mV ms. Input impedance $100 \mathrm{k} \Omega$. Damping factor $(8 \Omega / 100 \mathrm{~Hz})>400$.
ILP Eloctronics Led., Freapost 2 Graham Bell Housa, Roper Close. Canterbury GT2 TEP, Kent HEAVY DUTY with heatsinks

Model No.	Ortput power Whits rms	OISTORTION		Supply Typ/MaxR	Size mm	$\left\lvert\, \begin{aligned} & \text { W } \\ & \text { gns } \end{aligned}\right.$	$\begin{aligned} & \text { Price } \\ & \text { inc VAT } \end{aligned}$	$\begin{aligned} & \text { Price } \\ & \text { ex. VAT } \end{aligned}$
		$\begin{aligned} & \text { T.H.D. } \\ & \text { Typ } \\ & \text { at } 1 \mathrm{kHz} \end{aligned}$	$\begin{gathered} \text { I.M.D. } \\ 50 \mathrm{~Hz} / 7 \mathrm{kHz} \\ 4.1 \end{gathered}$					
HO 120	60w/4-89	0.01\%	<0.006\%	$\pm 35 \pm 40$	$120 \times 78 \times 50$	515	¢25 85	¢22.48
HD 200	120w/4-89	0.01\%	<0.006\%	$\pm 45 \pm 50$	$120 \times 78 \times 60$	620	£31 49	£27.38
HD 400	240w/4	0.01\%	<0.006\%	$\pm 45 \pm 50$	$120 \times 78 \times 100$	1025	¢44 42	¢38 63

HEAVY DUTY without heatsinks

| HD 120P | $60 \mathrm{~W} / 4-8 \Omega$ | 0.01% | $<0006 \%$ | $\pm 35 \pm 40$ | $120 \times 26 \times 50$ | 265 | $£ 22.82$ | $£ 19.84$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | HD 200P | $120 \mathrm{w} / 4.8 \Omega$ | 0.01% | $<0.006 \%$ | $\pm 45 \pm 50$ | $120 \times 26 \times 50$ | 265 | $£ 2717$ | $£ 23.63$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HD 400 P | $240 \mathrm{~W} / 4 \Omega$ | 0.01% | $<0006 \%$ | $\pm 45 \pm 50$ | $120 \times 26 \times 70$ | 375 | $£ 39.42$ | $£ 34.28$ |

Protection: Load line. PERMANENT SHORT CIRCUIT (ideal for disco/group use should evidence of short circuit not be immediately apparent). The Heavy Outy range can clam additional output power devices and complementary protection circuitry with performance specs as for standard types.
How to order Freepost: Use this coupon. or a separate sheet of paper, 10 order these products. or any products fromother ILP Electronics advertisements. No stamp is needed if you address to Freepost. Cheques and postal orders must be crossed and payable to ILP Electronics Lid: cash must be registered. C.0.0. - add $£ 1$ to total order value. Access and Barclaycard welcome. Alr UK orders sent post free within 7 days of receipt of order

Please send me the following
ILP modules
Total purchase price
Ienclose Cheque $\square \quad$ Postal Orders $\square \quad$ Int. Money Order \square
Please debit my Access/Barclaycard No.
Name
Address

Signature
Post to: IIP Electronics Lid. Freepost 2, Gratham Bell House, Roper Close. Canterbury CT2 7EP. Kent, Enqland Telephone (0227) 54778 Technical (0227)64723: Telex 965780

STAYAHEAD.STAYWITHUS

		swirct
Ster	capacitons	

The Rapid Guarantee

* Same day despatch Top quality components *In-depth stock

CLEF electrontc MUSIC

ELECTRONIC PIANOS

SPECIALISTS SINCE 1972
Clef Pianos adopt the most idvanced
Corm of Touch Sensitive acion which simulates piano Key inectia using a

$7 \frac{1}{4}$ OCTAVE

DOMESTIC MODEL
COMPONENT KIT £244
COMPLETE KIT £395. 70 $T_{w o}$ Domestic Modesis are avaliable
 pianod tone. including H Harpsichord. corporated in the e Design and internat Eriects are provides im the form of
Tremolo. Honky-Chorus Tremolo Honky-Chorus, and
Phasefllanger A power amplifer integrates into the the Base oro casy rransporation DOMESTIC MODEL

COMPONENT KIT $\mathbf{f 2 1 7}$

MANUFACTURED D595 Component Kits include Keyboard, Key-swich hardware, and all electronic
four stages at no extra cost. Complete Kits further contain Cabinets,
wiring harness. Pedals and in the case of wiring harness, Pedals and in the case of
Domestic Models both Power Amplifier and Speaker.

The Speaker.

The Six Octave Stage Piano has the
same range of Voices and Effects and is same range or Voices and Effects and is
designed for use with an External
Amplifier and Speeter Amplifier and Speaker.

SIX OCTAVE STAGE MODEL

COMPONENT KIT $\mathbf{f 2 1 7}$
MANUFACTURED 590°

Since 1972 Clef Products have consistently produced leading designs in the field of Electronic Musical Instruments, many of which have paramount importance. new techniques. Wave been evolved and the which have been successfully completed by constructors over a wide range of technical capability. Back-up TELEPHONE advice to our
customers is available from the Designer of all Kits advertised. STRING

STRING ENSEMBLE

(As Published in conjunction with 'Practical Electronics 7 A very popular Keyboard Synthesizer Kil . for Group or
Home use. with a four octave compass and split Keyboard facility.
The instrument is fully polyphonic and has two rich Multi-String Voices plus Woodwind and Brass Effects or individual or Mixed use. Variable Attack and Sustain Controls give a good Orchestral Mix with the added concert hall reverberation effect produced by sustain coupled with phase modulation in the Chorus Unit. The Component Kit includes Keyboard, Key.switch hardware, and all electronic components plus tone generator linking wire and Volume Pedal. A copy of the P.E. project series can be supplied for $\mathbf{£ 3 . 0 0}$ inc post component nit
\qquad

ROTOR-CHORUS

Comprehensive two speed
organ rotor simulator plus three phase chorus generator on single 8×5 peb. The kit nains operation and a stereo headphone driver peb. Easily in
tegrated wit h exlstin organ/amplifier system. COMPONENT KIT Eas.00 KEYBOARDS
Our Square Front Keyboards are chosen for their superior fee whilst siving adequate musician strengith for the high Impact playing present in the Plano

88 NOTE (A-C) 557.00 FIVE OCTAVE 53800 FOUF OCTAVE f 28.75
EXPERIMENTERS A number of our Sub-Kits are and COMPUTER Experimenters. These include the MFO
MICRO CONTROLLER and Music system kit used in the BAND BOX, plus a 49 note four pitch our lists for Sub-Kit prices.

PRICES INCLUDE VAT, UK CARRIAGE \& INSURANCE (CARRIAGE EXTRA ON MFD PIANOS). Please send S.A.E for our compliete Hiss, or use our teiephone VSAACCESS Service Competitive quotations can be given for EXPORT orders - in
Australia please contact JAYCAR in Sy dney.

CLEF PRODUCTS (ELECTRONICS)
LIMITED
(Dept. P.E.) 4AA Bramhall Lane South, Bramhali,
Stockiort, Cheshire SK7 1AH 061-439-3297
"THE EEEctronic BAND-BOX'
COMPLETE CURRENTLYIN'PRACTICAL ELECTRONICS KIT
£289

MANFD.
A rmolution in the tield of Compute Mussic Generation!
A MUSICIANS INSTRUMENT FOR SOLOISTS SINGERS-RECORDING
LVE PERFORMANE -COMPOSTTION
The BAND-BOX provides an Electronic Backing Trio consisting of
 diferent Chords. Using advanced Microproxessor technology. Playback of 50 . 100 Scores can be executed in any Key and at chosen secondary battery back-up. Facility exists for composition of Intro Repeat Chorus, and Coda sections including Multiple Score Se quences. Sockets are provided for Volume Pedal and Footswitch plus
separate and mixed instrument Outputs. Total size $19^{\prime \prime} \times 11^{\prime \prime} \times 4 \frac{1^{\prime \prime}}{2}$ separate and mixed instrument
incorporating Master Rhythm.

