

TV amera

e

yes re-think matbe reegitir no . . enter oata

SNDEC:S:DN ELSMBNATIK

Build this Executive Toy!

Much more than just kits quite simply the best way to make music . . .

The smart contemporary styling of the 'black-boxes' contain the easy-to-build advanced electronics that produce everything from high grade amplifcation to complex lighting effects. These units are among the finest of their kind available and combine, as do all the Powertran kits, constructional ingenuity with high grade performance capability.

The finest materials and components are used throughout and the easy-tofollow fully illustrated and diagrammed manuals make building as pleasurable as operating.

Each unit can, of course, perform its independent function - but it is compatible with its fellows (same cabinet sizes and the same quality and professional finish) to enable you to assemble an impressive bank of wholly controllable power.
 performance at an exceptionally low price. Adaptable inputs mixer accepts a variety of sources. Straightforward construction - an

COMPLETE KIT £49.90 (+ VAT)
CHROMATHEQUE 5000 - 5 channel lighting effect system. Sound to light, strobe to music level, random or sequential effects - each channel handles up to 500W yet minimal wiring is needed with our

COMPLETE KIT £49.50 (+ VAT)
ETI VOCODER - 14 channel for maximum versatility and high intelligibility; each channel has independent level control. 2 input amplifiers - for speech/external excitation - each with level control and tone control. The Vocoder is a superb machine capable of infinite comprehensive builders' manual - is challenging yet within the scope

COMPLETE KIT $£ 175$ + VAT)

> SP2 200-2 channel 100W amplifier. Two of the rugged, reliable and economic amplifiers from the MPA200 are fed by separate power supplies from a common toroidal transformer. Fully finished metalwork, fibreglass PCBs, controls, wire - everything you need to make this powerful unit.
> COMPLETE KIT £64.90 + VAT)

DJ90 STEREOMIXER-a

versatile new mixer with 2 stereo inputs for magnetic cartridges, a stereo auxiliary input and mike input. Auto planning for fast or slow. slider controls, multi-mixing, ducking, interrupt, input modulation - everything yet still under $£ 100$! (Our console below shows the mixer neatly teamed with a Chromatheque and SP2 200) COMPLETE KIT £97.50

PRICE STABILITY: Order with confidence. Irrespective of any price changes we will honour all prices in this advertisement until Feb. 28th, 1982 , if this month's advertisement is mentioned with your order. Errors and VAT rate changes excluded.
EXPORT ORDERS: No VAT. Postage charged at actual cost plus E 1 handling and documentation.
U.K. ORDERS: Subject to 15% surcharge for VAT. No charge is made for. carriage, or at current rate if changed.
SECURICOR DELIVERY: For this optional service (U.K. mainland only) add $£ 2.50$ (VAT inclusive) per kit. FREE ON ORDERS OVER $£ 100$. SALES COUNTER: If you prefer to collect kit from the factory. call at Sales Counter. Open 9 a.m.-12 noon, 1-4.30 p.m. Monday-Thursday.

POWERTRAN ELECTRONICS, PORTWAY INDUSTRIAL ESTATE, ANDOVER, HAMPSHIRE SP10 3WN. Telephone Andover (0264) 64455

CONSTRUCTIONAL PROJECTS

INDECISION ELIMINATOR by W. C. Dickson 22
Every civil servant should have one!
TV CAMERA Part 1 by Philip Gaffney 26
Monochrome camera with u.h.f. modulated output
PE RANGER BASE STATION Part 1 by Michael Tooley B.A. and David. Whitfield M.A., M.Sc. 32
Increases r.f. output to 4W
PE BANDBOX Part 3 by Alan Boothman B. Sc. 37
Construction of system and display boards
DUAL DIGI-DICE by Tom Gaskell B.A. 51
Another project incorporated in our Digital Design Techniques series
PE CAR COMPUTER Part 2 by P. MacFarlane 58
Fitting of flow and speed sensors
PE ROBOTS Part 3 by Richard Becker and Tim Orr 64
Mobile wheel base, motor control, display board and manual control keyboard
GENERAL FEATURES
SEMICONDUCTOR UPDATE by R. W. Coles 25
Featuring 1804 WTV008
DIGITAL DESIGN TECHNIQUES Part 6 by Tom Gaskell B.A. 48
Numerical Systems
MICROBUS by D.J.D 72
Hardware and software ideas for hobby computers
NEWS AND COMMENT
EDITORIAL 17
NEWS \& MARKET PLACE 18
Including Countdown and Points Arising
INDUSTRY NOTEBOOK by Nexus 21
What's happening inside industry
SPACEWATCH by Frank W. Hyde 29
Extra-terrestrial activities 35
A quality tool at a bargain price 39
Pull-out guide to legal rigs
PATENTS REVIEW 63

OUR FEBRUARY ISSUE WILL BE ON SALE FRIDAY, 8th JANUARY 1982

(for details of contents see page 31)

[^0]WATFORD ELEGTRONICS
33/35, CARDIFF ROAD, WATFORD, HERTS, ENGLAND Tel. Watford (0923) 40588. Telex: 8956095

VAT

Export orders no VAT. Applicable to U.K. Customers only. Unless
stated otherwise, all prices aro exctusive of VAT. Please add 15% to the total coat incl. p\&p.
Football Ground. Nearest Underground/Br. Rail Station: Watford High Street. Open POLYESTER CAPACITORS: (Axial Lead type)
\qquad
$45 \mathrm{p} ; 2 \mu 248 \mathrm{p} ; 4 \mu 758 \mathrm{p} ; \mathrm{p}$; $15 \mathrm{n} 40 \mathrm{p} ; 22 \mathrm{n} 36 \mathrm{p} ; 33 \mathrm{n} 42 \mathrm{p} ; 47 \mathrm{n}, 100 \mathrm{n} 50 \mathrm{p}$
$1000 \mathrm{~V} ; 1 \mathrm{nF} 17 \mathrm{p} ; 10 \mathrm{nf} 30 \mathrm{l}$
 ELECTROLYTIC CAPACITORS (Values in μ f). 500V: $1052 \mathrm{p} ; 47$ 78p; 63V: 0.47, 1.0. $1.5,2 \cdot 2,3.3,8 p ; 4.79 p ; 6.8 .1010 p ; 15.2212 p ; 3315 p ; 4712 p ; 10019 p ; 1000$
$70 p ; 50 \mathrm{v}: 4712 p ; 5820 p ; 22024 p ; 47032 p ; 220090 p ; 40 \mathrm{~V} ; 4.7,15.22,9 p ; 330$

 TANTALUM BEAD CAPACITORS:
$35 V: 0.1 \mu .022 .0 .3315 p ; 0.47,0.68$,
$10,1.516 p: 2.2,3.318 p: 4.7,6.8$ 22p; $1028 p ; 16 \mathrm{~V}: 2.2,3 \cdot 3,16 \mathrm{p} ; 4.7$
$6.8 ; 1018 \mathrm{p} ; 1536 \mathrm{p} ; 2230 \mathrm{p} ; 33,47$
$40 \mathrm{p} ; 10075 \mathrm{p} ; 22088 \mathrm{p}$ 10V: 15.22
26p; $33,4735 \mathrm{p} ; 10055 \mathrm{p}$. MYLAR FILM CAPACITORS:
100V: $1 \mathrm{nF}, 2 \mathrm{n}, 4 \mathrm{n}, 4 \mathrm{n7} 7.106 \mathrm{p} ; 15 \mathrm{nF}$
$22 \mathrm{n}, 30,47 \mathrm{n}, 40,4 \mathrm{p} ; 56.100 \mathrm{n}, 200 \mathrm{9p}$;
$470 \mathrm{n} / 50 \mathrm{~V}: 12 \mathrm{p}$.
CERAMICCAPACITORS: (50V)

Range: 0.5 pf to 10 nF
$15 \mathrm{nF}, 22 \mathrm{nF}, 33 \mathrm{nF}, 47 \mathrm{nF}$

$15 \mathrm{nF}, 22 \mathrm{nF}, 33 \mathrm{nF}, 47 \mathrm{nF}$	4 p
$100 \mathrm{nF} / 30 \mathrm{~V} \quad 7 \mathrm{p}$; $220 \mathrm{nF} / 6 \mathrm{~V}$	5 p
8 p	

POLYSTYRENE CAPACITORS
1OpF to 1 nF 8 p

POTE
$0.25 W$
500Ω,
$5 K \Omega-2$
$5 K \Omega-2$
$5 K \Omega-2$
$1 W W$
SLIDE
$0.25 W$
$5 K \Omega .5$
$10 K \Omega$
Self-St
PRES
$0.1 W$
$0.25 W$
$0.25 W$
Precisi

LINEARIC'S

 702
709 C 8

s			MK50398	635	TDA1024	105	6116-3 16K	
80	ICM7217A		MM5303	635	TDA1034	350	CMOS RAM	55
75		88	MM5307	1275.	TDA1490	290	6502 CPL	450
35			MM5387A	475	TOA2002	325	6503	850
48		295 385	MSM5526	820	TOA2020	320	6504-250	395
14		385	NE515	275	TOA2030	320	6505	795
70	LC7130	495	NE529	225	TLO61CP	40	6520 PIA	310
36	LF355		NE531	140	TL062CP	60	6522 VIA	485
185		85	NE543	210	TLO64CN	98	6530 RRIOT	1350
159	LM10	425	NE544	185	TL071CP	30	6532 RIOT	750
350	LM301	425	N 555	16	TL072CP	50	6545 CRTC	1450
675		95	NE55608	55	TL074CN	100	6551 ACIA	785
34660	LM311	75	NE560	325	TLO8 1 CP	25	6592 PC	± 26
225	LM319	225	NE561.	395	TLO82CP	45	6800	375
99	LM318		NE562B	410	TLOB3CP	75	6802	500
160	LM324	45	NE564	420	TLO84CP	95	6803	1350
210		54	NE565A	120	UAA170	170	6804	160
840		54	NE566	155	UAA180	170	6805	670
390		115	NE567	150	UAA1003-3	935	6808	520
620	LM358	75	NE570	450	ULN2003	85	6809	999
625	LM377	175	NE571	420	ULN2004	125	6810	175
235	LM37	175	NE5534	150	ULN2238	100	6820	175
450	LM72	325	RC4136D	69	XR2206	300	6821	150
7A630	LM733	100	S5668	245	XR2207	375	6840	470
70.520	LM379	415	SAB3209	425	X X 2211	575	6843	1450
775	LM380	75	SAB3210	275	XR2216	675	6845	975
110	LM381N	145	SAB3271	485	XR2240	145	6847	850
175	LM382	125	SAS560	150	XR2266	750	6850	175
157	LM384	140	SAS570	150	2N414	88	6852	255
68	LM386	90	SL490	350	2N419CE	190	6875	550
70	LM387	120	SG3402	295	ZN423E	195	80804	350
186	LM389	95	SN76003N	240	ZN424E	130	8085A	550
191	LM393	100	SN76018	148	ZN425E	350	81 LS95	115
120	LM394CH	290	SN76023N	240	ZN426E	325	81 LS96	115
235.	LM2917	195	SN76115N	215	2N427E	625	81 LS97	115
115	LM3900	44	SN76131	125	ZN428E	478	8166	00
275	LM3909	70	SN76227N	95	ZN429E	210	8123	125
365	LM3911	125	SN76477	175	ZN1034E	200	8202	¢25
70	LM3914	210	SN76660	120	ZN1040E	775	8212	170
214	LM3915	220	SP8629	299			8214	425
195	LM3916	220	TA7205A	225	COMP		8216	170
213	LM13600	125	TAA611	125			8224	250
65	LS7220	280	TAA621AX	250			8226	250
190	M252AA	625	TAA661A	155	$1802 \mathrm{CP}$	759	8228	250
48 215	$\begin{aligned} & \text { M253AA } \\ & \text { MC1303 } \end{aligned}$	1150 88	TAA700	250	18101-2	110	8251	400
375	MC1304P	260	TAA960	00	2112-2	250	825	799
150	MC1310P	150	TAD100	159	2114-450	90	8257	890
90	MC1445	150	T8A120S	70	$2114 \mathrm{~L}-300 \mathrm{n}$	99	8T26A	99
48	MC1458	40	TBA5500	330	2114L-200n	130	8127	150
95	MC1494	694	TBA641-A12	21			8T28A	135
135	MC1495	350	8×1 or BX11	1275	$\begin{aligned} & 2532-450 n \\ & 2708 \end{aligned}$	525 200	8731	350
450 200	MC1496L MC1596	225	TBA651	190	2716-5	250	8795 N	135
200 750	MC1596 MC1648	225	TBA800 TBA810S	80 95	2732-450n	455	$8797 N$ AM 2615	135
975	MC1709G	90	TBA820	75	2147	00	AM26L532	125
300	MC1710	79	TBA9200	260^{\prime}	4027	240	AY-3-1015	395
450	MC3302	150	TBA950	$300{ }^{\prime}$	4116-150	100	AY-5-1013	350
550	MC3340P	120	TCA220	350	$4116-200$ $4118-250$	85	AY-5-2376	700
1150	MC3360P	120	TCA940	00	4164-200	750	FO1771	E18
475	MC3401	52	TCA965	120	4315-4K	795	IM6402	380
1050	MC3403	110	TDA1004	290	$14334-3$	79	MC1488	62
1950	MC3405	150	TDA1008	310			MC1489	62
1950	MFC6040	97	TDA1022	575			MC14411	95

BUY NOW FOR CHRISTMAS

SAME DAY DESPATCH ON ALL EX-STOCK ITEMS
Give yourself something to build during the holiday.

DIGITAL VOLTMETER MODULE

Fully built \& tested

- Positive and negative voltages with an FSD of 999 mV which is easily extended. - Requires only single supply $7 \cdot 12 \mathrm{~V}$ - High overall accuracy $\pm 0.1 \%+1$ digit. Large bright $0.43^{\prime \prime}(11 \mathrm{~mm})$ LED displays. Supplied with full data and applications

Using this fully built and calibrated module as a basis now means that you can easily build a wide range of accurate equipment such as multimeters, thermometers battery indicators, etc. etc. at a fraction of the cost of ready-made equipment. Full details are supplied with each module showing how to easily extend the voltage range and measure current, resistance and temper ature. Fully guaranteed, the unit has been supplied to electricity authorities, Government departments, universities, the P.O. and many companies.

Temperature Measurement
 $£ 2.15$ +VAT

An easily constructed kit using an I.C. probe providing a linear outpur of $10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ over the temperature range from $-10^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. The unit is fleal for use in conjunction with the above DVM module providing an accurate digital thermometer suitable for a wide range of applications.

Power Supply

£4.95 +Vat
This fully bult mains power supply provides two stabilised isolated outputs of 9 V providing current levels of up to 250 mA each. The unit is ideally suited for power ing the DVM and the Temperature Measurement module.
 MODULE
Fully built \& tested

Power Supply \& Relay Unit $£ 3.95$ +vat

Incorporating a stabilised 12 V supply and a s.p.c.o. relay with 3 A contacts, this unit is designed to operate in conjunction with the above ultrasonic unit. Fully built and rested, its compact size makes it ideal for constructing the smallest of units.

Hardware Kit $£ 3.95_{\text {trat }}$

A suitable ready drilled case together with the various mounting pillars, nuts and bolts and including a mains switch and 2 mm sockets designed to house the uttrasonic alarm module, rogether with its associated power supply. This hardware kit provides an ideal solution for assembling the economical alarm system. Size $153 \mathrm{~mm} \times 120 \mathrm{~mm} \times 45 \mathrm{~mm}$

In addition to the above a wide range of competitively priced electronic components is stocked. Please telephone your specific requirements.

- V.A.T. must be added on all items. O Shop hours 9-5.30 (Weds. 9-1) -ex-stock delivery on all items. Units on demonstration, callers welcome. - Post and packing charge 50p per order. © S.A.E. with all enquiries please.

RISCOMP LIMITED

Dept. PE4
21 Duke Street,
Princes Risborough, Bucks.
Tel: Princes Risborough $\{08444$) 6326

SPECIAL for PRACICAL OFFER ELECTRONICS readers cgocisseties

A MAJORNEW

 PRODUCT FROM VIDEOTONEThese C90 LH cassettes are manufactured specially for Videotone by a major
European manufacturer.
98 Crofton Park Road, London SE4
Please tick the appropriate box for the quantity required. 5 @ 64p ea. + P\&P40p. £3.60 \square 10 @ 59p ea. + P\&P 50p. $\mathbf{6 6 . 4 0}$ 25 @ 53p ea. + P\&P f1. 14.25

Available at this price due to Videotone's direct selling operation. All cassettes are covered by a complete money back guarantee - if not completely satisfied return goods within 21 days for complete refund. All orders will be dealt with by return post. LOOK OUT FOR NEWS OF THE NEW VIDEO. TONE RANGE!

Post Coupon with confidence of prompt delivery by return. or Phone 01-690 8511 using your Access or Barclaycard. Ask for extension No. 32
\square I enclose Cheque/P.O. for Deduct amount from Access/B.card N

VIDEDTONE

M1,					
ALL WITH PRINTED CIRCUIT BOARDS!					
Kimber-Allen Keybo		Sob Lists	Drum-synthesiser	SET119	50.11
128-Note S	SET76	120.45	Enlarger Timer Formant Synthesiser	Seetists	39.22 342.71
16 -Note Sequencer	SET86	64.63	Frequency Doubler	SET98	1,1.75
3-Channel Mixer	SET 107	21.50	Funny Talker	SET99	16.55
3-Microphone Mlxer	SETIOB	12.99	Guilar Effects	SET42	15.92
6-Channel Mixar	SET90	96.67	Guitar Mulliprocessor	SET85	79.25
Analogue Revert	SET83	45.92	Guitar Overdrive	SET56	21.17
Audio EHects	SETIO5	15.12	Guitar Sustain	SET75	11.77
Chorosynth	SETIOO	125.04	Headphone Amplifier	SET104	21.15
Compressor	SET120	25.05	Metronome	SET118	10.58
Digital Revert	SET78	75.50	Microphone Pre-amp	SET61	11.32
Discostrobe	SET57	39.78	Noise Limiter	SET97	15.98

NEW LIST NOW READY!

SEND S.A.E. FOR FREE COPY

P.E. Minisonic Synth	SET38	181.56	String Ensemble	SET77	214.47
Phaser	SET88	21.08	Switched Treble 80ost	SET89	12.51
Phasing \& Vibrato	SET70	36.25	Synthesiser Interface	SET81	9.49
Practice Amplifier	SET106	22.15	Transient Generator	SET63	16.86
Pulse Generator	SET115	24.84	Tremolo	SET116	13.47
Rhythm Generators	SET103	See Lists	Tuning Fork	SET46	37.04
Ring Modulator	SET87	13.62	Voice Operated Fader	SET30	9.85
Sewar	SET101	31.85	Voice-scrambler	SET 117	21.81
Signal Tracer	SET109	17.50	Voltage Cont Filter	SET65	15.58
Simple Phase Unit	SET25	10.54	Wah-wah	SET58	14.01
Smooth Fuzz	SET91	11.68	Waveform Generator	SETI12	23.13
Speech Processor	SET1 10	12.18	Wind and Rain Unlt	SET28	11.39

	SET91	11.68	Waveform Generator
Speech Processor	SET110	12.18	Wind and Rain Unlt

Sets include PCBs, U.K. P.\&P., 15% VAT, Res, Caps, S'C.s, Pots, Knobs, SW's. SKTs, Wire, Solder, Box, Photocopy of original text. Fuller details and more great kits in our FREE catalogue.

Prices correct at press, E. \& O.E., subject to stock
Delivery frequently by return but please allow 14 days.

PHONOSONICS

Dept. PE21, 22 High Street, Sidcup, Kent, DA14 6EH. Telephone: 01-302 6184

DEVELOPMENT
 EPROM-PROGRAMMER ROMULATOR

MONITOR or TV output (625 line UHF). Data contents of memory visible - AWINDOW IN THE CHIP.

28-KEY, 2-LEVEL KEYPAD with HEX ENTRY and EDITING CAPABILITY. (BYTES and BLOCKS of code can be changed, inserted, deleted, shifted around etc.).

INPUT and OUTPUT: SERIAL (RS232) and PARALLEL (Centronics) routines provide ready interface with computer or printer.

EMULATION of PROGRAM MEMORY in-circuit is performed by plugging SOFTY into the ROM SOCKET A lead with a 24 pin DIL PLUG is supplied.CASSETTE INTERFACE.
EPROM-PROGRAMMER: an EPROM may be copied or reprogrammed at the press of a key.

0PERSONALITY SWITCH selects $2716,2532,2732$

SOFTY is used as an EPROM-PROGRAMMER, a production ROM CHECKER and for the DEVELOPMENT and PRODUCTION of PRODUCTS which contain MICROPROCESSORS and use EPROM for program storage.
*Price is for a BUILT and TESTED SOFTY (No kits) including POWER SUPPLY, TV LEAD,
ROMULATOR LEAD, 90 DAY WARRANTY and 14 day money-back guarantee.
$£ 169.00+£ 25.35$ (VAT 15%) $=£ 194.35$.
DATAMAN DESIGNS,
Lombard House, Dorchester, Dorset DT1 1RX Dorchester (0305) 68066 (UK Sales)
Maiden Newton (0300) 20700 (Export)
New production capacity at Canterbury has increased our range, decreased our prices, improved our special customer design service. Choose from toroidal transformers in a range of 98 types.

1YP6	$\begin{gathered} \text { Si R1I } 5 \\ 40 \end{gathered}$	$\begin{aligned} & \text { StCDMDARY } \\ & \text { Vehs } \end{aligned}$	$\begin{gathered} \text { RUS } \\ \text { (vure.t } \end{gathered}$	$\begin{array}{\|l\|l\|} \hline \text { PalCE } \\ \text { nack } \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { PRCE } \\ \text { en } \end{array}$
30 uA $70 \times 30 \mathrm{~mm}$ 0.5 kg Regutition 18		$\begin{gathered} 6+6 \\ 9+9 \\ 12+17 \\ 14+15 \\ 18+18 \\ 32+32 \\ 23+35 \\ 30+30 \end{gathered}$	750 1660 126 100 083 068 0600 040	$\begin{aligned} & 528 \\ & 00870 \\ & 008 p \end{aligned}$	
$\begin{gathered} 30 \mathrm{VA} \\ 80 \times 3 \mathrm{smm} \\ 09 \mathrm{~kg} \\ \text { Regulation } \\ \text { i3 } \end{gathered}$		$\begin{gathered} 6+6 \\ 9.9 \\ 12+12 \\ 11+15 \\ 18+18 \\ 27+28 \\ 3+25 \\ 30+30 \\ 110 \\ 220 \\ 240 \end{gathered}$	416 477 278 708 165 138 113 100 083 085 0 072 070	$\begin{aligned} & \text { } 588 \\ & +5110 \\ & +5, p \end{aligned}$	
$\begin{array}{l\|} \hline 80 \mathrm{VA} \\ 90 \times 30 \mathrm{~mm} \\ 1 \mathrm{~kg} \\ \text { Requation } \\ 17 \% \end{array}$	3×010 3×011 3×012 $3 \times 0,3$ 3×014 3×015 3×016 3×017 3×28 3×29 3×230 3×030	$\begin{aligned} & 6 * 6 \\ & 9+9 \\ & 17+12 \\ & 13 * 13 \\ & 18+18 \\ & 22+72 \\ & 25+25 \\ & 30+30 \\ & 110 \\ & 220 \\ & 240 \end{aligned}$	664 4 434 333 266 232 181 160 1333 032 036 033	$\begin{aligned} & 56 \text { 31 } \\ & +[1,1 / 3 \\ & p, p \end{aligned}$	$\begin{gathered} {[547} \\ +\{143 \\ +149 \end{gathered}$
$\begin{array}{\|c\|} \hline 120 \mathrm{va} \\ 90 \times 40 \mathrm{~mm} \\ 12 \mathrm{Kk} \\ \text { Reguidion } \\ 112 \mathrm{in} \end{array}$		$\begin{gathered} 6+6 \\ 9+9 \\ 12+12 \\ 3+13 \\ 18+18 \\ 28+22 \\ 23+23 \\ 30+30 \\ 39+33 \\ 110 \\ 220 \\ 240 \end{gathered}$	1000 666 500 400 333 272 270 200 200 171 109 094 050	$\begin{gathered} 6753 \\ -81,13 \\ 8, p \end{gathered}$	$\begin{array}{rl} 56 & 38 \\ +5143 \\ +1, p \end{array}$
160 VA $10 \times 8.0 \mathrm{~mm}$ 18 kg Regution 8%	5×011 5012 54013 3×014 5×015 5×016 4×018 5×026 $5 x 028$ 5×030	$\begin{gathered} 9+9 \\ 12+12 \\ 18+15 \\ 18 \times 18 \\ 27+27 \\ 3+75 \\ 30+30 \\ 35+35 \\ 40+50 \\ 110 \\ 270 \\ 240 \end{gathered}$	889 866 333 434 4363 360 366 268 289 200 143 072 066	$\begin{aligned} & 6992 \\ & +5143 \\ & +8 p \end{aligned}$	

IMPORTANT: Regultion - All voltages quoted are FULL LOAD. Please add regulation figure to secondary vollage to obbain oft laad vollage
The benefits of ILP toroidal transtormers
ILP toroodal transformers are only hall the weight and height of their laminated equivalents. and are avalable with 110 V . 220 V or 240 V primaries coded as follows: For 110 V primary inser " 0 " in place of " x " in type number.
For 220 V primary (Europe) insert " 1 " in place of " x " in type number
For 240 V primary (UK) insert " 2 " in place of " X " in type number.
How to order Freepost:
Use this coupon or a separate sheet of paper to order these products or any products from other ILP Electronics advertisements. No stamp is needed if you address to Freepost. Cheques and posial orders must be crossed and payable toll.PElectronics Lid: cash must oe registered. C. 0.0 . - add $£$ t t total order value. Access and Barclaycard welcome. All UK orders sent posi ifree within 7 days of receipt of order tor single and small quantity orders. Also avalable al Electrovalve Maplin. Marshalls. Technomatic and Wallord Electronics
ILP Electronics Ltd.. Freepost 2. Graham Bell House, Roper Close, Canterbury CT2 TEP, Kene.

```
Please send me the following
```

ILP mocules
Total purchase price
Ienclose Cheque \square
PostalOrders
Imt. Money Order
Piease debitmy Access/Barclaycard No.
Name
Address

Signature
Post to ILP Electronics Lid Freeoost 2. Graham Bell House Roner Close Canierbury CT2 7 EP Kent. England Telephone (0227) 54778 Technical (0227) 64723 Yelex 965780

a division of lte Electronics Lid) TRANSFORMERS STAYAHEAD.STAY WITHUS

CLEF Electronc MUSIC

ELECTRONIC PIANOS

SPECIALISTS SINCE 1972
Clief Pianos adopt the most advanced form of Touch Sensitive action which simulates piano Key inertia using

$7 \frac{1}{4}$ OCTAVE

DOMESTIC MODEL
COMPDNENT KIT £244
COMPLETE KIT £ 395.70
MANUFACTURED $667 b$
Two Domestic Models are available including the 88 -note full-size version. be used to obtain a wide variation of Piano tone, including Harpsichord. Both Soft and Sustain Pedals are incorporated in the Design and internal Effects are provided in the form of Phase/Flanger.
A power amplifier integrates into the
Piano top which may be removed trom Piano top which may be removed from

SIX OCTAVE

OOMESTIC MODEL

COMPONENT KIT £217 MANUFACTUREO 5595 Component Kits include Keyboard, Key-switch hardware. and all electronic four stages at no extra cost. Complete Kits further contain Cabinets. wiring harness. Pedals and in the case of Domesic and Speaker.
same range of Vtage Piano has the designed for use with Effects and is Amplifier and Speaker.

SIX OCTAVE STAGE MODEL COMPONENT KIT $£ 217$

 MANUFACTUAEO 5530Since 1972 Clef Products have consistently produced leading designs in the field of Electronic Musical Instruments, many of which have been published in technical magazines. With musical quality of paramount importance, new techniques have been evolved and the latest musically valid technology has been incorporated into projects
which have been successfully completed by constructors over a wide range of technical capability. Back-up TELEPHONE advice to our customers is available from the Designer of all Kits advertised.

STRING

 ENSEMBLE (As Published in conjuncrion with 'Practical Electronics) A very popular Keyboard Synthesizer Kit, for Group or Home use, with a four octave compass and split Keyboard facility.The instrument is fully polyphonic and has two rich Multi-String Voices pius Woodwind and Brass Effects for individual or Mixed use. Variable Autack and Sustain Controls give a good Orchestral Mix with the added concert hall reverberation effect produced by sustain coupled with phase modulation in the Chorus Unit. The Component Kit includes Keyboard, Key.switch hardware, and al? electronic components plus tone generator linking wire and Volume Pedal. A copy of the P.E. project series can be supplied for $£ 3.00$ inc. post.

COMPONENT XIT E 179.00

ROTOR-CHORUS

Comprehensive two speed organ rotor simulator plus a
three phase chorus generator on a single $8^{\prime \prime} \times 5^{\prime \prime}$ pcb. The kit includes all components for hains operation and a stereo tegrated with existing organ/amplifier system. COMPONENT KIT EB9.00

KEYBOARDS

Our Square Front Keyboards are chosen for their superior feel o the discerning musician whilst giving adequate physical
strength for the high impact playing present in the Plano application.

88 MOTE (A-C) 55700
73 NOTE (F-F) 47.00
FIVE OCTAVE £3E OO
FDUR OCTAVE E21.75
EXPERIMENTERS A number of our Sub-Kits are and COMPUTER Experimenters. These include the 5502 menters. These include the $\mathbf{~ M I C R O}$
based. CONTROLLER and Music system kit used in the BAND. BOX, plus a 49 note four pitch
diode Keyswitch system. See our lists for Sub-K it prices.

PRICES INCLUDE VAT, UK CARRIAGE \& INSURANCE (CARRIAGE EXTRA ON MFD PIANOS). Please send S.A.E. for our complete lists. or use our telephone VSA/ACCESS Service. Competitive quotations can be given for EXPORT orders - la
Australia please contact JAYCAR in Sydaey.

CLEF PRODUCTS (ELECTRONICS)
LIMITED
$\begin{aligned} & \text { (Dept. P.E.) 44A Bramhall Lane South, Bramhall, } \\ & \text { Stockport, Cheshire SK7 } 1 \mathrm{AH} \\ & 061439-3297\end{aligned}$
"THE eetctronic BAND-BOX" CURRENTLY IN 'PRACT7CAL ELECTRONICS' COMPLETE

KIT

£289
 £399 MANFD.
PRICES INCLUDE MASTER RHYTHM
A rovolution in the fiold of Comporter Mussic Gemerationl
A MUSICIANS INSTRUMENT FOR:
OLVISTS - SINGERS - RECORDING - PRACTICE IV PERFORMANCE -COMPOSITION
The BAND-BOX provides an Electronic Backing Trio consisting of Drums. Bass, and a Chord Instrument (one of 16 Waveform/Enevelope combinations), with the capicity to store over
3,000 User Programmable Chord Changes on more than 120 different Chords. Using advanced Microprocessor technology different Chords. Using advanced Microprocessor technology,
Playback of $50-100$ Scores can be executed in any Key and at chosen Tempo. Complete Music Pad is electronically Indexed and stored on secondary battery back-up. Facility exists for composition of Intro Repeat Chorus, and Coda sections including Multiple Score Sequences. Sockets are provided for Volume Peda and Footswitch plus separate and mixed instrument Outputs. Total size $19^{\prime \prime} \times 11^{\prime \prime} \times 4 \frac{1}{2}^{\prime \prime}$ corporating Master Rhythr

THE Programmable DRUM MACHINE

 (As Published in conjunction with 'Practical Electronics') EIGHT TRACK PROGRAMMING TWENTY FOUR PatierhsWELVE INSTRUMENTS SEQUENCE OPERATION. COMPLETE KIT
MANFD. $\$ 119.00$

The Clef Master Rhythm is capable of storing 24 selectable rhythmic drum patterns, invented. modified, and entered by the Operator on to Eight Instrumentation tracks. A three position Instrumentation con trol expands the number of instruments available to twelve, grouped into sounds typical of playing wit
Sequence operation allows
the second (B) section appearing at ion. All drums can be adjusted for level and resonance on internal controls to suit individual taste. thus producing good musical sounds In a battery driven unit $8 t^{\prime \prime} \times 5^{\prime \prime} \times 2 t^{\prime \prime}$

Build a pair of DALESFORD D speakers

The Dalesford D has enjoyed consistently good reviews and is acknowledged to be one of the best compact loudspeakers available. It is now offered in kit form at a considerable saving over the assembled speaker.

The kit includes complete and finished cabinets, grille foam, wadding, drive units, crossovers, etc. - everything, in fact, to make a pair of excellent compact loudspeakers.

Suitable for amplifiers of $20-70$ watts
Size: $340 \times 220 \times 265 \mathrm{~mm}$. Finish: Walnut/black foam. Price: $£ 69.95$ VAT per pair plus carriage $£ 3.95$ inc. ค

0625529599
35/39 Church Street, Wilmslow, Cheshire SK9 1AS
Lighening service on telephoned credit card orders!
 Please allow 7 days for delivery.

THE BODY OF ANY SYSTEM
Lets face it - you can't produce as crisp an image on a domestic T.V. as you can on a Crofton monitor.

TYPICALLY
9"Crofton Monitors
P4 White
E 64.97
$£ 79.62$
These Monitor Shugart prices are dependant upon Sterling/Dollar conversion rates
to date prices
SHUGART FLOPPY DISK DRIVES
No case, No Power Supply
SA $400 \quad 5 \%^{\prime \prime} \quad$ S.S.S.D.
SA $450 \quad 5 \%$ D.S.S.O
£171.40
SA $8008^{\prime \prime}$ S.S.S.D
E391.59
FLOPPY DISKS - BOXES OF TEN
Single sided $35 / 40$ Track
f 26.45
Double sided $35 / 40$ Track. $5 \%{ }^{\prime \prime}$ £ 37.95
Single sided 77 Track E 41.40
Double sided 77 Track $51 /$ " " $^{\prime \prime}$ E 47.15
$\begin{array}{lll}\text { Single sided } & 8^{\prime \prime} & \text { E } 40.25\end{array}$
CALLING ALL $\mathbf{2 X}-81$ USERS: Convert your $\mathbf{Z X}-81$ to full size QWERTY keyboard. Ask for details.
SPECIAL OFFER: $\mathbf{2 / 3} \mathbf{3}^{\prime \prime}$ miniature C.C.T.V. cameras $\mathbf{£ 1 3 0 . 0 0}$.
USE COMPUTER DESKS $\quad 830.00$
(NOTE: ONLY PERSONAL CALLERS)
ALL THE ABOVE PRICES INCLUDE V.A.T. AND CARRIAGE

CROFTON ELECTRONICS L.TD
35 Grosvanor Road, Twickenham, Middx TW1 4AD 01.891 1923/1513

The expert and personel guidance by fully qualified tufors, backed by the ICS guarantee of tuition until successful, is the key to our outstanding record in the technical training field. You study at the time and pace that suits you-best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed."

City and Guilds Cortificates

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:

Telecommunications Technicians

Radio, T.V. Electronics Technicians
Radio Amateurs
Electrical Installation Work

Diploma Coursas

Colour T.V. Servicing

CCTV Engineering
Electronic Engineering \& Maintenance
Computer Engineering and Programming
Radio, T.V. and Audio, Engineering \& Servicing
Electrical Engineering, Installations \& Contracting

Other Career Courses

A wide range of other technical and professional courses are available Including GCE.

YOU CANT BEAT ILPBPOLAR POWER AMPSOR
 POWERADDPRICE

Get maximum power at minimum price, yet still with hi-f specifications and a wide choice of outpuls. ILP Bipolar power amps, now with or without heatsinks are unbeatable value for domestic hi-fi - out for disco, guitar amplifiers and PA choose the new range of heavy duty power amps, again with or without heatsinks. with protection against permanent short circuit. added salety for the disco or group user. Connection in all cases is simple - via 5 pins.

Every item has a 5 year no quibble guarantee and
includes full connection data. So send your order FREEPOST today!
Load impedance, all models. 40 hm - inlinity. Input impedance, all models 100 K ohm . Input sensitivity, all models. 500 mV . Frequency res ponse, all models $15 \mathrm{~Hz}-50 \mathrm{kHz}-3 \mathrm{db}$. BIPOLAR Standard, with heatsinks

Model No.	Oulpul Whats mis	$\begin{aligned} & \text { DISTC } \\ & \text { T.M.O. } \\ & \text { Typ } \\ & \text { at } \mathrm{kHz} \end{aligned}$	$\begin{aligned} & \text { ORTION } \\ & 1 \mathrm{M} . \mathrm{D} \\ & 50 \mathrm{~Hz} / 7 \mathrm{kHz} \\ & 4.1 \end{aligned}$	Supply voltage Typ/Max	Size mm	$\left\|\begin{array}{c} w \mid \\ g n s \end{array}\right\|$	$\left\|\begin{array}{c} \text { Price } \\ \text { inc. VAT } \end{array}\right\|$	$\begin{gathered} \text { Price } \\ \text { ex VAT } \end{gathered}$
HY 30	15w/4-88	0.015\%	<0.006\%	$\pm 18 \pm 20$	$76 \times 68 \times 40$	240	¢88 28	¢729
HY 60	30w/4-80	0.015\%	<0.006\%	$=25+30$	$76 \times 68 \times 40$	240	¢9 58	£8.33
HY 120	60w/4-80	0.01\%	<0.006\%	$\pm 35 \pm 40$	$120 \times 78 \times 40$	410	\{20.10\|	£1748
HY 200	120w/4.88	001%	<0.006\%	$\pm 45 \pm 50$	$120 \times 78 \times 50$	515	£24.39	โ21.21
HY 400	$240 \mathrm{w} / 48$	0.01\%	<0.006\%	$\pm 45 \pm 50$	$120 \times 78 \times 100$	1025	§36.60	£3183
8IPOLAR Standard, without heatsinks								
HY 120P	60w/4-88	001\%	<0006\%	$\pm 35 \pm 40$	$120 \times 26 \times 40$	215	¢17 83	¢15.50
HY 200P	120w/4.88	001%	<0006\%	$\pm 45 \pm 50$	$120 \times 26 \times 40$	215	¢21 23	¢1846
HY 400P	240w/4!	0.01\%	<0006\%	$\pm 45 \pm 50$	$120 \times 26 \times 70$	375	£32.58	£2833

Protection: Load line, momentary short circuit (typically 10 sec) Siew rate $15 \mathrm{~V} / \mu \mathrm{S}$ Rise time: 5 us . S/N ratio 100 db . Frequency response (-3 dB): $45 \mathrm{~Hz}-50 \mathrm{kHz}$. Input sensitivity 500 mV ims. Input impedance $100 \mathrm{k} \Omega$. Damping lactor $(8 \Omega / 100 \mathrm{~Hz})>400$.
ILP Electranics Ltd., Freepost 2 Graham 8ell House. Roper Close. Canterbury CT2 7EP, Kent. HEAVY DUTY with heatsinks

Model No.	Output pawer Walls rms	DISTOR T.H.D. Typ at 1 kHz	IRTION IM.D. $50 \mathrm{~Hz} / 7 \mathrm{kHz}$ 4.1	Supply voliage Typ/Max	Suze mm	WI	Price wic VAT	$\left\lvert\, \begin{aligned} & \text { Price } \\ & \text { ex. VAT } \end{aligned}\right.$
H0 120	60w/4-88	0.01\%	<0.006\%	$\pm 35 \pm 40$	$120 \times 78 \times 50$	515	§ 25.85	£22 48
H0 200	120w/4-88	0.01\%	<0.006\%	$\pm 45 \pm 50$	$120 \times 78 \times 60$	620	¢31.49	£27 38
H0 400	240w/48	001\%	<0.006\%	$\pm 45 \pm 50$	$120 \times 78 \times 100$	1025	§44 42	โ38 63
HEAVY DUTY without heatsinks								
H0 120P	60w/4-88	001\%	<0.006\%	$\pm 35 \pm 40$	$120 \times 26 \times 50$	265	¢22.82	£19.84
H0 200P	120w/4-88	001\%	<0.006\%	$\pm 45 \pm 50$	$120 \times 26 \times 50$	265	¢27 17	£23.63
H0 400p	$240 \mathrm{~W} / 4 \Omega$	001\%	<0006\%	$\pm 45 \pm 50$	$120 \times 26 \times 70$	375	¢39.42	โ34.28

Protection: Load line. PERMANENT SHORT CIRCUIT (ideal

Protection: Load line. PERMANENT SHORT CIRCUIT (ideal for disco/group use should evidence of short circuit not be immediately apparent). The Heawy Duty range can claim additional output power devices and complementary protection circuitry with performance specs as for standard types
How to order Freepost: Use this coupon. or a separate sheet of paper. to order these products. or any products from other ILP Electronics adventisements. No stamp is needed if you address to Freepost. Cheques and postal orders must be crossec and payable to ILP Electronics LId: cash must be registered. C.O.D. - add $£ 1$ to total order vałue. Access and Barclaycard welcome. All UK orders sent post free within 7 days of receipt of order.

