PRACSEAL
 DECEMEE円 1981

At work or play-everything you need in a personal computer

The Atom is a machine to be used. Every day, day after day. It's afull function machine-check the specification against others. It's rugged, easy to operate built to last and features a full-size typewriter keyboard.
Just look at some of the features! - More hardware support than any other microcomputer Superfast BASIC-can be updated to BBC BASIC if required - High resolution and comprehensive graphics ideal for games programmers and players* Integral printer connection* - Software available for games, education, maths, graphs, business, word processing, etc. - Other languages: Pascal, FORTH, LISP - VO port for control of extemal devices - Built-in loudspeaker Cassette interface - Full service/repair facility Users club

* Expanded version only

Optional Extras

- Network facility with Econet
- Disk PAL UHF colour encoder
- Add-on cards include 32 K memory, analogue to digital, viewdata VDU, disk controller, daisywheel printer, plus many, many more! Power supply

FREE MANUAL

The Atom's highly acclaimed manual comes free with every Atom and leaves nothing out In just a while you'll be completely at ease with your new machine! Within hours you'll be writing your own programs.

Computer stores are stocking Atoms - there's a list below, but if you have any problems getting hold of one just fill in the coupon and we'll rush one to you within 28 days. If the machine isn't all you expected, or all we've told you, just return it within 14 days for a full refund
MOM, Aberdeen 22863. Broadway Elect, Bedford 213639. Owl Computers, Bishops Stortford, 52682 Eltec Services, Brad ford 491371. Gamer, Brighton 698424 . Electronic Information Systems, Bristol' 774564 Cambridge Comp Store, Cambridge 65334. Cardiff Micros, Cardiff 373072. Bellard Elect. Chester 380123 Emprise, Colchester 865926. Silicon Centre, Edinburgh 332 5277. Esco Computing, Glasgow 2041811 Control Universal, Harlow 31604. Unitron Elect, Haslington. Castle Elect, Hastings 437875. Currys Micro Systems, High Wycombe. Customised Electronics, Leeds 792332 . D.A. Computers Leicester 708402. Microdigital, Liverpool 2360707 . Barrie Elect, London 488 3316. Eurocalc London 7294555 . Microage London 9597119 . Sinclair Equip. Int (Export) London 2359649 . Off Records, SW12, 674 1205. Technomatic, NW10 452 1500. NSC Comp Shops, Manchester 8322269. Customised Electronics, Middlesborough 247727. Compshop, New Barnet 4412922 . H.C.C.S., Newcastle. 821924 . Newcastle Comp Services, Newcastle Compshop, New Barnet 441 2922. H.C.C.S., Newcastle. 821924 . Newcastle Comp Services, Neweastle
615325 . Anglia Comp Centre, Norwich 29652. Leasalink Viewdata, Nottingham 396976. R.D.S. Electrical 615325. Anglia Comp Centre, Norwich 29652. Leasalink Viewdata, Nottingham 396976. R.D.S. Electrical
Portsmouth 812478 . Computers for All, Romford 75190 . Intelligent Artefacts, Royston, Arrington 689. Computer Facilities Scunthorpe. Datron Micro Centre Sheffield 585490 . Superior Systems, Sheffield 77824 Q-TEC Systems, Stevenage 65385. 3D Computers, Surbiton (01) 337 4317. Abacus Micro Comp, Tonbridge, Paddock Wood 3861 . Northern Comp, Warrington 601683 . Compass Design Wigan Standish 426252

YOU AND YOUR CHILDREN

More and more schools are buying Atoms.
More and more children will leam on an Atom. You can give them that extra familiarrity with on Atom in the home.

4a Market Hill CAMBRIDGE CB2 3NJ
\rightarrow -
When you order your Atom we will include full details of all-software packs and the optional hardware.
To: Åcom Computer Limited, 4A Morket Hill, Cambridge CB2 3NJ.
I enclose a cheque/postal order for $£$
Please debit my Access/
Barclaycard No
Signature
Name(please print).
Address

Telephone Number
Registered No. 1403810 VAT No. 215400220

CONSTRUCTIONAL•PROJECTS

SPACE EVADERS by Tom Gaskell B.A. 22
Galactic battle between aliens and humans
PE CAR COMPUTER Part 1 by P. MacFarlane 30
Modes of operation, boards and construction
PE ROBOTS Part 2 by Richard Becker ạnd Tim Orr 42
The interface board
PE BANDBOX Part 2 by Alan Boothman B: Sc 52
Principles and construction of the peripheral system
PE RANGER Part 4 by Michael Tooley B.A. and David Whitfield M.A., M.Sc 60
Alignment and fault finding
GENERAL FEATURES
DIGITAL DESIGN TECHNIQUES Part 5 by Tom Gaskell B.A. 38
Advanced sequential circuits
SEMICONDUCTOR UPDATE by R. W. Coles 48
LM 1894 ICL 7663 Z800
MICROPROMPT 66
Hardware and software exchange point for PE computer projects
NEWS AND COMMENT
EDITORIAL 17
NEWS \& MARKET PLACE 18
Including Countdown and Points Arising
INDUSTRY NOTEBOOK by Nexus 21
What's going on behind the scenes 29
A passport to listening pleasure
SPACEWATCH by Frank W. Hyde 51
News of the second shuttle mission
SPECIAL OFFER—DIGITAL MULTIMETER 59
A six function meter kit with l.c.d. for under $£ 20$!
INDEX FOR VOLUME 17 68

OUR JANUARY ISSUE WILL BE ON SALE FRIDAY, 11 DECEMBER 1981

(for details of contents see page 37)

[^0]WATFORD ELEGTRONIISS
33／35，CARDIFF ROAD，WATFORD，HERTS，ENGLAND Tel．Watford（0923）40588．Telex： 8956095

VAT moind oriber ion \qquad Monday to Saturday 9 a．m．－6 p．m．Ample Froe Car Parking apace available． 1．Opan	

SIEMENS multilayer miniature capacitors． 250V：1nF， $1 \mathrm{n} 5,2 \mathrm{n} 2$. $3 n 3,4 n 7,6 n 8,8 n 2$ ． 10n，12n，15n．22n 7p 18n．27n．33n．47n 8p 39n，56n．68n $100 \mathrm{~V}: 100 \mathrm{n}, 120 \mathrm{n}, 10 \mathrm{p}$ ； 150n 11p；220n 13p； $330 n$ 18p；470n 23p；680 n 30 p 1 $1 \mu \mathrm{~F}$ 34p；

00，4700

LINEARIC

ひ̌ư ？ 3 0 in

710

748 C 8 pin

810

AY－1

$$
\frac{A}{A}
$$

弤

$$
\begin{aligned}
& A Y \\
& A Y \\
& A \\
& A Y \\
& A
\end{aligned}
$$

AY AY AY AY

AYY－5－8 CA 3011 CA 3012

CA 3023

CA 3035
CA 3036

CA304B
CA 3059
CA3059
CA 3075

A 3081 A 3086

CA3089E
CA
C

CA3130

189

iCL8211
55

 ผळ゙

AC187／8
ACY17／8
ACY1 ACY2 $1 / 22$
ACY28
AD149
AD161／2
AF118 AF118
AF139
AF178 BC107／8
BC1078
BC108
BC108B $\mathrm{BC108B}$
$\mathrm{BC108C}$ BC109
BC1098
BC109C
BC117／8
$8 C 14032$ （om on

RESISTOAS Erie make 5\％carbon Miniature High Stability，Low Noise．	
RANGE Val．	1－99 100
0．25W2 $22-4 . M 7$ E24	2p 1p
0．5W 2＠2－4 M7 E12	2p 1p
1w 2＾2－10M E12	5p 3p
2\％Meral Film 10n－1 M	6p 4p
1\％0．5W $51 \mathrm{n}-1 \mathrm{M} 24$	8p 6p

 \qquad

NWW゙け
 D

TL 7400280DMA
280S10－1
Z80AS10

 NNNGNNWNNNNANNWNNN
 －

HOW TO SUCCEED IN THE ELECTRONIGS BUSINESS:

CROTECH OSCILLOSCOPES

Range of Portable Scopes mains and battery operated. Plus special features (UK c/D $£ 3.00$)

3030 Single trace $15 \mathrm{MHZ} .5 \mathrm{mV}, 0.5$ micro secs. Plus built In component tester. 95 mm tube 3131 Dual trace 15 MHZ . trig to 35 MHZ .5 mV . 0.5 micro 130 mm tube. plus component tester. 3034 Battery-mains dual trace 15 MHZ . trig to 20 MHZ built in Nicads. 5 mV .0 .5 micro secs. (Eliminator charger optional £28.75)
Also Avallable 3033 . single trace 3034 3035.130 mm 3030 3337. dual 30 MHZ . 130 mm

Optional Probes all models - see below).
$£ 166.75$ sec.
$£ 264.50$
1356.50
£293.25
f 189.75
£408.25

RF AND AUDIO SIGNAL GENERATORS Mains operated (UK c/p E1.00)
Audio $20 \mathrm{HZ}-200 \mathrm{KHZ} 4$ band. Sine/Square o/p.
TE220 Distortion max 1\%
LAG26 Distortion 0.5-1\% leader AG202A Distortion 0.5-1\% Trio AG203 10 HZ-1 MHZ 5 band max distortion 0.1\% Trio RF All feature Int/Ext. MOD. Variable output TE200 $100 \mathrm{KHZ}-100 \mathrm{MHZ} 6$ band (300 MHZ harmonics) LSG16 $100 \mathrm{KHZ}-100 \mathrm{MHZ} 6$ band (300 MHZ harmonics) Leader SG402 $100 \mathrm{KHZ}-30 \mathrm{MHZ} 6$ band professional trio
$£ 63.00$
$£ 73.70$ E78. 20 £126.50
£52.00

268.00

THANDAR - SINCLAIR

Reliable low cost portable instruments. bench moders all $25.5 \times 15 \times 5 \mathrm{~cm}$. Generators mains operated rest battery (supplied). UK c/p Hand models 65 p . bench $\mathrm{E1.15}$)
OIGITAL MULTIMETEAS ($31 / 2$ digit LCD)
TM354 Hand held. DC 2 A .2 m ohm. 1 mV - 1000 V DC. 500 v AC.
TM352 Hand held. DC 10A. Hfe rest Continuity test $\mathbb{5 7 . 4 4}$ TM353 Bench. 2A AC/DC. 1000 V AC/DC. 20 M ohm. Typical 0.25%. NEW LOW PRICE
£86.25
TM351 Bench. $10 \mathrm{AAC} / \mathrm{DC}$. 1000 V AC $/ 0 \mathrm{C} .20 \mathrm{M}$ ohm Typical 0.190
FREQUENCY COUNTERS (B Digitt)
PFM200A Hand held LED. 200 MHz .10 mV 1600 MHz
with TP600)

with TP600)
TFO 040
Bench LCD

TP600600 MHZ $=10$ Prescaler $10 \mathrm{mV} \quad £ 43.13$ GENERATORS (AII bench models) mains operated
TG100 Function. 1 HZ -100 KHZ. Sine/SQ/Triangle/TTL $£ 90.85$ T6102 Function. $0.2 \mathrm{HZ}-2 \mathrm{MHZ}$. Sine/SQ/Triangle/TTL $£ 166.75$ TG105 Pulse. $5 \mathrm{MHZ}-5 \mathrm{HZ}$ ($200 \mathrm{nS}-200 \mathrm{mS}$) various outputs $£ 97.75$ OSCILLOSCOPE (Bench model low power portable) $10 \mathrm{MHZ} \mathrm{2"} \mathrm{trace}$.10 mV . 0.1 micro sec. All facilities. Model SC 110
\qquad OPTIOMAL ITEMS
Carry case (bench only) £6,84 AC Adaptors (state model) £5.69

LCD DIGITAL MULTIMETERS

ALSO STOCKED

Further range of low cost
equipment Plus tools. equipment Plus tools,
accessories etc, Also special offers which vary from time to

SPECIAL PURCHASE - LIMITED PERIOD ONLY

6220 Reliable 22 range hand held $31 / 2$ digit LCD with voll/ohms auto range, unit and range signs, 10 amp AC/DC. battery warning. lower power ohms range, Model 6110 Also has range hold, cont inuity buzzer and improved accuracy. All models high quality rotary operation. Resolution 0.1 milli volt: $10-\mathrm{Micro}$ amp:

6220 1000v DC: 0.2110 A AC /DC: 600 v AC: 2 meg ohm. Was $£ 55.95$ NOW £42.95
6110 As above plus $20 \mathrm{~mA} \mathrm{AC/OC}$ and improved accuracy. Was $£ 85.95$ NOW £59.95
THIS SPECIAL OFFER IS QUALITY WITH VALUE
$620020 / 200 \mathrm{~mA}$ version of 6220 (i.e. no 10 amp) $\mathbf{\$ 3 7 . 9 5}$ 61000.2 A version of 6110 (i.e. no 10 amp) $£ 49.95$ 188 m 16 range with Hfe checker 10 amp DC $\$ 43.50$ $£ 69.95$ FUnCtion gemerator (UK c/p £1.00)
with mains adaptor
5020A 1 HZ-200 KHZ Sine/Square/
Triangle/TTC Freq. sweep. Low
distortion
$\$ 98.90$
DIGITAL MULTIMETERS Two LCD
hand held - one with temperature
range. Also LCD and LED Bench
models.
2035A $31 / 2$ digit LCD hand. 2A ACIDC 20Meg ohm ETC
$\$ 95.45$
2037 A As 2035 A with $-50^{\circ} \mathrm{C}$ to
$+150^{\circ} \mathrm{C}$ Temp. range 0.1°

- 150° C remp. range $0.1^{\circ} \quad £ 109.25$
$2010 \mathrm{~A} 31 / 2$ Digit LED. Auto decimal 8 0ptions Touch 8 hold
minus. 10A ACIDC: 20 Meg ohm etc. Probe for DMM's

2015A LCD version of above. £109.25	$£ 95.45$	Battery eliminators

(c/o 2035/37A 65p: All others $£ 1.00$) (state model) $£ 5.69$

	POWER SUPPLIES	13.8 volt. Output regulated mains operated (c/p£100)
込	$\begin{aligned} & 3 \text { to } 5 \mathrm{amp} \\ & 5 \text { to } 8 \mathrm{amp} \end{aligned}$	$\begin{aligned} & £ 15.50 \\ & £ 17.95 \end{aligned}$

0.1 ohm.

Also in stock 189 m 30 range with He checker 10 amp ACIDC

UK c/p 65 p or $£ 1.00$ for two)
CHOOSE FROM UKS LARGEST RANGE KRT101 10 range pocket $1 \mathrm{~K} / \mathrm{V}$ olt KRTIOO 12 range pocket $1 \mathrm{~K} / \mathrm{Volt}$ NH55 10 range pocket $2 \mathrm{~K} / \mathrm{Volt}$ ATI 12 range pocket Deluxe $2 \mathrm{~K} /$ Volt ST5 11 range pocket $4 \mathrm{~K} / \mathrm{V}$ olt NH56 22 range pocket $20 \mathrm{~K} / \mathrm{V}$ olt YH360Th 19 range plus Hie Test $20 \mathrm{~K} /$ Volt ST303TR 21 range plus Hfe Test $20 \mathrm{~K} /$ Volt KRT5001 16 range - range double $50 \mathrm{~K} / \mathrm{Volt}$ KhT5001 16 range - range double soki volt AT1020 19 range Deluxe plus Hie Test 20K/Volt $£ 16.55$ ETC5000 As KRT5001 plus colour scales $50 \mathrm{~K} / \mathrm{Volt}$ € 17.95 708118 range - range double 10A OC $50 \mathrm{~K} /$ Volt $£ 20.85$ TMK500 23 range. Plus 12A DC Plus Cont. Buzzer $30 \mathrm{~K} / \mathrm{Volt}$
AT205 21 range Deluxe 10A DC 50K/Volt 222.75 AT205 21 range Deluxe 10A DC 50K /Volt
C7080 26 range large scale 10A DC. 5 KV ACIDC

20K/Volt 20K/Volt
AT210 23 range Deluxe 12A AC/OC 100 k /Volt 23.00 360 Th 23 range Large scale 10A ACIOC Hie Test 50 Meg ohm: 1 KV AC/DC $100 \mathrm{~K} / \mathrm{Volt}$

DIRECT READ HV PROBE

LOGIC PROBES/MONITORS/PULSERS circuit powered (UK c/p 60p)
LPI DTL/TTL/CMOS. 10 MHZ: Pulse: Memory LP2 DTLITTL/CMOS. 1.5 MHZ: Pulse: LP3 DTL/TTL/CMOS. 50 MHZ : Pulse: Memory LMI Logic monitor for 8 to 16 pin IC's DPI Digital pulser. Single or 100 pps . OP076 50 MMZ. 10 Meg ohm: Logic Probe OP07650 MHZ: 10 Meg ohm: Logic Probe, with case $£ 56.50$

SAFGAN PORTABLE OSCILLOSCOPES

Range of low cost Dual Trace Scopes mains operated. Made in UK to exacting standards. Available as 10 MHZ .15 MHZ or 20 MHZ . All feature 5 mV sensitivity: 0.5 micro sec: $6.4 \times 8 \mathrm{~cm}$ display. (UK $\mathrm{c} / \mathrm{p} £ 2.50$)
OT410 Dual 10 MHZ
0 T415 Dual 15 MHZ
OT420 Dual 20 MHZ
Optional probes available (see Hameg above)
$£ 194.35$
£201.25
$£ 216.20$

AUDOEAECTRONICS Cumpered
301 EDGWARE ROAD. LONDON, W2 1BN, ENGLAND. TELEPHONE 01.724 3564 ALSO AT HENRYS RADIO, 404/406 EDGWARE ROAD, LONDON W2
OPEN SIX DAYS A WEEK • CALL IN AND SEE FOR YOURSELF Order by Post with CHEQUES/AGCESS/VISA or Telephone your order

Send large SAE
(20p UK)
Schools, Companies,
etc. free on request

DIGITAL VOLTMETER MODULE

Fully built \& tested

- Positive and negative voltages with an FSD of 999 mV which is easily extended. - Requires only single supply $7 \cdot 12 \mathrm{~V}$ - High overall accuracy $\pm 0.1 \%+1$ digit - Large bright $0.43^{\prime \prime}(11 \mathrm{~mm})$ LED displays. -Supplied with full data and applications information.

Using this fully built and calibrated module as a basis now means that you can easily build a wide range of accurate equipment such as mutimeters, thermometers, battery indicators, etc. etc. at a fraction of the cost of ready-made equipment. Full details are supplied with each module showing how to easily extend the voltage range and measure current, resistance and temperature. Fully guaranteed, the unit has been supplied to electricity authoritles, Government departments, universities, the P.O. and many companies.

Temperature Measurement $£ 2.15_{\text {+vat }}$

An easily constructed kit using an I.C. probe providing a linear output of $10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ over the temperature range from $-10^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. The unit is ideal for use in conjunction with the above DVM module providing an accurate digital thermometer suitable for a wide range of applications.

Power Supply

$£ 4.95$ +vat
This fully bullt mains power supply provides two stabilised isolated outputs of 9 V providing current levels of up to 250 mA each. The unit is ideally suited for powering the DVM and the Temperature Measurement module.

Fully built \& tested

Power Supply \& Relay Unit $£ 3.95$ +vat

incorporating a stabilised 12 V supply and a s.p.c.o. relay with 3 A contacts, this unit is designed to operate in conjunction with the above ultrasonic unit. Fully built and tested, its compact size makes it ideal for constructing the smallest of units.

Hardware Kit $£ 3.95_{+ \text {vat }}$
A suitable ready drilled case together with the various mounting pillars, nuts and bolts, and including a mains switch and 2 mm sockets designed to house the uttrasonic alarm module, together with its associated power supply. This hardware kit provides an ideal solution for assembling the economical alarm system. Size $153 \mathrm{~mm} \times 120 \mathrm{~mm} \times 45 \mathrm{~mm}$

In addition to the above a wide range of competitively priced electronic components is stocked. Please telephone your specific requirements.

- V.A.T. must be added on all items. OShop hours 9-5.30 (Weds. 9-1) - ex-stock delivery on all items. Units on demonstration, callers welcome. - Post and packing charge 50p per order. © S.A.E. with all enquiries please.

RISCOMP LIMTTED

Dept. PE3,
21 Duke Street,
Princes Risborough, Bucks.
Tel: Princes Risborough (084 44) 6326

Kit yourself out with our new
 Kit yourself out with our new catalogue.

To: Heath Electronics (UK) Limited, Dept (PE12), Bristol Road, Gloucester GL2 6EE. Please send me a copy of your new catalogue. I enclose 28p in stamps.

It's full of all sorts of exciting possibilities, including a digital barometer. So, if you don't trust the weather forecast, make your own. And get it right.

Like all Heathkits, it contains everything you need, right down to the right kind of solder. Unbeatable comprehensive assembly manual. Diagrams. Highest quality parts. Everything to make a.first class professional job. One you'll be proud of. One that will give you farmore satisfaction than a ready-made mass-produced shop-bought product can possibly offer.

Because you made it yourself.

Name
Address |

NB: If you are already on the Heathkit mailing list you will automatically receive a copy of the latest Heathkit catalogue without having to use this coupon.

Personill Tuition and Guaranteed Success

The expert and personel guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful, is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the. words of one of our many successful students: "Since starting my course, my salary has trebled and i am expecting a further increase when my course is completed."

City and Guilds Cortificates

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Telecommunications Technicians
Radio, T.V. Electronics Technicians
Radio Amateurs
Electrical Installation Work

Diploms Courses

Colour T.V. Servicing
CCTV Engineering
Electronic Engineering \& Mainténance
Computer Engineering and Programming
Radio, T.V. and Audio, Engineering \& Servicing
Electrical Engineering, Installations \& Contracting

Other Career Courses

A wide range of other technical and professional courses are available including GCE.

Post this coupon or 'phone today for free Electronics careers guide.

Name

Address \qquad Age

ATOM OWNERS LOOK OUT

There are DODGEMS about!
Dodgems is just one of the brand new games packs from Acorn, the manufacturers of your Atom, You have to steer your car around the lanes collecting points. But beware! There's a computer controlled car programmed on a collision course. If you survive the game gets faster. Also in Games Pack 6 are Simon and Amoeba.

GET THE BEST-FORGET THE REST

All Acornsoft games are designed and produced by the manufacturers of the Atom. Trust the manufacturer to get the very best out of his product. Realistic sound effects, great graphics and colour tool

GAMES PACK 1
Asteroids Shoot them before they crash into you. Lists ten best scores. Program $4 K$, graphics 6 K .
Sub Hunt Command a destroyer tracking a submarine, find its position and destroy it. Program 1K, graphics $1 / 2 \mathrm{~K}$, needs floating-point.
Breakout Score points knock ing bricks from wall. Ball has two changes of angle and speed. Program 3K, graphics 1-2K. COLOUR

GAMES PACK 3

Rat Trap Move your rats with. out colliding with the trails left. Entangle your opponent before he entangles you! Highspeed rat action replay. Program 4K, graphics 6K.
Lunar Lander Land a spacescraft on a lunar crater; altitude velocity, fuel and drift. Program $1 K$, graphics $1 / 2 K$.
Black Box Deduce the position of four invisible objects in the Black Box by firing rays at them. Program $4 K$, graphics $1 / 2 K$.

GAMES PACK 4

Star Trek Classic computer game; rid the universe of Klingons. Short and long range scans, galactic map, phasers, photon torpedoes, shields etc. Program 5K, graphics 2K.
Four Row Take turns in placing marbles on the board; the first to get'a line of four wins. Program 5 to get a graphics 6K. COLOUR Space Attack Repel the invasions of earth and avoid being hit by the gunner ships. Becomes progressively harder with each invasion. Program 3K, graphics 6K.
GAMES PACK 7
Green Things An alien life-form has invaded your space-craft; discover a way of destroying it with the weapons available on the ship Program 5K, graphics 2K. COLOUR Ballistics Take turns in firing shells at the other player, taking into account the wind and shape of the hill, Program 3K, graphics 6K, needs floating-point.
Snake Grow yourself a snake by guiding it towards digits which it eats. Program 2K, graphics $1 / 2 K$.

ORDER TODAY!
Just send a cheque or money order. Only $£ 11.50$ per pack including VAT and post and packing. State which packs you want. Or ring 0223316039 or 01-930 1614 quoting your
Access or Barclaycard number. Allow 14 days for delivery.
Or if you think you can wait for more details just write to
Acornsoft Limited, 4a Market Hill, Cambridge.

To ICS, Dept 273P, Intertest House. London SW8 4UJ
or telephone 01-622 9911 (all hours)

D.I.Y. KITS FOR SYNTHESISERS, SOUND EFFECTS

BASIC COMPONENT SETS

include specialy designed drilled a tinned fibreglass printed capacitors, semiconductors and potentiometers. Most kits include their own power supplies or will operate from 9 volt batteries. They also contain basic hardware such as knobs, sockets, switches, a nominal amount of wire and solder, a ohotocopy of the ariginal published text, and unless therwise stated, an aluminium box. Most parts may be bought separately. For fulfer kit and component detalls see our current lists.
Kits originate from projects published in Practical Elecrronics, Everyday Elecrronics \& Elekror.

CHOROSYNTH

A standard keyboard version of the published Elektor 30 -note chorus synthesiser with an amazing variety of sounds ranging from violin to cello and flute to clarinet amongst many others.
Kit plus keyboard \& contacts
SET-100 £114.79
SET-76 £114.09

16-NOTE SEQUENCER

Sequences of up to 16 notes long may be pre-programmed by the panel controls and fed Into most voltage controlled synthesisers. The notes and rhythms may be changed whilst playing making it more versatile than the name would suggest. Kit order code $=$

SET-86 £60.95

3-CHANNEL STEREO MIXER

Full level control on left and right of each channel, and with master output control and headphone monitor
Kit order code
SET-107 £19.42

3-MICROPHONE STEREO MIXER

Enables stereo live recordings to be made without the 'hole in the middle' effect. independent control of each microphone. Kit order code $=$

SET-108 £12.54

6-CHANNEL MIXER

A high specification stereo mixer with variable input impedances. Specs given in our lists. The kit excludes some SW's - see lists for selection. The extension gives two extra channels.
Main kit code $=$
SET-90 £89.87
Extension kit =
ADN-90 £11.74

ANALOGUE REVERBERATION

Using I.C's instead of spring lines the main unit has a maximum delay of up to 100 MS and the additional set extends this up to 200MS. May be used in either mono or stereo mode.
Main kit order
SET-83 £42.95 Extension kit

EXT-83 £15.97

AUDIO EFFECTS UNIT

A variable siren generator that can produce British \& American Police Sirens, StarTrek Red Alert, Heart Beat Monitor sounds, etc.
Kit order code
SET-105 £13.60

AUTOWAH UNIT
Automatically gives wah or swell sounds with each guitar note played.
Kit order code $=\quad$ SET-58 £16.89

10% DISCOUNT VOUCHER

Valid untll end of month on cover of this magazine. Applies 10 U.K. C.W.O. orders over $\mathbf{5} 5.00$ value. Not vatid with credit card, export or invoiced orders. This voucher and correct payment must accompany order. IVoucher Code
PE. 10).

COMPRESSOR

Operates as an automatic gain control, with little distortion and a compression range of about 30 dB . Has compression level and decay rate controls, and additionally has line and microphone inputs complete with mixing controls.
Kit order code $=$
SET-120 £21.98

DISCOSTROBE

A 4-channel 200-watt light controller giving a choice of sequential, random or full strobe mode of operation. Kit order code $=$

SET-57 £38.42

DRUM SYNTHESISER

Synthesises conventional
extraordinary drum sounds ranging and bass drum through bongos, woodblocks $\&$ snare drums and way on to sea, thunder \& jet-plane whooshes. Can be triggered via a microphone (not incl.), by hitting an existing drum, or by handclaps and shouts. Requires a $+12 \mathrm{~V} / \mathrm{OV} /-12 \mathrm{~V}$ PSU at approx 40 mA .
Kit order code $=\quad$ SET-119 £45.36

DYNAMIC NOISE LIMITER

Very effective stereo circuit for reducing noise found in most tape recordings. Kit order code $=$

SET-97£14.57

ENVELOPE SHAPER

With integral voltage controlled amplifier, and full manual control over the A.D.S.R. functions.
Kit order code $=$
SET-50 £13.50

EXPOSURETIMER

Controls up to 750 watts in 0.5 sec steps up to 10 minutes, with built-in audio alarm.
Kit order code $=$
SET-93 £38.03

FORMANT SYNTHESISER

For the more advanced constructor who puts performance first, this is a very sophisticated 3-octave synthesiser with a wealth of facillties, including 6 oscillators. 3 waveform converters, voltage controlled filter, 2 envelope shapers and voltage controlled amplifier. Case and hardware not included - see our lisis for further details. Kit plus Keyboard \& Contacts =

SET-66 £330.24

FREQUENCY COUNTER

A 4 -digit counter for 1 Hz to 99 KHz with 1 Hz sampling rate.
Kit order code $=$
SET-79 £44.27

FUNNY TALKER

Incorporates a ring modulator, chopper \& frequency modulator to produce fascinating sounds when used with speech \& music.
Kit order code $=\quad$ SET-99 £16.08

GUITAR EFFECTS UNIT

Modulates the attack decay and filter characteristics of a signal from most audio sources, producing 8 different switchable sounds that can be further modified by manual controls.
Kit order code $=$
SET-42 £14.76

GUITAR FREQUENCY DOUBLER
Produces an output one octave higher than the input. Inputs and outputs may be mixed to give greater depth.
Kit order code $=$
SET-98 £10.62

GUITAR MULTIPROCESSOR

An extremely versatile sound processing unit capable of producing, for example. flanging, vibrato, reverb. fuzz and tremolo as well as other fascinating sounds. May be used with most electronic instruments Meter \& some SW's not included in kit see list for selection
Kit order code $=$
SET-85 £74.03

GUITAR OVERDRIVE

Sophisticated versatile fuzz unit incl variable controls affecting the fuzz quality whilst retaining the attack and decay, and also providing filtering
Kit order code $=$
SET-56 £19.75

GUITAR PRACTISE AMPLIFIER
A 3 watt mains powered amplifier suitable for instrument practise or as a test gear monitor. Drives 8 or 15 ohm speakers (not monitor. Dr
incl. in kit).
Kit order code $=$
SET-106 £20.56

GUITAR SUSTAIN

Maintains the natural attack whilst extending note duration.
Kit order code
SET-75 £13.30

HEADPHONE AMPLIFIER

For use with magnetic, ceramic or crystal pick-ups, tapedeck or tuner, and for most headphones. Designed with RIAA equalisation.
Kit order code $=$
SET-104£19.29

METRONOME

Has a 'tick' rate that can be varied between approximately 40 \& 240 beats per minute.
Kit order code
SET-118£9.51

P.E. STRING ENSEMBLE

A four-octave multi-voiced polyphonic A four-octave multi-voiced polyphonic
string-chorus synthesiser that also has switchable wind instrument voices. See our lists for details.
P.E. MINISONIC SYNTHESISER A very versatile 3 -octave portable mains operated synthesiser with 2 oscillators, voltage controlled filter, 2 envelope shapers, ring modulator, noise generator, mixer. power supply and sub-min toggle mixer. power supply and sub-min toggle excluded, but the text gives comprehensive excluded, but the text
constructional details.
Kit plus Keyboard \& Contacts
SET-38 $\mathbf{- 1 6 9 . 6 9}$

PHASER

An automatically controlled 6 stage phasing unit with internal oscillator. Depth can be increased with extension.

Main kit code
 SET-88 £18.98

Extension $\mathrm{kft}=$
 ADN-88 17.68

PHASING \& VIBRATO

Includes manual and automatic control over the rate of phasing \& vibrato. Capable of superb full sounds. A separate power supply is included.
Kit order code
SET-70 £42.85

PHASINGUNIT

A manually controlled unit for introducing the phasing effect at the precise moment required.
Kit order code $=$
SET-25 £9.56

PULSE GENERATOR

Produces controllable pulse widths from 100 ns to 2 sec . Variable frequency range of 0.1 Hz to 100 KHz .

Kit order code =
SET-115 £22.29

RING MODULATOR

Compatible with the formant and most other synthesisers
Kit order code $=$
SET-87£11.98

SEWAR

For use with the analogue reverb to give greater flexibility to the reverb effects. Kit order code $=$

SET-101 E30.32

SIGNALTRACER \& GENERATOR

Allows audio signals to be injected into circuits under test, and for tracing their continuity. Includes frequency \& level controls.
Kit order code $=$
SET-109 £16.26

SIMPLE WAVEFORM

CONVERTER

Modifies a sawtooth waveform to produce triangle and sine outputs.
Kit order code
SET-96 E8. 25

SMOOTH FUZZ

As the name implies
Order code $=$
SET-91 £12.45

SPEECH PROCESSOR

Improves the intelliglbility of noisy or fluctuating speech signals, and ldeal for inserting into P.A. or C.B. Jadio systems. Kit order code $=$

SET-1 10 £ 10.58

SPLIT-PHASE TREMOLO

The output of the internal generator is phase-split and modulated by an input signal. Output amplitudes, depth \& rate are panel controlled. The effect is similar to a rotary cabinet.
Kit order code $=$
SET-102 £28.87

SWITCHEDTONE

TREBLE BOOST

Provides switched selection of 4 preset tonal responses.
Kit order code $=$
SET-89 £11.28

AND OTHER PROJECTS

PRICES INCLUDE -

U.K. post \& handling. and VAT at 15% where applicable. Overseas customers should consult our current list for export postage rates. Note that Eire, C.I. and most

LIST

Send stamped addressed envelope with all U.K. requests for tree list giving fuller details of PCBs, kits and other components. Overseas enquiries for list - Europe send 50p. other
countries send E1,00 countries send E1.00.

KIMBER-ALLEN

KEYBOARDS AND CONTACTS

Claimed by the manufacturers to be the finest moulded plastic keyboards available. All octaves are C-C, the keys are plastic, slope fronted, spring loaded, fitted with actuators and mounted on a robust aluminium frame.
3-octave £32.43, 4-octave £40.20, 5-octave £48.53 GOLD-CLAD CONTACTS - (GJ = SPCO, GB = DP make-break) GJ 3-octave £14.85, 4 -octave £19.40, 5 -octave £24.30 GB 3-octave £16.76, 4-octave £21.93, 5-octave £27.45

SYNTHESISER INTERFACE

Allows external inputs such as guitars, microphones etc., to be processed by synthesiser circults.
Kit order code =
SET-81 £8.40

TRANSIENTGENERATOR

An ADSR envelope shaper without VCA, and addlitionally providing repeat triggering enabling a synthesiser to be programmed for mandolin and banjo effects etc.
Kit order code $=$
SET-63 £15.65

TREMOLO UNIT

Suitable for use with most electric guitars, organs and other similar instruments. Includes speed, depth \& by-pass controls. Kit order code $=\quad$ SET-116 f11.91

TUNINGFORK

Produces 84 switch-selectable frequencyaccurate tones with LED monitor displaying beat-note adjustments.
Kit order code $=$
SET-46 £35.09

TUNING INDICATOR

A simple octave frequency comparitor for use with synthesisers where the full versatility of Kit 46 is not needed.
Kit order code $=\quad$ SET-69 £14.83
VOICE OPERATED FADER
For automatically reducing music volume during disco talk-over.
Kit order code $=$
SET-30 £8.93

VOICE SCRAMBLER

Enables a "garbled" version of a spoken message to be recorded or transmitted. Decoding of message is achieved using the same unit or an identical second model. Requires a 12 V PSU at about 30 mA
Kit order code $=\quad$ SET-117 £20.37

WAVEFORM CONVERTER

Converts saw-tooth waveform into sinewave, mark-space sawtooth, regular triangle, or squarewave with variable mark-space. Ideally one should be used with each synthesiser oscillator.
Kit order code $=\quad$ SET-67 £20.34
WAVEFORM GENERATOR
Provides sine, square and triangular wave outputs variable between $1 \mathrm{~Hz} \& 100 \mathrm{KHz}$ up to 10 V P-P.
Kit order code
SET-1 12 £21.58
WIND \& RAIN EFFECTS
As the name says
Kit order code
SET-28 £10.55

EXPORT ORDERS ARE WELCOME

Postage rates are shown in our lists. All payments must be cash-with-order, in Sterling by International Money order or through an English bank - we do not offer a C.O.D. service. To obtaln list Europe send 50 p. other countries send $£ 1.00$.

PHOTOCOPIES

Unless otherwise stated all sets include photocopies of the original texts as published, but | they may also be bought separately as follow |
| :--- |
| TXT100 |

TXT101 TXT 102 TXT 102 TXT

 TXT 104TXT 105 TXT105
TXT 106 TXT 106

TXT 107 TXT108 | TXT 108 |
| :--- |
| 1XT 109 |
| $\times 1110$ | TXT 110 TXTI12. POP XXT115. POP TXT116

TXT117 TXT117 XXT117
PTT18

PXT19 TXT119 TXT120 \begin{tabular}{l}
TXT25

TXT28

\hline $\mathbf{X T} 30$

TXT28

DXT30

\hline
\end{tabular} DT130

DT38 TXT38 TXT38. SND
TXT42 TXT42
TXT46 TXT56
TXT56
DKT57
TXT58
TXT63
TXT66. APR
TXT66. DEC
TXT66. FEE

RHYTHM GENERATORS
Two different kits - the control units are designed around the M252 and M253 rhythm-gen chips which produce pre-progrommed swlichselectable rhythms driving 10 effects instrument generators feeding into a mixer. 12 -Rhythm Unit $=$ SET 103-253 £65.65 $15-$ Rhythm Unit $=\quad$ SET $103-252 £ 58.37$

ALL KITS INCLUDE SPECIALLY DESIGNED PRINTED CIRCUIT BOARDS

MORE KITS AND COMPONENTS ARE IN OUR LISTS

 1matinctand MINIMUM ORDER VALUE FOR CREDIT CARDS $£ 5.00$

CONTINUE THEIR SPECIAL OFFER mini 20 $20 \mathrm{k} \Omega / \mathrm{V}$ d.c. $\quad 6 \cdot 6 \mathrm{k} \Omega / \mathrm{V}$ a.c. multimeter only $£ 19.50$
INCLUSIVE OF POST PACKAGE-V.A.T.

The Mini 20 is an ideal instrument for the constructor. This special offer is a wonderful opportunity to acquire an essential piece of test gear with a saving of nearly £10 on the normal retail price.
The 26 ranges cover all likely requirements. Operation is straight-forward, just turn the selection switch to the required range.

RANGES:

d.c. $\mathrm{V}: 100 \mathrm{mV}, 1 \mathrm{~V}, \mathbf{1 0 \mathrm { V } , 3 0 \mathrm { V } , 1 0 0 \mathrm { V } , 3 0 0 \mathrm { V } , 1 0 0 0 \mathrm { V } .}$
a.c.V: $10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$.
d.c.l: $50 \mathrm{u} A, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 100 \mathrm{~mA}, 1 \mathrm{~A}, 3 \mathrm{~A}$.
a.c. $: 3 \mathrm{~mA}, 30 \mathrm{~mA}, 300 \mathrm{~mA}, 3 \mathrm{~A}$.

Ohms: $0-1 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 100 \mathrm{k} \Omega, 1 \mathrm{M} \Omega$.
Accuracy: 2\%d.c. \& resistance, 3\% a.c.
Dimensions: $105 \times 130 \times 40 \mathrm{~mm}$

Movement protected by internal diode and fuse.
The instrument is supplied complete with case, leads and instructions.

For details of this and the many other exciting instruments in the Alcon range, including multimeters, component measuring and electronic instruments please write or telephone:

[^1]
THE PE RANGER 27FM CB PORTABLE

BRITISH MADE
FOR U.K. MARKET
Prolect described in
Prer ant

THE RANGER CB rig has been designed to fit the new legal Home Office specification, and starts off as a hand held unit complete with aerial, mic., and rechargeable batteries.

LEGALISATION SPECIAL OFFER \&49.95(KIT)
 (INC. VAT $+£ 2.95$ P.P.)

£97/matched pair

(INC. VAT $+£ 5.90$ P.P.)
This offer price includes rechargeable batteries, mic., aerial, mains lead and 2 channels.
Extra channels $\mathbf{£ 2 . 2 5}$ each +50 p P.P. + VAT Extra aerials $£ 3.95$ each $+80 \boldsymbol{p}$ P.P. + VAT
(Postage free with kit) Tuneable Whip aerial magnetic or permanent car amount (state which) Permanent $£ 13.95$ - P.P. $£ 1.00$
Magnetic $£ 15.95$ - P.P. £2.00

The unit plugs into the mains 12 V car outlet, or runs on built-in re chargeable batteries (built-in charger) Up to 5 miles range in town to keep ". touch with family and friends

SPEC.
R.F. Power Output $1 / 2-1$ Watt AF (internal speaker) $1 / 2$ Watt Modulation: FM: freq. $27.6 \mathrm{MHz}-28 \mathrm{MHz}$ (CB Band) (excellent speech quality) No. of channels (max): 6
Fully protected against bad aerial connection.

Coming soon.
Base/Mobile Add-On Unit to give 4 Watts and 40 Channels
(SAE FOR FURTHER DETAILS)

BFPAK AUDO F

HIGH QUALITY MODULES FOR STEREO
MONO AND OTHER AUDIO EQUIPMENT

 modies in ther equiomant
The know that every item is dessaned end lested to do the job lor which it is intended beloce it leaves the factory.

AUDIO AMPLIFIERS

510 mato ams
 433a 7.10 wan Audio Amp. Matiele 22.30 sup

POWER
SUPPLIES
PS12 220 Suppry Sur $2 \times A 1102 \times \mathrm{ALDO} 2 \times \mathrm{A} 30 \mathrm{~B}$ PA12SLE5 51. SES SPM8C 33 Stubiseed spppy Sut: 2 I ALSO PAIDO 10 IS matt EAM SPMIZOUS ASN

COMPLETE

AUDIO CHASSIS

 boand - inctides amps, peempo. powert supoty, front
 MAGNETIC CARTRIDGE PRE-AMPLIFIER
Envo the ousiny of a mopereic crutide mith rour
 premp. manding naprevic curribes to te issed wher faciltas erist ler cernicic caridges only. Wian. DN inpur socke1 6 hit may to totiow insouctons npaso Steree Mas Curvoge. Aromp.

Tanstommers re not incuded with
power supplies SPM1zO Range
to rocurie reasmir and outpur capacitars

TRANSFORMERS

20041.7 mo 35 N sut SPMEO caso 20052 mmo

 20112 amp 0.5565 S Suit SPM120.55
 30 0.50 .2043150 mA 150150 Sull SG30 11.50

ACCESSORIES
139 Trat Cobinet Sul Sterec 3030123 a 81 mm 7700 1400 Teed Cobinen Sual STAIS QS: 2200

 pazco Et.Ea Gellofep from Panel lao one GE100MKII E1.72 TC60 Kit ol Past incluany Teak Cabiret chassis, soctetst 6 innots ene to house STA15 Ampiliel II7.50 PS350 Consarsts - 1 capsotor 64 diodes for conssurcting unstabisiseod power supply tor AL250 to 125 wats $8:$. 50

AUDIO AMPLIFIER

Audo Amphiter, SOW R.MS., with miegya heal sint ond
AUDIO AMPLIFIER
175 mans IRMSI. A $\times 50$

SPMI2O is sacikser whin an ourpu woltage of ther 45w, 55w, or B5w. Designed tor use in adio apphications, the suabiliser which prondes ourpur arrents up to 254 aperates diect Irom a meins Transtorme! requising onty the aderion at two Electravic.