THE Programmatie DRUM MACHINE

 EIGHT TRACK PROGAAMMING TWENTY four TWELVE INSTRUMENTS SEQUENCE OPEAATIOM.679.00

The Clef Master Rhythm is capable of storing 24 selectable rhythmic drum patterns, invented, modified, and entered by the Operator on to
Eight Instrumentation tracks. A three position Instrumentation con Eight instrumentation tracks. A three position Instrumpentation con into sounds typical of plaving with American Bongos and Claves
Sequence operation allows two rhythm sections to be coupled with the second (B) section appearing at four, eight or sixteen Bar repeti tion. All drums can be adjusted for level and resonance on internal
controls to suit individual taste, in a berts to suit individual taste, thus producing good musical sound

With the Minimax II, Videotone revolutionised the market by establishing an opening for small, high quality speakers. Natural evolution has brought about the new Minimax 2, retaining all the qualities of clarity and sensitivity. This ideal combination of size and performance is a proven success, acclaimed by the press and public for seven years.

POPULAR HI-FI
'Switching to the Minimaxs' from any of the others produc ed an open and natural sound as though something had been taken away. It had, the colouration had gone." Comparative test OCTOBER 1975.
HI-FI ANSWERS
Their modest appearance and price disguise their startling abilities. Never have we heard such a small speaker sound so bigl" JANUARY 1975.
PRACTICAL HI-FI \& Audio
"The depth, clarity and openness of sound produced is quite astonishing". JUNE '75
WHAT HI-FI
the ability of the Mini-
max to take a lot of power and still sound good could be decisive" - Comparative test, APRIL 1977.
PRACTICAL HI-FI
The little Videotone scored highly for such a small inexpensive loudspeaker"
JANUARY 1981
Specification:
Recommended amplifier power: 10 to 40 watts rms into 8 ohms. Frequency Response:
$80 \mathrm{~Hz}-20 \mathrm{KHz} \pm 5 \mathrm{~dB}$.
Finish: natural teak, veneer with black frets.
Size: $107 / 8^{\prime \prime}$ high, $63 / 4^{\prime \prime}$ wide. $71 / 2^{\prime \prime}$ deep. Weight: 4.1 Kgs (9 lbs) each.
ONLY E69.95 A PAIR

- We welcome callers to our South London Showroom for demonstrations.
- Enqiries and information phone: 01-690 8511, Ex. 32
- All products are only available direct or from selected authorised dealers throughout the U.K.
VIOEOTON $=98$ CROFTON PARK ROAD LONDON SE4.
Send for our free brochure and details of outlets in the U.K.

HOW TO SUCCEED IN THE ELECTRONICS BUSINESS:

10 MHZ Bandwidth P4 Standard £59.50 + VAT ($£ 68.42$) plus carriage $£ 3.00$ For P31 (green) high resolution tube add $£ 12.50+$ VAT ($£ 14.38$)

NEW.PRINCE MONITOR

PLEASE MENTION PRACTICAL ELECTRONICS
 WHEN
 REPLYING TO ADVERTISEMENTS

TIME WRONG?

MSF CLOCK is ALWAYS CORRECT - never gains or loses, SELF SETTING at switch-on, 8 digits show Date, Hours, Minutes and Seconds, auto GMT/BST and leap year, 24 hour format, larger digit Hours and Minutes, can expand to Years, Months, Weekdays and Miliseconds, also parallel BCD output for computer or alarm and audio to record and show time on playback, receives Rugby 60 KHz atomic times signals, built-in antenna, 1000 Km range, GET the TIME RIGHT, only $\mathbf{£ 6 2 . 8 0}$.
60KHZ RUGBY RECEIVER, as in MSF Clock, serial data output for computer etc, decoding details, £17.90.
Each fun-to-build kit includes all parts, printed circuit, case, postage etc, instructions, money back assurance so GET yours NOW.

CAMBRIDGE KITS
45 (FB) Old School Lane, Milton, Cambridge.

INTERESTED IN
 ELECTRONICS?

TRY A ZEDPACK! COMPONENTS AT A PRICE EVERYONE CAN AFFORD Z1
Z2
Z2
150
mlxed
I and
2 Z3 300 mixed eapacitors, most types 50
 25100 mixed polystyrene caps $\quad \mathbf{\Sigma 2} \cdot 20$ 26300 mixed printed circult E1. 95 $27{ }^{\text {componente }} 300$ mixed printed circult resletors $£ 1.45$ Z9 100 mixed minialure ceramic and Z10 25 aesorted pots.
21025
219
25
assorted presefs, acieton etc. 51 $Z 1220$ as sorted vdr's and thermistors.
E1. 20 213 IIb mixed hardware. Nuts, bolts self-tappers, sleeving, etc.
Z14 100 mixed, new and marked, full spec. 214100 mixed, new and marked, full spec. BF154, BF274, BC212L. BC238, BC184L. PBC108 and, or lots of simitar types Z15 900 mized diodes including:-zener, power, bridge, slgnal, germanlum
sllicon etc. Allfull spec. 21620 1N414B
21720 1N4003/10D2
$\begin{array}{r}120 \text { and } 400 \mathrm{mw} \\ \hline 1.50\end{array}$ Z19 12 - 125" TIL 209 RED. LED'S button, slide, multipole, miniature oic UHF MODU Fantastic value, Ei-20. UHF MODULATORS
VIdeo in UHF out. Calibrated to channel 36 (625 line UHF) housed In metal box $2^{\prime \prime \prime} \times$ connecvon data. $\mathrm{E2}$.50 ea. 3 for E .
$200 \mu \mathrm{~A}$ Minlature level/batt. meters, as Deluxe FIBREGLASS printed elreult tehing klts.
Includes 150 sq ins. of copperclad F/G board.
1lb ferric chloride, (made for U.S. army to MIL, SPEC.), 1 dalo etch reslst pen, abrasive cleaner, tweezers, etch resist dish and in-
OUR PRICE 55.95
structions. structions.
11 b of $\mathrm{FeCl} . ~ £ 2.25$.

O Miniature reed switches. \quad E2. 30 00 Subminiature Reed Switches. $\$ 4 \cdot 20$ With hole In With hole in switch BANKS for El Thete cost a fortunel Were made for various music centres. Includes Independent and Interdependent latching types multi pole c/o etc. Can be modified. Can't be repeated. ${ }^{3}$ Banks for $£ 1$. Chrome or apun aluminium finlsh. MINIATURE MAINS TRANSFORMERS Top quality, Split bobbin constructlon
will glve $4-5 \mathrm{~V}-0-4-5 \mathrm{~V}$ at 250 MA . $1 t^{\prime \prime} \times 1 t^{\prime \prime}$ $\times 1 \frac{1}{\frac{1}{2}}$, all sorts of uses. ONLY $\mathrm{Ef}^{\prime \prime} \times 1 \mathrm{t}^{\prime \prime}$ Pp3 Battery Connectore 10 for 50 p . C . Pini Battery Connectore 10 for 50 p . nob Subminiature S.P.C.O. SIIde Swltches, for 50p.
Minlature D.P.C.O. SIlde Switches. for 50p.
4 for 50 p.
TBAB10P 7 Wutt Amp. I.C. with circuits MFCBoin only EI MFC8010 1 Watt I.C. with data and circuits. rs. 30 p as. 2 for El 35 Timers. 30p an., 4 for El A 100 V Bridg* Rectior. Smsi. 3 ep eal 2 N 3055 H . RCA. $60 \mathrm{p}, 3$ for Ef .60 9 Sectlon, Chrome on Brass Telescople Aerlal. Plugs into any 3.5 mm socket. Approx $25^{\prime \prime}$ extended Ef each. 3 for $£ 2 \cdot 50$. LED. TIL 3 t 60 p ea. 3 for Ei-50.
Crystal Clear 3 mm LEDS very pretty Red, Green, Yellow. 10 of one colour E1. 10 of each e2.50.

