PRACTICAL

NOVEMEER TEET
75p

At work or play- everything you need in a personal computer

Abstract

The Atom is a machine to be used. Every day, day after day. It's a full function machine-check the specification against others. It's rugged, easy to operate built to last and features a full-size typewriter keyboard. Just look at some of the features!

- More hardware support than any other microcomputer - Superfast BASIC-can be updated to BBC BASIC if required - High resolution and comprehensive graphics ideal for games programmers and players* ${ }^{*}$ Integral printer connection* - Software available for games, education, maths, graphs, business, word processing, etc. - Other languages: Pascal, FORTH, LISP - I/O port for control of external devices - Built-in loudspeaker Cassette interface - Full service/repair facility - Users club

Optional Extras

- Network facility with Econet
- Disk PALUHF colour encoder - Add-on cards include 32 K memory, analogue to digital, viewdata VDU, disk controller, daisywheel printer, plus many, many more! Power supply

FREE MANUAL

The Atom's highly acclaimed manual comes free with every Atom and leaves nothing out In just a while you'll be completely at ease with your new machine! Within hours you'll be writing your own programs.

* Expanded version only

[^0]
YOU AND YOUR CHILDREN

More and more schools are buying Atoms More and more children will leam on an Atom. You can give them that extra familiarity with on Atom in the home.

4a Market Hill, CAMBRIDGE CB2 3NJ
When you ordei your Atom we will include full details of all-software packs and the optional hardware.
To: Acorn Computer Limited, 4A Market Hill, Cambridge CB2 3NJ.
I enclose a cheque/postal order for $£$
Please debit my Access/
Barclaycord No
Signature
Name(please print).
Address

Telephone Number
Registered No. 1403810 VAT No. 215400220

Quantity	Item	Item price inc. VAT + P\&P	Totals
	Atom Kit 8K ROM + 2K RAM	@ ¢14000	
	Atom Assembled 8 K ROM +2 R RAM	@ ¢17450	
	Atom Assembled 12 K ROM +12 K RAM	@ ¢29950	
	Power Supply	@モ1020	
		TOTAL	

CONSTRUCTIONAL PROJECTS

PE ROBOTS Part 1 by Richard Becker 24
Three industrial robots offering an introduction to tomorrow's technology PE BANDBOX Part 1 by Alan Boothman B.Sc 32
Provides a backing trio of drums, bass and a chord instrument for the solo musician DISCO HAT by Tom Gaskell B.A. 43
Another project incorporated in our Digital Design Techniques series
PE RANGER Part 3 by Michael Tooley B.A. and David Whitfield M.A., M.Sc 48
Construction and testingUK101 MONITOR CHANGE by lan Hickman58WEMON and UKO2 working side by side
GENERAL FEATURES
SEMICONDUCTOR UPDATE by R. W. Coles 23
ICL8073 AD7581 Z6132
ICL8073 AD7581 Z6132 40
Sequential circuits
INGENUITY UNLIMITED
62
Accented-beat metronome- 3 channel sound to light- 0.99 s photographic timer MICROBUS by D. J.D. 66
Some circuits and programs for $\mathbf{Z X 8 0} / 81$
NEWS AND COMMENT
EDITORIAL
NEWS \& MARKET PLACE 17
Including Points Arising 18
INDUSTRY NOTEBOOK by Nexus 21
What's going on behind the scenes
31
31
Another update on extra-terrestrial activity
SPECIAL OFFER-GSC EXPERIMENTOR KIT
46
46
READOUT 54, 61
Our readers air their views
56
56
DBX versus Toshiba
57
All you need to get started on wire wrap COUNTDOWN 68
What to see, when and where to see it

OUR DECEMBER ISSUE WILL BE ON SALE FRIDAY, 13 NOVEMBER

(for details of contents see page 65)

[^1]
WATFORD ELEETRONIES
 33/35, CARDIFF ROAD, WATFORD, HERTS, ENGLAND

We stock many morre items. it pays to visit us. We are situated behind Watford
Football Ground. Neareat Underground/Br. Rail Station: Wattord High Street. Open Monday to Saturday 9 a.m. -6 p.m. Ample Free

POLYESTER RADIAL LEAD CAPAC 10n, $15 \mathrm{n}, 22 \mathrm{n}, 27 \mathrm{n}$ 6p; $33 \mathrm{n}, 47 \mathrm{n}, 68 \mathrm{n}$. 330n. 470 n 13p; 680n 19p; 1 μ 23p;	220n 10p;	$\begin{aligned} & \text { FEED T } \\ & \text { CAPACI } \\ & 1000 \mathrm{FF} \end{aligned}$	$\begin{aligned} & \text { UGH } \\ & \text { is } 8 \mathrm{p} \end{aligned}$
ELECTROLYTIC CAPACITORS IValu 1.5. 2.2, 3.3. $8_{p ;} 4.79 \mathrm{p} ; 6.8$. 10 10p 70p; 50V: 47 12p; 68 20p; 220 24p; 90p; $4700120 \mathrm{p} ; 25 \mathrm{~V}: 1.5,6.8,10,22$ $330 \mathrm{22p} ; 47025 \mathrm{p} ; 680,100034 \mathrm{p} ; 2$ 9p; 125 12p; 220 13p; 470 20p; 680 4700 79p. TAG-ENO TYPE: 70V: 4700 245p; 64 2200 110p; $40 \mathrm{~V}: 4700160 \mathrm{p} ; 25 \mathrm{~V}: 10$	0 198p; 2200 p; 15.000 345p		1.0 1000 330 $15 p ;$ 100 $74 p ;$ $54 p ;$
TANTALUM BEAD CAPACITORS: 35V: 0.1μ. $0.22,0.3315 p ; 0.47,0.68$. 10. $1.516 \mathrm{p} ; 2.2 .318 \mathrm{p}$; 4.7. 68 22p; 10 28p; $16 \mathbf{V}: 2 \cdot 2,3.3,16 p ; 4.7$ 6.8, 10 18p; 15 36p; 22 30p; 33. 47 40p; 100 75p; 220 88p 10V: 15. 22 26p; 33, 47 35p; 100 55p.	POTENTIOMETE 0.25 W Log \& Linea 500』. 1 K \& 2 K (L) $5 \mathrm{~K} \Omega-2 \mathrm{M} \Omega$ single g $5 \mathrm{~K} \Omega-2 \mathrm{MQ}$ single ga $5 K \Omega-2 M \Omega$ dual gan 1W Wire-wound 50	Carbon es. Y) Single Pswitch eo K	Track. $\begin{array}{r} 29 p \\ 29 p \\ 78 p \\ 88 p \\ 115 p \end{array}$
MYLAR FILM CAPACITORS: 100V: $1 \mathrm{nF}, 2 \mathrm{n}, 4 \mathrm{n}, 4 \mathrm{n} 7,106 \mathrm{p} ; 15 \mathrm{nF}$, 22n, 30n, 40.47 7p; 56, $100 \mathrm{n}, 2009 p ;$ 470n/50V: 12 p .	SLIDER POTENTIO 0.25 W log and linea $5 \mathrm{~K} \Omega, 500 \mathrm{~K} \Omega$ Single	AETERS values 60 m	rack
C	Self-Stick graduated	um. Bexels	40
$\begin{array}{ll}15 n \mathrm{n}, 22 \mathrm{nF}, 33 \mathrm{nF}, 47 \mathrm{nF} \\ 100 \mathrm{nF} / 30 \mathrm{~V} & \text { 2p; }\end{array}$	PRESET POTENTIOMETERS $0.1 \mathrm{~W} 50 \mathrm{n}-2 \mathrm{2M}$ Mini Vert. \& Horiz. $0.25 \mathrm{~W} 100 \Omega-3 \mathrm{MM}$ Horiz. larger 0 25W 250几-4.7M Ω Vert. Precision Cermet 1W 100 -100K		p
POLYSTYRENE CAPACITORS: 10pF to $1 \mathrm{nF} 8 \mathrm{p} \quad 1.5 \mathrm{nF}$ to 12 nF 10p.			10p $\mathbf{8 0 p}$

SILVER MICA (pF)	SIEMENS multilayer
2. 3 3, 4.7.6.8.8.2, 10,	miniature capacitors.
12, 18, 22, 27, 33, 39.	250V: $1 \mathrm{nF}, 1 \mathrm{n} 5,2 \mathrm{n} 2$,
47, 50, 56, 68, 75, 82,	3n3. 4n7, 6n8. 8n2,
85, 100, 120, 150, 180	10n, 12n, 15n, 22n 7p
15p each	18 n , $27 \mathrm{n}, 33 \mathrm{n}, 47 \mathrm{n}$ 8p
220, 250, 270, 330,	39n, 56n,68n 9p
360, 390, 470, 600.	$100 \mathrm{~V}=100 \mathrm{n}, 12 \mathrm{n}, 10 \mathrm{p}$;
800 \& 820pF 21p each	$150 \mathrm{n} 11 \mathrm{p} ; 220 \mathrm{n}$ 13p;
1000, 1200, 1800	330n 18p; 470n 23p;
33004700 60p each	680n 30p; i $\mu \mathrm{F}$ 34p;

\section*{| LINEAR IC's | CM7217A | 790 | MM5387A |
| :--- | :--- | :--- | :--- |
| 555 | CMOS | $\mathbf{8 0}$ | CM7224 |} | each type not mixed values. |
| :--- |
| TDA1024 |
| 105 |

LINEAR IC's	CM7217A	790	MM5387A	475	TDA 1024	105		
555 CMOS 80	CM7224	785	MSM5526	820	TDA1034	350	CMOS RAM	855
70275	ICM7555	80	NE515	275	TDA1490	290	6502 CPU	450
709C8 pin 35	LA4032	295	NE529	225	TDA2002	325	6503	850
71048	LC7130	495	NE531	140	TDA2020	320	6504-250	395
741	LF351	48	NE543	210	TDA2030	320	6505	795
747 C 14 pin 70	LF355	85	NE544	185	TL061CP	40	6520 PIA	310
748 C 8 pin 36	L.F356	90	NE555	16	TL062CP	60	$6522 \mathrm{~V} / \mathrm{A}$	485
7538 pin 185	LM 10	395	NE556DB	55	TLO64CN	98	6530 RRIOT	1350
810159	L.M301A	26	NE560	325	TL071CP	30	6532 RIOT	750
9400C3 350	LM308	95	NE561	395	TL072CP	50	6545 CRTC	1450
AY-1-0212 675	LM311	70	NE562B	410	TL074CN	100	6551 ACIA	785
AY-1-1313A660	LM319	235	NE564	420	TL08 1CP	25	6592 PC	f26
AY-1-1320 225	LM318	200	NE565A	120	TL082CP	45	6800	375
AY-1-5050 99	LM324	50	NE566	155	TL083CP	75	6802	550
AY-1-5051 $\mathbf{1 6 0}$	LM339	54	NE567	150	TL084CP	95	6803	1350
AY-1-6720 210	LM348	64	NE570	450	UAA170	170	6804	160
AY-3-1270 840	LM349	115	NE571	420	UAA180	170	6805	670
AY-3-8500 390	LM358	50	NE5534	150	UAA1003-3	935	6808	520
AY-3-8910 620	LM377	155	RC4136D	69	UA2240	195	6809	£13
AY-3-8912 625	LM733	75	S5668	245	ULN2003	85	6810	175
AY-5-1224A 235	LM379	415	SAB3209	425	ULN2004	150	6820	175
AY-5-1230 450	LM380	75	SAB3210	275	ULN2238	100,	6821	175
AY-5-1317A630	LM381N	145	SAB3271	485	XR2206	300	6840	470
AY-5-4007D 00	LM382	125	SAS560	150	XR2207	375	6843	1450
AY-5-8100 775	LM384	140	SAS570	150	XR22 11	575	6845	975
CA3011 110	LM386	90	SL490	350	XR22 16	675	6847	850
CA3012 175	LM387	120	SG3402	295	XR2240	145	6850	175
CA3014 157	LM389	95	SN76003N	240	XR2266	750	6852	255
CA3018 68	LM393	150	SN76018	148	ZN414	88.	6875	550
CA3019 70	LM2917	195	SN76013N	250	ZN419CE	190	8080A	450
CA3020 186	LM3900	44	SN76023N	240	ZN423E	195	8085A	550
CA3023 191	LM3909	70	SN76033N	210	ZN424E	130	81LS95	115
CA3028A 80	LM3911	125	SN76115N	215	ZN425E	350	.81LS96	115
CA3035 235	LM3914	210	SN76131	125	ZN426E	325	81 LS97	115
CA3036 115	LM3915	220	SN76227N	95	ZN427E	625	8166	00
CA3043 275	LM3916	220	SN76477	175	ZN428E	478	8123	125
CA3045 365	LM 725 CN	325	SN76660	120	ZN429E	210	8202	¢25
CA3046 70	LM13600	125	SP8629	299	ZN1034E	200	8212	170
CA3048 214	LS7220	280	TA7205A	225			8214	425
CA3059 195	M252AA	625	TAA611	125	COMPU	ER	8216	170
CA3075 213	M253AA	1150	TAA62 1 AX 1					250
CA3080E 65	MC1303	88	TAA661a	155			8228	250
CA3081 190	MC1304P	260	TAA700	250	1802 CP		8251	400
CA3086 48	MC1310P	150	ta ${ }^{\text {tag }}$ -	00	1802CP	750	8253	799
CA3089E 215	MC1445	150	TAA960	00	2101-2	110	8255	399
CA3090AO 375	MC1458	40	taA9900	00	2112-2	250	8257	800
CA3123 150	MC1494	694	TAD100	159	2114-450	90	8T26A	99
CA3130 90	MC1495	350	T8A120S	73	$2114 L-300 \%$ $21141-200 n$	139	8127	150
CA3140 48	MC 1496L	70	TBA5500	330	${ }^{2114 \mathrm{~L}-200 \mathrm{n}}$	130	8T28A	135
CA3160 95	MC1596	225	TBA64 1 -A12				$8 \mathrm{BT31}$	350
CA3161E 135	MC1648	290	8X1 or BX11	275	2532-450n	525	8 T 95 N	135
CA3162E 450	MC1709G	90	TBA65 1	190	2716		$8 \mathrm{8T97N}$	135
CA3189 295	MC1710	79	T84800	80	2716-5V	250	8116	00
1 CL 7106750	MC3302	150	T8A8 105	95	2732-450n	455	AM26L531C	125
CLI7107 975	MC3340P	120	TBA820	70	2147	00	AM2 6L532A	125
ICL8038CC 300	MC3360P	120	T8A950	300	4027	240	AY-3-1015	395
ICL8211 450	MC3401	52	T8A9200	260	4116	85	AY-5-1013	350
ICM7204 550	MC3403	89	TCA220	350	4118-250	450	AY-5-2376	700
CCM7205 1150	MC3405	150	tca940	00	4164-200	798	FD1771	¢18
4CM7207 475	MFC6040	97	TCA965	120	4315-4K	995	IM6402	380
ICM7215 1050	MK50398	635	TDA1004	290	4334-3		MC1488	62
ICM7216A 1950	MM5303	635	TDA1008	310	(CMOS 2 14)	325	MC1489	62

 ACY19/20
ACY21/2
ACY2B

$A D 1$ $A F 1$ $A F 1$ $A F 1$ A ∞

If you've never built a kit before, Heathkit have some very pleasant surprises for you. Their kits are easy to build. Simple, but detailed
Rechargeable Light instructions take you through every stage. Everything is included. Even the solder you need is there.

Follow the steps and you'll end up with a hand-crafted, well designed piece of equipment. Much better than shop bought, massproduced. Because you built it yourself.

There's a great range of kits to start you off. From a
To: Heath Electronics (UK) Limited, Dept ('PE11), Bristol Road, Gloucester GL2 6EE.
To start me off, please send me a copy of the Heathkit catalogue. I enclose 28 p in stamps.
Name buzzer alarm to a digital electronic clock, or a portable rechargeable fluorescent light to a portable VOM.
With all this going for you, you can count yourself very lucky you started off with Heathkit. Because all first time kit builders will get a free soldering iron and 10% discount off ten selected kits.
Buzzer Alarm
Address

Youbuildonourexperience НЕАТНK릴

With the Minimax II, Videotone revolutionised the market by establishing an opening for small, high quality speakers. Natural evolution has brought about the new Minimax 2, retaining all the qualities of clarity and sensitivity. This ideal combination of size and performance is a proven success, acclaimed by the press and public for seven years.

POPULAR HI-FI
'Switching to the Minimaxs' from any of the others produced an open and natural sound as though something had been taken away. It had, the colouration had gone." Comparative test OCTOBER 1975.
HI-FI ANSWERS
Their modest appearance and price disguise their startling abilities. Never have we heard such a small speaker sound so big! " JANUARY 1975.
PRACTICAL HI-FI \& Audio
"The depth, clarity and openness of sound produced is
quite astonishing'. JUNE '75
WHAT HI-FI
". . the ability of the Mini-
max to take a lot of power and still sound good could be decisive" - Comparative test, APRIL 1977.

PRACTICAL HI-FI

The little Videotone scored highly for such a small inexpensive loudspeaker'". JANUARY 1981.
Specification:
Recommended amplifier power: 10 to 40 watts rms into 8 ohms. Frequency Response:
$80 \mathrm{~Hz}-20 \mathrm{KHz} \pm 5 \mathrm{~dB}$.
Finish: natural teak, veneer with black frets.
Size: $107 / 8^{\prime \prime}$ high, $63 / 4^{\prime \prime}$ wide. $71 / 2^{\prime \prime}$ deep.
Weight: 4.1 Kgs (9 lbs) each.
ONLY £69.95 A PAIR

- We welcome callers to our South London Showroom for demonstrations.
- Enqiries and information phone: 01-6908511, Ex. 32
- All products are only available direct or from selected authorised dealers throughout the U.K.

EHBOMASOMTE Electronics

DEPT P.E. 48 JUNCTION ROAD, ARCHWAY, LONDON N19 5RD

TELEPHONE 01-263 9493 01-263 9495 100 YDS FROM ARCHWAY STATION \& 9 BUS ROUTES

PHONE FOR MOST COMPETITIVE PRICES WORD PROGESSING AND 32K SYSTEMS PHONE FOR DETAILS

Utilises $\mathbf{2 8 0}, 12 \mathrm{~K}$ level II Basic. Integral Cassette Deck UHF O/P, 16K RAM, all TRS80 features. Simply plugs into monitor or UHF TV. With V.U. Meter.

NEW VIDEO GENIE II NOW AVAILABLE	99.00
PARALLEL PRINTER INTERFACE INC. CABLE	£33.00
CHROMASONICS PROGRAMABLE SOUND KI	$¢ 24.95$
SOUND KIT (FITTING EXTRA)	$f 7.00$
LOWER CASE KIT (FITTING EXTRA)	¢27.50
COLOUR KIT (FITTING EXTRA).	¢34.95
EXPANSION BOX WITH/WITHOUT RS232	
16K/32K RAM CARD	

APPLE

APPLE II PLUS

Complete Systems available
48K Machines
£595.00
£349.00 £285.00
P.O.A.
P.O.A. Disk Drive without Controller Colour Card Graphics Tablet

Apple
II plus Chuple

Accessory Cards, Software All Available - Phone for details.

PRINTERS

Interfaces and Cables for APPLE II, PET, TRS80,
RS 232, UK101, SHARP SUPERBOARD All Available EPSON MX80 FT/2 £449 An FT/1 with high resolution graphics EPSON MX100£575
Friction and tractor feed, high resolution graphics, wide carriage

SEIKOSHA GP80A f199
Dot matrix $5 \times 7,80$ columns 30 cps. graphics, double width characters.

EPSON MX80 £359
Dot-matrix printer with Pet graphics interface. Centronics parallel and serial. Pet and Apple compatible. True bidirectional, 80 cps . EPSON MX80 FT/1 f399 9 wire single sheet friction and tractor, 9 wire head, true descenders.

MONITORS

HE WORLD OF COMPUTERS

UK 101 Kit inc. 8K Memory Ready Built inc. 8K Memory Complete in case 4K Expansion 8×2114 Memory Expansion Kit 8K 16K
Printer Interface
Sound generator plus PIO Kit
Cases

NEW

Chromasonics Sound Kit
£24.95
Colour Kit
£125
£175
£199 £14
$\mathbf{£ 7 9 . 9 5}$
£106.95
£29.95
$£ 29.95$
£24.50

Inc. Demo Tape \& Full
Documentation. Send for details.

Colours

24 total. 8 for characters, 8 for border, 16 for screen mixed as you wish. Basic colours on program keys are black, white, red, blue, light blue, green, yellow, and purple.
Sound
3 Tone Generator for music
"White Noise" Generator for language and sound effects.
Each Generator gives 3 octaves.
Reproduction is through tv speaker.
Character/Line Display
22 Characters by 23 lines
64 ASCll characters, pet-type graphic
character set.
Keyboard
DIN typewriter keyboard with 8 programmable function possibilities via 4 special function keys. Colours are directly addressable from the keyboard.
Peripherals/Accessories
VIC Datacassette with special interface to
guarantee high reliability read/write quality
(PET/CBM compatible).
PRICE ONLY £165
CASSETTE DECK £34.95
with free programmes

TANTEL

PRESTEL BY TANTEL

COMMUNICATION AT YOUR FINGER TIPS FOR BUSINESS \& HOME. UP TO DATE INFO
180,000 pages of information on Travel, News, Investment, Holidays, Hotels Etc., Etc.

£170

TANTEL IS POST OFFICE APPROVED. SEND FOR DETAILS. DEMONSTRATION AVAILABLE AT OUR SHOWROOM.

* MPU Section accepts $24,28,40 \& 64$ pin DIL microprocessors
* Auxiliary Areas accept any .3 " or .6 " RAM, ROM or peripheral chip
* Power Bus Strips on all sides
* 5 incoming turret Power Terminals
* Component Support Bracket included
* Over 1400 contact points
* Alpha-Numeric column and row indexing
* Eurocard size ($160 \mathrm{~mm} \times 100 \mathrm{~mm}$)
* Slots onto all BIMBOARDS
* Non-Slip rubber backing
* Ideal for schools and colleges
* Long life, $<10 \mathrm{~m}$. ohms, nickel silver contacts The PROFESSIONALS breadboard that BEGINNERS can start on

BOSS INDUSTRIAL MOULDINGS LID

2 Herne Hill Rd, London SE24 0AU, England Telephone 01-7372383 Telex 919693 Cables \& Telegrams: LITZEN LONDON SE24

Please send me MPUroBreadBoard(s) at $£ 18.00$
This price includes VAT \& PP, is applicable from March 1981 but please add 15\% for Overseas Orders, make cheques/P.O. payable to BOSS Industrial Mouldings Ltd and allow 10 days for order processing and cheque clearance etc.
1 enclose a cheque/P.O. to the value of $£$
Name
Company
Address

Telephone Number
E 11

MICROCOMPUTER COMPONENTS LOWEST PRICES - FASTEST DELIVERY

OFFICIAL ORDERS WELCOME - QUANTITY DISCOUNTS AVAILABLE

MIDWICH COMPUTER

 COMPANY LIMITED, DEPT. PE/ 1Hewitt House, Northgate Street,
Eury St. Edmunds, Suffolk
Please send SAE \{20p\} for
full price list.
All prices exclude Post and Packing (50p on orders under £10) and VAT All orders despatched on day of All orders despatched on day of IP33 1 HO. Tel: (0284) 701321 CREDIT CARD ORDERS WELCOME (ACCESS AND VISA) 24 HOUR TELEPHONE SERVICE

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.
You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a selfemployed servicing engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.
You will do the following:

Build a modern oscilloscope

- Recognise and handle current electronic components
- Read, draw and understand circuit diagrams
- Carry out 40 experiments on basic electronic circuits used in modern cquipment
Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V., Hi-Fi and microprocessor/computer equipment.

Newdob?NewCareer?NewHobby?Getinto Electronics Now!

D.I.Y. KITS FOR SYNTHESISERS, SOUND EFFECTS

P.E. MINISONIC MK2 SYNTHESISER

A porrable mains operated miniature sound synthesiser with keyboard circuits. Although having stightly fewer facilities than the large Formant synthesiser the functions orfered by his design give it great scope and versatility. 3 Oct KBD \& GJ contacts needed.
Set of basic component kits (excl.KBD R's \& tuning pots see list for options available) and PCBs (inct. layout charts)
Sound Design" booklet Knobs, skts, sw's

See our list

P.E. 128-NOTE SEQUENCER

Enables a voltage controlled synthesiser to automatically play pre-programmed tunes of up to 32 pitches and 128 notes long. Programs are keyboard initiated and note length and rhythmic pattern are externally variable. 4 Oct KBD and GJ contacts needed.

Set of basic comps, PCBs and charts KIT 76-7 $\quad £ 35.56$ Set of text photocopies \quad TEXT 76 Knobs, sets, sw HW $76 \quad £ 6.62$

P.E. 16-NOTE SEQUENCER

Sequences of up to 16 notes may be programmed by the pane controls and fed into most voltage controlled synthesisers. $\begin{array}{llr}\text { Set of basic comps. PCBs and charts } & \text { KIT 86-5 } & \mathbf{£ 3 2 . 1 0} \\ \text { Set text photocopies } & \text { TEXT } 86 & \mathbf{£ 1 . 8 4}\end{array}$ $\begin{array}{lrr}\text { Set text photocopies } & \text { TEXT } 86 & \mathbf{£ 1 . 8 4} \\ \text { Knobs, sets, sw's } & \text { HW } 86 & \mathbf{£ 1 1 . 1 5}\end{array}$

P.E. STRING ENSEMBLE

A multivoiced polyphonic string instrument synthesiser
Set of basic comps, PC8s \& charts KIT 77-8 $£ 109.72$

ELEKTOR CHOROSYNTH

A $2 \frac{1}{2}$-octave Chorus synthesiser with an amazing variety of sounds ranging from violin to ceflo and flute to clarinet amongs many others. Experienced constructors can readily extend the ctave coverage. 3 Oct KBD and GJ contacts needed.

Text photocopy	TEXT 100	70 p

ELEKTOR FORMANT SYNTHESISER

A very sophisticated synthesiser for the advanced constructo who puts performance before price.
Set of basic comps, PCBs (as publ.) KIT 66-14 $\mathbf{E 2 5 5 . 4 5}$ $\begin{array}{lll}\text { Set of text photocopies } & \text { £7.83 }\end{array}$ Knobs, skts, sw's See our lis

ELEKTOR DIGITAL REVERB UNIT

A very advanced unit using sophisticated i.c. techniques instead of mechanical spring lines. The basic delay range of 24 to 90 mS can be extended up to 450 mS using the extension unit. Further delays can be obtained using more extensions.

Main unit basic comps and PCB (as publ.)KIT 78-3 f49.95	Main unit basic comps and PCB (as publ.)KIT		
Extension unit comps and PCB	KIT 78-4	$\mathbf{£ 3 9 . 9 5}$	
$\mathbf{8 3 9}$			$\begin{array}{llrr}\text { Extension unit comps and PCB } & \text { KIT } 78-4 & \mathbf{E 3 9 . 9 5} \\ \text { Text photocopy } & \text { TEXT } 78 & \mathbf{8 6 p}\end{array}$ Knt photocopy $\begin{array}{rr}\text { TEXW } 78 & £ 2.94\end{array}$

ELEKTOR ANALOGUE REVERB

Using i.c.s instead of spring-lines the main unit has a maximum delay of up to 100 mS , and the additional set extends this up to 200 mS . May be used in either mono or stereo mode. $\begin{array}{lll}\text { Main unit basic component set } & \text { KIT 83-4 } & \text { £29.23 } \\ \text { Additional Delay basic components } & \text { KIT 83-2 } & \text { £20.07 }\end{array}$ PCB (as publ.) to hold both kits included in Kit 83-4 Text photocopy

EXT 83 67p Knobs, skts, switch

HW $83 \quad £ 2.84$

ELEKTOR SEVAR

For use with Elektor Analogue Reverb to give greater flexibility to the reverb effects.

Basic comps, PCB las publ.)
Text photocopy
Knobs, skts, switch
$\begin{array}{rr}\text { KIT } 101-1 & \text { £18.19 } \\ \text { TEXT } 101 & 60 \mathrm{p}\end{array}$
$\begin{array}{rr}\text { TEXT } 101 & \mathbf{6 0 p} \\ \text { HW } 101 & £ 2.44\end{array}$

BASIC COMPONENTS SETS include all necessary esistors, capacitors, semiconductors, potentiometers and transformers. Hardware such as cases, sockets knobs, keyboards, etc. are not included but most of these may be bought separately. Fuller details of kits PCBs and parts are shown in our lists.
LAYOUT DAAGRAMS are supplied free with all PCBs unless "as published"

NEW KITS

EE 3-CHAN STEREO MIXER
Full level control on left and right of each channel, and with master output control and headphone monitor.
Text photocopy
Knobs, skts \& sw's
KIT 107-1
TEXT 108
f 8.61
65 p

3-MICROPHONE STEREO MIXER

Enables stereo live recordings to be made without the 'hole in the
middle' effect. Independent control of each microphone.
Text photocopy
TEXT 108
f5.41
55p

Knobs, skts, \& sw's HW-108 £2.55

E.E. HEADPHONE AMPLIFIER

For use with magnetic, ceramic or crystal pick-ups, tapedeck or tuner, and for most headphones. Designed with RIAA equalisation.

Basic comps, PCB \& chart KIT 104-1 $\mathbf{8 9 . 7 9}$ $\begin{array}{lrr}\text { Text photocopy } & \text { TEXT } 104 & \text { 85p } \\ \text { Knobs. \& sockets } & \text { HW } 104 & \mathbf{£ 2 . 5 0}\end{array}$

E.E. AUDIO EFFECTS UNIT

A variable siren generator that can produce British \& American police sirens, Star Trek, Red Alert, heart-beat monitor sounds, etc. $\begin{array}{lll}\text { Basic comps, PCB \& chart } & \text { KIT } & 105-1 \\ & \text { E4.87 } \\ & \text { TEXT } 105 & \mathbf{6 5 p}\end{array}$ $\begin{array}{lrr}\text { Text photocopy } & \text { TEXT } \\ \text { Knobs, skts } 8 \text { switch } & \text { HW } 105 & \text { £1.91 }\end{array}$

GUITAR PRACTISE AMPLIFIER

A 3 watt mains powered amplifier suitable for instrument practise or as a test gear monitor. Drives 8 or 15 ohm loudspeaker. Basic comps. PC8 \& chart ext photocopy
$\begin{array}{lr}\text { KIT 106-1 } & \text { f9.81 } \\ \text { TEXT } 106 & \mathbf{6 5 p}\end{array}$ Knobs, skis, switch HW 106 £2.02

SIGNALTRACER \& GENERATOR

Allows audio signals to be injected into circuits under test, and for tracing their continuity. Includes frequency \& level controls. $\begin{array}{lll}\text { Basic comps, PCB \& chart } & \text { KIT } & \text { 109-1 } \\ \text { T5.80 } \\ & \text { TEXT 109 } & \mathbf{5 5 p}\end{array}$ $\begin{array}{lrr}\text { Text photocopy } & \text { TEXT } 109 & \text { 55p } \\ \text { Knobs. skts, sw's \& probes } & \text { HW } 109 & \text { £3.17 }\end{array}$

P.E. GUITAR SUSTAIN

Maintains the natural attack whilst extending note duration. $\begin{array}{llll}\text { Basic comps, PCB \& chart } & \text { KIT 75-1 } & \text { f6.99 } \\ \text { Text photocopy } & \text { TEXT 75 } & \mathbf{3 8 p}\end{array}$ Knobs \& sets HW75 91p

P.E. AUTO-WAH UNIT

Automatically give Wah or Swell sounds with each note played.

| Basic comps, PCB \& chart | K1T 5B-1 | $\mathbf{£ 1 0 . 1 1}$ |
| :--- | ---: | ---: | ---: |
| Text photocopy | TEXT 58 | 58 p |
| Knobs \& skts | HW58 | $\mathbf{£ 1 . 2 6}$ |

ELEKTOR WAVEFORM CONVERTER

Converts a saw-tooth waveform into sinewave, mark-space sawtooth, regular triangle, or square-wave with variable mark-space. $\begin{array}{llll}\text { Basic comps. PCB \& chart, but excl. sw'sKKI } \\ \text { Knobs, skts, sw's } & \text { HW } 67 & £ 4.23\end{array}$

P.E. SWITCHED TONE TREBLE BOOST

Provides switched selection of	preset tonal	KIT 89-1
Basic comps, PCB \& chart	$\mathbf{£ 4 . 3 4}$	
Text photocopy	TEXT 89	$\mathbf{7 8 p}$
Knobs, skts, sw's	HW 89	$\mathbf{£ 1 . 8 9}$

ELEKTOR RING MODULATOR

Compatible with the Formant \& most other synthesisers.
Set of basic comps \& PCB (as publ.)
KIT 87-2
Text photocopy
Knob, skt

PHONOSONICS
MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS, KITS AND COMPONENTS TO A WORLD-WIDE

ELEKTOR FUNNY TALKER
Incorporates a ring modulator, chopper \& frequency modulator to produce fascinating sounds when used with speech \& music. Basic comps. PCB (as publ.)
Text photocopy
TEXT $99 \quad 40 \mathrm{p}$

ELEKTOR FREQUENCY DOUBLER

For use with guitars \& other electronic instruments to produce an output one octave higher than the input. Inputs and outputs may be mixed to give greater depth

Basic comps, PCB (as publ.)
Text photocopy
KEXT 98- $\mathbf{E 5 . 4}$

P.E. SPLIT-PHASE TREMOLO

A simple but effective substitute for a rotary cabinet. The output of an internal generator is phase-split and modulated by an input signal from an electronic guitar or other instrument. Output amplitudes, depth \& rate are variable. May be fed to one or two amplifiers.
$\begin{array}{llll}8 \text { Basic comps, PCB \& chart KIT 101-3 } & \text { £17.68 } \\ \text { Text photocopy }\end{array}$
Text photocopy
Knobs \& skts
$\begin{array}{rrr}\text { TEXT } 102 & \mathbf{6 5 p} \\ \text { HW } 102 & \mathbf{£ 2 . 5 3}\end{array}$

P.E. MINISONIC WAVEFORM
 CONVERTER

A simple converter that modifies the Minisonic sawtooth waveform to produce triangle and sine outputs. Ideally one should be used with each Minisonic VCO

Basic comps, PCB \& chart
KIT 96-1 £3.98

P.E. GUITAR MULTIPROCESSOR

An extremely versatile sound processing unit capable of producing, for example, flanging, vibrato, reverb, fuzz and tremolo as well as other fascinating sounds. May be used with most electronic instruments.

Basic comps. PCB \& charts (excl. SWs) KIT 85-5 £49.23 Set of text photocopies TEXT 85 £2.52 Knobs. skts, sw's

P.E. PHASER

An automatically controlled 6 -stage phasing unit with integral oscillator.

Basic comps, PCB \& chart KIT 88-1 £10.91 -Next phextension, PCB \& chart Knobs, skts, switch HW 88 f1.63

ELEKTOR PHASING \& VIBRATO

Includes manual and automatic control over the rate of phasing \& vibrato. Slightly modified to also include a 2 -input mixer stage. Set of basic comps. PCB \& chart KIT 70-2 $£ 21.67$ Text photocopy
$\begin{array}{rr}\text { TEXT } 70 & \mathbf{6 7 p} \\ \text { HW } 70 & \mathbf{E 3 . 2 7}\end{array}$

P.E. GUITAR EFFECTS UNIT

Modulates the attack, decay and filter characteristics of a signal from most audio sources, produ ing 8 different switchable effects that can be further modified by manual controls.

Basic comps, PCB \& chart
Text photocop
Knobs \& skts
KIT 42-4
TEXT 42

P.E. GUITAR OVERDRIVE

Sophisticated versatile fuzz unit incl. variable controls affecting the fuzz quality whilst retaining attack and decay, and also providing filtering. Usable with most electronic instruments. 1122

KIT	56-3	£11.22
Basic comps, PCB \& chart	TEXT 56	$68 p$
Text photocopy	HW 56	$£ 2.29$

$\begin{array}{lrl}\text { Knobs } \& \text { skts } & \text { HW } 56 & £ 2.29\end{array}$
P.E. SMOOTH FUZZ

Basic comps, PCB \& chart
KIT 91-1 f6.52
Text photocopy
HW 91 £1.22

ADD: POST \& HANDLING
U.K. orders: Keyboards add E2.70 each. Other goods: Under U.K. orders: Keyboards add $£ 2.70$ each. Other goods: Under
$£ 5$ add 50 p. under $£ 20$ add 75 p. over $£ 20$ add $£ 1$. Recommended insurance against postal mishaps: add 50p for cover up to $£ 50, £ 1$ for $£ 100$ cover, etc., pro-rata Insurance must be added for credit card orders.
N. B. Eire, C.I., B.F.P. O and other countries are subject to higher export postage rates.

ADD 15\% VAT

(or current rate if changed). Must be added to full total of
kits, discount post \& handling kits, discount post \& handling
on all U.K. orders. Does not apply to Exports, or photocopies.

WE ALSO SELL COMPONENTS ASK FOR OUR LIST

EXPORT ORDERS ARE WELCOME but to avoid EXPORT ORDERS ARE WELCOME but to avoid
delay we advise you to see our list for postage rates. Ail payments must be cash-with-order, in Sterling by International Money Order or through an English Bank. To obtain list - Europe send 50p, other countries send £ 1.00 .
Note that wo do not offor a C.O.D. sarvice and that our terms are payment in advance.

AND OTHER PROJECTS

PHOTOGRAPHS in this advertisement show two of our units containing some of the P.E. projects built from our kits and PCBs. The cases were built by ourselves and are not for sale, though a small selection of other cases is
available. available
LIST-Send stamped addressed envelope with all U.K. requests for free list giving fuller details of PCBs, kits and other components.
OVERSEAS enquiries for list Europesend 50 p: other countries-send f 1.00 .

KIMBER-ALLEN KEYBOARDS AND CONTACTS

KIMBER-ALLEN KEYBOARDS as required for many published projects. The manufacturers claim that these are the finest moulded plastic keyboards available. All octaves are C to C , the keys are plastic, spring-loaded, fitted with actuators, and mounted on a robust aluminium frame.

3 Octave ($\mathbf{3 7}$ notes) £25.50 $\quad \mathbf{4}$ Octave ($\mathbf{4 9}$ notes) $\mathbf{£ 3 2 . 2 5} \quad \mathbf{5}$ Octave ($\mathbf{6 1}$ notes) $\quad \mathbf{~} 39.75$
CONTACT ASSEMBLIES (gold-clad wire) - 1 required for each KBD note: Type GJ - SPCO 33p ea. Type GB - 2 pr N/O 37 $\frac{1}{2}$ p ea.

P.E. 6-CHANNEL MIXER

A high specificat
Basic comps \& PCB's
Extra 2-channel set with P
KIT 90-8 $\mathbf{£ 5 6 . 4 3}$
Exra 2-channel set with PCB $90-9 \quad \mathbf{~} 10.21$
Set of Text photocopies TEXT $90 \quad$ £1.50

RHYTHM GENERATORS

Several available, including programmable 16 beat 64000 pattern, and pre-programmed 15 pattern using either M252 of M253 rhythm chips. A selection of effects instruments circuits is also available.

WIND \& RAIN EFFECTS
 UNIT

A slightly modified version of the original P.E. unit. Basic comps. PCB \& chart KIT 28-1 £4.84 Text photocopy \quad TEXT 28 28p Knobs, skts, sw's HW 28 £1.65

P.E. ENVELOPE SHAPER WITH VCA

Has an integral Voltage Controlled Amplifier, and has full manual control over the A.D.S.R. functions.
Basic comps, PCB \& chart KIT 50-1 $\mathbf{E 8 . 0 3}$ Text photocopy

TEXT 50
Knobs, skts

P.E.TRANSIENT

GENERATOR

An ADSR envelope shaper without VCA, and additionally providing Repeat-triggering enabling a synthesiser to be programmed for mandolin of banjo effects.
$\begin{array}{lrr}\text { Basic comps, PCE \& chart KIT 63-2 } & \mathbf{£ 7 . 6 2} \\ \text { Text photocopy } & \text { TEXT 63 } & \mathbf{5 8 p} \\ \text { Knobs, skts } & \text { HW63 } & \mathbf{£ 1 . 8 2}\end{array}$

P.E. EXTERNAL-INPUT SYNTHESISER-INTERFACE

Allows external inputs such as guitars, microphone etc. to be processed by synthesiser circuits.

Basic comps, PCB \& chart KIT B1-1 $\mathbf{£ 3 . 9 0}$ Knobs, sets HW 81 $\mathbf{E 1 . 1 8}$

P.E. TUNING FORK

Produces 84 switch-selected frequency-accurate tones with an LED monitor clearly displaying beatnote adjustments.

Set of basic comps, incl. power supply.
PCBs \& charts
Text photocopy $\begin{array}{lrr}\text { Text photocopy } & \text { TEXT } 46 & \mathbf{9 7 p} \\ \text { Knobs, skts, sw's } & \text { HW } 46 & \text { £2.89 }\end{array}$

P.E. TUNING INDICATOR

A simple octave frequency comparitor for use with synthesisers and other instruments where the full versatility of KIT 46 is not required. Basic comps, PCB \& chart KIT 69-1 $\begin{array}{lll}\text { Text photocopy } & \text { TEXT } 69 & 58\end{array}$ $\begin{array}{lll}\text { Knobs, skts, sw's } & \text { HWX } 69 & \text { E15p }\end{array}$

DIGITAL EXPOSURE

UNIT
Controls up to 750 watts in $\frac{1}{2}$ second steps up to
10 minutes, with built-in audio alarm.
$\begin{array}{lll}\text { Basic comps, PCBs } & \text { KIT 93-3 } & \mathbf{£ 2 3 . 4 5} \\ \text { Text photocopy } & \text { TEXT } 93 & \mathbf{~} 1.20\end{array}$
Text photocopy TEXT $93 \quad \mathbf{£ 1 . 2 0}$
HW 93 £2.48

P.E. DISCOSTROBE

A 4-channel light show controller giving a choice of sequential, random, or full strobe mode operation.
Basic comps, PCB \& chart KIT 57-3 $\mathbf{£ 1 9 . 3 7}$
$\begin{array}{lrr}\text { Text photocopy } & \text { TEXT } 57 & \text { 78p } \\ \text { Knobs, skts, sw's } & \text { HW } 57 & \text { £7.30 }\end{array}$

P.E. CONSTANT DISPLAY FREQUENCY COUNTER

A 4 -digit counter for 1 Hz to 99 kHz with 1 Hz
sampling rate. Readout does not count visibly or flicker due to blanking.
Basic comps, PCB \& chart KIT 79-4 $£ 31.61$
$\begin{array}{lrrr}\text { Text photocopy } & \text { TEXT } 79 & \text { 78p }\end{array}$
Knobs, skts, sw's HW 79 E4.67

P.E. VOICE OPERATED

FADER

For automatically reducing music volume during ialkover - particularly useful for discos. Basic comps, PCB \& chart KIT 30-1 \quad e4.37 $\begin{array}{lrl}\text { Text photocopy } & \text { TEXT 30 } & \text { 28p } \\ \text { Skts } & \text { HW 30 } & \mathbf{3 2 p}\end{array}$

P.E. DYNAMIC NOISE
 LIMITER

Very effective stereo circuir for reducing the hiss found in most tape recordings.

Basic comps, PCB \& chart KIT 97-1 $\quad \mathbf{~} 8.07$
$\begin{array}{lll}\text { Text photocopy } & \text { TEXT } 97 & 75 p\end{array}$

P.E. DYNAMIC RANGE LIMITER

Preset to automatically control sound output levels.

Basic comps, PCB \& chart KIT 62-1 $\mathbf{£ 5 . 3 1}$ Skts

HW 62 44p

ALL KITS INCLUDE SPECIALLY DESIGNED PRINTED CIRCUIT BOARDS

MORE KITS AND COMPONENTS ARE IN OUR LISTS

Attention Atom Owners become WORD PERFECT
 WITH THE NEW ATOM WORD PACK

The ATOM word pack is ideal for the preparetion of leafiets, letters, booklets and documents. Text can be edited, saved on cassette or disk and then printed out in any desired format. BASIC programs and data created by programs can also be edited. The Word Pack is a $4 K$ ROM which simply plugs into the ATOM's utility ROM socket and adds EDIT and TEXT to the command set. Complete with a 16 page booklet giving full instructions and examples. Just $£ 29.90$ including post, packing and insurance.