MONO PRE-AMPLIFIERS

 gitar pre anto miser.
The MMIDO and mellacs mono pramplifers we
 unolifiers and ther assacisted powe suopers

 wotrage $40-65$ inputs: 2 Guturs, Mciophones Max output
 shat cracil protection
 power anc. capolite to drming tiog quelity speeiker sysems an up to 50w mit driaton levds bdow. S5\% then tox dontesoc use Discos. PA. spslems, dectionic agams. ece. The pene ousty rated components ensure continuous operafion at high outpen levels 412050 walt Audio Amy Mande 50 Nov suppt £ 1314.

STEREO

PRE.AMPLIFIERS

81.PAK'S COMPLETELY NEW CATALOGUE

Completely redesigned full of the lype of componemis son equane, slus somie
very inleresting ones you mill soon be using and of cource. Ihe la agest annge of serniconduciois lor the Anial fill and Protessional voul could houe to Ind There are no masted paper of I useless intumation so ot ten included in Catalogues published now adays lusi solid lactsie pice. nexcuptivu duld indivedual lealues of whal we have avalable But remirnuber. Bu Path's yuhicy has alwars been to sell quadity components al coninelilue yices ancl THAI WE SILL DO.

To receive your copy send 750 plus 25p p\&p
A power amptite prowing on anput of up to 125 w RMS. into a 4 obm load foul llisw tensstors in the aupan stage mates in exticmeit uyged whive tamage Hom incoriect or shor cieccuit lows os perentad oy : foar traxsistor pooection siait for use in meny apouczions sach as dsco urits, sound toinlacement
 AL250 125 wall A
Module 5080 a 3 $\underset{\substack{\text { Madule } \\ \text { simph }}}{ } 5080$

The Pareot is basicully our pootial Paliol medifictions beng made to maie it compontide with the highta
 pusth bution stectiors piving a choice of 3 inputs, 2 fithers, tor booth hagh and low lienuencies end a staee a mono button. al combining to give stop quality stexeo pre amolifier and tone contod.

PUSH
 BUTTON
 STEREO FM TUNER

Freed with Phase locked toop decoda
Su53 Provides instant programme selection at the touch of a button ensering accurate uning of 4 pre seiected stabons, my of which may be zhemed as of wen as rau choose, smply by changing the setings of the aresel contiols. Festurs induce F I inpur
slage. Varited dode
tunng.
£19.00.

REGULATED

VARIABLE
STABILISED POWER SUPPLY
Varable trom 2.30 vols and 12 Amps Kit incwoer-

- VPS3O Modide, 1 - 25 molt 2 amp liansiomer.
$1-0.50 \mathrm{~T} T$ Pane Mete. 1 -02 amo $T^{\prime \prime}$ Panel Merar. 1-470 omm mirewuand polentionelef, $1-47 \mathrm{dhm}$ wirewound potentometer Weing Diagram
int Lded VPS 30 KIT $\mathbf{Z O}$.
SIREN ALARM MODULE
Ame ican Ponce rpe screamer poweted from any 12 woh suppoy into 4 or 8 othm speather. Ideal tor car buglar

STA5 5 watts pee channel Steweo Ampliter kit consisting STAI5 15 walls per chamnel Siereo Ampitiee Kit
 power supply 1 a 2056 trans!ormet and necessery wing 1 ISPM 80 power sipdy 1 I 2034 translormet 2 a

larm. treezer brech down and other securiny puposes spl24 5 wall 12 Nman Sren Alam Madule $\mathbf{1 3}: 5$
supply 1 : 2000 tadistormer 2 a coupling
 apacitar 2700 mdd thow and necessar miring daram
 C 55 STAX 35 art 480 anviliters 1 : SPM120.5s power supply I PAZOO preamolitier is 2035 transtormen 2 I coupling capacitors 470 midd an 50, for a ohms 1 a reservai capacito 2200 mold 100 and necessery wiving degram fas. 16 .
 ado 15\% vat and SDp Per dreer postage and packing

 of pur creve oun fome Coods ramally yent 2nd ans Mort.
 Toul Pastriad sop ew lowi acto

CLEF Electronic MUSIC

ELECTRONIC

 PIANOSSPECIALISTS SINCE 1972
Clef Pianos adogt the most advanced orm of Touch imulates simulates piano key inertia using
patented electronic lechnique.

71 OCTAVE

DOMESTIC MODEL
COMPONENT KIT £244
COMPLETE KIT $£ 395.70$ MANUFACTURED $£ 675$ Two Domestic Models are available including the 88 note full size version.
Four intermixable Voice Controls may Four intermixable voice Controis may Pianotonc. including Harpsichord.
goth Soft and Sustain Pedals are Both Sof and Sustain Pedals are in-
corporated in the Design and internal corporated in the Design and internal
Effects are provided in the form of Effects are provided in the form of
Tremolo. Honky. Chorus. and Phas-/Flanger. A power amplifier integrates into the
Piano top which may be removed from

SIX OCTAVE

 OOMESTIC MODEL COMPONENT KIT £217 MANUFACTURED 6595 Component Kits include Keyboard. components and may be purchased in four stages at no extra cost.Complete K its further conian Cabinets. Complete Kits further contain Cabinets. wiring harness. Pedals and in the case of Domestic Mo and Speaker. same range of Voices and Effects and is designed for use with an External

SIX OCTAVE STAGE MODEL

COMPONENT KIT £217 manufactuato f530

Since 1972 Clef Products have consistently produced leading designs
in the field of Electronic Musical Instruments. many of which have in the ficld of Electronic Musical Instruments. many of which have becn published in technical magazines. With musical quality of
paramount imporance, new techniques have been evolved and the paramount imponance. new rechniques have been evolved and the which have been successfully completed by constructors over a wide range of technical capability. Back-up TELEPHONE advice to our customers is available from the Designer of all Kits advenised.

STRING ENSEMBLE

 (As Published in conjunction " itith 'Practical Electronics") A very popular Keyboard Synthesizer Kit. for Group or Home use. with a four octave compass and split Keyboard facility.The instrument is fully polyphonic and has two rich Multi-String Voices plus Woodwind and Brass Effects for individual or Mixed use. Variable Attack and Sustain Controls give a good Orchestral Mix with the added concert hall reverberation effect produced by sustain coupled with phase modulation in the Chorus Unit. The Component Kit includes Keyboard. Key-switch components plus tone generator linking wire and Volume Pedal. A copy of the P.E. project series can be supplied for $£ 3.00 \mathrm{inc}$.
post. COMPONENT KIT
f179.00

ROTOR-CHORUS

Comprehernsive two speed
organ rotor simulator plus a three phase chorus generator on a single $8^{\prime \prime} \times 5^{\prime \prime}$ pcb. The kit
includes all components for mains operation and a stereo headphone driver peb. Easily integrated with existing
organ/amplifier system. COMPONENT KIT $\mathrm{E}^{\text {月9.00 }}$ KEYBOARDS Our Square Front Keyboards are chosen for their superior feel
to the discerning musician whilst giving adequate physical strength for the high impact playing present in the Plano 88 NOTE (A-C) E5700 FIVE OCTAVE 838.00 fOUR OCTAVE 228.75

EXPERIMENTERS

 A number of our Sub Kits areof interest to Electronic Music of interest to Electronic Music
and COMPUTER Experi-
menters. These include the 6502 menters. These include the 6502
MIC RO. based
CONTROLLER MiCROsystem kit used in the BAND
BOX. BOX. plus a 49 note four pitch
diode Keyswitch system. See diode Keyswitch system.
our lists for Sub.Kit prices.

PRICES INCLUDE VAT, UK CARRIAGE \& INSURANCE our complete EXIRA ON MFD PIANOS). Please send S.A.E, for Competitive quotations can be given for EXPORT orders - in Australia please contact JAYCAR in Sydney.

CLEF PRODUCTS (ELECTRONICS)
(Depr Pe) LIMITED
(Dept. P.E.) q4A Bramhall Lane Sourt, Bramhall,
Stochport, Cheshire SK7 1AH
$061-439-3297$
"THE

PRICES INCLUDE MASTER RHYTHM

A revolution in the field of Computer Music Generation

A MUSICIANS INSTRUMENT FOR:
SOLOISTS - SINGERS - RECORDING - PRACTICE
LIVE PERFORMANCE COMPOSITION
The BAND-BOX provides an Electronic Backing Trio consisting of Drums. Bass. and a. Chord instrument (one of 16 Waveform/Enevelope combinations). With the capicity to store over
3.000 User Programmable Chord Changes on more than 120 3.000 Uscr Programmablc Chord Changes on more than 120
different Chords. Using advanced Microprocessor technology different Chords. Using advanced Microprocessor technology,
Playback of $50-100$ Scores can be executed in any Key and at chosen Tempo. Complete Music Pad is electronically Indexed and stored on secondary battery back-up. Facility exists for composition of Intro Repeat Chorus, and Coda sections including Multipie Score Sequences. Sockets are provided for Volume Pedal and Footswitch plus separate and mixed instrument
incorporating Master Rhythm.

THE programmable DRUM MACHINE

INTERESTED IN

ELECTRONICS?
TRY A ZEDPACKI
COMPONENTS AT A PRICE EVERYONE CAN AFFORD

Z5 100 mixed polystyrene cap
$Z 6300$ mixed printed cireult
component
27300 mixed printed eireuit resistori.
20100 mixed miniature ceramic and
2 plate caps
$\begin{array}{ll}21125 \\ 25 s s o r t e d ~ p o t s . ~ & \text { E1.50 } \\ 212\end{array}$
Z12 20 assorted presets, skeleton etc. E1
213 ,
Z13 ifb mixed hardware. Nuts, bolts
self-1ap pers, sleeving, etc. $Z_{14} 100$ mixed, new and marked, full spec. transistors: Pack includes:- BC148,
BF154 BF274, BC212L, BC 238 BC181, PBC108 and; or lots of similar types Z15 100 mixed diodes including:-zener,
power,
bridge,
signal, germanlum, power, bridge
silicon etc. All full spec.
216201 N 4148
21820 assorted zeners, 1 watt and 400 mw
 22010 Assorted swittehes, including push button, slide, multipole, miniature ete.
UHF MODULATORS
Vide in UHF out. Calibrated to channel 36 (625 IIne UHF) housed in metal box $21^{\prime \prime \prime} \times$ $2^{\prime \prime} \times 1^{\prime \prime}$ with 9^{\prime} coaxial lead. TV plug and
connection data.
$£ 2.50$ connection data. $£ 2.50$ ea. 3 for $£ 6$ $200 \mu \mathrm{~A}$ Miniature level/balt. Meters, as
fited to many cassette recorders. gop Doluxe FIBREGLASS printed elrcult ofehino kits.
Includes 150 sa ins. of copperclad F / G board.
11 f ferric chioride. ormade for U. S . army to MIL SPEC.) I dalo made for U.S. army to cleaner, tweezers, etch resist dish and innstructions.
11 bof FoCl. 22.25 . OUR PRICE E5.95

Mullard M
To: "GEMINI ELECTRONIC COMPONENTS" DEPT PE "THE WAREHOUSE" SPEEDWELL ST. LONDON S.E.8.
Where shown. Send Cheque" or Posial Order, Plus 60 p PdP, and 15% VA ZED PACKS now avaliable for Callers at 50 Deptiord Broadway, London, s.e.s. Send large S.A.E. for fuller list.
 100 Subminiature Reed Switches, E4-20 With hole imALL MAGNETS ${ }^{\text {SM }}$ SWITCH BANKS ${ }^{6}$ for These cost a fortunel Were made tor Thes cost fortunel Were made for dent and interdependent latehing types muttl pole c/o etc. Can be modified. Can't be repeated. 3 Banks for 81 . KNOBS for Switch Banks 10 for $\AA 1$ hrome or spun aluminlum finish
MINIATURE MAINS TRANSFORMERS Top quallity. Split bobbin construction wil give $4.5 \mathrm{~V} \cdot 0-4 \cdot 5 \mathrm{~V}$ at 250MA. $1!^{\prime \prime}$
$\times 1 \mathbf{1}^{\prime \prime}$, all sorts ol uses. ONLY ह1 PP3 Battery Connectors 10 for 50 D Miniafure Press to Make Switches, Red nob. 3 for 50p.
Subminiature S.P.C.O. Slide Swillches. Miniature O.P.C.O. Slide Switchos. 6 for 50 p.
Standard 2P. 3 Position Slide Swltch.
TBAB10.
BAB10P 7 Watt Amp. I.C. with crrcuits MFCBoio 1 Watt I.C. with only $£ 1$
 555 Timers.
6 A 100 V Bris
2N3055H. ACA. $60 \mathrm{w}, 3$ for for fz_{2}
 Aerlal. Plugs into any 3.5 mm socket. Approx $25^{\prime \prime}$ extended $£ 1$ each. 3 for $£ 2$ - 50 HI POwer Infra Red Transmit
LED. TIL 3860 ea. 3 for $\mathrm{El} \cdot 50$. Crystal Clear 3 mm . 1 for 51 . 50 Red, Green, Yellow, 10 of one colour E 1 . 10 of each £2-50.

ALTERNATOR RECTIFIERS Make lovely 60 amp bridges. Ideal for
High Power Batfery Chargers High Power Battery Chargers. Type AAFI, Set
2 pos. case)
Spectal Purchase enables us 10 pfer Mullard Cz30 Poly ester Capa citors (Llquorice Allsorts) at the unbeatable price of 22 for foo mixed learance lots l.e. splliages, floor weenings cosmetic rejects etc. Also sweepings cosmetic rejects otc. Also.
Mullard Miniature Electrolytics. 200
\qquad

PARNDON ELECTRONICS LTD.

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.
You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a selfemployed servicing engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course. You will do the following: Build a modern oscilloscope
Recognise and handle current electronic components
Read,draw and understand circuit diagrams

- Carry out 40 experiments on basic electronic circuits used in modern cquipment
Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V., Hi Fi and microprocessor/computer
 equipment.

NewJOb?NewCareer?NewHobby?Getinto Flectronics Now!

Please send your brochure without any obligation to

NAME

ADDRESS

I am interested in
\square COURSE IN ELECTRONICS as described above
\square RADIO AMATEUR LICENCE MICROPROCESSORS LOGIC COURSE

Sinclair ZX81 Personal the heart of a system that grows with you.

1980 saw a genuine breakthrough the Sinclair ZX80, world's first complete personal computer for under $£ 100$. Not surprisingly, over 50,000 were sold.

In March 1981, the Sinclair lead increased dramatically. For just $£ 69.95$ the Sinclair ZX81 offers even more advanced facilities at an even lower price. Initially, even we were surprised by the demand - over 50,000 in the first 3 months!

Today, the Sinclair ZX81 is the heart of a computer system. You can add 16 -times more memory with the ZX RAM pack. The ZX Printer offers an unbeatable combination of performance and price. And the ZX Software library is growing every day.
Lower price: higher capability
With the ZX81, it's still very simple to teach yourself computing, but the ZX81 packs even greater working capability than the ZX80.

It uses the same micro-processor, but incorporates a new, more powerful 8 K BASIC ROM - the 'trained intelligence' of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays.

And the ZX81 incorporates other operation refinements - the facility to load and save named programs on cassette, for example, and to drive the new ZX Printer.

Kit:

 £49.s5
Higher specification, lower price -

 how's it done?Quite simply, by design. The ZX80 reduced the chips in a working computer from 40 or so, to 21 . The ZX81 reduces the 21 to 4 !

The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from the ZX80!
New, improved specification - Z80A micro-processor - new faster version of the famous Z80 chip, widely recognised as the best ever made.

- Unique 'one-touch' key word entry: the ZX81 eliminates a great deal of tiresome typing. Key words (RUN, LIST, PRINT, etc.) have their own single-key entry.
- Unique syntax-check and report codes identify programming errors immediately.
- Full range of mathematical and scientific functions accurate to eight decimal places.
- Graph-drawing and animateddisplay facilities.
- Multi-dimensional string and numerical arrays.
- Up to 26 FOR/NEXT loops.
- Randomise function - useful for games as well as serious applications. - Cassette LOAD and SAVE with named programs.
- 1K-byte RAM expandable to 16 K bytes with Sinclair RAM pack - Able to drive the new Sinclair printer.
- Advanced 4-chip design: microprocessor, ROM, RAM, plus master chip - unique, custom-built chip replacing 18 ZX 80 chips.

Built: £69.95

Kit or built -it's up to you!

You'll be surprised how easy the ZX81 kit is to build: just four chips to assemble (plus, of course the other discrete components) - a few hours' work with a fine-tipped soldering iron. And you may already have a suitable mains adaptor -600 mA at 9 VDC nominal unregulated (supplied with built version).

Kit and built versions come complete with all leads to connect to your TV (colour or black and white) and cassette recorder.

Designed as a complete module to fit your Sinclair ZX80 or ZX81, the RAM pack simply plugs into the existing expansion port at the rear of the computer to multiply your data/program storage by 16 !

Use it for long and complex programs or as a personal database. Yet it costs as little as half the price of competitive additional memory.

With the RAM pack, you can also run some of the more sophisticated ZX Software - the Business \& Household management systems for example.

Available nowthe ZX Printer for only £49.. ${ }^{55}$

Designed exclusively for use with the ZX81 (and ZX80 with 8K BASIC ROM), the printer offers full alphanumerics and highly sophisticated graphics.

A special feature is COPY, which prints out exactly what is on the whole TV screen without the need for further intructions.

At last you can have a hard copy of your program listings - particularly

How to order your ZX81

BY PHONE - Access, Barclaycard or Trustcard holders can call
01-200 0200 for personal attention 24 hours a day, every day.
BY FREEPOST - use the no-stampneeded coupon below. You can pay
useful when writing or editing programs.

And of course you can print out your results for permanent records or sending to a friend.

Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZXPrinter connects to the rear of your computer - using a stackable connector so you can plug in a RAM pack as well. A roll of paper (65 ft long $x 4$ in wide) is supplied, along with full instructions.
by cheque, postal order, Access, Barclaycard or Trustcard. EITHER WAY - please allow up to 28 days for delivery. And there's a 14-day money-back option. We want you to be satisfied beyond doubt and we have no doubt that you will be.

PRACTICAL ELECTRONICS－STEREO

This easy to build 3 band stereo AM／FM tuner kit is designed in conjunction with Practical Electronics（July issue）．For ease of construction and alignment it incorporates three Mullard modules and an I．C．IF．System．
FEATURES：VHF，MW，LW Bands，interstation muting and AFC on VHF．Tuning meter．Two back printed PCB＇s．Ready made chassis and scale．Aerial： AM－ferrite rod，FM－ 75 or 300 ohms．Stabilised power supply with＇C＇core mains transformer．All components supplied are to P．E．strict specification．Front scale size $101 / 2^{\prime \prime} \times 21 / 2^{\prime \prime}$ approx．Complete with diagrams and instructions．

SPECIAL OFFER！

－Matching I．C． $10+10$ Stereo Power amplifier kit（usually $£ 3.95+£ 1.15 \mathrm{p} \& \mathrm{p}$ ） －Mullard LP1 183 built preamp．suitable for ceramic and auxiliary

inputs（usually $£ 1.95+70 p p \& p$ ）

－Matching power supply kit with trans＊ former（usually $£ 3.00+£ 1.95 p$ \＆ p ）
－Matching set of 4 slider controls complete with knobs for bass，treble and volumes （usually $£ 1.70+80 p$ p\＆p）

£21．95
 plus £ 3.80 p\＆p．

HIGH POWER AMPLIFIER MODULES
 READY BUILT OR IN KIT FORM

 125 WATT MODEL200 WATT MODEL
specifications． Max．outpur power（RMS） 125 W Model 200 W Model Operating vower（DC） 125 watts 200 watts Operating voltage（DC）$\quad 50-80$ max．$\quad 70-95$ max． Loads
Frequency response
measured＠ 100 watts Sensitivity for 100 watts Typical T．H．D．＠

50 watts， 4 ohms Dimensions（both models）0．1\％0．1\％ ． The power amp kit is a module for high power applicat ions－disco units，guitar amplifiers，public address sy stems and even high power domestic systems．The unit is protected against short circuiting of the load and is safe in an open circuit condition．A large safety margin exists by use of

$30+30$ WATT STEREO AMPLIFIER
Viscount IV unit in teak simulate cabinet，silver finished rotary controls and pushbuttons with matching fascia． mains indicator and stereo jack socket．Functions switeh for mic magnetic and crystal pickups，rape and auxiliary Rear panel features fuse holder．DIN speaker and inpur socket $30+30$ watts RMS， $60+60$ watts peak．For use with 4 to 8 ohm speakers．
BUILT AND TESTED．Plus E3．80 p\＆p．
$£ 32.90$
PHILIP BELT DRIVE RECORDPLAYER

HiFi record player deck， 2 speed，damped cueing，auto shut－off，belt drive with floating sub chassis to minimise acoustic feed back．Complete with GP401 stereo magnetic cartridge
LIMITED STOCK．
UNBEATABLE OFFER AT
£27．50
COMPLETE

Plus E3．16 p\＆p

CALLERS ONLY
323 Edgware Rd，London W2．Tel：01－723 8432. Open $9.30 \mathrm{am}-5.30 \mathrm{pm}$ ．Closed all day Thursday． Persons under 16 not served without parents authorisation．

generously rated components，result，a high powered rugged unit．The PC Board is back printed，etched and ready to drill for ease of construction and the aluminium chassis is preformed and ready to use．Supplied with all parts，circuit diagrams and instructions．
ACCESSORIES：
Suitable LS coupling electrolytic for 125 W model
Suitable LS coupling electrolvtic for 200W model
Suitable mains power supply unit for 125 W model
£ 1.00 plus 25 p p\＆p． f 1.25 plus 250 p\＆p．
£7．50 plus E3．15 p\＆p． supply for 200 W model
£ 13.95 plus $£ 4.00$ p\＆p.

MONO MIXER AMPLIFIERS

50 WATT Six individually mixed inputs for two pick ups （Cer．or Mag．），two moving coil microphones and two aux－ iliary for tape，tuner，or gans，etc．Eight slider controls－six for level and two for master bass and treble，four extra treble controls for mic and aux inputs．Size： $13 \%{ }^{\prime} \times 6 \%^{\prime}$＇$\times 3 \%$＇app． Power output 50 watts R．M．S．（continuous）for use with 4 to 8 ohm speakers．Attractive black vinyl case with matching
£39．95 fascia and knobs．Ready to use．

Plus 53.70 p\＆p．

100 WATT
Brushed
Aluminium fascia and rot－
Size：approx． $14^{\prime \prime} \times 4^{\prime \prime} \times 10^{\prime \prime}$
Five vertical slider controls，master volume，tape level，mic level，deck level，PLUS INTERDECK FADER for perfect graduated change from record deck No． 1 to No．2，or vice versa．Pre fade level controls（PF L）lets YOU hear the next disc before fading it in．
VU meter monitors outpur．
£76．00

MAIL ORDER ONLY
218 HIGH STREET，ACTON，W3 6NG．
Note：Goods despatched to UK－postal addresses only For further information send for instructions 20p plus stamped addressed envelope．

[^2]
THE CB INDUSTRY

By the time this is published the UK will have its very own CB band. It is, of course, quite impossible for us to foresee just how things will turn out and just how useful the band will be. What is perhaps significent at this time is the lack of British made rigs. Although manufacturers are expecting to sell many tens of thousands of rigs each, before Christmas, almost without exception all the 27 MHz rigs will be imported. The exception is of course our own PE Ranger 27 FM designed for PE by Mike Tooley and David Whitfield and for which Autumn Products (Modus Systems) are the appointed kit supplier: Autumn are now atso manufacturing PE Rangers.

There are a number of obvious reasons why British manufacturers are unable to build competitively priced rigs in the UK but one restriction, that is not so well known outside the industry, is that import duty has to be paid on components but is not levied on complete equipment. However, it is very pleasing to note that at least two UK manufacturers are proposing to make rigs for the 934 MHz band. This shows that UK companies can be competitive
on products where the market is smaller and where the retail unit cost is higher, giving more flexibility on profit margins.

Some of the bigger companies are claiming that they will totally dominate the UK CB market but we doubt that this will happen within the first year, if ever. There are many manufacturers investing large amounts and none of them will be prepared to back out quickly.

QUALITY.

What we must also wait and see is the technical quality of the products. Because it was first, and a kit, the PE Ranger has attracted much attention on its ability to meet the Home Office specification and of course our designers have been fully aware of this; hence the additional information in the article this month. What we will soon know is just how much attention manufacturers have paid to ensuring all their rigs meet the Home Office performance specification.
We also await with interest the fate of those who continue to use illegal a.m. or a.m./f.m. CB rigs; it is rumoured that the radio regulatory department
are planning to clamp down heavily on illegal use. This would seem sensible as they have been avoiding the protests on interference by advising injured parties that everything will change when the legal system is introduced; it certainly won't unless they prevent the continued use of a.m. equipment.

NEWS

No doubt many readers will be looking for their first rig, be it for 27 or 934 MHz ; with this in mind we are putting together a four page guide to available legal rigs, which will be published as a pull-out next month. Once again this does not mean PE will be going over to CB, but the new rigs are news and we hope the pull-out will interest most readers.

As we mentioned in News and Market Place last month, the PE Ranger was shown on TV and the PE Bandbox has also attracted media interest, being put through its paces for many radio programmes by the designer Alan Boothman.

Mike Kenward

EDITOR

Mike Kenward
Gordon Godbold ASSISTANT EDITOR Mike Abbott TECHNICAL EDITOR
David Shortland PROJECTS EDITOR Jasper Scott PRODUCTION EDITOR

ADVERTISEMENT MANAGER

SECRETARY
 AD. SALES EXEC.
 CLASSIFIED SUPERVISOR

Jack Pountney ART EDITOR
Keith Woodruff ASSISTANT ART EDITOR
John Pickering SEN. TECH. ILLUSTRATOR
Isabelle Greenaway TECH. ILLUSTRATOR
Colette McKenzie SECRETARY

Editorial Offices:
Practical Electronics.
Westover House,
West Quay Road, Poole,
Dorset BH15 1JG
Phone: Editorial Poole 71191
We regret that lengthy technical enquiries cannot be answered over the telephone (see below).

Advertising Offices:
Practical Electronics Advertisements, King's Reach Tower,
King's Reach, Stamford Street, SE1 9LS Telex: 915748 MAGDIV-G
Make Up/Copy Dept.: 01-261 6601

T'echnical Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in Practical Electronics.

All letters requiring a reply should be accompanied by a stamped, self addressed envelope and each letter should relate to one published project only.

Components and p.c.b.s are usually available from advertisers; where we anticipate difficulties a source will be suggested.

Back Numbers

Copies of some of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, at 95p each including Inland/Overseas p\&p.

Binders

Binders for PE are available from the same address as back numbers at $£ 4.30$ each to UK or overseas addresses, including
postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 13.00$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH1 6 3DH. Cheques and postal orders should be made payable to IPC Magazines Limited.

DD) (C)
 Edited by David Shortland \& Jasper Scott

BBC: 'far from disappointed

Following our headline in the October issue of News and Market Place concerning the BBC disappointment over the response to their Electronics and Microelectronics School Radio Course we were very pleased to hear from Mr Arthur Vialls, the producer of School Broadcasting Radio.

Mr Vialls tells us that since our headline the response has been overwhelming with the teachers' notes (supplied on the basis of one set per applicant) now in their third reprint and to date 2500 copies have been dispatched. This means that the penetration into the secondary school market has been between 30 and 40 per cent.

Orders for the kits which accompany the programmes are now coming in at the
rate of 60 a day and with the film strips also having to be reprinted it would appear that many schools have taken up the challenge.

Full details of how to obtain the kits and film strips are included in the teachers' notes which are available from Electronics and Microelectronics BBC School Radio, 1 Portland Place, London WIA IAA on receipt of a s.a.e. with a 20p stamp.

ULTIMATE TIMER...

The CT5000 from TK Electronics is a timer kit which has 18 programmable time sets and 4 independent 2 A mains outputs with zero voltage switching.

The 12 hr 0.5 in display will give day of the week, a.m./p.m. and output status indication. A battery back-up facility saves stored programmes and continues time

keeping during power failures.
The unit is programmed by a 20 function keypad which includes programme verification button.

The timer kit is priced at $\mathbb{£ 4 5 . 0 0}$ plus VAT and is available from TK Electronics, 11 Boston Road, London W7 3SJ 101-579 9794).

solar camera

The Ricoh camera company have recently announced the $X R-S$ Solar powered camera which utilises two solar panels containing 20 solar cells mounted on each side of the pentaprism housing. These solar cells extend the life of a 31 V silver oxide battery developed by Ricoh, for an estimated five years.

When first shown at Photokina '80, it was questioned as to whether it would need to be exposed to sunlight to charge the camera's battery, however, it can be effectively charged under white light as well as sunlight and if the light level is too low for the solar cells to operate the battery will work for up to four hours when fully charged.

CHEAP TWEET!

Any reader who is planning to build a pair of speaker units or update old speakers will be interested to learn that RT-VC are offering Goodmans soft-dome tweeters (shown below) at a very competitive price. The tweeters can be used in systems handling up to 40 watts and are priced at $£ 3.50$ each plus $£ 1.75$ p\&p, or $\mathbf{£ 5 . 9 5}$ per pair plus $\mathbf{£ 2 . 4 0} \mathbf{p \& p}$. Filter components are included in the prices. RT-VC, 21b High Street, Acton, London W3 6NG.

POINTS ARISING . .

INGENUITY UNLIMITED (Nov. '81)

In the circuit diagram of the $0-99$ s photographic timer, the centre tap of the mains transformer is shown connected to the positive supply rail. It should be connected to the negative.

HOROLOGICUM (Oct. '81)

There is an error in Table 1, the MM5309 pin-outs. The pin-out functions of 15-28 should be reversed. I.e. Pin 15Positive Supply and Pin 28-Display Enable.

Also, on page 22, column 2, 4th line from bottom should read: 1 MHz instead of 1.03 MHz .

MICROPROMPT (July '81)

Line 60 in Noel Caffrey's "HECDEC" program should read: $\mathbf{S 8}=\operatorname{MIDS}(\mathrm{A}, \mathrm{I}, 1)$ etc.,

Items mentioned are available through normal retail outlets unless otherwise specified. Prices correct at time of going to press.

Briefly...

Bernard Babani, publishers of technical books on most subjects in the field of electronics inform us that their 1982 catalogue is now available. The 32 page catalogue lists books for both beginners and those with a wide knowledge of the subject. It is available free to readers who send a large s.a.e. to: Bernard Babani (Publishing) Ltd, The Grampians, Shepherds Bush Road, London W6 7NF. (01-603 2581).

The business of A. Marshall (London) Lid. at 40 Cricklewood Broadway, London NW2 has now changed hands and will be trading in the future as Cricklewood Electronics Ltd. Customers are invited to phone 014520161 for details of stock and prices as a catalogue has yet to be printed. A. Marshall continue to trade from Kingsgate House and Edgware Road.

The latest 64 page Bi-Pak catalogue is now available from Bi-Pak Semiconductors, The Maltings, 63A High Street, Ware, Herts., on receipt of $£ 1.00$ including p \& p.

PCB SERVICE AIDS

New from Tele-Production Tools are six aids specially designed for use on printed circuit boards. The set comprises three double ended tools which includes a stainless steel brush for removing resin and oxidization etc. from p.c.b.s, a fork for forming component leads and wire wrapping, a knife for cutting tracks and a scraper for cleaning leads. Also included is a hook for removing components after de-soldering and a reamer for opening p.c.b. holes.

The tools which are fully insulated are housed in a plastic case and cost $£ 3.74$ including VAT and p\&p.

Tele-Production Tools Ltd., Stirton House, Electric Avenue, Westcliff-on-Sea, Essex. 10702 35219).

MODULAR LIGHTING SYSTEM

L\&B Electronic have introduced a versatile range of modular power dimmers for use in portable and fixed lighting rigs. Four types of module are available to suit particular systems, with facilities to preset channels, on multi core lines, master dim, "kill" and provide logic compatibility with other lighting units. A single supply/reference board can supply up to 50 various units making it feasible to construct a lighting board with just the required number of channels, saving considerable cost over complete manufactured systems. Prices range from around $£ 7$ to $£ 20$, with substantial discounts on quantity orders.

A product sheet with prices is available on request. L\&B Electronic, 45 Wortley Road, West Croydon, Surrey. Tel: 01-689 4138.
houndidnun...
Please check dates before setting out. as we cannot guarantee the accuracy of the information presented below.

IFSEC (Fire \& Sec.) Nov. 17-19. RDS Dublin. V Compec Nov. 17-20. Olympia London. Z I
BEX Plymouth Nov. 18-19. Holiday Inn. K
Intron Nov. 24-26. RDS Dublin. V
Continuous events at Nat. Micro \& Elect. Centre. LI

1982

IDEA (Domestic appliances) Jan. 12-14. Birmingham. B6
OEM Assemblies Feb. 2-4. Royal Hort. Halls London. T BEX Bristol Feb. 3-4. K
BEX Bournemouth Feb. 17-18. K
Microsystems Feb. 24-26. West Centre Hotel London. ZI
Seminex Mar. 29-Apr. 2. Imperial College London. HI
B6 Andry Montgomery Ltd. $/ 0$ 01-486 1951
E Evan Steadman, Saffron Walden $\subset 079922612$
H! Seminex Ltd., Tunbridge Wells 089239664
K Douglas Temple, Bournemouth $¢ 020220533$
L1 World Trade Centre \& 01-488 2400
T Trident, Tavistock $\wp 08224671$
V. SDL Dublin 763871

ZI IPC Exhibitions, Sutton $\mathbb{6}$ 01-643 8040

What would you give an Engineer interested in learning about microprocessors?

Our microprocessor course...

gives you this fully assembled microprocessor development system. It is just one component in our new, practical, home-study course for engineers.

The course focuses on product design to give you a thorough grounding in the use of microprocessors by taking you step-by-step from customer specification to final production design.

Without assuming any detailed knowledge of electronics or computing on your part, the course shows you how to approach system design, hardware and software development, prototype evaluation and final production.

As well as working through five specially prepared books, and familiarising yourself with a file of manufacturers' data sheets and brochures, you will carry out experiments designed to give you valuable practical experience with your microcomputer.

Complete with user manual and experiment books, it interfaces with your own TV set and cassette recorder. You also get a prototype development board with such peripherals as a small DC motor, temperature sensor, optodetector and loudspeaker - which you learn to drive with the microcomputer.

- The Open University

The Open University, FREEPOST, P.O. Box 188, Sherwood House, Milton Keynes, MK3 6HH

The course is completely self-contained, and not linked to any broadcasts, correspondence tuition, seminars or residential courses. You work at home in your own time and at your own pace to complete the course. At $£ 395$ the course offers you the perfect opportunity to gain practical microprocessor experience.
Send the coupon for further details no stamp needed. Or phone 090879058
(24 hour answer
service)

Pioneers

Viewed in the context of the general economic climate, electronics has enjoyed a remarkable year. But 1981 also saw the passing of two pioneers who in different ways furthered the growth of the industry.
P. A. G. H. Voigt did as much as any one man could to popularise the concept of high-fidelity sound reproduction in the 1930 s. The Voigt corner horn loudspeaker system was an outstanding achievement and was not only uncanny in its sound realism but had remarkable acoustic efficiency. So much so that at a Radiolympia exhibition of the period, when each exhibitor was allowed 100 milliwatts of audio from a central amplifier, the sound volume from Paul Voigt's exhibit was so markedly louder that neighbouring stands complained he must be cheating. In fact for domestic use only three watts, obtained from a single triode output valve, was more than enough to deafen the listener.

Of course the Voigt corner horn would hardly do in today's small box-like rooms. It was designed in and for a more spacious age. The speaker itself was a massive unit with a huge electromagnet which was powered from the a.c. supply. And there was a heavy concrete block at the base of the horn unit. He also developed a moving coil pick-up, probably the first ever, which gave us, even with those old $78 \mathrm{r} . \mathrm{p} . \mathrm{m}$. discs, a glimpse of future fidelity yet to come.

Paul Voigt emigrated to Canada in 1950 where he died earlier this year at the age of 80. He started his career in audio in 1922 and retired in 1970.

Dr Trevor Lloyd Wadley, a South African scientist and inventor, died in Natal at the early age of 61. It was he who came to England in the early 1950 s canvassing a new idea for a very stable communications receiver. He visited all the major companies and was told it was too complicated to manufacture. Scraping the bottom of the barrel he was introduced to a tiny company, almost a back-street concern, who not only showed interest but bought the licence to
manufacture. The company was Racal Engineering and the end result was the world-beating RA 17 communications receiver incorporating the principle of the Wadley-Loop drift-cancelling circuit.

The rest is history. The RA 17 was the breakthrough for the company which we now know as the Racal Electronics Group. But Dr Wadley did more than help put Racal on the ladder to success. He also invented the Tellurometer, a radio-based distance measuring system for survey work. Unlike the Wadley Loop which has now been superseded by frequency synthesis, the Tellurometer is still in production and has earned a great deal of money over the years for Plessey, the British licensee.

Wadley and Voigt both left their mark in the history of electronics. Their passing, one in South Africa, the other in Canada, reminds us that electronics as an applied science knows no boundaries and grows inexorably through cross-fertilisation of brilliant minds.

Neston

Nothing more clearly showed up the chaotic structural state of British trade unionism than the establishment of Marconi's new factory at Neston. Looking at industries like printing and automobile manufacture in which a multiplicity of separate, often competing, unions are involved, with consequent demarcation disputes and frequent walk-outs, it seems sensible to have all workers in a plant in a common union.

In the case of Neston, which manufactures torpedoes calling for a variety of engineering disciplines, the workers could not agree that any single existing union could adequately represent the totality of the workforce.

So, by popular vote, there will be no union at all. Instead a works council of workers and management.

This simple, almost obvious, solution has been described as a new shop-floor industrial revolution. Or is it plain common sense opting for concord rather than discord? This happened before Marconi was awarded, subject to price negotiations, the contract for the heavyweight torpedo for the Royal Navy said to be worth $£ 500$ million.

Mercifully, the electronics industry has always escaped the worst excesses of industrial relations. Of course it has every advantage. Continued growth generates none of the bitterness of workers in stagnating or declining industries. A forced redundancy in electronics is not automatic relegation to the 'scrap heap'. Unlike static industries such as ship building or mining it is not geographically limited and mobility is accepted as natural by the ambitious either through promotion within a company or change of employer.

In short, there is none of the rigidity of the older industries. And there are almost daily start-ups by small entrepreneurial teams, fired by enthusiasm and who constantly refresh the industry while, at the same time, the pace of technological advance maintains interest and presents evernew challenges. The industrial climate of
electronics enjoying rude health encourages constructive co-operation towards further success and this contagious enthusiasm appears to work at all levels.

Expansion

1982 already looks a bumper year for expansion. Plessey, whose first quarter results suggest $\mathbf{£} 100$ million pretax profit in the year ahead, are to build a new Telecommunications Engineering Centre on their site at Edge Lane, Liverpool. Six storeys high, it will accommodate 700 engineering personnel and will cost $£ 2.5$ million. The production plant is also to receive investment in redesign and new equipment to fit it to changing technology. All this confirms Plessey commitment to Merseyside. As a quid pro quo the workforce of some 4,000 is being asked to accept what Plessey describes as 'major changes in working practices and productivity'

Then there's Mitel who, before their 100,000 sq. ft plant at Caldicot, South Wales, was completed, have already decided to triple the size and could be employing 2,000 people by the end of next year. Mitel will be making ICs and thick film microcircuits as well as assembling PABX microprocessor controlled telephone exchanges one of which, re-engineered to UK standards, is being promoted by British Telecom under the name Regent.

Systime, making microcomputers on a site on the outskirts of Leeds, has a planned £46 million investment which initially should create some 450 jobs with further phases over three years taking the total up to a possible 1,000 .

These investments top up Motorola's £60m, NEC's £ 40 million and H-P's $£ 12$ million mentioned in this column last month. Not a bad score in just two months and reflecting confidence in the future.

Exports, too, remain lively. Marconi Marine, in a depressed shipping market, are to provide all the communications equipment for eight deep sea cargo vessels for Pakistan being built at the Gdansk yards in Poland. And Thorn Consumer Electronics has won a $£ 2$ million order for Ferguson TX colour TV kits for assembly in Greece. Cable \& Wireless has also been active in Greece, winning a $£ 4$ million contract for communications equipment.

The defence market continues buoyant both at home and overseas. Thus we note an order for $£ 2.5$ million worth of electronic warfare equipment from the Argentine Navy for Racal-Decca Defence Systems, while sister company RacalDecca Marine Radar has contracted for fO. 5 million worth of radar to the Swedish Navy. And Racal-Decca Survey has a $£ 5$ million order from the Royal Navy for electronic positioning systems for mine-hunting operations.

In avionics, companies such as Plessey, Ferranti and Smiths should have a good share in the big British Aerospace/McDonnell Douglas deal for the Anglo-US AV-8B advanced Harrier jump-jet which in total could top $£ 1$ billion over five years. Good news, too, from British Aerospace in its first year of de-nationalisation achieving record turnover and profits.

THE problem with many small. self-contained electronic games is that they are too easily beaten, or their interest and entertainment value seems to diminish rather rapidly after an initial enthusiasm! Computer based games gain in sophistication, but are often too large, complex or expensive to be a realistic proposition. However, in between these two extremes comes SPACE EVADERS! Simple enough to be built with standard CMOS logic devices in a small portable case, but difficult and frustrating enough when played to keep you occupied for hours.

As in the case of many other 'Space games', EVADERS is a battle between alien and human, the latter using missiles to defend himself against the former. The alien flies along from left to right, over and over again, dipping downwards towards the missile base on each pass. The missile is launched initially from a position very close to the alien's path. After launching, the missile moves slowly upwards with a 'bleep' noise. If it hits the alien, there is an explosion sound effect, and the missile jumps back one position, i.e. one step further away from the alien. 'Hitting' is achieved by having the missile arrive in the way of the alien's flight path just as the alien gets there. If the missile misses, it returns to its previous starting position. Gradually, as more and more hits are scored on the alien, the missile moves further away from the alien's path until a successful hit from the most distant missile base wins the game; the alien stops dead and a dull drone can be heard. The number of missiles fired is counted and displayed on a numerical readout in order that scores can be readily compared.

DIFFICULTIES!

On every fourth pass of the alien over the missile base it drops a bomb (which makes a 'dull bleep' sound) on the missile. This terminates any missile attack that is currently under way, and moves the missile one position back towards the alien flight path, i.e. away from that final winning position! The alien and missile speeds are independently adjustable; the missile normally travels fairly slowly, so the game becomes more difficult the further its starting position is from the alien. As if that wasn't enough, the really nasty part of the game, and the reason why it's a space EVADER, is that the alien doesn't fly at a constant rate, but at random! There is a subtle amount of speeding up and slowing down (even stopping dead sometimes) from the normal set speed. Hence the 'frustration' aspect of the game, because just as a missile is right on course for him, he can jump past it, or even stop in his tracks, and it misses again!