ALTERNATOR RECTIFIERS Make lovely 60 amp bridges. Ideal for High Power Battery Chargert. yype 4AFI. Set of 42 neg case +
2 por. Case) kez.
Special Purchase onables us to ofter mullard cza Polyezter Capa unbeatable price of $\mathbf{E 2}$ for 100 mixed. Eis for lo00. These conslst of factory clearance lots l.e. spillages, floor sweepings. Cosmetic rejects etc. Also.
Mullard Miniature Electrolytics. 200 muliard $£ 2$.

TO: "GEMIN" ELECTRONIC COMPONENTS" DEPT PE

"THE WAREHOUSE" SPEEDWELL ST. LONDON S.E. 8.
Where hown. Send Cheque or Postal Order, Plus 6ep PAP, and 15% VAT.
ZED PACKS now avallable for Ćallers at 50 Deptiord Broadway, London, S.E. Plesse allow 7 days for delliver.

Send large S.A.E. for fuller fise

PARNDON ELECTRONICS LTD.

Dept. No. 2144 Paddock Mead. Harlow. Essex. CM18 7RR. Tel: 027932700

RESISTORS: $1 / 4$ Watt Carbon Film E24 range $\pm 5 \%$ tolerance. High quallity resistors made under strictly controlled conditions by automatic machines. Bandoliered and colour coded
 E1.00 per hundred mixed. (Min 10 per value) E8.50 per thousand mixed. (Min 50 per value) Special stock pack 60 values, 10 off each $£ 5.59$

DIODES: IN4 148 3p each. Min order quantity - 15 items.
E1. 60 per hundred
DIL. SWITCHES: Gold plated contact in fully sealed base - solve those programming problems. 4 Way 86 p each. 6 Way $£ 1.00$ each. 8 Way $£ 1.20$ each

DII SOCKETS: High quality, low profile sockets.
8 pin-10p. 14 pin-11p. 16 pin-12p. 18 pin-19p. 20 pin-21p. 22 pin-23p. 24 pin-25p. 28 pin-27p. 40 pin-42p.

LONOFNZWILP FCAPSULATD

 PRFAMPS= coMPilliz WM ALIPRODUSSuddenly. instead of two ILP encapsulated pre-amos. there are eight - everything from the simple mono pre-amp (HY6), through mixing mono pre- amps (HY12 and HY69). to a dual stereo pre amp (HY71). Plus a new guitar pre-amp (HY73).
Each gives the very best reproduction from protected against short circuit and wrong polarity. All ILP modules are compatible with each other - combine them to create almost any audio system. Every item carries a 5 year no quibble guaramtee and includes full connection data.
So send your order today - the Freepost coupon needs no stamp ILP Electronics Luf.. Freepost 2 Graham Ball House. Roper Closa. Canterbury CT2 7ERaKent. PRE-AMPS

Model No.	Modue	What it does	Current required	AICe	$\begin{aligned} & \text { Price } \\ & \text { ex. VAT } \end{aligned}$
HY 6	Mono pre-amp	Provides inputs lor mic/mag, cantridge/luner/ lape/zuxiliary, with volume/bass/Ireble controls.	10 mA	£7 41	£6.44
HY9	Stereo pre amp	Two channels. mag. cartridge. mic + volume control.	10 mA	¢7.71	56.70
HY 12	Mano pre-amo	Mixes two signals inlo one, wilh bass/mindrange/treble controls.	10 mA	$£ 771$	£6.70
HY 66	Stereo preamp	Iwo channels, with inputs for mic/mag cartridge/lape/tuner/auxillary. with voiume/ bass/treble/balance.	20 mA	£14.02	£12.19
HY 69	Mono pre-amp	Two inpul channels: mag cartridge mic, with mixing and volume/lrebie/bass controts.	20 mA	$£ 1202$	£10.45
HY 71	Dual stereo pre-amp	Provides tour channels for mag. cantridge/mic with volume control.	20 mA	£12.36	£10.75
HY 73	$\begin{aligned} & \text { Guitar } \\ & \text { pre-amp } \end{aligned}$	Provides lor two guitars (Dass + lead) and mic with separate volume/bass/trebie and muxing.	20 mA	¢14,09	£12.25
HY 75	Stereo pre-amp	Two channeis, each moxing two signals inlo one with bass/mid range/treble controls.	20 mA	¢12 36	£10.75

For easy mounting we recommend: 86 mounting board for mounting ooard tor modules HY65-HY77 £1.12 inc VAT. (0.99 ex VAT) All modules are encapsulated and include clip.on edoe connectors. All operate from +15 V minimum $10+30 \mathrm{~V}$ maxumum, needing drooper resistors for higher voltages. Modules HY6 to HY13 measure $45 \times 20 \times 40 \mathrm{~mm}$ HY65 to HY77 measure $90 \times 20 \times 40 \mathrm{~mm}$ How to order Freeposi: Use this coupon. or a separate sheet of paper, to order hese products. or any products from other tLP Electronics advertisements. No stamp is needed it you address 10 eepos. Cheques and postal orders musi be crossed and payable to ILP electronics Lid: Cash must be registered Barclaycard welcome. All UK orders sent 7 days of receipt of order.
Please send me the following
ILP modules
Total purchase price
Ienclose Cheque \square PostalOrders \square Int. MoneyOrder
Please debit my Access/Barclaycard No
Name
Address
Signature
Post to: ILP Electronics Ltd. Freeposi 2. Giaham Beil House. Roper Close
Canterbury CT2 7 FP. Kent. England
Telephone (0227) 54778 Technical (0227) 64723: Telex 965780 ,
Eterainicsur STAYAHEAD.STAY WITHUS

Now the time can tell you! . . .

New - from Silicon Speech Systems (a Powertran subsidiary) - the first ever easy-to-build kit that will give a whole new meaning to the 'speaking clock'! Electronics and quartz technology combine to enable you to construct a talking timepiece that is interesting to build - fun to have!
Full instructions make this a kit with equal appeal to the beginner or experienced constructor.

I AM ONLY E24.50

(includes VAT and Post \& Pkgl

- Accurate to a minute a year
- Adjustable voice pitch
- Grained stainless-steel case
- Pocket size - approx. 5in. x $2 \frac{1}{2}$ in. $\times 1$ in.
- Useful in the home or office
- As heard on BBC radio

Silicon Speech Systems
 (A Powertran Subsidiary)

PORTWAY INDUSTRIAL ESTATE, ANDOVER, HANTS., SP10 3WN TELEPHONE ORDERING FOR ACCESS/BARCLAY CARD CUSTOMERS IS NOW AVAILABLE.
JUST PHONE YOUR ORDER AND GIVE YOUR CARD NO. RING ANDOVER (0264) 64455.

Goods normally despatched 7 davs

It's easy to complain about advertisements.