Also Available:

SOFT VDU

The soft VDU replaces the normal ATOM VDU, but provides 128 characters including upper and lower-case letters, and mathematical symbols. Program 1.5K, graphics 6K.

UTILITY PACK 1

Disassembler Lists machine code in standard ATOM assembler form, or stores the assembler text into memory. Graphics 2 K . Fast Cos Modifies the ATOM's standard cassette-interface routines to operate at 1200 baud, or 4 times faster. Program 1 K .
Renumber A fast renumber for BASIC or assembler programs, gives display of the numbers for labelled lines. Program $1 K$.

MATHS PACK 1
Plot A versatile graph-plotting package for research, accounting, schools and mathematics , or simply for amusement. Program 5K, graphics 6K.
Simultaneous Solves a set of simultaneous equations, with integer or real coefficients. Program 2K, graphics $1 / 2 K$. Regression Calculates the bestfitting straight line to a specified set of data points, gives the equation and the correlation coefficient. Program 2K, graphics $1 / 2 K$.

ORDER TODAY!

Just send a cheque or money order for only $£ 11.50$ per pack ($\mathbf{£ 2 9 . 9 0}$ for the word pack) including VAT and post and packing State which packs you want.
Or ring 0223316039 or 01.9301614 quoting your Access or Barclaycard number. Allow 14 days for delivery.
Or if you think you can wait for more details just write to Acornsoft Limited, 4a Market Hill, Cambridge

Fully built \& tested
Positive and negative voltages with an FSD of 999 mV which is easily extended. - Requires only single supply 7-12V. - High overall accuracy $\pm 0.1 \%+1$ digit - Large bright $0.43^{\prime \prime}$ (11 mm) LED displays -Supplied with full data and applications information.

Using this fully built and calibrated module as a basis now means that you can easily build a wide range of accurate equipment such as multimeters, thermometers, battery indicators, etc. etc. at a fraction of the cost of ready-made equipment. Full details are supplied with each module showing how to easily extend the voltage range and measure current, resistance and temperature. Fully guaranteed, the unit has been supolied to electricity authorities, Government departments, universities, the P.O. and many companies.

Temperature Measurement $£ 2.15$ +vat

An easily constructed kit using an I.C. probe providing a linear output of $10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ over the temperature range from $-10^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. The unit is ideal for use in conjunction with the above DVM module providing an accurate digital thermometer suitable for a wide range of apolications.

Power Supply

$£ 4.95$ +vat
This fully built mains power supply provides two stabilised isolated outputs of 9 V providing current levels of up to 250 mA each. The unit is ideally suited for powering the DVM and the Temperature Measurement module.

Hardware Kit $£ 3.95+$ vat

A suitable ready drilled case together with the various mount ing piltars, nuts and bolts, and including a mains switch and 2 mm sockets designed to house the ultrasonic alarm module, together with its associated power supply. This hardware kit provides an ideal solution for assembling the economical alarm system. Size $153 \mathrm{~mm} \times 120 \mathrm{~mm} \times 45 \mathrm{~mm}$

In addition to the above a wide range of competitively priced electronic components is stocked. Please telephone your specific requirements.

- V.A.T. must be added on all items. © Shop hours $9 \cdot 5.30$ (Weds. 9 - 1) - ex-stock delivery on all items. © Units on demonstration, callers welcome. \bullet Post and packing charge 50p per order. © S.A.E. with all enquiries please.

RISCOMP LIMITED
Dept. PE 2 ,
21 Duke Street,
Princes Risborough, Bucks.
Tel: Princes Risborough (084 44) 6326

Make Saving Money Sound Better With Richand Alllan

SPEAKER UNITS

Used by the B.B.C., installed in major British cathedrals and exported world-wide.
A Full Range of Treble, Mid-Range \& Bass Speakers including complete D.I.Y. Kits.

Get a great NEW deal from Marshall's
A. MARSHALL (LONDON) LTD KINGSGATE HOUSE
KINGSGATE PLACE
KINGSGATE PLACE
LONDON NWK 4 TA $01-6240805$
LONDON NWE 4TA. 01-624 0805
MAIL ORDER 01-624 8582 24HR SERVICE
WE TAKE ACCESS - AMERICAN EXPRESS - BARCLAYCARD CARD - DINERS
PLEASE ADD POSTAGE/PACKING 60p UNLESS OTHERWISE STATED. ALSO 15% VAT ON TOTAL.

CAPACITORS

ALSO RETAIL SHOPS AT

325 EDGWARE ROAD, LONDON W2. 01-723 4242 B5 WEST REGENT STREET. GLASGOW. 041-3324133都

RECMARGEABLE NICKEL CADMIUM BATTERIES \& CHARGERS

TYPE	VOLTS	AV. CAP	PRICE
S101 (HP7)	1.25	0.5AH	f1 13
Sub C (HP11)	1.25	1.2 AH	£1.91
Sub D (HP2)	125	1.2AH	£2.14
Penlight 4 Cha Combibox FW	- $\mathrm{HP7} 7$		$\begin{array}{r} € 5.50 \\ £ 14.40 \end{array}$

IN ADDITION TO TYPES SPECI~ FIED IN THIS ADVERTISEMENT,
WE CARRY A LARGE RANGE OF THANDAR (SINCLAIR) AND LEADER TEST EQUIPMENT INCLUDING OSCILLOSCOPES, MULTIMETERS, FREQUENCY COUNTERS, SIGNAL GENERATORS ETC., SEND LARGE SAE FOR DETAILS QUOTING REF PE1
WE ALSO STOCK A COMPREHENSIVE RANGE OF ILP TOROIDS AND HI FI MODULES, VEROBOARDS, MINIATURE MAINS TRANSFORMERS, STEINEL VOLTAGE TESTERS, BAHCO TOOLS, ANTEX SOLDERING IRONS, SOLDER, DIL SOCKETS, QMAX CUTTERS, ALL YOUR ELECTRONIC NEEDS CATERED FOR. SEND 75p FOR OUR LATEST CATALOGUE POST PAID.

c.mos integrated circuits																
						.65 .64 .64 .54 .54 58 .59 55					$\begin{array}{r} 20 \\ 14 \\ 19 \\ 19 \\ 19 \\ 19 \\ 19 \\ \hline 80 \end{array}$.54 .85 .83 .65 .65 1.50 .53 1.88 1.10			
7400740174027403740474057407740874097417412	$\begin{aligned} & 19 \\ & .14 \\ & .19 \\ & .12 \\ & .20 \\ & .19 \\ & .19 \\ & .15 \\ & .22 \\ & .18 \end{aligned}$		$\begin{aligned} & 28 \\ & .50 \\ & .25 \\ & .16 \\ & .25 \\ & .29 \\ & .29 \\ & \hline 24 \\ & \hline 24 \\ & \hline \end{aligned}$	integrated circuits ttl sn74 Senies												
				$\begin{aligned} & 7488 \\ & 7440 \\ & 7441 \\ & 7442 \\ & 7445 \\ & 7446 \\ & 7447 \\ & 7450 \\ & 7451 \\ & 7453 \\ & 7454 \end{aligned}$.2514.45.72.45.45.15.15.15			7490An749 An$7492 N$7439 N74957496741077421742274237414174145	.28 .60 .30 .58 .34 .28 .55 .50 .45 .45			$\begin{gathered} 85 \\ \hline 80.70 \\ \hline 1.40 \\ \hline 140 \end{gathered}$				
						7470										
						7473										
						747										
						${ }_{748} 74$										
						77485										
						7486										
						7489										
${ }^{744500}$			$\begin{array}{r}.30 \\ .50 \\ 16 \\ .16 \\ .76 \\ 14 \\ \hline\end{array}$									$\begin{aligned} & 7445373 \\ & 749 \\ & 7415447 \\ & 71.87 \end{aligned}$				
74LLS08																

TRANSISTORS
JUST SOME OF OUR LARGE RANGE

2N929	20	2N3706	. 10	2N4903	1.50	BC148	11	BD138	35
2N1131	. 20	2N3708	. 10	2N4907	1.75	BC149	11	BD181	75
2N1507	. 12	2N3709	. 10	2N5033	. 35	BC159	11	BD182	22
2N1637	18	2N3711	10	2N5220	12	BC160	35	B0201	100
2N1638	25	2N3714	1.00	2N5222	15	BC167	10	BD203	1.00
2N1691	. 35	2N3716	1.30	2N5246	15	BC168	10	BD204	1.20
2N2060	3.00	2N3732	1.50	2N6109	. 30	BC169	10	BD235	35
2N2195	. 50	2N3771	1.65	2N6124	50	BC170	. 10	BD240	. 36
2N2217	25	2N3772	1.90	2N6126	. 64	BC171	10	BD242	. 42
2N2221	22	2N3789	90	40254	. 50	BC172	11	BD244	. 60
2N2368	. 24	2N3790	1.50	40312	. 50	BC173	11	BD246	. 65
2N2646	. 45	2N3791	1.50	40316	. 75	BC. 182	10	BD535	45
2N2714	. 12	2N3794	12	40363	20	BC183	10	BD536	45
2N2904	. 28	2N3819	22	40389	. 20	BC184	. 10	BDY17	180
2N2905	. 26	2N3854A	. 20	AC127	. 20	BC205	. 17	BF225J	. 15
2N2907	26	2N3856A	. 25	AC128	. 24	BC212	. 10	BF271	. 20
2N3053	. 26	2N3905	14	AC153k	. 20	BC213	. 10	BFR39	22
2N3054	. 70	2N3906	15	AC188	. 25	BC214	. 10	BFR81	. 22
2N3055	. 70	2N3962	. 25	AC188k	30	BC250	. 12	BFY50	. 27
2N3108	30	2N4038	48	AD161	. 40	BC347	. 12	BSY28	. 30
2N3393	14	2N4059	. 13	AD162	. 40	BC350	. 12	TIP34C	85
2N3402	11	2N4060	13	AF106	12	BC549	. 12	TIP41A	. 50
2N3440	80	2N4249	13	AF109	12	BC559	. 12	TIP54	1.40
2N3441	90	2N4284	35	AF126	26	BCY58	. 20	TIP 110	. 67
2N3570	1.95	2N4286	.12	BC107	. 15	BCY59	. 20	TIP 117	60
2N3638	. 15	2N4288	. 12	BC108	. 15	BCY71	. 20	TIP2955	. 54
2N3642	15	2N4400	15	BC109C	. 15	BCY72	20	2TX30 \dagger	. 16
2N3643	15	2N4822	. 50	BC115	19	BD115	. 25	ZTX501	14
2N3702	. 10	2N4898	1.00	BC118	. 19	BD116	. 40		
2N3705	10	2N4901	1.50	BC147	11	BD131	. 40		

BRIDGE RECTIFIER
W005 $1 \mathrm{~A} / 50 \mathrm{~V}$
W01 100 V W01 1 A/ $100 V$
WO4 AA400V N04 $1 \mathrm{~A} / 400 \mathrm{~V}$
S 005
2 A 100 V S012A100V SO4 2A/400V WOO5 6 A/50V PWO1 6A 100 V PW02 6A/200V
PW04 6A/400V $00525 \mathrm{~A} / 500 \mathrm{~V}$ K02 25A 600 V K02 $25 \mathrm{~A} / 200 \mathrm{~V}$ BY164
BY 179

THYRISTORS T1C106A 4A 100 V T1C106D 4A200V T1C106H 4 A 600 V
T116A 8A 100 V T116A 8A/100

T11B 8 A 200 V | T116C8A200V |
| :--- |
| |
| 11160 C | T11608A/400V T1C $126 A 12 A 100 V$

T1C $126 \mathrm{~B} 12 \mathrm{~A} / 200$ | T1C126B 12AN200 |
| :--- |
| T1 | T1C126C 12A 12 AOO

T100 T1C126M $12 A 600$
BSTO 146474100 BSTO146 4.7 A 100 V .25
BST0206 $4.7 \mathrm{~A} / 200 \mathrm{~V} 30$
BST0243 BST0206 4.7A/200V. 30
BST0243 4.7A/700V 1.30

TRIACS 43 T1C206D $4 \mathrm{~A} / 400 \mathrm{~V}$ \qquad
.54
.64

66 T1C226D $8 \mathrm{~A} / 400 \mathrm{~V}$ T1C226D 8A/400V	T1C236D 12 A 400 V .8
T1C246D 16 A 400 V	T1C246D 16A4400V 1.0

T1C253D 20A400V 1.80
T1C263D $22 A 400 \mathrm{l}$

FULL RANGE OF
DIODES, ZENER DIODES

SIEMENS LED

58 mm Red, Yellow. Green LD5 series	¢0.16	TIL 209	¢0.18
3.2 mm Red, Yellow, Green LD5 series	€0.14	TIL 228	f0. 35
Flashing Diodes LD599 (3 Hz)	£0.70	TIL 78	f0.60
LD80A Rect \& Red	£0.14	BPW 34	f1.18
LD86/87A Rect. Yellow/Green	£0.20	LD 271	¢0.40

CLOCK MODULES
MA 1002 H Alarm $24 \mathrm{Hr}, \quad £ 350$ require transformer MA 1012 Alarm $12 / 24 \mathrm{Hr}$. $£ 3.50 \quad 52 \mathrm{~V} \& 16 \mathrm{~V}$ Secs MA 1003 12V Car Clock £ 12.50
$f 11.50$ MA 1026 Alarm/Thermometer $£ 11.50$
Case for MA 1003 Case for MA $1003 \quad £ 1.00$

NSN 3914, 3915.3916, Bar Graph £4 95
NSN 581/582 Two Digit/Segment £2.00
NSN 5881/5882 Four Digit/Segment £3.95

PRESENSITISED POSITIVE FOTO RESIST PC BOARDS 1.6 mm THICK

SIZE	SINGLE SIOE
$100 \times 160 \mathrm{~mm}$	$£ 1.40$
$100 \times 220 \mathrm{~mm}$	$£ 1.95$
$203 \times 114 \mathrm{~mm}$	$£ 1.70$
233.4220 mm	$£ 3.75$

SENSORS FOR DIGITAL FUELSTRETCHERS
Fuel Flow $£ 1475$ Send Large S.AE. Speed
£1195
For Details with coil/distributor ignition up to 8 cylinders.
THEKIT COMPRISESEVERYTHINGNEEDED

 components arte guair antexel for a per :i)d of 2 ye ars from clate of purchase Fully itust iatuctassembly arich instalation unstructions are: included

Electronics Design Associates, Dept. PE/11/81 82 Bath Street, Walsall, SW1 3DE. Phone: (0922) 614791

From
 HMMEEE..

HM307

The first portable scope with a component tester.

Capacitor33uF

Transistore-C

Transistar8-E

BE1UF +68 otms

Oscilloscope Specifications:

General Information

Component Tesitit . For single components andin alfuit Calibrator $\mathrm{O}, \mathrm{O}, \mathrm{y} \pm 1 \%$ for probe alignment Pouriar Supplles : Regulated including high voltage AC.Inpl $=\quad 110,127,220,237, V$ AC., $50 \cdot 60 \mathrm{~Hz}$ Welght $+: 5 * 8-1 / 4 \log$

For further information on HAMEG's full range of top performance oscilloscopes, contact:
HAMEG LTD.
74.78 Collingdon Street, Luton, Beds. LU1 1RX Tel: (0582) 413174

OfFAL EARGAMS

IARESISTABLE
RESISTOR BARGAINS'

Pat No. Qty Description

Sail 400 Mixed "All Type" Resistors $5 \times 11 \quad 400 \quad$ Pie-formed ${ }^{1 / 4}{ }^{\text {t/ }} 2$ watt Carbon Resistors SX13 200 att Carbon Resistors $5 \times 14 \quad 150 \quad \frac{1}{2}$ watt Resistors 22 ohmSX15 $\quad 100 \quad 1$ and 2 watt Resistors 22 on m-2m2 Mixed
Pans SX12.15 contain a range of Carbon Film Resistors of assorted values from 22 ohms to 2.2 meg. Save pounds on these resistor pats and have a full range to
cover your prospects
Quantities approximate, count by weight

CAPACITORPAKS"

3 ,

SX32 $1 \times$ Standard tack Plug to Phone Socket adaptor
SK $331 \times$ Toggle Switch SPST Minature $125 v 10$ SK 34 lx Toggle Switch SPDI Miniature 1254104 S $\times 35$ 1 \times Rocker Switch SPDI Miniature 240 5 SK 36 $1 \times$ Right Angle Mono Jack Plus
SK 3720 pieces. 1.284 mm plugs and so ct (Banana) Match ing colours and sizes.
SX50 10 Assorted Switches Toggle. Side, Rocker Push button
order is received

Sx41 250 Silicon Diodes-General Purpose like

$30-1000200 \mathrm{~mA}$ D0.7

${ }^{1} .25$
5×44 1054 SCR'S $70643 \times 50 \times 3 \times 100 \mathrm{v} 2$ 20022×4000 Super value less than
SX45 PIC le 1054 SCR's TOG $2 \times 50 \mathrm{v}, 2 \times 100 \mathrm{v} .4 \times$ 200v. $2 \times 400 \mathrm{alli}$ coded Brand new. a
giveawayat
$-$

BARGAINS
54220 small 125 Red LED's ${ }_{5 \times 43} 10$ Rectangular Green Leos Sx46 30 Assorted tuner Dod voltages.

Sx47 4 Black instrument with patter ${ }^{1}$ 5×48 Chime

Hilcoded New Knobs-winged with ste $29 x$ 0 mm standard pus

20 Assorted Slider Knots
5×49 Black Chrome. etc

SEMICONDUCTORS FROM AROUND THE WORLD

A Collection of Transistors. Diodes. Rectifiers. Bridges. SCR's Triacs. IC s both Logic and Linear plus Onto's all of which are current everyday usable devices.

Guaranteed Valve over E 10 at Normal Retail Price GUARANIEE and it still is All these Sate terms are in stock in quantity and we will despatch the same day as your

Sx40 250 Silicon Diodes-Swith ing like IN4148 DO -35 All good-uncoded. Worth double our price $45 v 75 \mathrm{~mA} \quad \mathbf{E 1 . 2 5}$
tee uarantet Satisfaction or your money back

25 to include Div iv $180^{-2} .240^{\circ}$. Inline $3-6$ Pin. Speakers. Phono. Jack. Stereo and Mono, etc otc. Valued at well over $£ 3$ nor mat. Order No. SX25. Our Price $£ 150$

SX26 3 Prs of 6 pin 240° OIN Plugs and Chassis SX27 $1 \times$ Rock Angle Stereo Jack Plug 63 mmp plus matcturng metal chassis mounting socket SX28 4 Phono plugs and 2 dual phone connectors $\mathbf{S} \mathbf{2 9} 1 \times 25 \mathrm{~mm}$ Plug to 3.5 mm Socket adaptor $5 \times 30: \times 35 \mathrm{~mm}$ Plug to 2.5 mm Socket adaptor
SX31 $\times 35 \mathrm{~mm}$ Plug to Phono Socket adaptor

ع1FREE PAX

BI-PAK'S OPTO BARGAIN OF THE YEAR!

Valued at over £10-Normal Retail -we offer you a pack of 250 otto devices to include LED's Large and Small in Red, Green. Yellow and Clear. 7 Segment Displays both Common Cathode and Common Anode FLUS bubble type disolays-like DL-33 Photo Transistors-simila
OCP71 Photo Detectors-like MELII-12 This whole pack of 25
£4-00 25
AND we guarantee your money back it you are not completely satisfied Full data etc incl used. Order No. SX57.

MOI 6 meteargains,

 wire single and strand Hook upSX58 colours stranded Mixed
$\begin{array}{ll} & 25 \text { Assorted } 71 L \text { Gates } 7400\end{array}$ Series 740174650
10 Assorted 7400 10 Assorted flip Flops and MS
SX60 20 Assorted Shier
SX61 Potentiometers
5×62 Rotary Dual etc 40 Assorted Are

5 watt (RMS) Audio Amp
High Quality audio amplifier Module Ideal for use record players. tape recorders, stereo amps and cassette players. etc Full data and backup diagrams with each module
Specification

- Power Output 5 watts RMS Load Impedance 8.16 ohms Frequency response 50 Hz to $25 \mathrm{KHz}-3 \mathrm{db}$ Sensitivity 70 mi for full output input impedance 50 h ohms Size $85 \times 64 \times 30 \mathrm{~mm}$ Total Harmonic distortion less than 5%
± 2.25
You could not Build one for this price.

BI-PAK's COMPLETELY NEW CATALOGUE

very interesting ones fir the type of components you require, of. us some semiconductors tor the Amateur and Professional you could hose to find
There zee no wasted pages of useless information so often ncicuded in Catalogues published nowadays Just solid facts ie price description and indiydual features of what we have available But remember, B- Peak's policy has always been to sell quality components at competitive prices and THat WE STILL 00.
BI-PAK'S COMPLETELY MEW CATALOGUE is now available to you You will be amazed how much you can save when you shop for Electronic Components with a B- Pan Catalogue Have one by you all the time-It pays to buy Bl-Pak. Io receive your copy send $\mathbf{7 5 p}$ plus $25 p p \& p$

IC SOCKETS
The lowest price ever.
The more you buy the cheaper they com
Pill. 10 off 50 oft 100 off

$16 *$	80 p	$\mathbf{8 3}$	$\mathbf{8 3 . 2 5}$
		$\mathbf{8 5 . 5 0}$	

Quelled *

M

6 Black Heatsink well fit T0. 3 and T0-220 Ready drilled Half price value
SX53 1 Power finned Heatsink. This heatsink gives the greatest possible heat dissipation in the smallest space owing to its unique staggered fin design. ore dulled. $10-3$ Size 45 mm square x 20 mm high. 40 p $5 \times 54 \quad 10.66 \mathrm{sice} 35 \mathrm{~mm} \times 30 \mathrm{~mm} \times 12 \mathrm{~mm}$. $\quad 35 \mathrm{p}$ SX55 I Heat Efficiency Power Finned Heatsink $90 \mathrm{~mm} \times 80 \mathrm{~mm} \times 35 \mathrm{~mm}$ High. Drilled to take up to $4 x$
10.3 devices £1.50 each

SX38 100 Silicon NPN Transistors-all perfect Coded mixed types with data and equt. sheet No rejects Real value $\quad \mathbf{\& 2 5 0}$ SX39 100 Silicon PNP Transistors-al! perfect Coded mixed types with data and equt sheet. No rejects Fantastic value. $\mathbf{E 2 . 5 0}$

MILLARD. ASL 17 PAP
Germ 10-3 Power Iran
60 VCB 8A. Poss Replacement for 32 VOE $30 \mathrm{~W} \quad$ ADD $30 / 131 / 140 / 149$ 20 VEB He $30 \mathrm{~min} \quad 0 \mathrm{C} 25 / 26 / 28 / 35$ 2N3613/14/
G. eat Value at 65 p each or 2 for El .
$25 p$
$40 p$
$40 p$
$40 p$
$15 p$
c
-

Use pour credit card Ring us on Ware 3182 NOw ant get you order even taste. Goods nom ally sent ind Class Mall
Remember you must add VIT at 15% to your order Total. Postage add SOp per Total order'

Sinclair ZX81 Personal Comp the heart of a system that grows with you.

1980 saw a genuine breakthrough the Sinclair ZX80, world's first complete personal computer for under £100. Not surprisingly, over 50,000 were sold.

In March 1981, the Sinclair lead increased dramatically. For just £69.95 the Sinclair ZX81 offers even more advanced facilities at an even lower price. Initially, even we were surprised by the demand - over 50,000 in the first 3 months!

Today, the Sinclair ZX81 is the heart of a computer system. You can add 16 -times more memory with the ZX RAM pack. The ZX Printer offers an unbeatable combination of performance and price. And the ZX Software library is growing every day.

Lower price: higher capability

With the $Z \times 81$, it's still very simple to teach yourself computing, but the ZX81 packs even greater working capability than the ZX80.

It uses the same micro-processor, but incorporates a new, more powerful 8 K BASIC ROM - the 'trained intelligence' of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays.

And the ZX81 incorporates other operation refinements - the facility to load and save named programs on cassette, for example, and to drive the new ZX Printer.

Every $\mathrm{ZX81}$ comes with a comprehensive, specially-written manual - a complete course in BASIC programming, from first principles to complex programs.

Higher specification, lower price -

 how's it done?Quite simply, by design. The ZX80 reduced the chips in a working computer from 40 or so, to 21 . The ZX81 reduces the 21 to 4 !

The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from the ZX80!

New, improved specification

 - Z80A micro-processor - new faster version of the famous Z80 chip, widely recognised as the best ever made.- Unique 'one-touch' key word entry: the ZX81 eliminates a great deal of tiresome typing. Key words (RUN, LIST, PRINT, etc.) have their own single-key entry.
- Unique syntax-check and report codes identify programming errors immediately.
- Full range of mathematical and scientific functions accurate to eight decimal places.
- Graph-drawing and animateddisplay facilities.
- Multi-dimensional string and
numerical arrays.
- Up to 26 FOR/NEXT loops.
- Randomise function - useful for games as well as serious applications. - Cassette LOAD and SAVE with named programs.
- 1K-byte RAM expandable to 16 K bytes with Sinclair RAM pack.
- Able to drive the new Sinclair printer.
- Advanced 4-chip design: microprocessor, ROM, RAM, plus master chip - unique, custom-built chip replacing 18 ZX80 chips.

Built: £69.95

Kit or built -it's up to you!

You'll be surprised how easy the ZX81 kit is to build: just four chips to assemble (plus, of course the other discrete components) - a few hours' work with a fine-tipped soldering iron. And you may already have a suitable mains adaptor -600 mA at 9 VDC nominal unregulated (supplied with built version).

Kit and built versions come complete with all leads to connect to your TV (colour or black and white) and cassette recorder.

Designed as a complete module to fit your Sinclair ZX80 or ZX81, the RAM pack simply plugs into the existing expansion port at the rear of the computer to multiply your data/program storage by 16 !

Use it for long and complex programs or as a personal database. Yet it costs as little as half the price of competitive additional memory.

With the RAM pack, you can also run some of the more sophisticated ZX Software - the Business \& Household management systems for example.

6 Kings Parade, Cambridge, Cambs., CB2 1SN. Tel: (0276) 66104 \& 21282.

Available nowthe IX Printer for only $£ 49 . \mathbf{Q s}^{\mathbf{s}}$

Designed exclusively for use with the ZX81 (and ZX80 with 8K BASIC ROM), the printer offers full alphanumerics and highly sophisticated graphics.

A special feature is COPY, which prints out exactly what is on the whole TV screen without the need for further intructions.

At last you can have a hard copy of your program listings-particularly
useful when writing or editing programs.

And of course you can print out your results for permanent records or sending to a friend.

Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZXPrinter connects to the rear of your computer - using a stackable connector so you can plug in a RAM pack as well. A roll of paper (65 ft long $x 4$ in wide) is supplied, along with full instructions.

How to order your ZX81

BY PHONE - Access, Barclaycard or Trustcard holders can call 01-200 0200 for personal attention 24 hours a day, every day.
BY FREEPOST - use the no-stampneeded coupon below. You can pay
by cheque, postal order, Access, Barclaycard or Trustcard.
EITHER WAY - please allow up to 28 days for delivery. And there's a 14-day money-back option. We want you to be satisfied beyond doubt and we have no doubt that you will be.
To: Sinclair Research Ltd, FREEPOST 7, Cambridge, CB2 1YY.
Oty
Item

ŚTEREO AMPLIFIER KIT

* Featuring latest SGS/ATES TDA 200610 watt output ic's
with in-built thermal and short circuit protection
* Mullard Stereo Preamplifier Module.
* Atractive black vinyl finish cabinet, $9^{\prime} \times 8 y^{\prime \prime} \times 33^{\prime \prime}$ " (approx) * $\mathbf{1 0 + 1 0}$ Stereo converts to a $\mathbf{2 0}$ watt Disco amplifier.

To complete you just supply connecting wire and solder
Features include din input sockets for ceramic cartridge, mic rophone, tape or tuner. Outputs - tape, speakers and headphones. By the press of a button it transforms into a 20 watt mono disco amplifier with twin deck mixing. The kit incorporates a Mullard LP1183 pre-amp module, plus power amp
assembly kit and mains power supply, Also features 4 slider assembly kit and mains power supply. Also features 4 slider level controls, rotary bass and treble controls and 6 push
button switches. Silver finish fascia with matching knobs button switches. Silver finish fascia with matching knobs and contrasting cabinet. Instructions
FREE , price 50 . Supplied
f14.95
FREE with the kit. Plus $£ 2.90 \mathrm{p}$ \&p
SPECIFICATIONS: Suitable for 4 to 8 ohm speakers
Frequency response 40 Hz .20 KHz .
Input sensitivity P.U. 150 mV . Aux. 200 mV
Tone controls \quad Bass $\pm 12 \mathrm{db} @ 60 \mathrm{~Hz}$
$\begin{array}{ll}\text { Distortion } & \text { Treble } \pm 12 \mathrm{db} @ 10 \mathrm{KHz} \\ & 0.1 \% \text { typically @ } 8 \text { watt }\end{array}$
Mains supply 0.1% typically @ 8 watt
$220-250$ volts 50 Hz .
STEREOMAGNETIC PRE-AMP CONVERSION KIT Includes FREE Magnetic cartridge with diamond styli. All components including p.c.b. to convert your ceramic input on the $10+10$ to magnetic.
Only available with $10+10$ amo. $£ 2.00$ includes $p \& p$
$8^{\prime \prime}$ SPEAKER KIT Two $8^{\prime \prime}$ twin cone domestic speaker $£ 4.75$ per stereo pair plus $£ 1.70$ p\&p. when purchased with amplifier. Available separately $\mathbf{£ 6 . 7 5}$ plus $£ 1.70$ p\&p

PRACTICAL ELECTRONICS
 CAR RADIO KIT
 series iI

2 WAVE
BAND BAND
MW .- LW

* Easy to build

5 push button
uning * Modern design
6 watt output * Ready etched
and punched PCB * Incorporates suppression circuit
All the electronic components to buitd the radio, you supply only the wire and the solder, featured in Practical Electronics March issue. Features: pre-set tuning with 5 push button options, biack illuminated tuning scale. The P.E. Traveller has a 6 watt output neg. ground and incorporates an integrated circuit output stage, a Mullard IF Module LP1 181 ceramic crer type pre-aligned and assembled, and a Bird pre aligned push button tuning unit. Suitable stainless steel fully retractable aerial (locking) and

回
 T

 [

£10.50 Plus $£ 2.00$ p\&p

$$
-
$$

available as a kit comple

HIGH POWER AMPLIFIER MODULES

READY BUILT OR IN KIT FORM 125 WATT MODEL

200 WATT MODEL KIT
$£ 10.50$
£14.25 Plus $£ 1.15$ p\&p $\begin{aligned} & \text { Plus } \mathrm{E} 1.15 \text { p\&p. }\end{aligned}$ $£ 14.95$
£18.95 Plus $\mathbf{E 1 . 1 5 p \& p}$,

SPECIFICATIONS

Max. output power (RMS)
Operating voltage (DC)
Loads
Loads
Frequency response
measured @ 100 watts
Sensitivity for 100 watts
Typical T.H.D.@
50 watts, 4 .
50 watts, 4 ohms 0.1%
Dimensions (both models) 205×90 and $190 \times 36 \mathrm{~mm}$
The P.E. power amp kit is a module for high power applicat1ons - disco units, guitar amplifiers, public address systems
and even high power domestic systems. The unit is protected and even high power domestic systems. The unit is protected against short circuiting of the load and is safe in an open
circuit condition. A large safety margin exists by use of

$30+30$ WATT STEREO AMPLIFIER

Viscount IV unit in teak simulate cabınet, silver finıshed rotary controls and pushbuttons with matching fascta, for mic magnetic and crystal pickups, tape and auxitiary Rear panel features fuse holder. DIN speaker and input socket $30+30$ watts RMS, $60+60$ watts peak. For use with 4 to 8 ohm speakers. Size $14^{3 / 4} 4^{\prime} \times 10^{\prime \prime}$ appro \times $£ 32.90$ BUILT AND TESTED. Plus $£ 3.80$ p\&p.

PHILIPS BELT DRIVE RECORD PLAYER ${ }_{7}$ DECK GC037 (Size: $15 \%^{\prime \prime} \times 12 \%^{\prime \prime}$ approx.) HiFi record player deck
floating sub chassis to minimise acoustic feed back. Complete with GP401 stereo magnetic cartridge
LIMITED STOCK
UNBEATABLE OFFER AT
£27.50
COMPLETE
Plus $£ 3.16$ p\&p
CALIERS ONL
323 Edgware Rd, London W2. Tel: 01-723 8432 Open $9.30 \mathrm{am} \cdot 5.30 \mathrm{pm}$. Closed all day Thursday. Persons under 16 not served without parents authorisation

ALL PRICES INCLUDE VAT AT 15\%

[^2]
UNIQUE

Very often we on PE are in the fortunate position of being able to publish project designs for which similar ready made commercial equipment is either unobtainable or very expensive. This has occurred recently with the PE Ranger 27FM, where legal equipment is only now able to be manufactured and imported and is (at the time of writing) still not available to the general public, with the Horologicum, the PE Robots and next month with the PE Car Computer.

For different reasons all these are "exclusive" products introduced in PE. There are many others which we could list but most readers will be well aware of what they can make for themselves that is not otherwise available.

CAR COMPUTER

Having mentioned the car computer a look at the background of this project (publication starts next month) might be interesting.

Over two years ago PE started in-
vestigating the possibility of producing a car computer for readers to build. After initial enquiries it appeared that the electronics could be readily designed but we were faced with the problem of finding suitable, accurate speed and fuel flow transducers. Further investigation particularly regarding the flow transducer revealed that cheap flow meters were generally inaccurate and this did not tie up with our wish to produce a reasonably priced, accurate instrument. After all, what is the point of knowing your fuel usage to an accuracy of no better than 10 per cent when it is that very 10 per cent you are interested in saving?

TRANSDUCER

Where could we go from there we could either scrap the whole thing or try to get a transducer organised! Luckily our investigations had led us to Mr. Lionel Taylor, who has had considerable experience in the design and manufacture of fuel transducers, for
automotive, industrial and commercial use.

Lionel liked our ideas, added his own, and introduced us to Phil McFarlane, an electronics designer with a flair for the original. By incorporating his own sophisticated design techniques, Phil, through PIMAC (his company), has enabled us to present a highly accurate, professional instrument with many unique features we have yet to see on any commercial unit (and at a competitive price!!.

We are highly delighted with the outcome of everyone's efforts. The unit makes exceptional use of the computing power available, and we believe it sets new standards for car instrumentation. It will prove very useful to all drivers and should be welcomed by everyone involved in tuning and testing small vehicles, and many forms of competitive motorsport.

More details on page 65. We hope you like it.

Mike Kenward

EDITOR
Mike Kenvirard
Gordon Codbold ASSISTANTEDITOF
Whke Abbott technical EDITOR
Bevid Shortiend PROJECTS EDITOA
Jaspar Scott production EDIIOR:

ADVERTISEMENT MANAGER
SECRETARY
AD. SALES EXEC.
CLASSIFIED SUPERVISOR

Jack Pountnoy ARTEDITOR
Keith Woodruff: Assistant ARteditor
Johin PIckering: SEN, TECHILLLUSTRATOR
Isaballo Greanaway TECh: ILLUSTRATOR
Coletto MeKenzio SECRETARY:

Edfitortat OHfices:

Practical Electronics
Westover House.
West Cuay Road, Poole: Dorser B415 JJG Phone: Editomint Poble 71191
We regrat thatlongthy technitoal anquifis: cminot bs anawered outer the tolophone (mise below).

Adiverising Oficess Practical Electoonics Advertisements. King's Reach fower. King's reach, Stamford Street. SE1 SLS Talex: 915748 MAGDIV-G
Make Up/Copy Dept: 01-261 8601

Technical Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in Practical Electronics.
All letters requiring a reply should be accompanied by a stamped, self addressed envelope and each letter should relate to one published project only.

Components and p.c.b.s are usually available from advertisers; where we anticipate difficulties a source will be suggested.

Back Numbers

Copies of some of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, at 95p each including inland/Overseas $\mathrm{p} \& \mathrm{p}$.

Binders

Binders for PE are available from the same address as back numbers at $£ 4.30$ each to UK or overseas addresses, including
postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 13.00$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH 16 3DH. Cheques and postal orders should be made payable to IPC Magazines Limited.

Citizens chaos?

Far from becoming a clear legal situation, UK CB has stepped into a world of fiction, with lack of internal communication producing conflicting statements from the Home Office, and unbelievable claims being made by some manufacturers.

By delaying announcement of the start of the service the Home Office has encouraged a situation where few manufacturers are prepared to spend the necessary on sets just to have them sitting in warehouses, and this may result in a shortage of legal equipment on "day one"

We believe that "day one" will be during the last week of October but at the time of writing (September 16th) the Home Office would not confirm this. However, licence forms have been issued (coded CB01) and happily the licence, which covers three rigs per fee (cost not yet known, but about £8-£10) places very little restriction on CB operation, only banning use on aircraft and restricting aerials to straight single wire elements of less than 1.5 metres overall length. This restriction, which we understand does not apply to hand held portable equipment. appears to be an about face by the Home Office who had previously informed us that helical aerials would be legal. It has been quickly introduced to prevent the use of aerials which can radiate at harmonics and may be relaxed to include certain other types when time permits more investigation.

Our own PE Ranger 27FM (in kit form) was the only legal equipment available at the recent $C B$ Exhibition in London and was shown on BBCI and used for demonstrations to LBC and Capital Radio. One manufacturer at the show informed us that production was being held up pending announcement of a legalization date but a high street retail chain was claiming they had a warehouse full of sets from the same manufacturer!

Further confusion was added by a press release from the exhibition organisers stating that all the equipment on show would soon be legalised-since much of it was a.m. and many aerials were outside the spec., that is not

Band in
true. Total chaos finally reigned when the London radio stations announced that the Home Office IEE Wednesday committee came out against 27 MHz FM and the Home Office sent out restrictions on Evaluation and Demonstration Licences, due to complaints by the MOD that testing on legal rigs could cause interference with Met. Office radiosondes, presently operating on similar frequencies. Apparently, the Met. Office were not consulted on the CB frequencies and they are not able to move their sondes until early next year when they "plan to move up the frequency band slightly". They would not quote the new frequency but it is interesting to note that slightly further up is the 28 MHz radio amateur band!

Information from radiosondes is monitored every day by a computer system at nine locations throughout the UK. Transmission times are at midday and midnight (G.M.T.) and between 6 and 9 G.M.T. in the evenings. Interference from Italian CB has already caused problems for the Met. Office.

CB has now become a political hot potato where one blunder has followed another, mainly due to the original Home Office reluctance to look into a system for the UK and the fact that the Government has now pushed through the 27 MHz allocation against the advice of virtually all the technical bodies.

PRINTING... THE ZX WAY

Sinclair Research has introduced a new printer to complement its existing $Z X$ range of personal computers and software. Designed for use with the $\mathrm{ZX81}$ computer and the ZX 80 with retrofit 8 K ROM the new printer features full alphanumerics and high resolution graphics.

Special features include COPY which prints out exactly what is on the TV screen without further instructions with the operation complete in 14 secs, L LIST which instructs the printer to produce an entire program, and L PRINT to print copy out on the printer and not the screen.

The ZX printer has 32 characters to the line, 9 lines to the vertical inch and a printing speed of 50 characters per second. For operation the printer is attached to the rear of the computer by a stackable connector which allows 16 K of RAM pack to be used at the same time.

The printer, which is priced at $£ 49.95$ including VAT, is supplied with a 65 ft roll of special aluminized paper-menough for over 250 full screens of text. Additional rolls are available in packs of 5 at $£ 11.95$.

Sinclair Research Ltd., 6 Kings Parade, Cambridge CB2 1SN.

Briefly...

Many schools who find that one computer per class tends to result in a state of chronic boredom as all the pupils await their turn will be interested in an ingenious solution by a Reading based company, Audio Systems Components Ltd. and their local comprehensive, Theale Green.

The company installed several micros in a classroom at the school free of charge and during the daytime the equipment is used to teach pupils at the school and in the evening the company takes over teaching programming to fee paying adults under the evening class scheme.

Breadboard 'z1

Breadboard 81, the annual electronics exhibition, will be held this year at the Royal Horticultural Society's New Hall, Greycoat Street, Westminster, London from Wednesday the 11 th November to Sunday 15 th November.

PE will once again be exhibiting at the show with many of our past, present and future projects on display including our PE Ranger CB rig.

Opening hours are as follows:
Wednesday 10 a.m.-6 p.m.
Thursday 10 a.m. -8 p.m.
Friday 10 a.m.-6 p.m.
Saturday 10 a.m.-6 p.m.
Sunday 10 a.m. -4 p.m.

Items mentioned are available through normal retail outlets unless otherwise specified. Prices correct at time of going to press.

ADD~ON FOR ZX 80/81

Another accessory available for the Sinclair ZX80 and ZX81 is a low cost input/output port from Technomatic Ltd. This consists of a small board which plugs into the rear of the machine to provide an 8 bit input port and an 8 bit output port-thus allowing 8 independent input channels and 8 output channels, directly controlled from Basic or machine code.

A small loudspeaker may be connected to any one of the output channels to give programmable sound output in the range 200 Hz to 25 kHz ; and examples of sound effects and other applications are provided in an accompanying booklet.

Each of the 8 output channels may be used to control a separate device-l.e.d. indicators may be directly driven from any channel, and relays may be controlled from

each channel using a simple buffer-one uncommitted buffer is provided on the board for this purpose. Seven segment displays mav also be controlled from the port.

The 8 input channels may be used to connect games paddles, microswitch or reed switch detectors, a remote keypad, and light sensors for detecting the presence of objects etc.

Full details of the use of the port are given in an accompanying booklet, including applications.

The complete kit of parts including connector plugs and sockets for the i.c.s. a booklet of applications and a suitable loudspeaker is priced at $£ 12.70$ excluding VAT and p\&p. Technomatic, 17 Burnley Road, NW1O.

BELHMIIN BEICH METERS

Following the success of their hand-held digital multimeter family, Beckman have introduced two portable bench-top models. The instruments require no external power supply and will operate continuously for $\mathbf{1 2 , 0 0 0}$ hours from standard alkaline batteries.

Model 3050 is an average sensing meter with a sine wave calibration, and model RMS 3060 is a true r.m.s. (a.c. and d.c.) or a.c. only meter. UK prices are $\mathbf{£ 1 4 9}$ for the $\mathbf{3 0 5 0}$ and $£ 199$ for the RMS $\mathbf{3 0 6 0}$ (prices are exclusive of VAT).

A single centre switch allows the user to select from the eight functions and 31 ranges. The instruments offer five d.c. and a.c. voltage ranges from 200 mV to 1500 V and 1000 V respectively; six d.c. and a.c. current ranges from $200 \mu \mathrm{~A}$ to 10A; seven resistance ranges from 20 ohm to 20 Mohm ; and a diode test function as well as an audible and visual continuity test function. The RMS 3060 has an additional built-in temperature measuring facility. Both instruments have a highly stable band-gap reference element and thin-film voltagedivider networks which guarantee the specified 0.1 per cent accuracy for a one-year minimum, without calibration.

Beckman Instruments Ltd., Electronic Components UK Sales and Marketing Organisation, Mylen House, 11 Wagon Lane, Sheldon, Birmingham B26 3DU.

POINTS ARISING . . .

HOROLOGICUM (Oct. 81)
Fig. 4 was omitted from page 24 , and is printed below.

[^3]INDUCTIVE IGNITION SYSTEM (Oct 1981)
The figure shown below should be substituted for Fig. 10 on page 44.

Ouite simply the best way to make music...

- COMPREHENSIVE INSTRUCTIONS WITH EVERY KIT - KITS REALLY COMPLETE EVEN SCREWS AND WIRE!

- SUPERIOR MATERIALS © SUPERIOR FINISH © SUPERIOR SOUND ©

build the TRANSCENDENT range from POWERTRAN
- WORLD LEADERS IN ELECTRONIC KITS
- money back guarantee

If you are not completely satisfied with your Powertran Kit, return it in original condition within 10 days and we will refund your money

- SOLDERING PRACTICE KIT - FREE on request with your first kit, to assist newcomers !

PORTWAY INDUSTRIAL ESTATE, ANDOVER, HANTS SP10 3WN. ANDOVER (0264) 64455

Bushido

The brand name Bush has been around in consumer electronics for 50 years, derived from Shepherds Bush, London, where a group of four youngsters, finding themselves redundant, decided to branch out on their own.