5670

Fig. 1. Block diagram
 L_{0}
 it nom

Fig. 2. Complete circuit diagram

A- = PC.B. INTERCONNECTIONS
CONNECT A TO A, B TOB, ETC.

Two 7-segment l.e.d. displays show the score, with the alien and missiles being indicated by discrete l.e.d.s; mostly red, but with the centre alien and top missile l.e.d.s being green. (These are the ones that must be lit together at the same time to score a hit.) The design principles for this project have or will be covered in our Digital Design Techniques series, so for greater detail on the design of the circuitry refer to these articles. However, we can look now at the design of the circuit in fairly general terms, with the assistance of the block diagram shown in Fig. 1 and the circuit diagram shown in Fig. 2.

CIRCUIT DESCRIPTION

The circuitry can be divided up into three different areas: the control circuit, the scoring circuit, and the sound effects circuit. Let's start by considering the control circuit, as this comprises the main part of the project.

The alien's path is indicated by a row of l.e.d.s, D5 to D13, which are lit sequentially by IC3, a decade counter which is connected to reset itself at the end of each sequence. Hence, the l.e.d.s give the impression of a continuously moving light. The common cathodes of the I.e.d.s are taken to 0 volts via TR3, which is turned on and off by the clock input signal to IC3. Each l.e.d. is turned on for a short period, then off again, and then a short time elapses before the next l.e.d. lights, giving the impression of the alien 'jumping along'.

TR1. TR2 and IC1 form a random noise generator, fully described in this month's Digital Design Techniques. The random noise signal feeds the 'D' input of D-type flip-flop IC2a, which is clocked by the very low frequency oscillator formed by IC13c and IC13d. At every positive clock transition the logic state of the random noise signal is fed to the Q output, and depending on its state the \mathbf{Q} output may, or may not, change state. Because the \mathbb{Q} output clocks IC3, this gives the pseudo-randomness to the alien l.e.d. movement. Some control of the alien's speed can be given by VR1 (setting the oscillator frequency), since this determines the rate at which the random noise is sampled.

The illumination of the missile l.e.d.s is considerably more complicated than of the alien's! Basically, they are controlled by IC6, an up/down presettable binary counter, which has its binary outputs decoded into decimal by IC7, and then uses the inverter drivers of IC9 and IC10 to sink current from, and illuminate, the l.e.d.s. IC6 is clocked by IC8 a 7555 CMOS timer connected as a very low frequency oscillator, with frequency controlled by VR2. At each clock pulse of IC8, the counter IC6 (which is hard wired to always count DOWN) counts down by one, and hence illuminates the l.e.d.s in the sequence, one at a time. Note that the highest count corresponds to D25, i.e. the lowest I.e.d. in the missile chain. So, as the counter counts down, the missile appears to move upwards towards the alien l.e.d.s. TR4 gates the l.e.d.s on and off in a similar way to TR3 and the alien l.e.d.s. This not only gives the impression of jumping of the I.e.d., but also (more importantly) makes it much more difficult to hit the alien!

The alien is 'hit' when output pin 10 of IC3 (the alien's green l.e.d.) is at logic 1 at the same time as D18 is lit (the missile's green l.e.d.). This condition is detected by IC14c, the output of which is then enabled by IC12b from IC8; this ensures that the alien can only be hit when the missile l.e.d. is actually illuminated. The output of IC12b is inverted, then passes through IC14b and is inverted again by IC10d (we'il look at the action of IC14b pin 6 łater), which provides the clock to IC5, another presettable up/down counter. IC5 is used to determine the starting position for the missile which, of course, advances by one for every alien hit, but decreases by one for every bomb dropped. For the moment let's assume that the up/down control pin 10 is at logic 1 (i.e.
count up) and hence as soon as an alien is hit, IC5 counts up by one. The outputs of IC5 feed into the preset inputs of IC6. and the IC6 ouputs are forced to this preset condition when the missile 'run' is completed; IC7 pin 3 (the last decoded output of IC6) goes to logic 1, which feeds via IC12c to the pulse deriving network of C7. D14 and R25, then via IC14d to the pulse stretching network of D17, C14 and R30, and then to the preset enable pin 1 of IC6. So, when the missile has finished moving towards the alien, it moves to a position determined by IC5. For every alien hit the IC5 count increases by one, so each time the missile hits the alien it jumps back one position before starting its next run.

A missile is fired at the alien by pressing S2, a simple push-to-make switch, contact de-bounced by R26 and C9. This logic signal passes to the pulse deriving network of R24, D15 and C8 via IC11b, and then to the cross-coupled latch (or 'bistable') formed by IC11c and IC11d. This causes IC11c pin 10 to go to logic 1, forcing IC8 pin 4 (the reset pin) to go high, which enables IC8 and allows the missile to start 'moving'. As mentioned above, at the end of the missile's run IC7 pin 3 goes to logic 1 which then passes via IC12c to the pulse deriving network of C7. D14 and R25. This causes the latch to be set into the opposite state, i.e. IC1 1 pin 10 goes to logic 0, which resets IC8 and stops the missile from moving forwards towards the alien.

THE BOMB

At every fourth pass of the alien over the missile base it drops the bomb. IC3 pin 10 is the output which is at logic 1 when the alien is in its central position, so this is passed through IC4b and IC4a, both connected as divide-by-two circuits. Hence, pin 1 of IC4a goes to logic 1 for every four output pulses from IC3 pin 10. C5, D3 and R20 form a pulse deriving network to illuminate the bomb I.e.d., D4, via IC10e and R21. C4, R19 and D2 form a similar network with a much shorter time period, the pulse from which passes to IC12c and IC13b. Via IC12c it stops the missile and presets IC6 in exactly the same way as IC7 pin 3 going to logic 1 does. Via IC13b it passes to IC14b, IC10d and then to the clock of IC5 in the same way as a 'hit signal' does. Also, it causes the up/down control to IC5 (pin 10) to go to logic 0 via the pulse stretching network of D16, C10 and R27. Since the pulse derived by C4, R19 and D2 is much shorter in duration than the pulse stretched period of D16, C10 and R27, the up/down control is still at logic 0 (count down) when the clock input goes back to logic 1, so IC5 counts DOWN by one, moving the missile one position nearer the alien because of the preset enable pulse applied to IC6. Note that these timing delays have to be introduced between the up/down control and the clock to avoid hazards being

COMPONENTS

```
Resistors
    R1,R44 270k (2 off)
    R2
                    2k7
    R3,R5, R20, R22, R26, R48
    R4
    R6, R7, R8, R40
    R9,R19,R29,R39,R42,R47
    R10,R11,R12, R13, R15, R16, R17.
        R18, R32, R33, R34, R35, R36,
        R37, R38
    R14, R21, R31
    R23, R25,R28, R41, R45
    R24, R27, R30
    R43
    R46
                                1MO (6 off)
                                3k3
33k (4 off)
10k (6 off)
    R49,R50,R51,R52,R53,R54, R55,
        R56, R57, R58, R59, R60, R61, R62 1k8 (14 off)
All resistors }\frac{1}{3}\mathrm{ or }\frac{1}{4}\mathrm{ watt 5% carbon
Potentiometers
    VR1 1MO lin
    VR2 100k lin
```


Capacitors

C1, C4, C10, C14, C15 C2, C5, C6, C8, C9, C20, C21, C22 C3, C13
C7
C11
C12
C16
C17
C18
C19
C23

Semiconductors

D1
D2, D3, D14, D15, D16, D17, D26, D27, D28, D29
D4

10n polyester (5 off)
100 n polyester (8 off)
$10 \mu 25 \mathrm{~V}$ electrolytic (2 off)
3 n 3 ceramic
100 n 30 V disc ceramic
$680 \mu 16 \mathrm{~V}$ electrolytic
$2 \mu 235 \mathrm{~V}$ tantalum bead
1 n ceramic
$22 \mu 25 \mathrm{~V}$ electrolytic
$1 \mu 35 \mathrm{~V}$ tantalum bead
330 n polyester

1N4002

1N4148 (10 off) yellow l.e.d. (0.125in)

D5, D6, D7, D8, D10,
D11, D12, D13, D19. D20, D21, D22, D23, D24, D25
D9. 18
Displays $\times 1, \times 2$

TR1
TR2, TR3
TR4
IC1
IC2, IC4
IC3
IC5, IC6
1C7
IC8
IC9, IC 10
IC11, IC13, IC 14, IC18
IC12, IC20
IC15
IC16, IC17
IC19

Miscellaneous

1 off TOKO PB 2720 PIEZO SOUNDER (available from AMBIT)
1 off each p.c.b.
S1-Double pole miniature toggle switch
S2, S3-Momentary pushbutton switches (2 off)
2 off battery holders with connecting leads feach $4 \times$ HPT)
1 off Global Specialties 'DESIGN MATE' case DMC-1
1 piece of red tinted gelatine or perspex (see text)
2 off suitable knobs for the two potentiometers, mounting pillars, screws, etc., for the p.c.b.s.
(6BA threaded pillars are suggested)
Sticky fixers.
created; this was covered extensively in this month's Digital Design Techniques article.

If the missile is already at the nearest starting position it can get to the alien (D19 is lit) then we don't want to move it at all when a bomb is dropped. IC12d detects this condition, which corresponds to a binary count of 0011 . The output of IC12d is inverted, and then disables IC13b, preventing any counting down of IC5.

WINNING AND RESETTING

When you've finally moved the missile to its bottom l.e.d. position, D25, and then subsequently hit the alien from this position, the game is won. The output of IC5 becomes binary number 1010, which is detected by IC11a. The output of IC11a disables the "FIRE" switch S2 via IC11b and stops the alien by disabling the oscillator formed by IC13d and IC13c.

Power-on reset is provided by C13, R29 and IC12a. Manual reset, via S3, can also be applied in the same way. The reset pulse out of IC12a pin 3 is inverted by IC10a and used to reset the two flip-flops of IC4, and to preset enable

IC5, the preset inputs of which are connected to give a binary count of 0011 ; this corresponds to the missile l.e.d. D19 being lit, and is the starting condition for the game. The reset pulse also passes through IC14d and the pulse stretching network, then to the preset enable pin of IC6, and hence the whole system is set up to start a new game.

SCORING

The scoring circuit comprises the two 7-segment displays, IC15, IC16, IC17, IC18c and IC18d. IC15 is a dual BCD counter, with asynchronous cascading between the two halves being arranged by detecting the 1001 output of the first counter (i.e. the number 9) with IC18c, then when this count changes to 1010 , pin 10 of IC18c goes back to logic 1 , so via the pulse deriving network of C17, D26 and R43 and inverter IC18d, this is used to clock the second counter which is arranged to trigger a negative edge. IC16 and IC17 are 7 -segment latch/decoder/drivers, although in this application the latching facility is not used. The BCD inputs are

Fig. 3. P.c.b. design

Fig. 4. Component layout

Fig. 5. P.c.b. design

Fig. 6. Component layout
converted to 7 -segment output codes (on pins 9 to 15) which drive the displays via current limiting resistors. The two counters are reset by the control circuit's reset pulse, and the first counter is clocked by the output of the latch formed by IC11c and IC11d. (Because of the latching action this point is completely bounce free; the output of IC11b pin 4 would not be as bounce free, and could give false counting, so was not used even though it might seem to be a more likely point to take the scoring from.)

SOUND EFFECTS

The raucous noises generated by this game can all be blamed on the TOKO sounder used! This is a cheap piezo loudspeaker which can be driven directly from a CMOS gate (it has a very high impedance) yet gives relatively high sound levels. The alien hit explosion sound is generated by gating on the noise output of IC1 by the 'hit signal' pulse stretched by D29, R48 and C23. (IC20a is included to prevent any problems caused by feeding the 'hit signal' directly into the pulse stretching network.)

Every movement of the missile is indicated by deriving a short pulse from the output of IC8 using the network of C21, D28 and R46 (and via IC19c), and using this to gate on and off a medium frequency audio oscillator formed by IC 19a, R47 and C22. This gives out a short 'squeak' for each missile movement. The circuit is disabled, though, whenever the bomb is dropped or an overall win occurs, to allow these other sounds to take precedence, via IC19c pin 9.

The bomb' and overall win sounds are both the same low frequency audio tone generated by IC19b, with R45 and C 20 . The oscillator is gated on and off via a pulse stretcher circuit formed by D27, C19 and R44. In the case of a bomb dropping only a short tone is heard, but in the case of an overall win the tone is continuous until the game is reset or switched off. IC18a and IC20c serve merely to combine the various effects and feed them to the sounder.

Finally, D1 provides protection against incorrect connection of the batteries, and C11, C12 and C18 decouple the power supplies to help stop transients from affecting circuit operation. Note that a high battery voltage is needed for the unit (12 volts) in order that a satisfactory noise voltage can be obtained from the reverse biasing of the TR1 junction. Although a 9 volt battery could be used, it would require special selection of TR1 to find a transistor with a particularly high noise voltage. If preferred, a șimple mains power supply could be added, either squeezed directly into the unit or as a separate 'battery eliminator'. Part 2 of the Digital Design Techniques series (September '81) showed a suitable circuit; any voltage from 12 to 15 volts will work very well indeed. Whatever power supply is being used, make sure that it never exceeds 15 volts under any circumstances, or change C12 to a 25 volt type and make sure that the supply never exceeds 18 volts.

CONSTRUCTION

The components should be soldered to the p.c.b.s as shown in Figs. 4 and 6. Leave the integrated circuits until last, don't touch their pins with your hands, and use an earthed soldering iron. The l.e.d.s and displays sit well up off the p.c.b. surface, not flat down, and should be adjusted in height off the board to suit the spacers and fixings used. The displays will be visible through a 'window' in the case, and the l.e.d.s will fit directly through holes in the front panel. The piezo sounder should be fixed to its p.c.b. using short wire links fixed through its mounting holes. (Flying leads connect it to the other p.c.b.)

The two p.c.b.s should be wired together using ribbon cable, jumper strip, or just discrete wire links as preferred. Join point A to A, B to B etc. The battery holder connectors, potentiometers, and switches can also be wired up at this
point using adequate lengths of flexible stranded wire. (A spare pin on the power switch S 1 can be used to anchor this joint between the two battery holder connector wires.) The case should be drilled to take the switches, pots, mounting pillars for the p.c.b., the l.e.d.s and a rectangular cutout should be made to allow viewing of the 'score' displays. This cutout should have a piece of red tinted plastic or perspex glued behind it to improve visibility and contrast of the 7segment displays. Note that the l.e.d. holes must be ACCURATELY drilled to match the positioning of the l.e.d.s on the p.c.b.; it is easy to damage l.e.d.s by too much bending of their legs, so be careful!

Lettering and symbols should then be applied to the case. The p.c.b.s, joined together and with pillars fitted, should be offered up to the case, screwed in, and the switches and pots added. The battery holders should be fixed to a suitable position in the case using 'sticky fixers'.

The SPACE EVADERS game is now finished. If it seems that the noise source is not operational (no logic level changes at IC2a pin 5) try changing TR1, or lowering the value of R4 to 1 kO , and make sure that the supply voltage is as high as it is supposed to be. If no l.e.d.s come on at all, it is possible that they've all been inserted into the p.c.b. the wrong way round, so check this before proceeding. To test the action of the game, it is usually best to set the alien speed to minimum, and the missile speed to the maximum.

There are many potential changes, modifications, and variations possible on the basic theme of this game. Naturally the more complex it becomes, the more likely it is that a dedicated microprocessor would prove easier to use than discrete logic. However, at the level shown it is fairly easy and economical to build, and the alien seems to be sufficiently difficult to beat that even die-hard enthusiasts of 'that other' alien space game find it an absorbing deviation!

Build a pair of DALESFORD D speakers

The Dalesford D has enjoyed consistently good reviews and is acknowledged to be one of the best compact loudspeakers available. It is now offered in kit form at a considerable saving over the assembled speaker.

The kit includes complete and finished cabinets, grille foam, wadding, drive units, crossovers, etc. - everything, in fact, to make a pair of excellent compact loudspeakers. Suitable for amplifiers of $20-70$ watts Size: $340 \times 220 \times 265 \mathrm{~mm}$. Finish: Walnut/black foam. Price: $£ 69.95$ VAT per pair plus carriage $£ 3.95$ inc.

35/39 Church Street, Wilmslow, Cheshire SK9 1AS

INCLUDING V.A.T. POSTAGE \& PACKING

The DP2010 is a development of the DP200 Multimeter (featured in PE May 1981) aimed at giving reasonable specification at remarkable value for money. The instrument is available ready-assembled and calibrated, or in kit form for home assembly. All parts (except PP3 battery and test leads) are supplied including clear assembly and calibration details. The DP2010 features 6 functions and 21 measurement ranges, with a high contrast $\mathbf{1 2 . 5 m m}$ I.c.d. readout for extended battery life.

SPECIFICATION

FUNCTIONS: Volts (d.c.) $1 \mathrm{mV}-500 \mathrm{~V}, 4$ ranges; accuracy $1 \% \pm 1$ digit. Current (d.c.) $1 \mu \mathrm{~A}-1000 \mathrm{~mA}, 4$ ranges; accuracy $1 \% \pm 1$ digit- $5 \% \pm 1$ digit @ 1000 mA . Volts (a.c.) $1 \mathrm{mV}-500 \mathrm{~V}, 4$ ranges; accuracy $2 \% \pm 5$ digit. Current (a.c.) $1 \mu \mathrm{~A}-1000 \mathrm{~mA}, 4$ ranges; accuracy $2 \% \pm 5$ digit- $7 \% \pm 5$ digit (0) 1000 mA . Resistance $1 \mathrm{R}-2000 \mathrm{k}, 4$ ranges; accuracy $1 \% \pm 1$ digit. Diode Test 2 V range; accuracy $1 \% \pm 1$ digit. DISPLAY: 12.5 I.c.d.INPUT IMPEDANCE: $10 \mathrm{M} \Omega$. BATTERY TYPE: PP3, 2 mA typical consumption. POLARITY INDICATION: Automatic. LOW BATTERY INDICATION: Automatic. OVERRANGE INDICATION "1" at most significant digit with other digits suppressed. INPUT TERMINALS: Standard 4 mm .

IMPORTANT NOTE: This is a genuine Special Offer, and it is essential that all orders are accompanied by a coupon (or a copy) appearing on this page. This offer ends strictly on 1.2.1982 (UK orders) and 1.3.1982 (Overseas). The Special Offer prices including VAT 8 p\&p give big savings on the normal 1-off Lascar prices.

For overseas orders $£ 2.00$ (Europe) or $£ 5.00$ (all other areas) must be added to cover Air Mail Delivery.

GaIr Gomputer...

THIS computer (shown actual size below) is able to provide the following digital information in either imperial or metric units.

Current or average speed and m.p.g., distance travelled, remaining distance possible on fuel left, average speed needed for remaining distance to meet an arrival time, acceleration and deceleration times between any two preset speeds, fuel used during acceleration, average m.p.g. during acceleration, distance covered including standard distance times and fuel used and provides instant and average fuel costs.

MODES OF OPERATION

There are three basic modes of operation:
Indicating mode. This is used to display such things as current or average speed, or distance travelled.

Remainder mode. The unit can perform simple calculations such as remaining distance, remaining distance possible on the amount of fuel left, average speed required for the remainder of a journey in order to arrive in the time allowed, and so on.

Start-stop or programmed mode. This is used for acceleration timing and the like.

There is also provision to drive a combination lock ignition cut out which will be described later.

INDICATING MODE

To cause the unit to display one of the functions listed above the buttons 1 to 5 , simply press that button. 'Time' is 'elapsed time' not time of day, the latter would require the unit to be on power even with the car engine off. This will read out in hours and minutes up to 19 hours 59 minutes and in decimal hours for longer times. The other functions read over three ranges depending on the value. 'Fuel Use' is either miles per gallon or litres per 100 kilometres.

Pressing 'Average/Low' causes the unit to read average rather than instantaneous values if the function selected is 'Speed' or 'Fuel Use', and to read 1000 times the value if the function is 'Fuel' or 'Distance'. When the function selected is 'Time', the unit reads in minutes and seconds or seconds and tenths. The main use for the low operation is for reading the
low values obtained during start-stop operation. To indicate low or average, a colon shows by the 'function' digit.
'Reset' sets the time, fuel and distance stores to zero and introduces the averages.
'Hold' causes the total and instantaneous stores to be held at their current values and an ' H ' to show in the function digit. It is still possible to change functions using keys 1 to 6 so the conditions at the moment the 'Hold' button was pressed can be examined. 'Run' cancels 'Hold' and returns to normal operation.

REMAINDER MODE

The 'Remaining' key can be used to calculate values based on previously entered information as follows.
'Remaining' followed by 'Time', 'Fuel' or 'Distance' causes the value digits to read the entered quantity minus the measured quantity. If a further key 1 to 3 is pressed, the digits show the value of the first function based on the remaining second and the ratio of the two. For example, pressing 'Remaining', 'Fuel', 'Distance' gives the amount of fuel required for the remaining distance assuming the same average fuel use. 'Remaining', 'Distance', 'Fuel' is the distance possible with the remaining fuel and so on. The function digit always shows the units of the value digits. There are nine such remaining calculations possible.
'Remaining', 'Speed' calculates remaining distance divided by remaining time, which is the average speed now required to complete the distance in the time allowed. Similarly with remaining fuel use.

To revert to normal use, press 'End' followed by the function now required, or the function twice. The unit will perform the equivalent of pressing the 'End' button eight seconds after the last button was pressed, unless in the hold condition.

The quantities required for a journey are entered into the unit by pressing 'Enter', followed by the key for the function to be entered (1 to 3), followed by the number, followed by 'End'. Thus to enter $25 \frac{1}{2}$ miles, press 'Enter', 'Distance', 2, 5, . 5, 'End'. The 'End' is needed to indicate that a subsequent key is not a number, but see previously about automatic 'End'.

Numbers entered this way are not affected by 'Reset' or changes in the totalising stores, so if the same journey is to be done, the numbers need not be re-entered. To examine a number press 'Enter', followed by the key for the quantity to be examined. The previously entered number will now appear in the result digits and can be modified as before using the number digits, or left the same by pressing 'End'.

START-STOP MODE

The unit can be programmed to reset its stores when the display reads a certain number and to go to the hold condition at another number. Either number can be zero in which case the unit will not reset until the display reads just above zero or will not hold until the display becomes zero.

To enter the number the unit is required to reset at, press 'Enter', 'Start' (same as 'Reset'), followed by the number, followed by 'End'. Similarly the stop number can be entered using 'Stop' ('Hold'). 'Enter', 'Stop' sets a start-stop request flag in the unit, but the start-stop mode does not become active until 'Run' is pressed, indicated by a ' P ' in the function digit. During start-stop operation the sample rate for instantaneous values is increased up to eight times per second.

Suppose it is required to test the acceleration of the car from 0 to 50 miles per hour, the sequence is as follows. Press 'Enter', 'Start', 0, 'End', 'Enter', 'Stop', 5, 0, 'End'. The unit is then set to read 'Speed', the car driven to where the test is to be carried out, stopped (for long enough for the display to go to zero), then 'Run' pressed. As soon as the car starts moving the total stores will be reset to zero, and when the speed exceeds 50 miles per hour, the unit will go to the hold condition. Press 'Time', 'Low' to see the acceleration time, 'Fuel', 'Low' the amount of fuel used and so on. 'Speed'
shows the speed at which the unit stopped, which will be just over 50. 'Speed', 'Average' the average speed, and so on.

This is a very good way to tune a car as the best compromise between performance and economy can be found quite quickly. The setting for ignition timing that gives the best performance also gives best economy, and up to a point the richer the mixture the better the performance at the expense of economy and vice-versa.

It is possible to start and stop on any function, thus a standing $\frac{1}{4}$ mile test can be done starting at zero and stopping at $\cdot 25$, reading 'Distance' (or stopping at 250 reading 'Distance' and 'Low'). Make sure though that 'Reset' is pressed before 'Run' when stationary. If starting and stopping on a time, this time must be expressed in decimal hours.

Pressing 'Reset' when in the start-stop mode will start the unit without waiting for the start condition. Similarly the unit can be stopped early by pressing 'Hold'. Going to the hold condition, manually or automatically, clears the start-stop mode. To repeat a test using the same figures press 'Enter', 'Stop, 'End, 'Run'.

The start number can be greater than the stop number, used, for example, for braking tests. The display must be reading more than the start number when the 'Run' button is pressed, and obviously the wheels must not skid.

It is interesting to repeat the distance tests accelerating both fiercely and gently, work out the difference in time taken and the difference in cost of fuel used, to obtain cost/time and compare that with how much you feel your time is worth to you.
'F.Cal' and 'D.Cal' are used for calibrating the unit for metric or imperial use.

Fig. 1. Circuit diagram of main board

MAIN BOARD

The circuit for this is based around a 8035 L microprocessor with a 2716 program store (Fig. 1). A 74LS373, IC3 is used to latch low order program store addresses for the ROM which on the 8035 L are multiplexed with the data bus. BO to B3 are also latched under the control of the $\overline{W R}$ signal in IC4, a 4035. This has exclusive OR outputs for driving the I.c.d. direct.

The digit outputs for the display are in BCD form on lines $A B C D$, multiplexed under the control of strobes $S 1$ to $S 4$. The strobes also drive the keyboard, organised as a 3×4 matrix, the sense lines being L1 to L3. Pull up resistors on the strobes are necessary because the 8035 L port lines have a high impedance (50k) pull up on both inputs and outputs. Without the resistors there would be insufficient current to drive the keyboard lines.

The 8035 L has an internal 64×8 data RAM which is used for holding the various quantities which must not be lost when the ignition is switched off. $V_{d d}$ line drives only this RAM and is connected directly to the 5 volt regulator, IC6. This regulator is powered from the car battery directly. The rest of the circuit is powered via TR2 which is only on when the ignition switch is on.

IC5 pins 9 and 8 and 5 and 6 ensure that a RESET signal is applied to IC1 when the power is applied or removed. Pin 6 of IC1 is used to sense when power is about to fail.

The remainder of IC5 is organised as two Schmitt triggers for the inputs from the sensors. C14 and C15 ensure that there is maximum noise immunity when a threshold has just been crossed.

DISPLAY BOARD

The display board circuit is shown in Fig. 2. Here the 7211 A is a 4 digit l.c.d. driver and is fed with the multiplexed data $A B C D$ and the strobes directly. The l.c.d. decimal points, results digits ' 1 ' and function colon are driven directly from the 4035.

The keyboard is organised as a 3×4 matrix but is laid out on the board as 2×6. It is also driven one strobe early because the lines L1 to L3 are sampled at the end of a strobe when the internal strobe information is for the next strobe.

There are two bulbs for backlighting the display on this board.

The basic microcomputer comprises IC1, IC2 and IC3, and could be used to drive other display/keyboard arrangements, and with a different power supply/input arrangement.

POWER SUPPLY AND INPUT

Pin 26 of IC1 must be supplied with 5 ± 0.5 volts continuously to retain the information in the RAM, at a current of about 10 mA . When power is being applied or removed, pin 4 of IC1 (RESET) should be low and preferably when power is about to be removed pin 6 (INT) should be high. This puts the processor in a known state, and ensures that power will not fail half way through an addition for example.

The flow pulses are applied to pin 1 and the distance pulses to pin 39 , IC1. A 4.433619 MHz crystal is needed as in Fig. 1 for the timebase for the correct timing.

KEYBOARD/DISPLAY

The keyboard is matrix driven between strobe lines S1 to S4 and keyboard input lines L1 to L3. Note that the strobe lines are only capable of sourcing about $100 \mu \mathrm{~A}$ without pull up resistors.

In order to get correct letter outputs on the function digits a code ' B ' type decoder is needed for lines ABCD. There is a small amount of interdigit blanking on the strobe lines which will prevent ghosting when multiplex driving l.e.d. or fluorescent displays, but which may not be sufficient when driving gas discharge displays. Strobe S1 is high when lines ABCD have information for the least significant digit, through to strobe S4, high for the function digit.

Other output information is present on lines B0 to B7 when pin 10 of IC1 (WR) is low, as follows.

Fig. 3. P.c.b. design for the display and keyboard

Fig. 4. Component layout

BO Most significant ' 1 ' digit on display
B1 199.9 decimal point
B2 $\quad 19.99$ decimal point
B3

These are active low. The start-stop direction flag is low if the start number is greater than the stop number.
Bits B 5 and B 6 operate as follows.
$B 5=1, B 6=1 \quad$ Not programmed mode.
$B 5=0, B 6=1$ Start-stop request-'Enter', 'Stop' pressed, but not 'Run' yet.
$\mathrm{B} 5=0, \mathrm{~B} 6=0$ Start-stop active-'Run' pressed from start-stop request.
$B 5=1, B 6=0$ Started-unit has performed reset, display value is between start number and stop number.

FLOW SENSOR

The unit requires approximately 20,000 pulses per litre of fuel. The flow range in a motor car can be from 1 to 50 litres per hour, and it is difficult to make a flow sensor to handle this range. There are problems too with pulsations in the flow.

The recommended sensor has been designed specifically for this application and should be accurate to within 2 per cent. It uses a small helical turbine running in precision bearings, which is rotated by the flow, the rotation being sensed optically. It is mounted together with its pulse reducing valve in the fuel line between the fuel pump and the carburettor. This sensor cannot be used with fuel injection or diesel engines.

DISTANCE SENSOR

The unit needs one pulse every 200 mm or so, a sensor giving one pulse per revolution of the prop shaft could be used, or one giving 4 pulses per revolution of a half shaft. The recommended sensor fits into the speedometer cable giving 6 pulses per revolution. This is because of the difficulty of making a universal fitting for a drive shaft sensor, and one fitting on the end of a speedometer cable could necessitate a tight bend in the cable.

There are at least six different end formats for speedometer cables as well, but I have only come across two different inner cable sizes so far, both of which the sensor will accommodate. To fit it requires that the outer cable be cut at some point. A slotted disc inside the sensor rotates with the inner cable, the rotation being sensed optically.

HOUSING

In order to keep the outside dimensions of the unit as small as possible and to give a professional appearance to the finished unit, a custom box has been designed.

CONSTRUCTION

The p.c. board layout for the display and keyboard is shown in Fig. 3. Fig. 4 shows the component layout, the display is mounted above IC7, in the soldercon connectors.

Fit the three wire links first, then the switches, making sure that they are close against the board. Now fit IC7 as in Fig. 4, again pressed close to the board, and without a socket. Cut the bottom row of legs of this i.c. close to the board. Fit and solder the capacitor C16 and the soldercon sockets for the display. Break off the backing strip from the sockets. A small piece of white paper about $25 \mathrm{~mm} / 1 \mathrm{in}$ square stuck to the middle of IC7 will improve the appearance of the display when back lit. Press the display into
the sockets so that the front of it is 11 mm from the front of the board. Fit and solder the connecting wires on the copper side of the board. These can be $40 \mathrm{~mm} / 1 \frac{1}{2}$ in lengths of $10 / 0.1$ wire, or a 40 mm length of 18 way 0.1 in pitch ribbon cable.

Figs. 5 and 6 show the printed circuit layouts for the main board. Fit a through pin in all top side pads and solder both sides. The position of the components is shown in Fig. 7; it is recommended that IC1 and IC2 be mounted in sockets. Solder in the sockets, but do not fit IC1 or IC2 yet.

Fig. 8. Coils L1 to L3 consist of five turns each of kynar wire

L1 to L3 consists of five turns each of three lengths of .25 mm kynar wire wound around the ferrite core as shown in Fig. 8. The core is held onto the board using a cable tie.

Fit IC6 and its heatsink (Fig. 9) last, an M3 $\times 8 \mathrm{~mm}$ bolt holding them to the board, with the nut and washer on the component side. Fit the crystal (as far as the wires permit) lying over IC1.

Fig. 9. Heatsink for IC6. It is only shown in outline in Fig. 7

Join the two boards together, again soldering the connecting wires to the copper side of the board. The wires connect without crossing over. Fit the seven wires for the power and sensors, thread through the sleeving, and if the unit is to be mounted above the car dashboard, i.e. with the sloping part of the box at the top, thread the cable through the big hole in the board. Fit a cable tie approximately $75 \mathrm{~mm} / 3 \mathrm{in}$ from the board.

The two bulbs are fitted through the holes in the display board, from the component side, making sure that the metal parts of them are not touching the metal bar passing through IC7, and held in place with adhesive (e.g. 'Superglue'). Connect these to the main board with a twisted pair of wires kept away from the main components.

TESTING

Apply power between the -ve and +ve wires (black and red on board), 9 to 15 volts, and check that there is 5 volts $\pm .25$ between 0 volts (heatsink) and pin 26 of IC1 socket. Now connect IGN (yellow) to the + ve supply and check that there is 5 volts between 0 volts and pin 40 IC1 socket. Remove the power, wait a minute or so for the capacitors to discharge and plug in IC1 and IC2.

Apply power between -ve and +ve/IGN again, press the

'End' button (bottom right) on the keyboard, the 'Run' button, then some of the buttons 1 to 5 on the keyboard top row and check that the function (leftmost) digit of the display shows the key number 1 to 5 .

MAIN ASSEMBLY

Refer to Fig. 10 for the positioning of the various components that make up the box front. Remove the backing paper from the switch label and fit it to the box front, making sure that the holes line up and that it is the right way up. Use the two plastic sprues from the box mouldings through button 6 and 7 holes to align the label, and once pressed down do not attempt to move it. Fit the name label similarly.

The transparent window is fitted to the inside of the box front using polystyrene cement or 'Superglue'. Do not get adhesive on the visible part of the window, it does not come off! Fit the switch button assembly over its studs and melt the studs down to hold it in place.

Thread the cable from the main p.c.b. through the hole in the back of the box cover and pull through, sliding the p.c.b. along the appropriate set of runners. These will grip the board fairly tightly. Press the board home, making sure that the board engages the slots at the back of the box cover, and that the capacitor C 9 is not pulled from the board by the edge of the box.

Locate the holes in the display p.c.b. over the long studs in the box front, and tucking the connecting wires under the main p.c.b., hook the keyboard side lugs on the box front into the slots in the cover. Press the display side lugs inwards to fit into the cover and press the front into the cover so that the lugs snap home.

COMPONENTS

Resistors

R1-R4 R5-R7 3 k 3 (4 off) R8, R12 3k9 (3 off) R9, R10, R14 10k (2 off) R11, R16, R18 100 k (3 off) $\begin{array}{ll}\text { R13 } & 220 \\ \text { R15 } & 1 \mathrm{k}\end{array}$ All resistors $\frac{1}{4} W 5 \%$ carbon film

Capacitors

C1, C2
C16 C5 C7, C8, C10 C9 C3, C4, C6, C11, C12, C13 C14, C15
Semiconductors

D1	1N4001	IC3	SN74LS373
D2	1N914	IC4	4035
TR1	BC182	IC5	4069
TR2	BFY51	IC6	7805
IC1	$8035 L$	IC7	7211 A
IC2	2716		

Miscellaneous

L1-L3 3×5 turns on T68-40 core, XL1 4.433619 MHz crystal. S1 to S12 AKS switch (12 off), X1 47-D9-F03KG display. LP1-LP2 14V O.7W LES bulbs $(2 \mathrm{off}) .40 \mathrm{pin}$ DIL socket, 24 pin DIL socket, soldercon pins (40 off), heatsink, p.c.b.s, through pins (34 off), wire, cables etc., plastic box kit, speed sensor, flow sensor and valve, connector block, cable ties, various 'plumbing' parts as required.

A complete kit of parts is available from Pimac Systems Ltd., 20 Bloomfield Road, Birmingham B13 9BY.
Price $£ 89.50$ which includes VAT plus postage and packing.
Next Month: Fitting the flow and speed sensors. Installation, calibration and a description of the program controlling the computer.

Ec40
Fig. 5. Topside of p.c.b.

Fig. 6. Underside of p.c.b.

[[P> 닝
Fig. 7. Component overlay

We at Videotone are very confident that the Seoum range offers excellent value, as equipment of such high specification would normally be in a much higher price bracket. This is basically what you might expect us to say about our products, but don't just take our word for it, read on.

66The name of Videotone certainly needs no introduction, as their popular range of loudspeakers, and especially the remarkable showstopper in the shape of the Minimax 2 , well and truly secured them an established position in the hi-fi scene a good many years back. Since then a lot has happened and today they offer a very wide range of products among which are the brand names of Coral and Seoum.

Coral is now a widely known and respected name but Seoum, the relative newcomer to the Videotone fold, has yet to fully make iss mark, but if the value-for-money quality apparent in these three products is anything to go by it won't be long before it's an established brand name tool

Normally, any equipment submitted for review is used thoroughly for a reasonable period, but in the case of the Seoum SA-4120 amplifier, ST-4120 tuner and SC-4200 cassette deck, it has been in constant daily use in excess of four months and therefore well and truly exposed to the glaring light of day.

I've used it, my wife uses it almost all day long, a friend borrowed the amplifier for a disco one night, the children inadvertently abused it, and it's driven all manner of different speakers, but never for a second has the system
gone wrong or given anything but pleasure.

The SA-4160 amplifier produces sixty watts per channel into eightohm speakers, both channels driven, and boasts a generous range of facilities. There are switchable outputs for two pairs of speakers, inputs for two cassette or tape decks, microphone input, switching for tone defeat, 20 dB muting, loudness, mono/stereo, subsonic filter and the usual bass, treble, balance, volume and selector controls. Also, there's the surprising addition of a built-in head amplifier for moving-coil cartridges, peak level led power meters and a green led which lights up when the unit is switched on but which changes to red in event of a fault condition at the output stage such as ashort circuit or the use of loudspeakers of exceptionally low impedance.

It's certainly a very comprehensive amplifier and omits nothing worthwhile that I can think of at the same time as it includes a lot I hadn't even thought about. And the price . . . just $£ 95$ including VATI

Matching in style is the ST-4120 three-waveband tuner ($\mathrm{vh} \mathrm{f} / \mathrm{fm}$, long and medium wave) and this again, proved very good as Gordon King also found in his Audiolab report last September. Reception on the two am bands is quite

 on the vhf/fm band were judged as being especially good and decidedly better than that I've had from so-called up-market tuners with a much higher price tag. Particularly noticeable, using the indoor ribbon aerial supplied, is the very low level of background noise which brought about that startling effect of a voice or music emerging out of a near-inky black silence!

Facilities are adequate with precise tuning on the vhf/fm band being made particularly easy by use of the clear led signal strength and tuning indicators.

Aerial connections at the rear of the unit make provision for an external am aerial, which must prove superior, if long enpugh, to the ferrite rod, and 300.0 hm balanced and 75 -ohm unbalanced co-axial - the latter being favoured in this country. Excellent value at £69 including VAT!

The Dolby-equipped SC-4200 cassette deck, replacing the earlier SC-3200, again proved a rather surprising package for just £85 inclusive of VAT, boasts features which normally call for a higher price tag.

Firstly, the deck is metal-tape compatible. Secondly, it incorporates peak reading led level meters, green up to OdB and red thereafter. Thirdly, it utilises one-touch logic controls instead of the mechanical type commonly found on most lower priced decks and fourthly. the output is variable as opposed to being at a fixed nominal level. A wide variety of quality cassettes all worked well with the deck but BASF's latest chrome formulation, Chrome 11, proved particularly noteworthy.

There is never enough space to write all one wants to about a system, and especially so if such has generated genuine enthusiasm as this one has so easily done, but suffice it to say that in all respects, 1 just cannot fault it, Highly recommended.

Geoff Giles

- For further details of the Seoum range, or any other Videotone products, including CORAL cartridges and MINIMAX 2 loudspeakers, send for our latest brochure.
- We welcome callers to our South I.ondon Showroom for demonstrations.

This review by Geoff Giles, has been presented in full, as' it appeared in the July ' 81 issue of Practical HiFi.
The system reviewed consisted of: the SA4 160, 60 watt stereo amplifier, ST4120 stereo tuner, and the SC4200 stereo cassette recorder.

Plus... 4 Page Pull-aut WHAT Bi?

With CB now legal we thought it would be a good idea to let you know just what rigs are available so we have collected details and photos of every legal rig we can find, for both 27 MHz and $934 \mathrm{MHz}^{2}$, and put them all in this pull-out guide.
PE RANGER 27FM CB BASE STATION Part 1

PRACTICAL

Digital Design Techniques...

Tom Gaskell ba.foris) eube..ña

Part 5 Advanced Sequential Circuits

AST month we looked at the principles of flip-flops, dividing, counting and sequencing. This month we shall take the principles further and look at more complex devices and more sophisticated circuitry.

SHIFT REGISTERS

A 'register' is the term used for a collection of flip-flops, often with associated gates, which can be used to store and 'move around' combinations of logic 0's and logic 1's. They are used extensively in calculators, computers and microprocessors where each piece of binary information (logic 0 or logic 1) is known as a 'BIT' (which stands for BInary Digit). Hence, a piece of circuitry consisting of 8 flipflops, and capable of giving eight logic outputs, might be called an 8 bit register.

The most basic form of register is known as a 'shift register'; it has a clock input, a data input and a data output, with logic 0's and 1's being 'shifted' through the flip-flops of the register, one position per clock pulse, from the input to the output pin. A basic 4 bit shift register based on D-type

66919
Fig. 5.1. Basic $\mathbf{4}$ bit shift register
flip-flops is shown in Fig. 5.1. Whatever the logic state of the input, after one clock pulse point $Q n+1$ will be at that state, then after 2 clock pulses $0 n+2$ will be at that state, after 3 clock pulses $\mathrm{Qn}+3$ will be at that state, then after 4 clock pulses the output $(0 n+4)$ will be at that state; the logic state of the input is being 'shifted' along the register. Hence, whatever the state of the input, the output will go to that state 4 clock pulses later. By changing the logic state of the input prior to each clock pulse, the 'contents' of the register can be adjusted at will. Note that the flip-flops must be edge triggered, otherwise input changes would be transferred directly to the output whenever the clock was at logic 1.

Fig. 5.1 represents a 'Serial In-Serial Out' device; 'data' is represented by a series of logic changes at the input, one per clock pulse and emerges as a series of logic changes at the output 4 clock cycles later. This format of register is abbreviated to SISO. It may be more convenient to us,
however, to 'fill up' the register as required with 1 's and 0 's, then to look at the points $Q n+1, Q n+2, Q n+3$, and $Q n+4$ simultaneously. These give us a parallel set of data, because although the 1's and 0's were loaded into the register one at a time, they can be fed out of the register simultaneously. This is now a Serial In-Parallel Out register, or a SIPO.

Taking the concept even further, it is possible to use the 'set' inputs of the flip-flops to 'preset' a certain number of 1's and O's into the register simultaneously; applying clock pulses would then shift the 1's and 0's out of the register output pin one by one. It doesn't require a lot of imagination to see that this is a PISO: Parallel In-Serial Out. The parallel outputs $Q_{n}+1, Q n+2, Q n+3$ and $Q n+4$ can also be used in this instance, of course, in which case the device acts as a 4 bit or 'Quad' latch. For consistency we can refer to this as a PIPO register: Parallel In-Parallel Out.

Other far more complex registers are available which are often used in calculator and computer circuitry. For example, the First In-Last Out register, in which the first bit coming out of the register is the last bit that went in and vice-versa. The more usual type of course is a 'FIFO': first in, first out. Many shift registers are of considerable length (i.e. many bits); up to 1024 is typical of the larger types. (These, for obvious reasons, are only available in SISO form.) More generally available types such as the CMOS 4006 have several stages of shift register in them, mostly SISO but with. several parallel 'tappings'. Mention should also be made of the CMOS 4035. This is a 4 bit serial or parallel in, serial or parallel out device of great versatility and low cost, and can perform many complex functions. One of its most notable features is that the first stage is a JK flip-flop, with the K input inverted. Hence, all the input functions of a JK flip-flop can be utilised, or the J and K inputs can be connected together and it will behave as a normal D-type device.