The Advertising Standards Authority. If an advertisement is wrong, wore here to put it right. ASA. Ltd, Brook House. Torrngton Place. London WCIE THN

\section*{IONISER KIT | operains |
| :---: |
| opted |}

This negative ion generator gives you the power to saturate your home or office with millions of refreshing ions. Without fans or moving parts it puts out a pleasant breeze. A pure flow of ions pours out like water from a fountain, filling your room. The result? Your air feels fresh, pure, crisp and wonderfully refreshing.
All parts, PCB and full instructions $£ 12.50$
A suitable case including front panel, neon switch, etc. HOURS:
Mon. to Fri. 9-5 pm.
Sat. 9-4.30 pm.
Price includes post \& VAT. Barclay/Access Welcome
T. POWELL,

Advance Works, P.E.	Please allow 28 days
44 Wallace Road,	for delivery.
London N 1 1PQ.	
Tel. $01-2261489$.	

| START THE NEW YEAR WELL |
| :---: | :---: |
| WITh a |

Post this coupon or 'phone today for free Electronics careers guide.
AND OTMER EXCITING NEW MODULES

Model No.	Module	What it does	Current required	$\begin{gathered} \text { Prise } \\ \text { Inc VAT } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Price } \\ \text { ex VAT } \end{array}$
HY 13	Mono VU meter	Programmable gain/LED overiodd diver.	10 mA	£6.84	$£ 5.95$
HY $67{ }^{\circ}$	Stereo headphone driver	Will drive stereo headphones in the 4 ohm2K ohm range.	80 mA	£14.20	¢12 35
HY 72	vace operated stereo tader	Provies depth/delay effecis.	20 mA	¢15 07	£13. 10
HY 73	Gutar pre:amp	Handes two gultars (bass and tead) and mic with separate volume/bass/ireble and mix.	20 mA	£14 09	$\underline{1225}$
HY 76	Stereo swith matrix	Provides two channels, each swiching one of tour signals into one.	20 mA	To be announced	
HY 77	Stereo VU meter diver	Programmable gain/LED overlozo driver	20 mA	£10.64	$¢ 9.25$

for easy mounting we recommend:
B 6 mounting board for modules HY6 HY13 $£ 0.90$ inc. VAT. $(0.78$ ex. VAT.)
B66 mounting doard for modules HY66-HYT7 $\$ 1.12$ inc VAT $(099$ ex VAT)
-All modules are encapsuated and include clip on edge connectors. All operate trom 45 V minumum to $\pm 30 \mathrm{~V}$ maximum, needing dropper resistors for higher voliages HY67 can be used only with the PSU 30 power supply unit. Modules HY6 to HY13 measure $45 \times 20 \times 40 \mathrm{~mm}$ HY66 to HY77 measure $90 \times 20 \times 40 \mathrm{~mm}$
480 BRIDGING UNIT FOR DOUBLING POWER
Designed specially by IL. for use with any two power amplifiers of the same type to double the power output obtained and will hunction with any ILP power supply. In totally sealed case, size $45 \times 50 \times 20 \mathrm{~mm}$ with edge connector. It thus becomes possible to obtain 480 watts rms (single channel) into 8Ω. Contributory distortion less than 0.005%. Price: $£ 5.51 \mathrm{inc}$. VAT. (Ex. VAT £4.79.)
How to order Freepos1:
Use this coupon, or a separate sheet of paper, to order these products, or any products from other ILP Electronics advertisements. No stamp is needed if you address to Freepost. Cheques and postal orders must be crossed and payable to ILP Electronics Lid: cash must be registered. C.O.D. - add $£ 1$ to total order value. Access and Barclaycard welcome. All UK orders sent post free within 7 days of receipt of order.
ILP Electronics Lid. Freopost 2 Graham Bell House, Hoper Close. Canterbury CT2 7EP, Kent.
Please send me the following
ILP modules

Total purchase price

IencloseCheque \square
PostalOrders \square
Int. MoneyOrder \square
Please debit my Access/Barclaycara No.
Name
\qquad
Address
Signature
Post 10: HLP Electronics LId. Freepost 2. Graham Bell House. Roper Close. Canterbury CT2 7EP. Kent. Englano Teiephone (0227) $54778 \cdot$ Technical (0227) 64723 . Telex 965780
 STAYAHEAD.STAY WITHUS

AGREAT DAYOUT. Enter the fascinating world of woodworking

Admission prices: Adults $\mathbf{-} \mathbf{£ 1 . 8 0}$ To get your party rate tickets
Whatever your interest, skill or ambition in this traditional craft, you will find every facet of working in wood reflected here. Timber and tools, machinery and materials, plans and planes, clocks and clamps, dowels and drills, fittings and furniture, abrasives and adhesives - everything for everybody who ever works with wood.

THE CRAFT MARKET PLACE is
the unique centrepiece of this exhibition. Here, you can see - and buy if you wish - a wide range of beautiful items in wood showing what has been achieved by just some of the followers of the craft of woodworking. See for yourself how this absorbing hobby can also be profitable!

WEMBLEY CONFERENCE CENTRE February 4-7, 1982
February 4-6, 10am-7pm February 7 (Sunday), 10am-6pm
macral WOOD workina ExHIETITON Citizens - $\mathbf{£ 1 . 0 0 \quad \text { Exhibition Manager, Practical }}$ Party rates: (groups of 20 or more) Woodworking Exhibition on Adults - $\mathbf{£ 1 . 3 0}$ Children $-80 p$ (01)-6438040, (plus one free ticket per 20 tickets sold or apply at the door. for the organiser or teacher)

Bring yourself-and the family - and join in all the action!

Just 50 p will bring you the latest Wilmslow Audio 80 page catalogue packed with pictures and specifications of HiFi and PA Speaker Drive Units, Speaker Kits, Cabinet Kits . . .

1000 items for the constructor.

CROSSOVER NETWORKS AND COMPONENTS. GRILLES, GRILL FABRICS AND FOAM. PA, GROUP DISCO CABINETS - PLUS MICROPHONES AMPLIFIERS - MIXERS - COMBOS - EFFECTS SPEAKER STANDS AND BRACKETS - IN-CAR SPEAKERS AND BOOSTERS ETC. ETC.

* Lowest prices - Largest stocks *
* Expert staff - Sound advice \star
* Choose your DIY HiFi Speakers in the comfort of our listening lounge.
(Customer operated demonstration facilities)
* Ample parking *
* Access . Visa . American Express accepted

웅
 0625529599

35/39 Church Street, Wilmisow, Cheshire SK9 1AS

Lightning service on telephoned credit card orders! Please allow up to 7 days for delivery.

ACORN ATOM
ACORN ATOM
Kit 120 . BuIh $£ 150$
UK 101 AND SUPERBOARD
UK101 with 1 K and free power supply and modulator built £149. The below accessories suit both the UK101 and superboard:- Extra ram £2.70 per K. 16K memory expansion complete kit $£ 50$, built
$\mathbf{£ 5 8}$. 32 K memory expansion kit $\mathbf{£ 7 4}$, built c82. Case f27. Cassette recorder $\mathbf{f 1 9}$ Cegmon £22.50. Wemon $£ 19.95$. Word processor program £10. Centronics interface minifloppy disc drive with DOS £275. The below suit only superboardi- Colour adaptor
board built $£ 45$. Assembler/Editor tape $£ 25$. Guard band kit $£ 10$. Series 1 only 30 lines x 50 characters display expansion kit E 14 UK101 display expansion kit 14 . VIDEO GENIE E279
EG3014 Expansion box with $16 \mathrm{~K} / 32 \mathrm{~K}$ ram £189/f197. Disk drive £205.
 OVMPPGR green £95.