Rank acquired the name in 1941 and following the break-up of the joint deal with Toshiba last year decided to put the name on the market. Now it has been acquired by a new generation of entrepreneurs in the shape of Richard Schlagman and Mark Futter, both in their mid-twenties, who have renamed their company, Interstate Electronics, as Bush Radio.

So the good old British name is retained in British hands but the products are actually Japanese. I understand that the Bush label will be used only on high quality upmarket goods, maintaining the brand image of the past half-century.

An example, perhaps, of Bushido, the code of honour and morals of the samurai of the Japanese warrior caste. The tradition may have been badly dented by the surrender to the Allies in 1945. But having lost the fighting war the same fanatical singlemindedness has been applied to winning the trade war. And how well they are doing!

The debate on import controls (and not only from Japan) re-opened in the seasonal round of TUC and Labour Party conferences as was the 'problem' of the multinationals and unfair subsidies. Much passion will have been generated, as in past years, but nothing will change. For the earnest delegates, during their moment of glory at the rostrum, temporarily forget that practically all our most successful companies are big exporters, many are multinationals in their own right and that our poor performers in our public sector are all heavily subsidised.

Silly Season

The long Parliamentary summer recess marked the opening of the silly season and on the industrial front the silliest debate of all was whether the economy had reached the end of the recession. There was a fascinating display of semantics with fine distinctions drawn on the meanings of 'bottoming-out' as distinct from 'recovery', or 'not getting worse', or 'bumping along the bottom'.

The field divided roughly equally between the economic optimists and the pessimists and a second, overtly political, group, generally the same types, who saw electoral prospects brighten or dim accordingly.

Taken overall I score a win for the optimists on the meagre facts available. An upturn in industrial production but over a shortish period, bolstered further by a substantial order for shipping plus some heartening investment announcements such as Hewlett-Packard's $£ 12$ million investment at Bristol and Motorola's f 60 million expansion at East Kilbride. Construction work has also started on NEC's $£ 40$ million semiconductor plant at Livingston.

Such substantial investments will not shift many people from the unemployment register. After all the building work is completed permanent employment will be only another 1,000 at East Kilbride, 1,300 at Bristol, 800 at Livingston, and then not until 1985. A drop in the ocean. No wonder that Trades Union leaders greet these developments with less than whole-hearted enthusiasm. On top of this, all three investments are by great multinational corporations, and none can be said to be positively pro-union. All are dedicated to automated processes and efficiency, and to profit.

It may be an uncomfortable fact, but a fact which has to be faced, that all big business in the future will be in the same fashion of high investment and small, disciplined, highly-efficient labour forces.

This is why small business is so important and is being encouraged everywhere in the country. There are 1.2 million existing small businesses and it is conceivable, though unprovable as yet, that between them they could absorb, say, a million of those who are employable and at present on the register.

Misjudgement?

The electricity boards only a few years ago imagined that power consumption would forever increase, megawatt after megawatt. Some of the recent increases in unit charge are attributed to falls in industrial demand. This is true, of course, with some heavy users in industry, notably steel.

But I wonder if any of their statisticians took into account solid state electronics. Over 18 million TV licences are in force and many households remain unlicenced and many, legally or illegally, have more than one set.

The first generation of colour sets gobbled up in excess of 300 watts. Their solidstate successors have far less appetite,
consuming less than 100 watts. The tubed radio receiver needed 60 watts or more, now reduced to 15 watts. The same with computers which today with equal computing power consume hundreds of watts rather than the kilowatts of older generations of machines.

Such dramatic improvements in efficiency when multiplied by, say, 10 million TV sets or more in operation on a typical evening are truly in the macroeconomic league.

But worse is to come for the electricity supply industry. Thorn has developed a new type of fluorescent lamp expected to be in the home and factory in five years time. It uses krypton rather than argon gas, has similar colour and light output of the 100 watt incandescent lamp but consumes only 21 watts and has five times the life.

Optics

Doing more with less, which is what technology is all about, is also apparent in the shift to optical fibre trunk links by British Telecom. By the end of the 1980s BT expects to have $100,000 \mathrm{~km}$ installed. New low-attenuation fibres reduce the need for repeaters. An example is the Luton-Milton Keynes link due for completion in 1984 which will have no repeaters at all over a distance of 27 km . The conventional land lines of today will eventually disappear with the whole traffic load on the high-speed digital network comfortably handled by optical-fibre and microwave radio links.

The new monomode fibres can carry up to 8,000 telephone calls. But even with 'standard' fibre a pair will carry 2,000 calls on a cable ten times lighter and thinner than the conventional cable.

There is also movement at the exchanges. The first System X all-electronic local telephone exchange is now in service at Woodbridge, Suffolk, serving 1,000 lines expanding to 6,000 lines. The first ever System X to be commissioned is in London and switches a million calls a month between the 40 local exchanges in the London area.

Gas Control

Few people realise how important electronics is to the gas industry. EASAMS, the consultancy and management company in the GEC Group, is to design and supply a new computerised distribution, control and management strategy system for the British Gas Corporation under a $£ 4$ million contract.

- Don't imagine that British Gas is backward in electronics. The present system of computer control uses fewer people, handles more gas and controls more functions than any system in the world of comparable size and complexity. The EASAMS system will increase handling capacity by a factor of four with equipment only half the size. But equally important is enhanced computing power for management of the whole complex with greater integration of the regional high-pressure grid system.

CHATTER-

Realistic is the biggest name in Citizens Band Radio and accessories - and you will be able to buy the full range at Tandy- the world's largest retailer of CB equipment!

PEAKIStIC®
 CBfromTandy

WATCH PRESS FOR FORTHCOMING ANNOUNCEMENTS

THREE DEGREES . . .

Some time ago I covered the Analog Devices AD590 temperature sensor integrated circuit. If I remember correctly, I advised everyone to throw away their thermistors and thermocouples and use the AD590 instead for all applications which could use the simplicity of a combined sensor and amplifier giving a direct relationship between degrees and microamps at temperatures up to about 125 degrees C.

My advice still stands, but there is now an even better way for those jobs which require an output in degrees Centigrade or in degrees Fahrenheit, rather than in degrees Kelvin. The output of the three terminal AD590 was a current proportional to degrees K, so to turn this into a voltage proportional to degrees C or F ready to be measured and displayed using, say, a digital voltmeter, it was necessary to add an operational amplifier and a number of discrete components. This was a small price to pay compared with the horrors of thermistor linearisation and signal conditioning, but now you don't even have to bother with those simple additions, thanks to Intersil. Intersil knew a good idea when they saw one, and didn't waste any time in becoming a second-source for the original analog devices part, but they decided not to stop at the AD590 and have now introduced two new devices which will no doubt upstage their common ancestor in many new designs.
The canny engineers at Intersil soon realised that most users of the AD590 were adding bits and pieces to set a voltage output proportional to degrees C or F, which is hardly surprising since most applications outside of a scientific laboratory wouldn't know a degree Kelvin if they burned their fingers on it! What Intersil have done is to take all the stress and heartache out of designing an AD590 "fix" by building it into the sensor itself. So now if you want degrees Centigrade you buy an ICL 8073 , and if you want degrees Fahrenheit you buy an ICL 8074 -it's all done in the package.

Like the AD590 the two new parts are laser trimmed to give off-the-shelf accuracy without the need for external trim pots. The 8073 is available with accuracy ratings of $1.0,1.5$, and 3.0 degrees C with $0.5,1.0$, and 1.5 degrees C linearity ratings respectively, and the 8074 sports 1-0, 2.7, and 5.4 degrees F accuracy ratings with similar linearity specs. Add a simple digital voltmeter chip and a numeric readout and you can make a very simple, inexpensive, and accurate thermometer, ideal for your freezer or central heating controller perhaps.

The two devices come in six lead cans,
and can run from single rail supplies, like the AD590.

EASY INPUT

We live in an analogue world, but for the moment at least, the most effective way to measure and calculate real world data is to treat it digitally using computers, logic circuits, or of course the ubiquitous microprocessor.
Since microprocessors must deal with the real world if they are going to be of any use to mankind, they have to be provided with the means to convert analogue data into a digital approximation at their inputs. and digital data into an analogue equivalent at their outputs. In many cases this can be arranged by using a human operator to do the necessary conversion before entering data via a keyboard, and to interpret results presented on a VDU for example. Another complete class of application, mysteriously called "Real Time Systems" do not have the benefit of a human "Slave" and must therefore be capable of doing their own conversions.
Real Time Systems come in all shapes and sizes, but typical examples are missile guidance computers, central heating controllers, and robots. These systems use Analogue-to-Digital and Digital-toAnalogue converters, usually in integrated circuit form to do the interfacing, but in the past these components have been notoriously difficult to control, and time consuming in operation. Take a simple process controller for example. Let us assume it has to read eight channels of analogue sensor data from thermocouples, pressure transducers, and position sensors, sampling at 500 times per second, calculate the best response and control, say, relays and valves to keep the process stable. As A / D converters are expensive, it is usual to use just one and precede this with an input multiplex switch controlled by the microprocessor. To keep up the sampling rate the micro must be interruped every 250 microseconds so that it can switch to the next channel and initiate a conversion, a process which may take up to 100 microseconds depending on the type of converter and the speed of the micro, leaving very little time for processing the input data and making any sense of it. At this point, designers either specify a faster and more expensive processor, or they downgrade the system performance, but in future they can consider the very inexpensive alternative of using the AD 7581 from Analog Devices, and so can we!

The AD 7581 is even better than having a human slave as far as the micro is concerned, because there is no waiting around for
keys to be pressed and no complicated channel switching or time consuming interrupt routine. The new device is just an eight channel analogue 'Port' which carries out all the channel switching and sampling automatically without the need for processor intervention. The secret of this simplicity lies with the AD 7581's on-chip eight byte RAM array which is continuously refreshed with new data from the input channels. Any time the microprocessor wants to know what's happening in the real world, it just has to look in those eight special RAM locations which are actually on the AD 7581 chip, an activity which need take no more than a few microseconds.
The AD 7581 is not just for professionals. It's simple to use, it uses CMOS technology, runs from a single 5 volt supply and does not cost an arm and a leg!

Just the thing for those multi-axis joysticks and that game of 3D space invaders!

BIG BYTE

While the bigger memory arrays will continue to be made with dynamic RAM chips organised as 16 K or 64 K by one bit, smaller systems will shun the need for eight separate devices by utilising the Bytewide concept championed originally by Mostek. Apart from the size advantage to be gained, the Bytewide system has the extra distinction of being completely compatible with sockets traditionally used for EPROMS such as the 2716 the 2732 and the new 2764. By populating a memory area with 28 pin sockets it is now possible to decide the mixture of ROM and RAM after the system has been built, a great advantage in many cases.
The first Bytewide RAM was the 4118 from Mostek organised as 1 K by 8 , but this was quickly followed by the 4802 organised as 2 K by 8 , both being static devices. The Bytewide concept is now taking off in a big way, however, with many other manufacturers announcing RAM devices which fit into 24 or 28 pin sockets, one of the latest offerings being the Z6132 from Zilog which offers a whopping 4 K by 8 bits of dynamic memory running from single 5 volt supply. Don't let the "Dynamic" tag put you off, the Z6132 makes the periodic refreshing necessary with all dynamic parts very simple indeed, and does not require any special refresh logic.

A 4K RAM array is a sizeable chunk of memory which may be sufficient for many hobby computers, and getting it all in one package will make system design easier than ever before!

FOR THIS country to be competitive in world markets, increased automation is imperative. The third world countries have an excess of unskilled and semiskilled labour with remuneration substantially below that of their peers in the western world, consequently, wherever possible, assembly work of western designed products is carried out offshore. This means that much of the added value in a product sold in this country is going overseas. There are only two alternative courses of action possible. Either we reduce wages of the unskilled to be on a par with third world rates, which is politically impossible, or we manufacture our goods with extensive automation, thereby eliminating unskilled labour-a workforce which will then become available for the service industries expanding as a result of new wealth generated in modernised manufacturing. Unemployment is not an automatic consequence of automation but the result of successive governments spending beyond their means on consumption and on investment of a commercially non-viable nature. Political problems maybe? But problems to which electronics shall offer solutions.

AUTOMATION

The automation we require has in the past been in the form of expensive machines dedicated to particular tasks, hence suitable for high volume production only. With electronic control, machines with general purpose manipulators can be readily re-programmed for a variety of tasks rendering them suitable for small batch production too. A reprogrammable mechanical manipulator is the Department Of Industry's definition of a robot.

Although the number of robots in industry is still small their population is expanding rapidly, and it is going to be just as essential for those in industry, and those entering industry from full time education, to have hands-on experience with robots as it is to have experience with microprocessors and computers.

Unfortunately the mainstream industrial robots are still in a price region which has restricted their penetration into industry and educational establishments, and has ruled them out for experimental work by the home enthusiast.

INDUSTRIAL ROBOTS

The market leader is currently Unimation, with their electrically operated Puma range priced between $£ 21,000$ and £24,000, and their powerful hydraulically operated Unimate range priced between $£ 30,000$ and $£ 45,000$. Other machines prominent in the field are the hydraulically operated Cincinatti Milacron T^{3} with a basic price of $£ 40,000$; the electrically operated ASEA IRb6 at $£ 33,000$ and, from British companies, the hydraulically operated Workmaster at $£ 60,000$ and a range of hydraulic machines from Hall Automation priced from $£ 19,000$ to $£ 38,000$. These machines offer servo controlled motion on between 4 and 6 axes and are capable of operation by computer. Lower cost machines, also described as robots, are in existence, such as the non servo-controlled Seiko 700 at $£ 4,250$, but this pneumatically operated machine is without continuous

The Seiko 700 industrial robot. The Seiko range of robots is based on modular design principles, offering the ments Photo courtesy of Airstead In dustrial Systems

Surrounded by work! The ASEA IRb6 industrial robot awaits not the factory hooter as it busily attends a number of machines. Photo courtesy of ASEA Ltd.
positional monitoring, working between mechanical stops, and is not suitable for computer control. In the US industrial market the average sales price is $\$ 72,000$ for servo controlled machines and $\$ 10,000$ for non-servo controlled machines.

The machines to be described, costing a tiny fraction of these prices, make it possible for small businesses, educational establishments, even with their severely restricted budgets, and the home constructor to gain hands-on experience in this vital new technology.

Of the variety of ways of producing controlled mechanical movement those used in industrial robots are:

1) electric motors
2) pneumatics
3) hydraulics
"Failure faces those who do not grasp the opportunities. offered by robotics" . . . The Prime Minister, AUTOMAN 81 May 1981

ELECTRIC DRIVES

Electrically driven systems can use d.c. motors with a servo-controlled pulse-width modulated supply voltage, but more usually stepping motors are used. With the latter, the motor advances by a fixed increment for each pulse delivered to it. At first sight it would appear that a system could be controlled simply by delivering pre-determined numbers of pulses to the motors. This technique has been used on some designs offered to the amateur but repeatability cannot be relied upon, since acceleration and load conditions can result in the motor not responding to all of the pulses delivered to it, and in industrial machines, sensing of actual position is always carried out. Optical shaft encoders on the motor are usual.

Electric motors produce rotary motion. To convert to linear motion, a lead screw-usually of the "ball screw" variety-is used. See Fig. 1. These can be driven directly off a stepper motor, but for rotary motion, a gearbox is required. However, ratios in excess of 50:1 are frequently required and a conventional gearbox of this ratio gives substantial problems with friction and back-lash. Hence the almost universal adoption of the harmonic drive, where the reduction is determined by the ratio of the number of teeth of the larger of two toothed components to the difference in the number of teeth on the components, instead of it being the ratio of number of teeth on the larger to the number of teeth on the smaller, as in conventional drives. With these units reductions of up to 320:1 can be obtained in one stage. Unfortunately they are still very expensive and therefore not suitable for a low cost system (Fig. 2).

Fig. 1. Ball screw for converting rotary into finear motion

Fig. 2. Harmonic drive gears. The elliptical centre revolves, deforming the inner toothed component into contact with the outer toothed component

PNEUMATIC DRIVES

Pneumatic systems operate by passing compressed air into and out of a cylinder with a piston which provides linear motion (see Fig. 3). Air is a fluid with very low viscosity and will therefore move through the tubing and cylinder very fast and cycle times of under a second are realisable; however, gases are compressible, consequently with a given amount
of air in the cylinder the position of the piston will be very dependent on the load being imposed on it. The only way of being sure of positional accuracy is the use of mechanical stops with the air providing substantially greater force against the stop than the load. Where rotary motion is required a lever system, or a rack and pinion, is used. The flow of the air is controlied by solenoid operated valves. Pneumatic systems require a compressor which typically is like an internal combustion engine with inlet and outlet valves and a reciprocating piston driven by electric motor. Being rather bulky, compressors are not usually integral with robots.

Fig. 3. Pneumatic cylinder

HYDRAULIC DRIVES

Hydraulic systems are widely used on account of their ability to transfer substantial power to a moving part where the weight of an electric motor and gearbox would be prohibitive. Cylinders with pistons similar to those designed for pneumatics are employed but a low viscosity oil is used instead of air. Being incompressible very firm positioning and smooth travel is obtained. Here too, the flow of the fluid is controlled by solenoid operated valves. Pumps for oil are very compact devices typically consisting of a pair of electric motor-driven gear wheels in a cavity where oil enters on one side, is trapped between the teeth of the gears and is expelled on the other side of the cavity. With a single pair of gears, pressures well over 100 bar are readily obtained (1 bar $=$ approx. 14.5 p.s.i. $=$ approx 1 atmosphere).

GENESIS ROBOTS

In each of the Genesis robots low pressure hydraulics were selected as the most suitable way to produce the powerful and controlled movements necessary for a machine that is to be useful.

Electric motors in general, and stepper motors in particular, are expensive. With these hydraulic robots a single motor of the low cost permanent magnet variety is sufficient

Fig. 4. Hydraulic system

Fig. 7. 5101 vertical movement

Fig. 8. S101 horizontal movement

Fig. 11. P101. Maximum gripper height is $\mathbf{1 . 0}$ metre

Fig. 12. P101 arm movement

Fig. 6. S101 rotation

to power all of the arm and gripper movements. The motor drives a pump small enough to be incorporated in each of them. In hydraulic machines where the drive is taken directly from the pistons, gearboxes, with their expense or friction and back-lash problems, are not required-giving further advantage over electric systems.

Continuous positional control, which is extremely difficult with pneumatics but easy with electric and hydraulic machines, was made particularly easy to implement on these robots by suitable choice of materials making possible a low cost inductive coupling system monitoring the piston locations.

THE HYDRAULIC SYSTEM

In each machine the hydraulic system is as in Fig. 4, with a pump drawing oil from the sump and pumping via a nonreturn valve into a pressure cylinder in the top of which air is being compressed, thereby acting as a reservoir of power when the pump is switched off which occurs by means of a pressure switch when the required working pressure of 8 bar (120 p.s.i.) is reached. For safety, a pressure release valve operating at 12 bar is included. The symbols representing the solenoid operated valves control the flow of the oil into the cylinders. The return of the pistons is by springs and/or gravity depending on the function of the cylinder. The interconnections are made with small bore flexible polythene and nylon pipes via screw-in fittings. With these fittings no problems with oil leaks have occurred and the machines are very clean in use. No special tools are required for assembling the robots.

Constructor's Note

 Powertran Cybernetios hortwayendustral Estate, Andover, Hants SP103WN. ${ }^{\prime}$ Andover 102641.64455.

Each of the Genesis robots has its arm operating in a different manner. The S101 can be considered in terms of cylindrical co-ordinates with the arm rotating on a pillar which also moves up and down. The arm extends horizontally and there is a gripper which can be rotated by the wrist. See Figs. 5-10.

The P101, whose more complex movements are best considered in terms of cartesian co-ordinates, consists of an articulated arm, rotating on a pillar, corresponding to the human arm with the lower pivot the shoulder and the upper pivot the elbow. The wrist as well as rotating the gripper can also move up and down (Figs. 11 and 12).

The M101 mobile robot carries aboard its high manouverability wheel base an arm moving with spherical co-ordinates. The platform carrying the arm rotates relative to the wheel base. The arm is pivoted at one end so that a small movement of the hydraulic cylinder raising it results in a large movement of the gripper, and the M101 can lift from the floor to table top height. The arm extends and there is a wrist and a gripper, as shown in Figs. 13-15.

Welding robot in action. Courtesy of Hall Automation
Another big brother machine is the Unimate Puma 1000. Photo courtesy of Unimate Ltd.

THE EXHIBITION FOR THE ELECTRONICS ENTHUSIAST

 COMPUTERS• AUDIO• RADIO•MUSIC• LOGIC• TEST GEAR \bullet CB \bullet GAMES• KITSWednesday 11 th November 10 a.m.- 6 p.m. Thursday 12th November 10 a.m.- 8 p.m. Friday 13th November 10 a.m.- 6 p.m. Saturday 14th November 10 a.m.- 6 p.m. Sunday 15th November 10 a.m. -4 p.m.

COMPONENTS • DEMONSTRATIONS• SPECIAL OFFERS • MAGAZINES • BOOKS

Any one of the 17,000 people who thronged the RHS for the Breadbuard exhibition last year will need no introduction to this year's premier show for the electronics enthusiast. They already know all about the demonstrations, bargain sales, bookstalls, games, kits, computers and music machines to be found at BREADBOARD 81. They could name you all the leading companies who were there to see - and to buy from, at fantastic prices.
Even those lucky 17,000 would be surprised to hear that this year we've improved BREADBROAD still further! More stands, more demonstrations and wider gangways to make it ail easier to enjoy!
BREADBOARD 81 is the place to be from November 1lth to 15 th at the RHS Hall. Why not come and find out for yourself how much you missed last year? We can promise plenty to see and do at BREADBOARD 81. Close to Victoria Station and NCP car parking facilities.

Cost of entry will be $£ 2.00$ for adults and $£ 1.00$ for children under 14 yrs and O.A.P.s. ORGANISED BY MODMAGS LTD., 145 CHARING CROSS ROAD. LONDON WC2H OEE.

ROYAL HORTICULTURAL SOCIETY'S NEW HALL, GREYCOAT STREET, WESTMINSTER, LONDON S.W.1.

To avoid queueing, advance tickets will be available from Advance Tickets BB '81. Modmags Ltd. 145 Charing Cross Road, London WC2H OEE.
" Special Advance Booking Price** Adults £1.75 Children under 14 yrs and O.A.P.s 80p
Please mend tickets @ $81.75 . . .$. . tickets © 80p
To:
I enclose PO/cheque for £.......... .
Advance tickets MUST be ordered BEFORE 20th October 1981.

FRANK W. HYDE

LONG DISTANCE COMMUNICATION

From a point far out in space Pioneer- 10 continues to remain in contact with the monitoring stations on Earth. The vehicle has now been in space for 9 years, during which time it has returned very significant data. Some of this data has revealed conditions of the magnetic fields and particles in interplanetary space not previously known to exist or even considered. The vehicle is at the present time between the orbit of the planet Uranus and those of Neptune and Pluto (Pluto's orbit is within that of Neptune for the time being) and will be moving beyond the known planets by 1983.

The Solar Wind has been recorded at the present as still very strong. There were some astronomers who did not think that the effects of this outer fringe of the Sun's atmosphere would be in evidence much beyond Jupiter. Many of us however, are quite convinced that it extended far out beyond the known planets. The charged particle detectors and magnetometers continue to work satisfactorily. It is now suggested that the solar wind will extend out to five times further than originally thought, namely to 25 astronomical units. So far the region of the helipause, that is the area where the solar wind would reach the gas of interstellar space, shows no sign of appearing in the data.

There is still much Pioneer-10 can do. It is still picking up the disturbances caused by flares on the Sun and also the effects of the mysterious 'winds' which come from stars, which are heavier than the Sun. These 'winds' contain a great deal of 'matter'-so much that some stars appear to give up some of their mass and as a result undergo a change of life cycle. The vehicle is travelling at such a speed that it can escape the control of the Solar System. Signals will be received at least until 1986 but there are considerations on which this depends. They are not technological but fiscal. The continuing operation of the earth
stations for monitoring will depend on funds being available to staff those stations. It seems a signal failure that important scientific data should be at the mercy of political systems, almost an act of suicide. However, it may be that in the light of recent achievements and success of the Shuttle and other projects, the importance of the future will be obvious and paramount. At 25 astronomical units the spacecraft will be 25×94^{6} miles from the Sun. At this distance the signals will take 3 hours 28 minutes and 20 seconds to reach the Earth. After leaving the Solar System it will take some 80.000 years to reach the nearest star.

SHUTTLE TO THE RESCUE

One of the benefits of the proposed shuttle operations is the provision of a space platform to operate servicing facilities for the maintenance of satellites. The first situation to arise which needs such a facility concerns the Solar Maximum Mission. This vehicle was launched last year to study the current cycle of Solar activity and the observation of flares. The satellite has lost its ability to point accurately to the Sun. This means that only two of the seven experiments aboard are working. The result is a severe reduction of the amount of data that can be retrieved. A plan is now being studied as to the best way of dealing with this situation.

When the project was mounted it was part of the plan to service in orbit but to bring the satellite back to Earth for refurbishing. To this end it was fitted with a grappling hook that would enable the shuttle to hoist it aboard. It will then be serviced and put back into orbit.

This does raise certain problems because of the high orbit. It is being discussed as a follow up to the performance of the first run of Columbia. The matter requires that the Shuttle shall be able to reach an orbit 570 kilometres above the earth. The need for this high orbit imposes certain restraints, the principal one being the need for extra propulsion. Not surprisingly the mood in this matter is one of excitement because the proven ability to rescue is a very important additional facility for the space age. Chris Rapley of the Mullard Space Science Laboratory of University College, London, says 'we shall have $1 \frac{1}{2}$ to 2 years to get ready for such an operation. We can study the data and will be ready to leap in and use the satellite again!?

The rescue could take place in 1983. Advantage will be taken of this time to improve the whole system and provide against failure due to substandard components.

THE SOVIET UNION

The proposed successor to Salyut-6 is not expected to go into orbit before 1982. The head of Soviet mission control Alexei Yeliseyev was speaking recently at a press conference in Moscow on the results of the last 5 missions of long duration. This project lasted over three years. He said that the Salyut-6 had all the necessary facilities for permanent space stations. The suggestions of the crews were being incorporated in the next version of the vehicle. The stations may alternate between man operated and automatic operation. The next station may be put into
orbit rather further north than hitherto since the cosmonauts have been undergoing arctic training. So far Salyut-6 has not been put in orbit higher than 52° North. This does not even reach the latitude of Moscow. A higher orbit would mean a greater cover of Soviet territory. This is also in accordance with the past work of Salyut-6. Last June the satellite Cosmos 1267 docked with Salyut-6 and has remained in orbit. This satellite is larger than the Soyus units used to ferry cosmonauts. The present combination weighs about 40 tonnes, about half that of Skylab.

It would seem that continual additions of these craft combinations would enable large permanent stations to be operated for it must be remembered that a section, a substantial section in fact, of each Cosmos is a module which makes its way back to Earth. The limitations on the Soviet launchers at the moment restrict the size of the basic units which can be used to assemble a large station.

AMERICA PLANS
 ASPACE BASE

Basically a permanent station would cost America about $£ 1,000$ million. The structure would consist of two Spacelab units. The manning would consist of three to six people who would live aboard for periods of the order of three months at a time. If approval is obtained then the work could begin soon and the station would be ready for launch in 1986. The assembly would start with a Spacelab module and a power pack module with solar cells and batteries. A second unit would follow in a few months. This particular proposal is said to be a 'modest low cost effort'. A more extensive plan would comprise two living units each about twice the size of Spacelab, each with living accommodation for 8 to 12 people. The station would include a rocket hangar containing an orbital transfer vehicle for servicing satellites from 300 to 36,000 kilometres to deal with low orbit craft and geostationary units.

WORLD DATA BANK

The World Data Centre ' A ' for SolarTerrestrial Physics is at Boulder, Colorado. Since the early 30's it has collected information about the solar events such as storms and their effects on the Earth's atmosphere and the magnetic field. Because of the cuts required by President Reagan this centre has been under threat of being closed.

Now, however, it has been reprieved. The protests from scientists all round the World have convinced the US National Oceanic and Atmospheric Administration that it should be kept alive.

TAIL PIECE

This is an addition at time of going to press and so will be a 'late news' spot. The problem of the stuck azimuth platform was overcome and the Voyager is on its way to a rendezvous with the Planet Uranus. When some of the data has been resolved there will be a full report of the findings of the Saturn pass. This and the French plans for an unmanned station in orbit will appear in the next issue of Spacewatch.

THE PE Band-Box is a new concept in musical instruments and is designed to provide, in one portable unit, a trio backing of drums, bass and a chord instrument for the solo musician. Utilising microprocessor technology the unit is user programmable up to a capacity of over 3,000 chord changes between approximately 120 different chords. This number of changes allows the creation of an electronically indexed music pad, stored on secondary battery back up, containing typically 60 separate scores (tunes) depending on the complexity of each score, and the trio can be quickly directed to play individual or groups of scores in any key and at a controlled tempo.

Facility exists for composition of introduction, repeat chorus, and coda sections, including linked multiple score sequences. Separate and mixed outputs are provided for drums, bass, and chord instrument and the addition of a volume pedal and footswitch allows simple control for use in a live performance environment.

BACKGROUND

The musical interests of the author over the past twenty years have borne greatest practical fruits in the playing of the tenor saxophone and whilst many enjoyable hours have been spent performing in the company of other musicians, from trios to big bands, frustrations have arisen in the play-
ing of this instrument which have helped to create and foster the drive to develop electronic musical instruments which assist the task of the solo musician.

Much of this effort has been applied to progressive development of the electronic piano which, in addition to creating a more relaxed and happier pianist, enables the group to play in the region of concert pitch thus avoiding the disconcerting effect of collapsing mouthpieces and bad pitch blowing over the range. In 1980 the first respectable programmable drum machine was created, in the form of the PE Master Rhythm, to deputise for the drummer who is universally never available for practice sessions since he can always find a paying gig and usually claims not to need the practice anyway, but the frustrations continue for the instrumental or vocal soloist who cannot achieve satisfactory practice without the additional backing of a chord structure.

LIVE PERFORMANCE AND RECORDING

Whilst the initial concept of the Band-Box was as a practice instrument the last few years has seen a number of changes in musical presentation which make the unit ideal for live performance. The use of electronic drum machines by club and pub artists was noted at the time of publication of the PE Master Rhythm and the trend continues. The Band-Box can fill out the sound of this form of act to a new dimension without increasing the personnel. Despite some opinions to the contrary many Disco operators have musical ability and are only using the currently accepted medium for musical contact with the public. Singing disc jockies can add a new gimmick to their performance using the Band-Box and bring back some live musical creativity interspersed amongst the records.

The Band-Box, when used in this context, may appear to be aimed at replacing live musicians, but is more likely to encourage the emergence of a greater number of good solo musicians and singers who, given this concept of backing instrumentation, can provide creative entertainment at minimum cost.
The expression of musical creativity with "machines" is illustrated by the fact that rhythm machines and sequencers are currently being used on disc recording sessions, in addition to live drummers, thus producing new areas of sound. In the amateur world a fast growing generation of "electronic musicians" are actively applying creative musical arranging capabilities to multi-track recordings using a whole range of electronic musical instruments with or without playing technique. The Band-Box is ideally suited to this group of

SPECIFICATION

people due to its wide range of voicing and complete programmability. Separate instrumentation can be individually processed to form the special effects normally associated with this technique.

The more musically advanced participants are looking to composition and a number of computer linked systems are becoming available. The Band-Box has a useful role in composition in the development of chord sequences and rhythm patterns along side melodic development by tape recorder or the newer computer-based systems.

TECHNOLOGY ADOPTED

Before proceeding to describe the Band-Box facilities in detail it is useful to take a look at the reasons for adopting microprocessor technology which at first sight may seem to have limited relevance to music systems.

In addition to the musical difficulties that are involved in disc or tape backing systems, the practical difficulties of speed of score selection and the inflexibility with regard to musical intros, repeat sections, codas, and multiple tune sequences, result in a cumbersome operating procedure
which removes much of the pleasure, and limits public" performance to very occasional use. A simple and quick method of score selection is therefore very important, with a clear indication of which score is about to burst forth from the Megawatt amplification system. This type of input keying/display "activity is basic to microprocessor systems which can also readily cope with the increased complexity of recording input and display routines, and the translation of the resulting data into a format capable of maximising efficient use of the score memory which represents a significant proportion of the cost of the system.

It is at this point that the microprocessor controlled system has taken its first rapid departure from the considerably simpler concept of the widely used music sequencer.

CÖNVENTIONAL MUSIC GENERATORS

An instrument could easily be conceived, using the above, in the form of input keys, displays, and a microcontroller which contains the microprocessor, music score memory and monitor memory to dictate to the microprocessor the order in which all actions should be executed, and couple it to a conventional music generation system of either the voltage controlled synthesiser type or the electronic organ top octave/divider/tone forming system. Each of these has certain musical disadvantages which have usually had to be ignored ever since their widespread adoption. In the case of the synthesiser, based. on a number of VCOs, the relative frequency stability and tracking accuracy of each oscillator is very important and difficult to achieve. Given good stability a four note system can be tuned with four oscillators in unison, but immediately controlled waveforms of even simple harmonic variety are required the number of oscillators and therefore cost increases rapidly and the time taken to set the intervals and relative levels leads to an instrument which is impracticable for serious use outside the recording studio.

Whilst the traditional electronic organ system presents an easier polyphonic tuning solution and can provide a high level of accurate harmonics, it is very difficult to use the harmonics in a controlled manner and it is very likely that this technique will disappear over the next few years in all but the cheapest instruments.

THE PROGRAMMABLE SOUND GENERATOR

Integrated circuits have appeared over the last three years under the general heading "Programmable Sound Generators" and have been specifically designed for computer controller interfacing. TV games, door bells, and many amateur computer enthusiasts have made use of the chips which at first sight appear to have potential in serious music applications. The PSG falls. into the traditional electronic organ generator divider category giving high stability tuning of say three simultaneous notes which can be accurately placed independantly in any part of the fundamental frequency range of conventional musical instruments. Crude envelope controllers are also integrated into the same device plus the extra facility of noise generation. Multiple units could be used to provide the harmonic capability of a limited range organ generator system but the same problem of voicing exists.

THE MICRO AS A MUSIC GENERATOR

It is not the purpose of this series to present all the known complexities of microprocessor music generation, it will simply be treated as a means to provide the musical voices required in the bass and chord Instrument sections of the

Band-Box. The two salient points are that the Microcontroller is arranged to act as a multi-channel programmable divider from 1 MHz to produce five independent simultaneous notes, at accurate musical fundamental frequencies, and that the harmonic content of the resulting wave forms is easily controlled within the microcontroller in terms of intervals and amplitude, even extending to the use of non-harmonically related overtones. This combinés and makes more practical the good features of both synthesiser and organ generation techniques, and provides an additional facility which is impractical in either.

BAND-BOX FACILITIES

If a machine of this type is to have any real lasting value, as opposed to the many electronic "musical" gimmick items appearing daily on the market, it must have a wide capability. The operation of such a unit when described in words always appears more complicated than is actually found when hands-on experience is gained. A close perusal of the specification is recommended at this point to give some feel of the capability of the Band-Box, detailed operating procedures will be given later in a step by step format.

The layout of all controls is shown in the photograph and it can be seen that the PE Master Rhythm is an integral part of the Band-Box system, which, in addition to dictating operation of the drums and cymbals, provides control pulses to the Band-Box to determine the playback tempo and to produce twenty-four optional programmable rhythmic patterns to trigger the selected chord instrument. The latter facility is obtained using recording track six of the Master Rhythm, replacing the Long Cymbal originally in this position. The chord instrument will sustain during all measures on which a pulse is programmed and cease during periods of programmed rests. Thus for each drum pattern programmed into the Master, Rhythm a separate chord rhythm is available to give guitar "licks" or keyboard stabbing techniques. Since different drum styles can be programmed into the Master Rhythm, based on $\frac{1}{6}, \frac{1}{3}, \frac{1}{4}$ or $\frac{1}{8}$ beats, a synchronisation control is provided below the beat indicator lamp to match the Band-Box to the style in use.

PLAYBACK

Operation of the Band-Box is organised in such a way that the natural keying procedure results in playback of a selected score. This helps to prevent unauthorised people accidentally or intentionally entering the composition, or recording mode, destroying the scores you will programme and wish to save, and also reduces the amount of thought required at the time of playback selection thus increasing operating speed.

The display panel guides the operator through the various procedures involved, whilst the numeric keypad provides facility to enter score page and line numbers working to an index in the same manner as a book wherein the length of the book is 3,500 lines split into 35 pages each 100 lines long. A line contains one instruction, usually a chord change and length in beats, and a complete score may consist of say 30-80 lines starting at, for example, page 4, line No. 35 which can be noted in a log book.

INSTRUMENTS

Prior to and during playback any instrument arrangement may be selected from four bass voices, which combine two waveforms and two envelopes, plus any of the sixteen permutations possible with the four waveforms and four envelope shapes available for the chord instrument. The bass

Layout of the control panel with the Master Rhythm top left
figure control offers the choice of four selected patterns for bass line movement. Balance of the trio is possible on three level controls and the mixed output has master and pedal volume controls.

PLAYBACK KEY

The key can be changed by rotating the twelve position control and will occur at the time of the next chord change. Playback key is completely independant of that used during composition, automatic transposition occuring within the Band-Box.

CODA KEY

A key is shown below the main key-pad which, when pressed, indicates to the Band-Box that the repeat chorus currently playing is no longer required. This causes playback to enter the coda section, and depending on the program may run to the next Score in a sequence of tunes. Automatic stop occurs as soon as a "Fine" instruction is seen in the programme. Adjacent to the Coda Key is a facility for calling up a blues or tuning sequence which are already permanently recorded in the machine.

COMPOSITION

The user's own chord sequences are entered into the score store of the Band-Box with the sixteen composition, keys above the chord table which contain 120 different chords. The store retains the scores using an internal secondary battery which is automatically on charge whilst the machine is switched on.

In addition to the chord change and length instruction, the score can contain other instructions including automatic relative key changes, 'repeat" and "repeat from" signs, and automatic stop.

SYSTEM DESCRIPTION

A schematic of the complete Band-Box system is given in Fig. 1, which shows a breakdown into three areas. The first area is the input/output system which consists of input keys and controls plus display and music generation output circuits. The system ports act as interfaces between the input/output area and the microcontroller which is shown on the right hand side of this diagram.

The internal operation of the Band-Box relies on the transfer back and forth of numbers which relate to some particular function. For example a switch with four positions is arranged to represent its current position by one of four numbers, $0,1,2$ or 3 which can be put as signal levels into two wires in the binary format $00,01,10,11$ where $1=5$ volts and $0=$ zero volts. As the number of linking wires between two areas increases the maximum number which can be represented increases rapidly to for example 256 (0-255) when 8 linking wires are used. To give a quick description for a group of wires the term "bus" is used, and to describe its size each wire represents a "bit" in the binary system so that an 8 bit bus is capable of transmitting any number which may be recognised between the limits of zero and 255.

THE MICROCONTROLLER

The Band-Box Microcontroller is constructed around an 8 bit microprocessor which at any moment is looking at (reading) or generating (writing) one number on an 8 bit data bus which is used as a common link between various memory positions in the microcontroller and the input/output ports.

When the "Reset" key is pressed any microprocessor is designed to first read the number in one fixed position within a memory described as the "monitor". This device in the case of the Band-Box is a 2 K EPROM which means that it is a memory which can be prepared on suitable equipment to store 2,048 8 -bit numbers which will not be lost during normal operation.

Once the microprocessor has read the first number a continuous routine (program) automatically commences since the first number in the monitor tells the microprocessor what to do next. This will be a sequence of events which includes the placing of a number, corresponding to the position of a switch as described earlier, onto the data bus so that it may be read by the microprocessor. The numbers in the monitor, most of which are coded instructions for the microprocessor, will determine what should be done next dependent on the numeric value of the switch position.

Of greatest importance to remember is that the
microprocessor is only capable of one action at a time, such that a serial sequence of events has to be very carefully thought out with many branches to give all the functions required of a system. The great value of the micro-technique then arises from the speed at which the sequence of events can be carried out. Whilst the EPROM used to make the monitor is a standard microcomputer device, as are all other parts of the microcontroller and the system ports, it should be appreciated that the way in which the Band-Box functions is entirely controlled by the program which is put into the monitor EPROM and at this point it becomes the one

Fig. 2. Circuit of the Microcontroller

E67t5

COMPONENTS

MICROCONTROLLER BOARD

Resistors	
R1	470
R2	6 k 8
R3	10 k
R4	100 k
R5	270
R6-11	10 k
R12	470
R13	820
R14	157 W
R15-16	4 k 7
All resistors	0.25 W 5%
indicated carbon film unless otherwise	

Potentiometers
VR1
1 k horizontal preset 100 mW

Integrated Circuits	
IC1	6502
IC2	$74 \mathrm{LSO4}$
IC3	74 LS 00
IC4-5	74 LS 139
IC6	$74 \mathrm{LSO4}$
IC7	4069
IC8-15	6514
IC16	$2516^{* *}$
IC17	LM340-5

**The EPROM requires to contain the special program and is available, as are all parts of the project, from Clef Products (Electronics) Limited, 44A Bramhall Lane South, Bramhall, Stockport, Cheshire SK7 1AH.

special custom made device in the system.
Four blocks of CMOS RAM are shown in the Microcontroller, the major part of which forms the score store and holds the chord sequences, including the instructions mentioned earlier, in a coded format represented by numbers between 0 and 255. Random access memory (RAM) can store data sent to it by the microprocessor and any new data received replaces that previously held. The use of CMOS RAMs ensures that when the Band-Box is removed from the mains the chord sequences are retained using a very low (about $1 \mu \mathrm{~A}$) current drain from a secondary battery mounted on the Microcontroller p.c.b.

A 1 MHz oscillator drives the complete Microcontroller and has a small degree of frequency adjustment available to act as a tuning control. The remainder of the system consists of address decoding logic which will be described later, and is provided to determine which one element of the system is either reading or writing data at a particular moment.

SYSTEM PORTS

Three input and four output ports are used in the BandBox. The input ports transmit switch information onto the data bus when requested by the Microcontroller whilst the output ports latch information, which is only available from the Microcontroller for less than $1 \mu \mathrm{~s}$, for use by other parts of the Band-Box. Decoding circuitry is provided to activate each port at the appropriate moment determined by the Microcontroller.

INPUT/OUTPUT SYSTEM

Signals for the multiplexed 8 digit display are also used to scan the complete keypad system. An 8-bit port drives the display segments, whilst 3 bits of output port 4 sequentially select each display and key column via a decoder. Keypad entry is detected on half a six-bit input port, the other half noting the display and key column selected. The fourth bit on output port 4 pulses an l.e.d. on all beats.

Input port 1 transmits information from three four position switches ($3 \times 2=6$ bits) plus two states for the bass voice selector and two states (on/off) for the "Coda" key. This combines to make an 8-bit port.

Input port 2 combines the twelve position key selector with two Master Rhythm inputs, the first a continuous chain of pulses defining the tempo and the second signalling that the "Play" key has been pressed. Output port 1 provides six bits to define the bass instrument waveforms via the digital to analog converter plus a pulse to switch off the Master Rhythm on auto-stop, and a trigger pulse for the bass. Output port 2 provides eight bits to drive a DAC to produce the chord instrument waveform.

> Reprints of the PE Master Rhythm, published in the December 1980 and January 1981 issues of Practical Electronics, are available from Clef Products (Electronics) Limited, 44a Bramhall Lane South, Bramhall, Stockport, Cheshire SK7 1AH, Price E1.00 inc. VAT and p \& p.

MUSIC GENERATION

The music sounds are generated by converting the numbers presented at output ports 1 and 2 into analog voltages thus producing stepped waveforms which require filtering to remove the steps. More detail will be given on this technique later, but the schematic shows the two digital to analog converters followed by filters and preamplifiers.

Switched Envelope circuits drive the DACs giving a very simple system of music sound generation.