COMPLEX COUNTERS

Last month we looked at basic counters, both decade and binary. There are, of course, much more advanced types of counter, with many extra facilities and functions. Many have decoding logic provided to count in special codes; often these are used to count and directly drive numerical displays such as the ' 7 -segment' l.e.d. displays used in the Disco Hat project last month, or 'liquid crystal' displays. (We'll look at the 7 -segment code next month.) Others have built-in latches, oscillators (less the capacitors and resistors) or even two independent counters in the same i.c. package. The 4018 is a presettable divide-by-N counter, and is in essence a cross between a shift register and a counter. It is a five stage counter, with counting stages that can be preset by parallel logic inputs, often known as 'JAM' inputs. The first counter stage has a 'data' input, which can be fed from any
of the outputs, via combinational gates if necessary, to set the values of ' N '. By this means, the output counts up to ' N ', then starts again from zero as a continuous process, with no 'glitches' or transients that might be produced when using a simple self-resetting circuit.

Finally, probably the most useful counter in the CMOS range is the 4029; a presettable 4 stage up/down counter. Presetting occurs in parallel, in a similar way to the 4018 mentioned above, and from this preset value the 4029 can count upwards or downwards, and in one of two possible codes, binary or BCD (binary coded decimal), which we shall be looking at later in the series. Two of these counters are used in the project this month, so a greater understanding of the workings of this i.c. will be possible now. There are, of course, even more complex counters than these; a frequency counter instrument, for example, is often based on a single i.c. for the majority of its functions, but these are far more specialised in use and are usually fairly expensive when compared with the normal 4000 series of CMOS i.c.'s and most TTL series.

SYNCHRONOUS/ASYNCHRONOUS OPERATION

The term 'synchronous' means that changes in a device or circuit occur at the same time as the clock pulse. Asynchronous is the opposite of this; changes in the circuit can occur at any time, not necessarily related to the state of the clock. In the case of the 4029 up/down counter, for example, the preset 'JAM' inputs can be fed into the counter asynchronously, it doesn't matter what state the clock is in - the moment that the 'preset enable' pin is taken to logic 1 , the counter outputs immediately change to these new preset states.

Fig. 5.2. Cascaded divide by two circuit
To see how this affects the design and the use of counters, let us look at the basic binary counter, as discussed last month. In Fig. 5.2, when the clock input goes to logic 1 it causes flip-flop 1 to change state. The change of state of this flip-flop then clocks flip-flop 2. Due to propagation delays, there is a finite time interval between the counter clock input changing, and the clock input of flip-flop 2 changing. When the state of the whole counter is such that the 'D' output state changes, this change takes place a considerable time after the counter clock input edge occurs: flip-flop 1 changes, which causes flip-flop 2 to change, which in turn
causes flip-flop 3 to change, finally causing flip-flop 4 to change. These changes seem to 'ripple' through the counter and since output ' D ' changes some time after ' A ' changes and hence is not synchronous with the clock, this counter is known as a ripple or asynchronous counter. Although the delay is very short (normally less than $1 \mu \mathrm{~s}$) it does result in invalid information being present at the counter output for a short while, which potentially could be latched into registers or other devices and result in serious mis-operation of the system. We'll look in greater depth at this type of error a little later on.

To avoid this ripple effect it is necessary to change the state of all flip-flops simultaneously rather than in sequence. Fig. 5.3 shows a simple synchronous counter. You will remember that if the J and K inputs of a flip-flop are both held at logic 0 , no change in the output state occurs when the clock goes to logic 1 . If J and K are both at logic 1 , the outputs reverse state when the clock goes to logic 1. Hence, flip-flop 1 always reverses state; it is a simple divide-by-two circuit. Assuming that the other outputs start from an initial zero condition, then if the state of output A is 1 before a clock pulse occurs, flip-flop 2 will change state as soon as the clock pulse occurs, in turn changing output B. When both A and B are 1 before a clock pulse, i.e. binary count 0011 , then as soon as the clock pulse occurs, flip-flop 3 changes state, so output C goes to logic 1 ; but, A and B also both change state (they go back to logic 0) so the count becomes 0100, and so on.

The extra complexity and greater cost of synchronous counters is not always needed although both asynchronous and synchronous devices are readily available in both CMOS and TTL families. Practically the only operational disadvantage of synchronous circuits is that they tend to be less tolerant of slowly changing or noisy clock inputs. In a ripple counter all flip-flop clocks are derived successively from the previous flip-flop, and this relatively slow propagation of changes ensures that the correct logic changes all occur in the correct order, whereas in the synchronous counter a very slow or noisy clock edge may cause some flip-flops in the device to be clocked before others, (due to manufacturing tolerances in the CMOS threshold points) and this could lead to incorrect operation. Hence, it is important to ensure fast clean clock edges when driving synchronous circuitry.

CASCADING COUNTERS

The use of synchronous or asynchronous circuit designs should also be considered when cascading counters. 'Cascading' is the term used to describe the joining together of two or more counters to make a much larger counter in total. This can sometimes be as simple as taking the last output of one counter and feeding it into the clock input of another counter, but is considerably complicated when up/down counters are involved. Often, these i.c.'s have 'carry out' and 'carry in' pins, to permit easy cascading.

Fig. 5.3. Synchronous binary counter

Once again, data sheets and books should be consulted for detailed applications of counters including asynchronous and synchronous cascading where appropriate: there are far too many different possibilities and circuits to go into here. The discussion of synchronous versus asynchronous working, and the potential errors introduced into logic systems, leads us naturally on to look at the whole aspect of errors in sequential logic circuitry, these errors being collectively known as 'hazards'.

HAZARDS

Due to manufacturing variations and tolerances and to physical limits on the speed of propagation of electric signals, various delays and timing differences are always present in logic circuitry. Outputs of gates change a finite time after the input has changed; counter or latch outputs do not all change simultaneously, etc. We can classify the effects and types of errors in circuit operation due to these timing differences. A 'hazard' is an incorrect or invalid state of a logic output and a 'race' is the time difference between the changes of various outputs within the circuitry; hence, some races cause hazards.
'Transient Hazards' are caused by, and occur for the duration of, the delay between the input of a circuit changing and its output changing. The error in the circuit operation is only present during this propagation delay period, and hence it is a short duration, or transient effect. However, if this transient hazard results in a permanent error in the following circuitry's state (a flip-flop is reset, for example, when it should not have been) then the error is termed a 'Static Hazard'. Timing differences between supposediy simultaneously changing outputs of a circuit are known as 'races'; the output changes of a ripple counter are a good example of a race, because, as already discussed, output changes do not occur simultaneously, but in succession. If a race gives rise to a permanent error (i.e. a static hazard) in the state of the following circuitry, then it is known as a 'Critical Race'. Any other types of hazard all fall under the overall category heading of 'Race Hazards'.

There are forms of mathematics which can be used to describe and manipulate the design of sequential circuits, using similar (but more complex) types of 'maps' to those used in 'Boolean Algebra' as discussed in Part 1 of this series. Unfortunately, they are very complicated indeed and far too involved for us to look at even briefly. These mathematical techniques have procedures for removing all the above mentioned hazards or at worse reducing them to transient effects only, but to avoid going deeply into the mathematics we shall have to be content with a rather more intuitive, common sense approach to the problem.

TYPICAL PROBLEMS

Hazards are typically caused by trying to have too many sequential circuit elements fed from the same single logic change. A frequently seen design error is to have the same control used to reset a flip-flop (or counter) as is used to latch the output of that flip-flop (or counter); in this case, correct operation of the circuit is obviously dependent on the latch being operated before the device is reset, not the other way round. Similar problems can be encountered with up/down counters; see Fig. 5.4. If the up/down control is at logic 1 when the clock input goes to 1 , the device counts up; if the up/down is at logic 0 when the clock input goes to 1 , it counts down. If the same pulse is used for both the up/down control and the clock, then depending on which delays in the i.c. are greater, the counter could count down as shown in Fig. 5.4a or up as in Fig. 5.4b. In practice it is usually found

Fig. 5.4. Race hazards in an up/down counter
that the circuit will sometimes count up and sometimes down. The effects are unpredictable. Note also that these delays (and hence the timing errors) can be both internal to the i.c. and external to it in the control logic and other surrounding circuitry.

Another often seen design error is to have the input to a flip-flop or other sequential i.c., dependent on the output of the same i.c., often via an indirect path of combinational gates. In some instances this is allowable; self re-setting of counters, for example, and divide-by-two circuits as discussed last month. However, it is frequently the cause of race hazards, and should be avoided in most cases. Finally, be aware that some counters, shift registers, etc., give out short transients on their outputs when in the process of being reset. Although these are only transient hazards, they could become static if the following circuitry is not carefully designed to allow for this effect. This is not usually a problem, as most devices do not exhibit this fault, but it is worth bearing in mind. TTL seems worse than CMOS in this respect.

THE ELIMINATION OF HAZARDS

Generally speaking, the best way to design out hazards is to ensure that only one change in a logic signal path happens at a time, or, if several supposedly simultaneous and related changes occur, to arrange that the following circuitry is not dependent on receiving all its inputs at exactly the same time. Often, extra gates or sequential devices have to be added to isolate or avoid potential hazard situations.

There are several techniques employed to space apart 'events', or critical logic changes, in time. Fixed time delays can be added to the relevant parts of the circuitry using monostable timer i.c.s or simple resistor/capacitor networks as already discussed in this series. The time delays necessary are usually very short indeed, so small values of capacitor and large values of resistor can be used (usually a few hundred picofarads and a few hundred kilohms) which places negligible loading on the outputs of CMOS logic, causing no 'glitch' or transient problems. In fairly simple circuits, sufficient time delay can be added by passing the offending logic signal through a few spare gates in series, acting as inverters or buffers as required. The propagation delay of most CMOS gates is between 20 and 100 ns and this is often sufficient to compensate for a slight timing error elsewhere. The addition of gates in the signal path is the technique usually employed within i.c.s to correct for time delay errors and races, and remove potential hazards. In fact, the only way in which some flip-flops, counters, and shift registers can actually work at all is by utilising propagation delays. In the basic binary counter shown in Fig. 5.2, the circuit action is based on there being a finite propagation delay between each flip-flop's D input state being clocked in, and that flip-flop's \bar{Q} and $\overline{\mathrm{Q}}$ outputs changing. If this delay did not occur, the $\overline{\mathrm{Q}}$ output could never be used to feed back to the D input; the device would just sit in an indeterminate state. The synchronous counter, Fig. 5.3, is similarly dependent on propagation delays for its correct operation.

It may be possible to avoid hazards by using both edges of a pulse, instead of just one edge, often necessitating the inversion of the edge of the incorrect polarity. Hence, one event may be caused to occur by the 0 to 1 transition, and the other event by the 1 to 0 transition, spacing them apart by the width of the clock pulse, in a similar way to the two pulses derived in the "PE Pulser" described earlier in the series. Beware, though, that it is often bad practice to use edges for implementing several functions simultaneously, because (as mentioned in the case of synchronous counters) different logic inputs can trigger at different points on the waveform edge. In these instances it is wise to keep the edge as fast and 'clean' (i.e. noise free) as possible.

If a number of events must be made to happen in a fixed sequence, it may be necessary to add some form of sequencer to control them. For example, a shift register or decimal counter could be used, with each parallel output connected to the relevant circuit to be controlled. Finally, one should remember that most transient hazards are only a few nanoseconds long, which is often too short to trigger logic probes.

RANDOM PULSE GENERATION

We've been concerned until now with the removal of noise, transients, and other spurious effects from our logic circuitry. There are, however, situations which actually require this type of logic change: random number generators! These are often used in statistical work, for testing purposes, or more usually in games and gambling machines!

In its simplest form, the generator can be a very fast running oscillator (10 or 100 kHz typically) gated on and off by a pushbutton switch, and feeding a counter, as shown in Fig. 5.5. The frequency should be selected such that many com-

Fig. 5.5. Simple random number generator
plete counter cycles occur in 0.1 seconds. By this means, there is no way in which the person pressing the button can pre-judge the value of the counter output. However, if a second oscillator is being used to gate the first on and off, patterns of output numbers will be seen to occur after a time. A 'pseudo-random' number sequence can be generated by feeding the counter from a clocked shift register with various combinations of gates taking parallel outputs of the register and feeding them back, suitably combined, into the serial input. This technique will still cause repeats of patterns, although it can take many thousands of counts before any repetitions are obvious. Finally, a 'pure' noise source can be used, such as the amplified noise generated by the reverse biasing of a transistor junction.

Our project this month is Space Evaders on page 22.

NEXT MONTH

Next month we cover Numerical Systems - the various codes and arithmetic used in digital electronics, and the driving of numerical displays.

ATHOUGH the Genesis series of hydraulically powered robots can be controlled by a simple bank of pushbutton switches energising solenoid operated valves, it is necessary to use an electronic control system with feedback to take full advantage of the power and the versatility of these machines. Feedback of positional information is a feature included in these machines, which, although essential for reliable repeatability, is absent in the majority of all other low cost machines, severely restricting their use as emulators of the mainstream industrial robots. The block diagram of the microprocessor based control system is shown in Fig. 2.1.

MICROPROCESSOR UNIT

The heart of the system is the microprocessor unit which performs the task of overseeing the complete system and issuing control signals in response to arm positional data, programmed-in commands, commands from the control box
or information from an external computer. With its CMOS memory it stores the positions of the arm and by using servo techniques will instruct the robot to repeat the sequence of tasks programmed in. Each of the arm and joint positions is defined by an 8 bit word giving a resolution of 1 part in 256 (0.4%). Data is transferred to and from the interface board by 8 bits in parallel whilst data is received from the control box serially, permitting the use of a simple infra-red link to be used for controlling the Genesis M101 mobile machine. In the interests of standardisation, interfacing with an external computer is via an RS232C serial interface with a range of baud rates between 300 and 9600 . Although this facility is included, an external computer is by no means necessary as the system's own processor and operating system provides all the functions normally required.

COMPONENTS . . .

INTERFACE BOARD

Resistors	
R1	
R2	47
R3, R4, R7, R9, R12,	1 k
R5, R8, R10, R11, R21	$10 \mathrm{k}(5$ off)
R6	$100 \mathrm{k}(5$ off)
R13	110 k
R14	15 k
R15, R18	100
R16	2202 (2 off)
R17	$2 \Omega 2$
R19	2 k 2
R20	2 k 7
R22	1 k 2
R23, R24	10
R25	$4 \mathrm{k} 7(2$ off)
R26	$4 \Omega 7$
R27	330
R28	$1 \Omega 52 \mathrm{Watt}$
R29	18 k
R30 A-E	47 k
R31 A-E	$10 \mathrm{k} 1 \%$ (5 off)
R32, R33 A-E	$20 \mathrm{k} 1 \%$ (5 off)
R34 A-E	$100 \mathrm{k} 1 \%$ (10 off)
R35, R36 A-E	$68 \mathrm{k}(5$ off)
R37 A-E	$47 \mathrm{k}(10$ off)
R38, R39, R42,	24 k (5 off)
R43 A-E	100 k (20 off)
R40 A-E	390 k (5 off)
R41 A-E	150 k (5 off)
R44 A-E	$22 \mathrm{k}(5$ off)
R45	12 W

All resistors $\frac{1}{4}$ W 5% unless otherwise stated

Integrated Circuits

IC1	74LS123
IC2	74LS132
IC3	74 LS00
IC4	74 LS175
IC5, IC7 a-e	LM324N (6 off)
IC6	LM383
IC8	ICL 7660 CPA
IC9, IC10	$7805(1$ Amp TO220) (2 off)
IC11-14	ULN2003 (4 off)
IC15-19	74 LS373 (5 off)
IC20	ADC 0804
IC21	4051 B

Miscellaneous

Printed circuit board RIFb
S1 SPST switch
Link-through 0.84 mm dia. (approx. 200 off)
TV5 heatsink
1.25 QY heatsink (drilled for two TO220)

TB1 4-way screw terminal
PL2-PL6, PL8 10-way Molex p.c. pins (6 off)
PL7, PL9, PL10 5-way Molex p.c. pins (3 off)
SIP1, SIP2 SIP 1 k networks (2 off)
SIP3 SIP $4 k 7$ network
20-pin i.c. sockets (6 off)
16 -pin i.c. sockets (3 off)
14 -pin i.c. sockets (8 off)
8 -pin i.c. socket
20 mm p.c. mounting fuse holder
$20 \mathrm{~mm} \mathrm{1.5A}$ fuse

Constructor's Note

Complete kit of parts for this project can be obtained from Powertran Cybernetics, Portway Industrial Estate, Andover. Hants SP 10 3WN. Andover (0264) 64455.
Prices are as follows . . .
Genesis M101 4 axis model (excluding wheel base) $£ 295.00$
Genesis M101 5 axis model (excluding wheel base) $£ 345.00$
Genesis M101 wheel base 179.00

Genesis P101 4 axis model \quad E450.00
Genesis P101 6 axis model $\quad 5545.00$
Genesis S101 4 axis model $£ 355.00$
Genesis S101 5 axis model $£ 405.00$
Position detector coil set for M101, S101 4 axis models $£ 15.00$
Position detector coil set for M101, S101 5 axis models $£ 19.00$
Position detector coll set for P101 + axis model $\quad 15.00$
Position detector coil set for P101 6 axis model $\$ 24.00$
Position detector board for M101, S101 4, 5 axis models $£ 6.50$
Position detector board for P101 4.6 axis models $\quad \$ 7.50$
Motor drive board for M101 wheel base (2 required per machine)
111.50

Control electronics for M101 (microprocessor board, interface board, display board and mounting brucket)
1135.00

Processor box for S101, P101 (microprocessor board, interface board, display board, power supply, interface cables, conduit, cabinet)
$£ 175.00$
Parts for RS232C interface (fits on microprocessor board)
$£ 14.50$
Hand held controller box for M101 (includes infla red transmitter and rechargeable battery) $\quad \$ 47.00$
Hand held controller box for S101 $£ 33.00$
Hand held controller box for P101 £33.50
All prices subject to 15% V.4.T.

Fig. 2.5. Position detector

INTERFACE BOARD

This board produces the power supply rails for all the electronic units; it also generates a precision reference sinewave for the position detector units. It detects the position feedback data and converts it to a d.c. voltage which is then multiplexed into an ADC. This then delivers its data to the microprocessor. All data into and out of the microprocessor is held in latches on this board. The solenoid valves are driven by Darlington power drivers which are themselves driven by the latched data. This board together with the microprocessor board fits on the rotating platform of the M101, but for the bench mounting S101 and P101 there is a separate cabinet which encloses the pair of them.

CIRCUIT OPERATION

Refer to interface board (Figs. 2.2 \& 2.3). The power supply is relatively simple. Most of the electronics runs from +5 V which is obtained from two regulators IC13 and IC14. The positive unregulated rail is used to power op. amps. and some other devices, and is nominally +10 to +12 V . A negative rail is needed to power the op. amps. and so a d.c. to d.c. converter is used (IC12). This delivers -7 to -9 V at about 40 mA . This is quite a low current and so it is necessary to use low power op. amps. (LM324 quad devices).

Latches IC19 to IC23 latch data into and out of the microprocessor section. Latches IC19 and IC20 send data to the Darlington drivers which drive the solenoid valves (Fig. 2.6). The solenoids need 600 mA of current drive and so two drivers are paralleled to provide enough drive. Because of the high current, i.c. sockets are not used for these drivers. The ULN2003 also has internal protection diodes to prevent damage from back-e.m.f.s from the solenoids. The latches can be turned on and off (tri-state outputs) so that the solenoid drivers can be manually tested, i.e. tested without the microprocessor.

The position detectors use a magnetic coupling principle (Fig. 2.5) which avoids any electrical contacts on moving parts. Two coils are wound on a tube that fits on the outside of the non-ferrous hydraulic cylinder. A sine wave is fed to the drive coil and it is detected on the pickup coil. The size of the pickup signal depends on the magnetic coupling between the coils, which is dependent upon the position of the steel actuator rod (see graph). The pickup signal is attenuated by about 30 dB relative to the drive signal and changes by about 6 dB at the operating frequency of 100 Hz . Fast response in the system is ensured by the carefully designed detector electronics which has a very short settling time.

The reference oscillator is a state variable filter with positive feedback (IC5). A low distortion sinewave (total harmonic distortion of about 1%) is fed into a power amplifier (IC6), which is used to drive the position detector coils. The position detector electronics consist of a precision full-wave rectifer, a notch filter and a lowpass filter, see Fig. 2.4. Half. wave rectification can be seen at the junction of D2/R3. Full-wave rectification occurs by mixing this signal with the original. The smoothed full wave rectified signal has a strong

Fig. 2.6. Darlington drivers for solenoids

200 Hz component and theoretically no 100 Hz component. The 200 Hz component is attenuated by the notch filter and it is then further filtered by a 50 Hz lowpass filter. The last stage of the detector is a variable gain stage with a variable d.c. offset. The output voltage should be OV with the actuator extended, and +2.5 V with it retracted. There are 5 detector circuits on the interface board, although only 4 are used on the M101 and S101 robots, i.e. one for each movement except the gripper where there is little advantage in knowing how open its fingers are. The five detector output voltages are multiplexed (IC25) into the micro-processor controlled ADC (Analog to Digital Converter), IC24. Conversion time is about 20 microseconds. IC1,2,3,4 are used to detect the incoming data from the manual control unit which will be discussed in a future part.

NEXT MONTH: Display and Motor boards, plus mobile wheel base.

Semiconductor TPDATIE featuring

NOISES OFF

The trouble with noise reduction systems like Dolby is that audio signals have to be encoded before transmission or recording for the technique to work. The principle employed relies on the pre-emphasis of high frequency sounds before recording, and the de-emphasis of those portions of the audio spectrum during replay. Troublesome noise sources introduced during the recording and replay phase such as tape "hiss" are not boosted during pre-emphasis but are attenuated during de-emphasis with the result that the high frequency noise "floor" is dropped by up to 10 dB for the Dolby B system. All this is fine if signals are properly encoded by meañs of pre-emphasis before reproduction, but it cannot help at all in the case of un-encoded signals such as most radio broadcasts, records, and old tape recordings.

A new technique called Dynamic Noise Reduction (DNR), while probably not replacing Dolby where it can be most effectively employed, in cassette systems for example, offers the major advantage of being completely independent of any sort of preemphasis or encoding and therefore usable with any kind of audio source-even old 78 records! This technique relies on the phenomenon of auditory masking exploited by the use of signal controlled bandwidth reduction in the replay or receiving equipment only.

Taking advantage of the fact that aggregate noise output is proportional to the bandwidth of the system, DNR acts to reduce bandwidth or frequency response when only low audio signal levels are present, while increasing it to the maximum possible during louder passages. While the signal level is high, then no noise reduction takes place in the DNR circuitry, but the human ear can happily take care of these situations unaided thanks to the auditory masking of the lower level high frequency noise components during loud passages.

Electronically, the audio signal is fed through a low-pass filter with a variable cut-off frequency. which is "tuned" dynamically by the incoming signal level. To ensure a well balanced response, it is necessary to pass the incoming signal through a high-pass filter with a 6 dB per octave slope and a $-3 d B$ point at about 6 kHz before using this to generate the filter control signal. This ensures that a loud low frequency signal opens up the bandwidth less than a loud high frequency signal.

National Semiconductor have produced one chip that does the whole job, coded LM1894. It contains two variable low-pass filter sections (for stereo applications), a
summing amplifier to combine the two input signal channels, and a detector and voltage to current converter to drive the filters. All you need in addition to the LM 1894 and its 14 pin plastic package are a few resistors and capacitors, and maybe a 19 kHz filter coil if the circuit must handle stereo broadcast signals.
(At the time of going to press, the LM1894 is not available, as National are considering the introduction of a licensing system, similar to that presently being operated by Dolby.-Ed.)

CMOS REGS

Those Intersil whizz-kids who showed us that CMOS wasn't just a logic technology have done it again. Their latest CMOS chip is going to be very useful in very many applications, in fact now that I have seen the spec. I can't help wondering how we managed to get by without it all these years!

On offer are their ICL7663 and 7664 voltage regulators, but these regulators are unique in: a) being made in CMOS, and b) having a standby current consumption of just 4 microamps-maximum! The new chips are ideal for battery powered instruments that need stable supply rails, and they can handle supply currents from only 1 microamp to a respectable 40 milliamps over a voltage range adjustable from 1.6 to 16 volts with an input-output voltage differential of only 50 millivolts.

You can even use these babies as switches to save even more precious juice during your system's idle moments, a simple logic command is all you need to use them as an on/off switch, just like on those fancy l.c.d. calculators which turn themselves off when you ignore them for long enough.

The ICL7663 handles positive voltages and the 7664 negative voltages, and in their 8 pin mini-dip packages they will only set you back a pound or two, a bargain if ever I saw one!

CORPORALZILOG?

You may remember me mentioning the "Captain Zilog" comic strip character and his heroic deeds among the index registers of the $\mathbf{Z 8 0 0 0}$ sixteen bit microprocessor. Well the 16 bit race is now old hat, and Zilog seem to have retired their hero on full pay. Not that he was a complete success, because it now seems that the Intel 8086 and the Motorola 68000 are selling rather better than the 28000 , probably because Intel were first and Motorola have (arguably) the better chip.

Another possible reason for the lacklustre sales performance of the 28000 , despite the tremendous success of the eight bit 280 , could be the lack of an "in between" processor to bridge the gap from eight to full sixteen bit performance. Intel have their 8088 which is really an 8086 inside working with a multiplexed eight bit bus outside to keep system costs low, and Motorola have the 6809 which is rather like a souped up 6800 with a lot of internal sixteen bit operations which the earlier 6800 lacked.

Now Zilog are not an outfit to let the grass grow under their feet, and to meet the challenge they are about to introduce a new device which could prove more popular than either the 8088 or the 6809 since it will build directly on their acknowledged success with the $Z 80$. The new chip will be known as the $Z 800$ (surprise surprise!) and it will offer complete code compatibility with the $\mathbf{Z 8 0}$ so that system upgrade will be possible without rewriting software, something which neither of the competitors can claim. Despite its ability to run $\mathbf{Z 8 0}$ programs, the 280 is a true 16 bit machine internally with a very advanced performance which will allow even old $Z 80$ stuff to run three to five times faster, with even better results available when new programs are written to take full advantage of the 16 bit architecture and new opcodes.

The $\mathbf{Z 8 0 0}$ will also be available in two basic versions. The first of these uses a non-multiplexed eight bit bus compatible with existing $Z 80$ systems which offers a very simple performance increase to established $Z 80$ users. When users are ready for yet more power, they can switch to the second version which has an 8088 type multiplexed bus to make better use of its sixteen bit architecture. After that gentle rise in capability, $\mathbf{Z 8 0 0}$ users are expected to find the switch to full 28000 sixteen bit designs a painless procedure!

All this is interesting of course, but all I am waiting for is the new comic-featuring Corporal Zilog no doubt!

WESTERN SUPPLIER

In last October's Semiconductor Update, one of the featured devices was the WD55 from Western Digital. I mentioned that it was available in this country from Jee Distribution of Hayes, Middlesex. Now I am informed that Jee do not stock the WD55, but it is available from Pronto Electronic Systems of llford, who are distributors for Western Digital. and fitting instructions are included together
with circult descrip Highest quality
components are
used throughout.

NOW AVAILABLE IN KIT FORM

SX1000

Electronic Ignition

- Inductive Discharge
- Extended coil energy
storage circuit
- Contact breaker driven
- Three position changeover switch - Over 65 components to assemble - Patented clip-to-coil fitting

SX2000

 Electronic Ignition- The brandleading system on the market today - Unique Reactive Discharge - Combined Inductive and Capacitive Discharge Contact breaker driven - Three position changeover switch - Over 130 components to assemble - Patented clip-to-coil fitting - Fits all $12 v$ neg. earth vehicles

MAGIDICE
 Electronic Dice

- Not an auto item but great fun for the family
- Total random selection
- Triggered by waving of hand over dice
- Bleeps and flashes during a 4 second tumble sequence
- Throw displayed for 10 seconds
- Auto display of last throw 1 second in 5 - Muting and Off switch on base
- Hours of continuous use from PP7 battery
- Over 100 components to assemble
- Supplied in superb presentation gift box

TX2002

Electronic Ignition

- The ultimate system - Switchable contactless. Three position switch with

Auxiliary back-up inductive circuit Reactive Discharge. Combined capacitive and inductive. Extended coil energy storage circuit. Magnetic contactless distributor triggerhead. Dis tributor triggerhead adaptors included - Can also be triggered by existing contact breakers - Die cast waterproof case with clip-to-coil fitting - Fits majority of 4 and 6 cylinder 12 v neg. earth vehicles. - Over 150 components to assemble

VOYAGER Car Drive Computer

- A most sophisticated accessory. Utilises a single chip mask programmed microprocessor incorporating a unique programme designed by EDA Sparkrite Lid. Affords 12 functions centred on Fuei, Speed, Distance and Time. Visual and Audible alarms warning of Excess Speed, Frost/Ice, Lights-left-on. Facility to operate LOG and TRIP functions independently or synchronously. - Large 10 mm high $400 \mathrm{ft}-\mathrm{L}$ fluorescent display with auto intensity. Unique speed and fuel transducers giving a programmed accuracy of + or -1%. Large LOG \& TRIP. memories. 2,000 miles. 180 gallons. 100 hours. Full imperial and Metric calibrations. Over 300 components to assemble. A real challenge for the electronics enthusiast!
Electronic Car Security System
Arms doors, boot, bonnet and has security loop to protect fog/spot lamps, radio/tape, CB equipment - Programmable personal code entry system
- Armed and disarmed from outside vehicle using a special magnetic key fob against a windscreen sensor pad adhered to the inside of the screen Fits all 12 V neg earth vehicles - Over 250 components to assemble

	SELF ASSEMBIY KKIT	READY BUILT UNITS
SX 1000	$£ 12.75$	$£ 27.95$
SX 2000	$£ 19.95$	$£ 43.75$
TX 2002	$£ 29.95$	$£ 62.95$
AT. 80	$£ 24.95$	$£ 49.75$
VOYAGER	$£ 49.95$	$£ 84.75$
MAGIDICE	$£ 12.95$	$£ 19.95$

NAME
PE
ADDRESS

I ENCLOSE CHEQUE(S)/POSTAL ORDERS FOR

£
KIT REF
CHEQUE NO.
24 hr . Answerphone
PHONE YOURORDERWITHACCESS/BARCLAYCARD
SEND ONLY SAE IF BROCHURE IS REQUIRED

(hD HEWLETT PACKARD

Scientific and technical professionals favour professionals favour
the HP 85 , they are being joined by increasing numbers of business professionals.

Find out why the HP 85 is the professional microcomputer at your nearest Laskys store or write to our Mail Order department for more details.

AY253 is the largest specialist Hi-Fi chain in Europe, in July 1980 they acquired Microdigital - an independent, specialist microcomputer store based in Liverpool. Since then specialist microcomputer departments have been set up within selected Laskys stores under the Microdigital name, these have now been renamed Microcomputers at LA.6:3YS

The Professional Microcomputer Retailer with 10 Outlets Nationwide \& Mail Order

BIRMINGHAM

19/21 Corporation Street, Birmingham, B2 4LP. Tel: 021.6326303. Manager: Peter Stallard. 300 yards from Bullring Centre.

BRISTOL

16/20 Penn Street, Bristol, BSI 3AN. Tel: 027220421
Opening 16th October.
Between Holidoy Inn and C \& A

CHESTER

The Forum, Narthgate Street, Chester, CH1 2BZ. Tel: 0244317667 Monager: Jeremy Ashcroft. Next to the Town Hall.

EDINBURGH

4 St. James Centre, Edinburgh, EHI 3SR. Tel: 031-556 2914. Manager: Calin Draper. East end of Princes Street, St. James Centre.
KINGSTON (Opening early 1982)
38/40 Eden Sireet, Kingston, KTI IEP. Tel: 01-546 1271 Opposite Main Post Office.

MANCHESTER

12/14 St. Mary's Gate, Market Street, Manchester, MI IPX. Tel: 061-832 6087 Manager: Lesly Jucabs. Corner of Deansgate.
NOTTINGHAM (Opening eary 1982)
1/4 Smithy Row, Nottingham, NG1 2DU. Tel: 0602415150. Manager: Alister Howkes
Within Market Square, Exchange Buildings, Nottingham

SHEFFIELD

58 Leopald Street, Sheffield, S1 2GZ. Tel: 0742750971
Manager: Justin Rawles. Top of the Moor, opposite Town Hall.
LIVERPOOL
33 Dale Street, Liverpool, L2 2HF. Tel: 051-236 2828
Manager: Mark Butler. Between the Town Hall and Magistrates Counts.

LONDON

42 Tottenham Cout Road, London W1 9RD. Tel: 01.6360845
Mail Order
Microdigital Limited, fREEPOST (No stamp required), Liverpool L2 2 AB

THE SECOND SHUTTLE MISSION

After the first and historic mission of the spacecraft Columbia there was widespread excitement, and relief that the mission had achieved its object. Naturally there was the enthusiastic reaction and speculation that there would be an immediate turnround programme for a second mission. However, after the first inspections and examination of various items of a physical nature, some of the data concerning the aerodynamics, coupled with the new programme for the second and perhaps vital trial, more time has been needed before orders to proceed were forthcoming. By the time you read this, history will have determined the way in which the programme will proceed after the second mission.

The sophistication of the electronics involved in space programmes is extersive and much of the practice is well known to those familiar with the art. Perhaps in some ways many people have become somewhat blasé about the whole business. Yet those engaged directly or indirectly with the space programme are still very conscious of the implications for the future. The public generally have come to regard even Columbia as a secondary matter to pop stars and football. While many of those close to the matter do regard such an attitude as heresy, the fact is that the very attitude is in a way complimentary. The main theme of any activity seems to contain a large element of gladiatorial stimulus. The fact that space activities are commonplace and do not have great disasters, takes from the matter the excitement required. It is significant perhaps that this really is an admission that modern technology is reliable.

The second mission of Columbia, with USAF Colonel Joe H. Engle and Navy Captain Richard H. Truly, will be carrying out an extensive survey of the many unknowns which became evident in the first flight. There were some unusual events noted on the first mission with regard to aerodynamics. The two Astronauts have been preparing certain plan-
ned manoeuvres by using the Singer Link simulator. These relate to some complicated supersonic and hypersonic techniques for reentry plans. The data obtained will provide information about the vehicle's centre of gravity, angles of attack and flight stability and performance required by the differing characteristics of the various payloads. It is clear already that an important point in re-entry is manual control. Both Astronauts will be very busy on this trip for there are 19 groups of manoeuvres to be made. Some of them allow intervals of only 20 seconds between sequences.

On the first mission the vehicle was quite stable. Bank reversals were manually flown at Mach 5 and Mach 2.8 but did not use manual control; apart from that. until reaching an altitude of 35.000 ft no manual control was exercised. One of the reasons for this was that at Mach 5 and Mach 2.8 there were stability questions in those two areas. Mission 2 will operate manual control slightly differently. The Mach 5 and Mach 2.8 manoeuvres will be flown automatically because they were found to be stable in practice. However the initial bank manoeuvre will be initiated somewhere about Mach 24 to 25 with manual control and reach up to 80° bank at an altitude of $260,000 \mathrm{ft}$. In this area more precise control can be maintained manually than could be achieved by automatic control. It was in fact at this point on Mission 1 that a roll oscillation that exceeded the expected sideslip occurred.

The importance of the simulator in the whole scheme of vehicle control is exemplified in the remarks made by the first of the Shuttle crews. Both Young and Crippen have already made reference to the fact by such remarks which indicated that actual experience of reentry was helped enormously by the time spent with the simulator. It is here perhaps that tribute should be paid to such men as Major Steven R. Nagel of the USAF who specialises in shuttle re-entry issues. During re-entry the incoming data is mainly from dynamic pressure and velocity. Dynamic pressure is most active above velocities of Mach 22 at an altitude about $238,000 \mathrm{ft}$. Below this the velocity is the more useful parameter from which to initiate the next manoeuvres. Great use is made of 'cue' cards in much the same way that aerobatic teams operate. With the Shuttle the cues relate for example to the dynamic pressure or the velocity at which to initiate action and a minimum level of control system propeliant below which any manoeuvre would not be continued. There will be a time at re-entry when communications after the radio blackout period will be kept to a minimum. This is to allow the astronauts maximum concentration at about Mach 10.

THE NEW INDUSTRIALISATION

The success of the first Shutte mission and the soon to be realised hopes of the second, is already accelerating the vanguard of new things and the rapid development of those begun. Robotics has an important part to play here. The success of the USSR in their unmanned automatic missions to embryo space stations gives new impetus to the extension of man's peaceful pursuits in recovering the fruits of the Earth and its environs. The reduction of
certain activities required in any task has been established for more than a century. Now though the mechanical precision is still very much required, it is the control which needs the most attention. There is an opinion among a large group who consider that all things should be done by remote operation. The argument usually is that this reduces mortality. Some reason quite well and plausibly. There is good reason to suspect fear is a motivation for some of this. Perhaps it will be possible to be free from this naïve approach when the forecasting aids such as simulators, which can give real time information leaving practically nothing to chance, are used. Though in some instances continuing communication in real time becomes difficult when extensive journeys from the Earth are undertaken, nevertheless this has been shown with the Voyagers to be surmountable.

In the specific instance Marshall Space Flight Center in Alabama have tasks which are being examined by the Massachusetts Institute of Technology under a one year contract to investigate systems of robotics for working in outer space. When work is required to be done in geostationary orbits or others at high altitudes protection for astronauts would have to be extensive. This is due to the high level of radiation and also the conditions of magnetic fields holding charged particles inimical to the biological machineman. The robotic units would of course be immune. It is to be hoped that the robots of film fame have finally disappeared when these matters are discussed and a great deal of engineering skill will not be squandered in making man in his own image. Indeed one robotic unit with which the writer is associated puts all three of the parameters (seeing, feeling and hearing) into one box manipulator. It is perhaps pertinent to point out here that there is always a revival of the 'making machines think' approach. It is on some occasions perhaps worth while asking why people approach the subject from the wrong end, that is thinking of emulation instead of analysing the problem in its reality. The designing of Automatics (as the writer would prefer to call them) has been around for a long time and many people do not seem to. realise that these form quite a large part of the engineering scene. It is only the advent of some of the new requirements that focuses attention and ideas run riot. Also it has to be remembered that these highly sophisticated units would be in many cases directed at a particular task. If one encountered a space unit not of the kind for which the 'robot' was designed, it would be useless.

This leads to another important point: standardisation. It will be necessary for the builders of new satellites to adopt some common agreement as to configuration. This does not necessarily mean overall but rather the standard units could be those which have a finite lifetime and could have a configuration which was standard including fixing with a homing signal to which it could, call the repair unit, This would apply to much of the operating equipment including the replacement of manoeuvring propellants etc.

Whatever may be the progress in this area the final and human way will be to take a look see! Nothing in the foreseeable future will take the adventure from the human temperament.

管AND
 - $3 \times x$ PART 2 A.J. BOODHMMAN

Apart from checking for track shorts and missing solder connections this is the third most common cause of malfunction in high density i.c. based systems.

SYSTEM BOARD

The majority of the electronic hardware, apart from the Microcontroller, is mounted on a single p.c.b. which will be referred to as the system board. A second board contains the displays and a number of keyswitches. The circuitry is best understood if it is split into four parts, music generation, input controls, display and keypads, and the power supply.

MUSIC GENERATION

Before describing the music generation circuitry the method used to generate the audio tones is illustrated in Fig. 4. A set of waveforms is stored in the monitor memory in a similar manner to that shown in Fig. 4(a). In the illustration a complete cycle is divided into sixteen parts and values between 0 and 15 given to approximate the amplitude of the waveform in a stepped manner. In the Band-Box the chord instrument waveforms are split into 64 segments and the bass into 128 segments, both using amplitude values between 0 and 63; however, for diagrammatic simplicity sixteen segments are used in the illustration without change to the principles involved.

In order to produce a sound from the sequence of stored values it is necessary to convert each number into an analog voltage which is achieved using a digital to analog converter (DAC), and provided that an interval of time is allowed to lapse between the moment at which each value is converted by the DAC a stepped waveform will appear at the DAC output. Consequently a method of changing the fundamental frequency of the waveform is apparent by changing the interval of time between samples which if reduced will result in an increase in frequency.

This assumes that each and every stored value requires to be read at varying time intervals, but it is also possible to use a fixed time interval and either skip some values to increase frequency or read some values more than once to reduce frequency. The Band-Box uses this second principle and has a set of increment figures stored in the monitor which accurately correspond to the required amount of movement through the memory, after each fixed time interval, which will produce the required range of fundamental frequencies.

Fig. 3. Track layout and component overlay for the double-side Microcontroller

The effect of different increments is shown in Figs. 4(b-d). Whereas in Fig. $4(a)$ the X-axis simply represents the memory positions in which the sixteen numbers are stored (0-15), Figs. 4(b-d) are shown in real time at intervals of 0.2 ms which roughly corresponds to that used in the BandBox. The microprocessor is programmed to accumulate one relevant increment per time interval so that for an increment of 0.67 it will count $0,0.67,1.33,2.0$ etc., and it looks at the value stored in the memory position given by dropping the following fraction-i.e. position 0, 0, 1, 2 etc. As shown in Fig. 4(b), 24 time intervals are required to complete a cycle using an increment of 0.67 , such that the overall period with an 0.2 ms interval is 4.8 ms , giving a frequency of 208.33 Hz . An increment of 1.0 is shown in Fig. 4(c) and since it causes longer jumps through the memory the higher frequency of 312.5 Hz results. Fig. 4(d) shows an octave increase in frequency to 416.67 Hz due to the corresponding doubling of the increment to $1 \cdot 33$.

Very accurate tuning can be realised using this technique, a factor which has considerable importance in the Band-Box application where the four note combinations used for the chord instrument, which must have high relative accuracy, are produced by programming the microprocessor to separately accumulate increments corresponding to each of the four notes and then add the four waveforms internally to give a composite waveform at the output of the DAC. It will be noticed that the example waveforms shown in Fig. 4 are not of simple sine, square, or triangular variety, but are in fact computed from elements of the fundamental plus overtones at factors of $2,2.75,3,4$ and 5.4 , a freedom in waveform construction not easily available by conventional synthesizer techniques.

MUSIC FROM THE MEMORY

In Part 1 the score store was described in that it contains numbers corresponding to the next action required of the Band-Box. Most instructions give the chord required plus its duration, and when detected by the micro it converts half the number to represent a particular type of chord the notes of which are tabled in the monitor. To cope with the adjustable playback key and movements in chord group which will have occurred during composition, the micro transposes the notes (frequency) of the chord and then checks the monitor for the increments corresponding to each chord note plus the increments corresponding to four bass notes one of which will be playing at a particular time. The increments are translated into waveforms as described above and thus is music produced.