PRINTERS

Buy any of the below and set a free interface kit and word processor program for UK101 or Superboard:- Epson M $\times 70$ £259. Epson MX80T £359. Epson MX80F/T1 £395. Epson MX80F/r2 £449. OKI Microline 80 f295. OKI Microline B2A f399. Centronics

SWANLEY ELECTRONICS,

Dept. PE, 32 Goldsol Rd.,
Tol Sweniey (03221 84851

SINCLAIR PRODUCTS*
OX81 built + mains adaptor $£ 69.95$ (post £2.95 extra). SC110. Oscilloscope $£ 139$ PFM200 £49. PDM35 £32.95. DM235 53. DM350 f72. DM450£116. Microvision TV $\mathbf{f} 69$
aATTERY ELIMINATORS
3-way type $6 / 7.5 / 8 \mathrm{~V} 300 \mathrm{ma}$ £ 3.50 .100 ma radio types with press studs 9 V £ 4.95 +9 V .25. Car convertor 12 V input, outPut $3 / 4.5 / 6 / 7.5 / 9 \mathrm{~V} 800 \mathrm{ma}$ £3.04.
100 me radio types with press-studs 9 V £1.79, $9+9 \vee £ 2.50$. Stabilized 8 -way types $3 / 4.5 / 6 / 7.5 / 9 / 12 / 15 / 18 \mathrm{~V} 100 \mathrm{ma} £ 3.12$, Amp £8.50. Stabilized power kits $2-18 \mathrm{~V}$
100 ma £3.12, $1-30 \mathrm{~V}$ 1A $£ 8.50,1-30 \mathrm{~V} 2 \mathrm{~A}$ £15.30. TTL and compuzer supplies 5 V stabilized 1.5A £9, 3A $214,6 \mathrm{~A} £ 23.12 \mathrm{~V}$ onvertors $6 / 7.5 / 9$ V 1 A $£ 1.62$
TV GAMES:
AY-3-8600+kit f12.98. AY-3-8550+kit I.PA

AL3OA £4.35. PA12 12.31 . PS 12 £1.75. T538 £2.90. $\$ 450$ £27.90. AL60 £5.62. A100 f19.24. SPM80 E5.26. 8MT80 8.36. Stereo 30 £21.00, AL80 £8.56. VIC 20 COMPUTER
有

COMPONENTS*
1N4148 1.5 p . 1 N4002 3.7 p . NE555 8 dil 22 p. 7418 dil 16 p .2114 low current 300ns £1.35. BC182. BC184. BC212. $\mathrm{BC} 214, \mathrm{BC547}$ BC549 ${ }^{6}$ p. Resistors 5%
$1 / 4$ watt E12 10 R to 10 M p. 0.80 for $50+$ of one value. Polystyrene capacitors E12 63 V 10 to $1000 \mathrm{pf} 4 \mathrm{p} ; 1 \mathrm{n} 2$ to 10 n 5 p . Ceramic capacitors 50 V E6 22 pf to 47 n 2.5p. Electrolvtic capacitors $50 \mathrm{~V} .5,1,2 \mathrm{mf}$ $6 \mathrm{p} ; 25 \mathrm{~V} 5,10 \mathrm{mf} 6 p ; 16 \mathrm{~V} 22,33 \mathrm{mf} 6 \mathrm{p} ;$ Zeners 400 mw E24 2 v 7 to 33 v 7 p . Preset pots subminiature 0.1 W horiz or vert 100 to 2 M 28 p . IC sockets $8 \mathrm{dil} 8.7 \mathrm{p}, 14 \mathrm{dil} 10.1 \mathrm{p}$.

Postage 53.50 on computers, $E 4.50$ on printers and 45p on other orders. Lists 27p hose sections marked with prices excep slready include it. Overseas and official credit orders welcome.

SAFGAN DT-400 series BRITISH MAKE DUAL TRACE 'SCOPES

NOW, A PACKAGE THAT OFFERS YOU A 100uF/10V BEAD

 TANT FOR UNDER 10p \& CER DISCS FOR 1pSPECIAL OFFER. POPULAR VALUE TANTALUM BEAD PACKAGE T1. $\begin{array}{llll}3 & \text { OFF } 0.1 / 35 & 4 \text { OFF } \\ 2.2 / 20 & 3 \text { OFF } 3.3 / 15 & 3 \text { OFF } 3.3 / 35 & 4 \text { OFF } 4.7 / 6 \text { 2 OFF } 4.7 / 35 \\ 3\end{array}$ OFF $22 / 6.32$ OFF $22 / 102$ OFF $22 / 162$ OFF $47 / 1010$ FF $47 / 16$ IOFF $100 / 10$.
ALL THE ABOVE TI PACKAGE NORMALIY $£ 8.50$ to $£ 10$ SPECIAL OFFER 61 TANTS ALL THE ABOVE TI PACKAGE NORMALLY $£ 8.50$ to $£ 10$ SPECI
FOR E6 TANTALUM BEAD CAPACITORS. 1 OFF PRICE (10 OFF) PRICE.
$.1 / 35 \ldots 10 p(8 p) \quad .15 / 35 \ldots 10 p(8 p), 22 / 35 \ldots 10 p(8 p) \quad 33 / 35 \ldots 10 p(8 p) \quad .47 / 35 \ldots 10 p(8 p)$
 $68 / 35 \ldots 10 p(8 p p)$
$3.3 / 35 \ldots 14(12 p)$
$4.7610 p(8 p)$
$4.7 / 35 \ldots 15 p(14 p) 6.8 / 25 \ldots 14 p(12 p) 6.8 / 35 \ldots 15 p \mid 14 p)$ $10 / 16 \ldots 16 \mathrm{p}(15 \mathrm{p}) 10 / 25 \ldots 19 \mathrm{p}(18 \mathrm{p}) 22 / 6.3 \ldots 16 \mathrm{p}(14 \mathrm{p}) 22 / 10 \ldots 20 \mathrm{p}(17 \mathrm{pl} 22 / 16 \ldots .25 \mathrm{p}(22 \mathrm{p})$ $22 / 25 \ldots 30 \mathrm{p}(28 \mathrm{p}) \quad 47 / 10 \ldots 25 \mathrm{p}(22 \mathrm{p}){ }^{4} \mathrm{H}^{4716 \ldots 4 \mathrm{p}(36 \mathrm{p})} 100 / 10 \ldots 50 \mathrm{p}(49 \mathrm{p})$

RETAIN THIS AD. FOR ALL YOUR IMMEDIATE AND FUTURE TANTALUM REQUIREMENTS.
SUBMINIATURE VER. MOUNTING 250V CER DISCS. Values in PF
 2002202703003304705606808201000150018002000300033004000

 20 mm GLASS AEED SWITCHEKS (GOLDPLATED) io for 50p $£ 30.00$ per 1000 . dity users please telephone.
TAADE ENQ WEP add 50p per order Post paid on orders over 56.00 . Add 15% VAT
TAADE ENO. WELCOME. SCHOOLS ETC. SEND OFFICIAL ORDER. CALLERS BY C.H.J. SUPPLIES, 4 STATION ROAD, CUFFLEY, HERTS TEL: 01-440 8959

Following major reorganisation we offer DIY security equipment and kits with full illustrated, step-by-step, instructions.
PLUS Better Prices ! Better Delivery ! Better Senvice !

- Kits £32, £50, £75, £85 Control Panels £18, £23, £29, £37 - Bell Boxes $£ 6.25, £ 7.50$ Pressure Pads $£ 1.06, £ 1.45, £ 1.95$ - Sirens $£ 7.50 \bullet$ Contacts 72p, 74p, 76p - 4 Core Cable (100 m) $£ 8.00$ Door Phones £49.42 Ultrasonics $£ 34.50$. AND MUCH, MUCH MORE!

Send SAE or 'Phone for FREE Illustrated Catalogue.

[^1]

RECEIVERS AND COMPONENTS

"MEMORIES" Why pay more for brand new, full Spec., guaranteed components. 2716's ($5 v$) $£ 2.50$ each, $£ 9.25$ four \& up. Note - VAT inclusive prices. Enquire re other components, e.g. IN4148's 50 for £1.25, 100 for $£ 2.00$. You know you'll need them. P/P also included except +20 p orders under 55 please. WESSEX COMPONENTS, 17, Cripstead Lane, Winchester SO23 9SF.