SYSTEM LAYOUT

The input/output system is contained on a single printed circuit board measuring 10 in $\times 9$ in plus a display and keypad board 8 in $\times 5 \mathrm{in}$, whilst the Microcontroller is completely self contained on a $7 \frac{1}{2} \mathrm{in} \times 4 \frac{1}{2} \mathrm{in}$ p.c.b. The Master Rhythm uses two p.c.b.s mounted in a metal case $8 \frac{1}{4}$ in x $5 \frac{1}{4}$ in $\times 3$ in and it is recommended that this unit is built and tested before proceeding with integration into the remainder of the Band-Box.

MICROCONTROLLER OPERATION

The complete circuit of the Microcontroller is shown in Fig. 3. Here an 8 bit data bus with lines DO and D7 links the microprocessor IC1 to CMOS RAMs IC8-13, the monitor EPROM, IC16, a spare extension EPROM position, and the system port which links to the system board by a flexible lead. IC1 controls what data is present on the data bus at any given moment either by instructing one of the memories or the system port to provide the data (read) or itself placing the data on the bus and instructing one of the other elements to receive it (write). To define which device is to be involved the microprocessor uses an address bus which since it has 16 bits (lines AO to A15), can differentiate between 65,536 possible addresses. In the Band-Box application over 48,000 addresses are unused but could locate further memory if required giving another 750 tunes which is beyond most people's requirements.

In order to decode the required addresses some address lines go direct to memories and the system port whilst others go to the IC4 and IC5, containing, dual decoders which reduce the large number of addresses to smaller blocks. For those interested in the addresses concerned (memory map) more detail will be given at the end of the series but it is not necessary to understand this in constructing the Band-Box. Address lines go positive for a ' 1 ', decoders give a -ve (0 volt) pulse when they are being addressed. \bar{P} is a negative pulse from decoder IC4 which appears whenever devices on the system board are to be selected.

Rear view of control panel

CLOCK AND AUTO RESET

Both these functions are combined in IC2, two inverters acting in conjunction with VR1, R1, R2 and C1 to define the clock frequency which also determines musical pitch, and the remaining four inverters carry the reset signal. This is a negative pulse (from +5 volts) which must appear at pin 40 of IC1 to initiate operation of the complete cycle as discussed earlier. R3 and C2 provide a time constant to ensure that a reset pulse occurs when mains is applied to the BandBox whilst D1 isolates this action on switch-off. The RST connection on the system port connector leads back to the reset button on the System Board and simply shorts to ground when pressed for subsequent reset actions.

OTHER CONTROL PULSES

The only remaining connection to the micro which is used in this application is $R \sqrt{W}$. This is +ve when the micro wished to read or receive information and ground when sending or writing. In order to obtain clean transfer of data the first half of any clock period is reserved for establishing the address required and the second for actually transferring the data.

Consequently one of the clock signals $\emptyset 2$ (out) is combined with $R \sqrt{W}$ to give a pulse during the second part of the clock cycle when $\emptyset 2$ (out) is high. Simple NAND gates in IC3 achieve this to give - ve write or read pulses which have been labelled $\overline{\emptyset 2 W}$ and $\overline{\emptyset 2 R}$ respectively. When combined later with a decoded address, these pulses make a clear statement "write to" or "read from" this "address".

ISOLATION CIRCUITRY

Since a fundamental requirement of the Band-Box is to store information without any loss when mains is removed, a secondary battery back-up is provided on the microcontroller board. The CMOS memories are controlled by -ve chip select pulses $\overline{\mathrm{CS}}$, provided by the address decoding, and receive the $\bar{\varnothing} 2 W$ pulse when new information is required to be written into the memories.

When the system is in the off-mains condition the battery provides the normal +ve supply and it is also necessary that $\overline{\mathrm{CS}}$ and \bar{W} are held at this level. The combination of IC6 and IC7 accomplish this without loss of data at the changeover points between mains and battery.

POWER SUPPLY

The complete Microcontroller, including memories, takes less than 200 mA from an unregulated 12 volt supply. An onboard regulator IC17 in combination with D4 reduces this to 5 V7, which after the drop through D2 further reduces to +5 volts nominal. R13 provides charging to the secondary battery when the unit is receiving power from the mains.

MICROCONTROLLER CONSTRUCTION

The photograph illustrates the single board assembly, which is mounted on a double sided printed circuit board, consisting of 6502 Microprocessor, eight 65141 K X4 bit CMOS RAMS, a 2516 EPROM, six logic i.c.s, system port output socket and a secondary battery with power regulator and charging circuit.

Assembly of the board requires care due to the large number of tracks present and it is recommended that a 1 mm soldering iron bit be used for most of the soldering operations with 22 s.w.g. solder.

Next month: Assembly of the Microcontroller single board will be described together with more circuit description.

Digital Design Techniques...

Tom Gaskell b.A.(HONS) ELEC.ENG.

Part4 Sequential Logic

1N THE series so far we have mainly been looking at COMBINATIONAL logic; the various inputs are combined to produce one or more outputs, and these outputs are totally dependent on the logic states of the inputs at that time. (Time delaying circuits are a slightly different case than this, of course.) With the 'latch' circuit, because of its 'memory' type of capability, the output of the circuit is dependent not only on its inputs at that particular moment in time, but also the state of its inputs IN THE PAST. For example, looking at the NAND gate latch of Fig. 4.1a, the two inputs may currently be at logic 1 ; if A had at some time in the past been at logic 0 , then 0 would be 1 ; or if B had been at $\operatorname{logic} 0$, then Q would be 0 .

SEQUENTIAL CIRCUITS

This introduces a whole new world of logic circuitry, known as 'SEQUENTIAL' logic, which involves the use of basic 'memory' type circuits connected together in various combinations and arrangements. The basic latch circuit of Fig. 4.1a is also known as an R/S flip-flop; input A can be considered the 'set' input, causing Q to go to 1 when activated, and B the 'reset' input, causing Q to go to 0 when

E0679

EG 680
Fig. 4.1b. Clocked R/S flip-flop

Fig. 4.1e. Inverting functions on some of the inputs
activated. It may be that we wish to first 'set up' the conditions of the two inputs, set and reset, and then activate the flip-flop into whatever states these inputs dictate. This can be done by 'enabling' the inputs with NAND gates, as shown in Fig. 4.1b. This arrangement is known as a 'clocked' R/S flip-flop; until the 'clock' input is taken to logic 1, any variations of the two inputs will have no effect on the Q and $\overline{\bar{Q}}$ outputs. Note that set and reset actions occur when these inputs are at logic 1 , not logic 0 as before, due to the inverting action of the extra NAND gates.

The problem with this circuit is that it can be in an indeterminate state. If both the set and reset inputs are at logic 1 at the same time, then the clock input is taken to logic 1 and back to logic 0 , the Q and $\overline{\mathrm{Q}}$ outputs initially both go to logic 1 , then to an indeterminate condition which cannot be controlled; Q could be 0 and $\overline{\mathrm{Q}}$ could be 1 , or Q could be 1 and $\overline{\mathrm{Q}}$ could be 0 . To remove this uncertainty we can make sure that the set and reset inputs are never at the same logic state, by adding an inverter and using only one input to the system. This single input is now the 'Data' input, and hence the circuit is known as a ' D ' type latch, or ' D ' type flip-flop. See Fig. 4.1c. The clock pulse should be as short as possible normally, because any changes of the logic state of the D input which take place while the clock pulse is at logic 1 will be transferred directly to the $\overline{\mathrm{Q}}$ output, and inversely to the Q output. In practice this problem is usually got round by adding extra internal gates to the i.c. which ensure that the output changes of state only occur when the clock input changes from 0 to 1 (or 1 to 0 in some i.c.s) and no change of output state can occur when the clock input is at a fixed logic level of either 0 or 1. The flip-flop is then known as an 'EDGE TRIGGERED' type. We can add extra inputs, set and

Fig. 4.1c. Clocked 'D' type flip-flop
reset, to over-ride the logic states produced by the D input and clock input. (The circuitry becomes very complex; that's why we're not showing it in detail here!) The result is the 'edge triggered' D-type flip-flop, with set and reset. Its circuit diagram symbol is shown in Fig. 4.1d.

Note that all the inputs to the device in Fig. 4.1d are shown connected directly to the flip-flop, meaning that all operations occur on the positive going edge of the clock, i.e. when logic 0 changes to logic 1 ; also set (or reset) is effected when the S (or R) input is at logic 1 . (Set and reset functions are usually independent of the clock, as they over-ride any 'clocking' action.) If a circle is added on the diagram to an input connection, it indicates that the change occurs on the negative going edge of the clock pulse, or the device is set (or reset) when the relevant input is at logic 0 . This arrangement is shown in Fig. 4.1e.

MASTER/SLAVE FLIP-FLOPS

Still more sophistication can be added to the basic, or "master" flip-flop circuit by adding a second "slave" flip-flop into the i.c., which is connected in different ways dependent on the device in question. Frequently, Master/Slave techniques are introduced to prevent any danger of the outputs being changed due to inputs changing together, or due to any other simultaneous logic changes. The best known Master/Slave device is the "Master/Slave J/K flip-flop", the symbol for which is shown in Fig. 4.2a.

Fig. 4.2a. The Master/Slave J/K flip-flop symbol
Most TTL versions of this circuit use both edges of the clock input pulse to activate the device. On one edge the logic states on the J and K input pins are transferred into the first (Master) flip-flop, and on the other edge the outputs of the master flip-flop are transferred into the second (Slave) flip-flop, hence causing changes in the Q and $\overline{\mathrm{Q}}$ outputs.

In most CMOS devices, the flip-flop uses only one edge of the clock input, but effectively in two stages. When the relevant edge of the clock input occurs the contents of the Master flip-flop are transferred to the Slave, and hence become available as Q and $\overline{\mathrm{Q}}$ outputs. These outputs then

EG684
Fig. 4.2b. Block diagram of the J / K Master/Slave flip-flop
feed back to, and are combined with, the J and K inputs using logic gates, and the outputs of these combining circuits are then fed into the Master flip-flop. See Fig. 4.2b. The slight delay between these events is created by adding extra logic gates between the clock and the Master flip-flop, the propagation delay of these extra gates being long enough to give the Slave and combining gate circuitry time to change before the Master flip-flop does.

The combining feature is used to prevent any indeterminate states occurring, as in the case of the R/S flip-flop, due to both J and K inputs being at the same logic state simultaneously. It is arranged that if J and K are both at logic 1 when the clock pulse occurs, the two outputs will change state from whatever they were in prior to that clock pulse, and if J and K are both at logic 0 the output will not change state when a clock pulse occurs. Also, if $\mathrm{J}=1$ and $\mathrm{K}=0$ the flip-flop will set; i.e. if Q was O it will go to 1 , and if it was 1 it will STAY AT 1. If $J=0$ and $K=1$, the flip-flop will reset, i.e. if Q was at 1 it will go to 0 and if it was at 0 it will STAY AT 0 . This is quite different to the D-type flip-flop and is a very useful feature.

FLIP-FLOP TRUTH TABLES

We can conveniently draw out truth tables to show the operation of flip-flops; they are similar to the truth tables that we have already used to represent logic gates and combinational circuits, with additional columns to show the effects before and after clock input edge changes. See Figs. 4.3a and 4.3b. The action of the over-riding set and reset inputs has not been included in these diagrams for simplicity; in practice, they always over-ride any Q and $\overline{\mathrm{O}}$ output state, regardless of any changes of state of the clock. For example, if $S=1$, then $Q=1$ and $\bar{Q}=0$ no matter what. If $R=1 ; Q=$ 0 and $\bar{Q}=1$. If both R and S are 1 , then usually $Q=1$ and \bar{Q}

Fig. 4.3a. Truth table for ' D ' type flip-flop (positive edge triggered)

INPUTS		OUTPUTS	
CLOCK	0	0	$\overline{\mathrm{Q}}$
-	0	0	1
$-\square$	1	1	0
\square	0	NO CHANGE	
\square	1	NO CHANGE	

EG6B5

$$
\Gamma=\text { CLOCK CHANGES FROM O TO } 1
$$

$\square=$ CLOCK CHANGES FROM 1 TO O

BEFORE CLOCK GOES FROM OTO 1	BEFORE CLOCK GOES FROM OTO 1			AFTER CLOCK GOES FROM O TO 1
CURRENT STATE OF OUTPUT	INPUTS			NEXT STATE OF OUTPUT
0	CLOCK	J	K	a
0	[0	0	0
0	Γ	0	1	0
0	Γ	1	0	1
0	$\sqrt{ }$	1	1	1
1		0	0	1
1	-	0	1	0
1	$\sqrt{ }$	1	0	1
1	5	1	1	0
x	-	x	X	NO CHANGE

$X=$ ANY STATE
Fig. 4.3b. Truth table for the J/K flip-flop (positive edge triggered)
$=1$; the exact way in which set and reset functions operate varies from i.c. to i.c., but most work along these basic lines.

There are other types of flip-flop, but the R/S, D-type and J / K are by far and away the most frequently used, and we shall stay with these for the rest of the series.

DIVIDING AND COUNTING

We can very easily connect flip-flops to give a "divide by two" function; in other words the output logic state changes once for every two changes of the input logic state. See Fig. 4.4; the circuits are shown with a stream of pulses coming into them.

The CMOS type 4013 is a 'dual device', two in each package

E6880]
Fig. 4.4. 'Divide by two' circuits The CMOS type 4027 is a 'dual device'

In the D-type circuit, if we assume that initially $\mathrm{Q}=0$, then \bar{Q} must be 1 , so $\mathrm{D}=1$. When the clock input goes to logic 1 , the ' D state' is transferred to the Q output, so Q becomes 1 and \bar{Q} becomes 0 . When the clock input next changes to logic 1 , the 0 now present on the D input is transferred to the Q output, so $\overline{\mathrm{Q}}$ goes back to 1 again; and so on.

The J / K circuit is even simpler; Fig. 4.3b showed that if both J and K are logic 1 , then the output states simply reverse from the logic state that they were in before the clock input went to 0 . So on every clock change from 0 to 1 , the Q output reverses state, and, of course, the $\overline{\mathrm{Q}}$ output is the inverse of the Q output.

Since the circuit activity only takes place on one edge of the clock input, the output is not dependent on the input waveform as such; the input can be a square wave or pulses of any sort; the output will always be a 'square wave' of half the frequency.
 56589

Fig. 4.5a. Cascaded divide by two circuits

E6690 Fig. 4.5b. Waveforms obtained from cascaded divide by two's

These circuits can be connected together in series, or 'cascade', of course, to divide by $4,8,16,32,64$ or any power of the number 2. An interesting effect happens if we connect some divide-by-two circuits up this way, and then look at the $\overline{\mathrm{Q}}$ outputs of all the flip-flops in the circuit simultaneously. Fig. 4.5 a shows the circuit, and Fig. 4.5b shows the waveforms that we can obtain from it. A table can be made up to show all these changes together; each time the input is at logic 1 we can write down the states of the four outputs, A, B, C and D, by looking up the vertical columns drawn in Fig. 4.5b. For example, at the first input pulse, the output states are 0000; at the second 0001, at the third 0010, etc. Table 1 has been labelled with numerical

D	C	B	A	Numerical equivalent
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	10
1	0	1	1	11
1	1	0	0	12
1	1	0	1	13
1	1	1	0	14
1	1	1	1	15

Table 1: Table of outputs obtained from cascaded divide-by-two circuits
equivalents for each set of logic states, with the 0000 state being zero. This table may well be instantly recognisable to you; it's a sequence of "Binary Numbers", i.e. numbers which use the base 2, instead of the base 10, which we use for our conventional number system. We'll be looking at numerical systems later in the series. Sufficient to say that at every input pulse the binary number increases by one, so the circuit of Fig. 4.5a is known as a "Binary up-Counter" or sometimes a "Binary Divider" since it is a series of divider circuits connected together.

An i.c. can contain many more than just four flip-flops, hence counters or dividers are available with many stages in them; typical and popular devices are the negative edge triggered 4020, a 14 stage device (although all these stages cannot be connected to some are connected internally only), and the negative edge triggered 4024, a 7 stage device. With all these counters, note that when the maximum count has been reached (all digits $=1$), the next input pulse sets all outputs to 0 , and the count continues again from zero.

SEQUENCING

It may be that we want to count in decimal, i.e. our conventional number system, rather than binary. Such a circuit would have, say, 10 outputs numbered 0 to 9 . On the first input pulse, output number 0 would go to logic 1, and the rest would be at logic 0 . On the second input pulse output 0 would go back to logic 0 , output 1 would go to logic 1 , and the other outputs would be at logic 0 , and so on. This arrangement would ensure that only one output would ever be at logic 1 at a time, after the last one had been at logic 1, the first one would start again 'ad infinitum'. This circuit is sometimes known as a 'sequencer', because of the effect of 'moving' a logic 1 'along' its output at every input clock pulse.

A decimal counter can be made by adding logic gates to the outputs of a binary counter to decode the binary numbers into the decimal codes just described. In practice, however, decimal counter i.c.s are readily available, and have the decoding gates interconnected between the flipflops, internal to the i.c. By far and away the most regularly used of these is the CMOS 4017; this is a decade counter, with a reset function which resets all the outputs of the counter to logic 0 when taken to logic 1 , after which the count must start again from the beginning. The waveforms available from this device are shown in Fig. 4.6. As well as

Fig. 4.6. Waveform diagram for the 4017 decimal counter
the normal outputs there is a 'carry out' facility. This is an output which goes to logic 1 when output 9 return to logic 0 , then returns to logic 0 again later in the sequence; if connected to the clock input of another 4017 device it will cause this device to count up one for every ten input pulses; in other words, it will have cascaded the two counters to form a '2 decade' counter capable of giving an equivalent count of 99. This cascading arrangement, of course, can also be implemented very easily with binary counters by connecting the last output of one device to the clock input of the next one.

The 4017 also has a 'clock enable' input, which prevents any changes taking place (apart from reset) when held at logic 1; for normal operation this input should be held at logic 0 . A final point to note about this i.c. is that it has builtin current limiting on the outputs, each output being able to directly drive an l.e.d. if supplies of 9 V or less are being used; last month's article gave the details of this, of course.

TRIGGERING EDGES

So far we have mostly considered devices which are triggered by the positive going edge of an input or clock pulse. This, in the most case, is what is used, but BEWARE! Some devices are triggered on the negative edge, for example the 4020 and 4024 counters mentioned earlier. It is important to check which edge is used to trigger on; and, for that matter, other inputs too, before designing with i.c.s for the first time. Manufacturer's or Distributor's data sheets are good sources of information.

SELF-RESETTING

It may be that a counter, decimal or binary, is required to finish counting and start again at zero before it reaches its maximum count. For example, a sequence of six counts only may be wanted from a 4017, with the seventh input pulse causing it to 'start again', turning on output 0 . This is very easily achieved by connecting the next output after the last one wanted, to the reset pin, either directly or via gates if a more complex facility is required. For example, if output number 6 of a 4017 is connected back to the reset pin, then the sequence will run: $0-1-2-3-4-5$, and then as soon as output 6 goes to logic 1, the 4017 will be reset, and pin 6 will be forced to go back to logic 0 again, with the counter starting again at count 0 . The pulse out of output 6 , then, will be very short indeed; only as long as it takes for the device's reset circuitry to operate, which is less than one microsecond! In most applications this small pulse can be disregarded and the counter appears to be counting: $0-1-2-3-4-5-0-1-2-3-4-5-0-1-2$ etc. Although this example is for a decimal counter, a binary counter can also be reset in similar ways, although frequently it has to have several of its outputs combined using gates, in order to reset the device when a certain combination of output states occurs.

Let's now look at a practical example of a 4017 counter in use: the 'DISCO HAT'. The ' 7 -segment' l.e.d. displays that we shall use are very simple display devices, working on the principle that numbers, and, as we shall see, some letters, can be displayed as combinations of seven bars of lights, laid out in the familiar 'figure-of-eight' pattern, as shown in the component layout drawings. Each bar is lettered a, b, c, d, e, f, or g for convenience, with a common connection between all the anodes of the l.e.d.s making up the display. (We'll look more extensively at display types, and the driving of them, later in the series.)

THE DISCO HAT

If you've been out to a dance or disco recently, then you've probably seen a number of people wearing caps which have half a dozen flashing lights set into them. Well . . . here's a way of going one step better, with your own name being spelt in lights on the top of your head!

The disco hat in essence is a headband designed to fit any sort of cap or hat that you wish. One 7 -segment display is used for every letter of your name, with a small battery and some circuitry to drive the displays. Simply switch on the hat, and it spells out your name; letter by letter at first, then in full, over and over again. In this case, because it was made for a friend, the hat spells ' $\mathrm{t}-\mathrm{i}-\mathrm{n}-\mathrm{a}-\mathrm{tina}-\mathrm{t}-\mathrm{i}-\mathrm{n}-\mathrm{a}-$ tina -t - $\mathrm{i}^{\prime \prime}$ etc, etc, until the dancing gets the better of you or the battery gives up! On the other hand, if you're the DJ the project would make a great display on the front of your console, with two or more complete units giving the whole disco name.

The hat is based on the idea that you can use ordinary 7segment displays, normally used for displaying numbers, to display letters too. Some letters are difficult to reproduce,
and some impossible, so if you fall into the category of having a 'difficult' name in this respect you'll have to go for initials, or a nickname! Each 7-segment display can be 'programmed' to display the particular letter required by putting the correct combination of resistors on the board. Table 2 shows the letters available and the resistor positions you'll need to generate these letters. Name lengths of up to 9 letters can be catered for, although you head will have to be quite large to cope with it!

CIRCUIT DESCRIPTION

The complete circuit diagram of the Disco Hat is shown in Fig. 4.7.

IC1 is a low-power CMOS timer, connected to oscillate at approximately 2 hertz (2 cycles per second). This oscillation frequency is determined by R1, R2 and C3; varying any of these will vary the speed at which the spelling out of the name will take place. The positive supply for IC1, IC2, the timing resistor R1, and the reset pin of IC1, is derived from the main 9 volt supply rail via diode D1 and a smoothing capacitor C 1 ; when the displays are switched on, sudden surges of current on the supply rails can cause malfunctions of IC1 and IC2 and this D1/C1 combination helps to combat this potential interference.

E6710
Fig. 4.7a. Control circuit diagram

Fig. 4.7b. Display circuit diagram

Pin 3 of IC1, the output pin, drives into the clock input of IC2 the 4017 decode counter, the outputs of which are used to drive the displays via suitable circuits to boost the low current outputs of IC2 to a high enough level to drive the displays satisfactorily. (The 4017 cannot drive all the I.e.d.s in each 7-segment display, directly, at once.) After each of the letters has been lit individually by IC2, the next IC2 output is used to turn on TR1 via R3. This lights up all the displays at once, showing the name in full. The next IC2 output after that one is connected back to IC2 pin 15 , the reset pin. So, after displaying the name in full, IC2 resets itself and starts spelling the name out again, 'ad infinitum'.

CONSTRUCTION

The circuits of Fig. 4.7 are constructed on Global's 'Matchboards' with the layout of components on the various cut up pieces of Matchboard shown in Fig. 4.8. The boards should be cut as shown, so that the control circuit fits on the first piece, and each letter then has its own small part of a board. One Matchboard will enable you to build the control circuit and two letters, with a small piece left over which you can use for the battery and switch board at the end. Each subsequent Matchboard that you buy will provide for a further four letters.

Build up the control circuit board and the required number of letter display boards as shown in Fig. 4.8, but for the time being do NOT put in the 'tie wires' on the boards. Build the battery and switch board using any suitable left over piece of board. Exactly how you wire this board will depend on the switch used; the layout shown is typical for a large slide switch. The only requirement is that this board switches +9 volts from the battery to the top rail, and connects 0 volts (the battery negative terminal) to the bottom rail. Finally, insert all display board resistors to make up the letters required; see Table 2 for details of what to put where.

[667114 Fig. 4.8a. Control circuit board layout

[007121A
Fig. 4.8b. Display board layout

Fig. 4.8c. Battery and switch board layout

LETTER	RESISTORS NEEDED ON DISPLAY BOARD (See Fig. 4.8b)
A	a, b, c, e, f, g
b	c, d, e, f, g
C	a, d, e,f
or c	d, e, g
d	b, c, d, e, g
E	a, d, e, f, g
or e	a, b, d, e, f, g
F	a, e, f, g
G	a, c, d, e, f
H	b, c, e, f, g
or h	c, e, f, g
1	b, c
or i	c
J	b, c, d, e
L	d, e, f
N	a, b, c, e, f
or n	c, e, g
0	a, b, c, d, e, f
or o	c, d, e, g
P	a, b, e, f, g
q	a, b, c, f, g
r	$\mathrm{a}, \mathrm{b}, \mathrm{e}, \mathrm{f}$
S	a, c, d, f, g
t	e, f, g
\cup	b, c, d, e, f
or u	c, d, e
Y	b, c, d, f, g

Table 2. Table of letters available and resistor positions needed.
Upper and lower case letters can sometimes be reproduced; choose whichever looks most in keeping with the letters on each side of it.
For ' Z ', you could use a, b, d, e, g, but it's too much like a ' 2 ' really!
For ' M ' and ' \mathbf{W} ', you could try a ' 3 ' (i.e. a, b, c, d, g) and turn the whole display board round on its side, but mounting it on the piano wire frame would be more difficult.

Take two lengths of $16 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. or $18 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. piano wire, clean them up with fine sandpaper, and then bend to suit the profile of the head, the hat used, and the number of boards, ensuring that along the length of each board the piano wire is straight, with the bends coming in between boards. Look carefully at the photograph to clarify this point. When the wires have been adjusted to fit correctly (it'll take a few tries to get it right!) cut off any excess; then 'tack' solder each

board to the piano wires in the centre of its top and bottom tracks only, to get the positioning correct. Now is the time to add the 'tie wires' to each board, as shown in Fig. 4.8. These are ordinary single core wire links, fed through the board as shown, then wrapped over the piano wires to secure them as firmly as possible. These tie wires should then be soldered to the Matchboard tracks, and to the piano wires, and the piano wires should be soldered to the Matchboard tracks along the whole of their lengths.

The whole assembly is made very strong indeed by this procedure, and the piano wires are used to distribute the power supply to all the boards. Capacitor C4 can now be added; this fits between the battery and switchboard, and the last display board, and has its positive end soldered directly to the top piano wire and the negative end soldered to the bottom piano wire.

The wires from the output of IC2 can now be adided. The $2 k 7$ resistor on the first display board connects to IC2 pin 3, (the first output of IC2). The 2 k 7 resistor from the second display board connects to IC2 (the second output of IC2).

COMPONENTS
Resistors

Resistors	
R1	$47 k$
R2	$10 k$
R3	$2 k 7$
Plus	$2 k 71$ off per letter of the name
	$1 k 5$ up to 6 off per letter of the name
All resistors $\frac{1}{4} \mathrm{~W}$	5% carbon

Capacitors

$\mathrm{C} 1, \mathrm{C} 4$	$220 \mu 16 \mathrm{~V}$ elect. (2 off)
C 2	10 n polyester
C 3	$10 \mu 25 \mathrm{~V}$ elect.

Semiconductors

D1	1N4002
TR1	BFY 50
IC1	ICM 7555
IC2	40178
Plus	1N4002 1 off per letter of the name
	BC548 1 off per letter of the name
	FND 5077 -segment display (common
	anode)
	1off per letter of the name

Miscellaneous

B1	PP3 9 V high power inot alkaline see text)
S1	Any single or double pole switch
PP3 connector	
GSC Matchboa	off for up to 6 letters, 3 off for up 9 letters)
no	

The $2 k 7$ resistor from the third display connects to IC2 pin 4 (the third output of IC2), etc., etc., Refer to Fig. 4.8 for all other IC2 output pin numbers. After the last display has been connected to IC2 connect R3 to the next IC2 output pin, and connect pin 15 of IC2 to the next output after that. To clarify this, let's look at the example of $t-i-n-a$:
"T"' (first display) 2 k 7 resistor connects to IC2 pin 3 " l " (second display) 2 k 7 resistor connects to IC2 pin 2 " N " (third display) 2 k 7 resistor connects to IC2 pin 4
" A " (fourth display) $2 k 7$ resistor connects to IC2 pin 7 R3 (on the control circuit board) connects to IC2 pin 10 IC2 pin 15 connects to IC2 pin 1.

If you are using the full capability of 9 letters, connect IC2 pin 15 to the 0 volts supply line (Vss); IC2 will cycle through from the last output to the first one again without needing to be reset each time. Finally, the 'All Light' points on the display boards (i.e. the cathodes of the IN4002 diodes) should be connected together in parallel, and then connected to the collector of TR1 on the control circuit board.

Check for short circuits, solder splashes, and wiring errors, then add a battery, switch on, and you should be away! If your name is very long, and the battery weak, the Disco Hat may 'jump' letters from time to time, or behave erratically, in which case increasing the values of C1 and C4 will help. Beware of alkaline batteries though; although they last a very long time, they have a relatively high output impedance, and in this particular circuit they can give poor results with some name lengths.

MILLINERY

The whole purpose of this 'mini-project' is to enable you to wear the gadget as described. Here's where, in many cases, it's time to hand the job over to the lady of the household! It really is up to you how to fit the unit into the hat, but to get you started, here's how I did it:

A piece of felt was cut large enough to cover the whole front of the electronic assembly and overlap 5 mm over the back. Holes were then cut for all the displays and the on/off switch to poke through, and then the felt overlap at the back was glued to each board. (Use COPYDEX or EVO-STICK.) Be careful not to let any glue touch the tracks near IC1 or IC2 as this could affect operation of the high impedance CMOS inputs. Leave an area unglued around the battery, to enable you to change it easily.

The battery was held on to the board using double sided self-adhesive foam pads, e.g. 'Sticky fixers'. 'Velcro' was glued to the space in the middle of the back of each board, again being very careful not to get glue on the tracks of IC1 and IC2. A matching band of 'Velcro' was sewn to the cap; in this case an "Army and Navy" peaked cap, and the felt covered "electronic headband" assembly simply pushed on to the cap, to be retained by the 'Velcro'. It sounds crude, but it works a treat! Do feel free to come up with other ideas though.

NEXT MONTH: We'll look deeper into sequential circuits, more complex devices, and synchronous/asynchronous working. We'll look at problems that can arise when designing sequential circuits, and ways to get round them. And, of course, another mini-project!

To tie up with our Digital Design series we have arranged this special offer with G.S.C. The kit contains one Experimentor Solderless Breadboard, an Experimentor Scratchpad for layout design and two Matchboard drilled p.c.b.s. for final construction.

World's most powerful

BASIC pocket computer
CASIO FX-702P

(RRP £134.95)
ONLY £1 19.95

High speed computer using BASIC language, with program/data storage on cassette tape via optional FA-2 adaptor.
AVAILABLE SOON: Plug in ROM program modules and FP-10 Mini Printer for program/data printout.
LCD dot matrix scrolling display. Input can be varied from 1680 program steps, with 26 independent memories, to 80 program steps with 266 memories, plus text display memory (string and string manipulations), all with power back-up. Up to 10 program storage.
Subroutines: 10 levels. FOR NEXT looping, 8 levels.
Debugging by tracing. Edting by moving cursor-
55 built-in functions including Regressional Analysis and Correlation Coefficient all usable in programs. Program/data storage on cassette tape. Two lithium batteries give approximately 200 hours continuous use, with Auto Power Off after 6 mins disuse Dimensions: $17 \times 165 \times 82 \mathrm{~mm}$. ($\left.{ }_{(}^{\frac{1}{4}} \times 6 \frac{1}{2} \times 3 \frac{1^{\prime \prime}}{\prime}\right)$. Weight 180 g (6.30 z).

World's most versatile

alarm chronograph watch
CASIO AX-210

10 alternative displays
Over 69 useful function
ANALOGUE display of time plus:-

* Digital time display, 12 or 24 hour system.
- Digital date, month and year, plus day flag. - Full month calendar display, current month. * Full month calendar display, next month. Auto calendar pre-programmed to the year 2029 Dual time modes
- ANALOGUE display of local time, plus digital second time zone, 12 or 24 hour system.
Alarm mode
\star ANALOGUE time with "Alarm Set" digital time, 24 hour system. AM/PM and "alarm on" indicators. Buzzer for 20 seconds, or select "Dixieland","Green Sleeves" or "My Darling Clementine".
Hourly time signal
"Big Ben" chimes at noon. Easily switched on or off.
(RRP £34.95)
ONLY £29.95

Countdown alarm timer mode

* Amazing ANALOGUE display, plus digital countdown, Normal and net times from 1 to 60 minutes with automatic retrieval of pre-entered time.

Stopwatch mode
Stopwalch mode
\star ANALOGUE countup, with digital timing of net, lap and first and second place times from $1 / 100$ sec to 1 hour. Confirmation signal.
Easy setting of times and alarm with forward and backward stepping and rapid run facility.
Dimensions: $9.25 \times 35 \times 36 \mathrm{~mm}$ approx. Mineral glass. Long life lithium battery. Accuracy $+/-15$ seconds/month.

JOIN THE KEYBOARD REVOLUTION!

Casiotone Polyphonic Keyboards
"Son of success ... The two harpsichords demonstrate the Casiotone's talent for sparkling, crystal clear tones . . . Even more impressive is the clav ..." (Melody Maker).

CT-202

49 instruments over 4 octaves. 4 voice memory function with push button selection. 3 vibrato settings and sustain. Pitch control. O/P jacks. AC only. $3 \frac{3}{8} \times 34 \frac{1}{8} \times 113 / 16^{\prime \prime}$. 15.81 bs .

CT-301. NOW ONLY £199 CT-401 ONLY £295 MT-30 ONLY £95

INSTANT MUSICIAN

VL-1 records and plays back up to 100 notes as a melody. One Key Play or Auto Play of Plano. Violin, Flute, Guitar and Fantasy, or create your own unique sounds with A.D.S.R. 10 built-in Auto Rhythms and Tempo control. LCD digital readout of notes and tempo. Also a calculator. Battery powered with memory and program retention. Integral amplifies/speaker. Output jack. With Song Book. Dims: $1 \frac{1}{8} \times 11 \frac{3}{4} \times 3^{\prime \prime}$.

Predictions of individual fortunes (Health, Gambling/Investment, Business and Love) or the compatibility between two persons on any given day.
6 digit clock. Auto calendar pre-programmed from 1901 to 2099. Daily alarm and hourly chimes can be easily switched on or off. Calculator with full memory, \%. One year battery life ($2 \times$ LR44). $7.9 \times 114 \times 56.5 \mathrm{~mm}\left(5 / 16 \times 4 \frac{1}{2} \times 2 \frac{1}{8}^{\prime}\right) .58 \mathrm{~g}(2 \mathrm{oz})$. With wallet.

WATER RESISTANT WATCHES

100 METRE WATER RESISTANT

With alarm, C/D alarm and stopwatch.

Time and auto calendar, alarm, hourly chimes, countdown alarm timer with repeat memory function, stopwatch. Time is always on display, regardless of mode. Stainless steel. (WIDO resin).

THESE SPACE INVADERS WILL ALARM YOU Casio's most amazing watches ever!

CA90 (left)
£19.95*
CA901 (right)
£29.95

Time and auto calendar, calculator, alarm, hourly chimes, stopwatch, dual time. DIGITAL SPACE INVADER GAME.

PRICE includes VAT and P\&P. Send cheques, P.O. or phone your ACCESS or BARCLAYCARD number to:

PE
 RANGER 27FMCB PART THREE MICHAELTOOLEY в.А. DAVID WHITFIELD м.А.м.Sc

WHEN the component assembly is complete the p.c.b. should be carefully examined. Check that components have been fitted in the correct locations and that there are no unsoldered connections or solder bridges between tracks. The latter condition may be easily rectified with the aid of a sharp knife or scalpel. Time spent checking the p.c.b. at this stage is a good investment since it can save hours of agony at a later stage! Next mount the front panel controls and sockets (with the exception of the channel selector switch which is already fitted to the p.c.b.) on the rectangular metal front plate. The p.c.b. should then be fitted together with the front panel, loudspeaker, and sockets into the case. Wiring to the controls and sockets should follow closely the diagram shown in Fig. 3.1 and all connections should be kept as short as is reasonably possible. A short length of 50Ω coaxial cable should be used to link SK200 to the p.c.b. and attention should be given to making an effective earth connection through the braid of the cable to the front panel by means of the earthed body tag of SK200. A length of miniature screened audio cable is used to connect pins 1 and 4 of SK204 (1 being the inner conductor whilst 4 is the outer screen) to the microphone input on the p.c.b. This again should be kept as short and direct as possible. The external a.c. and d.c. sockets (SK201 and SK203 respectively) should then be mounted in the side of the case roughly adjacent to their respective connecting points on the p.c.b. Care should be taken to ensure that all of the external sockets are correctly wired to the p.c.b. Finally check the complete assembly before carrying out the "Initial Tests" detailed in the next section.

OUTPUT FILTER

The low pass filter network included in the transmitter output is to ensure that the radiation of unwanted harmonics is kept to a minimum. The three tuned circuits between the frequency tripler, TR2, and the output to the filter ensure that unwanted harmonics from the 9 MHz oscillator are already more than 70 dB below the output level. The Home Office specification calls for a maximum spurious output level of 50 nW or 250 nW , depending on frequency, which corresponds to 70 dB or 63 dB below the 500 mW level, respectively. The most significant sources of harmonics of the 27 MHz signal are the driver and r.f. power amplifier transistors, TR3 and TR4. The non-linearities and wide bandwidths of these devices can cause generation of unwanted harmonics, and appropriate steps must be taken to prevent their radiation.

The tuned coupling between all stages in the transmitter serves to suppress the level of unwanted signals, but it is still necessary to ensure that the level of spurious signals is kept well below the acceptable levels. A seven-stage Butterworth filter is used in the transmitter output to form a low pass

Fig. 3.1. Wiring diagram for the Ranger

filter. This allows signals of all trequencies up to the cut-off frequency to pass through substantially unaffected. Above the cut-off frequency, the attenuation is frequency dependent and increases very rapidly. The circuit for the filter used in the Ranger is shown in Fig 3.2; the cut-off frequency is around 40 MHz , and the attenuation above the cut-off is around 42 dB per octave. The inductors are self-supporting air-cored coils close-wound from 22 s.w.g. insulated copper wire (the shank of a twist drill is a good former when winding the coils).

La= 8 TURNS OF 22 SWG CLOSE WOUND ON 6 mm INTERNAL DIAMETER
$L b=9$ TURNS OF 22 SWG CLOSE WOUND ON 8 mm INTERNAL DIAMETER FORM COILS TO AN OVERALL LENGTH OF 10 mm

EET06

Fig. 3.2. Output filter circuit diagram

INITIAL TESTS AND ADJUSTMENTS

The purpose of these initial tests and adjustments is twofold; firstly to detect any obvious errors in assembly and secondly to ensure that the transceiver is in a fit "state for alignment. Two additional items of equipment are required, a multi-range d.c. voltmeter having a sensitivity of at least $20 \mathrm{kohm} /$ volt and a current limited regulated d.c. power supply. The supply should be set to give 12 V d.c. $(\pm 0.5 \mathrm{~V})$ and its current trip set to $500 \mathrm{~mA}(\pm 100 \mathrm{~mA})$. Where a current trip facility is not incorporated within the d.c. supply a quickblow fuse rated at 500 mA should be inserted in the positive supply rail to the transceiver. This protection is essential in order to prevent damage to both the external power supply and to the transceiver in the event of incorrect component connection or faulty assembly (e.g.: solder bridges between p.c.b. tracks).

Before connecting the external d.c. supply check that the internal battery pack and crystals have not been fitted. If they have been fitted they should be temporarily removed taking care not to short circuit the battery terminals or to overheat the crystal lead-out wires when soldering. Check also that the low-pass transmitter output filter has not been fitted and that a link is connected between its input and output pads on the p.c.b. It is important to note that, throughout the initial tests and in subsequent use, external a.c. and d.c. supplies should never be connected at the same time.

Make the following adjustments and connections in the order given before connecting the external d.c. supply:
(a) The transceiver should be switched 'off' (VR101 turned fully anti-clockwise until it clicks in the 'off' position).
(b) The r.f. output pre-set adjustment, VR2, should be turned to mid-position.
(c) The squelch pre-set adjustment, VR 100, should be turned to fully open the squelch (VR100 fully clockwise).
(d) The modulation linearity pre-set adjustment, VR1, should be set to mid-position.
(e) The frequency deviation pre-set adjustment, VR3, should be set to mid-position.
(f) The squelch front panel switch, S101, should be switched to 'off' (S101 closed).
(g) Connect the microphone to SK2O4.
(h) Ensure that the external d.c. supply is switched
'off' and connect it to SK203 taking care to observe correct polarity. Note that inadvertent reverse polarity connection of the external d.c. supply may cause permanent damage to components in the transceiver.
The following tests which are intended to confirm that various parts of the transceiver are working correctly should now be carried out in the order given. For each test a typical indication is given and, where this is not obtained, a course of action is suggested. In some cases it is possible to pinpoint a particular component or components that may be at fault but in others it is only possible to identify the general area of the fault. To save space the precise nature of the possible faults are not given and it is left to the constructor to check, within the area given, that:
(i) There are no shorted tracks or dry joints on the p.c.b.
(ii) The correct components have been fitted
(iii) The components have been fitted in the correct locations on the p.c.b.
(iv) Where appropriate, components have been fitted observing the correct polarity (this is important in the case of i.c.'s, transistors, diodes, and electrolytic capacitors)
(v) The components have not failed due either to excessive heat/mechanical strain in soldering or to faults in other parts of the circuit.

ALIGNMENT

In addition to the test equipment used in the previous section the following items will be required to carry out the alignment procedure:
(i) Suitable trimming tools for adjusting the r.f. and i.f. inductors and transformers. These should use

STEP NUMBER	TEST/CHECK PROCEDURE	TYPICAL INDICATION	WHAT TO DO IF NOT OBTAINED
1	Switch external d.c. supply 'on'. Measure the d.c. input voltage at SK203.	11.5 to 12.5 V	Check external d.c. supply. If current limit is operating or fuse is blown check IC200 and associated components, D200, C200 and wiring to SK203.
2	Measure the d.c. voltage appearing at the internal battery connecting points on the p.c.b.	20 to 25 V	Check IC200 and associated components, D201 to D207, R200, R201, C202, C204, R302.
3	Switch the transceiver 'on' and measure the voltage at TPg	10.8 to 11.8 V	Check external d.c. supply. If current limit is operating or fuse is blown check C119, IC101 and associated components.
4	Measure the d.c. voltage appearing at the internal battery connecting points on the p.c.b.	10.5 to 11.5 V	Check D207.
5	Measure the d.c. voltage at TPe.	5.7 to 6.2 V	Check R110, D101, C104, C114, IC100 and associated components.
6	Advance the volume control, VR101, and listen for noise from the loudspeaker.	Noise should increase with the setting of VR101 and be quite loud with the control at its maximum setting.	Check IC101 and associated components, IC100 and associated components.
7	Switch 'off' the transceiver and external d.c. supply. Carefully wire a receive crystal to the p.c.b. Take great care not to overheat the crystal lead-out wires. Select the crystal position which you have just used by appropriate adjustment of the channel selector switch, S100. Switch the transceiver and external d.c. supply back 'on' and measure the d.c. voltage at TPf.	5.3 to 6.2 V	Check R104, D100, C103, TR102 and associated components.
8	Advance the volume control, VR101, and again listen for noise from the loudspeaker.	Noise should increase with the setting of VR101 and should be greater than that obtained in test number 6.	Adjust the settings of L100/L101 and L102/L103 for maximum noise. If this makes no difference at all check TR 102 and associated components.
9	Adjust the volume control for a reasonable level of noise output and switch the squelch 'on' (S101 open). Slowly back off the setting of VR100 moving it anti-clockwise.	Noise output should suddenly cease when VR100 is at about mid-position.	Check R106 to R109, S 101 and components associated with the squelch function of IC100.
10	Leave VR100 set so that there is no noise output from the receiver. Switch the squelch 'off' (S101 closed).	Noise output should be restored regardless of the actual setting of VR100.	Check R106 to R109, S101 and components associated with the squelch function of IC100.
11	Momentarily 'key' the transmitter by operating the press-to-talk switch on the microphone	The following should be observed:(a) The relay, RL200, should click; (b) the transmit indicator, D7, should be illuminated; (c) the noise output from the loudspeaker should cease.	If the current trip on the external d.c. supply is operating check C15, D206, IC1. If the current trip is not operating check PTT switch on the microphone, wiring to SK204, RL200, R28, D6, D7.
12	Remove the microphone plug and place a shorting link between pins 3 and 5 of SK204. Measure the d.c. voltage at TPh.	10.8 to 11.8 V	Check C15, IC1, TR4 and associated components, R1.
13	With the shorting link still in place measure the d.c. voltage at TPk.	8.8 to 9.5 V	Check D1, R1, C1, C2, VR 1.
14	Again with the shorting link in place measure the d.c. voltage at TPj.	5.4 to 5.9 V	Check R15, R16, R20, C17, C18, C19, IC1.