ILP modules
Total purchase price
tenclose Cheque \square PostalOrders \square Int. Money Order \square Please debit my Access/Barclaycard No. Name Address

Signature
Posit to. ILP Elecironics Lid. Freepost 2. Gratham Bell House, Roper Close. Canterbury CT2 7EP. Kent. England.
Telephone (0227) 54778 Technical (0227) 64723 Teiex 965780
 StAYAHEAD.STAY WITHUS

THE PE RANGER 27FM CB PORTABLE

 issue onwards)THE RANGER CB rig has been designed to fit the new legal Home Office specification, and starts off as a hand held unit complete with aerial, mic., and rechargeable batteries.
\%LEGALISATION SPECIAL OFFER 249.95 (KIT) (INC. VAT + £2.95 P.P.)
£97/matched pair
(INC. VAT + £5.90 P.P.)
This offer price includes rechargeable batteries, mic, aerial, mains lead and 2 channels.
Extra channels $£ 2.25$ each +50 p P.P. + VAT Extre aerials $£ 3.95$ each $+80 \rho$ P.P. + VAT (Postage free with kit)
Tuneable Whip aerial magnetic or permanent car amount (state which) Permanent $£ 13.95$ - P.P. $£ 1.00$ Magnetic £15.95-P.P. £2.00

The unit plugs into the mains, 12 V car outlet, or runs on built-in re chargeable batteries (built-in charger) Up to 5 miles range in town to keep in touch with family and friends.

SPEC.
R.F. Power Output $1 / 2$: 1 Watt AF (internal speaker) $1 / 2$ Watt Modulation: FM: freq. $27.6 \mathrm{MHz}-28 \mathrm{MHz}$ (CB Band) (excellent speech quality) No. of channels (max): 6 Fully protected against bad aerial connection.

BASE STATION KIT
 * Now available *

 $£ 19.50$ plus 22 p\&p linc. VAT)12V (NOMINAL) MAINS
ADAPTOR KIT $£ 5.50$ plus E1.50 psp
Daspatch within 14 to 21 days
(SAE FOR FURTHER DETAILS)

CrestWay

woodhill lane shamley green near guildford surrey tel: 0483893236

82021 METAL DETECTOR

Vacuumed formed casework complete with pre wound and set up coils in black ABS search head.
$\star 9$ i.c.s, 12 transistors for deep seeking performance.
$\star 3$ reject modes.
\star Separate ground elimination control.
\star Auto retune.
\star Audio and visual output.
\star Phase locked loop for stability.
\star Easy to set up and calibrate.
COMPLETE KIT OF PARTS
only $\mathbf{£ 8 9 . 9 5 p}$ inc. VAT
(No extras to buy). Carriage $£ 2.00$.
Order as 82021 KIT

STOP PRESS

SOFTY II now in stock Introduction offer of 2 FREE Eproms when purchasing SOFTY II. £175 inc. VAT.

Make your computer talk to you
T.I. SPEECH SYNTHESISER KIT

* 200 word vocabulary. Expandable.
\star Provision on board for up to 8 Eproms.
\star Easily interfaced to your computer.
\star Double Eurocard size P.C.B.
* Full kit of parts (exc. case).

only $£ 76.00$ inc. VAT

OTHER COMPLETE KITS

9823
81567
81155
80022A
80022B
loniser (helps clear the air) £12.00
Case for above
Humidity sensor
Disco lights controller
AE amp U.H.F. T.V.
AE amp V.H.F. F.M.
Send cheque or postal order to Crestway Electronics L.td., write or ring with your Access account no. (do not send your card). Please add 40 p to all U.K. orders for postage and packing. All our prices include VAT.

Please allow 28 days for delivery.

MICROCOMPUTER COMPONENTS

LOWEST PRICES - FASTEST DELIVERY

Davice	Price	Davice	Price	Device Price	Device	Price	
memories		Ef6862	8.91	4076	74LS95	0.44	
2114L-200ns	1+128	Ef6871-AlT	18.70	4077	74LS109	0.25	
	$25+1.19$	Ef6880	1.07	4078 0.24	74LS112	0.25	
2114L-300ns	1+1.28	EF6887	0.80	4081	74LS113	0.25	
	$25+1.19$	EF68488	0.11	$4082 \quad 0.19$	74LS114	0.25	
2716450 ns	1.99	EF6875	4.18	4085	74LS122	0.38	
	$1+2.49$			4086	74LS123	0.55	
	$25+2.37$	8502 Famaty		$4093 \quad 0.39$	74LS124	1.00	
2716 350ns	6.95	SYP6502	4.95	45020.69	74LS125	0.28	
2532450 ns	$1+5.50$	SYP6520	3.15	4507 0.39	74LS126	0.28	
	$25+5.31$	SYP6522	4.95	$4508 \quad 1.80$	74LS132	0.45	
2732450 ns	$1+4.80$	SYP6532	7.95	- 4510	74LS136	0.28	
	$25+4.09$			$4511 \quad 0.49$	74LS138	0.34	
4116150 ns	$1+1.15$	8080 famuy		$4512 \quad 0.60$	7415139	0.37	
	$25+1.06$	8085A	5.50	4514	74LS145	0.75	
4116200 ns	$1+0.80$	8212	1.70	4515	74LS148	0.90	
	25+0.72	8216	1.70	4516	74LS151	0.34	
	10.95	8224	2.45	$4518 \quad 0.40$	74.5153	0.35	
4118200 ns	3.90	${ }^{8228}$	3.95	4519	74LS155	0.38	
$8264200 n 5$.$5516200 n 5$	12.00	8251	3.95	4520	74LS156	0.38	
	22.88	8253	7.35	4521	74LS157	0.34	
	CAT COwtrouers		8255	3.85	4522 1200	74LS158	0.36
					4526	7415160	0.39
AND GRAPHIC OISPLAY		CMOS $4000{ }^{\circ} \mathrm{E}$	Series	$4527 \quad 0.89$	7415161	0.38	
Process		4000	0.12	4528 0.70	7415162	0.39	
		4001	0.13	$4532 \quad 0.89$	74LS163	0.39	
EF9366	62.90	4002	0.13	4541	7415164	0.47	
	62.90	4006	0.60	4543 - 0.99	74LS165	0.96	
	BuFfers		4007	0.17	4553	74LS166	084
			4008	0.55	4555	7415173	0.70
81LS95	0.90	4009	0.28	4556	74 LS174	0.54	
81 LS96	0.90	4010	0.28	4585	74LS175	0.54	
811597	0.90	4011	0.14		74LS181	1.30	
81 LS98	0.90 ,	4012	0.17	Low Power schotrey	7415190	0.55	
${ }^{81264}$	1.50	4013	0.33	TLICs -74LS SERIES	74LS191	0.55	
8728A	1.50	4014	0.58	74LS00 0.11	74LS192	0.69	
8195	1.50	4015	0.58	74.5010 .11	7415193	0.59	
8 898	1.50	4016	0.28	74 L502 0.12	74LS194	0.38	
	1.50	4017	0.45	74 LS03 0.12	T4LS195	0.38	
	data converters		4018	0.58	74L504 0.13	74L15196	0.58
			SPECIAL OFFERS			74L5127	0.65
2N2525-8	3.50 3.00	7415221 7415240				0.60	
2N427E-8	6.28	74LS240 74.5241				0.89 0.89	
2NA28E-8	4.78				7415242	0.79	
2N429E-8	2.10	2114 L 200 ns	0.99	$4116150 \mathrm{~ns} \quad 0.75$	${ }_{74} 15243$	0.79	
2NA32C-10	28.109	2708450 ns	1.48	$4116200 \mathrm{~ns} \quad 0.67$	74LS244	0.79	
2N440	22.59	2716450 ns		6116200 ns 8.50	7415245	0.69	
	56.63	2532450 ns		5516200 ns 11.85	${ }_{7415247}$	1.34	
	miscellaneous	2732450 ns	3.20	4118200 ns 3.85	74.5248	1.00	
AY-3.1015	3.90	- OFFER VALID FROM DEC 1 sI-JAN 1 st SUBJECT TO AVAILABILITY			74LS251	0.38	
AY-5-1013	3.45				7415253	0.39	
AY-5.2376	6.85				7415257	0.44	
MC1488	0.64	4019	0.29	74.5050 .13	74L2258	0.38	
MC1489	0.68	4020	0.58	741508 0.13	74LS259	0.38	
MC14411	6.94	4021	0.60	74.5090 .13	7415261	190	
MC14412	7.99	4022	0.62	74 LS10 0.13	74LS266	0.23	
R0-3-2513L	7.70	4023	0.17	74.511	7445273	0.90	
80.3-2513U	7.70	4024	0.38	$74 \mathrm{LS12} \quad 0.15$	74LS279	0.34	
2N450E	7.61	4025	0.18	74LS13 0.22	7415283	0.44	
7805	0.50	4026	0.99	74LS14 0.44	7415290	0.56	
7812	0.50	4027	0.30	74LS15 0.13	7415293	0.45	
7905	0.55	4028	0.55	74LS20 0.12	7415365	0.34	
7912	0.55	4031	1.65	$74.521 \quad 0.14$	7415366	0.34	
		4033	1.60	74 LS22 0.14	7415367	0.34	
2ILOG 280 FAmMLY		4034	1.55	74LS26 0.18	74LS368	0.34	
		4035	0.72	$741527 \quad 0.14$	7415373	0.74	
780A CPY	4.82	4040	0.57	741528	7415374	0.74	
280 CTC	4.00	4041	0.69	74 LS30 0.12	7415375	0.47	
280A CIC	4.00	4042	0.54	7415320.14	7415377	0.89	
280 DART	7.18	4043	0.59	74 LS33 $\quad 0.16$	74LS378	0.89	
280A DART	7.18	4044	0.64	74 LS37 $\quad 0.16$	7415379	0.4	
280 OMA	11.52	4045	1.65	74.5388	74LS385	0.28	
Z80A DMA	9.99	4046	0.68	741540×0.13	74L5390	0.59	
280 P10	3.78	4047	0.68	74.5420 .34	74LS393	0.59	
Z80A Pl0	3.78	4048	0.54	741547 $\quad 0.39$			
280 S10-0	13.95	4049	0.30	74 LS48 0.60	LOW PROFIL	012	
280 A S0-0	13.95	4050	0.30	74 LS49 $\quad 0.59$	sockrs		
$280 \mathrm{SiO-1}$	13.95	4051	0.59	741551	Number of P		
Z80A S10.1	13.95	4052	0.68	74 LS54 0.15	8	0.07	
$280 \mathrm{S10} 2$	13.95	4053	0.59	74 LS55 $\quad 0.15$	14	0.09	
Z80A S10-2	13.95	4054	1.20	$741573 \quad 0.20$	16	0.09	
		4055	1.20	741574	18	0.15	
EFCIS 68800 famit		4060	0.89	7415750.28	20	0.17	
EF6800	3.70	4063	0.95	7415760020	22	0.21	
EF6802	5.11	4066	0.34	74 LS78 0.24	24	0.23	
EF6803	11.80	4068	0.17	7415838	28	0.25	
EF6809	11.95	4069	0.17	7415850	40	0.29	
EF6810	1.35	4070	0.19	74 LS86 $\quad 0.17$			
EF6821	1.74	4071	0.19	$741590 \quad 0.30$	Carstals		
EF6840	4.20	4072	0.19	74 LS91 0.80	1 Mhz	3.00	
Eff845	9.50	4073	0.19	74 LS92	1.8432 Mmz	2.50	
EF6850	1.70	4075	0.17	74 LS93 0.34	4 Mnz	1.65	

OFFICIAL
ORDERS WELCOME WELCOME DISCOUNTS AVAILABLE
AI prices exclude post and packing on orders under ric (J0p) ath FULL REFUND FOR OUT OF STOCK ITEMS IF REQUESTED.

24-hour Telephone Credit Card Orders
MIDWICH COMPUTER CO. LTD. (Dept PE/2)
HEWITT HOUSE, NORTHGATE STREET,
BURY ST. EDMUNDS, SUFFOLK IP33 1 HO
TELEPHONE: (0284) 701321 TELEX: 817670

WTYSTIP rosia POW:RATP?

Because ILP MOSFET power amps give you ulira-li performance withou! costing Dig money. Pertormance you thought you couldn't afford at a price you know you can.

All ILP modules are compatible with each other - you il find many more in other ILP ads in this magazine. Choose ILP MOSFET power amps when you need the fastest possible slew rate. low distortion at high frequencies, better nermal stability. MOSFET power amps work with complex loads witnout difficulty and without crossover distortion. Connection is simp - via 5 pins. With other ILP modules you can create almost any audio system, whatever your age or experience.

LP MOSFET power amps are now available with
integral heatsink (no extra heatsink required). or ready for
mounting on to your own heatsink or chassis. Full dissipation detall on data sheet. available on request. Each carries a 5 year no quibble guarantee and comes with tull connection data.

Send your order FREEPOST today on the coupon at the toot of this ad.

	Load impedance, all models. 40 hm - intinity Input impedance, all models 100 Kohm Input sensitivity, all models, 500 mV Frequency response, all mooels $15 \mathrm{~Hz} \cdot 50 \mathrm{kHz} \cdot 3 \mathrm{db}$

MOSFET Ulira-Fi, with heatsinks

Model No.	Outpul power Walts rms	DISTORTION T.H.O $1 . \mathrm{M.D}$ TYD at IKHz aHz $/ 7 \mathrm{kHz}$	Supply voltace Pyp/Max	Size mm	$\left.\begin{gathered} W \\ g m s \end{gathered} \right\rvert\,$	$\begin{aligned} & \text { Price } \\ & \text { inc VAT } \end{aligned}$	$\left\|\begin{array}{c} \text { Price } \\ \text { ex VAT } \end{array}\right\|$
MOS 120	$60 \mathrm{w} / 4.882$	<0.005\% <0 006\%	$=45=50$	$120 \times 78 \times 40$	420	[29 76	125 88
MOS 200	$120 \mathrm{w} / 4.89$?	<0.005\% <0.006\%	- 55 ± 60	$120 \times 78 \times 80$	850	¢3848	[33 46
MOS 400	240w/4	<0.005\% <0006\%	+55*60	$120 \times 78 \times 100$	1025	[52 20	โ45 39
MOSFET Ulira-Fi wihnout heatsinks							
MOS 120P	60w/4-80	<0 005\% < 0.006%	$\pm 45 \pm 50$	$120 \times 26 \times 40$	215	£26 82	£23 32
MOS $200{ }^{\circ}$	120w/4-xx	<0.005\% < 0.006%	$=55 \pm 60$	$120 \times 26 \times 80$	420	[32 81	£28 53
MOS 400P	240w/42	<0.005\% < 0.006%	$\pm 55 \pm 60$	$120 \times 26 \times 100$	525	¢4475	โ38 9:

Prolection:
Able to cope with complex loads. without the need for very speciat protection circuitry (fuses will sutfice).
Ulitra-li specifications
Slew rate $20 \mathrm{~V} \mu \mathrm{~S}$. Rise time $3 \mu \mathrm{~s}$. S/N ratio 10000 . Frequency response (-3 dB) $15 \mathrm{~Hz} \cdot 100 \mathrm{kHz}$. Input sensitivity 500 mvems . Input in pedance 100 K . Damping factor ($8 \Omega / 100 \mathrm{~Hz}$) >400.
How to order Freepost:
Use this coupon, or a separate sheet of paper. to order these products. or any products from other IL.P Electronics advertisements. No stamp is needed if you address to Freepost. Cheques and postal orders must be crossed and payabe to ILP Electronics Lid: cash must be registered. C. 0.0 . - add $£ 1$ to total order value. Access and Barclaycard weicome Alt UK orders sent post free within 7 days of receipt of order
ILP Electranics Ltd., Freepost 2 Graham Bell House, Roper Close, Cantertury CT2 JEP, Kent
Please send me the following ILP modules

Total purchase price
Ienclose Cheque \square Postal Orders \square int. Money Order \square
Please debit my Access/Barclaycard No.
Name

Signature
Posi to: ILP Etectronics LId. Freeposi 2. Graham Bell House, Hoper Close. Telephone (0227) 54778. Technical (0227) 64723' Telex 965780.

Eteranncs STAYAHEAD.STAY WITHUS

camm Hr^{r} for top quality	components, innovative kits, FAST SERVICE AN	LOW, LOW PRICES
Fof upwityour Electronic did	SOFTY 2	DISCO LIGHTING KITS
		vide souenenng entests. contiolide menn:
	operate as the AOM In your sssitem but enable ve	
	memory contents on any black \& whiter	This kit
	quired, Various ovithing faciitites ate also vaill	
comple		
	ino his socker and you have ${ }^{\text {a }}$ dedic	Outione
	(e)	
IDEAL PROJECT FOR BEGINNERS	IO vour protorve sssiom, and itievision lear	cien
ONLY $£ 5.00$ + V.A.T.	£169 + VAT. Send SAE for further details. Also avalabole is he new 280 ASSEMBLER/MICRO CONTROLLER - MENTA. $1115+$ VAT	

NOT JUST ANUTHER CLOCK

but a PROGRAMMABLE TIMER KIT which can run your central heating, burglar alarm, lighting, taperecorder/radio and lots more. Designed to control four mains outputs independently, switching these on and off on selected days and times in a seven day cycle.

Features include:

* $0.5^{\prime \prime}$ LED 12 hr . display.
- Day of week, am/pm and output status indicators.
* Zero Voltage Switching Outputs.
- $50 / 60 \mathrm{~Hz}$ mains operation.
- Battery backup saves stored programmes and continues time keeping during power failures. (Battery not supplied).
* Display blanking during power failure to conserve battery power.
* 18 programme time sets.
* Powerful "Everyday" function enabling output to switch everyday but use only one time set.
* Useful "sleep" function - turns on output for one hour:
* Direct switch control enabling output to be turned on immediately or after a specified time interval.
* 20 function keypad for programme entry.
* Programme verification at the touch of a button.

To control your central heating, for example, (including different switching times at weekends), just connect it to your system, programme it, set it and forget it. The clock will do the rest. There has never been a clock capable of so much at this price. CT5000K Timer Kit (includes all components, assembly and programming instructions, and an attractive black case)
$£ 45.00$
YOU MUST HAVE BETTER THINGS TO DO

This unit has, of course considerabie
practical uses, especialiy for the old practical uses. especialiy for the old
infirm and disabled. It works like a infirm and disabled. It works like
conventional dimmer, enabling you to switch the lights on or off, or to dim them to whatever brightness you require, by touch or remotely using the
hand-held infra red transmitter. When assembled, it fits into a plaster depth box to replace your conventiona switch or dimmer with no rewiring. TDR300K Dimmer Kit £14.30
and MK8 Transmitter Kit $£ 4.20$. and MK6 Transmitter Kit $\mathrm{E4} 4.20$.
We also still sell our highly popWe also still sell our highly pop-
ular TO 300 K Touch Dimmer Kit at $£ 7.00$ and the LD300K rotary controlled Dimmer Kit at only £3.50 plus VAT to above prices).
Alt kits contain all necessary All kits contain all necessary
components and full assembly components and full assembly
instructions. You only need a soldering fron, cuters and a few

DVM/THERMOMETER KIT

Plug SOFTY 2 into the EPROM socket of your favourite micro (Z80, 6800, 8035 , etc.) prototype system, which will also contain input/output lines, operate as the ROM in your system but enable you o write daia into any location. observe the tore the program on cassette recorder if quired, Various edting facilities are also avallable o permit bytes or blocks of code to be changed, inserted, deleted, shifted, etc. enabling the proEPROM 12716 or 2732). Plug the Eprom into its socket and you have a dedicated microprocessor system.
tape.
The SOFTY 2 is housed in a black ABS case and comes complete with main supply, cable with 24 -pin d.lil. plug for connecting to your prototype system, and television lead. Fully built and
$\mathbf{£ 1 6 9}+\mathrm{VAT}$. Send SAE for further details.

Based on the ICL7126 (o low power version of the ICL7106 chip) and a $3 \frac{1}{2}$ digit liquid crystar display, this kit will form the basis of a digital multimeter supplied). or a sensitive digital thermometer $\left(-50^{\circ} \mathrm{C}\right.$ to $\left.+150^{\circ} \mathrm{C}\right)$ reading $00.1^{\circ} \mathrm{C}$. The basic kit has a sensitivity of 200 mV for a full scale reading, automatic polarity indication and an ultra low power requirement - giving a
2 year typical batery life from a standerd 9 VPP 3 when used B hours a day, 2 year trpical bat
£15.50 + VAT
IF YOU CAN'T (REMOTE) CONTROL YOURSELF .
Remote control systems in magazines tend to be quite complex, requiring many difficult to get components and a well equipped lab to set them up. If this has put you off making your Own system we have just the kits for you. Using infra-red, these KITS range from simple
on/off controllers to coded transmitter/receivers

with 16 on/off outputs or three analogue outputs for controlling TV or hi-fi systems, the kits are easy to build and simple to set up - and they are extremsly versatile so you can use them for controlling anything from garage doors to room lighting just by adding the required output circuits, l.e. relays, triacs, etc.

If you can design your own system, we stock a wide range of remote control components at very competitive prices.

To help you decide, we have compiled a booklet on remote control, containing circuits, hints, data sheets and details of our remote control kits and components. So DON'T control yourself - send us 30p and an S.A.E. for your copy TODAY.

Our ELECTRONIC LOCK KIT inctudes a 10 -way keyboard and a special IC which provides a 750 mA ourdout to drive a solenoid or relav (not supplied) when four kevs are depressen in
the correct sequence. This gives over 5,000 possible combinations! The sequence is prewired and may be easity changed by means of a small plug and socket. A "SAVE" functlon is also availatle enabting the open code to be stored lespectally useful in a car when it is left in garage for servicing as the open code need not be disclosed). Size: $7 \times 6 \times 3 \mathrm{cms}$. Power Consumption is 40 u at 5 V to 15 V d.c.
LOCK I.C.s
LS 7220 with SAVE memory
S7225 with latched and m
LS7220 with SAVE memory
LS7225 with latched and momentary outputs and a tarnper output
Electric Lock Mechanism
Suitable for use with existing door locks and above electronic

Prices do not include VAT. Add 50p P\&P + 15\% VAT to total Overseas customers add $£ 1.50$ (Europe), $£ 4$ (elsewhere) for P\&P. ACCESS and BARCLAYCARD welcome.
Send s.a.e. for price list and with all enquiries.
Shop Open: 9 a.m. to 5 p.m. (Mon-Fri), 10 a.m. to 4 p.m. (Sat.) (PE) 11 BOSTON ROAD, LONDON, W7 3SJ.
Tel: 01-579 9794/2842

Goods by return of post.

STORAGE CABINETS

Metal Cabinets $12^{\prime \prime}$ wide $\times 5 \frac{3}{4}{ }^{\prime \prime}$ deep, finished blue with transparent plastic drawers.

Type H No. of Drawers Price (ins) Sm MedLge

1118	11	15	2	1	$\mathbf{£ 1 0 . 7 5}$
1633	16	30	2	1	$\mathbf{£ 1 3 . 9 5}$
1838	18	35	2	1	$\mathbf{£ 1 5 . 9 5}$
2236	22	30	4	2	$\mathbf{£ 1 8 . 5 5}$
2260	22	60	-	-	$\mathbf{£ 1 8 . 5 5}$

Access/Barclaycard wel come Prices include VAT and Post. Cheque/P.O. to: Millhill Supplies (Tools).
35 Preston Crowmarsh, Benson, Oxon OX9 6SL. Goods by return of post

PARNDON ELECTRONICS LTD.

Dept. No. 2144 Paddock Mead. Harlow. Essex. CM18 7RR. Tel: 027932700

DIL SOCKETS: High quality, low profile sockets
8 pin-10p. 14 pln-11p. 16 pin-12p. 18 pin-19p. 20 pin-21p. 22 pin - 23p. 24 pin- 25 p. 28 pin-27p. 40 pin-42p.

[^1]

THE LATEST

WE WILL BEAT ANY LOWER ADVERTIS FULL SOFTWARE BACKUP
 World's Most Powerful BASIC Pocket Computer
 FX-702P
 RRP $\{134.95$
 ONLY £119.95

Plus FREE MiCROL Professional Programming Pack* (RRP 19.95) 2 Flattens the Sharp PC1211
Alpha/numeric dot. matrix scrolling LCD. Variable input from 1680 steps, 26 memories, to 80 steps, 226 memories, all retained when switched off. Up to 10 programs. Subroutines; 10 levels. FOR:NEXT looping; 8 levels. Debugging and Editing. 55 built-in functions, including Regression and Correlation, all usable in programs. Program/Data storage on cassette via optional FA-2 adaptor ($£ 19.95$). Auto Power Off. $17 \times 165 \times 82 \mathrm{~mm}$. 176 g .

World's Fastest Programmable?

FX-602P

- LCD alpha/numeric (dot matrix)
scrolling display
- Variable input from 32 program steps with 88 memories, to 512 steps with
22 memories.
- Mernory and program retention
when swilched on. (GOTO).
* Conditional jumps and count jumps. Indirect addressing. Manual jump.
- Up to 9 subroutines, up to 9 levels.
- 50 scientific functions, all usable
in programs.
- PAM (Algebraic) with 33 bracket at 11 levels.
Program and data storage on cassette tape using optional FA-2
remote control adaptor, $£ 19.95$
Compatible with the FX-501P and -502P
$9.6 \times 71 \times 141.2 \mathrm{~mm} .100 \mathrm{~g}$
ONLY 174.95
(RRP £84.95)
Plus FREE MiCROL Professional Programming Pack* (RRP £9.95).
FP-10 MINI PRINTER
For FX-702P, FX-602P, FX-502P, FX-501P
Available soon. Price and delivery on application

CASIO FX-702P SOFTWARE
 Produced by MiCROL exclusively for Tempus

 10% discount on software, if you purchase your hardware from us. MiCROL 702 USER SUPPORTProfessional Programming Pack. Get the best from your FX-702P with: PROFESSIONAL PROGRAMMING - practical 702 programming from the ground up plus 702 REFERENCE MANUAL - definitive guide to every 702 program command - INVALUABLE! MICROL 702PPP. Price $£ 9.95$
Advanced Professional Programming. Create power-packed programs with MiCROL's down-to-earth guide to the advanced 702 program commands.
Create simple solutions to complex problems!
A vailable December, 1981.
MiCROL 802 APP. Price $£ 7.95$

MiCROL 702 APPLICATIONS SOFTWARE

MICROL 702 Super:Calc. At last! The power of a VISICALC-iype modelling system in a pocket computer! For all scientific, statistical, business and general computing users, SUPER:CALC has to be used to be believed - create
powerful programs in minutes - answer 'what if questions - analyse trends - cut programming time up to 95%. Full range easy-use commands; SAVE/LOAD/ PRINT options. FA-2 recommended; FP- 10 optional. Full detail User Manual plus Program List for direct entry.
Available December, 1981.
MiCROL 702 S:C. Price $£ 14.95$
MiCROL 702 Basic:Plus. Add the power of up to 20 new commands to your programs! Custom-made to ease advanced programming - features include: String - number conversions; single-shot, await, timed KEY with user-controlled single digit, single name variabies; INTEGRATED DISPLAY COMMANDS display data and text with extra-low memory overheads. Modular design uses minimum memory; easy to customise. Full-detail User Manual plus Program List for direct entry.
Available December, 1981
MICROL 702 B:P. Price £14.95

LOW COST PROGRAMMABLE

CASIO FX-3600P 10 digit LC display. 55 scientific functions including NTEGRALS and REGRESSIONAL ANALYSIS. Up to 38 program teps -2 programs. One independent memory, 6 constant memories, all retained when switched off. 1,300 hour lithium battery. $9 / 32 \times 2 \frac{7}{8} \times 5 \frac{7}{\prime \prime}^{\prime \prime}$. Wallet.
Only on request, at time of ordering. RRP of 702P/602P versions, 89.95

World's Most Versatile

 Alarm Chronograph WatchAX-210
10 alternative displays; over 60 functions. LCD ANALOG dispiay of time, plus: DIGITAL dis play of: Time (12 or 24 hour); Calendar; Full play of: Time (12 or 24 hour); Calendar; Full month calendar (this month and next mo
Countdown alarm timer with memory function;
Professional $1 / 100$ second stopwatch with laps, etc. Hourly time signal. Alarm - electronic buzzer or 3 selectable melodies. Rapid forward/backward setting. $9.4 \times 35.4 \times 36 \mathrm{~mm}$.
(RRP £34.95) ONLY £29.95

J- 100 PACE RUNNER

Sets the pace for 1982

Displays hours, minutes and seconds (12 or 24 hours system), day and date. Auto calendar; calculator; professional $1 / 100$ second stopwatch measuring net, laps and 1 st and 2nd place times; Pacer mode. Can be used as a metronome to pace your running, or any other event.
Input data: Length of stride. Pacer signals, from 394 pips per minute to 63 pips per minute. Output data: Elapsed time, up to 24 hours. Distance covered, number of strides, and speed. (RRP £22.95)

ONLY £19.95
100 METRE WATER RESISTANT 50M W/R

CAS1O W-100 Resin case and strap
$\boldsymbol{£ 1 9 . 9 5}$

CASIO W-1 resin strap
£21.95

ASIO W-150B
All S/Steel
$£ 24.95$

CASIO W-5I All S/Steel $£ 22.95$

Time and auto calendar. Alarm, hourly chimes, countdown alarm timer with repeat memory function, professional $1 / 100$ second stopwatch. Time is always on display, regardless of display mode.

LATEST PRODUCTS

AA-85 Restyled AA. 81 . Analog/digital alarm cronograph.
LC-950 A new metric conversion calculator with a double display.
BG-15 Calculator with built-in boxing game.
FX-82

SHORT FORM CATALOGUE of latest calculators, key-

 boards and watches available on request. 14 p stamp appreciated.DELIVERY NORMALLY BY RETURN OF POST.
Orders received by December 18 th should be delivered in time for Christmas.
PRICE includes.VAT and P\&P. Send your company order, cheque, PO or phone your Access or Barclaycard. LEADING CASIO SPECIALISTS

TRY TO BEAT OUR PRICES!

Printers from £249 + VAT

Our range includes:
EPSON MX80, 82, 100
OKI Microline 80, 82a Many with FREE paper and delivery.
Come along to our NEW SHOP, we now stock:

2114 Rams	$£ 1.00$	4116 Rams	$£ 1.00$
2716 Eproms	$£ 2.70$	2732 Eprom	$£ 5.10$
40 Pin Jumper	$£ 5.20$	8T28 Butters	$£ 1.20$

and many other micro parts:
SPECIAL SOUND OFFER
ONLY £9.99 while stocks last.
$1 \times$ AY-3-8910, $1 \times$ PCB, $1 \times$ Instructions.
GRAPHICS BOARDS
Now just $£ 45.00$ kit or $£ 49.00$ built. All prices exclude $P \& P$
COMPUTER USER AIDS
14 Carlton Road, Romford, Essex. Tel: 070864954.

MDTERSFADERS VUMTIER DRIVERS ANDMORE ALNEWFROMILP

Just some of the 28 new amazingly compact modules from IL.PElectronics. Britain's leader in electronics modules - you ll find more new products in the amps and pre-amps advertisements.

All ILP modules are compatible with each other-you can combine them to create almost any audio system. Together they form the most exciting and ver satile modular assembly system lor constructors of all ages and experience.

Every item from ILP carries a 5 year no quibble guarantee and includes full connection data. So send your order on the Freepost coupon below today! MIXERS

Model No	Module	Whal if does	Current required	Price inc VAT	$\begin{gathered} \text { Price } \\ \text { ex VAT } \end{gathered}$
HY 7	Mono mixer	Mixes eight signals into one	10 ma	55.92	¢5 15
HY 8	Stereo mixer	Two channets. each muxing five signals into one	10 mA	87.19	\$6 25
HY 11	Mono mıxer	Mres five signals inlo one - with Dase/treble controls	10 mA	£8.11	£750
HY 68	Stereo muxer	Two channeis. each mixing ien signals into one	20 mA	59.14	27.93
HY 74	Sterec muxer	Two channels. each muxing ifve signals into one - with treble ano bass controls.	20 mA	£13.17	¢11.45

AND OTHER EXCITING NEW MODULES

Mode No	Mooule	What in does	Current required	$\begin{array}{c\|} \hline \text { Price } \\ \text { inc vat } \end{array}$	$\begin{aligned} & \text { Price } \\ & \text { ex VAT } \end{aligned}$
HY 13	Mono VU meler)	Programmable gain/LED overioad diver	10 mA	£6 84	§5 95
HY 67 ${ }^{\circ}$	Stereo head. phone criver	Will drive stereo headphones in the 4 ohm . 2 K ohm range.	80 mA	£14 20	¢12 35
HY 72	vace operated stereo tader	Provides depth/Delay eftects.	20 mA	¢1507	£13 10
HY 73	Guitar preamp	Handles two gutars (bass and lead) and mic whi separate volume/bass/freble and mox	20 mA	¢14 09	£1225
HY 76	Stereo swich matrix	Provides two channels. each switching one of four signals into one	20 mA	To be announced	
HY 77	Stereo VU meter drwer	Programmable gain/LED overload dinver.	20 mA	£10 64	59.25

For easy mounting we recommend
B 6 mounting doard for modules HY6 HY13 5090 inc. WAT 1078 ex. VAT.)
866 mounting boarc tor modules HY66-HY77 E1. 12 inc VAT 10.99 ex. VAT.) minumum to $\pm 30 \mathrm{~V}$ maximum. needing dropper resistors tor higher voliages HY67 can be used only with the PSU 30 power supply unit. Moduies HY6 to HY13 measure $45 \times 20 \times 40 \mathrm{~mm}$. HY66 to HY77 measure $90 \times 20 \times 40 \mathrm{~mm}$.
FP 480 BRIDGING UNIT FOR DOUBLING POWER
Designed specially Dy IL P for use with any two power amplitiers of the same type to double the power output obtaned and will function with any ILP power supply. In Iotally sealed case, size $45 \times 50 \times 20 \mathrm{~mm}$ with edge connector. It ithus becomes possibie to obtain 480 watts rms (single channell) into 80 . Contributory distortion less than 0.005%. Price: $£ 5.51 \mathrm{inc}$. VAT (Ex. VAT §4.79.)
How to order Freepost:
Use this coupon. or a separate sheet of paper. to order these products. or any products from other ILP Electronics advertisements. No stamp is needed if you address to Freepost. Cheques and postal orders must be crossed and payable lo HLP Electronics Lid: cash must be registered. C.O.D. - add £ 1 to lotal order value. Access and Barclaycard welcome. All UK orders sent post free within 7 days of recelpt of order.
ILP Electronics Ltd., FreeposI 2 Graham Bell House, Roper Close, Canterbury CT2 7EP, Kent.

```
Please send me the following
```

ILP modules
Total purchase price
IencloseCheque $\square \quad$ Postal Orders $\square \quad$ Int. Money Order \square
Please debit my Access / Barclaycard No
Name
Address

Signature
Post to ILP Electronics Lld. Freeposi 2 Graham Bell House. Rooer Close. Canteroury C12 7EP Kent. Englanc lelephone 10227154778 Technical $\{0227164723$ Telen 965780

ELECTRDNICS LTD

OPEN SIX DAYS A WEEK • CALL IN AND SEE FOR YOURSELF

LCD DIGITAL MULTIMETRES

SPECIAL PURCHASE - LIMITED PERIOD ONLY

6220 Reliable 22 range hand held $31 / 2$ digit LCD with volt/ohms auto range. unit and range signs. $10 \mathrm{amp} A C / D C$. battery warning. lower power ohms range: Model 6110 Also has range hold. continuify buzzer and improved accuracy. All models high quality rotary operation. Resolution 0.1 milli volt: 10 -Micro amp: 0.1 ohm.