MUSIC GENERATION CIRCUITS

The complete circuitry for music generation is shown in Fig. 5. The bass waveform first appears at the output of IC22d and is produced by DAC IC20. At intervals of 0.2 ms a binary number between 0 and 63 is taken from the data bus into the latches which comprise Output Port 1. The moment at which the number is placed in the latches is determined by the 0.5μ s positive chip select pulse CS 1 produced by the decoding circuits which operate on the address and write signals generated by the micro. The number remains on the outputs of the port after the chip select pulse is over, and is converted by IC20 to a corresponding analog voltage level.

bass envelopes

It will be noted that 0 to 63 uses the bottom six lines of the data bus (D0-D5) leaving D6 and D7 spare. D6 is normally at logic zero except when a pulse is required to switch off the Master Rhythm in the auto-stop mode which occurs

Fig. 4. Music generation principles
after a 'Fine' instruction is found in the score store. D7 is used to provide a positive pulse to trigger the two bass envelope circuits, one of which is selected by S 1 b at any particular moment. The micro is programmed to count clock pulses received from the Master Rhythm and convert them into musical beats. Depending on the bass figure selected on the appropriate control a bass envelope trigger pulse will appear on pin 19 of IC18, be shaped by the following resistor/capacitor networks, buffered by IC22c, and presented at the DAC control pin 14. The output at pin 4 is modulated from zero by the envelope input at pin 14 and is buffered by IC22d.

LOW PASS FILTERS

The waveform at the output of IC22d contains 0.2 ms steps, as shown earlier, corresponding to a frequency of 5 kHz . IC23c and IC24b comprise a four pole low pass filter with a 24 dB per octave roll off and cut off frequency of 700 Hz to remove the steps from the bass waveform.

CHORD INSTRUMENT WAVEFORM

Four notes are summed inside the micro to produce the chord instrument waveform which first appears at the output of IC22a. The operation is similar to the bass generator except that all eight data lines are used to give numbers between 0 and $252(4 \times 63)$ at the latched outputs of Output Port 2. The filter comprising IC23b, 23a and 23d is of five pole type with a cut off of 1.6 kHz and roll off of 30 dB per octave. The higher quality filter is necessary since the fundamental and harmonic frequency range of the chord instrument more nearly approach the theoretical limit of $\frac{1}{2}$ the sampling frequency which is placed on sample waveform generation techniques.

CHORD INSTRUMENT ENVELOPES

Master Rhythm inputs are shown entering pins 5, 6 and 7 of IC25 which generates the envelope trigger at its output pin 10. When pin 6 is held at zero by an off condition in the Master Rhythm, pin 10 is also held at zero. When the Master Rhythm is playing the "Start" signal rises to +5 volts, and for
each positive clock pulse on pin 5 of IC25 the output takes up the state of pin 7 at that moment, latching, the state until the next clock pulse occurs. Pin 7 is connected to the Master Rhythm control line which previously operated the long cymbal circuit and now becomes the programmable rhythmic pattern for the chord instrument. Due to the latching action of IC25 a continuous program of play pulses from the Master Rhythm will result in an uninterrupted high output at pin 10 which can give a sustained organ type output for example. However, the envelope trigger will drop when a programmed rest appears at pin 7 giving a large number of possible rhythmic permutations which may be stored in the Master Rhythm.

Four chord instrument envelope shapers are present on the board. In position one a percussive attack is followed by a damper action when pin 10 of IC25 drops to zero, whilst in position two the damper circuit is omitted. Positions three and four give sustained envelopes with different rates of attack and decay.

MIXER AND PREAMPS

IC24c amplifies the output from the Master Rhythm before entering the mixer IC24d together with the bass and chord instruments. A volume pedal fits between IC24d and IC24a which is the final preamplifier giving a mixed signal in phase with the individual instrument outputs.

Fig. 6. Input control circuits for Band-box

Fig. 7. Display and keyswitch circuits

IN PUT CONTROLS

The input controls cover the multi-position rotary switches and the full circuitry is given in Fig. 6. As shown last month a four position switch can be represented by numbers $0,1,2,3$. Referring to S 6 in Fig. 6, resistors R89 and R90 hold the two inputs to IC26 at +5 volts when the switch is in position 1. IC26 is an inverter used as an input port so that when it receives an 0.5μ s chip select pulse from the decoding circuits it puts the complement of the binary number seen at its inputs onto the data bus. Thus in positions 1,2,3 and 4 the binary numbers 00,01,10 and 11 are put onto bits D1 and D0 of the data bus respectively.

Considering S4 it will place similar binary numbers onto bits D3 and D2, which in decimal terms are equivalent to 0 , 4,8 and 12. The remaining switches on Input Port 1 act in a similar manner on data lines D4-D7 equivalent to higher decimal numbers and it can be seen that a single number between 0 and 255 can represent the sum of a unique combination of positions for all switches on the Port.

The chip select pins 1 and 19 on IC26 are normally at +5 volts but the micro is programmed by the monitor to pulse them to ground for 0.5μ s every 0.2 ms to pass the number corresponding to the switches onto the data bus. The BandBox program in the monitor determines what procedures to carry out based on the switch position combination.

INPUT PORT 2

This port passes the information relating to the playback key onto the data bus in the same manner as above and it will be noticed that data lines D4 and D5 are not used. D6 and D7 enable the micro to look at the Master Rhythm. Pin 12 rises to +5 volts when the Master Rhythm is running which after inversion sends a zero to the Microcontroller.

The Master Rhythm clock pulse is being checked every 0.2 ms by the input port and the micro is programmed to detect each rising edge through D7 and use this for the purpose of timing chord duration and bass trigger.

CHIP SELECT PULSES

A total of seven ports are involved in the Band-Box system, three are inputs to and four are outputs from the Microcontroller and each is selected at the appropriate moment by a chip select pulse generated by IC28-30. A combination of $A 0, A 1, A 2$ and \bar{P} decides which port is required using the decoder IC28, and the 0.5μ s period of selection is determined by $\overline{\mathrm{A}}$ or $\overline{\mathrm{W}}$ gated with the negative outputs of IC28. OR gates in IC29 and NOR gates in IC30 ensure that input ports receive negative chip select pulses and output ports receive positive chip select pulses.

DISPLAY AND KEYING

A common circuit handles both the eight segment l.e.d. displays and the two sets of input keyswitches. This part of the system is inoperative whilst music is being generated but is used for playback score selection and composition. The system is multiplexed which means that the eight displays are each scanned in turn for approximately 1 ms and the micro puts the information required for a particular display into the output port latches of IC31 for the period concerned. The monitor contains a set of codes which are converted to messages on the displays (Fig. 7).

The Output Port 4 comprising IC32 has three input lines to produce a sequence of eight numbers 0 to 7 which are decoded from their binary form by IC33, the outputs of which fall to zero as selected. The display segments which require to be lit at a particular moment receive a positive

COMPONENTS				Capacitors		Semiconductors		
				C19	$4 \mu 735 \mathrm{~V}$ elect.	D5-33	1N4148	
				C20	0.47μ	D34	l.e.d.	
SYSTEM BOARD/DISPLAY BOARD				C21	10 n ceramic	D35-42	1 N4002	
				C22	0.22μ polyester	D43	l.e.d.	
				C23-26	$2 \mathrm{n} 2 \pm 2 \%$	D44-45	7V5 Zener 400 mW	
				C27-29	0.1μ polvester	TR1	ZTX108	
Resistors				C30	10 n ceramic	IC18-19	74.373	
Resistors				C31	411735 V elect.	IC20-21	NE5008	
R17	47k	$R 59$	12k	C32	$1 \mu 063 \mathrm{~V}$ elect.	IC22-24	LM348	
R18	1k0	R60	18k	C33	0.47μ	IC25	4042	
R19	12 k 47 k	R61	8 k 2	C34	68 n polyester	IC26	74LS240	
R20-21	47k	R62	27k	C35-38	$1 \mathrm{nO} \pm 2 \%$	1 C 27	$80 \mathrm{C98}$	
R22	3M9	R63	12k	C39-40	0.1μ polyester	IC28	74LS138	
R23	47k	R64	8 k 2	C41	$1 \mathrm{nO} \pm 2 \%$	1 C 29	74LS32	
R24	22 k	R65	10 k	C42	47p ceramic	IC30	74LS02	
R25	10M	R66	270k	C43	27p ceramic	IC31	74 C 373	
R26	560k	R67	2M2	C44	$4 \mathrm{k} 7 \mu 16 \mathrm{~V}$ elect.	1 C 32	74LS75	
R27	1 k 5	R68	1 k 5	C45	$470 \mu 16 \mathrm{~V}$ elect.	IC33	7445	
R28-29	1 ko	R69-70	1 kO	C46-49	47 n ceramic	IC34	74LS365	
R30 ${ }_{\text {R } 31-32}$	22 k	R71	22k	Miscellaneous		IC35	LM340-5	
R31-32 R33	100k*	R72	100k*			22 klog		
R33	390k*	R73	10k	VR2-4 22k				
R345-36	56k*	R74-75 R76 R77	100k*	VR5 1		100k log		
R35-36 R37	100k*	R76	390k*	51 S		3 pole 4 way rotary		
R37	390k*	R77	150 k *	S2-4		1 pole 4 way rotary		
R38	470k*	R78-79	100k*	S5 1		1 pole 12 way rotary		
R39	47k	R80	390k*	$\begin{aligned} & \text { S6 } \\ & \text { S7-38 } \end{aligned}$		1 pole 4 way rotary		
R40-43	100k	R81	560 k *			D6 keyswitches		
R44	220k	R82	47k	$57-38$		y caps		
R45	22k	R83	100k	S39T1		Mains 2 pole		
R46-47	10k	R84	22k			Mains transformer		
R48-50	150k	R85	100k	T1		315 mA slow blow		
R51	15k	R86	47k	$\begin{array}{ll}\text { FS1 } & \\ \text { Displays } & 8 \\ \end{array}$				
R52	5k6	R87-88	100k			$8 \times$ DL-500		
R53	330k	R89-103	10k	DisplaysSK1-4		Mono jack unswitched		
R54	47k	$R 104$	270	SK1-4		ck switched		
R55	1 M 5	R105	1 kO	24 pin D.I. L. sockets 2		2		
R56	47k	R106-107	180			250		
R57	10k	R108	10, 7W	Track pins				
R58	680k			14 pin	I.L. sockets 5			
All resistors 0.25W 5% carbon film except * which are 2%				16 pin D.I.L. sockets 20 pin D.I.L. sockets		9		

voltage from IC31 and the current in the segments is selflimited by the voltage drop across this integrated circuit.

IC34 decodes keying activity in parallel with the display operation in that data lines D0, D1 and D2 are connected to the latched outputs of IC32 which indicate which display and key column $(0-7)$ is currently being accessed, and depression of a key in this column will pull the voltage down on either pin 14, 10 or 12 depending on which key group is being used (0-7), (8-F.), or (Int. Page, En, >, or <). Keys 0-9 appear twice in parallel to give operator convenience. The key group selected is transmitted on data lines D3, 4 and 5 to the micro which is programmed to note when a key is pressed and take the necessary action.

Data line D3 on IC32 is controlled by the micro to give a negative pulse on each beat to flash the l.e.d.

POWER SUPPLIES

A mains transformer is mounted in the base of the BandBox and the remainder of the circuitry as shown in Fig. 8 is integrated into the system board. An unregulated supply of approximately +12 volts feeds the microcontroller and Zener diodes are used to obtain $\pm 7 \mathrm{~V} 5$ for the audio circuits. The remainder of the system operates on +5 volts from the regulator IC35.
Next Month: Construction of the system and display boards together with details of assembly and memory map.
 E59-95pr SEOUM SR3220 REEEVER EG9-95

PRICES INCLUDE V.A.T. POSTAGE AND PACKING

Once again we are pleased to be able to offer Videotone equipment at incredible prices-just compare these special "PE prices" with anyone else's! Remember they include VAT and postage.

CORAL MC88E HIGH OUTPUT MOVING COIL CARTRIDGE

The high voltage output (2.5 mV) does away with the need for a head amplifier or step-up transformer. Flat frequency response over the range 20 Hz to 40 kHz . Look what Hifi Answers said-and they quoted the cost as $£ 29.95$!
'The Coral MC88E sets out to be a good cheap moving coil which doesn't need an ancillary step-up device, and achieves it. Just what we've been waiting for.

MINIMAX 2 SPEAKERS

The new improved version of this renowned best seller. It needs no introduction-again look what Hifi Answers said of the Minimax:
"Their modest appearance and price disguise their startling abilities. Never have we heard such a small speaker sound so big!'

SEOUM SR3220 STEREO TUNER AMP

This unit incorporates a three band tuner and a 20 watt (r.m.s.) per channel amplifier. With features like speaker switching for two sets of speakers, f.m. tuning l.e.d's, mute, subsonic filter, loudness, etc., it's another Videotone winner. There's a matching range of other items, too (see the Videotone advertisement). Geoff Giles, of Practical Hifi, had this to say about the Seoum range:
"There is never enough space to write all one wants to about a system and especially so if such has generated genuine enthusiasm as this one has so easily done, but suffice to say that in all respects, I just cannot fault it. Highly recommended."

Offer limited to U.K. and B.F.P.O. only.

PE R AI NG C 27FMCE PART FOUR MICHAELTODLEYв. DAVID WHITFIELD M.A.M.Sc

CONSTRUCTORS who own or have access to more sophisticated test gear may wish to carry out additional tests on the Ranger in order to confirm that it is operating in accordance with the design specification. The most useful items of equipment are summarised in the list below. It is not, however, expected that all of these items will be to hand and the actual measurements carried out by individual constructors will obviously be limited by the available test gear. For this reason the measurements will not be described in detail and only a brief outline of each will be given.
(i) A digital frequency meter which can provide a direct readout to 30 MHz with a resolution of 1 kHz or better. Alternatively a low frequency DFM and pre-scaler can be employed. See Fig. 4.1.

50Ω COAXIAL CABLE FROM TRANSCEIVER
[6900] E6T16
Fig. 4.1. Transmitter Frequency adjustment using a DFM
Connect the DFM across the 10Ω resistor of the 50Ω load. This should produce an RF level of approx. 1V r.m.s. Operate the PTT switch on the microphone and adjust L1 to give the exact channel frequency required. Note that the reading on the output indicator will be slightly reduced when the DFM is connected.
(ii) An r.f. power meter with an internal load of 50Ω. Alternatively a combined power/SWR meter may be used together with a separate 50Ω load; the 50Ω load/indicator is quite súitable. See Fig. 4.2.

Fig. 4.2. Measurement of r.f. output power

Connect the Power and SWR Meter as shown above. Operate the PTT. Measure the SWR (follow the instructions supplied with the meter) and check that it is less than 1-25:1. Then measure the r.f. power. Note that, with most combined power and SWR meters, the power meter is a voltage sensing device and it is only accurate for a low value of SWR (ie: less than 1-25:1). If necessary make slight adjustments to VC1 and VC2 for maximum power output.
(iii) A stable and accurately calibrated r.f. signal generator with a 50Ω attenuated output. The generator should preferably also have an FM facility rather than the more usual AM. See Fig. 4.3.

Fig. 4.3. Measurement of receiver sensitivity
Switch 'on' the signal generator and allow it to stabilise. Accurately set the output frequency to the channel in use with the aid of the DFM. Switch the internal modulation 'off' and adjust L104/5 so that the signal appears in the centre of the receiver passband. Switch off the squelch and progressively reduce the output of the generator and adjust L100/1, L102/3 and L1C6 for maximum quieting (reduction in background noise). Switch the modulation 'on' and adjust L108 for best audio quality.
Disconnect the r.f. generator and terminate the aerial socket with the 50Ω load. Connect the audio power meter in place of the internal loudspeaker and adjust the volume control to produce an output power of 100 mW . Reconnect the generator and adjust its output level (using the attenuator) so that the output power meter reads 10 mW . The output voltage from the generator is the receiver sensitivity for 10 dB quieting.
(iv) An accurate and sensitive absorption wavemeter covering a frequency range of at least 27 MHz to 150 MHz . Alternatively an r.f. field strength meter covering the same range may be used.

Position the transceiver in the vertical plane and connect the helical aerial. Operate the PTT and hold the wavemeter in close proximity to the aerial. Check that a strong output is obtained at 27 MHz and no other output is obtained at any other frequency. Particular frequencies to check are those that are harmonically related to the output, ie: 55 MHz ,

Fig. 4.4. Fault finding flowchart
$83 \mathrm{MHz}, 111 \mathrm{MHz}$, and 138 MHz . With a very sensitive instrument (and particularly in the case of a field strength meter when used in place of the wavemeter) it may be possible to detect the presence of harmonics; however, their relative level should be very much less than that of the 27 MHz output.
(v) An FM deviation meter suitable for use at 27 MHz . (An a.f. generator will also be needed for deviation measurements).
(vi) An r.f. spectrum analyser covering the range 9 MHz to 1 GHz .

The last two items are unlikely to be found in any other than the better equipped r.f. laboratories but they are included for the sake of completeness. Where such devices are available it is highly probable that constructors will already have the expertise required to use them and therefore instructions for carrying out measurements with these instruments are not given.

FAULT FINDING

By now most constructors will have completed the wiring and assembly of the Ranger and this would appear to be an appropriate moment to introduce the topic of fault finding. As with any piece of complex electronic equipment, a logical approach to fault tracing is required. The basic tools required for fault finding are a d.c. multi-range meter, an a.f./r.f. signal generator, and an oscilloscope. The last two items are useful but fortunately they are not always required. Indeed, it is generally possible to find even the most complex fault using no more than a basic multimeter and a lot of patience!

The first step is to ascertain the general area of the fault, i.e: transmitter, receiver, power supply, control circuitry. Then sub-divide the area you have identified into its constituent parts; oscillator, multiplier, driver and power amplifier, for example. Comparison of the test voltages with the actual circuit voltages can usually throw some immediate light on the subject and, having satisfied yourself that the d.c. supplies are correct the next step is to follow the signal through from stage to stage. When fault tracing on the transmitter it is important to note that most of the stages are operated under class C conditions and the d.c. voltages will vary widely with the level of r.f. Fortunately comparison between driven and non-driven conditions can be very easily made by simply switching the channel selector to a spare channel. This will provide an immediate indication as to whether, or not, r.f. is present in the stage concerned.

In the receiver section things are not quite so simple and it is unlikely that constructors will be able to glean a great deal of information from test voltages in, for example, the i.f. amplifier stage-unless they are lucky enough to have the internal circuit of IC100! This is where a signal generator can be useful. A 455 kHz signal can be injected directly into IC100 (pin 3) and this will help decide whether the fault is in the front-end or i.f. stages of the receiver. Similarly an a.f. signal, at say 1 kHz , can be injected across the volume control and this will provide some indication of whether the fault is in the i.f. or audio stage. To help with the initial stages of fault tracing, a flow chart has been provided in order to determine the area of any possible fault condition, see Fig. 4.4.

voltage table

Test voltages were measured under the following conditions:
(i) 240 V a.c. mains supply connected via SK201
(ii) 50Ω load/output indicator connected (see Alignment section).
(iii) VR2 adjusted for 500 mW output (see Alignment section).
Test voltages were measured using a $20 \mathrm{k} \Omega /$ volt multi-range meter.

TEST POINT	TRANSMIT	RECEIVE
a	2.1	0
b	0.8	0
c	1.1	0
d	9.0	0
e	0	6.0
f	0	5.7
g	0	14.5
h	11.5	0
i	5.7	0
j	5.7	0
k	9.3	0
"ead output	1.2	0
socket SK.."		

RF VOLTAGE TABLE

Transmit	SK200	5 V
	TR1 emitter	1.9 V
	TR1 collector	2.0 V
	TR2 collector	5.0 V
	TR3 collector	9.0 V
	TR4 collector	19.5 V
Receive	TR102 drain	1.0 V

All voltages measured using external a.c. supply and 50Ω load/output indicator. Voltages are r.m.s. readings using a valve voltmeter and diode probe.

AERIALS

The aerial system used with any transceiver is a crucial factor in determining its overall performance both on transmit and on receive. The best possible aerial system should always be employed and money spent on improving aerials and feeders is always well invested.

Users should not expect too much from the Ranger when it is operated as a hand-held unit in conjunction with its matching helical aerial. This is due not only to the relatively low output power but also to the inefficiency of a miniature aerial system operating with a very inadequate earth plane. The result is a working range which is very much less than that which could be obtained with, say, a well sited full-size base station aerial system. A further point worth noting when using the helical aerial is that a significant amount of the r.f. energy radiated will be absorbed by the body of the userl For best results the transceiver should be held with the helical aerial in the vertical plane as high as possible and well away from the user. If a car roof, filing cabinet, water tank, or similar metal structure is available this can be used most effectively as a means of improving the efficiency of the aerial system. Simply place the transceiver upright as near as possible to the centre of its improvised ground plane and operate as far away from the transceiver as the microphone lead will allow.

The type of aerial used in any particular base station situation will depend on several factors, the most significant of which are the available space and, when dealing with omni-
directional vertically polarised aerials, the maximum height attainable. Whenever possible the Ranger should be used with a properly designed base station aerial rather than depend on its helical aerial which will certainly give disappoiriting results when used indoors. The most obvious choice of aerial will probably be a derivative of the vertical monopole. This is a very simple aerial consisting of a single radiating element and a ground plane to provide a reflected image of the monopole. The aerial performs in a manner similar to that of a free-space dipole and has basically similar radiation patterns modified, somewhat, by the effect of the imperfect ground plane. The major problem is that, with a discontinuous ground plane, an appreciable amount of radiation is directed upwards away from the surface of the earth and not concentrated in the most useful direction which is, of course, at right angles to the element. Typical radiation patterns for perfect and imperfect ground plane monopole aerials are shown in Figs. 4.5a and b and it is clear from these that the quality of the ground plane has a major effect on the performance of the aerial system. For this, and other reasons, there has been a move to free-space aerials, such as the vertical dipole, "J-antenna", and "Slim-Jim". All of these aerials operate without the need for a ground plane but they are generally a little more difficult to construct and adjust. Whatever type of aerial is selected most proprietary CB aerials will work well with the Ranger provided, of course, that the manufacturer's assembly and installation instructions are carefully followed.

Fig. 4.5a. Vertical plane radiation pattern of a vertical quarter wave monopole aerial mounted above a perfect ground plane

Fig. 4.5b. Vertical plane radiation pattern of a vertical quarter wave monopole aerial mounted above an imperfect ground plane

FEEDERS AND SWR

Coaxial feeders having a nominal impedance of 50Ω should be used for connecting the Ranger to an aerial system (do not use 75Ω TV aerial downlead!). Ideally the feeder used should be a "low-loss" type. However, where only a short length of feeder is used (say less than 20^{\prime}) the power lost in "standard" cables will be quite insignificant. The power lost depends on two factors; the type and quality of tt cable used and its length. A 25^{\prime} length of UR-43, for example, will have a loss of approximately 0.5 dB , doubling the length to 50^{\prime} increases the loss to 1 dB . In the first case approximately 10 per cent of the power is wasted in the cable
and 90 per cent arrives at the aerial (assuming, of course, that it is perfectly matched). In the second case approximately 20 per cent is lost in the cable and 80 per cent reaches the aerial. In practical terms this would make very little difference to the radiated signal. In general the feeder loss should not be allowed to exceed about 2 dB since, at this point, only 63 per cent of the power appears at the aerial. The relationship between feeder loss and per cent power arriving at a perfectly matched aerial is shown in the table.

The characteristics of some commonly available coaxial cables are given in the table. Note that inferior cables of unknown origin and sometimes described as "UR-43 type" etc. should always be avoided as their performance is generally not as good as the cable which they purport to be!

A great deal of nonsense is often heard (and read!) concerning the topic of SWR (standing wave ratio). Far too many existing CB operators place too much emphasis on obtaining the lowest possible SWR from their aerial systems. Much of this effort is wasted since; in practical terms, an SWR of less than $2: 1$ is quite adequate and only represents an additional power loss of $0 \cdot 2 \mathrm{~dB}$ when present in, for example, a cable offering a matched loss of 1 dB (ie: the total loss due to both feeder loss and SWR loss will only be 1.2 dB). Furthermore a low SWR is not conclusive proof that an aerial is working efficiently. In fact a very low value of SWR can easily be obtained by using grossly inefficient aerial connected at the end of a very long length of lossy feeder!

In general, an SWR of 2:1 is nothing at all to worry about, $1 \cdot 5: 1$ is good, and better than $1 \cdot 3: 1$ is excellent. High values of SWR, say greater than 2:1 do not necessarily imply that an aerial system is poor. The solution is to add an aerial matching device in order to tune out the reactance associated with a non-resonant aerial and mismatched feeder. Aerial matching or tuning units are readily available as standard CB accessories however there is little point in purchasing one unless your SWR is greater than 2:1.

One final point worth mentioning is that, unlike some other CB transceivers, the power amplifier stage on the Ranger will tolerate excessively high values of SWR indefinitely. This means that, in the unfortunate event of your

FEEDER LOSS (dB)	PER CENT POWER AT PERFECTLY MATCHED AERIAL	PER CENT POWER WASTED IN FEEDER
	100	
0	90	0
0.5	80	10
1.0	63	20
2.0	50	37
3.0	25	50
6.0	0	75
a		100

$\left.$| CABLE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NUMBER | | IMPE- |
| :---: |
| DANCE |
| (Ω) | | OVER- |
| :---: |
| ALL |
| DIAM. |
| (INCH) |\quad| INNER |
| :---: |
| CONDUC- |
| TOR (INCH) | | CAPACI- |
| :---: |
| TANCE |
| PER |
| FOOT |
| (pF) | | APPROX. |
| :---: |
| ATTENUA- |
| TIONPER |
| 100^{\prime} at |
| 27 MHz |
| (dB) | \right\rvert\,

aerial dropping-off or the feeder becoming short circuited, the Ranger will just sit and take it.

MODIFICATIONS

As a result of detailed tests and measurements made on a number of PE Ranger transceivers the following information has become available:

1. It is sometimes possible to set up the transmitter such that the level of spurious radiation is above the permitted level at particular frequencies. In order to substantially reduce the possibility of these harmonics being generated, the following changes to the original circuit must be made.
a) Replace R6 (100 ohms) by a $10 \mu \mathrm{H}$ inductor; the type used for L6 is suitable.
b) Add a 100 pF disc ceramic capacitor between the primary winding terminals of L4. This is most conveniently soldered directly to the coil on the underside of the p.c.b.
c) Replace C 13 by a shorting link.
d) Add a 15 pF disc ceramic capacitor in parallel with L6, soldered on the underside of the p.c.b.
e) Reduce the value of R10 from 27Ω to 10Ω.
2. An improved filter response will be obtained from the original low pass filter design if the mutual coupling between the input and output coils is reduced by the addition of a tinplate screen between these coils. The screen should be earthed, and may even be extended to enclose the whole filter unit. A recommended alternative filter design, with improved stopband attenuation but slightly higher insertion loss ($1-2 \mathrm{~dB}$ max), is shown in Fig. $4.6 a$ and b. This may be fabricated on the original filter p.c.b. with only slight changes (2 holes and 2 trackbreaks).
 N.B.LG ${ }^{\text {F }} 18$ TURNS OF 30 SWG WOUND ONA 10 mm o.dic. [EGT38 FORMER WITH FERRITE SLUG.CLOSE WOUND.

Fig. 4.6a. Modified filter design

E6737
N.B. IT IS ESSENTIAL THAT THE TWO COILS RE AT RIGHT ANGLES AS SHOWN

Fig. 4.6b. Modified board design
3. If more output power is required from the transmitter, 2N2219 transistors may be used for TR3 and TR4. (You will have to make slight re-adjustments to $L 4 / 5$ and $L 7 / 8$ to compensate for the change.) The 2N2219 has a larger value of current gain and this will usually increase the output to 1W or so. Note that this modification will reduce the battery life (normally $2-3$ hours of continuous operation).
4. If instability in the audio amplifier is observed this can easily be cured by the addition of a 1 nF ceramic capacitor wired under the p.c.b. between pins 1 and 2 of IC101. To check whether instability is present move the loudspeaker connecting wires and listen to the noise produced by the loudspeaker. If there is a change in the noise produced as and when you move the connections or when they are touched this usually indicates high frequency instability in the audio stage and the signal produced may interact with the i.f./r.f. amplifier stages.
5. To improve front-end selectivity, image rejection, and simplify alignment the values of C121 and C122 should be changed to 22 pF . It will then be harder to mis-align the r.f. tuned circuits.
6. For final alignment of the two r.f. tuned circuits, L100/101 and L102/103, it is recommended that all-plastic or all-nylon trimming tools are used. Tools fitted with phosphor bronze blades will de-tune the inductors whilst an adjustment is made. This is quite important if you want to get the "last ounce" of performance from your Ranger!
7. When aligning the receiver of the Ranger without the aid of test equipment it is important to note that, at present and until the new system comes into operation, signals likely to be heard will be AM and SSB and these will usually be off-frequency. These signals will sound very distorted and will certainly not be readable-they will at least give an indication that the receiver is functioning. Final adjustment of the r.f. tuned circuits should therefore be left until a proper FM signal is available.
8. There have been a number of cases where spurious output has been generated as a result of feedback by direct radiation of r.f. energy from the co-ax link (between the p.c.b. and the aerial socket) to the transmitter chain. It is essential that the front panel should exhibit a low impedance r.f. path to the earth plane on the p.c.b. A series tuned circuit is recommended for inclusion between the co-ax cable and the aerial socket, mounted immediately behind the aerial socket.

Fig. 4.7. Series tuned circuit
9. It is important that early issue p.c.b.s from Modus Systems are checked to ensure that the solder resist has been removed from around the slider pin of VR2 prior to soldering. Failure to do this will limit the maximum available output power to less than 5 mW .
10. Should a 'chattering' squelch (i.e. where the squelch appears to open and close erratically in the absence of any discernible signal) be encountered, it is recommended that C102 be increased to $4.7 \mu \mathrm{~F}$, or even $10 \mu \mathrm{~F}$.
11. When tuning up the receiver, it is recommended that a matched 50Ω impedance be maintained. The receiver front end may show some sign of instability if not correctly terminated.
12. It is recommended that the exposed terminals of SK201 be protected with insulated sleeving.
13. A good earth bond between the front panel and the p.c.b. ground plane is essential. In some cases it has been
found necessary to use a short length of braid to connect the body of SK204 to the earth tag on SK200. A short length of braid should also be fitted from the earth tag of SK200 to the can of L104.
14. Should the squelch appear to be non-operational, it is well worth checking the polarity and marking of D102 with an ohm meter; there have been cases where the polarity of the diodes has been incorrectly marked on the body of the diode.
15. Low profile d.i.I. sockets (N.B. no other type) have been found suitable for use with all of the i.c.s in the Ranger.
16. When mounting the NiCad batteries (B2OO and B201) on the p.c.b., it is advisable to ensure that they are firmly seated; track damage may occur (especially in transit) if the tags are not pushed fully through the board. Similar considerations apply to the mains transformer, T200.
17. Apparent instability and lack of sensitivity in the receiver can be attributed to relatively high values of local oscillator injections in some sets. This can be cured by wiring a resistor of between 33Ω and 180Ω under the p.c.b. directly to the pins of L105. The value should not be so low as to stop the oscillator functioning and 100Ω makes a good starting point.

A further improvement may also be gained by wiring a $47 \mathrm{k} \Omega$ resistor under the p.c.b. between pin 1 of IC100 and OV . This increases the range of the local oscillator input swing.

After including the above mods (filter, series trap, R6, R10, C13, 2 extra capacitors) the alignment of the transmitter continues from step 17 as follows: using the load output indicator, adjust in the following sequence and repeat until maximum output is achieved: core in the series trap, cores in the filter, VC2, L8, VC1, L4, and L2.

TEST RESULTS

The following test results have been produced from a kitbuilt sample of the PE Ranger 27FM, which has been carefully aligned using techniques outlined in the series of articles. The set in question incorporated all of the suggested modifications in this part of the series, and was run from a mains supply.

RECEIVER SPURIOUS EMISSIONS

The maximum amplitude of emission from the receiver was measured as -48 dBm into 50Ω; this is a power level of 15.8 nW .

RECEIVER SENSITIVITY

The measured usable sensitivity of the receiver on Channel 9 using 1 kHz tone modulation and $\pm 2.5 \mathrm{kHz}$ deviation was $0.43 \mu \mathrm{~V}$. The measured sensitivity at 10 dB signal-to-noise ratio was $0.80 \mu \mathrm{~V}$. All measurements made in a constant 50Ω environment.

TRANSMITTER SPECTRUM ANALYSIS

The detailed transmitter spectrum is shown for a Ranger transmitter which is fitted with the improved filter, the series trap in the co-ax link between p.c.b. and SK200, and has R6 and $R 10$ replaced as described earlier.

The Home Office specification calls for the levels of spurious emissions to be as follows:

0 to 80 MHz	below 250 nW	$(-36 \mathrm{dBm})$
80 to 85 MHz	below 50 nW	$(-43 \mathrm{dBm})$
85 to 87.5 MHz	below 250 nW	$(-36 \mathrm{dBm})$
87.5 to 104 MHz	below 50 nW	$(-43 \mathrm{dBm})$
104 to 108 MHz	below 250 nW	$(-36 \mathrm{dBm})$
108 to 118 MHz	below 50 nW	$(-43 \mathrm{dBm})$
118 to 135 MHz	below 250 nW	$(-36 \mathrm{dBm})$
135 to 136 MHz	below 50 nW	$(-43 \mathrm{dBm})$
136 to 174 MHz	below 250 nW	$(-36 \mathrm{dBm})$

174 to 230 MHz 230 to 470 MHz 470 to 862 MHz 862 MHz upwards

below 50 nW	$(-43 \mathrm{dBm})$
below 250 nW	$(-36 \mathrm{dBm})$
below 50 nW	$(-43 \mathrm{dBm})$
below 250 nW	$(-36 \mathrm{dBm})$

The traces below show the importance of correct alignment. The first trace (A) is without a filter, and the second (B) is with the transmitter above.

The results for a spectrum analysis of the Ranger receiver are shown below (C). The Home Office specification calls for a maximum allowable level of emission from the receiver of below $20 \mathrm{nW}(-47 \mathrm{dBm})$ at any frequency. The Ranger receiver meets this specification. The tested sample is shown without modifications; the performance above 30 MHz is improved when the series tuned circuit is added. A detailed examination of the local oscillator spectrum is shown (level $=-63.6 \mathrm{dBm}$ or 0.5 nW) in trace (D).

DETAILED TRANSMITTER SPECTRUM ANALYSIS - D.C. TO 250 MHz IN 50 MHz STEPS.

PLEASE NOTE

Will constructors please note that CB licences are now available from any Post Office for an annual fee of $£ 10.00$.

NEXT MONTH

The base mobile adaptor has been developed to complement the basic ranger transceiver, whilst retaining all of the original features.

The hardware and software exchange point for PE computer projects

M/C TO BASIC CONVERTER

Sir-1 expect that all UK101 owners know how to put a decimal m/c program into HEX simply by using the READ, DATA and POKE commands in BASIC. But how do you convert a HEX m/c program into the above BASIC thus not needing checksum loaders etc.?
One slow way is to PEEK all the m / c program when in BASIC and enter the bytes into a program of DATA statements by hand, not much fun for a 200 byte programl Alternatively, you could write a program that would write its own BASIC lines into the memory, like Tony Walsh's "Graph Plot" (PE January 1981).
A far simpler way to achieve this would be to make use of the fact. that everything printed on the screen of the UK101 when in Save mode also goes on to tape. The enclosed program writes a BASIC program to store anything stored anywhere in the memory as DATA using only the print command.

The program starts at line 49999 so as not to overlap any program already in the computer. To start it just type "Run $50000^{\prime \prime}$

Description:

Line 49999: prevents any other program running accidentally into it.

50040-50110: data entry from keyboard and validity checking.
50200: present memory address (decimal). 50240-50250: converts byte at present address to string of decimal value and remove preceding space caused by STR\$. Increments character count on line being printed.
50260: checks if line full, if not then 50330.

50270-50320: starts new line, sets L to next line No. and sets character count for new line to zero.
50330: checks if sufficient line numbers left to complete program.
50340: prints data byte in D\$ onto tape with preceding comma.
50360-50390: prints BASIC routine to poke data back in when loaded.
50400: resets Save flag and gives a small tape delay before instructing for the tape to be stopped.

Variables:
S \& F First and last memory addresses to be recorded.
$L \& I N$ Starting line number and line increment.
M \& D\$ Present memory address and string of decimal data value at M.

A AUTHOR'S ADDRESS 10 MORTHEND, WARLEY REMTHOOD, ESSEX

10 : ACTUAL LISTING POR PRINT: 49999 T0 50440
49999 PRINT:PRINT"Ertor...program over run." ${ }^{\text {: PRLNT: }}$ STO
$\$ 0000$ PRINTCHRS (12):FORI-1T016:PRIMT:NETISREM -CLS-
50010 PRIUT"MEHORY DATA RECORDING PROGRAN
50020 PRLNT""- 50030 -

50060 PRINTTAB(15) : :INPUT" 1 iniah";
50070 IFF<SOR F>6553SORS<OTHEURUWSOOOO
50080 PRINT:INPUT"Start 11 ne nubber"; 1
50090 L-INT (L):IFL<00RL>63997THEN50080
50100 PRINTIAB (8) :TNPUTIT
50110 IN-INT(ABS (IM)):ITIN=OORIN> 300 THELM50100
50120 REM - RECORD MEM.DATA AS BASIC 'DATA' -
50130 PRINT:FORI-1TO29:PRINT"=": :NEKT : PRINT:PRINT
50140 PRINT"Pueh 'PLAY' \& "Record' on cape and hit any key.
50150 POKE11, $0:$ POKE12, $253: x$-USR ((x)
50160 FOPX -1103000 : NEXT RREH --- TAPE DELAY -
50170 POKE15,72:POKE517 1:PRINT:PRINT
50180 REM - SET COURT HICE TO CAUSE NEW LINE -
50190 LL-90
50200 FORH-STOF
50210 REIT- CONVERT BYTE TO STRING \& REMOVE -
S0220 REM-- PRECECDING SPACE CAUSED BY STRS.
$50230 \mathrm{DS}-$ STRS $($ PEEK $(M)):$ DL -LEE ($0^{\circ} \$$)-1
S0240 D\$-RTGHTS (OS,DL):LL-LLADLT1
50250 REM - NEL LINE?
50270 PRINT
50280 REM - START HEW LINE -
50290 PRINTL; "DATA ";D\$;
50300 REM - MEW LINE Ho., LIME LENGTH TO 0 -
50310 L-L + IM:LLLD 0
50320 cotosolso
50330 IFL+IN*2>639
50350 NEXT:PRINT
50350 REM - DATA FINISHED \& NOW TO POLE IT \&
50370 PRLIUTL; "FOR I $=" 1 \mathrm{~S}_{1}$ "TO"; F
50380 PRINTL+IN: "READ J:POKE I, $\mathrm{I}:$ HEXT I"
50390 PRINT:PRINT"POKES15,0:LIST-" FLTIN
50400 REM -- TIMC DELAY \& TUEN OF

$\$ 0430$ primt" Recerding Einished, seop tape."iphint
50440 END
DL \& LL Length of D\$ and No. of characters on line.

NOTE
Line 50260 should read:
IFLL<56 etc.
A. W. H. Bruce,

Brentwood, Essex.

UN-NEW!

Here is a short machine-code program (38 bytes) for the UK101 which may come in useful. It will restore "lost" programs. By "lost" I mean programs which have been inadvertently NEWed. It must be entered as a m / c program since entering it as data statements will destroy the "lost" program pointers in basic.

It is relocatable and uses two subroutines in ROM. Once entered, it must be executed immediately after the NEW command, i.e. before any new line numbers are entered.

AOO4	LDY \&04	
C8	L1:INV	
B179	LDA (79), Y	
DO FB	BNE L1	; find end of
C8	INY	; first line
C8	INY	
$8 C 0103$	STY 0301	
A5 7A	LDA 7A	
800203	STA 0302	
A9 FF	LDA \&FF	
8512	STA 12	
2032 A4	JSR A432	; find end of
86'7A	STX 7A	; program
A5 AA	LDA AA	
2060 A4	JSR A46D	: reset pointers
A9 03	LDA \& 03	
857 A	STA 7A	
$4 C 74$ A2	74	

Stuart Smith Dumbarton.

MULTIPLE USER CALLS

Sir-If you wish to link more than one machine code routine to UK 101 Basic, the restriction of a single 'USR' function can be a drawback. By POKING into locations 11 and 12 you can of course change the USR address but this leads to lengthy BASIC lines which don't make for easy reading. For example it's difficult to see that

POKE 11,227:POKE 12,168:X=USR(Y)

is calling the routine at 43235 decimal.
When the USR call is made from BASIC as above, the value of Y is placed into the floating accumulator at \$ AC to $\$ B \emptyset$. It seems logical therefore to try to use this route to allow multiple USR calls with the address of the routine as the argument.

The technique is to vector USR calls to a machine code patch.containing the following:

JSR \$B408 Convert floating accumulator contents to integer at $\$ 11, \$ 12$
JMP (11) Branch to routine whose address is in $\$ 11, \$ 12$

Including the following lines of BASIC in a program will set this patch up at $\$ \emptyset 228$ and link subsequent USR calls to it.

FOR I=565 TO 570 : READ X : POKE I, X : NEXT DATA 32, 8, 180, 108, 17, 0 : POKE 11 , 53 : POKE 12, 2

The patch used here is compatible with the original monitor, and the new monitor as well as CEGMON.

The calling routine mentioned above now reduces to

$\mathrm{X}=$ USR (43235)

This saves memory, is more readable and the omission of the two POKEs also speeds up the calling procedure considerably. Enterprising EPROM programmers could fit the patch into the New Monitor or CEGMON by stealing some of the ROM used for message storage.
P. Beckett

Blackpool.

QUICK TIP

A short routine to print superscripts as required in A^{2} etc.
Example:
140 AC=32
150 ?:? "ACCELERATION="; AC ; "FEET/SEC"; : POKE 54157 + POS (I), 50:?
How about an article on programming techniques with tips like this one and wider aspects such as how the interpreter works. For example, is it faster to put DATA statements early in the programme, or after the READ statement?
S. Jeans,

Cardiff.

FULL RENUMBER

Sir-Here is a full-function BASIC Renumberer program for the UK101 in reply to Mr. I. Pawson of Leicester (PE November 1980).

This program renumbers, with the same steps as the original, lines and statements GOTO, GOSUB, THEN, ONI GOTO and ONI GOSUB if they are in positions it is necessary to change, anywhere in the program.

The renumbering is successful in GOTO'S, THEN'S etc., even with new numbers having more or less digits than the old ones. If there is no space to enter the full number (in the case of a number having more digits), the program enters the most significant digits of the new number and reminds you to REWRITE line n. So, when writing BASIC programs it is better to leave one or two spaces in GOTO'S, THEN'S etc., before or after the number.

After renumbering, the lines remain at the same memory locations as before. Suppose you have a program with lines 100, 110, 120, 130.
CASE 1 Renumber from 100 to 110 starting at 80; The new sequence of lines will be 80, 90, 120, 130.
CASE 2 Renumber from 120 to 130 starting at 400; The new sequence of lines will be 100 , 110,400, 410.
CASE 3 Renumber from 110 to 120 starting at 400; The new sequence of lines will be 100 , $400,410,130$. The new program will not work. You must SAVE it.in a spare cassette and LOAD back to COMPUKIT. The new sequence will become 100, 130, 400, 410.