300 SMALL COMPONENTS, Transistors, diodes $£ 1.70$. 7 lbs assorted components $£ 4.25$. 10Ibs $£ 5.75 .20$ wire ended neons £1. Forty 74 series 1 Cs on panel $£ 1.70$. 500 capacitors $£ 3.20$. List 20 p refundable. Post 60 p, optional insurance 20p. JWB Radio, 2, Barnfield Crescent, Sale, Cheshire M33 1 NL .

SMALL ADS

The prepaid rate for classified advertisements is 32 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 10.70$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Electronics, Room 2337. IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

BALLARD'S OF TUNBRIDGE WELLS have moved to 54 , Grosvenor Road, no lists. S.A.E. all enquiries phone Tunbridge Wells 31803.

Nostaval THE VINTAGE ${ }^{c}{ }^{\circ}{ }^{\text {Clecer }}$ WIRELESS COMPANY 1920 to 1955

```
Receivers, valves, components, service data, historica, research books. magazines, repairs and restorations. A
complete service for the coltector and enthusiast of vintage comple radio.
wh enquiries and for monthly newsheet
THE VINTAGE WIRELESS COMPANY, 64, Broad Street, Steple Hili, Bristol BS16 5NL. Tel. Bristol
565472 .
```

TURN YOUR SURPLUS Capacitors, transistors, etc., into cash. Contact COLES-HARDING CO. 103 South Brink Wisbech. Cambs. 0945-4188. Immediate settement.

THE COMPLETE P.C.B. SERVICE

We offer a low cost P.C.B. service for prototypes and small runs of conventional or P.T.H. We are happy to make even 1 off at a price which will not require you to see the Bank Managerl We can photograph anything Make a note of our name.

ETCHCRAFT-SOUTH
 Station Yard, Hursley Road,

Tel. 0703867516.

BOURNEMOUTH/BOSCOMBE. Electronic components spe cialists for 33 years. Foresters (National Radio Supplies) Late Holdenhurst Road. Now at 36, Ashley Road, Boscombe. Tel. 302204. Closed Weds.

MICROSTATE LIMITED for your MINIATURE SCORPIO KIT

All parts as specified in PE for only $£ 14.85$ inc. VAT, \& postage. PCB only, £1.75 inclusive. SAE for full price list.
Kit normally excludes copper wire, which will be given free with first 50 orders for full kits.

> Send to Dept. PE, Microstate Limited, 5 Northfield Close, Fernhill Heath, Worcester, WR3 7XB.

When replying to Classified Advertise ments please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to addressed to
the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

P.E. AND PROTOTYPE PCBS PLUS P.E. PHOTOCOPIES

LOW COST SERVICE FOR HOME ENTHUSIASTS

Send S.A.E. for lists
PRINTRONIX, 8 Back Road,
Sidcup, Kent. OA14 6HA

BOOKS AND PUBLICATIONS

any single service sheet fl/L.S.A.E. Thousands different repair/service manuals/sheets in stock. Repair data your named T.V. 26, (with circuits 18). S.A.E Newsletter, pricelists, quotations. AUS (PE), 76 Churches, Larkhall, Lanarkshire. (0698 883334).

SOFTWARE

UK101 AND SUPERBOARD. Program books, mostly utilities. a few games. Includes HEX dump patch for assembler and Exmon, high speed binary dumper/loader, list basic variables, renumber and search, etc., etc., $\mathbf{\Sigma 2 . 5 0}$ including P\&P or SAE for full list and sample programb Dr. Mike Whittle, I, Old Croft Close, Kingston Blount, Oxford.

DEMONISE YOUR UK101 DEMON PLUS

6K MONITOR EXTENDED BASIC \& WORD PROCESSOR

Exira BASIC Commands include: PRINT USING, CLS CLW, DEEK, GET, DUMP, COPY, TRACE RENUMBER, Controlled LIST \& EDIT, SAVE \& LOAD Named Programs \& Data Files, Block Delete, PLOT \& PRINT AT functions. Full Screen Editing. Fully decoded Keyboard. Selectable Display Windows etc. WORD PROCESSOR Functions include: Insert \& delete, Cursor left/right, Scroll Display up or down line or page, Global search/amend, Block moves of any length, Centralise \& Right Justify. Format on screen or Print any part of text with page width length, margin \& multi copy settings. Save \& Load Text etc.
"DEMON PIUS" is supplied in $3-2716$ Eproms to decode at F800, $9800 \& 9000$. Price $\mathbf{5 3 5 . 0 0}$ inc. or SAE for full details to
N. V. Davies,

11 Holloway, Haverfordwest, Dyfed.
freE " CATALOGUE. Everything for microcomputer users. Phone Croydon Computer Centre, 29A, Brigstock Road Thornton Heath, Surrey 01-689 1280.

ZX81 (16K) EDUCATIONAL SOFTWARE. English and maths for 8-13 year olds plus G.C.E. "O" level maths. SAE for details to: Rose Cassettes, 148 Widney Lane, Solihull, West Midlands B91 3LH.

ZX80/81 HARDWARE
 DESCRIPTION OF KIT
 (Price includes VAT, but add 80p postagel

$1.0 \mathrm{amp}, 5.0$ volt power supply
Requires 9.0 volt transformer 16 bit latched LED board Edge connector for LED board 40 key full size keyboard for ZX80, ZX81
Edge connector to fit above
4 rubber feet for keyboard
Spare key and keytop
Case for keyboard
24 line In/Out port
In/Out edge connector
23 way edge connector for
ZX80. ZX8 1
Motherboard
Price
f-p

Voltage regulator klt for motherboard
Connector for motherboard
Digital to analogue converter board
One digital to analogue and buffer IC
23 way male connector, single
23 way male connector, double
Pair of connectors for 2×81 keyboard 24 line In/out port (ZX81 only)

All the above are available built - see
BOOKS (posi free) catalogue
Getting Acquainted With Your ZX8 1 Tim Hartnell
Mastering Machine Code on Your 2×81, Tony Baker
The Sinclair ZX81. Programming For Real Applications. Randle Hurley.
170 pages $\mathbf{£ 6 . 9 5}$, Tape £9.95 (post 40p) Send $10^{\prime \prime} \times 7^{\prime \prime}$ SAE for free illustrated catalogue:
REDDITCH ELECTRONICS
21 Fernay HIII Ave, Redditch,
Worcs B97 4RU.
Telephone Redditch (O527) 61240.
eproms programmed. 25/2716 £8.50, 25/2732 $£ 16.00$. Wilkinson, 3 Wedgewood Drive, Leeds LS8 IEF. Sae details. 667183.

SERVICE SHEETS

SERVICE SHEETS \& each plus SAE. Individual T.V. repair data $£ 6.50$ (with circuits $£ 8.50$). Free electronics newsletter, pricelists unique publications. Auspe, 76 Churches, Larkhall, Lanarkshire ML9 1HE.
bell's television services for Service Sheets on Radio, Tv, etc $£ 1.25$ plus S.A.E. Colour TV Service manuals on request. S.A.E. with enquiries to B.T.S. 190 Kings Road, Harrogate, N. Yorkshire, Tel:(0423) 55885.

EDUCATIONAL

careers in marine electronics. Courses commencing September and January. Further details, The Nautical College, Fleetwood FY7 8JZ. Tel. 0391779123.

CITY \& GUILDS EXAMS

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians, Electrical Installations, Radio, TV \& Electronics Technicians, Radio Amateurs. Full details from:

ICS SCHOOL OF ELECTRONICS

Dep. 272R Intertext House. London SW8 4UJ Tel. 01-622 9911 (all hours) State if under 18

TECHNICAL TRAINING

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics, Computers: also self-buld radio kits. Full details from:

ICS SCHOOL OF ELECTRONICS

Dept. 272R Intertext House. London SW8 4UJ Tel. 01 -622 9911 (all hours) State if under 18

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from

ICS SCHOOL OF ELECTRONICS

Depl. 272R Intertext House, London SW8 4UJ
Tel. 01-622 9911 (nill hours)
State if under 18

FOR SALE

NEW BACK ISSUES Of 'practical electronics' available 90 p each Post Free. Cheque or uncrossed P/O returned if not in stock - BELL'S TELEVISION SERVICES, 190 Kings Road, Harrogate, N. Yorks. Tel: (0423) 55885.
SAFTRON RADAR frequency controlled burglar entry alarm sy stem complete antenna 4 horn battery. New. $£ 120$ o.n.o. Tel. 0293883805 evenings.