62201000 v DC: $0.2 / 10 \mathrm{~A}$ ACIDC: 600 v AC: 2meq ohm. Was £55.95 NOW $£ 42.95$
6110 As above plus 20 mA ACIDC and improved accuracy. Was $£ 85.95$
NOW £59.95
THIS SPECIAL OFFER IS QUALITY WITH VALUE
Also in stock
D0601 27 range push button 2A AC/DC
$£ 39.95$
188 m 16 range with He checker 10 amp $D C$ pushbutton 189 m 30 range with He checker 10 amp AC/DC rotary
£43.50

GLOBAL SPECIALISTS EQUIPMENT

Generators (UK c/a £1.00)
$20011 \mathrm{HZ}-100 \mathrm{KHZ}$ sweepable function generator. TTL/Sinel Square/Triangle. All faclities: Mains \quad E89.00 4001 Ultra Variable Pulse Generator; $0.5 \mathrm{HZ} \cdot 5 \mathrm{MHZ}$ Every
facility: Mains. facility: Mains. Frequency Counters (UK c/p 80p) MAX 100100 MHZ Counter. Battery operated. 80 lgh 30 mV typical. Bench portable LED 289.00 Max50 6 Dlgit 50 MHZ Hand held LED $\{56.00$ MAX550 2 range 6 Digit 550 MHZ hand held LED $£ 97.75$ PS500 500 MHZ prescaler for MAX50/ 100 £34.50 Circult Powered Loglc Probes Pulser and Monitors [UK e/p 65p] LPI DTL/TTL/CMOS: 10 MHZ. 100K ohm: Pulse: Memory E35.50 LP2 OTL/TTL/CMOS: 1.5 MHZ. 300K ohm: Pulse \quad \&19.95 LP3 DTL/TTL/CMOS: 50 MHZ . 500K ohm: Pulse: Memory 55.95 LM1 AII, 8, 10, 12. 14 \& 16 Pin IC'S. Indicates Pins on/atf OTL/TTL/CMDS/HTL. Logic Monitor $£ 33.00$ DP1 Digital Pulse. Single shot or 100pps. E55.50

SABTRONICS EQUIPMENT

New reliable range of DMM's and
frequency computers with those extra facilities and competitive prices. All battery operated (supplied). Except 5020A mains Optional mains eliminators available. 8 OIGIT COUNTEAS 0.1 HZ to 10 HZ Res 10 mV sensitivity to 100 MHZ
(UK c/p £1.00)
$8110 \mathrm{~A} 20 \mathrm{HZ} \cdot 100 \mathrm{MHZ}$ in 2 ranges 8610A 20 HZ 600 MHZ in 3 ranges OIGIT COUNTEAS 30 mV sensitivy $£ 94.00$ IGHZ. Res olution $0.1 \mathrm{HZ} \cdot 10 \mathrm{HZ}$ $8610 \mathrm{~B} 10 \mathrm{HZ}-600 \mathrm{MHZ}$ in 3 ranges £114.00 $8000 \mathrm{~B} 10 \mathrm{HZ} \cdot 1 \mathrm{GHZ}$ in 3 ranges £ 178.00 FUNCTION GEMEPATOR (UK C/O £1.00 with mains adaptor
5020 1 1 HZ-200 KHZ Sine/Square Trlangle/TTC Freq. sweep. Low distortion $£ 90.00$ DIGITAL MULTIMETERS TwO LCD hand held - one with temperature range. Also LCD and LED Bench models. 0.1\% Basic accurac 2035A $31 /$ digit LCD hand. 2A AC/DC 2OMeg ohm ETC £71.00 2037 A As 2035 A with $-50^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Temp. range 0.1° resolution $£ 77.00$ $2010 \mathrm{~A} 31 / 2$ Digit LED. Auto decimal \& Options Touch \& hold minus. 10A AC/DC: 20Meg ohm eic. Probe for DMM's 2015 LCD version of above $\mathbf{£ 9 5} 5$ (c/p 2035/37A 65p: All others £1.00) (state model) 55.69

NEW LOW

AMATEUR/CB

KDM6 1.5 to 250 MHZ Dip meter 6 ranges \quad K 38.50 SWR9 3.150 MHZ SWR • F/S SWR50 T win meter SWR • PoweI 1KW max. E13.95 310 Single meter SWR * Power 10 W E8.95 110 SWR/Power/FS-10/100W 171 As 110. Twin meter $£ 14.95$ 175SWR/FS/AE Match (40 MHZ)
£13.80 176 As ' 175 ' $+0 / 5 / 50$ Watt power \quad £ 16.95 Scale $£ 19.50$ Scale E 19.50 19 range Multimeter 828.95 (Note: SWR-Power ETC to (Note: SWR-P
144/150 MHZ)
Just a selection of a huge range in stack - send for latest lists including protessional ranges.

Allow up to 14 days delivery

HAMEG OSCILLOSCOPES

Range of top quality scopes for Amateur and
Professional (UK c/p 307 £ 3.00 . other $£ 4.00$)
307 Single trace $10 \mathrm{MHZ}: 5 \mathrm{mV}: 0.5$ micro sec. Plus built in
component tester. $6 \times 7 \mathrm{~cm}$ display. $£ 158.70$
(Optional carry case £18.40)
203 Dual 20 MHZ : Trig to $30 \mathrm{MHZ}: 5 \mathrm{mV}$: 0.5 micro secs:
$8 \times 10 \mathrm{~cm}$ display (replace model 312) $£ 253.00$
412.5 Dual 20 MHZ delayed sweep: trig to $40 \mathrm{MHZ}: 5 \mathrm{mV}$:
.1 micro sec. $8 \times 10 \mathrm{~cm}$ display. £402.50
705 Dual 70 MHZ Delayed sweep. Single sweex Delay line Trig to $100 \mathrm{MHZ}: 5 \mathrm{mV}: 0.1$ micro $\mathrm{sec} .8 \times 10 \mathrm{~cm}$ display

Options 203/412/512 Viewing hood $£ 6.90$ $£ 667.00$

Carry case (state 203, 412,512 £,46.00
Optional Probes (Al. models) $\times 1 £ 8.50 . \times 10 £ 9.45$ X1-×10£10.50; X100£16.95

MEITEEPRDEESIDAL DIGIAL		PROFESSIOMAL
MUTMETER		UK C/P £1.50. All feature auto test + matching LTC
Model 130, 25 range. Easy to hold and use LCD 906A plus DC parameters		
DMM. Size $7 \times 3.1 \times 1.5$		E111.55 LVT plus F.ET.
Ranges		multimeter £14720. LTC
DC Volts $200 \mathrm{mV}-1000 \mathrm{~V} 0.5 \% 100 \mathrm{micro}$ volt		907 plus multi band signa
AC Volts 200 mV -750V 1\% 100 micro volt		injectors $£ 17360 . \quad$ Also
DC current 2mA-10AMP 1-2\% 1 micro amp		LTC 905 semi conductor
AC current 2mA-10AMP $2 \% 1$ micro amp		curve trace (use with
Resistance 200 ohm-20 $\mathrm{Meg} 0.5 \% 0.1 \mathrm{hmm}$ ¢)		scope) £94.45.

SAFGAN PORTABLE OSCILLOSCOPES

Range of low cost Dual Trace Scopes mains operated. Made in UK 10 exacting standards. Available as $10 \mathrm{MHZ}: 15 \mathrm{MHZ}$ or 20 MHZ . All feature 5 mV sensitivity; 0.5 micro sec: $6.4 \times 8 \mathrm{~cm}$ display. (UK c/p $£ 2.50$)
DT410 Dual 10 MHZ
$£ 194.35$
01415 Dual 14 MHZ
£201.25
Dual 20 MHZ
£216.20
Dptional probes available (see Hameg above)

LASCAR BENCH MULTIMETER

$31 / 2$ Digit LCD Made in UK: 25 ranges with basic 0.1% accuracy: 2A AC/DC with 0.1. Microamp resolution: 1KV ACIDC 20 Meg ohm ETC.
LM100 £89.00 (UK c/p £I.00)
Also modeI LM2001 hand held model 2Meg ohm 2A ACIDC ETC. £57.70 (UK c/p 65p)

TV COLOLR BAR
PATTERN GENERATORS
PAL UHF and VHF Models. All 220/240V AC
1 GC393 VHF 5 pattern
f143.75 cosor h pattern
143.75 LCG392y UHF 15 pattern $£ 228.85$ LCG392v VHF 15 pattern £231.15 LCG399 VHFIUHF 13 pattern $£ 572.70$ MC101 UHF pocket colour $\quad \$ 162.50$

LEADER AUDIO RF FM

 TV GENERATORS

High quality mains operated equipment (UK c/o E1.50) LSGI6 RF Generator (matches LAG26) 5 ranges $100 \mathrm{KHZ} \cdot 100 \mathrm{MHZ}$ (300 MHZ harmonics). Int/Ext MOD: 100 mV o/p: $\pm 1.5 \%$ accuracy $£ 63.25$ LSG231
$100 \pm \mathrm{MHZ}$ all facilities $\quad \mathbf{2 1 1 6 0}$

aUDIO
LAG26. 4 range 20 HZ .20 KHZ . Sine Square: 5V o/p: Distortion 0.5-1\%

LAGI20A 5 range 10 HZ -1 MHZ 273.60 Square: 3 V ol $0: 0050$ MHZ. S Distortion Switched attenuator
LAGI25 Low distortion (0.02\%) $£ 146.00$ version of LAG120A Plus Burst typ signals for Speaker test $\quad £ 273.00$

DISCOUNTS Small and large quantity Oiscounts avallable for most products for UK and Export Your Enquiries Invited ALSO STOCKED Range of chassis speakers and kits. microphones and public address equipment accessories etc.

Now the time can tell you!

New - from Silicon Speech Systems la Powertran subsidiary) - the first ever easy-to-build kit that will give a whole new meaning to the 'speaking clock'! Electronics and quartz technology combine to enable you to construct a talking timepiece that is interesting to build - fun to have!

Full instructions make this a kit with equal appeal to the beginner or experienced constructor

Special Xmas Offer only £24.50!
 (includes VAT and Post \& Pkg)

- Accurate to a minute a year
- Adjustable voice pitch
- Grained stainless-steel case
- Pocket size - approx. 5in. x $2 \frac{1}{2} \mathrm{in}$. $\times 1 \mathrm{in}$.

- Useful in the home or office
- As heard on BBC radio

Silicon Speech Systems
 (A Powertran Subsidiary)

PORTWAY INDUSTRIAL ESTATE, ANDOVER, HANTS., SP10 3WN
TELEPHONE ORDERING FOR ACCESS/BARCLAY CARD CUSTOMERS IS NOW AVAILABLE.
JUST PHONE YOUR ORDER AND GIVE YOUR CARD NO. RING ANDOVER (0264) 64455.

CELESTION

CB Antenna \& Accessories in stock now!!

Stockists of leading makes of Disco Units
CITRONIC, FAL, TK, ICE,
Give your cabinets the professional finish.

Please allow 14 days for delivery.

- H: AR B ABC A INS

"JARESISTABLE RESISTOR BARGAINS"				
	06.	Descripion		
Sx11	400	Pleformed		
su13		Ressitars		
	200	matt Catoon	Res	
Sx13.	200	4 matt Cation	Resistors	
	150	${ }_{3} 4$ wath he		
sx15		2 m		
	100	1 Iand 2 moth		
Pats Sx12-15 coniain a iange ol Caribon film Resistor ol assonted values flom 22 orms to 2.2 thes Sore pounds on lheses ressistor paks ond have a lull range to cover your propects -Quantities approxi				

TRIACS - PUSTIC
4 AMP-400\%-T0202-TAG 136G
10 OFF 10 OFF

$\begin{array}{llll}500 & \text { E5.75 } & \text { E27.50 } & {[50.00}\end{array}$

Everyday Electronics

Teach in " 81
Xit ! E15.65 (Mits 182 combined Allonte

SX40 250 Silicon Orodes-Switching like IN4148 DO. 35 . All good-uncoded. Worth double our price. $45 \% 75 \mathrm{~mA}$ Woth

1.25 250 Silicon Diodes-General Purpose. the 0A200/202. Bax13/16. Uncoded. 30.100 v 200 mA .007.

0
 $200 \mathrm{v} .2 \times 400 \mathrm{~V}$ Super value less than price. 45 price. SCR'S TO65. 2 \& 50 v. 2 a 100 v .4 x $200 \mathrm{v} .2 \times 400 \mathrm{k}$. All coded. Brand new, a

BARGAINS
Sx42 20 small 125 Red LEO's 5×4310 Rectangular Green LEOS 5446 30 Assorted lenel diod woitages. 250 mw - New.
4 8lack Instrument
Sx47 Knobs-wingeo with pointel Standard screw. fil site 29π 20 mm . 5×4920 assored Black/Chin firment Lumps. Low sisto 12 Neons and fisment umps types 12 nope and mains - yaious mounting
and colours - some penel

"CAPABLE CAPACITOR PAKS'

Pat Mo.	00°	Description	ce
\$ 216	250	Copacitors Maxed Types	[1
5117	200	Ceramic Capacitors Miniature Mined	II
Sx18	100	Mixed Ceramics Iot. 5 6ipl	C1
S419.	100	Maxed Ceramics $6800 \cdot 1.0 .5 \mathrm{mf}$	[1
\$ 20	100	Assorted Polyester/Polystyrene Gapacitors	[1
\$121	60	Mixed C280 type capacitors metal foll	[1
\$ $\times 22$	100	Electiolytics. all sorts	11
\$223	50	Quality Electrolytics 50.1000 mf	11
\$x24	20	Tantalum beads. mized	fl

SEMICONDUCTORS FROM AROUND THE WORLD

100A Collection of Transistors. Dolodes. Rectitiers. Bndges. SCR's. 100
Inracs. IC's both Logic and Linea plos Opto's all of which are current everyday usable devices.

Guaranteed Value over 510 at Normal Retall Price
 ェ£4-00 Data etc. every pah every palk Order No. Sx 56

AUDIO PLUGS, SOCKETS

 ANDACCESSORIES25 preces of Audio Plugs. Sockets and Connectors Io include OIN $180^{\circ}-240^{\circ}$. Inline 36 PIn Soe akers. Phono. Jach. Stereo and Mono, etc. etc. Value t well over £\} normal. Order No. SX25. Our Price $£ 1.50$ per pak Guaranteed to save you money.

5×263 Prs of 6 oin 240° DIN Plugs and Chassis

Sockets.
5×21 In Right Angle Stereo lach Plugg 6.3 mm plus matching metal chassis mountring socket. su2s 4 Phono plugs and 2 dual ohono connectors 5×23 i 2.5 mm Plug to 3.5 mm Sockel acaptor. 3×30 : 1.5 mm Plug to 2.5 mm Socket adaptor. SK $311 \times 3.5 \mathrm{~mm}$ Plug to Phono Socket adaptor.

$5 \times 321 \times$ Standard Jach Plug to Phono Sochet rato
5×331 a Togge Swith SPST Minature. 125 w 10A Sx34 1xToggle Swith SPDT Minalure. 125w 10 A Sx 35 I x Rocker 5 witch SPOT Miniature. 240 v 5 A SX36 ix Right Angle Mono Jach Plug.

37 20 preces 1.284 mm plugs and socke
(Banana) Matching colours and sizes.
SXSO 10 Assorted Swilches locgie. Side. Rocker
7125 mixed cal
1725 mixed cable clips and ties round grommets a plastic feet. Always sought by the project builde

E1FREE PAK

Gel' a $£ 1$ FREE P ACK. Orders over $£ 10$ excluding VAI. Choose E1 Pack free (or 2 a 50, add it to your order and save even more money.
This otter only applees to this advertisement

Coneren
 siaction or your money bach has

 always been BI.PAK's GUARANIEE, and it still is All these Sale items are in stochy in quantity and we will despatch the same day as your order is received
IC SOCKETS

The lowest price ever.
Pin. 10 oll 50 ofl 100 olt
$8 \quad$ TSD \quad E3.00 \quad E5
$\begin{array}{llll}14 & 80 \mathrm{D} & \mathbf{5 3 . 2 5} & £ 5.50 \\ 16 & 80 \mathrm{p} & £ 3.25 & £ 5.50\end{array}$

VOLTAGE REGULATORS

TO220 7805-509 7905-550 spease $7812-50 p \quad 1912-55 p$ solte $\begin{array}{lll}7815-50 p & 7915-55 p & \text { requge } \\ 1824-50 p & 7924-550 & \text { required }\end{array}$ Ther types: 1M3401 -500 1924-550 TO3-40p UAT23-14 pin OIL -40 polt 24 roll.

5X52

 6 Blach Heatsint will fit TO-3 and 10-220. Ready delled. Half price value. Read dimeo. half pice\$ $\mathbf{\$ 5 3}$ I Power finned Healsinh. This heatsink gives the greatest possible heatidissipation in the smallest space owing to its unique staggered lin design. pre drilled.
10.3 Suze 45 mm squarex 20 mm high 40 p 5×54 10-66size. 35 mma 30 mma a $2 \mathrm{~mm} \quad 35$ SX55 I Heat Efficiency Power finned Heatsink. $90 \mathrm{~mm} \times 80 \mathrm{~mm} \times 35 \mathrm{~mm}$ High. Onllied to
take up to 4 a
To. 3 devices
[1. 50 each

Sx 38100 Silicon NPN Transistors-all perfect Coded mised trpes with data and eavt sheet. Mo repects. Real value. $\$ 2.50$
SK39 100 Siticon PNP Transistors-all perfect. Coded mixed types with data and equ sheet. No rejects fantastic value. © 2.50

2 233055 The best known Power Iransistors in the World - 2N3055 MPN 115 w . Our BI-Pak Soecisl Offer Price $10 \mathrm{oH} \quad 50 \mathrm{eH} \quad 100 \mathrm{ett}$

SOSH2 COMPUMENTARY PNP POWEA TRANSISTORS: TO 2N3055. Equivelent M12955-80312-703 SPECIA PHICE 50.70 exth

Use pour credit ard hing us on Ware 3182 Now and cel pour order own laster Goods normally sent 2 nd Ciss Mall
Themember you musi add yal al $15^{\circ} \mathrm{o}$ to youl adel

COMING OF AGE!

This issue marks the start of a new year for PE-our 18th. Yes, even though we still think of ourselves as a "new" magazine, publication of PE started with the November 1964 issue. Hopefully many readers also continue to feel PE is "new", since this indicates we are keeping up with their needs and continuing to break new ground on projects and technology.

Before we forget it, let us take this opportunity of thanking you for your support over the years and wishing you seasonal greetings and a prosperous new year. We are planning some further steps forward for PE during 1982 and we hope you will all take them with us.

- 81 CHANGES

We came some way in ' 81 , 'though times have been difficult for many with the recession really biting. Unfortunately, it now seems that we will have to weather its ravages for the best part of next year as well. It is generally felt that even the "iron lady" will have
to bend towards the end of the year so that things improve before the next election!
Another effect of the recession has been to attract more commercial companies into producing and marketing. electronic projects as a means of keeping stock and financial turnover at a reasonable level. Thus there are probably more specialist professional engineers now working on projects for the "amateur" than ever before.

UK sales of PE have increased during the last six months and are higher now than they have been for 18 months, even though cover prices have had to rise and people's general wealth has fallen. Our overseas sale, which is in excess of 20,000 copies, is also very buoyant especially in the emerging nations.

One change, made earlier in the year, which readers may not have noticed was the introduction of a new front cover logo. This rather subtle increase in lettering size came in the July issue-check if you don't believe us! Thankfully, we have been able to con-
tinue to produce many "first time" projects; CB has come; we gave readers a Free Instrument Case, an I.C. Removal Tool and four suppliers' catalogues during the year. All of which were well received and we believe proved useful.

Our aim has been to make PE the best possible value for money and this will continue in '82. If we can be even better at this time next year everyone will be pleased. After all it's the "newness" of the mag. that keeps staff and readers interested and the whole thing on the boil. The quality, range and ingenuity of our projects is now better than ever.

CB

As we go to press we are hearing disturbing stories that European standard CB rigs and a.m./f.m. rigs are being sold as legal equipment with a CB 27/81 label on them. Readers should therefore be very careful when buying a rig to ensure that it is built to the British specification. Our rig review will assist with identification.

Mike Kenward

EDITOR

Mike Kenward
Gordon Godbold ASSISTANT EDITOR
Mike Abbott TECHNICAL EDITOR
David Shortland PROJECTS EDITOR
Jasper Scott Production EdITOR

ADVERTISEMENT MANAGER SECRETARY
AD. SALES EXEC.
CLASSIFIED SUPERVISOR

Jack Pountney ART EDITOR
Keith Woodruff ASSISTANT ART EDITOR
John Pickering SEN. TECH. ILLUSTRATOR
Isabelle Greenaway TECH. ILLUSTRATOR
Colette McKenzie SECRETARY

Editorial Offices:
Practical Electronics,
Westover House,
West Quay Road, Poole,
Dorset BH15 1JG
Phone: Editorial Poole 71191
We regret that lengthy technical enquiries cannot be answered over the telephone (see below).

Advertising Offices:
Practical Electronics Advertisements, King's Reach Tower,
King's Reach, Stamford Street, SE1 gLS Telex: 915748 MAGDIV-G
Make Up/Copy Dept.: 01-2616601

Technical Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in PE. All letters requiring a reply should be accompanied by a stamped, self addressed envelope, or international reply coupons, and each letter should relate to one published project only.

Components and p.c.b.s are usually available from advertisers; where we anticipate difficulties a source will be suggested.

Back Numbers

Copies of some of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd., Lavington Hóuse, 25 Lavington Street, London SE1 OPF, at 95 p each including Inland/Overseas p\&p.

Binders

Binders for PE are available from the same address as back numbers at $£ 4.30$ each to UK or overseas addresses, including
postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 13.00$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH. Cheques and postal orders should be made payable to IPC Magazines Limited.

DDD QQ GS C

 Edited by David Shortland

 Edited by David Shortland \& Jasper Scott

 \& Jasper Scott}

More Micros in Schools

Mr Kenneth Baker MP, Minister for Information Technology, recently announced an extension of the Department of Industry's Micros in Schools scheme to secondary schools which already have computer facilities.

Speaking at the launch of Information Technology ' 82 he said:
"The Micros in Schools scheme has proved a great success. Since the scheme was opened on June 1, almost 1900 applicants have been approved for 50% funding towards the cost of a microcomputer. Both maintained and independent schools in England, Wales. Scotland and Northern Ireland are participating.
"The Department of Industry estimated 2500-3000 secondary schools were without equipment and so we are well on the way to achieving my first objective of a micro in every secondary school by the end of 1982.

I am pleased to announce that, as from January 1, 1982, this scheme will be extended so those secondary schools already with equipment may take advantage of the grant.

With the back up teacher training provided for in the scheme, this initiative is a vital complement to the Microelectronics Programmes under way by the Education Departments. I hope teachers from all disciplines will be able to take advantage of these programmes so that an awareness of new technology is an integral part of all pupils' experience across the curriculum."

SECONDS AWAY!

The wonder of liquid crystal never ceases to amaze, and one of Casio's latest offerings uses the ubiquitous l.c.d. to take the "executive toy" to new heights.

Casio's BG15 is based on the now familiar clock/calculator format, with the usual added attraction of a game. But, instead of Alien Invaders, you have a boxing match, with excellent animated graphics and a realistic scoring system. Now you can beat the stuffing out of your opponent without sustaining a single bruise yourself!

The one criticism that could be levelled at the BG15 is that the instruction booklet is rather an epic work which takes a long time to get through-particularly the chapter on the game.

Anyone who has had a trying day
and feels like inflicting a touch of GBH on their boss will find this machine a far less troublesome way of letting off steam. It is available at a discount price of $£ 16.95$ (inc VAT and p\&p) from Tempus, Dept. PE, Freepost, 164-167 East Road, Cambridge, CB1 1DB. (0223 312866)

POINTS ARISING

ULTRASONIC CLEANER (Jan. '80) PE CONGRESS (April '80)

Wicca Electronic Systems Ltd, who supplied kits for the above projects have recently ceased trading. While components for the Congress should be available from other sources, we do not know of another supplier of certain parts for the Ultrasonic cleaner. However, a complete kit for a similar device is currently available from Heathkit. Further information is available from them on 0452 29451. Technica queries should be addressed to us.

DONPT:

Rodnay Zaks, computer scientist, author, and president of the publisher Sybex Inc., has been putting pen to paper (or perhaps finger to word processor) again. The latest book we have received is called:

Don't! IOr How To Care For Your Computer).
The front cover is striking, and with quotations of wisdom from Shakespeare's Macbeth through to Confucius leading you in to each chapter, it makes fulfilling reading. The book is openly "dedicated to the allegedly mythical trouble-free computer". It shows how most hardware problems are either directly or indirectly brought on by mishandling.

Make your hobby room comfy for humans and your home computer will like it too. says Mr. Zaks of temperature, vibration and dust considerations.
Among the often quite funny cartoons, photographs and diagrams you will find such "horror" stories as that recounted of the man who was unwittingly ruining discs by writing identity information on their sleeves with a hard ball-point pen, thereby embedding loose grit into the oxide.

You are also warned against smoking near disc drives. One picture shows the relative sizes of common pollutants. With the flying height of the head at 100μ, the cross section of a human hair shown adjacent looks something like a football next to the gap under the door. The least offensive, fingerprint oil, would be more than enough to swamp the gap! And that effluvium donated to the atmosphere so freely by our smoking companions looks as though it could cause havoc, comprising sticky particles of 300μ diameter.

The book's title, Don't!, applies to its own diagrams on page 157 if you are European, which illustrate typical NEMA receptacles and their mains wiring. In the USA there is no such thing as a brown "Live" wire, it's black, and it's "Hot" (probably pronounced "hut"). The book is written at a light-hearted level and makes enjoyable and informative reading.

You could say it is aimed at interfacing the low event horizon user to leading edge technology practices. Honestly, you could!

This soft-back is available through Computer Bookshop, 30 Lincoln Road, Olton, Birmingham, which is the UK outlet for Sybex. It costs $£ 9.65$ and consists of 213 pages measuring $150 \times 230 \mathrm{~mm}$.

Briefly...

To cope with the shortage of training aids in microwave engineering, the Microwave Products Division of Marconi Instruments, a GEC-Marconi Electronics company, have introduced a new low cost audio-visual course-"Understanding Microwave Equipment". It consists of six C90 cassettes held in a ring binder containing 175 supporting diagrams and photographs. This course can be used by anyone who has an interest in microwave equipment.

The six sessions cover a survey of microwave systems and devices, transmission lines and components. solid-state sources. tubes, low-noise receivers, antennas. radar, telecommunications and electronic warfare systenis.

The cost of the course is $£ 65$. Further details are available from Harold Read, Marconi Instruments Ltd.. Longacres. St Albans, Herts AL4 OJN (0727 59292)

The winner of our questionnaire competition was Mr Ray Causer of Wantage, whose estimate was 971 . Mr Causer will receive a cheque for $£ 50$.

We would like to thank all our readers who took the trouble to fill in the questionnaire.

The new 12-page catalogue from Ace Mailtronix is now available price 30 p . The catalogue covers a wide range of components and as always Ace will try and obtain any type component for constructors. For a quote by return of post please send a S.A.E.

Ace Mailtronix Lid.. 3A Commercial Street. Bately. West Yorkshire (0924 44 I 129).

Thousands of budding organists and pianists struggling through the first stages of learning to play will welcome a new electronic tutor developed by a Preston company.

Called Prelude, it gives an instant visual guide to more than 600 chords as well as all major and minor scales. It's a small, hand-held device with keys for the musical notes, chords and inversions, and a liquid crystal'keyboard display.

The unit is designed to help tutored or self-taught students learn the basic 'alphabet' of music; to teach classically-trained musicians modern harmony and to help string or wind players to convert to keyboards.

Two professional organ"teachers who helped in Prelude's design say that it is far easier and quicker to use than a printed tutor. Not only does it show notes making up the basic chord, but the user can add progressively more complex components, and show all the inversions-the different ways of playing it.

Prelude is priced at $£ 19.95$ including VAT, plus 40 p p\&p, and is available from Speedyplain Ltd., Freepost, Longton, Lancs PR4 5 YL.

Anuridiun

lease check dates before setting out. as we cannot guarantee the acuracy of the information presented below.

IDEA (Domestic appliances) Jan. 12-14. Birmingham. B6
OEM Assemblies Feb 2-4. Royal Hort. Halls London. T BEX Bristol Feb. 3-4. K
BEX Bournemouth Feb. 17-18. K
Microsystems Feb. 24-26. West Centre Hotel London. ZII -Seminex Mar, 29-Apr. 2. Imperial College London. H1 CAD Mar. 30-Apr. 1. Metropole Brighton. Z1 Laboratory Edinburgh Mar. 30-31. Ass. Rooms. E Test \& Measurement Mar. 30-Apr. I Forum Wythenshawe. T

Sensors \& Systems Mar. 30-Apr. I Forum Wythenshawe. T
Peripherals Mar. 31-Apr. 2. West Centre Hotel London. Z1
Laboratory Manchester Apr. 7-8. New Century Hall. E
All Electronics Show Apr. 19-21. Barbican London. E
BEX Brighton Apr. 28-29. K
Compec Europe May 4-6. Centre Int. Rogier. 21
CETEX May 30-June 2. Earl's Court London. B6
BEX Leeds Jun. 9-10. K
Transducer/Tempcon Jun. 29-Jul. I Wemb. Conf. Cntr. T
B6 Andry Montgomery Ltd. f 01-486 1951
E Evan Steadman. Saffron Walden 6079922612
HI Seminex Lid.. Tunbridge Wells ¢ 089239664
K Douglas Temple. Bournemouth $¢ 020220533$
T Trident. Tavistock $\wp 08224671$
Z1 IPC Exhibitions, Sutton \& 01-6438040

Step-by-step fully -illustrated assembly and fitting instructions are included together Highest quality
components are

- Extended coil energy storage circuit
- Contact breaker driven
- Three position changeover switch - Over 65 components to assemble - Patented clip-to-coil fitting - Fits all $12 v$ neg. earth vehicles

SX2000

Electronic Ignition

The brandleading system on the market today Unique Reactive Discharge Combined Inductive and Capacitive Discharge - Contact breaker driven - Three position changeover switch - Over 730 components to assemble - Patented clip-to-coil fitting - Fits all $12 v$ neg. earth vehicles

ILA
BLE IN KIT FORM

MAGIDICE

Electronic Dice

- Not an auto item but great fun for the family
- Total random selection
- Triggered by waving of hand over dice
- Bleeps and flashes during a 4 second tumble sequence
- Throw displayed for 10 seconds
- Auto display of last throw 1 second in 5
- Muting and Off switch on base
- Hours of continuous use from PP7 battery
- Over 100 components to assemble
- Supplied in superb presentation gift box

TX2002

Electronic Ignition

- The ultimate system - Switchable contactless. Three position switch with Auxiliary back-up inductive circuit. - Reactive Discharge. Combined capacitive and inductive. Extended coil energy storage circuit. Magnetic contactless distributor triggerhead. Distributor triggerhead adaptors included. - Can also be triggered by existing contact breakers. - Die cast waterproof case with clip-to-coil fitting Fits majority of 4 and 6 cylinder 12 v neg. earth vehicles. - Over 150 components to assemble

VOYAGER Car Drive Computer

- A most sophisticated accessory. Utilises a single chip mask programmed microprocessor incorporating a unique programme designed by EDA Sparkrite Ltd. Affords 12 functions centred on Fuel, Speed. Distance and Time. Visual and Audible alarms warning of Excess Speed, Frost/Ice, Lights-left-on. Facility to operate LOG and TRIP functions independently or synchronously. - Large 10 mm high $400 \mathrm{ft}-\mathrm{L}$ fuorescent display with auto intensity. Unique speed and fuel transducers giving a programmed accuracy of + or -1%. Large LOG \& TRIP memories. 2.000 miles. 180 gallons. 100 hours. Full Imperial and Metric calibrations. Over 300 components to assemble. A real challenge for the electronics enthusiast!

Electronic Car Security System

Arms doors, boot, bonnet and has security loop to protect fog/spot lamps, radio/tape, CB equipment

- Programmable personal code entry system

Armed and disarmed from outside vehicle using a special magnetic key fob against a windscreen sensor pad adhered to the inside of the screen - Fits all 12 V neg earth vehicles - Over 250 components to assemble

AII EDA-SPARKRITE products and desians are fully covered by one or more World Patens
EDA SPARKRITE LIMITED 82 Bath Street, Walsall, West Midlands, WS 1 3DE England. Tel: (0922) 614791

		READY BUILT UNITS
SX 1000	£12.75	£27.95
SX 2000	$£ 19.95$	£43.75
TX 2002	$£ 29.95$	£62.95
AT. 80	£24.95	£49.75
VOYAGER	£,49.95	£84.75
MAGIDICE	£12.95	£19.95

PRICES INC. VAT.POSTAGE \& PACKING

Please allow 28 days for delivery
NAME

I ENCLOSE CHEQUE(S)/POSTAL ORDERS FOR
\qquad KIT REF.
CHEQUE NO.
24 hr . Answerphone
PHONE YOURORDERWITHACCESS/BARCLAYCARD
SEND ONLY SAE IF BROCHURE IS REQUIRED

Punch Drunk

I still feel slightly punch drunk after the autumn marathon of the political conference season. Hours and hours of waffle from the platform. Even more hours of pundits interpreting, analysing, what was said or, more sinister, what was not said. The acres of newsprint as a follow-up in the daily and weekly press.

It was all in the line of duty. Alas, my hopes of discovering just a small spark of inspiration in relation to industry and its problems were unrealised. The politicians had been wasting my time.

When the parties were not running down their opponents they were squabbling among themselves. But there was some consensus. All, in the face of facts, more or less agreed that British industry has been in decline for 20 years. If we accept this, as we must, we had the spectacle of those who assisted in the decline, indeed, probably accelerated it, putting themselves forward as the new messiahs. Yesterday's failures claiming they are tomorrow's saviours.

Dishonesty was the order of the day. But of course it is too much to expect public figures to even hint they had flopped in the past, or to admit they are powerless in the face of events over which they have no control.

Then there was the new alignment. The party labels are now confusing. Labour retains its name not its old character which is now re-born under the label Social Democratic, heavily loaded at the top with old-style Labourites. The Liberals, once proudly independent, after enjoying a brief moment of influence in the Lib-Lab pact have now found it expedient to enter an uneasy alliance with the SDP. The Tories are what they have always been except more so under Mrs Thatcher, but even there a shift is apparent.

Meantime, in the midst of political manoeuvre and intrigue, industry has to get on as best it can. It was a great pity that even the Tories, who are more honest than
the others in presenting the brutal facts of life, did not ram home more forcefully the message that there is only one formula for industrial success-the right product at the right time at the right price. Only then can profits be generated to satisfy the social conscience in welfare and other benefits. The principle, simple as it is, applies right across the board from toilet rolls to jet aircraft. Government macroeconomics can help or hinder. But it is management and workers who produce the goods.

I can see no industrial future in the school of thought which recommends wholesale nationalisation, withdrawal from the EEC, import controls, currency controls, plus hostility to multinational operation which, in electronics, is the life-blood of all the larger companies including those which are British-based.

To institute central government control in place of free enterprise which stimulates technological advance and keeps prices down would certainly not benefit the elctronics industry, There is a real-life model on which I base this observation. It has the uninspiring title of the State Collective Electronic Communications Combine of the Soviet Union. Its products are also uninspiring. Could this be the fate, say, of GEC in 10 years time?

Turnround

Not that electronics has been universally successful. Few companies win all the time. ICL is running through a bad patch as 1 write and it is somewhat humiliating, even though common sense, that Japanese technology is being injected to boost sales. The same, of course, applies to BL with the Triumph (i.e. Honda) Acclaim. But in business you need to bend with the wind and seize every advantage.

Decca was on the skids. Now no longer so. How was this achieved?

When Racal moved in, paying $£ 106$ million at what was then thought to be a silly price, the new management made no secret of what they were after. It was capital goods in growth areas with electronic warfare in the lead. Racal knows electronic capital goods and its markets but didn't want to know music or domestic TV. These Decca activities were sold off to those who could make better use of them. Similarly, Racal saw no point in maintaining an imposing Thames-side headquarters in the middle of London. So Decca House on the Albert Embankment is being sold at a figure in the region of $£ 6$ million.

The Decca companies have been reorganised into eight major product or business areas, defence systems, marine radar, navigation etc. Each of the new Racal-Decca companies is expected to stand on its own feet and generate products or services, and profit. Marine radar is still losing money but is expected to get back in the black in the current financial year.

True, Decca is somewhat slimmer than before. But this is a small and necessary price to pay for ensuring jobs for the great majority now and in the future. RacalDecca accounts for 30 percent of all Racal Electronics Group business and now, for
the first time, Racal has joined the elite club of companies who can boast a world-wide turnover of a billion dollars .

One of Racal-Decca's real growth areas is in underwater exploration. It is strong in North Sea oil, and it was Racal-Decca Survey Ltd who supplied the know-how, the men and the equipment to locate the wreck of HMS Edinburgh, sunk in World War 2 in the Barents Sea, from which $£ 45$ million of gold bullion was recently salvaged.

Sugar-sweet

If you've got a product or service that people want to buy there is never a slump. On the general consumer front Marks and Spencer have turned in record results. A consistent high flyer with a value-formoney reputation.

In the more specialised field of consumer electronics, always a topic of gloom, we have Alan Sugar, heading up Amstrad, who took his company to the public in April 1980. His forecasts looked optimistic, if not downright rash, in the prospectus. But the public backed him to their own, and his, profit.

At the end of his first year of trading as a publicly quoted company, Sugar achieved 61 percent increase in turnover and 75 percent increase in profit. Not bad in a period of 'the greatest recession ever experienced'. Sugar is forecasting further gains in the current year and on his track record he should succeed.

Hooray for Russia!

Russian military aid to the third world countries is turning out to be good business for British electronics. Shifting political allegiance has left many countries with vintage Soviet defence hardware, out of date but in fair physical shape.

Modernising is not a new game but when you have fallen from grace with your benefactor you can hardly go back to him, and if you haven't native skills you must look elsewhere to those who have.

Thus, the prospect of over $£ 500$ million of work on modernising eight Russian-built destroyers in service with the Chinese navy. They will be fitted with new missile systems, new radars and other sensors, and new operations rooms. Contracts are reported to be near signing with British Aerospace as principal contractor for the missiles and electronics systems.

Elsewhere in the world there are hundreds of Russian tanks recently up-dated with British radio and gun-ranging equipment and Russian radar systems with new British signal processing and display systems.

Talking Exchange

Britain's 1,000 blind telephone operators will have the benefit of a speaking PABX exchange. GEC, British Telecom and the Royal National Institure for the Blind have devised a plug-in black box for the latest Monarch 120 PABX. This microprocessorcontrolled exchange has a visual display. Any information displayed is automatically 'spoken' to the blind operator via a speech synthesizer.

EVERYONE must make decisions on a routine basis. The - microelectronic revolution has provided us with hand held calculators to assist us in handling day-to-day number problems. Why not apply this same technology to day-today decision making?

This project has been developed after years of research into the decision making patterns of the man on the street. Operation has been made as simple and straightforward as possible. Gone are the days of feeding a computer with information for hours on end and spending the same amount of time deciphering what the computer's exact response was. Modern advances in microelectronic technology have enabled us to design and build one of the most sophisticated and powerful decision making aids in the world. It is as easy to operate as flipping a coin which can only provide an answer based on chance. This modern marvel of engineering ingenuity can not only provide instantaneous answers based on the information presented by the operator and its relationship with time and space but also eliminates the fatigue problem caused by flipping coins.