44400 REM *** FULL-FUNCTION RENUMBERER FOR UK 101
44405 REM $^{\text {*袜平 }}$ A. GALLOPOULOS -GREECE * * ${ }^{*}$ *
44410 INPUT "RENUMBER OLD LINES FROM"; X
44415 INPUT "THROUGH TO"; Y
44420 INPUT"AS NEW LINE NUMBERS FROM"; \mathbf{Z}
44425 A $=768: S=Z-X$
$44430 \mathrm{~A}=\mathrm{A}+1: \mathbf{L}=\operatorname{PEEK}(\mathrm{A}+2)+$ PEEK $(A+3) * 256$
44435 IF $L=>44400$ THEN 44475
44440 IFL<XORL>Y THEN $\mathbf{M}=\mathrm{L}:$ GOTO 44455
$44445 \mathrm{M}=\mathrm{L}+\mathrm{S}:$ POKE A +2 , M-INT(M/256) * 256
44450 POKE $\mathbf{A}+3$, INT (M/256): PRINT L, M
$44455 \quad \mathrm{~A}=\mathrm{A}+4$
$44460 \mathrm{C}=\operatorname{PEEK}(\mathrm{A}):$ IF $\mathrm{C}=0$ THEN 44430
44465 IF $\mathrm{C}=136$ OR $\mathrm{C}=140$ OR
$\mathrm{C}=160$ THEN 44500
$44470 \cdot \mathrm{~A}=\mathrm{A}+1:$ GOTO 44460
44475 PRINT "RENUMBERING COMPLETED" : END
$44500 \mathrm{ES}=" \prime: B=A$
$44505 \quad B=B+1: C=\operatorname{PEEK}$ (B)

44510 IF $\mathrm{C}>64$ THEN $\mathrm{A}=\mathrm{A}+1$: GOTO 44460
44515 IF $\mathrm{C}=6$ OR $\mathrm{C}=44$ OR $\mathrm{C}=58$ THEN 44525
$44520 \mathrm{E} \$=\mathbf{E} \$+\mathbf{C H R} \mathbb{(C)}:$ GOTO 44505
$44525 K=V A L(E \$): W=B-A:$ $\mathbf{A}=\mathbf{A}-\mathbf{I}$
44530 IF K < X OR K > Y THEN 44555
$44535 \mathrm{E} \$=\operatorname{STR} \$(K+S): F O R J=2$ TO W
44540 IF J<= LEN(E 8$)$ THEN 44550
44545 POKE A + J, 32:NEXT:GOTO 44555
$44550 \mathrm{~V}=\mathrm{ASC}(\mathrm{MID}$ (ES, J, I)) : POKE A + J, V : NEXT
44552 IF LEN (ES) > W THEN PRINT "REWRITE LINE"; M
$44555 \quad \mathrm{~A}=\mathrm{B}:$ IF $\mathrm{C}=44$ THEN 44500 44560 GOTO 44460

Antonios Gallopoulos,

CASSETTE FILE HANDLING

Sir-The basic UK101 has no built-in data file handling capability. The data file program published in vour "Micro Prompt" of April 1980 suffers from the disadvantage that a program change is required to change:-
a) the name of the file;
b) the number of characters allowed in the file name:
c) the number of data "words" stored in the file.

Also, the pause period in line 10 is running while the operator is actually reading the instruction and starting the tape. There is, therefore, no tape run-up time before the instruction "HIT ANY KEY" is given. The following modification of your program overcomes these limitations.
5 INPUT*NAME THE FILE*; ${ }^{\text {FS }}$
10 INPUT*HOW MANY ITEMS OF DATA"; ${ }^{\text {N }}$
15 FOR $A=0$ TO N-I: PRINT"ENTER ITEM" $A+1 ;$ INPUTWS (A) : NEXT:PRINT:PRINT
20 PRINT"WIND TAPE TO REQUIRED POSITION \& SET TO RECORD":PRINT:PRINT
25 PRINT"HAVE YOU STARTED THE TAPE?":PRINT:PRINT
27 INPUT'IF SO, ANSWER ' Y ' ${ }^{\prime}$;QS:IF QS<>"Y" THEN 25
30 PRINT:PRINT*WAIT . . .";:FOR A=1TO 8000:NEXT:PRINT"HIT ANY KEY"
35 POKE 11,0:POKE 12,253:X=USR (X):SAVE

40 PRINT FS:PRINTN
45 FOR A=0 TO N-1:PRINT WS(A):NEXT:PRINT
50 POKE5 17,0
55 PRINT"*"FG", FILE IS NOW ON TAPE"

60 END

The program to retrieve the file from tape follows.

120 INPUT"WHICH FILE DO YOU REQUIRE";FS:PRINT
125 PRINT"WIND TAPE TO FILE POSITION, SWITCH TO"
130 PRINT"REPLAY \& HIT ANY KEY IMMEDIATELY."
135 POKE 11,0:POKE 12,253:X= USR(X):LOAD
140 INPUT T\$
145 IF RIGHTS(T\$,LEN(F\$))=F\$ THEN 155
150 GOTO 140
155 INPUT N
160 FOR $A=0$ TO $N-1: I N P U T$ WS(A):NEXT
165 POKE515,0 : PRINT : PRINT : PRINT
170 PRINT FS:PRINT:FOR $A=0$ TO N-1:PRINTWS(A):NEXT

175 END

Since the WS(A) array has not been dimensioned, the maximum number of data "words" is 11. This is in any case the maximum number that will be displayed together at line 170.
D. R. Smith

Coventry

LIKE V

Sir-This short program for the UK101 allows the programmer to view the contents of a tape without loading it into memory, a similar facility to the V command in the extended monitor.

The program is in BASIC, and uses a machine code routine as follows:

02222080 FE	JSR FE80
02258 D 2902	STA 0229
022860	RTS
0229-character store	

The FE8O is the address to a subroutine, that inputs a ASCI/ character from cassette, and stores the value in the accumulator. Atter re-entry, the value in A is stored at 0229, and the program returns to BASIC and prints out the character.

10 FOR A=546 TO 552

20 READ B:POKE A,B:NEXT
30 DATA 32,128,254,141,41,2,96
40 POKE 11,34:POKE 12,2:X=USR(X) $50 \mathrm{~V}=$ PEEK(553):PRINTCHR\$(V): 60 GOTO 40

Hans Palm,
Sweden.

CEGMON TRACE HELP

Sir-I noticed R. J. Newman's snags with "Trace". Having used it under CEGMON I can only suggest either (1) the "Trace" cannot be loaded at 546 as the window handler resides there; I relocated mine to 672 (\$02AO hex), and (2) the control-C vector is mentioned twice in the program, being \$FB94 under CEGMON.

I have found the PE "Trace" one of the most useful, utilities published. I hope this is helpful.

Robin H. Tracey,
Coventry.

INDEX

JANUARY 1981 TO DECEMBER 1981

 VOLUME 17
CONSTRUCTIONAL PROJECTS

Light Delay, Courtesy .. May 54
Light Dimmer, Slave Feb. 26
Light Meter by Martin Kent July 46
Linear Ohmmeter by D. H. E. King Jan. 36
Lock, Digital May 22
Magnum Modifications, PE Feb. 52
Meter, Analogue Frequency Sept. 32
Meter, Capacitance July 34
Meter, Elapsed Hour Feb. 18
Meter, Light July 46
Meter, Noise July 50
Meter, pH June 40
Microphone Mixer by R. A. Penfold March 46
Microtune, PE Jan. 50
Minitune, PE June 34
Minute Chimer by James S. B. Dick Aug. 52
Mixer, Microphone March 46
Monitor Change, UK 101 Nov. 58
Multimeter, Digital May 44
Noise.Meter by Martin Kent July 50
Ohmmeter, Linear Jan. 36
PE Bandbox by Alan Boothman B.Sc. Nov. 32, Dec. 52
PE Digisounder by Brian Currie April 30, May 48
PE Magnum Modifications by Andy Flind Feb. 52
PE Master Rhythm by A. J. Boothman B.Sc. Jan. 22
PE Microtune by Martin Kent Jan. 50
PE Minitune by Martin Kent June 34
PE Pulser by Tom Gaskell B.A. Oct. 62
PE Quasar July 26
PE Ranger 27FM by M. Tooley B.A. and D. Whitfield
M.A., M.Sc. Sept. 40, Oct. 50, Nov. 48, Dec. 60
PE Robots by Richard Becker Nov. 24, Dec. 42
PE Starspinner Jan. 30, Feb. 42
Period Power Tester by Chris Lare March 38
pH Meter by Martin Kent une 38
Processor, Speech April 38
Programmer, EPROM Aug. 60
PSU, Drill Apri
Pulser, PEJuly 26
Ranger 27 FM, PE Sept. 40 Oct. 50 Nov 48 Dec 60
Remote Keyboard by J. Lewis Sept. 24
Rhythm, PE Master Jan. 22
Robots, PE Nov. 24, Dec. 42
Semiconductor Curve Tracer by D. Mandelzweig . une 50
Simulator, Echo Aug. 38

Space Evaders by Tom Gaskell B.A.
Dec. 22
Speech Processor by M. Tooley B.A. and
D. Whitfield B.A., M.Sc. Jan. 30. April 38
Starspinner, PE
Synthesiser, Drum Sept. 50
System, Inductive Discharge Ignition Oct. 40
Tester, Continuity .. 64
Tester, Period Power 38
Thermometer, Digital May 36
Timer, Digital Counter Feb. 32, March 66
Train Controller by Andy Flind Aug. 32
Tuner, PE Quasar
.July 26
UK 101 Monitor Change by lan Hickman Nov. 58
Ultrasonic Intruder Alarm by Gilbert Davies April 52
$27 / 28 \mathrm{MHz}$ Converter by M. Tooley B.A. March 30

GENERAL FEATURES

ented Beat Metronome by P. C. French Nov. 62	
Bargraph Thermometer by R. Eley April 67Binary to BCD Converter by Kunal Sen March 65Boat Horn by Leif Liung May 66	
Capacitive Touch Switch by F. T. Dart Conversation Aid by R. A. Maidment	
'Day to Remember' Clock by C. T. ChantlerApril 66 Delayed Output Protected Mono by C. Embleton .. May 68 Disco Light Sequencer by J. Rennie May 68	
ope	
Fuse Failure Indicator by K. A. RochfortJan. 72	
play Unit by B. Darnton	
tor Controller by O. Albrecht	
$\begin{aligned} & \text { Pip Generator by J. D. Richie March } 62 \\ & \text { Push Button Pulse Generator by T. P. Hopkins May } 67 \end{aligned}$	
Storm Distance Estimator by R. Jonasar March 63 Synth Processor by M. Russ April 68	
lephone Timer by C. Dakin Aug. 67	
Thump Eliminator by A. A. Jeffree May 67	
Timer for Cine Camera by Odd	Jan.
Torpedo Game by M. CrispJ.Jan. 71	
Traffic Lights by R. J. Jones March 64	
for Synths by M. Russ	
99S Photographic Timer by G. Crawford Nov. 63 Channel Sound-to-Light by K. Badcock Nov. 63 Regulator Supply by A. J. FlindJan, 72	

Introduction to Robotics by Professor W. Heginbotham O.B.E., D.SC. Oct. 30
MICROBUS by D.J.D. Feb. 48, April 50, June 76, Aug: 56, Nov. 66 Micro PromptJan. 68, March 69, May 57, July 54 , Sept. 74, Dec. 66
Oscilloscopes-How They Work by lan HickmanApril 26, May 39, June 45
Positive Impedance ConvertersJune 58
SEMICONDUCTOR UPDATE by R. W. Coles Jan. 49,
Feb. 41, March 36, April 49, May 26, June 31July 42, Aug. 37, Sept. 59, Oct. 35, Nov. 23, Dec. 48Motorola TMOS, Spague UTN 2886 B ,Texas TMS 5100, TM56100Jan. 49
AMD 2960, Hewlett Packard HLMP 31 XX, HMP 36XX Feb. 41
Silicon General SG1547, TRW LSI Products TDC 1023J, National Semiconductor IN58073 Mar. 36Intersil ICM 7242, SGS-Ates L 209, 1 \& 2,Mostek 4118,4801 \& 4802Apr. 49
Texas TMS 9909, Siemens SAB 0600, Analog Devices AD636 May 26National Semiconductor LM330
Jun. 31
Intel: APX 432, AEG Telefunken U410 B Jul. 42
National Semiconductor MM 5439, Fer:anti ZN470, Mild MD4101 Aug. 37
Motorola MC13002, Sharp G1-105XX, IR-2EO1 National Semiconductor Oct. 35
Intersil ICL8073, Analog Devices AD7 581,Zilog Z6132Nov. 23
National Semiconductor LM1894, Intersil ICL 7663, Zilog Z800S Dec. 48
Solar Power Satellites by Dr. J. P. Stark Jan. 38
Strictly Instrumental by K. Lenton Smith March 44,June 38
Tandy TRS80 by Dr. A. A. Berk Feb. 28
The Electronic Car by Walter Musty Sept. 36
UK 101 Colour Board Review by Mike Abbott Aug. 30
UK 101 Graph Plot by Toby Walsh Jan. 66
Wemon Review by Dr. A. A. Berk June 26
Wire Wrapping by John Lewis June 24
600 Baud Cassette Interface by P. Martin May 56

NEWS AND COMMENT

A New Generation of Softys \qquad Sept. 73

BOOK REVIEWS \qquad Jan. 28

CB Proposals ..July 24
COUNTDOWN Feb. 39, March 45, April 42, May 31,
June 21 . July 21, Aug. 21, Sept. 21 , Oct. 20,
Nov. 68

EDITORIAL
Jan. 17, Feb. 15, March 17. April 17, May 17, June 17, July 17, Aug. 17, Sept. 17, Oct. 17, Nov. 17, Dec. 17

INDUSTRY NOTEBOOK by Nexus Jan. 21 , Feb. 24 , March 21 , April 21, May 21, June 23, July 23. Aug. 23. Sept. 23. Oct. 21, Nov. 21, Dec. 21

MARKET PLACEJan. 18, Feb. 16, March 18, April 18 May 18, June 18, July 18 , Aug. 18, Sept. 18, Oct. 18, Nov. 18, Dec. 18

NEWS BRIEFS March 24, 45, 61, May 25

PATENTS REVIEW Jan. 69, Feb. 66, March 60, April 65, May 53, June 78, July 58, Aug. 69,

Sept. 35, Oct. 21, Nov. 56
PE Inventors Competition Results
March 43
POINTS ARISING \qquad Feb. 30, March 61, April 42 May 25, June 20, July 20. Sept. 21

READOUTJan. 42, Feb. 22, March 42, April 63, May 25, 34, June 44, 79, July 59, Nov. 54, 61

SPACEWATCH by Frank W. Hyde Jan. 59, Feb. 63, March 51. April 35. May 35, June 32. July 61 Aug. 65, Sept. 48, Oct. 48, Nov. 31, Dec. 51

SPECIALSUPPLEMENTS AND OFFERS

Circuits Supplements July (between pages 42 \& 43)
Extra Case Coupon ... June 28, July 57, Aug. 35, Sept. 27
Hi-Fi Offer
Dec. 29
Multimeter Offer \qquad Dec. 59

Special Offer-Car Audio BoosterJune 39, Aug. 62

Special Offer-Digital Panel MeterMay 51, June 57 , July 45
Special Offer-Graphic Equaliser Sept. 49 Special Offer_GSC Experimentor KitOct. 73, Nov. 46 Special Offer-In Car Entertainment Jan. 34, Oct. 49 Special Offer-Telequipment S61 Oscilloscope ...Feb. 25 ,

Special Offer-Vero Wire Wrap Kit
Using your free i.c. removal tool Oct. 20

Nov. 57

The Low Cost Eurocard Size Microboard
Fully Compatible with indirect connectorsl and Card Frames to the latest international specifications.
Accepts any Integrated circuit package allows high packing density.
Screen Printed with 'island' pattern for ease of use - ideal for solder and wire wrap applications.

ORDERCODE

| | | | |
| :--- | :--- | :---: | :---: | :---: |
| | DESCRIPTION | SIZE | PRICE |
| | MICROBOARD | $160 \times 100 \mathrm{~mm}$ | $£ 3.47$ each (including |
| VAT \& carriage) | | | |

Vero Electronics Limited, Retail Dept., Industrial Estate,
Chandler's Ford, Hampshire SO5 3ZR. Tel (04215) 62829

Now the time can tell you!

New - from Silicon Speech Systems (a Powertran subsidiary) - the first ever easy-to-build kit that will give a whole new meaning to the 'speaking clock'! Electronics and quartz technology combine to enable you to construct a talking timepiece that is interesting to build - fun to have!

Full instructions make this a kit with equal appeal to the beginner or experienced constructor.

Special Xmas Offer only $£ 24.50$!
 fincludes VAT and Post \& Pkg)

- Accurate to a minute a year
- Adjustable voice pitch
- Grained stainless-steel case
- Pocket size - approx. 5in. x $2 \frac{1}{2} \mathrm{in}$. $\times 1 \mathrm{in}$.

- Useful in the home or office
- As heard on BBC radio

Silicon Speech Systems

(A Powertran Subsidiary)
PORTWAY INDUSTRIAL ESTATE, ANDOVER, HANTS., SP10 3WN TELEPHONE ORDERING FOR ACCESS/BARCLAY CARD CUSTOMERS IS NOW AVAILABLE
JUST PHONE YOUR ORDER AND GIVE YOUR CARD NO. RING ANDOVER (0264) 64455.

SAFGAN DT-400 sEries BRITISH MAKE DUAL TRACE 'SCOPES

From one of Europe's leading electrical groups, now available in the U.K. from JMI.

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

RECEIVERS AND COMPONENTS

300 SMALL COMPONENTS, transistors, diodes $£ 1.60 .7 \mathrm{lbs}$ Assorted Components $£ 3.95 .10$ lbs $£ 5.25$. PCBs $11 \frac{1}{2}{ }^{\prime \prime} \times$ $8^{\prime \prime} .60 \mathrm{p} .1 \mathrm{lb}$ weight assorted 80 p . Fibreglass $11^{\prime \prime} \times 5^{\prime \prime} £ 1$ $11^{\prime \prime} \times 10^{\prime \prime} £ 1.80$. Fourty 74 series ICs on panel $£ 1.60 .500$ capacitors $£ 3.00$. List 20 p refundable. Post 50 p. Optional insurance 20p. J.W.B. Radio, 2, Barnfield Crescent, Sale Cheshire M33 INL.

* LEDS - SPECIAL SHAPES * LEDS ** - ARROWHEADS LINES TRI/RECTANGLES DOTS - R, G Y $20 \mathrm{f} / \mathrm{spec}$ LEDS $£ 2.95$ P\&P 25p. SAE LISTS PETRON ELECTRONICS, Courtlands Road, Newton Abbot, Devon.

T \& J ELECTRONIC COMPONENTS

Quality components - Competitive prices

- Stock items despatched same day - First class post used whenever possible Wide range of components and accessories - VAT inclusive prices Single charge of 40p postage Price increases kept to a minimum. For illustrated catalogue, send a cheque or postal order for 45 p.

SMALL ADS

The prepaid rate for classified advertisements is 32 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 10.70$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Electronics, Room 2337. IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

EDUCATIONAL

careers in marine electronics. Courses commencing September and January. Further details, The Nautical College, Fleetwood FY7 8JZ. Tel. 0391779123.

CITY \& GUILDS EXAMS

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians, Electrical Installations, Radio, TV \& Electronics Technicians, Radio Amateurs. Full details from

CS SCHOOL OF ELECTRONICS
 Dept 272P Intertat Houce London SW8 4UJ Tel. 01-6229911 (all hours) State if under 18

TECHNICAL TRAINING

Get the training you need to move up into a-higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics, Computers: also self-build radio kits. Fuli details from:

ICS SCHOOL OF ELECTRONICS

Dept. 272P intertext House London SW8 4UJ
Tel. 01-6229911 (all hours)
State if under 18

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:

ICS SCHOOL OF ELECTRONICS
 Dept 272P Intertert Houne London SW8 4UJ Tel. 01-622 9911 (all hours) State if under 18

BOOKS AND PUBLICATIONS

OUT OF PRINT Book Service, 17, Fairwater Grove (E), Cardiff. Send SAE for details.
any single service sheet £l L.S.A.E. Thousands different repair/service manuals/sheets in stock. Repair data your named T.V. $£ 6.50$ (with circuits $£ 8.50$). S.A.E. Newsletter, pricelists, quotations. AUS (PE), 76 Church Street, Larkhall, Lanarkshire. (0698883334).

SERVICE SHEETS

bell'S TELEvISION SERVICES for Service Sheets on Radio. Tv, etc $\mathbf{£ 1 . 0 0}$ plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S. 190 Kings Road, Harrogate, N. Yorkshire, Tel:(0423)55885.

SERVICE SHEETS $£ 1$ each plus SAE. Individual T.V. repair data $£ 6.50$ (with circuits $£ 8.50$). Free electronics newsletter, pricelists unique publications. Auspe, 76 Churches, Larkhall, Lanarkshire ML9 IHE.

WANTED

WANTED. Practical Electronics March 1973 in good condition. Postage and cost refunded. Telephone John Carrell, Wilmslow (0625) 533243 evenings.

SOFTWARE

SINCLAIR $2 X 81$ (16 KK RAM) quality software. G.C.E. "O" LEVEL MATHS. 3 programs on one cassette, ranging over the whole syllabus and including teaching, generated questions and explanations. ORDER NO. ACOM 3 PRICE E4.50. A satisfied customer says "I find the standard to be quite exceptional". Mail order only. ROSE CASSETTES, 148 Widney Lane, Solihull, West Midlands B91 3LH.

PROGRAMMERS TOOLKIT, for UK 101, OSI Superboard and C 1 (all monitors), and C2 (CEGMON only). 2 K of fast machine code on tape, giving 14 new commands including RENUMBER, DELETE, TRACE, and OLD. Only $£ 10$ inclusive, or SAE for more details. State computor and memory size. S. A. Smith, 36, Woodvale Avenue, London SE25 4AE.

ACORN ATOM Invaders (12k) £8; Backgammon (7k) £7; Labyrinth (12k) 26.95 ; Star Trek (12k) $£ 5.00$; Lunar Lander (12 k) 5.50 . All software supplied on cassette. Prices inclusive. Bug-Byte, $98-100$, The Albany, Old Hall Street, Liverpool.

Superboard/UK101 Low Cost Add-Ons ALL PRICES INCLUDE VAT \& POST
 8 K RAM + 16 K EPROM board.

Kit $£ \mathbf{4 8 . 9 9}$ built and tested $£ 56.99$

EPROMS

Assembler ($\mathbf{3} \times 2716$'s) $£ 23$. Exmon $£ 7.50$. Toolkit (adds 16 functions) $£ 18.95$.
Enhanced Video Display. True 48×32 Display Full kit and instructions $\mathbf{1 5} \mathbf{1 5} 9$.
$\mathrm{Kit}+48 \times 32$ CEGMON $£ 42.00$.
Kit $+48 \times 32$ NEWMON $£ 32.00$.
Software for all Superboard/UK 101 sereen formats. Chess 1.9 £9.99; Draughis $£ 4.99$, Both $£ 13.50$.

ATOM SOFTWARE

Chess $1.9 £ 11.99$, Draughts $£ 4.99$, Both $£ 14.99$.
N.B. All board games (both UK 101 and ATOM) are fully interactive with complete instructions and excellent graphics.

USED MICROS \times PRINTERS
 SELL, BUY OR EXCHANGE

We purchase used equipment especially; UK 101 s , Atoms, Pets and Apples, also GP80, OKI80 and FPSON PRINTERS.

Ring us for used bargains (most with warranty).
NORTHERN MICRO
29 Moorcroft Park
New Mill
Tel. Holmfirth

HUDDERSFIELD
S.A.E. for list please

Callers welcome by appt.

NOUGHTS AND CROSSES CASSETTE UK 101 4K (new monitor) 22.00 . Marples, 29 Marchwood Drive, Sheffield S6 5LH.
NEW IMPROVED CHARACTER set in Eprom for your UK $101 /$ Superboard (please state which). Includes doubledensity graphics, maths, electronic and gaming symbols for only 88.95 (+50 p P\&P). Reprogramming service available. J. O. Linton, 110 Duchy Road, Harrogate, HG1 2 HB .

BUILD THE MICRO 88 SYNTHESISER

for under $£ 50$ I Built-and-tested circuit board,

 battery operated, simple control connectlons, no electronics knowledge required. MICRO 88 - a real synthesiser for half the pricel 88 - a real synthesiser for half the pricelSAE to: B. J. TYLER, 21 BEAUFORD ORCHARD, NORTON, TAUNTON, SOM.
your ukiol basic program in Eprom. Switch on and run! Using 5 V 2716. Uses normal RAM for variable storage - without over writing any program in RAM. Simple pokes change between RAM and ROM programs (retention of variables possible) Ideal for text writer/best game or dedicated machine applications. SAE for details: J. I. Dyson. 22A Hyde Road, Mottram, Hyde, Cheshire.

UK101 AND SUPERBOARD. Original program listenings, mostly utilities, a few games. Includes HEX dump patch for assembler andexmon, high speed binary dumber/loader, list basic variables, renumber and search, etc. etc. $£ 2.50$ including P\&P or sae for full list and sample program: Dr Mike Whittle, 1 Old Croft Close, Kingston Blount, Oxford.
ZX81 SOFTWARE ZXAS Assembler (5k) £3.95; ZXDB Disassembler/debugging program (4 k) $£ 5.95$; Program pack 1 (8 Ik programs) $£ 3.50$; 1k Breakout $£ 4.50$ prices inclusive. Bug-Byte, 98-100, The Albany, Old Hall Street, Liverpool

MISCELLANEOUS

ELECTRONICS KITS. Largest range of kits in the U.K. Everything from stroboscopic lights to transmitters, at unbeatable prices. Send sae for free catalogue to: EASTLING ELECTRONICS (KITS), 64B, Hawthorne Road, Winton, Bournemouth.

Once again, Stuart Systems have astounded the world with a totally new concept. The Video Vibroscope produces a fantastic multi-coloured display on any TV . The picture is controlled by music, using microphone or other direct input, and forms an exciting, puisaing and myynmic experien
which cannof fait to turn them on! A must for parties.
discos, etc.
NOWAVAILABLEFORONLY
$£ 49.95$
9v POWER UNIT £4.95. PLEASE ADD

SENSATIONAL FREE OFFER. Buy a Casiotone VL-1 Electronic Musical Instrument and get a semi conductor pack absolutely free. Comprising $10-7400,10-\mathrm{BC} 183 \mathrm{~L}, 1$ 7805, worth $£ 2.60$. Send cheque/PO for $£ 35.95$. All Casiotone keyboards and accessories available Ex-Stock. Access and interest free credit. (no postage required). Micro Musical Ltd., Freepost, 37, Wood Lane, Coventry CV7 9BR. 0203616760.

MORSE CODE TUITION AIDS

Cassette A: 1-12 w.p.m. for amateur radio examination. Cassette B: 12-25 w.p.m. for professional examination preparation. Each cassette is type C90.
Morse Key and Buzzer unit for sending practice
Price each Cassette (includling booklets) $£ 4.75$. Morse Key
and Buzzer $£ 4.75$.
Prices include posta

MHEL ELECTRONICS

(Dept PE), 12 Longshore Way, Milzon, Portsmouth PO4 8LS.

Cabinet and Flightcase Fittings Fretcloths. Coverings, Handles, Castors etc. Jacks and
Sockets. Cannons, Bulgins. Reverb Trays, Emilar CompresSockets. Cannons. Bugins. Reverb Trays, Emiar Compres-
sion Drivers. AKG Mics. Celestion Speakers. ASS, Glassfibre Horns.
Send 30 p Postal Order for illustrated catalogues to:-
ADAM HALL (P. E. SUPPLIES) Unit G, Carton Court, Grainger Road,
Southend-on-Ses, Esex $\$ S 25 B Z$.
centurion burglab alarm equipment. Send sae for free list or a cheque/PO for $\$ 11.50$ for our special offer of a full sized signwritten bell cover, to Centurion Dept PE, 265 Wakefield Road, Huddersfield, W. Yorkshire, Access \& Barclaycard telephone orders on 0484-35527.

RYDER ORGAN SYSTEM

The WW classical design for full-size keyboards, including couplers. Expanded range of p.c. boards \& data available includes chorus, vibrato, combination stop control.
Reverberation. A new compact solidstate unit gives smooth natural sound. Demo cassette, on loan, deposit $£ 1.50$, refund E 1.00 . (Prices UK only).
HIYKON LTD. (P), Woodside Croft Ladybridge Lane, Bolton BL1 5ED.
enamelled copper wire. 10 swg to 45 swg . S.A.E. for quotation by return, cheapest prices. 102 Parrswood Road, Manchester 20.

PREPACKEO. Screws, nuts, washer, solder tags, studding. Send for price list. AI Sales (PE) P.O. Box 402, London SW6 6LU.

MAKE YOUR OWN PRINTED CIRCUITS

 43p par sheet. Large range of single sheets in slock ai Master Positive Transparencies from P.C. layouts in maga-
Min zines by simple photographic process. ${ }^{2}$ sheers negative paper, 2 sheers positive film (A4) £2.10. Photo-resis

 where indicated.
P.K.G. ELECTRONICS

TELEPHONE ANSWERING MACHINE. Build your own for under $£ 10$ plus any cassette recorder. Send $£ 3$ for circuit. Coldfield, West Midlands.

NEW MK 232.7 KHz QUARTZ LOCKED

ULTRASONIC ALARM + PANIC

Detector and Control Unir - Type UAQ + P Featur

No alignment regd. - No interaction between units:
Kit ingi- F / G, $P C B$. punched ABS box, all como. inst:
Kit inc:- F/G, PCB, punched ABS box, all comp, inst:
240 V AC supply: with optional MI-CAD batrery back up:
15 to 20 ft detection range, externally presetrable:
20 sec delay on leaving: 10 sec delay on entry:
I sec invalid movement delay: 2 min seff cancealling alarm:
latching panic button facility included. 10 sec . alarm inhibit.
240 A AC $\cup A Q+P$ Multione Drive Ki
40V AC $U A O+P$ Multione Drive Kit
Above kits built \& tested $=$ Kit Price Plus
Multione Sounder $95 \mathrm{~dB}=11 \mathrm{mtr}$, 9 Tone Options
Keyswitch in ABS box £5.95; NI-CAD Baterie $£ 9.20$
prices inc. CWO UK. SAE for funher detalls
GJD ELECTRONICS
105 Harper Fold ROAd,
Radcliffe, Manchester M26 ORQ.

Paraphysics journal irussian translations)
Psychotronic Generators, Kirlianography, Gravity Lazers, Telekinesis. Details: Sae $4 \times 9^{\prime \prime}$ Paralab, Downton, Wilts.

miscellaneous - CONTD.

burglar alarm equipment. Latest Discount Catalogue out now! Phone C.W.A.S. Alarm 0274682674.

BIG EARS

SPEECH INPUT
 FOR
 YOUR
 COMPUTER!

BIG EARS opens the door to direct
man-machine communication. The system comprises analogue frequency separatlon filters, preamps and signal conversion, together with a quality microphone and extensive software.
Words, in any language, are stored as "voicepripts" by simply repeating them a lew times in "learn" mode. Using keyword selection technlques, large vocabularies can be constructed.
Use BIG EARS as a front end for any appllcation data enquiry, robot control, starwars possibilities are unlimited.
BULLT, TESTED \& GUARANTEED ONLY 49
PLEASE STATE COMPUTER: UK 109. SUPERBOA
ZX80;91, PET, TRSBO, ETC.

COLOUR MODULATOR

RGE in. PALUHHF out
Please add VAT at 15% to all price
Barclayaccess orders accepted on telephone WHLLAM $\begin{gathered}\text { Dower House, Billeric } \\ \text { Herongate, Brentwo }\end{gathered}$
STUART
Essex CMi3 3 Sa
Telephone: Brentwood (0277) 81024 ,

SECURITY SYSTEMS KITS ... All components and full instructions. Send large SAE for latest catalogue of advanced projects for car, caravan and home. CompuTech Systems. Ind. Esto, N. Walsham NR 28 OAN, Tel: (0692) 5600.

SEEN MY CAT? 5,000 odds and ends. Mechanical. Electrical. Cat Free. Whiston Dept. PRE, New Mills, Stockport.

THE SCIENTIFIC WIRE COMPANY
PO BOX 30 , London E.4.01-531 1568.
ENAMELLED COPPER WIRE

SWG	1 lb	802	402	$20 z$
8 to 29	2.76	1.50	0.80	0.60
30 to 34	3.20	1.80	0.90	0.70
35 to 39	3.40	2.00	1.10	0.80
40 to 43	4.75	2.60	2.00	1.42
44 to 47	5.90	3.40	2.39	2.00
48 to 49	15.96	9.58	6.38	3.69
$\begin{array}{lllll}\text { SILVER PLATED COPPER WIRE } & \\ 14 \text { to } 30 & 6.50 & 3.75 & 2.20 & 1.40\end{array}$				
TINNED 14 to 30	OPPER 3.85 Prices	IRE $2: 36$ P\&P.	1.34	0.90
SAE for	sunder of Copp enquir Office, 2	plea Resis welc onings	dd 20 Wi Garden	aler

CLEARING LABORATORY: scopes, generators, P.S.U.'s, bridges, analysers, meters, recorders, etc. 0403-76236.

TIME WRONG?

MSF CLOCK is ALWAYS CORRECT - never gains
or loses. SELF SETTING at switch-on, 8 digits show Date, Hours, Minutes and Seconds, auto GMT/BST and leap year, also parallel BCD output for computer etc, receives Rugby 60 KHz atomic time signals, built-in antenn
SIG. GEN., $10 \mathrm{~Hz}-200 \mathrm{KHz}$, logic and $0-1 \mathrm{~V}$ sine and square wave outputs, if harmonics £16.80.
V.L.F.? EXPLORE $10-150 \mathrm{KHz}$, Receiver $£ 16.50$. PROGRAM YOUR OWN TUnes on a Programmable Chime - not just 1 of 24 , 3W audio, £38.90.
6OKHZ RUGBY RECEIVER, as in MSF Clock. serial data and audio outputs, $£ 17.90$.
Each fun-to-build kit includes all parts, printed circuit, case, instructions, postage etc, money back assurance so GET yours NOW

CAMBRIDGEKITS
45 (FZ) Old School Lane, Milton, Cambridge.

OIGITAL WATCH BATTERIES. Any type $£ 1.20$ each. Send sae or $15 p$ with number or old battery to DISCLEC Y, 511 Fulbridge Road, Werrington, Peterborough.

RECHARGEABLE BATTERIES

Private 8 Trade Enquiries Weicome FULL RANQE AVAILABLE. SAE FOR LISTS. £1.45 for Booklet. Nickel Cadmium Power plus Catalogue. Write or call: Sandwell Plant Lid, 2 Union Drive, BOLDMERE, SUTTON COLDFIELD, WEST MIDLANDS. 0213549764.

NEW SEALED LEAD RANGE AVAILABLE*

FOR SALE

P.E. STRING ENSEMBLE, complete and in perfect working order $£ 200$. P.E. Minisonic Mk II, with keyboard and case as sound design $£ 150$. Tel. Peterborough (0733) 73184.

BACK ISSUES from 1950 P.E., P.W., P.T., R.C., 40p plus post or exchange. Amersham 22434.

WEMON monitor for UK 101 f19.00. M. Andrews, Conifers', Lyne Lane, Chertsey, Surrey. 0932873327.

NEW BACK ISSUES OF 'PRACTICAL ELECTRONICS' available 90 p each Post Free. Cheque or uncrossed P/O returned if not in stock - BELL'S TELEVISION SERVICES, 190 Kings Road, Harrogate, N. Yorks. Tel: (0423) 55885.

NAS-SYS 3 OPERATING SYSTEM. Latest NASCOM monitor $\times 2716$ Eprom. Unwanted gif. $£ 20.0705596243$.

CASEO UK101, 8K, 2MHZ, new 4 K Wemon monitor, $£ 215$. Phone Aldridge 52565.

UK 101 8K CASED. New monitor ROM metal cased VDU. Assembler/ disassembler, super space invaders, 10 data cassettes $£ 185.00$ o.n.o. Telephone Haywards Heath (0444) 53737 evenings.

THE VERY LATEST SC110 LOW POWER FULLY PORTABLE OSCILLOSCOPE.

The new Thandar SC1 10 represents a break-through in oscilloscope development. The SC110 is LESS THAN TWO INCHES thick and weighs under two pounds, yet retains the standard features and controls of a bench oscilloscope

1980 GOLD MEDAL winner of the B.R.N.O. EXHIBITION, the largest Trade Fair
Full Sized Performanc held in Eastern Europe.

10 MHz bandwidth
10 mV per division sensítivity.

- Full trigger facilities are provided including TV frame, or TV filtering. Runs
adapto
Size $255 \mathrm{~mm} \times 14 \mathrm{Bmm} \times 50 \mathrm{~mm}$
'Scope $£ 139.00+£ 20.85$ V.A.T.
Cary Case $£ 7.70+£ 1.16$ V.A.T
$\times 10$ Probe $£ 10.00+£ 1.50$ V. A (AC Adaptor $£ 4.95+£ 0.74$ V.A.T)
Overseas purchasers please state voltage.) Re-chargeable cells $£ 7.50+£ 1.13$ V.A.T.
THANDAR TM354 HAND HELD LCD DIGITAL MULTIMETER
The TM354 is a compact $3 \frac{1}{2}$ digit hand held multimeter featuring a LARGE $0.5^{\prime \prime}$ liquid crystal display, 0.75% basic accuracy and a 2000 HOUR battery life. The meter provides five functions in fourteen ranges.

DC voltages 1 mV to 1000 V AC voltages 1 V to 500 V
DC current 1μ A to 2 Amps

- Resistance 1 R to $2 \mathrm{M} \Omega$

Diode check
Complete with test prods and vinyl pouch. $£ 39.95+£ 5.99$ V.A
World-wide post free service. Overseas orders welcome. Please deduct U.K. V.A.T Mail Order only. Callers by appointment.
Barclaycard/Access orders welcome, Cheque/Bank draft etc., with order please. Large S.A.E. for technical leaflet and complete Thandar list
B. K. ELECTRONICS, Dept. 'PE',

37 Whitehouse Meadows, Eastwood, Leigh-on-Sea, Essex SS9 5TY.

Tel: (0702) 527572.

New production capacity at Canterbury has increased our range decreased our prices, improved our special customer design service. Choose from toroidal transformers in
a range of 98 types

Order using the FREEPOST coupon below.
Trade enquiries are welcome
Supplert with rigur mounting kit with cente boir. sleel and neoprene washers GUARANTEED 5 VEARS

14 P	$\mathrm{Sef}_{\mathrm{No} / \mathrm{S}}$	$\begin{array}{\|c\|} \hline 5 \times \text { Congatir } \\ \text { vols } \end{array}$	$\begin{aligned} & 1 \text { RMS } \\ & \text { jfurte. } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { PRACE } \\ \text { inc VAI } \end{array}$	$\begin{array}{\|l\|l\|l\|} \hline \text { PRCE } \\ \text { Be } \end{array}$
$\begin{gathered} 228 \mathrm{VA} \\ 10 \times 45 \mathrm{~mm} \\ 22 \mathrm{~kg} \\ \text { regusiom } \\ 7 \% \end{gathered}$	$6 \times 01 ?$ 6×013 6×015 6×016 ${ }_{6 \times 018}^{6018}$ 6×026 ${ }_{6 \times 033}$ 6×028 6×030	$12+12$ $13+13$ $18+18$ $2 ?+27$ $3+23$ $3+30$ $35+35$ $4+40$ $45+45$ $30+50$ 10 220 240			$\begin{aligned} & 1006 \\ & +8,13 \\ & 0, p \end{aligned}$
$\begin{gathered} 100 \mathrm{va} \\ 110 \times 50 \mathrm{~mm} \\ ? 6 \mathrm{~kg} \\ \text { regulation } \\ 6 \% \end{gathered}$	$\begin{aligned} & 7 \times 013 \\ & 7 \times 019 \\ & 7019 \\ & 7 \times 15 \\ & 7 \times 016 \\ & 7017 \\ & 7018 \\ & 70026 \\ & 70025 \\ & 70033 \\ & 7 \times 028 \\ & 7029 \\ & 70030 \end{aligned}$		1000 8833 682 600 300 478 387 333 300 772 138 172 172		
$\begin{array}{\|c\|} \hline 500 \mathrm{VA} \\ 140 \times 6 \mathrm{mmm} \\ 4 \mathrm{~kg} \\ \text { Regution } \\ 6 \% \end{array}$		$\begin{aligned} & 23+25 \\ & 30+30 \\ & 34+35 \\ & 40+40 \\ & 15+85 \\ & 50+40 \\ & 35+55 \\ & 110 \\ & 270 \\ & 240 \end{aligned}$	$\begin{array}{\|c\|} \hline 1000 \\ 8,33 \\ 713 \\ 6025 \\ 625 \\ 455 \\ 500 \\ 154 \\ 454 \\ 327 \\ 308 \end{array}$		$\begin{aligned} & \$ 1533 \\ & +c 205 \\ & p: p \end{aligned}$
$\begin{array}{\|c\|} \hline 623 \mathrm{va} \\ 140 \times 7 \mathrm{~mm} \\ 5 \mathrm{~kg} \\ \text { megutivn } \\ 4 \% \end{array}$		$\begin{aligned} & 30+30 \\ & 35+35 \\ & 0+40 \\ & 5+45 \\ & 50+50 \\ & 55+35 \\ & 110 \\ & 270 \\ & 240 \end{aligned}$	1041 892 781 694 625 368 568 264 360		

IMPORTANT; Regulation - All vollages quoted are FULL LOAD. Please add regulation figure to secondary voltage to oblain of load vothage.
The benefits of ILP toroidal transformers
ILP foroidal transformers are only half the weight and height of their laminated equivalents, and are available with 110 V . 220 V or 240 V primaries coded as follows.
For 110 V primary insen " 0 " in place of " X " in type number
For 220V primary (Europe) insert " 1 " in place of " x " in type number
For 240 V prmary (UK) insert " 2 " in place of " x " in type number.
How to order Freepost:
Use this coupon. of a separate sheet of paper. 10 order these products, of any products from other ILP Electronics adventisements. No stamp is needed if you address to Freepost. Cheques and postal orders must be crossed and payable to ILP Electronics Lid cash must be registered. C. O.D. - add $£ 1$ to total order value. Access and Barclaycard welcome. All UK orders sent posit free within 7 days of receipt of order for single and small quantity orders Also avaitable at Electrovalve. Mapthn, Marshalls. Technomatic and Watlord Electronics

Please send me the following
LP modules
Total purchase price
IencloseCheque $\square \quad$ PostalOrders $\square \quad \mathrm{Int}$. Money Order \square
Please debit my Access/Barclaycard No.
Name
Address

Signature
Post to: ILP Electronics LId. Freeposi 2. Graham Bell House, Roper Close Cantertury CI2 7EP Kent. England
Caniertury C I2 2 EP. Kent. England
Telephone 0227154778 Tectincal 10227164723 relex 965780
la division of
IIP Electronics Lta)
FFANEFORMEFS
STAYAHEAD.STAY WITHUS

HENRUE DIVISION

michotan 65 CONTENTS
High qualily，plated the hole printed circuit board．solder resist and silt stre ened component identilicat：on 6502 microprocessor 1 K monitor TANBUG．Now with＇V＇Bug．IK RAM for user programme，stack and display me mony VDU alphanumeric display of 16 rows by 32 characters． MICROTAN 65 system file binder． 136 page．bound．users hardware／ sotware manual with construetional details and sa mple programmes． Logic and discrete components to fully expand MICROTAN 65 The MICROTAN 65 kut has won widespread acclaim tor its supert presentation We pay attention to detailt
KIT FORM $\mathbf{£ 6 9 . 0 0 + f 1 0 . 3 5}$ V A．T．total $\lceil 79.35$.
MICROTAN 65 assembled and tested．
Specification as above，but assembled and lully bench tested by our selves． $\mathbf{£} 79.00$＋f11 85 V A T．total 19085
TANBUG V23 KIT （separately） $\mathbf{£ 2 1 . 8 5} \mathbf{i N C L}$ ．

MICROTAN 65 OPTIONS

LOWER CASE PACK iwo infegrated circuits which connect MINI MOTHER BOARD allowing 128 displayable characters． Built £10．00

$£ 9.48+$ f1 42 ．total flo． 90

graphics pack

Five infegrated circeurs which connect into locations on MICROTAN allowing the display of chunky graphics（ 64×64 pixels）What are chunky graphics？Well．mag ne a piece of graph paper with $\dot{\text { bit s squares }}$ venicaly and 64 squares horizonially，a tolal of 4096 ．Each square can be made black on white
£6．52＋VAT 98p．total $[750$ ．
20 WAY KEYPAD
Inexpensve means of getting up and running．Uses＇Schoeilei＇Key． switches，and connects io MICROTAN Inrough a 16 pin OIL．plug on ribbon cable Black anodised escutcheon，with TANGERINE legends． finishes oft what must be the best value for money keypad available． Available assembled and rested．
$\mathbf{£ 1 0 . 0 0}$＋VAT $\mathbf{f 1 . 5 0 . 1 0 t a l}\{11.50$.
－Space livaders game flor use with keypad only）
f15．22＋VAT $f 228$ total 11750

POWER SUPPLIES

MPS 1：Input 120 or 240 V AC．Output 5 Volts al 3 Amps Regutated MPS 1 will power both MICROTAN and TANEX fuly expanded．Buils on the same size printed curcuit board as MICROTAN etc．Avalable as a fully bult and tested unit
$\mathbf{£ 2 3 . 0 0}=$ V．A．T． $\mathbf{~} \mathbf{3 . 4 5}$ ，total $\mathbf{~} \mathbf{2 6 . 4 5}$
$\mathrm{XMPSZ}+5 \mathrm{~V} 6 \mathrm{AA}+12 \mathrm{~V}$ ．-5 and -12 V switth mode system PSU 269.13 ＋V A．T

MINI－SYSTEM RACK

We have produced a mini－－system rack which accepts MICROTAN 65. TANEX and our muni－mother board．It has an integral power supply，ius plug it into the mains and away you gol Finished in TANGERINE／BLACK， in gives vour system the protessional finish．Front panel access for 1／0 cables AVAILABLE AS AN ASSEMBLED UNIT
$\mathbf{f} 56.35$ NCL

FULL SYSTEM RACK

For the man that has everything！ 19 inch wide
system rack which жccepis MiCROTAN 65．TANEX．TANRAM，SEVEN FURTHER EXPANSION BOAROS．TANOOS And THE SYSTEM POWER SUPPLY Avalable in many lormats．e．g．Individual from panels．full width hinged front panel，back panel with or without connectors．
$£ 49.00$＋V AT． $\mathbf{~} 7.35$ ，total $£ 56.35$ ．

NEW PRODUCTS muar mea，			¢15．64 f66．70		¢ $\begin{array}{r}\text { ¢ } 87.40 \\ \text { ¢ } 15.00\end{array}$
	¢44．85	Stent	¢135．70		． 554.65
SIstu мothereano（12 Connection	¢72．85	Pamalet	¢54．63		¢54．64
xta coob conectoos	f3．50		¢99．48	сопriolisr cano iul	¢138．00

TANEX £43．00 ：－

CONTENTS $\quad+$ VAT $\mathbf{C 6} 45$ ，total 64945
High quality plated thru hole printed circuit board．solder resist and silk screened component identafication IC sockets for maxımum expansion 64 Way D．IN．edge connector IK RAM，cassette inferface， 16 parallel 1／0 lines．a T TL serial I／0 port，two 16 but counter tumers，data bus butfering，memory mapping．logic and discrete components fol TANEX（Minumum configuration）Assembled $\mathbf{5 5 3 . 0 0}+$ V A．T． $\mathbf{~} 795$ ．total 66095.