STEP NUMBER	TEST/CHECK PROCEDURE	TYPICAL INDICATION	WHAT TO DO IF NOT OBTAINED
15	Remove the shorting link and check that operation in receive mode is restored.	Noise output from receiver, transmit indicator D7 extinguished.	Check RL200.
16	Replace the shorting link and measure the d.c. voltage at TPa.	1.0 to 2.0 V	Check TR1 and associated components including R3, R4, R5 and L9.
17	Switch the external d.c. supply 'off'. Carefully wire a transmit crystal to the p.c.b. Take great care not to overheat the lead-out wires. Select the crystal position you have just used by appropriate setting of S100. Switch the external d.c. supply back 'on' and, with the shorting link still in place, again measure the d.c. voltage at TPa	2.0 to 3.0 V (An increase of around 1 V from the previous reading)	If there is no change the oscillator is not functioning. Check S1, L1, D2, R2, and the crystal. It may also be necessary to adjust the core of L1.
18	Switch the transceiver 'off', disconnect the external d.c. supply, remove the shorting link from SK204 and connect the a.c. mains supply to SK2O1. Measure the d.c. voltage appearing at the external d.c. socket, SK203, with the transceiver still switched 'off'.	16 to 19 V	Check mains plug and fuse, T200, D200, C200.
19	Switch the transceiver 'on' and, with the transceiver in the receive mode, measure the voltage at TPg .	14.5 to 16.5 V	Check D201.
20	Connect the shorting link again to pins 3 and 5 of SK204. Now with the transceiver in the transmit mode measure the voltage at TPh.	12.0 to 14.5 V	Check C15, R1, D1, RL200.
21	Switch 'off' the transceiver and disconnect the a.c. mains supply. Connect the internal battery taking care both to observe the correct polarity and to avoid short circuiting the battery terminals when soldering. Note that the battery voltage is normally supplied in a discharged state. Measure the voltage across the battery terminals.	6.5 to 12.5 V	Check battery.
22	Re-connect the a.c. mains supply and ensure that the transceiver is switched 'off'. Measure the terminal voltage of the battery.	The battery voltage should start to rise slowly from the indication obtained in step 21. After a few minutes it should be between 9 and 13 V .	Check IC200 and associated components, C204, C205, D203, D204, D205 and R202.
23	Disconnect the a.c. mains supply. Switch the transceiver 'on' and, with the transceiver in the receive mode, measure the terminal voltage of the battery.	The battery voltage should fall slightly. If the battery is in an uncharged state the fall in voltage will be rapid. If it is partially charged the fall in voltage will only be slight.	Check D202.
24	Switch the transceiver 'off' and reconnect the a.c. mains supply. With the transceiver in the receive mode measure the terminal voltage of the battery. After a minute or so switch the transceiver 'on'.	The battery voltage should start to rise again until the transceiver is switched 'on'. Then it should fall slightly and remain fairly constant.	Check D207.
25	Switch the transceiver 'off' but leave the a.c. mains supply connected for a period of between 10 and 14 hours. This should ensure that the battery is fully charged. At the end of the charging period measure the terminal voltage of the battery.	12.5 to 13.5 V	Check mains plug and fuse, T200, D200, IC200 and associated components.

nylon or non ferrous metal blades. Note that the ferrite cores are extremely brittle they can be easily damaged by the use of incorrect trimming tools. In extreme cases the cores may split or crack and become locked in the former. It will then be necessary to replace the entire inductor or transformer assembly. It is therefore essential that the trimming tools have the correct dimensions to fit the cores. No attempt should ever be made to align the transceiver using a conventional screwdriver!
(ii) A receiver capable of tuning over the range 27.6 to 28.0 MHz (or 28.0 to 29.5 MHz in the case of an amateur 10 m -band version). If a monitor receiver is not available (most domestic receivers do not have a short wave band which extends to 27 MHz) the $27 / 28 \mathrm{MHz}$ Converter described in March 1981 PE can be used with any existing medium wave receiver which has an external aerial socket. A further alternative is that of making use of another PE Ranger. This, of course, assumes that the second transceiver is working correctly, at least in the receive mode!
(iii) A 50Ω load/output indicator, the circuit diagram and constructional details for which are shown respectively in Figs. 3.3 and 3.4. The load should be coupled to the transceiver by means of a short length of 50Ω coaxial cable terminated in a PL259 plug to mate with SK200. With reasonable care this load will provide an accurate match and will exhibit a VSWR of less than 1-25:1. The meter indication provides a measure of the relative output power and, provided that the meter offers a sensitivity of $20 \mathrm{k} \Omega /$ volt or greater and is used on its 10 V d.c. range the approximate relationship between output power and meter indication is as shown in the table.
Before commencing the alignment procedure it is essential to ensure that the Initial Tests and Adjustments have been completed and at least one pair of crystals has been fitted according to the instructions given. The filter should not, however have been fitted but its input and output connections should be linked. Make the following initial adjustments:

56707
Fig. 3.3. Circuit diagram for the Dummy Load

50Ω COAXIAL CABLE FROM TRANSCEIVER
(a) set VR1, VR2, and VR100 fully ćlockwise
(b) set the cores in the inductors, r.f. and i.f. transformers as shown below:

Inductor/transformer reference	Core position
L 1	flush with top of former *
L2/3	mid-position
$\mathrm{L} 4 / 5$	mid-position
$\mathrm{L} 7 / 8$	mid-position
$\mathrm{L} 100 / 1$	$\frac{2}{3}$ way into the former*
$\mathrm{L} 102 / 3$	$\frac{2}{3}$ way into the former *
L104/5	flush with the top of the can
L106/7	$\frac{3}{4}$ turn from fully clockwise
L108	$\frac{1}{2}$ turn from fully clockwise

* or as otherwise determined during Initial Tests and Adjustments
(c) set VC1 and VC2 to mid-position

Terminate the aerial socket of the transceiver using the 50Ω load/output indicator and connect the external d.c. supply to the transceiver as before. It is unwise to make use of an external a.c. supply since the transceiver will be unprotected in the event of a fault condition arising. Follow the procedure described in the following steps in the order given:

POWER INPUT	INDICATED VOLTAGE
100 mW	0.43 V
200 mW	0.68 V
300 mW	0.88 V
400 mW	1.05 V
500 mW	1.20 V
600 mW	1.33 V
700 mW	1.46 V
800 mW	1.57 V
900 mW	1.68 V
1 W	1.78 V

 EG70

Fig. 3.4. Constructional details for the Dummy Load

STEP NUMBER	PROCEDURE	NOTES
1	With the transceiver in the receive mode, squelch off, and volume control turned up to provide a suitable level of output adjust L108 for maximum noise	Only a slight adjustment should be necessary and typically not more than $\frac{1}{2}$ turn from the previous setting.

As for step 1.
Only a slight change, if any at all, should be necessary.
This adjustment may be fairly sharp and should be typically not more than $2 \frac{1}{2}$ turns from the previous setting.

This adjustment may be fairly broad and again should be typically not more than $2 \frac{1}{2}$ turns from the previous setting. If there is no discernible change leave the core set as previously instructed (ie: $\frac{2}{3}$ of the way into the former).

Only a slight change, if any at all, should be necessary.
Various signals together with background noise may be heard. Some of these signals will be from AM and SSB stations operating on adjacent frequencies and they will be distorted and almost certainly unreadable. The Ranger rejects all signals other than FM. Stations operating on the new UK FM system should, of course, be perfectly readable. If no signals are heard repeat steps 1 to 6 .

The signal should not be too strong or it will fully quiet the receiver and no background noise will be present. It should not be necessary to turn the core of L106/7 more than about $\frac{1}{4}$ turn.
This adjustment is quite critical but the correct setting should be fairly obvious. It should not be necessary to turn the core of L 108 by more than about $\frac{1}{4}$ turn.
A typical maximum indication of 0.75 V should be obtained.

This 'dip' will be very sharp and quite small (typically around 0.1 V). If a clear 'dip' is not obtained reset the core of $L 4 / 5$ to its original position and carry on to the next step.

A strong signal should be heard. This will appear as an unmodulated carrier.

The carrier will appear to shift in frequency as L1 is adjusted. The typical range of adjustment is about 10 kHz . A better method of setting the frequency is with the aid of a digital frequency meter and this is described in the next section.
A typical maximum indication of 1.2 V should be obtained.

This 'dip' will be very sharp and rather small (typically 0.1 V or less). If a clear 'dip' is not obtained reset the core of $\mathrm{L} 7 / 8$ to its original position and carry on to the next step.
A typical maximum indication of 10 V should be obtained.

A typical reading of approximately 1.6 V should be obtained.

The meter reading should be somewhat less than that obtained in step 17.

STEP NUMBER	PROCEDURE	NOTES
19	Re-adjust VC1 and VC2 for maximum indication on the meter.	The meter reading should return to a value just slightly less than that obtained in step 17.
20	Back off the setting of VR2 to obtain a meter indication of 1.2 V . This corresponds to an output power of approximately 500 mW (see table).	If the output indication is less than 1V with VR2 fully clockwise repeat steps $10,14,16,17$, and 19 with the filter still in place.
21	Again listen to the transmitted signal using the monitor receiver. Check that it is 'clean' and free from any spurious signals.	The strong signal now produced by the transceiver may easily overload the receiver and, if this is the case, the separation between the two should be increased.
22	Remove the shorting link on SK2O4 and connect the microphone. Operate the press-to-talk switch on the microphone and listen to the audio from the monitor receiver. If this is only equipped for AM reception there may be some slight distortion apparent and it may be necessary to tune slightly to one side of the signal for best quality audio.	Vary VR3 for an adequate level of deviation whilst talking in an average voice level at a distance of some $6^{\prime \prime}$ to $8^{\prime \prime}$ from the microphone. Note that, with VR3 set fully anticlockwise, the maximum deviation produced will be approximately 3 kHz peak.

This completes the Alignment procedure. Where more sophisticated test gear is available constructors may wish to carry out the more detailed tests outlined next month.

Constructors' Note

The PE Ranger 27FM will only meet the Home Office specification for UK CB if It is bult from a complete kit of parts from Auturnn Products Lid which is the CB section of Modus Systems. No responsibility will be accepted by Autumn Products for sets which do not meet the specifica tion due to incorrect assembly or aligniment.

The PE Ranger 27FM kit including injection moulded 4: case. mains and car input, rechargeable batteries. mictophone, helical \& wave aerial and erystals for two chan-
nels, f. 49.95 plus f1. 40 p\&ip, plus VAT IE59.05 inclusivel or E 97.00 for a matched pair of transceiver kits with erystals for two channels plus £2 80 p\&p, plus VAT IE 114.7 t int clusivel.

Extra sets of crystals are £ 2.25 for each channel pilas 50 O p\&p (for any quantity), plus VAT.

Will constructors please note that they must obtain the necessary CB licence from the Post Office before operating the PE Ranger.

Autumn Products Litd.; Dept AP, PO Gox WO, Letchworth, Herts. SG6 30 Da (f $0462674468 / 7$ E3924).

Readout...
 A selection from our Postbag
 Readers requiring a reply to any letter must include a stamped addressed envelope.

Opinions expressed in Readout are not necessarily endorsed by the publishers of Practical Electronics.

A true fraternity . . .

Sir-The original concept of the National Personal Computer Users Association, founded in 1979, was to circulate programs, ideas and information between personal computer users and to involve members in national projects proposed by individuals.

We have learned from members all over the world that they are primarily concerned with extracting information as there is no incentive to provide it for the use of others, and a cost effective method of communicating VIA the computer as well as WITH it was therefore proposed and is now applied to all standard computers that save programs on tape.

Each member is provided with a C-10 cassette and an SAE. Original material worthy of transmission is saved on tape while still in their computer and when the tape is full it is sent to us where it is copied and sent to other members. The member's original tape is
loaded with other members' programs etc. and sent back to him with another SAE. No pens, paper, envelopes or stamps to restrict the continual flow of information. The more often a cassette is sent to us and refilled with fresh information the more value-for-money for the subscriber. Additionally component suppliers can advertise to members through the Association resulting in discounts for members.

Owing to the financial support of the advertisers, annual subscriptions (including cassette, envelopes, labeis and postage) are only $£ 12$ in the U.K. and $£ 15$ overseas payable to the NPCUA with details of computer and monitor used. This scheme seems to have provided the key to a true fraternity of computer users.

Eric Keeley,
NPCUA,
11 Spratling Street,
Manston,
Ramsgate,
Kent.

Congratulations

Sir-May I congratulate you on your excellent booklet "Introduction to Legal CB", and I like the "puff" at the end for Amateur Radio.

However, I have a couple of quibbles, firstly on page 3 about halfway down: ". . . lies in its relative susceptibility to television interference etc. .. ." Writing as an EMC engineer, the susceptibility lies in the television, audio apparatus etc., and the emissions are generated by the transmitter. It is a pity (from the amateur point of view as well) that all apparatus of this type is not approved for susceptibility as is done in the Scandinavian countries.

My second quibble is regarding the aerial on 934 MHz . Some ridiculous rubbish has been published on the subject and is best forgotten. As you mention, very effective aerials (antennae) can be made at this frequency, and I suggest that somewhere near 20 dB is feasible.

Incidentally, some time in the early 1950 s the Bell Telephone lab published a paper advocating 900 MHz as probably a good frequency for internal city use on mobile radio. This was, of course, a theoretical study (I must try to dig it out of my files) and even valves then were a bit pushed.

John Haydn G3BLP
Dunstable.

BASS BHild yourgman electronic organ with the WERSI system
COMP successfully market WERSI
BAN We have thred modern show-PERC STOP rooms where we pride ourselyes B you will receive, a friendly welcome Why not pop in and see the WERSI Tange for yourself - we can always arrange a free demonstration. We WALK also offer a free ifechnical telephonte/SSIO GLISS support setvice which is second te aone. REVERB Alternatively, fill in the coapoon below TREM for the full colour catalogue, For VIC ORA WBA PRES immediate action telephone 0 0 - 6689733 WAH 24 hour answering service quoting Accesst PERCDarclaycard Number.
BASS GUITAR

RO Want to know mare? Just
fill in the coumon below BASS TUBA CONTRABASS ORCHESTRA STEELBAND AURA SOUNDSLTD are the first company to
SNARE ROLL - STEREO SOUNO - MEDIUM SUSTAI CUSSION - SOUND COMPUTERS - PIANO
PERCLAURA SOUNDS LTD. MPUTER - SOFT ATTACK 14-15 Rogel Oak Centre, Brighton Road. Purleyit Surrey
HARMTEl:01-668 9733
ONE STOP SOUNDS
OBOE
17 Upper Charter Arcade, Barthley, Yorkshire.
FRENCTEI: (0226).5248 N HARPSICHORD BASS PATTE
GUIT 1729 Coventry Road, Sheldon, Birmingham. Tel MMES $021-7078244$
OAN NOW OPEN - The Micro Centre FAlbany Road Newquay, Conizwall. Tel: Newquay 5953

Please send me the full colour WERSI Catalogue. I enclose cheque/P.O. for $£ 1$.
NAME
ADDRESS
Send to Aura Sounds Ltd., $14 / 15$ Royal Oak
Centre, Brighton Road, Purley,
Surrey. PATENTE

Copies of Patents can be obtained from:

the Patent Office Sales, St. Mary Cray, Orpington, Kent. Price £1-45 each.
often relied on measuring the heating effect of a current through a resistive element.

Figure 1 of Blackmer's patent shows the basic DBX sensor circuit. High gain inverting amplifier 22 has a pair of oppositely conductive feedback paths. One path is collector-emitter circuit of PNP transistor Q1 and the other is the collector-emitter circuit of NPN transistor Q2. The emitters of transistors Q1 and Q2 are connected to op amps 28,30; one of these amps, 28 has a feedback resistor 29 connected to noninverting input 34 and the other, 30 , is back coupled to the inverting input. Transistors 03, 04 are connected to the outputs of the amplifiers 28,30. Resistor 44 provides a constant current source which, in combination with capacitor 42 , is said to be "very important". Figure 2 shows a modified circuit with NPN transistor Q5, supplied with constant current by resistor 50 , to compensate for temperature offset in transistors Q1, 02.

Fig. 1.

Fig. 2.
In either circuit, (Figure 1 or Figure 2) the input signal at terminal 26 is converted by amplifier 22 and transistors Q1, Q2 into a signal which has a value logarithmically related to the input. The value of capacitor 42 governs the recovery rate for falling signals and the circuit has a characteristic variable time response e.g. the initial rate of rise for a 20 dB step increase in the input will be about 100 times greater than for a 0.1 dB increase.

The Toshiba patent (BP 1549 562) dates back to February 1977 and
acknowledges existence of Blackmer's US patent. But Toshiba criticizes the DBX sensor for requiring careful selection of transistors and diodes of exactly the right characteristic. Toshiba also criticizes the DBX circuit for needing the additional components to compensate for ambient temperature changes. For ADRES, Toshiba has developed and patented an RMS circuit of which the logarithm amplifying stage does not rely on a PNP transistor. Also, Toshiba's full wave rectifier has an amplification factor of 1 instead of 2 and is thus supposedly less subject to any variation in the ratio of resistances uses in the amplifiers.

Fig. 3.
Figure 3 shows the basic Toshiba circuit. An input is applied to the inverting terminal of op amp 13.. A positive signal is processed by the op amp and NPN transistors TR1 and TR2, to produce an output voltage signal corresponding to twice the logarithmic value of the input. A negative input signal is processed by the op amp and NPN transistors TR3, TR4 to produce an output voltage signal corresponding to twice the logarithmic value of the negative input. The output of op amp 13 is divided into two components; one is supplied to inphase amplifier 14 while the other is sent to inverting amplifier 15 . The output from amplifiers 14 and 15 are added after full wave rectification at TR5, TR 6 to produce a voltage signal corresponding to the logarithm of the square of the input signal. The output of the full wave rectifier is delivered to smoothing circuit 3 and output terminal 16 delivers a signal corresponding to the logarithm of the RMS value at the input.

It remains to be seen whether the new Toshiba circuit is, or is not, outside the scope of the Blackmer DBX patent claims. The grant of a patent on a new or modified idea is no guarantee that it does not still infringe an earlier patent on a broader concept. It will thus be interesting to observe whether Toshiba now sells ADRES noise reduction equipment in the USA and if so whether DBX makes any attempt to restrain such sale.

THE UKO2 monitor provides screen editing facilities, a very useful addition even though they are rather limited, a choice of steady or flashing cursor (with a different flash rate when in the edit mode) and a number of other useful facilities. Unfortunately, presumably to fit all this in, it was necessary to drop the disc bootstrap, which is inconvenient if one wishes to expand the facilities of this useful home computer to include a disc unit. Installing the UKO2 in place of the original monitor is very easy, involving no more than swapping a couple of link positions on the board. (The UKO2 is now supplied with the UK101 as standard.)

A 4 K monitor from Watford Electronics called WEMON, is available in versions for several popular 6502 based microcomputers. This monitor incorporates a routine for interfacing with a printer via the Centronics parallel interface format. This interface is a virtual de facto standard for popular low and medium price printers. An RS232 serial interface adapter is typically likely to set one back another $£ 45$, so the WEMON (plus a 6821 Peripheral Interface Adapter) seems a good alternative.

Having installed WEMON, its many other virtues become apparent. The most immediate boon is the single keystroke BASIC command entry. WEMON also provides full editing facilities with cursor movement in all directions always available from the keyboard or from program, together with CLEAR SCREEN, HOME CURSOR (returns cursor to top left without clearing screen) etc. Tape handling is also much improved, with the ability to include a title (up to six characters) as a program label at the head of a BASIC program when recording and to search for and load only this program when reloading. As the BASIC programs are SAVEd in the tokenized version in which (for economy of RAM storage) they are stored within the computer, rather than in the full text version which is printed to the VDU screen by a LIST command, BASIC SAVE and LOAD is up to three times faster than the normal UK 101 SAVE and LOAD speed, though of course the program is not listed to VDU as it is entered. However, WEMON can a/so LOAD BASIC programs stored in the slower full text format and, yes, it can even SAVE programs in that format too! Further, control of a cassette deck's motor is available both from keyboard and from program (with the aid of a few extra components) and of course on many cassette machines, a motor switching contact is conveniently available as part of the MIC input socket. WEMON also includes a DISC bootstrap, so that once again expansion to a disc system is possible.

Many more facilities are available in WEMON, too sophisticated to enumerate in the space available here, but a lot of them should prove ideal for anyone wanting to write their own word processor package. With all these facilities, it is not surprising the WEMON is a 4 K ROM rather than 2 K like UKO2, and in consequence the circuit changes necessary to fit it are more extensive than when fitting UK02 in place of UK01, though well worth the effort-there is one distinct disadvantage of WEMON. It is incompatible with both the extended monitor/disassembler tape provided with the UK101 and the machine code assembler tape also available, as the vectors which control the machine code load routines are different. If you are just not interested in machine code programming this may be no drawback, but for the author it represents an unacceptable limitation. The ideal situation, then, would be to have both WEMON and UK02 monitors fitted simultaneously, with either selectable at will.

FITTING TWO MONITORS

Even without the echoing through 254 superfluous addresses, the mere location of the ACIA at \$FØDØ and \$FФФ1 creates a problem when wanting to fit the 4 K WEMON, as th is monitor's address range will need to start at $\$ F \varnothing \varnothing \varnothing$. This is solved quite simply by relocating the ACIA. $\$ E \varnothing \varnothing$ to $\$ E \emptyset \varnothing 1$ are both convenient and free. These are the addresses at which the cassette control routines within WEMON expect to find the ACIA.

The UKO2 circuit changes from the original UKO1 monitor are trivial, link switches W6 and W7 are simply set to the "up" positions. Fig. 1 shows the recommended changes to accommodate WEMON. As the latter is a 4 K ROM, an extra address line (A11) is required by the monitor itself, whilst this same address line must be eliminated from the MCS (monitor chip select) decoding to enable WEMON over the whole of the last 4 K of memory address space. The move of the ACIA from $\$$ FØØØ/1 to $\$ E \emptyset \varnothing / 1$ means it needs $\overline{\mathrm{A} 12}$ instead of A12 in its decoding, so the partial decode of A12 to A15 inclusive at IC15a pin 1 can no longer be used. IC16a is used to provide $\overline{\mathrm{A} 12}$ which is routed to pin 10 of the ACIA in place of A10, which is no longer used. $\overline{A C S}$ (ACIA chip select) now includes only A13 to A15, but goes to pin 9 (an inverted chip select) as previously. The result of these changes is shown by the memory map in Fig. 2. This shows the new position of the ACIA at $\$ E \varnothing \varnothing / 1$ and also how the -omission of A10 causes the ACIA address to echo through a second block of 256 addresses starting at \$E4ØØ-again of no significance to most users. The second block of 256 addresses can be shunted up to follow on directly from the first by connecting A10 to pin 14 of IC17 instead of A8, an improvement from the aesthetic point of view.

To be able to fit and use both monitors, further changes are necessary. The most obvious difficulty is that there is only one monitor socket, and the two monitors can't sleep in the same bed! So an add-on board is required to accommodate the two monitors, and to route the MCS (monitor chip, select) signal only to whichever monitor is currently selected. Further, arrangements are needed to switch over.

Fig. 4. Switch-over arrangement around monitor ROMs

The way this is organised is shown in Figs. 3 and 4. Half of a 7474 Dual D flip flop IC 101 is used as a control memory to store the mode of monitor operation (UKO2 or WEMON). Its Q and $\overline{\mathrm{Q}}$ outputs are designated MONCON (monitor control) and $\overline{M O N C O N}$ respectively, the state of the flip flop being controlled by S100. It might appear at first sight that IC101 is superfluous-why not just use S 100 directly to ground either IC100 pins 2 and 13 or alternatively IC100 pin 5 and IC104 pins 2, 12, 13? Unfortunately this could be unreliable, since, for a period of some milliseconds during S100's changeover and bounce time, MONCON and MONCON would be positive, enabling both monitors simultaneously.

CONSTRUCTION AND INSTALLATION

It has been mentioned that the two monitor i.c.s are mounted on an add-on board, and this avoids engaging the expansion socket. The author decided that the best place to accommodate the add-on "daughter board" was above IC22, 23 and the blank board area to their left. The daughter board is connected to the main board's monitor socket via a 6 inch 24 -pin double-ended d.i.p. jumper lead. With this arrangement it will be found that the top section of the moulded plastic cabinet housing the computer still fits perfectly. ICs 100 and 101 are accommodated on the main board, between ICs 25 and 28, using i.c. sockets of
course. The necessary holes in the main board are drilled in such a position as to straddle the tracks on the rear side of the board. Drilling these holes accurately is no problem. Just cut a small piece of 0.1 inch stripboard to size to accommodate two 14 -pin d.i.I. sockets and mark the holes corresponding to the socket pins. Now temporarily stick this stripboard drilling jig to the main board, carefully lining it up in position so that the lines of holes will clear the tracks on the rear of the board, as mentioned above. The ideal adhesive for temporarily fixing the jig is a couple of tiny pellets of beeswax, warmed by rolling between finger and thumb. S100 is mounted wherever you find convenient; for example, just above the keyboard.
The connections to the daughter board required a little ingenuity, since basically the 24-way jumper does not provide sufficient leads. WEMON requires an extra address line (A11) whilst we also need MONCON to control which monitor ROM receives the MCS enable signal. Fortunately pin 21 is available on all but the earliest models of the UK101. At present this pin duplicates the +5 V connection to the monitor, although on the earlier boards it was connected to the $\emptyset 2$ clock. The +5 V track to pin 21 of the monitor socket is cut and A11 taken to this point instead. Similarly, pin 24 of the monitor socket is re-allocated to MONCON, and we now have all the necessary signals available at the

Fig. 5. Printed circuit layout (actual size)

Fig. 6. Component overlay. SK13 accepts 24-way 160 mm jumper lead from original monitor socket

COMPONENTS

Capacitors	100n disc ceramic
C101	
Integrated Circuits	
IC101	7474
IC102	UKO2 monitor
IC103	WEMON monitor
IC104	7400
Miscellaneous	
SK13 24-way di.I. sockets (3 off)	
Printed circuit board	
14-way di.l. socket	
24-way 160 mm jumper lead	
SPDT toggle switch	

daughter board, but no +5 V supply. This connection is made via one of the two 8BA screws which support the daughter board. These screws pass through the main board near IC5 (carries +5 V to the daughter board) and IC15.
I.c. sockets should be used for ICs 102, 103 and 104 on the daughter board, and the local decoupling should on no account be omitted.

Having completed the constructional work, closely check all wiring: bus conflicts are embarrassing and potentially damaging. Check that S100 controls IC101 correctly and that either pin 3 or pin 6 of IC104 sits permanently at a " 1 " logic level accordingly. This shows that the $\overline{M C S}$ of only one of the two monitors is enabled at any one time.

USING THE UK101 WITH TWO MONITORS

With everything installed and working, pressing the RESET keys following switch-on should bring up the initia-
tion message appropriate to whichever monitor is selected by S 100. C for COLD START will be the appropriate reply for use in the BASIC mode, or M for machine code working. The facility for selecting either monitor was originally intended for use only in this way, i.e. at switch-on. It was found that once a BASIC program had been loaded and was in use, switching from one monitor to the other caused problems. On switching over, the keyboard locks out, so a RESET is necessary. Obviously a COLD START is no good as it clears the machine entirely, losing the program. On the other hand, a WARM START does not reset all the page two flags and vectors to the correct values for the monitor which has just been selected. What is needed is a "TEPID START", something which sorts out the mess in page two whilst not clearing program memory.

In fact, this is easily arranged by using the machine code monitor RESET routine, followed by a WARM START. In this way one can change monitors in mid-stream without any problems. The sequence is:
When selecting WEMON -

RESET M M RETURN Føøø G W

and when selecting UKO2 -

RESET M FEのøGRETURN W

The only other point to watch is fairly obvious-don't change monitor whilst a program is running! The time to change is when the monitor is sitting quietly scanning the keyboard; at this time, the program is not being accessed and no problems will arise.

In practice, the ability to change from one monitor to the other while operating in BASIC, whilst handy, would not be likely to be used all that much since WEMON is so much more convenient than UKO2. The Assembler can only be used if 8 K bytes of memory are available, rather than the meagre $4 K$ supplied with the machine.

Readout...

A selection from our Postbag

Readers requiring a reply to any letter must include a stamped addressed envelope. Opinions expressed in Readout are not necessarily endorsed by the publishers of Practical Electronics.

Decidedly " off"

Sir-I read your editorial entitled "The Protection Racket" in your September issue with interest and a wry smile. It is decidedly "off" that this kind of situation should arise. We had dealings with Metac shortly before "the end"-and would have advised anyone else "off the record" to steer well clear. The difficulty lies in the fact that you just do not dare say anything in public for fear of being sued for thousands. At least you can raise the matter in retrospect-as you have done regarding Metac in your latest issue. The trouble is that you have pulled your punches (as the "press" always does seem to do) in order not to destroy confidence in Mail Order Trading/Advertising-on which you depend for income. One way of avoiding the problem would have been to insist that firms so advertising open "Readers Accounts"-and trade through them . . or insist that the firms insure themselves against this type of liability.

Really, however, a statutory scheme is the only answer. Also the whole law concerning bankrupt companies needs reviewing-as you imply.

I appreciate especially Semiconductor Update-because it brings to our attention in a chatty sort of way, important developments we might have otherwise overlooked in the piles of technical literature that arrive by every post. I do note. however, that you never even get round to touching on the fields in which we work-namely telecopying and print scanning. This is a field where the imminent arrival of cheap fast memory is going to make an enormous impact in the next few years. To take an example-to store a newspaper page (of say $20^{\prime \prime} \times 30^{\prime \prime}$) at high resolution (500 dots/inch) requires in the order of 10 Mb of memory-which means about 320 Mb for your daily paper. The days when your Sun or Guardian may be produced at the point of sale could be closer than many think.

The problem is to decide what intermediate
processes are best suited to this technology. There is everything to be said for polling the memory anew for each copy, and then imaging the copy on a selenium/photoconductive druns in contact with ink toner-which then directly or indirectly transfers the image to paper. As you know. there are already many products on the market based on this technology. The alternative is to use an offset plate or sophisticated duplicating stencil as an intermediate. These can be sold at a few pence each-and can be used with much cheaper raw materials (paper + ink). This latter process. however, still demands a skilled/semiskilled operator and about 500 copies from each original to compete price-wise. Having said this-we have no doubt that it produces a far better result (well in excess of current newspaper standards). As you may have guessed. we are active in this last field.

At present. you are not giving your readers an "inkling" of what may be in store for them. Likewise you have ignored the various "typewriter substitutes" that are on the horizon replete with electrostatic ink guns and an ability to create graphics and reproduce half tones.

Hugh Bridge
Rectory Row Press
London.
We believe our Mail Order Protection Scheme gives our readers the protection they require, and they can thus buy from mail order advertisers in this magazine with confidence-Ed.

A seiection of readers original circuit ideas. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.

Each idea submitted must be accompanied by a declaration to the effect that it has been tried and tested, is the original work of the undersigned, and that it has not been offered or accepted for publication elsewhere
Why not submit your idea? Any idea published will be awarded payment according to its merits.

Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not inserted in the text.

0-99s PHOTOGRAPHIC TIMER

LIEM

PECAR COMPUTER

Employing completely new, specially designed and manufactured, micro-computer circuitry and flow transducers, this car computer (shown actual size above) is able to provide the following digital information in either imperial or metric units!

Current or average speed and m.p.g., distance travelled, remaining distance possible on fuel left, average speed needed for remaining distance to meet an arrival time, acceleration and deceleration times between any two preset speeds, fuel used during acceleration, average m.p.g. during acceleration, distance covered including standing distance times and fuel used, etc. Can also provide indication of instant and average cost of fuel usage, e.g. miles per pound etc. There is also provision for a combination lock ignition cut out.

The unit can be easily and accurately calibrated in any car without special equipment and the calibration can be checked and altered at any time Suitable for most negative earth 12 V cars excluding those with fuel injection or diesel engines.

The unit's unique facility for providing accurate acceleration, time and fuel consumption figures, makes it possible to tune for a compromise between performance and economy, to check performance/economy at any time, and therefore check the engine has remained in tune.

A complete kit will be available including a custom injection moulded case, finished front panel and complete, ready to fit, sensors
We believe the PE Car Computer is superior to any unit commercially available at the present time. Emphasis has been placed on versatility and accuracy.
Don't miss part 1 next month.

Aleo... SPACE EVADERS Complete Index for Vol. 17

MICRO-EUS
 Compiled by DJD

Abstract

Appearing every two months, Micro-Bus presents ideas, applications, and programs for the most popular microprocessors; ones that you are unlikely to find in the manufacturers' data. The most original ideas often come from readers working on their own systems; payment will be made for any contribution featured.

THIS month's Micro-Bus focuses attention on the Sinclair ZX81 and ZX80 microcomputers, and includes two memoryexpansion circuits, an encryption system, and a program renumber routine.

EXTRA RAM FOR ZX81

The programming space available on the ZX81 can be increased some 3 to 4 times by adding an extra 1 K of memory, as shown in the simple circuit of Fig. 1. This was submitted by D. Bronnlee of Hatfield who writes: "When I first took delivery of my ZX81 I at tempted to enter a fairly long program published for the standard ZX80. However, I soon discovered that the program would not fit in, presumably because the ZX81 uses more of the RAM for its workspace. I overcame this problem with the RAM extension, and the circuit should be self-explanatory. The address decoding is performed by a 74LS 10 , and when the extra memory is addressed the internal memory is disabled by an extra gate and a diode."

7K EXPANSION

If more than IK of expansion is envisaged the following design may be more suitable. It was sent in by Howard Parry of Manchester, and can accommodate up to 7 K of RAM, or a mixture of RAM and I/O ports; what follows is based on his description.
"For the expansion I decided to use 2114 static RAM chips, the same as those used in the kit. One problem was the edge connector; I could not find a 23 way double-sided connector in any of the popular magazines, so I finally decided on a Vero double-sided 43-way connector which I cut down to size. It fits per fectly!

EXPANSION CIRCUIT

"The circuit. shown in Fig. 2, is based around a 74LS138 decoder i.c.. and the memory chips. It works as follows: the 74 LSI 38 decodes A14 and MREQ to enable the expansion to be positioned at the start of the 16 K area. A10-A11 and A12-A13 decode one of eight 1 K blocks from 16 K to 23 K . $\overline{\mathrm{MREQ}}$ is required to make sure that the address lines are stable before memory is accessed for read and write operations. To disable the internal 1 K RAM block Y0 is connected back to $\overline{\mathrm{CS}}$ on the ZX81 bus.
"After building the RAM expansion I did the RAMTOP test: PRINT PEEK $16388+256^{*}$ PEEK 16389 and. hey presto, the answer came up 18432!"

Fig. 1. 1K RAM Extension for a $\mathbf{Z X 8 1}$

Fig. 2. Extension for the $\mathbf{Z X 8 1}$ can take up to $\mathbf{7 K}$ of RAM and/or I/O

ZX81 MASTERMIND

The following program for the standard ZX81, shown in Fig. 3, plays the plastic-peg game "Mastermind", and was submitted by Leslie Green of Norwich. A similar program for the ZX80 was featured in the August 1980 Micro-Bus. The computer generates a random 4-digit code which the human player must try to deduce within 13 attempts. Each digit in the code can be between 0 and 5 , and each guess is entered as a string of four digits, followed by NEWLINE. The computer replies with the number of digits in the correct place (denoted by C), and the number of digits correct but misplaced (denoted by M).

```
100 DIM A(4)
110 DIM B(4)
120 DIM G(4)
130 RAND
140 FOR N=1 TO 4
150 LET A (N)=INT (6*RND)
160 NEXT N
170 LET X=0
180 LET Y=0
190 FOR N=1 TO 4
200 LET B(N)=A(N)
210 INPUT G(N)
220 PRINT " M;G(N);
230 IF G(N)<>B(N) THEN GO TO 270
240 LET X=X+1
250 LET B(N)=-1
260 LET G(N)=-2
270 NEXT N
280 FOR L=1 TO 4
290 FOR N=1 TO 4
300 IF G(L)<<B(N) THEN GO TO 340
310 LET Y = Y +1
320 LET B(N)=-1
330 LET G(L)=-2
340 NEXT N
350 NEXT L
360 PRINT "' "'; X; "C,";Y;"M"
```

Fig. 3. $\mathbf{Z X 8 1}$ Mastermind game; you have to guess the computer's code

PROGRAM OPERATION

In order to fit the program into the ZX81 all frills have been avoided, and space is saved by using N as the loop variable in three separate loops. Array A contains the com puter's code, and initially arrays B and G contain this random selection and the player's guess respectively. As hits are scored the respective elements are set to illegal values, -1 and -2 , to take them out of the proceedings. The number of digits in the correct position is calculated first (lines 190 to 270), followed by the number of misplaced digits (lines 280 to 350); finally, in line 360 , the computer prints the result.

The range of numbers allowed is easily changed in line 150 , and with more memory the program could be extended to work with more digits.

ALIEN INVADERS

The object of the following game for the standard ZX81, shown in Fig. 4, is to prevent invaders from taking over the Earth. It was devised by I. Johnson and G. Boguszeurski of Doncaster, and demonstrates the use of the ZX81's PRINT AT statement, which allows strings and numbers to be printed at any specified co-ordinates on the screen.

The aliens are represented by random numbers which start at a random point on the screen, and move vertically downwards. As each alien moves its number changes: to stop it you must type its number at the keyboard. If you succeed you score 100 points; however, if you fail the alien will reach the Earth.
represented by a row of asterisks. When five aliens have landed the Earth is overcome, and the game ends.

PROGRAM OPERATION

The aliens descend on the left-hand side of the screen, controlled by lines $60-100$ of the program, at a speed determined by line 110 . The score, and number of aliens that have lan ded, are continuously updated at the top right hand side of the screen. Like most arcade games it is impossible to beat the aliens, and the aim of the game is just to achieve a per sonal best!

10 LET $\mathrm{S}=-100$
20 LET A=0
30 PRINT AT 14,$0 ; * * * * * * * * * *$
40 LET S=S +100
50 PRINT AT 0, 20; "SCORE: "; S
60 LET M=TNT
60 LET M=INT (RND* 10)
70 FOR N=0 TO 15
80 LET AS $=$ CHRS INT (RND* $6+$ CODE*
0")
90 PRINT AT N, M;AS

110 FOR I $=0$ TO 15
120 NEXT I
130 LET $N=N+1$
140 LET BS=TNKEY $\$$
150 IF $A \$=B S$ THEN GO TO 40
160 IF N <15 THEN GO TO 80
170 IF $\mathrm{N}=15$ THEN LET $\mathrm{A}=\mathrm{A}+1$
180 PRINT AT 1, 20; "ALIENS: "; A
190 IF A=5 THEN GO TO 210
200 IF A<5 THEN GO TO 50
LANDED" 210 PRINT AT 20,6; "ALIENS HAVE
LANDED"
220 PAUSE 600
230 CLS
240 GO TO 10
Fig. 4. Alien Invaders for the $\mathbf{2 X 8 1}$

ZX80 ENCRYPTION

The following encryption and decryption system works by combining a message with a key known only to the sender and receiver. and will enable two ZX80 owners to send each other messages that cannot be intercep ted by anyone who does not know the key. An ingenious feature of the system is that the program is sent on tape along with the message. Thus, no retyping of the coded message is needed: the recipient has just to load the tape and run the program, and on entering the key the decoded message will appear on the screen.
The program, shown in Fig. 5, was devised by Lars Silen whose ZX80 stringmanipulation routines have been featured in a previous Micro-Bus. Encription is performed by exclusive-ORing characters from the message and the key, a pair at a time. As the ZX80 does not have an XOR function this part is done by a machine-code subroutine which is set up by the program.

OPERATION

To use the system proceed as follows. First RUN the program, and enter the key, which may be any alphanumeric string, followed by NEWLINE. Then select mode 1 for encryption. and enter the message. The message may either be entered as a number of lines. separated by NEWLINE, or in a continuous block. The end of the message is signified by an empty line. Then the prompt "ENTER MODE" will appear again: typing 3 will stop the program, having destroyed the key for security.

Now save the program on tape; this will also save the encoded message which is in $\mathrm{C} \$$. The tape is totally secure, and can be sent to the receiver by mail, or any other channel.

To decode the message proceed as follows. Load the program and type "GO TO 1", followed by NEWLINE, as typing RUN at this point would destroy the string C\$. Enter the key, followed by NEWLINE, and the message will be displayed in plain text on the screen.

```
1 REM ENCRYPTION/DECRYPTION
20 DIM M(10)
30 LET E=PEEK(16392)+256*PEEK(
16393)+3
    50 POKE E+3,E-(E/256)*256
    60 POKE E+4,E/256
    70 POKE E+2,42
        80 POKE E+5,124
        90 POKE E+6,173
        100 POKE E+7,111
        110 POKE E+8,201
        200 PRINT "ENTER KEY"
        210 INPUT AS
        215 LET B$=A$
        220 CLS
        30 PRINT "ENCRYPT=1,DECRYPT=2"
        235 PRINT "----------
        240 PRINT "ELSE STOP"
        245 PRINT "ENTER MODE"
        20 INPUT MODE
    25 CLS
    60 IF MODE=1 THEN GO TO 500
    65 IF MODE=2 THEN GO TO 270
    266 LET A$=""
    267 LET B$=""
    268 STOP
    270 PRINT "DECRYPT
    275 PRINT n------
    280 IF C$="% THEN STOP
    285 LET K=CODE(C$)-2
    290 LET C$=TL$(C$)
    300 GO TO 800
    500 PRINT "ENCRYPT"
    510 PRINT "_----
515 PRINT "INPUT A LINE, END WI
TH NEWLINE"
    516 LET C $="*
    20 INPUT MS
    25 IF M$="* THEN GO TO 215
    L0 LET A=CODE(MS)
    545 IF A=215 THEN LET A=25
    50 IF A=218 THEN LET A=16
    55 IF A=217 THEN LET A=17
    50 IF A=220 THEN LET A=18
    565 IF A=221 THEN LET A=19
    50 IF A=222 THEN LET A=20
    575 IF A=223 THEN LET A=21
    580 IF A=227 THEN LET A=2
    585 IF A=228 THEN LET A=2
    590 IF A=229 THEN LET A=24
    600 IF A=216 THEN LET A=26
    660 POKE E,A
    670 POKE E+1,CODE(BS
    680 LET B$=TL$(BS
    690 IF B$="* THEN LET B$=AS
    700 LET D S=CHRS(USR(E+2)+2)
    710 LET C $=C $
    720 LET D$=D$
    730 GO SUB 1000
    740 LET M$=TL$(MS
    750 IF NOT MS="n THEN GO TO 540
    760 GO TO 520
    800 IF B }$=|=|\mathrm{ THEN LET B }$=B
    810 POKE E,CODE(B$)
    820 POKE E+1,K
    830 PRINT CHRS(USR(E+2))
    840 LET B$=TLS(BS)
    850 GO TO 280
    1010 LET AD=PEEK (16394)+256*PEEK
    (16395)-3
    020 LET AD=AD-1
    1030 IF NOT PEEK(AD)=1 THEN GO T
    O }102
    1035 LET TP=PEEK(AD+1)
    1040 POKE AD,0
    1050 POKE AD,PEEK(AD+2)
    1060 LET AD=AD+1
1070 IF NOT PEEK(AD+2)=1 THEN GO
    TO 1050
    1080 POKE AD+1,TP
    1090 POKE AD
1100 RETURN
```

Fig. 5. Encryption program for sending messages between two ZX80's

PROGRAM DESCRIPTION

The program is based on an encryption algorithm first described by Gilbert S. Vernam in 1917, and works as follows: Lines

20 to 110 set up the machine-code XOR func tion, using the array $\mathrm{M}(10)$ to make space for the machine code. Data for the routine is passed across in locations (E) and ($\mathrm{E}+\mathrm{I}$) using the POKEs in lines 660, 670. 810, and 820 , and the routine is called with LET $\mathrm{A}=\mathrm{USR}(\mathrm{E}+2)$. The machine code is as follows:
DATA BYTE :KEY CHARACTER BYTE :MESSAGE CHARACTER
ENTER LD HL. (DATA) LD A.H
XOR L
LD L.A RET
The key is entered in lines 200-220, and the mode is selected in lines 230-268. If mode 3 is selected the program stops, and the key is destroyed in lines 266 and 267.