The basic model has been designed to offer the optimum responses to the widest range of questions that can be presented. The computer's basic responses are:

> YES RE-THINK MAYBE RE-ENTER NO

ALTERNATIVES

There are many other response patterns that can be programmed into the computer. Some examples of these are shown:

Pilot's Collision Avoidance Computer RIGHT LEFT PANIC UP

Navigator's Decision Computer
NORTH EAST PANIC SOUTH WEST
Diplomat's Decision Computer
PERHAPS MAYBE POSSIBLY CONCEIVABLY POTENTIALLY
Pay Rise Computer
NO CHANCE IMPOSSIBLE NO NEVER TRY NEXT YEAR
Idi Amin's Decision Computer
MAIM
EXECUTE
KILL
MURDER
VANISH

COMPONENTS

Resistors

R1-R20	10 M (20 off)
R21	10 k
R22-R24	$1 \mathrm{M}(3$ off)
R25	470 k
R26	10

All $10 \% \frac{1}{4} W$

Capacitors

C1-C3
C4
Integrated Circuits

IC1-IC2	40118 (2 off)
IC3	4022 B
IC4	40498

Miscellaneous

81--9V battery, D1-D5-Red l.e.d. O. 2 in .
All parts can be obtained from Compu-Tech Systems, Gaymer Way Industrial Estate, North Walsham, Norfolk NR28 OAN

Fig. 1. Printed circuit layout (actual size)
indicator l.e.d.s will begin to flicker, indicating that your input data is being processed. The unit is now searching for parity between time and space vectors and your question. Process time has been extended to approximately three seconds in order to ensure compatibility with the optic nerve.

After the data has been processed the scanning of the l.e.d.s will cease and one of the data output l.e.d.s will remain illuminated. If the 'RE-ENTER' l.e.d. itluminates parity did not exist between time and space vectors and your question. In other words you asked the question at the wrong time.

If the 'RE-THINK' I.e.d. illuminates the computer has found a fundamental error in the data presented to it. In other words you asked it a question that it could not answer.

The remaining three l.e.d.s are the computer's response to your question after an

Fig. 3. Component overlay

Format of circuit box

analysis of all data presented and the relevance of your question to the overall operation of the universe.

Once the computer has given a response the l.e.d. will remain illuminated for approximately three seconds and then return to the quiescent but ever alert state.. In the power down state negligible current is drawn from the batteries thus eliminating the need for an on-off switch.

A PRACTICAL ELECTRONICS-STEREO This easy to build 3 band stereo AM/FM tuner kit is designed in conjunction with Practical Electronics (July issue). For ease of construction and alignment it incorporates three Mullard modules and an I.C. IF. System
 FEATURES: VHF, MW, LW Bands, interstation muting and AFC on VHF. Tuning meter. Two back printed PCB's. Ready made chassis and scale. Aerial AM - ferrite rod, FM - 75 or 300 ohms. Stabilised power supply with 'C' core mains transformer. All components supplied are to P.E. strict specification. Front scale size $1012^{\prime \prime} \times 21 / 2^{\prime \prime}$ approx. Complete with diagrams and instructions.
 SPECIAL OFFER!
 - Matching I.C. $10+10$ Stereo Power amplitier kit (usually $£ 3.95+£ 1.15 p$ p) - Mullard LP1 183 built p for ceramic and auxiliary
 inputs (usually $£ 1.95+70 p \mathrm{p} \& \mathrm{p}$)
 - Marching power supply kit with trans. former (usually $£ 3.00+£ 1.95 p \& p$)
 - Matching set of 4 slider controls complet with knobs for bass, treble and volumes (usually $£ 1.70+80 p \rho \& p$)
 £21.95
 plus € 3.80 p \&p.

HIGH POWER AMPLIFIER MODULES

READY BUILT OR IN KIT FORM 125 WATT MODEL KIT £ 10.50 Plus£1.15p\&p Plus $£ 1.15$ p\&p. 200 WATT MODEL £14.95 £18.95

SPECIFICATIONS

Max, output power (RMS)
Max. output power (RMS)
Operating voltage (DC) Loads
Frequency response
measured @ 100 watts Sensitivity for 100 watt

Plus E1.15 125 W Mode 125 Watts Plus $£ 1.15$ p\&p $50 \cdot 80$ max.
4.16 ohms. 4. 16 ohms $25 \mathrm{~Hz} \cdot 20 \mathrm{KHz} 25 \mathrm{~Hz} \cdot 20 \mathrm{KHz}$ Typical T.H.D. @
 FREE with the kit.

Plus $£ 2.90$ p\&p
SPECIFICATIONS: Suitable for 4 to 8 ohm speakers.
Frequency response $40 \mathrm{~Hz} \cdot 20 \mathrm{KHz}$.
input sensitivity P.U. 150 mV . Aux. 200 mV .
Tone controls
Bass $\pm 12 \mathrm{db} @ 60 \mathrm{~Hz}$
Treble $\pm 12 \mathrm{db}$ @ 10 KHz
Distortion
0.1% typically @ 8 watts
Mains supply
220.250 volts 50 Hz .

STEREOMAGNETIC PRE•AMP CONVERSION KIT Includes FREE Magnetic cartridge with diamond styli, All components including p.c.b. to convert your ceramic in put on the $10+10$ to magnetic.
Only available with $10+10 \mathrm{amp}$. $£ 2.00$ includes p\&p.
8" SPEAKER KIT Two 8" twin cone domestic speakers £4.75 per stereo pair plus $£ 1.70$ p\&p. when purchased with

PRACTICAL ELECTRONICS
 CAR RADIO KIT
 SERIES II
 SERIES II

2 WAVE
BAND
MW - LW

* Easy to build
- 5 push button
tuning * Modern design
- 6 watt output - Ready etched
and punched PCB - Incorporates suppression circuits. All the electronic components to build the radio, you supply only the wire and the solder, featured in Practical Electronics March issue. Features: pre-set tuning with 5 push button options, black illuminated tuning scale. The P.E. Traveller has a 6 watt output neg, ground and incorporates an integrated circuit output stage, a Mullard IF Module LP1 181 ceramic filter type pre-aligned and assembled, and a Bird prealigned push button tuning unit
£10.50
Plus $£ 2.00$ p\&p
speaker ($6^{\circ} \times 4{ }^{\circ}$. available as a kit complete. $£ 1.95$ /pack. Plus $£ 1.15$ p\&p.

50 watts 4 ohms
$\begin{array}{ll}50 \text { watts, } 4 \text { ohms } & 0.1 \% \\ \text { Dimensions (both models) } 205 \times 90 \text { and } 190 \times 36 \mathrm{~mm} \text {. }\end{array}$ The power amp kit is a module for high power applicat ions - disco units, guitar amplifiers, public address systems and even high power domestic systems. The unit is protected against short circuiting of the load and is safe in an open
circuit condition. A lerge safety margin exists by use of

$30+30$ WATT STEREO AMPLIFIER

Viscount IV unit in teak simulate cabinet, silver finished rotary controls and pushbuttons with matching fascia, mains indicator and stereo jack socket. Functions switch Rear panel features fuse holder. DiN speaker and input socket $30+30$ watts RMS, $60+60$ watts peak. For use with 4 to 8 ohm speakers.
Size $144^{\prime \prime} \times 10^{\prime \prime}$ approx
BUILT AND TESTED.
£32.90
Plus E3.80 p\&p
PHILIPS BELT DRIVE RECORD PLAYER ${ }_{7}$ DECK GC037 (size: 15% "x 12% "approx.)
Hifi record player deck, 2 speed, damped cueing, auto shut-off, belt drive with floating sub chassis to minimise acoustic feed. back. Complete with GP401 stereo magnetic cartridge
LIMITED STOCK.
UNBEATABLE
OFFER AT
$\mathbf{£ 2 7 . 5 0}$
COMPLETE

CALLERS ONLY

323 Edgware Rd, London W2. Tel: 01-723 8432. Open 9.30am - 5.30 pm . Closed all day Thursday Persons under 16 not served without parents authorisation
ALL PRICES INCLUDE VAT AT 15\%.

generously rated components, result, a high powered rugged unit. The PC Board is back printed, etched and ready to drill for ease of construction and the aluminium chassis is preformed and ready to use. Supplied with all parts, circuit diagrams and instructions.
ACCESSORIES:
Suitable L.S coupling electrolytic
for 125 W model
£1.00 plus 25 p p\&o.
Suitable LS coupling electrolytic for 200W model
$£ 1.25$ plus 25 p p\&p.
suitable mains power supply unit for 125 W model
Suitable Twin transformer power
$£ 7.50$ plus $£ 3.15$ p\&p. supply for 200 W model

MONO MIXER AMPLIFIERS

50 WATT Six individually mixed inputs for two pick ups (Cer. or Mag.), two moving coil microphones and iwo aux. iliary for tape, tuner, organs, etc. Eight slider controls. 5ix for level and two for master bass and treble, four extra tre ble controls for mic and aux inputs. Size: $131 / 4 \times 6 \frac{1}{2} \times 3 \times 3 \%$ "app. Power output 50 watts R.M.S. (continuous) lor use with 4 to 8 ohm speakers. Attractive
black vinyl case with matching
$£ 39.95$ fascia and knobs. Ready to use.

Plus $£ 3.70$ p\&p.

100 WATT
Brushed Aluminium ascia and rot ary controls.
Size: approx. $14^{\prime \prime} \times 4^{\prime \prime} \times 10^{1 / 4^{\prime}}$ Five vertical slider controls, master volume, tape level, mic level, deck level, PLUS INTERDECK FADER for perfect graduated change from record deck No. 1 to No. 2, or vice versa. Pre fade level controls (PFL) lets You hear the nexi disc before fading it in.
OOw RMS outpur (200w pea
£76.00

MAIL ORDER ONLY
21B HIGH STREET, ACTON, W3 6NG.
Note: Goods despatched to UK-postal addresses only For further information send for instructions $20 p$ plus stamped addressed envelope.
Please allow 28 days for delivery.

[^2]
Semiconductor UPDATITEm
 FEATURING

1802 UPGRADE

About the only thing good you can say about the RCA 1802 microprocessor is that it is a CMOS device and therefore uses very little power. That simple fact has assured it a place in the micro hall of fame, despite the fact that only masochists would choose to use it if they were not forced to by power supply limitations!

There are other CMOS devices of course, like the IM6100 which was an early competitor and even more ghastly than the 1802 in some respects, and the much newer NSC 800 which looks as though it will be a winner once National have learned how to make it in quantity and the price has dropped. For the moment however, if you want a cheap CMOS microprocessor with reasonable hardware and software support it has to be the cranky old 1802, which is why any improvements RCA can dream up are very welcome indeed.

RCA are selling 1802s at an ever increasing rate (over a million in 1980, according to their ads.) but they do realise that those unfortunate enough to be designing with the chip would happily change their allegiance if something better came along, and so they have been trying hard to make the 1802 more attractive by the addition of new family members with improved performance and extra features.

Already available at low cost is the 1802A which is directly compatible with the basic chip but made with an advanced CMOS process which has reduced the chip area and therefore increased both the speed of operation and the yield per wafer. At five volts the 1802A runs with a 3.2 MHz clock as against 2.5 MHz for the basic 1802, and some "tweaking" of the chip layout has improved the operation of functions such as Power On Reset to give a plug-in performance booster for new or existing 1802 circuits.

In the pipeline are two brand new members of the 1802 family which go much further than the 1802A in overcoming the limitations of their predecessor. First on the scene will be the 1804 which will run at 6.0 MHz and has many enhancements to both the hardware facilities and instruction set of its parent. One of the big limitations of the 1802, the lack of explicit Jump-toSubroutine and Return instructions, has been rectified with the 1804 to give a five times speed improvement when performing these functions. New instructions are also provided to allow the direct manipulation of 16 bit data, and to control a new on-chip timer function which can greatly simplify system design. Even more impressive is the
ability of the 1804 processor to do the whole job single handed in many applications since it has a built-in 64 byte RAM array "and a mask programmable 2 Kbyte ROM to hold programs or data, in addition to its ability to address 64 Kbytes off-chip. Add to this the fact that the 1804 is largely pin and instruction set compatible with the 1802 and it becomes a very attractive chip indeed.

Of course, not everyone needs the luxury of on-chip masked ROM programs, and so there is a companion device with all the other goodies but without the ROM, coded the 1805 .

It looks as though RCA have managed to snuff out the "I Hate the 1802" movement before I even managed to get the badges made!

TALK CONTROL

Electronic speech synthesis is now a lost cost technique, and before long, all selfrespecting vending machines and domestic appliances will be bending our ears with condescending announcements from their built-in speech chips and loudspeakers. Speech recognition, on the other hand, is a more difficult problem for the chip makers to solve, and it will be some time before the day dawns when we can expect to hold an intelligent conversation with our electric toaster about how we would like our toast done today (Thank goodness!).

Do not doubt for a minute, however, that this day will dawn eventually. Already the first terrifying steps have been taken on the slippery slope leading to smart Alec toasters and supercilious coffee machines with the introduction of a new device coded the WTV008 from a bunch of subversives
called the Weitek Corporation of Santa Clara, California.

The WTV008 looks harmless enough in its demure 28-pin plastic package, but in fact it is the first of a long line of speech recognition chips which will make all our lives a misery if we don't act immediately to stamp out their proliferation. Oh, it seems innocuous all right, it only recognises eight words and then it only gets it right 90% of the time for 90% of the population, but this is only a beginning remember; before long the vacuum cleaner will be hanging on our every word, and no doubt reprimanding us when we swear at it.

If you really welcome this sort of thing, you may be pleased to know that the WTV008 has a unique output line for each word in its active vocabulary and a four line BCD output which gives a number code too. A strobe line shows that a valid output is present, and you can switch between two alternate eight word ROM based vocabularies by toggling the USEL input.

You have been warned!

THE BLUE LAMP

The possibility of a wall sized flat TV display unit based on l.e.d. lamps has now moved a step nearer with the introduction of a new semiconductor material which emits BLUE light when forward biased. RED and GREEN light emitting diodes based on gallium phosphide material are already with us of course, but the new devices based on silicon carbide complete the primary colour triad essential for the full colour spectrum of television reproduction.

The silicon carbide process has been developed by Sanyo in Japan, and rather than just offer a new colour for panel lamps the ingenious designers have recognised the potential for TV type applications and have mounted the new chip alongside red and green emitters in the same package. The four package pins allow independent control of brightness for each colour, but allowance has to be made for the different band gap voltages and efficiencies of the different materials. The silicon carbide I.e.d. produces about 2 millicandelas for a current of 20 milliamps at 3.5 volts, whereas the green chip gives 3 millicandelas for 10 milliamps at 2 volts, and the red chip gives 3 millicandelas for 5 milliamps at 1.9 volts.

If the prospect of buying and soldering in 25,000 l.e.d. lamps to make a TV display does not appeal to you, you can amaze your friends with just one of the little perishers used as a multi-coloured panel lamp!

THIS is a monochrome television camera you can build yourself, which is ideal for closed circuit home video or security applications. This camera requires only a $24 \mathrm{~V} / 1 \mathrm{~A}$ supply and may be wired using a single coax lead carrying both signal and power. The output is UHF modulated for direct "aerial socket" input to a standard television receiver.

POWER SUPPLY

The unit may be powered by a simple 24 V PSU without semiconductor regulation circuits. That is to say, the standard "transformer-bridge-capacitor" configuration will do, although the line should be protected with a 1 A quick-blow fuse.

Also, the supply line from wherever it may be derived, should include the filter circuit of Fig. 1.1 to allow the same wire to carry both signal and power.

24 volt power from point A is passed through L1 without hindrance, via the coaxial socket on the front panel, to the camera. The sheath of the coaxial cable is at earth potential, the core being at 24 V . The d.c. is, however, blocked from going into the television set as C1 can be regarded as an open circuit to d.c. voltages. UHF received from the camera is blocked by the small inductor L. 1 preventing it from being dropped to ground by the low impedance of the power supply. Capacitor C1 has a very low reactance at UHF and allows the passage of the UHF signal to the television receiver.

Thus it can be seen that this simple circuit allows us to utilise the same coaxial cable to deliver power to the camera and convey signals from the camera to the television sets. When the unit has been fully assembled, and the voltage at point " A " checked, about 24 V d.c. should be found at the centre pin of the coaxial socket on the front panel with respect to the case.

INVERTER AND HIGH VOLTAGE BOARDS

The PE (Seescan) camera is of modular construction, with the printed circuit boards connecting together with the coil assembly and back plates to form an extremely robust unit.

The inverter and high voltage power supply boards are used also as "cross-members" in the structure

The inverter board steps up the low voltage camera supply to about 400 V which is used to provide all the high voltages required to drive the pick-up tube (Vidicon in standard camera kit). The high voltage power supply board uses this 400 V a.c. to produce several regulated d.c. outputs at the levels required by the picture tube. This board carries the three primary set-up adjustment presets for the pick-up tube, namely beam current, electrostatic focus, and target voltage. These three controls are easily accessible from the rear of the camera to make the final setting-up easy.

Fig. 1.1. PSU line filter arrangement. The L/C configuration separates VHF from the d.c. so that a single lead may service the camera

INVERTOR CIRCUIT DESCRIPTION

The invertor, a small p.c.b., mounted vertically in the camera, is used to step up the low voltage camera power supply rail to a high d.c. voltage suitable for driving the Vidicon pick-up tube. As can be seen from the circuit diagram, the invertor electronics are fairly straightforward. Line sync. pulse from the logic board are used to drive TR 15 into saturation. Therefore, an inverted replica of the line sync pulse is developed across R202. This signal is used to drive T15 which acts as a switch, applying current pulses to the invertor transformer TR200. R203 and C201 decouple the output transformer from the main regulated 12 V supply. C202 tunes the transformer to peak the large fly back pulse produced, thereby increasing efficiency. As all switching in the transformer takes place during line blanking there is no problem with any interference produced appearing on the camera picture.

HIGH VOLTAGE POWER SUPPLY CIRCUIT

This small sub-board is used to rectify the high frequency a.c. from the inverter board and regulate the d.c. output to supply the necessary voltages for the pick-up tube. Both positive and negative voltages with respect to ground are required for the tube, and both are produced on this board. Rectifier diode D13, half-wave rectifies the 350V a.c. and the resulting d.c. is smoothed by C 43 . It should be noticed that D13 is a fast recovery diode, and it is important that the types specified should be used. If ordinary general purpose rectifiers are used, the efficiency will be lower, and sharp
switching spikes will be generated in the inverter, which will appear as lines on the television picture. R78 and C49 further decouple the supply at high frequencies before being applied to D15-D19. These series connected Zener diodes crudely regulate the high voltage supply at about 350 V , which is applied directly to the mesh of the Vidicon tube. R79, VR80, R81 and VR82 form a potential divider chain, voltages for the second grid, focusing anode and target, all being tapped at various points from this divider. C49 and C46 are used to decouple the grid and target respectively.

D8 is a fast recovery rectifier diode used as a half-wave rectifier, the d.c. from which is smoothed by C44. Diode D14 is used to stabilise the supply at round about -95 V with respect to ground. Resistor VR84 allows a negative grid bias (Beam current) to be set between OV and -95 V . R83 and C45 effectively decouple the supply at high frequencies from G1.

Fig. 1.3. High voltage board

Test voltages

A	380
B	350
C	280
D	100
E	-110
F	0 TO -100

All voltages are measured with respect to Ground and are measured with a meter having greater than 25 K ohms per volt sensitivity. All voltages are measured with no light reaching the Vidicon target. The voltages at these test points should be within 5% of the stated values.

Note: The photographs of the prototype show the original invertor board, which has since been redesigned to use only one power transistor.

ACKNOWLEDGEMENT

We would like to thank the Bondi Judo Club of Poole for their assistance with our front cover photograph.

COMPONENTS

Invertor and High Voltage Boards	
Resistors	
R78	120k
R79, 883	470 k (2 off)
R81	$1 \mathrm{M5}$
R85	100k
R201	22 k
R202	470
R203	22 1W
All resistors $\frac{1}{2}$ W 5% unless otherwise specified	

Fig. 1.7. High voltage board component overlay

Potentiometers

VR80, VR82. VR84 1M Cermet preset (3 off)

Capacitors

C49	22μ
C43	100 n
C44	$100 \mathrm{n} / 400 \mathrm{~V}$
C45, C46	$10 \mathrm{n} / 750 \mathrm{~V}$ (2 off)
C48	100 n
C201	$47 \mu / 16 \mathrm{~V}$
C202	2 n 2

Transistors and Diodes

TR15	BFX85
TR16	BC182
D8. D13	BY207 (2 off)
D14, D16, D17, D19	100V 1.3W Zener (4 off)
D15	51V 1.3W Zener

Miscellaneous
Inverter p.c.b.
High Voltage p.c.b.
Varelco connectors (for PL1-PL4)
Heatsink for TR15
Heatsink jointing compound
Screws. 6 mm M3 (2 off)
Nuts. M3 (2 off)
Transformer T200 (special)

Constructor's Note

A complete kit of parts is available from Marshall's of Kingsgate House, Kingsgate Place, London NW6 4TA.

FRANK W. HYDE

IN RETROSPECT

In the matter of processed data, the presentation to the world at large varies a great deal as to time of release. Sometimes this is short and sometimes long. Usually the final release proves that science had profited. Such a situation arose in 1979. On August the 30th 1979 the Naval Laboratory coronagraph on board a spacecraft photographed a collision between a comet and the Sun. The reason for the delay in making this outstanding event public is that the data has only recently been analysed.

The coronagraph known as the Solwind. was designed to occult the disc of the Sun so that the corona is clearly visible-particularly the outer corona where there is much to be studied. In this special event a great deal of debris resulting from the encounter with the Sun was thrown out into this area. The spacecraft which carried the coronagraph is a Ball Aerospace vehicle which is similar to the NASA orbiting observatories. Because there were delays in releasing the data to the Naval Research Laboratories for analysis. the details have only just been discovered. It is thought that this comet may be one of a group of about eight comets which are known as Sun grazers. During the last three hundred years these eight comets have been observed from time to time. Because of the difficulty in making observations of any bodies close to the Sun and also the difficulty of recognising a body which when away from the Sun might be seen only by accident.

The images were to reveal that the tail of this comet going to its death was of the order of three million miles long. The closing speed was estimated to be about 645.000 miles an hour. The result of the impact threw the cometery debris millions of miles into space away from the solar surface. The comet was not actually reported as being seen from Earth even though the images returned show that it was as bright as Venus since the planet was in the frames of the photographs with the Sun itself.

Doubiless more of such events will be observed and the secret of the comets with the mission to Halley's comet in 1986 should finally be within mankind"s knowledge. Had there yet been any forecasts of dire events? Did August the 30 th 1979 mark something or other?

SOVIET SPACE RELATIONS TAKE A NEW TREND

It is so often said of the old adage "It's an ill wind that blows nobody any good" that it is a way of excusing benefits in the face of sore distress. Originally there were wide and comprehensive hopes for the special combined missions to extract the maximum data and number of observations of Halley's comet. Much of the hope seemed to evaporate because of fiscal difficulties and part at least of the co-operative plans were delayed and then dropped. The Soviet Union offered a modification of one of their missions to Venus in an effort to maximise the failing situation.

It now seems that this has grown into a much wider possibility of joint effort. A joint planning meeting in Italy last September laid foundations for an international framework involving the Soviet Union. Italy, the European Space Agency, Japan and the United States. It is fortunate that these plans are now under i way with greater momentum. If this pass of the comet inside the Earth's orbit were missed the opportunity would not come again until 2061

The Soviet plan for two spacecraft is confirmed. the Japanese and the European Space agency have their programmes. Only the United States is yet uncommitted. However the American contribution at the moment will come through the involvement in the international Halley Watch. NASA has plans at the Jet Propulsion Laboratory and a proposal for a mission to collect samples from the comet. This however is not yet funded.

The Soviet dual mission is part of the separate plan to launch two spacecraft in December 1984 which will include a Venus pass in 1985 with comet encounter in 1986. The Venus study will be by two probes which will descend into the Venusian atmosphere and be deployed down to the surface. The spacecraft will then pass on to the Halley rendezvous. A drawback to this plan lies in the fact that the speed of the spacecraft will be higher than the comet during the encounter. Data transmission will be about 85 kilobits a second. Approximately 30 kilobits of this data will be devoted to the television cameras with wide and narrow angle facilities.

It was stated by an official of the Soviet group dealing with the mission that the camera system will be brought into the operational mode two days before the closest approach. At this time there will be general observations of the nucleus. Some three hours of observations will be made during the closest approach. The automatic operation of the system is set for the cameras to seek the brightest parts of the comet.

In addition to the imaging experiments there will be a three channel spectrometer, an infra-red spectrometer and a dust spectrometer. There will also be a dust particle counter with magnetometers and analysers of
plasma waves at both high and low frequencies. Both the spacecraft will be through the same launch window late in December 1984. This will require accurate planning because it means two launches within a short period of a few days.

Japan's contribution will be the Planet-A spacecraft in August 1985. The launch vehicle will be an upgraded Mu launcher. The spacecraft will monitor the ultra-violet radiation from the comet and also measure the solar wind plasma near the comet. The two probes will be spin stabilised. The European Space Agency Giotto has already been described in a previous Spacewatch issue. The programme as it stands at the moment is for the launch by Ariane launch vehicle through a window available for fifteen days during July 1985. The encounter is planned for a date in March 1985. The actual encounter will be on March 12/13 1986. The planned sequence of manoeuvres will begin about 30 hours before the time of closest approach. During this period there will be a two hour rehearsal of the experiment and calibration checks. It is hoped that the encounter will last at least 4 hours. The expected time of this event is 3 hrs 45 min . before the closest point of approach. The visible corona will be entered at about Ihr before the closest approach point. It is hoped that it will be possible for this to occur in real time.

THE USSR AND FRENCH TECHNOLOGY

Since September a Soviet spacecraft. the Arcad satellite, has been undergoing tests and now it begins its programme. The joint payload vehicle is in an orbit 1,192 at apogee and 236 miles at perigee. inclined at 82.6 deg . It weighs $2,2001 \mathrm{~b}$. The French share of this project is four of the experiments with on board programming and the telemetry unit.
The data programme is directed at the magnetosphere in the higher levels of the atmosphere, particularly at higher altitudes. The instrumentation is contained in a cylindrical body. The power is derived from eight solar panels spaced round the main body The cooperation was carried out with mixed personnel, and the facilities in both the USSR and France were used.

THE SHRINKING SUN AGAIN

A new paper in support of this experiment regarding the shrinking sun gives more information that the regular pulsation with a period of 76 years is confirmed and a new statement that the accepted radius of the Sun is greater than that hitherto used for the calculations.

SUBMILLIMETRE WAVELENGTHS

At a recent conference on submillimetre wavelengths in radio astronomy new important information was revealed. Using the special airborne observatory. which is able to fly above the blanket of absorbing water vapour in the atmosphere, revealed a neutral atomic gas cloud near the centre of the Galaxy. The gas was detected by its emission from neutral oxygen. 63.2 micrometres.

The new MC88E represents a breakthrough in high output moving coil cartridges. No step-up device or amp is required and it is available at a sensational price of only $£ 39.95$. The high output voltage of 2.5 mV does away with the need for a head amplifier or step-up transformer, which add to the expense of using most previous moving coil cartridges.
We can t emphasise enough, just how advanced the technology that has produced this breakthrough is - a miniaturised and specially shaped armature; unique coil winding technique; a magnet that is so compact,
yet generating high magnet ic flux density; compliance of 17 cu s . The result is a cartridge with flat frequency response over the super wide range of $20 \mathrm{~Hz}-40 \mathrm{KHz}$, removing the distortion caused by certain frequencies, which can be found in many conventional cartridges. Coral's considerable experience in moving coil cartridges has enabled them to offer the ultimate in quality and performance at this incredibly low price.

- We welcome callers to our South London Showroom for demonstrations.
- Enqiries and information phone: 01-690 8511, Ex. 32 - All products are only available direct or from selected authorised dealers throughout the U.K.
VIOEOCNF 98 CROFTON PARK ROAD LONDON SE4.
Send for our free brochure and details of outlets in the U.K.

Post to: Videotone, Crofton Park Road, London SE4.
\qquad

Miniature SCORPIO Car Ignition

Updated version of a very popular ignition system published seven years ago. Couples the advantages of easier starting, smoother running, better fuel economy and longer spark plug life in a unit almost half the size of the original design, and at a lower cost.

Everyone developing and building electronic projects requires a variable power source. Unfortunately, a good commercial stabilized, protected and metered supply giving up to 30 V and 2A would cost about $\mathbf{f 8 0}$. Our p.s.u. should fulfill the requirement for less than half that figure.

INFRA•RED REMOTE CONTROL

FESRUARY ISSUE ON SALE FRIDAY JANUARY 8th

NN COMMON with other hand-held transceivers, the PE Ranger in its most basic form is primarily intended for short-range portable communication and, although the operational range can be considerably extended by the use of an external supply and aerial, there may be many occasions when additional coverage is required. The Base and Mobile Adaptor unit described not only increases the r.f. output power from 0.5 W to 4 W (the maximum permitted) but also provides some additional r.f. amplification and selectivity on receive. The result is a three to four-fold increase in effective range when compared with the basic unit with the same antenna system. Furthermore, an audio power amplifier is also incorporated and this is particularly useful when the Ranger is to be used in a relatively noisy mobile environment. The Base and Mobile Adaptor operates from a nominal 12 V d.c. supply and also provides power for the Ranger transceiver. A 240 V a.c. supply may also be used by the addition of the optional mains power unit which is also described. Transmit/receive control switching is automatic and a meter is provided to indicate the strength of received signals and the relative power output. To comply with Home Office regulations a 10 dB switched attenuator is incorporated within the equipment. Two l.e.d.s provide 'at a glance' status indication; an important consideration when the equipment is to be used mobile. The unit is housed in an identical size case to that used for the basic Ranger transceiver.

SYSTEM DESCRIPTION

The Base and Mobile Adaptor performs three basic functions:
(a) r.f. power amplification (Transmit)
(b) r.f. pre-amplification (Receive)
(c) a.f. power amplification (Receive)

The block schematic of Fig. 1.1 shows the basic arrangement of the unit and, as can be seen, the transmit and receive paths within the unit are quite separate. Switching is achieved by means of a relay and this provides a high degree of isolation between the two circuits.

On transmit the output signal of the Ranger is applied to a single stage power amplifier which provides a gain in excess
of 10 dB . This implies that, when driven with a nominal 0.5 W from the Ranger, the r.f. output power from this stage will be somewhat greater than 5 W . The r.f. amplifier stage is followed by a band-pass filter which improves the spectral purity of the output signal by imposing a high rate of attenuation both below and above the design cut-off frequencies. Since the filter exhibits a loss of the order of 2 dB , the actual r.f. output to the aerial will be approximately 4 W . The precise value of r.f. output power can be adjusted by setting the r.f. output control within the Ranger transceiver itself.

The unit also incorporates a simple form of switched output attenuator which provides an approximate 10 dB reduction in output power when required by the terms of the Home Office licence.

On receive the incoming signal from the aerial is applied to a single stage r.f. pre-amplifier. This stage provides a modest value of gain which, although not strictly necessary, does help to improve the performance when receiving weak signals under quiet band conditions. A further advantage of this stage is that the additional tuned circuit provides further rejection of the image channel $(910 \mathrm{kHz}$ below the wanted signal frequency) and this is all important in reducing interference from strong local signals operating in the illegal band around 26.9 MHz . The gain of the r.f. stage is variable and offers a typical range of adjustment of some 40 dB or more. At minimum gain settings the r.f. pre-amplifier stage effectively acts as an attenuator. This is beneficial in reducing the levels of strong signals and thus prevents overloading in the front-end stages of the Ranger.

The audio power amplifier operates in the receive mode only and increases the audio power when an external loudspeaker is used. The unit also incorporates a dual function meter which is used to indicate the strength of received signals in the receive mode and power output in the transmit mode. The S-meter signal is derived within the Ranger by means of an optional add-on module which consists of an amplifier/detector operating on the 455 kHz i.f. signal. Connections to the Ranger and external power sources are shown in the block diagram of Fig. 1.2. Only two interconnecting cables are required; one to carry the control voltages, audio and S-meter signals and one to carry r.f.

Fig. 1.1. Block schematic of the Base/Mobile Adaptor

EP760

[Ep70]
Fig. 1.2. Interconnection arrangement for the Base/ Mobile Adaptor (N.B. Dotted lines indicate optional items)

CIRCUIT DESCRIPTION

The circuit diagram of the base station is shown in Fig.1.3. Red and green l.e.d.s, D1 and D2, provide status indication for 'transmit' and 'receive' respectively. The relay, RLA, operates whenever the transmit supply rail from the Ranger is enabled. The a.f. power amplifier, IC1, employs a conventional arrangement with voltage gain determined by R4 and R5. The supply voltage for the a.f. power amplifier is derived from the receive supply rail within the Ranger thus obviating the need for additional changeover contacts on the relay. The r.f. power amplifier, TR2, usès a silicon r.f. power transistor designed specifically for use in 27 MHz CB equipment. The device is operated in common emitter mode under class-C conditions. Input matching to the base is provided by VC1, VC2, L3 and C11 while output matching from the
collector is by means of L6, VC3 and VC4. The harmonic. content of the output signal is reduced by two bandpass filter modules. The first of these removes the bulk of the spurii before the signal arrives at the changeover relay. The second is directly connected to the aerial socket and provides a 'last ditch' trap for unwanted harmonic signals. These two filters are required, as in the basic Ranger

SPECIFICATION

RF POWER AMPLIFIER

Power output: 4W

Input/output impedance: 50Ω
Attenuator:
Power gain:
AF POWER AMPLIFIER
Power output:
Load impedance:
Input impedance:
Voltage gain:
RF PRE-AMPLIFIER
Voltage gain: $\quad 16 \mathrm{~dB}$
Input/output impedance: 50Ω
Gain variation:

GENERAL

Power supply:

Status indicators:
Controls:

External connections:

Meter:	Loudspeaker Power output (transmit), signal strength (receive)
Dimensions:	$200 \mathrm{~mm} \times 120 \mathrm{~mm} \times 40 \mathrm{~mm}$ Weight:$\quad 0.8 \mathrm{~kg}$

Fig. 1.3. Circuit diagram of the Base/Mobile Adaptor
transceiver, to ensure that the equipment meets the Home Office specifications concerning spurious emissions from CB equipment.

As with all r.f power amplifiers careful consideration has to be given to supply rail de-coupling and this is provided by R10, C12 and C13. These components ensure that the supply rail exhibits a negligible impedance over a very wide range of frequencies. D9 and D10 sample the r.f. output level and provide a signal for the power output meter. When an attenuated output is required to comply with the Home Office regulations concerning elevated aerial systems, R9 is switched into the r.f. power amplifier's supply rail by means of S2. This series resistor reduces the d.c. input power to the stage and consequently reduces the r.f. output power. The result is an approximate 10 dB reduction in output from the amplifier stage.

The receive pre-amplifier, TR1, employs a junction gate f.e.t. operated in common gate configuration. This provides a high value of power gain coupled with a low input and high output impedance. Noise performance is of comparatively little concern at 27 MHz due to the residual level of cochannel signals and thus no attempt has been made to optimise the stage for low noise performance. The r.f. gain is made adjustable by varying the static drain-source current whilst silicon diodes, D5, D6, and D7, D8, provide input and output protection for the pre-amplifier. This protection is important in the case of an inadvertent misconnection of the

r.f. input/output or in the event of a failure in the changeover relay. The equipment is also protected against reverse polarity supply connection. When the supply is wrongly connected D4 conducts and this causes the fuse to rupture. This may appear to be somewhat crude but it is highly effective and can prevent extensive and costly damage to the rest of the circuit.

NEXT MONTH: Construction and alignment of the Base and Mobile Adaptor plus details of the S-meter module.

COMPONENTS . . .
Resistors

R1, R2, R6	680 (3 off)
R3	$82 \frac{1}{2} \mathrm{~W}$
R4, R8	1000 (2 off)
R5	22
R7	1 k
R9	102 W (see text)
R10	12.5 W (Wirewound)

All resistors are $\frac{1}{4} \mathrm{~W}$ carbon unless otherwise stated
Potentiometers

VR1	100 k lin
VR2	1 M preset

Capacitors
C1
C2
C3
C4, C6, C8, C10, C13
C5
C7, C12, C15, C16
C9
C1 1
C14
All electrolytic capacitors are vertical p.c.b. mounting types
$2 \mu 216 V$ elect
$220 \mu 16 \mathrm{~V}$ elect
$470 \mu 16 \mathrm{~V}$ elect
100 n ceramic (5 off)
$2200 \mu 25 \mathrm{~V}$ elect $4 n 7$ ceramic (4 off) 22p ceramic 100 p ceramic $5 p 6$ ceramic

Variable capacitors
VC1-VC4
60p min solid dielectric (4 off)

Inductors

L1/L2, L3
L4-L6
Semiconductors
D1
D2
D3, D5, D6, D7, D8
D4
D9, D10
IC1
TR1
TR2

KXNSK 4612 (2 off) see text

Miscellaneous

RL1	Relay type 221 D012 p.c.b. mounting 12 V $2 p$ c/o $200 \mu A$
M1 meter 'Signal strength/Power	

2 p c/o $200 \mu \mathrm{~A}$ meter 'Signal strength/Power output'
s.p.s.t. min. toggle (2 off)

6-way di.in. socket 2.5 jack socket

Round SO239 socket (2 off)
Bandpass filter module (see text)
red l.e.d.
green l.e.d.
IN4148(5 off)
IN4001
OA91 (2 off)
TDA 2002
2SK55, 2N3819 or a T1S588A MRF472

Constructor's Note

A complete kit of parts for the base station is available from Autumn Products Ltd, Park Drive, Baldock SG76EW

INCLUDING V.A.T. POSTAGE \& PACKING

This month we have got together with Watford Electronics to bring you a quality tool at an unbeatable price.

This drill will prove an invaluable aid to the serious constructor. It is made in England, and designed to run from a 12 V d.c. power supply. For occasional use, a wet or dry battery giving 9-12 volts may be used, but a mains transformer-rectifier with a 12 V d.c. output is recommended. The drill is housed in a durable plastic case, and comes complete with 4 different sized collets, so that drills up to $\frac{1}{8}^{\prime \prime}$ can be accepted. It is guaranteed for 6 months.

Realistic is the biggest name in Citizens Band Radio and accessories - and you will be able to buy the full range at Tandy - the world's largest retailer of CB equipment!

TPEALIStIC CBfromTandy

WATCH PRESS FOR FORTHCOMING ANNOUNCEMENTS

TO complete assembly of the Band-Box, the Display board requires to be joined to the System board and various interconnecting leads prepared. A seven pin DIN socket is also required to be fitted to the Master Rhythm to provide the necessary control pulses and drum audio to the Band-Box.