TANEX EXPANSION

 Expanded．TANEX offers：7K RAM locations for 4 K EPROM（2716）． locations for 10K extended MICROSOFT BASIC． 32 parallelI／D lines．wo TTL senal I／O ports lhird serial I／O pon with RS232／20mA loop．lull modem control and 16 programmable baud rates．four 16 bir counter timerscasselte interface，data bus
 butfering and memory mapping． EXPANDE O TANEX KIT（Excludes ROM．XBUG and BASIC） $\mathbf{5 8 9 . 7 0}+$ V A．T．$\{+3.46$ ，total $〔 103.16$ EXPANOED TANEX ASSEMBLEO $\mathbf{8 9 9 . 7 0}$＋V AT $\int 1496$ ．total $\mathbf{〔 1 1 4 . 6 6}$ OPTIONS TO FULLY EXPANOE OTANEX 10K Extended MICROSOFT BASIC in EPROM（with manual） $\lceil 49.00$＋V．A T． $\mathbf{6 7 . 3 5 .}$ total $\boldsymbol{〔} 5635$
Extra RAM： $1 \mathrm{~K} 12 \times 2114) \mathbf{5} .20+$ V．A T． 78 p．total $\mathbf{5 5} .98$ ． SERIAL I／O KIT．£ 17.25 INCL．
6522 VIA $\quad[8.00+$ V AT $[1.20$ ．total $£ 9.20$
XBUG $\{1735+$ V．A．T．$\{2.60$ total $\mathbf{6} 19.95$ XBUG $\{1735+$ V．A．T．$\$ 2.60$ ，total $\mathbf{\$ 1 9 . 9 5}$ ． $\pm 12 \mathrm{~V}$ KIT $\mathbf{~} 9.20 \mathrm{INCL}$ ．
AS YOU CAN SEE THE PRICES OF OUR EXPANSION COMP DNENTS ARE VERY．VERY COMPE TITIVEI

TANGERINE DISC SYSTEM
 280 CONTROLLER CARD $£ 150.00$

DOUBLE SIDED DOUBLE DENSITY DRIVE
£215．00
CP／M DISK OPERATING SYSTEM
Available January $£ 80$－VAT
0tC＇81
71 KEY ASCII KEYBOARD £69．95＋INCL no extras neeoed．
Uses gold crosspoint keys．includes numeric keypad and ribbon catle． Available as tully assembled and tested． SUPER METAL CABINET IN TANGERINE／BI ACK
$\mathbf{5 2 0 . 0 0}+$ V．A．T ［3．00．10tal $[23.00$
PROFESSIONAL ASCII KEYBOARDS Ideal for
Tangerine
£29．95

52 key 7 but ASCII coded Positive strobe $+5 \mathrm{~V}-12 \mathrm{~V}$

－Positive strobe +5 V
－ASCli characters
Parallel output with strobe
Power light on control
Chip by General Instiumen
（G．1．）TIL outpur

Superbly made

NEW MICROTANTEL

POST OFFICE APPROVED PRESTEL－VIEWDATA
－FUll COLQurgraphics can store PRESTEL CAN BE USED AS AN EOITING TERMINAL CAN BE INTERFACEO WITH PET
£170 APPLE，etc．
Just connect to the aerial socket of any colour or black and white domestic T．V．receiver and to your Post Ottice inst alled jack socket and you are into the exciting worid of PRESTEL Via simple push button use you are able to view 170,000 pages of up to the minute information on many services，order goods from companies－all this without leaving your armchair！

[^3]
GRAND CHRISTMAS SALE!

AT

HOME RADIO LTD 269a HAYDON'S RD., SW19

Hundreds of Bargains for callers

 ON NOW! DON'T MISS IT!Stock up for the Winter for a small outlay
Our Catalogue still costs $£ 1.50 \mathrm{incl}$. postage

Metal Cabinets $12^{\prime \prime}$ wide $\times 5 \frac{3}{4}{ }^{\prime \prime}$ deep, finished blue with transparent plastic drawers.

\[

\]

Access/Barclaycard welcome Prices include VAT and Post. Cheque/P.0. to: Millhill Supplies (Tools),
35 Preston Crowmarsh, Benson, Oxon OX9 6SL.

PRACTICAL ELECTRONICS PROJECTS

YOU CATT BEAT ILPBPOLAR POWER AMPSO:

 POWESADDPRICEGet maximum power at minimum price, yet still with hi specifications and a wide choice of outputs. ILP Bipolar power amps. now with or without heatsinks are unbeatable value for domestic hi-1i - but for disco. guitar amplifiers and PA choose the new range of heavy duty power amps. again with or without heatsinks. with protection against permanent short circuit. added salety for the disco or group user. Connection in all cases Is simple - via 5 pins.

Every item has a 5 year no quibble guarantee and includes full connection data. So send your order FREEPOST today Load impedance, all models. 4 ohm - infinity. Input impedance, ali models 100 K ohm. Input sensitivity, all models, 500 mV . Frequency response, all models $15 \mathrm{~Hz}-50 \mathrm{kHz}-3 \mathrm{db}$. BIPOLAR Standard, with heatsinks

Model No.	Oulpul Walls rms	$\begin{aligned} & \text { DISTC } \\ & \text { T.H.D } \\ & \text { Iyp } \\ & \text { It } \mathrm{kHz} \end{aligned}$		$\begin{aligned} & \text { Supoly } \\ & \text { voltage } \\ & \text { ryo/ Max } \end{aligned}$	Sue mm	$\left\lvert\, \begin{gathered} w \\ g m s \end{gathered}\right.$	$\begin{gathered} \text { Price } \\ \text { inc VAT } \end{gathered}$	$\begin{gathered} \text { Pace } \\ \text { ex VAT } \end{gathered}$
HY 30	15w/488	0.015\%	<0.006\%	$\pm 18 \pm 20$	$76 \times 68 \times 40$	240	2828	¢729
HY 60	$30 \mathrm{w} / 4.883$	0015\%	<0.006\%	$\pm 25=30$	$76 \times 68 \times 40$	240	5958	¢8 33
HY 120	$60 \mathrm{w} / 4.88$	0.01\%	<0.006\%	$\pm 35 \pm 40$	$120 \times 78 \times 40$	410	£20.10	¢17.48
HY 200	$120 \mathrm{w} / 4.88$	0.01\%	<0.006\%	$\pm 45 \pm 50$	$120 \times 78 \times 50$	515	£24.39	£ 21.21
HY 400	240w/48	0.01\%	<0006\%	$\pm 45 \pm 50$	$120 \times 78 \times 100$	1025	£3660\|	£31.83

BIPOLAR Standard, without heatsinks

HY 120 P	$60 \mathrm{~W} / 4.88$	001%	$<0006 \%$	$\pm 35 \pm 40$	$120 \times 26 \times 40$	215	$£ 17.83$	$£ 15.50$

Protection: Load line.momentary short circuit (typically 10 sec). Slew rate $15 \mathrm{~V} / \mu \mathrm{S}$ Rise time: $5 \mu \mathrm{~S}$. S / N ratio 100 db . Frequency response (-3 dB):15Hz-50kHz . Input senstivity 500 mV rms. Input impedance $100 \mathrm{k} \Omega$. Damping factor $(8 \Omega / 100 \mathrm{~Hz})>400$.
ILP Electronics Lid., Freepost 2 Graham Bell House, Roper Close, Canterbury CT2 7EP, Kent. HEAVY DUTY with heatsinks

Model No.	Output powe Wetts rms	$\begin{aligned} & \text { DIST } \\ & \text { TH.D. } \\ & \text { Ty. } \\ & \text { at } \mathrm{kHz} \end{aligned}$	$\begin{aligned} & \text { OATION } \\ & \text { IM.O. } \\ & 50 \mathrm{HZ} / 7 \mathrm{kH} 2 \\ & 41 \end{aligned}$	$\begin{aligned} & \text { Supply } \\ & \text { whage } \\ & \text { Tyop Max } \end{aligned}$	Size mm	$\begin{gathered} w / \\ g m s \end{gathered}$	$\begin{gathered} \text { Price } \\ \text { inc Vat } \end{gathered}$	$\begin{gathered} \text { Price } \\ \text { ex VAT } \end{gathered}$
H0 120	60w/4.80	0.01\%	<0.006\%	$\pm 35 \pm 40$	$120 \times 78 \times 50$	515	โ25.85	£22:48
HD 200	$120 \mathrm{w} / 4.88$	001\%	$<0005 \%$	$\pm 45+50$	$120 \times 78 \times 60$	620	โ31.49	โ27 38
HD 400	$240 \mathrm{w} / 48$	0.01\%	<0.006\%	$\pm 45 \pm 50$	$120 \times 78 \times 100$	1025	¢44.42	¢38 63

HEAVY DUTY without heatsinks

HD 120P	$60 \mathrm{w} / 4 \mathrm{AR}$	0.01%	$<0006 \%$	$\pm 35 \pm 40$	$120 \times 26 \times 50$	265	$\mathrm{E22.82}$	$\mathrm{E19} 84$

HD 400 P	$240 \mathrm{~W} / 4 \Omega$	001%	$<0006 \%$	$\pm 45 \pm 50$	$120 \times 26 \times 70$	375	$〔 39.42$	$£ 34.28$

 Protection: Load line. PERMANENT SHORT CIRCUIT (ideal for
disco/group use should evidence of short circuit not be immediately apparent). The Heavy Duty range can claim additional output power devices and complementary protection circuitry with periormance specs as for standard types.
How to order Freepost: Use this coupon. or a separate sheet of paper. to order these products. or any procucts from other ILP Electronics adventisements. No stamp is needed if you address to Freepost. Cheques and postal orders must be crossed and payable to ILP Electionics LId: cash must be registered. C.O.D. - add $£ 1$ to total order vaiue. Access and Barclaycard welcome. All UK orders sent post tree within 7 days of receipt of order.

ILP modules
Total purchase price
Ienclose ChequePostal0rders \square Int. Money Order
Please debit my Access/Barclaycard No.
Name
Address

Signature
Posi to. iLP Electronics Lid. Freepost 2. Granam Bell House. Roper Cliose. Canterbury CI2 7 PP Ken. Encland.
Teiephone (0227) 54778 Technical (0227) 64723 Telex 965780

STAYAY:
41

Us

Zaam $_{\text {ar }}$ for top quality		LOW, LOW PRICES
Electrowic jock	SOFTY 2	DISCO LIGHTING KITS
		Each unt has 4 channals trated at 1 KW at apto isolatod audio input.
diten		Cho
beind	Fiv 2 mav be usid	${ }_{\text {cosem }}^{\text {coib }}$
$\begin{aligned} & \text { probably a arready got. } \\ & \text { it may also be switched by logle } \end{aligned}$	prom into its socker and you have a dod	Otiliook
	opy	atemeteren
	2 is housed in a black ABS case I. plug for connecting to your prot	
(asemill	$\mathbf{£ 1 6 9}+$ VAT. Send SAE for further details.	Men
ONLY $£ 5.00$ + V.A.T.	VAT. Send SAE for furn	(eat

NOT JUST ANOTHER CLOCK

but a PROGRAMMABLE TIMER KIT which can run your central heating, burglar alarm, lighting, taperecorder/radio and lots more. Designed to control four mains outputs independently, switching these on and off on selected days and times in a seven day cycle.
Features include

* 0.5" LED 12 hr . display.
* Day of week, am/pm and output status indicators.
* Zero Voltage Switching Outputs.
* $50 / 60 \mathrm{~Hz}$ mains operation.
* Battery backup saves stored programmes and continues time keeping during power failures. (Battery not supplied).
* Display blanking during power failure to conserve battery power.
* 18 programme time sets.
* Powerful "Everyday" function enabling output to switch everyday but use only one time set.
* Useful "sleep" function - turns on output for one hour.
* Direct switch control enabling output to be turned on immediately or after a specified time interval.
* 20 function keypad for programme entry.
* Programme verification at the touch of a button.

To control your central heating, for example, (including different switching times at weekends), just connect it to your system, programme it, set it and forget it. The clock will do the rest. There has never been a clock capable of so much at this price. CT5000K Timer Kit (includes all components, assembly and programming instructions, and an attractive black case)
$£ 45.00$
YOU MUST HAVE BETTER THINGS TO DO
 This unit has. of course, consitieratien
practical uses, especialiy for the old. Practical uses. especialiy for the otid. . Mtirm and dilisabied. At works like - switch the whatever brightess you require. by touch or remotely using the
 box to replace Your convention
switch or dimmer with no rewiring.

TDR 300K Dimmer Kit E14.30
and MK6 Transmifter Kit
E4.20. and MK6 Transmimer Kir 4.20.
We also sill sell our highly poop.
 at $£ 7.00$ and the LD300K rotary
controlled Dimmer Kit at only controlled Dimmer Kit at only
$\mathbf{2 3 . 5 0}$ (plus VAT to above prices).
All kktis contain all necessary
components and full assembly compionents and full assembly instructions. You only need a.
soidering fron, cutters and a few soidering tron, cutters and a few
hours.

DVM/THERMOMETER KIT

Based on the ICL7 126 (a low power version of the ICL7 106 chip) and a $3 \frac{1}{2}$ digit liquid crystal display, this kit will form the basis of a digital multimeter (only a few additional resistors and switches are required - details
supplied), or a sensitive digital thermometer ($-50^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$) reading supplied), or a sensitive digital thermometer $\left(-50^{\circ} \mathrm{C}\right.$ to $\left.+150^{\circ} \mathrm{C}\right)$ reading
to $0.1^{\circ} \mathrm{C}$. The basic kit has a sensitivity of 200 mV for a full scale reading. to $0.1^{\circ} \mathrm{C}$. The basic kit has a sensitivity of 200 mV for a full scale reading. automatic polarity indication and an ultra tow power requirement - glving a
2 year typical battery life from a standard $9 \mathrm{~V} P \mathrm{P} 3$ when used 8 hours a day 7 days a week. $\mathrm{E} 15.50+$ VAT

IF YOU CAN'T (REMOTE) CONTROL YOURSELF
Remore control systems in magazines tend to
be quite complex requlring many difficult to get be quite complex, requlring many difficult to get components and a well equipped lab to set them up. If this has put you off making your Own system we have just the kits for you. Using Infra-red, these Kirs range from simple
 on/off controllers to coded transmitter/receivers
with 16 on/off outputs or three analogue outputs for controlling TV or hi-fi systems, the kits are easy to build and simple to set up - and they are extremely versatile so you can use them for controlling anything from garage doors to room
lighting just by adding the required output circuits, i.e. relays, triacs, etc. lighting just by adding the required output circuits, i.e. relays, triacs, etc.

If you can design your own system, we stock a wide range of remote control components at very competitive prices.

To help you decide, we have compiled a booklet on remote control, containing circuits, hints, data sheets and details of our remote control kits and components.
So DONT control yourself - send us 30 p and an S.A.E. for your copy TODAY.

THE KEY TO YOUR SECURITY
 Our ELECTRONIC LOCK KIT includes the kit for you. 750 mA outout to drive a solenoid ar a reway keyboard and a special IC which provides a the correct sequence. This gives over 5,000 possible combinations! The sequence is prewise available enabling the onged by means of a small plug and socket, A "SAVE" function is a garage for servicing as open code to be stored fespecially useful in a car when it is left in Consumption is 40 OA at 5 V to 10 VV d.c
At only 10.50 VAT
At only $\mathbf{f} 10.50$; VAT, t will make a smaller hole in your pocket than a bunch of keys)
LOCK I.C.s
LS7220 with SAVE memory
LS7225 with latched and
Electric Lock Mechanism
£2.75
ع2. 60
Suitable for use with exi
$\varepsilon 2.60$
$\mathbf{~} 12.50$
24 HOUR CLOCK/APPLIANCE TIMER KIT

TRIACS

 Switches any appliance up to
1 KW un and off at prese 1 KW un and off at preset
times once per dey. Kit con-
tains: AY-5-1230 IC, 0.5°
LED display, malins supply. LED display, mains supply.
display dyivers LED display, mains supply.
display drivers. switches,
LED. triac. PCB's \& full in-
structions. CT 1000 K Basic Kit $£ 14.90$ CT1000KB with white box $(56 / 131 \times 71 \mathrm{~mm})$ 8 A isolated tab TKAL 2288 Dlac
Opto
$\begin{array}{ll} & 80 p \\ \text { Opto in } \\ & 65 p \\ 18 p\end{array}$ Resdy Built E22.50

Prices do not include VAT. Add 50p P\&P + 15\% VAT to total. Overseas customers add $£ 1.50$ (Europe), $£ 4$ (elsowhere) for P\&P. ACCESS and BARCLAYCARD welcome.
Send s.a.e. for price list and with all enquiries.
Shop Open: 9 a.m. to 5 p.m. (Mon-Fri), 10 a.m. to 4 p.m. (Sat.) (PE) 11 BOSTON ROAD, LONDON, W7 3SJ. Tel: 01-579 9794/2842

MICROCOMPUTER COMPONENTS

LOWEST PRICES - FASTEST DELIVERY

OFFICIAL
CREDIT CARD ORDERS
QUANTITY
ORDERS WELCOME WELCOME DISCOUNTS AVAILABLE All prices exclude post and packing on orders under £10 (50p) and
VAT (15\%). ALL ORDERS DESPATCHED ON DAY OF RECEIPT WITH FULL REFUND FOR OUT OF STOCK ITEMS IF REQUESTED.

24 -hour Telephone Credit Card Orders

MIDWICH COMPUTER CO. LTD.

(Dept PE)
HEWITT HOUSE, NORTHGATE STREET,
EURY ST. EDMUNDS, SUFFOLK IP33 1 HC
TELEPHONE: (0284) 701321 TELEX: 817670°

WTYTIIP asia pow:ranp?

Because ILP MOSFET power amps give you ultra-॥ performance without costing big money. Performance you thought you couldn tatford at a price you know you can.

All ILP modules are compatible with each other - you ill find many more in other ILP ads in this magazine. Choose flP MOSFET power amps when you need the fastest possibte slew rate. low distortion at high frequencies, better thermal slability. MOSFET power amps work with complex loads without difficulty and without crossover distortion. Connection is simple create almost any audio system whatever your or experience

ILP MOSFET power amps are now available with
integrai heatsink (no extra heatsink required). or ready for
mounting on to your own heatsink or chassis. Full dissipation detarl on data sheet avairable on request. Each carries a 5 year no quibble guarantee and comes with full connection data.

Send your order FREEPOST today on the coupon at the foot of this ad

	Load impedance, all models. 40 hm - intinity Input impedance, all models 100 K onm Input sensitivity. all models. 500 mV Frequency response, all models $15 \mathrm{~Hz}-50 \mathrm{kHz} \cdot 3 \mathrm{db}$

MOSFET Ultra-Fi. with heatsinks

Model No.	Output power Watts rms	$\begin{gathered} \text { DISTORRION } \\ \text { THO } 1 . \mathrm{MD} \\ \text { TyD } \quad 50 \mathrm{~Hz} / 7 \mathrm{kz} \\ \text { at } 1 \mathrm{kHz} \quad 41 \end{gathered}$	$\begin{gathered} \text { Supply } \\ \text { voldage } \\ \text { Typ/Max } \end{gathered}$	Size mm	$\left\|\begin{array}{c} W_{1} \\ g 7 n 5 \end{array}\right\|$	$\begin{gathered} \text { Price } \\ \text { inc VAT } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Price } \\ \text { ex VAT } \end{gathered}\right.$
MOS 120	60w/4-882	<0005\% <0006\%	- $45+50$	$120 \times 78 \times 40$	420	£29 76	88
MOS 200	120w/4-83]	<0 005\% <0006\%	-55*60	$120 \times 78 \times 80$	850	£38 48	6
MOS 400	$240 \mathrm{w} / 4 \Omega$	<0 005\% <0006\%	+55*60	$120 \times 78 \times 100$	102	£52	£4
MOSFET Ulitr-Fi wilthout heatsinks							
MOS 120P	60w/4-882	<0005\% <0006\%	± 5	$\times 26 \times 40$	215	£26 82	¢23 32
MOS 200 P	120w/4.882	<0005\% < 0006%	- 55 ± 60	$120 \times 26 \times 80$	420	£32	โ28
MOS 400p	$240 \mathrm{w} / 48$	<0005\% <0006\%	- 55 ± 60	$120 \times 26 \times 100$	525	£4475	โ38

Protection:
Able to cope with complextoads. without the needtor very special protection circutry (luses will sulfice).
Uitra-fi specifications
Slew rate $20 V_{\mu}$ S. Rise time $3 \mu s$. S/N ratio 100 db . Frequency response (-3 dB) 15 Hz - 100 kHz . mput sensitivity 500 mv . $(8 \Omega / 100 \mathrm{~Hz})>400$
How to order Freepost:
Use this coupon. or a separate sheet of paper. to ordes these products. or any products from other ILP Electronics adventisements No stamp is needed if you address to Freepost. Cheques and postaiorders must be crossed and payable tolLP Electronics Ltd. cash must be registered. C.O.D. - add $£\{10$ totas order value. Access and Barclaycard welcome All UK orders sent oost free within 7 days of recept of order
ILP Electronics Lid., Fraepost 2 Graham Bell House. Roper Close, Canterbury CT2 7EP. Kant.
Please send me the following
PE 3/12
ILP modules
Total purchase price
Ienclose Cheque \square PostalOrders $\square \quad$ Int. MoneyOrder \square
Please debit my Access/Barclaycard N
Name
Address

Signature
Post 10. ILP Electronics Lid. Freepost 2. Graham Bell House. Roper Cose. Canterbury CT2 7 EP. Kent. England
Telephone ($\mathbf{0 2 2 7}$) 54778 Tectnical (0227) 64723 Telex 965780
enctronics 1 ro

\section*{BAKER LOUDSPEAKERS "SPECIAL PRICES" POSTE2
 | Model | Ohms | Inch | Watts | Type | Price |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Major | 4, 8, 16 | 12 | 30 | Hi-Fi | ¢14 |
| Deluxe Mk li | 8 | 12 | 15 | H1-Fi | £14 |
| Superb | 8, 16 | 12 | 30 | Hi-Fi | E24 |
| Auditorium | 8, 16 | 12 | 45 | $\mathrm{HI}-\mathrm{Fl}$ | £22 |
| Auditorium | 8, 16 | 15 | 60 | $\mathrm{HI} \cdot \mathrm{Fl}$ | E34 |
| Group 45 | 4, 8, 16 | 12 | 45 | PA | £14 |
| Group 75 | 4, 8, 16 | 12 | 75 | PA | £22 |
| Group 100 | 8, 16 | 12 | 100 | PA | £24 |
| Group 100 | 8.18 | 15 | 100 | PA | ¢32 |
| Disco 100 | 8, 16 | 12 | 100 | Disco | £24 |
| Disco 100 | 8,16 | 15 | 100 | Díseo | £34 |

OE-LUXE DISCO MIXER. 240V, 4 stereo channels, ${ }^{2}$ magnetic, 2 ceramic/tape, 1 mono mic channel, twin v.u.
meters, headphone monitor outlet, slider controls, suitable for panel or desk mounting, attractive grained aluminium 2 CHANNEL STEREO MIXER

MINI MODULELOUDSPEAKERKIT
R.C.S. $15 \times 8{ }^{3}$ in. 3-way Loudspeaker Baffle, Sin. Bass, 5 in . Middle. Jin. Tweeter; 3-way Crossover \& Ready Cut Baffle. Fult assembly instructlons supplied. Response 60 to £18.50. Suitable 8 ookshelf Cablnet $\mathbf{£ 1 0 . 5 0}$ each. Pos? \boldsymbol{f}_{2}
GARRARO 6-200 SINGLE PLAYER DECK Brushed Aluminium Arm with stereo ceramic cartrldge and Dlamond Stylus, 3-speeds. Mance Sturt. Large Metal Turntable
METAL PLINTH CUT FOR GARRARD Size: $16 \times 14 \times 3 \mathrm{in}$. $\mathbf{~} 3.00$. Silver or Black finish. Post $£ 2$ ISKRA SINGLE RECORD PLAYER Fitted with auto stop, stereo cartridge. Baseplate a.c. malns 240 V 3 speed plays ali slze records. Posi $£ 1$.
B.S.R. SINGLE PLAYER P170/2 £20.00 3-speeds 11 fn . aluminium turntable. "slim" arm, cuelng device, stereo ceramic cartridge, sliver trim, bias compen suspension, 240V AC. Posi £2.
B.S.R. DE-LUXE AUTOCHANGER £20 WOODEN PLINTHS CUT FOR B.S.R. £3 Slze: $15 \times 15 \times 31 \mathrm{n}$. Teak effect. Post $£ 2$. DECCA-GARRARD B.S.R. TEAK PLINTH $18 \frac{1}{x} 1$ Large Motor Board can be re-cut for transcription decks etc. TINTED PLASTIC COVERS POST E2

 POWER PACK KITS E2.95 Post 65p All parts and instructions with Zener dlode prinfed clrcult, mains transformer 240 V a.c. Outpuf 6 or 7 or 9 or PP BATTERY ELIMINATOR BRITISH Mains stablilized power-pack 9 volt 400 mA max.
overload cut out. Size $5 \times 3 \ddagger \times 2 \mathrm{in}$. $\mathbf{C 4} \cdot 50$. Posi 50 p . Switched $3 ; 6 ; 7 \frac{1}{2} ; 9$ volt 400 ma . Stabllized. £7.50. Post $£ 1$ MAINS TRANSFORMERS $250-0-250 \mathrm{~V} 70 \mathrm{~mA} 6 \cdot 3 \mathrm{~V}, 2 \mathrm{~A}$
$250-0-25080 \mathrm{~m}$ A $6 \cdot 3 \mathrm{~V}, 3 \cdot 5 \mathrm{~A}, 6$ $350-0-350 \mathrm{~V} 250 \mathrm{~mA} 6.3 \mathrm{~V} 6 \mathrm{amp}$.
$300-0-300120 \mathrm{~mA} 2 \times 6.3 \mathrm{~V} 2 \mathrm{~A}$. $220 \mathrm{~V} 45 \mathrm{~mA}, 6-3 \mathrm{~V} 2 \mathrm{~A}$
$250 \mathrm{~V} 60 \mathrm{~mA}, 6.3 \mathrm{~V} 2 \mathrm{~A}$
GENERAL PURPOSE LOW VOLTAGE

$2 \mathrm{~A}, 3,4,5,6,8,9,10,12,15,18,24$ and $30 \mathrm{~V} \quad £ 6.00 £ 2$ | $1 A, 6,8,10,12,16,18,20,24,30,36,40,48,60$ |
| :--- |
| $£ 6.00$ |
| $2 A, 62$ |
| $3 A, 6,8,10,12,16,19,20,24,30,36,40,48,60$ |
| $£ 9.50$ |
| $£ 2$ |
| $5 A, 6,8,10,12,16,18,20,24,30,36,40,48,60$ |
| $£ 12.50$ |
| $£ 2$ | TORODIAL 30-0-3OV $4 \mathrm{~A}+20-0-20 \mathrm{~V} \frac{1}{2} \mathrm{~A}$ £10. $£ 2$

 $16 \times 6 \mathrm{in}$. $2.40 ; 12 \times 3 \mathrm{in}$. £1.50; $16 \times 10 \mathrm{in}$. E2 $12 \times 8 \mathrm{in}$. £2.20. ANGLE BRACKET, $6 \times \frac{1}{2} \times \frac{1}{4} \mathrm{ln} .25 p$.
ALUMINIUM PANELS, 18 s.w.g. $6 \times 4 \mathrm{in}$. 36 p . $8 \times$

 HIGH VOLTAGE ELECTROLYTICS $\begin{array}{llllll}8 / 450 \mathrm{~V} & 45 \mathrm{p} & 8+8 / 450 \mathrm{~V} & 75 \mathrm{p} & 50+50 / 300 \mathrm{~V} & 50 \mathrm{p} \\ 16 / 350 \mathrm{~V} & 45 \mathrm{p} & 8+16 / 450 \mathrm{~V} & 75 \mathrm{p} & 32+32 / 500 \mathrm{~V} & \mathrm{c} 1 \cdot 80\end{array}$ $\begin{array}{llllll}32 / 500 \mathrm{~V} & 75 \mathrm{p} & 20+20 / 450 \mathrm{~V} & 75 \mathrm{p} & 100+100 / 275 \mathrm{~V} & 65 \mathrm{p}\end{array}$ $\begin{array}{lllll}8 / 800 \mathrm{~V} & £ 1 \cdot 20 & 32+32 / 350 \mathrm{~V} & 75 \mathrm{p} & 150+20 / 275 \mathrm{~V} \\ \mathbf{8 1} 20 & 32+32+32 / 325 \mathrm{~V} 90 \mathrm{p} & 220 / 450 \mathrm{~V} & 85 \mathrm{p}\end{array}$

Post 65p Minimum. Callers Welcome Access-Barclay-Visa. Lists 28p. Closed Wed.

Radio Component Specialists
337 WHITEHORSE ROAD
CROYDON, SURREY, U.K, Tel. 01-684 1665

HARVERSONIC MODEL P.A. TWO ZERO
An advanced solid state general purpose mono amplifier suitable
for Public Address. Disco. Guitar. Gram, etc. 3 individually con or
trolled inputs (each input has a scparate 2 stage pre-amp.). Input 15 mV inio 47 K . Input 2.15 mV into 47 k . Inpu1 3.200 mV into meg. Full mixing facilities with full range bass \& treble controls All inpuis plug into standard jack sockess on front panel. Matches
8 ohm or 16 ohm speaker. Output in execess of 30 watts music power. Atrastive black vinyl covered steel cabinet with a brushed anodised aluminium front escutcheon. A.C. mains operation $200 / 240$ volis. Size approx. 12 tin wide $\times \operatorname{Sin}$ high $\times 7$ in.
Special price $£ 29.00+£ 4.00$ carriage and packin

SUPERSOUNO 13 HI-FI MONO AMPLIFIER

A superb solid slate amplificr. ${ }^{7}$ siticon transistors. Full wave
rectification. Output approx. 13 watts. r.m.s. into 8 Breg rectification. Output approx. 13 watts r.m.s. into 8Ω Freg,
response $12 \mathrm{~Hz} 30 \mathrm{Kzz} \pm 3 \mathrm{db}$. Fully integrated pre-amp with Volume. Bass boost and Treble cut controls. Suitabbe for 8 . 16
ohm speakers. Input for ceramic or crystal carrtidge. Sensitivity

NEW 22 TRANSISTOR HIFI STEREO AMPLIFIER

 Provision for tape ip \& \&/p. Only requires the addition of 40 volt
(2 amp. power supply \& the bass. Ifeble balance \& vol. control (2 amp. power supply \& the bass. ireble balance \& vol. control
(standard types) FULL Circuit diagram \& connection details supplied. Price with edge connectors. Only $£ 10.00+80 \mathrm{p}$ p. \& p .
IF IF ORDERED WITH A MPLIFIER:-
 transformer. rectifier, smoothing condenser $\mathbb{5 4 . 5 0}+\mathbf{5 2 . 5 0} \mathrm{p}$ \& p

HARVERSONIC STEREO 44
A sterco amplifice chassis. with $3-4$ watts output per channel into
8Ω Using the latest i.c. amplifiers with builf in thermal overload protection. All parts incl. rectifier smoot hing cap. fuse, tone control. volume controls \& 2 pin din speaker sockets ($($ pin din tape
rec./play socket are mounted on the printed circuit panel). size rec./plax. sockel are, mounted on deph. Supplied brand new \& approx. with knobs. brushed anodised aluminiumm $2 w$ ay escutcheon (allows vertical or horizontal mounting) at only $f 10.50$ plus $90 \mathrm{p} P$. $\&$ P. Mains transformer with an output of $17 \mathrm{va} / \mathrm{c}$ at $500 \mathrm{~m} / \mathrm{a}$ can
be supplied at $£ 2.50+70 \mathrm{P}$. \& P. if required. Full connection be supplied at
delails supplied.

STEREO DECODER MK.II

$10-16 \mathrm{~V}$ ncg. earth operation. Can be fited to almost any FM VHF
radio or tuner. Full details and instructions supplied $\{7.50$ plus
radio or tuner. Fulf details and instructions su
$30 \mathrm{P} P$. \& P . Stereo beacon if required 40 p extra.
PYE VHF FM TUNER HEAD
Covering $88-108 \mathrm{MHz} 10.7 \mathrm{MHz}$ I.F. output. $7.8 \mathrm{~V}+$ earch.
Supplied pre-aligned. with full circuit diagram with precisionseared FM gange and $323 \mathrm{PF}+323 \mathrm{PF}$ AM Tuning gang. Only
丞. MULLARD LP 1159 RF/IF MODULE

HARVERSONIC $10+10$ STEREO AMP KIT A first class Hi.Fi Stereo Amplifier suitable for most cabinets. 14
Silicon Transisiors resulting in cver lower noise level with ed sensitivity. Integral pre-amp with Bass. Treble and two Yolume Conirols. Ceramic or Crystal intput. with simple instructions to modify for magnetic carrfidge. Matches any speakers from 8-15 ohms. Compact design. all pants including drilled metalwork. high
quality P.C.B. with component locations. brushed anodised front pancl with knots, elc. even solder. Simple step by step instructions ensure success. Brief spec: Output: 14 watts r.m.s. per channel into 5Ω. Freq. response: $\pm 3 \mathrm{~dB} 12 \cdot 30.000 \mathrm{~Hz}$ Sensitivity: better than
80 mV inio $1 \mathrm{M} \Omega:$ Full power bandwidth: $\pm 3 \mathrm{~dB} \mid 2-15.000 \mathrm{~Hz}$. 80 mV into 1 MR : Full power bandwidth: $\pm 3 \mathrm{~dB} 12.15 .000 \mathrm{~Hz}$.
Bass boost approx. to $\pm 12 \mathrm{~dB}$. Treble cula approx. $10-16 \mathrm{~dB}$.
 acto. Overall Size $12^{\prime \prime \prime} w \times 8^{\prime \prime \prime} d \times 2 y^{\prime \prime \prime} h$.
Construction manual \& parts list. send sop plus large S.A.E. (Free WMPLIFIER KIT \qquad

$$
\begin{aligned}
& \begin{array}{l}
\text { NOW ON } \\
\text { SOp extra) }
\end{array} \\
& \begin{array}{l}
\text { (Magnetic input components 50p extra) } \\
\text { PO WER PACK KIf }
\end{array}
\end{aligned}
$$

Also avail, ready built and lested $£ 25.00$, P. \& P. £3.00.
MAINS AM/FM STERED TUNER
200/240V Mains operated Solid State. Covering M.W. A.M. 540 1605 KHz VHF/FM 88.108 MHH .
Buil- F F Ferrite Fod afrial for and AGC on AM voltage adjustable by pre-sel control. Max o/p Voltage $600 \mathrm{~m} / \mathrm{v}$ RMS into 20 K . Simulated Teak finish cabinel. Will match almost

10/14W VALVE HI-FI AMP KIT
A monaural amplifer with an output of 14 watts from 2 EL 84 s in push-puli. Super reproduction of both music and specch with
neclieiblc hum. Two inputs with mixing faciities. Fully shrouded output transformer to match 3.15Ω speaker. 2 independent volume Controls. plus bass and treble controls are provided. Valve line-up 2
"POLY PLANAR" WAFER TYPE, WIDE RANGE ELECTRO-DYNAMIC SPEAKER
Size $11^{\prime \prime \prime} \times 144^{\prime \prime}{ }^{\circ \prime \prime} \times 11^{\prime \prime}$ " deep. Wcight 19 oz. Power handling 20 W r.m.s. (40 W peak). Impedance 8 ohm only. Response 40 Hz . elc.. and used with or without baffite. Send S.A. E. for full details.
Only $£ 9.80$ each + P. \& P. (one $£ 1 \cdot 40$. (wo $£ 1.80$).

STERED MAGNETIC PRE-AMP

 HOURS: 9am 5pm Mon Sat (Closed Wed). All prices and specifications correct at time of press but subject to aiteration
withoul notice. P. \&P. charges quoted apply to UK only. All enquiries SAE.

HARVERSON SURPLUS LTD.

(Dept. PE), 170 MERTON HIGH ST., LONDON S.W. 19
Tel: $01-40$. 3988 Barelag card wercome.

INTRODUCING MICROPROCESSORS

by I. R. Sinclair Price: $\mathbf{£ 5 . 0 0}$
PRACTICAL SOLID STATE
CIRCUIT DESIGN
2nd ed. by J. E. Oleksy
Price: $\mathbf{£ 6 . 2 0}$
UNDERSTANDING MICROPROCESSORS
by D. L. Cannon
Price: $£ 4.50$
PRACTICAL ELECTRONICS H/B
by I. Sinclair
Priçe: $\mathbf{£ 4 . 3 5}$
THE CATHODELRAY OSCILLOSCOPE
\& ITS USE
by G. N. Patchett Price: $\mathbf{£ 4 . 0 0}$
INTRODUCING AMATEUR ELECTRONICS 2nd ed. by 1. R. Sinclair Price: $£ 4.00$

WORLD RADIO T.V. HANDBOOK
by J. M. Frost Price: $\mathbf{£ 1 0 . 5 0}$
h/B OF BASIC ELECTRONIC
TROUBLESHOOTING
by J. D. Lenk
Price: $£ 4.65$
67 READY TO RUN PROGRAMS IN BASIC: GRAPHICS, HOME \& BUSINESS,
EDUCATION, GAMES
by Wm. S. Watson Price: $\mathbf{£ 4 . 6 0}$
COMPUTER PROGRAMMING IN BASIC
by P. Bishop Price: $£ 3.50$
THE MODERN воок со.
BRITAIN'S LARGEST STOCKIST
of British and American Technical Books 19-21 PRAED STREET LONDON W2 1 NP
Phone 01-402 9176
Closed Saturday 1 p.m.