2X81 SINCLAIR built with manual, mains adaptor, leads £50. Telephone (0407) 810689.

miscellaneous

PRACTICALELECTRONICS P.C.B's
Driled, 1.5 mm Glass fibre Fry's Roller Tinned NOV 81 UK 101 Monitor change EP640 1.87 DEC 81 Space Invaders EA 303 EA30S 56.91 a pair For tuill list and current pecis send SAE. Pcobs also producted to customers own madsisis. Trade ènourines welcomed. Write for quote. CWO Please. Porotepen add 35p postage and packing to complete order, Europe 70 p .

PROTO DESIGN

14 Downham Road, Ramsden Meath,
Billericay, Essex CM1 1 PU. Telephone 0268 ,
ENAMELIFD COPPER WIRE. 10 swg to 45 swg. SAE quotation by return, cheapest prices. 102 Parrswood Road, Manchester 20.

SECURITY SYSTEMS KITS ... All components and full instructions. Send large SAE for latest catalogue of advanced projects for car, caravan and home. CompuTech Systems, Ind. Est., N. Walsham NR28 OAN. Tel: Tech Systems,
(0692) 5600.

PARAPHYSICS JOURNAL (RUSSIAN TRANSLATIONS): Psychotronic Generators, Kirlianography, Gravity Lazers, Telekinesis. Details: Sae $4 \times 9^{\prime \prime}$ Paralab, Downton, Wilts.
clearing laboratory: scopes, generators, P.S.U's, bridges, analysers, meters, recorders, etc. 0403-76236.
printed circuit boaros. Glass Fibre tinned and Drilled Prototypes to batch runs. Quick turn-round, competitive prices. Send s.a.e. for quotations: R. D. Electronics, 12 Whiteoaks Road, Oadby, Leicester. 0533716273.

REVERBERATION

The Ryder solid-state unit, specially designed for organ use, gives smooth, natural sound. Demo cassette, on loan, deposit $£ 1.50$, refund $£ 1.00$. (Prices UK only).

HIYKON LTD. (P),
Woodside Croft, Ladybridge Lane, Bolton BL1 5ED.
burglar alarm equipment. Ring Bradford (0274) 308920 for our catalogue or call at our large showrooms opposite Odsal Stadium.

FOR ALL YOUR COMPONENTS. C.B. Electronics, 80 Wheatland Lane, Wallasey, Merseyside. 0516399122

Electronic kits. Largest range of kits in the U.K. Everything from stroboscopic lights to transmitters, at unbeatable prices. Send SAE for free catalogue to: EASTLING ELECTRONICS (KITS) 64B. Hawthorn Road, Winton, Bournemouth.

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Practical Electronics for.
insertions. I enclose Cheque/P.O. for $£$.
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical-Electronics).

NAME	Send to: Classified Advertisement Manager PRACTICAL ELECTRONICS
ADDRESS	Classified Advartisements Dept., Room 2337 King's Reach Tower, Stamford Street,
	London SE1 9LS. Tolephone 01-261 5846 Rate:
	32p per word, minimum 12 words. Box No. 60p extra.

MISCELLANEOUS

- CONTD.
"LIE OETECTORS". Beautifully made unit in grey and blue metal case, fully solid state with 100-0-100 Crompton microammeter, gel, 6 probes. circuit and operating instructions. Brand new, our all in price is only $\mathbf{8 8 . 0 0}$ this includes Vat and postage. SAE for cet and instructions to "Q" SERVICES, 29 Lawford Crescent, Yateley 871048 , Camberiey, Surrey.

$\mathbf{Z X 8 0} \underset{\sim 1}{20}$
MUSIC SYNTHESISER
+16 LINE CONTROL

Mocel Ratway. ot. atc. Worts will or without 1 BK AAM.
Ada keyboras io make allve Destom amazima valueat omly $£ 19.50$ COLOUR MOOVLLTOR RGBIT, PALUHF OU1
Inc. Modulalor. STill the best solling sysptem! Plases add VAT at 15% tio all Itreses.
WILLIAM Domer House, Bilencia

kit builoing service. Professional quality, Workmanship guaranteed. Don Erskine BSc, 01-546 3246 (eves).

Centurion burglar alarm equipment. Send Sae for free list or a cheque/PO for $£ 11.50$ for our special offer of a full sized signwritten bell cover, to Centurion Dept PE, 265 Wakefield Road, Huddersfield, W. Yorkshire, Access \& Barclaycard telephone orders on 0484-35527.

THE SCIENTIFIC WIRECOMPANY
ENAMELLED COPPER WIRE

SWG	1 lb	802	$40 z$	202
8 to 29	2.76	1.50	0.80	0.60
30 to 34	3.20	1.80	0.90	0.70
35 to 39	3.40	2.00	1.10	0.80
40 to 43	4.75	2.60	2.00	1,42
44 to 47	5.90	3.40	2.39	2.00
48 to 49	15.96	9.58	6.38	3.69
SILVER PLATED COPPER WIRE $\begin{array}{llll}14 \text { to } 30 & 6.50 & 3.75 & 2.20\end{array}$				
TINNED 14 to 30	OPPER 3.85 Prices	IRE 2.36 P\&P,	$\begin{aligned} & 1.34 \\ & \text { AT. } \end{aligned}$	0.
SAE for	s under of Copp enquir Office, 2	plea Resis welc onings	add 2 ce W . Garde	

PREPACKED. Screws, nuts, washers, solder tags, studding. Send for price list. AI SALES (PE), PO Box 402, London SW6 6LU.

Cabinet and Flightcase Fittings

 Send 30 p Postal Order for illustrated calalogues to:-
 ADAM HALL (P.E. SUPPLIES)

ULTRASONIC TRANSOUCERS, miniature, 40 KHz , £2.85p/pair +25 p p\&p. Dataplus Developments, 81, Cholmeley Road, Reading, Berks.
gladstone radio. 66 Elms Road, Aldershot GUII 1LP. CLOSING MARCH '82. Send two second class postage stamps (unused) for lists of components, speakers etc., at knock-out prices.

CORDLESS TELEPHONES build your own simple and inexpensive units, send $£ 3.00$ for plans to J. F. Ashley, Birley Grange Cottage Farm, Baslow Road, Cutthorpe, Derbyshire.

SECURITY ALARMS KITS FROM [37. Full range of accessories. MFP Ltd., Harrison Road, Erdington, Birmingham B24 9AB. 02 1-373 0450.

DIGITAL WATCH BATTERY REPLACEMENT KIT

These watches all require battery (power cell) replacement at regular intervals. This kit provides the means. We supply eyeglass, non-magnetic
tweezers, watch screwdriver, tweezers, watch screwdriver, opener, also one doz case push pieces, full instructions and battery identification chart We then supply replat. We then supply replacement
batteries-you fit them. Begin batteries-you fit them. Begin
now. Send E 9.00 for complete klt and get into a fast growing kit and get into a fast growing
business. Prompt despatch. INSTRUMENT CO. (PE32)
11 Percy Avenue, Athford, Middx. TW15 2PB.
OIGITAL WATCH BATTERIES. Any type $£ 1.20$ each. Send S.A.E. or $15 p$ with number or old battery to DISCLEC Y, 511 Fulbridge Road, Werrington, Peterborough.