CONSTRUCTION OF THE SYSTEM BOARD

Fig. 9 shows the track layout and component overlay for the p.c.b. and it is advisable to closely inspect this before proceeding. All components apart from the composition keyswitches and power l.e.d. are mounted from the side containing least tracks, and should be carried out in the order of resistors, diodes, track pins, i.c. sockets, capacitors, output sockets and switches.

It should be noted that a number of resistors require soldering on both sides of the p.c.b. and that the orientation of the keyswitches. is important as indicated by the flat portion.

All rotary switches, apart from the key selector, require to be set to operate on the first four positions before insertion into the board. This is achieved by first turning the switch fully anti-clockwise to position one and then removing the mounting nut and washer. A metal ring, concentric with the shaft, will be seen when the washer is removed and it contains a small tab which will be pushed in one of the holes in the plastic body. The ring should be removed and repositioned such that it enters the hole between the numbers 4 and 5 marked on the plastic. The ring is retained in position when the washer and fixing nut are replaced. To obtain the twelve position action required by the key selector the metal ring should be discarded.

After mounting the switches on the p.c.b. bare metal links can be used to connect the switch tags, with an insulated conductor to the centre tag or tags. Before inserting i.c.s it is well worth the additional quarter of an hour required to check for shorts between adjacent tracks using a meter.

CONSTRUCTION OF THE DISPLAY BOARD

The Display board contains. displays, input keyswitches with caps, and mounting positions for potentiometers. Track layouts and the component overlay are shown in Fig.10. The two diodes are mounted on the back of the board, and it should be noted that the 24 pin sockets have spare pins beyond the outer edge of each display pair when inserted.

JOINING THE BOARDS

Twenty-six solid wire links are required to join the System board to the Display board and will provide sufficient mechanical support during initial testing provided that reasonably careful handling is given to the system. When mounted in the case the boards will be approximately $1-2 \mathrm{~mm}$ apart so that a small amount of adjustment slack should be covered by giving the links a comfortable radius.

The links are shown in Fig. 11, as are all remaining interconnections within the Band-Box. When the links have been fitted, the three Level potentiometers should be wired to the corresponding pins on the System board using twin core screened wire. Note that the lead orientation for each set of terminals is different. A mounting hole is provided for a Pclip which will help retain the relatively heavy screened cable in a comfortable position. The required lead lengths are shown in the diagram against each relevant potentiometer.

MASTER RHYTHM LINK

Twelve inch leads should be prepared to connect between the System board and the seven pin DIN plug used for the Master Rhythm link. A screened cable is used to carry the audio into the Band-Box and its screen makes the ground connection between board and plug. The connections are shown in Fig. 11 and represent the view from the back of the plug showing the actual solder points.

MICROCONTROLLER LINKS

Power for the Microcontroller is provided from the pins on the left-hand side of the System board and terminates in a three pin connector which plugs into the Microcontroller board. The Molex connector tags can be crimped to the end of the wires using pliers, and if the special tool is not available a small amount of solder can be used to ensure that a good joint is made. Only +12 V and ground are required to power the Microcontroller, the third (3V6) connection is provided to supply the System board with the secondary battery back-up voltage which may then be routed to the Master Rhythm if required as discussed later.

A 16 pin double ended jumper is used to link the Microcontroller signals to the System board mating with standard DIL sockets. This type of jumper is very convenient when splitting the system, but contacts can be a danger and

it is recommended that the pins are very slightly bent inwards with the fingers before the first insertion into the socket. The jumper plugs are marked with pin numbers and orientation should be carefully checked.

MAINS CONNECTION
All mains components are mounted in the lower half of the case. The mains lead enters at the side, protected by a plastic grommet, and terminates with live to the fuse, neutral to the switch, and earth to a tag in the case. A P-clip clamps the cable to the base. A link is made between the fuse holder and switch, and the two transformer input wires soldered to the switch. The top two tags on the switch should be used for, neutral in and out, whilst the bottom (hidden) tags should be used for live connections.

A Molex connector is used to transmit the two 9 volt a.c. windings and the earth to the System board.

MASTER RHYTHM SOCKET
A seven pin DIN socket requires to be fitted to the front of the Master Rhythm box in order to provide the connections shown in Fig. 12. The connections are shown on the rear of the socket in the actual solder tag positions. Play and Rest switch connections are taken from the live side of each switch and a common connection from the ground track below the switches. The clock pulse is obtained from the track at pin 11 of IC2 and is a 5-6 volt positive pulse occurring at one per measure in the Master Rhythm. The Start signal is taken from pin 1 of IC3 and is at ground when the Master Rhythm is at Rest, rising to $5-6$ volts when playing. This signal level ensures that the Band-Box knows when to play and also resets the Band-Box to the beginning of a score when the Master Rhythm stops. The connection to the Long Cymbal pin on the Control board provides rhythm pulses for the Chord Instrument in the Band-Box and replaces the connection to the Master Rhythm instrument board. If the constructor prefers to use one of the other instrument triggers in the Master Rhythm to provide this facility they are all identical in terms of the pulses required. The audio can be obtained by a screened lead soldered to the output jack socket. The screen should be connected at the jack end but not at the DIN socket.

This modification does not affect normal operation of the Master Rhythm which may still be removed from the BandBox and used on its own. The new connections provided allow for Play/Rest footswitch connections and also give all the signals required for external sequencer operation.

MECHANICAL ASSEMBLY
A photograph was shown on page 39 of the November issue which indicated the mechanical mounting of the System board, Display board, and Master Rhythm. The latter is fixed to brackets, which suspend from the upper half of the case, using self-tapping screws, whilst the two boards are fixed with 6BA screws at various mounting points. In order to obtain the correct distance from the front panel a screw is first inserted through the case, then a $\frac{1}{4}$ in plastic spacer is placed over the thread and retained with a 6BA half nut. The boards should slide onto the mounting points and are retained with a further set of nuts.

Since little clearance exists between the body of the seven pin DIN plug and the Display board it is useful to clip protruding display socket pins close to the board. This point should also be taken into account when fixing the position of the Master Rhythm socket.

The Microcontroller is fixed to the lower half of the case with a spacing from the base of two full nuts.

E0759
Fig. 11. Interwiring the Band-Box system

Assembly of the two halves of the case requires some care due to their relative shapes. The right-hand end is first slid into position and then the case moved to the left. This operation should not be carried out with mains connected to the unit.

POWER OPTION FOR MASTER RHYTHM

Three connections have been incorporated into the System board which can supply power to the Master Rhythm if required; however, a number of options are open to the constructor on how to make use of the facility.

GROUND TRACK AT
JUNCTION OF C1 C2.

CONNECTIONS TO BACK OF MASTER RHYTHM SOCKET

E6750

Fig. 12. The socket should be mounted below the Play button on the front panel at a height which just clears the inside lip of the lower half

The simplest option is to leave the Master Rhythm as a battery-operated unit which will ensure that it always retains its rhythm pattern information independent of the Band-Box. The disadvantage involved is remembering to switch the Master Rhythm off when the Band-Box is not in use.

The second option is permanent connection of the +5 volt, 3V6 and ground rails to the Master Rhythm, discarding the battery. If this is chosen, the link to the Microcontroller, which contains the secondary battery for storage, should never be broken and soldering used in preference to connectors.

A third option is shown in Fig. 13, and gives the dual possibility of battery/mains operation. With this system it is still essential to be careful to ensure that battery power is available from the Microcontroller when the power socket is connected to the Master Rhythm.

It is recommended that all testing of the complete BandBox is carried out with a normal configuration Master Rhythm with $4 \times$ HP7 batteries, and possible power conversions considered when the full system is operating satisfactorily.

THE BAND-BOXIN OPERATION

As promised at the beginning of the series, a detailed step by step operating procedure is now given for the Band-Box. The earlier warning is repeated that the procedures are more difficult to describe than execute, but it is hoped that the information in Figs. 14 to 17 will assist the operator in the early stages.
Next Month. Completion of the series.

WHEN THE DIN PLUG IS INSERTED CONTACT A IS PUSHED AWAY FROM THE SOCKET BODY THUS ISOLATING THE HPT BATTERIES FROM THE MASTER RHYTHM.
E6939
Fig. 13. Optional power supply to the Master Rhythm for battery/mains operation

Playback procedure

1. Switch on mains
2. Display reads

01 CLEF En.
3. If not press Reset
4. Now press Enter
5. Display reads

En. PAGE No.
6. Key page number (e.g. 03)
7. Display reads

En. PAGE 03
8. Press Enter
9. Display reads
10. Key line number (e.g. 15)
11. Display reads
12. Press Enter
13. Display reads

En. LINE No.
En. LINE 15
$03-G 0-15$
14. Press Play on Master Rhythm
15. Score plays and display is blank
16. *Press Rest on Master Rhythm
17. Display reads $03-\mathrm{GO}-15$
18. If score is not required again press Reset
-Rest will not normally be used to stop playback. The coda key allows the score to continue to its natural end at which automatic stop will occur. Coda is pressed to indicate that a further repeat chorus is not required and subsequent actions will depend on the programme in the score store as explained later.

Fig. 14. Summary actions for the playback procedure

Number	Description	Format
1 a	Chord type-1-14 plus Tacet (Silent)	$1-15$ En. 1-8 >
1b	Chord duration-measured in beats (8 maximum)	$1-15$ En. $1-8>$
2	Change chord group to $0,1,2, \ldots--11$	OEn. $0-11$ >
3	Start repeat here-Segno abbreviated S	O En. S. $>$
4	Repeat from Segno-Dal Segno abbreviated d	O En. d. >
5	Spare instruction-Labelled J	OEn.J. $>$
6	Finish-Fin abbreviated F	OEn. F. $>$

Fig. 15. Instructions recognised by the score store

Composition procedure

Press Reset
Display reads
01 CLEF En
3. Press $>$ which indicates that the comoosition mode is required
4. Display reads

En. PAGE
No.
5. Key page number
(e.g. 03)

Display reads
Press Enter
En. PAGE 03

Display reads
En. LINE
No.
9. Key line number
(e.g. 15)

Display reads
En. LINE
15
11. Press Enter
12. Display reads RE SET

This is the automatic lock which deters unauthorised meddling. If Reset is pressed the machine reverts to the start of the normal playback procedure
13. To unlock-Key " 9 ", then " 0 "

Any other combination will return to the playback procedure
14. After correct unlocking procedure

Display reads

En. Chrd. GP
15. Key first chord group required (e.g. 1)
16. Display reads

En. Chrd. G1
17. Press Enter
8. Display reads
$151^{\prime} x$
Y
This displays the Instruction X, Y stored at Page 3.
Line 15 of the score together with the current chord group (1)
19. Either $>$ or $<$ keys may now be used to inspect the contents of the next (16) or previous (14) line without alteration to the contents of the store. See text for score modification procedures

Fig. 16. Summary actions for the composition procedure

Intro	[CM / /		F6/1/	G7///
Chorus	:CM/Am/		Dm7/G7/	CM/G7S /
Coda	CM / /			/// \| CM//-
Score Symbol	Contents of display			Comments
	Score Line	Chord Group	Instruction Format	
CM (4)	00	0	1 En. $4>$	4 beats CM
F6 (4)	01	0	4 En. $4>$	4 beats F6
CM (4)	02	0	1 En. $4>$	4 beats CM
G7 (4)	03	0	5 En. $4>$	4 beats G7
SEG.	04	0	0 En. $\mathrm{S} .>$	Set repeat from next line
CM (2)	05	0	1 En. 2 >	2 beats CM
Am (2)	06	0	6 En. $2>$	2 beats Am
Dm7 (2)	07	0	2 En. $2>$	2 beats Dm7
G7 (2)	08	0	5 En. $2>$	2 beats G7
CM (2)	09	0	1 En. $2>$	2 beats CM
G7S (2)	10	0	d. En. $2>$	2 beats G7 susp 4th
GP. 5	11	0	O En. $5>$	Change to chord group 5
FM7 (2)	12	5	J En, $2>$	2 beats FM7 (major 7th)
GP. 0	13	5	O En. $0>$	Change to chord group 0
G7 (2)	14	0	5 En. $2>$	2 beats G7
D.S.	15	0	0 En. d. >	Repeat from SEG
CM (4)	16	0	1 En. $4>$	4 beats CM
F6 (4)	17	0	4 En. $4>$	4 beats F6
G7 (4)	18	0	5 En. $4>$	4 beats G7
CM (3)	19	0	1 En. $3>$	3 beats CM
FIN	20	0	O En. F.>	End

Fig. 17. Keying procedure for an example chord sequence.
The two control keys used in composition are shown next to the instruction format and do not appear in the display

CONTINUE THEIR SPECIAL OFFER mini 20

$20 \mathrm{k} \Omega / \mathrm{V}$ d.c.

$6 \cdot 6 \mathrm{k} \Omega / \mathrm{V}$ a.c.

multimeter only $£ 19.50$
 INCLUSIVE OF POST PACKAGE-V.A.T.

The Mini 20 is an ideal instrument for the constructor.
This special offer is a wonderful opportunity to acquire an essential piece of test gear with a saving of nearly £10 on the normal retail price.
The 26 ranges cover all likely requirements. Operation is straight-forward, just turn the selection switch to the required range.

RANGES:

d.c.V: $100 \mathrm{mV}, 1 \mathrm{~V}, \mathbf{1 0 V}, \mathbf{3 0 V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$.
a.c. $\mathrm{V}: 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$.
d.c.l: $50 \mathrm{uA}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 100 \mathrm{~mA}, 1 \mathrm{~A}, 3 \mathrm{~A}$.
a.c.I: $3 \mathrm{~mA}, 30 \mathrm{~mA}, 300 \mathrm{~mA}, 3 \mathrm{~A}$.

Ohms: $\mathbf{0 - 1} \mathrm{k} \Omega, \mathbf{1 0 k} \Omega, 100 \mathrm{k} \Omega, 1 \mathrm{M} \Omega$.
Accuracy: 2% d.c. \& resistance, 3% a.c.
Dimensions: $105 \times 130 \times 40 \mathrm{~mm}$
Movement protected by internal diode and fuse.
The instrument is supplied complete with case, leads and instructions.

For details of this and the many other exciting instru. ments in the Alcon range, including multimeters, component measuring and electronic instruments please write or telephone:

[^3]

With the Minimax II, Videotone revolutionised the market by establishing an opening for small, high quality speakers. Natural evolution has brought about the new Minimax 2, retaining all the qualities of clarity and sensitivity. This ideal combination of size and performance is a proven success, acclaimed by the press and public for seven years.

POPULAR HI-FI
"Switching to the Minimaxs" from any of the others produced an open and natural sound as though something had been taken away. It had, the colouration had gone." Comparative test OCTOBER 1975.
HI-FI ANSWERS
Their modest appearance and price disguise their startling abilities. Never have we heard such a small speaker sound so big!" JANUARY 1975.
PRACTICAL HI-FI \& Audio
"The depth, clarity and openness of sound produced is quite astonishing". JUNE '75

WHAT HI-FI

". . the ability of the Mini-
max to take a lot of power and still sound good could be decisive" - Comparirive test, APRIL 1977.

PRACTICAL HI-FI
The little Videotone reored highly for such a small inexpensive loudspeaker" JANUARY 1981.

Specification:
Recommended amplificr power 10 to 40 watts rms intc 8 ohms. Frequency Response:
$80 \mathrm{~Hz}-20 \mathrm{KHz} \pm 5 \mathrm{~dB}$
Finish: natural teak, ver: er with black frets.
Size: $107 / 8^{\prime \prime}$ high, $63 / 4^{\circ}$ wide, $71 / 2^{\prime \prime}$ deep.
Weight: 4.1 Kgs (9 lbs) each.
ONLY E69.95 A PAIR

- We welcome callers to our South London Showroom for demonstrations.
- Enqiries and information phone: 01-690 8511, Ex. 32.
- All products are only available direct or from selected authorised dealers throughout the U.K.
 Send for our free brochure and details of outlets in the U.K.

[^4]PE1

```
NAME
```

\qquad

Digital Design Techniques...

 Tom Gaskell ba.fonssleuce. mic:

 Tom Gaskell ba.fonssleuce. mic:}

Part6 Numerical Systems

INN the series so far we have touched briefly on codes and numbers; decimal, binary and 7 -segment. This month we are going to look in more depth at numerical representation and manipulation within logic circuits.

BASICS

The logic systems that we have been discussing are all based on a 'binary' concept; 'binary' meaning two-level. All normal conditions in a logic circuit can be represented by a logic 0 or a logic 1. O's and 1's can be used to represent any two-state condition: On or off, open or closed, in or out, high voltage or low voltage, etc. Combinations of 0 's and 1 's can also be used to represent numbers. To see how this is done we must first look at our 'conventional' decimal numbering system.

Consider the number three thousand five hundred and twenty one:

THOUSANDS	HUNDREDS	TENS	UNITS
3	5	2	1

You will probably remember the units, tens, hundreds and thousands columns from schooldays! The number is made up by taking one from the units column, two from the tens column, five from the hundreds column, and three from the thousands column, then adding them all together:

$$
1+20+500+3,000=3,521
$$

This numerical system is based on tens; the columns are 'powers' of 10:

$$
\begin{aligned}
1 & =10^{0} \text { (any number to the power } 0=1 \text {) } \\
10 & =10^{1} \\
100 & =10^{2} \\
1000 & =10^{3}
\end{aligned}
$$

So, our original 3,521 number can be drawn in columns marked as shown:

$$
\begin{array}{c|c|c|c}
10^{3} & 10^{2} & 10^{1} & 10^{0} \\
\hline 3 & 5 & 2 & 1
\end{array}
$$

Obviously, as you move further to the left in the sequence of columns, the powers go higher; to the left of 10^{3} comes 10^{4}, then 10^{5} etc., as the number pecomes larger. To change the 'base' of 10 to binary, which has a base of 2, simply replace all the tens by twos:

$$
\text { etc., etc. } \left.\left|2^{3}\right| 2^{2}\left|2^{1}\right| 2^{0} 12^{0}=1,2^{1}=2,2^{2}=4,2^{3}=8 \text {, etc. }\right)
$$

The least significant digit (column 2°) is in units, the next digit (2^{\prime}) is in twos, the next is in fours, the next is in eights. and so on in multiples of two. In each column there can only
be a 0 or a 1 . NOT a two; that would be a 1 in the next column to the left. So the binary number:

$$
\begin{array}{c|c|c|c}
2^{3} & 2^{2} & 2^{1} & 2^{0} \\
\hline 1 & 0 & 1 & 1
\end{array}
$$

is equal to the decimal number eleven: One one, plus one two, plus no fours, plus one eight; total, eleven. The first sixteen numbers (including zero) of this binary code are shown in Table 1.

The binary table, of course, is one that we've come across before. You will remember that binary (and decimal) counters and dividers are readily available in CMOS and TTL integrated circuits. Binary, and as we shall see shortly 'BCD' code inputs and outputs from i.c.s are frequently labelled QA, QB, QC and QD, or even just A, B, C and D. A or QA is the least significant bit, i.e. 'units', and D or $Q D$ is the most significant bit, i.e. 'eights'.

DECIMAL	BINARY				GRAY			
	D	C	B	A	D	C	B	A
0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1
2	0	0	1	0	0	0	1	1
3	0	0	1	1	0	0	1	0
4	0	1	0	0	0	1	1	0
5	0	1	0	1	0	1	1	1
6	0	1	1	0	0	1	0	1
7	0	1	1	1	0	1	0	0
8	1	0	0	0	1	1	0	0
9	1	0	0	1	1	1	0	1
10	1	0	1	0	1	1	1	1
11	1	0	1	1	1	1	1	0
12	1	1	0	0	1	0	1	0
13	1	1	0	1	1	0	1	1
14	1	1	1	0	1	0	0	1
15	1	1	1	1	1	0	0	0

TABLE 1 The binary code
Note that each vertical column of Table 1 changes state regularly as we count through the table. The 1's column changes alternately between 0 and 1 , i.e. it changes every one step. The 2's column changes every two steps, the 4's column every 4 , and the 8 's column every eight. If this principle is remembered, it becomes very easy to draw up binary tables of any size, or any number of bits, when required; the starting point is always zero, since all binary bits are 0 for a count of zero.

BCD

You may have noticed that there is a slight anomaly in this table, in the decimal column; it changes part way down the column from being a single digit number to being a two digit number (9 to 10). This can cause problems in circuit design. If three binary counters are being used to represent a three digit decimal number, for example, then each one should represent the numbers 0 to 9 . This corresponds to binary numbers 0000 to 1001 . After binary number 1001 has been reached, the next count should cause that counter to start again at 0000, and the next counter in the chain should then increase by one; in other words, a 'carry one' operation.

Self-resetting circuitry can be added to implement this return-to-zero effect, but in most cases it is easier to use an i.c. with the circuitry already built in. This is known as a 'BCD' device, which stands for Binary Coded Decimal. Each $B C D$ number is a direct equivalent to a single digit decimal number. The maximum count for a BCD counter is 1001. There are no BCD numbers higher than this; they would be invalid, and have no meaning.

HEXADECIMAL

To represent the decimal numbers 0 to 9 , four bits of binary information are needed, as can be seen from Table 1. Imagine a circuit used to route, store and control these four bit numbers. There would have to be four bit latches, groups of four flip-flops, four bit registers, groups of four gates, etc., for each decimal number to be represented. Unfortunately, there is a great inefficiency in our system, because we are only using ten combinations of 0 's and 1 :s, whereas there are a possible sixteen! We are 'Not Allowed' to use binary numbers:

1010
1011
1100
1101
1110
1111
because they all correspond to a two digit decimal number, and the second digit must be represented by a different four bits of binary information. So, these six extra codes are wasted.

To optimise the use of the circuitry, a new code must be introduced which allows the use of these extra six numbers. This code is known as "HEXADECIMAL", coming from Hex (six) plus decimal (ten), i.e. a numerical system with a base of 16 , rather than 10 or 2 : To represent 'Hex' (as it is shortened to) numbers in a fairly familiar way, we use decimal numbers for the first 10 states, then letters A to F for the last

DECIMAL	BINARY				B, C, D,				HEX.	7-SEGMENT BARS LIT (SEE LATER)	
	D	C	B	A	D	C	B	A			
0	0	0	0	0	0	0	0	0	0	a,b,c,d,e,f	
1	0	0	0	1	0	0	0	1	1	b,c	
2	0	0	1	0	0	0	1	0	2	a,b,d,e,g	
3	0	0	1	1	0	0	1	1	3	a,b,c,d,g	
4	0	1	0	0	0	1	0	0	4	b,c,f,g	
5	0	1	0	1	0	1	0	1	5	a,c,d,f,g	
6	0	1	1	0	0	1	1	0	6	$\mathrm{a}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}$	
7	0	1	1	1	0	1	1	1	7	a,b,c	
8	1	0	0	0	1	0	0	0	8	a,b,c,d,e,f,g	
9	1	0	0	1	1	0	0	1	9	a,b,c,d,f,g	
10	1	0	1	0	-	-	-	-	A	$\mathbf{a}, \mathrm{b}, \mathbf{c}, \mathrm{e}, \mathrm{f}, \mathrm{g}$	${ }^{0}$
11	1	0	1	1	-	-	-	-	B	c, d, e,f,g	c
12	1	1	0	0	-	-	-	-	C	a,d, e, f	
13	1	1	0	1	-	-	-	-	D	b,c,d,e,g	
14	1	1	1	0	-	-	-	-	E	a,d,e,f,g	
15	1	1	1	1	-	-	-	-	F	$\mathrm{a}, \mathrm{e}, \mathrm{f}, \mathrm{g}$	DISPLAY BARS

TABLE 2 Comparison of numerical systems and the 7-segment display
six. A is equivalent to ten, B to eleven, C to twelve, etc. The full table of decimal, binary $B C D$, and Hex numbers is shown in Table 2.

It should be remembered that Hex is only a notation for 4 bit binary numbers. It does not have patterns of 0 's and 1 's exclusive to itself, but merely represents binary numbers in a 'short hand' way. There are other similar systems (the 'Octal' code represents 3-bit binary numbers, for example) but the 4 bit binary numbers of Hex are the most useful to represent, since groups of 4 bits, and groups containing multiples of 4 bits, occur very frequently in logic circuits and systems.

The Hex system can consist of multi-digit numbers of course, in the same way that binary and decimal systems can, and again these are arranged in powers of 16. Comparing Hex with decimal:
$3 A$ is equivalent to $(3 \times 16)+(10 \times 1)=58$
B9 is equivalent to $(11 \times 16)+(9 \times 1)=185$
2 AF is equivalent to $\left(2 \times 16^{2}\right)+(10 \times 16)+(15 \times 1)=$ 687

Hex numbers are most usually seen these days in computer programs. When writing programs, it is ridiculous to use long lists of 0 's and 1's to represent data and instructions, so the simplest abbreviation of this is to represent 8 bit binary numbers by 2 digit Hex numbers. (Most modern microcomputer systems use 8 bit logic circuitry). Conveniently, an 8 bit binary code can represent 256 different numbers; exactly the same as a 2 digit Hex code can! These 2 digit Hex numbers are known in computer jargon as 'object code', and so this explains the reason for those long lists of numbers such as $3 A, O E, 3 F, A 2, B 2,23,23,47$, etc., etc., that you may have seen written down in computer program listings.

7-SEGMENT DISPLAYS

The principles of the 7 -segment display are quite straightforward and were covered earlier in the series. Briefly, seven bars of light can be used to represent all the numbers 0 to 9 , and many stylised letters of the alphabet, including the letters A, b, C, d, E and F, with upper and lower cases as shown. (This is convenient for Hex number representation.) The 7 segments of the display are lettered $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}$ and g (there is usually a decimal point, 'd.p.', provided too,) and are arranged in the layout shown in Table 2. The segments lit for each code number are also shown in Table 2.

Integrated circuits are readily available to convert binary codes into 7 -segment codes. Usually, these i.c.s have extra functions built into them, such as latches, or output driver stages to directly drive the display segments without extra buffers or amplifiers. The Dual-Digi-Dice 'miniproject' this month uses two of these i.c.s built into them, while the other i.c.s are able to drive several displays, in a multi-digit arrangement, simultaneously. We shall look closer at display driving techniques, and alternative display technologies, next month.

THE GRAY CODE

Although binary, BCD. Hex and 7-segment are the most regularly used electronic codes, there are many others of which the majority are very specialised indeed. The 'Gray Code' is one of the more widely used of these alternative codes. To be completely accurate, the term Gray code, sometimes known as a 'reflected' code, can encompass a range of different codes, but we shall only look at the most common one.

The Gray code is primarily used in positional encoders. These are electromechanical devices which convert a physical movement or rotation into an electronic code which has a value proportional to that movement or rotation. In essence, they are multi-way switches giving a coded output, and are used to feed positional information from machinery or instruments, into logic circuits. The switching action can be by electrical contacts, or by optical means using marked discs passing between light sources and detectors.

Binary codes could be used in these applications, but would suffer from race hazards; if the shaft was just on the point of changing from one binary number to another, it may be that some bits had changed state, while others were about to change. This would give a completely false binary number. For example, if 0111 was to count by one to 1000 , the three least significant bits may change state fractionally before the most significant bit does. The sequence would then go: 0111,0000, 1000. If the shaft was resting in the 0000 position, this would be a completely false and erroneous reading: in fact, it should read 'half way' between 0111 and 1000 !

To get round this problem, the Gray code only changes one bit at a time, so each count only differs from the previous and succeeding counts by the change of state of one bit. By this means, the greatest uncertainty of value that there can ever be is plus or minus $\frac{1}{2}$. The complete code, with binary shown alongside for reference, is given in Table 3. Although the Gray code might look rather complex, it is

DECIMAL NUMBER	$\begin{aligned} & 4 \text { BIT } \\ & \text { BINARY NUMBERS } \end{aligned}$			
	8's	4 's	2's	1 's
	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	- 0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1
	\sim_{\sim}^{\sim}	$\underbrace{1}$	$\underbrace{1}$	$\underbrace{1}$
	Changes	Changes	Changes	Changes
	$\begin{aligned} & \text { Every } \\ & 8 \end{aligned}$	Every	$\begin{gathered} \text { Every } \\ 2 \end{gathered}$	Every 1

TABLE 3 The Gray Code

[60725
Fig. 6.1. Gray to/from binary conversion
very easy to convert from binary to Gray, and vice versa. The circuits to do this are shown in Fig. 6.1, and can be expanded for any number of bits from one upwards! In each case, the most significant bit is common to both codes, and the other bits follow the interconnection pattern shown.

OTHER CODES

The only other code that you will be likely to come across regularly is the ASCII code: the American Standard Code for Information Interchange. This is a fairly universal code used for representing symbols, characters and control signals, and has wide application in the field of computing. ASCII is a 7 bit binary code, and is used in association with large keyboard assemblies to provide coding for upper and lower case letters of the alphabet, numerals, punctuation, and control functions such as reset, backspace, carriage return, etc. The same codes are also used for character generation: when fed into suitable 'character generator' i.c.s they cause a specifically encoded signal to be produced which is then suitably modulated and displayed on a video monitor or domestic television. In these instances, most of the keyboard control functions are replaced by fairly complex graphic symbols which allow the programmer greater flexibility in the symbols that he can write up onto the screen.

Since there are 128 different ASCII codes, we shall not list them all here; they are easily accessed via character generator, microcomputer, or keyboard encoder i.c. data sheets. The generation of these 7-bit codes from the contacts of the keyboard switches, together with contact debouncing and other basic timing and control functions, is normally carried out by i.c.s on the actual keyboard p.c.b. itself.

It should be noted that code converters can be easily designed using Boolean algebra, as discussed in the first part of the series. Each digit (or bit) of the 'new' code has its own Karnaugh/Veitch map, drawn up from all the digits (or bits) of the 'old' code. In most cases, of course, there are readily available i.c.s to perform the complete conversion so these techniques need only be employed for very specialised code conversions.

BINARY ARITHMETIC

All digital calculators, microprocessors and (of course) computers, at their most fundamental level, use binary codes for their numerical representation. On these codes must be performed arithmetic operations, mostly additions, subtraction, multiplication and division. To see how this is done in practice it is first necessary to determine the rules of binary arithmetic, which follow 'conventional' arithmetic techniques to a large extent.

ADDITION

This works in a very straightforward way, the only difference between binary and decimal addition being that we 'carryone' to the next most significant digit when the sum exceeds 9 in decimal, whereas in binary we carry one when the sum exceeds 1 . So we can see that:
$0+0=0$
$0+1=1$
(Similarly, $1+0=1$)
$1+1=0$ carry 1
Examples: a) plus 00010 equals $\begin{gathered}11100 \\ \text { carry }\end{gathered}$

SUBTRACTION

This is a rather more complicated procedure than addition, due to the requirement to 'borrow' digits. The way that most systems overcome this difficulty is to complement one number, then add the other number to this complement. 'Complementing' simply means turning a negative number into a positive one, or vice versa; i.e. in terms of decimal numbers,
$16-4=12$
is the same as,
$16+(-4)=12$
Using this method, we can use the same circuits as for the addition process, with only an extra complementing circuit needed. There are a number of different ways of deriving a negative binary number from a positive one. We shall look at the most common system, known as 'Two's Complement':

To form the two's complement of a number (i.e. turn a positive binary number into a negative one), perform the following steps:

1) add an extra 0 on the left of the number (i.e. the most significant bit)
2) invert all the bits (1 becomes 0,0 becomes 1)
3) add 1 to the resulting number.

Example: a) Turn 17 into - 1717 in binary is: 10001 add 0 to the left: 010001 invert all the bits: 101110 add 1: 000001

Result: 101111
Hence, 101111 is the two's complement representation of -17 .
Example: b) Turn 3 into -3

3 in binary is:	11
add 0 to the left:	011
invert all the bits:	100
add 1:	001
Result:	
	101

Hence, 101 is the two's complement representation of -3 .
In both these examples it is necessary to know that two's complement arithmetic is being used, and hence the left band bit is an 'extra' one; in the latter case, for example, we know that the result 101 is not 5 in decimal because the original number was a 2 bit number, and our 2's complement method results in a 3 bit number.

When building subtraction systems, circuitry to perform the two's complementing of one number is followed by addition circuits, to add the result of the two's complement process to the other number. The final result is a subtraction! Note that if a positive and a negative number are added and if the most significant bit of the result 'carries by one', i.e. the result is one bit larger than either of the two original numbers, then this most significant bit can be discarded, i.e. ignored.

For example, take

$$
\begin{aligned}
&+3-3=0 \\
&-3 \text { in binary }=101 \\
&+3 \text { in binary }=011 \\
& \text { he RESULT }=1000 \\
& \text { Discard }
\end{aligned}
$$

Adding together, the RESULT $=1000$

Hence, the result $=000$ (zero)

HALF AND FULL ADDERS

Combinational circuitry is used to implement binary addition. The most basic addition circuit is known as a half adder, since it is used when two bits only are to be added; it has no 'carry in' facility. See Fig. 6.2. To include carry in requires two half adders to be connected together with an extra gate, as shown in Fig. 6.3. Note that in Fig. 6.2 and 6.3
the circuits are based on the use of NAND and NOR gates, since these are most usually found in discrete circuitry. To simplify the circuits still further, EX-OR gates are often used in place of several gate combinations.

A 4-bit CMOS full adder i.c. is readily available, the 4008 , which has extra circuitry provided to give a 'fast' carry out signal. If this extra circuitry was not provided, the carry out

[EG74] Fig. 6.3. Block diagram of the full adder
signal would have to ripple through the adder stages, incurring considerable delay and potentially giving rise to hazards in the operation of the following circuitry. The majority of adder circuits today are, of course, buried deep within microprocessor and calculator i.c.s. The principles outlined here still apply, nonetheless. The circuitry for binary subtraction need not be shown, since it is merely a set of inverters with an extra half adder to add one to the complemented binary-number, followed by a set of full adders as detailed above.

MULTIPLICATION AND DIVISION

There are three different approaches which can be adopted when designing multiplication and division circuits. The first is to use a fairly complex but fast arrangement of full adders and control circuitry to perform 'long multiplication' and 'long division':

For example, multiply 01101 by 1010:
MULTIPLY: 01101 (13 in decimal)
BY: $\quad 1010$ (10 in decimal)
$00000)^{\text {'Multiply, the top number }}(01101)$ by 01101 each digit of the bottom number one at 00000 a time and each time shifting the 01101 answer left by one position.
TOTAL: 10000010 (Adding all four multiplications together) HTN
Carry 1
The result is 10000010 , or 130 in decimal.
Since the process was simply a 'shift-and-add' routine, this is obviously implemented by using a large number of full adders, suitably interconnected, with inputs gated on and off by the bits of the second number (1010). Division is carried out by a similar process.

In many calculators and microprocessors, the rather complex and specialised circuitry needed for these operations is unnecessary; a far simpler, though slower, method can be used. It is analogous to the way a supermarket check-out operator totals up many identical purchases:

6 items, at 7 pence each, total: $7+7+7+7+7+7=42$ pence.

So, in the above case of 13 multiplied by ten, the result is obtained by adding 13 to 13 , then adding the result to 13 , then adding that result to 13 , and so on, for the required number of times. The speed of circuit operation is sufficient to obtain a result from this apparently clumsy multiplication process in only a few. microseconds! Divison, of course, is a very similar process.

The final method of multiplication and division is actually rather a cheat! If the number that you are multiplying by or dividing by is an integer (a whole number) power of 2 i.e. 2 , $4,8,16,32,64$, etc., then no addition steps are necessary. The original number to be multiplied or divided is merely 'shifted' left or right respectively by the power of 2 concerned, filling in O's where necessary. The best way to illustrate this is to show some examples:
Example 1:
multiplied by
i.e.
therefore, move
the result is

Example 2:
multiplied by i.e.
therefore, move
the result is

> 1011 (eleven in decimal)
> 100 (four in decimal)
> 1011 multiplied by 2^{2}

1011 left by two positions, and fill in the gaps with 0's
101100 (i.e. 44 in decimal)

2 extra

O's added
integer power of two (this is surprisingly a regular occurrance) then the shifting technique is by far and away the easiest way to implement this arithmetic operation.

THE ARITHMETIC LOGIC UNIT

When several full adders and some control logic are added together in one circuit, in combination with some ex.ternal paraliel in-parallel out registers, we end up with a very flexible and versatile multi-function unit capable of performing a number of arithmetic and logic operations on sets of binary information. This is known as the ALU (Arithmetic Logic Unit) and is at the heart of every computer, microprocessor and most calculators. The ALU is normally treated as a 'black box'; it's detailed internal operation need not be known, it is merely a block of circuitry capable of addition, subtraction, complementing, multiplications, division (these two functions sometimes requiring the use of extra external registers), logical operations such as AND-ing and OR-ing of binary numbers, and other similar operations.

To achieve this flexibility and versatility of operation, the interconnections between the various registers, control logic, full adders, etc., must be fairly complex. In order to vastly simplify these interconnections and to give some semblance of order to the internal structuring of microprocessor and calculator circuitry, the 'BUS' system is used.

THE BUS

A bus is a set of common parallel interconnections between many different devices and circuit subsections in a system. It has a certain 'width' measured in binary bits, which usually corresponds to the maximum number of bits in the binary numbers to be manipulated within the equipment. The 8 bit bus is very common these days, so this bus physically consists of eight separate tracks on the p.c.b., or inside the i.c. chip. Sometimes extra bits for control purposes are added to the bus; the most regularly seen types being known as 'flags', which are used for control signalling between parts of the circuitry.

Some devices feed their outputs onto the bus, others take their inputs from the bus, and some even do both! Not all this happens simultaneously, though. Device A might feed onto the bus while device B takes it's input from the bus, in which case the output. of A is fed to the input of B. These two then stop using the bus, while device C feeds onto the bus, and device D takes it's input from the bus; the output of C then feeds into the input of D, without affecting either A or B. The bus is often known as a 'data highway' with devices

This shifting procedure is tailor-made for the shift register! If the number that you are to multiply or divide by is an

Fig. 6.4. Simplified block diagram of bus-orientated ALU system
and circuit sections taking it in turn, two or more at a time, to be connected with each other via it.

To achieve all this without excessive loading or shorting out of gate outputs, a 'tri-state' (three state) logic system is employed on all device outputs feeding onto the bus. When the tri-state outputs are turned on, they can be at either logic 0 or logic 1 levels, as used in the rest of the system, but when the tri-state outputs are turned off they become very high impedence points, capable of floating in voltage, with negligible loading of other circuitry feeding the bus. Hence, only the device selected at ariy time by the controlling logic can feed onto the bus. Inputs to devices are enabled by the control logic in a fairly conventional way. The bus can therefore be considered 'bidirectional'; binary information flows up and down it in rapid succession as different parts of the circuit use it to perform their various interconnections.

It is usual for complex digital systems to have more than one bus. The other bus or buses can carry information to different areas, or carry other forms of information, for example 'addresses'. The address is a binary number which defines a particular place in the memory system of the device, rather like the use of Ordnance Survey grid reference numbers to define a particular place in the country. (We'll look at memories in more detail next month). A typical arrangement is to have an 8 bit data bus and a 16 bit address bus run adjacently in the circuit.