LIMITED, Dept. PE1
Sovereign Way, Tonbridge, Kent TN9 1RN. Tel: 0732357779

PET, ATOM, UK 101 MEMORY REVOLUTIÓN
Memory expansion 16 K complete kit $£ 50$, built $£ 58$. 32 K kit $£ 74$, bullt £82 Superboard 3 Poa. 4 K extra ram E 10.80 16 K memory expansion complete kit $£ 50$, built $\mathbf{¢ 5 8}$. 32 K memory expansion kit $£ 74$, built $£ 82$. Power supply kit $£ 11.95$. Modulator $£ 3.50$. Guard band kit $£ 10$. Case £27. cemmon E22.50. Wemon E19.95. Asprogram £10. Display expansion kit for Superboard 2 series 1 only $£ 14$. Centronics interface kit $\mathrm{E10}$. 610 oxpansion board Poa. E19. Colour adaptor board built $\mathbf{£ 4 5}$.
VIDEO GENIE E279

Buy any of the below and get a free interface kit and word processor program for UK 101 or Superboard:- Epson MX 30 £259. Epson Eoson MX80F/T2 Epson MX80F/T1 £395. E575. OK1 Microline 80 £ Epson MX100 line 82A E399. OKI Microline 83A 6999 OKI Microline 82 £399. OKI Microline 83 £699. Centronics 737 £395. Seikosha GP80A \&199.
TV GAMES
E9.26

SINCLAIR PRODUCTS*

Sinclair Products only are all post free. S5.69 Oschloscope $£ 158.95$, adapto probe' 59.78 , $x 10$ probe $£ 11.50$, carry, x probe $£ 9.78, x 10$ probe $£ 11.50$, carry cas
$\mathbf{£ 8 . 8 6}$. PFM200
$£ 57.27$, adaptor $£ 5.69$ case $\mathbf{5 3 . 4 5 , ~ c o n n a c t o r ~ k i t ~ f 1 1 . 2 7 . ~ P O M 3 5 ~}$ £32.95, adaptor $£ 5.69$, case $£ 3.45$ DM235 £60.38, DM350 £ 87.38 , DM450 £136.85, adaptor $£ 5.69$, case $£ 8.86$ rechargeable batts $£ 8.63$. Microvision T TM354 £45.95.
BATTERY ELIMINATORS
3 -wby type $6 / 7.5 / 8 \mathrm{~V} 300 \mathrm{ma}$. 3.50 .100 ms radio types with press studs $9 \mathrm{~V} \mathbf{£ 4 . 9 5}$ $9+9 \mathrm{x} 6.25$. Car convertor 12 V lnput, out BATTERY ELIMINATORKITS:
100 ma radio types with press-studs 9 v $£ 1.79,9+9 V$ E2.50. Stabilized 8 way types $3 / 4.5 / 6 / 7.5 / 9 / 12 / 15 / 18 \mathrm{~V} 100 \mathrm{ma}$ £3.12 100 ma £3.12, 1 -30V 1 A f8.50, $1-30 \mathrm{~V} 2 \mathrm{~A}$ 10.30. TLL
and computer supplies 5 V stabilized $1.5 \mathrm{~A} £ 9,3 \mathrm{~A} £ 14,6 \mathrm{~A} £ 23.12 \mathrm{~V}$ car convertors 6/7.5/9V 1 A f1.62.
SHARP COMPUTERS
M280K 20 K £ $380,36 \mathrm{~K}$ £394, 48 K £ 408.
PC1211 £82.

BI-PAK AUDIO MODULES AL30A E4.35. PA12 £9.31. PS $12 £ 1.75$ PA18 £2.90. 54 SPM80 55.26 BMT80 £6.36. Stereo 30 £ 21.00 . AL80 £8.58.

SWANLEY ELECTRONICS,

 Dept. PE, 32 Goldsel Rd. Swanloy, Kont BR88EZ.Postage $£ 3.50$ on computers. $E 4.50$ on printers and 45p on other orders. Lists $27 p$ post free. Please add VAT to all prices except those sections marked with a a which
already hefude it. Overseas and official credfi orders welcome.

For easy mounting we recommend B6 mounting board tor modules HY6-HY13 fo 90 inc VAT. (0.78 ex. VAT) 866 mounting bnard for modeles HY66-HY77 £1 12 inc. VAT 1099 ex. VaT.) All modules are encapsulated and include chp-on edge connectors. All operate from +15 V munimum voltages. Modules HY6 io HY13 measure $45 \times 20 \times 40 \mathrm{~mm}$ HY66 to HY77 measure $90 \times 20 \times 40 \mathrm{~mm}$ How to order Freepost: Use this coupon. or a separate sheet of paper. to order these products. or any products from other ILP Electronics advertisements. No slamp is needed if you address 10 Freepost. Cheques and postal orders must be crossed and payable to ILP Electronics Lid: cash must be registered. C.O.D. - add $£ 1$ to total order value. Access and Barclaycard welcome. All UK orders sent post free within

7 days of receipt of order.
Please send me the following ILP modules

Total purchase price
lencloseCheque \square Postailorders \square
int. MoneyOrder \square
Please debit my Access/Barclaycard No.
Name
Address

Signature
Posi to ILP Electronics Lid Freeposil 2. Graham Bell house. Roper Close. Canterbury CT2 7 EP Kent. England Telephone (0227) 54778 Technical 10227) 64723 Telex 965780

ELECTRONICS LTD
StAYAHEAD.STAY WITHUS

CHROWASOMDC Electronics

DEPT P.E. 48 JUNCTION ROAD, ARCHWAY, LONDON N19 5RD TELEPHONE 01-263 9493 01-263 9495
 100 YDS FROM ARCHWAY STATION \& 9 BUS ROUTES

YOUR SOUNDEST CONNECTION IN THE WORLD OF COMPUTERS

PET

4016 16K RAM
4032 32K RAM
4040 Dual Drive Disk 402280 column tracks feed. 302380 column friction feed. C2N Cassette Unit.
For the business man we stock the 8000 range inc. 8032 and 8050 with daisy wheel printers coming soon.

32K SYSTEMS AVAILABLE FROM £1,499.00

£279
 EG3003

Utitises $280,12 \mathrm{~K}$ level II Basic, Integral Casserte Deck, UHF O/P. 16 K RAM, all TRS80 features. Simply plugs into monitor or UHF TV. With V.U Meter.
NOW WITH LOWER CASE AS STANDARD
NEW VIDEO GENIE II NOW AVAILABLE: \qquad £299.00 PARALLEL PRINTER INTERFACE INC. CABLE .$£ 33.00$ PARALLEL PRINTER INTERFACE INC. CABLE.... CHROMASONICS PROGRAMA
SOUND KIT (FITTING EXTRA) EXTRA). KIT.... SOUND KIT (FITTING EXTRA)

\qquad
\qquad EXPANSION BOX WITHWITHOUT RS232. EXPANSION BOX WIT
\qquad

 £24.50 $\mathbf{+} \mathbf{5 7 . 0 0}$
$\mathbf{5} 50$ $\begin{array}{r}.834 .95 \\ \hline 85\end{array}$

```
£215/£185 f94/£129
```


APPLE

APPLE II PLUS

48K Machines
Disk Drive with Controller Disk Drive without Controller Colour Card
Graphics Tablet Silentype Printer

$£ 595.00$ £349.00 £289.00 £69.00 £ 425.00 £199.00
Typical Business Starter System. Apple
48K, 2 Discs, Monitor and Printer only. £1,785.
PRINTERS

EPSON MX80 £359 Dot-matrix printer with Pet graphics interface. Centronics parallei and serial. Pet and Apple compatible. True bidirectional, 80 cps . EPSON MX80 FT/1 £399 Dual single sheet friction and tractor, 9 wire head, true descenders.

Interfaces and Cables for APPLE II, PET, TRS80, RS 232, UK101, SHARP SUPERBOARD All Available EPSON MX80 FT/2 $\mathbf{~} 440$ An FT/1 with high resolution graphics. EPSON MX100 E575
Friction and tractor feed, high resolution graphics, wide carriage $15 \frac{1}{2}$ ".
SEIKOSHA GP8OA £195
Dot matrix 5×7. BO columns 30 cps . graphics, double width characters.

UK101
UK 101 Kit inc. 8K Memory Ready Built inc. 8K Memory Complete in case
\qquad DOWN
IN PRICE 4K Expansion 8×2114 Parallel Printer Interface Sound generator plus PIO Kit Cases for UK 101 Chromasonics Sound Kit Colour Kit (inc. Demo Tape \times instr.) £125 £175 £199 £10 £24.50 $£ 29.95$ £19.95 £24.80 £69.95

NEW:NEW:NEW

32K DYNAMIC MEMORY BOARD KIT ONLY £89.95
PIO and EPROM PROGRAMMER KIT ONLY £24.50

-VIC 20
 Colours

24 total. 8 for characters, 8 for border, 16 for screen mixed as you wish. Basic colours on program keys are black, white, red, blue, light blue, green, yellow, and purple.
Sound
3 Tone Generator for music
"White Noise" Generator for language and sound effects.
Each Generator gives 3 octaves.
Reproduction is through tv speaker.
Character/Line Display
22 Characters by 23 lines
64 ASCII characters, pet-type graphic
character set.
Keyboard
DIN typewriter keyboard with 8 programmable
function possibilities via 4 special function keys.
Colours are directly addressable from the
keyboard.
Peripherals/Accessories
VIC Datacassette with special interface to guarantee high reliability read/write quality \{PET/CBM compatible).
PRICE ONLY £165
CASSETTE DECK £34.95
with free programmes

TANTEL

PRESTEL BY TANTEL

COMMUNICATION AT YOUR FINGER TIPS FOR BUSINESS \& HOME. UP TO DATE INFO
180.000 pages of information on Travel, News, Investment, Holidays, Hotels Etc., Etc.

ONLY £159

TANTELIS POST OFFICE APPROVED. SEND FOR DETAILS. DEMONSTRATION AVAILABLE AT OUR SHOWROOM.

WIXEREADERS VUMGIERDRIVERS ATD WOREAM W: FFROMILP!

Just some of the 28 new amazingly compact modules fromilP Electronics. Britain's leader in electronics modules - you'll find more new products in the amps and pre-amps advertisements.

All ILP modules are compatible with each other - you can combine them to creale almost any audio system. Together they form the most exciting and versatile modular assembly system for constructors of all ages and experience.

Every item from ILP carries a 5 year no quibble guarantee and includes full connection data. So send your order on the Freepost coupon below today! MIXERS

Mocel No	Mocule	Whal in does	Current required	Price Inc VAT	$\begin{aligned} & \text { Price } \\ & \text { Pat } \end{aligned}$ ex VAT
HY 7	Mono mixer	Mixes eight signais into one.	10 mA	£5.92	¢5 15
HY 8	Stereo muxer	Two channels, each moung tive signals into one.	10 mA	E7 19	£6.25
HY 11	Mono mixer	Maxes five signats into one - with base/Ireble controis.	10 mA	£811	¢7. 50
HY 68	Stereo muxer	Two channels. each muxing ten signals into one.	20 mA	¢9 14	¢7 95
HY 74	Sterec maxes	Two channels, each muxing five signals nito one - - with ireble and bass controls.	20 ma	¢13.17	¢11 45

AND OTHER EXCITING NEW MODULES

Model No.	Module	What it does	Current required	Price anc VAT	Price ex VAT
HY 13	Monovu metes	Programmable gain/LED overload diver	10 mA	£6.84	$\lceil 595$
HY 67°	Stereo head. phone driver	Will drive slereo headphones in the 4 ohm2K ohm range.	80 mA	\$14. 20	£12.35
HY 72	voice operated stereo tader	Provides depth/delay effecls.	20 ma	¢15.07	$\$ 13.10$
HY 73	Gutiar pre-amo	Handes two guitars (oass and lead) and mic with separale voiume/bass/treble and mux.	20 mA	¢14.09	\$12. 25
HY 76	Stereo swith matrix	Provides two channeis. each swtching one of lour signats into one	20 mA	To be announced	
HY 77	Stereo VU meter driver	Programmable gain/LED overload diver.	20 mA	§10 64	£9 25

for easy mounling we recommend:
86 mounting board for modules HY6. HY13
$\$ 0.97$ inc. VAT. $(0.78$ ex. VAT.)
86 mounting board tor modules HY6. HY13
866 mounting board lor modules HY66-HY77 inc. VAT. 10.78 ex. VAT.)
£1. 12 inc. VAT. $(0.99 \mathrm{ex}$. VAT. $)$

- All modules are encapsulated and include cup-on edge connectors. All operate from $=15$ munimumit to +30 V maximum, needing drooper resisiors for higher voitages. HY67 can be used only with the PSU 30 power supply unt. Mocules HY6 to HY13 measure $45 \times 20 \times 40 \mathrm{~mm}$ HY66 to HY77 measure
$90 \times 20 \times 40 \mathrm{~mm}$.
FP 480 BRIOGING UNIT FOR DOUBLING POWER
Designed specially by ILP for use with any two power amplifiers of the same type to double the power output obtained and will function with any ILP power supply. In totally seated case. size $45 \times 50 \times 20 \mathrm{~mm}$ with edge connector. It thus becomes possible tooblain 480 watts rms (single channel) into 8Ω. Contributory distortion less than 0.005%. Price: $\mathbf{\Sigma 5} .51 \mathrm{unc}$. VAT. rms (single chann
(Ex. VAT £4.79.)
(Ex. VAT £4.79.)
How to order Freepost:
Use this coupon, or a separate sheet of paper, to order these products. or any products from other ILP Electronics advertisements. No slamp is needed il you address to Freepost. Cheques and postal orders must De crossed and payable to ILP Electronics Ltd: cash must be registered. C.O.D. - add £1 to total order value. Access and Barclaycard weicome. All UK orders sent post free within 7 days of receipt of order.
ILP Electronics Lid. Freepost 2 Graham Bell House, Roper Close. Canterbury CT2 7EP, Kant
Please send me the following PE 5/12 IL. P modules

Total purchase price
Ienclose Cheque \square PostalOrders \square Int. Money Order \square
Please debit my Access/Barclaycard No
Nanve
Address

C.U.A . A-NEW SHOP

14 CARLTON ROAD, ROMFORD, ESSEX - ROMFORD 64954

PRINTERS:

* Wide range of printers. EPSON - OKI - QUANTEX - ETC.
* Lowest Possible Prices.
\star FREE delivery (mainland UK).
* FREE paper with every printer. \star Phone for best prices.

PAPER:

Buy directly from our NEW SHOP.
2000 sheet box - $£ 15.00$
500 sheet pack - $£ 4.00$
AND NOW VIC PAPER!!!

COMPUTER USER AIDS

*** GREAT DEALS AT REALLY COMPETITIVE PRICES***

IONISER KIT (mans OPERATED)

This negative ion generator gives you the power to saturate your home or office with millions of refreshing ions. Without fans or moving parts it puts out a pleasant breeze. A pure flow of ions pours out like water from a fountain, filling your room. The result? Your air feels fresh, pure, crisp and wonderfully refreshing.
All parts, PCB and full instructions $\mathbf{£ 1 2 . 5 0}$
A suitable case including front panel, neon switch, etc. $£ 10.50$
HOURS:
Mon. to Fri. 9-5 pm.
Sat. 9-4.30 pm.
Price includes post \& VAT. Barclay/Access Welcome

T. POWELL,

Advance Works, P.E.,
44 Wallace Road,
London N1 1 PQ .
Tel. 01-226 1489.

- AS PUBLISHED IN THIS ISSUE -

Complete kit of parts including:

- CUSTOM DESIGNED BOX
* SPEED SENSOR
* FLOW SENSOR
* PETROL LINE FITTINGS
\star PCBs, LCD AND ALL' ELECTRONIC COMPONENTS

PRICE: $£ 88.50$ + $£ 1.00 \mathrm{p} \& \mathrm{p}$ including VAT

This unit uses a highly versatile operating system to provide many more functions than other car computers on the market, while at the same time being compact and easy to operate.

PLEASE NOTE: NOT SUITABLE FOR DIESEL OR FUEL INJECTION

PIMAC SYSTEMS LTD

20 Bloomfield Road, Moseley, Birmingham B13 9BY. Tel: 021-449 0384.

From

HMMEE...

HM307

The first portable scope with a component tester.

Oscilloscope Specifications:

Y Deflection

Bandwidth: DC. $10 \mathrm{MHz}(3 \mathrm{~dB})$
Overshoot: Less than 1\%
Sensitivity: $5 \mathrm{mV}-20 \mathrm{~V} / \mathrm{cm}$

X Deflection

Timebase: $0.2 \mathrm{~s} \cdot 0.2 \mu \mathrm{~s} / \mathrm{cm}$ Triggering: $2 \mathrm{~Hz}-30 \mathrm{MHz}$ (3 mm) Auto + level control
Bandwidth: $2 \mathrm{~Hz} \cdot 1 \mathrm{MHz}$

General Information

Component Tester:
Calibrator:
Power Supplies:
A.C. Input:

Weight:
Size: $\quad 4.1 / 2^{\circ} \mathrm{H} \times 8.318^{\circ} \mathrm{W} \times 10.7 / 16^{\circ} \mathrm{D}$

For further information on HAMEG's full range of top performance oscilloscopes, contact:
HAMEG LTD.
74.78 Collingdon Street, Luton, Beds. LU1 1RX Tel: (0582) 413174

SPECIAL OFFER

	$1-24$	$25-99$	$100+$
2114 Low Power 200 nS	1.00	0.90	0.85
$4116-200 \mathrm{nS}$	$\mathbf{0 . 7 5}$	0.70	0.65
$2716(+5 \mathrm{~V})$	2.40	2.30	2.10
$2732(+5 \mathrm{~V})$	4.80	4.50	4.00
6116	9.00	8.50	8.25

CONNECTOR SYSTEMS

EDGE CONNECTO
3 Wers 2600

EURO CONNECTORS			1.0. CONNECTORS				
				Eader	RECEP-	EDGE	cables
DIN STO		SKT		Plug	TACLE	CONN	
4161731 Way	150p	160p	10 Way	$220 p$	160p	-	-
416122×32 Way	300p	350p	26 Way	350 p	$265 p$	390p	85
2×32 Way langled		400p	34 Way	450p	3250	450p	160p
DIL HEADER			40 Way	525p	370p	-	260p
			50 Way	575p	450p	-	330 p
			DIL HEADERS				
14 Pin 50p	24 Pin	100p	14 Way	130p		24 Way	209p
16 Pin 80p	40 Pin	275p	16 Way	150p		40 Way	350p

BOOKS (no VAT)

The Pascal Handbook	f0.00	Video Cookbook	¢515
CRT Controller Handbook	[5. 95	2-80 Interlacing (1)	$\underline{\$ 7.95}$
Understanding Micraprocessors	¢350	2.80 laterfacing (2)	£9.75
Understanding Solid State Electronics	£350	Programming the 280	¢11.50
Understanding Digital Electronics	£350	Programming the 6502	¢10.25
MICROS - Interlacing Techniques	¢1210	8502 Applications Book	¢10.25
Intuoduction io Micracomputers	¢10.95	6502 Assy. Lang. Prog	¢1210
TL Cookbook	¢7.15	8080AN8085 Assy. Lany. Prog,	¢11.60
CMOS Coakboak	¢7.95	PLEASE AOD P\&P ¢1	

WORDMAKER

A Texas Instrument Project with a talking library of 200 words and room for expansion. Easy to interface with most micro computers. Pitch control also provides exciting electronic musical applications. Complete Kit (include PCB) £87.00.
(Reprint of the original article in June 1981 EM\&M available at $65 p+$ SAE)

ADD SOUND TO YOUR ZX80/81
 (control and light detection)
 ZX80/81 USER PORT

las described in OctiNou PCW)

Port module plugs directly into $\mathbf{Z X 8 0 / 8 1}$ to provide 8 input and 8 output lines. These allow input of data from switches, photocells, sensors, joysticks etc and control of 8 relays. Also 7 segmen displays and LED may be used - VARIABLE TONE AUOIO OUTFLIT CAN PRODUCE YOUR OWN SOUND EFFECTS."
Port access is by simple peek \& poke commands
Kit (complete with dble side PCB)
f11.50
Ready built \& Tested
f15.00

MEMORY EXPANSION PCB

Low pice versatile system lor ATOM. UKIOI and SUPERBOARD. Compact memory expansion PCB 8K RAM (2114) plus four 24 pin sackels for 2708. 2716. 2732 EPRDMS or 2 K Static RAMS (6116) giving (a)
EPROM or fbl 16 K Stalic RAM. Fully buftered and decaded layout. Imierlacing instruction supplied

```
PCB \(£ 11.00\).
```


UK101: INTERFACING COMPUKIT

 DECODING MODULE KIT £27.50 ANALOGUE BOARD KIT £39.95The analogue board kit includes D/A converter, 8 -channet AD con
VIA giving timing and counting tunctions plus extra 16 bit port.

ACORN ATOM:

BASIC 2K RAM ROM kit f120. Ready Built $£ 150$ P\&P $£ 300$.
Power supply $5 \mathrm{~V}: .8 \mathrm{E}$ £10.20. P\&P $£ 1,20$. 4 K Floating PI ROM $£ 20.00$. 1 K RAM (2×2114)
64K Oynamic Ram Card
Ifirs into Alom Case 200 mA 5 VI
Kit $£ 87.50$ Ready Built $£ 95.00$

ATOM SOFTWARE:

INVADERS		$£ 7.00$	BaFAKOUT
Fr. MACHINE	$£ 350$	PINBALI	$£ 350$

UV EPROM ERASERS

All atorn purchases uy cash or cheque oniy. UViB fupto 6 EPROMS) JV140 (upto 14 EPROMS) UV141 (as UV1 40 but with timel)

54200 ¢ 61.50 £78.00

INDEX TO ADVERTISERS

Abstract

Acorn Alcon Amblt Audio Electronics Autumn Products Barrie BK Electronics British National Radio \& Electronics School C.R. Supply

Cambridge Kits CHJ Supplies Chromásonic Electronics Clef Products Crofton Electronics C.U.A.

Davian E.D.A.

Electronic Mail Order Electrovalue Electroware IOK Machine \& Tool) Cover 3.7

GJD Electronics Gemini Electronics Hall Supplies Harneg Limited Heathkit Henry's Radio Hiykon Ltd. Home Radio ICS Intertext ILP Electronics Knight. A. Laskys Maplin Electronics Mhel Electronics Midwich Computers Millhill Minister. John Modern Book Modern Book Musicraft Northern Micro Open Universlty PKG Electronics Parndon Phonosonics Pimac Powell T. Proton Design Radio Component Specialists Radio \& T.V. Components Rapid Electronics Riscomp Limited Safgan Sandwell Plant Ltd. Selectronix Scientific Wire Co Sinclair Research Swanley T\& J Technormatic Tyler. B. J. Vero Watford Electronics Wilmslow Audio William-Stuan Systems (Vibroscope) William-Stuart Systems \{Big Ears)

RADIO/TAPES BARGAINS
LW/MW/Mains/Battery Radios $£ 9.00$ each ($\mathrm{P} \& \mathrm{P} £ 1.00$) LW/MW Car Radios with speaker f9.00 each (P\&P f1.00)
Small VHF/MW Battery Radios f7.00 each (P\&P 50p) 8-C60 High gain Cassettes
£2.00 (P\&P 50p) 5-C90 High gain Cassettes £2.00 (P\&P 50p) Stereo Headphones with lead and Jack Plug £4.50 (P\&P 50p) Maximum Postage Charge $£ 1.00$. Money refunded if not satisfied.

AERIAL AMPLIFIERS Aerial amplifiers can produce remarkable improvement on the picture and sound in fringe or difficult areas.
B45 - For Mono or Colour this is tunable over complete UHF television band.
B11 - For stereo or standard VHF/FM radio.
B12-for VHF television band $1 \& 3$. All amplifiers are complete and ready to use 8 attery type PP3 or 8 V to 18 V DC next to the set type fitting PRICES $£ 6.70$ each.

Signal Injectors with (pre-set) variable AF, which emits RF harmonics into the UHF band. Protected up to 300 volts DC. Complete with leads £5.70 each.

All Prices Include VAT ar 15\%. P \& P per Order 30p. S.A.E. for Leaflefs. Access Cards.

ELECTRONIC MAILORDER LTD

62 Bridge St, Ramsbottom, via Bury, Lancs. BLO 9AGP. Tel Rams $(070682) 3036$.

SERVICE TRADING CO

FT3 NEON FLASH TUBE
 WHY PAY MORE? MULTI RANGE METER. TYpe MF15A a.c. d.c.
volts $10-50,250,500,1000$. Ma O-5. $0-10$,
$0-100$, 133 by 93 by 46
f7.00 plus 75 p P.
METERS (New) - 90 mm DIAMETER A.C. Amp., Type 62T2, O-1A, 0-5A, 10A,
A.C. Volt. $150 \mathrm{~V}, \mathrm{O-30V}$.
D.c. Amp., Type $65 \mathrm{C} 5,5 \mathrm{~A}, \mathrm{O}-10 \mathrm{~A}, \mathrm{O}-50 \mathrm{~A}$ D.C. Volt. $15 \mathrm{~V}, 30 \mathrm{~V}$. All types $£ 3.60$ ea. \& P. \& P. 75p (E5. 00 inc. VAT), except 0
$50 A$. $0-100 A$. O.C. price $£ 5.00+75$. P. \& P. ($£ 6.61$ incl VAT) HEAVY DUTY SOLENOID, mf. b Ment operation. Approx. 20 it. pull at 1.25 In. Exequip. Tested Pric: $E 5.95$
P. \& P. f1.50. (E8.57 incl. VAT). \&. T
 $240 V$ AC SOLENOID Approx: 101 b pull. 10% rafing. Size $80 \times 33 \times 26 \mathrm{~mm}$. Price $\mathrm{C1.75}$ 12V D.C. SOLENOID
12V. O.C. heavy duty Solenoid 4 Kp. pull. Easily removable from
plate. All. chassis containing $4 \times 24 \mathrm{~V}$. F .C. Push Solenoids $(11 \mathrm{tio}$ ploprox.). 5 fig. Counter. 6 min. photo cells. Sub-min. Miccro-
switches switches etc. etc. Ex-equip. London Transport Printer. Price
f9.00 $+£ 2.00$ \&. \& P. (total incl. VAT $£ 12.65$). 12V. D.C. Solenoid approx.
SOLENOIDS
WESTOOL SERIES DG Model A3 24V. D.C. Price $£ 1.50$ * WESTOOLSERIES D4 Model A. 24 V. D.C. Price $£ 1.00+30 \mathrm{p}$ P.
AG/GT
24 V. D.C. 70 ohm Coil Solenoid. Push or Pull. Ad iustable travel to $3 / 16$ in. Fitted with mounting brackets and
spark suppressor. Slze: $100 \times 65 \times 25 \mathrm{~mm}$. Price: 3 for E 2.85 P . MINIATURE SOLENOID FLUID VALVE 12 V O.C. 15 ohm coil normally closed. Stainless
steel body with variable flow adjuster $\boldsymbol{\eta}^{\text {B.S.S.T. }}$ inlet and outet
Sire: $58 \times 27 \times 25 \mathrm{~mm}$. Weight: 130 gr .
Price: $\mathbf{E 2} .60+35 \mathrm{p} . \mathrm{P}$. P . Total ind
REELD SWITCHES. Size $28 \mathrm{~mm} \times 4 \mathrm{~mm}$ dia. Price. 10 for $£ 1.00$
 MICRO SWITCHES
Sub. Mim. Honervell Lever m / s type 319 m 906 m .
10 for $£ 3.50$ post paid ($£ 4.03$ incl. VAT). These V3 types.
Butron type 10 for $\mathbf{£ 3 . 0 0}$ ($\mathbf{E 3 . 4 5} \mathrm{incl}$ VAT).
Stort S4.00 (E4.60 incl VAT).
Ronger Type (Bonneila) 10 for $\mathbf{2} 5.50$ incl. VAT). VAT). O.P. C/O lever m/swltch mifo. by Cherry Co. USA. Precious metal
low resistance contacts. 10 for $£ 3.00$ P. \&i P. 50 p. ($£ 4.02$ incl VAT). (min. order 10). STATE EHT UNIT N.M.S.

A.E.G. CONTACTOR

Type LS $6 / \mathrm{LL1}$. Coil 240 V 50 Rs. Contacts - ${ }^{3}$ make: 600 V ,
20amp. 1 break: 600 V : 20 amp . Price: $\mathbf{5 5 . 7 5}$ P. \& P. 75 p . ($£ 7.47$ ARCI. VATI. No. 130 A 30 . Coil 250 V . or 50 V . A.C. Contacts 3 make 50 amp
up to 660 V . A. . $20 \mathrm{~h} . \mathrm{D}$. at $440 \mathrm{~V}, 3$ phase 50 Hz . Price: $\varepsilon 7.75$ SMITHBLOWER

(E6.61 incl. VAT). Other types available. S.A.E. for details. N.M

VARIABLE VOLTAGE TRANSFORMERS

INPUT 230/240V a.c. 50/60 OUTPUT 0-260V

3-PHASE VARIABLE VOLTAGE TRANSFORMERS

bual nnput $200-240 \mathrm{~V}$, or $380-415 \mathrm{~V}$. Star connected. 3 KVA 5 amp per phase max 106.43 KVA 16 ap per phase max

LT TRANSFORMERS

$$
\text { Total Incl. VAT } £ 26.11 \text {. } 1
$$

 $0.6 \mathrm{~V} / 12 \mathrm{~V} / 17 \mathrm{VAT}$
($£ 26.68$ incl. VAT

Other types in stock; phone for enquiries or send sae for leaflet.

HY-LIGHT STROBE KIT MK IV

 ($£ 33.35$ incl. VAT). Specially designed case and reflector for Hy-Light $£ 9.00$ P. \& P. £2.00 (£12.65 inct. VAT).
Super Hv-Light Strobe (acorox. 16 joules). Price $£ 40$ P. \& S. $£ 2.00$ ($£ 48.31$ incl. VAT).
£ $11.00+$
\& 10 §2.00
XENON FLASHGUŃ TUBES
Range available from stock. S.A.E. for details. ULTRA VIOLET BLACK LIGHT FLUORESCENT TUBES
4ft. 40 Watt $£ 8.70$ incl. VAT $£ 10.00$ (callers only).
2 ft .20 Watt f 6.20 P \& $\mathrm{P} £ 1.25$ ($\mathbf{E 8 . 5 7 \text { incl. VAf). }}$ (For use in stan bi-pin fittings).
12 in .8 Watt $£ 2.80 \mathrm{P}$. \& P P 45 9in. 6 Watt $£ 2.25 \mathrm{P}$

Complete ballast unit for elther ($6^{n}, 9^{\text {n }}$ incl. or $12^{\text {T }}$ tube 230 V AC op op $£ 5.50$ P. \& P. $55 p$ ($\mathbf{£ 6 . 9 6}$ incl. VAT). ($£ 47.73 \mathrm{incl}$. VAT + P). 400 watt UV lamp only $£ 14.00$. P. \& P

PROGRAMME TIMERS

P. £ 1.25 (10.06 incl. VAT). R.T.
6 adjustable 6 fixed cams. Price $£ 6.00$ P. \& P. $£ 125$ ($£ 8.34$ incl VAT)
Veeder-Aoot Pre-et Counter. Type MG1636. 3 fig.
countdown any number from 999 to 001.230 V A.C. 2 Wheel setting. Changeover Microswitch to inform external circuitry on

Superior Quality Precision Made NEW POWER RHiEOSTATS

 New ceramic construction, embeddedwinding heavy duty brush assembly, continuouslv rated. $10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{kQ}$
25 WATH
1.5 k § $£ .80$ P. \&P. 30 p . ($\mathbf{3} .56$ inct. VAT)
 $3.5 \mathrm{k} \Omega$ ع6.90 P. \& P. 75 p (£8.80 incl. VAT).
RELAYS
 Open iype 3 c/o. 10 amp £ 1.10 P . \& P. 25 p (£ 1.55 incl . VAT).
$230 / 240 \mathrm{~V}$ A.C. 3 clog 11 pin base. Sealed 5 mp contacts E4. 35 plus P. \& P. 300 ($£ 1.90$ incl. VAT).
D.C. Relay, sealed $6 / 12 \mathrm{~V}$. D.C. 2 c/o. io amp contacts. Single hole fixing. Push on contacts. $£ 1.30 \mathrm{P}$. \& P . 30 p ($\mathbf{E 1 . 8 4}$ inct.
VAT). $8 / 12 \mathrm{~V}$. D.C. Sealed 10a coniacts 2
(22.01 incl. Vaf).

incl. VAT). Sealed 3 c/o. 10a. 11 -pin. $£ 1.50+25$ p P. \& P. (£2.01

24 V D.C. Sealed 3 clo .7 a .11 -phn. £1.35 + 30p P. \& P. (£1.90
incl. VAT). 2 c/o. 7 amp contacts. Sealed, octal base. $£ 1.30$ P. \&
24. 30p (21.84 incl. VAf).
Mercury Woted contact relay mfg. by Clare. Type MGSM Mercury Werted contact relay mig. by Clare. Type MGSM
$1003.18 / 24 V D . C$. Io. £2.00 $P .8$. P . 30 p (E2.65 inc. VAT), 3 for $£ 1.75+250$ P. \& P. ($£ 2.30$ inc. VAT).
 coil. 5 for $£ 2.50$ plus P \& \& P. 50p. Total incl. VAT $£ 3.45$.
D.C. Relays: Sealed $i 2 V$ ic/ 7 amp octal base $£ 1.00$. P.
 £1.35 P. \& P. 30 p (E1. 90 incl. VAT).
"Keyswitch" 80 p P. A.C. 1 plo open type 10 amp contact, mt. by
Helfermann Deutsch. Hermetically sealed sub-min. Relay, $12-$ L4V. D.C. 2 co. 850 ohm coii. 0.2 pitch. P.C. mounting. $L 20$
mm . W. 10 mm . H. 20 mm . Fraction of maker's price: $\mathbf{E 2} 50$

BLACK LIGHT

or E.S. fitting. Price incl. p\&ip 175 W Bulbs. Available for either B.C. Black Light U.V. Tubes from 6 in to 4 H from

100 rpm .110 V . a.c. $1151 \mathrm{~b} \mathrm{in.}$. amp. slingle phase split capacitor. Timmense power. 20tally enclosed. In-llne gearbox. Leng
250 mm . Dia. 135 mm . Spindle di IE18.40 incl. VAT). R. \&, Tested. Price: E 14.00 F. \& P P. £ 2.00
(itable Transformer for $230 / 240 \mathrm{~V}$ 200 rpm. 35 Ibs E8.00 P. \& P. E1. 50 (E10.93 inci. VAT). 200 rpm .351 bs . Suitable Transform. 12.00 ($\mathbf{2 1} 21.28$ inci VAI). N.M.S Price: $£ 6.00$ P. \& P. $£ 1.50$ ($\mathbf{£ 8 . 6 2}$ incl. VAT). N.M.S.
1 rPm
HAYDON.
2 rpm $230 / 240 \mathrm{~V}$. a.c. Synchronous geared Motor, mif.
CROUZET. Either ivpe $\mathbf{£ 3 . 9 0 \text { P. \& P. } 4 0 \text { (} \mathbf { ~ } 4 . 9 5 \text { incl. VAT). }}$

GEARED MOTORS

$7 \frac{1}{2} \mathrm{rDm}$ KLAXON motors approx. 251 b inch. 28 rpm WYNSCALE motors approx. 201 b inch.

 71 rpm WYNSCALE motor approx. 101 b inch Above three motds are designed for 110 V . $30 \mathrm{rpm} .230 / 240 \mathrm{~V}$. a.c. 50 lb in . mf. PARVALUX.42 R.P.M. \qquad 42 R.P.M. 110 A.C. 50 hz .100 lb incl. reversible will operate on
230 A.C. Speed remains at 42 R.P.M. but torque reduces by 50%.

SNIP OF THE MONTH

220-240V. Primary. $0-24 \mathrm{~V}$. Secondary 4 amp . Fully shrouded. New. Price $£ 5.50$. $£ 1.00$ p 8 p ($£ .48$ incl VAT)

 National R. Relay. 12V. O.C. high speed, 1 c/o 1 amp contacts.Magnetically shielded. . 1 pitch. Price: $£ 1.25$ post paid ($£ 1.44$

INCREDIB LE OFFER
Geared Motor. $120 \mathrm{rpm} 1 / 10 \mathrm{hp}$ approx. 15
Ib.in. 230 A . A.C. Cont. Rating. Non-
reversible. Size $150 \mathrm{~mm}+90 \mathrm{~mm}+85 \mathrm{~mm}$
spindle 8 mm dia +30 mm long Complete
with capacitor and relay for max. load
starting. Offered at mere fraction of mfrs.
price - E 11.50 incl. of p. \& p. \& VAT.

230 V a.c. FAN ASSEMBLY
blade 6 in 4 blade 3 in. aluminium fan. Price with 5

24V. D.C. GEARED MOTOR

24V. O.C. 200 rpm 10 lbs ins. Continuously rated geared Motor mfg. by elther Parvalux or Carer. Easily removed from chassis con-
talning 9×24 V. . C. Solenoids, microswitches, friction clutch, pretaining $9 \times 24 \mathrm{~V}$. D. C. Solenoids, microswitches, friction cluich, pre-
cision gearing otc otc. Ex-equipment London Transport Ticker

SUB-MINIATURE PRECISION BUILT GEARED MOTOR

\qquad 2ibs inch plus. Motor German, gearbox Swiss. Size: L 48 mm . lia. 16 mm . Shaft: $L \mathbf{m m}$. Shaft: Dia, 2 mm . Weight 30 gms

24V D.C. REVERSIBLE MOTOR
Parvalux type SD 12L, 24 O.C. Shunt wound Motor. either 133
rpm $651 b s$ in Gearbox ratio $30: 1$. Current 6.8 amp. Rating con-
tinuous. Will operate on reduced. power and speed at 9 V D. C or
less. Size Dla. 16 mm . Width 150 m
$£ 16.50$ P. \& P. $£ 2.00$ ($\mathbf{\Sigma 2 1 . 2 8} \mathrm{in}$
001b in rating. Price as ahove. N.M
100 W . 80 incl VAT).
ROTARY CARBON VANE VACUUM 8 COMPRESSOR. Direct coupled to $1 / 3 \mathrm{~h}, \mathrm{p}, 110 / 115$ V
 Suitable ransformer for 240 V . op. E10.00
($\mathbf{1} 13.80$ incl. VAT). N.M.S.

WATER PUMP

Mgg. by S.P.A. Astaisi of Italy. 220/240v A.C. $50 \mathrm{hz}, 2800$ R.P.M
approx. $/ 3 \mathrm{hp}$. Centrifugal pump with $1 \frac{1}{2}$. inlet/outlet. Deliven approx. 40 gip. Centrifugal pump with ${ }^{1} \frac{1}{4}$ inlet/outlet. Dellivery
approx. 40 git 1 itbs head. (Non self priming). Price

REDUCTION DRIVE GEARBOX
Ratio
Overall size approx: $120 \times 98 \times 68 \mathrm{~mm}$. All metal construction.
SANGAMO WESTON TIME SWITCH

VENNER TIME SWITCH TYPE ERD
 Time switch $200 / 250 \mathrm{~V}$ a.c. 30 amp contact 2 on/2 off every 24 hrs. at any manually pre-set ime. 36 hour Spring Reserve and day omitting device. Buil to highest Electrictly 8 oard specifica

A.E.G. 80amp 2-on/off Spring Reserve Timeswitch. Price
A.E.G. 80 amp 2 -on/oft Spring Reserve Tim
£14.00 P. \& P. £1.50 (£17.83 inc. VAn. R. \& T.

All Mail Orders Callers Ample Parking Space
Showroom open Mon-Fri.

Much more than just kits quite simply the best way to make music . . .

Powertran have been designing and manufacturing high-quality electronic kits for more than a decade. Thousands have been purchased and assembled by constructors throughout the UK and world-wide. Many of our regular clients have built the entire range -several times! A Powertran kit makes an excellent gift for the electronics enthusiast; and is a gift that, when constructed, may be given again.

Our reputation rests on these unshakeable foundations - we use the most imaginative and ingenious designers; we use high grade components subjected to rigid quality control; our kits are complete, even screws and wire are included; we take care with packing and despatch; our instructions are clear and always fully comprehensive . . . and if that weren't enough we back it up with our money-back guarantee. Powertran care and your skill gives you that something special.

Among the most popular of our kits are the fabulous 'Transcendent' range of synthesisers. Designed by the expert in the field, Tim Orr, and featured in Electronics Today International - those kits represent the zenith in both constructional ingenuity and musical performance. Thanks to our fully illustrated, carefully diagrammed $\mathbf{3 0}$ pages plus of constructional notes the 'Transcendent' range is comfortably within the capability of most enthusiasts. A great many 'first time builders' have completed them without difficulty and are justifiably pleased with the results.

TRANSCENDENT POLYSYNTH - brilliant design work and high technology components give the home constructor a machine of such versatility and range, equalled only by factory-made units costing thousands of pounds. Despite the advanced electronics the kit is mechanically simple
 with minimal wiring and ribbon cable connectors. Solid teak cabinet, fully finished metalwork - a 100% complete kit to give totally professional result.
Single Voice
COMPLETE KIT £275 (+ VAT) Four Voice COMPLETE KIT £395 (+ VAT)
Team the Polysynth with the new matching 4 voice expander. COMPLETE KIT £249 (+ VAT)

TRANSCENDENT DPX - a versatile 5 octave keyboard. The iwo audio outputs can be used simultaneously to give harpsichord and piano/honky-tonk or reed and strings/brass both fully polyphonic. To add more excitement there is a chorus/ensemble unit with strong or mild effect switching. The DPX is an advanced design ...yet care, and our superb construction manual, make it a kit for every enthusiast.

COMPLETE KIT £295 (+ VAT)
TRANSCENDENT 2000 - a 3 octave keyboard yet with all the design ingenuity and thorough engineering that makes a superb and versatile machine. Quality teak cabinet and quality components throughout - complete down to the 13 amp plug. Buy it - build it - then plug-in and play it! A truly professional sound.

COMPLETE KIT £159 (+ VAT)

1024 COMPOSER - one of our latest designs. The Composer controls the synth. with a sequence of up to 1024 notes or equal selection of shorter sequences. Mains powered and with trickle-charged battery to preserve programme after switch-off.

COMPLETE KIT £85 (+ VAT)

PRICE STABILITY: Order with confidence. Irrespective of any price changes we will honour all prices in this advertisement until Jan. 31 st, 1982. if this month's advertisement is mentioned with your order. Errors and VAT rate changes excluded
EXPORT ORDERS: No VAT. Postage charged at actual cost plus $£ 1$ handling and documentation.
U.K. ORDERS: Subject to 15% surcharge for VAT. No charge is made for carriage, or at current rate if changed.

SECURICOR DELIVERY: For this optional service (U.K. mainiand only) add $£ 2.50$ (VAT inclusive) per kit. FREE ON ORDERS OVER $£ 100$. SALES COUNTER: If you prefer to collect kit from the factory, call at Sales Counter. Open 9 a.m. -12 noon, $1-4.30 \mathrm{p} . \mathrm{m}$. Monday-Thursday.

PORTWAY INDUSTRIAL ESTATE, ANDOVER, HANTS SP10 3WN

 There is excellent street parking on meters a few steps away and

[^0]: (C) IPC Magazines Limited 1981. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: 19 MULBERRY WALK.LONDON SW3 6DZ • TEL: 01.3521897 • TELEX: 918867

[^2]: All items subject to availability．Prices correct at $1 / 10 / 80$ and subject to change without notice．RTVC Limited reserve the right to update their products without notice．

[^3]: TAMGERLNE TAMGERIME TAMGERINE TANGERIEE TAMGERIRE TARGERINE TANGERINE •TAMGERINE
 Stockist Enquiries on he aded notepaper to：
 All orders pre－paid and official advertised here to be
 COMPUTER KIT LTD．（Principal Distributors in U．K．）forwarded DIRECTLY to
 11／12 Paddington Green London，W2．Tele： 01.723509
 Telex： 262284 Ref． 1400 TRANSONICS