Encryption is performed by lines 500 to 760. Lines 545 to 600 take care of a peculiarity of the ZX80 character set, and the coded character is put into the string D\$. This string is then added to the end of the string C $\$$ (lines $710-730$ and $1010-1100$) using the string-adder subroutine described in the April 1981 Micro-Bus. Lines 680 and 740 chop off the used characters from the message and the key.

Decryption is performed in lines $270-300$ and $800-850$ by encoding the message in $\mathrm{C} \$$ with the same key once more. As XOR is a symmetric operation this regenerates the original message.

The ZX80 uses a byte containing " 1 " to in dicate the end of a string: to prevent this code from occurring within the encoded string, 2 is added to each encoded character (line 700), and is subtracted when decoding (line 285).

ZX80 LINE RENUMBER

The following program. submitted by Alan Wagstaff of North Yorkshire. will tidy up a ZX80 program by renumbering the lines in steps of ten. First list the program to be renumbered and note all lines referenced by GO TO. RUN, or GO SUB commands. Then add the lines shown in Fig. 6 to the end of the program. Execuṭe the renumber routine by typing:
RUN 9000
and when the listing reappears delete lines 9000 to 9900 . Finally, amend all the previously noted references to line numbers.

9000 LET X=10

9100 POKE $16424, X / 256$
9200 POKE $16425, \mathrm{X}-(\mathrm{X} / 256) * 256$
9300 FOR M=16426 TO PEEK (16392) +
PEEK (16393)*256
9400 IF NOT PEEK (M)=118 THEN NEX TM
9500 IF PEEK $(M+2)+\operatorname{PEEK}(M+1) * 256=$
9000 THEN LIST
9600 LET $\mathrm{X}=\mathrm{X}+10$
9700 POKE $\mathrm{M}+1, \mathrm{X} / 256$
9800 POKE $\mathrm{M}+2, \mathrm{X}-(\mathrm{X} / 256) * 256$
9900 NEXT M
Fig. 6. Renumber routine for the ZX80

The program works by directly POKEing the new line numbers into memory (lines 9700 and 9800). stopping when line 9000 is reached. As it stands the program renumbers starting with line 10 . and with an increment of 10; this can be changed by altering lines 9000 and 9600 .

CROSSHATCH GENERATOR

An essential item of equipment for aligning a colour TV is a crosshatch generator. The short program shown in Fig. 7 shows how a ZX80 can be used for this purpose, and was submitted by Mr. C. Munton of Kent, who writes:
"The most useful pattern was obtained with four spaces between the quotes in line 20. although other patterns are possible by altering this number. After RUN. entering the code for an inverse graphics character produces a useful test pattern. Code 147 for inverse " + " was found the most useful though others may also be of value. This program was successfully used to re-align the convergence cir cuits of an ITT CVC5 colour television."

```
10 INPUT X
15 FOR \(J=1\) TO 4500
20 PRINT CHRS(X);"
```

40 NEXT J
Fig. 7. $\mathbf{Z X 8 0}$ crosshatch generator helps realign colour televisions

RECHARGEABLE BATTERIES YOU CAN USE AGAIN AND AGAIN. EACH BATtERY WILL RECHARGE UP TO 2000 TIMES. Each recharge costs less than $1 / 2$. and lasts and lasts. n never run out of power again. SPECIAL OFFER - CHARGER \& 4 HP7 = $\mathbf{~} 9.95$ individually -
ChARGER £8.00, HP7 99p., HP11 £1.75, HP2 £2. 15 each
Please send me
Name . .
Address

$$
\text { I enclose Cheque / P.O. for } £ .
$$

To HEYWARD REID LTD., PO Box 39, East Molesey, Surrey. 01/979/6051
KNIGHT CHARGER

Please check dates before setting out, as we cannot guarantee the accuracy of the information presented below.

BEX Bristol Oct. 14-15. Exhibition Centre. K
Video Show Oct. 16-18. West Centre Hotel, London. Z1
Int. Business Show Oct. 20-29. NEC. Birmingham. A2
Com. Graphics Oct. 27-29. Bloomsbury Centre, London. O
Testmex Oct. 27-29. Wembley Conf. Centre, London. T BEX Southampton Nov. 4-5. Polygon Hotel. K
Viewdata \& TV Nov. 4-6. West Centre Hotel, London. $Z 1$
Breadboard Nov. 11-15. Royal Hort. Halls, London. $\mathbf{B 7}$
IFSEC (Fire \& Security) Nov. 17-19. RDS Dublin. V
Compec Nov. 17-20. Olympia, London. Z1
BEX Plymouth Nov. 18-19. Holiday Inn. K
Intron Nov. 24-26. RDS Dublin. V
Continuous events at Nat. Micro \& Elect. Centre. LI

1982

IDEA (Domestic appliances) Jan. 12-14. B/ham. B6
OEM Assemblies Feb. 2-4. Royal Hort. Halls, London. T
Microsystems Feb. 24-26. West Centre Hotel, London. $\mathbf{Z 1}$
CAD Mar. 30-Apr. 1. Metropole, Brighton. $\mathbf{Z} 1$
Laboratory, Edinburgh Mar. 30-31. Ass. Rooms. E
Test \& Measurement Mar. 30-Apr. 1. Forum, Wythenshawe. T

A2 Hart Browne \& Curtis C01-439 8556
B6 Andry Montgomery Ltd. \int 01-486 1951
B7 Modmags 601-4371002
E Evan Steadman, Saffron Walden 6079922612
K Douglas Temple, Bournemouth $\subset 020220533$
L1 World Trade Centre / 01-488 2400
O Online. Northwood, Mddx. 60927428211
T Trident. Tavistock $\boldsymbol{\beta} 08224671$
V SDL 厄 Dublin 763871
Z1 IPC Exhibitions. Sutton \&01-643 8040

CROTECH OSCILLOSCOPES

Range of Portable Scopes mains and battery operated Plus special features (UK c/D $£ 3.00$)

3030 Single trace 15 MHZ .5 mV .0 .5 micro secs. Plus buitit component tester. 95 mm tube
3131 Dual trace 15 MHZ trig 35 MHZ .5 wV 05 £ 166.75 130 mm tube. plus component tester
3034 Battery-mains dual trace 15 MHZ , trig to 20 MHZ built in Nicads. 5 mV . 0.5 micro secs. (Eliminator charger optional £28.75
Also Available 3033. single trace 3034 3035. 130 mm 3030 3337. dual 30 MHZ . 130 mm
(Optional Probes all models - see below).

RF AND AUDIO SIGNAL GENERATORS Mains operated (UK C/D £1.00)
Audio $20 \mathrm{HZ}-200 \mathrm{KHZ} 4$ band. Sine/Square o/p.
TE220 Distortion max 1%
£63.00
LAG26 Distortion 0.5-1\% leader
AG202A Distortion 05-1\% Trio
AG203 $10 \mathrm{HZ}-1$ MHZ 5 band max distortion 0.1% Trio RFAll feature int/Ext MOO. Variable output
E200 $100 \mathrm{KHZ}-100 \mathrm{MHZ} 6$ band (300 MHZ harmonics) LSG 16100 KHZ -100 MHZ 6 band (300 MHZ harmonics) Leader £78.20 $£ 126.50$ SG402 $100 \mathrm{KHZ}-30 \mathrm{MHZ} 6$ band professional trio

THANDAR - SINCLAIR

Reliable low cost portable instruments bench models al $25.5 \times 15 \times 5 \mathrm{~cm}$. Generators mains operated rest battery (supplied). UK c/p Hand models 65p. bench E1.15)
OIGITAL MULTIMETERS ($31 / 2$ digit LCD)
TM354 Hand held DC 2 A . $2 \mathrm{~m} 0 \mathrm{hm} .1 \mathrm{mV}-1000 \mathrm{~V}$ DC 500 v AC
M352 Hand held. DC 10A. He test. Continuity test
TM353 Bench. 2A AC/OC 1000 V AC/DC 20 M ohm.
ypical 0.25\%. NEW LOW PRICE
TM351 Bench. 10A AC/DC. 1000 V AC/DC. 20M ohm Typical 0.11_{0}°
FREQUENCY COUN TERS 88 Oigitl
PFM200A Hand held LED. $200 \mathrm{MHz} 10 \mathrm{mV}(600 \mathrm{MHz}$ with TP600,
TF040 Bench LCD. $40 \mathrm{MHZ} .40 \mathrm{mV}(400 \mathrm{MHZ}$ with TP600) £126.50 TF 200 Bench LCD. 200 MHZ 10-30mV (600 MHZ with (TP600)
TP600 $600 \mathrm{MHZ} \div 10$ Prescaier 10 mV
£ 166.75
$£ 43.13$
GENERATORS (All bench models) mains operated
TG180 Function $1 \mathrm{HZ}-100 \mathrm{KHZ}$. Sine/SO/Triangle/TTL £90.85 TG102 Function. $0.2 \mathrm{HZ}-2 \mathrm{MHZ}$. Sine/S0/Triangle/TTL £166.75 TG105 Pulse $5 \mathrm{MHZ}-5 \mathrm{HZ}$ (200nS-200mS) various outputs $£ 97.75$ OSCILLOSCOPE (Bench model low power portable) $10 \mathrm{MHZ} 2^{\prime \prime}$ trace 10 mV . 0.1 micro sec. All facilities Model SC110
£159.85
Rechargable battery pack $\mathbf{£ 8 . 6 3}$. AC adaptor/charger $\mathbf{\$ 5 . 6 9}$ OPTIONAL ITEMS
Carry case (bench only) $\mathbf{E 6 . 8 4}$ AC Adaptors (state modell $\mathbf{E 5} .69$

LCD DIGITAL MULTIMETERS

ALSO STOCKED
Further range of low cost equipment Plus tools. accessories etc. Also special offers which vary from time to

SPECIAL PURCHASE - LIMITED PERIOD ONLY
6220 Reliable 22 range hand held $31 / 2$ digit LCD with volt/ohms auto range. unit and range signs. $10 \mathrm{amp} A C / D C$. battery warning. lower power ohms range. Model 6110 Also has range hold. continuity buzzer and improved accuracy. All models high quality rotary operation Resolution 0.1 milli voit. 10-Micro amp: 0.10 hm .

62201000 v OC: $0.2 / 10 \mathrm{~A} \mathrm{AC/OC} 600 \mathrm{v}$ AC: 2 meq ohm. Was $£ 55.95$
NOW £42.95
6110 As above plus 20 mA AC/DC and improved accuracy. Was $£ 85.95$ NOW £59.95
THIS SPECIAL OFFER IS OUALITY WITH VALUE $620020 / 200 \mathrm{~mA}$ version of 6220 (i.e. no $10 \mathrm{ampl} \quad \mathbf{~} 397.95$ $\begin{array}{ll}\mathbf{6 1 0 0} 02 \mathrm{~A} \text { version of } 6110 \text { :ie. no } 10 \mathrm{amp} \\ 188 \mathrm{~m} 16 \text { range with He checker } 10 \mathrm{amp} \mathrm{DC} & \mathbf{£ 4 9 . 9 5} \\ 184.50\end{array}$ 189m 30 range with He checker $10 \mathrm{amp} \mathrm{AC} / D C \quad \mathbf{£ 6 9 . 9 5}$

MULTIMETERS (UK c/p 65 p or $£ 1.00$ for two) Choose from uk's largest range
KRTIO1 10 range pocket $1 \mathrm{~K} / \mathrm{Volt}$ KRT100 12 range pocket $1 \mathrm{~K} /$ Volt NH55 10 range pocket 2K/Volt ATI 12 range pocket Deluxe 2K/Volt ST5 11 range pocket $4 \mathrm{~K} /$ Voit
NH56 22 range pocket $20 \mathrm{~K} / \mathrm{Volt}$
YN3GOTR 19 range plus He Test $20 \mathrm{~K} /$ Volt ST303TR 21 range plus Hfe Test 20K/Volt KRT5001 16 range - range double $50 \mathrm{~K} / \mathrm{Volt}$ AT1020 19 range Deluxe plus Hfe Test 20K/Volt £ 16 ETC5000 As KRT 5001 p'us colour scales $50 \mathrm{~K} /$ Volt $£ 17.95$ 708118 range - range double 10A DC 50K/Volt $£ 20.85$ TMK500 23 range. Plus 12A DC Plus Cont. Buzzer 30K/Volt
AT205 21 range Deluxe 10A OC $50 \mathrm{~K} /$ Volt $£ 22.75$ C7080 26 range large scale 10A DC 5 KV AC/OC 20K/Volt
AT21023 range Deluxe 12A ACIDC 100 K Volt $£ 27.50$ AT210 23 range Deluxe 12 A AC/DC $100 \mathrm{~K} / \mathrm{V}$

LOGIC PROBES/MONITORS/PULSERS circuit LOP076 50 MHZ : 10 Meg ohm: Logic Probe, with case
ohm 1 KV ACIDC $100 \mathrm{~K} / \mathrm{Volt}$ AC/OC Hie Test 50 Meg ohm. 1 KV AC/DC $100 \mathrm{~K} / \mathrm{Volt}$
 powered (UK c/p60p)
LP1 DTL/TTL/CMOS. 10 MHZ Pulse: Memory LP2 DTL/TTL/CMOS 15 MHZ: Pulse LP3 DTL/TTL/CMOS 50 MHZ Pulse: Memory LMI Logic monitor for 8 to 16 pin IC's
$£ 34.95$

DIRECT READ HV

PROBE

(UKc/p 65p) $0 / 40 \mathrm{KV}$: 20 K Volt $\mathrm{£18.40}$

DISCOUNTS

Available for UK and Export for small and large quantities For most products. Please enquire

OSCILLOSCOPE PROBE KITS ${ }_{\text {UK c/p } 50 \mathrm{p}}$ per 1 to 3) Avalable BNC plug or Banana X1 $£ 7.95$. X10 £9.45. $\times 1 \times 10$ \&10.50. Also X 100 (BNC only) $£ 16.95$

SAFGAN PDRTABLE OSCILLOSCDPES

Range of low cost Dual Trace Scopes mains operated Made in UK to exacting standards Available as $10 \mathrm{MHZ}: 15 \mathrm{MHZ}$ or 20 MHZ . All feature 5 mV sensituvity: 05 micro sec: $64 \times 8 \mathrm{~cm}$ display. (UK c/p $\mathbf{\& 2} .50$
0 T410 Dual 10 MHZ
£194.35
OT420 Oual 20 MHZ
Optional probes available (see Hameg above)

301 EDGWARE ROAD, LONDON. W2 1BN, ENGLAND. TELEPHONE 01.7243564 ALSO AT HENRYS RADIO, $404 / 406$ EDGWARE ROAD, LONDON W2
OPEN SIX DAYS A WEEK • CALL IN AND SEE FOR YOURSELF
Order by Post with CHEQUES/ACCESS/VISA or Telephone your order

Send large SAE
(20p UK)
schools, Companies
etc. free on request

20 PONER

AMPLIFIER
WITH
HEAT SINK

BIPOLAR S		Standard, with heatsinks							Without heatsinks				
		Dist	ORTION										
$\begin{gathered} \text { MOOEL } \\ \text { MUMBER } \end{gathered}$	Qutput POWER Watts ms	$\begin{array}{\|c\|} \hline \text { T.H.D. } \\ \text { Ipp }_{\text {of }} \\ \text { of } 1 \mathrm{KHz} \end{array}$	\qquad	SUPPLY voltage TYP/MAX	SIZE mm	$\underset{\mathrm{gms}}{\mathrm{WT}}$	Paice	vat	model MUMBER	$\stackrel{\text { SI2E }}{\text { in mm }}$	$\begin{aligned} & \text { WT } \\ & \text { gms } \end{aligned}$	PRICE	vat
HY30	15w/4.88	0.015\%	<0.006\%	$\pm 18 \pm 20$	$76 \times 68 \times 40$	240	57.29	f1.09					
HY60	30 w 4.88	0.015\%	<0.006\%	$\pm 25 \pm 30$	$76 \times 68 \times 40$	240	c8.33	¢1.25					
HY120	60 w 4.88	0.01\%	<0.006\%	$\pm 35 \pm 40$	$120 \times 78 \times 40$	410	[17.48	f2.62	HY120P	$120 \times 26 \times 40$	215	f15.50	12.33
HY200	$120 \mathrm{w} / 48 \Omega$	0.01\%	<0.006\%	$\pm 45 \pm 50$	$120 \times 78 \times 50$	515	¢21.21	f3.18	HY200P	$120 \times 26 \times 40$	215	f18.46	f 2.77
HY400	240w/4ת	0.01\%	<0006\%	$\pm 45 \pm 50$	$120 \times 78 \times 100$	1025	¢31.83	¢4.77	HY400P	$120 \times 26 \times 70$	375	¢28.33	f4.25

Protection: Load line, momentary short circuit (typically 10 sec) Slew rate: $15 \mathrm{~V} / \mu \mathrm{s}$ Rise time: $5 \mu \mathrm{~s}$
S/Nratio: $100 \mathrm{db} \quad$ Frequency response $(-3 d B)$): $15 \mathrm{~Hz}_{\mathrm{z}}-50 \mathrm{kHz}$
Input sensitivity: 500 mV rms Input impedance: $100 \mathrm{k} \Omega \quad D_{\text {amping factor: }:}(8 \Omega) 100 \mathrm{~Hz}_{2} \mid>400$

HEAV	DUTY	with heatsinks							Without heatsinks				
HD120	60w/4:83	0.01\%	<0.006\%	$\pm 35 \pm 40$	$120 \times 78 \times 50$	515	f22.48	13.37	H0120P	$120 \times 26 \times 50$	265	f19.84	f2.98
H0200	120 w/4.8R	0.01\%	<0.006\%	$\pm 45 \pm 50$	$120 \times 78 \times 60$	620	£27.38	¢4.11	HD200P	$120 \times 26 \times 50$	265	f23.63	¢3.54
HD400	240w/4ת	0.01\%	<0.006\%	$\pm 45 \pm 50$	$120 \times 78 \times 100$	1025	¢38.63	$f 5.79$	HD400P	$120 \times 26 \times 70$	375	f34.28	f5.14

Protection: load line. PERMANENT SHORT CIRCUIT lideal for discoigroup use should evidence of short circult not be immediately apparentl.
The Heavy Duty range can claim additional output power devices and complementary protection circuitry with performance specs, as for standard types.

Protection: Able to cope with complex loads, without the need for very special protection circuitry (fuses will suffice).
Ultra-fi spacifications:
Slew rate: $20 \mathrm{~V} / \mu \mathrm{s} \quad$ Rise time: $3 \mu \mathrm{~s} \quad S / N_{\text {ratio: }} 100 \mathrm{db} \quad$ Frequency response $(-3 d B): 15 \mathrm{~Hz}-100 \mathrm{kHz}$
Input sensitivity: 500 mV ms hput impedance: $100 \mathrm{k} \Omega \quad$ Damping factor: $|8 \Omega| 100 \mathrm{~Hz} \mid>400$

POWER SUPPLY UNITS

MODEL NO. FOR USE WITH		PRICE	VAT	FP480
PSU30	$\pm 15 \mathrm{~V}$ combinations of HY6/66 series to			
	a maximum of 100 mA or one HY67	¢4.50	£0.68	BRIDGING UNIT FOR DOUBLING POWER Designed specially by I.L.P. for use
	The following will also drive the $\mathrm{HY} 6 / 66$ series except HY67 which requires the PSU3O.			
PSU36	1 or 2 HY 30	¢8.10	f 1.22	with any two power amplifiers of the same type to double the power output
PSU50	1 or 2 HY60	f 10.94	£ 1.64	obtained and will function with any
PSU60	$1 \times \mathrm{HY} 120 / \mathrm{HY} 120 \mathrm{P} / \mathrm{HD} 120 / \mathrm{HD} 120 \mathrm{P}$	f 13.04	f 1.96	I.L.P. power supply. In totally sealed
PSU65	$1 \times$ MOS $120 / 1 \times$ MOS 120 P	f 13.32	f2.00	case, size $45 \times 50 \times 20 \mathrm{~mm}$, with edge
PSU70	1 or $2 \mathrm{HY120/HY120P/HD120/HD120P}$	£ 15.92	£2.39	connector. It thus becomes possible to
PSU75	1 or 2 MOS $120 / \mathrm{MOS} 120 \mathrm{P}$	£ 16.20	£2.43	obtain 480 watts ms (singte channel)
PSU90	$1 \times \mathrm{HY} 200 / \mathrm{HY} 200 \mathrm{P} / \mathrm{HD} 200 / \mathrm{HD} 200 \mathrm{P}$	£ 16.20	¢2.43	into 8Ω. Contributory distortion less
PSU95	$1 \times$ MOS $200 / \mathrm{MOS} 200 \mathrm{P}$	£ 16.32	£2.45	Price: $\mathbf{f 4 . 7 9}+72 \mathrm{p}$ V.AT.
PSU180	$2 \times$ HY200/HY200P/HD 200/HD200P or			
	$1 \times \mathrm{HY} 400 / 1 \times \mathrm{HY} 400 \mathrm{P} / \mathrm{HD} 400 / \mathrm{HD} 400 \mathrm{P}$	£ 21.34	£ 3.20	
PSU185	1 or 2 MOS $200 / \mathrm{MOS} 200 \mathrm{P} / 1 \times \mathrm{MOS} 400$ /			
	$1 \times \mathrm{MOS} 400 \mathrm{P}$	£ 21.46	¢ 3.22	

L Pelectronics Lto.

FREEPOST 2 Graham Bell House, Roper Close, Canterbury, Kent CT 2 7EP. Telephone (0227) 54778 \{Technical (0227) 64723\} Telex 965780

Which modules?

In launching eighteen different units all within amazingly compact cases to help make complete audio systems using I.L.P. power amplifiers, we bring the most exciting, the most versatile modular assembly scheme ever for constructors of all ages ánd experience. Study the list - seehow these modules will combine to almost any audio project you fancy - - and remember all I.L.P. modules are compatible with each other, they connect easily. Modules HY6 to HY 13 measure $45 \times 20 \times 40 \mathrm{~mm}$. HY66 to HY77 measure $90 \times 20 \times 40 \mathrm{~mm}$. They are so reliable that all I.L.P. modules carry a 5 year no quibble guarantee.

$\begin{aligned} & \text { MODEL } \\ & \text { NO. } \end{aligned}$	MODULE	DESCRIPTION/FACILITIES	CURRENT REQUIRED	PRICE	VAT	The modules are encapsulated and include latest design high quality clip-on edge connectors.
HY6	MONO PRE AMP	Mic/Mag. Cartridge/Tuner/Tape/ Aux + Volume/Bass/Treble	10 mA	£6.44	£0.97	
HY7	MONO MIXER	To mix eight signals into one	10 mA	£ 5.15	£0.77	
HY8	STEREO MIXER	Two channels, each mixing five signals into one	10 mA	£6.25	£0.94	
HY9	STEREO PRE AMP	Two channels mag. Cartridge/ Mic + Volume	10 mA	£6.70	£1.01	
HY 11	MONO MIXER	To mix five signals into one + Bass/Treble controls	10 mA	£7.05	£ 1.06	
HY12	MONO PRE AMP	To mix four signals into one +Bass/Mid-range/Treble	10 mA	£6.70	£ 1.01	For easy mounting we recommend B6 Mounting board for modules HY6 - HY13 $78 p+12 p$. V.A.T.
HY13	MONO VU METER	Programmable gain/LED overload driver	10 mA	£5.95	£0.89	
HY66	STEREO PRE AMP	Mic/Mag. Cartridge/Tape/Tuner/Aux + Volume/Bass/Treble/Balance	20 mA	¢ 12.19	£1.83	
HY67	STEREO HEADPHONE	Will drive headphones in the range of $4 \Omega-2 K \Omega$	80 mA	f:12.35	£ 1.85	B66 Mounting board for HY66-HY77
HY68	STEREO MIXER	Two channels, each mixing ten signals into one	20 mA	£7.95	£1.19	$99 p+13 p . V . A . T$.
HY69	MONO PRE AMP	Two input channels of mag. Cartridge/ Mic + Mixing/Volume/Treble/Bass	20 mA	£10.45	£ 1.57	All I.L.P. modules include full connection data.
HY71	DUALSTEREO PRE AMP	Four channels of mag. Cartridge/Mic + Volume	20 mA	£10.75	£ 1.61	
HY72	Voice operated STEREO FADER	Depth/Delay	20 mA	£13.10	£ 1.97	
HY73	GUITAR PRE AMP	Two Guitar (Bass/Lead) and Mic + separate Volume/Bass/Treble + Mix	20 mA	£12.25	£ 1.84	
+HY74	STEREO MIXER	Two channels, each mixing five signals into one + Treble/Bass	20 mA	£11.45	£1.72	
+HY75	STEREO PRE AMP	Two channels, each mixing four signals into one + Bass/Mid-range/Treble	20 mA	f. 10.75	£ 1.61	
+HY76	STEREO SWITCH MATRIX	Two channels, each switching one of four signals into one	20 mA	To be	ounced	I.L.P. Products are of British
+HY77	STEREO VU METER DRIVER	Programmable gain/LED overload driver	20 mA	£9.25	£ 1.39	Design and Manufacture.

TO ORDER USING OUR FREEPOST FACILITY

Fill in the coupon as shown, or write details on a separate sheet of paper, quoting the name and date of this journal By sending your order to our address as shown at the bottom of the page opposite, with FREEPOST clearly shown on the envelope, you need not stamp it. We pay postage for you. Cheques and money orders must be postage for you. Cheques and money orders must be
crossed and made payable to I.L.P. Electronics Ltd. If crossed and made payable to I.L.P. Electronics Ltd. I
sending cash, it must be by registered post. To pay sending cash, it must be by registered post. To pay
C. O.D. please add $£ 1$ to TOTAL value of order. When ordering, U.K. customers must include the appropriate V.A.T. as shown.

PAYMENT MAY BE MADE BY ACCESS OR BARCLAYCARD IF REOUIRED.

CONTINUE THEIR SPECIAL OFFER mini 20 $20 \mathrm{k} \Omega / \mathrm{V}$ d.c. $\quad 6 \cdot 6 \mathrm{k} \Omega / \mathrm{V}$ a.c.

multimeter

 only $£ 19.50$ INCLUSIVE OF POST PACKAGE-V.A.T.

The Mini 20 is an ideal instrument for the constructor.
This special offer is a wonderful opportunity to acquire an essential piece of test gear with a saving of nearly £10 on the normal retail price.
The 26 ranges cover all likely requirements. Operation is straight-forward, just turn the selection switch to the required range.

RANGES:

d.c. V: $100 \mathrm{mV}, 1 \mathrm{~V}, 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$.
a.c.V: $10 \mathrm{~V}, \mathbf{3 0 V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$.
d.c.I: $50 \mathrm{uA}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 100 \mathrm{~mA}, 1 \mathrm{~A}, 3 \mathrm{~A}$.
a.c. $1: 3 \mathrm{~mA}, 30 \mathrm{~mA}, 300 \mathrm{~mA}, 3 \mathrm{~A}$.

Ohms: $0-1 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 100 \mathrm{k} \Omega, 1 \mathrm{M} \Omega$.
Accuracy: 2\%d.c. \& resistance, 3\% a.c.
Dimensions: $105 \times 130 \times 40 \mathrm{~mm}$

Movement protected by internal diode and fuse.
The instrument is supplied complete with case, leads and instructions.

For details of this and the many other exciting instruments in the Alcon range, including multimeters, component measuring and electronic instruments please write or telephone:

Osciloscopes

Limited quantities

 available at Unrepeatable Prices! MODEL 4810 f119 . 55 4" DC - 5 MHz -1 On .g
 10-1 PROBE INCLUDED FREE PRICES TO RISE 20\% WHEN
 Cheques, Access, Barclaycard welcome 10 day moneyback guarantee. CURRENT SUPPLIES EXHA USTED. ${ }^{\text {and packe add } £ 3.50 \text { for post }}$ All models feature fully calibrated time base circuits, automatic blanking and stabilized power supplies. They are rugged and portable. Model 5810 has input attenuation calibrated $+5 \%$ to provide twelve steps from 10 mV to 50 V per division.

 £39 ${ }^{\text {:* }}$ nice var

Eureka Electronics Lid

Castle House, 27, Castle Street,
Brighton, East Sussex. BN1 2HD England.
Telephone: (0273) 202016/7

SUPER VALUE PACKS AND COMPONENTS

P1.	50
P2.	80
P3.	100
P4.	80
P5.	50
P6.	45
P7.	2
P8.	1

DIODES

1n4001; 04p. 1N4002; .04p. 1N4003; .04p. 1N4004; .05p. 1N4005; .05p. OA9O; .06p
0A91:.06p. 0A91:.06p.
TANT BEAD CAPACITORS
 $43 / 10 \mathrm{v} .25 \mathrm{p} 47 / 6 \mathrm{v} .25 \mathrm{p} 47 / 16 \mathrm{v} .5 \mathrm{p} 10 / 16 \mathrm{v}$. $16 \mathrm{p} 22 \mathrm{uf} / 6.3 \mathrm{v} .16 \mathrm{p} 22 / 10 \mathrm{v} .20 \mathrm{p} 22 / 16 \mathrm{v} .25 \mathrm{p}$ 33/10v.25p 4y.
Polystyrene Caps. from .03p. Low Voltage discs from .03p. Silver Mica from . 10p Etc. Etc. Lists enclosed with first order or S.A.E. Post and packing add.20p per pack or .20p on
C.H.J. SUPPLIES, 4 STATION POAD CUEFLE HERTS. Tel: 01-440 8959.

MAIL ORDER ONLY

HENRYE

micrdtan 65 CDNTENTS
High quality. plated thru hole printed circuit board, solder resist and silk screened component identification 6502 microprocessor 1 K monitor TANBUG. Now with 'V' Bug. IK RAM Ior user progranme, stack and display memon VOU atphanumeric display of 16 rows by 32 characters MICROTAN 65 system file binder $\$ 36$ page. bound. users hardware. sotware manual with constructional details and sample programmes logic and discrete components to fully expand MICROTAN 65 The MICRDTAN 65 kit has won wdespread acclam tor its superb presentation. We pay attention to detall
KIT FDRM $\mathbf{8 6 9 . 0 0}+\boldsymbol{f 1 0} 35$ V.A T. total 679.35
michDtan 65 assembled and tested.
Specification as above, but assembled and tully bench tested by ourselves $\mathbf{£ 7 9 . 0 0}+£ 1185$ V A. T. total $£ 90.85$

MICROTAN 65 OPTIONS
 LOWER CASE PACK

Two integrated circuits which conne
MINI MOTHER BOARD Two integrated circuits which used to consect Microtan to Tanex Buill $\mathbf{£ 1 0 . 0 0}$ - VAI
allowing 128 displayable charaters
£9.48 $\mathbf{+} \mathrm{E} 142$. total $£ 10.90$.
GRAPHICS PACK
Five integrated circuits which connect into locations on MICRDTAN allowing the display of chunky graphics (64×64 pexels) What are chunky graphics? Welf, magine a peece of graph paper with 64 squares vertically and 64 squares horizontally. a total of 4096 Each square can be made black on white
$\mathbf{5 6 . 5 2}+$ V.A.T 98p, total $£ 750$
20 WAY KEYPAD
Inexpensive means of getting up and funning. Uses 'Schoeller' keyswitches, and connects to MICROTAN through a 16 pin DIL pleg on ribbon cable Black anodised escutcheon, with TANGERINE legends. finishes off what must be the best value for money keypad available. Available as sembled and tested.
$\mathbf{E 1 0 . 0 0}+$ VAT $\mathbf{f 1 . 5 0}$, total $\mathbf{f 1 1 5 0}$
*Space invaders game (for use with keypad only) $\mathbf{f 1 5 . 2 2 + V A T} E 2.28$ total $£ 1750$

POWER SUPPLIES

MPS 1 : Input 120 or 240 V AC Dutput 5 Volts at 3 Amps Regulated MPS 1 will power both MICROTAN and TANEX fully expanded Built on the same size printed circuit board as MICROIAN etc Avalatle as a tully built and tested unit
$\mathbf{8 2 3 . 0 0}=$ VAT $\mathbf{f 3} 45$, total $£ 2645$
X MPSZ $+5 \mathrm{~V} 6 \mathrm{~A}, 12 \mathrm{~V},-5$ and -12 V switch mode system PSU £69.13 + Va.t

MINI-SYSTEM RACK

We have produced a mint-system rack which accepis MICROTAN 65 TANEX and our min-mother board It has an integral power supply, just plug it into the mains and away you go! Finished in TANGERINE/BLACK. it gives your system the protessional finish. Front panel access for I/O cables AVAILABLE AS AN ASSEMBLED UNIT
$\mathbf{8 4 3 . 0 0}+$ V.A T. f6. 45 . total $\mathbf{f 4 9 . 4 5}$

FULL SYSTEM RACK

For the man that has everything! 19 inch wide system rack which accepts MICROTAN 65. TANEX, TANRAM, SEVEN FURTHER EXPANSION BDARDS, TANOOS and THE SYSTEM POWER SUPPiY. Available in many formats. eg Individual tront panels, fulf width hanged front panel, back panel with or without connectors
£49.00 + V A.T f7 35 , rotal 55635.

NEW PRODUCTS

NOW
AVAILABLE
High definitron col oun babphics senial l/ ocanol fromi

 aIm-KIM INTERFACE CARO £59.00 vat SYSTE M MDTHER BOARO WCTH
12 SOCKETS FOR SYSTEM AACK З2к вам саво E115.var

many services, order goods from companies all this without leaving your armchair'

TANEX $£ 43.00$
 Minimum Config Kit

CONTENTS +VAT E645, totalf4945
High quality plated thru hole printed circuit board, solder resist and silk screened component identification. I C sockets for maximum expansion 64 Way 0 I.N. edge connector 1 K RAM, cassette intertace, 16 parallel VO lines. a T TL. senal I/O port, two 16 bit counter timers. data bus buffering, memory mapping, logic and discrete components for maximum expansion TANEX users manual TANEX (Menmum contiguration) Assembled $£ 53.00$ + VAT. $\mathbf{f 7}$ 95, total 16095

TASEKEXPAMBIDM
Expanded. TANEX offers 7K RAM locations for 4 K EPROM (2716) locations for 10 K extended MICROSOFT BASIC, 32 paralleal/ 0 lines. two TTL serial I/D ports. hird sertal $1 / 0$ port with RS232/20mA loop. full moder control and 16 programmable baud rates, four 16 bit counter timer cassette interface, data bus

TANRAM

AVAILABLE NOW TANRAM - 40K Bytes on one board! Single board of bulk memory offering 7K Static RAM (2114) and 32K Dynamic RAM (41:6) Onboard refresh is totally transparent to CPU operation and Is Unaffected by normal OMA's TANRAM fully expands the avallable address space of the
6502 microprocessor MICRDTAN. TANEX and TANRAM together provide 16 K RAM. 48 K RAM. and $1 \mathrm{~K} / / \mathrm{D}$ - that's a tot of memory and a lot of $1 / O^{\prime}$ Built and tested. TANRAM ASSEMBLED

40K RAM CARD with 16K DYNAMIC RAM E76 +VAT CONTENTS High quality plated thru hole pernted carcuit board, solder resist and s:lk screened component identitication Fult complement of 1C sockets for maximum expansion 64 way DIN edge connector. IK RAM (2114). Data bus buffeting TANRAM users mantal.

EXTRA RAM
1K STATIC (2114) f2.95 each 16K DYNAMIC (4116) f150 each

MEMORIES EXpano yoursystem with Our tangerine Discounts 10% for 4.15% for 8.20% for 16 APPROVEO CHIPS $21021 \mathrm{~K} \times 1$ Static RAM 80p 2708 £3.50 2114 IK $\times 4$ Static RAM $\mathbf{f 2} 95$ IM 6402 UART $\mathbf{f 4 5 0}$ MK $411616 \mathrm{~K} \times 1$ Dyname RAM 8080A f5 0 O f1.50 All plus VAT $4118 \mathrm{KK} \times 8$ Static RAM $\mathbf{f 7 . 5 0}$

MONITORS (PROFESSIONAL)
RECONDITIONED ANO HEW - FRDM $£ 35.00$ to $£ 129.95$

CENTRONICS Ideal for Tangerine PRINTERS
 CENTRONICS PI. £150 \& var SHEKKOSHA £ 199 + wit Model $730 \mathbf{£ 3 5 0}+$ VAT Model $737 \mathbf{£ 3 9 5}+$ VAT

NEW MICROTANTEL

 POST OFFICE APPROVED PRESTEL - VIEWDATA- FULL COLOURGRAPHICS • MICROTAN OWNERS CAN COMMUNICATE WITH EACH OTHER - CAN STORE PRESTEL - CAN BE
USED AS AN EDITING TERMINAL CAN BE
 INTERFACED WITH PET, APPLE et
Just connect to the aerial socket of any colour or black and white domestic TV recelver and to your Post Ottice installed jack socket and you are into the exciting world of PRESTEI Via simple push button use you are able to view 170,000 pages of up to the minute intornation on

6502 based microcompuner VDU alpha numeric display Powertu monitor TANBUG $8 K$ RAM 32 parallell/ 0 lines. 2 TTL seriall/D tine Four 16 Bit counter timers Cassette interface. Data bus buffering Memory mapping contal 71 key ASClI Keyboard, including'nunteric keypad Includes nower supply Also includes the first 10 K MICRD SOFT BASIC ' availabie in the U.K. All the usual BASIC commands
 EXPAMDED TANEX KIT (Excludes ROM. XBUG and BASIC) £89.70 + VA.T E 13.46 , total f 103.16 EXPANDED tanex ass embled
£99.70 + V A.t $\mathbf{~ 1 4 . 9 6 . ~ t o t a l ~} \mathrm{f} 11466$ OPTIONS to fully expanded tanex in simple INEXPENSIVE STAGES
IOK Extended MICROSOFT BASIC in EPROM (with manual) f49.00 + VAT $\mathrm{f7} 35$. total f 56.35
Extra RAM. $1 \mathrm{~K}(2 \times 2114) \mathbf{f 5} \mathbf{2 0}+\mathrm{VAT} 78 \mathrm{p}$, total 65.98 SERIALI/O KIT $\mathbf{f 1 0 . 2 6 + V A T}$ f1 60, total $\mathrm{f11} 80$ 6522 VIA $\mathbf{f 8 . 0 0}+$ V. AT. $\mathbf{f 1} 20$, total 6920. XBUG $£ 1735+$ VAT f 260 , total f 1995
as you can see the prices of our expansion COMP ONENTS ARE VERY, VERY COMPETITIVE!

TANGERINE DISC SYSTEM

Z8 CONTROLLER CARD $£ 150.00$-VAT DOUBLE SIDED DOUBLE DENSITY ORIVE $\mathbf{£ 2 1 5 . 0 0}$-VA
CP/M DISK OPERATING SYSTEM $\mathbf{x} 80$ - VAT

71 KEY ASCII KEYBOARD £56.34+VA
 no extras neeoed
 Uses gold crosspoint keys includes numeric keypad and ribbon cable Available as tully assembled and tested
 $\mathbf{f 2 0 . 0 0}+$ VAT f 300 , total f23 00

PROFESSIONAL ASCII KEYBOARDS
 Ideal for
 Tangerine
 £29.95

 52 key 7 bit ASCll coded Pasitive strobe +5 V . ASCII characters ParaHel output with strobe
 Power light on control
 Chip by General Instrument
 Superbly made
 Size $13 \times 5.5 \times 15 \mathrm{ins}$ Black keys with whte ledgens Escape shit return \& reset keys Control repeat \& bell keys Complete with DATA
 A compact 12 button keypad suitable for use with above keyboard to extend its function plus four extra keys. Supplied brand new with with data. A non-encode keyboard

PLUS MANY NEW EXCITING PRODUCTS IN DEVELOPMENT
AUTDMATICALLY AVAILABLE FROM US WHEN RELEASED BY OUR PRINCIPAIS TANGE RINE ITD
All products are avarlable from stock
fully guarante o buy with Confioe nce
BRITISH DESIGN \& MANUF ACTURE ANO ON DEMONSTRATION

Now the time can tell you! . . .

New - from Silicon Speech Systems (a Powertran subsidiary) - the first ever easy-to-build kit that will give a whole new meaning to the 'speaking clock'! Electronics and quartz technology combine to enable you to construct a talking timepiece that is interesting to build - fun to have!

Full instructions make this a kit with equal appeal to the beginner or experienced constructor.

ONLY £29.95 $\begin{gathered}\text { includes VAT } \\ \text { and Post \& } \mathrm{k}_{\mathrm{g}}\end{gathered}$

- Accurate to a minute a year
- Adjustable voice pitch
- Grained stainless-steel case
- Pocket size - approx. $5 \mathrm{in} . \times$ 21/2in. $\times 1$ in.
- Useful in the home or office

Silicon Speech Systems

(A Powertran Subsidiary)

$=$ ner TELEPHONE ORDERING FOR ACCESS/BARCLAY CARD CUSTOMERS IS NOW AVAILABLE. JUST PHONE YOUR ORDER AND GIVE YOUR CARD NO. RING ANDOVER (0264) 64455.

PARNDON ELECTRONICS LTD.

Dept No. 2144 Paddock Mead. Harlow. Essex. CM18 7RR. Tel 027932700
RESISTORS: $1 / 4$ Watt Carbon Film E24 range $\pm 5 \%$ tolerance. High quality resistors made under strictly controlled conditions by automatic machines. Bandoliered and colour coded.
£1.00 per hundred mixed (Min 10 per value)
E8.50 per thousand mixed. (Min 50 per value)
Special stock pack. 60 values. 10 off each $\mathbf{£ 5} \mathbf{5 0}$
DIODES: IN4148 3p each Min order quantity - 15 items.
£1-60 per hundred
DIL SWITCHES: Gold plated contact in fully sealed base - solve those
programming problems
4 Way 86 p each. 6 Way $\mathbf{£ 1 . 0 0}$ each. 8 Way $£ 1.20$ each.

DIL SOCKETS: High quality tow profile sockets

8 pin-10p. 14 pin-11p. 16 pin-12p. 18 pin-19p. 20 pin-21p.
22 pin-23p. 24 pin - 25p. 28 pin - 27p. 40 pin-42p.
ALL PRICES INCLUDE V.A.T. \& POST \& PACKING - NO EXTRAS MIN ORDER - UK. £1.00. OVERSEAS £5 CASH WITH ORDER PLEASE

DEVELOPMENT

 Fien Parar

MONITOR or TV output (625 line UHF). Data contents of memory visible - AWINDOWINTHE CHIP.
28-KEY, 2-LEVEL KEYPAD with HEX ENTRY and EDITING CAPABILITY. (BYTES and BLOCKS of code can be changed, inserted, deleted, shifted around etc.).
INPUT and OUTPUT: SERIAL (RS232) and PARALLEL (Centronics) routines provide ready interfacewith computer or printer.

EMULATION of PROGRAM MEMORY in-circuit is performed by plugging SOFTY into the ROM SOCKET. A lead with a 24 pin DIL PLUG is supplied.

CASSETTE INTERFACE
EPROM-PROGRAMMER: an EPROM may be copied or reprogrammed at the press of a key.
$(7$ PERSONALITY SWITCH selects $2716,2532,2732$.
SOFTY is used as an EPROM-PROGRAMMER, a production ROM CHECKER and for the DEVELOPMENT and PRODUCTION of PRODUCTS which contain MICROPROCESSORS and use EPROM for program storage.
*Price is for a BUILT and TESTED SOFTY (No kits) including POWER SUPPLY, TV LEAD,
ROMULATOR LEAD, 90 DAY WARRANTY and 14 day money-back guarantee.
$£ 169.00+£ 25.35$ (VAT 15\%) $=£ 194.35$.
DATAMAN DESIGNS,
Lombard House, Dorchester, Dorset DT1 1RX Dorchester (0305) 68066 (UK Sales)
Maiden Newton (0300) 20700 (Export)

Microcomputers are coming - ride the wave! Learn to program.