A simplified bus arrangement is shown in Fig. 6.4. The 'accumulator' is a register, similar to the B, C, and D registers, but dedicated to the ALU. It's input is always fed from the ALU, while its output always goes to one of the two main ALU inputs, and can also feed, via tri-state enable gates, onto the bus. By careful internal timing of the system, binary numbers can be fed out of any of the B, C or D registers into the ALU, mathematically processed with the output of the accumulator, and the accumulator can latch into itself the result of this mathematical process, which can then be fed onto the bus and either back into the ALU again, or into one of the registers. For example, the sequence of events to add the contents of register B to those of register C, and put the result in register D, would be:

1) Reset accumulator (output equals zero).
2) Feed output of register B onto the bus, and enable inputs to the ALU.
3) Add ALU input 1 .(i.e. the number in register B) to input 2 (zero).
4) Latch the output of the ALU into the accumulator.
5) Feed the output of register C onto the bus, and enable the inputs to the ALU.
6) Add ALU input 1 (the contents of register C) to input 2 (the number which originally came from register B).
7) Latch the output of the ALU into the accumulator.
8) Feed the output of the accumulator, via the tri-state enable gates, onto the bus and enable the inputs to register D.

Although this sounds a complex procedure most computers, calculators or microprocessors can carry out this series of steps in no more than a few microseconds; many in considerably less time than this! We're now starting to get an insight into the internal operation of microprocessor and computer central processing units, or 'CPUs'. We'll cover the subject more fully in the final article of the series. Before that, however, in next month's article we shall look at the use of analogue techniques within digital logic circuitry. This includes complex display driving, analogue transmission gates, conversion between analogue and digital signals, and (of course) those all-important memories!

DUAL-DIGI-DICE

This project accurately simulates the rolling of a pair of dice, with fairly authentic l.e.d. dice face patterns. When the 'ROLL' switch is pressed, both dice faces start changing and flickering rapidly, then gradually slow down and stop at a final result. The changes are completely random; they do not simply 'count up' numerically. Approximately 10 seconds after the final result has been obtained, the two l.e.d. dice displays switch off to conserve battery power.

PRINCIPLES

The circuit design is based upon the fact that dice face patterns change in a way that is approximately a binary count. Referring to the pattern of l.e.d.s, we can compare the dice face l.e.d.s lit with a sequence of binary numbers, as shown in Fig. 6.5. There is obviously a direct correlation between the l.e.d.s lit and the binary count; the ' A ' I.e.d. is lit by the least significant binary digit, the ' B ' l.e.d.s by the middle digit and the ' C ' l.e.d.s by the most significant digit. Hence a binary counter can be used to provide the correct code for the dice face, as long as the invalid 0 and 7 states, which never occur on a dice, can be avoided.

Fig. 6.5. Dice face l.e.d. patterns

CIRCUIT DESCRIPTION

IC4 is a dual binary counter; two separate synchronous counters in one i.c. package. The ' C ' output of the first counter is used to clock the second counter, so the two halves are 'cascaded' asynchronously. The slight race between the two counter halves is unimportant in this case; any static hazards caused are irrelevant, as the counters are clocked randomly by a noise source anyway! The output of each counter is fed into a Quad D-type latch, the Q outputs of which drive the l.e.d.s via conventional transistor buffers. (Note that the ' B ' and ' C ' l.e.d.s are arranged in series pairs to cut down current consumption, although it would be unwise to put all four ' C ' l.e.d.s in series since the total voltage drop across them could be as high as 10 volts, which would not allow for sufficient variation of power supply voltage.) TR3, TR4, R 16 and R17, and TR5, TR6, R15 and R18 form Darlington driver configurations, each to supply current to all the l.e.d.s in a dice face display. These configurations are fed in turn from IC7a. The inputs of IC7a are connected to a very long time period pulse stretcher - D4, C8 and R14. When S3 is pressed and released, IC7a pins 1 and 2 are held at logic 1 for approximately 15 seconds, causing the output pin 3 to go to logic 0 , turning on the two Darlington drivers and hence the displays. After the time period of .15 seconds has ended, pin 3 goes high again and the Darlington drivers turn off, so the lie.d. displays also turn off, conserving valuable battery power! This time period can obviously be varied by charging R14 or C8. S2 is provided to permanently switch off the ' A ' dice display when only one dice is being used.

The random changes of dice face display are obtained by

Fig. 6.6. Circuit diagram of the Dual-Digi-Dice
using a random noise source to clock the counters, then latching the counter outputs in IC5 and IC6 as frequently as required to give the effect of the dice rolling. The clocking of the counter occurs very rapidly and the latching fairly slowly, so for each latch pulse, IC4 will have counted through its entire range of numbers many times. Each successive dice face shown, therefore, will be chosen completely at random.

The noise source is formed by reverse biasing the baseemitter junction of TR1, with the collector left disconnected. This is buffered and amplified by TR2 (with R2, R3 and C1) then amplified again by IC1. R4 and R7 set the gain of IC1, while R5, R6 and C3 set the non-inverting input to a reference point of approximately +5.8 volts. The noise output of IC1 swings almost to each supply rail, and needs only to be fed through a Schmitt trigger gate, IC7d, to clean up the waveform into correct logic levels, before feeding into the clock input of the counter, IC4 pin 1. Note that a high battery voltage for the unit is needed (12 volts) in order that a satisfactory noise voltage can be obtained from the reverse biasing of the TR1 junction. Although a 9 V battery could be used, it would require special selection of TR1 to find a transistor with a particularly high noise voltage. Diode D1 is provided to protect the unit against accidental reverse connection of the batteries with C9 and C10 decoupling the power supply rails.

IC2 and IC3 are used to generate the latch pulses, starting off with very rapidly occurring latch pulses, then slowing down to a final halt. CMOS timer IC2 is connected as a fairly conventional oscillator, but with an extra resistor R11 taken to the output of IC3. This op-amp is connected as a voltage follower; the voltage on pin 6 will be exactly the same as that on non-inverting input pin 3, but at a very low impedance. When S3 is pressed, C7 charges up to +11 volts via D3, hence the output pin 6 of IC3 also goes to +11 volts and IC2 oscillates at a relatively high frequency. As soon as S3 is released, C7 begins to discharge in a manner defined by R12 and R13, to a final voltage of approximately 3.7
volts. The output of IC3, via R11, then causes the oscillations of IC2 to decrease in frequency and finally stop. (Note that pin 5 of a 555 timer i.c. would normally be used to alter frequency, but in this case it was unsuitable as the oscillations could not be completely stopped.)
The output of IC2, pin 3, has short pulses derived from it by C4, D2 and R8. These are then used to latch IC5 via IC7b and IC8a, and IC6 via IC7c and IC8c. The invalid conditions of the counter IC4, 000 and 111 (as shown in Fig. 6.5.) are prevented from occurring by IC9C, IC9d and IC8b (for the 'B' dice) and IC9a, IC9b and IC8d (for the 'A' dice). In each of these networks, the outputs of the two EX-OR gates are both at logic 0 if their respective binary counts are 000 or 111. This, via the following NOR gate, disables any latch pulses passing to IC5 or IC6 (as appropriate), thereby preventing an invalid code from ever being latched and displayed.

CONSTRUCTION

The matchboards should be built up as shown in Fig. 6.7. leaving the I.e.d.s OFF the boards for the moment and fitting the wire links on each board after all the components have been added. The I.e.d.s are then soldered to the REVERSE side of the board (i.e. the copper foil side) with their tops protruding approximately 10 mm above the surface of the p.c.b. Note that the ' a ' (centre) l.e.d. has to have its leads bent outwards to fit the holes in the board. Ensure that these bends are made well away from the l.e.d. body.

The case can then be drilled to take the switches and the two match-boards' support pillars, and rectangular cutouts should be made to allow viewing of the l.e.d. displays; these cutouts can then have a piece of red tinted transparent perspex or plastic glued behind them to improve visibility and contrast of the l.e.d.s. The interwiring between boards, and to the switches, can now be added in flexible (multistrand) wire, and the boards can be screwed to the front panel of the case using suitable spacers: $\frac{1}{2}$ inch $\times 6 \mathrm{BA}$

COMPONENTS

Resistors

R1	270 k
R2, R7, R14	$1 \mathrm{M}(3$ off $)$
R3, R8	2 k 7 (2 off)
R4	3 k 3
R5, R6	$47 \mathrm{k}(2$ off)
R9, R15, R16	$100 \mathrm{k}(3 \mathrm{off})$
R10	2 k 2
R11	82 k
R12	470 k
R13	220 k
R17, R18, R19, R20, R21, R26,	$33 \mathrm{k}(8$ off)
R27, R28	1 k 8 (2 off)
R22, R29	$1 \mathrm{k} 2(6$ off $)$
R23, R24, R25, R30, R31, R32	
R33, R34, R35, R36, R37, R38	$10 \mathrm{k}(6$ off)
All resistors $\frac{1}{3}$ or $\frac{1}{2} W$ W 5% carbon	

Capacitors

C1, C5	10n polyester (2 off)
C2	100 n polyester
C3, C7	$10 \mu 25 \mathrm{~V}$ elect. (2 off)
C4	330 p ceramic plate
C6	$2 \mu 235 \mathrm{~V}$ tant.
C8	$22 \mu 25 \mathrm{~V}$ elect.
C9, C10	$100 \mu 25 \mathrm{~V}$ elect. (2 off

```
Semiconductors
    D1 1N4002
    D2,D3,D4 1N4148 (3 off)
    D5 to D18 red l.e.d. (14 off)
    TR1
    TR2,TR7 to
    TR12
    TR3,TR5
    TR4,TR6
    IC1, IC3
    IC2
    IC4
    IC5, IC6
    IC7
    IC8
    IC9
```


Miscellaneous

2 off Matchboard Exp-300PC Global Specialties
S1 Double pole miniature toggle switch
S2 Single pole or double pole miniature toggle switch
S3 Momentary push button switch
2 off Battery holders, with connecting leads (each $4 \times$ HP7)
1 off Design Mate Case DMC2, Global Specialties
8 off $\frac{1}{2}$ in. \times 6BA threaded spacer
6BA screws and wire to suit
2 small pieces of red gelatine, perspex, etc (see text)

Fig. 6.7. Matchboard layout for the Dual-Digi-Dice
tapped pillars are ideal. The battery holders can be fixed to the case baseplate using 'sticky fixers', and the batteries should then be added.

The project is now finished! If it seems that the noise source is not operational (no logic changes at IC7d pin 11) try changing TR1, or lowering the value of R4 to 1 kO , and make sure that the supply voltage is high enough. The rate at which the dice face displays slow down their changes can be varied by altering the values of R11, R12 and R13, but note that too slow a 'slowing down' may result in the dice face never actually finally stopping before the displays switch themselves off! For testing purposes, removing C2 and C4

Internal view

will enable you to use a logic pulser (on IC7d pin 11 and IC8a pin 1); to simulate the action of both the random noise generator and the latching pulse generator, and thereby debug any faults that there might be. Finally, there is plenty of room in the case to add a simple mains power supply if preferred, as shown in Part 2 of this series; any voltage from 12 to 15 V will work very well indeed.

NEXT MONTH

Multiplexing of displays, complex displays (liquid crystal, gas discharge and similar). Analogue switches, transmission gates etc, A to D and D to A converters.

HOW TO SUCCEED IN THE ELECTRONIGS BUSINES3:

GaIr Gomputer...

FITTING the flow and speed sensors, installation, calibration and a description of the program controlling the computer.

There is the option of a combination lock facility which could be used to operate an ignition cutout or alarm. The combination consists of three digits and can be changed up to seven times without erasing the PROM.

FITTING THE FLOW SENSOR

Because of the wide variety of fuel systems, precise instructions cannot be given to cover every make of car, but fitting the flow sensor is in fact an easier job than many would imagine, providing the following guide lines are observed.

The flow sensor is fitted in the petrol pipeline between pump and carburettor, and after the fuel filter. The arrow on the side must point in the direction of flow as seen in Fig. 11.

The fuel line, which may be of metal, plastic, rubber or a combination of all three, must be cut or otherwise parted in order to insert the flow meter. In the case of a flexible hose, it is simply necessary to slacken the hose clamp, preferably at the fuel pump end (assuming it is a mechanical engine driven pumpl, pull off the hose and join the flow meter to the pump outlet pipe by means of the polyurethane pipe supplied. In the case of a metal fuel line, it is better to remove the pipe from the engine before cutting, to enable the ends to be satisfactorily deburred and avoid swarf entering the fuel system.

The usual plastic fuel line is made of nylon and is best cut with a sharp knife. It is normally rigid enough to accept a flexible pipe and clamp without collapsing.

The flow sensor is not normally affected by vibration and because of its light weight, it may be mounted so that it is suspended in the fuel line. It should however not be positioned so that it is subjected to direct radiant heat from the exhaust manifold. If close proximity (less than 6 in) is unavoidable, a metal heat shield should be fitted between.

It should ideally be mounted vertically, but if it has to be mounted horizontally or close to the horizontal, it should be fitted with the fuel passage above the detector housing. It is not susceptible to electrical interference but it is advisable to avoid close proximity to high tension leads.

If no filter is present, we recommend that a standard type of in-line paper element fuel filter be fitted just ahead of the ${ }^{\text {[om } 20}$ flow sensor, taking care to note the direction of flow.

So far so good. Now for the snags. Some of you might have a car in which the fuel is not only pumped up to the carburettor, but is pumped back to the tank as well; in fact it hurties around the fuel system at a much faster rate than your engine could ever use it. Obviously, if you stick your flow sensor in line with that lot, the answer is going to be rather wrong.

The presence of a second fuel pipe connected to the carburettor, which disappears back to the fuel tank means that you have a recirculating fuel system. It is standard on the Range Rover, Rover 3500 (pre SD1), Fiat, Audi and many other types. If you are in any doubt, your local agent will enlighten you.

Showing an in-line fuel filter and the flow sensor
This little problem is easily overcome by fitting the Tjunction supplied with each kit into the fuel line between the pump and the flow meter. Make sure that the return to the tank is fitted to the leg of the tee, since this contains the restricting orifice which limits the return flow.

On some cars, a T-junction is already fitted between pump and carburettor, in which case the flow meter and filter should be fitted after the Tjunction.

It is important to check all fuel lines and joints for leaks immediately the engine is first started and again after a short running interval. The possibility of fuel spillage will be reduced if the fuel tank is reasonably empty before the fuel line is disconnected or cut.

The present flow measuring system cannot be used with a fuel injection engine, since the fuel may not be diverted or shut off.

Fig. 11 The flow sensor fitted

FITTING THE SPEED SENSOR

Locate a suitable part of the speedometer cable to fit the sensor, probably fairly near the bulkhead in the engine compartment, and draw four lines on it as in Fig. 12. Detach the cable from the back of the speedometer and withdraw the inner cable. Using a hacksaw cut the outer cable at the iwo inner lines and throw away the section. Slide a jubilee clip along each part of the outer cable.

Refit the inner cable and re-connect to the speedometer, leaving the inner cable hanging from the cut end of the outer.

Push the inner cable through the sensor, the side of the sensor with the screw heads being nearer the speedometer.

This will take a certain amount of force as there is a friction grip on the cable.

Keep feeding the cable through until the outer cable is entering the slotted end tube of the sensor, pulling the inner cable at this point rather than pushing the outer. Allow the outer cable to enter the tube until the drawn line is level with the end of the tube, then release the inner cable and pull back the outer cable about $0.5 \mathrm{~mm} / 0.02 \mathrm{in}$. Drop the jubilee clip over the slotted tube and do it up to clamp the cable.

Check that the inner cable is free to rotate when pushed towards the sensor and pulled from it. Thread the inner cable through the rest of the outer, feeding the outer cable so that its line is level with the end of its slotted tube. Fit the jubilee clip as before.

Fig. 12 Speedometer cable marking

MAIN UNIT

Fit the main unit in a suitable position. If screws are to pass through the plastic box make sure that they will not foul anything inside. Double sided adhesive pads can be used to mount the flat side of the box to a flat surface or to a bracket, and these hold well. Thread the cable to a suitable point and connect up as follows. This is for -ve earth vehicles.
Black wire -Terminal block 1, also to chassis.
Red wire --Unswitched battery power (+ 12 volts).
Yellow wire -Power switched by ignition switch (or auxiliary).
Orange wire -Power switched by light switch (e.g. a panel light).

Brown wire -Terminal block $2(+5$ volts).
Violet wire -Terminal block 3 (Speed signal).
Green wire -Terminal block 4 (Flow signal).
Connect to the sensors as follows.
Terminal block 1-Blue wires from both sensors.
Terminal block 2 -Brown wires from both sensors.
Terminal block 3-Green/Vellow wire from speed sensor.
Terminal block 4-Green/Yellow wire from flow sensor.

CALIBRATION

The flow sensor will be supplied with two numbers, one for litres, one for gallons. This number is the number of pulses per litre or galton divided by 256 .

With the unit installed in the car and the ignition switched on, press 'Enter', 'F.Cal', the number, 'End'. Note that if this number is greater than 128 , fuel use will read distance/fuel (i.e. miles per gallon), if less than 128 it will read $100 \times$ fuel/distance (i.e. litres per 100 kilometres).

The distance calibration is calculated in a similar manner. It will be about 25 for miles, 16 for kilometres; the exact number depends on gear ratio and wheel sizes. Calibration is achieved by entering an approximate number (25 or 16), driving a known distance, pressing 'Reset' at the beginning of the distance and 'Hold' at the end. The true calibration number is obtained by multiplying the entered calibration number by the recorded distance and dividing by the actual distance.

The marker posts on motorways are exactly 100 metres apart (100 yards on some of the older ones) and can be used for calibration as follows. Press 'Enter', 'D.Cal', 1, 6, 'End', 'Distance'. Drive along the motorway and as a post is passed press 'Reset'. Count 20 posts (2 kilometres) and press 'Hold'. The kilometre calibration figure is $16 \times$ reading $/ 2$. The calibration for miles is obtained by multiplying the kilometre calibration by $1 \cdot 61$. For greater accuracy travel a greater distance.

When reading speed it is likely that the computer reading will be considerably different from the car speedometer, and the distance could also be different. It is the car's own speedometer that is wrong, usually reading high. This makes the car appear to be faster and do more miles per gallon than is actually the case, so be prepared for a disappointment.

It is possible to calibrate the flow sensor for optimum accuracy in the same manner as for the speed sensor, by filling the tank up, driving a distance then refilling the tank. It is easy to trap air in the tank or spill a small amount of petrol, so this should be done over at least 10 gallons. Garage petrol pumps are usually very accurate.

The new calibration constant is:

$$
\text { Old calibration constant } \times \frac{\text { Computer reading }}{\text { Actual quantity }}
$$

The reading for the display is obtained by dividing the number of pulses counted by ($256 \times$ calibration constant). The litres figure is $0.219 \times$ the gallons figure. The fuel could therefore be expressed in any form, for example cost, giving a readout of pounds, miles per pound and so on. The totals are not affected by changes in the calibration number.

The calibration numbers, entered numbers, entered start and stop values and totals will be held in the unit's memory until changed from the keyboard as long as the unit is connected to power. If the battery is disconnected or allowed to go flat the calibration numbers will have to be re-entered. The 1000μ capacitor, C9, will hold the power for a very short while.

The unit is intended to work on negative earth vehicles, but can be adapted for positive earth by connecting the light return wire to the +ve supply wire and constructing a simple transistor invertor for the ignition wire as shown in Fig. 14.

Fig. 14 Transistor invertor for the ignition wire

COMBINATION LOCK

Pin 35 of IC 1 is an output of a combination lock facility incorporated in the computer. This could be used to operate an alarm or ignition cutout, and the operation is as follows. If 'Enter'. 'Average/Low' is pressed, the display will show an ' L ' in the function digit and blank the rest of the display. If the ignition is now switched off, when it comes on again pin 35 of IC1 will be high. To cause it to go low again a three digit combination must be entered, then 'End' pressed. The number is held in the 2716 program memory, and will normally be supplied with a random number, though a specific number could be supplied.

The signal on pin 35 will not go from low to high (locked) with the ignition switched on. This is needed with an ignition cutout as a safety measure as otherwise it could switch off the engine going along, but in addition to this, some sort of 'fail safe' circuit should be used, such as that shown in Fig. 15. R1 should be mounted inside the box, the other components outside. The reason for this is to keep interference noise out of the unit. The relay disables the ignition by shorting out the contact breakers, or inductive or photocell pick up. If the wire to the computer is cut with this circuit, the ignition will be disabled.

Fig. 15 Ignition disable circuit

CHANGING THE COMBINATION

The three digit combination number is held in the 2716 program memory and can be changed up to seven times
without erasing the PROM, making use of the fact that individual memory locations in a 2716 can be programmed. The initial number is held in locations 7FE and 7FF (hex), but the unit will search for a number from locations 7FO upwards (in pairs), and use the first that it finds that is not FF. The first new number can thus be entered by programming into locations 7FC and 7FD, the next to 7FA and 7FB and so on. The low order location contains the two low digits of the combination, the high order location a hex 'D' (Binary 1101) and the high order digit of the combination.

So to change the number to 123 , location 7FC is programmed with 23 hex and 7FD with D1 hex. To change again to 456 , program location 7FA with 56 and location 7 FB with D 4 .

PROGRAM

The operation of the car computer is controlled by the program contained in IC2. It is not practical to describe in full this program, or even to list it, but what follows is a brief description of how it operates.

The various sections of the program are:
Interrupt-Every $500 \mu \mathrm{~s}$ approximately, the program receives a time interrupt.

Keyboard-When a key has been pressed, this routine carries out the appropriate action.

Calculation-This routine takes the information from the appropriate stores, under the control of the function selected, and performs the necessary arithmetic on it, for feeding to the display.

Sample-Every second, or eighth of a second, this routine updates the instantaneous stores.

Start-Stop-If the start-stop mode is active, this routine compares the result from the calculation routine with the start stop information and carries out a reset, or sets the hold condition as required.

The two board component assembly

INTERRUPT

The interrupt routine (a) updates the timebase and time store (b) samples the speed and flow inputs (c) every fourth interrupt it samples the keyboard, and advances the strobe and multiplexed data output.

The main stores for holdrig total time, fuel and distance are each three bytes long. The low order time byte is also the high order timebase byte, the timebase being two bytes long, and each interrupt the combined 4 byte store is incremented.

The speed and flow inputs are compared with their states at the previous interrupt. If one is now high and was low, the corresponding total store is incremented. A separate one byte store used for the instantaneous signal is also incremented, and the timebase copied to a start store if this is the first count in a sample, or to a stop store otherwise. This
is done to improve resolution as there could be only a small number of counts in a sample.

Every fourth interrupt the keyboard lines are sampled. If one is high, the line and timebase information is copied into a current key store. The strobe lines are all made low, the data lines set to the next digit and the new strobe information sent, derived from the timebase.

Note that the timebase information that was copied into. the current key store corresponded to the next strobe line. This is why the keyboard is scanned one strobe early. At the end of four strobes the current key store is compared with a previous key store, then copied to that. If the two were different, then a new key has been pressed and a flag is set to instruct the keyboard routine to action the key.

KEYBOARD

If the new key flag is set, it is cleared, and the keyboard routine run. The key is first checked for nothing-releasing a key also sets the new key flag. There is a main flag with eight states which controls the keyboard.

If the key is 'End' the flag is set to zero. In this state with the key 1 to 5 , the function store is set to the key number and the average/low and remainder flags are cleared.

When the key is 6 , the average/low flag is set. Depressing 7, the total stores are set to zero. If the start-stop mode is active, then the Start flag is set. With 8, the hold flag is set and the start-stop flags cleared. At 9, the hold flag is cleared. If the start-stop request flag is set, the start-stop active flag is set, the start number subtracted from the stop number and the sign of the result copied to the start-stop direction flag.

With 0 keyed, the keyboard flag is set to 1 . If the key is 'Enter', the keyboard flag is set to 3.

If the keyboard flag is 1 then if the key is 1 to 5 it is copied to the function store and to a remainder function store. The flag is set to 2 and the remainder flag set. Any other key, the keyboard flag is set to 0 and the key handled as for a flag of 0 .

If the keyboard flag is 2 and if the key is 1 to 3 it is copied to the remainder function store. The keyboard flag is set to 0 . any other key, the keyboard flag is set to zero and the key handled as for a keyboard flag of 0 .

If the keyboard flag is 3 and if the key is 6 then the lock routine is executed, If 8 the start-stop request flag is set. If 4 , 5 or . it is ignored. Otherwise the key is copied to a destination store, the keyboard flag is set to 4 and the contents addressed by the destination store are sent to the display.

If the keyboard flag is 4 then the results digits are cleared, the key added to the display store and this copied to the address pointed to by the destination store.

If the keyboard flag is set to 5 then as before except that the results digits are not cleared. Whenever the keyboard flag is set to a number other than zero, a countdown flag is set to 7.

CALCULATION

There are five basic calculations, as follows
Total-function 1 to 3
Instantaneous-function 4 or 5
Average-function 4 or 5
Remaining total-function 1 to 3
Remaining average-function 4 or 5
The total is calculated by taking the contents of the total store addressed by the function store and dividing by the corresponding calibration number. The calibration number for time is generated internally. If the low flag is set, this is
now divided by 001 (the same as multiplying by 1000). If this causes an overflow, the low flag is cleared.

Instantaneous functions are obtained by taking the instantaneous distance divided by its calibration and dividing this by either instantaneous time (a constant) for speed, or instantaneous fuel for fuel use, again divided by its calibration number. If fuel use and the calibration number is less than 128 then 100 is divided by the result obtained (for litres per 100 kilometres).

Average functions are the same except that totals rather than instantaneous quantities are used.

It starts to get complicated for remaining totals. In the description following total function refers to the total addressed by the function store, entered remainder refers to the entered quantity addressed by the remaining function store, and so on.

The total remainder is divided by its calibration, copied to a temporary store then divided by the total function divided by its calibration. The result is stored in a second temporary location. The contents of the first temporary location are now subtracted from the entered remainder, and this divided by the contents of the second temporary store to give the result.

Remaining averages are obtained as for averages except that the difference between the entered stores and the totals are used rather than the total stores.

SAMPLE

When the timebase low byte becomes zero in the interrupt routine, the sample routine is entered. This is approximately eight times per second. If the lower three bits of the timebase high byte are also zero, i.e. every second, then the countdown flag is decremented. If it is now zero, the keyboard flag is set to zero. The main sample routine is entered. If the lower three bits are not zero, then if the startstop active flag is not set, the sample routine is skipped. If either the flow or distance counts (instantaneous) is less than 2 the sample routine is skipped, otherwise the main sample routine is executed, as follows.
The instantaneous count for flow is divided by the difference between the start and stop numbers, the result being instantaneous flow. This is repeated for distance. The instantaneous counts are cleared. The input signals are thus measured for both frequency and period giving good resolution even at low frequencies.

START-STOP

There are three flags controlling start-stop operation, start-stop request/started, start-stop active and start-stop direction. The latter is set if the start number is greater than the stop number. The request flag is set when 'Enter', 'Stop' is entered from the keyboard and the active flag when 'Run' is pressed and the request flag is set.

If the active flag is clear, the start-stop routine is ignored.
If the request/started flag is set then the start store is used for the following comparison, otherwise the stop store.

The result is subtracted from the start or stop store and the sign of the result exclusive ORed with the start-stop direction flag. If the result of this is a ' 1 ' no further action is taken, otherwise:

If the request/started flag is set, it is cleared and the main totals reset to zero. The timebase and instantaneous counts are also reset.

If the request/started flag was clear, the hold flag is set and all start-stop flags are cleared.

MASTHFR MTMGHRONICS NOW! The PRAGHICAT way!

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a selfemployed servicing engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.

You will do the following:
Build a modern oscilloscope
Recognise and handle current electronic components
Read, draw and understand circuit diagrams

- Carry out 40 experiments on basic electronic circuits used in modern cquipment
Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V. Hi-Fi and microprocessor/computer equipment.

NewJob?NewCareer?NewHobby?Getinto Flectronics Now!

LESLIE SIMULATION

CBS of New York has filed a string of European patent applications (under number 0031 692) on an electronic circuit for simulating the sound of a Leslie loudspeaker, as often used to reproduce the sound of an electronic organ.

Figure 1 shows a loudspeaker of the Leslie type. The drive unit 10 rotates about a vertical axis while reproducing the sound. In the speaker position shown in Figure 1, no direct sound reaches the listener L; only sound reflected from the walls of the cabinet. As the speaker rotates towards position 2, the reproduced sound rises in pitch due to Doppler effect. At the same time direct sound starts to reach the listener so there is an increase in amplitude along with increase in perceived frequency. This continues up to a maximum at position 3. Further rotation away from position 3 towards position 4 produces a perceived decrease in frequency and amplitude. The term "pulsato" conveniently describes the combination of tremulo and vibrato which

Copies of Patents can be obtained from: the Patent Office Sales, St. Mary Cray, Orpington, Kent. Price $£ 1-45$ each.

is heard. Conventionally there is a switched choice between slow pulsato, at 0.7 Hz , and fast pulsato, at 7 Hz .

Figure 2 shows the CBS electronic equivalent to this well known mechanical arrangement. A musical tone at input 20 is fed to variable delay device 22 , which can be a bucket brigade delay line. The delay is driven by clock 24 which is under the control of a sine wave generator. This is adjustable between 1 Hz and 7 Hz for slow and fast operation. The control waveform is shown at Figure 3A.

The output of delay 22 is filtered at 28 , to remove any clock pulses impressed on the signal, and the filtered output is shown at Figure 3B. As the delay 22 is modulated by the clock signal it causes the phase of the musical tone to advance and retard. making it sharp or flat with respect to the input. This mimics the Doppler effect created by a rotary speaker.

The frequency modulated signal (B) at the output of filter 28 is applied to the input of amplitude modulator 40 . This is also controlled by sine wave oscillator 26. Modulator 40 provides 80% amplitude modulation of the frequency modulated signal B to produce a composite signal. As shown at Figure 3C the amplitude of this composite signal is maximum at the transitions from sharp to flat pitch and minimum

Fig. 3

at the transitions from flat to sharp. pitch The modulator 40 inverts the phase of the signal, and high frequency components are removed by filter 42 . The filtered, amplitude-modulated signal (C) is summed at 46 with the constant amplitude. frequency-modulated signal B. Capacitor 54 transmits only the high frequencies of signal B for summing at 46 with the phase inverted signal C. So.only high frequencies are amplitude modulated in summing circuit 46 by the $A M, F M$ signals from modulator 40. This produces a composite envelope as shown in Figure 3D. Amplitude modulation of the higher frequencies is in opposite phase relative to that of the lower frequencies, and the percentage of modulation varies with frequency. This complex, amplitude-modulated, $A M$ signal is reproduced by stationary speaker 50 and the less complex, FM signal is reproduced by stationary speaker 34 . The overall effect, with acoustic summing of the two sound signals, is said to resemble that produced by a rotary Leslie system.

BUY BRITISH!

The Director of Leeds Library reminds us that British, American, European and PCT patents can be inspected free of charge at public libraries in Birmingham, Glasgow, Leeds, Liverpool, Manchester and Newcastle, as well as in the libraries attached to the London Patent Office. This reminder follows our warning that it can be very expensive to purchase a copy of a lengthy foreign application: up to $£ 20$ each in the case of the two very bulky PCT patents applications on Robert Carver's power amplifier and sonic holography circuits. There is also another way of avoiding the high cost of purchasing foreign applications.

When the British equivalent application to a foreign patent is published it. is of course possible to obtain a full copy of the British version for the standard price of just $£ 1.45$. The trick is to wait for the British version of lengthy foreigns. Take for instance the example of PCT 80/02219, the Robert Carver patent on sonic holography. The equivalent British patent application has now been published as no. 2058524. Although the British document is only a single printed page synopsis which cross references with the lengthy PCT case, the British Patent Office is obliged to provide a full photocopy of the PCT case for the all-in price of $£ 1.45$, instead of the $£ 20$ or so it would cost to obtain the same patent by ordering it under the PCT number!

THE MOTOR control boards which fit on the wheel base of the M101, control the two $1 / 10$ h.p. 12 V motors which provide its motive power. The controls implemented by these boards are forward, reverse, stop and variable speed. .

DISPLAY BOARD

This gives a visual indication of the microprocessor's control mode and an audible indication of incoming data.

POSITION DETECTOR BOARD

This is the only electronics inside the bases of the Genesis S101, P101 robots. It is used to suppress mains hum and generally improve the signal from the position detector coils sending it at low impedance to the interface board.

MANUAL CONTROL KEYBOARD

All the position control and programming switches fit to this unit. Information from it is either by infra-red link for the M101 or by wire link for the S101 and P101.

RECEIVER

This detects the infra-red transmissions sent to the M101 mobile machine.

CONTROL LOGIC		
A	B	FUNCTION
0	0	FORWARD
0	1	REVERSE
1	0	STOP
1	1	STOP

Fig. 3.3. Display board p.c.b. (actual size)

Fig. 3.4. Display board component layout

PE ROBOTS

DISPLAY BOARD

Refer to Fig. 3.1. The seven segment display which indicates the memory page number (0 to 7) is driven by decoder IC1. An open collector TTL buffer drives l.e.d.s indicating such functions as RECORD, PLAY, MEMORY ($\frac{3}{4}$ full) and motor control. The bleeper announces the arrival of data.

MOTOR CONTROL

Refer to Fig 3.2. The wheel base is driven by two independently operated $1 / 10$ h.p. motors equipped with special shafts in direct contact with the rubber wheels. The gearing is by virtue of the difference in diameter of the shaft and the wheel. Steering is accomplished by operating the motors at different rates. The castors are not driven and are for stabilisation of the wheel base only.

There is one control board per motor, which is a 12 V d.c. 90 watt device. When the motor is turned on, the initial current is 15 amps , falling to 7.5 amps after 0.3 seconds. This hefty current is handled by power transistors TR3 and TR4. On/off control is a TTL signal (A). Motor reversal is produced with a changeover relay, again under TTL control (B). The motor speed is controlled using mark/space modulation with a period of about 40 ms . The control box has two motor controis. One is forward-stop-reverse, and the other is steering. Both controls are specified with a three bit code. The software decodes these two parameters and generates the appropriate B signals and mark/space modulated A signals. When no control data is received by the interface board a stop signal is generated which turns off both motors. This prevents the mobile unit travelling beyond its reception range.

COMPONENTS

MOTOR CONTROL (2 off on mobile unit only)

Resistors

R1, R7 1k (2 off)
R2, R8, R122k7. (3 off)
R3 47 k
R4, R5 100 m 2 W (2 off)
R6 100
R9 560
R10, R1110k (2 off)
Transistors and Diodes
D1, D2, D4, D51N4002 (4 off)
D3, D6-81N4148 (4 off)
TR1, TR5TIP29 (2 off)
TR2 BC182L
TR3, TR4TIP 3055 (2 off)
TR6, TR7BC212L (2 off)

Miscellaneous

Printed circuit board RMBa p.c.b. mounting fuse holder 8 A fuse
4-way screw terminal Relay $2 p-2 w, 10 A$ contacts 5-way Molex p.c. terminals Heatsink bar (special product) 6BA pan head $\frac{1}{2}$ in. plus nut (4 off) Insulating kit for TIP 3055 (2 off) Insulating kit for TIP29 (2 off)

DISPLAY BOARD

Resistors

R1-10 220 (10 off)

$$
\text { R11 } 47
$$

Capacitors

C1 $220 \mu / 10 \mathrm{~V}$

Diodes and Displays

D1. D3 Red I.e.d. O.2in. (2 off)
D2 Green l.e.d. 0.2 in .
X1 Common anode 7 -segment

Integrated Circuits

IC1 74LS47
IC2 7407

Miscelianeous

Printed circuit board
WD 1 audible warning device PB2 130
10 -way lead ($10 \times 7 / 0 \cdot 2$)
10-way Molex shell 6471-10
Crimp terminals 4809 TL
7/0. 2 wires
6 mm p.v.c. sleeving

Fig. 3.8. Signal and axis directory

\longleftarrow		ON
S4	NORMAL	TEST E19-TRISTATE T
S3	NORMAL	TEST E2O-TRISTATE T
S2	NORMAL	$\begin{aligned} & T \\ & \text { S+SOLENOIDS OFF } \end{aligned}$
	T	
	S+SOLENOIDS ON	
S1	NORMAL	T
	T	
	S-SOLENOIDS ON	

AXIS No. DRIVE COIL	$\begin{aligned} & \hline 0 \\ & \mathrm{DCO} \end{aligned}$	$\begin{aligned} & \hline 1 \\ & \mathrm{DC} 1 \end{aligned}$	$\begin{aligned} & \hline 2 \\ & \mathrm{DC} 2 \end{aligned}$	$\begin{aligned} & \hline 3 \\ & \text { DC3 } \end{aligned}$	$\begin{aligned} & \hline 4 \\ & \mathrm{DC} 4 \end{aligned}$	5
DETECTOR COIL Molex M8 connection	$\begin{aligned} & \hline \text { DO } \\ & \text { M8-8 } \end{aligned}$	$\begin{aligned} & \hline \text { D1 } \\ & \text { M8-5 } \end{aligned}$	$\begin{aligned} & \hline \text { D2 } \\ & \mathrm{M} 8-4 \end{aligned}$	$\begin{aligned} & \hline \text { D3 } \\ & \text { M8-10 } \end{aligned}$	$\begin{aligned} & \hline \text { D4 } \\ & \text { M8-1 } \end{aligned}$	
MUX PIN (E25)	13	14	15	12	1	
$\begin{aligned} & \text { MOBILE - AXIS } \\ & \text { M101 } \\ & \text { MOBILE + AXIS } \end{aligned}$	ROTATE* LEFT ROTATE * RIGHT	RETRACT * EXTEND *	DOWN * UP *	WRIST * CCW WRIST* CW	HAND OPEN HAND CLOSED	NONE NONE
STATIC - AXIS S101 STATIC + AXIS	ROTATE * LEFT ROTATE * RIGHT	RETRACT * EXTEND *	DOWN* UP* *	WRIST * CCW WRIST* CW	HAND OPEN HAND CLOSED	- NONE NONE
STATIC-AXIS P101 STATIC + AXIS P101	ROTATE * LEFT ROTATE * RIGHT	SHOULDER *	$\begin{gathered} \text { ELBOW } \\ \stackrel{\downarrow}{\downarrow} \\ \underset{\uparrow}{\text { ELBOW }} \end{gathered}$		WRIST* CCW WRIST* CW	HAND OPEN HAND CLOSED
SOLENOID + DRIVE MOLEX No.	$\begin{aligned} & \hline \mathrm{SO}+ \\ & \mathrm{M} 3-8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { S1+ } \\ & \text { M3-10 } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{S} 2+ \\ & \mathrm{M} 2-8 \end{aligned}$	$\begin{aligned} & \mathrm{S3+} \\ & \mathrm{M} 2-1 \end{aligned}$	$\begin{aligned} & \text { S4+ } \\ & \text { M2-3 } \end{aligned}$	$\begin{aligned} & \text { S5+ } \\ & \text { M2-5 } \\ & \hline \end{aligned}$
SOLENOID - DRIVE MOLEX No.	$\begin{aligned} & \hline \text { SO- } \\ & \text { M3-9 } \end{aligned}$	$\begin{aligned} & \text { S1- } \\ & \text { M2-7 } \end{aligned}$	$\begin{aligned} & \mathrm{S} 2- \\ & \mathrm{M} 2-9 \end{aligned}$	$\begin{aligned} & \text { S3- } \\ & \text { M2-2 } \end{aligned}$	$\begin{aligned} & \text { S4- } \\ & \text { M2-4 } \end{aligned}$	$\begin{aligned} & \hline \text { S5- } \\ & \text { M2-6 } \end{aligned}$

* Indicates position feedback

POSITION DETECTOR BOARD

The first stage of the position detector electronics provides a signal gain of 20 dB (times 10). The second stage is a 100 Hz high pass filter that suppresses any picked-up mains hum $(50 \mathrm{~Hz}$) by 12 dB (a factor of 4) relative to the 100 Hz feedback signal. The output signal is typically a sinewave that varies in amplitude from 160 mV p.p. to 1.6 V p.p. as the hydraulic actuators move over their full range. This signal is then fed to the interface board where it is turned into a d.c. voltage. See Figs. 3.9, 3.10 and 3.12.