MAKE YOUR OWN PRINTED CIRCUITS Etch Resiat Transfers - Starter pack (5 sheets, lines, pads, I.C. pads! £2.00. Large range of single sheets in stock at 43p per sheet. Mastar Positive Transparancies from P.C. layouts in magazines by simple photographic process, 2 sheets negative paper, 2 sheets positive film (A4) E2.10. Photo-resist sprey (200 m) £3.25 ($\mathrm{p}+\mathrm{p}$ 55p). Drafting Film (A4) 25p. Precizion Gride (A4) 65p. 20p stamp for lists and information. P\&P 35p per order except where indicated. P.K.G. ELECTRONICS OAK LODGE, TANSLEY, DERBYSHIRE.

ULTRASONIC TRANSOUCERS. $£ 2.85$ per pair $+25 p \mathbf{P}+\mathbf{P}$. Dataplus Developments, 71 Chomeley Road, Reading, Berks.

INDEX TO ADVERTISERS

Adam Hall Supplies..
A.D. Electronics

Ambit
Autumn Products
Barrie
78

OVERSEAS ORDERS

Overseas readers are

 reminded that unless otherwise stated, postage and packing charges published in advertisements apply to the United Kingdom only.Readers wishing to import goods from the United Kingdom are advised to first obtain from the advertiser(s) concerned an exact quotation of the cost of supplying their requirements carriage paid home.

BAKER LOUDSPEAKERS
"SPECIAL PRICES" POSTE2

Model

 Ohms Inch Watts Type PriceMalor Superb Auditorium Auditorium
Group 45 Group 75 Group 100
Group 100
DIsco 100
4,8
8
8,
8,
8,
8
4
8

DE-LUXE DISCO MIXER. $240 \mathrm{~V}, 4$ stereo channels, 2 magnetic, 2 ceramic/tape, 1 mono mic channel, twin v.u. mer panel or desk mounting, attractlve grained aluminlum facia, silver knobs. £40. Post £1.
2 CHANNEL STEREO MIXER. 9 vot operated 99.50 p\&p 850
MINI MODULELOUDSPEAKERKIT
$15 \times 841 \mathrm{n}$. 3-way 8 affle, 5 in . EMI. 8ass. Sin. EMI. Middie, 3in. supplied. Response 60 to 20,000 c.p.s. 12 wart RMS 8 ohms $\mathbf{8 1 0}$ per kit. Two kits $\mathbf{5 1 8 . 5 0}$. Suitable 8 ookshelf Cabinet £10.50 aach. Post $£ 2$.
GARRARD 6-200 SINGLE PLAYER DECK Brushed Aluminium Arm with stereo ceramic cartridge Start. Large Metal Turntable.
Cuelng Devlce and Pause Control. $£ 22$. Post $£ 2$.
METTAL PLINTH CUT FOR GARRARD Slze: $16 \times 14 \times 3$ in. $£ 3.00$. Silver or 8 lack finish. Post $£ 2$ ISKRA SINGLE RECORD PLAYER Fitted with auto stog, stereo cartridge. $£ 8$ Size $11 \times$ biln. Turntable size 7 ln . dlameter

B.S.R. SINGLE PLAYER P170/2 £20.00 3 -speeds 111 n . aluminium furntable. "silm" arm, cueing device, stereo ceramic carfridge, silver trim, blas compensator, adjustable stylus pressure, plays all records, spring
suspension, 240 V AC. Post $£ 2$.
B.S.R, DE-LUXE AUTOCHANGER
with stereo cartridge, plays all sire records. Post $\mathbf{E} 2$ DECCA B.S.R. TEAK PLINTH $18 \frac{3}{4} \times 14 \mathrm{f} \times 4 \mathrm{in}$. Space for small amplifier. Speclal price $£ 5.95$ post
Ditto with G arrard 8 oand $£ 4.95$ post paid.
TINTED PLASTIC COVERS POST E2 Sizes: $14 \frac{1}{2} \times 12 \frac{1}{4} \times 3$ in. E5. $17 \frac{1}{4} \times 9 \frac{1}{2} \times 3 \frac{1}{2}$ in. E3. 14×13

R.C.S. LOW VOLTAGE STABILISED POWER PACK KITS All parts and instructions with Zener dlode printed elrcult, up to 100 mA or less. Please state voltage required.
PP BATTERY ELIMINATOR BRITISH Malns stablilzed power-pack 9 volt 400 mA max. with Switched $3 ; 6 ; 7 t ; 9$ volt 400 ma . Stabilized. E7.50. Post \& 1

PE CAR COMPUTER

This unit was described by Practical Motorist as: "One of the neatest, most comprehensive and most useful of these car computers that we have yet come across

The PE Car Computer was designed to exceed the specification of all others, both for number of functions and accuracy. As well as the usual functions, it can perform eleven "remaining" type calculations, has a unique "start-stop" mode (used for acceleration timing and the like) and has a combination lock for driving an alarm or ignition cut-out.
The unit is housed in a custom designed box with high quality printed panels having an overall size of $165 \times 50 \times 80 \mathrm{~mm}$ deep and can be fitted above or below the dashboard. The display is liquid crystal for clarity in all lighting conditions.
The kit includes all sensors, wiring, etc and is suitable for all cars except those fitted with diesel or fuel injection engines.
Kit price: $£ 88.50+£ 1$ p\&p includes VAT.
Send S.A.E. for list of separately available parts.

PIMAC SYSTEMS LTD
20 Bloomfield Road, Moseley, Birmingham B13 9BY.

Tel: 021-449 0384

STORAGE CABINETS

EPROM PROGRAMMER 2716 - HEXKEYPAD - POWERFULEDITOR - TV (MONITOR) DISPLAY - SERIAL/PARALLEL I/O - CASSETTE BACK-UP - ROMULATOR SOFTY STANDS ALONE E169+VAT, EX-STOCK, BY RETURN DATAMAN DESIGNS, LOMBARD HOUSE, DORCHESTER, DORSET, DTI IRX. (0305) 68066

Metal Cabinets $12^{\prime \prime}$ wide $\times 5 \frac{3}{4}$ " deep, finished blue with transparent plastic drawers.
Tvoe H No. of Drawers Price (ins) Sm MedLge
$\begin{array}{llllll}1118 & 11 & 15 & 2 & 1 & £ 10.75\end{array}$ $\begin{array}{llllll}1633 & 16 & 30 & 2 & 1 & £ 13.95\end{array}$
$\begin{array}{llllll}1838 & 18 & 35 & 2 & 1 & £ 15.95\end{array}$
$\begin{array}{llllll}2236 & 22 & 30 & 4 & 2 & £ 18.55\end{array}$
22602260 - $-\mathbf{£ 1 8 . 5 5}$
Access/Barclaycard welcome Prices include VAT and Post. Cheque/P.D. to: Millhill Supplies (Tools),
35 Preston Crowmarsh, Benson, Oxon OX9 6SL.
Tel: Wallingford (0491) 38653 Goods by return of post.

 Hammersmith Underground Station is nearby. Call in and see us soon.

Over 100,000 copies sold already! Don't miss out on your copy.
On sale now in all branches WH Smith 有
In case of difficulty check the coupon below.

Post this coupon now.
Please send me a copy of your 320 page catalogue. I enclose $£ 1.25$
(incl. 25 p p\&p). If I am not completely satisfied I may return the
catalogue to you and have my money refunded. If you live outside the
U.K. send $£ 1.68$ or 12 International Reply Coupons.
Name.
Address
Ali mail to: P.O. Box 3, Rayleigh, Essex SS6 8LR. Tel: Southend (0702) 554155
Sales: (0702) 552911

[^0]: (c) IPC Magazines Limited 1982. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: AD ELECTRONICS, 217 Warbreck Moor, Aintree, Liverpool, L9 0HU.
 Tel. 0515238440 All prices include carriage VAT extra.
 TRADE ENOUIRIES WELCOME