Millions of jobs are threatened but millions will be created. Learn BASIC - the language of the small computer and the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency, with a unique style of graded hints. In 60 straightforward lessons you will learn the five essentials of programming: problem definition, flowcharting, coding the program,
 debugging, and clear documentation
BOOK 1 Computers and what they do well, READ, DATA, PRINT, powers, brackets, variable names; LET; errors; coding simple programs. BOOK 2 High and low level languages; flowcharting; functions; REM and documentation; INPUT, IF...THEN, GO TO; limitations of computers, problem definition. BOOK 3 Complers and interpreters, loops, FOR ...NEXT, RESTORE; debugging: arrays; bubble sorting; TAB BOOK 4 Advanced BASIC; subroutines,
stings; files; complex programming; examples; glossary. strings; files; complex programming; examples; glossary.

Also THE BASIC HANDBOOK (BHB) $\mathbf{£ 1 4 . 5 0}$ An encyclopaedic guide to the major BASIC dialects. A must if you use other peoples' programs. NEW COMPLETELY REVISED EDITION.
and: ALGORITHM WRITER'S GUIDE (AWG) $\mathbf{£ 4 . 0 0}$ Communicate by flow chart! Learn to use Yes/No questions for: procedures, system design, safety, legislation etc.

Understand Digital Electronics

Written for the student or enthusiast, this course is packed with information, diagrams, and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters, and simple arithmetic circuits; and finally to an understanding of the design and opera-
 tion of calculators and computers
BOOK 1 Decimal Octal, hexadecimal, and binary number systems and conversion between number systems; negative numbers; complementary systems BOOK 2 OR and AND functions: multiple-mput gates; truth tables; De Morgan's Laws, canonical forms; logic conventions, Karnaugh mapping; three-state and wired logic. BOOK 3 Half, full, serial, and parallel adders; subtraction; processors and ALU's, multiplication and division. BOOK 4 thip flops; shift registers; asynchronous, synchronous, ring, Johnson, and exclusive-OR feedback decoding display data, register systems, control unit PROM, address keyboard encoding; decoding display-data, register systems, control unit; PROM; address de-coding. BOOK 6 put/output systems, program interrupts; interrupt priorities, programming, assemblers; computers, executive programs; operating systems.
DIGITAL COMPUTER LOGIC \& ELECTRONICS. (DCL) £8.50 A course covering the material in italics above, but at a slower pace. (4 vols)
GUARANTEE - No risk to you. If you are not completely satisfied your money will be refunded without question, on return of the books in good condition.

CAMBRIDGE LEARNING LIMITED, 28. RIVERMILL SITE, FREEPOST, ST. IVES.
--

1) A U.K. cheque or a U.K. postal order (Not Eire or overseas)
2) A bank draft, in sterling on a London bank (available at any major bank)
3) Please charge my Access/M.Ch \square Barclay/TrustC/Visa \square Am. Exp. \square Diners \square 4) Or phone us with these credit card details - 048067446 (ansaphone) 24 hour service. Expiry date.

Card No. \qquad . Signed...
THESE PRICES COVER THE COST OF SURFACE MAIL WORLDWIDE. AIRMAIL: Eur, N.Af. Mid.E. add $1 / 3$ to price of books: Jpn, Aus, N.Z, Pcfc add $2 / 3$: elsewhere add $1 / 2$

Name
Address

[^4] Cambs PE17 4BR England

[^5]Buy British-Buy Douglas Transformers Mail Order from TITAN Transformers \& Components
Central Hall Chambers, Duncombe Street, Grimsby, South Humberside DN32 7EG Prices include 15\% V.A.T. Send for our Catalogue.

					SEC bobegin try 								
TYPE		$\begin{aligned} & \text { MPS } \\ & 24 \mathrm{v} \end{aligned}$	$\underset{\text { PRICE }}{ }$	P/P	TYPE	$\begin{gathered} \mathrm{AN} \\ 30 \mathrm{v} \end{gathered}$	$\begin{aligned} & \mathrm{PS} \\ & 60 \mathrm{v} \end{aligned}$		$\text { CE } \underset{\mathcal{E}}{P / P}$	TYPE	VA	PRICE £	P/P
213	1	$0 \cdot 50$	2.65	0.87	124	1	$0 \cdot 5$	$5 \quad 3$	${ }^{1} 143$	25	65	390	$1 \cdot 10$
71	2	1	2.77	1.10	126	2	1	63	¢ 1.43	64	80	482	110
18	4	2	3.98	143	127		2	78	61.73	4	150	6.21	143
68	3	1.5	3.46	1.43	125	6		11.7	1 1.90	69	250	7.54	1.43
85	5	$2 \cdot 5$	6.06	$1 \cdot 43$	123	8	4	14.7	220	53	350	9.73	1.90
70	6		6.67	$1 \cdot 43$	40	10	5	171	2.20	67	500	11.70	$2 \cdot 20$
108	8	4	8.03	143	120	12	6	19.4	235	83	750	13.51	2.05
72	10	5	8.66	173	121	16	8	27.70	2. 65	84	1000	18-31	$2 \cdot 35$
116	12	6	9.31	190	122	20	10	32.05	4.00	95	2KVA	34.36	5.00
17	16	8	11.46	2.05	189	24	12	37.02	$5 \cdot 00$	73	3	64.74	$5 \cdot 00$
187	30	15	1923	$2 \cdot 35$						57	5	97.85	$6 \cdot 50$
232	40	20	27.61	4.50						101	10	179.05	1000
					vorts 12 ${ }^{48} 0^{48}$					CASED AUTOTRANSFORMERS Z4OVLEADIN ILSV 2PAN SOCKETOUT			
TYPE		PS	PRICE	P/P	TYPE	AM		PRIC	E P/P	TYPE	VA	PRICE	P/P
	15v	30 V 0	${ }_{2}{ }^{2} 84$	${ }_{1}^{\text {¢ }}$		48v	96 v		1.				\pm
112	1	050	2.84	110	430	1	05	- 4.69	1.43	56W	20	6.60	0.87
79	2	1	329	110	433	2	1	784	1.43	64 W	80	8.43	1.43
3	4	2	6.18	1.43	432	4	2	129	2.05	4W	150	1086	1.73
20	6	3	$7 \cdot 19$	173	433			14.62	220	69W	250	1317	1.90
21	d	4	852	1.73	434	8	4	20.04	245	67 W	500	20.46	$2 \cdot 20$
51	10	5	10.57	190	435	10	5	28.75	2.65	84 W	1000	30.24	2.55
117	12	6	14.94	205	436	12	6	36.16	4.00	95W	2000	54.83	$5 \cdot 0$
88	16	8	1614	220	437	16	8	39.47	5-00	73W	3000	78.67	6.50
89	20	10	1854	235									
90	24	12	20.57	$2 \cdot 55$									
91	30	15	23.63	$2 \cdot 65$									
92	40	20	33.21	4-50									
					WAINS 500 atcons Saletrmemitim cen st 5 .								
TYPE	$\underset{24 \mathrm{v}}{\mathrm{An}}$	${ }^{4 P S}$	PRICE	$\begin{aligned} & \mathbf{P} / \mathrm{P} \\ & \hline \end{aligned}$	TYPE	VA		$\begin{gathered} \text { PRICE } \\ \text { E } \end{gathered}$	$\underset{\mathbf{E}}{\mathbf{P} / \mathbf{P}}$	TYPE	VA	PRICE	$P_{i} P$
102	1	$0 \cdot 50$	329	$1-43$	149F	60		8.40	1.73	415C	50	$2 \cdot 31$	${ }_{0}^{2} 8$
103	2	1	4.09	1.43	150F	100		9.71	1.73	416 C	100	346	087
104	4	2	7.65	173	151F	200		13.84	2.05	417 C	200	$4 \cdot 00$	$1 \cdot 10$
105	6	3	9.09	190	152F	250		16.69	220	418F	350	6.26	1.43
106	8	4	12.24	690	153F	350		20.77	2.55	419 F	500	6.74	1.73
107	12	6	16.15	2.20	154F	500		26.03	265	420 E	750	8.33	190
118 119	16 20	8	22.46	2.55	158 F	750		36.75	500	421 F	1000	$11 \cdot 64$	2.05
119 109	24	12	27.05 32.44	$2 \cdot 55$ 4.50	156F	1000		4742	600				

Send Today 50p (Refundable with First Order) for Catalogue TITAN TRANSFORMERS AND COMPONENTS
CENTRAL HALL CHAMBERS GRIMSEY DN32 7EG MAIL ORDER ONLY - PRICES INCLUDE 15\% VAT PE 11

It's easy to complain about advertisements.

The Advertising Standards Authority If an advertisement is wrong, we're here to put it right.

ASA Ltd, Brook House, Tormington Place, London WCIE 7HN.
for top quality components, innovative kits, FAST SERVICE AND LOW, LOW PRICES

Our ELECTRONIC LOCK KIT includes a 10 -way keyboard and a special IC which provides a

750 mA output to drive a solenoid or relav (not supplied) when four kevs are deoressed in
the correct sequence. This gives over 5.000 possible combinations! The sequence is prewired and may be easily changed by means of a small plug and socket. A "SAVE" function is also available en abling the open code to be stored (especialiy usefu! in a car when it is teft in a garage for servicing as the open code need not be disclosed). Size: $7 \times 6 \times 3 \mathrm{cms}$. Po
Consumption is 40 UA at $5 V$ to 15 V d.c.
At only $£ 10.50$. VAT, it will make a smaller hole in your pocket than a bunch of keys! LOCK IC.s
LS7220 with SAVE memory
LS7225 with latched and
Electric Lock Mechanism
Electric Lock Mechanism
Suitable for use with existion

MINI KITS

These kits form useful subsystems which may be incorporated into larger designs or
used alone. Kits include PCB, short instructions and aicomponents
MK1 TEMPERATURE CONTROLLER/ THERMOSTAT
Uses LM3911 IC to sense temperature
 MK2 SOLID STATE RELAY
Ideal for switching motors, lights, heaters, etc. from logic Opto-solated with zero Select the required triac from our
range.
E2.60
MK3 BAR/DOT DISPLAY
Displays an analogue voltage on a linear 10 element LED display as a bar or single dot Ideal for thermometers, level indicators, etc displays. Requires $5-20 \mathrm{~V}$ supply. $\mathbf{£ 4 . 7 5}$ MK4PROPORTIONALTENPERATURE CONTROLLER
Based on a new zero voltage switch IC, this kit may be wired to form a burst fire' power enclosure to be maintained within of an $05^{\circ} \mathrm{C}$
ent Thermistor failure causes output to switch
off. Temperature range ambient to $90^{\circ} \mathrm{C}$. off. Temperature range ambient to $90^{\circ} \mathrm{C}$.
$\mathbf{3 K W}$.
$\mathbf{E 5 . 5 5}$
MK5 MAINS TIMER
Based on the 2N1034E Timer IC this kit will wwith a mains load on (or off) for a preset time from 20 minutes to 35 hours. Longer or shorter periods may be realised by minor 1 component changes. Maximum load

TRIACS

<0) 400 V Plastic Case (Texas)
8A TIC226D
12A TIC236D
16A TIC246D
$25 A$ TIC263D
6A with trigger 04006LT
8 A isolated tab TXAL 226 B
8A iso
Diac
Opto

6

NOT JUST ANOTHER CLOCK

but a PROGRAMMABLE TIMER KIT which can run your central heating, burglar alarm, lighting, taperecorder/radio and lots more. Designed to control four mains outputs independently, switching these on and off on selected days and times in a seven day cycle.
Features include:

* $0.5^{\prime \prime}$ LED 12 hr . display.
* Day of week, am/pm and output status indicators.
\star Zero Voltage Switching Outputs.
$\star 50 / 60 \mathrm{~Hz}$ mains operation.
\star Battery backup saves stored programmes and continues time keeping during power failures. (Battery not supplied).
* Display blanking during power failure to conserve battery power.
* 18 programme time sets.
* Powerful "Everyday" function enabling output to switch everyday but use only one time set.
* Useful "sleep" function - turns on output for one hour.
* Direct switch control enabling output to be turned on immediately or after a specified time interval.
* 20 function keypad for programme entry.
* Programme verification at the touch of a button. To control your central heating, for example, (including different switching times at weekends), just connect it to your system, programme it, set it and forget it. The clock will do the rest. There has never been a clock capable of so much at this price. CT5000K Timer Kit (includes all components, assembly and programming instructions, and an attractive black case) $£ \mathbf{4 5 . 0 0}$

REMOTE CONTROL COMPONENTS AND KITS
LD2 71 IR Emitting Diode
SFH205 Photodiode detecto SL480 IC Puise Amp
SL490 32 command SL490 32 command encoder/ ML922 10-channel receiver .3 anatogue outputs
ML92 16 -channel receiver 4
momentary binary outputs

$\mathbf{. 3 6}$	ML927 16-channel receiver 4
$\mathbf{9 0}$	momentary binary outputs
$\mathbf{1 . 7 0}$	ML928 16-channel receiver 4
latched binary outputs	
$\mathbf{2 . 4 0}$	ML929 16-channel receiver 4
$\mathbf{4 . 1 0}$	latched binary outputs Clip-on Plastic reflector for IR LEDs. increases range
$\mathbf{1 . 4 0}$	IR

1.40 1.40 1.40 0.20

MEMORIES \& MICROS

INTEGRATED CIRCUITS

AV-5-1224 Clock

AV-5-1230 Clock/Timer
AY-3-1270 Thermometer
CA3130 CMOS Op. Amp
CA3 140 CMOS Op Amp.
ICL7106 DVM (LCD drive)
ICM7555 CMOS 555 Time
LM3379S Qual 6W Amp
LM380 2 W Audio Amp
LM382 Dual low notse pre-amp
LM386 250 mW low voltage amp
LM1830 Fluid Level Detector LM1830 Fluid Level Detector LM3909 LED Flasher/oscillator LM3911 Thermometer LM3914 Dot/Bar driver (linear) LM3915 Dot/Bar driver (log.) LS 7220 Electronic Combination Lock with LS 7225 Electroni tamper output MM 74 Cg 11 4-digit display controller
MM 74 Cg 15 7-segmen MM74C915 7 -segment BCD convert
MM 74 C 926 Counter $/ 7$ seg output S566B Touchdimmer
SL440 AC Power Control
SL441 Burst Fire Controller
SN76447 Complex Sound Generator
TBAB10AS 7W Audio Amp
TMS 1121 Clock/ 7 day Timer Data for TMS 1121
TDA1024 Zero Voltage Switch
TDA2020 20 W Audio Amp.
TDA4290 DC controlled, Base, Treble \&
TLO84 Quad J-FET Op. Amp
2N414 AM Radio
TLO81 J-FET Op. Amp.
TLO82 Dual J-FET Op. Amp
ZN $1034 E$ Timer
All ICS supplied with Data Shee
Data Sheets only - per device
TIL 74LS

ML925 A decoder designed for model/toy control, providing a 2 -speed drive motor and three position latched steering system or a vehicle with mornentary action steering and a
third motor, e.g gun, turret, winch, etc Outputs also available for other facilities such as
horn, turn indicators, headlights. etc.
$\mathbf{2 . 1 0}$ horn, turn indicators, headlights. etc

MK6 - Simple Infra Red KITS *** KITS *** KITS *** KITS
ete with a hand held plastic box. Requires a 9 V battery 0
MK7 - Infra Red RECEIVER. Single channel, range approximately 20 ft Mains powered with a triac output to switch loads up to 500 W at 240 V a c but can be modified tor use with 5-15V d.c. supplies and transistor or relay outputs
"Special Price* MK $\$$ M M 7 together. Order as RC500K
9.00
12.50 MK8 - Coded MK6 \& MK7 together. Order as RC500K , the kit includes 2 IR 12.50 measures only 8.2. 1.3 cms and requires a 9 V (PP3) battery
MK9 - 4-way KEYBOARD. For use with MK8 Kit.

RECEIVERS AND COMPONENTS

 Assorted Components $£ 3.95 .10 \mathrm{lbs} £ 5.25$. PCBs $11 \frac{1}{3}^{\prime \prime} \times$ $8^{\prime \prime}, 60$ p. 1 lb weight assorted 80 p. Fibreglass $11^{\prime \prime} \times 5^{\prime \prime} £ 1$. $11^{\prime \prime} \times 10^{\prime \prime} £ 1.80$. Fourty 74 series ICs on panel $£ 1.60 .500$ capacitors $£ 3.00$. List 20 p refundable. Post 50 p. Optional insurance 20p. J.W.B. Radio, 2, Barnfield Crescent, Sale, Cheshire M33 1NL.

NY CATALOGUE contains thousands of surplus electrical and mechanical items. Price 40 p or sent free with large tin of aerosol freezer price $\boldsymbol{£ 1}$ plus 85 p postage. J. A. Crew (PE) Spinney Lane, Aspley Guise, Milton Keynes.

SURPLUS PARCELS. Unbeatable value: guaranteed to contain assorted resistors, capacitors, relays (min. etc.), transistors, semi-conductors, switches (micro etc.), 5 P.C.B.'s incorporating valuable components, plus assortment of components as available. 10 lbs minimum. Send remittance for $£ 11.50$ (inclusive VAT) and $£ 2.50 \mathrm{p} \& \mathrm{p}$ to: Industrial Marketing, Claverley House, 93 Lubbock Road, Chiselhurst, Kent. - We expect repeat orders - buy a parcel, we think you will agree.

T\& J ELECTRONIC COMPONENTS

Quality components - Competitive prices

- Stock items despatched same day - First class post used whenever possible Wide range of components and accessories - VAT inclusive prices - Single charge of 40p postage \oplus Price cheque or postal order for 45 p.

98 Burrow Road, Chigwell, Essex IG7 4HB

BOURNEMOUTH/BOSCOMBE. Electronic components specialists for 33 years. Foresters (National Radio Supplies), Late Holdenhurst Road. Now at 36, Ashley Road, Boscombe. Tel. 302204 . Closed Weds.

TURN YOUR SURPLUS Capacitors, transistors, etc., into cash. Contact COLES-HARDING CO.. 103 South Brink, Wisbech. Cambs. 0945-4188. Immediate settlement.

SMALL ADS

The prepaid rate for classified advertisements is 28 pence per word (minimum 12 words), box number 60 p extra. Semi-display setting $£ 9.50$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Electronics, Room 2337. IPC Magazines Limited. King's Reach Tower. Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

notice to READERS

Whilst prices of goods shown

 in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.1920's ONWARO VALVES. Wireless, S.A.E. SOLE ELECTRONICS, PE37, Stanley Street, Ormskirk, Lancs, L39 2DH.

NEW TOP GRADE COMPONENTS AT dISCOUNT PRICES						
NPN SILIICON POWER TRANSISTORS BY IPS						
2N3053			20p	2N377		90 p
2N3054			45p	2N377		90p
2N3055			45p	2N377		£1.20
2 N 3055 H			50p	2N344		90p
2N6254			80p			
GENERAL PURPOSE ELECTROLYTIC CAPACITORS						
$\begin{gathered} 10,22, \\ 50 \end{gathered}$		$47,100,$		470,	1000MF	16 V
${ }_{5 p}$		$6_{\text {p }}$,			${ }_{420}$	25 V
Axial:						
10,22,				220.	16 V	
7p				\%		
10.22,				1000 ,	25v	1000/50v
7 p		9 p		45p		5sp
Trade enquirics weicome. $V A T$ included - please add 30 postage \& packing - orders despatched by return - CWO to:						
SELECTRONIX 25 Ennerdale Gardens, Wembley, Middlesex HA9 80Y. 01-904 9096						

blackpool ano the fylde. For components come to ETESON ELECTRONICS, 15B, Lower Green, Poulton Le-Fylde. Tel. 885107 . Mail order too - S.A.E. lists.
BALLARD'S OF TUNBRIDGE WELLS have moved to 54, Grosvenor Road, no lists. S.A.E. all enquiries phone Tunbridge Wells 31803.

SDFTWARE

Superboard/UK101
 Low Cost Add-Ons
 ALL PRICES INCLUDE VAT\& POST

$\mathbf{8 K}$ RAM +16 K EPROM board, fully buffered and decoded. Top quality PCB - 40 pin DIP connector. All memory bank selectable in 4 K blocks anywhere in memory. Includes 4K 300ns RAM (2114). Full instructions etc. supplied.
Kit $£ 48.99$ built and tested $£ 56.99$
High speed cassette interface kit, 300/2400/4800/ switchable to suit recorder.
Easy to fit kit $\mathbf{£ 1 6 . 9 0}$.
Enhanced Video Display. True 48×32 Display
Full kit and instructions $£ 15.95$.
Software for all Superboard/UK 101 screen formats. Chess 1.9 £9.99, Draughts $£ 4.99$, Both $£ 13.50$.

ATOM SOFTWARE

Chess 1.9 £11.99, Draughts £4.99, Both $\mathbf{1} 14.99$.
N.B. All board games (both UK 101 and ATOM) are fully interactive with complete instructions and excellent graphics.

USED MICROS \times PRINTERS

We purchase used equipment especially; UK 101 s , Atoms, Pets and Apples, also GP80, OK180 and EPSON PRINTERS.

Ring us for used bargains (most with warranty).

NORTHERN MICRO Tel. Holmfirth 29 Moorcroft Park
 New Mill (048489) 2062
 S.A.E. for list please
 HUDDERSFIELD
 Callers welcome by appt

ZX81 SOFTWARE ZXAS Assembler (5k) £3.95; ZXDB Disassembler/debugging program (4k) $£ 5.95$; Program pack 1 (81 k programs) $£ 3.50$; 1k Breakout $£ 4.50$ prices inclusive. Bug-Byte, 98-100, The Albany, Old Hall Street, Liverpool.

DONT BUY A ZX81 YET. Decimal and expanded maths routines now available for ZX80. Trig functions and others available soon - s.a.e. to Milliken, 29, Wheatcroft Close, Wingerworth, Chesterfield, Derbyshire S42 6PE.

ZX80/ZX81 KEYBOARD

Ful size 40 key keyboard. All symbols marked in two colours.
Kit $£ 19.95$
Built $\mathbf{£ 2 2 . 9 5}$
Keyboard connector
f1.95

IN/OUT PORT

24 lines controlled in BASIC.
Drive motors, printers etc.
Kit $\mathbf{£ 1 4 . 5 0}$
Built $\mathbf{£ 1 5 . 9 5}$
In/Out connector
$£ 3.95$
ZX80/ZX8 1 connector $£ 2.95$

MOTHERBOARD

Drives RAM pack and two boards.
Includes ZX80/ZX81 connector and one board connector.
Kit $£ 13.39 \quad$ Built $\mathbf{£ 1 3 . 9 0}$
2nd connector
$\mathbf{£ 2 . 9 5}$

Postage on above 80p

SAE for FREE illustrated catalogue.

REDDITCH ELECTRONICS,

21 Ferney Hill Ave., Redditch, Worcs. B97 4 RU.
Tel. 052761240

DATA DYNaMICS 390 TELETYPE. Keyboard, RS232, good working order. $£ 140$. Wivenhoe 5671 .

PROGRAMMER'S TOOLKIT, for UK 101, OSI Superboard and C 1 (all monitors), and C2 (GEGMON only). 2 K of fast machine code on tape, giving 14 new commands including RENUMBER, DELETE, TRACE, and OLD. Only $£ 10$ inclusive, or SAE for more details. State computor and memory size. S. A. Smith, 36, Woodvale Avenue, London SE25 4AE.

NEW - 2X80/ZX81 Programmable Character Generator. Built $£ 34.50$. Keyboard Kit $£ 19.50$, Built $£ 25$. Memory ExBult $£ 34.50$. Keyboard Kit $£ 19.50$, Built $£ 25$. Memory Ex-
pansion $£ 9.95$. UK $101 /$ Superboard P.C.G. Kit $£ 39.95$, Built $£ 45.50$. S.A.E. for details. Haven Hardware, 4 Asby Road. Asby, Workington. Cumbria.

UK101 8K CASED. New monitor. 300-600 switchable. Some software. £175. Midlands area. Tel. Sedgley (09073) 3708.

ACORN ATOM Invaders (12k) $£ 8$; Backgammon (7 k) $£ 7$; Labyrinth (12 k) $£ 6.95$; Star Trek (12 k) $£ 5.00$; Lunar Lander (12 k) $£ 5.50$. All software supplied on cassette. Prices inclusive. Bug-Byte, 98-100, The Albany, Old Hall Street, Liverpool

SERVICE SHEETS

BELL'S TELEVISION SERVICES for Service Sheets on Radio, Tv, etc $f 1.00$ plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S. 190 Kings Road, Harrogate, N. Yorkshire, Tel:(0423) 55885.

BOOKS AND PUBLICATIONS

OUt OF PRINT Book Service, 17, Fairwater Grove (E), Cardiff. Send SAE for details.
ANy Single service sheet fl L.S.A.E. Thousands different repair/service manuals/sheets in stock. Repair data your named T.V. £6 (with circuits £8). S.A.E. Newsletter, pricelists, quotations. AUS (PE), 76 Church Street, Larkhall, Lanarkshire. (0698 883334).

TUITION

Pay as you learn, postal mathematics tuition. 23, St. Lukes Close, Middlestown, Wakefield.

EDUCATIONAL

CAREERS IN MARINE ELECTRONICS. Courses commencing September and January. Further details, The Nautical College, Fleetwood FY7 8JZ. Tel. 0391779123.

TELEVISION COMPUTER RADIOCOMMUNICATION \& RADAR SERVICING

2 $\frac{1}{3}$ YEAR full-time Modular

 Diploma course to include a high percentage of practical work.- ELECTRONIC PRINCIPLES
- MONOTV \& CCTV
- COLOUR TV \& VCR
- MICROELECTRONICS \& digital techniques
- MICROPROCESSORS \& COMPUTERS
- RADIOCOMMUNICATIONS \& RADAR

Each of the above Modules are 13 weeks in duration. Individual Modules can be arranged for applicants with suitable electronics background.
Tuition fees (UK \& Overseas) $£ 1500$ per year (i.e. $\mathbf{5} 500$ per Module).
Next session starts September 14 th
Prospectus from:

LONDON ELECTRONICS COLLEGE

Dept: AA, 20 Penywern Road London SW5 9SU. Tel: 01-373 8721.

WANTED

WE buY SURPLUS electronic components, PCB's etc for cash. Tel. (0703) 785862.

FOR SALE

SILICON SOLAR CELLS 4' diameter, 1.5A @ 0.45V £10.18 inc. VAT. We also stock other sizes of cells and batteries also Solar Panels. Science Kits, Fresnel Lenses, Stirling Engines, Cardboard Computer Kits, Energy Books, Space Blankets. Send 50p for lists. Edencombe Ltd., 34, Nathans Road, North Wembley, Middlesex HA0 3RX.

New back issues of 'PRACtICAL Electronics' available 90 p each Post Free. Cheque or uncrossed \mathbf{P} / O returned if not in stock - BELL'S TELEVISION SERVICES, 190 Kings Road, Harrogate, N. Yorks. Tel: (0423) 55885.

2×80 with power supply manual, little used, perfect. $£ 50$ o.n.o. Coalville 32366.
gRaphic equalizer for guitars etc. Built and boxed, $£ 14.00$. Mr. C. Yates, 52 , Rothmans Avenue, Gt. Baddow, Chelmsford, Essex.

UK101. 8K. Uncased. Original monitor, plus cables for T.V and cassette. £220. Fred. 01-263 5241.

MISCELLANEOUS

BURGLAR ALARM ERUIPMENT. Latest Discount Catalogue out now! Phone C.W.A.S. Alarm 0274682674

RYDER ORGAN SYSTEM

The WW classical design for full-size keyboards. including couplers. Expanded range of p.c. boards \& data available includes chorus, vibrato, combination stop control.
Reverberation. A new compact solidstate unit gives smooth natural sound. Demo cassette, on loan, deposit f 1.50 , refund $£ 1.00$. (Prices UK only).

HIYKON LTD. (P), Woodside Croft, Ladybridge Lane, Bolton BL1 5ED.

SEEN MY CAT? 5,000 odds and ends. Mechanical. Electrical. Cat Free. Whiston Dept. PRE, New Mills, Stockport.

DIGITAL WATCH BATTERY REPLACEMENT KIT

These watches all require battery (power cell) replacement at regular intervals. This kit provides the means. We supply eyeglass, non-magnetic tweezers, watch screwdriver, case knife and screwback case push pieces full instructions push battery identification chart we then supply replacement We then supply replacement bateries-Sond fo 00 for complete now. Send $\mathbf{f} 9.00$ for complete kit and get into a fast growing business. Prompt despatch.

BOLSTERINSTRUMENTCO.

(PE30)
11 Percy Avenue, Ashford, Middx. TW15 2PB.

BIG EARS

SPEECH
INPUT
FOR
YOUR

BIG EARS opens the door to direct
man-machine communication. The system
comprises anaiogue frequency separation filters,
preamps and signal conversion, together with a
quality microphone and extensive software
Words, in any language, are stored as "voiceprints" by simply repeating them a few times in "learn" mode. Using keyword selection techniques, large vocabularies can be constructed
Use BIG EARS as a front end for any application: data enquiry, robot control, starwars - the data enquiry, robot con
possibilities are unlimited..
bull, testied guaranteed onlv $£ 49$! PRICE INCLUDES POSTAGE \& PACKING PLEASE ADD VAT AT 15% PRLEASE STATE COMPUTER: UK101, SUPERBOARD, NASCOM2, PET, TRS 80 , ETC.

MICROGRAPHICS

ULTRASONIC TRANSDUCERS. $£ 2.85$ per pair +25 p P\&P. Dataplus Developments, 81 Cholmeley Road, Reading, Berks.

WRONG TIME?

MSF CLOCK is ALWAYS CORRECT - never gains or loses, SELF SETTING at switch-on, 8 digits show Date, Hours, Minutes and Seconds, larger digit Hours and Minutes for easy QUICKGLANCE time, auto GMT/BST and leap year, also parallel BCD output for computer or alarm and audio to record and show time on playback, receives Rugby 60 KHz atomic time signals, built-in antenna, 1000 Km range, fun to-build kit includes all parts, printed circuits case, instructions, postage etc, money back assurance so GET the RIGHT TIME NOW, only £62.80.

CAMBRIDGE KITS
45 (FY) Old School Lane, Mitton, Cambridge.
PRE-PACKED. Screws, nuts, washer, solder tags, studding. Send for price list. A 1 Sales (PE) P.O. Box 402, LondonSW6 6LU.

STEREO HEADPHONES

Economy Grade Standard Grade $£ 7.95$ £11.95 Hi Fi Grade $£ 24.95$ inc. lead, $\frac{1}{4}$ in. dia. stereo plug and P\&P. Cheshire Micro Des., 66 Close Lane, Alsager, Stoke on Trent.

ORDER FORM pLease WRite in block capitals
Please insert the advertisement below in the next available issue of Practical Electronics for
insertions. I enclose Cheque/P.O. for f .
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Electronics).

gladstdne radio, Aldershot. Watch this space.
electronics kits. Largest range of kits in the U.K. Everything from stroboscopic lights to transmitters, at unbeatable prices. Send S.A.E. for free catalogue to: EASTLING ELECTRONICS (KITS), 64B, Hoawthorn Road, Winton, Bournemouth.

PRINTED CIRCuIt boards. Glass Fibre tinned and Drilled Prototypes to batch runs. Quick turn-round, competitive prices. Send S.A.E. for quotations. R. D. ELECTRONICS, 12. Whiteoaks Road. Oadby, Leicester. 0533-716273.

Cabinet and Flightcase Fittings
 mem sin
 ADAM HALL (P. E. SUPPLIES) Unit G, Carkon Court, Grainger Road, Southend-on-Sea, Essex SS2 5BZ.

DIgITAL WATCH BATTERIES. Any type $£ 1.20$ each. Send SAE or 15 p with number or old battery to DISCLEC Y. SII. Fulbridge Road. Werrington. Peterborough.

NICAD BATTERY CHARGER. Full automatic features from discharge to fully charge. 5 Constant-current ranges. Optional charging times 12-15 hours. Send for list price kit or built unit. R. D. ELECTRONICS, 12, Whiteoaks Road, Oadby, unit. R. D. ELECTRON

THE SCIENTIFIC WIRE COMPANY PO Box 30, London E.4. 01-531 1568. ENAMELLED COPPER WIRE				
SWG	1 lb	80	40	2 oz
8 to 29	2.76	1.50	0.80	0.60
30 to 34	3.20	1.80	0.90	0.70
35 to 39	3.40	2.00	1.10	0.80
40 to 43	4.75	2.60	2.00	1.42
44 to 47	5.90	3.40	2.39	2.00
48 to 49	15.96	9.58	6.38	3.69
SILVER PLATED COPPER WIRE				
14 to 30	6.50	3.75	2.20	1.40
TINNED COPPER WIRE				
14 to 30	Prices incl P \& P, VAT.			0.90
Orders under $£ 2$ please add 20p. SAE for List of Copper/Resistance Wire. Dealer enquiries welcome. Reg. Office, 22 Coningsby Gardens.				

PARAPHYSICS JOURNAL (Russian translations):
Psychotronic generators. kirlianography. gravity lasers, telekinesis. Details: SAE $4 \times 9^{\prime \prime}$ Paralab. Downton, Wilts.

PRACTICAL ELECTRONICS P.C.B's	
Drilled. 1.5 mm Glass fibi APR 81 Intruder alarm EG513	n Glass fibre Fry's Roller Tinned $\mathbf{E 1 . 8 2}$
MAY 81 Digi Sounder EG518-20	EG518-20 Set of two $\mathbf{5 4 . 3 9}$
AUG 81 Minute chime EP625	EP625 \quad £2.66
SEP 81 Analogue freq meter	neter $\quad \mathbf{8 2 . 1 7}$
Ignition EP690 £1.8	EP690 £1.84, EP692 £ 1.93, EA285 68p
Audio Analyser	Set of $14 ¢ 26.63$
Horologicum	Set of $3 \mathrm{f8.18}$
Headphone	EA288 ¢1.49, EA290¢1.27
For full list and current pob's send SAE. Pcti's also produced to customers own masters. Trade enquiries welcamed. Wite for quote. CWD Please. Pastage add $35 p$ postage and packing to complete order. Europe 70 p.	
PROTO 0 14 Downham Road, Billericay, Essex CM11 1PU.	ROTO DESIGN am Road, Ramsden Heath. M11 1PU. Telephone 0268-710722

TELEPHONE ANSWERING MACHINE. Build your own for under $£ 10$ plus any cassette recorder. Send $£ 3$ for circuit and plans. S. D. Cross, 24. Thorney Road, Streetly, Sutton Coldfield. West Midlands.
P.C.B's. One-off service for enthusiasts. Send drawing on O.l. matrix. component list and tel. no. for quote over phone. Andrew Dignarn, 17 Eltringham Terrace, Edinburgh EHI4 IRZ.

MAKE YOUR OWN PRINTED CIRCUITS
 Etch Rosist Transfers - Starter pack (5 sheets, lines, pads, I.C. pads) $£ 2.00$. Large range of single sheets in stock at 1.C. pads) $\mathbf{4 2 . 0 0}$. Large range of single sheets in stock at
 Master Positive Transparencies from P.C. layouts in magazines by simple photographic process. 2 sheets negative Precistamp for lists and information. P\&P $35 p$ per order except 20p where indicated
 P.K.G. ELECTRONICS OAK LODGE, TANSEEY, DERBYSHIRE.

SECURITY SYSIEMS KITS ... All components and full instructions. Send large SAE for latest catalogue of advanced projects for car, caravan and home. CompuTech Systems. Ind. Est., N. Walsham NR 28 0AN. Tel: (0692) 5600 .

32.7KHz QUARTZ LOCKED
 ULTRASONIC ALARM + PANIC

Detector and Control Unit - Type UAQ + P F eatures

No alignment reqd. - No interaction between units:
Kit inc:- F/G, PCB, punched ABS box all comp. inst
Single unit construction - PCB screw connections
Single unit construction - PCB screw connections:
$240 \mathrm{~V} A C$ supply: with optional NI-CAD battery back
15 to 20 ft detection range, extemally presertable:
20 sec delay on leaving: 10 sec delay on entry:
i sec invalid movement delay 2 min self cancelling alarm:
latching panic button facifity included: latching panic button facitity included:
$240 V$ AC UAO. PMultitone Drive Kit
$\begin{array}{ll}240 \mathrm{~V} A C \\ 24 A O \\ \text { - P Multitone Drive Kit } & \mathbf{£ 1 8 . 6 5} \\ \mathbf{£ 2 1 8 5}\end{array}$ Above kits built \& tested - Kit Price Plus

 prices inc CWO UK. SAE for further det
GJD ELECTRONICS
105 Harper Fold Road,
Radcliffe, Manchester M26 ORQ.
SENSATIONAL FREE OFFER. Buy a Casiotone VL-1 Electronic Musical Instrument and get a semi conductor pack absolutely free. Comprising $10-7400,10-\mathrm{BC} 183 \mathrm{~L}, 1-$ 7805 , worth $£ 2.60$. Send cheque/PO for $£ 35.95$. All Casiotone keyboards and accessories available Ex-Stock. Access and interest free credit. (no postage required). Micro Musical Ltd.. Freepost. 37. Wood Lane. Coventry CV7 9BR. 0203616760.
CLEARING LABORATORY: scopes, generators, P.S.U.'s, bridges. analysers, meters. recorders, etc. 0403-76236.

PET, ATOM, UK101 MEMORY

Buy any of the below and get a free interface kit and word processor program for UK:0
or Superboard:- Epson M×70 £259. Epson
 Epson Mx80F/T2 £449. Epson MX100 £575. OKI Microline 80 £295. OKI Micro-
line $82 \mathrm{~A} £ 399$. OK! Microtine 83A $\mathbf{f 6 9 9}$. OK
OKicroline 82
8399 . OKI Microline 83 £699. Centronics 737 £395. Seikosha GP80A f199.
TV GAMES*
AY-3-8600-kit $£ 12.98$. AY-3-8550 + kit
f9.26.

SWANLEY ELECTRONICS,
 Dept. PE, 32 Goldsel Rd.,

Swanley, Kent 8R8 $8 E Z$.
Tel. Swanley $(0322) 64851$.

SINCLAIR PRODUCTS*
Sinclair Products only are all post free. SC110 Oscilloscope $\mathbf{E 1 5 8 . 9 5}$, adaptor $\mathbf{£ 5 . 6 9}$, rechargeable batteries $\mathbf{£ 8 . 6 3}$, $\times 1$ probe $\mathbf{£ 9 . 7 8 , \times 1 0 \text { probe } £ 1 1 . 5 0 \text { , carry, case }}$ £8.86. PFM200 £57.27, adaptor £5.69,

 f 136.85 , adaptor $\mathbf{£ 5 . 6 9 \text { , case f8.86, }}$ rechargeable batts $£ 8.63$. Microvision T,
£69, adaptor $£ 6.95$. TM 352 £54.95. RM354 £45.95.
3 -way type $6 / 7.5 / 8 \mathrm{~V} 300 \mathrm{ma} \mathbf{£ 3 . 5 0} .100 \mathrm{ma}$ radio types with press studs 9 V £4.95. $9+9 V \mathbf{6} .25$. Car convertor 12 V input, output 3/4.5/6/7.5/9V 800ma £3.04.
100 ma radio types with press-studs 9 V $\mathbf{5 1 . 7 9 , 9 + 9 V} \mathbf{£ 2 . 5 0}$. Stabilized 8 -way types
$3 / 4.5 / 6 / 7.5 / 9 / 12 / 15 / 18 \mathrm{~V} \quad 100 \mathrm{ma}$ £3.12, 1 Amp $£ 8.50$. Stabilized power kits $2-18 \mathrm{~V}$ $100 \mathrm{ma} \mathbf{£ 3 . 1 2 , 1 - 3 0 \mathrm { V } 1 \mathrm { A }} \mathbf{£ 8 . 5 0 , 1 - 3 0 \mathrm { V } 2 \mathrm { A }}$
$\mathbf{f . 1 5 . 3 0}$. TL and computer supplies 5 V f.15.30. TT and computer supplies 5 V
stabilized $1.5 \mathrm{~A} £ 9,3 \mathrm{~A} £ 14,6 \mathrm{~A} \mathbf{£ 2 3}$. 12 V car convertors $6 / 7.5 / 9 \mathrm{~V}$ 1A $£ 1.62$. SHARP COMPUTERS
MZ8OK $20 K ~ £ 418,36 K ~ £ 440,48 K ~ £ 460 . ~$ C1211 $\mathbf{c 8 2}$.

WEBB ELECTRONICS
41 WINWICK STREET, WARRINGTON, CHESHIRE. TeI. 54174

NICKEL CADMIUM BATTERIES

	$\begin{aligned} & \mathrm{AA}(\mathrm{HP7}) \\ & 0.5 \mathrm{AHr} \end{aligned}$	$\begin{aligned} & \text { SuB 'C' } \\ & 1.2 \mathrm{AHr} \end{aligned}$	$\begin{aligned} & \text { 'C' (HP11) } \\ & \text { 1.65AHr } \end{aligned}$	$\begin{aligned} & \text { 'C' (HP11) } \\ & \text { 2.0AHr } \end{aligned}$	$\begin{aligned} & \text { 'D' (HP2) } \\ & 4.0 \mathrm{AHr} \end{aligned}$	$\begin{aligned} & \text { PP3 } \\ & \text { 0.1AHr } \end{aligned}$
1-24	f0. 85	f1. 38	£1.69	f2.25	£2.97	£3.79
25-49	£0.75	£1. 28	£1.58	¢2.10	£2.77	
50-99	f0.65	£1.15	£1.52	¢2.02	£2.67	
100 up	£0.59	£1.05	£1.41	¢1.87	£2.47	

All cells are brand new full spec devices from reputable mnfrs. All Nickel Cadmium cells (except PP3) are supplied complete with solder tags and are 'VENTED' devices suitable for fast charge. CHARGERS - single or dual O/P to charge PP3. AA or SUB ' C^{\prime} celis in $12-14 \mathrm{hrs}$ (chargers witl with flying leads. Number of cells ${ }^{2} 10$ max) in series and type must be specified for each required O / P when ordering.

> SINGLE O/P CHARGER $£ 5.04$
> DUAL O/P CHARGER £5.72

TRANSFORMERS - as used in chargers, 2×12 volt 0.25 amp secondarys 240 v primary, tag connections $£ 1.57$ each.

Data and charging circuits free with orders over f 10 otherwise 30 p post.
P\&P 10% if order less than $\mathrm{f} 10,5 \%$ order over flo. Prices DO NOT
or INCLUDE VAT and this should be added to the total order.

SOLID STATE SECURITY,
Dept. (PE), Bradshaw Lane, Parbold, Wigan, Lancs. Telephone 02576-3018.

A wide range of other technical and professional courses are available including GCE.

Professional ASCIIKeyboards

The 'CHERRY'
Computer Keyboard

- Chip by general INSTRUMENT/GI) TTL OUTPUT - SUPERBLY MADE SIZE $13 \times 55 \times$ 15 ms BLACK KEYS WITH
WHITE LEDGENS

ESCAPE SHIFT Ideal for use with TANGERINE. RETURN \& RESET KEYS CONTROL REPEAT \& BELL Complete with DATA

TRITON. TUSCAN, APPLE and most computers Ex-Stock from HeNRY'S
 manstacturers orig:nal packng Just post

MAIL ORDER ADVERTISING

British Code of Advertising Practice

Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requires advertisers to fulfil orders within 28 days, unless a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded.
Please retain proof of postage/despatch, as this may be needed.

Mail Order Protection Scheme

If you order goods from Mail Order advertisements in this magazine and pay by post in advance of delivery, PRACTICAL ELECTRONICS will consider you for compensation if the Advertiser should become insolvent or bankrupt, provided:
(1) You have not received the goods or had your money returned; and
(2) You write to the Publisher of PRACTICAL ELECTRONICS summarising the situation not earlier than 28 days from the date you sent your order and not later than two months from that day.
Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claims and what evidence of payment is required.
We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiser has been declared bankrupt or insolvent.
This guarantee covers only advance payment sent in direct response to an advertisement in this magazine not, for example, payment made in response to catalogues, etc., received as a result of answering such advertisements. Classified advertisements are excluded.

PE RANGER 27FM CB PORTABLE

THE RANGER CB rig has been designed to fit the new legal Home Office specification, and starts off as a hand held unit complete with aerial, mic., and rechargeable batteries.

The unit plugs into the mains, 12 V car outlet, or runs on built-in rechargeable batteries (built-in charger) Up to 5 miles range in town to keep in touch with family and friends.