MANUAL CONTROL KEYBOARD

This hand-held controller provides up to 27 push-button commands plus two analogue channels for use with the mobile M101 to which data is transmitted by infra-red whilst the S101 and P101 use a 4 -core cable link. See Figs 3.13 and 3.14 .

E10 is an oscillator set to run at 2 KHz . E4 divides this frequency by two and generates complementary squarewave outputs. These are differentiated and then squared up by the Schmitt triggers E5 thus producing complementary marker and data pulses. The data pluses drive a binary counter E3, which then drives row and column multiplexers (E2 and E1). This causes the keyboard switches to be sequentially scanned. When a key is pressed data pertaining to that key will appear at E2 pin 3. The timing diagram shows that there are 64 data pulses per complete scan of the unit. The first 40 are reserved for push buttons (only 27 are used), next come two blocks of 8 that are used for analogue to digital conversion and the last block of 8 is a sync period. The ADC units operate by comparing a ramp waveform with the d.c. voltage that is to be digitized. When the ramp voltage exceeds the d.c. voltage the output of the comparator E8 goes high and appears at the $\overline{\mathrm{Q}}$ output of E9 on the next marker clock pulse. As the d.c. voltage is varied the ADC will produce zero to 8 data pulses in its respective time slot. E6 and E7 combine the keyboard and ADC data with the marker pulses and the sync period. The M101 unit uses infra red diodes to transmit the data. The diodes need current pulses of about 1 to 2 amps and so a Darlington transistor pair had been used (TR1, TR2).

Two component layouts are given (next month), one for the M101 unit and one for the S101 and P101 units neither of which have ADCs or an infra-red link.

Fig. 3.9. Position Detector board circuit diagram

Fig. 3.10. Component values for Position Detector board

Axis	M101, S101	P101
DO	$\begin{aligned} & \mathrm{C} 23=3 \mathrm{n} 3 \\ & \mathrm{R} 4=220 \mathrm{k} \end{aligned}$	$\begin{aligned} & \mathrm{C} 23=3 \mathrm{n} 3 \\ & \mathrm{R} 4=220 \mathrm{k} \end{aligned}$
D1	$\begin{aligned} & C 24=4 n 7 \\ & \mathrm{R} 10=220 k \end{aligned}$	$\begin{aligned} & C 24=3 n 3 \\ & R 10=130 k \end{aligned}$
D2	$\begin{aligned} & C 25=2 n 2 \\ & R 16=220 k \end{aligned}$	$\begin{aligned} & C 25=3 n 3 \\ & R 16=130 k \end{aligned}$
D3	$\begin{aligned} & C 26=1 n 5 \\ & R 22=220 k \end{aligned}$	$\begin{aligned} & \mathrm{C} 26=1 \mathrm{n} 5 \\ & \mathrm{~F} 22=22.0 \mathrm{k} \end{aligned}$
D4		$\begin{aligned} & C 27=1 \mathrm{n} 5 \\ & \mathrm{R} 28=220 \mathrm{k} \end{aligned}$

[6575]

Fig. 3.14. Timing diagram for manual control keyboard

DIRECT SOLENOID CONTROLLER

It is possible to control the robots directly without any electronics by use of this board. Switches S1-S 12 are used to turn on the Darlington drivers E1-E4 which supply the power to the solenoid operated valves.

INFRA-RED RECEIVER (next month)

The infra-red pulses are detected by two reverse biased diodes (D3, D4). The signal from these diodes is amplified by E1, and level shifted by the first part of E2. The second part of E2 is a voltage comparator which is used to recover the original pulses from somewhat noisy infra-red signal. The data is tben sent to the decoding section on the interface board. TR4 and TR5 turn on the l.e.d. (D5) when data is being received.

MICROPROCESSOR SECTION: HOW THE CONTROLS WORK (next month)

On power up the bleeper sounds five times, the play and record l.e.d.s go off, and the sequence number indicates zero. The controller is now in reset mode. Only from this mode can the sequence number be changed or can the current sequence be cleared.

Reset mode can always be reached by pressing the RESET button.

CHANGING THE SEQUENCE NUMBER (RESET MODE ONLY)

Pressing the SEQ+ button will advance the indicated sequence number (up to 7). Pressing the SEQ-button will decrement the indicated sequence number (down to \emptyset).

For correct functioning of a new unit (or one in which the CMOS memory had been powered down) it is necessary to clear each sequence memory before you attempt to record a sequence.

To clear a sequence, enter reset mode (if not already in this mode), and select the required sequence number. Hold down the CLEAR button; whilst holding this button down, momentarily press the EDIT button, then release the CLEAR button. The unit responds by bleeping and flashing the display.

COMPONENTS

POSITION DETECTOR BOARD

Resistors

R1,R7,R13,R19,R25	$1 k$ (5 off)
R2.R3.R8,R9,R14,R15,R20,R21,R26.R27	$10 k(10$ off)
R5,R11,R17,R23,R29	$13 k(5$ off)
R6,R12,R18,R24,R30	$91 k(5$ off)
R31-35	15 (5 off)
For R4,R10.R16,R22 and R28 see Fig. 3.10	
All resistors $\frac{1}{4} W 5 \%$	

Capacitors
C1-C3, C5-C7, C9-C11,
C13-C15, C17-19 $47 n$ (15 off)
(Siemens B32560 type)
C4,C8,C12,C16,C20
C21.C22 10u elect. (7 off)
For C23-27 see Fig. 3.10 (should be Siemens B32560)
Integrated circuits
IC1-3 LM324 (3 off)
Miscellaneous
Printed circuit board RPD
14 pin sockets for i.c.s (3 off)

NEXT MONTH: Manual control and manual control board electronics

Appearing every two months, Micro-Bus presents ideas, applications, and programs for the most popular microprocessors; ones that you are unlikely to find in the manufacturers' data. The most original ideas often come from readers working on their own systems; payment will be made for any contribution featured.

IN THIS month's Micro-Bus the emphasis is on graphics. Two novel hardware modifications for the Acorn Atom provide noise-free graphics. with virtually no loss in speed, and a previously inaccessible eight-colour graphics mode. Also featured are two graphics programs for the ZX 81

NOISE-FREE ATOM GRAPHICS

When the Atom's 6502 processor accesses the video memory, screen interference is produced in the form of white specks. The following simple hardware modification completely removes this problem. producing interference-free video-RAM access. It was discovered by Chris Dunning of Bristol who writes:
"The 6502 processor used in the Acorn Atom only accesses memory when its 00 clock is high, so if the video output circuit is arranged so that it only accesses memory
when $\emptyset 0$ is low the micro and the video controller will never clash for memory access and no interference will be produced on the screen.
"To achieve this on the Atom carry out the following modifications, shown in Fig. 1:

1) Solder a wire link across Clo.
2) Remove that 4 MHz crystal.
3) Connect a wire from pin 8 to IC9, the inverted 3.58 MHz clock used by the 6847 CRT controller.
4) Connect the other end of this wire to the hole left by removing the crystal, which is connected to pin 3 of IC45.

The effect of these modifications can be shown most strikingly by the following test. Before making them, assemble and execute the following machine code in the screen memory by typing:

$$
P=\# 8000
$$

|JMP P
LINK P-3

Fig. 1. Modifications to the Acorn Atom give noise-free graphics

Fig. 2. Modification to the Atom switches between noise-free graphics and full-speed operation

The text will become completely masked by screen noise produced by accessing the graphics memory. Repeating the test after having made the modifications gives a perfectly clear screen, with no noise.
"Since the micro's 00 clock is now 0.895 MHz instead of the previous 1 MHz the cassette interface is no longer CUTS standard; this is presumably why the Atom uses independent crystals for the display and the processor. You could of course re-record all your programs at the new frequency, or the modification can be made switchable. The best way to do this is probably to cut the track to pin 13 of IC44 and connect this via a changeover. switch to pin 2 of IC45 (with C10 and the crystal still in place) and pin 8 of IC9; see Fig. 2. The switch can now be used to change the clock to 1 MHz for reading tapes or 0.895 MHz for clean graphics. Note. however, that you should always hold down the break key when operating the switch or the contents of memory may become corrupted."

NEW ATOM GRAPHICS MODE

The second of this month's hardware modifications to the Acorn Atom computer shows how to plot in an eight-colour graphics mode. This mode is provided by the 6847 Video Display Generator chip, and is called the "Semigraphics Four" mode; it is not directly accessible on the Atom, but can be obtained with two simple circuit modifications.

Fig. 3. Eight-colour graphics mode: (a) character-cell pixel arrangement; and (b) corresponding memory byte

The mode. which will be referred to as " 0 a ". uses the same arrangement of character cells as the text mode. The character cell is divided into four elements, as in Fig. 3(a), and each of the four elements can be "on" or "off". as determined by the states of the lower four bits of the corresponding byte in memory. The next three bits determine the colour of the elements that are "on", as shown in Fig. 3(b). All the elements, in one character cell have to be the same colour, or black, and with this restriction mode 0a provides nine-colour graphics (counting black) with a resolution of 64×32.

HARDWARE MODIFICATION

To access the eight-colour graphics mode the following modifications should be made to the Atom circuit board:

1) Remove the 6847, 1C31, from its socket.
2) If the i.c. socket gives access to the printed circuit board beneath it, locate the track which links pins 31 and 34 to pin 2 (on the component side of the board). Make two cuts in this track, as close as possible to pins 31 and 34 , to isolate these pins from the circuit. Replace IC31.
3) Alternatively, bend pins 31 and 34 of the 6847 outwards, and replace the i.c. into its socket with these pins sticking out sideways.
4) Connect a wire from pin 31 if the i.c. (INT/EXT) to pin 1 (earth).
5) Connect a wire from pin 34 of the i.c. (A/S) to pin 39 (CSS)

The normal switch-on mode will be text, as before; to obtain the new graphics mode type: ? \# B002 $=8$

This takes pin 34 on the 6847 VDG high and gives the new mode. The low-resolution graphes characters are now not accessible; however, if required, a switch could be inserted to give a choice of either mode.

PLOTTING POINTS

A BASIC routine ' p ' to plot points in mode 0 a is shown in Fig. 4, lines 100 to 110 . The coordinates are passed to the routine in variables X and Y, where $X=0, Y=0$ corresponds to the bottom left-hand corner of the screen, and $X=63, Y=31$ is the top right-hand corner of the screen. The value of C determines the colour in which the point is plotted, and this can have the values 0 to 7 as shown in Fig. 3(b). Note that plotting a point of one colour in the same character cell as another point will set both points to the last colour.

[^5]Fig. 4. Atom program plots circles in the eight-colour graphics mode

To clear to mode 0 a the statements:
CLEAR 0; ? \# B002 = 8
can be used. Note that pressing escape will not reset the graphics mode to the text mode; to do this it is necessary either to type:
? \# B002 $=0$
or to press BREAK followed by typing OLD to retrieve the program.

The BASIC plotting routine could be converted into machine-code and patched into the Atom's graphics to give fast line drawing in the new mode.

COLOURED CIRCLES

As an example of the use of this routine the program in Fig. 4, lines 40 to 60, draws a series of concentric coloured circles. The equation in line 50 gives a number whose value depends on the distance from the centre of the screen; this value is then used to select the colour for plotting. The resulting display. shown in Fig. 5, is very colourful, although the black-and-white photograph does not really do justice to it.

Fig. 5. Display produced by the program of Fig. 4

LINES ON 2X81

Drawing a straight line between any two points is one of the fundamental graphics operations. The subroutine of Fig. 6 devised by S.J. Duggins of Birmingham performs this operation in just seven statements, improving over the routine given in the ZX81 manual (on page 121) which takes 26 statements.

```
9000 LET L=INT(0.5+(SQR(ABS\X2-X
1)**2+ABS(Y2-Y1)*:2)|
9005 FOR A=0 T0 L
9010 LET X=(X2-X1)*A/L
9020 LET Y=(Y2-Y1)*A/L
9030 PLOT XI +X,Y1+Y
9040 NEXT A
9050 RETURN
```

Fig. 6. $\mathrm{ZX81}$ routine plots a line between X1, Y1 and X2, Y2

The two points between which the line is to be drawn are supplied to the program as variables $\mathrm{X} 1 . \mathrm{Y} 1$ and $\mathrm{X} 2, \mathrm{Y} 2$, where $\mathrm{X} 1>=0$. $\mathrm{X} 2<=63 . \mathrm{Y} 1>=0$ and $\mathrm{Y} 2<=43$. The number of plotting points between the end-points is first calculated as L (line 9000). To plot the points two separate linear equations are used.
one for the X direction and one for the Y direction.

ZX81 ETCH-A-SKETCH

The program shown in Fig. 7 was submitted by G. Wheaton of Bolton. and turns the IK ZX8I into an etch-a-sketch machine so that designs can be drawn using the cursormovement keys 5, 6, 7 and 8 . Mistakes can be rectified by pressing the 0 (rubout) key, and plotting resumed by pressing the 1 key. Diagonal lines are possible by careful use of the 0 and I keys between plotting.

$$
\begin{aligned}
& 10 \text { LET } N=10 \\
& 20 \text { LET X=0 } \\
& \begin{array}{l}
30 \text { PLOT N, X } \\
40 \text { IF INKEY } \$={ }^{-8 *} \text { THEN LET } N=N+1
\end{array} \\
& 50 \text { IF INKEY } \$=* 5 \text { " THEN LET } N=N+1 \\
& \begin{array}{ll}
50 & \text { IF INKEY }=* 5 * \text { THEN LET } N=N-1 \\
60 \text { IF INKEY }=-6 " \text { THEN LET } X=x-1
\end{array} \\
& 70 \text { IF INKEY } 70=6 \text { THEE } \$=* \text { THEN LEST } x=x-1 \\
& 71 \text { IF INKEYS="O" THEN LET TO } 90 \\
& 72 \text { IF } \mathrm{N}>30 \text { THEN LET } \mathrm{N}=30 \\
& 74 \text { IF } N<0 \text { THEN LET } N=0 \\
& 76 \text { IF } \mathrm{X}>30 \text { THEN LET } N=0 \\
& 78 \text { IF } x<0 \text { THEN LET } x=0 \\
& 79 \text { UNPLOT N, X } \\
& 80 \text { GO TO } 30 \\
& 80 \text { GO TO } 30 \\
& 95 \text { UNPLOT N, } \mathrm{N} \\
& 95 \text { UNPLOT N, X } \\
& 100 \text { IF INKEY } \$=\text { "1" THEN GO TO } 30 \\
& 110 \text { IF INKEY } \$=\text { " } 8 \text { " THEN LET } N=N+1 \\
& 120 \text { IF INKEY } \$={ }^{\circ} 5^{\prime \prime} \text { THEN LET } N=N-1 \\
& 130 \text { IF INKEY }={ }^{\text {" }} 6 \text { " THEN LET } x=x-1 \\
& 140 \text { IF INKEY } \$=* 7 \text { " THEN LET } x=x+1 \\
& 150 \text { GO TO } 90
\end{aligned}
$$

Fig. 7. Etch-a-sketch program for the 2×81 uses the cursor controls to draw pictures

The program should be fairly selfexplanatory. Plotting is performed by lines 30 to 80 . and unplotting by lines 90 to 150 . When unplotting the cursor flashes (lines 90 and 95) to indicate its position.

HORSE-RACE ADDENDA

"The Horse-Race program for the Mk14 VDU in August's Micro-Bus is excellent, once it works!" writes W. R. Osborne of Tyne and Wear. who has pointed out some misprints. Three jump offsets are incorrect. and should be altered as follows:
AD2 should read EI not DI
AD8 should read 0D not 0C
ADE should read 07 not 0 C
Also, the XPPC 3 at the end, of the program does not return to the monitor, since P3 is altered in the program. The code shown in Fig. 8. added to the end of the program, overcomes this problem and also displays the number of the winning horse: hitting any key (except ABORT) then runs the game again. To run the modified game GO to $0 B 4 B$.
$0 B 39$ C4 OF 36 C4 0032 C
$0 B 40 \quad 01 \quad 37$ C4 $3 \mathrm{JF} 3340 \mathrm{CA} O D$

$\begin{array}{lllllllll}0 & 0 & 36 & 32 & \text { C } 4 & 00 & \text { CE } & 01 & 32 \\ 9 C\end{array}$

Fig. 8. Addition to the Mk14 HorseRace game displays the number of the winning horse

Sinclair ZX81 Personal Comp the heart of a system that grows with you.

1980 saw a genuine breakthrough the Sinclair ZX80, world's first complete personal computer for under $£ 100$. Not surprisingly, over 50,000 were sold.

In March 1981, the Sinclair lead increased dramatically. For just $£ 69.95$ the Sinclair ZX81 offers even more advanced facilities at an even lower price. Initially, even we were surprised by the demand - over 50,000 in the first 3 months!

Today, the Sinclair ZX81 is the heart of a computer system. You can add 16 -times more memory with the ZX RAM pack. The ZX Printer offers an unbeatable combination of performance and price. And the ZX Software library is growing every day
Lower price: higher capability With the ZX81, it's still very simple to teach yourself computing, but the ZX81 packs even greater working capability than the ZX80.

It uses the same micro-processor, but incorporates a new, more powerful 8 K BASIC ROM - the 'trained intelligence' of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays.

And the ZX81 incorporates other operation refinements - the facility to load and save named programs on cassette, for example, and to

Every 2×81 comes with a comprehensive, specially-written manual - a complete course in BASIC programming, from first principles to complex programs

Higher specification, lower price -

 how's it done?Quite simply, by design. The ZX80 reduced the chips in a working computer from 40 or sa, to 21 . The ZX81 reduces the 21 to 4 !

The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from the $\mathbf{Z X} 80$!

New, improved specification

 - Z80A micro-processor - new faster version of the famous $\mathbf{Z 8 0}$ chip, widely recognised as the best ever made.- Unique 'one-touch' key word entry: the ZX81 eliminates a great deal of tiresome typing. Key words (RUN, LIST, PRINT, etc.) have their own single-key entry.
- Unique syntax-check and report codes identify programming errors immediately. - Full range of mathematical and scientific functions accurate to eight decimal places.
- Graph-drawing and animateddisplay facilities.
- Multi-dimensional string and numerical arrays.
- Up to 26 FOR/NEXT loops. - Randomise function - useful for games as well as serious applications - Cassette LOAD and SAVE with named programs.
- 1K-byte RAM expandable to 16 K bytes with Sinclair RAM pack. - Able to drive the new Sinclair printer.
- Advanced 4-chip design: microprocessor, ROM, RAM, plus master chip - unique, custom-built chip replacing 18 ZX 80 chips.

Kit or built - it's up to you!

 You'll be surprised how easy the ZX81 kit is to build: just four chips to assemble (plus, of course the other discrete components) - a few hours' work with a fine-tipped soldering iron. And you may already have a suitable mains adaptor -600 mA at 9 V DC nominal unregulated (supplied with built version).Kit and built versions come complete with all leads to connect to your TV (colour or black and white) and cassette recorder.

Designed exclusively for use with the ZX81 (and ZX80 with 8 K BASIC ROM), the printer offers full alphanumerics and highly sophisticated graphics.

A special feature is COPY, which prints out exactly what is on the whole TV screen without the need for further intructions.

At last you can have a hard copy of your program listings-particularly

How to order your ZX81

BY PHONE - Access, Barclaycard or
Trustcard holders can call
01-200 0200 for personal attention 24 hours a day, every day.
BY FREEPOST - use the no-stampneeded coupon below. You can pay
useful when writing or editing programs.

And of course you can print out your results for permanent records or sending to a friend.

Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZX Printer connects to the rear of your computer - using a stackable connector so you can plug in a RAM pack as well. A roll of paper (65 ft long $x 4$ in wide) is supplied, along with full instructions.
by cheque, postal order, Access, Barclaycard or Trustcard. EITHER WAY - please allow up to 28 days for delivery. And there's a 14 -day money-back option. We want you to be satisfied beyond doubt and we have no doubt that you will be.

INTRODUCING MICROPROCESSORS

by I. R. Sinclair Price: $£ 5.00$

PRACTICAL SOLID STATE

CIRCUIT DESIGN
2nd ed. by J. E. Oleksy
Price: $\mathbf{£ 6 . 2 0}$
UNDERSTANDING MICROPROCESSORS
by D.L. Cannon Price: $£ 4.50$
PRACTICAL ELECTRONICS H/B
by I. Sinclair
Price: £4.35
THE CATHODE-RAY OSCILLOSCOPE
\& ITS USE
by G. N. Patchett
Price: $£ 4.00$
INTRODUCING AMATEURELECTRONICS
2nd ed. by I. R. Sinclair
Price: $£ 4.00$
WORLD RADIO T.V. HANDBOOK
by J. M. Frost
Price: $\mathbf{£ 1 0 . 5 0}$
H/B OF BASIC ELECTRONIC
ROUBLESHOOTING
by J. D. Lenk
Price: $£ 4.65$
67 READY TO RUN PROGRAMS IN BASIC:
GRAPHICS, HOME \& BUSINESS,
EDUCATION, GAMES
by Wm. S. Watson Price: £4.60
COMPUTER PROGRAMMING IN BASIC
by P. Bishop
Price: $£ 3.50$

THE MODERN BOOK CO.

of British and American Technical Books
19-21 PRAED STREET LONDON W2 1NP
Phone 01-4029176 Closed Saturday 1 p.m. Please allow 14 days for reply or delivery.

MAIL ORDER ADVERTISING

Britiah Code of Advertising Practice

Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisments where money is paid in advance. the code requires advertisers to fulfil orders within 28 days. unless a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please retain proof of postage/despatch, as this may be needed.

Mail Order Protection Scheme

If you order goods from Mail Order advertisements in this magazine and pay by post in advance of delivery. PRACTICAL ELECTRONICS will consider you for compensation if the Adveriser should become insolvent or bankrupt. provided:
(1) You have not received the goods or had your money returned; and
(2) You write to the Publisher of PRACTICAL ELECTRONICS summarising the situation not earlier than 28 days from the day you sent your order and not later than two months from that day.
Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.
We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiser has been declared bankrupt or insolvent.
This guarantee covers only advance payment sent in direct response to an advertisement in this magazine not, for example, payment made in response to catalogues eic, received as a result of answering such advertisements. Ciassified advertisements are excluded.

BAKER LOUDSPEAKERS "SPECIAL PRICES" POSTE2

Model	Ohms	Inch	Watts	Type	Price
Major	4, 8, 16	12	30	Mi-Fi	¢14
Deluxe Mk II	8	12	15	Hi-Fi	¢14
Superb	8, 16	12	30	Hi-Fi	124
Auditorium	8, 16	12	45	Hi-Fi	$\underline{42}$
Auditorium	8,16	15	60.	Hi-FI	£34
Group 45	4, 8, 16	12	45	PA	E14
Group 75	4, 8, 16	12	75	PA	122
Group 100	8. 16	12	100	PA	¢24.
Group 100	8, 16	15	100	PA	$¢ 32$
Disco 100	8.16	12	100	Oisco	¢24
Disco 100	8,16	15	100	Disco	¢34

DE-LUXE DISCO MIXER. 240V, 4 slereo channels, 2 magnetic, 2 ceramic/lape, 1 mono mic channel, iwn v.u.
meters, headphone monitor outlet, slider controls, suitable for panel or desk mounting, altractlve grained aluminium 2 CHANNEL STEREO MIXEA 9
MINI MODULE LOUDSPEAKERKIT保 EMI. Tweeter; 3-way Crossover. Full assembly instructions supplied. Response 60 to 20,000 c.p.s. 12 watt RMS 8 onms
fio per kit. Two kits $£ 18,50$. Sulable Bootehetf Coll £ 10.50 each. Post $£ 2$.
GARRARD 6-200 SINGLE PLAYER DECK Brushed Aluminlum Arm with stereo ceramic cartridge
and Diamond Stylus, 3 -speeds. Manual and Auto Stop Slart. Large Metal Turniabie.
Cueing Device and Pause Control.
$\mathbf{E} 22$. Post $£ 2$.

METAL PLINTH CUT FOR GARRARD
Size: $16 \times 14 \times 3 \mathrm{in}$. 3.00 . Silver or 8 lack finish. PO5t E2.
ISKRA SINGLE RECORD PLAYER £8 Fitted with auto stop, stereo cartridge. Baseplate.
Size $11 \times$ ajin. Turntable slze 7ln. diameter, a.c.
B.S.R. SINGLE PLAYER P170/2 £20.00 3-speeds 11 in . aluminium furntable. "slim" arm, cuein sator, adjustable stylus pressure, plays all records, spring suspenslon, 240V AC. Post £2.
B.S.R. DE-LUXE AUTOCHANGER
£20
DECCA B.S.A. TEAK PLINTH $18 \frac{2}{4} \times 14 \frac{1}{} \times 4 \mathrm{in}$. Space for small amplifier. Special price $£ 5.95$ post pai
Ditto with Garrard Board $£ 4.95$ post paid.

TINTED PLASTIC COVERS POST £2
 $\times 3$ in. $£ 5.18 \times 12 \frac{1}{7} \times 3$ in. $\mathbf{E} 6$. $16 \times 13 \times 4$ in. $\mathbf{E} 6$. R.C.S. LOW VOLTAGE STABILISED POWER PACK KITS
£2.95 Post 65p All parts and Instructions with Zener diode printed circult, mains transformer 240 V a.c. Output 6 or 71 or 9 or
up to 100 mA or less. Please state voltage required.
PP BATTERY ELIMINATOR BRITISH
Mains stablized power-pack 9 volt 400 mA max.
overload cut out. Size $5 \times 3 \frac{3}{4} \times 2 \ddagger \mathrm{in}$. $\mathrm{E} 4 \cdot 30$. Post 50 p . overioad cut out. Size $5 \times 3 \frac{2}{2} \times 2 \neq i n$. £4. 50 . Post 50 D .
Switched $3 ; 6 ; 7 \frac{1}{2}: 9$ volt 400 ma . Stabilized. £7.50. Post f 1

BLANK ALUMINIUM CHASSIS, 18 s.w.g. 2 in . sides
$6 \times 41 \mathrm{I} . \mathrm{£f} \cdot 20: 8 \times 6 \mathrm{in}$. $£ 1.50 ; 10 \times 7 \mathrm{in}$, $\mathrm{E} 1.90: 14 \times 9 \mathrm{in} . £ 2.50$
 $12 \times \sin$. £2.20. ANGLE BRACKET, $6 \times \frac{1}{\frac{1}{4}} \times \frac{7 i n}{} \mathrm{in} .25 \mathrm{p}$.
 $\mathrm{SOP}_{1} 14 \times 9 \mathrm{In} .1 \cdot 20 ; 12 \times 12 \mathrm{n} . \mathrm{E}_{1} \cdot 30 ; 16 \times 10 \mathrm{in}$. £1.40. ALUMINIUM BOXES, MANY OTHER SIZES IN
STOCK $4 \times 2 \frac{1}{3} \times 2 \mathrm{in}, £ 1.00 ; 3 \times 2 \times 1 \mathrm{In}$, sop; $6 \times 4 \times 2 \mathrm{n}$.

HIGH VOLTAGE ELECTROLYTICS $\begin{array}{rrrrrr}8 / 450 \mathrm{~V} & 45 \mathrm{p} & 8+8 / 450 \mathrm{~V} & 75 \mathrm{p} & 50+50 / 300 \mathrm{~V} & 50 \mathrm{p} \\ 16 / 550 \mathrm{~V} & 45 \mathrm{p} & 8+166 / 450 \mathrm{~V} & 75 \mathrm{p} & 32+32500 \mathrm{~V} 81 \cdot 80 \\ 32 / 500 \mathrm{~V} & 75 \mathrm{p} & 20+20 / 450 \mathrm{~V} & 75 \mathrm{p} & 100+100 / 275 \mathrm{~V} & 650\end{array}$ $\begin{array}{llllll}321500 \mathrm{~V} & 75 p & 20+20 / 450 \mathrm{~V} & 75 \mathrm{p} & 100+100 / 275 \mathrm{~V} & 65 \mathrm{p} \\ 50 / 500 \mathrm{~V} & \mathrm{E} \cdot 20 & 32+32 / 350 \mathrm{~V} & 75 \mathrm{p} & .150+200 / 275 \mathrm{~V} & 70 \mathrm{p}\end{array}$

HEATING ELEMENTS, WAFER THIN
Size $11 \times 9 \times$ in. Operating voltage $240 \mathrm{v}, 250 \mathrm{w}$ approx. Suitable for Heating Pads. Food Wermers. Convector Heaters,
Propagation. etc. Must be clamped between two sheets of. metal. etc.
ONLY 60 p EACH (FOUR FOR f 2) ALL POST PAID.
Radio Component Specialists
CROYDON, SURAEY, U.K. TEL: O1-684 1665
Post 65 p Minimum. Callars Welcome. Closed Wed
Phone or dera with Access-Barciay $=$ Visa.
Lists 28 Stamps. Normal delivary 7 daye.

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

RECEIVERS AND COMPONENTS

300 SMALL COMPONENTS, transistors, diodes $£ 1.70$. 71bs assorted components $£ 4.25$. $10 \mathrm{lbs} £ 5.75 .20$ wire ended neons $£ 1$. Forty 74 series ICs on panel £1.70. 500 capacitors $£ 3.20$. List 20 p refundable. Post 60 p, optional insurance 20p. JWB Radio, 2 Barnfield Crescent. Sale, Cheshire, M33 INL.

NEW!! LOW PRICEI SPECIAL SHAPE LEDSI Pack, 20 mixed Arrowheads Lines TRI/Rectangles Dots, Red, Green, Yellow Only $£ 2.45+25 p$ P\&P. PETRON ELECTRONICS, 1 Courtlands Road, Newton Abbot, Devon.

KWIKMAIL ELECTRONICS

FREE OFFER

Super Bag containing 60 components incl. transistors, l.C.s. resistors, caps, diodes + our free catalogue containing thousands of items at unbeatable prices. Please send 45p P\&P.
Dept. PE, 195 Charlton Rid, London N9 8HL

SMALL ADS

The prepaid rate for classified advertisements is 32 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $\mathbf{£ 1 0 . 7 0}$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Electronics, Room 2337. IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

P.E. AND PROTOTYPE PCBS PLUS P.E. PHOTOCOPIES LOW COST SERVICE FOR HOME ENTHUSIASTS Send S.A.E. for lists
 PRINTRONIX, 8 Back Road, Sideup, Kent, DA14 6HA.

SURPLUS PARCELS. Unbeatable value: guaranteed to contain assorted resistors. capacitors, relays (min. etc.) transistors, semi-conductors, switches (micro etc.), 5 P.C.B's incorporating valuable components, plus assortment of components as available. 10 lbs minimum. Send remittance for $£ 10.00$ (includes $p \& p$) and $£ 1.50$ V.A.T. to: RICH ELECTRONICS, Claverley House, 93, Lubbock Road. Chislehurst. Kent. - We expect repeat orders - buy a parcel, we think you will agree.

BLACKPOOL AND THE FYLDE. For components to ETESON ELECTRONICS. ISB. Lower Green, Poulton-Le-Fylde, Tel. 885107 Mail order too - SAE lists.
POWER TRANSFORMER AND RECTIFIER bARGAINS, 30150 :mph. varion voltages. List R. Neville. Green Lane. B:llistied d. Nr. Basingntoke. Hants.
ballard's of tunbrioge wells have moved to 54, Grosvenor Road, no lists. S.A.E. all enquiries phone Tunbridge Wells 31803.

T \& J ELECTRONIC COMPONENTS

Quality components - Competitive prices

- Stock items despatched same day - First class post used whenever possible Wide range of components and accessories VAT inclusive prices Single charge of 40 p postage - Price increases kept to a minimum. For
cheque or postal order for 45 p .
$9 \overline{8}$ Burrow Road, Chigwell, Essex IG7 4H8
TURN YOUR SURPLUS Capacitors. transistors. etc.. into cash. Comtact COLFS-HARDING CO.. 103 South Brink. Wishech. Cambs. 0945-4188. Iminediate settlement.
BOURNEMOUTH/BOSCOMBE. Electronic components specialists for 33 years. Foresters (National Radio Supplies). Late Holdenhurst Road. Now at 36, Ashley Road, Boscombe. Tel. 302204. Closed Weds.

1920 to 1955

Receivers, valves, components, service data, historical research books, magazhes, repairs and restorations. A
complete service for the collector and enthusiast of vintage radio. with enquiries and for monthty newsheet,
S.a.e. with THE VINTAGE WIRELESS COMPANY, G4, Broad Street, Staple Hill, Bristol BS16 5NL. Tel. Bristol
565472 .

CASES, ABS with pcb slots L\&W, with aluminium recessed cover-panel to enhance your controls, $150 \times 90 \times 50 \mathrm{~mm}$ $£ 1.55$. $196 \times 113 \times 60 \mathrm{~mm} £ 2.05,130 \times 68 \times 41 \mathrm{~mm}$ $£ 1.10 .83 \times 54 \times 28 \mathrm{~mm} £ 0.80 \mathrm{p}$. CASES PRESSED STEEL with aluminium base and panels, recessed and vented, $102 \times 56 \times 83 \mathrm{~mm} 51.70,150 \times 61 \times 103 \mathrm{~mm}$ $£ 2.55,150 \times 76 \times 134 £ 3.04,184 \times 70 \times 160 \mathrm{~mm} £ 4.08, \mathrm{D}$ $\times \mathrm{H} \times \mathrm{W} .19$ " RACK SYSTEM, brushed aluminium front panel with chrome handles, with vented rear case including adjustable height chassis. L4.25 \times D? $50 \times H 140 \mathrm{~mm}$, Assembled $£ 23.50$. Flat pack, $£ 19.50$. All orders plus VAT at $15 \%+$ p\&p 50 p orders under $£ 5.00$. Lists 28 p. Industrial and Trade Enquiries welcome. RELAY-A-QUIP, Industrial and Trade Enquiries welcome. RELAY-A-QUIP,
Moat Lodge. Stock Chase, Maldon CM9 7AA. (062158686) 24 Hrs .

ELECTRICAL COMPONENTS

 LIMITED STOCK CLEARANCE OF Electrolytic Capacitor 47 4 63 V dc10p each Stud Mounting Capacitor $1.5 \mathrm{\mu f}^{\dagger} \pm 10 \%$ 280 V ac working..60p each Tantalum Capacitor Kemet C series Lin. Pot Ceramic Preset 500 K type TCMO...........10p each Lin. Por. Carbon Preset 2 K 2 Type MP........ 40p each V. 101 B micro switch....................................60p each Polyester Capacitor $0.1 \mu t \pm 20 \% 1000 \mathrm{~V}$ dc 15 p each Reed relay 12 V coil $855 \Omega^{\circ} \pm 10 \% \ldots \quad . \quad$ 75p each
Offer is subject 10 availability. Minimum order charge $f 5$ plus $30 p$ pos V packing. Orders of $\varepsilon 10$ or over $p \& p$ f5 plus $30 p$ post/packing. Orders of E
free. Cheques or P.O. with order to:

CHLORIDE GENT LIMITED. Dept. W,
Temple Road, Leicester LE5 4JF

EDUCATIONAL

CAREERS IN MARINE ELECTRONICS. Courses commencing September and January. Further details. The Nautical College. Flectwood FY7832. Tel. 0391779123.

TELEVISION COMPUTER RADIOCOMMUNICATION \& Radar servicing

$2 \frac{1}{3}$ YEAR full-time Modular Diploma course to include a high percentage of practical work.

- ELECTRONIC PRINCIPLES
- MONOTV \& CCTV
- colour TV \& VCR
- MICROELECTRONICS \& DIGITAL TECHNIQUES
- MICROPROCESSORS \& COMPUTERS
- RADIOCOMMUNICATIONS \& RADAR

Each of the above Modules are 13 weeks in duration. Individual Modules can be arranged for applicants with suitable electronics background.
Tuition fees (UK \& Overseas) £1575 per year (i.e. 5525 per Module).
Next session starts January 4th
Prospectus from:

LONDON ELECTRONICS COLLEGE

Dept: AA, 20 Penywern Road, London SW5 9SU. Tel: 01-373 8721.

SOFTWARE

2x colourll Enhanced version of board demonstrated at ZX Microfair. Programmable character generator, memory, motherboard. UK $101 /$ S2 P.C.G. P.O.A. Repeating key $£ 2.50$; Keyboard $£ 17.50$. Edge connector £..95. Input/Output Port £7.95, 2114200 nS 99 p . Resistors 3/4p. SAE for details. Haven Hardware, 4 Asby Road, Asby. Workington, Cumbria.

ZX80/ZX81 KEYBOARD

Fui size 40 key keyboard. All symbols marked in two colours.
Kit $£ 19.95$
Built £22.95
Keyboard connector
£1.95

IN/OUT PORT

24 lines controlled in BASIC.
Drive motors, printers etc.
Kit £14.50
Built $£ 15.95$
In/Out connector
$£ 3.95$
ZX80/ZX81 connector $£ 2.95$

MOTHERBOARD

Drives RAM pack and two boards. Includes $\mathbf{Z X 8 0 / Z X 8 1}$ connector and one board connector.
Kit $£ 13.39$
Built $£ 13.90$
2nd connector
$\mathbf{£ 2 . 9 5}$
Postage on above 80p
SAE for FREE illustrated catalogue.
REDDITCH ELECTRONICS. 21 Ferney Hill Ave., Redditch. Worcs. B97 4RU.
Tel. 052761240

PROGRAMMER'S TOOLKIT for UK 101, and OSI Superboard and Cl . 2 K of fast machine code on tape or EPROM, compatible with all monitors, gives 14 new BASIC commands including RENUMBER. DELETE, TRACE, and OLD. Only $£ 10$ inclusive for tape version, $£ 17$ for EPROM version or SAE for more details. State computer type and start address required. SINGLE KEY ENTRY or BASIC keywords for above computers. All keyboards obtainable, Toolkit compatible, key functions user-definable: $£ 6 \mathrm{~S}$. A. Smith. 36 Woodvale Avenue, London SE25 4AE.

\section*{UK 101 | $\substack{\text { PRogams } \\ \text { Oncassette }}$ |
| :---: |}

TAPE 1: Startrek (8K), Robot Chase (4K) Maze (6K). Golf
(4K). Space invaders (4K). Chessboard (4K), Graphics (4 K).
Fourier Series (8 K), 8est fit Polynomial (4 K), Hangman ($(\mathrm{KK}$).
Oocking a Space Ship (4K).
TAPE 2: Adventure (8 KK). King (8iK), Moon Landing (6K),
(6 K). Dogifight (4 K), The Tower of $\mathrm{Brahma}(4 \mathrm{~K})$, Nim (4 K),
Life (8k). Mugwamp (4K).
TAPE 3: Real Time Startek (8 K), Mastermind (4 K), Tank
Barle (4K), Surround (4K). Integration (8KK). Bionhyhm
$\begin{aligned} & \text { (4K), Asteroid Shoot (4K). Graphics Aid (4K), Space War } \\ & (4 \mathrm{~K}) \text {. Breakoul (4K) Grach Ploter (} 6 \mathrm{~K} \text {) }\end{aligned}$
One tape for $\mathbf{E 6 . 0 0}$, two for E 11.50 , th
$\begin{aligned} & \text { Machine Code Programs:- } \\ & \text { Space Invaders, Asteroids }\end{aligned}$
$\begin{aligned} & \text { Space Invaders. Asteroids } \\ & 19 \text { Speeds, } 5 \text { Difficulty Levels) }\end{aligned}$
Life (128×128 board. 1.2 sec per generation $)$ Assembler
E3.00 each, two for $\mathbf{5 5 . 0 0}$, three for $\mathbf{E 7 . 0 0}$, all four for
All programs availabie for use with standard (48×16) of
enhanced (48×32) V.D.U. displays (state which).
Mr M. WARO,
$\begin{aligned} & 9 \text { Si Androws Avenue. } \\ & \text { Crewe, Chashire }\end{aligned}$

COMPUKIT SOFTWARE: Invaders, Labyrinth etc. SAE for lists: Haigh. 8 Bromhill Walk. Knotlingley, West Yorkshire.

SUPER BOARD $8 K$ CASE ANO PSU. Software and manuals ino cluded. $£ 180.041-6378897$

BUILD THE MICRO 88 SYNTHESISER

for under $£ 50$! Built-and-tested clrcuit board, battery operated, simple control connections no electronics knowledge required. MICRO 88 - a real synthesiser for half the price SAE to. B. J. TYLER, 21 BEAUFORD ORCHARD, NORTON, TAUNTON, SOM.

FREE CATALOGUE. Everything for microcomputer users. Phone Croydon Computer Centre, 29A, Brigstock Road, Thornon Heath, Surrey 01-689 1280

UK 101 SOFTWARE ON TAPE
GALACTIC HITCHHIKER (8K). An adventure, all in machine code. A beautyl ($£ 7.00$)
SUPERTREK ($8 K$). Sail boldly through the universe zap-ping moving Klingons in real time. Superb graphics. S7.00)
STARTREK (8 K). The old favourite, beautifully presented. (E6.00)
UNAR LANDER. A real challenge. You won't get down in less than 3 hours. ($\mathbf{E} 3.00$)
HANGMAN. Excellent graphlcs. P.E. said sol (E3.00)
BASIC TUTOR ($8 \times 4 \mathrm{~K}$). The only way to leam - at the
LEPASSE-TEMPS. You NEEO this, if you haven't already
MAD MONK (8K). It's ready at lastl A machine code adventure with some truly remarkable graphics, this programme is in a class by itself. ($\mathbf{(9 . 5 0}$) Monitors and are available for 16×48 and 32×48 displays including enhanced Superboards).

HARDWARE

These kits are complete in every way: - Fully socketted high uality PC8, all components, switches etc, plus preformed cable assembly for easy interconnection to J 1 , or our...
MOTHERBOARD SYSTEM. Now you can add on all hose exiras easily. Provides eight, yes EIGHT, fully buffered $J 1$ type sockets. ($£ 19.50$)
HI-SPEED CASSETTE IN (£39.50)
HI-SPEED CASSETTE INTERFACE, At last a system
that works. COMPLETELY RELIABLE 4000 baud 8000 with easonable cassette) plus software for named file handling. A delight to use. ($\mathbf{E 1 9 . 5 0 \text {). For software in EPROM, add }}$
VIDEO ENHANCEMENT. Switch selectable 16×48 or 32×48 displays without butchering your computer. (£19.50)
Monitor EPROMS re-blown to suit for just $£ 2.50$
Monitor EPROMS re-blown to suit for just $£ 2.50$
8K EPROM BOARD ($\mathbf{£ 1 9 . 5 0 \text {). A } 2 \mathrm { K } \text { Entended Monitor is }}$. 8K EPROM BOARD ($£ 19.50$). A 2K Extended Monitor is available in EPROM for $£ 12.00$ plus, coming soon. MONITOR BOARD. Plug into Mon
switch selection of up to 4 EPROMS. (E9.50)
AVAILABLE SHORTLY: EPROM Programmer, PIN Sound Board. Analogue Board and something rather nice on the graphics side

All inclusive prices - absoluraly no hidden extras.

> A. KNIGHT (Dept. PE), 28 SimonsideWalk, Ormesby. Cleveland. Tel. (0642) 321266.

FOR SALE

CLEF MASTER RHYTHM KIT completed and working $£ 85.00$. 01-578 5448 (Greenford).

UK101 (expanded to 8K/RS232/buffers - no case) Assembler. 'new' monitor in EPROM £116 (saving over £60). Reading (0734) 692280

SCOPEX 4D10a OUAL BEAM OSCILLOSCOPE, £140. Protohord 203A. 449. Both excellent condition. Mr. I. Sola, St Margarets House, Hulse Road. Southampton.

GRUNOIG MILLIVOLTMETER $0-1 \mathrm{MHz} \mathbf{~} 40+£ 5.00$ p.p. Grundig PSU Variable 0-25V 2A ring Ardglass (0396) 841 631.

NEW BACK ISSUES OF 'PRACTICAL ELECTRONICS' available 90 peach Post Free. Cheque or uncrossed P/O returned if not in stock - BELL'S TELEVISION SERVICES, 190 Kings Road. Harrogate, N. Yorks. Tel: (0423) 55885.

UK101 - 8K + SOFTWARE MON 2 £200. Transcendent 2000 synthesiser. built in 30W AMP £230. Both £410. Phone (0843) 583581 after 6.

SERVICE SHEETS

bell's television services for Service Sheets on Radio, Tv, etc f 1.25 plus S.A.E. Colour TV Service manuals on request. S.A.E with enquiries to B.T.S. 190 K ings Road, Harrogate. N. Yorkshire, Tel: (0423)55885.

SERVICE SHEETS E1 each plus SAE. Individual T.V. repair data $£ 6.50$ (with circuits $£ 8.50$). Frec electronics newsletter, pricelists unique publications. Auspe. 76 Churches. Larkhall. Lanarkshire ML9 IHE.

BOOKS AND PUBLICATIONS

ANY SINGLE SERVICE SHEET \&! L.S.A.E. Thousands different repair/service manuals/sheets in stock. Repair data your named T.V. $£ 6.50$ (with circuits $\mathbf{8 8 . 5 0}$). S.A.E. Newsletter, pricelists, quotations. AUS (PE), 76 Church Street, Larkhall, Lanarkshire. (0698 883334).

MISCELLANEOUS

ELECTRONIC KITS. Largest range of kits in the U.K. Everything from stroboscopic lights to transmitters, at unbeatable prices. Send S.A.E. for free catalogue to: EASTLING ELECTRONICS (KITS). 64B. Hawthorne Road, Winton, Bournemouth.

MORSE CODE TUITION AIDS

Cassette A: 1-12 w.p.m. for amatour radio examination. Cassette B: 12-25 w.p.m. for protessional examination oreparation. Each cassette is type C90.
Price each Cassette (including booklets) £4-75. Morse Key and Buzzer £4.75.
Prices include postage etc. Overseas Airmall E 1.50 extra.
MHELELECTRONICS
(Oept PE), 12 Longshore Way, Miton,
Portsmouth PO4 8LS.

Cabinet and Flightcase Fittings
 Fretcloths. Coverings. Handes Castors etc. Jacks and Sockets, Cannons, Bulgins, Reverb Trays, Emiar Compres- sion Drivers, P\&N Stands, Celestion Speakers, ASS. Glasssion Drivers, fibre Horns.
 Send 30 p Postal Order for allustrated catalogues to:
 ADAM HALL (P. E. SUPPLIES) Unit G, Carlton Court, Granger Road, Southend-on-Sea, Essex SS2 5BZ.

gladstone radio, 66 Elms Road, Aldershot GUl1 ILP. CLOSING MARCH '82. Send two second class postage stamps (unused) for lists of components, speakers etc., at knock-out prices.

FOR ALL YOUR COMPONENTS. C.B. Electronics, 80 Wheatland Lane, Wallasey, Merseyside. 0516399122

BIG EARS SPEECH INPUT
 FOR
 YOUR COMPUTER!

BIG EARS opens the door to direct man-machine communicatlon. The syslem comprises analogue frequency separation filters, preamps and signal conversion, together wlth a quallty microphone and extensive software. Words, in any language, are stored as "voiceprints" by simply repeatlng them a few tlmes in "learn" mode. Using keyword selection techniques, large vocabularies can be constructed.
Use BIG EARS as a front end for any appilcation: data enquiry, robot control, starwars - the posslbillties are unlimlted.
BUILT. TESTED \& GUARANTEED ONLY
£49!
ZX80/81, PET, TRS80 APPLE II MZ8OK ETC.
COLOUR MODULATOR KIT £12
RGB In, PALUHF OUI
Please add VAT at 15% to all prices
Barclay/Access orders accepted on telephone
WILLIAM $\begin{aligned} & \text { Dowel House, Billericay } \\ & \text { Herongate, Brenlwood. }\end{aligned}$ SILAAPT Essex CM133SD.

PREPACKED. Screws. nuts. washers, solder tags, studding. Send for price list. AI SALES (PE), PO Box 402. London SW6 6LU.
digital watch batteries. Any type $£ 1.20$ each. Send S.A.E. or $15 p$ with number or old battery to DISCLEC Y . 5II, Fulbridge Road, Werrington, Peter borough.

REVERBERATION

The Ryder solid-state unit, specially designed for organ use, gives smooth, natural sound. Demo cassette, on loan, deposit $£ 1.50$, refund $\mathbf{£ 1 . 0 0 \text { . (Prices }}$ UK only).

HIYKON LTD. (P),
Woodșide Croft, Ladybridge Lane, Bolton BLI 5ED.
enamelleo copper wire. 10 swg to 45 swg. S.A.E, for quotation by return, cheapest prices. 102 Parrswood Road, Manchester 20.

ULTRASONIC TRANSDUCERS. $£ 2.85$ per pair $+25 \mathrm{p} \mathbf{P}+\mathrm{P}$. Dataplus Developments. 71 Chomeley Road. Reading. Berks.

MISCELLANEOUS - CONTD

ANNOUNCING - THE SENSATIONAL VIBROSCOPE \rightarrow 正
 Once again, Stuart Systems have astounded the wortd with a totally new concept. The Video Vibroscope produces a controlled by music, using microphone or other diturect inpu, and lorms an exciting, pulsating and thythrmic experience which canno discos, etc.
 NOW AVAILABLE FORONLY
 849.85
 ov POWER UNTT 84.95 . PLEASE ADD POST $\$$ PACKING INCLUOED)
 Barclay/Access orders accepled on telephone WILLIAM Dower House, Billericay Road....... STLAART Herongote. $\begin{aligned} & \text { Bren } \\ & \text { Essex CMM }\end{aligned}$ 3SD.
 SYSTEMSLed Essex CM13 3 SD. Telephone:

SECURITV SYSTEMS KITS All components and full instructions. Send large SAE for latest catalogue of advanced projects for car, caravan and home. Compu Tech Systems. Ind. Est., N. Walsham NR28 OAN. Tel (0692) 5600.

PRACTICAL ELECTRONICS P.C.B's

Drilled. 1.5 mm Glass fibre Fry's Roller Tinned
NOV 81 UK 101 Monitor change EP640
£ 1.87
DEC 81 Space Invaders EA 303 EA305 86.91 a pair For full list and current pct's send SAE Pcb's also produced to customers on masters. Trade enguiries welcomed. Write for quorte CWO Please. Paztage
add 35 p posiage and packing to camplate order. Europe 70 . add 350 postage and packing to complete order, Europe 70p.
PROTO DESIGN
14 Downham Fioad, Ramsden Heath,
Billericav, Es sex CM11 1 PU. Telephone 0268-710722

Bunglar alarm equipment. Ring Bradford (0274) 308920 for our catalogue or call at our large showrooms opposite Odsal Stadium.

MAKE YOUR OWN PRINTEO CIRCUITS

Etch Resist Transfors - Starter pack $\mathbf{1 5}$ sheets. lines, pads. C. pads) $£ 2.00$. Large range of single sheets in siock at 43p per sheer:
Master Positive Transparencies from P.C. layouts in magazines by simple photographic process. 2 sheets negative
 Precision Grids (A4) 65 . 20p stamp for I

OAK LOO.K.G. ELECTRONICS OAK LOOGE TANSLEY, DERBYSHIRE,

KIT BUILDING SERVICE. Professional quality. Workmanship guaranteed. Don Erskine BSc, 0I-546 3246 (eves).

CLEARING LABORATORY: scopes, generators, P.S.U's bridges. analysers. meters. recorders. etc. 0403-76236.

THE SCIENTIFIC WIRE COMPANY PO Box 30, London E.4. 01-531 1568.				
ENAMELLED COPPER WIRE				
SWG	1 lb	802	402	$20 z$
8 to 29	2.76	1.50	0.80	0.60
30 to 34	3.20	1.80	0.90	0.70
35 to 39	3.40	2.00	1.10	0.80
40 to 43	4.75	2.60	2.00	1.42
44 to 47	5.90	3.40	2.39	2.00
48 to 49	15.96	9.58	6.38	3.69
TINNED COPPER WIRE				
Prices incl P\&P, VAT,				
SAE for	s under of Copp enqui	2 plea /Resis welc	dd 20 ce Wi e.	Dealer

SECURITY ALARMS KITS FROM f37. Full range of accessories. MFP Ltd., Harrison Road, Erdington, Birmingham B24 9AB. 021-373 0450.

DIGITAL WATCH BATTERY REPLACEMENT KIT

These watches all require battery (power cell) replacemen at regular intervals. This kit provides the means. We supply eyeglass, non-magnefic weezers, watch screwdriver case knife and screwback case opener, also one doz. assor push pieces, full instructions and battery identification chart We then supply replacemen batteries-you fit them. Begin now. Send $£ 9.00$ for complete kit and get into a fast growing business. Prompt despatch.
BOLSTER INSTRUMENT CO.
(PE31)
11 Percy Avenue, Ashford, Middx. TW15 2 PB.

CENTURION BURGLAR ALARM EQUIPMENT. Send SAE for ree list or a cheque/PO for $\mathbf{£ 1 1 . 5 0 \text { for our special offer of a }}$ full sized signwritten bell cover, to Centurion Dept PE, 265 Wakefield Road. Huddersfield, W. Yorkshire, Access \& Barclaycard telephone orders on 0484-35527.

WRONG TIME?
 MSF CLOCK is ALWAYS CORRECT - never gains or loses. SELF SETTING at switch-on, 8 digits show Date, Hours, Minutes and Seconds, larger digit uto GMT/BST and leap year also parallel BCD auto GMI/BST and leap year, also parallel 8CD and show time on playback receives Rugby 60 KHz and show time on playback, receives Rugby 60 KHz tomic fun-to-build kit includes all parts, printed circuits, case instructions postage etc money back SSura, ca so GET the RIGHT TIME NOW ONI E62.80.
 CAMBRIDGE KITS
 45 (FA) Old School Lane, Milton, Cambridge.

PARAPHYSICS JOURNAL (RUSSIAN TRANSLATIONS): Psychotronic Generators, Kirlianography, Gravity Lazers, Telekinesis. Details: Sae $4 \times 9^{\prime \prime}$ Paralab, Downton. Wilts.

CAN YOU BEAT OUR PRICES ANYWHERE LISTS ENCLOSED WITH ORDER SHOWING FURTHER DISCOUNTS FOR 10 OFF QUANTITIES. ELECTROLVTICS. (6.3V to 350 V STOCKED.)
RADIAL. 1/350 ..12p 4.7/63 ..6p 22/16_.6p 22/250_16p 47/35 ..6p 220/16 ...7p. AXIAL. $4.7 / 35 \ldots 5 \mathrm{p} \quad 8 / 350 \ldots 16 \mathrm{p} \quad 10 / 250 \ldots 14 \mathrm{p} \quad 22 / 160 \ldots 12 \mathrm{p} \quad 33 / 50 \ldots 5 \mathrm{p} \quad 47 / 16 \ldots 6 \mathrm{p}$ 100/40..6p 220/25..7p 470/10...10p 470/40...15p 1000/63 Tag end. can...50p POLYSTYRENE CAPACITORS. (RAD) $47 / 63$ 330/63 470/160 1000/125 1500/630 2200/63 2700/63 3300 CR3.3p 10000/63..5p.
2200 33004700560010000 ... Ap. $(12 \mathrm{~mm} \times 6.5 \mathrm{~mm}) 100 \mathrm{pf} 18020030056010001500$
MINIATURE POLYPROPYLENE. 12 m 3900680010000 pf 15000 pf....6p.
TANTALUM BEAD CAPACITORS. 1 OFF (10 OFF) PRICE EACH.

$1 / 35 \ldots 10 \mathrm{p}(9 \mathrm{p}) \quad .15 / 35 \ldots 10 \mathrm{p}(8 \mathrm{p}) \quad .22 / 35 \ldots 10 \mathrm{p}(8 \mathrm{p}) \quad .33 / 35 \ldots 10 \mathrm{p}(6 \mathrm{p}) \quad .47 / 35 \ldots 100(80)$ $\ldots 8 / 35 \ldots 10 p(8 p) \quad 1 / 35 \ldots 10 p(8 p) \quad 2.2 / 16 \ldots 12 p(10 p) \quad$| $.3 / 3 / 16 \ldots 12 p(10 p)$ | $4.7 / 6 \ldots 10 p(8 p$ |
| :--- | :--- | :--- | :--- | :--- | $4.7 / 35 \ldots 15 p(14 p) \quad 68 / 25 \quad 14 p(12 p) \quad 6.8 / 35 \ldots 15 p(14 p) 10 / 16 \ldots 16 p(15 p) \quad 22 / 6.3 \ldots 16 p(14 p$

 $00 / 16 \ldots 65(60$ p) $220 / 16 \ldots$. 1.10 P($90 p) 470 / 6 \ldots$ E 1.60 (E1.40pl.
ONE OF EACH VALUE ABOVE E6.00 (BEAD TANTS.)
POLYESTER. AXIAL, 01/100V..4p.1/100..6p, 1/600..12p. POLYCARBON. 4.7/160_. 45p MISCELLAN EOUS. 3.5 mm CHASSIS SKT. (SKELETON)...8p 3.5 MOULDED PLASTIC SKT CLIFF TYPEY. 10 D ANTI PARASIT. FERR. BEADS. 25 for. 25 p 12 WAY D-Q SKT. STRIP IC HOLD. 1 Pit... 8 p 1 UF/220V MAINS FILTER.. 40 p 12 BULBS \& NEONS... 40 p 6 BA
NYLON SCREWS 40 for 25 p IOOK MUTITURN TRIMMER... 20 p STAN. HOR. PRESE (EGAN) 100 K \& $1 \mathrm{M} 5 \ldots 9 \mathrm{p}$ 日8. 10 GOLD PLATED GLASS REED SWITCHES...50p.

P\& P sdd 500 per order. Post paid on orders over $66.00 . A D D 15 \%$ VAT.
VQUIRIES WELCOME. SCHOOLS ETC SENO OFFICIAL ORDER CA
TRADE ENQUIRIES WELCOME. SCHOOLS ETC. SENO OFFICIAL ORDER. CALLERS BY
C.H.J. SUPPLIES, 4 STATION ROAD, CUFFLEY, HERTS.

TEL:- 01-440 8959.
GOODS BY RETURN

IONISER KIT
 (MAINS
 OPERATED)

This negative ion generator gives you the power to saturate your home or office with millions of refreshing ions. Without fans or moving parts it puts out a pleasant breeze. A pure flow of ions pours out like water from a fountain, filling your room. The result? Your air feels fresh, pure, crisp and wonderfully refreshing
All parts, PCB and full instructions
$£ 12.50$
A suitable case including front panel, neon switch, etc.
$£ 6.50$ HOURS
Mon, to Fri. 9-5 pm.
Sat. 9-4.30 pm

Price includes post \& VAT. Barclay/Access Welcome

SINCLAIR PRODUCTS
SC1 10 Oscilloscope E139. PFM200 £49 M35 F32.95 DM235 C53 DM350 E72. DM450 £116. Microvision TV £69. BATTERY ELIMINATORS*
3-way type $6 / 7,5 / 8 \mathrm{~V} 300 \mathrm{ma} \mathrm{E} 3.50 .100 \mathrm{ma}$ radio rypes with press studs 9 V £4.95.
$9+9 \mathrm{~V}$. $\mathbf{8 6 . 2 5}$. Car convertor 12 V input. output $3 / 4,5 / 6 / 7,5 / 9 \vee 800 \mathrm{ma}$ £3.04. BATTERYELIMINATOR KITS* 100 ma radio types with press-studs $9 V$ $\mathrm{E} 1.79,9+9 \mathrm{~V} £ 2.50$. Stabilized 8 -way types
$3 / 4,5 / 6 / 7,5 / 9 / 12 / 15 / 18 \mathrm{~V} 100 \mathrm{ma} £ 3.12 .1$ Amp $£ 8,50$. Stabilized $100 \mathrm{ma} £ 3.12$. 1 100 ma \&3.12. $1-30 \mathrm{~V} 1 \mathrm{~A}$ £8.50, $1-30 \mathrm{~V} 2 \mathrm{~A}$ e15.30. TLL and computer supplies 5 V
stabilized 1.5 A £9, 3 A £14. 6 A £23. 12 V
 car convertors
AY-3-8600 + kit $£ 12.98$. AY-3-8550 + kit S. 26.

SHARP COMPUTERS
MZBOK $20 K ~$
M MZBOK 20 K £ $380,36 \mathrm{~K} £ 394$, $48 \mathrm{~K} £ 4.08$.
PC 1211 £ 2.

PRINTERS

Buy any of the below and get a free interface kit and work processor program for UK 101
or Superboard:- Eprom MX 70 £259. Epson or Superboard:- Eprom MX70 £259. Epson
MX80FTT2 £449. Epson M 200 £575. OKI Microline 80 £295. OKI Microline B2A f399. OKi Microline B3A 6699 . Centronics $737 £ 365$. Seikosha GP8OA £199.

SWANLEY ELECTRONICS,
 Dept. PE, 32 Goldsel Rd.,
 Swanley, Kent BR8 8EZ

Tal. Swanley (0322) 64851

BI-PAK AUDIO MODULES
AL30A £4.35. PA12 £9.31. PS12 £1.75.
 £6.36. Stereo $30 £ 21.00$. AL80 £8.56. VIC 20 COMPUTER £173 with free cables to suit normal
cassenterecorders. casserte recorders
 Postage $\mathrm{C3} .50$ on computers, $\mathrm{E4.50}$ on
printers and 45 p on other orders. Lists $27 p$
post free. Please add VAT to all prices except post free. Please add VAT to all prices except
those sections marked with those sections marked with a which
already include it. Overseas and official credit orders welcome.

T. POWELL,

Advance Works, P.E.,

 44. Wallace Road, London N1 1 PQPlease allow 28 days Tel. 01-226 1489

INDEXTO ADVERTISERS

Adam Hall Supplies
Alcon
Ambit
Audio Electronics
Autumn Products
Bi-Pak
Bolster Instruments
British National Radio \& Electronics School
Cambridge Kits
CHJ Supplies
Chloride Gent Ltd.
Clef Products
Crestway
Crimson Components
Crofton Electronics
C.R. Supply Co
C.U.A.
Dataman Designs
E.D.A.
Electrovalue
Gemini
Hiykon Ltd
ome
ICS Intertext

Knight A .
Kwickmail Electronics
London Electronics College
Maplin Electronics
Mhel Electronics
Midwich Computers
Millhill
Minister, John
Modern Book Co:
Musicraft
Parndon
Phonosonics
PKG Electronics
Powell T.
Powertran
Cover II, 15
Proto Design
Cover 11.79
Radio Component Speciallsts
Radio \& T.V. Components
Rapid Electronics
Redditch Electronics
Riscomp Ltd.
Scientific Wire Co
Sinclair Research
Solid State
Swanley
Tandy Corporatlon 0. Cover III
Technomatic
80, Cover 12
Tempus
$T \&$ Electronic Components
T.K. Electronics
Tvier B.J.
Videotone
$4,30,47$
77

Ward M.

7
Watford Electronics
William Stuart Systems (VIBROOSCOPE
William Stuart Systems (BIG EARS)
Wilmslow Audio

NICKEL CADMIUM BATTERIES

	$\begin{aligned} & \text { AA (HP7) } \\ & 0.6 A H r \end{aligned}$	$\begin{aligned} & \text { SUB }{ }^{\circ} \mathrm{C} \\ & 1.2 \mathrm{AHr} \end{aligned}$	$\begin{aligned} & \text { 'C'(HP11) } \\ & \text { 1.65AHr } \end{aligned}$	$\begin{aligned} & \text { 'C. (HP11) } \\ & \text { 2.0AHr } \end{aligned}$	$\begin{aligned} & \text { D (HP2) } \\ & \text { 4.0AHr } \end{aligned}$	$\begin{aligned} & \text { PP3 } \\ & 0.1 \mathrm{AHr} \end{aligned}$
1-24	C0.85	£1.38	$\varepsilon 1.69$	E2.25	¢2.97	¢3.79
25-49	¢0.75	81.28	¢1.58	£2.10	¢2.77	
50.99	80.65	£1.24	$\underline{11.52}$	£2.02	C.2.67	
100 up	¢0.59	£1.15	£1.41	¢1.87	¢2.47	

All cells are brand new full spec devices from reputable mnirs. All Nickel Cadmlum cells (except PP3) are supplled complete with solder tags and are 'VENTED' dovices suitable for fast charge. CHARGERS - single or dual O/P to charge PP3. AA or SUB ' C ' cells in $12-14 \mathrm{hrs}$ (chargers will charge 'C' and 'D' cells but with longer charging timel. Units supplied complete in plug top case with flying leads. Number of cells 10 max) in series and type must be specified for each re-
quired O / β when ordering.

SINGLE O/P CHARGER £5.04 DUAL O/P CHARGER £5.72

TAANSFORMERS - as used in chargers, 2×12 voit 0.25 amp secondarys 240 v primary, tag connections $£ 1.57$ each

Chequas, P.O.: Mail Order to:-

 Dept. (PE), Bradshaw Lane, Parbold. Wigan, Lancs.Telephone 02576-3018.

TECHNOMATIC TECHNOMATIC TECHNO

CONNECTOR SYSTEM

ADD SOUND, RELAY CONTROL, LIGHT DETECTION \star ZX80/81. USER PORT \star

Port module plugs directly into $Z \times 80 / 81$ to provide 8 input and 8 output lines. These allow input of data from switches, photocells, sensors. joysticks etc and control of 8 relays. Also 7 segment displays and LED may be used - 'VARIABLE TONE AUDID OUTPUT CAN PRODUCE YOUR OWN SOUND EFFECTS." Port access is by simple PEEK \& POKE COMMANDS.

READY BUILT AND TESTED UNIT £14.95

Reprint of PCW articles $75 p+$ SAE
For ZX81 users: RAM PACK plugs directly onto the port. Expensive mother not required.

UPDATE YOUR TV TO RECEIVE CEEFAX \& ORACLE

 \star TELETEXT DECODER \starA complete kit, as described in "ELEKTOR Nov. 81" including the Keyboard Kit, containing the PCBs. ICs, switches and all other components as listed in the constructional article plus sockets for all ICs.

£85 plus VAT.

Reprint of Oct Nov 81 articles 0.75 .
Following ICs available separately:
SAA 5020 £6; SAA 5041 £16
SAA 5030 £9; SAA 5050 £ 9

\star UK101: INTERFACING SYSTEM \star

Two board interface system plugs directly into computer expansion socket to provide wide tacilities accessible from BASIC or MACHINE CODE

1) DECDDING MODULE: Providing a dual 5 v supply, 16 bit programmable i/o port, plus extensive address decoding for a wide variety of interfaces, including full decoding for a programmable sound generator, and also a 40 pin skt for further expansion.
2 ANALOGUE BOARD: Plugs into the decoding module to provide D/A converter, 8 channel multiplexed A/D converter with 20 nS conversion time. AY3-8910 SOUND GENERATOR plus 6522 VIA provide complex timing \& counting functions and additional 16 bit port. OECODING MODULE KIT $\mathbf{£ 2 7 . 5 0}$ ANALOGUE BOARD $\mathbf{£ 3 9 . 9 5}$

P\&P $0.75 \mathrm{p} / \mathrm{Kit}$

ACORN ATOM

A personal computer with lull size QWERTY board and a built in UHF modulator to allow direct connection to domestic TV. A simple to build. simple to aperate computer with all the features found in machines twice the price but with the advantage of expandability. Basic ATOM has 2 K RAM and BK ROM and on board expansion capability up to $12 \mathrm{~K}+12 \mathrm{~K}$
Basic Kit f 120 , Basic huilt $\mathbf{£ 1 5 0}$. Builı \& Fully Expanded f198. P\&P \&3. 4K Floating Point ROM £20. $1 \times$ RAM $(2 \times 2114 \mathrm{~L})$ £ 2 .

ATOM CONNECTDAS		ATOM SOFTWARE				
	PLUG	SOCKET	Invaders	¢7.00	BREAKOUT	f350
2×32 Way	£100	4.00	Fi. MACHINE	1350	Pinball	[380
26 Way	1150	¢2.65	disassembler	5350	UFO BOMBER	¢3.50

ATOM also offers a WORDPACK ROM which can be fitted directly into the UTILITY socket provided on board to convert the ATOM into a WORO PROCESSOR - a feature currently unique to ATOM Price $\mathbf{£ 2 6 . 0 0}$.

UV EPROM ERASERS

AH Alom purchases by cash or cheque onir.
UV18 (unto 6 EPROMSI
UV140 (upta 14 EPROMS)
£4206
$\begin{array}{ll}\text { UV141 (as UV1 } 40 \text { but with timel) } & \mathbf{~} 78.00\end{array}$

SOFTY

(PROM Programme \& Romulatorl MK1 (for 2708/TMS2716)
Kit £100. Built £120. PSU £25. P\&P £2.00 MKII (for 2518/2716/2532/2732/2764) Buill with PSU

TECHNOMATIC TECHNOMATIC TECHNO

3 consoles available
Atari 400 with 16K RAM (AF36P) £345
Atari 400 with 32K RAM (AF37S) £395
Atari 800 with 16K RAM (AFO2C) £645
(expandable to 48 K)
All consoles when connected to a standard UK colour lor black and white) TV set can generate the most amazing graphics you've ever seen.

Look at what you get:

* Background colour, plotting colour, text colour and border colour settable to any one of 16 colours with 8 levels of illuminance!
* Video display has upper and lower case characters with true descenders, double and quad size text and inverse video.
* 57. Key keyboard (touch type on Atari 400) and four function keys.
* Full screen editing and four-way cursor control.
* 29 keystroke graphics and plottable points up to $320 \times 1921160 \times 96$ only with 8 K RAM).
* 40 character by 24 line display.
* Extended graphics control and high speed action using a DMA chip with its own character set.
* Player missile graphics.
* Four programmable sound generators can be played individually or together and each has 1785 possible sounds playable at any one of eight volume settings, for game sounds or music.
* Full software control of pitch, timbre and duration of notes in 4 octave range.
* Four joystick or paddle ports, sounds output to TV.
* BASIC cartridge and 10K ROM operating system and full documentation.

Maplin Electronic Supplies Ltd PE/1/82 P.O. Box 3, Rayleigh, Essex.

Tel: Southend (0702) 552911/554155

MORE HARDWARE

Atari 410 Cassette Recorder (AF28月) £50
Atari 810 Disk Drive (AFO6G) $£ 345$
Atari 822 40-column Thermal Printer (AFO4E)
£265
Atari 850 Interface (AF29G) $\quad \mathbf{£ 1 3 5}$
Joystick Controllers (AC37S) $£ 13.95$
Paddle Controllers (AC29G) $£ 13.95$
16K RAM Memory Module (AFOBJI f65
MUCH MORE FOR ATARI COMING SOON

SOFTWARE

Lots and lots of amazing software for Atari available NOW
\star Word Processor \# VISI.CALC
\star ADVENTURE GAMES * Arcade Games
\star Trek Games \star ASSEMBLER \&
DISASSEMBLER \star FDRTH \star Teaching
$\star 30$ GRAPHICS \star Character Set
Generator
SEND S.A.E. NOW FOR OUR LEAFLET
(XH52G)

LE STICK

For Alari Computer or Video Game Replaces standard joystick, but much easier to use. Internal motion detectors sense hand movements. Large pushbutton on top of Stick. Squezze Stick to treeze motion. A MUST for SPACE INVADERS, STAR RAIDERS \& ASTEROIDS. ONLY £24.95 (AC45n)

[^6]Atari 400 Console

Atari 800 Console

SPECIAL PACKAGE OFFER

Disk-based system for $£ 725$ with LeStick The Atari 400 Console
Special 32K RAM Module
Atari 810 Disk Drive
Disk Dperating System
Documentation
Interconnecting Leads
Everything in "Look at what you gex" list.
Can any other computer on the market offer all this at anything like this price?

VERSAWRITER

$12 \% \times 8$ in. drawing board. Drawing on board is reproduced on TV via Atari with 32K RAM and Disk Drive. Closed areas may be filled in with one of 3 colours. Text may be added in any one of 4 fonts. Paint brush mode: select size of brush and paint away. Air brush mode: shade in your drawing - colour and density is up to you. Plus many more features. S.a.e. for price and further detais.

Demonstrations at our shops NOW Road See Arari at 284 Lond Essex. Westcliff-on-Sea, Ese and at Tel: 107021554000 mersmith W6 159-161 King St.. Ha 01 - 7480926

What CB? Guide to Legal Rigs

This guide covers all the currently available legal rigs we could find. Please note that the prices quoted are only intended as a guide and will vary depending upon the supplier.

The DNT range of rigs which are marketed by Radiotechnic Ltd., Bel Royal, St Lawrence, Jersey C.I. include the B40 FM (top left), the F40 FM (top right), the HF13/40 (bottom left) and the HF12/3 (bottom right)

The Radiomobile 201 and 202. Radiomobile Ltd., Goodwood Works, North Circular Road, London NW2 7JS

The Cybernet Beta 1000, 2000, 3000. Goodmans Loudspeakers Ltd., Downley Road, Havant, Hants

The M2 mobile and the Diplomat 40 base station. John Woolfe Racing, Electronics Division, Woolfe House, Norse Road, Bedford

What CB?

 Guide to Legal Rigs

The CB900 and CB901. Amstrad Consumer Electronics Ltd., 1-7 Garman Road, Tottenham, London

The JCB 863 from York which is marketed by Sulkin (UK) Ltd., 73 Grosvenor Street, London W1 X 9DD

The Midland 2001 (top), the 3001 (left), and the 4001.
Midland Telecom, 133 Flaxiey Road, Stechford, Birmingham Midland Telecom, 133 Flaxley Road, Stechford, Birmingham B33.9HQ

The Reftec 934 is a 20 channel for 934 MHz. RF Technology Ltd., Leyton Avenue Industrial Estate, Mildenhall, Suffolk

The Realistic TRC-2000

The Realistic TRC-1001

The Realistic TRC-2001. The Realistic range of rigs is available from all Tandy stores

[0075:]

What CB? Guide to Legral Rigs

The Grandstand base station. Beeware Ltd., Ripon Way, Harrogate, North Yorkshire

The Harrier CBX from Dixons, Dept. DS33, Camera House, Cartwright Road, Stevenage

The Binatone Phone Breaker (top) and the 5-star. Binatone House, Beresford Avenue, Wembley, Middlesex

The Voxson Tenvox. Voxson Audio Lid., Nuffield Way, Abingdon, Oxfordshire

The CB1000. Fidelity Radio, Victoria Road, London

The Grandstand Buzzing Bee

The Transcom GBX 2000 (top) and the GBX 4000. Transcom International, 1-12 Market Street, Bracknell, Berks

[^0]: (C) IPC Magazines Limited 1982. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibllity for it. Prices quoted are those current as we go to press.

[^1]: all Prices include v.a.t, \& POST \& PACKING - NO EXTRAS MIN ORDER - UK. £1 00. OVERSEAS E5. CASH WITH ORDER PLEASE

[^2]: All items subject to availability. Prices correct at $1 / 11 / 81$ and subject to change without notice. RTVC Limited reserve the right to update their products without notice.

[^3]: 19 MULBERRY WALK • LONDON SW3 6DZ . TEL: 01.352 1897 • TELEX: 918867

[^4]: Post to: Videotone, Crofton Park Road, London SE4

[^5]: $10 \operatorname{DIM}(W 3)$
 $20 \quad 1 W=4080102$
 30 CLEAR 0; ? $1002=8$
 40 FOR $U=-31$ TO 31 ; FOR $V=-15$ T0 15
 $50 \mathrm{C}=\left(\left(U^{*} U+V * V\right) / 80\right) 67 ; \quad \mathrm{X}=\mathrm{U}+31 ; \quad \mathrm{Y}=\mathrm{V}+15$
 60 GOSUB pi NEXT; NEXT; DO UNTIL 0 $100 \mathrm{pP}=\mathrm{X} / 2+(31-\mathrm{Y}) / 2 * 32+18000 ; \quad \mathrm{P}=(\mathrm{PP}, \| \mathrm{F})+\mathrm{C} \oplus 16$ 110 ? $\mathrm{P}=$? $\mathrm{P} \mid \mathrm{W}$? $(\mathrm{X} \& 1+\mathrm{Y} \& 1 * 2)$; RETURN

[^6]: Note: Order codes shown in brackets. All prices include VAT \& shipment by datapost.
 (Errors excluded).