KITS EX-STOCK INTRODUCTORY OFFER $34+0$

(+2.50 PP+VAT)
£97/matched pair ($+£ 5.00$ PP+VAT)
This offer price includes rechargeable batteries, mic., aerial, mains lead and 2 channels.
Extra channels $\mathbf{£ 2 . 2 5}$ each + 50p P.P. + VAT Extra merials $£ 3.95$ each +80 p P.P. + VAT (Postage fres with kit)
Tuneable Whip aerial magnetic or permanent car mount (state which)
£ 13.95 each $+£ 1.00$ P.P + VAT

READY MADE UNITS WILL BE AVAILABLE FROM

 GOOD CB OUTLETS AND ELECTRICAL DEALERSPHONE YOUR ACCESSIBARCLAYCARD ORDER FOR FAST SERVICE

INTERESTED IN

TRY A ZEDPACK! COMPONENTS AT A PRICE COMPONENTS AT A PRICE
EVERYONE CAN AFFORD
Z1 300 mixed $\frac{1}{1}$ and $\frac{1}{2}$ watt resistors $\mathrm{E}:-95$ 23 300 mixed capacitors, most types
 $\begin{array}{lll}25 & \text { to0 mixed polystyrene caps } & \mathbf{E 2} \cdot 20 \\ \mathbf{2 6} & 300 \text { mixed printed circuis } & \end{array}$ 36300 mixed printed circuit ${ }^{2} \mathbf{c o m p o n e n t s}$ $\underset{\text { tors }}{ } \mathbf{8} .95$ 27100 mixed miniature ceramis $\mathbf{E 1} \cdot \mathbf{4 5}$ plate caps 2025 astoprted pots.
 $\mathbf{Z 1 2} 20$ assorted vdr's and thermistors. $\mathbf{E 1}$ Z13 $\mathbf{1 1 6}$ mixed hardware. Nuts $\mathbf{E 1 - 2 0}$ self-tappers sleeving etc. Nuts, bolts Z14 100 mixed, new and marked, full sper 214100 mixed, new and marked, full spec.
transistors. Pack includes:- BC148 BF154, BF274, BC212L, BC238, BC184L PBC108 and, or lots of similar types Z15 100 mixed diodes including:-zener power, bridge, signal, germanium 16201 N4148
21720 1N4003/10D2
$Z 1820$ assorted zeners, 1 watt and 400 mw Z19 $12 \cdot 125^{\prime \prime}$ TIL 209 RED. LED'S at Assorted switches, including push button, slide, multipole, miniature etc UHF MODULATORS
UHe in UHFATGS 20 (625 line UHF UHt. Calibrated to channel 36 (625 line UHF) housed in metal box $2 \mathbf{2 1}^{\prime \prime} \times$ connection data. $£ 2 \cdot 50$ ea 3 for $£ 6$. 200μ A Miniature level/batt. meters, as 20, 1 med to many cassette recorders. 90 p Deluxe FIBREGLASS printed circui etehing kits.
Includes 150 sq ins. of copperclad F / G board. 1lb ferric chloride, (made for U.S. army to MIL, SPEC.), 1 daio etch resist pen, abrasive structions.
OUR PRICE \&5.95 1 lb of FeCl . $£ 2$-25.

100 Miniature reed switches. ${ }^{\mathrm{E2} \cdot 3}$ 00 Subminiature Reed Switches. $£ 4 \cdot 2$ With hole in P/B SWITCH BANKS ${ }^{6}$ for $\mathbf{E 1}^{1}$ These cost a fortune! Were made fo These cost a fortune! Were made for various music centres. includes indepen multi pole c/o etc. Can be modified. Can't be repeated. 3 Banks for $£ 1$ KNOBS for Swltch Banks 10 for $£ 1$ hrome or spun aluminium finish
MINIATURE MAINS TRANSFORMERS
Top quality. Split bobbin construction
will give $4-5 \mathrm{~V}-0-4.5 \mathrm{~V}$ at 250 MA . $1 \mathbf{1}^{\prime \prime} \times 1 \frac{1}{\prime \prime \prime}$ $\times 1 \frac{1}{2}$ ", all sorts of uses. ONLY E_{1}
PP3 Battery Connectors 10 for $\mathbf{3} \mathbf{£ 2} \cdot 50$. PP3 Battery Connectors 10 for 50 p . knob. 3 for 50 p . Subminiature
for 50p.
Miniature D.P.C.O. Slide Switches
6 for 50 p .
Standard 2P. 3 Position Slide Swltch.
TBA810P

and data. 7 Watt Amp. I.C. with circuits MFC8010 1 Watt I.C. with data and | circuits. | |
| :--- | :--- |
| 555 Timers. | $30 p, 2$ for $£ 1$ |
| $\mathbf{3 0 p}$ en., 4 for $\mathbf{~} 1$ | | 655 Timers. 300 V Bridge Rectifier. Smat 4 for $\mathbf{E 1}$ 3 for fz 9 Section, Chrome on Brass Telescopic Aerial. Plugs into any 3.5 mm socket Approx $25^{\prime \prime}$ extended $£ 1$ each. 3 for $£ 2 \cdot 50$ ED. TIL 3860 p ea. 3 for $£ 1.50$ Crystal Clear 3 mm LEDS very Red, Green, Yellow. 10 of one colour Ef. 10 of each Ez 50 .

ALTERNATOR RECTIFIERS Make lovely 60 amp bridges. Ideal for High Power Battery Chargers. Type 4AFI. Set of 4 (2 neg. case + pos. case) 22.
Special Purchase enables us to
offer Mullard C230 polyester Capa citors (Liquorice Allsorts) at the unbeatable price of $\mathbf{E 2}$ for 100 mixed. E 15 tor 1000. These consist of factory clearance lots i.e. spillages, floor sweepings, cosmetic rejects etc. Also
Mullard Miniature Electrolytics. 200 mixed $\mathbf{~} 2$.

To: "GEMINI ELECTRONIC COMPONENTS" DEPT PE
"THE WAREHOUSE" SPEEDWELL ST. LONDON S.E.8
Where shown. Send Cheque" or Postal Order. Plus sop PaP. and 15% VAT.
2ED PACK8 now available for Caliers at 50 Deptford Broadway, London, S.E.8 Send large S.A.E. for fuller list.

RADIO/TAPES BARGAINS
LW/MW/Mains/Battery Radios
£9.00 each (P\&P £1.00)
LW/MW Car Radios with speaker $£ 9.00$ each ($P \& P £ 1.00$) Small VHF/MW Battery Radios
£7.00 each (P\&P50p)
8-C60 High gain Cassettes
$\mathbf{£ 2 . 0 0 (P \& P 5 0 p)}$
5-C90 High gain Cassettes
£2.00 (P\&P 50p)
Stereo Headphones with lead and
Jack Plug £4.50 (P\&P 50p)
Maximum Postage Charge $£ 1.00$.
Money refunded if not satisfied.

AERIAL AMPLIFIERS Aerial amplifiers can produce remarkable improvement on the picture and sound in fringe or difficult areas.
B45 - For Mono or Colour this is tunable over complete UHF television band
B11 - For stereo or standard VHF/FM radio.
B12 - for VHF television band 1 \& 3. All amplifiers are complete and ready to use Battery type PP3 or 8 V to 18 V DC next to the set type fitting PRICES $\mathbf{f 6} 70$ each.
Signal Injectors with (pre-set) variable AF, which emits RF harmonics into the UHF band. Protected up to 300 volts DC. Complete with leads £5.70 each.

All Prices Inc/ude VAT at 15\%. P \& P per Order 30p. S.A.E. for Leaflets. Access Cards
ELECTRONIC MAILORDER LTD
62 Bridge St, Ramsbottom, via Bury, Lancs. BL0 9AGP. Tel Rams (070 682) 3036

day one.
Naye
Address
Please send me your leaflet TOMORROW' WORLD TODAY
or send me directly

	retail	your price	gty rqd
t enclose cheque/			
FueiStretcher	$£ 67.30$	$£ 34.95$	
FS Drive Computer	$£ 130.00$	$£ 83.75$	
EnviroCruise	$£ 09.90$	$£ 74.25$	
Cos for $£ \ldots . .$.			
Inst/oper manual only	-	$£ 250$	

Mail/Phone your order with Access or Barclaycard No.
Prices include VAT. but exclude P\&P at $£ 1.75$ per product. Allow 14 days for delivery EnvroSystems Ltd.. Hampstell Road, Grange-over-Sands. Cumbria LA11 6BE. Tel: 044844233/4.

UK's first digital MPG monitor used now by thousands
of motorists to make their fuel go up to 20% further

Fapid Tel: 0322863494 Hilleroft House Station Road Eynsford Kent DA4 OEJ
 as

cmos
$\star 4001$
4002
4002
4006
$\star 40$
4007
4008
40
---:
40112
$\star 4013$
4014
4015
$\star 4016$
$\mathbf{8 5}$
4018

TTL	$\mathbf{7 4 1 3}$	$\mathbf{2 4}$	7442	
7400	$\mathbf{1 1}$	7414	$\mathbf{3 5}$	7444
7401	$\mathbf{1 1}$	$\mathbf{2 5}$	7446	
7401	$\mathbf{1 1}$	7417	$\mathbf{2 5}$	7447
7402	$\mathbf{1 2}$	7420	$\mathbf{1 5}$	7448
7403	$\mathbf{1 4}$	$\mathbf{7 4 2}$	$\mathbf{2 0}$	$\mathbf{7 4 4}$
7404	$\mathbf{1 4}$	7422	$\mathbf{2 0}$	7450
7405	$\mathbf{1 7}$	$\mathbf{7 4 2 7}$	$\mathbf{2 8}$	7451
7406	$\mathbf{2 6}$	7428	$\mathbf{2 8}$	7454
7407	$\mathbf{2 6}$	7430	$\mathbf{1 5}$	7460
7408	$\mathbf{1 5}$	7432	$\mathbf{2 5}$	7472
7409	$\mathbf{1 6}$	7433	$\mathbf{2 7}$	7473
7410	$\mathbf{1 4}$	7437	$\mathbf{2 7}$	7474
7411	$\mathbf{2 0}$	7438	$\mathbf{2 7}$	7475
7412	$\mathbf{2 0}$	7440	$\mathbf{1 7}$	7476

DIODES

1N4002 5p *1N4148 2p
$\begin{array}{llll}1 N 4002 & 5 p & \text { 1N4148 } & \text { 2p } \\ 1 N 4006 & 5 p & 400 \mathrm{mw} & \end{array}$
1N4006 5p 400mw 6p
$\begin{array}{rr}4043 & 80 \\ 4044 & 80 \\ 4046 & 100 \\ 4047 & 100 \\ 4048 & 45 \\ \star 4049 & 30 \\ 4050 & 40 \\ 4051 & 80\end{array}$

$\mathbf{8 0}$	4073	$\mathbf{2 5}$	4516	$\mathbf{9 0}$
$\mathbf{1 0 5}$	4075	$\mathbf{2 5}$	$\star 4518$	$\mathbf{7 0}$
$\mathbf{3 5}$	4076	$\mathbf{8 5}$	4520	$\mathbf{7 0}$
$\mathbf{2 5}$	4081	$\mathbf{2 5}$	4527	$\mathbf{1 1 0}$
$\mathbf{2 2}$	4082	$\mathbf{2 5}$	4528	$\mathbf{7 5}$
$\mathbf{2 5}$	$\star 40933$	$\mathbf{4 3}$	4529	$\mathbf{1 3 5}$
$\mathbf{1 8}$	4510	$\mathbf{8 5}$	4532	$\mathbf{1 2 0}$
$\mathbf{1 8}$	$\star 45111$	$\mathbf{6 5}$	4585	$\mathbf{9 0}$

Please add 50 p P\&P on orders under $£ 10$. Please add VAT at 15% to total order value.

The Rapid Guarantee

Laboratory Manual for the Art of Electronics

PAUL HOROWITZ and IAN ROBINSON

This laboratory manual is intended to accompany the highly successful text/reference book on circuit design The Art of Electronics by Horowitz and Hill. It consists of 23 lab exercises which utilise commonly available general-purpose lab instrumentation and standard electronic parts, and should therefore be adaptable to an electronics lab anywhere the text is used.

Hard covers $\mathbf{£ 1 2 . 0 0}$ net
 Paperback $\mathbf{8} 4.95$ net

CAMBRIDGE UNIVERSITY PRESS

MALNS INTERCOM No

 batteries NO WIRES £37.99 PER PAIR
 The modern way of instant 2 -way communications. Just plug into power socket. Ready to use. Crystal clear communications from room to room. Range Volume control, with 'buzzer' call and light indicator. Useful as inter-office intercom, between office and warehouse. in surgery and in homes. Also F.M. 2 channel "touch" model $\mathbf{£ 5 5 . 9 5}+$ VAT $£ 8.40+\mathrm{P} \& \mathbf{P}$ $£ 2 \cdot 15$

NEW AMERICAN TYPE CRADL TELEPHONE AMPLIFIER

£18.95

+ VAT $£ 2.85$ + P \& P£1.65

Latest transistorised Telephone Amplifier, with detached plug-in speaker. Placing the receiver on to the cradle activates a switch for immediate two-way conversation without holding the handset. Many people can listen at a time. Increase efficiency
office, shop, workshop. Perfect for "conference" calls: leaves the user's hands free to make notes, consult files. No long waiting, saves time with longdistance calls. On/off switch, volume control, con-

DOOR ENTRY SYSTEM
No house/business/surgery should be without a DOOR ENTRY SYSTEM in this day and age. The wanted callers Talk to the caller and admit him only if satisfied by pressing a remote control button which wall open the door electronically. A boon for the invalid, the aged, and busy housewife. Supplied complete d.i.y. kit with one internal Telephone, outside Speaker panel, electric door lock release (for cable (4 pairs) 50 ft . and wiring diagram. Price $\mathbf{5 5 9 . 9 5}+$ VAT $£ 9.00+\mathbf{P}$ \& $\mathbf{P} £ 2.25$ Kit with two Telephone's $\mathbf{£ 6 9 . 9 5}+\mathrm{VAT} £ 10.50+\mathrm{P}$ \& $\mathrm{P} £ 2.45$.

WEST LONDON DIRECT SUPPLIES (PEII) 169 KENSINGTON HIGH STREET,
LONDON, W8. 01-937-5548.

PRACTICAL SOLID STATE CIRCUIT DESIGN

2nd ed. by J. E. Oleksy Price: $\mathbf{£ 6 . 2 0}$
UNDERSTANDING MICROPROCESSORS
by D. L. Cannon
Price: $\mathbf{£ 4 . 5 0}$
PRACTICAL ELECTRONICS H/B
by I. Sinclair
Price: $\mathbf{£ 4 . 3 5}$
THE CATHODE-RAY OSCILLOSCOPE
\& ITS USE
by G. N. Patchett Price: $\mathbf{£ 4 . 0 0}$
INTRODUCING AMATEUR ELECTRONICS
2nd ed. by I. R. Sinclair
Price: $\mathbf{£ 4 . 0 0}$
WORLD RADIO T.V. HANDBOOK
by J. M. Frost
Price: $\mathbf{£ 1 0 . 5 0}$
H/B OF BASIC ELECTRONIC
TROUBLESHOOTING
by J. D. Lenk
Price: $\mathbf{£ 4 . 6 5}$
GIANT H/B OF 222 WEEKEND
ELECTRONICS PROJECTS
by Tab
Price: $\mathbf{£ 8 . 0 0}$
67 READY TO RUN PROGRAMS IN BASIC: GRAPHICS, HOME \& BUSINESS,
EDUCATION, GAMES
by Wm. S. Watson
Price: $\mathbf{£ 4 . 6 0}$
COMPUTER PROGRAMMING IN BASIC
by P. Bishop

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books
19-21 PRAED STREET
LONDON W2 1 NP
Phone 01-402 9176
Closed Saturday $\}$ p.m.

POWERTRAN KIT ASSEMBLY AND REPAIR SERVICE

Circolec offer their approved Powertran Assembly and Repair Service for the full range of electronic kits (SEE POWERTRAN ADVERT IN THIS ISSUE)
All work is undertaken efficiently by expert staff using the latest equipment.
For further details of the services please telephone John Bell on 01-767-1233 or write to:

$-$
CIRCOLEC
1 FRANCISCAN ROAD, TOOTING, LONDON, SW17 8EA

ELECTROVALUE CATALOGUE 82 FREE WITH THIS MONTH'S P.E.

It's your instant link with today's forward trend in electronic progress, your chance for quick delivery of the components you'll need for 1982 projects - plus of course, Electrovalue's vast and dependable stocks of basics - resistors, capacitors, semiconductors, pots, connectors, meters, hardware and a massive variety of items well arranged for swift reference. In our new catalogue, computing takes far more pages and there is a sense of urgency and service throughout to help you when ordering.

- HARDWARE - COMPONENTS - SEMI-CONDUCTORS - COMPUTING

EXTRA COPIES of Catalogue ' 82 are obtainable post free at $70 p$ per copy including voucher worth 70p for use with orders over £10. Use coupon below for extra copies.

DISCOUNTS (On all items except some quoted NET or N).
5% on orders over $£ 20$.
10% on orders over $£ 50$.
FREE POSTAGE in U.K. on orders $£ 5$ upwards.
VAT chargeable on U.K. orders at prevailing rate (15\%).
ELECTROVALUE LTD., Dept PE11, 28 st. JUdES RD.,
ENGLEFIELD GREEN, EGHAM, SURREY TW20 OHB. Phone 33603 (STD 0784: London 87) Telex 264475.

Northern Branch (personal shoppers only)
680 Burnage Lane, Burnage. Manchester M19 1NA. Phone (061) 4324945

BAKER LOUDSPEAKERS "SPECIAL PRICES" POST £2

Model
Major
Deluxe Mk II
Superb
Auditorium
Auditorium
Auditorium
Group 45
Group 75
Group 100
Group 100
Group 100
Disco 100
Disco 100 magnetic, 2 ceramic/tape, 1 mono mic channel, twin v.u for panel or desk mounting, attractive grained aluminium facia, silver knobs. £40. Post $\boldsymbol{\varepsilon} 1$
2 CHANNEL STEREO MIXER. 9 volt operated $\mathbf{£ 9 . 5 0} \mathbf{p} \& \mathrm{p} 85$ p.
MINI MODULE LOUDSPEAKERK!T
EMI $15 \times 8 \frac{1}{4}$ in. 3 -way Loudspeaker Batfle, 5 in . Bass, 5 in
Middle, 3in. 4 weeter; 3 -way Crossover \& Ready Cut Batfle Middle, 3i.
Full assembly instructions supplied. Response 60 to 20.000 c.p.s. 12 watt RMS 8 ohms $£ 10$ per kit. Two kits £18.50. Suitable Bookshelf Cabinet $£ 10.50$ each. Post $£ 2$.
GARRARD 6-200 SINGLE PLAYER DECK Brushed Aluminium Arm with stereo ceramic cartridge Start. Large Metal Turntable.
Cueing Device and Pause Control. $£ 22$. Post $£ 2$.
METAL PLINTH CUT FOR GARRARD
ISKRA SINGLE RECORD PLAYER Fitted with auso siop Size mains $240 V^{8}$ in. Turntable size 7 in . diameter

B.S.R. SINGLE PLAYER P170/2 £20.00

 3-speeds 1 in. aluminium turntable, "slim" arm, cuengdevice, stereo ceramic cartridge, silver trim, bias compensator, adiustable stylus pressure, plays all records, spring 2 240 V AC Post f 2
B.S.R. DE-LUXE AUTOCHANGER £20 WOODEN PLINTHS CUT FOR B.S.R. £3 DECCA-GARRARD TEAK PLINTH $18 \frac{3}{3} \times 14 \frac{1}{4} \times 4 \mathrm{in}$. Large Motor Board can be re-cut for transcription deck TINTED PLASTIC COVERS POST $£ 2$

R.C.S. LOW VOLTAGE STABILISED POWER PACK KITS
All parts and instructions with Zener diode printed circuit mains transtormer 240 V a.c. Output 6 or $7 \frac{1}{2}$ or 9 or 12 V d.c
PP BATTERY ELIMINATOR BRITISH Mains stabilized power-pack 9 volt 400 mA max.
overload cut out. Size $5.3 \frac{4}{4}, ~ 2 \frac{1}{2} \mathrm{in}$. $\& 450$. Post 50 p . Switched 3; $6 ; 7 \frac{1}{2} ; 9$ volt 400 ma . Stabilized. $\mathbf{f 7 . 5 0}$

$350-0-350 \mathrm{~V} 250 \mathrm{~mA} 6.3 \mathrm{~V} 6 \mathrm{amp}$. $300-0-300120 \mathrm{~mA} 2.6$ V 2 Cl $320 \mathrm{~V} 45 \mathrm{~mA}, 63 \mathrm{~V} 2 \mathrm{~A}$ $250 \mathrm{~V} 60 \mathrm{~mA}, 63 \mathrm{~V} 2 \mathrm{~A}$
 GENERAL PURPOSE LOW VOLTAGE
 $\begin{array}{llll}2 A, 3,4,5,6,8,9,10,12,15,18,24 & \text { and } 30 \mathrm{~V} & \mathbf{f 6} .00 & £ 2 \\ 1 A, 6,8,10,12,16,18,20,24,30,36,40,48,60 & \mathbf{E 6 . 0 0} & \mathbf{£ 2} .\end{array}$ $3 \mathrm{~A}, 6,8,10,12,16,18,20,24,30,36,40,48,60$ $5 \mathrm{~A}, 6,8,12,12,16,18,20,24,30,36,40,48,60$ £ 18.00 $£ 2$ $£ 2$ 12 V 300 mA
 $12-0-12 \vee 2 A$ $20-0-20 \vee 1 A$
 $32-0-32 \vee \vee 6 \frac{1}{2} A$
 2.18 V 6 A AUT $\mathbf{E 1 1 . 0 0}$
 CHARGER TRANSF. Post RECTIFIERS 6-12v-3A

 $90 \mathrm{p}, 14 \times 9 \mathrm{in}, 1 \cdot 20 ; 12 \times 12 \mathrm{in}. \mathrm{E1} .30 ; 16 \times 10 \mathrm{in}$. £1. 40 .
ALUMINIUM BOXES, MANY OTHER SIZES STOC
S1-30;
f2. 50 ;

HIGH VOLTAGE ELECTROLYTICS

 $\begin{array}{rccccc}\mathbf{8 / 4 5 0 V} & \mathbf{4 5 p} & 8+8 / 450 \mathrm{~V} & 75 \mathrm{p} & 50+50 / 300 \mathrm{~V} & \mathbf{5 0 p} \\ 16 / 350 \mathrm{~V} & \mathbf{4 5 p} & 8+66 / 450 \mathrm{~V} & 75 \mathrm{p} & 32+32 / 500 \mathrm{~V} \text {. } \cdot 80\end{array}$

Phone orders with Access-Barclay-Visa Lists 28p stamps. Closed Wed.

Radio Component Specialists

337 WHITEHORSE ROAD
CROYDON, SURREY, U.K. Tel. 01-684 1665

CLEF electronic MUSIC

PE BAND-BOX

PHONE OR WRITE FOR DETAILS

Since 1972 Clef Products have consistently produced designs in the field of Electronic Musical Instruments, many of which have been published under the authorship of A. J. Boothman. With meen evolved and the latest musically valid new techniques have incorporated into projects which have been successfully bem pleted by constructors over a wide range of technical capability

> PIANOS
> its or Manufactured
> SINCE 1972

Back up TELEPHONE advice to our customers is Designer of all kits advertised.

STRINGS

 P.E. STRINGENSEMBLE Versatile String Synthesizer and impressive voices. 49 note organ diode keyswitch system with four pitches plus two phase Chorus generator.

COMPONENT KIT ONEN
\& 179

The most advanced form of Touch Sensitive action simulating piano key inertia by patented technique

SIX OCTAVES $\mathbf{5 2 1 7}$
(component kils include
kerboard and may be purchased
in four siages)

$7 \frac{1}{4}$ OCTAVES $£ 244$

Four mixable vorces for serious tone variation plus electronse chorus and flanger effects. See Manufactured Pianos

KEYBOARDS
Our Square Keyboards are chosen for their superior feel to the discerning muscian whilst strength for the high impact playing present in the Piano appication

49 NOTE C-C $£ 28.75$
73 NOTE F-F $£ 47.00$
88 NOTE A-C $£ 57.00$
Quantity enquiries welcom

MASTER RHYTHM

As published in Practical Electronics fully programmable TWENTY-FOUR PATTERNS EIGHT PARALLEL TRACKS TWELVE INSTRUMENTS SEQUENCE OPERATION

Kit includes all components to build this comprehensive User Programmable Rhythm Generator in an attractive metal case with finished case. hardware and wire.

KIT - $\mathbf{£ 7 9 . 0 0}$ BUILT-£119.00

OUR PRICES INCLUDE Y.A.T., CARRIAGE \& INSURANCE Please send S.A.E. for complete lists or use our telephone in Australia please contact JAYCAR in Sydney.
ALL INSTRUMENTS MAY BE SEEN IN DUR SHDW ROOM.

95 TOROIDAL TYPES From 30va to 625va

TYPE	St RiES	SECONDA	R.MS	PRICE
30va $70 \times 30 \mathrm{~mm}$ 0.45 Kg regulation 18\%	1×010	6+6	250	$\begin{aligned} & \mathbf{5} 4,48 \\ &-0 B 7_{p} P \& P \\ &+ 080_{p} V A T . \end{aligned}$
	1×011	$9+9$	1.66	
	1×012	$12+12$	125	
	1×12	$15+15$	100	
	1×014 $1 \times 0 \div 5$	$18+18$ $22+22$	083	
	$\begin{array}{r}1 \times 015 \\ 1 \times 016 \\ \hline\end{array}$	$22+22$ $25+25$	068 060	
	1×017	$25+25$ $30+30$	060 065	
50va $80 \times 35 \mathrm{~mm}$ 09 ko regulation 13\%	2×010	6+6	416	$\begin{aligned} & \quad \mathbf{f 4 . 9 3} \\ & -\quad 10 p 8 \mathrm{P} \\ & +090 \text { VA.T. } \end{aligned}$
	2×011	$9+9$	271	
	2×012	$12+12$	208	
	2×013	$15+15$	166	
	2×014	$18+18$	138	
	${ }^{2 \times 015}$	$22+22$	113	
	2×016	$25+25$	1.00	
	2×017	$30+30$	083	
	2×028	110	0.45	
	2×029	220	022	
	2×030	240	020	
$\begin{gathered} 80 \mathrm{Va} \\ 90 \times 30 \mathrm{~mm} \\ 1.0 \mathrm{~kg} \\ \text { regulaton } \\ 12 \% \end{gathered}$	3×010	6-6	664	$\begin{aligned} & \mathbf{f} 5.47 \\ & +6143 P 8 \beta \\ & +104 V A T \end{aligned}$
	3×011 3×012	9+9	444	
	3×012 3×013	$12+12$	3.33	
	3×014	18+18	268 222	
	3×815	$22+22$	181	
	3×016	$25+25$	160	
	3×017	$30+30$	133	
	3×028	110	072	
	3×029 3×030	220 240	036 033	
$\begin{gathered} 120 \mathrm{Va} \\ 90 \times 40 \mathrm{~mm} \\ 12 \mathrm{Kg} \end{gathered}$				$\begin{aligned} & \mathbf{f} 6.38 \\ + & \text { fl } 43 P \& p \\ + & \text { EI } 17 V A T \end{aligned}$
	4×010	$6+6$	1000	
	4×011	9-9	666	
	4×012	$12 \cdot 12$	500	
	4×013	$15+15$	400	
	4×014	$18+18$	3.33	
	4×015 4×016	$22+22$ $25+25$	272 240	
$\begin{gathered} \text { regulatuon } \\ 1 / 凶 \end{gathered}$	4×017	$30+30$	2.00	
	4×018	$35+35$	171	
	4×028	110	1.09	
	4×029 4×030	220 240	054	
	4×030	240	050	

Also available from ELECTROVALUE, MAPLIN,
MARSHALLS, TECHNOMATIC

TYPE	$\underset{\substack{\text { SERIES } \\ \text { NO }}}{\text { N }}$	$\frac{\text { SECONDAB }}{\text { Vols }}$	Q.M.S.	PRICE
$\begin{gathered} 160 \mathrm{va} \\ 110 \times 40 \mathrm{~mm} \\ 18 \mathrm{Kg} \\ \text { reguiation } \\ 8 \% \end{gathered}$	5×011	9:9	8.89	$\begin{gathered} \mathbf{f 8 . 4 4} \\ +f .43 \rho \mathrm{~g} \rho \\ +\mathrm{Cl} .48 \mathrm{VAJ} \end{gathered}$
	5×013 5×014	15+15	${ }_{5} 533$	
	5×14 5×015	$18+18$ $22+22$	444 363	
	5×016 5×17	25 25 25 0	320 326	
	5×017 5×018	($30+30$	2686 288 28	
	${ }^{5 \times 1026}$	近	200	
	5×128 5×029	110 220	145 072	
	5×030	240	${ }_{0} 66$	
$\begin{gathered} 225 \mathrm{va} \\ 110 \times 45 \mathrm{~mm} \\ 22 \mathrm{Kg} \end{gathered}$	6×012	$12+12$	938	
	6×13 6×013	$15+15$	7.50	
	${ }^{6 \times 0} 15$		625 511 15	
	${ }^{6 \times 016}$	25+25	450	
	6×017	$30+30$	375	
	-6x18		321 281	
regulatan	6×025	$45+45$	250	
	- $\begin{aligned} & 6 \times 028 \\ & 6 \times 029\end{aligned}$	170		
	${ }_{6 \times 030}$	240	093	
$\begin{gathered} \text { 300va } \\ 1100_{60 \mathrm{~mm}} \\ 26 \mathrm{Kg} \end{gathered}$	70014	$18 \cdot 18$	833	f11.66
	7×15	22. 22	${ }^{682}$	
	${ }_{7}^{7 \times 017}$	25-25	600 500	
	7×018		5. 428	
	${ }_{7}^{7 \times 025}$	40.40	375	
	${ }_{7 \times 025}^{7 \times 03}$	$45 \cdot 45$ 50	333	
reguiation	${ }_{7} 7 \times 028$	${ }_{110}$	272	
	7×029	220	136	
	7X030	240	125	

	8×017	30.30	833	£15.53 E2.05 P\&P - £2 64 VA T
500 va	8×018 8×026	$35+35$ $40-40$	7.14	
140.60 mm	8×1026 8×025	$40-40$ 45	625 5.55	
4.0 Kg	8×033	50-50	5.00	
	8×042	55-55	454	
cegulation	8×028 8×029 $\times 030$	110	4.54	
	$\begin{aligned} & 8 \times 029 \\ & 8 \times 030 \end{aligned}$	220 240	227 208	
$\begin{gathered} 625 \mathrm{va} \\ 40.75 \mathrm{~mm} \\ 50 \mathrm{~kg} \end{gathered}$	9×017	30-30	10.41	$\begin{aligned} & \mathbf{f} \mathbf{2 1 . 5 4} \\ & +\epsilon 220 \mathrm{P} P \\ & +\quad f 356 \mathrm{VA.J} \end{aligned}$
	9×18 3×026	$35-35$ $40-40$	892	
	3026 9×025	$40+40$ $45+45$	7.81 6.94	
	9×033	$50+50$	6.25	
regutatron	\bigcirc	55.55	5.68	
	9×028 9×029	110 220	5.68 284	
	9×030	240	2.84 2.60	

All voltages quoted are for FULL LOAD. Add regulation figure to
secondary wollaze for OFF LOAD potage. COHOICE OF 3 PRIMARY INPUTS
I.L.P. Toroidal Transformers are avilable in choice of $110 \mathrm{~V}, 220 \mathrm{~V}$ 240V. coded as follows (Secondaries can be connected in series or parallel);
For 10V Primary, inser 0 in place of " X " in type number. For 220 V For
Primary (Europe) insert, 1 in place of " C " X " in type number. For 220 V Primary ($\mathrm{U} . \mathrm{K}$.) insert 2 in place of " X "' in ty tye number.
CHUS: 50 Va 240 v . ${ }^{6}+6 \mathrm{~F} 4.16 \mathrm{~A}=2.2610$.
envelope marked FREEPOST. NO STAMP REQUIR ED. envelope marked FREEPOST. NO STAMP REQUIRED. Etectronics LId. or quote pour ACCESS or BAR BLA AYCARD account No. To pay C.O.D. add $£ 1$ extra to TOTAL value of order. G.K. customers must include V.A.T. with paymen.

GOODS DESPATCHED WITHIN 7 DAYS OF RECEIPT OF

5-YEAR GUARANTEE
Toroidals have only half the weight and height
of laminated equivalents are appreciaty of laminated equivalents, are appreciably more
efficient. cost virtualiy the same as the older types which they are rapidly replacing. Induced hum is reduced by a factor of ten. Supplied with rigid mounting kit with centre boll. Steel and neoprene washers. AlI I.L.P. Toroidal
Transformers carry' our full 5-vear guarantee.

To: 1.L.P. ELECTRONICS LTD., CANTERBURYCT2 7EP Please supply Transformer(s) .. \qquad .. No.(s) .

I enclose Cheque \square Postal Order \square International Money Order \square Debit my Access/Barclaycard Account No....

```
NAME.
ADDRESS
```


$\mathcal{V}_{\text {DUE TOABARGAIN }}$ WE ARE PLEASED TO PASS ON THE SAVINGS

UK101 GRAPHICS - Was $£ 67.85$, now just $£ 51.75$. A saving of $£ 16.10$.
SOUND BOARD - Was $£ 40.20$, now just $£ 31.05$. A saving of $£ 9.15$.
PROGRAMMERS AID IN EPROM - Was $£ 21.00$, now $£ 18.00$. A saving of $£ 3.00$.

MX80 7 or F/T - OKI Microline - Qantex. Before buying any of these contact us. We can save you ffés.

UK101 USER GROUP - World wide membership. Tips, topics, bugs, software, hardware. $£ 4.60$ per 6 months membership - Join now and get our latest newsletter by return.

All prices VAT inclusive
Callers by appointment only please

COMPUTER USER AIDS
 9 Moss Lane, Romford, Essex RM1 2QB. Romford 64954

INDEX TO ADVERTISERS

Acorn
Cover 2, 9
Adam Hall Supplies
Alcon
Ambit
Amtron
Audio Electronics
Audio Video Services
Aura Sounds
Bi-Pak
Bolster Instruments
Boss
Breadboard '81 Exhibition
British National Radio \& Electronics Schoo
Cambridge Kits
Cambridge Learning
Cambridge University Press
Cheshire Micro Design
CHJ Supplies
Chromasonic Electronics
Circolec
Clef Products
Crestway Electronics
Crimson Components
Crofton Electronics
C.R. Supply Co
C.U.A.

Dataman Designs
E.D.A.

Electronic Mail Order
Electrovalue
Electroware (OK Machine \& Tool)
Enviro Systems
Eureka Electronics
Gemini
GJD Electronics
Hameg Limited
Heathkit Radio
Heyward Reid
Hiykon Ltd.
Home Radio
ICS Intertext
LP Electronics
London Electronics College $\quad \ldots \quad$.... $\quad . . \quad \ldots \quad . .$.
Marshall A.
Maplin Electronics
11
Midwich Computers
Cover 4
Modern Book Co
Modus Systems
Musicraft
Northern Micro 78

Parndon 74
Phonosonics 8,9
PKG Electronics
Powertran
Proto Design
Radio Component Specialists
Radio \& TV Components
Rapid Electronics
Redditch Electronics
Richard Allan
Riscomp Limited
Roden Products
Scientific Wire Co.
Sinclair Research
Solid State Security
Swanley
Tandy Corporation
Technomatic
Tempus
Telonic
Titan
T\&J Electronic Components
T.K. Electronics

Vero
Videotone
Watford Electronics
Webb Electronics
West London Direct Supplies
William Stuart Systems

BOOKS (NO VAT)

CP/M Handbook.............................. $£ 11.50$ MICROS - Interfacing Techniques $£ 1210$ MICROS - Interfacing Techniques. $\mathbf{£ 1 2 . 1 0}$ Programming the ZBO $\mathbf{£ 1 1 . 2 5}$ 6502 Applications Books 10.55 CRT Controller Handbook -80 Interfacing (Book 1)
 OO PER BOOK
 ZX80/81
 USER PORT
 (As described in Oct. P.W.)
 ADD SOUND TO YOUR ZX80/81
 Port module plugs directly into $Z \times 80 / 81$ to provide 8 input and 8 output lines These allow input of data from switches, photocells, joysticks etc. and control of up to 8 relays. Also 7 segment display or leds may be used, variable tone audio output may be produced - CREATE YOUR OWN SOUND EFFECTS
 This port is accessed by simple peek and poke commands.
 Complete PORT KIT (incl. dble sided PCB) f11.50.
 ZX81 MEMORY DOUBLER
 Double the on board RAM of $Z \times 81$ to 2 K . Only one internal connection required to be made.
 Price inclusive of full instructions $£ 13.00$.
 UK101 \& SUPERBOARD II INTERFACE SYSTEM

TLL Cook Book...................................... $\mathbf{£ 5} 15$ -80

Three board interface system plugs directly into computer expansion socket'to provide wide facilities accessible from BASIC or MACHINE CODE.

1. DECODING MODULE - Providing a dual 5 v supply, 16 bit programmable input/output port, plus extensive address decoding for a wide variety of interfaces including full decoding for a programmable sound generator, and also a 40 pinsk
for further expansion. $\mathbf{£ 2 7 . 5 0}$.
2. ANALOGUE BOARD - Plugs into the Decoding module to provide D/A converter, 8 channel multiplexed A / D converter with 20 nS conversion time. AY $3-8910$ Sound Generator plus 6522 VIA provide timing and counting functions \& additional 16 bit port. £39.95
3. DISPLAY BOARD - Plugs directly into the Decoding module to provide a 2 digit $0.5^{\prime \prime}$ LED display. A pair of such boards can give 4 digit readout. £8.95.
4. MEMORY EXPANSION PCB - A low price compact memory expansion board 8K RAM (2114) + 4 skts for 2716, 2732, 2532 EPROMS. Plated thru holes. Fully buffered and decoded layout. Interfacing instructions supplied. £8.95.

[^6]Australia and New Zealand - Gordon \& Gotch (A/sia) Ltd.; South Africa - Central News Agency Ltd.
Subscriptions INLAND and OVERSEAS £13-00 payable to IPC Services, Oakfleld House, Perrymount Road. Haywards Heath. Sussex

All consoles when connected to a standard UK colour (or black and white) TV set can generate the most amazing graphics you've ever seen.

Look at what you get:

* Background colour, plotting colour, text colour and border colour settable to any one of 16 colours with 8 levels of illuminance!
* Video display has upper and lower case characters with true descenders, double and quad size text and inverse video.
* 57. Key keyboard (touch type on Atari 400) and four function keys.
* Full screen editing and four-way cursor control.
* 29 keystroke graphics and plottable points up to $320 \times 192(160 \times 96$ only with 8 K RAMI.
* 40 character by 24 line display.
* Extended graphics control and high speed action using a DMA chip with its own character set.
* Player missile graphics.
* Four programmable sound generators can be played individually or together and each has 1785 possible sounds playable at any one of eight volume settings, for game sounds or music.
* Full software control of pitch, timbre and duration of notes in 4 -octave range.
* Four joystick or paddle ports, sounds output to TV.
* BASIC cartridge and 10K ROM operating system and full documentation.

Maplin Electronic Supplies Ltd PW/1 1/8 P.O. Box 3, Rayleigh, Essex

Tel: Southend (0702) 552911/554155

MORE HARDWARE

Atari 410 Cassette Recorder (AF28月) $£ 50$ Atari 810 Disk Drive (AF06G) $£ 345$
Atari 822 40-column Thermal
Printer (AFT4E)
£265
Atari 850 Interface (AF29G) $£ 135$
Joystick Controliers (AC37S) £13.95
Paddle Controllers (AC29G) $£ 13.95$
16K RAM Memory Module (AFO8) $£ 65$
MUCH MORE FOR ATARI COMING SOON

SOFTWARE

Lots and lots of amazing software for Atari available NOW
\star Word Processor \star VISI-CALC

* ADVENTURE GAMES \star Arcade Games
* Trek Games * ASSEMBLER \& DISASSEMBLER *FORTH *Teaching * 30 GRAPHICS \star Character Set Generator
SEND S.A.E. NOW FOR OUR LEAFLET (XH52G)

LE STICK

For Atari Computer or Video Game Replaces standard joystick, but much easier to use Internal motion detectors sense hand movements. Large pushbutton on top of Stick. Squeeze Stick to treeze motion. A MUST for SPACE INVADERS, STAR RAIDERS \& ASTEROIDS. ONLY £24.95 (AC45Y)

Note: Order codes shown in brackets

 Prices firm until 14th November, 1981 and include VAT and Postage and Packing. (Errors excluded).Atari 400 Console

Atari 800 Console

SPECIAL PACKAGE OFFER

Disk-based system for $£ 725$ with LeStick The Atari 400 Console
Special 32K Ram Module
Atari 810 Disk Drive
Disk Operating System
Documentation
Interconnecting Leads
Everything in "Look at what you ger" list.
Can any other computer on the market offer all this at anything like this price?

VERSAWRITER

$121 / 2 \times 81 n$. drawing board. Drawing on board is reproduced on TV via Atari with 32K RAM and Disk Drive. Closed areas may be filled in with one of 3 colours. Text may be added in any one of 4 fonts. Paint brush mode: select size of brush and paint away. Air brush mode: shade in your drawing-colour and density is up to you. Plus many more features. S.a.e. for price and further details.

Demonstrations at our shops NOW Atari at 284 London Road Westcliff-on-Sea, Essex. Tel: 107021554000 and at Tel: 161 Sing St. Hammersmith W6. 159-161 King St., Hammel: 01 - 7480926

[^0]: Computer stores are stocking Atoms - there's a list below, but if you have any problems getting hold of one just fill in the coupon and we'll rush one to you within 28 days. If the machine isn't all you expected, or all 'we've told you, just return it within 14 days for a full refund.
 MOM, Aberdeen 22863. Broadway Elect, Bedford 213639. Owl Computers, Bishops Stortford, 52682. Eltec Services, Bradford 491371. Gamer, Brighton 698424. Electronic Information Systems. Bristol 774564 Eltec Services, Bradford 491371. Gamer, Brighton 698424. Electronic Information Systems, Bristol 774564. Cambridge Comp Store, Cambridge 65334. Cardiff Micros, Cardiff 373072 . Bellard Elect. Chester 380123.
 Emprise, Colchester 865926 . Silicon Centre, Edinburgh 3325277 . Esco Computing, Glasgow 2041811 . Emprise, Colchester 865926. Silicon Centre, Edinburgh 3325277 . Esco Computing, Glasgow 204 . 181.0 .
 Control Universal, Harlow 31604 . Unitron Elect, Haslington. Castle Elect, Hastings 437875 . Currys Micro Control Universal, Harlow 31604. Unitron Elect, Hasington, Castle Elect, Hastings 43787. Lerrys Micro digital, Liverpool 2360707 . Barrie Elect, London 488 3316. Eurocalc London 7294555 . Microage London 959 7119. Sinclair Equip. Int (Export) London 235 9649. Off Records, SWI2, 674 1205. Technomatic, NW10 452 1500. NSC Comp Shops, Manchester 832 2269. Customised Electronics, Middlesborough 247727. Compshop, New Barnet 441 2922. H.C.C.S., Newcastle. 821924. Newcastle Comp Services, Newcastle 615325. Anglia Comp Centre, Norwich 29652. Leasalink Viewdata, Nottingham 396976. R.D.S. Electrical Portsmouth 812478 . Computers for All, Romford 751906. Intelligent Artefacts, Royston, Arrington 689. Computer Facilities Scunthorpe, Datron Micro Centre Sheffield 585490 . Superior Systems, Sheffield 77824. Q-TEC Systems, Stevenage 65385. 3D Computers, Surbiton (01) 337 4317. Abacus Micro Comp, Tonbridge, Paddock Wood 3861. Northern Comp, Warrington 601683. Compass Design Wigan Standish 426252.

[^1]: © IPC Magazines Limited 1981. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^2]: All items subject to avaitability. Prices correct at $1 / 10 / 80$ and subject to change without notice. RTVC Limited reserve the right to update their products without notice.

[^3]: OPIN26 MM5309

[^4]: Cambridge Learning Limited, Unit 28, Rivermill Site, FREEPOST, St. Ives, Huntingdon,

[^5]: Reg. in Eng. No. 1328762

[^6]: Published approximately on the 15th of each month by IPC Magazines Lto., Westover House, West

